
GSX-80™
Graphics Extension

GSX-80™
Graphics Extension

Programmer's Guide

Digital Research
P.O. Box 579

160 Central
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

COPYRIGHT NOTICE

Copyright © 1982 by Graphic Software Systems, Incorporated and
Digital Research. This item and the information contained herein
are the confidential property of Graphic Software Systems, Incor­
porated and Digital Research. No part may be reproduced, trans­
mitted, transcribed, stored in a retrieval system, or translated
into any human or computer language in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the express written permission of Graphic
Software Systems, Incorporated, 25117 SW Parkway, Wilsonville,
Oregon, 97070, and Digital Research, Post Office Box 579, Pacific
Grove, California, 93950.

The names GSS-KERNEL and GSS-PLOT are trademarks of Graphic
Software Systems, Incorporated. The name GSX-80 is a trademark of
Digital Research.

DISCLAIMER

Graphic Software Systems, Inc. and Digital Research make no
representations or warranties with respect to the contents hereof
and specifically disclaim any implied warranties or merchantabi­
lity or fitness for any particular purpose. Further, Graphic
Software Systems, Incorporated and Digital Research reserve the
right to revise this publication and to make changes from time to
time in the content hereof without obligation of Graphic Software
Systems, Incorporated and Digital Research to notify any person
or organization of such revision or changes.

First Edition: November 1982
Release Number: 1.0

All Information Presented Here is Propri~tary to Graphic Software
Systems, Incorporated and Digital Research

[ill
DIGITAL

RESEARCH'Y

DATE: DECEMBER 1, 1982

TO: CP/MTM CARD OWNER

SUBJECT: GSX-80™ FUNCTION

Along with this CP/M Card package, you are recelvlng GSX-80 which
is Digital Research's first graphics software product. GSX-80 is
the graphic system extension to a-bit CP/M systems and provides
graphic output functions through standard O/S calling procedures.
We have included it with the CP/M Card to give you the gateway to
"CP/M GRAPHICSTMft which includes the following products as well
~s more to come from independent software vendors and DRI:

GSS-KERNELTM is a subroutine library of 2D graphic primitives for
programmers and system builders. This product will provide a
programmers interface to graphics that is consistent with the
emerging ISO graphic standard GKS (Graphical Kernel System).

GSS-PLOTTM is a subroutine library of high level functions .for
programmers who want bar graphs, pie charts, histograms, line
graphs and sca~ter plots. This product makes it easy to write
programs that produce typical business, ehgineering an~ scienti­
fic data representation plots.

GSS-KERNEL and GSS-PLOT will link with PASCAL/MT+, PL/I-80, CB80
and FORTRAN source coded programs.

GSS-4S1S™ is a interactive utility that provides Tek­
tronix 4010 terminal emulation for microcomputers that have
graphic displays. This product is for the user who wants to
access graphic software packages on time sharing systems. Any
software package that produces Tektronix PLOT-10 compatible out­
put can be accessed.

These products along with GSX-80 will bring portability to micro­
computer graphic applications. Many output devices are also
supported such as plotters, matrix printers and CRT terminals.

See your computer retailer for these graphic products and new
ones that will be coming soon as part of dCP/M GRAPHICS."

CP/M CARDTM, GSX-SS™t PASCAL/MT+TM, PL/I-8S™,
CB8S™, CP/M GRAPHICS M Digital Research, Inc.

GSS-KERNELTM, GSS-PLOTTM, GSS-4SlS™ Graphic Software Systems, Inc.

Post Office BOl(579 • 100 Central Avenue. PJcific Grove, California 93950 • (-108) 0-19-3896. TWX 910 360 5001

Preface

MANUAL OBJECTIVE

IRTENDBD AUDIENCE

MANUAL DESIGN

The purpose of this document is to describe
the features and operation of the CP/M-80
Graphics System Extension, GSX-80. The
manual will explain what GSX-80 does and how
you can employ its graphics capabilities. It
will also explain how GSX-80 interfaces to
your, hardware environment and how you can
adapt GSX-80 for your own unique graphics
devices.

This manual is intended for systems
programmers who are familiar with the CP/M
Operating System and also have some knowledge
of graphics programming.

This manual contains five sections, appen­
dices, and an index. The following descrip­
tions will help you determine a reading path
through the manual.

Section 1 provides an overview of GSX-80. It
explains the GSX-80 architecture and gives a
preview of each component of GSX-80. Also,
it describes how to use GSX-80 in conjunction
with applications programs to provide
graphics capability on your system.

Section 2 describes the Graphics Device
Operating System (GDOS) in detail. It
includes the functions and calling conven­
tions for GDOS as well as information about
how device drivers are loaded during program
execution.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

iii

GSX-80 PROGRAMMER'S GUIDE PREFACE

CONVENTIONS USED
IN THIS MANUAL

Section 3 treats the Graphics Input/Output
(GIOS). It describes how to interface par­
ticular graphics devices to GSX-80 to provide
device independence for your application
program.

Section 4 provides details abput the GSX
Loader and its operation at the start of your
program execution. It also describes how the
GSX Loader is integrated with your applica­
tion program using the GENGRAF utility.

Section 5 describes the installation proce­
dure for GSX-80 and also tells you how to
debug application programs that use graphics.

Appendixes containing the following informa­
tion are provided for your convenience:

Appendix A - Example graphics device driver
listings

Appendix B - The Virtual Device Interface
specification

Appendix C - A glossary of GSX-80 unique
terms

Appendix D - A summary of device character-
istics for graphics device
drivers included with the
standard GSX-80 distribution

Finally, an index will help you use this
document more effectively.

Words appearing in bold type in the main text
can be found in the Glossary, Appendix C.

All Information Presented Her~ is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

iv

Table of Contents

SBC'l'IOR 1 OVERVIEW

INTRODUCTION •

GRAPHICS SYSTEM EXTENSION ARCHITECTURE

The Graphics Device Operating System (GDOS)

The Graphics Input/Output System (GIOS)

The GENGRAF Utility •••

THE GRAPHICS KERNEL AND PLOT •

APPLICATION PROGRAMS • • • •

SBC'l'IOR 2 GDOS

INTRODUCTION •

GDOS FUNCTIONS

Trapping Graphics Calls •

Dynamic Loading • •

Transforming Points • •

GDOS CALLING SEQUENCE

GDOS OPCODES •

LOADING DEVICE DRIVERS •

Assignment Table Format •

Memory Management • • • •

1

1

2

3

4

5

5

7

7

7

7

8

8

11

16

17

18

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

v

GSX-80 PROGRAMMER'S GUIDE TABLE OP CONTENTS

SECTION 3 GIOS

INTRODUCTION •

THE PURPOSE OF GIOS

DEVICE DRIVER FUNCTIONS

CREATING A GIOS FILE • • •

SECTION 4 TIlE GEHGRAP UTILITY

INTRODUCTION ••

THE GSX LOADER

THE GENGRAF UTILITY

SECTION 5 OPERATIHG PROCEDURES

INTRODUCTION • • • • • • •

GSX-80 DISTRIBUTION FILES

RUNNING GRAPHICS APPLICATIONS UNDER GSX-80 •

DEBUGGING GRAPHICS APPLICATIONS UNDER GSX-80 •

DETERMINING USER PROGRAM AREA SIZE • •

CREATING A NEW DEVICE DRIVER • • • • •

19

19

20

23

25

25

29

31

31

32

33

34

35

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

vi

GSX-80 PROGRAMMER'S GOlDE TABLE OF CORTENTS

APPENDIX A EXAMPLE DEVICE DRIVER • • • • • • • • •

APPENDIX B VIRTUAL DEVICE INTERFACE SPECIFICATION

APPENDIX C GLOSSARY

APPENDIX D DEVICE SPECIFICS

EPSON MX-80 PRINTER WITH GRAFTRAX PLUS ••
HEWLETT-PACKARD 7220 GRAPHICS PLOTTER
HEWLETT-PACKARD 7470A GRAPHICS PLOTTER ••
HOUSTON INSTRUMENTS HIPLOT DMP-3/4-443 . .
HOUSTON INSTRUMENTS HIPLOT DMP-6/7 • • • • • •
VT100 WITH DIGITAL ENGINEERING RETROGRAPHICS •

37

59

117

121

122
124
127
134
137
139

INDEX •• 143

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

vii

GSX-80 PROGRAMMER'S GUIDE TABLE OP CORTENTS

ILLUSTRATIONS

GSX-80 MEMORY MAP 28

TABLES

GSX-80 OPERATION CODES 11

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

viii

Section 1
OVERVIEW

IR'l'RODUC'l'IOR

GRAPHICS SYSTEM
EXTERSIOR
ARCHITECTURE

This section gives you an overview of the
Graphics System Extension architecture, its
components and their functions. Later sec­
tions describe each of these parts in detail.

GSX-80 is the Graphics System Extension for
the CP/M family of operating systems. It
incorporates graphics capability into the
operating system and provides a host and
device independent interface for your appli­
cations programs. Graphics primitives are
provided for implementing graphics applica­
tions with reduced programming effort. In
addition, GSX-80 offers program portability
by allowing an application to run on any CP/M
system with the GSX-80 option. GSX-80 also
promotes programmer portability by providing
a common programmer interface to graphics
which is compatible with one of the world's
most widely used operating systems, CP/M.

GSX-80 is implemented as an integral part of
your operating system. Application programs
interface to GSX-80 through a standard cal­
ling sequence similar to the BDOS conven­
tions. Drivers for specific graphics devices
translate the standard GSX-80 calls to the
unique characteristics of the device. In
this way, GSX-80 provides device-independence
since the peculiarities of the graphics de­
vice'are not visible to the application
program.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

I

GSX-80 PROGRAMMER'S GUcrDE OVERVIEW

THE GRAPHICS
DEVICE OPERATING
SYSTEM

GSX-80 consists of several parts that work
together to give your system graphics
capability:

• the Graphics Device Operating System
(GDOS) ,

• the Graphics Input/Output System (GIOS)
and,

• the GERGRAP utility

The Graphics Device Operating System (GDOS)
contains the basic host and device indepen­
dent graphics functions that can be called by
your application program. GOOS provides a
standard interface to graphics which is con­
stant regardless of specific devices or host
hardware, just as the BOOS standardizes disk
interfaces. Your application program acces­
ses GOOS through a mechanism analogous to the
normal BOOS system calls.

GDOS loads at run time with your graphics
application program, so it consumes system
memory space only when required, leaving the
normal Transient Program Area for non-graphic
programs.

GOOS performs coordinate scaling so that your
program can specify points in a normalized
coordinate space. It uses device specific
information to translate the normalized coor­
dinates into the corresponding values for
your particular graphics device.

All Information Presented Here is Proprietary to Graphic £oftware
Systems, Incorporated and Digital Research

2

GSX-80 PROGRAMMER'S GUIDE OVERVIEW

THE GRAPHICS
INPUT/OUTPUT
SYSTEM

Multiple graphics devices can be supported
under GSX-80 within a single application. By
referr ing to devices with a workstation iden­
tification number, graphics information can
be sent to anyone of several resident
devices. GDOS dynamically loads a specific
device driyer when requested by the applica­
tion program, overlaying the previous driver.
This technique minimizes memory size require­
ments since only one driver is resident at
any time. For details see "Loading Device
Drivers" in Section 2.

The Graphics Input/Output System (GIOS) is
similar to the Basic I/O system or BIOS. It
provides the device specific code required to
interface your particular graphics devices to
the GDOS. GIOS consists of a set of Device
Drivers that communicate directly with the
graphics devices through the appropriate host
ports. A unique device driver is required
for each different graphics device on your
system. The term GIOS refers to the collec­
tion of available device drivers as well as
the particular driver that is loaded into
memory when required by your application.
Although a single program can use several
graphics devices, only one driver is loaded
by GDOS at a time.

GIOS performs the graphics priaitives of GSX-
80, consistent with the inherent capabilities
of your graphics device. In some cases a
device driver will emulate standard GDOS
capabilities which are not provided by the
graphics device hardware. For example, some
devices may require that dashed lines be
simulated by a series of short vectors gen­
erated in the device driver.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

3

GSX-80 PROGRAMMER'S GUIDE OVERVIEW

THE GENGRAF
UTILITY

GSX-80 is supplied with drivers for many of
the most popular graphics devices for micro­
compu ter systems. However, you may ins tall
your own custom device driver if necessary.
We provide information in Section 3, "GIOS,"
to help you write your driver, including the
Virtual Device Interface (VOl) Specification
which defines all the required functions and
parameter conventions. In addition, we
include a sample device driver in Appendix B.

The GENGRAF utility is used to combine your
application program and the GSX Loader into
one executable .COM file. The GSX Loader is
a small program that loads the GDOS and GIOS
into memory at run-time and establishes the
links between your application program and
GDOS. The GSX Loader is attached to your
application program after it has been
compiled/assembled and linked with the re­
quired external routines and libraries.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

4

GSx-80 PROGRAMMER'S GUIDE OVERVIEW

THE GRAPHICS
KERREL AND PLOT

APPLICATION
PROGRAMS

GSX-80 defines a standard interface to
graphics from your application program using
a BDOS-like access method. GSX-80 also sup­
ports higher level graphics interfaces. GSS­
KERNEL is a graphics application library
which is based on the Graphical Kerne1 System
(GKS), level OA, a draft international
graphics standard which gives you extremely
powerful graphics capabilities. GSS-KERNEL
supports the popular high level languages
such as Pascal, Fortran and PL/I with stan­
dard graphics procedure calls. GSS-PLOT is a
high level programming tool that allows you
to produce graphs and plots with just a few
calls from a high level language.

GSS-KERNEL and GSS-PLOT are available for
CP/M from Digital Research as separate pro­
gram products. GSX-80 is the basis for these
products since it provides host and device
independent access to graphics primitives.

You can wr i te your applications programs in
assembly language (or a high level language
that supports the GSX-80 calling conventions)
with appropriate calls to GDOS. Programs are
compiled/assembled and linked in the normal
manner with the addition of one extra step.
Before executing your application program you
must attach the GSX Loader using the GENGRAF
utility supplied with GSX-80. This results
in an executable .COM file. See Section 4,
"The GENGRAF Utility," for details.

End of Section I

All Information Presented Here is Proprietary to Gyaphic Software
Systems, Incorporated and Digital Research

5

GSX-80 PROGRAMMER'S GUIDE OVERVIEW

All Information Presented Here is Proprietary to Graphic Softw~re
Systems, Incorporated and Digital Research

6

Section 2
GOOS

IN'l'RODUC'rIOR

GDOS FORC"HORS

TRAPPING GRAPHICS
CALLS

DYNAMIC LOADING

In this section we describe the Graphics
Device Operating System (GDOS) in detail,
including GDOS functions, the GDOS calling
sequence, and how Device Drivers are loaded.

GDOS performs several functions during the
execution of a graphics application program,
including:

• trapping all system function calls,

• loading device drivers as required,

• converting normalized coordinates to
device coordinates.

GDOS interfaces to the normal BOOS calling
sequence by trapping all calls to BOOS and
examining the function code in register C.
If the code is lIS, the call is a graphics
request and is serviced by GDOS. Otherwise,
the request is passed on to BOOS to be
serviced in the normal manner. See the nGSX
Loader n in Section 4 for details.

Each time a workstation is opened, GDOS
determines whether the required device driver
is resident in memory. If not, GDOS loads
the driver from disk and then services the
graphics request.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

7

GSX-80 PROGRAMMER'S GUIDE GDOS

TRANSFORMING
POINTS

GDOS CALLING
SEQUENCE

All graphics coordinates are passed to GOOS
as Normalized Device Coordinates (NDC) in a
range from 0 to 32767 in both axes. Using
information passed from the device driver
when the workstation (device) was opened,
GOOS scales the NOC coordinates to the device
coordinates. The full scale NOC space is
always mapped to the full dimensions of your
graphics device in each axis. In this way
you are assured that all your graphics infor­
mation will appear on the display surface
regardless of the dimensions of your device.

GSX-80 provides the programmer with a
standard way to access graphics capabilities.
This accessing method is referred to as the
GSX-80 Virtual Device Interface (VDI) since
it makes all graphics devices appear "virtu­
ally" identical. The implementation of the
VOl employs the conventional BOOS calling
sequence with a function code of 115. That
is, the decimal number 115 (73 Hexidecimal)
is loaded into register C, and a subroutine
call is made to location 5. Arguments to
GOOS are passed in a parameter list pointed
to by the contents of the double register DE.

The parameter list is in the form of five
arrays: a control array, an array of input
parameters, an array of input point coordi­
nates, an array of output parameters, and an
array of output point coordinates. The spe­
cific graphics function to be performed by
GDOS is indicated by an operation code in the
parameter list.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

8

GSX-80 PROGRAMMER'S GOlDE GDOS

The GOOS calling sequence is summar ized
below:

GOOS CALLING SEQUENCE:
Function code (in register C) = 115

Parameter block address in register OE

Parameter block contents:

PB
PB+2
PB+4

PB+6
PB+8

Address of control array
Address of input parameter array
Address of input point coordinate
array
Address of output parameter array
Address of output point coordinate
array

Control Array on Input:

contrl(l)
contrl(2)

contrl (4)

-opcode for driver function
-number of vertices in input
point array

-length of input parameter
array

contrl(6-n) -opcode dependent

Input Parameter Array:

intin -array of input parameters

Input Coordinate Array:

ptsin -array of input coordinates
(each point is specified by an X
and Y coordinate given in Norma­
lized Device Coordinates between
o and 32,767.)

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

9

GSX-80 PROGRAMMER'S GUIDE GDOS

Control Array on Output:

contrl(3) -length of output coordinate array
contrl(S) . -number of vertices in output

point array
contrl(6-n) -opcode dependent

Output Parameter Array:

intout -array of output parameters

Output Point Coordinate Array:

ptsout -array of output coordinates
(each point is specified by an X
and Y coordinate given in Norma­
lized Device Coordinates between
o and 32,767.)

NOTE: All array elements are type INTEGER (2
bytes). The meaning of the input and output
parameter arrays is dependent on the opcode.
See the "Virtual Device Interface Specifica­
tion," Appendix B, for details.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

10

GSX-80 PROGRAMMER'S GOlDE GDOS

GDOS OPCODBS Table 1 summarizes the GDOS opcodes. See
Section 3 for a detailed description of all
the operation codes including parameters.

~able 1. GSX-80 OPERA~IOR CODES

Opcode Description

1

2

3

4

5

OPEN WORKSTATION- initialize a graphics de­
vice (load driver if necessary)

CLOSE WORKSTATION- stop graphics output to
this workstation

CLEAR WORKSTATION- clear display device

UPDATE WORKSTATION- display all pending gra­
phics on workstation

ESCAPE- enable special device dependent op­
eration

Escape Functions: (function id indicated in
parameter list)

ID 1 INQUIRE ADDRESSABLE CHARACTER CELLS­
return number of addressable rows and
columns

2 ENTER GRAPHICS MODE- enter graphics mode

3 EXIT GRAPHICS MODE- exit graphics mode

4 CURSOR UP- move cursor up one row

5 CURSOR DOWN- move cursor down one row

6 CURSOR RIGHT- move cursor right one
column

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

11

GSX-80 PROGRAMMER'S GUIDE GDOS

Table 1. GSX-80 OPERATION CODES (continued)

Opcode Description

7 CURSOR LEFT- move cursor left one column

8 HOME CURSOR- move cursor to home
position

9 ERASE TO END OF SCREEN- erase from
current cursor position to end of screen

10 ERASE TO END OF LINE- erase from current
cursor position to end of line

11 DIRECT CURSOR ADDRESS- move alpha cursor
to specified row and column

12 OUTPUT CURSOR ADDRESSABLE TEXT- output
text at the current alpha cursor
position

13 REVERSE VIDEO ON- display subsequent
text in reverse video

14 REVERSE VIDEO OFF- display subsequent
text in standard video

15 INQUIRE CURRENT CURSOR ADDRESS- return
location of alpha cursor

16 INQUIRE TABLET STATUS- return status of
graphics tablet

17 HARDCOPY- make hardcopy

18 PLACE CURSOR AT LOCATION- move cursor
directly to specified location

19 REMOVE CURSOR- do not display cursor

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

12

GSX-80 PROGRAMMER'S GUIDE

Table 1. GSX-80 OPERATION CODES (continued)

Opcode Description

6

7

8

9

10

11

12

20-
50 RESERVED (for future expansion)

51-
100 UNUSED (and available)

POLYLINE- output a polyline

POLYMARKER- output markers

TEXT- output text starting at specified
position

FILLED AREA- display and fill a polygon

CELL ARRAY- define a cell array

GENERALIZED DRAWING PRIMITIVE- display a
generalized drawing primitive

ID 1 BAR

2 ARC

3 PIE SLICE

4 CIRCLE

5 PRINT GRAPHIC CHARACTERS

6-7 RESERVED (for future use)

8-10 UNUSED (and available)

SET CHARACTER HEIGHT- set text size

GDOS

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

13 /p

GSX-80 PROGRAMMER'S GUIDE

Table 1. GSX-80 OPERA'.lIOB CODES (continoed)

Opcode Description

13

14

15

16

17

18

19

20

21

22

23

24

25

26

SET CHARACTER UP VECTOR- set text direction

SET COLOR REPRESENTATION- define the color
associated with a color index

SET POLYLINE LINETYPE- set linestyle for
polylines

SET POLYLINE LINE WIDTH- set width of lines

SET POLYLINE COLOR INDEX- set color for
polylines

SET POLYMARKER TYPE- set marker type for
polymarkers

SET POLYMARKER SCALE- set size for
polymarkers

SET POLYMARKER COLOR INDEX- set color for
polymarkers

SET TEXT FONT- set device dependent text
style

SET TEXT COLOR INDEX- set color of text

SET FILL INTERIOR STYLE- set interior style
for polygon fill

SET FILL STYLE INDEX- set fill style for
polygons

SET FILL COLOR INDEX- set color for polygon
fill

INQUIRE COLOR REPRESENTATION- return color
representation values of index

GDOS

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

14

GSX-80 PROGRAMMER'S GUIDE

Table 1. GSX-80 OPERATION CODES (continued)

Opcode Description

27

28

29

30

31

32

INQUIRE CELL ARRAY- return definition of cell
array

INPUT LOCATOR- return value of locator

INPUT VALUATOR- return value of valuator

INPUT CHOICE- return value of choice device

INPUT STRING- return character string

SET WRITING MODE- set current writing mode
(replace, overstrike, complement, erase)

GDOS

33 SET INPUT MODE- set input mode (request or sample)

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

15

GSX-80 PROGRAMMER'S GUIDE GDOS

LOADING DEVICE
DRIVERS

The GSX-80 Virtual Interface refers to
graphics devices as workstations. Each time
a graphics device is to be used, it must
first be initialized with an OPEN WORKSTATION
operation. This will cause the device to be
initialized with selected attributes such as
I ine type, color, etc., and it will also
return information about the device to GDOS~

When the OPEN WORKSTATION operation is per­
formed, GDOS determines whether the correct
device driver is currently in memory. It
does this by comparing the workstation ID
which is specified in the OPEN WORKSTATION
call with the workstation IO of the device
whose driver is currently loaded. If there
is a match (the correct driver is in memory),
the graphics request is serviced immediately.

If there is not a match, then GOOS must load
the correct device driver. In order to do
this, GOOS refers to a data structure called
the Assignment Table which contains informa­
tion about the available device drivers and
the files where they are stored.

GOOS searches the Assignment Table for a
device driver entry with a driver number
which matches the workstation IO requested in
the OPEN WORKSTATION call. If it finds the
correct driver entry, GDOS will load the new
device driver above itself where the previous
driver was located. When the load is com­
plete, GDOS will finish the OPEN WORKSTATION
operation and then return to the calling
program.

If there is no match in the Assignment Table
when a new driver is required, GDOS will
return without loading a driver. Therefore
the previous graphics device will continue to
be the open workstation.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

16

GSX-80 PROGRAMMER'S GUIDE GDOS

ASSIGNMENT TABLE
FORMAT

The Assignment Table consists entirely of
text and may be created or modified with any
text editor. It must reside in a file named
ASSIGN.SYS on the currently logged drive when
GSX-80 is operating. For each device driver,
there is an entry containing the driver
number, which signifies the workstation ID of
the associated device, and the name of the
file containing the associated graphics de­
vice driver. The name of the device driver
file may be any legal CP/M unambiguous file­
name. Any device to be used during a
graphics session must have an entry in the
Assignment Table corresponding to the name of
its associated driver.

The format for entries in the Assignment
Table is:

DDXd:fi1ename

DD = Logical driver number
X = space
d = Disk drive code
filename = the driver filename (valid unambi­

guous CP/M filename of up to eight
upper case characters, .PRL
extension required)

For example, a valid entries in the Table
would be: 11 A:DDPLOT

1 B:CRTDRV
21 A:PRINTR

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

17

GSX-80 PROGRAMMER'S GUIDE GDOS

MEMORY MANAGEMENT

There is a convention for assigning device
driver numbers (workstation ID's) to graphics
devices. This is done to assure the maximum
degree· of device independence within applica­
tions programs. The convention for driver
numbers is:

o
1-10
11-20
21-30
32-40

Default console
CRT
Plotter
Printer
Other devices

When execution of your graphics program be­
gins, the GSX Loader allocates memory for the
first device driver in the Assignment Taple
at the top of the Transient Program Area,
just below BDOSs This driver is referred to
as the Default Device Driver. Subsequently,
GDOS causes all new dr i ver s to be loaded into
the same area where memory was allotted for
the original device driver. To prevent ne~
drivers fro~ writing ~ and destroying ~
portion of BOOS, ~hich follo~~ the device
driver, make sure that the first driver in
the AssigrimEmt Table is the largest driver to
be loaded .§.Q that ample memory space is allo­
cated Qy the GSX Loader for all subsequent
drivers. An error is reported if an attempt
is made to load a driver larger than the
default driver.

End of Section 2

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

18

Section 3
GIOS

INTRODUCTION

TIlE PURPOSE OF
GIOS

In this section we describe the Graphics
Input/Outpu t System, or GIOS. The informa­
tion in this section will allow you to write.
and install your own custom drivers for
unique graphics devices.

NOTE: If your disk does not include all the
GIOS modules documented in this manual,
contact your OEM or distributor.

As we discussed earlier, GSX-80 is composed
of three components: the Graphics Device
Operating System (GDOS), the Graphics
Input/Output System (GIOS), and the GSX
Loader. GOOS contains the device independent
graphics functions, while GIOS contains the
device dependent code. This division is
consistent with the CP/M philosophy of iso­
lating device dependencies so that the prin­
cipal parts of the operating system are
transportable to many systems and so that
applications can run independent of the spe­
cific devices connected to the system. In
this context, GIOS is analogous to the BIOS
but pertains to graphics devices only. GIOS
contains a device driver for each of the
graphics devices on the system.

A difference between GIOS and BIOS is that
whereas all device drivers contained within
BIOS are resident in memory simultaneously,
only one graphics device driver is resident
at any time. That is, only one graphics
device is active at a time, although the
active device may be changed by a request
from the application program. GOOS insures

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

19

GSX-80 PROGRAMMER'S GUIDE GIOS

DEVICE DRIVER
PURCTIOHS

VIRTUAL DEVICE
INTERFACE
SPECIFICATION

that the correct driver is in memory when
required. Because GIOS drivers are loaded
dynamically, they must be stored on disk in
relocatable format, as .PRL file types.

Device Drivers use the intrinsic graphics
capabilities of devices to implement graphics
primitives for GDOS. In some cases the
graphics device itself does not support all
the GDOS operations directly and the driver
must emulate the capability in software. As
an example, if a plotter cannot produce a
dashed line, the driver must emulate it by
converting a single dashed line into a series
of short vectors and transmitting them to the
plotter, giving the same end result.

Device drivers must conform to the GSX-80
Virtual Device Interface (VOl) Specification.
The VDI specifies the calling sequence to
access device driver functions as well as the
syntax and semantics of the data structures
that communicate across the interface.

Arguments to device drivers are passed in a
parameter list pointed to by the contents of
the double register DE. The parameter list
is in the form of five arrays: a control
array, an array of input parameters, an array
of input point coordinates, an array of out­
put parameters, and an array of output point
coordinates. The specific graphics function
to be performed by a device driver is indi­
cated by an operation code in the parameter
list.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

20

GSX-80 PROGRAMMER' S GUIDE GIOS

The device driver calling sequence is summa­
rized below:

DEVICE DRIVER CALLING SEQUENCE:

Parameter block address in register DE

Parameter block contents:

PB
PB+2
PB+4

PB+6
PB+8

Address of control array
Address of input parameter array
Address of input point coordinate
array
Address of output parameter array

Address of output point coordinate
array

Control Array on Input:

contrl (1)
contrl (2)

contrl (4)

contrl(6-n)

-opcode for driver function
-number of vertices in input
point array

-length of input parameter
array

-opcode dependent

Input Parameter Array:

intin -array of input parameters

Input Coordinate Array:

ptsin -array of input coordinates
(each point is specified by an X
and Y coordinate given in Device
Coordinates)

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

21

GSX-80 PROGRAMMER'S GUIDE GIOS

Control Array on Output:

contrl{3)
contrl{S)

-length of output coordinate array
-number of vertices in output

point array
contrl{6-n) -opcode dependent

Output Parameter Array:

intout -array of output parameters

Output Point Coordin~te Array:

ptsout -array of output coordinates
(each point is specified by an X
and Y coordinate given in Device
Coordinates)

All array elements are type INTEGER (2
bytes). The meaning of the input and output
parameter arrays is dependent on the opcode.
See the Virtual Device Interface Specifica­
tion, Appendix B, for details.

All graphics coordinates are passed to the
device driver as Device Coordinates. Using
information passed from the device driver
when the workstation (device) was opened,
GDOS scales the NDC coordinates, passed from
the application, to the coordinates of the
specific device.

The full scale NDC space is always mapped to
the full dimensions of your graphics device
in each axis. In this way you are assured
that all of your graphics information is
visible on the display surface regardless of
the actual device dimensions.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

22

GSX-80 PROGRAMMER'S GUIDE GIOS

CREA~ING A GlOS

If your device has an aspect ratio that is
not 1:1 (Le., the dis'play surface is not
square), and you wish to prevent distortion
between your world coordinate system and the
device coordinate system, then in your appli­
cation you must use different scaling factors
in the X and Y axes to compensate for the
asymmetry of your device. For example, if
you are using a typical CRT device with an
aspect ratio of 3:4 (vertical: horizontal),
to produce a perfect square on the display,
you would draw a figure with 4000 NDC units
vertically and 3000 NDC units horizontally.
That is, the scaling factor for the vertical
dimension is 4/3 of the horizontal direction.
For most non-cr i tical applications you need
not make this adjustment.

Details of the Virtual Device Interface
including required and optional functions and
arguments are included in Appendix B, "Vir­
tual Device Interface Specification."

Device driver files that are part of GIOS
must be in relocatable format so they can be
loaded by the GSX Loader and GDOS. You may
write a device driver in any language as long
as the functions and parameter passing con­
ventions conform to the Virtual Device Inter­
face Specification given above. After assem­
bling or compiling your driver source, link
it with any required external subroutines and
run-time support libraries using LINK-SO to
produce a relocatable load module.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

23

GSX-80 PROGRAMMER' S GUIDE GIOS

When naming the device driver file the name
used must contain six characters and must
have a .PRL extension. In addition, if the
driver is to be used by a graphics
application, it must be included in the
Assignment Table. This is a text file named'
ASSIGN.SYS on the currently logged disk.
Each device entry in the Assignment Table has
the form:

DDXd:filename

where DD

X
d

filename

device driver number (worksta­
tion ID)

= a space
= the disk drive code

the driver filename (valid
unambiguous CP/M filename--up
to eight upper case characters
required)

See "Assignment Table Format" in Section 2 on
GDOS for more details.

End of Section 3

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

24

Section 4
THE GENGRAF UTILITY

IN'l'RODUC'HOR

THE GSX LOADER

GSX LOADER
RUN-TIME
PROCEDURES

In this section we describe the GSX-80
utility GENGRAF and the GSX Loader. The GSX
Loader brings GDOS into memory in preparation
for execution of your graphics application
program. GENGRAF is used to attach the GSX
Loader to your program creating an executable
.COM file.

GDOS is not resident in memory when the op­
erating system is initialized, but is loaded
when you execute your graphics application
program. In this way, maximum space is pre­
served for non-graphics programs.

Loading of GDOS at run-time is performed by a
special program called the GSX Loader. The
GSX Loader also br ings the Assignment Table
into memory from a file named ASSIGN.SYS on
the currently logged disk and then allocates
memory space for the first (default) device
driver named in the Assignment Table.
Finally, the GSX Loader establishes the
linkage between GDOS and the normal BDOS
entry point at location 5 by moving some
pointers.

The GSX Loader comes into memory with your
graphics application program and r~ceives
control before execution of your program
begins. The procedure for attaching the GSX
Loader to your program is explained below.

After the GSX Loader is brought into memory
with your program (through the normal opera­
tion of the Console Command Processor) it
immediately receives control and performs the
following operations.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

25

GSX-80 PROGRAMMER'S GUIDE

First, the GSX Loader opens the Assignment
Table file; ASSIGN.SYS, and reads it to
determine the filename of the default device
dr i ver. I t then alloca tes space for the
default device driver into the highest por­
tion of the Transient (user) Program Area,
just below BOOS. This defines the space
allocated for all device drivers, since new
drivers loaded during execution of your pro­
gram will be overlayed onto the current dri­
ver; therefore, the default device driver
must be the largest driver needed during
execution of a specific application. The GSX
Loader utilizes the system .PRL loader to do
this (all device driver files must be in .PRL
format) •

Secondly, the GSX Loader brings GOOS into
memory from file GSX.SYS on the currently
logged disk and places it below the device
driver.

Then the GSX Loader places the Assignment
Table into a data area wi thin GOOS. It also
establishes the linkage from GOOS to the rest
of the operating system in such a way that
causes all operating system calls to go to
GOOS. GOOS will filter out the graphics
calls (Function 115) and execute them and
allow the BOOS calls (all other Function
codes) to pass through to BOOS unaltered.

Note that the new top of the Transient
Program Area, or TPA, (indicated by the vec­
tor in location 5) is the bottom of GOOS, so
that the application program will be aware of
the actual free space available and allocate
stack areas, etc., below GOOS.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Oigital Research

26

GSX-80 PROGRAMMER'S GUIDE GERGBAP

Finally, the GSX Loader moves the application
program down from its position above the GSX
Loader to the start of TPA, location IOOH.
The space that was taken up by the Load"er can
be utilized during the execution of the
application program. Control is then
transferred to location IOOH, the start of
the application program. See Figure 1.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

27

GSX-80 PROGRAMMER'S GUXDE

FFFF ...-_______ ---,

100

alos

aDos

GIOS

GOOS

User
Program

Area

SYSTEM
DATA

01..----------'

Figure 1. GSX-80 Memory Map.

GERGRAP

GSX

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

28

~

GSX-80 PROGRAMMER'S GUIDE GERGRAF

TIlE GERGRAP'
UTILITY

Your application program may be written in
any language provided the GDOS protocol is
observed. You may compile/assemble and link
your application in the normal manner,
yielding a .COM executable file. One addi­
tional step must be performed, however,
before executing your graphics program: the
GSX Loader must be attached to the front of
your program so that it can prepare the
operating system environment for your
graphics application.

The GENGRAF utility (provided with the GSX-80
distribution) allows you to attach the loader
to your program "with one simple command:

GENGRAF <filename>

For example, if your graphics application
program were in an executable file named
MYFILE.COM, then the following command string
would attach the GSX Loader and place the
result into file MYFILE.COM.

GENGRAF MYFILE

The resulting MYFILE.COM file would be ready
to run.

You should be aware of the total memory space
available to your application program in the
TPA. This will be less for graphics applica­
tions than for normal programs because of the
GDOS and device driver requirements. We will
explain "how to calculate the exact size of
the TPA in Section 5, "Operating Procedures."

End of Section 4

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

29

GSX-80 P~'S GUIDE

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

30

Section 5
OPERATING PROCEDURES

IRTRODUCTl:ON

GSX-80
DIS'rRDJO'fiOR
FILES

This section explains how to employ GSX-80 in
your graphics applications. It also gives
you some aids for debugging your application
programs and determining the user program
area available on your system. Finally, it
describes how to create and install a new
graphics device driver under GSX-80.

When you receive your GSX-80 distribution
diskette, first check to insure that all
required files have been included. The
following files should be present on your
diskette:

ASSIGN.SYS this is the default assignment
table file which associates specific device
drivers with logical device numbers.

GSX.SYS this is the GSX-80 executable file.

GENGRAF.COM this is the GENGRAF utility file
which is used to attach the GSX Loader to
your application program.

DDxxxx.PRL there will be one file with this
naming convention for each device driver.
The xxxx will be unique for each device and
will usually be derived from the device
tradename or model number •

.!! any ~ ~ missing, contact your dis­
tributor to receive a new diskette. If all
files arePresent, make ibackup of the dis­
tribution diskette using the PIP utility and
store your distribution diskette in ~ safe
place. Then, using the backup diskette,
transfer the GSX-80 files to your working
~y~~~!!! £i~~~~~~ ~l~~Y~ ~~~ !h~ £~£~~£
diskette to generate any ne~ copies of GSX-
80. Do not use the distribution diskette for rou t ine c;pe rations. --

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

31

GSX-80 PROGRAMMER'S GUIDE OPERA~G PROCEDURES

RUNRDlG GRAPHICS
APPLICATIONS
URDER GSX-80

In order to use the graphics features
Provided by GSX-80, you must insure that
several conditions are met:

1. In your application program you must
conform to the GSX-80 calling convention to
access graphics primitives. This involves
making a call to the operating system in the
normal manner with a function code of 115
(115 in register C, CALL to location 5). In
addition, an address must be placed in regis­
ter DE when the call is made which points to
a parameter list that provides information to
GSX-80 and also returns information to the
calling program. The details of this proce­
dure are contained in the sections on GDOS
and GIOS and in Appendix B, "The Virtual
Device Interface Specification."

2. After successfully compiling/assembling
and linking your application program, you
must perform one additional step before
running your program. Using the GENGRAF
utility provided with GSX-80, you must append
the GSX Loader to your program. This is done
with a simple command string. If your
program was named MYFILE.COM on the currently
logged disk, then the command would appear as
follows:

A>GENGRAF MYFILE

The .COM extension is assumed by GENGRAF.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

32

GSX-80 PROGRAMMER' S GUIDE OPERATDfG PROCBD1JBES

DEBUGGING GRAPJ[[CS
APPLYCAfiORS
ORDER GSX-80

3. You must insure that the required device
drivers are present on the currently logged
disk when your program is executed. Also,
the Assignment Table must contain the names
of your device drivers and a logical device
number or workstation ID which corresponds to
the correct device driver. The details of
device driver and Assignment Table
requirements are included in Section
2, "GDOS," and Section 3, "GIOS."

The GSX Loader, attached to your application
using GENGRAF, loads GSX-80 from the disk
along with the default device driver. It
then moves the actual application code down
to the normal TPA start address at location
100H (r e fer to Sec tion 4, "The GENGRAF
Utility"). To debug a program using SID or
DDT, type the following:

SID MYPROG.COM MYPROG.SYM
or

DDT MYPROG.COM

The debugger will respond with a prompt: *

First, you must determine where GSX-80 is lo­
cated. This will also tell where the top of
the TPA area is. Type the following to start
the GSX Loader and break before the appli­
cation program is moved down to location
100H:

*G,103

To find out where GSX-80 is located you must
look at the GDOS jump vector at locations 5
through 7 (JMP <address». Type:

*D5,7

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

33

GSx-80 PROGRAMMER'S GU:rnE OPERATIRG PBOCBDURES

DETEBMIRIBG USER
PROGRAM AREA SIZE

The debugger will display the contents of
locations 5 through 7:

C3 00 9B

This indicates that GSX-80 is at location
9BOO (C3 is the JMP opcode). The last
instruction location before the end of the
TPA is the GSX-80 location minus 3, in this
case 9BOO-3 = 9AFD.

NOTE: Your TPA may be in a different place.
Always subtract 3 from the contents of
address 6,7 to determine the top of the TPA.

Now, to view your program before it begins
execution, set a breakpoint that will occur
when the last location of the TPA (determined
above) is moved down by the GSX Loader:

*G,9AFD

Then you may list your program which is now
located at 100R:

*LIOO

To determine the amount of memory required to
run a given application, make the following
calculation:

Size of TPA in bytes = (Size of GSX.SY~ +

[8 * (Size of PRL file of largest device
driver used during the application)] I 9 +

(Size of application COM file after running
GENGRAF) + 20

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

34

GSX-80 PROGRAMMER'S GUIDE OPERA'.rIRG PROCEDURES

CREATIRG A NEW
DEVICE DRIVER

GSX-80 is distributed with a number of device
drivers for popular graphics devices. If
your devices are included (refer to Appendix
0, "Device Specifics," for a summary of the
supported devices) then you only need to edit
the Assignment Table file with a text editor
to make sure that it reflects the logical
device numbering assignments that you desire.
However, if your device is not supported, you
must create a driver program for your device
which conforms to the VOl specification.
This may be written in any language, but at
least part of it is usually implemented in
assembler due to the low-level hardware
interface required.

Your driver must provide the functions listed
as required in the VOl specification and must
observe the VOl parameter passing convention.
In some cases the capability specified by VOl
is not available in the graphics device and
the function must be emulated by the driver
software. For example, dashed lines may be
generated by the driver if they are not dir­
ectly available in the device. The complete
VOl specification is given in Appendix Band
the parameter passing convention is discussed
in Section 2, "GDOS" and Section 3, "GIOS."

To help you design and code your own device
driver, we have included a driver skeleton
in Appendix A which you can use as a boiler­
plate. In addition we have listed several
device drivers as an example for you to
follow.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

35

GSX-80 PROGRAMMER'S GUIDE OPERA~G PROCEDURES

After coding assembling and linking your
device driver, you will have a .PRL file. To
make this driver known to GSX-80, include its
name in the Assignment Table. This Table is
located in file ASSIGN.SYS and is simply a
text file with a specific format containing
the names of driver files and the logical
device numbers or workstation IDs that you
wish to associate with particular devices.

End of Section 5

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

36

Appendix A
EXAMPLE DEVICE DRMR

We have included an example to help guide
you through the design of a GSX-80 device
driver. The following is a listing of the
device driver for the Retrographics Video
Terminal. It conforms to the GSX-80 Virtual
Device Interface and is written in RATFOR
(Structured Fortran). Refer to Section
3, "GIOS," and Append ix B, "Vir tual Device
Interface Specification," for more informa­
tion on device drivers.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

37

GSX-80 PROGRAMMER'S GUIDE APPENDIX A EXAMPLE DEVICE DRIVER

subroutine ddvret (contrl, intin, ptsin, intout, ptsout)
i##iiiii#iiii#i#iiii#iiii#i#i######i####################################
'!HIS MATERIAL IS COOFIDENl'IAL AND IS FURNISHED UNDER #
A WRI'1'l'EN LICENSE AGREEMENl'. IT·MAY tUl' BE USED, #
COPIED OR DISCIDSED TO 0l'HERS EXCEPl' IN ACXX>RDANCE #
WITH THE TE1MS OF THAT AGREEMENl'. #

CDPYRIGHr (C) 1982 GRAPHIC SOFIWARE SYSTEMS INC. #
ALL RIGEfrS RESERVED. i
i t
Function: Device driver for vrlOO with Retrographics #
Inp..tt Parameters: #
contr 1 - An integer array with following information i
i contrl (1) - opcode for driver function #
contrl(2) - number of vertices in array #
i ptsin. Each vertex consists of i
i an x and a y coordinate so the #
i length of this array is twice as#
long as the number of vertices i
i specified. i
i contrl (4) - length of integer array intin i
i contr 1 (6-n) - Opcode dependent information i
i intin Array of integer input parameters i
i ptsin Array of inp,lt coordinate data i
i Output Parameters: #
i contrl (3) - number of vertices in array ptsout i
i Each vertex consists of an x and a y i
coordinate so the length of this array is i
twice as long as the number of vertices i
specified. #
contrl (5) - length of integer array intout i
contr 1 (6-n) - Opcode dependent information i
intout - Array of integer output parameters #
ptsout - Array of outp..tt coordinate data #
i Routines called: i
dcvret - change color on Retrographics terminal #
xy40xx - output x,y coordinate on 40xx terminal i
mult - multiply 2 16-bit numbers i
dm40xx - 40xx marker emulation routine #
gdevot - put a character be device #
gdstin - get a string fran the current device i
gdsbet - output a string be the current device #
gimnrnx - bound an integer variable i
gi tach - convert integer be character str ing #
gchtoi - convert character string be integer i
####i#i###iii###i######iii######i#i#i######################i#i##########

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

38

GSX-80 PROGRAMMER' S OOmE

define('XxLIMITSx40l0',1023)
define('YXLrMITSx40l0',779)
define('DEFAULT',l)
define('CROSSHAIRS',2)
define('REP~',l)
define('XORxMOOE',3)
define('ERASExMODE',4)
define('~INPUT' ,4)

APPENDIX A EXAMPLE DEVICE DRXVER

:fI: Default input device
Crosshairs input device
Replace wr i ting roode
Xor writing node
Erase writing IOOde
String input class

integer oontrl(l),intin(l),ptsin(l),intout(l),ptsout(l)

SHORTINl' opcode
integer alfanrl(2), c1rwrk(s), i, j, imex, gimnrnx, xy(4), tries,

ginok, chrhgt(4), hgtin, line (8) , xhi, xlo, yhi, y10, booboo (2) ,
lodcur(4), enable(4), setup(s), itemp, chrwid(4), xcoord, yooord,
ce1wid(4), celhgt(4), curup(3), curdwn(3), currgt(3), cur1ft(3),
curham(3), erscrn(3), ers1in(3), revon(4), revoff(4), entgrf(3),
extgrf(2), inqcur(s), k, giboch

integer mult

integer ce1tb(2), sclrd(2), sclgr(2), sc1b1(2), clrflg

include ('ddcan')

common Icmvretl celtb, sclrd, sc1gr, sc1bl, c1rf1g

:fI: The following equivalence statements are used to decrease the aroc>unt of code
:fI: necessary to access specific array elements. The arrays and the
:fI: variables equivalenced are listed below:
:fI:
:fI: line (2) •• xhi
:fI: line (3) :: xlo
:fI: line (4) :: yhi
line (5) :: ylo
equivalence (line (2), xhi), (line (3), xlo), (line (4), yhi), (line (5), ylo)
equivalence (xcoord, xy(l» , (ycoord, xy(2»

data celwid 113, 26, 39, 511
data celhgt 123, 46, 71, 981
data chrwid I 9, 17, 26, 341
data chrhgt 114, 28, 43, 591

:fI: move cursor up 1 row
data curup /FSC, LBRAO{, BIGAI

Char cell width in raster space
Char cell height in raster space
Actual char width 213 * celwid
Actual char height .6 * celhgt

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

39

GSX-80 PROGRAMMER' S GUIDE APPENDIX A EXAMPLE DEVICE DRIVER

:/I: move cursor down I rOIl
data curdwn /ESC, r.BRM:K, BIGB/

:/I: move cursor right I rOIl
data currgt /ESC, LBRACK, BI~/

:/I: move cursor left I rOIl
data curlft /ESC, LBRACK, BIGD/

:/I: move cursor home (upper left hand corner of screen)
data curhom / ESC, r.BRM:K, BIGH/

:/I: erase to end of screen
data erscrn /ESC, LBRl\CK, BIGJ/

:/I: erase to end of line
data erslin /ESC, r.BRM:K, BIGK/

:/I: reverse video on
data revon /ESC, r.BRM:K, DIG7, LE'IM/

:/I: reverse video off
data revoff /ESC, r.BRM:K, DIGO, LE'1M/

:/I: enter graphics mode from alpha cursor mode
data entgrf /GS, US, NEM..INE/

:/I: exit graphics mode into alpha cursor mode
data extgrf /CAN, NEWLINE/

:/I: inquire current cursor address
data inqcur /ESC, LBRACK, DIG6, LE'lN, NmLINE/

:/I: put back in alpha mode
data alfarrrl /US ,NmLINE/

:/I: booboo
data bcx::>bcx::> /BELL, NEM..INE/

:/I: load cursor
data loocur /ESC, SLASH, LETF, NEWLINE/

:/I: clear workstation and enquire status to keep from overflCMing
data clrwrk /ESC, FF, ESC, ENO, NEM..INE/

:/I: enable GIN
data enable /BELL, ESC, SUB, NEWLINE/

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

40

GSX-80 PBOGRAMMER' S GUmE APPENDIX A EXAMPLE DEVICE DRIVER

setup - initialize device
data setup /GS, US, ESC, 0, NFliLINE/

contrl (3) = a # Initialize ptsout count to zero (0)

opcode = oontrl (OPaDE) # Obtain a local copy of the current opc:ode

opc:ode open workstatioo

if (op::lOde = OPENxWORKSTATICN)

contrl (3) = 6
contrl (5) = 45

Set to number of ~ertices in ptsout
Set to number of output parameters

nd1ntp = intin(2) i Set current device line style
if (ndlntp < 1 I ndlntp > 5) ndlntp = 1
ndlntp = ndlntp + UNDERLINE # Save actual ascii character
ndc1r1 = gtmnmx (intin(3), 0, 1) # current polyline oolor
ndmktp = intin (4) # Set current polymarker type
if (ndmktp < 1 I ndmktp > 5) ndmktp = 3 i use default
ndc1rm = gimnrnx (intin(5), 0, 1) # current po1ymarker oolor
ndc1rt = gtmnmx (intin(7), 0, 1) i current text oolor
ndc1rf = gimnrnx (intin(10), 0, 1) # current fill area oolor
ndclrp = -1 i no current oolor
nd1cm:1 = REX),JESTxMDE # locator input roode is request
ndv.lnrl = REX),JESTxMDE # valuator input roode is request
ndchnrl =: REX),JESTxMDE # choice input lOOde is request
ndstnrl = REX),JESTxMDE i string input lOOde is request

intout(l) = XXLIMITSx40l0 # Addressable width in rasters of screen
intout(2) = YXLrMITSx40l0 i Addressable height in rasters of screen
intout(3) = OTHER i Device ooordinates in raster units

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

41

GSX-80 PROGRAMMER' S GUIDE APPENDIX A EXAMPLE DEVrCE DlUVER

:# micraneters per raster along the x axis
:# the screen area is 15.24 em high and 20.32 em wide therefore
:# the raster size is 203000/1024 in x and 152000/780 in y
intout(4) = 198
intout(5) = 195
intout(6) = 4
intout(7) = 5
intout(8) = 1
intout(9) = 5
intout(lO) = 1
intout (ll) = 1
intout (12) = 0
intout(13) = 0
intout(14) = 2
intout(15) = 0
do i = 16,25 {

:# Number of character heights
:# Number of line types
:# Number of line widths
:# Number of marker types

:# Number of marker height
:# Number of fonts
:# Number of patterns
:# Number of hatch styles
:# Number of predefined colors
:# Number of GDPs

intout(i) = -1 :# List of GDPs
intout(i+lO) = -1 :# List of associated bundle tables
}

intout(36) = M:NCX:HIOm :# Color capability flag
intout(37) = NO :# Text rotation capability flag
intout(38) = NO :# Fill area capability flag
intout(39) = NO :# Pixel operation capability flag
intout(40) = 2 :# Number of available colors
intout(41) = 1 :# Number of locator devices
intout(42) = 0 :# Number of valuator devices
intout(43) = 0 :# Number of choige devices
intout(44) = 1 :# Number of string devices
intout (45) = 2 :# WOrkstation type

ptsout(l) = 0
ptsout (2) = chrhgt (1) :# Minimum character height in device coordinates
ptsout (3) = 0
ptsout(4) = chrhgt(4) :# Maximum character height in device coordinates
ptsout(5) = 1 :# Minimum line width in NOC space
ptsout(6) = 0
ptsout(7) = 1 :# Maximum line width in Nrc space
ptsout(8) = 0
ptsout (9) = 0
ptsout(lO) = 12 :# Minimum marker height in NOC space
ptsout(ll) = 0
ptsout(12) = 12 :# Maximum marker height in Nrc space

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

42

GSX-80 PROGRAMMER'S GUIDE APPENDIX A EXAMPLE DEVICE DlUVER

initialize predefined color table
ccltb(l) = 0 # CUrrent color table
ccltb(2) = 1000
the user set color table, in case of inquiry
sclrd(l) = 0
sclrd (2) = 1000
sclgr(l) = 0
sclgr(2) = 1000
sclbl(l) = 0
sclbl (2) = 1000
initialize color representation flag
clrflg = NO

p.1t device in retrographics mode, and
set the line style to the current style

call gioini (1)
setup (4) = ndlntp
call gdstot (5, setup)

initialize i/o system for ~rt device
set line style

opcode~OO

else if (opcode == ~ATIOO)

call gdevot (CAN)
call gdevot (NBiLINE)
call giostp # close i/o system
}

opcode~OO

else if (opcode == ~ATIOO)

call gdstot (5, clrwrk)
yall gdstin (6, line, i)

opcode UPDATExWORI<STATIOO

else if (opcode == UPDATExWORI<STATIOO)

call gdevot (NEM..INE)
}

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

43

APPENDIX A EXAMPLE DEVl:CE DlUVBR.

op::ode ESCAPE

else if (opoode == ESCAPE) {

opcode = contrl (6) # Get the escape sub opcode
if (opcode == INCUIRExADDRESSABLExCELLS) {

intout(l) = 24
intout(2) = 30
}

else if (opcode == ENl'ERxGRAPHICSXMCDE)
call gdstot (3, entgrf)
}

else if (opcode == EXITxGRAPHICSxt«DE)
call gdstot (2, extgrf)
}

else if (opcode == aJRSORxOP)
call gdstot (3,. curup)
}

else if (opcode == ~)
call gdstot (3, curdwn)
} .

else if (opcode == aJRSORxRIGffl')
call gdstot (3, currgt)
}

else if (opcode == amsoRxLEF1')
call gdstot (3, curlft)
}

else if (opcode == HCMExaJRSOR)
call gdstot (3, curhan)
}

else if (op::ode == ERl\SEX'.roxENDFxSCREEN)
Jall gdstot (3, erscrn)

else if (opcode == ~)
call gdstot (3, erslin)
}

else if (opcode == DIREX:TxaJRSORxADRESS) {
call gdstot (2, curhan) * Posi tion cursor carmand
i = g:imnmx (intin(l), 1, 24) * Set the row
j = gitoch (i, line, 2, k)
call gdstot (j, line)
call gdevot (SEMICOL)
i = gimnmx (intin(2), 1, 80) * Set the column
j = gitoch (i, line, 2, k)
call gdstot (j, line)
call gdevot (BIGH)
}

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

44

GSX-80 PROGRAMMER' S GUJ:DE APPENDIX A EXAMPLE DEVICE DRIVER

else if (opcode = OOTPOTxCURSORxADRESSAB~)
call gdstot (oontr 1 (4), intin)
}

else if (o1;XXJde = RE.VERSExVIDEDxCN)
call gdstot (4, revon)
}

else if (o1;XXJde = RE.VERSExVIDEDxOFF)
call gdstot (4, revoff)
}

else if (o1;XXJde = mcuIRExa1RRENl'xO.RESS)
call gdstot (5, inqcur)
call gdevin (i) # Skip first 2 chars ESC
call gdevin (i)
i = 0
repeat { # Read until terminator, R is found

call gdevin (j)
i = i + 1
line (i) = j
} until (j = BIGR)

call gchtoi (line, 1, intout(l), j) # COnvert rCNI number
j = j + 1 # Bypass ter.minator in string
call gchtoi (line, j, intout(2), i) # convert oolLllm number
}

o1;XXJde POLYLINE

{ else if (opcode = POLYLINE)
call dc:vret (ndclrl) # change oolor to current line oolor

j = 1
call gdevot (GS) # Move to first point
for (i=l: i<=oontrl(2): i=i+l) {

call xy40xx (ptsin (j), ptsin (j+ 1))
~ = j + 2

call gdstot (2, alfanrl) # Put back in alpha mode
}

•

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

45

i
opcode polymarker

else if (opcode = POLYMARKER) {

APPENDIX A EXAMPLE DEVrCB DRIVER

call dcvret (ndclrm) # change color to current marker color

call gdevot (ESC)
call gdevot (ACX:ENr) # Set solid line style

j = I
for (i=l; i<=contrl(2); i=i+l) {

xy(l) = ptsin(j) # x coordinate of marker
xy(2) = ptsin(j+l) # y coordinate of marker
call dm40xx (xy)
call gdstot (2, alfanrl) # Put back in alpha IOOde

J = j + 2

call gdevot (ESC)
call gdevot (ndlntp)
}

opcode text

else if (opcode = TEn')

call dcvret (ndclrt)

Restore current line style

change color to current text color

call gdevot (GS) # Do a IOOVe to point to output text
call xy40xx (ptsin(l), ptsin(2»
call gdstot (2, alfanrl) # Put back in alpha IOOde
call gdstot (contrl(4), intin)
}

opcode fill area

else if (opcode = FILLxAREA)

call dcvret (ndclrf) # change color to current fill area color

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

46

GSX-80 PROGRAMMER'S GUIDE APpmmrx A EXAMPLE DEVICE DIaVBR

j = 1
call gdevot (GS) it Move to first {X)int
for (i=l; i<=contrl(2); i=i+l) {

call xy40xx (ptsin(j), ptsin(j+l»
j = j + 2

call gdstot (2, alfand) it Put back in alpha !lDde
}

opcode cell array

else if (o!XXXle = CELLxARRAY)

'rtlis device can't do pixel arrays very easily, so outline the area
it in the current line color

call Ck:vret (ndclr 1)
call gdevot (ESC)
call gdevot (ACX:mI')

xlo = ptsin(l)
ylo = ptsin(2)
xhi = ptsin (3)
yhi = ptsin (4)
call gdevot (GS)
call xy40xx (xlo, ylo)
call xy40xx (xhi, ylo)
call xy40xx (xhi, yhi)
call xy40xx (xlo, yhi)
call xy40xx (xlo, ylo)
call gdstot (2, alfand)

call gdevot (ESC)
}ll gdevot (rxUntp)

Change color to line color
Set line type to solid

Put back in alpha !lDde

Restore line type

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

47 18

GSX-80 PROGRAMMER' S OOmB APPBRDIX A EXAMPLE DBVrCE DRXVER

i
i opoode set character height

else if (opcode = SE'l'xCHARACTERIGHT) {

hgtin = ptsin(2) i Get requested height
ndtxsz = 1
repeat {

if (chrhgt (ndtxsz) > hgtin) break
ndtxsz = ndtxsz + 1
} until (ndtxsz > 4)

ndtxsz = ndtxsz -1
ndtxsz = gimnrnx (ndtxsz, 1, 4)
call gdevot (ESC)
call gdevot (ndtxsz+SLASHH character size is 1=' 0', 2=' 1', 3=' 2', 4=' 3'
oontrl(3) = 2 # Set the number vertices
ptsout(l) = chrwid (ndtxsz) # Return values selected
ptsout(2) = chrhgt (ndtxsz)
ptsout(3) =celwid (ndtxsz)
ptsout(4) = celhgt (ndtxsz)

i opcode color

* else if (opoode = SErx<X>LORxREI?RESENl'ATICN) {
i = gimnrnx (intin(l), 0, 1) + 1 # Map index 0-1 to 1-2

clrflg = YES * Inform color routine that a representation * has changed

If all are set to 0, then he wants the background color
j = intin(2) + intin(3) + intin(4)
if (j = 0) ccltb(i) = 0
else ccltb(i) = 1000 # The foreground color

sclrd(i) = intin(2) * This is what was set
sclgr(i) = intin(3)
sclbl(i) = intin(4)
}

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

48

GSX-80 PROGRAMMER'S GUrDE

opoode set polyline linetype

APPBRDIX A EXAMPLE DEVICE DRIVER

else if (opoode = SEn'xroLYLINExLINElYPE)
i = 1 AC.'C:a7l'
2 A
3 B
4 C
5 D
ndlntp = intin(l)
if (ndlntp > 5) ndlntp = 1
ndlntp = gimnmx (ndlntp, 1, 5) # 4012 has 5 line styles, 1-5
intout(l) = ndlntp # Return linestyle seleced
rrllntp = ndlntp + UNDERLINE
call gdevot (ESC)
}ll gdevot (OOlntp)

opcode set polyline colour irrlex

else if (opcode = SEl'xPOLYLINExOOLORxINDEX)

ndclrl = gimnrnx (intin(l), 0 ,l}
intout(l) = rrlclrl
}

opcode set polymarker type

else if (opcode = SEl'xPOLYMARRERXI'YPE)

ndmktp = intin(l)
if (ndmktp < 1 I ndmktp > 5) ndmktp = 3 # OUt of range defaults to 3
intout(l) = ndmktp
}

opcode set polymarker colour irrlex

else if (opcode = SEn'xroLYMARKERxO:>IDRxINDEX)

ndclrm = gimnrnx (intin(l), 0 ,l}
intout(l) = ndclnn
}

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

49

GSX-80 PROGRAMMER'S GUms APPENDIX A EXAMPLE DEVICE DRIVER

i
opcode set text color index

else if (opcode = SEl':K'1'EXI'xCIDRxINDEX)

ndclrt = gimnrnx (intin(l), 0 ,1)
intout(l) = ndclrt
}

i
opcode set fill area color index

else if (opcode = SRrxFILLxCDIDRxINDEX)

ndclrf = gimnrnx (intin(l), 0 ,1)
intout(l) = ndclrf
}

opcode inquire colour representation

else if (opcode = INQJIREKa)LORxREPRESENrATOO) {

i = gimrnnx (intin (1), 0, 1) + 1 # Map index 0-1 to 1-2
intout(l) = i-I # This is what we inquired on
index = intin(2) # Type of inquiry, O=set, l=realized
if (index = 0) {

intout(2) = sclrd(i)
intout(3) = sclgr(i)
intout(4) = sclbl(i)
} .

else {
if (index = 1) j = ccltb(i) # inquire realized color
intout(2) = j
intout(3) = j
intout(4) = j
}

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

50

GSX-80 PROGRAMMER'S GUIDE APPBRDIX A EXAMPLE DEVICE DRIVER

opcode input locator

else if (opcode = IN1?O'1'xL<X!AT)

contrl (5) = 'tOlE # Initialize status to not successful
i = intin (1) # Check locator device for validity
if (i != DEFAULT & i !=CROSSHAIRS) return

call gdevot (GS) # Move to initial position
call xy40xx (ptsin(l) , ptsin(2»
call gdstot (4, lodcur)
giook = OK
tries = 0
repeat {

enable thumbwheel gin
call gdstot (4, enable)
call gdstin p, line, i)
if (i <= 5) { # make sure there are right number of chars

for (j=2: j<=i: j=j+l) {
verify chars valid
if (line (j) < SPACE I line (j) > (JotARK)

ginok =NJNE
call gdstot (2, booboo)
}

}
else { # too many chars - ocxxx>ps

giook = tOE
call gdstot (2, booboo)
}

tries = tries + 1

} until (giook = OK I tries > 3)

decode the data returned

intout(l) = tOm

if (ginok = OK)

contr 1 (5) = 1 # Set successful flag
contrl (3) = 1 # Set the number of output vertices

Return the locator point
ptsout(l) = mult «xhi-SPACE), SPACE)+xlo-SPACE
ptsout(2) = mult «yhi-SPACE), SPACE)+ylo-SPACE

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

51

GSX-BO P~'S GOcrDB APPENDIX A EXAMPLE DEVICE DR:IVBR

* Return the locator input character
intout(l) = line(l)
}

* * opcode input string

* else if (opcode = INPUTxSTRING)
if (intin(l) 1= DEFAULT) {

contrl (5) = ~
return

* Check for valid string device

}
ginok = ~
i = 0
iterrp = intin(2)
k = intin(3)

repeat {
if (k = NO) call gdevin (j)
else call gchrin (j)
if (j = NEWLINE) break
if (i+l > iterrp) break
i = i + 1
intout(i} = j
}

contrl(5) = i
}

* Save maximum size * Save echo/noecho flag

* Get character without echo * Get character with echo

* No rcnn in output array

* Return request status

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

52

GSX-80 PBOGRAMMER'S GUIDE

i
i opoode set writing mode
i

APPENDIX A EXAMPLE DEVrCE DIaVER

else if (opoode == SEl'xWRITINGxtomE)
opoode = intin(l)
if (opcode == XORxKDE)

j = XORxfO)E

k = 2

* Device has xor

}
else if (opcode == ERASExMDE) { * Device has erase

j = ERASExMDE

i

k = 0
}

else {
j = REPU\CE!lCMDE
k = 1
}

intout(l) = j
ndclrl = k
mclnn = k
ndclrf = k
ndclrt = k
}

i opcode set input mode

*

* Replace mode is default writing mode

* Return wr i ting mode selected * Set appropriate globals to reflect writing * mode

else if (opoode == SE!'xINP\11'XtO)E) {
inboUt (1) = REX)JES'l'xtO)E * Default mode is request
}

return
end

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

53

GSX-80 PROGRAMMER' S GUIDE APPBRDIX A EXAMPLE DEVICE DRIVER

subroutine dm40xx (intin)

. #
'!HIS MATERIAL IS a:m'IDmrIAL AND IS FURNISHED UNDER #
A WRI'I'l'EN LICENSE AGREEMENl'. IT MAY oor BE USED, #
CX>PIED OR DISCLOSED TO a.mERS EXCEPl' IN ACXX>RDANCE #
WITH THE TERMS OF THAT AGREEMENl'. #

COPYRIGHT (C) 1982 GRAPHIC SOF1WARE SYSTEMS INC. #
ALL RIGHI'S msERVED. #

Functim: Place a marker at the current locatim on 40xx type #
devices #

Input Parameters: #
intin - x/y locatim for marker #
OUtput Parameters: •
~ #

Routines called: #
xy40xx - TEK 40xx m::we/draw routine #

###t#############################.######################################
define ('MARKxPERIoo' , '1')
define ('MARRxPLUS' , '2')
define ('MARKxsTAR' , '3')
define ('MARKxO' , '4')
define(iMARKxx','S')
define('FOLLSZ','12')
define('HALFSZ', '6 1

)

define ('FPERSZ' , '4')
define('HPERSZ','2')

integer intin (2)

integer fsize, hsize, xl, x2, yl, y2
integer rxyl, rxy2

include ('ddcan')

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

S4

GSX-80 PROGRAMMER' S GUIDE

if (ndmktp = MARKxPERIOO)
fsize = FPERSZ
hsize = HPERSZ
}

else {
fsize = FULLSZ
hsize = HALFSZ
}

APPERD:£X A EXAMPLE DEVICE DRIVER

xl = intin(l) - hsize #clipmarker to device limits
x2 = xl + fsize
yl = intin(2) - hsize
y2 = yl + fsize
if «minO (xl,yl) < 0) I (x2 > 1023) I (y2 > 779» return

output appropriate marker centered on location

call gdevot (GS) # Move to first point
call xy40xx (xl,yl)

if (ndmktp = MARKxPERIOO I ndmktp = MARKxO)
call xy40xx (x2,yl)
call xy40xx (x2,y2)
call xy40xx (xl,y2)
call xy40xx (xl, yl)
}

else {
if (ndmktp = MARKxX I ndmktp = MARKxSTAR) {

call xy40xx (x2,y2)
call gdevot (GS)
call xy40xx (xl,y2)
call xy40xx (x2,yl)
}

if (ndmktp = MARKxPLUS I ndmktp = MARKxSTAR) {
call gdevot (GS)
rxy2 = yl + hsize
call xy40xx (xl,rxy2)
call xy40xx (x2,rxy2)
call gdevot (GS)
rxyl = xl + hsize
call xy40xx (rxyl, yl)
call xy40xx (rxyl, y2)
}

return
end

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

55

GSX-BO PROGRAMMER'S GUIDE APPENDIX A EXAMPLE DEVICE DRIVER

subroutine dcvret(color)

'lmS MATERIAL IS <XNFIDENl'IAL AND IS FURNISED UNDER #
A WRITrEN LICENSE AGREEMENT. IT MAY NJT BE USED, #
COPIED OR DIsc::::LOOED TO 0l'HERS EXCEPT IN ACXX>RDANCE #
WITH THE TEIM) OF THAT AGREEMENT. #

COPYRIGHT (C) 1982 GRAPHIC SOFlWARE SYSTEMS INC. #
ALL RIGHI'S RESERVED #

Functioo: Change the color on the retro-graptlics terminal #

InPlt Parameters: #
color - color to change to #

Output Parameters: #
~ #

Routines called: #
gdstot - output a string to the current device #
gironrnx - minmax function #

integer color

SIDRTINT i,j
integer fcolor (4), gimnrnx

integer ccltb(2), sclrd(2), sclgr(2), sclbl(2), clrflg

include ('ddcan')

comnon /cmvret/ ccltb, sclrd, sclgr, sclbl, clrflg

Set the foreground color
data fcolor/ ESC, SLASH, DIGO, LEl'D/

if (ndclrp 1= color clrflg = YES) { # Does color need to be
changed

ndclrp = color # Set the current color
clrflg = NO # reset color flag

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

56

GSX-80 PROGRAMMER'S GUIDE APPENDIX A EXAMPLE DEVICE DRIVER

Actual color is logical inverse of specified color
j = gimnrnx (color, 0, 1) + 1 #Make sure color index in range
i = ccltb{j)
if (i == 0) j = DIGI # Use the background color
else j = OlGa # Use the foreground color

XOR writing mode takes precedence over color
color index 2 is xor
if (color == 2) j = DIG2

fcolor(3) = j
call gdstot (4, fcolor)
}

return
end

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

57

GSX-80 PROGRAMMER' S GUmE APPENDIX A EXAMPLE DEVICE DRIVER

subroutine xy40xx (kx, ky)

THIS MATERIAL IS <nm'IOENl'IAL AND IS FURNISHED UNDER #
A WRITI'EN LICENSE AGREEMENI'. IT MAY oor BE USED, #
<x)PIED OR DIsa:.c:m:o TO am:ERS EXCEPr IN A<X.'ORDANCE #
WITH THE TER-1S OF THAT AGREEMENI'. #

COPYRIGHT (C) 1982 GRAPHIC SOFlWARE SYSTEMS INC. #
ALL RIGHI'S RESERVED. #

Functicn: Convert 40xx x,y coordinate to hiy ,loy ,hix,iox bytes #
and output them #

Input Parameters: #
kx - x-coordinate in 0 to device dependent space #
ky - y-coorindate in 0 to device dependent space #

Output Parameters: #
none #

Routines called: #
gdstot - Output a character string to the device #
divid - divide 2 unsigned l6-bit numbers #

##i###
local defines
define('HIxY','32'}
define('LOxY','96')
define('HIXX','32')
define('LOxX','64')
define('~' ,'96')

integer i, bytes(4}, kx,ky, divid

include ('ddcom')

bytes (1) = divid (ky, 32, i) + HIxY
bytes (2) = i + LOxY

bytes (3) = divid (kx, 32, i) + HIXX
bytes (4) = i + LOxX

call gdstot (4, bytes)

return
end

#Tek hi Y tag
#Tek 10 y tag
#Tek hi x tag
#Tek 10 x tag
#Tek extra byte tag

#shift right 5 bits and set tag
#set 10 bits and add 10 tag

#shift right 5 bits and set tag
#set 10 bits and add 10 tag

End of Appendix A

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

58

Appendix B
VIRTUAL DEVICE INTERFACE
SPECIFICA nON

IB'.rRODUCTION

Input Parameters

Output Parameters

This Appendix contains the specification of
the Virtual Device Interface. VOl defines
how device drivers interface to GDOS, the
device independent portion of GSX-80.

Function: GSX-80 skeleton device driver

contrl (1)
contrl (2)

contrl(4) -­
contrl(6-n)--

intin

ptsin

contrl(3)

contrl(5) -­
contrl(6-n)--

intout

ptsout

opcode for driver function
number of vertices in array
ptsin
Each vertex consists of an x
and a y coordinate so the
length of this array is twice
as long as the number of ver­
tices specified.
length of integer array intin
opcode dependent information

array of integer input para­
meters
array of input coordinate data

number of vertices in array
ptsout
Each vertex consists of an x
and a y coordinate so the
length of this array is twice
as long as the number of ver­
tices specified.
length of integer array intout
opcode dependent information

Array of integer output para­
meters
Array of output coordinate
data

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

59

GSX-80 PROGRAMMER' S GUIDE APPENDIX B VDI SPECIFICATION

Notes All data passed to the device driver is
assumed to be 2 BYTE INTEGERS.

All coordinates passed to GSX-80 are in Nor­
malized Device Coordinates (0-32767 along
each axis). These units are then mapped to
the actual device units (e.g. rasters for
CRTs or steps for plotters/printers) by GSX-
80 so that all coordinates passed to the
device driver are in device units.

Since both input and output coordinates are
converted by GSX-80, both the calling routine
and the device driver must make sure that the
input vertex count (contrl(2» and output
vertex count (contrl(3» are set. The cal­
ling routine must set contrl(2) to 0 if no
x,y coordinates are are being passed to GSX-
80. Similarly, the device driver must set
contrl(3) to 0 if no x,y coordinates are
being returned through GSX-80.

Since 0-32767 maps to the full extent on each
axis, coordinate val'ues will be scaled
differently on the x and y axes of devices
that do not have a square display.

The BOOS call to access GSX-80 and the GIOS
in CP/M 80 is :

BOOS opcode (in C register) for GSX-80
call = 115

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

60

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPICA'1'IOR

Parameter Block (address is passed in
DE)

PB Address of contrl
PB+ls Address of intin
PB+2s Address of ptsin
PB+3s Address of intout
PB+4s Address of ptsout

s is the number of bytes used for each
argument in the parameter block. For
CP/M 80 this is 2 bytes. For CP/M 86
this is probably 4 bytes.

ALL opcodes must be recognized, whether they
produce any action or not. A list of
required opcodes for crt devices and

.plotters/printers folows the specification.
These opcodes must be present and perform as
specified. All opcodes should be implemented
whenever possible since this gives better
quali ty graphics.

For CP/M, device driver I/O is done through
CP/M BDOS (Basic Disk Operating System)
calls. CRT devices are assumed to be the
console device. Plotters are assumed to be
connected as the reader/punch device.
Printers are assumed to be connected as the
list device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

61

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOX SPECIPICATIOR

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

62

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPICA"l'IOR

OPEN WORKS"l'A"l'IOR Initialize a graphic workstation

Input contrl(l)
contrl (2)
contrl(4)
intin

intin(l)

intin(2)
intin(3)
intin(4)
intin(S)
intin(6)
intin(7)
intin(8)
intin(9)
intin(lO)

Opcode = 1
o
Length of intin = 10
Initial defaults (line
style, color, character size,
etc)
Workstation identifier (Le.
device driver id) This value
is used to determine which
device driver to dynamically
load into memory.
Line type
Polyline color index
Marker type
Polymarker color index
Text font
Text color index
Fill interior style
Fill style index
Fill color index

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

63

GSX-80 PROGRAMMER'S GUIDE

Output contr1{3}
contr1(5)
intout{l}

intout{2} --

intout(3) --

intout(4)

intout {5}

intout{6}

intout(7)
intout(8)
intout{9}
intout(10)-­
intout{ll)-­
intout(12)-­
intout(13)-­
intout(14)--

intout(15)--

APPENDIX B VDI SPBCIP'ICATIOR

number of output vertices = 6
length of intout = 45
Maximum addressable width of
screen/plotter in rasters/
steps assuming a 0 start point
(e.g. a resolution of 640
implies an addressable area of
0-639, so intout (1) =639)
Maximum addressable height of
screen/plotter in rasters/
steps assuming a 0 start point
(e.g. a resolution of 480
implies an addressable area of
0-479, so intout(2)=479)
Device coordinate units flag
o = Device capable of produ­

cing pr ec is ely scaled
image (typically plotters
and printers)

1 = Device not capable of
precisely scaled image
(crt IS)

width of one pixel (plotter
step •••) in microme·ters
Height of one pixel (plotter
step •••) in micrometers
Number of character heights
(0 = continuous scaling)
Number of line types
Number of line widths
Number of marker types
Number of marker sizes
Number of fonts
Number of patterns
Number of hatch styles
Number of pre-defined colors
(must be at least 2 even for
monochrome device). This is
the number of colors that can
be displayed on the device
simultaneously.
Number of GDPs

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

64

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPECIPlCAfiOR

intout(16)-intout(25) -- list of GOPs (up to
10 allowed)

-1 -- GOP does not
exist

intout(26)-intout(35) -- attribute set asso­
ciated with each GOP

-1 GOP does not
exist

o polyline
1 polymarker
2 text
3 fill area
4 none

intout(36)-- Color capability flag
o -- no
1 -- yes

intout(37)-- Text_rotation capability
flag
o -- no
1 -- yes

intout(38)-- Fill area capability flag
o -- no
I -- yes

intout(39)-- Pixel operation capability
flag
o -- no
I -- yes

intout (40) -- Number of available color s
(total number of colors in
color palette)
o continuous device
2 monochrome (black and

white)
>2 number of colors avail­

able
intout(4l)-- Number of locator devices

available
intout (42) -- Number of valuator devices

available
intout(43)-- Number of choice devices

available
intout(44)-- Number of string devices

available

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

65

GSX-80 PROGRAMMER' S GUmE

intout(45)--

ptsout (1)
ptsout(2)

ptsout(3)
ptsout(4)

ptsout (5)

ptsout(6)
ptsout(7)

ptsout(8)
ptsout(9)
ptsout(lO)--

ptsout(ll)-­
ptsout(12)--

APPENDIX B VOl: SPECIFICATION

Workstation type
o Output only
1 Input only
2 Input/Output
3 Device independent seg-

ment storage
4 GKS Metafile output
o
Minimum character height in
device units
o
Maximum character height in
device units
Minimum line width in device
units
o
Maximum line width in device
units
o
o
Minimum marker height in
device units
o
Maximum marker height in
device units

The default color table should be set up
differently for a monochrome and a color
device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

66

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPBCIPlCAT:tOR

Description

Monochrome
Index Color

0 Black
I White

Color
Index Color

0 Black
I Red
2 Green
3 Blue
4 Cyan
5 Yellow
6 Magenta
7 White
8-n White

Other default values that should be set by
the driver during initialization are:

Character height = minimumcharacter
height

Character up vector = 90 degrees coun­
terclockwise from
the right horizon­
tal (0 degrees
rotation)

Line width = I device unit (raster,
plotter step)

Marker height = minimum marker height
Writing mode = replace
Input mode = request for all input

classes (locator, valuator,
choice, string)

The Open Wor ks ta tion oper a t ion causes a
graphics device to become the current device
for the application program. The device is
initialized with the parameters in the input
array and information about the device is
returned to GDOS.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

67

GSX~80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIFICATION

CLOSE WORKSTA'rION

Input

Output

Description

CLEAR WORKSTATION

Input

Output

Description

Stop all graphics output to this
workstation

contrl (1)
contrl(2)

contrl(3)

opcode o .

o

2

The Close Workstation operation terminates
the graphics device properly and prevents any
further output to the device.

Clear CRT screen or prompt for new paper
on plotter

contrl(l)
contrl(2)

contrl(3)

opcode
o

o

3

The Clear Workstation operation causes CRT
screens to be erased and hardcopy devices to
perform a top-of-form operation. On plotters
without paper advance, the operator is
prompted to load a new page.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

68

GSX-80 P~'S GUrDE APPENDIX B VDI SPECIPlCATIOR

UPDATE WORKSDTIOR

Input

Output

Description

ESCAPE

Input

Display all pending graphics on
workstation

contrl(l)
contrl(2)

contrl(3)

opcode
o

o

4

The Update Workstation operation causes all
pending graphics commands which are queued to
be executed immediately. (Analogous to
flushing buffer s.)

Perform device specific operation

contrl (1)
contrl(2)
contrl(4)
contrl(6)

opcode = 5
number of input vertices
number of input parameters
function identifier

1 INQUIRE ADDRESSABLE CHARACTER
CELLS

2 EXIT GRAPHICS MODE
3 ENTER GRAPHICS MODE
4 CURSOR UP
5 CURSOR DOWN
6 CURSOR RIGHT
7 CURSOR LEFT
8 HOME CURSOR
9 ERASE TO END OF SCREEN
10= ERASE TO END OF LINE
11= DIRECT CURSOR ADDRESS
12= OUTPUT CURSOR ADDRESSABLE TEXT
13= REVERSE VIDEO ON
14= REVERSE VIDEO OFF

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

69

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOI SPECIFICATION

Output

Description

intin
ptsin

contrl(3)
contrl(5)

intout
ptsout

15= INQUIRE CURRENT CURSOR ADDRESS
16= INQUIRE TABLET STATUS
17= HARDCOPY
18= PLACE CURSOR AT LOCATION
19= REMOVE CURSOR
20-50= UNUSED BUT RESERVED FOR

FUTURE EXPANSION
51-100= UNUSED AND AVAILABLE FOR

USE
function dependent information
array of input coordinates for
escape function

number of output vertices
number of output parameters

array of output parameters
array of output coordinates

The Escape operation allows the special
capabilities of a graphics device to be
accessed from the applications program. Some
escape functions are pre-defined above, but
others can be defined for your particular
devices. The parameters passed are dependent
on the function being performed.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

70

GSX-80 PROGRAMMER'S GUIDB APPENDIX B VOl SPBCI:FICATI:OR

IRQUI:RB ADDRESSABLE CHARACTBR CELLS

Return the number of alpha cursor addressable columns and
alpha cursor addressable rows

Input

Output

Description

contrl(2}
contrl(6}

contrl(3}
intout(l}

intout(2} --

o
function ID 1

o
number of addressable rows on
the screen, typically 24 (-1
indicates cursor addressing
not possible)
number of addressable columns
on the screen, typically 80
(-1 indicates cursor addres­
sing not possible)

This operation returns information to the
calling program about the number of vertical
(rows) and horizontal (columns) positions
where the alpha cursor can be positioned on
the screen.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

71

GSX-80 PROGRAMMER' S GUmE APPERDIX B VOI SPECIFrCA'!'IOR

ENTER GRAPHICS MODE

Input

Output

Enter graphics mode if different from
alpha mode

contrl (2)
contrl(6)

contrl(3)

o
function id 2

o

Description This operation causes the graphics device to
enter the graphics mode if different than the
alpha mode. This is used to explicitly exit
alpha cursor addressing mode.

EXI'!' GRAPHICS MODE Exit graphics mode if different from
alpha mode

Input

Output

Description

contrl(2)
contrl(6)

contrl(3)

o
function id 3

o

The Exit Graphics operation causes the
graphics device to exit the graphics mode if
different than the alpha mode. This is used
to explicitly enter the alpha cursor addres­
sing mode.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

72

GSX-80PROGRAMMBR'S GUIDE APPENDIX B VDI SPECIFICA-..rION

CURSOR UP

Input

Output

Description

CURSOR DONR

Input

Output

Description

Move alpha cursor up one row without altering
horizontal position

contrl(2)
contrl(6)

contrl(3)

o
function id 4

o

This operation moves the alpha cursor up one
row without altering the horizontal position.
If the cursor is already at the top margin,
no action results.

Move alpha cursor down one row without
altering horizontal position

contrl(2}
contrl(6)

contrl(3)

o
function id 5

o

This operation moves the alpha cursor down
one row without altering the horizontal posi­
tion. If the cursor is already at the bottom
margin, no action results.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

73

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECInCAfiOR

CURSOR RIGB."r

Inpot

Output

Description

CURSOR LEFT

Inpot

Output

Description

Move alpha cursor right one column without
altering vertical position

contrl (2)
contrl(6)

contrl(3)

o
function id

o

6

The Cursor Right operation moves the alpha
cursor right one column without altering the
vertical position. If the cursor is already
at the right margin, no action results

Move alpha cursor left one column without
altering vertical position.

contrl(2)
contrl (6)

contrl (3)

o
function id 7

o

The Cursor Left operation causes the alpha
cursor to move one column to the left without
altering the vertical position. If the cur­
sor is already at the left margin, no action
results.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

74

GSX-80 PROGRAMMER'S GUIDE APPENDXX B VOX SPBCXP'XCAfiOR

HOMB CURSOR

Inpot

Output

Description

Send cursor to home position

contrl(2}
contrl(6}

contrl(3}

o
function id

o

8

This operation causes the alpha cursor to
move to the home position (usually the upper
left corner of a CRT display).

BRASE TO END OP' SCREBR Erase from current alpha cursor position
to the end of the screen

Input

OUtput

Description

contrl(2}
contrl(6}

contrl (3)

o
function id 9

o

This operation erases the display surface
from the current alpha cursor position to the
end of the screen. The current alpha cursor
location does not change.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

75 }C

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIFICATION

ERASE '1'0 END OF LIRE

Input

Output

Description

Erase from the current alpha cursor
position-to the end of the line

contrl (2)
contrl(6)

contrl(3)

o
function id

'0

10

This operation erases the display surface
from the current alpha cursor position to the
end of the current line. The current alpha
cursor location does not change.

DlREC'l' CURSOR ADDRESS Move alpha cursor to specified row and
column

Input

Output

Description

contrl(2)
contrl (6)
intin (1)

intin(2)

contrl(3) --

o
function id = 11
row number (1 - number of
rows)
column number (1 - number of
columns)

o

The Direct Cursor Address operation moves the
alpha 'cursor directly to the specified row
and column address anywhere on the display
surface.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

76

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPBCIPrCA'liON

OUTPU'l CURSOR ADDRESSABLE TEXT Output text at the current alpha
cursor position

Input

Output

Description

contrl(2)
contrl(4)

contrl(6)
intin

contrl(3) --

o
number of characters in
character string
function id = 12
text string in ASCII Decimal
Equivalent

o

This operation displays a string of text
starting at the current cursor position.
Alpha text characteristics are determined by
the attributes currently in effect (for
example, reverse video) •

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

77

GSX-80 PROGRAMMER'S GOIDE APPENDIX B VOl SPECIFICATION

REVERSE VIDEO ON

Input

Output

Description

REVERSE VIDEO OFF

Input

Output

Description

Display subsequent cursor addressable text in
reverse video

contrl(2)
contrl(6)

contrl(3)

o
function id 13

o

This operation causes all subsequent text to
be rendered in reverse video format, that is,
characters are dark on a light background.

Display subsequent cursor addressable text in
standard video

contrl(2)
contrl(6)

contrl(3)

o
function id 14

o

This operation causes all subsequent text to
be rendered in normal video format, that is,
characters are light on a dark background.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

78

GSX-80 PROGRAMMER'S GUIDE APPENDIX B WI SPECIFICATION

INQUIRE CURRENT CURSOR ADDRESS Return the current cursor
position

Input

Output

Description

contr1 (2) 0
contr1(6) function id 15

contr1(3) 0
intout (1) row number (1 - number of

rows)
intout(2) column number (1 - numb.er of

columns

This operation returns the current position
of the alpha cur sor in row, column
coordinates.

INQUIRE TABLE"!' STATUS Return tablet status

Input

Output

Description

contrl (2)
contrl(6)

contrl(3)
intout(l)

o
function id 16

o
tablet status
o = tablet not available
1 = tablet available

This operation indicates whether a graphics
tablet is connected to the workstation.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

79

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPECIFICATION

HARD COPY

Input

Output

Description

Generate hardcopy

contrl(2)
contrl(6)

contrl(3)

a
function id

a

17

This operation causes the device to generate
a hardcopy. This function is very device
specific and may entail copying the screen to
a printer or other attached hardcopy device.

PLACE CURSOR AT LOCATION Place a cursor at specified
location

Input

Output

Description

contrl(2) 2
contrl (6) function id = 18
ptsin (1) x-coordinate of location to

place cursor
ptsin(2) y-coordinate of location to

place cursor

contrl (3) -- a

Place cursor/marker at the specified loca­
tion. This is device dependent and can be an
underbar, block, etc.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

80

GSX-80 PROGRAMMER'S GUIDE APPENDIX B WI SPECIFICATION

REMOVE CURSOR

Input

Output

Description

Remove cursor/marker

contrl(2)
contrl(6)

contrl(3)

o
function id

o

19

This operation makes the cursor invisible on
the screen.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

81

GSX-BO PROGRAMMER'S GUIDE APPENDIX B VOl SPECIFICATION

POLYLINE

Input

Output

Description

Outputa polyline to device

contrl (1)
contrl (2)

ptsin

contrl(3) --

opcode = 6
number of vertices (x,y pairs)
in polyline (n)

array of coordinates of
polyline in device units
(rasters, plotter steps, etc.)
ptsin(l) x-coordinate of

first point
ptsin(2) y-coordinate of

first point
ptsin(3) x-coordinate of

second point
ptsin(4) y-coordinate of

second point

ptsin (2n-l)

ptsin (2n)

o

x-coordinate of
last point
y-coordinate of
last point

This operation causes a polyline to be
displayed on the graphics device. The
starting point for the polyline is the first
point in the input array. Lines are drawn
between subsequent points in the array. Make
sure that the lines exhibit the current line
attributes: color, line type, line width.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

82

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPECIPlCATIOR

POLYMARKER

Input

Output

Description

Output markers to the device

contrl(l)
contrl(2)
ptsin

contrl(3) --

opcode = 7
number of markers
array of coordinates in device
units (n) (rasters, plotter
steps, etc.)
ptsin(l) x-coordinate of

first marker
ptsin(2) y-coordinate of

first marker
ptsin(3) x-coordinate of

second marker
ptsin(4) y-coordinate of

second marker

ptsin(2n-l)

ptsin(2n)

o

x-coordinate of
last marker
y-coordinate of
last marker

This operation causes markers to be drawn at
the points specified in the input array. Be
sure to specify the solid line style before
drawing markers, and restore the previous
line style when done. Also, make sure the
markers exhibit the current marker
attributes: color, scale, type.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

83

GSX-80 PROGRAMMER' S GUIDE APPENDIX B VDI SPECIFICATION

TEXT

Input

Output

Description

write text at specified position

contr1 (1)
contr1(2)
contr1(4)

intin

ptsin(l)

ptsin (2)

contr1(3) --

opcode = 8
number of vertices = 1
number of characters in text
string
character string in ASCII
Decimal Equivalent
x-coordinate of start point of
text in device units
y-coordinate of start point of
text in device units

o

This operation writes text to the display
surface starting at the position specified by
the input parameters. Note that the X,Y
position specified is the lower left corner
of the character itself, not the character
cell. Also, make sure the text exhibits
current text attributes: color, height,
character up vector, font.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

84

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOI SPECIFICATION

FILLED AREA

Input

Output

Description

Fill a polygon

contrl(l)
contrl(2)

ptsin

contrl(3) --

opcode = 9
number of vertices in polygon
(n)
array of coordinates of poly­
gon in device units
ptsin(l) x-coordinate of

first point
ptsin(2) y-coordinate of

first point
ptsin(3) x-coordinate of

second point
ptsin(4) y-coordinate of

second point

ptsin(2n-l)

ptsin(2n)

o

x-coordinate of
last point
y-coordinate of
last point

This operation fills a polygon specified by
the input array with the current fill color.
Make sure the correct color, fill interior
style and fill style index are in effect
before doing the fill.

If the device cannot do area fill, it must at
least outline the polygon in the current fill
color. The device driver must insure that
the fill area is closed by connecting the
first point to the last point.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

85

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIP'ICA'1'ION

CELL ARRAY

Input

Output

Description

Define cell array

contrl(l)
contrl(2)
contrl(4)
contrl(6)

contrl(7)

contrl(8)

contrl (9)

intin (1)

ptsin(l)

ptsin(2)

ptsin(3)

ptsin(4)

contrl(3) --

opcode = 10
2
length of color index array
length of each row in color
index array
number of elements used in
each row of color index array
number of rows in color index
array
pixel operation to be
performed
o clear
I set
2 or
3 and
4 complement (xor)
color index array (stored one
row at time)
x-coordinate of lower left
corner in device units
y-coordinate of lower left
corner in device units
x-coordinate of upper right
corner in device units
y-coordinate of upper right
corner in device units

o

The Cell Array operation causes the device to
draw a rectangular array which is defined by
the input parameter X,Y coordinates and the
color index array.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

86

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIFlCATIQR

The extents of the cell are defined by the
lower left hand and the upper right hand X,Y
coordinates. Within the rectangle defined by
those points, the color index array specifies
colors for individual components of the cell.

Each row of the· color index array should be
expanded to fill the entire width of the
rectangle specified if necessary, via pixel
replication. Each row of the color index
array should also be replicated the appro­
priate number of times to fill the entire
height of the rectangular area.

If the device can't do cell arrays it must at
least outline the area in the current line
color.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

87

GSX-80 PROGRAMMER'S GUIDE

GENERALIZED DRAWING PRIMITIVE

Input contrl(l)
contrl(2)
contrl (4)
contrl(6)

ptsin

APPENDIX B VDI SPECIFICATION

output a primitive display
element

opcode = 11
number of vertices in ptsin
length of input array intin
primitive id
1 -- BAR -- uses fill area

attributes (interior
style, fill style, fill
color)

2 -- ARC uses line attri­
butes (color,
line type,
width)

3 -- PIE SLICE - ... uses fill
area attributes (interior
style, fill style, fill
color)

4 -- CIRCLE -- uses fill area
attributes (interior
style, fill style, fill

5

6

8

color)
PRINT GRAPHIC CHARACTERS
(RULING CHARACTERS)
7 are unused but reserved
for future expansion
10 are unused and avail­
able for use

array of coordinates of GDP in
device units
ptsin(l)

ptsin(2)

ptsin(3)

x-coordinate of
first point
y-coordinate of
first point
x-coordinate of
second point

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

88

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPICATIOR

intin

BAR

ptsin(4)

ptsin (2n-l)

ptsin(2n)

data record

contrl(2)

contrl(6)

ptsin(l}

ptsin(2)

ptsin(3)

ptsin(4)

ARC AND PIE SLICE
contrl(2)

contrl(6)

intin (1)

intin(2)

y-coordinate of
second point

x-coordinate of
last point
y-coordinate of
last point

2 (number of
vertices
I (pr imi ti ve
ID)
x-coordinate of
lower left hand
corner of bar
y-coordinate of
lower left hand
corner of bar
x-coordinate of
upper right
hand corner of
bar
y-coordinate of
upper right
hand corner of
bar

4 (number of
vertices)
2 (ARC) or 3
(PIE SLICE)
start angle in
tenths of
degrees (0-
3600)
end angle in
tenths of
degrees (0-
3600)

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

89

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPlCATIOR

ptsin(l) x-coordinate of
center point of
arc

ptsin (2') y-coordinate of
center point of
arc

ptsin(3) x-coordinate of
start point of
arc on circum-
ference

ptsin(4) y-coordinate of
start point of
arc on circum-
ference

ptsin(S) x-coordinate of
end point of
arc on circum-
ference

ptsin(6) y-coordinate of
end point of
arc on circum-
ference

ptsin(7) radius
ptsin(8) 0

CIRCLE contrl(2) 3 (number of
points)

contrl(6) 4 (primitive
id)

ptsin(l) x-coordinate of
center point of
circle

ptsin(2) y-coordinate of
center point of
circle

ptsin(3) x-coordinate of
point on
circumference

ptsin(4) y-coordinate of
point on
circumference

ptsin(S) radius
ptsin(6) 0

All Information Presented Here is Proprietary to Graphic So£tware
Systems, Incorporated and Digital Research

90

GSX-80 PROGRAMMER'S GOlDE APPENDIX B VOl SPECIPlCATION

Output

Description

PRINT GRAPHIC CHARACTERS --

contrl(3) --

contrl (2)

contrl(4)

contrl(6)
intin

ptsin(l)

ptsin(2)

o

for graphics on
printer
(Diablo, Epson,
etc.)
1 (number of
points)
number of
characters to
output
5
graphic char­
acters to out­
put
x-coordinate of
start point of
characters
y-coordinate of
start point of
characters

The Generalized Drawing Primitive operation
allows you to take advantage of the intrinsic
drawing capabilities of your graphics device.
Special elements such as arcs and circles can
be accessed through this mechanism. Several
primitive identifiers are pre-defined and
others are available for expansion.

The control and data arrays are dependent on
the nature of the primitive.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

91

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPICATION

SET CHARACTER BBIGB'l' Set character height

Input

Output

Description

contrl(l)
contrl(2)
ptsin(l)
ptsin(2)

contrl(3)
ptsout(l)

ptsout(2)

ptsout(3)

ptsout(4)

opcode = 12
number of vertices = I
o
requested character height in
device units (rasters, plotter
steps)

number of vertices = 2
actual character width selec­
ted in device units
actual character height selec­
ted in device units
character cell width in device
units
character cell height in
device units

This operation sets the current text
character height in Device units. The speci­
fied height is the height of the character
itself rather than the character cell. The
driver returns the size of both the character
and character cell selected. This is a best
fit match to the requested character size.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

92

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIFICATION

SET CHARACTER UP VECTOR Set text direction

Input

Output

Description

contrl (1)
contrl(2)
intin (1)

intin(2)

intin(3)

contrl(3)
intout(l)

opcode = 13
o
requested angle of rotation
(in tenths of degrees 0 -
3600)
run of angle cos (angle) *
100 (0-100)
rise of angle sin (angle) *
100 (0-100)

o
angle of rotation selected (in
tenths of degrees 0-3600)

This operation requests an angle of rotation
specified in tenths of degrees for the
CHARACTER UP VECTOR which specifies the
baseline for subsequent text. The driver
returns the actual up direction which is a
best fit match to the requested value.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

93

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPICA"rIOR

SET COLOR REPRESEN'.rA"rIOH Specify color index value

Input

Output

Description

contrl(l}
contrl(2}
intin (1)
intin(2}

intin(3)
intin(4)

contrl(3)

opcode = 14
o
color index
red color intensity (in"
tenths of percent 0-1000)
green color intensity
blue color intensity

o

This operation associates a color index with
the color specified in RGB units. At least
two color indices are required (black and
white for monochrome).

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

94

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIFICATION

8ft POLYLINE LIRE"l'fP.B Set polyline linetype

Input

Output

Description

contrl (1)
contrl(2)
intin(l)

contrl(3)
intout(l)

opcode = 15
o
requested linestyle

o
linestyle selected

This operation sets the linetype for
subsequent polyline operations. The total
number of linestyles available is device
dependent, however 4 linestyles are required:

1 - solid
2 - dashed
3 - dotted
4 - dashed- dotted

If the requested linestyle is out of range
then line style 1 (solid) should be used.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

95

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPECIFICATION

SET POLYLINE LINE WIDTH Set polyline line width

Input

Output

Description

contrl(l)
contrl(2)
ptsin(l)

ptsin(2)

contrl (3)
ptsout(l)

ptsout(2)

opcode ::; 16
number of input vertices = 1
requested line width in
device units
o

number of output vertices = 1
selected line width in device
units
o

This operation sets the width of lines for
subsequent polyline operations. The width is
specified in DC.

SET POLYLINE COLOR INDEX Set polyline color index

Input

Output

Description

contrl(l)
contrl(2)
intin(l)

contrl (3)
intout(l)

opcode = 17
o
requested color index

o
color index selected

This operation sets the color index for
subsequent polyline operations. The color
signified by the index is determined by the
SET COLOR REPRESENTATION operation. At least
two-color-indices are required.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

96

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPECIPlCA"l'IOR

SET POLYMARKER 'l'YPE

Input

Output

Description

Set polymarker type

contrl (I)
contrl(2)
intin(l}

contrl (3)
intout (1)

opcode = 18
o
requested polymarker type

o
polymarker type selected

This operation sets the marker type for
subsequent polymarker operations. The total
number of markers available is device depen­
dent, however 5 marker types are required :

1 -
2 - +
3 - *
4 - 0
5 - X

If the requested marker type is out of range
then type 3 should be used.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

97

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOl SPECIFICATION

SET POLYMARKER SCALE Set polymarker scale (height)

Input

Output

Description

contrl(l)
contrl (2)
ptsin(l)
ptsin(2)

contrl(3)
ptsout(l)
ptsout(2)

opcode = 19
number of input vertices = 1
o
requested polymarker height in
device units

number of output vertices = 1
o
polymarker height selected in
device units

This operation requests a polymarker height
for subsequent polymarker operations. The
driver returns the actual height selected
which is a best fit to the requested height.

sm POLYMARKER COLOR INDEX Set polymarker color index

Input

Output

Description

contrl (1)
contrl(2)
intin(l)

contrl (3)
intout (I)

opcode = 20
o
requested polymarker color
index

o
polymarker color index selected

This operation sets the color index for
subsequent polymarker operations. The value
of the index is specified by the COLOR
operation. At least two color indices are
required.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

98

GSX-80 PROGRAMMER'S GUIDE APPERDIXB vnI SPECIFlCATIQR

Input

Output

Set the hardware text font

contrl (l)
contrl(2)
intin(l)

contrl(3)
intout(l)

opcode = 21
o
requested hardware text font
number

o
hardware text font selected

Description This operation selects a character font for
subsequent text operations. Fonts are device
dependent.

SET TEXT COLOR INDEX Set color index

Input

Output

Description

contrl(l)
contrl(2)
intin(l}

contrl(3)
intout(l)

opcode = 22
o
requested text color index

o
text color index selected

This operation sets the color index for
subsequent text operations. At least 2 color
indices are required.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

99

GSX-BO PROGRAMMER'S GUIDE APPENDIX B VOl SPECIFICATION

SB'r FILL INTERIOR STYLE Set interior fill style

Input

Output

Description

contrl (I)
contrl (2)
intin (1)

contrl(3) -­
intout(l) --

opcode = 23
o
requested fill interior style
o - Hollow
1 - Solid
2 - Pattern
3 - Hatch

o
fill interior style selected

This operation sets the fill interior style
to be used in subsequent polygon fill opera­
tions. If the requested style is not avail­
able, then Hollow should be used. The style
actually used is returned to the calling
program.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

100

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VOI SPBCnICA'.HOH

Sft PILL SnLB rRDEX Set fill style index

Input

OUtput

Description

contrl (1)
contrl(2)
intin (1)

contrl(3)
intout(l)

opcode = 24
o
requested fill style index for
Pattern or Hatch fill

o
fill style index selected for
Pattern or Hatch fill

Select a fill style based on the fill
interior style. This index has no effect if
the interior style is either Hollow or Solid.
If the requested index is not available then
index 1 should be used. The index references
a hatch style (+45 degrees or -45 degrees) if
the fill interior style is hatch, or it
references a pattern (stars, dots, etc.) if
the interior fill style is pattern.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

101

GSX-80 PROGRAMMER'S GUIDB APPENDIX B VOl SPBcrPICA'rIOR

SE'.r PILL COLOR IRDEX Set fill color index

Input:

Outpot

Description

contrl (1)
contrl(2)
intin(l)

contrl(3)
intout(l}

opcode = 25
o
requested fill color index

o
fill color index selected

This operation sets the color index for sub­
sequent polygon fill operations. The actual
RGB value of the color index is determined by
the SET-COLOR-REPRESENTATION operation. At
least 2 color indices are required.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

102

GSX-80 PROGRAMMER'S GOlDE APPENDIX B WI SPECIFICATION

INQUIRE COLOR REPRESENTATION Return color representation

Input

Output

Description

contrl(l)
contrl(2)
intin(l)
intin(2)

contrl(3)
intout(l)
intout(2)

intout(3)
intout(4)

opcode = 26
o
requested color index
set or realized flag
o set (return color values

requested)
1 realized (return color

values realized on device)

o
color index
red intensity (in tenths of
percent 0-1000)
green intensity
blue intensity

This operation returns the requested or the
actual value of the specified color index in
RGB units.

NOTE: The device driver must maintain tables
of the color values that were set
(requested) and the color values that.
were realized. On devices that have a
continuous color range, one of these
tables may not be necessary.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

103

GSX-80 PROGRAMMER' S GtJmE APPENDIX B VDI SPECIFICATION

rHQUIU CELL ARRAY Return cell array definition

Input

Output

contrl (1)
contrl(2)
contrl(4)
contrl (6)

contrl(7)

ptsin(l)

ptsin(2)

ptsin (3)

ptsin(4)

contrl(3)
contrl(8)

contrl(9)

contrl(lO)--

intout

opcode = 27
2
length of color index array
length of each row in color
index array
number of rows in color index
array
x-coordinate of lower left
corner in device units
y-coordinate of lower left
corner in device units
x-coordinate of upper right
corner in device units
y-coordinate of upper right
corner in device units

o
number of elements used in
each row of color index array.
number of rows used in color
index array
invalid value flag
o if no errors
1 -- if a color value could

not be determined for
some pixel

color index array (stored one
row at time)

-1 -- ind ica tes that a color
index could not be deter­
mined for that particular
pixel

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

104

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPBCIPICA'.rIOR

Description This operation returns the cell array defini­
tion of the specified cell. Note that the
upper and lower y-coordinates are identical
since only one row is returned at a time.
The returned array is the sequence of color
indices across the specified row from left to
right.

NOTE: Color indices are returned one row at
a time, starting from the top of the
rectangular area, proceeding downward.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

105

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPBCDrICA'fiOR

IRPUT LOCATOR Return locator position

For REOUES~ MODE Input:

Input

Output

contrl (1)
contrl (2)
intin(l)

ptsin(l)

ptsin(2)

contrl(3)
contrl (5)

intout(l) --

opcode = 28
number of input vertices = 1
locator device number
1 default locator device
2 = crosshairs
3 = graphics tablet
4- = joystick
5 lightpen
6 plotter
7 - mouse
8 trackball

>8 workstation dependent
initial x-coordinate of
locator in device units
initial y-coordinate of
locator in device units

number of output vertices I
length of intout array -­
status
o = request unsuccessful

>0 = request successful
locator terminator
For keyboard terminated loca­
tor input, this is the ASCII
Decimal Equivalent (ADE) of
the key struck to terminate
inpu t. For non-keyboard ter­
minated input (tablet, mouse,
etc.), valid locator termin­
ators begin with <space> (ADE
32) and increase from there.
For instance, if the puck on a
tablet has 4 buttons, the
first button should generate a
<space> as a terminato~, the

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

106

GSX-80 PROGRAMMER'S GOrDE

ptsout(l)

ptsout(2)

Por SAMPLE MODB Input:

Input

Output

contrl (1)
contrl(2)
intin(l)

contrl(3)

contrl(5) --

ptsout (1)

ptsout(2)

APPENDIX B VOl SPBCIFYCA"fiOR

second a <1> (ADE 33), the
third a <"> (ADE 34), and the
fourth a <i> (ADE 35).
final x-coordinate of locator
in device units
final y-coordinate of locator
in device units

opcode = 28
number of input vertices = 0
locator device number
1 default locator device
2 crosshairs
3 graphics tablet
4 = joystick
5 lightpen
6 plotter
7 mouse
8 trackball

>8 workstation dependent

number of output vertices
1 = sample successful
o = sample unsuccessful
length of intout array -­
status
o = sample unsuccessful

>0 = sample successful
current x-coordinate of
locator in device units
current y-coordinate of
locator in device units

Description This operation returns the position in DC
coordinates of the specified locator device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

107

GSX-80 PROGRAMMER' S GUIDE APPENDIX B VOl SPECIFICATION

INPUT VALUATOR Return value of valuator device

For REQUEST MODE Input:

Input

Output

contr1(1)
contr1 (2)
intin(l)

intin(2)

contr1(3)
contr1(5)

intout(l)

For SAMPLE MODE Input:

Input

Output

contr1 (1)
contr1(2)
intin (1)

contr1(3)
contrl (5)

intout(l) --

opcode = 29
o
valuator device number
1 -- default valuator device
initial value

o
length of intout array
status
o = request unsuccessful

>0 = request successful
output value

opcode = 29
o
valuator device number
1 -- default valuator device

o
length of intout arr~y

status
o = sample unsuccessful

>0 = sample successful
current valuator value if
sample successful

Description This operation returns the current value of
the valuator device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

108

GSX-80 PROGRAMMER' S GUIDE APPENDIX B VOI SPECIYICA'.rIOR

IBPtr.r CHOICE Return choice device status

Par REQUEST MODE Input:

Input

Output

contrl (1)
contrl(2)
intin(l)

intin(2)

contrl (3)
contrl(5)

intout (1)

Por SAMPLE MODE Input:

Input

output

contrl (1)
contrl(2)
intin (1)

contrl(3)
contrl (5)

intout(l) --

opcode = 30
o
choice device number
1 = default choice device
2 = function key

>2 = workstation dependent
initial choice number

o
Length of intout array
status
o = request unsuccessful

>0 = request successful
choice number

opcode = 30
o
choice device number
1 default choice device
2 function key

>2 workstation dependent

o
Length of intout array
status
o = sample unsuccessful

>0 = sample successful
choice number or 0 if sample
unsuccessful

Description This operation returns the choice status of
the specified choice device. The range of
choice numbers is device dependent.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

109

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPrCAUOB

IRPU'l' STRDIG Return string from specified string device

Por REQUEST MODE Input:

Input

Output

contrl (1)
contrl(2)
intin(l)

intin(2)
intin(3)

contrl(3)
contrl (5)

intout

opcode = 31
o
string device number
1 = default string device
(keyboard)
maximum string length
echo mode
o don't echo input

characters
1 echo input characters

o
length of output string
o = request unsuccessful

>0 = request successful
output string

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

110

GSX-80 PROGRAMMER' S GUIDE APPBRDIX B vnI SPBCIFICATl:OR

For SAMPLE MODE Input:

Input

Output

Description

contr1 (1)
contr1 (2)
intin (1)

intin(2)
intin(3)

contr1(3)
contr1 (5)

intout

opcode = 31
o
string device number
1 = default string device
(keyboard)
maximum string length
echo mode
o don't echo input

characters
1 echo input characters

o
length of output string
o sample unsuccessful

(characters not available)
>0 = sample successful

(characters available)
output string if sample
successful

The Request String operation requests a
string from the specified device. The
default device is the keyboard.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

111

GSX-80 PROGRAMMER'S GUIDE APPENDIX B WI SPBCD'ICA'.rJ:OR

Sft WRJ:'.rrRG MODE

Input

Output

Description

Set writing mode

contrl (1)
contrl(2)
intin (1)

contr1(3) -­
intout

opcode = 32
o
writing mode
1 replace
2 overstrike
3 complement (xor)
4 erase

o
writing mode selected

This operation affects the way pixels from
lines, filled areas, etc., are placed on the
display.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

112

GSX-80 PROGRAMMER'S GUIDE APPENDIX B VDI SPECIPICATIOR

SB".r IRPtr.r MODE

Input

Output

Description

Set input mode

contrl (1)
contrl (2)
intin(l)

intin(2}

contrl(3}
intout

opcode = 33
o
logical input device
1 locator
2 valuator
3 choice
4 string
input mode
1 request
2 = sample

o
input mode selected

This operation sets the input mode for the
specified logical input device (locator,
valuator, choice, string) to either request
or sample. In request mode the driver waits
until an input event occurs before returning.
In sample mode, the driver returns the cur­
rent status/location of the input device
wi thout waiting.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

113

GSX-80 PROGRAMMER'S GUIDB APPENDIX B VDI SPBCIFl:CA"rIOR

REQUIRED OPCODB
CRT DEVICES

The following opcodes (and sub-functions) are
required for crt devices

Opcode
1
2
3
4
5

6
7
8
9

10
12
14
15
17
18
20
22
25
26
33

Definition
Open workstation
Close workstation
Clear workstation
Update workstation
Escape

Id
1

Definition
Inquire addressable
cells
Exit graphics mode
Enter graphics mode
Cursor up
Cursor down
Cursor right
Cursor left
Home cursor

character

2
3
4
5
6
7
8
9

10
11
12

Erase to end of screen
Erase to end of line
Direct cursor address
Output cursor addressable
text

15 Inquire current cursor
address

Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set color representation
Set polyline line type
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Set input mode (required only if
input locator, input valuator,
input choice, or input string is
present)

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

114

GSX-80 PROGRAMMER' S GUIDE . APPENDIX B VOl SPECIPlCATION

REQUIBED OPCODE
PLOftERS/pRIN".rERS

The following opcodes (and sub-functions) are
required for plotters / printers:

Opcode
1
2
3
4
5

6
7
8
9

10
12
14
15
17
18
20
22
25
26
33

Definition
Open workstation
Close workstation
Clear workstation
Update workstation
Escape

Id
1

Definition
Inquire addressable character
cells

Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set color representation
Set polyline line type
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Set input mode (required only if
input locator, input valuator, input
choice, or input string is present)

Determining if a non-required opcode is
available in a particular driver may be done
in a couple of ways. One way is to check the
information about available features returned
from the OPEN WORKSTATION opcode. Another
way is to check the selected value returned
from an opcode against the requested value.
If the two values do not match, then either
the opcode was not available or the requested
value was not available, and a best fit value
was selected.

End of Appendix B.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

115

GSX-80 PROGRAMMER' S GUIDE APPENDIX B VOl SPECIPlCATION

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

116

Appendix C
GLOSSARY

Assignment Table

BOOS

COM file

Coordinate scaling

Default device
driver

Device driver

The Assignment Table associates logical
device numbers, called workstation IDs, with
specific device driver files so that devices
may be referred to by number within the
application program. The Assignment Table
resides in a text file called ASSIGN .SYS and
may be modified using any text editor.

BOOS is the CP/M Basic Disk Operating System.
It contains the device independent portion of
the CP/M file control system. The device
dependent parts of standard CP/M are found in
the BIOS (Basic I/O System) module.

A .COM extension to a filename is reserved
for executable program files.

Coordinate scaling transforms points from one
"space" to another. In GSX-80 all point
coordinates must be specified in Normalized
Device Coordinates with values between 0 and
32,767. GDOS will then scale these coordi­
nates into values which are appropriate for
your graphics device.

The largest driver loaded during a graphics
session. It is always the first driver named
in the Assignment Table.

A device driver translates between the
standard, device-independent portion of an
operating system and the specific command
sequences for a particular device. Device
drivers for graphics devices are contained in
the GIOS (Graphics I/O System) portion of
GSX-80.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

117

GSX-80 PROGRAMMER'S GUIDE APPENDIX C GLOSSARY

Function code

GDOS

GEHGRAF

GrOS

GKS

GSS-KERNEL

GSS-PLOT

GSX-80

A function code is a number which indicates
to the operating system what function is
being requested when a service call is made.
All graphics functions use function code 115.
The particular graphics operation desired is
specified by an operation code in the parame­
ter list passed to GDOS.

The Graphics Device Operating System, or
GDOS, is the device independent portion of
GSX-80. It services graphics requests and
calls GIOS to send commands to graphics
devices.

GENGRAF is a special utility which
permanently attaches the GSX Loader to your
application program.

The Graphics Input Output System, or GIOS, is
the device dependent portion of GSX-80. GIOS
refers to the individual device drivers which
translate between a particular device and the
standard VDI conventions.

Abbrevation for Graphical Kernel System.

GSS-KERNEL is a graphics utility packaqe from
Graphic Software Systems, Inc. which provides
a Graphical Kernel System (GKS) interface to
the programmer. GSS-KERNEL employs GSX-80 to
interface to the graphics devices on your
system.

GSS-PLOT is a graphics application package
from Graphic Software Systems, Inc. which
allows you to create graphs and charts using
high level procedure calls.

The Graphics System Extension, or GSX-80, is
the graphics extension to the CP/M family of
operating systems.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

118

GSX-80 PROGRAMMER'S GUIDE APPENDIX C GLOSSARY

GSX Loader

Graphical Kernel
System

Graphics
primitives

Nne

Normalized
Device Coordinate
Space

Normalized
Device Coordinates

Operation codes

PRL file

The GSX Loader is a special program which is
attached by the GENGRAF utility to the front
of graphics application programs run under
GSX-80. The GSX Loader brings GSX-80 into
memory when a graphics application is
executed and sets up the CP/M environment for
GSX.

The Graphical Kernel System (GKS) is an
international standard for the programmer's
interface to graphics.

Graphics primitives are the basic graphics
operations performed by GSX-80~ for example,
drawing lines, markers and text strings.

Abbreviation
Coordinates.

for Normalized Device

Normalized Device Coordinate Space is a
uniform virtual space by which a graphics
application program passes graphics
information to a device. GDOS translates
between NDC space and the display coordinates
of a particular device.

The Normalized Device Coordinate (NDC) Space
is a virtual space in which all point coordi­
nates are mapped to. values between 0 and
32,767. Noe space serves as a common inter­
face between graphics devices.

An operation code is passed to GOOS as part
of a parameter list and indicates which
graphics operation is requested.

The .PRL extension to a filename is reserved
for "page relocatable modules, " that is,
modules which may be loaded into different
locations in memory at run time. All GSX-80
device drivers must be in PRL format since
they are loaded dynamically at run time by
the GSX Loader or GOOS.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

119

GSX-80 P~'S GUrDE APPENDIX C GLOSSARY

TPA

Transient Program
Area

WI

Virtual Device
Interface

workstation

workstation
Identification
Number (ID)

Abbreviation for Transient Program Area.

The Transient Program Area is th~ CP/M
nomenclature for the memory area available
for user application programs.

Abbreviation for Virtual Device Interface.

The Virtual Device Interface is a standard
interface between device dependent and device
independent code in a graphics environment.
VOl makes all device drivers appear identical
to the calling program. GSX-80 is based on
VOl and all device drivers written for GSX-80
must conform to the VOl specification.

A workstation is a graphics device with one
display surface and zero or' more input
devices.

A workstation ID is a logical unit number
which specifies which graphics device is
currently active. Each device driver has an
associated workstation ID which is specified
in an Assignment Table in file ASSIGN.SYS.

End of Appendix C

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

120

Appendix D
DEVICE SPECIFICS

This Appendix contains specific information
about the devices supported by GSX-80.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

121

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIFICS

EPSON MX-80 PRIftBR wrm GBAFTRAX PLUS

FILE NAME

DEVICE IRDEX

MAXIMUM BAUD RATE

COMMUHICAfiONS

DDMX80.PRL

The actual device index for this device is
determined in the ASSIGN.SYS file, which
associates a device index with a GIOS
module (device driver). For printers, this
index must be in the range 21-30.

9600 baud

Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The device does not support graphic input.

TEXT

LINESTYI.E

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPs)

The printer supports six character sizes.
Text can be rotated in 90 degree increments.

1
2
3
4
5

+
*
o
X

The printer has five hardware line styles.
Line style 1 is solid and line styles 2 - 5
are combinations of dashed and dotted lines.

The MX-80 printer supports two colors. Index
1 is displayed with the black ribbon and
index 0 is not displayed. These colors can
not be redefined.

No GDPs are available on the Epson MX-80.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

122

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEViCE SPECIPICS

ESCAPES

SUMMARY

The escape functions available on the MX-80
printer are:

1 Inquire addressable character cells

The functions available in the MX-80 printer
GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

12
13
14
15
17
18
20
22
25
26

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type,
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation

REFER TO DEVICE DOCUMENTATION if you have
other questions regarding this particular
device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

123

GSX-80 PROGRAMMER' S GUIDE APPENDIX D DEVICE SPECIFICS

BENI.B"r'l'-PACKARD 7220 GRAPInCS PLOTTER

DEVICE INDEX

DD7220.PRL

The actual device index for this device is
determined in the ASSIGN.SYS file, which
'associates a device index with a GIOS module
(device driver). For plotters, this index
must be in the range 11-20.

MAXIMUM BAUD RATE 2400'baud

COMMUNICATIONS Standard ser ial communications (RS-232C).

GBAPBIC INPU'r (GIN) The pen holder is used to indicate what point
is to be input. The pen holder is moved by
pressing the position keys on the front
panel. When the cursor is at the desired
location, the point can be selected by pres­
sing the ENTER button. This causes the
coordinates of the point to be tra~smitted
back to the user program.

TEXT The HP 7220 has continuous scaling of char­
acter sizes. Text can be rotated in one
degree increments.

MARKERS

LIBES'l'YLE

1
2
3
4
5

+
* o
X

The 7220 plotter has seven hardware line
styles. Line style 1 is solid and line styles
(2-7) are combinations of dashed and dotted
lines.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

124

GSX-80 PROGRAMMER'S GOlDE APPENDIX D D~CB SPECIPICS

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPs)

ESCAPES

SUMMARY

The 7220 has eight pens. The index parameter
in the routines that set a color index
correspond directly to a plotter pen number
(i.e. index 0 corresponds to pen 1, index 1
to pen 2, ••• index 7 to pen 8). Indices
greater than 7 are mapped to pen 8. Indices
less than 0 are mapped to pen 1.

No GDPs are available on the HP7220.

The escape functions available on this
device are :

1 Inquire addressable character cells

The functions available in the HP7220 GIOS
are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
13
14
15
17
18
20
21
22
25

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text font
Set text color index
Set fill color index

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

125

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE. SPECIPICS

26 Inquire color representation
28 Input locator
33 Set input mode - request only

REFER TO DEVICE DOCUMENTATION if you have other
questions regarding this particular device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

126

GSX-80 PROGRAMMER'S GUIDE APPBRDIX D DEVICE SPECIFICS

BEIILE'J.II.r-PACKARD 74 70A GRAPHICS PLOftER

PILBI!1AMB DD 7470 • PRL

DEVICE rRDEX The actual device index for this device is
determined in the ASSIGN.SYS fil~, which
associates a device index with a GIOS module
(device dr i'ver). For plotter s, this index
must be in the range 11-20.

MAXIMDM BAUD RATE 9600 baud

COMMURYCATIORS Standard serial communications (RS-232C).

GRAPHIC DfPO"l' (GIN) The pen holder is used to indicate what point
is to be input. The pen holder is moved by
pressing the position keys on the front
panel. When the cursor is at the desired
location, the point can be selected by pres­
sing the ENTER button. This causes the
coordinates of the point to be transmitted
back to the user program.

LINESnLE

The HP 7470A ha's continuous scaling of char­
acter sizes. Text can be rotated in one
degree increments.

1
2 +
3 *
4 0
5 X

The 7470A plotter has seven hardware line
styles. Line style 1 is solid and line ~tyles
(2-7) are combinations of dashed and dotted
lines.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

127

GSX-BO PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIFICS

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPs)

ESCAPES

SUMMARY

Colors are refered to on the 7470A by the
number of the pen and not by the pen holder.
This gives the flexibility of more than two
colors on the plotter. By default, index 1
is held in pen holder 1 and index 2 is held
in pen holder 2. If the user is using more
than these two colors, then a prompt will be
generated, telling the user to insert the
desired color in a pen station and then enter
the pen station. So, the index parameter in
the routines that refer to a color index
corresponds to a pen number not a pen holder
(i.e. index 1 corresponds to pen 1, index 2
to pen 2, index 3 to pen 3 •••). There is
no limit to the number of pen indices avail­
able on the plotter.

No GDPs are available on the HP7470A.

The escape functions available on this
device are :

1 Inquire addressable character cells

The functions available in the HP7470 GIOS
are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
13
14

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set character up vector
Set color representation

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

128

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECrPICS

15 Set polyline 1inetype
17 Set polyline color index
18 Set po1ymarker type
19 Set po1ymarker scale
20 Set po1ymarker color index
21 Set text font
22 Set text color index
25 Set fill color index
26 Inquire color representation
28 Input locator
33 Set input mode - request only

REFER TO DEVICE DOCUMENTATION if you have other
questions regarding this particular device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

129

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIF1:CS

DIGITAL BNGIRBBRIRG RB".rRO-GRAPBl:CS (GEN. 11:)

FILE NAME DDGEN 2. PRL

DEVICE INDEX The actual device index for this device is
determined in the ASSIGN.SYS file, which
associates a device index with a GIOS
module (device driver). For crts, this index
must be in the range 1-10.

MAXIMUM BAUD RATE 9600 baud for all graphics

COMMDNICATl:ORSStandard serial communications (RS-232C). The
GEN.II uses status flagging via the "!REP 0"
command to ·avoid losing data at high baud
rates.

GRAPH1:C INPUT (GIN) When GIN is invoked on the GEN.II Retro­
Graphics terminal, a crosshair cursor appears
on the screen. The crosshair can be moved by
pressing one of the four arrow keys (up,
down, left, right) on the keyboard. When the
cursor is at the desired location, the point
can be selected by pressing any alphanumeric
key (other than RETURN) on the keyboard.
This causes the coordinates of the point to
be transmitted back to the user program.

MARKERS

The GEN.II has continuous scaling character
sizes. Text can be rotated in one-degree
increments. Two fonts, standard ASCII vector
characters and user-defined vector charac­
ters, are available.

1
2
3
4
5

+
* o
X

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

130

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIfiCS

LIRESnLE

COLOR

GENERALIZED
DRAWING
PRDUT7VES (GDPs)

ESCAPES

The GEN.II has eight hardware line styles.
Line style 1 is solid and line styles 2 - 8
are combinations of dashed and dotted lines.

The GEN.II Retro-Graphics enhancement sup­
ports both color and monochrome terminals. On
monochrome terminals, color specifications
are mapped to appropriate dithering patterns,
but all lines and borders are drawn in either
white or black. Areas may be filled with any
of 8 color indices or 120 dithering patterns.
On color devices, color indices are mapped to
one of 8 colors. The default association of
color indices for both monochrome and color
devices is:

Index Monochrome Color

a dithering pattern 0 Black
1 dithering pattern 3 Red
2 dithering pattern 12 Green
3 dithering pattern 48 Blue
4 dithering pattern 15 Cyan
5 dithering pattern 16 Yellow
6 dithering pattern 51 Magenta
7 dithering pattern 63 White

The available GDPs and their identifiers are:

1 - Bars
2 - Arcs
3 - Pie Slices
4 - Circles

The escape functions available on the GEN.II
terminal are:

1 Inquire addressable character cells
2 Exit graphics mode
3 Enter graphics mode
4 Cursor up

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

131

GSX-80 PROGRAMMER' S GUmE APPENDIX D DEVICE SPECIPICS

SUMMARY

5 Cursor down
6 Cursor right
7 Cursor left
8 Home cursor

11 Direct cursor address
12 Output cursor addressable text
13 Reverse video on
14 Reverse video off
15 Inquire current cursor address
17 Hardcopy

The functions available in the GEN.II Retro­
Graphics GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
20
22
23
24
25
26
27
28

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline line type
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color representation
Inquire cell array
Input locator

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

132

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIPICS

31 Input string
32 Set writing mode - replace, xor,

erase
33 Set input mode - request

REFER TO DEVICE DOCUMENTATION if you have
other questions regarding this particular
device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

133 {II

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIFICS

HOUSTON INSTRUMEN".rS HIPLOT DMP-3/4-443 MOLTIPER PLOTTER

PILBRAME

DEVICE IRDEX

MAXIMUM BAUD RATE

COMMUNICATIONS

DDHI3M.PRL

The actual device index for this device is
determined' in the ASSIGN.SYS file, which
associates a device index with a GIOS module
(device driver). For plotters, this index
must be in the range 11-20.

9600 baud

Standard serial communications (RS-232C).
The Clear to Send (CTS) signal must be
functional at the host and carried through to
pin 5 at the plotter connector. Also pin 9
must be jumpered to pin 7 at the plotter
connector to enable HIPLOT mode 2 communica­
tions. The Input/Output uses this form of
handshaking communications since, at high
baud rates, the plotter can not plot data as
fast as it receives data from the computer.
Also note that to set the baud rate at the
plotter end, pin 6 must be wired to one of
the following pins:

Pin Baud Rate
14 9600
15 4800
16 2400
17 1200
18 600
19 300

GRAPHIC INPUT (GIN) The plotter does not support GIN.

'!'EXT The DMP-3/4-443 has five character sizes.
Text can be rotated in 90 degree increments.

See sample below.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

134

GSX-80 PROGRAMMER'S GOlDE APPENDIX D DEVICE SPECIPICS

LIHBS"rYLB

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPs)

ESCAPES

SUMMARY

The DMP-3/4-443 Multipen plotter has nine
hardware line styles. Line style 1 is solid
and line styles (2-9) are combinations of
dashed and dotted lines.

The DMP-3/4-443 has six pens. The index
parameter in the routines that set a color
index correspond directly to a plotter pen
number (i.e. index 0 corresponds to pen 1,
index 1 to pen 2, ••• index 5 to pen 6).
Indices greater than 5 are mapped to pen 6.
Indices less than 0 are mapped to pen 1.

No GDPs are available on the DMP-3/4-443.

The escape functions available on this
device are :

1 Inquire addressable character cells

The functions available in the DMP-3/4 GIOS
are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
13
14
15
17
18
19

Definition

Open workstation
Close workstation
Clear workstation
update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

135)c,

GSX-80 PROGRAMMER'S GUIDE APPENDIX D D~CE SPECIPICS

20 Set polymarker color index
22 Set text color index
25 Set fill color index
26 Inquire color representation

REFER TO DEVICE DOCUMENTATION if you have other
questions regarding this particular device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

136

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVLCE SPECIFICS

HOUSTON INSTRtJMER"rS HIPLOT DMP-6/7 MULTIPER PLOTTER

FILERAME

DEVICE INDEX

MAXIMUM BAUD RATE

COMMUNICATIONS

DDHI7M.PRL

The actual device index for this device is
determined in the ASSIGN.SYS file, which
associates a device index with a GIOS module
(device driver). For plotters, this index
must be in the range 11-20.

9600 baud

Standard serial communications (RS-232C).

GRAPHIC INPUT' (GIN) The plotter does not support GIN.

TEXT

MARKERS

LIRESnLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPs)

ESCAPES

The DMP-6/7 has nine character sizes.· Text
can be rotated in 90 degree increments.

See sample below.

The DMP-6/7 Multipen plotter has nine
hardware line styles. Line style 1 is solid
and line styles (2-9) are combinations of
dashed and dotted lines.

The DMP-6/7 has eight pens. The index para­
meter in the routines that set a color index
correspond directly to a plotter pen number
(i.e. index 0 corresponds to pen 1, index 1
to pen 2, index 7 to pen 8). Indices
greater than 7 are mapped to pen 8. Indices
less than 0 are mapped to pen 1.

The GDPs available on the DMP-6/7 are:
2 Arc

The escape functions available on this
device are :

1 Inquire addressable character cells

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

137

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIPICS

SUMMARY The functions available in the DMP-6/7 GIOS
are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
19
20
22
25
26

Definition

Open workstation
Close workstation
Clear workstation
update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized drawing primitive
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation

REFER TO DEVICE DOCUMENTATION if you have other
questions regarding this particular device.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

138

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEV1CE SPECIFICS

VT100 WITH DIGITAL ENGINEERING RETROGRAPHICS

FILENAME DDVRET.PRL

DEVICE INDEX The actual device index for this device is
determined in the ASSIGN.SYS file, which
associates a device index with a GIOS
module (device driver). For crts, this index
must be in the range 1-10.

MAXIMUM BAUD RATE 9600 baud for all graphics

COMMUNICATIONS Standard serial communications (RS-232C). The
VT100 uses XON / XOFF flagging to avoid
losing data at high baud rates.

GRAPHIC INPUT (GIN) When GIN is invoked on the VT100 Retro­
graphics terminal, a crosshair cursor appears
on the screen. The crosshair can be moved by
pressing one on the four arrow keys (up,
down, left, right) on the top row of keys on
the keyboard. When the cursor is at the
desired location, the point can be selected
by pressing any alphanumeric key (other than
return) on the keyboard. This causes the
coordinates of the point to be transmitted
back to the user program. The terminal must
be set up so that GIN is terminated by CR
only. This can be done by setting the two
trailer codes in Retrographics set-up mode to
00 hex and FF hex respectively. Refer to the
instructions in the User Manual for Retro­
graphics Model VT640-,--"Set Up Procedures,"
for a further discussion of trailer
characters.

TEXT The VT100 has four character sizes. It cannot
rotate text.

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

139

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIPICS

MARKERS

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPs)

ESCAPES

1
2
3
4
5

+
* o
X

The VT100 has five hardware line styles.
Line style 1 is solid and line styles 2 - 5
are combinations of dashed and dotted lines.

The VT100 is a monochrome terminal with only
two levels of gray scale / intensity (black
and whi te). Color speci fica tions are mapped
to an appropriate gray scale / intensity.
All colors other than black are mapped to
white.

The default association of color indices with
gray scale / monochrome intensity is :

o 0% Intensity - Black
1 100% Intensity - White

No GDPs are available on the VT100.

The escape functions available on this
terminal are :

1 Inquire addressable character cells
2 Exit graphics mode
3 Enter graphics mode
4 Cursor up
5 Cursor down
6 Cursor right
7 Cursor left
8 Home cursor
9 Erase to end of screen

10 Erase to end of line
11 Direct cursor address
12 Output cursor addressable text
13 Reverse video on

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

140

GSX-80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIPICS

SUMMARY

14 Reverse video off
15 Inquire current cursor address

The functions available in the VT100 Retro­
graphics GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
14
15
17
18
20
22
25
26
28
31
32

33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set color representation
Set polyline line type
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Input locator
Input string
Set writing mode - replace, xor,
erase
Set input mode - request

REFER TO DEVICE DOCUMENTATION if you have
other questions regarding this particular
device.

End of Appendix D

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

141

GSX~80 PROGRAMMER'S GUIDE APPENDIX D DEVICE SPECIFICS

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

142

INDEX

A

Application programs, 1-5, 7, 25, 29, 31-33
Argument, 23
Aspect ratio, 23
Assignment Table, 16-18, 24-25, 31, 36

B

BDOS, 1-2, 7

C

COM file, 4-5, 25, 29, 32, 34
Calling Sequence, 1, 7-9, 21
Control array, 8-10, 20-21
Coordinate array, 9-10, 21
Coordinate scaling, 2

D

Default device driver, 18, 25-26, 33
Device driver, 3-4, 7-8, 16-21, 23-24, 31, 35

F

Function code, 7-9, 26, 32

G

GDOS, 2-3, 5, 7-9, 18-19, 23
GENGRAF, 2, 4-5, 25, 29, 31-32
GIOS, 2-4, 19, 23
GKS, 5
GSS-KERNEL, 5
GSS-PLOT, 5
GSX Loader, 4-5, 18-19, 23, 25, 31-33
GSX-80, 1, 19, 31
Generalized Drawing Primitive, 13
Graphical Kernel System, 5
Graphics primitives, 1, 3, 5, 20, 32

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

143

GSX-BO PROGRAMMER'S GUIDE

L

Linkage, 26

M

Memory Management, 18

N

NDC , 2 , 7 - 8, 22
Normalized Device Coordinates, 2, 7, 8
Normalized Device Coordinate Space, 2

o

Operation codes, 8, 11, 20

P

PRL file, 17, 20, 24, 26, 31, 34, 36
Parameter, 4, 8, 23, 35
Parameter array, 9-10, 21
Parameter block, 9, 21

T

TPA, 26, 34
Transient Program Area, 2, 18, 26

v

VOI, 4, 8, 20, 35
Vector, 14, 33
Virtual Device Interface, 4, 8, 16, 20, 22-23, 35

W

Workstation, 7-8, 11, 16
Workstation Identification Number (ID), 3, 16-18, 33

INDEX

All Information Presented Here is Proprietary to Graphic Software
Systems, Incorporated and Digital Research

144

