/M

MULTI-PROGRAMMING MONITOR
CONTROL PROGRAM

USER’S GUIDE

MP/M™ MULTI-PROGRAMMING MONITOR CONTROL PROGRAM USER’'S GUIDE

COPYRIGHT

Copyright (c) 1979, 1980 by Digital Research. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, ovtical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted vermission to include the
example programs, either in whole or in part, in his
own programs. :

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
spvecifically disclaims any implied warranties of
merchantability or fitness for any varticular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
Cp/NET, MP/M, SID, and TEX-80 are trademarks of
Digital Research.

The "MP/M User”’s Gui@g" was prepared using the
Digital Research TEX-80"M Text Formatter.

khkkkhkhkhkhkhkhkhkhhkhkhhkhhkhkhrkkhhhhhkkk

* Third Printing: March 1981 *
kkkkkkkkkkhkkkkhkkhkkkhkhkhkkhkhkkkkkhkhkkhkik

MP/M User's Guide

Appendix

Flag Assignments . . . ¢ ¢ ¢ o o« o« ¢ o« o o«
Process Priority Assignments « . .
BDOS Function Summary . « « « C e e e
XDOS Function Summary . « o o o o o o o o«
Memory Segment Base Page Reserved Locations
Operation of MP/M on the Intel MDS-800 . .
Sample Page Relocatable Program
Sample Resident System Process . « . « . =
Sample XIOS . & & ¢ ¢ o o « o o o o« o o o
MP/M DDT Enhancements . . « « ¢« & o & o &

Page Relocatable (PRL) File Specification

116
117
118
119
120
121
122
127
131
148

149

MP/M User's Guide

1. MP/M FEATURES AND FACILITIES

1.1 1Introduction

The purpose of the MP/M multi-programming monitor control
program is to ©provide a microcomputer operating system which
supports multi-terminal access with multi-programming at each
terminal.

OVERVIEW

The MP/M operating system is an upward compatible version
of CP/M 2.8 with a number of added facilities. These added
facilities are contained in new logical sections of MP/M called
the extended 1I/0 system and the extended disk operating system.
In this manual the name XIOS will refer to the combined basic and
extended I/0 system. BDOS will refer to the standard CP/M 2.0
basic disk operating system functions and XDOS will refer to the
extended disk operating system. As an upward compatible version,
users can easily make the transition from CP/M to the MP/M
operating system. In fact, existing CP/M *.COM files can be run
under MP/M, providing that the program has been correctly
written. That is, BDOS calls are made for I/0, and the only
direct BIOS calls made are for console and printer 1I/0. There
must also be at least 4 bytes of extra stack in the CP/M *.COM
program.,

The following basic facilities are provided:

o Multi-terminal support

o Multi-Programming at each terminal

o Support for bank switched memory and
memory protection

o Concurrency of I/0 and CPU operations

o Inter—-process communication, mutual
exclusion and synchronization

o Ability to operate in sequential, polled
or interrupt driven environments

o System timing functions

o Logical interrupt system utilizing flags

o Selection of system options at system
generation time

o Dynamic system configuration at load time

The following optional facilities are provided:
o Spooling list files to the printer
o Scheduling programs to be run by date and time

o Displaying complete system run-time status
o Setting and reading of the date and time

(All Information Herein is Proprietary to Digital Research.)

1

MP/M User's Guide

1.2 Functional Description of MP/M

The MP/M Operating System 1is Dbased on a real-time
multi-tasking nucleus. This nucleus provides process
dispatching, queue management, flag management, memory management
and system timing functions.

MP/M is a priority driven system. This means that the
highest priority ready process is given the CPU resource. The
operation of determining the highest priority ready process and
then giving it the CPU is called dispatching. Each process in
the system has a process descriptor. The purpose of the process
descriptor 1is to provide a data structure which contains all the
information the system needs to know about a process. This
information 1is wused during dispatching to save the state of the
currently running process, to determine which process 1is to be
run, and then to restore that processes state. Process
dispatching 1is performed at each system call, at each interrupt,
and at each tick of the system clock. Processes with the same
priority are "round-robin" scheduled. That is, they are given
equal slices of CPU time.

Queues perform several critical functions in a real-time

multi-tasking environment. They can be used for the
communication of messages between processes, to synchronize
processes, and for mutual exclusion. As the name "queue"

implies, they provide a first in first out list of messages, and
as implemented in MP/M, a list of processes waiting for messages.

The flag management provided by MP/M is used to synchronize
processes by signaling a significant event. Flags provide a
logical interrupt system for MP/M which is independent of the
physical interrupt system. Flags are used to signal interrupts,
mapping an arbitrary physical interrupt environment into a
regular structure.

MP/M manages memory in pre-defined memory segments. Up to
eight memory segments of 48K can be managed by MP/M. This
management of memory is consistent with hardware environments
where memory is banked and/or protected in fixed segments.

System timing functions provide time of day, the capability
to schedule programs to be loaded from disk and executed, and the

ability to delay the execution of a process for a specified
period of time.

(A1l Information Herein is Proprietary to Digital Research.)

3

MP/M User's Guide

RUNNING A PROGRAM

A program is run by typing in the program name followed by
a carriage return, <cr>. Some programs obtain parameters on the
same line following the program name. Characters on the 1line
following the program name constitute what is called the command
tail. The command tail is copied into location @@80H (relative
to the base of the memory segment in which the program resides)
and converted to upper case by the Command Line Interpreter
(CLI). The CLI also parses the command tail producing two file
control blocks at @#@5CH and @@6CH respectively.

The programs which are provided with MP/M are described in
sections 1.4 and 1.5.

ABORTING A PROGRAM

A program may be aborted by typing a control C (°C) at the
console. The affect of the "C is to terminate the program which
currently owns the console. Thus, a detached program cannot be
aborted with a C. A detached program must first be attached and
then aborted. A running program may also be aborted using the
ABORT command (see ABORT in section 1.5).

RUNNING A RESIDENT SYSTEM PROCESS

, At the operator interface there is no difference between
running a program from disk and running a resident system
process. The actual difference is that resident system processes
do not need to be loaded from disk because they are loaded by the
MP/M loader when a system cold start 1is performed and remain
resident.

DETACHING FROM A PROGRAM

There are two methods for detaching from a running program.
The first is to type a control D ("D) at the console. The second
method is for a program to make an XDOS detach call.

The restriction on the former method, typing D, is that
the running program must be performing a check console status to
observe the detach request. A check <console status 1is
automatically performed each time a user program makes a BDOS
disk function cill.

ATTACHING TO A DETACHED PROGRAM

A prugram which is detached from a console, that is it does
not own a console, may be attached to a console by typing
'ATTACH' followed by the program name. A program may only be
attached to the console from which it was detached. If the
terminal message ©process (TMP) has ownership of the console and

(All Information Herein is Proprietary to Digital Research.)

5

MP/M User's Guide

ctl-S

not obtain the printer mutual exclusion message
prior to accessing the printer. If the list
device is not available a 'Printer busy' message
is displayed on the console.

Stop the console output temporarily. Program
execution and output continue when the next
character is typed at the console (e.g., another
ctl-S). This feature is used to stop output on
high speed consoles, such as CRT's, in order to
view a segment of output before continuing.

(All Information Herein is Proprietary to Digital Research.)

7

MP/M User's Guide

1A>DSKRESET B:,E:

If there are any open files on the drive(s) to be reset,
the disk reset is denied and the cause of the disk reset
failure is shown: '

1A>DSKRESET B:
Disk reset denied, Drive B: Console @ Program Ed

The reason that disk reset is treated so carefully is that
files left open (e.g. in the process of being written) will 1lose
their wupdated information if they are not closed prior to a disk
reset,.

ERASE FILE *

The ERA (erase) command removes specified files having the
current wuser code. If no files can be found on the selected
diskette which satisfy the erase request, then the message "No
file" is displayed at the console.

An attempt to erase all files,
2B>ERA * ., *

will produce the following response from ERA:

Confirm delete all user files (Y/N)?

A second form of the erase command (ERAQ) enables the
operator to selectively delete files that match the
specified filename reference. For example:

@A>ERAQ *,LST

A:XIOS LST? vy
A:MYFILE LST? n

TYPE A FILE *

The TYPE command displays the contents of the specified
ASCII source file on the console device. The TYPE command
expands tabs (ctl-I characters), assuming tab positions are set
at every eighth column.

The TYPE command has a pause mode which is specified by
entering a 'P' followed by two decimal digits after the
filename. For example:

@A>TYPE DUMP.ASM P23

(All Information Herein is Proprietary to Digital Research.)

9

MP/M User's Guide

STATUS *

.The STAT (status) command provides general statistical
information about the file storage. See the Digital Research
document titled "CP/M 2.0 User's Guide for CP/M 1.4 Owners" for a
detailed description of new STAT operations.

DUMP *

The DUMP command types the contents of the specified disk
file on the console in hexadecimal form. ‘

LOAD *

The LOAD command reads the specified disk file of type HEX
and produces a memory image file of type COM which can
subsequently be executed.

GENMOD

The GENMOD command accepts a file which contains two
concatenated files of type HEX which are offset from each other
by @19PH bytes, and produces a file of type PRL (page
relocatable). The form of the GENMOD command is as follows:

1A>genmod b:file.hex b:file.prl $1000

The first parameter is the file which contains two concatenated
files of type HEX. The second parameter is the name of the
destination file of type PRL. The optional third parameter is a
specification of additional memory required by the program beyond
the explicit code space. The form of the third parameter is a
'S' followed by four hex ASCII digits, For example, 1if the
program has been written to use all of 'available' memory for
buffers, specification of the third parameter will -ensure a
minimum buffer allocation.

GENHEX
The GENHEX command is used to produce a file of type HEX
from a file of type COM. This is useful to be able to
generate HEX files for GENMOD input. The GENHEX command has

two parameters, the first is the COM file name and the second is
the offset for the HEX file. For example:

@A>GENHEX PROG.COM 109
PRLCOM
The PRLCOM command accepts a file of PRL type and produces
a file of COM type. If the destination COM file exists, a query

is made to determine 1if the file should be deleted before
continuing.

(All Information Herein is Proprietary to Digital Research.)

11

MP/M User's Guide

1.5 Standard Resident System Processes

The standard resident system processes (RSPs) are new
programs specifically designed to facilitate use of the MP/M
operating system. The RSPs may either be present on disk as
files of the PRL type, or they may be resident system processes.
Resident system processes are selected at the time of system
generation.

SYSTEM STATUS

The MPMSTAT command allows the user to display the run-time
status of the MP/M operating system. MPMSTAT 1is invoked by
typing 'MPMSTAT' followed by a <cr>. A sample MPMSTAT output is
shown below:

*¥kk*k* MP/M Status Display *****%

Top of memory = FFFFH
Number of consoles = @2
Debugger breakpoint restart # = 06
Stack is swapped on BDOS calls
280 complementary registers managed by dispatcher
Ready Process(es):
MPMSTAT 1Idle
Process(es) DQing:
[Sched] Sched
[ATTACH] ATTACH
[CliQ 1 cli
Process(es) NQing:
Delayed Process(es):
Polling Process(es):
PIP
Process(es) Flag Waiting:
81 - Tick
2 - Clock
Flag(s) Set:
@3
Queue (s):
MPMSTAT Sched CcliQ ATTACH MXParse
MXList [Tmpd] MXDisk
Process(es) Attached to Consoles:
(@] - MPMSTAT

[1] - PIP
Process(es) Waiting for Consoles:
[6] - TMPO DIR
[1] - TMP1
Memory Allocation:
Base = @P@000PH Size = 4000H Allocated to PIP [1]
Base = 40@00H Size = 2000H * Free *
Base = 60PPH Size = 1100H Allocated to DIR [9]

(All Information Herein is Proprietary to Digital Research.)

13

MP/M User's Guide

have detached from the console and are then waiting for the
console before they can continue execution.

Memory Allocation: The memory allocation map shows
the base, size, bank, and allocation of each memory
segment. Segments which are not allocated are shown as '#*
Free *', while allocated segments are identified by process
name and the <console in brackets associated with the
process. Memory segments which are set as pre-allocated
during system generation by specifying an attribute of @FFH
are shown as '* Reserved *',

1

SPOOLER

The SPOOL command allows the user to spool ASCII text files
to the list device. Multiple file names may be specified in the
command tail. The spooler expands tabs (ctl-I characters),
assuming tab positions are set at every eighth column.

The spooler queue can be purged at any time by using the
STOPSPLR command. _)

An example of the SPOOL command is shown below:
1A>SPOOL LOAD.LST,LETTER. PRN

The non-resident version of the spooler (SPOOL.PRL) differs
in its operation from the SPOOL.RSP as follows: it uses all of
the memory available in the memory segment in which it is
running for buffer space; it displays a message
indicating its status and then detaches from the console; it
may be aborted from a console other than the initiator only by
specifying the console number of the initiator as a parameter of
the STOPSPLR command.

3B>STOPSPLR 2
DATE AND TIME
The TOD (time of day) command allows the user to read and

set the date and time. Entering 'TOD' followed by a <cr> will
cause the current date and time to be displayed on the console.
Entering 'TOD' followed by a date and time will set the date and
time when a <cr> is entered following the prompt to strike a key.
Each of these TOD commands is illustrated below:

1A>TOD <cr>

Wed 02/06/80 09:15:37

1A>TOD 2/9/80 10:30:00

(All Information Herein is Proprietary to Digital Research.)

15

MP/M User's Guide

2. MP/M INTERFACE GUIDE

This section describes MP/M system organization including
the structure of memory and system call functions. The intention
is to provide the necessary information required to write page
relocatable programs and resident system processes which operate
under MP/M, and which use the real-time, multi-tasking,
peripheral, and disk I/0 facilities of the system.

2.1 Introduction

MP/M is logically divided into several modules. The three
primary modules are named the Basic and Extended I/0 System
(XI0S), the Basic Disk Operating System (BDOS), and the Extended
Disk Operating System (XDOS). The XI0OS is a hardware-dependent
module which defines the exact 1low 1level interface to a
particular computer system which 1is necessary for peripheral
device 1I/0. Although a standard XIOS is supplied by Digital
‘Research, explicit instructions are provided for field
reconfiguration of the XIOS to match nearly any hardware
environment.

MP/M memory structure is shown below:

(A1l Information Herein is Proprietary to Digital Research.)

17

MP/M User's Guide

The memory segments are described as follows:

SYSTEM.DAT The SYSTEM.DAT segment contains 256 bytes

CONSOLE.

USERSYS.

XI0S

used by the loader to dynamically configure the
system., After loading, the segment is wused for
storage of system data such as submit flags. See
section 3.4 under SYSTEM DATA for a detailed
description of the byte allocation.

DAT The CONSOLE.DAT segment varies in 1length
with the number of consoles. Each console
requires 256 bytes which contains the TMP's
process descriptor, stack and buffers.

STK The USERSYS.STK segment 1is optional
depending upon whether or not the user intends to
run CP/M *,COM files. This segment contains 64
bytes of stack space per user memory segment and
is used as a temporary stack when user programs
make BDOS calls. Specification of the option to
include this segment is made during system
generation. The size of the USERSYS.STK segment
varies as follows:

@PPH - No user system stacks

100H -~ 1 to 4 memory segments

200H - 5 to 8 memory segments

The XIOS segment contains the user
customized basic and extended I/0 system in page
relocatable format.

BDOS/0DOS The BDOS segment contains the disk file and

XDOS

RSPs

BNKBDOS

multiple console management functions. The
segment is about 1400H bytes in length.

The ODOS segment contains the resident portion of
the banked BDOS file and <console management
functions. The segment is about 8@@H bytes in
length.

The XDOS segment contains the MP/M nucleus
and the extended disk operating system. The
segment is about 2000H bytes in length.

The operator makes a selection of Resident
System Processes during system generation. The
RSPs require varying amounts of memory.

(Optional) The BNKBDOS segment is present only
in systems with a bank switched BDOS. It
contains the non-resident portion of the banked
BDOS disk file management. This segment is about
EGPH bytes in length.

(All Information Herein is Proprietary to Digital Research.)

19

MP/M User's Guide

segment, relocated, and it 1is executed, completing the CLI
operation.

If the PRL file type open fails then the file type of COM
is entered for the parsed file name and a file open is attempted.
If the open succeeds then a memory request 1is made for an
absolute TPA, memory segment based at @0@@H. If this request is
satisfied the COM file is read into the absolute TPA and it 1is
executed, completing the CLI operation.

If the command is followed by one or two file
specifications, the CLI prepares one or two file control block
(FCB) names in the system parameter area. These optional FCB's
are in the form necessary to access files through MP/M BDOS
calls, and are described in the next section.

The CLI creates a process descriptor for each program which
is loaded, setting up a 20 level stack which forces a branch to
the base of the user code area of the memory segment. The
default stack is set up so that a return from the loaded program
causes a branch to the MP/M facility which terminates the
process. This stack has 19 levels available which can generally
be wused by the transient program since it is sufficiently large
to handle system calls.

The transient program then begins execution, perhaps using
the I/0 facilities of MP/M to communicate with the operator's
console and peripheral devices, including the disk subsysten.
The 1I/0 system is accessed by passing a "function number" and an
"information address" to MP/M through the entry point at the
memory Segment base +0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to
a disk read, along with the address of an FCB to MP/M. MP/M, in
turn, performs the operation and returns with either a disk read
completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators
are given in sections 2.2 and 2.4.

OPERATING SYSTEM CALL CONVENTIONS

The purpose of this section 1is to provide detailed
information for performing direct operating system calls from
user programs. Many of the functions listed below, however, are
more simply accessed through the I/0 macro library provided with
the MAC macro assembler, and 1listed in the Digital Research
manual entitled "MAC Macro Assembler: Language Manual and
Applications Guide."

MP/M facilities which are available for access by transient

programs fall into two general categories: simple device 1/0,
disk file I/0, and the XD0OS functions.

(All Information Herein is Proprietary to Digital Research.)

21

MP/M User's Guide

As mentioned above, access to the MP/M functions 1is
accomplished by passing a function number and information address
through the primary entry point at location memory segment base
+@@P5H. In general, the function number is passed in register ¢
with the information address in the double byte pair DE. Single
byte values are returned in register A, with double byte values
returned in HL (a zero value is returned when the function number
is out of range). For reasons of compatibility, register A = L
and register B = H upon return in all cases. Note that the
register passing conventions of MP/M agree with those of Intel's
PL/M systems programming language.

The 1list of MP/M BDOS function numbers is given below.

@ System Reset 21 Write Sequential

1 Console Input 22 Make File

2 Console Output 23 Rename File

3 Raw Console Input 24 Return Login Vector

4 Raw Console Output 25 Return Current Disk

5 List Output 26 Set DMA Address

6 Direct Console I/0 27 Get Addr(Alloc)

7 Get I/0 Byte 28 Write Protect Disk

8 Set I/0 Byte 29 Get R/0 Vector

9 Print String 30 Set File Attributes
19 Read Console Buffer 31 Get Addr(Disk Parms)
11 Get Console Status 32 Set/Get User Code
12 Return Version Number 33 Read Random
13 Reset Disk System 34 Write Random
14 Select Disk 35 Compute File Size
15 Open File 36 Set Random Record
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive
19 Delete File 38 Access Drive
20 Read Sequential 39 Free Drive

49 Write Random With Zero Fill

(All Information Herein is Proprietary to Digital Research.)

23

MP/M User's Guide

65536 records of 128 bytes each, numbered from @ through 65535,
thus allowing a maximum of 8 megabytes per file. Note, however,
that although the records may be considered logically contiguous,
they are not necessarily physically contiguous in the disk data
area. Internally, all files are broken into 16K byte segments
called logical extents, so that counters are easily maintained as
8-bit wvalues. Although the decomposition into extents is
discussed in the paragraphs which follow, they are of no
particular consequence to the programmer since each extent is
automatically accessed in both sequential and random access
modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by MP/M at
location memory segment base +005CH for simple file operations.
The basic unit of file information is a 128 byte record used for
all file operations, thus a default 1location for disk 1I/0 is
provided by MP/M at location memory segment base +@@8@H which is
the initial default DMA address (see function 26). All directory
operations take place in a reserved area which does not affect
write buffers as was the case in CP/M release 1, with the
exception of Search First and Search Next, where compatibility is
required.

The File Control Block (FCB) data area consists of a
sequence of 33 bytes for sequential access and a series of 36
bytes in the case that the file 1is accessed randomly. The
default file control block normally located at memory segment
base +@05CH can be used for random access files, since the three
bytes starting at memory segment base +0@7DH are available for
this purpose.

(All Information Herein is Proprietary to Digital Research.)

25

MP/M User's Guide

©

information for all subsequent file operations. When accessing
files, it 1is the programmer's responsibility to f£ill the lower
sixteen bytes of the FCB and initialize the "cr" field.
Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while all other fields
are zero.

FCB's are stored in a directory area of the disk, and are.
brought into central memory before proceeding with file
operations (see the OPEN and MAKE functions). The memory copy of
the FCB 1is updated as file operations take place and later
recorded permanently on disk at the termination of the file
operation (see the CLOSE command).

The CLI constructs the first sixteen bytes of two optional
FCB's for a transient by scanning the remainder of the line
following the transient name, denoted by "filel" and "“file2" in
the prototype command 1line described above, with unspecified
fields set to ASCII blanks., The first FCB 1is constructed at
location memory segment base +@@#5CH, and can be used as-is for
subsequent file operations. The second FCB occupies the df ...
dn portion of the first FCB, and must be moved to another area of
memory before use. 1If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.PRL is loaded into a user memory segment or 1if
it 1s not on the disk, the file PROGNAME.COM is loaded into the
TPA, and the default FCB at memory segment base +@@5CH is
initialized to drive code 2, file name "X" and file type "ZOT".
The second drive code takes the default value @, which is placed
at memory segment base +@@6CH, with the file name "Y" placed into
location memory segment base +0@6DH and file type "ZAP" located 8
bytes 1later at memory segment base +@@75H. All remaining fields
through "cr" are set to =zero. Note again that it 1is the
programmer's responsibility to move this second file name and
type to another area, usually a separate file control block,
before opening the file which begins at memory segment base
+@@5CH, due to the fact that the open operation will overwrite
the second name and type.

If no file names are specified in the original command,
then the fields beginning at memory segment base +@@5DH and
+@@6DH contain blanks. 1In all cases, the CLI translates lower
case alphabetics to wupper case to be consistent with the MP/M
file naming conventions.

As an added convenience, the default buffer area at
location memory segment base +@@8@H is initialized to the command
line tail typed by the operator following the program name. The
first position contains the number of characters, with the
characters themselves following the character count.

(All Information Herein is Proprietary to Digital Research.)

27

MP/M User's Guide

2.2 Basic Disk Operating System Functions

In general, the Basic Disk Operating System (BDOS)
facilities are identical to that of CP/M 2.8. Each function is
covered 1in this section by describing the entry parameters,
returned values, and any differences between CP/M and MP/M.

kkhkkkhkhkkkkhkkhhkhkhhkkhkhkkhkhhkhhhkhkhkhkkkkkk

* *
* FUNCTION @#: SYSTEM RESET *
* *
khkkhkkhkkhhkhhkkhkhkhkhkhkhkkhkkhhhkhkhhkhkhkkhkhkhkhkkrhikkk
* Entry Parameters: *
* Register C: 00H *

kkkhkhkhkhhhkhkhkkhhkkhkhhkhkdhhhkhhhkhkkhkhkhkhhkkdhhkk

The SYSTEM RESET function terminates the <calling program,
releasing the memory segment, console, and mutual exclusion
messages owned by the calling program. When the <console 1is
released it is usually given back to the terminal message process
(TMP) for that console.

Effectively the operation of the SYSTEM RESET function is

the same for MP/M as it is for CP/M 2.0 because the program
is terminated and the operator receives the prompt to enter
another command. However, MP/M does not re—initialize the disk

subsystem by selecting and logging-in disk drive A,

khkkkhkhkkkhkkkkhkhkkkhkkhkhkhkkkkhkkhkkkkkkkkkkkk

* *
* FUNCTION l:. CONSOLE INPUT *
* *
kkhkkhkkkkkhkkhkkhkkhkkkkkkkhkkkhkkkhkkkkhkkkkikkkkkkkk
* Entry Parameters: *
* Register C: @1H o
* *
* Returned Value: *
* Register A: ASCII Character *
hkhkkkhkhkhkkkkkkhkkhkhkhkhkkkkhkkhkhkkkhkkhkkhkkhkkhkkkkk

The CONSOLE INPUT function reads the next console character
to register A. Graphic characters, along with carriage return,
line feed, and backspace (ctl-H) are echoed to the console. Tab
characters (ctl-I) are expanded in columns of eight characters.
A check is made for start/stop scroll (ctl-S) and start/stop
printer echo (ctl-P). The BDOS does not return to the calling
program until a character has been typed, thus suspending
execution if a character is not ready.

(All Information Herein is Proprietary to Digital Research.)

29

MP/M User's Guide

khkkkkkhkhhkkkkkkkkkhhkkhkkhkkhhkhkhkkkkkkkhkkkhkk

* *
* FUNCTION 4: RAW CONSOLE OUTPUT *
* *
khkkkkkkhkkhhkkkkkkkhkhkkkkhkkkkhhkkkkhhkkhkkhkkhkkkxkx
* Entry Parameters: *
* Register C: @4H *
* Register E: ASCII Character *
* *

khkkhkhkkhkhkkkhkhkkhkhkkkkkkhkkkkhkkhkkhkkhhkkkkhkkkkk

The RAW CONSOLE OUTPUT function sends the ASCII
character from register E to the console device. There is no
testing of the output character, that is, tabs are not expanded
and no checks are made for start/stop scroll and printer echo.
This function does not require that the console be attached,
nor does it attach the console. Thus, unsolicited messages may
be sent to other consoles by simply changing the console byte of
the process descriptor and then using this function.

The PUNCH OUTPUT function is not supported under MP/M.

kkhkhkkkhhkhkhkkhkkhkhkkhhkkhkkhkkhkkkkhkkkhkkkkhkkkkkk

* *
* FUNCTION 5: LIST OUTPUT *
* *
khkkdhkhhhkkhkkhkkhhkkkhkhkkkkhhkhkhkhkhkhkhkkhkhkkhkhhkkkkkx
* Entry Parameters: *
* Register C: @5H *
* Register E: ASCII Character *
* *

kkkkkkkkkhkhkkkhkkhkhhkkhkkkkhhkhkhkhhkhkhkkhkkkkkk

The LIST OUTPUT function sends the ASCII character 1in
register E to the logical listing device.

Caution must be observed in the use of the printer since
there is no implicit list device ownership. That 1is, the 1list
device is not "opened" or "closed". MP/M affords a secondary
explicit means to resolve printer mutual exclusion. A
queue named ‘MXList' 1is created by the system to handle mutual
exclusion. To properly obtain use of the printer a program
should open the 'MXList' queue and read the message. When the
message is obtained the printer may be used. When printing is
completed the message should be written back to the 'MXList'
queue. This technique is used by the MP/M PIP, SPOOLer, and TMP
ctl-P operations.

(All Information Herein is Proprietary to Digital Research.)

31

MP/M User's Guide

khkkhhkhkhhkhkkhkkhhkhkhkhhhhhhkhkkkkhhhhkkhhhkkhkhkkkx

* *
* FUNCTION 7: GET I/0 BYTE *
* *
khkkkkkhkkhkkhkhkhkkkhkhkhhkhkkhhkhkhhkhkhhkkhhkhkkkhdhkkx
* *
* Not supported under MP/M *
* *

khkkhkkhhkhkhkhkhhhdhkhhhkhhkkhkhkhhhhkhkhkhkhkhhkkdhhkhkxd

The GET I/O BYTE function is not supported under MP/M.

khkkhkhkhkhhhhhhkhkhkhhkhhkhkhhhkhhhkhhkkkhhhkhkhhhkhkk

* *
* FUNCTION 8: SET I/O BYTE *
* *

* : *
* Not supported under MP/M *
* *

kkhkkhkhkkhkhhkkhhkhhkhkhkhhkkhkkhkkkhkkkhkhkhkkkkkkkk

The SET I/0 BYTE function is not supported under MP/M.

khkkkkhkkkkkhhkkhkhkhkkhkkkhkhkhkkkhkkhkhkkkhkkkhkhkhkkkhkkkkx

* *
* FUNCTION 9: PRINT STRING *
* *
khkkkkhkhhkhhhhhhhhhkhkhkhhhhhhkhkhkhkhhhhkhhdhhdk
* Entry Parameters: *
* Register C: 09H *
* Registers DE: String Address *
* *

kkkkhkkhkkkhhhkkhkkrnkhkkkhkkkhkhkhkkhhkkhkkkhkkkkkkhkkkkkk

The PRINT STRING function sends the character string stored
in memory at the location given by DE to the console device,
until a "$" is encountered in the string. Tabs are expanded as
in function 2, and checks are made for start/stop scroll and
printer echo.

(All Information Herein is Proprietary to Digital Research.)

33

MP/M User's Guide

kkkkkhkkhkhkhkhkhhkhhhhhhhkhkhkhkhkkkkhhkkkhkkhkkkk

* *
* FUNCTION 11: GET CONSOLE STATUS *
* *
khkhhkhkhhkhhkkhkhkkhkhkhkhkhkkhkkhkkkhkhkhkkhhkkkkhkhkhhkkk
* Entry Parameters: *
* Register C: @BH *
* *
* Returned Value: *
* Register A: Console Status *
khkkkhkkhhhkhhhhkhkhkhkhhkhkhkhkhkkhkhkkhhhkkhhhkkkhkhkk

The CONSOLE STATUS function checks to see if a character
has been typed at the console., If a character is ready, the
value @FFH is returned in register A. Otherwise a #@H value is
returned.

LR AR SRS TSI TS S S R

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *
kkkkhhhhhhhhhhhhhhkhhhkhhhhkhrhhhkkhhkk
* Entry Parameters: *
* Register C: #@CH *
* *
* Returned Value: %
* Registers HL: Version Number *
khhhkhkhhhhhhhhhhhhkhhhhhhhhhhkhhhhhkhhhkx

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H =
@@ designating the CP/M release (H = @1 for MP/M), and L = @0 for
all releases previous to 2.6. CP/M 2.0 returns a hexadecimal 20
in register L, with subsequent version 2 releases 1in the
hexadecimal range 21, 22, through 2F, Using function 12, for
example, you can write application programs which provide both
sequential and random access functions, with random ‘access
disabled when operating under early releases of CP/M.

(All Information Herein is Proprietary to Digital Research.)

35

MP/M User's Guide

kkkkkhkhkhkkkkhkhkkkhkkkhhkkhkhkkhkhkhhkkkkhkkhkkhkkhxnkk

* *
* FUNCTION 15: OPEN FILE *
* *
khkkkhkhkhkkhkkhhhhkhkhkhkhhkkhkhkhkhkhkhkhkhkhkkkkkk
* Entry Parameters: *
* Register C: @FH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
khkhkhkkhhhkkhkkkkhkhkkhkhkkkhkkhkhkhkkkkhkkhkkkkkkkkk

The OPEN FILE operation is used to activate a file which
currently exists in the disk directory for either the currently
active user code or user code f§. The BDOS scans the referenced
disk directory for a match in positions 1 through 14 of the FCB
referenced by DE (byte sl is automatically zeroed), where an
ASCII question mark (3FH) matches any directory character in any
of these positions. Normally, no question marks are included
and, further, bytes "ex" and "s2" of the FCB are zero.

If a directory element is matched, the relevant directory
information 1is copied into bytes d@ through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed
until a sucessful open operation is completed. Upon return, the
open function returns a "directory code" with the value @ through
3 1if the open was successful, or @FFH (255 decimal) if the file
cannot be found. If question marks occur in the FCB then the
first matching FCB 1is activated. Note that the current record
("cr") must be zeroed by the program if the file 1is to be
accessed sequentially from the first record.

The open-file operation will succeed for files with either
the current user code or user code . This presents a problem
when files with the same name exist under both the current user
code and under user code @. When such a situation exists the
first one found in the directory will be opened. Even though
this should not present a problem because user code # is intended
only : for system and commonly used files, a potential problem can
be detected by using the search file function. The search file
function enables examination of the directory FCB and thus the
actual file user code can be determined.

Opening a file sets the appropriate bit in the drive active
vector of the calling processes process descriptor. This bit is
cleared only by terminating the process or making a free drive
(function 39) call. Setting of the bit in the drive active
vector will prevent any other process from resetting the drive on
which the file was opened.

(All Information Herein is Proprietary to Digital Research.)

37

MP/M User's Guide

register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory
information can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from “f1" through "ex" matches the corresponding field
of any directory entry on the default or auto-selected disk
drive. If the "dr" field contains an ASCII question mark, then
the auto disk select function is disabled, the default disk 1is
searched, with the search function returning any matched entry,
allocated or free, belonging to any user number. This latter
function 1is not normally used by application programs, but does
allow complete flexibility to scan all current directory values.
If the "dr" field 1is not a question mark, the "s2" byte is
automatically zeroed.

To determine the user code of a successful search (it may
be the currently active user code or user code @), the returned
directory code can be used as described above to index into the
DMA buffer and the wuser code of the directory FCB can be
obtained.

khkkkkkhkkkkkhkkkhkkhkhhhkhkhkhkhkhkkkhkkkhkkhkkkkkkkk

* *
* FUNCTION 18: SEARCH FOR NEXT *
* *
khhkkhhkhhkhkdehkhkkhkkhkhkhhkhkhhkkkhkhkhkkkhkkhkkk®
* Entry Parameters: *
* "Register C: 12H. *
* *
* Returned Value: *
* Register A: Directory Code *
khkkkhkhkhkkhkhkhhkhkhkhkhkhkhkhkkhhkkhkhkhhhkkhkkhkkkkkx

The SEARCH NEXT function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Herein is Proprietary to Digital Research.)

39

MP/M User's Guide

kkkkhkkkkhkhkhkkhkkhhkhkkkhhkhhkhkhdkhhkhkhhhkkkhkk

* *
* FUNCTION 21: WRITE SEQUENTIAL *
* *
kkkkhkhkhhhkhkhhkhkhkkhkhkkkhhhkhkhkhkkhkkhkkkhkkkhhkhkkkhkkk
* Entry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
khkkkkkhkkkkkkhkkhkhkhkhkhkkkkkhkhkkkkkhhkhkkhkhkkkkkk

Given that the FCB addressed by DE has been activated
through an open or make function (numbers 15 and 22), the WRITE
SEQUENTIAL function writes the 128 byte data record at the
current DMA address to the file named by the FCB. the record is
placed at position "cr" of the file, and the "cr" field is
automatically incremented to the next record position. If the
"cr" field overflows then the next logical extent is
automatically opened and the "cr" field is reset to 2zero in
preparation for the next write operation. Write operations can
take place into an existing file, in which case newly written
records overlay those which already exist in the file. Register
A = @@H upon return from a successful write operation, while a
non-zero value indicates a full disk.

kkhkkhkhkkhhkhhkhkkhhhkhkhkhhhkhhkhkhhkhkhkkhkhhkkhkhkkkkhkkkkkx

* *
* FUNCTION 22: MAKE FILE *
* *
khkhkkkkkkhkkhkhkkhkkhhhkhkhkhhhkhhhkhkkkhkkhkhkhkhkkhkkkk
* Entry Parameters: *
* Register C: 1l6H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
khkkkkkhkhkhkhkkhkkhkkhkkhkhkkkkhhkhkhkhkkkkkhkkhkkhkkkkk%

The MAKE FILE operation is similar to the open file
operation except that the FCB must name a file which does not
exist in the currently referenced disk directory (i.e., the one
named explicitly by a non-zero "dr" code, or the default disk if
"*dr" is zero). The FDOS creates the file and 1initializes both
the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a
preceding delete operation is sufficient if there 1is any
possibility of duplication. Upon return, register A =0, 1, 2,
or 3 if the operation was successful and @FFH (255 decimal) if no
more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is

(All Information Herein is Proprietary to Digital Research.)

41

MP/M User's Guide

earlier releases, since registers A and L contain the same values
upon return.

khkkhkkkkkkhkkkkhkkhhkhkkhkkkhhkkhkkkhkhkhkkkkkkkkkkkk

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *
khkhkkhkhhhhhhhhhkhhkhkhkhkhhkkhkkhkkkhkkkhkkkkkkkkkk
* Entry Parameters: *
* Register C: 19H *
* *
* Returned Value: *
* Register A: Current Disk *
khkkhkkkhkkkkhhkkkhhhkhhhkkhkkhkhkkhkkkhkkkhkhkhkkkkk

Function 25 returns the currently selected default disk
number in register A. The disk numbers range from @ through 15
corresponding to drives A through P.

khkkkkhkhhkkkkkhkkhkhkhkhkhkhkhkhhhkhhkhkdkkhkhkkhkhkhkkhkkkk*

%* *
* FUNCTION 26: SET DMA ADDRESS *
* *
kkhkkkkhkkhkkkhkhkhkhkkkhkhkhhkhkhhkhhkhhhhkhkhhkhhhhkhkkhk*k
* Entry Parameters: *
* Register C: 1AH *
* Registers DE: DMA Address *
* *

khkkkkhkkkkkkhkhhhhhhkhhkhkhkhkhhkkhkhkhkkkhkhkkhkx

"DMA" is an acronym for Direct Memory Address, which 1is
often used 1in connection with disk controllers which directly
access the memory of the mainframe computer to transfer data to
and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data is transfered through programmed
I/0 operations), the DMA address has, in MP/M, come to mean the
address at which the 128 byte data record resides before a disk
write and after a disk read. Upon cold start, warm start, or
disk system reset, the DMA address 1is automatically set to
BOOT+0@80H. The Set DMA function, however, can be used to change
this default value to address another area of memory where the
data records reside. Thus, the DMA address becomes the wvalue
specified by DE until it 1is <changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Herein is Proprietary to Digital Research.)

43

MP/M User's Guide

khkhhkhhhhkhhkhkhhkhkkkkkhkhhhhkhhhhhkkhhkhhhkk

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *
hkhkhkhkhkhkkhkhhkhkkkhhhhkhkhkhkhkhkhkkkhkkkkkhkhkhhhkkhhkk%k
* Entry Parameters: *
* Register C: 1pH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
hkkkkhkkkhkkhhkhhhhkhkhhkhhhkkhkkkhkhhhkhkhkkkhkkkhkkkkkhkkk

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set.
Similar to function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P.
The R/0 bit is set either by an explicit call to function 28, or
by the automatic software mechanisms within MP/M which detect
changed disks.

khkkhkhkkhkhhhkkhhkhkhkhhhkhhdhhhhkhhkhhhhhhhkhrkhkxx

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *
khkkkhkkkkhhhhhhkhkhkhhhhhhkkhkhkkhhhkhhkkhkkkxkk
* Entry Parameters: *
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
khkkhkkhhkhkkhhkkhkhkkhhhhhkkhhhhhkhhhhkhkkhhhhkxk

The SEP FILE ATTRIBUTES function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0, System, and Update attributes (tl', t2', and
t3') can be set or reset. The DE pair addresses an unambiguous
file name with the appropriate attributes set or reset. Function
30 searches for a match, and changes the matched directory entry
to contain the selected indicators. Indicators f1' through f4'
are not presently used, but may be useful for applications
- programs, since they are not involved in the matching process
during file open and close operations. Indicators £5' through
f8' are reserved for future system expansion.

(All Information Herein is Proprietary to Digital Research.)

45

MP/M User's Guide

hkhkkkhkkkkhkhhhkkkhkkkkkhhkkhhkkhkkhkhkhkkhkhkkhkkkk

* *
* FUNCTION 33: READ RANDOM *
* *
khkhhhkhhhkhkhkhkhhhhhhhhhkhhkhhhhhhkhhhhkhhhhhkk
* Entry Parameters: *
* Register C: 21lH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *
khkkkkkkkhhhkkkhkhhhkhhhkkhkhhkkkhkhhhkhkkkkkkk*k

The READ RANDOM function is similar to the sequential file
read operation of previous releases, except that the read
operation takes place at a particular record number, selected by
the 24-bit value constructed from the three byte field following
the FCB (byte positions r# at 33, rl at 34, and r2 at 35). Note
that the sequence of 24 bits is stored with least significant
byte first (r#), middle byte next (rl), and high byte last (r2).
MP/M does not reference byte r2, except in computing the size of
a file (function 35). Byte r2 must be 2zero, however, since a
non-zero value indicates overflow past the end of file.

Thus, the r#,rl byte pair is treated as a double-byte, or
"word" wvalue, which contains the record to read. This value
ranges from # to 65535, providing access to any particular record
of the 8 megabyte file. 1In order to process a file using random
access, the base extent (extent @) must first be opened.
Although the base extent may or may not contain any allocated
data, this ensures that the file is properly recorded in the
directory, and is visible in DIR requests. The selected record
number 1is then stored into the random record field (r@,rl), and
the BDOS is called to read the record. Upon return from the
call, register A either contains an error code, as listed below,
or the value @80 indicating the operation was successful. 1In the
latter case, the current DMA address contains the randomly
accessed record. Note that contrary to the sequential read
operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the 1logical extent -‘and
current record values are automatically set. Thus, the file can
be sequentially read or written, starting from the current
randomly accessed position. Note, however, that in this case,
the last randomly read record will be re-read as you switch from
random mode to sequential read, and the last record will be
re-written as you switch to a sequential write operation. You
can, of course, simply advance the random record position
following each random read or write to obtain the effect of a
sequential I/0 operation.

Error codes returned in register A following a random read

(All Information Herein is Proprietary to Digital Research.)

47

MP/M User's Guide

the random read operation with the addition of error code @5,
which indicates that a new extent cannot be created due to
directory overflow.

khkkkhkhkkhkkhkkhkhkkhkhkkhhkkhkkhkhkhkhkkkkkkhkkkkkxk

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *
hkhkkkkkkhkkhkkhhkhkkhkhkkhkhkhhhkkkhkkhkkhkhkhkkhkkkhkkx
* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB :-Address *
* *
* Returned Value: *
* Random Record Field Set *
kkkhkhkhkkkkkhkkhkhkhkhkhkhkkhhkkhkhhkkdhhkhkkkkhhkkhkkkkx

When computing the size of a file, the DE register -pair
addresses an FCB in random mode format (bytes r#, rl, and r2 are
present). The FCB contains an unambiguous file name which 1is
used in the directory scan. Upon return, the random record bytes
contain the "virtual" file size which is, in effect, the record

address of the record following the end of the file. if,
following a call to function 35, the high record byte r2 is 01,
then the file contains the maximum record count 65536.

Otherwise, bytes r# and rl constitute a 16-bit value (r@ 1is the
least significant byte, as before) which is the file size.

Data can be appended to the end of an existing file by
simply calling function 35 to set the random record position to
the end of file, then performing a sequence of random writes
starting at the preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. 1If, instead, the file was
created in random mode and "holes" exist in the allocation, then
the file may 1in fact contain fewer records than the size
indicates. 1If, for example, only the last record of an eight
megabyte file 1is written in random mode (i.e., record number
65535), then the virtual size is 65536 records, although only one
block of data is actually allocated.

(All Information Herein is Proprietary to Digital Research.)

49

MP/M User's Guide

khkkkkhkkkkkhkkhkhkhkkhkhkhkhhkhhkkhkkkkkhkhkhkkhhkkhhkkkkkkhkk

* *
* FUNCTION 37: RESET DRIVE *
* *
kkhhkkkkkhkhkhhkhkkhhkhkhkhkhhkkkhkkkhkhhkkhkhkkhhkkkkkhkkkk
* Entry Parameters: *
* Register C: 25H *
* Register DE: Drive Vector *
* *
* Returned Value: *
* Register A: Return Code *
khkkhkhkkhkkkhkhkkkhkhkkhkhkkhkkkkkkhkkkkkkhkkhkkkkkkkk

The RESET DRIVE function allows resetting of
specified drive(s). The passed parameter is a 16 bit vector of
drives to be reset, the 1least significant bit is drive A:. If

there are any open files on a specified drive, the reset drive
is denied and the reason is displayed on the console.

The returned value indicates whether or not the reset
drive was successful. If any process is currently accessing a
drive to be reset, an error code of OFFH is returned in the A
register. A return .code of ¥ indicates success.

khkkkhkhkhkhkkhhhkhkkhhhkkhkhhhkhhhkhkhkhkhkhkkhkkkkkhkk

* *
* FUNCTION 38: ACCESS DRIVE *
* *
khkhkkhkhhkhkhkhkhkhhkhhkhkhkhkhkhkkkhkhhkhhhhkkkkkkkk
* Entry Parameters: *
* Register C: 26H *
* Register DE: Drive Vector *
* *

khkkkkhkkhhkhkhkhkhkhkhkhkkhkhkhhkhhkhkhhhhkhkhkkkkkkik

The ACCESS DRIVE function allows setting the drive
access bit(s) in the calling processes process descriptor. The
passed parameter is a 16 bit vector of drive(s) to be accessed,
the least significant bit is drive A:.

(All Information Herein is Proprietary to Digital Research.)

51

MP/M User's Guide

2.3 Queue and Process Descriptor Data Structures

This section contains a description of the queue and
process descriptor data structures used by the MP/M Extended Disk
Operating System (XDOS).

QUEUE DATA STRUCTURES

A queue is a first in first out (FIFO) mechanism which has
been implemented in MP/M to provide several essential functions
in a multi-tasking envirgonment. Queues can be wused for the
communication of messages between processes, to synchronize
processes, and to provide mutual exclusion.

MP/M has been designed to simplify queue management for
both user and system processes. In fact, queues are treated in a
manner similar to disk files. Queues can be created, opened,
written to, read from, and deleted.

A few illustrations should suffice to describe applications
for queues:

COMMUNICATION:

A queue can be used for communication to provide a FIFO
list of messages produced by a producer for consumption by a
consumer. For example, consider a data logging application where
data is continuously received via a serial communication link and
is to be written to a disk file. This would be a difficult
application for a sequential operating system such as CP/M
because arriving serial data would be 1lost while buffers were
being written to disk. Under MP/M a queue could be used by the
producer to send blocks of received serial data (or simply buffer
pointers) to a consumer which would write the blocks on disk.
MP/M supports concurrency of these operations, allowing the
producer to quickly write a buffer to the queue and then resume
monitoring the serial input.

SYNCHRONIZATION:

When a process attempts to read a message at a queue and
there are no messages posted at the queue, the process is placed
in a priority ordered list of processes waiting for messages at
the queue. The process will remain in that state until a message
arrives, Thus synchronization of processes can be achieved,
allowing the waiting (DQing) process to continue execution when a
message is sent to the queue.

(All Information Herein is Proprietary to Digital Research.f

53

MP/M User's Guide

Assembly Language:

CRCQUE:
DS
DB
DW
DW
DS
DS
DS
DS
DS

BUFFER: DS

2 ; QL
'CIRCQUE ' ; NAME
1 MSGLEN
80 NMBMSGS
DQPH
NQPH
MSGIN
MSGOUT
MSGCNT
BUFFER

YR THE TR YR TIE YRR TR TY

oD

)

The elements of the circular queue shown above are defined

follows:

oL
NAME

N

MSGLEN

NMBMSGS

]

DQPH

NQPH

MSGSIN

MSGS$OUT

MSGSCNT

BUFFER

Queue Overhead =

byte link, set by system
ASCII character gueue name,
set by user

bytes, length of message,
set by user

bytes, number of messages,
set by user

bytes, DQ process head,

set by system

bytes, NQ process head,

set by system

bytes, pointer to next
message in, set by system
bytes, pointer to next
message out, set by system
bytes, number of messages
in the queue, set by system
bytes, where n is equal to
the message length times the
number of messages, space
allocated by user, set by system

Note: Mutual exclusion queues require
a two byte buffer for the owner process
descriptor address.

24 bytes

LINKED QUEUES

as

The following example illustrates how to setup a queue
control block for a linked queue containing 4 messages, each 33

bytes in length:

(All Information Herein is Proprietary to Digital Research.)

55

MP/M User's Guide

MT

2 bytes, message tail,
set by system

BH = 2 bytes, buffer head,
set by system

n bytes where n is equal to
the message length plus two,
times the number of messages,
space allocated by the user,
set by the system

BUFFER

]

USER QUEUE CONTROL BLOCK

The user queue control block data structure 1is used to
provide read/write access to queues in much the same manner that
a file control block provides access to a disk file. Queues are
"opened"”, an operation which £ills in the actual queue control
block address, and then can be read from or written to.

If the actual queue address is known it can be filled in
the pointer field of the user queue control block, the 8 byte
name field can be omitted, and an open operation is not required
in order to access the queue.

The following example illustrates a user queue control
block:

PL/M:
DECLARE USERS$SQUEUESCONTROLSBLOCK STRUCTURE (
POINTER ADDRESS,
MSGADR ADDRESS,
NAME (8) BYTE)
INITIAL (9, .BUFFER, 'SPOOL "
DECLARE BUFFER (33) BYTE;

Assembly Language:

UQCB:
DS 2 ; POINTER
DW BUFFER ; MSGADR
DB 'SPOOL ' ; NAME
BUFFER:
DS 33 ; BUFFER

(All Information Herein is Proprietary to Digital Research.)

57

MP/M User's Guide

Each process in the MP/M system has a process

PROCESS DESCRIPTOR

which defines all the characteristics of the

following example illustrates the process

PL/M:

DECLARE CNS$SHNDLR STRUCTURE (

PL ADDRESS,

STATUS BYTE,

PRIORITY BYTE,

STKPTR ADDRESS,

NAME (8) BYTE,

CONSOLE BYTE,

MEMSEG BYTE,

B ADDRESS,

THREAD ADDRESS,

DISKSETDMA ADDRESS,

DISK$SLCT BYTE,

DCNT ADDRESS,

SEARCHL BYTE,

SEARCHA ADDRESS,

DRVACT ADDRESS,

REGISTERS (28) BYTE,

SCRATCH (2) BYTE)

INITIAL (@,0,200, .CNS$SSTK(19),
'CNS ',1,0FFH);

DECLARE CNSSSTK (2@) ADDRESS INITIAL (

(A1l Information Herein is Proprietary to Digital Research.)

@C7C7H,0C7C7H,0C7C7H,08C7C7H,@C7C7H,0B8C7C7H,
@C7C7H,9C7C7H,08C7C7H,0C7C7H,QC7C7H,BC7C7H,
gCc7C74,0@C7C7H,BC7C7H,BC7CTH, BCT7CTH, BCTCTH,
@C7C7H,STRTSCNS) ;

59

process.

descriptor:

descriptor

The

MP/M User's Guide

CONSOLE = 1 byte, console to be used by process,
set by user

MEMSEG = 1 byte, memory segment table index

B = 2 bytes, system scatch area

THREAD = bytes, process list thread, set
by system

DISKSSETSDMA = 2 bytes, default DMA address, set by user

DISKSSLCT = 1 byte, default disk/user code

DCNT = 2 bytes, system scratch byte

SEARCHL = 1 byte, system scratch byte

SEARCHA = 2 bytes, system scratch bytes

DRVACT = 2 bytes, 16 bit vector of drives being

accessed by the process
REGISTERS =20 bytes, 8080 / Z80 register save area
SCRATCH = 2 bytes, system scratch bytes

PROCESS NAMING CONVENTIONS

The following conventions should be used in the naming of
processes, Processes which wait on queues that are to be sent
command tails from the TMPs are given the console resource if
their name matches that of the queue which they are reading.
Processes which are to be protected from abortion by an
operator wusing the ABORT command must have at least one lower
case character in the process name.

(All Information Herein is Proprietary to Digital Research.)

61

MP/M User's Guide

~

Assembly Language:

MEMDES :
DS 1 ; base
DS 1 ; size
DS 1 ; attributes
DS 1 : bank

kkhkkhkkhkhkhkhkhkhhkhkhkhkhkhkhhhkhkhhhkkhkkhhkkhhkkkhkkkk

* *
* FUNCTION 129: RELOCATABLE MEMORY *
* REQUEST *
khkkkkhkhkhkhkhkkhhhkhkhkhkhkkhkhkhkhhkhhkhhkkhhkkkkkkkk
* Entry Parameters: *

Register C: 81H
DE: MD Address

Register A: Return code

MD filled in
AKhkhkhkhkhkkkhkhkhkhkrkhkhkkhkhkhhkhkhkkhhkhkkhkhkhkhhkkkkhikkk

* % * ¥ ¥ *

*
*
*
* Returned Value:
*
*
*

The RELOCATABLE MEMORY REQUEST function allocates the
requested contiguous memory to the calling program. The single
passed parameter is the address of a memory descriptor. The only
memory descriptor parameter filled in by the calling program is
the size, the other parameters, base, attributes and bank, are
filled in by XDOS.

The operation returns a boolean indicating whether or not
the memory request could be satisifed. A returned value of FFH
indicates failure to satisfy the request and a value of @
indicates success.

Note that base and size specify base page address and page
size where a page 1is 256 bytes. (See function 128: ABSOLUTE

MEMORY REQUEST for a description of the memory descriptor data
structure.)

(All Information Herein is Proprietary to Digital Research.)

63

MP/M User's Guide

hhkkhkhkhkhkhkhkkhkkkhkhkhkhkhhhkhhkhkkhhkhkkkkhkkhkkk

* *
* FUNCTION 132: FLAG WAIT *
* *
dhkhhhhkhkkhhhkkhkhkhkhdhkkhdhhhkkhkkhhkkhkhhkhkhkkk
* Entry Parameters: *
* Register C: B84H *
* E: Flag Number *
* *
* Returned Value: *
* Register A: Return code *
hhkkkhhhkhhhkhhhkkhkhkhkhhhkhkhhkhkhkhkkkhkkkhkkkkkhkkkk

The FLAG WAIT function causes a process to relinquish the
processor until the flag specified in the call is set. The flag
wait operation is used in an interrupt driven system to cause the
calling process to 'wait' until a specific interrupt condition
occurs.

The operation returns a boolean indicating whether or not a
successful FLAG WAIT was performed. A returned value of FFH
indicates that no flag wait occurred because another process was
already waiting on the specified flag. A returned value of @
indicates success.

Note that flags are non-queued, which means that access to
flags must be carefully managed. Typically the physical
interrupt handlers will set flags while a single process will
wait on each flag.

hkhkkkkhkhkkhkhkkhkhkhhhhkkkhhkhkhkhkhhkkhkkkkkkkkkkk

* *
* FUNCTION 133: FLAG SET *
* *

kkhkkhkhkhkkkkhkkkhkhhkhkhkhkhkhkkhkhkkkhkkkhkkkhkkkkkk*k

* Entry Parameters: *
* Register C: 85H *
* E: Flag Number *
* *
* Returned Value: *
* Register A: Return code *
hhkhkhhkhhhkkkkhkkhkhkkhkhkhkhkkhhkhkhkhkkkkkkkkkk*k

The FLAG SET function wakes up a waiting process. The FLAG
SET function is usually called by an interrupt serxvice routine
after servicing an interrupt and determining which flag is to be
set.

The operation returns a boolean indicating whether or not a

successful FLAG SET was performed. A returned value of FFH
indicates that a flag over-run has occurred, i.e. the flag was
already set when a flag set function was called. A returned

value of @ indicates success.

(All Information Herein is Proprietary to Digital Research.)

65

MP/M User's Guide

khkhkkhkhkhhkhkhhhkhkhhhkhkhhhkhhhkhhhkhkhkhhhhhkhkkkk

* *
* FUNCTION 135: OPEN QUEUE *
* *
hhkkhkhkkhkhkkhhkhkhhhhkhkkhkkkhhhkhkkhkhhkhhhkhkhkhkhkhkhkk
* Entry Parameters: *
* Register C: 87H *
* DE: UQCB Address *
* *
* Returned Value: *
* Register A: Return code *
khkhkkkhkhkhkhhkhkhkkhkhkhkkhhhkhkkhkhkhkkhkhkhhkkhkkhhhdk

The OPEN QUEUE function places the actual queue control
block address into the user queue control block. The result of
this function is that a user program can obtain access to queues
by knowing only the queue name, the actual address of the queue
itself is obtained as a result of opening the queue. Once a
queue has been opened, the queue may be read from or written to
using the queue read and write operations.

The function returns a boolean indicating whether or not
the open queue operation found the queue to be opened. A
returned value of @FFH indicates failure while a =zero indicates
success.

The user queue control block data structure is described in
section 2.3.

khkkkkkhkhkkkhkkhkhkhhhkhkhhkhkkhkkkhkhkhkhhkkhhkkkkkkk

* *
* FUNCTION 136: DELETE QUEUE *
* *

* Entry Parameters: *
* Register C: 88H *
* DE: QCB Address *
* *
* Returned Value: *
* Register A: Return Code *
khkkhkhkhkhkhhkhhkkhkhhkkkhhkhkkhkhkhkkkhhkhhkhkhkhkhkhkhkkkk

The DELETE QUEUE function removes the specified queue from
the queue list. A single parameter is passed to delete a queue,
the address of the actual queue.

The function returns a boolean indicating whether or not
the delete queue operation deleted the queue. A returned value

of OFFH indicates failure, usually because some process is DQing
from the queue. A returned value of @ indicates success.

(A1l Information Herein is Proprietary to Digital Research.)

67

MP/M User's Guide

khkkkkkkkhkkkkkhkkhkhhkkhhhkhkkhhkhkkkkkkhkkkhhkkkkkk

* *
* FUNCTION 139: WRITE QUEUE *
* *

kkhkkhkhkkhhkkhkhkkhhkhhkkhhhhkhhkhkkkkhkkhhkhhkhkhkhkkikk

* Entry Parameters: *
* Register C: 8BH *
* DE: UQCB Address *
* Message to be sent *
* *
hkhkkkhkhkhkhkkhhhhkhkhkhkhkhkhkhkhkhhkhkkhhkkkhhhhkhkhkk

The WRITE QUEUE function writes a message to a specified
queue. If no buffers are available at the queue, the calling
process relinquishes the processor until a buffer is available at
the queue. The single passed parameter is the address of a user
queue control block. When a buffer is available at the queue,
the buffer pointed to by the MSGADR field of the user queue
control block is copied into the actual queue.

khhkkhhkkhhkkhkhkhkhkkkhkkhkhkhkkhhhkkkhkkhkkhkkk

* *
* FUNCTION 140: CONDITIONAL WRITE *
* QUEUE *
* *
kkkkhkkkhkkhhkkhkkhhkkkhkhkkkkhkkhkkhkhkkkkkkkkkk
* Entry Parameters: *
* Register C: 8CH *
* DE: UQCB Address *
* Message to be sent *
* *
* Returned Value: *
* Register, A: Return code *
hhkkkkkhkhkkkkhkkkkhkkkhkhkhkkkkhkhkkkkkhkkkhkkkhkkkkk

The CONDITIONAL WRITE QUEUE function writes a message to a
specified queue if a buffer 1is available. The single passed
parameter is the address of a user queue control block. If a
buffer is available at the queue, the buffer pointed to by the
MSGADR field of the user queue control block is copied into the
actual queue.

The operation returns a boolean indicating whether or not a
buffer was available at the queue, A returned value of @FFH
indicates no buffer while a zero indicates that a buffer was
available and that the user buffer was copied into it.

(All Information Herein is Proprietary to Digital Research.)

69

MP/M User's Guide

khkkkkhkhkkhhhkhkhkkhkhkkhkhkhkhkhkhkkhkkhkhhkkkkkhkkkkkk

* *
* FUNCTION 143: TERMINATE PROCESS *
* *
hkhkkkhkkhkkhhkkkhhkkhkhhkkhhkkhkhkhkkhkhkhkkhhkhkhkkkkkhkdkk
* Entry Parameters: *

* Register C: 8FH *
* D: Conditional *
* Memory Free *
* E: Terminate Code *
* *
* *.

khkhkkhkhkkhkhkhkkhkkkhhkhkhkhkhkkhkkhhkhkhhkkkhkhkkk

The TERMINATE PROCESS function terminates the <calling
process. The passed parameters indicate whether or not the
process should be terminated if it is a system process and if the
memory segment is to be released. A @FFH 1in the E register
indicates that the process should be unconditionally terminated,
a zero indicates that only a user process is to be deleted. If
a user process is being terminated and Register D is a @FFH, the
memory segment is not released. Thus a process which is a child
of a parent process both executing in the same memory segment
can terminate without freeing the memory segment which is also
occupied by the parent.

There are no results ‘returned from this operation, the

calling process simply ceases to exist as far as MP/M is
concerned.

R I I I I

* *
* FUNCTION 144: CREATE PROCESS *
* *
khkhkhkhhkhkkhkhkkkhkkkkkhkkhkkhkkkhkkkkkkkhkkhkhkkkk
* Entry Parameters: *

Register C: 9¢H
DE: PD Address

* * F ¥ ¥

PD filled in

*
*
*
* Returned Value:
*
khkkkkhkhkkhkhhhhkhkhkhkkhhkkhkhkkhkhkhhhkkkkk

The CREATE PROCESS function creates one or more processes
by placing the passed process descriptors on the MP/M ready list.

A single parameter is passed, the address of a process
descriptor. The first field of the process descriptor is a link
field which may point to another process descriptor.

Processes can only be created either in common memory or by

(A1l Information Herein is Proprietary to Digital Research.)

71

MP/M User's Guide

khkkhkhkkkkhkhkhhkhhkhkhhkkkhhkhhkhkkhhhhhhhkkhhhxk

* *
* FUNCTION 147: DETACH CONSOLE *
* *
hhkkhhkhkhhhhkkhhkkhhkkkhkhkhkkhhhkkhkhhkhhhkkkk
* Entry Parameters: *
* Register C: 93H *
* *

dhkhkkkkkhhkhkkhkkhhkkkkhkhkkhhkhhkhkhkhhkkhkhkkhhhkkk

The DETACH CONSOLE function detaches the console specified
in the CONSOLE field of the process descriptor from the calling
process., If the console is not currently attached no action
takes place.

There are no passed parameters and there are no returned
results.

khkkhkhkhkhkhkkhkhkkkkhkhkkkhkkhkhkhkkkhkkkkkkkhkkkkkk

* *
* FUNCTION 148: SET CONSOLE *
* *
hkhkkhkhkhkhkhhhkhkhkhkhkkkhkhkkhhhkhkkhdkhdkhkhkdkhkhkkkk
* Entry Parameters: *
* Register C:. 94H *
* E: Console *
* *

khkkhkhkkhhkhhhkhhkhkhhkhkhhhkhkhhkkhkhkkhkkkkhhkhhkkhkik

The SET CONSOLE function detaches the currently attached
console and then attaches the console specified as a calling
parameter. If the console to be attached is already attached to
another process descriptor, the calling process relinquishes the
processor until the console is available.

A single passed parameter contains the console number to be
attached. There are no returned results.

(All Information Herein is Proprietary to Digital Research.)

73

MP/M User's Guide

khkhkhkAhkhhkhhhhkhkhkhkhhhkhkhkkhkkhkhkhkhkkhkhhhhhhkhkk

* *
* FUNCTION 15@0: SEND CLI COMMAND *
* *
khkhkhkhkkhkkhkhkkhkhhkhkhkhkhhkhkhkhkhkhkhkhhhkhhkhkkhkhhkkkk
* Entry Parameters: *
* Register C: 96H *
* DE: CLICMD Address *
* *

khkkkhkhkhkhkhkhkhkhkkhkhkhkhkhhhkkhkhhkkhhkkhkhkhkhkhkkkkk

The SEND CLI COMMAND function permits running programs to
send command 1lines to the Command Line Interpreter. A single
parameter is passed which is the address of a data structure
containing the default disk/user code, console and command line
itself (shown below).

The default disk/user code is the first byte of the data
structure. The high order four bits contain the default disk
drive and the low order four bits contain the user code. The
second byte of the data structure contains the console number for
the program being executed. The ASCII command line begins with
the third byte and is terminated with a null byte.

There are no results returned to the calling program.

The following example illustrates the SEND CLI COMMAND data
structure:

PL/M:
Declare CLIS$command structure (
disk$user byte,
console byte,
command$line (129) byte);

Assembly Language:
CLICMD:
DS 1 ; default disk / user code
DS 1 ; console number
DS 129 ; command line

(All Information Herein is Proprietary to Digital Research.)

75

MP/M User's Guide

khkkhkdkhkkkhkhhhkhkhkhkkhkkhkhhkkhkhkhkhhkhhkhkkhkhhkhhhkihkx

* *
* FUNCTION 152: PARSE FILENAME *
* *

dhhhkhhkkhkhhhkhkhhkhhhhhhkhhhkhkhhhkhkhkhhhhhkhkhkk

* Entry Parameters:
Register C: 98H
DE: PFCB Address

Registers HL: Return code

Parsed file control block

*
*
*
*
*
*
*
khkkhkhkkhhhhkkkhkhkkhkhhhkhkhkkhhhkkkhhhkkhhkkkkkx

*
*
*
* Returned Value:
*
*
*

The PARSE FILENAME function prepares a file control block
from an input ASCII string containing a file name terminated by a
null or a carriage return. The parameter is the address of a
data structure (shown below) which contains the address of the
ASCII file name string followed by the address of the target file
control block.

The operation returns an FFFFH if the input ASCII string
contains an invalid file name. A zero is returned if the ASCII
string contains a single valid file name, otherwise the address
of the first character following the file name is returned.

The following example illustrates the parse file name
control block data structure:

PL/M:

Declare Parse$FNSCB structure (
File$Sname$Sadr address,
FCBS$adr address) initial (
.file$name,.fcb);

Declare file$name (128) byte;
Declare fcb (36) byte;

Assembly Language:

PFNCB:
DW FLNAME
DW FCB
FLNAME:
DS 128
bps 36

(All Information Herein is Proprietary to Digital Research.)

77

MP/M User's Guide

khkkhkhkkhkhkhkkkhkkkhhhkhkkhkhkkkhkhkkhkhkhkkhkkhhkdkk

* *
* FUNCTION 155: GET DATE AND TIME *
* *
khkhkhkhkhkhkhhkhhhhkhhkhhkhhhkhhhkhhhhhhhkhkhhkhhhhhk
* Entry Parameters: *
* Register C: O9BH *
* DE: TOD Address *
* *
* Returned Value: *
* Time and date *
khkkkkkhkhkhkhkkkhkkkkkkhkhkkkhkhkkhhhkhkkkkk*

, The GET DATE AND TIME function obtains the current encoded
date and time. A single passed parameter is the address of a
data structure (shown below) which is to contain the date and
time. The date 1is represented as a 16-bit integer with day 1
corresponding to January 1, 1978. The time 1is respresented as
three bytes: hours, minutes and seconds, stored as two BCD
digits.

The following example illustrates the TOD data structure:

PL/M:
Declare TOD structure (
date address,
hour byte,
min byte,
sec byte);

Assembly Language:

TOD: DS 2 ; Date
DS 1 ; Hour
DS 1 : Minute
DS 1 ; Second

khkkkkhkhkkhkkhhkkkkhkhhkkkkhhkkhkkhkhkhkkhkkkkkkkkk

* *
* FUNCTION 156: RETURN PROCESS *
* DESCRIPTOR ADDRESS *

khkkkkhkkkhkhhkkhkhkkkkhhkkkkhkkkhkkkkkkkhkhhkkhkk

* Entry Parameters: *
* Register C: 9CH *
* *
* Returned Value: *
* Register HL: PD Address *
KAk AKKRKAAAR KRR A AR AR kAhhkhkkhhkhkdkkhkhd®

The RETURN PROCESS DESCRIPTOR ADDRESS function obtains
the address of calling processes process descriptor. By
definition this is the head of the ready list,

(All Information Herein is Proprietary to Digital Research.)

79

MP/M User's Guide

2.5 Preparation of Page Relocatable Programs

A page relocatable program is stored on diskette as a file

of type 'PRL', Appendix K contains a PRL file specification
describing the file format. A page relocatable program is
prepared by assembling the source program twice, in which the
second assembly has 100H added to each ORG statement. The two

hex files generated by assembling the source file twice are
concatenated with PIP and then provided as input to the GENMOD
program, The GENMOD program (described in section 1.4) produces
a file of type 'PRL'.

This section describes APPENDIX G: Sample Page Relocatable
Program. The example program illustrates the required use of ORG
statements to access the BDOS and the default file control block.
Note that the initial ORG is @#@00@PH. Its purpose is to establish
the equate for the symbol BASE, the base of the relocatable
segment. Next an ORG 100H statement establishes the actual
beginning of code for the program. During the second assembly
these two ORG statements are changed to 100H and 200H
respectively. Note that the first assembly will generate a file
which can be LOADed to produce an executable 'COM' file. 1In
fact, it is desirable to first debug the program as a 'COM' file
and then proceed to make the 'PRL' file,

It is VERY important to use BASE to offset all memory
segment base page references! Do not make a call to absolute
@P@5H for BDOS calls. In this example BASE is used to offset the
BDOS, FCB, and BUFF equates. When a user program needs to
determine the top of its memory segment the following equate and
code sequence should be used: h

MEMSIZE EQU BASE+6

LHLD MEMSIZE ;HL = TOP OF MEMORY SEGMENT

The following steps show how to generate a page relocatable file
for this example wusing the Digital Research Macro Assembler
(MAC) :

* Prepare the user program, DUMP.ASM in this example, with
proper origin statements as described above.

* Assuming a system disk in drive A: and the DUMP.ASM file
is on drive B:, enter the commands-

1A>MAC B:DUMP $PP+S

;assemble and list the DUMP.ASM file
1A>ERA B:DUMP.HX0

(All Information Herein is Proprietary to Digital Research.)

81

MP/M User's Guide

2.6 Installation of Resident System Processes

This section contains a description of APPENDIX H: Sample
Resident System Process. The example program illustrates the
required structure of a resident system process as well as the
BDOS/XDOS access mechanism.

The first two bytes of a resident system process are set to
the address of the BDOS/XDOS entry point. The address is filled
in by the loader, providing a simple means for a resident system
process to access the BDOS/XDOS by loading HL from the base of
the program area and then executing a PCHL instruction.

The process descriptor for the resident system process must
immediately follow the first two bytes which contain the address
of the BDOS/XDOS entry point. Observe the manner in which the
process descriptor is initialized in the example. The DS's are
used where storage 1is simply allocated. The DB's and DW's are
used where data in the process descriptor must be initialized.
Note that the stack pointer field of the process descriptor
points to the address immediately following the stack allocation.
This is the return address which is the actual process entry
point.

It is important that the HEX file generated by assembling
the RSP span the entire program and data area. For this reason
the first two bytes of the resident system process which will
contain the address of the BDOS/XDOS entry point are defined with
a DW. Using a DS would not generate any HEX file code for those
two bytes. The end of the program and data area must be defined
in a 1likewise manner. If your RSP has DS statements preceding
the END statement it will be necessary to place a DB statment
after the DS statements before the END statement.

The steps to produce a resident system process closely
follow those 1illustrated 1in the previous section on page
relocatable programs. The only exception to the procedure is
that the GENMOD output file should have a type of 'RSP' rather
than 'PRL' and the code in the RSP is ORGed at @@0H rather than
100H.

In addition to resident system processes MP/M supports
resident system procedures. The purpose of a resident system
procedure is to provide a means to use a piece of code as a
serially reusable resource. A resident system procedure is set
up by a resident system process. The function of the process is
to create a queue which has the name of the resident system
procedure and to send it one 16 bit message containing the
address of the resident system procedure. Once this is
accomplished the resident system process terminates itself.
Access to the resident system procedure is made by opening the
queue with the resident system procedure name and then reading
the two byte message to obtain the actual memory address of the

(All Information Herein is Proprietary to Digital Research.)

83

MP/M User's Guide

3. MP/M ALTERATION GUIDE

3.1 Introduction

The standard MP/M system assumes operation on an 1Intel
MDS-80@ microcomputer development system, but is designed so that
the user can alter a specific set of subroutines which define the
hardware operating environment. In this way, the user can
produce a diskette which operates with any IBM-3741 format
compatible diskette subsystem and other peripheral devices.

Although standard MP/M is configured for single density
floppy disks, field-alteration features allow adaptation to a
wide variety of disk subsystems from single drive minidisks
through high-capacity "hard disk" systems.

In order to achieve device independence, MP/M is distinctly
separated into an XIOS module which 1is hardware environment
dependent and several other modules which are not dependent upon
the hardware configuration.

The user can rewrite the distribution version of the MP/M
XI0OS to provide a new XIOS which provides a customized interface
between the remaining MP/M modules and the wuser's own hardware
system., The user can also rewrite the distribution version of
the LDRBIOS which is used to load the MP/M system from disk.

The purpose of this section is to provide the following
step-by-step procedure for writing both your LDRBIOS and new XIOS
for MP/M:

(1) Implement CP/M 2.0 on the target computer

To simplify the MP/M adaptation process, we assume (and
STRONGLY recommend) that CP/M 2.0 has already been implemented on
the target MP/M machine. If this is not the case it will be
necessary for the wuser to implement the CP/M 2.6 BIOS as
described 1in the Digital Research document titled "CP/M 2.9
Alteration Guide" in addition to the MP/M XIOS. The reason that
both the BIOS and XI0S have to be implemented is that the MP/M
loader uses the CP/M 2.0 BIOS to load and relocate MP/M. Once
loaded, MP/M uses the XI0OS and not the BIOS. The CP/M 2.0 BIOS
used by the MP/M loader is called the LDRBIOS.

Another good reason for implementing CP/M 2.0 on the target
MP/M machine is that debugging your XIOS is greatly simplified by

bringing up MP/M while running SID or DDT under a CP/M 2.0
system.

(All Information Herein is Proprietary to Digital Research.)

85

MP/M User's Guide

E.) Write the updated memory image onto a disk file using
the CP/M 'SAVE' command. The 'X' placed in front of the file
name is used simply to designate an experimental version,
preserving the orginal.

A>SAVE 26 XMPMLDR.COM

F.) Test XMPMLDR.COM and then rename it to MPMLDR.COM.

(3) Prepare your custom XIOS

If MP/M is being tailored to your computer system for the
first time, the new XIOS requires some relatively simple software
development and testing. The standard XIOS is listed in APPENDIX
I, and can be used as a model for the customized package.

The XIOS entry points, including both basic and extended,
are described in sections 3.2 and 3.3. These sections along with
APPENDIX I ©provides you with the necessary information to write
your XIOS. We suggest that your initial implementation of an
XIOS utilize polled I/0 without any interrupts. The system will

run without even a clock interrupt. The origin of your XIOS
should be @000H. Note the two equates needed to access the
dispatcher and XDOS from the XIOS:
ORG @@ 00oH
PDISP EQU $-3
XDOS EQU PDISP-3

The procedure to prepare an XIOS.SPR file from vyour
customized XIOS is as follows:

A.) Assemble your XIOS.ASM and then rename the XIOS.HEX
file to XIOS.HX®.

B.) Assemble your XIOS.ASM again specifying the +R option
which offsets the ORG statements by 1060H bytes. Or, edit your
XIOS.ASM and change the initial ORG @@PH to an ORG 1@PH and
assemble it again.

C.) Use PIP to concatenate your two HEX files:

A>PIP XIOS.HEX=XIO0S.HX@,XI0S.HEX

D.) Run the GENMOD program to produce the XIOS.SPR file
from the concatenated HEX files.

A>GENMOD XIOS.HEX XIOS.SPR

(A1l Information Herein is Proprietary to Digital Research.)

87

MP/M User's Guide

Breakpoint RST # = 7

e o0

C.) 1If a resident system process is being debugged make
certain that it is selected for inclusion in MPM.SYS.

D.) Using CP/M 1.4 or 2.0, load the MPMLDR.COM file into
memory.

A>DDT MPMLDR.COM
DDT VERS 2.0
NEXT PC

1A00 ¢100

E.) Place a 'B' character into the second position of
default FCB. This operation can be done with the 'I' command:

-1IB

F.) Execute the MPMLDR.COM program by entering a 'G'
command:

-G

G.) At point the MP/M loader will load the MP/M operating
system into memory, displaying a memory map.

H.) If you are debugging an XIOS, note the address of the
XIOS.SPR memory segment. If you are debugging a resident system
process, note the address of the resident system process. This
address is the relative 00OPH address of the code being debugged.
You must also note the address of SYSTEM.DAT.

I.) Using the 'S' command, set the byte at SYSTEM.DAT + 2
to the restart number which you want the MP/M debugger to use.
Do not select the same restart as that being used by the CP/M
debugger.

Memory Segment Table:
SYSTEM DAT D6@OGH @1l00H

* o 0

-SD6@2
D602 67 @5

J.) Using the 'X' command, determine the MP/M beginning
execution address. The address is the first location past the
current program counter,

=X

(A1l Information Herein is Proprietary to Digital Research.)

89

MP/M User's Guide

Either the SID or DDT debugger can be used in place of
writing a GETSYS program as is shown in the following example
which also uses SYSGEN in place of PUTSYS. Sample skeletal
GETSYS and PUTSYS programs are described later in this section
(for a more detailed description of GETSYS and PUTSYS see the
"CP/M 2.0 Alteration Guide").

In order to make the MP/M system load and run
automatically, the user must also supply a cold start loader,
similar to the one described in the "CP/M 2.0 Alteration Guide".
The purpose of the cold start loader is to load the MP/M loader
into memory from the first two tracks of the diskette. The CP/M
2.0 cold start loader must be modified in the following manner:
the 1load address must be changed to 0190H and the execution
address must also be changed to @100H.

The following techniques are specifically for the MDS-800
which has a boot ROM that loads the first track into location
30909H. However, the steps shown can be applied in general to any
hardware.

If a SYSGEN program is available, the following steps can
be used to prepare a diskette that cold starts MP/M:

A,) Prepare the MPMLDR.COM file by integrating your custom
LDRBIOS as described earlier in this section. Test the
MPMLDR.COM and verify that it operates properly.

B.) Execute either DDT or SID.

A>DDT
DDT VERS 2.0

C.) Using the input command ('I') specify that the
MPMLDR.COM file is to be read in and then read ('R') in the file
with an offset of 880H bytes.

~IMPMLDR.COM
-R880

NEXT PC
2480 0100

D.) Using the 'I' command specify that the BOOT.HEX file
is to be read in and then read in the file with an offset that
will load the boot into memory at 9¢0@H. The 'H' command can be
used to calculate the offset.

-H900 3000
3900 D900

-IBOOT.HEX

-RD9¢ @
NEXT PC

(A1l Information Herein is Proprietary to Digital Research.)

91

MP/M User's Guide

PUTSYS PROGRAM - WRITE TRACKS @ AND 1 FROM MEMORY AT 3380H

14
; REGISTER USE
; A (SCRATCH REGISTER)
H B TRACK COUNT (@, 1)
; C SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
H SP SET TO STACK ADDRESS
14
START: LXI SP,3380H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3380H ;SET BASE. LOAD ADDRESS
MVI B, @ ; START WITH TRACK ¢
WRTRK: ;WRITE NEXT TRACK (INITIALLY 0)
MVI C,1 ;WRITE STARTING WITH SECTOR 1
WRSEC: ;WRITE NEXT SECTOR
CALL WRITESEC ;USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;HL = HL + 128
INR Cc ;SECTOR = SECTOR + 1
MOV a,C ;CHECK FOR END OF TRACK
CPI 27
Jc WRSEC ;CARRY GENERATED IF SECTOR < 27
14
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
Jc WRTRK ; CARRY GENERATED IF TRACK < 2

we wo

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO WRITE THE DISK
RITESEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

we wo we wg zso ~

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

® © 0 0 0 0 0 00 0 000000000 0050 00006000 0600000000000

perform disk write at this point, branch to

label START if an error occurs

® © 0 0 06060 56000800 © 0000000000000 0000000000000c0

POP H ;RECOVER HL
POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

(All Information Herein is Proprietary to Digital Research.)

93

MP/M User's Guide

Track# Sector#

2o
20

g1
g2
23
g4
@5
06
g7
g8
29
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
g1
g2
23
g4
@5
g6
87
08
g9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Page#
g0
g1

"

g2

@3

g4

@5

g6
@7

08

g9
10
11

12

13

14
15

16

17

18

19

20

21

22

23

24
1]

25

Memory Address
(boot address)

$100H
#180H
@200H
@280H
P300H
#380H
0400H
#480H
@500H
@580H
P600H
9680H
@700H
@780H
¥800H
#880H
#900H
#980H
@AOOH
PABOH
@BOOH
#B8OH
@COOH
@C80H
@D@OH
PD8PH
PEQOH
PE8OH
@F@0oH
OF80PH
1000H
1980H
11008
1180H
1200H
1280H
1300H
138¢H
1400H
1480H
1500H
1580H
1600H
1680H
1700H
1780H
1800H
1880H
190 0H
1980H
1AQ0H

MP/M Module name
Cold Start Loadet
MPMLDR

1]

MPMLDR
LDRBDOS

LDRBDOS
LDRBIOS

LDRBIOS

(All Information Herein is Proprietary to Digital Research.)

95

MP/M User's Guide

and CONOUT subroutines (LIST and LSTST may be used by PIP, but
not the BDOS).

The characteristics of each device are

CONSOLE The principal interactive consoles which
communicate with the operators, accessed through
CONST, CONIN, and CONOUT. Typically, CONSOLEs are
devices such as CRTs or Teletypes.

LIST The principal listing device, if it exists on your
'system, which is usually a hard-copy device, such
as a printer or Teletype.

DISK Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines
which set up the disk number to access, the track
and sector on a particular disk, and the direct
memory access (DMA) address involved in the 1I/0
operation. After all these parameters have been
set up, a call is made to the READ or WRITE
function to perform the actual I/O0 operation.
Note that there is often a single call to SELDSK
to select a disk drive, followed by a number of
read or write operations to the selected disk
before selecting another drive for subsequent
operations. Similarly, there may be a single
call to set the DMA address, followed by several
calls which read or write from the selected DMA
address before the DMA address is changed. The
track and sector subroutines are always called
before the READ or WRITE operations are
performed.

Note that the READ and WRITE routines
should perform several retries (14 is standard)
before reporting the error condition to the BDOS.
If the error condition is returned to the BDOS,
it will report the error to the user. The HOME
subroutine may or may not actually perform the
track #0 seek, depending upon your controller
characteristics; the important point 1is that
track 00 has been selected for the next
operation, and is often treated in exactly the
same manner as SETTRK with a parameter of 04.

The exact responsibilities of each entry point subroutine are
given below:

BOOT The BOOT entry point gets called from the MP/M
loader after it has been loaded by the cold start

(All Information Herein is Proprietary to Digital Research.)

97

MP/M User's Guide

SELDSK

SETTRK

SETSEC

Select the disk drive given by register C for
further operations, where register C contains @
for drive A, 1 for drive B, and so-forth up to 15
for drive P (the standard MP/M distribution
version supports four drives). On each disk
select, SELDSK must return in HL the base address
of a 16-byte area, called the Disk Parameter
Header, described in the digital research
document titled "CP/M 2.0 Alteration Guide". For
standard floppy disk drives, the contents of the
header and associated tables does not change, and
thus the program segment included in the sample
XIOS performs this operation automatically. 1If
there is an attempt to select a non-existent
drive, SELDSK returns HL=0@@GPH as an error
indicator.

On entry to SELDSK it 1is possible to
determine whether it is the first time the
specified disk has been selected. Register E,
bit @ (least significant bit) is a zero if the
drive has not been previously selected. This
information is of interest in systems which
read configuration information from the disk
in order to set up a dynamic disk definition
table.

Although SELDSK must return the header
address on each call, it is advisable to postpone
the actual physical disk select operation until
an I/0 function (seek, read or write) is actually
performed, since disk selects often occur without
utimately performing any disk 1I/0, and many
controllers will unload the head of the current
disk before selecting the new drive. This would
cause an excessive amount of noise and disk wear.

Register BC contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register BC can take on values in the range @#-76
corresponding to valid track numbers for standard
floppy disk drives, and #-65535 for non-standard
disk subsystems. :

Register BC contains the sector number (1 through
26) for subsequent disk accesses on the currently
selected drive. You can choose to send this
information to the controller at this point, or
instead delay sector selection until a read or
write operation occurs.

(All Information Herein is Proprietary to Digital Research.)

99

MP/M User's Guide

SECTRAN

Performs sector 1logical to physical sector
translation in order to improve the overall
response of MP/M. Standard MP/M systems are
shipped with a "skew factor" of 6, where six
physical sectors are skipped between each logical
read operation. This skew factor allows enough
time between sectors for most programs to load
their buffers without missing the next sector.
In particular computer systems which use fast
processors, memory, and disk subsystems, the skew
factor may be changed to improve overall
response. Note, however, that you should
maintain a single density IBM compatible version
of MP/M for information transfer into and out of
your computer system, using a skew factor of 6.
In general, SECTRAN receives a logical sector
number in BC, and a translate table address in
DE. The sector number is used as an index into
the translate table, with the resulting physical
sector number in HL. For standard systems, the
tables and indexing code is provided in the XIOS
and need not be changed.

(All Information Herein is Proprietary to Digital Research.)

101

MP/M User's Guide

STOPCLOCK

EXITREGION

MAXCONSOLE

SYSTEMINIT

ticks of the system time unit, the start clock
procedure is called.

The purpose of the STARTCLOCK procedure is
to eliminate unneccessary system clock ‘interrupt
overhead when there are not any delayed
processes.

In some hardware environments it 1is not
acutally possible to shut off the system time
unit clock while still maintaining the one second
flag used for the purposes of keeping time of
day. In this situation.the STARTCLOCK procedure
simply sets a boolean variable to true,
indicating that there is a delayed process. The
clock interrupt handler can then determine if
system time unit flag is to be set by testing the
boolean.

When the system delay list is emptied the stop
clock procedure is called.

The purpose of the STOPCLOCK procedure is
to eliminate unneccessary system clock interrupt
overhead when there are no delayed processes.

In some hardware environments it 1is not
acutally possible to shut off the system time
unit clock while still maintaining the one second
flag used for the purposes of keeping time of
day. (i.e. a single clock/timer interrupt source
is wused.) In this situation the STOPCLOCK
procedure simply sets a boolean variable to
false, 1indicating that there are no delayed
processes. The clock interrupt handler can then
determine 1if the system time unit flag is to be
set by testing the boolean.

The purpose of the exit region procedure is to
test a preempted flag, set by the interrupt
handler, enabling interrupts if preempted Iis
false. This procedure allows interrupt service
routines to make MP/M system calls, leaving
interrupts disabled until completion of the
interrupt handling.

The purpose of the maximum console procedure is
to enable the calling program to determine the
number of physical consoles which the BIOS is
capable of supporting. The number of physical
consoles is returned in the A register.

The purpose of the system initialization

(All Information Herein is Proprietary to Digital Research.)

193

MP/M User's Guide

INTERRPUT SERVICE ROUTINES

The MP/M operating system 1is designed to work with
virtually any interrupt architecture, be it flat or vectored..
The function of the code operating at the interrupt level is to

save the required registers, determine the cause of the
interrupt, remove the interrupting condition, and to set an
appropriate flag. Operation of the flags are described in

section 2.4. Briefly, flags are used to synchronize asynchronous
processes. One process, such as an interrupt service routine,
sets a particular flag while another process waits for the flag
to be set.

At a logical level above the physical interrupts the flags
can be regarded as providing 256 levels of virtual interrupts (32
flags are supported under release 1 of MP/M). Thus, logical
interrupt handlers wait on flags to be set by the physical
interrupt handlers. This mechanism allows a common XDOS to
operate on all microcomputers, regardless of the hardware
environment. o

As an example consider a hardware environment with a flat
interrupt structure. That 1is, a single interrupt level is
provided and devices must be polled to determine the cause of the
interrupt. Once the interrupt cause 1is determined a specific
flag 1is set indicating that that particular interrupt has
occurred.

At the conclusion of the interrupt processing a jump should
be made to the MP/M dispatcher. This is done by jumping to the
PDISP entry point. The effect of this jump is to give the
processor to the highest priority ready process, usually the
process readied by setting the flag in the interrupt handler, and
then to enable interrupts before jumping to resume execution of
the process.

The only XDOS or BDOS call which should be made from an
interrupt handler 1is FUNCTION 133: FLAG SET. Any other XDOS
or BDOS call will result in a dispatch which would then enable
interrupts prior to completing execution of the interrupt
handler.

It is recommended that interrupts only be used for
operations which are asynchronous, such as console input or disk

operation complete. In general, operations such as console
output should not be interrupt driven. The reason that
interrupts are not desirable for console output 1is that the

system is afforded some elasticity by performing polled console
outputs while idling, rather than incurring the dispatch overhead
for each character transmitted. This is particularily true at
higher baud rates.

(All Information Herein is Proprietary to Digital Research.)

1085

MP/M User's Guide

3.4 System File Components

The MP/M system file, 'MPM.SYS' <consists of five
components: the system data page, the customized XIOS, the BDOS
or ODOS, the XDOS, and the resident system processes. MPM,SYS
resides in the directory with a user code of @ and is usually
read only. The MP/M loader reads and relocates the MPM.SYS file
to bring up the MP/M system.

SYSTEM DATA

The system data page contains 256 bytes used by the 1loader
to dynamically configure the system. The system data page can be
prepared using the GENSYS program or it can be manually prepared

using DDT or SID. The following table describes the byte
assignments:
Byte Assignment

p00-000 Top page of memory

PP#1-0@1 Number of consoles

@P2-902 Breakpoint restart number

0P3-003 Allocate stacks for user system calls, boolean
PP4-004 Bank switched memory, boolean

@05-0B85 Z80 CPU, boolean

PP6-006 Banked BDOS file manager, boolean

@@7-015 Unassigned, reserved

#16-047 Initial memory segment table

P48-079 Breakpoint vector table, filled in by DDTs
#80-111 Stack addresses for user system calls
112-122 Scratch area for memory segments

123-127 Unassigned, reserved

128-143 Submit flags

144-255 Reserved

CUSTOMIZED XIOS

The customized XIOS 1is obtained from a file named
'XIOS.SPR', The 'XIOS.SPR' file is actually a file of type PRL
containing the ©page relocatable version of the user customized
XI0S8s. A submit file on the distribution diskette named
'MACSPR.SUB' or 'ASMSPR.SUB' can be used to generate the user
customized XIOS. The following sequence of commands will produce
a 'XIOS.SPR' file given a user 'XIOS.ASM' file:

(All Information Herein is Proprietary to Digital Research.)

107

MP/M User's Guide

* The process descriptor for the resident system process
must begin at the third byte position. The contents of the
process descriptor are described in section 2.3.

BNKBDOS

In addition to the MPM.SYS file a file named 'BNKBDOS.SPR'
is wused in systems with a banked BDOS. It is a page relocatable
file containing the non-resident portion of the banked BDOS.
This file is not used by systems without banked memory.

(All Information Herein is Proprietary to Digital Research.)

109

MP/M User's Guide

Breakpoint RST #: The breakpoint restart number to be used
by the SID and DDT debuggers is specified. Restart @ 1is not
allowed. Other restarts required by the XIOS should also not be
used.

Add system call user stacks (Y/N)?: If you desire to
execute CP/M *,COM files then your response should be Y. A 'Y'
response forces a stack switch with each system call from a' user
program. MP/M requires more stack space than CP/M.

Bank switched memory (Y/N)?: If your system does not have
bank switched memory then you should respond with a 'N',
Otherwise respond with a '¥Y' and additional questions and
responses (as shown in the second example) will be required.

Memory segment bases: Memory segmentation is defined by
the entries which are made. Care must be taken in the entry of
memory bases as all entries must be made with successively higher
bases. If your system has ROM at 0@0@0H then the first memory
segment base which you specify should be your first actual RAM
location. Only page relocatable (PRL) programs can be run in
systems that do not have RAM at location Q@@0H.

Select Resident System Processes: A directory search is
made for all files of type RSP. Each file found is listed and
included in the generated system file if you respond with a 'Y'.

The second example illustrates a more complicated GENSYS in
which a system is setup with bank switched memory and a banked
BDOS. This procedure requires an intial GENSYS and MPMLDR
execution to determine the exact size of the operating system,
followed by a second GENSYS.

A>GENSYS

MP/M System Generation

Top page of memory =
Number of consoles = 2

Breakpoint RST # =

Add system call user stacks (Y/N)? y

Z80 CPU (Y/N) y

Bank switched memory (Y/N)? vy

Banked BDOS file manager (Y/N)? y

Enter memory segment table: (ff terminates list)
Base,size,attrib,bank = 0,56,0,0
Base,size,attrib,bank = ff

Select Resident System Processes: (Y/N)

ABORT ?2 n

SPOOL ? n

- (All Information Herein is Proprietary to Digital Research.)

111

MP/M User's Guide

XI0S SPR F600H 0600H
BDOS SPR EE@OH @800H
XDOS SPR CF@O@H 1Fg0@H
Sched RSP CAQOH @500H
BNKBDOS SPR BC@OOH OE@QH

Memseqg Usr @@00H 50006H Bank 0O0H

Using the information obtained from the initial GENSYS and MPMLDR
execution the following GENSYS can be executed:

A>GENSYS

MP/M System Generation

Top page of memory =
Number of consoles = 2
Breakpoint RST # =6

Add system call user stacks (Y¥/N)? y

280 CPU (Y/N)? y

Bank switched memory (Y/N)? y

Banked BDOS file manager (Y/N)? y

Enter memory segment table: (ff terminates list)

Base,size,attrib,bank = 0,bc,0,0
Base,size,attrib,bank g,c0,0,1
Base,size,attrib,bank g,c0,0,2

Base,size,attrib,bank = ff
Select Resident System Processes: (Y/N)

ABORT ?n
SPOOL ?n
MPMSTAT ? n
SCHED 2y

(All Information Herein is Proprietary to Digital Research.)

113

MP/M User's Guide

In the following example the 'MPM.SYS'
second GENSYS example shown in section 3.5 is loaded:

A>MPMLDR

MP/M Loader

Number of consoles =
Breakpoint RST # =
Z80 CPU

2
6

Banked BDOS file manager

Top of memory =

Memory Segment Table:

FFFFH

SYSTEM DAT FFO@OH 0100H
CONSOLE DAT FD@@H @200H
USERSYS STK FCOPH Ol00H
XIO0Ss SPR F60PH 0600H
BDOS SPR EE@@H 0800PH

XDOS SPR CF@gH 1

F@OH

Sched RSP CA@@H @500H
BNKBDOS SPR BC@OUH OE@OH

Memseg Usr @00PH C@@OGH Bank @2H
Memseg Usr @@00H C@O@PH Bank @1lH
Memseg Usr @0@00H BC@OOPH Bank @0H

(All Information Herein is Proprietary to Digital Research.)

115

file

prepared by

the

MP/M User's Guide

APPENDIX B: Process Priority Assignments

@ - 31 : Interrupt handlers

32 - 63 : System processes

64 - 197 : Undefined
198 : Teminal message processes
199 : Command line interpreter
208 : Default user priority

201 - 254 : User processes
255 : Idle process

(All Information Herein is Proprietary to Digital Research.)

117

MP/M User's Guide

APPENDIX D: XDOS Function Summary

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
128 Absolute Memory Rgst DE = .MD A = err code
129 Relocatable Mem Rgst DE = ,MD A = err code
139 Memory Free DE = .MD none

131 Poll E = Device none

132 Flag Wait E = Flag A = err code
133 Flag Set E = Flag A = err code
134 Make Queue DE = ,QCB none

135 Open Queue DE = .UQCB A = err code
136 Delete Queue DE = .QCB A = err code
137 Read Queue DE = .UQCB none

138 Conditional Read Que DE = ,UQCB A = err code
139 Write Queue DE = .UQCB none

149 Conditional Write Que DE = ,UQCB A = err code
141 Delay DE = #ticks none

142 Dispatch none none

143 Terminate Process E = Term. code none

144 Create Process DE = ,PD none

145 Set Priority E = Priority none

146 Attach Console none none

147 Detach Console none none

148 Set Console E = Console none

149 Assign Console DE = ,APB A = err code
150 Send CLI Command DE = .CLICMD none

151 Call Resident Sys Pr DE = .CPB HL = result
152 Parse Filename DE = .PFCB see def

153 Get Console Number none A = console #
154 System Data Address none HL = sys data adr
155 Get Date and Time DE = .TOD none

156 Return Proc. Dsc. Adr none HL = proc descr adr
157 Abort Spec. Process DE = ,ABTPB A = err code

(All Information Herein is Proprietary to Digital Research.)

119

MP/M User's Guide

Appendix F: Operation of MP/M on the Intel MDS-800

This section gives operating procedures for using MP/M on
the Intel MDS microcomputer development system. A basic
knowledge of the MDS hardware and software systems is assumed.

MP/M is initiated in essentially the same manner as Intel's
ISIS operating system. The disk drives labelled @ through 3 on
the MDS, correspond to° MP/M drives A through D, respectively.
The MP/M system diskette is inserted into drive 6, and the BOOT
and RESET switches are depressed in sequence. The interrupt 2
light should go on at this point. The space bar 1is then
depressed on either console device, and the light should go out.
The BOOT switch is then turned off, and the MP/M sign-on message
should appear at both consoles, followed by the "@#A>" for the CRT
or "1A>" for the TTY. The user can then issue MP/M commands.

Use of the interrupt switches on the front panel 1is not
recommended. Effective 'warm-starts' should be initiated at the
console by aborting the running program rather than pushing the
INT @ switch. Also, depending on the choice of restart for the
debugger the INT switch which will invoke the debugger 1is not
necessarily #7.

Diskettes should not be removed from the drives until the
user verifies that there are no other users with open files on
the disk. This can be done with the 'DSKRESET' command.

When performing GENSYS operations on the MDS-800, make
certain that a negative response is always made to the Z8@ CPU
question. Responding with a '¥' will 1lead to unpredictable
results.,

(All Information Herein is Proprietary to Digital Research.)

121

MP/M User's Guide

@d@d6b = fcbrc equ fcb+l5 ;file's record count (# to 128
B@7c = fcber equ fcb+32 ;current (next) record number
gg7d = fcbln equ fcb+33 ;fcb length
; set up stack
3100 210000 1xi h,@
@103 39 dad sp
: entry stack pointer in hl from the ccp
0104 221£02 shld oldsp
: set sp to local stack area (restored at finis)
3187 316102 1xi sp,stktop
: read and print successive buffers
@9l0a cdc60l call setup ;set up input file
@104 feff cpi 255 ;255 if file not present
010f c21bgl jnz openok ;skip if open is ok
; file not there, give error message and return
$112 11£401 1xi d ,opnmsg
@115 cdalgl call err
9118 c35601 jmp finis ;to return
14
openok: ;open operation ok, set buffer index to end
@d1l1b 3e80 mvi a,80h
@114 321462 sta ibp ;set buffer pointer to 80h
; hl contains next address to print
0120 210000 1xi h,? ;start with 0000
’
gloop:
3123 e5 push h ;save line position
@124 cda701 call gnb
3127 el pop h ;recall line position
#9128 da5601 jc finis ;carry set by gnb if end file
@12b 47 mov b,a
H print hex values
3 check for line fold
912c 7d mov a,l
9124 e6df ani Afh ;check low 4 bits
@12f c24491 jnz nonum
; print line number
@132 cd7701 call crlf
14
; check for break key
9135 cdb5edl call break
; accum 1lsb = 1 if character ready
138 @f rrc ;into carry
2139 da5191 jc purge ;don't print any more
@13c 7c mov a,h
9134 cd9491 call phex
@149 7d mov a,l
$141 cd9491 call phex
nonum:
@144 23 inx h ;to next line number

123

MP/M User's Guide

gl8e
9190
#9193

9194
9195
9196
@197
#3198
#199
@19c
#19d
glagd

glal
Fla3
Flab

@la’?
Plaa
dlac

glaf
#1b2
@1b3

#1b6
?1b7

#1b8
#1b9
@1bb
@lbc

@1bf
@lc2
dlc3

@lca
@lc5

c637
cd6agl
c9

£5
gf
of
gf
gf
cd8291
fl
cd8201
c9

Jded9
cdg 509
c9

3aldg?2
fe8@
c2b8g1

cdd3gl
b7
cab8g1l

37
c9

5f
1600
3c
321402

218000
19
Te

b7
c9

plo: adi '‘a' - 10
prn: call pchar
ret
phex: ;print hex char in reg a
push psw
rrc
rrc
rrc
rrc
call pnib ;print nibble
pop psw
call pnib
ret
’
err: ;print error message
: d,e addresses message ending with "$"
mvi c,printf ;print buffer function
call bdos
ret
H
gnb: ;get next byte
lda ibp
cpi 80h
inz g

read another buffer

we wo wo

call diskr

ora a ;zero value if read ok
jz g0 :for another byte
; end of data, return with carry set for eof
stc
ret
gf: ;read the byte at buff+reg a
mov e,a ;1s byte of buffer index
mvi d,o ;double precision index to de
inr a ;index=index+1l
sta ibp ;back to memory

pointer is incremented
save the current file address

~e we

1xi h,buff
dad d

; absolute character address is in hl
mov a,m

; byte is in the accumulator
ora a ;reset carry bit
ret

setup: ;set up file
H open the file for input

125

MP/M User's Guide

APPENDIX H: Sample Resident System Process

Kk kR kA Rrhh Ak khhhhkkhhhhhhhhhhhkhhhhkkhkhkok

* Note: *
* This program 1listing has been *
* included only as a sample and may not *
* reflect changes required by later MP/M *
* releases. For this reason the reader *
* should assemble and list the program *
* *
* *

as provided on the distribution disk.
hkhkkhkkkkkkhhkhkhkhkhkhkkhhhkkkhkkkhkhkhkhkkhkkhkhkhkhkkkhkkhkkkkkkk

page]

title 'type file on console'

file type program, reads an input file and pri
it on the console

copyright (c) 1979, 1980
digital research

p.o. box 579

pacific grove, ca 93954

WE N We e N we W wO

000 : org @0@0h ; standard rsp start
g@la = ctlz equ lah ; control-z used for e
pRR2 = conout equ 2 ; bdos conout function
0009 = printf equ 9 ; "" print buffer
gol4 = readf equ 20 ; read next record
gOBf = openf equ 15 ; open fcb

2998 = parsefn equ 152 ; parse file name

go86 = mkgque equ 134 ; make queue

o899 = rdque equ 137 ; read queue

g@g9l = stprior equ 145 ; set priority

@093 = detach equ 147 ; detach console

e wo

bdos entry point address
bdosadr:

pooo 0000 dw $-9 ldr will fill this i

-

type process descriptor

T S we w

_ ypepd:
002 0000 . dw /) ; link
3064 00 db @ ; status
9005 Qa db 10 ; priority (initial)
0006 1001 - dw stack+38 ; stack pointer
P008 5459504520 db 'type ! ; name in upper case

127

MP/M User's Guide

fPea
9110

p112
p136

1b6
?1b9

@1lba
@lbc
@1bf
@lc2
@lcd
@1lc7

Plca
@lcc
@lct
@142
@1ld4
9147
@lda
@1db
@ldc
pldad
Pled
fle3

Pleb
@le8
@leb
Plee
@lef
p1f£2
P13

g1£f6
P1£8

bagd1l

2200009
e9

Je86
113600
cdb6@1
Pedl
11c800
cdb6@1

#e89
119800
cdb6@1
Pe98
1le600
cdb6@1
23

7c

b5
calfag2
3a9dog
321000

Qdedf
111201
cdb6gdl
3c
calfo2
af
323201

Ppeld
111291

H
i type
H
stack:
ds
dw
fcb: ds
buff: ds
H
bdos:
1hld
pchl

T S So e

<
o
o

mvi
1xi
call
mvi
1xi
call

forever:

mvi
1xi
call
mvi
1xi
call
inx
mov
ora
jz
1da
sta

mvi
1xi
call
inr
jz
Xra
sta
newSsector:
mvi
1xi

stack & other local data

38
type

36
128

bdos call procedure

bdosadr

type main program

c,mkque
d,typelqgchb
bdos
c,stprior
d,200

bdos

¢, rdque
d,typeuserqcb
bdos
c,parsefn
d,pcb
bdos

h

a,h

1

error
console
pdconsole

c,openf
d,fcb
bdos

a

error

a
fcb+32

c,readf
d,fcb

129

structures

~ws “wo

-e

-

-,

-,

~-e ~e ~e

-

N Ny W W W

20 level stack
process entry point

file control block

file buffer

hl = bdos address

make typelqcb

set priority to 200

read from type queue
parse the file name
test for @ffffh

typepd.console = con

open file
test return code
if it was O0ffh, no £
else,
set next record to

MP/M User's Guide

APPENDIX I: Sample XIOS

khkkhkhkhkhkhkhkhkhhkhhhkkhkhkhhhkhhhhhkhkhhkkhdhhhhkhhkkhthkik

* Note: *
* This program listing has been *
* included only as a sample and may not *
* reflect changes required by later MP/M *
* releases. For this reason the reader *
* should assemble and list the program *
* *
* *

as provided on the distribution disk.
khkkhhkhhkhkhhhkkhhkhkhhkhkkhkhhhkhkhhkkhhkhhkkhkkhkhkkikkk

page g
0000 org 9836h

note: this module assumes that an org statement will
provided by concatenating either basef@@df.asm or b
to the front of this file before assembling.

WO Ne Ne W “e g

title 'xios for the mds-800°

(four drive single density version)
(four drive mixed double/single density)

~e weo wo

version 1.1 january, 1988

~e

copyright (c¢) 1979, 1980
digital research

box 579, pacific grove
california, 93954

N Ne we W

0060 = false equ]
ffff = true equ not false
ffff = asm equ true
0009 = mac equ not asm
ffff = sgl equ true
0000 = dbl equ not sgl
if mac
maclib diskdef
endif
g0g4 = numdisks equ' 4 ;number of drives available
; external jump table (below xios base)
fffd = pdisp equ $-3

131

MP/M User's Guide

g04b 0edod

#@4d c3faff

0eg2 =
ge83 =

0000
g0l
0a032
0033
poa4
20805

[I T | 1 IO [

3250
P@53
B0@55

cd6 500
79060
co00

P@57 cd6500
#05a 8100
@05c 4100

cd6509
840
ddog

g@5e
goe6l
2063

p@65 7a
po66 fe@2
0068 datbedd
paeb fl

#@d6c af
@@6d c9

fgd6e 87
0g6f el
@970 5f
9071 1600

coldstart:
warmstart:
mvi
jmp
; mp/m 1.0
nmbcns equ
poll equ
pllpt equ
pldsk equ
plcofd equ
plcol equ
plcifd equ
plcil equ
const:
call
dw
dw
conin:
call
dw
dw
conout:
call
dw
dw
ptbljmp:
mov
cpi
jc
pop
Y thnempty:
Xra
ret
tbljmp:
add
pop
mov
mvi

c,?

xdos

see system init

cold & warm start in
for compatibility wi
system reset, termin

e we we wo

console handlers

2

131

N WN X

ptbljmp
ptdst
ptlst

ptbljmp
pt@in
ptlin

ptbljmp
ptdout
ptlout

a,d
nmbcns
tbljmp
pSw

(o TR (I i)

- -
(SR

133

.
14

LY

s Wme Ne N we W

e we W we wo wo W we weo wo wo we we ws wo

-e

we No wo wo

number of consoles

xdos poll function

poll printer

poll disk

poll console out #0 (crt:)
poll console out #1 (tty:)
poll console in #08 (crt:)
poll console in #1 (tty:)

console status

compute and jump to hndlr
console #8 status routine
console #1 (tty:) status rt

console input

compute and jump to hndlr
console #0 input

console #1 (tty:) input
console output

compute and jump to hndlr
console #0 output

console #1 (tty:) output

compute and jump to handler
d = console #
do not destroy <d>

throw away table address

compute and jump to handler
a = table index

double table index for adr o
return adr points to jump tb

MP/M User's Guide

2399
@d09%a
@@9c

pB9d
gg9f
goal

Addad
B0ab
d@a8
Boa
gdab

@Pdac
fddae
@ 0bo
- @@b3
d0bd
@ 3b6
@ @b8
@ @bb

@0bc
@ obd
@@dbe
00@ch

gocl
@dc3
@Bcs5
B0c6
@dc8

79
d3fe6
c9

#e83
le@2
c3faff

dbf?
ebdl
c8
Jeff
c9

dbfb
e601
c2bcf@
c5
fe83
led @
cdfaff
cl

79
2f
d3fa
c9

dbfb
e6d1
c8
Jeff
c9

pollpt:

O Ne Se e

olcof:

'U we we W

= we Se No we

ist:

lptrdy:

tPwait:

mov
out
ret

mvi
mvi
jmp
ret

in
ani
rz
mvi
ret

in
ani
jnz
push
mvi
mvi
call

pop

mov
cma
out
ret

a,c
data#®

c,poll
e,plcod
xdos

poll console #0 output

sts@
#lh

a,sffh

line printer driver:

lptsts
@1lh
lptrdy

b

c, poll
e, pllpt
xdos

b

a,c

lptport

poll printer output

~e

in
ani
rz
mvi
ret.

lptsts
#1h

a,dffh

135

e o

)
r
.
14

; transmit character

wait for console #0 output ready

; poll console #@ outp

return gffh if ready,
g@dh if not

list output

return #ffh if ready,
ggvh if not

MP/M User's Guide

PB£8 c8 rz
BBf9 3eff mvi a,dffh

P0fb c9 ret

mp/m 1.0 extended i/o system

D Ne Ne Se we v

pod6 = mbdev equ 6 ; number of devices in poll tb
polldevice:
; reg c¢c = device # to be polle
; return @ffh if ready,
; Pge%h if not
@Bfc 79 mov a,c
gofd fef6 - cpi nmbdev
gOff dagdol jc devok
3102 3ed6 mvi a,nmbdev; if dev # >= nmbdev,
; set to nmbdev
devok:
3104 cd6edo call tbljmp ; jump to dev poll code
3107 clog dw pollpt ; poll printer output
@169 7d@2 dw poldsk ; poll disk ready
@108b a4d00 dw polcod ; poll console #@ output
@194 £409 dw polcol ; poll console #1 (tty:) outpu
Glof 7900 dw polci@@ ; poll console #@ input
@111 c990 dw polcil ; poll console #1 (tty:) input
#3113 6cO0d dw rtnempty; bad device handler
; select / protect memory
selmemory:
; reg bc = adr of mem descript
; bc -> base 1 byte,
: size 1 byte,
: attrib 1 byte,
; bank 1 byte.
; this hardware does not have memory protection or
; bank switching
@115 c9 ret
; start clock
startclock:
; will cause flag #1- to be set
; at each system time unit ti
fpl1l6 3eff mvi a,Bffh
3118 32e301 sta tickn

137

MP/M User's Guide

P@85
p@8e

@145
P146
@148
@l4a
@ldc
@1l4af
@150
@153
@156
#9157
p158

@159
@15b
@l5e
@15f
4162
#3163
#1166
3167
plea
@l6b
@glee
@171
@172

9173
3175

@178
#17b

£5
3ed2
d3ff
d3fad
3aabgl
3d
32abfl
ca5901
fl

fb

c9

3eld
32abgl
fl
224491
el
22el01
£5
210000
39
22df@1
31ddal
ds

c5

3eff
32e491

3ae301
b7

~e

ei
hlt
ret

e weo wo

~e

mp/m 1.0

flagset equ
dsptch equ

intlhnd:

push
mvi
out
out
lda
dcr
sta
jz
pop
ei
ret

tléoms:
mvi
sta
pop
shld
pop
shld
push
1xi
dad
shld
1xi
push
push

mvi
sta

lda
ora

interrupt

133
142

psw
a,2h
rtc
revrt
slice

slice
tléms
psw

a,le
slice
psw
svdhl
h
svdret
psw
h,0

sp
svdsp

sp,intstk+48

d
b

a,fffh
preemp

tickn
a

139

; of idle must be use
; without interrupts,

simply halt until aw
interrupt

~e wo

handlers

interrupt 1 handler entry po

location @@@8h contains a j
to intlhnd.

e Ne wo wo

reset real time clock
revert intr cntlr

“e “ao

; only service every 1l6th slic

jump if 1l6ms elapsed

-

reset slice counter

~e

¢ save users stk ptr
; lcl stk for intr hnd

; set preempted flag

test tickn, indicate
delayed process(es)

~ wo

MP/M User's Guide

@leb
@le8
Ple9
@leb
@lec
flee
glfl
g1f4
g1f6
BlE7
#1£8
21fb
Pglfc
P1£d
glfe
P1fE
0200
0201
g204
3205

#9206

3208
@20b
@20c

920d
P20e
@211

#8212
9213
g214
217

@218
@219
@2la
921b
g21lc
g21d
P21le
P21f
6220
9221

210000
79
fedd
do
e602
32bag 2
21c202
7600
g9

Te
32bcB2
60

69

29

29

29

29

1llc602

19
c9

fed@

21be@d?2
71
c9

79
32bf@2
c9

69
60
22c @2
c9

60
69
23
7a
b3
c8
eb
g9
6e
2600

;select disk given by register c

seldsk:
1xi h, 0
mov a,c
cpi numdisks
rnc : first, insure good select.
ani 2 .
sta dbank ; then save it
1xi h,sel$table
mvi b,d
dad b
mov a,m
sta iof
mov h,b
mov 1,c
dad h
dad h
dad h
dad h ; times 16
1xi d,dpbase
dad d
ret
home: ;move to home position
; treat as track 80 seek
mvi c,0
’
settrk: ;set track address given by c
1xi h,iot
mov m,C
ret
r
setsec: ;set sector number given by c
mov a,c ;sector number to accum
sta ios ;store sector number to iopb
ret
14
setdma: ;set dma address given by regs b,c
mov 1l,c
mov h,b
shld iod
ret
sect$Stran: ; translate the sector # in <c
mov h,b
mov 1,c
inx h ; in case of no translation
mov a, d
ora e
rz
xchg
dad b ; point to physical sector
mov 1l,m
mvi h,?

141

MP/M User's Guide

#263 cd9302

0266 fed2
§268 ca8602

#26b b7

#26c c28c@2

Bg26f cdagdg?2
@272 17
@273 da86@2
9276 1f
@277 e6fe
@279 c28c@2

@27c c9

P27d cdadg?2
0280 e604
p282 c8
§283 3eff
9285 c9

9286 cdago?2
289 c38cp2

p28c #d
$28d c23ch2

-

~e we

e

~e

~e

check io completion ok

call intype ;must be io complete (
@@ unlinked i/o complete, Pl linked i/o com
19 disk status changed 11 (not used)

cpi 10b ;ready status change?
jz wready

must be 90 in the accumulator
ora a
jnz werror : ;some other condition,

check i/0 error bits

call inbyte

ral

jc wready ;unit not ready

rar

ani 11111110b ;any other errors? (d
jnz werror

read or write is ok, accumulator contains zero
ret

poldsk:
call instat ; get current
ani iordy ; operation co
rz ; not done
mvi a,f8ffh ; done flag
ret ; to xdos
wready: ;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount
werror: ;return hardware malfunction (crc, track, seek
; the mds controller has returned a bit in each
H of the accumulator, corresponding to the condi
; (7] - deleted data (accepted as ok above)
; 1 - Crc error
; 2 - seek error
; 3 — address error (hardware malfunction)
; 4 - data over/under flow (hardware malfu
; 5 - write protect (treated as not ready)
: 6 - write error (hardware malfunction)
; 7 - not ready :
; (accumulator bits are numbered 7 6 5 4 3 2 1 0
trycount:

.
[

-e

register ¢ contains retry count, decrement 'ti
dcr c :
jnz rewait ;for another try

cannot recover from error

143

MP/M User's Guide

@2c6
d2c6
#2ca
@2ce
@242
#2d6
@2da
p2de
g2e2
@2e6
B2ea
f2ee
B2f£2
g2fe6
@2fa
@2fe
@302
306

15630000
000000080
2f0306063
ce@3af@3
15030009
03000000
2f630603
fd@3ded 3
15030000
0000000
2£030603
2cP4@gdaa
15030000
00000000
2f@330603
5b@43ch4

dpbase
dpefd:

dpel:

dpe2:

dpe3:

dpb®

x1t@
dpbl
x1ltl
dpb2

disks
diskdef
diskdef
diskdef
diskdef
endef
endif

if
disks
diskdef
diskdef
diskdef
diskdef
endef
endif

if
equ
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
equ
endif

if
dw
db
db
db
dw
dw
db
db
dw
dw
equ
equ
equ
equ

numdisks

;: generate dri
¢,1,26,6,1024,243,64,64,2

1,0
2,0

mac and dbl

numdisks : ; generate dri
6,1,52,,2048,243,128,128,2,0

1,0

2,1,26,6,1024,243,64,64,2

3,2

asm

$;base of disk param bl
x1t0@,0000h ;translate table
#@00h,0000h ;scratch area
dirbuf,dpbd ;dir buff, parm block
csv@,alvd ;check, alloc vectors
x1ltl,00006h ;translate table
#000h,0000h ;scratch area
dirbuf,dpbl ;dir buff, parm block
csvl,alvl : check, alloc vectors
x1t2,00006h ;translate table
dP06h,0000h ;scratch area
dirbuf,dpb2 ;dir buff, parm block
csv2,alv2 ;check, alloc vectors
x1t3,0000h ;translate table
d000h,0000h ;scratch area
dirbuf,dpb3 ;dir buff, parm block

csv3,alv3 ; check, alloc vectors
$;disk param block

asm and dbl

52 ;sec per track
4 ;block shift
15 : block mask

] ;extnt mask
242 ;disk size-l
127 ;directory max
192 ;alloc@d

) ;allocl

32 ;s check size

2 ;offset

g ;translate table
dpb@

x1t@d

$

145

MP/M User's Guide

@306 = dpbl equ dpb9
@315 = xltl equ x1tg@
p306 = dpb2 equ dpb0
@315 = x1lt2 equ x1t@
@306 = dpb3 equ dpb@
@315 = x1t3 equ x1t@
endif
if asm and dbl
dpb3 equ dpb2
x1t3 equ x1t2
endif
if asm
@32f = begdat equ $
g32f dirbuf: ds 128 ;directory access buff
endif
if asm and sgl
@3af alvg@: ds 31
@3ce csvi: ds 16
@ 3de alvl: ds 31
@3fd csvl: ds 16
endif
if asm and dbl
alvd: ds 31
csv@: ds 32
alvl: ds 31
csvl: ds 32
endif
if asm
g40d alv2: ds 31
ga2c csv2: ds 16
@43c alv3: ds 31
@45b csv3: ds 16
g46b = enddat equ S
@l3c = datsiz equ $-begdat
endif
@46b 00 db] : this last db is reg'd to
: ensure that the hex file
; output includes the entire
; diskdef
gde6c end

147

MP/M User's Guide

APPENDIX K: Page Relocatable (PRL) File Specification

Page relocatable files are stored on diskette in
the following format:

Address: Contents:

P001-00F2H Program size
P004-0005H vMinimum buffer requirements (additional memory)

PPP6-0BFFH Currently unused, reserved for future allocation
@10PH + Program size = Start of bit map

The bit map is a string of bits 1identifying which bytes
are to be relocated. There is one bit map byte per 8 bytes of
program. The most significant bit (7) of the first byte of
the bit map indicates whether or not the first byte of the
program is to be relocated. A bit which is on 1indicates that
relocation 1is required. The next bit, bit(6), of the first
byte of the bit map corresponds to the second byte of the
program.,

(All Information Herein is Proprietary to Digital Research.)

149

MP/M User's Guide

Dispatch, 78
DMA Address, 43
DSKRESET, 8
DUMP, 11, 122

ERA, ERAQ, Erase File(s), 9
Exitregion, 103

FCB, File Control Block, 25, 26
File Attributes, 45

File Structure, 24

Flag Assignments, 116

Flag Wait, 65

Flag Set, 65

Free Drive, 52

GENHEX, 11

GENMOD, 11

GENSYS, 1190

Get Console Number, 78
Get Date and Time, 79

Home, 98

Idle, 104
Interrupt Service Routines, 185

LDRBIOS, 86

Line editing, 6
Linked Queue, 55
List, 98

List Output, 31
Listst, 100
Loab, 11

Login Vector, 42

Make File, 41

Make Queue, 66
Maxconsole, 163

Memory Allocation, 15

MD, Memory Descriptor, 62
Memory Free, 64

Memory Segment Base Page, 120
Memory Structure, 18

MPMLDR, 86, 114

MPMSTAT, 13

0DOS, 168
Open File, 37
Open Queue, 67

Page Relocatable Programs, PRL, 81, 149
Parse Filename, 77

(All Information Herein is Proprietary to Digital Research.)

151

MP /M User's Guide

System Data Address, 78
System File Components, 167
System Generation, 1140
System Reset, 29
SYSTEM.DAT, 19

Systeminit, 103

Text Editing, ED, 14
Terminate Process, 71
Tick, 186

Time, 15

Time Base Management, 106
- TOD, Date and Time, 15, 79
TPA, 20

TYPE, 9

UQCB, User Queue Control Block, 57
USER, get/set user code, 8, 46
User Queue Control Block, 57
USERSYS.STK, 19

Version Number, 35

Wboot, 98

Write, 100

Write File Random, 48, 52
Write File Sequential, 41
Write Protect Disk, 44
Write Queue, 69

XDos, 19, 168, 119

X108, 19, 87
XIOS External Jump Vector, 106

(All Information Herein is Proprietary to Digital Research.)

153

