il i}
MC68000 CPUWITH Model CPU-
SEGMENTED MEMORY
MANAGEMENT 68000M

FOR IEEE-696/S-100 COMPUTER SYSTEMS

L

COPYRIGHT®1982
DUAL SYSTEMS CORPORATION
FORM 880005 '

ALL RIGHTS RESERVED

USER'S MANUAL

DUAL SYSTEMS CORPORATION :UAL system reliability / system integrity

-2 -

~~TABLE OF CONTENTS-~
Specifications..ccecacesanassas seneacesamseanseseseansbsanan e i
HARDWARE THEORY OF OPERATION:
T ...Address Space and Data Transfer
1.1 Data BuS.sesceoonsacnsnassnans cecaaceacancsacea 5

1&2 Addr‘ess Bus nn.oaﬁ-;-a....unlabnsueans
Address Bus Block Diagram....s.sce....fig. 1

1.3 Al1l, Top , Bot, None and Prot Jumpers.........)
Diagram of Mapped/Unmapped Regions...fig. 2

Jumper LocationS....ceeocesccecsnsssasfif. 3
1.4 1/0-MMU Register Page........ Ceteenceceanaaans 8
HI LO Jumper Location....c.. cecesssaofig. U
Memory Map...e.cooess sanesenssscssssafig. Ha
IT ...Initialization and Bus Signals

2.1 RESET® , SLV_CLR*, POC¥.......ccv0ecvnvno caeaall
202 Jump vectornmennasa0-5#0&011
Switch Location....encacaccancas ceoosfig. U
2.3 Bus Errors and ERROR® Lin€...ccssccconcaacnocns 12

2.4 Temporary Master Access
and TAS Instruction..... cracanaasanseo 12

2.5 RUN, HALT, HOLD, FAST IndicatorsS.........c...14

I1I ...Interrupts

3.1 68000 Priority Levels vs. S-100 and
Priority Levels Equivalence..........15

3.2 Device Supplied
Table of 68000 Vector Numbers...Table 1

Vector Numbers vs. AutoVectors.......15
3.3 Protocol for Device Supplied Interrupts...... 17
3.4 Daisy Chaining Interrupting Devices.....c.... 18
Example Circuit to Supply

Vector Numbers to CPU.....ccce...Fig. 5
Location of XVC Jumper........... Fig. 6

SOFTWARE THEORY OF OPERATION:

IV ...Programming The MMU

4.1 Table of MMU Registers...ass.. ceacensnnnea ae-.10
APPENDICES:
A) Motorola Documentation of MC 68451

B) Binary Buddy System

Processor: Motorola 68000 L-8 or 68010 L~-8 (L~10 for 10 Mhz)

Memory Management:
Motorola 68451-L8 (L~10 for 10 Mhz)

CPU Clock: 8 MHz or 10 MHz

Address Bus: 24 bit physical and logical address bus.
Conforms to IEEE 696/S-100 extended addressing.

Address Space Allocation:
Segmented memory management.
32 dynamically sized segments, 256b to 16Mb.
System level programs may run unmapped.
Relocatable I/0-MMU Page.

Data Bus: 16 bit bidirectional data transfers, 8 bit
data transfers. Programs must reside in
16 bit memory.

Interrupts: TEEE 696 Interrupt lines NMI and VIO through
VI5 supported.
Motorola device supplied interrupts fully
supported by means of S-100 INT* line and
daisy chain.
ERROR*® line fully supported.

Control: Configured as permanent bus master. Provides
TMA protocol as per IEEE 696,

Bus Cycle Time: IEEE 696 S-100 (8 MHZ CPU) Bus Cycle:
Unmapped: 750 nS
Mapped: 1000 nS3
IEEE 696 S-100 (10 MHZ CPU) Bus Cycle:
' Unmaoped: 600 nS
Mapped: 800 n3

P.C. Board: - High quality epoxy, solder masked both sides,
screened component legend, plated through holes,
gold plated edge connector fingers. Sockets
provided for all I.C..s.

Power: ‘ Consumes 1650 mA nominal from 8 volt line.
7.5V Min, 10.5V Max.

User~Selectable
Options: A0 low on even or odd byte access.
Start address switch selectable of 6UK boundries.

1.1-~-Data Bus:

A1l modes of data transfer of the 68000 are supported
by the CPU/68000/M. The only restrictions on the tyPe of
memories which may be used in the system are the following:

1) Programs'must be executed out of memory with a
sixteen bit data path.

2) Memories with only an eight bit data path may be used
with the CPU/68000/M, however, only instructions
which use a byte as their data type may be used to
effect transfers to the memory.

3) Memories which do not support extended addressing
may be used with the CPU/68000/M, but will limit the
total useable memory to 6UKb.

1.2-~Address Bus:

The MC68000 supports a 24 bit address bus, providing
to the user a 16 Mb address space. The MC68451
memory management unit (MMU) is physically 1located
between the 16 most significant address lines of the 68000
and the corresponding 16 1lines of the S~100 address bus
(see block diagram, next page).

|

The address lines on the 68000 are referred to as Logical
Addresses. These are the untranslated addresses which
the programmer sees when programming the 68000, Physi-
cal Addresses are the addresses on the S-100 bus. These
are the addresses which memory, I/0 boards and the I/0-MMU
page address decoding responds to.

The MMU can manage up to 32 segments in the address space.
Since the MMU translates onlv the most significant 16
address lines, the smallest allowable Segment size 1is 256
bytes. The size of the Segments must be a binary order of
magnitude, 256 bytes, 512, 1024,..., 16Mb. The segments
also must be defined such that their physical and logical
base addresses are a multiple of their size.

The MMU can write protect segments, protect user or system
processes from colliding, and translate logical addresses to
physical addresses with an offset. For a complete descrip-
tion of the MMU capabilities, see the Motorola documentation
in section 5. '

The option is provided on the CPU/68000/M to allow bypassing
the MMU on accesses to specified regions of the logical
address space. See section 1.3 for a complete descripotion
of this feature.

*»€saQ¥ [

5-~100 ADDRESS LINES

b 1007

wezbHeTd YO0TE SNE SS8IPPY W/00089/0d) T bBTa

d3J003d ¥aayv
Iovd NWK-0/T

AN

£€Z2-0%d

€C-8Yd

a/v

X{R

[

]

L]

W
TSP8SOH

o]
C+

£Z-8Y1
€T VI~

&1
o

b mon

Q

A

r

)

£C-8Y1

L=-0¥ d/71

ndo
000890KH

-6 -

1.3-- ALL, TOP, BOT, NONE and PROT Jumper:

As was mentioned in the last section, it 1is possible to
bypass the MMU. The array of jumpers ALL, TOP, BOT and
NONE control which addresses pass through the MMU, and
which proceed directly to the physical (S-100) address
bus. Make certain that only one of these jumpers is
connected at one time.

If the ALL jumper is set, all 1logical addresses pass
through the MMU. If the NONE jumper is selected, all log-
jcal addresses pass directly to the physical address
bus. _

The CPU/6B000/M can also partition the logical address space
into two equal sections, one mapped and the other unmapped.
If the TOP jumper i3 selected, all loglical addresses from
800000 to FFFFFF will pass through the MMU. When the
addresses from the logical bus pass through the MMU, they
participate in what Motorola refers to as the "matching
and translation process" which makes up memory management.
This is deacribed in great detail in section 5. Any access
‘to the bottom of the logical address space, 0 to TFFFFF,
will be passed directly onto the physical address bus.

The BOT jumper works the same wav, only the bottom half of
memory from O to TFFFFF is mapped, while the top of the
address space from 800000 to FFFFFF is unmapped.

The reasons for using the TOP or BOT settings are twofold:

First, it is possible to increase the amount of avail-
able segments. If all or a portion of the kernel pro-
grams can run in protected unmapped space, more seg-
ments are free for-user processes,

Second, a bus cycle in an unmapped portion of the
address space will run faster than a bus cycle in a
mapped portion of the address space. Configuring the
board so syvstem tasks run in the faster unmapped space
can result in a performance gain.

-7 -

The significance of each of the settings is summarized
below:

ALL: The entire physical address space is mapped. All logi-
cal addresses pass through the 681451,

NONE:The entire physical address space is unmapped. All
logical addresses on the 68000 address bus pass
directly to the physical (S5-100) address bus. The
memory management is inactive, although the MMU regis-
ters may still be accessed.

TOP: The TOP portion of the 1logical address space from
800000 to FFFFFF passes through the MMU. The logical
address space from 0 to TFFFFF passes directly the phy-
sical address bus. Protection of the unmapped space is
available via the PROT jumper.

BOT: The BOTtom portion of the logical address space from 0
to TFFFFF passes through the MMU. The logical address
space from 800000 to FFFFFF pass directly onto the phv-
sical address bus. Protection of the unmapped space is
available via the PROT jumper.

PROT Protection for unmapped space is implemented by means
of the Jjumper 1labeled PROT. If this jumper is
installed, the CPU/68000/M will not be allowed to
access the wunmapped address space unless the S bit
{(supervisor mode) is set in the status register. An
attempted access to unmapped space by the CPU while in
User mode will result in a bus error exception.

The PROT feature was designed to be used in conjunction
with the TOP or BOT jumper settings to protect system
software running in unmapped address space.

leMb

8Mb

NONE

16Mb

8Mb

oy
”

%
]
./ . /

L

BOT

TOP

Fig. 2 Mapped and Unmapped Regions

of Logical Address Space

i

MAPPED

UNMAPPED

Sia9

“SWT} B 3B JUO
Afuc TTe3sul - ,dOJ, O3 IeS
Todwunf FNON ‘IO€ ‘dOL ‘TITV

Jadunp

(UOT3RINBTFUOD XINQ XSSNTITON)
‘zadumg gNON ‘I0g ‘d0L ‘TIV pue

sbed OWW-O/I 3O uOT3EDOT

<

€

brg

J0WORI068 pad
‘psTte3Isut zsdung JOdd,

BUUL UQ UOT3D930I

5

“ w07y
y rodump

o3 3ss

1.4-- 1/0-MMU Register Page

The 68000 instruction set does not have an explicit
Input/Output instruction. Motorola architects intended for
all 68000 I/0 to be memory mapped. Memory mapped I/0 takes
advantage of the many powerful addressing modes for fast,
efficient I/0 routines.

To support S~100 I/0 mapped peripherals and to allow commun~-
jcation between the 68000 and the 68451, the processor board
dedicates a 64 kilobyte page of the address space for 1I/0
and the MMU registers. This page can based in the physical
memory space at one of two following addresses:

I/0-MMU page:
1) TFO0000 to TFFFFF (LO)
2) FF0000 to FFFFFF (HI)

The jumper which selects the location of the physical base
address for the 1I/0-MMU page has two settings: HI and LO.
See fig. 3 for the location of the I1/0-MMU page jumper. The
.HI. and .LO. refer to the position of the I/0-MMU page at
either a HI (FF0000) or LO (TF0000) base address. The
CPU/68000/M comes configured with the 1/0-MMU page jumper
set to the .LO. position. Any access by the CPU/68000/M to
the I/0 page will cause the appropriate I/0 status signals
to be asserted on the S-100 bus.

The MMU registers reside. in top 64 bytes of the I/0-MMU
page, from TFFFCO to TFFFFF, or FFFFCO to FFFFFF in physi-
cal memory, depending on where the I/0-MMU page is 1located.
On any access to the MMU registers, all S-100 strobes are
rescinded until the data transfer between the CPU and the
MMU 1is complete. Transfers between the 68000 and the MMU
occur at 8 MHz. For a list of MMU register locations and a
description of MMU register functions, see section 5.

Some Examples:;

If the 1I/0 page jumper i3 set to the HI position,
the I/0 page base address 1is FF0000, Hex address FF0002
corresponds to I/0 port address 2. So the 68000 instruc-

tion:

MOVE.B OFF0002H, DO

is functionally equivalent to the 8080 instruction
IN 02H

-9 -

If the 1/0 page jumper were set to the LO position, the
base address of the I/0 page would be TF0000. The 68000
instruction to accomplish a read from port address 2 would
then be:

MOVE.B OT7TF0002H, DO

Note that almost 64 K bytes are dedicated to I/0 devices.
This allows almost 64 thousand input and output ports.
To support this many ports requires that 1I/0 devices decode
the least significant 16 address lines. The IEEE
specification allows the extended 1I/0 addressing, but does
not require 1it.

The majority of current I/0 boards decode only the least
significant B8 address bits. This results in only 256
input and output ports. Since the 1I/0 board does not
decode the full 16 bit address the 256 port

addresses are replicated through the 64 KX byte I/0
space at 256 byte intervals.

Eight bit (non-extended) I/0 addressing example:
When the I1/0 page is in the LO setting, the instruc-
tion:

MOVE.B TF0002 , DO
will read from port 2 from a typical non-extended
addressing I/0 board.
The following will also read from port 2:

MOVE.B TFO0102 , DO

And so will this:
MOVE.B TF0202 , DO

And so on through the I/0 space.

See section 5,1 for a sample MMU register access.

Some Suggestions:

When programming I/0, it is a good idea to use the bottom

most 256 byte I/0 block exclusively so as to avoid accessing
the MMU registers accidently. Stav clear of the top 256

- 10 -

block, TFFFO00 to TFFFFF (LO) or FFFF0O to FFFFFF (HI) to
avoid unintentionally accessing the MMU registers. ‘

Since the I/0 page 1location 1is decoded in the phy3sical
address space, it may be assigned a segment and relocated or
write protected just as with normal physical memory. Take
care that the operating system always has access to the MMU
registers, as it is possible to map them out of the reach of
the operating svstem entirely.

If the decision has been made to map only half of the physi-
cal memory, we recommend that the the TOP setting be used.
The lower 8Mb could be reserved for the unmapped System
tasks, as the exception vectors at hex addresses 0 to U100
and the I/0/MMU page at TFFFBF could all reside in the same
half of memory. This would obviate the need to define a
separate System segment for the I/0-MMU page and exception
vectors, as would be neccessarv if everything were located
in mapped space.

2.1 RESET*, SLAVE CLR*, POC*:

When power is first applied, RESET*, SLAVE CLR¥, and POC*
(Power On Clear) are all asserted low for 100 ms. - During
this time, the CPU clears its reglsters and resets itself,
and the MMU 1initializes its registers so that it comes up
with segment 0 mapping the logical addresses to the physical
address space with no offset. The size of the segment is
16Mb, the entire address space. Even if the MMU is not
engaged it is still initialized. For more information on
the initial state of the MMU and its registers, see SOFTWARE
THEORY OF OPERATION section 5.

The 68000 .reset. instruction will cause the 8-100 SLAVE
CLR* 1line to be asserted for 62 clock cycles (15.5 us).
This is useful for initiallizing bus slaves to a known state.
The .reset. instruction will not reset the 68000 or the
MMU ,

2.2--Jump Vector Switch:

A normal 68000 system reset operation consists of a U4 byte
fetech from vector number O (hex address 0) to initialize
the stack pointer, and a 4§ byte fetch from vector number 1
(hex address U4) to initialize the program counter.

On a hard reset (power up, or RESET*® asserted) the
CPU/68000/M will fetch the stack pointer and the program
counter starting from the location indicated on the dip-
switeh shown in fig. 4. The jump location must be at a 6UK
boundary, since only the high order address byte is used to
form the jump address.

For Example:

If your boot program resides at hex address 20008, and the
Stack Pointer 1s TFFF. Locations 20000 through 20007 would
have to have the values shown below, and S1 would have to be
set as shown on the following page.

A e o o STACK POINTER-=mm= +=em=PROGRAM COUNTER~w ==+
+ + +
ERRARERERRERRERRRERREREEERRE AR RN R AR R R RN NN NN RN
» » » » » » * * »
¥ 00 % Q00 ® 7F ®* FF ® Q0 % Qg2 ® Qg0 * (8 *
* * » * * » * * »

BRREARAREERRERRREXRRERERERRRERRERRLEERERERRRRRREESR

Hex + + + + + + + +
Address: 20000 20001 20002 20003 20004 20005 20006 20007

On reset, the CPU will fetch the stack pointer and the
program counter. It will then begin executing code at the

YO1TMS S§S8IppY 3o bBuraiss pue uoriEsoT § *BTg

"0=330 ‘T=UQ °“X3Y 0000C ©3 335 YDITMS SS3IPPY T.H\H.&O ZO >

- 12 -

address of the PC, at 20008.

2.3--Bus Errors and the ERROR* Line:

Bus errors derive from three sources:
1) The MMU

2) Attempted access of PROTected unmapped System
space while in User mode.

3) The S-100 ERROR* line

There are a number of conditions which will cause the
MMU to initiate a bus error exception. Two of the most com~-

mon are:

1) An attempted write to a write-protected segment,
2) An Undefined Segment Access

Refer to section 5 for more details on MMU generated bus
errors,

The ERROR* line on the S-100 bus is a generally defined
signal used to indicate catastrophiec errors. We define its
use in the following fashion:

1) The ERROR* line is sampled by the CPU/68000/M at
two points in the S-100 bus cycle:

a) the falling edge of phi during pSYNC.

b) the rising edge of phi immediately preceding
the data strobe (pDBIN or pWR*).

2) After the ERROR® signal is latched , the current
bus- cyele 1is aborted, and 68000 bus error
exception processing is held pending. Bus Error
exception pro-. cessing will proceed only after
the ERROR® signal has been rescinded. If
another bus error occurs during the exception pro-
cessing, the 68000 will register a double bus
fault condition and the ©processor will be
halted.

Refer to the timing diagrams in the appendix for more
detail. '

2.4~-Temporary Master Access and TAS Instruction

The CPU/68000/M functions as a permanent bus master as
specified 1in the TIEEE proposed S-100 standard. Temporary

phi

pPSYNC

PSTVAL*

ERROR*

PSYNC

As soon as the ERROR* line

is asserted low, the current
bus cycle is aborted. All bus

é{//// strobes return to their non-
asserted levels.

PSTVAL*

Bus error exception processing will not proceed

until the ERROR* has been brought high. If another
bus error occurs during the bus error exception
processing, the processor will register a double-bus-
fault and halt.

ERROR* Line Timing

Figure 4a

- 13 -

bus masters (DMA devices) request the bus by asserting con-
trol input HOLD®*, They receive control of the bus when the
bus master (CPU/6B000/M) asserts control output acknowledge

pHLDA.

Upon receipt of HOLD the 68000 completes the current bus
cyele and. then asserts pHLDA. The 68000 suspends all pro-
cessing until HOLD*® is released. A temporary master may now
disable the four disable 1lines ADSB¥, 3DSB*, CDSB* and
DODSB*, The temporary master now has complete control of
the bus for as long as it wishes. When the bus is no longer
needed control 1is returned to the permanent master by
releasing the bus disable signals, and finally, HOLD*,

The method of transferring the bus from the permanent bus
master to a temporary master is explicitly specified in the
TEEE bus standard section 2.8. Of significance 1is the
method used to transfer ownership of the control output bus.
To ensure glitch free transfer, both the permanent and tem-
porary master drive the control output bus during the
transfer period. Except for pHLDA, all lines are driven at
their non-asserted levels. After a specified time (125
nano-seconds) the temporary master asserts CDSB*®, disabling
the permanent master.s control output bus drivers and
acquiring control of the bus.

Up to 16 temporary masters mav coexist in a system. A dis-
tributed arbitration scheme determines the highest priority
device which then takes control of the bus upon assertion of
pHLDA.

In general, the CPU/6B000/M will relinquish control of the
bus after the current bus cycle. However, if HOLD* is
received just before the start of a bus ecycle, the 68000
will go ahead with the bus cycle, relinquishing control
after its completion.

As TMA operations occur on the physical side of the address
bus, - care must be taken to insure that memory
addresses passed to TMA devices are phvsical addresses, not
logical addresses. The corresponding physical address for a
given logical address mav be determined by a MMU Direct
Translation Operation.

TAS Instruction:

The 68000 TAS (Test And Set) results in different CPU timing
than other instructions. Motorola defines it as a read-
modify~write cycle. The 1instruction results in sequential
read and write cycles on the S-100 bus. The two cycles are
indivisble, that is, the write cvele must follow the read
cycle. Two distinct S-100 cycles are completed, but
interrupts and bus requests will not be accepted until after

- 18 -

the instruection has completed.

2.5--RUN, HALT, HOLD and FAST Indicators:

The four L.E.D.s on the CPU/68000/M board indicate the fol-

lowing conditions:

RUN-~(green):

HALT~~(red):

HOLD~~(vellow):

Valid addresses on the logical addresses
bus, i.e. the AS* pin of the CPU is
active. This light is active when the
CPU 1s the current bus master, and
instruction execution is proceeding
without error.

CPU i8 halted. This occurs either on
reset (see section 2.1), or if a double
bus fault condition is present.

A temporary master has been granted con-
trol of the bus. For example, this light
will come on when a disk controller exe~
cutes a TMA cycle.

- 15 -

3.1--68000 Priority Levels vs. S-100 Priority Levels:

The first item to be aware of about interrupts is the rela-
tion of the S-100 priority 1levels to the 68000 levels,
According to the S-100 bus standard, NMI is the highest
priority interrupt followed by VIO, VI1...VI7. Of these 9
levels of priority, the 68000 supports 7. The two Jlowest
levels, VI6 and VI7, are not supported by the 68000.
Motorola defines 7 as the highest level and 1 as the lowest
level. This can be a source of confusion. Below is a
chart which relates the two:

IEEE/S-100 68000

NMI T «..highest priority
V10 6

VI1 5

Vi2 I

VI3 3

Vih 2

V15 1 ...lowest priority
VI6 -~-not supported--

VIT --not supported--

Asserting one of these lines low generates a 68000 "auto~
vector"™, and the 68000 will fetch a program counter (X
bytes) as described in section 2.2.

3.2--Device~Suplied Vector Numbers vs. AutoVectors:

The MC68000 chip provides a sophisticated interrupt
structure which is completely supported by the CPU/68000/M.
By supplying vector numbers to the CPU, 192 interrupting
devices may be supported per priority level.

The - two groups of interrupts to which the the CPU can
respond are - "device-supplied" and "auto-vector". Interrupt
requests are placed on the S-100 lines NMI and VIO,...,VIS,
Motorola 68000 device-supplied interrupt vectors are sup-
ported through the use of the S-100 INT¥ line and the S~100
interrupt lines NMI, VIO,...,VI5.

See the next page for a chart illustrating the device sup-
plied interrupt protocol. The CPU/68000/M may be enabled to
fetoh vector numbers off the data bus by installing the
Jumper labeled .XVC..

The CPU will only fetch a vector number from the data bus if
INT* is asserted. If one of the lines NMI, VIO, ..., VIS5
is asserted without INT*, a 68000 autovector operation will

result.

- 16 -

S~-100 Interrupt Priority PC Fetch Location (hex)
NMI A TC
VIO 78
VI1 T4
viz ' T0
Vi3 6C
VIY 68
V15 64
Notes:

INT® never asserted.

CPU will fetch 4 bytes of PC--address of
interrupt service routine.

MMU Interrupt and VIO at same priority level,
IVR is the MMU Interrupt Vector Register.

Table 5-2. Exception Vector Assignment

Vactor Addrasa i
Nurnber(s) Dec Hex Space Assignment
0 0 000 SP |Reser inmal 55PZ
4 004 SP_ |Reset Inmial PC2
2] 008 SO }Bus Error
3 12 00C SD |Address Error
4 16 010 SD [inegat sestrucnion
5 20 014 SD |Zero Divide
6 24 018 SD |CHK Insiruction
7 28 01C SD |TRAPV Instruction
[:] 32 020 SD |Puwilege Violator
9 36 024 SD_ |Trace
10 40 028 SO JLine 1010 Enulator
1" 4 02C SD |uine 1111 Emulator
121 48 030 SD |tunassigned, Reserved)
131 52 034 SD {{Unassigned, Reserved)
147 56 038 SD |(Unassigned, Reserved)
15 60 03C SD JUnrminalzed interrupt Vector
16.23} 64 040 SD |tunassigned, Reserved)
95 05F ~
24 96 060 SO |Spunous Interruptd
25 100 064 SD [Level 1 Interrupt Autovector
26 104 068 SD |Leve! 2 Interrupt Autovector
27 108 06C SD |Level 3 interrupt Autgvector !
28 112 070 SO [Level 4 Interrupt Autovector *
29 116 074 SO _{Level 5 Interrupt Autovector .
0 120 078 SD |Levei 6 Intertupt Autovector
3 124 07¢ SD _|[tLevel 7 Interrupt Autovector
12.47 128 080 SD__ITRAP Instruction Vectoisd
191 0BF
8630 192 0Co 50 [{Unassigned, Reserved)
255 OFF ~
64.256 256 100 ~ 5D |user interrupt Vectors
1023 3FF -
NOTES:

1. Yector numbers 12, 13, 14, 16 through 23, and 48 through 63 are re-
sarved for future enhancements by Motorola. No user penphecal devices
should be assigned these numbers.

2. Reset vector |0) requires four words, unlike the ather vectars which only re-
quire two words, and s located in the supervisor program space

3. The spurous interrupt vector is taken when there is a bus error indica-
1on duning interrupt processing Refer to Paragraph 5.5.2

4. TRAP #n uses vecior number 324 n,

Table 1. 68000 Vector Number Table

ENlé\/ % ENOUT
IREQ
© ’ vIiQp-5
D =
4~
b7 45
74LS-]_] L’%
Y é%;i]?q 636363 - E; 3
Al B P G L
A3 s, H 1.4

o
2
o

—— £ E >
\/72.——«::T >]
4 1 > 2
65 = 2N

647 | 7aLs =6
128 240 D>

e o
,, 45
tooI7

Fig. 5 Example Circuit to
Supply Vector Numbers to CPU.

- 17 -

3.3--Protocol for Device Supplied Interrupts:

Interrupting device 68000 CPU

WS T AW TR R A L L ™ TS S (U U D T Y O T D A S n N ey

Asserts one of NMI, VIO,...,VI5
concurrent with disabling all devices
lower in the chain.

+
+
o o o o o o . e om s +
+
+
Compares interrupt level in status register.
Waits for current instruction to complete.
Asserts sINTA,
68000 interrupt level is placed on
address lines A1,A2,A3.
S
&
o v o 0 o . s i o e 0, 0 +
+
+

Compares A1,A2,A3 with the interrupt
level which it asserted. If equal,
deposit vector number on next read,
and assert INTH*

&4
+
o s o . o i +
+
+
If INT* asserted:
Starts read cycle.
Latches vector number on pDBIN.
Fetch PC at vector number * 4,
Begins exception service routine
at new program counter.
If INT*®* not asserted, then
autovector
+
+
o e e e o e s e e e e o +
+

Interrupting device rescinds IRQ*
active low). Enables devices
lower in chain to generate interrupts.

- 18 -

3.4--Daisy~-Chaining Interrupting Devices:

In order to use two or more devices to supplvy vector
numbers within a priority level (NMI, vio,..., VIs), it
is necessary to daisv-chain devices which supply vector

numbers within each prioritv level.
"Daisy~-chaining" means the following:

If two or more devices in the chain make simultaneous
interrupt requests, the requesting device highest in the
chain disables the lower ones, and supplies the vector

number.

A maximum of two interrupting devices may be used within the
same 68000 priority level without daisy~ chaining.
The constraint is that one must supply a vector number
to the CPU/68000/M while the other must use an autovec~

tor.

Devices are chained only within priority levels because
the CPU displays the priority 1level it 1is servicing
on address lines A1 through A3. Devices must only supply
vector npumbers to the CPU if lines A1 through A3 on
the address lines are equal to the 68000 priority level of
the chained devices (see section 3.1 for an explanation of
.priority level.). See fig. 5 for a sample circuit using
daisy~-chained interrupts.

Remember that it is only necessary to daisyv~chain interrupt-
ing devices if it is desired that two or more devices sup-
ply vector numbers within a opriority level to the
CPU/68000/M. If autovectors only are requested on VIO (a
normal S~100 interrupt), the ENOUT jumper is not required.

g1z
*SIBOUNU I03DBA
butA1ddns seoTasp pue sidnizsijut
00I~S TRPWIOU Yyioq o3 puodssx
ITI& paeog “3ss xadump DAY

‘3sod uTeyd AsSTed INQONT pue
Zadumf DAX JO UOT3IEDOT ¢ ‘bra

L3

o

Y

‘s anansaPe s
respReE

3

1

s ev b0

(‘3utod 3ss3 ® ST 3397 auyz o031 3sod
9UL) °3IUTOd uteyd Asted AINONT

4,1--MMU Registers:

MMU Register Page
Physical Base address = TFFFCO (LO) or FFFFCO (HI)

(depending on setting of I1/0-MMU page jumper)

Offset Acronym Function
(bytes)

Address Space Table:

0 AST O reserved
2 AST 1 user data
u AST 2 user program
6 AST 3 reserved
8 AST i reserved
A AST 5 supervisor data
C AST 6 supervisor program
E- AST 7 interrupt acknowledge
Accumulator:
20 ACO Logical Base Addr/ translation ADDR (MSB)
21 AC1 Logical Base Addr/ translation ADDR (LSB)
22 AC2 Logical Address Mask (MSB)
23 AC3 Logical Address Mask (LSB)
24 ACH Physical Base Addr/ translated ADDR (MSB)
25 AC5 Physical Base Addr/ translated ADDR (LSB)
26 AC6 Address Space Number
27 ACT Status Number
28 AC8 Address Space Mask
Control and Status:
29 DP Descriptor Pointer
2B - 1IVR Not implemented
X2c GSR - Global Status Register
2F LSR Local Status Register
31 SSR Segment Status Register /transfer descriptor
39 IDP Not implemented
3B RDP Result Descriptor Pointer
3D DTO Direct Translation Operation
3F LDO Load Descriptor Operation

AWARNING!due to a characteristic of the current mask of the
68451 MMU, writing to this read only register will HALT
the processor board.

- 20 -

Calculating an MMU register address;

an example:
To write the contents of DO to AST7 with I/0-MMU page

in LO (7TF0000) physical memory:

Firast calculate register address;
ASTT address = (mmu base addr) + (ASTT offset)

TFFFCE = TFFFCO + E

Then write the byte in DO (for example) to that address;
MOVE.B DO, (TFFFCE)

- 21 -

4,2--Motorola Documentation of 68451:

The following Is an edited version of the Motorola documen-
tation for the MC 68451 Memory Management Unit. Note that
as there is only one MMU in the system, so it is not neces-
sary to distinguish between the terms global and local in
the documentation, 1i.e. 1local operations are always glo~
bal. In addition, the facility of the MMU to generate dev-
ice supplied interrupts to the CPU is not supported.

- P22 -

4.3--Binary Buddy System

The following paper outlines a memory management scheme sug-
gested by Motorola for use with the 68451 Memory Management

Unit.

OF] 3o P30 AN Sl Pl K

MEMORY MANAQEMENT
FROM THE BOFTWARE ENGINEER‘S VIEWPOINT

Russell E. Schuwausch
Gtaff Enginaeer

Moteorola:

Inc.

MOS Integrated Circuits Division
3501 Ed Bluestein Blwd

Austin,

BUHMMARY

Implamantation of memory management
in & computer system takes a combination
of hardware and software. Bince the
software issves involvad are both com~
pilax and system depsndent the dacisions
regarding tham ars not sasy and require
compromises baszd on system pricorities.
I am going to discuss some of the tra-

deoffs involving hardwara, software,
time and memory.
For an intreoduction to MAMOT Y

management] will use some background
infprmation on two currant mamory
manageamant tachniques, segmentesd memory
management and paged memory ®management.
Then I am going to talk about dascriptor
management and its relationship te
mamory management and I will also dis—
cuss mamory fragmentation, both internal
and extarnal. GBince aystem ovarhead is
& key issve I will prasent some ideas on
how ¢to readuce overhsad with wvarious
mamory managemant tachniques.

I do neot intend to do an exhavstive
study of memory management philosophies
but rather to point out some of the pit-
talls you might aesncountar (hopefully
before you ancounter tham) and to
present an approach to memory management
that is well-suited ¢to the Motorola
6£84%1 Memory Managemant Unit (MMU).

MORY MANAGEMENT

TX 78721

Segmented veérsvs Paged Memoru Mansgement

Hhan aemory is divided into blocks
of wmore than one size, these blocks are
pganarally rafarrad to as ssgments. Geg—
ment sizes vary depending on the
environment, These sizes may be powers
of two or thsy may change in size in
steps that are powers of two or thnq nay
tall on any buta boundary.

assignaed one or
more sagments. In a sesgmented memorTy
systeam, & task usvally has fewer ssg-—
ments than it would have in a paged sys—
tam. This means that less memory is
required for the allocation tablas that
must be maintained in memory. The size
of a segmant assigned to a task is wsu-
ally daterminad dynamically at tha time
cf ¢the vrequest. Fawer seagmants are
nesded to repressnt the reasident task

Each task can be

.and as 2 result lass pverhead is nasded

to manages the semory.

In & paged system memory papes are
finmd in length and wvsvally small in
size with multiple pages assigned to
each active task in the system. There is
generally a2 table in memory to kesp
track of pages available for allocation
and another table for pages currantly
allocated te active tasks. The page size
is system depandent.

The wmost {¢requantly used page
management scheme is demand paging. This
teachniqua rafers to an approach in which
pages are allocated to a task as needed.
Az 2 vesult the number of pages of
memory that are allocated to a task at

LS SR IS B A

since only

any given time is small. And,
the page

a fauw pages are allocated.
allocation table which 1is ganerally
resident in mamory czan be smaller. How—
eaver, this may Tesult in more frequant
system intervention to satisfy requests
for additional memory. As a Tesult sys-
tem ovarhsad incresases.

BRoth of these approaches represant
of dynamic storage allocation.

storage -allocation simply

thet meamory is allocated at run
time and is dependant on the cerrent
state of the system. Hith either
approach a task may reside in diffarent

forms
Dynamic
implies

areas of measmory each time it is exe—
cuted.

MOR R
Intarnal Memory Fregmentation

Intarnal memory fragmentation [4)
occurs bacauss memory segmants. although
variable in size; are only available in
discrate sizes. The unused portien of »
requested segmant of mamory Teprasents
an instance of internal fragmentation.

Lets look at & memory request that
results in internal weemary fragmenta~-
tion. We‘ll assume that the smallest
block of memory that can be allocated is
2K. I+ a task Taquasts & 7K block of
memery we must F£ill that request with
the next larger size segmeant, an 68K seg~-
ment. As & rasvlt we have an unused 1K
fragment that is not available for wuse
by the system. This is referred to as
internal fragmentation since the frag-
ment is dintarnal to a mamory ssgment.
Figure 1 illustrates this situation.

Internal mamory fragmentation can
also be thought of as allocated memory
that is not neaded by ¢the task it s
allocatad %o.

xtprn mor

External mamory fragmentation [4)
lsads to the situation in which a task
cannot gat a segment of mamory of the
requestad sirxe even though there s
anough mamory available in the system

This happens because the memory managa-
ment machanism cannot combine the aveil-
able wmamory into a contiguous block at
l1sast as large as ths segment requested.
axternal

For an example of mamory

"l

FFFFFF [—~—~——~——-1
L []
[} 1
] [)
] []
[} [)

) 1K
FRAQGMENT

am e o m ey

18

BEQMENT — 7K
REQUEST
%

) .
]
]
]
[}

000000 lm—w——————-J

Figure 1. Exsmple of Internal Memory

Fragmentation.

fragmantation let’s look at memory after
a number of requests have been made and
some segments deallocated. We’ll assume
we have a free 16K block at address 4000
and another free 16K block at address
18000, Now a raquest comes in for a 324
block of mamory. A standard memeory
management algorithm such as the binary
buddy algorithm looks for a centipuous
A2k block composed of two 16K buddies.
Bince these two 16K blocks are not con~
tiguous ¢the binary buddy methed would
ignore them. I¢ a contiguous J2K block
tould not ba found the request would be
queued up until & contiguous " JI2K Dbhlock
was available. According te Knuth [1]
this ie not as inefficient as it first

appears. In fact 4t doesn’t bacome »
problem until 954 of wmemory has besn
reserved. Figure 2 illustrates an sxam-

plea of external memory fragmentation.

External mamory fragmentation can
be thought of as unallocated memory that
is currently unusable. This distin~
guishes it Ffrom internal fragmentation
which also vrepressnts wunusable memory
but memory that has been allocated,

FFFFFF
01C000
EXTERNAL
FRAQMENT
018000
[] [
(]
008000
EXTERNAL
FRAQMENT
004000
000000
Figure 2. Example of Esxternal HMemory
Fragmentation.
IHE 68451 APPROACH
Rescriptor Hanasgement
Any memory managament mechanism

capable of
of memory

hardware is
numbar

invelving
reprasanting » fixed

blockes at any one time. In the Motorola
6B451 these memary blocks are
represented by dascriptors. Each
degcriptor contains information that

specifias the ¢first word address of »
memory block, its size or Jlangth. the
physical addrass it will be mapped to.
the task it is assigned to (its address
space number), an address space mask
that detarmines which tasks can share
thie memory block and a sagment status
byte that contains access centrol ~and
status information,

The goal of descriptor management
{8 to minimize the number of timas that
MMU~rasident descriptors sust be
reaplaced. This happans {f descriptors
requirad by anothar task, being
activated, are not rasident. Hhan we

look at what it takes £p do & task
switch we f#ind out why we don’t want to
replace MMU-resident descriptors. it
the descriptors are resident we can sim-

ply change two entries 4in the &B431’s
addrass space table to select tha naw
usar addreass space number. This is

{llustrated in figure & by the
TASKSWTCH?’ routine. However, if the
descriptors ars not reasident, the
operating system must first datermine

which residant descriptors to replace.
Than it must load each new descriptor
inte the MMU as shown by the ‘LDDESC’

routina in figure &. And finally it must

change the two address space table
entries ence the descriptors are
resident, In some cases the descripiors
sust he savad before being vTeplaced.

This is neacessary if they contain status
information that is significant ¢to the
operating system (see ‘BAVEDESC’ and
‘BVDSCDIE in figure &). So we can see
that deascriptor management by itself is
an important task. It must be handled
properly to minimize system overhaad.

We must deal with twe separate
tasks in manapging MMU descriptors. The
first task invelves deciding on the
number of descriptors to use to describe
a given segmant of memory. On one hand
we would like enough descriptors to
minimize ¢the eccurrence of internal
¢ragmantation. On the other hand we
would like to use descriptors sparingly
to reduce the nead to rTeplace resident
descriptors whan a naw task is
activated. If too many descriptors arse
usad we may need more MMUs or we may
increase system overhead required to
transfar descriptors in and out of the
MMU from memery.

At one axtrems we can always alle~
cate memory wusing only one MMU descrip-
tor. The average memory block size
requasted will fall half way betwzen a
given size 2#4k and the next smaller
sixe 2¢ak—1. Internal fragmentation with
this approach will be approximately 25%
of the segmant size required to fill the
request. This is shown in figure 3. The
samount of idintarnal fragmentation for a
particular block eire. Taprasented by
one descriptor, will vary between 0% and
%0%. The avarage amount of internal
fragmantation will then be 25X, If the
fragmentation reaches 50X we would use
the next smaller segment.size and reducs
fragmentation to z2sro. I¢ wa use 2
descriptors per segment we can cut the
average waste in half from 25% to 12 %%
As we continue this approach the amount

of intarnal fragmentation approaches
aerp. But the number of MM descriptors
laft to describe othsr mamory segments
alan deacraasas,
FFFFFF [-———————-——-
]
; - 25%
UNUSED
Bx
SEQMENT ~f jrrccocscmned AVERARE
REGQUEST
81ZE
[
\
q]
1] [}
]]
[]
000000 -—-~—-———J

Figure 3. Relationship Retween Descrip-
tors and Internal Mamory Frag-
mentation.

Keeping all descriptors in the MMU
all the time is one approach. This
method works fine (f the total number of
descriptors is small. There is & tra-
deoff betwesn the number of descriptors
naeded by the system and the number of
MMUs necessary to hold thosa descrip—
tors.

The other approach is ¢o kanp
descriptors in memory when there are not
snough descriptors available in the
(s, This necassitates swapping
descriptors in and out of the MMU(s) on
& dynamic basis. Since daacriptor swep-
ping overhsad is not nagligible. we need
to minimize the number of swaps ragquired
as A function of time. This creates the
naed for Descriptor Managesment.

Now we have a bstter understanding
of some of the tradeoffs that must be
considerad. They involve the three

issuas of 1) how many MMUs to put in the
system, 2) how much memory to put in the
system, and 3) how much system overhead
to allow for swapping dascriptors
between the MMU(s} and mamory. Thera is
no sasy answar to these three issuss,
Each systeam has differant charactaris~
tices and must ba tunsd for optimum per—
formancae. One way ¢to get a grip eon
thase numbers would be to wuse simula-
tions based on the makaup of a given
system. Or we could build & prototype
and axperiment with thess system vari-
ablas while collecting data on system
parformance. HKeep in mind. theugh, that
performance can change with time as the
type of programs run on the system
change. Eomething that is optimal now
might not be a few months from now,

Memory Manegement

Dur intent throughout this discus~
sion has bean to look at ways tp sffec~
tively manage memory. In order to manage
mamory we must break it up into parts
that ars sasy to handle. The Motorolas
68431 is designad to divide memory into
parts whose sizes ara powers of twon.
Tharse have been several papers written
en managing memory in this fashion =,
The most common algorithm for wuse with
segmants of these sizes is referred to
as the binary buddy system.

Ihe Binery Buddy Sustem

The binary buddy system refers to a
segmantation sacheme in which all sepg—
mants are of sizes that are powers of 2.
Ag & Teasult any segmant can be split
inte two ‘buddias’ whose sizes are alsc
powers of two. For instance an BK memory
segment at addrass xxxx can be split
into two 4K buddies at addrasses xxnxx
and xxxz+4K, Binary buddies are aluways
aqual in size. The f#irst werd addrass of
the buddy for & segment is found by par—
forming the azxclusive ‘OR’ of the seg—

mant Pirst word address and its size.
Figure 4 shows how this is done.
Tha desirability of this scheme

lies in the ease with which buddiss can
be racombined into larger segments. We
would like to recombine fras memory seg-
ments into the largest possible contigu~-
ous blocks in preparation for a large
mamory request. Howaver this scheme o
not without dts problems. Overhead is

* Gams reafarsnces at and of paper,

Bagmant Address 18000 1C000
Ssgment Gize EOR 04000 EOR 04000
Address of Buddy 1C000 18000
Figure 4 Binary Buddy Address Calcula-
tion.
consumad in recombining bhuddies evan
though the system may have to split
these same buddies to satisfy the mnext

request. If a smaller block of memory is
needed next this might happen. In addi-
tion it {s possible to have two adjacent
memory segments of the same size that
cannot be recombined becauss thay aren’t
buddiasx. ’

FFFFFF
[
[]
L]
[]
10000 g
— BUDDIES
coo0)
NOT
8000 { ' BUDDIES
4000 /
-~ BUDDIES
0000 ¢
Figurs 5. Example of Extarnal Memory
Fragmantation,
In figure B we have two 16k segments

that can not bhe combined because they
aran‘’t buddies. Even though they are
contigunus. the binary - buddy system
couvld not use them to f#{1]1 a request for
324 of memory. But with the 68451 we
covld £i1) the raquest by wusing two
dascriptors. The 468451 would even permit

vs to fill the request with two 16K seg-

ments that aren’t contiguous. The &BAS]
can overcome the problams caused by
axternal memory fragmentation in this
way.

temory Allpcation

In ordar to allocate all of the
mamory for a task efficiently we should
be able to vary the size of the memory
blocks we allocate. The 68451 is capable
of allocating blecks of memory in sizes
from 256 bytes wp to 16777214 bytes
These sizes are powers of two.

Mask Power Bize
FFFFOO 22#08 100
FFFEQO 2ux09 200
FFFCOO 24410 A00
FFFB00 FIT39) 800
FFFOQD 20812 1000
FFEOOOQ ‘29813 2000
FFCO00 R9n1k 4000
FFBO00 28815 8000
FFO0O00 Renlb 10000
FEQDOO 2ann1?7 20000
FCOQO00 2x01B 40000
FB0000 2eu1Q 80000
FOQ000 20020 100000
EQDD00 =2an2] 200000
€00000 20822 400000
800000 24223 2800000
000000 20a24 1000000
Table 1. £68451 Memory Segment Bizes.

Table 1 shows all possible block
sizes for the AB4S1. Thesa block sizes
are salected by loading the Loegical
Addrass Mask with the appropriate value
as indicated in the table. Basically
the Logica)l Addrass Mask determines how
many bits of the logical address to pass
through and how many to get from the
Physical Base Address HRegister in the
descriptor. Ones in the mask indicate

MCHB000 AN REVeAL. 4 ~ COPYRIONT BY MOTOROLA 1978 PADE 1

| & CODE EXAMPLES FOR INTEMFACE TO THE MOTOROLA 49451 MEMORY MANACEMENT UNIT
2 .

2 ® NRITTEN BY: RUSSELL £. SCHUAMRCH

L ® DATE: 2D DEC 1991

]

&» QON00000D RORG 80

T

[® PROGRAN EOUATES

L/

10 DOFFOOD0 ~y £ SFEOO00 N BABE ADDRESS

11 00000000 AST Bk 800 ADDREBE SPACE TADLE DFFSET

12 00000020 O EoM 820 ACCUMULATOR O DFFRET

1 00000024 ok o [P13 ACCUMAATOR & OFFBET

14 00000028 ACS (1] (> ACCUMUALATOR B DFFRET

19 000000231 ™ £ou 831 OFFBET FOR TRANSFER DESCRIPTOR OPERATION (READ)
16 00000031 s Eou [=31 OFFSET FDOR REGMENT STATUS WRITE OPERATION (HRITE)
17 00000DAD 1] ({1 30 OFFBET FOR DIRECT TRANGLATION OPERATION (READ)
9 000000F LD Eou a9F OFFSET FOR 1.OAD DESCRIPTOR OPERATION (READ!
19

20

an

22 ® THE FOLLONING ROUTINE ABSUMES THAT DESCRIPTOR INFORMATION EXISTS IN

»n o KRYSTER RAM AND THAT A DECIRION HAE ALREADY BEEN MADE TO LDAD A SPECIFIED
24 ® DERCRIPTOM WiTH SELECTED INFORMATION. THE DEGCRIPTOR NUMBER MAE ALAEADY
as ® DEEM LOADED INTO THE DEBCRIFTOA PDINTER AREQIBTER, THIR ROUTINE I8 DESIONED
26 # TO MINIMIZE THE MUMBER OF INATRUCTIONM CYCLES REQGUIRED TO ACCOMPLISH THE
F1d ® LDADING OF THE DESCRIPTOM. .

=0 .

a” 2 REQISTER AQ PDINTE TO THE TABLE OF DESCRIFPTORS FOR THE INTENDEDR TASK,

30 ® REQISTER DO POINTB TD THE SELECTED DESCRIPTOR INFORMATION 1IN THE TABLE.

k11

» ® EACH TABLE ENTRY HAR THE FOLLDWINHG FORMAT:

e

24 . TARENT [TARN (14-B1T LOOICAL BABE ADDRESS)

23) TABENT+R (a2] (16~PIT LOOICAL ADDRERS MASK}

7Y » TARENT+4 prrp (14-R1T PHYEICAL BASE ADDRESS)

- 14 - TARENT+4 (] (B-RIT ADDRERE BPACE MAMRER)

20 L] TARENT7T [] (A-RIT BEOMENT BTATUS)

» L ~ TABENT+B AA (@-B1T ADDRESE BPACE MASH)

40 .

41 .

L F] NOOO0000 LODESC EQ L] LOAD DEBCRIPTOR

A)

44 000000 ACFOODINOOOD MOVEN. L. D(AD,. DO), DA-DS MOVE LBA, LAM., PRA, ABN. & 88 TO D4 & D3

A% 000006 1500008 MVE. R B(AD, DO)Y, Dé NOVE AfM TO Dé

ah

47 000004 ABEPO030

DOFFO020 MOVEM. L. DA-DS, M+ACO MOVE LBA, LAM, PBA; ABN, & 88 TO MMU ACCUMMLATOR O-7

48 000013 1ICHO0FFOO20 MOVE. B Dé. MIUeACH MOVE ARM TO M) ACCUMNATOR B

;; 000018 103700FF00IF MOVE. B MmeLD, PO INITIATE DESCAIPTOR LOAD BY READING ADDRESS mei+lD
81 O0O0LE 4E7S nrTe

32

LX)

84 '

89 » THE FOLLDWING ROUTINE SAVER THE CONTENTE OF A DERCRIPTOR THAY I8 RESIDENT
8 & IN THE M. 1T DOES MOT AFFECT THE ‘USED" DR *MODIFIED’ BITS. 1T DOES NOT
a7 ® DIRADLE THE DERCRIPTOR. THE DESCRIPTOR POINTER REQIRTER, WHICH BELECTS THE
0 ® DESCRIPTOR TO BE MEAD., HAE PEEN LODADED PREVIOUSLY.

a9 .

0 ® REOIBTER AQ POINTS TD THE TARLE OF DESCRIPTORS FOR THE INTENDED TAGK.

bt ® AEQIRTER DO POINTS TD THE BELECTED DESCRIPTOR INFORMATION IN THE TADLE

2

:: 00000020 SAVEDERC [L] L SAVE DERCARIPTOR

43 000020 102900FFO04 MOVE. R PR, DO TRANSFER DESCRIPTOR TO MW ACCUMALATOR OB
(7Y
.47 DDOO4 ACFP0020

QOFF 0020 POVEN. L MRI+ACO, DA-DS MOVE CONMTENTE OF ACCUMALATOR O-7 TO DATA REOR

5: 00002E ACIVOOFF 0028 MOVE. B MUSACH. Dé MOVE CONTENTE OF ACCUMUALATOR @ TO DATA REQ
e "

T0 000024 ABF 00000000 MOVER. L. D4-DY. D(AD. DO} MNOVE LBA, LAM, PRA, ARNM % B8 FROM DATA REQE. TD RaAn
;; 000034 11060008 MOVE. B Dé. (AL, DO) MOVE ASP FROM DATA REQIGBTER TD MEMORY

77 0000E AKTH [31]

"

78

"™

Figure & 68431 Utility Software Routines.

23322 223323 3p3p222RERIdY

THE FOLLDWING ROUTEINE SAVES THE CONTENTS DF A DESCRIFPTOR THAT 18 RESBIDENT
IN THE MU, 1T DOES NOT AFFECT THE "UGED® OR ‘RODIFIED BITS. 1T DDES
DIBABLE THE DERSCRIPTOR. THE DESCRIPTOR POINTER REQISTER, MHICH BELECTE THE
DESCRIPTOR TO BE READ, HAR BEEN LDADED PREVIDUBLY.

REQIBTER AD POINTS TO THE TAME OF DESCRIPTORES FOR THE IMVENDED TASK.
RECISTER DO POINTS TO THE BELECTED DERCRIPTOR INFORMATION IN THE TARLE.

SVDECDIA [L) - SAVE DESCRIPTOR. THEM DISABLE 1T

000040 103900FFOOD1

DOOMAL ACFPOOI0

DO0CAE 1CPOOFF 0028
0000%4 ABFO0NI00000

000034 118460000

OO000SE 1FCO000
DOFFOO31

000066 4E7S

000048 2080
0000468 4E72

00000060

29398

L EREE N]

9

FOVE. B M+ TR DO TRAMBFER DERCRIPTOR TD MRS ACCLIRAATOR 0~

ROVEM L U+ACO,. D4-DS MOVE CONTENTE OF ACCUMAATOR O0-7 TO DATA RERS
OVE. R MU+ACK. Dé MOVE CONTENTE OF ACCUMAATOR 8 TO RATA REQ

MOVENM. L DA-DRI, O(AD, DO MIVE LBA, LAM, PBA, ABNM & 85 FROM DATA REQE. TD RAM

MOVE. B Da. B(AO, DO) MOVE ABM FROM DATA REQISTER YO MEMORY

MVE. B &0, 'eei+RE DISABLE DEBCRIPTOR BY WRITING O TD SEQ. STAT. RIT O

RT8

THE FOLLOWING ROUTINE DOES A TARM SMWITCH BY SIMPLY CHANGING THE ADDREBE
SPACE NUMPERS FOR UBER DATA SPACE AND USER PROGRAM SPACE IN THE ADDREGS
SPACE TABLE OF THE MAU(S). THIE MUST BE DONE WHILE THE PROCEGSOR 18 IN
RUPERVISORY MODE. TD CHANGE THE SUPERVISOR ADDRESE SPACE NUMBER 1T 18
NECESSARY TD SWITCH TO USER MODE.

DO COMTAINS THE ADDRESE SPACE MNBEARE FOR UBER DATA SPACE AND UBER PRDORAM

SPACE IN THE FDLLOMING FORMAT: .
PO = XX DD XX PP

WHERE XX=DON°'T CARE. PP=~URER PRDORAM SPACE ASN. DDeUSER DATA BPACE ABN

AD CONTAINE THE ADDRESS OF THE ABT LOCATION TOD BE CHANGED
IN THISR CABE. MART+L,

TABKBWTCH wov - PHITEH TO A NEW URER TABM

[R R BN R]

MOVE. L PO, (AD) NOVE USER DATA ABN TO ABTI & UBER PROORAN ASN TD ABTR

RTE

THE FOLLOWIMO RDUTINE DOER A DIRECT TRANBLATION, THIS DPERATION I8 UBED
DY THE OPERATING SYRTEM YO DEVERMINE THE ADSOLUTE ADDREES REPRESENTED BY
A LDOICAL ADDRESS. THIS I8 USEFIAL. FOR RETRIEVING PARAMETERS FRDM USER
ADDRESS BPACE AND FDR HANDLIMD DATA TRANSFERE REOUESTED DY A SYBTEM CALL.
THEGE ARE OMLY THD OF MANY POSRIBLE UBEE FOR THIG e DPERATION.

IN ESBENCE THE M) DOER AN ADDRERS TRANGLATION. HOMEVER, RATHER THAN
CONTINUING MITH A MEMORY ACCERS., THE MU CATCHES THE PHYBRICAL ADDRESS
QENERATED AMD BAVES 1T IM ACCUMAATOR 4 & S OF THE tW) THAT DID THE
TRANBLATION. THI® REPREBENTE BITR ® THRDUOH 23 OF THE ADDREES. BITS O
THROUGH 7 QENERALLY BYPASE THE MM/ AND ARE NOT MAPPED,

AD CONTAINE THE 14A~PIT LDOICAL ADDAESS TD BE TRANSLATED
DO CONTAINE THE ADDRESS SPACE MUPRER IN MHICH TD DO THE TRANSLATIOM

OM RETURN, D3 CONTAINS THE STATUR INMDICATING IF THE TRANSLATION WARS BUCCESSFLA.

DTRAN S0V L] PERFORM A DIRECT TRANBLATIONM

000060 XICHOOFF OO0
000072 1ICODOFE 006

DOOOTR 1 2TPOOFFOOID

ODOOTE AEYD

OvVE #0, IPR-ACO MOVE 16-31T LOOICAL ADDREBE TO ACCUMAATOR O &)
VE. D DO, RU+ACH MOVE 8~-N1T ADDRESS BPACE MUMBER TD ACCUMAATOR &

MOVE. B MDY, DA READ M%) ADDREGS TO PERFORM DIRECT TRANSLATIONM

RTR BTATUR RETURMED XN D1, PHYS. ADDR. 1IN ACCUM. 4 & 3

Figura 6. 68431 Utility Boftwars Routines (Cont’d).

bits that come from the Physical Base
Address Register. Zeros indicate bits of
the logical address from the CPU that

ars passad through the MMU to the physi~-

cal address bus. As more bits of tha
logical addrass are usad both the
addrassing range and the sagment size
increase.

fHemory Liberatien

When 2 mamory sagmeant is
liberatad 4t is recombined with its
buddy if the buddy is also free. This is
& recursive type of operation that con-
tinuves until a frees segment doesn’t have
a freae buddy. This process can be time-
consuming and becomes ancther factor
that affects ovarall system parformance.

freed or

overhaad
we could

In order to reduce system
naeded ¢to TrTecombine puddies

stop the recombination process when the
segmant has veached a aize that is
optimum for our particular system. This

size will ba ane that satisfies moat of
the memori requasts raceivaed. However.,
the system will use additional time to
£fill requests that ara larger than this
optimum size. This is ona of the system
variables that will need to be fine-
tunad for bast performance.

CONCLUSION

The Motorola 6BAS1 sffactively sup-
ports memory managemant. Tha binary
buddy system can be aesasily implemanted
using the 4éB451. HMemory management is
important for today‘s micrpprecessor-
based systems with their large addrass
spaces and Motorola has the hardwars to
support it,

REFERENCES
11 HKnuth, D.E. h T
Programming. Vel. Y- (Znd print-
ing). Addison~Waslay, Raading.
Mass. . 1948. pp. 433453

(23

£3)

4]

£%)

£&42

£71

£81

(%1

£102

£111

[123

Hinds, J. A. "An Algorithm for

Locating Adjacent Storage Blocks in

the RBuddy System.” Communications
h ’ Vol. 18; No. 4. 1975,

pp. R21.222.

Hirschberg, D.6. A Class of

Dynamic Memory Allocatien aAlpgo-

rithms, * Commynicatjons of the ACH.
Vel. 14 No. 10, 1973, pp. H15-618

Knowlton, K.C. "A Fast Etorags
Allocator, ™
Communicptions of the ACM, Vol. B,
No. 10, pp. 623-625.

Peterson, J.L. and Norman. T A
*"Buddy Systams. ™ mmynjcation
Qf !h! ﬁg!l: Vol. 20 Na. -7} \R77.
pp. A421-4031.

Purdem. P.W.. and Stigler. B M

-Btatistical Properties of the Buddy

Bystem.). _ACHM 17. 4 (Dct. 1%970),
pp. AHB3I-497. -

Scales IIX, H L "Implementing a
Yirtual Memory System wusing the
MC&B4AS]1 Memory Management Unit, ™
1981

Shen, K. K. and Paterson. J L. A
Weighted Buddy Method #or Dynamic

Storage Allocation, ® mm

h . VNel. 17, Ne. 10. 1974,
pp. B35B~3562.
Btockton, J.F. “The MC6B4A%1 MamorTy

Managament Unit,"”™ Computer Design:
Publication Pending.

Taylor. M. B. "Efficient Mamory
Allocation with the Binary Buddy
Algorithm, * Motorola. Movember
1981,

Tremblay J.P. and GSorenson:, P.6.

T n r
» McGraw-Hill., Mew
Pp. AA2-AL],

h .
York., N. Y., 1976,
Information Data

Inc., Austin.

*"MCHBAS1 Advance
EBheet", Motorola
Tex.. Beptember 1981.

MC68451 MEMORY MANAGEMENT UNIT

F.1 INTRODUCTION

The MC68451 Memory Management Unit (MMU) provides address translation and protec-
tion for the 16 megabyte addressing range of the MC68000 processor. Each bus master
(or processor) in the M68000 family provides a function code and an address during each
bus cycle. The function code specifies an address space and the address specifies a
location within that address space. The function codes distinguish between user and
supervisor spaces and, within these, between data and program spaces. This separation
of address spaces provides the basls for memory management and protection by the
operating system. Provision is also made for other bus masters, such as the MCE8450
Direct Access Controller (DMAC), 1o have separate address spaces for efficient direct
memory access. A multitasking operating system is simplified and reliability is enhanc-
ed through the use of a memory management unit.

The MC6B451 is the basic element of a memory management mechanism in an MC68000-
based system. The operating system is responsible for ensuring the proper execution of
user tasks in the system environment, and memory management is basic to this respon-
sibility. The memory management mechanism provides the operating system with the
capability to allocate, control, and protect the system memory. A block diagram of a
memory management mechanism using a single MMU is shown in Figure F-1. .

A memory management mechanism implemented with one or mare MC68451 MMUs can
provide address transiation, separation, and write protection for the system memaory. The
memory management mechanism can be programmed to cause an interrupt when a
chosen section of memory Is accessed, and can directly transiate a logical address into
a physical address, making it available to the processor for use by the operating system.
Using these features, the memory management mechanism can provide separation and
security for user programs and allow the operating system to manage the memory in an
efficient fashion for multitasking.

F.2 MEMORY SEGMENTS

The memory management mechanism partitions the logical address space into con-
tiguous pleces callad segments. Each segment is a section of the logical address space
of a task which is mapped via the memory management mechanism into the physical ad-
dress space. Each task may have any number of segments. Segments may be defined as
user or supervisor, data-only or program-only, or program and data. They may be access-
ed by only one task or shared between two or more tasks. In addition, any segment can
be write protected to ensure system Iintegrity. if an undefined segment is accessed, a
FAULT Is generated by the MMU and applied to the bus error input of the processor.

. — L——-——> R W
R W A\
! M, ippe:ct
AT - 3% Aqd(lu-t;ss
Furctun Steabe
,‘ C:cp »:x.} -
FCO.2 ot 15002 Physe ol
Logcal e
Address Addresses
Ar.23 PAG PA23
Pat PAZ]
Meamory
MC68000 \CE8I5Y Array
MPU MAL
IPL jrt—] R:10)
BERA -t TECLT
Al A

Figure F-1. Memory Management Mechanism Block Diagram

F.3 FUNCTION CODES AND ADDRESS SPACES

Each bus master in the M68000 family provides a function code during each bus cydl'e to
Indicate the address space to be used for that cycle. The address bus then specifies a
location within this address space for the operation taking place during that bus cycle,

The function codes appear on the FCO-FC2 lines of the MC68000 and divide the memaory
references into two logical address spaces — the supervisor and the user spaces. Each
of these is further divided into program and data spaces. A separate address space is
also provided for interrupt acknowledge bus cycles giving a total of five defined function

codes.

In addition to the 3-bit function code provided by the MC68000, the MMU also allows a
fourth function code line (FC3) which provides for the possibility of another bus master in
the system, in this case, FC3 would be tled to bus grant acknowiedge input of the
MC68000 to enable a sacond set of eight function codes. This raisas the total number of
possible function codes to sixteen. If there is only one bus master (the MPU), the FC3 pin
of the MMU should be tied low and only eight address spaces used.

F.4 ADDRESS SPACE NUMBERS

To separate the address spaces of different tasks, each address space Is given an identi-
tying number. This should not be confused with the address space indicated by the func-
tion code, Each function code defines a unique address space and within each of these
thara can exist a number of different tasks. Each of these tasks needs an address space
number (ASN) to distinguish it from the other tasks with which it may share an address
space.

The address space numbars are kept in the MMU in a set of registers called the address
space table (AST). The AST contains an 8-bit entry for each possible function code (186).
Each entry can be assigned an address space number and, during a bus cycle, the func-
_ tion code Is used to index Into this table to select the cycle address space number. This
number is then associatively compared with the address space number in each descrip-

tor to attempt to find a match.

F.5 DESCRIPTORS

Address translation is done using descriptors. A descriptor is a set of six registers (nine
bytes) which describes a memory segment and how that segment is to be mapped to the
physical addresses. Each descriptor contains base addresses for the logical and
physical spaces of each segment. These base addresses are then masked with the
logical address masks. The size of the segment is then defined by “don't cares” in the
low-order bits of the masks. This method allows segment sizes from a minimum of 256
bytes to a maximum of 16 megabytes in binary increments (i.e., powers of two). This also
forces both logica! and physical addresses of segment boundaries to lie on a segment
size boundary. That Is, a segment can only start on an address which is a multiple of 2k,
The segments can be defined so that they are physicaily shared between tasks. A func-
tional block diagram of an MC68451 MMU is shown in Figure F-2,

FCO FC3 Cycle —
Logreal £4 Address RV
Agadress s .
pare
AB AZ3 Aduress Number
Space i
Tabe Wyr.1e
Logcal Address | Address Frotect
Base Space Space B
Adgress Mask | Nomber ‘
I ¥ y
LOGICA) weetimd 82 3uk Mask e
Address
\ask Loyg:cat Logicat Vecatze
Comrpare Compare Log.2

Physicai]
Base
Address

Physical Address
Formation

1 of 32 Descnpio's

Physical Address

Figurs F-2, MC68451 Functional Block Diagram

During normal transiation, the MMU translates the logical address provided by the
MC68000 to a physical address which Is then presented to the memory array. This is ac-
complished by matching the logical address with the information in the descriptors and
then mapping it Into the physical address space. .

The logical address Is composed of address lines A1-A23 as shown In the memory
management mechanism block diagram, Figure F-1. The upper 16 bits of this address
(AB-A23) are translated by the MMU and mapped into a physical address (PA8-PA23). The
lower seven bits of the logical address (A1-A7) bypass the MMU and become the low-
order physical address bits (PA1-PAT). '

F.8 MMU REGISTER DESCRIPTION
A programmei's model of the MMU is shown in Figure F-3, The MMU register consists of

two groups: the descriptors and the system registers. Each of the 32 descriptors is nine
bytes long and defines one memory segment.

Descriptors (32

[- Sys‘em Registers
[[}o— 8 Bits ~——m
Logical Base Address ASTO
Logrcal Adadress Mask ASTY
Pnys:cat Base Address .
Address Space Segrunt Stan s .
Number Fugstar
Address Space =
Mk AST15

Aaaress Space

jo— 8 Bus } 8 Bus Tabte
{ 8 B:s ff‘ 88:s i
ACO Logical Base Aadress Trarsia*ar Regster A%
AC2 Logicai »'«a;j'ess \ask F¥ok]
Aca| Phvsical Base Address. Trarsiator Rugister aCs
ACE Ad?\‘rgrs:bi?ace Seggg’;lzs'Sé'a!us ACT

Address Space
ACS Mask

Accumutator

7 8 5 4 3 2 1 0 Address
Descriptor Pointer DP4 § DPI | DP2 oP DPO 529
Interrupt Vectar Register Iva va 2] o 528
Global Status Register F DF IE $20
Local Status Register L7 L6 L5 L4 RW | GAT | GAL LiP $2F
interrupt Descrptor Pointer NI 14 13 2 " i0 $39
Resuht Descriptor Pomter NVA 3] R3 R2 R! RO $38

Figure F-3. MCB88451 Programmers Model

The system registers contain both information local to the MMU and information global
to the memory management mechanism. Each bit In the system registers and the seg-
ment status registers, except the address space table, is ons of four types:
~ Control Control bits can be set or cleared by the processor to select
MMU options, These are read/write bits.

Status Alterable Status alterable bits are set or cleared by the MMU to indicate
status Information. These are also read/write bits.

Status Unalterable Status unaliterable bits are set or cleared by the MMU to reflect
status information. These bits cannot be written by the pro-
cessor,

Reserved Reserved bits are reserved for future expansion. They cannot be
written and are zero when read.

The system registers are all directly addressable from the physical address space. Ac-
cessing these registers causes certain operations to be performed. The descriptors are
not directly addressable, but are accessed using the descriptor pointer and the ac-
cumulator, '

in the following discussion, a segment access Is defined as a successful match occur-
ring on a segment during normal transiation.

F.8.1 DESCRIPTORS. Each MMU contains 22 descriptors (0-31), each of which can define
one memory segment. A descriptor is loaded by the processor using the accumulator and
descriptor pointer with a load descriptor operation. The segment status register (SSR)
can be writtan to Indirectiy by the processor using the descriptor pointer. Each descriptor
consists of the following registers:

Logical Base Address (LBA) Address Spaca Number (ASN)
Logical Address Mask (LAM) ' Address Space Mask (ASM)
Physical Base Address {PBA) Segment Status Register (SSR)

F.6.1.1 Logical Base Address (LBA). The logical base address register Is a 16-bit register
which, together with the logical address mask, defines the logical addressing ranga of a
segment. This is typlcally the first address In the segment, although it can be any ad-
drass within the range defined by the iogical address mask.

F.8.1.2 Logical Address Mask (LAM). The logical address mask is a 16-bit mask which
defines the bit positlons in the logical base address register which are to be used for
range matching. Ones, In the mask, mark significant bit positions whiie zeroes Indlcate
“don't care” positions. A range match occurs if, In each bit position in the logical ad-
dress mask which Is set to one, the loglical base address register matches the incoming
logical address. The matching function Is deplcted schematlcally In Figure F-4,

-~

Figure F-4. Schematic Representation for Address Matching

F.8.1.3 Physical Base Address (PBA). The physical base address register is a 16-bit
register which, together with the logical address mask and the incoming logical address,
is used to form the physical address. The logical address is passed through to the
physical address in those bit positions of the logical address mask which contain zeroes
(the “don’t cares’’) and the physical base address is gated out in those positions which
contain ones. A schematic representation .of the physical address generation
mechanism is shown in Figure F-5.

LIS

Figurs F-5. Schematic Representation of Physical Address Generation

F.6.1.4 Address Space Number (ASN). The address space number is an 8-bit number
which, together with the address space mask, is used in detecting a match with the cycle
address space number.

F.8.1.5 Address Space Mask (ASM). The address space mask is an 8-bit mask which
defines the significant bit positions in the address space number to be used in descriptor
matching. As in the logical address mask, the bit positions which are set are used for
matching and the bit positions that are clear are “'don’t cares.” A space match occurs If,
in the significant bit positions, the cycle address space number matches the address
space ‘number, Address space matching is schematically similar to logical address
matching as shown in Figure F-4,

F.6.1.8 Segment Status Register (SSR). Each descriptor has an 8-bit segment status
register. The segment status register can be written to in two ways: using the load
descriptor operation or indirectly using the descriptor pointer in a write status register
operation. Each bit is labeled as control or status alterable. Bits 5 and 6 are reserved for
future use.

WP

7 6 5 4 3 2 1 0 Address
ful T Ty]w]IMm]IwrP]E | Indirect through Descriptor Pointer

U (Used) is set by the MMU if the segment was accessed since it was defined. This
bit is status alterable.
Set; a) by a Segment access (successful translation using the segmaent)
b) by an MPU write of 1"
Cleared;: a) Reset (in segment #0 of master)
b) MPU write of “0”

If the | (interrupt) control bit is set, an interrupt is generated upon accessing the seg-
ment. -
Set: a) MPU writes 1"
Cleared: a) MPU writes "0"
b) Reset (segment #0 of master)

IP (Interrupt Pending) is set if the “1” bit is set when the segment is accessed. iRQout
is asserted if an IP bit, in one or more SSRs, Is set and IE in the global status register
is set. iIRQout is negated when all the IP bits in all SSRs are clear or IE is cleared. IP
is status alterable and should be cleared by the interrupt service routine.
Set: a) Segment access and “1" is set

b) MPU writes "1
Cleared: a) MPU writes a “0"

b) Reset (in segment #0 of master)

c) Ebitisa 0"

The M (Modified) bit is set by the MMU If the segment has been written to since it
was defined. The M bit is status alterable.
Set: a) Successful write to the segment
by MPU writes a *1"
Cleared: a) MPU writes a “0"
b) Reset (segment #0 in master)

if the WP (Write Protect) control bit is set, the segment is write protected. A write ac-
cess to the segment with WP set will cause a write violation.
Set: a) MPU writes a “1"

Cleared: a) MPU writes a “0”
b} Reset (segment #0 In master)

E (Enable) is a control bit which, when set, enablas the segment to participate in the
matching process. E can be cleared (the segment disabled) by a write to the SSR, but
a load descriptor operation must be performed to set it.
Set: 8) Load descriptor with AC7, bit #0

b) Reset (segment #0 In master)
Cleared: a) MPU writes a 0"

b) Unsuccessful load descriptor operation on this descriptor

¢) load descriptor opsratian with AC7, bit #0 clear

F.8.2.2. Accumulator (ACO-AC8). The accumulator (Figure F-3) is used to access the
descriptors, perform direct transiation, and latch information during a fault. The ac-
cumulator consists of nine 8-bit registers. The register assignments for each operation in
which it participates is shown in Table F-1.

The contents of the accumulator can be either local or global depending on the
preceding operations. The global accumulator for load and global accumulator for
transiate bits in the local status register (LSR) indicate whether the information in the ac-
cumulator is sufficiently global to perform a load descriptor or direct transiation opera-

tion,

Table F-1. Accumuiator Assignments for Operation

Register Load: Read Descriptor Direct Translation Normal Transiation (Fault)
Assignment
s g or Traraat or 30 g st M50 Loupdar S gress IS8
e Logce Do sontr Regstr 58 Lodea Aagess 53

s f 2
r.

Seh
A L1l I SUVN § Y

Oy Az ieeas Spa e N e

F.6.2.3 Global Status Register (GSR). The global status register is an 8-bit register used
to reflect faults and to enable interrupts from an MMU, All MMUs maintain identical infor-
mation in their global status registers. Bits 1, 2, 3, 4, and 5 are reversed for future use. The
organization of the global states register is shown below.

7 6 5 4 a 2 1 o Address
GSR| F | DF IE | 82D

F F (Fault) is a status alterable bit that is set by the MMU whenever FAULTIn is
detected. Clearing the F bit automatically clears bits L4-L7 in the local status
register.

Set: a) Write violation detected in this MMU
b) FAULTIn detected (write vioiation in another MMU})
c) ALLin detected (Undefined Segment Access)
dy MPU writes a *"1”
Cieared: a) Reset asserted
b) MPU writes a “0"

DF DF (Double Fauilt) Is set if a FAULTIn signal was detected with F set. DF is a status
aiterable bit.
Set: a) FAULTIn detected and F was praviously set
b) MPU writes a “1”

Cleared: a) Reset
b) MPU writes a 0"

F.8.2 SYSTEM REGISTERS. The system registers consist of:

Address Space Table (AST) Descriptor Pointer (DP)
Accumulator (ACO-ACB) Result Descriptor Pointar (RDP)
Global Status Register (GSR) interrupt Descriptor Pointer (IDP)
Local Status Register (LSR) Interrupt Vector Register {(IVR)

F.8.2.1 Address Space Tabie (AST). Each MMU has a local copy of the address space
table. This table is organized as sixteen 8-bit, read/write registers located starting at ad-
dress $00. Each entry is programmed by the operating system with a unique address
space number, each of which is associated with a task. During a memory access, the
MMU receives a 4-bit function code (FCO-FC3) which is used to index into the address
space table to select the cycle address space number. This number is then used to check
for a match with the address space number in each of the 32 segment descriptors.

Only the MC68000 microprocessor and the MC68450 direct memory access controller on-
ly provide a 3-bit function code. In a system with more than one bus master, the bus grant
acknowledge signal from the processor could be inverted and used as the fourth bit, FC3.
This would result in the address space table organization shown in Figure F-8.

DI [X - 020

8]
[®]
2
v

-

o R : Z Z ASTA

! i 0 1 ASTH2

Voo g AST

| I I a5TE

Figure F-8, Address Space Table Organization

IE If IE (Interrupt Enable) is set, the interrupt-request line is enabled. This is a read/write
controt bit.
Set: a) MPU writes a 1"

Cleared: a) Reset
b) MPU writes a “0"

F.6.2.4 Local Status Register (LSR). The local status register is an 8-bit register which
reflacts information local to its MMU., The local status register can be globally written but
the global accumulator for load, global accumulator for transiate, and local interrupt
pending bits will not be affected. Bits L4-L7 are cleared if the fault line in the global
status register is cleared. All bits in the local status register are cleared on reset. The
organization of the local status register is shown below.

7 8 5 4 3 2 ! 0 __ Address
sr[L7 [e | s | L4 [Aw [GAT|aAL|LiP | s2F

AW RW is a status alterable bit which reflects the state of the RW pin at the time
FAULTin is asserted.
Set: a) MPU writes a “1"”
b) Read of segment when F in SSR is set

Cleared: a) Reset
b) MPU writes a Q"
c) Write of segment when F in SSR is set

GAT GAT (Global Accumulator for Translate) s set by the MMU if ACO, AC1, and AC6 are
globally consistent.
Set: a) f ACO, AC1, and AC6 are globally consistent (they were last
modified as a result of a giobal write)

Cleared: a) Reset
b) 1 ACO, AC1, and AC6 are not globally consistent

GAL GAL (Global Accumulator far Load) is set if ACO, AC1, AC2, AC3, AC6, and ACB are
globally consistent.
Set: a) It ACO, AC1, AC2, AC3, ACB, and AC8 are globally consistent

Cleared: a) Reset
b) i ACQ, AC1, AC2, AC3, AC8, and ACB are not globally consistent

LIP LIP (Local Interrupt Pending) is set If one or morae descriptors have IP set in their seg-
meant status registers.
Set: a) |f iPIs set in any descriptor

Cleared: a) Reset
b) if ail IP bits are clear

L4- The status information ancoded in L4-L7 reflects tha status of the MMU after the last
L7 avent (an operation or fault). These bits are encoded and changed as a unit. They are
cleared whenever the F bit in the GSR Is cleared and are alterable by the MPU.

0 0 0 0 NO The MMU was not the source of the last event.
1 0 0 0 DT A direct translation was locally successful. A match was found in
' one of the MMUs descriptors.

1 0 0 1 LD A load descriptor tault occurred. A previously defined descriptor
conflicts with the descriptor being loaded.

1 0 1 0 USA An undefined segment access was attempted. The loglcal address
was not matched In any descriptor in the MMLU.

1 1 0 0 WV Awrite violation occurred. A segment defined in this MMU was writa
protected and a write to that memory segment was attempted. The
NVR bit in the RDP will show whether the USA or WV occurred in this
MMU, _

Set: a) Various bits set if DT, LD, USA, or WV occur
b) MPU writes a 1"
Cieared; a) Reset
b) MPU writes a “0"
¢) When F bit in GSR is cleared
d) If MMU was not the source of the last event {(NO)

F.8.2.5 Descriptor Pointer (DP). The descriptor pointer is an 8-bit read/write pointer
reglister located at address $29. The five low-order bits identify the descriptor to be used
in the load descriptor, read segment status (transfer descriptor), and write segment
status operations. Bits 5, 6, and 7 are reserved.

The descriptor pointer Is initiaiized to $00 on reset. It can be globally written by the pro-
cessor. The descriptor pointer is loaded by the memory management mechanism with
the number of the descriptor matched in a direct transiation operation to allow a subse-
quent transfer descriptor operation to load the matched descriptor into the accumulator,

F.8.2.8 Rasuit Descriptor Pointer (RDP). The result descriptor pointer Is an 8-bit, read-only
register that identifies a descriptor involved In the following events: a write violation, a
load descriptor failure, or a direct translation success. The result descriptor pointer Is
loaded from a priority encoder which determines the highest priority descriptor invoived,
For example, in a load descriptor operation, more than one descriptor currently in the
MMU may collide with the descriptor being loaded. Only the number of the highest priori-
ty descriptor will be loaded into the result descriptor pointer. Descriptor 0 is considered
to be the highest priority and 31 is the lowest.

The bit assignments are shown below. Bits 5 and 6 are reserved. The result descriptor
pointer Is initlalized to $80 on reset.

0 Address

5 4 3 2 1
[Tra]ma]mr2|Ri]rojsas

7
ROP|NVR]

NVR if no descriptor is selected by the priority encoder when the RDP is loaded, NVR
(No Valid Result) is set, otherwise it is cleared. This bit is status unaiterable,
Set: a) Reset
b) No result from WV, LD, or DT
Cleared: a) A WV, LD failure of DT success in this MMU

RO-
R4 RO-R4 encode the number of the descriptor selectad by the priority encoder

F.8.2.7 Intarrupt Descriptor Pointer (\DP). The interrupt descriptor pointer is an 8-bit read-
anly register that is read to determine which descriptor caused an interrupt. Each time it
I1s read, the Interrupt descriptor pointer is loaded from the priority encoder with the
highest-priority descriptor which has the interrupt pending bit in its segment status
ragister set. If no descriptor has an interrupt pending bit set, the no valid interrupt bit is
set.

The hit assignment Is shown below. Bils 5 and 6 are reserved,

7 8 5 4 3 2 1 0 Address
op{avi] | [l {r2{n|w] s

NVI NVl is set if no descriptor has IP set, otherwise it is cleared.
10-14 These bits ancode the number of the descriptor selected by the priorify encoder.

F.8.2.8 Interrupt Vector Ragister (IVR). The interrupt vector register is an 8-bit read/write
register containing the interrupt vector. Its contents ara put on data lines D0-D7 during
the interrupt acknowledge operation to provide the processor with a vector number. The
intarrupt vaector registar I3 initlalized to $OF (the MCEB000 uninitialized-device vector
number) on reset.

F.7 MMU OPERATIONS

Table F-2 shows the operations which can be performed. Each operation is initiated by
the access of an address given on the register select lines RS1-RAS5 and the upper and
lower data strobes. The access can be from sither the logical or physical address bus. In
a multiprocessor systam, an external processor could access the memory management
mechanism from the physical address bus. if the access is from the logical address bus,
an address translation is first performed. If the access is from the physical address bus,
the operation state is entered directly from the [dle state,

Table F-2. Summary of MMU Functions

Function Summary

\dle Tnhe MMU backs off the bus 10 prepara for a new access

Reset The MMU 15 pre-emptivety inihahized.

Normal Transiation The MMU attempts to translate an access from the logical address bus

Operatons The MMU s accessed from the log-cal or physical bus

Wnite System Registers An operaiion 1o globally write system registers

Read Systern Registers An operation to read the system registers

Write Sagment Status The SSA of a descriptor can be quickly changed using this operation. The enable it canhot
be set using 't, howaver

Load Descriptor With this aperation, the contents of the accumulator are loaded into the descrnptor pomnted to by
the descnptor panter

Transer Descrptor This operation transfers the contents of the selected descriptor into the accuinulator.

Oirect Translanon An aperaton 10 giobally iransiate a logical address for the operating System.

interrupt Acknowledge An operauon that supphies a vector number to the MPU 1n response ta IACK.

The operation phase is always entered with PADO-PAD15 in the high-impedance state
and either (in the case of an operation following a normal translation) one MMU asserting
HAD to hold the physical address, or {in the case of an access from the physical bus) the
extarnal processor holding the address. If both chip select and either the upper or lower
data strobe is asserted or interrupt acknowledge and interrupt request in are asserted,
the MMU asserts ED to enable the data transceivers.

If interrupt acknowiedge and interrupt request in are asserted, an interrupt acknowledge
operation is performed. If chip select and either the upper or lower data strobe is
asserted, the memory management mechanism datermines which operation to perform
by decoding the register select lines and the read/write line. These signals tefl which
register is assoclated with the operation, which operation to perform, and whether the
operation is local or glabal.

After each operation, data transfer acknowledge Is asserted to indicata to the processor
that the operation is finished. When the processor negates the data strobe, data transfer
acknowledge and ED are rescinded and PADO-PAD15 are placed in the high-impedancs
state. If address strobe Is negated, or had been negated since the last normal transla-
tlon, the MMU enters the idlie state.

After the data transfer acknowledge handshakae, if address strobe remalns asseried and
chip select and either the upper or lower data strobe Is asserted, another master opera-
tion is performed. If address strobe remains asserted and GOin and either the upper or
lower data strobe is asserted, another slave operation Is performed.

F.7.1 OPERATIONS ADDRESS MAP. Table F-3 shows the operations address map. Each
system ragister has an address at which it can be read or written. in addition, some ad-
dresses do not correspond to a register, but rather designate an operation to be perform-
ed by reading that location.

The data strobes are loglcally separate and operations using both are Independent. The
operation ends when both data strobes are naegated.

Some addresses are reserved for future expansion. Any access to an unused location will
result in a null operation. If the access |s a read, the appropriate byte of the data bus is
driven high. if the access Is a write, no side-effect occurs.

F.7.2 LOCAL OPERATIONS. Some operations, such as reading the status registers, af-
fect only one MMU. These are called tocal operations. Local operations include:

Interrupt Acknowledge Transfer Descriptor
Read System Register Write Segment Status Register

F.7.2.1 Interrupt Acknowledge. The interrupt acknowledge operation is performed if in-
terrupt acknowledge and interrupt request in are asserted at the beginning of the opera-
tion phase. During interrupt acknowledge, the contents of the interrupt vector register
are placed on data lines D0-D7 to provide the processor with a vector number.

F.7.2.2 Read System Register. Each system register has an address at which it can be
read. Each MMU should be chip selected at a differant location to access the registers in
each. During a processor read of the interrupt descriptor pointer, it is first loaded from
the priority encoder and then gated onto data lines DO-D7.

F.7.2.3 Transfer Descriptar. In order to read the contents of a descriptor, it must be
transferred into the accumulator and read from there. The descriptor pointer is first writ-
ten by the processor with the number of the descriptor desired. The transfer descriptor
operation is then performed by reading from the segment status register address ($31).

The contents of the selected descriptor i{s then transferred into the accumulator as
shown in Table F-1 and the contents of the segment status register are gated onto data
lines DO-D7. The descriptor registers may then be read from the accumulator.

F.7.2.4 Write Segmant Status Register. The segment status register of any descriptor

can be written using the descriptor pointer as a pointer. Any bit may be written except the
enable bit. Enable may be cleared using this operation but it may not be set.

F.7.3 GLOBAL OPERATIONS, A global operation is one which is performed in parallel on
all MMUs in the system. Global operations include: '

Writes to System Registers
Load Descriptor Operation
Direct Translation

In global operation, ona MMU must be the master and the rest must be slaves. The opera-
tion begins with chip salect and either the upper or lower data strobe asserted on one
MMU. The MMU with chip select asserted becomes the master for that operation. The
master asserts GOout and, upon detecting GOin as true, the other MMUs become slaves

in the operation.

if there is only one MMU present in the system, the ANY, ALL, and GO pins must be tied
to VCC through pull-up resistors. Global operations then become local only.

F.7.3.1 Write System Register. Each system register that can be written to is written
globally. This includes: the accumulator, the address space table, the descriptor pointer,
the interrupt vector register, and the local and global status registers, The operation is
performed by writing to the desired register's address. .

The MMU which has chip select asserted becomes the master by asserting GOout. The
other MMUs detect GDin and become slaves. Each MMU transfers the data on the data
bus to the selected register, If the write is to a byte of the accumulator, that register is
marked as global. if the fault bit in the global status register is clear, local status register
bits L4-L7 are also clear.

When the transfer is completed in each MMU, each will assert ALLout. After all MMUs
have asserted Al.Lout, ALLin will be true and, upon detecting ALLIn, the master rescinds
GO.

F.7.3.2 Load Descriptor Operation. Descriptors are loaded by transferring the contents of
the accumulator to the descriptor after performing global checks for collisions. A colli-
sion exists when two or more enabled descriptors are programmed to translate the same
logical address.

To prepare for descriptor loading, the accumulator must be loaded globally with the
logical base address, logical address mask, address space number, and address space
mask. To make global collislon checks, accumulators AC6 and AC8 must have been
globally loaded. If they are, the giobal accumulator for load bit in the local status register
of each MMU is set. To initiate the operation, a read from the address $3F is done. If the
load is successful, the data bus will be set to $00. if a collision is found, the load is unsuc-
cessful and the data bus is set to $FF.

During the load descriptor operation, the MMU with chip select asserted becomes the
master by asserting GOout. The other MMUs detect GOin and become slaves. The slave
MMUs decode the operation from the register select lines, the read/write line, and the
data strobes. The descriptor whose number is in the descriptor pointer is disabled (its
enable bit is cleared so that it cannot cause a collision).

If the global accumulator for toad bit In the global status register of a slave Is clear, bits
LA4-LA7 in the local status register are encoded to indicate that a load descriptor fault
has occurred and ANYout is asserted. If global accumulator for load is set, the siave
checks the enabled descriptors against its accumulator for collisions. If a conflict Is
found, the slave asserts ANYout and loads its result descriptor pointer with the number
of the descriptor which caused the collision. |f no collision is detected, bits L4-L7 in the
local status register are cleared. When GOin is detected, ALLout and ANYout are
negated and the operation ends,

The master aborts the transfer If there is a local descriptor confiict, the global ac-
cumulator for load bit is clear, or if ANYin is asserted. If the failure was not local, bits
LA-L7 In the local status register are cleared. Otherwise, bits 1.4-L.7 ara ancoded for a load

descriptor fault and ANYout is asserted by the master. The master then puts $FF on (_:Iata
lines to indicate a failure to the processor, negates AlLout and ANYout, and rescinds
GOout. When ANYin Is negated, the operation is terminated.

If there ware no local collisions, its global accumulator for load bit was set, and ALLin is
asserted, the master completes the transfer and enables the loaded descriptor, It then
puts $00 on DO-D7 to indicate success, clears L4-L7, negates AlLLout, and rescinds
GOout.

F.7.3.3 Direct Translations. The memory management mechanism can be used to direct-
ly transiate the logical address into a physical address and make it available to the pro-
cessor in the accumulator. The logical address to be translated is globally loaded into ac-
cumulator AC0O-AC1 and the address space number to be used is loaded into ac-
cumulator ACB. Translation is initiatad with a read from the address $3D,

if the translation is successful, the descriptor pointer and result descriptor pointer point
to tha descriptor which parformed the translation and the physical address is loaded into
accumuiator AC4-ACS. The processor reads $00 from the data bus. '

If the logical addrass could not be translated because it was globally undefined, the data
bus is sat to $FF to indicate the failure.

Using accumulator ACS6 to supply the cycle address space number, each MMU attempts
to match the logical address contained in accumulator ACO-AC1 with one of its enabled
descriptors, Each MMU must have the same information in accumulator ACO, AG1, and
ACS6. The giobal accumulator for translate bit In the local status register is set if thesa
registers have sach been giobally loaded.

If a match is found and giobal accumulator for transiate bit is set, the physical address is
formed as in normal translation and put into accumulator AC4-ACS. The result descriptor
pointer and descriptor pointer are loaded from the priority encoder and bits L4-L7 in the
local status register are encodad 1o indicate direct translation. The master puts $00 on
data lines D0-D7 to signal that the translation was successful and rescinds GO to ter-
minate the operation.

If no match is found, or the glabal accumulator for transiate bit is clear, the MMU asserts
AlLLcut and bits L4-L7 in the local status ragister are cleared. The master monitors the
ANYin and ALLin inputs,

If ANYin becomes asserted, then another MMU performed the transiation. The_master
puts $00 on data lines DO-D7 to indicate success, negates AL Lout, and rescinds GOout. it
waits until ANYIn is negated before terminating the operation,

If ALLin becomes asserted, then none of the MMUs performed the translation. The
master puts $FF on data lines D0-D7 to indicate failure, negates ALLout, and rescinds
GOout to terminate the operation. Each slave MMU negates ANYout and ALLout when
the master MMU rescinds GO at the end of the operation.

F.8 MMU FUNCTIONAL DL-ESCRIPTION

The memory management mechanism is comprised of one or more memory management
units. Each MMU is capable of describing thirty-two segments. If more than thirty-two
segments are required in the system, more MMUs can be added to increase the number
in 32-segment increments.

In order to perform its operations, some of the information in the MMU’s registers must
be global. That is, it must be duplicated in all the MMUs in the system. For example, the
address space table must be global to ensure that the address space numbers are com-
mon to all MMUs. To allow this, certain operations are defined as giobal. Any system
register that can be written is written globally. This includes the accumulator, the ad-
dress space table, the descriptor pointer, the interrupt vector register, the gioba! status
register, and the local status register. The result descriptor pointer and the interrupt
descriptor pointer are read-only and, therefore, are local and not global.

The ANY, ALL, and GO signal lines are used to connect muitinle MMUs to form the
memory management mechanism. The memory management mechanism uses these in-
put/output signals to communicate information between MMUs and maintain functional
unity, The global operation (GO) pin is used to establish the master-slave relationship
between MMUs for a given operation. The ANY signal is detected as true if any MMU
asserts it, allowing MMUs to report conditions that are important in even one device. The
ALL signal is detected as true only if all MMUs assert it. It is used to verify that all MMUs
in the system have performed some operation or are in the same state. A sample circult
diagram of a two-MMU system is shown in Figure F-7.

Ouring each global operation, one MMU is specified as the master; all others are
designated as slaves. The MMU which has its chip select asserted becomes the master
by asserting the GOout signal. This signals the other MMUs that they are slaves for that
operation. Note that all MMUs may be accessed and, therefore, any one may be the
master for a given operation.

F.8.1 MMU FUNCTIONAL STATES. At any time, an MMU may be in one of five states:
Reset
Idle
Normal! Translation
Local Operations
Global Operations

Ina globg_l_opérauon, an MMU may be a master (if the chip select signal is asserted) or a
slave (if GOin is asserted). In addition, two actions can occur regardless of the current

state:
1. If RESET Is asserted, the Reset operation begins. The memory management
mechanism will remain in the Reset state until RESET Is negated.
2. iRQout Is asserted if local Iinterrupt pending bit in the local status register and in-
~ terrupt enable bit in the global status register are set, otherwise it is placed in the
high-impedance state and should be negated with a pullup resistor,

F.8.1.1 Reset State. Asserting RESET will initiate the reset sequence ragardless of the
state of the MMU, During reset, GO, data transfer acknowledge, ED, MAS, HAD, and WIN
signals ara rescinded. The physical address port, FAULT, and ANY lines are placed In the
high-impedance state. Pullup resistors on the FAULT and ANY lines keep these signals
negated. The ALL pin is driven low to negate it.

The global status register, local status register, descriptor pointer, and the entire ad-
dress space table are Initialized to $00. The result descriptor pointer is initialized to $80
and the interrupt vector register to $0F. All descriptors are disabled by clearing the
enable bits in their segment status registers.

In order to allow the address bus to function before the operating system can initialize
the memory management mechanism, one MMU is selected to have descriptor #0 in-
itialized so that it maps any fogical address unchanged to the physical address bus. The
MMU is selected for this by having its chip select line asserted during Reset. This circult
Is shown In the diagram In Figure F-7.

Descriptor zero in the selected MMU will have had its logical address mask and address
space number cleared to $00, its address space mask set to $FF, and the enable bit set.
Because of this, the logical address passes to the physical address bus (via descriptor
zero) without alteration. The enable bits of descriptors 1-31 are cleared to zero to disable
them and their contents remain uninitialized. If the MMU Is not chip selected during
reset, the enable bits In all descriptors are cleared and no descriptor Is initialized.

F.8.1.2 ldle States. The idle state Is used to terminate bus accesses and prepare for new
ones. The MMU Is “backed-off” the bus; Le., the data transceivers are placed in the high-
impedance stats and the address latches are put into the transparent mode. The outputs
are driven to the samae levels as in reset except that HAD is rescinded one-halt clock after
MAS to provide addrass hold time.

Whille in the Idle state, the MMU uses the function code inputs to Index into the address
space table to provide the cycle address space number. If address strobe is asserted, a
normal translation is performed. If address strobe Is negated and chip select, interrupt
acknowledge, interrupt request in, GO, and the data strobes indicate an access from the
physical bus, an operation is performed.

F.8.2 NORMAL ADDRESS TRANSLATION. At the start of a bus cycle, the processor
presents the logical address, read/write signal, and the function code to the memory
managemeant mechanism. The function code is used to Iindex into the address space
table to select the cycle address space number. When address strobe is asserted, the
normal translation phase begins by sending the cycle address space number, the logical
address, and the read/wrlite signal to each descriptor for matching.

NOTE

The functlon codes must be valid before address strobe Is asserted to aliow for
the table lookup. Currant versions of the MC68000 provide this setup time;
however, early mask set (R9M, T6E) do not. With these early mask sets, address
strobe must be delayed to the MMU.

F.8.2.1 Matching. Matches can occur in two areas: range and space.

A range match occurs if, in each bit position in the loglcal address mask which is set, the
incoming logical address matches the logical base address.

A space maich occurs if, in each bit position in the address space mask which is set, the
cycle address space number matches the address space number,

F.8.2.2 Translation. An address match occurs if there is a range match and a space
match, A write violation occurs if a write Is attempted to a write-protected segment. it
there is an address match in a descriptor and no write violation, the physical address Is
formed from the physical base address of that descriptor and the logical address. The
logical address is passed through in those bit positions In the logical address mask
which are clear (the “don’t cares’’). In the other bit positions, the physical base address is
gated out to the physical address bus.

The used and, if the cycle was a write, the modified bits In the segment status register
are set, If the interrupt bit is set, then the interrupt pending bit is set. WIN Is asserted if
the write protect bit is set and the cycle was a read or a read-modify-write. If the cycle
was a write, MAS is not asserted to prevent the write from modifying data.

After the physical address is stable, MAS Is asserted to indicate a valid address Is on the
bus. HAD is asserted to hold the address stable on the laiches and the PADO-PAD15 lines
are then placed in the high-impedance state. if address strobe is then negated, the cycle
has terminated and the MMU returns to the idle state. if addrass strobe is not negated,
the cycle can continue in three ways:

1. Chip select or interrupt acknowledge and interrupt request in are asserted, the
MMU will begin an operation as a master.

2. 1t GOin is detected by an MMU it will begin a slave operation.

3. if a high-to-low transition is detected on the read/write line, indicating a write, ad-
dress strobe remains asserted and the matched segment is write protected, a write
violation occurs. This would be the result of a read/modify/write bus cycle on a pro-
tected segment,

F.8.2.2.1 WRITE VIOLATION., if an address match occurs but the bus cycle was a write to
a write protected segment, a write violation occurs. In this case, the resuit descriptor
pointer is joaded from the priority encoder, the fault bit Is set in the global status ragister,
and the double fault bit is sel if the fault bit was previously set. The state of the
read/write lina is latched into the read/write bit of the local status register and bits L4-L.7
are encoded to indicate write violatlon. The FAULTout signal is then asserted for five
clock cycles or until address strobe is negated, whichever Is greater,

The logical address I8 latched Into ACO (MSB) and AC1 (LSB) of the accumutator. The cy-
cle address space number is latched Into AC6. These registers are marked as non-global
with respect to the global accumulator for translata and g!ebal accumulator for load blts.
if the FAULT pin has been connected to the bus error pin on tha MC68000, address strobe
wlil be negated as the processor begins the bus error exception processing. When ad-
dress strobe IS negated, the MMU will enter the Idle state.

WARRANRTY

Dual Systems Corporation warrants the equipment covered
hereby to be free from defects in material and workmanship
for twelve (12) months from date of original shipment to
purchaser. During this warranty period Dual Systems will
repair or replace defective equipment FOB its place of busi-
nees without charge to purchaser.

This warranty applies to defects arising out of normal use
and service of the equipment as specified by Dual Systems.
This warranty does mnot cover abnormal operation of the
equipment, accident, alteration, mnegligence, misuse and
repairs or service performed by other than Dual Systems'
authorized representatives. Purchaser shall upon request by
Dual Systems furnish reasonable evidence that the defect
arose from causes placing a liability on Dual Systems.

The obligation of Dual Systems under thie warranty is lim-
ited to repair or replacement of the defective equipment and
is the only warranty applicable to the equipment. Dual Sys~-
tems shall not be 1liable for any injury, loss or damage,
direct or comsequential, arising out of the use or inability
to use the product. No changes in the warranty shall be
effective without the prior approval in writing of both par-
ties. This wvarranty and obligations and 1liabilities
thereunder shall replace all warranties or guarantees
express or implied including the implied warranty of mer-
chantability.

Dual Systems Corporation
2530 San Pablo Avenue
Berkeley, California 94702

(415) 549-3854

