
PLjrM

Language

[ID
DIGITAL

RESEARCHT~

PL/I
Language

Reference Manual

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of Digital Research. Concurrent
CP/M-86, LINK-86, MP/M II, MP/M-86, and PL/I-86 are trademarks of Digital Re­
search. SP/k is a trademark of the University of Toronto. IBM is a trademark of
International Business Machines, Incorporated. Digital Equipment Corporation is a
registered trademark of Digital Equipment Corporation. Z80 is a registered trademark
of Zilog, Inc. Intel is a registered trademark of Intel Corporation. MicroSoft is a
registered trademark of MicroSoft Incorporated.

The PLII Language Reference Manual was prepared using the Digital Research TEX
Text Formatter and printed in the United States of America by Commercial Pressl
Monterey.

First Edition: October 1982

Foreword

The PLfI system is a complete software package for both applications and system
programming. Digital Research has implemented PLfI for both the 8080 and 8086
processors. These implementations are compatible at the source code level. This manual
describes source code requirements for both implementations.

PLII runs under the Digital Research single-user operating systems, CPfM®,
CPfM-86®, or concurrent CPfM-86™. It runs in a multi-user environment under
MPfM IITM or MPfM-86™. This manual assumes you are already familiar with the
operating system you are using and minimizes references to specific operating systems.

The PLfI Language Reference Manual is the formal specification of the PLfI pro­
gramming language. This manual is primarily intended to be a reference document and
is therefore not tutorial in nature. Some previous programming experience with PLfI
or with another language is assumed.

The Language Reference Manual describes the overall structure and organization of
PLfI source programs in the form of blocks and procedures. There is also a specification
of the character set of the language, rules governing the formation of identifiers, con­
stants, delimiters, operators, and comments.

This manual describes the various data types allowed in PLfI, including arrays and
structures, as well as the rules governing conversion between data types. This manual
also describes rules governing the scope of data declarations.

Assignments and expressions, sequence control statements, run-time storage man­
agement, and 110 processing are also described.

Finally, the manual describes all of the PLfI built-in functions including arithmetic,
mathematical, string, conversion, condition, and miscellaneous functions.

III

lV

Table of Contents

1 Introduction

1.1
1.2

Documentation Set
Notation .. .

1
2

2 Program Structure

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

2.15

High-level Organization
Blocks .. .
Internal vs. External Blocks
Scope of Variables
Procedure Blocks
The CALL Statement
The RETURN Statement
Actual and Formal Parameters
The PROCEDURE Statement
Low-level Organization
The Character Set .. .
Identifiers
Constants
Delimiters and Separators
2.14.1 Spaces .. .
2.14.2 Operators
2.14.3 Special Characters
2.14.4 Comments·
Preprocessor Statements
2.15.1 The %INCLUDE Statement
2.15.2 The %REPLACE Statement

3
4
7
9

11
12
12
13
16
19
20
21
21
22
22
22
23
24
25
25
26

3 Data Types and Attributes

3.1 Arithmetic Data .. 27
3.1.1 FIXED BINARY 28
3.1.2 FIXED DECIMAL 29
3.1. 3 FLOAT BINARY 30

v

Table of Contents (continued)

3.2 String Data ... 31
3.2.1 Character-string Data 31
3.2.2 Bit-string Data 32

3.3 Control Data Items 33
3.3.1 LABEL Data 33
3.3.2 ENTR Y Data 34

3.4 POINTER Data .. 36
3.5 FILE Data. 37
3.6 The DECLARE Statement 37
3.7 Multiple Declarations 38
3.8 Default Attributes ... 40

4 Data Conversion

4.1 Arithmetic Conversions 42
4.2 Arithmetic Conversion Functions 45

4.2.1 The FIXED BIF 45
4.2.2 The FLOAT BIF 45
4.2.3 The BINARY BIF 46
4.2.4 The DECIMAL BIF ,............. 46
4.2.5 The DIVIDE BIF 47

4.3 String Conversions .. 47
4.3.1 Arithmetic to Bit-string Conversion.. 47
4.3.2 Arithmetic to Character Conversion 48
4.3.3 Bit-string to Arithmetic Conversion 49
4.3.4 Bit to Character-string Conversion 49
4.3.5 Character to Arithmetic Conversion 49
4.3.6 Character to Bit-string Conversion 50

5 Data Aggregates

5.1 Array Declarations .. 51
5.2 Arra y References .. 53
5.3 Initializing Array Elements 55

VI

Table of Contents (continued)

5.4 Arrays in Assignment Statements 57
5.5 Structures. 58
5.6 Mixed Aggregates ... 61
5.7 Mixed Aggregate Referencing 62

6 Assignments and Expressions

6.1 The Assignment Statement 65
6.2 Expressions. 65

6.2.1 Prefix Expressions 65
6.2.2 Infix Expressions 66

6.3 Precedence of Operators ~ 66
6.4 Concatenation. 67
6.5 Relational Operators 67
6.6 Bit-string Operators 69
6.7 Exponentiation. 69
6.8 Pseudo-variables. 70

6.8.1 Character SUBSTR 70
6.8.2 Bit SUBSTR 71
6.8.3 UNSPEC.... 72

7 Storage Management

7.1 Storage Class Attributes 75
7.1.1 The STATIC Attribute 75
7.1.2 The INITIAL Attribute 76
7.1.3 The AUTOMATIC Attribute........... 77

7.2 Based Variables and Pointers 77
7.3 The ALLOCATE Statement 79
7.4 Multiple Allocations 79
7.5 The FREE Statement 81
7.6 The NULL BIF ... 82
7.7 The ADDR BIF ... 83
7.8 Storage Sharing ... 83
7.9 Programming Considerations 84

Vll

Table of Contents (continued)

8 Sequence Control

8.1 The Simple DO Statement 87
8.2 The Controlled DO Statement ~ 88
8.3 The IF Statement ... 92
8.4 The STOP Statement 93
8.5 The GOTO Statement 93
8.6 The Nonlocal GOTO Statement 95

9 Condi tion Processing

9.1 The ON Statement .. 97
9.2 The SIGNAL Statement 100
9.3 The REVERT Statement 100
9.4 The ERROR Condition 101
9.5 Arithmetic Error Conditions 104
9.6 The ONCODE BIF 105
9.7 Default ON-units ... 106
9.8 I/O Conditions ... 106

10 The OPEN Statement

10.1 The OPEN Statement 107
10.2 Establishing File Attributes 111
10.3 The CLOSE Statement 115
10.4 The File Parameter Block 115
10.5 I/O Conditions ... 116

10.5.1 The ENDFILE Condition 116
10.5.2 The UNDEFINEDFILE Condition 117
10.5.3 The KEY Condition 117
10.5.4 The END PAGE Condition 117
10.5.5 Default I/O ON units............................. 118

10.6 I/O Condition BIFs 118
10.6.1 The ONFILE Function............................. 118
10.6.2 The ONKEY Function.......................... ... 119
10.6.3 The PAGENO and LINENO Functions........... ... 119

viii

Table of Contents (continued)

10.7 Predefined Files ... 119
10.8 I/O Categories ... 120

10.8.1 STREAM I/O 120
10.8.2 RECORD I/O 120

11 Stream I/O

11.1 LIST-directed I/O .. 122
11.1.1 The GET LIST Statement 123
11.1.2 The PUT LIST Statement 123

11. 2 Line-directed I/O ... 124
11.2.1 The READ Varying Statement 124
11.2.2 The WRITE Varying Statement..................... 125

11.3 EDIT-directed I/O .. 126
11.3.1 The Format List 126
11.3.2 Data Format Items 127
11. 3. 3 Control Format Items 130
11. 3.4 Remote Format Items 131
11.3.5 The FORMAT Statement 132
11. 3.6 The Picture Format Item 132
11.3.7 The GET EDIT Statement 141
11.3.8 The PUT EDIT Statement 141

12 Record I/O

12.1 The READ Statement 143
12.2 The READ with KEY Statement '....... 143
12.3 The READ with KEYTO Statement 144
12.4 The WRITE Statement 144
12.5 The WRITE with KEYFROM Statement 145

13 Built-in Functions

13.1 Arithmetic Functions 147
13.2 Mathematical Functions 147
13.3 String-handling Functions 148

ix

Table of Contents (continued)

13.4 Conversion Functions 149
13.5 Condition-handling Functions 149
13.6 Miscellaneous Functions 149
13.7 List of BIFs .. 154

Appendixes

A PL/I Statements 173

B Data Attributes ... 181
B.l ALIGNED... 181
B.2 AUTOMATIC. 181
B.3 BASED.. 181
B.4 BINARY. 182
B.5 BIT... 182
B.6 BUILTIN.. 182
B.7 CHARACTER. 182
B.8 DECIMAL. 183
B.9 ENTRy... 183·
B.I0 ENVIRONMENT.. 183
B.ll EXTERNAL ... 184
B.12 FILE .. 184
B.13 FIXED .. 184
B.14 FLOAT.. 184
B.15 INITIAL .. 185
B.16 LABEL .. 185
B.17 POINTER... 185
B.18 RETURNS .. 185
B.19 STATIC... 185
B.20 VARIABLE .. 186
B.21 VARyING... 186

x

Table of Contents (continued)

C ASCII and Hexadecimal Conversions 187

D Implementation Notes ... 193

E PL/I Bibliography ... 195

F Glossary ... 199

List of Figures
2-1 Begin and Procedure Blocks S
2-2 Internal and External Blocks 8
2-3 Subroutine and Function Invocation 12
2-4 Actual and Formal Parameters 13

5-1 Two-dimensional Array .. S2
5-2 Array Element References S3
5-3 Array Initialization .. SS
5-4 Hierarchy of Structure Levels 60
5-5a An Array of Structures ... 62
5-5b A Structure of Arrays .. 63

7-1 Multiple Allocations of a Based Variable 80
7-2 Linked List ... 82

9-1 On-unit Activation .. 99

xi

Table of Contents (continued)

List of Tables
2-1 PL/I Symbols ... 20
2-2 PL/I Operators 22
2-3 Special Character Delimiters and Separators 23

-3-1
3-2

PL/I Float Binary Numbers
Bit-String Constant Formats

30
33

4-1 Character to Arithmetic Conversion 50

6-1
6-2

PL/I Operator Precedence
PL/I Bit-String Operators

66
69

9-1 Error Codes-Group A .. 102
9-2 Arithmetic Error Condition Codes 104

10-1 PL/I Implied Attributes .. 112
10-2 Valid File Attributes for each 1/0 Statement 112
10-3 PL/I Valid File Attributes 113

11-1 Stream 1/0 Naming Conventions 121
11-2 Picture Format Characters 133
11-3 Picture Output Characters 135
11-4 Picture Edited Output ... 134
11-5 Picture Edited Output ... 140

C-1 ASCII Symbols ... 187
C-2 ASCII Conversion Table 187

xii

Section 1
Introduction

PLfI is an implementation of PLfI for microcomputers that use the 8080, 8086, 8088
or similar processor. It is formally based on the ANSI General Purpose Subset (Subset
G) as specified by the ANSI PLfI Standardization Committee X3J1. Subset G has the
formal structure of the full language, but in some ways it is a new language and in
many ways an improved language compared to its parent.

PLfI Subset G is easier to learn and use, and it is a highly portable language because
its design generally insures hardware independence. It is also more efficient and cost
effective as programs written in PLfI Subset G are easier to implement, document, and
maintain. In many ways PLfI Subset G can be considered the first high-level, stan­
dardized, general-purpose programming language.

1.1 Documentation Set

The PLfI Language Reference Manual presents a detailed but concise description of
the PLfI programming language. It is not a tutorial on how to program in PLfI, but
rather a functional description of the language, its syntax, and semantics. This manual
is a reference document that supplements Digital Research's PLfI Language Program­
ming Guide.

The PLfI Language Programming Guide includes example programs that illustrate
many of the features of PLfI, as well as the mechanical aspects of compiling and linking
programs. If you have not programmed in PLfI before, you should read the Program­
ming Guide first, while cross-referencing specific topics in the Reference Manual. If
you are already an experienced PLfI programmer, you might want to read the Reference
Manual only.

The PLfI Language Command Summary lists all the PLfI keywords and statement
forms, data attributes, and error messages. It also contains a summary of the commands
for the Compiler.

1

1.2 Notation PL/I Language Reference Manual

1.2 Notation

2

The following notational conventions appear throughout this document:

• Words in capital letters are PL/I keywords.
• Words in lower-case letters or in a combination of lower-case letters and digits

separated by a hyphen represent variable information for you to select. These
words are described or defined more explicitly in the text.

• Example statements are given in lower-case.
• the vertical bar I indicates alternatives.
• }S represents a blank character.
• Square brackets [] enclose options.
• Ellipses ... indicate that the immediately preceding item can occur once, or any

number of times in succession.
• Except for the special characters listed above, all other punctuation and special

characters represent the actual occurrence of those characters.
• Within the text, the symbol CTRL represents a control character. Thus, CTRL­

C means control-C. In a PL/I source program listing or any listing that shows
example console interaction, the symbol A represents a control character.

• The acronym BIF refers to one of the PL/I built-in functions.

End of Section 1

Section 2
Program Structure

2.1 High-level Organization

Every PL/I program is composed of statements from the following general categories:

• Structural statements
• Declarative statements
• Executable statements

Structural statements define distinct, logical units within a program and therefore
determine the overall, high-level organization. When a program executes, control always
flows from one of these logical units to another. Logical units can contain other logical
units; they can be nested. Structural statements also determine the hierarchical structure
of a program where some logical units are subordinate to others.

Declarative statements determine the environment of a logical unit. The environment
is simply the names and attributes of variables that are available or active in a logical
unit. Declarative statements specify the context of variables that can be legally manip­
ulated in a logical unit.

Executable statements are statements that perform some action. Both structural
statements and declarative statements serve only to create a context for executable
statements. All executable statements fall into o~e of the following categories:

• Preprocessor statements that execute at compile time and manipulate external
source files.

• Assignment statements that assign the value of an expression or constant to a
variable.

• 110 statements that control the flow of data to and from 110 devices.
• Memory management statements that manipulate storage.
• Sequence control statements that transfer the flow of control between logical

units.
• Condition handling statements that allow a program to intercept and recover

from run-time errors.
• Null statements that perform no action but function as placeholders.

3

2.1 High-level Organization PL/I Language Reference Manual

All PL/I statements, except the assignment statement, consist of an optional label,
followed by a keyword and statement body, and end with a semicolon. Subsequent
sections of this manual describe each type of statement in detail. For reference, Appendix
B contains a complete alphabetical list of PL/I statement formats.

2.2 Blocks

PLiI is a block-structured language. This means that you group one or more state­
ments into logical units called blocks. A block is a collection of statements in which
declared variables are known. Inside a block, you can declare variables and, for certain
variables, you can allocate and free storage. You can nest blocks in one another, but
not overlap them.

There are two types of blocks: BEGIN blocks and PROCEDURE blocks. A BEGIN
block is a sequence of statements delimited by BEGIN and END statements. A PRO­
CEDURE block is delimited by PROCEDURE and END statements.

A BEGIN block has the following format,

[label:]
BEGIN;
statement-l;

statement-n;
END [label];

where statement-l through statement-n are any PL/I statements constituting the body
of the block. BEGIN blocks can contain nested PROCEDURE blocks, and nested
BEGIN blocks. In PL/I, the label option for the END statement does not automatically
cause the block to balance, as it does in some full language implementations.

4

PL/I Language Reference Manual

A PROCEDURE block has the following format,

proc-name:
PROCEDURE-statement;
statement-1;

statement-n;
END [proc-name];

2.2 Blocks

where proc-name identifies the procedure, and statement-1 through statement-n are
any PL/I statements.

Note: the proc-name is optional for the END statement, but if included it must match
the proc-name label for the PROCEDURE statement.

The essential difference between a BEGIN block and a PROCEDURE block is how
they receive control during program execution. Control flows into a BEGIN block in
the usual sequential manner. At this point, the block becomes active. When control
transfers, programmatically, outside the block, or its corresponding END statement
executes, the block terminates.

PL/I skips PROCEDURE blocks during the usual execution seauence, and they receive
control only when invoked (see Section 2.S.) Figure 2-1 illustrates the block concept.

PROCEDURE block BEGIN block

A: .--begin;
procedure options (main);

statement (s) statement(s)

end A; ,--end;

Figure 2-1. BEGIN and PROCEDURE Blocks

2.2 Blocks PL/I Language Reference Manual

A:
procedure options (main);

begin;

[
b~in;

end;

end;

end A;

Figure 2-1. (continued)

6

PL/I Language Reference Manual 2.3 Internal vs. External Blocks

2.3 Internal vs. External Blocks

In PLII, each block is categorized as either internal or external depending on its
relationship with other blocks.

Note: an external procedure is separate from other blocks. The procedure is not con­
tained, nested, in any other block. Thus the main procedure is always an external
procedure. An internal procedure is one that is contained in an encompassing block.

A PL/I program can have one or more external procedures that contain nested internal
procedures or blocks. Each external procedure can be separately compiled and linked
together to form a runnable program. One of the external procedures forming the
program must be the main procedure.

In Figure 2-2(a), blocks PI, P2, and P3 are all external but the BEGIN block is
internal to P3. In Figure 2-2(b), PI is the external block, and P2, P3, and the BEGIN
block are all internal. The format of the main procedure is:

proc-name:
PROCEDURE OPTIONS(MAIN);

Statements or Blocks

END [proc-name];

7

2.3 Internal vs. External Blocks

P1:

[

procedure options(main);

end P1;

P2:

[
procedure;

end P2;

P3:
procedure;

[begin;
end;

end P3;

(a)

PL/I Language Reference Manual

P1:
procedure options(main);

P2:

[
procedure;

end P2;

P3:
procedure;

[begin;
end;

end P3;

end P1;

(b)

Figure 2-2. Internal and External Blocks

The PLII Language Programming Guide contains specific examples of program
structure and how you can separately compile, link, and load external procedures.

8

PL/I Language Reference Manual 2.4 Scope of Variables

2.4 Scope of Variables

The scope of a variable is the set of blocks in which the variable is known. Variables
can be either local or external relative to a block in which they appear.

When you declare a variable in a block, you can reference it in that block or any
contained block. The variable is said to be local to that block because you cannot
reference it outside the block where you declare it. In a contained block, a reference
to a variable declared in a containing block is called an up-level reference.

The following example illustrates the concept of scope:

Pi:
procedure;
declare
(afb) fixed binary(7);
a = 2; 1* a is local to Pi *1
b = 3; 1* b is local to Pi *1
P2:

procedure;
declare
b fixed binary(7);
b = 2; 1* b is local to P2 *1
a = a*b; 1* b here refers to P2 bt not Pi b *1

end P2;
put list (afb);

end Pi;

PL/I creates a new variable b in block P2 because it is a declared variable in that
block. The PUT LIST statement is outside P2; therefore, the value of the variable b of
Pi is 3. Because there is no declaration for the identifier a in P2, a is an up-level
reference to the variable a declared in Pi, and the assignment statement in P2 changes
its value. Thus, this code sequence produces the values 4 and 3.

Any variable declared as EXTERNAL is known to all blocks in which it is declared
as EXTERNAL and in all contained blocks unless redeclared without the EXTERNAL
attribute. Two declarations of the same variable name denote separate storage locations
unless both specify the EXTERNAL attribute.

9

2.4 Scope of Variables PL/I Language Reference Manual

i
p

1 : pro c e d u r e ;
declare
z fixed binary external;

P,.,· .:.. .
procedure;
declare
z fixed binary external;

P3:

[
~::i: ~e
z float binary; 1* not external *1

end;
end P3;

end P2;
end Pi;

In this code sequence, the variable z in P1 and P2 refers to the same external variable,
but variable z in P3 is a local variable and is distinct from the external variable z.

10

PL/I Language Reference Manual

Pi:
procedure options(Main);
declare x float binary;

begin;
declare x fixed;

-end;

P2:
procedure;
declare x character(10) varying;

end P2;

end Pi;

2.4 Scope of Variables

In this sequence, the scope of x is limited to each block in which it is declared.
Although the name is identical in each declaration, the Compiler treats each one as a
completely different variable with its own data type, and stores them in different
memory locations.

2.5 Procedure Blocks

In PL/I, there are two types of procedures: subroutines and functions. Both types
perform a specific task and are logically separate from the rest of the program. Both
types can execute the same sequence of code one or more times without duplicating
the code at each occurrence.

You invoke or call a subroutine and, optionally, pass data items to it in an argument
list. The subroutine then manipulates the data and, optionally, returns it to the invoking
procedure. Control resumes at the statement immediately following the invocation.

11

2.5 Procedure Blocks PL/I Language Reference Manual

A function is a procedure that manipulates data items and then returns a single
value. You invoke a function by referencing its function name and argument list in a
statement. Control passes to the function that performs its task and then returns a
single value that replaces the function reference. Control then resumes at the point of
reference.

2.6 The CALL Statement

The general form of the CALL statement is

CALL proc-name[(sub-l, ... ,sub-n)] [(arg-l,oo.,arg-m)];

where sub-l through sub-n are optional subscripts that are required only when proc­
name is a subscripted entry variable (Section 3.3.2). Arg-l through arg-m represent
the actual parameters passed to the procedure. Figure 2-3 illustrates the invocation of
subroutines and functions.

Subroutine invocation:

CALL name ~ [argument(s)]; ~

Subroutine name~ argument list ~
example:

call print_ header;

call compute (base_pay ,overtime);

Function invocation:

name~ [argument(s)] ~

functiS argument l~
example:

point = 3.14/sin(A);
put list (sum (X, Y));

Figure 2-3. Subroutine and Function Invocation

2.7 The RETURN Statement

The RETURN statement returns control to the point in the calling block immediately
following the procedure invocation. It also returns a value if the procedure is a function
procedure. .

12 It"J fORiVl/\TION

2.7 The RETURN Statement PL/I Language Reference Manual

The general form of the RETURN statement is

RETURN [(return-exp)] ;

where return-exp is the function value the procedure returns to the calling point. When
necessary, PL/I converts the returned value to conform to the attributes specified in
the RETURN option of the procedure statement.

The RETURN statement ends the procedure block that contains it. If the main
procedure has the RETURNS attribute, PL/I returns control to the operating system.

Some examples of valid RETURN statements are shown below:

return;
return ()-(**2);

return (F(A t(5»);

2.8 Actual and Formal Parameters

The data items that you transmit to a procedure are called the actual parameters,
while the data items expected by a procedure and defined in the PROCEDURE state­
ment, are called the formal parameters. Upon invocation of a procedure block, PL/I
pairs each actual parameter with its corresponding formal parameter as shown in Figure
2-4 below.

!
call compute (a + (b + c),rl2,3.14);

actual parameter list

compute: procedure (X,Y,Z);
formal parameter list

~----------------------------------

end compute;

Figure 2-4. Actual and Formal Parameters

13

2.8 Actual and Formal Parameters PL/I Language Reference Manual

When you pass the actual parameter by reference, the actual parameter and corre­
sponding formal parameter share storage. In this case, any changes made to the formal
parameter in the invoked procedure change the value of actual parameter of theinvok­
ing block.

When you pass the actual parameter by value, the actual and formal parameters do
not share storage. In this case, PLII passes a copy of the actual parameter to the invoked
procedure, so that any changes to the formal parameter affect only the copy, not the
actual parameter value.

The following example program illustrates parameter passing.

A:
procedure;
declare

ACTUAL fixed binarYt
DUMMY fixed binary;

call X(ACTUAL);
call }{«DUMMY»;

[}{~rocedure (FORMAL);

declare FORMAL fixed
FORMAL = 3;

end }n

end A;

binary;

PL/I passes ACTUAL by reference. Therefore, the assignment statement in the pro­
cedure.X changes the value of ACTUAL throughout the program. PL/I passes DUMMY
by value. Thus the procedure only changes a copy of the value inside the procedure.

14

PL/I Language Reference Manual 2.8 Actual and Formal Parameters

PLfI passes actual parameters by reference when the data attributes of the actual
parameter are the same as the data attributes of the formal parameter. PLfI passes an
actual parameter by value when it is one of the following:

• a constant
• an entry name
• an expression consisting of variable references and operators
• a variable reference enclosed in parentheses
• a function invocation
• a variable expression whose data type does not match that of

the formal parameter

In the latter case, PLII converts the actual parameter to the type, precision, and scale
of the formal parameter. The following program illustrates this concept:

A:
procedure;

declare
}-{ character (7) t

(YtZ) fixed binar't';

call p(}-{ dY) tZ);

P:

end

end

procedure(AtBtC) ;
declare

A
B
C

p ;

A;

A character (7) t

B fixed binarYt
C float binary;

= 'Digital I ;
= 100;
= 2.5E2;

15

2.8 \ctual and Formal Parameters PL/I Language Reference Manual

The CALL statement sends the procedure three actual parameters X, Y, and Z cor­
responding to the three formal parameters A, B, and C. PL/I passes the first actual
parameter by reference because it matches the formal parameter, and the second param­
eter by value because it occurs as an expression. PL/I converts the third parameter to
the FLOAT data type and passes it by value.

2.9 The PROCEDURE Statement

In PL/I, you can define a procedure with a procedure statement at any point in a
program. However, for readability you should place all procedures together in a single
section at the end of the main program. The main program is, itself, a single-procedure
definition.

The procedure statement identifies the entry point to the procedure, delimits the
beginning of the) procedure block, defines the formal parameter list, and gives the
attributes of the returned value for functions. The procedure can consist of a sequence
of one or more statements including the corresponding END statement that ends the
procedure definition. The END statement can also be the exit point of the procedure,
although embedded RETURN statements can appear within the procedure body.

The general form of the procedure statement is,

proc-name: PROCEDURE[(parm-l, ... , parm-n)]
[OPTIONS(option, ...)] [RETURNS(attribute-list)]
[RECURSIVE] ;

where parm-l through parm-n are the formal parameters for the procedure which you
must declare within the procedure body at the principle block level. A formal parameter
can be,

• a scalar variable
• an array
• a major structure

but cannot have the attributes:

• STATIC
• AUTOMATIC
• BASED
• EXTERNAL

16

PL/I Language Reference Manual 2.9 The PROCEDURE Statement

[OPTIONS(option, ...)] defines a list of one or more of the options MAIN, STACK(b),
or EXTERNAL.

The MAIN option identifies the procedure as the first procedure to receive control
when the program begins execution.

The ST ACK(b) option sets the size of the run-time stack to the number of bytes
specified by b. The default value is 512 bytes.

The EXTERNAL option identifies the procedure as an externally compiled proce­
dure. It is often useful to group separately compiled procedures into a single compi­
lation, where the procedures reference the same global data. According to the Subset
G standard, you must compile each subroutine separately, and duplicate the global
data area in each compilation. You can then combine the individual modules using the
linkage editor to produce the object module.

In PL/I, an EXTERNAL option in a procedure heading makes the procedure acces­
sible outside the module.

Note: for compatibility with future implementations of PL/I from Digital Research,
you should only mark the top level procedures as OPTIONS(EXTERNAL), and you
should declare all globally accessed data as STATIC. A compilation containing a group
of EXTERNAL procedures should consist of subroutines only, with no main program.

17

2.9 The PROCEDURE Statement PL/I Language Reference Manual

The following code sequence shows an example of how to use the EXTERNAL
option:

18

ITlodule:
procedure;
declare

1 Slobal data static,
2 a field character(20) varyins initial("),
2 b field fixed initial(O),
2 c field float initial(O);

[se:r:~edure (0) options(external);
declare c character(20) varyinS;
a field = c;

end set a;

[

s e: r ~ ~ e d u r e (x) 0 p t ion 5 (ext e rn a I) ;
declare x fixed;
b field = x;

end set b;

[

s e : r : ~ e d u r e (y) 0 p t ion s (ext ern a I) ;
declare y float;
c field = y;

end set c;

[

s u: ~ 0 c e d u r ere t urn s (flo at) 0 p t ion s (ext ern a I) ;
return (b field + c field);

end SUITd

[

displaY:
procedure options(external);
put sKip list(a_field tb_field tc_field);

end display;
end fTlodule;

PL/I Language Reference Manual 2.9 The PROCEDURE Statement

This code defines five external procedures: set_a, set_b, set_c, sum, and display. These
procedures are then accessed in the code sequence shown below:

-c a 11 ext:
procedure options(main);
declare

set a entrY (character(ZO) varying) t
set b entrY (fixed) t
set c entrY (float) t
SUftl returns(float) t

displa>' entrY;
call set a(\JohnsontJ/);
call set b(Z5);
call set c(5.50);
put sKip list(sum(»;
call display();

end call ext;

These two code sequences when compiled separately and linked together, form a
single runable program.

PL/I requires the RETURNS attribute list for a function procedure to give the char­
acteristics of the value returned by the function.

The RECURSIVE attribute indicates that the procedure can activate itself, either
directly or indirectly, while the procedure is executing.

2 10 Low-level Organization

The low-level organization of PL/I source text includes a specification of the character
set and the rules for forming identifiers, both keywords and declared names, operators,
constants, delimiters, and comments.

PL/I is a free-format language. The source program consists of a sequence of ASCII
characters that make up lines delimited by carriage return characters. You can enter
the source text without regard for column position or specific line format. However,
the source text is easier to read and comprehend if you follow some basic formatting
rules:

• Place only one statement on a line.
• Use indentation to show the nesting level of blocks and DO-groups.

19

2.10 Low-level Organization PLfI Language Reference Manual

You can create the PLfI source program using ED the CPfM Context Editor or a
similar text editor.

Note: all PLfI source programs must have the filetype PLI.

2.11 The Character Set

The PLfI character set consists of both upper- and lower-case letters, numeric digits,
and other symbols. Table 2-1 shows the symbols recognized by PLfI and briefly describes
their use.

Symbol

+

*

%

&

\

I
>
<

$

20

Table 2-1. PLfI Symbols

Meaning

equal sign (assignment)
plus sign (addition)
minus sign (subtraction)
asterisk (multiplication)
slash (division)
left parenthesis (delimiter)
right parenthesis (delimiter)
comma (separator)
period (name qualifier)
percent symbol (INCLUDE or REPLACE prefix)
apostrophe (string delimiter)
semicolon (statement terminator)
colon (separator for ENTRY or LABEL constant)
circumflex (logical Not symbol)
tilde (alternative Not symbol)
ampersand (logical And symbol)
exclamation mark (alternative Or symbol)
backslash (alternative Or symbol)
vertical bar (logical Or symbol)
right angle bracket (greater than)
left angle bracket (less than)
break or underscore' (for readablity in identifiers)
dollar sign (valid character in identifiers)
question mark (valid character in identifiers)

PL/I Language Reference Manual 2.12 Identifiers

2.12 Identifiers

An identifier is a string of from one to thirty-one characters that are either letters,
digits, or the underscore. The first character must be a letter. PL/I always represents
letters internally in upper-case. Therefore, two identifiers that differ only in case rep­
resent the same identifier.

PL/I allows the question mark character to be embedded in identifiers to allow access
to external system entry points.

Note: it is good practice to avoid embedded question marks to maintain upward
compatibility with full PL/I.

Every identifier in the source text of a PL/I program must be either a keyword or a
declared name. Keywords are those identifiers that have a special meaning in PL/I when
used in a specific context. Examples of keywords are the names of built-in functions,
statements, and data attributes. The PLII Language Command Summary contains a
complete list of keywords.

Declared names are identifiers whose use or meaning you define in a DECLARE
statement (Section 3.6). A keyword can appear in a declaration as a user-defined
identifier. The meaning of the identifier depends on how and where it appears. PL/I
determines the meaning in context. For example, INDEX is a keyword because it is
the name of a PL/I built-in function. However, in the context of the declaration,

declare index fixed binary;

index is a declared name and not a keyword.

2.13 Constants

Constants are text items that have a fixed literal meaning that cannot change during
program execution. In PL/I, the basic constants are:

• arithmetic (Example: 3674.799)
• character string (Example: 'Ada Lovelace')
• bit string (Example: '00010110')

21

2.14 Delimiters and Separators PLfI Language Reference Manual

2.14 Delimiters and Separators

Separate items, such as identifiers, must be distinguishable. PLfI recognizes certain
characters as delimiters and separators.

Generally, delimiters enclose one or more text items while separators mark the end
of one item and the beginning of another. In PLfI, each identifier and arithmetic constant
must be preceded and followed by one or more delimiters or separators. Delimiters
can be either spaces, operators, or certain special characters.

2.14. 1 Spaces

In PLfI, a space can be either a blank, or a tab (CTRL-I). PLfI ignores any carriage
return, line-feed, or carriage return line-feed sequence that is embedded in a string
constant. For example, the assignment statement,

string = 'WHEN YOU HAVE A VERY LONG STRING LIKE THIS, PUI ALLOWS
YOU TO PUT SOME OF IT ON ANOTHER LINE';

assigns the specified character string to the variable string. Any blanks or tabs that
precede ALLOWS are included in the string.

2.14.2 Operators

An operator is a symbol for a mathematical or logical operation. There are four
types of operators in PLfI as shown in Table 2-2.

Note: operators that consist of two characters, such as > =, are called composite
operators and must not be separated by blanks or other spaces.

22

Table 2-2. PLfIOperators

Symbol

+

*

**

Meaning

Arithmetic Operators

addition or prefix plus
subtraction or prefix minus
multiplication
division
exponentiation

PL/I Language Reference Manual 2.14 Delimiters and Separators

Table 2-2. (continued)

Symbol Meaning

>
A> or->

>=

= or-=
<=

<
A< or-<

Comparison Operators

greater than
not greater than
greater than or equal to
equal to
not equal to
less than or equal to
less than
not less than

Bit-string Operators

or not
& and

! or I or

The String Operator

!! or II concatenate

2.14.3 Special Characters

Table 2-3 shows the special characters that can also function as delimiters or sep­
arators in PL/I. Subsequent sections of the manual contain examples of their use.

Table 2-3. Special Character Delimiters and Separators

Character Function

A colon separates ENTRY and LABEL constants.

A semicolon terminates statements.

A comma separates elements of a list.

23

2.14 Delimiters and Separators PL/I Language Reference Manual

Table 2-3. (continued)

Character Function

A period separates items in a qualified name.

A single quote is a delimiter for the specification of character and
bit-string constants.

- > The arrow is a composite pair of the minus sign and the right
angle bracket. It is a separator in a pointer qualified reference.

An equal sign is a separator in an assignment statement.

Left parenthesis.

A right parenthesis together with a left parenthesis is used as a
delimiter pair to enclose lists and extents, define the order of
evaluation of expressions, and separate keywords from statements
and option names.

2.14.4 Comments

Comments providedocunientary text in a PL/I source program. The Compiler ignores
comments, so you can place them wherever a delimiter is appropriate. Precede a com­
ment by the composite pair /* and end the comment by the reverse composite pair
* /. For example:

get list(nafTle); 1* read the naMe *1

24

PL/I Language Reference Manual 2.15 Preprocessor Statements

2.15 Preprocessor Statements

PL/I allows modification of the source program or inclusion of external source files
at compile time through the use of preprocessor statements. Preprocessor statements
are identified by a leading % symbol before the keyword:

INCLUDE or REPLACE

2.15.1 The %INCLUDE Statement

The %INCLUDE statement copies PL/I source text from an external file at compile
time. The statement is useful for filling in a structure declaration or format list. The
form of the statement is

%INCLUDE 'filespec';

where filespec designates the file to copy into the source program. Filespec must be a
standard CP/M file specification, [d:]filename[.typ], and must be enclosed in paren­
theses. If there is no drive specification, PL/I assumes the drive containing the source
program. When the Compiler encounters the %INCLUDE statement in the source file,
it begins reading the file specified by % INCLUDE. When the Compiler reaches the
end of the %INCLUDE file, it resumes reading the original source file.

The following code sequence is an example of the %INCLUDE statement:

f :
procedure;
declare a fixed binary;
%include 'struc.lib';
declare c float;

end f;

The Compiler includes the source text from the file struc.lib at the point of the %INCLUDE
statement.

Note: PL/I does not allow nested %INCLUDE statements.

25

2.15 Preprocessor Statements PL/I Language Reference Manual

2.15.2 The %REPLACE Statement

The %REPLACE statement allows the Compiler to replace constants for defined
identifiers throughout the source program. The form of the statement is:

%REPLACE identifier BY constant;

The Compiler replaces every occurrence of the given identifier in the source text with
the specified constant. The constant can be any string or unsigned arithmetic constant.
You can write multiple %REPLACE statements as a single %REPLACE statement,
with the elements separated by commas.

For example, the statement

%replace true by \l/b;

replaces all occurrences of true by the constant bit string'l'b, so that the Compiler
interprets the statement,

do l...Jhile (true);

as:

do while ('lib);

PL/I requires that all %REPLACE statements occur at the outer block level before
any nested inner blocks.

Note: to facilitate program maintenance and debugging, you should write all %REPLACE
statements directly following the procedure heading.

End of Section 2

26

Section 3
Data Types and Attributes

Data items in a PL/I program are either constants or variables. A constant is a data
item whose value does not change during program execution, while the value of a
variable can change during execution.

Every data item is associated with a set of properties called attributes that include
such things as a range of subscript values, the operations that can be applied, and the
amount of storage required. The DECLARE statement explicitly assigns attributes to
data variables, while in some cases, such as constants, attributes are implicitly assigned
by system defaults (see Section 3.6).

Data variables can represent single data items. A single data item, either a variable
or constant, is called a scalar. Data variables can also represent multiple data items
called aggregates. (Section 5 describes data aggregates.)

PL/I supports six types of data:

• arithmetic
• string
• pointer
• label
• entry

• file

The following sections describe each of these data types in detail.

3.1 Arithmetic Data

PL/I supports three types of arithmetic data:

• FIXED BINARY for representing integer values
• FLOAT BINARY for representing very large or very small numbers, with the

decimal point allowed to float
• FIXED DECIMAL for representing decimal integers or fractions with a ,fixed

number of fractional digits

27

3.1 Arithmetic Data PLfI Language Reference Manual

Each arithmetic data item has an associated precision and scale value expressed as
integer constants p and q enclosed in parentheses. The precision p specifies the
number of decimal or binary digits the data item can contain. For FIXED DECIMAL
numbers, the scale q specifies the number of digits to the right of the decimal point.
If you do not explicitly declare the precision and scale of a variable in a DECLARE
statement, PLfI implicitly supplies them according to default rules.

3.1.1 FIXED BINARY

FIXED BINARY data represents integers. A variable declared as FIXED BINAR Y[(p)]
is an integer that has p binary digits. The maximum range of pis:

1 <= P <= 15

PLfI internally represents this data type in two's complement form. Therefore, the range
of a FIXED BINARY number is from -32768 to +32767.

The amount of storage PLfI allocates for a FIXED BINARY number depends on the
precision you declare.

If p < = 7, then PLfI allocates one byte;
if p > 7, then PLfI allocates two bytes.

The default precision for FIXED BINARY is fifteen. Declaring a variable as FIXED,
BINARY, or FIXED BINARY is equivalent to declaring it as FIXED BINARY(15).

Note: assigning values to FIXED BINARY variables outside the legal range produces
undefined results.

PLfI treats decimal integers in the source program as FIXED BINARY data only if
they appear in contexts that require FIXED BINARY values, such as subscripts or
arithmetic operations involving other FIXED BINARY data. Otherwise, constants default
to FIXED DECIMAL. In PLfI, conversion from other types of data usually occurs with
truncation (Section 4 has the conversion rules). For example, the following code assigns
the value one to the variable I.

declare 1 fixed binary;
1=1.88;

28

PL/I Language Reference Manual 3.1 Arithmetic Data

3.1.2 FIXED DECIMAL

FIXED DECIMAL data is used for calculations where exact decimal values must be
maintained, as for example, in commercial applications. FIXED DECIMAL data with
a zero scale factor can also represent integer data.

A variable declared as FIXED DECIMAL[(p[,q])] is a decimal number with a sign,
a total of p decimal digits, with q digits to the right of the decimal point. The
maximum number of digits p for FIXED DECIMAL is fifteen, and the scale q must
be less than the precision. The range of a FIXED DECIMAL number x IS

-10**(p-q) < Ixl < 1Q**(p-q)

where:

1 < = P < = 15 and ° < = q < = P

In PL/I, all decimal constants, except those used in a FIXED BINARY context, with
or without a decimal point default to FIXED DECIMAL. The default precision and
scale for FIXED DECIMAL is (7,0). Also, the form of a constant implicitly determines
its default precision and scale. For example:

3.25 defaults to FIXED DECIMAL(3,2)
302 defaults to FIXED DECIMAL(3,0)

Internally, PL/I represents decimal numbers in nine's complement BCD format. The
number of bytes occupied by a FIXED DECIMAL number depends on its declared
precison. If the precision is p, the number of bytes reserved is the integer part of,

(p+2)/2

resulting in a minimum of one byte and a maximum of eight bytes.

PL/I truncates any value whose scale is greater than the FIXED DECIMAL variable
to which it is assigned. Also, PL/I signals a FIXED OVERFLOW error if a value assigned
to the variable has more significant digits to the left of the decimal point than the
declared precision of the variable allows.

29

3.1 Arithmetic Data PLII Language Reference Manual

3.1.3 FLOAT BINARY

FLOAT BINARY data is useful in scientific applications for representing very large
or very small numbers. A variable declared as FLOAT BINARY(p) has three parts: a
sign, s; p binary digits that are the fraction, or mantissa, and represent significant
digits of the number; and an integer exponent e, that represents the scale factor. For
example, the FLOAT BINARY number 3.56E3 has the following parts:

Sign7 mantiSS7 expon7
+ 3.56 3

PL/I supports both single-precision and double-precision FLOAT BINARY numbers.
The following table shows the allowed precisions and the approximate range of mag­
nitudes for each type.

Table 3-1. PLII FLOAT BINARY Numbers

Type Precision p Range r

single 1 <= P <= 24 5.88*10**-39 <= Ixl <= 3.40*10**38

double 25 <= P <= 53 9.46*10**-308 <= Ixl <= 1.80*10**308

The default precision for FLOAT BINARY is twenty-four, so declaring a variable
FLOAT is equivalent to declaring it FLOAT BINARY(24).

A FLOAT BINARY constant is a number expressed in scientific notation as a sequence
of decimal digits with an optional decimal point followed by the letter E, followed by
an optionally signed decimal integer exponent. For example, the following code

A = 2.3E2;
B = -L1~G7E+5;
C = 1.98E-2;

assigns the value 230 to A, -467000 to B, and 0.0198 to c.

30

PL/I Language Reference Manual 3.1 Arithmetic Data

You can mix constants of different data types in an expression. PL/I automatically
converts to the common data type before evaluating the expression. For example, in
the following code sequence,

declare P float binary;

p = p + 3.14159;

PL/I converts the FIXED DECIMAL constant 3.14159 to FLOAT BINARY format
before performing the addition.

3.2 String Data

PL/I supports two types of string data:

• character string
• bit string

A character string is any sequence of ASCII characters, including the empty or null
sequence. A bit string is a sequence of bits. The length of a string is the number of
characters or bits in the string. The following sections describe each type of string data.

3.2 1 Character-string Data

A variable declared as CHARACTER(n) is a character string of length n, where n
is a value between 1 and 254. For example, the statement

declare A character(10);

defines the variable A as a character string ten characters long. If a character string
assigned to A is shorter than A, PL/I pads the string with blanks on the right to the
length of A. If a longer string is assigned to A, PL/I truncates the string on the right.

Character-string constants are a sequence of characters enclosed in apostrophes. If
an apostrophe is part of the string, it is written as two consecutive apostrophes. Thus,
the string constant whose value is,

31

3.2 String Data PL/I Language Reference Manual

What's Happening?

is written as:

'What"s Happening?'

The null or empty character string has a length of zero and is defined by using two
consecutive apostrophes.

Character-string variables can also have the VARYING attribute indicating that the
variable can represent varying length strings to a maximum length of n. For example,
the statement

declare A character(10) varying;

defines· A to represent any character-string value whose length is not greater than ten.

PL/I allows control characters in string constants. The circumflex character " in a
string constant indicates a control character. PL/I masks the high-order three bits of
the character to zero, thus converting the string "M, or "m, to a carriage return character.
Similarly, it converts the string "I to the horizontal tab character. PL/I translates a
double circumflex "" within the string to a single" character.

Note: PL/I programs should avoid using the control character feature if compatibility
is a requirement, because the circumflex is not available in other PL/I implementations.

3.22 Bit-string Data

Bit strings represent logical data items. A bit string containing all zero-bits is false;
a bit string containing anyone-bits is true.

A variable declared as BIT(n) is a bit-string data item containing n binary digits,
where n is a value between one and sixteen. For example, the statement,

declare A bit(3);

defines a bit string of length three. Bit-string assignments follow the same rules as for
character strings, except that padding is done with zero-bits instead of blanks.

Note: bit-string variables cannot have the VARYING attribute.

32

PL/I Language Reference Manual 3.2 String Data

You can write bit-string constants in any of four different formats. Each format
corresponds to a base which is the number of bits used to represent each digit in the
constant. A bit-string constant is a sequence of digits and letters enclosed in apostrophes
followed by the letter B, and optionally followed by a digit indicating the base. The
default base, B or B1, is two digits. The following table shows the various formats.

Table 3-2. Bit-String Constant Formats

Format

B
B1
B2
B3
B4

Base

2
2
4
8

16

0,1
0,1

Digits and/or Characters
in Representation

0,1,2,3
0,1,2,3,4,5,6,7
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Note: the characters and/or digits used in the sequence must be valid for the base
specified by the format.

The following examples illustrate the equivalence of the optional formats to the base
2 format:

\ 101'51 is equivalent to \ 101'5
\ 101'52 is eqttil,Jalent to \010001'5
\ 101'53 is equil,Jalent to \001000001'5
\101'54 is equil,Jalent to \000100000001'5
\SA'54 is equivalent to \10011010'5
\77'53 is equil,Jalent to \111111'5

3.3 Control Data Items

Control data items control the flow of program execution. Statement labels and
procedure names are examples of control data constants.

3.3.1 LABEL Data

LABEL data consists of label constants and label variables. A label constant is a
label identifier that prefixes an executable statement. A label variable is a variable
defined in a DECLARE statement with the LABEL attribute.

33

3.3 Control Data Items PL/I Language Reference Manual

Assignments of label constants or other label variables can be made to a label variable
following the same rules as assignments of other types of variables.

Both label constants and label variables are subject to the same scope rules as declared
names. A LABEL data item is known only within the block in which it is declared
explicitly by a DECLARE statement, or implicitly by its use as a label constant.

Label constants can be subscripted by a single, optionally signed, integer constant.
All occurrences of subscripted labels with the same identifier in a single block constitute
an implicit declaration of a constant-label array for that block. The occurrence of the
same label name within any other block, including a contained block, defines a new
declaration local to that block. Any such implicitly defined constant-label array is
defined only for those subscripts that occur in its corresponding block. You can explic­
itly define label variables to be singly subscripted arrays in a DECLARE statement.

Note: in PLfI, the only operators that you can use with LABEL data are the equal (=)
and not equal C = or -=) comparison operators.

3.3.2 ENTR Y Data

In PLfI all ENTRY data items are either entry constants or entry variables. Entry
constants correspond to either internal procedures, or to separately compiled external
procedures. Entry variables are data items that can take on entry-constant values during
program execution.

The calling program must use an ENTRY declaration to define the characteristics
of the formal parameters and returned values for all externally compiled procedures.

Note: you must ensure that the ENTRY declaration matches the externally defined
procedure, so the linkage editor can properly combine the program segments.

Variables that take on entry constant values are also defined with an ENTRY dec­
laration. If required by the application, entry variables can be subscripted, but entry
constants cannot. As with LABEL data, the only operators used with ENTRY data are
the equal and not equal comparison operators.

The ENTRY attribute defines an identifier as an ENTRY data item, giving the
attributes for the formal parameters, and the optional returned value attributes if the
entry item is a function.

34

PL/I Language Reference Manual 3.3 Control Data Items

The general form for an ENTRY statement is

proc-name [(bound-pair-l, ... ,bound-pair-n)] [VARIABLE]
[ENTRY [(att-l, ... ,att-m)]
[RETURNS (return-att)];

where the attributes can be in any order, but must specify either ENTRY or RETURNS.

The identifiers are given in the following manner:

• proc-name gives the entry-data item name
• bound-pair-l, ... ,bound-pair-n gives the optional bound-pair list
• att-l, ... ,att-m gives the list of formal parameter attributes
• return-att gives return-value attribute for a function entry item

The VARIABLE attribute indicates that the data item is an entry variable that must
be assigned an entry constant value during program execution. The bound-pair list is
only valid if the item has the VARIABLE attribute. You can omit the list of formal
parameter attributes if the procedure does not require any parameters. In this case,
you can also omit the ENTRY attribute if you specify the RETURNS attribute.

If a particular parameter has the dimension attribute, it must appear as the first
attribute. If the parameter is a structure, the structuring information that the level
numbers provide must precede the attribute definition. PL/I does not permit attribute
factoring in the list att-l through att-m.

Some examples of valid ENTRY statements are given below:

declare }-{

declare \/
I

declare P
declare Q

declare R

entrY;
entn' \)ariable;
(0:10) entn'(fixedtfloat) \)ariable;
entr}'(lt 2 fixedt 2 floatd5:10) decilrlal);
returns (character(10»;

35

3.3 Control Data Items PL/I Language Reference Manual

The following code sequence illustrates entry data items:

declare
(}-(,Y) float binar}',
A entrY variable,
F(3) entry(float) returns(float) variable,
ZZ entry(float) returns(float);

P 1 :
procedure;
}{ = 5 ;
end P1;

PZ:
procedure;
}{=Z5 ;

end PZ;
Y=8;
if Y 5 then

A = P 1 ;
else

A = PZ;
call A;
F(Z) = ZZ;
Y = F(Z)OO;
put list(Y);

3.4 POINTER Data

POINTER data addresses specific locations in memory. The value of a POINTER
data item is the address of a variable in the program. The general form of a POINTER
variable declaration is:

DECLARE X POINTER;

PL/I does not define any conversion between POINTER and other data types, so an
assignment statement can only assign pointer variables to other pointer variables. Also,
pointer variables cannot be output to a STREAM file. As with LABEL and ENTRY
data, the only operators defined for POINTER data are the equal and not equal
comparison operators. Two pointers are equal if they represent identical storage loca­
tions.

36

PL/I Language Reference Manual 3.4 POINTER Data

You can use POINTER data with based variables to dynamically manage storage.
Section 7.2 describes based variables.

3.5 FILE Data

In PLlI, FILE data items consist of file constants and file variables that access external
data. A file constant declaration takes the general form:

DECLARE file_id FILE;

A file variable declaration takes the general form,

DECLARE file_id FILE VARIABLE;

where file_id is a PL/I identifier assigned to represent the file. If file_id is not a param­
eter, PL/I automatically treats the identifier as EXTERNAL, so that it accesses the same
data set in all modules that declare it EXTERNAL.

If you do not open the file explicitly with an OPEN statement including the TITLE
option, PL/I accesses the disk file file_id.DAT on the default drive.

Section 10 presents FILE data in more detail. The PLII Language Programming
Guide contains examples of FILE data use.

3.6 The DECLARE Statement

In PL/I, you must use the DECLARE statement to define all variable names in a
program that are not the names of built-in functions or pseudo-variables (Section 6.8).
File constants and variables must also be defined in a DECLARE statement. Control
constants, such as statement labels and procedure names, are declared implicitly by
their use in a program.

The DECLARE statement associates each variable name with the proper attributes
for the declared data type. The general form of the DECLARE statement for scalar
variables is

DECLARE name [attribute-list];

37

3.6 The DECLARE Statement PL/I Language Reference Manual

where name is the variable identifier, and attribute list is one or more characteristics
of the variable name. Multiple attributes can appear in any order but must be separated
by spaces.

The following examples illustrate valid PL/I DECLARE statements:

declare x fixed binary;
declare pi float binary(53);
declare overtiMe pay fixed deciMal(5,2) initial(OOO.OO);
declare (first_naMe,last_naMe) character(20) varying;
declare EOF bit(1) initial('l'b);
declare list head pointer static initial(null);

3.7 Multiple Declarations

For convenience and simplicity, PL/I allows multiple declarations in a single state­
ment. In general, you can write any sequence of DECLARE statements of the form,

DECLARE definition-I;
DECLARE definition-2;

DECLARE definition-n;

in the equivalent form,

DECLARE definition-I, definition-2, ... definition-n;

where each definition item is separated by commas and zero or more spaces, and the
DECLARE statement is terminated by a semicolon.

If several item definitions share the same attributes, you can factor them to the right.
That is, you can .write a sequence of definitions of the form,

item-l attr-A, item-2 attr-A, ... item-n attr-A

in an equivalent factored form:

(item-I, item-2, ... item-n) attr-A

38

PL/I Language Reference Manual 3.7 Multiple Declarations

Repeated applications of this rule are also allowed. For example, the statement

declare «A,B) fixed binan', C float binary) static external;

is equivalent to:

declare A fixed binar~ static external t
5 fixed binary static external t
C float binary static external;

The ordering of attributes is unimportant, with the exception that the dimension list
attribute for an array must follow the array name and precede other attributes. Also,
the level numbers for members of structures must precede the member name. Both
attributes can be factored.

Because a dimension list is on the right of the name to which it applies, it is factored
to the right as above. However, because level numbers precede their member names,
they are factored to the left. A sequence of the form,

level-k item-I, level-k item-2, ... level-k item-n

is equivalent to the sequence:

level-k (item-I, item:-2, ... item-n)

For example, the statement

declare 1 A basedt
2 (5 fixed binarYt

C character(2»;'

is equivalent to:

declare 1 A based,
2 5 fixed binary,
2 C character(2);

39

3.8 Default Attributes PL/I Language Reference Manual

3.8 Default Attributes

An attribute list cannot contain conflicting attributes, such as two data types, or
two storage class attributes. If you do not specify a complete set of attributes in a
DECLARE statement, then the Compiler supplies the attributes according to the fol­
lowing default rules:

40

• If no attribute is specified, FIXED BINARY(15) is assumed.
• If DECIMAL or BINARY is specified without FIXED or FLOAT, then FIXED

is assumed.
• If FIXED or FLOAT is specified without BINARY or DECIMAL,then BINARY

is assumed.
• If no precision for FIXED BINARY is specified, FIXED BINARY(15) is assumed.
• If no precision and scale for FIXED DECIMAL is specified, FIXED DECI­

MAL(7,O) is assumed.
• If no precision for FLOAT BINARY is specified, then FLOAT BINARY(24) is

assumed.
• If no length is specified for BIT, then BIT(l) is assumed.
• If no length is specified for CHARACTER, then CHARACTER(l) is assumed.

End of Section 3

Section 4
Data Conversion

Data conversion is a process that changes the representation of a given value from
one type to another. In PL/I, all conversion involves a source, a target, and a result.
The source is the data item being converted; the target is the type to which the source
item is being converted, and the result is the actual converted value with the data type
of the target.

PLiI performs conversions in the following general categories:

• arithmetic to arithmetic (type and precision)
• arithmetic to string
• string to arithmetic
• format specified in EDIT-directed 110 (see Section 13)

PL/I does not perform conversion for LABEL, ENTRY, POINTER, or FILE data types.

Part of the versatility and power of PL/I lies in your freedom to declare data in a
wide variety of types. With this freedom comes a responsibility to understand how the
language converts data from one type to another, either explicitly or implicitly.

The following list shows some of the contexts in which PL/I performs default data
conversion.

• In an assignment statement, PL/I converts the expression to the type of the
variable to which it is assigned.

variable = expression;

• In a RETURN statement, PL/I converts the specified value to the type specified
in the RETURNS option of the PROCEDURE statement.

41

4 Data Conversion PL/I Language Reference Manual

proc-name:
PROCEDURE RETURNS(return-att);

RETURN (return-exp);
END [proc-name];

• In any arithmetic expression, if the operands are not the same type, PL/I converts
them to a common type before performing the operation.

A+B
A-B
A*B
AlB
A ** B

• During 1/0 processing, PL/I converts to and from character string data when
using the PUT or GET statement respectively.

PUT LIST (output-list);
GET LIST (input-list);

• PL/I converts values specified in some statements to integer values.

DO (control-var) ...

END;

• PL/I has built-in functions (BIFs) that perform specific conversions.

4.1 Arithmetic Conversions

Arithmetic conversions occur in several contexts:

42

• When an assignment statement assigns an arithmetic expression to an arithmetic
variable, PL/I converts the expression to the precision and scale of the target
variable.

PL/I Language Reference Manual 4.1 Arithmetic Conversions

• When an arithmetic-valued function returns an arithmetic expression, PL/I con­
verts the expression to the data type and precision specified in the RETURNS
attribute of the function entry point.

• When an arithmetic infix operator has operands with different data types,
PL/I first converts them to a common type as follows:

• If one operand is FIXED BINARY and the other is FLOAT BINARY,
the common type is FLOAT BINARY.

• If one operand is FIXED BINARY and the other operand is FIXED
DECIMAL, the the common type is FIXED DECIMAL.

• PL/I converts FIXED BINARY(p) to FLOAT BINARY(p).

• PL/I converts FIXED DECIMAL(p,q) to FLOAT BINAR Y(p'), where
p' = MIN(CEIL(p/3.32),53). MIN and CEIL are PL/I BIFs (Section 15).

After performing the conversions to the common type, PLiI derives the target result
as follows:

• If the operands are FLOAT BINARY, then the result is FLOAT BINARY The
precision of the result becomes the precision of the greater of the two operands.

• If the operands are FIXED DECIMAL, assume the first operand has precision
and scale (p,q), and the second operand has precision and scale (r,s). PL/I derives
the precision and scale of the result (p',q') as follows

If the operation is addition or subtraction, then:

p' = MIN(15,MAX(p-q,r-s) + MAX(q,s) + 1)

q' = MAX(q,s)

If the operation is multiplication then:

p' = MIN(15,p + r + 1)

q' = (q+s)

43

4.1 Arithmetic Conversions PLII Language Reference Manual

If the operation is division, then:

p' 15

q' 15-(p + q-s)

Note: exercise caution when dividing FIXED DECIMAL values. The precision and
scale of the operands must be such that the divide operation does not produce a negative
scale factor. You can use the DIVIDE BIF to control the precision of the quotient.

44

• If the operands are FIXED BINARY, assume (p) is the precision of the first
operand, and (r) is the precision of the second operand. PLII derives the precision
of the result (p') as follows:

If the operation is addition or subtraction, then:

p' = (MIN(15,MAX(p,r) + 1))

If the operation is multiplication, then:

p' = (MIN(15,p+r+1))

If the operation is division, then you must use the DIVIDE BIF with a scale
factor of zero to produce an integral FIXED BINARY result. Do this for com­
patibility with the full language .

• In the case of exponentiation, expressed as X* *Y, assume that Y is a decimal
integer constant.

If X is FIXED BINARY with precision p and ((p + 1)*Y-1) < = 15, then the
result is FIXED BINARY with precision:

((p + 1) * Y -1)

If X is FIXED DECIMAL with precision and scale (p,q) and ((p+ 1)*Y-1) < =

15, then the result is FIXED DECIMAL with precision and scale (p',q'):

p' (p + 1)*Y-1

q' q*Y

PL/I Language Reference Manual 4.1 Arithmetic Conversions

In all other cases, PL/I converts the operands to FLOAT BINARY and the result
is FLOAT BINARY with the precision being the maximum of the precisions of
the converted operands.

• PL/I truncates the result if the precision is insufficient to hold the number.
Truncation occurs on the right for FLOAT BINARY data items. In FIXED
DECIMAL computations, fractional digits are lost; in FIXED BINARY com­
putations, digits are lost in the most significant portion.

4.2 Arithmetic Conversion Functions

PL/I provides a number of BIFs to control the conversions that take place during
expression evaluation. The following sections detail these functions.

4.21 The FIXED BIF

The form of the FIXED BIF is

FIXED (x,[P[,q]])

where X is the variable or expression to be converted to a FIXED arithmetic data type,
and p and q specify the target precision and scale. If X is FIXED BINARY, you must
specify q = O. A non-zero scale is valid only if X is FIXED DECIMAL.

If X is FIXED DECIMAL, the result is FIXED DECIMAL. Otherwise, the result is
FIXED BINARY.

If p or q is not specified, then the result depends on the precision and scale of X as
follows:

X FIXED BINARY (r) yields FIXED BINARY (r)
X FLOAT BINARY(r) yields FIXED BINARY(MIN(15,r))
X FIXED DECIMAL(r,s) yields FIXED DECIMAL(r,s)

45

4.2 Arithmetic Conversion Functions PL/I Language Reference Manual

4.22 The FLOAT BIF

The form of the FLOAT BIF is

FLOAT(x, [P])

where X is the variable or expression to be converted to a FLOAT arithmetic data
type, and p is the target precision. If p is not specified, then the result is as follows:

X FIXED BINARY(r) yields FLOAT BINARY(r)
X FLOAT BINARY(r) yields FLOAT BINARY(r)
X FIXED DECIMAL(r,s) yields FLOAT BINARY

(MIN (CEIL((r-s) * 3 .32),5 J))

4.23 The BINARY BIF

The form of the BINARY BIF is

BINARY (X[,p])

where X is the variable or expression to be converted to a BINARY arithmetic data
type, and p is the target precision.

If X is FIXED BINARY or FIXED DECIMAL, the result is FIXED BINARY. If X
is FLOAT BINARY, then the result is FLOAT BINARY.

If p is not specified, then the result is as follows:

X FLOAT BINARY(r) yields FLOAT BINARY(r)
X FIXED BINARY(r) yields FIXED BINARY(r)
X FIXED DECIMAL(r,s) yields FIXED BINARY

(MIN(CEIL((r-s) *3.32) + 1,15))

4.24 The DECIMAL BIF

The general form of the DECIMAL BIF is

DECIMAL(X[,p[,q]])

where X is the variable or expression to be converted to a FIXED DECIMAL arithmetic

46

PL/I Language Reference Manual 4.2 Arithmetic Conversion Functions

data type, and p and q are the precision and scale of the target result. A non-zero scale
is valid only if X is FIXED DECIMAL. If p and q are not specified, then the result is
as follows:

X FIXED BINARY(r)
X FLOAT BINARY(r)
X FIXED DECIMAL(r,s)

4.25 The DIVIDE BIF

yields FIXED DECIMAL(CEIL(r/3.32) + 1,0)
yields FIXED DECIMAL(MIN(CEIL(r/3.32),15),0)
yields FIXED DECIMAL(r,s)

The DIVIDE BIF controls the precision of results for divide operations. The general
form is

DIVIDE(X,Y,p[,q])

where X and Yare any arithmetic expressions, and X is to be divided by Y. P is a
FIXED BINARY expression indicating the desired precision, and q is a FIXED BINARY
expression· indicating the desired scale. If not included, q is assumed to be zero. A
non-zero scale is valid only if X and Yare FIXED DECIMAL.

PL/I requires the DIVIDE function for FIXED BINARY division because in the full
language, a nonzero scale factor results from such an operation.

4.3 String Conversions

PL/I performs conversions between arithmetic and string data items when they are
combined in expressions. The following sections describe the various conversion rules
for string operands.

4.3.1 Arithmetic to Bit-string Conversion

When converting from an arithmetic source data type X to a bit-string target, PL/I
first converts ABS(X) to FIXED BINARY(p) according to the arithmetic conversion
rules. It then converts the FIXED BINARY intermediate value to a bit string of length
p.

If the target length is longer than p, PL/I pads the intermediate result on the right
with zero-bits. If the target length is less than p, it truncates the right excess bits of
the intermediate result.

47

4.3 String Conversions PL/I Language Reference Manual

4.3.2 Arithmetic to Character Conversion

When converting arithmetic data to character data, PLfI first converts the various
arithmetic data types to intermediate character strings as follows:

48

• DECIMAL(p,q), q = 0

The resulting character string is length p + 3. The characters are composed of
the digits of the source, without leading zeros, preceded by a minus sign if the
source value is negative, and padded on the left with blanks to produce a
character string of length p + 3.

For example, converting a FIXED DECIMAL(3) data item with value 330 results
in the character string ~~~330, where J.6 denotes a blank position. Converting
the value zero produces five blanks and a single zero digit result.

• DECIMAL(p,q), q > 0

The resulting character string is also of length p + 3, with the same string format
as above, except that the decimal point and the fractional digits are included.

For example, converting a FIXED DECIMAL(5,2) data item with value -13.25
results in the character string ~J;f-13.25. PLfI omits leading zeros except for the
one immediately preceding the decimal point.

• FIXED BINARY(p)

PLfI converts the source to FIXED DECIMAL(p'), where p' = CEIL(~f3.32) + 1,
and then converts the FIXED DECIMAL(p') result to a character string of length
p' + 3 with the format described above.

For example, converting a FIXED BINARY(15) data item with value -32 results
in the character string l1l1l1)IJ)IJ)5-32.

• FLOAT BINARY(p)

PL/I converts the fractional part to a FIXED DECIMAL(P'), where p'=CEIL
(p/3. 32). The resulting character string is of length p'+6 for single precision, or
p'+7 for double precision in scientific notation format. That is, the first character
is a minus sign if the source value is negative, otherwise the position contains a
space. The next position contains the most significant digit of the value, followed

PL/I Language Reference Manual 4.3 String Conversions

by a decima.l point, and the remaining p-l fractional digits. The exponent
indicator E follows, with an exponent sign and an exponent value. Single
precision exponents have two digits, and double precision exponents have three
digits.

For example, converting a FLOAT BINARY(24) data item with value 250.1El
results in the character string }1j}1j.b~2.501E + 03.

After performing the intermediate conversions, PL/I pads the string on the
right with blanks if the target length is greater than the length of the intermediate
result. Conversely, if the target length is shorter than the intermediate result,
PL/I truncates the string on the right to produce the shorter length.

4.3.3 Bit-string to Arithmetic Conversion

When converting a bit string of length n, where 0 < n < = 15, to an arithmetic data
type, PL/I first converts the string to its FIXED BINARY(15) equivalent. It then converts
the FIXED BINARY to the target value according to the rules discussed above.

For example,'1011'B converted to FIXED BINARY(15) yields the value eleven.

4.3.4 Bit to Character-string Conversion

When converting a bit string of length n to a character string of length n, PL/I
converts a zero bit to a character zero, and a one bit to a character one. If the target
length is longer than the source, PL/I pads the target on the right with blanks. If the
target length is shorter than the source length, it truncates the excess right characters.

4.3.5 Character to Arithmetic Conversion

When performing character to arithmetic conversion, the character string source
must contain a valid arithmetic constant value. If X is a character string, the built-in
arithmetic conversion functions affect any conversions applied to X as follows:

• FIXED (x [,p [q]]) or DECIMAL (x [,p [q]]) returns a FIXED DECIMAL value. If p
is not given, then fifteen is assumed .

• BINARY (x [,p]) produces a FIXED BINAR Yvalue. If p is not specified, it defaults
to fifteen. The result is only the integer portion of X.

49

4.3 String Conversions PL/I Language Reference Manual

• FLOAT(x[,p]) produces a FLOAT BINARY value. If p is not given, p = 53 is
assumed. If X is null or contains all blanks, the converted value is zero. If there is
insufficient precision to hold the converted value, the run-time system signals
OVERFLOW(2) or UNDERFLOW(2).

PLII raises the ERROR(l) condition if the character string is not a valid arithmetic
representation, or if the target data field is insufficient to represent the converted value.

The following examples illustrate various conversions from character to arithmetic
data types:

Character

'00987'
'9.87'
'-9.87E2'
'-9.87E2'
'-9.87E2'
'-987.372'
'2X3'

Table 4-1. Character to Arithmetic Conversion

Target

FIXED BINARY(15)
FIXED DECIMAL(6,2)
FLOAT BINARY(24)
FIXED DECIMAL(9,2)
FIXED DECIMAL(5,0)
FIXED DECIMAL(4,2)
FIXED BINARY(15)

4.3.6 Character to Bit-string Conversion

Result

987
0009.87
-9.87E2
0000987.00
00987
ERROR
ERROR

When performing character to bit-string conversion, the source character string must
contain only the characters zero and one. PL/I converts each zero character to a zero­
bit, and each one character to a one-bit.

If the target length is greater than the source length, then PL/I pads on the right with
zero-bits. If the target length is shorter than the source length, then it truncates on the
right. If the source is the null string, or contains all blanks, then the result is a string
of zero-bits.

End of Section 4

50

Section 5
Data Aggregates

An aggregate is a grouping of multiple data items. In PLfI, there are two kinds of
aggregates: arrays and structures.

• An array is an ordered collection of data items called elements which all have
the same attributes. The elements of an array can be scalar data items or
structures. PLfI allows you to reference an entire array by name, or to reference
an individual element of an array by using integer subscripts that denote the
relative position of the element in the array.

• A structure is a collection of data items called members which can have different
data types. The members of a structure can be arrays. PLfI allows you to
reference an entire structure by name. You can also reference an individual
member of a structure with a qualified reference that gives both the name of
the structure and the name of the member.

A variable that represents a data aggregate is called either an array variable or a structure
variable.

5.1 Array Declarations

You define an array variable by specifying its'attributes in terms of the number of
elements in the array and the organization of the elements. These attributes are called
the dimensions of the array, The general form of an array variable declaration is.

DECLARE name(bound-pair, ...) [attribute-list];

where name is any valid PLfI identifier. Each bound-pair specifies the number of
elements in each dimension of the array and has the following format:

[L:]U

where L is the lower-bound of the array, and U is the upper-bound. The values Land
U can be any integer values such that L is less than or equal to U.

The attribute list is the set of data attributes that apply to all the elements in the array.

51

5.1 Array Declarations PL/I Language Reference Manual

The number of elements in each dimension is the extent, and is given by:

(upper bound) - (lower bound) + 1

The total number of elements in an array is the product of the extents of each dimension.

For example, the following statements are equivalent:

declare A(3t4) character(Z);
declare A(1~3t1:4) character(Z);

Both statements define an array whose dimension is two, and whose elements are
character strings of length two. The extent of the first dimension is three, and the
extent of the second dimension is four. Thus you can visualize A as an array with three
rows and four columns whose elements are character strings of length two.

1 2 3 4

1 xx xx xx xx

2 xx xx xx xx

3 xx xx xx xx

Figure 5-1. Two-dimensional Array

The statement

declare B(-2~5t-5:5t5:10) fixed binary;

defines the array B to be a three-dimensional array whose subscripts range from -2 to
5, -5 to 5, and 5 to 10, respectively. The corresponding extents are eight, eleven, and
six respectively. Thus B contains 528 data items of FIXED BINARY data type.

The following rules apply when specifying dimensions in an array:

52

• In PL/I, there is no formal limit to the number of dimensions an array can have.
However, the practical limit is dictated by the total amount of available data
storage, and the overall complexity of any expression that you use to reference
an individual element within the array.

PL/I Language Reference Manual 5.1 Array Declarations

• All the bounds must be integer constants.

• The lower bound must be less than or equal to the upper bound.

• At run-time, an out-of-bound array reference produces unpredictable results.

5.2 Array References

In PLfI, any reference to an individual array element must be subscripted. The list
of subscripts must be enclosed in parentheses. In multidimensional arrays, the number
of subscripts must match the number of dimensions.

A subscripted reference to an array element can be any variable or expression that
PLfI converts to an integer value. For example:

declare scores(20) fix2d binarY~

d i~~ c) r P (c (.1 u n t e x' J tot a 1) f i){ e d bin a l' '/ ;

du COUl'lt~?t to 20:;
total ~otal + scores(cuunter);

(~n d ~

Figure 5-2 illustrates the concept of subscripted array references.

declare array_A(4) fixed; f* 4 columns *f

I I

Figure 5-2. Array Element References

Figure 5-2. continues on the following page.

53

5.2 Array References PL/I Language Reference Manual

declare array_B(3,4) fixed; /* 3 rows, 4 columns */

1 2 3 4

1

2

3 --+----t- array _ B(3,3)

declare array _ C(2,3,4) fixed; /* 2 planes, 3 rows, 4 columns * /

1 2 3 4

1

"~---r--~~--~--~
1 _--+---+-~"+-+- array _ C(1,1,3)

2

3

Figure 5-2 Array Element References (continued)

54

PL/I Language Reference Manual 5.3 Initializing Array Elements

5.3 Initializing Array Elements

You can use the INITIAL attribute with an array declaration to specify values for
the elements before execution. For example, the statement

declare colors(4) character(lO) varyinS
static initial ('RED' ,'BLUE' ,'GREEN' ,'YELLOW');

assigns a value to each of the elements of the array as shown below:

1 2 3 4

RED BLUE GREEN YELLOW

Figure 5-3. Array Initialization

If you assign each element of an array the same value, the INITIAL attribute can
specify an iteration factor in the following format,

INITIAL (value[,value] ...);

where the initializing value has the form:

[(iteration-factor)] constant-expression

The iteration factor is an unsigned decimal constant indicating the number of times to
use the specified constant. The constant expression can be any reference to an arithmetic
or string constant or to the NULL built-in function, and must be compatible with the
data being initialized.

For example, the statement

declare test scores(lOO) fixed binary
static initial«lOO)O);

initializes all the elements of the array test_scores to zero.

55

5.3 Initializing Array Elements ~L/I Language Reference Manual

The statement

declare ~rid(lS) pointer;
static initial«lS)null);

initializes the array grid with null pointer values.

The statement

declare nUMbers(10) character(10)
static initial«10)\01234SG788');

initializes all ten elements of numbers with the character string constant '0123456789'.

The statement

declare nUMbers(10) character(10)
static initial«S)\01234SG788' ,(S)\O');

initializes five elements of numbers with the constant'0123456789' and five elements
with the constant '0'.

PL/I stores the elements of an array internally in row-major order. That is, the far
right subscript varies the most rapidly. If you declare the array with the INITIAL
attribute, or reference the entire array in a GET or PUT statement, PL/I accesses the
elements in the same order.

For example, using the array declaration

declare test scores(2t2t2) fixed static
initial (lt2t3,4t5tGt7t8);

PLiI assigns values to the elements in the following order:

test_scores(1,1,1) 1
test_scores(1,1,2) 2
test_scores(1,2,1) 3
test_scores(1,2,2) 4
test_scores(2,1,1) 5
test_scores(2,1,2) 6
test_scores(2,2,1) 7
test_scores (2,2,2) 8

56

PL/I Language Reference Manual 5.3 Initializing Array Elements

PL/I uses the same order to output the elements in a PUT statement, such as:

do i :: 1 to 2:)

[

-do j = 1 to ;Z:)

--do I'~ = 1 to 25

[,.put list(test
-- en (J ~

-pnd~

sco:re5(itjd~»;

end;

5.4 Arrays in Assignment Statements

Only in certain restricted cases does PL/I allow an array variable to be the target of
an assignment statement. Any statement of the form

array variable A = array variable B;

is valid if the arrays are identical in dimension and data type, and the storage for both
arrays is connected. In this case, each element in array-variable-A is assigned the
corresponding element in array-variable-B. For example:

declare A(20) fixed binary;
declare B(20) fixed binary;
A ::: 5?

Individual elements of an array can also be targets of assignment statements. For
example, in the following code sequence the elements of one array are assigned values
computed using the elements in another array.

declare array A(10) float binary;
declare array 5(lO)fixed binary static

initial (0 d ~2 t3,4 ~5 tG t7,8 ?8);
declare i fixed binary;
do i = i to 10;

array A(i) - sgrt(array BCi»
end~

57

5.4 Arrays in Assignment Statements PL/I Language Reference Manual

Array variables cannot be operands for arithmetic operators such as + and -. For
example, any statement of the form,

c = A + B;

is invalid if A, B, and C are array variables.

PL/I does not allow any statement of the forms:

• array-variable = constant;
• array-variable = expression;

For example, the following code sequence is illegal in PLII:

declare A(10) fixed binary;
declare n fixed binary static initial(2);
A = rd

However, you can obtain the same effect as follows:

declare A(10) fixed binary;
declare n fixed binary static initial(2);
declare i fixed binary;
do i = i to 10;

A(i) = rd
end;

5.5 Structures

A structure is an aggregate that can contain items of different data types. You can
use structures to represent data that more closely reflect real-life objects.

The data items contained in the structure are called its members. Structures can
contain scalar data items, arrays of scalar items, or other structures called substructures.
Structures are ordered hierarchically. The main structure is called the major structure
and any substructure is called a minor structure.

58

PL/I Language Reference Manual 5.5 Structures

A structure declaration defines its organization and the names of the members on
each level in the structure. Every structure declaration must contain:

• a name for the major structure,
• the names and data attributes of its members,
• and a level number for each name to define its level in the hierarchical order.

The general form of a structure declaration is:

DECLARE [level] name [attribute-list] ...
[, [level] name [attribute-list]] ;

Level numbers precede the names and must be separated from them by one or more
spaces. The level number of a major structure is always one. The definitions of each
member, including its level number, name, and attributes, must be separated by com­
mas. The level numbers of the members of a minor structure must be greater than the
level number of the minor structure.

Note: structure names cannot have data type attributes, but can have a dimension
attribute. Structure names can also have the BASED, EXTERNAL, or STATIC attri­
butes.

The following statement is an example of a structure definition:

declare 1 bill t
2 n arTIe t

3 last naMe character(20} t

3 first naMe character(20} t

3 Middle initial character(l} t
2 addresst

3 street character(20} t

3 city character(!!)},
3 state character(3} t
3 zip character(S} t

2 chargest
3 shop fixed deciMal(10.2},
3 snac~\ bar fixed decifTlal (10,2) t

3 fTlisc fixed decifTlal (10 t2) t

3 dues fixed decifTlal (10 t2);

59

5.5 Structures PL/I Language Reference Manual

Figure 5 -4 shows the hierarchy of levels corresponding to this declaration.

bill~----------- name _;;;;;::::===----------last name
~firstname

--------- middle_initial

address -.~:::::==------- street
city

-------==== s~ate
ZIP

charges ~====-------- shop

~
sn.ack_bar
mIse
dues

Figure 5-4. Hierarchy of Structure Levels

Ambiguities can arise when referencing the members of structures because the name
of a structure member can occur as the name of the member of another structure, or
as the name of a data item in a substructure of the same structure. These ambiguities
arise only with member names in a common scope of definition.

To resolve such ambiguities, use qualified names to reference members of structures.
In a qualified name, the member name is preceded by a list of structure names in
ascending order of level number, each followed by a period and zero or more blanks.
The only structure names required are those that determine a unique reference to the
member name.

For example, in the following structure

declare 1 A,
2 5 t

3 C fixedt
3 0 fixedt

2 55 j

3 C fixedt
3 0 fixed;

a reference to item C, or D, or A.C, or A.D is ambiguous. The qualified names B.C,

60

PL/I Language Reference Manual 5.5 Structures

or B.D, or BB.C, or BB.D uniquely identify the structure elements. The fully qualified
names are:

A.BtC
A.B.D
A.BB.C
A.55.D

5.6 Mixed Aggregates

A mixed aggregate is either an array whose elements include structures, or a structure
whose members include arrays. You can define an array whose elements are a single
type of structure by giving the major structure name a dimension attribute in the
structure declaration. You can also give minor structures a dimension attribute. When
you declare a structure with a dimension attribute, each member of the structure inherits
the dimension and becomes an array.

For example, the statement

declare 1 student list(100) t

2 student narTle t

3 last naMe character(10) t

3 first nafTle character(10)?
3 Middle initial character(l) t

2 social_security_nUMber character(S),
2 country character(10),
2 ~rades(5) character(2);

defines an array of structures whose major structure name is student_list. Each structure
element of the array has the sub-array grades as a member. To reference an entry in
the array, you must use a qualified name together with subscripts for the structure
names that have a dimension attribute, and the member name if it has a dimension
attribute. The subscripts do not have to appear with their corresponding name, but
must occur in parentheses separated by commas and in correct order.

For example, any of the following forms is a fully qualified, unambiguous reference
to the third grade entry for the sixty-first entry of the array student_list:

student list(61)t~rade(3)

student list.~rade(61 ,3)
student list(Sl ,3) .grade

61

5.7 Mixed Aggregate Referencing PL/I Language Reference Manual

5.7 Mixed Aggregate Referencing

You can reference an entire mixed aggregate by name. A reference to data items
inside a mixed aggregate can be partially subscripted, and/or partially qualified. Any
such a reference into a mixed aggregate must identify connected storage (see Appendix
D). Connected storage means the data elements occupy consecutive storage locations.

For example, consider how PL/I stores the data elements for the following decla­
rations:

declare 1 color(100),
2 hue character(10) varying,
2 intensity fixed binary;

hue(l)
intensity(l)

hue(2)
intensity(2)

COiOr(3)_{ hue(3)
intensity(3)

color.hue(100) - hue(100)
intensity(100)

Figure 5-5a. An Array of Structures

Now, the similar declaration,

declare 1 colort
2 hue(100) character(10) uaryin.t
2 intensity(100) fixed binary;

stores the data elements as shown in Figure 5 -5b.

62

color.hue

PLf1 Language Reference Manual 5.7 Mixed Aggregate Referencing

hue(l)

hue(2)

hue(3)
color.hue

hue(lOO)

intensity(1)

intensity(2)

intensity(3)

intensity(lOO)

Figure 5-5b. A Structure of Arrays

In Figure 5-5a, color is dimensioned and each of its members hue and intensity
inherits the declared dimension. Therefore, each appears as an array, but the elements
do not occupy consecutive storage locations.

In Figure 5-5b, color has two members, both of which are dimensioned. The elements
of each array occupy consecutive storage locations.

Referring to Figure 5-5a, the storage for color(3), or color.hue(lOO) is connected
storage, but the storage for color.hue is unconnected. However, in Figure 5-5b, the
storage for color. hue is connected.

63

5.7 Mixed Aggregate Referencing PL/I Language Reference Manual

Each type of declaration has its advantages and disadvantages. The specific appli­
cation and method of access in a program determine the type of declaration, and the
storage that results.

End of Section 5

64

Section 6
Assignments and Expressions

6.1 The Assignment Statement

The assignment statement sets a variable equal to the value of an expression or
constant. The assignment statement has the general form,

variable = expression;

where variable is a scalar element, an array, a structure name, or a pseudo-variable
(Section 6.8). The assignment statement contains no distinctive keyword.

6.2 Expressions

An expression is any valid combination of operands and operators that PL/I computes
at run-time to produce a single value.

Various syntactic rules govern the arrangement of references, operators, and paren­
theses in an expression. A reference can be a constant, a variable, or a function. An
operator defines the computation to perform, using the operands to which it is applied.
Parentheses enclose various portions of the expression.

The following sections present the proper formulation of operands, operators, and
parentheses.

6.2 1 Prefix Expressions

A prefix expression consists of a unary prefix operator followed by an expression
called the operand. PL/I first evaluates the operand and then applies the unary operator
to the result.

Two examples of prefix expressions are shown below:

... ~)

-SORT (tl)
(logical Not of A)
(Minus sguare root of 5)

65

6.2 Expressions PL/I Language Reference Manual

6.22 INFIX Expressions

An infix expression consists of two expressions called operands separated by an infix
operator. PL/I first evaluates the operands, that can be expressions, and then applies
the operator to the result.

Two examples of infix expressions follow:

(SUIT) of A and B)
(C s9uared)

6.3 Precedence of Operators

In any unparenthesized expression or subexpression, PL/I applies operators according
to a set of precedence rules. Table 6-1 shows the fixed order of precedence from highest
to lowest with operators of equal precedence listed on the same line.

Table 6-1. PL/I Operator Precedence

Operator

Exponentiation
Logical Not
Prefix Operators
Multiplication, Division
Addition, Subtraction
Concatenation
Relational Opera,tors

Logical And
Logical Or

**
or

+,­
*, I
+,-

Symbol

II, I!, or \\
=, A=, <, A<, >, A>,
<=, >=
&
I, !, or \

Priority

1
1
1
2
3
4

5
6
7

When evaluating an unparenthesized expression, PL/I inserts a balanced parenthesis
pair around the highest precedence operators and their corresponding operands first.
It continues descending to lower precedence operators and their operands until the
entire expression is properly parenthesized.

When equal precedence operators occur at the same level, PL/I evaluates prefix
operators and exponentiation from right to left, with the remaining operators evaluated
from left to right.

66

PL/I Language Reference Manual 6.3 Precedence of Operators

For example, the Compiler treats the unparenthesized expression,

2 + Z * X ** Y ** 2 I 5 - Q

as the expression:

(2 + « Z * ()-(** (Y ** 2») I 5» - Q

6.4 Concatenation

The infix operator II concatenates either bit strings or character strings. Both operands
must be of the same type, and the result is the same type as the operands. The length
of the resulting string is always the sum of the lengths of the operands.

For character-string concatenation, if either operand has the VARYING attribute,
then the result has the V AR YING attribute. For example, the code segment,

declare
A character(3) t

B character(S) varyingt
C character(20);

A \ ABC ';
B = \ A5CDEF I ;

C A:: B;

assigns the character string ABCABCDEF of length nine to the variable C.

6.5 Relational Operators

In PL/I, relational operators are infix operators that compare the relationship between
two operands in an algebraic sense. Computational values can be compared according
to general algebraic rules, but non computational values can only be compared for
equality or inequality.

Character string, bit string, and arithmetic data items can be compared using any
relational operator, but only the equal and not equal operators can compare ENTRY,
LABEL, POINTER, and FILE data items.

ENTR Y values are equal only if they identify the same entry point in the same block
activation.

67

6.5 Relational Operators PL/I Language Reference Manual

LABEL values are equal only if they identify the same statement in the same block
activation. A LABEL value that identifies a label on a null statement is not equal to a
LABEL value on any other statement.

POINTER values are equal only if they identify the same storage location, or they
are both null values.

FILE values are equal only if they identify the same File Parameter Block (see Section
lOA).

If the operands differ in data type, PLfI first converts them to a common type before
making the comparison, and then produces a bit string of length one with the value
'l'B, true, if the operands are equal, and 'O'B, false, if the operands are not equal (see
Section 4).

PLiI compares character strings by extending the shorter operand on the right with
blanks until it is the same length as the longer operand. It makes the comparison
character-by-character from left to right using the ASCII collating sequence (see Appen­
dix C). In this sequence, the value of any upper-case letter is less than any lower-case
letter, and the value of any numeric character is less than any alphabetic character.

For example, given the two strings JACK and JACKSON, PLfI first pads the shatter
string with blanks and then compares the strings starting on the left as shown below,
}zs denotes a blank:

J A L K ~ ~. ~
4A 41 43 4B 20 20 20

J A C K S 0 N
4A 41 43 4B S3 4F 4E

Because S, 53h, is greater than a blank, 20h, JACKSON is greater than JACK.

PLiI compares bit strings by extending the shorter string on the right with zero-bits.
Comparison is then made bit by bit from left to right with zero considered less than
one. For example, '00010000'B is less than '00010001'B.

68

PLfI Language Reference Manual 6.6 Bit-string Operators

6.6 Bit-string Operators

Table 6-2 shows the PLfI bit-string operators.

Table 6-2. PLfI Bit-string Operators

Operator Symbol

Complement (logical Not)
Inclusive Or (logical Or)
And (logical And)

or
lor!
&

PLfI performs bit-string operations on a bit-by-bit basis. The unary Not operator
reverses each bit value in the bit-string operand, changing a zero-bit to a one-bit, and
a one-bit to a zero-bit. For example, given the bit string A = '0111001 O'B, then A A
= '10001101'B.

The Or and And operators require two bit-string operands. If the operands are of
unequal length, PLfI extends the shorter one on the right with zero-bits until it is equal
in length to the other operand. The resulting string length equals the longer of the two
operands.

The Or and And operators follow the rules of Boolean algebra as shown below:

x I y I xly x I y I x&y

0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1

Additional Boolean functions are easily constructed using the BOOL built-in function
(see Section 13.3).

6.7 Exponentiation

PLfI computes exponentiation as a series of multiplications if the exponent is a
nonnegative integer constant. Otherwise, it evaluates the operation using the built-in

/\LL 69

6.7 Exponentiation PL/I Language Reference Manual

LOG and EXP transcendental functions. When evaluating an exponential expression,
PL/I treats the following as special cases:

• If x=o and Y>O, then x**y = 0.
• If x=o and Y<O, then the run-time system raises the ERROR(3) condition.
• If x"=o and Y =0, then x**y = 1.
• If X<o and Y is not an integer, then the run-time system raises the ERROR(3)

condition.

6.8 Pseudo-variables

SUBSTR and UNSPEC are the names of two PL/I built-in functions (BIFs), that you
can use as source operands in expressions. However, you can also use SUBSTR and
UNSPEC as the target operands on the left-hand side of assignment statements. In this
case SUBSTR and UNSPEC are called pseudo-variables because they appear to act like
simple program variables.

6.8.1 Character SUBSTR

The character substring operator allows you to access individual characters in a
string. It takes one of the following two forms,

char-exp = SUBSTR(char-variable,i)
char-exp = SUBSTR(char-variable,i,j)

where char-variable is an optionally subscripted CHARACTER or CHARACTER
VARYING variable reference, and i and j are FIXED BINARY expressions.

The first form extracts the substring starting at position i for the remainder of the
string, where the first character position is numbered as one.

The second form shown above performs the same function as the first, but the length
of the extracted substring is j. The result is undefined if either i or i + j exceeds the
string length, where the length is the declared fixed size for CHARACTER variables,
and the current length for CHARACT~R VARYING variables.

70

PL/I Language Reference Manual 6.8 Pseudo-variables

For example, if the variable word contains the character string 'Josephine', then the
following assignments result in the strings indicated.

}< = SUBSTR(I, .. Jorelti); 1* x 'Josephine' -l'r/
}' = SUBSTR(I ... JoreltS); I*}' \phine' *1
z = SUBSTR(I"loreltit4); 1* z - \Jose' *1

When SUBSTR appears as a pseudo-variable on the left of an assignment, it must
appear alone. That is, SUBSTR cannot be embedded in a string expression when it
serves as the target of a string assignment. SUBSTR appears in this context as:

SUBSTR(char-variable,i) = char-exp;
SUBSTR(char-variable,i,j) = char-exp;

The first form assigns the character expression given by char-exp to the substring
in the char-variable, starting at position i, and extending through the length of the
char-variable.

The second form has the same effect, except the field width that receives the characters
is restricted to length j. The values of i and i + j must be within the current or fixed
string length, otherwise the operation produces undefined results.

The same char-variable can appear un both the left and right side of an assignment
statement without partial substring overwrite during the assignment.

For example, if the variable word contains the character string 'Collegiate', then
following the 'statement

subst r(l,Jo rei t7) = subst r(i,JO rei dO d);

the variable contains the string 'College};J)J~'.

6.8.2 Bit SUBSTR

In PL/I, bit substring operations are similar to the character SUBSTR shown above,
with some restrictions. First, PL/I limits bit strings to the precision range one through
sixteen, corresponding to single- and double-byte values. To account for the inter­
mediate precision values during compilation, the length of a bit substring operation
must be constant.

71

6.8 Pseudo-variables

Thus, the forms for bit substring are

SUBSTR(bit-variable,k)
SUBSTR(bit-variable,i,k)

PL/I Language Reference Manual

where the bit-variable is an optionally subscripted BIT variable reference; k is an
integer constant in the range one to sixteen, and i is a FIXED BINARY expression.

The effect of the SUBSTR operation is identical to the character operation described
above, except PL/I selects a bit string of length k when SUBSTR appears in an expres­
sion, and assigns it when SUBSTR appears on the left as a target of a bit-string store
operation.

The following section gives an example of bit SUBSTR.

6.8.3 UNSPEC

The UNSPEC BIF returns a bit-string value of the internal representation of the
argument. The form of the UNSPEC BIF is

variable = UNSPEC(argument);

where the argument is an optionally subscripted reference to a data item that occupies
a single- or double-byte memory location.

Note: PL/I does not allow a temporary result as the argument of UNSPEC.

When UNSPEC appears as a pseudo-variable on the left of an assignment statement,
PL/I converts the assigned value to a bit string and directly stores it into the single- or
double-byte location of the variable. Thus, UNSPEC allows you to access single- and
double-byte variables as if they are 8- and 16~bit string data items.

The UNSPEC pseudo-variable is often used as an escape mechanism when the usual
features of the language do not appear to allow access to the underlying facilities. Do
not use UNSPEC instead of a more appropriate high-level language facility, because
UNSPEC is implementation dependent. In fact, whenever it seems necessary to use
UNSPEC, examine the problem in a more general way to see if its use can be avoided.

The following example shows two memory locations being accessed. The UNSPEC
operation loads two absolute addresses into two pointer variables. Two based variables,

72

PL/I Language Reference Manual 6.8 Pseudo-variables

in turn, overlay these two memory locations so they can be accessed as 16- and 8-bit
quantities. The bit SUBSTR pseudo-variable is then applied to move a substring from
one location to the other.

declare
(Pt Q) pointert
A bit(lG) based(P) 1

B bit (B) based(Q) t

fixed;

I =: L\;
unspec(P) =: \FF80'b4;
unspec(Q) - \FFFO'b4;

substl.'(B t4 t2) SlJbst r(A 11 12);

End of Section 6

73

End of Section 6 PL/I Language Reference Manual

74

Section 7
Storage Management

Every variable in a PL/I program is associated with a storage class attribute. The
storage class determines how and when PL/I allocates storage for a variable, and
whether the variable has its own storage or shares storage with another variable.

PL/I supports three different storage classes:

• STATIC
• AUTOMATIC (the default in PL/I)

• BASED

For the STATIC and AUTOMATIC storage classes, the Compiler allocates storage
before execution by generating code that automatically associates the variable name
with a given storage location at run-time. For the BASED storage class, the Compiler
maintains the variable name and attributes, but does not allocate any storage for it.
This allows the run-time system to allocate and free storage during program execution.

To improve internal addressing mechanisms, PL/I treats AUTOMATIC storage in
the same way as ST ATI C storage, except in procedures marked as RECURSIVE.

Storage class attributes are properties of elements, arrays, and major structure var­
iables. Entry names, filenames, or members of data aggregates cannot have these attri­
butes.

7.1 Storage Class Attributes

The STATIC, INITIAL, and AUTOMATIC attributes direct the Compiler to allocate
storage and generate code that associates the declared variable name with a given
storage location at run-time.

7.1.1 The STATIC Attribute

The Compiler allocates storage for a variable declared with the STATIC attribute
before execution of the main procedure. The storage remains allocated until the pro-

75

7.1 Storage Class Attributes PL/I Language Reference Manual

gram ends. Variables belonging to the STATIC storage class can have their data values
initialized with the INITIAL attribute.

7.1.2 The INITIAL Attribute

The INITIAL attribute directs the Compiler to assign initial constant values to STATIC
data items upon storage allocation. The general form of the INITIAL attribute is

INITIAL (value[,value] ...)

where value has the form:

[(iteration-factor)] constant-expression

The optional iteration factor is an integer that specifies the number of times the
constant is repeated. The constant expression must be a literal constant value that is
compatible with, the data type being initialized. It consists of either an optionally signed
arithmetic constant, a string constant, or a NULL pointer value.

You can initialize array data items with a single statement. The statement must begin
with the first element of the array, and continue in row-major order until the end of
the set of initialized constants. The number of constants should not exceed the size of
the initialized array. Structure members must be individually initialized.

Assignments of constants to variables follow the rules for assignment statements.
For example, PL/I does blank padding on the right when a shorter character string is
assigned to a longer character string variable.

Note: only STATIC variables can have the INITIAL attribute to be compatible with
the ANSI Subset G PL/I standard.

The following code sequence illustrates the STATIC and INITIAL attributes:

declare A fixed binary static initial(O);
declare B(S) character(Z) initial«8)'AB') static;
declare

76

1 fcb statict
Z fcb drive fixed(7) initial(O) t

Z fcb naMe character(8) initial('EMP') t

Z fcb type character(3) initial(\DAT')
Z fcb ext biteS) initial('OO'B4) t

Z fcb fill(18) bit(8);

PL/I Language Reference Manual 7.1 Storage. Class Attributes

7.1.3 The AUTOMATIC Attribute

Usually, the AUTOMATIC attribute forces data storage allocation upon entry to
the PROCEDURE or BEGIN block in which the variable appears. In PL/I, AUTO­
MATIC storage is statically allocated to improve variable addressing and execution
speed.

The only exception is in the case of recursion, where the AUTOMATIC variables
must use the dynamic storage mechanism to prevent data overwrite on recursive calls.

7.2 Based Variables and Pointers

A based variable is a variable that describes storage that must be accessed with a
pointer (see Section 3.4). The pointer is the location where the storage for the based
variable begins, and the based variable itself determines how PL/I interprets the contents
of the storage beginning at that location. Thus the pointer and the based variable
together are essentially equivalent to a nonbased variable.

You can visualize a based variable as a template that overlays the storage specified
by its base. Thus a based variable and pointer can refer to storage allocated for the
based variable itself, or to storage allocated for other variables.

The format of the BASED variable declaration is

DECLARE name BASED [(pointer-reference)];

where the pointer reference is an unsubscripted POINTER variable, or a function call,
with zero arguments, that returns a POINTER value.

A pointer-qualified reference can be either implicit or explicit. When you declare a
variable as BASED without a pointer reference, each reference to the variable in the
program must include an explicit pointer qualifier of the form,

pointer-exp - > variable

where pointer-exp is a pointer-valued expression.

When you declare a variable as BASED with a pointer reference, you can reference
it without a pointer-qualifier. The run-time system reevaluates the pointer reference at
each occurrence of the unqualified variable using the pointer expression given in the
variable declaration.

77

7.2 Based Variables and Pointers PL/I Language Reference Manual

The following example illustrates the difference between ,explicit and implicit pointer­
qualified reference.

Main:
procedure options(Main);
declare

list A(100) fixed binary basedt
list_B(100) fixed binary based(list B ptr) t
(list A ptrtlist B ptr) pointer;

list_A_ptr -> list A(47) = 0; 1* explicit reference *1
list B(47) = 0; 1* iMPlicit reference *1

end 1T1ain;

You can declare the same pointer name in a different environment, and use it to
make an implicit pointer-qualified reference. However, PL/I takes the pointer variable
name or pointer-valued function name given in the pointer reference from the scope
of the original BASED declaration. The following example illustrates this concept.

A:

B:

procedure options(Main);
declare

(i ,j) fixed binarr,
p pointer,
x fixed binarr based(p);

P = addr (i);
x = 2;1* iMPlicit reference; x refers to *1

procedure;
declare

p pointer; 1* local to B *1
p = addr(j);
x = 12; 1* iMPlicit reference; x still refers to i *1
P -> x = 3; 1* explicit reference; x now refers to j *1

end A;
en dB;

78

PL/I Language Reference Manual 7.2 Based Variables and Pointers

The following statements are examples of valid BASED variable declarations:

declare A character(B) based;
declare B pointer based(Q) ;
declare C fixed based<P) ;
declare D bit (B) based (F(»;

7.3 The ALLOCATE Statement

The ALLOCATE statement explicitly allocates storage for a variable with the BASED
attribute. The general form of the ALLOCATE statement is:

ALLOCATE based-variable SET(pointer-variable);

The ALLOCATE statement directs PLII to obtain a segment of storage from the
dynamic storage area that is large enough to hold the value of the based variable. If a
segment of the requested size is not available, the run-time system signals ERROR(7).

The based variable must be an unsubscripted variable reference, where the variable
is declared with the BASED attribute in the scope of the ALLOCATE statement. The
run-time system stores the allocation address into the pointer variable named in the
SET clause.

Storage allocated in this manner remains allocated until a corresponding FREE
statement is executed, using the allocation address held by the pointer variable as an
operand.

7.4 Multiple Allocations

The ALLOCATE statement allocates storage each time it is executed in the program.
A program can allocate storage for a single based variable more than once, and as
long as each allocation has a unique pointer, the program can reference all of them.
For example:

79

7.4 Multiple Allocations PL/I Language Reference Manual

declare naMes(S) character(10) based;
de,.:lare (P,Q) pointer;
allocate names set(P);
P -) names(l) 'John';

allocate names set(Q);
Q -) names(l) = \Smith';

In this example, there is no compile-time storage allocation for the array variable
names. The Compiler automatically allocates storage for the pointers P and Q at compile
time. At run-time, the ALLOCATE statements obtain two different allocations for
names that can then be referenced with the appropriate pointer. Figure 7-1 illustrates
this concept.

Statement

declare names(S) character(10) based;

declare (P,Q) painter;

allocate names set (P);
P -) names(1) = \John';

allocate names set(Q);
Q ~ names(l) = \Smith';

Figure 7-1. Multiple Allocations of a BASED Variable

Storage
Allocated

No storage

Note: when multiple allocations of a based variable all have the same pointer, the
pointer only references the most recent allocation, and not any preceding ones.

80

PL/I Language Reference Manual 7.5 The FREE Statement

7.5 The FREE Statement

A BASED variable remains allocated until released with the FREE statement. The
general form of the FREE statement is

FREE [pointer-variable ->] based-variable;

where the pointer variable addresses an allocation of storage that must have been
previously obtained from the dynamic storage area using the ALLOCATE statement.
Unpredictable results can occur if a program attempts to free unallocated storage.

If the pointer variable is not given in the FREE statement, then the based variable
must be declared with the pointer reference option. In this case, the run-time system
returns the storage addressed by the pointer reference to the dynamic storage area.

The run-time subroutines that maintain the dynamic storage area automatically
coalesce contiguous storage segments as they are released using the FREE statement.

Note: when the FREE statement releases a storage allocation, both the pointer and the
contents of the storage area become undefined. Unpredictable results can occur if the
program makes any subsequent reference to the freed storage.

The following code sequence illustrates the FREE statement:

de;;lare
(P1 (;)~ rn pointeJ't
A character(10) based,
B fixed based(R);

allocate A 5et(P);
allocate B set(R);
allocate A set(Q);

P.- I' e e P - : A ~ j

of r e e l.; - : (-~ ~

f re e B '<

81

7.6 The NULL BIF PL/I Language Reference Manual

7.6 The NULL BIF

The NULL BIF returns a pointer value that is a unique nonvalid storage address.
This unique address is useful in marking various pointer values as empty, and is
especially useful in the construction of a linked list.

A linked list is a data structure composed of elements that not only contain a data
area but also contain a pointer to the next element in the list. In such a list, the last
element has no following element, and its pointer has an invalid, null, value. Figure
7-2 shows a linked list.

Pointer
to list

Item
1

Pointer r--­

to
Item 2

Item
2

Pointer
to

Item 3

Figure 7-2. Linked List

The general form of the NULL function call is:

NULL[()]

Item
n-l

Pointer I-­

to
Item n

Item
n

Null
Pointer

Pointer values do not necessarily begin with a null value when program execution
begins. However, pointer values can be given a null value by using the value returned
by NULL in the variable declaration INITIAL option.

NULL is an invalid pointer qualifier for a based variable. For example, the following
code sequence is invalid in PL/I:

declare A pointer;
declare list(10) fixed binary based(A);

A null();
A ->list(10) = 32767; 1* this is ilHJalid! !*I

82

PL/I Language Reference Manual 7.6 The NULL BIF

Section 10 in the PLII Language Programming Guide contains sample programs that
illustrate the use of BASED variables and the NULL function.

7.7 The ADDR BIF

The ADDR BIF returns a pointer value that addresses the segment of memory occu­
pied by the variable name given as the argument. The form of the ADDR BIF is:

ADDR(variable name)

Note: the variable name must have an assigned memory address, and cannot be a
temporary result created through the application of functions and operators, nor can
it be a constant or a named constant such as a FILE, ENTRY, or LABEL constant.

7.8 Storage Sharing

Use of BASED variables in conjunction with the ADDR BIF allows storage sharing
in PL/I. With storage sharing, the based variable is not explicitly given storage with
the ALLOCATE statement. Rather, the based variable acts as a template that overlays
the storage for an existing variable.

To share storage, you must use the ADDR BIF to set the pointer base for the based
variable to the address of the existing variable. Subsequent access to the based variable
then accesses the overlayed variable. The only requirement is that the length of the
based variable, in bits, be less than or equal to the length of the existing variable,· in
bits.

The program below illustrates storage sharing. Here, the value of a character string
is overlayed by a bit-string vector. The output from the program is the character-string
value, written in hexadecimal bit-string form.

declare
i fixed binary t

ptr pointert
1"lord character(S) t

bit vector(S) bit(S) based(ptr);
ptr = addr(word);
get list(I"lord);
do i = 1 to S;

put edit(bit l.lector(i» (x(2)tb4(2»;
end;

83

7.8 Storage Sharing PL/I Language Reference Manual

If you enter the word Digital at the console, the storage location allocated for the
variable word appears as shown below:

al I-T~-:J

The based variable bit_vector is simply a template that overlays the storage for word
as shown below,

where x denotes a single bit. Thus, on output, the program reads the bit string starting
at the location of word and converts it to a hexadecimal representation of the individual
characters stored in word.

Note: there is an important consideration involved in this type of storage sharing. The
preceding example depends on knowledge of the internal data representation used by
PLfI, namely that eight bits represent a character. Thus, the program is implementation
dependent. This runs counter to the Subset G philosophy of writing transportable
programs. PLfI allows such storage sharing using based variables, but the resulting
code might not be transportable to a different implementation.

7.9 Programming Considerations

Based variables and pointers are powerful tools because they give you direct access
to memory. However, use them with caution. Remember that storage obtained with
the ALLOCATE statement remains allocated until it is freed or the program ends. Any
based variables and pointers that refer to the allocated storage remain active only as
long as the block in which they are declared remains active. When control passes out
of the block, the storage becomes inaccessible.

Note: PLfI cannot tell if the size of a based variable does not correspond to the size
of the storage it refers to. If a program assigns a value to a pointer-qualified reference
whose size does not match the allocated storage, then the contents of adjacent storage
locations can be destroyed.

84

PL/I Language Reference Manual 7.9 Programming Considerations

The following errors are common when using based variables and pointers:

• assigning a pointer the NULL value somewhere in the program and subsequently
using it elsewhere in a pointer-qualified reference.

• using a pointer to reference a based variable whose storage has been freed.
• using a pointer whose value has been lost because of the deactivation of the

block in which it was declared.

End of Section 7

85

End of Section 7 PL/I Language Reference· Manual

86

Section 8
Sequence Control

PL/I program statements usually execute sequentially. You can use sequence control
statements to alter this normal flow with conditional and unconditional branching and
controlled looping, as discussed below. Procedure invocations including function calls
also alter the normal execution sequence, and are thus considered sequence control
statements (see Section 2.5).

8.1 The Simple DO Statement

A DO-group is a sequence of statements that begins with a DO statement and ends
with an END statement. The statements must be executable. A DO-group cannot
contain any declarations. A DO-group can occur in one of two forms: the simple,
noniterative, DO, and the controlled, iterative, DO.

The simple DO statement has the form:

[label:]
DO;

statement-l ;

statement-n;
END [label];

where Statement-l through Statement-n constitute the body of the group.

87

8.1 The Simple DO Statement PL/I Language Reference Manual

The following code sequence illustrates the simple DO-group:

do;
x = 3.14/2;
Y = sin(x);

end;

8.2 The Controlled DO Statement

The controlled DO statement has one of two general forms:

DO WHILE (condition);
DO control-variable = do-specification;

where the control-variable is a scalar variable; the condition is a Boolean expression,
and the do-specification is one of the following:

[start-exp [TO end-exp] [BY incr-exp]] [WHILE(condition)]
[start-exp [BY incr-exp] [TO end-exp]] [WHILE(condition)]
[start-exp [REPEAT repeat-exp]] [WHILE(condition)]

In these general forms, start-exp is an expression specifying the initial value of the
control variable; end-exp is an expression representing the terminal value of the control
variable; incr-exp is an expression added to the control variable after each execution
of the loop, and the repeat-exp is the expression that is assigned to the control variable
after each iteration. Condition is an expression yielding a bit-string value that is con­
sidered true if any of the bits in the string are one-bits.

If the TO end-exp form is included but the BY incr-exp is omitted, then PL/I assumes
the incr-exp to be one. The two forms using TO and BY execute in exactly the same
manner, and differ only in the order of these two elements in the program text.

88

PL/I Language Reference Manual 8.2 The Controlled DO Statement

PL/I evaluates the WHILE expression before executing the DO-group. If the condition
is false, the loop execution terminates, and control passes to the statement following
the balanced END statement.

With the exception of the REPEAT option, PL/I evaluates expressions in the do­
specification before executing the loop, so that changes made to the start, end, or
incremental values do not affect the number of times a loop executes.

In the case of the REPEAT option however, PL/I recomputes the repeat-exp after
each iteration. It then stores this recomputed expression in the control variable and
evaluates the WHILE test, if included.

To properly define the actions of iterative groups, PL/I separates them into a sequence
of equivalent IF and GOTO statements. In the separation, expressions el, e2, e3, and
e4 are appropriate start-exp, end-exp, incr-exp, repeat-exp, and condition values, while
i represents a valid control variable.

The DO WHILE statement

DO WHILE (el);

END;

can be expressed as the equivalent sequence of statements:

LOOP:
IF Ael THEN

GOTO ENDLOOP;

GOTO LOOP;
ENDLOOP:;

89

8.2 The Controlled DO Statement

Similarly, the DO REPEAT group

DO i = el REPEAT (e2);

END;

becomes:

i = el;
LOOP:

i = e2;
GOTO LOOP;

PL/I Language Reference Manual

Note: in this case, the loop proceeds indefinitely until terminated by an embedded
GOTO or STOP statement.

The WHILE option can be added,

DO i = el REPEAT (e2) WHILE (e3);

END;

resulting in the equivalent statements:

90

i = el;
LOOP:

IF "e3 THEN
GOTO ENDLOOP;

i = e2;
GOTO LOOP;

ENDLOOP:;

PLfI Language Reference Manual 8.2 The Controlled DO Statement

The simple iterative DO-group

DO i = el TO e2;

END;

is treated as,

DO i = el TO e2 BY e3;

END;

where e3 = 1, that can be expressed as the equivalent sequence,

i = el;
LAST = e2;
INCR = e3;

LOOP:
IF endtest THEN

GO TO END LOOP;

i = i + INCR;
GOTO LOOP;

ENDLOOP:;

where the IF statement containing the endtest compares the control variable with the
value of LAST. The comparison is based on the sign of the incrementing value INCR.
If INCR is negative, the END-test is:

IF i < LAST THEN
GOTO ENDLOOP;

Otherwise, the END-test becomes:

IF i > LAST THEN
GOTO ENDLOOP;

91

8.2 The Controlled DO Statement

Finally, the addition of the WHILE option in,

DO i = el TO e2 BY e3 WHILE (e4);

END;

produces the equivalent sequence:

i = el;
LAST = e2;
INCR = e3;

LOOP:
IF "e4 THEN

GOTO ENDLOOP;
IF endtest THEN

GOTO ENDLOOP;

i = i + INCR;
GOTO LOOP;

ENDLOOP:;

PL/I Language Reference Manual

In these equivalent sequences, the value of LAST and INCR takes on the character­
istics of the expressions e2 and e3. Arithmetic conversions and comparisons take place
at each step according to PL/I rules.

8.3 The IF Statement

The IF statement allows conditional execution of a statement or statement group,
based upon the true or false value of a Boolean test. The optional ELSE clause provides
an alternative statement or group of statements to execute when the Boolean test
produces a false value.

The general form of an IF statement is

IF test-condition THEN action-l [ELSE action-2]

92

PL/I Language Reference Manual 8.3 The IF Statement

where the test-condition is a scalar expression that yields a bit-string value. Action-I
and action-2 can be either simple statements, or compound statements contained within
a DO-group or BEGIN block. If either action-lor action-2 is a simple statement, it
cannot be a DECLARE, END, ENTRY, FORMAT, or PROCEDURE statement. The
statements in action-I, and action-2 if included, must terminate with a semicolon;
therefore the semicolon is not included in the general statement form shown above.

PL/I evaluates the test-condition to produce a bit string. If any bit in the string is
equal to one, then PL/I performs action-I. Otherwise, control passes to action-2, if
included, or to the next statement in sequence following the IF statement.

IF statements can be nested, in which case PL/I pairs each ELSE with the innermost
unmatched IF THEN pair . You can use null statements to force the desired IF ELSE
pairing. For example, in the following code segment containing nested IF statements,
the null statement following the second ELSE corresponds to the second IF THEN test.

if A = Y then

[

i f Z = }{ the 1"1

if W > B then

[
C = 0;

else C = 1;
e 1 5 e ;

else A = \/,..,. .
I '" ,

8.4 The STOP Statement

The STOP statement unconditionally ends the program, closes all open files, and
returns control to the operating system. You can use the STOP statement anywhere in
a program to effect a premature termination.

The form of the statement is simply:

STOP;

8.5 The GOTO Statement

The GOTO statement unconditionally transfers control to a specific labeled state­
ment. It has the general form,

GOTO label constant I label variable;

93

8.S The GOTO Statement PL/I Language Reference Manual

where the label constant is a literal label that appears as the prefix of some labeled
statement, and label variable is a simple or subscripted label variable that is assigned
the value of a label constant.

The evaluated label constant must label a statement in the scope of the GOTO
statement, and cannot be within an embedded DO-group of any sort. The following
example illustrates this kind of invalid transfer.

A: proc options(Main);

i
dO'

;

t

n o __ n Q :; I '* i n \} ali d t r a 1"1 5 fer ! * I
I end;

Len d A;

Transferring control with a GOTO statement is valid only when the target label is
known in the block containing the GOTO statement. Thus, transfer of control using
GOTO statements and labels is limited to the currently active block or a containing
block.

Three examples of valid GOTO statements follow:

goto lab!;
gato IAil1ere;
90 to L(J);

94

PL/I Language Reference Manual 8.6 The Nonlocal GOTO Statement

8.6 The Nonlocal GOTO Statement

In a nonlocal GOTO statement, the evaluated target label constant occurs outside
the innermost block containing the GOTO statement.

Note: PL/I programs should usually avoid the nonlocal GOTO because it makes the
program harder to debug and maintain.

There are situations when the nonlocal GOTO is appropriate. With terminal error
conditions, it is often useful to branch directly to a global error recovery label where
program execution recommences. In such a case, PL/I automatically reverts all embed­
ded ON-units and discards procedure return information.

The following code sequence shows an instance of a nonlocal GOTO from within
a procedure definition:

po •

procedure~

goto L~

end p;
call P;
L ~ ;

End of Section 8

95

End of Section 4 PL/I Language Reference Manual

96

Section 9
Condition Processing

PL/I supports run-time interception of conditions that would usually end the pro­
gram. The ON, REVERT, and SIGNAL statements provide this facility.

A condition is any occurrence that interrupts the program's usual flow of execution.
A condition can be signaled by the run-time system or by the program itself, at which
point control passes to a preestablished logical unit for that condition.

Certain conditions are fatal. This means that the specified logical unit cannot return
control to the point where the condition was signaled, but instead must execute a
GOTO to a nonlocallabel. Other conditions are nonfatal, so that the unit can perform
some local action and then return control to the point of the signal.

PL/I recognizes the following general categories of conditions:

• a general error condition (ERROR)
• arithmetic error conditions such as

- FIXED OVERFLOW
-OVERFLOW
-UNDERFLOW
- ZERODIVIDE

• I/O conditions such as
-ENDFILE
-ENDPAGE
-KEY
- UNDEFINEDFILE

9.1 The ON Statement

The ON statement defines the action to take when the specified condition is signaled.

The ON statement has the general form,

ON condition ON-unit;

where the condition can be one of the conditions listed above.

97

9.1 The ON Statement PL/I Language Reference Manual

An ON-unit is enabled when it is ready to intercept a condition. An ON-unit is
active when it is processing a signaled condition. An ON-unit can be a PL/I statement,
or several PL/I statements contained in a BEGIN block. PL/I processes the ON-unit
when the particular condition named in the ON statement is signaled.

Exit from an ON-unit cannot be through a RETURN statement, although this restric­
tion does not preclude a procedure definition within a BEGIN block.

Once all the statements of the ON-unit are executed, the flow of control resumes at
the point where the condition was signaled, provided that the condition is nonfatal.
Alternatively, the ON-unit can execute a nonlocal GOTO and transfer control to some
label outside the ON-unit.

An ON-unit remains active until its encompassing block ends, or its corresponding
REVERT statement executes (see Section 9.3). You can establish more than one ON­
unit in the same block. If you establish the same ON-unit in an embedded block,
PL/I pushes it onto a condition stack. .

98

PL/I Language Reference Manual

A:
procedure options(main);

on endfile
on endpage
on error(l)

B:
procedure;

on error(l)

revert error(l)

end B;

end A;

9.1 The ON Statement

Figure 9-1. ON-unit Activation

In the preceding example, PLfI first enables the ON-units for the END FILE, END­
PAGE, and ERROR(l) conditions. At this point, there are three enabled ON-units. As
control flows into the procedure B, PLfI enables the second ON-unit for the ERROR(l)
condition and stacks it. There are now four enabled ON-units. Executing the REVERT
statement deactivates the most current ON-unit for ERROR(l), the one inside B, and
reestablishes the one in the outer, main, procedure block. This again leaves three enabled
ON-units.

99

9.1 The ON Statement PL/I Language Reference Manual

Note: PL/I allows a maximum of sixteen ON conditions, stacked or otherwise, to be
enabled at any given point in the execution sequence. Overflowing the Condition stack
is a fatal error. The run-time system stops processing, and prints the message:

Condition StacK Overflow

9.2 The SIGNAL Statement

The SIGNAL statement causes a particular condition to occur programmatically and
invokes a corresponding ON-unit, if one is enabled. If no ON-unit for the condition
is enabled, the PL/I default action occurs. If the condition is fatal the default action
prints a traceback and terminates the program.

The general form of the SIGNAL statement is

SIGNAL condition;

where the condition is one of the conditions listed above. For example, the statement

si~nal zerodivide;

invokes the current ZERODIVIDE ON-unit.

9.3 The REVERT Statement

The REVERT statement disables the current ON-unit for a specific condition and
reestablishes the one that preceded it, if it exists.

The general form of the REVERT statement is

REVERT condition;

where the condition is one of the conditions listed above.

100

PL/I Language Reference Manual 9.3 The REVERT Statement

For example, the statement

disables the current ON-unit for the OVERFLOW conditon.

Note: upon exit from a PROCEDURE or BEGIN block, PL/I automatically reverts any
ON-units enabled within the block.

9.4 The ERROR Condition

The ERROR condition is the broadest category of all PL/I conditions. It includes
through its subcodes, both system-defined and program-defined conditions. There are
four groups of ERROR condition subcodes:

(A)
(B)
(C)
(D)

o
64

128
192

63 Reserved for PL/I (Fatal)
127 Program-Defined (Fatal)
191 Reserved for PL/I (Nonfatal)
255 Program-Defined (Nonfatal)

The general forms of the ON statement with the ERROR condition are

ON ERROR[(integer-expression)] on-body;
SIGNAL ERROR[(integer-expression)];
REVERT ERROR[(integer-expression)];

where integer expression is a specific sub code in the range 0-255. For example, the
statement

ON ERROR3) ... ;

intercepts the ERROR condition with the subcode 3.

The forms

ON ERROR on-body;
ON ERROR(O) on-body;

intercept any error condition, regardless of the subcode. Table 9-1 shows the codes
currently assigned in group A.

101

9.4 The ERROR Condition PL/I Language Reference Manual

Error

ERROR(l)

ERROR(2)

ERROR(3)

ERROR(4)

ERROR(5)

ERROR(6)

ERROR(7)

ERROR(8)

ERROR(9)

ERROR(lO)

ERROR(ll)

ERROR(12)

102

Table 9-1. ERROR Codes - GrolUp A

Meaning

Data Conversion: Data types do not conform during assign­
ment, computation, or input processing.

110 Stack Overflow. The run-time 110 stack has exceeded six­
teen simultaneous nested 1/0 operations.

Invalid argument to function f where f is ACOS, ASIN, LOG,
LOG2, LOGIO, SQRT, or TAN.

110 Conflict: The attributes of an open file do not match the
attributes required for a particular GET, PUT, READ, or WRITE
statement.

Format stack overflow: Nested format evaluation exceeds 32
levels.

Invalid format item: Data item does not conform to format
item, or unrecognized item encountered.

Free space exhausted: No more space is available in dynamic
storage area (TPA).

Overlay: No file d:filename.OVR. The indicated file could not
be found.

Overlay: drive d:filename.OVR. An invalid drive code was passed
as a parameter to ?ovlay.

Overlay: size d:filename.OVR. The indicated overlay would
overwrite the PL/I stack andlor free space if it were loaded.

Overlay: nesting d:filename.OVR. Loading the indicated over­
lay would exceed the maximum nesting depth.

Overlay: Read d:filename.OVR. Disk read error during the
overlay load, probably caused by premature EOF.

PL/I Language Reference Manual 9.4 The ERROR Condition

Table 9-1. (continued)

Error Meaning

ERROR(13)

ERROR(14)

ERROR(15)

ERROR(16)

Invalid OS Version. Caused by any operation that generates an
operating system call not supported under the current operating
system.

Unsuccessful Write. Caused by any unsuccessful write opera­
tion on a file due to lack of directory space, or lack of disk
space.

File Not Open. Caused by any attempt to lock or unlock a
record in a file that is not open.

File Not Keyed. Caused by any attempt to lock or unlock a
record in a file that does not have the KEYED attribute.

The following code sequence shows a simple example of the ERROR condition:

on error(l)
begin;
put skip list('Invalid Input: ');
goto retn';
end;

retrY:
get list(x);

The GET statement reads variable x from the SYSIN file, and if the data is invalid,
the run-time system signals ERROR(l). In this case, control passes to the ON-body,
which writes an error message to the console, and recommences execution at the retry
label.

You can use the SIGNAL statement with the ON statement to intercept either fatal
or nonfatal conditions. For example, the statement

signal error(64);

signals the ERROR(64) condition, and if there is an ON-unit enabled for ERROR(64),

103

9.4 The ERROR Condition PL/I Language Reference Manual

then the corresponding ON-body receives control. Otherwise, the program ends with
an error message. The statement

signal error(255);

performs a similar action except that the program does not end if an ON-unit for the
ERROR(255) condition is not enabled.

9.5 Arithmetic Error Conditions

PLiI handles several arithmetic error conditions. These conditions are

• FIXEDOVERFLOW[(i)]
• OVERFLOW[(i)]
• UNDERFLOW[(i)]
• ZERODIVIDE[(i)]

where i is an optional integer expression denoting a specific error subcode. Similar
to the ERROR function, the ON, REVERT, and SIGNAL statements can specify any
of the preceding conditions.

If you do not specify an integer expression, PL/I assumes a zero value. An ON
statement with subcode of zero intercepts any subcode from 0-255. PL/I divides the
arithmetic condition subcodes into system-defined and program-defined values, anal­
ogous to the ERROR function.

Note: PL/I considers all arithmetic error conditions to be fatal. When setting an ON
condition for an arithmetic exception, the ON-body should transfer control to a global
label. Otherwise, the program ends upon return from the ON-unit.

Table 9-2 shows the system codes for arithmetic error conditions.

Table 9-2. Arithmetic Error Condition Codes

Condition Meaning

FIXEDOVERFLOW(l) Decimal Add, Multiply, or Store

OVERFLOW(l) Floating-point operation

104

PL/I Language Reference Manual 9.5 Arithmetic Error Conditions

Table 9-2. (continued)

Condition Meaning

OVERFLOW(2) Float Precision Conversion

UNDERFLOW(l) Floating-point operation

UNDERFLOW(2) Float Precision Conversion

ZERODIVIDE(l) Decimal Divide

ZERODIVIDE(2) Floating-point Divide

ZERODIVIDE(3) Integer Divide

9.6 The ONCODE BIF

The ONCODE BIF returns a FIXED BINARY value representing the type of error
that signaled the most recent condition. If a signal is not active, ONCODE returns a
zero. After an ON-unit is activated, ONCODE can determine the exact source of the
error. The following code sequence illustrates the use of ONCODE.

on error
be 9' in;
declare

code fixed;
code = oncode();
if code = 1 then

do;
put list('Bad Input:');
9'oto retrY;

end;
put list('Error#' tcode);
end;

retrY:

105

9.7 Default ON-units PL/I Language Reference Manual

9.7 Default ON-units

PLiI has default ON-units for each of the condition categories that usually out­
put an appropriate error message and end the program. PL/I does not signal the
FIXED OVERFLOW condition for FIXED BINARY overflow, although it does if
FIXED DECIMAL computations exceed their allocated field sizes.

9.8 1/0 Conditions

During I/O processing, the run-time system can signal several conditions relating to
the access of a particular file. These conditions are

• ENDFILE(file-reference)
• UNDEFINEDFILE(file-reference)
• KEY(file-reference)
• ENDPAGE(file-reference)

where file-reference denotes a file-valued expression. The file value that results need
not denote an open file. Section 10.5 describes each of the I/O conditions in detail.

End of Section 9

106

Section 10
Input/Output Processing

PL/I provides a device-independent input/output system that allows a program to
transmit data between memory and an external device such as a console, a line printer,
or a disk file.

The collection of data elements transmitted to or from an external device is called
the data set. A corresponding internal file constant or variable is called a file.

As with other data items, you must declare all files before you use them in a program.
The general form of a file declaration is

DECLARE file_id FILE [VARIABLE];

where file_id is the file identifier. The declaration defines a file constant if you do not
include the VARIABLE attribute. Include the VARIABLE attribute, and the declaration
defines a file variable that can take on the value of a file constant through an assignment
statement. 110 operations on file variables are valid only after you assign a file constant
to a file variable.

Note: by default, PL/I assigns the EXTERNAL attribute to a file constant. Unless you
declare a file variable as EXTERNAL, PL/I treats it as local to the block where you
declare it.

10.1 The OPEN Statement

PL/I requires that a file be open before performing any 110 operations on the data
set. You can open a file explicitly, by using the OPEN statement, or implicitly by
accessing the file with one of the following I/O statements:

• GET EDIT • READ
• PUT EDIT • WRITE
• GET LIST • READ Varying
• PUT LIST ,f' • WRITE Varying

• Sections 11 and 12 contain detailed descriptions of the various I/O statements.

107

10.1 The OPEN Statement PL/I Language Reference Manual

The general form of the OPEN statement is

OPEN FILE(file_id) [file-attributes];

where file _ id is the identifier that appears in a FILE declaration statement, and file­
attributes denotes one or more of the following PL/I keywords:

• STREAM I RECORD
• PRINT
• INPUT I OUTPUT I UPDATE
• SEQUENTIAL I DIRECT
• KEYED
• TITLE
• ENVIRONMENT
• PAGESIZE
• LINESIZE

Multiple attributes on the same line are conflicting attributes so you can only specify
one. The first one listed is the default attribute. The default values for the other attributes
are:

TITLE ('file_id.DAT')
ENVIRONMENT(Buff(128))
LINESIZE(80)
PAGESIZE(60)

Note: All the attributes are optional and you can specify them in any order.

A STREAM file contains variable length ASCII data. You can visualize it as a
sequence of ASCII character data, organized into lines and pages. Each line in a STREAM
file is determined by a linemark, that is a line-feed or a carriage return line-feed pair.
Each page is determined by a pagemark, or form-feed. ED automatically inserts a line­
feed following each carriage return, but files that PL/I creates can have line-feeds without
preceding carriage returns. PL/I then senses the end of the line when it encounters the
line-feed.

A RECORD file contains binary data. PL/I accesses the data in blocks determined
by a declared record size, or by the size of the data item you use to access the file. A
RECORD file must also have the KEYED attribute, if you use FIXED BINARY keys
to directly access the fixed-length records.

108

PL/I Language Reference Manual 10.1 The OPEN Statement

PRINT applies only to STREAM files, and indicates that the data is for output on
a line printer.

For an INPUT file, PL/I assumes that the file already exists when it executes the
OPEN statement. When it executes the OPEN statement for an OUTPUT file, PL/I
creates the file. If the file already exists, PL/I first deletes the old one, then creates a
new file.

You can read from and write to an UPDATE file. PL/I creates an UPDATE file if it
does not exist when executing the OPEN statement. An UPDATE file cannot have the
STREAM attribute.

SEQUENTIAL files are accessed sequentially from beginning to end. DIRECT files
are accessed randomly using keys. PL/I automatically gives DIRECT files the RECORD
and KEYED attributes. PL/I requires you to declare all UPDATE files with the DIRECT
attribute so that you can locate the individual records.

A KEYED file is simply a fixed-length record file. The key is the relative position of
the record in the file based upon the fixed record size. You must use keys to access a
KEYED file. PL/I automatically gives KEYED files the RECORD attribute.

The LINESIZE attribute applies only to STREAM OUTPUT files, and defines the
maximum input or output line length in characters.

The P AGESIZE attribute applies only to STREAM PRINT files, and defines the
number of lines per page.

The TITLE(c) attribute defines the programmatic connection between an internal
filename and an external device or a file in the operating system's file system. If you
do not specify a TITLE attribute, the external filename defaults to the value of the file
reference, with the filetype DAT. Otherwise, PL/I evaluates the character string c to
produce either a device name,

$CON
$LST
$RDR
$PUN

System Console
System List Device
System Reader Device
System Punch Device

or a disk file in the form,

d:filename.typ;password

109

10.1 The OPEN Statement PL/I Language Reference Manual

where the drive specification d, the filetype typ, and the password are optional. If you
specify a password in the TITLE attribute the ENVIRONMENT attribute (see Section
10.1.2) defaults to ENVIRONMENT(Password(Read)).

Either the filename or filetype or both, can be $1 or $2. If you specify $1 then
PL/I takes the first default name from the command line and fills it into that position
of the title. Similarly, $2 is taken from the second default name and filled into the
position where it occurs.

You must specify the filename, and you cannot use an ambiguous, or wildcard,
reference in the filename, filetype, or the drive specification. Also, you can open the
physical 110 devices $CON, $RDR, $PUN, and $LST only as STREAM files. $RDR
must have the INPUT attribute, and $PUN and $LST must have the OUTPUT attribute.

The ENVIRONMENT attribute defines fixed- and variable-length record sizes for
RECORD files, internal buffer sizes, the file open mode, and password protection level.

The general form of the ENVIRONMENT attribute is

ENVIRONMENT(option, ...)

where option is one or more the following:

• Locked I L
• Readonly I R
• Shared I S
• Password[(level)] I P[(level)]
• Fixed(i) I F(i)
• Buff(b) I B(b)

You can specify options in the ENVIRONMENT attribute in any order with the
exception that Fixed(i) must precede Buff(b).

Locked mode is the default mode for opening a file, and prevents other users from
accessing the file while it is open. Readonly allows more than one user to open the file
for Read/Only access. Shared, or unlocked, mode means that more than one user can
open the file and access it. In Shared mode, you can apply the LOCK and UNLOCK
built-in functions to individual records in the file. You can abbreviate each of the open
modes with a single character. Thus, you can specify either Locked or L, Readonly or
R, and Shared or S.

110

PL/I Language Reference Manual 10.1 The OPEN Statement

The option Password[(level)], defines the password protection level of the file. The
valid protection levels are:

• Read
• Write
• Delete

R
W
D

Read means that the password is required to read the file; this is the default mode.
Write means that the file can be read but the password is required to write to the file.
Delete means that the file can be read or written to , but the password is required to
delete the file. You can abbreviate each of the protection levels with a single character.
Thus, you can specify Read or R, Write or W, and Delete or D.

The option Buff(b) directs the I/O system to buffer b bytes of storage, where b is a
FIXED BINARY expression that PL/I internally rounds to the next higher multiple of
128 bytes. In this form, the I/O system assumes that the file has variable-length records
and therefore cannot have the KEYED attribute because the record size is not fixed.

The option Fixed(i) defines a file with fixed-length records containing i bytes each,
where i is a FIXED BINARY expression that PL/I internally rounds to the next multiple
of 128 bytes. If you use this option, you must also specify the KEYED attribute. When
using this option, the default buffer size is i bytes, rounded to the next higher multiple
of 128 bytes.

The options Fixed(i),Buff(b) defines a file, containing fixed-length records of i bytes,
rounded as above, with a buffer size of b bytes, again, rounded. You can specify a
fixed-length record larger than the buffer size. When using these options, you must
also specify the KEYED attribute.

10.2 Establishing File Attributes

When executing the OPEN statement, PL/I establishes the file attributes before asso­
ciating the file with an external data set. If the OPEN statement does not specify a
complete set of attributes, PL/I augments them with implied attributes. Table 10-1
shows the implied attributes for each specified attribute.

111

10.2 Establishing File Attributes PL/I Language Reference Manual

Table 10-1. PL/I Implied Attributes

Specified Attribute Implied Attribute(s)

DIRECT
KEYED
PRINT
SEQUENTIAL
UPDATE

RECORD KEYED
RECORD
STREAM OUTPUT
RECORD
RECORD

Note: that the OPEN statement cannot contain conflicting attributes either explicitly
or by default through the mechanisms that give the implied attribute.

Each type of I/O statement implicitly determines a specific set of file attributes. If
you use the OPEN statement to explicitly specify the attributes, the attributes implied
by the I/O statement cannot conflict with the attributes supplied in the OPEN statement.
Table 10-2 summarizes the valid attributes for each of the I/O statements.

Table 10-2. Valid File Attributes for each 1/0 Statement

I/O Statement

GET FILE(f) LIST

PUT FILE(f) LIST

GET FILE(f) EDIT

PUT FILE(f) EDIT

READ FILE(f) INTO(v)

READ FILE(f) INTO(x)

READ FILE(f) INTO(x) KEYTO(k)

READ FILE(f) INTO(x) KEY(k)

112

Valid Attributes

STREAM INPUT

STREAM OUTPUT

STREAM INPUT

STREAM OUTPUT

STREAM INPUT

RECORD INPUT SEQUENTIAL

RECORD INPUT SEQUENTIAL
KEYED ENVIRONMENT(Fixed(i))

RECORD INPUT DIRECT KEYED
ENVIRONMENT(Fixed(i))

RECORD UPDATE DIRECT KEYED
ENVIRONMENT(Fixed(i))

PL/I Language Reference Manual 10.2 Establishing File Attributes

Table 10-2. (continued)

I 10 Statement Valid Attributes

WRITE FILE(f) FROM(v) STREAM OUTPUT

WRITE FILE(f) FROM(x) RECORD OUTPUT SEQUENTIAL

WRITE FILE(f) FROM(x) KEYFROM(k) RECORD OUTPUT DIRECT KEYED
ENVIRONMENT(Fixed(i))

RECORD UPDATE DIRECT KEYED
ENVIRONMENT(Fixed(i))

Table 10-3 summarizes the valid attributes that can be associated with any file either
through an explicit OPEN statement, or implicitly by an 110 access statement.

Type

STREAM

STREAM

STREAM

RECORD

RECORD

RECORD

RECORD

Table 10-3. PL/I Valid File Attributes

Attribute

INPUT ENVIRONMENT TITLE

OUTPUT ENVIRONMENT TITLE LINESIZE

PRINT ENVIRONMENT TITLE LINESIZE PAGESIZE

INPUT SEQUENTIAL ENVIRONMENT TITLE

OUTPUT SEQUENTIAL ENVIRONMENT TITLE

INPUT SEQUENTIAL KEYED ENVIRONMENT TITLE

OUTPUT SEQUENTIAL KEYED ENVIRONMENT TITLE

113

10.2 Establishing File Attributes PL/I Language Reference Manual

Table 10-3. (continued)

Type Attribute

RECORD INPUT DIRECT KEYED ENVIRONMENT TITLE

RECORD OUTPUT DIRECT KEYED ENVIRONMENT TITLE

RECORD UPDATE DIRECT KEYED ENVIRONMENT TITLE

Note: that once established, the set of attributes applies only to the current opening
of the file. You can close the file and reopen it with a different set of attributes.

Some examples of the OPEN statement are shown below. In each case, there is a
source statement with the default and augmented attributes shown below the statement.
Each file is assumed to be declared as a file constant.

Statement: open file(fl);

Attributes: STREAM INPUT ENVIRONMENT(Locked,Buff(128))
TITLE('fl.DA T') LINESIZE(80)

Statement: open file(f2) print enu(r);

Attributes: STREAM OUTPUT PRINT ENVIRONMENT(Readonly,Buff(128)
TITLE('f2.DAT') LINESIZE(80) PAGESIZE(60)

Statement : open file(f3) se9uential
title('new.fil;John') ;

Attributes: RECORD INPUT SEQUENTIAL
ENVIRONMENT(Locked,Password(Read),Buff(128))
TITLE('new .fil;J Ghn')

Statement: open title('a: ': :c) file(f4)

114

di rect t\eyed enl,l (s,f (2000»;

Attributes: RECORD DIRECT INPUT KEYED
ENVIRONMENT(Shared,Fixed(2048),Buff(2048))
TITLE('a:'IIc)

PL/I Language Reference Manual 10.2 Establishing File Attributes

Statement: open update Keyed file(fS)
en \) (10 c ~~ edt f (300) t b (1(0)) ;

Attributes: RECORD DIRECT UPDATE KEYED
ENVIRONMENT(Locked,Fixed(384),Buff(128))
TITLE ('fS.DAT')

Statement: open file(fS) input direct
title('d:accounts.new;topaz')
en \) (5 h are d t p (d) t f (1(0) t b (2000)) ~

Attributes: RECORD DIRECT INPUT KEYED
ENVIRONMENT(Shared,Password(Delete),Fixed(128),Buff(2048))
TITLE('d:accounts.new;topaz')

In each of the preceding examples, PLfI allows integer expressions wherever a con­
stant appears. Thus the statement

open file(f1) linesize(K+3) pa~esize(n-4) env(b(x+128»;

is a valid form of the OPEN statement.

10.3 The CLOSE Statement

The CLOSE statement dissociates the file from the external data set, clears and frees
the internal buffers and permanently records the output files on the disk. The general
form of the CLOSE statement is

CLOSE FILE(file_id);

where file_id is a file reference. You can subsequently reopen the file using the OPEN
statement described above. If the file is not open, PLfI ignores the CLOSE statement.

10.4 The File Parameter Block

PLfI associates every file constant with a File Parameter Block (FPB). A FPB is a
statically allocated segment of memory containing information about the file. A file
variable has no corresponding FPB until you assign it a file constant. Each FPB contains
the following information:

• the file title naming the external device or data set associated with the file

115

10.4 The File Parameter Block PL/I Language Reference Manual

• the column position that the run-time system maintains to locate the next
position to get or put data in a STREAM file

• current line count in STREAM OUTPUT files
• current page count for PRINT files
• current record position
• line size
• page size
• fixed record size
• internal buffer size
• File Descriptor containing one of the valid sets of file attributes as described

above

While the file is open, the run-time system maintains an entry in a data structure
called the Open List, which is allocated from the free storage area. Also, while the file
is open, the FPB contains a pointer to the address of the operating system File Control
Block (FCB).

10.5 I/O Conditions

During 110 processing, the run-time system can signal several conditions relating to
the access of a particular file. The conditions are

• ENDFILE(file-re£erence)
• UNDEFINEDFILE(file-re£erence)
• KEY(file-re£erence)
• ENDPAGE(file-reference)

where file reference is an expression that reduces to a file constant. The file constant
that results does not have to be open.

10.5.1 The ENDFILE Condition

The run-time system signals the END FILE condition whenever it reads an end-of­
file character, CTRL-Z or AZ, from a STREAM file, or it encounters the physical end­
of-file in a RECORD file being processed in SEQUENTIAL mode. A read operation
on a DIRECT file using a key beyond the end-of-file also signals the ENDFILE con­
dition. Output operations that exceed the disk storage capacity signal the ERROR(14)
condition.

116

PL/I Language Reference Manual 10.5 1/0 Conditions

10.5.2 The UNDEFINDFILE Condition

The run-time system signals the UNDEFINEDFILE condition whenever a program
attempts to open a file for INPUT, and the file does not exist on the specified disk.
The run-time system also signals the UNDEFINED FILE condition if a program attempts
to open a password-protected file without the correct password. Attempting to access
a physical device such as $CON, $LST, $RDR, $PUN as a KEYED or UPDATE file,
also signals this condition.

10.5.3 The KEY Condition

The run-time system signals the KEY condition when a program attempts to access
a key value beyond the storage capacity of the disk.

10.5.4 The END PAGE Condition

The run-time system signals the ENDP AGE condition for PRINT files when the value
of the current line reaches the PAGESIZE for the specified file. The current line always
begins at zero, and the run-time system increases it by one for each line-feed that is
sent to the file. If the file is initially opened with PAGESIZE(O), then the run-time
system never signals the ENDPAGE condition. The run-time system resets the current
line to one whenever:

• a form-feed is sent to the output file
• a PUT statement with a PAGE option is executed
• the default system action for END PAGE is performed

If the run-time system signals the ENDPAGE condition during execution of a SKIP
option, the SKIP processing ends.

If an ON-unit intercepts the END PAGE condition, but does not execute a PUT
statement with the PAGE option, then the current line is not reset to one. That is, until
the program executes a PUT statement with the PAGE option, the run-time system
continues to increment the current line, and does not signal the END PAGE condition.
The current line counts up to 32767 and then begins again at 1.

117

10.5 1/0 Conditions PL/I Language Reference Manual

10.5.5 Default 1/0 ON units

If an ON-unit receives control for the ENDFILE, UNDEFINEDFILE, or KEY con­
ditions and returns to the point where the signal occurred, the run-time system ter­
minates the current 110 operation, and passes control to the statement following the
I/O statement that signaled the condition.

If there is no ON-unit enabled for the ENDFILE, UNDEFINEDFILE, or KEY con­
dition, the default system action ends the program and outputs an appropriate error
message.

If there is no ENDPAGE ON-unit enabled, the default system action inserts a form­
feed into the output file, and continues processing.

10.6 I/O Condition BIFs

PL/I has several built-in functions for condition handling. They are:

.ONFILE

.ONKEY
• PAGENO
• LINENO

10.6.1 The ONFILE Function

The ONFILE function returns a CHARACTER V AR YING string value of the inter­
nal filename involved in the last 110 operation that signaled a condition. With a
conversion error, the ONFILE function produces the name of the file that is active at
the time. If a signaled condition does not involve a file, then ONFILE returns a null
string. The following code segment illustrates the use of ONFILE.

on error(l)

[

begird
put list(\Bad Data in file: I tonfile(»;
goto retrY;
en d ;

retrY:

118

PL/I Language Reference Manual 10.6 1/0 Condition BIFS

10.6.2 The ONKEY Function

The ONKEY function returns the value of the key involved in the lIO operation that
signaled the KEY condition. ONKEY is valid only in the ON-body of the activated
ON-unit. The following code segment illustrates the use of ONKEY.

on ~~e}'(neIAd'ile)

put s~dp list(\bad ~\eY/tord\e}'(»;

10.6.3 The PAGENO and LINEO Functions

The PAGENO and LINENO functions return the current page number and current
line number for the PRINT file named as the parameter. When the ENDPAGE condition
is signaled as the result of a PUT statement, the line number is one greater than the
page size for the file.

10.7 Predefined Files

PL/I contains two predefined file constants called SYSIN and SYSPRINT. You do
not have to declare these file constants unless you make an explicit file reference to
them with an OPEN, GET, PUT, READ, or WRITE statement.

Otherwise, PL/I opens SYSIN with the default attributes:

STREAM INPUT ENVIRONMENT(Locked,Bu££(128)) TITLE('$CON')
LINESIZE(80)

and SYSIN becomes the console keyboard.

PL/I opens SYSPRINT with the default attributes:

STREAM PRINT ENVIRONMENT(Locked,Bu££(128)) TITLE('$CON')
LINESIZE(80) PAGESIZE(O)

and SYSPRINT becomes the console output display.

119

10.8 1/0 Categories PL/I Language Reference Manual

10.8 1/0 Categories

PL/I supports two general categories of file access:

• STREAM 110 (sequential access only)
• RECORD 110 (sequential or random access)

10.8.1 STREAM 1/0

A STREAM file is a sequence of ASCII characters separated by linemarks and page­
marks. When transmitting the data in a STREAM file to and from external devices,
PL/I can format the data and perform conversion to other data types. Section 11
contains complete descriptions of the STREAM 110 statements.

10.8.2 RECORD 1/0

In RECORD 1/0, individual data items are called records, and they vary in size
according to the data declaration. PL/I does not perform data conversion when trans­
mitting data using the RECORD 110 statements (see Section 12), but simply transfers
the internal representation of the data item.

End of Section 10

120

Section 11
Stream liD

PL/I supports three forms of STREAM 110:

• LIST-directed, transfers data items without format specifications.
• Line-directed, allows access to variable length character data in an unedited

form. Note that PL/I provides line-directed STREAM 110 using READ and
WRITE statements that might not be available in other implementations of
PL/I.

• EDIT-directed, allows formatted access to character data items (see Section
11.3).

The following rules apply to all STREAM 1/0:

• The column position for a file is initially 1.
• Each occurrence of a linemark or pagemark resets the column position to 1.
• If the input or output character is a special character, the column position

advances by one.
• On output, if the column position exceeds the line size, the run-time system

writes a linemark, increments the line number by one, and resets the column
position to one.

• When the line number exceeds the page size, the run-time system signals the
END PAGE condition. If no ENDPAGE On-unit is enabled, the run-time system
.writes a pagemark, and resets the column position and line number to one.

The following naming conventions appear throughout this section when describing
the various STREAM 110 statements:

Name

nl

Table 11-1. Stream 110 Naming Conventions

Meaning

is the file identifier.

is a FIXED BINARY expression that defines the number of line­
marks to skip on input, or the number of linemarks to write
preceding the data item on output.

121

11 Stream I/O PL/I Language Reference Manual

Table 11-1. (continued)

Name Meaning

input-list is a list of variables separated by commas, to which PLfI transmits
the data items from the input stream. The input list determines
the number and order of the variables assigned by the input data
in the stream. In PLfI, the variables must be scalar values. You
can include iterative DO-groups in the input-list but they require
an extra set of parentheses. The DO header format is the same
as the DO statement except that the REPEAT clause is not allowed.
The general format is: (item-1, ... ,item-n DO iteration). For exam­
ple, the following two sequences of code are equivalent:

do i = 1 to 10;
put list(A(i»;

end;

put list«A(i) do i = 1 to 10»;

output-list is a list of output items consisting of variables, constants, or
expressions, separated by commas. The output list can also include
iterative DO-groups.

11.1 LIST-directed 1/0

The following constraints apply to the input stream for list-directed 110:

122

• Data items in the stream can be arithmetic constants, character-string constants,
or bit-string constants.

• Each data item must be followed by a separator, that consists of a series of
blanks, a comma optionally surrounded by blanks, or an end-of-line character.

• PLfI treats embedded tabs, CTRL-I, as blanks.

• Character string data that actually contain blanks or commas must be enclosed
in apostrophes. Otherwise, PLfI treats the blanks or commas as separators.

PL/I Language Reference Manual 11.1 LIST-directed 110

• A comma as the first nonblank character in the input line, or two consecutive
commas optionally separated by one or more blanks indicate a null field in the
input stream. The null field indicates that no data is to be transmitted to the
associated data item in an input list. Thus, the value of the target data item
remains unchanged.

11.1.1 The GET LIST Statement

The GET LIST statement reads data using list-directed STREAM 1/0. The general
form of the GET LIST statement is:

GET [FILE(file_id)] [SKIP[(nl)]] LIST(input-list);

You can specify the options FILE or SKIP in any order; LIST must appear last. If you
do not specify the FILE option, PLII assumes FILE(SYSIN). In a GET statement with
the SKIP option, the run-time system ignores nl linemarks. If you do not specify nl
with the SKIP option, then the run-time system ignores one linemark.

After transmission of all data items to the variables named in the input-list, the
column position in the input stream remains at the character following the last data
item read.

You can optionally enclose character strings in the input stream in apostrophes. If
you do so, the run-time system does not transmit the enclosing apostrophes to the
input variable. Likewise, for bit-string constants, the run-time system does not transmit
the enclosing apostrophes and the trailing B to the input variable.

PL/I limits input strings to one line. Thus, string input from the console only requires
the leading apostrophe when the string ends with a carriage return.

11.1.2 The PUT LIST Statement

The PUT LIST statement writes data using list-directed STREAM 110. The general
form of the PUT LIST statement is:

PUT [FILE(file_id)] [SKIP[(nl)]] [PAGE] LIST(output-list);

You can specify the options FILE, SKIP or PAGE in any order; LIST must appear last.
If you do not specify the FILE option, PL/I assumes FILE(SYSPRINT).

123

11.1 LIST-directed 1/0 PLII Language Reference Manual

If you do not specify nl with the SKIP option, then nl defaults to 1. If nl = 0, the
run-time system does not write a linemark but resets the column position to 1. In either
case using the SKIP option, the run-time system resets the column position to 1.

The PAGE option is valid only for PRINT files. Whenever the run-time system writes
a pagemark, both the column position and line number are reset to 1.

When writing data items to a STREAM file, PL/I converts the items in the output­
list to their character-string representation. The run-time system uses blanks to separate
the data on the output line. If the data item is longer than the number of characters
left on the output line, the run-time system writes the item at the beginning of the next
line. If the length of the character string representation of the data item exceeds the
line size, the run-time system writes the data item by itself on a single line that extends
past the line size.

If the output transmission exceeds the page size, PL/I signals the ENDPAGE con­
dition.

PL/I usually writes character strings enclosed in apostrophes. Each embedded apos­
trophe is written as an apostrophe pair,". However, if the file has the PRINT attribute,
the additional. apostrophes are omitted. PL/I always writes bit-string data enclosed
within apostrophes followed by the letter B.

11.2 Line-directed 110

PLiI supports two forms of the READ and WRITE statement for processing variable­
length ASCII records in a STREAM file. The two forms, called READ Varying and
WRITE Varying,are not generally available in other implementations of PL/I. PL/I
programs should avoid using these' statements if compatibility is important.

11.21 The READ Varying Statement

The READ Varying statement reads variable length STREAM INPUT files., The
general form of the READ Varying statement is

READ [FILE(file_id)] INTO(v);

where v is a CHARACTER VARYING string variable. If you do not specify the FILE
option, PL/I assumes FILE(SYSIN).

124

PL/I Language Reference Manual 11.2 Line-directed 1/0

READ Varying reads data from the input file until it reaches the maximum length
of v, or it reads a line-feed character. READ Varying sets the length of v to the
number of characters read, including the line-feed character.

Note: If you do not explicitly specify the file's attributes in an OPEN statement, the
READ Varying statement causes an'implicit OPEN statement with the resulting file
attributes, STREAM and INPUT.

Given the declaration

declare
F file t

buffer;,
2 buffch character(Z54) varyin~;

the statement

read file(F) into(buffer);

produces RECORD data transmission because the target is a structure, not a CHAR­
ACTER VARYING variable. However, PLfI interprets the statement

read file(F) into(buffch);

as ASCII STREAM INPUT data transmission because the target is CHARACTER
VARYING.

The READ Varying statement is differentiated from the READ statement only by
the fact that the target variable has the attributes, CHARACTER VARYING.

11.2.2 The WRITE Varying Statement

The WRITE Varying statement writes variable length ASCII STREAM data. The
general form of the WRITE Varying statement is

WRITE [FILE(file_id)] FROM(v);

where v is a CHARACTER VARYING string variable. If you do not specify the file
option, PLfl assumes file (SYSPRINT).

125

11.2 Line-directed 110 PL/I Language Reference Manual

PLII adds no additional control characters to the output string. If the application
requires control characters, you must include them in the string. Recall that PL/I allows
embedded control characters as a part of string constants, denoted by a preceding A in
the string.

Note: If you do not explicitly specify the file's attributes in an OPEN statement, the
WRITE Varying statement causes an inplicit OPEN statement with the resulting file
attributes, STREAM and OUTPUT.

For example, given the previous declaration, PL/I interprets the statement

write file(F) froM(buffer);

as RECORD data transmission. PL/I interprets

write file(F) froM(buffch);

as a WRITE Varying statement, operating on an ASCII STREAM OUTPUT file, because
the source variable has the V AR YING attribute.

The WRITE Varying statement is differentiated from the WRITE statement only by
the fact that the source variable has the attributes, CHARACTER VARYING.

11.3 EDIT-directed 1/0

The input-list and the output-list for EDIT-directed 110 are analogous to those for
LIST-directed 1/0. However, EDIT-directed 110 uses a format list to specify how
PL/I reads and writes the data.

11.3.1 The Format List

The format list is a list of format items, separated by commas. There are three types
of format items:

• Data format items describing the data items to be read.
• Control format items specifying the placement of the data items in the stream.
• Remote format items referencing another format list.

126

PL/I Language Reference Manual 11.3 EDIT-directed 110

The general form of a format list is

[n] fmt-item ... [,[n] fmt-item]

where n is an integer constant value in the range 1 to 254 that gives the repetition
factor of the following fmt-item. If omitted, PL/I assumes a repetition factor of one.
The fmt-item is either a data format item or a control format item.

An fmt-item can also be a remote format item. In PL/I, however, a remote format
item must be the only format in the list, and cannot be preceded by a repetition factor.

11.3.2 Data Format Items

Data format items read or write numeric or character fields to or from an external
STREAM data set. PL/I supports the following data format items.

The A [(w)] Format

This format reads or writes w characters of character string data. With GET EDIT,
you must include w to be compatible with full PL/!. However, PLiI allows you to
omit w with GET ED IT, and the A format reads the remainder of the current line
up to, but not including the carriage return line-feed.

Input Value Format Input Result

b}' i e A(S) \ b}' t e '
Napoleon A (10) \Napoleon'
string A \string'

With PUT EDIT, if you omit w, then the A format assumes w to be the length of
the output string. If w is greater than the output string length, then the A format
adds blanks on the right. If w is less than the output string length, the A format
truncates the string in the rightmost positions.

Value Format Output Result

abcdef A(S) abcdef
abcdef A(3) abc

~ A (4) ~ ~?'li

127

11.3 EDIT -directed 1/0 PL/I Language Reference Manual

The B [n][~w)] Format

This format reads or writes bit-string data. With GET EDIT, you must include w.
n gives the number of bits to be used for each digit. If you omit n, the default is 1, so
B is equivalent to Bland only 0 and 1 can be in the input stream; otherwise PLII raises
the ERROR(l) condition. The valid digits for each value of n are as follows:

n

1
2
3
4

Input Value

00101
22
7C4

valid digits

Oti
Otit2t3t
Oti t2t3t4t5t8,7
o t1 t2,3 ~4,5 t6 t7 t8 t9 tA t5 tC tD tE tF

Format

B (5)

52(2)
54(3)

Input Result

\00101'5
\1010'5
\011111000100'5

With PUT EDIT, the B format first converts the variable to a bit-string type, and
then converts it to its character string representation. If you do not include w, the B
format outputs the resulting character string. If you include wand it is longer than
the character string, then the B format pads the string, with blanks, on the right. If
the resulting character string is longer than w, the run-time system raises the ERROR(l)
condition.

Value

\00'5
\ 1 'B
\011101'5

The E (w [,d]) Format

Format

5
5 (4)

53(2)

Output Result

00
0001
35

This format reads and writes floating-point data. With GET EDIT, the E format
converts the input characters to FLOAT BINARY values. w defines the field width,

128

PL/I Language Reference Manual 11.3 EDIT-directed 1/0

while d gives the number of digits to the right of the decimal point.

Input Value Format Input Result

Jz!!iVJt E {/I.) 0
2.8E7 [(5 " ' ~ ,.) } • 2~lE+8
345878 [(fJ t2) • 'J 4 j E 7 8 E + t.~

With PUT EDIT, the E format converts the data item to FLOAT BINARY and
represents it in scientific notation. w must be at least 7 more than d, because the
output field appears as ± n.ddddE ± eee, where ± represents sign positions; n is the
leading digit, dddd represents the fractional part of length d, and E ± eee represents
the exponent field.

Value

o
4.7E-10
·-30

The F (w [,d]) Format

Format

E(lit3)
E(11~3)

E (J 5)

Output Result

jzlO+OOOE+OOO
j!1'a.700E-Ol0
J{ -. :i f 0 0 0 0 0 0 E-+-O <) 1.

This format reads and writes fixed-point arithmetic data. w is the width, the number
of characters in the field, and d is the number of characters to the right of the decimal
point.

With GET EDIT, the F format reads as many characters as specified by w. If the
character string contains a decimal point, then the decimal point determines the scale.
Otherwise, d determines the scale. The F format ignores leading and trailing blanks.
If the field contains only blank characters, the F format reads the value zero.

Input Value Format Input Result

jitlOtitt F (:5) 0
~-GJi F (Ll) -6
13.08 F (:5) 14

129

11.3 EDIT-directed I/O PL/I Language Reference Manual

With PUT EDIT, the F format converts the data item to FIXED DECIMAL, and
then uses d to specify the scale of the output value. If d is omitted, the scale is zero.
The F format rounds the output value unless the variable has precision 15. The F
format suppresses leading zeros except for one immediately to the left of the decimal
point.

Value Format Output Result

0 F(5t1) \t1t 0 • 0
-27 F(5t1) -27.0
.39 F(G t2) 1t1t0.39

11.3.3 Control Format Items

Control format items are used for line, page, and space placement. PL/I processes
control format items as they are encountered in the format list, and ignores any items
that remain after the input list or output list is exhausted. PL/I supports the following
control format items.

COLUMN(nc) .

This item moves the format pointer to column nc in the input or output data stream.
With GET EDIT, COLUMN ignores those characters passed over by positioning the
format pointer to column nco If the current column position is less than nc, the format
pointer moves to column position nco If the current column position is greater than
nc, the pointer first moves to the next line, and then moves to the new column position
nco If nc exceeds the rightmost position on the line, the format pointer moves to the
first column of the new line. With GET EDIT, movement of the format pointer discards
input characters.

With PUT EDIT, COLUMN writes blanks in the process of positioning to column
nco Also, if the current position is greater than nc, the run-time system outputs a
linemark, then outputs blanks until it reaches column nc of the new line. If nc exceeds
line size, the run-time system writes a linemark and sets the column position to 1.

LINE(In)

This item applies only to PRINT files and specifies the line number of the next data
item to be written. The constant In must be greater than zero. If the current line number

130

PL/I Language Reference Manual 11.3 EDIT-directed I/O

is equal to In, LINE(ln) has no effect. If the current line number is less than In, then
the run-time system outputs linemarks until the current line number equals In. PL/I
raises the ENDPAGE condition if sufficient linemarks are issued to exceed the current
page size.

PAGE

This item is used only with PRINT files and it causes the run-time system to write
a pagemark, increment the page number by one, and set the line number and column
position to 1.

SKIP[(nl)]

This item specifies the number of linemarks nl to be skipped or written. If omitted,
nl defaults to 1. The run-time system sets the column position to 1.

With GET EDIT, nl is the number of linemarks to skip before moving to the next
format item. The run-time system discards the first line, if the program executes a
SKIP(l) as the first format item immediately following an explicit or implicit OPEN
operation. SKIP(O) is undefined for input streams.

With PUT EDIT, nl is the number of linemarks to be written. If the page size is
exceeded in the process of writing linemarks in a PRINT file, the run-time system raises
the END PAGE condition and, upon return from the ON-unit, stops processing the
SKIP operation.

This item advances the format pointer sp positions in the input or output data stream.
With GET EDIT, sp is the number of characters to be advanced. The run-time system
ignores linemarks, and continues the operation on the next line. With PUT EDIT, sp
is the number of blanks to be written. If the end of the line is reached, the run-time
system writes a linemark, and the blank fill operation continues on the next line.

11.3.4 Remote Format Items

The remote format item uses the format list of a FORMAT statement in place of
the format item. The form of a remote format item is

131

11.3 EDIT-directed 1/0 PLII Language Reference Manual

R(format-Iabel)

where the format label is the label constant preceding a FORMAT statement, in the
scope of the remote format item. In PLfI only the remote format item can appear in
the format list, with no preceding repetition factor, as shown in the following example:

put edit (A t5 rC) (r(ELSEWHERE»;

11.3.5 The FORMAT Statement

The FORMAT statement defines a remote format item, and has the general form,

format label: FORMAT(format-list);

where the format label is the label constant corresponding to the FORMAT, and the
format list is a list of format items analogous to those described in the previous section.
For example, the FORMAT statement

Ll: fcrlrlat(A(5) t F(G 12) ts~~ip(3) tA(2»;

is referenced as a remote format by the statement,

11.3.6 The Picture Format Item

The Picture data format item is used on output to edit numeric data in fixed-point
decimal form. The value resulting from such an edit is a character string whose form
is determined by the numeric value and the Picture specification in the Picture format
item.

The form of a Picture format item is

P'picspec'

where picspec is a character-string constant describing the Picture specification.

The Picture format item can appear in a PUT EDIT statement like any other data
format item.

132

PL/I Language Reference Manual 11.3 EDIT-directed 110

Picture Syntax

The character-string constant that describes the picspec must consist of one or more
special characters as shown in Table 11-2 .

Table 11-2. Picture Format Characters

Character

$ + - S
* Z
9
V
/ , . : B
CR DB

Purpose

static or drifting characters
conditional digit characters
digit character
decimal point position character
insertion characters
credit and debit characters

These characters must satisfy certain rules of syntax. Insertion characters can occur
anywhere in a valid picspec, with the exception that they must not separate the char­
acters of either Picture character pair, CR and DB.

If all insertion characters of a picspec are removed, the resulting string must be
acceptable to the nondeterministic, finite-state machine recognizer illustrated in Figure
11-1. That is, it must be possible beginning with the START node to trace through
this diagram to ACCEPT, where transitions across an edge are allowed if the edge is
unlabeled, or if the edge is labeled by the next character in the picspec.

The following character string constants define valid picspecs:

'88$***t***V.9988'
'$----t999V.998CR'
'99:99:99'
'**1**1**'
':888$SSSStSSS.VSS888: '.

133

11.3 EDIT-directed 1/0 PLII Language Reference Manual

.", + I Vl

Figure 11-1. Picture Specification Recognizer

134

PL/I Language Reference Manual 11.3 EDIT-directed 1/0

Picture Semantics

The types of Picture characters appearing in the specification determine how a picspec
edits a numeric value into a character-string value.

In the picspec, certain characters occur as either static or drifting characters. These
characters are:

• $: dollar sign
• + : plus sign
• - : mmus sIgn
• S : upper-case S

Such a character is static if it appears only once in the picspec; otherwise, it is
drifting. If it is drifting, all its occurrences except for one correspond to conditional
digit positions.

In either case, these Picture characters, together with the sign of the numeric value,
determine an output character, that occupies one position in the output. These output
characters are shown in the following table.

Table 11-3. Picture Output Characters

Sign Static! Drifting Characters

S + $

pos + + ' , $

neg , ,
$

If the Picture character is static, the output character appears in the corresponding
position of the output.

If the Picture character is drifting, then the output character appears exactly one
position to the left of the first nonzero digit over which the Picture character drifts, or
in the last position over which it drifts. All other occurrences of the drifting character
are replaced by spaces, corresponding to the suppression of a zero digit in the numeric
value.

135

11.3 EDIT-directed I/O PL/I Language Reference Manual

The ::. and Z Characters

The characters * and Z are called conditional digit Picture characters or zero suppres­
sion characters. Each such character in the picspec is associated with a digit in the
numeric value.

If the digit is a zero, the output character is an * or a blank. If the digit is nonzero,
the output is the digit character.

The B, /, ., :, and, Characters

The Picture characters B, /, ., :, and, are called insertion characters. B is the space
insertion character. The : is not an insertion character defined in the ANSI Standard,
but is added in PL/I to display numeric data that represents time.

PL/I outputs insertion characters in the corresponding output position, unless the
insertion character occurs in the field of a drifting character, or zero suppression
character. If the insertion character occurs in the field of a drifting or zero suppression
character that causes the suppression of numeric digits, then PL/I suppresses the inser­
tion character following the preceding rules.

Note: in some PL/I implementations, B is an unconditional insertion character that
always causes a space in the corresponding position of the output. According to the
ANSI Standard, such a space in the output can be overwritten by a drifting character
or, *, the zero suppression character.

The 9 Character

The Picture character 9 specifies that the corresponding digit in the numeric value
occurs in the corresp :)nding position of the output. Thus, 9 is an unconditional digit
position.

The V Character

The V character establishes the correspondence between digits in the numeric value
and the numeric digit positions in the picspec. This character only specifies the position
where integral digits end and fractional digits begin. Thus the V character specifies the
alignment of the picspec to the numeric value.

136

PL/I Language Reference Manual 11.3 EDIT-directed 1/0

If you omit the V character, PL/I assumes that all the digit positions implied by the
picspec refer to integral digit positions. Any fractional digits in the numeric value do
not appear in the result.

Note: the V Picture character is the only character that does not correspond to a
character position in the result. Thus the length of the resulting string equals the length
of the picspec if V is omitted, but is one character less if V appears.

The V character also affects the suppression of characters. PLiI never suppresses
fractional digits unless it suppresses all of the digits.

Beyond the V character PL/I turns OFF suppression if it is ON. As a result, PL/I
does not suppress any insertion character occurring beyond the V Picture character,
such as a decimal point, unless it suppresses everything.

The CR and DB Characters

The character pairs CR and DB, represent credit and debit. They act as sign char­
acters. If either of them appear in the picspec, and if the sign of the numeric value is
negative, then the specified pair occurs in the result. If the numeric value is positive,
then the positions corresponding to these character pairs are replaced by two spaces.

Default Rules

If the numeric value is zero and if the picspec does not contain a 9 picture character,
then the resulting output is all *s if the Picture character * occurs at all. Otherwise,
the output is all spaces. This rule takes precedence over the other rules.

If the sign of the numeric value is negative, and if the picspec contains none of the
sign Picture characters S, +, -, CR, or DB, then PL/I signals a conversion error,
ERROR(l).

Each picspec implies a precision and scale for the numeric value in the result according
to the following rules:

• Insertion characters and the character pairs CR and DB have no effect on
precision and scale.

137

11.3 ED IT-directed 110 PL/I Language Reference Manual

• The precision of the result equals one less than the number of static/drifting
characters; or the number of zero suppression characters, plus the number of
9 characters.

• The scale of the result is zero if no V occurs.

• If V occurs, the scale of the result equals the number of drifting characters, or
the number of zero suppression characters, or the number of 9 characters occur­
ring after the V character.

Tables 11-4 and 11-5 illustrate some of the rules involving the use of Picture data
format items.

Table 11-4. Picture Edited Output

Value picspec Output Result

0.00 55$***,***V.9955 $*******.00
0.01 B5$***t***V.8855 $*******.01
0.25 55$***,***V.885B $*******.25
1.50 55$***t***V.8855 $******1.50

12.34 55$***t***V.8855 $*****12.34
123.45 55$***,***V.885B $****123.45

1234.56 5B$***,***V.885B $**1 t234.56
12345.67 555***,***V.88B5 $*12t345.67

123456.78 5B$***,***V.8855 5123,456.78

0.00 $55$$5$$$l.I.88 $.00
0.01 $$$$$5$$$1).88 $.01
0.25 $$$$$5$$$1) • 88 $.25
1.50 $$$$$5$$$1) + 88 $1.50

12.34 $$$$$5$$$1.1.88 $12.34
123.45 $$$$$5$$$1.! + 88 $123.45

1234.56 $$$$$8$$$1.1 + 88 $1 234.56
12345.67 $$$$$8$$$1).88 $12 345.67

123456.78 $5$$$5$$$1) • 89 $123 456.78

138

PL/I Language Reference Manual 11.3 EDIT-directed I/O

Value

0.00
0.01
0.25
1 .50

12.34
123.45

1234.56
12345.67

123456.78

0.00
0.01
0.25
1 .50

12~34

123.45
1234.56

12345.67
123456.78

0.00
0.01
0.25
1 + 50

12.34
123.45

1234t56
12345.67

123456.78

Table 11-4. (continued)

picspec

99/99/89
99/89/89
99/99/99
99/98/89
99/88/99
89/99/99
99/99/99
99/99/99
98/99/99

:~**

:il'*:
==**
::**
*·It:**:**
=:**
**: **: -JiI .•)!-

::**
::**

1++++ t+++. 1)++1
1++++ t+++. 1)++1
1++++ t+++ .1)++1
1++++ t+++ .1)++1
I + + + + t + + + • I.J + + I
1++++ t+++ + 1.1++1
I + + + + t + + + + 1.1 + + I
1++++ t +++. I.J++ I
1++++ ~+++ .1.1++1

Output Result

00/00/00
00/00/00
00/00/00
00/00/02
00/00/12
00/01/23
00/12/35
01/23/46
12/34/57

.********

*******2
*****·It 12
****1:23
***12:35
*1:23:46
12:34:57

I
I

+011
+251

I +1.501
I +12.341
I +123.451
I + 1 t23(~ + 561
I +12t345.671
1+123t456.781

139

11.3 EDIT-directed 1/0 PL/I Language Reference Manual

Table 11-5. Picture Edited Output

Value

0+00
-0+01

0+25
-1+50
12+34

-123+45
1234.56

-12345+67
123456+78

0+00
-0+01
0.25

-1+50
12.34

-123.45
1234+56

-12345+67
123456+78

0+00
-0+01

0+25
-1 + 50
12+34

-123+45
1234+56

-12345+67
123456.78

0+00
-0+01
0.25

-1 .50
12+34

-123+45
1234+56

-12345.67
123456+78

140

picspec

8***B*** + I.J**
8***B*** + I.J**
8***B*** + I.J**
8***B*** + I.J**
8***B*** + I.J**
8***B*** + I.J**
8***B*** + I.J**
8***B*** + I.J**
8***B***+l.l**

$8888B888 1•J + 88
$88S8B888 1•J + 88
$8888B888 1•J + 88
$8SS8B888 1•J + 88
$8S88B888 1•J + 88
$S888B888t.J.88
$88S8B888 1.J.88
$SSS8B888 1•J + 88
$8S88B888 1•J + 88

.8
.8
.8
.8
.8
.8
*** + *'**8
+8
.8

$*** t***I.J**CR
$*** t ***I.J**CR
$*** t***I.J**CR
$*** t***I.J**CR
$*** t ***I.J**CR
$*** t ***I.J**CR
$*** t ***I.J**CR
$*** t***I.J**CR
$*** t ***I.J**CR

Output Result

-********01
+********25
-******1.50
+*****12.34
-****123.45
+**1 234.56
-*12 345.67
+123 456.78

$

$

$

$

- + 01
++25

- 1 .50
+12.34

$ -123.45
$ +1 234+56
$ -12 345.67
$+123 456.78

*******­
*******+
******2-
*****12+
****123-
-K.* 1 .235+
*12+348-
123.457+

$*******01CR
$*******25
$******150CR
$*****1234
$****12345CR
$**1 t2345G
$*12t345G7CR
$123t45G78

PL/I Language Reference Manual 11.3 EDIT-directed 1/0

Value

0.00
-0.01
0.25

-1.50
12.34

-123.45
1234.58

-12345.87
123458.78

Table 11-5. (continued)

picspec

1++++ t +++ .1.1++ I
1++++ t +++.1.1++ I
1++++ t+++ .1.1++1
1++++ ,+++.1)++1
1++++ t+++ .1.1++1
1++++ t+++ .1.1++1
1++++ t+++ .1.1++1
1++++ t+++ .1.1++1
1++++ t+++ .1.1++1

11.3.7 The GET EDIT Statement

Output Result

I 01/
I +251
I 1 .50 I
I +12.341
I 123.45_
I +1.234.581
I 12t345.871
1+123t458.781

The GET EDIT statement reads data using a format list. The general form of the
GET EDIT statement is:

GET [FILE(file_id)] [SKIP[(nl)]]
EDIT(input-list) (format-list);

You can specify the options FILE or SKIP, in any order. EDIT must appear last. If you
do not specify the FILE option, PLII assumes file(SYSIN).

The GET EDIT statement reads data items from the input stream into the variables
given in the input-list until the input list is exhausted or the end-of-file is reached. The
GET EDIT statement pairs each input list item with the next sequential format list
item, applying control format items as they are encountered in the process. If the GET
EDIT statement exhausts the input list before the end of the format list, remaining
format items are ignored. If the GET EDIT statement exhausts the format list before
the end of the input list, the format list is reprocessed from the beginning.

11.3.8 The PUT EDIT Statement

The PUT ED IT statement writes output data items according to a format list. The
general form of the PUT EDIT statement is:

PUT [FILE(file_id)] [SKIP[(nl)]] [PAGE]
EDIT(output-list) (format-list);

141

11.3 EDIT-directed 1/0 PL/I Language Reference Manual

You can specify the options, FILE, SKIP, or PAGE, in any order. EDIT must appear
last. If you do not specify the FILE option, PL/I assumes the file(SYSPRINT).

The PUT EDIT statement pairs output expressions from the output list with format
items from the format list. The PUT EDIT statement also applies any control format
items encountered during this process. The PUT EDIT statement ignores unprocessed
format items at the end of the statement. If the PUT EDIT statement encounters the
end of the output list during processing, the format list restarts from the beginning.

End of Section 11

142

Section 12
Record I/O

Record files contain binary data that PLfI transmits to or from an external device
without conversion. There are two kinds of RECORD files:

• SEQUENTIAL, where PLfI accesses the records in the order they appear in the
file .

• DIRECT, where PLfI randomly accesses the records through keys.

In the following discussion of RECORD 110 statements, file_id is a file variable or
file constant; x is a scalar, or connected aggregate data type that does not have the
attributes CHARACTER VARYING, and k is a FIXED BINARY key value or var­
iable.

12.1 The READ Statement

The READ statement reads fixed or variable length RECORD files. The general
form of the READ statement is:

READ FILE(file_id) INTO(x);

If you do not use the OPEN statement to open the file, the READ statement performs
an implicit OPEN with the attributes RECORD, SEQUENTIAL, and INPUT.

The READ statement reads the number of bytes determined by the length of x. If
you open the file with the ENVIRONMENT option specifying the size of the fixed­
length record, the READ statement reads the amount of data according to the declared
record size. If the length of x does not match the declared record size, the READ
statement either pads x with zero-bits or truncates it on the right.

12.2 The READ with KEY Statement

The READ statement with the KEY option directly accesses individual records in a
file. The form of the READ with KEY statement is

READ FILE(file_id) INTO(x) KEY(k);

143

12.2 The READ with KEY Statement PL/I Language Reference Manual

where k is a FIXED BINARY expression that defines the relative record to access.
Key values start at zero, and continue until the key value multiplied by the fixed-record
length reaches the capacity of the disk.

If you do not use the OPEN statement to open the file, the READ with KEY statement
performs an implicit OPEN with the attributes RECORD, INPUT, DIRECT, and
KEYED. PL/I does not allow the READ with KEY statement to access variable length
records.

12.3 The READ with KEYTO Statement

The READ statement with the KEYTO option extracts key values from an input file
during sequential access. The program can save the key values in memory or in another
file, and subsequently perform direct access on the records of the input file using the
key values.

The general form of the READ with KEYTO statement is

READ FILE(file_id) INTO(x) KEYTO(k);

where k is a FIXED BINARY variable assigned to the relative record number of the
record being read.

If you do not use the OPEN statement to open the file, the READ with KEYTO
statement performs an implicit OPEN with the attributes RECORD, INPUT, SEQUEN­
TIAL, and KEYED.

12.4 The WRITE Statement

The WRITE statement writes data from memory to the external data set without
conversion. The general form of the WRITE statement is:

WRITE FILE(file_id) FROM(x);

If you do not use the OPEN statement to open the file, the WRITE statement performs
an implicit open with the attributes RECORD, OUTPUT, and SEQUENTIAL.

The output record size is exactly the length of x. If you open the file with the
ENVIRONMENT option specifying the fixed-length record size, the WRITE statement

144

PL/I Language Reference Manual 12.4 The WRITE Statement

writes the amount of data according to the declared record size. If the length of x does
not match the declared record size, the WRITE statement either pads x with zero-bits
or truncates it on the right.

12.5 The WRITE with KEYFROM Statement

The WRITE with KEYFROM statement directly accesses a file for output. The
general form is

WRITE FILE(file_id) FROM(x) KEYFROM(k);

where k denotes a FIXED BINARY expression yielding a key value that PL/I treats
like the READ with KEY option shown above.

If you do not use the OPEN statement to open the file, the WRITE with KEYFROM
statement performs an implicit OPEN with the attributes RECORD, DIRECT, OUT­
PUT, and KEYED.

End of Section 12

145

End of Section 12 PL/I Language Reference Manual

146

Section 13
Built-in Functions

A built-in function (BIF) is a computational subroutine. provided as part of the
PL/I Run-time Subroutine Library (RSL). You can use a BIF reference as a user­
defined function reference.

You do not have to declare the name of a BIF. If you redeclare the name of a BIF
in the program, you cannot reference it as a BIF within the scope of that declaration.
However, you can use a BIF in a contained block by redeclaring the name with the
attribute BUILTIN.

PL/I built-in functions are divided into the following categories:

• Arithmetic • Conversion
• Mathemetical • Condition Handling
• String Handling • Miscellaneous

13.1 Arithmetic Functions

The arithmetic functions are:

ABS
CEIL
DIVIDE

FLOOR
MAX
MIN

MOD
ROUND
SIGN

TRUNC

The arithmetic BIFs return information about the attributes of specified arithmetic
values, and perform common arithmetic calculations.

13.2 Mathematical Functions

The mathematical functions are:

ACOS
ASIN
ATAN
ATAND

COS
COSD
COSH
EXP

LOG
LOG2
LOGI0
SIN

SIND
SINH
SQRT
TAN

TAND
TANH

147

13.2 Mathematical Functions PL/I Language Reference Manual

The mathematical BIFs perform mathematical calculations in floating-point arith­
metic. The mathematical functions include:

• the most commonly used trigonometric functions and their inverses
• base 2, base e, natural, and base 10, common, logarithmic functions
• the natural exponent function
• hyperbolic SIN and COS functions
• the square root function

Each of these functions accepts a single FLOAT BINARY argument and returns a
FLOAT BINARY result. PL/I accepts other types of arguments but automatically con­
verts them to FLOAT BINARY.

All of the function subroutines, with the exception of SQRT, use algorithms based
on the Chebyshev polynomial approximations. The SQRT function subroutine is based
on Newton's method.

Typically these algorithms scale the given argument into a finite interval, generally
-1 < = X < = 1, and then evaluate the Chebyshev approximation using an appropriate
recurrence relation. The greatest source of error in these routines results from the
truncation of significant digits during the scaling process. Except for this, the subrou­
tines have an average accuracy of 7.5 significant decimal digits for single-precision, 15
digits for double-precision.

13.3 String-handling Functions

The string-handling functions are:

• BOOL
• COLLATE
• INDEX
• LENGTH
• SUBSTR
• TRANSLATE
• VERIFY

The string-handling BIFs perform character-string and bit-string manipulation.

148

PL/I Language Reference Manual 13.4 Conversion Functions

13.4 Conversion Functions

The conversion functions are:

• ASCII
• BINARY
• BIT
• CHARACTER
• DECIMAL
• DIVIDE
• FIXED
• FLOAT
• RANK
• UNSPEC

The conversion BIFs convert data from one type to another. PL/I uses these functions
internally to perform automatic conversion.

13.5 Condition-handling Functions

The condition-handling functions are:

.ONCODE
• ONFILE
.ONKEY

The condition-handling BIFs return information about conditions signaled by the
run-time system. These functions do not have parameters and return a value only when
executed in an ON-unit. The ON-unit can be entered when the specified condition is
programmatically signaled, or as the result of an interrupt caused by the occurrence
of the specified condition.

13.6 Miscellaneous Functions

The miscellaneous BIFs are:

• ADDR
• DIMENSION
• HBOUND
• LBOUND

149

13.6 Miscellaneous Functions PL/l Language Reference Manual

• LINENO
• LOCK
• NULL
• PAGENO
• UNLOCK

The miscellaneous BIFs return information about based variables, the current line
number and page number of a file, information about array dimensions, and provide
the ability to lock and unlock individual records within a file.

13.7 List of BIFs

The following sections describe the specific format, parameter attributes, purpose,
and properties of each built-in function.

ABS

Category:

Format:

Parameters:

Result:

Algorithm:

Result type:

ACOS

Category:

Format:

Parameter:

Result:

150

Arithmetic

ABS(X)

X can be any arithmetic expression.

Returns the absolute value of X.

If X > = 0 then return X, otherwise return - X.

Same as X.

Mathematical

ACOS(X)

X is an arithmetic expression, - 1 < = X < = 1.

Returns the arc cosine of X; for example, ACOS(X) is the angle in
radians, whose cosine is X such that 0 < = ACOS(X) < = PI.

PL/I Language Reference Manual 13.7 Lists of BIFS

Result type:

Algorithm:

Error Condition:

ADDR

Category:

Format:

Parameter:

Result:

Result type:

ASCII

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Remark:

FLOAT BINARY.

ACOS(X) equals PII2 - ASIN(X).

If X is not in the interval -1 < = X < = 1 the run-time system signals
the ERROR condition.

Miscellaneous

ADDR(X)

X is a reference to a variable with connected storage.

Returns a pointer that identifies the storage location of the variable
X.

POINTER

Conversion

ASCII(X)

X is a FIXED BINARY expression.

Returns a single character whose position in the ASCII collate sequence
corresponds to X (see Appendix C for ASCII codes).

CHARACTER(l)

ASCII(X) equals SUBSTR(COLLATEO,MOD(X,128) + 1,1).

ASCII(X) is the inverse function of RANK(X).

151

13.6 Miscellaneous Functions PL/1 Language Reference Manual

ASIN

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Error Condition:

ATAN

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

ATAND

Category:

Format:

152

Mathematical

ASIN(X)

X is an arithmetic expression, - 1 < = X < = 1.

Returns the arc sine of X; for example, ASIN(X) is the angle in
radians, whose sine is X, such that - PIll < = ASIN (X) < = PII2

FLOAT BINARY

Chebyshev polynomial approximation

If X is not in the interval -1 < = X < = 1, the run-time system
signals the ERROR condition.

Mathematical

ATAN(X)

X is any arithmetic expression.

Returns the arc tangent of X; for example, AT AN (X) is the angle in
radians,whose tangent is X, such that - PIll < = A TAN (X) < =
PIll

FLOAT BINARY

Chebyshev polynomial approximation

Mathematical

ATAND(X)

PL/1 Language Reference Manual 13.6 Miscellaneous Functions

Parameter:

Result:

Result type:

Algorithm:

BINARY

Category:

Format:

Parameter:

Result:

Result type:

BIT

Category:

Format:

Parameter:

Result:

Result type:

X is any arithmetic expression.

Returns the arc tangent of X in degrees; for example, the angle, in
degrees, whose tangent is X, such that - 90 < = AT AND (X) < =

90

FLOAT BINARY

ATAND(X) equals 180/PI * ATAN(X)

Conversion

BINAR Y(X[,P])

X is an arithmetic expression, or a string expression that can be
converted to an arithmetic value. If X is DECIMAL with a nonzero
scale factor, then P must be given, where P is an integer constant
that specifies the precision of the result.

Returns a BINARY arithmetic value equivalent to X.

If X is FLOAT BINARY, the result is FLOAT BINARY; otherwise
it is FIXED BINARY.

Conversion

BIT(S[,L])

S is an arithmetic or string expression. L is a positive FIXED BINARY
expresslOn.

Converts S to a bit string of length L when L is specified. Otherwise
it converts S to a bit string whose length is determined by the con­
version rules in Section 4.3.3.

BIT

153

13.6 Miscellaneous Functions PL/I Language Reference Manual

BOOL

Category:

Format:

Parameters:

Result:

Result type:

Examples:

CEIL

Category:

154

String

BOOL(X,Y,Z)

X is a bit expression.
Y is a bit expression.
Z is a bit-string constant, four-bits long.

Returns a Boolean function on X and Y, specified by the bit-string
constant Z as follows: Let Z1,Z2,Z3,Z4 be the bit values in Z,
reading left to right. Then bit values A,B and the four-bit string Z
determine the Boolean function BOOL(A,B,Z):

A B BOOL(A,B,Z)

o o Z1

o 1 Z2

1 o Z3

1 1 Z4

This then induces the function BOOL(X,Y) on bit strings X and Y
as follows. If X and Y do not have the same length, the shorter string
is padded on the right with zero-bits until they have the same length.
Then BOOL(X,Y,Z) is defined to be the bit string whose Nth bit is
obtained from the preceding table by letting A be the Nth bit of X
and B the Nth bit of Y.

BIT(n) where n equals MAX(LENGTH(X),LENGTH(Y)).

BOO L (\ 00 1 1 I B t \ 0 1 0 1 I B t \ 1 00 1 I B) returns \ 1 00 1 I 5 +

BOO L (\ 0 1 0 1 1 I B t \ 1 1 I t \ 1 0 (> 1 I) returns \ 0 1 1 0 <) I +

Arithmetic

PL/I Language Reference Manual 13.6 Miscellaneous Functions

Format:

Parameter:

Result:

Algorithm:

Result type:

CHARACTER

Category:

Format:

Parameter:

Result:

Result type:

COLLATE

Category:

Format:

Parameters:

Result:

Result type:

CEIL(X)

X is any arithmetic expression.

Returns the smallest integer > = to X.

-FLOOR(-X)

An integer value of the same type as X.

Conversion

CHARACTER(S[,L])

S is an arithmetic or string expression, L is a positive FIXED BINARY
expressIOn.

S is converted to a character string of length L when L is specified;
otherwise S is converted to a character string whose length is deter­
mined by the conversion rules of Section 4.

CHARACTER

String

COLLATEO

None

Returns a character string of length 128 consisting of the set of
characters in the ASCII character set in ascending order. (The ASCII
character set is given in Appendix C.)

CHARACTER(128)

155

13.7 Lists of BIFS PL/I Language Reference Manual

COS

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

COSD

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

COSH

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

156

Mathematical

COS (X)

X is an arithmetic expression.

Returns the cosine of X in radians.

FLOAT BINARY

Chebyshev polynomial approximation

Mathematical

COSD(X)

X is an arithmetic expression

Returns the cosine of X in degrees.

FLOAT BINARY

COSD(X) equals COS(X*PII180)

Mathematical

COSH(X)

X is an arithmetic expression.

Returns the hyperbolic cosine of X.

FLOAT BINARY

COSH(X) equals (EXP(X) + EXP(- X))/2

PL/I Language Reference Manual 13.7 List of BIFS

DECIMAL

Category:

Format:

Parameter:

Result:

Result type:

DIMENSION

Category:

Format:

Parameters:

Result:

Result type:

DIVIDE

Category:

Format:

Parameters:

Conversion

D ECIMAL(X[,P[, Q]])

X is an arithmetic or string expression that can be converted to an
arithmetic value.
P is an integer constant, 1 < = P < = 15.
Q is an integer constant, 0 < = Q < = P.

Converts X to a DECIMAL value. P and Q are optional but when
specified represent the precision and scale factors, respectively. If only
P is given, Q is assumed to be zero. If neither P nor Q is given, then
the precision and scale factor of the result are determined by the rules
for conversion given in Section 4.3.2.

FIXED DECIMAL

Miscellaneous

DIMENSION(X,N)

X is an array variable, N is a positive integer expression.

Returns a positive integer representing the extent of the Nth dimen­
sion of the array referenced by X.

FIXED BINARY

Arithmetic

DIVIDE(X,Y,P) or DIVIDE(X,Y,P,Q)

X and Yare arithmetic expressions.

157

PLfI Language Reference Manual 13.7 List of BIFS

Result:

Result type:

EXP

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

FIXED

Category:

Format:

Parameters:

Result:

Result type:

158

Returns the quotient of X divided by Y, with the constants P, precision
of the result, and Q, scale factor. Q assumed to be zero if not included.
If X and Yare FIXED BINARY, Q must be omitted or equal to zero.

The common arithmetic type of X and Y.

Mathematical

EXP(X)

X is an arithmetic expression.

Returns the value of e to the power X, where e is the base of the
natural logarithm.

FLOAT BINARY

Chebyshev polynomial approximation.

Conversion

FIXED(X[,P[,Q]])

X is an arithmetic expression or string expression that can be con­
verted to an arithmetic value.
P is an integer constant.
Q is an integer constant.

Converts X to a FIXED arithmetic value. P and Q are optional but
when specified determine the precision and scale factor of the result.
If only P is given, then Q is assumed to be zero. If neither P nor Q
is given, then the precision and scale factor are determined by the
conversion rules in Section 4.

If X is FIXED DECIMAL or CHARACTER, the result is FIXED
DECIMAL. Otherwise, it is FIXED BINARY.

PLfI Language Reference Manual 13.7 List of BIFS

FLOAT

Category:

Format:

Parameter:

Result:

Result type:

FLOOR

Category:

Format:

Parameter:

Result:

Result type:

HBOUND

Category:

Format:

Parameters:

Result:

Result type:

Conversion

FLOAT(X[,P))

X is an arithmetic or string expression that can be converted to an
arithmetic value. P is an optional positive integer constant.

Converts X to a FLOAT arithmetic value. P is optional but, when
given, determines the precision of the result. If P is not given, the
precision is determined by the conversion rules in Section 4.

FLOAT BINARY

Arithmetic

FLOOR(X)

X is any arithmetic expression.

Computes the greatest integer < = X.

An integer value of the same type as X.

Miscellaneous

HBOUND(X,N)

X is an array variable, N is a positive integer expression.

Returns the upper bound of the Nth dimension of the array variable
X.

FIXED BINARY

159

13.7 List of BIFS PL/I Language Reference Manual

INDEX

Category:

Format:

Parameters:

Result:

Result type:

LBOUND

Category:

Format:

Parameters:

Result:

Result type:

LENGTH

Category:

Format:

Parameter:

Result:

Result type:

160

String

INDEX(X,Y)

X and Yare string expressions of the same type, either bit or char­
acter.

Returns an integer value indicating the position of the leftmost occur­
rence of the string Y in the string X. If X or Y is null or if Y does
not occur in X, INDEX returns the value zero.

FIXED BINARY

Miscellaneous

LBOUND(X,N)

X is an array variable, N is a positive integer expression.

Returns the lower bound of the Nth dimension of the array referenced
byX.

FIXED ·BINARY

String

LENGTH (X)

X is a string expression, either bit or character.

Returns the number of characters or bits in the string X. If X has
the attribute VARYING, LENGTH(X) returns the current length of
X.

FIXED BINARY

PL/I Language Reference Manual 13.7 List of BIFS

LINENO

Category:

Format:

Parameter:

Result:

Result type:

LOCK

Category:

Format:

Parameter:

Result:

Result Type:

LOG

Category:

Format:

Parameter:

Result:

Result type:

Miscellaneous

LINENO(X)

X is a file value.

Returns the current line number of the file referenced by X. The file
must have the PRINT attribute.

FIXED BINARY

Miscellaneous

LOCK(F,I)

F is a file constant or variable that must be opened in Shared mode.
I is a FIXED BINARY(15) integer that gives the record number
relative to the record size specified in the ENVIRONMENT option.

Returns a one-bit if the operation is successful or a zero-bit if unsuc­
cessful. Locks the record specified by I so that no other user can lock
or access it. The record remains locked until unlocked with the
UNLOCK function, or the program terminates.

BIT(l)

Mathematical

LOG(X)

X is an arithmetic expression, X > O.

Returns the natural logarithm of X.

FLOAT BINARY

161

13.7 List of BIFS PL/I Language Reference Manual

Algorithm:

Error Condition:

LOG2

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Error Condition:

LOG10

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Error Condition:

162

Chebyshev polynomial approximation

If X < = 0, the run-time system signals the ERROR condition.

Mathematical

LOG2(X)

X is an arithmetic expression, X > 0.

Returns the logarithm of X to the base 2.

FLOAT BINARY

LOG2(X) equals LOG(X)/LOG(2)

If X < = 0, the run-time system signals the ERROR condition.

Mathematical

LOG10(X)

X is an arithmetic expression, X > O.

Returns the logarithm of X to the base 10.

FLOAT BINARY

LOG10(X) equals LOG(X)/LOG(10)

If X < 0, the run-time system signals the ERROR condition.

13.7 List of BIFS PL/I Language Reference Manual

MAX

Category:

Format:

Parameters:

Result:

Algorithm:

Result type:

MIN

Category:

Format:

Parameters:

Result:

Algorithm:

Result type:

MOD

Category:

Format:

Parameters:

Result:

Algorithm:

Result type:

Arithmetic

MAX(X,Y)

X and Yare arithmetic expressions.

Returns the larger value of X and Y.

If X > = Y then return X, otherwise return Y.

The common arithmetic type of X and Y.

Arithmetic

MIN(X,Y)

X and Yare arithmetic expressions.

Returns the smaller value of X and Y.

If X< = Y, then return X; otherwise return Y.

The common arithmetic type of X and Y.

Arithmetic

MOD(X,Y)

X and Yare arithmetic expressions.

Returns the value X module Y.

If Y = 0 then return X, otherwise return X - (Y)*FLOOR(x/(Y)).

The result is a value having the common arithmetic type of X and
Y.

163

13.7 List of BIFS PL/I Language Reference Manual

Examples: MOD(7,3) returns 1
MOD(-7t3) returns 2
MOD(7t-3) returns 1
MOD(-7t-3) returns 2

Note: unless Y=O,MOD(X,Y) always returns a nonnegative value less than ABS(Y).

NULL

Category:

Format:

Result:

Result type:

ON CODE

Category:

Format:

Result:

Result type:

ONFILE

Category:

Format:

Result:

Result type:

164

Miscellaneous

NULL[()]

Returns the null pointer value that points to an invalid storage loca­
tion.

POINTER

Condition

ONCODEO

Returns the value of the error subcode of the most recently signaled
condition. The error conditions and their corresponding error num­
bers are listed in Section 9.4, Table 9-1.

FIXED BINARY

Condition

ONFILEO·

Returns the filename for which the most recent END FILE or END­
PAGE condition was signaled.

CHARACTER

PL/I Language Reference Manual 13.7 List of BIFS

ON KEY

Category:

Format:

Result:

Result Type:

PAGENO

Category:

Format:

Parameter:

Result:

Result type:

RANK

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Condition

ONKEYO

Returns the character string value of the key for the record that
signaled an input/output or conversion condition.

CHARACTER

Miscellaneous

PAGENO(X)

X is a file value.

Returns the page number of the file specified by X. The file must
have the PRINT attribute.

FIXED BINARY

Conversion

RANK(X)

X is a character value of length one.

Returns the integer representation of the ASCII character X (see
Appendix C).

FIXED BINARY

RANK(X) equals INDEX(COLLATEO,X) -1

165

13.7 List of BIFS PL/I Language Reference Manual

ROUND

Category:

Format:

Parameters:

Result:

Algorithm:

Result type:

Examples:

SIGN

Category:

Format:

Parameter:

Result:

Algorithm:

Result type:

166

Arithmetic

ROUND (X,K)

X is an arithmetic expression.
K is a signed integer constant.

Returns X rounded to K digits to the right of the decimal point if K
> = O. Returns X rounded to -K digits to the left of the decimal point
if K < o.

Return SIGN(X)*FLOOR(ABS(X)*B**N) +O.5)IB**N
where B = 2 if X is BINARY

B= 10 if X is DECIMAL
and N =K if X is FIXED
else N = K-E if X is FLOAT and E is the exponent of X.

Same as X

R 0 UNO (1 2345 • 24 G 8 8 t 3) returns 1 2345 • 24 7 0 0
R 0 UNO (345 G 7 t 1 2345 t - 3) returns 35000 + 00 000

Arithmetic

SIGN(X)

X is any arithmetic expression.

Returns -1, 0, or 1 to indicate the sign of X.

If X < 0 then return - 1
If X = 0 'then return 0
If X > 0 then return + 1

FIXED BINARY

PLfI Language Reference Manual

SIN

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

SIND

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

SINH

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Mathematical

SIN (X)

X is an arithmetic expression.

Returns the sine of X in radians.

FLOAT BINARY

Chebyshev polynomial approximation

Mathematical

SIND(X)

X is an arithmetic expression.

Returns the sine of X in degrees.

FLOAT BINARY

SIND(X) equals SIN(X*PII180)

Mathematical

SINH(X)

X is an arithmetic expression.

Returns the hyperbolic sine of X.

FLOAT BINARY

SINH(X) equals (EXP(X)-EXP(-X))/2

13.7 List of BIFS

167

13.7 List of BIFS PL/I Language Reference Manual

SQRT

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Error Condition:

SUBSTR

Category:

Format:

Parameters:

Result:

Result type:

Error Condition:

168

Mathematical

SQRT(X)

X is an arithmetic expression, X > = O.

Returns the square root of X.

FLOAT BINARY

Newton's method

If X < 0, the run-time system signals the ERROR condition.

String

SUBSTR(X,I [,1])

X is a string, either bit or character.
I is a FIXED BINARY value.
1 is a FIXED BINARY value.

Returns a string that is a copy of the string X beginning at the Ith
element and for a length 1. If 1 is not given, it defaults to the length
of the remainder of the string, equal to LENGTH(X) - I + 1.

Same as X

None. If the parameters are out of range, unpredictable results can
occur.

PL/I Language Reference Manual 13.7 List of BIFS

TAN

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Error Condition:

TAND

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

Error Condition:

Mathematical

TAN(X)

X is an arithmetic expression.

Returns the tangent of X in radians.

FLOAT BINARY

TAN (X) = SIN(X)/COS(X)

If COS (X) equals 0, then the run-time system signals the ERROR
condition.

Mathematical

TAND(X)

X is an arithmetic expression.

Returns the tangent of X in degrees.

FLOAT BINARY

TAND(X) = TAN(X*PII180)

If COS(X*PII180) equals 0, the run-time system signals the ERROR
condition.

169

13.7 List of BIFS PL/I Language Reference Manual

TANH

Category:

Format:

Parameter:

Result:

Result type:

Algorithm:

TRANSLATE

Category:

Format:

Parameters:

Result:

Result type:

Examples:

TRUNC

Category:

Format:

Parameter:

170

Mathematical

TANH(X)

X is an arithmetic expression.

Returns the hyperbolic tangent of X.

FLOAT BINARY

TANH(X) = (EXP(X)-EXP(-X))/(EXP(X) + EXP(- X))

String

TRANSLATE (X, Y[,Z])

X is a character expression.
Y is a character expression.
Z is a character expression.

If Z does not occur, it is assumed to be COLLA TEO. If Y is shorter
than Z, it is padded to the right with blanks until its length equals
the length of Z. Any occurrence of a character in Z in the string X
is then replaced by the character in Y corresponding to that character
in Z.

Same as X

T RAN S L ATE (\ 5 D A I t \ 1 23 I t \ ABC I) returns \ 2 D 1 I •

Arithmetic

TRUNC(X)

X is any arithmetic expression.

PL/I Language Reference Manual 13.7 List of BIFS

Result:

Algorithm:

Result type:

Examples:

UNLOCK

Category:

Format:

Parameter:

Result:

Result Type:

UNSPEC

Category: .

Format:

Parameter:

Result:

Result type:

Returns the integer portion of X.

If X < 0 then return (CEIL(X))
If X > = 0 then return (FLOOR(X))

A signed integer value of the same type as X.

Tr~UNC (52 • 146) returns 52
T RUN C (- 5 2 • 1 4 6) returns - 5 2

Miscellaneous

UNLOCK(F,I)

F is a file constant or variable that must be opened in Shared mode.
I is a FIXED BINARY(15) integer that gives the record number
relative to the record size specified in the ENVIRONMENT option.

Returns a one-bit if the operation is successful or a zero-bit if unsuc­
cessful. Unlocks the record specified by I so that other users can
access it. The record remains unlocked until locked with the LOCK
function, or the program terminates.

BIT(1)

Miscellaneous

UNSPEC(X)

X is a reference to a data item whose internal representation In

memory is 16 bits or less.

Returns the contents of the storage location occupied by X.

A bit string whose length equals the length of the internal represen­
tation of the data item associated with X.

171

13.7 List of BIFS PL/I Language Reference Manual

VERIFY

Category:

Format:

Parameters:

Result:

Result type:

Examples:

172

String

VERIFY (X, Y)

X is a character expression.
Y is a character expression.

Returns integer value 0 if each of the characters in X occurs in Y.
Otherwise, returns an integer that indicates the position of the left­
most character of X that does not occur in Y.

FIXED BINARY

I.IER I FY (\ ABCDE I t \ ABDE ') returns 3
I.J E R I F Y (\ ABC 1 2 3 I t \ 1 A 2 B 3 CaD ') returns o.
1.1 E R I F Y (\ \ t \ A ') returns 0 +

1.1 E R I F Y (\ A I t I ') returns 1 +

End of Section 13

Appendix A
PL/I Statements

This appendix lists the PLfI statement formats in alphabetical order.

The ALLOCATE Statement

ALLOCATE based-variable SET(pointer-variable);

Example:

declare A character(lS) based(P) t

P pointer;
allocate A set(P);

The ASSIGNMENT Statement

variable = expression;

Examples:

5 = C*D;
unspec(E) = F(I);

The BEGIN Statement

begin;

The CALL Statement

CALL proc-name [(sub-l,oo.,sub-n)] [(arg-l, oo.,arg-m)];

173

A PL/I Statements

Example:

call P1;
call P2(A,B,C);

The CLOSE Statement

CLOSE FILE(file_id);

Examples:

close file(INP);
close file(OUT);

The DECLARE Statement

DECLAREIDCL [level] name [attribute-list]",

[,[level] name [attribute-list]];

Examples:

declare A fixed;
declare 1 B t

2 C NAME character(20) ,
2 D ADDRESS,

3 STREET character(20) t

3 CITYST character(20) t

3 ZIP character(S) ;
declare ZZ(10) fixed;
declare A fixed external;

The DO Statement

DO [control-variable] do-specification;

PL/I Language Reference Manual

where do-specification can b~ one of the following:

174

PL/I Language Reference Manual

[start-exp [TO end-exp] [BY incr-exp]] [WHILE(condition)]
[start-exp [BY incr-exp] [TO end-exp]] [WHILE(condition)]
[start-exp [REPEAT repeat-exp]] [WHILE(condition)]

Examples:

do J=O;
do while(A<5);
do J = 1 TO 10;
do K = 10 TO 0 5Y -2 while(A<B);
do P=START repeat P->NEXT while(PA=NULL);

The END Statement

END [label];

Examples:

end;
end Pi;

The FORMAT Statement

label: FORMAT(format-list);

Examples:

Ll: forMat(A(S»;
L2: format(10 54(2»;

The FREE Statement

FREE [pointer-variable->] based-variable;

Examples:

free A;
free P->A;

A PL/I Statements

175

A PL/I Statements

The GET EDIT Statement

GET [FILE(file_id)] [SKIP[(nl)]]
EDIT(input-list) (format-list);

Examples:

get edit(AtBtC)«3)f(StZ»;

PL/I Language Reference Manual

get file(INP) edit«Z(I) do 1 = 1 to 3»(A);

The GET LIST Statement

GET [FILE(file_id)] [SKIP[(nl)]] LIST(input-list);

Examples:

The GOTO Statement

GOTOIGO TO label-constantllabel-variable;

Examples:

gO to the end;
goto lab(K);

The IF Statement

IF condition THEN action-1 [ELSE [action-2]]

Examples:

if A=Z then B=A**Z;
e I s e ;

if J)K then I = 1+1;
else 1 = 1+3;

176

PL/I Language Reference Manual

The Null Statement

Examples:

else

The ON Statement

ON condition ON-unit,

Examples:

on endfile(INP)
begin;

put list(\END OF INPUT');
stop;

end;

on error put list(oncode(»;

The OPEN Statement

OPEN FILE(file_id) [file-attributes];

Examples:

open file(INP) input;
open file(SYSPRINT) output;

A PL/I Statements

177

A PL/I Statements PL/I Language Reference Manual

The PROCEDURE Statement

proe-name: PROCEDUREIPROC [(parm-1, ... ,parm-n)]
[OPTIONS(option, ...)] [RETURNS(attribute-list)]
[RECURSIVE]

Examples:

Pl: proc(A,5,C);
P2: procedure (ZZ) returns(float);
P3: proc(N) returns(fixed bin) recursive;
P4: procedure options(Main);

The PUT EDIT Statement

PUT [FILE(file_id)] [SKIP[nl]] [PAGE]
EDIT(output-list) (format-list);

Examples:

put edit(A,B,C) (F(5,2) ,}«3) ,2E(10,2»;
put edit«Z(I) do I = 1 to 10»(A);

The PUT LIST Statement

PUT [FILE(file_id)] [SKIP[(nl)]] [PAGE] LIST (output-list);

Examples:

put list(A,B,C);
put file(F) list«Z(I) do I = 1 to 10»;

The READ Statement (for SEQUENTIAL RECORD files)

READ FILE(file_id) INTO(x);

Example:

read file(INP) into(XX);

178

PL/I Language Reference Manual

The READ with KEY Statement

READ FILE(file_id) INTO(x) KEY(ikey);

Example:

read file(INP) into(STRUC) Key(IKEY);

The READ with KEYTO Statement

READ FILE(file_id) INTO(x) KEYTO(keyto);

Example:

read file(INP) into(Z) Keyto(IKEY);

The RETURN Statement

RETURN [(return-exp)];

Examples:

return;
return(}-() ;
return(A**2) ;

The REVERT Statement

REVERT condition;

Examples:

rel)ert error;
rel)ert endfile;

The SIGNAL Statement

SIGNAL condition;

A PL/I Statements

179

A PL/I Statements PL/I Language Reference Manual

Examples:

signal error;
signal endfile(sysin);

The STOP Statement

STOP;

The WRITE Varying Statement (for STREAM files)

WRITE [FILE(file_id)] FROM(v);

Example:

declare on<tYY) character(200) l.Ian'ing;
write file(OUTPUT) froM(XX);
I",rite frofTdYY);

The WRITE Statement (for SEQUENTIAL RECORD files)

WRITE FILE(file_id) FROM(x);

Examples:

write file(OUTP) frOM (XX);
write file(F) froM(STRUC);

The WRITE with KEYFROM Statement

WRITE FILE(file_id) FROM(x) KEYFROM(ikey);

Example:

write file(KP) froM(REC) KeyfroM(IKEY);

End of Appendix A

180

Appendix B
Data Attributes

This appendix describes all the possible attributes with which program data can be
associated in PL/I. Abbreviations of attributes are included. Refer to the relevant sec­
tions for full details of the attributes.

B.t ALIGNED

ALIGNED is a data attribute that usually forces storage boundary alignment of a
variable. It has no effect in PL/I but is included for compatibility with other imple­
mentations. For example:

declare A(O:3) bit (4) ali~ned;

B.2 AUTOMATIC I AUTO

AUTOMATIC is a storage class attribute that specifies that storage is allocated to
the variable upon activation of the block containing the declaration. In PL/I, automatic
storage is statically allocated, except for recursive procedures. For example:

declare A fixed binary; 1* is e~uivalent to *1

declare A fixed binary auto;

B.3 BASED or BASED(p) or BASED(qO)

BASED is a storage class attribute that specifies user-controlled allocation for a
variable. In this case, p is a pointer variable, and q is a pointer-valued function. For
example:

declare A fixed binary basedt
8(5) character(10) based(p) t

C fixed binary based(f(»;

181

B.4 BINARY PL/I Language Reference Manual

B.4 BINARY I BIN or BINARY (p) I BIN (p)

BINARY defines a BINARY variable with precision p.

for FIXED variables
for FLOAT variables

For example:

P <= 15
P <= 53

declare I fixed binary(7) t

F float binary(40);

B.5 BIT (n)

BIT (n) defines a bit string of length n, where n < = 16. For example:

declare A bit(3);

B.6 BUILTIN

BUILTIN specifies that the declared name is one of the PL/I built-in functions (BIFs).
If you declare a BIF name in any block as a variable, then you must redeclare it with
the BUILTIN attribute if you want to reference it as the BIF in any contained block.
For example:

declare sqrt builtin;

B.7 CHARACTER(n) I CHAR(n)

CHARACTER (n) defines a character string of length n, where n < =254. For
example:

declare A character(10) t

6(5) character(4);

182

PL/I Language Reference Manual B.8 DECIMAL

B.8 DECIMAL[(p [,q])] I DEC[(p [,q])]

DECIMAL defines a decimal number with precision and scale (p,q), where p < =
15 and q < = p. If you do not specify q, the default is q = 0. If you do not specify
either p or q, PL/I defaults to (7,0). For example:

declare A fixed decifTlal (8 12);

B.9 ENTRY[(att-l,att-2, ... ,att-n)]

ENTRY defines entry values, where att-l to att-n is the attribute list of the parameters
as given in the PROCEDURE definitions of the entry values. For example:

declare H entr}'t
Z entry(10) (fixed) 1

Y entry(float) returns(float) 1

X entrY variable;

B.I0 ENVIRONMENT(options) I ENV(options)

ENVIRONMENT defines fixed- and variable-length record sizes for RECORD files,
internal buffer sizes, the file open mode, and the password protection level. Options
is one or more of the following:

Locked I L
Readonly I R
Shared I S
Password [(level)] I P[(level)]
Fixed(i) I F(i)
Buff(b) I B(b)

where i is the fixed-record length, and b is the internal buffer size. Both are expressed
as integer constants. For example:

open file Keyed enl)(f(100) Ib(4000»;
open file(f8) input direct title(\d:accounts.new;topaz')

enl.J(shared IPassl, . .Iord(d) If(100) Ib(2000»;

183

B.tt EXTERNAL PL/I Language Reference Manual

B.ll EXTERNAL I EXT

EXTERNAL defines the scope of the declared item to be EXTERNAL. That is, the
item is known in all blocks where it is declared as EXTERNAL. For example:

declare A character(S) external;

B.l2 FILE

FILE defines file data. For example:

declare F file t

FV file variable;

B.l3 FIXED[(p [,q])]

FIXED defines fixed-point arithmetic data of precision and scale (p,q). If specified
for BINARY data, q must be O. For example:

declare A fixed binarYt
B fixed decifTlal (5 ,2);

B.l4 FLOAT[(p)]

FLOAT defines floating-point arithmetic data of precision p, where p < = 53. For
example:

declare A float binary;

184

PL/I Language Reference Manual B.1S INITIAL

B.ts INITIAL (value-list) I INIT (value-list)

INITIAL causes the Compiler to assign initial values to a STATIC variable before
program execution. The value list is a list of constants, separated by commas, that can
be converted to the variable type being initialized. Any constant in the list can be
preceded by a repetition factor in parentheses. For example:

declare A character(3) static initial(\ABC'),
5(2) fixed binary static initial«2)S);

B.t6 LABEL

LABEL defines a LABEL variable. For example:

declare somewhere label;

B.t7 POINTER I PTR

POINTER defines a POINTER variable. For example:

declare (P,9) pointer;

B.tS RETURNS (attribute-list)

RETURNS (when used with the ENTRY attribute) describes the attribute list of the
value returned by a function. For example:

declare A entrv(float) returns(fixed);

B.t9 STATIC

STATIC is a storage class attribute that causes the Compiler to allocate storage
before program execution. For example:

declare A character(10) static,
B fixed binary static initial(O);

185

B.20 VARIABLE PL/I Language Reference Manual

B.20 VARIABLE

VARIABLE (when used with the FILE or ENTRY attributes) defines the item as a
variable instead of a constant. For example:

declare F file variablet
P entrY variable;

B.2l VARYING I VAR

V AR YING defines a varying length character string. For example:

declare A character(100) varyinS;

End of Appendix B

186

I

Appendix C
ASCII and Hexadecimal

Conversions

ASCII stands for American Standard Code for Information Interchange. The code
contains 96 printing and 32 nonprinting characters used to store data on a disk. Table
C-1 defines ASCII symbols, and Table C-2lists the ASCII and hexadecimal conversions.
The table includes binary, decimal, hexadecimal, and ASCII conversions.

Table C-1. ASCII Symbols

Symbol Meaning Symbol Meaning

ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line-feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form-feed US unit separator

VT vertical tabulation

Table C-2. ASCII Conversion Table

Binary Decimal Hexadecimal ASCII

0000000 0 0 NUL
0000001 1 1 SOH (CTRL-A)
0000010 2 2 STX (CTRL-B)
0000011 3 3 ETX (CTRL-C)

187

C ASCII and Hexadecimal Conversions PL/I Language Reference Manual

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

0000100 4 4 EaT (CTRL-D)
0000101 5 5 ENQ (CTRL-E)
0000110 6 6 ACK (CTRL-F)
0000111 7 7 BEL (CTRL-G)
0001000 8 8 BS (CTRL-H)
0001001 9 9 HT (CTRL-I)
0001010 10 A LF (CTRL-J)
0001011 11 B VT (CTRL-K)
0001100 12 C FF (CTRL-L)
0001101 13 D CR (CTRL-M)
0001110 14 E so (CTRL-N)
0001111 15 F SI (CTRL-O)
0010000 16 10 DLE (CTRL-P)
0010001 17 11 DCl (CTRL-Q)
0010010 18 12 DC2 (CTRL-R)
0010011 19 13 DC3 (CTRL-S)
0010100 20 14 DC4 (CTRL-T)
0010101 21 15 NAK (CTRL-U)
0010110 22 16 SYN (CTRL-V)
0010111 23 17 ETB (CTRL-W)
0011000 24 18 CAN (CTRL-X)
0011001 25 19 EM (CTRL-Y)
0011010 26 1A SUB (CTRL-Z)
0011011 27 1B ESC (CTRL-[)
0011100 28 1C FS (CTRL-\)
0011101 29 1D GS (CTRL-])
0011110 30 1E RS (CTRL-A)
0011111 31 1F US (CTRL-_)
0100000 32 20 (SPACE)
0100001 33 21 !
0100010 34 22 II

0100011 35 23 #
0100100 36 24 $
0100101 37 25 %
0100110 38 26 &
0100111 39 27 ,

0101000 40 28 (
0101001 41 29)

188

PL/I Language Reference Manual C ASCII and Hexadecimal Conversions

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

0101010 42 2A *
0101011 43 2B +
0101100 44 2C ,
0101101 45 2D -
0101110 46 2E
0101111 47 2F /
0110000 48 30 0
0110001 49 31 1
0110010 50 32 2
0110011 51 33 3
0110100 52 34 4
0110101 53 35 5
0110110 54 36 6
0110111 55 37 7
0111000 56 38 8
0111001 57 39 9
0111010 58 3A :
0111011 59 3B ;
0111100 60 3C <
0111101 61 3D =
0111110 62 3E >
0111111 63 3F ?
1000000 64 40 @
1000001 65 41 A
1000010 66 42 B
1000011 67 43 C
1000100 68 44 D
1000101 69 45 E
1000110 70 46 F
1000111 71 47 G
1001000 72 48 H
1001001 73 49 I
1001010 74 4A J
1001011 75 4B K
1001100 76 4C L
1001101 77 4D M
1001110 78 4E N
1001111 79 4F 0
1010000 80 50 P

189

C ASCII and Hexadecimal Conversions PL/I Language Reference Manual

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

1010001 81 51 Q
1010010 82 52 R
1010011 83 53 S
1010100 84 54 T
1010101 85 55 U
1010110 86 56 V
1010111 87 57 W
1011000 88 58 X
1011001 89 59 Y
1011010 90 SA Z
1011011 91 5B [
1011100 92 5C
1011101 93 5D]
1011110 94 5E "

1011111 95 SF <
1100000 96 60 ,

1100001 97 61 a
1100010 98 62 b
1100011 99 63 c
1100100 100 64 d
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A J
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1011111 111 6F 0

1110000 112 70 p
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v

190

PL/I Language Reference Manual C ASCII and Hexadecimal Conversions

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

1110111 119 77 w
1111000 120 78 x
1111001 121 79 y
1111010 122 7A z
1111011 123 7B {
1111100 124 7C I
1111101 125 7D }
1111110 126 7E ~

1111111 127 7F DEL

End of Appendix C

191

End of Appendix C PL/I Language Reference Manual

192

Appendix D
Implementation Notes

The Digital Research implementation of PLfI is for microcomputers that use the
8080/8086, 280, 8084/8088 or similar processors. It is formally based on the ANSI
General Purpose Subset (Subset G) as specified by the ANSI PLfI Standardization
Committee X3J1.

PLfI conforms to the Subset G specification with the following exceptions.

PLfI does not include the following attributes:

• DEFINED
• FLOAT DECIMAL
• PICTURE (it is implemented as an edit format item on output)
• Asterisk Extents and Dynamic Arrays

PLfI does not include the following built-in functions:

• ATANH
• DATE
• STRING
• TIME
• VALID

The following built-in functions are additions from the full PL/I:

• ASCII
• RANK

In PLfI, the %REPLACE statement is extended allowing multiple replaces in a single
statement.

The following 110 facilities for ASCII file processing are added to PL/I:

• READ and WRITE statement forms for processing variable-length ASCII rec­
ords

• The GET EDIT statement is extended to full record input in A format
• Control characters are allowed in string constants

193

D Implementation Notes PL/I Language Reference Manual

PLII is designed for use in limited resource environments. The following are imple­
mentation constraints imposed by the design.

194

• The PL/I condition stack is fixed at 16 levels. In any given block, PL/I stacks
ON-units for the same condition. Therefore, you should not enable ON-units
inside iterative loops because the condition stack can quickly overflow.

• An ON-unit cannot free storage for a variable that is being used when the
condition is signaled, or close the file for which an 110 condition is signaled.
The ON-unit must branch to a non-local label.

• PL/I does not support partially-subscripted, and/or partially-qualified mixed
aggregate references that specify unconnected storage.

• PL/I does not support comparison operations for FIXED BINARY values whose
sum or difference is greater than 32767 in absolute value.

• In the implementation of PL/I for the 8080 and Z80® processors, the Compiler
produces relocatable object code in the MicroSoft® format. This format restricts
the length of external names to six characters.

• In the implementation of PL/I for the 8086 and 8088 processors, the Compiler
produces relocatable object code in the Intel® format. There are no restrictions
on the length of external names with this format.

End of Appendix D

Appendix E
PL/I Bibliography

This appendix lists several PL/I programming reference books. Some are introductory
textbooks for classroom use, while others are more advanced applications guides. Each
reference is followed by a short description of the general content. You can obtain
these books through your local bookstore, or order them directly from the publisher.

Although there are books now being prepared that specifically cover PL/I Subset G,
the books listed below cover subsets such as PL/C and SP/k ™ or the full IBM ™ imple­
mentations of PL/I. The statement forms of PL/C and SP/k are generally included in
the Subset G definition while full PLiI contains a number of language facilities excluded
from the subset. Therefore, you should be aware that differences can arise even though
the sample programs and definitions are substantially the same.

Your own reference library might consist of Lynch's book (12), that covers very
general aspects of computing with introductory language details provided by the Xenakis
book (14). Structured programming and program formulation is presented by one of
the Conway books, such as (6). Additional application programming details are given
in the Hughes book (9). Details of more advanced data structures are given in the
Augenstein book (1).

Readers are encouraged to critique the individual books, and any additional reference
material they find useful. Digital Research appreciates your comments and suggestions
so that we can update this list.

(1) Augenstein, M., and A. Tenenbaum. Data Structures and PLII Programming.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979 (643p, Hardback, Type­
set).

An advanced presentation of full PL/I. This is a college textbook presenting the
PL/I language through a series of progressive examples covering recursion, list
processing, trees and graphs, sorting, searching, hash coding, and storage man­
agement. An extensive bibliography is included. Emphasis is upon implementing
data structures using a subset of full PLiI that nearly matches subset G. Structured
programming is not emphasized.

(2) Bates, F., and M. Douglas. Programming LanguagelOne. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1970 (419p, Paperback, Hand Typed).

195

E PL/I Bibliography PL/I Language Reference Manual

A simple introduction to PL/I. This book presents fundamental elements of full
PL/I, with some emphasis on commercial processing including structures, records,
formatting and error processing. Explanations are emphasized rather than exam­
ples. Structured programming is not emphasized.

(3) Cassel, D. PLII: A Structured Approach. Reston Publishing, Inc., Reston, Virginia,
1978 (219p, Paperback, Typeset).

A middle level introduction to PL/I. A portion of full PL/I is presented emphasizing
batch processing and commercial applications. Language elements are clearly
presented, but there is no particular emphasis on program formulation or proper
structuring, as the title implies.

(4) Clark, F. J. Introduction to PLII Programming. Allyn and Bacon, Inc., Boston
1971 (243p, Paperback, Typeset).

A basic self-study introduction to PL/I through exercises. This text presents a
portion of full PL/I from a traditional card-oriented approach, starting with a
discussion of binary numbers and continuing through the basic statement types
to simple STREAM and RECORD 110. Structured programming is not empha­
sized, although commercial processing examples are given.

(5) Conway, R. A Primer on Disciplined Programming. Winthrop Publishers, Cam­
"bridge, Mass., 1978 (419p, Paperback, Computer Typed).

A textbook used for PL/C, Cornell University's dialect of PL/I. One of three college
textbooks by Conway et. aI., covering introductory programming, with emphasis
on techniques used to formulate, develop, and test programs. Includes short
discussions of searching and ordering lists, accounting, string operations, and
interactive systems. Emphasis is upon structured programming practices and pro­
gramming mechanisms rather than extensive examples of working programs.

(6) Conway, R., and D. Gries. Primer on Structured Programming. Winthrop Pub­
lishers, Cambridge, Mass., 1976 (397p, Paperback, Computer Typed).

A book on structured programming centered around PL/C. Essentially the same
content as the previous book by Conway, with perhaps more emphasis on the
operation of the PL/C programming system at Cornell.

(7) Conway, R., D. Gries, and D. Wortman. Introduction to Structured Programming.
Winthrop Publishers, Cambridge, Mass., 1977 (420p, Paperback, Computer Typed).

196

PL/I Language Reference Manual E PL/I Bibliography

A book on structured programming using Cornell's PLfC and Toronto's SPfk
systems. Again, similar to Conway's first book with the addition of sections on
file processing, and language translation using compilers and interpreters.

(8) Groner, G. PLfI Programming in Technological Applications. John Wiley & Sons,
New York, 1971 (230p, Paperback, Typeset).

An introduction to engineering applications programming in PLfI. This book
discusses full PLfI, with examples derived from batch processing under IBM
implementations. Program formulation through flowcharting is presented, with
many complete examples of scientific applications. Several examples of plot and
graph generation are presented. Emphasis is upon explanations of FLOAT BINARY
computations through complete examples. Programs are not particularly well
structured.

(9) Hughes, J. K. PLfI Structured Programming. Second edition, John Wiley & Sons,
New York, 1979 (825p, Hardback, Typeset).

A comprehensive guide to general PLfI programming. This is one of the more
complete presentations of the full PLfI language. Topics include structured pro­
gramming, processing simple data items, record and file handling, and list process­
ing. Emphasis is toward commercial programming using IBM's PLfI.

(10) Hume, J. N. P., and R. C. Holt. Structured Programming Using PLII and SPfk.
Reston Publishing, Inc., Reston, Virginia 1975 (340p, Paperback, Computer Typed).

An introduction to structured PLfI programming. This textbook introduces PLfI
through a graduated series of subsets called SPI1 through SP/8. Each successive
subset incorporates more of the full PLfI language. The text begins with basic
programming concepts, and progresses through the various PLfI language con­
structs. Sample programs include string and array handling, list processing, and
file handling. Machine language, assembly language, and compiling is also pre­
sented. Emphasis is upon structured programming.

(11) Kennedy, M., and M. B. Solomon. Structured PLfZero Plus PLfOne. Prentice­
Hall, Englewood Cliffs, New Jersey, 1977 (695p, Paperback, Computer Typed).

A fairly comprehensive introduction to PLfI. This book covers the basic elements
of PLfI in some detail, using PLfC for examples. IBM's PLfI Level F language is
discussed briefly. Most language facilities are well illustrated in simple examples.

197

E PL/I Bibliography PL/I Language Reference Manual

(12) Lynch, R. E., and J. R. Rice. Computers, Their Impact and Use. Holt, Rhinehart
and Winston, New York, 1978 (440p, Paperback, Typeset).

A basic introductory book to computers and PL/I. This is a college textbook
intended to introduce computers to nontechnical people. Half the book gives an
overview of computers, their history, their impact upon society, and how they
are used. Operating systems, languages, and language types are discussed. The
remainder discusses IBM PL/I using a variety of applications, ranging up to simple
file processing. Structured programming is not emphasized.

(13) Ruston, H. Programming with PLII. McGraw Hill, New York, 1978 (541p,
Paperback, Typeset).

A comprehensive textbook introduction to PL/I. This book presents PL/I from a
batch processing viewpoint, using the full PL/I language for examples. Program
construction through flowcharting is emphasized. Elements of PL/I are presented,
including simple statements, control structures, arrays, strings, procedures, and
file handling. Examples have a scientific orientation. Basics of error processing
are discussed. Structured programming is not emphasized.

(14) Xenakis, J. J. Structured PLII Programming. Duxbury Press, North Scituate,
Mass., 1979 (413p, Paperback, Typeset).

198

A comprehensive introduction to PL/I, close to Subset G. Basic programming
concepts are presented, with a brief history of programming languages. Elements
of full PL/I are shown, including conversion between data types, arrays, strings,
and procedures. A section on go-to-Iess programming is included, followed by a
game-playing section that includes a tic-tac-toe program. The book is simple in
scope and easy to read.

End of Appendix E

Appendix F
Glossary

aggregate: collection of related data items that you can reference together or indi­
vidually.

algorithm: any procedure consisting of a finite number of unambiguous, repeatable
steps that characterize the solution of a problem.

allocation: A) process of obtaining storage for a variable, or B) specific unit of storage
that you obtain for a based variable.

argument: value that you pass to a subroutine or function.

argument list: zero or more arguments that you specify when invoking a procedure
or a built-in function.

array: named collection of data items with the same attributes, and in which you
access individual items, called elements, by subscripts.

ASCII character set: set of numeric values that represent characters and control infor­
mation, established by American Standard Code for Information Interchange.

assignment statement: executable statement that assigns a value to a variable.

attribute: any characteristic of a data item, such as fixed- or floating-point, decimal
or binary, extent, and so on.

automatic variable: variable for which the Compiler allocates storage when the block
that declares it is activated. The storage is released when the block is deactivated.

based variable: variable that describes storage that you access using a pointer.

BEGIN block: one or more statements delimited by a BEGIN statement and a cor­
responding END statement. A BEGIN block is entered when control reaches the BEGIN
statement. When control flows into a BEGIN block, PLfI creates a block activation for
it and for the variables declared within it.

bit string: zero or more binary digits (0 or 1).

199

F Glossary PL/I Language Reference Manual

block: any sequence of PL/I statements delimited by one of the statement pairs PRO­
CEDURE and END or BEGIN and END.

bound-pair: expression that sets the number of elements in each dimension of an
array.

built-in function: any function provided as part of the PL/I language.

character string: zero or more ASCII characters.

comment: any sequence of characters appearing between the composite pairs /* and
*/. Comments provide documentary text and are ignored by the Compiler.

comparison operator: see relational operator.

Compiler: program that translates source statements of a high-level programming
language into an object module. The object module consists of processor instructions
and certain relocation information that the linkage editor uses to form a command
(CMD) file.

computational: data type on which you can perform operations. The computational
data types are arithmetic and string.

concatenation operator: operator, II, that joins two string values to form a single
string.

condition: any occurrence that interrupts the normal program execution and initiates
a user-defined, or system default response.

condition name: PL/I keyword associated with a specific condition.

connected storage: contiguous storage locations.

constant: A) any literal value that you specify to represent a computational data item,
or B) any entry or label name that you declare implicitly in context, or C) any identifier
that you declare with one of the attributes ENTRY or FILE but without the VARIABLE
attribute.

control variable: variable whose value changes on each iteration of a DO-group and
that can be tested to determine whether or not to continue executing the statements
in the DO-group.

200

PL/I Language Reference Manual F Glossary

conversion: process of transforming a value from one data type to another.

data type: class to which a data item belongs, and which determines the operations
that you can perform on it.

declaration: explicit or implicit specification of an identifier and its data type.

dimension: set of bounds that determine one extent of an array.

DO-group: any sequence of executable statements delimited by a DO statement and
a corresponding END statement.

element: any individual data item in an array, which you can reference with subscripts.

entry point: statement or instruction where the execution of a procedure begins.

expression: any valid combination of operands and operators that reduces to a single
value.

extent: range between the low-bound and the high-bound for one dimension of an
array.

external procedure: procedure that is not contained in any other procedure.

external variable: variable that is known in any block where you declare it with the
EXTERNAL attribute.

file: A) in PL/I, the input source or output target that you specify in an I/O statement,
or B) the collection of data on a mass storage device.

file constant: any identifier that you declare with the FILE attribute but not the
VARIABLE attribute.

filetype: zero- to three-character component of a CP/M-86 file specification that
generally describes the file's use.

FIXED BINARY: data type that represents integer values.

FIXED DECIMAL: data type that represents decimal values with a decimal point
and a fixed number of fractional digits.

201

F Glossary PLfI Language Reference Manual

floating-point: data type that represents very small or very large numbers. A floating­
point number has a mantissa and an optionally signed integer exponent.

flow of control: the sequence in which the processor executes the individual instruc­
tions in a program.

format item: value indicating data representation and formatting information used
with EDIT-directed 1/0.

format list: list of format items corresponding to data items for EDIT-directed 110.

function: procedure that executes when you use its name in an expression, and that
returns a value to its point of reference.

function reference: any reference to the name of a built-in function or a user-written
function in a PL/I statement.

high bound: upper limit of an array dimension.

110 category: general method you use to read or write data items in a file. The 110
categories are STREAM 110 and RECORD 110.

identifier: name consisting of 1 to 31 characters that you specify for a variable,
statement label, entry point, or file constant.

%INCLUDE file: external file from which the Compiler reads source text when
compiling a PL/I program.

integer constant: any optionally signed string of decimal digits.

integer data: data represented as FIXED BINARY or FIXED DECIMAL with a zero
scale factor.

internal procedure: procedure that is contained within some other procedure.

internal variable: variable whose value you can reference within the block that declares
it and any blocks contained within the block that declares it.

iteration factor: integer constant enclosed in parentheses that specifies the number
of times to use a value when initializing array elements, or the number of times to use
a given format item in an EDIT-directed 110 statement.

202

PL/I Language Reference Manual F Glossary

key: (A) any value that you use to specify a particular record in a file, or (B) data"
item that is part of a record in an indexed sequential file, or (C) relative record number
of a record in a RECORD file.

keyword: any PL/I identifier that has a specific meaning when you use it in the
appropriate context.

label: any PL/I identifier, terminated by a colon, which you use to identify a statement.

level number: integer constant that defines the hierarchical relationship of a name
within a structure with respect to other names in the structure.

library: file containing object modules and a directory of the external names within
the object modules.

linker: program that arranges relocatable object modules into a command (CMD)
file, and resolves references among external variables declared in the modules.

LIST-directed 110: any transmission of data between a program and an external
device, for which PL/I provides automatic data conversion and formatting.

listing: output file created by the Compiler that lists the statements in the source
program, with corresponding line numbers, and additional information.

logical operator: operator that performs a logical operation on bit-string values.

low bound: lower limit of an array dimension.

main procedure: procedure that receives control when the program begins executing.
The main procedure is always an external procedure.

major structure: name of an entire structure by which you can specify all members
of the structure in a single reference. A major structure always has a level number of
1.

member: data item in a structure. A member can be a scalar data item, an array, or
a structure.

memory: any addressable location that stores code or data.

minor structure: structure that is a member of a structure.

203

F Glossary PL/I Language Reference Manual

noncomputational: data item that is not string or arithmetic. The noncomputational
data types are ENTRY, FILE, and LABEL.

nonlocal GOTO: GOTO statement that transfers program control to a statement in
an encompassing block.

object module: output from the Compiler or assembler that you can link with other
modules to form a command (CMD) file.

ON condition: anyone of several named conditions that can interrupt a program
and generate a signal.

ON-unit: PL/I statements specifying the action to take when a program signals a
specific ON condition.

one-bit: the binary digit 1.

operator: symbol that directs PL/I to perform a specific function.

parameter: variable that PL/I matches with an argument when the program invokes
a procedure.

parameter list: list of variable names whose values are determined when a procedure
is invoked. The PROCEDURE statement for the procedure's entry point specifies the
parameter list.

password: user-specified extension to a filename enabling file security.

Picture: character-string representation of an arithmetic value consisting of a char­
acter string constant defining the position of a decimal point, zero suppression, sign
conventions.

pointer: data item whose value is the address of a storage location.

pointer-qualified reference: specification of a based variable in terms of a pointer
value that indicates the location of the variable.

pointer qualifier: pointer reference and punctuation symbol that associates a specific
storage location with a based variable.

204

PLII Language Reference Manual F Glossary

precedence: priority of an operator that PLfI uses when evaluating operations in an
expression. PLfI performs an operation with a higher precedence before an operation
with a lower precedence.

precision: number of digits associated with an arithmetic data item.

prefix operator: operator that precedes a variable or constant to indicate or change
its sign.

PRINT file: STREAM OUTPUT file for which PLfI aligns certain data on predefined
tab stops, and controls the output with a specified page size and line size. In a PRINT
file, PLfI does not enclose strings in apostrophes.

procedure: sequence of statements, delimited by a PROCEDURE statement and an
END statement. A procedure can be a subroutine that you invoke with a CALL state­
ment or a function that you invoke with a function reference.

procedure block: sequence of statements delimited by a PROCEDURE statement and
an END statement. Control flows into a procedure block when you specify its name
in a CALL statement or a function reference, at which point PL/I creates a block
activation for it and for the internal variables declared within it.

pseudo-variable: name of a built-in function that you can use on the left-hand side
of an assignment statement to give a special meaning to the assignment.

qualified reference: unambiguous reference to a member of a structure that specifies
each higher-level name within the structure and separates the names with periods.

random access: 110 operation on a RECORD file where individual records within
the file are accessed using FIXED BINARY values called keys.

record: organized collection of data that PLfI transmits using RECORD I/O state­
ments.

RECORD file: file containing binary data that PLfI transmits without conversion.

RECORD 1/0: transmission of data grouped in user-defined units called records.

recursive procedure: procedure that can invoke itself.

reference: appearance of an identifier in any context other than its declaration.

205

F Glossary PL/I Language Reference Manual

relational operator: operator that defines a relationship between two expressions and
results in a. Boolean value indicating whether the relationship is true or false.

return value: value returned by a function that replaces the function at its point of
reference.

row-major order: order in which PL/I stores elements, or assigns values to elements
in an array. In row-major order, the rightmost subscript varies the most rapidly.

Run-time Subroutine Library: library of procedures that support the execution of a
PL/I program.

scalar: data item that is not an aggregate.

scale factor: number of fractional digits that you specify for a FIXED DECIMAL
data item.

scope: set of blocks within a program in which the declaration of an identifier is
known.

sequential access: access method that allows you to access records in a RECORD file
serially.

sequential file: RECORD file in which the records are arranged serially. You can
only add new records at the end of the file, and read records one after the other.

signal: mechanism by which PL/I indicates that a condition has occurred.

statement: valid sequence of PL/I keywords, identifiers, and special symbols that
specifies an executable instruction or data declaration.

static variable: variable for which the Compiler allocates storage for the entire exe­
cution of a program.

storage: any region of memory that is associated with a particular variable.

storage class: attribute of a variable that describes how its storage is allocated and
released by PL/I. The storage classes are AUTOMATIC, STATIC, and BASED.

STREAM I/O: transmission and interpretation of data in terms of sequences of ASCII
characters delimited by spaces, tabs, commas, or fields defined by format items.

206

PL/I Language Reference Manual F Glossary

string data: data type consisting of either characters or bits.

structure: hierarchical arrangement of logically related data items, called members,
that are not required to have the same data type.

structure reference: variable reference to an entire structure (as opposed to a member
of a structure).

subroutine: procedure that receives control when you invoke it with a CALL state­
ment.

subscript: integer expression specifying an individual element of an array or a label.

variable: data item whose value can change during the execution of a program.

variable reference: any reference to a variable including qualification by subscripts
and member names.

zero-bit: the binary digit O.

Note: Material in this appendix has been adapted in part from publication(s) of Digital
Equipment Corporation TM. The material so published herein is the sole responsibility
of Digital Research Inc.

End of Appendix F

207

End of Appendix F PL/I Language Reference Manual

208

Index

A

%INCLUDE statement, 25
%REPLACE statement, 26
ABS, 154
ACOS, 154
actual parameters, 12, 13
ADDR,155
ADDR BIF, 83
aggregates, 27
ALLOCA TE statement, 79, 84
ambiguous reference, 110
And operator, 69
argument, 72, 83
argument list, 11

function, 11
arithmetic constants, 122
arithmetic conversion functions, 45, 49
arithmetic data, 27
arithmetic error conditions, 97, 104
arithmetic functions, 147
arithmetic operators, 42
arithmetic to bit-string conversion, 47
arithmetic to character conversion, 48
array, 65
array references, 53
array variable, 51
arrays, 51, 76
arrays in assignment statements, 57
ASCII, 155 .
ASCII characters, 19, 31, 108
ASIN, 152
assignment and output ordering, 56
assignment statements, 3, 57, 65
ATAN,152
ATAND, 152
attribute factoring, 35, 39

attribute list, 40
A UTOMA TIC attribute, 77
A[(w)] format, 127

B

base 10 logarithmic functions, 148
base 2 logarithmic functions, 148
base e logarithmic functions, 148
BASED, 59
based variables, 77, 84
BCD format, 29
BEGIN blocks, 4, 77, 93, 98
BEGIN statements, 4
BIF, 2, 70
BINARY, 153
BINARY BIF, 46
BIT, 72, 153
bit SUBSTR, 71
bit to character-string conversion, 49
bit-string constants, 33, 122
bit-string data, 32
bit-string to arithmetic conversion, 49
bit-string variables, 32
block activation,S, 67
block balance, 4
block deactivation, 85
block termination, 5
block-structure, 4
blocks, 4
BOOL,150
Boolean algebra, 69
Boolean expression, 88
Boolean function, 69
Boolean test, 92
bound-pair, 51

209

bound-pair list, 35
Buff(b), 111
built-in function (BIF) subroutine, 147
built-in functions, 2, 42
BUILTIN, 147
B[n][(w)] format, 128

c
CALL statement, 12, 16
carriage return, 19
carriage return line-feed, 22
CEIL, 150
CHARACTER, 70, 71, 151
character set, 20
character SUBSTR, 70
character to bit-string conversion, 50
CHARACTER VARYING, 70, 71,

124, 125, 143
character-string constants, 31, 122
character-string data, 31
character-string variables, 32
Chebyshev polynomial approximations,

148
circumflex character, 32
CLOSE statement, 115
COLLATE, 151
column position, 116
COLUMN(nc), 130
comments, 19, 24
commercial applications, 29
common data type, 43
common logarithmic functions, 148
compatibility, 32, 44, 112, 126, 131,

139
Compiler, 11
composite operators, 22
concatenate, 23
condition handling statements, 3
condition stack, 100

210

condition-handling functions, 149
conditional branching, 87
conditional digit, 136
conditions, 97
conflicting attributes, 40, 108, 112
connected aggregate, 143
connected arrays, 57
connected storage, 62
constants, 18, 21

arithmetic, 21
bit, 21
character string, 21

constant, 21
contained block, 34, 147
containing block, 9, 95
context, 3, 21, 29
contexts, 42
control,S, 11
control character, 2
control characters, 32
control data items, 33
control format items, 126, 130, 141
control-variable, 88
controlled DO statement, 88
conversion, 28
conversion functions, 149
COS, 156
COSD,156
COSH,156
CP IM-86 file specification, 25
credit characters, 137
current line, 117
current line count, 116
current line number, 117
current page count, 116
current page number, 119
current record position, 116

D

data aggregates, 51
data attributes, 1, 58
data conversion, 41, 120, 148
data format items, 126
data items, 27
data set, 107
data type, 16, 31, 57
data types, 40
data variables, 27
debit characters, 137
DECIMAL, 48, 157
DECIMAL BIF, 46
decimal integer constant, 44
declarative statements, 3
DECLARE statement, 27, 37, 93
declared names, 21
declared record size, 108
default attributes, 40
default data conversion, 40
default filename, 111
default 1/0 units, 118
default ON-units, 106
default OPEN statement, 125, 126
default precision, 29, 30
default rules, 137
default system action, 118
default values, 108
delimiters and separators, 23
dimension, 57
DIMENSION, 157
dimension attribute, 61
dimensions, 51, 149
DIRECT, 143
DIRECT files, 109
DIVIDE, 157
DIVIDE BIF, 47
DO statement, 87
DO-group, 87, 94
DO-groups, 19

documentary text, 24
double circumflex, 32
double-precision, 30, 148
drifting, 135
drifting characters, 135
drive specification, 113
dynamic storage area, 79, 81, 102

E

E(w[d]) format, 128, 129
ENDPAGE, 97, 116, 131
ENDPAGE condition, 117
ENTRY, 41, 67
encompassing block, 7, 98
END statement, 16, 87, 93
END statements, 4
ENDFILE, 97, 116
ENDPAGE, 97, 16, 131
ENDPAGE condition, 117
ENTRY, 67
ENTR Y attribute, 34
entry constant, 35
ENTRY constant, 83
entry constants, 34
ENTR Y data, 34
ENTR Y declaration, 34
entry names, 75
entry point, 67
ENTR Y statement, 93
entry variable, 35
entry variables, 34
environment, 3
ENVIRONMENT, 143, 144
ENVIRONMENT attribute, 108
equal comparison operator, 34
equal not equal comparison operators,

36
ERROR, 50, 79, 97, 116, 128, 137
ERROR condition, 101
executable statements, 3

211

EXP, 158
expression, 65
extent, 52
EXTERNAL attribute, 9, 107
external blocks, 7, 9
external data set, 111, 127
external device, 109, 115
external entry points, 21
EXTERNAL option, 17
external procedures, 7, 8, 34
external variable, 10

F

fatal conditions, 97, 103
FILE, 41, 67, 123
FILE constant, 83
file constant, 107, 115, 143
file constants, 37
File Control Block, 116
FILE data, 37 .
File Descriptor, 116
file open mode, 110
file parameter block, 68
File Parameter Block, 115
file status, 115
file variable, 107, 115, 143
file variables, 37
filenames, 75
filetype, 110
FIXED, 158
FIXED BIF, 45
FIXED BINARY, 27, 28, 47, 48, 49,

70, 72, 143, 144
FIXED BINARY expression, 145

. FIXED DECIMAL, 29, 49, 130
FIXED OVERFLOW, 29
fixed record, 116
fixed record file, 109

212

Fixed(i), 110, 111
fixed-length record size, 109
fixed-length records, 111, 143
fixed-point data, 129
FIXEDOVERFLOW, 97
FIXEDOVERFLOW[(i)], 104
FLOAT, 159
FLOA T BIF, 45
FLOAT BINARY, 27, 30, 46, 49, 148
FLOA T BINARY constant, 30
floating-point, 148
floating-point data, 128
FLOOR,159
flow of control, 3, 33, 89, 99
formal parameter, 16
formal parameters, 13, 34
format label, 132
format list, 127, 130, 131, 141
FORMAT statement, 93, 132
fractional digits, 27, 45, 48, 137
FREE statement, 79, 81
free-format language, 19
function, 11, 34
function procedure, 12

G

GET EDIT, 128, 129, 130, 131
GET EDIT statement, 141
GET LIST statement, 123
global data, 17,
GOTO statement, 89, 93

H

HBOUND,159
high-level organization, 3
hyperbolic sin and cos functions, 147

I

I/O categories, 120
I/O condition BIFs, 118
I/O conditions, 97, 106
I/O processing, 42, 106
I/O statements, 3
identifier, 21, 26, 35, 37, 51
identifiers, 21
IF ELSE, 92-93, 89, 92
IF statement, 89, 92
IF THEN, 92-93
implied attributes, 111, 112
INDEX, 160
infix expression, 66
infix operator, 66, 67
INITIAL attribute, 55, 56, 76
initializing arrays, 55
INPUT file, 109
input-list, 123, 130, 141
insertion character, 136
insertion characters, 133, 136, 137
integer, 29, 42
integer exponent, 30, 49
integer subscripts, 51
integer values, 27
internal block, 9
internal blocks, 7
internal buffer size, 111, 116
internal buffers, 115
internal data representation, 29, 72, 84
internal procedures, 34
internal representation, 120
iteration factor, 55, 76
iterative DO-groups, 122
iterative

controlled, DO, 87

K

KEY, 97, 116
key, 109
KEY condition, 117
KEY condition, 117
key value, 143
KEYED file, 109
keys, 109
keyword, 4, 21, 65
keywords, 21, 108

L

label, 4
LABEL, 41, 68
LABEL constant, 83
label constant, 93, 95, 132
label constants, 33
LABEL data, 33
label identifier, 33
label variables, 33
labels, 37
LBOUND,160
LENGTH, 160
level, 59
level numb~rs, 39
LINE, 131
line-feed, 22
linemark, 108, 123, 130, 131
linemarks, 120, 123, 131
LINENO, 118, 161
LINENO function, 119
LINESIZE, 109
LINK-86, 34
LIST, 123
local, 107
local variable, 9
LOCK,161
Locked, 110

213

LOG,161
LOG10, 162
LOG2,162
logical data items, 32
logical units, 3, 4
low-level organization, 19
lower-bound

M

MAIN option, 17
main procedure, 7
main program, 16
main structure, 58
major structure, 59, 61, 75
mantissa, 30
mathematical functions, 147
MAX, 163
members, 58
memory management statements, 3
MIN,163
minor structure, 59, 61
miscellaneous functions, 149
mixed aggregate, 61
mixed aggregate referencing, 62
mixed aggregates, 61
MOD,163
most significant digit, 48
multiple %REPLACE statements, 26
multiple allocations, 79
multiple attribute, 38
multiple attributes, 108
multiple data items, 27, 51
multiple declarations, 38

N

natural exponent function, 148
natural logarithmic functions, 148

214

nested %INCL UDE statements, 25
nested BEGIN blocks, 4
nested block, 7
nested blocks, 19, 26"
nested IF statements, 93
nine's complement, 29
nonfatal conditions, 97, 103
noniterative

simple, DO, 87
nonlocal GOTO, 98
nonlocal GOTO statement, 95
not equal comparison operator, 34
Not operator, 69
NULL,164
NULL BIF, 82
NULL built-in function, 55
null character string, 31
NULL pointer value, 76
null statements, 3
null string, 50, 118

o
ON statement, 97
ON-unit, 98, 117, 134, 149

active, 100
enabled, 100

ON-units, 95
ONCODE,164
ONCODE BIF, 105
ONFILE, 118, 164
ONFILE condition, 118
ONKEY, 118, 165
ONKEY function, 119
OPEN statement, 37, 107
operands, 66
operators, 19, 22, 65
Or operator, 69
OUTPUT file, 109
output list, 124, 130

output-list, 126
OVERFLOW, 97
OVERFLOW [(i)], 104

p

padding, 48, 68, 76, 131, 145
PAGE, 123
pagemark, 100, 124, 131
pagemarks, 120
PAGE;NO, 118, 165
PAGENO function, 119
PAGESIZE, 109, 117
parameters, 13

passed by reference, 14
passed by value, 14

partially qualified, 62
partially subscripted, 62
password, 109, 117
password protection level, 110
picspec, 132, 133, 136, 137, 138-140
Picture format item, 132
Picture semantics, 135
picture syntax, 133
PLII keywords, 1
POINTER, 41, 68
pointer, 77
POINTER data, 36
pointer-qualified reference, 84
precedence rules, 66
precision, 15, 28, 42, 43, 44, 45, 46,

71, 130, 137
predefined files, 119
prefix expressions, 65
prefix operators, 66
preprocessor statements, 3, 25
PRINT, 112, 116, 124, 130, 131
procedure names, 35
PROCEDURE statement, 13, 16,41,93
PROCEDURE statements,S

procedure blocks, 11
procedure entry point, 16
procedure exit point, 16
procedure invocation,S, 11, 12
procedure names, 35
PROCEDURE statement, 13, 16, 93
PROCEDURE statements,S
pseudo-variable, 65
pseudo-variables, 70
PUT EDIT, 128, 129, 130, 131
PUT EDIT statement, 141
PUT LIST statement, 9, 123
qualified name, 61
qualified reference, 51

Q

qualified name, 61
qualified reference, 51

R

RANK,165
READ statement, 121, 124, 143
READ Varying statement, 124
READ with KEYTO statement, 144
readability, 16
Readonly, 110
RECORD file, 108, 116
RECORD files, 143
RECORD 1/0, 120
RECURSIVE, 75
RECURSIVE attribute, 19
relational operators, 67
remote format items, 126, 127
REPEA T option, 89
repetition factor, 127
result, 41
RETURN statement, 12, 16, 41, 98

215

RETURNS attribute, 13, 19
REVERT statement, 100
ROUND,166
run-time errors, 3
run-time stack, 17
Run-time Subroutine Library (RSL),

147

s
scalar data items, 51, 58
scalar data type, 143
scalar variables, 37
scale, 15, 28, 29, 42, 43, 44, 45, 46,

130, 137
scientific applications, 29
scientific notation, 30, 48, 129
scope, 11, 34, 78, 94, 132, 147
scope of a variable, 9
separators, 122
sequence control statements, 3, 87
SEQUENTIAL, 143
SEQUENTIAL files, 109
Shared, 110
SIGN, 166
SIGNAL statement, 100
simple DO statement, 87
SIN, 167
SIND, 167
single-precision, 30, 148
SINH, 167
SKIP, 123, 131
source, 41
source program, 19, 24, 25
source text, 25
spaces, 22
special characters, 2, 23
SQRT, 168
square root function, 148
STACK(b) option, 17

216

statement forms, 1
STATIC, 59
static, 135
STATIC attribute, 75
static characters, 138
STOP statement, 93
storage class attribute, 75
storage class attributes, 40
storage sharing, 14, 75, 83, 84
STREAM file, 36, 112
STREAM 1/0, 120
string conversions, 47
string-handling functions, 148
structural statements, 3
structure, 35, 58
structure members, 39
structure variable, 51
subcodes, 101
subroutine, 11
subroutine invocation, 12
subscripted array references, 53
subscripted arrays, 34
subscripted entry variable, 12
subscripted entry variables, 34
subscripted label variables, 94
subscripted labels, 34
Subset G, 84
Subset G standard, 17, 76
SUBSTR, 70, 168
substructure, 58
substructures, 58
SYSIN, 119, 123, 124
SYSPRINT, 119, 123

T

TAN, 169
TAND,169
TANH, 170
target, 41

temporary result, 83
TITLE attribute, 109
TRANSLA TE, 170
trigonometric functions, 148

. TRUNC, 170
two's complement, 28

u
unconditional branching, 87
UNDEFINEDFILE, 97, 116
UNDEFINED FILE condition, 117
UNDERFLOW, 97
UNDERFLOW [(i)], 104
UNLOCK,171
unsigned decimal constant, SS
UNSPEC, 70, 72, 171
unsubscripted variable references, 79
up-level reference, 9
UPDA TE file, 109
upper-bound, Sl

v
variable, 27
VARIABLE attribute, 3S
variable length ASCII, 12S
variable length records, 111, 144
variable subscripts, 53
variable-length ASCII records, 124
variable-length record size, 110
variables, 1, 36

local, 9
variables

external, 9
VERIFY, 172

w
WHILE expression, 89
WRITE statement, 121, 124, 144
WRITE Varying statement, 126

x
X,131

z
zero supression, 136
zero supression characters, 136
ZERODIVIDE, 97
ZERODIVIDE [(i)], 104

217

218

219

220

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ Manual Title ____________ Edition ____ _

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

---~--.~ ~.~,~ ~~-.~~-~---.---.- .-.--------.---.-----~-~~- '---'---"-~ ----~.-~.----~-.;.. ~ -- - --- - - ------

Attn: Publication Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[Q] DIGITAL RESEARCHN
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

