
TM

FlexOS 286
Programmer's
Utilities Guide

1073-2043-001

COPYRIGHT

Copyright© 1 g55 Digital Research. All rights reserved. No part of this publication may
be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise. without the prior written
permission of Digital Research, 60 Garden Court, Box ORI, Monterey, California 93942.

DISCLAIMER

DIGITAL RESEARCH MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Digital
Research Inc. reserves the right to revise this publication and to make changes from
time to time in the content hereof without obligation of Digital Research Inc. to notify
any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to
the softw'are named herein. Occasionally changes or variations exist in the software
that are not reflected in the manual. Generally, if such changes or variations are
known to exist and to affect the product significantly, a release note or README.DOC
file accompanies the manual and distribution disk(s). In that event be sure to read the
release note or README.DOC file before using the product.

TRADEMARKS

Digital Research, CP/M, CP/M-86, and the Digital Research logo are registered
trademarks of Digital Research Inc. CB86, Digital Research C, FlexOS, LIB-86, LINK 86,
MP/M-86, PL/1-86, RASM-86, SID-286, and XREF-86 are trademarks of Digital Research.
We Make Computers Work is a service mark of Digital Research Inc. Intel is a
registered trademark of Intel Corporation. MCS-86 is a trademark of Intel Corporation.

Foreword

The FlexOS TM 286 Programmer's Utilities Guide (cited as the
Programmer's Utilities Guide) assumes that you are familiar with the
CP/M-86 or FlexOS operating system environment. It also assumes
that you are familiar with the basic elements of 8086/286 assembly
language programming.

Part I of the Programmer's Utilities Guide describes several utility
programs that aid programmers and system designers in the software
development process. Collectively, these utilities allow you to
assemble 8086 and 80286 assembly language modules, link them
together to form a program that runs, and generate a cross-reference
map of the variables used in a program. You can also use these
utilities to create and manage your own libraries of subroutines and
program modules, as well as create large programs by breaking them
into separate overlays.

The tools described in this guide can be run either on the 8086
microprocessor under CP/M-86 or on the 80286 microprocessor under
FlexOS 286.

RASM-86™ is an assembler that translates 8086, 80186, or 80286
assembly language statements into a relocatable object file in the
Intel™ format. RASM-86 facilities include assembly of Intel
mnemonics, assembly-time expressions, conditional assembly, page
formatting of listing files, and powerful code-macro capabilities.

The Programmer's Utilities Guid~ is divided into the following sections:

Section 1

Section 2

Section 3

The overall operation of RASM-86 and its optional run­
time parameters.

Elements of RASM-86 assembly language, including the
character set, delimiters, constants, identifiers, operators,
expressions, and statements.

The various RASM-86 directives that control the
assembly process.

iii

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

A brief description of the RASM-86 instructions for data
transfer, mathematical operations, string manipulation,
control transfer, and processor control.

The code-macro facilities of RASM-86.

XREF-86™, an assembly language cross-reference
program used with RASM-86.

LINK 86r", the linkage editor that combines relocatable
object modules into an absolute file that runs under
CP/M-86 or FlexOS.

How to use LINK 86 to produce overlays.

How· to use LIB-86™, the software librarian that creates
and manages libraries.

Sections 10 through 16 explain how to use SID-286 , the Symbolic
Instruction Debugger.

The appendixes contain a complete list of error messages output by
each of the utility programs.

TYPOGRAPHICAL CONVENTIONS USED IN THIS GUIDE

This guide uses the following notation to describe commands:

command parameter [option]

A command is any of the commands described in this guide. A
parameter can be a filename, an address location, or any specifier that
is particular to the command. Optional items, such as command
options or additional filenames, appear inside square brackets.

Words joined by an underscore (_) represent a single command item or
field.

iv

Examples of specific usage of a command are preceded by an A>
prompt, and the user's input appears in bold print. For example:

A>rasm86 test

illustrates a specific usage of the RASM86 command.

Characters used to represent values or variables in a command or
instruction syntax may also appear in bold print in the text in which
they are described.

v

Contents

1 The RASM-86 Assembler
1.1 Introduction 1-1
1.2 RASM-86 Operation . 1-1
1.3 RASM-86 Command Syntax . 1-2

1.3.1 RASM-86 Run-Time Parameters 1-3
1.3.2 RASM-86 Command Line Examples. 1-6

1.4 Stopping RASM-86. 1-7

2 Elements of RASM-86 Assembly Language
2.1 Introduction . 2-1
2.2 RASM-86 Character Set . 2-1
2.3 Tokens and Separators . 2-2
2.4 Delimiters. 2-2
2.5 Constants. 2-4

2.5.1 Numeric Constants . 2-4
2.5.2 Character String Constants. 2-5

2.6 Identifiers . 2-6
2.6.1 Keyword Identifiers . 2-7
2.6.2 Symbol Identifiers. 2-9
2.6.3 Example Identifiers . 2-11

2.7 Operators. 2-11
2.7.1 Arithmetic Operators........................ 2-13
2.7.2 Logical Operators . 2-15
2.7.3 Relational Operators . 2-16
2.7.4 Segment Override Operator. 2-17
2.7.5 Variable Manipulation Operators 2-17
2.7.6 Variable Creation Operators. 2-18
2.7.7 Operator Precedence. 2-20

2.8 Expressions . 2-21
2.9 Statements. 2-22

2.9.1 Instruction Statements . 2-23
2.9.2 Directive Statements. 2-23

vii

Contents

3 RASM-86 Directives
3.1 Introduction . 3-1
3.2 Assembler Directive Syntax. 3-1
3.3 Segment Control Directives . 3-2

3.3.1 The 8086/80286 Segmented Architecture 3-2
3.3.2 CSEG, DSEG, ESEG, and SSEG Directives. 3-4
3.3.3 GROUP Directive. 3-8

3.4 Linkage Control Directives . 3-9
3.4.1 END Directive . 3-9
3.4.2 NAME Directive. 3-10
3.4.3 PUBLIC Directive . 3-10
3.4.4 EXTRN Directive . 3-10

3.5 Conditional Assembly Directives. 3-11
3.5.1 IF, ELSE, and ENDIF Directives ·. 3-11

3.6 Symbol Definition Directive. 3-12
3.6.1 EOU Directive . 3-12

3.7 Data and Memory Directives....................... 3-13
3.7.1 DB Directive . 3-14
3.7.2 OW Directive.............................. 3-15
3.7.3 DD Directive . 3-15
3.7.4 RS Directive . 3-16
3.7.5 RB Directive . 3-16
3.7.6 RW Directive. 3-16
3.7.7 RD Directive . 3-17

3.8 Output Listing Control Directives 3-17
3.8.1 EJECT Directive............................ 3-17
3.8.2 NOIFLIST/IFLIST Directives. 3-18
3.8.3 NOLIST and LIST Directives. 3-18
3.8.4 PAGESIZE Directive . 3-18
3.8.5 PAGEWIDTH Directive . 3-18
3.8.6 SIMFORM Directive. 3-18
3.8.7 TITLE Directive . 3-19

3.9 8087 Control Directives . 3-19
3.9.1 HARD8087 Directive . 3-19
3.9.2 AUT08087 Directive . 3-19

viii

Contents

3.10 Miscellaneous Directives. 3-20
3.10. 1 INCLUDE Directive. 3-20
3.10.2 ORG Directive . 3-21

4 RASM-86 Instruction Set
4.1 Introduction . 4-1
4.2 RASM-86 Instruction Set Summary. 4-1
4.3 Instruction-definition Tables. 4-10

4.3. 1 Symbol Conventions. 4-10
4.3.2 Flag Registers. 4-12
4.3.3 8086 Data Transfer Instructions. 4-12
4.3.4 8086 Arithmetic, Logical, and Shift Instructions. . . . 4-16
4.3.5 8086 String Instructions . 4-26
4.3.6 8086 Control Transfer Instructions 4-30
4.3.7 8086 Processor Control Instructions 4-36
4.3.8 8087 Instruction Set . 4-39
4.3.9 Additional 186 and 286 Instructions 4-52
4.3. 10 Additional 286 Instructions 4-54

5 RASM-86 Code-macro Facilities
5.1 Introduction . 5-1
5.2 Invoking Code-macros . 5-1
5.3 Defining Code-macros . 5-2

5.3. 1 Formal Parameter List. 5-2
5.3.2 Code-macro Directives . 5-4
5.3.3 Example Code-Macro Definitions............... 5-10

6 XREF-86 Cross-Reference Utility
6.1 Introduction . 6-1
6.2 XREF-86 Command Syntax. 6-1

7 LINK 86 Linkage Editor
7.1 Introduction . 7-1
7.2 LINK 86 Operation. 7-1
7.3 LINK 86 Command Syntax. 7-4
7.4 Stopping LINK 86 . 7-5
7.5 Shareable Runtime Libraries . 7-5

ix

Contents

7.6 LINK 86 Command Options. 7-6
7.7 Command File Options. 7-10

7.7.1 CODE/DATA/STACK/EXTRA/X1/X2/X3/X4 7-11
7.7.2 FILL I NOFILL. 7-14
7.7.3 HARD8087 I SIM8087 I AUT08087. 7-14
7.7.4 CODESHARED............................. 7-15

7.8 SYM File Options . 7-16
7.8.1 LOCALS I NOLOCALS . 7-16
7.8.2 LIBSYMS I NOLIBSYMS . 7-16

7.9 LIN File Options . 7-17
7.10 MAP File Option . 7-17
7.11 L86File0ptions 7-18

7.11.1 SEARCH 7-18
7.11.2 SHARED I NOSHARED 7-19

7.12 Input File Options. 7-20
7.13 1/0 Option. 7-21

7.13.1 $C (Command) Option. 7-22
7.13.2 $L {Library) Option. 7-23
7.13.3 $M (Map) Option. 7-23
7.13.4 $0 {Object) Option . 7-23
7.13.5 $S (Symbol and Line Number) Option 7-24

7.14 Overlay Options . 7-24
7.15 The Link Process............................... 7-25

7.15.1 Phase 1 - Collection . 7-26
7.15.2 Phase 2 - Create Command File 7-32

8 Overlays
8.1 Introduction . 8-1
8.2 Overlay Syntax . 8-3
8.3 Writing Programs That Use Overlays. 8-5

8.3.1 Overlay Method 1 . 8-5
8.3.2 Overlay Method 2 . 8-7

8.4 General Overlay Constraints . 8-8

x

Contents

9 LIB-86 Library Utility
9.1 Introduction . 9-1
9.2 LIB-86 Operation . 9- 1
9.3 LIB-86 Command Syntax. 9-3
9.4 Stopping LIB-86 . 9-3
9.5 LIB-86 Command Options. 9-4
9.6 Creating and Updating Libraries . 9-4

9.6. 1 Creating a New Library . 9-5
9.6.2 Adding to a Library. 9-5
9.6.3 Replacing a Module. 9-5

. 9.6.4 Deleting a Module. 9-6
9.6.5" Selecting a Module. 9-7

9.7 Displaying Library Information. 9-8
9.7. 1 Cross-reference File . 9-8
9.7.2 Library Module Map. 9-8
9.7.3 Partial Library Maps. 9-9

9.8 LIB-86 Commands on Disk. 9-9
9.9 Redirecting !/O . 9-10

10 SID-286 Operation
10. 1 Introduction . 10-1
10.2 Typographical Conventions. 10-1
10.3 Starting SID-286. 10-2

10.3. 1 SID-286 Command Options. 10-3
10.3.2 SID-286 Example Commands. 10-5

10.4 Exiting SID-286................................ 10-6

11 SID-286 Expressions
11. 1 Introduction . 11-1
11.2 Literal Hexadecimal Numbers . 11-1
11.3 Literal Decimal Numbers. 11-2
11.4 Literal Character Values . 11-2
11.5 Register Values. 11-3

xi

Contents

11.6 Stack References 11-4
11. 7 Symbolic References. 11-5
11.8 Qualified Symbols. 11-6
11.9 Expression Operators . 11-7
11.10 Sample Symbolic Expressions . 11-8

12 SID-286 Commands

xii

12.1 Introduction . 12-1
12.2 SID-286 Command Summary . 12-1
12.3 SID-286 Command Conventions. 12-2

12.3.1 Command Structure . 12-2
1-2.3.2 Specifying an Address. 12-3
12.3.3 ·Line Editing Functions. 12-3

12.4 SID-286 Commands . 12-4
12.4.1 A (Assemble) Command . 12-4
12.4.2 B (Block Compare) Command 12-5
12.4.3 C (Change Memory) Command 12-6
12.4.4 D (Display) Command . 12-6
12.4.5 E (Load Program, Symbols for Execution) Command 12-8
12.4.6 F (Fill) Command 12-10
12.4.7 G (Go) Command . 12-11
12.4.8 H (Hexadecimal Math) Command. 12-12
12.4.9 I (Redirect Output) Command 12-14
12.4.10 K (Redefine Keys) Command 12-15
12.4.11 L (List) Command 12-16
12.4.12 M (Move) Command 12-18
12.4.13 N (Transfer Control) Command 12-18
12.4.14 0 (Control Window) Command 12-19
12.4.15 P (Permanent Breakpoint) Command 12-20
12.4.16 Q (Quit) Command 12-23
12.4.17 R (Read) Command . 12-23
12.4. 18 S (Set) Command . 12-24
12.4. 19 SR (Search for String) Command. 12-26
12.4.20 T (Trace) Command 12-27
12.4.21 U Command . 12-30
12.4.22 V (Value) Command. 12-31

Contents

12.4.23 W (Write) Command 12-31
12.4.24 X (Examine CPU State) Command 12-32
12.4.25 Z (Print 8087180287 Registers) Command. 12-34
12.4.26 ? (List Commands) Command 12-35
12.4.27 ?? (List Commands Format) Command 12-35
12.4.28 : (Define Macro) command 12-35
12.4.29 = (Use Macro) Command. 12-36

13 Default Segment Values
13.1 Introduction
13.2 Type-1 Segment Value
13.3 Type-2 Segment Value

14 Assembly Language Syntax for A and L Commands
14.1 Assembly Language Exceptions

15 SID-286 Sample Sessions
15.1 Introduction
15.2 SID-286 Session # 1
15.3 SID-286 Session #2
15.4 SID-286 Session #3

A Example RASM-86 Source Files

B Creating Shared Runtime Libraries
B.1 Shareable Runtime Libraries
B.2 SRTL Components
B.3 Creating a SRTL

B.3.1 Modifying the Source
B.3.2 Creating the Transfer Vectors
B.3.3 Creating the Object Modules
B.3.4 Creating the LIBATTR Module
B.3.5 Creating the SRTL
B.3.6 Creating the XSRTL

13-1
13-1
13-2

14-1

15-1
15-1
15-8

15-18

A-1

B-1
B-1
B-1
B-2
B-2
B-4
B-5
B-5
B-9
B-9

xiii

Contents

B.4 Small & Medium Model SRTLs . 8-10
B.4.1 Calling Conventions . 8-11

B.5 Large Model SRTLs.............................. 8-12
B.5.1 Calling Conventions . 8-12

B.6 SRTL Restrictions . 8-13
8.7 Example SRTL. 8-14

C Mnemonic Differences from the Intel Assembler. C-1

D Reserved Words . D-1

E Code-Macro Definition Syntax . E-1

F RASM-86 Error Messages . F-1

G XREF-86 Error Messages. G-1

H LINK 86 Error Messages . H-1

Overlay Manager Run-Time Errors. 1-1

J LIB-86 Error Messages . J-1

K SID-286 Error Messages . K-1

L Additional FlexOS Utilities. L-1
L.1 HSET... L-1
L.2 IOMF. L-1
L.3 OBJERR. L-2
L.4 POSTLINK. L-2
L.5 PSN . L-3

xiv

Contents

Tables

1-1 RASM-86 Run-time Parameters . 1-3
2-1 Separators and Delimiters . 2-3
2-2 Radix Indicators for Constants. 2-5
2-3 String Constant Examples . 2-6
2-4 Register Keywords. 2-8
2-5 RASM-86 Operator Summary. 2-12
2-6 Precedence of Operations in RASM-86 2-20
3-1 Default Segment Names . 3-4
3-2 Default Align Types : 3-5
3-3 Default Class Name for Segments ·. 3-8
4-1 RASM-86 Instruction Summary . 4-2
4-2 Operand Type Symbols . 4-10
4-3 Flag Register Symbols. 4-12
4-4 8086 Data Transfer Instructions. 4-13
4-5 Effects of Arithmetic Instructions on Flags. 4-17
4-6 8086 Arithmetic Instructions . 4-18
4-7 8086 Logical and Shift Instructions 4-21
4-8 8086 String Instructions. 4-27
4-9 8086 Prefix Instructions . 4-29
4-10 8086 Control Transfer Instructions. 4-30
4-11 8086 Processor Control Instructions. 4-37
4-12 8087 Data Transfer Instructions. 4-40
4-13 8087 Arithmetic Instructions . 4-42
4-14 8087 Transcendental Instructions. 4-50
4-15 8087 Constant Instructions . 4-51
4-16 8087 Processor Control Instructions. 4-51
4-17 Additional 186 and 286 Instructions. 4-53
4-18 Additional 286 Instructions. 4-54
5-1 Code-macro Operand Specifiers 5-3
5-2 Code-macro Operand Modifiers. 5-4
7-1 LINK 86 Command Options . 7-7
7-2 Command File Option Parameters 7-12
7-3 Default Values for Command File Options and Parameters 7-14
7-4 LINK 86 Usage of Class Names . 7-33
9-1 LIB-86 Filetypes. 9-2

xv

Contents

9-2 LIB-86 Command Line Options
12-1 SID-286 Command Summary
12"'"'2 Flag Name Abbreviations
13-1 SID-286 Default Segment Values
C-1 Mnemonic Differences
C-2 Memory Operands for 8087 Instruction
D-1 Reserved Words
F-1 RASM-86 Non-recoverable Errors
F-2 RASM-86 Diagnostic Error Messages
G-1 XREF-86 Error Messages
H-1 LINK 86 Error Messages_
1-1 Overlay Manager Error Messages ·
J-1 LIB-286 Error Messages
K-1 SID-86 Error Messages
L-1 IOMF Options

Figures

9-4
12-1

12-33
13-2
C-1
C-2
D-1
F-1
F-3
G-1
H-1
1-1

J-1
K-1
L-2

1-1 RASM-86 Source and Object Files. 1-2
6-1 XREF-86 Operation . 6-1
7-1 LINK 86 Operation . 7-3
7-2 Combining Segments with the Public Combine Type 7-27
7-3 Combining Segments with the Common Combine Type. . 7-28
7-4 Combining Segments with Stack Combination. 7-28
7-5 Paragraph Alignment . 7-30
7-6 The Effect of Grouping Segments 7-31
8-1 Using Overlays in a Large Program 8-2
8-2 Tree Structure of Overlays. 8-3
9.-1 LIB-86 Operation. 9-2
B-1 Small Memory Model Data Segment B-11
B-2 Small Memory Model Calling Sequence. B-12
B-3 Large Memory Model Calling Sequence. B-13

Listings

A-1 RASM-86 Sample for FlexOS 86 A-1
A-2 RASM-86 Sample for FlexOS 286. A-3

xvi

SECTION 1

The RASM-86 Assembler

1.1 Introduction

This section describes RASM-86 operation and its command syntax.
Sections 2 through 5 detail the characteristics and uses of the
RASM-86 components. A sample RASM-86 source file is provided in
Appendix EXAMPLE.

1.2 RASM-86 Operation

The RASM-86 assembler converts source files containing 8086, 8087,
80186, 80286, and 80287 instructions into machine language object
files. RASM-86 processes an assembly language source file in three
passes and can produce three output files from one source file as
shown in Figure 1-1.

1-1

1.2 RASM-86 Operation

Source RASM-86
(filename.A86)

1--1

Programmer's Utilities Guide

~

t--+---1
i

List File

(filename.LST)

Object File

(filename.OBJ)

Symbol File
(lilename.SYM)

Figure 1-1. RASM-86 Source and Object Files

The LST list file contains the assembly language listing with any error
messages. The OBJ object file contains the object code in Intel 8086
and 80286 relocatable object format. The SYM symbol file lists any
user-defined symbols.

The three files have the same filename as the source file. For
example, if the name of the source file is BIOS88.A86, RASM-86
produces the files BIOS88.0BJ, BIOS88.LST, and 810$88.SYM.

1.3 RASM-86 Command Syntax

Invoke RASM-86 with the following command form:

RASM86 [d:]filename[.typ] [$ run-time parameters]

where filename is the name of the source file. The filename can be
any valid filename of 1 to 8 characters.

1-2

Programmer's Utilities Guide 1.3 RASM-86 Command Syntax

The d: is an optional drive specification denoting the source file's
location. The drive specification is not needed if the source is on the
current drive. The typ is the optional filetype, which can be any valid
filetype of I to 3 characters. If no filetype is specified, filetype A86 is
assumed. The run-time parameters are described below in Section
1.3.1.

1.3.1 RASM-86 Run-Time Parameters

The dollar sign character, $, denotes an optional string of run-time
parameters. A run-time parameter is followed by a device or file
specification.

Table 1-1 contains a summary of the RASM-86 run-time parameters,
described in detail in the following sections.

Parameter

A
!FILENAME

L
0

NC
p

s
186
286

Table 1-1. RASM-86 Run-time Parameters

Specifies

Source file device
Include filename into assembly
at beginning of module
Local symbols in object file
Object file device
No case conversion
List file device
Symbol file device
Permit 186 opcodes
Permit 286 opcodes

Valid Arguments

A, B, C, ... P

0
A ... P, Z

A ... P, X, Y, Z
A ... P, X, Y, Z

All run-time parameters are optional, and you can enter them in the
command line in any order. Enter the dollar sign only once at the
beginning of the parameter string. Spaces can separate parameters,
but are not required. However, no space is permitted between a
parameter and its device name.

1-3

1.3 RASM-86 Command Syntax Programmer's Utilities Guide

If you specify an invalid parameter in the parameter list, RASM-86
displays

SYNTAX ERROR

and echoes the command tail up to the point where the error occurs,
then prints a question mark. (Appendix F contains the complete list of
RASM-86 error messages.)

A, 0, P, and S Parameters

These run-time parameters associate a filetype witn a device. The file
parameters: A, 0, P, and S specify the type of file. Each of these
parameters is followed by a device specifier: A - P, X, Y, Z. For
example:

$ AA

specifies the source file on drive A.

The A, 0, P, and S parameters specify the following:

A
0
p

s

Specifies the Source File
Specifies the Object File
Specifies the List File
Specifies the Symbol File

A device name must follow each of these parameters. The devices are
as follows:

A through P
x
y

z

Specify disk drives A through P, respec:tively.
Specifies the user console, CON:
Specifies the list device, LST:
Suppresses output, NUL:

If you direct the output to the console, you can temporarily stop the
display by typing CTRL-S, then restart it by typing CTRL-Q.

1-4

Programmer's Utilities Guide 1.3 RASM-86 Command Syntax

!FILENAME Parameter

If a CP/M filename is preceded by an I (upper case i), the contents of
the file is included at the beginning of the module being assembled. If
no filename extension is specified, RASM-86 assumes an extension of
A86. The file specified must be a CP/M file. This parameter will not
work with PC DOS files.

L Parameter

The L parameter directs RASM-86 to include local symbols in the
object file so that they appear in the SYM file created by LINK-86.
Otherwise, only public symbols appear in the SYM file. You can use
the SYM file with the Symbolic Instruction Debugger, SID-286 .. , to
simplify program debugging.

NC Parameter

The NC parameter directs RASM-86 to distinguish between uppercase
and lowercase in symbol names. Thus, when you specify the NC
parameter, the symbols ABC and abc are treated as two unique
symbols. If the NC parameter is not specified, RASM-86 would
consider ABC and abc to be the same symbol. This parameter is
useful when writing programs to be linked with other programs whose
symbols might contain lowercase characters, such as "c".

186 and 286 Parameters

The 186 parameter specifies that 80186 opcodes are to be assembled.

The 286 parameter specifies that 80286 opcodes are to be assembled.

1-5

1.3 RASM-86 Command Syntax Programmer's Utilities Guide

1.3.2 RASM-86 Command Line Examples

The following are some examples of valid RASM-86 commands:

Command Line Result

A>rasm86 io Assembles file IO.A86 and produces IQ.OBJ, 10.LST,
and 10.SYM, all on the default drive.

A>rasm86 io.asm $ ad sz
Assembles file 10.ASM on drive D and produces
10.LST and IQ.OBJ. Suppresses the symbol file.

A>rasm86 io $ py sx
Assembles file 10.A86, produces IQ.OBJ, and sends
listing directly to printer. Also outputs symbols on
console.

A>rasm86 io $!first
Assembles file IO.A86 with the contents of the tile,
first.a86, appearing at the beginning of the module.
Then produces IQ.OBJ, 10.LST, and 10.SYM, all on the
default drive.

A>rasm86 io $ lo
Includes local symbols in IQ.OBJ.

After the command to invoke RASM-86 is given, the following sign-on
message is displayed:

RASM-86 (87) 12/14/85 Version 1.3
Serial No. xxxx-0000-654321 All Rights Reserved
Copyright (C) 1982,1985 Digital Research, Inc.

RASM-86 then attempts to open the source file. If the file does not
exist on the designated drive or does not have the correct filetype,
RASM-86 displays

NO FILE

and stops processing.

1-6

Programmer's Utilities Guide 1 .3 RASM-86 Command Syntax

By default, RASM-86 creates the output files on the current disk drive.
However, you can redirect the output files by using the optional
parameters, or by a drive specification in the source filename. In the
latter case, RASM-86 directs the output files to the drive specified in
the source filename.

When the assembly is complete, RASM-86 displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n USE FACTOR: pp%

where n represents the number of errors encountered during
assembly. The Use Factor indicates how much of the available Symbol
Table space was actually used during the assembly. The Use Factor is
expressed as a decimal percentage ranging from 0 to 99.

1.4 Stopping RASM-86

To stop the assembly at any time, press any key on the console
keyboard. When you press a key, RASM-86 responds

STOP RASM-86 (Y /N)?

If you type Y, RASM-86 immediately stops processing, and returns
control to the operating system. Type N to resume processing.

End of Section 1

1-7

SECTION 2

Elements of RASM-86 Assembly Language

2.1 Introduction

This section describes the elements of the RASM-86 assembly
language. RASM-86 elements are described in the following order:

• RASM-86 Character Set
• Tokens and Separators
• Delimiters
• Constants
• Identifiers
• Operators
• Expressions
• Statements

2.2 RASM-86 Character Set

RASM-86 recognizes a subset of the ASCII character set. Valid
RASM-86 characters are the following alphanumeric characters, special
characters, and non-printing characters.

Valid Alphanumeric Characters:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
a b c d e f g h i J k 1 m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9

Valid Special Characters:

+ - * I = () []

Valid Nonprinting Characters:

I . ,

space, tab, carriage return, and line-feed

$?

2-1

2.2 RASM-86 Character Set Programmer's Utilities Guide

Usually RASM-86 treats lowercase letters as uppercase, except within
strings. You can use the NC parameter described in Section 1.3.1 to
make RASM-86 distinguish between lower and upper case. Only
alphanumerics, special characters, and spaces can appear in a string.

2.3 Tokens and Separators

A token is the smallest meaningful unit of a RASM-86 source program,
much as a word is the smallest meaningful unit of a sentence.
Adjacent tokens within the source are commonly separated by a blank
character or space. Any sequence of spaces can appear wherever a
single space is allowed. RASM-86 recognizes horizontal tabs as
separators and interprets them as spaces. RASM-86 expands tabs to
spaces in the list file. The tab stops are at each eighth column.

2.4 Delimiters

Delimiters mark the end of a token and add special meaning to the
instruction; separators merely mark the end of a token. When a
delimiter is present. separators need not be used. However, using
separators after delimiters can make your program easier to read.

Table 2-1 describes RASM-86 separators and delimiters. Some
delimiters are also operators. Operators are described in Section 2.7.

2-2

Programmer's Utilities Guide 2.4 Delimiters

Character

20H

09H

CR

LF

$

+

Table 2-1. Separators and Delimiters

Name

space

tab

carriage return

line-feed

semicolon

colon

period

dollar sign

plus

minus

Use

separator

legal in source files,
expanded in list files

terminates source lines

legal after CR; if in
source lines, it is
interpreted as a space

starts comment field

identifies a label; used
in segment override
specification

forms variables from
numbers

notation for present
value of location
counter; legal, but
ignored in identifiers
or numbers

arithmetic operator for
addition

arithmetic operator for
subtraction

2-3

2.4 Delimiters

Character

*

I

@

2.5 Constants

Programmer's Utilities Guide

Table 2-1. (continued}

Name

asterisk

slash

at

underscore

exclamation
point

apostrophe

Use

arithmetic operator for
multiplication

arithmetic operator for
division

legal in identifiers

legal in identifiers

logically terminates a
statement, allowing
multiple statements on
a single source line

delimits string
constants

A constant is a value known at assembly time that does not change
while the assembled program is running. A constant can be either a
numeric value or a character string.

2.5.1 Numeric Constants

A numeric constant is a 16-bit integer value expressed in one of
several bases. The base, called the radix of the constant, is denoted
by a trailing radix indicator. Table 2-2 shows the radix indicators.

2-4

Programmer's Utilities Guide 2.5 Constants

Table 2-2. Radix Indicators for Constants

Indicator Constant Type Base

B binary 2
0 octal 8
Q octal 8
0 decimal 10
H hexadecimal 16

RASM-86 assumes that any numeric constant not terminating with a
radix indicator is a decimal constant. Radix indicators can be
uppercase or lowercase.

A constant is thus a sequence of digits followed by an optional radix
indicator, where the digits are in the range for the radix. Binary
constants must be composed of zeros and ones. Octal digits range
from 0 to 7; decimal digits range from 0 to 9. Hexadecimal constants
contain decimal digits and the hexadecimal digits A (100), B (i 10), C
(120), 0 (130), E (140), and F (150). The leading character of a
hexadecimal constant must be a decimal digit so RASM-86 cannot
confuse a hex constant with an identifier. The following are valid
numeric constants:

1234
1234H
33770

1234D
OFFEH
0FE3H

llOOB
33770
1234d

2.5.2 Character String Constants

1111000011110000B
13772Q
Off f fh

A character string constant is a string of ASCII characters delimited by
apostrophes. All RASM-86 instructions allowing numeric constants as
arguments accept only one- or two-character constants as valid
arguments. All instructions treat a one-character string as an 8-bit
number, and a two-character string as a 16-bit number. The value of
the second character is in the low-order byte, and the value of the
first character is in the high-order byte.

2-5

2.5 Constants Programmer's Utilities Guide

The numeric value of a character is its ASCII code. RASM-86 does not
translate case in character strings, so you can use both uppercase and
lowercase letters. Note that RASM-86 allows only alphanumerics,
special characters, and spaces in character strings.

A DB directive is the only RASM-86 statement that can contain strings
longer than two characters (see Section). The string cannot exceed
255 bytes. If you want to include an apostrophe in the string, you
must enter it twice. RASM-86 interprets two apostrophes together as
a single apostrophe. Table 2-3 shows valid character strings and how
they appear after processing.

Table 2-3. String Constant Examples

String in source text As processed by RASM-86

'a' a
'Ab"Cd' Ab'Cd
'I like CP/M' I like CP/M

'ONLY UPPERCASE' ONLY UPPERCASE
'only lowercase' only lowercase

2.6 Identifiers

The following rules apply to all identifiers:

• Identifiers can be up to 80 characters long.

• The first character must be alphabetic or one of these special
characters: ?, @, or

• Any subsequent characters can be either alphabetic, numeric, or
one of these special characters: ?, @, , or $. RASM-86 ignores
the special character $ in identifiers, so that you can use it to
improve readability in long identifiers. For example, RASM-86
treats the identifier interrupt$flag as interruptflag.

2-6

Programmer's Utilities Guide

There are two types of identifiers:

Keywords

Symbols

Keywords have predefined meanings to RASM-86.
identifiers you define yourself.

2.6.1 Keyword Identifiers

2.6 Identifiers

Symbols are

Keywords are reserved for use by RASM-86; you cannot define an
identifier identical to a keyword. Appendix E illustrates the use of
keywords.

RASM-86 recognizes five types of keywords:

• instructions
• directives
• operators
• registers
• predefined numbers

Section 4 defines the 8086, 8087, 80186, 80286, and 80287 instruction
mnemonic keywords and the actions they initiate; Section 3 discusses
RASM-86 directives, and Section 2.7 defines operators. Table 2-4 lists
the RASM-86 keywords that identify the processor registers.

Three keywords, BYTE, WORD, and DWORD, are predefined numbers.
The values of these numbers are 1, 2, and 4, respectively. RASM-86
also associates a Type attribute with each of these numbers. The
keyword's Type attribute is equal to the keyword's numeric value.

2-7

2.6 Identifiers Programmer's Utilities Guide

Table 2-4. Register Keywords

Register Size Numeric
Symbol {bytes) Value Meaning

AH 100 B Accumulator High Byte
BH 111 B Base Register High Byte
CH 101 B Count Register High Byte
DH 1 110 B Data Register High Byte

AL 000 B Accumulator Low Byte
BL 1 011 B Base Register Low Byte
CL 1 001 B · Count Register Low Byte
DL 1 010 B Data Register Low Byte

AX 2 000 B Accumulator {full word)
BX 2 011 B Base Register (full word)
ex 2 001 B Count Register (full word)
DX 2 010 B Data Register {full word)

BP 2 101 B Base Pointer
SP 2 100 B Stack Pointer

SI 2 110 B Source Index
DI 2 111 B Destination Index
cs 2 01 B Code Segment Register
DS 2 11 B Data Segment Register
SS 2 10 B Stack Segment Register
ES 2 00 B Extra Segment Register
ST 10 000 B 8087 stack top register
STO 10 000 B 8087 stack top register
ST1 10 001 B 8087 stack top - 1 register
ST2 10 111 B 8087 stack top - 7 register

2-8

Programmer's Utilities Guide 2.6 Identifiers

2.6.2 Symbol Identifiers

A symbol is a user-defined identifier with attributes specifying the kind
of information the symbol represents. Symbols fall into three
categories:

• variables
• labels
• numbers

Variables

Variables identify data stored at a particular location in memory. All
variables have the following three attributes:

Segment

Offset

Type

tells which segment was being assembled when the
variable was defined.

tells how many bytes are between the beginning of
the segment and the location of this variable.

tells how many bytes of data are manipulated when
this variable is referenced.

A segment can be a code segment, a data segment, a stack segment,
or an extra segment, depending on its contents and the register
containing its starting address (see "Segment Control Directives" in
Section 3.3). The segment's starting address is a number between 0
and OFFFFH (65,535D). This number indicates the paragraph in memory
to which the current segment is assigned, either when the program is
assembled, linked, or loaded.

The offset of a variable is the address of the variable relative to the
starting address of the segment. The offset can be any number
between 0 and OFFFFH.

A variable has one of the following type attributes:

BYTE
WORD
DWORD

one-byte variable
two-byte variable
four-byte variable

2-9

2.6 Identifiers Programmer's Utilities Guide

The data definition directives: DB, DW, and DD, define a variable as one
of these three types (see Section 3). For example, the variable,
my_ variable, is defined when it appears as the name for a data
definition directive:

my_variable db 0

You can also define a variable as the name for an EQU directive
referencing another variable, as shown in the following example:

another_variable equ my_variable

labels

Labels identify locations in memory containing instruction statements.
They are referenced with jumps or calls. All labels have two
attributes, segment and offset.

Label segment and offset attributes are essentially the same as
variable segment and offset attributes. A label is defined when it
precedes an instruction. A colon separates the label from instruction.
For example,

my_label: add ax,bx

A label can also appear as the name for an EOU directive referencing
another label. For example,

another label equ my_label

Numbers

You can also define numbers as symbols. RASM-86 treats a number
symbol as though you have explicitly coded the number it represents.
For example,

number _five equ 5
mov al.Number five

is equivalent to the following:

mov al,5

Section 2.7 describes operators and their effects on numbers and
number symbols.

2-10

Programmer's Utilities Guide

2.6.3 Example Identifiers

The following are valid identifiers:

NOLIST
WORD
AH
Mean streets
crash it
variable number 1234567890

2.7 Operators

2.6 Identifiers

This section describes the available RASM-86 operators. RASM-86
operators define the operations forming the values used in the final
assembly instruction.

RASM-86 operators fall into the following categories:

• arithmetic
• logical
• relational
• segment override
• variable manipulation
• variable creation

Table 2-5 summarizes the available RASM-86 operators and the
number of the section where each operator is explained in detail.

2-11

2.7 Operators Programmer's Utilities Guide

Table 2-5. RASM-86 Operator Summary

Operator Description Section

+ addition or unary positive 2.7.1
subtraction or unary negative 2.7.1

* multiplication 2.7.1
I unsigned division 2.7.1

create variable, assign offset 2.7.6
$ create label, offset = location counter 2.7.6
AND logical AND 2.7.2
EQ Equal to 2.7.3
GE Greater than or equal to 2.7.3
GT Greater than 2.7.3
LAST compare LENGTH of variable to 0 2.7.5
LE Less than or equal to 2.7.3
LENGTH create number from variable length 2.7.5
LT Less than 2.7.3
MOD return remainder of division 2.7.1
NE Not Equal to 2.7.3
NOT logical NOT 2.7.2
OFFSET create number from variable offset 2.7.5
OR logical OR 2.7.2
PTR create variable or label, assign type 2.7.6
seg:addr override segment register 2.7.4
SEG create number from variable segment 2.7.5
SHR shift right 2.7.1
SHL shift left 2.7.1
TYPE create number from variable type 2.7.5
XOR logical eXclusive OR 2.7.2

The following sections define the RASM-86 operators in detail. Where
the syntax of the operator is illustrated, a and b represent two
elements of the expression. Unless otherwise specified, a and b
represent absolute numbers, such as numeric constants, whose value
is known at assembly-time. A relocatable number, on the other hand,
is a number whose value is unknown at assembly-time, because it can
change during the linking process. For example, the offset of a

2-12

Programmer's Utilities Guide 2.7 Operators

variable located in a segment that will be combined with some other
segments at link-time is a relocatable number.

2.7.1 Arithmetic Operators

Addition and Subtraction

Addition and subtraction operators compute the arithmetic sum and
difference of two operands. The first operand (a) can be a variable,
label, an absolute number, or a relocatable number. For addition, the
second operand (b) must be a number. For subtraction, the second
operand can be a number, or it can be a variable- or label in the same
segment as the first operand.

When a number is added to a variable or label, the result is a variable
or label with an offset whose numeric value is the second operand
plus the offset of the first operand. Subtraction from a variable or
label returns a variable or label whose offset is the first operand's
offset decremented by the number specified in the second operand.

Syntax:

a + b

a - b

returns the sum of a and b. Where a is a variable,
label, absolute number, or relocatable number.

returns the difference of a and b. Where a and b
are variables, labels, absolute numbers, or
relocatable numbers in the same segment.

2-13

2. 7 Operators

Example:

0002
0005

OOOA FF

count
displ
flag

equ
equ
db

Programmer's Utilities Guide

2
5
of fh

OOOB 2EAOOBOO
OOOF 2E8AOEOFOO
0014 B303

rnov
mov
rnov

al,flag+l
cl,flag+displ
bl,displ-count

Multiplication and Division

The multiplication and division operators *, /, MOD, SHL, and SHR
accept only numbers as operands. * and I treat all operators as
unsigned numbers.

Syntax:

a * b

a I b

a MOD b

a SHL b

a SHR b

2-14

unsigned multiplication of a and b

unsigned division of a and b

return remainder of a I b

returns the value resulting from shifting a to left by
the amount specified by b

returns the value resulting from shifting a to the
right by an the amount specified by b

Programmer's Utilities Guide 2.7 Operators

Example:

0016 BE5500
0019 B310

0050 buff ersize

si,256/3
bl,64/4
80

OOlB BSAOOO

mov
mov
equ
mov ax,buffersize * 2

Unary

Unary operators specify a number as either positive or negative.
RASM-86 unary operators accept both signed and unsigned numbers.

Syntax:

+ a

- a

Example:

OOlE Bl23
0020 B007
0022 B2F4

gives a

gives 0 - a

mov
mov
mov

cl,+35
al,2--5
dl,-12

2.7.2 Logical Operators

Logical operators accept only numbers as operands. They perform the
Boolean logic operations AND, OR, XOR, and NOT.

Syntax:

a XOR b

a OR b

a AND b

NOT a

bit-by-bit logical EXCLUSIVE OR of a and b

bit-by-bit logical OR of a and b

bit-by-bit logical AND of a and b

logical inverse of a: all Os become ls, ls become
Os. (a is a 16-bit number.)

2-15

2.7 Operators

Example:

OOFC
0080

0000 Bl80
0002 B003

mask equ
signbit equ

mov
mov

Programmer's Utilities Guide

Of ch
80h
cl,mask and signbit
al,not mask

2.7.3 Relational Operators

Relational operators treat all operands as unsigned numbers. The
relational operators are EQ (equal), LT (less than), LE (less than or
equal), GT (greater than), GE (greater than or .equal), and NE (not
equal). Each operator compares two operands and returns all ones
(OFFFFH) if the specified relation is true, and all zeros if it is not.

Syntax:

In all of the operators below, a and b are unsigned numbers; or they
are labels, variables, or relocatable numbers defined in the same
segment.

a EQ b

a LT b

a LE b

a GT b

a GE b

a NE b

2-16

returns OFFFFH if a = b otherwise 0

returns OFFFFH if a < b, otherwise 0

returns OFFFFH if a <= b, otherwise 0

returns OFFFFH if a > b, otherwise 0

returns OFFFFH if a >= b, otherwise 0

returns OFFFFH if a<> b, otherwise 0

Programmer's Utilities Guide 2.7 Operators

Example:

OOOA
0019

0004 B8FFFF
0007 B80000

lirnitl
lirnit2

equ
equ

rnov
rnov

10
25

ax,lirnitl lt lirnit2
ax,lirnitl gt lirnit2

2.7.4 Segment Override Operator

When manipulating variables, RASM-86 decides which segment
register to use. You can override this choice by specifying a different
register with the segment override operator.

In the syntax below, seg:addr represents the segment register (seg)
and the address of the expression (addr).

Syntax:

seg:addr overrides segment register selected by assembler.
seg can be: CS, DS, SS, or ES.

Example:

0024 368B472D
0028 268BOE5BOO
002D 26A4

rnov ax,ss:wordbuffer[bx]
mov cx,es:array
rnovs byte ptr [di],es:[si]

2.7.5 Variable Manipulation Operators

A variable manipulator creates a number equal to one attribute of its
variable operand. SEG extracts the variable's segment value; OFFSET,
its offset value; TYPE, its type value (1, 2, or 4), and LENGTH, the
number of bytes associated with the variable. LAST compares the
variable's LENGTH with zero. If LENGTH is greater than zero, LAST
decrements LENGTH by one. If LENGTH equals zero, LAST leaves it
unchanged. Variable manipulators accept only variables as operators.

2-17

2.7 Operators

Syntax:

SEG a

OFFSET a

TYPE a

Programmer's Utilities Guide

creates a number whose value is the segment value
of the variable or label a.

creates a number whose value is the offset value of
the variable or label a.

creates a number. If the variable a is of type BYTE,
WORD, or DWORD, the value of the number created
is 1, 2, or 4, respectively.

LENGTH a creates a number whose value is the length
attribute of the variable a. The length attribute is
the number of bytes associated with the variable.

LAST a if LENGTH a > 0, then LAST a = LENGTH a - 1; if
LENGTH a = 0, then LAST a = 0.

Example:

002D 000000000000 wordbuf fer
0033 0102030405 buffer

0038 B80500
003B B80400
003E B80100
0041 B80200

2.7.6 Variable Creation Operators

rnov
rnov
rnov
rnov

dw
db

0,0,0
1 ' 2 ' 3 , 4 , 5

ax, length buffer
ax,last buffer
ax,type buffer
ax,type wordbuffer

Three RASM-86 operators are used to create variables. These are the
PTR, period, and dollar sign operators described below.

The PTR operator creates a virtual variable or label valid only during
the execution of the instruction. PTR makes no changes to either of
its operands. The temporary symbol has the same Type attribute as
the left operator, and all other attributes of the right operator.

2-18

Programmer's Utilities Guide 2.7 Operators

The period operator (.) creates a variable in the current Data Segment.
The new variable has a segment attribute equal to the current Data
Segment and an offset attribute equal to its operand.

The dollar sign operator ($) creates a label with an offset attribute
equal to the current value of the location counter. The label segment
value is the same as the current segment This operator takes no
operand.

Syntax:

a PTR b

. a

$

Examples:

creates virtual variable or label with type of a and
attributes of b. a can be a BYTE, WORD, or DWORD;
b is the address of the expression.

creates variable with an offset attribute of a .
Segment attribute is current data segment.

creates label with offset equal to current value of
location counter; segment attribute is current
segment

0044 C60705
0047 8A07
0049 FF04

rnov
rnov
inc

byte ptr [bx], 5
al,byte ptr [bx]
word pt r [s i]

004B AlOOOO
004E 268BlE0040

0053 E9FDFF
0056 EBFE
0058 E9FD2F

rnov
rnov

JITlp
JITlpS
jrnp

ax,
bx,

$

• 0
es: .4000h

$
$+3000h

2-19

2.7 Operators Programmer's Utilities Guide

2.7.7 Operator Precedence

Expressions combine variables, labels, or numbers with operators.
RASM-86 allows several kinds of expressions (see Section 2.8). This
section defines the order that RASM-86 performs operations if more
than one operator appear in an expression.

RASM-86 evaluates expressions from left to right, but evaluates
operators with higher precedence before operators with lower
precedence. When two operators have equal precedence, RASM-86
evaluates the leftmost operator first. Table 2-6 shows RASM-86
operators in order of increasing precedence.

You can use parentheses to override the precedence rules. RASM-86
first evaluates the part of an expression enclosed in parentheses. If
you nest parentheses, RASM-86 evaluates the innermost expressions
first. For example,

15/3 + 18/9 = 5 + 2 = 7
15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3
(20*4) + ((27/9 - 4/2)) = (20*4) + (3 - 2) = 80 + 1 = 8

Note that RASM-86 allows five levels of nested parentheses.

Table 2-6. Precedence of Operations in RASM-86

Order Operator Type Operators

Logical XOR, OR

2 Logical AND

3 Logical NOT

4 Relational EQ, LT, LE, GT, GE, NE

5 Addition/subtraction +, -

6 Multiplication/division *, /, MOD, SHL, SHR

2-20

Programmer's Utilities Guide 2.7 Operators

Table 2-6. (continued)

Order Operator Type Operators

7 Unary +, -

8 Segment override segment override: -

9 Variable manipulators/creators SEG, OFFSET, PTR, TYPE,
LENGTH, LAST

10 Parentheses/brackets (), []

1 1 Period and Dollar ., $

2.8 Expressions

RASM-86 allows address, numeric, and bracketed expressions. An
address expression evaluates to a memory address and has three
components:

• segment value
• offset value
• type

Both variables and labels are address expressions. An address
expression is not a number, but its components are numbers. You can
combine numbers with operators such as PTR to make an address
expression.

A numeric expression evaluates to a number. It contains no variables
or labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes.
The base registers are BX and BP, and the index registers are DI and
SI. A bracketed expression can consist of a base register, an index
register, or both.

2-21

2.8 Expressions Programmer's Utilities Guide

Use the + operator between a base register and an index register to
specify both base- and index-register addressing. For example,

mov variable[bx],O
mov ax,[bx+di]
mov ax.[si]
mov bl,[si]

Since all of the above instructions are memory references, the current
DS Segment Selector is implied. The first instruction moves the value
of 0 hex into the word location specified by the sum of the base
register BX and the displacement VARIABLE. The second instruction
moves the word found at the location specified by the sum of the
base register BX and the index register DI into the location specified
by the word register AX. The third instruction moves the word found
at the location specified by index register SI into the location specified
by the word register AX. The last instruction moves the byte found at
the location specified by the index register SI into the location
specified by the byte register BL.

2.9 Statements

Statements can be instructions or directives. RASM-86 translates
instructions into 8086 and 80286 machine language instructions.
RASM-86 does not translate directives into machine code. Directives
tell RASM-86 to perform certain functions.

You must terminate each assembly language statement with a carriage
return (CR) and line-feed (LF), or exclamation point. RASM-86 treats
these as an end-of-line. You can write multiple assembly language
statements without comments on the same physical line and separate
them with exclamation points. Only the last statement on a line can
have a comment because the comment field extends to the physical
end of the line.

2-22

Programmer's Utilities Guide 2.9 Statements

2.9.1 Instruction Statements

The following is the syntax for an instruction statement:

[label:] [prefix] mnemonic [operand(s)] [;comment]

The fields are defined as follows:

label

prefix

mnemonic

operand{s)

comment

A symbol followed by a colon defines a label at the
current value of the location counter in the current
segment. This field is optional.

Certain machine instructions such as LOCK and REP
can prefix other instructions. This field is optional.

A symbol defined as a machine instruction, either by
RASM-86 or by an EOU directive. This field is
optional unless preceded by a prefix instruction. If
you omit this field, no operands can be present,
although the other fields can appear. Section 4
describes the RASM-86 mnemonics.

An instruction mnemonic can require other symbols
to represent operands to the instruction.
Instructions can have zero, one, or two operands.

Any semicolon appearing outside a character string
begins a comment. A comment ends with a
carriage return. This field is optional, but you
should use comments to facilitate program
maintenance and debugging.

Section 3 describes the RASM-86 directives.

2.9.2 Directive Statements

The following is the syntax for a directive statement:

[name] directive operand(s) [;comment]

2-23

2.9 Statements Programmer's Utilities Guide

The fields are defined as follows:

name

directive

operand(s)

comment

2-24

Names are legal for CSEG, DSEG, ESEG, SSEG,
GROUP, DB, OW, DD, RB, RW, RD, RS, and EQU
directives. The name is required for the EQU and
GROUP directives, but it is optional for the other
directives. Unlike the label field of an instruction,
the name field of a directive is never terminated
with a colon.

One of the directive keywords defined in Section 3.

Analogous
mnemonics.
allow any
requirements.

to the operands for instruction
Some directives, such as DB and DW

operand; others have special

Exactly as defined for instruction statements in
Section 2.9. 1.

End of Section 2

SECTION 3

RASM-86 Directives

3.1 Introduction

RASM-86 directives control the assembly process by performing
functions such as assigning portions of code to logical segments,
requesting conditional assembly, defining data items, allocating
memory, specifying listing file format and including source text from
external files.

RASM-86 directives are grouped into the following categories:

• segment control
• linkage control
• conditional assembly
• symbol definition
• data definition and memory allocation
• output listing control
• 8087 control
• miscellaneous

3.2 Assembler Directive Syntax

The following is the general syntax for a directive statement:

[name] directive operand(s) [;comment]

The fields are defined as follows:

name Is a symbol that retains the value assigned by the
directive. A name is required for the EQU and
GROUP directives, but it is optional for the other
directives. Unlike the label field of an instruction,
the name field of a directive is never terminated
with a colon. Names can be used with the CSEG,
DSEG, ESEG, SSEG, GROUP, DB, OW, DD, RB, RW, RD,
RS, and EQU directives.

3-1

3.2 Assembler Directive Syntax Programmer's Utilities Guide

directive

operand(s)

comment

One of the directive keywords defined in Sections
3.3 through 3.10.

Analogous
mnemonics.
allow any
requirements.

to the operands for instruction
Some directives, such as DB and DW

operand; others have special

Exactly as defined for instruction statements in
Section 2.9.1.

The following sections describe each RASM-86 directive. The syntax
for each directive follows each section heading.

3.3 Segment Control Directives

This section describes the RASM-86 directives used to assign specific
attributes to segments. These attributes affect the way the segments
are handled during the link process. The available segment control
directives are:

CSEG
DSEG
ESEG
SSEG
GROUP

In order to utilize these directives, you must understand the
segmented architecture of the 8086 and 80286 processors. The
following section summarizes the general characteristics of the
8086/80286 segmented architecture.

3.3.1 The 8086/80286 Segmented Architecture

The address space of an 8086 or an 80286 processor can be
subdivided into an arbitrary number of units called segments. Each
segment is comprised of contiguous memory locations, up to 64K
bytes in length, making up logically independent and separately
addressable units. Each segment must have a base address specifying
its starting location in the memory space. Each segment base address
must begin on a paragraph boundary, a boundary divisible by 16.

3-2

Programmer's Utilities Guide 3.3 Segment Control Directives

Every location in the memory space has a physical address and a
logical address. A physical address is a value specifying a unique byte
location within the memory space. A logical address is the
combination of a segment base value and an offset value. The offset
value is the address relative to the base of the segment. At run-time,
every memory reference is the combination of a segment base value
and an offset value that produces a physical address. A physical
address can be contained in more than one logical segment.

The CPU can access four segments at a time. The base address of
each segment is contained in a segment register. The CS register
points to the current code segment that contains instructions. The DS
register points to the current data segment usually containing program
variables. The SS register points to the current stack segment where
stack operations such as temporary storage or parameter passing are
performed. The ES register points to the current Extra Segment that
typically also contains data.

RASM-86 segment directives allow you to divide your assembly
language source program into segments corresponding to the memory
segments where the resulting object code is loaded at run-time

The size, type, and number of segments required by a program defines
which memory model the operating system should use to allocate
memory. Depending on which model you use, you can intermix all of
the code and data in a single 64K segment, or you can have separate
Code and Data Segments, each up to 64K in length. The RASM-86
segment directives described below, allow you to create an arbitrary
number of Code, Data, Stack, and Extra Segments to more fully use the
address space of the processor. You can have more than 64K of code
or data by using several segments and managing the segments with
the assembler directives.

3-3

3.3 Segment Control Directives Programmer's Utilities Guide

3.3.2 CSEG, DSEG, ESEG, and SSEG Directives

Every instruction and variable in a program must be contained in a
segment. The segment directives described in this section allow you
to specify the attributes of a segment or a group of segments of the
same type. Create a segment and name it by using the segment
directive syntax:

[seg_name] seg_directive [align_type] [combine_type] ['class_name']

where seg_directive is one of the following:

CSEG (Code Segment)
DSEG (Data Segment)
ESEG (Extra Segment)
SSEG (Stack Segment)

The optional parameters are described below. Examples illustrating
how segment directives are us~d are provided at the end of this
section.

seg_name

The segment name can be any valid RASM-86 identifier. If you do not
specify a segment name, RASM-86 supplies a default name, as shown
in Table 3-1.

3-4

Table 3-1.

Segment Directive

CSEG
DSEG
ESEG
SSEG

Default Segment Names

Default Segment Name

CODE
DATA
EXTRA
STACK

Programmer's Utilities Guide 3.3 Segment Control Directives

Once you use a segment directive, RASM-86 assigns statements to the
specified segment until it encounters another segment directive.
RASM-86 combines all segments with the same segment name even if
they are not contiguous in the source code.

align_ type

The align type allows you to specify to the linkage editor a particular
boundary for the segment. The linkage editor uses this alignment
information when combining segments to produce an executable file.
You can specify one of four different align types:

• BYTE (byte alignment)
• WORD (word alignment)
• PARA (paragraph alignment)
• PAGE (page alignment)

If you specify an align type, it must be with the first definition of the
segment. You can omit the align type on subsequent segment
directives that name the same segment, but you cannot change the
original value. If you do not specify an align type, RASM-86 supplies a
default value based on the type of segment directive used. Table 3-2
shows the default values.

Table 3-2.

Segment Directive

CSEG
DSEG
ESEG
SSEG

Default Align Types

Default Align Type

BYTE
WORD
WORD
WORD

BYTE alignment means that the segment begins at the next byte
following the previous segment.

3-5

3.3 Segment Control Directives Programmer's Utilities Guide

WORD alignment means that the segment begins on an even
boundary. An even boundary is a hexadecimal address ending in 0, 2,
4, 6, 8, A, C, or E. In certain cases, WORD alignment can increase
execution speed because the CPU takes only one memory cycle when
accessing word-length variables within a segment aligned on an even
boundary. Two cycles are needed if the boundary is odd.

PARA (paragraph) alignment means that the segment begins on a
paragraph boundary, that is, an address whose four low-order bits are
zero.

PAGE alignment means that the segment begins on a page boundary,
an address whose low order byte is zero.

combine_ type

The combine type determines how the linkage editor can combine the
segment with other segments with the same segment name. You can
specify one of five different combine types:

• PUBLIC
•COMMON
•STACK
•LOCAL
• nnnn (absolute segment)

If you specify a combine type, it must be in the first segment directive
for that segment type. You can omit the combine type on subsequent
segment directives for the same segment type, but you cannot change
the original combine type. If you do not specify a combine type,
RASM-86 supplies the PUBLIC combine type by default; except for
SSEG, which uses the STACK combine type by default.

The RASM-86 combine types are defined as follows:

PUBLIC

3-6

means that the linkage editor can combine the
segment with other segments having the same
name. All such segments with combine type PUBLIC
are concatenated in the order they are encountered
by the linkage editor, with gaps, if any, determined
by the align type of the segment.

Programmer's Utilities Guide 3.3 Segment Control Directives

COMMON

STACK

LOCAL

means that the segment shares identical memory
locations with other segments of the same name.
Offsets inside a COMMON segment are absolute
unless the segment is contained in a GROUP (see
"Group Directive" in this section).

is similar to PUBLIC, in that the storage allocated for
STACK segments is the sum of the STACK segments
from each module. However, instead of
concatenating segments with the same name, the
linkage editor overlays STACK segments against
high memory, because stacks grow downward from
high addresses to low addresses when the program
runs.

means that the segment is local to the program
being assembled, and the linkage editor will not
combine it with any other segments.

ABSOLUTE SEGMENT

class name

causes RASM-86 to determine the load-time
position of the segment during assembly, rather
than allowing its position to be determined by the
linkage editor, or at load time.

The class name can be any valid RASM-86 identifier. The class name
identifies segments to be placed in the same section of the CMD file
created by LINK-86. Unless overridden by a GROUP directive or an
explicit command in the LINK-86 command line, LINK-86 places
segments into the CMD file it creates as shown in Table 3-3.

3-7

3.3 Segment Control Directives Programmer's Utilities Guide

Table 3-3. Default Class Name for Segments

Segment Directive

CSEG
DSEG
ESEG
SSEG

Examples:

Default Class Name

CODE
DATA

EXTRA
STACK

Section of CMD file

CODE
DATA
EXTRA
STACK

The following are examples of segment directives:

CSEG
DSEG
CSEG
DATASEG
CODEl
XYZ

PAGE
DSEG
CSEG
DSEG

PARA
BYTE
WORD

'DATA'

COMMON

The example RASM-86 source file in Appendix EXAMPLE illustrates
how segment directives are used.

3.3.3 GROUP Directive

group_ name GROUP segment_ name 1, segment_ name2, ...

The GROUP directive instructs RASM-86 to combine the named
segments into a collection called a group whose length can be up to
64K bytes. When segments are grouped together, LINK-86 treats the
group as it would a single segment by making the offsets within the
segments of a group relative to the beginning of the group rather than
to the beginning of the individual segments.

3-8

Programmer's Utilities Guide 3.3 Segment Control Directives

The order of the segment names in the directive is the order the
linkage editor arranges the segments in the CMD file.

Use of groups can result in more efficient code, because a number of
segments can be addressed from a single segment register without
having to change the contents of the segment register.

See Section 7. 15 for more information on the grouping and other link
processes.

3.4 Linkage Control Directives

Linkage control directives modify the link process. The available
linkage control directives are:

END
NAME
PUBLIC
EXT RN

3.4.1 END Directive

END [start label]

The END directive marks the end of a source file. RASM-86 ignores
any subsequent lines. The END directive is optional, and if omitted,
RASM-86 processes the source file until it finds an end-of-file
character (1AH).

The optional start label serves two purposes. First it defines the
current module as the main program. When LINK-86 links modules
together, only one can be a main program. Second, start label
indicates where the program is to start executing after it is loaded. If
start label is omitted, program execution begins at the beginning of
the first CSEG from the files linked.

3-9

3.4 Linkage Control Directives Programmer's Utilities Guide

3.4.2 NAME Directive

NAME module name

The NAME directive assigns a name to the object module generated by
RASM-86. The module name can be any valid identifier based on the
guidelines described in Section 2.6. If you do not specify a module
name with the NAME directive, RASM-86 assigns the source filename
to the object module. Both LINK-86 and LIB-86 use NAME directives
to identify object modules.

3.4.3 PUBLIC Directive

PUBLIC name L name, ...]

The PUBLIC directive instructs RASM-86 that the names defined as
PUBLIC can be referenced by other programs linked together. Each
name must be a label, variable, or a number defined within the
program being assembled.

3.4.4 EXTRN Directive

EXT RN external_id [,external id, ...]

The EXTRN directive tells RASM-86 that each external id can be
referenced in the program being assembled but is defined in some
other program. The external id consists of two parts: a symbol and a
type.

The external id uses the form:

symbol:type

where "symbol" is a variable, label, or number and "type" is one of the
following:

• Variables: BYTE, WORD, or DWORD
• Labels: NEAR or FAR
• Numbers: ABS

3-10

Programmer's Utilities Guide 3.4 Linkage Control Directives

For example,

EXT RN FCB:BYTE,BUFFER:WORD,INIT:FAR,MAX:ABS

RASM-86 determines the Segment attribute of external variables and
labels from the segment containing the EXTRN directive. Thus, an
EXTRN directive for a given symbol must appear within the same
segment as the module in which the symbol is defined.

3.5 Conditional Assembly Directives

Conditional assembly directives are
controlling the instruction sequence.
assembly directives are:

IF
ELSE
ENDIF

3.5. 1 IF, ELSE, and ENDIF Directives

IF numeric expression

ELSE

source line 1
source line 2

source line n

used to
The

alternate source line 1
alternate source line 2

alternate source line n

ENDIF

set up
available

conditions
conditional

3-11

3.5 Conditional Assembly Directives Programmer's Utilities Guide

The IF and ENDIF directives allow you to conditionally include or
exclude a group of source lines from the assembly. The optional ELSE
directive allows you to specify an alternative set of source lines. You
can use these conditional directives to assemble several different
versions of a single source program. You can nest IF directives to five
levels.

When RASM-86 encounters an IF directive, it evaluates the numeric
expression following the IF keyword. You must define all elements in
the numeric expression before you use them in the IF directive. If the
value of the expression is nonzero, then RASM-86 assembles source
line 1 through source line n. If the value of the expression is zero,
then RASM-86 lists all the lines, but does not assemble them.

If the value of the expression is zero, and you specify an ELSE
directive between the IF and ENDIF directives, RASM-86 assembles
alternative source lines 1 through alternative source lines n.

3.6 Symbol Definition Directive

The available symbol definition directive is:

EQU

3.6.1 EOU Directive

symbol_ name EQU numeric expression
symbol_ name EQU address ~expression
symbol_name EQU register
symbol_name EQU instruction mnemonic

3-12

Programmer's Utilities Guide 3.6 Symbol Definition Directive

The EQU (equate) directive assigns values and attributes to user­
defined symbols. Do not put a colon after the symbol name. Once
you define a symbol, you cannot redefine the symbol with a
subsequent EQU or another directive. You must also define any
elements used in numeric expressions or an address expression before
using the EQU directive.

The first form of the EQU directive assigns a numeric value to the
symbol. The second form assigns a memory address. The third form
assigns a new name to an 8086 or 80286 register. The fourth form
defines a new instruction (sub)set The following are examples of
these four EQU forms.

0005
0033
0001

005D 8BC3

FIVE
NEXT
COUNTER
MOVVV

3.7 Data and Memory Directives

EQU
EQU
EQU
EQU

MOVVV

2*2+1
BUFFER
ex
MOV

AX,BX

Data definition and memory allocation directives define the storage
format used for a specified expression or constant. The available data
definition and memory allocation directives are:

DB
DW
DD
RS
RB
RW
RD

3-13

3.7 Data and Memory Directives Programmer's Utilities Guide

3.7.1 DB Directive

[symbol] DB numeric expression [,numeric expression ...]
[symbol] DB string_ constant [,string_ constant ...]

The DB directive defines initialized storage areas in byte format.
RASM-86 evaluates numeric expressions to 8-bit values and
sequentially places them in the object file. RASM-86 places string
constants in the object file according to the rules defined in Section
2.5.2. Note that RASM-86 does not perform translation from lower- to
uppercase within strings.

The DB directive is the only RASM-86 statement that accepts a string
constant longer than two bytes. You can- add multiple expressions or
constants, separated by commas, to the definition if it does not exceed
the physical line length.

Use an optional symbol to reference the defined data area throughout
the program. The symbol has four attributes:

• segment
• offset
•type
• length

The segment and offset attributes determine the symbol's memory
reference; the type attribute specifies single bytes; and the length
attribute tells the number of bytes reserved.

The following listing shows examples of DB directives and the
resulting hexadecimal values:

005F 43502F4D2073 TEXT
797374656000

006B El AA
006C 0102030405 X

0071 B90COO

3-14

DB

DB
DB

MOV

'CP/M system',0

'a' + 80H
1,2,3,4,5

CX,LENGTH TEXT

Programmer's Utilities Guide 3.7 Data and Memory Directives

3.7.2 DW Directive

[symbol] DW numeric expression [,numeric expression ...]
[symbol] DW string_ constant [,string_ constant...]

The DW directive initializes two-byte words of storage. The DW
directive initializes storage the same way as the DB directive, except
that each numeric expression, or string constant initializes two bytes
of memory with the low-order byte stored first. The DW directive
does not accept string constants longer than two characters.

The following are examples of DW directives:

0074
0076
007C

0000
63Cl66Cl69Cl
010002000300
040005000600

3.7.3 DD Directive

CNTR
JMPTAB

DW
DW
DW

0
SUBR1,SUBR2,SUBR3
1,2,3,4,5,6

[symbol] DD address_ expression [,address_ expression ...]

The DD directive initializes four bytes of storage. DD follows the same
procedure as DB, except that the offset attribute of the address
expression is stored in the two lower bytes and the segment attribute
is stored in the two upper bytes. For example,

CSEG

0000 6CC100006FC1 LONG JMPTAB
0000

0008 72Cl000075Cl
0000

DD ROUT1,ROUT2

DD ROUT3,ROUT4

3-15

3.7 Data and Memory Directives Programmer's Utilities Guide

3.7.4 RS Directive

[symbol] RS numeric_ expression

The RS directive allocates storage in memory but does not initialize it.
The numeric expression gives the number of bytes to reserve. Note
that the RS directive just allocates memory without specifying byte,
word, or long attributes. For example,

0010
0060
4060

3.7.5 RB Directive

BUF

[symbol] RB numeric_ expression

RS
RS
RS

80
4000H
1

The RB directive allocates byte storage in memory without any
initialization. The RB directive is identical to the RS directive except
that it gives the byte attribute. For example,

4061
4161
Cl61

3.7.6 RW Directive

BUF

[symbol] RW numeric_expression

RB
RB
RB

48
4000H
1

The RW directive allocates two-byte word storage in memory but does
not initialize it. The numeric expression gives the number of words to
be reserved. For example,

4061
4161
Cl61

3-16

BUFF RW
RW
RW

128
4000H
1

Programmer's Utilities Guide 3.7 Data and Memory Directives

3.7.7 RD Directive

[symbol] RD numeric_expression

The RD directive reserves a double word (four bytes) of storage but
does not initialize it. For example,

Cl63
Cl73

DWTAB RD
RD

3.8 Output Listing Control Directives

4
1

Output listing control directives modify the list file format. The
available output listing control directives are:

EJECT
IFLIST
NOIFLIST
LIST
NOLIST
PAGESIZE
PAGEWIDTH
SIM FORM
TITLE

3.8.1 EJECT Directive

EJECT

The EJECT directive performs a page eject during printout. The EJECT
directive is printed on the first line of the next page.

3-17

3.8 Output Listing Control Directives

3.8.2 NOIFLIST /IFLIST Directives

NOIFLIST
IFLIST

Programmer's Utilities Guide

The NOIFLIST directive suppresses the printout of the contents of
conditional assembly blocks that are not assembled. The IFLIST
directive resumes printout of these blocks.

3.8.3 NOLIST and LIST Directives

NOLIST
LIST

The NOLIST directive suppresses the printout of lines following the
directive. The LIST directive restarts the listing.

3.8.4 PAGESIZE Directive

PAGESIZE numeric_ expression

The PAGESIZE directive defines the number of lines on each printout
page. The default page size is 66 lines.

3.8.5 PAGEWIDTH Directive

PAGEWIDTH numeric_expression

The PAGEWIDTH directive defines the number of columns printed
across the page of the listing file. The default page width is 120
unless the listing is routed directly to the console; then the default
page width is 79.

3.8.6 SIMFORM Directive

SIM FORM

The SIMFORM directive replaces a form-feed (FF) character in the list
file with the correct number of line-feeds (LF). Use this directive when
directing a list file to a printer unable to interpret the form-feed
character. ·

3-18

Programmer's Utilities Guide 3.8 Output Listing Control Directives

3.8.7 TITLE Directive

TITLE string_ constant

RASM-86 prints the string constant defined by a TITLE directive
statement at the top of each printout page in the listing file. The title
character string can be up to 30 characters in length. For example,

TITLE 'CP/M monitor'

3.9 8087 Control Directives

An Intel 8087 coprocessor is not available on all systems. When
writing programs using 8087 opcodes, you can use the 8087 control
directives to instruct RASM-86 to either generate actual 8087 opcodes
or to emulate the 8087 routines in software. The available 8087
control directives are:

HARD8087
AUT08087

3.9.1 HARD8087 Directive

HARD8087

When an 8087 processor is available on your system and you do not
want to emulate the 8087 routines in software, you can use the
HARD8087 directive to instruct RASM-86 to generate 8087 opcodes.
Using this option saves about 16K bytes of space that would otherwise
be used by the emulation routines.

3.9.2 AUT08087 Directive

AUT08087

You can use the AUT08087 option to create programs that decide at
runtime whether or not to use the 8087 processor. AUT08087 is the
default option. When you use this option, LINK-86 includes in the
command file the 8087 emulation routines and a table of fixup records
that point to the 8087 opcodes.

3-19

3.9 8087 Control Directives Programmer's Utilities Guide

If you use the AUT08087 option and the system has an 8087, the 8087
fixup table is ignored and the space occupied by the emulation
routines is released to the program for heap space. If the system
does not have an 8087, the initialization routine replaces all the 8087
opcodes with interrupts that vector into the 8087 emulation routines.

Note that, in order to emulate 8087 routines, you must have a runtime
library from a Digital Research .. high-level language, such as DR C or
CBASIC present on your disk and it must be specified on the LINK-86
command line.

3.10 Miscellaneous Directives

Additional RASM-86 directives are:

INCLUDE
ORG

3.10.1 INCLUDE Directive

INCLUDE filename

The INCLUDE directive includes another HASM-86 source file in the
source text. For example, to include the file EQUALS in your text, you
would enter:

INCLUDE EQUALS.A86

You can use the INCLUDE directive when the source program is large
and resides in several files. Note that you cannot nest INCLUDE
directives; a source file called by an INCLUDE directive cannot contain
another INCLUDE directive.

If the file named in the INCLUDE directive does not have a filetype,
RASM-86 assumes the filetype to be A86. If you do not specify a
drive name with the file, RASM-86 uses the drive containing the
source file.

3-20

Programmer's Utilities Guide 3.10 Miscellaneous Directives

3. 10.2 ORG Directive

ORG numeric_ expression

The ORG directive sets the offset of the location counter in the current
segment to a value specified by the numeric expression. You must
define all elements of the expression before using the ORG directive,
and the expression must evaluate to an absolute number.

The offset specified by the numeric expression is relative to the offset
specified by the location counter within the segment at load-time.
Thus, if you use an ORG statement in a segment that the linkage
editor does not combine with other segments at link-time, such as
LOCAL or absolute segments, then the numeric expression indicates
the actual offset within the segment.

If the segment is combined with others at link-time, such as PUBLIC
segments, then numeric expression is not an absolute offset. It is
relative to the beginning address of the segment, from the program
being assembled.

When using the ORG directive, never assume the align type. The
desired align type should always be explicitly declared. For example, if
you use the command:

ORG 0

The segments must be aligned on a paragraph boundary. Therefore,
the PARAGRAPH align type must have been specifically declared.

End of Section 3

3-21

SECTION 4

RASM-86 Instruction Set

4.1 Introduction

The RASM-86 instruction set includes all 8086, 8087, 80186, and 80286
machine instructions. The general syntax for instruction statements is
described in Section 2.9. This section defines the specific syntax and
required operand types for each instruction without reference to labels
or comments. The instruction definitions are presented in tables for
easy reference.

For a more detailed description of each instruction, see the Intel
assembly language reference manual for the processor you are using.
For descriptions of the instruction bit patterns and operations, see the
Intel user's manual for the processor you are using.

The instruction-definition tables present RASM-86 instruction
statements as combinations of mnemonics and operands. A
mnemonic is a symbolic representation for an instruction; its operands
are its required parameters. Instructions can take zero, one, or two
operands. When two operands are specified, the left operand is the
instruction's destination operand, and the two operands are separated
by a comma.

4.2 RASM-86 Instruction Set Summary

Table 4-1 summarizes the complete RASM-86 instruction set in
alphabetical order. The following tables categorize these instructions
into functional groups in which each instruction is defined in detail.

4-1

4.2 RASM-86 Instruction Set Summary Programmer's Utilities Guide

Mnemonic

AAA
AAD
AAM
AAS
ADC
ADD
AND
ARPL
BOUND
CALL
CALLF
CBW
CLC
CLO
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CTS
CWD
DAA
DAS
DEC
DIV
ENTER
ESC
F2XM1
FABS
FADD
FADD32

4-2

Table 4-1. RASM-86 Instruction Summary

Description

ASCII adjust for Addition
ASCII adjust for Division
ASCII adjust for Multiplication
ASCII adjust for Subtraction
Add with Carry
Add
And
Adjust Priviledge level
Check Array Index Against Bounds
Call (intra segment)
Call (inter segment)
Convert Byte to Word
Clear Carry
Clear Direction
Clear Interrupt
Complement Carry
Compare
Compare Byte or Word (of string)
Compare Byte (of string)
Compare Word (of string)
Clear Task Switched Flag
Convert Word to Double Word
Decimal Adjust for Addition
Decimal Adjust for Subtraction
Decrement
Divide
Procedure Entry
Escape
2x-1
Absolute Value
Add Real
Add Real, 32-bit

Section

4.3.4
4.3.4
4.3.4
4.3.4
4.3.4
4.3.4
4.3.4
4.3.10
4.3.9
4.3.6
4.3.6
4.3.4
4.3.7
4.3.7
4.3.7
4.3.7
4.3.4
4.3.5
4.3.5
4.3.5
4.3.10
4.3.4
4.3.4
4.3.4
4.3.4
4.3.4
4.3.9
4.3.7
4.3.8
4.3.8
4.3.8
4.3.8

Programmer's Utilities Guide 4.2 RASM-86 Instruction Set Summary

Mnemonic

FADD64
FAD DP
FBLD
FBSTP
FCHS
FCLEX/FNCLEX
FCOM
FCOM32
FCOM64
FCOMP
FCOM32P
FCOM64P
FCOMPP
FDECSTP
FDISl/FNDISI
FDIV
FDIV32
FDIV64
FDIVR
FDIVR32
FDIVR64
FDIVRP
FDUP
FENl/FNENI
FFREE
FIADD16
FIADD32
FICOM16
FICOM32
FICOM16P
FICOM32P
FIDIVl 6
FIDIV32

Table 4-1. (continued)

Description

Add Real, 64-bit
Add Real and Pop
Packed Decimal Load
Packed Decimal Store and Pop
Change Sign
Clear Exceptions
Compare Real
Compare Real, 32-bit
Compare Real, 64-bit
Compare Real and Pop
Compare Real and Pop, 32-bit
Compare Real and Pop, 64-bit

. Compare Real and Pop Twice
Decrement Stack Pointer
Disable Interrupts
Divide Real
Divide Real, 32-bit
Divide Real, 64-bit
Divide Real Reversed
Divide Real Reversed, 32-bit
Divide Real Reversed, 64-bit
Divide Real Reversed and Pop
Duplicate Top of Stack
Enable Interrupts
Free Register
Integer Add, 16-bit
Integer Add, 32-bit
Integer Compare, 16-bit
Integer Compare, 32-bit
Integer Compare and Pop, 16-bit
Integer Compare and Pop, 32-bit
Integer Divide, 16-bit
Integer Divide, 32-bit

Section

4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8

4-3

4.2 RASM-86 Instruction Set Summary Programmer's Utilities Guide

Mnemonic

FIDIVR16
FIDIVR32
FILD16
FILD32
FILD64
FIMUL 16
FIMUL32
FINCSTP
FINIT /FNINIT
FIST16
FIST32
FIST16P
FIST32P
FIST64P
FISUB16
FISUB32
FISUBR16
FISUBR32
FLO
FLD32
FLD64
FLD80
FLDCW
FLDENV
FLDZ
FLD1
FLDPI
FLDL2T
FLDL2E
FLDLG2
FLDLN2
FMUL
FMUL32

4-4

Table 4-1. (continued)

Description

Integer Divide Reversed, 16-bit
Integer Divide Reversed, 32-bit
Integer Load, 16-bit
Integer Load, 32-bit
Integer Load, 64-bit
Integer Multiply, 16-bit
Integer Multiply, 32-bit
Increment Stack Pointer
Initialize Processor
Integer Store, 16-bit
Integer Store, 32-bit
Integer Store and Pop, 16-bit
Integer Store and Pop, 32-bit
Integer Store and Pop, 64-bit
Integer Subtract, 16-bit
Integer Subtract, 32-bit
Integer Subtract Reversed, 16-bit
Integer Subtract Reversed, 32-bit
Load Real
Load Real, 32-bit
Load Real, 64-bit
Load Real, 80-bit
Load Control Word
Load Environment
Load + 0.0
Load + 1.0
Load 80-bit value for pi.
Load log2 10
Load log2e
Load log 102
Load loge2
Multiply Real
Multiply Real, 32-bit

Section

4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8
4.3.8

Programmer's Utilities Guide 4.2 RASM-86 Instruction Set Summary

Table 4-1. {continued}

Mnemonic Description Section

FMUL64 Multiply Real, 64-bit 4.3.8
FMULP Multiply Real and Pop 4.3.8
FNOP No Operation 4.3.8
FPATAN Partial Arctangent 4.3.8
FPOP same as FSTP STO 4.3.8
FPREM Partial Remainder 4.3.8
FPTAN Partial Tangent 4.3.8
FRNDINT Round to Integer 4.3.8
FRSTOR Restore State 4.3.8
FSAVE/FNSAVE Save State 4.3.8
FSCALE Scale 4.3.8
FST Store Real 4.3.8
FST32 Store Real, 32-bit 4.3.8
FST64 Store Real, 64-bit 4.3.8
FSTP Store Real and Pop 4.3.8
FST32P Store Real and Pop, 32-bit 4.3.8
FST64P Store Real and Pop, 64-bit 4.3.8
FSTENV/FNSTENV Store Environment 4.3.8
FSTCW/FNSTCW Store Control Word 4.3.8
FSTSW/FNSTSW Store Status Word 4.3.8
FSQRT Square Root 4.3.8
FSUB Subtract Real 4.3.8
FSUB32 Subtract Real. 32-bit 4.3.8
FSUB64 Subtract Real, 64-bit 4.3.8
FSUBP Subtract Real and Pop 4.3.8
FSUBR Subtract Real Reversed 4.3.8
FSUBR32 Subtract Real Reversed, 32-bit 4.3.8
FSUBR64 Subtract Real Reversed, 64-bit 4.3.8
FSUBRP Subtract Real Reversed and Pop 4.3.8
FTST Test 4.3.8
FWAIT CPU Wait 4.3.8
FXAM Examine 4.3.8
FXCH Exchange Registers 4.3.8
FXCHG same as FXCH ST1 4.3.8

4-5

4.2 RASM-86 Instruction Set Summary Programmer's Utilities Guide

Mnemonic

FXTRACT
FYL2X
FYL2XP1
HLT
IDIV
IMUL
IN
INC
INSB
INSW
INT
INTO
IRET
JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JMPF
JMPS
JNA
JNAE

4-6

Table 4-1. (continued)

Description

Extract Exponent and Significand
Y * log2X
Y * log 2(X + 1)
Halt
Integer Divide
Integer Multiply
Input Byte or Word
Increment
Input Byte from Port to String
Input Word from Port to String
Interrupt
Interrupt on Overflow
Interrupt Return
Jump on Above
Jump on Above or Equal
Jump on Below
Jump on Below or Equal
Jump on Carry
Jump on CX Zero
Jump on Equal
Jump on Greater
Jump on Greater or Equal
Jump on Less
Jump on Less or Equal
Jump (intra segment)
Jump (inter segment)
Jump (8 bit displacement)
Jump on Not Above
Jump on Not Above or Equal

Section

4.3.8
4.3.8
4.3.8
4.3.7
4.3.4
4.3.4
4.3.3
4.3.4
4.3.9
4.3.9
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6

Programmer's Utilities Guide 4.2 RASM-86 Instruction Set Summary

Mnemonic

JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LAR
LDS
LEA
LEAVE
LES
LGDT
LIDT
LLDT
LMSW
LOCK
LODS
LODSB
LODSW
LOOP
LO OPE

Table 4-1. (continued)

Description

Jump on Not Below
Jump on Not Below or Equal
Jump on Not Carry
Jump on Not Equal
Jump on Not Greater
Jump on Not Greater or Equal
Jump on Not Less
Jump on Not Less or Equal
Jump on Not Overflow
Jump on Not Parity
Jump on Not Sign
Jump on Not Zero
Jump on Overflow
Jump on Parity
Jump on Parity Even
Jump on Parity Odd
Jump on Sign
Jump on Zero
Load AH with Flags
Load Access Rights
Load Pointer into DS
Load Effective Address
High Level Procedure Exit
Load Pointer into ES
Load Global Descriptor Table Register
Load Interrupt Descriptor Table Register
Load Local Descriptor Table Register
Load Machine Status Word
Lock Bus
Load Byte or Word (of string)
Load Byte (of string)
Load Word (of string)
Loop
Loop While Equal

Section

4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.6
4.3.3
4.3.10
4.3.3
4.3.3
4.3.9
4.3.3
4.3.10
4.3.10
4.3.10
4.3.10
4.3.7
4.3.5
4.3.5
4.3.5
4.3.6
4.3.6

4-7

4.2 RASM-86 Instruction Set Summary Programmer's Utilities Guide

Table 4-1. {continued)

Mnemonic Description Section

LOOPNE Loop While Not Equal 4.3.6
LOOPNZ Loop While Not Zero 4.3.6
LOOPZ Loop While Zero 4.3.6
LSL Load Segment Limit 4.3.10
LTR Load Task Register 4.3.10
MOV Move 4.3.3
MOVS Move Byte or Word (of string) 4.3.5
MOVSB Move Byte {of string) 4.3.5
MOVSW Move Word {of string) 4.3.5
MUL Multiply 4.3.4
NEG Negate 4.3.4
NOP No Operation 4.3.7
NOT Not 4.3.4
OR Or 4.3.4
OUT Output Byte or Word 4.3.3
OUT SB Output Byte Pointer [si] to DX 4.3.9
OUT SW Output Word Pointer [si] to DX 4.3.9
POP Pop 4.3.3
POPA Pop all General Registers 4.3.9
POPF Pop Flags 4.3.3
PUSH Push 4.3.3
PU SHA Push all General Registers 4.3.9
PUS HF Push Flags 4.3.3
RCL Rotate through Carry Left 4.3.4
RCR Rotate through Carry Right 4.3.4
REP Repeat 4.3.5
REPE Repeat While Equal 4.3.5
REP NE Repeat While Not Equal 4.3.5
REP NZ Repeat While Not Zero 4.3.5
REPZ Repeat While Zero 4.3.5
RET Return (intra segment) 4.3.6
RETF Return (inter segment) 4.3.6
ROL Rotate Left 4.3.4
ROR Rotate Right 4.3.4
SAHF Store AH into Flags 4.3.3

4-8

Programmer's Utilities Guide 4.2 RASM-86 Instruction Set Summary

Mnemonic

SAL
SAR
SBB
SCAS
SCASB
SCASW
SGDT
SHL
SHR
SIDT
SLOT
SMSW
STC
STD
STI
STOS
STOSS
STOSW
STR
SUB
TEST
VERR
VERW
WAIT
XCHG
XLAT
XOR

Table 4-1. (continued)

Description

Shift Arithmetic Left
Shift Arithmetic Right
Subtract with Borrow
Scan Byte or Word (of string)
Scan Byte (of string)
Scan Word (of string)
Store Global Descriptor Table Register
Shift Left
Shift Right
Store Interrupt Descriptor Table Register
Store Local Descriptor Table Register
Store Machine Status Word
Set Carry
Set Direction
Set Interrupt
Store Byte or Word (of string)
Store Byte (of string)
Store Word (of string)
Store Task Register
Subtract
Test
Verify Read Access
Verify Write Access
Wait
Exchange
Translate
Exclusive Or

Section

4.3.4
4.3.4
4.3.4
4.3.5
4.3.5
4.3.5
4.3.10
4.3.4
4.3.4
4.3.10
4:3.10
4.3.10
4.3.7
4.3.7
4.3.7
4.3.5
4.3.5
4.3.5
4.3.10
4.3.4
4.3.4
4.3.10
4.3.10
4.3.7
4.3.3
4.3.3
4.3.4

4-9

4.3 Instruction-definition Tables Programmer's Utilities Guide

4.3 Instruction-definition Tables

4.3.1 Symbol Conventions

The instruction-definition tables organize RASM-86 instructions into
functional groups. In each table, the instructions are listed
alphabetically. Table 4-2 shows the symbols used in the instruction­
definition tables to define operand types.

4-10

Table 4-2. Operand Type Symbols

Symbol Operand Type

numb

numb8

ace

reg

reg 16

segreg

any numeric expression

any numeric expression that evaluates
to an 8-bit number

accumulator register, AX or AL

any general purpose register
not a segment register

a 16-bit general purpose register
not a segment register

any segment register: CS, DS, SS,
or ES

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Symbol

mem

simpmem

memjreg

me ml reg 16

label

lab8

Table 4-2. (continued)

Operand Type

any address expression with or
without base- and/or index­
addressing modes, such as the
following:

variable
variable+3
variable[bx]
variable[SI]
variable[BX+SI]
[BX]
[BP+DI]

any address expression without base­
and index-addressing modes,
such as the following:

variable
variable+4

any expression symbolized by reg
or mem

any expression symbolir~d by
memjreg, but must be 16 bits

any address expression that
evaluates to a label

any label within +/- 128
bytes distance from the
instruction

4-11

4.3 Instruction-definition Tables Programmer's Utilities Guide

4.3.2 Flag Registers

The 8086 and 80286 CPUs have nine single-bit Flag registers that can
be displayed to reflect the state of the processor. You cannot access
these registers directly, but you can test them to determine the effects
of an executed instruction upon an operand or register. The effects of
instructions on Flag registers are also described in the instruction­
definition tables, using the symbols shown in Table 4-3 to represent
the nine Flag registers.

Table 4-3. Flag Register Symbols

Symbol Meaning

AF Auxiliary Carry Flag
CF Carry Flag
DF Direction Flag
IF Interrupt Enable Flag

OF Overflow Flag
PF Parity Flag
SF Sign Flag
TF Trap Flag
ZF Zero Flag

4.3.3 8086 Data Transfer Instructions

There are four classes of data transfer operations:

• general purpose
• accumulator specific
• address-object
• flag

Only SAHF and POPF affect flag settings. Note in Table 4-4 that if ace
= AL, a byte is transferred, but if ace = AX, a word is transferred.

4-12

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-4. 8086 Data Transfer Instructions

Operation Syntax

IN acc,numb8

IN acc,DX

LAHF

LOS reg 16,mem

LEA reg 16,mem

Result

transfer data from input
port given by numb8
(0-255) to accumulator

transfer data from input
port given by DX register
(0-0FFFFH) to
accumulator

transfer flags to the AH
register

transfer the segment part
of the memory address
(DWORD variable) to the
DS segment register;
transfer the offset part to
a general purpose 16-bit
register

transfer the offset of the
memory address to a 16-
bit register

4-13

4.3 Instruction-definition Tables Programmer's Utilities Guide

Operation

LES

MOV

MOV

MOV

MOV

MOV

OUT

4-14

Table 4-4. (continued)

Syntax

reg16,mem

reg,memlreg

memlreg,reg

memlreg,numb

segreg,memlreg 16

memlreg 16,segreg

numb8,acc

Result

transfer the segment part
of the memory address to
the ES segment register;
transfer the offset part to
a 16-bit genera I purpose
register

move memory or register
to register

move register to memory
or register

move immediate data to
memory or register

move memory or register
to segment register

move segment register to
memory or register

transfer data from
accumulator to output
port (0-255) given by
numb8

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-4. (continued)

Operation Syntax Result

OUT DX,acc transfer data from
accumulator to output
port (0-0FFFFH) given by
DX register

POP memlreg 16 move top stack element
to memory or register

POP segreg move top stack element
to segment register; note
that CS segment register
is not allowed

POPF transfer top stack
element to flags

PUSH memlreg 16 move memory or register
to top stack element

PUSH segreg move segment register to
top stack element

PUS HF transfer flags to top stack
element

SAHF transfer the AH register
to flags

4-15

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-4. (continued)

Operation Syntax

XCHG reg,memlreg

XCHG memlreg,reg

XLAT memlreg

Result

exchange register and
memory or register

exchange memory or
register and register

perform table lookup
translation, table given by
memlreg, which is always
BX. Replaces AL with AL
offset from BX

4.3.4 8086 Arithmetic, Logical, and Shift Instructions

The 8086 and 80286 CPUs perform addition, subtraction, multiplication,
and division in several ways. Both CPUs support 8- and 16-bit
operations and also signed and unsigned arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic
operations to reflect the result of the operation. Table 4-5
summarizes the effects of arithmetic instructions on flag bits. Table
4-6 defines arithmetic instructions. Table 4-7 defines logical and shift
instructions.

4-16

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-5. Effects of Arithmetic Instructions on Flags

Flag Bit Result

CF is set if the operation results in a carry out of (from
addition) or a borrow into (from subtraction) the
high-order bit of the result; otherwise CF is cleared.

AF is set if the operation results in a carry out of (from
addition) or a borrow into (from subtraction) the
low-order four bits of the result; otherwise AF is
cleared.

ZF

SF

PF

OF

is set if the result of the operation is zero;
otherwise ZF is cleared.

is set if the result is negative.

is set if the modulo 2 sum of the low-order eight
bits of the result of the operation is 0 (even parity);
otherwise PF is cleared (odd parity).

is set if the operation results in an overflow; the
size of the result exceeds the capacity of its
destination.

4-17

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-6. 8086 Arithmetic Instructions

Instruction

AAA

AAD

AAM

AAS

ADC

ADC

ADC

ADD

ADD

ADD

4-18

Syntax

reg,memlreg

memlreg,reg

memlreg,numb

reg,memlreg

memjreg,reg

memjreg,n um b

Result

adjust unpacked BCD
(ASCII) for addition -
adjusts AL

adjust unpacked BCD
(ASCII) for division -
adjusts AL

adjust unpacked BCD
(ASCII) for multiplication
- adjusts AX

adjust unpacked BCD
(ASCII) for subtraction -
adjusts AL

add (with carry) memory
or register to register

add (with carry) register
to memory or register

add (with carry)
immediate data to
memory or register

add memory or register
to register

add register to memory
or register

add immediate data to
memory or register

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-6. (continued)

Instruction Syntax Result

CBW convert byte in AL to
word in AX by sign
extension

CMP reg,memlreg compare memory or
register with register

CMP memlreg,reg compare register with
memory or register

CMP memlreg,numb compare data constant
with memory or register

CWD convert word in AX to
double word in DX/AX by
sign extension

DAA decimal adjust for
addition, adjusts AL

DAS decimal adjust for
subtraction, adjusts AL

DEC memlreg subtract 1 from memory
or register

DIV memlreg divide (unsigned)
accumulator (AX or AL)
by memory or register. If
byte results, AL =
quotient, AH = remainder.
If word results, AX =
quotient, DX = remainder

4-19

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-2. (continued)

Instruction Syntax Result

IDIV memlreg divide (signed)
accumulator (AX or AL)
by memory or register -
quotient and remainder
stored as in DIV

IMUL memlreg multiply (signed} memory
or register by
accumulator (AX or AL).
If byte, results in AH, AL.
If word, results in DX, AX.

INC me ml reg add 1 to memory or
register

MUL me ml reg multiply (unsigned}
memory or register by
accumulator (AX or AL).
Results stored as in IMUL.

NEG me ml reg two's complement
memory or register

SBB reg,memlreg subtract (with borrow}
memory or register from
register

SBB mem!reg,reg subtract (with borrow}
register from memory or
register

4-20

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Instruction

SBB

SUB

SUB

SUB

Instruction

AND

AND

AND

Table 4-6. (continued)

Syntax

memlreg,numb

reg,memlreg

memlreg,reg

memlreg,numb

Result

subtract (with borrow)
immediate data from
memory or register

subtract memory or
register from register

subtract register from
memory or register

subtract data constant
from memory or register

Table 4-7. 8086 Logical and Shift Instructions

Syntax Result

reg,memlreg perform bitwise logical
AND of a register and
memory or register

memlreg,reg perform bitwise logical
AND of memory or
register and register

memlreg,numb perform bitwise logical
AND of memory or
register and data
constant

4-21

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-7. (continued)

Instruction Syntax Result

NOT memjreg form one's complement
of memory or register

OR reg,memjreg perform bitwise logical
OR of a register and
memory or register

OR memjreg,reg perform bitwise logical
OR of memory or register
and register

OR memjreg,numb perform bitwise logical
OR of memory or register
and data constant

RCL memjreg, 1 rotate memory or register
1 bit left through carry
flag

RCL memjreg,CL rotate memory or register
left through carry flag,
number of bits given by
CL register

RCR memjreg, 1 rotate memory or register
1 bit right through carry
flag

4-22

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-7. (continued)

Instruction Syntax

RCR memlreg,CL

ROL mem!reg, 1

ROL mem!reg,CL

ROR memlreg,1

ROR mem!reg,CL

SAL mem!reg,1

SAL mem!reg,CL

Result

rotate memory or register
right through carry flag,
number of bits given by
CL register

rotate ryiemory or register
1 bit left

rotate memory or register
left, number of bits given
by CL register

rotate memory or register
1 bit right

rotate memory or register
right, number of bits
given by CL register

shift memory or register
1 bit left, shift in low­
order zero bit

shift memory or register
left. number of bits given
by CL register, shift in
low-order zero bits

4-23

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-7. (continued)

Instruction Syntax Result

SAR memjreg, 1 shift memory or register
1 bit right, shift in high-
order bit equal to the
original high-order bit

SAR memjreg,CL shift memory or register
right, number 6f bits
given by CL register, shift
in high-order bits equal
to the original high-order
bit

SHL memjreg,1 shift memory or register
1 bit left shift in low-
order zero bit. Note that
SHL is a different
mnemonic for SAL.

SHL memlreg,CL shift memory or register
left, number of bits given
by CL register, shift in
low-order zero bits. Note
that SHL is a different
mnemonic for SAL.

SHR memlreg,1 shift memory or register
1 bit right, shift in high-
order zero bit

4-24

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-7. (continued)

Instruction Syntax Result

SHR memlreg,CL shift memory or register
right, number of bits
given by CL register, shift
in high-order zero bits

TEST reg,memlreg perform bitwise logical
AND of a register and
memory or register - set
condition flags but do not
change destination.

TEST memJreg,reg perform bitwise logical
AND of memory or
register and register - set
condition flags, but do
not change destination.

TEST memlreg,numb perform bitwise logical
AND of memory or
register and data
constant - set condition
flags but do not change
destination.

XOR reg,memlreg perform bitwise logical
exclusive OR of a register
and memory or register

4-25

4.3 Instruction-definition Tables Programmer's Utilities Guide

Instruction

XOR

XOR

Table 4-7. (continued)

Syntax

memjreg,reg

memjreg,numb

Result

perform bitwise logical
exclusive OR of memory
or register and register

perform bitwise logical
exclusive OR of memory
or register and data
constant

4.3.5 8086 String Instructions

String instructions take zero, one, or two operands. The operands
specify only the operand type, determining whether the operation is on
bytes or words. If there are two operands, the source operand is
addressed by the SI register and the destination operand is addressed
by the DI register. The DI and SI registers are always used for
addressing. Note that tor string operations, destination operands
addressed by DI must reside in the Extra Segment (ES) and source
operands addressed by SI must reside in the Data Segment (DS).

The source operand is normally addressed by the DS register.
However, you can designate a different register by using a segment
override. For example,

MOVS WORD PTR[DI], CS:WORD PTR[SI]

writes the contents of the address at CS:[SI] into ES:[DI].

4-26

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Instruction

CMPS

CMPSB

CMPSW

LOOS

LOO SB

LOO SW

Table 4-8. 8086 String Instructions

Syntax

memlreg,memlreg

memlreg

Result

subtract source from
destination, affect flags,
but do not return result

an alternate mnemonic
for CMPS that assumes a
byte operand

an alternate mnemonic
for CMPS that assumes a
word operand

transfer a byte or word
from the source operand
to the accumulator

an alternate mnemonic
for LOOS that assumes a
byte operand

an alternate mnemonic
for LOOS that assumes a
word operand

4-27

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-8. (continued)

Instruction Syntax Result

MOVS memjreg,memjreg move 1 byte (or word)
from source to
destination

MOVSB an alternate mnemonic
for MOVS that assumes a
byte operand

MOVSW an alternate mnemonic
. for MOVS that assumes a
word operand

SCAS memjreg subtract destination
operand from
accumulator (AX or AL),
affect flags, but do not
return result

SCASB an alternate mnemonic
for SCAS that assumes a
byte operand

SCASW an alternate mnemonic
for SCAS that assumes a
word operand

STOS memlreg transfer a byte or word
from accumulator to the
destination operand

4-28

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Instruction

STOSB

STOSW

Table 4-8. (continued)

Syntax Result

an alternate mnemonic
for STOS that assumes a
byte operand

an alternate mnemonic
for STOS that assumes a
word operand

Table 4-9 defines prefixes for string instructions. A prefix repeats its
string instruction the number of times contained in the ex register,
which is decremented by 1 for each iteration. Prefix mnemonics
precede the string instruction mnemonic in the statement line.

Table 4-9. 8086 Prefix Instructions

Syntax Result

REP repeat until ex register is zero

REPE repeat until ex register is zero,
or zero flag (ZF) is not zero

REPNE repeat until ex register is zero,
or zero flag (ZF) is zero

REPNZ equal to REPNE

REPZ equal to REPE

4-29

4.3 Instruction-definition Tables Programmer's Utilities Guide

4.3.6 8086 Control Transfer Instructions

There are four classes of control transfer instructions:

• calls, jumps, and returns
• conditional jumps
• iterational control
• interrupts

All control transfer instructions cause program execution to continue
at some new location in memory, possibly in a new code segment.
The transfer can be absolute, or can depend upon a certain condition.
Table 4-10 defines contrnl transfer instructions. In the definitions of
conditional jumps, above and below refer to the relationship between
unsigned values. Greater than and less than refer to the relationship
between signed values.

Instruction

CALL

CALL

4-30

Table 4-10. 8086 Control Transfer Instructions

Syntax

label

memlreg16

Result

push the offset address
of the next instruction on
the stack, jump to the
target label

push the offset address
of the next instruction on
the stack, jump to
location indicated by
contents of specified
memory or register

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-10. (continued)

Instruction Syntax Result

CALLF label push CS segment register
on the stack, push the
offset address of the next
instruction on the stack
(after CS), jump to the
target label

CALLF mem push CS register on the
stack, push the offset
address of the next
instruction on the stack,
jump to location indicated
by contents of specified
double word in memory

INT numb8 push the flag registers
(as in PUSHF), clear TF
and IF flags, transfer
control with an indirect
call through any one of
the 256 interrupt-vector
elements - uses three
levels of stack

4-31

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-10. (continued)

Instruction Syntax Result

INTO if OF (the overflow flag)
is set, push the flag
registers (as in PUSHF),
clear TF and IF flags,
transfer control with an
indirect call through
interrupt-vector element
4 (location 10H). If the
OF flag is cleared, no
operation takes place

IRET transfer control to the
return address saved by a
previous interrupt
operation, restore saved
flag registers, as well as
CS and IP. Pops three
levels of stack

JA lab8 jump if "not below or
equal" or "above" ((CF or
ZF)=O)

JAE lab8 jump if "not below" or
"above or equal" (CF=O)

JB lab8 jump if "below" or "not
above or equal" (CF=1)

4-32

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-10. (continued}

Instruction Syntax Result

JBE lab8T jump if "below or equal"
or "not above" ((CF or
ZF)= 1)

JC lab8 same as JB

JCXZ lab8 jump to target label if ex
register is zero

JE lab8 jump if "equal" or "zero" (
ZF=l)

JG lab8 jump if "not less or
equal" or "greater" (((SF
xor OF) or ZF)=O)

JGE lab8 jump if "not less" or
"greater or equal" ((SF xor
OF)=O)

JL lab8 jump if "less" or "not
greater or equal" ((SF xor
OF)= 1)

JLE lab8 jump if "less or equal" or
"not greater" (((SF xor OF)
or ZF)=l)

JMP label jump to the target label

JMP memlreg16 jump to location indicated
by contents of specified
memory or register

4-33

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-10. (continued)

Instruction Syntax Result

JMPF label jump to the target label
possibly in another code
segment

JMPS lab8 jump to the target label
within +/- 128 bytes from
instruction

JNA lab8 same as JBE

JNAE lab8 same as JB

JNB lab8 same as JAE

JNBE lab8 same as JA

JNC lab8 same as JNB

JNE lab8 jump if "not equal" or
"not zero" (ZF=O)

JNG lab8 same as JLE

JNGE lab8 same as JL

JNL lab8 same as JGE

JNLE lab8 same as JG

JNO lab8 jump if "not overflow" (
OF=O)

JNP lab8 jump if "not parity" or
"parity odd" (PF=O)

JNS lab8 jump if "not sign" (SF=O)

4-34

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-10. (continued)

Instruction Syntax Result

JNZ lab8 same as JNE

JO lab8 jump if "overflow" (OF= 1
)

JP lab8 jump if "parity" or "parity
even" (PF=1)

JPE lab8 same as JP

JPO lab8 same as JNP

JS lab8 jump if "sign" (SF= 1

JZ lab8 same as JE

LOOP lab8 decrement ex register by
one, jump to target label
if ex is not zero

LOO PE lab8 decrement ex register by
one, jump to t rget label
if ex is not zero and the
ZF flag is set - "loop
while zero" or "loop while
equal"

LOOP NE lab8 decrement ex register by
one, jump to target label
if ex is not zero and ZF
flag is cleared - "loop
while not zero" or "loop
while not equal"

LOOP NZ lab8 same as LOOPNE

4-35

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-10. (continued)

Instruction Syntax Result

LOOPZ lab8 same as LOOPE

RET return to the address
pushed by a previous
CALL instruction,
increment stack pointer
by 2

RET numb return to the address
pushed by a previous
CALL, increment stack
pointer by 2+numb

RETF return to the address
pushed by a previous
CALLF instruction,
increment stack pointer
by 4

RETF numb return to the address
pushed by a previous
CALLF instruction,
increment stack pointer
by 4+numb

4.3.7 8086 Processor Control Instructions

Processor control instructions manipulate the flag registers. Moreover,
some of these instructions synchronize the CPU with external
hardware.

4-36

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-11. 8086 Processor Control Instructions

Instruction

CLC

CLO

CLI

CMC

ESC

HLT

Syntax

numb8,memlreg

Result

clear CF flag

clear OF flag, causing
string instructions to
auto-increment the
operand registers

clear IF flag, disabling
maskable external
interrupts

complement CF flag

do no operation other
than compute the
effective address and
place it on the address
bus (ESC is used by the
8087 numeric
coprocessor) numb8 must
be in the range 0 - 63

cause 8086 processor to
enter halt state until an
interrupt is recognized

4-37

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-11. (continued)

Instruction

LOCK

NOP

STC

STD

STI

WAIT

4-38

Syntax Result

PREFIX instruction, cause
the 8086 processor to
assert the bus-lock signal
for the duration of the
operation caused by the
following instruction, The
LOCK prefix instruction
can precede any other
instruction. Bus lock
prevents coprocessors
from gaining the bus; this
is useful for shared­
resource semaphores

no operation is performed

set CF flag

set DF flag, causing string
instructions to auto­
decrement the operand
registers

set IF flag, enabling
maskable external
interrupts

cause the 8086 processor
to enter a wait state if
the signal on its TEST pin
is not asserted

Programmer's Utilities Guide 4.3 Instruction-definition Tables

4.3.8 8087 Instruction Set

RASM-86 supports 8087 opcodes. However, RASM-86 only allows
8087 opcodes in byte, word, and double word format. The form of the
RASM-86 instructions differ slightly from the Intel convention to
support 8087 instructions.

All 8087 memory reference instructons have two characters appended
to the end of the opcode name. The two characters represent the
number of bits referenced by the instruction. For example:

f add64 byte ptr rny_var

This instruction assumes MY VAR contains 64 bits (8 bytes). This
convention applies to all 8087 instructions referencing user memory,
except those that always reference the same number of bits, as is the
FSTCW instruction, for example.

Another difference between RASM-86 and the standard Intel
convention is that the number of bits referenced by the instruction is
placed before the "P" on instructions in which the stack is to be
popped. For example:

FSUB80P byte ptr rny_var; sub and pop temp real

Many of the following 8087 operations are described in terms of the
stack registers: STO, ST1, STi (where "i" represents any register on
the stack). The stack register where the resulting value is stored is
also described for many operations. It is important to remember that
when a POP occurs at the end of an 8087 operation, the stack register
containing the value is decremented by 1.

For example, if, during an 8087 operation, the result is put in ST3 and
a POP occurs at the end of the operation, the result ends up in ST2.

4-39

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-12. 8087 Data Transfer Instructions

Syntax Result

Real Transfers

FLD Load a number in IEEE floating point into 8087 top
stack element STO

FLD32 Load a number in IEEE 32-bit floating point format
into 8087 top stack element STO

FLD64 Load a number in IEEE 64-bit floating point format
into 8087 top stack element STO

FLD80 Load a number in IEEE 80-bit floating point format
into 8087 top stack element STO

FDUP Duplicate top of stack (FLO STO}

FST Store Real

FST32 Store Real (32-bit operands)

FST64 Store Real (64-bit operands)

FSTP Store Real and Pop

FST32P Store Real and Pop (32-bit operands)

FST64P Store Real and Pop (64-bit operands)

FPOP same as FSTP STO

FXCH Exchange Registers

4-40

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Syntax

FXCHG

FILD16

FILD32

FILD64

FIST16.

FIST32

FISTl 6P

FIST32P

FIST64P

FBLD

Table 4-12. (continued)

Result

same as FXCH STl

Integer Transfers

Integer Load (16-bit operands)

Integer Load (32-bit operands)

Integer Load (64-bit operands)

Integer Store (16-bit operands)

Integer Store (32-bit operands)

Integer Store and Pop (16-bit operands)

Integer Store and Pop (32-bit operands)

Integer Store and Pop (64-bit operands)

Packed Decimal Transfers

Packed Decimal (BCD) Load

4-41

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-13. 8087 Arithmetic Instructions

Syntax Operands Result

Additon

FBSTP Packed Decimal (BCD)
Store 10 bytes
and Pop

FADD Add Real STO to STl,
store result in STl and
Pop

FADD STi,STO Add Real STO to STi,
store result in STi

FADD32 mem Add Real mem to STO,
store result in STO (32-bit
operands)

FADD64 mem Add Real mem to STO,
store result in STO (64-bit
operands)

FAD DP STi,STO Add Real STO to STi,
store result in STi and
Pop

FIADD16 mem Integer Add mem to STO,
store result in STO (16
bit-operands}

FIADD32 mem Integer Add mem to STO,
store result in STO (32
bit-operands}

4-42

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-13. (continued)

Syntax Operands Result

Subtraction

FSUB Subtract Real STO from
ST1, store result in ST1
and Pop

FSUB STi,STO Subtract Real STO from
STi, store result in STi

FSUB STO,STi Subtract Real STi from
STO, store result in STO

FSUB32 mem Subtract Real mem from
STO, store result in STO
(32-bit operands)

FSUB64 mem Subtract Real mem from
STO, store result in STO
(64-bit operands)

FSUBP STi,STO Subtract Real STO from
STi, store result in STi
and Pop

FISUB16 mem Integer Subtract mem
from STO, store result in
STO (16-bit operands)

FISUB32 mem Integer Subtract mem
from STO, store result in
STO (32-bit operands)

4-43

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-13. (continued)

Syntax Operands Result

FSUBR Subtract Real ST1 from
STO, store result in ST1
and Pop

FSUBR STi,STO Subtract Real STi from
. STO, store result in STi

FSUBR STO,STi Subtract Real STO from
STi, store result in STO

FSUBR32 mem Subtract Real mem from
STO, store result in STO
(32-bit operands)

FSUBR64 mem Subtract Real mem from
STO, store result in STO
(64-bit operands)

FSUBRP STi,STO Subtract Real STi from
STO, store result in STi
and Pop

FISUBR16 mem Integer Subtract STO from
mem, store result in STO
(16-bit operands)

FISUBR32 mem Integer Subtract STO from
mem, store result in STO
(32-bit operands)

4-44

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Syntax

FMUL

FMUL

FMUL

FMUL32

FMUL64

FMULP

FlMUL 16

FIMUL32

Table 4-13. (continued)

Operands Result

Multiplication

STi,STO

STO,STi

mem

mem

STi,STO

mem

mem

Multiply Real ST1 by STO,
store result in ST1 and
Pop

Multiply Real STi by STO,
store result in STi

Multiply Real STO by STi,
store result in STO

Multiply Real STO by
mem, store result in STO
{32-bit operands)

Multiply Real STO by
mem, store result in STO
(64-bit operands)

Multiply Real STi by STO,
store result in STi and
Pop

Integer Multiply STO by
mem, store result in STO
(16-bit operands)

Integer Multiply STO by
mem, store result in STO
{32-bit operands)

4-45

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-13. (continued)

Syntax Operands Result

Division

FDIV Divide Real ST1 by STD,
store result in ST1 and
Pop

FDIV STi,STD Divide Real STi by STD,
store result in STi

FDIV STD,STi Divide Real STD by STi,
store result in STD

FDIV32 mem Divide Real STD by mem,
store result in STD (32-bit
operands)

FDIV64 mem Divide Real STO by mem,
store result in STO (64-bit
operands)

FDIVP STi,STO Divide Real STi by STO,
store result in STi and
Pop

FIDIV16 mem Integer Divide STO by
mem, store result in STO
(16-bit operands)

FIDIV32 mem Integer Divide STO by
mem, store result in STO
(32-bit operands)

4-46

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-13. (continued)

Syntax Operands Result

FDIVR Divide Real STO by ST1,
store result in STl and
Pop

FDIVR STi,STO Divide Real STO by STi,
store result in STi

FDIVR STO,STi Divide Real STi by STO,
store result in STO

FDIVR32 mem Divide Real mem by STO,
store result in STO (32-bit
operands)

FDIVR64 mem Divide Real mem by STO.
store result in STO (64-bit
operands)

FDIVRP STi,STO Divide Real STi by STO,
store result in STi and
Pop

FIDIVR16 mem Integer Divide mem by
STO, store result in STO
(16-bit operands)

FIDIVR32 mem Integer Divide mem by
STO, store result in STO
(32-bit operands)

4-47

4.3 Instruction-definition Tables Programmer's Utilities Guide

Syntax

FSQRT

FSCALE

FPREM

FRNDINT

FXTRACT

FABS

FCHS

FCOM32

FCOM64

4-48

Table 4-13. (continued)

Operands Result

Other Operations

mem

mem

Square Root

Interpret ST1 as an
integer and add to
exponent of STD

Partial Remainder

Round to Integer

Extract Exponent and
Significand

Absolute Value

Change Sign

Compare Real mem and
STD (32-bit operands)

Compare Real mem and
STD (64-bit operands)

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-13. (continued)

Syntax Operands Result

FCOMP Compare Real STO and
ST1 and Pop

FCOM32P mem Compare Real mem and
STO and Pop (32-bit
operands)

FCOM64P mem Compare Real mem and
STO and Pop (64-bit
operands)

FCOMPP Compare Real STO and
ST1, then Pop STO and
ST1

FICOM16 mem Integer Compare mem
and STO (16-bit operands)

FICOM32 mem Integer Compare mem
and STO (32-bit operands)

FICOM16P mem Integer Compare mem
and STO and Pop (16-bit
operands)

4-49

4.3 Instruction-definition Tables Programmer's Utilities Guide

Syntax

FICOM32P

FTST

FXAM

Table 4-13. {continued)

Operands

mem

Result

Integer Compare mem
and STO and Pop (32-bit
operands)

Test STO by comparing it
to zero

Report STO as either
positive or negative

Table 4-14. 8087 Transcendental Instructions

Syntax Result

FPTAN Partial Tangent

FPATAN Partial Arctangent

F2XM1 2x-1

FYL2X Y * log 2X

FYL2XP1 Y * log2(X + 1)

FLDZ Load + 0.0

FLD1 Load + 1.0

FLDPI Load 80-bit value for pi.

FLDL2T Load log 210

4-50

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-15. 8087 Constant Instructions

Syntax Result

FLDL2E Load log2e

FLDLG2 Load log 102

FLDLN2 Load loge2

Table 4-16. 8087 Processor Control Instructions

Syntax Operands Result

FINIT /FNINIT Initialize Processor

FDISl/FNDISI Disable Interrupts

FENl/FNENI Enable Interrupts

FLDCW mem Load Control Word

FSTCW/FNSTCW mem Store Control Word

FSTSW/FNSTSW mem Store Status Word

FCLEX/FNCLEX Clear Exceptions

FSTENV/FNSTENV mem Store Environment

FLOE NV mem Load Environment

FSAVE/FNSAVE Save State

FRSTOR Restore State

FINCSTP Increment Stack Pointer

4-51

4.3 Instruction-definition Tables Programmer's Utilities Guide

Table 4-16. {continued)

Syntax

FDECSTP

FF REE

FNOP

FWAIT

Operands Result

Decrement Staltk Pointer

Free Register

No Operation

CPU Wait

4.3.9 Additional 186 and 286 Instructions

The following Instructions are specific to both the 80186 and 80286
processors. In addition to the instructions below, other 80186 and
80286 instructions are the same as 8086 instructions except they allow
a rotate or shift. These instructions are: SAR, SAL, SHR, SHL, ROR, and
ROL.

4-52

Programmer's Utilities Guide 4.3 Instruction-definition Tables

Table 4-17. Additional 186 and 286 Instructions

Syntax Result

BOUND Check Array Index Against Bounds

ENTER Make Stack Frame for Procedure Parameters

INSB Input Byte from Port to String

INSW Input Word from Port to String

LEAVE High Level Procedure Exit

OUTSB Output Byte Pointer [si] to DX

OUTSW Output Word Pointer [si] to DX

POPA Pop all General Registers

PUSHA Push all General Registers

4-53

4.3 Instruction-definition Tables Programmer's Utilities Guide

4.3.10 Additional 286 Instructions

The following instructions are specific to the 80286 processor.

Table 4-18. Additional 286 Instructions

Syntax Result

CTS

ARPL

LGDT

SGDT

LIDT

SIDT

LLDT

SLOT

LTR

STR

LMSW

SMSW

LAR

LSL

4-54

Clear Task Switched Flag

Adjust Priviledge level

Load Global Descriptor Table Register

Store Global Descriptor Table Register

Load Interrupt Descriptor Table Register

Store Interrupt Descriptor Table Register

Load Local Descriptor Table Register from
Register/Memory

Store Local Descriptor Table Register to
Register/Memory

Load Task Register from Register/Memory

Store Task Register to Register/Memory

Load Machine Status Word from Register/Memory

Store Machine Status Word

Load Access Rights from Register/Memory

Load Segment Limit from Register/Memory

Programmer's Utilities Guide 4.3 Instruction-definition Tables

ARPL

VERR

VERW

Syntax

Table 4-18. (continued)

Result

Adjust Required Privilege
Register/Memory

Verify Read Access; Register/Memory

Verify Write Access

End of Section 4

Level from

4-55

SECTION 5

RASM-86 Code-macro Facilities

5.1 Introduction

RASM-86 allows you to define your own instructions using the Code­
macro directive. RASM-86 code-macros differ from traditional
assembly-language macros in the following ways:

• Traditional assembly-language macros contain assembly-language
instructions, but a RASM-86 code-macro contains only code­
macro directives.

• Traditional assembly-language macros are usually defined in the
Symbol Table, while RASM-86 code-macros are defined in the
assembler's internal Symbol Table.

• A traditional macro simplifies the repeated use of the same block
of instructions throughout a program, but a code-macro sends a
bit stream to the output file, and in effect, adds a new instruction
to the assembler.

5.2 Invoking Code-macros

RASM-86 treats a code-macro as an instruction, so you can invoke
code-macros by using them as instructions in your program. The
following example shows how to invoke MYCODE, an instruction
defined by a code-macro.

MYCODE PARM1,PARM2

Note that MYCODE accepts two operands as formal parameters. When
you define MYCODE, RASM-86 classifies these two operands according
to type, size, and so forth.

5-1

5.3 Invoking Code-macros Programmer's Utilities Guide

5.3 Defining Code-macros

A code-macro definition takes the general form:

CodeMacro name [formal parameter list J
[list of code-macro directives J
EndM

where name is any string of characters you select to represent the
code-macro. The optional formal parameter and code-macro directive
lists are described in the following sections. Example code-macro
definitions are provided in Section 5.3.3

5.3.1 Formal Parameter List

When you define a cod€ macro, you can specify one or more optional
formal parameter lists. The parameters specified in the formal
parameter list are used as placeholders to indicate where and how the
operands are to be used. The formal parameter list is created using
the following syntax:

formal_ name : specifier _letter [modifier _letter] [range]

formal name

You can specify any formal_name to represent the formal parameters
in your list. RASM-86 replaces the formal_names with the names or
values supplied as operands when you invoke the code-macro.

specifier _letter

Every formal parameter must have a specifier letter to indicate what
type of operand is needed to match the formal parameter. Table 5-1
defines the eight possible specifier letters.

5-2

Programmer's Utilities Guide 5.3 Defining Code-macros

Table 5-1. Code-macro Operand Specifiers

Letter Operand Type

A

c

D

E

M

R

s

x

modifier letter

Accumulator register, AX or AL.

Code, a label expression only.

Data, a number used as an immediate value.

Effective address, either an M (memory address)
or an R (register).

Memory address. This can be either a variable
or a bracketed register expression.

General register only.

Segment register only.

Direct memory reference.

The optional modifier _letter in a code-macro definition is a further
requirement on the operand. The meaning of the modifier letter
depends on the type of the operand. For variables, the modifier
requires the operand be a certain type:

• b for byte
• w for word
• d for double-word
• sb for signed· byte

For numbers, the modifiers require the number be a certain size: b for
-256 to 255 and w for other numbers. Table 5-2 summarizes code­
macro modifiers.

5-3

5.3 Defining Code-macros Programmer's Utilities Guide

Table 5-2. Code-macro Operand Modifiers

Variables Numbers

Modifier Type Modifier Size

b byte b -256 to 255

w word w anything else

d dword

sb signed
byte

range

The optional range ·in a code-macro definition is specified within
parentheses by either one expression or two expressions separated by
a comma. The following are valid formats:

(numberb)
(register)
(numberb,numberb)
(numberb,register)
(register,n umberb)
(reg i ste r,reg iste r)

Numberb is an 8-bit number, not an address.

5.3.2 Code-macro Directives

Code-macro directives define the bit pattern and make further
requirements on how the operand is to be treated. Directives are
reserved words, and those that appear to duplicate assembly language
instructions have different meanings within a code-macro definition.

5-4

Programmer's Utilities Guide 5.3 Defining Code-macros

The following are legal code-macro directives:

SEGFIX
NOSEGFIX
MOD RM
RELB
RELW
DB
DW
DD
OBIT
IF
ELSE
ENDIF

These directives are unique to code-macros. The code-macro
directives DB, OW, and DD that appear to duplicate the RASM-86
directives of the same names have different meanings in code-macro
context. These directives are discussed in greater detail in Section .

CodeMacro, EndM, and the code-macro directives are all reserved
words. The formal definition syntax for a code-macro is defined in
Backus-Naur-like ~orm in Appendix E.

SEGFIX

SEGFIX instructs RASM-86 to determine whether a segment-override
prefix byte is needed to access a given memory location. If so, it is
output as the first byte of the instruction. If not, RASM-86 takes no
action. SEGFIX has the following form:

SEGFIX formal name

The formal_name is the name of a formal parameter representing the
memory address. Because it represents a memory address, the formal
parameter must have one of the specifiers E, M, or X.

5-5

5.3 Defining Code-macros Programmer's Utilities Guide

NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES
register for that operand. This applies only to the destination operand
of these instructions: CMPS, MOVS, SCAS, STOS. NOSEGFIX has the
following form:

NOSEGFIX segreg, form _name

The segreg is one of the segment registers ES, CS, SS, or DS, and
form_name is the name of the memory-address formal parameter that
must have a specifier E, M, or X. No code is generated from this
directive, but an error check is performed. The following is an
example of NOSEGFIX in a code-macro directive:

CodeMacro MOVS si ptr:Ew,di ptr:Ew
NOSEGFIX ES,di ptr -
SEGFIX si ptr
DB OA5H

EndM

MOD RM

This directive instructs RASM-86 to generate the MODRM byte
following the opcode byte in many of the 8086 and 80286 instructions.
The MODRM byte contains either the indexing type or the register
number to be used in the instruction. It also specifies which register
is to be used, or gives more information to specify an instruction.

The MODRM byte carries the information in three fields:

fields: mod reg reg_mem
MODRM byte:

The mod field occupies the two most significant bits of the byte, and
combines with the register memory field to form 32 possible values: 8
registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It
specifies either a register number or three more bits of opcode
information. The meaning of the reg field is determined by the
opcode byte.

5-6

Programmer's Utilities Guide 5.3 Defining Code-macros

The reg mem, or register memory, field occupies the last three bits of
the byte. It specifies a register as the location of an operand, or
forms a part of the address-mode in combination with the mod field
described earlier.

For further information about 8086 and 80286 instructions and their bit
patterns, see the Intel assembly language programming manual and
the Intel user's manual for your processor.

MODRM has the forms:

MODRM form name,form name
MODRM NUMBER7,form name

NUMBER? is a value 0 to 7 inclusive, and form_name is the name of a
formal parameter. The following examples show how MODRM is used
in a code-macro directive:

CodeMacro RCR dst:Ew,count:Rb(CL)
SEGFIX dst
DB OD3H
MODR.t'•f 3 , ds t

EndM

CodeMacro OR dst:Rw,src:Ew
SEGFIX src
DB OBH
MODRM dst,src

EndM

RELB and RELW

These directives, used in IP-relative branch instructions, instruct
RASM-86 to generate a displacement between the end of the
instruction and the label supplied as an operand. RELB generates one
byte and RELW two bytes of displacement. The directives have the
following forms:

RELB form name
RELW form-name

5-7

5.3 Defining Code-macros Programmer's Utilities Guide

The form name is the name of a formal parameter with a C (code)
specifier. For example,

CodeMacro
DB
RELB

EndM

LOOP place:Cb
OE2H
place

DB, OW and DD

These directives define a number, or a parameter as either a byte,
word, or double-word. These directives differ from those occurring
outside code-macros.

The directives have the following forms:

DB form name I NUMBERS
ow form_ name I NUMBERW
DD form name

NUMBERS is a single-byte number, NUMBERW is a two-byte number, ·
and form_name is a name of a formal parameter. For example,

CodeMacro
SEGFIX
DB
MOD RM
DW

EndM

XOR dst:Ew,src:Db
dst
81H
6,dst
src

OBIT

This directive manipulates bits in combinations of a byte or less. The
form is as follows:

OBIT field_ description [,field_ description]

The field_description has two forms:

5-8

number combination
number (form_name (rshift))

Programmer's Utilities Guide 5.3 Defining Code-macros

The number ranges from 1 to 16, and specifies the number of bits to
be set. The combination specifies the desired bit combination. The
total of all the numbers listed in the field descriptions must not
exceed 16.

The second form shown contains form name, a formal parameter name
that instructs the assembler to put a -certain number in the specified
position. This number normally refers to the register specified in the
first line of the code-macro. The numbers used in this special case
for each register are the following:

AL: 0
CL: 1
DL: 2
BL: 3
AH: 4
CH: 5
DH: 6
BH: 7
AX: 0
ex: ,

.J..

DX: 2
BX: 3
SP: 4
BP: 5
SI: 6
DI: 7
ES: 0
CS: 1
SS: 2
DS: 3

The rshift, contained in the innermost parentheses, specifies a number
of right shifts. For example, 0 specifies no shift; 1 shifts right one bit;
2 shifts right two bits, and so on. The following definition uses this
form:

CodeMacro DEC dst:Rw
DBIT 5(9H),3(dst(0))

EndM

5-9

5.3 Defining Code-macros Programmer's Utilities Guide

The first five bits of the byte have the value 9H. If the remaining bits
are zero, the hex value of the byte is 48H. If the instruction

DEC DX

is assembled, and DX has a value of 2H, then 48H + 2H = 4AH, the final
value of the byte for execution. If this sequence is present in the
definition

OBIT 5(9H),3(dst(1))

then the register number is shifted right once, and the erroneous
result is 48H + 1 H = 49H.

IF, ELSE, and ENDIF

The IF and ENDIF directives allow you to conditionally include or
exclude a group of source lines from the assembly. The optional ELSE
directive allows you to specify an alternative set of source lines.
These code-macro directive operate in the same manner as the
RASM-86 conditional assembly directives described in Section 3.5.1.

5.3.3 Example Code-Macro Definitions

In order to clearly distinguish specifiers from modifiers, the examples
in this section show specifiers in uppercase and modifiers in
lowercase.

CodeMacro IN dst:Aw,port:Rw(DX)

Defines a code-macro, named IN, specifying that the
input port must be identified by the DX register.

CodeMacro ROR dst:Ew,count:Rb(CL)

5-10

Defines a code-macro, named ROR, specifying that
the CL register is to contain the count of rotation.

Programmer's Utilities Guide 5.3 Defining Code-macros

CodeMacro ESC opcode:Db(0,63),adds:Eb

CodeMacro AAA
DB 37H

EndM

Defines a code macro named ESC, specifying that
the value represented by the opcode parameter is to
be immediate data, with a range from 0 to 63 bytes.
ESC also specifies that the value represented by the
adds parameter is a byte to be used as an effective
address.

Defines a code macro, named AAA, as the value
37H. (This is the normal opcode value of the AAA
instruction.)

CodeMacro NESC opcode:Db(0,63) ,src:Eb
SEGFIX src
DBIT 5(1BH),3(opcode(3))
MODRM opcode,src

EndM

Defines a code macro, named NESC. The value
represented by the opcode parameter is defined as
data, with a range from 0 to 63 bytes. The value
represented by the src parameter is defined as a
byte to represent either a memory address or a
register.

The SEGFIX directive checks to see if src is in the
current segment (data segment) and, if not, to
override with the correct segment.

5-11

5.3 Defining Code-macros Programmer's Utilities Guide

5-12

The OBIT directive creates a byte. the upper five
bits of this byte contain 1 BH; the lower 3 bits are
derived from the value of opcode, shifted right by 3.

The MODRM directive generates modrm bytes,
based on the values of the opcode and src
parameters.

End of Section 5

SECTION 6

XREF-86 Cross-Reference Utility

6.1 Introduction

XREF-86 is an assembly language cross-reference utility program that
creates a cross-reference file showing the use of symbols throughout
the program. XREF-86 accepts two input files created by RASM-86.
XREF-86 assumes these input files have filetypes of LST and SYM
respectively, and they both reside on the same disk drive. XREF-86
creates one output file with the filetype XRF. Figure 6-1 illustrates
XREF-86 operation. ·

filenarne.LST
listing file"'

~ XREF-86-+ filename.XRF

filenarne.SYM
/

cross-reference file

symbol table file

Figure 6-1. XREF-86 Operation

6.2 XREF-86 Command Syntax

XREF-86 is invoked using the command form:

XREF86 [drive:] filename

XREF-86 reads FILENAME.LST line by line, attaches a line number prefix
to each line, and writes each prefixed line to the output file,

6-1

6.2 XREF-86 Command Syntax Programmer's Utilities Guide

FILENAME.XRF. During this process, XREF-86 scans each line for any
symbols existing in the file FILENAME.SYM.

After completing this copy operation, XREF-86 appends to
FILENAME.XRF a cross-reference report listing all the line numbers
where each symbol in FILENAME.SYM appears. XREF-86 flags with a #
character each line number reference where the referenced symbol is
the first token on the line.

XREF-86 also lists the value of each symbol, as determined by
RASM-86 and placed in the Symbol Table file, FILENAME.SYM.

When you invoke XREF-86, you can include an optional DRIVE:
specification with the filename. When you invoke XREF-86 with a
DRIVE: name preceding the FILENAME, XREF-86 searches for the input
files and create the output file on the specified drive. If DRIVE: is not
specified, XREF-86 associates the files with the default drive. For
example, to search for the file BIOS on the Drive C, enter:

xref86 c:bios

XREF-86 also allows you to direct the output file to the default list
device instead of to FILENAME.XRF. To redirect the output, add the
string $p to the command line. For example,

A>xref86 bios $p

End of Section 6

6-2

SECTION 7

LINK 86 Linkage Editor

7.1 Introduction

LINK 86, Version 1.5, is the Digital Research linkage editor that
combines relocatable object files into a command file that runs under
any Digital Research 8086-based operating system. As used here,
"8086-based" refers to Intel 8088, 8086, 80186, and 80286
microprocessors. The object files can be produced by Digital
Research's 8086 and 80286 language translators or other translators
producing object files using a compatible subset of the Intel
8086/80286 object module format.

7.2 LINK 86 Operation

LINK 86 accepts three types of files.

Object (OBJ) File This is a language source file processed by the
language translator into the rel·ocatable object code
used by the microprocessor. This type of file
contains one or more object modules.

Library (L86) File The library file is an indexed library of commonly
used object modules. A library file is generated by
the library manager, LIB-86, in the processor's
relocatable object format.

Input (INP) File The input file consists of filenames and options like
a command line entered from the console. For a
detailed explanation of the input file, see Section
7.12.

7-1

7.2 LINK 86 Operation Programmer's Utilities Guide

LINK 86 produces the following types of files:

Command (CMD or 286) File
Contains executable code that the operating system
can load.1 The filetype LINK 86 gives to the
command file is either CMD or 286, depending on
the filetype specified in the LIBATTR module of your
compiler's runtime library. The default filetype for
LINK 86 is 286. RASM-86 does not use a runtime
library. Therefore, when linking RASM code, you
must specify on the LINK 86 command line which
filetype you want your command file to have. To
keep the discussions in this guide simple, all of the
command files have been given a CMD filetype.

Symbol Table (SYM) File
Contains a list of symbols from the object files and
their offsets. This file is suitable for use with Digital
Research's SID-286 symbolic instruction debuggers.

Line Number (LIN) File

Map (MAP) File

Contains line number symbols, which can be used
by SID-286 for debugging. This file is created only
if the compiler puts line number information into the
object files being linked.

Contains segment information about the layout of
the command file.

During processing, LINK 86 displays any unresolved symbols at the
console. Unresolved symbols are symbols referenced but not defined
in the files being linked. Unless you are linking overlays, such
symbols must be resolved before the program can run properly.
Overlays are described in detail in Section 8.

1 A command file with type 286 runs in the native FlexOS environment.

7-2

Programmer's Utilities Guide 7.2 LINK 86 Operation

Upon completion of processing, LINK 86 displays the size of each
section of the command file and the Use Factor, which is a decimal
percentage indicating the amount of available memory used by LINK
86.

Figure 7-1 illustrates LINK 86 operation.

OBJ 1 (Object File

OBJ o (Objoci R•l n
LINK86

L86 1 (Library Rle)

L86 n (Library Rle)

INP (Input Command Rle)

! I

y
I

CMD or 286 (Command File)
or

OVA (Overlay File)

SYM
(Symbol Table File)

LIN
(Line Number File)
MAP (Map File)

Figure 7-1. LINK 86 Operation

See Section 7.15 for a complete explanation of the link process.

7-3

7.3 LINK 86 Command Syntax Programmer's Utilities Guide

7.3 LINK 86 Command Syntax

You invoke LINK 86 with a command of the form:

LINK86 [filespec =] filespec _ 1 Lfilespec _ 2, ... ,filespec _ n]

where filespec is a CP/M-type file specification, consisting of an
optional drive specification and a filename with optional filetype. Each
filespec can be followed by one or more of the command options
described in Section 7.6. If you enter a filename to the left of the
equal sign, LINK 86 creates the output files with that name and the
appropriate filetypes. For. example, if the files PARTA, PARTB, and
·PARTC are written in 8086 or 80286 assembly code, the command

A>link86 myf ile = parta,partb,partc
creates MYFILE.CMD and MYFILE.SYM. The files PARTA, PARTB, and
PARTC can be a combination of object files and library files. If no
filetype is specified, the linker assumes a filetype of OBJ.

If you do not specify an output filename, LINK 86 creates the output
files using the first filename in the command line. For example, the
command

A>link86 parta,partb,partc

creates the files PARTA.CMD and PARTA.SYM. If you specify a library
file in your link command, do not enter the library file as the first file
in the command line.

You can also instruct LINK 86 to read its command line from a file,
thus making it possible to store long or commonly used link
commands on disk (see Section 7.12).

The following are examples of LINK 86 commands:

A>link86 myf ile = parta,partb

A>link86 a:myfile.286 = parta,partb,transvec

A>link86 b:myf ile.cmd = parta,partb

The available LINK 86 command options are described in Section 7.6.

7-4

Programmer's Utilities Guide 7.4 Stopping LINK 86

7.4 Stopping LINK 86

To stop LINK 86 during processing, press the console interrupt
character, usually Control-C.

7.5 Shareable Runtime Libraries

LINK 86, version 1.5, supports shareable runtime libraries. Shareable
runtime libraries, which are referred to as SRTLs in the remainder of
this guide, allow multiple users to share a single copy of library code
at runtime. This makes it unnecessary for users to store library code
in their command files. When libraries are shared, only references to
the library code are linked with the user's object files.

No extra steps are required when !in.king object files with shareable
runtime library (SRTL} files. There are two methods for linking with a
SRTL:

Method 1: Compiler-requested Libraries

If the SRTL is a compiler-requested library, you do not have to specify
the library name in the link command. In the following example,
assume the compiler used to compile the program HELLO requests the
library XYZ.

A>link86 hello

If the library XYZ is a SRTL, LINK 86 treats it as such automatically.

Method 2: Explicitly Requested Libraries

You can specify a shareable library file in the command in the same
manner you would specify a normal library file. For example, if the
library SUPRUTIL.L86 is a SRTL, the following LINK 86 command links it
with the object files: SUPRPROG, INIT, and TERM.

A>link86 suprprog,init,term,suprutil.186

7-5

7.5 Shareable Runtime Libraries Programmer's Utilities Guide

If you are using a large model SRTL, you must also specify a transfer
vector file in your command line. Transfer vectors are described in
Appendix B. For example, if SUPRUTRIL.L86 is a large model SRTL
using the transfer vector, TRANSV.OBJ, enter

A>link86 suprprog,init,term,transv,suprutil.186

See the SHARED and NOSHARED options in Section 7.11.2 for more
information on linking with shareable runtime libraries.

7.6 LINK 86 Command Options

When you invoke LINK 86, you can specify command options that
control the link operation.

When specifying command options, enelose them in square brackets
immediately following a filename. A command option is specified
using the following command form:

A>link86 f ile[option]

For example, to specify the command option MAP for the file TEST1
and the NOLOCALS option for the file TEST2, enter:

A>link86 testl[map],test2[nolocals]

You can use spaces to improve the readability of the command line,
and you can put more than one option in square brackets by
separating them with commas. For example:

A>link86 testl [map, nolocals], test2 [locals]

specifies that the MAP and NOLOCALS options be used for the TEST1
file and the option LOCALS for the TEST2 file.

7-6

Programmer's Utilities Guide 7.6 LINK 86 Command Options

LINK 86 command options are grouped into the following categories:

• Command File Options
• SYM File Options
• LIN File Options
• MAP File Options
• L86 File Options
• INPUT File Options
• 1/0 File Options
• Overlay Options

Table 7-1 summarizes the available LINK 86 command options. The
following sections describe the function and syritax in detail for each
command option.

Option

CODE

DATA

EXTRA

Table 7-1. LINK 86 Command Options

Abbreviation

c

D

E

Meaning

controls contents of
CODE section of
command file

controls contents of
DATA section of
command file

controls contents of
EXTRA section of
command file

7-7

7.6 LINK 86 Command Options Programmer's Utilities Guide

Table 7-1. (continued)

Option Abbreviation Meaning

STACK ST controls contents of
ST ACK section of
command file

X1 X1 controls contents of X 1
section of command file

X2 X2 controls contents of X2
section of command file

X3 X3 controls contents of X3
section of command file

X4 X4 controls contents of X4
section of command file

FILL .F zero fill and include
uninitialized data in
command file

NO FILL NOF do not include
uninitialized data in
command file

HARD8087 HA create a command file
requiring an 8087
coprocessor.

SIM8087 SI create a command file
using 8087 software
emulation routines.

7-8

Programmer's Utilities Guide 7.6 LINK 86 Command Options

Table 7-1. (continued)

Option Abbreviation Meaning

AUT08087 AU create a command file
that can decide at run-
time to use an 8087
coprocessor if it is
available.

CODES HARED CODES mark group as shared in
the 286 file header

LIBSYMS LI include symbols from
library files in SYM file

NOLIBSYMS NOLI do not include symbols
from library files in SYM
fiie

LOCALS LO include local symbols in
SYM file

NO LOCALS NOLO do not include local
symbols in SYM file

LINES LIN create LIN file with line
number symbols

NOLIN ES NOLIN do not create LIN file

MAP M create a MAP file

SEARCH s search library and only
link referenced modules

7-9

7.6 LINK 86 Command Options Programmer's Utilities Guide

Table 7-1. (continued)

Option Abbreviation

SHARED SH

NO SHARED NOSH

INPUT

ECHO ECHO

CUMULATIVE CUM

NOCUMULATIVE NOCUM

7.7 Command File Options

Meaning

force a shareable runtime
library (SRTL) to be
treated as shared.

force a shareable runtime
library (SRTL) to be
treated as a normal
unshared library.

read command line from
disk file

echo contents of INP file
on console

do not overlay data when
creating overlay file

overlay both code and
data when loading
overlay file

The options described in this section affect the contents of the
command file created by LINK 86.

Most command file options can appear after any filename in the
command line. The only exceptions are the HARD8087, SIM8087, and
AUT08087 options which, if they appear, must appear after the first
filename.

7-10

Programmer's Utilities Guide 7.7 Command File Options

7.7.1 CODE I DATA I STACK I EXTRA I X1 I X2 I X3 I X4

A command file consists of a 128-byte header record followed by up
to eight sections, each of which can be up to 1 megabyte in length.
These sections are called CODE, DATA, STACK, EXTRA, Xl, X2, X3, and
X4. Each of these sections correspond to a LINK 86 command option
of the same name. The header contains information such as the
length of each section of the command file, its minimum and
maximum memory requirements, and its load address. · This
information is used by the operating system to properly load the file
(see the system guide for your operating system).

These options allow you to identify a section in a command file. The
parameters described below allow you to alter the information in that
section.

File Section Option Parameters

Each of the options identifying the command file sections must be
followed by one or more parameters enclosed in square brackets.

LINK 86 option parameters are specified using the form:

link86 file [option [parameter]]

Table 7-2 shows the file section option parameters, their
abbreviations, and their meanings.

7-11

7.7 Command File Options Programmer's Utilities Guide

Table 7-2. Command File Option Parameters

Parameter Abbr

GROUP G

CLASS c

SEGMENT s

ABSOLUTE AB

ADDITIONAL AD

MAXIMUM M

ORIGIN 0

GROUP, CLASS, SEGMENT

Meaning

groups to be included in
command file section

classes to be included in
command file section

segments to be included
in command file section

absolute load address for
command file section

additional memory
allocation for the
command file section

maximum memory
allocation for command
file section

origin of first segment in
command file section

The GROUP, CLASS, and SEGMENT parameters each contain a list of
groups, classes, or segments that you want LINK 86 to put into the
indicated section of the command file. For example, the command

A>link86 test [code [segment [code1, code2], group [xyz]]]

instructs LINK 86 to put the segments CODE 1, CODE2, and all the
segments in group XYZ into the CODE section of the file TEST.GMO.

7-12

Programmer's Utilities Guide 7.7 Command File Options

ABSOLUTE, ADDITIONAL, MAXIMUM

The ABSOLUTE, ADDITIONAL, and MAXIMUM parameters tell LINK 86
the values to put in the command file header. These parameters
override the default values normally used by LINK 86. Table 7-3
shows the default values.

Each parameter is a hexadecimal number enclosed in square brackets.

The ABSOLUTE parameter indicates the absolute paragraph address
where the operating system loads the indicated section of the
command file at runtime. A paragraph consists of 16 bytes.

The ADDITIONAL parameter indicates the amount of additional memory,
in paragraphs, required by the indicated section of the command file.
The program can use this memory for Symbol Tables or 1/0 buffers at
runtime. ·

The MAXIMUM parameter indicates the maxi.mum amount of memory
needed by the indicated section of the command file.

For example, the command

A>link86 test [data [add [100], max [1000]]. code [abs[40]]]

creates the file TEST.CMD whose header contains the following
information:

• The DATA section requires at least 100H paragraphs in addition to
the data in the command file.

• The DATA section can use up to 1000H paragraphs of memory.

• The CODE section must load at absolute paragraph address 40H.

ORIGIN

The ORIGIN parameter is a hexadecimal value that indicates the byte
offset where the indicated section of the command file should begin.
LINK 86 assumes a default ORIGIN value of 0 for each section except
the DATA section, which has a default value of 100H to reserve space
for the Base Page (see the system guide for your operating system).

Table . 7-3 summarizes the default values for each of the command
options and parameters.

7-13

7.7 Command File Options Programmer's Utilities Guide

Table 7-3. Default Values for Command File Options and
Parameters

OPTION GROUP CLASS SEGMENT ABSLT ADDT'L MAX ORIGIN

CODE CG ROUP CODE CODE 0 0 0 0
DATA DGROUP DATA DATA 0 0 1000H* lOOH
STACK STACK STACK 0 0 0 0
EXTRA EXTRA EXTRA 0 0 0 0
X1 X1 Xl 0 0 0 0
X2 X2 X2 0 0 0 0
X3 X3 X3 0 0 0 0
X4 X4 X4 0 0 0 0

* If there is a DGROUP; otherwise 0.

7.7.2 FILL I NOFILL

The FILL and NOFILL options tell LINK 86 what to do with any
uninitialized data at the end of a section of the command file. The
FILL option, which is active by default, directs LINK 86 to include this
uninitialized data in the command file and fill it with zeros. The
NOFILL option directs LINK 86 to omit the uninitialized data from the
command file. Note that these options apply only to uninitialized data
at the end of a section of the command file. Uninitialized data that is
not at the end of a section is always zero filled and included in the
command file.

7.7.3 HARD8087 I SIM8087 I AUT08087

The options described in this section are used with programs
containing 8087 opcodes.

You can use the HARD8087 option if the program will always run on a
system with an 8087. This option tells LINK 86 to use the 8087
opcodes generated by the compiler, and not to. replace them with 8087
software emulation routines. Using this option saves about 16K bytes
of space that would be used by the emulation routines.

7-14

Programmer's Utilities Guide 7.7 Command File Options

You can use the SIM8087 option if the program will always run on a
system without an 8087. This option tells LINK 86 to replace the 8087
opcodes in the OBJ file with interrupts that vector into the 8087
emulation routines.

You can use the AUT08087 option to create programs that decide at
runtime whether or not to use the 8087. AUT08087 is the default
option. When you use this option, LINK 86 includes in the command
file the 8087 emulation routines and a table of fixup records that point
to the 8087 opcodes.

If you use the AUT08087 option and the system has an 8087, the 8087
fixup table is ignored and the space occupied by the emulation
routines is released to the program for heap space. If the system
does not have an 8087, the initialization routine replaces all the 8087
opcodes with interrupts that vector into the 8087 emulation routines.

FILE Parameter

You can specify that the 8087 emulation routines be loaded into your
command file only at runtime by specifying the FILE parameter with
the SIM8087 or AUT08087 option.

For example, if the program contained in the file: PROG 1 has interrupts
into 8087 emulation routines and you do not want to include those
routines in the command file, you could enter the command:

A>link86 progl [sim8087[file]]

This command links PROG1 without the 8087 emulation routines.
When the command to execute PROG 1 is given, the 8087 emulation
routines are loaded into PROG 1, prior to execution.

7.7.4 CODESHARED

The CODESHARED option marks the group in the 286 file header with a
group descriptor type 09h (shared code). The default code group
descriptor is 01 h (non-shared code).

7-15

7.8 SYM File Options Programmer's Utilities Guide

7.8 SYM File Options

The following command options affect the contents of the SYM file
created by LINK 86:

•LOCALS
• NOLOCALS
• LIBSYMS
• NOLIBSYMS

These options must appear in the command line after the specific file
or files to which they apply. When you specify one of these options, it
remains in effect until you specify another. Therefore, if a command
line contains two options, the leftmost option affects all of the
specified files until the second option is encountered, which affects all
of the remaining files specified on the command line.

7 .8.1 LOCALS I NO LOCALS

The LOCALS option directs LINK 86 to include local symbols in the
SYM file if they are present in the object files being linked. The
NOLOCALS option directs LINK 86 to ignore local symbols in the object
files. The default is LOCALS. For example, the command

A>link86 testl [nolocals], test2 [locals], test3

creates a SYM file containing local symbols from TEST2.0BJ and
TEST3.0BJ, but not from TEST1.0BJ.

7 .8.2 LIBSYMS I NOLIBSYMS

The LIBSYMS option directs LINK 86 to include in the SYM file any
symbols coming from a library searched during the link operation. The
NOLIBSYMS option directs LINK 86 not to include those symbols in the
SYM file. Typically, such a library search involves the runtime
subroutine library of a high-level language such as C. Because the
symbols in such a library are usually of no interest to the programmer,
the default is NOLIBSYMS.

7-16

Programmer's Utilities Guide 7.9 LIN File Options

7.9 LIN File Options

Some compilers provide an option allowing you to put line numbers
into object files. If line numbers are present in the object file, LINK 86
creates a file containing line numbers and their offsets, which can be
used when debugging with SID-286. The following options specify
whether or not a LIN file is created by LINK 86:

LINES
NOL INES

The LINES option, which is active by default, directs LINK 86 to create
a LIN file, if possible. If no line information is present in the object
file, then LINK 86 does not create the. LIN file. The NOLIN ES option
directs LINK 86 not to create a LIN file, even if line numbers are
present in the object file.

7.10 MAP File Option

The MAP option directs LINK 86 to create a MAP file containing
information about the segments in the command file. The amount of
information LINK 86 puts into the MAP file is controlled by the
following optional parameters

OBJ MAP
L86MAP
ALL

NOOBJMAP
NOL86MAP
NOCOMMON

These parameters are enclosed in brackets following the MAP option.
The OBJMAP parameter directs LINK 86 to put segment information
about OBJ files into the MAP file. The NOOBJMAP parameter
suppresses this information. Similarly, the L86MAP switch directs LINK
86 to put segment information from L86 files into the MAP file. The
NOL86MAP parameter suppresses this information. The ALL parameter
directs LINK 86 to put all the information into the MAP file. The
NOCOMMON parameter suppresses all common segments from the
MAP file.

7-17

7.10 MAP File Option Programmer's Utilities Guide

Once you instruct LINK 86 to create a MAP file, you can change the
parameters to the MAP option at different points in the command line.
For example, the command

A>l ink86 finance [map[al l]] ,screen. 186,graph. 186[map[nol86map]]

directs LINK 86 to create a map file containing segment information
from FINANCE.OBJ and SCREEN.L86; segment information for
GRAPH.L86 is suppressed by the NOl86MAP option.

If you specify the MAP option with no parameters, LINK 86 uses
OBJMAP and NOL86MAP as defaults.

7 .11 L86 File Options

The following command options determine how the library files are
used by LINK 86:

SEARCH
SHARED
NOSHARED

7.11.1 SEARCH

The SEARCH option directs LINK 86 to search the preceding library and
include in the command file only those modules satisfying external
references from other modules. Note that LINK 86 does not search
L86 files automatically. If you do not use the SEARCH option after a
library file name, LINK 86 includes all the modules in the library file
when creating the command file. For example, the command

A>link86 testl, test2, math.186 [search]

creates the file TEST1 .CMD by combining the object files TEST1 .OBJ,
TEST2.0BJ, and any modules from MATH.L86 referenced directly or
indirectly from TEST1.0BJ or TEST2.0BJ.

The modules in the library file do not have to be in any special order.
LINK 86 makes multiple passes through the library index when
attempting to resolve references from other modules.

7-18

Programmer's Utilities Guide 7.11 L86 File Options

LINK 86 automatically uses the SEARCH option when linking compiler­
requested libraries.

7 .11.2 SHARED I NO SHARED

The SHARED and NOSHARED options determine whether or not a
library file is to be used as a shareable runtime library (SRTL). When a
runtime library is NOSHARED, both the code and the data from that
library are linked with the object files. When a runtime library is
SHARED, only the data from that library is linked with the object files
and a single copy of the library code resides in a special command file
called an Executable Shared Runtime Library (XSRTL). The code stored
in an XSRTL file can be accessed by any executable file linked as a
user of the SRTL.

When a SRTL is created, it is given an attribute that determines if the
library is to be treated as SHARED or NOSHARED. (See Appendix B for
a description on how to create and modify SRTLs.)

If a SRTL has a default attribute of NOSHARED, LINK 86 treats it as an
ordinary library file. You can force LINK 86 to treat the SRTL as
shareable by specifying the SHARED option after the SRTL name. For
example:

A>link86myprog=main,part1,part2,util.186 [shared]

creates a file called MYPROG.CMD that uses the runtime library
UTIL.L86 as a SRTL.

Unlike other options, the SHARED option will not remain set until
explicitly reset.

If a SRTL has a default attribute of SHARED, you can force LINK 86 to
treat it as a normal library by specifying the NOSHARED option. This
forces the referenced SRTL routines to be resident in the user's code
file and the loader doesn't need to perform any load-time resolution of
external references.

As an example of the NOSHARED option, the command:

A>link86myprog=main,part1,part2,util.186 [noshared,search]

causes LINK 86 to treat the shareable runtime library UTIL.L86 as a
normal library.

7-19

7.11 L86 File Options Programmer's Utilities Guide

When using the NOSHARED option, you should also specify the
SEARCH option. By using the SEARCH option, LINK 86 includes only
referenced segments, and does not include the library attribute
segment (LIBATTR} that defines the library as shareable. If SEARCH is
not specified, LINK 86 includes every module and segment in the
library, whether it is used or not.

7.12 Input File Options

The following command options determine how LINK 86 uses the input
file:

INPUT
ECHO

The INPUT option directs LINK 86 to obtain further command line input
from the indicated file. Other files can appear in the command line
before the input file, but the input file must be the last filename on the
command line. When LINK 86 encounters the INPUT option, it stops
scanning the command line, entered from the console. Note that you
cannot nest command input files. That is, a command input file
cannot contain the input option.

The input file consists of filenames and options just like a command
line entered from the console. An input file can contain up to 2048
characters, including spaces. For example, the file TEST.INP might
include the lines

MEMTEST=TEST1,TEST2,TEST3,
IOLIB.L86(S],MATH.L82[S],
TEST4,TEST5[LOCALS]

To direct LINK 86 to use this file for input, enter the command

A>link86 test[input]

If no file type is specified for an input file, LINK 86 assumes INP.

The ECHO option causes LINK 86 to display the contents of the INP file
on the console as it is read.

7-20

Programmer's Utilities Guide 7 .13 1/0 Option

7.13 1/0 Option

The $ option controls the source and destination devices under LINK
86. The general form of the $ option is:

$Tdrive

where T is a file type and drive is a single-letter drive specifier.

File Types

LINK 86 recognizes five file types:

C - Command Hie (CMD, 286, or OVR)
L - Library File (L86)
M - Map File (MAP)
0 - Object File (OBJ or L86)
S - Symbol File (SYM and LIN)

Drive Specifications

The drive specifier can be a letter in the range A through P,
corresponding to one of sixteen logical drives. Alternatively, it can be
one of the following special characters:

X - Console
Y - Printer
Z - No Output

7-21

7.13 1/0 Option Programmer's Utilities Guide

When you use the $ option, you cannot separate the Tdrive character
pair with commas. You must use a comma to set off any $ options
from other options. For example, the three command lines shown
below are equivalent:

A>link86 partl[$sz,$od,$lb],part2

A>link86 partl[$szodlb],part2

A>link86 partl[$sz od lb],part2

The value of a $ option remains in effect until LINK 86 encounters a
countermanding ·option as it processes the command line from left to
right. This is useful when linking overlays, in that you do not have to
specify the drive for each overlay file. See Section 8 for more
information on overlays.

For example, the command

A>link86 root (ov1[$sz])(ov2)(ov3)(ov4[$sa])

suppresses the SYM files generated when the overlay files: OV1, OV2
and OV3 are linked. When LINK 86 links OV4, it places the SYM and
LIN files on drive A.

7.13.1 $C (Command) Option

The $C option uses the form:

$Cdrive
LINK 86 normally generates the command file on the same drive as the
first object file in the command line. The $C option instructs LINK 86
to place the command file on the drive specified by the drive
character following the $C ($CZ suppresses the generation of a
command file). This option also applies to OVR files if you are using
LINK 86 to create overlays. Refer to Section 8 for more information on
overlays.

7-22

Programmer's Utilities Guide

7 .13.2 $L (Library) Option

The $L option uses the form:

$Ldrive

7.13 1/0 Option

LINK 86 normally searches on the default drive for runtime subroutine·
libraries linked automatically. The $L option directs LINK 86 to search
the specified drive for these library files.

7.13.3 $M (Map) Option

The $M option uses the form:

$Mdrive

LINK 86 normally generates the Map file on the same drive as the
command file. The $M option instructs LINK 86 to place the Map file
on the drive specified by the drive character following the $M.
Specify $MX to send the Map file to the console or $MY to send the
MAP file to the printer.

7.13.4 $0 (Object) Option

The $0 option uses the form:

$0drive

LINK 86 normally searches for the OBJ or L86 files that you specify in
the command line on the default drive, unless such files have explicit
drive prefixes. The $0 option allows you to specify the drive location
of multiple OBJ or L86 files without adding an explicit drive prefix to
each filename. For example, the command

A>link86 p[$od],q,r,s,t,u.186,b:v

tells LINK 86 that all the object files except the last one are located on
drive D. Note that this does not apply to libraries linked automatically
(see Section 7.13.2).

7-23

7. 13 1/0 Option Programmer's Utilities Guide

7.13.5 $5 (Symbol and Line Number) Option

The $S option uses the form:

$Sdrive

LINK 86 normally generates Symbol and Line Number files on the same
drive as the command file. The $S option directs LINK 86 to place
these files on the drive specified by the drive character following the
$S. Specifying $SZ directs LINK 86 not to generate the files.

7.14 Overlay Options

The following command options determine how the overlay manager
arranges data when creating an overlay file:

CUMULATIVE
NOCUMULATIVE

The CUMULATIVE option tells the overlay manager not to overlay data
when loading an overlay file. In this case, the data becomes
cumulative. This approach uses more memory, but is generally a safer
programming practice. The CUMULATIVE option is active by default.

The NOCUMULATIVE option tells the overlay manager to overlay both
code and data when loading an overlay file. With this option, the data
in successive overlays is not cumulative, but overwrites existing data.
Overlays on the same level share data areas. This approach uses less
memory, but risks one overlay destroying the data required by another
overlay.

The CUMULATIVE and NOCUMULATIVE options can be specified only
for the root file using the overlay files. For example, if you have a file
named MYFILE and you want to overlay the files OVER1, OVER2, and
OVER3 using the NOCUMULATIVE option, you enter:

A>link86 myfile [NOCUM] (overl) (over2) (over3)

Refer to Section 8 for more information on overlays.

7-24

Programmer's Utilities Guide 7.15 The Link Process

7.15 The Link Process

The link process involves two distinct phases: collecting the segments
in the object files, and then positioning them in the command file.

The following terms are used in this section to describe how LINK 86
processes object files and creates the command file.

Segment

Segment name

Class name

Align type

Combine type

A Segment is a collection of code or data bytes
whose length is less than 64K. A segment is the
smallest unit that LINK 86 manipulates when
creating the command file.

A Segment name can be any valid RASM-86
identifier. LINK 86 combines all segments with the
same segment name from separate object files.

A Class name can be any valid RASM-86 identifier.
LINK 86 uses the class name to position the
segment in the correct section of the command file.

The Align type indicates the type of boundary the
segment is to begin. The Align types are byte,
word, paragraph and page. LINK 86 uses the align
type when it combines parts of segments from
separate files into one segment. The align type is
also used when LINK 86 combines segments into
groups, sections, or segments of the command file.

The Combine type determines how LINK 86
combines segments with the same name from
different files into a single segment. The Combine
types are: public, common, stack, absolute, and
local.

7-25

7.15 The Link Process Programmer's Utilities Guide

Group A Group is a collection of segments with different
names grouped into a single segment. By grouping
segments, you can combine library modules and
other modules of similar type with your object file
modules into a single segment. By combining the
contents of individual segments into one large
segment, the pointer need only be a 16-bit offset
into a single segment. This technique results in
shorter and faster code than addressing individual
segments with 32-bit pointers.

If your program is written in a high-level language, the compiler
automatically assigns the Segment name, Class name, Group, Align
type, and Combine type. If your program is written in assembly
language, refer to Section 3 for a description of how to assign these
attributes.

7.15.1 Phase 1 - Collection

In Phase 1, LINK 86 first collects all segments from the separate files
being linked, and then combines them into the output file according to
the combine type, align type, and group type specified in the object
module.

Combine Types

The combine type determines how the data and code segments of the
individual object files are combined together into segments in the final
executable file. There are 5 combine types:

• Public
•Common
• Stack
• Local
• nnnn (absolute segment)

7-26

Programmer's Utilities Guide 7.15 The Link Process

When the Public Combine type is used, LINK 86 combines segments by
concatenating them together, leaving the appropriate space between
the segments as indicated by the Align type (see below). Public is the
most common Combine type, and RASM-86, as well as most high­
level language compilers, use it by default.

For example, suppose there are three object files: FILEA.OBJ, FILES.OBJ,
and FILEC.OBJ, and each file defines a data segment, named Dataseg,
with the public combine type. Figure 7-2 illustrates how LINK 86
combines this segment using the default combine type, public.

Dataseg (C) 150H

450H
Dataseg (B) 200H

Dataseg (A) 11 OOH

Figure 7-2. Combining Segments with the Public Combine Type

Figure 7-3 illustrates the Common Combine type. Suppose the three
files: FILEA.OBJ, FILES.OBJ, and FILEC.OBJ each contain a data segment,
named Dataseg, with the Common Combine type. LINK 86 combines
these data segments so all parts of the segments from the separate
files being linked have the same low address in memory. The
Common Combine type overlays the data or code from the various
object files, making it common to all of the linked routines in the
executable file. Note that this corresponds to a common block in high­
level languages.

7-27

7. 15 The Link Process Programmer's Utilities Guide

~-----Da-ta_s_eg-(A_, _B._C_) -------' +
Figure 7-3. Combining Segments with the Common Combine Type

LINK 86 combines segments with the Stack Combine type so the total
length of the resulting stack segment is the sum of the input stack
segments, including any intersegment gaps specified by the align type.

For example, suppose the three files FILEA.OBJ, FILES.OBJ, and
FILEC.OBJ each contain a segment named Stkseg with the Stack
Combine type. Figure 7-4 illustrates how they are combined by LINK
86.

SP Starts
Here

SS:

Figure 7-4.

Stkseg (A) l (100H)
High

Stkseg (C) (150H)

Stkseg (B) (200H)
450H

Low

Combining Segments with Stack Combination

Segments with the local or absolute combine type cannot be
combined. LINK 86 displays an error message if the files being linked
contain multiple local segments with the same name.

7-28

Programmer's Utilities Guide 7.15 The Link Process

Align Type

The Align type indicates on what type of boundary the segment
begins, and thus determines the amount of space LINK 86 leaves
between segments of the same name. When you specify an align
type, you determine whether the base address of a segment is to start
on a byte, word, paragraph, or page boundary. Four align types can be
specified in LINK 86:

• Byte alignment (multiple of 1 byte)
• Word alignment (multiple of 2 bytes)
• Paragraph alignment (multiple of 16 bytes)
• Page alignment (multiple of 256 bytes)

Byte alignment produces the most compact code. When segments are
byte aligned, no gap is left between the segments.

If the segments are word aligned, LINK 86 adds a one-byte gap, if
necessary, to ensure that the next part of the segment begins on a
word boundary. Word is the default Align type for Data segments,
since the 8086 and 80286 processors perform faster memory accesses
for word-aligned data. Word alignment is useful for saving space
when a large number of small segments are used. However, the offset
of the base of the segment may not be zero.

The gap between paragraph-aligned segments can be up to 15 bytes.
Paragraph alignment is used when the offset of the base of the
segment must be zero.

Page-aligned segments have up to 255-byte gaps between them. Page
alignment is used when creating system applications where the code
or data must start on a page boundary.

Suppose the data segment, Dataseg, has the paragraph Align type and
has a length of 129H in FILEA, lOEH in FILEB, and 13AH in FILEC. As
shown, LINK 86 combines the segments to ensure that each segment
begins on a paragraph boundary.

7-29

7. 15 The Link Process Programmer's Utilities Guide

Resulting dataseg is [TI
37AH bytes long.

13AH

240H
2H byte gap

'1D
130HLIJ

7H byte gap

100H
G:J29H

Figure 7-5. Paragraph Alignment

LINK 86 does not align segments having an Absolute combine type
because these segments have their load-time memory location
determined at translation time.

Grouping

LINK 86 combines segments into groups. When segments are
grouped, intersegment gaps are determined using the same Align
types as those used to combine segments. Figure 7-6 illustrates how
LINK 86 combines segments into groups.

7-30

Programmer's Utilities Guide

I Dataseg 3 (200H) VAR:SO

N+45:1 FF

,__ _______ l.__~ N+45:0

N+10:34F

I

Dataseg 2 (350H)

1-----------: N+10:0

Dataseg 1 (100H)
N:FF

'------------' N:O

7.15 The Link Process

- l
Dataseg 3 VAR:500 I

Dataseg 2

Dataseg 1

N:64F

N:450

N:44F

N:100

N:FF

N:O

7-6a. Segments Without Groups 7-6b. Segments Within A Group

Figure 7-6. The Effect of Grouping Segments

In Figure 7-6, N:O is the base address where the segments are loaded
at run-time (paragraph N, offset 0). Figure 7-6a shows that each
segment not contained in a group begins at offset zero, and thus can
be up to 64K long. The offset of any given location, in this case the
variable VAR, is relative to the base of the segment. Thus, in order to
access VAR at run-time, the program must load a segment register
with the base address of the data segment Dataseg3 and point to an
offset of 50H.

In Figure 7-6b, the same segments are combined in a group. The
offsets of the segments are now cumulative and thus cannot extend
past 64K bytes (FFFFH). The offset of VAR is 500H relative to the base
of the group. At run-time, the program does not need to reload a
segment register to point to the base of Dataseg3, but can access VAR
directly by pointing to an offset of 500H.

7-31

7.15 The Link Process Programmer's Utilities Guide

7.15.2 Phase 2 - Create Command File

In Phase 2, LINK 86 assigns each group and segment to a section of
the command file as follows:

1. LINK 86 first processes any segments, groups or classes the user
placed in a specific section by means of the command line
options described in Section 7.6.

2. Segments belonging to the group CGROUP are placed in the
CODE section of the command file.

3. Segments belonging to the group DGROUP are placed in the
DATA section of the command file. Note that the group names
CGROUP and DGROUP are automatically generated by PL/l-86r~
CB86r~ and other high-level language compilers.

4. If there are any segments not processed according to (1), (2), and
(3), LINK 86 places them in the command file according to their
class name, as shown in Table 7-4. This table also shows the
RASM-86 segment directives that produce the class names as
defaults.

5. Segments not processed by any of the above means are omitted
from the command file because LINK 86 does not have sufficient
information to position them.

7-32

Programmer's Utilities Guide 7.15 The Link Process

Table 7-4. LINK 86 Usage of Class Names

Class Name

CODE
DATA
EXTRA
STACK
X1 *
X2 *
X3 *
X4 *

Command File Section

CODE
DATA
EXTRA
STACK
X1
X2
X3
X4

Segment Directive

CSEG
DSEG
ESEG
SSEG

* There is no segment directive in RASM-86 producing this class
name as a default; you must supply it explicitly.

See Appendix H for a list of LINK 86 error messages.

End of Section 7

7-33

SECTION 8

Overlays

8.1 Introduction

This section describes how LINK 86 creates programs with separate
files called overlays. Each overlay file is a separate program module
loaded into memory when needed by the program. By loading only
program modules needed at a particular time, the amount of memory
used by the program is minimized.

As an example, many application programs are menu-driven, with the
user selecting one of a number of functions to perform. Because the
program's modules are separate and invoked sequentially, there is no
reason for them to reside in memory simultaneously. Using overlays,
each function on the menu can be a separate subprogram stored on
disk and loaded only when required. When one function is complete,
control returns to the menu portion of the program, from which the
user selects the next function.

Figure 8-1 illustrates the concept of overlays. Suppose a menu-driven
application program consists of three separate user-selectable
functions. If each function requires 30K of memory, and the menu
portion requires lOK, then the total memory required for the program
is 100K as shown in Figure 8-la. However, if the three functions are
designed as overlays as shown in Figure 8-1 b, the program requires
only 40K because all three functions share the same locations in
memory.

8-1

8.1 Introduction

Function
3

Function
2

Function
1

30K

30K

r
100K

I I
i 40K
130K
I
I

10K

8-1 a. Without Overlays

Programmer's Utilities Guide

1 Function Function Function

30K 1 2 3

l
l J

10K l Menu

8-1 b. Separate Overlays

Figure 8-1. Usin·g Overlays in a Large Program

You can also create nested overlays in the form of a tree structure,
where each overlay can call other overlays up to a maximum nesting
level of five. Section 8.2 describes the command line syntax for
creating nested overlays.

Figure 8-2 illustrates such an overlay structure. The top of the
highest overlay determines the total amount of memory required. In
Figure 8-2, the highest overlay is SUB4. Note that this is much less
memory than would be required if all the functions and subfunctions
had to reside in memory simultaneously.

8-2

Programmer's Utilities Guide 8.1 Introduction

Sub4
Sub 1 Sub 2 Sub 3

lune 1 J ...______,..._
lune 2 lune 3

Menu

Figure 8-2. Tree Structure of Overlays

8.2 Overlay Syntax

An overlay man·ager is provided with the runtime library in all of
Digital Research's high-level language compilers. You specify overlays
in the LINK 86 command line by enclosing each overlay specification in·
parentheses.

You can specify an overlay in one of the following forms:

A>link86 root [option] (overlay!)
A>link86 root [option] (overlayl,part2,part3)
A>link86 root [option] (overlayl=partl,part2,part3)

where ROOT is the object file that calls the overlay(s) and [OPTION]
may include either the CUMULATIVE or NOCUMULATIVE option
described in Section 7.14.

The first form produces the files ROOT.CMD and OVERLAY1.0VR from
the file OVERLAY1 .OBJ. The second form produces the files
ROOT.CMD and OVERLAY1.0VR from OVERLAY1.0BJ, PART2.0BJ and
PART3.0BJ. The third form produces the files ROOT.CMD and
OVERLAY1.0VR from PART1.0BJ, PART2.0BJ and PART3.0BJ.

8-3

8.2 Overlay Syntax Programmer's Utilities Guide

In order to use overlays with RASM-86 code, you must have a high­
level language runtime library on your disk and it must be specified on
the LINK 86 command line. For example, if you are using the DR C
runtime library, you would specify either the CLEARS.L86 or CLEARL.L86
library on your command line, depending on whether you wish to link
using the small or large memory model. For example, to link a small
memory model program using the RASM-86 file ROOT.OBJ and the
overlay files PART1 .OBJ and PART2.0BJ (which are also RASM-86 files),
you would enter the command:

A>link86 root,clears.186 (partl, part2)

On the command line, a left parenthesis indicates the start of a new
overlay specification and the end of the preceding overlay
specification. You can use spaces to improve ·readability, and commas
can separate parts of a single overlay. Do not use commas to set off
the overlay specifications from the root module or from each other.

For example, the following command line is invalid:

A>link86 root(overlayl),moreroot

The correct command is:

A>link86 root,moreroot(overlayl)

To nest overlays, you must specify them in the command line with
nested parentheses. For example, the following command line creates
the overlay system shown in Figure 8-2:

A>link86 menu(func1(sub1)(sub2))(func2)(func3(sub3)(sub4))

When linking files to be overlayed along with files not to be overlayed,
the files to be overlayed are specified last. For example, if you want
to create the file ROOTFILE.CMD from the files: ROOTFILE.OBJ,
PARTA.OBJ, and PARTS.OBJ and you want to link OVER1.0BJ and
OVER2.0BJ as overlays, you enter the command:

A>link86 rootiile, parta, partb (overl, over2)

8-4

Programmer's Utilities Guide 8.3 Writing Programs That Use Overlays

8.3 Writing Programs That Use Overlays

There are two methods for writing programs that use overlays. The
first method involves no special coding, but has two restrictions. The
first is that all overlays must be on the default drive. The second
restriction is that the overlay file names are determined at translation­
time and cannot be changed at run-time.

The second method requires a more involved calling sequence, but
does not have either of the restrictions of the first method.

8.3.1 Overlay Method 1

To use the first method, you. declare an overlay as an external label in
the module where it is referenced. The overlay is any program
terminated with a RET instruction.

For example, the following RASM-86 program is a root module having
one overlay:

;root file
cseg
extrn

root: mov
mov
int
mov
call
retf

dseg

overlay1 :near
bx.offset root_message
cl ,9 ;print string function #

224 ;print the string
bx.offset ovlay_message
overlay1 ;call the overlay

;return to the operating system

root message db
overlay_message db

end

'root' ,Odh,Oah, '$'

'overlay 1 ',Odh,Oah, '$'

with the overlay defined as follows:

;overlay file
cseg

overlayl: mov
int
ret

c I , 9
224 ;print string passed as parameter

;return to root module

8-5

8.3 Writing Programs That Use Overlays Programmer's Utilities Guide

Note that when you pass parameters to an overlay, you must ensure
that the number and type of the parameters agree between the calling
program and the overlay itself.

When the program runs, ROOT.CMD first displays the message 'root' at
the console. The CALL statement then transfers control to the Overlay
Manager. The Overlay Manager loads the file OVERLAY1.0VR from the
default drive and transfers control to it.

When the overlay receives control, it displays the ·message 'overlay 1'
at the console. OVERLAY 1 then returns control directly to the
statement following the CALL statement in ROOT.CMD. The program
continues from that point.

If the requested overlay is already in .memory, the Overlay Manager
does not reload it before transferring control.

The following constraints apply to Overlay Method 1:

• The label used in the CALL statement is the actual name of the
OVR file loaded by the Overlay Manager, so the two names must
agree.

• The name of the entry point to an overlay need not agree with
the name used in the calling sequence. You should use the same
name to avoid confusion.

• The Overlay Manager loads overlays only from the drive that was
the default drive when the root module began execution. The
Overlay Manager disregards any changes in the default drive that
occur after the root module begins execution.

• The names of the overlays are fixed. To change the names of the
overlays, you must edit, reassemble, and relink the program.

• No nonstandard statements are needed. Thus, you can postpone
the decision on whether or not to create overlays until link-time.

8-6

Programmer's Utilities Guide 8.3 Writing Programs That Use Overlays

8.3.2 Overlay Method 2

In some applications, it is useful to have greater flexibility with
overlays, such as the ability to load overlays from different drives, or
the ability to determine the name of an overlay from the console or a
disk file at run-time.

To do this, a program must declare an explicit entry point into the·
Overlay Manager as follows:

extrn ?ovlay:near
This entry point requires two parameters. The first is the offset of a
10-character string specifying the name of the overlay to load with an
optional drive code in the standard format, d:filenarne.

The second· parameter is the Load Flag. If the Load Flag is 1, the
Overlay Manager loads the specified overlay whether or not it is
already in memory. If the Load Flag is 0, then the Overlay Manager
loads the overlay only if it is not already in memory.

Note that the parameters are not passed in registers or on the stack,
but as shown in the code sequence below, they follow the statement

call ?ovlay
in the Code Segment.

Using this method, the example illustrating Method 1 appears as
follows:

cseg
extrn ?ovlay:near ;entry point of overlay manager

root: mov bx.offset root_message
mov cl ,9 ;print string function.#
int 224 ;print the string
mov bx.offset overlay_message
cal 1 ?ovlay ;call the overlay manager
dw overlay_name ;offset of overlay name
db O ;load flag
ret ;return to the operating system

dseg
root_message db
overlay_message db
overlay_name db

'root' , Odh, Oah, '$'
~overlay 1',0dh,Oah,'$'
'OVERLAY! ;name of overlay to load

end

8-7

8.4 General Overlay Constraints Programmer's Utilities Guide

The file OVERLAY1.A86 is the same as the previous example.

At run-time, the statement

call ?ovlay
directs the Overlay Manager to load OVERLAY1 from the default drive,
(the current value of the variable overlay name) and transfers control
to it. When OVERLAY1 finishes processing, control returns to the
statement following the call.

In this example, the variable overlay name is assigned the value
'OVERLAY1 '. However, you could also supply the overlay name as a
character string from some other source, such as the console.

The following constraints apply to Overlay Method 2:

• You can specify a drive code, so the Overlay Manager can load
overlays from drives other than the default drive. If you do not
specify a drive code, the Overlay Manager uses the default drive
as described in Method 1.

• If you pass any parameters to the overlay, they must agree in
number and type with the parameters expected by the overlay.

8.4 General Overlay Constraints

The following general constraints apply when you use LINK 86 to
create overlays:

• Each overlay has only one entry point. The Overlay Manager
assumes that this entry point is at the load address of the
overlay.

• You cannot reference overlay routines from the root module or
from overlays "lower" on the tree than the overlay being
referenced. For example, based on the overlay structure
illustrated in Figure 8-2, you cannot reference an arbitrary routine
in any of the overlay modules from MENU. The only possible
"upward" reference to an overlay from MENU is through that
overlay's main entry point. You can, however, make "downward"
references to any routine contained in overlays lower on the tree
or in the root module.

8-8

Programmer's Utilities Guide 8.4 General Overlay Constraints

• Common segments declared in one module cannot be initialized
by a "higher" module. LINK 86 ignores any attempt to do so.

• You can nest overlays to a maximum depth of 5 levels.

End of Section 8

8-9

SECTION 9

LIB-86 Library Utility

9.1 Introduction

LIB-86- is a utility program for creating and maintaining library files
containing 8086 or 80286 object modules. These modules can be
produced by Digital Research's 8086 language translators such as
RASM-86, DR C, and CB86, or by any other translators that produce
modules in Intel's 8086 or 80286 object module format.

You can use LIB-86 to create libraries, as well as append, replace,
select, o_r delete modules from an existing library. You can a~so use
LIB-86 to obtain information about the contents of library files.

9.2 LIB-86 Operation

When you invoke LIB-86, it reads the indicated files and produces a
Library file, a Cross-reference file, or a Module map file as indicated
by the command line. When LIB-86 finishes processing, it displays the
Use Factor, a decimal number indicating the percent of available
memory LIB-86 uses during processing. Figure 9-1 shows the
operation of LIB-86.

9-1

9.2 LIB-86 Operation Programmer's Utilities Guide

OBJ 1 (Object File)

1-----41 r- L.86 (Ll>rary File)

OBJ n (Object File)

LIB-86
L.86 1 (Library File) H rt- MAP (Module Map File)

1----1

L.86 n (Library File)

I '-I XRF (Cross-reference File)

INP (input Command F1ie)~

Figure 9-1. LIB-86 Operation

Table 9-1 shows the filetypes recognized by LIB-86.

Type

INP
L86
MAP
OBJ
XRF

Table 9-1. LIB-86 Filetypes

Usage

Input Command File
Library File
Module Map File
Object File
Cross-reference File

Programmer's Utilities Guide 9.3 LIB-86 Command Syntax

9.3 LIB-86 Command Syntax

LIB-86 uses the command form:

LIB86 libraryfile = file1 [options] file2, filen

LIB-86 creates a Library file with the filename given by LIBRARYFILE. If
you omit the filetype, LIB-86 creates the Library file with filetype L86.

LIB-86 reads the files specified by FILE 1 through FILEN and produces
the library file. If FILE1 through FILEN do not have a specified filetype,
LIB-86 assumes a default filetype of OBJ. The files to be included can
contain one or more modules; they can be OBJ or L86 files,. or a
combination of the two. ·

Modules in a library need not be arranged in any particular order,
because LINK-86 searches the library as many times as necessary to
resolve references. However, LINK-86 runs much faster if the order of
modules in the library is optimized. To do this, remove as many
backward references as possible (modules which reference public
symbols declared in earlier modules in the library) so LINK-86 can
search the library in a single pass.

Module names are assigned by language translators. The method for
assigning module names varies from translator to translator, but is
generally either the filename or the name of the main procedure.

9.4 Stopping LIB-86

You can press any console key to halt LIB-86, which then displays the
message:

STOP LIB-86 (Y/N}?

If you type Y, LIB-86 immediately stops processing and returns control
to the operating system. Typing N causes LIB-86 to resume
processing.

9-3

9.5 LIB-86 Command Options Programmer's Utilities Guide

9.5 LIB-86 Command Options

When you invoke LIB-86, you can specify optional parameters in the
command line controlling the operation. Table 9-2 shows the LIB-86
command options. You can abbreviate each option keyword by
truncating on the right, as long as you include enough characters to
prevent ambiguity. Thus, EXTERNALS can be abbreviated EXTERN, EXT,
EX, or simply, E. The following sub-sections describe the function of
each command option.

Option

DELETE
EXTERNALS
ECHO
INPUT
MAP
MODULES
NOALPHA
PUBLICS
REPLACE
SEGMENTS
SELECT
XREF

Table 9-2. LIB-86 Command Line Options

Purpose Abbreviation

Delete a Module from a Library file
Show EXTERNALS in a library file
Echo contents of INP file on console
Read commands from Input file

· Create a Module Map
Show Modules in a Library file
Show Modules in order of occurrence
Show PUBLICS in a Library file
Replace a Module in a Library file
Show Segments in a Module
Select a Module from a library file
Create a Cross-reference file

D
E

I
MA
MO
N
p
R
SEG
SEL
x

9.6 Creating and Updating Libraries

The following sections describe how you create new libraries and
update existing libraries.

9-4

Programmer's Utilities Guide 9.6 Creating and Updating Libraries

9.6.1 Creating a New Library

To create a new library, enter the name of the library, then an equal
sign followed by the list of the files you want to include, separated by
commas. For example,

A>lib86 newlib = a,b,c

A>lib86 newlib.186 = a.obj,b.obj,c.obj

A>lib86 math = add,sub,mul,div

The first two examples are equivalent.

9.6.2 Adding to a Library

To add a module or modules to an existing library, specify the library
name on both sides of the equal sign in the command line. The
library name appears on the left of the equal sign as the name of the
library you are creating. The name also appears on the right of the
equal sign, with the names of the other file or files to be appended.
For example,

A>lib86 math = math.186,sin,cos,tan

A>lib86 math = sqrt,math.186

9.6.3 Replacing a Module

LIB-86 allows you to replace one or more modules without rebuilding
the entire library from the individual object files. The command for
replacing a module or modules in a library has the general form:

LIB86 newlibrary = oldlibrary [REPLACE [replace list]]

9-5

9.6 Creating and Updating Libraries Programmer's Utilities Guide

where NEWLIBRARY is the name of the new library file you wish to
create; OLDLIBRARY is the name of the existing library file (that can be
the same as NEWLIBRARY) containing the module you want to replace;
and REPLACE LIST contains one or more module names of the form:

modulename = filename

For example, the command

A>lib86 math = math.186 [replace [sqrt=newsqrt]]

directs LIB-86 to create a new file MATH.L86 using the existing
MATH.L86 as the source, replacing the module SQRT with the file
NEWSORT.OBJ. If the name of the module being replaced is the same
as the file replacing it you need to enter the name only once. For
example, the command

A>lib86 math = math.186 [replace [sqrt]]

replaces the module SORT with the file SORT.OBJ in the Library file
MATH.L86.

You can effect multiple replaces in a single command by using
commas to separate the names. For example,

A>lib86 new= math.186 [replace [sin=newsi~,cos=newcos]

Note that you cannot use the command options DELETE and SELECT in
conjunction with REPLACE.

LIB-86 displays an error message if it cannot find any of the specified
modules or files. See Appendix J for a complete list of LIB-86 error
messages.

9.6.4 Deleting a Module

The command for deleting a module or modules from a library has the
general form:

LIB86 newlibrary = oldlibrary [DELETE [module specifiers]]

9-6

Programmer's Utilities Guide 9.6 Creating and Updating Libraries

where MODULE SPECIFIERS can contain either the names of single
modules, or a collection of modules, which are specified using the
name of the first and the last modules of the group, separated by a
hyphen. For example,

A>lib86 math math.186 [delete [sqrt]]

A>~ ib86 math math. 186 [de1ete [add, sub, mu1, div]

A>lib86 math math.186 [delete [add - div]]

You cannot use the command options REPLACE and SELECT in
conjunction with DELETE.

LIB-86 displays an error message if it cannot find any of the specified
modules in the library (see Appendix J).

9.6.5 Selecting a Module

The command for selecting a module or modules from a library has
the general form:

LIB86 newlibrary = oldlibrary [SELECT [module specifiers]]

where MODULE SPECIFIERS can contain either the names of single
modules, or groups of modules, which are specified using the name of
the first and the last modules of the group, separated by a hyphen.
For example,

A>l ib86 arith math.186 [select [add, sub, mul, div]]

A>lib86 arith math.186 [select [add - div]]

You cannot use the command options DELETE and REPLACE in
conjunction with SELECT.

LIB-86 displays an error message if it cannot find any of the specified
modules in the library (see Appendix J).

9-7

9.7 Displaying Library Information Programmer's Utilities Guide

9.7 Displaying Library Information

You can use LIB-86 to obtain information about the contents of a
library. LIB-86 can produce two types of listing files: a Cross­
reference file and a Library Module Map. Normally, LIB-86 creates
these listing files on the default drive, but you can route them directly
to the console or the printer by using the command options described
in Section 9.5.

9.7 .1 Cross-reference File

You can create a file containing the Cross-reference listing of a library
with the command:

LIB86 libraryname [XREF]

LIB-86 produces the file LIBRARYNAME.XRF on the default drive, or you .
can redirect the listing to the console or the printer.

The Cross-reference file contains an alphabetized list of all Public,
External, and Segment name symbols encountered in the library.
Following each symbol is a list of the modules in which the symbol
occurs. LIB-86 marks the module or modules in which the symbol is
defined with a pound sign, #, after the module name. Segment names
are enclosed in slashes, as in /CODE/. At the end of the cross­
reference listing, LIB-86 indicates the number of modules processed.

9.7.2 Library Module Map

You can create a Module Map of a library using the command:

LIB86 libraryname [MAP]

LIB-86 produces the file LIBRARYNAME.MAP on the default drive, or
you can redirect the listing to the console or the printer.

The Module Map contains an alphabetized list of the modules in the
Library file. Following each module name is a list of the segments in
the module and their lengths. The Module Map also includes a list of
the Public symbols defined in the module, and a list of the External
symbols referenced in the module. At the end of the Module Map
listing, LIB-86 indicates the number of modules processed.

9-8

Programmer's Utilities Guide 9.7 Displaying Library Information

LIB-86 normally alphabetizes the names of the modules in the Module
Map listing. You can use the Ne>ALPHA switch to produce a map
listing the modules in the order in which they occur in the library. For
example,

A>lib86 math.186 [map,noalpha]

9.7.3 Partial Library Maps

You can use LIB-86 to create partial library maps in two ways. First,
you can create a map with only module names, Segment names,
Public names, or External names using one of the commands:

LIB86 libraryname [MODULES]
LIB86 libraryname [SEGMENTS]
LIB86 librarynarne [PUBLICS]
LIB86 libraryname [EXTERNALS]

You can also combine the SELECT command with any of the map­
producing commands described above, or the XREF command. For
example,

A>lib86 math.186 [map,noalpha,select [sin,cos,tan]]

A>lib86 math.186 [xref ,select [sin,cos,tan]]

9.8 LIB-86 Commands on Disk

For convenience, LIB-86 allows you to put long or commonly used
LIB-86 command lines in a disk file. Then when you invoke LIB-86, a
single command line directs LIB-86 to read the rest of its command
line from a file. The file can contain any number of lines consisting of
the names of files to be processed and the appropriate LIB-86
command options. The last character in the file must be a normal
end-of-file character (1AH).

To direct LIB-86 to read commands from a disk file, use a command of
the general form:

LIB86 filename [INPUT]

9-9

9.8 LIB-86 Commands on Disk Programmer's Utilities Guide

If FILENAME does not include a filetype, LIB-86 assumes filetype INP.

As an example, the file MATH.INP might contain the following:

MATH= ADD [$0C],SUB,MUL,DIV,
SIN,COS,TAN,
SQRT,LOG

Then the command

A>lib86 math [input]

directs LIB-86 to read the file MATH.INP as its command line. You can
include other command options with INPUT, but no other filenames
can appear in th.e command line after the INP file. For example,

A>lib86 math [input,xref,map]

The ECHO option causes LIB-86 to display the contents of the INP file
on the console as it is read.

9.9 Redirecting 1/0

LIB-86 assumes that all the files it processes are on the default drive,
so you must specify the drive name for any file not on the default
drive. LIB-86 creates the L86 file on the default drive unless you
specify a drive name. For example,

A>lib86 e:math = math.186,d:sin,d:cos,d:tan
LIB-86 also creates the MAP and XRF files on the same drive as the
L86 file it creates, or the same drive as the first object file in the
command line if no library is created.

You can override the LIB-86 defaults by using the following command
options:

$M <drive> - MAP file destination drive
$0 <drive> - source OBJ or L86 file location
$X <drive> - XRF file destination drive

9-10

Programmer's Utilities Guide 9.9 Redirecting 1/0

where <drive> is a drive name (A-P). For the MAP and XRF files,
<drive> can be X or Y, indicating console or printer output,
respectively. You can also put multiple 1/0 options after the dollar
sign. For example,

A>lib86 trig [map,xref ,$ocmy~y] = sin,cos,tan

The $0 switch remains in effect as LIB-86 processes the command
line from left to right until it encounters a new $0 switch. This
feature can be useful if you are creating a library from a number of
files, the first group of which is on one drive, and the remainder on
another drive. For example,

A>lib86 biglib.= al [$oc],a2 a50 [$od),a51, ... a100

End of Section 9

9-11

SECTION 10

SID-286 Operation

10.1 Introduction

SID-286 is a powerful symbolic debugger designed for use with the
FlexOS operating system for the Intel 80286 processor. SID-286
features:

• Symbolic assembly and disassembly

• Expressions involving hexadec.1mal, decimal, ASCII, and symbolic
values

• Permanent breakpoints with pass counts

• Trace without call

Before using SID-286, you should be familiar with the 80286 processor,
and the FiexOS 286 operating system as described in the FlexOS
System Guide and the FlexOS Programmer's Guide.

SID-286 operation is similar to that of SID-86. If you are already
familiar with SID-86, you should review the following sections of this
guide:

• Command Options in Section 10.3.1
• Command Conventions in Section 12.3
• Commands in Section 12.4
• Sample Sessions in Section 15.

10.2 Typographical Conventions

Several typographical conventions are used in this guide to more
clearly illustrate SID-286's command and output structures. The
conventions are:

10-1

10.2 Typographical Conventions Programmer's Utilities Guide

• Commands appear in UPPERCASE characters and their arguments
appear in lower case characters. This convention is used to
distinguish the command from its arguments. Typically, you enter
all SID-286 command characters in lower case.

• When an example of a SID-286 command is given, user input is
displayed in bold print.

• Some of the examples of SID-286 output use horizontal and/or
vertical ellipses (.....) to illustrate the continuation of an output
pattern.

• A <ctrl > sign is used to illustrate the CONTROL (or CTRL) key on
yoar keyboard. For example, < ctrl > D instructs you to press and
hold down the CONTROL key while you press the "D" key.

• [] are used to signify an optional parameter

10.3 Starting SID-286

You start SID-286 by entering a command in one of the following
forms:

SID [options]
SID dbfilespec [symfilespec] [options]

The first form loads and executes SID-286. After displaying its sign­
on message and prompt character (#) SID-286 is ready to accept your
commands.

In the second form, dbfilespec specifies an optional pathname,
followed by the name of the file to be debugged. If you do not
specify a pathname, then SID-286 uses the pathname currently
specified in the pathname table. If you do not enter a filetype,
SID-286 assumes a 286 filetype. Symfilespec specifies the optional
symbol file, with or without file extension and pathname (a SYM file
extension and the current directory are assumed by default). Options
is one or more of the options described in Section 10.3.1 below. If
both symfilespec and options are used, they must be entered on the
command line in the order shown above.

10-2

Programmer's Utilities Guide 10.3 Starting SID-286

10.3.1 SID-286 Command Options

The command options available for SID-286 are divided into two
categories: process control options and windowing options.

Process Control Options

$t

$m

$f

this option is followed by the arguments for the
process being debugged. Use this option with non­
interactive programs (such as fgrep) where one or
more arguments are required for that debugged
program.

this option is followed by a decimal value specifying
the maximum· memory size (in kilobytes) for process
being debugged. A large maximum memory size is
recommended.

this option is followed by the name of the macro
file to be read. A macro file is a file containing a
list of macros. When creating a macro file, enter
macros using the same form described in Section
12.4.28, only do not enter the preceding colon (:).
Each macro you enter into the macro file must start
on a new line and end with a carriage return. A
macro file can contain up to 29 macros.

Windowing Options

When using SID-286 to debug your program, you often find it
necessary to execute sections of your code. The process of executing
your code under SID-286 is referred to as the "debug process."
SID-286 allows you to dedicate a section of your screen to the debug
process. This section of your screen is referred to as the "debug
process window."

The following options determine the size of the debug process window
during the debug process as well as the size of the window when the
debug process is complete and control is returned to the SID-286
command screen. All of the window sizes are entered as decimal
values.

10-3

10.3 Starting SID-286 Programmer's Utilities Guide

$r

$c

$w

the decimal value following this option specifies the
maximum horizontal (row} size of the debug process
window. The range is typically 0 - 25, but the
maximum size can vary between systems. The
default value is the same size as SID-286's original
window size.

the decimal value following this option specifies the
maximum vertical (column} size of the debug
process window. The range is typically 0 - 80, but
the maximum size can vary between systems. The
default value is the same size as SID-286's original
window size.

the decimal value following this option specifies the
continuous vertical size of the debugged process
window. When you establish the debug process
window size by means of the $r and $c options, you
can use the $w option to specify how much of the
debug process window will remain showing at all
times. This value can be modified from the SID-286
command line by the 0 command described in
Section 12.4.14.

Options must be located at the end of the command line. Multiple
options must be separated by white space (tabs or blank space).

SID-286 does not allow multiple executable or symbol files to be
loaded and debugged simultaneously. When the program and symbol
files are loaded for execution, the former symbol tables are
overwritten.

10-4

Programmer's Utilities Guide 10.3 Starting SID-286

10.3.2 SID-286 Example Commands

The following are examples of valid SID-286 command lines:

A>S ID Start SID-286

A>SID hello.286
Start SID-286 and load the command file hello.286
as the debug process.

A>SID b:hello b:hello
Start SID-286 and load the command file, hello.286,
along with the symbol table file, hello.sym, from the
B drive.

A>SID fgrep fgrep $ml28 $t"trail" *.asm *.plm
Start SID-286 and load the command and symbol
files for fgrep. Specify the maximum memory size
for fgrep as 12800 bytes. The command tail "trail"
*.asm *.plm are the arguments for fgrep, which
specify fgrep to search for the string "trail" in the
files *.asm and *.plm.

A>SID fgrep $t"farewell" *.c
Start SID-286 and load the command file for fgrep.
The command tail "farewell" *.c are given as the
arguments.

A>SID $wl0 $rl5 $c50
Start SID-286, setting the window size of the debug
process to a horizontal size of 15 and a vertical size
of 50. The wl 0 option specifies that 10 rows of the
debug process are displayed when SID-286 is
invoked.

A>SID $fmacf ile
Start SID-286, reading in the macros listed in the
macro file, macfile.

10-5

10.4 Starting SID-286 Programmer's Utilities Guide

10.4 Exiting SID-286

When you exit SID-286, no files. are automatically saved. Therefore, to
save the modified version of your file, write the file to disk using the
W (write) Command described in Section 12.4.23 before exiting
SID-286.

You can exit SID-286 by typing Q in response to the # prompt (see
Section 12.4.16). This returns control to the operating system .

. End of Section 10

10-6

SECTION 11

SID-286 Expressions

11.1 Introduction

This section describes the types of expressions you can use with the
commands described in Section 12.

SID-286 can reference absolute machine addresses through
expressions. Expressions can use names from the program's SYM file,
which is created when the program is linked using LINK 86.
Expressions can also be literal values in hexadecimal, decimal, or ASCII
character string form. You can combine these literal values with
arithmetic operators to provide access to subscripted and indirectly­
addressed data or program areas.

11.2 Literal Hexadecimal Numbers

SID-286 normally accepts and displays values in hexadecimal. Valid
hexadecimal digits consist of the decimal digits 0 through 9 and the
hexadecimal digits A, B, C, D, E, and F, which correspond to the
decimal values 10 through 15, respectively.

A literal hexadecimal number in SID-286 consists of one or more
contiguous hexadecimal digits. If you type four digits, the leftmost
digit is most significant and the rightmost digit is least significant. If
the number contains more than four digits, the rightmost four are
recognized as significant, and the remaining leftmost digits are
discarded. The following examples show the hexadecimal and the
decimal equivalents of the corresponding input values.

Input Value Hexadecimal Decimal

1 0001 1
100 0100 256

ff f e FFFE 65534
10000 0000 0
38001 8001 32769

11-1

11.3 Literal Decimal Numbers Programmer's Utilities Guide

11.3 Literal Decimal Numbers

Enter decimal numbers by preceding the number with the # symbol.
The number following the # symbol must consist of one or more
decimal digits (0 through 9), with the most significant digit on the left
and the least significant digit on the right. Decimal values are padded
or truncated according to the rules of hexadecimal numbers when
converted to the equivalent hexadecimal value.

In the following examples, the input values on the left produce the
internal hexadecimal values on the right:

Input Value Hexadecimal Value

#9
#10

#256
#65535
#65545

0009
OOOA
0100
FFFF
0009

f1 .4 Literal Character Values

SID-286 accepts one or two graphic ASCII characters enclosed in
apostrophes as literal values in expressions. Characters remain as
typed within the apostrophes (that is, no case translation occurs). The
leftmost character is the most significant, and the rightmost character
is the least significant. Single character strings are padded on the left
with zeros. Strings having more than two characters are not allowed
in expressions, except in the S command, as described in Section
12.4.18.

Note that the enclosing apostrophes are not included in the character
string, nor are they included in the character count. The only
exception is when a pair of contiguous apostrophes is reduced to a
single apostrophe and included in the string as a normal graphic
character (see examples below).

11-2

Programmer's Utilities Guide 11.4 Literal Character Values

In the following examples, the strings to the left produce the
hexadecimal values to the right. Note that uppercase ASCII
alphabetics begin at the encoded hexadecimal value 41; lowercase
alphabetics begin at 61; a space is hexadecimal 20 and an apostrophe
is hexadecimal 27.

Input String

'A'
'AB'
'aA'
' ' ' '

t t I I t 1

' A'
'A '

11.5 Register Values

Hexadecimal Value

0041
4142
6141
0027
2727
2041
4120

You can use the contents of a debug program's register set by
specifying a register name wherever a 16-bit number is valid. For
example, if you know that at a certain point in the program the BX
register points to a data area you want to see, the command

DDS:BX

displays the desired area of memory. If the current default address
segment is OS, you can display the desired area of memory by
entering an index register:

DBX

Note that when assembling 80286 instructions using the A command,
register names are treated differently than in other expressions. In
particular, a register name in an assembly language statement entered
in the A (Assemble) command refers to the name of a register, and
not its contents.

11-3

11.6 Stack References Programmer's Utilities Guide

1 1.6 Stack References

Elements in the stack can be included in expressions. A caret sign (")
refers to the 16-bit value at the top of the stack, pointed to by the SS
and SP registers (SS:SP) in the user's CPU state. A sequence of n
carets refers to the nth 16-bit value on the stack. For example, a
command having the form:

command"

uses the value stored at the top of the stack as its parameter. If two
carets are given, the second value stored on the stack is used; three
carets specifies the third value on the stack, and so on.

For example, if you wish to display the value located on the top of the
stack, you could enter:

D"

If the address of a segment and the address of a particular offset
within that segment are both stored on the stack, carets can be used
to specify a complete address. For example, if the third value on the
stack is used as a segment address and the first value on the stack is
used as the offset within that segment, you can display the complete
address using the following command:

See Section 12.4.4 for a description of the D command.

You can use a stack reference to set a breakpoint on return from a
subroutine, even though the actual value is not known.

For example, when callf pushes the current code segment address (CS)
onto the stack, followed by the address of the next program
instruction (IP), the command

G ""•" , .
transfers control to the program and sets breakpoints at the address
contained in the CS and IP registers. This command is the same as:

G, CS: IP

See Section 12.4.7 for a description of the G Command.

11-4

Programmer's Utilities Guide 11.7 Symbolic References

11.7 Symbolic References

If a symbol table is present during debugging, you can reference
values associated with symbols using the following three symbol
reference forms:

.s
@s
=s·

where s represents a sequence of 1 to 31 characters matching a
symbol in the table.

The .s form gives the 32-bit value associated with the symbol s in the
symbol table. The @s form gives the 16-bit value contained in the
word locations pointed to by s. The =s form gives the 8-bit value at s
in memory.

For example, given the following excerpt from a SYM table with a
segment address of CBO:

0000
0000
0100
0102

Variables
Data
Gamma
Delta

and given the following memory values:

CBO:OlOO
CBO:OlOl

·cao:o102
CB0:0103

contains 02
contains 3E
contains 4D
contains 22

then the symbol references shown below on the left gives the
hexadecimal values shown on the right. Recall that 16-bit 80286
memory values are stored with the least significant byte first.
Therefore, the word values at 0100 and 0102 are 3E02 and 2240,
respectively.

11-5

11.7 Symbolic References

Symbol Reference

.GAMMA
.DELTA

@GAMMA
@DELTA
=GAMMA
=DELTA

11.8 Qualified Symbols

Programmer's Utilities Guide

Hexadecimal Value

CB0:0100
CB0:0102
3E02
2240
0002
0040

Duplicate symbols can occur in the symbol table du-e to separately
assembled or compiled modules that independently use the same
name for different subroutines or data· areas. Block structured
languages allow nested name definitions that are identical, but
nonconflicting. Thus, SID-286 allows reference to "qualified symbols"
that take the form

S1/S2/ ... /Sn

where 51 through Sn. represent symbols present in the table during a
particular session.

SID-286 always searches the symbol table from the first to last
symbol in the order the symbols appear in the symbol file. For a
qualified symbol. SID-286 begins by matching the first 51 symbol, then
searches for a match with symbol 52, continuing until symbol Sn is
matched. If this search and match procedure is not successful,
SID-286 prints a ? to the console. Suppose, for example, that part of
the symbol table has a segment address of DOO appearing in the
symbol file as follows:

0100 A 0300 B 0200 A 3EOO C 20FO A 0102 A

Then the unqualified and qualified symbol references shown below on
the left produce the hexadecimal values shown on the right.

11-6

Programmer's Utilities Guide

Symbol Reference

.A
@A

.A/A
.C/A/A
=C/A/A
.8/A/A

11.9 Expression Operators

11.8 Qualified Symbols

Hexadecimal Value

000:0100
2004
000:0200
000:0102
005E
000:20FO

Literal numbers, strings, and symbol references can be combined into
symbolic expressions using unary and binary "+" and "-" operators.
SI0-286 evaluates the expression from left to right, producing a 32-bit
address at each step. Overflow and underflow are ignored as the
evaluation proceeds. The final value becomes the command
parameter, whose interpretation depends upon the particular command
letter preceding it.

When placed between two operands, the + indicates addition to the
previously accumulated value. The sum becomes the new
accumulated value in the evaluation.

The - symbol causes SI0-286 to subtract the literal number or symbol
reference from the 16-bit value accumulated thus far in the symbolic
expression. If the expression begins with a minus sign, then the initial
accumulated value is taken as zero. That is,

-x is computed as 0-x

where x is any valid symbolic expression. For example, the address

0700-100

is the same as the address

0600

11-7

11.9 Expression Operators Programmer's Utilities Guide

In commands specifying a range of addresses (i.e., B, D, L, F, M and W),
the ending address of the range can be indicated as an offset from the
starting address. To do this, you can precede the desired offset with a
plus sign. For example, the command

DFD00,+#512

displays the memory from offset address FDOO to FFOO. SID-286 does
not allow use of the unary plus operator at other times.

11.10 Sample Symbolic Expressions

Frequently,. the formulation of symbolic expressions is closely related
to the program structures in the ·program being tested. Suppose you
want to debug a sorting program containing the following data items: ·

LIST

N

Names the base of a table (or array) of byte values
to sort, assuming there are no more than 255
elements, denoted by LIST(O), LIST(1), ... , LIST(254).

A byte variable that gives the actual number of
items in LIST, where the value of N is less than 256.
The items to sort are stored in LIST(O) through
LIST(N-1).

The byte subscript that indicates the next item to
compare in the sorting process. LIST(!) is the next
item to place in sequence, where I is in the range 0
through N-1.

Given these data areas, the command

D.LIST,+#254

displays the entire area reserved for sorting as follows:

LIST(O), LIST(l), • • , LIST(254)

11-8

Programmer's Utilities Guide 11. 10 Sample Symbolic Expressions

The command

D.LIST,+=I

displays the LIST vector up to and including the next item to sort as
follows:

LIST(O), LIST(l),

The command

D.LIST+=I,+0

displays only LIST(!).

Finally, the command

D.LIST,+=N-1

, LIST(I)

displays only the ·area of LIST holding active items to sort as follows:

LIST(O), LIST(l), ... , LIST(N-1)

End of Section 11

11-9

SECTION 12

SID-286 Commands

12.1 Introduction

This section defines SID-286 commands and their arguments. SID-286
commands give you control of program execution and allow you to
display and modify system memory and the CPU state.

12.2 SID-286 Command Summary

Table 12-1 summarizes SID-286 commands. SID-286 commands are
defined individually in Section 12.4.

Table 12-1. SID-286 Command Summary

Command Action

A enter assembly language statements
B compare blocks of memory
C change memory· (same as the S command)
D display memory in hexadecimal and ASCII
E load program and symbols for execution
F fill memory block with a constant
G begin execution with optional breakpoints
H hexadecimal arithmetic
I change standard output (stdout) file
K redefine CTRL-A and CTRL-D keys
L list memory using 8086 mnemonics
M move memory block
N automatic "GO" to next call/callf
0 define size of debug process window
P set, clear, display pass points

12-1

12.3 SID-286 Command Conventions Programmer's Utilities Guide

Command

Q

R
s
SR
T
u
v
w
x
z
?
??
=

Table 12-1. {continue~)

Action

quit SID-286 or stop debug process
read disk file into memory
set memory to new values
search for string within memory
trace program execution
untraced program monitoring
show memory layout of disk file read
write contents of memory block to disk
examin·e and modify CPU state
dump 80287 register.
print list of SID-286 commands
print list of SID-286 commands with options
use a previously defined macro
define or redefine a macro

12.3 SID-286 Command Conventions

When SID-286 is ready to accept a command, it prompts you with a
pound sign, #. This is the SID-286 prompt after which you can enter
one of the SID-286 commands described in this section, or you can
type a CTRL-C to end the debugging session (see Section 10.4). A
valid SID-286 command can have up to 256 characters and must be
terminated with a carriage return.

12.3.1 Command Structure

A SID-286 command can be followed by one or more arguments. The
arguments can be symbolic expressions, filenames, or other
information, depending on the command. Arguments are separated
from each other by commas or spaces. Several commands (D, G, N, P,
S, T, and U) can be preceded by a minus sign. The effect of the minus
sign varies among commands. See the commands in Section 12.4 for
explanations of the effects of the minus sign on each command.

12-2

Programmer's Utilities Guide 12.3 SID-286 Command Conventions

12.3.2 Specifying an Address

Most SID-286 commands require one or more addresses as operands.
Enter an address as follows:

ssss:OOOO
where ssss represents an optional 16-bit segment number and 0000 is
a 16-bit offset. If you omit the segment value, SID-286 uses a default
value appropriate to the command being executed, as described in
Section 12.4.5.

SID-286 does not allow you to randomly access any area in memory.
When using SID-286, your access is limited to areas read into SID-286
using the R (Read) comman·d and areas of a debugged process read
into SID-286 using the E (Load for Execution) command or by means
of the invocation line. It is not possible to simultaneously have. a
debugged process (read in by the E command or command line) and a
file (read in by the R command) resident in SID-286 at the same time.
(See Sections 12.4.5 and 12.4.17 for descriptions of the E and R
commands.)

12.3.3 Line Editing Functions

When you enter a command, use standard FlexOS line-editing
functions to correct typing errors. These line-editing functions are:

CTRL-X

CTRL-H

CTRL-R

erase from beginning of line to cursor

move cursor to left

move cursor to right

SID-286 does not process the command line until you enter a carriage
return.

12-3

12.4 SID-286 Commands Programmer's Utilities Guide

12.4 SID-286 Commands

This section describes each SID-286 command in order of alphabetic
precedence.

12.4.1 A (Assemble} Command

The A command assembles 80286 mnemonics directly into memory. It
takes the form:

As

where s is the address. where. assembly begins. SID-286 responds to
the A command by displaying the address of the memory location
where assembly begins. At this point, you can enter assembly
language statements as described in Section 14. When a statement is·
entered, SID-286 converts it to binary, places the value(s} in memory,
and displays the address of the next available memory location. This
process continues until you press the carriage return without entering
any statement or after entering only a period.

SID-286 responds to invalid statements by displaying a question mark,
?, and redisplaying the current assembly address.

Note that wherever a numeric value is valid in an assembly language
statement, you can also enter an expression. There is one difference
between expressions in assembly language statements and those
appearing elsewhere in SID-286: under the A command, references to
registers refer to the names of the registers, while elsewhere they
refer to the contents. of the registers. When the A command is used,
you cannot reference the contents of a register in an expression.

The following is an example of the A command:

#a213 Assemble at offset 213 of the current default CS
value.

nnnn:0213 mov ax,#128

Set AX register to decimal 128.

12-4

Programmer's Utilities Guide 12.4 SID-286 Commands

nnnn:0216 push ax

Push AX register on stack.

nnnn:0217 call .procl

Call procedure whose address is the value of the
symbol PROC1

nnnn:021A test byte [.i/i], 80

Test the most significant bit of the byte whose
address is the value of the second occurrence of
the symbol I.

nnnn:021E jz .done

nnnn:0220 .

Jump if zero flag set to the location whose address
is the value of the symbol DONE.

stop assemble process.

12.4.2 B (Block Compare} Command

The B command compares and displays the difference between two
blocks of memory loaded by either an R command, E command, or
command line. The form is as follows:

Bs 1,f1,s2

where s1 is the address of the start of the first block; f1 is the offset
address that specifies the last byte of the first block, and s2 is the
address of the start of the second block. If the segment is not
specified in s2, the same value used for s1 is assumed.

SID-286 displays any differences in the two blocks in the form:

a 1 b1 a2 b2

where the a1 and the a2 are the addresses in the blocks; bl and b2
are the values at the indicated addresses. If no differences are
displayed, the blocks are identical.

12-5

12.4 SID-286 Commands Programmer's Utilities Guide

The following are examples of the B command:

#b40:0,lff ,60:0
Compare 512 (200H) bytes of memory starting at
40:0 and ending at 40: 1 FF with the block of memory
starting at 60:0.

#bes:.arrayl,+ff,.array2
Compare a 256-byte array starting at offset ARRAY1
in the extra segment with ARRA Y2 in the extra
segment.

12.4.3 C (Change Memory) Command

The C command changes the contents of memory. This command is
identical to the S command described in Section 12.4.18.

12.4.4 D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit
hexadecimal values and in ASCII characters. The forms are as follows:

0
Os
Os,f
ow
OWs
OWs,f
-On
-0

where s is the starting address of the display, and f is the ending
address. If no segment value is given for f, then the segment
specified by s is assumed and the value of f is used as the offset
within that segment.

Memory is displayed on one or more lines. Each line shows the
values of up to 16 memory locations. For the first three forms, the
display line appears as

ssss:OOOO bb bb ... bb aa ... a

12-6

Programmer's Utilities Guide 12.4 SID-286 Commands

where ssss is the segment being displayed, and 0000 is the offset
within segment ssss. The bb's represent the 8-bit contents of the
memory locations in hexadecimal, and the a's represent the contents
of memory in ASCII. A period represents any nongraphic ASCII
character.

The 0 form displays memory from the current display address for 12
display lines. Form Os is similar to form 0, except the default display
address is changed to address s. Form Os,f displays the memory
block between locations s and f. Forms OW, OWs, and OWs,f are
identical to forms 0, Os, and Ds,f, except that the contents of memory
are displayed as 16-bit words, rather than 8-bit bytes, as follows

ssss:OOOO wwww wwww ... wwww aaaa ... aa

where wwww represents a 16-bit word in hexadecimal.

During a long display, you can stop the D command by typing any
character at the console.

The last address displayed becomes the default starting address for
the next display unless another starting address is specified. Only
memory loaded into SID-286 can be displayed. Once the end of
memory loaded into SID-286 is reached, the display stops, regardless
of the ending address specified by the user.

The -On form changes the default number of bytes displayed when
the D command is invoked. The number of bytes displayed by the D
command is 176 by default. The -On form changes this default value
to one specified by n, which can be any number between 0 and 65535.
The -D form of the D command changes the default number of bytes.
displayed back to 176.

If the number of bytes left in the debugged process is less than the
established default value, then only those bytes remaining in the
process are displayed.

12-7

12.4 SID-286 Commands Programmer's Utilities Guide

The following are examples of the D command:

#dfOO, f 23 Display memory bytes from offset FOOH through
F23H in the current data segment.

#d.array+=i,+#10

#dwss:sp

#d"

Display 1 O bytes starting at location ARRAY (i).

Display the value at the top of stack in word format.

Display the value at the top of stack in byte format.

#dw#l28, #255 Display memory words from offset 80H through FFH.

#-dlO Set the default number of bytes displayed to 16.

#-d Set the default number of bytes displayed to 176.

12.4.5 E {Load Program, Symbols for Execution) Command

The E command loads a file into memory so a subsequent G, T, or U
command can begin program execution. The E command can also
load a symbol table file. The forms are as follows:

Efilespec
Efilespec symfilespec

The Efilespec form loads the command file specified by filespec.
Where filespec is· an optional pathname and the name of the
command file you want to load. If you do not specify a full pathname,
then SID-286 uses the pathname(s) currently specified in the pathname
table. If you do not enter a filetype for the file, SID-286 assumes a
286 filetype. SID-286 alters the contents of the CS, OS, ES, and IP
registers according to the information in the header of the file loaded.
When the file is completely loaded, SID-286 displays the start and end
addresses of each segment in the file. You can use the V command
to redisplay this information later. See the V Command in Section
12.4.22.

12-8

Programmer's Utilities Guide 12.4 SID-286 Commands

The Efilespec symfilespec form loads the command file specified by
filespec as described above, and then loads a symbol file as specified
in symfilespec. The default filetype for a symbol file is SYM. SID-286
displays the message

SYMBOLS

when it begins loading the symbol file. If SID-286 detects an invalid
hexadecimal digit or an invalid symbol name, it displays an error
message and stops loading the symbol file. You can use the H
command to display the symbols loaded when the error occurred to
determine the exact location of the error in the SYM file. 64!< bytes of
memory is available for symbol table storage.

When loading a program file with the E command, SID-286 releases
any blocks of memory allocated by any previous E or R command or
by programs executed under SID-286. Therefore, only one file at a
time can be loaded for execution and that file should be loaded before
any symbol tables are read.

SID-286 issues an error message if a file does not exist or cannot be
successfully loaded in the available memory.

The symbol table file is produced by LINK 86 in the format:

nnnn symbol1 nnnn symbol2

where nnnn is a four digit hexadecimal number, and spaces, tabs,
carriage returns, and line-feeds serve as delimiters between
hexadecimal values and symbol names. Symbol names can be up to
31 characters in length.

12-9

12.4 SID-286 Commands Programmer's Utilities Guide

The following are examples of the E command:

#etest Load file TEST.GMO

#etest.cmd test.sym
Load file TEST.CMD and symbol table file TEST.SYM

#etest test io
Load file TEST.CMD and symbol table files TEST.SYM
and 10.SYM

12.4.6 F (Fill) Command

The F command fills an area of memory read into SID-286 using an E
command, R command, or command line with a byte or word constant.
The forms of the F command are:

Fs,f,b
FWs,f,w

where s is a starting address of the block to be filled and f is the
address of the final byte of the block. If no segment value is specified
by f, then the segment value of s is used by default. Similarly, if no
segment value is specified by s, then the current display address is
used by default.

The Fs,f,b form stores the 8-bit value b in locations s through f. The
FWs,f,w form stores the 16-bit value w in locations s through f in
standard form, the low eight bits first followed by the high eight bits.

If s is greater than f, or the value b is greater than 255, SID-286
responds with a question mark.

12-10

Programmer's Utilities Guide 12.4 SID-286 Commands

The following are examples of the F command:

#f 100, 13 f, 0 Fill memory at the current default display segment
from offsets 100H through 13FH with 0.

#f .array,+255,ff
Fill the 256-byte block starting at ARRAY with the
constant FFH.

#f-5, +10, 'z' Fill the 10 bytes beginning at 5 bytes before the
current default display address with the ASCII value
for z.

· 12.4.7 G {Go) Command

The G command transfers control to the program being tested and
optionally sets one or two breakpoints. The forms are as follows:

G
G,b1
G,b1,b2
Gs
Gs,b1
Gs,b1,b2
-G (with all of the above forms)

where s is an address where program execution is to start, and bl and
b2 are addresses of breakpoints. If you do not supply a segment
value for any of these three addresses, the segment value defaults to
the contents of the CS register.

In forms G, G,bl, and G,b1,b2, no starting address is specified, so
SID-286 gives the address from the CS and IP registers. Form G
transfers control to your program without setting any breakpoints.
Forms G,bl and G,b1,b2 set one and two breakpoints respectively
before passing control to your program. Forms Gs, Gs,b1, and
Gs, bl ,b2 are identical to G, G,b1, and G,bl ,b2, except the CS and IP
registers are first set to s.

If you precede any form of the G command with a minus sign, the
intermediate permanent breakpoints set by the P command are not
displayed.

12-11

12.4 SID-286 Commands Programmer's Utilities Guide

Once SID-286 transfers control to the program under test, it executes
in real time until a breakpoint is encountered. At this point, SID-286
regains control, clears the breakpoints set by the G command, and
displays the address where the executing program is interrupted. This
is done using the format:

*ssss:OOOO .symbol

where ssss corresponds to the CS register, 0000 corresponds to the IP
register where the break occurs, and .symbol is the symbol whose
value is equal to 0000, if such a symbol exists. When a breakpoint
returns control to SID-286, the instruction at the breakpoint address
has not yet been executed.

The following are examples of. the G command:

#g Begin program execution at address given by the CS
and IP registers with no breakpoints set.

#g.start,.error
Begin program execution at label START in the code
segment, setting a breakpoint at label ERROR.

#g, . error,"' Continue program execution address given by the
CS and IP registers, with breakpoints at label ERROR
and at the address at the top of the stack.

#-g, 3 4 f Begin execution with a breakpoint at offset 34FH to
the current segment value of CS, suppressing
intermediate pass point display.

12.4.8 H (Hexadecimal Math) Command

The H command provides several useful arithmetic functions. The
forms are as follows:

Ha,b
Ha
H
H .symbol

12-12

Programmer's Utilities Guide 12.4 SID-286 Commands

The Ha,b form computes the sum (ssss), difference (dddd), product
(pppppppp), and quotient (qqqq) with the remainder (rrrr) of two 16-bit
values. The results are displayed in hexadecimal notation as follows:

+ ssss - dddd * pppppppp I qqqq (rrrr)

Underflow and overflow are ignored in addition and subtraction.

The Ha form displays the value of the expression a in hexadecimal,
decimal, and ASCII (if the value has a graphic ASCII equivalent) in the
following format:

hhhh #ddddd 'c'

The H form displays the symbols currently loaded in the SID-286
symbol table. Each symbol is displayed ·in the following form:

nnnn symbolname

You can stop the display by pressing any key at the console.

The H .symbol form allows you to display the address where the
specified symbol is defined in the symbol table.

If the symbol is found in the symbol table, SID-286 responds:

The symbol is found at address xxxx:xxxx

where xxxx:xxxx is the address. If the symbol is not found, SIP
responds:

The symbol does not appear in the symbol table

The H command uses 16-bit arithmetic with no overflow handling,
except for the product in the Ha,b form above. Without overflow
handling, the value

f ff f + 2

eq.uals 1.

12-13

12.4 SID-286 Commands Programmer's Utilities Guide

The following are examples of the H command:

#h

#h@index

#h5c28,80

List all symbols and values loaded with the E
command(s).

Show the word contents of the memory location at
INDEX in hexadecimal and decimal.

Show sum, difference, product, and quotient of
5C28H and 80H.

12.4.9 I (Redirect Output) Command

SID output is always sent to the screen. In addition to the screen, the
I command ·allows you to direct your debugging session output- to a
printer or a file. The forms are as follows:

lfilespec

The I form directs debugging session output to the printer. Additional I
commands toggle output to the printer between off and on. If you use
the lfilespec form to redirect your SID output to a file, the I form
stops the output to the file. ·

The lfilespec form directs SID output to a file specified by filespec.
Where filespec is an optional pathname and the name of the file you
want the SID output directed to. If you do not provide a pathname,
SID creates a file under the current default directory. If the file
specified by filespec already exists, that file is deleted and a new file
created.

You cannot simultaneously send SID output to both a printer and a
file.

12-14

Programmer's Utilities Guide 12.4 SID-286 Commands

12.4.10 K (R_edefine Keys) Command

During execution of an interactive debug process requiring responses
from the keyboard, SID-286 directs keyboard input to the debug
process. However, entering either a CTRL-A or CTRL-D keystroke
automatically returns control of the keyboard to SID-286. The K
command is used when the debug process needs to make use of the
CTRL-A and CTRL-D keystrokes, which have the hexadecimal values of
1 and 4.

The K command allows you to redefine the return-to-SID function
invoked by either the CTRL-A or CTRL-D keys to another key, thereby
allowing these keys to be used as intended by the debug process
without causing control to ·be returned to SID-286. The form is as
follows:

Kn

where n is the hexadecimal value of the ASCII character you wish to
substitute for the CTRL-A and CTRL-D keys. For example, a 1
corresponds to CTRL-A, 4 corresponds to a CTRL-D, 41 corresponds to
an A, etc ..

The following are examples of the K command:

#K32

#K#90

Redefine the function normally invoked by the
CTRL-A or CTRL-D keys to be invoked by the 2 key
(32H). This allows the CTRL-A and CTRL-D keys to
be used as defined by the debug process.

Redefine the function normally invoked by the
CTRL-A or CTRL-0 keys to be invoked by the Z key,
which is 90 decimal (5AH).

12-15

12.4 SID-286 Commands Programmer's Utilities Guide

12.4.11 L (Lis!) Command

The L command lists the contents of memory read into SID-286 using
the R command, the E command, or the command line in assembly
language. The forms are as follows:

L
Ls
Ls,f
-L (with all of the above forms)

where s is the address where the list starts and f is the address
where the list finishes. If no segment value is given for f, then the
segment value specified by s is assumed and the value of f is use·d as
the offset within that segment.

Each disassembled instruction takes the form:

label:
ssss:OOOO prefixes opcode operands .symbol = memory value

where label is the symbol whose value is equal to the offset 0000, if
such a symbol exists; prefixes are segment override, lock, and repeat
prefixes; opcode is the mnemonic for the instruction; operands is a
field containing 0, 1, or 2 operands, as required by the instruction; and
.symbol is the symbol whose value is equal to the numeric operand, if
there is one and such a symbol exists. If the instruction references a
memory location, the L command displays the contents of the location
in the memory value field as a byte, word, or double word, as
indicated by the instruction.

The L form lists 12 disassembled instructions from the current list
address. The Ls form sets the list address to s and then lists 12
instructions. The Ls,f form lists disassembled code from s through f.
If you precede any of the L command forms with a minus sign, no
symbolic information is displayed (the labels and symbol fields are
omitted). This speeds up the listing if many symbols are present and
you have no need to display them.

12-16

Programmer's Utilities Guide 12.4 SID-286 Commands

In all forms, the list address is set to the next unlisted location in
preparation for a subsequent L command. When SID-286 regains
control from a program being tested (see G, T, and U commands), the
list address is set to the current value of the CS and IP registers.

You can stop long displays by typing any key during the list process.
Also, CTRL-S temporarily halts the display, which can be resumed by
entering CTRL-Q.

The syntax of the assembly language statements produced by the L
command is described in Section 5.

If the memory location being disassembled is not a valid 80286
instruction, SID-286 displays

??= nn

where nn is the hexadecimal value of the contents of the memory
location.

The following are examples of the L command:

#l

#-1

#l243c,244e

#l.find,+20

#l.err+3

Disassemble 12 instructions from the current default
list address.

Disassemble 12 instructions, without symbols, from
the current default list address.

Disassemble instructions from 243CH through
244EH.

Disassemble 20H bytes from the label FIND.

Disassemble 12 lines of code from the label ERR
plus 3.

#1. err,. errl Disassemble from label err to label err1.

12-17

12.4 SID-286 Commands Programmer's Utilities Guide

12.4.12 M (Move) Command

The M command copies a block of data values read into SID-286 using
an E command, R command, or command line from one area of
memory to another. The form is as follows:

Ms,f,d

where s is the starting address of the block to be moved; f is the
offset of the final byte within the segment; and d is the address of the
first byte of the area to receive the data. If you do not specify the
segment in d, the M command uses the same value used for s.
Therefore, the data found between the s and f is copied to a location
starting at d.

The following are examples of the M command:

#rn20:2400,+9,30:100
Move 10 bytes from 20:2400 to 30: 100.

#rn.array,+#63,.array2
Move 64 bytes from ARRAY to ARRA Y2.

12.4.13 N {Transfer Control) Command

The N command executes the G (Go) command to transfer control to
the program being tested directly before or after the next call or callf.
The forms are as follows:

-N
N

The -N form executes a G command directly before the next call or
caflf.

The N form executes a G command directly after returning from the
procedure called by the next call or callf.

12-18

Programmer's Utilities Guide 12.4 SID-286 Commands

12.4.14 0 (Control Window) Command

The 0 command, along with the SID-286 command options $r and $c
described in Section 10.3.1, allows you to set the size of the debug
process window.

The output generated by SID-286 is sent to the current standard
output device. The standard output device used by SID-286 is either a
disk file or a screen. If the output is sent to a disk file (as specified
by using file redirection ">" when invoking SID-286) then none of the
windowing functions described in this section is valid. If the output is
sent to the screen, then the commands in this section operates as
described.

The forms are as follows:

Or,c
-0
-Or

where r determines the row (horizontal) location of the window (the
available range is usually 0 - 25) and c determines the column
(vertical) location of the window (the range is usually 0 - 80). All of
the window sizes are entered as decimal numbers.

The Or,c form of the command allows you to move the upper left
corner of the debug process window to the coordina'l'es specified by r
and c. The larger the c value, the further the debug process window
appears to the right on your screen.

The -0 form of the command resets the value specified either by the
SID-286 command option $w or by the -Or command to zero. This
means that, if you have set the debug process window to remain on
the screen when the debug process has completed, the -0 command
overrides this instruction and causes the debug process window to
disappear when the debug process has finished.

12-19

12.4 SID-286 Commands Programmer's Utilities Guide

The -Or form sets the vertical (row) size of the debug process window
when the debug process is finished to a size specified by r. -This
command resets the value specified by the SID-286 command option
$w.

The following are examples of the 0 command:

#010,40

#-0

#-05

Move the upper left corner of the debug process
window to a horizontal position of 10 and a vertical
position of 40. On most terminals, this command
cause the debug process window to take up the
upper right quarter of the screen.

Do not display debug process window after
completion of the debug process.

Set the debug process window to a horizontal
position of 5 when the debug process has
completed.

12.4.15 P {Permanent Breakpoint) Command

The P command sets, clears, and displays "permanent" breakpoints.
The forms are as follows:

Pa,n
Pa
-Pa
-P
p

A permanent breakpoint remains in effect until you explicitly remove it,
as opposed to breakpoints set with the G command that must be
reentered with each G command. Pass points have associated pass
counts ranging from 1 to OFFFFH. The pass count indicates how many
times the instruction at the pass point executes before the control
returns to the console. SID-286 can set up to 30 permanent
breakpoints at a time.

12-20

Programmer's Utilities Guide 12.4 SID-286 Commands

Forms Pa,n and Pa are used to set pass points. The Pa,n form sets a
pass point at address a with a pass count of n, where a is the address
of the pass point, and n is the pass count from 1 to OFFFFH. If a pass
point is already active at a, the pass count is changed to n. SID-286
responds with a question mark if there are already 16 active pass
points.

The Pa form sets a pass point at a with a pass count of 1. If a pass
point is already active at a, the pass count is changed to 1. SID-286
responds with a question mark if there are already 16 active pass
points.

Forms -Pa and -P are used to clear pass points. The -Pa form clears
the pass point at location a. SID-286 responds with a question mark if
there is no pass point set at a. The -P form clears all the pass points.

The P form displays all the active pass points using the form:

nnnn ssss:OOOO .symbol

where nnnn is the current pass count for the pass point; ssss:OOOO is
the segment and offset of the pass point location, and .symbol is the
symbolic name of the offset of the pass point, if such a symbol exists.
When a pass point is encountered, SID-286 displays the permanent
breakpoint information in the form

nnnn PASS ssss:OOOO .symbol

where nnnn, ssss:OOOO, and .symbol are as previously described.
Next, SID-286 displays the CPU state before the instruction at the
permanent breakpoint is executed. SID-286 then executes the
instruction at the permanent breakpoint. If the pass count is greater
than 1, SID-286 decrements the pass count and transfers control back
to the program under test.

12-21

12.4 SID-286 Commands Programmer's Utilities Guide

When the pass count reaches 1, SID-286 displays the break address
(that of the next instruction to be executed) in the following form:

*ssss:OOOO .symbol

Once the pass count reaches 1, it remains at 1 until the permanent
breakpoint is cleared or the pass count is changed. with another P
command.

You can suppress the intermediate pass point display with the -G
command (see the G Command in Section 12.4.7). When the -G
command is used, only the final pass points (when the pass count = 1)
are displayed.

You can use permanent breakpoints in conjunction with breakpoints
set with the G command.

Normally, SID-286 does not display the segment registers at pass
points. You can use the S and -S commands to enable and disable
the segment register display (see the S Command in Section 12.4. 18).

The following are examples of the P command:

#p

#p.error

#p.print,17

#-p

#-p.error

12-22

Display active permanent breakpoints.

Set permanent breakpoint at label ERROR.

Set permanent breakpoint at label PRINT with count
of 17H.

Clear all permanent breakpoints.

Clear permanent breakpoint at label ERROR.

Programmer's Utilities Guide 12.4 SID-286 Commands

12.4.16 0 (Quit) Command

The Q .command terminates SID-286 if no process is being debugged.
If a debug process loaded by the E command is running, the Q
command stops the process, but does not terminate SID-286. The
form is as follows:

Q

The Q command stops SID-286 if no process loaded by the E
command is running.

12.4.17 R (Read) Command

The R command reads a file into a contiguous block of memory. The
form is as follows:

Rfilespec

where filespec is an optional pathname and the name of the file you
want to read. When you use the R command, SID-286 automatically
determines the memory location into which the file is read.

When you enter the R command after a process is loaded with the E
command, or from the command line during the debugging process,
the process being debugged is stopped. Similarly, entering an E
command erases the buffered information formed by the R command.

When you enter the R command, SID-286 reads the file into memory,
computes, allocates, and displays the start and end addresses of the
block of memory occupied by the file. You can use the V command to
redisplay this information at a later time. SID-286 sets the default
display pointer for subsequent D commands to the start of the block
occupied by the file.

12-23

12.4 SID-286 Commands Programmer's Utilities Guide

The R command does not free any memory previously allocated by
another R command. Therefore, you can read a number of files into
memory· without them overlapping. When the R command is used,
files are concatenated together in memory in the same order in which
they were read in.

SID-286 issues an error message if the file does not exist or there is
not enough memory to load the file.

The following are examples of the R command:

#rbanner. 286 Read file BANNER.286 into memory.

#rtest Read file TEST into memory.

12.4.18 S (Set) Command

The S command changes the contents of bytes or words of memory
read into SID-286 with the E command, R command, or command line.
The forms are as follows:

Ss
SWs
s
-s

where s is the address where the change occurs.

SID-286 displays the memory address and its current contents on the
following line. In response to the Ss form, the display is

ssss:OOOO bb

where bb is the contents of memory in byte format. In response to
the SWs form, the display is

ssss:OOOO wwww

where wwww is the contents of memory in word format.

12-24

Programmer's Utilities Guide 12.4 SID-286 Commands

You can choose to alter the memory location or to leave it unchanged.
If you enter a valid expression, the contents of the byte (or word) in
memory is replaced with the value of the expression. If you do not
enter a value, the contents of memory are unaffected and the contents
of the next address are displayed. In either case, SID-286 continues to
display successive memory addresses and values until you enter a
period on a line by itself or until SID-286 detects an invalid
expression.

In response to the Ss form, you can enter a string of ASCII characters,
beginning with a quotation mark and ending with a carriage return.
The characters between the quotation mark and the carriage return are
placed in memory starting at the address displayed. No case
conversion takes place. The next address displayed is the address
following the character string.

SID-286 issues an error message if the value stored in memory cannot
be read back successfully, indicating faulty or nonexistent memory at
the location indicated.

The forms S and -S control the display of the segment registers when
the CPU state is displayed with the T (Trace) command and at pass
points. Form S turns on the segment register display and form -S
turns it off. You can turn off the segment register display while
debugging to allow the CPU state display to fit on one line.

The following are examples of the S command.

#s.array+3 Begin set at ARRAY (3)

nnnn:l234 55 0 Set byte to 0.

nnnn:l235 55 'abc' Set three bytes to a, b, c.

nnnn:l238 55 #75 Set byte to decimal 75.

nnnn:l239 55 . Terminate set command .

#s Enable segment register display in CPU
state display.

#-s Disable segment register display in CPU
state display.

12-25

12.4 SID-286 Commands Programmer's Utilities Guide

12.4.19 SR (Search for String) Command

The SR command searches for a string of characters of values within
memory. The forms are as follows:

SRs,f,"string"
SRs,f,value

where s is the starting address to begin searching and f is the
finishing address to end searching.

The SRs,f,"string" form searches for a string of 1 to 30 printable ASCII
characters. The "string" parameter specifies the string to be searched
for. Note that string can use either single (') or double (") quotes.

The SRs,f,value form searches for a numerical hex value anywhere
between 0 and FFFFFFFFh in size. The value parameter must be a
hexadecimal number within the range specified above (leading O's do
not need to be specified).

The size of the field searched depends on the value of the value
parameter according to the following chart:

number between:

0
lOOh
lOOOOh
10000000 ••

FFh
FFFFh
FFFFFFh
FFFFFFFFh

number of bytes in
search pattern:

1
2
3
4

Both the SRs,f,"string" form and the SRs,f,value form of the SR
command can search for the same things, since a numerical value also
equals an ASCII value.

12-26

Programmer's Utilities Guide 12.4 SID-286 Commands

The following are examples of the SR command:

#SR56:00,56:lff ,DOA
search memory starting at 56:00 and ending at
56: 1 FF for a two-byte value consisting of ODh
(Carriage Return) and OAh (line feed).

#SR56:lff,56:d0ff,"ABCD"
search memory starting at 56: 1 FF and ending at
56:d0ff for the character string: ABCD.

#SR56:1ff ,56:d0ff ,41424344
search memory starting at 56: 1 FF and ending at
56:d0ff for a four-byte value consfsting of 41 (A), 42
(B), 43 (C), arid 44 (D).

12.4.20 T {Trace) Command

The T command traces program execution for 1 to OFFFFH program
steps. After each trace, SID-286 displays the current state of the CPU
and the next disassembled instruction to be executed. You must read
programs into SID-286 with the E command or command line. The
forms are as follows:

T
Tn
TW
TWn
-T (with all of the above forms)

where n is the number of program steps to execute before returning
control to the console. If you do not specify the number of program
steps, SID-286 executes a single program step. Pressing any key
stops the trace process.

12-27

12.4 SID-286 Commands Programmer's Utilities Guide

A program step is generally a single instruction, with the following
exceptions:

• If a BOOS interrupt instruction is traced, the entire BOOS function
is treated as one program step and executed in real time. This is
because SI0-286 makes its own BOOS calls and the BOOS is not
reentrant.

• If the traced instruction is a MOV or POP whose destination is a
segment register, the CPU executes the next instruction
imme~iately. This is due to a feature of the 80286 that disables
interrupts, including the Trace Interrupt, for one instruction after a
MOV or POP loads a segment register. This all~ws a sequence
such ~s

MOV SS, STACKSEGMENT
MOV SP, STACKOFFSET

to be executed with no chance of an interrupt occurring between
the two instructions, at which time the stack is undefined. Such a
sequence of MOV or POP instructions, plus one instruction after
the sequence is considered one program step.

• If you use any of the TW forms and the traced instruction is a
CALL, CALLF, or INT, the entire called subroutine or interrupt
handler (and any subroutines called therein) is treated as one
program step and executes in real time.

After each program step is executed, SID-286 displays the current CPU
state, the next disassembled instruction to be executed, the symbolic
name of the instruction operand (if any), and the contents of the
memory location(s) referenced by the instruction (if appropriate). See
the X Command in Section 12.4.24 for a detailed description of the
CPU state display.

12-28

Programmer's Utilities Guide 12.4 SID-286 Commands

If a symbol has a value equal to the instruction pointer (IP), the symbol
name followed by a colon is displayed on the line preceding the CPU
state display. The segment registers are normally not displayed with
the T command, which allows the entire CPU state to be displayed on
one line. Use the S command, as described in Se-ction 12.4.18, to
enable the segment register display. With the segment register
display enabled, the display of the CPU state is identical to that of the
X command.

In all of the forms, control transfers to the program under test at the
address indicated by the CS and IP registers. If you do not specify the
number of program steps, as in form T, one program step is executed.
Otherwise, SID-286 executes n program steps and displays the CPU
state before each step, as in form Tn. You can stop a long trace
before n steps are executed by typing any character at the console.

After n steps are executed, SID-286 displays the address of the next
instruction to be executed, along with the symbolic value of the IP
register (if there is such a symbol) in the following form:

*ssss:OOOO .symbo!

Forms TW and TWn trace execution without breaking for calls to
subroutines. The entire subroutine called from the program being
traced is treated as a single program step and executed in real time.
This allows tracing at a high level of the program, ignoring subroutines
already debugged.

If you precede the command with a minus sign, SID-286 omits
symbolic labels and symbolic operands from the CPU state display.
This can speed up the display by skipping the symbol table lookup
when large symbol tables are loaded.

When a single instruction is being traced, interrupts are disabled for
the duration of the instruction. This prevents SID-286 from tracing
through interrupt handlers when debugging on systems in which
interrupts occur frequently.

12-29

12.4 SID-286 Commands Programmer's Utilities Guide

After a T command, SID-286 sets the list address used in the L
command at the address of the next instruction to be executed.
SID-286 also sets the default segment values to the CS and DS
register values.

The following are examples of the T command:

#t

#tf ff f

#-t#SOO

Trace one program step.

Trace 65535 steps.

Trace 500 program steps with symbolic lookup
disabled.

12.4.21 U Command

The U command, like the T command, is used to trace program
execution. The U command functions in the same way as the T
command, except that the CPU state is displayed after the last set of
program steps have executed, rather than after every step.

The U command works only with programs loaded by the E command
or from the command line. The forms are as follows:

u
Un
uw
UWn
-U (with all of the above forms)

where n is the number of instructions to execute before returning
control to the console. You can stop the U command before n steps
are executed by pressing any key.

Forms UW and UWn trace execution without calls to subroutines. The
entire subroutine called from the program being traced is treated as a
single program step and executed in real time. This allows tracing at
a high level of the program, ignoring subroutines already debugged.

Preceding any of the U command forms with a minus sign causes
SID-286 not to print any symbolic reference information: This allows
the program to execute faster.

12-30

Programmer's Utilities Guide 12.4 SID-286 Commands

The following are examples of the U command:

Trace without display 200H steps. #u200

#-u200 Trace without display 200H steps, suppressing the
intermediate pass point display.

12.4.22 V {Value) Command

The V command displays information about the last file loaded with
the E or R commands, excluding symbol tables loaded with the E
command. The form is as follows:

v

If you load the last file with the R command, the V command displays
the start and end addresses of the file. If you read the last file with
the E command, the V command displays the start and length in bytes
for the code, data, and heap segments.

if an R or E command have not have been used, SID-286 responds to
the V command with a question mark (?).

12.4.23 W {Write) Command

The W command writes the contents of a contiguous block of memory
to disk. This command requires you to first use the R command to
read the data into SID-286. The forms are as follows:

Wfilespec
Wfilespec,s,f

where filespec is an optional pathname and the name of the file you
want to receive the data. The s and f arguments are the first and last
addresses of the block to be written. If you do not specify the
segment in f, SID-286 uses the same value used for s.

12-31

12.4 SID-286 Commands Programmer's Utilities Guide

When you use the Wfilespec form, SID-286 assumes the first and last
addresses from the files read with an R command. This causes all of
the files read with the R command to be written. If no file is read
with an R command, SID-286 responds with a question mark, ?. Use
the Wfilespec form for writing out files after patches are installed,
assuming the overall length of the file is unchanged.

The Wfilespec,s,f form allows you to write the contents of a specific
memory block. The first address of the memory block is specified by
s and the last address of the memory block is specified by f.

If a file with the name specified in the W command already exists,
SID-286 deletes it before writing a new file.

The following are examples of the W command:

#wtest.cmd Write to the file TEST.CMD the contents of the
memory block read into by the most recent R
command.

#wb:test.cmd,40:0,3fff
Write the contents of the memory block 40:0
through 40:3FFF to the file TEST.CMD on drive B.

12.4.24 X {Examine CPU State) Command

The X command allows you to examine and alter the CPU state of the
program under test. The forms are as follows:

x
Xr
Xf

where r is the name of one of the 80286 CPU registers and f is the
abbreviation of one of the CPU flags. The X form displays the CPU
state in the following format:

AX BX ex SS ES IP
---------xxxx xxxx xxxx xxxx xxxx xxxx

instruction symbol name memory value

12-32

Programmer's Utilities Guide 12.4 SID-286 Commands

The nine hyphens at the beginning of the line indicate the state of the
nine CPU flags. Each position can be either a hyphen, indicating that
the corresponding flag is not set (0), or a single-character abbreviation
of the flag name, indicating that the flag is set (1). The abbreviations
of the flag names are shown in Table 3-1.

Table 12-2. Flag Name Abbreviations

Character Name

0 Overflow
D Direction
I Interrupt Enable
T Trap
S Sign
Z ~ro

A Auxiliary Carry
P Parity
C Carry

In the X form, instruction is the disassembled instruction at the next
location to be executed, which is indicated by the CS and IP registers.
If the symbol table contains a symbol whose value is equal to one of
the operands in instruction, the symbol name appears in the symbol
name field, preceded by a period. If instruction references memory,
the contents of the referenced location(s) appear in the memory value
field, preceded by an equal sign. Either a byte, word, or double word
value is shown, depending on the instruction. In addition to displaying
the machine state, the X form changes the values of the default
segments back to the CS and DS register values, and the default offset
for the L command to the IP register value.

The Xr form allows you to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the
16-bit CPU registers. SID-286 responds by displaying the name of the
register followed by its current value. If you type a carriage return,
the value of the register does not change. If you type a valid

12-33

12.4 SID-286 Commands Programmer's Utilities Guide

expression, the contents of the register change to the value of the
expression. In either case, the next register is then displayed. This
process continues until you enter a period or an invalid expression, or
the last register is displayed.

The Xf form allows you to alter one of the flags in the CPU state of
the program being tested. SID-286 responds by displaying the name
of the flag followed by its current state. If you type a carriage return,
the state of the flag does not change. If you type a valid value, the
state of the flag changes to that value. You can examine or alter only
one flag with each Xf command. You set or reset flags by entering a
value of 1 or 0.

The following are examples of the X command.

#xbp
BP=lOOO 2b64
SI=2000 #12345
CS=0040 .

Change registers starting with BP.
Change BP to hex 2B64.
Change SI to decimal 12345.
Terminate X command.

12.4.25 Z (Print 8087 /80287 Registers) Command

The Z command prints out the contents of 8087 and 80287 registers.
The form is as follows:

z
The output generated by the Z command looks like the following:

cw
037F

SW
4100

TW
FFFF

IP
FFEF 07FF

OP
FFFF 0000

0
1
2
3
4
5
6
7

EECO
EECO
EECO
EECO
EECO
EECO
EECO
EECO

12-34

A6B6
A6B6
A6A6
A6B6
A6B6
A6B6
A6B6
A6B6

B596
B55E
B5D6
B55E
B55E
B55E
B55E
B55E

EBBA
EB8B
EBBA
EB8B
EB8B
EBBB
EB8B
EB8B

BAD5
BAD5
BAD5
BAD5
BAD5
BAD5
BAD5
BAD5

Programmer's Utilities Guide 12.4 SID-286 Commands

Where:

CW = Control Word Format
SW = Status Word Format (indicates physical register 0)
TW =Tag Word
IP = 8087 or 80287 Instruction Pointer
OP = Pointer for last operand fetched

An error message appears if no 8087 or 80287 processor is present
when the Z command is given.

12.4.26 ? (List Commands) Command

The ? command prints a list of available SID-286 commands, similar to
the list appearing in Table 1-1. The form is as follows:

?

12.4.27 ?? (List Commands Format) Command

The ?? command prints a detailed command list that includes the
SID-286 commands, and the available command options. The form is
as follows:

??

12.4.28 : (Define Macro) coj nmand

The : command defines or redefines a macro. The form is as follows:

:name;value

where name is the name of the macro used to invoke value, and
value is the command the macro defines.

For example, if you wish to create a macro named "s" that, when
invoked, prints out the contents of the stack, you would define the
macro as follows:

#:s;dwss:sp

12-35

12.4 SID-286 Commands Programmer's Utilities Guide

12.4.29 = (Use Macro} Command

The = command causes SID-286 to use a previously defined macro.
The forms are as follows:

=
=name

The = form prints out the list of existing SID-286 macros and their
definitions (values).

The = name form executes the command associated with name.

For example, to inv.oke the "s" macro defined ·in the example for the
command, enter

#=s

and the contents of the stack will print.

End of Section 12

12-36

SECTION 13

Default Segment Values

13.1 Introduction

SID-286 has an internal mechanism that keeps track of the current
segment value, making segment specification optional when entering a
SID-286 command. SID-286 divides the command set into two types
according to which segment a command defaults if you do not specify
a segment valu.e in the command line .

. 13.2 Type-1 Segment Value

The A (Assemble), L (List Mnemonics), P (Pass Points), and R (Read)
commands use the internal type-1 segment value if you do not specify
a segment value in the command.

When started, SID-286 sets the type-1 segment value to 0 and
changes it when one of the following actions is taken:

• When an E command loads a file, SID-286 sets the type-1
segment value to the value of the CS:IP register.

• When an R command reads a file, SID-286 sets the type-1
segment value to the base segment where the file was read.

• When an X command changes the value of the CS:IP register,
SID-286 changes the type-1 segment value to the new value of
the CS:IP register.

• When SID-286 regains control from a user program after a G, T,
or U command, it sets the type-1 segment value to the value of
the CS:IP register.

• When an A or L command explicitly specifies a segment value,
SID-286 sets the type-1 segment value to the segment value
specified.

13-1

13.3 Type-1 Segment Value Programmer's Utilities Guide

13.3 Type-2 Segment Value

The D (Display), F (Fill), M (Move), and S (Set) commands use the
internal type-2 segment value if you do not specify a segment value
in the command.

When invoked, SID-286 sets the type-2 segment value to 0 and
changes it when one of the following actions is taken:

• When an E command loads a file, SID-286 sets the type-2
segment value to the value of the DS register.

• When an R command reads a file, SID-286 sets the type-2
segment value to the base segment where the file was read.

• When a D, F, M, or S command explicitly specifies a segment
value, SID-286 sets the type-2 segment value to the segment
value specified.

When evaluating programs with identical values in the CS and DS
registers, all SID-286 commands default to the same segment value
unless explicitly overridden.

Table 13-1 summarizes the SID-286 default segment values.

Table 13-1. SID-286 Default Segment Values

Command Default Segment Value

A Current CS:IP of debugged process
B Current display address
C Current display address
D Current display address
E No default values assumed
F Current display address
G Current CS:IP of debugged process
H No default values assumed
I No default values assumed

13-2

Programmer's Utilities Guide 13.3 Type-2 Segment Value

Command

L
M
N
p
Q
R
s
SR
T
u
v
w
x
y

z

Table 13-1. (continued)

Default Segment Value

Current list address
Current display address
Current CS:IP of debugged process
Current CS:IP of debugged process
No default values assumed
Default is beginning address of the file
Current display address
No default values assumed
Current CS:IP of debugged process
Current CS:IP of debugged process
No default values assumed
Default is beginning address of the file
No default values assumed
No default values assumed
No default values assumed
No default values assumed
No default vaolues assumed

End of Section 13

13-3

SECTION 14

Assembly Lan_guage Syntax for A and L Commands

14.1 Assembly Language Exceptions

In general, the syntax of the assembly language statements in the A
and L commands is standard 80286 assembly language. Several minor
exceptions are listed below.

• Up to three prefixes (LOCK, repeat segment override} can appear
in one statement, but they all must precede the opcode of the
statement.· Alternately, a prefix can appear on a line by itself.

• The distinction between byte and word string instructions is made
as follows:

Byte Word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSB CMPSW

• The mnemonics for near and far control transfer instructions are
as follows:

Short Normal Far

JMPS JMP JMPF
CALL CALLF
RET RETF

14-1

14.1 Assembly Language Exceptions Programmer's Utilities Guide

• If the operand of a CALLF or JMPF instruction is an absolute
address, you enter it in the form:

ssss:OOOO

where ssss is the segment and 0000 is the offset of the address.

• Operands that can refer to either a byte or word are ambiguous
and must be preceded either by the prefix "BYTE" or "WORD".
These prefixes can be abbreviated to "BY" and "WO". For
example:

INC
NOT

BYTE [BP]
WORD [1234]

Failure to supply a necessary prefix results in a~ error message.

• Operands addressing memory directly are enclosed in square
brackets to distinguish them from immediate values. For example:

ADD
ADD

AX,5
AX, [5]

;add 5 to register AX
;add the contents of location 5 to A:

• The forms of register indirect memory operands are:

14-2

[pointer register]
. [index register]

[pointer register + index register]

where the pointer registers are BX and BP, and the index registers
are SI and DI. Any of these forms can be preceded by a numeric
offset. For example:

ADD
ADD
ADD

End of Section 14

BX,[BP+SI]
BX,3[BP+SI]

BX, 1 D47[BP+SI]

SECTION 15

SID-286 Sample Sessions

15.1 Introduction

The following sample sessions illustrate the commands and
procedures used to interactively debug three simple programs.

The first example shows how the RASM file, TEST.A86, is debugged
using SID-286.

The second example demonstrates the usage of most of the SID-286
commands when debugging a compiled CBASIC file.

The third session demonstrates how SID-286 is used to patch code in
the executable file. ·

In the SID-286 sessions illustrated below, remarks appear in regular
print; user input and SID-286 generated output are shown in oblique
print.

15.2 SID-286 Session #1

The following RASM program, TEST.A86, is written to print "polly want
a cracker" to the screen fifteen times and then exit to the operating
system.

This same file is provided on your distribution disk. As you study this
session, try duplicating the steps illustrated by actually using SID-286
to debug the TEST.A86 file.

15-1

15.2 SID-286 Session #1 Programmer's Utilities Guide

Type RASM source file, TEST.A86:

A> type test.a86

test.a86

dseg
parmblk db 0 parameter block for Write SVC
option db 0 zero out
flags dw 200h flags to write to screen
swi dw 0,0 no software interrupts
fnum dw 1 ,0 logical f; 1 e num of stdout
bufo dw 0 message buf address off set
bufs dw 0 message buffer address
bufsz dw 23,0 size in bytes of msg buf
offs dw 0,0

mssg db 'poll y want a cracker', 10, 13,0

pat ht dw 0

CODE cseg

start: mov ax, ds get value of ds register
print: mov bufs, ax that is seg of mssg

mov bx, ax also use for int 220 cal 1
lea ax, mssg get offset value
mov bufo. ax write into pa ram block
mov ex, 8 write SVC # is B

1 cop: lea ax, parmblk offset of pa ram block
int 220 write to the screen
inc pat ht loop control
cmp word ptr pat.ht, 15
jne loop print message out 15 times

exit: mov ex, 25 exit SVC # is 25
mov bx, ds segment val
lea ax, swi offset val
int 220 exit and return to the OIS

end

15-2

Programmer's Utilities Guide 15.2 SID-286 Session #1

Assemble TEST.A86 using RASM-86 by entering the following
command:

A>rasm86 test

RASM-86 creates an OBJ file. . Link TEST.OBJ using LINK 86 with the
LOCALS option as follows:

A>link86 test [locals]

LINK 86 generates an executable file with a .CMD filetype and a symbol
table file with a .SYM filetype.

After running TEST.CMD, it should print "polly want a cracker" only
once before returning control to the operating system. Review the
program's source code to see if you can discover the nature of the
problem.

Now, use the SID-286 debugger to isolate the cause of the program
failure.

Enter SID-286, loading TEST.CMD and TEST.SYM as follows

A> sid test test

SID-286 12/19/84
Serial #XXXX-0000-654321
Copyright 1985

Version 1 .0
Al 1 Rights Reserved

Digital Research Inc.

Symbols

code
data
heap

address
3878:0000
3876:0000
0000:0000

length
00000030
00000140
00000000

15-3

15.2 SID-286 Session # 1 Programmer's Utilities Guide

Display 12 disassembled instructions from the current address to get
oriented to the sequence of instructions:

#1
START:
3878:0000 MOV AX,DS
PRINT:
3878:0002 MOV [010E] ,AX .BUFS
3878:0005 MOV BX,AX
3878:0007 LEA AX, [O 118] .MSSG
3878:0008 MOV [010C] ,AX .BUFO
3878:000E MOV CX,0008
LOOP:
3878:0011 LEA AX, (0100] .PARMBLK
3878:0015 INT DC
3878:0017 INC WORD [012F] .PATHT
3878:0018 CMP WORD [012F] ,OOOF .PATHT
3878:0020 JNZ 0011 .LOOP
EXIT:
3878:0022 MOV CX,0019

Looks fine. Trace the non-segment register values through 5
instruction steps.

#t5
PRINT:
------I-".'3876 0000 0000 0000 0060 0000 0000 0000 0002 MOV [010E] ,AX .BUFS
------I--3876 0000 0000 0000 0060 0000 0000 0000 0005 MOV BX,AX,
------I--3876 3876 0000 0000 0060 0000 DODO DODO 0007 LEA AX, [0116] .MSSG
------I--0118 3876 0000 0000 0060 0000 0000 0000 OOOB MOV [OlOC] ,AX .BUFO
------I--0118 3876 0000 0000 0060 0000 0000 0000 CODE MOV CX,0008
3878:000E

No problem here. Check 24 bytes (in word format) of PARMBLK
(parameter block) data for the Write SVC:

dw.parmblk,+18
3876:0100 0000 0200 0000 0000 0001 0000 0118 3876
3876:0110 0017 0000 0000 0000

.............. {8

Looks good.
steps:

Trace the program execution for several instruction

#t
LOOP:
------I--0118 3876 0008 0000 0060 0000 0000 0000 0011 LEA

15-4

AX, [0100] ,PARM6LK

Programmer's Utilities Guide 15.2 SID-286 Session # 1

3878:0011

No problem

#t

------I--0100 3876 0006 0000 0060 0000 0000 0000 0015 INT DC
3878:0015

The interrupt returned 17H, indicating that all 23 letters were
successfully written to the screen. So far, so good.

#t

------I--0017 0000 0008 4892 0060 0000 0000 0000 0016 CMP
3878:0016

WORD [012F] ,OOOF .PATH'

The last instruction incremented the variable PATHT. Check that
PATHT has a value of 1 by displaying (in word format) 2 bytes of data,
starting at location PATHT:

#dw.patht,+2

3876:012F 0001

Looks fine. Maybe the wrong jump instruction was used. Trace the
execution one more step and see how the loop works:

#t

C-A-S-I--0017 DODO 0008 4892 0060 0000 0000 0000 0020 JNZ 00 1 1 . LOOP
3878:0020

No problems. Trace execution for 1 one more instruction step:

#t
LOOP:
C-A-S-I--0017 0000 0008 4892 0060 0000 0000 0000 0011 LEA
3878:0011

Display the current instruction list:

#l

LOOP:
3878:0011 LEA AX, (0100] .PARM6LK
3878:0015 INT DC
3878:0017 INC WORD [012F] .PATHT
3878:0018 CMP WORD [012F] ,ODOF .PATHT
3878:0020 JNZ 0011 .LOOP
EXIT:
3878:0022 MOV CX,0019
3878:0025 MOV 8X,DS
3878:0027 LEA AX, (0104] .SWI

AX,(0100] .PARM8LK

15-5

15.2 SID-286 Session # 1

3878:0026
3878:0020
3878:002F

INT
ADD
ADD

DC
[BX+SI) ,AL

[8X], CL

Programmer's Utilities Guide

One more instruction and the program should interrupt to the Write
SVC. Trace the execution of the interrupt instruction:

#t
C-A-S-I--0100 0000 0008 4892 0060 0000 0000 0000 0015 INT OC
3878:0015

That's the problem! The BX register is not properly set up for the
Write SVC call. The BX register contains a value of 0000, instead of
3878, which is the value of DS. As a result, the program fails to locate
the parameter block, PARMBLK, at its actual address: 3878:0100.

Now that we have found the source of the error, exit SID-286:

#q

Debugged process aborted

#q

How did the location of the parameter block get lost? The BX register
was written over by the interrupt return error code. Since no
parameter block exists at 0000:0100, the interrupt to the Write SVC
returns with an error code and nothing is written. This happens
fourteen times before the program terminates.

To fix the problem copy TEST.A86 to a ratable disk. Then re-edit it,
putting the value of the DS register (3878) in the BX register each time
before calling the interrupt.

The re-edited source file should look like the following:

test.a86:

dseg
parmblk db
option db
flags dw
swi dw
fnum dw
bufo dw
buf s dw

15-6

0
0
200h
0,0
1'0
0
0

parameter block for Write SVC
zero out
flags to write to screen
no software interrupts
logical file num of stdout
message buf address offset
message buffer address

Programmer's Utilities Guide 15.2 SID-286 Session # 1

bufsz
offs

mssg

pat ht

CODE

start:
print:

loop:

exit :

end

dw
dw

db

dw

cseg

mov
mov
mov
lea
mov
mov
lea
mov
int
inc
cmp
jne

mov
mov
lea
int

23,0
0,0

size in bytes of msg buf

'pol ly want a cracker', 10, 13,0

0

ax, ds
bufs, ax
bx, ax
ax, mssg
bufo, ax

c x' 8
ax, parmblk
bx, ds
220
pat ht
word ptr patht,
loop

ex, 25
bx, ds
ax, swi
220

get value of ds register
that is seg of mssg
also use for int 220 call
get offset value

; .write into param block
write SVC # is 8

15

offset of param block
high word of param block
write to the screen
loop control

print message out 15 times

exit SVC # is 25
segment val
offset val
exit and return to the O/S

Recompile and relink TEST.A86 using RASM-86 and LINK 86. Since the
file is on a separate disk, you must designate the correct pathname of
the TEST.A86 file when entering the RASM-86 and LINK 86 commands.

Execute TEST.GMO again to confirm it is working correctly.

15-7

15.3 SID-286 Session #2 Programmer's Utilities Guide

15.3 SID-286 Session #2

The following example illustrates how a compiled and linked CBASIC
file is debugged using SID-286. The procedures used in this example
are similar to those used when debugging the command files
generated by other high-level programs.

When the executable file is run, nothing happens. The purpose of this
SID-286 session is to demonstrate a variety of SID-286 commands in
the process of isolating the cause of the program failure.

Begin SID session:

A>

A> Sid

SID-286 12/19/84
Serial #XXXX-0000-654321
Copyright 1985

Version 1.0
All Rights Reserved

Digital Research Inc.

Load the command file BANNER.286 and the symbol file BANNER.SYM:)

#e banner banner

Symbols

code
data
heap

address
3006:0000
3FDB:OOOO
0000:0000

length
00002050
00000840
00000000

Note that it was not necessary to enter the .286 or .SYM filetypes for
either the command or the symbol file.

15-8

Programmer's Utilities Guide 15.3 SID-286 Session #2

In order to become oriented to the program, list 12 disassembled
instructions from current list address:

#l
3DD6:0000 JMP 0005
3DD6:0D03 NOP
3DD6:0004 NOP
3DD6:0005 MOV DX.0396
3DD-6:0008 MOV BX,092B
3DD6:000B CALL 05E7 .?!NIT
3DD6:000E MOV BX,05BA
3DD6:0011 CALL 06A7 .?ONER
3DD6:0014 MOV DX,092C .UCOMON
3DD6:0017 MOV BX,015C
3DD6:001A CALL 1Cl6 .?TSMM
3DD6:001D XOR AX,AX

Display instruction list starting at the first procedure, ?INIT.

#l.?init
?INIT:
3DD6:05E7 MOV [O 113], DX .?SDAT
3DD6:05EB MOV [0115], BX .?EDAT
3DD6:05EF MOV WORD [0970] ,FF01 • 7 COLUMN
3DD6:05F5 CLO
3DD6:05F6 POP ex
3DD6:05F7 MOV AX,DS
3DD6:05F9 MOV ES,AX
3DD6:05FB MOV BX, [01 04] .?MEMRY
3DD6:05FF ADD BX,0100
3DD6:0603 JB 05E4
3006:0605 CMP BX, [0006]
3006:0609 JNB 05E4

Find out what is in ?MEMRY by displaying 2 bytes of data starting at
location ?MEMRY:

#d.?memry,+2
3FDB:0104 3F OB ? .

Find out what is in ?SDAT by displaying 4 bytes of data starting at
location ?SDAT:

#d.?sdat,+4
3FDB:0113 00 00 00 00

15-9

15.3 SID-286 Session #2 Programmer's Utilities Guide

Find out what is in ?COLUMN by displaying (in word format) 16 bytes
of data starting at location ?COLUMN:

#dw .?column,+10
3FDB:0970 0000 0000 0000 0000 0000 0000 0000 0000

Examine present condition of CPU:

#x

AX BX ex DX SP BP SI DI cs DS SS ES IP
------I--0000 0000 0000 0000 0060 0000 0000 0000 3DD6 3FDB 3887 3FDB 0000
JMP 0005

Display the instruction list from current address:

#1

3DD6:0000 JMP 0005
3DD6:0G03 NOP
3DD6:0004 NOP
3DD6:0005 MOV DX,0396
3DD6:0008 MOV BX,092B
3DD6:000B CALL 05E7 .?!NIT
3DD6:000E MOV BX,05BA
3DD6:0011 CALL 06A7 .?ONER
3DD6:0014 MOV DX,092C .UCOMON
3DD6:0017 MOV BX,015C
3DD6:001A CALL 1C16 . ?TSMM
3DD6:001D XOR AX,AX

Check if the program executes correctly before the ?INIT procedure by
setting a breakpoint at ?INIT and executing the program from the
beginning:

#g, .?init
3DD6:05E7

15-10

.?!NIT

Programmer's Utilities Guide 15.3 SID-286 Session #2

Everything seems OK. Take another look at ?INIT:

#l
?INIT:
3DD6:05E7 MOV [0113],DX . ?SDAT
3DD6:05EB MOV [O 115), BX . ?EDAT
3DD6:05EF MOV WORD [0970) .FF01 .?COLUMN
3DD6:05F5 CLD
3DD6:05F6 POP ex
3DD6:05F7 MOV AX,DS
3DD6:05F9 MOV ES,AX
3DD6:05FB MOV BX, [0104) .?MEMRY
3DD6:05FF ADD BX,0100
3DD6:0603 JB 05E4
3DD6:0605 CMP BX,[0006)
3DD6:0609 JNB 05E4

Trace execution for 2 instruction steps and display resulting CPU state:

#u2

------I--0000 0928 0000 0396 DOSE 0000 0000 0000 OSEB MOV [0115],BX .?EDAT
3DD6:05EF

Find out what the contents of the DX and BX registers overwrites by
displaying (in word format) 4 bytes of data starting at address 0113:

#dwJ13,+4
3FDB:0113 0396 092B • 8 + ~

Trace execution for 4 instruction steps and display resulting CPU state:

#u4
------I--0000 092B 0000 0396 005E 0000 0000 0000 05F5 CLD
3DD6:05F9

Examine the current condition of CPU:

#x

AX BX ex DX SP BP SI DI cs DS SS ES IP
------I--3FDB 092B OOOE 0396 0060 0000 0000 0000 3DD6 3FDB 408F 3FDB 05F9
MOV ES,AX

15-11

15.3 SID-286 Session #2 Programmer's Utilities Guide

Trace execution for 5 instruction steps, displaying current state of CPU
after each trace:

#t5
------I--3FDB 092B OOOE 0396 0060 0000 0000 0000 05FB MOV BX, [0104]
------I--3FDB OB3F DODE 0396 0060 0000 0000 0000 05FF ADD BX,D100
-P--'--I--3FDB OC3F DODE 0396 0060 0000 DODO 0000 0603 JB 05E4
-P----I--3FOB OC3F DODE 0396 0060 0000 0000 0000 0605 CMP BX,(0006]
-P----I--3FDB OC3F OOOE 0396 0060 0000 0000 0000 0609 JNB 05E4
30D6:0609

Display instruction list from current address:

#l
30q6:0609 JNB 05E4
3D06:060B MDV SS.AX
30D6:060D MDV SP.BX
30D6:060F PUSH ex
30D6:0610 CALL 0699 .?REST
3006:0613 CMP BYTE [O 112], 01
30D6:0618 JNZ 068E
30D6:061A DEC BYTE [D 1121
3DD6:061E MOV [01 OC], BX .?FSA
3006:D622 MDV DI,[0106] . ?UCOM
3DD6:0626 SUB AL,AL
3DD6:0628 MOV CX,BX

Do we jump on JNB? Trace execution for 1 instruction step to find
out:

#t
-P----I--3FDB OC3F DODE 0396 0060 0000 0000 0000 05E4 JMP 07B6
3DD6:05E4

Yes, the JMP instruction executed as expected. Display instruction list:

#1
3DD6:05E4 JMP 07B6
?INIT:
3DD6:05E7 MOV [0 113] , DX . ? SDAT
30D6:05EB MOV [0115] ,BX . ?EDAT
30D6:05EF MOV WORD (0970] ,FFOl .?COLUMN
3DD6:05F5 CLD
3DD6:05F6 POP ex
30D6:05F7 MOV AX,DS
3DD6:05F9 MOV ES,AX
3DD6:05FB MOV BX, (0104] .?MEMRY
3D06:05FF ADD BX,0100

15-12

. ?MEMRY

Programmer's Utilities Guide 15.3 SID-286 Session #2

3006:0603
3006:0605

JB
CMP

05E4
BX, [0006]

Determine what happens after the JMP 0786 instruction by tracing
execution for 1 instruction step:

-P----I--3FD8 OC3F OOOE 0396 0060 0000 0000 0000 0786 MOV
3006,0786

Display instruction list:

#1

3DD6:07B6 MOV CX,4F4D
3DD6:07B9 JMP 0608 .?EROR
?RELS:
3DD6:078C DEC BX
3DD6:07BD DEC BX
3DD6:07BE MOV ex, [BxJ
3DD6:07CO MOV SI,[OlOE]
3DD6:07C4 CMP SI,BX
3DD6:07C6 JB 07CB
3DD6:07C8 MOV SI, 011 A .?AVAIL
3DD6:07CB MOV [010E],SI
3DD6:07CF MOV SI, [SI]
3006:0701 OR SI,SI

CX.4F40

Trace execution for 2 instruction steps and .display resulting CPU state
after jumping to the ?EROR procedure:

#u2
-P----I--3FDB DC3F 4F4D 0396 0060 0000 0000 0000 078 ?1 ? ?1 ?9 JMP
3006:0608

Display instruction list starting at the ?EROR procedure:

#l

?EROR:
3006:0608 MOV AX,[0966]
3006:0608 MOV [0968] ,AX
3DD6:06DE MOV AX,[096A]
3DD6:06E1 OR AX,AX
3DD6:06E3 JZ 06EF
3DD6:06E5 MOV [096C],CX
3DD6:06E9 MOV SP, [OlOC] .?FSA
3DD6:06ED JMP AX
3DD6:06EF PUSH ex
3DD6:06FO MOV CL,09
3DD6:06F2 MOV DX,011E

0608 .?EROR

15-13

15.3 SID-286 Session #2 Programmer's Utilities Guide

3DD6:06F5 CALL 0694 .?BOOS

Begin execution at the beginning of the ?EROR procedure and set a
breakpoint on the JZ instruction at address 06E3:

#g,6e3
3DD6:06E3

Does the jump occur ? Trace execution for 1 instruction step and find
out:

#t
-P-Z--I--0000 OC3F 4F4D 0396 0060 0000 0000 0000 06EF PUSH ex
3DD6:06EF

Yes, the jump occurred.
address:

Display the instruction list from current

#1
3DD6:06EF PUSH ex
3DD6:06FO MOV CL,09
3DD6:06F2 MOV DX. 011 E
3DD6:06F5 CALL 0694 .?BOOS
3DD6:06F8 POP DX
3DD6:06F9 PUSH DX
3DD6:06FA XCHG DH,DL
3DD6:06FC MOV CL,02
3DD6:06FE CALL 0694 .?BOOS
3006:0701 POP DX
3006:0702 MOV CL,023006:0704 CALL 0694 .?BOOS

How does the stack look at this point ? Display (in word format) the
contents of the stack:

#dwss:sp
The stack is presently empty

How will the stack look after the PUSH CX instruction ? Trace
execution for 1 instruction step

#t
-P-Z--I--0000 OC3F 4F4D 0396 005E 0000 0000 0000 06FO MOV
3DD6:06FO

.... and redisplay the contents of the stack:

#dwss:sp
408F:005E 4F4D

15-14

CL,09

MO

Programmer's Utilities Guide 15.3 SID-286 Session #2

The CX register's value of 4F4D is now on the stack. Begin execution
and set a breakpoint on the POP DX instJuction at address 06F8:

#g,6f8
3DD6:06F8

What is the current condition of the CPU ?

#x

AX BX ex DX SP BP SI DI cs DS SS ES IP
-P-Z--I--0000 OC3F 4F09 01 lE 005E 0000 0000 0000 3DD6 3FDB 408F 3FDB 06F8
POP DX

Check the stack again:

#dwss:sp
408F:005E 4F4D MO

Good, no change. Display instruction list from current address:

#1
3DD6:06FB
3DD6:06F9
3DD6:06FA
3DD6:06FC
3DD6:06FE
3006:0701
3006:0702
3006:0704
3006:0707
3DD6:070A
3DD6:070C
3DD6:070F

POP
PUSH
XCHG
MO'v'

CALL
POP
MOV
CALL
MOV
MOV
CALL
POP

DX
DX
DH, D0L
CL,02

0694 .?BOOS
DX
CL,02
0694 .?BOOS
DX,0127
CL,09
0694 .?BOOS
AX

Now, trace what happens with the next two POP and PUSH
instructions.

#t2
-P-Z--I--0000 OC3F 4F09 4F4D 0060 0000 0000 0000 06F9 PUSH
-P-Z--I--0000 OC3F 4F09 4F4D 005E 0000 0000 0000 06FA XCHG
3DD6:06FA

DX
OH,OL

Everything seems alri"ght. Now begin execution and set a breakpoint
on the POP DX instruction at address 0701:

#g,701
3DD6:0701

Display instruction list from current address:

15-15

15.3 SID-286 Session #2

#l

3006:0701 POP DX
3006:0702 MOV CL,02
3006:0704 CALL 0694 .?BOOS
3006:0707 MOV DX,0127
3DD6:070A MOV CL,09
3DD6:070C CALL 0694
3DD6:070F POP AX
3006:0710 DEC AX
3DD6: 0711 DEC AX
3006:0712 DEC AX
3006:0713 PUSH AX
3006:0714 XCHG AL,AH

Check the stack again:.

#dwss:sp
408F:005E 4F4D

.?BOOS

Programmer's Utilities Guide

MO

Looks OK. Execute and set a breakpoint on the POP AX instruction at
address 070F:

#g,70f
3DD6:070F

Display instruction list:

#1

3DD6:070F POP AX
3DD6:0710 DEC AX
3DD6: 0711 DEC AX
3006:0712 DEC AX
3DD6:0713 PUSH AX
3006:0714 XCHG AL,AH
3006:0716 CALL 0727
3DD6:0719 POP AX
3D06:071A CALL 0727
3D06:071D MOV CL,02
3D06:071F MOV OL,48
3006:0721 CALL 0694 .?BOOS

Before executing the POP AX instruction, check the contents of the
stack and see what value will be put into the AX register.

#dwss:sp
The stack is presently empty

Aha! There is nothing on the stack, the POP AX instruction makes the
program fail. This is probably the result of a linker error.

15-16

Programmer's Utilities Guide 15.3 SID-286 Session #2

Exit SID

#q

Debugged process aborted

#q

15.4 SID-286 Session #3

The following SID-286 session operates on a compiled and linked
CBASIC program. The resulting command file will not load. Using
SID-286, the executable format of the file is changed (patched) without
recompiling and relinking the program.

Begin SID-286 session:

A> sid

SID-286 12/19/84
Serial #XXXX-0000-654321
Copyright i 985

Version 1 .0
All Rights Reserved

Digitai Research Inc.;.

Read the file STRIP.286 into SID-286.

#r strip.286

begin
33F5:0000

end
33F5:2CBO

15-17

15.4 SID-286 Session #3 Programmer's Utilities Guide

Display, in word format, the instruction list from the current address:

#dw

33F5:0000 7301 0002 7300 0002 0200 0049 0000 0049 .s ... s I. .. I.
·33F5: 00 l 0 1000 0000 0000 0000 0000 0000 0000 0000 ~ ..
33F5:0020 0000 0000 0000 0000 0000 0000 0000 0000 '"
33F5:0030 0000 0000 0000 0000 0000 0000 0000 0000
33F5:0040 0000 0000 0000 0000 0000 0000 0000 0000 •••••••••••• 0 .. ~ •

33F5:0050 0000 0000 0000 0000 0000 0000 0000 0000
33F5:0060 OQOD 0000 0000 0000 0000 0000 0000 0000
33F5:0070 0000 0000 0000 0000 0000 0000 0000 0000 •••••••••••••• 0.

33F5:0080 02E9 9000 BA90 0238 38BB E802 013F 24BB 8 .• 8 .. ?,,$

33F5:0090 E801 01F9 77E8 8610 BADS 0238 16E8 8610 ••••• w •••• 8
33F5:00AO 3816 8602 3A1E E802 1CC1 OE75 5CB8 E801 .8 ... : u .. \ •.

Set the number of bytes displayed by the D command to 32.

#-d20

Display 32 bytes of disassembled instructions, starting at offset 0000.

#dO

33F5:0000 01 73 02 00 00 73 02 00 00 02 49 00 00 00 49 00
33F5:0010 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00

.s ... s I. .. I.

Use the S (Set) command to change the contents of memory, starting
at offset 0010:

#slO
33F5:0010

33F5:0011

33F5:0012

15-18

00

10

00

carriage return means no change

0 change 10 to 0

exit set environment

Programmer's Utilities Guide 15.4 SID-286 Session #3

Confirm change by redisplaying 32 bytes of instructions, starting at
offset 0000.

#dD

33F5:000D 01 73 02 OD 00 73 02 00 00 02 49 00 00 00 49 00
33F5:0010 00 00 00 OD 00 00 00 00 DO DO OD OD DO DO OD OD

.s ... s I. .. I.

Write the altered STRIP.286 file to disk under the filename STRIP1.286.

#w stripl .286

Exit SID-286

#q

End of Section 15

15-19

Appendix A

Example RASM-86 Source File

This example RASM-86 source files is provided to illustrate some of
the characteristics unique to RASM-86.

eof
cdosi
bsize

cseg

start:

loop:

Listing A-1. RASM-86 Sample for FlexOS 286

display the contents of an ascii file at the console

equ
equ
equ

cal 1

call

mov

ca 11
ca 11
jmps

lah
220
80h

open

f i l buf

bx,offset inbuff

chkchr
write
loop

;refill buffer from file

A-1

A Example RASM-86 Source File Programmer's Utilities Guide

chkchr: mov
cmp
jz

cmp

je
inc
jmp

nextb: ret

f i lbuf: mov
mov
mov
int
mov
ret

open: mov
mov
mov
int

mov
mov

ret

write: mov
mov
mov
int
ret

close: mov
mov
mov
int
ret

A-2

Listing A-1. (continued)

si,bptr
byte ptr[bx+si],eof ;check next character in buffer
lastrec

bptr,bsize

nextb
bptr
chkchr

cx,7
ax.offset readpblk
bx,seg readpblk
cdosi
bptr,0

cx,5
ax,offset openpblk
bx,seg openpblk
cdosi

lofnum,ax
hifnum,bx

cx,8
ax.offset wrtpblk
bx,seg wrtpblk
cdosi

cx,6
ax.offset closepblk
bx,seg closepblk
cdosi

; re.ad a re co rd

;open a file

;save the file number
; for the read

;write to the screen

Programmer's Utilities Guide A Example RASM-86 Source File

lastrec:dec
mov
mov
ca 11
ca 11

done: mov
mov
mov
int

dseg

bptr

wrtpblk

bf size

openpblk

fname

Listing A-1. (continued)

bptr
dx,bptr
bfsize,dx
write
close

cx,25
ax,0
bx,0
cdosi

dw bsize

db 0
db 0
dw 0
dw 0,0
dw 1 n
dw offset

;reset

inbuff
dw seg inbuff
dw bsize
db 0
dw 0
dw 0,0
dw 0,0

db 0
db 0
dw 08
dw 0,0
dw offset fname
dw seg fname
dw 0

function

;mode
;option
;flags
;swi
:fnum
;buffer

;buffer size

;offset 0
;parm 7

;mode
;option

;reserved
;address of
; f i 1 e name

db 'b:testfi le.dat'
dw 0
db 0
dw 0

A-3

A Example RASM-86 Source File Programmer's Utilities Guide

readpblk

lofnum
hifnum

inbuff

closepblk

sseg

end

A-4

db
db
dw
dw
dw
dw
dw
dw
dw
dw
dw
rs
db

db
db
dw
dw
dw

rs

Listing A-1. (continued)

0 ;mode
0 ;option
0000000100000001b
0,0 ;swi
0 ;fnum
0
off set inbuff ;buffer
seg inbuff
128,0 ;buffer size
0,0 ;offset = 0
0,0 ;delimiters 7

128
0

0 ;mode
0 ;option
0,0 ; ful 1 close
word ptr lofnum ;fnum
word ptr hifnum

200h

End of Appendix A

Appendix B

Creating Shared Runtime Libraries

8.1 Shareable Runtime Libraries

This appendix describes the procedures for creating and modifying
shareable runtime libraries (SRTLs). SRTLs allow multiple users to
share a single copy of library code at runtime. This makes it
unnecessary for each user to store library code in his command file.
When libraries are shared, only references to the library code are
linked with the user's object files.

Before attempting to create or modify shareable runtime libraries, you
should be familiar with the 80286 architecture, memory models, and
calling conventions. You should also be familiar with conventions
used when writing reentrant code.

You can write most shareable runtime library code in C, or most other
high level languages. The only code that cannot be written in a high
level language is the transfer vector code, which handles the calls
from the user program to the SRTL routines. Transfer vector code
should be written in 80286 assembly language.

See Section 7 in this manual for a description on how to link
shareable runtime libraries with your object files.

8.2 SRTL Components

A SRTL consists of two types of files:

Shareable Runtime Library File

XSRTL Code File

This linkable file contains the basic shareable object
code created by LIB-86.

This is an .executable version of the SRTL created by
LINK 86.

. B-1

8.2 SRTL Components Programmer's Utilities Guide

The remainder of this appendix describes how to create these two
files.

B.3 Creating a SRTL

This section describes the steps for creating a SRTL. The steps listed
below are described in detail in the following sections.

1. If you plan to compile the SRTL using a large memory model2,

you must modify the source of the library routines to use the
proper calling conventions.

2. Create the transfer vectors.

3. Compile the source for the library routines and transfer vectors to
get object modules.

4. Create the LIBATTR module.

5. Use LIB-86 to create the SRTL.

6. Use LINK 86 to create an executable SRTL (XSRTL).

B.3.1 Modifying the Source

You must modify the library source if the SRTL is to operate with the
large memory model. If the large memory model is used, two
modifications are required:

1. The formal parameter lists of the entry point routines in the SRTL
must include three extra words of parameters. These parameters
provide "placeholders" for the extra information inserted onto the
stack by the transfer vector (see Section B.3.2).

2The type of memory model you use i's dependent on your compiler. In its usage here,
a large memory model refers to a memory model that allocates multiple code, data,
and heap segments, as well as a separate segment for the stack.

B-2

Programmer's Utilities Guide B.3 Creating a SRTL

2. Any intra-library calls to the entry point routines must have three
words added to the actual parameter list, preceding the "real"
parameters, so local calls emulate the stack activity of external
calls through the transfer vectors.

3. If transfer vectors are used, intermediate names must be put in
the library. This is also true for small memory model3 SRTLs
using a transfer vector at the beginning of the library in order to
make all entry points constant(.

Using C conditional compilation statements, a single set of sources
could be used for both shareable and nonshareable libraries, as shown
below:

#ifdef NonShareable
strcpy (to, from)

#else

#endif

char *to, *from;

strcpy (dl, d2, d3, to, from)
WORD dl, d2, d3;
char *to, *from:

#ifdef NonShareable
strcpy (source, target);

#else
strcpy (0, 0, 0, source, target);

#endif

31n its usage here, a small memory model refers to a memory model that allocates a

single segment for the program's data, heap, and stack.

B-3

B.3 Creating a SRTL Programmer's Utilities Guide

B.3.2 Creating the Transfer Vectors

The transfer vector calling conventions described in this appendix are
among many possible conventions for handling calls between user
programs and SRTLs. The calling conventions you use depend on your
application and your programming style. However, the transfer vector
calling conventions described in this section have been tested and are
recommended by Digital Research.

There are two types of transfer vectors: User and SRTL.

User Transfer Vector

If the user program uses a large memory model SRTL, calls to the
SRTL routines must first pass through a transfer vector. This transfer
vector, referred to as a User Transfer Vector, stores the value of the
user program's DS register and loads the SRTL's DS register prior to
entering the SRTL. Upon exiting the SRTL, the transfer vector restores
the user program's DS register. The user transfer vector must reside
in the user program's code space and must have a separate entry for
each entry point into the SRTL.

See Section B.5 for more information on User Transfer Vectors.

SRTL Transfer Vector

If either memory model is being used, you can create an optional SRTL
Transfer Vector that resides in the SRTL. This transfer vector is a
collection of jumps that establish the SRTL entry points at fixed
locations. By making an entry point into the SRTL a fixed location
(constant virtual address), the user programs do not have to be
relinked each time a change is made to the library.

There must be an entry in the SRTL Transfer Vector for each entry
point into the SRTL.

B-4

Programmer's Utilities Guide B.3 Creating a SRTL

To make SRTL entry points constant, any object modules containing
the SRTL transfer vector must appear immediately after the LIBATTR
module in the SRTL.

B.3.3 Creating the Object Modules

This step_ involves compiling the library source files to create library
object files. Ensure that any compiler options required to generate the
object files using the correct memory model are set.

B.3.4 Creating the LIBATTR Module

Each SRTL is associated with a specific set of attributes. These
attributes include:

• the SRTL's name
• the SRTL's version number
• the location of the SRTL's data when the small memory model is

used
• whether the SRTL is shared or not shared by default

The attributes of a SRTL are established by including a module with
the name "LIBATTR" as the first module in the SRTL library file. The
LIBATTR module must always be specified as the first module in the
list.

The only contents of the LIBATTR module should be a single data
segment which also has the name "LIBATTR". The contents of this
segment must have the format indicated by the lib _id and lib _attr
structures described in the following listing. The equivalent form in
RASM-86 code appears in the example at the end of this appendix.

B-5

B.3 Creating a SRTL Programmer's Utilities Guide

struct lib id {
char
unsigned
unsigned
unsigned

} ;

short
short
long

li name[8];
li-ver major;
li-ver-minor;
li=flags;

~truct lib attr {
lib id
unsTgned
char

} ;

short
la id;
la-data offset;
la=:share_attr;

#define la s shared Oxl

LIB ID Structure

The lib id structure defines the fields used to identify the SRTL
including its name, version numbers and some flags. The lib _id fields
are:

Ii name

Ii_ ver _major

Ii ver minor

8-6

This name is the physical name of the XSRTL to be
specified by the users of the SRTL. If this field is
nonblank, the library is a SRTL, otherwise the library
is a normal library. This field must be exactly 8
bytes long, including trailing blanks.

This is the major version number. It should be
updated when there are major changes to a library
making it incompatible with previous versions.
When a user of this SRTL is loaded, the loader
verifies that the major version number requested by
the user is identical to that of the XSRTL.

This is the minor version number. It is updated
when changes to the library do not create
incompatibilities with previous versions. The minor
version number specified in a user program does
not have to exactly match that specified in the
XSRTL.

Programmer's Utilities Guide B.3 Creating a SRTL

li_flags

li_f _ cmd (OxO)

li_(286 (Ox1)

li_f _ exe (Ox2)

This field contains flags that distinguish different
variants of the library from one another. Currently,
only the lower order 6 bits have been assigned
values. The following flags are available:

This flag informs LINK 86 that the code file should
have the filetype CMD. If this, or any other value is
specified to a version of LINK 86 that cannot
generate that style of code file, an error is
generated. For example, the LINK 86 that generates
CMD and 286 files cannot generate an EXE file and
vice versa.

This flag . informs LINK 86 the suffix of the code file
should be 286.

This flag informs LINK 86 the suffix of the code file
should be EXE.

(Ox3 through OxF) These values are unassigned and cause an error if
specified in a LIBATTR module.

li_f_dup_main (Ox10)

li_f _ ds _stack (Ox20)

This value informs LINK86 that duplicate definitions
of the symbol "main" are permitted and should not
generate errors.

This value informs LINK86 the stack appears at the
low end of the data segment. When this bit is set,
the value of the data_offset field represents the size
of this stack. If multiple LIBATTR modules are
found, the smallest data offset value is used. Data is
allocated above the stack and the public variable
?STACK, if present, is initialized to the size of the
stack. The variable ?STACK is assumed to be
allocated a word (2 bytes).

B-7

B.3 Creating a SRTL Programmer's Utilities Guide

LIB ATTR Structure

The lib _attr structure defines the fields determining the offset memory
location of the SRTL, as well as whether or not the SRTL is shareable.
The lib attr fields are:

la id

la data offset

la share attr - -

This field specifies the library id.

When the small rn.emory model is used, the value of
this field gives the fixed address where the SRTL
data MUST appear. This value is also used to
prevent LINK 86 from allocating user data at the
same location as the SRTL data. When the large
memory model is used, this field must ·have the
value OxFFFF.

This field tells LINK 86 whether the library by default
is shared (value 1) or not shared (value 0), so you
do not have to specify the SHARED option every
time the library is used. You can override this
default as specified in Section 7.5.

When linking a user program, LINK 86 determines that a library is a
SRTL by checking the name of the first module in a library. If the first
module has the name "LIBATTR", LINK 86 examines the contents of the
LIBATTR segment to determine the attributes of the library. Depending
on the value of the la share attr field and input options, the library is
treated either as a SRTL or as a regular library.

Before creating a LIBATTR module, you must determine the filename of
the executable shareable runtime library (see Section B.3.6 below) and
the data offset if the small memory model is being used. You must
also ensure the sizes and offsets of data items correspond to the
fields in the LIBATTR definition given above. The LIBATTR segment
must contain exactly 19 bytes.

When linking your file(s) with a SRTL, do not include the LIBATTR
module in either your user code file or the XSRTL code file. The
LIBATTR module is used to define the attributes of the SRTL and
should not be treated as a normal module. The LIBATTR module is
included in the code file only when the SRTL is linked as a normal,
nonshared library (without specifying the SEARCH option).

B-8

Programmer's Utilities Guide B.3 Creating a SRTL

B.3.5 Creating the SRTL

You create a SRTL using LIB-86. When entering the command line,
you must specify the LIBATIR object file as the first file in the library.
If the optional SRTL Transfer Vector is used, it must be the second
object file in the library.

For example, to create a SRTL named SRTLLIB1 using the LIBATIR file,
LIBATIR.OBJ, and the object files: LIB1.0BJ and LIB2.0BJ, ·enter the
command:

A>lib86 srtllibl = libattr.obj, libl.obj, lib2.obj
Assuming all calling conventions are correct, you can modify an
existing nonshareable runtime library to create a shareable library by
including a LIBATTR file in the LIB86 command. For example, ~o make
the nonshareable library OLDLIB.L86 into the shareable library NEWLIB
using a LIBATTR file named SRTLOLD.OBJ, enter:

A>lib86 newlib = srtlold.obj, oldlib.186

B.3.6 Creating the XSRTL

A library file cannot be loaded by the operating system and executed.
Therefore, an executable version of the library file must be available.
This version of a SRTL is called the XSRTL (executable Shared Run
Time Library).

Once you create a SRTL, you can then create the XSRTL by linking the
SRTL, as shown in the following example. LINK 86 automatically
recognizes the library is a SRTL by the presence of the LIBATTR
module.

The command:

A>link86 doall.186

creates a file DOALL.CMD, containing the executable version of the
library file DOALL.L86. With the exception of the LIBATTR module, LINK
86 processes all code and data from all modules in the library, in the
order they appear in the library. During the link process, the
addresses of the data are resolved, but the data is not included in the
XSRTL, which contains only the SRTl code. This convention is
necessary to ensure that the references in a SRTL user program match
the XSRTL, since both are linked separately.

8-9

B.3 Creating a SRTL Programmer's Utilities Guide

The XSRTL has no main program, but this is not a problem, because
LINK 86 knows it is an XSRTL. Also, the XSRTL should have no
unresolved external references, as there would be no way to resolve
them separately to each of multiple, simultaneous user programs.

Note that the value of the data offset attribute from the LIBATTR
module determines whether the - XSRTL uses the small or large
memory model. If the attribute value is OxFFFF, the large memory
model is assumed. Any other value indicates the offset of the SRTL
data within the data segment, which means the XSRTL uses the small
memory model.

B.4 Small & Medium Model SRTLs

When creating a SRTL for use with the Small or Medium Memory
Model, you must decide beforehand where the SRTL data appears and
code this as the value of the data offset attribute in the LIBATTR
module. The location DS:O is not acceptable, because the stack
overflow detection requires the stack to be at the bottom of the data
segment. On the other hand, putting the SRTL data at the top of the
data segment does not efficiently utilize memory, The layout of the
data segment for a small memory model program should resemble
that specified in Figure B-1.

~-10

Programmer's Utilities Guide B.4 Small & Medium Model SRTLs

+---------------+

Heap
+---------------+

Local Data
+---------------+

SRTL Data
+---------------+
I Stack I
I I
I I
I I

DS:O +---------------+
Figure B-1. Small Memory Model Data Segment

If there is sufficient room between the stack and the SRTL data, LINK
86 may put the local data below the SRTL data.

If the size of the stack exceeds the starting address of the SRTL data,
LINK 86 prints an error message and terminates the link.

B.4.1 Calling Conventions

A file compiled using the small memory model must be linked with a
small model SRTL so that both the user file and the SRTL can agree
on the location of the SRTL data. This restriction fixes the calling
sequence as illustrated in Figure B-2 below.

8-11

B.4 Small & Medium Model SRTLs

U S E R

Cal ling Sequence Transfer Vector

CALLF X --------------------------->
<-------------+

Programmer's Utilities Guide

S R T L

Transfer Vector Prologue/Epi loguE

X: JMP X' -----> X': PUSH BP
MOV BP,SP

POP BP
+<------------ <-------------------- RETF

Figure B-2. Small Memory Model Calling Sequence

The calling sequence shown in Figure B-2 uses a SRTL Transfer
Vector. If no SRTL Transfer Vector is used, the reference to the SRTL
routine would go directly to the PUSH BP instruction, rather than the
JMP instruction in the transfer vector.

Note that the SRTL code sequence in Figure B-2 can have one or more
code segments and, therefore, can be used with the standard medium
model consisting of multiple code segments and a single data
segment.

B.5 Large Model SRTLs

To have reentrant code, the SRTL data must belong to the user file,
rather than the SRTL. When using the large memory model, the user
file must inform the SRTL of the location of its data. As a
consequence, user calls to large memory model SRTL routines must
pass through a User Transfer Vector, as described in Section B.3.2.

B.5.1 Calling Conventions

The SRTL determines the location of the user file's data by mapping all
references to the SRTL through a transfer vector local to the user.
The transfer vector pushes the user's OS and loads the SRTL OS
before calling the SRTL routine, then pops the user's OS after control
returns from the library. This code is shown in Figure B-3.

B-12

Programmer's Utilities Guide

U S E R

Cal ling Sequence Transfer Vector

CALLF X ----------> X: PUSH DS
U: <-----+ MOV AX,SRTLDS

MOV DS,AX
CALLF X' ---->

Y: POP DS <----­
+<------- RETF

B.5 Large Model SRTLs

S R T L

Transfer Vector Prologue/Epilogue

x·: JMP x·· ----> K PUSH BP
<-------+ MOV BP,SP

POP BP
+<----------- RETF

Figure B-3. Large Memory Mpdel Calling Sequence

Note that this calling sequence assumes the creator of the library
coded a transfer vector containing the entry points to the library. If
this were not the case, the CALLF in the user's transfer vector would
directly reference the PUSH BP instruction in the SRTL routine. The
transfer vector on the SRTL side, though not necessary, is
recommended.

B.6 SRTL Restrictions

When creating SRTLs, keep the following restrictions in mind:

• XSRTLs must not contain overlays.

• A SRTL can contain a maximum of 255 object modules. The
LIBATTR module does not count in this figure unless the SRTL is
linked as a nonshared library and the search option is not set.

B-13

B.7 Example SRTL Programmer's Utilities Guide

B.7 Example SRTL

The following C program tests a small memory model SRTL by calling
the SRTL subroutine LIST PRINT twice.

/* main program */
main ()
{

}

list print("In Main 1st Time");
list::::::print("In Main 2nd Time");

Below is the LIBATTR (Library Attribute) module for testing LINK 86.
The LIBATTR module defines the attributes used by LINK 86 when
linking XSRTLs (executable SRTLs) and when linking to other SRTLs.
The LIBATTR module must appear as the first module in a SRTL.

LI BATTR

SNAME

VERMAJ
VERMIN

FLAGS

DATAOFF

SHARED

B-14

NAME 'LIBATTR'
DSEG PUBLIC

DB 'SMlSRTL

ow 9876H
ow 5432H

DB OOh,OOh,OOh,OOh

ow 0200H

DB

END

The XSRTL's physical file name
MUST BE 8 BYTES LONG!!!

Major version number
Minor version number

Flags must be zero for now

The offset of small memory model
Must be FFFF for large memory model

1 shared by default
0 not shared by defa01t

Programmer's Utilities Guide B.7 Example SRTL

The following are SRTL routines that test small memory model SRTLs.
The LIST PRINT routine loads the string into the variable I and calls the
CONSOLE°_PRINT, which prints the string on the console.

list print (i)
char-* i ·

' {

}

console print("In the SRTL");
console=print (i);

console print (i)
char *iT
{

printf ("%s",i);
}

End of Appendix B

B-15

Appendix C

Mnemonic Differences from the Intel Assembler

RASM-86 uses the same instruction mnemonics as the Intel 8086
assembler except for explicitly specifying far and short jumps, calls,
and returns. The following table shows the four differences:

Table C-1. Mnemonic Differences

Mnemonic Function

Intra-segment short jump:
Inter-segment jump:
Inter-segment return:
Inter-segment call:

R.A.SM-86

JMPS
JMPF
RETF
CALLF

Intel

JMP SHORT
JMP
RET
CALL

RASM-86 also uses a different method than Intel for specifying the
size of memory operands for 8087 instructions. Intel associates the
size with the operand, RASM-86 places it in the instruction. The
following table shows the differences:

C-1

C RASM-86/lntel Mnemonic Differences Programmer's Utilities Guide

Table C-2. Memory Operands for 8087 Instruction

RASM-86 Intel

FLD32 FLD SYM 32
FLD64 FLD SYM 64
FLD80 FLD SYM80
FST32 FST
FST64 FST
FST80 FST
FILD16 FILO
FILD32 FILO
FILD64 FILO
FIST16 FIST
FIST32 FIST
FIST64 FIST

End of Appendix C

C-2

Appendix D

Reserved Words

Table D-1. Reserved Words

Predefined Numbers

BYTE WORD DWORD

Operators

AND LAST MOD OR SHR
EQ LE NE PTR TYPE
GE LENGTH NOT SEG XOR
GT LT OFFSET SHL

Assembler Directives

AUT08087 CODEMACRO ELSE GROUP NO I FUST
RD ENDIF END HARD8087 NOLIST
RS DB ENDIF IF ORG
RW DD ENDM IFLIST PAGESIZE
SIM FORM DSEG EQU INCLUDE PAGEWIDTH
DW ESEG LIST PUBLIC SSEG
EJECT EXTRN NAME RB TITLE

Code-macro Directives

DB DD MODRM RELB SEGFIX
OBIT DW NOSEGFIX RELW

8086 Registers

AH BL CL DI ES
AL BP cs DL SI
AX BX ex DS SP
BH CH DH DX SS

D-1

D Reserved Words Programmer's Utilities Guide

8087 Registers

ST STO
ST4

Table D-1. (continued)

ST1
ST5

ST2
ST6

Default Segment Names

CODE DATA EXTRA STACK

Segment Descriptors

BYTE LOCAL PARA STACK
COMMON PAGE PUBLIC WORD

External Descriptors

ABS DWORD NEAR
BYTE FAR WORD

Instruction Mnemonics - See Section 13

End of Appendix D

D-2

ST3
ST7

Code-Macro Definition Syntax

<codemacro> · ·= CODEMACRO <name> [<forma1$1ist>]
[<' ;stofmacro$directives>]
ENDM

<name> : := IDENTIFIER

<forma1$1ist> : := <parameter$descr>[{,<parameter$des~r>}]

<parameter$descr> : := <form$name>:<specifier$letter>
<mod~fier$letter>[(<range>)]

<specifier$1etter> ::=A IC ID IE IM IRIS IX

<modifier$letter> : := b I w I d I sb

<range> : := <single$range>l<double$range>

<single$range> · ·= REGISTER I NUMBERB

<double$range> : := NUMBERB,NUMBERB I NUMBERB,REGISTER
REGISTER,NUMBERB I REGISTER.REGISTER

<listofmacro$directives> ::= <macro$directive>
(<macro$directive>}

<macro$directive> ::=<db> I <dw> I <dd> I <segfix>
<nosegf ix> I <mod rm> I <rel b>
<relw> I <dbit>

<db> ::=DB NUMBERB DB <f orm$name>

<dw> : := DW NUMBERW DW <f orm$name>

<dd> : := DD <form$name>

<segfix> ::= SEGFIX <form$name>

<nosegfix> ::= NOSEGFIX <form$name>

<modrm> ::= MODRM NUMBER7,<form$name>
MODRM <form$name>,<form$name>

Appendix E

E-1

E Code-Macro Definition Syntax Programmer's Utilities Guide

<relb> ::= RELB <form$name>

<relw> ::= RELW <form$name>

<dbit> : := OBIT <field$descr>(,<field$descr>}

<field$descr> ::= NUMBER15
NUMBER15

<form$name> ::=IDENTIFIER

NUMBERS is B-bits
NUMBERW is 16-bits

NUMBERS) I
<form$name> (NUMBERS))

NUMBER7 are the values 0, 1,·. , 7
NUMBER1'5 are the values 0, 1,. . , 15

End of Appendix E

E-2

Appendix F

RASM-86 Error Messages

RASM-86 displays two kinds of error messages:

• nonrecoverable errors
• diagnostics

Nonrecoverable errors occur when RASM.-86 is unable to continue
assembling. Table F-1 lists the non-recoverable errors RASM-86 can
encounter during assembly.

Table F-1. RASM-86 Non-recoverable Errors

Message

NO FILE

DISK FULL

DIRECTORY FULL

Cause

RASM-86 cannot find the indicated source or
INCLUDE file on the indicated drive.

There is not enough disk space for the output files.
You should either erase some unnecessary files or
get another disk with more room and run RASM-86
again.

There is not enough directory space for the output
files. You should either erase some unnecessary
files or get another disk with more directory space
and run RASM-86 again. ·

F-1

RASM-86 Error Messages Programmer's Utilities Guide

Table F-1. (continued)

Message Cause

DISK READ ERROR

CANNOT CLOSE

RASM-86 cannot properly read a source or INCLUDE
file. This is usually the result of an unexpected
end-of-file. Correct the problem in your source file.

RASM-86 cannot close an output file. You should
take ~ppropriate action after _checking to see if the
correct disk is in the drive and the disk is not write­
protected.

SYMBOL TABLE OVERFLOW

SYNTAX ERROR

There is not enough memory for the Symbol Table.
Either reduce the length or number of symbols, or
reassemble on a system with more memory
available.

A parameter in the command tail of the RASM-86
command was specified incorrectly.

Diagnostic messages report problems with the syntax and semantics
of the program being assembled. When RASM-86 detects an error in
the source file, it places a numbered ASCII error message in the listing
file in front of the line containing the error. If there is more than one
error in the line, only the first one is reported. Table F-2 show~ the
RASM-86 diagnostic error messages by number and gives a brief
explanation of the error.

F-2

Programmer's Utilities Guide RASM-86 Error Messages

Table F-2. RASM-86 Diagnostic Error Messages

Error Message

ERROR NO: 0

ERROR NO: 1

ERROR NO: 2

ERROR NO: 3

Cause

ILLEGAL FIRST ITEM

The first item on a source line is not a valid
identifier, directive, or mnemonic. For example,

1234H'

MISSING PSEUDO INSTRUCTION

The first item on a source line is a valid identifier,
and the second item is not a valid directive that can
be preceded by an identifier. For example,

THIS IS A MISTAKE

ILLEGAL PSEUDO INSTRUCTION

Either a required identifier in front of a pseudo
instruction is missing, or an identifier appears
before a pseudo instruction that does not allow an
identifier.

DOUBLE DEFINED VARIABLE

An identifier used as the name of a variable is used
elsewhere in the program as the name of a variable
or label. For example,

x DB 5

x DB 123H

F-3

RASM-86 Error Messages Programmer's Utilities Guide

Error Message

ERROR NO: 4

ER!=tOR NO: 5

ERROR NO: 6

F-4

Table F-2. (continued)

Cause

DOUBLE DEFINED LABEL

An identifier used as a label is used elsewhere in
the program as a label or variable name. For
example,

LAB3: MOV BX,5

LAB3: CALL MOVE.

UNDEFINED INSTRUCTION

The item following a label on a source line is not a
valid instruction. For example,

DONE: BAD INSTR

GARBAGE AT END OF LINE - IGNORED

Additional items were encountered on a line when
RASM-86 was expecting an end of line. For
example,

NOLIST 4
MOV AX,4 RET

Programmer's Utilities Guide RASM-86 Error Messages

Error Message

ERROR NO: 7

ERROR NO: 8

ERROR NO: 9

Table F-2. (continued)

Cause

OPERAND(S) MISMATCH INSTRUCTION

Either an instruction has the wrong number of
operands, or the types of the operands do not
match. For example,

x
MOV
DB
MOV

CX,1,2
0
AX,X

ILLEGAL INSTRUCTION OPERANDS

An instruction operand is improperly formed. For
example,

MOV
CALL

[BP+SP],1234
BX+l

MISSING INSTRUCTION

A prefix on a source line is not followed by an
instruction. For example,

REP NZ

ERROR NO: 10 UNDEFINED ELEMENT OF EXPRESSION

An identifier used as an operand is not defined or
has been illegally forward referenced. For example,

A
B

JMP
EQU
EQU
MOV

x
B
5
AL,B

F-5

RASM-86 Error Messages Programmer's Utilities Guide

Table F-2. (continued)

Error Message Cause

ERROR NO: 11 ILLEGAL PSEUDO OPERAND

The operand in a directive is invalid. For example,

x EQU OAGH

TITLE UNQUOTED STRING

ERROR NO: 12 NESTED IF ILLEGAL - IF IGNORED

The maximum nesting level for IF statements has
been exceeded.

ERROR NO: 13 ILLEGAL IF OPERAND - IF IGNORED

Either the expression in an IF statement is not
numeric, or it contains a forward reference.

ERROR NO: 14 NO MATCHING IF FOR ENDIF

An ENDIF statement was encountered without a
matching IF statement.

ERROR NO: 15 SYMBOL ILLEGALLY FORWARD REFERENCED -
NEGLECTED

The indicated symbol was illegally forward
referenced in an ORG, RS, EQU or IF statement.

ERROR NO: 16 DOUBLE DEFINED SYMBOL
UNDEFINED

TREATED AS

F-6

The identifier used as the name of an EQU directive
is used as a name elsewhere in the program.

Programmer's Utilities Guide RASM-86 Error Messages

Table F-2. (continued)

Error Message Cause

ERROR NO: 17 INSTRUCTION NOT IN CODE SEGMENT

An instruction appears in a segment other than a
CSEG.

ERROR NO: 18 FILE NAME SYNTAX ERROR

The filename in an INCLUDE directive is. improperly
formed. For example,

INCLUDE FILE.A86X

ERROR NO: 19 NESTED INCLUDE NOT ALLOWED

An INCLUDE directive was encountered within a file
already being included.

ERROR NO: 20 ILLEGAL EXPRESSION ELEMENT

An expression is improperly formed. For example,

x DB
DW

12X
(4 *)

F-7

RASM-86 Error Messages Programmer's Utilities Guide

Error Message

ERROR NO: 21

Table F-2. (continued)

Cause

MISSING TYPE INFORMATION IN OPERAND(S)

Neither instruction operand contains sufficient type
information. For example,

MOV [BX], 10

ERROR NO: 22 LABEL OUT OF RANGE

The label referred to in a call, jump, or loop
instruction is out of range. The label can be defined
in a segment other than the segmerit containing the
instruction. In the case of short instructions (JMPS,
conditional jumps, and loops), the label is more than
128 bytes from the location of the following
instruction.

ERROR NO: 23 MISSING SEGMENT INFORMATION IN OPERAND

The operand in a CALLF or JMPF instruction (or an
expression in a DD directive) does not contain
segment information. The required segment
information can be supplied by including a numeric
field in the segment directive as shown:

X:

F-8

CSEG lOOOH

JMPF X
DD X

Programmer's Utilities Guide RASM-86 Error Messages

Table F-2. (continued)

Error Message Cause

ERROR NO: 24 ERROR IN CODEMACRO BUILDING

Either a code-macro contains invalid statements, or
a code-macro directive was encountered outside a
code-macro.

ERROR NO: 25 NO MATCHING IF FOR ELSE

An ELSE statement was encountered without a
matching IF statement.

ERROR NO: 26 NO MATCHING ENDIF FOR IF

An IF statement was encountered without a
matching ENDIF statement.

ERROR NO: 27 "HARD8087" USED AFTER FLOATING INSTRUCTION

The HARD8087 directive cannot be specified after a
floating point instruction.

ERROR NO: 28 ATTEMPT TO USE 186/286 INSTRUCTIONS
WITHOUT SWITCH

80186 or 80286 instructions were encountered and
the corresponding RASM-86 run-time parameter
(186 or 286) was not specified on the RASM-86
command line.

ERROR NO: 29 Command included not used in source file

The command defined in the file included, via the
INCLUDE command, in the RASM-86 source file is
not used by the source file.

End of Appendix F

F-9

Appendix G

XREF-86 Error Messages

During the course of operation, XREF-86 can display error messages.
Table G-1 shows the error messages and a· brief explanation of their
cause.

Table G-1. XREF-86 Error Messages

Error Message Meaning

CANNOT CLOSE XREF-86 cannot close an output file. You should
take appropriate action after checking to see if the
correct disk is in the drive and the disk is not write­
protected.

DIRECTORY FULL There is not enough directory space for the output
files, You should either erase some unnecessary
files or get another disk with more directory space
and run XREF-86 again.

DISK FULL There is not enough disk space for the output files.

NO FILE

You should either erase some unnecessary files or
get another disk with more room and run XREF-86
again.

XREF-86 cannot find the indicated file on the
indicated drive.

G-1

G XREF-86 Error Messages Programmer's Utilities Guide

Table G-1. (continued)

Error Message Meaning

SYMBOL FILE ERROR

XREF-86 issues this message when it reads an
invalid SYM file. Specifically, a line in the SYM file
not terminated with a carriage return line-feed
causes this error message.

SYMBOL TABLE OVERFLOW

G-2

XREF-86 ran out of Symbol Table space. E.ither
reduce the number or length of symbols in the
program, or rerun on a system with more memory.

End of Appendix G

Appendix H

LINK 86 Error Messages

During the course of operation, LINK 86 can display error messages.
The error messages and a brief explanation of their cause are listed
below.

Table H-1. LINK 86 Error Messages

Message !Vleaning

8087 IN OVERLAY, NOT IN ROOT
The 8087 emulator, if used, must be referenced in
the root if it is to be referenced in an overlay.

8087 SWITCH OCCURRED AFTER FIRST FILENAME
The HARD8087, AUT08087, and SIM8087 switches
must not appear after the first object file listed on
the command line.

8087 TABLE OVERFLOW
The 8087 fixup table needed with the AUT08087 or
SIM8087 options can have a maximum size of 64K.

ALIGN TYPE NOT IMPLEMENTED
The object file contains a segment align type not
implemented in LINK 86.

CANNOT CLOSE LINK 86 cannot close an output file. Check to see if
the correct disk is in the drive and the disk is not
write-protected or full.

CLASS NOT FOUND
The class name specified in the command line does
not appear in any of the files linked.

H-1

H LINK 86 Error Messages Programmer's-Utilities Guide

Table H-1. (continued)

Message Meaning

COMBINE TYPE NOT IMPLEMENTED
The object file contains a segment align type not
implemented in LINK 86.

COMMAND TOO LONG
The total length of input to LINK 86, including the
input file, cannot exceed 2048 characters.

DIRECTORY FULL There is not enough directory space for the output
file·s. You should either erase some unnecessary
Hies or get another disk with more directory space
and run LINK 86 again.

DISK READ ERROR
LINK 86 cannot properly read a source or object file.
This is usually the result of an unexpected end-of-.
file character. Correct the problem in your source
file.

DISK WRITE ERROR
A file cannot be written properly; the disk is
probably full.

ERROR IN LIBATTR MODULE
The LIBATTR module does not conform to
established requirements. Fix the LIBATTR module
and rebuild the library in question.

FIXUP TYPE NOT IMPLEMENTED
The object file uses a fixup type not implemented in
LINK 86. Make sure the object file has not been
corrupted.

GROUP NOT FOUND

H-2

The group name specified in the command line does
not appear in any of the files linked.

Programmer's Utilities Guide H LINK 86 Error Messages

Message

GROUP OVER 64k

Table H-1. (continued)

Meaning

The group listed must be made smaller than 64k
before relinking. Either delete segments from the
group, split it up into 2 or more groups or do not
use groups.

GROUP TYPE NOT IMPLEMENTED
LINK 86 only supports segments as elements of a
group.

INVALID LIBRARY-REQUESTED SUFFIX
The command file suffix requested by a library is
not supported. Verify that the correct library is
being used.

LINK-86 ERROR 1 This error indicates an inconsistency in the LINK 86
internal tables, and should never be emitted.

MULTIPLE DEFINITION
The indicated symbol is defined as PUBLIC in more
than one module. Correct the problem in the
source file, and try again.

MORE THAN ONE MAIN PROGRAM

NO FILE

A program linked by LINK 86 may have at most one
main program.

LINK 86 cannot find the indicated source or object
file on the indicated drive.

OBJECT FILE ERROR
LINK 86 detected an error in the object file. This is
caused by a translator error or by a bad disk file.
Try regenerating the file.

H-3

H LINK 86 Error Messages Programmer's Utilities Guide

Table H-1. (continued)

Message Meaning

RECORD TYPE NOT IMPLEMENTED
The object ·rne contains a record type not
implemented in LINK 86. Make sure the object file
has not been corrupted by regenerating it and
linking again.

SEGMENT OVER 64k
The segment listed after the error message has a
total length greater than 64k bytes. Make the
segment smaller, or do not combine· it with other
PUBLIC segments of the same name.

STACK COLLIDES WITH SRTL DATA
The base address of SRTL data does not allow
enough room for the requested amount of stack
space. Change the base of the SRTL data in the
LIBATTR module or request less stack.

SRTL DATA OVERLAP
The data from 2 SRTLs overlap. Change the base
address in the LIBATTR module of one of the SRTLs.

SRTL CANNOT CONTAIN 8087 FIXUPS
A SRTL cannot use the 8087 emulator as currently
implemented.

SEGMENT CLASS. ERROR
The class of a segment must be CODE, DATA,
STACK, EXTRA, X1, X2, X3, or X4.

SEGMENT ATTRIBUTE ERROR

H-4

The Combine type of the indicated segment is not
the same as the type of the segment in a previously
linked file. Regenerate the object file after changing
the segment attributes as needed.

Programmer's Utilities Guide H LINK 86 Error Messages

Table H-1. (continued)

Message Meaning

SEGMENT COMBINATION ERROR
An attempt is made to combine segments that
cannot be combined, such as LOCAL segments.
Change the segment attributes and relink.

SEGMENT NOT FOUND
The segment name specified in the command line
does not appear in any of the files lin~ed.

SYMBOL TABLE OVERFLOW
LINK 86 ran out of Symbol Table space. Either
reduce the number or length of symbols in the
program, or relink on a system with more memory.

SYNTAX ERROR LINK 86 detected a syntax error in the command
line; the error is probably an improper filename or
an invalid command option. LINK 86 echoes the
command line up to the point where it found the
error. Retype the command line or edit the INP file.

TARGET OUT OF RANGE
The target of a fixup cannot be reached from the
location of the fixup.

TOO MANY MODULES IN LIBRARY
The library contains more modules than LINK 86 can
handle. Split the library up into 2 or more libraries
and relink.

TOO MANY MODULES LINKED FROM LIBRARY
A library may supply a maximum of 256 modules
during 1 execution of LINK 86. Split the library up
into 2 or more smaller libraries.

H-5

H LINK 86 Error Messages Programmer's Utilities Guide

Table H-1. (continued)

Message Meaning

UNDEFINED SYMBOLS
The symbols following this message are referenced
but not defined in any of the modules being linked.

VERSION 2 REQUIRED
LINK 86 needs a version 2 or later file system
because its uses random disk 1/0 functic;ms.

XSRTL MUST BE LINKED BY ITSELF
When linking an XSRTL, no other files may be linked
at the same time.

XSRTLs INCOMPATIBLE WITH OVERLAYS
An XSRTL can not use overlays.

End of Appendix H

H-6

Appendix I

Overlay Manager Run-Time Errors

At run-time, the Overlay Manager can display certain error messages.
These messages and a brief explanation of their cause are shown in
Table 1-1.

Table 1-1. Overlay Manager Error Messages

Message Meaning

OVERLAY ERROR, NO FILE d:filename.OVR

The Overlay Manager cannot find the indicated file.

OVERLAY ERROR. DRIVE d:filename.OVR

An invalid drive code was passed as a parameter to
?ovlay.

OVERLAY ERROR, NESTING d:filename.OVR

Loading the indicated overlay would exceed the
maximum nesting depth.

OVERLAY ERROR, READ d:filename.OVR

Disk read error during overlay load, probably caused
by premature EOF.

End of Appendix I

1-1

Appendix J

LIB-86 Error Messages

LIB-86 can produce the following error messages during processing.
With each message, LIB-86 displays additional information appropriate
to the error, such as the filename or module name, to help isolate the
location of the problem.

Table J-1. LIB-286 Error Messages

M~ssage

CANNOT CLOSE

DIRECTORY FULL

DISK FULL

Meaning

LIB-86 cannot close an output file. You should take
appropriate action after checking to see if the
correct disk is in the drive and the disk is not write­
protected.

There is not enough directory space for the output
files. You should either erase some unnecessary
files or get another disk with more directory space
and run LIB-86 again.

There is not enough disk space for the output files.
You should either erase some unnecessary files or
get another disk with more room and run LIB-86
again.

J-1

J LIB-86 Error Messages Programmer's Utilities Guide

Table J-1. (continued)

Message Meaning

DISK READ ERROR

LIB-86 cannot properly read a source or object file.
This is usually the result of an unexpected end-of­
file. Correct the problem in your source file.

INVALID COMMAND OPTION

LIB-86 encountered an unrecognized option in the
. command line. Retype the command line or edit the

INP file.

MODULE NOT FOUND

The indicated module name, which appeared in a
REPLACE, SELECT, or DELETE switch, cannot be
found. Retype the command line or edit the INP file.

MULTIPLE DEFINITION

NO FILE

The indicated symbol is defined as PUBLIC in more
than one module. Correct the problem in the
source file, and try again.

LIB-86 cannot find the indicated file.

OBJECT FILE ERROR

J-2

LIB-86 detected an error in the object file. This is
caused by a translator error or a bad disk file. Try
regenerating the file.

Programmer's Utilities Guide J LIB-86 Error Messages

Message

RENAME ERROR

Table J-1. (continued)

Meaning

LIB-86 cannot rename a file. Check that the disk is
not write-protected.

SYMBOL TABLE OVERFLOW

SYNTAX ERROR

There is not enough memory for the Symbol Table.
Reduce the number of options in the command line
(MAP and XREF each use Symbol Table space), or
~se a system with more memory.

LIB-86 detected a syntax error in the command line,
probably due to an improper filerJame or an invalid
command option. LIB-86 echoes the command line
up to the point where it found the error. Retype the
command line or edit the INP file.

VERSION 2 REQUIRED

LIB-86 requires a version 2 file system or later.

End of Appendix J

J-3

Appendix K

SID-286 Error Messages

Most of the error messages generated by SID-286 result from the
inability of SID-286 to access an important table or execute a
necessary SVC function call. · Thus, many of the SID-286 error
messages indicate that the interface to the operating system is not
functioning correctly.

The following are the most common error messages generated by
SID-286.

Table K-1. SID-86 Error Messages

Message Meaning

Bad Hex Value

Bad f9rmat in the symbol table. This is usually caused by
an invalid offset address or the use of discontinuous
variable names. Only those symbols located before this
error message are read and are accessible for symbolic
referencing. You can use the E command to re-execute
the program. All of the symbols may be read successfully
on the second try. Otherwise, you can use the H
command to find out which symbols have been read into
the SYM file.

File Not Found

The specified file was not found on the specified
pathname.

K-1

K SID-286 Error Messages Programmer's Utilities Guide

Table K-1. (continued)

Message Meaning

Default File Size of 512 Bytes Assumed

SID-286 was unable to access the Disk File Table to find
out the size of the file specified by an R command. As a
result, only the first 512 bytes of that file were read in.

Error: Cannot Form Buffer

The Malloc. SVC function is not working correctly within the
Operating System and SID-286 is unable to form the buffer
it needs in order to execute that comman.d. As a result,
the command is aborted.

Error: Cannot Read the File

The Read SVC function returns an error when SID-286
attempts to read the file specified by the R command. As
a result, the R command is aborted. Exit SID-286 · and
verify that the file you specified was not damaged prior to
entering. SID-286.

Error: Inadequate Amount of Memory

Your system does not have enough memory to execute the
command.

File Close Error

SID-286 was unable to successfully close the specified file.

Create Error

K-2

The command is aborted due to a failure of the Create SVC
to create a file on the specified directory.

Programmer's Utilities Guide K SID-286 Error Messages

Table K-1. {continued)

Message Meaning

Unsuccessful Register Write

SID-286 is unable to write the specified changes to the
registers belonging to a process. The specified changes
are not implemented.

Unsuccessful Register Read

SID-286 was unable to read the .registers belonging to a
process. Any register values displayed will probably be
wrong.

End of Appendix K

K-3

Appendix L

Additional FlexOS Utilities

This appendix describes a set of special-purpose programming utilities
and special utility options that are specific to FlexOS 286.

L.1 HSET

Forms HSET -1 filespec.286
HSET -9 filespec.286

Explanation

The HSET command sets the code group descriptor in the 286 file
header as either 09 (shared code)· or 01 (non-shared code). The
filespec must be a .286 (executable) type file.

L.2 IOMF

Form IOMF -option filenam 1 Lfilenam2, ... filenamN]

Explanation

IOMF (Intel Object Module Format) displays, in human-readable form,
files of Intel's 8086 "MCS-86" Object Module format. This format is
described in the Intel Technical Specification "MCS-86 Relocatable
Object Module Formats," Version 4.0, 15 January 1981.

If the file extension is omitted and. the file filename.OBJ does not exit,
IOMF looks for the file filename.L86.

L-1

L Additional FlexOS Utilities Programmer's Utilities Guide

Table L-1. IOMF Options

Option Description

-nRECNUM Start dumping after record number RECNUM.

-v Displays in hexadecimal the file offset (byte number)
where each record begins.

-h Display only the header records, which are used to
determine the locations of modules in a library.

L.3 OBJERR

Form OBJERR n

Explanation OBJERR prints an explanation of the object file error
messages given by the linker. Valid values for n are 0-29.

L.4 POSTLINK

POSTLINK filename.286

Explanation POSTLINK does the fixups on a .286-type executable file
and builds an LDT (Local Descriptor Table). Using POSTLINK on a file
has two benefits:

• It reduces load time.
• It increases the number of local descriptors permitted.

POSTLINK modifies the source file and is not reversible.

L-2

Programmer's Utilities Guide L Additional FlexOS Utilities

L.5 PSN

Form PSN filespec.SYM filespec.PSN

Explanation PSN is an executable command of type .CMD, designed to
run under FlexOS 286. PSN takes a symbol table file (.SYM) and
outputs a numerically sorted listing.

End of Appendix L

L-3

Index

$ operator, 2-12, 2-19
$ option, 7-21
$ switch, 7-21
$C option, 7-22
$L option, 7-23

. $M option, 7-23
$0 option, 7-23
$S option, 7-24

* operator, 2-12, 2-14

+ operator, 2-12, 2-13, 2-15
+ sign, 11-7

- operator, 2-12, 2-13, 2-15
- sign, 11-7

. operator, 2-12, 2-19

I operator, 2-12, 2-14

186 parameter, 1-5

286 file, 7-2
286 parameter, 1-5

80286 instruction mnemonic,
2-7

80286 object module format,
7-1

8086 Arith.metic Instructions,
4-18, 4-19, 4-21

8086 Control Transfer
Instructions, 4-30

8086 Data Transfer Instructions,
4-13

8086 instruction mnemonic, 2-7
8086 Logical and Shift

Instructions, 4-21
8086 object module, 9-1
8086 Prefix Instructions, 4-29
8086 Processor Control

Instructions, 4-36
8086 Registers, D-1
8086 String Instructions, 4-27
8087 Arithmetic Instructions,

4-42
8087 constant instructions, 4-51
8087 control directives, 3-19
8087 data transfer instructions,

4-40
8087 IN OVERLAY, NOT IN ROOT

error, H-1
8087 math coprocessor, 7-14
8087 processor control

instructions, 4-51
8087 Registers, D-2
8087 SWITCH OCCURRED AFTER

FIRST FILENAME error,
H-1

8087 TABLE OVERFLOW error,
H-1

8087 transcendental
instructions, 4-50

lndex-1

: Command, 12-35

= Command, 12-36

? Command, 12-35
?? Command, 12-35

A

A command, 11-3, 12-4
A parameter, 1-4
AAA, 4-18
AAD, 4-18
AAM, 4-18
AAS, 4-18
Absolute align type, 7-30
Absolute number, 2-13
Absolute paragraph address,

7-13
ABSOLUTE parameter, 7-11,

7-13
Absolute segment combine

type, 3-6, 3-7
ADC,4-18
ADD,4-18
Adding to a library, 9-5
Addition and subtraction

operators, 2-13
ADDITIONAL parameter, 7-11,

7-13
Address conventions in

RASM-86, 3-3
Address expression, 2-21
Address memory directly, 14-2
AF, 4-16

lndex-2

Align and combine attributes,
7-26

Align type, 3-5, 7-30, 7-25
ALIGN TYPE NOT IMPLEMENTED

error, H-1
Allocate storage, 3-16
Alphanumeric characters, 2-1
Altering CPU state, 12-32
AND operator, 2-12, 2-15, 4-21
Arithmetic functions, 12-12
Arithmetic instructions, 4-16
Arithmetic operators, 2-11, 2-13
ARPL, 4-54, 4-55
ASCII character set, 2-1
Assembler directives, 3-1, D-1
Assembling 80286 mnemonics,

12-4
Assembly-language source file,

1-1
Assembly-language macros, 5-1
Attributes of labels, 2-10
Attributes of variables, 2-9
AUT08087 directive, 3-19
AUT08087 option, 7-9, 7-14
Automatic GO, 12-18

B

B Command, 12-5
Backward (downward)

references, 8-8
Bad hex value error, K-1
Base address, 3-3
Base, or radix of a constant, 2-4
Base-addressing modes, 2-21

BDOS interrupt instruction,
12-28

Binary constants, 2-5
Binary delimiters, 11-7
Bit patterns, 4-1
Block structured languages,

11-6
BOUND, 4-52
Bracketed expression, 2-21
Breakpoin~s, 12-11, 12-20
BYTE align type, 3-5, 7-29
Byte alignment; 3-5
BYTE attribute, 2-9

c

C Command, 12-6
CALL, 4-30, 12-18
Calif, 12-18
CANNOT CLOSE error, F-2, G-1,

H-1, J-1
Cannot Form Buffer error, K-2
Cannot Read the File error, K-2
Caret symbol, 11-4
CB86, 7-1, 7-32, 9-1
CBW, 4-19
CF,4-16
Changing memory, 12-6, 12-24
Character string, 2-5, 11-2
CLASS, 7-12
Class name, 3-7, 7-26, 7-25
CLASS NOT FOUND error, H-1
CLASS parameter, 7-11
CLC, 4-36
CLD, 4-36
CU, 4-36

CMC, 4-36
CMD file, 7-2, 8-1, 12-8
CMP, 4-19
CMPS, 4-27
Code macro directives, 5·-5
CODE option, 7-7, 7-11
CODE section, 7-32
Code segment, 2-9, 13-1
Code-macro definition syntax,

E-1
Code-macro directives, 5-1,

5-4, 5-8, D-1
Code-macro operand modifiers,

5-3
Code-macro operand specifiers,

5-2
CODESHARED option, 7-9, 7-15
Combine attributes, 7-26
Combine type, 3-6, 7-25
COMBINE TYPE NOT

IMPLEMENTED error, H-2
Combine type, COMMON, 3-6

LOCAL, 3-6
PUBLIC, 3-6
STACK, 3-6

Command file, 7-2, 7-25
Command file header, 7-13
Command file options, 7-10
Command file section, 7-32
Command line syntax, 8-3
Command list, 12-35
Command options, 10-3
Command tail, F-2
COMMAND TOO LONG error,

H-2
Comment field, 2-3, 2-22
Comments, 2-22

lndex-3

Common block, 7-27
COMMON combine type, 3-6,

3-7, 7-27
Conditional assembly, 3-1, 3-11,

5-10
Conditional compilation

statements, B-3
Console output, 1-4
Constants, 2-4
Control transfer instructions

4-30. '

Copying data, 12"-18
CPU flags, 12-32, 12-34
CPU state, 12-30, 12-32, 12-33
Create error, K-2
Creating a new library, 9-5
Creating a SRTL, B-9
Creating an INPUT file, 7-20
Creating an XSRTL, B-9
Creating and updating libraries,

9-3
Creating large model SRTLs,

8-10, B-12
Creating LIBATTR module, B-5
Creating output files, 1-7
Creating small model SRTLs,

8-10
Creating SRTLs, B-2
Creating transfer vectors, B-4
Cross-reference file, 6-1, 9-1,

9-2, 9-8
CS register, 3-3, 12-11
CSEG (code segment), 3-4
CTRL-A, 12-15
CTRL-D, 12-15
CTS, 4-54
CUMULATIVE option, 7-10, 7-24

lndex-4

Current segment, 3-3
CWD, 4-19

D

D Command, 12-6
DAA, 4-19
DAS, 4-19
Data definition directives, 3-1
DATA option, 7-7, 7-11
DATA section, 7-32
Data segment, 2-9, 13-1
Data transfer, 4-12
DB directive, 2-6, 2-10, 3-14,

5-5
DB, DW, and DD directives, 5-8
OBIT directive, 5-5, 5-8
DD directive, 2-10, 3-15, 5-5
Debug process, 10-3, 12-19
Debugging output, 12-14
DEC, 4-19
Decimal constant, 2-5
Default align types, 3-5
Default buffer, 8-8
Default class name, 3-8
Default drive, 6-1, 9-8
Default File Size of 512 Bytes

Assumed error, K-2
Default list device, 6-2
Default segment names, 3-4,

D-2
Default values, 7-13
Define data area, 3-14
Defining code-macros, 5-2
Defining macros, 12-35
DELETE option, 9-4

Deleting a module, 9-6
Delimiters, 2-2, 12-9
Device name, 1-3
Directing output, 12-14
Directive statement, 2-23, 3-1
Directory, F-1
DIRECTORY FULL error, F-1,

G-1, H-2, J-1
Disassembled instruction, 12-16
Disk drive names, 1-4
DISK FULL error, F-1, G-1, J-1
DISK READ ERROR, F-2, J-2
DlSK READ ERROR error, H-2
DISK WRITE ERROR error, H-2
Displaying library information,

9-8
Displaying memory, 12-6
DIV, 4-19
Division operators, 2-14
Dollar-sign operator, 2-19
Drive specification, 1-2
DS register, 3-3, 8-4
DSEG (data segment}, 3-4
Dumping 8087 /80287 registers,

12-34
Duplicate symbols, 11-6
DW directive, 2-10, 3-15, 5-5
DWORD attribute, 2-9

E

E Command, 12-8, 12-10,
12-31, 13-1

ECHO option, 7-10
Effects of Arithmetic

Instructions on Flags,
4-16

EJECT directive, 3-17
ELSE directive, 3-11, 5-5, 5-10
END directive, 3-9
End-of-file character (1AH}, 3-9
End-of-line, 2-22
ENDIF directive, 3-11, 5-5, 5-10
ENTER, 4-52
Entry point, 8-8
EQ operator, 2-12, 2-16
EQU directive, 3-13
ERROR IN LIBATTR MODULE

error, H-2
Error Messages,

Ll8-86, J-1
LINK 86, H-1
RASM-86, F-1
SID-286, K-1
XREF-86, G-1

ES register, 3-3
ESC, 4-36
ESEG (extra segment}, 3-4
Even boundary, 3-6
Examining CPU state, 12-32
Example SRTL, 8-14
Executable shared run time

library, 8-9
Executing macros, 12-36
Executing program, 12-8
Expression Operators, 11-7

lndex-5

Expressions, 2-20, 2-21, 11-1
External Descriptors, D-2
External symbols, 9-8
EXTERNALS option, 9-4
EXTRA option, 7-7, 7-11
Extra segment, 2-9
EXTRN directive, 3-10

F

F Command, 12-10
F2XM1, 4-50
FABS, 4-48
FADD, 4-42
Far control transfer, 14-1
FBLD, 4-41
FBSTP, 4-42
FCHS, 4-48
FCLEX/FNCLEX, 4-51
FCOMP, 4-49
FCOMPP, 4-49
FDECSTP, 4-52
FDISl/FNDISI, 4-51
FDIV, 4-46
FDIVP, 4-46
FDIVR, 4-47
FDIVRP, 4-47
FDUP, 4-40
FENl/FNENI, 4-51
FFREE, 4-52
FIADD 16, 4-42
FICOM 16, 4-49
FICOM 16P, 4-49
FIDIV16, 4-46
FIDIVR16, 4-47
FILO 16: 4-41

lndex-6

File Close error, K-2
File name extensions, 1-3
File Not Found error, K-1
File section options, 7-11
Filetype, 1-2
Filetype A86, RASM-86 INPUT

file, 1-2
Filetype LST, RASM-86 LISTING

file, 1-2
Filetype OBJ, RASM-86 OUTPUT

file, 1-2
Filetype SYM, RASM-86

SYMBOL file, 1-2
FILL option, 7-8
Filling memory blocks, 12-10
FIMUL16, 4-45
FINCSTP, 4-51
FINIT/FNINIT, 4-51
FIST16, 4-41
FIST16P, 4-41
FISUB16, 4-43
FISUBR16, 4-44
FIXUP TYPE NOT IMPLEMENTED

. error, H-2
Flag bits, 4-12, 4-16
Flag registers, 4-12
FLO, 4-40
FLDl, 4-50
FLDCW, 4-51
FLDENV, 4-51
FLDL2E, 4-51
FLDL2T, 4-50
FLDLG2, 4-51
FLDLN2, 4-51
FLDPI, 4-50
FLDZ, 4-50
FMUL, 4-45

FMULP, 4-45
FNOP, 4-52
Formal parameters, 5-1
Forward (upward) reference,

8-8, 8-9, F-6
FPATAN, 4-50
FPOP, 4-40
FPREM, 4-48
FPTAN, 4-50
FRNDINT, 4-48
FRSTOR, 4-51
FSAVE/FNSAVE, 4-51
FSCALE, 4-48
FSQRT, 4-48
FST, 4-40
FSTCW/FNSTCW, 4-51
FSTENV/FNSTENV, 4-51
FSTSW/FNSTSW, 4-51
FSUB, 4-43
FSUBP, 4-43
FSUBR, 4-44
FSUBRP, 4-44
FTST, 4-50
FWAIT, 4-52
FXAM, 4-50
FXCH, 4-40
FXCHG, 4-41
FXTRACT, 4-48
FYL2X, 4-50
FYL2XP1, 4-50

G

G Command, 12-11, 12-20,
13-2

GE operator, 2-12, 2-16

General overlay constraints, 8-8
GROUP, 3-8, 7-11, 7-12, 7-26
GROUP NOT FOUND error, H-2
GROUP OVER 64k error, H-3
Group type, 7-26
GROUP TYPE NOT

IMPLEMENTED error, H-3
GT operator, 2-12, 2-16

H

H Command, 12-12
Halting RASM-86, 1-7
HARD8087 directive, 3-19
HARD8087 option, 7-8, 7-14
Hexadecimal constants, 2-5
HLT, 4-36

I Command, 12-14
1/0 buffers, 7-13
1/0 option, 7-21
Identifiers, 2-3
IDIV, 4-20
IF directive, 3-11, 5-5, 5-10
!filename parameter, 1-5
IFLIST directive, 3-18
IMUL, 4-20
IN, 4-13
Inadequate Amount of Memory

error, K-2
INC, 4-20
INCLUDE directive, 3-20, F-7
INCLUDE file, F-1

lndex-7

Index registers, 2-21
Index-addressing modes, 2-21
Indexed library, 7-1
Indirect memory operands, 14-2
Initialized storage, 3-14
INP files, 7-1
INP filetype, 9-2
Input command file, 9-2
Input file options, 7-20
INPUT option, 7-10, 7-20, 9-4
INSB, 4-52
Instruction statement syntax,

. 2-22

INSW, 4-52
INT, 4-31
Intel 80286 relocatable object

format, 1-2
Intel 8086 relocatable object

format, 1-2
Intel object module format, 7-1
Intel's 8086 object module

format, 9-1
Intermediate pass points, 12-11,

12-30
INTO, 4-32
INVALID COMMAND OPTION

error, J-2
Invalid hex digit, 12-9
INVALID LIBRARY-REQUESTED

SUFFIX error, H-3
Invalid statements, 12-4
Invalid symbol name, 12-9
Invoking LINK 86, 7-4
Invoking RASM-86, 1-2
Invoking XREF-86, 6-1
IP register, 12-11
IRET, 4-32

lndex-8

J

JA, 4-32
JB, 4-32
JC, 4-33
JE, 4-33
JG, 4-33
JL, 4-33
JLE, 4-33
JMP, 4-33
JNA, 4-34
JNB, 4-34
JNC, 4-34
JNE, 4-34
JNG, 4-34
JNL, 4-34
JNO, 4-34
JNP, 4-34
JNS, 4-34
JNZ, 4-35
J0,4-35
JP, 4-35
JS, 4-35
JZ, 4-35

K

K Command, 12-15
Keyword identifiers, 2-11
Keywords, 2-7

L

L Command, 12-16
L parameter, 1-5
L86 files, 7-1, 9-10

L86 filetype, 9-2
Label, 12-16
Label offset attributes, 2-10
Label segment attributes, 2-10
Label, out of range, F-8
Labels, 2-9, 2-10
LAHF, 4-13
Language translators, 7-1
LAR,4-54
Large memory model, B-2, B-4,

. B-10

LAST operator, 2-12, 2-18
LDS, 4-13
LE operator, 2-12, 2-16
LEA, 4-13
LEAVE, 4-52
LENGTH operator, 2-12, 2-18
LES, 4-14
LGDT, 4-54
LIB error messages, J-1
LIB-86, 3-10, 7-1, 9-1, 8-2, 8-9

command line, 9-1
command options, 9-4
commands on disk, 9-9
error messages, 9-7, 9-8,

J-1
filetypes, 9-2
halting processing, 9-3
invoking, 9-1
redirecting 1/0, 9-10
replacing a module, 9-5
selecting a module, 9-7
use factor, 9-1

LIB _ID structure, 8-6
LIBATTR module, 8-2, 8-5, 8-8
Libraries, 7-23

Library file (L86), 7-21, 9-1, 9-2,
9-3

Library module map, 9-8
Ll8SYMS option, 7-9, 7-16
LIDT, 4-54
Limited memory environment,

8-1
LIN file, 7-2
Line number (LIN) file, 7-2
Line-editing functions, 12-3
LINES option, 7-9
LINK 86, 7-1, 11-1, 12-9, B-2

command line, 7-4, 7-20
command options, 7-6
invoking, 7-4

LINK 86 ERROR 1 error, H-3
Link process, 7-25, 7-30
LINK-86, 3-10
Linkage control directives, 3-1
Linkage editor, 3-5, 3-6, 3-8,

7-1
Linking with shareable runtime

libraries, 7-5
Linking with SRTLs, 8-8
List address, 12-16
List device name, 1-4
LIST directive, 3-18
List files, 6-1
Listing commands, 12-35
Listing file, 1-2, F-2
Listing memory contents, 12-16
Literal character values, 11-2
Literal decimal numbers, 11-2
Literal hexadecimal numbers ,

11-1
LLDT, 4-54
LMSW, 4-54

lndex-9

Loading program file, 12-8
Loading the command file, 7-13
Local combine type, 3-6, 3-7,

7-30
Local symbols, 7-16
LOCALS option, 7-9, 7-16
Location counter, 2-19, 2-23,

3-21
Location pointer, 2-3
LOCK, 4-38
LOOS, 4-27
Logical address, 3-3
Logical instructions, 4-16 -
Logical operators, 2-11, 2-15
LOOP, 4-35
LSL, 4-54
LST files, 6-1
LT operator, 2-12, 2-16
LTR, 4-54

M

M Command, 12-18
Machine state, 12-33
Macros, 10-3, 12-35, 12-36
MAP file, 7-2, 7-17, 9-2, 9-10
MAP option, 7-6, 7-9, 7-17, 9-4
MAXIMUM parameter, 7-11,

7-13
Memory address, 12-24
Memory allocation directives,

3-1
Memory execution, 3-3
Memory models, 3-3, B-1
Memory offset, B-8
Memory value, 12-16

lndex-10

Menu-driven programs, 8-1
Minus sign, 11-7
Mnemonics, 2-7, 4-1
MOD operator, 2-12, 2-14
Modifiers, 5-3, 5-6
Modifying SRTL, B-2
MODRM directive, 5-5, 5-6
Module map file, 9-1, 9-2, 9-8
MODULE NOT FOUND error, J-2
MODULES option, 9-4
MORE THAN ONE MAIN

PROGRAM error, H-3
MOV, 4-14, 12-28
Moving data, 12-18
MOVS, 4-28
MUL, 4-20
MULTIPLE DEFINITION error, H-3,

J-2
Multiplication operators, 2-14

N

N Command, 12-18
NAME directive, 3-10
Name field, 2-24, 3-1
NC parameter, 1-5
NE operator, 2-12, 2-16
Near control transfer, 14-1
NEG, 4-20
Nested overlays, 8-2
Nesting IF directives, 3-11
Nesting level, F-6
Nesting parentheses in

expressions, 2-20
NO FILE error, F-1, G-1, H-3,

J-2

NOALPHA option, 9-4, 9-9
NOCUMULATIVE option, 7-10,

7-24
NOFILL option, 7-8
NOIFLIST directive, 3-18
NOLIBSYMS option, 7-9, 7-16
NOLINES option, 7-9
NOLIST directive, 3-18
NOLOCALS option, 7-9, 7-16
NOMAP option, 7-17
Nonprinting characters, 2-1
NOSEGFIX directive, 5-5, 5-6
NOSHARED opti-on, 7-10, 7-19
NOT operator, 2-12, 2-15, 4-22
Number of errors message, 1-7
Numbers, 2-10
Numeric constants, 2-4
Numeric expression, 2-21

0

0 Command, 12-19
0 parameter, 1-4
OBJ files, 7-1, 8-1
Object file, 1-2, 7-23, 9-2
OBJECT FILE ERROR, J-2
OBJECT FILE ERROR error, H-3
Octal constant, 2-5
Odd boundary, 3-6
OF, 4-16
Offset, 2-9, 11-8
Offset attribute, 2-9
Offset of a variable, 2-9
OFFSET operator, 2-12, 2-18
Offset value, 3-3
Offsets within a segment, 7-31

Opcode, 12-16
Operands, 4-1, 12-16, F-5
Operator precedence, 2-20
Operators, 2-2, 2-7, 2-11, D-1
Operators in expressions, 11-7
Optional run-time parameters,

1-3
OR operator, 2-12, 2-15, 4-22
Order of operations, 2-20
ORG directive, 3-21
ORIGIN parameter, 7-11, 7-13
OUT, 4-14
Output files, 1-7, F-1
Output listing control directives,

3-1
Output to file, 12-14
Output to printer, 12-14
OUTSB, 4-52
OUTSW, 4-52
Overflow, 11-7
OVERLAY ERROR, DRIVE, 1-1
OVERLAY ERROR, NESTING, 1-1
OVERLAY ERROR, NO FILE, 1-1
OVERLAY ERROR, READ, 1-1
Overlays, 7-2, 7-22, 8-1
Overriding LINK 86 positioning,

7-32
Overriding operator precedence,

2-20

p

P Command, 12-20
P parameter, 1-4
PAGE align type, 3-5, 7-29
Page alignment, 3-5

lndex-11

PAGESIZE directive, 3-18
PAGEWIDTH directive, 3-18
PARA {paragraph), 3-6
PARA align type, 3-5, 3-6
PARAGRAPH align type, 3-21,

7-29
Paragraph alignment, 3-5
Parameter list, 1-3
Partial library maps, 9-9
Pass counts, 12-20
Pass points, 12-20, 12-21
Passing arguments to an

overlay, 8-5
Patches, 12-32
Patching a file, 10-6
Period operator, 2-12, 2-19
PF, 4-.16
Physical address, 3-3
PL/1-86, 7-32, 9-1
Plus sign, 11-7
POP, 4-15, 12-28
POPA, 4-52
POPF, 4-15
Positioning, 7-30
Pound sign, 12-2
Predefined numbers, 2-7, D-1
Prefixes, 4-29, 12-16
Printer output, 1-4
Printing macro list, 12-36
Process control options, 10-3
Processor control instructions,

. 4-36
Program execution, 12-8
Pseudo instruction, F-2
PTR operator, 2-12, 2-19
PUBLIC combine type, 3-6, 7-27
PUBLIC directive, 3-10

lndex-12

Public symbols, 9-8
PUBLICS option, 9-4
PUSH, 4-15
PUSHA, 4-52
PUSHF, 4-15

a

Q Command, 12-23
Qualified symbols, 11-6
Quit SID, 12-23
Quitting debug process, 12-23

R

R Command, 12-23, 12-31,
13-1, 13-2

Radix indicators, 2-4
Range specifiers, 5-4
RASM-86, 6-1, 9-1

character set, 2-1
command examples, 1-6
command line, 1-3
command syntax, 1-2
delimiters, 2-2
device names, 1-4
directives, 2-7, 3-1
error messages, F-1
identifier, 7-25
identifiers, 2-6
instruction mnemonics, C-1
instruction set, 4-1
nonrecoverable errors, F-1
operators, 2-11
run-time parameters, 1-3

segment directives, 7-32
separators, 2-2
tokens, 2-2
use factor, 1-7

RB directive, 3-16
RCL, 4-22
RCR, 4-22
RD directive, 3-17
Reading command line from

disk file, 7-20
Reading files into memory,

12-23
Reading from disk file, 7-4
Reading LIB-86 commands from

disk file, 9-9
RECORD TYPE NOT

IMPLEMENTED error, H-4
Redefining keys, 12-15
Redefining macros, 12-35
Redirecting 1/0, 9-10, 12-14
Register keywords, 2-7
Register name, 11-3
Registers, 2-7, 12-8, 12-32
Relational operators, 2-11, 2-16
RELB and RELW directives, 5-7
RELB directive, 5-5
Relocatable number, 2-13
Relocatable object files, 7-1
RELW directive, 5-5
RENAME ERROR, J-3
REP, 4-29
REPLACE option, 9-4
Replacing a module, 9-5
Reserved words, 5-5, D-1
RET, 4-36
ROL, 4-23
Root module, 8-4, 8-8

ROR, 4-23
RS directive, 3-16
Run-time options, 1-3
Run-time parameters, 1 -3, F-2
Run-time subroutine library

(RSL), 8-1
RW directive, 3-16

s

S Command, 12-24
S parameter, 1-4
SAHF, 4-15
SAL, 4~23
SAR, 4-24
SBB, 4-20
SCAS, 4-28
Search and match procedure,

11-6
SEARCH option, 7-9, 7-18, B-8
Searching memory, 12-26
Section, 7-25
SEG operator, 2-12, 2-18
SEGFIX directive, 5-5
Segment, 2-9, 7-12, 7-25
SEGMENT ATTRIBUTE ERROR

error, H-4
Segment base address, 3-3
Segment base values, 3-2
Segment boundaries, 7-29
SEGMENT CLASS ERROR error,

H-4
SEGMENT COMBINATION ERROR,

H-5
Segment control directives, 3-1,

3-2

lndex-13

Segment Descriptors, D-2
Segment directives, 3-3, 3-4
Segment name, 3-4, 7-25, 7-26
Segment name symbols, 9-8
SEGMENT NOT FOUND error,

H-5
Segment offset, 7-17
SEGMENT OVER 64k error, H-4
Segment override operators,

2-11, 2-12, 2-17
Segment override prefix, 3-3,

5-5
SEGMENT parameter, 7-11
Segment register, 3-8, 7-31
Segment registers, 3-3
Segment specification, 13-1
Segment starting address, 2-9
Segmented architecture, 3-2
SEGMENTS option, 9-4
SELECT option, 9-4
Selecting a module, 9-7
Setting breakpoints, 11-4
Setting pass points, 12-20
SF, 4-16
SGDT, 4-54
Shareable runtime libraries

(SRTLs), 7-5, B-1
SHARED option, 7-10, 7-19
Shift instructions, 4-16
SHL operator, 2-12, 2-14, 4-24
SHR operator, 2-12, 2-14, 4-24
SID-286 Commands, 12-1
SID-286 Error Messages, K-1
SID-286 Sample Sessions, 15-1
SIDT, 4-54
Sign-on message, 1-6
SIM8087 option, 7-8, 7-14

lndex-14

SIMFORM directive, 3-18
SLOT, 4-54
Small memory model, 8-1, B-8,

B-10
SMSW, 4-54
Source file, 1-2, F-2
Special characters, 2-1
Specifiers, 5-2
Specifying 8087 operand size,

C-1
Specifying overlays; 8-3
SR Command, 12-26
SRTL (shareable runtime library),

B-1
attributes, B-8
calling conventions, B-11
components, B-1
entry points, B-2, B-4
file, B-1
flags, B-7
restrictions, B-13
transfer vector, B-4
version number, B-5, B-6

SRTL CANNOT CONTAIN 8087
FIXUPS error, H-4

SRTL DATA OVERLAP error, H-4
SS register points, 3-3
SSEG (stack segment), 2-9, 3-4
STACK COLLIDES WITH SRTL

DATA error, H-4
STACK combine type, 3-6, 3-7,

7-28
STACK option, 7-8, 7-11
Stack segment, 2-9, 3-4
Statements, 2-22
STC, 4-38
STD, 4-38

STI, 4-38
Stopping LIB-86, 9-3
Stopping LINK 86, 7-5
Stopping RASM-86, 1-7
Stopping SID-286, 10-6, 12-23
STOS, 4-28
STR, 4-54
String constant, 2-5
String instructions, 4-26
String length, 11-2
String operations, 4-26
SUB, 4-21
Subroutine calls, 12-29
Suppressing RASM-86 output,

1-4
SYM file, 6-1, 7-2
SYM file options, 7-16
SYM files, 6-1
Symbol, 2-9, 3-13
Symbol definition directives, 3-1
Symbol file (SYM), 1-2, 7-21,

7-24
SYMBOL ~ILE ERROR, G-2
SYMBOL TABLE OVERFLOW

error, F-2
Symbol table (SYM) file, 6-1,

6-2, 7-2, 12-8
Symbol table, 5-1, 11-5, F-2
SYMBOL TABLE OVERFLOW

error, G-2, H-5, J-3
Symbol variables, 2-9
Symbolic expressions, 11-7
Symbolic references, 11-5
Symbols, 12-16
Syntax Conventions, v
SYNTAX ERROR, F-2, H-5, J-3

T

T Command, 12-27
TARGET OUT OF RANGE error,

H-5
TEST, 4-25
Testing flag registers, 4-11
TITLE directive, 3-19
TOO MANY MODULES IN

LIBRARY error, H-5
TOO MANY MODULES LINKED

FROM LIBRARY error, H-5
Traced instruction, 12-:-28
Tracing program execution,

12-27, 12-30
Transfer vectors, B-2, B-3, B-4
Transferring program control,

12-11
Type attribute, 2-7, 2-9
TYPE operator, 2-12, 2-18
Type-1 segment value, 13-1
Type-2 segment value, 13-2

u

U Command, 12-30
Unary delimiters, 11-7
Unary operators, 2-15
UNDEFINED SYMBOLS error, H-6
Underflow, 11-7
Underscore, v
Unresolved symbols, 7-2
Unsigned numbers, 2-16

lndex-15

Unsuccessful Register Read
error, K-3

Unsuccessful Register Write
error, K-3

Updating libraries with LIB-86,
9-3

Use factor, 1-7, 7-2, 9-1
User console name, 1-4
User transfer vector, B-4
User-defined symbols , 2-11,

3-13

v

V command, 12-8, 12-31
Variable creation operators,

2-11
Variable manipulation operators,

2-11
Variable offset attributes, 2-10
Variable segment attribute.s,

2-10
VERR, 4-55
VERSION 2 REQUIRED error,

H-6, J-3
VERW, 4-55

w

W Command, 12-31
WAIT, 4-38
Window Control, 12-19
Windowing options, 10-3
WORD align type, 3-5, 3-6, 7-29
Word alignment, 3-5, 3-6

lndex-16

WORD attribute, 2-9
Writing memory to disk, 12-31

x

X Command, 12-32, 13-1
X1 option, 7-8, 7-11
X2 option, 7-8, 7-11
X3 option, 7-8, 7-11
X4 option, 7-8, 7- 11
XCHG, 4-16
XLAT, 4-16
XOR. 4-25
XOR operator, 2-12, 2-15
XREF option, 9-4
XREF-86, 6-1
XRF file, 6-1, 9-2,. 9-10
XSRTL file, B-1
XSRTL MUST BE LINKED BY

ITSELF error, H-6
XSRTL name, B-6
XSRTLs INCOMPATIBLE WITH

OVERLAYS error, H-6

z

Z Command, 14-34
ZF, 4-16

