30 m

Document No. OM910200-XXX-6

DSTD-102 CPU
AND SERIAL I/0

OPERATION MANUAL

PREPARED BY dy-4 SYSTEMS INC
DATED JULY 11th, 1983

DY-4 SYSTEMS INC, 888 LADY ELLEN PLACE, OTTAWA, ONTARIO, CANADA K1Z 5M1 (613) 728-3711

NOTICE

The proprietary information contained in this document must not
be disclosed to others for any purpose, nor used for
manufacturing purposes, without written permission of dy-4
SYSTEMS INC. The acceptance of this document will be construed as
an acceptance of the foregoing condition.

CHANGE NOTICE

Revision 6 of the DSTD-102 contains several significant
enhancements over revision 4 and earlier boards. These
enhancements have been added followng custommer requests to take
advantage of recent technology developments.

1.

The DSTD-102 now supports 8 kbyte RAMs (Intel 2186) and
16 kbyte EPROMs. Note that the addition of this
feature required the re-layout of the memory device
jumper blocks JB9, JB10 and JB12. Refer to section 3.2
for a complete description.

The memory decode PAL now supports six different
memory configurations, including 2K, 4K, 8K and 16K
configuations in the one PAL

Using a jumper block the DSTD-102 will now support both
"synchronous" edge triggered push button rest
(available on rev 4 boards) and level sensitve resets
(new). The level sensitive push button reset capability
is required when using brown-out detection logic such
as that on the DSTD 703.

This rev allows full access to the on-board I/0 devices
from other cards in the system. This is particularly.
useful when the DSTD-103 slave processor is being used.

2.0
2.1
2.2

3.0
3.1
3.2
3.3

TABLE OF CONTENTS

SECTION 1 GENERAL INFORMATION

Introduction
DSTD Series General Description
DSTD-102 Features

SECTION 2 FUNCTIONAL HARDWARE DESCRIPTION

Introduction

Block Diagram Description

2.2.1 CPU

2.2.2 Clock Generator

2.2.3 CTC (Counter/Circuit)

2.2.4 Memory

2.2.5 Decode Logic

2.2.6 Reset Control Logic

2.2.7 Wait State Generator

2.2.8 Serial Ports
SECTION 3 USER-SELECTABLE OPTIONS
Introduction

Debug/Single Step Configuration

Memory Options

3.3.1 Restart Address
3.3.2 Memory Configuration
3.3.3 On-board Memory Disable Latch

WAIT State Generator

Counter/Timer Options

PPN n n
I IO S SO B B B |

Verrrrwwww

w w www w w w

-—

-~ (o) N —

3.6

b.2

4.3

(S NS} U
L] o
N —

APPENDIX
APPENDIX
APPENDIX
APPENDIX

Serial Channel Options

3.6.1 Baud Rate Generator
3.6.2 DTE/DCE Configurations
3.6.2.1 DCE Configuration
3.6.2.2 DTE Configuration
3.6.3 Synchronous Operation
SECTION 4 SPECIFICATIONS

Functional Specifications

4,1.1 Word Size

4.1.2 Cycle Time

4.1.3 Memory Capacity
4,1.4 Memory Access Time
4,1.5 I/0 Addressing
4.1.6 I/0 Capacity

4,1.7 Interrupts

4.1.8 System Clock

Electrical Specifications

4.2.1 STD Bus Interface

4,2.2 Serial Ports

4.2.3 Operating Temperature
4.2.4 Power Supply Requirements

Mechanical Specifications

4.3.1 Card Dimensions
4,3.2 STD Bus Edge Connector
4.3.3 Serial Port Connector

SECTION 5 FACTORY NOTICES

Factory Repair Service
Limited Warranty

APPENDICES

Option Programming Summary

A
B STD-BUS Signals
C Parts List

D

Schematic

WWwwww w

E g g = = P e o = FTEErEss +=

i

1
www w wwwmM n AVIAS N AU S R S

- O \O O Co oo

—

FIGURE
1 -1
2 -1
C -1
TABLE
3 -1
3 -2
3 -3
3 - 44
3 - 4B
3 -5
3 -6
3 -7
3-8
3 -9
3 -10

LIST OF FIGURES
DESCRIPTION

DSTD-102 Module
Functional Block Diagram
DSTD-102 Silk Screen

LIST OF TABLES
DESCRIPTION

Memory Socket/Jumper Block Assignment
Memory Socket Configuration

Memory Address/Enable Options

M1 Memory Cycle Wait States Timing 2.5Mhz
M1 Memory Cycle Wait States Timing 4.0Mhz
Wait State Options

Baud Rate Generator Programming

RS~-232C DCE Jumper Configuration

RS-232C DTE Jumper Configuration
Synchronous DCE, DTE Jumper Configuration
Serial Cable Connections

PAGE

1 -3
2 - 2
C -4
PAGE

3 -3
3 -4
3 -5
3 -6
3 -7
3 -7
3-8
3 -9
3 -9
3 -10
3 -MNM

GENERAL INFORMATION DSTD=-102
SECTION 1
1.0 GENERAL INFORMATION

1.1 Introduction

The dy-4 SYSTEMS' DSTD-102 CPU, Figure 1 - 1, is a Z80 based
microcomputer board. It features a CPU chips, two serial
communications channels, 4 counter/timers and three 28 pin memory
sockets for byte-wide memory devices.

1.2 DSTD Series General Description

The DSTD series was designed to satisfy the need for low cost OEM
microcomputer modules, The DSTD-280 BUS uses a motherboard
interconnect system concept. The modules for the STD-Z80 BUS are
a compact 4.5 x 6.5 inches which provides for system partitioning
by function, e.g. CPU, Memory, I/0, etc. This smaller module
size makes system packaging easier, while increasing MOS-LSI
densities provide high functionality per module.

1.3 DSTD-102 Features
. Utilizes the powerful Z80 microprocessor
Provides three 28 pin sockets which may be strapped to

accept any combination of the following industry
standard memory devices.

EPROM STATIC RAM ROM
2758 (1kx8) 4118 (1kx8)
2759 (1kx8)
2716 (2kx8) 4802 (2kx8) MK34000 (2kx8)
2732 (4kx8)
2764 (8kx8) 2186 (8kx8)

27128 (16kx8)

Four cascadable counter/timer channels

2 serial RS-232C channels - Channel A has two addition-
al RS-232C drivers and receivers for external clocking
allowing full synchronous operation.

Transmit and Receive LEDs on Channel A

. Fully buffered signals for system expandability

GENERAL INFORMATION DSTD-102

. Selectable reset address to either 0000H or EOOOH

. All on-board memory can be disabled and enabled under
software control

. Selectable WAIT state generator for memory devices on
all M1 cycles, MEMRQ cycles or all INTAK cycles

. Compatible with MDX-SST for single step operation
during debugging

. 4YMHz version available

. STD-Z80 bus compatible

GENERAL INFORMATION

FIGURE 1

TEH] S s

$2308 :’_.r.r’. =

)
v"—’,' e

—emy® o SLTS 4608 BA1 L,
.

1

: g

DSTD-102 MODULE

DSTD-102

FUNCTIONAL HARDWARE DESCRIPTION DSTD-102
SECTION 2
2.0 FUNCTIONAL HARDWARE DESCRIPTION

2.1 Introduction

The DSTD~-102 utilizes a Z80 microprocessor as the system
controller. It features three 28 pin memory sockets which
enables the user to populate the module with any combination of
designated ROM and EPROM., Custom address decoding allows the
user to configure the memory on any 8K boundary of the 64K memory
map. A PAL decoder is supplied to allow the user to choose one
of six popular memory configurations, or if desired the user may
implement other mixtures of memory devices simply by programming
the PAL accordingly.

A 4 channel counter/timer circuit is included for software con-
trolled counting and timing functions. On-board strapping
options make it possible to cascade the four CTC channels for
long count sequences. The CTC may also be used as a baud rate
generator for the serial channels if non-standard baud rates are
required.

The DSTD-102 has two serial channels implemented using the Z80-
SI0O LSI chip. The SIO allows for both asynchronous and synchro-
nous (SDLC, HDLC, BISYNC, etc.) modes. Channel A can be used as
both asynchronous and synchronous modes and channel B provides
asynchronous operation. (Synchronous operation is available on
the DSTD-102A version of the board - not the standard DSTD-
102.) Channel A has additional RS-232C drivers and receivers for
external clocks. In asynchronous mode both channels will operate
up to 19.2k baud using the baud rate generator. The CTC may be
used for higher rates. Channel A will run to 307 kilobaud in
synchronous mode.

A strapping option allows the user to select the reset address to
be either O000H or EOOOH. The EOOOH option is required for use
of standard software and hardware products including dy-4 SYSTEMS
Debug Monitor (DDM) and Disk Control Monitor (DCM) firmware
products. Also these products require onboard RAM strapped to
reside at location FCOOH to FFFFH.

The DSTD-102 is available in 2.5 MHz and 4 Mhz versions.

2.2 Block Diagram Description

Figure 2 - 1 is a block diagram illustrating the flow of system
address, data and control signals on the DSTD-102, The following
paragraphs describe the function of each of the major blocks.

DSTD-102

- o
. R

FUNCTIONAL HARDWARE DESCRIPTION

Ji

moO>mIMmM—Z —

CcPU
Control

[— R K]

waw®

Wait State
Generator
Y .
Reset Logic

F

-~

Memory
Sockets
3-28 Pin

&

Dual Baud Rate
Generator f

Counter/Timer

i

|

RS-232C ! -ap

y

RS-232C * P

I

el

¥

s

DCEIDTE
Header } 1

[o by

CEIDTE
Header

Port A
Channel 1

J2

—] 3

Port B

Channel 2

FUNCTIONAL BLOCK DIAGRAM

1

FIGURE 2 -

FUNCTIONAL HARDWARE DESCRIPTION DSTD=-102

2.2.1 CPU

The Z80 is the system controller. It fetches, decodes and
executes instructions from memory and generates the necessary
address and control signals to co-ordinate data flow between the
CPU and memory or between the CPU and system I/0 devices.

2.2.2 Clock Generator

The DSTD-102 has a crystal controlled oscillator to generate the
basic clock signals for the CPU and peripheral chips. A divide-
by=-two circuit ensures a 50% duty cycle and an active pullup
circuit ensures proper clock levels. An inverted clock is
supplied to the bus for use by other modules.

2.2,3 CTC (Counter/Circuit)

The Counter/Timer Circuit (MK3882/Z80-CTC) provides four
independent, programmable channels for either software or hard-
ware controlled counting and timing functions. Each channel can
be configured by the CPU for various modes of operation and the
built-in daisy chain priority interrupt logic provides for auto-
matic, independent interrupt vectoring. The I/0 port addresses
for the CTC are hard-wired as follows:

I/0 PORT ADDRESS CTC CHANNEL
7C 0
7D 1
4> 2
TF 3

A strapping option has also been included to permit any or all of
the four CTC channels to be cascaded for long count sequences.

Section 3 provides the necessary information for utilizing this
option. For a complete description of the CTC operation, refer
to either the Mostek MK3882 or Zilog Z80-CTC Technical Manual or
Appendix A-15 of this manual. .

2.2.4 Memory

The DSTD-102 has been designed to accommodate any combination of
the byte-wide RAM, ROM and EPROM devices. Three 28-pin sockets
have been provided, each of which may be strapped for any -of the
allowable memory types. These user-selectable options are fully
described in Section 3.

FUNCTIONAL HARDWARE DESCRIPTION DSTD=-102

2.2.5 Decode Logic

This section consists primarily of a PAL which decodes the high
order six bits of memory address and generates the applicable
chip select if on-board memory is to be selected. The PAL pro-
vides six separate memory configurations. The memory
configurations are selected using an option jumper block as
explained in Section 3.

The DSTD-102 has a latch to disable all on-board memory under
software control. On power-up and reset, the latch is preset
enabling the on board memory.

On-board memory is disabled by writing a '1' to I/0 port O7BH.
The on-board memory can be re-enabled by writing a '0' to port
07BH.

2.2.6 Reset Control Logic

This is a strapping option that causes a hardware-forced memory
starting address upon system reset. A reset address of either
0000H or EOOOH may be selected.

This logic is required for use of standard MOSTEK hardware and
software products including DDT-80, FLP-80D0OS/MDX, MDX-SST, and
MDX-DEBUG and dy-4 Debug Monitor (DDM) and CP/M software.

Also the push button reset function may be edge triggered or
level sensitive depending on jumper block JB15. The edge
triggered reset is synchronised with M1 to ensure that the
contents of any dynamic RAM in the system are preserved during
the reset process. The level sensitive option is required when it
is necessary to hold the processor in a reset state indefinitely
such as in a 'brown-out' situation.

2.2.7 Wait State Generator

This function, if enabled, causes memory read and write cycles
to be lengthened by one clock period in order to allow sufficient
access time when slower memory devices are used. Wait states can
be enabled selectively, namely, - all memory cycles or opcode
fetch cycles only or all memory cycles accessing on-board memory
devices or all opcode fetch cycles and all memory cycles
accessing onboard memory. An additional wait state may also be
inserted during INTAK cycles.

FUNCTIONAL HARDWARE DESCRIPTION DSTD-102

2.2.8 Serial Ports

The DSTD-102 has two RS-232C serial ports implemented using the
Z280-SI0/MK3884, Each port has a software programmable baud rate
generator. The baud rate is set by writing to port 7AH. The
least significant 4 bits set the baud rate for Channel A and the
most significant 4 bits are for Channel B. Both Channels will
operate from 50 baud to 19.2K baud. In additon the CTC may be
used to generate the receive and transmit data clocks of Channel
A allowing for non-standard baud rates. The CTC can only be used
for asynchronous modes because it does not generate a 50% duty
cycle clock. Channel A also has additional RS-232C drivers and
receivers to enable it to handle external clocks for full syn-
chronous operation (SDLC, HDLC, BYSYNC, MONOSYNC etc.).

USER-SELECTABLE OPTIONS DSTD=-102

SECTION 3
3.0 USER-SELECTABLE OPTIONS

3.1 Introduction

The DSTD-102 incorporates many strapping options to provide the
user with a high degree of flexibility in system configurations.
This section describes the use of the available jumper options.

3.2 Debug/Single Step Configurations

The DSTD-102 supports the MDX-SST module. This module generates
a NMI (non-maskable interrupt) and asserts the DEBUG signal.
This debug signal when enabled forces a logic '1' onto the most
significant three bits of the address bus. Thus the interrupt
service routine is located at E066H. If the debug is disabled
the interrupt service routine is at the normal address (0066H).
To enable the debug line, install a jumper between JB8-2 and JB8-
3 and between JB13-U4A to JB13-4B. Ensure that the memory option
strap position the monitor software at EOOOH. dy-4 SYSTEMS' DDM
firmware supports the single step facilities.

3.3 Memory Options

The PAL memory decoder shipped with DSTD-102 from the factory
supports the options discussed in the following sections.

3.3.1 Restart Address

The DSTD-102 is capable of starting execution at either O0O0O0OH or
EOOOH after reset. Reset address EOOOH is implemented in
hardware. Since the program counter (internal to the Z80
microprocessor) always resets to 0000H, external hardware is
required to force the most significant three bits of the data bus
to all ones to get OEOOOH. A multiplexer and a latch to control
the multiplexer are used to perform this function. The first
instruction at EOOOH should be 'JMP EOO03' to set the processors
internal program counter to the correct memory location. The
hardware latch forcing the address bit must then be cleared. This
is done automatically by the first I/0 cycle that the processor
performs. If no I/0 port access is normally made then a dummy 1/0
read of an unused port address must be done otherwise memory
accessed will be constrained to addresses EOOOH through FFFFH. To
ensure proper operation after reset, the following code sequence
should be placed in memory at the EOOOH.

USER-SELECTABLE OPTIONS DSTD-102

EOQO C3 03 EO JP EOO3H ; jump instruction
; to update program
counter
E0O03 DB nn IN A, (nn) ; read unused I/0

; port nn to clear
;resetaddress latch

EO05 ; first instruction
; of user program

When using standard dy-4 SYSTEMS' or Mostek software (including
DDM, DCM, DDT-80, FLP-80, DOS/MDX or MDX-DEBUG), the reset
address must be EOOOH. The program counter and address latch
modification instructions previously described are already
contained with the DDM ROM. Ensure that pins 2 and 3 of JB8 are
“connected when the MDX-SST module is used.

3.3.2 Memory Configuration

The DSTD-102 incorporates three 28 pin sockets which can be
independently configured to accept a variety of pin compatible
memory devices., Table 3 - 1 lists each socket, its corresponding
jumper block, and its address space for the standard
configurations. The memory decoding is done using a PAL device.
Table 3 - 2 shows for reference the signals brought to the jumper
block for each of the different memory types. Table 3- 3
illustrates the necessary jumper connections for configuring a
socket to accept each memory device,

Consult the factory for PAL programming details for non-standard
requirements.

Option numbers are binary coded using JB14, JB14, 1A-1B has a
weighting of '1'; JB14, 2A-2B has a weighting of '2' and JB14,
3A-3B has a weighting of '4', For example, if option 5 (101) is
desired JB14, 1A-1B, 3A-3B are left open and JB14, 2A-2B are
inserted.

USER-SELECTABLE OPTIONS

TABLE

3 -1

DSTD=-102

MEMORY SOCKET/JUMPER BLOCK ASSIGNMENT

MEM TYPE OPTION MEM RANGE U20(JB11) U19(JB10) U18(JB9)
2K 7¢(111) EOOO=-FFFF EOOO=-E7FF E800-EFFF FOOO=-FFFF
2K 6(110) 0000-1FFF 0000-07FF 0800=-0FFF 1000=1FFF <«
4K 5(101) EQO0O0-FFFF EOOO-EFFF FOOO-FBFF FCOO-FFFF
4K 4(100) 0000=-3FFF 0000-0FFF 1000-1FFF 2000=-3FFF -
8K 2(010) 0000-7FFF 0000-1FFF 2000-3FFF 4000-TFFF

16K 0(000) 0000-BFFF 0000=-3FFF 4000-7FFF 8000-BFFF

NOTE: For 2K, 4K and 8K devices the memory range for U18 is

twice as large as for U19 and U20. Hence when using the same
memory device sizes for all three sockets, memory expansion off
board will not be contiguous.

Option 5 is the memory configuration used for the boot proms and

monitor in dy-4's STD Bus based microcomputer development
systems.,
TABLE 3 - 2
MEMORY DEVICE JUMPER STRAPS
TYPE PART NO. PINS
27 26 23 21 1

1Kx8 EPROM 2758 - Vee Vpp GND -

1Kx8 EPROM 2759 - Vee Vpp Vee -

2Kx8 EPROM 2716 - Vee Vpp A10 - R
4Kx8 EPROM 2732 - Vee AN A10 -

8Kx8 EPROM 2764 PGM n/c AN A10 Vpp

16Kx8 EPROM 27128 PGM A13 AN A10 Vpp

1Kx8 RAM 4801 - Vece /WE GND -

2Kx8 RAM 4802 - Vee /WE A10 -

8Kx8 RAM 2186 /WE/ n/c+ A11/ A10Y RDY-

2Kx8 EEROM X2816A - Vee /WE A10 -

USER-SELECTABLE OPTIONS DSTD-102

TABLE 3 - 3
MEMORY DEVICE JUMPER STRAPS

TYPE PART NO. JUMPER BLOCKS JUMPER BLOCK
JB9 and JB12 JB10

1Kx8 EPROM 2758 B2-A6 ; A5-A6 A2-BY4 ; B3-BY
B3-BY4 C1-C2

1Kx8 EPROM 2759 B2-A6 ; A5-A6 A2-BY4 ; B3-Bl
B3-B2 C1-B3

2Kx8 EPROM 2716 B2-A6 ; A5-A6 A2-B4 ; B3-BlY
B3-A3 B1-C1

4Kx8 EPROM 2732 B2-A6 ; Al4-A5 A2-BY4 ; B3-B2
B3-A3 B1-C1

8Kx8 EPROM 2764 B1-B5 ; A4-A5 A3-C3 ; B2-B3

B3-A3 ; A1-A6 B1-C1 ; Al4-Bl

16Kx8 EPROM 27128 B1-B5 ; Al-AS A3-C3 ; B2-B3

B3-A3 ; A1-46 B1-C1 ; Au4-Bl
B2-B6 CU-A2

1Kx8 RAM - 4801 B2-A6 ; A5-B5 A2-B4 ; B3-C3
B3-46 c1-C2

2Kx8 RAM 4802 B2-A6 ; A5-B5 A2-BY4 ; B3-C3
B3-A3 B1-C1

8Kx8 RAM 2186 B1-B5 ; Al-AS A3-C3 ; B2-B3

B3-A3 ; A1-A2 B1-C1 ; A1-Al

2Kx8 EEROM X28164 B2-A6 ; A5-B5 A2-BY4 ; B3-C3
B3-A3 B1-C1

USER-SELECTABLE OPTIONS DSTD=-102

3.3.3 On-board Memory Disable Latch

All on-board memory can be enabled and disabled under software
control. To use this feature jumper JB14 U4A-4B is installed.
This jumper allows the memory disable latch to be used. The
latch is located at address 7BH. Writing a '0' to this latch
enables on-board memory. Writing a '1' to the latch disables on-
board memory. A power-up or RESET clears the latch thus enabling
on-board memory.

3.4 WAIT State Generator

Three jumpers are provided to allow the use of slow memory de-
vices. The first jumper generates a WAIT state on all memory
cycles. The second jumper generates a WAIT state for M1 memory
cycles only. Table 3 - 4 lists the access times of memory de-
vices internal and external to the card for the two different
memory cycle types for both the 2.5 MHz and 4.0 MHz DSTD 102
cards. The third jumper generates a WAIT state on internal
memory accesses only. This means that slower EPROMS can be used
on the DSTD-102 along with a high speed RAM card. A fourth
jumper allows the generation of a WAIT state on interrupt
acknowledge cycles. Table 3 - 5 gives the connections for the
WAIT state options.

TABLE 3 - 4A
M1-MEMORY CYCLE WAIT STATES TIMING 2.5MHz

JB11 INTERNAL EXTERNAL

FUNCTION Connections M1 Other M1 Other

No WAIT states -——— 580 780 550 750

WAIT states on M1 1A to 1B 620 780 950 750
cycles

WAIT states on all 3A to 3B 620 1180 950 1150

memory cycles
(in nanoseconds)

USER-SELECTABLE OPTIONS DSTD=-102

TABLE 3 - 4B
M1-MEMORY CYCLE WAIT STATES TIMING 4.0MHZ

_ JB11 INTERNAL EXTERNAL

FUNCTION Connections M1 Other M1 Other

No WAIT states ——— 330 455 300 425

WAIT states on M1 1A to 1B 590 455 560 425
cycle

WAIT states on all 3A to 3B 590 705 560 675

memory cycles
(in nanoseconds)

TABLE 3 - 5 WAIT STATE OPTIONS

OPTION JB11
No WAIT states No Jumpers
All M1.cyc1es 1A to 1B
All Memory cycles 3A to 3B
Internal Memory cycles only 4A to UB
Internal Memory cycles and 4UA to 4B
external M1 cycles 1A to 1B
Interrupt acknowledge cycle 2A to 2B
3.5 Counter/Timer Options

The four Counter/Timer channels may be cascaded for extended
counting and timer functions. Appendix A-6 shows the jumper pin
numbers for the CTC. Refer to the MK3882 Technical Manual or the
Zilog Data Book for a complete description of the CTC operation.

Provision is made on the Counter/Timer option block to enable the
NMI input of the processor to be connected to one of the outputs
of the CTC. NMI is pin 5A of JBS5.

USER-SELECTABLE OPTIONS ' DSTD-102

In addition the CTC can be used as a baud rate generator for the
serial channels to create non-standard baud rates.

Two commonly unused pins on the STD bus (MEMEX and IOEXP) may be

connected through JB13 and buffers to the CTC. One pin is used
as an input (IOEXP) and the other is used as an output (MEMEX).

3.6 Serial Channel Options

3.6.1 Baud Rate Generator

The DSTD-102 has a dual software-programmable baud rate
generator. It is accessed through I/0 port 7TAH. This port is a
write-only port. Bits O to 3 control channel A and bits 4 to 7
control channel B. Table 3 - 7 shows the programming information
for the baud rate generator.

Table 3 - 6

Baud Rate Generator Programming

BAUD RATE D3/D7 D2/D6 D1/D5 DO/D4 (HEX)
19,200 1 1 1 1 F
9,600 1 1 1 0 E
7,200 1 1 0 1 D
4,800 1 1 0 0 C
3,600 1 0 1 1 B
2,400 1 0 1 0 A
2,000 1 0 0 1 9
1,800 1 0 0 0 8
1,200 0 1 1 1 7
600 0 1 1 0 6
300 0 1 0 1 5
150 0 1 0 0 4y
134.5 0 0 1 1 3
110 0 0 1 0 2
75 0 0 0 1 1
50 0 0 0 0 0

Thus to set port A to 9600 baud and port B to 1200 baud output a
7EH to I/0 address T7AH.

USER-SELECTABLE OPTIONS DSTD-102

3.6.2 DTE/DCE Configurations

3.6.2.1 DCE Configuration

When connecting to a CRT, printer or similar equipment the serial
port is wired as Data Comunications Equipment. The signal names

indicate control and data flow with respect to the CRI. Table
3 - 7 itemizes the jumper configurations for this mode of

operation.

TABLE 3 - 7
RS-232C DCE Jumper Configuration

EIA(DCE) SIO Installed Jumpers J2/dJ3

Signal Name Function JB3,JB4 Pin Numbers

TX (2) RX 2B to 1B 2

RX (3) X 14 to 2A 3

RTS (4) CTS LA to 5A y

CTS (5) RTS 5B to UuB 5

DTR (20) DCD 7A to 6B 9

DCD (8) DTR 6A to 7B 8

DSR (6) +12V 84 to 8B 6 (JB3 only)

3.6.2.2 DTE Configuration

When connecting to a MODEM or similar equipment the serial port
is wired as Data Terminal Equipment. The signal names indicate

control and data flow with respect to the DSTD-102. Table 3 - 8
itemizes the jumper configuration for the mode of operation.

TABLE 3 - 8
RS-232C DTE Jumper Configuration

EIA(DTE) SI0 Installed Jumpers J2/J3

Signal Name Function JB3,JB4 Pin Numbers
TX (2) TX 1A to 1B 2

RX (3) RX 2B to 2A 3

RTS (4) RTS 30 to 3B y

CTS (5) CTS 4A to UuB 5

DTR (20) DTR 6A to 6B 9

DCD (8) DCD 7A to 7B 8

DSR (6) eeece-- 6

USER-SELECTABLE OPTIONS DSTD=-102

3.6.3 Synchronous Operation

The DSTD-102A allows synchronous operation on Channel A. That
is, additional RS-232C drivers and receivers are provided for
interfacing external clocks. Two configurations are possible.

i) The DCE provides both transmit and receive timing
information. When the DSTD-102A is the DCE, two
RS-232C drivers are required. When the DSTD-102A is the
DTE two RS-232C receivers are required.

ii) The DCE provides the transmit timing information and
the DTE provides the receive timing information. The
DSTD-102A provides the receive timing information. The
DSTD-102 uses both the RS-232C driver and the RS5-232C
receiver,

Table 3 - 9 shows the jumpering required for each configuration.
Note that the same drivers used for the external clocks are also
used to drive the on-board TX and RX LED's. When these drivers
are to be used for external clocking the LED's should be
disconnected.

TABLE 3 - 9
DCE provides both clocks. DSTD-102A is the DCE

JB2 JB3 J2 EIA
TX Clock 2A - 2B 9A - 9B 10 15
14 - 2A
RX Clock 34 - 44 114 - 11B 11 17
4A - UB .

DCE provides both clocks. DSTD-102A is the DTE

JB2 JB3 Ja EIA
TX Clock 1A - 1B 8A - 8B 10 15
RX Clock 3A - 3B 10A - 10B 1 17

DTE provides the transmit clock. DCE provides the
receive clock. DSTD-102A is DCE.

JB2 JB3 J2 EIA
TX Clock 1A - 2A 9A - 9B 10 24
2A - 2B
RX Clock 3A - 3B 10A - 10B 1 17

USER-SELECTABLE OPTIONS DSTD-102

DTE provides the transmit clock, DCE provides the
receive clock., DSTD-102A is DTE.

JB2 JB3 J2 EIA
RX Clock 14 - 1B 8A - 8B 10 2
TX Clock 24 - 3A 114 - 11B 11 17
4A - 4B

Note that the clock names given above refer to data flow with
respect to the DTE. EIA refers to the DB25 pin numbers assigned
to these signals by the EIA RS-232C specifications.

Table 3-10 shows the cable connections to a standard RS-232C
* DB25S connector. Typically the cable is the same for both DCE and
DTE systems with the configuration being determined by the on-
based jumpers.,
TABLE 3-10

SERIAL CABLE CONNECTIONS

Ja2/J3 RS232C/DB25S EIA CIRCUIT
1 1 AA
2 2 BA
3 3 BB
y L CA
5 5 CB
6 6 cC
7 7 AB
8 8 CF
9 20 CD
10 15 DB
11 17 DD
12 19 --
NOTE: Pin 12 (DB25S pin 19) is included to accomodate some

printers that use pin 19 for flow control.

3 -10

SPECIFICATIONS DSTD-102

SECTION 4
3.0 SPECIFICATIONS
4.1 Functional Specifications
4.1.1 Word Size
Instructions: 8, 16, 24, or 32 bits
Data: 8 bits
4.1.2 Cycle Time

Clock period (T state): U400 ns for DSTD-102-2.5
250 ns for DSTD-102-4.0

Instruction Cycle: Min. 4 T states
Max. 23 T states
4,1.3 Memory Capacity

Three 28 pin sockets are provided which may be populated with any
mixture of the following devices:

2758 (1K x 8 EPROM)

2759 (1K x 8 EPROM)

2716 (2K x 8 EPROM)

2732 (4K x 8 EPROM)

2764 (8K x 8 EPROM) -
27128(16Kx 8 EPROM)

MK 34000 (2K x 8 EPROM)

4118 (1K x 8 Static RAM)

4801 (1K x 8 Static RAM)

4802 (2K x 8 Static RAM)

2186 (8K X 8 Pseudo Static RAM)

X2816 (2K x 8 EEROM

4.1.4 Memory Access Time

The time required to access on-board memory by external DMA
controllers is 100 ns plus the access time of the memory device.
This is defined as the time interval between the time that the
memory address is valid on the STD-BUS and the time that the
output data is valid on the STD-BUS.

SPECIFICATIONS DSTD-102

4.1.5 I/0 Addressing

The on-board I/0 addressing is hard wired to the following port
addresses:

PORT ADDRESS
BAUD RATE GENERATOR TA
ON-BOARD DISABLE LATCH 7B
CTC CH 0 7C
CTC CH 1 7D
CTC CH 2 TE
CTC CH 3 7F
SIO CH A DATA BC
SI0 CH A CONTROL BD
SIO CH B DATA BE
SI0 CH B CONTROL BF
4,1.6 I/0 Capacity

The Z80 CPU utilizes the lower 8 bits of its address bus for I/0
addressing to yield a total of 256 possible port addresses.

4,1.7 Interrupts

The CPU may be programmed to process interrupts in any of three
different modes (mode 0, 1, or 2 as described in any Z80
Technical Manual). Mode 2 operation (vectored interrupts) is by
far the most powerful and is compatible with dy-4 DSTD and MOSTEK
MDX Series cards.

Multi-level interrupt processing is also possible with the Z80
CPU. The level of stacking is limited only by available memory
space.

The DSTD-102 will also accept non-maskable interrupts which force
a restart at location 0066H.

4,1.8 System Clock
DSTD-102-2.5 2.5MHz +0.05%
DSTD-102-4.0 4,0MHz +0.05%
4,2 Electrical Specification

y - 2

SPECIFICATIONS DSTD-102

4.2.1 STD Bus Interface

Bus Inputs: One T4LS load max.

Bus Outputs: IoL = 24 mA min. @ VoL = 0.5 Volts
IOH = 15 mA min. € VOH = 2.4 Volts
4,2.2 Serial Ports
Inputs: One 74LS load max.
Qutputs: +/- 12V Current Limited to 10mA
4,2.3 Operating Temperature

0 Degrees C to 50 Degrees C

95% humidity non-condensing
4,2.4 Power Supply Requirements

+5V +/- 5% € 1.2A

+12V +/- 5% € 0.1A

-12V +/- 5% @ 0.1A
(excluding memory power requirements)

4.3 Mechanical Specifications

4.3.1 Card Dimensions

4,50 in, (11.43 cm.) wide by 6.50 in. (16.51 cm) .
long

0.48 in. (1.22 cm.) maximum height
0.062 in. (0.16 cm.) printed circuit board
thickness
4,3.2 STD Bus Edge Connector
56 pin Dual Readout; 0.125 in. centers
Mating Connector
Viking 3VH28/1CE5 (printed circuit)

Viking 3VH28/1CND5 (wire wrap)
Viking 3VH28/1CN5 (solder 1lug)

SPECIFICATIONS

4,3.3 Serial Port Connector
12 Pin Dual Readout; 0.100 inch grid

Mating Connector

Amp 87631-8 <(housing)
Amp 86016-2 (contact)
or equivalent

TR

DSTD-102

SPECIFICATIONS DSTD-102

SECTION 5
5.0 FACTORY NOTICES
5.1 Factory Repair Service

In the event that difficulty is encountered with this unit, it
may be returned directly to dy-4 for repair. This service will
be provided free of charge if the unit is returned within the
warranty period. However, units which have been modified or
abused in any way will not be accepted for service, or will be
repaired at the owner's expense.

When returning a circuit board, place it inside the conductive
plastic bag in which it was delivered to protect the MOS devices
from electrostatic discharge. THE CIRCUIT BOARD MUST NEVER BE
PLACED IN CONTACT WITH STYROFOAM MATERIAL. Enclose a letter
containing the following information with the returned circuit
board:

Name, address and phone number of purchaser
Date and place of purchase
Brief description of the difficulty

Mail a copy of this letter SEPARATELY to:

Service Department Service Department

dy-4 SYSTEMS INC., dy-4 SYSTEMS INC.,

888 Lady Ellen Place, or 3582 Dubarry Rd.
Ottawa, Ontario Indianapolis, IN 46226

K1Z 5M1, Canada

Securely package and mail the circuit board, prepaid and insured,
to the same address.

5.2 Limited Warranty

dy-4 warrants this product against defective materials and
workmanship for a period of 90 days. This warranty does not
apply to any product that has been subjected to misuse, accident,
improper installation, improper application, or improper operat-
ion, nor does it apply to any product that has been repaired or
altered by other than an authorized factory representative.

There are no warranties which extend beyond those herein
specifically given.

NOTICE

The antistatic bag is provided for shipment of the dy-4 PC boards
to prevent damage to the components due to electrostatic
discharge. Failure to use this bag in shipment will VOID the
warranty.

FACTORY NOTICES DSTD=-102

APPENDIX A
OPTION PROGRAMMING SUMMARY

OPTION PROGRAMMING SUMMARY DSTD-102

APPENDIX A
OPTION PROGRAMMING SUMMARY

-1 OPTIONAL JUMPER BLOCKS

The following is a list of the option Jumper Blocks on the STD-
102 card.

JB1 LED connection
JB2 Serial Channel A Clock TTL Side
JB3 Serial Channel A DTE/DCE Configuration Block
JBY Serial Channel B DTE/DCE Configuration Block
JBS Counter Timer Jumper Block
JB6 LED Transmit
JB7 LED Receive
JB8 Restart Address Jumper Block
JB9 Memory Socket Configuration Block for U18
JB10 Memory Socket Configuration Block for U19
JB11 WAIT State Generator options
JB12 Memory Socket Configuration Block of U20
JB13 CTC/Bus Interface Jumper Block -
JB14 On-board Memory Options
JB15 Reset Mode

A -2 LED Connections (JB1)

These jumpers are installed to drive the LED's. Note the jumpers
should not be installed if Serial Channel A is used 1in
synchronous mode and is supplying the clocks to external equipment.

A B
Driver 1 1 O====0 LED 1
Driver 2 2 Om===0 LED 2

———— Indicates Factory Default

OPTION PROGRAMMING SUMMARY DSTD-102

A -3 Serial Channel A Clock Jumpers TTL Side (JB2)

This Jjumper block allows the selection of the Transmit and
receive clocks for Channel A,

Transmit Clock (input) 1 o o RS232 Clock Receiver 1

Internal Baud Rate Generator o o RS232 Clock Transmitter 1

Receiver Clock (input) o o RS232 Clock Receiver 2

o o CTC output

2

3
Internal Baud Rate Generator 4 o o RS232 Clock Transmitter 2

Receiver Clock (input) 5

6

Transmit Clock (input) o o CTC output

OPTION PROGRAMMING SUMMARY DSTD-102

A -4 Channel A DTE/DCE Configuration Block (JB3)

These jumpers allow the board to be configured as Data Terminal
Equipment or Data Communications Equipment when used with a
standard dy-4 SYSTEMS Cable. The signals given are those of the
SIO device which is labelled as Data Terminal Equipment.

A B
Transmit Data 1 o o Connector J2 Pin 2
Connector J2 Pin 3 2 é é Received Data
Request to Sent (RTS) 3 o © Connector J2 Pin 4
Clear to Send (CTS) 4 é o Connector J2 Pin 5
Connector J2 Pin 4§ 5 o o Request to Send (RTS)
Data Terminal Ready (DTR) 6 o o Connector J2 Pin 9
Data Carrier Detect (DCD) 7 o o Connector J2 Pin 8
RS-232C Receiver 1 8 o o Connector J2 Pin 10
RS-232C Transmit 1 9 o o Connector J2 Pin 10
RS-232C Receiver 2 10 o o Connector J2 Pin 11
RS-232C Transmit 2 1 o o Connector J2 Pin 11
+12 through 3k ohms 12 0-=-0 Connector J2 Pin 6

OPTION PROGRAMMING SUMMARY

DSTD=-102

A-5 ' Channel B DTE/DCE Configuration Block (JBY)

This jumper block allows the channel to be configured as Data
Terminal Equipment or Data Communications Equipment.

Transmit Data 1

Connector J2 Pin 3

A B

]
!
0

o —0

Connector J2 Pin 2

Received Data

2
Request to Sent (RTS) 3 o] Q Connector J2 Pin 4§
Clear to Send (CTS) 4 é é Connector J2 Pin 5
Connector J2 Pin 4 5 l (o] Request to Send (RTS)
Data Terminal Ready (DTR) 6 oo Connector J2 Pin 9
Data Carrier Detect (DCD) 7 o—o Connector J2 Pin 8
+12 through 3k ohms 8 0-=0 Connector J2 Pin 6
A -6 Counter Timer Jumper Block (JB5)

This jumper block allows the counter/timer channels to be cas-

caded for longer sequences,

It also provides access to the

auxiliary input and output buffers which are connected through
JB12 to MEMEX and IOEXP bus signals.

Auxiliary Input

CTC Channel 0 input

CTC Channel 1 Zero detect

CTC Channel 2 input

Internal Non-Maskable Interrupt

CTC Channel 3 input

A -4

A B
1 o o
2 o o
3 o o
4 o o
5 o o
6 o o

The SIO clock is used when
the CRT is used as a baud rate generator.

SIO Clock

CTC Channel 0 zero detect
CTC Channel 1 input

CTC Channel 2 zero detect
Auxiliary OQutput

N/C

OPTION PROGRAMMING SUMMARY DSTD-102

A -7 JB6/7 LED Blocks

These jumpers are installed to drive the LEDs. They should be
removed when Channel A is operated in Synchronous mode.

A B
TX Driver 0~=0 LED Driver U7 (JB6)
RX Driver 0==0 LED Driver U6 (JB7)
A -8 Restart Address Jumper Block JB8

Installing the jumper between pins 2 and 3 forces the restart
address to EOOOH. 1Installing the jumper between pins 1 and 2
forces a restart address to 000OH.

JB8
1 o Force 0000H
2 o Restart address control
3 é Force EOOOH
A -9 Memory Socket Configuration Blocks JB9, JB12
JB9 JB12
1 2 3 4 5 6 1 2 3 4 5 6
T : : :
B o o o o o ol B o o o o o o |
L ! (! _E
A o o 0O o0 o=-i A O 0 0 O O0==-=0-i
for socket U18 for socket U20
(1K RAM) (2K EPROM)
A1 Socket Pin 1 (pstatic RAM ready/Vpp)
B1 Socket Pin 27 (Pseudo static RAM /WE)
A2 Processor wait logic
B2 Socket Pin 26 (Vecc/A13)

OPTION PROGRAMMING SUMMARY DSTD-102

A - 10

A3
B3
A4
BY
A5
B5
A6
B6

Processor Address Bit A10
Socket Pin 21 (A10/L)
Processor Address Pin A11
Ground

Socket Pin 23 (A11/WE/Vpp)
Processor Write Strobe

+5V

Processor Address Bit 13

Memory Socket Configuration Block JB10

A1
A2
A3
A4
B1
B2
B3
B4
C1
ce2
C3
cu

1 2 3 4
C ? o o o
B é o o--o-i (for socket U19)
A 0o 0o o o E

Processor wait logic

Socket Pin 26 (Vec/A13)

Socket Pin 27 (Pseudo static RAM /WE)
Socket Pin 1 (pstatic RAM ready/Vpp)
Processor Address Bit A10

Processor Address Pin A11

Socket Pin 23 (A11/WE/Vpp)

+5V

Socket Pin 21 (A10/L)

Ground

Processor Write Strobe

Processor Address Bit 13

OPTION PROGRAMMING SUMMARY DSTD=-102

A -1 Wait State Generator Configuration Block JB11
1 2 3 4
B 0O 0 0 o©
!
A 0o 0 o0 ©
A1, B1 Wait on M1 cycles
A2,B2 Wait on Interrupt Acknowledge cycles
A3,B3 Wait on MREQ cycles
A4,BY Wait on On-board Memory Cycles
A - 12 CTC/BUS Interface (JB13)

These jumpers are installed to allow counter/timer I/0 to be
accessed using two lines of the backplane that are not normally
used by the Z80 STD bus cards. These signals use the BUS lines
normally referred to as MEMEX and IOEXP. This jumper block also
contains the Debug function enable jumper.

A B
MEMEX (J1-36) o o CTC Output
Ground o o Ground
CTC Input o o IOEXP (J1-35)
DEBUG (J1-38) 0-=-0 debug f/f
A - 13 On Board Memory Options (JB14)

Memory option weight '1', '2', and 'U4' selects the memory
configuration for the DSTD-102. This jumper block is used in a
binary coded fashion. See section 3.3.2 for details.

To use the on-board memory disable feature jumper 4A - 4B has to
be installed. Port 7B can then be used to control the memory.

OPTIO

Memor
Memor
Memor

DSMEN

A -1

N PROGRAMMING SUMMARY DSTD-102
A B
y Option 1 Weight '1°? 1 0—0 Ground
y Option 2 Weight '2° 2 o o© Ground
y Option 3 Weight 4! 3 o o Ground
Lateh Input 4 of-0 DSMEN Option Output

4 Reset Mode (JB15)

Jumper JB15 is used to select the push button reset mode. The

push
is le

A- 15
1)

2)

button logic is edge sensitive if the jumper is omitted and

vel sensitive if it is installed.
JB15
Push Button Input o) o] Reset Logic

Programming The CTC
Channel Selection

DSTD products using the Z80 CTC decode the CTC to occupy 4
contiguous port addresses. Writing to the appropriate port
address will automatically select the correct register in
the CTC.

Interrupt Vectors

If any one of the CTC channels is going to be used with its
interrupt enabled, an Interrupt Vector must be written to
the CTC. The user need only supply the 5 high bits of one
vector as the CTC assumes the vector points to 4 contiguous
byte pairs corresponding to the 4 channels. Note that DO
must equal 0 to indicte that the word being written to the
CTC is an interrupt vector; this also requires vectored
addresses to start at an even memory location,

D7 D6 D5 D4 D3 D2 D1 DO
\'g Vé V5 V4 V3 X X 0
<USER SUPPLIED VECTOR> <SUPPLIED BY CTC>

OPTION PROGRAMMING SUMMARY DSTD-102

3) Channel Control Register

The control register bit functions are as illustrated below.

D7 D6 D5 D4 D3 D2 D1 DO
INT LOAD
ENA MODE RANGE SLOPE TRIG TC RESET 1

DO = 0 indicates the byte is an INTERRUPT VECTOR.

DO = 1 indicates the byte is a CONTROL WORD.

D1 = 0 the channel continues current operation.

D1 = 1 the channel is immediately RESET to control word values.
D2 = 0 indicates NO TIME CONSTANT to follow.

D2 = 1 the next I/0 byte will be a TIME CONSTANT. (1 to 256)
D3 = 0 timer will FREE-RUN starting on next processor cycle.
D3 = 1 indicates timer will start on EXTERNAL TRIGGER.

D4 = 0 indicates external trigger on NEGATIVE-GOING edge.

D4 = 1 indicates ‘external trigger on POSITIVE-GOING edge.

D5 = 0 indicates prescaler factor of 16. (timer mode only)
D5 = 1 indicates prescaler factor of 256. (timer mode only)
D6 = 0 indicates TIMER mode. (prescaler is enabled)

D6 = 1 inidcates COUNTER mode. (prescaler disabled)

D7 = O INTERRUPT DISABLED for that channel.

D7 = 1 INTERRUPT on zero count ENABLED for the channel.

APPENDIX B

STD-Z80 BUS PIN OUT

APPENDIX B

STD-Z80 BUS PIN OUT AND DESCRIPTION

BUS MNEMONIC DESCRIPTION

1 5V 5Vde system power

2 5V 5Vde system power

3 GND Ground - System signal ground and

DC return
4 GND Ground - System signal ground and
DC return

5 -5V -5Vdc system power

6 -5V -5Vdc system power

7 D3

8 D7

9 D2 Data Bus (Tri-state, input/output
10 D6 active high). DO-D7 constitute an
1 D1 8-bit bidirectional data bus. The
12 D5 data bus is used for data exchange
13 DO with memory and I/0 devices

14 DY

15 A7

16 A15

17 A6 Address Bus (Tri-state, output,
18 A1y active high).

STD-280 BUS PIN OUT

19 A5

20 A13

21 Ay

22 A12

23 A3

24 A1

25 A2

26 A10

27 A1l

28 A9

29 AQ

30 A8

31 /WR

32 /RD

33 /I0RQ

34 /MEMRQ
35 /IOEXP

AO-A15 make up a 16-bit address bus
The address bus provides the
address for memory (up to 65k
bytes) data exchanges and for 1I/0
device data exchanges. I/0
addressing uses the lower 8 address
bits to allow the user to directly
select up to 256 input or 256
output ports. A0 is the least
signficant address bit. During
refresh time, the lower 7 bits
contain a valid refresh address for
dynamic memories in the system.

Memory Write (Tri-state, output,
active low). /WR indicates that
the CPU data bus holds valid data
to be stored in the addressed
memory or I/0 device,

Memory Read (Tri-state, output,
active low). /RD indicates that the
CPU wants to read data from memory
or an I/0 device. The addressed
I/0 device or memory should use
this signal to gate data onto the
CPU data bus.

Input/Output Request (Tri-state,
output, active 1low). The /IORQ
signal indicates that the 1lower
half of the address bus holds a
valid I/0 address for an I/0 read
or write operation. An /IORQ sig-
nal is also generated with an /M1
signal when an interrupt is being
acknowledged to indicate than an
interrupt response vector can be
placed on the data bus. Interrupt
Acknowledge operations occur during
/M1 time, while I/0 operations
never occur during /M1 time.

Memory Request (Tri-State output,
active 1low). The /MEMRQ signal
indicates that the address bus
holds a valid address for a memory
read or write operation,

I/0 expansion, not used on dy-4
Systems DSTD.

STD-Z80 BUS PIN OUT

36 /MEMEX
37 /REFRESH
38 /DEBUG
39 /M1

40 STATUS 0O
41 /BUSAK

Memory expansion, not used on
dy=-4 Systems DSTD cards.

/REFRESH (Tri-state, output, active
low). /REFRESH indicates that the
lower 7 bits of the address bus
contain a refresh address for dyna-
mic memories and the /MEMRQ signal
should be used to perform a refresh
cycle for all dynamic RAMs in the
system. During the refresh cycle
A7 is a logic zero and the upper 8
bits of the address bus contains
the I register.

/DEBUG (Input) used in conjunction
with DDT-80 operating system and
the MDX Single Step card for imple-
menting a hardware single step.
When pulled low, the /DEBUG line
will set a latch that will force
the upper three address lines to a
logic 1. To reset this latch, an
I/0 operation must be performed.

Machine Cycle One (Tri-state, out-
put, active low). /M1 indicates
that the current machine cycle is
in the opcode fetch cycle of an
instruction. Note that during the
execution of a 2-byte opcodes, /Mi
Wwill be generated as each opcode is
fetched. These two-byte op-codes
always begin with a CBH, DDH., EDH
or FDH., /M1 also occurs with /IORQ
to indicate an interrupt
acknowledge cycle.

DMA priority chain input.

Bus Acknowledge (Output, active
low). Bus Acknowledge is used to
indicate to the requesting device
that the CPU address bus, data bus,
and control bus signals have been
set to their high impedance state
and the external device can now
control the bus.,

STD-Z80 BUS PIN OUT

42 /BUSRQ Bus Request (Input, active low).
The /BUSRQ signal is used to re-
quest the CPU address bus, data
bus, and control signal bus to go
to a high impedance state so that
other devices can control those
buses. When /BUSRQ is activated,
the CPU will set these buses to a
high impedance state as soon as the
Current CPU machine cycle is termi-
nated, and the Bus Acknowledge
(/BUSAK) signal is activated.

43 /INTAK Interrupt Acknowledge (Tri-state
output, active low). The /INTAK
signal indicates that an interrupt
acknowledge cycle is in progress,
and the interrupting device should
place its response vector on the
data bus.

qy /INTRQ Interrupt Request (Input, active
low). The Interrupt Request Signal
is generated by I/0 devices. A
request will be honored at the end
of the current instruction if the
internal software controlled inter-
rupt enable flip-flop (IFF) 1is
enabled and if the /BUSRQ signal is
not active. When the CPU accepts
the interrupt, an acknowledge sig-
nal (/IORQ during an /M1) is sent
out at the beginning of the next
instruction cyecle.

45 /WAITRQ WAIT REQUEST (Input, active low).
Wait request indicates to the CPU
that the addressed memory or 1/0
devices are not ready for a data
transfer. The CPU continues to
enter wait states for as long as
this signal is active. The signal
allows memory or I/0 devices of any
speed to be synchronized to the
CPU.

STD-280 BUS PIN OUT

46

47

48

49

50

51

/NMIRQ

/SYSRESET

/PBRESET

/CLOCK

CNTRL

PCO

Non-Maskable Interrupt request (In=-
put, negative edge triggered). The
Non-Maskable Interrupt request has
a high priority than /INTRQ and is
always recognized at the end of the
current instruction, independent of
the status of the interrupt enable
flip-flop. /NMIRQ automatically
forces the CPU to restart to loca-
tion 0066H. The program counter is
automatically saved in the external
stack so that the user can return
to the program that was
interrupted. Note that continuous
WAIT cycle can prevent the current
instruction from ending, and that a
/BUSRQ will over-ride a /NMIRQ.

System Reset (Output, active low).
The System Reset line indicates
that a reset has been generated
from either an external reset or
the power-on reset circuit. The
system reset will occur only once
per reset request and will be ap-
proximately 2 microseconds in dura-
tion. The system reset will also
force the CPU program counter to
zero, disable interrupts, set the I
register to OOH, set the R register
to OOH and set Interrupt Mode O.

Pushbutton Reset (Input, active
low). The Pushbutton reset will
generate a debounced system reset.

Processor Clock (Output, active
low). Single phase system clock.

Auxiliary Timing

Priority Chain Output (Output,
active high.) This signal is used
to form a priority interrupt daisy
chain when more than one interrupt
driven device is being used. A
high level on this pin indicates
that no other devices of higher
priority are being serviced by a
CPU interrupt service routine.

STD-Z80 BUS PIN OUT

52 PCI Priority Chain In (Input, active
high). This signal is used to form
a priority interrupt daisy chain.
when more than one interrupt driven
device is being used. A high level
on this pin indicates that no other
devices of higher priority are
being serviced by a CPU interrupt
service routine.

53 AUX GND Auxiliary Ground (Bussed)

54 AUX GND Auxiliary Ground (Bussed)

55 +12V +12Vdc system power

56 -12V -12Vdc system power

NOTES:

1. The reference to input and output of a given signal is

made with respect to the CPU module.

APPENDIX C
DSTD-102 PARTS LIST

B T

DSTD 102 PARTS LIST

——— - - - - - - - e - —— - - - - — e am — e e ———

OY4PART OTY DESCRIPTION DESIGNATION
PT012008 1 741508 TTL-LS U1s
PT012014 1 741514 TTL-LS s
PT012020 1 741520 TTL-LS u10
PT012074 2 74L574 TTL-LS U3, u14
PTO12112 1 7415112 TTL-LS ' 1
PT012144 § 7415144 TTL-LS u4
PT012243 1 7415243 TTL-LS u2?
PT012244 2 _ 74L5244 TTL-LS u28,u29
PT012245 3 _74L5249 TTL-LS U22,024, 125
PT012257 1 7415257 TIL-LS u13
PT013074 1 74574 TIL-S u12
PT015009 1 MNK3880n (280-CPU) 2.5 MHZ CPU uz
PT015013 1 Mk3882n (280-CTC) 2.5 MHZ CTC us
PT015017 1 MK3884n (280-S10/0) 2.5 MHZ S10/0 __ué
PT014008 2 75188 OR NC1488 INTERFACE ué,uz7
PT014002 2 75189 OR MC1489 INTERFACE 1,02
PT034008 § PALI2LS 23
PT034002 2 PALISLE u9,u2é
PT041101 1 1/4 WATT, 100 OHM, S/ RESISTOR R12
PT041322 1 1/4 WATT, 1.2K OHM, S/ RESISTOR R4
PT041220 1 1/4 WATT, 22 OHM, 3/ RESISTOR Ré
PT041221 1 1/4 WATT, 220 OHN, 9/ RESISTOR RS
PT041302 2 1/4 WATT, 3K OHM, S/ RESISTOR R1,R7
PT041472 2 1/4 WATT, 4.7K OHM, 5/ RESISTOR R2,R3
PT041473 1 1/4 WATT, 47K OHM, 3 RESISTOR R10
PT041481 1 1/4 WATT, 480 OHM, &/ RESISTOR R13
PT043042 2 8 PIN, 7 RESISTOR, 4.7K OHM, SIP RESISTOR NETWORK RN2, N3
PT043017 1 10 PIN, 9 RESISTOR, 4.7K 04, SIP RESISTOR NETWORK RN4
PT051004 1 034-55101 OR 035-56101, 100uf, RADIAL ELECTROLYTIC CAPACITOR (33
PT052003 1 CKOSBX330K, 330f, 200V CERAMIC CAPACITOR €2
PT052004 8 CKOSEX331K,330pf, 200V CERAMIC CAPACITOR Cé-13
PT052009 1 8131-100-25U-474M, .47uf, S0V, CERAMIC CAPACITOR €3
PT052010 18 .luf. S0V(.1 LD. SP.) B121-050-25U-104M, CERAMIC CAPACITOR C16,17,19,21-34,36
PT052013 1 .1uf,50v (.2 LD. SP.) 8121-050-25U-1044) (102 BOARD ONLY) €14
PT0S3000 1 TAGIOM25, 10uf, 25V TANTALUM CAPACITOR C18
PT041003 1 N304 TRANSISTOR a1
- PT071000 .1 IN4148 SIGNAL DIODE - D3
P7073001 2 IN4001 RECTIFIER 01,02
PT091000 1 HLMP4300 SHALL RED LED LED2
PT091002 1 HIMP4S00 SMALL GREEN LED LEDS
PT101000 1 K11354 CRYSTAL OSCILLATOR GENERATOR u21
PT101005 1 K1114A 5.000 MHZ CRYSTAL OSCILLATOR u3g
PT111673 1 5208-1 CARD EJECTOR WITH PINS

PT122003 3 CHD4940WIS 40 PIN DOUBLE ROW HEADER JB1-485,JB9-JB1S
PT122004 | CHSA93441S 34 PIN SINGLE ROW HEADER JBé,JB7-JB10c,JB1Y
PT123003 2 87514-2 12 PIN RIGHT ANGLE CONNECTOR (ANP ONLY) 42,43
PT124020 3 640444-3 20 PIN 1.C. SOCKET U?.U23,U2é
PT124028 4 440362-3 28 PIN 1.C. SOCKET u18-u20,U8
PT124040 2 640379-3 40 PIN 1.C. SOCKET U1é,u17
PT344901 1 DSTD 102 DY00449-H-A1-4

PT711003 1 102 MANUAL

APPENDIX C

DSTD 102 PARTS LIST

DY4PART QTY DESCRIPTION DESIGNATION
PTO12008 1 741508 TTL-LS U5
PT012014 1 741514 TIL-LS us
PT012020 1 741520 TIL-LS u10
PT0I2074 2 741574 TIL-LS U3, 14
PT0OI2112 1 7418117 TTL-LS Uit
PTOI2044 1 7415144 TTL-LS U4
PT012243 1 7415243 TTL-LS 27
PT012244 2 7415244 TIL-LS 128,029
PT012245 3 7415245 TIL-LS 022,024,025
PT012257 1 7418257 TIL-LS U3
PT013074__1 74574 TTL=S U1
PTOI5010 1 MK3880n-4 (280A-CPU) 4,00 MHZ CPU ¥
PTOIS014 1 MK3887n-4 (2B0A-CTC) 4.00 MH2 CTC U8
*PT015020 1 MK3884n-84 (280A DART) 4.00 MHZ DART Ut
PT01400] 2 75188 OR MC1488 INTERFACE T
PT014002 2 75189 OR MC1489 INTERFACE U102
PT034001 1 PALI2LS 23
PT034002 2 PAL14LS U9, 28
PT041101 1 1/4 UATT. 100 OMM. S RESISTOR R12
PT041122 1 1/4 WATT, 1.2K ORM. S RESISTOR 24
PT041220 1 1/4 UATT, 22 OWM, 54 RESISTOR Ré
FT041221 1 1/4 WATT, 220 OMM, 54 RESISTOR a5
PT041302 2 1/4 UATT. 3K OMM, 5 RESISTOR RLR7
FI041472 2 174 UATT, 4.7% OWM, S/ RESISTOR R2.R3
PT041473 1 1/4 UATT, 47K OMM. 5% RESISTOR R1D
PTO41481 1 1/4 WATT, 680 OMM, S RESISTOR 313
PT043012 2 8 PIN, 7 RESISTOR. 4.7K OHM, SIP RESISTOR NETWORK RNZ, N3
PT043017 1 10 PIN, 9 RESISTOR, 4.7K ORM, SIP RESISTOR NETWORK RNd
PT0S1004 1 034-55101 OR 035-56101, 100ué, RADIAL ELECTROLYTIC CAPACITOR (25
PT052003 1 CKOSEX330K, 330f, 200V CERAMIC CAPACITOR 7]
PT052004 8 CKOSBX331K.330pF. 200V CERAMIC CAPACITOR £é-13
PT052009 1 8131-100-25U-4744, .47uf, SOV, CERPMIC CAPACITOR c3
PT052010 18 luf, SOVC.1 LD, SP.) B121-030-75U-104M, CEREMIC CAPACITOR C14.17,19,21-24.34
PT0S2013 { {uf,50V (.2 LD, SP.) 8121-050-25U-104M) (102 BOARD GNLY) _ C1d
PT053000 1 TAGIOM2S. 10uf, 25V TANTALW CAPACITOR c18
PT041003 1 N3904 TRANSISTOR o
PT071000 1 IN4148 SIGWL DIODE D3
PT073001 2 IN40D1 RECTIFIER 01,02
PT091000 | HLMP300 SMALL RED LED LED2
FT09100) 1 HLMP4400 SMALL YELLOW LED LED]
PT101000 1 K11354 BAUD RATE GENERATOR U2
FT101007 1 K11144 8.000 MHZ CRYSTAL OSCILLATCR U30
PT111073 1 52081 CARD EJECTOR WITH PINS
PT122003 2 CHD4940WIS 60 PIN DOUBLE AOW HEADER J81-J85,J89-J815
PT122004 1 CHS6934WIS 3¢ PIN SINGLE RO HEADER JB4, JB7-JB10c . JB1S
PTI23003 2 §7514=2 12 PIN RIGHT ANGLE CONNECTOR (AP ONLY) 32,3
PT126020 3 440464-3 20 PN 1.C. SOCKET 09,023, U2¢
PT124028 4 440382-3 28 PN 1.0, SOCKET U18-120,U8
PTI124040 2 ¢40379-3 40 PIN 1.C. SOCKET U16,U17
PT344901 1 0GTD 102_DY004d9-H=1-=2
1

PT711003

102 MenuaL

ST

-
]
£

PARTS L

9-1v-3-6hh00AQD

S

w C .
] Cel_ustsU oz
]

[
[Cusa §'g[35 [oosn 5

1 T3 54 —eer
T8

-2

c
_ hhZ57 wu

VOVNYD NI wn:z&ﬁz. SHILSAS
ANOWIW le

N

o

=4
hhZS1 N
sza]

]

&N

[ZN
E

N

(4}

-

RIN ;

<

2y 1AL hr

]
F heST l

1]
0Td 4 ALh F

giar

ETNgNY-T

1

x
R 3z
AHOWIN E] -
BE ERZST (N Eh
a8y
-3 c
€
9z
AUOWINW {e U
b= shas1 {5 ©%
wn
—
2319

ILL__
L4
ou
%0 -
i~ O
8n
o
@
S

ndl 082 G
(]
~N
e

z8ar

1012 nmuu n mw 015 082

S SEE T

H VSETTA mDm~

823 612
[ER <-z-mwroo>a o1 Emn‘\&w\

DSTD-102-4 SILK SCREEN

FIGURE C-1

o

APPENDIX D
SCHEMATIC

IC POWER PINS

TYPE .12 2 .8 R N
74L50€ 14 7
74,514 14 7
74L.520 14 H
73574 14 7
74574 14 7
74LS112 16 =]
74aL5164 14 7
745243 14 7
745244 20 10
7415257) 8
74,5645 20 0
2716/2764 2e 149
7518€ 4 | 7
75189 14 7
KI135A 9 2 1
PALI2LE 20 10
Z80 CTC 24 5
280 Sio 9 31
280 CPU i 29
XTAL LOCOT] 14 7

UNUSED GATES

u2s

€

ve9
2I™\J8 a
Ql
= 7415244

|”_

uts

jn_

74,508

Iz |

— e —— - =
- - - —

SCALE DRN 5 ncmoLLs|CHK]DATE Vo 52
APP'D TOL MAT L IFINISH
T 2T~ 1A= ~ . -z

T DSTC 102 (POWER & GND. TASLE)

DWG NO DYOO449-I -A1'6 :ISS‘.

L 4

7 | 8
_v.l-'e- _ oLICAIPTION [oane _.l.._a..r

4 EN 0026 T8 e BL ik

A
z . 2 “
= z > -
vt %
4 =1 recsees > =0
L " L]
3 [ad L] a ol
Des
. % -
- g2y e
o " * 0 79
2o
2
"I =
£

S _camapian erecrromics sacxagina
] _ 2 _ 3

»
L]

1 | 2 | 3 | 4 | s | " e | ? | 8

—F.: _ oEscaIPTION) oare _l-._n..-

a £V 0026 8 pome A2 ke

zoe 202

i i
w[e]elefwuln]~

a o

T

[
o

Jt

247
r
w9
b
o] Ql\ﬂqs
b (§)]
p
4)
) 24 4
p ¢ W AU y]
ca A ou wBELE]
| s A L
- 7 4T
cs JBIO ps..
Avﬂ|~|ant e RTCRL |
-~ o AT

270 082

$ _canapian_fiEcTRONICS PACKAGING
o1 _ 3 i . _

R DY00449-1-A3-6 't [~
?

‘ :..Ulnb , | .
B ‘ SRS

8= -

M mw , , H
. MN i

N =<

1

interrupts provide a means of processing =~ the 'system desligner great flexiblllty (n
. Information on & random or asynchronous . implementing an Interrupt driven system.

basls. The Z80 CPU and peripheral family -~ This document destribes the’Z80 CPU Interrupt
suppor? Interrupts using a dalsy-cheln "¢ process and evaluates the design of the
approach, As opposed to parallel priority ~ dalsy-chaln Interrupt scheme,. The reader can
resoiution, the daisy chain uses an "refer to the following documents for addl~
efticient, minimai~hardware method of prlor!— 4lonal Information: . RS
tizing multiple interrupting devices, In DRI : g
sddition, » parailel priority resolution Z280° Assembly Language Programmlng
scheme can be conflgured with the 280 through Manual v (03—0002-01)
the use of a priority encoder and other. " Z80/Z80A CPU Technlical Manualkx“ (03-0029-01),

. externa! hardware. . T Z80/280A S10 Technical Manual - ~(03—3033—01);

SR e i i 5 1

e .l ¢ 180/Z80A P10 Technical Manual~ (03-0008-01) '
Coupled with the powerful vectored Interrupt Microcomputer Components Dafa s '
capabliitlies of the 280, this approach allows Book .)) (03—8032-01)

The 280 uses two types of Interrupts: mask~

- able (TNT input) and non-maskable (NMT R
Input). Maskable Interrupts may be nested. . .
The simplest maskable Interrupt Implementa=

-~tlon does not provide for the nesting of . -

" Interrupts, thereby oblligating an Interrupt
service routine to complete Its processing . "

s .. and return to the maln program before another

... Interrupt.can be serviced. . With nested

.. - Interrupts, an interrupt service routine can.y;

. be Interrupted either by an interrupt that .
Invokes the same routine (reentrant type) or fi
by a higher priority Interrupt that invokes a. '

. different, Interrupt service routine.. _The 280.:.
famlly components aiiow the user to- Implemant

, a powerful lnferrupf-drlvsn system utilizing ..

;. these concepfs., - :

s

When both fypas of Inferrust are employed, ‘;' i SR s |
the Z80 CPU will service them in a specific. - SRR
‘sequence, .Bath the TNT and WNT, inputs are ey R :
sampled by ‘the CPU on the rislng edge of CLK '~ {] - S NI E) B il

hitan

_.In the last T state of .the last Machline e (M)
cycle of any Instruction, However, 1f BUSRQ

_Is actlve pt the same time, It will be
processed before any Interrupts. Figure 1

tlystrates the 280 Inferrupf servlce e) LA B C ST
sequence, j SR L RRERIE . ;7" Figure 1, 280 Flow Diagram Interrupt Sequence

The non-maskableinterrupt (NMT) Is different .and tan be'bsed‘for’lnferrupf conditlons |lke:
trom the maskabie Interrupt in several -.. - a power fall defect, Wi Is an edge-sensi-.
respects, NMT Is always enabled and cannot - tive signal that has & lower prlorlfy than’

be disabled by the programmer, . it Is ' ~ . BUSRQ and higher prlorlty than TNT, When the
empioyed when very fast response Is desired” ~~ CPU acknowledges an occurrence of NMI, the
independent of the maskable Interrupt status processor begins a normal opcode fetch. How-

This application note refors to products as Z80 "A", "B" ete. to specifiy the speed grade.
We are no longer using those characters for the speeds. For more detalls, please refer to the orderlng
Information section, . ooouiv c AL i Rles i

i

#611=1809-0003

ever, the data read from memory Is Ignored
and Instead the CPU restarts Its operation
from location 66H. The restart operation
- Involves pushing the Program Counter onto the
.c stack, Jumping to location 66H, and continu-~
Ing to process there,
_status of the maskable Interrupt condition Is

B ot N :
" LAST M CYCLE ———s<—|GNORED M1 CVCLE_""‘STA::"I:(Z?(CLg_"'—;STAgf(Ec&CLE";’
LAST T STATEAw—| . - . . S =) i
ey -l L T<|;,' Tzl T3 l Ta Tt l Tz' T3 Ty | T2 | T3 '
: : ®
C —-—l I<—80NSMIN

Durlng this time, the -

preserved and maskable iInterrupts are dls-
abled, untli elther an E| Instruction iIs
executed or a RETN Instruction Is used to
exit the NMT service routine.

The RETN Instruction Is- discussed In*detall
In the 280 CPU Technical Manual, Figure 2
shows the timing used for NMT Interrupts, -

g -

PCy

v

- Dg-D,.

Figure 2. Non-maskable Interrupt Request Operation ’

Ve
I ¥

’ D o R

Maskable

Maskable Interrupts (TNT) are acknowledged
Interrupts

with a lower priority than the WT but allow

the programmer more flexibility, TNT is

enabled under software control by way of the

. El- Instruction and disabled via the DI in-

- struction. When the 280 CPU samples TNT and
It Is active, the processor begins an Inter=-

- . rupt acknowledge cycle so long as BUSRQ and -

" NMT are not active, The processor does not

" use an Interrupt acknowledge signal but

. Instead Issues the acknowledge by executing a

Tt T2

T

NA

special MT cycle. - During an Interrupt

“acknowledge cycle, RD Is Inactive, TORQ Is
active, and two walt states are automatically
added, '
Since the Z80 peripheral devices have loglc
to Interpret this special cycle with no

additional external circultry, a minimal

amount of hardware Is needed by the system
and there Is no loss In efficlency. Flgure 3
shows the detalied timing for the Z80 CPU
Interrupt acknowledge cycle. ‘

L Te

, Maskable
nterrupt
Mode 0

+

Twa

Figure 3. Interrupt Acknowledge Cycle - .

530

- Maskable -

There are also +hr

servicing maskab e lnferrupfs.
0, Mode 1, and Mode 2,

MODEo

08 modes of Opsration for

These are Mode
Any parfjcular mode

MODE 1
1

" DISABLE INTERRUPTS
IFF1,1FFz=0

DISABLE INTERRUPTS
IFFLIFF2e0 .

" READ 15T gyTn
OF INSTRUCTION
(M7, IGRa Low)

MORE BYTES
REQUIRED FOR
N\JINSTRUCTION

READ NEXT BYTE
(NORMAL MEM, READ
WITH pC STATIONARY)

‘ Et (ENABLE INTERRUPTS) ,

RET ~
STACK — pc

CALL OR RST

OR RST

Figure 4. Maskab]

In the maskabie lnferrupf Mode 0 (as with the

FOR CALL

ONLY

Interrupt § q

-~ . Is selected b
. Instruction,
processing seq

Y the pro

{

grammer using the IM
Flgure 4 Ilustrates the
uence for each lnferrupf mode,

MopE2 .

!

DiIsABLE INTERRUPTS:
IFF1,IFF2=0

READ VECTOR
FORM VECTOR:

TABLE ADDRESS:
IREG + VECTOR

I

" GETSTARTING
ADDRESS FROM
VECTOR TABLE

i JUMP 70 NEW 1

LOCATION:
START INTERRUPT
SERVICE ROUTINE

Lo l EHENABLEINTERRUPTSI '

[

RETI |
- STACK— pc

-Interrupt ’

+Maskable
lnferrupf

L 8080 lnfe;rup
Mode 0 !

read during +

t response mode), the Interrupte
Ing device places an Instructio

bus for execution by the zgp cp
struction used is

(Each syb~
f eight bytes.) How-
may be given to the 280

The first byte of a myit;

read cycles, The Program Coun
lfsAprelnferrupf state,
Insure that

ter remains at
and the user must

memory Wil not respond to these
Interrupt Mode 1

provides mlnlmally complex

by normal memory

‘tlon Is the same_as
struction (see NI

When an Interry

Upon RESET, +he ¢
Interrupt Mode 0.

ce the Instruction must
rupt hardware,
s of a multibyte

Timing for
instruce
for a single byte In~ .

n Figure 2),

pt is recognized by the CPy,

PU aufomaflcally sets

Mode 1

... Peripherals

access to Interrupt processing,
r,to the NMT Interrupt, except

aufomaflca[ly CALLs to location

It Is simiia
that +he CrPUY

611-1809-0003

. 38H Instead of 66H,
pushes the Program Co:
aufomaflcally (Flgure

As with the RMT, the cru -
unter onto the stack
2),

R TR e

Maskable * ' The Z80 CPU Intercupt vecforlng‘sfrucfure vaiue other than its pointing to a valld
. Interrupt’. allows ‘the peripheral device to Identify the memory location, -

Mode 2 starting ‘locatlion of the Interrupt service : ’)
. {Vectored rouflne.
', Interrupts)

280 CPU ’ MEMORY

7

; Mode 2 Is the most powerful of the three ’ L OW ORDER |
<. maskable Interrupt modes. It allows an. - g @ ﬁﬁ:ﬁ%ﬁgﬁeﬁ } VECTOR T
»Indirect call to any memory location by a RRCTEN O
‘single.8=blt vector supplied by the perlph-
~erals In this mode, the peripheral generat-
- Ing the Interrupt places the vector onto the
V‘ “ data bus In response to an Interrupt ack-
" nowledge, The vector then becomes the least , : -
slgnificant elght bits of the 16-bit Indlirect R LT INTERAUPT
.polnter, whereas the | reglster in the CPU | ‘ C. SeRicE
forms the most significant eight blts, This) O g
address polnts to an even address in the
vector table which then, becomes the starting .) .
‘' address of the Interrupt service routine.: ' PERIPHERAL
. Interrupt processing thus starts at an' .- INTERRUPT VECTOR
« arbltrary 16-bit address, allowing any loca~ N S
‘tlon In memory to begin the service routine, NOTES: - / -
" Since the vector Is used to Identify two &
... adjscent bytes.that form a 16=-bit address, L {;‘;‘i’,‘}‘.’fﬁ,X;‘i';’;?,Z’lZ’,‘:}:‘: ZJ;’,‘;"""‘"' fs read by CPU

i the CPU requires an even starting address for 2, v::erzr b with e fobm 16-bit o
> T a 82 pointing to vector la o,
the vector!s low byte. Flgure 5 shows the 3. Two bytes are read sequentially from vector table. Then
3 sequence of events for processlng vectored - bytes are read into PC.
T " Interrupts, N _ +4. Processor control is transferred to In(orrup(service
nd ti t . K
The | register Is loaded by fhe user from fhe LR x’m o gontinuet.

- A reglster, There Is no restriction on its . " ' Figure 5. Vector Processing Soquonco

Return from - When executlion of the Interrupt service " recognlzed lnferrup‘r. and a method of rese
_Maskable 5 routine Is complete, return to the main ’ ting the peripheral!s Interrupt condition
: - program (or another service routine).occurs -~ ~ must be founds This Is accomplished by usl
«dlfferently In each mode. In Mode 0, the . the RETI Instruction. If Mode 2 13 used by,
“method of return depends on which Instruction _ the programmer, the RETI Instruction must be
~was executed by the CPU, If an RST Instruc- - executed In order to utlilize the dalsy chalg
"+ wtlon Is used, a simpie RET sufflces,. In Mode - properiy. Fligure 6 shows the RETI Instruce:
«1, the CPU treats the Interrupt as a CALL '~ . tlon timing for the Z80 CPU, A more comple
+ Instruction, so an RET Is used, Mode 2, ~ ~ i 7 descriptlon of how RETI affects the peri
! however, uses the vector Information from the .. erals Is glven In Chapter 3,
" poripheral chip to Identify the source of the - . ,

611-1809-0003 .~ . . e 532

Whenever a software halt Instruction Is exa-
cuted, the CPU enters the Halt state by

executing No-OPs (NOPs) until an interrupt or
RESET is recelved, - Each NOP consists of one -

BT cycle with four T states, The CPU samples .

the state of the NMT and TNT lines on the
rising edge of each T4 clock (Figure 7).
. - SRR [X

Ul M1 (NOP)
. L ‘

v T2 |

—M1 (NOP)

T3IT4 T1IT2lTalT4

¥When an [nterrupt exists on elther iine, the .
subsequent cycle wiil be elther a memory read

~operation (RMT) or an Interrupt acknowiedge

(INT). - The +timing In Figure 7 shows a mask=
able interrupt causlng the CPU to exit the
Halt state. . . . : o

CPU INSERTED
/' WAIT STATES

Tv | T2] T | Tw | T3

M1 -

U1

' Figure 7. Exii Halt State with Maskable Interrupt

INTERRUPT
| PROCESSING
, BY 780
PERIPHERALS

“Understanding maskabie Interrupt processing

requires a famiifarity with how the 280
peripherals respond to the CPU Interrupt.
sequence, The 280 famiily products were
designed around the daisy-chain Interrupt
configuration, which utiiizes minimal

- external hardware-(compared fo-parailel con= .

tention resolution interrupt priority net-
works)s Many devices handle Interrupts via a
handshake arrangement, e.q. the use of '
Interrupt request and Interrupt acknowledge
signals. This s the most stralghtforward

and probably the fastest method of ‘lmplement-

Ing prioritization usling more than one -

, Interrupting device. Howaver, this method ’

requires a separate |nterrupt request: signal
for. each peripheral device and elther a

separate acknowledge®signal for each device
or a software acknowiedge,
neaded to provide contention resolution

should two or more devices request an Inter-

rupt simultaneousty, With the 280 product
family, however, such extra hardware is
unnecessary and the software does not need to

remove the interrupt request from the periph- .

eral device. This Is made possible through
usa of the dalsy~-chala priority network,
which can best be visuallzed as a type of -
bucket brligade, :

" The 280 peripharal products Implement, this -

dalsy chain with Just three exira signal

‘1lnes on each chip: . interrupt enable lnput . -

- Interrupt request (IND),

Extra hardware is...

(1E1), Interrupt enable output (1EQ), and

The Interrupt
request tine is an open~drain circuit that Is
OR wired to the TNT plas of the other devices
In the chain and connected to the TNT plin on .
the 280 CPU. This tine provides the inter=-

‘Tupt request to the CPU, :

The 1E1 and IEQ lInes provide the means for
establishing priorlty among several request-
Ing devices...The priority of a device Is
determined by ts positlon in the chain, The
1El pin of the highest priority device In the
chain Is connected to +5 voits, The I1EQ pin
of ‘the same device Is connected to the (E}
pln of the next highest priority device. The
1EO pln of that device goes to the 1EI pin of -
the next lower device, as shown in Figure 8,
and so on to the iast device 1n the chain,
where the 1EO pin is left open. When a .
device has an Interrupt pending, It activates -
Its TNT output which requests service from

the CPU and brings Its 1EO pin Low, theraby
preventlng the lower devices in the chaln

from responding to further: Interrupt opera=-
tlons. When the CPU acknowledges the inter—
rupt, the requesting device removes its
Interrupt request (INT) signal, After the -

- Interrupt processing Is completed, the

perlipheral will reset ltseif with an RET!
instruction, which will bring {EO High and

restore the chaln to Its qulescent state,

11~1809-0003

RV R

, NOTES:

L
2,
!

‘4,
S,

6.

Figure 8. 280 Peripheral Device Inte

Device 3 has an Interrupt pending (IP set), which causes ity
IEO pin to go low Ppreventing device 4 from interrupting.
CPU acknowledges the interrupt and device 3 has its inter
rupt under service (IUS set). The device's IP is then reset,
Device) service, Iing device 3 Pprocessing,
(Assuming Interrupts were reenabled.)

Device ! has fta Interrupt under service. ’

CPU tompletes processin:

service routine
ng for davice 3 and the daisy chain

CPU completes processi
returns to quiescent state,

rrupt Processing Sequence

set and ¢ Isables 1E0 to prevent jower
priority devices in

' IP = INTACK # INT_cono
the chain from responding :
to an lnferrupf cyel

e 'IUS Is cleared when
1€} I-s.ngh and the peri

eripheral decodes 2
D-4pn Instruction, Thus,

and
TEO = 1E1 * {T5 * (iF nEpny

+ WAIT FOR cpy
INTACK CycLg

INTERRUPT
CoNDITION

N ¥
INTACK « 15}

RETURN TO

1oL
i : 8TATE
' ‘ . ’
tuazon (o 0 ormiE
L 1T T
. a} State Diagram of zgg Peripherals During Interrupt Cycle.)
, i o ! p) ' -
18 P ws g PR e . ‘B 1 ws e
—_— P o
\ TX0F e : : A - 2)
! 1 0 o : : 1 X .04
. 1 0 o . :
b) Truth Table of Daisy Chain During idle , © . . © Truth Table of Daisy Chnln_Durlng
or Interrupt A&mleqe Condition,) “ED* Decode of Opcode Fetch,
LN Note That IP Iy Not Part of IEQ Condition,
¥
) o . Figure 10, 280 Peripheral Interrupt States
DMWMIN

There are Several as
DESIGN " dalsy chaip ‘Implemen
QONSIDBMT!ONSI f

cemy

Pects of the 230 fami 1y vector during Interrupt ac

tation that deserve . buffers myst

urther attention, Lo - Second, becay Pheral devices have a .

R T S S “flnlte +ime during which |g; and 1EO can .

stabiiize within, the propagation delay of -

“the devices must be taken Into conslderation,
a means . Since device can <hange [t+g Interrupt = -

-of allowing them access to the data by status untig reaching the acttve edge of M7

. durlng lnferrupf acknowledge, the +ime from

1Ing the buffers from the' - this odge until TORY be

knowledge, the
also accommodate this,

Se the peri

comes actlve s the
conditlong time In which the dalsy chain must stabl|tze,
except 1/0 read ang Interrupt acknowiedge, Flgure 11 shows the timin
Since the peripheral must assert ' an 8-bit .

\

. =% M1(1z0)
tno >< 1\)

INTERRUPT PENDING
BEVICE cAN CHANGE

i L o ;’lr-am’l“

A : " RIPPI.:‘ TIME FOR DAisY CHAIN = F
- TaM10ED) + TUIEHIEOF) « 2] + T,IEKI0) + TTL BUFFER DELAY {F ANY)
. o ~) .
. .

. DELAY r':re FORN2DEVICES 1 SETUP TIME FOR LAsT DEVICE N
o o L TroR A N CHAIN UNDER CHAIN BEFORE 10RQ ACTIVEEDGE. -
P . . - .. DEVICES, To WORST case {

i i ¢ .

? i
. PREVENT CONDITIONS
i . . FUATH;
! ’ . INTEHRIIPTS. FROM
T B 1 ACTY!

L VE EDQE.

. . : Figure 11, Interrupt Acknowledge Peripheral Propagation Delay .
611-1809-0003 © ; '

535

Interrupt

. Acknow ledge

Operation

The 280 peripherals are acknowledged by the -
CPU and then serviced by an appropriate
interrupt service routine, The acknowledge
Yo The peripherals Is accompllshed by the CPY

"~ executing a special Wi cycle In which TORQ

goes active lnstead of MREQ and RD. Whenever
MT goes active, all peripheral devices are’
inhibited from changing thelr [nterrupt
status. ' This allows time for 1EO to propa~ -

.. gate through the other devices In the chain :
" betore 10RQ goes actlive.
. M1 go active, the peripheral device that has

As soon as IORQ and -

Its 1El High and an interrupt pending gates
an 8-bit vector onto the data bus. (See
Figure 9 for timing detalls.,) This 8~bit .
vector, which was programmed into the
peripheral device, Is combined with t+he con-
tents of the | register in the CPY Yo form a -
16~bit address value, During the time that
M1 and TORQ are active, the requesting device ¥

- removes the TRT signai (since the CPU has

I T

"is active and RD is not.

' acknowledged 11) and waits tor a ‘return

operation. ' If the peripheral device has Its
1El pin High and has had an Interrupt ack-
nowledged, then It completes the interrupt °
cycle and reledses IEQ :(when |t sees an RET!
Instruction (ED-4D sequence) on the data .
bus})e Thils restores the chaln to [ts norma

_, state so that lower priority ln'rerrupfs can
. OcCUr.

" The 280 perlpherals monitor T and 7D for th

Interrupt acknowledge cycle., Since RD goes :

" active before TORQ, the peripheral devices

sssume an Interrupt acknowledge cycle If M1
This reduces ‘the
time required for the [nternal device logic
to respond to 10RQ when It goes active.

Thus, a very po&erful ‘interrupt-driven sysfem

.can be Implemented with minimal hardware,

. simple software, and hlgh efflcliency uslng §

the 780 family components,

VA

(HIGH)

Figure 9, Peripheral fnhmlpl Acknowledge - o

" Return from

Interrupt
Operatlion

When the CPU executes ‘an RETI instruction,

the device with an Interrupt under service
resets Its Interrupt condition, provided that '
1E1 Is-High. All 280 peripheral -products
sample the data bus for this Instruction when
M1 goes actlve along with RD.

The RETI Instruction decode by the peripheral
device has certaln characteristics ‘that the
desligner should be aware of, Since a periph-
eral can request an Interrupt (activate INT
and bring 1EO Low) at any time, it Is pos-
sible for a device whose Interrupt Is cur-
rently under service to have its IEl pin Low.

"This Is undesirable, since such a condition

prevents the periphers! from resetting 1US
properly. To overcome this problem, all Z80
famlly peripherails bring 1E0 High momentariily

© buffers

when the ED s seen during the ED-4D
instruction fetch, The device whose Inter=

. rupt s under service does not allow |EO t

go High, but when 1t sees IEI High, It wiil
reset itself when the 4D byte Is fetched.

Figure 10 shows the relationship of P and

tUs to TNT, (El, and {EO. P Is set by an
Interrupt condition on the peripheral (sucl
as the transmit buffer becoming empty) when~’
ever interrupts are enablad. However, IP :
being set wiil oniy cause TNT to go actlve
(requesting an Interrupt) If IUS Is not set
and IEI Is High. IP Is not necessarily
cleared by the Interrupt acknowledge cycle,
Some speclflc action must be taken within the
service routine, such as fl1ling a transmit.:
Under these conditions, 1US become

611-1809-0003

536

—————————

aturn
e has Its
ipt ack-:
terrupt

I'ts normal
upts can

The Z80 CPU automatically Inserts two walt ~
states during TNTACK, allowing a worst-case
time for a chaln of four devices to become

settled (when using ZBOA CPU and peripherals .
at 4MHz), If more devices are In the chain,

some other means of stabliizing the chain
must be provided. This can be done elther by
adding additlonal wait states to the TNTACK
cycle or by providing logic to the periph- -
erals that allows faster propagation time
down the chain, Flgure 12 shows circultry
that .provides both additional walt states and
an Interrupt look-ahead circuit when more
than four peripheral devices are connected to
the daisy chain,

' When adding wait states to the 280 CPU Inter .

rupt acknowiedge cycle, care must be. taken to

> Insure that TORQ goes active at the proper

time. Normally, the CPU activates TORQ on

" the falling edge of the clock during the

first walt cycle. If external loglc Is used
to Insert additional wait states, these are
appended to the two walt states already -
generated by the CPU, Because TORQ goes
active during the first walt state and the
peripherals assert thelr vectors when TORQ
becomses active, TORQ must be Inhiblted until
the dalsy chaln becomes stable, This can be
done simply by adding a few gates to the walt

loglc (Figure 13). TORD' Is the delayed TORQD
that activates the peripheral devices,

- L

157 o perpharsy

WAIT pe Cru)

'
'

2 WAIT STATES ADDED
"

Tw Tw Ty

UNDER
SERVICE

le

750ns TYP.

Figure 12K, Daisy Chain Look-Ahead Logic for More Than Four Peripheral Devices

611~1809-0003

537

| - 12/1/80

i

- The propagation delay through. the peripheral.
- devices applles during the return from . o,
Interrupt condltion, also. Worst-case

timing Involves the lowest priority device

that has an interrupt under service and the
highest priority device that has an Inter-
rupt pending. When the ED part of the RET]
opcode Is fetched, the peripheral devicet)
must decode I+, and the highest priority
device must bring Its IEQ pin High.s This
1EO high signal must then propagate through
the chaln down to the lowest priority device

before the 4D part of RET] I's -decoded.

~Flgure 14 shows the timing relatlionshlips

Involved, This timing Is not as critical as
the Interrupt acknow ledge timing at 4 Mz,

but should be consldered If walt states are -
being added to the |NTACK cycle, '

1f using nested Interrupts with a larga‘ dalsy

" . chaln, the programmer should be careful not

to place the RETI opcodes too close fogafher.'~
Slince RETI Is 14 cycles long, this Is

generally not a probiem unless a very long ‘.

chain. Is.used, ' -

e

Figure 13. Wait State Logte for Interrupt Acknowledge Cycle,
*, Counter Preset Value Should Be 5-n, Where n = ¢ Walit

State Added
e i

L) T,

|

i

- -
B
H

B TIEQ) |uu|mA

—*1

RIPPLE TIME FOR oAt ine| ven
. * 810 & DART} 150 100
DAISY CHAIN IN . PI0 [210f 160
60

RETI CONDITION

o

B OMA 210} 1

NOTES:

1. Setup time for IEI to “4D" decode = 200ns (4.0 MHz).

2. Must look at IEI during ED-4D because nested interrupts *
allow more than 1 IUS latch to be sat at one time.

3. Delay time from ED decode with IP set to IEO high f
=~ 300ns (typ) 400ns (max) @2.5 MHz. This in in addition to
ripple time lor other devices in chatn. .

Tr 2 T4EXIEQ) + TYIENIED,) * iN-2f + TJEI4D) =

. for N-2 devices B ’
T4ED(IEO,) .= Delay time from “ED" decode to IEO rise. .
leEI(lEO,) = Delay time from IEI high to IEO rise.

TE4D) = Setup time for IEI during “4D” decode.
: (For last device in chain.) .

" Figure 14. Dalsy Chain Interrupt Timing (RETI Condition)

/ i

538

T
611-1809-0003

280 periph
The primar

However,
—

- M1, RD, ang 10RO for
but have an exp

edge,
the
slince the g
reset for +
flop, these

return opcode to do that operation,
need only bg concern

e different trom In
erals to the CPu,

lnferrupf acknow | ed

} to the zg0 CPu
ferfaclng‘fhe

the lnferrupf acknoul-
Helt TNTACK pin to

9o Also,

500 peripherajs have a software

he Interry

pt under service fllp=

devices do not require a speciaj

L) Te

The user

ed with the lnferrupf

Twa Twa Tw

* acknow ledge +im|

ng when using the 8500~type
peripherals, .

16 shows a clreult that provides ‘wajit
for the z80 cpy Interrupt acknow ledge

to TNTACK generation, The
' clrcultry can be omlitted |f no 280

Flgure
states

'.famlly perlpheral,devlces are used,

In each case, the 8500 peripheral component
requlres and RD to be active Ip order
for the Interrupt vector to pe made avallable
to the CPU, The logle shown provides for
this,

This clrcultry ajso permits e
rupt acknowiedge times to a
chaln propagat|on delay and
response delay,
lmplemenfed.

xtended Inter-
Ilow for the daisy
the vector :
so that larger chalns can be

Tw Tw 13 T

Figure 15, Timing for 8500 Peripherals During Interrupt Aeknowlodgo.
'_l - .

1311

RESET
AG——— READ
Ny
iGna —
fo oRG
INTACK
w1

" NOTE: o

1. RD and WR should only be
connected to 8500 peripherals
and not to 280 peripherals, -

WAIT

ﬂl-lBOQ-QOOB

Figure 18, Interface Logic For Connecting 8500 Series Peripherals To Z80

12/1/80

Interrupt: -
+, Durlng RESET

""A RESET to the Z80 CPU does soveral things a
far as Interrupts are concerned., The ! '
reglster, which contalns the upper elght blts
of the 'I6=bit interrupt address value, Is
reset to 0, and the Interrupt mode Is set to
.Mode 0, Maskable . Interrupts are disabled =
untli the programmer Instructs the CPU to

i

execute an El instruction, Just as It a DI
Instruction were executed. If an WMT occurs -
during the RESET operation, the CPU executes
one instructlion after the RESET conditlion and
“ before acknowledging the WHT,
", then contlinues as usuai,”

Processing

\

O BRI TR i P g . iy
b .
S P

Q7]

H

Using the Z80° S10
In Asynchronous
Communlcaﬂons

e '(»:’"»é‘!'f“’ A

| Ilpphcanon
Note

ZlL

s::cnou |

ke

rotocol

: lnttoduction. :

The Z80 Serial Input/Output (SIO) controller :
is designed for use in a wide variety of serial- -
- to-parallel input and parallel-to-serial output
" applications. In this application note, only -~~~ =
asynchronous applications are considered. The
" emphasis is almost completely on software

implementation, with only modest reference to -
hardware considerations.-

While reference is made only to the
-+ 280 SIO, the entire text also applies to the
- 280 DART, which is functionally identical to
- the Z80 SIO in asynchronous applications.

Communication, either on an external data
* link or to & local peripheral, occurs in-one of
two basic formats: synchronous or asyn-
chronous, In synchronous communication,
message is sent as a continuous string of
: characters where the string is preceded and
terminated by control characters; the pre-
. ceding control characters are used by the .
receiving device to synchronize its clock with
- the transmitter’s clock. In asynchronous com-
“munication, which is described in this applica-
tion note, there is no attempt at synchronizing
the clocks on the transmitting and receiving ™
devices. Instead, each fixed-length character -
(rather than character string) is preceded and
terminated by “framing bits” that identify the -
beginning and end of the character. The time
between bits within a character is approx-
imately constant, since the clocks or “baud
rates” in the transmitter and receiver are
selected to be the same, but the time between

characters can vary.

Thus, in asynchronous communication, each
" character to be transmitted is preceded by a
“start” framing bit and followed by one or
more “stop” framing bits. A start bit is a.
logical 0 and a stop bit is a logical 1. The
" receiver will look for a start bit, assemble the
character up io the number of bits the SIO has
been programmed for, and then expect to find
a stop bit. The time between the start and stop
bits is approximately constant, but the time
between characters can vary. When one char-

" acter ends, the receiving device will wait idly

-~ {for the start of the next character while the

" transmitter continues to send stop or E
* “marking” bits (both the stop bits and the

“ marking bits are logical 1). Figure 1 illus-

" trates this, A very common application of asyn-
chronous communication is with keyboard
devices, where the time between the operator's
keystrokes can vary considerably.

MESRAGE FLOW

B »5.“-"9‘.'.{:}:5"
Lo (o To T o Joor] -

1,1w o0
&7

or BITe

MARKING

547 s PER
Cﬂlllc'll llCllV!ﬂ
A ’at\‘.\’ OR § 3178 FER
RACTER TAMNBINTIED

N e

\'lll SATWEEN uuuc’un vaRiS

Figure 1. Asynchronous Dats Format

This application note refers to products as Z80 “A", "B" etc. to specifiy the speed grade. We are no longer

usling those characters for the speeds. For more details, please refer to the ordering information saction,

541

i
*

.

Protocol

(Continued) '

_ the receiver runs slightly faster than the trans-

" If the transmitter's clock is slightly faster
than the receiver’s clock, the transmitter can
be programmed to send additional stop bits,
which will allow the receiver to catch up. If

" mitter, then the receiver will see somewhat

larger gaps between characters than the trans-
mitter does, but the characters will normally

-differ substantially in speed, since data bits

Reference
Material

still be received properly. This tolerance of
minor {requency deviations is an important
advantage of using asynchronous I/O. Note
however that errors, called “framing errors,
can still occur if the transmitter and receiver

"

may then be erroneously treated as start or
stop bits.

Modes

The SIO may be used in one of three modes:
Polled, Interrupt, or Block Transfer, depend-

" *" ing on the capabilities of the CPU. In Polled *

-, ..mode the CPU reads a status register in the
- 8I0 periodically to determine if a data

.+, character has been received or is ready for
..-transmission. When the SIO is ready, the CPU
i, handles the transler within its main program.

In Interrupt mode, which is far more com-

" mon, the SIO {nforms the CPU via an interrupt .

" signal that a single-character transfer s

required. To accomplish this, the CPU must be
.. able to check for the presence of interrupt

signals (or “interrupt requests”) at the end of
most instruction cycles. When the CPU detects

' an interrupt it branches to an interrupt service

routine which. handles the single-character

" transfer. The beginning memory address of

this interrupt service routine can be derived,
in part, from an “interrupt vector" (8-bit byte) -

.. supplied by the SIO during the interrupt
- ..acknowledge cycle.

In Block Transfer mode, the: SIO is used in

."~ CPU block transfer imstructions for very fast

-only when the first character of a message
. becomes available, and thereafter the SIO uses

.. readiness for subsequent character transfers.
.. Due to the laster transfer speeds achievable,

, .treated with specific examples in this app.lica-
, tion note.

.. regardless of whether or not an 1/O device

. .. desires attention, Interrupt mode is usually the
+ preferred alternative when it is supported by
+ the CPU. Note that the choice of Polled or .

.synchronous or asynchronous [/O. This latter
.+ 3. .choice is usually determined by the type of
- device to which the system is communicating.

PP

conjunction with a DMA (direct memory
access) controller or with the Z80 or Z8000

transfers. The SIO interrupts the CPU or DMA

only ‘its Wait/Ready output pin to signal its

Block Transfer-mode is most commonly used in
synchronous communication and only rarely in
asynchronous formats. It is therefore not

Since Polled mode requires CPU overhead

Interrupt mode is independent of the choice of]

SIO Con-

figurations .
‘ o .. SIO/9. The first three of these support two -
ilndependent tull-duplex channels, each with -
-separate control and status registers used by

The SIO comes in four different 40-pin'
configurations: SIO/Q, SIO/1, S10/2, and

., the CPU to write control bytes and read status

" bytes. The SIO/9 differs from the lirst three .
versions in that it supports only one full-duplex

channel. The product specifications for these

k V«'versionslexplain this in'full.

There are 41 different signa]sv rieeded for

", complete two-channel implementation in the

SIO/0, SIO/1, and SIO/2, but only 40 pins are

. .. available. Therefore, the versions differ by

either omitting one signal or bonding two

. -signals together. The dual-channel asyn-

chronous-only 280 DART has the same pin
configuration as the S10/0. :

- SIO-CPU

Hardware
Interfacing

The\serial-to-pérallel and parallel-to-serial
conversions required for serial I/O are per-
formed automatically by the SIO. The device is
connected to a CPU by an 8-bit bidirectional -

- data path, plus mterrupt and I/O control

signals.

The SIO was designed to interface easily to
a Z80 CPU, as shown in Figure 2. Other
microprocessors require g small amount of -
external logic to generate the necessary mter~

- face signals.”

The SIO provides a sophlsticated vectored—
interrupt facility to signal events that require
CPU intervention. The interrupt structure is
based on the Z80 peripheral daisy chain. Non-
280 microprocessors that are unable to utilize
external vectored interrupts require some

i

additional external logic to utilize efficiently
this interrupt facility. Some non-Z80 system-

designs do not utilize the vectored interrupt .
structure of the SIO at all. Instead, these

..~ require the CPU to poll the SIO’s status

through the data bus or to use non-vectored
SIO interrupts.
Microprocessors such as the 8080 and 6800
need some signal translation logic to generate - .
SIO read/write and clock timing. CPU signals :

' which synchronize a peripheral device read or
. write operation are gated to form the proper
. I/O signals for the SIO. The SIO is selected

by some processor-dependent function of the
address bus in a memory or I/O addressing -
space,

26-0003-0341

Reference :. i In ‘the next sectj
Materiq] .-

on we begin with a dis-
" Cussion of feat

ureg Common

materia] Covere

d, the fo“owing Publicationg
to all formg of - are needed: : .
asynchronouys /0, This js followed by discys. ' W 280 S10 Prodyct Speciﬁcation or Z80 DART
sions of polled asynchronoyg /O and interrupt Prodyct Speciﬁcation -
- @synchronoyg [/ . Next is 4 series of fre.
" Quently agked Questi
used

in asynchronoy

) ® 280 sro T, echnicq/ Manuyal ’
8 applicationg Finally, an u Z50 Family rogram !ntgrrupt Structyre
example of 4 simple interrupt-driven asyn- ‘u Zgp cry TecbmcalManual
* chronoyg application g given and discussed in .
detail. For 4 complete understanding of the

CLOCK

Dm

N — [secoous x
I :
\

Figure 2. SI10 Hardware !ntor!uclng

.

" Operatlonal Considerations.

Al} of the SIO options to be discussed here -

.. are software controllable and are set by the

CPU. Thus, use of the SIO begins withan '

initialization phase where the various options
are set by writing control bytes. These options

are established separately for each of the two -

: nels are used. Before giving an overview of
‘ * how initialization is done, we will describe

channels supported by the SIO if both chan-’

some of the basic characteristics of SIO oper-
ations that are common to both the Polled and
Interrupt-driven modes. - L

Addressing

the SIO.

The CPU must have 'a means to identify any
- specific I/O device, including any attached
SIO. In a Z80 CPU environment, this is done
by using the lower 8 bits of the address bus

" (Ag-A7). Typically, the Ay bit is wired to the

SIO's B/A input pin for selecting access to
Channel A or Channel B, and the Ag bit is

wired to the SIO’s C/D input pin for selecting

the use of the data bus as an avenue for
transferring control/status information (C) or
actual data messages (D). The remaining bits
- of the address bus, Aj~Ay, contain a port
address that uniquely identifies the SIO

- nel B of the SIO when it carries a logic 1 (high

~ device. These latter six lines are usually wired
to an external decoding chip which activates
that SIO's Chip Enable (CE) input pin when its
address appears on Az-A7 of the address bus.
The bar notation drawn above the names of

certain signal lines, such as B/A and C/D,
refer to signals which are interpreted as active
when their logic sense—and voltage level—is
Low. For example, the B/A pin specifies Chan-

voltage) and it specifies Channel A when it
carries a logic 0 (low voltage).

Asynch-
ronous
Format
Operations

Bits per Character. The SIO can receive or
transmit 5, 6, 7, or 8 bits per character. This
can be different for transmission and recep: -
tion, and different for each channel., ASCII
characters, for example, are usually transmit-
ted as 7 bits. The SIO can in fact transmit
fewer than 8 bits per character when set to the
5-bit mode; this is discussed further in the sec-
tion entitled “Questions and Answers."

Parity. A parity bit is an additional bit added-
to a character for error checking. The parity
bit is set to 0 or 1 in order to make the tatal

number of 1s in the character (including parity .
bit) even or odd, depending on whether even
_or odd parity is selected. The SIO can be get

either to add an optional parity bit to the “bits

per character” described above, or not to add »

such a bit. When a parity bit is included,
either even or‘odd parity can be chosen. This

" selection can be made independently for each

. -Start and Stop Blts. There are two types of

-~ up. A logic 1 level that continues after the

channel.

framing bits for each character: start and stop.
When transmitting asynchronously, the SIO
automatically inserts one start bit (logic 0) at
the beginning of each character transmitted.
The SIO can be programmed to set the
number of stop bits inserted at the end of each
character to either 1, 1%, or 2. The receiver
always checks for 1 stop bit. Stop bits reler to
the length of time that the stop value, a logic
1, will be transmitted; thus 1% stop bits means
that a 1 will be transmitted for the length of
clock time that 1% bits would normally take

specified number of stop bits is called a
“marking” condition or “mark bits.”

'CPU.SIO
Character

Transfers

The SIO always passes 8-bit bytes to the S

€PU for each character received, no matter

how many “bits per character” are specified in |

the SIO initialization phase. If the number of

- “bits per character” is less than eight, parity .

and/or stop bits will be included in the byte
sent to the CPU. The received character starts
with the least-significant bit (Dg) and continues

- to the most-significant bit; it is immediately

followed by the parity bit (if parity is enabled)
- and by the stop bit, which will be logic 1

. of the byte, if space is still available, is filled

* acter" is eight, then the byte sent to the CPU

unless there is a framing error. The remainder
with logic 1s {marking). If the “bits per char-
will contain only the data bits. In all cases, the

start bit is stripped off by the SIO and is not
trangmitted to the CPU.

Clock
Dlvlder

The SIO has five input pins for clock
signals. One of these inputs (CLK) is used
only for internal timing and does not affect
transmission or reception rates. The other four

-clock inputs (RxCA, TxCA, RxCB, and
TxCB]) are used for timing the reception and

transmission rates in Channels A and B. Only
these last four are involved in “clock divid-
ing.” A clock divider within the SIO can be

programmed to cause reception/transmission
clocking at the actual input clock rate or at

receiver and transmitter clock divisions within
a given channel must be the same, although
« their input clock rates can be different. The x1
" clock rate can be used only if the transitions of
‘the Receive clock are synchronized to occur
during valid data bit times.

1/16, 1/32, or 1/64 of the input clock rate. The

Auto
: Enables

Special
Receive
Condjitions

Modem
Control

‘ Tl o [l o U R

- 26-0003-0342

&
%

- Special

The SIO has an Auto Enables feature that

allows automatic SIO response and telephone -
answering. When Auto Enables is set for a par-

+ ticular channel, a transition to logical 0 (Low
input level) on the respective Data Carrier-

Detect (DCD) input will enable reception, and
a transition to logical 0 on the respective Clear
To Send (CTS) input will enable transmission.

This is described below under the heading
"Modem Control.”

- Recelve
- Conditions

" There are three error conditions that can
occur when the SI1O is receiving data. Each of
these will cause a status bit to be set, and if
operating in [nterrupt mode, the SIO can

-optionally be programmed to interrupt the
CPU on such an error. The error conditions

are called “special receive conditions” and
they include:

8 Framing error. If a stop bit is not detected
. in its correct location after the parity bit {if
used) or after the most-significant data bit
- (if parity is not used), a framing error will
result. The start bit preceding the char-
acter's data bits is not considered in deter-
, mining a framing error, although character

assembly will'not begm until a start bit is
detected.

'm Parity error. If parity bits are attached by
- the external I/O device and checked by the
51O while receiving characters, a parity
error will occur whenever the number of
"logic I data bits in the character (including
the parity bit) does not correspond to the
odd/even setting of the parity-checkmg
: function.
® Receiver overrun esror. SIO buifers can
. hold up to three characters. 1 a character is
" received when the bulfers are full (i.e.,
characters have not been read by the CPU),
an SIO receiver overrun error will result. In
this case, the most recently received char-
acter overwrites the next most recently
- received character.

Five signal lines on the SIO are provided

. for optional modem control, although these

. lines can also be used for other general-
purpose control functions. They are:

- RTS8 (Request To Send). An output'from the

SIO to tell its modem that the SIO is ready to
transmit data

.

DTR (Data Terminal Ready). An output (rom
the SIO to tell its modem that the SIO is ready
to receive data.
€T5 (Clear To Send). An input to the SIO
from ite modem that enables SIO transmxssxon
if the Auto Enables function is used. -
DCD (Data Carrier Detect). An input to the
SIO from its modem that enables SIO recep-

tion if the Auto Enables function is used.

st
{CHANNEL A)

. SYNC (Synchronization). A spare input to the
- SIO in asynchronous applications. This input
may be used for the Ring Indicator function, if
necessary, or for general-purpose inputs,

" In most applications of asynchronous I/O
- that use modems, the RTS and DTR control
lines and the Auto Enables function are acti-

. vated during the initialization sequence, and

- they are left active until no further I/O is
expected. This causes the SIO to tell its
modem continuously.that the SIO is ready to
transmit and receive data, and it allows the
modem to enable automatically the SIO's trans-

mission and reception of data. Figure 3 illus-
trates this.

MODEM

REQUEST TO SEND

: } . CLEAR 0 SEND
TRANSMITTER .

. DATA READY
e DETECT

‘RecEiver _ DATA

R:D

LS ' J

\

Figure 3. Modem Control (Single Channel)

External/.
Status

Interrupts

A change in the status of certain external
inputs to the SIO will cause status bits in the
SIO to be set, In the Polled Mode, these status
bits can be read by the CPU, In the Interrupt
mode, the SIO can also be programmed to
interrupt the CPU when the change occurs.
There are three such “external/status” condi‘ :

. tions that can cause these events:

s DCD. Reﬂects the value of the DCD mput
8 CTS. Reflects the value of the CTSinput. .

" 'm Breck. A series of logic 0 or “spacing” bits.

Note that the DCD and CTS status bits are
" the inverse of the SIO 10 lines, i.e., the DCD bit
will be 1 when the DCD line is Low.
Any transition in any direction (i.e., to logic
0 or to logic 1) on any of these inputs to the
.SIO will cause the related status bit to be
latched and (optionally) cause an interrupt.

- The SIO status bits are latched after a transi-
“.. tion on any one of them, The status must be . °

reset (using an SIO command) before new

- transitions can be reflected in the status bits,

“Initialization

. The SIO contains eight write registers for
Channel B (WR0-WR?) and seven write
registers for Channel A (all except write

. register WR2). These are described fully in

the Z80 SIO Technical Manual and are

summarized in Appendix B. The registers . are o

programmed separately for each channel to
configure the functional personality of the
channel. WR2 exists only in the Channe! B
register set and contains the interrupt vector
for both channels. Bits in each register are
named D; (most significant) through Dg. With

" the exception of WR0, programming the write)
' registers requires two bytes: the {irst byte is to

WRQ and contains pointer bits for selection of
one of the other registers; the second byte is
written to the register selected. WRO is a
special case in that all of the basic commands

- can be written to it with a single byte.

There are also three read registers, named

RRO through RR2, from which status results
" ol operations.can be read by the CPU (see
Appendix B). Both channels have a set of

read reqisters, but register RR2 exists only in
Channel B.
Let us now look at the typical sequence of

" write registers that are loaded to initialize

the SIO for either Polled or Interrupt-driven

" asynchronous [/O, Figure 4 illustrates the

sequence. Except for step E, this loading is

‘,' done for each channel when both are used.
"Steps E and F are described further in the sec-

tion on “Interrupt-Driven Environments.”
Registers WR6 and WR? are not used in

* . asynchronous 1/O. They apply only to syn-

chronous communication.
The related publications on the SIO should .

~ be referred to at this point. They will be

necessary in following the discussion of func-
tions. In particular, the following material
should be reviewed: :

280 SIO Technical Manual, pages 9-12
~ (“Asynchronous Operation”) : .

Z80 SIO Technical Manual, pages 29-37
("Z80 SIO Programming”)

A, Load WRO. This is done to reset the SiO.

..B. Load WR4. This specifies the clock divider, number oi
stop bits, and parity selection. Since regisier WR4

establishes the general form of /O lor which the 510 is to .

- be used, it is best to set WR4 values lirst.

C. Load WR3. This specifies the number of receive bits .
per character, Auto Enable selection, and turns on the -
receiver enabling bit. -

D. Load WR5. This specilies the number of transmit bits

" per character, turns off the bit that transmits the Break
signal, turns on the bits indicating Data Terminal Ready - -

and Request To Send, and turns on the transmiller .
enabling bit.

E. Load WR2. (Interrupt mode only and Channel B only)
This specifies the interrupt vector.

" F. Load WRL. {interrupt mode only.) This specities

various lnterrupt handlinq options that will be explainad
laler

* NOTES

Steps A through F are perlormed in seguence,
‘Channel B only.
tinterrupt mode only Palling mode begun VO slter step D.

. Figure 4. Typical Initialization Seq {One Chan "’

@ -

LOAD

SECTION

Character
Reception

the
va
Th
the
als
wh

" De

Polled Environments.

In a typical Polled envxronmen{ the SIO is
initialized and then periodicaily checked for
completion of an /O operation. Of course, i
the checking is not frequent enough, received

- characters may be lost or the transmitter may

be operated at a slower data rate than that of

which it is capable. Initialization for Polled /O
follows the general outline described in the
last section. We now give an overview of
routines necessary for the CPU to check
whether a character has been received by the
SIO or whether the SIO is ready to transmit a
character.

Character
Reception

To check whether a character has been
received, and to obtain a received character if
one is available, the sequence illustrated in
Figure 5 should be followed after the SIO is
initialized. We assume that reception was
enabled during initialization; if it was not, the
Rx Enable bit in register WR3 must be turned
on before reception can occur. This must be
done for each channel to be checked.

Bit Dy of register RRO is set to | by the SIO
if there is at least one character available to be

received. The S]O contains a three-character .-
.input buffer for each channel, so more than

one character may be avatlable to be received.
Removing the last available character from the
read buffer for a particular channel turns off
bit Dp.

If bit Dy of register RRO is 0 then no

- character is available to be received. In this

case it is recommended that checks be made of
bit D7 to determine if a Break sequence (null
character plus a framing error) has been
received. If so, a Reset External/Status Inter-
rupts command should be given; this will set
the External/Status bits in register RRO to the
values of the signals currently being received.
Thus, if the Break sequence has terminated,

the next check of bit Dy will so indicate. It may
also be desirable to check bit 3 of register RRQ

which reports the value of the Data Carrier
Detect (DCD) bit.

READ ARD

CHARACTER
AVA!I’-'ABLE

RESET EXTERNALS
STATUS INTERRUPTS

- In any case, if bit Dg of register RRO is 0,

*. polled receive processing terminates with no
. character to receive. Depending on the facil-

ities of the associated CPU, this step may be
repeated until a character is available (or
possibly a time-out occurs), or the CPU
may return {o other tasks and repeat this
process later.

If bit Dy of register RRO 5 1, then at least
one character is available to be réad. In this
case, the value of register RR1 should first be

- read and stored to avoid losing any error infor-

mation (the manner in which it is read is
explained later). The character in the data
register is then read. Note that the character
must be read to clear the buffer even if there is
an error found.

Finally, it is necessary to check the value
stored from register RR1 to determine if the
character received was valid. Up to three bits .
need to be checked: bit 6 is set to 1 for a

. framing error, bit 5 is set to 1 for a receiver

overrun error (which occurs when the receive
buffers are overwritten, i.e., no character has
been removed and more than three characters
have been received), and bit 4 is setto 1 for a
parity error (if parity is enabled at initial-
ization time). In case of a receiver overrun or

. parity error, an Error Reset command must be

given to reset the bits.

READ Rft
READ
CHARACTER

RECEIVE

RESET
ER?OR . ERRORS

NN

Figure 5. Polled Receive Routine

547

- Character

To check that an initialized SIO is ready to

Transmission transmit a character on a channel, and if so to

transmit the character, the steps illustrated in
Figure 6 should be followed. We assume that
the Request To Send (RTS) bit in WRS, if
required by the external receiving device,
and the Transmit (Tx) Enable bit were set at

- initialization, - - .

Depending on the external receiving device,

- the following bits in register RRQ should be

checked: bit 3 (DCD), to determine if a data
carrier has been detected; bit 5 (CTS), to
determine if the device has signalled that it is
clear to send; and bit 7 (Break), to determine

it a Break sequence has been received. If any |

of these situations have occurred, the bits in
register RRO must be reset by sending the

* Reset External/Status Interrupts command, and '

the transmit sequence must be started again.
Next, bit 2 of register RRO is checked. If this
bit is 0, then the transmit buffer is not empty

" “and a new character cannot yet be transmitted.

Depending on the capabilities of the CPU, this
is repeated until a,character can be trans-
mitted {or a timeout occurs), or the CPU may
return to other tasks and start again later.

If bit 2 of register RRO is 1, then the transmit -

buffer is empty and the CPU may pass the

) DCO YES
STATE
. ?
NO

character to be transmitted to the SIO, com-
pleting the transmit processing. On the

280 CPU, this is done with an QUT instruction
to the SIO data port.

RESET EXTERNAL/
STATUS INTERRUPTS

crs
CHANGED'STATE

NO

BREAK
BIT CHANGED
STATE
?

\
NO

PUT CHARACTER
N Tx BUFFER

Figure 8. Polled Transmit

Assumptions
for an ’
Example \

Now let us consider some examples in more
detail. We assume we are given an external
device to which we will input and output 8-bit
characters, with odd parity, using the Auto

. Enables feature. We will support this device
“*with I/O polling routines following the patterns

illustrated in Figures 5 and 6. We assume that
the CPU will provide space to receive char-
acters from the SIO as fast as the characters
are received by the SIO, and that the CPU will
transler characters as fast as the output can be

accomplished by the SIO. .

We specify this example by giving the con-
trol bytes (commands) written to the SIO and
the status bytes that must be read from the
SIO. Recall that to write a command to a regis-

“ter, except register WR0, the number of the

register to be written is first sent to register

- WRU; the following byte will be sent to the

named register. Similarly, to read a register
other than RRO (the default), the number of the
register to be read is sent to register WRQ; the
following byte will return the register named.

Initialization

'

We begin with the initialization code for the

. SIQ. This follows the outline illustrated in

Figure 4. In the following sample code, each
time register WRO.is changed to point to
another register, the Reset External/Status
Interrupts command is given simultaneously.
Whenever a transition on any of the external
lines occurs, the bits reporting such a transi-
tion are latched until the Reset External/Status
Interrupts command is given. Up to two transi-
tions can be remembered by the SIO. There-
fore, it is desirable to do at least two different

Reset External/Status Interrupts commands as
late as possible in the initialization so that the
status bits reflect the most recent information.
Since it doesn’t hurt, we include these com-
mands each time WRQ is changed to point to
another register. This is an easy way to code
the initialization to insure that the appropriate -
resets occur.

In the example below, the logic states on the -

‘C/D control line and the system data bus

(D7-Dy) are illustrated, together with
comments. .

26-0003-0345 . |

e A AN

{Continued)

Initialization

- ‘Reset and
Error
chuonco:

g

e,

Data Carrie
sequence”
RRO to refle
the pins. T}
the Reset E:
mand and k
The comma
register WE

D; Dg

BN N

Pormils the sta

This comr
for such thh
4-6 of regist

occurs and |

HRecelve and Now we w
Transmit of the receiy
Routines preceding d

- : Reception.””
The framti

on a characi

Initialization _ Blts sent to the SIO o
ontinued) C/D D; Dg Ds Dy Dy D3 D Dg . - Effects ond Comments

‘ ‘ 1 0 0 0 1 1 [¢} 4] 0 Channel Reset command sent to register WRO (Dg-Dj).

. 1 01 0o T [0 1] 0] 0 . Point WROto WR4 (D;-Dg) and tesue a Reset External/

. Status Interrupts command (Ds-Dg). Throughout the

i initialization, whenever we point WRO to another
register, we will also issue this command for the
reasons noted abave.

1 1 1 0 0 1 1 0 Set WR4 to lndlcate the following parameters (from left

* Reset and

to right):

A. Run at 1/64 the input clack rate (D;-Dg).

B. Disable the sync bits and send out 2 stop bits per
" character (D5-Dy).

C. Enable odd parity (Dy-Dg).
Point WRO to WR3. ’

Set WR3 to indicate the following:

- A. 8-bit characters to be recelved (Dy-Dg).
B. Auto Enables an (Dg).

C. Recelve (Rx) Enable on (D).

Point WRO to WRS.

Set WRS to indlcate the following:
A. Data Terminal Ready (DTR) on (Dy).
B. 8-bit characters to be transmitted (Dg-Dsg).
C. Break not to be transmitted (Dg).
D. Transmit (Tx) Enable on (D3).
E. Request To Send (RTS) on (D)).

Error
| Sequences

Recelve and

In the receive and transmit routines that fol-

- low, we treat errors such as a transition on the

Data Carrier Detect line by calling for a “reset

sequence” to set the values in read register
RRO to reflect the current values found at

the pins. This sequence consists of fjiving

the Reset External/Status Interrupts com- .
mand and beginning the driver over again.

. The command takes the form of a write to

register WRQ:
Dy Dy Ds Dy D Dy Do
ojoJo]irJoaJoJoT o
Pormits the status bits in RRO to reflect current status.

This command does not turn off the latches

for such things as parity errors stored in bits
4-6 of register RR1. When such an error

occurs and the latches must be reset, we will

Dy

call for an "error sequence.” This sequence,
consists of giving the Error Reset command
and beginning the driver over again. The

command also takes the form of a write to
register WRO:

D Dg Dy Dy Dy D3 D Dy
oJo]xe]o]o[oIo
Resets the lalches in register RRI.

When specifying the result of reading
register RRO or RRI or specifying data, we will
indicate the values read as follows:

DstDsDtDaDanDu
HENERERERERERE
Read a byte from the designated register..

Transmit
Routines

“ Now we will first give an example
of the receive routine. This parallels the

preceding discugsion of “Character
Reception.” :
The framing error in this routine is reported
on a character-by-character basis and it is not

necessary to execute an “error sequence” if it
is the only error received. However, it ls not
harmful to do so.

Next, we give an example of transmiasion
code that parallels the above discussion on
. “Character Transmission."”

Receive and
. Transmit

Routines

(Continued)

i . Bits sent and received
C/ﬁ D7 Da D5 ! D‘ D3 Dz Dl Do

1 D D D D D D {.-D D

0 Dy Dg | Ds | Dy | D3| D | Dy | Dy

Effects and Ci ts (Receive Routine)

.

Read a byte from RRO (the default read register); il
Dg =0 then no character is ready to be received. In
this case, if D7 (Break) or D3 (Data Carrier Detect)
have changed state, then execute a “reset sequence.”
It Dg=0 and D; and D3 have not changed state, then
no character Is ready to be received; either loop on
this read or-try again later.

Point WRO to read from RR1; we will now check for
.errors in the character read. Note that Reset Exter-
nal/Status Interrupt Commands are not done normally
to avoid losing a line-status change.

Read a byte from RR1; if either bit Dg=1 (framing
error), Dg= (veceive overrun error), or Dy=1
(parity error), the character is invalid and an "error
sequence” should be executed after the following step.

Read in the data byte recelved. This must be done to
clear the S1O builer even if an error is detected.

_ Bits sent and recelved)
C/D Dy Dg Ds Dy D3 D Dy Dg

1 D D D D D D D D

2]

0} D D D D D D D D

/

Effects and C ts (Transmit Routine)

Read a byte from RRO; If either bit D3 (Data Carrler
Detect), D (Clear To Send) or D7 (Break) have
changed state, 'a “reset sequencs” should be executed.
It D3, Dg and D7 have not changed state, then if
Dy =0, the transmit buffer is not yet empty and
a transmit cannot take place; either loop, reading RRO,
or try again later.

Send the data byte to be transmitted.

SECTION
4 .

. Interrupt-Driven Environments.

In a typical interrupt-driven environment,
the SIO is initialized and the first transmission,
if any, is bequn. Thereafter, further /O is
interrupt driven. When action by the CPU is

- needed, an SIO interrupt causes the CPU to
branch to an interrupt service routine after the
CPU first saves state information. .

In common usage, if 1/0 is interrupt driven,

. . all interrupts are enabled and each different

type of interrupt is used to cause a CPU

" branch to a different memory address. There is

¥

perhaps one frequent exception to this: parity
errors are sometimes checked only at the end
of a sequence of characters. The SIO facili-
tates this kind of operation since the parity
error bit in read register RR1 is latched; once
the bit is set it is not reset until an explicit

reset operation is done. Thus, i a parity error
has occurred on any character since last reset,
bit 4 in register RR1 will be set. It is then
possible to set register WR1 so that parity
errors do not cause an error interrupt when a
character is received. The user then has the
obligation to poll for the value of the parity
bit upon completion of the sequence.

SIO initialization for Interrupt mode nor-
mally requires two steps not used in Polled
mode: an interrupt vector (if used) must be
stored in write register WR2 of Channel B and
write register WR1 must be initialized to
specity the form of interrupt handling. It is
preferable to Initialize the interrupt vector in

- WR2 first. In this way an interrupt that arrives

after the enabling bits are set in WR1 will
cause proper interrupt servicing.

Interrupt
Vectors

The interrupt vector, register WR2 of Chan-
nel B, is an 8-bit memory address. When an
interrupt occurs (and note that an interrupt
can only occur alter interrupts have been
enabled by writing to register WR1) the inter-
rupt vector is normally taken as one byte of an
address used by the CPU to find the location
of the interrupt service routine. It is also
possible to cause the particular type of inter-
rupt condition to modify the address vector in
WAR2 before branching, resulting in a branch

to a different memory location for each inter-
rupt condition. This is a very useful construct;
it permits short, special-purpose interrupt
routines. The alternative, to have one general-
purpose interrupt routine which must deter-
mine the situation before proceeding, can be
quite inefficient. This is usually undesirable
since the speed of interrupt-service routines is
often a critical factor in determining system
performance.

Interrupt
Vectors

(Continued)

Tt
inter
each
WRI
an ir
the t
chan
rupt.
prior
prior
Chan

3-1
Chan
tol
Chan:
tol
Chani
3-1
Chanr
31
Chanr
to 0.

Chann

to OC
Chann

31t

For «
tor hac
Alfects
interru
transiti
(bits 3-

‘an intel

the inte
tained |

Initialization

Inge
{llustrat
six step
After cc
the sam
necessa
of Chan
register
to be en
interrup

Now I
example
device t
characte
Enables
provide

We dc
registers
Technicc

. bit assigq

Input/Ou
at the en

Interrupt -

" There are at most eight different types of
Vectors interrupts that the SIO may cause, four for
(Continued) = each of the two channels. If bit 1 in register

- WRI of Channe! B has been turned on so that
an interrupt will modify the interrupt vector,

the three bits (1-3) of the vector will be

rupt. These interrupts follow a hardware-sst
priority as follows, starting with th

3-1 of WR1 to 111,

" Channel A Character Received sets bits 3-1
to 110,

" 10 100,

3-1to 101.

Channel B Special Receive Condition sets bits
. 31t 01y, '

" Channel B Character Received sets bits 3-1
to 010,

Channel B Tranemit Buffer Empty sets bits 3-1
to 000, ‘

Channel B External/Status Transition sets bits
3-1 to 001.

For example, suppose that the interrupt vec-
tor had the value 11110001 and the Status
Affects Vector bit is enabled, along with all
, interrupt-enable bits. When an External/Status
transition occurs in Channel A, the three zeros
(bits 3-1) would be modified to 101, yielding
‘an inferrupt vector of 11111011, The value of
the interrupt vector, as modified, may be
tained by reading register RR2 in Channel B.

Initialization

taneously. Therefore, these two interrupts have
changed to reflect the particular type of inter- -

not to be interrupted on some of the eight con-
e highest ditions; in this case, the presence of & par-
priority: ' : ,-Hicular condition for which interrupts are not
Channel A Special Receive Condition sets bits

allowing a different routine to handle each
Channel A Transmit Buffer Empty sets bits 3-1

Channel A External/Status Transition sets bits .

Note that when a character is recejved,
either the Special Receive Condition or Rx
Character Available interrupt will accur,

" depending on whether or not an error
occurred; the two will never occur simul-

'

equal priority, Note also that you can select

. desired can be determined by polling.
Suppose that interrupts have been enabled
for all possible cases, and that the Status
Affects Vector bit has also been enabled,

possible interrupt, As each interrupt causes a
branch to a location only two bytes higher than
the last interrupt, 1t is not possible to place a
routine directly at the location where the vec- .
-tored interrupt branches. In a Z80 CPU envi-
ronment, these addresses refer to a table in ~
memory which contains the actual starting
location of the interrupt service routine. Also,
since the state information saved by a CPU is
rarely all of the information necessary to prop-

- erly preserve a computation state, a typical
interrupt service routine will begin by saving .
additional information and end by restoring
that information, This is shown briefly in the
examples of code in Appendix A.

1t is possible to connect several SIOs using
the interrupt mechanism and the IEI and IEO
lines on the SIO to determine a priority for
interrupt service. This mechanism is discussed
on page 42 of the 280 SIO Technical Manual

and in the Z80 Family Program Interrupt

Structure Manual, We do not go into it further

in this application note.

In general, the initialization procedure
illustrated in Figure 4 can still be followed. All
- six steps (A through F) are required here.
After completing the first four steps, which are
" the same as initialization for polled I/Q, it is
necessary to load an interrupt vector into WR2
of Channel B. Information is then written into
register WR1 specilying which interrupts are
to be enabled and whether a specific kind of
interrupt should modify the interrupt vector.
Now let us give an example. As in the polled
" example, we assume that we are givena
* device to which we will input and output 8-bit
characters, with odd parity, using the Auto
Enables feature. We also assume the CPU will
provide space to store characters as received.

Up to two transitions can be remembered by

We do not discuss the SIO commands and the internal logic of the SIO. Therefore, it is
registers in detail. This is done in the Z80 SIO desirable to do at least two different Reset «
External/Status Interrupt commands as late as I
possible in the initialization so that %he status S
Input/Quiput Product Specification is included bits reflect the most recent information. Since
at the end of this note. Recall that to write a it doesn't hurt, we give these commands each

Technical Monual. A summary of the register
. bit assignments taken from the Z80 SIO Serial

_the external/status lines occurs, the bits report-

register other than register WRO, the number
of the register to be written is first sent to
register WRO, and the following byte will be
sent to the named register. Similarly, to read a
register other than RRQ (the default), the
number of the register to be read is first writ-
ten to register WRO and the next byte read will
return the contents of the register named.

In our example below, each time register
.WRO is changed to point to ancther reqister,
the Reset External/Status Interrupts command
is also given. Whenever a transition on any of

ing the transition are laiched until the Reset
External/Status Interrupts command is given.

-Initialization time WRO is changed to point to another reg- . The columns below show the logic states on

(Continued) . - ister. This is an easy way to code the initial- * the C/D control line. and the system data bus
{zation to assure that the appropriate resets . (Dg-Dyp), together with comments. ;
oceur. ' .

- Bits sent to the SIO e . '
C/D Dy ‘Ds D¢ D3, Dy Effects and Comments

1 0 1 1 0 ' " Channel Reset command sent to register WRO (Ds-Dj). .-

1 0 1 0.1 Point WRO to WR4 (D-Dy) and issue a Resst Exter-
nal/Status Interrupts command (Dg-D3), Throughout

* the initialization, whenever we point WRO to another
register we will also issue a Reset External/Status
Interrupta command for the reasons noted above.’

Set WR4 to indicate the following parameters (from left -
to right):
. A. Run at 1/64 the clock rate (D7-Dg),
B. Disable the sync bits and send out 2 stop bits per
character (Ds-Dj). .
C. Enable odd parity (D;-Dg).

Point WRO to WR3,

Set WR3 to indicate the following:
A. B-bit characters to be received (D7-Dg).

. B. Auto Enables on (Dg). L
C. Rx Enable on (Dp).

Point WRO to WRS,

Set WRS to indicate the following:
A. Data Terminal Ready (DTR) on (D).
B. 8-bit characters to be transmitted (Dg-Ds).
C. Break not to be transmitted (D).
D. Tx Enable on (D3). . !
E. Request To Send (RTS) on (D)).

Point WRO to WR2 (Channel B only). .+

/.
. Set the Interrupt vector to point to address 11100000
" {which 1s hex EO and decimal 224). Once interrupts
" are enabled, they will cause a branch to this memo
. location, modified as described above 1f the Status
- Affects Vector bit is turned on (which it will be hers
This vector is only set for Channel B, but t applies
to both channels. It has no effect when set in
Channel A. . S

‘1 'PomtWROto WRL.' .~

1 Set WRI to Indicate the following:

: A. Cause interrupts on all characters received,
treating a parity error as a Special Receive
Condition interrupt (Dg-Dg). .

B. Turn on the Status Affects Vector feature, causing’
Interrupts to modily the status vector-—meaningful
only on Channel B, but will not hurt if set lor
Channel A (Dj). . .

C. Enable interrupts due to transmit buffer being
empty (Dy). - j

D. Enable External/Status interrupts (Dp).-

gic states on 280

m data bus.,.” & Assembler
. | Code

"(Continued)

RO (D5-D).

st Exter-
wroughout
'0 another
Status
tbove,

8 (from left

p bits per .

0000
rrupts
nemory
tatus

e here).
plies

wsing
Ingful
r

g

PUSH AF
IN A,(S1Odata)
LD’ (X) ,A

POP AF
El
RETI

SlOrecint:

1save registers which will be used in this routine

» ;fetch the character received

;store result for later use

;restore saved registers
;enable interrupts
;return from interrupt

Of course, this last routine is probably far .
too simple to be useful. It is more likely that
an interrupt routine will fill up a buffer of
characters. A more complex example of a
receive interrupt routine is contained in the

SlOextint: PUSH AF

LD A.,00010000B
OUT (SlOctrl) ,A
IN A,(SIOctrl)
LD Xy A

POP AF
El
RETI

chapter entitled "A Longer Example.”

We now, give a simple interrupt routine for
an External/Status Interrupt, again assuming
that the status contents of SIO register RRO are
stored in temporary location X:

;save registers which will be used‘in this routine

isend a Reset External/Status Interrupts command

:fetch register RRO
";store result for later analysis

;restore 2aved registers
;enable interrupts
ireturn from Interrupt

Finally, we give the processing for a

transmit interrupt routine in the case where no

more characters are to be transmitted.
1t is likely that this code would just be a por-
tion of a more general transmit interrupt

PUSH AF .. -
LD A,00101000B
OUT (SIOctl) ,A
. POP AF |

El
RETI

S10trnint:

routine which would transmit a buffer-full of
information at a time. A more complex exam-
ple is included in the section entitled “A
Longer Example.”

;save registers which will be used in this routine

;send a Reset Tx Interrupt Pending command

;restore saved registers
;Enable Interrupts
;Return From Interrupt

[}

5

Hardware
Considerations

SECTION

Questions and Answers.
Q: Can a sloppy system clock cause prob-
lems in S1O operation?
A: Yes; the specifications for the system
clock are very tight and must be met closely
to prevent SIO malfunction. The clock high
voltage must be greater than Ve — 0.6V but
less than +5.5V. The clock low voltage
must be greater than —0.3V but less than
+0.45V. The transitions between these two
levels must be made in less than 30 ns. This
does not apply to the RxC and TxC inputs
which are standard TTL levels.

Q: .When is a received character available to
be read?

A: Data will be available a maximum of 13
system clock cycles from the rising edge of '
the RxC signal which samples the last bit of
the data.

Q: What is the maximum time between
character-insertion for transmission and
next-character transmission?

A: This will vary depending on the speed of
the line over which the character is being -
transmitted.

Q: Are the control lines to the SIO synchro- . -

nous with the system clock so that noise may
exist on the buses any time before setup -
requirements are satisfied?

© A: Yes.

Q: In asynchronous use must receiver and
transmitter clock rates be the same?

A: No, the SIO allows receive and transmit
for each channel to use a different clock
(thus up to four different clocks for receiv-
ing and transmitting data can be used on
each SIO). However, the clock multiplier
for each channel must be the same.

Q: Do Wait states have to be added when
using the SIO with other processors other
than the Z80 CPU?

‘

A: No, provided that setup times specified for/i}
the SIO are met. B

Q: If the Auto Enables bit in register W WR31
set, will a change in state on the DCD (Data
Carrier Detect) or CTS (Clear To Send)
lines still cause an interrupt?

R:" Yes, provided that External/Status Inter-
_ rupts are enabled (bit 0 in register WRI). -

Q: Is the Ml line used by the SIO if no inte;
rupts are enabled?. v

A: No, and in this case the MI input should
be tied high.

Q: Will the SIO continue to interrupt fora .
condition if the condition persists and the
" interrupt remains enabled?
A: Yes.

Q: - What is the maximum data rate of
" the SIO?
A: It is 1/5 the rate of the system clock
* (CLK). For example, if the system clock
operates at 4 MHz, the S1O’s maximum
transfer rate is 800K bits (100K bytes)
per second.

Q: What pins are edge sensitive and should
be strapped to avoid strange interrupts?
A: _ The external synchronization (SYNC) pins
and-any other external status pins that are
not used, including CTS, and DCD.

Q: . What happens if the transmitter or
recelver is disabled, while processing a
character, by turning off its associated
enable bit (bit 3 in register WRS for transmif

“or bit 0 in register WR3 for receive)?

A: The transmitter will complete the :
character transmission in an orderly fashion
The receiver, however, will not finish. It wi
lose the character being received and no
interrupt will occur. :

Register

Contents

Q: Does the Tx Buffer Empty (bit 2 in register |

RRO get set when the last byte in the buffer
is in the process of being shifted out?

A: No. The bit is set when the transmit bulter
has already become empty. Similarly, the
Tx Buffer Empty interrupt will not occur
until the buffer is empty. The same is true
for reception: the Rx Character Available
bit (bit 0 in register RRQ) is not set until the
entire character is in the receive buffer, and
the Rx Character Available interrupt will
not occur until the entire character has
been moved into the buffer.

_ Q: If an Rx Overrun error occurs (and

bit 5 of register RR]1 becomes latched on)
because a new character has arrived, which
character gets lost?

A: The most recently received character
overwrites the next most recently received
character.

Q: Does the Reset External/Status Interrupis
command reset any of the status bits in
register RRO?

A: No. However, when a transition occurs o
any of the five External/Status bits in
register RRO, all of the status bits are
latched in their current position until a
Reset External/Status Interrupts command is
tssued. Thus, the command does permit ihe
appropriate bits of register RRO to reflect
the current signal values and should be
done immediately after processing each
transition on the channel.

554

.

‘

ecified for - Recelve

- " Condition
r WR3 is Interrupts
CD (Data

jend)

s Inter-
WR1).

no inter-

should

t for a
1d the

P

lock

A Special Receive Condition interrupt
occurs (a) if a parity error has occurred, (b} if

there is a receiver overrun error (data is being

overwritten because the channel’s three-byte

receiver buffer is full and a new character is

being recefved), or (c} if there is a framing

error. The processing in this case is the fol-

lowing: ‘

1. Issue an Error Reset command (to register
WRO) to reset the latches in register RRI."

2. Read the character from the read buffer and
discard it to empty the buffer.

It may be desirable to read and store the

. value of register RR1 to gather statistics on

performance or determine whether to accept -
the character. In some applications, a
character may still be acceptable if received
with a framing error.
In specifying the result of reading register
RRO, RR1, or specifying data, we will indicate .
the values as follows: :

D; Dg Ds Dy Dy Dy Do
D]DTD]D]D]D[D[D
Read a byts from the designated register.

We now present an example of processing a
Special Receive Condition interrupt.

—

Bits sent and recelved

D Dy Dg D D, D3 D Dy Dy

1 4] 0 (] 0 g g 1) 1

Effects and Comments

If we need to know what kind of error occurred, we
point WRO to read from RR1. Note that the Reset
External/Status Interrups command is not used. This
avoids losing a valid interrupt.

Read a byte from RR1; one or more of bit Dg (framing
error), Ds (receive overrun error), or Dy (parity error}
will be 1 to indicate the specific error.

Give an Error Reset command to reset all the error
latches.

Read in the data byte received. This must be done to
clear the receiver bufier, but the character will gener-
ally be disregarded.

Character

g a - . Interrupts

Received (Rx)

When an Rx Character Available interrupt
occurs, the character need only be read from
the read buffer and stored. If parity is enabled

with character lengths of 5, 6, or 7 bits, the
received parity bit will be transferred with the
character. Any unused bits will be 1s.

ed ;o

transmit | External/
- Status

. - Interrupts
fashion.
h. It will

d no

——
ter
seived

srrupts

~ To respond to an External/Status Interrupt,
all that is necessary is to send a Reset Exter-
nal/Status Interrupts command. However, if
you wish to find the specific cause of the

interrupt, it is necessary to read register RRO.
In this case, the complete processing takes the
following form: .

- Blts sent and received
C/D Dy Dg Dy Dy D3 D3 Dy Do

1 D; | Dg] Ds | Dy | D3} Do | D1 | Dg

' Etfects and Comments

Read register RRO; bit Dy (Break), Ds (Clear To Send),
or D3 {Data Carrier Detect) will have had a transition
to indicate the cause of the interrupt.

Give a Reset External/Status Interrupts command to set
the latches in RRO to their current values and stop ’
External/Status Interrupts until another transition
oceurs,

in
Transmit (Tx)
Buffer Empty
Interrupts

'Curs on
I

la
nand is
mit the
flect

be

ich

The final kind of interrupt is a Tx Buffer
Empty interrupt. If another character is ready
to be transmitted on this channel, a Tx Buffer
Empty interrupt indicates that it is time to do
so. To respond to this interrupt, you need only
send the next character. If no other character
is ready to transmit, it may be desirable to
mark the availability of the transmit mechanism
for future use. In addition, you should send a
Reset Tx Interrupt Pending command. This
command prevents further transmitter inter-

rupts until the next character has been loaded
into the transmitter buffer.

The Reset Tx Interrupt Pending command to -
WRO takes the following form:

Dy Dg Dy Dy Dy Dz Dy Dg
ofof1Jo]i1lofofe

Reset Tx Interrupt Pending command; no Tx Empty Inter-
rupts wijl be given until offer the next character has been
placed in the transmit buffer.

To take these examples further, let us use
- Z80 Assembler code to implement the routines
for a single channel. We assume that the loca-
tion stored in register WR2 points to the
appropriate interrupt service routine. We also
. assume that the following constants have
already been defined:

SIOctrl. The address of the SIO's Channel B
-control port (we assume Channel B in order to
inchide code to initialize the interrupt vector).

SIOdata. The address of the SIO's Channel B .
data port. S L

X. An address pointing to locations in memory'
that will be used to store various values.

We will write data as binary constants; the
“B” suffix indicates this. In most cases, binary
constants will be referred to by the command
names. We begin with the initialization
routine:

i

INIT: LD C,S10ctr]

LD A,00011000B
(C).A

LD A,00010100B
out. (©) A

LD A,1100110IB

©).A

LD A,00010011B

ouT () .A .

LD A,11100001B
< .A

LD A,00010101B
(C).A

LD A,11101010B
(C).A

LD A,00010010B
©.A

LD A,11100000B
C) A

LD - A,00010001B
ouT (C) A
LD A,00010111B
ouT (C).A

RET

;place the address of the S1O in the C register for
; use in subsequent output

*;load Channel Reset command in A reglste}

;glve Channel Reset command .

i ;write to register WRO pointing it to register WR4

;output basic I/O parameters to WR4

:write to register WRO polnting it to reqgister WR3

;output receive parameters to WR3 -

;write to register WRO pointing it to regtster WRS

soutput tranamit parameters to WRS

- ;write to regtster WRO pointing it fo register WR2

; (Channel B only)

;output the interrupt vector to WR2; in this case it 18
; decimal location 224

;wﬂte to register WRO pointing it to register WR1 .

;output interrupt parameters to WR1

;return from initialization routine

Now let us look first at some sample codes
for the Special Receive Condition interrupt
routine, following the example above.

PUSH AF

. LD A,00000001B
ouT (SIQctr]) ,A

<IN A (S10ctr])
LD X) .A

LD A,00110000B

SlOspecint:

{S1Octr]) ,A
IN A,(S1Odata)

AF

This is followed by a simple receive interrupt -
routine that will fetch the character received
and store it in a temporary location.

:8ave registers which will be used in this routine
swrite to register WRO pdinting it to register RR1
ifetch register RR1

;store result for later error analysis

;send an Error Reset command to reset device
; latches

;fetch the character received—we will discard this
; character since an error occurred during its
; reception

;restore saved réglétera
;enable interrupts

;return from Interrupt

Q: If the CPU does not have the return from
interrupt sequence (RETI instruction on the
Z80 CPU), how may the SlO be informed of
the completion of interrupt handling?

A: This may be done by writing the Return

From Interrupt command (binary, 00111000)

to WRO in Channel A of the SIO.

Q. If the CPU dan be interrupted but cannot v

be used with vectored interrupts, how
should processing be done? '

A: Immediately after being interrupted, prb-

ceed in a manner similar to polling the SIO-

for both receive and transmit. Alternatively,

the Status Affects Vector bit (bit 2 in
register WR1) may be set and a 0 byte
placed into the interrupt vector (register
WR2 in Channel B). Then, the contents of
the interrupt vector can be used to deter-
mine the cause of the interrupt and the
channel on which the interrupt occurred.
This can be queried by reading register RRI
of Channel B. Also, Ml should be tied High
and no equivalent to an interrupt acknowl-
edge should be issued.

Q: How can the Wait/Ready (W/RDY) signal
be used by the CPU in asynchronous /07
A: The W/RDY signal is most commonly used
in Block Transfer Mode with a DMA, and

this use is described in the Z80 DMA
Technical Manual. However, W/RDY may
be directly connected to the Z80 CPU WAIT
line in order to,use the block I/O instruc-
tions OTDR, OTIR, INDR, and INIR. In this

case, the SIO can be used for block transfer

reception. To do this, the SIO is configured
to interrupt on the first character received
only (by settings bits 4 and 3 of register
WRI to 01) and additional characters are

sensed using the W/RDY line. The block /O -

instructions decrement a byte counter to
determine when 1/O is complete.

Q: Can the SYNC pin have any use in asyn-"
chronous [/O?

A: It may be used as a general-purpose
input. For example, by connecting it to a .
modem ring indicator, the status of that ring
indicator can be monitored by the CPU."

'

Q: How can the SIO be used to transmit
characters containing fewer than 5 bits?

A: First, set bits 6 and 5 in register WR5 to
indicate that five or fewer bits per character

* will be transmitted. The SIO then deter-

- mines the number of bits to actually transmit
from the data byte itself. The data byte
should consist of zero or more ls, three Os,
and the data to be transmitted. Thus, begin-
ning the data byte with 11110001 will cause
only the last bit to be transmitted: -

Contents of data byte
(d = arbitrary value)

‘D Dg Ds Dy Dy D2 Dy Dg

1 11 1 0 0 0 d 1

1 1 1 0 0 0 d d 2

1 1 0 0 0 d d d 3

1 0 0 0 d d d-4 4

0 0 0 4d d d d d §
*The rightmost ber of bita Ind| i will be 3

Q: Can a Break sequence be sent for a fixed
number of character periods?

A: Yes. Break is continuously transmitted as
logic O by setting bit 4 of register WRS. You
can then send characters to the transmitter
as long as the Break level is desired to per-
sist. A Break signal, rather than the char-
acters sent, will actually be transmitted, but
each bit of each character sent will be

- clocked as if it were transmitted. The All

- Sent bit, bit 0 of register RR1, is set to 1
when the last bit of a character is clocked
for transmission, and this may be used to

- determine when to reset bit 4 of register’
WRS and stop the Break signal. ‘

Q: If a Break sequence is initiated by setting

bit 4 of register WRS, will any character
in the process of being transmitted be - .
completed?

A: No. Break is effective immediately when

bit 4 of WRS is set. The “all sent” bit in
register RRI should be monitored to deter-
mine when it is safe to initiate a Break

- sequence. : -

& Longer Example. .

In this section, we give a longer example of C Jv
asynchronous interrupt-driven tull-duplex I/0O LOAD | REGISTER WITH
using the SIO. The code for this example is - . N AL ApLERRUPT-

contained in Appendix A, and the basic]

routines are flow charted in Figures 7-12. /

The example includes code for initialization oA ow o o

- of the SIO, initialization of a receive buffer o | LERURTIASLE Anohess,
interrupt routine, and a transfer routine which : . B !
causes a buffer of up to 80 characters of infor- O QISTER WiTH
- mation to be transmitted on Channel A and a. © | 510 INITIALZATION TABLE.
buffer of up to 80 characters of information to
be received from Channel A. The transfer .

" routine stops when either all data is received MOVE DATA WORD FROM
or an error occurs. Completion of an operation) L f ARt i
on a buffer for both receive and transmit is

. indicated by a carriage return character.
Additional routines (not included in this exam.
ple) would be needed to call the initialization

-code and initiate the transfer routine. There-
fore, we do not present a complete example; :
that would only be possible when all details of .) P —
a particular communication environment and coural:gtc PORT OF B0TH
operating system were known.)

The code begins by defining the value of the .
SIO control and data channels, followed by :
location definitions for the interrupt vector.
There is then a series of constant definitions of
the various fields in each register of the SIO.
This is followed by a table-driven SIO initiali-
zation routine called “SIO__init,” shown in
Figure 7, which uses the table beginning at
the location “SIOItable.” The SIO__Init routine
initializes the SIO with exactly the same

SET TRANSMIT BUFFER POINTER TO BEGINNING ‘
OF TRANSMIT BUFFER. SET RECEIVE BUFFER . SAVE REQISTERS

POINTER TO BEGINNING OF RECEIVE
BUFFER. SET RECEIVE BUFFER COUNTER,
TRANSMIT STATUS WORD, AND RECEIVE
STATUS WORD TO ZERO. GET NEXT CHARACTER,

J TRANSMIT, AND INCREMENT

END OF
INITIALIZATION
TABLE

Figure 7. Interrupt-Driven
Initialization Routine

TRANSMIT BUFFER POINTER

STARY TRANSMISSION OF FIRST . ‘
CHARACTER IN THE BUFFER,

WAS IT A
CARRIAGE RETURN
?

TRANSMISSION TURN OFF
ERROR . TRANSMITTER
INTERRUPTS

STORE UPDATED VALUE OF
TRANSMIT BUFFER POINTER

RECEPTION

COMPLETE OR '
OVERRUN - RESTORE SAVED HEGISTERS

NO .
RETURN FROM INTERRUPT

RECEPTION
ERACR

RETURN

Figure 8. Interrupt-Driven Figure 9, Transmitter Buiier
Transmit Routine Empty Interrupt Routine

26-0003-0346 26-0003-0347 26-0003.0M8;

A Longer parameters as the interrupt-driven example in) . '

Example the previous section. The table-driven version - - L l

{(Continued) is presented simply as an alternative means of SAVE REGISTERS

- coding this material. I
A short routine for filling the receive buffer - - . ‘

with "FF” (hex) characters and buffer defini- ' i l FETCH CHARACTER ANO]
tions follows the SIO__Init routine. This in turn
is followed by the transfer routine, Figure 8,
which begins transmitting on Channel A;
transmission and reception is thereafter
directed by the interrupt routines. After the
transfer routine begins output, it checks for
various error conditions and loops until there)
is either completion or an error. i SET RECEIVE INCREMENT RECEIVE BUFFER

T,
Then the four interrupt routines follow: STATLR WORD CROINTER STORE B NECTER

TxBEmpty, Figure 9, is called on a transmit “OvERFLOW" O e NECEIVE
buffer interrupt; it begins transmission of the
next character in the buffer. A carriage return
stops transmission. RecvChar, Figure 10, is ey [wAs
called on a normal receive interrupt; it places’ - STATUE WORD | g cARRIAGE RETURN
the received character in the buffer if the buf- “COMPLETE" ?
fer is not full and updates receive counters. l "o
The routines SpRecvChar, Figure 11, and ')
ExtStatus, Figure 12, are error interrupts; they
update information to indicate the nature of ‘ l RESTORE SAVED REGISTERS l
the error. N

The code of this example can be used in a
situation where data is being sent to a device
which echoes the data sent. In such a case, the
transmit and receive buffers could be com- Figure 10. Receive Character
pared upon completion for line or transmission : Interrupt Routine

errors.

S AN TSI

iy kit et

RETURN FROM INTERRUPT

!

SAVE REGISTERS

A l L
SAVE REQGISTERS -
STORE CONTENTS OF
AR1 N RECI .

EIVE
8TATUS WORD.

STORE CONTENTS OF RRO
IN THE TRANSMIT

RESET ERAOR LATCHES . STATUS WORD.
NS0, - L

s;(snn THE RESET

* EXTERNAUSTATUS

FETCH AND DISCARD
CHARACTER. . INTERAUPTS COMMAND.,

RESTORE SAVED REGISTERS : RESTORE SAVED REGISTERS

RETURN FROM INTERRUPT

i

RETURN FROM INTERRUPT '

Figure 11. Special Receive Condition - Figure 12. External/Status
Interrupt Routine Interrupt Routine

26-0003-0349 26-0003-0350 26-0003-035!

SIOBCt1: EQU

SIO: . EQU
SIOAData: EQU
SIOACtl: EQU °

SIOBData: EQU °

40H

T slo+)

Slo+2
SIO+3
SIO+4

SIO Port ldoﬁtlﬂcu and System Address Bus Addresses

Table of Interrupt Vectors

ORG
Int_Tab: DEFW

DEFW
DEFW

DEFW
DEFW

, DEFW .

DEFW *

DEFW

0DOH

TxBEmpty ;interrupt types for Channel B

ExtStat
RxChar

Tﬁe table {Int__Tab) starts at the lowest priority vector, which
_ should be dddd000d.

i

;s(crt§ at addfesa with low
; byte = 11010000

SpRxCond h ‘ -

TxBEmpty :interrupt types for Channel A

ExiStat
RxChar

SpRxCond -

Command Identitiers and Values

‘WHRO Commands

RO: "EQU

Rl: EQU

. R2: EQU
R3: | EQU

R4: EQU

RS: EQU

R6: EQU

4 RZ: - EQU
NC: EQU

SA: | EQU
+ RESL EQU

. CHRST: EQU
EIONRC: EQU

. RTIP: EQU
ER: EQU

RFL: EQU

RRCC: EQU

RTCG: EQU

RTUEL: EQU

. WRI Commands

WAIT: EQU
DRCVRI: EQU
EXTIE: EQU
XMTRIE: EQU
SAVECT: EQU.
FIRSTC: EQU
PAVECT: EQU
PDAVCT: EQU
WRONRT: EQU
. RDY: EQU
WRDYEN: EQU
WR2 Commands
v EQU

O0H

"0lH

02H
03H
04H
OSH
06H
07H

00H
08H
10H
18H
20H
28H

" 30H

38H
40H
80H
0COH

VOH
00H
OlH
02H
04H

10H

18H
20H

40H
80H

QOH

. Includes all control bytes lor asynchronous and synchronous I/O.

;S10 register pointers

;Null Code :

:Send Abort (SDLC)

;Reset Ext/Stat Int

;Channel Reset

;Enable Int On Next Rx Char
;Reset Tx Int Pending

;Error Reset ‘)

. iReturn From Int
";Reset Rx CRC Checker

:Reset Tx CRC Generator -
;Reset Tx Under/EOM Latch

;Waeit function

:Disable Receive interrupts
;External interrupt enable
;Transmit interrupt enable
;Status affects vector

:Rx interrupt on first character
;:Rx interrupt on all characters
; {parity alfects vector) '
;Rx interrupt on all characters
; (parity doesn't affect vector)
;Wait/Ready on receive
;Ready function

;Wait/Ready enable

‘Rppendix B

Interrupt-Driven Code Example

WR3 Commands) . .
BS: EQU QOH - ;Receive 5 bits/character
RENABL: EQU 0lH ;Recelver enable
ENRCVR: EQU QlH ;Receiver enable .
‘SCLINH: EQU 020 ;Sync character load inhibit
ADSRCH: EQU 04H ; Address search mode
RCRCEN: . EQU 08H ;Receive CRC enable
HUNT: EQU 10H ;Enter hunt mode
AUTQEN: . EQU 20H ;Auto enables
B7: EQU 40H ;Receive 7 bits/character
B6: EQU 80H :Receive 6 bits/character
B8: EQU - oCOH ;Receive 8 bits/character
WH4 Commands S >
SYNC: EQU- O00H ;Sync modes enable
NOPRTY: EQU" . OOH - ;Disable parity
ODD: EQU 00H ;Odd parity
MONO: EQU 00H ;8 bit sync character
Cl: EQU O0H ;X1 clock mode
PARITY: EQU OtH ;Enable parity
EVEN: EQU 02H ;Even parity .
Si: EQU 04H ;1 stop' bit/character }
SIHALF: EQU 08H ;1 and a half stop bits/character
S2: EQU OCH - ;2 stop bits/character
BISYNC: EQU I0H ;16 bit sync character.
SDLC: EQU 20H ;SDLC mode :
ESYNC EQU 30H ;External sync mode
Cié: EQU 40H :X16 clock mode
C32: EQU 80H ;X32 clock mode
Cea: - EQU OCOH - :X64 clock mode
WRS Commands N .
T5: EQU 00H :Transmit S bits/character
. XCRCEN: EQU OlH ;Transmit CRC enable
RTS: EQU 02H ;Request to send
SELCRC: EQU 04H ;Select CRC-16 polynomial
XENABL: "EQU 08H ;Transmitter enable
BREAK: EQU 10H ;Send break 3
LT EQU 20H ;Transmit 7 bits/character
T6: EQU 40H ;Transmit 6 bits/character
T8: EQU 60H . ; Transmit 8 bits/character
DTR: EQU 80H ;Data terminal ready
Initialization
SIO..Init: LD HL, Int__Tab
LD .
LD LA
LD~ AL ’
LD (L_Loc),A
LD HL, SIOltabie
Init._Loop: LD “A,(HL) sloop for initialization
INC HL
Ccp 0
RET 2
ouT (SICACHH),
ouT (SIOBCtrl),A
. IR Init_.Loop
SiOltable: DEFB CR | :table for initialization
' DEFB R4 + RESI
DEFB - C64 + ODD + PARITY + S2
DEFB R3 + RESi
DEFB - B8 + AUTOEN + ENRCVR
DEFB R3S + RESI
DEFB DTR + RTS + T8 + XENABL
DEFB R2 + RESI
1_.Loc: DEFS 1 ;lacation of int table
DEFB Ri + RESI ;address . .
DEFB EXTIE + XMTRIE + SAVECT + PAVECT
DEFB 0

s . — -

Tl

TxB

Recelver Buffer Initialization Rece! ine (see Figure 10)

Buf_Init: LD A,BuiflLength il receiver buffer Rx'Char: AF
LD B.A : with FF characters BC
LD HL,RBuffer ; to detect errors :
! ' A,SIOAData
. LD A,OFFH . ‘ CA v
iracter - LD (HL,A :a loop for Buf.__Init AC) ;get character
) *INC HL ' . B,A .
E DINZ Bul__1 A (RBufCtr)
1d inhibit RET ~ - . BufLength
ode } ¥ Buflength: EQU 80 " ;bulfer length ' Z,0ver
dle " XBulfer: DEFS BufLength ;Tx buifer starting location A ;bump gounter
RBuffer: DEFS BufLength iRx buffer starting location (RBufCtr),A
. . . : AB
racter XBufPtr: DEFS | 2 :Tx pointer : . .
racter . . RBufPtr: DEFS 2 ;Rx pointer : }}I-lLl:(F;&BUfP tr) " ;bump pointer
racter : RBufCtr: DEFS 1 ;Rx counter ’ ;‘IL)
o (RBufPtr), HL
Transmit Routine (see Figure 8) -) gg RxExit
Initiates transmission of a buffer-full of data and terminates when . '
. anerror s detected or a complete buffer has been received. . : A,Complete
- RxStat: DEFS 1 ;Receive Status Word . X(RF:(ET:”'A
TxStat: DEFS 1 ;Transmit Status Word AOverdl
,Overflow ;indicate error.
G F00- oo ‘ ' (R, A
' Break: EQU 80H ' POP- BC
ts/character - EOM: EQU 80H POP AF
r Overflow: EQU OFFH El :
w RETI

{ﬁl)c (XBuiPtr), HL Speclal Receive Condition Routine (see Fi 1qure’ 11)

LD HL,RButfer SpRxCond: PUSH AF :
LD (RBufPtr),HL PUSH BC -
XOR A A=0
LD (RBuiCir), A LD A,SIOAData
LD (TxStat), A LD c.
. . LD ARi :get RR1
LD (RxStat), A , : INC ¢ e
A,SIOAData ;start Tx task ouT (C),A
. : , IN A«
HL,(XBuffer) ;first character LD (RxStat), A :save status
A.(HL) L LD - AER ;Reset Errors
(C).A R : DEC C !
A, (TxStat) ;await Tx completion or error : (D)E[:JCT (CC),A
0 ‘t
NZ IN AC) ;get character

A(RxStat) . ~ ' POP BC
Overflow : POP AF
z El

Complete : RETI .

Transfer: LD HL,XBuffer ;setup to begin Tx
HL

Z .
NZ,Tloop External/Status Routine (see F igure 12)

RET ExtStatus: PUSH AF
PUSH BC

Transmitter Buffer Empty Routine (see F igure 9)
TxBEmpty PUSH AF. : o ASIOACH
PUSH BC . :
: IN A(C) ;get RRO

PUSH HL . LD (TxStat), A
LD HL.(XBufPtr) LD A,RES] ;Reset Ext Stat Int
LD A,SIOAData ouTt (C).A
LD CA POP BC
LD A, (HL)

POP AF
QuTI EI

Cp CR .
IR NZ, TxBExit ;last character?, RETI

LD A,RTIP iReset Tx Int Pending
INC c .
our (C)A ;to control port

TxBExit: LD (XBufPir),HL ;save pointer
POP HL
POP BC
AF

Appendlx B

Read Register Bit Functioh#

READ REGISTER 0

Ax CHARACTER AVAILABLE
INT PENDING (CH. A ONLY)
Tx BUFFER EMPTY

[ﬁ

cTs)
Tx UNDERRUN/EOM

*Used With “External’Status
ntecrupt” Mode .

READ REGISTER 1t

{0:]0. 0. Jo. [0, J0, [0 [0u |
l—AI.L SENT

1 FIELD BIT8 | FIELD BITS IN
N PREVIOUS SECOND PREVIOUS
aYTE BYTE

LT IO YO O ——"
L YPIOY ¥ PO
©manecoa

L PARITY ERROR . *Resicue Data For Eight

Rx OVERRUN ERAOR fix Bits/C! ¢ Programmed
CRC/FRAMING ERROR

END OF FRAME {SOLC)

{Used With Special Receive Condition Mode

READ REGISTER 2

1Vstiable it "Stalus Attects
Vector* is Programmed

o

e e »

e S PRe e S e b ety

L Ao o

s

Ci

g

Appendix C

Write Register Bit Functions

WRITE REGISTER 0

[
e 0 0
e 0 1
010
0 1 1
100
10 1
110
11

o

o

o

o

1

1

1

1

HEQISTER O
REGISTER 1

REQISTER 8
REGISTER ¥

NULL CODE

SEND ABOATY (SDLC)

RESET EXT/STATUS INTERRUPTS
CHANNEL RESET~

ENABLE INT ON NEXT Ax CHARACTER
RESET TxINT PENDING

ERROR REBET

RETURN FROM INT (CH-A ONLY)

w00 waco
“Dacwaso

NULL CODE

RESET Rx CAC CHECKER

RESET Tx CRC QENERATOR
RESET Tx UNDERRUN/EGM LATCH

'WRITE REGISTER 1

2 [0], [ouTou T, o, [ou

l l I ‘—EXT'NTENAIL!
Tx INT ENABLE

0

1

[}

1

STATUB AFFECTS VECTOR
{CH. B ONLY)

Rx INT DISABLE

Rx INT ON FIRST CHARACTER

INT ON ALL Rx CHARACTERS (PARITY AFFECTS VECTOR) § o
INT ONRALL Ax CHARACTERS (PARITY DOES NOT AFFECT
VECTOR)}

WAIT/AEADY ON AT “0r On
WAT/READY FUNCTION Special
WAITIREADY ENABLE Condition

WRITE REGISTER 2 (CHANNEL B ONLY)
{2 [0u]0s [0,]6u]

VECTOR

WRITE REGISTER 3
{2]2 5, [o,T0, 5, o, [5:]

Ax ENABLE

8YNC CHARACTER LOAD INHIBIT
ADDRESS SEARCH MODE {SOLC)
Rx CRC ENABLE

ENTER HUNT PHASE

AUTO ENABLES

H

Q0 Ax 8 BITS/ICHARACTER
RAx 7 BITS/ICHARACTER
0 Ax 8 DITSICHARACTER

“s00

WRITE REGISTER 4
[0: [0 s Jo Tos o, 0y
[—

, , [v erame
o0
0
1 0
101

SYNC MODES ENABLE
1STOP BITICHARACTER
1% STOP MITS/CHARACTER
2 STOP BITA/CHARAGTER

8 BIT SYNC CHARACTER

18 BIT SYNC CHARACTER
SOLC MODE (01111110 FLAG)
EXTERNAL SYNC MODE

X1 CLOCK MODE -

X84 CLOCK MODE

WRITE REGISTERS .
00 [y Tou [[o, o, oy

Tx CRC ENABLE

SOLC/ICRCA8
Tx ENABLE
SEND BREAK

Tx § 8ITS (OR LESSYCHARACTER
Tx 7 BIVS/CHARACTER
Tx 6 BITSICHARACTER
Tx 8 BITSICHARACTER

\

WRITE REGISTER §

- 8YNC 8IT 0
SYNCBIT ¢
BYNC BIT 3
SYNC BIT 3
BYNC BIT4
SYNC BIY 3
SYNC BIT &
SYNCHITY

*Also SDLC Addrass Fretd

WRITE REGISTER Y

SYNC BIT 8

SYNC BIT S

SYNC BIT 10
SYNC BIT 11
SYNC BIT 12
SYNC BIT 13
SYNC BIT 14
SYNC BIT 18

*For SOLC It Must Be Programmad

© 0111110 For Flag Recogrulon i

Using the Z80 SIO With SDLC

RZIC

Appiication Brief

INTRODUCT |ON

This appllcatlon brlef describes the use of
the Z80 SI10 with the Increasingly popular
Synchronous Data Link Control (SDLC) com~
munlcatlons protocol. A general description
of the SOLC protocol and Implementation of
the protocol using the SI10 are dlscussed,
Descriptions for transmit and recelve opera-
tlons are given for use with slmple contol
frame sequences,

The reader should be fam!llar with hardware
aspects of the S10 such as Interfacing to the
CPU and a modem. A more detalled descriptlion
of the SOLC protocol.ls glven In the IBM
publlcation Synchronous Data Link Control
General informatlion (document # GA27-3093~2),
A description of the Z80Q S10 can be found in
the Zllog Data Book (document # 00-2034-A).

DESCRIPTION

Data communlication today requires a communi«
catlon protocol that can transfer datas
quickly and rellably, One such protocol,
Synchronous Data Link Control (SDLC), Is the
1ink control used by the 1BM Systems Network
Archltecture (SNA) communlcatlion package.
SOLC 1s actually a subset of the Interna-
tional Standards Organlizatlon (150) Ilnk
control calied High Level Data Link Control
({HOLC), which Is used for Internatlional data
commun {catlion,

SOLC Is a Blt=0Orlented Protocol (BOP), It

i dlffers from Byte~Control Protocols (BCPs),

such as bisync, In having a few blt patterns
for control functions Instead of several
speclal character sequences, The attributes
of the SDLC protocol are poslitlon dependent
rather than character dependent, so control

is determined by the locatlon of the byte as.

woll as by the blt pattern.

A character In SDLC 1s sent as an octet, a
group of elght bits, Several octets combline
to form a message frame in such & way that
each octet belongs to a particular fleld,
Each message frame consists of an opening
flag, address, control, Information, Frame
Check Sequence (FCS), and closing flag
flelds. The flag fleld contalns a unlque
binary pattern, 01111110, which Indlcates the
beglinning and end of a message frame. This
pattern simplifles the hardware Interface In
recelving devices so that multiple devices
connected to & common 1lnk do not confllct
with one another, The recelving devices
respond only affer. a valld f#lag character has
been detected. Once communication Is esta-

"devlcaes on the tlink,

biished for a partlcular device, the other
devices ignore the message unt!l the next
flag character is detected.

The address fleld contalns one or more octets
that are used to select a partlcular statlon
on the data {ink. An address of all Is 12 a
global address code that selects all the
When a primary statlon
sends a frame, the address fleld Is used to
select a secondary statlon, When a secondary
station sends a message to the primary sta=
tlon, the address fleld contalns the secon~
dary statlon address, l.e., the source of the
message.

The control fleld follows the address fleld -
and contalns Information about the type of
frame belng sent. The control fleid consists
of one octet and Is always present.

The Information fleld conslsts of zero or
more 8-blt octets and coatalns any actual
data transferred, However, because of. the
Iimltations of the error~checkling algor!thm

.used In the frame-check sequence, maximum

recommended block slze Is approximately 4096
octets.

The Frame Check Sequence (FCS) follows the
Information fieid or the control fleld, de-
pending on the type of message frame sent.
The FCS Is a 16-blt Cycilic Redundancy Code
(CRC) of the bits In the address, control,
and Information flelds, The FCS Is based on
the CRC=CCITT coda, which uses the polynomlal
(X164x124x5+1), The 280 $10 contains the
clrcultry necessary to generats and check the
FCS fleld.

This application note refers to products as Z80 "A", "B" atc. to specifly the speed grads. We are no longer '
using those characters for the speeds. For more detalls, please refer to the ordering information section,

" 617-1564-0007

565

. - 2«25-81

. Is sent,

Zero Insertion/deletlion Is a. feature of SDLC
that allows any data pattern to be sent. Zero
Insertlon occurs when five consecutive ts In
the dsta pattern are transmltted, After the
flfth 1, a 0 Is Inserted before the next blt
The data Is not affected In any way
except that there Is an extra 0 In the data
streams The recelver counts the Is and de~
letes the 0 followlng the five consecutive
Is, thus restoring the origlnal data pattern.
Zero insertlon and deletlon Is necessary

because of the hardware constralnt of search- -

Ing for a flag character or abort sequence.
Six is preceded and followed by a O indicate
a flag character. Seven to 14 Is signify an
abort, while an Idie Ilne (Inactlive) Is
Indlicated by 15 or more Is. Under these
three conditlons, -zero Insertion/deletion Is
Inhiblteds Flgure 2 Illustrates the various
I1ne conditlons, .

SOLC protocel differs from other synchranous

protocols with respect to frame timing, In
blsync, for example, a host computer mlght
Interrupt transmisslon temporarily by sending
sync characters Instead of data, Thls sus-
pended conditlon could contlnue as long as
the receiver does not time out, With SDLC,
however, 1t Is lllegal to send flags In the
middle of a frame to Idle the |lnes Such an
occurrence causes an ‘error condltlon and
disrupts orderiy operation. Therefore, the
transmitting. device must send a compfete
frame wlthout Interruptlion., |f a message
cannot be completed, the primary statlon

- sends an abort and resumes message trans-

mission later. These conditlons are dlscussed
later In the Programming sectlon of this
brief.

- Zaro Insertlon/Deletlon and CRC Accumulation

One One

orrrrtio

8-blt character{8-blt character

Zero or more 16-bit

8~blt characters|CRC-CCITT | O1111110

Flag Control
(Beglnning
of message

frame)

Address

Filgure I,

Flag Address Control

Flag
(End of

: " message
! : . frame)

* Information FCS

A Typlcal SDLC Message Frame Format

t

1

Flag

J N
|OIIIIIIO | 10110000 l OIIIIIOII‘}!, OIIIIIIOI © Actual Data Stream

Address = 10110000
Control = 01111111
a) Zero Inserflon‘

XXXXTTTITTI01111110,406
N

Abort

: Flag
b) Abort Condition

Zero Insertlon

XXXXTILTII D011, .,
Idie
¢} Idle Conditlion

Figure 2.

Bit Patterns for Various Line Conditlons

617-1564-0007

B

566

synchronous
Iming. In
puter might
' by sendling

Thls sus=
as long as
With SOLC,
ags In the
e, Such an
ditlon and
refore, the
3 complete
f a message
ry station
sage trans-
3 discussed
wm of this

PROGRAMMI NG
THE S10

implementation of the SDLC protocof with the
Z80 S10 Is simplifled by the design of the
S10. Thls section discusses four areas of
S0 programming: Initiallzation, transmit
[- operation, recelve operation, and exception
cond{tlon processing,

Initlalizatlion deflnes the baslc mode of
operatlion for the S10, Table | shows the
sequence of steps used to Initlallze the 510,
along with the necessary parameters, Slnce
vectored Interrupts are used, the S10 Is pro~
grammed with the status affects vector (SAV)
bit (WR1, bit 2) set,

Other function blts that can be Included are
the external Interrupt enable bit (WR1, bit
0), which results In an Interrupt for each
DCD or CTS change, Ty underrun or sbort
change; address search blt (WR3, bit 2),
¢ . which when set, prevents the S10 from res-
s ponding to data received unless the address
byte matches the contents of WR6 or the
global (FFH) address; auto enable bit (WR3,
bit 5), which causes the Inactlve CTS level
to disable the transmitter and the Inactive
0CD level to disable the receiver; and DTR
(WR5, blt 7) and RTS (WRS, blt 1), which can
be used to control a modem or other such
device,

Once the S10 Is initlallzed and the trans-
mitter {s enabled, it sends fiag characters
contlnuously unti| a message beglns trans~
.misslon. These flag characters conslst of
the full 8-blt patterns Aflthough the S10 can
recelve flag characters with shared Os
OTTTITTIONTIITIOITITTl1Q.as), It can only
transmit flag characters wlthout shared 0Os
OITITTI00ITTIT100T111110e4s)s

Table 1. S10 Inftiallzatlon Sequence
Reglster Data Functlon

Channel reset

0 00011000

2 {Vector) Interrupt vector
lowar elght blts
“{channel B only)

4 00100000 * SDLC mode

1 Qoottitt interrupt control

6 (Address) Ry address fleld

7 orrrrrto Flag fleid

5 1riotott Tx character length,

. enable, CRC enable

‘RTS and DTR

3 . 11001001 Ry character length,

snable, and CRC
enable

TRANSMIT
OPERATION

After the S10 has been Initlallzed and
enabled, 1t can begin sending SDLC frames by
software activation of the transmltter,
Actlvating the transmitter Includes resetting
the transmitter inactive semaphore (a prbgram
Indlcator), resetting the Ty CRC accumula~

tion, sending a character to the 510, and re-
setting the Ty underrun/EOM latch In the S10.
Figure 3 shows the sequence for transmliting
a typlical control message frame using inter-
rupts, :

SOLC Ty

Control Message Frame

XXXXXx0tttit110 Address Control

o=l | ome-2 | ortirtto..

Activate Ty TBE¥ . TBE Esct

anfrol
to S10

[

Raset TXCRC Set MC seméphore
Address to S10, {no data to Si0),
Reset Ty Reset TBE pending

Underrun/EOM latch

" Check error conditions;
Update semaphores

TBE <t {nterrupt
Condltion

(no data to S10Q),
Start response timer,
Reset TBE pendlng,
Set Ty lInactlive
Reset MC semaphore

* - Transmit Buffer Empty
+ = External/Status Change

Flgure 3. A Typlcal Transmit Control Frame Sequence

617-1564-0007

When the S10 Is loaded with the flrst data
character (address byte), It stores the

- character In the Ty buffer untll the current

flag character has completed shifting. After
the address byte Is transferred Into the
shift reglster, a Transmit Buffer Empty (TBE)
Interrupt occurs. The program then loads the

" control character Into the SI0 dnd contlnues
?processlng.' The next TBE iInterrupt Is Ig-

nored by the program (and no further data Is
sent to the S10), but a Reset Ty Interrupt
Pendlrig command |s Issued to the S0 to clear
the TBE Interrupt conditlon. Also, the pro~
gram Message completed (MC) semaphore Is set
so that appropriate actlon can be taken when
the next TBE Interrupt occurs.

When the last data character (the control
byte) ‘has been shifted out of the §10, the Ty
underrun/EOM latch Is set because the SI10

. buffer was not loaded with a character on the

previous TBE Interrupt. As a result, an
External/ Status Change (ESC) Interrupt
occurs and the S10 beglins fransmitting the
FCS bytes automatically. In the ESC Inter-

rupt service routine, the program checks for
other condltlon changes Including CTS, OCD,

. and abort, and passes the status on to the

program at the next-higher level.

After the FCS bytes have been shlfted out,
the S10 generates a TBE !nterrupt to Indlcate
that a flag character Is belng transmlitted.
The TBE Interrupt service routine Interprets
the MC semaphore and determines that the
frame has completed transmission, The pro~
gram then clears the MC semaphore, sets the
Transmltter |nactlve semaphore, starts a
timer for a response from the recelving de-
vice, and clears the TBE Interrupt condltlon,
At thls polnt, transmission of an SDLC mes-
sage frame |s complete and another message
frame may be sent. .

I'f the transmltter Is to be turned off, the.
program must allow at least a two-character
time delay before dlsabling the transmitter,
This can be accomplished by connecting the
S10 Ty clock llne to the Input of a counter
and having the counter Interrupt the CPU when :

.the bit count explres,

RECE[VE

- OPERATION

- detect, or a software command.

The SDLC recelve sequence Is silightly less
complex than the transmit sequence. To begin,
the S10 enters Hunt mode when any of three
condltlons occurs: recelve enable, abort

the S10 searches for flag characters, and

when 1t detects a flag, the SI0 generates an

ESC Interrupt. Thls Interrupt can be used to
signal Ilne actlivation or the end of an abort
conditlon, depending upon .the previous re-
celve condltlon, For example, when the SIQ
has been Inltiallzed, the recelve clrcultry

.In Hunt mode

Is enabled and Immediately beglins searching:-
for flag characters (Hunt mode operation),
When the first flag 1s detected, the S10
exlts from Hunt mode, which results In an ESC
Interrupt, and the Si0 beglns searching for
the address fleld, If the 510 is programmed
for Address Search mode and an address Is
recelved that does not match the programmed .
address byte in the $10, the SI10 does nothing
untll the next flag Is found, after which the
S10 agaln searches for an address match.

SOLC RX

ge frame

control

eesO1111110 lﬁAddress Control

CRC-1

CRC-2 l ormtnig

RCAt

Store data Store
. (1f deslred) data

Contlnuous
flags

NOTES

srReHt RCA Interrupt

Condltlon

»

Store Set semaphores (if character

data Check errors; Is not discarded
Error Reset;’ by SRC routine,
Discard this RCA Interrupt
Character* occurs.)

* The SRC routine normal ly reads the data character to clear the
S10 buffer, This should be done after the program Issues an Error
Reset command.

*RCA = Recelve Character Avallable

**+SRC = Special Recelve Conditlon (higher prlorlty than RCA)

Flgﬁre 4, A Typlcal Recelve Control Frame Sequence

617-1564~0007

568

hecks for
cTSs, bco,
on to the

tted out,
o Indlicate
nsmitted.
Interprets
that the

The pro~
sots the
starts a
fving de-
zondltlon,
iDLC mes-
' message

off, the
haracter
nsmitter,
ting the
a counter
CPU when

ching for -
ogrammed
idress lIs
>grammed
3 nothling
thich the
fche

- ferred from the $10 to the CPU.

If the address fleld matches the address byte
programmed Into the S10, the SI0 generates a

.. Recelve Character Avaltlable (RCA) Interrupt

when the address byte Is ready to be trans-
I¥ the StO
Is programmed to Interrupt on all recelve
characters, It generates an RCA Interrupt for
each character recelved thereaftter, It
should be noted that the $10 generates the
RCA Interrupt when a character reaches the

top of the recelve FIFO rather than when a.
Is transferred from the shlft.

character
reglster to the FIFO, Thls means that If the
FIFO 1s tull of data, each character gener-
ates a separate RCA Interrupt. This results
In a more consistent software routine that

does not need to check the recelve FIFO,
provided there 1s enough time between char-’

acter transfers to allow the routine to com-
plete the processing for each character,

After the last FCS byte of a frame Is re-
celved and processed, the S|0 generates a

Speclal Recelve Conditlon (SRC) Interrupt,

which Is of higher priority than the RCA .

Interrupt. In the SRC service routine, RRI
is read to determine the cause of the Inter~
rupt and the appropriate program semaphores
are updated. Normal completlon results In no
FCS or overrun errors and the End-of-Frame

Wakes)
Clear TX Inact!lve semaphore
Reset Ty CRC
Data to SI10 .
(Address fleld byte)
Reset Ty Underrun/EOM latch

N

Transmit Butfer Empty (TBE):
If (MC cleared)
1t (buffer not empty)
Data to SI10
Else,
Set MC semaphore
Reset TBE condltlon
Else,
Clear MC
Set Ty Inactive
Reset TBE condltlon
Start Response timer

Table 2,

bit Is set, Upon completion of the SRC In~
terrupt service routline, the program Issues
an Error Reset command to the S10 and reads
the data port to discard the recelved data.
1f the data Is not read and discarded, an RCA
Interrupt occurs. Now, a complete message
frame and the first FCS byte are In the re-
celve buffer, Y]

Flgure 4 shows the sequence for a typlcal
control frame recelved by the $10, I the
address fleld byte Is to be dlscarded, a
program semaphore should Initlally be set to
slignal thls to the RCA routlne. After the
address fleld has been recelved, the sema-~
phore Is cleared and reception continues
normally, Note that upon completion of a
frame, an RCA Interrupt Is generated for the
first FCS byte and an SRC Interrupt Is gen=
_erated for the last CRC byte, '

Table 2 t1sts the contents of the Interrupt
service routines used with the S10. The wake
routine Is not an Interrupt service routine
but Is a routine called by the program on the
next higher level to beglin frame transmis-
slon. Once the wake routlne Is called, the
program on the next higher level monltors the
Ty actlve semaphore to determine when the
current frame completes transmlssion and the

next frame transmisslon can begln.

External/Status Change (ESC):
Clear DCD, CTS, abort semaphores
If (abort)

Set abort semaphore
Else If (DCD change)

Set DCD semaphore
Else If (CTS change)

Set CTS semaphore

Recelve Character Avallable (RCA):
{f (EOF)
'Read and dlscard data
Else, -
Store data

- Speclal Recelve Condlitlon (SRC):
Read SI0 RRI
Lf (EOF)
" Set EOF semaphore
Else 1f (CRC error)
Set Ry CRC error semaphore
Etse 1t (Ry overrun)
Set Ry overrun semaphore
Issue Error Reset
Read data & dlscard

SI0 SDLC laterrupt Service Routlines

2-25-81

’§l7-1564-0007

2-25-81

Most of the exception condlitlions encountered
In the SDLC protocol have been dlscussed In
the previous sections, They Include abort
detect and DCD or CTS change. Thls sectlon
further describes some of the more unusual
condltions. .

OCD and CTS Change. The program handles DCD -

and CTS change by updating Its semaphores
each time an ESC Interrupt occurs, In this
manner, the program on the next higher level
monltors the semaphores and determlines a
course of actlon based on what these sema=~
phores Indlicate.

Abort and Idle Line Detect. Abort and Idle
I1ne detect are a blt more complicsted, since

* they result In simlilar Interrupt operations,’

An abort occurs during a valld messsge frame,

I'f the abort time Is greater than 14 bits, an °

Idle Ilne Is detected, Thls detectlion can be

abort, "wIndow"

eos TTHTTTLITIIT111 00000 eOTTT111001111140,40

ESC | counter/timer
Interrupt, explires

abort bit s|e1'

[l

done by actlivating a timer uheﬁ the ESC In-

terrupt that signals a marking lline occurs, :

‘¥ another ESC Interrupt occurs before the
timer times out, the line Is In an abort
condltlon,.

Is Idle and the program can pursue an appro-
priate course of actlon. A possible mech-
anism for Implementing the tIimer functlon [s
to use a programmable counter that Is tled to
the recelve clock Ilne to count bits, The
counter Is programmed for efght clock tran~
sitlons and -1s started as soon as the SI0
Interrupts the CPU with an abort condlition,
Only elght clock transltlons need to be
* counted because by the time the SI0 generates
the ESC Interrupt, at least seven Is have
already passeds Flgure 6 shows the abort/
-1dle line timing and the Interrupts resulting
from the Ilne changes. :
-

f

ESC Interrupt, hunt bit cleared
S10 back In sync,

ITne active.

1f another ESC Interrupt occurs within
the abort window and the abort bit Is
cleared, the program has detected an

" aborts

Otherwise, when the counter/

+imer expires, an Idle Iine has been

detected,

Flgure 6.

Abort/ldle Line Condltions

This brief descrlibes Implementation of the
SDLC protocol using the SI0 In an Interrupt-
driven environment, Descrlptlions for trans-
‘mlt and recelve operations are glven for use
with simple control frame sequences. For
frames that transfer data, the sequences are
siml lar except for transmit, where a data
character Is sent to the S10 for a TBE In-
terrupt, For recelve, multiple RCA Inter-

rupts occur for each data byte recelved,

The Z80 S10 enhances system performance b

minimfzing CPU Interventlon during data’

transfers usling the SDLC protocol, Perfor-
mance can be Improved further by using th
280 DMA with the S10, resulting In an effl
clent system conflguration that reduces CP
Interaction to a minimum,

Following Is the Ilsting of a simple SIO test
. progam that uses the SDLC protocol., This
program uses vectored Interrupts to send a
short SDLC control frame conslisting of Ad-
dress 9EH, Control 19H, and Data 81H. The
response tImer tIimes the response of the
recelving station after a message has been

TEST. SDLC
Loc 0OBJ CODE M STMT SOURCE STATEMENT

sent,

retransmits the message frame (If the re
transmlt count has not yet explred)s Thi

program transmits contlinuously untll the:
processor Is reset or Interrupted by an ex-

ternal source.

ASM 5.9

' S10 SDLC TEST PROGRAM

i 003

01-21-81/MDP

INITIAL CREATION

If the timer tImes out before :
' another ESC Interrupt occurs, then the lipe .-

If the response timer explres, the '
program on the next hlgher leve! normally:

.

617-1564-0007

617-1564-

‘he ESC In~-
e occurs,
before the
an abort
out before
the lline
an appro-
>le mech-
mction Is
is +1ed to
)its. The
wck tran-
is the SI1Q
mditlion,.
ed to be
generates
n 1s have
o abort/
resulting

1da

ance by
g data
Perfor-
ng the
n effl-
es CPU

s, the
ormal iy
he re-
, Thls
11 the
an ex-

- TEST. SDLC ’
ASM 5.9

LOC ©OBJ CODE M STMT SOURCE STATEMENT
s THIS PROGRAM SENDS ADDRESS 9EM, CONTROL 19H.
6 AND DATA B1H CONTINUOUSLY USING THE 28O VECTORED
7 INTERRUPT MODE. THE S10 IS INITIALIZED TO USE
8 SDLC WITH THE BAUD RATE CLOCK SUPPLIED BY
9 HARDWARE INTERNAL TO THE SYSTEM

10
11 EQUATES v
12 :

: 13 ADIRESS: £QU 9EH 1 ADDRESS FIELD
14 CTR.: EGQU 19H .} CONTROL FIELD
15 DaTA: . EGU BIH INFORMATION FIELD
16 MSGLEN: EQU 1 s MESSAGE LENGTH
17 RAM EQU 2000H iRAM ORIGIN
18 RAMBIZ: EGQU 1000H yRAM SIZE
19 Si1hA: EGQU (o} 5810 PORT A DATA
20 SICA: EQU S10DA+1 1810 PORT A CTRL
.21 SIDB: EGU S1aDA+2)S10 PORT B DATA
22 SIOCE: EQU GI0DB+1 yS10 PORT B CTRL
23 cCloc: EQU a8 3 C10 PORT C
24 Cl10B: EQU CI10C+1 1Cl10 PORT B
25 Cl0A: EQU CI10C+2 1C10 PORT A
26 CICCTL: EQU c10c+3 1CI0 CTRL PORT
27 BAWD: EQU 9600 s ASYNC BAUD RATE
28 RATE: EQU BAUD/100
29 CIOCNT: EQU 9216/RATE
30 LITE: EQU OEOH 1t LIGHT PORT
31 RSPCNT: EGU 100 i REGPONSE TIMER VALUE
32 .
33 SI0 PARAMETERS .
34
35 SIOWRO: EQU 0
36 CHRES: EQU 18H)CH. RESET CMD
37 ESCRES: EQU 10H JESC RESET CMD
ag TBERES: EQU 28M s TBE RESET CMD
a9 RETIA: EGU 38H JRETI CH. A
a0 ENINRX: EQU 20H JENAB. INT. NEXT RX
41 SRCRES: EQU 30H + SRC RESET CMD
42 . RCRCRE: EQU 40H sRX CRC RESET CMD
43 TCRCRE: EQU BOH 1 TX CRC RESET CMD
44 EOMRES: EQU OCOH :EOM RESET CMD
45 SIDWR1: EGU 1)
a7 WREN: EQU 80H » WATT/RDY ENABLE
ag RDY: EQU 40H } READY FUNCT
49 WRONR: EQU. 20H 1 WAIT/RDY ON RX
50 RXIFC: EQu 8 JRX INT. FIRST CHAR
51 RXIAP: EQU 10H SRX INT. ALL + PARITY
92 RXIA: EQU 18H iRX INT. ALL
53 S10SAV: EGQU 4 s STATUS AFFECTS VECT.
54 _ 1 (CH. B ONLY)
35 TXI: EQU 2 JTX INT. ENABLE
56 EXT1: EQU 1 JEXT. INT. ENABLE
58 SIOWR2: EGQU 2 i (CH.B ONLY)
40 SIOWR3: EQU 3
&1 RX8: EGQU OCOMH - ;RX B8 BITS
62 RX&: EQU BOH JRX & BITS
63 RX7: EQU 40H iRX 7 BITS
b4 RXS: EQU [RX'S BITS
&3 AUTDEN: EGU 20H) AUTO ENABLES
b HUNT: EQU 10H i HUNT MODE
67 RXCRC: EQU 8 JRX CRC ENABLE
&8 ADSRCH: EQU 4 1 ADDR SEARCH
69 SYNINH: EQU 2 1 SYNC LOAD INMIBIT
70 RXEN: EQU 1 JRX ENABLE
71
72 SIOWR4: EQU 4 ,
73 Xb4: Equ OCOH) 44X CLOCK
74 X32: EQu 80H 132X CLDCK
75 X16: EQU 40H 1 16X CLOCK

, 76 Xi: EGQU 0 51X CLOCK

-25-81 617-1564~0007

571

2-25-81

¢
: o - TEST. SDLC :
LOC OBJ CODE M STMT SOURCE STATEMENT , ABM 5.9
77 EXTSYN: : JEXT, SYNC ENABLE
78 SDLC: ; »SDLC MODE
79 © SYN1é: 316 BIT SYNC
80 SYNB: 18 BIT SYNC
81 STOP2: 12 STOP BITS
82 §TOP15:) 11.5 STOP BITS
83 STOP1: +1 STOP BIT
84 SYNCEN: 1 SYNC ENABLE
85 EVEN: JEVEN PARITY ..
86 PARITY: s PARITY: ENABLE
87 :
88 EQU ‘
89 DTR: 3} ACTIVATE DTR"
90 TX8: JTX 8 BITS
91 TX&: JTX & BITS
92 LTX7: }TX 7 BITS
93 TXS: sTX 5 BITS
94 - BREAK: 1) TX BREAK
95 TXEN: 1 TX ENABLE
96 CRC16: 1 CRC-16 MODE
97 RTS: 2. y ACTIVATE RTS
98 TXCRC: }TX CRC ENABLE
99 .
100 EQU 3 " JLOW SYNC OR ADDR
101
102 EQU 7 sHIGH SYNC OR FLAG
103 . ,
‘104 BIOFLG = FLAGS FOR SID STATUS
105
106 BIT —-— SET CONDITION
107
108 o TX ACTIVE
109 MESSAGE COMPLETE
110 'CTS ACTIVE
111 DCD ACTIVE
112 ABORT DETECT
113 RX OVERRUN ERROR
114 RX CRC ERROR
115 RX END OF FRAME

116
117
118 ### MAIN PROGRAM ###
119 .
120 . ORG 0 .
C32000 121 JP BEGIN 1 G0 MAIN PROGRAM
1232 ’
123 V- INTERRUPT VECTORS
124 (MUST START ON EVEN BOUNDARY)
125 . :
126 ORG 8. AND. OFFFOH. OR. 10H
127 INTVEC:
’ 128 SIQVEC: : :
9C00 : 129 DEFW . CHBTBE
D100 " 130 DEFW CHBESC
0101 131 DEFW CHBRCA
OF01 132 DEFW CHBSRC
3801 133 DEFW = CHATBE
4301 134 DEFW CHAESC
4B01 133 DEFW - CHARCA
9101 136 . CHASRC
137
138 .
314020 139 SP, STAK s INIT SP
EDSE 140 2 # VECTOR INTERRUPT MODE
3E00 141 A, INTVEC/256 1 UPPER VECTOR BYTE
ED47 142 I.A
214320 143 : HL., BUFFER
349E 144 (HL), ADDRESS 1 STORE ADDRESS
23 145 HL
3619 146 (HL>, CTRL i STORE CTRL BYTE
23 147 HL
3681 148 (HL): DATA 1 BTORE DATA BYTE
CD4C00 149 INIT ' s INIT DEVICES

NOCUudWNR -

617-1564-0007 572 617-1564-0(

004C
004F
0051
0053

- 0055

00358
005A
005¢C
00SE
0040

0063
0063
0066
0048
006A
006B
006D
004E
0070
0071
0073
0076

0078

007A
007¢C

007D

. 0080

o082
0085
0088
008B
008D
0070
0092
0094
0097
0099
0098

i

218720
228520

213000
ES
CD7D00

3A4020
CB47
20F%9
ce

217001
0EO1
0460A
EDB3
217A01
OEO3
0610
EDB3
3E00
324020

DBOB
AF
D30B
DBOB
AF
D3IO0B
ac,
D308
AF
D308
218A01
040E
OEOB
EDB3
e

3A4020
CBC7
324020
214520
®24320
3EO03
324120
3EBO
D303
CD9C00
3ECO
D303

c9

CD5901
214020
CB4E
201D

" 3A4120

B7
280F
3D
324120
RA4320
7E
D302

150
151
152
153
154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
169
170
171
172

- 173

174
175
176
177
178
179
180
181
182
183
184
18%
186
187
188
189
190
191
192
193
i94
195
196
197
198
199
200
201
202
203
204
20%
206
207
208
209
210
211
212
213

214

215
216
217
218
219
220
»21

TEST, 8DLC
OBJ CODE M STMT SBOURCE BTATEMENT

LOCP:

LOCP1:

INIT:
‘SIOINI:

CIDINI:

LD
LD

LD
PUSH
CALL

LD
BIT
JR
RET

LD
LD
LD
OTIR
RET

LD
SET
LD
LD
LD
LD
LD
LD
ouT
CALL
LD
ouT
RET

caLL
LD
BIT
JR

LD
OR
JR
DEC
LD
LD
LD
ouT

HL, RBUF
(RBPTR), HL

HL, LOOP
HL
WAKE

A, (SIOFL®)
OIA
NZ, LOOP1

HL, SIOTA
C, SI0CA

B:SIDEA—SIDTA

" HL,S10TB

‘C,» 810CB

B, SIOEB-S10TB

A, O
(SIOFLG), A

A, (CIOCTL)
A

(CIOCTL), A
A, (CI0CTL)

A
(CIO0CTL). A
A

(CI0CTL), A
A

(CIOCTL), A
HL, CLST
B, CEND-CLST
C, CIOCTL

A, (S10FLG)
olA

E (SIOFLG), A

HL, BUFFER
(BUFPTR), HL
A 2+4MSGLEN
(BYTES), A
A; TCRCRE
(SIOCB), A
CHBTBE

A, EOMRES
(SI10CB), A

SAVE

HL, SIOFLG
1, (HL)
NZ, CHBTB2

A, (BYTES)

A

Z, CHBTB1

A

(BYTES), A
HL, (BUFPTR)
A, (HL)
(SI0DB), A

ASM 8.9
:SETUP READ BUFFER

}SETUP STACK FOR RETURN
s WAKE TX

iCHECK TX ACTIVE FLAG

iLOOP IF TX ACTIVE

3+ INIT CH. A

i INIT CH. B

i CLEAR FLAG BYTE

s INSBURE STATE 0
i POINT TO REG O

i CLEAR RESBET OR STATE O

iPOINT TO REG O
sWRITE RESET

+ CLEAR RESET COND.
+INIT CIO

iSET ACTIVE FLAG

i+ BET BUFFER PTR
4+ SET BYTE COUNT
1 CLEAR TX CRC

'y BTART TRANSMIT
JRESET EOM LATCH

.INTERRUPT SERVICE ROUTINES

iCH.B TX BUFFER EMPTY
+POINT TO FLAG BYTE

i CHECK MC FLAG .

i BRANCH IF MESSAGE COMPLE

"} CHECK BYTE COUNT

i BRANCH IF DATA DONE

617-1564-0007

573

2-25-81

TEST..SDLC
0BJ CODE M STMT SOURCE STATEMENT .
23 , 222 INC, HL)
. 224320 223 LD (BUFPTR), HL
c9 224 ° RET :
; 225 . ’ i s .
CBCE 226 . SET 1, (HL) . 3 SET. MC FLAG
3ECO 227) LD . A, EOMRES E
D303 228 ouT ASIOCB), A
1809 229 JR - 'CHBTB3
230
CBBE 231 RES 1, (HL) : i CLEAR MC FLAG
[:1-1) 232 RES 0, (HL) $SET TX INACTIVE
3E&4 233 LD A RSPCNT s START RESPONSE TIMER
324220 234 LD (RSPTMR), A .
235 o
3E28 236 LD A: TBERES + RESET TBE INT. PEND: -
D303 . 237 OUT . (S10CB), A
ce 238 RET
239.
' 240
CD5901 241 CALL SAVE iCH. B EXTERNAL/STATUS CHG
214020 242 LD HL, SIOFLG i GET FLAG BYTE
CB?¢ 243 RES 2, (HL)
CB9E 244 RES 3, (HL)
. CBAG& 245 - RES 4, (HL))
DBO3 246 IN A, (510CB) s READ RRO
47 247 . " LD B, A s STORE IN %B
cBS8 248 . BIT 3,B 1 CHECK DCD BIT
C4FBOO . 249 . CALL NZ, SETDCD B
CcB&B 250 " BIT . 5,8 3 CHECK CTS BIT
CAFEO0O 251 CALL NZ, SETCTS . .
CB78. 252 BIT 7:B 1 CHECK ABORT BIT
- C4FBOO 253 . CALL NZ, SETABT . .
CB4E 254 BIT 1, (HL) 1 CHECK MC FLAG
2800 255 JR 2, CHBES1 i BRANCH IF CLEAR
256
3E10 . 257 LD A, ESCRES + RESET ESC .
D303 258 (SI0CB), A
ce 259
260 SETABT: '
CBE6 261 4, (HL)
- Cc9 262
) 263 SETDCD: : : :] :
CBDE 264 3, (HL) : ‘
co 265 ‘ v : 013
266 SETCTS:
CBD6& 267 2, (HL)
ce 268 : :
269
270 :
CD5901 271 BAVE - 1CH. B RX CHAR AVAIL
DpBO2 272 . - A, (510DB) .
248520 273 . HL. (RBPTR) s GET READ BUFF PTR
77 274 (HL), A :
23 275 :) HL]
228520 278 - (RBPTR), HL
ce 277
278
. 279 .
€D5901 280 SAVE iCH. B SPECIAL RX COND.
301 281 Al i
D303 282 (SIOCB), A i READ RR1
DBO3 203 A, (SIOCB)
47 ‘284 B, A 1 SAVE IN %B
214020 285 HL, SIOFLG
CBB6 286 &, (HL) i CLEAR CRC ERROR FLAG
CB78 287 7, B i CHECK EOF BIT
43801 209 NZ, SETEFF s BRANCH IF NOT EOF
cB70 289 & B 1 CHECK CRC ERROR
€43501 290 NZ, SETCRC
CB&B 291 5, B s CHECK OVRRUN BIT .
43201 - 292 NZ, SETOVR
. 293
3E30 294 A, SRCRES i ERROR RESET CMD

OO0 ©00 00 on

014D

3

617-~1564-0007 574 , B . 617-1564-0007

TEST. SDLC

OBJ CODE M STMT SOURCE STATEMENT
D303 295 out (S10CB), A
co 296 RET

297 SETOVR:
CBEE~ 298 SET S, (HL)
c9 299 RET

300 SETCRC:
CBF6 301 SET &, (HL)
co 302 RET :

’ 303 SETEFF:

CBFE 304 SET - 7, (HL)
co 305 RET

306

307 CHATBE:
€D5%01 308 CALL SAVE . . A TX BUFFER EMPTY
3E28 309 LD A, TBERES
D301 310 ouT (S10CA), A
c9 311 RET : o

a1z

313 ,
CD5901 314 CALL SAVE' . A EXTERNAL/BTATUS CHe
3E10 315 LD A, ESCRES
D301 316 ouT (S10CA), A
co 317 RET

318

319 : -
€D5901 320 CALL SAVE . A RX CHAR AVAIL
DBOO 321 IN A (BI0DA)
cY age ‘ REY

323

324 :
CD9901 3zs CALL 8AVE B GPECIAL RX GonD
3E30 326 LD A: SRCRES :
D301 azy ouT (SI0CA): A
co ae8 RET

329 ,

330 BAVE REGISTER ROUTINE

a3

332

333 EX (8P), HL

334 PUSH DE

335 PUSH BC

tcIc N, PUSH AF

337 PUSH X

338 PUSH 1y

339 © CALL - @O

340 POP 1Y

941 POP X

42 POP AF

343 POP BC

344 POP DE

45 POP HL

346 El

347 RETI

348

349

350 JP (HL)

351)

352 ‘
353 44 CONSTANTS
354
355
356 DEFB SI0WRO } CHAN. RESET
387 DEFB . CHRES .
ass DEFB SIOWRL | i CHAN. CHARACS
359 DEFD WREN+RDY+RXIAP+TX1
360 DEFB SI10WR4 § MODE
361 DEFB X16+8TOP2+EVEN+PARITY
362 DEFB ~ SIOWRS i TX PARAMS
363 DEFB DTR+TX7+TXEN+RTS
364 DEFB S10WR3 1 RX PARAMS
1) DEFB RX7+RXEN
364 EQU s
87

617-1564-0007 } 575

TEST. SDLC :
OBJ CODE M STMT SOURCE STATEMENT S ASM 5. 9
368 SIQOTB: ,
00 369 DEFB SIOWRO - s CHAN. RESET
18 370 DEFB CHRES
02 371 DEFB SIOWR2 s VECTOR REG
.10 ‘ 372 DEFB SIOVEC. AND. 255 o
04 373 DEFB SIOWR4 . 1 MODE
20 374 DEFB X1+5DLC+EYNCEN .
- 01 375 DEFB SI0WR1 - JCHAN. CHARACS
1F 376 DEFB RX1A+SIOSAV+TXI+EXTI
.06 377 DEFB SI10WR6 s ADDRESS -
9E 378 DEFB ADDRESS :
07 a7y DEFB SI10WR7) FLAG
7E . 380 DEFB 011111108
05 381 DEFB SI0WRS 3 TX PARAMS
EB 382 . DEFB DTR+TX8+TXEN+RTE+TXCRC
03 383 DEFB SI10WR3 i RX PARAMS
c1 " 384 DEFB RXB+RXEN L
388 EQU s
386
387 : ,
388 DEFB 28K o JPORT B MODE
389 DEFB 000000008
390 DEFB 2BH s DATA DIRECTION
391 DEFB 111011108 ; \
392 DEFB 1CH s CT1 MODE
393 DEFB ,11000010B - o :
394 DEFB 16H ;CT1 TC MSB
395 DEFB 0 : , :
396 DEFB 17H : i LSB
397 DEFB CIOCNT
398 : DEFB 1 . . sMASTER CONF16. REG
399 DEFB 111100008 :
400 DEFB 10 5CT1 TRIGGER
401 DEFD 00000110B
402 EQU .
403 . ;
404 i
405 'DATA
406
407 ORG : ;
408 DEFS 1 STACK AREA
409 EQU . .
410 : DEFS 1 :) 510 FLAG BYTE
411 DEFS : s BUFFER BYTE COUNT
412 : DEFS } RESPONSE TIMER
413 : DEFS : . 1 BUFFER POINTER
414 : DEFS 3 BUFFER
. 415 DEFS . : s READ BUFF PTR
416 EQU : ’
417
418 END

617-1564-0007

Binary Synchronous
Communication -
" Using the 280 SIO

Application Note

A popular communlcation protocol used to
exchange Informatlon batween data processing
devices has been In use for some times This
protocol, developed by 1BM, Is called binary
synchronous protocol, or blsynce The 780 Si0
provides a flex!ble and powerful tool for the
Implementation of the blsync protocol. How=
ever, there are some design conslderatlons
that require special attentlon. This paper
wlll discuss these design conslderatlons and
ofter an approach to using bisync with the
280 S10. Specific examples are presented and
readers who are unfamlilar with the bisync
protocol should refer to the ANS! standard
(1) or the IBM publicatlon (2) Ilsted at the
end of this paper.

Bisync Is a character-orliented protocol with
Information transmitted In blocks between two
{or more) data communication devices. The
medfum through which this information Is
conveyed Is called the data llnk, The par—
tlcular data 1ink discussed In this.paper Is
a polnt=to-polnt link using the ASCII trans~
misslon code, Other codes, such as EBCDIC,
are not covered, but the format for bisync Is
baslcally the sames The data IInk consists
of a master statlon (usually a computer) and
@ slave station (usually a terminal) with the
assoclated communlcatlon gear [n between—-
modems, phone [Ines, etce The master statlon
controls message flow by polling and select-
Ing the siave station. Poliing Involves send-
Ing a general request message to the slave
statlion(s) to determine whether or not any of
the slaves have data to send (traffic)s If a
siave statioh does have traftic, 1t responds
to the poll and the master can then select
that partlicular slave for Information ex-
change. Slaves can only respond to a master
device and cannot Inltlate communlcatlion on
the data link.

Information Is exchanged by means of a wejl-
defined block structure. Message blocks
consist of a header, body, and tralter

© (Figure 1),

The header 15 made of two or
more SYN characters (hence the name bisync),
a start of header (SOH) character, and ad-
dressing and contro!l Informatlon for a par=
ticular slave statlon,

S S S S E B] P
vy{o T 17]¢
N N H X X c D
g — S—
Header Body Tralter
Flgure 1. Baslc Message Block Format

for Blsyne Profoco!

The body begins with a start of text (STX)
character and encompasses the entlire text
Informatlon. The body generally contalns
ASCII text data, although 8-blt binary data
can be transmitted using transparent text
modes .

The traller contalns the end of text (ETX)
character and the block check character
(BCC)e The BCC 1s used for detecting errors
through "cycllc redundancy checking® (CRC) or
"longltudal redundancy checking" (LRC).

Error detection Is essentlial when transfer=
ring Informatlon between data processing
equipment. Since ASCII specifles only seven
bits' for Its code, the eighth bit Is used for
vertical redundancy checking (VRC), more
commonly known as character parity. - In syn-
chronous communicatlons, character parity Is
generally odd, whereas In asynchronous com=
munications It Is even. Flgure 2 shows typl-
cal ASCI! characters with parity. The $10
can be,programmedffor T-blt characters with
odd parlty ensbled to minimlize ‘software over=-
head. ‘

This application note refers to products as Z80 "A", "B" ete. to specifly the speed grade. We are no longer
using those characters for the speeds. For more detalls, please refer to the ordering information section,

~ 617-1564=0001

10/24/80

"LRC that makes up the BCC.

Figure 2, 0Odd VRC,
Number of Iz should be odd.

Because VRC applles only to the Indlvidual
character, the entire message block has an
The LRC Is a
simple blt position checksum where the number
of Is for each position (0O through 6) Is even
for a block of data. Since the BCC Is a
character, LRC Is subject to the same char-
acter parlty rules as the rest of the data-
blocks The LRC Includes all characters,
except SYN, starting with the flrst character

"after SOH or STX and up to and Including ETX

In the traller (Flgure 3)s Slnce the SIO
cannot calculate the LRC, the task Is left up
4o the user, LRC can be generated on 2
mlcroprocessor with Iittle effort by taking
the message block and XORIng the data with an

~ Inltlal vajue of zero to provide even LRC,

H

-

Included In BBC

Figure 3. Characters Included In BEC

‘

Another type of BBC Is generated by a cyclic
redundancy check (CRC), which results In a
more powerful method of block checkinge

CRC-12 Is used for 6-blt transmission code
and CRC-16 Is used for 8=-blt transmisslon

code. CRC Is used In lTeu of character
parity and LRC, as with transparent text mode
operatlion,

The remalnder of thlis paper Illustrates how
to use the SI0 In three speclal cases of the
bisync protocol: transparent text mode,
abort/Interrupt procedures, and error re-
covery procedures,

Transparent text mode Is useful In bisync
when Information exchanged between master and
slave Is not ASCII data, For example, a
binary data file (object program) mlght be
sent from master to slave, ASCI! transmls-

. slon code Is only seven bits long making 1t

difflcult to send 8-blt blnary data. One
alternative Is to convert the binary data to
ASC!1 hex format at the master, transmit It
to the slave and reconvert It back Into
binary at the slave. However, two disadvan-

tages result from this. First, the master
and slave require a means of converslon, by
elther software or hardware, adding cost to
the data link. Since the slave (termlnal) Is
burdened most by thls, such an approach Is
usually not feaslbles The other dlsadvantage
Is that the exchange of Information Is slower
since two (or more) ASC!!| characters are sent
for every elght bits of binary data. The .
blsync protocol has provislons for sending

' 8=blt binary data by using transparent text

mode transmisslion. In thls mode, character .
parlty Is dlsabled, allowing the full elght
bits to be used for data. However, to allow

~control within the constraints of the proto-

col, there are certaln Illmitations on the
binary deta pattern. The primary difference
Is that durlng transparent mode some communl~ :
catlon control characters are preceded by a
DLE character, actually making the control
characters a twowcharacter sequence. To
distingulsh a data byte from a control DLE,
the protoco! speclifles Insertlon of another
DLE. The recelver then throws away the flrst
DLE, keeplng the second as data, Table I
shows the communicatlon control characters
that are valld during transparent mode.

Another character change occurs when the SYN
character Is used for Iine flil, Normally,
the SYN character Is Ignored, but durlng
transparent mode the SYN Is preceded by a
DLE, and both are consequently lIgnored by the
recelver. In the event that the CPU does not
have a character ready to send, the SI10 auto=-
matically Inserts SYN characters Into the
data streame WIth the S10 programmed for
16-blt sync characters, iwo syncs are sent
from the St0 (write reglsters WR6 and WR7)
when Its transmlt buffer Is empty. In trans-
parent mode, the user must change WRE and WR7

"~ to DLE, SYN In order for the SI0 to provide
“the propser llne f111 characters.

In accord=
ance with the ANS! standard, llne flIl char= -
acters are not Included In the SI0 CRC calcu-
latlon during transmlte During reception In
transparent mode, the software must dlisable
CRC accumulatlon when the DLE SYN character
sequence |s detected. -

‘Whlle In transparent mode, the user must be

concerned with the error detectlon. codes. [f

- parlty 1s enabled In the SI10 normally, It

must be disabled durlng transparent mode.
This change In SI0 operation affects both
transmit and recelve and should therefore be
consldered If using full duplex.

Table s Control Codes Used
In Transparent Mode

Start of transparent text
End of transparent text block
End of transparent text

Idle sync o

Enqulry

DLE data :
|Start of transparent header

617-1564-0001

I0/24/80"

—————————

master
slon, by
cost to
minal) s
oach Is
sadvantage
Is slower
i are sent
The

iending

mt text

aracter
| elght
to allow
e proto~
n the
fference
commun i~
sd by a
ntrol
To

>l DLE,
wnother

the first -

sle 1
icters
le.

1
ally,
‘Ing
by a
d by the
does not
10 auto~
the N
for
sent
WR7)
n trans-
and WR7
~ovide
Accord=
| char-~
> calecu-
Flon In
'sable
‘acter

st be

Since the S10 aflows CRC enabie/disabie on
the fly, the software can easlly control CRC
accumuiation In both recelve and transmit.
Durling transmit, the CRC must be enabled/
disabled before the character Is transferred
Into the serial shift reglster. During re-
celve, the CRC accumulation Is delayed elght
bitss After the character Is transferred
from the serlal shift reglster Into the

buf fer, the user has to read that character,
declde whether or not to contlinue CRC accumu~
lation, and disable/enable CRC before the
next character (s transferred to the buffer.
This 1s not generally a problem, since char=-
acter transfers occur about every 833 micro-
seconds at 9600 baud, Table 2 shows the char=-
acters Included and omitted in the CRC during
transparent mode.

Table 2, Characters Included/Omitted In
CRC During Transparent Mode

Included In CRC

Omltted from CRC

DLE SW DLE of DLE DLE

DLE SOH . ETX of DLE ETX

DLE sTx* ETB of DLE ETB
STX of DLE STX**

*|f not preceded by **1f preceded by DLE
transparent header SOH within same
within same block - bilock

When CRC accumuiation Is to be resume&, the
software should enable CRC before the deslired
character Is transferred fo the recelve
buffers For example, suppose a DLE palr Is
recelved during transparent text mode. The
S10 generates an Interrupt when the flirst DLE
Is transferred to the recelve buffer. The
driver program reads the DLE and Immediately
disables CRC, When the next interrupt
occurs, the driver reads the second DLE and
Immedlately enables CRC to Include the second
DLE into the CRC accumulation,

The second category of interest Inciudes
abort and interrupt procedures, There are two
types of aborts: block abort and sending
station abort. There are three types of
Interrupts: termination Interrupt, reverse
Interrupt and temporary Interrupt,

The block sbort Is used by the sending sta-
tlon when, In the process of transmitting a
data block, the sending station detects an
error condition In the data and decldes to
terminate the biock so that the recelving
statlon will discard It, (n nontransparent
mode, block abort Is accompiished by ending
the block with an ENQ character, Instead of
ETX or ETB, The sending statlon then walts
for a reply from the recelver, which should
be a NAK, The transparent mode procedure is
Identlcal except that a DLE ENQ character

sequence Is used, Since a8 block abort puts
the data 1ink back In nontransparent mode,
NAK Is the valld response the recelver should
send in both transparent and nontransparent
modes.

The sending statlion abort Is simliar to the
block abort, except that the sending statlion
does not necessarlly do a block abort but
simply ends the current message block, walts
for a response or timeout, and then sends an
EOT to regaln control of the data link. The
sending station abort Is useful when trans-
misslon to a particular recelver Is necessary
due to a higher priority message, buffer
overflow conditlion, error detectlon, etc.
Once the sending statlion abort sequence Is
made, the master can perform any data (Ink
control function.

From the recelver side, a termination Inter-
rupt causes the sending statlon to stop
transmisslon, Such a procedure is useful when
the recelver cannot accept any more data or
Incurs an error condltlon, such as paper jJam,
card Jam, hardware error, etc, To accomplish
a termination Interrupt, the recelving sta-
tlon sends an EOT Instead of the normal re-
sponse., The EOT resets all statlons on the
|1nk and allows the master to Issue any con=-
trol sequence, :

The reverse interrupt (RINT) Is used when the
recelving statlon needs to transmit during
recoption of several message blocks, The
RINT occurs when a receiver detects a valld
CRC or LRC and, Instead of returning an ACK,
sends a DLE "<" character sequence to signal
an afflirmative acknowledgement and to stop
transmission of data. Some exceptlons and a
more detalied description of RINT can be
found In the ANS| standard.

The temporary Interrupt procedure, WACK (Walt -
Before Sending Positive Acknowiedge), Is used
by the recelving station to Indicate positive
acknowledgement and an Inabliity to recelve
more data. Such a response may be necessary
when the recelving statlion cannot accept data
continuously, such as during a printing
operation, The WACK conslsts of a DLE m;»
character sequence and Is sent In place of an .
ACK or ACKn. The sending statlon then sends
ENQs (Enquiry) untll the recelving station
stops sending WACKs., The sending statlon can’
resume transmitting data when the recelving
statlon sends an ACK or ACKn.

Recovery procedures provide a means of pre—‘
venting data (ink Instabllity, The recovery
mechanism consists mainly of timers, grouped
Into four basic areas, and a NAK counter,

The NAK counter Is used to prevent repeated
NAKs from Inhibliting further communicatlons,
The sending unit counts how many NAKs It

recelves for a particular data biock so that
after a predetermined number of retrles, It
can recover and pursue another course of

617~1564-0001 . 579 : +10/24/80

actlion. The parffcular count value and
course of actlon taken when the count explres
are left up to the user,

Four timers (tImer A or response timer, timer

© B or recelver timer, timer C or gross timer,

and timer D or no activity timer) prevent the
data iink from getting "hung" or golng idle
for extended perlods of time, Generally, the
shortest interval Is used with timer A, and
the longest Interval ts used with timer D.
For maxImum system efflclency, however, the
recel{ver timer (timer B) should tImeout
before the response timer (timer A)e The
particular Implementation of these +imers
varles from system to system, and some flexl-
bil1ty of exact timer values is left up to
the user. ’

Since It Is assumed that tnterrupts will be
used with the S10, an Interrupt driven re-
celver timer count Is kept In memory and Is
reinitialized each time a character Is re-
celved (recelve interrupt), The same appliles
for the response timer, except that when a
timeout occurs, the transmit driver has
several optlons to follow.

1f the SI0 is set to transmit CRC on transmit
underrun, then the driver could simply set
Its fiags and not flil the buffer, This
allows a normal exlt, since the S10 wiil then
send its CRC bytes, I{f the Si0 Is set to not
transmit CRC on transmit underrun, then It
sends sync characters (SYN SYN or DLE SYN,

"whichever was last written to WR6 and WR7)

untll the transmit buffer ts fliled or trans-
mit data Is set to marking.

~In any event, enough time must be allowed

after CRC is sent so that the receiver can

properly decode CRC, Because of the char-
acter delay In the S10 during CRC accumuia-
tlon, about 20 clock cycles are necessary
after the last CRC byte Is sent to ensure
adequate decoding time. (See the S10 Techni-

cal Manual for further detalls.,) The $10

could be programmed to send pad characters
elther by disabling parity and sending 8-blt
FFs (hex) or by fiiling WR6 and WR7 with FF
hex, [f enabled, the SI0 automatically sends
whatever Is In fts sync registers upon trans-
mlt underrun. Muitiple message blocks do not
have to be separated by pad characters as
long as CRC Is valld for the previous message
blocke However, to insure adequate time for
the recelver to process CRC, It is recom=
mended that at least two pad characters
follow the last character of a blocke

Using the S10 for the blsync protocol Is
fairly stralghtforward. Care should be exer-
clsed when using the S10 In transparent text
mode, but the Implementation is greatiy
simpilfied by the SIO's flexIbliity, as com-
pared to other serial communications iCs,.
The CRC capabliities of the S10 provide a
powerful means of maintaining maximum data
Integrity with minimum software overhead,
Coupled with the DMA and the Interrupt capa~
bifitles of the ZB0 processor, the user wili
find the S10 an excel lent cholce In serving
data communicatlion needs.

(1) American Natlonal Standards Institute.
ANSI X3,28 - 1976,

(2) ﬁGeneral Information = Blnafy Synchronous
Commun icationse" Pub, number GA27-
3004-2.

617-1564-0001

10/24/80

ro (term—

V is ~
" ha
- ou

et rm———

fdering

of use.
crote
axternal
;e methods
aind power
wr appli=
ree
roves to

———————

roviding

o used o

to a 16X

t RESET

- 1 .
" Timing in an Interrupt-Based
System with the zso®cTC

| DZIG

Application Note

INTRODUCTION

~events do not go awry,

in many computer systems, an accurate time

base 1s needed so that critically timed

timer to monitor time~depandent activities is
essential In such systems. in an interrupt-

drivea system, the Z80 CTC can provide -

regufar program time intervals. Slingle-event

Use of a counter or -

counts or single-event time delays can also
be Implemented under program control. This
applicatlon note dascribes both contlnuous
t+ime~interval operations and single-interval
count operations using the 280 CTC [n a Z80
system, ;

HARDWARE
CONF IGURATTON

In the example used here, the hardware con-
sists of a 780 CPU with 4K bytes of RAM, 4K
bytes of ROM, a Z80A 510, and a Z80OA CTC,
There are two external Inputs to the CTC: one
Is derived from the ac power llne to provide

60Hz pulses; the other Is connected to a
fransmit cliock line on the $10. One of the
counter/timer outputs is connected to the S10

transmit and receive cltock Input, as shown in
Figure 1.

4K ' 4K
RAM ROM
ADDRESS 16
4
DATA 8
CONTROL ‘7
7
Z80A
cPU 2CIT0z p—————=F Ry TxCA
+5v CLK/TRIG3}e—p-—a{ T4 CB
B $10
4.7K [£ ~ !'TN RxCB .
' > CLK/TRIG 1
iNT CcLK INT CLK IN¥
CLK 1 |
SCILLATO
RS.232C
INTERFACE
\
¢
80 Hx TTL s
PULSES

Flgure 1. ZBOA System Block Diagram

This application note refers to products as Z80 "A", "B" etc. to specifiy the speed grade. We are no jonger
using those characters for the speeds. For more datalls, please refer to the ordering information section.

. 751-1809-0005

601

4/1/81

The ZBO CTC s designed for easy Interface to
the Z80 CPU. An 8-blt bldirectional data bus
Is used to transfer Information_between the
CTC and CPU. The control lines, RD, I0RQ, MI,
and CE, determine what data (s belng trans-
terred and when, M| and [ORQ are used during
the [nterrupt acknowledge cycle to aliow the
CTC to present Its 8-bit (nterrupt vector to
the CPU, [ORQ 1s aiso used In conjunctlon
with §E to enablie transfers between the CTC
and the CPU. RD Is-used to control the
directlion of data fiow between the CTC and
the CPU, The channel select llnes (CSO and
CSy) are connected to the lowest two blts of
the address bus and are used to access one of
the four counter/timer channels. Tablie 1
shows the relatlonships between the CS plns
and the counter/timer channels,

.Table 1. Channel Select Values
CSy | csg C/T Channel
0 0 Channel 0
o] 1 Channel 1|
i 0 Channel 2
I 1 Channal 3

The CTC system clock [nput requirements are
simllar to those of the Z80 CPU, For both,
the system clock input Low level shouid be no
greater then 0.45 V, the High level should "be
no less than V c~0.6 V, and the clock rise
end fali times should be less than 30 ns, A
clock-driver device that meets these requlre-
ments, such as the HH~3006~A!, works well

with the CTC, Several devices can be con-
nected to the driver, but the user should be
careful not to overioad the driver. The capa-
clitance of the clock Input to the CTC (20 pF)
should be noted as this may affect the system
clock rise and fall times.

Interrupt control logic within the CTC is
used to initiate Interrupts and to control
+ the Interrupt acknowledge cycie generated by
the CPU, An Interrupt 1s generated by the CTC
when one of the counter/timer down counters
reaches terminal count (0) and 1E(Is High.
1El and {EO afiow the CTC to operate within
the Z80 interrupt dalsy chaln and to connect
to the next higher~priority and next
lowar-priority devices In the chaln, respec~
tively., 1f there Is no higher-priority de~
vice, 1El Is tled to +5 V.. ' ‘

The CTC Internally prloritizes each counter/
timer with respect to interrupt generatlon,
This meximizes performance by resolving con-
fention between channels should two or more
Interrupt conditlons occur simultaneoustiy,
Table 2 shows the relative priority {evels of
each counter/timer within the CTC.

“Tsble 2. CTC Channel Interrupt Priority

Priority Channal .
Highest .0

i

2
Lowest 3

CTC MODES

There are two basic modes under which the CTC
can operate: TIimer mode and Counter mode.
Each mode has certaln programmable character-

Istics that enable the CTC to be used In a
wide ’varle'fy of applications,

TIMER MODE

A typlcal use of the CTC In Timer mode is to
provide regular, fixed-interval Interrupts to
the CPU used as a tIme-base reference to
aliocate the processor resources efficlentiy,
For example, a multitasking system might have
the processor execute a task for a given
length of time and then interrupt executlion
of the program at one-second Intervals to
scan the task queue far higher-priority
tasks, Thils system time Intervai can be pro~
vided by the CTC in Timer mode. in Timer
mode, the CTC downcounter |s decremented by
the output of the prescaler, which Is toggled

* by the system clock Input. The prescaler has

» programmable value of 16 or 256, dependling
on' the condition of bit 5 In the channel

" control word {CCW). Thus, with a 4 MHz system

clock fed Into the CTC, a timer resolution of
4us (prescaler count of 16) or 64as (count of
256) is possible.

{n the exampie shown, the Interrupt Intervail
is set to 8,33 ms, which Is provided by the
CTC with a 3,6864 MHz Input clock, 256 pre-
scaler value, and a tIme constant value of
120. The CTC Interrupt service routine uses a
software count of 120 to malntalin a2 one-
second system tTime Interval, Each time the
service routine ls executed, the software
count Is decremented by 1. When the count
reaches 0, a flag Is set and the program
pursues an approprliate course of action.
Figure 2 shows the initiallzation and Inter-
rupt service routine coding for a CTC channel
using the Tlmer mode.

A clock driver by Hybrid House, 1615 Remuda La., San Jose, CA 95112,

Another use of CTC Timer mode operatlion s to
Implemont a nonretriggerable one~shot using
external clrcultry, The digital approach to
the one-shot provides a programmable time
delay under CPU control and provides greater
nolse Immunity than the more common analog
daelay circuits provide. Flgure 3 shows a
clrcuit that uses part of a 74LS02 package In
addltlon to one CTC channel, .

The trigger waveform should be positive-going
and should meet the CTC setup time for the
CLK/TRIG Input. Also, the trigger High [eval
time should be less than the CTC delay time
in order .to prevent the two 74LS02s from
Tatching In the triggered state. An addi-
tlonal gate can be added to Initlallze the
74LS02 flip~fiop to a defined stazte when the
system Is reset or eise the software can
pulse the timer output to set the filp-fiop,
as Is done In this case. A third use of the :
Timer mode Is to provide a bit rate clock for ;
a serlal fransceiver device, such as the Z80
510, The S10 can accept 8 ix, 16x, 32, or
64x bit rate clock Input from an external
source, and with a 16x, 32x, or 64x muiti-
plier, the Si0 can accept & pulse waveform
Input for the bif rate ciocks, as long as the

pulses meet the rise, fall, and hold time

requlrements of the S{0. The CTC meets these

requirements and can be connected dlrectly to

the S10 to provide the necessary bit rate

clocks. Flgure 4 shows the code needed to -
generate a bit rate clock for the S10.

75 1~1809-0005

602

! con- ' With a Ix blt rate clock programmed Into the = value should be set to half the baud rate

uld be ’ ! §10, a square-wave Input must be supplled, value, slince the CTC output Is dlvided in
capa- This can be done by adding a fllp=-flop be- half by the fllip-fiop,.
20 pF) . tween the CTC and the §10. The +ime constant

iystem

< START } . ‘ ENTER ’
TC is .
Y y
INITIALIZE CPU . SAVE REGISTERS

Y

' L DECREMENT
INITIALIZE CTC , SOFTWARE COUNT

¥

SETUP
SOFTWARE COUNT

Y

y

SETUP DISPLAY

, . RESET
\ . SOFTWARE COUNT

ENABLE INTERRUPTS

Y
<~ SWITCH
) : DISPLAY STATE

LooP ‘ -
 /

‘ EXIT >

a) Maln Program v b) Interrupt Service Routlne

Flgure 2. Software for CTC Timer Mode Operation

TRIGQER J—|—

INPUT

CLKITRIG
ZCro
CTC

o]

Figure 3. Monostable Multivibrator Using the Z80 CTC

751-1809-0005 R 4/1/81

Lac

€000 .

L0000

0010

. 0010

o012
3014
0016

0018
0018
001D

"QOtF

0021
oG24

0025

o027
Qo229
(€]
002D

 QUIF

0621
0023
0Cc34
0037
0039
Q03c

s

OBJ CODE M STM

RS

TEST. CTCO
T SOURCE STATEMENT

THE LED STATE.WHEN THE COUNT REACHES -ZERO

1
2
3
4
5
6 THEN DECREMENTS A COUNT
7 i
8 .
9 ' PROGRAM EQUATES --
' 10 ,
11 CTCO: EQU 12
12 CTCl: EQU CTCO+1
13 ¢TC2: - EQU . CTCO+2
14 CTC3: EQU .CTCO+3
15 LITE: EQU. 0EOH
16 = RAM EQU- 2000H
17 RAMSIZ: EQU 1000H
"TIME: EGU 120

c31800

4000
3D00
3D00
3D00

314020
EDSE
3EQO
ED47
CDa700
FB

18FE

3EA7
D30C
3E78
D3oC
3E10
D30C
aF
324120
3E78
324020
ce

=0
21

&9 i

CTC EQUATES

#%% MAIN PROGRAM ##%

22

23 CLlW EQU
24 INTEN:
29 CTRMODE:
26 P2564:
27 RISEDG:
28 PSTRT:
29 s TCLOAD:
30 RESET:
31 +E ' .
32

33 i

34

as ORG
36 JpP

37 B

38 ORG
39 INTVEC:

40 DEFW
41 DEFW
42 DEFW
43 DEFW
a5 LD

47 IM

48 LD

49 LD

50 CALL
51 El

52

53 JR

54

59 INIT: :

56 L.D

37 ouT

58 LD

59 out

&0 LD

61 ouT

62 XOR

&3 LD

&4 LD

&5 LD

&6 RET

1
EQU

EQU
EQU
EQU
EQU
EQU

i

o
BEGIN

; . CTC TEST PROGRAM .

B0OH

EQU.
. ‘20K
10H

8
4
2

i © THIS PROGRAM USES THE CTC IN CONTINUOUS
i TIMER MODE. THE CTC COUNTS SYSTEM CLOCK
] PULSES AND INTERRUPTS EVERY

120 PULSES,
THEN SWITCHES

3CC
1 CTC
P CTC
I GTC

(o]
1

2

3

i LIGHT

i RAM START ADDR

‘PORT

PORT
PORT
PORT
PORT

1 COUNT VALUE

_ 40M

%. AND. OFFFOH. OR. 10H

1cYco
ICTC1
crca
ICTC3

SP, STAK
2

A, INTVEC/256

LA
INIT

i INIT &P

i VECTOR INTERRUPT MODE
iUPPER VECTOR BYYE

3 INIT DEVICES

1 ALLILOW INTERRUPTS

;LODF FOREVER

A, INTEN+P256+TCLOAD+RESET+CCW

(CTCO), A
A, TIME
(CTCO), A

I SET

i BET

CTC MODE

TIME CONSTANT -

A, INTVEC. AND. 11111000B

(CTCO), A
A
(DISP), A
A, TIME

(COUNT), A

iSCT

iCLEAR DISPLAY BYTE
i INIT TIMER VALUE

INTERRUPT SERVICE ROUTINE

VECTOR VALUZ

751-1809~0005

604

TEST. CTCO
OBJ CODE M STMT SOURCE STATEMENT

71 ICTC1:
72 I¢TC2:

- 73 1CTC3: . :
003D FB 74 . El ; DUMMY ROUTINES
003E ED4D 75 RETI

‘ 74
’ 77
0040 CD5A00Q 78 CALL SAVE i SAVE REGISTERS
0043 3A4020 79 LD A, (COUNT) } CHANGE TIMER COUNT
0046 3D 80 DEC A
0047 324020 g1 LD (COUNT), A
004A CO 8z RET NZ JEXIT IF NOT DONE
0048 3E78 a3 LD A: TIME ;s ELZE, RESET TIMER VALUE
004D 324020 84 LD (COUNT), A
0050 3A4120° as LD © A (DISP) iBLINK LITES
0053 2F 86" cPL
0054 324120 87 LD “(DISP), A
©n%7 D3EO a8 ouT (LITE), A
00%9 €9 89 RET - :
. 90
51 SAVE REGISTER ROUTINE
92
93
00SA " E3 94 EX (8P), HL
005B DS 95 . PUSH DE
005C (4] 26 PUSH BC
aosSD FS 97 . PUSH AF
00SE CD&B0OO 28 cALL [e]s}
061 F1 99 poP AF
0082 Ci 100 . pPoP BC -
0043 D1 101 POP DE
OLVed EL 102 POP HL
0065 FB 103 EI
on&bs EDA4D 104 RETI
105
. 106
anes E9 107 JP
. 108

109 :

110 ; DATA
‘ i 111
2000 112 ORG
2000 113 DEFS i STACK AREA

114 EQU
2040 113 DEFS ; TTMER COUNT VALUE
2041 . 116 DEFS yLITE DISPLAY BYTE

RUPT mMObDE .) : 117 :
BYTE ; 118 . END
UPTY (START ’
y
INITIZLIZE CTC
3TANT
MLUE
f BYTE
\LUE

Y

MAIN PROGRAM

Flgure 4, Software for CTC BIt Rate Generator

751-1809-0005 605 ' 4/1/81

TEST. CTC2
OBJ CODE M STMT SOURCE STATEMENT

i i CTC TEST PROGRAM

L.oc

THIS PROGRAM USES THE CTC IN CONTINUGUS
TIMER MODE. THE CTC SUPPLIES A BIT RATE
CLOCK TO THE SI10 FROM THE SYSTEM CLOCK.

THE SYSTEM CLOCK 1S 3. 6864 MHZ, WHICH IS
DIVIDED BY 16 BY THE PRESCALER, AND DIVIDED
BY A TIME CONSTANT VALUE OF 3 TO

PROVIDE A 16X, 4800 BAUD CLOCK

TO THE SI0. OTHER BAUD RATES CAN BE OBTAINED
BY PROGRAMMING DIFFERENT TIME CONSTANT

10
11

12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27.
28
29
30
31
32
33
34
3s
36
37
38
39
40
41
42
43
a4
45
a6
47
ag
49

PROGRAM

EQU
EQU
EQU
EQU
EQU

EQU
INTEN:
CTRMODE:
P256:
RISEDG:
PSTRT:
TCLOAD:
RESET:

ORG

LD
ouT
LD
ouT

18FE JR

END

VALUES INTO THE CTC

EQUATES

3CTC O PORT -

i CTC 1 PORT

CTCO+2 3CTC @ PORT

CTCO+3 1CTC 3 PORT

3 i TIME CONSTANT VALUE

12
CTCO+1

CTC EQUATES

1
EQU

EQU
EQU
EQU 8
EQU 4
EQU e

MAIN PROGRAM #%#

o]

A, TCLOAD+RESET+CCW
(CTC2), A .+ SET CTC MODE
A TIME

(CTC2), A i SET TIME CONSTANT

MAIN PROGRAM GOES HERE

1 LOOP FOREVER

COUNTER MODE

A typlcal computer system often uses a
tIme-of-day clock. In the Unlted States, the
60 Hz power i{ine provides an accurate time
base for synchronous motor clocks. A computer
system can-take advantage of the 60 Hz
accuracy by Incorporating a clrcult that
feeds 60 Hz square waves Into a CTC channel,
With a time constant value of 60, the CTC
generates an Interrupt once every sacond,
which can be used to update a time-of~day
clocks The CTC Is set to Counter mode and
with a time constant value of 60, as shown In
Figure 5,

The Interrupt service routine does nothing
more than update the time-of~day clock. A
more sophisticated operating system kernel
would use the CTC to check the task queue
status. In synchronous data communicatlons,
It Is often necessary to ensure that a flag
or sync character separates two adjacent
message packets, Since some serlal controller
devices have no way to determine the status
of sync characters sent, the user must use

time delays to separate messages with the
appropriate number of sync characters,
Typlically, sofitware or timer delays are used
to provide the time necessary to aliow the’
characters to shift out of the serlal device,
The disadvantage of using this method Is that
variable baud rates shlift characters at.
variable times so a worst-case tIme must be
allowed 1f the baud rate Is not known. [f th

blt rate clock Is suppiled by the modem) as-
Is normally the case, this probiem becomes’
even more acute.

A solutlon to this problem Is to use a’
counter to count the number of bits shlfted
out of the serlal device. With the CTC tlad
to the transmit clock Ilne of the serlial
device, the CTC can be programmed to delay a
certaln number of bits before the CPU sends
another message., Thls solves all of the pro-
blems mentloned and simplifles the message-
hand {ing software. Figure 6 shows the progrem
needed to achleve the counting function. Note

75 1- 1809-0005

606

©4/1/81 "

that the Interrupt service routine disables reached terminal count.

the CTC, because the CTC Is used only once . . :

with each message. Otherwise, the CTC would Figure I shows the hardware Impiementation of
generate an Interrupt each time the counter the character delay counter using the CTC,

1GUS g
'ATE f
ICK. §
H I8 START g
DIVIDED N N : e
| i
IBTAINED &
T INITIALIZE cPU j
i
Yy ;
INITIALIZE CTC f
" vaLUE / ALY S . ;‘i
. SETUP DISPLAY ' Hi
‘ v . SAVE REGISTERS % /
. iﬁ =
. ENABLE INTERRUPTS ' il
Bl
B — SWITCH e
y DISPLAY STATE . . e
LOOP 3
X ‘ ; ! 7
(EXIT)
a) Main Program b) Interrupt Sefvlce Routlne

Figure 5. Software for CTC Counter Mode

NT
5 ' TEST. CTC1
. LOC 0OBJ CODE M STMT SOURCE STATEMENT
1 . CTC TEST PROGRAM
' 2
. 3 THIS PROGRAM COUNTS EXTERNAL PULSES AND
"l;;:;; 4 CHANGES THE LED STATE EVERY 40 COUNTS
5
aars. 6 PROGRAM EQUATES
po .
ﬁﬁ;,zgf 8 CTco: EQU 12 1 CTC O PORT .
Is that : 9 CcTCl: EGU CTCO+1 1CTC 1 PORT
ors at . 10 ¢TC2: EQU CTCO+2 i CTC 2 PORT
st be b 11 cTea: EQU CTCO+3 }CTC 3 PORT
1f the g 12 LITE: EQU OEOH i LIGHT PORT
em, as 5 B 13 RAM EQU 2000H + RAM START ADDR
decomes . . 14 RAMBIZ EQU 1000H
. _ 15 COWT EQU 60) 1 COUNTER TIME CONSTANT
;f 16
. . 17 ,
use a ’ 18 CTC EQUATES
1t fted ‘ 19
C tled 20 CCW: EQU 1
ecla] i . 21 - INTEN: EQU BOH
g 22 CTRMODE: EQU 401
, 23 " pase: EQU 20H
sage- § . 24 RISEDG: EQU 10H
‘ogram] 25 * PSTRT: EQU 8
Note i , 26 TCLOAD: EQU 4
; 27 RESET: EaQu 2
—
/1/81 751-1809~0005 607 . 4/1/81

0000
0000

0010

' 0010
0012

0014

Q016

0018
0018
001D
001F
0021
0024

0028

0027
o029

Q028 |

002D
002F
6031
0033
. 0034
0037

0038 -

0039

0038
003E
0041
0042
0045
Q047

0048
0049
0044
004D
004C
004F
0030
0051
. 0052
/ Q053
0054

0056

TEST. CTCY
SOURCE STATEMENT

0BJ CODE M STMT

28
a9

30

a1

32

€31800 - 33
: 34
as

36

3800 a7
3B0OO 3g
3800 39
3800 40
41

42

314020 43
EDSE 44
3E00 43
ED47 44
CD2700 47
FB 48
49

1BFE 50
51

i 52
3ECT 53
D30D 54
. 3E3C 55
- D30D 54
3E10 57
D30C 58
AF 89 -
324020)
co b1
62

63

b4

65

b6

&7

48

FB &9
ED4D 70
71

72

€D4800 73
. 3A4020 . 74
2F 75
324020 74
D3EQ 77
€9 78
- 79
80

81

~ a2
E3 83
DS ‘84
cs 85
FS 8a
CD5600 87
F1 es
c1 89
D1 90
E1 91
FB 92
EDA4D, 93
‘ 94

93

E9 9
97

T

#HE
i #%% MAIN PROCRAM #w#x
ORG o} ‘
JP BEGIN
. ORG $. AND. OFFFOH. OR. 10H
INTVEC: . »
DEFW ICTCO .
DEFW 1CTC1
DEFW 1cTCR
DEFW 1CTC3
BEGIN:) .
LD 8P, STAK }INIT SP . .
m 2 1 VECTOR INTERRUPT MOD
LD A INTVEC/256 }UPPER VECTOR BYTE
LD 1,46 -
! CALL INIT < 3 INIT DEVICES
' EIl t ALLOW INTERRUPTS
JR s 1LOOP FOREVER
INIT: . . :
LD A, INTEN+CTRMODE+TCLOAD+RESET+CCW
ouT (CTC1), A i SET CTC MODE
LD A, COUNT -)
ouY (CTC1), A ; BET TIME CONSTANT
LD A, INTVEC. AND. 111110008
ouTr (CTCO), A 1 BET VECTOR VALUE
XOR A . .
LD (DISP), A i CLEAR DISPLAY BYTE
RET
#E
; INTERRUPT SERVICE ROUTINE
1CTCO:
ICTC2: -
ICTC3: .
Er 1 DUMMY ROUTINES
RETI .
ICTCL: .
cALL SAVE 1 SAVE REGISTERS
L.D A, (DISP) JBLINK LITES
cPL
LD ADISP), A
ouTt (LITE), A
RET
i SAVE REGISTER ROUTINE
SAVE: . .
EX (SP3, HL
PUSH DE
PUSH BC
PUSH AF
CALL G0
POP . AF
pPOP BC
popP DE
POP HL
El
RET1)
G0: '
: JP CHL)
*E

751-1809~0005

608

4/1/81

TEST. CTC1
OBy CODE M STMT SOURCE STATEMENT

99 ii ' DATA AREA
100 .

101 ORG RAM ° '

102 DEFS 64 : s STACK AREA

103 © EaU s

104 : DEFS 1 iLITE DISPLAY BYTE
105 ,

106 END

(START ,
UPT MODE

BYTE y

oTg INITIALIZE CPU

Y
W) \ ‘ INITIALIZE CTC

AN’III’

& : , SETUP
: , SOFTWARE FLAG

y

ENABLE INTERRUPTS) L D

. SAVE CPU STATUS

READ FLAG BYTE -

SOFTWARE
RESET CTC

/ .
SET FLAG BYTE

f

RESET BIT 0 y

IliESTORE CPU STATEI _

-Y

‘ RETURN ’

a) Main Program b) Interrupt Service Routine

Figure 6. Software for CTC S.lnglo-Cyclo Use

751~ 1809-0005 609 . : 4/1/81 v

' " TEST.CTC3
Loc 0BJ CODE M BTHT SOURCE STATENENT

J CTC TEST PROGRAM

i THIS PROGRAM INITIALIZES CTC INTERRUPT VECTOR,
i . THEN STARTS CTC 3. THEN WAITS FOR CTC 3 TO

i TERMINATE. AFTER TERMINATIN®@, THE CTC INTERRUPT
¥
1
i

THE CPU AND ENTERS A SERVICE ROUTINE THAT SETS
A PROGRAM FLAG TO INDICATE ZERO COUNT, AND
“RESETS.CTC 3.... ., :

'

VONCA BN -

i EQUATES

EGU 2000H s RAM START ADDRESS
EGU ~ 1000H * JRAM SIZE

EQU 12 77 ,CTC.0 PORT.

EGU CTCO+1 -’ ;CTC 1 PORT

EQU. " CTCO+2 . sCTC 2 PORT

EQu €TCO+3 +ETC 3 PORT -

EGU 20 5 COUNT 20 PULSES

CTC PARAMETERS -

EQU 1 i 1 CTRL BYTE

INTEN:- EQU ' 1 INTERR. ENABLE .
CTRMODE: 40H 3 COUNTER MODE -,
P254: . EQU . . 1PRESCALE BY 2546
RISEDG: EQU - ' 1START ON RISING EDGE
PSTRT: EQU " 1PULSE STARTS TIMING °
TCLOAD: EQU : . ITIME CONST. FOLLOWS
RESET: EQU ’ } SOFTWARE RESET

ORG . ‘o0 o Tiw .
€31800 P BEGIN : 160 MAIN PROGRAM

“ORG ., $.AND. OFFFOH on 10H
b s e
DEFW . ICTCO -
DEFW ' ICTCt
DEFW . ICTCR2
DEFW . 1CTC3

MAIN PROGRAM

318120 o LD 8P,8BTAK © JINIT 8P

J3E00 - LD A, INTVEC/2%6 -1 INIT VECTOR REQ

‘ED4? LD LA : o ‘

ED3E M, 2 /v U JYECTORED INTERRUPT MG -
3E10 ‘ LD A+ CTCVEC. AND. 111110008 |

D30C auUT . (CTCONi A, JBETUP CTC VECTOR
3501 S LD Al 1BET FLAG BYTE

320020 , LD (FLAGY, A"~ * . : .

FB . . : EI. :

s - o ,

.. 3A0020 . Lp “A, (FLAG)- ~1READ FLAG BYTE
"~ cBa7 . . BIT . 0.A R
C.2eF9 T R, Z,L00P ‘1 BRANCH IF NOT SET
" CBB7 " RES 0,A -+~ . jCLEAR FLAG BYTE
320020 : LD © (FLAG), A"
3EDS LD ' A, INTEN+CTRMODE+RISEDG+TCLOAD+1
. D3OF ouTt (CTC3). A “3LOAD €TC 3
C3E14 LD A COUNT
D3OF - ouT (CTC3), A’
18EA JR ' LooP

INTERRUPT SERVICE ROUTINES FOR CTC

751-1809-0005

UPT VECTOR:‘

TC 3 10
TC INTERRUPT
£ THAT SETg
NT: AND

DDRESS

-E
TER MODE
156

NG EDGE ;-

TIMING
oL
TW

M

: "TEST. CTC3
0OBJ CODE M STMT SQURCE STATEMENT.

73 I1CTC2:
FB 74 E1 .
ED4D 75 RETI

76

- 77

08 78 EX
3E03 7% . LD
DIOF . 80 ouT
340020 81 LD
cBC7 g2 - . ET
320020 83 LD
08 84 EX
FB 8s El
EDAD 86 RET1

87

88

90 _
<91 ORrRG
92 : DEFS
92 DEFS
94 : EQU
95
9 END

) DUMMY INTERRUPT ROUTI

AF. AF ¢
A, 00000011B
(€TC3). A .
A, (FLAG) }BET PROGRAM FLAG
0. A e . : .
(FLAG}, A

AF) AF ¢

+RESET CTC 3

89 DATA AREA

RAM , .
1 ‘ 1 PROGRAM FLAG BYTE "
128

s

The versatiiity of the 280 CTC makes It use-
ful In 2 myriad of appilications, System
efficlency and throughput can be Improved
through prudent use of the CTC with the 280
CPU. Coupled with the powerful, vectored

Interrupt capabiiities of the 280 CPU, the
CTC can be used to supply counter/timer func-
tions to the CPU, This reduces software over-
head on the CPU and significantly Increases

'system throughput,

751-1809-~0005

	Part1.PDF
	Part2.PDF
	Part3.PDF
	Part4.PDF

