
TM

MULTI-PROGRAMMING MONITOR
CONTROL PROGRAM

USER'S GUIDE

COPYRIGH."

Copyright (c) 1979, 1980 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electron ic, mechan ical, magnet ic, oot iea 1, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950. .

This manual is, however, tutorial in nature. ~hus,
t he reader is granted oermission to include the
example l?roqrams, eit.her in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no reoresentations or
warranties with respect to the co~tents hereof and
specifically disclaims any imolied warranties of
mer c han tab iIi t Y 0 r fit n e s s for any t?a r tic u 1 a r
purl?ose. Further, Digi tal Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
CP/NErr,. MP/M, SID, and TEX-80 are trademarks of
Digital Research.

The "MP 1M User'" s Guide" was preoared using the
Digital Research TEX-80™ Text Formatter.

* Third Printing: March 1981 *

MP/M User's Guide

A.

B.

c.

D.

E.

F.

Appendix

Flag Assignments

Process Priority Assignments

BOOS Function Summary ••• '

XDOS Function Summary

Memory Segment Base Page Reserved Locations

Operation of MP/M on the Intel MDS-800 •

G. Sample Page Relocatable Program

H. Sample Resident System Process

I. Sample XIOS ••••••••

J.

K.

MP/M DDT Enhancements

Page Relocatable(PRL) File Specification

116

11 7

118

119

120

121

122

127

131

148

149

MP/M User's Guide

1. MP/M FEATURES AND FACILITIES

1.1 Introduction

The purpose of the MP/M multi-programming monitor control
program is to provide a microcomputer operating system which
supports multi-terminal access with multi-programming at each
terminal.

OVERVIEW

The MP/M operating system is an upward compatible version
of CP/M 2.0 with a number of added facilities. These added
facilities are contained in new logical sections of MP/M called
the extended I/O system and the extended disk operating system.
In this manual the name XIOS will refer to the combined basic and
extended I/O system. BDOS will refer to the standard CP/M 2.0
basic disk operating system functions and XDOS will refer to the
extended disk operating system. As an upward compatible version,
users can easily make the transition from CP/M to the MP/M
operating system.' In fact, existing CP/M *.COM files can be run
under MP/M, providing that the program has been correctly
written. That is, BDOS calls are made for I/O, and the only
direct BIOS calls made are for console and printer I/O. There
must also be at least 4 bytes of extra stack in the CP/M *.COM
prog ram.

The following basic facilities are provided:

o Multi-terminal support
o Multi-Programming at each terminal
o Support for bank switched memory and

memory protection
o Concurrency of I/O and CPU operations
o Inter-process communication, mutual

exclusion and synchronization
o Ability to operate in sequential, polled

or interrupt driven environments
o System timing functions
o Logical interrupt system utilizing flags
o Selection of system options at system

generation time
o Dynamic system configuration at load time

The following optional facilities are provided:

o Spooling list files to the printer
o Scheduling programs to be run by date and time
o Displaying complete system run-time status
o Setting and reading of the date and time

(All Information Herein is Proprietary to Digital Research.)

1

MP/M User's Guide

1.2 Functional Description of MP/M

The MP/M Operating System is based on a real-time
multi-tasking nucleus. This nucleus provides process
dispatching, queue management, flag management, memory management
and system timing functions.

MP/M is a priority driven system. This means that the
highest priority ready process is given the CPU resource. The
operation of determining the highest priority ready process and
then giving it the CPU is called dispatching. Each process in
the system has a process descriptor. The purpose of the process
descriptor is to provide a data structure which contains all the
information the system needs to know about a process. This
information is used during dispatching to save the state of the
currently running process, to determine which process is to be
run, and then to restore that processes state. Process
dispatching is performed at each system call, at each interrupt,
and at each tick of the system clock. Processes with the same
priority are "round-robin" scheduled. That is, they are given
equal slices of CPU time.

Queues perform several critical functions in a real-time
multi-tasking environment. They can be used for the
communication of messages between processes, to synchronize
processes, and for mutual exclusion. As the name "queue"
implies, they provide a first in first out list of messages, and
as implemented in MP/M, a list of processes waiting for messages.

The flag management provided by MP/M is used to synchronize
processes by signaling a significant event. Flags provide a
logical interrupt system for MP/M which is independent of the
physical interrupt system. Flags are used to signal interrupts,
mapping an arbitrary physical interrupt environment into a
regular structure.

MP/M manages memory in pre-defined memory segments. Up to
eight memory segments of 48K can be managed by MP/M. This
management of memory is consistent with hardware environments
w~ere memory is banked and/or protected in fixed segments.

System timing functions provide time of day, the capability
to schedule programs to be loaded from disk and executed, and the
ability to delay the execution of a process for a specified
period of time.

(All Information Herein is Proprietary to Digital Research.)

3

MP/M User's Guide

RUNNING A PROGRAM

A program is run by typing in the program name followed by
a carriage return, <cr>. Some programs obtain parameters on the
same line following the program name. Characters on the line
following the program name constitute what is called the command
tail. The command tail is copied into location 0080H (relative
to the base of the memory segment in which the program resides)
and converted to upper case by the Command Line Interpreter
(CLI). The CLI also parses the command tail producing two file
control blocks at 005CH and 006CH respectively.

The programs which are provided with MP/M are described in
sections 1.4 and 1.5.

ABORTING A PROGRAM

A program may be aborted by typing a control C (~C) at the
console. The affect of the ~C is to terminate the program which
currently owns the console. Thus, a detached program cannot be
aborted with a C. A detached program must first be attached and
then aborted. A running program may 'also be aborted using the
ABORT command (see ABORT in section 1.5).

RUNNING A RESIDENT SYSTEM PROCESS

At the operator interface there is no difference between
running a program from disk and running a resident system
process. The actual difference is that resident system processes
do not need to be loaded from disk because they are loaded by the
MP/M loader when a system cold start is performed and remain
resident.

DE'rACHING FROM A PROGRAM

There are two methods for detaching from a running program.
The first is to type a control D (~D) at the console. The second
method is for a program to make an XDOS detach call.

The restriction on the former method, typing D, is that
the running program must be performing a check console status to
observe the detach request. A check console status is
automatically performed each time a user program makes a BDOS
disk function elll.

ATTACHING TO A DETACHED P~OGRAM

A pr0gram which is detached from a console, that is it does
not own a console, may be attached to a console by typing
'ATTACH' followed by the program name. A program may only be
attached to the console from which it was detache~. If the
terminal message process (TMP) has ownership of the console and

(All Information Herein is Proprietary to Digital Research.)

5

MP/M User's Guide

ctl-S

not obtain the printer mutual exclusion message
prior to accessing the printer. If the list
device is not available a 'Printer busy' message
is displayed on the console.

Stop the console output temporarily. Program
execution and output continue when the next
character is typed at the console (e.g., another
ctl-S). This feature is used to stop output on
high speed consoles, such as CRT's, in order to
view a segment of output before continuing.

(All Information Herein is Proprietary to Digital Research.)

7

MP/M User's Guide

lA)DSKRESET B:,E:

If there are any open files on the drive(s) to be
the disk reset is denied and the cause of the disk
failure is shown:

reset,
reset

lA)DSKRESET B:

Disk reset denied, Drive B: Console 0 Program Ed

The reason that disk reset is treated so carefully is that
files left open (e.g. in the process of being written) will lose
their updated information if they are not closed prior to a disk
reset.

ERASE FILE *

The ERA (erase) command removes specified files having the
current user code. If no files can be found on the selected
diskette which satisfy the erase request, then the message "No
f ile" is displayed at the console.

An attempt to erase all files,

2B)ERA *.*

will produce the following response from ERA:

Con firm del e tea 11 us e r f i 1 e s (Y /N) ?

A second form of the erase command (ERAQ) enables the
operator to selectively delete files that match the
specified filename reference. For example:

0A)ERAQ *. r.ST

A:XIOS LST? Y
A:MYFILE LST? n

TYPE A FI LE *

The TYPE command displays the contents of the specified
ASCII source file on the console device. The TYPE command
expands tabs (ctl-I characters), assuming tab positions are set
at every eighth column.

The TYPE command has a pause mode which is
entering a 'P' followed by two decimal digits
filename. For example:

0A)TYPE DUMP.ASM P23

speci fied
after

(All Information Herein is Proprietary to Digital Research.)

9

by
the

MP/M User's Guide

STATUS *

The STAT (status) command provides general statistical
information about the file storage. See the Digital Research
document titled "CP/M 2.0 User's Guide for CP/M 1.4 Owners" for a
deta il ed d esc r i ption 0 f new STAT opera tions.

DUMP *

The DUMP command types the contents of the specified disk
file on the console in hexadecimal form.

LOAD *

The LOAD command reads the specified disk file of type HEX
and produces a memory image file of type COM which can
subsequently be executed.

GENMOD

The GENMOD command accepts a file which contains two
concatenated files of type HEX which are offset from each other
by 0100H bytes, and produces a file of type PRL (page
relocatable). The form of the GENMOD command is as follows:

lA>genmod b:file.hex b:file.prl $1000

The first parameter is the file which contains two concatenated
files of type HEX. The second parameter is the name of the
destihation file of type PRL. The optional third parameter is a
specification of additional memory required by the program beyond
the explicit code space. The form of the third parameter is a
'$' followed by four hex ASCII digits. For example, if the
program has been written to use all of 'available' memory for
buffers, specification of the third parameter will ensure a
minimum buffer allocation.

GENHEX

The GENHEX command is used to produce a file of type HEX
from a file of type COM. This is useful to be able to
generate HEX files for GENMOD input. The GENHEX command has
two parameters, the first is the COM file name and the second is
the offset for the HEX file. For example:

0A>GENHEX PROG.COM 100

PRLCOM

The PRLCOM command accepts a file of PRL type and produces
a file of COM type. If the destination COM file exists, a query
is made to determine if the file should be deleted before
con ti nui ng •

(All Information Herein is Proprietary to Digital Research.)

11

MP/M User's Guide

1.5 Standard Resident System Processes

are new
the MP/M
disk as

'rhe standard resident system processes (RSPs)
programs specifically designed to facilitate use of
operating system. The RSPs may either be present on
files of the PRL type, or they may be resident system
Resident system processes are selected at the time
generation.

processes.
of system

SYSTEM STATUS

The MPMSTAT command allows the user to display the run-time
status of the MP/M operating system. MPMSTAT is invoked by
typing 'MPMSTAT' followed by a <cr>. A sample MPMSTAT output is
shown below:

****** MP/M Status Display ******

Top of memory = FFFFH
Number 0 f consoles = 02
Debugger breakpoint restart # = 06
Stack is swapped on BDOS calls
Z80 complementary registers managed by dispatcher
Ready Process(es):

MPMSTAT Idle
Process(es) DQing:

[Sched] Sched
[ATTACH] ATTACH
[CliQ] cli

Process(es) NQing:
Delayed Process(es):
Poll i ng Pro c e s s (e s) :

PIP
proces~(es) Flag Waiting:

01 - Tick
02 - Clock

Flag (s) Set:
03

Queue(s):
MPMSTAT Sched CliQ ATTACH MXParse
MXList [Tmp0 MXDisk

Process(es) Attached to Consoles:
[0] - MPMSTAT
[1] - PIP

Process(es) Waiting for Consoles:
[0] - TMP0 DIR
[1] - TMPI

Memory Allocation:
Base = 0000H Size = 4000H Allocated to PIP [1]
Base = 4000H Size = 2000H * Free *
Base = 6000H Size = l100H Allocated to DIR [0]

(All Information Herein is Proprietary to Digital Research.)

13

MP/M User's Guide

have detached from the console and are then waiting for the
console before they can continue execution.

Memory Allocation: The memory allocation map shows
the base, size, bank, and allocation of each memory
segment. Segments which are not allocated are shown as '*
Free *', while allocated segments are identified by process
name and the console in brackets associated with the
process. Memory segments which are set as pre-allocated
during system generation by specifying an attribute of 0FFH
are shown as '* Reserved *'.

SPOOLER

The SPOOL command allows the user to spool ASCII text files
to the list device. Multiple file names may be specified in the
command tail. The spooler expands tabs (ctl-I characters),
assuming tab positions are set at every eighth column.

The spooler queue can be purged at any time by using the
STOPSPLR command.

An example of the SPOOL command is shown below:

lA>SPOOL LOAD.LST,LETTER.PRN

The non-resident version of the spooler (SPOOL.PRL) differs
in its operation from the SPOOL.RSP as follows: it uses all of
the memory available in the memory segment in which it is
running for buffer space; it displays a message
indicating its status and then detaches from the console; it
may be aborted from a console other than the initiator only by
specifying the console number of the initiator as a parameter of
the STOPSPLR command.

3B>STOPSPLR 2

DATE AND TIME

The TOD (time of day) command allows the user to read and
set the date and time. Entering 'TOD' followed by a <cr> will
cause the current date and time to be displayed on the console.
Entering 'TOD' followed by a date and time will set the date and
time when a <cr> is entered following the prompt to strike a key.
Each of these TOD commands is illustrated below:

lA>TOD <cr>

Wed 02/06/80 09:15:37

-or-

lA>TOD 2/9/80 10:30:00

(All Information Herein is Proprietary to Digital Research.)

15

MP/M User's Guide

2. MP/M INTERFACE GUIDE

This section describes MP/M system organization including
the structure of memory and system call functionsa The intention
is to provide the necessary information required to write page
relocatable programs and resident system processes which operate
under MP/M, and which use the real-time, multi-tasking,
peripheral, and disk I/O facilities of the system.

2.1 Introduction

MP/M is logically divided into several modules. The three
primary modules are named the Basic and Extended I/O System
(XIOS), the Basic Disk Operating System (BDOS), and the Extended
Disk Operating System (XDOS). The XIOS is a hardware-dependent
module which defines the exact low level interface to a
particular computer system which is necessary for peripheral
device I/O. Although a standard XIOS is supplied by Digital
Research, explicit instructions are provided for field
reconfiguration of the XIOS to match nearly any hardware
environment.

MP/M memory structure is shown below:

(All Information Herein is Proprietary to Digital Research.)

17

MP/M User's Guide

The memory segments are described as follows:

SYSTEM.DAT The SYSTEM.OAT segment contains 256 bytes
used by the loader to dynamically configure the
system. After loading, the segment is used for
storage of system data such as submit flags. See
section 3.4 under SYSTEM DATA for a detailed
description of the byte allocation.

CONSOLE. OAT The CONSOLE.OAT segment varies in length
with the number of consoles. Each console
requires 256 bytes which contains the TMP's
process descriptor, stack and buffers.

USERSYS.STK The USERSYS.STK segment is optional

XIOS

depending upon whether or not the user intends to
run CP/M *.COM files. This segment contains 64
bytes of stack space per user memory segment and
is used as a temporary stack when user programs
make BOOS calls. Specification of the option to
include this segment is made during system
generation. The size of the USERSYS.STK segment
varies as follows:

000H - No user system stacks
100H - 1 to 4 memory segments
200H - 5 to 8 memory segments

The XIOS segment contains the user
customized basic and extended I/O system in page
relocatable format.

BOOS/OOOS The BOOS segment contains the disk file and
multiple console management functions. The
segment is about 1400H bytes in length.

The OOOS segment contains the resident portion of
the banked BOOS file and console management
functions. The segment is about 800H bytes in
length.

XDOS The XDOS segment contains the MP/M nucleus
and the extended disk operating system. The
segment is about 2000H bytes in length.

RSPs The operator makes a selection of Resident
System Processes during system generation. The
RSPs require varying amounts of memory.

BNKBDOS (Optional) The BNKBDOS segment is present only
in systems with a bank switched BOOS. It
contains the non-resident portion of the banked
BOOS disk file management. This segment is about
E00H bytes in length.

(All Information Herein is Proprietary to Digital Research.)

19

MP/M User's Guide

segment, relocated, and it is executed, completing the CLI
operation.

If the PRL file type open fails then the file type of COM
is entered for the parsed file name and a file open is attempted.
If the open succeeds then a memory request is made for an
absolute TPA, memory segment based at 0000H. If this request is
satisfied the COM file is read into the absolute TPA and it is
executed, completing the CLI operation.

If the command is followed by one or two file
specifications, the CLI prepares one or two file control block
(FCB) names in the system parameter area. These optional FCB's
are in the form necessary to access files through MP/M BDOS
calls, and are described in the next section.

The CLI creates a process descriptor for each program which
is loaded, setting up a 20 level stack which forces a branch to
the base of the user code area of the memory segment. The
default stack is set up so that a return from the loaded program
causes a branch to the MP/M facility which terminates the
process. This stack has 19 levels available which can generally
be used by the transient program since it is sufficiently large
to handle system calls.

The transient program then begins execution, perhaps using
the I/O facilities of MP/M to communicate with the operator's
consol~ and peripheral devices, including the disk subsystem.
The I/O system is accessed by passing a "function number" and an
Jlinformation address" to MP/M through the entry point at the
memory segment base +0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to
a disk read, along with the address of an FCB to MP/M. MP/M, in
turn, performs the operation and returns with either a disk read
completion inqication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators
are given in sections 2.2 and 2.4.

OPERATING SYSTEM CALL CONVENTIONS

The purpose of this section is to provide detailed
information for performing' di rect operating system calls from
user programs. Many of the functions listed below, however, are
more simply accessed through the I/O macro library provided with
the MAC macro assembler, and listed in the Digital Research
manual entitled II MAC Macro Assembler: Language Manual and
Applications Guide. 1I

MP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O,
dis k f i 1 e I /0 , and th e XD a S f un c t ion s •

(All Information Herein is Proprietary to Digital Research.)

21

MP/M User's Guide

As mentioned above, access to the MP/M functions is
accomplished by passing a function number and information address
through the primary entry point at location memory segment base
+0005H. In general, the function number is passed in register C
with the information address in the double byte pair DE. Single
byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number
is out of range). For reasons of compatibility, register A = L
and register B = H upon return in all cases. Note that the
r eg i s t e r pas sing co nve n t ion s 0 f MP /M a g r e e wit h tho s e 0 fIn tel' s
PL/M systems programming language.

The list of MP/M BDOS function numbers is given below.

o System Reset
1 Console Input
2 Console Output
3 Raw Console Input
4 Raw Console Output
5 List Output
6 Direct Con sol e I/O
7 Get I/O Byte
8 Set I/O Byte
9 P r in t S t ring

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next
19 Delete File
20 Read Sequential

21 Write Sequential
22 Make File
23 Rename Fil e
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr(Alloc)
28 Write Protect Disk
29 Get R/O Vector
30 Set File Attributes
31 Get Addr(Disk Parms)
32 Set/Get User Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record
35 Compute File Size
36 Set Random Record
37 Reset Drive
38 Access Drive
39 Free Drive
40 Write Random With Zero Fill

(All Information Herein is Proprietary to Digital Research.)

23

MP/M User's Guide

65536 records of 128 bytes each, numbered from 0 through 65535,
thus allowing a maximum of 8 megabytes per file. Note, however,
that although the records may be considered logically contiguous,
they are not necessarily physically contiguous in the disk data
area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as
8-bit values. Although the decomposition into extents is
discussed in the paragraphs which follow, they are of no
particular consequence to the programmer since each extent is
automatically accessed in both sequential and random access
modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by MP/M at
location memory segment base +005CH for simple file operations.
The basic unit of file information is a 128 byte record used for
all file operations, thus a default location for disk I/O is
provided by MP/M at location memory segment base +0080H which is
the initial default DMA address (see function 26). All directory
operations take place in a reserved area which does not affect
write buffers as was the case in CP/M release 1, with the
exception of Search First and Search Next, where compatibility is
r equi red.

The File Control Block (FCB) data area consists of a
sequence of 33 bytes for sequential access and a series of 36
bytes in the case that the file is accessed randomly. The
d efa ul t file contro I block no rmally loca ted a t memory segmen t
base +005CH can be used for random access files, since the three
bytes starting at memory segment base +007DH are available for
thi s purpo see

(All Information Herein is Proprietary to Digital Research.)

25

MP/M User's Guide

information for all subsequent file operations. When accessing
files, it is the programmer's responsibility to fill the lower
sixteen bytes of the FCB and initialize the "cr" field.
Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while all other fields
are zero.

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file
operations (see the OPEN and MAKE functions). The memory copy of
the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file
operation (see the CLOSE command).

The CLI constructs the first sixteen bytes of two optional
FCB's for a transient by scanning the remainder of the line
following the transient name, denoted by "filel" and "file2" in
the prototype command line described above, with unspecified
fields set to ASCII blanks. The first FCB is constructed at
location memory segment base +005CH, and can be used as-is for
subsequent file operations. The second FCB occupies the d0
dn portion of the first FCB, and must be moved to another area of
memory before use. If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.PRL is loaded into a user memory segment or if
it is not on the disk, the file PROGNAME.COM is loaded into the
TPA, and the default FCB at memory segment base +005CH is
initialized to drive code 2, file name "XU and file type "ZOT".
The second drive code takes the default value 0, which is placed
a t memory segment base +006CH, wi th the file name "Y" placed into
location memory segment base +006DH and file type "ZAP" located 8
bytes later at memory segment base +0075H. All remaining fields
through "cr" are set to zero. Note again that it is the
programmer's responsibility to move this second file name and
type to another area, usually a separate file control block,
before opening the file which begins at memory segment base
+005CH, due to the fact that the open operation will overwrite
the second name and type.

If no file names are specified in the original command,
then the fields beginning at memory pegment base +005DH and
+006DH contain blanks. In all cases, the CLI translates lower
case alphabetics to upper case to be consistent with the MP/M
file naming conventions.

As an added convenience, the default buffer area at
location memory segment base +0080H is initialized to the command
line tail typed by the operator following the program name. The
first position contains the number of characters, with the
characters themselves. following the character count.

(All Ihformation Herein is Proprietary to Digital Research.)

27

MP/M User's Guide

2.2 Basic Disk Operating System Functions

In general, the Basic Disk Operating System (BOOS)
facilities are identical to that of CP/M 2.0. Each function is
covered in this section by describing the entry parameters,
returned values, and any differences between CP/M and MP/M.

****~**********************************
* *
* FUNCTION 0: SYSTEM R&SET *
* *

* Entry Parameters: *
* Reg i ster C: 00H *

The SYSTEM RESET function terminates the calling program,
releasing the memory segment, console, and mutual exclusion
messages owned by the calling program. When the console is
released it is usually given back to the terminal message process
(TMP) for that console.

Effectively the operation of the SYSTEM RESET function is
the same for MP/M as it is for CP/M 2.0 because the program
is terminated and the operator receives the prompt to enter
another command. However, MP/M does not re-initialize the disk
subsystem by selecting and logging-in disk drive A.

* * FUNCTION 1:. CONSOLE INPUT

*

*
*
*

*
*
*

Entry Parameters:
Register C: 01H

* .*
* * Returned Value: *

* Register A: ASCII Character *

The CONSOLE INPUT function reads the next console character
to register A. Graphic characters, along with carriage return,
line feed, and backspace (ctl-H) are echoed to the console. Tab
characters (ctl-I) are expanded in columns of eight characters.
A check is made for start/stop scroll (ctl-S) and start/stop
printer echo (ctl-P). The BOOS does not return to the calling
program until a character has been typed, thus suspending
execution if a character is not ready.

(All Information Herein is Proprietary to Digital Research.)

29

MP/M User's Guide

* * * FUNCTION 4: RAW CONSOLE OUTPUT *
* *

* Entry Parameters: *
* Register C: 04H *
* Register E: ASCII Character *
* *

The RAW CONSOLE OUTPUT function sends the ASCII
character from register E to the console device. There is no
testing of the output character, that i~, tabs are not expanded
and no checks are made for start/stop scroll and printer echo.
This function does not require that the console be attached,
nor does it attach the console. Thus, unsolicited messages may
be sent to other consoles by simply changing the console byte of
the process descriptor and then using this function.

The PUNCH OUTPUT function is not supported under MP/M.

* * * FUNCTION 5: LIST OUTPUT *
* *

* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* *

The LIST OUTPUT function sends the ASCII character in
register E to the logical listing device,.

Caution must be observed in the use of the printer since
there is no implicit list device ownership. That is, the list
device is not "opened" or "closed". MP/M affords a secondary
explicit means to resolve printer mutual exclusion. A
queue named 'MXList' is created by the system to handle mutual
exclusion. To properly obtain use of the, printer a program
should open the 'MXList' queue and read the message. When the
message is obtained the printer may be used. When printing is
completed the message should be written back to the 'MXList'
queue. This technique is used by the MP/M PIP, SPOOLer, and TMP
c tl-P ope rations.

(All Information Herein is Proprietary to Digital Research.)

31

MP/M User's Guide

* * FUNCTION 7: GET I/O BYTE
*

*
*
*

* *
*
*

Not supported under MP/M *
*

The GET I/O BYTE function is not supported under MP/M.

* * * FUNCTION 8: SET I/O BYTE

*
*
*

*
*
*

Not supported under MP/M
*
*
*

The SET I/O BYTE function is not supported under MP/M.

* * FUNCTION 9: PRINT STRING

*

*
*
*

*
*
*
*

En try Paramete rs:
Register C:
Reg ister s DE:

09H
Str ing Add ress

*
*
*
*

The PRINT STRING function sends the character string stored
in memory at the location given by DE to the console device,
until a "$" is encountered in the str ing. Tabs are expanded as
in function 2, and checks are made for start/stop scroll and
printer echo.

(All Information Herein is Proprietary to Digital Research.)

33

MP/M User's Guide

* * * FUNCTION 11: GET CONSOLE STATUS *
* *

* En try Pa ramete rs: *
* Register C: 0BH *
* * * Returned Value: *
* Register A: Console Status *

The CONSOLE STATUS function checks to see if a character
has been typed at the console. If a character is ready, the
value 0FFH is returned in register A. Otherwise a 00H value is
returned.

* * * FUNCTION 12: RETURN VERSION NUMBER *
* *

* Entry Parameters: *
* Register C: 0CH *
* * * Returned Value: *
* Registers HL: Version Number *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H =
00 designating the CP/M release (H = 01 for MP/M), and L = 00 for
all releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20
in register L, with subsequent version 2 releases in the
hexadecimal range 21, 22, through 2F. Using function 12, for
example, you can write application programs which provide both
sequential and random access functions, with random access
disabled when operating under early releases of CP/M.

(All Information Herein is Proprietary to Digital Research.)

35

MP/M User's Guide

* * * FUNCTION 15: OPEN FILE
*

*
*

* Entry Parameters: *
* Register C: 0FH *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Directory Code *

The OPEN FILE operation is used to activate a file which
currently exists in the disk directory for either the currently
active user code or user code 0. The BDOS scans the referenced
disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte sl is automatically zeroed), where an
ASCII question mark (3FH) matches any directory character in any
of these positions. Normally, no question marks are included
and, further, bytes II ex" and "s2" of the FCB are zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB J thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed
until a sucessful open operation is completed. Upon return, the
open function returns a "directory code" with the value 0 through
3 if the open was successful, or 0FFH (255 decimal) if the file
cannot be found. If question marks occur in the FCB then the
first matching FCB is activated. Note that the current record
("crn) must be zeroed by the program if the file is to be
accessed sequentially from the first record.

The open-file operation will succeed for files with either
the current user code or user code 0. This presents a problem
when files with the same name exist under both the current user
code and under user code 0. When such a situation exists the
first one found in the directory will be opened. Even though
this should not present a problem because user code 0 is intended
only' for system and commonly used files, a potential problem can
be detected by using the search file function. The search file
function enables examination of the directory FCB and thus the
actual file user code can be determined.

Opening a file sets the appropriate bit in the drive active
vector of the calling processes process descriptor. This bit is
cleared only by terminating the process or making a free drive
(function 39) call. Setting of the bit in the drive active
vector will prevent any other process from resetting the drive on
which the file was opened.

(All Information Herein is Proprietary to Digital Research.)

37

MP/M User's Guide

register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory
information can be extracted ftom the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field
of any directory entry on the default or auto-selected disk
drive. If the "dr" field contains an ASCII question mark, then
the auto disk select function is disabled, the default disk is
searched, with the search function returning any matched entry,
allocated or free, belonging to any user number. This latter
function is not normally used by application programs, but does
allow complete flexibility to scan all current directory values.
If the "dr" field is not a question mark, the "s2" byte is
automatically zeroed.

To determine the user code of a successful search (it may
be the currently active user code or user code 0), the returned
directory code can be used as described above to index into the
DMA buffer and the user code of the directory FCB can be
o bta ined.

* * FUNCTION 18: SEARCH FOR NEXT

*

*
*
*

* Entry Parameters: *
* 'Register C: 12H *
* * * Retur ned Value: *
* Register A: Directory Code *

The SEARCH NEXT function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Herein is Proprietary to Digital Research.)

39

MP/M User's Guide

* *
* FUNCTION 21: WRITE SEQUENTIAL *
* *

* Entry Parameters: *
* Reg i s te r C: l5H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Directory Code *

Given that the FeB addressed by DE has been activated
through an open or make function (numbers 15 and 22), the WRITE
SEQUENTIAL function writes the 128 byte data record at the
current DMA address to the file named by the FCB. the record is
placed at position "Crn of the file, and the "Crn field is
automatically incremented to the next record position. If the
"cr" field overflows then the next logical extent is
automatically opened and the "cr" field is reset to zero in
preparation for the next write operation. Write operations can
take place into an existing file, in which case newly written
records overlay those which already exist in the file. Register
A = 00H upon return from a successful write operation, while a
non-zero value indicates a full disk.

* * * FUNCTION 22: MAKE FILE

*
*
*

* Entry Parameters: *
* Register C: 16H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Directory Code *

The MAKE FILE operation is similar to the open file
operation except that the FCB must name a file which does not
exist in the currently referenced disk directory (i.e., the one
named explicitly by a non-zero "dr" code, or the default disk if
"dru is zero). The FDOS creates the file and initializes both
the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a
preceding delete operation is sufficient if there is any
possibility of duplication. Upon return, register A = 0, 1, 2,
or 3 if the operation was successful and 0FFH (255 decimal) if no
more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is

(All Information Herein is Proprietary to Digital Research.)

41

MP/M User's Guide

earlier releases, since registers A and L contain the same values
upon return.

* * * FUNCTION 25: RETURN CURRENT DISK *
* *

* Entry Parameters: *
* Register C: 19H *
* * * Returned Value: *
* Register A: Current Disk *

Function 25 returns the currently selected default disk
number 'in register A. The disk numbers range from 0 through 15
corresponding to drives A through P.

* * * FUNCTION 26: SET DMA ADDRESS *
* *

* En try Pa rame ters: *
* Register C: lAH *
* Registers DE: DMA Address *
* *

nDMA u is an acronym for Direct Memory Address, which is
often used in connection with disk controllers which directly
access the memory of the mainframe computer to transfer data to
and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data is transfered through programmed
I/O operations), the DMA address has, in MP/M, come to mean the
address at which the 128 byte data record resides before a disk
write and after a disk read. Upon cold start, warm start, or
disk system reset, the DMA address is automatically set to
BOOT+0080H. The Set DMA function, however, can be used to change
this default value to address another area of memory where the
data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Herein is Proprietary to Digital Research.)

43

MP/M User's Guide

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *

* Entry Parameters: *
* Register C: IDH *

* *
* Returneq Value: *
* Registers HL: R/O Vector Value*

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set.
Similar to function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P.
The R/O bit is set either by an explicit call to function 28, or
by the automatic software mechanisms within MP/M which detect
changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: lEH *
* Registers DE: FCB Address *

* *
* Returned Value: *
* Register A: Directory Code *

The SE~ FILE ATTRIBUTES function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O, System, and Update attributes (tIl, t2', and
t3') can be set or reset. The DE pair addresses an unambiguous
file name with the appropriate attributes set or reset. Function
30 searches for a match, and changes the matched directory entry
to contain the selected indicators. Indicators fl' through f4'
are not presently used, but may be useful for applications
prog rams, since they are not involved in the matching process
during file open and close operations. Indicators f5' throug·h
f8' are reserved for future system expansion.

(All Information Herein is Proprietary to Digital Research.)

45

MP/M User's Guide

* * * FUNCTION 33: READ RANDOM
*

*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

21H
FCB Address

*
*
*
* * Returned Value: *

* Register A: Return Code *

The READ RANDCM function is similar to the sequential file
read operation of previous releases, except that the read
operation takes place at a particular record number, selected by
the 24-bit value constructed from the three byte field following
the FCB (byte positions r0 at 33, rl at 34, and r2 at 35). Note
that the sequence of 24 bits is stored with least significant
byte first (r0), middle byte next (rl), and high byte last (r2).
MP/M does not reference byte r2, except in computing the size of
a file (function 35). Byte r2 must be zero, however, since a
non-zero value indicates overflow past the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value
ranges from 0 to 65535, providing access to any particular record
of the 8 megabyte file. In order to process a file using random
access, the base extent (extent 0) must first be opened.
Although the base extent mayor may not contain any allocated
data, this ensures that the file is properly recorded in the
directory, and is visible in DIR requests. The selected record
number is then stored into the random record field (r0,rl), and
the BDOS is called to read the record. Upon return from the
call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly
accessed record. Note that contrary to the sequential read
operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and
current record values are automatically s,et. Thus, the file can
be sequentially read or written, starting from the current
randomly accessed position. Note, however, that in this case,
the last randomly read record will be re-read as you switch from
random mode to sequential read, and the last record will be
re-written as you switch to a sequential write operation. You
can, of course, simply advance the random record position
following each random read or write to obtain the effect of a
sequential I/O operation.

Error codes returned in register A following a random read

(All lnformation Herein is Proprietary to Digital Research.)

47

MP/M User's Guide

the random read operation with the addition of
which indicates that a new extent cannot
directory overflow.

* * * FUNCTION 35: COMPUTE FILE SIZE *
* *

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB -Address *
* * * Returned Value:
* Random Record Field Set

*
*

error code 05,
be created due to

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is
used in the directory scan. Upon return, the random record bytes
contain the "virtual" file size which is, in effect, the record
address of the record following the end of the file. if,
following a call to function 35, the high record byte r2 is 01,
then the file contains the maximum record count 65536.
Otherwise, bytes r0 and rl constitute a 16-bit value (r0 is the
least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by
simply calling function 35 to set the random record position to
the end of file, then performing a sequence of random writes
starting at the preset record address.

The virtuai size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then
the file may in fact contain fewer records than the size
indicates. If, for example, only the last record of an eight
megabyte file is written in random mode (i.e., record number
65535), then the virtual size is 65536 records, although only one
block of data is actually allocated.

(All Information Herein is Proprietary to Digital Research.)

49

MP/M User's Guide

* * FUNCTION 37: RESET DRIVE
*

*
*
*

* Entry Parameters: *
* Reg ister C: 25H *
* Register DE: Drive Vector *
* * * Returned Value: *
* Register A: Return Code *

The RESET DRIVE function allows resetting of
specified drive(s). The passed parameter is a 16 bit vector of
drives to be reset, the least significant bit is drive A:. If
there are any open files on a specified drive, the reset drive
is denied and the reason is displayed on the console.

The returned value indicates whether or not the reset
drive was successful. If any process is currently accessing a
drive to be reset, an error code of 0FFH is returned in the A
register. A return -code of 0 indicates success.

* * * FUNCTION 38: ACCESS DRIVE

*
*
*

* Entry Parameters: *
* Register C: 26B *
* Register DE: Drive Vector *
* *

The ACCESS DRIVE function allows setting the drive
access bit(s) in the calling processes process descriptor. The
passed parameter is a 16 bit vector of drive(s) to be accessed,
the least significant bit is drive A:.

(All Information Herein is Proprietary to Digital Research.)

51

MP/M User's Guide

2.3 Queue and Process Descriptor Data Structures

This section contains a description of the queue and
process descriptor data structures used by the MP/M Extended Disk
Operating System (XDOS).

QUEUE DATA STRUCTURES

A queue is a first in first out (FIFO) mechanism which has
been implemented in MP/M to provide several essential functions
in a multi-tasking envirQnrnent. Queues can be used for the
communication of messages between processes, to synchronize
processes, and to provide mutual exclusion.

MP/M has been designed to simplify queue management for
both user and system processes. In fact, queues are treated in a
manner similar to disk files. Queues can be created, opened,
written to, read from, and deleted.

A few illustrations should suffice to describe applications
for queues:

COMMUNICATION:

A queue can be used for communication to provide a FIFO
list of messages produced by a producer for consumption by a
consumer. For example, consider a data logging application where
data is continuously received via a serial communication link and
is to be written to a disk file. This would be a difficult
application for a sequential operating system such as CP/M
because arriving serial data would be lost while buffers were
being written to disk. Under MP/M a queue could be used by the
producer to send blocks of received serial data (or simply buffer
pointers) to a consumer which would write the blocks on disk.
MP/M supports concurrency of these operations, allowing the
producer to quickly write a buffer to the queue and then resume
monitoring the serial input.

SYNCHRONIZATION:

When a process attempts to read a message at a queue and
there are no messages posted at the queue, the process is placed
in a priority ordered list of processes waiting for messages at
the queue. The process will remain in that state until a message
arrives. Thus synchronization of processes can be achieved,
allowing the waiting (DQing) process to continue execution when a
message is sent to the queue.

(All Information Herein is Proprietary to Digital Research.)

53

MP/M User's Guide

Assembly Lang uage :

CRCQUE:
DS 2 ; QL
DB 'CIRCQUE ,

; NAME
DW I ; MSGLEN
DW 80 ; NMBMSGS
DS 2 ; DQPH
DS 2 NQPH
DS 2 ; MSGIN
DS 2 MSGOUT
DS 2 ; MSGCNT

BUFFER: DS 80 BUFFER

The elements of the circular queue shown above are defined as
follows:

QL
NAME

MSGLEN

NMBMSGS

DQPH

NQPH

MSG$IN

MSG$OUT

MSG$CNT

BUFFER

= 2 byte link, set by system
= 8 ASCII character queue name,

set by user
= 2 bytes, length of message,

set by user
= 2 bytes, number of messages,

set by user
= 2 bytes, DQ process head,

set by system
= 2 bytes, NQ process head,

set by system
= 2 bytes, pointer to next

message in, set by system
= 2 bytes r pointer to next

message out, set by system
= 2 bytes, number of messages

in the queue, set by system
= n bytes, where n is equal to

the message length times the
number of messages, space
allocated by user, set by system

Note: Mutual exclusion queues require
a two byte buffer for the owner process
descriptor address.

Queue Overhead = 24 bytes

LINKED QUEUES

The following example illustrates how to setup a queue
control block for a linked queue containing 4 messages, each 33
bytes in length:

(All Information Herein is Proprietary to Digital Research.)

55

MP/M User's Guide

MT = 2 bytes, message tail,
set by system

BH = 2 bytes, buffer head~
set by system

BUFFER = n bytes where n is equal to
the message length plus two,
times the number of messages,
space allocated by the user,
set by the system

USER QUEUE CONTROL BLOCK

The user queue control block data structure is used to
provide read/write access to queues in much the same manner that
a file control block provides access to a disk file. Queues are
"opened", an operation which fills in the .actual queue control
block address, and then can be read from or written to.

If the actual queue address is known it can be filled in
the pointer field of the user queue control block, the 8 byte
name field can be omitted, and an open operation is not required
in order to access the queue.

The following example illustrates a user queue control
block:

PL/M:

DECLARE USER$QUEUE$CONTROL$BLOCK STRUCTURE (
POINTER ADDRESS,
MSGADR ADDRESS,
NAME (8) BYTE)

INITIAL (0,.BUFFER,'SPOOL I);

DECLARE BUFFER (33) BYTE;

Assembly Language:

UQCB:
DS 2 ; POINTER
DW BUFFER; MSGADR
DB 'SPOOL' ; NAME

BUFFER:
DS 33 BUFFER

(All Information Herein is Proprietary to Digital Research.)

57

MP/M User's Guide

PROCESS DESCRIPTOR

Each process in the MP/M system has a process descriptor
which defines all the characteristics of the process. The
following example illustrates the process descriptor:

PL/M:

DECLARE CNS$HNDLR STRUCTURE (
PL ADDRESS,
STATUS BYTE,
PRIORITY BYTE,
STKPTR ADDRESS,
NAME (8) BYTE,
CONSOLE BYTE,
MEMSEG BYTE,
B ADDRESS,
THREAD ADDRESS,
DISKSETDMA ADDRESS,
DISK$SLCT BYTE,
DCNT ADDRESS,
SEARCHL BYTE,
SEARCHA ADDRESS,
DRVACT ADDRESS,
REGISTERS (20) BYTE,
SCRATCH (2) BYTE)
I NIT IA L (0 , 0 , 2 0 0 , • CN S $ S TK (1 9) ,

'CNS ',1,0FFH);

DECLARE CNS$STK (20) ADDRESS INITIAL (
0C7C7H,0C7C7H,0C7C7H,0C7C7H,0C7C7H,0C7C7H,
0C7C7H,0C7C7H,0C7C7H,0C7C7H,0C7C7H,0C7C7H,
0C7C7H,0C7C7H,0C7C7H,0C7C7H,0C7C7H~0C7C7H,
0C7C7H,STRT$CNS);

(All I"nformation Herein is Proprietary to Digital Research.)

59

MP/M User's Guide

CONSOLE

MEMSEG
B
THREAD

DISKSETDMA
DISK$SLCT
DCNT
SEARCHL
SEARCHA
DRVACT

REGISTERS
SCRATCH

= 1 byte, console to be used by process,
set by use r

= 1 byte, memory segment table index
= 2 bytes, system scatch area
= 2 bytes, process list thread, set

by system
= 2 bytes, defaul t DMA address, se t by user
= 1 byte, default disk/user code
= 2 bytes, system scratch byte
= 1 byte, system scratch byte
= 2 bytes, system scratch bytes
= 2 bytes, 16 bit vector of drives being

accessed by the process
=20 bytes, 8080 / Z80 register save area
= 2 bytes, system scratch bytes

PROCESS NAMING CONVENTIONS

The following conventions should be used in the naming of
processes. Processes which wait on queues that are to be sent
command tails from the TMPs are given the console resource if
their name matches that of the queue which they are reading.
Processes which are to be protected from abortion by an
operator using the ABORT command must have at least one lower
case character in the process name.

(All Information Herein is Proprietary to Digital Research.)

61

MP/M User's Guide

Assembly Language:
MEMDES:

DS
DS
DS
DS

1
1
1
1

; base
; size
; attributes
; bank

* * * FUNCTION 129: RELOCATABLE MEMORY *
* REQUEST *

* Entry Parameters: *
* Register C:
* DE:
*
*
*
*

Returned Value:
Register A:
MD filled in

81H *
MD Address *

*
*

Return code *
*

The RELOCATABLE MEMORY REQUEST function allocates the
requested contiguous memory to the calling program. The single
passed parameter is the address of a memory descriptor. The only
memory descriptor parameter filled in by the calling program is
the size, the other parameters, base, attributes and bank, are
filled in by XDOS.

The operation returns a boolean indicating whether or not
the memory request could be satisifed. A returned value of FFH
indicates-failure to satisfy the request and a value of 0
indicates success.

Note that base and size specify base page address and pag~
size where a page is 256 bytes. (See function 128: ABSOLUTE
MEMORY REQUEST for a description of the memory descriptor data
structure.)

(All Information Herein is Proprietary to Digital Research.)

63

MP/M User's Guide

* * * FUNCTION 132: FLAG WAIT
*

*
*

* Entry Parameters: *
* Register C: 84H *
* E: Flag Number *
* * * Returned Value: *
* Register A: Return code *

The FLAG WAIT function causes a process to relinquish the
processor until the flag specified in the call is set. The flag
wait operation is used in an interrupt driven system to cause the
calling process to 'wait' until a specific interrupt condition
occurs.

The operation returns a boolean indicating whether or not a
successful FLAG WAIT was performed. A returned value of FFH
indicates that no flag wait occurred because another process was
already waiting on the specified flag. A returned value of 0
indicates success. .

Note that flags are non-queued, which means that access to
flags must be carefully managed. Typically the physical
interrupt handlers will set flags while a single process will
wait on each flag.

* * * FUNCTION 133: FLAG SET

*
*
*

* Entry Parameters: *
* Register C: 85H *
* E: Flag ~umber *
* * * Returned Value: *
* Register A: Return code *

The FLAG SET function wakes up a waiting process. The FLAG
SET function is usually called by an interrupt service routine
after servicing an interrupt and determining which flag is to be
set.

The operation returns a boolean indicating whether or not a
successful FLAG SET was performed. A returned value of FFH
indicates that a flag over-run has occurred, i.e. the flag was
already set when a flag se~ function was called. A returned
value of 0 indicates success.

(All Information Herein is Proprietary to Digital Research.)

65

MP/M User's Guide

* * * FUNCTION 135: OPEN QUEUE
*

*
*

* En t ry Par am e t e r s : *
* Register C: a7H *
* DE: UQCB Address *
* * * Returned Value: *
* Register A: Return code' *

The OPEN QUEUE function places the actual queue control
block address into the user queue control block. The result of
this function is that a user program can obtain access to queues
by knowing only the qU,eue name, the actual address 0 f the queue
itself is obtained as a result of opening the queue. Once a
queue has been opened, the queue may be read from or written to
using the queue read and write operations.

The function returns a boolean indicating whether or not
the open queue operation found the queue to be opened. A
returned value of 0FFH indicates failure while a zero indicates
success.

The user queue control block data structure is described in
section 2.3.

* * FUNCTION 136: DELETE QUEUE
*

*
*
*

* Entry Parameters: *
* Register C: aaH *
* DE: QCB Address *
* * * Returned Value: *
* Register A: Return Code *

The DELETE QUEUE function removes the specified queue from
the queue list. A single parameter is passed to delete a queue,
the address of the actual queue.

The function returns a boolean indicating whether or not
the delete queue operation deleted the queue. A returned value
of 0FFH indicates failure, usually because some process is DQing
from the queue. A returned value of 0 indicates success.

(All Ihformation Herein is Proprietary to Digital Research.)

67

MP/M User's Guide

* * FUNCTION 139: WRITE QUEUE
*

*
*
*

* Entry Pa rameters: *
* Register C: 8BH '* * DE: UQCB Address *
* Message to be sent *
* *

The WRITE QUEUE fu~ction writes a message to a specified
queue. If no buffers are available at the queue, the calling
process relinquishes the processor until a buffer is available at
the queue. The single passed parameter is the address of a user
q~eue control block. When a buffer is av~ilable at the quebe,
the buffer pointed to by the MSGADR field of the user queue
control block is copied into the actual queue.

* * * FUNCTION 140: CONDITIONAL WRITE *
* QUEUE *
* *

* Entry Pa rameters: *
* Register C: 8CH *
* DE: UQCB Address *
* Message to be sent *
* *
* Returned Value: *
* Register. A: Return code *

The CONDITIONAL WRITE QUEUE function writes a message to a
specified queue if a buffer is available. The single passed
parameter is the address of a user queue control block. If a
buffer is available at the queue, the buffer pointed to by the
MSGADR field of the user queue control block is copied into the
actual queue.

The operation returns a boolean indicating whether or n9t a
buffer was available at the queue. A returned value of 0FFH
indicates no buffer while a zero indicates that a buffer was
available and that the user buffer was copied into it.

(All Information Herein is Proprietary to Digital Research.)

69

MP/M User's Guide

* * * FUNCTION 143: TERMINATE PROCESS *
* *

* En try Pa rameters: *
* Register C: 8FH *
* D: Conditional *
* Memory Free *
* E: Termin~te Code *
* *
**************************************.

The TERMINATE PROCESS function terminates the calling
process. The passed parameters indicate whether or not the
process should be terminated if it is a system process and if the
memory segment is to be released. A 0FFH in the E register
indicates that the process should be unconditionally terminated,
a zero indicates that only a user process is to be deleted. If
a user process is being terminated and Register D is a 0FFH, the
memory segment is n9t released. Thus a process which is a child
of a parent process both executing in the same memory segment
can terminate without freeing the memory segment which is also
occupied by the parent. .

There are no results
calling process simply
concerned.

returned
ceases to

from
exist

* * * FUNC.TION 144: CREATE PROCESS *
* *

* Entry Pa rameters: *
* Register C: 90H *
* DE: PD Address *
* *
* Returned Value: *
* PD filled in *

this
as

operation, the
fa r as MP /M i s

The CREATE PROCESS .function c rea tes one 0 r mo re processes
by placing the passed process descriptors on the MP/M ready list.

A single parameter is passed, the address of a process
descriptor. The first field of the process descriptor is a link
field which may point to another process descriptor.

Processes can only be created either in common memory or by

(All lnformation Herein is Proprietary to Digital Research.)

71

MP/M User's Guide

* * * FUNCTION 147: DETACH CONSOLE *
* *

* Entry Parameters: :
* Register C: 93H
* *

The DETACH CONSOLE function detaches the console specified
in the CONSOLE field of the process descriptor from the calling
process. If the console is not currently attached no action
takes place.

There are no passed parameters and there are no returned
results.

* * * FUNCTION 148: SET CONSOLE

*
*
*

* Entry Parameters: *
* Register C: 94H *
* E: Console *
* *

The SET CONSOLE function detaches the currently attached
console and then attaches the console specified as a calling
parameter. If the console to be attached is already attached to
another proces~ descriptor, the calling process relinquishes the
processor until the console is available.

A single passed parameter contains the console number to be
attached. There are no returned results.

(All Information Herein is Proprietary to Digital Research.)

73

MP/M User's Guide

* * * FUNCTION 150: SEND CLI COMMAND *
* *

* En try Par am e t e r s : *
* Register C: 96H *
* DE: CLICMD Address *
* *

The SEND CLI COMMAND function permits running programs to
send command lines to the Command Line Interpreter. A single
parameter is passed which is the address of a data structure
containing the default disk/user code, console and command line
itself (shown below).

The default disk/user code is the first byte of the data
structure. The high order' four bits contain the default disk
drive and the low order four bits contain the user code. The
second byte of the data structure contains the console number for
the program being executed. The ASCII command line begins with
the third byte and is terminated with a null byte.

There are no results returned to the calling program.

The following example illustrates the SEND CLI COMMAND data
struc ture:

PL/M:
Declare CLI$command structure (

disk$user byte t

conso Ie byte,
command$line (129) byte);

Assembly Language:
CLICMD:

DS
DS
DS

1
1
129

; default disk / user code
; console number
; command line

(All Information Herein is Proprietary to Digital Research.)

75

MP/M User's Guide

* * * FUNCTION 152: PARSE FILENAME *
* *

* En try. Parameters: *
* Register C: 98H *
* DE: PFCB Address *
* * Returned Value:
* Registers HL: Return code
* Parsed file control block

*
*
*
*

The PARSE FILENAME function prepares a file control
from an input ASCII string containing a file name terminated
null or a carriage return. The parameter is the address
data structure (shown below) which contains the address of
ASCII file name string followed by the address of the target
control block.

block
by a
of a

the
file

The operation returns an FFFFH if the input ASCII string
contains an invalid file name. A zero is returned if the ASCII
string contains a single valid file name, otherwise the address
of the first character following the file name is returned.

The following example illustrates the parse file name
control block data structure:

PL/M:
Declare ParseFNCB structure

File$name$adr address,
FCB$adr address) initial
.file$.name,.fcb);

Declare file$name (128) byte;
Declare fcb (36) byte;

Assembly Language:
PFNCB:

FLNAME:

OW
OW

OS
OS

FLNAME
FCB

128
36

(All Information Herein is Proprietary to Digital Research.)

77

MP/M User's Guide

* * * FUNCTION 155: GET DATE AND TIME *
* *

* En try Par am e t e r s : *
* Register C: 9BH *
* DE: TOD Address *
* * * Returned Value: *
* Time and date *

The GET DATE AND TIME function obtains the current encoded
date and time. A single passed parameter is the address of a
data structure (shown below) which is to contain the date and
time. The date is represented as a 16-bit integer with day 1
corresponding to January 1, 1978. The time is respresented as
three bytes: hours, minutes and seconds, stored as two BCD
digits.

The following example illustrates the TOD data structure:

PL/M:
Declare TOD structure

date address,
hour byte,
min byte,
sec byte);

Assembly Language:
TOD: DS

DS 1
DS 1
DS 1

2
; Hour
; Minute
; Second

* * * FUNCTION 156: RETURN PROCESS *
* DESCRIPTOR ADDRESS *

*
*

En try Parameters:
Register C: 9CH

*
*

* * * Returned Value: *
* Register HL: PD Address *

; Date

The RETURN PROCESS DESCRIPTOR ADDRESS
the address of calling processes process
definition this is the head of the ready list.

function obtains
descriptor. By

(All Information Herein is Proprietary to Digital Research.)

79

MP/M User's Guide

2.5 Preparation of Page Relocatable Programs

A page relocatable program is stored on'diskette as a file
of type 'PRL'. Appendix K contains a PRL file specification
describing the file format. A page relocatable program is
prepared by assembling the source program twice, in which the
second assembly has l00H added to each ORG statement. The two
hex files generated by assembling the source file twice are
concatenated with PIP and then provided as input to the GENMOD
program. The GENMOD program (described in section 1.4) produces
a file of type 'PRL'.

This section describes APPENDIX G: Sample Page Relocatable
Program. 'The example program illustrates the required use of ORG
statements to access the BDOS and the defaul t file control block.
Note that the initial ORG is 0000H. Its purpose is to establish
the equate for the symbol BASE, the base of the relocatable
segment. Next an ORG l00H statement establishes the actual
beginning of code for the program. During the second assembly
these two ORG statements are changed to l00H and 200H
re s pe c t i vel y • Not e t hat the fir s t ass em b 1 Y will 9 en era tea f i 1 e
which can be LOADed to produce an executable 'COM' file. In
fact, it is desirable to first debug the program aS,a 'COM' file
and then proceed to make the 'PRL' file.

It is VERY important to use BASE to offset all memory
segment base page references! Do not make a call to absolute
0005H for BDOS calls.' In this example BASE is used to offset the
BDOS,FCB, and BUFF equates. When a user program needs to
determine the top of its memory segment the following equate and
code s~quence should be used:

MEMSIZE EQU BASE+6

LHLD MEMSIZE iHL = TOP OF MEMORY SEGMENT

The following steps show how to generate a page relocatable file
for this example using the Digital Research Macro Assembler
(MAC):

* Prepare the user program, DUMP.ASM in this example, with
proper origin statements as described above.

* Assuming a system disk in drive A: and the DUMP.ASM file
is on drive B:, enter the commands-

lA>MAC B:DUMP $PP+S
iassemble and list the DUMP.ASM file

lA>ERA B:DUMP.HX0

(All Information Herein is Proprietary to Digital Research.)

81

MP/M User's Guide

2.6 Installation of Resident System Processes

This section contains a description of APPENDIX H: Sample
Resident System Process. The example program illustrates the
required structure of a resident system process as well as the
BDOS/XDOS access mechanism.

The first two bytes of a resident system process are set to
the address of the BDOS/XDOS entry point. The address is filled
in by the loader, providing a simple means for a iesident system
process to access the BDOS/XDOS by loading HL from the base of
the program area and then executing a PCHL instruction.

The process descriptor for the resident system process must
immediately follow the first two bytes which contain the address
of the BDOS/XDOS entry point. Observe the manner in which the
process descriptor is initialized in the example. The DS's are
used where storage is simply allocated. The DB's and DW's are
used where data in the process descriptor must be initialized.
Note that the stack pointer field of the process descriptor
points to the address immediately following the stack allocation.
This is the return address which is the actual process entry
point.

It is important that the HEX file generated by assembling
the RSP span the entire program and data area. For this reason
the first two bytes of the resident system process which will
contain the address of -the BDOS/XDOS entry point are defined with
a DW. Using a DS would not generate any HEX file code for those
two bytes. The end of the program and data area must be defined
in a likewise manner. If your RSP has DS statements preceding
the END statement it will be necessary to place a DB statment
after the OS statements before the END statement.

The steps to produce a resident system process closely
follow those illustrated in the previous section on page
relocatable programs. The only exception to the procedure is
that the GENMOD output file should have a type of 'RSP' rather
than 'PRL' and the code in the RSP is ORGed at 000H rather than
100H.

In addition to resident system processes MP/M supports
resident system procedures. The purpose of a resident system
procedure is to provide a means to use a piece of code as a
serially reusable resource. A resident system procedure is set
up by a resident system process. The function of the process is
to create a queue which has the name of the resident system
procedure and to send it one 16 bit message containing the
address of the resident system procedure. Once this is
accomplished the resident system process terminates itself.
Access to the resident system procedure is made by opening the
queue with the resident system procedure name and then reading
the two byte message to obtain the actual memory address of the

(All Information Herein is Proprietary to Digital Research.)

83

MP/M User's Guide

3. MP/M ALTERATION GUIDE

3.1 Introduction

The standard MP/M system assumes operation on an Intel
MDS-800 microcomputer development system, but is designed so that
the user can alter a specific set of subroutines which define the
hardware operating environment. In this way, the user can
produce a diskette which operates with any IBM-3741 format
compatible diskette subsys~em and other peripheral devices.

Although standard MP/M is configured for single density
floppy disks, field-alteration features allow adaptation to a
wide variety of disk subsystems from single drive minidisks
through high-capacity "hard disk" systems.

In order to achieve device independence, MP/M is distinctly
separated into an XIOS module which is hardware environment
dependent and several other modules which are not dependent upon
the hardware configuration.

The user can rewrite the distribution version of the MP/M
XIOS to provide a new XIOS which provides a customized interface
between the remaining MP/M modules and the user's own hardware
system. The user can also rewrite the distribution version of
the LDRBIOS which is used to load the MP/M system from disk.

The purpose of this section is to provide the following
step-by-step procedure for writing both your LDRBIOS and new XIOS
for MP/M:

(1) Implement CP/M 2.0 on the target computer

To simplify the MP/M adaptation process, we assume (and
STRONGLY recommend) that CP/M 2.0 has already been implemented on
the target MP/M machine. If this is not the case it will be
necessary for the user to implement the CP/M 2.0 BIOS as
described in the Digital Research document titled "CP/M 2.0
Alteration Guide" in addition to the MP/M XIOS. The reason that
both the BIOS and XIOS have to be implemented is that the MP/M
loader uses the CP/M 2.0 BIOS to load and relocate M?/M. Once
loaded, MP/M uses the XIOS and not the BIOS. The CP/M 2.0 BIOS
used by the MP/M loader is called the LDRBIOS.

Another good reason for implementing CP/M 2.0 on the target
MP/M machine is that debugging your XIOS is greatly simplified by
bringing up MP/M while running SID or DDT under a CP/M 2.0
system.

(All Information Herein is Proprietary to Digital Research.)

85

MP/M User's Guide

E.) Write the updated memory image onto a disk file using
the CP/M 'SAVE' command. The 'X' placed in front of the file
name is used simply to designate an experimental version,
preserving the orginal.

A>SAVE 26 XMPMLDR.COM

F.) Test XMPMLDR.COM and then rename it to MPMLDR.COM.

(3) Prepare your custom XIOS

If MP/M is being tailored to your ~omputer system for the
first time, the new XIOS requires some relatively simple software
development and testing. The standard XIOS is listed in APPENDIX
I, and can be used as a model for the customized package.

The XIOS entry points, including both basic and extended,
are described in sections 3.2 and 3.3. These sections along with
APPENDIX I provides you with the necessary information to write
your XIOS. We suggest that your initial implementation of an
XIOS utilize polled I/O without any interrupts. The system will
run without even a clock interrupt. The orlgln of your XIOS
should be 0000H. Note the two equates needed to access the
dispatcher and XDOS from the XIOS:

PDISP
XDOS

ORG
EQU
EQU

0000H
$-3
PDISP-3

The procedure to prepare an XIOS.SPR file from your
customized XIOS is as follows:

A.) Assemble your XIOS.ASM and then rename the XIOS.HEX
file to XIOS.HX0.

B.) Assemble your XIOS.ASM again specifying the +R option
which offsets the ORG statements by 100H bytes. Or, edit your
XIOS.ASM and change the initial ORG 000H to an ORG 100H and
assemble it again.

C.) Use PIP to concatenate your two HEX files:

A>PIP XIOS.HEX=XIOS.HX0,XIOS.HEX

D.) Run the GENMOD program to produce the XIOS.SPR file
from the concatenated HEX files.

A>GENMOD XIOS.HEX XIOS.SPR

(All Information Herein is Proprietary to Digital Research.)

87

MP/M User's Guide

Breakpoint RST # = 7

c.) If a resident system process is being debugged make
certain that it is selected for inclusion in MPM.SYS.

D.) Using CP/M 1.4 or 2.0, load the MPMLDR.COM file into
memory.

A)DDT MPMLDR.COM
DDT VERS 2:0
NEXT PC
lA00 0100

E.) Place a 'B' character into the second position of
default FCB. This operation can be done with the 'I' command:

-IB

F.) Execute the MPMLDR.COM program by entering a 'G'
command:

-G

G.) At point the MP/M loader will load the MP/M operating
system into memory, displaying a memory map.

H.) If you are debugging an XIOS, note the address of the
XIOS.SPR memory segment. If you are debugging a resident system
process, note the address of the resident system process. This
address is the reJative 0000H address of the code being debugged.
You must also note the address of SYSTEM.DAT.

I.) Using the'S' command, set the byte at SYSTEM.DAT + 2
to the restart number which you want the MP/M debugger to use.
Do not select the same restart as that being used by the CP/M
debugger.

Memory Segment Table:
SYSTEM DAT D600H 0100H

-SD602
D602 07 05

J.) Using the ·x· command, determine the MP/M beginning
execution address. The address is the first locatiGn past the
current program counter.

-X

(All Information Herein is Proprietary to Digital Research.)

89

MP/M User's Guide

Either the SID or DDT debugger can be used in place of
writing a GETSYS program as is shown in the following example
which also uses SYSGEN in place of PUTSYS. Sample skeletal
GETSYS and PUTSYS programs are described later in this section
(for a more detailed description of GETSYS and PUTSYS see the
"CP/M 2.0 Alteration Guide").

In order to make the MP/M system load and run
automatically, the user must also supply a cold start loader,
similar to the one described in the "CP/M 2.0 Alteration Guide".
The purpose of the cold start loader is to load the MP/M loader
into memory from the first two tracks of the diskette. The CP/M
2.0 cold start loader must be modified i~ the following manner:
the load address must be changed to 0l00H and the execution
address must also be changed to 0100H.

The following techniques are specifically for the MDS-800
which has a boot ROM that loads the first track into location
3000H. However, the steps shown can be applied in general to any
ha rdwa re.

If a SYSGEN program is available, the following steps can
be used to prepare a diskette that cold starts MP/M:

A.) Prepare the MPMLDR.COM file by integrating your custom
LDRBIOS as described earlier in this section. Test the
MPMLDR.COM and verify that it operates properly.

B.) Execute either DDT or SID.

A)DDT
DDT VERS 2.0

c.) Using the input command (II') specify that the
MPMLDR.COM file is to be read in and then read ('R') in the file
with an offset of 880H bytes.

-IMPMLDR.COM
-R880
NEXT PC
2480 0100

D.) Using the 'I' command specify that the BOOT.HEX file
is to be read in and then read in the file with an offset that
will load the boot into memory at 900H. The 'H' command can be
used to calculate the offset.

-H900 3000
3900 D900

-IBOOT.HEX
-RD900
NEXT PC

(All Information Herein is Proprietary to Digital Research.)

91

MP/M User's Guide

i
i
i
i

i
i
i
i

PUTSYS PROGRAM
REGISTER

A
B
C
DE
HL
SP

- WRITE TRACKS 0 AND 1 FROM MEMORY AT 3380H
USE

(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2, ••• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK ADDRESS

START: LXI
LXI
MVI

SP,3380H
H, 3380H
B, 0

iSET STACK POINTER TO SCRATCH AREA
iSET BASE. LOAD ADDRESS
iSTART WITH TRACK 0

WRTRK:

WRSEC:

i

MVI

CALL
LXI
DAD
INR
MOV
CPI
JC

C,l

WRITESEC
D,128
D
C
A,C
27
WRSEC

iWRITE NEXT TRACK (INITIALLY 0)
iWRITE STARTING WITH SECTOR 1
iWRITE NEXT SECTOR

iUSER-SUPPLIED SUBROUTINE
iMOVE LOAD ADDRESS TO NEXT 1/2 PAGE
iHL = HL + 128
iSECTOR = SECTOR + 1
iCHECK FOR END OF TRACK

iCARRY GENERATED IF SECTOR < 27

i ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B iTEST FOR LAST TRACK
CPI 2
JC WRTRK i CARRY GENERATED IF TRACK

i
ARRIVE HERE AT END OF LOAD, HALT FOR NOW

HLT
i
i USER-SUPPLIED SUBROUTINE TO WRITE THE DISK
WRITESEC:
i ENTER WITH TRACK NUMBER IN REGISTER B,
i SECTOR NUMBER IN REGISTER C, AND

ADDRESS TO FILL IN HL

PUSH
PUSH

B
H

iSAVE BAND C REGISTERS
iSAVE HL REGISTERS

perform disk write at this point, branch to

label START if an error occurs .
POP
POP
RET

H
B

END START

iRECOVER HL
iRECOVER BAND C REGISTERS
iBACK TO MAIN PROGRAM

< 2

(All Information Herein is Proprietary to Digital Research.)

93

MP/M User's Guide

Track# Sector# Page# Memory Address MP/M Module name
00 01 (boot add ress) Cold Start LoadeI
00 02 00 0100H MPMLDR

03 .. 0180H
04 01 0200H
05 .. 0280H
06 02 0300H
07 .. 0380H
08 03 0400H
09 .. 0480H
10 04 0500H
11 .. 0580H
12 05 0600H
13 .. 0680H
14 06 0700H
15 .. 0780H
16 0'7 0800H
17 .. 0880H
18 08 0900H
19 .. 0980H
20 09 0A00H
21 .. 0A80H
22 10 0B00H
23 .. 0B80H
24 11 0C00H

00 25 .. 0C80H MPMLDR
00 26 12 0D00H LDRBDOS
01 01 .. 0D80H

02 13 0E00H
03 .. 0E80H
04 14 0F00H
05 .. 0F80H
06 15 1000H
07 .. 1080H
08 16 1100H
09 .. 1180H
10 17 1200H
11 .. 1280H
12 18 1300H
13 .. 1380H
14 19 1400H
15 .. 1480H
16 20 1500H
17 .. 1580H
18 21 1600H

01 19 .. 1680H LDRBDOS
01 20 22 1700H LDRBIOS .. 21 .. 1780H ..
.. 22 23 1800H ..
.. 23 .. 1880H ..
.. 24 24 1900H ..
.. 25 .. 1980H ..
01 26 25 1A00H LDRBIOS

(All Information Herein is Proprietary to Digital Research.)

95

MP/M User's Guide

and CONOUT subroutines (LIST and LSTST may be used by PIP, but
not the BDOS).

The characteristics of each device are

CONSOLE

LIST

DISK

The principal iriteractive consoles which
communicate wi ththe operators, accessed through
CONST, CONIN, and CONOUT. Typically, CONSOLEs are
devices such as CRTs or Teletypes.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such
as a print~r or Teletype.

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines
which set up the disk number to access, the track
and sector on a particular disk, and the direct
memory access (DMA) address involved in the I/O
operation. After all these parameters have been
set up, a call is made to the READ or WRITE
function to perform the actual I/O operation.
Note that there is often a single call to SELDSK
to select a disk drive, followed by a number of
read or write operations to the selected disk
before selecting another drive for subsequent
operations. Similarly, there may be a single
call to set the DMA address, followed by several
calls which read or write from the selected DMA
address before the DMA address is changed. The
track and sector subroutines are always called
before the READ or WRITE operations are
pe rfo rmed.

Note that the READ and WRITE routines
should perform several retries (10 is standard)
before reporting the error condition to the BOOS.
If the error condition is returned to the BDOS,
it will report the error to the user. The HOME
subroutine mayor may not actually perform the
track 00 seek, depending upon your contr~ller
characteristics; the important point is that
track 00 has been selected for the next
operation, and is often treated in exactly the
same manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine are
g i v e n below: .

BOOT The BOOT entry point gets called from the MP/M
loader after it has been loaded by the cold start

(All Information Herein is Proprietary to Digital Research.)

97

MP/M User's Guide

SELDSK

SETTRK

SETSEC

Select the disk drive given by register C for
further operations, where register C contains 0
for drive A, 1 for drive B, and so-forth up to 15
for drive P (the standard MP/M distribution
version supports four drives). On each disk
select, SELDSK must return in HL the base address
of a 16-byte area, called the Disk Parameter
Header, described in the digital research
document titled "CP/M 2.0 Alteration Guide". For
standard floppy disk drives, the contents of the
header and associated tables does not change, and
thus the program segment included in the sample
XIOS performs this operation automatically. If
there is an attempt to select a non-existent
drive, SELDSK returns HL=0000H as an error
indicator.

On entry to SELDSK it is possible to
determine whether it is the first time the
specified disk has been selected. Register E,
bit 0 (least significant bit) is a zero if the
drive has not been previously selected. This
information is of interest in systems which
read configuration information from the disk
in order to set up a dynamic disk definition
table.

Although SELDSK must return the header
apdress on each call, it is advisable to postpone
the actual physical disk select operation until
an I/O function (seek, read or write) is actually
performed, since disk selects often occur without
utimately performing any disk I/O, and many
controllers will unload the head of the current
disk before selecting the new drive. This would
cause an excessive amount of noise and disk wear.

Register BC contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register BC can take on values in the range 0-76
corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard
dis k sub s ys tern s •

Register BC contains the sector number (1 through
26) for subsequent disk accesses on the currently
selected drive. You can choose to send this
information to the controller at this point, or
instead delay sector selection until a read or
write operation occurs.

(All Information Herein is Proprietary to Digital Research.)

99

MP/M User's Guide

SECTRAN Performs sector logical to physical sector
translation in order to improve the overall
response of MP/M. Standard MP/M systems are
shipped with a "skew factor" of 6, where six
physical sectors are skipped between each logical
read operation. This skew factor allows enough
time between sectors for most programs to load
their buffers without missing the next sector.
In particular computer systems which use fast
processors, memory, and disk subsystems, the skew
factor may be changed to improve overall
response. Note, however, that you should
maintain a single density IBM compatible version
of MP/M for information transfer into and out of
your computer system, using a skew factor of 6.
In general, SECTRAN receives a logical sector
number in BC, and a translate table address in
DE. The sector number is used as an index into
the translate table, with the resulting physical
sector number in HL. For standard systems, the
tables and indexing code is provided in the XIOS
and need not be changed.

(All Information Herein is Proprietary to Digital Research.)

101

MP/M User's Guide

aTOPCLOCK

ticks of the system time unit, the start clock
procedure is called.

The purpose of the STARTCLOCK procedure is
to eliminate unneccessary system clock "interrupt
overhead when there are not any delayed
processes.

In some hardware environments it is not
acutally possible to shut off the system time
unit clock while still maintaining the one second
flag used for the purposes of keeping time of
day. In this situation. the STARTCLOCK procedure
simply sets a boolean variable to true,
indicating that there is a delayed process. The
clock interrupt handler can then determine if
system time unit flag is to be set by testing the
boolean.

When the system delay list is emptied the stop
clock procedure is called.

The purpose of the STOPCLOCK procedure is
to eliminate unneccessary system clock interrupt
overhead when there are no delayed processes.

In some hardware environments it is not
acutally possible to shut off the system time
unit clock while still maintaining the one second
flag used for the purposes of keeping time of
day. (i.e. a single clock/timer interrupt source
is used.) In this situation the STOPCLOCK
procedure simply sets a boolean variable to
false, indicating that there are no delayed
processes. The clock interrupt handler can then
determine if the system time unit flag is to be
set by testing the boolean.

EXITREGION The purpose of the exit region procedure is to
test a preempted flag, set by the interrupt
handler, enabling interrupts if preempted is
false. This procedure allows interrupt service
routines to make MP/M system calls, leaving
interrupts disabled until completion of the
interrupt handling.

MAXCONSOLE The purpose of the maximum console procedure is
to enable the calling program to determine the
number of physical consoles which the BIOS is
capable of supporting. The number of physical
consoles is returned in the A register.

SYSTEMINIT The purpose of the system initialization

(All Information Herein is Proprietary to Digital Research.)

103

MP/M User's Guide

INTERRPUT SERVICE ROUTINES

The MP/M operating system is designed to work with
virtually any interrupt architecture, be it flat or vectored •.
The function of the code operating at the interrupt level is to
save the required registers, determine the cause of the
interrupt, remove the interrupting condition, and to set an
appropriate flag. Operation of the flags are described in
section 2.4. Briefly, flags are used to synchronize asynchronous
processes. One process, such as an interrupt service routine,
sets a particular flag wbile another process waits for the flag
to be set.

At a logical level above the physical interrupts the flags
can be regarded as providing 256 levels of virtual interrupts (32
flags are supported under release 1 of MP/M). Thus, logical
interrupt handlers wait on flags to be set by the physical
interrupt handlers. This mechanism allows a common XDOS to
operate on all microcomputers, regardless of I.the hardware
environment.

As an example consider a hardware environment with a flat
interrupt structure. That is, a single interrupt level is
provided and devices must be polled to determine the cause of the
interrupt. Once the interrupt cause is determined a specific
flag is set indicating that that particular interrupt has
occurred.

At the conclusion of the interrupt processing a jump should
be made to the MP/M dispatcher. This is done by jumping to the
PDISP entry point. The effect of this jump is to give the
processor to the highest priority ready process, usually the
process readied by setting the flag in the interrupt handler, and
then to enable interrupts before jumping to resume execution of
the process.

The only XDOS or BDOS call which should be made from an
interrupt handler is FUNCTION 133: FLAG SET. Any other XDOS
or BDOS call will result in a dispatch which would then enable
interrupts prior to completing execution of the interrupt
handler.

It is recommended that interrupts only b~ used for
operations which are asynchronous, such as console input or disk
operation complete. In gener~l, operations such as console
output should not be interrupt driven. The reason that
interrupts are not desirable for console output is that the
system is afforded some elasticity by performing polled console
outputs while idling, rather than incurring the dispatch overhead
for each character transm~tted. This is particularily true at
higher baud rates.

(All Information Herein is Proprietary to Digital Research.)

105

MP/M User's Guide

3.4 System File Components

The MP/M system file, 'MPM.SYS' consists of five
components: the system data page, the customized XIOS, the BOOS
or ODOS, the XDOS, and the resident system processes. MPM.SYS
resides in the directory with a user code of 0 and is usually
read only. The MP/M loader reads and relocates the MPM.SYS file
to bring up the MP/M system.

SYSTEM DATA

The system data page contains 256 bytes used by the loader
to dynamically configure the system. The system data page can be
prepared using the GENSYS program or it can be manually prepared
using DDT or SID. The following table describes the byte
assignments:

Byte Assignment

000-000 Top page of memory
001-001 Number of consoles
002-002 Breakpoint restart number
003-003 Allocate stacks for user system calls, boolean
004-004 B~nk switched memory, boolean
005-005 Z80 CPU, boolean
006-006 Banked BOOS file manager, boolean
007-015 Unassigned, reserved
016-047 Initial memory segment table
048-079 Breakpoint vector table, filled in by DOTs
080-111 Stack addresses for user system calls
112-122 Scratch area for memory segments
123-127 Unassigned, reserved
128-143 Submit flags
144-255 Reserved

CUSTOMIZED XIOS

The customized XIOS is obtained from a file named
'XIOS.SPR'. The 'XIOS.SPR' file is actually a file of type PRL
containing the page relocatable version of the user customized
XIOS. A submit file on the distribution diskette named
'MACSPR.SUB' or 'ASMSPR.SUB' can be used to generate the user
customized XIOS. The following sequence of commands will produce
a 'XIOS.SPR' file given a user ·XIOS.ASM' file:

(All Information Herein is Proprietary to Digital Research.)

107

MP/M User's Guide

* The process descriptor for the resident system process
must begin at the third byte position. The contents of the
process descriptor are described in section 2.3.

BNKBDOS

In addition to the MPM.SYS file a file named 'BNKBDOS.SPR'
is used in systems with a banked BDOS. It is a page relocatable
file containing the non-resident portion of the banked BDOS.
This file is not used by systems without banked memory.

(All Information Herein is Proprietary to Digital Research.)

109

MP/M User's Guide

Breakpoint RST #: The breakpoint restart number to be used
by the SID and DDT debuggers is specified. Restart 0 is not
allowed. Other restarts required by the XIOS should also not be
used.

Add system call user stacks (YIN)?: If you desire· to
execute CP/M *.COM files then your response should be Y. A 'Y'
response forces a stack switch with each system call from a user
program. MP/M requires more stack space than CP/M.

Bank switched memory (YIN)?: If your system does not
bank switched memory then you should respond with a
Oth~rwise respond with a 'Y' and additional questions
responses (as shown in the second example) will be required.

have
'N' •
and

Memory segment bases: Memory segmentation is defined by
the entries which are made. Care must be taken in the entry of
memory bases as all entries must be made with successively higher
bases. If your system has ROM at 0000H then the first memory
segm~nt base which you specify should be your first actual RAM
location. Only page relocatable (PRL) programs can be run in
systems that do not have RAM at location 0000H.

Select Resident System Processes: A directory search is
made for all files of type RSP. Each file found is listed and
included in the generated system file if you respond with a 'Y'.

The second example illustrates a more complicated GENSYS in
which a system is setup with bank switched memory and a banked
BOOS. This procedure requires an intial GENSYS and MPMLDR
execution to determine the exact size of the operating system,
followed by a second GENSYS.

A>GENSYS

MP/M System Generation
======================

Top page of memory = ff
Number of consoles = 2
Breakpoint RST # = 6
Add system call user stacks (YIN)? y
Z80 CPU (YIN) y
Bank switched memory (YIN)? y
Banked BOOS file manager (YIN)? y
Enter memory segment table: (ff terminates list)
Base,size,attrib,bank = 0,50,0,0
Base,size,attrib,bank = ff

S e 1 e c t Res id e n t Sy stern Pro c e sse s : (Y IN)
ABORT ? n
SPOOL ? n

(All Information Herein is Proprietary to Digital Research.)

III

MP/M User's Guide

XIOS SPR F600H 0600H
BDOS SPR EE00H 0800H
XDOS SPR CF00H IF00H
Sched RSP CA00H 0500H
BNKBDOS SPR BC00H 0E00H

Memseg Usr 0000H 5000H Bank 00H

Using the information obtained from the initial GENSYS and MPMLDR
execution the following GENSYS can be executed:

A>GENSYS

MP/M System Generation
======================

Top page of memory = ff
Number of consoles = 2
Breakpoint RST # = 6
Add system call user stacks (yiN)? y
Z80 CPU (YIN)? y
Bank switched memory (yiN)? y
Banked BDOS file manage((YIN)? y
Enter memory segment table: (ff terminates list)
Base,size,attrib,bank = 0,bc,0,0
Base,size,attrib,bank = 0,c0,0,1
Base,size,attrib,bank = 0,c0,0,2
Base,size,attrib,bank = ff

Select Resident System Processes: (yiN)
ABORT ? n
SPOOL ? n
MPMSTAT ? n
SCHED ? Y

(All Information Herein is Proprietary to Digital Research.)

113

MP/M User's Guide

In the following example the 'MPM.SYS' file prepared by the
second GENSYS example shown in section 3.5 is loaded:

A)MPMLOR

MP/M Loader
===========

Number of consoles = 2
Breakpoint RST # = 6
Z80 CPU
Banked BOOS file manager
Top of memory = FFFFH

Memory
SYSTEM
CONSOLE
USERSYS
XIOS
BOOS
XOOS
Sched
BNKBOOS

Memseg
Memseg
Memseg

MP/M
0A)

Segment Table:
DAT FF00H 0100H
OAT F000g 0200H
STK ~C00H 0100H
SPR F600H 0600H
SPR EE00H 0800H
SPR CF00H 1F00H
RSP CA00H 0500H
SPR BC00H 0E00H

Usr
Usr
Usr

C000H
C000H
BC00H

Bank 02H
Bank 01H
Bank 00H

(All Information Herein is Proprietary to Digital Research.)

115

MP/M User's Guide

APPENDIX B: Process Priority Assignments

o - 31 Interrupt handlers

32 - 63 System processes

64 - 197 Undefined

198 Teminal message processes

199 Command line interpreter

200 Default user priority

201 - 254 User processes

255 Idle process

(All Information Herein is Proprietary to Digital Research.)

117

MP/M User's Guide

APPENDIX D: XDOS Function Summary

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

Absolute Memory Rqst
Relocatable Mem Rqst
Memory Free
Poll
Flag Wa it
Flag Set
Make Queue
Open Queue
Delete Queue
Read Queue
Conditional Read Que
Wr i te Queue
Conditional Write Que
Delay
Di spa tch
Terminate Process
Create Process
Set Priority
Attach Consol e
Detach Console
Se t Console
Assign Console
Send CLI Command
Call Resident Sys Pr
Parse Filename
Get Console Number
System Data Address
Get Da.te and Time
Return Proc. Dsc. Adr
Abort Spec. Process

DE = . MD
DE = • MD
DE = .MD
E = Device
E = Flag
E = Flag
DE = .QCB
DE = .UQCB
DE = .QCB
DE = .UQCB
DE = .UQCB
DE = .UQCB
DE = .UQCB
DE = #ticks
none
E = Term. code
DE = .PD
E = Priority
none
none
E = Console
DE = .APB
DE = .CLICMD
DE = .CPB
DE = .PFCB
none
none
DE = .TOD
none
DE = .ABTPB

A = err code
A = err code
none
none
A = err code
A = err code
none
A = err code
A = err code
none
A = err code
none
A = err code
none
none
none
none
none
none
none
none
A = err code
none
HL = result
see def
A = console #
HL = sys data adr
none
HL = proc descr adr
A = err code

(All Information Herein is Proprietary to Digital Research.)

119

MP/M User's Guide

Appendix F: Operation of MP/M on the Intel MDS-800

This section gives operating procedures for using MP/M on
the Intel MDS microcomputer development system. A basic
knowledge of the MDS hardware and software systems is assumed.

MP/M is initiated in essentially the same manner as Intel's
ISIS operating system. The disk drives labelled 0 through 3 on
the MDS, correspond to' MP/M drives A through D, respectively.
The MP/M system diskette is inserted into drive 0, and the BOOT
and RESET switches are depressed in sequence. The interrupt 2
light should go on at this point. The space bar is then
depressed on either console device, and the light should go out.
The BOOT switch is then turned off, and the MP/M sign-on message
should appear at both consoles, followed by the "0A>" for the CRT
or lilA>" for the TTY. The user can then issue MP/M commands.

Use of the interrupt switches on the front panel is not
recommended. Effective 'warm-starts' should be initiated at the
console by aborting the running program rather than pushing the
INT 0 switch. Also, depending on the choice of restart for the
debugger the INT switch which will invoke the debugger is not
necessarily #7.

Diskettes should not be removed from the drives until the
user verifies that there are no other users with open files on
the disk. This can be done with the 'DSKRESET' command.

When performing GENSYS operations on the MDS-800, make
certain that a negative response is always made to the 280 CPU
question. Responding with a 'Y' will lead to unpredictable
r esul ts.

(All Information Herein is Proprietary to Digital Research.)

121

MP/M User's Guide

006b =
007c =
007d =

0100 210000
0103 39

0104 221f02

0107 316102

010a cdc601
010d feff
010f c21b01

0112 11fd01
0115 cda101
0118 c35601

011b 3e80
011d 321d02

0120 210000

0123 e5
0124 cda701
0127 e1
0128 da5601
012b 47

012c 7d
012d e60f
012f c24401

0132 cd7701

0135 cd5e01

0138 0f
0139 da5101

013c 7c
013d cd9401
0140 7d
0141 cd9401

0144 23

fcbrc
fcbcr
fcbln
;
;

;

;

;

equ
equ
equ

fcb+15
fcb+32
fcb+33

set up stack
lxi h,0
dad sp

;file's record count (0 to 128
;current (next) record number
; fcb length

entry stack pointer in hI from the ccp
shld oldsp
set sp to local stack area (restored at finis)
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and return
lxi d,opnmsg
call err
jmp finis ito return

openok: ;open operation ok, set buffer index to end
mvi a,80h
sta ibp ;set buffer pointer to 80h

; hI contains next address to print

;
gloop:

;
;

;

;
;

;

;

nonum:

lxi h,0 ;start with 0000

push h ;save line position
call gnb
pop h ;recall line position
jc finis ;carry set by gnb if end file
mov b,a
print hex values
check for line fold
mov a,l
ani 0fh ;check low 4 bits
jnz nonum
print line number
call crlf

check for break key
call break
accum Isb = I if character ready
rrc ;into carry
jc purge ;don't print any more

mov
call
mov
call

inx

a,h
phex
a,l
phex

h

123

ito next line number

MP/M User's Guide

018e c637
0190 cd6a01
0193 c9

0194 f5
0195 0f
0196 0f
0197 0f
0i98 0f
0199 cd8201
019c fl
019d cd8201
01a0 c9

01al 0e09
01a3 cd0500
01a6 c9

01a7 3ald02
01aa fe80
01ac c2b801

01af cdd301
01b2 b7
01b3 cab801

01b6 37
01b7 c9

01b8 Sf
01b9 1600
01bb 3c
01bc 321d02

01bf 218000
01c2 19

01c3 7e

01c4 b7
01c5 c9

p10:
prn:

i
phex:

i
err:
i

i
i
gnb:

i
i
i

i
g0:

i
i

i

i

i

adi
call
ret

'a' - 10
pchar

iprint hex char in reg a
push psw
rrc
rrc
rrc
rrc
call
pop
call
ret

pnib
psw
pnib

iprint nibble

iprint error message
d,e addresses message ending with "$"
mvi c,printf iprint buffer function
call bdos
ret

next byte
ibp
80h
g0

iget
Ida
cpi
jnz
read another buffer

call diskr
ora a izero value if read ok
jz g0 ifor another byte
end of data, return with carry set for eof
stc
ret

; read the byte at buff+ reg a
mov e,a ils byte of buffer index
mvi d,0 ;double precision index to de
inr a iindex=index+l
sta ibp iback to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hI
mov a,m
byte is in the accumulator
ora
ret

a ;reset carry bit

setup: i set up f il e
i open the file for input

125

MP/M User's Guide

0000

001a

0002
0009
0014
000f
0098
0086
0089
0091
0093

0000

0002
0004
0005
0006
0008

=

=
=
=
=
=
=
=
=
=

0000

APPENDIX H: Sample Resident System Process

**
* Note: *
* This program listing has been *
* included only as a sample and may not *
* reflect changes requi red by later MP/M *
* releases. For this reason the reader *
* should assemble and list the program *
* as provided on the distribution disk. *
**

page 0
ti tIe ' type f i 1 eon con so 1 e •

; file type prog ram, reads an input file and pri
; it on the console
;
; copyright (c) 1979, 1980
; dig i tal research
; p.o. box 579
; pacific grove, ca 93950
;

org 0000h ; standard rsp start

ctlz equ lah ; control-z used for e

conou t equ 2 ; bdos conout function
printf equ 9 ; 1111 print buffer
readf equ 20 ; read next record
openf equ 15 ; open fcb
parsefn equ 152 ; parse file name
mkque equ 134 ; make queue
rdque equ 137 ; read queue
stpr ior equ 145 ; set priority
detach equ 147 ; detach console

;
; bdos entry po int add ress
bdosad r:

dw $-$; Idr will fill this i
;
; type process descriptor
;
typepd :

0000· . dw 0 ; link
00 db 0 ; status
0a db 10 ; priority (initial)
1001 dw stack+38 ; stack pointer
5459504520 db 'type ; name in uppe r case

127

MP/M User's Guide

;
; type stack & other local data structures
;
stack:

00ea ds 38 ; 20 level stack
0110 ba01 dw type ; process entry point

0112 fcb: ds 36 ; file control block

0136 buff: ds 128 ; file buffer

;
; bdos call procedure
;
bdos:

01b6 2a0000 Ihld bdosad r ; hI = bdos address
01b9 e9 pchl

;
; type main program

type:
01ba 0e86 mvi c ,mkque
01bc 113600 lxi d,typelqcb
01bf cdb601 call bdos ; make typelqcb
01c2 0e91 mvi c,stprior
01c4 11c800 lxi d,200
0lc7 cdb601 call bdos ; set priority to 200

fo rever:
01ca 0e89 mvi c,rdque
01cc 119800 lxi d,typeuserqcb
0lcf cdb601 call bdos ; read from type queue
01d2 0e98 mvi c,parsefn
01d4 11e600 lxi d,pcb
01d7 cdb601 call bdos ; parse the file name
01da 23 inx h
01db 7c mov a,h
01dc b5 ora 1 ; test for 0ffffh
01dd calf02 jz error
01e0 3a9d00 Ida console
01e3 321000 sta pdconsole ; typepd. console = con

01e6 0e0f mvi c ,openf
01e8 111201 lxi d,fcb
01eb cdb601 call bdos ; open file
01ee 3c inr a test return code
01ef calf02 jz error ; if it was 0ffh, no f
01f2 af xra a ; else,
01f3 323201 sta fcb+32 ; set next record to

new$secto r:
01f6 0e14 mvi c,readf
01f8 111201 lxi d,fcb

129

MP/M User's Guide

0000

0000 =
ffff =

ffff =
0000 =

ffff =
0000 =

0004 =

fffd =

APPENDIX I: Sample XIOS

**
* Note: *
* This program listing has been *
* included only as a sample and may not *
* reflect changes required by later MP/M *
* releases. For this reason the reader *
* should assemble and list the program *
* as provided on the distribution disk. *
**

;

page
org

o
0000h

;

;

note: this module assumes that an org statement will
provided by concatenating either base0000.asm or b
to the front of this file before assembling.

;
;

;
;
;

;
;
;
;

false
true

asm
mac

sgl
dbl

ti tIe 'xios for the mds-800'

(four drive single density version)
-or-

(four drive mixed double/single density)

version 1.1 january, 1980

copyright (c) 1979, 1980
digital research
box 579, pacific grove
california, 93950

equ
equ

equ
equ

equ
equ

if
maclib
endif

o
not false

true
not asm

true
not sg 1

mac
diskdef

numdisks equ 4 ;number of drives available

; external jump table (below xios base)
pdisp equ $-3

131

MP/M User's Guide

004b 0e00

004d c3faff

0002 =

0083 =

0000 =
0001 =
0002 =
0003 =
0004 =
0005 =

0050 cd6500
0053 7900
0055 c900

0057 cd6500
o 05a 8100
005c d100

005e cd6500
0061 8d00
0063 dd00

0065 7 a
0066 fe02
0068 da6e00
006b fl

006c a f
006d c9

006e 87
006f el
0070 Sf
0071 1600

coldstart:
wa rmstart:

mvi

jmp

; mp/m 1.0

nmbcns equ

poll equ

pllpt
pldsk
plc00
plcol
plci0
plcil

;
const:

conin:

conout:

;
ptbl jmp:

equ
equ
equ
equ
equ
equ

call
dw
dw

call
dw
dw

call
dw
dw

mov
cpi
jc
pop

r tnempty:
xra
ret

tbljmp:

add
pop
mov
mvi

c,0

xdos

; see system init
; cold & warm start in
; for compatibility wi
; system reset, termin

console handlers

2

131

o
1
2
3
4
5

ptbljmp
pt0~t
ptlst

ptbljmp
pt0in
ptlin

ptbljmp
pt00ut
ptlout

a,d
nmbcns
tbljmp

number of consoles

; xdos poll function

; poll printer
; poll disk
; po 11 con so 1 e 0 u t # 0 (crt:)
; po 11 con so 1 e 0 u t # 1 (tty:)
; poll console in #0 (crt:)
; poll console in #1 (tty:)

; console status
; compute and jump to hndlr
; console #0 status routine
; console #1 (tty:) status rt

; con so 1 e i n put
; compute and jump to hndlr
; console #0 input
; con so 1 e # 1 (tty:) i n put

; console output
compute and jump to hndlr

; console #0 output
; console #1 (tty:) output

; compute and jump to handler
; d = con so 1 e #
; do not destroy <d>

psw ; throwaway table address

a

a
h
e,a
d,0

133

; compute and jump to handler
; a = table index
; double table index for adr 0
; return adr points to jump tb

MP/M User's Guide

0099 79
o 09a d3f6
009c c9

009d 0e83
009f le02
00al c3faff

00a4 dbf7
00a6 e6~1
o 0a8 c8
00a9 3eff
00ab c9

o 0ac dbfb
00ae e601
o 0b0 c2bc00
00b3 c5
o 0b4 0e83
o 0b6 le00
00b8 cdfaff
o 0bb cl

00bc 79
00bd 2f
00be d3fa
o 0c0 c9

o 0cl dbfb
00c3 e601
o 0c5 c8
.00c6 3 eff
o 0c8 c9

;

mov
out
ret

a,c
data0 ; transmit character

; wait for console #0 output ready
;
pt0wa it:

;

;

mvi
mvi
jmp
ret

c,poll
e ,plco0
xdos

poll console #0 output
;
polco0:

;

in
ani
rz
mvi
ret

sts0
0lh

a,0ffh

; line printer driver:
;
list:

Iptrdy:

;

in
ani
jnz
push
mvi
mvi
call
pop

mov
cma
out
ret

Iptsts
01h
Iptrdy
b
c, poll
e, pllpt
xdos
b

a,c

Iptpo rt

; poll printer output
;
pollpt:

;

in
ani
rz
mvi
ret

Iptsts
01h

a,0ffh

135

poll console #0 outp

; return 0ffh if ready,
; 000h if not

; list output

; return 0ffh if ready,
000h if not

MP/M User's

00f8 c8
00f9 3eff
00fb c9

0006 =

00fc 79
00fd fe06
o 0ff da0401
0102 3e06

0104 cd6e00

0107 c100
0109 7d02
010b a400
010d f400
010f 7900
0111 c900
0113 6c00

Guide

rz
mvi a,0ffh
ret

;
;
; mp/m 1.0 extended i/o system
;

. ;
nmbdev equ 6 ; number of devices in poll tb

polldev ice:
reg c = device # to be polle

; return 0ffh if ready,
; 000h if not

mov a,c
cpi nmbdev
jc devok
mvi a ,nmbd ev; if dev #)= nmbdev,

; set to nmbdev
devok:

call tbljmp ; jump to dev poll code

dw' pollpt ; poll printer output
dw poldsk ; poll disk ready
dw polco0 ; poll console #0 output
dw polcol ; poll console #1 (t ty:) outpu
dw polci0 ; poll console #0 input
dw polcil ; poll console #1 (t ty:) input
dw rtnempty; bad device handler

; select / protect memory

se1memory:
reg bc = ad r of mem desc ript

; bc -) base 1 byte,
size 1 byte,

; attrib 1 byte,
bank 1 byte.

this hardware does not have memory protection or
; bank swi tching

0115 c9 ret

0116 3eff
0118 32e301

; s tar t c lock

startclock:

mvi
sta

a,0ffh
tickn

137

; will cause flag #~ to be set
; at each system time unit ti

MP/M User's Guide

; of idle must be use
without interrupts,

. -or-,

ei simply halt until aw
; hIt interrupt

ret

; mp/rn 1.0 interrupt handlers

0085 = flagset equ 133
008e = dsptch equ 142

i ntlhnd:
; interrupt 1 handler entry po . ,
; location 0008h conta ins a j
; to intlhnd.

0145 f5 push psw
0146 3e02 mvi a,2h
0148 d3ff out rtc ; reset real time clock
014a d3fd out revrt ; rever tin t r c n tl r
014c 3aab01 Ida sl ice
014f 3d dcr a ; only serv ice every 16th slic
0150 32ab01 sta slice
0153 ca5901 jz t16ms ; jump if l6ms elapsed
0156 fl pop psw
0157 fb ei
0158 c9 ret

t16ms:
0159 3e10 mvi a,16
015b 32ab01 sta slice ; reset slice counter
015e fl pop psw
015f 22dd01 shld svdhl
0162 el pop h
0163 22e101 shld svdret
0166 f5 push psw
0167 210000 lxi h,0
016a 39 dad sp
016b 22df01 shld svdsp tI save users stk ptr ,
016e 3ldd01 lxi sp,intstk+48 ; lcl stk fo r intr hnd
0171 d5 push d
0172 c5 push b

0173 3eff mvi a,0ffh
01 75 32e401 sta preemp ; set preempted flag

0178 3ae301 Ida tickn
0l7b b7 ora a test tickn, indicate

; delayed process(es)

139

MP/M User's Guide

01e5 210000
01e8 79
01e9 fe04
01eb d0
01ec e602
01ee 32ba02
01fl 21c202
01f4 0600
01f6 09
01f7 7e
01f8 32bc02
01fb 60
01fc 69
01fd 29
01fe 29
01ff 29
0200 29
0201 11 c602
0204 19
0205 c9

0206 0e00

0208 21be02
020b 71
020c c9

020d 79
020e 32bf02
0211 c9

0212 69
0213 60
0214 22c002
0217 c9

0218 60
0219 69
o 21a 23
021b 7a
o 21c b3
021d c8
021e eb
021f 09
0220 6e
0221 2600

seldsk: ;select disk given by register c
lxi h, 0
mov a,c
cpi numdisks
rnc first, insure good select.
ani 2
sta dbank; then save it
lxi h,sel$table
mvi b, 0
dad b
mov a,m
sta iof
mov h,b
mov l,c
dad h
dad h
dad h
dad h ; times 16
lxi d,dpbase
dad d
ret

horne:
;

imove to home position
treat as track 00 seek
mvi c,0

;
settrk: iset track address given by c

lxi h,iot
mov m,c
ret

i
setsec: ;set sector number given by c

mov a,c isector number to accum
sta ios ;store sector number to iopb
ret

i
setdma: ;set dma address given by regs b,c

mov l,c
mov h,b
shld iod
ret

h,b
l,c

i translate the sector # in <c sectS tran:
mov
mov
inx
mov
ora
rz
xchg
dad
mov
mvi

h in case of no translation
a, d
e

b point to physical sector
I,m
h,0

141

MP/M User's Guide

0263 cd9302

0266 fe02
0268 ca8602

026b b7
026c c28c02

026f cda002
0272 1 7
0273 da8602
0276 1 f
0277 e6fe
0279 c28c02

027c c9

027d cdad02
0280 e604
0282 c8
0283 3eff
0285 c9

0286 cda002
0289 c38c02

028c 0d
028d c23c02

i

;
i

i

i

i

poldsk:

check io completion ok
call intype imust be io complete (
00 unlinked i/o complete, 01 linked i/o com
10 disk status changed 11 (not used)
cpi l0b iready status change?
j z wready

must be 00 in the accumulator
ora
jnz

a
werror

check i/o error bits
call inbyte
ral
j c wready
rar
ani llll1110b
jnz werror

isome other condition,

i un i t not read y

iany other errors? (d

read or write is ok, accumulator contains zero
ret

call
ani
rz
mvi
ret

instat
iordy

a,0ffh

i get cur rent
i 0 pe rat ion c 0

i not done
done flag
to xdos

wready: inot ready, treat as error for now
call inbyte iclear result byte
jmp trycount

werror: ireturn hardware malfunction (crc~ track, seek
the mds controller has returned a bit in each

i of the accumulator, corresponding to the condi
i 0 - deleted data (accepted as ok above)
i 1 - c rc err 0 r
i 2 - seek error

3 - address error (hardware malfunction)
; 4 - data over/under flow (hardware malfu
i 5 - write protect (treated as not ready)
i 6 - write error (hardware malfunction)
i 7 - not ready
i (accumulator bits are numbered 7 6 5 4 3 2 1 0

trycount:
register c contains retry count, decrement 'ti
dcr c
jnz rewait ifor another try

i cannot recover from error

143

MP/M User's Guide

o 2c6 = dpbase
02c6 15030000 dpe0:
02ca 00000000
02ce 2f030603
02d2 ce03af03
02d6 15030000 dpel:
02da 00000000
02de 2f030603
02e2 fd0 3de0 3
02e6 15030000 dpe2:
02ea 00000000
02ee 2f030603
02f2 2c0 40d0 4
02f6 15030000 dpe3:
02fa 00000000
02fe 2f030603
0302 5b043c04
0306 = dpb0

xlt0
dpbl
xltl
dpb2

disks
diskdef
diskdef
diskdef
di skdef
endef
endif

if
disks
diskdef
diskdef
diskdef
diskdef
endef
endif

if
equ
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
equ
endif

if
dw
db
db
db
dw
dw
db
db
dw
dw
equ
equ
equ
equ

numdisks ;
0,1,26,6,1024,243,64,64,2
1,0

generate dri

2,0
3,0

mac and dbl
numdisks ; generate dri
0,1,52,,2048,243,128,128,2,0
1,0
2,1,26,6,1024,243,64,64,2
3,2

asm
$
xlt0,0000h
o 000 h , 000 0h
dirbuf,dpb0
csv0,alv0
xltl,0000h
0000h,0000h
dirbuf,dpbl
csvl,alvl
xlt2,0000h
0000h,0000h
dirbuf,dpb2
csv2,alv2
xlt3,0000h
0000h,0000h
dirbuf,dpb3
csv3,alv3
$

asm and dbl
52
4
15
0
242
127
192
0
32
2
0
dpb0
xlt0
$

;base of disk param bl
;translate table
;scratch area
;dir buff, parm block
;check, alloc vectors
;translate table
; sc ra tch a rea
;dir buff, parm block
;check, alloc vectors
;translate table
;scratch area
;dir buff, parm block
;check, al10c vectors
;translate table
;scratch area
;dir buff, parm block
;check, al10c vectors
;disk param block

;sec per track
;block shift
; block mask
; extnt mask
;disk size-l
;directory max
;alloc0
;allocl
;check size
;offset
;translate table

145

MP 1M User's Guide

0306 = dpb1 equ dpb0
0315 = x1t1 equ x1t0
0306 = dpb2 equ dpb0
0315 = x1t2 equ x1t0
0306 = dpb3 equ dpb0
0315 = x1t3 equ xlt0

endif

if asm and db1
dpb3 equ dpb2
x1t3 equ xlt2

endif

if asm
032f = begdat equ $
032f dirbuf: ds 128 ;directory access buff

endif

if asm and sg 1
03af alv0: ds 31
03ce csv0: ds 16
03de alv1: ds 31
03fd csv1: ds 16

endif

if asm and dbl
alv0 : ds 31
csv0 : ds 32
alv1 : ds 31
csv1 : ds 32

endif

if asm
040d alv2: ds 31
042c csv2: ds 16
043c alv3: ds 31
045b csv3: ds 16
046b = enddat equ $
013c = datsiz equ $-begda t

endif

o 46b 00 db 0 ; this last db is req'd to
; ensure that the hex file
; output includ es the entire
; di skdef

046c end

147

MP/M User's Guide

APPENDIX K: Page Relocatable (PRL) File Specification

Page relocatable files are stored on
the following format:

Address: Contents:

0001-0002H Program size

diskette

0004-0005H Minimum buffer requirements (additional memory)

0006-00FFH Currently unused, reserved for future allocation

0100H + Program size = Start of bit map

in

The bit map is a string of bits identifying which bytes
are to be relocated. There is one bit map byte per 8 bytes of
program. The most significant bit (7) of the first byte of
the bit map indicates whether or not the first byte of the
program is to be relocated. A bit which is on indicates that
relocation is required. The next bit, bit(6), of the first
byte of the bit map corresponds to the second byte of the
program.

(All Information Herein is Proprietary to Digital Research.)

149

MP/M User's Guide

Dispatch, 70
DMA Address, 43
DSKRESET, 8
DUMP, 11, 122

ERA, ERAQ, Erase File(s), 9
Exitregion, 103

FCB, File Control Block, 25, 26
File Attributes, 45
File Structure, 24
Flag Assignments, 116
Flag Wait, 65
Flag Set, 65
Free Drive, 52

GENHEX, 11
GENMOD, 11
GENSYS, 110
Get.Console Num.ber, 78
Get Date and Time, 79

Home, 98

Idle, 104
Interrupt Service Routines, 105

LDRBIOS, 86
Line editing, 6
Linked Queue, 55
List, 98
List Output, 31
Listst, 100
LOAD, 11
Login Vector, ,42

Make File, 41
Make Queue, 66
Maxconsole, 1~3
Memory Allocation, 15
MD, Memory Descriptor, 62
Memory Free, 64
Memory Segment Base Page, 120
Memory Structure, 18
MPMLDR, 86, 114
MPMSTAT, 13

ODOS, 108
Open File, 37
Open Queue, 67

Page Relocatable Programs, PRL, 81, 149
Parse Filename, 77

(All Information Herein is Proprietary to Digital Research.)

151

MP/M User's Guide

System Data Address, 78
System File Components, 107
System Generation, 110
System Reset, 29
SYSTEM.DAT, 19
Systeminit, 103

Text Editing, ED, 10
Terminate Process, 71
Tick, 106
Time, 15
Time Base Management, 106
TOD, Date and Time, 15, 79
TPA, 20
TYPE, 9

UQCB, User Queue Control Block, 57
USER, get/set user code, 8, 46
User Queue Control Block, 57
USERSYS.STK, 19

Version Number, 35

Wboot, 98
Wr i te, 100
Write File Random, 48, 52
Write File Sequential, 41
Write Protect Disk, 44
Write Queue, 69

XDOS, 19, 108, 119
XIOS, 19, 87
XIOS External Jump Vector, 106

(All Information Herein is Proprietary to Digital Research.)

153

