®

PL/I-80

APPLICATIONS GUIDE

PL/I1-80™ APPLICATIONS GUIDE

PL/I-80 APPLICATIONS GUIDE

Copyright (c) 1980

Digital Research
P.0. Box 579
801 Lighthouse Avenue
Pacific Grove, CA 93950
(408) 649-3896
T™WX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright (c) 1980 bv Digital Research. All rights
reserved. No part of this wopublication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in anv form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the ©prior written
permission of NDigital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
pvermission 1is granted to reproduce or abstract the
example programs shown in the enclosed figures for
the purposes of inclusion within the reader”s
programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any 1implied warranties of
merchantability or fitness for any particular
putpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person:
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
PL./I-80, W™MP/M-80, RMAC, S1n, ZSID and TEX are
trademarks of Digital Research.

The "PL/I-80 Apolications Guide" was prepared using
the Digital Research TEX Text formatter.

khkkhkkkhhkhkhhkhkkhkhhkhhkhkkkkhkhkhkhkhkkhkhkkhhhkk

* Second Printing: December, 1980 *
khkkkkhkkkhkkkkkhkhkkhkhkhkhkhkhhhkhkhkhkhthrkhkhkhkkdd

1a.

11.

TABLE OF CONTENTS
INTRODUCTION . & ¢ o o o ¢ o o o o o =
PL/I-80¢ SYSTEM OPERATION
PL/I-80 PROGRAMMING STYLE

PL/I-8¢ INPUT/OUTPUT CONVENTIONS .,
4.1, The OPEN Statement
. The PUT LIST Statement . . .
. The GET LIST Statement ., .
. The PUT EDIT Statement . .
. The GET EDIT Statement . .

s o e o o o

. The FORMAT Statement
. The WRITE Statement
. The READ Statement . .« « « .« .

BB D DD DD

I-80 PROGRAMMING EXAMPLES
.1. Polynomial Evaluation
2, The File Copy Program
.3. Name and Address File Processing
<4, An Information Management System

LABEL CONSTANTS, VARIABLES, AND PARAMETERS

EXCEPTION PROCESSING . ¢ ¢ o o o o o &
7.1. The ON Statement . . . « « .

e o o o o

* o o o o o
e o 8 o o o
* e 8 e o e
e o o o o &

7.2, The REVERT Statement . . ¢« ¢« ¢ ¢ o ¢ o 4 o« o &
7.3. The SIGNAL Statement . . . & ¢ ¢ ¢ ¢ v o o o @
7.4. The ERROR Exception . . . e o s e e o
7.5. FIXEDOVERFLOW, OVERFLOW, UNDERFLOW,

and ZERODIVIDE e o o o o o o o
7.6. ENDFILE, UNDEFINEDFILE, KEY, and ENDPAGE o« o o
7.7. ONCODE, ONFILE, ONKEY, PAGENO, and LINENO . . .
7.8. An Example of Exception Processing . . « « «
APPLICATIONS OF CHARACTER STRING PROCESSING
8.1. The OPTIMIST Program . « « o o o s o o o o o
8.2 A Free-Field Scanner . . « « v ¢ o o o o s o =

APPLICATIONS OF LIST PROCESSING . . .
9.1. Managing a List of Words . . .
9.2. A Network Analysis Program . .

USES OF RECURSION IN PL/I-80
19.1. Evaluation of Factorials . . .

10.2. Evaluation of the Ackermann Function
14.3. An Arithmetic Expression Evaluator

SEPARATE COMPILATION AND LINKAGE . . .
11.1. Data and Program declarations .

11.2. An Example of Separate Compilation

3

(All Information Contained Herein is Proprietary to

Digital

11

14
14
18
20
21
23
25
25
27

31
31
34

40
55

59
60
61
62
64

66
66
68
69

75
75
78

84
84
90

104
104
114
117

126

126
129

Research.)

12. COMMERCIAL PROCESSING USING PL/I-80 e e o o o o o o o 135
12.1. A Comparison of Decimal and

Binary Overations . . . e « s s+ s e s s « . 135
12.2. Decimal Computations in PL/I -80 . . « « « &« o o 137
12.3. Addition and Subtraction ¢ « ¢« « . 139
12,4, Multiplication . .« ¢ ¢« ¢ ¢ ¢ o « o o o o« + o« o 141
12.5., Division .+ o &« ¢ o « ¢ o o o o o o o & o s o 143
12.6. Conversion Between Fixed Decimal

and Float Binary . . e e o+ e o o o o o 146
12.7. A Simple Loan Payment Schedule e e s s s s « o 147
12.8. Ordinary Annuity e e« o s s s « « « . 150
12.9. Formatted Loan Payment Schedule « + o o o o o o« 156
12.10. Computation of Devpreciation Schedules 167

(All Information Contained Herein is Proprietary to Digital Research.)

1. INTRODUCTION TO PL/I-80

The PL/I-80 system is a complete software package for
application programming under the Digital Research CP/M and
multiprogramming MP/M operating systems (the name, by the way, is
pronounced PL-ONE, but is spelled with the Roman numeral "I", so don't
be confused when vyou see 1lower case "pli" in various commands and
program examples). The PL/I-8# language is based upon the new Subset
G 1language defined by the ANS PL/I Standardization Committee X3J1.
The subset contains all necessary application programming constructs
of full PL/I, discarding seldom-used or redundant forms, The
resulting language constraints encourage good programming practices
while simplifying the compilation task.

PL/I-80, like all programming 1languages (and most natural

languages) is most easily learned by studying working examples. The
purpose here is to introduce the mechanics of compiling, linking, and
executing programs, and to introduce useful facilities of the

language. The presentation is followed by detailed sample programs
which illustrate 1Input/Output processing, scientific computation,
business applications, along with string and list processing.

The best way to learn PL/I-80 is to study these examples by
reading the associated text, examining the programs, and
-cross-checking with the reference manual when necessary. Once you
understand the operation of a particular sample program, you may wish
to modify the program to enhance its operation and further your
experience with the lanquage. If you are a beginner, check with your
local wuniversiy or community college: programming courses are often
available which specifically cover the PL/I language (you'll find you
have a particular advantage over your classmates, since your
turnaround time 1is only a few minutes). Alternatively, you may wish
to purchase one of the hundreds of textbooks which are currently
available on the subject. Most of these textbooks are found in
university bookstores or through special orders, and cover the basics
of PL/I.

Your PL/I-80 system diskette does not contain a CP/M operating
system, so you must first make a copy of the PL/I-80 programs for
everyday use, and generate a CP/M system on the first two system
tracks (be sure you have read your licensing agreement - you have
certain responsibilities when you make copies of Digital Research
programs) . Load your newly created diskette into drive A, reboot
CP/M, and type a DIR command. You'll f£ind several types of files,
including:

COM CP/M Command Files
or Composite Programs
(PLI.COM is one of these)
DAT Default Data File Type

IRL Indexed Relocatable Code
(PLILIB.IRL is the library)

(All Information Contained Herein is Proprietary to Digital Research.)

1

OVL PL/I1-80 Compiler Overlays
(PLI@, PLI1, and PLI2)

PLI PL/I-80 Source Programs
(e.g., type OPTIMIST.PLI)

PRL Page Relocatable Object
(Used in MP/M Partitions)

PRN Printer Disk File
(Program Listing to Disk)

REL Relocatable Object Code
(Such as Developed Programs)

The only files which contain printable characters are the "PLI" source
programs and "PRN" printer 1listing files. Several programs are
included on the PL/I-80 system disk which correspond to various
examples in this manual, along with additional programs of 1increasing

complexity. To begin with, try running a program which has already
been compiled and linked to the PL/I-80 runtime library. Type the
command

OPTIMIST

the OPTIMIST program will load and respond with
What's up?
Answer by typing the sentence
None of these programs make sense.

(be sure to end your input with a period, followed by a return).
After vyou get the response from the OPTIMIST, you can type a few more
sentences if you wish, then type a control-C to stop the OPTIMIST.

The OPTIMIST is a PL/I program which is included on your PL/I-88

system diskette in source form. Display the program using the type
c ommand

TYPE OPTIMIST.PLI

As an example, go through a complete compilation and test of the
OPTIMIST program by following the steps shown below. Note that
although you can run the OPTIMIST program in any memory size, the
PL/I-80 compiler needs at least a 48K CP/M system for operation. Be
sure that the PLI.COM and overlay files are on vyour default disk,
otherwise you'll get the error message "NO FILE: PLIG.OVL" when you
start the compiler. Compile the OPTIMIST program by typing

PLI OPTIMIST

(All Information Contained Herein is Proprietary to Digital Research.)

9

The compiler will process the program in three steps, referred to as
"passes, " marked by the messages

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2
END COMPILATION

If you examine your directory, you'll find the file
OPTIMIST.REL
which contains the relocatable machine code produced by the PL/I-8¢
compiler for the OPTIMIST program. If you wish, you can recompile
with the listing option so you can view the program as it 1is being
compiled. This is accomplished by typing
PLI OPTIMIST SL

The compiler will proceed as hefore, but this time it produces the
program listing in the last pass.

The relocatable machine code resulting from the compilation 1is
not directly executable, so you'll have to link the REL file with the
PL/1I-80 runtime subroutine library by typing

LINK OPTIMIST
The LINK-8@ program produces an OPTIMIST.COM file which replaces the

one that came with your diskette. Your new OPTIMIST program should
operate in the same manner as the original program.

(All Information Contained Herein is Proprietary to Digital Research.)

3

2, PL/I-80 SYSTEM OPERATION

First it's necessary to expand upon the compiler and 1linker
operations presented in the previous section. 1In general, the PL/I-8¢
compiler reads ©program files prepared under CP/M or MP/M using the
standard program editor (ED). The program is processed by the PL/I-80
compiler, linked using LINK-8¢#, and subsequently tested. As an
example, consider the simple payroll program compiled and listed in
Figure 2-1. The compiler proceeds through the first two passes and
lists each line containing an error, with the line number to the left,
a short error message, and a "?" below the position in the l1ine where
the error occurred. You can, at any time, abort the compilation by
typing a carriage-return at the console., This particular facility is
useful if the number of error diagnostics is excessive, and you wish
to make certain corrections before proceeding. The program line
number is listed on the left, followed by a letter a-z which denotes
the nesting 1level for each line. The main program level is "a", and
each nested BEGIN advances the level by one letter, while each nested
PROCEDURE 1level advances by two. The relative machine code address
for each line is listed next as a four digit hexadecimal number. This
address is useful in determining the amount of machine code generated
for each statement and the relative machine code address for each line
of the program. The source statement is printed on the line following
the relative machine code value.

The $L parameter provided on the command 1line which starts the
compiler is called a "compiler switch" and enables the listing option.
A list of compiler switches is shown below. 1In each case, the single
letter command follows the "$" symbol given in the command line, with
a maximum of seven command letters following the dollar sign. The
default when no parameters are specified results in a compilation with
no listing, where all error messages are sent to the console,.

B Builtin Subroutine Trace
shows the library functions which
are called-out by your PL/I program

D Disk File Print
sends the listing file to disk, using
the file type PRN

I 1Interlist Source and Machine Code
decodes the machine language code
produced by the compiler in a
pseudo—-assembly language form

L List Source Program
produces a listing of the source
program with line numbers and
machine code locations (automatically
set by the I switch)

N Nesting Level Display

enables a pass 1 trace which shows
exact balance of DO, PROC, and BEGIN

(All Information Contained Herein is Proprietary to Digital Research,)

4

/

PL/I-80 V1.0, COMPILATION OF: WAGE

L: List Source P
NO ERROR(S) I

NO ERROR(S) I

PL/I-80 V1.8, CO

l a 0000 payr
2 a 60086
3 a 0006
4 c 0006
5 ¢ 0006
6 c 0006
7 c 0046
8 c 0006
9 c A0d6
19 c 00d6
11 ¢ 20896
12 ¢ 4006
13 ¢c 0006
14 c 2006
15 ¢c Bd@ae6
16 c gooB
17 ¢ 6023
18 ¢ 003A
19 ¢ 00AQ
20 c 0dC8
21 c gacs
22 c QgacCs
23 c gacs
24 c GODF
25 c 0OQFQ
26 c QOQF0Q
27 ¢ @11F
28 c @157
29 ¢ 8177
30 ¢ 8192
31 ¢ G1EA
32 ¢ @1lEA
33 a BlEA
CODE SIZE @lED

DATA AREA = @ED2

rogram
N PASS 1

N PASS 2

MPILATION OF: WAGE

oll:
procedure options(main);

declare
name (100) character(36) varying,
hours(199) fixed decimal(5,1),
wage (100) fixed decimal(5,2),
done bit(l),
next fixed;

declare
(grosspay, withhold, netpay) fixed decimal(7,2);

/* read initial values */

done = '0'b;
do next = 1 to 100 while("done);
put list('Type '‘employee’', hours, wage: ');
get list(name(next) ,hours(next) ,wage(next));
done = (name (next) = 'END');
end;

/* all names have been read, write the report */
put list('Adjust Paper to Top of Page, Type return');
get skip(2);

do next =1 to 100 while(name(next) "= 'END');
agrosspay = hours(next) * wage(next);

withhold = grosspay * .15;

netpay = grosspay - withhold;

put skip(2) 1list('$',netpay,’'for',name(next));
end;

end payroll:

Figure 2-1. Wage Program Listing. ‘ﬂJ///

(All Information Contained Herein is Proprietary to Digital Research.)

5

exact balance of DO, PROC, and BEGIN
statements with their corresponding
END statements

P Page Mode Print
inserts form feeds every 68 lines,
and sends the listing to the printer

S Symbol Table Display
shows the program variable names, along
with their assigned, defaulted, and
augmented attributes

PL/I-80 allows separate compilation of individual procedures,
where each compilation produces a "REL" file. Only one procedure can
be included with "options(main)" and this becomes the main program for
the module, while all other subroutines have the usual PL/I procedure
header.

The file PLILIB.IRL contains the subroutines which can be
called-out by vyour PL/I-8¢ program, and as shown in the previous
section, the relocatable machine code is linked with the PL/I run-time
library subroutines by typing the command:

link wage

producing a Composite Program. If you are operating under the MP/M
system, the command

link wage[op]

again produces a Composite Program, but in this case the machine code
is in page relocatable format which executes in an MP/M partition. 1In
the first case, LINK~80 produces a "wage.com" file for execution under
CP/M or 1in an absolute segment under MP/M. In the second case,
LINK-80 produces a file named "wage.prl”. 1In addition to the machine
code files, LINK-8f also produces the symbol table file, named
"wage.sym" which can be loaded for debugging purposes under SID or
ZSID,

Fiqure 2-2a shows the output from LINK-88 for the simple wage
program. By convention, the subroutines extracted from the PL/I-80
library are preceded by the "?" symbol in order to avoid conflicts
with user-defined symbol names. Symbols enclosed within slashes ("/")
are EXTERNAL variables (COMMON in Fortran), and symbols followed by
"** are undefined., It is important to note that LINK-80# implements
the Microsoft linkage editing format in order to be compatible with a
variety of other language processors. This format, however, restricts
the length of external names to 6 characters, so even though vyour
internal variable names can be as long as 31 characters, make sure all
your externally defined names are unique in the first 6 positions.

By default, LINK-80 does not 1list the "?" symbols from the
library. If you want a complete listing of these symbols, type

(All Information Contained Herein is Proprietary to Digital Research.)

6

A>link wage
LINK V0.4

PAYROL 0100 /SYSIN/ 1F19 /SYSPRI/ 1F3E

ABSOLUTE pooo
CODE SIZE 1DCF (9108-1ECE)
DATA SIZE 18C5 (1F94-3058)
COMMON SIZE @6C5 (lECF-1F93)
USE FACTOR 4E

Figure 2-2a. A Simple Link Edit for the Wage Program.

A>link wage([q]
LINK V@.4

PAYROL pl1o0 2START 1D6 9 ?SYSPR @3BB ?SLCTS 1756
?PNCOP B2F3 ?2QIO00P 1CDF ?SYSIN @3B7 ?2GNVOP 28CB
2IM22N 17C1 ?SSVFsS 177F ?2QCDOP 12F1 ?DSTOP 1563
?8CVCM 16E7 ?SKPOP 3526 ?DLDOP 153C ?DMUOP 15DC
?QDDSR 1446 ?DSyoP 15BC ?2QDCOP 1420 ?PNVOP @317
?8LVTS 1754 ?2STOPX 1E71 /?FILAT/ 1ECF /?FPB/ 1ED8
?PNBOP @2ED ?PNCPR #5C5 ?2IS22N 1823 ?SI00P @3C@o
?SI0PR @3DE /?FPBST/ 1F0@6 /SYSIN/ 1F19 /SYSPRI/ 1F3E
?201I00P #69D ?2FPBIO @84E ?0I0PR @6BC ?BSL16 16D6
?SIGNA 197E ?SKPPR @52F ?GNCPR BA 45 ?WRBYT gF2C
?PAGOP @8BD ?NSTOP 16DC ? SMVCM 179E ?28J5VM 171C
?SSCFS 1769 ?20BA8I 12DD ?0PNFI @EB9 /?2FMTS/ 1F66
?FPBOU 1D33 ?FPBIN 1CEB ?GNVPR 2908 ?RDBYT BF19
?RDBUF @gF52 ?WRBUF PF75 ?CLOSE 105E ?GETKY 198F
? SETKY 16B5 ?PATH 1042 ?BDOS 2085 ?DFCB# a85C
?DFCB1 goe6ec ?DBUFF 2980 ?ALLOP 182A ? FREOP 18C9
?ADDIO 1DBC ?SUBIO 1DD3 ?WRCHR 1D49 ?RFSIZ l11BA
?RRFCB 122C ?RWFCB 1231 ?2QBl6I 12E0 ?20DDOP 13BF
?DNGOP 15A5 ?20DDSL 13D7 ?DOVER 16BC ?BSLO8 16D@
?SCCCM 16EE ?8JSCM 171E ?SJISTS 1730 ?SMCCM 17A2
?IM22 17Cl1 2IM11 17F5 21822 1823 ?ERMSG 1E8C
?BEGIN 3055 /?0NCOD/ 1F6E ?SIGOP 196E ?STACK 304F
?20NCPC 1CA3 /?CONSP/ 1F71 ?20NCOP 1Co6 ?REVOP 1C5B
/?CNCOL/ 1F92 ?RECLS 3BFC ?BOOT 0000 2CMEM 1ECF
?DMEM 3859

ABSOLUTE pooo
CODE SIZE 1DCF (0100-1ECE)
DATA SIZE 10C5 (1F94-3058)
COMMON SIZE @@C5 (1lECF-1F93)
USE FACTOR 4E

\\\\; Figure 2-2b. Link Editing using the LINK-80 "Q" Switch 4’///

(All Information Contained Herein is Proprietary to Digital Research.)

7

link wage[q]
and a listing of the form shown in Figure 2-2b results.

Execution proceeds by typing the name of the COM or PRL file, as
shown in Figure 2-3. The program executes, and prompts the <console
for input. As discussed in the I/0 section which follows, input from
the console is free-field with the full 1line editing facilities of
CP/M and MP/M. The message

End of Execution

is displayed upon completion of the program before returning to the
console command level.

Various run-time errors terminate program execution 1if not
explicitly intercepted within the PL/I program. In this case, the
message form shown below is displayed:

error-condition (code), file-option, auxiliary-message
Traceback: aaaa bbbb cccc dddd # eeee ff£ff gggg hhhh

where the "error-condition" is one of the standard PL/I conditions

ERROR FIXED OVERFLOW OVERFLOW UNDERFLOW
ZERODIVIDE END OF FILE UNDEFINED FILE

and " (code)"™ is an error subcode which identifies the origin of the
error. The "file-option" is printed when the error involves an I/0
operation, and takes the form:

internal=external

where "internal" is the internal program name which references the
file involved 1in the error, and "external" is the external device or

file name associated with the file. The "auxiliary-message" 1is
printed whenever the preceding information is insufficient to identify
the error. Finally, the “"traceback" ©portion 1lists up to eight

elements of the internal stack in order to help identify the program
statement which produced the error. 1If the stack depth exceeds eight
elements, the "#" separates the topmost four elements on the left from
the lowermost four elements on the right. 1In the form shown above,
element aaaa corresponds to the top of stack, while hhhh corresponds
to the bottom of the stack. Unless the statement in error has filled
the 1low end of the stack with a character or decimal temporary, the
value hhhh determines the main program statement in error, as
described below.

An execution of the wage program, shown in Figure 2-4, gives an
- example of the diagnostic form. 1In this case, the first console input
is entered properly, but the second line terminates console input with
an end-of-file (control-Z). The END OF FILE condition is raised for
the SYSIN file which is standard console input. The external device
connected to SYSIN is, in this case, the operator's console, denoted
by CON.

(A1l Information Contained Herein is Proprietary to Digital Research.)

8

N

A>wage

Type ‘employee'’
Type 'employee'
Type 'employee'
Type 'employee'
Type 'employee'
Type 'employee'
Type 'employee’
Type 'employee'
Type 'employee'
Type 'employee’
Type ‘employee’

- % % % % W N ww ow ow

Adjust Paper to Top of Page, Type return

199.33 for
253.47 for
149.25 for
221.00 for

127.50 for

275.40 for
219.30 for
201.03 for

118.50 for
nd of Execution

$
$
$
$
$
$ 111.52 for
$
$
$
$
E
Figure 2-3.

A>wage
Type 'employee',
Type ‘employee’,

END OF FILE (1),

Traceback: 8930 08DB §146 3300 # 1F@7 G49A 8082 @146

End of Execution

hours, wage: 'Sidney Abercrombie', 35, 6.70
hours, wage: 'Yolanda Carlsbad', 42, 7.1¢9
hours, wage: 'Ebenizer Eggbert', 38, 5.580
hours, wage: 'Hortense Gravelpaugh',b 4@,6.50
hours, wage: 'Franklin Fairweather',10,15.00
hours, wage: 'Tilly Krabnatz',32,4.10
hours, wage: 'Ricardo Millywatz', 45, 7.20
hours, wage: 'Adolpho Quagmire', 60, 4.30
hours, wage: 'Pratney Willowander',43, 5.50
hours, wage: 'Manny Yuppgander', 40, 3.25
hours, wage: 'END',04,0

Sidney Abercrombie
Yolanda Carlsbad
Ebenizer Eggbert
Hortense Gravelpaugh
Franklin Fairweather
Tilly Krabnatz
Ricardo Millywatz
Adolpho Quagmire
Pratney Willowander

Manny Yuppgander

Execution of the Wage Program.

hours, wage: 'Sally Switzwigg', 23, 3.10
hours, wage: ~2

File: SYSIN=CON

Figure 2-4. Error Traceback for the Wage Program,

/

(All Information Contained Herein is Proprietary to Digital Research.)

9

by CON.

The traceback shows the lowest stack 1location as @146
(hexadecimal) , corresponding to the main program statement in error.
Referring back to Figure 2-2a, the PAYROL program address is shown in
the upper left corner as #1908, which is the normal beginning 1location
under CP/M. The difference 9146-0100 = A@46 is the relative location
of the error. The Fiqgure 2-1 listing shows that the address 0046
falls between the code addresses listed alongside line 18 (@@3A to
G60AP-1), and thus it was within this line that the error occurred.

(All Information Contained Herein is Proprietary to Digital Research.)

10

3. PL/I-80 PROGRAMMING STYLE

Before we get into PL/I-80 programming details, it's worthwhile
discussing the topic of programming style. PL/I is a “"free-format"
language, which means that you can write programs without regard to
column positions and specific line formats. Each line can be up to
120 characters in length (terminated by a <carriage return), and is
logically connected to the next line in seguence. The compiler simply
reads the source program from the first through the last line,
disregarding line boundaries., With this freedom of expression comes a
responsibility on your part to adhere to some stylistic conventions so
that your programs can be easily read and understood by other
programmers., Professional programmers know that it's not enough to
just have a program that produces the proper output (although that's a
desirable quality!). The program must also be consistent in form, and
divided into logical segments which are easy to comprehend. A
well-constructed program is a work of art which is appreciated for its
structure as well as its function.

There are many stylistic conventions which are used throughout
the industry. The rules given below illustrate one set of conventions
which we'll wuse fairly consistently throughout the examples this
manual.

First, note that PL/I programs can be written in either upper or
lower case. 1Internally, the PL/I compiler translates all characters
outside of string quotes to upper case. We generally prefer the use
of lower case throughout programs since it decreases the program
density and generally improves readability. Second, indentation is
used throughout PL/I to set off various declarations and statements.
In order to simplify indentation, the PL/I compiler expands tabs
(control-I characters) to every fourth column position. Be aware,
however, that CP/M utilities, such as ED, expand tabs to multiples of
eight columns, so the line will appear wider during the edit and
display operations. Note also that the TRUNC (truncate) error is
issued if the expanded line 1length exceeds 128 columns, Program
statements start at the outer block 1level in the first column
position. Each successive block level, initiated by a DO, BEGIN, or
PROCEDURE group 1is started at a new indentation level, either four
spaces or one tab stop. Statements within a group are given at the
same 1indentation 1level, with procedure names and labels on a single
line by themselves. An IF statement should be directly followed by
the condition and the THEN keyword, with the next statement indented
on the next line. When the IF statement has an associated FELSE, the
ELSE starts at the same 1level as the IF. Further, the statement
following the ELSE is indented and placed on the next line. Finally,
the declaration statement should be formed by placing the DECLARE
keyword on a single line, followed by the declared elements indented
on the following 1line, Complicated attribute factoring should be
avoided since this reduces program readability. Blank 1lines (i.e.,
lines containing only a carriage return) are inserted when necessary
to improve paragraphing, and most often wused to separate logically
distinct segments of the program. Many of the longer PL/I keywords
have abbreviations (e.g., DCL is equivalent to DECLARE). Inconsistent
use of abbreviations produces awkward programs, so within a project

(All Information Contained Herein is Proprietary to Digital Research.)

11

use either the long or short forms, but not both.

In general, large programs are divided into several 1logical
groups, or "modules," where each module performs a specific primitive
function. These modules are expressed as PL/I subroutines which are
either locally or externally defined. Local subroutines become a part
of the same main or subprogram, while external subroutines are
separately compiled and 1linked together wusing LINK-84. Locally
defined subroutines are placed at the end of the program so that the
beginning contains only declarations and top-level statements which
call the local subroutines. As a general rule, neither the top-level
statements, nor the locally defined subroutines, should exceed one or
two pages in 1length. If you are just learning to program PL/I-84,
you'll probably want to use just a main program with locally defined
subroutines, following the form of most of the examples of this
manual. When your application programs increase in size, however, it
may be more effective for you to break programs into separate modules
so that individual segments can be compiled and linked in pieces, thus
reducing overall development time.

Comments are a welcome sight within programs, but avoid
introducing them at random spots throughout the source file since they
detract from the overall structure. Again, consistency 1is the
watchword: a good practice is to place the comment at the head of
subroutines or logical statement groups, and 1if you've properly
decomposed your program you'll find that these explanatory remarks,
along with your well-formed program, provide the required information
to understand program operation. The program shown in Figure 3-1
illustrates the conventions presented in this section.

(All Information Contained Herein is Proprietary to Digital Research.)

12

PL/I-80 V1.4, COMPILATION OF: TEST

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: TEST

1l a 0000 test:
2 a 0006 proc options(main);
3 c poge6 dcl
4 c 0006 (a,b,c) float binary;
5 c 0¥06 put list ('Type Three Numbers: ');
6 c 941D get list (a,b,c);
7 ¢ 8056 put list ('The Largest Value is',
8 c @9Y7B max3(a,b,c));
9 c U67B
10 ¢ @078 max3:
11 c 3978 proc(x,y,z) returns (float binary);
12 e U078 dcl
13 e 008B (x,y,z,max) float binary;
14 e 008B /* compute the largest of x, y, and z */
15 e 008B if x > y then
16 e 8099 if x > z then
17 e @0A7 max = X;
18 e 00BS else
19 e @B0@B5 max = z;
20 e B84C3 else
21 e 909C3 if y > z then
22 e 00D1 max = y;
23 e OODF else
24 e OODF max = 2;
25 e POEA return (max) ;
26 c POF3 end max3;
27 a B0F3 end test;
CODE SIZE = (@F6
DATA AREA = (@44
Figure 3-1. An Illustration of Stylistic Conventions. _4’///

(A1l Information Contained Herein is Proprietary to Digital Research.)

13

4, PL/I-80 INPUT/OUTPUT CONVENTIONS

We'll start with a detailed discussion of the PL/I-88 1/0
system, This will provide the necessary foundation for the examples
that are presented later. If this section becomes too detailed for
you, skip to the GET and PUT statements where the simplest I/0
facilites are found. Scan the example programs in later sections and
then return to reread the details - they'll make more sense next time.

PL/I-80 provides a device independent I/0 system which
interfaces PL/I-80 programs with the CP/M and MP/M file system. The
parameters for this interface are provided in the OPEN statement and
through the defaulting mechanisms of the GET, PUT, READ, and WRITE
statements.

4,1, The PL/I-80 OPEN Statement.

The OPEN statement is optional, and takes place automatically
when a file 1is accessed using GET, PUT, READ, or WRITE when an
explicit OPEN has not occurred. If you do not want the file to take
the default attributes, 1it's necessary to explicitly OPEN the file
before it is accessed. The form of the open statment is:

OPEN
FILE (f)
STREAM RECORD
PRINT
INPUT OUTPUT UPDATE
SEQUENTIAL DIRECT
KEYED
ENV (B(i)) ENV (F(i)) ENV (F(i),B(3))
LINESIZE (i)
PAGESIZE (i)
TITLE (c)

where the attributes may be listed in any order. The value £ denotes
the value of a file constant or file variable and must be named in the
open statement. All other attributes are optional, and take default
values shown below. The wvalues i and j denote FIXED BINARY
expressions, while ¢ represents a character expression. Attributes
shown on the same line are in conflict and, if not included, the first
attribute on each line with multiple attributes becomes the default
value. The last four attributes take default values as shown below:

ENV (B(128))
LINESIZE (890)
PAGESIZE (60)
TITLE ('f.DAT')

A STREAM file contains variable 1length ASCII data, while a
RECORD file generally contains pure binary data. The lines of an

(All Information Contained Herein is Proprietary to Digital Research.)

14

ASCII data file are defined by the interspersed carriage return line
feed sequences. Note that the line feed is included following each
carriage return when the file is created using the ED program. Files
created using PL/I-808 can, however, contain a series of line feeds
without preceding carriage returns. 1In this case, the end of line |is
sensed when the line feed is encountered. The PRINT attribute applies
only to STREAM files, and generally suggests that the data is
eventually destined for display on a line printer device,

INPUT files are expected to exist at the point of the OPEN
statement, while OUTPUT files are deleted, if they exist, and created
at the OPEN statement. An UPDATE file cannot have the STREAM
attribute, and can be both written and read. An UPDATE file is
created if it does not exist.

SEQUENTIAL files are read or written from beginning to end,
while DIRECT files can be accessed randomly. A DIRECT file
automatically receives the RECORD attribute.

A KEYED file can be accessed through the wuse of keys, and
automatically receives the RECORD attribute. 1In PL/I-80, a KEYED file
is simply a fixed-length record file, where the key is the relative
record position of the record being accessed, based upon the fixed
record size.

The ENV (Environment) attribute defines fixed and wvariable
length record files, along with the internal buffer sizes. The form
ENV(B(i)) causes the I/0 system to buffer i bytes of storage, where i
is internally rounded-up to the next multiple of 128 bytes. 1In this
case, the file is assumed to have variable 1length records and, 1in
PL/I-88, <cannot have the KEYED attribute since the record size is not
fixed.

The ENV(F(i)) form defines a file with fixed 1length records
containing i bytes each, which 1is internally rounded to the next
multiple of 128 bytes. In order to comply with the PL/I standard, you
are also required to define files with fixed-length records as KEYED,
The default buffer size is, in this case, i bytes rounded to the next
higher multiple of 128 bytes.

The form ENV(F(i) ,B(j)) defines a file containing fixed 1length
records of i bytes (rounded up, as above), with a buffer size of j
bytes (again, rounded up). Note that you can specify a fixed length
record larger than the buffer size. Again, you are required to
include the KEYED attribute to maintain compatibility with the
standard.

If you specify the KEYED attribute, then the record length must
be given using either the ENV(f(i)) or ENV(F(i),B(j)) form. Further,
PL/1-80 requires all UPDATE files to be declared with the DIRECT
attribute 1in order that the individual records may be located. After
applying the default values, the following attributes are added:

(All Information Contained Herein is Proprietary to Digital Research.)

15

SEQUENTIAL -===> RECORD

UPDATE* ———> RECORD
KEYED** —-————> RECORD
DIRECT =—=-=> KEYED** ————> RECORD
PRINT -———=> STREAM
l——> OUTPUT

* In PL/I-80, UPDATE must also be DIRECT
** In PL/I-8@, KEYED must have ENV(F(i)) or ENV(F(i),B(j))

That is, the attribute RECORD is added to SEQUENTIAL, UPDATE, and
KEYED files, while STREAM is added to PRINT files. PRINT files are
also automatically given the OUTPUT attribute. The KEYED attribute is
added to DIRECT files (which, in turn, adds the RECORD attribute).

An OPEN statement cannot contain conflicting attributes obtained
in the OPEN statement itself or through the default or implied
mechanisms.,

So, what does all this mean? Basically, if you want to read a
file containing ASCII characters, you have to define it as a STREAM
file, otherwise it must be a RECORD file., Normally, this is all you
have to deal with., 1If you want to perform random access, define the
file as DIRECT and use ENV to define the record size. If you just
want to read the keys, you can define the file as KEYED, and leave off
the DIRECT attribute. You'll get quite a bit more insight by reading
the examples in the sections which follow.

The LINESIZE option applies only to STREAM files, and defines
the maximum input or output line length. The PAGESIZE option applies
only to STREAM OUTPUT files, and defines the length of a page.

The TITLE(c) option allows programmatic connection between an
internal file name and an external device or CP/M file. When not
specified, the external file name becomes the wvalue of the file
reference, with the type "DAT". Otherwise, the character string c is
evaluated to produce either a device name:

$CON System Console

SLST System List Device

$RDR System Reader Device

SPUN System Punch Device
or a disk file name

d:x.y Disk d, File x.y

where "d:" is an optional drive name, and x and y represent the file

(All Information Contained Herein is Proprietary to Digital Research.)

16

name and file type, respectively. Note that either x or y, or both,
may be $1 or $2. If $1 is specified, then the first default name 1is
taken from the command 1line and filled into that position of the
title. Similarly, $2 is taken from the second default name and filled
into the position in which it occurs. The file name X cannot be
blank, nor <c¢an x, vy, or d contain "?" symbols. The physical 1I/0
devices $CON, SRDR, S$PUN, and SLST can be opened as STREAM files only,
SRDR must be INPUT, and S$SPUN and SLST must have the OUTPUT attribute.

Several examples of the OPEN statement are shown below, assuming
each file fi has been declared elsewhere as a file constant. In each
case, the source statement is listed, with the default and augmented
attributes shown below the statement.

open file (fl1);
STREAM INPUT LINESIZE(8@) TITLE('fl1.DAT') ENV(b(128))

open file (f1) print;
STREAM OUTPUT LINESIZE (80) PAGESIZE(60)
TITLE('F2.DAT') ENV(B(128)

open file (£3) sequential title('new.fil');
RECORD INPUT ENV(B(128))

open title('a:'|lc) file (f4) direct keyed env(£f(2000));
RECORD INPUT ENV (£(2048) ,b(2048))

open update keyed file (£5) env(£f£(3060),b(100));
RECORD ENV(f£(384) ,b(128)) TITLE ('f5.DAT")

open input direct title(c||'0OUT') env(£f(14d9d) ,b(2000)):;
RECORD ENV (£(128) ,b(128))

Integer expressions are allowed wherever a constant 1is shown
above. Thus the statment

open file (fl) linesize(k+3) pagesize(n-4) env(b(x+128));
is a valid form of the open statement. Finally, note that when an
OPEN statement references a file which is already open, the statement
is ignored.

the form of the close statement is

CLOSE FILE(f);

where £ is a file variable or file constant. All open files are
automatically closed at the end of the program or upon execution of
the STOP statement,

Files opened with the STREAM attribute can be accessed through

GET and PUT statements, while files with the RECORD attribute are
accessed through READ and WRITE, with one exception noted later.

(All Information Contained Herein is Proprietary to Digital Research.)

17

4,2. The PL/I PUT LIST Statement,
The PUT LIST statement takes the form:

PUT
FILE (f)
SKIP SKIP (i)
PAGE
LIST (d)

where all elements are optional (althouah at 1least one must be
specified) . PUT LIST options can be given in any order, but the LIST
option, if specified, must occur last. 1In the form shown above, £ 1is
a file variable or constant, and i is an integer expression. The LIST

option includes a data 1list, denoted by d, and described in the
paragraphs which follow.

The PUT statement writes data or control characters to the file
given by FILE(f), or to the standard console file SYSPRINT which is
implicitly declared in all PL/I-80 programs. If the file has not been
previously opened, it is automatically opened when the PUT statement
is executed. The SYSPRINT file is implicitly opened as:

OPEN FILE(SYSPRINT) PRINT ENV(B(128)) TITLE('SCON');
The SKIP option can take one of the forms:
SKIP SKIP (i)

where i is a FIXED expression. The first form causes a carriage
return line feed sequence to he inserted into the output file, and
resets the column position of the output file to 1. The form SKIP (i)
inserts a single carriage return into the output stream, followed by i
line feed characters. Note that SKIP(0) moves the column position to
1 (e.qg., the cursor is positioned to the left of the 1line on a CRT
display), without a line feed.

The PAGE option causes an automatic SKIP(@), and places a
form-feed <character 1into the output stream. The order in which the
PAGE and SKIP options are 1listed in the PUT statement 1is of no
consequence: if specified, the PAGE option 1is executed first,
followed by the SKIP option.

The data list d given in the LIST option takes the general form:

LIST (d1,d2, ..., dn)

where each di is either a simple constant, scalar expression, or
iterative group. An iterative group takes the form

(el,e2, ... ,em DO iteration)
where, again, el through em are themselves constants, scalar

expressions, or iterative groups. The "iteration" portion of the 1list
takes the same form as a PL/I DO-group header, and controls the number

(All Information Contained Herein is Proprietary to Digital Research.)

18

of times each embedded group is written., The iterative group has the
same effect as the PL/I-80 DO-group shown below:

DO iteration;
PUT LIST(el,e2, ..., em);
END;

Each element of the data list is evaluated, and converted to a
string constant according to the normal PL/I-80 conversion rules. TIf
the data item is a string value, and the output file does not have the
PRINT attribute, then quote symbols are placed around the string, and
each embedded single quote is changed to a double quote value. 1If the
data item 1is a bit string, then the character "b" is appended to the
end of the output value, Values written to a disk file in this manner
are suitable for subsequent input using a GET LIST statement.

Upon converting the data item to a string wvalue, the current
column position is compared to the linesize to ensure that the data
item will fit in the current line, If not, an automatic SKIP 1is
issued, and the data item is written on the following logical line.
If the item is not the first on a line, a preceding blank 1is written
to separate each data item (this blank is included in the data item
length when multiple data items are written).

Examples of the PUT statement are shown below, followed by a
short explanation of their effect:

put skip;
moves to a new line in the file SYSPRINT (usually the console).
put list('Type Name: ');
writes a string to the standard output file SYSPRINT, producing either
Type Name: or 'Type Name:

The first form is produced if the PRINT attribute is present.

put file(f) skip(3) page list(a,b,c);
writes a form-feed to the file specified by £, followed by a carriage
return and three line feed characters. The three variables a,b, and c
?re then converted to varying character strings and sent to the file
Additional valid forms are shown below.

put skip list(x| |'+"|ly,((x+y)));
put list ((a(i),b(i) do i=1 to 14))

put list (x,((a(i,j) do j=1 to n) do i=1 to
put list((x(1) do i = 1 to k+m while(x(i) <

(All Information Contained Herein is Proprietary to Digital Research.)

19

4.3. The PL/I-80 GET LIST Statement.

Similar to the PUT statement, the GET statement is used to read
files with the STREAM attribute. The form of the GET statement is:

GET
FILE (f)
SKIP SKIP(1i)
LIST(d)

where the FILE, SKIP, and LIST options obey the constraints of the PUT
statement shown above.,. If the FILE(f) option is not included, the
standard input file SYSIN is accessed with the automatic OPEN
statement:

OPEN FILE(SYSIN) STREAM ENV(b(128)) TITLE('SCON');

The file f must have the STREAM INPUT attributes. The SKIP option
causes the 1input stream to be flushed to the next end of line, while
the SKIP(i) statement reads through the next i line feed <characters.
The data items given in the LIST option must he scalar variables or
iterative groups, as given in the PUT statement, and must be wvalid
targets of assignment statements.

When the console is accessed through a GET statement, the PL/I-84 I/0
system accesses the console and waits for input. The operator can
type up to 8@ characters, using the normal line editing facilities of
CP/M, before 1issuing a carriage return (an automatic carriage return
is issued following the 8#th character). 1In this case, the carriage
is returned to the left side, followed by a line feed. This buffered
line (including the 1line feed) is then used for subsequent GET
statement input. :

External data read by the GET statement is taken by PL/I-80 as a
sequence of characters, or as a bit or character string surrounded by
string quotes. Each data item is separated by one or more blanks and
an optional comma character. It must be possible to convert the data
read in this manner to the type of the target item. If, for example,
a decimal number is specified in the GET statement, then the input
value must contain a valid decimal number.

Note that if a data item is empty (i.e., a pair of commas Iis
encountered, possibly separated by intervening blanks), the value of
the target data item is not altered. This particular feature of PL/I
is useful when displaying data at a console which is then reread and
optionally changed.

The carriage return found at the end of each input 1line serves
as a delimiter (blank or comma). Further, string constants cannot go
beyond a line boundary, and, in fact, are automatically closed when an
end of line 1is -encountered. (Thus, only the 1leading gquote Iis
necessary when typing string data at the console.) The normal CP/M end
of file character (control-Z) can be typed at the console, but it must
be the first character on the line,.

(All Information Contained Herein is Proprietary to Digital Research.)

20

4.4, The PL/I-80 PUT EDIT Statement,

The PUT EDIT statement is similar to PUT LIST described above,
except data 1is written into particular fields of the output line, as
described by a list of format items. The form of the PUT EDIT is

PUT
FILE (f)
PAGE
SKIP SKIP(i)
EDIT(d) (£f1l)

where the data list specifies a number of values to be written in
fixed fields defined by the format list fl. The 1list of data items to
write, denoted by d, obeys the same rules as the PUT LIST. One or
more format items are given in the list f1, separated by commas, and
optionally grouped within parentheses, Any format item may be
preceded by a positive constant integer value not exceeding 254, which
determines the number of times to apply the format item or dgroup of

format items. Each element of the data list is paired with a format
item which determines the column position and interpretation of the
data element. See the Reference Manual, as well as the GET EDIT

statment, for additional details. The format items are:

A Writes the next alphanumeric field using
the size of the (converted) character
data as a field width,

A (n) Similar to the A format, except the field
width is n, with truncation or blank pad
on the right,

B Writes a bit string value to the output,
where the field width is determined by
the precision of the data item.

B (n) Similar to B, except the field width is
given by the constant n, with truncation
or blank pad on the right.

Bl Equivalent to the B format shown abhove.
Bl (n) Equivalent to Bl shown above.
B2 Equivalent to B, except the digits are
written in radix 4 notation (9,1,2,3).
B2 (n) Equivalent to B(n), except radix 4 digits
are printed. : p
B3 Equivalent to B, except radix 8 nota-

tion is used for output (4 to 7).

B3(n) Equivalent to B{(n), except radix 8 digits
are printed.

(All Information Contained Herein is Proprietary to Digital Research.)

21

B4

B4 (n)

COLUMN (n)

E(n)

E(n,m)

F(n)

F(n,m)

LINE(n)

PAGE

R(fmt)

SKIP

SKIP (n)

TAB(n)

X (n)

Equivalent to B, except radix 16 digits
are written to the field (9-9, A-F).

Equivalent to B(n), except radix 16
digits are written.

Moves to column position n before writing
the next data item. This may cause the
current line to be flushed.

Writes a data item into a field of n
characters in scientific notation, with
maximum precision allowed within the
field width (n must be at least 5).

Writes a data item into a field of n
characters, with m decimal places
of precision. The number is written
in scientific notation with one digit
to the left of the decimal point.

Write a numeric value in a field of
n digits, with no fractional part,
The value is rounded before it is
printed.

Write a numeric value in a field of

n digits, with m fractional digits.
The value is rounded in the m+l frac-
tional position before printing.

Moves to line n in the output before
writing the next data item.

Performs a page eject for print files.

Specifies a remote format., 1In PL/I-84,
if the R format appears, it must be the
only format item in fl.

Skips to the next output line before
writing the next data item.

Skips n lines in the output before
printing the next data item.

Moves to the nth tab position in the
output line, where tabs are defined
at multiples of eight columns,

Inserts n blank characters into the
output stream before writing the
next data item.

(All Information Contained Herein is Proprietary to Digital Research.)

22

Unlike the PUT LIST statement, data fields are written to the end of
the 1line, without a ‘"pre-fit" test, If the entire field cannot be
written, the portion which does fit on the current line is sent to the
output, a carriage return line feed is written, and the remainder of
the field is written on the following line, COLUMN, LINE, PAGE, SKIP,
TAB, and X format items which occur at the end of the format list have
no effect after the entire data list has been written. Valid PUT EDIT
statements are shown below:

put file(f) edit('Next ',value) (a,f(4));
put edit ((a(i) do i=qg to r)) (page,40(3e(l6,2),x(3)));
put edit (u,v,w) (r(fmt2));

4.5, The PL/I-80 GET EDIT Statement.

The GET EDIT statement is similar to the GET LIST statement,
except data is read from particular fields in the input stream. While
GET LIST is more appropriate for console input, GET EDIT is often used
to read data that has been written by another program. The form of
the GET EDIT statement is

GET
FILE (f)
SKIP SKIP (i)
EDIT (d) (f1)

where the FILE and SKIP options are identical to the GET LIST
statement. The EDIT option specifies a list of target variables to
receive the data which, again, matches the data specification of the
GET LIST. The EDIT option is followed by a format 1list, consisting of
a sequence of format items defined as follows:

A Read the next alphanumeric field up to
the next carriage return, line feed or
end of file (not standard PL/I).

A(n) Read the next n characters as an alpha-
numeric field.

B (n) Read the next n characters and inter-
pret as a bit strihg. The field must
be all blank, or contain a sequence of
1's and 0's with right or left blank

pad.
Bl (n) Interpreted in the same manner as B.
B2 (n) Similar to Bl(n), but the sequence must

contain digits selected from ¢,1,2, 3.

(All Information Contained Herein is Proprietary to Digital Research.)

23

B3(n)
B4 (n)
COLUMN (n)

E (n)

E(n,m)

F(n)

F(n,m)

LINE(n)

R(fmt)

SKIP

SKIP (n)

X (n)

Similar to Bl(n), but the sequence must
contain digits from @ through 7.

Similar to Bl(n), but the sequence must
contain digits from & to 9, and A to F.

Move to column position n in input,
may require a read past end of line,

Read the next n fields as a numeric
value, with possible leading and trail-
ing blanks. The number must be a pro-
perly formed constant, but may take

a simple signed or unsigned integer
form, a number with a decimal fraction,
or a number in scientific notation.

Equivalent to

E(n), the scale factor m
is ignored on ‘

input.
Equivalent to the E(n) form shown above.
Equivalent to E(n), except that the
decimal point is assumed m positions

to the left of the least significant
digit if there is no decimal point in
the field.

Moves to line n in the input before
reading the next field.

Specifies a remote format., In PL/I-80,
if the R format item appears, it must
be the only format item in fl.

Clears the current input line before
reading additional data items.

Clears the current input line, and
moves n-1 additional lines through
the input before reading additional
data.

Moves n characters through the
input stream before reading the
next field.

The carriage return line feed sequences are ignored in the A(n), B(n),
Bl(n), B2(n), B3(n), E(n), E(n,m), F{(n), and F(n,m) formats: when

encountered, the next 1input 1line 1is read to obtain the remaining
characters of the field. Each format item can be preceded by a
repetition count, and groups of 1items can be enclosed within

parentheses and separated by commas with a preceding repetition count.
The repetition count r must be a positive constant wvalue, not
exceeding 254, and is equivalent to writing the same format r times.

(All Information Contained Herein is Proprietary to Digital Research.)

24

In processing the GET EDIT statement, the PL/I-8¢ 1I/0 system
keeps track of the next data item to read, along with the next format
item to use in input processing. As each data item is read, the next
successive format item in the list is selected, repeating each item if
a repetition count is present, until the data list is exhausted.
Format items which remain in the 1list are 1left unprocessed: in
particular, the control format items which remain (COLUMN, LINE, SKIP,
and X) have no effect when the data list is exhausted. If the list of
format items 1is exhausted before all data items have been read, the
format list is restarted at the beginning. (See the Reference Manual
for exact details on EDIT directed input operations.) The following
examples show a number of valid GET EDIT statements.

get edit(hours,pay) (£(4),£(5,2));
get file(employee) (hours,pay) (r(fmtl));
get edit((a(i) do i =1 to 18) (8e(6) ,skip);
get skip(2) edit(u,v,w) (b3(4),x(4),2a(5)); -
get file(input) edit((mat (i) do i=1 to mat(l)))
(line(3) ,4(10(£(4) ,x(2),2£(4) ,skip(2)) ,skip));

4.6, The PL/I-84J FORMAT Statement,

The FORMAT statement allows a list of format items to be shared
among var ious GET and PUT EDIT statements. The form is

fmtname:
FORMAT (f1l)

where fl denotes a list of format items, as shown in the GET and PUT
EDIT statements above. The list of format items is then referenced
using the R format within the GET or PUT format 1list, Again, note
that PL/I-80 restricts the use of the remote format: if it appears in
a GET or PUT EDIT, it must be the only format item in the list. Valid
FORMAT statements are shown below, and referenced in the examples of
the previous two sections.

fmtl: format(5(x(3),4(bl(2),x(1),£(4)) ,skip),skip(2));
fmt2: format(skip(3),e(10,2) ,£(8,3),2(x(4),bd(4)));

4.7. The PL/I-80 WRITE Statement.
The WRITE statement is used primarily to transmit data from

memory to an external file without conversion to character form. The
basic form of the WRITE statement appears as follows:

WRITE
FILE(f)

(All Information Contained Herein is Proprietary to Digital Research.)

25

FROM.(x)

where both the FILE and FROM elements must be present, but may appear
in any order, f is a file reference, and x is a scalar or connected
aggregate data type. The file f is opened automatically as:

OPEN FILE(f) OUTPUT SEQUENTIAL TITLE('£f£.DAT') ENV(b(128));

If already open, file attributes of £ must not conflict with these
default values, Thus, for example, a KEYED file is allowed (since
this only implies fixed length*records), but DIRECT is not.

If file £ has been previously opened with the KEYED attribute,
then each “record 1length is fixed, and determined by the ENV(F(i))
option given in the OPEN statement., Otherwise, the file is assumed to
contain variable 1length records, where each record length 1is
determined by the aggregate data size of x. Given a KEYED file with
records of length i, each record is written from x for a maximum of i
bytes. The record is padded with zeroes if the length of x 1is less
than i, If f is not KEYED, then the record length is exactly the size
of x.

An alternative form of the write statement is:

WRITE
FILE(£f)
FROM (x)
KEYFROM (k)

where the elements can appear in any order. If the file f 1is not
already open, the default statement

OPEN FILE(f) OUTPUT DIRECT ENV(£(128));

occurs before the file is accessed. Note that the DIRECT attribute
implies a KEYED file (which, in turn, implies a RECORD file). The
file may have previously been opened with either OUTPUT, the INPUT, or
UPDATE attributes, but must have the DIRECT attribute. Recall that in
the case of OUTPUT, the file is deleted, if it exists, and a new file
is created. If the file 1is marked as INPUT, then the file must
already exist. An UPDATE file is opened for access if it exists, and
created if it does not exist,

When the KEYFROM option is included, each record 1is accessed
through a key k which, in PL/I-80, is a FIXED expression providing the
relative record number of the record to write, based upon the fixed
length of each record. The lowest key value 1is k = @, while the
maximum key value depends upon the record length obtained from the
ENV (£ (J)) attribute: if j is the fixed record size, and 3j' 1is the
rounded record size, then the largest key times j' cannot exceed the
capacity of the drive.

A special form of the WRITE statement is supported by PL/I-80
for processing variable-length STREAM data, delimited by carriage
return line feed sequences. Given a file f with the STREAM OUTPUT

(All Information Contained Herein is Proprietary to Digital Research.)

26

attributes, and a varying character string v, the statement:
WRITE FILE(f) FROM (V) ;

writes the characters of v to the STREAM file £, including any
embedded control characters. The form:

WRITE FROM (V) ;

writes the string value v to the standard output device, and is
equivalent to:

WRITE FILE (SYSPRINT) FROM (V) ;

In order to facilitate control character processing, PL/I-88
allows control characters to be entered into string constants. 1In
general, the character """ within a string constant denotes that a
control <character follows. The occurrence of a double """ within a
string, however, is reduced to a single """ character., The effect of
a leading """ 1is to mask the high-order four bits of the character
which follows to zero. Thus, the sequence ""m" within a string
constant 1is converted to a carriage return. Embedded control
characters are shown in the examples given in sections which follow.

To summarize, let £ be a file, x be a scalar or connected
aggregate data type, v be a varying character string, and k be a fixed
binary expression. The following forms show the required file
attributes in each case:

write file(f) from(x);
SEQUENTIAL OUTPUT (Optionally KEYED) RECORD

write file(f) from(x) keyfrom(k);
DIRECT QUTPUT or DIRECT UPDATE

write file(f) from(v);
STREAM OQUTPUT

write from(v);
STREAM OUTPUT (automatically SYSPRINT)

4.8, The PL/I-80 READ Statement,

The READ statement is used, with one exception, to read fixed or
variable length RECORD files without conversion from character form,
That is, data is transmitted from an external file to data elements in
memory, where the external file is assumed to contain binary data. It
is the responsibility of the programmer to interpret the meaning of
the data which is transmitted.

The form of the basic READ statement is:

(All Information Contained Herein is Proprietary to Digital Research.)

27

READ
FILE(f)
INTO(X) ;

where £ is a file reference, and x is a connected aggregate or scalar
data type (e.g., a structures, array, or simple variable). Both the
FILE and INTO elements must be present, but may occur 1in any order,
If the file £ is not already open, then it is automatically opened as:

OPEN FILE (f) INPUT SEQUENTIAL TITLE('f.DAT') ENV(b(128));

As in the case of the WRITE statement, if f is already open, then its
attributes must not conflict with those shown above.

If the file has been opened with the KEYED attribute, then each
record is assumed to be of fixed length, as defined in the ENV(f£(i))
attribute. Otherwise, the record length is assumed to be variable,
depending upon the size of the target data x specified in the INTO
element., Given a KEYED file, if the record length i is greater than
the size of x, all remaining bytes in the record are ignored. If the
record length is less than the size of x, then only i bytes are read
into x. If the file is not KEYED, then the number of bytes read is
exactly the size of x.

The keys for a particular file can he optionally extracted as
the file is read sequentially using the form:

READ
FILE(£f)
INTO(X)
KEYTO (k)

where the elements may be specified in any order. The effect of this
form 1is exactly the same as the previous READ statement, except that
the key value for the record is stored into the FIXED BINARY variable
reference denoted by k. Note, however, that in order to read the key
as well as the data, the file must be KEYED. Thus, the automatic OPEN
statement which applies to this second form of the READ is:

OPEN FILE(f) INPUT KEYED TITLE('f.DAT') ENV(f(128));

If a previous open has occurred, the attributes of f must not conflict
with these default attributes. Note, in particular, that KEYED must
be present, and DIRECT is not allowed since the KEYTO option simply
extracts the key, but does not specify the keyed record to read. This
form of the READ statement is most often used in the situation where
the file 1is first read sequentially to determine the keys, and later
accessed directly to read, write, or upndate specific records within
the file.

The third form of the READ statement specifies the keyed record
to read:

READ

(All Information Contained Herein is Proprietary to Digital Research.)

28

FILE(f)
INTO(x)
KEY (k)

where the elements may be specified in any order. If the file is not
already open, the default OPEN shown below is executed:

OPEN FILE(f) INPUT DIRECT ENV(£(128)) TITLE('f.DAT');

If the file is already open, the open attributes must not conflict
with these default values, except that the file may have béen opened
with the UPDATE attribute. Note that the DIRECT attribute also
implies that the file is KEYED,

The effect of this READ statement is to directly access the
record which has the key value k. Since the file is KEYED, the record
length must be fixed, as defined by the ENV(f(i)) attribute, and data
transfer takes place according to the above rules for fixed 1length
records.

A special form of the READ statement is allowed in PL/I-80 to
process variable length STREAM INPUT files:

READ FILE(f) INTO(v);
and
READ INTO(v);

where v is a varying character string, and f is an ASCII data file (or
character device) with records delimited by carriage return line feed
sequences, If FILE(f) is not specified, then the standard output file
SYSIN is assumed., If f is not open, it is opened with the statement:

OPEN FILE(f) PRINT TITLE('f.DAT') ENV(b(128));

The effect of this statement is to read data from the file until
either the maximum length of v is reached, or a line feed character is
read. The 1length wvalue of v 1is set to the number of characters
processed, including control characters, which specifically includes
the carriage return and line feed characters. If the standard SYSIN
file is attached to the console, then a maximum of 8@ <characters is
read before an automatic carriage return and line feed is issued.

In summary, if £ is a file, x is a scalar or aggregate data
reference, v 1is a varying character string, and k is a fixed binary
key, the following forms show the required file attributes:

read file(f) into(x);
SEQUENTIAL INPUT (Optionally KEYED) RECORD

read file(f) into(x) keyto(k);
SEQUENTIAL INPUT KEYED RECORD

read file(f) into(x) key(k);

(A1l Information Contained Herein is Proprietary to Digital Research.)

29

DIRECT INPUT or DIRECT UPDATE

read file(f) into(v);
STREAM INPUT

read into(v);
STREAM INPUT (Automatically SYSIN)

The following section contains a number of examples which show the use
of the various PL/I-80 I/O statements,

(All Information Contained Herein is. Proprietary to Digital Research,)

30

5. PL/I-80 PROGRAMMING EXAMPLES

The purpose of this section is to introduce the various PL/I-80
I/0 statements through several sample programs. The programs
themselves are simple in nature, but illustrate the basic techniques
for stream and record processing.

5.1. Polynomial Evaluation.

Two programs for polynomial evaluation are shown in Fiqures 5-1
and 5-2. Each program interacts with the system console hy reading
three values: x, y, and z, which are then used in the evaluation of

2
p(x,y,2) = x + 2y + 2

The programs have one main loop, bounded by a single DO-END group. On
each successive loop, the values of x, vy, and 2z are read from the
standard SYSIN (console) file, and used in the polynomial evaluation.
The value produced by p(X,y,z) is written to the SYSPRINT file (again,
the console) in the middle of the 1loop. The STOP statement is
executed if all input values are zero, thus terminating the indefinite
loop.

The console interaction is shown below the program 1listing in
each Figure. Referring to Figure 5-1, note that the initial values
for x, y, and z are 1.4, 2.3, and 5.67, respectively. The next input,
however, takes the form

14.5,,

which changes only the value of y. On this loop, the values of x, vy,
and z are 1.4, 4.5, and 5.67. The third input line changes y and z,
while the fourth line changes only x.

These two programs illustrate a number of points which should be
noted in passing. The "%replace" statement is used on 1line 6 to
define the literal value of "true" as a bit string constant '1'b which
is substituted by the compiler whenever the name "true" is
encountered. In particular, the DO group beginning on line 12 is
interpreted by the compiler as

do while('1'b);

end;
which loops until the contained STOP statement is executed.

The only essential difference between the programs of Figures
5-1 and 5-2 is that the first uses float binary data items, while the
second program defines the variables as fixed decimal types. Although
the float binary computations execute significantly faster that their
fixed decimal equivalents, the binary computations are carried out to
only about 7-1/2 decimal places and involve truncation errors which
are inherent in floating binary computations.

(All Information Contained Herein is Proprietary to Digital Research.)

31

.

WO JAUTLDWN -

[
w
ypaagooooQaQaQOaQOO0QACNa0000QO000 U DD

Type

Type

Type

Type

Type

20080 poly:

0006 procedure options(main);

@006

o006 /* evaluate polynomial */

0006

boae6 greplace

2006 false by '#'b,

g0d6 true by 'l'b;

pgaade dcl

a6 (x,y,z) float binary;

boaa

G006 do while(true); ,

gg06 put skip(2) list('Type x,y,2: ');
@22 . get list(x,v,2z);

d@5B

@058 if x =0 &y =0 & z =40 then
GO8E stop;

Pg91

3091 put skip list(" 2');

@OAD put skip list(' X + 2y + z =',p(x,v,2));
@@DA end;

@oDA

@ 2DA p:

gapa proc (x,y,z) returns (float binary);
JoDA dcl

AoE7 (x,y,z) float binary;

GoE7 return (x * x + 2 * y + 2);

3109 end p;

2109

4199 end poly;

X,¥,2:2 1.4, 2.3,5.67
2
X + 2y + z = 1.223000E+01
X,¥,2: ,4.5,,
2
X + 2y +z = 1.663000E+01

X,¥Y,2: ,.6e-3, 7

2
X + 2y + z = @.896119E+01

X,¥,2: 2.3,,,

2
X + 2y + z = 1,229119E+01

X,¥Y,2: 0,@,ﬂ

_/

(All

Figure 5-1. Floating Point Polynomial Evaluation.

Information Contained Herein is Proprietary to Digital Research.)

32

-

’_l
NOOJIOHUVLEWIN -

[
-
s aaoOCODOaAaNQOQQOQCNOO0nOOO0a0Q0Y D DD

-
wN

—
1=

N e
[SYRVe e BB I o WU, |

NN
NSO Wi

NN
\©

0Y00 poly:

2006 procedure options(main);

p006

ge06 /* evaluate polynomial */

3006

300a6 $replace

gag6 true by 'l'b;

goae dcl

@6aa6 (x,y,2z) fixed decimal(15,4);

3306

o306 do while(true);

0006 put skip(2) list('Type x,y,2: ');
g0g22 get list(x,y,z);

go67

3067 ifx =0 & y=0 & z =0 then
3082 stop;

B0BS

d0B5 put skip list(' 2');

3oD1 put skip list(' X + 2v +z ="',p(x,¥,2));
9100 end;

g100

3100 D:

6106 proc (x,y,z) returns (fixed decimal(l5,4));
gleo dcl

g1eD (x,vy,2) fixed decimal(15,4);
81D return (x * x + 2 * y + 2);

¥153 end p;

@153

@153 end poly;

Type Xx,y,2: 1.4, 2.3, 5.67

2
X + 2y + z = 12.2300

Type x,y,2z: , .0006, 7

2
X + 2y + z = 8.9612

Type x,y,z: 723.445, 80.54, 0

2
X + 2y + 2z = 523533.7480

Type x,y,2: 0,90,,

End of Execution

Figure 5-2. Fixed Decimal Polynomial Evaluation.

%

33

(All Information Contained Herein is Proprietary to Digital Research.)

5.2. The File Copy Program.

A general purpose file-to-file copy program is shown in figure
5-3. The program defines two file constants on line 4, called input
and output. The files are opened on lines 6 and 9, followed by a
continuous 1loop which reads data from the input file, and copies the
line to the output file,

Both OPEN statements define STREAM files containing ASCII data,
with internal buffers of 8192 characters each, The first OPEN
statement has the default value of INPUT, while the second file
explicitly defines an OUTPUT file (otherwise, it would also be
considered an INPUT file). The TITLE options connect the internal
file names to external CP/M devices and files: the first file name is
taken as the first default name typed in the command tail when the
copy program executes (denoted by $1.$1). Similarly, the second file
name is taken from the second default name on the command line
(denoted by $2.%2). The input file must exist, while the output file
is erased, if it exists, and re-created.

This particular program shows the special use of READ and WRITE
to process STREAM files: line 15 reads a STREAM file into "buff"
which is a varying character string. The line of 1input, up to the
next 1line feed, 1is read into buff, and the length of buff is set to
the amount of data which was read, including the line feed character.
The next statement performs the opposite action: a WRITE statement
sends data to a STREAM file from buff, which is a wvarying character
string. The output file receives all characters from the first
position through the LENGTH(buff).

The program terminates by reading through the input file until
the STREAM end of file (control-z) is reached. At this point, the END
OF FILE condition 1is raised, and the program stops. All files are
automatically closed (and internal buffers are emptied), preserving
the newly created output file,

A sample execution of the copy program is shown in Figure 5-4,
using the command line

copy copy.pli $con
In this case, the input file 1is taken as ‘“copy.pli" (which just
happens to be the original source file), while the output file is the
system console. The result is that the copy.pli program is listed at
the operator's terminal. The command

copy a:x.dat c:u.new

would, for example, copy the file x.dat from drive "a" to the new file
u.new on drive “c“.

(All Information Contained Herein is Proprietary to Digital Research.)

34

PL/I-8¢ V1.0, COMPILATION OF: COPY

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-808 V1.0, COMPILATION OF: COPY

1l a 0000 copy:

2 a 0006 proc options(main);

3 c 0606 dcl

4 c 0006 (input,output) file;

5 c 8006

6 c P06 open file (input) stream env(b(8192))
7 c 0023 title('$1.81");

8 ¢ 0023

9 c 0023 open file (output) stream output env(b(8192))
10 c 0@40 title('$2.82');
11 ¢ 0040 dcl
12 c 00490 buff char(254) varying;
13 c 0040
14 c 0040 do while('1'b);

15 ¢ 0640 read file (input) 1into (buff);
16 ¢ 0858 write file (output) from (buff);
17 ¢ 8873 end;

18 a 60873 end copy;

CODE SIZE = 00873
DATA AREA = 0109

\\\\¥ Figure 5-3. File to File Copy Utility. <‘///

(All Information Contained Herein is Proprietary to Digital Research.)

35

A>b:copy copy.pli S$con
copy:
proc options(main);
dcl
(input,output) file;

open file (input) stream env(b(8192))
title('$1.81');

open file (output) stream output env(b(8192))
title('S$2.$2');

dcl
buff char(254) varying;

do while('l'b);
read file (input) into (buff);
write file (output) from (buff);
end;

end copy;

END OF FILE (3), File: INPUT=COPY.PLI
Traceback: #44B @3AF @155
End of Execution

Figure 5-4. Execution of the File Copy Utility. 4’///

(All Information Contained Herein is Proprietary to Digital Research.)

36

5.3. Name and Address File Processing.

Two programs are shown in Figures 5-=5 and 5-7, <called "“create"
and "“retrieve," which manage a simple name and address file. The
create program produces a STREAM file containing individual names and
addresses which are subsequently accessed by the retrieve program.

The create program, shown in Figure 5-5, contains a structure
which defines the name, address, city, state, zip code, and phone
number format. The console is prompted for each data input, and each
successive entry is written to the output file until the name "EOF" is
entered by the operator.

The record structure is read and merged with the source program
from a separate file, wusing a “sinclude" statement which 1is a
statement in the source file, but is not shown in the 1listing. The
presence of a "$include" statement is indicated by the "+" symbols to
the right of the source line number. The source program, in fact,
appears as follows:

create:
procedure options(main);
/* create name and address file */

$include 'record.dcl’';

greplace
true by '1'b,

The file given in the "%include" statement can be any valid CP/M file
name, and is copied from the file at the point of the “%include"
statement,

In this particular program, the input file name 1is entered by
the operator on 1line 25 and listed in the TITLE option in the OPEN
statement on line 27. The PRINT attribute is not specified 1in the
OPEN statement, and thus the output file is in a form suitable for
later input using a GET LIST statement.

The console interaction and subsequent program output 1s shown
in Fiqure 5-6. In this case, the output file is specified by the
operator as "names.dat" in the first input line, Recall that LIST
input 1is delimited by blanks and commas, unless the delimiters are
included within a quoted string. Thus, the input line

'Aaron Appleby

is taken as a single string wvalue with the implied closing guote
automatically inserted at the end .of the line. The second entry
includes the three input values

Don't-Know, 'Won''t Know', 99999

which are assigned to the variables city, street, and state. The

(All Information Contained Herein is Proprietary to Digital Research.)

37

l a 0000
2 a 0o@6
3 a 000@6
4 a 0806
5+c 0006
6+c 0006
7+c 0006
8+c 0406
9+c 0006
ld+c 0006
ll+c 00@06
12+c 0006
13 c 90@6
14 c 0006
15 c 0006
16 c 0006
17 c 0206
18 c 0096
19 c 0006
20 c 0006
21 c 0006
22 c p@ge6
23 c 0066
24 c 0006
25 ¢ 841D
26 c 9037
27 c 6037
28 ¢ @051
29 c 9051
30 c @058
31 c 9074
32 ¢ QO8E
33 c 00AQ
34 c @0A7
35 c @0A7
36 c @0A7
37 ¢ OOBE
38 c @0D8
39 ¢ QOEF
40 c 012A
41 c 0141
42 ¢ 0158
43 ¢ @15B
44 c @158
45 ¢ @1A9
46 c @1A9
47 c @1cCo
48 c Y1co
49 ¢ 91CH
50 ¢ @1DF
51 a @1F3

create:

procedure options(main);
/* create name and address file */

dcl

g$replace

dcl

dcl

dcl

put
get

open file(output) stream output title(filename);

put
put
end

l record,

name character(30) varying,
addr character(30) varying,
city character(26) varying,
state character(16) varying,
zip fixed decimal(6),
phone character(l12) varying;

DN NDNDN

true by 'l'b,
false by '8'b;

output file;
filename character(l14) varying;
eofile bit(l) static initial(false);

list ('Name and Address Creation Program, File Name: ');
list (filename);

do while ("eofile);
put skip(3) list('Name: ');
get list(name);

eofile = (name = 'EOF');
if "eofile then
do;

/* write prompt strings to console */
put list('Address: ');

get list(addr);

put list('City, State, Zip: ');

get list(city, state, zip):;

put list('Phone: ');

get list(phone);

/* data in memory, write to output file */
put file(output)
list(name,addr,city,state,zip,phone);

put file(output) skip;
end;

end;

filefoutput) skip 1ist{'E0F'j;

file(output) skip;

create;

Figure 5-5. File CREATE Program. 4‘//)

(All Information Contained Herein is Proprietary to Digital Research.)

38

Ad>b:create
Name and Address Creation Program, File Name: names.dat

Name: 'Aaron Appleby
Address: '32 West East St.

City, State, Zip: Claustrophobia, Ca., 92995
Phone: 123-4567

Name: 'Bugsy Burton

Address: 'Good Question

Ccity, State, Zip: Don't-Know,'Won''t Know', 99999
Phone: 333-9999

Name: ‘'Zwiggy Zittsmacher
Address: 2323-W-2nd#201

City, State, Zip: Lincoln, Wa., 98177
Phone: 345-5432

Name: EOF
End of Execution

Figure 5-6a. Interaction with the CREATE Program.

A>type names.dat

‘Aaron Appleby' '32 West East St.' 'Claustrophobia' ‘Ca.' 92995 '12
'Bugsy Bugton' 'Good Question' 'Don''t-Know' 'Won''t Know' 99999 '3
'Zwiggy Zittsmacher' '2323-W-2nd#281' 'Lincoln' 'Wa.' 98177 '345-54
'EOF'

Figure 5-6b. Output from the CREATE Program.
\\\\ (Note: output listing is truncated on right.)

(All Information Contained Herein is Proprietary to Digital Research.)

39

first wvalue does not begin with a quote, so the data item is scanned
until the next blank, comma, or end of line occurs. The second data
item begins with a quote, causing all input through the trailing
balanced quote to be consumed, with all embedded double quotes reduced
to a single quote. The last value, 99999, is assigned to a decimal
number, and must contain only numeric data.

- The CP/M TYPE command is used, following program execution, to
display the STREAM file which was created. The (truncated) output
shows the quoted strings which were produced for each input entry.

The retrieve program shown in Figure 5-7 reads the previously
created file and displays the name and address data according to an
operator request, The "record.dcl" structure is included 1in the
retrieve program, matching the create program discussed above.

In general, the retrieve program works as follows: the main
loop between 38 and 60 reads two string values corresponding to the
lowest and highest names to print on each iteration. The embedded

loop between 41 and 58 reads the entire input file and lists only
those names between the lower and upper bounds.

Similar to the create program, retrieve reads the name of the
source. file from the console, but opens and closes this source file
each time a console retrieval request occurs. The OPEN statement on
line 38 sets-up the input file, with internal buffer size of 1424
bytes. After the file has been processed, the CLOSE statement on line
59 is executed, and all internal buffers are reclaimed. As a result,
the input file 1is effectively set back to the beginning on each
retrieval request,

Program interaction is shown in Figure 5-8. Again, the input
file 1is given as "names.dat" which is assumed to exist on the disk in
the form produced by “"create." The input values

B,D

set lower to 'B' and upper to 'D' which causes retrieve to 1list only
'Bugsy Burton'. The second input line consists only of a comma pair,
leaving the lower bound as the sequence 'AAA...A' while the upper
bound remains at 'zzz...z'. These two bounds include all of the
alphabetic range, resulting in a display of the entire list of names
and addresses.

It should be noted that the sysprint file was explicitly opened
with the PRINT attribute on 1line 26 to illustrate the form of the
resulting output. This statement is, however, superfluous since the
PUT statement on line 27 would have provided the same information.

5.4. An Information Management System.
The example of this section provides the model for an
information management system consisting of a set of four programs.

. The four programs work together to manage a file of employee names,
. addresses, wage schedules, and wage reporting mechanisms. In general,

(All Information Contained Herein is Proprietary to Digital Research.)

40

PL/I-80 V1.0, COMPILATION OF: RETRIEVE

L: List Source Program

$include

'record.dcl’;

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: RETRIEVE

&> wN -
[V R]

6+c
7+c
8+c
9+c
1@+c
ll+c
12+c
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28

oo aoaaQaaoaaaaQ0QaQa

_

00030 retrieve:

poo6
poo6
poge
pad6
P06
0006
0006
2036
0o06
pooe6
po0o6
po0o6
0006
0006
0006
P06
p006
poB6
paa6
A006
god6
goae
po@6
pod6
po0o6
go22
@a39

procedure options(main);
/* name and address retrieval program */

dcl
1l record,
2 name character(30) varying,
2 addr character(36) varying,
2 city character(28) varying,
2 state character(l0) varying,
2 zip fixed decimal(6),
2 phone character(l12) varying;
$replace
true by 'l'b,
false by '8'b;
dcl
(sysprint, input) file;
dcl

filename character(l14) varying,
(lower, upper) character(3¢) varying,
eofile bit(l);

open file(sysprint) print title('Scon');
put list('Name and Address Retrieval, File Name:
get list(filename);

Figure 5-7a. RETRIEVE Program Listing, Part A.

');

/

(All Information Contained Herein is Proprietary to Digital Research.)

41

29 ¢ @053
380 ¢ 9853 do while(true);
31 ¢ @653 lower = 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA';
32 ¢ @05F upper = '22Z222222222Z2Z222ZZ22222222222";
33 c 9d6B put skip(2) list('Type Lower, Upper Bounds: ');
34 ¢ 9087 get list(lower,upper);
35 ¢ POAF if lower = 'EOF' then
36 ¢ 90BD stop;
37 ¢ 008CO
38 ¢ 06COH open file(input) stream input environment(b(1624))
39 c 00DB title(filename);
40 c 0ODB eofile = false;
41 c OOEM do while ("eofile);
42 c BOE7 get file(input) list(name);
43 c 0104 eofile = (name = 'EOF');
44 c @116 if "eofile then
45 ¢ @11D do;
46 ¢ 011D get file(input)
47 ¢ 9177 list(addr,city,state,zip,phone);
48 c 9177 if name >= lower & name <= upper then
49 c 0194 do;
50 c 0194 put page skip(3)
51 ¢ @1Bl list(name);
52 ¢ @1B1 put skip list(addr);
53 ¢ @#1CB put skip list(city,state);
54 ¢ @1EE put skip list(zip);
55 ¢ 9211 put skip list(phone);
56 c @22E end;
57 ¢ B22E end;
58 ¢ 022E end;
59 ¢ @22E close file(input);
60 c 0237 end;
61 a 8237 end retrieve;
CODE SIZE = 8237
DATA AREA = 0141

\\\\; Figure 5-7b. RETRIEVE Program Listing Part B. <‘///

(All Information Contained Herein is Proprietary to Digital Research.)

42

A>b:retrieve
Name and Address Retrieval, File Name: names.dat

Type Lower, Upper Bounds: B,D

Bugsy Burton

Good Question

Don't-Know Won't Know
99999

333-9999

Type Lower, Upper Bounds: ,,

Aaron Appleby

32 West East St.

Claustrophobia Ca.
92995

123-4567

Bugsy Burton

Good Question

Don't-Know Won't Know
99999

333-9999

Zwiggy Zittsmacher
2323-W-2nd#201
Lincoln Wa.

98177
345-5432

Type Lower, Upper Bounds: EOF,,

End of Execution

\\\\» ‘'Figure 5-8., 1Interaction with the RETRIEVE Program. 4’///

(All Information Contained Herein is Proprietary to Digital Research.)

43

a file is initially prepared using a data entry program, called enter,
which establishes the data base. A second program, called keypr,
reads this data base and prepares an index file for direct access to
this data base for information and update. A third program, called
update, 1interacts with the console to allow access to the data base.
Finally, the report program reads the data base to produce a final
report,. Although these programs are, themselves, simplistic in
nature, they c¢ontain all the elements of a more advanced data
management system, thus demonstrating the power of the PL/I-80
programming system, while providing the basis for custom programs.

The "enter" program interacts with the operator's console and
constructs the initial data base, as shown in Figure 5-9. The basic
input loop appears between lines 36 and 49 where the operator is
prompted for an employee name, age, and hourly wage., The "employee"
data structure is filled with this wvariable information, and, for
simplicity of the example, the address fields are filled with default
values on line 44. Operator input is terminated when the name "“EOF"
is entered.

The employee record names a number of fields which total 84
bytes in length (the $S compiling parameter can be used to verify this
value). For expansion, a record size of 100 bytes is specified in the
OPEN statement on line 33, where each record of the "emp" file holds
exactly one employee data structure, '

The OPEN statement names "emp" as a KEYED file, which makes each
record a fixed size as specified in the environment option, In this
case the fixed size 1is 100 bytes, but is internally rounded to 128
bytes. The buffer size is also given in the OPEN statement as 8000
bytes, again rounded up to 8192. Each employee record is filled from
the console and written to the employee file named in the command
line, with the file type "EMP" given on line 34.

The WRITE statement itself is included in a separate subroutine,
named WRITE, which is called from lines 41 and 48, and 1is defined
starting at 51. The WRITE statement was placed into a separate
subroutine to reduce program size.

Interaction with the enter program 1is given 1in Figure 5-18.
Each employee record is entered including the name, age, and hourly
wage. The program terminates when the EOF entry 1is typed, and the
file "plantl.emp” is closed and recorded on the disk.

The “keypr" program constructs a key file by reading the data
base file created by "enter." The key file is a sequence of employee
names, followed by the key corresponding to that name, In this
particular case, the key file is written in STREAM mode so that it can
be displayed at the console. Referring to Figure 5-11, the "EMP"
employee file is OPENed on line 16 with the KEYED attribute, where
each record length is given as 139 bytes, with a buffer size of 1040060
bytes. The "keys" key file is then OPENed in STREAM mode, with with
LINESIZE(6@) and a TITLE option which appends "KEY" as the file type.

The keypr program reads successive records on line 23, extracts

(All Information Contained Herein is Proprietary to Digital Research.)

44

/

-

PL/I-80 V1.8, COMPILATION OF: ENTER

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.4, COMPILATION OF: ENTER

1l a
2 a 00086
3 a 0006
4 c 0006
5 c 0006
6 c gdge
7 c 00806
8 c gd@e6
9 c @006
10 c 0006
11 c 2066
12 c 0006
13 ¢c 3086
14 ¢ 3006
15 c 9046
16 ¢ 0006
17 c 0606
18 c 9006
19 ¢ 00606
20 c 00606
21 ¢ 0@@6
22 ¢ 4006
23 c 0806
24 c 0006
25 c 0006
26 c 0006
27 c 0006
28 ¢ pAg6
29 c 00@0d6
30 c Bd0de6
31 c 0006
32 ¢ #0806
33 c 0006
34 ¢ 9826
c

p026

P039 enter:

proc options(main);

$replace

dcl

dcl

dcl

true

by '1'b,

false by '0'b;

1 employee static,
2 name char(30) varying,

2

addr,

3 street char(30) varying,
3 city char(10) varying,
3 state char(7) varying,
3 zip fixed dec(5),

age fixed dec(3),
wage fixed dec(5,2),
hours fixed dec(5,1);

1 default static,

2

2

2

2

street char (3¢) varying
initial(' (no street)'),
city char(10) varying
initial('(no city)"'),
state char(7) varying
initial('(no st)'),

zip fixed dec(5)
initial(00000);

emp file;

open file(emp) keyed output enviromment(f(100),b(8008))
title ('S1.EMP');

Figure 5-9a.

ENTER Program Listing Part A.

%

(All Information Contained Herein is Proprietary to Digital Research.)

45

_

36 ¢ 0826
37 c @026
38 ¢ @03D
39 ¢ @957
40 c 0966
41 c QP66
42 c 0069
43 c @g@6C
44 c @@e6C
45 c 9678
46 c Q08F
47 ¢ @@cCl
48 ¢ @goD1
49 c 9@D7
50 ¢ 9OD7
51 ¢ @@D7
52 ¢ @g@D7
53 e @80D7
54 ¢ 0OFQ
55 a 00F0

do while(true);
put list('Employee: ');
get list(name);

-if name = 'EOF' then
do;
call write();
stop;
end;

addr = default;

put list (' Age, Wage: ');
get list (age,wage);

hours = @;

call write():

end;

write:
procedure;
write file(emp) from(employee);
end write;

end enter;

Figure 5-9b. ENTER Program Listing Part B.

Figure 5-10.

A>b:enter plantl
Employee: Abercrombie

Age, Wage: 25, 6.70
Employee: Fairweather

Age, Wage: 32, 15.00
Employee: Eggbert

Age, Wage: 45, 5.50
Employee: Willowander

Age, Wage: 27,,
Employee: Millywatz

Age, Wage: ,7.20
Employee: Quagmire, 23, 4.30

Age, Wage: Employee: EOF

End of Execution

Interaction with the ENTER Program.

J

(All Information Contained Herein is Proprietary to Digital Research.)

46

~

N

PL/I-80 V1.0, COMPILATION OF: KEYFILE

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: KEYFILE

1l a 0000 keypr:

2 a 00806 proc options(main);

3 a 0006

4 a 9006 /* create key from employee file */
5 a 9086

6 c Qgog6 dcl

7 c 0006 1l employee static,

8 c 0006 2 name char(30) varying;

9 c 0006
19 c 0006 dcl
11 c 00@d6 (input, keys) file;
12 c 0006
13 c 0006 dcl
14 c 0006 k fixed;
15 ¢c 00@6
16 c 0006 open title('$l.emp') keyed
17 c 6026 env(f(100) ,b(10000)) file(input);
18 c 9026
19 c 9026 open file (keys) stream output
20 c 0044 linesize (60) title('Sl.key');
21 c 0@44
22 c 0044 do while('1l');
23 c 0044 read file(input) into(employee)
24 c 0062 put skip list(k,name);
25 c 0087 put file(keys) list(name,k);
26 c B0AA if name = 'EOF' then
27 ¢ 90B9 stop;

28 ¢ @OBF end;

29 a @QOBF end keypr;

CODE SIZE =
DATA AREA =

Figure 5-11. Listing of the KEYPR Program.

keyto (k) ;

(All Information Contained Herein is Proprietary to Digital Rese

47

the key with the KEYTO option, and writes the name and key to both the
console and to the key file. The sample interaction of Figure 5-12
shows the output from keypr using the "plantl.emp" data base, Note
that the key wvalues extracted by the READ statement are just the
relative record number corresponding to the record's position in the
file. Following program execution, the CP/M TYPE command is used to
display the actual contents of the "plantl.key" file.

The third program, shown in Figure 5-13, allows access to the
data base <created by enter and indexed through the file created by
keypr. The update program first reads the STREAM key file into a
vector which cross-references the employee name with the corresponding
key wvalue 1in the data base. The dimensioned structure which holds
these cross-reference values is defined on line 17, and filled between
lines 30 and 33.

The main program loop between 1lines 38 and 55 accesses the
individual records of the employee file OPENed on line 25, The OPEN
statement marks this file as DIRECT, which allows both READ and WRITE
operations where the individual records are identified by a key value,
The operator enters an employee name as "matchname" which will be
directly accessed in the data base.

The direct access is accomplished by searching the list of names
read from the key file, between lines 44 and 54. If a match is found,
the employee record is brought into memory from the employee file
through the READ with KEY statement on line 43, Various fields are
then displayed and updated from the console, and the record is
rewritten to the data base using the WRITE with KEYFROM statement on
line 51. Execution terminates when the operator enters the name “EOF"
as an input value.

Three successive update sessions are shown in Fiqure 5-14. The
employee name 1is entered by the operator, the record is accessed and
displayed, and the fields are optionally updated. 1In particular, note
that the GET statement is quite useful here: if the operator wishes
to change a value then the new value is typed in the field position,
otherwise a comma delimiter leaves the field unchanged. During these
three interactions, various addresses and work times are updated.

The final report program uses the updated employee file .to
produce a list of employees along with their paycheck values according
to their hourly wage and number of hours worked, as shown in Figure
5-15. The report program again accesses the "EMP" file, but reads the
file sequentially to produce the desired output information. The main
loop between lines 37 and 53 reads each successive employee record and
constructs a title line of the form:

[name]
followed by a dollar amount. For illustration, the STREAM oriented
form of the WRITE statement is again used to produce the output line,
Note, however, that the embedded control-m ("m) and control-j (73)

characters are included at the end of "buff" to cause a carriage
return and line feed when the buffer is written. The report program

(All Information Contained Herein is Proprietary to Digital Research.)

48

A>b:keyfile plantl

Abercrombie
Fairweather
Eggbert
Willowander
Millywatz
Quagmire
EOF

End of Execution
A>type plantl.key

SAUND WN ==

‘Abercrombie! @ 'Fairweather' 1l 'Eggbert’
2 'Willowander' 3 'Millywatz' 4
'Quagmire’ 5 'EOF' 6

Figure 5-12, 1Interaction with the KEYPR Program.

PL/I-80 V1.0, COMPILATION OF: UPDATE

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: UPDATE

l a 0000 update:

2 a 00096 proc options(main);

3 ¢c go06 dcl

4 c B006 1 employee static,

5 c 0006 2 name char(34) var,

6 c 0006 2 addr,

7 c 0006 3 street char(30) var,

8 c 9006 3 city char(14) var,

9 c 0006 3 state char(7) wvar,
10 c 0006 3 zip fixed dec(5),
11 c 9096 2 age fixed dec(3),
12 c 0006 2 wage fixed dec(5,2),
13 ¢c 6006 2 hours fixed dec(5,1);

\\\\¥ Figure 5-13a. Listing of the UPDATE Program Part A. AJ///

(All Information Contained Herein is Proprietary to Digital Research.)

49

N\

14 c 00d6 dcl
15 ¢ 0006 (emp, keys) file;
16 c 0006 dcl
17 c 06006 1 keylist (168),
18 ¢ 0006 2 keyname char(39) var,
19 c 0006 2 keyval fixed binary;
20 c 0006 dcl
21 c 9006 (i, endlist) fixed,
22 c 0006 eolist bit(l) static initial(‘'@4'b),
23 c 09696 matchname char(38) var;
24 ¢ 0006
25 ¢ g0as6 open file(emp) update direct env(£f(16d))
26 c @025 title ('S1.EMP');
27 ¢ 0825
28 c 9025 open file(keys) stream env(b(4000)) title('Sl.key');
29 c 0044
30 c 08044 do i =1 to 190 while(“eolist);
31 ¢ @@5C get file(keys) list(keyname(i) , keyval(i));
32 c.00A4 eolist = keyname(i) = 'EOF';
33 c g@cc end;
34 c @#6CC
35 ¢ @@cc do while('l'b);
36 ¢ @#acC put skip list('Employee: ');
37 ¢ OOES8 get list(matchname);
38 c 9142 if matchname = 'EOF' then
39 ¢ 01190 stop;
49 c 9113 doi =1 to 100;
41 c 0125 if matchname = keyname (i) then
42 ¢ Q13E do;
43 c Q13E read file(emp) into(employee)
44 c 016C key (keyval(i));
45 c @16C put skip list('Address: ',
46 c 01BS street, city, state, zip);
47 c @U1B5 put skip list(’);
48 ¢ 91Dl get list(street, city, state, zip);
49 c 421A put list('Hours:',hours,': ');
580 c @24E get list(hours);
51 ¢ 826D write file(emp) from (employee)
52 ¢ ¢2A8 keyfrom(keyval(i));
53 c @#2A8 end;
54 c 92A8 end;
55 ¢ @2A8 end;
56 a @2A8 end update;
CODE SIZE = (2A8
DATA AREA = (D97
Figure 5-13b. Listing of the UPDATE Program Part B. 44,//

(All Information Contained Herein is Proprietary to Digital Research.)

50

_

A>b:update plantl

Employee: Willowander

Address: (no street) (no city) (no st) /)
'123 E Willow', Williams, Ca., 98344
Hours: 6.0 : 43.5

Employee: Quagmire

Address: (no street) (no city) (no st))
'321 W Q st', Quincy, Ca., 98222
Hours: .8 : 38.6

Employee: EOF

End of Execution
A>b:update plantl

Employee: Quagmire
Address: 321 W Q St Quincy Ca. 98222
rrery

Hours: 38.6 : 50.5

Employee: Abercrombie

Address: (no street) (no city) (no st) (/]
rrere
Hours: 3.8 : 46,7

Employee: Fairweather

Address: (no street) (no city) (no st))
345-W-8th#304 Bloomberg Wa. 33455
Hours: .8 : 38.6

Employee: EOF

End of Execution
A>b:update plantl

Employee: Quagmire
Address: 321 W Q St Quincy Ca. 98222
rrry

Hours: 50.5 : 67.4

Employee: Millywatz

Address: (no street) (no city) (no st) g
‘345 6th St', Mipville, Ca. 98444
Hours: .0 : 60.2

Employee: EOF

J

Figure 5-14. 1Interaction with the UPDATE Program.

51

(All Information Contained Herein is Proprietary to Digital Research.)

N\

1l a
2 a 0006
3 a 0066
4 c 00@6
5 ¢c 0006
6 c 0006
7 ¢ 0006
8 c POOG6
9 c 0026
10 c 6006
11 c @006
12 c 6006
13 c 0006
14 c 0006
15 c @006
16 c @006
17 c 0006
18 ¢c 9006
19 c 0006
20 c 9006
21 c @0d6
22 ¢c 0006
23 c 9006
24 c 0006
25 c 0a@ve6
26 ¢ 0006
27 c 0006
28 c 0006
29 c 0926
30 c #0826
31 ¢ 20826
32'c B@45
33 ¢ 2045
34 c 4045
35 ¢ @9@5C
36 c @d6D
37 ¢ 006D
38 c @@6D
39 c 4085
49 c 09094
41 c 9097
42 c 00AB
43 c @0CD
44 c QUES
45 ¢ @195
46 c 9125
47 c 9147
48 c 4189
49 c @180
50 c @180
51 ¢ 9187
52 ¢ @P1AC
53 ¢ @1C7
54 ¢ 01C7
55 a @91cC7

0000 report:

procedure options(main);

decl
1l employee static,
2 name character(30) varying,
2 addr,
3 street character(3@) varying,
3 city character(l10) varying,
3 state character(7) varying,
3 zip fixed dec(5),
2 age fixed dec(3),
2 wage fixed dec(5,2),
2 hours fixed dec(5,1);
dcl
dashes character(l5) static initial
O e '),
buff character(20) varying;
dcl
i fixed,
(grosspay, withhold) fixed dec(7,2);
dcl

(repfile, empfile) file;

open file(empfile) keyed env(£(108),b(4000))
title ('S1.EMP');

open file(repfile) stream print title('$2.$2"')

enviromment(b(20969));

put list('Set Top of Forms, Type Return');
get skip;

do while('1'b);
read file(empfile) into(employee);
if name = 'EOF' then

stop;
put file(repfile) skip(2);
buff = '[' 1! name !! ']1°m"j';

write file(repfile) from (buff);
grosspay = wage * hours;
withhold = grosspay * .15;
buff = grosspay - withhold;

doi =1 to 15

while (substr(buff,i,l) = ' ');

end;
i=1i-1;
substr(buff,l,i) = substr(dashes,l,i);
write file (repfile) from(buff);
end;

end report;

)

Figure 5-15. Final Report Generation Program.

(All Information Contained Herein is Proprietary to Digital Research.)

52

_

A>b:report plantl $con
Set Top of Forms, Type Return

[Abercrombie]
§~~--265,96

[Fairweather]
$----492.15

[Eggbert]

$
{Willowander]
$§==-=-=203.37

(Millywatz]
$----368.43

[Quagmire]
$---=-246,35
End of Execution

Figure 5-16a. Report Generation to the Console.

A>b:report plantl plantl.prn
Set Top of Forms, Type Return

A>type plantl.prn

[Abercrombie]
$—---265,96

[Fairweather]
$=-=-==492,15

[{Eggbert]
{Willowander]
$==-=—=203,37

[Millywatz]
$§-~--=-368.43

[Quagmire]
$~=-=246,35

Figure 5-16b. Report Generation to a Disk File,.

%

(All Information Contained Herein is Proprietary to Digital Research.)

53

then computes the pay value using thevexpression
grosspay - withhold

which is assigned to the varying character string called buff. The
assignment causes automatic conversion of the decimal value to string
type, with leading blanks. The leading blanks are then scanned and
replaced by a dollar sign dash sequence, and written to the report
file.

Figures 5-16a and 5-16b show the output from the report program.

In the first case, the report is sent to the console for debugging
purpose, while “plantl.prn" receives the data in the second example,

(All Information Contained Herein is Proprietary to Digital Research.)

54

6. LABEL CONSTANTS, VARIABLES, AND PARAMETERS.

You probably noticed that all of the programs shown above either
stop by encountering an end of file condition, with a corresponding
ENDFILE traceback, or use a special data value which signals the end
of data condition. The POLY program in Figure 5-1, for example,
detects the end of data by checking for the special case where all
three input values, x, y, and z, are zero.

There are, fortunately, more elegant ways to sense the end of
data condition in PL/I-80. 1In fact, sensing the end of data is just
one facility among many, under the general topic of "“exception
processing." As a prelude to the discussion of exception processing,
we need some background in label processing, since labelled statements
are often involved when handling exceptional conditions. As always,
if the discussion becomes too detailed, skip to later sections and
return when you've seen some examples.

Contemporary programming practices advocate the general
avoidance of labelled statements and GO TO's due to the unstructured
programs which often result from using such statements. The resulting
programs are often difficult to comprehend by another programmer and
become unreadable, even to the author, as the program grows in size.
PL/I-80 provides a comprehensive set of control structures in the form
of 1iterative DO groups with REPEAT and WHILE options which preclude
the necessity for 1labelled statements in the general programming
schema.

There are occasions, however, when Jjudicious wuse of labelled
statements 1is considered appropriate. One particular situation, for
example, is found in program exception processing where the occurrence
of a catastrophic error, such as a mistyped input data line, 1is most
easily handled by simply transferring control to an outer block label
where program recovery takes place. In this case, the program flow is
considerably simpler to comprehend than the alternative system of
flags, tests, and return statements.

Generally, one should avoid 1labelled statements and GO TO's
whenever the nomal PL/I-80 program control structures are directly
applicable, limiting their use to exception processing and 1locally
defined computed GO TO's.

Program labels, like other PL/I-88 data types, fall into two
broad categories: label constants and label variables. Label
constants are those which appear literally within the source program,
and do not change as the program executes. Label variables, however,
have no initial value and must be assigned the wvalue of a 1label
constant through a direct assignment statement, or through the actual
to formal parameter assignments implicit in a subroutine <call. The
simplest form of a label constant precedes a PL/I-80 statement as
shown below.

lab: put skip list('Bad Input, Try Again');

In this case, "lab" has the constant label value corresponding to the

(All Information Contained Herein is Proprietary to Digital Research.)

55

particular statement address where the PUT statement starts.

A label constant can also contain a single positive or negative
literal subscript, corresponding to the target of a n-way branch

(i.e., a "computed GO TO"). The program segment which follows shows a
specific example.

get list(x);
go to q(x);
q(-1):
y = £1(x);
go to endq;
q(0):
y = f2(x);
go to endq;
q(2):;
q(3):
y = £3(x);
endqg:
put skip list('f(x)="',y);

In this case, four label constants q(-1), g(#), 9g(2), and g(3) are
defined within the program. The label constant vector

g(=1:3) label constant

is automatically defined to hold the values of these label constants.
You must ensure that program control does not transfer to a subscript
which does not have a corresponding label constant value. In the
above case, for example, a branch to gq(i) produces an undefined value
if i is below -1, equal to 1, or above 3.

Label constants are either only 1locally referenced, or
non-locally referenced. A locally referenced label constant occurs as
the target of a GO TO statement only within the PROCEDURE or BEGIN
block in which it occurs. A label constant is non-locally referenced
if it occurs on the right side of an assignment to a label wvariable,
as an actual parameter to a subroutine, or as the target of a GO TO
statement within an inner nested PROCEDURE or BEGIN block. Al though
there 1is no functional difference between a locally referenced and
non-locally referenced label constant, there is additional space and
time overhead required to handle non-locally referenced labels. For
~this reason, the PL/I-8@ assumes that subscripted label constants will
be only locally referenced: the results are undefined 1if control
transfers to a subscripted 1label constant from outside the current
scope.

The non-functional program segment shown below provides an
example.

(All Information Contained Herein is Proprietary to Digital Research.)

56

main:
proc options(main);
pl:
proc;
go to labl;
go to lab2;
p2:
proc;
go to lab2;
end p2;
labl:;
lab2:;
end pl;
end main;

The label constant “labl" is only 1locally referenced within the
procedure pl, while "lab2" 1is the target of both a lecal reference
within pl and a non-local reference within p2.

A label variable takes on the value of a 1label constant through an
explicit assignment statement, or through the implicit assignment
performed when a subroutine is called. Similar to other PL/I-80
variables, label variables must be declared and may be optionally
subscripted.

The skeletal program of Figure 6-1 shows various label constants
and variables. The label constants in this program are c¢(l), c(2),
c(3), 1labl, and 1lab2, and are defined by their literal occurrence
within the program. The label variables are x, vy, z, and g defined by
the declarations on lines 5 and 33. At the start of execution, the
label wvariables have undefined wvalues. The wvariable x is first
assigned the constant value labl. Label variable y then (indirectly)
receives the constant value labl through the assignment on line 7. As
a result, all three GO TO statements beginning on 1line 9 are
functionally equivalent: each transfers control to the null statement
following the label labl on line 27.

The subroutine call on 1line 13 shows a different form of
variable assignment. Lab2 is an actual parameter which is sent to the
procedure p, and assigned to the formal label variable g. 1In this
particular program, the subroutine <call transfers program control
directly to the statement labelled “labl."

The DO-group beginning on line 15 initializes the variable label
vector z to the corresponding constant label vector values of c¢c. Note
that since ¢ is a vector of label constants, the reversed assignment

c(i) = z(i);
would be invalid within this program. Due to this initialization, the

two computed GO TO statements starting on line 28 have exactly the
same effect.

(All Information Contained Herein is Proprietary to Digital Research.)

57

/

-

PL/I-80 V1.4,

COMPILATION OF: GOTO

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.4,

1l a
2 a 00026
3 ¢c 0006
4 ¢ Q00D
5 ¢ 9@@D
6 c @0@D
7 ¢ 90813
8 c AP19
9 c 9019
14 ¢ @@lcC
11 c 90620
12 ¢ 00624
13 ¢c 0024
14 ¢ 9030
15 c 0030
16 c 9R42
17 ¢ Q@SE
18 ¢ BO5E
19 c @@5F
20 c 0064
21 ¢ 98073
22 c 0982
23 c 0082
24 c 0@82
25 c @082
26 c 9089
27 ¢ 9089
28 c 0090
29 c 0099
30 c 90940
31 c 2090
32 e 0090
33 e 909A
34 e @@9A
35 ¢ @QA2
36 a Q0A2
CODE SIZE =
DATA AREA =

Figure 6-1. An

COMPILATION OF: GOTO

7000 main:

proc options(main);
dcl
i fixed,

(x, vy, 2(3)) label;

X
y

labl;
X3

go to labl;
go to Xx;
go to y;

call p(lab2);
do i

z (1)
end;

1l to 3;
c(l);

i=2;
go to z(i);
go to c(i);

c(l)z:;
c(2):;
c(3):;

labl:;
lab2:;

p:
proc(q) ;
dcl
g label;
go to g;
end p;
end main;

Illustration of Label Variables

and Constants. 4///

(All Information Contained Herein is Proprietary to Digital Research.)

58

7. EXCEPTION PROCESSING.

An important facility of any production programming language is
its ability to intercept run-time error conditions in order that a
program-defined action can take place to handle the error. An
exceptional condition takes place, for example, when input data is
read from an interactive console, and the operator inadvertently types
a data value which does not conform to the input data variable. Under
normal circumstances, a "conversion" exception 1is raised by the
run—-time system and, in the absence of any program-defined action,
execution terminates with a traceback. In a production environment,
however, this premature termination could occur after hours of data
entry, resulting in a considerable amount of wasted effort.

Thus, PL/I-80 incorporates a comprehensive set of operations for
exception processing in the form of ON, REVERT, and SIGNAL statements.
The ON statement defines the actions which take place upon
encountering an exception, the REVERT statement disables the ON
statement, and the SIGNAL statement allows various conditions to be
raised by the program.

There are a total of nine major exception categories which are,
by name, ERROR, FIXEDOVERFLOW, OVERFLOW, UNDERFLOW, ZERODIVIDE,
ENDFILE, UNDEFINEDFILE, KEY, and ENDPAGE. The first five categories
include all arithmetic error conditions and miscellaneous conditions
which can arise during I/0 setup and processing, as well as conversion
between the wvarious data types. The last four cateqgories apply to a
specific file which is being operated upon by the run-time I/0 system.
Each condition has an associated subcode which provides information as
to the source of the exception, as described below.

As a simple example, consider the file-to-file copy program
shown below:

copy:
proc options(main);
dcl
buff char(254) var,
(input, output) file;

open file(input) stream title('$1.$1');
open file(output) stream output
title('$2.$2');

on endfile(input)
stop;

do while('1'b);
read file(input) into(buff);
write file(output) from(buff);
end;

end copy;

As described in Section 5.2, this program opens an input file, called
"input," and transfers each record from this file to an output file,

(All Information Contained Herein is Proprietary to Digital Research.)

59

called "output." Under normal circumstances, the program in Figure 5-3
terminates with an END OF FILE error message with a program traceback,
which, although of no harm, can be somewhat distressing to an

uninitiated user of the program. The ON statement given above,
however, intercepts the end of file condition on the input file and
executes a single STOP statement. In this case, the program

terminates normally with the message
Execution Terminated

The various statement forms for ON, REVERT, and SIGNAL are
discussed first, using the ENDFILE condition as an example, followed
by a description of each of the conditions,.

7.1. The ON Statement,

The ON statement 1is used to programmatically intercept a
particular condition when it 1is raised by the run-time system or a
SIGNAL statement. The form of the ON statement is

ON condition on-body;

where “condition" is one of the exception categories given above, and
"on-body" is a PL/I-80 statement or statement group to execute when
the condition occurs. 1In order to avoid ambiguity, the statement must
be a simple statement (not a conditional), or a BEGIN-END group which
itself can contain any valid PL/I-8@ statement, other than a RETURN (a
RETURN is allowed, of course, within any procedure definitions which
occur inside the BEGIN-END group).

Control returns from the ON statement at the end of the
statement or BEGIN-END group. Alternatively, control may be
transferred to a non-local label outside the on-body. If the
condition is already set, execution of yet another ON statement with
the same condition saves the previous condition in "stack order" and
institutes the new condition. A stacked condition 1is reinstituted
when a REVERT statement is executed, or the block containing the ON
statement is exited. Three examples of valid ON statements are given
below.

on endfile(input)
eofile = '1'b;

on endfile(input)
go to exit;

(All Information Contained Herein is Proprietary to Digital Research.)

60

on endfile(input)

begin;

if input = sysin then
stop;

put list('Ok to Stop?');

get list(ok);

if ok = 'y' then
stop;

go to retry;

end;

7.2. The REVERT Statement,

Execution of a REVERT statement disables the currently active
named condition, and recovers the previously stacked condition, if
any. The form of the REVERT statement is

REVERT condition;

where "condition" is one of the categories discussed above. An
automatic REVERT statement takes place for any ON conditions set
within a procedure when the procedure is exited. The following

program segment, for example, shows balanced ON and REVERT statements
used within a DO group:

do while('1'b);

on endfile(sysin)
eofile = '1'b;

revert endfile(sysin);

~end;

In this particular case, the ON statement is executed at the beginning
of each 1iteration, enabling the ENDFILE condition. The REVERT
statement at the end of the group disables the condition which was set
at the beginning of the block. The ON and REVERT statements do,
however, require some simple run-time processing and thus the above
group is more efficiently written as:

on endfile(sysin)
eofile = '1'b;
do while('l'b);

end;

Note that no more than 16 ON conditions can be active or stacked at
any given point in the program execution. The message:

Condition Stack Overflow

occurs if the stack size is exceeded, and the program terminates.

(All Information Contained Herein is Proprietary to Digital Research.)

61

The (rather unstructured) program shown in Figure 7-1
illustrates the automatic REVERT statements which take place upon
procedure exit. The procedure "p" is called from line 8 with the DO
group index, along with the 1label constant "exit" as actual
parameters. The ON statement within p 1is executed upon each
invocation and, without the automatic REVERT statements, would
overflow the <condition stack when the index i reaches 17. There are
three possible ways to exit p: first, if the operator types an end of
file character (control-z, followed by return) the enabled ON
condition is executed, sending control through the label variable
“lab" to the statement 1labelled "exit." Since this GO TO takes
control outside the environment of p, the ON condition automatically
REVERTs.

The second possible exit follows the test on line 21. If the
operator types a value equal to the index, then the GO TO statement on
line 22 1is executed, again sending control to the non-local label
"exit" which REVERTs to the original condition,

Finally, control can return normally by reaching the end of the
procedure p. In this case, the automatic REVERT is again executed,
disabling the ON condition which was set on 1line 17. Thus, the
enabled ON condition is always disabled, no matter how program control
leaves the environment of p.

7.3. The SIGNAL Statement,

The on-body which corresponds to a particular ON statement can
be activated through execution of a SIGNAL statement which takes the
form:

SIGNAL condition;

The effect 1is the same as if the condition had been enabled
externally: the topmost stacked ON condition is executed, if it
exists. If no ON condition is active, the default system action takes
place. The following program segment illustrates a particular use of
the SIGNAL statement: o

on endfile(sysin)
stop;

do while('l'b);

get list(buff);

if buff = 'END' then
signal endfile(sysin);

put skip list(buff);

end;

In this example, the SIGNAL statement is executed whenever the value
"END" is read from the GSYSIN file. The ON condition set at the
(All Information Contained Herein is Proprietary to Digital Research.)

62

PL/I-80 V1.0, COMPILATION OF: REVERT

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: REVERT

1l a 0000 revert:

2 a ggve6 proc options(main);

3 c 0806 dcl

4 c 000D i fixed,

5 ¢ 000D sysin file;

6 c @90D

7 c @6@D do i =1 to 10000;

8 c @Q1F call p(i,exit);

9 c 9@3C exit:

19 ¢ @983C end;

1l ¢ @63C

12 c 983C p:

13 ¢ 963C proc(index,lab);
14 e 96@3C dcl

15 e @9d4cC (t, index) fixed,
16 e g@4C lab label;

17 e @@4C on endfile(sysin)
18 £ 09054 go to lab;

19 e @GA@5F put skip list(index,':"');
20 e @@P8A get list(t);

21 e @QA2 if t = index then
22 e 00B6 go to lab;

23 ¢ 90C2 end p;

24 a @@C2 end revert;

CODE SIZE gacs

DATA AREA = g@11

\\\\‘ Figure 7-1. Program Illustrating REVERT Processing. 4‘///

(All Information Contained Herein is Proprietary to Digital Research.)

63

beginning of the program thus,receives control upon a real end of
file, or when the "END" value is read.

7.4. The ERROR Exception.

The ERROR condition is the broadest category of all PL/I1I-84
exceptions and includes, through its subcode, both system defined and
programmer defined conditions. The form of the ERROR condition is

ON ERROR on-body;
SIGNAL ERROR;
REVERT ERROR;
or
ON ERROR(integer—-expression) on-body;
SIGNAL ERROR(integer—-expression);
REVERT ERROR(integer—-expression);

In the first three cases, the ERROR subcode is assumed to be zero,

while the second set 1includes a specific subcode in the range @ to
255. The forms

ON ERROR on-body;
ON ERROR(¥) on=-body;

intercept any error condition, no matter what subcode 1is set. The
form

ON ERROR(3) ... ;

for example, intercepts the ERROR condition only when it 1is
accompanied by subcode 3. 1In general, ERROR conditions with a subcode
in the range 9-127 are considered catastrophic. As a result, the

on-body for these conditions must not return, but instead must execute
a GO TO to a non-local 1label. Subcodes in the range 128-255 are
considered harmless, and may return after performing some 1local
action.

Subcodes for the ERROR condition are partitioned 1into four
groups:

(a) g - 63 Reserved for PL/I-80
(b) 64 - 127 Programmer Defined
(c) 128 - 191 Reserved for PL/I-88
(d) 192 - 255 Programmer Def ined

The subcodes which are presently assigned from group (a) are:

ERROR(1)

Data Conversion: data types
do not conform during assign-
ment, computation, or input
processing.

(All Information Contained Herein is Proprietary to Digital Research.)

64

ERROR(2) - I/0 Stack Overflow

ERROR (3) - Argument to transcendental func-
tion is out of range.

ERROR(4) - I/0 Conflict: the attributes
of an open file do not match
the attributes required for a
particular GET, PUT, READ or

WRITE.

ERROR(5) - Format stack overflow, nested
format evaluation exceeds 32
levels.

ERROR(6) - Invalid format item, data item

does not conform to format item,
or unrecognized format item en-
countered.

ERROR(7)

Free space exhausted, no more
space is available in dynamic
storage area.,

The following program segment provides a simple example of the use of
the ERROR condition:

on error(l)
begin;
put skip list('Invalid Input:');
go to retry;
end;
retry:
get list(x);

The GET statement reads a variable x from the SYSIN file. If the
operator types 1invalid data during the input operation, ERROR(1l) is
signalled by the run-time system. In this case, the on-body gets
control, and error message is written to the console, and execution
re-commences at the "retry" label.

The SIGNAL statement can be used 1in conjunction with the ON
statement ¢to flag either terminal or non-terminal conditions. The
Statement

signal error(64)
raises the ERROR(64) condition. 1If there is an ON ERROR(64) active,
the corresponding on-body receives control. Otherwise, the program
terminates with an error message. The statement

signal error(255)

(All Information Contained Herein is Proprietary to Digital Research.)

65

performs a similar action except that the program does not terminate
if the ERROR(255) condition is not active. Note that an ON ERROR or
ON ERROR(f) statement will intercept any subcode in the range 0-255,
The particular error subcode can be extracted, however, using the
ONCODE function discussed below.

7.5. FIXEDOVERFLOW, OVERFLOW, UNDERFLOW, and ZERODIVDE.
The arithmetic exceptions are

FIXEDOVERFLOW or FIXEDOVERFLOW (i)
OVERFLOW or OVERFLOW (1)
UNDERFLOW or UNDERFLOW (1)
ZERODIVIDE or ZERODIVIDE (i)

where i denotes the optional integer expression. Similar to the ERROR
function, ON, REVERT, and SIGNAL statements can specify any of these
conditions., Further, if the integer expression is absent, then a zero
value 1is assumed. An ON statement with a zero valued subcode
intercepts a subcode of any value from @-255, Subcode wvalues are
divided into system defined and user defined values, as listed with
the ERROR function. Note, however, that all arithmetic faults are

considered terminal. That 1is, if an ON condition is set for an
arithmetic exception, then the on-body must contain a transfer to a
global 1label. Otherwise, the program is terminated upon return from

the ON unit,

Currently defined system subcodes are listed below:

FIXEDOVERFLOW (1) - Decimal Add, Multiply,
or Store

OVERFLOW (1) - Floating Point Pack

UNDERFLOW (1) - Floating Point Pack

ZERODIVIDE (1) - Decimal Divide

ZERODIVIDE (2) - PFloating pPoint Divide

ZERODIVIDE (3) - Integer Divide

7.6. ENDFILE, UNDEFINEDFILE, KEY, and ENDPAGE,
Several exceptional conditions may arise during I/0 processing

which are related to particular file access. These conditions are

(All Information Contained Herein is Proprietary to Digital Research.)

66

denoted by
ENDFILE(file-reference)
UNDEFINEDFILE(file-reference)
KEY(file~-reference)
ENDPAGE (file-reference)

where "file-reference" denotes a file-valued expression. The file
value which results need not denote an open file,

The ENDFILE condition 1is raised whenever the end of file
character (control-z) is read from a STREAM file, or the physical end
of file is encountered in a RECORD file which 1is ©processed in
SEQUENTIAL mode, A DIRECT READ with a key beyond the end of file also
raises the ENDFILE condition. Similarly, RECORD or STREAM OUTPUT
operations will signal ENDFILE if the disk capacity is exceeded.

The UNDEFINEDFILE condition 1is raised whenever a file 1is
accessed for INPUT or OUTPUT and the file does not exist on the
specified disk. This condition will also be raised if a physical
device (SCON, SLST, SRDR, S$PUN) is accessed as a KEYED or UPDATE file.

The KEY condition is raised when a program attempts to access a
key value beyond the capacity of the disk.

The ENDPAGE condition is raised for PRINT files when the value
of the current line reaches the PAGESIZE for the specified file. The
current line begins at zero, and increased by one for each line-feed
which is sent to the file., If the file is initially opened with

PAGESIZE (9)

then the ENDPAGE condition 1is never raised. (PL/1I-83 opens the
default console input, SYSIN, with a zero PAGESIZE.) The current line
is reset to one whenever a form—-feed is sent to the output file,
through a PAGE option in a PUT statement within an ON-unit, or through
the default system action which automatically inserts the form-feed.
In any case, if the ENDPAGE condition is raised during the execution
of a SKIP option, then the SKIP is terminated.

It must be noted that if an ON unit intercepts the ENDPAGE
condition, but does not execute a PUT statement with the PAGE option,
then the current line is not reset to one, The result 1is that the
ENDPAGE will not be signalled since the current 1line continues
unbounded until a PUT statement with the PAGE option is executed. The
current line will, in reality, count as high as 32767 and then begin
again at 1. Due to fact that the line count is always greater than
zero, the ENDPAGE condition will never be signalled for files with a
PAGESIZE of zero.

As described above, if no ENDPAGE ON-unit is active, the default
system action is to insert a form-feed into the output file. The
default system action for ENDFILE, UNDEFINEDFILE, and KEY, however, is
to terminate the program execution with an error message.

If an ON-unit receives control for ENDFILE, UNDEFINEDFILE, or

(All Information Contained Herein is Proprietary to Digital Research.)

67

KEY, and returns to the point where the signal occurred, then the
current I/0 operation is terminated, and control 1is passed to the
statement following the OPEN, GET, PUT, READ, or WRITE which caused
the condition to be raised.

7.7. ONCODE, ONFILE, ONKEY, PAGENO, and LINENO.

Several built-in functions are provided in PL/I-86 which aid in
exception processing., Specifically, five function declarations exist
in the scope of all PL/I-80 programs:

dcl
oncode entry returns(fixed),
onfile entry returns(char(31l) varying),
onkey entry returns(fixed),
pageno entry (file) returns(fixed),
lineno entry (file) returns(fixed);

The ONCODE function returns the most recently signalled subcode, or
zero 1if no condition has been raised. The function can be used, for
example, to determine the exact source of an error after the ON unit
is activated:

on error
begin;
dcl code fixed;
code = onccde();
if code =1 then
do;
put list('Bad Input:');
go to retry;
end;
put list('Error#',code);
end;
retry:

The ONFILE function returns the string wvalue of the internal
file name which was last involved in an I/O operation which raised a
condition. In the case of a conversion error, the ONFILE function
produces the name of the file which was active at the time. If no
file was involved in a signalled condition, then the ONFILE function
returns a string of length . An example of the ONFILE function is
shown below.

on error(l)
begin; ‘
put list('Bad Data:',onfile());
go to retry;
end;

retry:

(All Information Contained Herein is Proprietary to Digital Research.)

68

The ONKEY function returns the value of the last key involved in
an I/0 operation which raised the ONKEY condition, and is only wvalid
within the on-body of the activated unit. An example of the use of
ONKEY 1is

on key(newfile)
put skip list('bad key',onkey());

The last two functions, PAGENO and LINENO, return the current
page number and current line number for the PRINT file named as the
parameter. Note that when the ENDPAGE condition is signalled by other
than a SIGNAL statement, the line number is one greater than the page
size for the file. The PAGENO and LINENO functions are illustrated in
the example which follows.

7.8. An Example of Exception Processing.

Figure 7-2 shows a rather extensive example of I/0 processing in
PL/I-88 using ON conditions. The purpose of this program is to copy a
STREAM file from the disk to a PRINT file, while properly formatting
the output 1line with a page header and 1line numbers, The program
interacts with the console to obtain the parameters for the copy
operation., The statements which appear between lines 10 and 47 read
the parameter values from the console, and provide error exits and
retry operations for each input wvalue. Lines 49 through 66 setup
various ON units which intercept errors during the copy operation.
The actual copy operation itself is enclosed in the iterative DO group
between lines 69 and 74. These individual sections of the program are
discussed in detail below.

Functionally, the program setup involves reading five values:
the number of lines on each page, the width of the printer line, the
line spacing (normally single or double spaced output), and the
destination and source files or devices. During entry of these
parameters, the operator may type an end of file character
(control-z), and the prompting is restarted. The PUT statement on
line 10 writes the 1initial sign-on message. Note that the first
character of the message is a control-z which, when using an ADM-3 CRT
device, clears the screen. The ON statement shown on 1line 12 traps
the ENDFILE condition for SYSIN so that execution begins at "typeover"
whenever an end of file is read from the console. Lines 16 through 28
read the first two parameters, with no error checking (other than
detecting the end of file). Line 22, however, intercepts conversion
errors for all operations which follow. If the operator types a
non-numeric field during execution of the GET statement on 1line 29,
the on-body between 23 and 26 gets control, writes an error message,
and then branches to "getnumber" where the input operation is
reattempted. Following successful input of the "spaces" parameter,
the REVERT statement on 1line 38 disables the conversion error
handling.

(All Information Contained Herein is Proprietary to Digital Research.)

69

S

-

PL/I-80 V1.0, COMPILATION OF: COPYLPT

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/1-80¢ V1.8, COMPILATION OF: COPYLPT

1l a 00008 copy: procedure options(main);

2 c 0006 dcl

3 c @0@D (sysin, sourcefile, printfile) file;

4 c 900D dcl

5 ¢ #@@D (pagesize, pagewidth,

6 c 40D spaces, linenumber) fixed;

7 ¢ @90D dcl

8 ¢ @0@D (line char(14), buff char(254)) varying;
9 ¢ 0@@eD
19 c 0@@D put list('"z File to Print Copy Program');
11 c 09924
12 ¢ 9024 on endfile(sysin)
13 d g82C go to typeover;

14 4 9032
15 c #d@32 typeover:
16 c @@39 put skip(5) list('How Many Lines Per Page? '):
17 ¢ 9855 get list(pagesize);
18 ¢ 806D
19 ¢ @@6D put skip list('How Many Column Positions? ');
20 c 0889 get skip list(pagewidth);

21 ¢ 00A6
22 ¢ 90A6 on error(1l)

23 d @0AD begin;
24 e QOBY put list('Invalid Number, Type Integer');
25 e @@0C7 go to getnumber;
26 d d@cCa end;

27 c g@ca getnumber:
28 ¢ @¢@D1 put skip list('Line Spacing (l1=Single)? ');
29 c Y@ED get skip list(spaces);

30 ¢ g10A revert error(l);

31 ¢ @111
32 ¢ 9111 put skip list('Destination Device/File: ');
33 ¢ 912D get skip list(line);

34 ¢ @gl4cC

35 ¢ 914C open file(printfile) print pagesize(pagesize)
36 ¢ @l6C linesize (pagewidth) title(line);
37 ¢ B16C

Figure 7-2a. Listing of the COPYLPT Program Part A. “///

(All Information Contained Herein is Proprietary to Digital Research.)

70

-

38 ¢ #16C on undefinedfile(sourcefile)

39.d 0174 begin;

40 e 0177 put skip list('"',line,'" isn''t a valid Name');
41 e @1A7 go to retry;

42 4 @1AA end;

43 c @1AA retry:

44 ¢ @1B1 put skip list('Source File to Print? Y
45 ¢ @1CD get list(line);

46 c @Q1E7 open file(sourcefile) stream title(line)

47 ¢ 0204 env(b(8083));

48 c 9204

49 c 02084 on endfile(sourcefile)

50 4 g208C begin;

51 e @20F put file(printfile) page;

52 e 0221 stop;

53 d 9224 end;

54 d 0224

55 c 0224 on endfile(printfile)

56 d 822C begin;

57 e B22F put skip list('"g"g"g"g Disk is Full');
58 e @B24B stop;

59 d @24E end;

60 d @24E

61 c P24E on endpage(printfile)

62 d 8256 begin;
, 63 e 09259 put file(printfile) page skip(2)

64 e 028F list('PAGE' ,pageno(printfile));

65 e B28F put file(printfile) skip(4);

66 d 92A3 end;

67 d 62A3

68 c @2A3 signal endpage(printfile);

69 c @2AC do linenumber = 1 repeat(linenumber + 1);
70 ¢ @2B2 get file (sourcefile) edit(buff) (a);

71 ¢ 82D2 put file (printfile)

72 ¢ 9306 edit(linenumber,'|',buff) (£(5),x(1l),a(2),a);
73 c 0306 put file (printfile) skip(spaces);

74 c 0326 end;

75 ¢ 0326

76 a 8326 end copy;

CODE SIZE = 0326
DATA AREA = @21A
Figure 7-2b. Listing of the COPYLPT Program Part B. 4’///

(All Information Contained Herein is Proprietary to Digital Research.)

71

The input and output files are opened between lines 35 and 47.
The program assumes that the output file can always be opened, but
detects an UNDEFINED input file so that the operator can correct the
file name.

Two ON ENDFILE statements are executed between lines 49 and 59.
The first ON statement traps the 1input end of file condition and
performs a page eject on the output file. This ensures that the
printer output will be at the top of a new page upon completion of the
print operation. The STOP statement included 1in this ON unit
completes the processing with a normal exit. The second ON unit
intercepts the end of file condition on the print file. Since this
can only occur if the disk file fills, the message "Disk is Full" |is
printed, followed by normal termination. The preceding control-g
characters send a series of "beeps” to the CRT as an alarm. Note that
the run-time system closes all files upon termination so that the
print file is intact to the full capacity of the disk.

An ENDPAGE ON unit is executed on line 61 which 1intercepts the
end of page condition for the print file. Whenever this condition is
raised, the ON unit moves to the top of the next page, skips two
lines, prints the page number, and skips 4 more lines before returning

to the signal source, The SIGNAL statement on line 68 starts the
print file output on a new page by explicitly sending control to the
ON unit defined on 1line 61. All subsequent ENDPAGE signals are

generated by the run-time I/0 system at the end of each page.

The DO group beginning on line 69 initializes and increments a
line counter on each iteration. The GET EDIT statement on line 70
reads with an A (Alphanumeric) format which fills "buff" with the next
input line up to, but not including, the <carriage return 1line feed
sequence, The PUT EDIT statement on line 71 writes the line to the
destination file with a preceding line number, a blank, a vertical
bar, and another blank (resulting from the A(2) field). Note that the
SKIP(SPACES) operation may be partially aborted if the ENDPAGE
condition is raised during the execution of the PUT statement.

Operator interaction is shown in Fiqure 7-3, where the original
copy.pli program 1is wused as the source file, and the $SLST (physical
printer) is used as the destination. Figure 7-4 shows the first two
pages of output produced by this program.

As you can see, there is quite a bit of error handling that can
be done within your program. Even this last example could be further
enhanced to handle errors in the first two input 1lines (currently a
CONVERSION error <could be raised) or errors in the destination file
name. In fact, a good exercise at this point 1is to add exception
handlers for these errors, and then retest the program. To gain
further experience, go back over the previous examples and add ON
units to trap invalid input data and end of file conditions. By the
time you finish changing these examples, you'll have a good foundation
in exception processing.

(All Information Contained Herein is Proprietary to Digital Research.)

72

A>b:copylpt
File to Print Copy Program

How Many Lines Per Page? 19
How Many Column Positions? 4¢
Line Spacing (1=Single)? zot
Invalid Number, Type Integer
Line Spacing (l=Single)? 1
Destination Device/File: Slst

Source File to Print? $zap

" $zap " isn't a valid Name
Source File to Print? b:copylpt.pli

\\\\; Figure 7-3. Console Interaction with COPYLPT.

_/

(All Information Contained Herein is Proprietary to Digital Research.)

73

PAGE 1

1l | copy: procedure options(main);

2 | dcl

3 (sysin, sourcefile, prin
tfile) file;

PAGE 2

| dcl
(pagesize, pagewidth,
| spaces, linenumber) fix

[o2JN® BN

ed;

\\\\- Figure 7-4. Output from the COPYLPT Program. 44’//

(All Information Contained Herein is Proprietary to Digital Research.)

74

8. APPLICATIONS OF CHARACTER STRING PROCESSING.

This section is devoted entirely to giving the details of two
sample programs which illustrate ways in which PL/I-88 character
string functions can be used to manipulate character data, The
intention 1is to again provide a basis for gaining fluency in the
language., As before, read the explanations, examine the sample
programs, and make changes to these programs in order to expand your
own working knowledge of PL/I-84.

8.1. The OPTIMIST Program.

Recall the first P1/I-80 program in Section 1, called the
OPTIMIST? The OPTIMIST has the task of turning a negative statement
into a positive statement, based upon a few commonly used words in the
English lanquage. The OPTIMIST performs its job using the character
string facilities of PL/I-84.

Figure 8-1 shows the OPTIMIST 1listing,. The first segment,
between 1lines 7 and 26, defines the data items referenced within the
program. The remaining portion reads sentences from the console,
terminated by a period, and retypes the sentences in their positive
form. A sample console interaction is shown in Figure 8-2. As vyou
can tell, the program does a pretty good job if the sentences are of
the proper form, but reveals itself as just another computer program
when things get complicated.

The sequence of negative words is defined starting on 1line 8,
with the <corresponding positive words beginning on line 16. Thus,
"never" becomes "always," while "none" becomes "all," and so-forth.
Note that the word "not" is replaced by the empty string. The upper
and lower case alphabets are also included for case translation in the
sentence processing section,

The OPTIMIST doesn't want to stop talking, so the DO group
between 1lines 22 and 42 1loops indefinitely, and terminates only
through some unnatural influence, such as a ccontrol-z (end of file) or
control-c {system warm start) at the beginning of an input line. Each
successive input sentence is constructed between 1lines 24 and 29,
where the DO group reads another word, and concatenates the word onto
the end of the sentence. The SUBSTR test in the DO WHILE heading
checks for a period at the end. Note that the maximum length of a
sentence is 254 characters (additional characters are discarded).

Upon reading the complete sentence, all upper case characters
are translated to 1lower case so that the negative words can be
scanned. This case translation is performed by the TRANSLATE built-in
function shown on line 38. As an additional 1illustration of string
processing, the VERIFY function is used on line 31 to ensure that the
sentence consists only of letters and a period. If not, VERIFY
returns the first (non-zero) position which mismatches, and the
OPTIMIST responds with

Actually, that's an interesting idea.

(All Information Contained Herein is Proprietary to Digital Research.)

75

/ ~

PL/I1-80 V1.8, COMPILATION OF: OPTIMIST

1l a 0000 optimist:
2 a 0006 proc options(main);
3 ¢ 0006 $replace
4 c 0006 true by '1'b,
5 ¢c 00086 false by '9'b,
6 c @od6 nwords by 5;
7 c 0006 dcl
8 c P0G6 negative (l:nwords) char(8) var static initial
9 c 0006 (' never',' none',' nothing',' not',' no'),
19 c 0006 positive (l:nwords) char(l@) var static initial
11 c 2406 (' always',' all',' something','',' some'),
12 c 0906 upper char(28) static initial
13 c 0006 ('ABCDEFGHIJKLMNOPQRSTUVWXYZ. '),
14 c 0096 lower char(28) static initial
15 c 0dd6 ('abcdefghijklmnopgrstuvwxyz. ');
16 c 0006 dcl
17 c 0006 sent char(254) var,
18 c 0006 word char(32) var;
19 c 0g@ge6 dcl
20 c 0006 (i,3) fixed;
21 c 0006 '
22 c 0006 do while(true);
23 c gdge6 put skip list('What''s up? ');
24 c 0022 sent = ' ';
25 ¢ @@2F do while
26 c 004B (substr(sent,length(sent)) "= *,');
27 c 004B get list (word);
28 ¢ 0@65 sent = sent !'! ' ' 1! word;
29 c p@8s end;
30 c 8088 sent = translate(sent,lower,upper);
31 ¢ 90AB if verify(sent,lower) "= @ then
32 c g0C2 sent = ' that''s an interesting idea.';
33 c @4CF doi =1 to nwords;
34 c @OEl j = index(sent,negative(i));
35 ¢ 0@F9 if j "= 0 then
36 ¢ 9102 sent = substr(sent,1l,]j-1) !!
37 c 8162 positive(i) 1!
38 ¢ #4162 substr(sent,j+length(negative(i)));
39 ¢ 0162 end;
40 c 0162 put list('Actually,'!!sent);
41 c @17F put skip;
42 ¢c @193 end;
43 a @193 end optimist;
CODE SIZE = 9193
DATA AREA = @1lF2

\\\‘ Figure 8-1. Listing of the OPTIMIST Program. ‘///
1

(All Information Contained Herein is Proprietary to Digital Research.)

76

A>b:optimist

What's up?
Actually,

What's up?
Actually,

What's up?
Actually,

What's up?
Actually,

What's up?
Actually,

What's up?
Actually,

What's up?
Actually,

What's up?

Nothing is up.
something is up.

This is NOT fun.

this is fun.

Programs like this never make sense.
programs like this always make sense.

Nothing is easy that is not complicated.
something is easy that is complicated.

Nobody cares, and its none of your business.
somebody cares and its all of your business,

No, no, no, nho.
some no no no.

You no, no, no.
you some no no.

NO, NO, NO!

Actually, that's an interesting idea.

What's up? No it is not,.
Actually, some it is.
What's up? "2

END OF FILE

Traceback:

(1), File: SYSIN=CON
P9B7 0962 ¥157 6EGQ # 1BD7 @521 8882 p157

End of Execution

Fiqure 8-2.

Interaction with the OPTIMIST Program,

. 9

(All Information Contained Herein is Proprietary to Digital Research.)

77

If VERIFY returns a zero value, then the sentence contains only
(translated) lower case letters and a period. 1In this

case, the DO group between 1lines 33 and 39 is executed. On each
iteration, the INDEX function is used to search for the next negative
word, given by negative(i). If found, j is set to the position of the
negative word and, in the assignment starting on line 36, is replaced
by the positive word to which it corresponds. 1In this assignment,

substr(sent,1,]j-1)

is the portion of the sentence which occurs before the negative word,
while

positive (i)
is the replacement value for the negative word, and
substr(sent, j+length(negative(i)))

is the portion of the sentence which follows the negative word being
replaced. The concatenation of these three segments produces a new
sentence with the negative word replaced by the positive word. Note
that since all negative words have a leading blank, the negative
portion will only be found at the beginning of a word. Thus,
“nevermind” is replaced by "alwaysmind" which, on occasion, can
produce some interesting results. The OPTIMIST sends the resulting
sentence to the console, and loops back to read another input.

Three improvements could be made to the OPTIMIST. First, the
input scan will never stop 1f the sentence exceeds 254 characters
since the period will not be found. A check should be made to ensure
that the newly appended word does not exceed the maximum size.
Second, an ON-unit could be included to detect an end of file so that
the program terminates in a reasonable fashion. Last, you could make
the OPTIMIST a bit smarter!

8.2. A Free-Field Scanner.

A second, more practical, application of string processing 1is
given 1in this section. In general, it is often useful to have a
“free—-field scanner" which is a subroutine that reads input lines and
breaks the input values into individual numbers and characters. The
program shown in Figure 8-3, called FSCAN, gives an example of a

free-field scanner. The function of FSCAN is to test an embedded
subroutine, called GNT (Get Next Token), which reads the next input
item, called a "token." In this case, the tokens are just numeric

values, such as 1234.56, or individual letters and special characters.
All intervening blanks between the tokens are bypassed in the token
scan.

(All Information Contained Herein is Proprietary to Digital Research.)

78

\

PL/I-80 V1.8, COMPILATION OF: FSCAN

1l a 0000 fscan:
2 a 00086 proc options(main);
3 ¢c 0006 %replace
4 c 9B06 true by '1l'b;
5 c #8006 dcl
6 c 0006 token char(80) var
7 ¢ 0006 static initial('');
8 c 0d@6
9 c 0006 gnt:
10 c 6006 proc;
11 e 80406 dcl
12 e 0009 i fixed,
13 e 24609 line char(80) var
14 e @009 static initial('"');
15 e 9009 '
16 e 0099 line = substr(line,length(token)+1l);
17 e 8023 do while(true);
18 e @023 if line = '' then
19 e 04031 get edit(line) (a);
20 e BO@AE i = verify(line,"' ');
21 e 8063 ifi =20 then
22 e #86C line = '';
23 e 0074 else
24 e 0074 do;
25 e 0074 line = substr(line,i);
26 e gos8a i = verify(line,'0123456789.');
27 e @BO9F if i =0 then
28 e @QOA8B token = line;
29 e 0OB6 else
30 e 0OB6 if i =1 then
31 e G@BF token = substr(line,l,1);
32 e @@DS else
33 e @@D5 token = substr(line,l,i-1);
34 e GOEE return;
35 e @BOF2 end;
36 e OF2 end;
37 ¢ @OF2 end gnt;
38 c @OF2
39 c @@F2 do while(true);
49 c 00OF2 call gnt;
41 c @@F5 put edit('''*'titoken!!' ") (x(1),a);
42 ¢ @127 end;
43 a 9127 end fscan;
CODE SIZE = @127
DATA AREA = 0@BD

Figure 8-3. Listing of the FSCAN Free-Field Scanner Test. 44///

(All Information Contained Herein is Proprietary to Digital Research.)

79

The program shown in Figure 8-3 is broken into three 1logical
parts. The first segment appears between lines 3 and 7, and defines
the global data area called token, for use by the GNT procedure. The
second portion, from 1line 9 through line 37, is the GNT procedure
itself, while the DO group between 39 and 42 performs the GNT testing
function.

An interaction with the FSCAN program is shown in Figure 8-4,
Note that the program reads a line of input, then decomposes the input
line 1into basic tokens and writes the decomposed items back to the
console, with surrounding quotes. The assumption is, of course, that
once the free-field scanner has been tested, the GNT procedure will be
extracted from this program and placed into a production program where
the scanner 1is required. In fact, GNT will reappear in another
program later where it is wused to compute values of arithmetic
expressions.

The overall operation of the GNT procedure is as follows. The
character variable called LINE is used to hold the input line as it is
being processed. Initially, the value of LINE is empty, due to the

declaration starting on line 11. On each call to GNT, the first
portion of LINE is extracted and placed into TOKEN, which becomes the
next input item. On each successive call, the previous TOKEN value is
first removed from the beginning of LINE before the next item is
scanned., As an example, suppose the operator types the line

bbb88*9.,9

where "b" represents a blank character. On the first call to GNT (see
line 38), both TOKEN and LINE are empty strings, so the assignment on
line 16, which normally removes the previous value of TOKEN, leaves
LINE as an empty string. The DO group between 1lines 17 and 36,
however, ensures that the LINE buffer is filled. 1If, on line 18, an
empty buffer is encountered, it is immediately refilled using a GET
EDIT statement. In any case, the VERIFY call on line 28 produces the
first position in LINE which is not blank. If VERIFY produces a #
value, then the entire line is blank and must be cleared so that the
refill operation will take place on the next iteration. If LINE 1is
not entirely blank, the DO group beginning on line 24 is entered.

Processing within the DO group proceeds as follows. Upon entry
to the group, the value of i is the first non-blank position of the
LINE buffer. Thus, the statement on line 25 removes the preceding
blanks from LINE, 1leaving the next token starting at the first
position., The VERIFY function is then applied to LINE to determine if
the next item is a number. The statement on line 26 sets i to @9 1if
the entire buffer consists of numbers and decimal points, to 1 if the
first item is not a number or decimal, and to a value larger than 1 if
the first item is a number which does not exend through the entire
LINE buffer. The sequence of tests starting at line 27 thus extract
either the entire line (i=#), the first character of the 1line (i=1l),
or the first portion of the 1line (i>1).

Taking the example above, LINE is immediately set to

(All Information Contained Herein is Proprietary to Digital Research.)

80

A>b:fscan
88+9.9
l88l l+l l9.9l
1234567 89.10
'1234567' '89.1¢0°
- 1,2,3,4,5,6,7
Oll I'l 02l l'l I3l l'l l4l l'l l5| L] L} l6| L [} I7l
ceaebBbB... T.7
"‘0.666...' '
~Z
END OF FILE (7), File: SYSIN=CON

Traceback: @8AE 23FF 0143 JO@FrF # 38B8 ¢6C6 09143 G1F5
End of Execution

Figure 8-4, 1Interaction with the FSCAN Test Program.

\ /

(All Information Contained Herein is Proprietary to Digital Research.)

81

where the index 1 through 9 into LINE is shown below each character.
The initial blanks are stripped off on line 23, leaving LINE as

The VERIFY on line 24 locates the first position containing a
non-digit or ©period character, resulting in the wvalue 3 which
corresponds to the "*" in position 3. As a result of a series of
tests, line 33 is executed, producing the equivalent of

substr('88*9.9',1,2)

which results in a TOKEN value of '88' which is the next number 1in
LINE.

On the next call to GNT, TOKEN is removed from LINE wusing the
SUBSTR operation on line 16, leaving LINE as

——— — —— ———— ——— ——

The VERIFY function on line 26 returns the value 1, since the 1leading
position of LINE is not a digit or a period. The first character of
LINE is extracted and returned as the value of TOKEN on line 31.

The third call to GNT gets the 1last token 1in LINE by first
extracting the "*" which leaves LINE as

The VERIFY on line 26 returns @ since all characters are either digits
or periods, and thus line 28 is executed, resulting in a TOKEN value
of '9.9' which is the remainder of LINE.

The fourth call to GNT clears the previous value of TOKEN from
LINE, 1leaving LINE as the empty string. This action, in turn, causes
the GET EDIT statement to be executed, and refills LINE from the
console, Execution proceeds in this manner until the operator aborts
the program with either a control-z or control-c input.

This program is of no particular interest in itself, but, as we

shall see 1later, it is easily incorporated into a more comprehensive

(All Information Contained Herein is Proprietary to Digital Research.)

82

and useful function., 1In any case, the scanner has some drawbacks,
Like our previous example, no end of file conditions are trapped. An
ON-unit could be included to detect this condition, and a null TOKEN
value could be returned to indicate that no more input is available.
Fur ther, the scanner makes no checks to detect multiple period
characters which would cause a subsequent conversion signal (ERROR(1l))
if any attempt is made to convert to a decimal value. It is a
worthwhile exercise at this point to add these functions in the
simplest possible form.

(All Information Contained Herein is Proprietary to Digital Research.)

83

9. APPLICATIONS OF LIST PROCESSING.

PL/I-80 has subroutines which are included in every PL/I-80
program for dynamic storage management. When your program loads into
memory for execution, the first action which takes place is to set up
all remaining free storage as a linked-list structure., Your program
can dynamically allocate pieces of this storage area through the
ALLOCATE statement, and later release segments using the FREE

statement. All storage management is done in the background, using
subroutines from the PL/I-80 library. Segments of memory allocated in
this manner can be logically connected to one another through “lists"

which 1lead from one memory segment to another. The list elements are
PL/I structures which contain information fields and one or more
POINTER variables which provide access to other list elements.

The dynamic nature of list processing is most often used when
the number and structure of data elements managed by a program varies
considerably. The programs of this section illustrate the use of list
processing in two cases where the data allocation 1is not easily
predetermined. Each program is discussed 1in detail in order to
provide a series of concrete examples of PL/I-88 list processing.

9.1. Managing a List of Words.

The first example performs a function similar to the OPTIMIST of
the previous section., Recall that the length of a sentence accepted
by the OPTIMIST was restricted to 254 characters, which is the maximum
string 1length. 1In order to accept sentences of virtually any length,
we will use a list structure instead of a single character string.
For 1illustration, we will simplify the task somewhat by simply
reversing the input sentence, rather than performing word
substitution.

Before we get into the details, there are a few mechanical
things to consider about list processing. First, a based variable is
just a template that fits over a region of memory and has no storage
directly allocated to it. The based wvariable template is
programmatically placed over a particular piece of memory using a
pointer variable in one of two ways, depending upon the form of the
based variable declaration, If no implied base is included in the
declaration, then any reference to the based variable must be
pointer—-qualified. 1If an implied base is included in the declaration,
then references may include a pointer qualifier or simply use implied
pointer given in the declaration as a base. An example should clarify
the situation. Consider the following declarations:

dcl
i fixed,
mat (@::5) fixed,

(p, 9) pointer,
x fixed based,

y fixed based(p),
z fixed based(£f());

The two variables i and mat‘are not based variables, so storage is

(All Information Contained Herein is Proprietary to Digital Research.)

84

allocated for these.data items., Similarly, the two pointer variables
p and q have assigned storage locations. The three wvariables x, v,
and 2z, however, are declared as based variables whose actual storage
addresses will be determined during execution of the program. The
variable x has no 1implied base, so all references to x must have a
pointer qualifier, such as

pP=->X = 5; and gq=>x = 6;

In the first case, the fixed (two-byte) wvariable at the memory
location given by p is assigned the wvalue 5, while the second
statement stores the value 6 at the location given by q. The variable
Y, on the other hand, has an implied base and can be referenced with
or without a pointer qualifier. The reference

y = 5; 1is equivalent to p->y = 5;
and thus
y = 5; and g->y = 6;
have exactly the same effects as the two assignments to x shown above,

The variable z, like y, has an implied base. The base, in this
case, is an invocation of a pointer-valued function with no arguments,
The function f could, for example, take the form

f:
proc returns(ptr);
return (addr(mat(i)));
end f;

Two valid references to z, for example, are
p->z = 5; and z2 = 6;

The first form is equivalent to those shown above, where the 1location
is derived from the pointer variable p. The second form, however, is
an abbreviation for

£() -> z = 6;

In this case, the function £ 1is evaluated to produce the storage
address for the based variable z. The advantage to using this form is
twofold. First, the pointer valued expression can be a complex form,
not restricted to a simple pointer variable., Second, the code for the:
function f occurs only once in memory, rather than being duplicated at
each variable reference, thus saving a considerable amount of program
space. It must also be noted in passing, that the implied base must
be in the scope of the declaration for the based wvariable. The
following non-functional program segment illustrates this notion:

(All Information Contained Herein is Proprietary to Digital Research.)

85

main:
proc options(main);
dcl
X based(p),
y based(q),
p ptr;
begin;
dcl
(p,q) ptr;
5;
19;

X=
y=
end;
dcl

q ptr;
end main;

The declarations of p and q within the BEGIN block have no effect
since the based variables x and y reference p and q which must be in
the same or encompassing scope.

Now that the basics have been discussed, we can get 1into the
list processing example. The sentence reversing program, called REV,
is shown in Figure 9-1. The program 1is broken into three main
sections, The first portion, from line 3 through 14 performs the
function of reading a sentence and writing the sentence back to the
console in reverse order. 1In order to simplify the overall program
Structure, the read function is performed by a separate subroutine,
called READ, which starts on line 16. Similarly, the program output
is performed in a third section by the subroutine named WRITE,
beginning on 1line 34, Each input sentence consists of a sequence of
words, up to 3@ characters in length, sufficient to hold

floccinaucinihilipilification

which is the longest word in the English language (plus one 1letter
because the Author is probably wrong about it being the longest word).
In order to simplify the input processing, REV requires a space before
the period which terminates. the sentence, The program terminates when
an empty sentence is typed by the operator. Figure 9-2 shows the
console interaction with the REV program.

The REV program generally operates as follows. Each word is
stored in a separate area of memory created using an ALLOCATE
statement. Each ALLOCATE statement obtains a unique section of the
free memory sufficiently 1large to hold the “wordnode" structure on
line 5, amounting to 32 bytes for each allocation (you can verify this
by examining the symbol table resulting from the $S compiler switch).
The wordnode elements are linked together through the "next" field of
each allocation, and the beginning of the list is given by the value
of the "sentence" pointer variable.

In PL/I-88, pointer variables are really just two-byte 16-bit
words which hold the address of a variable. The statement

allocate wordnode set (newnode)

(All Information Contained Herein is Proprietary to Digital Research.)

86

o

PL/I-80 V1.0, COMPILATION OF: REV

1l a
2 a 0906
3 ¢c 00a6
4 c 0006
5 ¢ 00066
6 c 0006
7 c 0006
8 c 00A6
9 c 0006
10 c 00066
11 c 0009
12 ¢ 9011
13 c 0014
14 ¢ 901A
15 c 401A
16 ¢ 0041A
17 ¢ 801A
18 e 001A
19 e 001A
20 e 061A
21 e 0@1A
22 e 0020
23 e 003C
24 e 0@B3C
25 e 0056
26 e 0064
27 e B@65
28 e @06E
29 e 467D
30 e 0083
31 e 9091
32 ¢ 9091
33 ¢ 4891
34 ¢ 9091
35 ¢ 9091
36 e 0091
37 e 0091
38 e 0091
39 e QOAD
40 e 0@BS
41 e g@CA
42 e QODO
43 e UODE
44 e QOE7
45 e OOE7
46 e QOFE
47 c 01190
48 c 0119
49 a @119

Figure 9-1,

80080 reverse:

proc options(main);
dcl
sentence ptr,
1 wordnode based (sentence),
2 word char(39) varying,
2 next ptr;

do while('l'b);

call read () ;

if sentence = null then
stop;

call write();

end;

read:

proc;

dcl
newword char (30) varying,
newnode ptr;

sentence = null;

put skip list('What''s up? ');
do while('l'b);
get list(newword);
if newword = '.' then

return;

allocate wordnode set (newnode);
newnode->next sentence;
sentence newnode;
word newword;
end;

end read;

write:

proc;

dcl
p ptr;

put skip list('Actually, ');
do while (sentence "= null);
put list(word);
p = sentence;
sentence = next;
free p->wordnode;
end;

put list('.');

put skip;

end write;

end reverse;

Listing of the REV Sentence Reverser.

/

(All Information Contained Herein is Proprietary to Digital Research.)

87

N

A>b:rev

What's up? Now is the time for all good parties .
Actually, parties good all for time the is Now .

What's up? The rain in Spain falls mainly in the plain .
Actually, plain the in mainly falls Spain in rain The .
What's up? a man a plan a canal panama .

Actually, panama canal a plan a man a .

What's up?

End of Execution

Figure 9-2, 1Interaction with the REV Program.

_/

(All Information Contained Herein is Proprietary to Digital Research.)

88

for example, finds a segment of memory to hold the 33 byte wordnode
data item, and sets the value of the pointer variable newnode to the
address of this memory area (wordnode is 33 bytes because the varying
string “"word" requires one byte to hold the current length, 30 bytes
to hold the string itself, and is followed by a two byte pointer
value). Given the input sentence

FLICK YOUR BIC

for example, the ALLOCATE statement is executed three times, once for
each word in the list., For illustration, assume these three memory
allocations are found at addresses 1000, 2009, and 3080. The REV
program reads the sentence in the main loop within the READ procedure.

REV begins by initializing the sentence pointer to the null
address which, by the way, is just address ¢@#08. Upon entering the DO
group at line 23, the value of sentence appears as shown’ below.

SENTENCE: | 0000 |

The first word, FLICK, is read by the GET statement at 1line 24 andg,
since the wvalue is not a period, the first 33 byte area is allocated
to hold the word. As the sentence is constructed, the pointer wvalue
of the sentence variable is placed into the "next" field and the input
word is stored into the "word" field. The most recently read word
then becomes the new head of the list. After processing the word
FLICK, the list appears as shown below.

SENTENCE: | 1000 |

1960: |FLICK |

The program then proceeds through the loop again. This time, the word
YOUR is read and the second 33 byte area is allocated. The newly
allocated area becomes the new head of the list, with the resulting
pointer structure:

SENTENCE | 2000 |

20008: |YOUR | 10008: |FLICK |

The last word, BIC, is then processed. The final 33 byte

(All Information Contained Herein is Proprietary to Digital Research.)

89

area is allocated and placed at the head of the list,
with the resulting sequence of nodes:

SENTENCE: | 3008 |

3098: |BIC | 2008: |YOUR | 1009: |FLICK |

—— ——— ——— - - —— —— — —— e ———

Note that the program can follow the pointer structure from the
sentence variable to the node for BIC, then to the node for YOUR, and
finally to FLICK where an end of list (#000) value is encountered.

Due to the order in which the list was constructed, there 1is
really no processing required to reverse the list., In fact, the WRITE
function simply searches through the list, starting at the sentence
pointer and prints each word as it 1is encountered within the 1loop
between lines 39 and 44. As soon as the word has been written, the 33
byte area allocated to it is released using the FREE statement on line
43, It is important to note that the sentence pointer variable is
moved to the next item in the list before FREEing the current element
‘'since, in general, you cannot expect storage to remain intact after it
has been released.

In this situation, the principal advantage of the list structure
is that the sentence can be arbitrarily long, limited only by the size
of available memory. The disadvantage is that there 1is considerably
more storage consumed for sentences which could be represented by a
254 character string.

9.2. A Network Analysis Program.

The next example 1is, without doubt, the most comprehensive
program in this manual. The NET program, shown in Figure 9-3,
performs the following function. The operator enters a network of
cities and distances between these cities, The NET program constructs
a connected set of network nodes, implemented using PL/I-80 list
processing, which represents the graph. Upon demand from the console,
the NET program computes the shortest path from all cities 1in the
network to the designated destination, and then selectively displays
particular optimal paths through the network.

NET uses two structure forms as 1list elements. The first
corresponds to a particular city, called a "city node," and is defined

on line 11 in Fiqure 9-3,. The structure of a city node is shown
graphically below.

(All Information Contained Herein is Proprietary to Digital Research.)

90

CITY NODE: | «city name |

The “"city name" field holds the character value of the city name
itself, while the "total dist* and "investigate" fields are used
during the shortest path algorithm, and are of no consequence at this
point. The "city list" and "route head" pointer values are used to
connect the cities in the network.

The second structure is called a "route node," and is defined on
line 18. A route node establishes a single connection between one
city and one of 1its neighbors. Normally, several route nodes are
allocated for a city, corresponding to a number of connections to its
neighboring cities. The structure of a single route node is

ROUTE NODE: | next city

| route 1list |

The list of route nodes associated with a particular city begins at
the pointer value "route head" which is a part of the city node shown
above, and continues through the "route list" pointer to additional
route nodes, until a null route list is encountered. Each route node
has a pointer value, denoted by "next «c¢ity," which 1leads to a
neighboring c¢ity node, along with a "“route dist" field that gives the
mileage to the next city.

For illustration, assume Monterey is 350 miles from Las Vegas.

Two city nodes and two route nodes must be allocated to represent the
graph, with the sample addresses shown to the left of each allocation:

(A1l Information Contained Herein is Proprietary to Digital Research.)

91

CITY NODE

CITY NODE

1000 |Monterey | 2008 |Las Vegas|

| xxxxxxx | | xxxxxxx |

| xxxxxxx | | xxxxxxx |

| xxxxxxx | | xxxxxxx |

| 3000 | | ases |

ROUTE NODE ROUTE NODE

3000 | 2000 | 4000 | 1000 |

I 3se | I 3se |
where the "x" fields are ignored in the diagram. A linked 1list,
starting at “city head” on 1line 23, 1leads to all cities in the

network., Given the two cities shown above, the list of cities appears
as
CITY HEAD
| 1000 I
CITY NODE CITY NODE
1900 |Monterey | 20008 |Las Vegas]|
| Xxxxxxxx | | XxxXXXx |
| xxxxxxx | | XXXXXXX
| 2000 | | @000 |
| xXXXXXX |] XXXXXXX

Before getting into the details of the NET program, we should
note that one particular form of an iterative DO group is used
throughout the program to traverse the 1linked 1lists. The program
statement on line 142 is typical:

do p->cityhead repeat (p->citylist) while (p~=null);
The effect of this iterative DO group header 1is to successively

process each element of the linked list starting at cityhead until a
null (@0@@) link is encountered. On the first iteration, the pointer
variable p 1is set to the wvalue of the pointer variable cityhead,
resulting in the assignment p = 10008 in the example shown above. On

(All Information Contained Herein is Proprietary to Digital Research.)

92

the next iteration, p takes on the value of the citylist field at 1000
which addresses Las Vegas, resulting in the value p = 2¢88. On the
last iteration, p takes on the value of the citylist field based at
20008, resulting 1in p = @000. Since p is equal to null, the DO group
execution is stopped.

In order to understand the operation of the NET program, take a
look at the <console interaction given in Figure 9-4. The operator
first enters a list of cities and distances between cities, terminated
by the end of file character control-z. The control-z response
triggers a display of the entire network to aid in detecting input
errors. The operator is then prompted for a destination city
(Tijuana) and a starting city (Boise). A best route is displayed
(there may be several of equal length), and then a prompt appears for
another starting city. If a control-z is entered, the NET program
reverts to another destination prompt, leaving the network intact,
Interaction proceeds in this manner until the operator enters a
control-z in response to the destination prompt. When this occurs,
NET clears the network and returns to accept an entirely new network
of cities and distances. The NET program terminates if an empty
network is entered at this time (i.e., a single control-z is typed).

Given this background, we can now discuss the program structure,.
NET 1is 1logically divided into three parts: the input section which
constructs and echoes the city network, the shortest path analysis,
and the shortest path display operations. The input section consists
of four procedures beginning on line 34, named "“setup," *“"connect,"
“find," and "print all." The shortest path analysis takes place within
the "shortest dist" procedure starting on line 122, while the display
function is split between the two procedures “print paths" and *"print
route" at lines 143 and 169, respectively. The last procedure, “free
all,” is called to clear the old network before a new network is
loaded. The top 1level program calls occur in the DO group between
lines 25 and 32. The remainder of the program consists' entirely of
the nested subroutines named above.

Beginning on line 26, the main program calls "setup" to read the
graph, If the city list is empty upon return, the program terminates
on 1line 28, Otherwise, “print all" is called to display the graph,
followed by "print paths" to prompt and display shortest routes. Upon
return, "free all" 1is called to release storage. This process
continues until an empty graph is entered.

The main loop within "setup" occurs between lines 43 and 47. On
each iteration, a pair of cities with a connecting distance is read on
line 44. The "connect" subroutine is then called twice to establish
the connection in both directions between the cities. Note that the
termination condition is intercepted by the ON-unit at line 39.

The “connect" subroutine, in turn, 1is responsible for
establishing a single route node to connect the first city to the
second city. The action of "connect" is to call the "find" procedure
twice, once for the first city and once for the second city. The

(All Information Contained Herein is Proprietary to Digital Research.)

93

“find" procedure will locate a city if it exists in the network, or
create the city node if it does not vyet exist, Upon return from
“find," the route node is created and filled-in between lines 61 and
65. In the previous Monterey to Las Vegas example, the first call to
“connect" would establish the city nodes for Monterey and Las Vegas
(indirectly, through "find") and then produce the route node under
Monterey only. The second call to “connect" establishes the route
- node under Las Vegas.

The “find" procedure, starting at line 68, searches the city
list, beginning at "city head," until the input city is found or the
city list is exhausted. If the input city is not found, it it created
between lines 79 and 85. 1In any case, "find" returns a pointer to the
requested city node.

The "print all" procedure, called after the network is <created,
appears between lines 88 and 10l1. This procedure starts at "city
head” and displays all the cities in the city list, As each city |is
visited, the route head 1is also traversed and displayed. Upon
completion of the "print all" procedure, all city nodes and route
nodes have been visited and displayed.

The "print paths" subroutine performs the essential processing.
A destination city 1is read on line 114, and sent to the "shortest
dist" procedure. Upon return, the "total dist" field of each city
node has been set to the total distance from the destination city.
The operator enters the starting city on line 115, which 1is sent to
the "print route" subroutine for the display operation.

Ignoring the shortest path analysis for now, the "print route"
procedure, at 1line 169, is responsible for displaying the best route
from the input city to the destination, The procedure essentially
rediscovers the. path as follows, recalling that the total distance
from the input city to the destination has been computed and stored in
“total dist." The first leg of the best route is ‘discovered by
finding a neighboring city whose “total dist" field differs by exactly
the distance to the neighbor. The neighbor is displayed, we move to
the neighboring city, and repeat the same operation. Eventually, the
destination city 1is reached, and the display operation is completed.
Mechanically, the original city node 1is found on 1line 176, The
remaining distance 1is displayed on line 186, and the search for the
first or next 1leg occurs between lines 188 and 197. On each
iteration, 1line 191 tests to determine if a neighbor has been found
whose total distance plus leg distance matches the current city. If
so, the 1leg distance 1is displayed on line 193, and the search is
terminated by setting g to null.

Now we'll go back to the "shortest dist" procedure on line 123,
Basically, the function of this procedure is to take an input city,
called the destination, and compute the minimum total distance from
every city in the network to the destination. This total is recorded
at each city node in the "total dist" field. The algorithm proceeds
as follows

(All Information Contained Herein is Proprietary to Digital Research.)

94

(a) Initially mark all total distances with
infinity (32767 in PL/I-80), to indicate
that the node has no connection (yet).

(b) Set the "investigate" flag to false for
each city. The investigate flag marks
a city node which needs to be processed
further by the algorithm.

(c) Set the total distance to the destination
to the value zero, all others .are currently
set to infinity, but will change during
processing. Set the investigate flag
to true for the destination only.

(d) Examine the city list for the city node
which has the least total distance, and
whose investigate flag is true (at first,
only the destination will be found).
When no city node has a true investigate
flag, processing is complete and all
minimum total distances have been com-
puted.

(e) Clear the investigate flag for the city
found in (d), and extract its current
total distance value. Examine each of
its neighbors: 1if the current total
distance plus the leg distance is less
than the total distance marked at the
neighbor, then replace the neighbor's
total distance by this sum, and mark the
neighbor for processing by setting its
investigate bit to true. After pro-
cessing each neighbor, return to step (d).

Basically, the algorithm proceeds through the graph, developing the
shortest path to any node., As a result, each city will be visited
exactly once., Due to this fact, the algorithm is linear which means
that additional nodes in the network do not significantly affect the
time taken to analyze the graph.

The final procedure, "free all," starting at line 281 gives all
the network storage back at the end of processing each network. Each
city node is visited, the entire list of route node connections is
discarded, and the city node is discarded.

The NET program can be expanded in several ways. First, it |is
inconvenient to type an entire network each time, so a simple addition
would be to open a STREAM file and read the graph from disk. Several
networks could be stored on the disk and retrieved on command from the
console, Second, you could expand the basic functions of NET. If you
are an aviation buff, for example, you might recast the network to
model the national airway system consisting of electronic airway
transmitters (VOR's and VORTAC's) which are placed throughout . the

(A1l Information Contained Herein is Proprietary to Digital Research.)

95

country. Directions, distances, and VOR frequencies can be stored at
each node, along with additional local information, Under command
from the console, the NET program would select the best route to take
you from one place to another, and display the headings, distances,
and VOR information for use during the trip. You could even expand
further by switching between networks at the world, national, and
local 1levels to aid 1in complete flight planning. 1If you're not an
aviation fan, try some other application, such as a telephone exchange
or computer program branch structure analysis,

(All Information Contained Herein is Proprietary to Digital Research.)

96

PL/I-80 V1.0, COMPILATION OF: NET

l a 6080 graph:
2 a 0006 proc options(main);
3 c 0dade6 $replace
4 c 0006 true by '1'b,
5 c 0006 false by '@'b,
6 c 0006 citysize by 20,
7 c 0006 infinite by 32767;
8 c 0006 dcl
9 c 0006 sysin file;
19 c 08006 dcl
11 c 0006 1 city _node based,
12 c 0006 2 city name char(citysize) var,
13 c 0006 2 total_dist fixed,
14 c 0006 2 investigate bit,
15 c 0096 2 city list ptr,
16 c 0006 2 route head ptr;
17 c 0006 dcl -
18 c 0006 1 route node based,
19 c 9006 2 next_city ptr,
20 c 0006 2 route_dist fixed,
21 c 0896 2 route list ptr;
22 c 0006 dcl -
23 c 9006 city head ptr;
24 c 0006
25 c Q@06 do while(true);
26 c @oo6 call setup();
27 c 0009 if city head = null then
28 c 0011 stop;
29 c 0014 call print_all();
30 c 8017 call print paths();
31 c ¢001A call free all();
32 ¢ 0020 end; -
33 c 0020
34 ¢c 0020 setup:
35 ¢ 0020 proc;
36 e 0@20 dcl
37 e 6027 dist fixed,
38 e 0027 (cityl, city2) char(citysize) var;
39 e 0027 on endfile(sysin) go to eof;
49 e 0035 city head = null;
41 e 903B put skip list('Type "Cityl, Dist, City2"');
42 e 0057 put skip;
43 e 0068 do while(true);
44 e 0068 get list(cityl, dist, city2);
45 e 909C call connect(cityl, dist, city2);
46 e 00A2 call connect(city2, dist, cityl);
47 e 00B6 end;
48 e 00B6 eof:
49 c 00B6 end setup;

Figure 9-3a. Listing of the NET Network Program Part A. A_,///

(A1l Information Contained Herein is Proprietary to Digital Research.)

97

///’ﬁ 51 g0B6 connect: '
52 AIBA

o
c proc(source city, dist, dest-city);

53 e 00B6 dcl - -

54 e @0C3 source city char(citysize) var,
55 e 40C3 dist fixed,

56 e #PC3 dest city char(citysize) var;
57 e 90C3 dcl

58 e 0AC3 (r, s, d) ptr;

59 e gAC3 s = find(source_city);

60 e 00D2 d = find(dest city);

61 e GOEL allocate route _node set (r);

62 e DOEA r->route-dist = dist;

63 e GOFB r->next city = d;

64 e 0106 r->route_list = s->route_head;

65 e @11D s->route_head = r;

66 c 812D end connect;

67 c 912D ’

68 ¢ @120 find:

69 c 412D proc(city) returns(ptr);

70 e @12D dcl

71 e P134 city char(citysize) var;

72 e 9134 dcl

73 e #134 (p, 9) ptr;

74 e 0134 do p = city head

75 e 9142 repeat(p->city list) while(p~=null);
76 e 0142 if city = p->city _name then

77 e 0150 return(p);

78 e 0165 end;

79 e 9165 allocate city_node set(p);

80 e Q16E p->city name = city;

81l e 017B p->city list = city head;

82 e #18A city head = p;

83 e 9190 p->total_dist = infinite;

84 e @19C p->route head = null;

85 e 91A9 ‘return(p);

86 c @1AD end findg;

87 ¢ 91AD

88 c #1AD print all:

89 c U1AD proc;

90 e 91AD dcl

91 e @1AD (p, 9) ptr;

92 e @1AD do p = city head

93 e O1BB repeat(p->city list) while(p~=null);
94 e 01BB put skip list(p->city name,':');

95 e P1EQ do q = p->route_head

96 e B1F6 repeat(g->route list) while(q =null);
97 e B1F6 put skip list(g->route dist,'miles to',
98 e @253 g->next_city->city name);
99 e @253 end;
100 e @253 end;

101 c 9253 end print_all;

142 c 9253

\\\\ Figure 9-3b., Listing of the NET Network Program Part B. ‘///

(All Information Contained Herein is Proprietary to Digital Research.)

98

103 c 9253 print paths:

104 ¢ 9253 proc;

135 e 9253 dcl :

106 e 925A city char(citysize) var;

187 e @25A on endfile(sysin) qgo to eof;

108 e 0268 do while(true);

109 e 0268 put skip list('Type Destination ');
110 e 0284 get list(city);

111 e A29E call shortest dist(city);

112 e @2A4 on endfile(sysin) go to eol;
113 e 02B2 do while(true);

114 e @2B2 put skip list('Type Start ');
115 e Q2CE get list(city):

116 e @2ES8 call print route(city);

117 e 92F8 end; -

118 e @2F8 eol: revert endfile(sysin);

119 e 0@30E end;

120 e @30E eof:

121 ¢ @30E end print paths;

122 c @30E -

Figure 9-3c. Listing of the NET Network Program Part C.

_ ' Y,

(All Information Contained Herein is Proprietary to Digital Research.)

99

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

@30E
P30E
#315
#315
8315
@315
p315
8315
@323
@323
@32F
346
#346
@355
0360
2368
2368
@36E
#374
9382
¥382
@38E
@38E
@3A3
@373
@3Bl
p3C8
@3C8
p3C8
g3cs
23D0
P3D1
@ 3DA
@3EF
@3EF
@3F9
0408
p421
p421
0430
244D
944D
344D
944D

Qoo oOOODODOODDDO®DDDDPODODDOPODODDOODOD®DD®DDDDODODOO®ODOD®DOODODO®O®QQN

Figure 9-3d.

p->investigate =

@30E shortest-dist:

proc(city);
dcl
city char(citysize) var;
dcl
bestp ptr,
(d, bestd) fixed,
(p, g, r) ptr;
do p = city_head
repeat(p->city list) while(p~=null);
p->total_dist = infinite;
p->investigate = false;
end;
p = find(city);
p->total dist =

do while(true
bestp = null;
bestd = infinite;
do p = city head
repeat(p->city_list) while(p~=null);
if p->investigate then
do;
if p->total_dist < bestd then

a;
true;
)

>total_dist;

end;
if bestp = null then
return;
bestp->investigate = false;
do g = bestp->route head
repeat(qg->route_list) while(g"=null);
r g->next city;
d bestd + g->route dist;
if d < r->total_dist then
do;

i

r->total dist = d;
r->investigate = true;
end;

end;

end;
end shortest;dist;

Listing of the NET Network Program Part D, 4’///

(All Information Contained Herein is Proprietary to Digital Research.)

100

168 c #44D
169 c 944D print_route:
176 c 344D proc(city);
171 e 044D dcl
172 e 9454 city char(citysize) var;
173 e 9454 dcl
174 e 0454 (p, 9) ptr,
175 e #9454 (t, d) fixed;
176 e 9454 p = find(city);
177 e @463 do while(true);
178 e 9463 t = p->total dist;
179 e 9471 if t = infinite then
180 e #47D do;
181 e 947D put skip list(' (No Connection) ');
182 e 0499 return;
183 e @49a end;
184 e 949a if t = @ then
185 e (4A3 return;
186 e 04A4 put skip list(t,'miles remain,');
187 e 04CB q = p->route head;
188 e 044D9 do while(q~=null);
189 e 04E1l P = g->next_city;
190 e @4EB d = g->route dist;
191 e @4F7 if t = d + p=>total_dist then
192 e 0515 do;
193 e 0515 put list(d,'miles to‘,p—>city_name);
194 e B540 g = null;
195 e ¥549 end; else
196 e #549 q = g->route_list;
197 e @55D end;
198 e 055D end;
199 ¢ 955D end print_route;
200 c 955D
201 ¢ #55D free all:
202 c @55D Proc;
203 e B55D dcl
204 e B55D (p, q) ptr;
205 e 055D do p = city head
206 e @568 repeat(p->city list) while(p~=null);
207 e 0568 do g = p->route head
208 e 581 repeat(q->r3ute_1ist) while (g"=null);
209 e 9581 free g->route node;
210 e 8598 end; -
211 e 0598 free p=->city node;
212 e B#5BQ end; -
213 c 65RY end free all;
214 c @5BY -
215 a 05B# end graph;
CODE SIZE = @5B@
DATA AREA = (QQEB

\\\‘> Figure 9-3e. Listing of the NET Network Program Part E. 4///

(All Information Contained Herein is Proprietary to Digital Research.)

101

_

A>b:net

Type "Cityl, Dist, City2"
Seattle, 150, Boise
Boise, 30@, Modesto
Seattle,40@,Modesto
Modesto,150,Monterey’
Modesto, 58,San-Francisco
San-Francisco, 209 ,Las-Vegas
Las~-Vegas,350,Monterey
Los—-Angeles, 4080 ,Las-Vegas
Bakersfield,3d0 ,Monterey
Bakersfield, 250 ,Las-Vegas
Los-Angeéles,450,Tijuana
Tijuana, 700,Las-Vegas
Las-Vegas, 92¢, Boise
Pacific-Grove,5,Monterey
~Z

1]
1=
Q
[
[a
(4
(V<)
]
o>

.

Pacific-Grove :
5 miles to Monterey
Tijuana :
700 miles to Las-Vegas
450 miles to Los-Angeles
Bakersfield :
25¢ miles to Las~-Vegas
300 miles to Monterey
Los-Angeles :
450 miles to Tijuana
400 miles to Las~Vegas
Las-Vegas :
929 miles to Boise
708 miles to Tijuana
250 miles to Bakersfield
400 miles to Los—Angeles
350 miles to Monterey
208 miles to San-Francisco
San-Francisco :
200 miles to Las-~Vegas
50 miles to Modesto
Monterey :
5 . miles to Pacific~Grove
300 miles to Bakersfield
350 miles to Las-Vegas
150 miles to Modesto
Modesto :
56 miles to San-~-Francisco
150 miles to Monterey
409 miles to Seattle
300 miles to Boise
Boise :
920 miles to Las-Vegas
300 miles to Modesto
150 miles to Seattle
Seattle :
40@ miles to Modesto
150 miles to Boise

I
NET Program Network Setup. 4///

(All Information Contained Herein is Proprietary to Digital Research.)

102

Type
Type

Type
Type

Type

Type
Type

Typ
~g

Figure 9-4b.,

Destination Tijuana
Start Boise

1250 miles remain,
950 miles remain,
909 miles remain,
700 miles remain,

Start "z

Destination Pacific-Grove

Start Seattle
555 miles remain,
155 miles remain,
5 miles remain,
Start "¢
Destination "2

"Cityl, Dist, City2*

300

50
200
700

490
150

miles
miles
miles
miles

miles
miles
miles

to
to
to
to

to
to
to

Modesto
San-Francisco
Las-Vegas
Tijuana

Modesto
Monterey
Pacific-Grove

NET Program Network Interrogation.

/

(All Information Contained Herein is Proprietary to Digital Research.)

103

1. USES OF RECURSION IN PL/I-84.

Recursion processing is a 1language facility often used to
simplify programming problems which are partially self-defined. We
will examine three such problems, where the first two illustrate the
basic concepts and the last shows a more powerful use of recursion in
a practical problem.

Getting into the mechanics of recursion processing for a moment,
a recursive procedure is one in which an embedded call either directly
or indirectly reenters the procedure before returning to the first
level call. In PL/I, all such procedures must have the RECURSIVE
attribute so that the local data areas are properly saved and restored
at each level of recursion. In PL/I-88, there are two restrictions
within recursive procedures. First, all procedure parameters are
*call by value," which means that values cannot be returned from a
recursive procedure by assignment to formal parameters. Instead, your
program may return a functional value or assign values to global
variables. In order to maintain compatibility with £full PL/I, you
should not wuse formal parameters on the left of an assignment
statement within a PL/I-80 recursive procedure. Second, PL/I-80 does
not allow embedded BEGIN blocks within recursive procedures. Nested
procedures and DO groups are, however, allowed. The proper
formulation of recursive procedures is shown in the examples which
follow.

1#.1. Evaluation of Factorials.

No introduction to recursion would be complete without a
presentation of factorial evaluation. The factorial function, used
throughout Mathematics, is a good illustration because it 1is easily
defined through "iteration' as well as recursion. The iterative
definition of the factorial function is

where k! is the factorial function applied to the non-negative integer
k. Note that since

(k=1)! = (k=1) (k=2) ... (2) (1)

we can give the factorial definition in terms of itself, using the
recursion relation ‘

k! = k (k=1)!
where we define
gt =1

Evaluating the factorial function using either iteration or recursion

(All Information Contained Herein is Proprietary to Digital Research.)

104

produces the values shown below

g =1

1! =1

20 = (2) (1) = 2

31 = (3) (2) (1) = 6

41 = (4) (3) (2) (1) = 24

51 = (5) (4) (3) (2) (1) = 120

Figure 10-1 provides a listing of IFACT which computes values of the
factorial function wusing iteration. The variable FACT is a fixed
binary data item which accumulates the value of the factorial up to a
maximum of 32767. The output from IFACT, shown in Fiqure 16-2, gives
the proper value of the factorial function up to 7! = 5@449. At this
point, the FACT variable overflows and produces improper results.
Recall that PL/I-80 does not signal FIXEDOVERFLOW for binary
computations since the overhead would significantly degrade execution
time.

Figure 19-3 shows the equivalent recursive evaluation of the
factorial function. For comparison, the REPEAT form of the DO group
is used to control the test. 1In this case, FACT is a procedure marked
as RECURSIVE, which is called at the top level in the PUT statement on
line 6, with an embedded recursive call in the RETURN statement on
line 14. Note that FACT returns immediately when the input value is
zero. All other cases require one or more recursive evaluations of
FACT to produce the result., For example, 3! produces the sequence of
computations ’

fact(3) = 3*fact(2)
fact(2) = 2*fact(l)
fact(l) = 1*fact(9d)
fact(g) =1
=1 * 1
= 2 * 1 * 1
= 3 * 2 * 1 * 1

producing the final value 6., The output values for the recursive
factorial evaluation are shown in Fiqure 10-4. Note again that the
values overflow beyond 5840 due to the precision of the computations.

We can use this opportunity to examine output differences when
the data item types and precisions are altered. Figure 10-5 shows the
recursive evaluation of factorial, where a maximum precision decimal
value is used. The largest value produced by the program, as shown in
Figure 10-6, is

factorial(17) = 355,687,428,096,000

At this point, the FIXEDOVERFLOW is signalled by PL/I-80 to indicate
that the decimal computation has overflowed the maximum 15 digit
value. Similarly, Figure 1¢-7 shows the factorial function evaluated
using floating point binary data items. The output from this program
is shown in Figure 10-8. Although the function can be computed beyond
17!, the number of significant digits is truncated on the right to

(All Information Contained Herein is Proprietary to Digital Research.)

105

o

PL/I-80 V1.0, COMPI

L: List Source Prog
NO ERROR(S) IN P

NO ERROR(S) IN P

PL/I-8¢ V1.8, COMPI

LATION OF: IFACT

ram

ASS 1

ASS 2

LATION OF: IFACT

1l a 2000 £:
2 a 0006 proc options(main);
3 ¢c 9006 dcl
4 c 3006 (i,n,fact) fixed;
5 ¢ 00606 do i =0 by 1;
6 ¢ 008C fact = 1;
7 ¢ 9012 don =1 to 1l by -1;
8 ¢ ¢g921 fact = n * fact;
9 c 9B39 end;
19 ¢ 8039 put edit('factorial(',i,"
11 c 9881 (skip, a,£f(2),a,f(7))
12 c p@8l end;
13 a 9081 end f;
CODE SIZE = 4081
DATA AREA = §@21

Figure 10-1.

Listing of the IFACT Program.

)y=',fact)

_/

(All Information Contained Herein is Proprietary to Digital Research.)

106

_

A>b:ifact

factorial(9
factorial(1
factorial(2
factorial(3
factorial(4
factorial(5
factorial(6
factorial(7
factorial(8
factorial(9
factorial(ld
factorial(1ll
factorial(1l2
factorial(1l3
factorial(l4
factorial(l5)
factorial(le6)=
factorial(1l7)=
factorial(1l8)=

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

WO R

factorial(19)=

factorial(20)=
factorial(21)=

Figure 1#-2. Output from the IFACT Program,

18249
22528
-32768
-32768

@
2
@

_/

(All Information Contained Herein is Proprietary to Digital Research,)

107

PL/I-86 V1.0, COMPILATION OF: FACT

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: FACT

1l a 00090 f:
2 a 0006 proc options(main);
3 ¢c 00806 del
4 c 0006 i fixed;
5 c 0006 do 1 = @ repeat(i+l);
6 c A@dC put skip list('factorial(',i,')="',fact(i));
7 ¢ 80856 end;
8 c 0056 stop;
9 c PP56
19 c 0056 fact:
11 c @656 procedure(i) returns(fixed) recursive;
12 e QU56 dcl i fixed;
13 e 9070 if i = @0 then return (1);
14 e 0080 return (i * fact(i-1));
15 ¢ 0099 end fact;
16 a 9099 end £;

CODE SIZE = 9099
DATA AREA = 0

;\\\\; Figure 1¢-3. Listing of Factorial in Fixed Binary. 4’//

(All Information Contained Herein is Proprietary to Digital Research.)

108

A>b:fact

factorial(g)= 1
factorial(1)= 1
factorial(2)= 2
factorial(3)= 6
factorial(4)= 24
factorial(5)= 120
factorial(6)= 720
factorial(7)= 5040
factorial(8)= -25216
factorial(9)= -30@336
factorial(190)= 24320
factorial(11)= 5376
factorial(12)= -1024
factorial(13)= -13312
factorial(14)= 10249
factorial(15)= 22528
factorial(16)= -32768
factorial(17)= -32768
factorial(18)=]
factorial(19)=]
factorial(20)= 2
factorial(21)=]
factorial(22)=]

’\\\\ Figure 1@-4. Output from the FACT Program. Ag’///

(A1l Information Contained Herein is Proprietary to Digital Research.)

109

PL/I1-80 V1.0, COMPILATION OF: DFACT

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.4, COMPILATION OF: DFACT

1l a 0000 f:
2 a @@a@e6 proc options(main);

3 c 0006 dcl

4 c 0006 i fixed;
5 c 0006 do i = @ repeat(i+l); '
5 ¢ @gdac put skip list('Factorial(',i,')="',fact(i));
7 c @658 end;

8 ¢ 0958 stop;

9 ¢ 00858

18 ¢ @058 fact:

11 c Q@858 proc (i)

12 c 9058 returns(fixed dec(15,8)) recursive;
13 e 0058 dcl

14 e 0072 i fixed;

15 e 9072 dcl

16 e 6072 f fixed dec(15,0);

17 e 9072 if i = @ then

18 e 9@78B return (1);

19 e 0489 return (decimal(i,1l5) * fact(i-1));

20 ¢ @@AS end fact;

21 a Q@AS end £;

CODE SIZFE = @d@0AS
DATA AREA = 0028
\\\\; Figure 10-5. Listing of Factorial in Decimal. <4//

(All Information Contained Herein is Proprietary to Digital Research.)

110

A>b:dfact

Factorial(g)= 1
Factorial(1l)= 1
Factorial(2)= 2
Factorial(3)= 6
Factorial(4)= 24
Factorial(5)= 1209
Factorial(6)= 720
Factorial(7)= 5040
Factorial(8)= 403240
Factorial(9)= 362889
Factorial(18)= 3628800
Factorial(11)= 39916809
Factorial(12)= 479001600
Factorial(13)= 62270820800
Factorial(14)= 87178291200
Factorial(15)= 1337674368000
Factorial(16)= 209227898880300
Factorial(17)= 355687428096000
Factorial(18)=

FIXED OVERFLOW (1)
Traceback: 00087 J19F 0018 ¢000 # 2809 6874 $355 @141
End of Execution

\\\\‘ Figure 10-6. Output from the DFACT Program. A’//)

(All Information Contained Herein is Proprietary to Digital Research.)

111

PL/I-80 V1.0, COMPILATION OF: FFACT

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: FFACT

1l a 0000 f:
2 a ¢oo6 proc options(main);
3 c 9006 dcl
4 c 0006 i fixed;
5 ¢c 004@6 do i = @ repeat(i+l);
6 c gaacC put skip list('factorial(',i,"')="',fact(i));
7 ¢ 0056 end;
8 c @856 stop;

9 c 9056

19 ¢ 0656 fact:

11 c @856 procedure (i) returns(float) recursive;
12 e 0056 dcl i fixed;

13 e 0070 if i = @ then

14 e 0079 return(l);

15 e 0085 return (i * fact(i-1));

16 c @9Aal end fact;

17 a 9dAal end f;

CODE SIZE = @AAl
DATA AREA = @@1C
\\\\ Figure 1¢-7. Listing of Factorial in Float Binary.

(All Information Contained Herein is Proprietary to Digital Research.)

112

A>b:ffact

factorial(@)= 1.000000E+08
factorial(l)= 1.000000E+00
factorial(2)= 2.000000E+00
factorial(3)= P.600000E+01
factorial(4)= 2.400000E+01
factorial(5)= 1.200000E+02
factorial(6)= 0@.720000E+03
factorial(7)= @.504000E+04
factorial(8)= 4.032000E+04
factorial(9)= 3.628799E+@5
factorial(10)= 3.628799E+06
factorial(11)= 3.991679E+87
factorial(12)= 4.790015E+¢8
factorial(13)= 0.622702E+10
factorial(14 Y= @.871782E+11
factorial(15)= 1.307674E+12
factorial(16)= 2.092278E+13
factorial(17)= 3.556874E+14
facgorial(18)= @.640237E+16
factorial(19)= 1.216450E+17
factorial(28)= 2.432901E+18
factorial(21)= 0.510909E+20
factorial(22)= 1.124000E+21
factorial(23)= 2.5852@1E+22
factorial(24)= @.620448E+24
factorial(25)= 1.551121E+25
factorial(26)= 4.032914E+26
factorial(27)= 1.088887E+28
.factorial(28)= 3.048883E+29
factorial(29)= 0.884176E+31
factorial(30)= 2.652528E+32
factorial(31)= ©0.822283E+34
factorial(32)= 2.631308E+35
"factorial(33)= 0.868331E+37
factorial(34)=

OVERFLOW (1)
Traceback: 9846 13BF 13E6 0919B # 8608 @gB15 FB51 9141
End of Execution

Figure 1#-8. Output from the FFACT Program. gl///

(A1l Information Contained Herein is Proprietary to Digital Research.)

113

approximately 7-1/2 equivalent decimal digits. The floating point
binary version terminates when the OVERFLOW condition is signalled by
PL/I1-80, produced by an exponent value which cannot be maintained in
the floating point representation.

1d.2. Evaluation of the Ackermann Function.

The PL/I-80 runtime system maintains a memory “stack" where
subroutine return addresses and some temporary results are maintained.
Under normal circumstances, the memory area allocated to hold the
stack is sufficiently large for non-recursive procedure processing, as
well as simple recursive procedure evaluation. The program of this
section, however, illustrates a more comprehensive example of
recursion using a function which is derived from Number Theory, called
the Ackermann function. The Ackermann function, denoted by A(m,n),
has the recursive definition:

A(m,n) = ,

@ then n + 1, otherwise
g then A(m-1,1), otherwise
A(m-1,A(m,n=~1))

ifm
if n

won

For our puposes, the Ackermann function illustrates multiple recursion
using a stack depth which can exceed the default value provided by
PL/I1-84. The program, shown in Figure 10-9, implements the Ackermann
function by reading two values for the maximum m and n for which the
function 1is to be evaluated. The program interaction is given in
Figure 10¢-18. It should be noted in passing that although the
Ackermann function returns a fixed binary value, the DECIMAL built-in
function is used to control the PUT LIST output conversion field size
on lines 8, 19, and 12.

The important point in this example is that the STACK option is
used on 1line 2 to increase the size of the memory area allocated for
the runtime stack. The STACK option is only wvalid with the MAIN
option and, in this case, increases the stack size from its default
value of 512 bytes up to 2000 bytes. The value of the STACK option
must be determined empirically, since the depth of recursion cannot
generally be computed by the compiler. The message

Free Space Overwrite
however, occurs when the stack overflows during recursion, accompanied

by program termination, as an indication that the allocated stack size
is too small.

(All Information Contained Herein is Proprietary to Digital Research.)

114

o

PL/I-80 V1.0, COMPILATION OF: ACK

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-8¢ V1.8, COMPILATION OF: ACK

1l a 8000 ack:
2 a 0006
3 ¢c 00@6
4 c A0B@6
5 ¢ 8086
6 c 0622
7 c 80846
8 c 00895
9 c @895
10 ¢ QOAE
11 ¢ @@DA
12 ¢ QOF3
13 ¢ 8126
14 ¢ #8126
15 c 9126
16 ¢ 9129
17 ¢ 8129
18 ¢ 8129
19 e 0129
20 e #4153
21 e @15C
22 e 0164
23 e §16D
24 e @G17E
25 ¢ @19F
26 a @B19F

CODE SIZE = Q19F
=0

Figure

procedure options(main,stack (2000));
dcl
(m,maxm,n,maxn) fixed;
put skip list('Type max m,n: ');
get list(maxm,maxn);
put skip
list(' ', (decimal(n,4) do n=0 to maxn));
dom= 0 to maxm;
put skip list(decimal(m,4),':');
don = @ to maxn;
put list(decimal(ackermann(m,n),4));
end;
end;
stop;

ackermann:
procedure(m,n) returns(fixed) recursive;
dcl (m,n) fixed;
if m =606 then
return{(n+l);
if n =0 then
return(ackermann(m-1,1));
return(ackermann(m-1,ackermann(m,n-1)));
end ackermann;
end ack;

1-9. Listing of the Ackermann Program. ‘///

(All Information Contained Herein is Proprietary to Digital Research.)

115

A>B:ACK

Type max m,n: 4,6

@ 1 2 3 4 5 6
g : 1 2 3 4 5 6 7
1l 2 3 4 5 6 7 8
2 3 5 7 9 11 13 15
3 : 5 13 29 61 125 253 509
4 : 13

Figure 19-18. Interaction with the Ackermann Program.

- J

(All Information Contained Herein is Proprietary to Digital Research.)

116

13.3. An Arithmetic Expression Evaluator.

One of the day-to-day practical uses of recursion takes place in
the translation and execution of programming languages., This wuse |is
primarily due to the fact that languages are most often recursively
defined. 1In block-structured languages like PL/I-88, for example, DO
groups, and BEGIN and PROCEDURE blocks can be self-embedded, so the

resulting structure is easily 'processed using recursion, Another
example, which 1is the subject of this section, occurs in the
evaluation of arithmetic expressions. One simple form of an

expression can be recursively defined as follows.

An expression is a simple number, or
an expression is a pair of expressions
separated by a +, -, *, or /, and
enclosed in parentheses.

Using this definition, the number 3.6 is an expression since it is a
s imple number. Further,

(3.6 + 6.4)

is also an expression since it consists of a pair of expressions which
are both simple numbers, separated by a +, and enclosed in
parentheses. As a result,

(1.2 %* (3.6 + 6.4))

is a valid expression because it also contains two valid expressions:
1.2 and (3.6+6.4), separated by a *, and enclosed in parentheses. . The
sequences

3.6 + 6.4
(1.2 + 3.6 + 6.4)

are not valid expressions since the €first 1is not enclosed 1in
parentheses, while the second 1is not a pair of expressions in
parentheses. The definition of an expression as given above |is
somewhat restrictive, but once we have the foundation established it
is easily expanded to include expressions of the complexity of, say,
PL/I1-840.

An expression evaluation program is shown in Figure 1@-11. The
principal processing takes place in this Figure between lines 2@ and
24 where an expression is read from the console and the evaluated
result is typed back to the operator. The console interaction is
shown in Figure 1¢-12, where the operator has entered several properly
and improperly formed expressions.

The heart of the expression analyzer is the recursive procedure
EXP which processes input expressions according to the recursive
definition given above., The EXP procedure decomposes the expression
piece-by-piece as the recursion proceeds. The GNT (Get Next Token)
procedure reads the next element, or "token," in the input line, which
should be a left or right parenthesis, a number, or one of the

(All Information Contained Herein is Proprietary to Digital Research.)

117

PL/I-80 V1.0, COMPILATION OF: EXPR1

L: List Source Program

NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/1-88 V1.4, COMPILATION OF: EXPR1

1l a
2 a 0@@6
3 ¢ 0p06
4 c @@@Dp
5 ¢ 996D
6 ¢ 960D
7 ¢ 988D
8 ¢ @@eD
9 d 9615
190 d ¢91B
11 ¢ 001B
12 c 9@22
13 4 9@22
14 e ¢g@25
15 e @04A
16 e 405B
17 d @65E
18 d @@5E
19 ¢ G@5E
20 c 8@65
21 ¢ 4065
22 ¢ @981
23 ¢ go8A
24 c 9@B4
25 c #PB4
26 ¢ P@B4
27 ¢ 20B4
28 e 00B4
29 c @4CF

0000 expression:

proc options(main);
dcl
sysin file,
value float,
token char(l@) var;

on endfile(sysin)
stop;

on error (1)
/* conversion or signal */
begin;
put skip list('Invalid Input at ',token);
get skip;
go to restart;
end;

restart:
do while('l'b);
put skip(3) list('Type expression: ');
value = exp();
put skip list('vValue is:',value);
end;

gnt:
proc;
get list(token);
end gnt;

_/

Figure 1¢-11la.

Listing of an Expression Evaluator Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

118

36 c B6CF

31 ¢ B@CF exp:

32 ¢ @@CF proc returns(float binary) recursive;
33 e @@CF dcl x float binary;

34 e ¢9D8 call gnt();

35 e @G@DB if token = ' (' then

36 e @GAE9 do;

37 e @OE9 X = expl();

38 e @OF2 call gnt();

39 e QO@FS if token = '+' then
40 e @103 X = X + exp();
41 e 9115 else

42 e @115 if token = '=' then
43 e 9123 X = X = exp();
44 e @135 else

45 e @135 if token = '*' then
46 e @143 X = X * exp();
47 e @155 else

48 e @155 if token = '/' then
49 e #163 X = x / exp();
50 e 9175 else

51 e 6175 signal error(l);

52 e 917C call gnt();

53 e @17F if token "= '")' then
54 e 18D signal error(l);
55 e @197 end;

56 e 8197 else

57 e 8197 X = token;

58 e @126 return(x);

59 c #1B2 end exp;

60 a 01B2 end expression;

CODE SIZE = @1B2
DATA AREA = 0046

>\\\» Figure 10-11b. Listing of an Expression Evaluator Part B, 4////

(All Information Contained Herein is Proprietary to Digital Research.)

119

-

A>b:expr1
Type expression: (4 + 5.2)
Value is: 0.920000E+01

Type expression: 4.5e-1

Value is: 4.499999E-01

Type expression: (4 & 5)

Invalid Input at &

Type expression: ((3+ 4) - (19 / 8))

Value is: @9.575000FE+01

Type expression: (3 * 4)

Value is: 1.200000E+81

Type expression: ~Z

End of Execution

Figure 16-12. Interaction with the Expression Evaluator. #‘///

(All Information Contained Herein is Proprietary to Digital Research.)

120

arithmetic operators. Since GNT uses a GET LIST, each of these tokens
must be separated by a blank or end of line., EXP begins by calling
GNT on line 34. GNT, .in turn, places the next input token 1into the
CHAR(19) wvariable called token., If the first item read is a number,
then the series of tests within EXP sends control to line 57 where the
character value of token is automatically converted to a floating
point value through the assignment to x. This converted value is
returned from EXP back to line 22, where it is stored into "value" and

subsequently written as the result of the expression, If the
expression is non-trivial, then EXP scans the leading left parenthesis
on line 35, and enters the DO group on 1line 36. The first

subexpression is immediately evaluated, no matter how complicated, and
stored into the variable x in line 37. The token is then checked for
an occurrence of +, -, *, or /. Suppose, for example, that the *
operator is encountered on 1line 45, The statement on 1line 46
recursively invokes the EXP procedure to evaluate the right side of
the expression and, upon return, multiplies this result by the value
of the 1left side which was previously computed. The balancing right
parenthesis is checked starting on line 52, and the resulting product
is returned as the value of EXP on line 58,

Exceptional conditions are handled in three places. An end of
file condition on the input file is intercepted by the ON-unit at line
8, where a STOP statement is executed. A second point where an error
can take place is during conversion from character to floating point
at the assignment on line 57. 1If this occurs, the ON-unit starting at
line 11 receives control, The token in error is displayed and the
data is cleared to the end of 1line wusing a GET SKIP statement.
Program control then recommences at the "restart" label where the
operator is prompted for another input expression.

An exceptional condition is generated by the program itself when
an invalid operator or unbalanced expression is encountered. If the
operator is not a +, -, *, or /, then statement 51 is executed and the
ON-unit at 1line 11 is signalled, resulting in an error report and
transfer to “restart," where the current recursion 1levels are
discarded and the program begins again. Similarly, a missing right
parenthesis on 1line 53 triggers the error(l) ON-unit to report the
error and restart the program.

The only major problem here is that the 1input 1line requires
spaces between tokens, which 1is somewhat inconvenient. Recall,
however, that we earlier tested a procedure called GNT (see Section
8.2) which reads console 1input 1lines and decomposes the line into
numeric and single character tokens, without the necessity for
intervening blanks. Figure 10-13 shows the expression processor of
the previous figures with the GNT procedure replaced by the free-field
scanner. The error recovery has also changed, since it 1is necessary
on line 2@ to discard the remainder of the current input when
restarting the program. Figure 10-14 shows the console interaction
with this improved expression analyzer.

There is plenty of room for expansion 1in this particular
example., First, you could add more operators to expand upon the basic
arithmetic functions. You might want to add operator precedence, and

(All Information Contained Herein is Proprietary to Digital Research.)

121

do away with the requirement for explicit parentheses. Beyond that,
you can add variable names and assignment statements and, who knows,
with a bit of work you may turn the program into a Basic interpreter!

(All Information Contained Herein is Proprietary to Digital Research.)

122

~

_

PL/I-84 V1.0,

1l a
2 a 0006
3 a 00d6
4 c P0@6
5 c 906D
6 ¢ 69@D
7 ¢ @896D
8 ¢ 4@8@D
9 c 040D
13 ¢ 960D
11 ¢ 498@D
12 ¢ 90@D
13 ¢ #40@@D
14 4 40815
15 d 901B
16 ¢ 94d1B
17 ¢ 9822
18 4 9822
19 e 9425
20 e P@4A
21 e 90654
22 4 8857
23 4 8857
24 c 9857
25 ¢ @@SE
26 c BOSE
27 c QO@S5SE
28 ¢ QO07A
29 c 0083
30 ¢ OOAE
31 ¢ @OAE
32 ¢ OOAE
33 ¢ QOAE
34 e OOAE
35 e QOAE
36 e QOAE
37 e QOAE
38 e 00C8
.39 e 00C8
40 e 00D6
41 e QOF3
42 e Pl@8
43 e @111
44 e @119

COMPILATION OF: EXPR2

000AQ expression:

proc options(main);

sreplace
true by '1l'b;

dcl
sysin file,
value float,
(token char(19), line char(80)) varying
static initial('"');

on endfile(sysin)
stop;

on error(l)
/* conversion or signal */

begin;
put skip list('Invalid Input at ',token);
token = ''; line = '';
go to restart;
end;
restart:

do while('l'Db);
put skip(3) list('Type expression: ');
value = exp();

put edit('vValue is: ',value) (skip,a,f(18,4));

end;

gnt:
proc;
dcl
i fixed;

line = substr(line,length(token)+l);
do while(true);
if line = '' then
get edit(line) (a);
i = verify(line,* ');
if i =0 then
line = '';
else

Figure 1@8-13a. An Expanded Expression Evaluator Part A.

/

(All Information Contained Herein is Proprietary to Digital Research.).

123

o

45 e 9119
46 e @119
47 e @gl2F
48 e (144
49 e P14D
50 e @15B
51 e 9158
52 e #164
53 e 417A
54 e 917A
55 e 9193
56 e, 9197
57 e 9197
58 ¢ 4197
59 ¢ 8197
60 c 6197
61 c 9197
62 e 9197
63 e 01AQ
64 e Q1A3
65 e @g1B1
66 e @1B1
67 e @g1BA
68 e 91BD
69 e 91CB
78 e @1DD
71 e @1DD
72 e PLlEB
73 e G1FD
74 e @1FD
75 e 0298
76 e 921D
77 e 921D
78 e 922B
79 e 623D
80 e 023D
8l e 9244
82 e 9247
83 e 9255
84 e P25F
85 e @25F
86 e §25F
87 e P26E
88 c 927A
89 ¢ 927a
90 a 027A

CODE SIZE = @¢27a
= @0B5

Figure 18-13b,

do;

line = substr(line,i);
i = verify(line,'0123456789."');
if i =10 then

token =
else

line;

if i =1 then

token =
else
token =
return;
end;
end;
end gnt;

exp:

substr(line,1,1);

substr(line,l,i-1);

proc returns(float binary) recursive;

dcl x float binary;
call gnt{();

if token = ' (' then

do;

X = exp();

call gnt();

if token = '+' then
X = X + exp();

else

if token = '-' then
X = x - exp();

else

if token = '*' then
X = x * exp();

else

if token = '/' then

X = x / exp();

else

signal error(l);

call gnt();
if token "= ')'

then

signal error(l);

end;
else

X = token;
return(x);
end exp;

end expression;

An Expanded Expression Evaluator Part B.

_/

124

(All Information Contained Herein is Proprietary to Digital Research.)

_

A>b:expr2

Type expression:

Value is:

Type expression:

(2 * 14.5)

29.0000

((2*3) / (4.3-1.5))

Value is: 2.1429

Type expression:

Invalid Input at

Type expression:
) -5)

zot

VA

((2*3

Value is: 1.0000

Type expression:

Invalid Input at

Type expression:

End of Execution

Figure 10-14. Expanded Evaluator Console Interaction.

(2 nb5)

n

"z

_/

(All Information Contained Herein is Proprietary to Digital Research.)

125

11. SEPARATE COMPILATION AND LINKAGE,

All of the programs presented thusfar are constructed as
indivisible wunits, where many contain embedded local procedures. As
mentioned previously, it is often useful to break larger programs into
distinct modules which are subsequently linked with one another and
with the PL/I-80 subroutine 1library. There are two reasons for
separately compiling and linking programs in this manner. First,
large programs take 1longer to compile and, in fact, may overrun the
memory size available for the symbol table., Smaller segments can be
independently developed, integrated, and tested, thus requiring less
overall compilation time for the entire project. Second, you will
soon identify particular subroutines which you find useful for your
own application programming. You can build your own 1library of
subroutines and selectively link them into your programs, as required.
This section provides the basic information required to 1link program
and data segments, and provides a complete example of separate
compilation and 1linkage.

11.1. Data and Program Declarations.

Data areas can be shared in PL/I-80 by including the EXTERNAL
attribute in the item's declaration. For example, the declaration

dcl x (19) fixed binary external;

defines a variable named x occupying 18 fixed binary 1locations (20
contiguous bytes), which is accessible by any other module that uses
this same declaration. Similarly,

dcl
1l s,
2 y(1l9) bit(8),
2 z char(9) var;

defines a 20 byte data area named s which 1is accessible by other
modules. There are a few basic rules which apply to the declaration
of external data:

(a) An external data item automatically re-
ceives the STATIC attribute.

(b) EXTERNAL data items are accessible in
any block in which they are declared,
thus overriding scope rules for internal
data.

(c) EXTERNAL data items must be unique in
the first six (6) characters since the
linkage editing format requires trun-
cation from the seventh character on.

(All Information Contained Herein is Proprietary to Digital Research.)

126

(d) All EXTERNAL data areas must be declared
with the same length in all modules in
which they appear.

(e) Avoid the use of "?" symbols in variable
names, since this character is used as
a prefix on PL/I-80 library names.

(£) One module, at most, can initialize an
EXTERNAL data item referenced by several
modul es.

Similar to the label data described in Section 6, entry constants and
entry variables are data items which identify procedure names and

descr ibe their parameter values. Entry constants correspond to
procedures defined within the ©program (internal procedures) or at
link-time (external procedures). Entry variables take on entry

constant values during program execution, using either a direct
assignment statement or an actual to formal parameter assignment
implicit in a subroutine call. A procedure may be invoked through a
call to an entry constant, or indirectly by ~calling a procedure
constant value held by an entry variable, Similar to label variables,
entry variables may be subscripted. The program listing shown in
Figure 11-1 provides examples of entry constants and entry variables.
This particular program contains four entry constants: the main
program, labelled "call," the external procedure "g" declared on 1line
5, the "sin" function which is a part of the PL/I library, and the
internal function "h" beginning on line 20. One entry variable |is
declared on 1line 4, <called "f" which contains three elements. The
individual subscript elements are initialized, starting on line 9, to
the constants sin, g, and h. The DO-group prompts the console for a
value to send to each function and, in the middle of 1line 16, each
function is called exactly one time with the invocation

f (i) (x)

where the first parenthesis pair defines the subscript, and the second
encloses the list of actual arguments. It should be noted that the
declaration of entry constants and entry variables is similar to file
constants and file variables: all formal parameters declared as type
ENTRY are automatically assumed to be entry variables. 1In all other
cases, an entry is constant unless it is declared with the VARIABLE
keyword. Rules (b), (c), and (e) above apply to external procedure
declarations. In addition, you must be careful to declare each formal
parameter to exactly match the actual procedure declaration, and
ensure that the RETURNS attribute exactly matches the form returned
for function subroutines.

(A1l Information Contained Herein is Proprietary to Digital Research.)

127

PL/I-86 V1.6, COMPILATION OF: CALL

L: List Source Program
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-8¢ V1.4, COMPILATION OF: CALL

1l a 9000 call:
2 a 0@ge6 proc options(main);
3 c goge6 dcl
4 c 0006 f (3) entry (float) returns (float) variable,
5 c 9906 g entry (float) returns (float);
6 c 006 dcl
7 ¢ 0006 i fixed, x float;
8 c 0906
9 c 9a06 f(l) = sin;
19 c g@acC £(2) = g;
11 c @915 £(3) = h;
12 c PO1E
13 c YO1E do i =1 to 3;
14 c 0030 put skip list('Type x ');
15 ¢ @@4cC get list(x);
16 ¢ ¥@67 put list('£(',i,")=",£(1i) (x));
17 ¢ @@BD end;
18 c @#4BD stop;
19 ¢ U@Co
29 c d@cCo h:
21 ¢ 6@Co proc(x) returns (float);
22 e UBCH dcl x float;
23 e g4cC7 return (2*x + 1);
24 ¢ 0@DB end h;
25 a P@DB end call;
CODE SIZE = @¢DB
DATA AREA = @923

\\\\‘ Figure 11-1. Use of ENTRY Variables and Constants. _‘////

(All Information Contained Herein is Proprietary to Digital Research.)

128

11.2. An Example of Separate Compilation.

This section contains a complete example of separate compilation’
and linkage editing. 1In particular, the programs of Figures 11-2 and
11-3 together form a module that interacts with the console to produce
solutions to systems of simultaneous equations. Consider the
following system of three equations in three unknowns:

a - b + ¢ = 2
a + b - ¢ = 9]
2a - b =]

The values a = 1, b =2, and ¢ = 3 yield a solution to this system of
equations since

nnn
=

The listing shown in Figure 11-2 interacts with the console to
read the coefficients and the solution vectors for the systems of
equations, while the listing of Fiqgure 11-3 shows the compilation of
the separate subroutine “invert" which performs the matrix inversion
that is used to solve the system of equations. The essential
difference between these two programs is found in the procedure
heading: the "inv" procedure is the main program, as defined by the
OPTIONS(MAIN), while the "invert" program is a subroutine which is
called by the main program. Referring to Figure 11-2, the declaration
starting on line 16 defines the external entry constant "invert" which
is called from the main program on line 46, The parameters for the
invert subroutine are declared on line 18 as a matrix of "maxrow" by
"maxcol" floating point numbers, where maxrow and maxcol are actually
the 1literal constants given on lines 7 and 8. The invert subroutine
is defined with two additional fixed(6) parameters, but does not
return a value.

The invert procedure, shown in Figure 11-3, has three formal
parameters, called a, r, and c, as defined on line 2 and declared in
lines 7 and 8. It should be noted that the actual literal values of
maxrow and maxcol, corresponding to the 1largest possible row and
column value, are taken from an include file, as indicated by the "“+"
symbols following the line number at the left of both listings.

Following compilation of these two programs, the linking step is
invoked by typing

link invert.com=invertl,invert2
which first combines these two modules, selects the necessary
subroutines from the PL/I-8@ library, and stores the resulting machine

code into the "invert.com” file. Execution is started as shown in
Figure 11-4.

In this sample interaction, the "identity" matrix 1is first

(All Information Contained Herein is Proprietary to Digital Research.)

129

entered. in order to test the basic operations. The inverse matrix
produced for this input value is also the identity matrix., The system
of equations shown above is then entered, along with two solution
vectors. The output values for this system are shown under
“Solutions:" and match the values shown above. The second set of
solutions corresponds to the second solution vector input., An invalid
input matrix size is then tested, followed by termination of the
program as sensed by a zero row size.

This completes the examples of this applications guide.

Additional information can be obtained from the accompanying PL/I-80
manuals, as well as the LINK-8@ manual.

(All Information Contained Herein is Proprietary to Digital Research.)

130

\

PL/I-80 V1.0, COMPILATION OF: INVERTI1

L: List Source Program

g$include 'matsize.lib';
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF: INVERTIL

1l a 000@F inv:
2 a ¢g0g6 procedure options(main);
3 ¢c 0006 $replace
4 c 0006 true by '1l'b,
5 c 9036 false by '0'b;
6+c 0006 $replace
7+c 0006 maxrow by 26,
8+c 0006 maxcol by 46;
9 c goae dcl
10 c 0006 mat (maxrow,maxcol) float (24);
11 c 0006 dcl
12 c 0006 (i,j,n,m) fixed(6);
13 c 00406 dcl
14 c 0d@6 var char(26) static initial
15 c 0066 (*abcdefghijklmnopqgrstuvwxyz');
16 c 0006 dcl
17 c 0006 invert entry
18 c 2006 ((maxrow ,maxcol) float(24), fixed(6), fixed(6));
19 c 0006
20 c 6006 put list('Solution of Simultaneous Equations');
21 c 941D do while(true);
22 ¢ 601D put skip(2) list('Type rows, columns: ');
23 ¢ 9039 get list(n);
24 c 0052 if n =0 then
25 ¢ 0859 stop;

Figure 11-2a.

Listing of the Matrix Inversion Main Program. 41,//

(All Information Contained Herein is Proprietary to Digital Research.)

131

61
62

@3AF end;
@3AF end inv;

26 c @P5cC
27 ¢ @@5C get list(m);
28 ¢ 0075 if n > maxrow ! m > maxcol then
29 c 9087 put skip list('Matrix is Too Large');
30 ¢ UOA6 else
31 ¢ 90A6 do;
32 ¢ ddae6 put skip list('Type Matrix of Coefficients');
33 c @ggc2 put skip;
34 c 00D3 do i =1 to n;
35 ¢ OOES8 put list('Row',i,':");
36 ¢ 9119 get list((mat(i,j) do j =1 to n));
37 ¢ 9173 end;
38 c 9173 :
39 ¢ 0173 put skip list('Type Solution Vectors');
49 c @18F put skip;
41 c 01Aa0 do j =n+ 1 to m;
42 c @1B7 put list('Variable',substr(var,j-n,l),':');
43 c @1F3 get list((mat(i,j) do i =1 to n));
44 ¢ Q24D end;
45 ¢ 924D
46 c 024D call invert(mat,n,m);
47 c 0253 put skip(2) list('Solutions:');
48 ¢ 026F do i =1 to n;
49 c 9284 put skip list(substr(var,i,l),'=");
50 ¢ #2B4 put edit((mat(i,j) do j =1 to m-n))
51 ¢ @314 (£(8,2));
52 c 9314 end;
53 c #314
54 ¢ 0314 put skip(2) list('Inverse Matrix is');
55 c @330 do i1 =1 to n;
56 c @345 put skip edit
57 c #3AF (mat(i,j) do j = m-n+l to m))
58 c @3AF (x(3),6£(8,2),skip);
59 ¢ @3AF end;
60 c O3AF end;
o]
a

CODE SIZE = @3AF
DATA AREA = 1120

\\\\> Figure 11-2b. Listing of the Matrix Inversion Main Program. 4‘///

(All Information Contained Herein is Proprietary to Digital Research.)

132

A

PL/1I-80 V1.0, COMPILATION OF:

L: List Source Program

$include ‘'matsize.lib’;
NO ERROR(S) IN PASS 1

NO ERROR(S) IN PASS 2

PL/I-80 V1.0, COMPILATION OF:

INVERT2

INVERT?2

l a 0080 invert:
2 a 0009 proc {(a,r,c);
3+c 0000 $replace
4+c 900D maxrow by 26,
5+c 600D maxcol by 40;
6 c 900D dcl
7 ¢ 400D (d, a(maxrow,maxcol)) float (24),
8 c 40D (i,j,k,1,r,c) fixed (6);
9 ¢ 000D doi =1 to r;
19 c 9623 d = a(i,l);
11 c 0042 do j =1 toc - 1;
12 c 8859 a(i,j) = a(i,j+l)/4;
13 ¢c 08B2 end;
14 c @0B2 a(i,c) =1/4d;
15 ¢ URE4 do k =1 to r;
16 c B@QFA if k "= 1 then
17 c #1664 do;
18 c #9104 d = a(k,l);
19 ¢ 0123 dol =1¢toc - 1;
20 c 013Aa a(k,1l) = a(k,1+1) - a(i,l) * 4;
21 c ¥1B9 end;
22 ¢ @1R9 a(k,c) = - a(i,c) * d;
23 c @21cC end;
24 c @21cC end;
25 c @g21cC end;
26 a #21C end invert;
CODE SIZE = @21C
DATA AREA = (@16

Figure 11-3.

Listing of the Matrix Inversion Subroutine.

/

(All Information Contained Herein is Proprietary to Digital Research.)

133

N

A>b:invert
Solution of Simultaneous Equations

Type rows, columns: 3,3

Type Matrix of Coefficients

Row 1 :1 @]
Row 2 :0 1 @
Row 3 :0] 1

Type Solution Vectors

Solutions:
a
b

C

Inverse Matrix is
l1.00 g.00 0.00
g.00 1.00 3.00
2.00 g.00 1.00

Type rows, columns: 3,5

Type Matrix of Coefficients

Row 1 :1 -1 1
Row 2 :1 1 -1
Row 3 :2 -1 a
Type Solution Vectors
Variable a :2] 2
Variable b :3.5 1 ~1
Solutions:

a = 1.00 2.25

b = 2.00 5.50

c = 3.00 6.75

Inverse Matrix 1is
2.50 3.58 3.00
1.00 1.00 -1.00
1.50 #.50 -1.00
Type rows, columns: 41,0
Matrix is Too Large
Type rows, columns: @

End of Execution

Figure 11-4. 1Interaction with the Matrix Inversion Program. _‘///

(A1l Information Contained Herein is Proprietary to Digital Research.)

134

12. COMMERCIAL PROCESSING USING PL/I-80.

The purpose of this section is to familiarize vyou with some
techniques used in PL/I-80 1in processing commercial data. In
particular, the various decimal arithmetic overations are described in
some detail. Conversion between Fixed Decimal and Flcating Point
Binary 1is examined, including the use of the ftc (float to character)
library function. The discussion also includes examoles of vpicture
formatted output, along with a presentation of precision and scale
evaluation when using the four basic arithmetic functions with decimal
operands. Four programs are presented which typify the use of decimal
operations in actual avvlications.

12.1. A Comparison of Decimal and Binary Overations.

We have been taught from childhood to perform arithmetic
operations using base ten arithmetic where the permissible digits
range from 0 through 9. Further, aoplication languages such as Basic,
Fortran, Cobol, and PL/I allow us to write programs which process base
ten constants and data items in simple and readable forms.
Internally, however, computers generally perform the arithmetic
operations using either binary or decimal numbers. Binary numbers are
more "natural" for internal computer arithmetic since the 1°s and 0°s
can be directly processed by the on-off electronic switches found in
arithmetic processors. Because our programs generally process decimal
values, it becomes necessary to convert into a binary form on input
and back to a decimal form on output. As we shall see below, this
conversion can introduce truncation errors which are unacceotable in
commercial processing. Thus, decimal arithmetic is often required in
order to avoid the propagation of errors throughout computations.

In most languages, the wvprogrammer has no control over the
internal format used for numeric vorocessing. In fact, two of the most
pooular Basic interpreters for microprocessors differ primarily in the
internal number formats. One uses floating point binary, while the
other performs calculations using decimal arithmetic. Pascal language
translators generally use floating and fixed point binary formats with
implementation-defined precision, while Fortran alwavs performs
arithmetic using floating or fixed point binary. Cobol, on the other
hand, was designed for use 1in commercial apvplications where exact
dollars and cents must be maintained throughout computations, and thus
data items are processed using decimal arithmetic.

PL/I-80 gives the programmer the choice between representations
so that each program can be tailored to the exact needs of the
particular application. Fixed Decimal data items are used in PL/I-80
to perform commercial functions, while Float Binary items are used for
scientific orocessing where computation spveed is the most important
factor. The two programs shown below 1illustrate the essential
difference between the two computational forms:

(All Information Contained Herein is Provrietary to Digital Research.)

135

dec_comp:

proc options(main);
dcl
i fixed,
t decimal(7,2);
t = 0;
do i =1 to 10000;
t =t + 3.10;
end;
put edit(t) (£(10,2));
end decimal_comp;

bin_comp:

proc options(main);
dcl
i fixed,
t float(24);
t = 0;
do i =1 to 10000;
t =t + 3.10;
end:
put edit(t) (£(10,2));
end bin_comp;

The two programs perform the simple function of summing the value 3.10
a total of 10,000 times. The only difference between these programs
is that "dec_comp" computes the result using a Fixed Decimal variable,
while. "bin_comp" performs the computation using Float Binary.
Dec_comp produces the correct result 31000.00, while bin_comp oroduces
the approximation 30997.30. The difference is due to the inherent
truncation which occurs when certain decimal constants, such as 3.10,
are converted to their binary approximations. Since no conversion
occurs when Fixed Decimal variables are used, dec_comp produces an
exact resulc.

These two programs can be considered simplifications of a more
general situation: supvose Chase~Manhattan Bank has vprocessed 10,000
deposits of $3.10 during a particular day. Using a program based upon
Floating Binary, there would be an extra $2.70 unaccounted for at the
end of the day (there have been cases where crooked systems
programmers have been caught redirecting the "excess cash" produced by
such errors into their own accounts!). This is due to the fact that
.10 cannot be revpresented as a finite binary fractional expansion.
That is, 3.10 is actually avpproximated as 3.099999E+00 in Float Binary
form. Each addition propagates a small error into the sum, resulting
in an incorrect total. In scientific applications, the inherent
truncation errors are often insignificant and thus ignored. 1In
commercial applications such inherent errors are unacceotable.

It should be noted that there are situations where decimal
arithmetic also produces truncation errors which can propagate
throughout computations. The expression 1/3, for example, cannot be
represented as a finite decimal fraction, and thus is approximated as

0.3333333 ...

to the maximum possible precision. However, due to our life-long
experience with decimal computations, we exvect such errors to occur
and adjust our programming to account for the situation. In fact, we
know that such errors will only occur when explicit division
operations take place. We expect that 1/10 will be represented
exactly as .10, and not just a close approximation. But herein lies
the difficulty with Float Binary representations: some decimal
constants which can be expressed as finite fractional expansions in
Fixed Decimal cannot be written as finite binary fractions and thus
~are necessarily truncated during conversion to Float Binarv form.

(All Information Contained Herein is '‘Proprietary to Digital Research.)

136

With this introduction, we will now proceed to explain exactly
how Fixed Decimal numbers are represented and manipulated.

12.2. Decimal Computations in PL/I-80.

Fixed Decimal arithmetic can be performed in PL/I-80 wnrograms.
There are both advantages and disadvantages in selecting Fixed Decimal
arithmetic when contrasted to Floating Point formats. First, Fixed
Decimal arithmetic guarantees that there will be no 1loss of
significant digits. That is, all digits are considered significant in
a computation so that multiplication, for example, will not truncate
digits in the least-significant wvositions. Further, Fixed Decimal
arithmetic precludes the necessity for exponent manipulation, and thus
the operations are relatively fast when compared to alternative
decimal arithmetic formats. The disadvantage, however, is that since
all digits are considered significant, the programmer must keep track
of the range of values that arithmetic operands can take on. The
paragraphs which follow provide the necessary background to proverly
program using Fixed Decimal formats.

Decimal variables and constants in PL/I-80 have both "precision"
and "scale." Precision denotes the number of digits in the wvariable
or constant, while scale defines the number of digits 1in the
fractional part. For Fixed Decimal variables and constants, the
precision must not exceed 15 and the scale must not exceed the
precision. The precision and scale of a PL/I-80 variable 1is defined
in the variable”s declaration:

declare x fixed decimal(l10,3);

while the precision and scale of a constant are derived by the
compiler by counting the number of digits in the constant, and the
number of digits following the decimal point. The constant

~-324.76

for example, has precision 5 and scale 2. 1Internally, Fixed Decimal
variables and constants are stored as Binary Coded Decimal (BCD)
pairs, where each BCD digit occupies either the high or low order 4-
bits of each bvte. The most significant BCD digit defines the sign of
the number or constant, where 0 denotes a positive number, and 9
defines a negative number in 10°s complement form, as described below.
Since numbers are always stored into 8-bit byte locations, there may
be an extra "pad" digit at the end of the number to align to an even
byte boundary. The number 83.62, for example, is stored as

where each digit represents a 4-bit "half byte" vposition in the 8-bit
(All Information Contained Herein is Proprietarv to Digital Research.)

137

value. The leading BCD pair is stored lowest in memory.

Negative numbers are stored in 10°s complement form to simplify
arithmetic operations. A 10°s complement number is similar to a 2”s
complement binary representation, except the complement value of the
digit x is 9-x. To derive the 10”°s complement value of a number, form
the complement of each digit (by subtracting the digit from 9), and
add 1 to the final result. Thus, the 10°s complement of -2 is formed
as follows:

9 -2+1=7+1=38

The sign digit is attached to this number, and internally carried as
the single-byte value

- — - — -

Note, for example, that you can add -2 and +3 as follows
98 + 03 = 101

The carry-out beyond the sign digit is ignored, and the correct result
01 is produced through the addition. For this reason, addition and
subtraction in PL/I-80 are equivalent: in the case of subtraction,
the subtrahend is first complemented and the addition operation is

applied. In all cases, numeric values are sign-extended to 15 digits
before arithmetic overations are applied. For convenience of
notation, negative numbers will be shown with a leading "-" sign, with

the assumption that the underlying representation is 10°s complement
form. Thus, the number shown above will be written as

It should be noted that there is no need to explicitly store the
decimal position in memory, since the precision and scale for each
variable and constant 1is known by the compiler. Before each
arithmetic operation, the compiled code causes the necessary alignment
of the operands. 1In later examples, however, a decimal point position
is often shown in order to more easily determine the effect of
alignment. The number -324.76 may be shown, for examole, as

When this value is prevared for arithmetic ©processing, it is first
loaded into an 8-byte stack frame, consisting of 15 decimal digits
with a high-order sign. 1In this case, the -324.76 is shown as

(All Information Contained Herein is Proorietary to Digital Research.)

138

-00000000O0O3247°E

A convenient model for discussing the various arithmetic
operations 1is to visualize a 15-digit mechanical or electronic
calculator with a hand-movable decimal point. At the beginning of
each operation, you must properly 1line-up the overands for the
arithmetic operation and, upon completion of the operation, you must
decide where the resulting decimal point avppears. Actually, the
compiler performs the alignment and accounts for the decimal point
position, but it”s useful for you to imagine what is taking place so
that vyou can avoid overflow or underflow conditions. 1In some cases,
you may wish to force a precision and/or scale change during the
computation using the DECIMAL or DIVIDE built-in functioms. Examples
of such functions are given in the sample programs discussed in the
sections which follow.

First, we”ll examine each of the arithmetic functions in order
to determine the alignment, precision, and scale which occurs in each
case.

12.3. Addition and Subtraction.

As mentioned above, addition and subtraction are functionally
equivalent in PL/I-80, since subtraction is accomplished bv forming
the 10°s complement of the subtrahend and then performing an addition.
Given two numbers x and y with orecision and scale (»,q) and (r,s),
respectively, the addition operation proceeds as follows. First, the
two operands are loaded to the stack and aligned. Alignment takes
place by shifting the operand with the smaller scale to the left until
the decimal positions are the same. Given that the scale of x is
greater than the scale of y, v is shifted g-s positions to the left,
with zero values introduced in the least signficant positions. After
alignment, y has worecision r+(g-s) and scale g. (A Fixed Overflow
condition is signalled if significant digits are shifted into the sign
position during the alignment process.)

In order to provide a specific example, suppose x = 31465.2437
and vy = 9343.412 so that x has precision o = 9 and scale g = 4, while

y has precision r = 7 and scale s = 3, Before alignment, the numbers
appear as

(All Information Contained Herein is Proprietary to Digital Research.)

139

< q=a >

Xx=+000000314652437
y=+000000009 34341 2,
| l<s=3>
| === £=T7 ===>

The value y is aligned with x by shifting g-s = 4-3 = 1 vpositions to
the left, producing

IR T—— p=9 ——=== > |

l< q=4 >|

X =+0000003146252437
v=+00000009 3431412 0|
l< a >

< r+(g-s) = 8 >|

Note that the number of digits in the whole part of x 1is vo-gq, while
the whole part of v contains r-s diagits:

|< p-g=5 >|
314635
9 34 3
| <r-s=4>]|

so the sum must contain p-g=5 digits in the whole part:

Note, however, that sufficiently 1large values could wproduce an
overflow, requiring one extra digit in the whole part:

Thus, the total number of digits in the sum of x and v is the number
of digits in the whole part, (p-q)+1=6, plus the number of digits in
the fraction, given by g, resulting in a precision of
(Pp-q)+l + g = + 1
Given two values x and y of arbitrary precision and scale, we
can use the specific case shown above to derive the general form of
the resulting precision and scale. First, the scale must be the

(All Information Contained Herein is Proorietarv to Digital Research.)

140

greater of g and s, given by
max (q,s)
and thus, the resulting oprecision must have max(gq,s) fractional
digits. Second, the whole part x contains po-g digits, while the whole
part of y contains r-s digits. The result contains the larger of p-g
and r-s digits, plus the fractional digits, along with one overflow
digit, or a total of
max (o-gq,r-s) + max (g,s) + 1

digit positions. Since the precision cannot exceed 15 digits in PL/I-
80, the resulting precision must be

min(15,max (p-q,r-s)+max(qg,s)+1)

digits. Written as a pair, the precision and scale of the resulting
addition or subtraction is

(min(15,max(p-q,r-s)+max(qg,s)+1), max(g,s))

Using the above example,

| <=mmmm D=9 —=—-- > |

l< gq=4 >|
x=+00000031462572437

y=4+00000009343412 0'
< g >
< r+{g-s) = 8 >

the precision (10,4) shown 1in the diagram 1is derived using the
expression

(min(l15,max(9-4,7-3)+max(4,3)+1), max(4,3))
or

(min(15,max(5,4)+4+1), 4) = (min(15,10),4) = (10,4)

12.4. Multivlication.

Evaluation of precision and scale for the result of
multiplication is somewhat simpler than addition and subtraction since

(All Information Contained Herein is Proprietary to Digital Research.)

141

no decimal point alignment is required before the multivlication is
applied. The two operands x and vy with precision and scale (p,q) and
(r,s), respectively, are multiplied digit-by-digit to produce the
result. Similar to simple hand-calculations, the number of decimal
places in the result is the sum of the scale factors q and s. . The
number of digits in the result is the sum of the precisions of the two
operands. To conform to the PL/I standard, however, one additional
digit position 1is included in the final precision. Thus, the
precision and scale of the result of multiplication is given by

(min(15,p+r+l) ,q+s)

Suppose, for example, that x = 924.5 and y = 862.33, vyielding the
precision and scale values (4,1) and (5,2):

X + 0000000000009 245

[}

vy + 0000000O0O0O0S8G6 233

The product of the digits of x and vy are shown below with the
resulting precision and scale:

X*y=4+400000079722408S5

where the precision is computed as
(min(15,4+5+1) ,1+2) = (min(15,10),3) = (10,3)

The Fixed Overflow condition 1is signalled if the product
contains more than fifteen significant digits. 1In the example of the

previous section, x = 31465.2437 and v = 9343.412. The product x*vy
has precision (17,7) with 16 significant digits, resulting in Fixed
Overflow. In this particular case, the DECIMAL function must be

applied to reduce the number of significant digits in either x or v.
The computation could be carried out as

DECIMAL(x,9,3) * vy

which loads the stack with the two wvalues shown below before the
multiplication takes place:

DECIMAL (x,9,3)

[}

+ 000000031465 21433

y +0000000O0C9 343412

The precision and scale of the product is

(All Information Contained Herein is Proprietarvy to Digital Research.)

142

+29399272902911 6|

<= 6 ==>]

Note that the precision computation p+r+l produces the value 16 which
is then reduced to PL/I-80"s maximum 15 digit precision by

min(15,p+r+l) = min(15,16) = 15

Since the precision of computations involving multiplications can grow
rapidly, it is the resvonsibility of the programmer to ensure that the
precisions of the operands involved will not produce overflow. Again,
precision can be explicitly declared with the variables 1involved in
the computation, or the DECIMAL function can be applied to reduce the
precision of a temporary result.

12.5. Division.

The division operation 1is the only one of the four basic
arithmetic overations which may produce truncation errors, as
described in Section 12.1. Thus, each division operation produces a
maximum precision value, consisting of 15 decimal digits, with a
resulting scale which depends upon the scale values of the two
operands. Assume that x and y have precision (p,q) and (r,s), and
that x 1is to be divided by y. The division overation proceeds as
follows. TFirst, x is shifted to the extreme left bv introducing 15-p
zero values on the right, leaving the dividend in the stack as

<m————— D —=——- >|<=-= 15-p -->
|<-= q =-=>|

s - —— . —————— — - — ——— —— ——— o

The decimal point of x is then effectively shifted right by an amount
s to properly align the decimal point in the result, producing the
operands

(All Information Contained Herein is vroprietary to Digital Research.)

143

<== 15-p ==>|
<== 15-p ==>|

T - —p D o - o —— —— — — — ————————— -

The significant digits of x are then continuously divided by the
significant digits of vy until 15 decimal digits are generated.
Referring to the above diagram, note that the number of fractional
digits produced by the division is determined by the olacement of the
adjusted decimal point in x. The field following- the decimal ©point
contains (g-s) plus (15-p) positions, yielding the following precision
and scale for the result of the division

(15, (g-s)+(15-p)) or (15,15-p+q-s)

Suvpose x = 31465.243, and v = 9343.41, vielding oprecision and
scale values of (8,3) and (6,2), resvectively. The value x when
loaded appears as

x=+00000003146H5243

The value of x is then shifted to the extreme left and the value of vy
is loaded, producing the values

<= 8 ————- >|<- 15-8=7 ->|

| <=3=>] I
x=+314652430000000
y=+0000000009 34341
[<2>|

<—=— 6 —==>]

The imaginary decimal points are shifted to the right bv two positions
in order to properly align the decimal point in the result, producing

(All Information Contained Herein is Prowrietarv to Digital Research.)

144

P P— 8 ——mmm N [P, N
1]
+314652430000000

x
1]

<
"

+ 0000000009 3434 lA
<mmm 6 ===>]

The significant digits of x are divided by the six significant digits
of y, and the result is

o I T T p—— -—>|
J<== 1+47=8 -->|
X/y =+000000033676401

In this case, the precision and scale of the result is given by
(15, (15-o+g-s) = (15,15-8+3-2) = (15,8)

The most important consideration in decimal division 1is to
ensure that vyou are generating enough digits in the fractional vart
for the computation you are performing. Fractional digits are
produced in two wavs. First, the zero padding which occurs when the
dividend is aligned vrovides 15-p fractional digits, so that dividend
values with small precision generate more fractional digits. Second,
if g is greater than s, then (g-s) additional fractional digits are
generated as shown above. If, on the other hand, the dividend
contains fewer fractional digits than the divisor then g is less than
s, and (s-q) fractional digits are consumed. The simple case of a = s
occurs duite often. In this wparticular situation, the number of
fractional digits depends entirelv upon the precision of the divisor,
and results in 15-p fractional digits.

You may also wish to truncate or extend the result with zeroes
using the DIVIDE built-in function during a particular computation
(see the PL/I-80 Language Manual). The form is

DIVIDE (X,y,P,q)

where p and q are literal constants, can appear as an expression or
subexpression in an arithmetic computation, and has the same effect as
the statement

DECIMAL (x/Y,v,q)

As above, the value x is divided by y, but the precision and scale
values are forced (p,q). Note that the computation is carried out as
described above, and the resulting value 1is then shifted by the
appropriate number of digits in order to obtain the desired vrecision
and scale. ‘

(All Information Contained Herein is Proprietary to Digital Research.)
145

12.6. Conversion Between Fixed Decimal and Float Binary.

It is often useful to convert Fixed Decimal values to and from a

Float Binary representation. In PL/I-80, this conversion |is
accomplished by first converting to character format, then to either
Fixed Decimal or Float Binary. Although conversion from Fixed

Decimal, then to Character, and finally to Float Binary 1is orovided
directly in the language, a special library function, call "ftec," is
provided for conversion from Float Binary to Character format. This
particular function is useful in other avplications, and is described
fully in this section.

Consider the following program as an example of conversion
between data formats:

conv:
proc options(main);
dcl
ftc entry (float)
returns (char(l17) wvar);
dcl
d fixed decimal(8,2),
f float binary;
d = -123456.78;
f = char(c);
f = 0.314159265e1;
d = ftc(f);
end conv;

In this example, the Fixed Decimal value 4 is first 1initialized to
123456.78. Next, the CHAR built-in function is apvlied to the Fixed
Decimal value to produce a character string constant

“b-123456.78"

where "b" is a blank character. (Recall from the PL/I-80 Language
Manual that conversion from Fixed Decimal to character vroduces a
string of length p+3, consisting of leading blanks, a sign position,
and digits of the number itself.) The store operation following the
character conversion effectively converts from Fixed Decimal to Float
Binary with possible truncation errors due to conversion to binary, as
discussed vpreviously. Next, the value of Pi is stored into the Float
Binary value f. Normally, an assignment from £ into d causes
truncation of the fractional part, since the PL/I standard first
requires conversion to Fixed Binary. Instead, the ftc function Iis
applied to f to produce the character string variable of length 17:

“b3.14159200000000°

where the blank character, represented by b, is inserted if the number
is positive, and "-" is included if the value 1is negative. The
subsequent store overation into d produces a truncated value of 3.14,
due to d”s declared scale value of two decimal places. It should bhe
noted that Float Binary representation allows apvroximatelvy 7-1/2
significant decimal digits, and thus truncation errors may occur as

(All Information Contained Herein is Proorietarv to Digital Research.)

146

the conversions take place.

Additional examples of conversion between Fixed Decimal and
Float Binary are given in the programs described below.

12.7. A Simple Loan Payment Schedule,

The first example of commercial processing is found 1in Figure
12-1. This program computes a loan payment schedule using three input
values corresponding to the loan principal (P), the yearly interest
rate (i), and monthly payment (PMT). Each month, the remaining
principal is computed as

P+1i*pP

and is then reduced by the payment amount, producing a new vprincipal
for the next month:

P = (P + i * P) - PMT

The program iterates through the statements from line 18 through 1line
31 until the princival is reduced to zero, and the loan is completely
paid off.

We assume in this program that the principal does not exceed
$999,999,999.99, and thus the declaration on line 6 defines P as a
Fixed Decimal variable with precision 11 and scale 2. Further, we
shall assume that the opayment does not exceed $9,999.99, so PMT is
declared with precision 6 and scale 2. Finallv, the interest rate is
defined with the Fixed Decimal(4,2) attribute allowing numbers as
large as 99.99%. The two variables "m" and "y" correspond to the
month and year, beginning at the first month of the first vear.

The initial values are read between lines 10 and 15. Note that
for this example, no range checking is verformed and thus negative
values are acceptable, and payment values can be processed which would
never vay off the loan. These checks must be made, of course, to be
useful in an application environment.

, On each monthly iteration, the month 1is incremented with
possible overflow past the 12th month which changes the vyear value
(lines 19 through 24). The current principal P is displayed on line
25, and the monthly interest is added on the following line. The
computation on line 26 is evaluated as follows:

(All Information Contained Herein is Proorietary to Digital Research.)

147

N

/

1 a 0000 pmt:
2 a 0006 proc options(main);
3 ¢ 0006 decl
4 c 0006 m fixed binarv,
5 ¢ 0006 y fixed binarvy,
6 c 0006 p fixed decimal(1ll,2),
7 c 0006 PMT fixed decimal(6,2),
8 ¢ 0006 i fixed decimal(4,2);
9 ¢ 0006 do while(“1°b);
10 ¢ 0006 put skip list(“Principal “);
11 ¢ 0022 get list(P);
12 ¢ 0041 put list(“Interest 7);:
13 ¢ 0058 get list(i);
14 ¢ 0077 out list (“Payment BE
15 ¢ 00S8E get list (PMT);
16 ¢ 00AD m= 0;
17 ¢ 00B3 vy = 0;
18 ¢ 00R6 do while (P > 0):
19 ¢ 00CC if mod(m,12) = 0 then
20 ¢ OODF do;
21 ¢ 00ODF v = v + 1;
22 c 00E6 out skip list(“Year”,v):
23 ¢ 010D end;
24 ¢ 010D m=m+ 1;
25 ¢ 0114 out skip list(m,P);:
26 ¢ 0142 P=P + round(i * P / 1200, 2):
27 ¢ 0182 if P < PMT then
28 ¢ 0198 PMT = P;
29 ¢ 01A8 put list (PMT);
30 ¢ 01Cs6 P = P - PMT;
‘31 ¢ 01E7 end;
32 ¢ 01E7 end;
33 a 01E7 end pmt;
Figure 12.1. Simple Loan Pavment Program Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

148

N

B>pmta

Principal 500
Interest 14

Payment 22.10

Year

WOWOoo-J U &N

Year

Year

Principal "C

1

500.00
483.73
467.27
450.62
433.78
416.74
399.50
382.06
364.42
346.57
328.51
310.24

291.76
273.06
254.15
235.02
215.66
196.08
176.27
156.23
135.95
115.44

94.69

73.69

52.45
30.96
9.22

22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10

22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10
22.10

22,10
22.10
9.33

J

Figure 12.1. Simple Loan Payment Program Part B.

(A1l Information Contained Herein is Proorietary to Digital Research.)

149

i has precision and scale (4,2)

P has precision and scale (11,2)

i*p results in Fixed Decimal(15,4)

1200 has precision and scale (4,0)
(i * P)/1200 has precision (15,4), since

precision and scale in division
is computed as (15,15-15+4-0)

The division by 1200 is required since the interest rate is expressed
as a percentage (division by 100) over a one year period (division bv
12). The intermediate result is ROUNDed in the second decimal place
(cents position), and added to the principal. This result becomes the
new principal,

In the last month of payment, it is likely that the remaining
principal 1is less than the payment. The test on line 27 accounts for
this possibility and, if so, changes the wpayment to equal the
principal on line 28. The payment is printed on line 29 and, finally,
the princival is reduced by the payment on 1line 30 wusing the
assignment

P =P - PMT

The output from this program is shown following the ©vrogram
listing in PFigure 12-1, with an initial loan of $500, interest rate
14%, and payment of $22.10 per month.

12.8. Ordinary Annuity.

Given the interest rate (i) and two of three values, the annuity
program listed in Figure 12-2 computes either the vpresent value (PV),
payment (PMT), or number of periods (n). This particular program
illustrates the use of several commercial processing facilities of
PL/I-80, 1including a mix of Floating Point and Fixed Decimal
arithmetic, along with picture format outoput.

Unlike the program of the previous section, the annuity program
computes the unknown value through static formulas, rather than

iteration. The static formulas are given below, assuming the interest
rate is greater than zero. First, the present value is given by:

and, by transposing the above formula, PMT can be computed as

(All Information Contained Herein is Proprietarv to Digital Research.)

150

_

l a
2 a 0006
3 ¢ 0006
4 ¢ 000D
5 ¢ 000D
6 c 000D
7 ¢ 000D
8 ¢ 000D
9 ¢ 000D
10 ¢ 000D
11 ¢ 000D
12 ¢ 000D
13 ¢ 000D
14 ¢ 000D
15 ¢ 000D
16 ¢ 000D
17 ¢ 000D
18 ¢ 002F
19 ¢ 004B
20 ¢ 004B
21 ¢ 004B
22 4 0052
23 e 0055
24 e 0071
25 4 0074
26 4 0074
27 ¢ 0074
28 ¢ 007B
29 ¢ 007B
30 ¢ 0097
31 ¢ 0097
32 ¢ 00B6
33 ¢ 00CD
34 ¢ 00EC
35 ¢ 0103
36 ¢ 011E
37 ¢ 012F
38 ¢ 0146
39 ¢ 015E
40 ¢ 01SE
41 c 0190
42 ¢ 01B3
43 ¢ 01B3
44 ¢ 01C9
45 c 01C9
46 c 01C9
47 ¢ 01FD
48 ¢ 022C
49 ¢ 022C
50 ¢ 022C
51 ¢ 022C
52 ¢ 0242
53 ¢ 0242
54 ¢ 0242
55 ¢ 0276

0000 annuity:

proc options(main);

del

dcl

put
put

A »

clear by z°,
true by “17b;

PMT fixed decimal(7,2),
PV fixed decimal(9,2),
IP fixed decimal(6,6),
X float binarvy,

yi float binarvy,

i float binary,

n fixed;

ftc entry (float binarv) returns (char(l7) var):
list (clear,”"i"iO RDI NA R Y ANNUITY)

skip (2) list
(“~iEnter Known Values, or 0, on Each Iteration”);

on error

begin;

put skip list(““iInvalid Data, Re-enter”):
go to retry;

end;

retry:

do while (true);
put skin(3) list
(“~iPresent Value “);
get list (PV);
out list(”"“iPayment “y;
get list (PMT);
put list(“"iInterest Rate “);
get list(yi):
i=vyi/ 1200;
put list(““iPay Periods)
get list(n);

if pv
X

0 | PMT = 0 then
1 - 1/(1+1i)**n;

if PV = 0 then
do;
/* compute vresent value */
PV = PMT * dec(ftc(x/i),15,86):
put edit(”“"“iPresent Value is “,PV)
(a79'$$$'$$$,$$SV.99‘) H
end;

if PMT = 0 then
do:
/* compute vayment */

PMT = PV * dec(ftc(i/x),15,8);
put edit(”““iPayment is “,PMT) 4////

Figure 12.2. Ordinary Annuity Program Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

151

sreplace ' ‘\\\

.
!

56
57
58
59
60

62
63

65
66
67
68
69

pPQ0Q00Q0Q0O00Q0QQ00

02AS5 (afp‘$$r$$$r$$$V.99‘)7

02AS5 end;

02A5

02A5 if n = 0 then

02AE do;

02AE /* compute number of periods */
02AE IP = ftc(i);

02C1l x = char (PV * IP / PMT):

02EF n = ceil (- log(l-x)/log(l+i)
032C put edit(“*~i“,n,” Pay Periods”)
0362 (a,0"2229%,a);

0362 end;

0362 end;

0362 end annuity:

ORDINARY

ANNUITY

Enter Known Values, or 0, on Each Iteration

Present Value
Payment
Interest Rate
Pay Periods
Payment is

Present Value
Payment
Interest Rate
Pay Periods
Payment is

Present Value
Payment
Interest Rate
Pay Periods
Present Value

Present Value
Payment
Interest Rate
Pay Periods

32000

0

8.75

360
$251.74

NS O

40
$282.78

is $31,998.87

32000

4

r

0

240 Pay Periods

Present Value

“C

Figure 12.2.

Ordinary Anndity Program Part B.

(All Information Contained Herein is Proprietary to Digital Research.)

152

1
1 - n
(L + i)
Finally, n is evaluated using:
i
Log (1 - PV (===)
PMT

Log (1 + i)

The program contains one main loop between lines 28 and 67 where
the present value, payment, and yearly interest are read from the
console. The operator must enter two non-zero values and one zero
value on each iteration. The program then computes the value of the
variable which was entered as zero. The values are retained on each
main loop so that a comma (,) entry can be entered if the value is not
to be changed. The interest rate, expressed as a vyearly vercentage,
is reduced to a monthly period on line 36, where it is divided by 12 *
100 = 1200. Again, the program does not check for inout values in the
proper range. The interaction with the annuity program is shown
following the program listing, with several different values used as
input.

This particular program uses both Float Binary and Fixed Decimal
computations since there is a mixture of simple decimal arithmetic and
analytic functions. The variables used throughout the program are
defined between 1lines 7 and 13 as follows. PMT holds the vayment
value, and 1is defined as a Fixed Decimal number as 1large as
$99,999.99. Similarly, the present value can be as large as
$99,999,999.99. The variable IP is used to hold the interest rate for
a one month period, represented as a Decimal fraction with six decimal
places. The variables x, yi and i are Float Binary numbers which are
used during the computations to approximate decimal numbers with about
7-1/2 decimal places. Finally, the Fixed Binarv variable n holds the
number of payment periods, ranging from 1 to 32767.

Referring to the above formulas, the computation
1 -1/ (1+ i) **n
occurs in both the computation of PV and PMT. Thus, 1line 41 stores
this wvalue into the variable x for subsequent use if either PV or PMT
is to be evaluated. Again, it is important to realize that x is only
an approximation to the decimal value given by this exoression. If
the overator enters a zero value for PV, then the statements between

lines 45 and 49 are executed. 1In this case, PV is computed using the
"ftc" external subroutine, defined on line 15, as

PV = PMT * dec(ftc(x/i),15,6)

(All Information Contained Herein is Proorietarv to Digital Research.)

153

where x/i is a Float Binary computation, and £ftc converts the
‘resulting value from float to character form. Given that x/i produces
the wvalue 3.042455E+01, for example, ftc(x/i) results in 30.42455
which is acceptable for conversion to decimal. The ERROR(1l) condition
is signalled by ftc, indicating a conversion error, if the floating
point argument cannot be converted to a 15-digit decimal number. The
"dec" function is applied to the character string to convert to a
specific precision (15) and scale (6) for the subsequent
multiolication. How did we decide on this particular value for
precision and scale? First, consider a simpler form of this program
which is shown below :

dcl
PMT fixed decimal(7,2),
PV fixed decimal(9,2),
Q fixed decimal(u,v):
PV = PMT * Q;

where we must decide upon the appropriate constant values for u and v.
PV has vprecision and scale (9,2) and thus there must be 7 digits in
the whole part and 2 digits in the fraction. We will generate the
full 7 digits in the whole part if the product PMT * Q results in anvy
of the following precision and scale values

(9,2) (10,3) (11,4) (12,5) (13,6) (14,7) (15,8)

since the assignment to PV will truncate any fractional digits bevond
the second decimal place. Further, since PMT has vorecision and scale
(7,2), we can choose (15,6) as the precision and scale of Q to produce

(min(15,7+15+1) ,2+6) = (15,8)

as the precision and scale resulting from the rules for multiplication
stated oreviously. In general, given an expression with orecision and
scale values as shown below

a b * c
(p,q) (r,s) (u,v)

where p, g, r, and s are constants, you can set the vprecision and
scale of ¢ to

u = 15 v=15-p + g - s
which, using the values in the above statement, results in
v=15 -9 + 2 - 2 = 8, or (u,v) = (15,6)
as the precision and scale of Q.
Returning to the sample program in Figure 12-2, the resulting
present value PV is written using a picture format with a drifting
dollar sign on line 48.

Alternatively, the overator could have entered a non-zero

(All Information Contained Herein is Provbrietarv to Digital Research.)

154

present value with a zero value for the payment (PMT). In this case,
the group beginning at 1line 57 is entered, and the value of PMT is
computed:

PMT = PV * dec (ftc(i/x),15,8);

using essentially the same technique as shown in the ©vprevious
computation. Again, we must decide the vrecision and scale of the
second operand in the multiplication. (We are really concerned only
with the value of the scale since the precision can be taken as 15.)
Using the analysis shown above, the form is

a = b * c
(7,2) (9,2) (15,v)

where
v=15-p+g-s =15 - 7 + 2 - 2 = 8

The computed value of PMT is written with the a picture format on line
56.

The final case occurs when the operator enters non-zero values
for PV and PMT, but sets the number of periods to zero. When this
occurs, the grouv beginning on line 60 is executed to compute n.
First, the interest for a monthly period is changed from Float Binary
to Fixed Decimal using the assignment on line 62. The next assignment

X = char (PV * IP / PMT)

first computes the partial Decimal result PV * IP / PMT, then converts
the result to character, and then to Float Binarv through the
assignment to x. The intermediate character form is necessary since
otherwise the intermediate result would first be converted to Fixed
Binary, then to Float Binary, resulting in truncation of the fraction.
(This sequence of conversions is necessary to maintain compatibility
with the full language.)

First, we”ll analyze the precision and scale of the Decimal
computation. The subexpression PV * IP produces the following:

PV * Ip
(9{2) (7[2)

- - - —— —— ———

(15,4)

The computation proceeds with the division, producing the following
precision and scale:

(All Information Contained Herein is Proprietary to Digital Research.)

155

|
(15,2)
since, according to the precision and scale rules for division,
(15,15-p+g-s) = (15,15-~15+4-2) = (15,2)

thus providing two decimal places in the computation. Additional
fractional digits can be generated by applving the decimal function
following the multiply, as shown below

X = char(dec(PV*P, 11,4) / PMT)
which would produce a quotient with precision and scale
(15,15-11+4-2) = (15,6)

The resulting value, x, is used in the expression on 1line 64 to
compute the number of payment periods. The CEIL function is applied
to the result so that any partial month becomes a full month in the
vayment period analysis. The number of months is written using a
picture format with leading zero suppression, and the ©ovrogram loops
for another set of input values.

12.9. Formatted Loan Payment Schedule.

The program shown in Figure 12-3 is essentially the same as that
presented in Section 12.7, with a more elaborate analysis and disvlay
format. As shown starting on line 116, this program reads several
data items:

PV Present Value (Initial Principal)

vi Yearly Interest Rate

PMV Monthly Payment

ir Yearly Inflation Rate

sm Starting Month of Payment (1-12)

sy Starting Year of Payment (0-99)

fm Fiscal Month (End of Fiscal Year, 1-12)
dl Display Level (0-2)

The initial principal and payment variables are declared as Fixed
Decimal (10,2) on 1lines 16 and 19, allowing values as large as
$99,999,999.99. The vearly interest rate and vyearlv inflation rate
are expressed as percentages as large as 99.99, as defined on lines 24

and 29. The month and year variables, sm, sy, and fm are in Fixed
Binary format, and are assumed to properlv represent month and vear
values. The variable dl defines the amount of information displaved

(All Information Contained Herein is Proprietarv to Digital Research.)

156

0000
0006
0006
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
000D
002F
002F
0037
003a
00SF
0062
0062
0062
0069
0085
009F
NO9F
00AD
0occ
00cCcC
00E6
00E6
00ED
00F0
010C

popaQaQOQNQaONQAQQAQQ@AMO @A OQONQOQOQAQAOQOQONQOAQQOAQAQNONOQQAQQQAQNOQOQOOQCOO0QR Y

pmt

proc options (main);

$replace
true by “1°b,
false by “0°b,
clear by “"z”;

dcl
end bit(l),
m fixed binary,
sm fixed binary,
vy fixed binary,
sy fixed binarvy,
fm fixed binary,
dl fixed binarvy,
P fixed decimal (10,2),
PV fixed decimal(l10,2),
PP fixed decimal(1l0,2),
PI, fixed decimal(l1l0,2),
PMT fixed decimal (10,2),
PMV fixed decimal(10,2),
INT fixed decimal (10,2),
YIN fixed decimal(10,2),
IP fixed decimal (10,2),
vi fixed decimal(4,2),
i fixed decimal(4,2),
INF fixed decimal (4,3),
ci fixed decimal(ls5,14),
fi £fixed decimal(7,5),
ir fixed decimal(4,2);

dcl

name char (14) var static init(“Scon”),
output file;

put list(clear,””i"iS UMMA R Y OF PAYMENTS);

on undefinedfile (output)
begin;
out skip list(”“"i"icannot write to”,name);
go to open_output;
end;

open_output:
put skip(2) list(“"i”iOutput File Name “);
get list(name);

if name = “Scon” then

oven file(output) title(“$Scon”) orint pagesize(0);
else

open file(outout) title(name) vprint;

on error
begin;
put skip list(“"i~“iBad Inout Data, Retrvy”);
go to retry;

/

Figure 12.3. Summary of Loan Payments Program Part A.

(All Information Contained Herein is Proprietary to Digital Research.)

157

N

56 4 010F end;
57 4 010F
58 ¢ 010F retry:
59 ¢ 0116 do while(true);
60 c 0116 put skip(2)
61 ¢ 0132 list(“"i"iPrincipal)
62 ¢ 0132 get list (PV):
63 c 0151 P = PV;
64 c 016l put list(““i“iInterest ‘)
65 ¢ 0178 get list(yi);
66 ¢ 0197 i = vyi;
67 ¢ 01A7 put list(“~i”“iPayment ‘)
68 ¢ O1lBE get list (PMV);
69 ¢ 01DD PMT = PMV;
70 ¢ 01lED put list(“"i"isInflation “y;
71 ¢ 0204 get list(ir):
72 ¢ 0223 fi =1 + ir/1200;
73 c 0253 ci = 1.00;
74 ¢ 0263 put list(°"i”~iStarting Month “):
75 ¢ 027A get list(sm);
76 c 0292 put list(”“"“i~iStarting Year 7);
77 ¢ 02A9 get list(sv):
78 ¢ 02Cl put list(“"i"iFiscal Month)
79 c 02D8 get list(fm);
80 c 02F0 put edit(“"“i"~iDisplay Level ~,
81 c 032E “~i*i¥r Results : 0 ~,
82 ¢ 032E “~i~i¥r Interest: 1 7,
83 c 032E “~i”~iAll Values : 2 7)
84 c 032E (skip,a):;
85 ¢ 032E get list(dl):
86 c 0346 if d1 < 0 | 41 > 2 then
87 ¢ 0357 signal error;
88 ¢ 035E m = Sm;
89 c 0364 y = sy
90 c 036A IP = 0;
91 c 037a PP = 0;
92 c 038A YIN = 0;
93 ¢ 039a if name "= “Scon” then
94 c 03AS8 put file (output) page;
95 ¢ 03BA call header () ;
96 ¢ 03BD do while (P > 0);
97 ¢ 03D3 end = false;
98 ¢ 03D8 INT = round (i * P / 1200, 2);
99 ¢ 0408 IP = IP + INT;
100 c 0423 PL = P;
101 c 0433 P = P + INT;
102 c 044E if P < PMT then
103 c 0464 PMT = P;
104 c 0474 P = P - PMT;
105 ¢ 048F PP = PP + (PL - P);
106 c 04BS INF = ci;
107 ¢ 04cCa ci =ci / fi;
108 c 04EA if P=0]d1 >1 | m = £fm then
109 ¢ 0520 do;
110 ¢ 0520 put file (output) skip

/

Figure 12.3.

Summary of Loan Payments Program Part B.

(All Information Contained Herein is Proprietary to Digital Research.)

158

\

/111 c 055B edit(”|”,100*m+y) (a,p”99/99%);
112 ¢ 055B call disvplay(PL * INF, INT * INF,
113 ¢ 0601 PMT * INF, PP * INF, IP * INF);
114 c 0601 end;

115 ¢ 0601 if m = fm & 41 > 0 then

116 ¢ 061lE call summary();

117 ¢ 0621 m=m+ 1;

118 ¢ 0628 if m > 12 then

119 c 0634 do;

120 ¢ 0634 m=1;

121 c 063Aa y =y + 1;

122 ¢ 0641 if y > 99 then

123 ¢ 064D y = 0;

124 c 0656 end;

125 ¢ 0656 end;

126 c 0656 if 41 = 0 then

127 ¢ 065F call line();

128 ¢ 0665 else

129 c 0665 if "end then

130 ¢ 066C call summary():;

131 c 0672 end;

132 ¢ 0672

133 ¢ 0672 display:

134 ¢ 0672 proc(a,b,c,d,e);

135 e 0672 dcl

136 e 067F (a,b,c,d,e) fixed decimal (10,2);
137 e 067F put file (output) edit

138 e 0731 “1*,a,”1”,0,71%,¢c,7 17,484,717 ,e,7 1)
139 e 0731 (a,2(2(p”S$22,222,229v.997,a),
140 e 0731 P $222,229.v99” ,a));
141 ¢ 0731 end display;

142 ¢ 0731

143 ¢ 0731 summary:

144 c 0731 proc;

145 e 0731 end = true;

146 e 0736 call current _vyear (IP-YIN);

147 e 0757 YIN = IP;

148 c 0768 end summary;

149 c 0768

150 c 0768 current_year:

151 ¢ 0768 proc (I);

152 e 0768 dcl

153 e 076F yp fixed binary,

154 e 076F I fixed decimal(10,2);

155 e 076F YO = ¥;

156 e 0775 if fm < 12 then

157 e 0781 ¥Yp = yp - 1;

158 e 0788 call line():

159 e 078B put skip file(output) edit

160 e 0804 (“1”,”Interest Paid During S,yp, =",y is 7,1,0 1)
161 e 0804 (a,x(15) ,2(a,p"99"),2,0"$$$,5$$,889V.99” ,x(16) ,a);
162 e 0804 call line();

163 c 0808 end current vear;

164 ¢ 0808 -

165 ¢ 0808 header:

)

Figure 12.3. Summary of Loan Payments Program Part C.

(All Information Contained Herein is Proprietary to Digital Research.)

159

TN
166 ¢ 0808 proc;
//:;; e 0808 put file (output) list(clear);
168 e 0822 call line();
169 e 0825 put file (output) skivo edit
170 e 0860 - ("|",’LOAN PAYMENT SUMMARY",”|")
171 e 0860 (a,x(19));
172 e 0860 call line();
173 e 0863 put file(output) skio edit
174 e 08E3 (“]”,”Interest Rate”,yi,”%$”,”Inflation Rate”,ir,”%",”|”)
175 e 08E3 (a,x(15) ,2(a,p”"b99v.99" ,a,x(6)) ,x(9) ,a);
176 e 08E3 call line();
177 e 08ES6 put file(output) skip edit
178 e 0942 (“ |pate |*,
179 e 0942 “ Princival 17,
180 e 0942 “Plus Interest|”,
181 e 0942 Payment |°,
182 e 0942 “Principal Paidl”,
183 e 0942 “Interest Paid |°) (a):
184 e 0942 call line();
185 c 0946 end header;
186 c 0946
187 ¢ 0946 line:
188 ¢ 0946 proc;
189 e 0946 dcl
190 e 0946 i fixed bin;
191 e 0946 put file(output) skip edit
192 e 099E (Femmm——e PR T -,
193 e 099E QT “doi=1+to 4)) (a);
194 ¢ 099E end line;
195 a 099E end pmt;

SUMMARY OF PAYMENTS

Output File Name ,

Principal 3000
Interest 14
Payment 144.03
$Inflation 0

Starting Month 11
Starting Year 80
Fiscal Month 12

Display Level

Yr Results : 0

Yr Interest: 1
2

All vValues 0

N !

: {
Figure 12.3. Summary of Loan Payments Program Part D.

(All Information Contained Herein is Proprietary to Diagital Research.)

160

[LOAN PAYMENT SUMMARY I
| Interest Rate 14.00% Inflation Rate 00.00% 1
|IDate | Principal |Plus Interest! ©Payment I|Princival Paidl!lInterest Paid !
12/80]s 2,890.971s 33.73]s 144.031s 219.3313 68.73!
12/8118 1,479.021s 17.261s 144.03]s 1,647.751S 368.67!
11/82]s 0.25!s 0.001s 0.251s 3,000.00]S 456.97!
Princivmal '
Interest ’
Payment ’
$Inflation ’
Starting Month ,
Starting Year ,
Fiscal Month ’
Disvlay Level
Yr Results : 0
Yr Interest: 1
All vValues : 2 1
| LOAN PAYMENT SUMMARY [
l Interest Rate 14.00% Inflation Rate 00.00% !
|pate | Princival |Plus Interest| Pavment I|Princival PaidlInterest Paid !
l12/80(s 2,890.97]$ 33.73)3 144,031 219.331s 58,73
1 Interest Paid During “80-°80 is $68.73 !
l12/811s 1,479.0218 17.261$ 144.031$ 1,647.7518 368.67!
! Interest Paid During “81-°81 is $299.94 !
l11/8213 0.25!s 0.001!s 0.251]$ 3,000.00'S 455,97/
1 Interest Paid During “82-°82 is $88.30 !

- - — - —— - ——— - ——— v —
- b - . . —— —— D D W — - —— - — —— — — — - - G_- . — - - — - - — —— - - - - ———

Figure 12.3. Summary of Loan Pavments Program Part &,

(All Information Contained Herein is Proorietarv to Digital Research.)

16l

Principal
Interest
Payment
$Inflation
Starting Month
Starting Year
Fiscal Month

® N W N W NN

Display Level
¥r Results :
Yr Interest:
All Values :

NH O

- - - —— ——— ———— —— — — ——— T — — ——— - T — — — " -

D s = ——— — — — - S R " - —— . T " T w— - T W D) VD T D VD D D D S D D T D Y T D B T . - —————— W - —

T . . - —— W D W D S W . = s A P D WP WS T W W e D —— . G D = WP D WP T G S W D D W D T - — T D G D Vo P - - = — - = —— e =]

Date | Principal [Plus Interest| Payment !Principal PaidlInterest Paid |
[11/8018 3,000.0018 35.0018 144.03!8 109.031s 35.00!
l12/80]$ 2,890.97|s 33.731s 144.031$ 219.3318 68.73!
l Interest Paid During “80-"80 is $A8.73 !
01/811$ 2,780.671!%8 32.441% 144,038 330.921s 101.17/]
02/81]$ 2,669.08!s 31.14/3 144.031s 443.811s 132.31!
03/811!s 2,556.19]8 29.82]$ 144.03]$ 558.021$ 162.13]
l0od4/81]8 2,441.981$ 28.49/3 144.03!s 673.56!% 190.62!
l0o5/81]$ 2,326.441|8 27.141s 144.03]8 790.45]$S 217.75!
06/811¢ 2,209.55!¢ 25.781$ 144.0318 908.70's 243,54/
07/81!'s 2,091.301s 24.401s 144.031$ 1,028.33!s 267.94!
08/811$ 1,971.671s 23,0018 144.031]s 1,149.36!S 290,94/
09/8118 1,850.641s 21.591s 144,038 1,271.80!s 312.53!
10/811]53 1,728.20!s 20.1618 144.,0318 1,395,A871s 332.409!
[11/811s 1,604.33]s 18.721$ 144.03!s 1,520.9815S 351.41!
f12/811% 1,479.021s 17.2618 144.0318 1,647.751¢ 368.67!
| Interest Paid During “81-"81 is $299.94 !
lo1l/821s 1,352.2518 15.78!$ 144.0318 1,776.0018 384.45!
l02/82]$ 1,224.001(8 14.281$ 144,031 1,905.75!$ 398,73/
'o3/8213 1,094.25/8 12.771s 144,031 2,037.01!s 411.50!
'o4/821¢ 962.991s 11.231s 144.03!s 2,169,8118 422,73
los/821$ 830.191s 9.69!$ 144.03!8 2,304.15!% 432,42
|06/8213 695.851$ g.121s 144.03]$ 2,440.06!S 440.54!
l07/821s 559.941$ 6.5318s 144.031S 2,577.56!s 447.07!
08/8218 422.441¢ 4.931s 144,031 2,716.66!S 452,00/
l09/821s 283.341s 3.31!s 144,033 2,857.38!%8 455,311
l10/82!8 142.6218 1.66!S 144.03!s 2,999,75!8 456.97!
f11/821s 0.251s 0.001s 0.2518 3,000.00/$ 456,97

Figure 12.3.

Summary of Loan Pavments Program bart F.

‘All Information Contained Herein is Proorietary to Digital Research.)

162

v ‘\\\

Princimal ’

Interest ,

Payment ’

$Inflation 10

Starting Month ,

Starting Year ,

Fiscal Month 10

Display Level

Yr Results : 0

¥r Interest: 1

All values 2 2
| LOAN PAYMENT SUMMARY !
l Interest Rate 14.00% Inflaticn Rate 10.00% !
|pate | Principal |Plus Interest| ©Payment I|Principal PaidlInterest Paid |
11/801$ 3,000.00 35.0018 144.031$ 109.0318 35.00!
12/801$ 2,864.95($ 33.421s 142.731$ 217.3518 68.11]
oL/811s 2,733.39$ 31.88]s 141.581$ 325.291s 99,45
02/811$s 2,602.35]|8 30.3618 140.4213 432.711s 129.00/!
03/811!s 2,471.83]8 28.8318 139.271$ 539.60!8 156.77"'
04/8118 2,341.85(S 27.3218 138.121$ 645.941S 182.80!
05/811($ 2,212.441% 25.811$ 136.971$ 751.711s8 207.08!
06/81]$ 2,083.60]|S 24.3118 135.8218 856.901$ 229.65!
07/81]s 1,955.36($ 22.81!s 134.661$ 961.481(S 250.52/|
|og/81|s 1,829.70!$ 21.3418 133.65]$ 1,066.60!8 269.99
l09/811}s 1,702.58/|$ 19.8613 132.501$ 1,170.051$ 287.52!
|10/811$ 1,576.111$ 18.381s 131.3518 1,272.85!8 303.41!
| Interest Paid During “80-"81 is $332.69 {
l11/8118 1,451.9118 16.9418 130.3418 1,376.481$ 318.02°
l12/81]s 1,326.681%¢ 15.481$ 129.1913 1,478.03!¢ 330.69!
01/821s 1,203.50|$ 14.0418 128.18!3 1,580.64!S 342.16!
02/821$ 1,079.561s 12.591% 127.031s 1,680.871¢ 351.67"
03/821%¢ 957.461$ 11.171s 126.0218 1,782.381% 360.06!
04/8213 835.87/$ 9.741s3 125.011$ 1,883.39/¢8 366.92!
05/82]$ 714.791$ 8.341!s 124.001S 1,983.87!1% 372.31!1
06/82($ 504.2518$ 6.931$ 123.001$ 2,083.811% 376.22!
07/821%8 474.261S 5.53!8 121.991|S 2,183.1918 378.46!
08/821¢ 354.8418 4.141s 120.98!8 2,281.991% 379.48!
l09/821$ 236.021$ 2.7518 119.97!s 2,380.191s 379.27!
l10/82|s 117.80]s 1.371s 118.961S 2,477.791s 377.45!
| Interest Paid During “81-"82 is $§124.28 !
l11/821s 0.20]8$ 0.001s 0.201s 2,457.00!S 374.25
| Interest Paid During “81-°82 is $0.00 !

"

.
...-_......-_____..___-_-_.._..___._____...-..--..-....,....____-_-__._._...-.__......___......-..--.._...._-“j

Figure 12.3.

Summary of Loan Pavments Program Part G.

(All Information Contained Herein is Proprietarv to Digital Research.)

163

during a particular iteration of the worogram, where 0 provides an
abbreviated display, 1 provides additional information, and 2 gives
the full trace.

Using an algorithm similar to that described 1in Section 12.7,
the primary loop occurs between lines 96 and 131, where the initial
principal is increased by the monthly interest and reduced by the
monthly payment until the principal becomes zero. Several examples of
program interaction are shown following the listing of Figure 12-3.
The first output listing shows a minimal disvlay corresponding to a
loan of $3000 at 14% interest rate with a payment of $144.03. 1In this
case, an inflation rate of 0% is assumed with a starting payment on
11/80, and end-of-year taxes due 1in December of each vyear. The
~display shows the orincipal, interest in December, monthly payment,
amount paid toward principal in December, and amount of interest paid
in the last month of the fiscal year.

The second output listing shows an execution of the main loop
using the same values shown above, with disvlav level 1. 1In this
case, the output also contains the yearly interest vaid on the loan
for each fiscal vear which would, presumably, be deducted from the
taxable income.

The third output listing again uses the same initial values used
in the previous examples, but vrovides a full disvlay of the monthly
principal, interest, monthly wpayment, pavment applied to the
orincipal, and interest payment.

The last display shows the same loan and interest rate with an
adjustment in dollar value due to inflation. The (rather
conservative) inflation rate of 10% is assumed in this examvle, so
that all amounts are scaled to the value of the dollar at the time the
loan was issued. For tax reporting purvoses, the displav showing the
total interest paid at the end of each year is not scaled, and thus
does not match the sum of the interest paid during the year. It is
interesting to note that if we assume a 0% inflation rate, the total
loan payment is 3,456.97, taken from the previous output. Assuming an
inflation rate of 10%, however, the total cost of the loan in today’s
dollars is

2,457.00
+ 374.25

—— e o ——

2,831.25

resulting in a net gain of 68.75 over a two year period!

Several operational details must be presented 1in order to
properly understand the overation of this program. Firstf there are
several additional variables declared between lines 15 and 29 which
are used throughout the program:

(All Information Contained Herein is Proorietarv to Digital Research.)

164

p initially set to PV, but changes during
execution (see lines 63, 101, and 104)

PP total principal paid (see line 105)

PL principal for current line, holds P for
display purposes (see lines 100 and 112)

PMT payment initially set to PMV, but changes
during execution (see lines 69 and 103)

INT computed interest during current month
(see lines 98, 101, and 112)

YIN interest at beginning of current year
({see lines 92, 146, and 147)

Ip total interest paid (see lines 90, 99, and
146)

i interest rate, initialized to vi (see line
66)

INF percent of devaluation of the original dollar

due to inflation (see lines 106, 112, and 113)

ci current devaluation due to inflation (see
lines 73, 106, and 107)

fi factor for computing current inflation (see
lines 72 and 107)

It should be noted that P and PMT are "working"™ wvariables for
principal and payment so that the original variables PV and PMV are
not destroyed during the computations. As a result, the operator can
simply enter a comma (,) for subsequent input reaguests to indicate
that the previously entered value is to be retained.

The program execution actual’.ly begins on line 35 with a "clear
screen" character for the Lear-Siegler ADM-3A ~“RT. This control
character is defined in the replace statement on line 6. If vyou are
not using an ADM-3A, you can substitute the prcoer character in the
replace statement and recompile the program.

In orevaration for the subsequent OPEN, an ON-condition 1is set
to trap possible OPEN errors (see lines 37 through 41). The overator
is then prompted for the revort output file name on line 44, The
character variable "name" is initialized to the value "Scon" on line
32: 1if the operator enters a comma rather than a file or device name,
the console is assumed as the output device. If either a -comma or the
name S$con is entered as the output file name, the console 1is OPENed
with a =zero page size so that no form-feeds are issued at the end of
each logical page (see lines 47 and 48). Otherwise, the outvut file
or device 1is OPENed as a normal PRINT device so that form-feeds are
placed into the output file or sent to the vphysical output device

(All Information Contained Herein is Proprietary to Digital Research.)

165

(usually the printer, $1lst).

The ON-condition set at line 52 traps any occurrence of the
ERROR condition, including ERROR(1l) which indicates a data conversion
error (a complete 1list of the ERROR subcodes 1is given in the
"Recoverable Errors" section of the PL/I-80 Command Summarvy). Invalid
data 1is also programmatically SIGNALed on line 87 if the value of 4l
is out-of-range. To make this particular program commercially
palatable, it would be necessary to SIGNAL errors for all other
invalid input data items, such as a negative interest rate. Further,
the Fixed Overflow condition (FOFL) should also be set to intercept
out-of-bound computations.

Program variable initialization for each set of input values
begins on line 88. A page-eject is executed if the output file is not
the console, followed by a page header printed by the "header"
subroutine on line 165. It is instructional to compare the formatting
statements in the header subroutine with the output values shown
following the program listing.

The main processing loop, beginning at 1line 96, 1is executed
repetitively until the princival reduces to zero. The variable "end"
indicates whether or not an end-of-year summarvy has been printed (see
line 145), and 1is used at the end of processing to avoid a possible
duplicate summarv (see line 129). The monthly interest (INT) for the
current princival (P) 1is then computed and summed in IP on lines 98
and 99. The current principal is saved for later display in PL, and
the monthly interest 1is added to the oprincipal. If the pavment
exceeds the remaining principal on 1line 102, then the payment is
reduced to cover this remainder. The vrincipal is then reduced by the
pvayment amount, which will eventually produce a zero value (if the
original payment is sufficiently large to vay off ‘the 1loan!). The
total principal paid is summed on line 105, and the inflation rate is
computed on line 106.

Since we have three display formats, the decision to display the
current computation is somewhat complicated: if this 1is the 1last
iteration (the princival P is zero), or if the full display format is
selected (dl > 1), or if the current month is the end of the fiscal
year (m = fm) then the current computation is written between lines
109 and 114. The picture format »°99/99”° displays the month and vear,
where 100*m+y produces a four-digit number to match this format. If,
for example, m = 11 and v = 64, then

100 * m + vy = 100 * 11 + 64

[}

1164

which aopears as 11/64 when orinted using this picture. The "displav"
subroutine actuallv performs the output function, based upon the six
actual parameters 1listed on 1lines 112 and 113, Each argument is
adjusted by the current inflation rate INF and passed to the disvlay
subroutine. If the inflation rate has been set to 0%, the value of
INF is 1.00 at this point in the comoutation. The bodv of the display
subroutine, listed between lines 134 and 141 could, of course, be
inserted in-line since there is only one call to display. However,
the display subroutine does illustrate Fixed Decimal parameter vassing

(All Information Contained Herein is Proprietary to Digital Research.)

166

mechanisms and serves to break the vprogram into smaller, more
readable, segments. Again, it may be worthwhile comparing the
formatting operations in the disvlay subroutine with the actual
program output.

The statement on line 115 then checks for the end of fiscal year
(m = fm) and, if the disvlay mode is either 1 or 2, a yearly interest
summary is printed using the "summarv" subroutine. The summary
subroutine, listed between lines 144 and 148, 1in turn, calls the
"current_year" subroutine to write the yearly interest paid (IP-YIN).
The base value for next year”s displav is retained in YIN through the
assignment on line 147. The current_vear subroutine is listed between
lines 151 and 163. If the fiscal year does not end in December
(fm<12), the interest rate vayment is split between two calendar years
(yp = vy - 1). Again, the current_vyear subroutine could be combined
with the summary subroutine without chanaing the program logic.

The end of the main loop, between lines 126 and 130, contains
statements which finalize the report. If the abbreviated disvplay
format was selected (dl = 0), a simple line of dashes completes the
display. Otherwise, a check 1is made to ensure there have been
intervening output lines (“end) and, if so, an interest summary is
printed on line 130. The program then returns to the too of the looo
and reads additional input parameters for production of another
report.

12.10. Computation of Depreciation Schedules.

The final example illustrates a number of commercial processing
concepts in PL/I-80 using evaluation of Devpreciation Schedules as an
example. The sample program listing is shown in Figure 12-4 followed
by several examples of program interaction.

The Depreciation program reads several input values and orints a
table based upon these values according to one of three different
depreciation schedules: Straight-Line, Sum of the Years, or Double
Declining. The program also accounts for bonus depreciation during
the first vear, reduction 1in taxable income due to sales "tax, and
investment tax credit on new or used equipment. The following general
algorithms are used in this program: ‘

Investment Tax Credit (ITC) 1is assumed to be 10% of the
selling price (see the replace statment, line 7), applied to
the full price of new equipment, or up to $100,000 in the case
of used equipment.

Bonus Depreciation is assumed to be 10% of the selling oprice,
up to a maximum of $2,000 (see the replace statement, lines 8
and 9).

Under all three deoreciation schedules, the amount ¢to

(All Information Contained Herein is Proprietary to Digital Research.)

167

depreciate is taken as the difference between the selling
price minus the bonus depreciation, and the residual value of
the equipment.

Under all schedules, the depreciation value computed for the
first year 1is prorated by month through the remainder of the
fiscal year (not including bonus devreciation).

In the case of Straight-Line depreciation, the amount to
depreciate is spread uniformly over the number of years in
which the depreciation occurs.

For the Sum of the Years, the vear values are summed starting
at 1, through the number of years in which depreciation takes
place:

ys =1+ 2+ 3+ . . . + years

The depreciation is distributed over the total number of years
by computing years/ys times the devreciation value for the
first year, (yvears-l)/vys times the remainder for the second
vear, and so-forth until the last vear in which 1/vs times the
remaining devreciation value is taken.

For the Double Declining case, each vear”s depreciation is
computed as the book value divided bv the number of vears,
which is then multiplied by 2 for new equipment, or 1.5 if the
equipment is used.

The orogram reads the selling price, residual value, percentage
sales tax, the percentage income tax bracket, the number of months
remaining in the current fiscal year, and the number of years in which
to deoreciate the equipment. The program then asks whether the
equipment is new or wused, and then reads the devreciation schedule
code for the subsequent report. A sample input sequence is given in
Figure 12-4, immediately following the program listing. Although the
exact details of program organization and flow is left to the reader
as an exercise, there are a number of constructs in this program
worthy of discussion.

First, this particular program uses an entry variable array to
"dispatch" the calls to compute one of three schedules. The entry
array is defined on line 40, with a subscript range of 0 through 3.
The 1individual elements of this vector are initialized between lines
42 and 45, allowing an indirect call to either the "error" subroutine
or one of the depreciation schedule handling subroutines. The actual
call to one of these subroutines occurs later in the program. The
schedule selection takes place on line 71, where one of the characters
s, y, or d 1is read from the console into the character variable
"select_sched." After variable initialization has occurred, the
"display" subroutine is invoked from line 89. The display subroutine,
listed between 1lines 97 and 101, performs the actual dispatch to the
schedule handler through the statement

call schedule (index (schedules,select_sched))

(All Information Contained Herein is Proprietary to Digital Research.)

168

This particular statement can be decomposed as follows. The
"schedules" variable is defined on line 39 and initialized to the
character string “syd”’, where each letter corresponds to one of the
valid schedule handlers, as shown below '

‘syd’

123
l—--- double_declining
_____ sum_of vears

------ straight_line
The evaluation of
index (schedules,select_sched)
is the same as
index (“syd”,select_sched)
which, for valid invouts s, y, or 4, oroduces 1, 2, or 3. If the wvalue
of select_sched is not one of s, y, or d, then the index function
returns a zero value. Thus, if select_sched is s, the call statement
evaluates to

call schedule (1)

which, due to the assignment on 1line 43, calls the subroutine
"straight_line." Similarly, an input of y or d produces

call schedule(2) or call schedule(3)

producing a call to "sum_of vears" or "double_declining,"
respectively. Since the index function returns zero if select sched
is not one of s, y, or d, all invalid character input values oroduce

call schedule (0)

which calls the "error" subroutine where the error condition 1is
reported to the operator.

The second construct of interest in this orogram is the use of
the "output" file variable, defined on line 35. During the parameter
input phase, the operator is prompted with

List? (yes/no)

If the operator revonds with "yes" then the vprogram writes the
depreciation report to both the console and the listing device. The
manner in which the program performs this function is presented below.

Two file constants, sysprint and list, are declared on 1line 36
to address the console and the 1list device. The console file is
OPENed first, on line 47, using an infinite page length to avoid form-
(All Information Contained Herein is Pronrietary to Digital Research.)

169

feed characters. 1If, on any iteration of the main loop, the operator
resoonds in the affirmative on 1line 73, the 1list device |is
subsequently OPENed on 1line 75. It should be noted that this
statement may be executed several times on any particular execution of
this program, but only the first OPEN has any effect. The "displav"
subroutine is called on line 89 to compute and display the output
report for a specific set of input values. Display has a single
actual parameter which is the file constant "sysprint” passed to the
subroutine as the formal parameter "f" on 1line 99. The formal
parameter, in turn, is assigned to the global variable "output™ on
line 100. Subsequent PUT statements of the form

put file(output) ...
write data to the console, producing the first report.

Referring to line 90 of Figure 12-4, if "copy to list" has the
character value “yes” then display is called once again. This time,
however, the actual varameter 1is "list" which corresponds to the
system listing device. Similar to the actions given above, the output
file variable 1is indirectly assigned the value "list" and all PUT
statements which reference file "output" write their data to the
printer, resulting in both a soft and hard copy of the report.

Again, it is worthwhile examining the various comoonents of this
program while cross-checking output formats with the displayed

results, since there are several different forms of decimal arithmetic
and formatting which occur throughout.

(All Information Contained Herein is Proorietary to Digital Research.)

170

0006
0006
0006
0006
0006
0006
0006
0006

0006
0006
0006
0006
0006
0006
0006
0006

0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
00ocC
0015
001lE
0027
0027
0043
0043
0043
0043
0065
0081
00A0
00B7

OOO000000OOQOOOOOOQOQOOOOOOOOOOOOOQOOQOOOOOOOOOOOOOONWm

0006

0006

0000 depreciate:

procedure options(main);

$replace
clear screen by “"z°,
indent by 15,
ITC rate by .1,
bonus _rate by .1,
bonus™ _max by 2000;

declare
selling_price decimal(8,2),
adj_price decimal(8,2),
residual_value decimal(8,2),
year_value decimal (8,2),
devreciation_value decimal(8,2),
total deorec1at10n decimal (8,2),
book value decimal(8,2),
tax_rate decimal(3,2),
sales_tax decimal(8,2),
tax_bracket decimal(2),
FYD decimal(8,2),
ITC decimal(8,2),
bonus_dep decimal (8,2),
months _remaining decimal(2),
new char (4),
factor decimal(2, 1),
years decimal(2),
year_sum decimal(3),
current _vear decimal(2),
select_sched char(l);

declare
copy_to_list char (4),
output file variable,
(sysorint, list) file;

declare
schedules char (3) static initial (“svd”),
schedule (0:3) entry wvariable;

schedule (0)
schedule (1)
schedule (2)
schedule (3)

error;
straight_line;
sum of vears;:
double declining;

oven file (sysprint) stream print pagesize (0)
title (“Scon”);

do while(“1”°b);

put list(clear screen,‘“i‘i“iDeorec1atlon Schedule”);
out skip(3) list(”"i~iSelling Price? “);

get llst(selllng orice) ;

put list(“"i”~iResidual Value? “Y;

get list(residual_value);

/

Figure 12.4. Depreciation Schedule Program Part A.

{All Information Contained Herein is Provrietary to Digital Research.)

171

()mmeQOQOmmm(DOOQOOOOOQQOQ00000OOOOQQOOOOOOOOOOQOQQOQGOO

00D6
00ED
01o0C
0l23

0159
0178
018F
0lAE
01CS
0l1DF
021D
021D
021D
021D
021D
0237
024E
0268
0278
0294
02a4
02B4
02C4
0304
0304
032E
0351
0351
0371
0391
03A7
03B7
03CE
03DA
03EA
03Fré6
0412
0426
0426
0426
0426
0426
042D
042D
0437
0453
0453
0453
0453
0453
0453
0473
0473
0477

0142

put list(“"i“isales Tax (%)? °);
get list(tax rate):
put list(“~i™iTax Bracket (%)? *);
get list(tax bracket);
put list(“"~i™iProRate Months? °);
get list(months_remaining);
put list(°“i"iHow Many Years? *);
get llst(years),
put list(““i“iNew? (ves/no) ‘)
get list (new);
put edit(‘“i“iSchedule:‘,
1 ~istraight (s)”
‘~i*isum-of-¥rs (y)”~
“~i~iDouble Dec (d)? ')
(a,skip);
get list(select sched);
put list(“~i“iList? (yes/no) “);
get list(copy_to llst),
if copy_to list = “yes” then
open file(list) stream print title(“$lst”);
factor = 1.5;
if new = ’yes‘ then
factor = 2.0;
sales tax =
dec1mal(selllnq orice*tax_rate,12,2)/100+.005;
if new = “yes” | selling price <= 100000.00 then
ITC = selling_price ¥ ITC_rate;
else
ITC = 100000 * ITC rate;
bonus_dep = selling prlce * bonus_rate;
if bonus _dep > bonus _max then
bonus _dep = bonus max;
put list(cClear screen’;
call dlsolay(sysprlnt),
if copy to list = “yes” then
calT displav(list);
put skip list(**i~i~i Type RETURN to Continue”);
get skip(2):;
end;

display:
procedure(£f);
declare
f file;
output = f;
call schedule (index (schedules,select sched));
end display; -

error:
procedure;
/* bad entry for schedule */
put file (output) edit(“Invalid Schedule - Enter s, v,
(page ,column (indent) ,x(8) ,a):
call line();
end error;

Figure 12.4. Depreciation Schedule Program Part B.

(All Information Contained Herein is Proprietary to Digital Research.)

172

111 c 0477
112 ¢ 0477 straight line:
113 ¢ 0477 procedure;
114 e 0477 adj_price = selling_price - bonus_deo;
115 e 0492 put file (output) edit("S TR A I GH T L INEY
116 e 04B2 (page,column(indent) ,x(14) ,a);
117 e 04B2 call header ()
118 e 04BS depreciation_value = adj price - residual_value;
119 e 04DO book value = adj _price;
120 e 04EO total deorec1atlon = 0;
121 e 04F0 do current vear = 1 to years;
122 e 0526 year value =
123 e 0560 decimal (depreciation_value/years,8,2) + .005;
124 e 0560 if current year = 1 then
125 e 0576 do; -
126 e 0576 year_value =
127 e 05A6 year_value * months remaining / 12;
128 e 05A6 FYD = vear _value;
129 e 05B6 end;
130 e 05B6 depreciation value = depreciation_value - year_ value;
131 e 05D1 total deprec1atlon = total deorec1atlon + vear value,
132 e 0OBEC beok value = adj orice - total _depreciation;
133 e 0607 call print llne(),
134 e 0624 end;
135 e 0624 call summary();
136 ¢ 0628 end straight line;
137 ¢ 0628
138 ¢ 0628 sum_of years:
139 ¢ 0628 procedure;
140 e 0628 adj_vprice = selling_vprice - bonus_dep;
141 e 0643 out file (output) edit (S U M OF T HE Y EA RS
142 e 0663 (page,column (indent) ,x(11) ,a);
143 e 0663 call header () ;
144 e 0666 depreciation_value = adj orice - residual value;
145 e 0681 book value = adj _orice;
146 e 0691 total depreciation = 0;
147 e 06Al year_sum = 0;
148 e 06Bl do current vear = 1 to years;
149 e 06E7 year_sum =—year_sum + current_vyear:
150 e 071C end;
151 e 071C
152 e 071C do current_year = 1 to years;
153 e 0752 year_value =
154 e 07A3 dec1mal(depreC1at10n value *
155 e 07A3 (vears - current _year + 1),12,2)
156 e 07A3 / year_sum + .00%5;
157 e 07A3 if current_year = 1 then
158 e 07B9 do;
159 e 07B9 year_value =
160 e 07ES year value * months remaining / 12;
161 e Q07E9 FYD = year _value;
162 e Q7F9 end;
163 e 07F9 depreciation _value = depreciation_value - vear value;
164 e 0814 total deprec1at10n = total denrec1at10n + year value,
165 e 082F book_yalue = adj_price - total _depreciation; 4///
Figure 12.4. Depreciation Schedule Program Part C.
(All Information Contained Herein is Proprietary to Digital Research.)

173

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220

®ODOMDO®DODODODDOD®ODOODODDODODIAQAQDDDDDDDODDDODDODOD®DDDODDODDOODDOODOOIOQDdDD

084A
0867
0867
086B
086B
086B
086B
086B
0886
08A6
08A6
08A9
08C4
08D4
08E4
0931
0931
0971
0971
0987
0987
09B7
09B7
09C7
0sC7
09DD
09ED
0A0S8

0423

0A3E
0A5B
0A5B
0ASF
OASF
OASF
OASF
OASF
OASF
OASF
0ASF
OA6F
OA7F
0A7F
0A88B
0B5D
0B5D
0BSD
0BSD
08SD
0B5D
0BSD
O0BSD
0BSD
0BSD
0BSF

call print_line();
end;

call summary();

end sum_of_vyears;

double_declining:
procedure;
adj_price = selling_price - bonus_dep;
put file (output) edit(°D O U B L E
(vage,column (indent) ,x(10) ,a);
call header ()
deprec1atlon value = adj price - residual_value;
book_value Tadj _price;
total depreciation = 0;
do current_year = 1 to years
while (depreciation_value > 0);
vear value =
decimal (book_value/years,8,2)
if current_year = 1 then
do;
year_value =
year_value * months_remaining / 12;
FYD = vear _value;
end;
if year_value > depreciation_value then
year_value = depreciation value;

D

=

ECLINTING G

* factor+.005;

deprec1atlon value = depreciation value - vear _value;

total deprec1atlon =
book value = adj price - total _devpreciation;
call print llne()
end;

call summarv():

end double declining;

header:
procedure;
/* print header record */
dcl
new or used char (5);
if new = “yes” then
new or used = °
else ~— T
new_or_used = “ Used”
put file (output) edit(
“]1”,selling _price+sales_tax,new_or_used,
re51dual_value,‘ Residual Vvalue]”,
“|”,months_ remaining,’ Months Left ~,
tax_rate,”% Tax” rtax_bracket,”% Tax Bracket|”)
(2(skln column(lndent),a),
2(0”“BSS,$$$,$89.v997 ,a),
skip,column(indent),a,x(S),f(2),a,2(x(2),D'B99’,a

New” ;

put file (output) edit(

——— - - . — - —— ——— —— ———— . — ———— — ———— — — —— " T — T ——————— —————

total deprec1atlon + year value,

Figure 12.4. Devpreciation Schedule Program Part D.

{All Information Contained Herein is Proprietary to Digital Research.)

174

N

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

WODODODDPOAOQOODDBDDDODDOD®ODDODODDDODODDOO®DDOODODETAIAADDOEODDODDODONOOQDdDOOD

0BI9F
0BI9F
OBI9F
0BOF
O0BSF
0BI9F
0BIF
OBIF
0BIF
O0BIOF
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C34
0C37
0Ce7
0Ccos8
0Cccs
ODEE
ODEE
0DEE
ODEE
0DEE
0DEE
ODEE
ODEE
ODEE
ODEE
ODEE
ODEE
ODEE
ODEE
ODF2
ODF2
ODF2
0DF2
0DF2
ODF2
0E13
0E13
0E13

Y | Depreciation | Depreciation | Book Value |
r | For Year | Remaining | |
(skip,column(indent) ,a);

end header;

prirt line:
procedure;
/* print current line */
put file (output) edit(
“|”,current vear, .
“ |*,year value,
| ,depreciation_value,
|“,book _value,” |7)
skip,column(indent),
a,f(2),4(a,p”S$2,222,229v.997)) ;
end orint_line;

(

summary:
procedure;
declare
adj_ITC decimal(8,2),
total decimal(8,2),
direct decimal(8,2);
call line();
adj ITC = ITC * 100 / tax bracket;
total = FYD + sales_tax + adj_ITC + bonus_dep;
direct = total * tax_bracket / 100;
put file (outpout) edit(
- First Year Reduction in Taxable Income !

| Devreciation ,FYD, -
| Sales Tax © ,sales_tax, ~
ITC (Adjusted) © ,adj _17TC, ‘

Bonus Depreciation ,bonus_dep,

,total,
,direct,

L T Y Y Y TR Y Y

Total for First Year

Direct Reduction in Tax

(2(skip,column (indent) ,a),
2(4(skip,column(indent) ,a,
p°Sz,z22,22z9v.997,x(3) ,a),

skip,column(indent) ,a));
call line();
end summary;

A Y

line:
procedure;
/* print line of "-" */
put file (output) edit(
(skiv,column(indent) ,a);
end line;

0El13 end devreciate;

S Y N Y Y Y T T Y

et N T T T T T T

Figure 12.4. Depreciation Schedule Program Part E.

(All Information Contained Herein 1is Proprietary to Digital Research.)

175

Depreciation Schedule

Selling Price? 200000
Residual vValue? 40000
Sales Tax (%)? 6

Tax Bracket(%)? 50
ProRate Months? 10
How Many Years? 7
New? (yes/no) no
Schedule:

Straight (s)
Sum-of-Yrs (y)

Double Dec (d)? d
List? (ves/no) no

DOUBTLE DECLINTING
1 $212,000.00 Used $40,000.00 Residual Value]
| 10 Months Left 06% Tax 50% Tax Bracket]
l Y | Depreciation | Depreciation | Book Value |
r | For Year | Remaining | f
1]s 35,357.14 IS 122,642.86 |$S 162,642.86 |
2|3 34,852.04 I8 87,790.82 I$ 127,790.82 |
| 3 s 27,383.75 's 60,407.07 |sS 100,407.07 |
| 4 1s 21,515.79 |s 38,891.28 | 78,891.28 !
| 5 |s 16,905.27 |$ 21,986.01 |s 6§1,986.01 |
i 6 |$ 13,282.71 |$ 8,703.30 !¢ 48,703.30 |
7 1 8,703.30 S 0.00 !¢ 40,000.00 |

- — - —— —— " — - ——— — — —— —— — ————— ————— —————— — ——— ——————————

e . — — - —— —————— —— ———— ————— — —— ——— - —— - " —— ———————————

| Depreciation $ 35,357.14 Y
1 Sales Tax $ 12,000.00 |
ITC (Adjusted) $ 20,000.00 l
{ Bonus Depreciation $ 2,000.00 :
1 Total for First Year $ 69,357.14 ‘
Direct Reduction in Tax] 34,678.57 l

Type RETURN to Continue

Figure 12.4. Depreciation Schedule Program Part F.

(All Information Contained Herein is Proprietary to Digital Research.)

176

Depreciation Schedule

Selling Price? ,
Residual Vvalue? ,
Sales Tax (%)? ,
Tax Bracket(%)? ,
ProRate Months? 8
How Many Years? ,
New? (yes/no) %
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)? vy
List? (yes/no) n

——— - — —— — —— — — - - ————— - ———— ————— —— — — ——_ —————— — . ——— o ———

! $212,000.00 New $40,000.00 Residual Valuel

8 Months Left 06% Tax 50% Tax Bracket!
| Y | Depreciation | Depreciation | Book value |
I | For Year | Remaining | l

T — > — —— - —— — " —— ———— ——— —— — ——————————————— o

S $ 131,666.67 IS 171,666.67 |
S S 103,452.38 |s 143,452.38 |
$. S 84,978.74 |S 124,978.74 !
S 12,139.82 | 72,838.92 Is 112,838.92 |
S $ 65,034.75 IS 105,034.75 |
S S 60,389.41 |$ 100,389.41 |
$ S I's |

58,232.65 98,232.65

Depreciation S 26,333.33 !
Sales Tax S 12,000.00

ITC (Adjusted) S 40,000.00
Bonus Depreciation $

Total for First Year S 80,333.33
Direct Reduction in Tax S

s o - — o —— - ————— N . — - S . = WS D, . ———— - —————— —— ——— ———

Type RETURN to Continue

Figure 12.4. Devpreciation Schedule Program Part G.
(All Information Contained Herein is Proprietary to Digital Research.)

177

Depreciation Schedule

Selling Price? 310000
Residual value? 30000
Sales Tax (%)?

Tax Bracket (%)? ,
ProRate Months? 12
How Many Years? 5
New? (yes/no) yves
Schedule:

Straight (s)
Sum-of-Yrs (v)

Double Dec (d)? d
List? (yes/no) no

DOUBILE DECLINTING
l $328,600.00 New $30,000.00 Residual Valuel
| 12 Months Left 06% Tax 50% Tax Bracket|
Y | Devreciation | Depreciation | Book Value |
r | For Year Remaining | |
1 |$ 123,200.00 |$ 154,800.00 s 184,800.00 |
2 S 73,920.00 IS 80,880.00 Is 110,880.00 |
3 1 44,352.00 | 36,528.00 | 66,528.00 |
4 s 26,611.20 |$ 9,916.80 IS 39,916.80 |
5 18 9,916.80 |$ 0.00 I3 30,000.00 |

T - —— - — ———— V—— i . > vy w— i ——————— ———————— o —— —— o ———

| Depreciation $ 123,200.00 |
l Sales Tax $ 18,600.00 }
i ITC (Adjusted) $ 62,000.00 !

Bonus Depreciation S 2,000.00 ;
‘ Total for First Year $ 205,800.00 |
l |

Direct Reduction in Tax $ 102,900.00

- —————— ——— T ——— ——— —— —— ————— - S G . — = . - A W = —— - —_ = - - —

Type RETURN to Continue

Figure 12.4. Depreciation Schedule Program Part H.
(All Information Contained Herein is Proprietaryv to Digital Research.)

178

Depreciation Schedule

Selling Price? ,
Residual value? ,
Sales Tax (%)? ,
Tax Bracket(%)? ,
ProRate Months? ,
How Many Years? ,
New? (ves/no) ’
Schedule:
Straight (s)
Sum-of-Yrs (v)
Double Dec (d4)?
List? (ves/no)

~ 0

- ——— - ———— 1 —— —— — ——— ———— —— — ——— ——————— "~ ———— — - ———

l $328,600.00 New $30,000.00 Residual Value]

12 Months Left 06% Tax 50% Tax Bracket]|
| ¥ | Depreciation | Depreciation | Book Value |
| ¢ | For Year | Remaining | l

- ———————— - ——— — . ——————— ———— ———— .) — —— ————— ————————————— ——

1 13 55,600.00 |$ 222,400.00 |$ 252,400.00 |
2 |3 44,480.00 |$ 177,920.00 !$ 207,920.00 |
3 13 35,584.00 |$ 142,336.00 |$ 172,336.00 |
l 4 |3 28,467.20 |s 113,868.80 !S 143,868.80 !
5 18 22,773.76 |s 91,095.04 |$ 121,095.04 |

e ot — ———————— —————— ———— — ——————— - ———————————————

I Depreciation $ 55,600.00 |
‘ Sales Tax $ 18,600.00 |

ITC (Adjusted) $ 62,000.00 |
I Bonus Depreciation $ 2,000.00 }
| Total for First Year $ 138,200.00 I
| Direct Reduction in Tax §$ 69,100.00 |

- —— ————— ———— —— — — —— —————— Y — — — —— ———————————— - —————

Tyoe RETURN to Continue”C

Figure 12.4. Devpreciation Schedule Program Part I.
(All Information Contained Herein is Propbrietary to Digital Research.)

179

