
SCIENTIFIC COMPUTATION

E L E C T RON IC ASSOC IA T E S, INC. West Long Branch, New Jersey

8400 SCIENTIF1C COMPUTING SYSTEM

REFERENCE HANDBOOK

•
I

Publ. No. 00 800 9049-0

@ELECTRONIC ASSOCIATES, INC.
ALL RIGHTS RESERVED

PRINTED IN U.S.A.

CONTENTS

CHAPTER 1 - SYSTEM DESCRIPTION .•....•.•..............•..•....•.........•..

1.1 INTRODUCTION•.........•...................................

1. 2 EXPANSIONS•....•.•.....••.•.•.....•...•..•...........

1. 2. 1 8402 Basic Computing System

1. 2. 2 8403 Basic Computing System

1. 2. 3 8410 Central Processor

1. 2.4 8420 Memory Module

1. 2. 5 8430 Exchange Module•...............................

1. 2. 6 8440 Desk Console ...•..

1. 2. 7 8490 Power Module .. .

1. 3 PROCESSOR..

1. 3. 1 Memory Word .••.............•.....................•....•...

1. 3. 2 Instruction Word •......•.•..............•.••.•...............

1. 3. 3 Data, Word Formats . . • .

1. 3.4 Processor Registers•....•..•...........•.........

1. 4 ADDRESSING •••...•...•....•..•...•..•....•.....••....•..•.......

1. 4. 1 Direct Addressing • . • • • • . . • • . • • . • • • • . • . . • • • • • • . . • . • • . • • • . .

1. 4.2 Indexed Addressing ..•..•.•.•••.•...•......•.•......•.....•...

1. 4.3 Indirect Addressing •..••...•....•..•.......•......•....•......

1. 4. 4 Immediate Addressing ••.•.•.••.•..•.••...••.•••.••....•.•.....

1. 5 INTERRU PT SYSTEM ••.......•...•...••.........•..................

CHAPTER 2 - INSTRUCTION REPERTOIRE

2. 1 INTRODUCTION .. .

2.2 EFFECTIVE ADDRESS CALCULATIONS

2. 2. 1 Direct Addressing

2. 2. 2 Indexing .. .

2. 2. 3 Indirect AddreSSing .. .

2. 2.4 Summary

2.2.5 Combinations of AddreSSing Options

2. 3 ARITHMETIC INSTRUCTIONS

2.4 NOTATION .. .

2.4. 1 Addressing Conventions

2.4.2 Register Conventions

2. 5 THE FIXED POINT INSTRUCTION CLASS

2. 5. 1 The Save Register•..........................

2. 5. 2 The Accumulator Address.

2. 6 THE EXTENDED PRECISION INSTRUCTION CLASS ..•.......................

2. 7 THE INDEX INSTRUCTION CLASS .•....................................

2.8 FLOATING POINT INSTRUCTION CLASS •.......•.........................

1-1

1-1

1-1

1-3

1-3

1-3

1-4

1-4

1-4

1-4

1-6

1-6

1-7

1-7

1-10

1-12

1-12

1-13

1-13

1-13

1-13

2-1

2-1

2-1

2-1

2-1

2-2

2-2

2-4

2-6

2-6

2-7

2-7

2-8

2-8

2-9

2-9

2-10

2-11

i

CONTENTS (Cont)

2.8.1 Floating Divide. • . . • • . 2-12

2.8.2 Floating Multiply. • • • . . • 2-13

2.9 THE DOUBLE PRECISION INSTRUCTION CLASS. 2-13

2.10 THE INTEGER INSTRUCTION CLASS. 2-14

2.10.1 Floating... 2-15

2.10.2 Integerizing•... ,.................................... 2-15

2.11 BOOLEAN CONNECTIVE INSTRUCTIONS. 2-16

2.11. 1 The Mnemonics. 2-17

2.11. 2 Addressing... 2-18

2.12 CONDITIONAL INSTRUCTIONS. 2-21

2.12.1 The Flag Operations. 2-21

2.12.2 Index Jumps XJ, XJT. 2-22

2.13 INSTRUCTIONS TO LOAD AND STORE SPECIAL REGISTERS. 2-22

2. 13. 1 Load Register or Bus. 2-22

2.13.2 Store from Register or Bus. 2-23

2.13.3 The Flag Register. 2-23

2.13.4 Location Counter. 2-23

2. 13. 5 Timer.. 2-24

2. 13.6 Mask Register•... 2-24

2.13.7 Console Register. 2-24

2.14 EXEC BIT INSTRUCTIONS. 2-24

2.14.1 Exec Bit Controls • . 2-24

2.14.2 Accumulator Exec Bits. 2-25

2.15 INPUT/OUTPUT INSTRUCTIONS. 2-25

2. 15. 1 SFL Instruction (Set Function Line) 2-25

2.15.2 TSL Instruction (Test Status Line) . 2-27

2.15.3 LDCD, STCD Instructions. 2-27

2.15.4 LDCC, STCC Instructions. 2-28

2.15.5 LDOB, STIB Instructions.. 2-29

2.16 SHIFT, ROTATE AND NORMALIZE INSTRUCTIONS 2-29

2. 16. 1 Arithmetic Shift ... 2-29

2.16.2 Rotates... 2-30

CHAPTER 3 - PRIORITY INTERRUPT SYSTEM. 3-1

3.1 INTRODUCTION... 3-1

3.2 BASIC OPERATION. 3-1

3.3 PRIORITy... 3-1

3.4 INTERRUPT CONTROL. 3-3

3.5 MASKING ... 3-5

3.6 USER/MONITOR MODE AND THE INTERNAL INTERRUPTS. 3-6

3.6.1 User/Monitor Modes ... 3-6

3.6.2 Internal Interrupts. • . 3-7

ii

CONTENTS (Cont)

3.7 EXTERNALmTERRUPTS

3.8 CONSOLE INDICATORS

Page

3-10

3-10

CHAPTER 4 - mpUT/OUTPUT SYSTEM .. 4-1

4.1 mTRODUCTION... 4-1

4.2 DATA CHANNELS. .. 4-1

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

Function

Structure

Instructions

Programming .

Byte Assembly/Disassembly

Code Conversion .. .

4-1

4-2

4-4

4-6

4-7

4-8

4.3 AUTOMATIC DATA CHANNEL PROCESSOR. .. 4-8

4. 3. 1 Function.. 4-8

4.3.2 Structure.. 4-8

4.3.3 Control Words .. 4-8

4.3.4 Operation ... 4-10

4.4 SYSTEM INTERFACE ... 4-11

4.4.1 Function.. 4-11

4.4. 2 Structure.. 4-12

4.4.3 SFL/TSL Instructions ... 4-13

4.5 PERIPHERAL DEVICES. .. 4-14

4.5.1 Typewriter .. 4-14

4.5.2 Card Reader (Models 8452, 8453, and 8454) .. 4-16

4. 5. 3 Paper Tape Reader 4- 20

4.5.4 Paper Tape Punch ... , 4-21

4.5.5 Line Printer (Models 8461, 8462, and 8463) .. 4-22

4.5.6 Card Punch (Models 8455 and 8456) 4-26

CHAPTER 5 - COMPUTER CONSOLE OPERATIONS. 5-1

5.1 mTRODUCTION... 5-1

5.2 CONTROLS AND INDICATORS. .. 5-2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

Register Controls

Typewriter Input Controls

Exponent Fault .

Interrupt Indicators .. .

Channel Condition Indicators

Parity Indicators

System Flag Indicators

5-2

5-3

5-5

5-5

5-5

5-6

5-6

5.2.8 Programmer Flag Controls and Indicators. .. 5-6

5.2.9 Console Interrupt Controls and Indicators ... 5-6

5.2. 10 Configuration Switches

5.2. 11 AUTO LOAD and AUTO DUMP

5-6

5-6

iii

CONTENTS (Cont)

Page

5.2. 12 Clock Controls .. 5-7

5.2. 13 System Controls and Indicators 5-7

5.2. 14 Console Register. .. 5-7

5.3 CONSOLE DISPLAY .. 5-7

5.3.1 Accumulator ... 5-7

5.3. 2 Display Register .. 5-7

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.3.8

5.3.9

Memory Data

Memory Address .

Exchange Assembly .

Location Counter

Channel Function

Channel Buffer ... ,

Instruction .. .

5-8

5-8

5-8

5-8

5-8

5-9

5-9

5.3.10 Typewriter Input. .. 5-9

5.4 Maintenance Panel. .. 5-9

5.4. 1 Lamp Test .. 5-9

5.4.2 Keyboard 5-9

5.4.3 Clock Control .. 5-9

5.4.4 Mode... 5-10

5.4.5 Left Half, Right Half, Left Exec, and Right Exec 5-10

5.4.6 PCO, PC1, PC2, and PC3 5-10

5.4.7 Data Test ... 5-10

5.4.8 ERR(Error) .. 5-10

5.4.9 BankSelect.. 5-11

5.4.10 PatternControl.. 5-11

5.4.11 Memory - LD/NORM/UNLD 5-11

5.4.12 Clock - STEP/NORM/START 5-11

5.4.13

5.4.14

Channel Select

Device Select

5-11

5-11

5.4.15 Byte 4/8 .. 5-12

5.4.16 EBITE/E ... 5-12

5.4.17 Code-BIN/BCD.. 5-12

5.4. 18 DBCO, DBC 1, DBC2 .. 5-12

5.4.19 DSCO, DSC1, DSC2 5-12

5.4.20 CSCO, CSC1, CSC2 ... 5-12

5.4.21 C1CO, C1C1 • . . . • • • . . • 5-12

5.4.22 CCOThroughCC4 .. 5-12

APPENDIX 1 - WORD FORMATS ... A1-1

1. INSTRUCTIONS. .. A1-1

2. LOGICAL DATA A1-1

3. FIXED POINT FRACTIONS. .. A1-1

iv

CONTENTS (Cont)

Page

4. FLOATING POINT NUMBERS Al-2

5. INTEGERS. .. Al-2

6. ALPHANUMERIC DATA. .. Al-2

7. GENERALIZED DATA Al-3

APPENDIX 2 8400 INSTRUCTION AND TEST MNEMONICS. .. A2-1

APPENDIX 3 - TABLE OF INTERRUPT ADDRESS CODES. .. A3-1

1. ANALOG-TO-DIGITAL CONVERSIONS A3-2

2. OPERATION CODES FOR ANALOG MONITOR/CONTROL A3-2

APPENDIX 4 - TABLE OF SFL/TSL CODES. .. A4-1

1.

2.

3.

4.

PROCESSOR INTERRUPT SFL

PROCESSOR INTERRUPT TSL

EXCHANGE INTERRUPT SFL

EXCHANGE INTERRUPT TSL

A4-1

A4-1

A4-2

A4-2

5. HYBRID SFL's A4-2

APPENDIX 5 - CHARACTER CODE EQUIVALENCE TABLE A5-1

APPENDIX 6 - POWERS OF TWO•......... A6-1

APPENDIX 7 - OCTAL-DECIMAL INTEGER CONVERSION •............................. A7-1

APPENDIX 8 - HOLLERITH CARD CODES ... A8-1

APPENDIX 9 - LINKING LOADER TEXT BINARY CARD FORMAT•.......... A9-1

APPENDIX 10 - PAPER TAPE FORMAT .. AlO-1

APPENDIX 11 - TWO'S COMPLEMENT ARITHMETIC A11-1

1. THE TWO'S COMPLEMENTS SYSTEM A11-1

2. RANGE OF NUMBERS A11-1

3. TRUNCATION AND ROUND-OFF. .. A11-1

4. SHIFTS. .. All-3

5. OVERFLOWS. .. All-4

6. MULTIPLE PRECISION .. Al1-4

APPENDIX 12 .. A12-1

v/vi

Figure
Number

1-1

1-2

1-3

1-4

1-5

1-6

1-7

2-1

2-2

3-1

3-2

3-3

3-4

3-5

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

4-23

ILLUSTRATIONS

Title

Typical 8400 Scientific Computing System

8400 System Diagrams

Memory Word Format

Instruction Word Format-

Summary of 8400 Word Format

Processor Registers

Universal Accumulator Formats

8400 Registers

Effective Address Calculation

Interrupt Register Mask Enable Configuration

Interrupt States

Multi-Level Interrupts . . "

Internal Interrupt Conditions .

Console Interrupt Buttons ...

Exchange Module

The Elements of a Data Channel

Data Channel SFL Instructions

Data Channel TSL Instructions

Program-Controlled Data Transfer•...........................

Byte Size/Byte Count Variation

Channel Control Word Format

ADC P Action for a TCD Operation

Typewriter Keyboard

Connection of Typewriter to the Channel Buffer Register

Typewriter Character Position in Memory

Typewriter SFL Codes

Hollerith- BCD Code on a Card

Position of Binary Card Characters in an 8-bit Byte

Card Reader TSL Codes

Card Reader SFL Codes

Paper Tape Reader SFL Instructions

Paper Tape Punch SFL Instructions

Vertical Format Codes

Line Printer TSL Instructions

Line Printer SFL Instructions•...........................

Card Punch SFL Instructions

Card Punch TSL Instructions

Page

1-2

1-3

1-6

1-7

1-8

1-10

1-11

2-2

2-5

3-2

3-4

3-4

3-7

3-9

4-1

4-3

4-5

4-6

4-7

4-8

4-9

4-11

4-15

4-15

4-15

4-15

4-17

4-17

4-18

4-19

4-21

4-22

4-24

4-25

4-25

4-28

4-29

vii

Figure
Number

4-24

4-25

5-1

5-2

5-3

5-4

5"'-5

5-6

5-7

viii

ILLUSTRATIONS (Cont)

Magnetic Tape SFL Instruction

Magnetic Tape TSL [nstruction

Title

Control Console ...

Control Panel

Register Display/[nput-Output Typewriter < ••••

Paper Tape Reader and Maintenance Panel

System Control Panel .. .

System Display Panel•......................................

Maintenance Control Panel

4-30

4-31

5-1

5-2

5-3

5-4

5-4

5-8

5-10

CHAPTER 1

SYSTEM DESCRIPTION

1. 1 INTRODUCTION

The 8400 Scientific Computing System (Figure 1-1)

Organization is made up of three autonomous subsys­

tems; memory, processor, and exchange, which

operate together from one control. Figure 1-2 illus­

trates, in block diagram form, a typical 8400 Scien­

tific Computing System.

The memory consists of from one to four banks with

individual controls. Each bank has four storage ac­

cess channels for multiple access communication. In

the typical configuration shown in Figure 1-2, the

first channel of each bank is connected to a bus from

the processor. Another separate bus ties together

the second channel of each bank. This bus is con­

nected to each optional Automatic Data Channel Con­

troller used. The banks' third and fourth channels

are available for bus connection to external proces­

sors and mass memory devices. With this arrange­

ment, the banks can be accessed in an over lapped

fashion by the central processor and by the external

processors in an expanded multiprocessor system.

Each bank can also exchange information with exter­

nal mass memory devices for efficient time-sharing

processes. With this configuration, the processors

may continue computation during input/output activity.

The central processor, functioning as the heart of the

system, has two-way communication with all subsys­

tems and optional Automatic Data Channel Control­

lers. Provided with a complete capability of per­

forming all required arithmetic and logical operations,

it performs the major part in control and execution

of the stored program. The achievement is accom­

plished by an accumulator and an extensive comple­

ment of registers, control lineS, and logic circuitry.

In general, the basic items of this subsystem are:

logic signal control, status lines, function lines, in-

terrupt lines, special control registers, location

counter, interval timer control, instruction register,

flag register, high-speed save register, and seven

index registers including the Universal Accumulator.

The last subsystem, the exchange, consists of a data

channel control system and a system interface. The

data channel control system provides a fully buffered

interface with external input/output (I/O) devices. It

includes up to eight two-way data channels which can

be controlled by either the program or one of the

optional Automatic Data Channel Controllers. Each

channel has the capability of controlling up to fifteen

external devices. The system interface includes an

I/O bus system that is directly addressable, as well

as provision for status control lines, function control

lines, and external interrupt lines; as required for

the integration of hybrid or other systems with the

8400.

Two additional units, the Automatic Data Channel

Controller and the console, are shown separately in

the diagram. The first of these, an optional expan­

sion in the exchange, provides data channel control

for data transfer (independent of processor opera­

tion) between external devices and memory. The

console, which is considered as part of the proces­

sor, includes: system controls, register displays,

an on-line typewriter and a paper tape station.

1. 2 EXPANSIONS

One important aspect of the 8400 is the versatility of

configurations. The expansions may be factory in­

stalled or added in the field when the 8400 users' re­

quirements change. A complete listing of expansions

may be found in Section 1. 1 of the 8400 Maintenance

Series - System Information manual (EAI Publica­

tion Number 00 800 9002-0). This section provides

1-1

Figure 1-1. Typical 8400 Scientific Computing Sys tern

1-2

MEMORY
BANK

MEMORY
BANK

MEMORY
BANK

MASS
STORAGE

PROCESSOR

FUNCTION LINES
STATUS LINES

INTERRUPT

I I
I I

~r45678

I I

CHANNEL CONTROLLERS

DISC- PAC
CONTROLLER

MAGNETIC
TAPE

CONTROLLER

8930

Figure 1-2. 8400 System Diagrams

a brief outline of the basic systems (8402, 8403)

along with the standard and optional components

available. Figure 1-2 illustrates the various configu­

rations.

1. 2. 1 8402 Basic Computing System - Includes

the following:

8410 Floating Point Processor;

8420 Memory Module - 8K capacity;

8430 Exchange Module;

8440 Desk Console;

8490 Power Module.

1. 2. 2 8403 Basic Computing System - Same

as the 8402 System except that the memory module

has a 16K storage capacity.

1. 2. 3 8410 Central. Processor - Including:

Hardware for performing fixed and floating

pOint arithmetic;

Three high-speed index registers and four in­

dex registers in coret;

Masked priority interrupt system with 16 in­

ternal. and 16 external. levels;

Power fail-safe system;

Exchange module (8430) with one (8431) data

channel, one (8440) desk console with on-line

input-output typewriter and one (8490) power

system;

Indirect, immediate and byte addressing capa­

bility; and, SAVE register with 560 nanosecond

cycle time.

t Four, high-speed index registers referred to as
the Quad Index Register Pak may be optionally de­
leted. However, the system always has seven index
registers. After the deletion is made, the system
index registers include the accumulator, two high­
speed registers and four registers in core memory.

1-3

1-4

Masked priority interrupt system with 16

internal and 16 external levels; and

Power fail-safe system tied to the highest

interrupt level.

1. 2. 4 8420 Memory Module - Includes:

Core storage capacity of 8192 words, each con­

taining 32 bits for information, 2 EXEC bits

for special control functions and 2 parity bits;

A 650 nanosecond access time;

A 1. 75 microsecond cycle time;

Independent read/write control enabling over­

lapped operations with other memory banks;

and,

The capability for handling independent busses

from up to four request sources.

Maximum one unit to be added in field.

1. 2.5 8430 Exchange Module - Includes:

A channel control system that can accommo­

date up to eight 8431 data channels;

Two bi -directional buffered data channels each

capable of handling 16-bit parallel communica­

tion;

The capability for handling 15 device control­

lers per channel;

The capability for controlling 16, 8 and 4-bit

byte assembly or disassembly sequences, in­

cluding parity checking or generation as well

as conversion of BCD to processor collating

codes;

The capability for independent channel control

from the processor or from the optional, 8435-1

Automatic Data Channel Control System (per­

mitting simultaneous multi-channel operation);

An availability for four channel interrupt lines

when less than five 8431 data channels are used;

A systems interface with up to 16, fully-buffered,

16-bit parallel input/output busses - up to 128

groups of status lines with 8 lines per group -

and up to 128 groups of function lines with 8

lines per group; and,

Interface terminations for optional external

priority interrupt system expansions, for up to

256 interrupt levels.

1. 2.6 8440 Desk Console - Including:

Operator's panel with complete display and

control facilities including console, status line

control and processor access for on-line pa­

rameter changing;

A maintenance panel;

An on-line, Selectric Typewriter for manual and

program -controlled input/output.

1. 2. 7 8490 Power Module - Including:

A capability for providing the 8400 system's

full power requirements;

Provisions for the manual, marginal testing of

memory;

Provisions for power-fail monitoring; and,

Provision for over/under power protection.

1. 2. 8 The follOWing list includes optional pe­

ripheral devices and system expansion components:

8441 Paper Tape Station - with a 500 cps read

and 110 cps punch capability. (cps = Char/sec).

8412 Quad Index Register Pak - adds to the

processor four high-speed index registers

(registers 4 to 7).

8417 Timer Register - provides addressable,

real-time millisecond clock.

8422 8K Memory Bank - with same features as

8422-E Memory Module. (Maximum four banks

per 8400.)

8423 16K Memory Bank - with a 16,384 word,

core storage capacity; other features are the

same as those for the 8420 Memory Module.

(Maximum four banks per 8400.)

8431 Program Control Data Channel - provides

a data channel capability for any exchange

module channel position, from 1 to 7; handles

up to 15 peripheral device controllers.

8435-1 Automatic Data Channel Processor -

provides independent block data transfer con­

trol for the 8431 data channel of channel posi­

tion 0 in the exchange module; requires the use

of an 8420 Memory Interface Pak; independent

of central llrocessor.

8435-2, 3, 4 Automatic Data Channel Proces­

sor Expansions - each adds independent block

data transfer control for one 8431 data channel

occupying any channel position between 1 and 7

in the exchange module; 8435-1 Automatic Data

Channel is required in order to use the expan­

sion. (Maximum of three.)

8420-21,22,23,24 Memory Interface Pak -

provides coupling interface between 8435-1

Automatic Data Channel Processor and Memory

Banks 1, 2, 3, anli 4, respectively. Maximum

of four; one required per memory bank. Neces­

sary if an ADCP is to be used.

8437-2 through 16 External Interrupt System

Expansion Group - each group adds 16 inter­

rupt lines to basic external interrupt system.

8438-1 through 128 Status Line Package - pro­

vides in the exchange additional status line

groups of 8 lines each (two 8-line groups per

unit). Each package provides fully buffered

flip-flop storage for sense input from external

devices .. (Maximum 64 groups.)

8439-1 through 128 Function Line Package -

provides in the exchange additional function

groups of 8 lines each (two 8-line groups per

unit). Each package provides fully buffered

flip-flop storage for function line output to ex­

ternal devices. (Maximun 64 groups.)

8441 Paper Tape Station - 500 character-per­

second read and 110 character-per-second

punch. Mounting provisions are included in the

8440 Central Console.

8452 Card Reader - 400 cards-per-minute; 12

row cards, 80 column read.

8453 Card Reader - 800 cards-per-minute; 12

row cards, 80 column read.

8454 Card Reader - 1400 cards-per-minute;

12 row cards, 80 column read.

8455 Serial Card Punch - 100 cards-per -minute

to 316 cpm.

8456 Parallel Card Punch· 300 cards-per-

minute.

8461 Line Printer - 300 lines-per-minute; 132

columns-per-line, 64 characters, buffered

printer.

8462 Line Printer - 600 lines-per-minute; 132

columns-per-line, 64 characters, buffered

printer.

8463 Line Printer - 1000 lines-per-minute.

8472 Magnetic Tape System - provides con­

troller handlin up to four transports (8473);

one is included, maximum of four. The

tape transport uses 7 -track, IBM compatible

tapes and operates at 45 ips and 556 and 800

bpi, respectively.

8474 Magnetic Tape System - provides con­

troller handling up to four transports (8475);

1-5

one is included (maximum of four). The tape

transport uses 7 -track, IBM compatible tapes

and operates at 75 ips and 556 and 800 bpi,

respectively.

8476 Magnetic Tape System - provides con­

troller handling up to four transports (8477);

one is included. The tape transport uses 7-

track, IBM compatible tapes and operates at

120 ips and 556 and 800 bpi, respectively.

8478 Magnetic Tape System - provides con­

troller handling up to four transports (8479);

one is included. The tape transport (8479)

uses 7-track, IBM compatible tapes and oper­

ates at 150 ips and 556 and 800 bpi, respec­

tively.
NDTE

8481 Display Monitor - provides point, line

and character plotting on a 10" x 10" display

of 1024 points along each axis. Light pen is

included.

1. 3 PROCESSOR

1. 3.1 Memory Word

The 8400 Computer's memory word 'consists of 36

bits: 2 bits for parity check, 2 bits for program

control (EXEC bits), and 32 data bits. The memory

word format is shown in Figure 1-3.

Model Numbers 8472-9, 8474-9, 8476-9, and

The parity bits are generated and stored on a half­

word basis during the write cycle. Parity is then

checked during the read cycle. If an error is lo­

cated, the console indicator lights and a parity inter­

rupt J!3 initiated. The 8400 System uses odd parity;

this means that whenever the number of logic ONE's

1-6

8478-9 are the same as the models listed above

except that they use 9 track IBM compatible tapes.

0 151 16

INFORMATION

16-BIT HALF-WORD I
32-BIT FULL -WORD ,

8-BIT BYTES

I· 4-BIT BYTES

I I I I II I I I H,T BYTES

11111111111111111,·" T BYTES

31 32 33 3435

16-BIT HALF-WORD E E P P

SUBDIVISION OF HALF-WORDS
FOR BOOLEAN OPERATIONS

Figure 1-3. Memory Word Format

making up a word is even, a parity bit is generated

so that the result is odd. (Using odd parity, the

parity bit is always the opposite when all l's or O's

are used.)

The EXEC bits, in effect, expand the system's soft­

ware capability. Used by the programmer to tag

selected memory words, these two bits are also

capable of the following:

enabling interrupt control for memory

protection,

dynamic relocation of object programs,

. .. stack or table pOinting, and so forth.

EXEC bit control is discussed in Chapter 2.

The information portion of the word may contain a

full (32-bit) word, two half (16-bit) words, or por­

tions thereof (8, 4, 2, or 1-bit) for Boolean

operations.

1. 3. 2 Instruction Word

Instructions are executed in sequence by the 8400

Instruction Register (I). Each instruction has a 32-bit

word format as shown in Figure 1-4. This figure

0 15

M FIELD

16

*

indicates the normal program control capabilities of

the instruction word; for example, addressing, ad­

dress modification, and instruction interpretation.

The first sixteen bits (M field) in the word format

represent the operand address during a data fetch.

It may also signify: an instruction address during

an instruction fetch, an immediate operand, or a

shift count. The next four bits designate any address

modification required. If bit 16 (*) is a binary 1,

the M field contains the address of another location

in memory that will replace the present M field,

rather than the address of an operand. Bits 17 through

19 (X, where X = 1 to 7) specify the number of an

Index register. Either or both may be used to change

the interpretation of the instruction address during

execution.

The last 12-bit (OP field) portion of the word format

denotes the operation to be performed.

1. 3. 3 Data Word Formats

This section describes the word formats used in the

8400 Computer. The brief descriptions refer to

Figure 1-5. Arithmetic formats are in a two's

complement notation with the + sign (binary 1) indi­

cating a negative quantity. The instruction, memory

data and memory address word formats are included

in Figure 1-5 for comparison.

17 19 20 31

X OP FIELD

M 16 - BIT (MEMORY) ADDRESS FIELD

* I - BIT INDIRECT ADDRESS MODIFIER

X 3 - BIT INDEXING MODIFIER

OP 12 - BIT COMMAND (OPERATION CODE)

Figure 1-4. Instruction Word Format

1-7

FLOATING POI NT

DOUBLE PRECISION
FLOATING POINT

INTEGER

CHARACTERISTIC

S I 23

MOST SIGNIFICANT CHARACTERISTIC

{
sl 23

LEAST SIGNIFICANT CHARACTERISTIC

sl ~

~s ... I _____ 1_5 _____ ---', __

I
FIXED POINT ~s IL...------1_5------~1

I

EXPONENT

lSi 7

24EXPONENT

lsi 7
,

EXPONENT - 23 I
Isl==7 =:J

I -- ,-1----' ___ -1-1 ____1

15 EXTENDED FIXED POINT I S I 15 S I
I~------------------~------------------~

INDEX IS I

I~-----'
15

LOGICAL: I, 16-BIT BYTE I
I~----------------~

2, a-BIT BYTESI~ ______ "'--______ ~

4, 4-BIT BYTESI
I~-~--~--~-~

16, 1- BIT BYTES 1 I I I 1 1.1 I 1 I 1 1 1 I 1

INSTRUCTION M FI ELD

MEMORY ADDRESS

MEMORY DATA LEFT HALF

BIT SCALE I II
7 a

6 17 19

16

OPERATION

RIGHT HALF ItlMrl~1

EL - LEFT EXEC BIT
ER - RIGHT EXEC BIT
PL - LEFT PARITY BIT
PR - RIGHT PARITY BIT
S" SIGN:!:

Figure 1-5. Summary of 8400 Word Format

1-8

1. 3. 3.1 Floating-Point. Floating-point num­

bers are either single word (32-bit), or double pre­

cision (56-bit) quantities. The single-precision

floating-point number consists of:

•.. a fractional part (23 magnitude bits),

a sign bit,

and an exponent part (7 magnitude bits)

with its own sign bit.

This single-precision floating-point notation provides

an accuracy of six.decimal digits.

The double-precision floating-point number occupies

two consecutive memory word locations .. The word

with the lowest address contains the most significant

fraction and exponent bits. The signed exponent part

of the word (eight bits) with the higher address is
.. 23

adJusted durmg memory store to EXP-2 . Double

floating-point notation provides an accuracy of thir­

teen decimal digits.

The double-precision floating-point word format has

direct correspondence with the single floating-point

format. For example, when executing a 32-bit

floating-point multiply, the product will be in the

double-precision word format. Therefore, the re­

sults of several 32-bit floating-point multiply opera­

tions can be accumulated using double-precision

floating-point add operations. The results may be

operated on individually since the sign and exponent

for each of the most significant and least significant

portions are preserved.

Floating-point operations are normalized (adjustment

of the mantissa and floating-point number so that the

mantissa lies in the prescribed normal range) auto­

matically after each operation unless the instruction

is post-modified by the unnormalized symbol (U).

Normalization is accomplished by using left shifts

to remove all leading zeros from the number in the

accumulator. The shifting continues until the con­

tents of the first two bit positions (0, 1) in the accu­

mulator differ.

1. 3. 3. 2 Fixed-Point. Formats for the stan­

dard (16-bit) and extended (32-bit) fixed-point quan­

tities are illustrated in Figure 1-5. The standard

fixed-point format consists of a 15-bit fraction along .'
with a sign bit and may occupy either half-word

position of the memory word. The extended fixed­

point format contains two 15-bit fractional parts

and a sign bit for each. Its left half-word contains

the fifteen most significant bits and the sign of the

entire 30-bit fractional quantities, In standard

fixed-pOint arithmetic operations, the half-words

are addressed individually.

1. 3. 3. 3 Integer. Integer arithmetic instruc­

tion involve operations with two types of data words:

1. Standard, 16-bit fixed-point

and

2. Single, 32-bit floating-point.

The data word associated with the system memory is

standard, 16-bit, fixed-point notation. The operand

in the Accumulator is in single 32-bit, floating-point

notation. In the integer mode, a 16-bit, fixed-point

number is automatically converted from the half­

word memory location to the floating-point format.

LikeWise, a floating-point number in the accumu­

lator which represents the result of a series of

floating-point operations, is integerized and stored

in the designated half-word memory location. Opera­

tions in this mode may be either normalized or unnor­

malized by post modifying the associated instructions.

1. 3.3. 4 Index. In this operation, the contents

. of a specified index register is arithmetically combined

with the contents of a half-word memory location.

The result, obtained in the accumulator, is automati­

cally transferred back into the specific index regi­

ster and the previous contents of the accumulator ar!

restored.

1. 3. 3.5 Logical Byte. Logical Byte operations

between half-word memory locations and the accumu­

lator may be performed in 16, 8, 4, 2, or 1-bit bytes.

A single instruction selects the desired byte size,

1-9

byte positions, logical connective and recipient (either

memory or accumulator) of the operation results.

1. 3. 4 Processor Registers

The following registers in the 8400 Computer provide

the major portion of the Processor's capability for

control and execution of the stored program. (See

Figure 1-6).

1.3.4.1 Instruction Register (l). This 32-bit

register stores each instruction as it is executed.

The register format is the same as the 8400 instruc­

tion word as shown in Figure 1-4.

1. 3. 4.2 Location Counter (L). This 16-bit

register contains the address of the next instruction

to be loaded into the Instruction Register. Its primary

function is to provide system program control by se­

quentially directing the flow of instructions into the

system. The contents of the Location Counter may

be stored when necessary.

1. 3. 4. 3 Universal Accumulator (A). The

Universal Accumulator as shown in Figure 1-7, con­

sists of four separate registers which carry out the

8400's arithmetic and data operations.

o I 16 32

INSTRUCTION REGISTER (r 1 I
LOCATION COUNTER (L 1

The first section, the 16-bit A Register, is used by

itself for 16-bit fixed-point operations and as the

most significant 16 bits of all other operations. The

second section, the AE Register, is used when ex­

tended fixed-point and extended shift operations are

needed. It enables the A Register to Handle 32-bit

fixed-point quantities such as: 32-bit, double-length

products; and dividends of standard, 16-bit fixed­

point multiply and divide operations. The AF Regis­

ter, the third section, is a 16-bit A Register exten­

sion and is used for single-word (32 -bit) floating­

point quantities. The final section, the AD Register,

provides a 24-bit extension to the AF Register. This

enables the accumulator to handle 56-bit, double­

precision floating-point quantities; such as the double­

precision products and dividends of a single-word

floating-point multiplication and division operations.

The accumulator provides several special 8400 pro­

gramming features. It provides a single refere.nce

location for the implicit operand and the result of all

arithmetic and logical operations. The accumulator

is universal in that it automatically handles all inter­

register transfers after each arithmetic operation.

Another convenience is that it may be used as an index

register. Finally, by virtue of its self-addressing

o 15

I INDEX REGISTERS
(X I _7) .. ·(SEVEN)*

~ i
FLAG REGISTER (F 1 UNIVERSAL ACCUMULATOR (A) 16 32

1-10

INTERNAL
MASK REGISTER (Ml

EXTERNAL
MASK REGISTER (El

INTERNAL
INTERRUPT REGISTER

EXTERNAL
INTERRUPT REGISTERS

INTERVAL
TIMER REGISTER (Tl

CONSOLE REGISTER (C 1

o 151--A~REG~ER--=-=:]
,-------t------

A REGISTER L ________ L- _______ -,
L AF REGISTER ~ -------0 23 ,----------- ---,

L ____ ~D~E~~.:mR ___ ~

~ f
SAVE REGISTER ($ I .6 32 ,--------,

o 15 A E REGISTER
'-~REGI-;:;:-E_;_---I-______ ---1
L-______ --j ______ --,

L_~~GIST~ __ ..J
0 23 ,-----------l
L ___ ~D~~S~R ____ ..J

'The A Register of the Uni versal Accumulator is Index Register Xl

Figure 1-6. Processor Registers

16 17 31

s I
r~------------------0 I 15 AE REGISTER

~ S I MANTISSA (CONTINUED IN AF REGISTER)
..J .!..M~T.!!'!.N ~I ~~ ~R!.. W!!E!! ~E~ W..!.T~ ~ ~G~T~R

A REGISTER 16 23 "24 31

(CONTINUATION I
___ O!,. ~N~'~A:' _ -1 ___ E~P~~T ____

AF REGISTER

MANTISSA (LEAST SIGNIFICANT PART)

- - - - - - - - -AD REGISTER - - - - - - - - - - - -

Figure 1-7. Universal Accumulator Formats

capability, the accumulator enables the performance

of doubling and squaring at high speeds. This self­

addressing capability also enables data transfer be­

tween the accumulator and all index registers. The

Universal Accumulator is addressable as memory

location zero.

1. 3. 4.4 Save Register ($). The Save Register

is a high-speed storage register similar to the

Universal Accumulator. (See Figures 1-6 and 1-7.)

This register is used to retain the entire contents of

the accumulator prior to the execution of any arith­

metic or shift instruction. The Save option is de­

signated by the & symbol and may be used with any

'arithmetic or shift operation.

The programmer, by using the Save Register, is able

to store or read operands in 560 nanoseconds, less

time than it takes using core memory. The data is

automatically arranged in the proper format when

recalled by the Universal Accumulator. Similar to

a memory cell, this register retains data until a

subsequent instruction containing the $ symbol stores

new data; the data is NOT destroyed during the save­

write cycle.

1.3.4.5 Index Register (X1- 7). Seven index

registers including the Universal Accumulator (index

register one) provide automatic address modification.

These registers retain ha:lf-word numbers that are

expressed in two's complement notation.

When indexed address modification is specified, the

effective address is formed by adding the contents of

the selected index register to the contents of the M

field. This operation has no effect on index register

content.

Index arithmetic instructions allow direct operation

between the respective contents of a specified index

register and an addressed memory location. A

single instruction effects the following: An automatic

parallel transfer of the contents of the addressed

index register to the Universal Accumulator; an

arithmetic operation, as specified, combining this

quantity with that contained in the addressed memory

location; and, an automatic transfer of the result

back to the same index register. The transfer from

the index register is made to the parallel A Register

of the Universal Accumulator with the previous A

Register contents being stored. Since the index

register has no extension (AE Register), its use is

restricted to operations giving a half-word (16-bit)

results.

1. 3.4. 6 Flag Register (F). The addressable,

16-bit Flag Register continually monitors machine

conditions as well as those specified by the pro­

grammer. At the end of each instruction, the status

of these conditions is indicated by the register's

sixteen flag bits.

1-11

Tested by a set of transfer operations, the flags pro­

vide the basis for the 8400's extensive program­

control capability. They signify modifications of the

normal sequential control for the program. Basic

control instructions affected include the following:

HJf

EXf

Lf

LRf

Jf

JRf

JSf

HALT if flag f set and JUMP when

execute button depressed;

EXECUTE instruction at specified

location if flag f set;

LINK to subroutine if flag f set;

LINK to subroutine if flag f set,

RESET flag; JUMP if flag f set;

JUMP if flag f set;

JUMP if flag f set, RESET flag;

JUMP if flag f set, SET flag;

JTf JUMP if flag f set, TRIGGER flag.

The LINK and JUMP operations are conditional; they

depend upon the status of the flag tested. The setting,

resetting, or triggering (complementing) of the flag,

however, is unconditional.

The Flag Register bits indicate the status of 16 inter­

nal machine conditions. Eight of the bits serve as

programmer console flags and are set by either con­

sole switches or the program. Internal machine

status conditions can be preserved at any particular

time by storing the entire register contents in mem­

ory. This enables the programmer to retrieve inter­

nal machine status after the occurrence of subsequent

interrupt conditions.

1. 3. 4.7 Mask Registers, Internal (M) and

External (E). The Internal Mask Register and Ex­

ternal Mask Register permit the programmer to select

the interrupts a program will respond to and, to es­

tablish a priority- among these interrupts. These
l6-bit registers are loaded and stored by the use .of

special instructions (see Chapter 2).

1-12

1. 3. 4.8 Console Register (C). This l6-bit

register enables monitoring, data display and data

input while the program is in progress. It may be

loaded by the operator or by the program..

1. 3 .. 4.9 Interval Timer Register (T). Enabled

by the LOAD INTERVAL TIMER (LDT) instruction,

this l6-bit register decrements one count each milli­

second t providing computer real-time control. As

the register goes through zero, an interrupt is gen­

erated and the register is reset to its maximum

value. At this point, unless reloaded by the interrupt

subroutine, the register continues to decrement as

before.

With all its bit positions occupied, the Interval Timer.

Register will decrement through a maximum time

range of 65, ~36-l milliseconds{~2n)InterruPts may

\\n=o
be programmed to occur at any selected' time interval

within this range. Consequently, the register is

extremely useful for: program synchronization,

periodic output of data, time-sharing programs or

consoles, periodic sense line testing, and many

other purposes.

1. 4 ADDRESSING

The extensive addressing capability in the 8400

Scientific Computing System facilitates the handling of

all normally encountered address manipulations in­

volving core memory locations. Direct, indexed, and

indirect addressing have been made available to the

programmer •. In addition, an immediate or literal

addressing capability provides programming flexi­

bility for fast efficient processing.

1. 4. 1 Direct Addressing

With direct addressing, the l6-bit address specified

by the instructions' M field referS' directly to the

memory location of the data (operand) that is to be

t Other factory-set timing intervals are also available.

used in the specified operation. In arithmetic opera­

tions, either full-word or half -word operands may be

used. With full-word operands, the entire contents

of the specified memory location are involved. With

half-word operands, either the right or left half of

the full-word location is used. The half-word to be

used is designated in the instruction by a / (slash)

post modifier (see Chapter 2).

For double precision arithmetic operations, the con­

tents of both the specified memory location and the

next memory location (M + 1) are accessed. In

Boolean operations, the specific half-word (including

its byte size and position) is specified by using post

modifiers in the associated instruction, i. e. , AHM4/

SAM,,3. In this instruction: 4 specifies a four-bit

byte; SAM designates the memory location and, being

to the right of the slash, the right half-word of this

full-word location is specified. The instruction

states, "where each of the four bits in the third byte

position are high, set the corresponding bits in the

right half-word of memory location SAM".

1.4.2 IndexedAddressing

Indexed addressing represents an important and

highly useful variation of direct addressing. The

8400 contains seven index registers providing an

. efficient, flexible means of address modification.

Indexing adds the contents of an index register to the

address portion of an instruction, Bits 17, 18, and

19 of the instruction word specify which one of the

seven index registers is to be activated. If bit posi­

tions 17, 18, and 19 are zero, no indexing is speci­

fied. The contents of anyone of the computers'

seven index registers are added to the 16-bit address

field (base part) to form the "effective address".

1. 4. 3 Indirect Addressing

Multi-level indirect addressing may· be used without

being restricted by any 8400 instructions. The * bit

(bit 16) of the instruction word is used as the in­

direct indicator. When indirect addressing is speci­

fied' the 16-bit address gives the memory location

where the address of the data may be found. Thus,

the address of the data is given indirectly.

If both an index register and indirect addressing are
.'

required by the programmer, the effective address

is computed as previously discussed and then the in­

direct address is computed.

1. 4. 4 Immediate Addressing

The 16-bit address of an arithmetic or logical in­

struction serves as the operand when immediate

addreSSing is used. This operand is a signed number

represented in two's complement notation. Immedi­

ate addressing is specified in the 12-bit operation

(OP) field of the instruction word and is accomplished

in symbolic notation by placing the = symbol in this

field.

This form of addressing saves instruction time since

it permits the direct use of data from the Instruction

Register; no memory access required. This form

of addressing also saves memory space since no

operand memory locations are required and; in ad­

dition, the operand may be modified by the contents

of a specifiC index register since the immediate

operand is located in the instruction word address

field. With this modification accomplished prior 'to

using the immediate operand, the effective immediate

operand concept can be used by the programmer to

provide greater programming flexibility. CA store

command with immediate addressing capability is

called an NOP.)

The immediate operand notion extends to shifting

operations as well. In a SHIFT instruction, the

desired number of shifts is speCified as an arithme­

tic operand. Direction of shifting is determined by

the shift count sign. And, as an immediate operand,

this shift count may be modified by the contents of a

specified index register.

1. 5 INTERRUPT SYSTEM

The true multilevel interrupt system with mask con­

trol permits multilevel interruption to any depth

1-13

without a loss of return-continuity. When an internal

or external interrupt condition occurs and the inter­

rupt action is not inhibited by masks, an instruction

in a reversed interrupt location is executed (each

interrupt condition has a reversed location). The

execution of this instruction does not change Location

Counter contents. LINK, the normally executed

instruction, transfers control to the interrupt routine

while preserving the return address of the interrupted

program. Once started, an interrupt action may be

interrupted by the occurrence of a subsequent sys­

tem interrupt condition.

The interrupt system responds to internal conditions

and operating modes monitored by sixteen internal

interrupt lines. It is also responsive to any of up to

256 external conditions monitored by an expanded

complement of external interrupt lines. There are

16 external interrupt lines in the first group with a

capability of up to 15 additional external groups. The

complete system is arranged in 17 groups containing

16 individual interrupt levels apiece. Group 0 in­

cludes the internal interrupt levels and groups 1

through 16, the external interrupt levels. Each group

1-14

has priority over the succeeding group and each

group level over lower levels.

Basically, 16 flip-flops (each set by a particular

interrupt condition) are scanned. A scanner will

accept a flip-flop output only if the Interrupt Enable

bit in the Flag Register and the corresponding mask

register bit are both high. The scanner begins scan­

ning at selected points in the instruction flow, con­

tinues until an interrupt condition is detected, and

then locks onto that position. The priority of a

scanner is established when no "higher-priority"

scanner has locked up. Mter priority has been

established, interrupt logic determines the address

of the reserved interrupt location.

Mter an interrupt subroutine has been given control

and the return address of the interrupted program

has been saved, scanning of the higher priority inter­

rupt levels resume. This insures that the operation

of the subroutine will be interrupted only when the

higher interrupt conditions are detected. Such in­

terruption may be eliminated by using the appropri­

ate masking.

CHAPTER 2

INSTRUCTION REPERTOIRE

2. 1 INTRODUCTION

This chapter contains a complete and precise defini­

tion of the operations performed by every 8400

instruction. Further details on input/output in­

structions for peripheral devices are given in

Chapter 4. The emphasis in this chapter is on pro­

gramming rules and conventions; moreover, as an

aid in learning the entire repertoire, the instruc­

tions are presented in classes and sets. The pro­

gramming conventions and notation used are taken

from the 8400 Macro-Assembler manual (EAI

Publication Number 07 800.0001-3). The actualOP

code numerical values are given in the appendix and

in the 8400 Programmer's Card.

Consistent with the objective of presenting the in­

struction repertoire as the programmer will use it,

the view of the computer is offered as functional -

appropriate for the programmer. Therefore, Figure

2.1 illustrates the essential programmable elements

of the central processor. Only the 16-bit input and

output busses are missing. The registers required

for momentary storage of data traveling to the ac­

cumulator from the memory is only one explicit

inter-register transfer and that is between the ac­

cumulator and the Save ($) Register. The memory­

to-register transfer paths are obvious; therefore,

not shown. Other register transfers which are

closely related to the instruction and their options

are developed in the text below.

Figure 2.1 illustrates the following important facts:

• •• The Save Register can hold a copy of the

accumulator contents except for the exec

bits (shown crosshatched);

· •• the EA and AF Registers are alternative

extensions of the A Register;

· •• the A Register is also treated as Index

Register one;

.•• the instruction address field in the left

portion of the instruction word;

••• other special registers are a half-word in

size.

2.2 EFFECTIVE ADDRESS CALCULATIONS

2. 2. 1 Direct Addressing

All instructions referencing an operand in memory

specify one of several ways to address the operand.

The most basiC, direct addreSSing, uses the 16-bit

left hand number of the instruction word as the

operand address. Other addressing modes are

termed: index modification, indirect addressing,

and immediate addressing. Half-word addreSSing, a

variation on each of the above, is allowed when the

operand is a 16-bit word. The left or right half-word

selection is made after a memory address. This

left/right option is an integral part of the OP code

(bits 20 to 31 of the I Register as shown in Figure

2.1).

2. 2. 2 Indexing

One of the primary uses of index registers arises from

their ability to modify instruction addresses. For this

to occur, the instruction must specify the particular

index register that is to take part in the modifying

activity. Indexing adds the contents of an index reg­

ister to the address portion of an instruction.

When indeXing is speCified, the contents of the index

registers are added algebraically, in two's comple­

ment notation, to the address portion of the
instruction. This new address, the effective address,

is then to be used as the operand.

If the index register contains a negative (two's com­

plement) value, the result of address modification

to subtract this value from the address portion of the

! instruction.

2-1

INDEX REGISTERS
o 15

X7
X6
X5
X4
X3

PROCESSOR REGISTER
X2

o

T

c REGISTER

E

M

F

L.

o I. I. 52

I 1 __ m_--1.JH_x 1 _op_-,

o M ORY II

EI IE

8400 REGISTERS
Figure 2.1

As an example of address modification, assume that

memory address 500 contains the instruction AD 124,2

and this instruction has a two in the appropriate index

register position. If the contents of the index regis­

ter are 27, then the number stored in memory loca­

tion 151 (124 + 27 = 151) is added into the accumu­

lator when the add AD instruction is executed. Note

that memory location 500 still contains the instruction

AD 124,2 in its original form. Memory address 151

is called the effective address, and the process is

called address modification; that is, the address of

the instruction is modified in the central processor

for execution purposes, but is unaltered in memory.

2.2.3 Indirect Addressing

When proceSSing data is located in several different

areas of memory, it is at times convenient to operate

upon an indirect address as opposed to an actual ad­

dress. For example, if the programmer wishes to

perform an add instruction at memory location 3000

(assume that memory location 123 already contains

1862), he would write location 3000

2-2

AD 123.

However, if he wishes to add to the accumulator, not

the contents of memory location 123 but the contents

of the contents of memory locat:i.on 123, then the com­

puter would add the contents of location 1862 to the

accumulator. This procedure is known as indirect

addressing, and occurs when a 1 is placed in bit

position 16 (*) of the instruction word. Mnemonically,

it is written as:
AD* 123

Note that if an index register and indirect addressing

are requested by the programmer, the effective ad­

dress is computed as previously discussed and then

the indirect address is computed.

2.2.4 Summary

Table 2.1 lists the entire 8400 Instruction Repertoire.

An instruction that has a number (m) in the left half­

word and no address modifier in the right half-word

is said to address memory core location, m, which

contains the operand. If the Immediate option is

8400 INSTRUCTION LIST

ARITHMETIC OPERATIONS

32·BIT FLOA TING.POINT

Subtract
Cleor Subtract
Cleor Add
Add
Com pore
Multiply
Store
Store Rounded
Divide
Clear Divide

MNEMONIC

FSB
FCS
FCA
FAD
FCP
FMP
FST
FSR
FDV
FCD

56·BIT DOUBLE FLOATING.POINT MNEMONIC

Subtract DSB
C lear Subtract DeS
C lear Add DCA
Add DAD
Comparet DCP
Multiply l' DMP
Store OST
Store Round"cI t DSR
Divide t DOV
Clear Divide t OeD
t denotes compatible subroutine operat;ons

16·BIT INTEGER MNEMONIC

Subtract ISB
Clear Subtract ICS
Cleor Add ICA
Add lAD
Compare ICP
Multiply IMP
Store 1ST
Stor. Rounded ISR
Divide IDV
Clear Divide ICD

Operation modifiers extend the basic list. The post
modifier "U" specifies unnormaHzed operation for
F,D and f Classes. The premodifier "$" specifies
a Scive Register store of the accumulator contents
prior to the execution of a modified instruction of
any class. Examples: FADUi SEAD or $FADU.

Table 2.1. 8400 Instruction Repertoire

16·BIT FIXED POINT

Subtract
Clear Subtract
Clear Add
Add
Compar.
Multiply
Store
Store Rounded
Divide
Clear Divide

32·BIT EXTENDED FIXen.POINT

Subtract
Clear Subtract
Cleor Add
Add
Compore t
MultlplYf
Store
Stor. Rounded t
Divide t
Clear Divide t

16·BIT INDEX

Subtract
C lear Subtract
Cleaf Add
Add
Compare
Multiply
Store
Store Rounded
Divide
Clear Divide

MNEMONIC

SB
CS
CA
AD
CP
MP
ST
SR
DV
CD

MNEMONIC

ESB
ECS
ECA
EAD
ECP
EMP
EST
ESR
EDV
ECD

MNEMONIC

XSB
XCS
XCA
XAD
XCP
XMP
XST
XSR
XDV
XCD

The prefixes or suHixes in the mnemonic symbol
denote the class of operation or operation condi­
tions. The basic symbol indicates t"'e operation
itself.
ElI:ample: In FAD, F stands for Floating.Point
Arithmetic (32·bit precision). AD indicates
the ADO operation.

Both Low (Nor)
Both Different (Excl Or)
Both Same (Equiv)
Complement Both High (And A)
Complement Either High (Or A)
Complement Either Low (Nand A)
Complement Both Low (Nor A)
Byte Equality Test (Set Z Flag if Bytes identical)

BLAn
BDAn
BSAn
CSHAn
CEHAn
CELAn
CBLAn
BECTn

Example: ELAn specifies that the result of a NAND, with on n .. bit
byte in A and an n.blt byte in M, replace the A.byte. T"'e mnemonic:
is interprered as follows: "For corresponding bit positions in t"'e

CONTROL OPERATIONS

TEST BRANCH _ ON "FLAG". I

Holt - Jump
Execut.
Link (To Subroutine)
Link _ Res.t Flag
Jump _ Trigg.r Flag
Jump - Set Flog
Jump _ Reset Flag

Jump

MNEMONIC

HJI
EXI
LI
LRI
JTI
JSI
JRI
JI

f denotes one of the 16 conditions monitored by a special flag
register. T"'ese conditions are listed below with their respective
mnemonics. Complement conditions can be specffied by prefixing
the condition mnemonics with the modifier, tiN".

Examples: Halt Jump on Over·
flow Is coded HJV. Holt Jump on no Overflow Is HJNV.

1/0 OPERATIONS

1/0 REGISTER LOAD

Load Output BU55
Load Channel Dota Register
Load Channel Control Register

Set Function Line

AUTOMATIC DATA CHANNEL CONTROL _
DATA BLOCK TRANSMISSION

MNEMONIC

LDOS
LOCD
LDCC
SFL

MNEMONIC

SHIFTING, ROTATION AND NORMALIZING OPERATIONS

Transmit on Count _ Disconnect
Transmit Until Signal _ Disconnect
Transmit on Either _ Disconnect
Transmit on Count _ Interrupt
Transmit Until Signal _ Interrupt
Transmit on Either _ Interrupt

TCD
TSD
TED
TCI
TSI
TEl

ACCUMULATOR

Arithmetic Shift
Logical Rotate
Normalize

LOGICAL BYTE OPERATIONS

BOOLEAN CONNECTIVES _
RESUL TS TO ACCUMULATOR

Set (A 11 Ones in A)
Reset (Ail Zeros in A)
Memory High (Load M)
Accumulator Low (Complement A)
Memory Low (Complement M)
Bot'" Hig'" (And)
Either High (Or)
Either Low (Nand)

MNEMONIC

ASH
ROT
NRM

MNEMONIC

SAn
RAn
MHAn
ALAn
MLAn
BHAn
EHAn
ELAn

EXTENDED ACCUMULA TOR

Arit"'metic Shift
Logical Rotate
Normalize

BOOLEAN COt.NECTIVES _
RESULTS TO MEMORY

Set (All Ones in M)
Reset (All Zeros in M)
Accumulator High (Store A)
Accumulator Low (Complement A)
Memory Low (Complement M)
Both High (And)
Either High (Or)
Eit"'er Low (Nand)

MNEMONIC

EASH
EROT
ENRM

MNEMONIC

SMn
RMn
AHMn
ALMn
MLMn
BHMn
EHMn
ELMn

SPECIAL REGISTER TRANSFER OPERATIONS

REGISTER TRANSFER _ LOAD

Load A -Extended
Load Flag Register
Loai Locotion Counter
Load Timer Register
Load Mask Register Internal
Load External Mask Register
Load Console Register

MNEMONIC

LDAE
LDF
LDL
LOT
LDM
LOE
LDC

Both Low (Nor)
Both Different (Exel Or)
Both Same (Equiv)
Complement Both High (And A)
Complement Either High (Or 'A'>
Complement -Either Low (Nand A)
Complement Both Low (Nor A)
Memory High (Set Z Flag if Byt. in M is Zero)

BLMn
BDMn
BSMn
CBHMn
CEHMn
CELMn
CBLMn
MHMn

A·byte and the _~byte,where EITHER the A.bit or the M .. bit is LOW.

set resultant A.bit. n= 1,2,4,8 or 16 bits.

INDEX JUMPS

Index Jump - Unconditional
Index Jump Test

EXEC BIT CONTROL

Set EXEC Bit
Reset EXEC Bft
Test EXEC Bit

Accumulator Equals Zero
Accumulator Greoter than Zero
Accumulator Less than Zero
Overflow (Cumulative)

Unconditionally True blank

I/O REGISTER STORE

Store Input Buss
Storoe Channel Doto Register
Store Channel Control Register

Test Stotus Line

Z
G
L
V

MNEMONIC

XJ
XJT

MNEMONIC

SEX
REX
TEX

Carty (Or Borrow) C
Busy Data Channel B
Enabled Interrupt E

Progrommer Flags 1·8

MNEMONIC

STiB
SlCD
STCC

TSL

AUTOMATIC DATA CHANNEL CONTROL _
NO DATA BLOCK TRANSMISSION

MNEMONIC

Skip on Count _ Disconnect
Skip Until Signal _ Disconnect
Skip on Either _ Disconnect
Skip on Count _ Interrupt
Skip Until Signol _ Interrupt
Skip on Either _ Interrupt

REGISTER TRANSFER _ STORE

Store A Extended
Store Flag Register
Store Location Counter
Store Timer Register
Store Mask Register Internal
Store Externol Mask Register
Store Console Regi ster

SCD
SSO
SED
SCI
SSI
SEI

MNEMONIC

STAE
STF
STL
STT
STM
STE
STC

specified, the number (m) is "immediately" treated

as data (operand) rather than as an address. If the

Indirect option is specified, core memory address m

contains the "address" of the operand rather than the

operand itself. If the Index option is specified, a

number is taken from one of the seven index regis­

ters and added to m to produce the effective address

of the operand; while the left half contents (m) re­

main the same. Several options may be used simul­

taneously as described in the following section. In

any case, the action of address modification is often

referred to as "effective address calculation". Since

this is a common occurrence and is possible with

the majority of instructions, the E notation is used

regularly throughout for the contents of the effective

address.

2.2. 5 Combinations of Addressing Options

The various address modifiers and the legal combi­

nations thereof are shown in Table 2.2 in the format

used when writing instructions for the assembler.

The precedence of the addressing options is: X, *,

=, or I. This means that index modification (X)

takes place before indirect addressing (*), and the

final option is the half-word selection of immediate,

left, or right (= and I cannot appear simultaneously).

This sequence is illustrated in Figure 2.2. The nota­

tion in this figure is that parentheses around a regis­

ter name specify the register contents; the arrow

reads as "replaces", and subscripts indicate specific

register bits.

The flow diagram of Figure 2.2 is interpreted as

follows:

1. The instruction cycle starts with an

instruction fetch, which is denoted as

«L»- (I), or "The contents of the

memory address that is the contents of

L replaces the contents of the instruction

register, I".

2. If indexing is speCified (by 1 to 7 in

bit positions 117, 18, 19) then the sum

of the number m in the instruction

address field and the contents of the

specified index register forms (tenta­

tively) the effective address E.

Table 2.2

Modifier Name Format Remarks

* Indirect Address OPN* M The address for the given instruction is taken from the ad­
dress portion of the 32-bit word at location M. Multiple
indirect addressing is possible. All instructions may use an
indirect address.

X Address Modification OPN M,x The effective address is obtained by adding the contents of
the speCified index register, X, to the address, M. That is,
M + (X) - E .A. All instructions except the Index Register
Class can have address modification. Indexing precedes in­
direct addressing at every level if both are specified.

I Halfword Address OPN /M The operand for 16-bit operations comes from the left half
of M by using MI and the right half of M by using 1M. The
slash (/) has no effect on indexing or indirect addressing. A
16-bit operation written OPN M is interpreted by the Assem­
bler as OPN MI.

= Immediate Address OPN=M The operand for this instruction is taken from the address
field of the instruction itself. The immediate address may
not be used with I. The immediate address is applicable to
all 16-bit operations except Store and Store After Rounding.

REMARKS: All legal combinations of the address modifiers are illustrated below:

2-4

OPNMI
OPNM
OPN/M

OPN M/ ,X
OPN 1M, X
OPN* M!

OPN* 1M
OPN* M/,x
OPN* IM,X

OPN=M
OPN = M,X
OPN* = M

OPN* = M,X

FETCH
INSTRUCTION
((L » (1)

I LLEGAL I NSTRUCTION INTERRUPT

FETCH NEW
ADDRESS AND

MODIFIERS
(E.· 19)- (1.'19)

FETCH
OPERAND

(E) ~(O)

rSAVE ACCUMULATOR

E-+ (D)

EFFECTIVE ADDRESS CALCULATION

Figure 2.2

3. If indirect addressing is specified (by

116 = 1) then a new word, located at ad­

dress E, is obtained from the memory.

Only the first 19 bits of this word are used,

and they replace the contents of bit Io:19 '

Now, the original value m has been re­

placed in I by (E O:15)$ and the index and

indirect bits have also been replaced.

Steps 1, 2, and 3 are repeated until for

some indirect address, indirect addressing

is not specified. It is possible, through a

programming error, for the above loop to

be a closed path, which "hangs-up" the

computer. Such a loop can be broken only

by a manual halt or an interrupt. However,

in the normal course, indirect references

can be made (at the expense of time for

each memory fetch) and indexing (for dif­

ferent index registers) can be performed

at each level of indirectness.

4. With a new value for E, bits 125:26 in the

original instruction are tested for immedi­

ate addressing (half-word operands only).

If immediate is specified, the value of E

itself is placed in the intermediate data

register (D) before the execution of the

accumulator instruction. Otherwise E is

2-5

2-6

used as the effective memory address for

the final gathering of data from the mem­

ory. After this gathering, the left/right

option selects the specified half-word for

execution.

5. Note that the Save option takes place just

after the immediate address test on either

path.

The different effective address calculations

may be specified as follows, where OPN

signifies any operation code for which the

address options are valid.

OPNm

OPNm/

OPN/m

OPN m, X

OPN /00, X

tOPN*m

tOPN*/m

tOPN*m, X

tOPN*/m, X

OPN=m

OPN= 00, X

operand = (E0:15) or (E o:31)'

E = 00

operand = (E0:15)' E = 00

operand = (E 16:31)' E = 00

operand = (E0:15) or (E o:31)'

E=m+(X)

operand = (E 16:31)' E = m+ (X)

operand = (E o:15) or (E o:31)'

E= (00)

operand = (E16:31)' E = (00)

operand = (E 0:15) or (E 0:31)'

E = (m + (X»

operand = (E 16:31)' E =

(m + (X»

operand = E = 00 (16-bit

operand only)

operand = E = 00 + (X) (16-bit

operand only)

tOPN*=m

OPN*= m, X

operand = E = (m) (16-bit

operand only)

operand = E = (m + (X» (16-

bit operand only)

2.3 ARITHMETIC INSTRUCTIONS

There are ten basic arithmetic instructions that

occur in each of six classes of operation. The

classes differ in the form of arithmetic, word size,

and the registers affected. The resultant sixty

mnemonics and their functions are readily committed

to memory. There are numerous variations to these

basic instructions and they follow a consistent and

logical pattern. All arithmetic instructions may

exercise the Save option prior to execution; and they

set Z, G, and L decision flags after execution. All

floatillg-point operations may terminate with an un­

normalized result. All multiply and divide operations

require double length registers, hence the double

preCision instructions are executed by subroutines.

These mnemonics (and some others in the set of

sixty basic operations) are recognized by the assem­

bler and replaced by the appropriate Link instruction.

Alternatively, the actual codes for these instructions

are recognized by the computer and cause an interrupt

(number 2 interrupt). Software is provided to select

the right subroutine. All compare, store, and store­

rounded instructions leave the entire accumulator

unchanged. The add, subtract, and store-rounded

conditions generally result in bit (C) of the flag

register being set. The carry flag (C) indicates that

an arithmetic 'carry has been produced. Divide con­

ditions can result in setting the overflow (V) flag

(see Paragraph 2.8.1).

2.4 NOTATION

The following shorthand notation is used through­

out this text. Some are assembly language

conventions.

t one level of indirect addressing assumed for illustrations.

2. 4. 1 Addressing Conventions

E

(E)

m

IE, 1m

effective adQress

contents of E

contents of address field of

instruction word

specifies right half-word for

16-bit operands

E, E/, m, ml speCifies left half-word for 16-

bit operands

OP= m

OPm,X

OP*m

OP* m,X

immediate address, m is a

literal, a constant

indexing, X is an integer 1 to 7;
E = m + (X) except Index Class

instructions

indirect addressing, E = (m)

indexing plus indirect,

E = (m + (X))

(Note: the * is part of the OP

field)

2.4.2 Register Conventions

(A)

(AAE)

(AAF)

(AAFAD)

($)

contents of the 16-bit A

Register of the Accumulator

contents of the Extended Fixed­

Point Accumulator

contents of the Floating-Point

Accumulator

contents of the Double Preci­

sion Accumulator

contents of the Save Register

($A)

($AAE)

($AAF)

($AAFAD)

(AD
0, 9:23)

int()

Jrac()

contents of the 16-bit A portion

of the Save Register

contents of the Extended Fixed­

Point Save Register

contents of the Floating-Point

Save Register

contents of the Double PreCi­

sion Save Register

contents of bits 0 to 7 in A

Register

contents of bits 0 and 9 to 23 in

the AD Register

the one's complement of the

contents of 0 to 7 of A

left Exec bit at effective

address

right Exec bit at effective

address

Accumulator Exec bits

the integer part of the floating­

point operand. Note that for

two's complement numbers the

integer part is always the most

positive integer that is more

negative than the number, hence

for negative numbers the magni­

tude of the integer part is larger

than the magnitude of the

number.

the fractional part of the

floating-point operand:

frac(m) = I (m) - int(m) I is

always a positive fraction

2-7

fit() the 16-bit operand converted

(floated) to a floating-point

number

sgn()-ZGL the Zero, Greater than, Less

than flags are set according to

value of the operand relative to

nrm()

zero

the normalized value of the

floating-point operand

2.5 THE FIXED POINT INSTRUCTION CLASS

This is the most basic class of arithmetic instruc­

tions. No prefix is used before the basic mnemonics

of AD, SB, etc., as in the other classes. The

operand is always a 16-bit half-word. Two's com­

plement binary arithmetic is performed. The state

of the Z, G, L decision flags is determined by the

resultant value of (A), "zero", "greater than" or

"less than" zero after each operation (except CP as

noted below). The addressing options *, /, and X

are available for all instructions; and = is available

for all but ST and SR. The Save option, $, may

precede any of the mnemonics.

Load

CA

Example:

m,X (E)-(A)

(E32)-(A32) for m/

.fl-(AD1 :S)

The above reads as follows: Line 1; The contents of

E (memory) replaces the contents of the A Register

of the accumulator. Line 2; The left Exec bit at the

effective address replaces bit 32 of the A Register

for a left half-word. Line 3; bits 1 through 8 of the

AD Register are replaced by 11.

Add

AD

2-8

m,X (A) + (E)- (A)

(E 32)XOR(A32)- (A 32) for m/

Clear, Subtract

CS m,X

Subtract

SB m,X

Compare

CP m,X sgn

Store

ST m,X

Store, Rounded

SR m,X

MultiPly

MP m,X

Divide

DV m,X

Clear, Divide

CD m,X

-(E)-(A)

(E 32)- (A32) for m/

.fl- (AD l:S)

(A) - (E)- (A)

(E 32)XOR(A32) - (A32) for m/

[(A) - (E)] - ZGL flags

(AO:15, 32, 33) unchanged

(A)- (E)

(A 32)- (E 32) for m/

(A)x(E) - (AAE)

.fl - (AEo)

(AD) destroyed

(AAE) + (E) - (A)

Remainder - (AE)

(AD) destroyed

.fl- (AE)

(AAE) .;... (E) - (A)

(AD) destroyed

2.5.1 The Save Register

The sections of the accumulator are duplicated in the

Save Register. When the save option is exerCised,

the entire contents of the accumulator (except Exec

bits) are saved: (A, AE, AF, AD) - ($A, $AE,

$AF, $AD) prior to execution of the instruction. The

Save Register is assigned memory address number

one. The actual core memory cell number one is not

accessed by arithmetic instructions (except ST and

SR), nor by Boolean connective instructions (except

M typej see Paragraph 2.4, Boolean Connective

Instructions). To gather data from the Save Register,

the programmer writes either 1 or $ in the address

field (the assembler translates $ to 1). Thus, CAl

and CA $ result in ($A) - (A). Since thE;l save

operation takes place first, $AD $ doubles the con­

tents of Aj $SB $ clears (A)j $MP $ squares (A)j

and $CS $ inverts the sign of (A). In each case, the

original contents of A is saved in $A. It is not possi­

ble to store in the Save Register except by the $

prefix; ST 1 and SR 1 both store in core memory

location number one.

2.5.2 The Accumulator Address

In the same manner as above, the accumulator itself

is assigned memory address zero for arithmetic

instructions (which cannot access core memory loca­

tion zero). This results in the following operations

with the fixed point instructions: CA ~ does not

change (A) but resets Z, G, L if, for example, CP

were the previous instructionj CS ~ inverts the sign

of {A)j MP ~ squares {A)j and CD ~ overflows. ST ~

does nothing and SR ~ rounds (A). The left/right

slash option is not available for addresses zero and

one: CA/1 and CA 1 are the same, as are SB /~ and

SB ¢. Neither (AE) nor ($AE) are affected by such

operations.

2.6 THE EXTENDED PRECISION INSTRUCTION

CLASS

For each fixed-point instruction code and mnemonic

there is a corresponding extended precision code and

mnemonic. The former operate on 16-bit half-words

and the latter on 32-bit whole words. All operations

use fixed-point, two's complement, arithmetic.

Execution of the extended preCision instructions takes

place in the AAE Register. The left half bits of the

two halves of this register, A:o and AEo, are half-

word sign bits. Therefore, the data word consists of

sign plus 30 bits. The instructions, EMP, EDV,

ECD, ECP, and ESR are not executed directly, but

by programmed subroutines, since more than 32 bits

of register are required. The subroutines may be

entered in two ways. If the processor attempts to

execute one of these instruction codes, the number

two interrupt occurs, and either the Monitor or the

Compat routine (EAI Publication Number

07 825 0046-0, see Preliminary Bulletin Program

Information 66026) takes control and selects the

proper subroutine. The more common method is for

the Macro Assembler (EAI Publication Number

07 800.0001-3) to recognize the mnemonic code and

substitute a Link instruction to the subroutine.

The state of the Z, G, L decision flags is determined

by the resultant value of (AAE) after each operation.

The addressing options * and X are available with all

instructions in the class. The immediate option is

available (for all but EST and ESR) indirectly through

action of the Macro Assembler. The immediate op­

tion normally means that the address field of the

instruction is treated as a literal (a 16-bit data word).

However, since the extended class instructions

operate on whole words this is not possible. The

programmer may then use the = symbol to specify

a 32-bit literal. During the assembly process, the

literal value is placed in a special data storage area

called the Literal Pool and the instruction address

field is then given the data address.

The Save option may precede any of the mnemonics.

Load

ECA m,X (E)- (AAE)

(AD) destroyed

Add

EAD m,X (AAE) ~ (E) - (AAE)

(AD) destroyed

2-9

Clear, Subtract

ECS m,X

Subtract

ESB m,X

Compare

ECP m,X

Store

EST m,X

Multiply

EMP m,X

Divide

EDV m,X

Clear, Divide

ECD m,X

Store, Rounded

ESR m,X

-(E)_ (AAE)

(AD) destroyed

(AAE) - (E) - (AAE)

(AD) destroyed

(AAE)- (E)

Address Zero and One are special addresses for the

Accumulator and Save Register. Therefore, they are

not normally used with the Extended Precision instruc­

tions, (AE) and ($AE) cannot be accessed in this

manner. The result of EAD ~ is to add (A) and (AE).

2. 7 THE INDEX INSTRUCTION CLASS

The same 16-bit fixed-point operations that take

place in the A Register, may also be programmed

for any index register. Thus, XCA m, 1 is equivalent

2-10

to CA m. Note, however, that the X field of all of

the index class instructions is used to select the

register for action and not for address modification.

This addressing option is not available for the index

instructions; while * and / are available for ali, and

the immediate option (=) is available for all but XST

and XSR. An index register must be specified.

Since index registers are restricted in size to 16

bits, operations requiring whole word registers

(XMP, XDV, XCD, XSR) are performed by sub­

routines. Execution of the codes for these instruc­

tions results in the number two internal interrupt.

The Macro Assembler substitutes a Link instruction

for these mnemonics.

The state of the Z, G, L decision flags is determined

by the resultant value of the specified index register,

(X), or of the comparison (X)-(E). The Save option

$, may precede any of these instructions; and (X) is

saved in the A portion of the Save Register, rather

than (A) being saved. However, in this case the rest

of the accumulator is saved, i. e., $XCA m, 3 causes

(X3, AE, AF, AD) to replace ($A, $AE, $AF, $AD)

and the accumulator is unchanged.

Load

XCA m,X

Add

XAD m,~

Clear, Subtract

XCS m,X

Subtract

XSB m,X

(E)_ (X)

then sgn(X)- ZGL

(X) + (E)- (X)

then sgn (X)- ZGL

-(E)-(X)

then sgn (X)- ZGL

(X) - (E)- (X)

then sgn (X)-ZGL

Compare

XCP m,X sgn (X) - (E)- ZGL

(X) unchanged

Store

XST m,X (X)-(E)

Multiply

XMP m,X

Divide

XDV m,X

Clear, Divide

XCD m,X

Store, Rounded

XSR m,X

To clear an index register, the literal constant zero

is loaded by using the Immediate option; XCA = ~,X.

The Immediate option is also used to add or subtract

constants. The value of a variable just calculated in

the accumulator is added to index register three by

XAD~, 3. Note that in this case the zero is the ef­

fective address (specifically the address of A). Zero

and one (or $) are used to access (A) and ($A) with all

of the index instructions (except XST 1 and XSR 1).

The Slash option has no effect with address zero· and

one. While XST ~, 5 is used to move a half-word

from X5 to the A Register, other means are used to

move index register contents directly to other 16-bit

registers. For example, LDAE =~, 5 loads AE

from X5, LDF =~, 3 loads the Flag Register from

X3, and LDOB =~, 2 moves (X2) to the output bus.

In these cases the zero is a literal constant.

2.8 FLOATING POINT INSTRUCTION CLASS

This most important class of arithmetic instructions

operates upon 32-bit data words, in the AAF portion

of the accumulator. A floating number has a sign

and a twenty-three bit mantissa, which are held in A

and in the left, eight bit positions of AF (denoted as

AAF 0:23 or as A, AF 0:7'). The floating-point expo­

nent has a sign and seven bits, held in AF 8:15. The

range of magnitudes for floating-point numbers is

between 2128 and 2 -128; operations that result in

larger or smaller magnitudes cause an exponent

fault interrupt. A subroutine is used to normally set

the accumulator to zero or the largest possible value.

The value of zero is represented by 32 zero bits;

however, if a word with a zero mantissa and a non­

zero exponent is loaded it is treated as zero.

The basic floating-point arithmetic instructions (FAD,

FSB, FMP, FDV) perform normalized arithmetic.

Normalization means that the mantissa of the opera­

tion result is shifted to the left to eliminate any

leading zero bits. The exponent is then decremented

once for each bit position shifted. FCAand FCS also

normalize the number loaded into the accumulator.

FSR (floating store rounded) normalizes after round­

ing and before storing. FST (floating store) does not

normalize.

All floating instructions (except compare) may be

used with the Unnormalize option by appending the

letter U to the end of the mnemonic. The effect is to

inhibit the post-normalization operation. Unnormali­

zed data may then be considered as 24-bit, fixed­

point data with assigned scale factors (the exponents).

When adding and subtracting, the exponents are auto­

matically adjusted to agree with the larger exponent.

For multiplication and division, the exponents are

added or subtracted. Care must be taken to avoid

overflow on division. Note that FCAU loads a copy

of (E) without normalizing, and is therefore used

with FSTU to move 32-bit words from one core

2-11

location to another. See Paragraph 2. 7 on moving

Exec bits.

Multiple level indirect addressing (* option) and

indexing is possible with all instrUctions; and as

explained in Paragraph 2.3. 3, the Immediate (=)

option may be employed indirectly through the use of

the Macro Assembler Literal Pool feature. The

Save option ($) may be exercised with all instructions

to cause (AAF) to be stored in $AAF prior to the

operation. As with all arithmetic instructions, the

ZGL flags are set by the result of each operation.

Load AAF

FCAU m,X (E)- (AAF)

(E 32 :33)- (A 32 :33)

Clear, Add, Normalize

FCA m,X nrm(E)-(AAF)

Add

FAD m,X nrm [(AAF) + (E)]- (AAF)

FADU m,X (AAF) - (E) - (AAF)

Clear, Subtract

FCS m,X nrm [- (E)] - (AAF)

FCSU m,X (E 32:33) - (A 32:33)

Subtract

FSB m,X nrm [(AAF) - (E)] - (AAF)

FSBU m,X (AAF) - (E) - (AAF)

Compare

FCP m,X sgn [(AAF) - (E)] - ZGL

2-12

Store

FSTU m,X

Multiply

FMP m,X

FMPU m,X

Divide

FDV m,X

FDVU m,X

Clear, Divide

FCD

FCDU

m,X

Store, Rounded

FSR m,X

FSRU m,X

(AAF)- (E)

(A 32 :33) - (E 32:33)

FST = FSTU

nrm,[(AAF) x (E)]- (AAF AD)
,

(AE) destroyed

(AAF)x(E) - (AAF AD)

(AE) destroyed

nrm [(AAFAD) + (E)] (AAF)

mantissa of Rem. - (AD)

(AE) destroyed

(AAFAD) ..;. (E)- (AAF)

mantissa of Rem.- (AD)

(AE) destroyed

\ ~- (AD)

) then execute FDV or FDVU
\

nrm [(AAF) + I (AD 1)2-23!] (E)

(AAF) unchanged

(AAF) + I (AD 1)2-23 I (E)

(AAF) unchanged

2.8.1 Floating Divide

Special characteristics of FDV, FCD must be men­

tioned (also true for rov, ICD). Overflow will occur

if the mantissa of the divisor is less than half the

mantissa of the dividend. This will not occur if the

divisor is the result of a normalized operation.

The result of a floating divide operation is to leave

the quotient in AAF and the 24-bit mantissa of the

remainder in AD. Note, however, that the 24-bit AD

cannot hold the exponent of the exponent of the

remainder. The full remainder, as a proper floating

point number, can only be recovered by deduction.

2.8. 2 Floating Multiply

The result of a floating multiply is a number with

sign bit, 46 mantissa bits, and an 8-bit exponent,

that is held in the AAF AD register. This number is

converted into the double word format by separating

the mantissa into two 23-bit segments, and adding a

positive sign bit for the lower half. An exponent is

created for the lower half which is 23 less than the

upper half exponent (AF 8 :15)' The Universal Accu­

mulator holds the lower half mantissa in AD 1 :23 and

provides for the extra sign bit," ADo_ The.extra

exponent for the lower half is not required in the

accumulator and is created only upon execution of a

double floating store instruction. (ADo) does not

enter into any mathematical operations except for

holding the sign of the division remainder mantissa.

After the execution of FMP, the extra sign bit ADo··

is reset to zero. Any two's complement fraction

consisting of bits truncated from a larger number

(either sign) is itself a positive number (with an

exponent). Resetting ADo makes it possible to treat

the lower half of the product in normal floating-point

format.

The double precision pr()duct is often used in an other­

wise single precisioN computation. For example, in

the calculation (y = L: ~ b i), it is useful to accumulate

the double precision results of each multiplication as

illustrated in this small routine.

XCA

DCA

$FCA

=N, 3

ZERO

A, 3

initialize

save partial sum

FMP B, 3 a x b product

DAD $ add partial sum

XJT *-3,3,-1 index and loop

FST y store single preci-

sion result

2.9 THE DOUBLE PRECISION INSTRUCTION CLASS

Double preCision floating-point instructions operate

on data consisting of a Sign, 46 bits of mantissa and

an 8-bit exponent. This data is held in memory as

two successive 32-bit words, each in proper 32-bit

floating-point format. That is, each word has a

sign, a 23-bit mantissa, and an 8-bit exponent. Half

of the double precision mantissa magnitude bits are

in each word. The second sign and exponent are

redundant from the point of view of the accumulator.

However, for multiple precision calculations by

subroutine, it is convenient to have each half of the

double word in single preCision format. Note that

the second sign is always positive and the second

exponent is 23 less than the first. Double preCision

operations take place in the 46-bit AAFAD register;

AF 8: 15 hold the exponent. The second exponent is

created upon execution of double store (DST).

All operations are performed in the same manner,

only with the 46-bit mantissa, and with the same

options and restructions as the single precision

floating-point operations. Double multiply, divide,

compare, and store-rounded must be executed by

subroutine. If the immediate addressing option is

used, the Literal Pool feature allocates two memory

cells from the data specified in the address field.

The instruction pair, DCAU and DST, may be used to

move double precision data (both words) with exec

bits from one memory location to another via the

accumulator.

2-13

LoadAAFAD

DCAU m,X (E,E + 10:23)- (AAFAD)

(E 32:33) - (A 32 :33)

(AE) destroyed

Clear, Add, Normalize

DCA

Add

DAD

DADU

m,X nrm (E,E + 10:23)- (AAFAD)

(AE) destroyed

m,X nrm [(AAFAD) +(E,E, + 1 0:23))

_ (AAFAD)

(AE) destroyed

m,X (AAFAD) + (E,E + 10 :23)

_ (AAFAD)

(AE) destroyed

Clear, Subtract

DCS m,X

DCSU m,X

Subtract

DSB m,X

DSBU m,X

Compare

DCP m,X

2-14

-nrm (E,E + 10 :23) - (AAFAD)

(AE) destroyed

- (E,E + 10 :23)- (AAFAD)

(E 32:33) - (A 32:33)

(AE) destroyed

nrm [(AAFAD) - (E,E + 10 :23)]

_(AAFAD)

(AE) destroyed

(AAFAD) - (E, E + 10 :23)

- (AAFAD)

(AE) destroyed

store

DSTU m,X

Multiply

DMP m,X

DMPU m,X

Divide

DDV m,X

DDVU m,X

Clear, Divide

DCD

DCDU

m,X

m,X

Store, Rounded

DSR m,X

DSRU m,X

(AAFAD) - (E, E + 10:23 .)

(AF 0:15) - 23 - E + 124:31

(A 32:33)- (E 32 :33)

DST = DSTU

2. 10 THE INTEGER INSTRUCTION CLASS

This unique set of instructions performs floating­

point artthmeticoperations on fixed-point and

floating- point data. The data operand in the accu­

mulator is always a floating-point number (AAF or

AFFAD). The data operand specified by the effective

address is always a 16-bit fixed-point data word.

Each instruction (except the store commands) first

gathers the 16-bit operand, converts it to a floating­

point number, and then executes a normal floating­

point operation. The conversion process is termed

floating and the reverse process, upon storing, is

called integerizing.

It is important to understand exactly what happens

during floating and integerizingj other features

(except half-word address option) of the ten instruc­

tions of this class are the same as those of the

Floating Point Class.

2. 10. 1 Floating

A 16-bit data word is normally thought of as a fixed­

point fraction, with the binary point adjacent to the

sign bit. Fixed-point multiply and divide instructions

perform fractional arithmetic. On the other hand, a

16-bit data word may be considered to be a fixed­

point integer, with the binary point to the far right­

hand position. This is of course the common practice

when operating on memory address numbers.

No confusion occurs provided a correct scale factor

is used when the data word enters an arithmetic

operation. The floating of a 16-bit word by an

Integer Class Instruction causes the contents of the

half-word effective address to be loaded into A

(for Integer-clear-add, ACA), zeroes to be loaded

in AF 0:7' and exponent of + 15 to be loaded in AF 8: 15.

When in memory, the operand is considered an

part of the original contents of AAF. Then (A) is

stored at the effective address and AAF is restored

to its original state. If the magnitude of (AAF) is

equal to or greater than 216 an overflow will occur,

and an incorrect number will be stored.

The half-word addressing options (= 1) are aVailable,

as well as indirect addressing and indeXing. Ad­

dresses zero and one refer to (A) and ($A). The

same rules for the unnormalize (U) option and divide

overflow apply as for floating-point instructions. Use

of the Save options will save (AAF).

Load, Integer

ICAU m,X flt(E) - (AAF)

which means:

(E)- (AO:15)

~- (AF o:17)

+ 15 _ (AF 8:15) = Exponent

Clear, Add, Normalize

ICA m,X nrm [flt(E)] - (AAF)

integer, hence a scale factor of 215 is entered in AAF Add

as the number itself becomes the mantissa (a fraction)

of a floating point number. The least Significant eight

bits of the mantissa are made zero. After this con­

version, the rest of ICA is simply to normalize (AAF).

In the case of lAD, ISS, IMP, etc., the above con­

version is performed before presenting the floated

operand to the accumulator.

2. 10.2 Integerizing

The integer part of the result of any floating-point

calculation (by floating, double precision, or integer

class instruction) can be stored as 16-bit fixed-

point integers provided the magnitude of the number

is less than 216 • The IST instruction (same as ISTU)

first causes the contents of AAF to be shifted left or

right as needed, bringing the exponent to + 15. When

(AF 8 :15) = + 15, the binary point may be considered to

be to the right of A15 , hence (A) is the 16-bit integer

lAD m,X

lADU m,X

Clear, Subtract

ICS m,X

ICSU m,X

Subtract

ISS m,X

ISSU m,X

Compare

ICP m,X

nrm [(AAF) + flt(E)]-(AAF)

(AAF) + flt (E) - (AAF)

nrm [-flt(E)] - (AAF)

-flt(E)- (AAF)

nrm [(AAF) - flt(E)]- (AAF)

(AAF) - flt(E)- (AAF)

(AAF) - flt(E)- ZGL

(AAF) unchanged

2-15

store

ISTU

Multiply

IMP

IMPU

Divide

IDV

IDVU

Clear, Divide

ICD

ICDU

m,X int(AAF)- (E)

(AAF) unchanged

IST = ISTU

m,X nrm [(AAF) x flt(E)]

m,X

_ (AAFAD)

(AE) destroyed

(AAF) x flt (E) - (AAF AD)

(AE) destroyed

m,X nrm [(AAFAD) +flt(E)]

m,X

m,X

m,X

-(AAF)

(AE) destroyed

(AAFAD)4flt(E)- (AAF)

(AE) destroyed

(0 - (AD»

then execute FDV, FDVU

(AE) destroyed

store, Rounded

ISRU m,X int(AAF) +~ - (E)

where ~ = ~ iffrae (AAF)<:1/2

= 1 iffrae (AAF»1/2

(AAF) unchanged

ISR = ISRU

Integer arithmetic instructions may be mixed freely

within floating computations to save execution time

and memory space, particularly with the use of

2-16

immediate addressing. Thus, the Fortran state­

ment, A = 3B + I might be implemented by the code:

FCA B

IMP =3

lAD =1

FST A

Where A and B are floating-point numbers, and I,

a Fortran integer, is stored as a fixed-point number.

Care must be taken with IDV and lCD, for the floating

operand (divisor) is an unnormalized number and if

the resultant mantissa is less than half the accumula­

tor mantissa overflow occurs.

A characteristic of negative twots complement num­

bers, as noted elsewhere, is that when least signifi­

cant bits are truncated, the result is greater in

magnitude (more net negative) than the untruncated

number. IST truncates the fractional part of (AAF)

before storing and yields for negative numbers the

"next more negative integer". ISR yields the nearest

integer for both signs. The pairs; IST and ISTU, ISR

and ISRU, each produce identical codes, no normal­

ization is performed.

2.11 BOOLEAN CONNECTNE INSTRUCTIONS

If an accumulator (a) bit and a memory (m) bit are

considered as arguments of a logical function to form

a resultant bit, r. Then there are sixteen possible

functions that may be performed.

Table 2.3 gives the function as well as showing the

four possible values of r for each combination of a

and m. Basic operations used in this table is

indicated by:

1. The over-bar: logical inversion of the

logical value. (ONE to ZERO and ZERO

to ONE)

a =

m=

r =

Table 2. 3. Boolean Connective Functions

0 1 0 1

0 0 1 1

1 1 1 1 Set r = 1 regardless of

.~ and!!!.

0 0 0 0 Reset r = 0 regardless of

~andm

0 1 0 1 r=a

0 0 1 1 r = m

-1 0 1 0 r=a

1 1 0 0 r= iii

0 1 1 1 r = a + m OR function

0 0 0 1 r = a x m AND function

1 0 0 0 r = a+m NOR function

1 1 1 0 r = axm NAND function

0 1 1 0 r = (a + m) (a x m)

Exclusive OR

function

1 0 0 1 r = (a x m) + (a x m)

EQUIVALENCE

function

1 0 1 1 - -r=a+m=axm

- --0 0 1 0 r=axm=a+m

0 1 0 0 r=a+m=axm

1 1 0 1 r=axm=a+iii

2. OR: Result is a ONE if either argument

is a ONE.

3. AND: Result is ONE only if both argu­

ments are ONE.

4. NOR: Result is ONE if neither argument

is ONE.

5. NAND: Result is ONE if either argument

is ZERO.

6. Exclusive OR: Result is ONE if the argu­

ment values are different.

7. Equivalence: Result is ONE if argument

values are the same.

The last four functions are performed by first com­

plementing a and then executing the OR, AND, NOR

or NAND function.

These are thirty-two basic Boolean connective in­

structions, two for each of the sixteen functions

listed in Table 2. 3. One instruction stores the re­

sult r in the original location of a. The other instruc­

tion stores r in the memory location m.

Variables a, m, and r are not restricted to single

bits but may be in bytes. If bytes are used, the byte

sizes of the three variables are all the same. The

sixteen functions are performed upon individual pairs

of bits within the bytes both simultaneously and inde­

pendently. The byte size is specified (1, 2, 4, 8 or

16 bits) by writing the respective digit after the in­

struction mnemonic in the OP code field. A byte

size of 16 is implied if no digits are specified. For

example, HAl resets a single bit in the accumulator;

HAS resets 8 bits; and HA resets aU 16 bits of the

A register.

For byte sizes of 1, 2, 4, or 8 bits, the byte position

within the half-word is speCified in the count field

(third subfield of the address field) by a decimal

number 0 to 15. For example, RM1, m, X, ~ resets

the sign bit of (E); RM1, m, X, 15 resets (E 15)' The

positions of larger bytes are denoted by numbers 0

to 7 for two bits, by 0 to 3 for four bits and 0 to 1

for eight bits. Therefore, RM8, m, X resets

(E s:15).

2.11.1 The Mnemonics

The thirty-two instruction mnemonics indicate the

logical action performed and the designation of the

2-17

result. They do NOT indicate the name of the Boolean

function. If the mnemonic ends in "A", the result is

placed in the accumulator. If the mnemonic ends in

"M", the result is put in memory. The mnemonic

codes for the 16 pairs of instructions appear as shown

in Table 2.4.

Table 2. 4. Boolean Mnemonics

Destination Conditiont

Accumulator Memory

SA SM Set

RA RM Reset

:I: AHM Accumulator High

ALA ALM Accumulator Low

MLA MLM Memory Low

EHA EHM Either High (OR)

BHA BHM Both High (AND)

BLA BLM Both Low (NOR)

ELA ELM Either Low (NAND)

BDA BDM Both Different (XOR)

BSA BSM Both Same (EQU)

CEHA CEHM Compo A, Either Hi

CBHA CBHM Compo A, Both Hi

CBLA CBLM Compo A, Both Lo

CELA CELM Compo A, Either Lo

t The expression in the right column describes the
condition for which a bit in the result is set to ONE;
all other conditions produce a ZERO bit in the result.

2-18

2. 11. 1. 1 Examples

1. MLA4 m,X,3 Memory low to

accumulator; 4-bit byte; byte

position 4; which means the

memory bits E 12:15 are inspec­

ted. For each ZERO bit (low)

the corresponding bit within

A12:15 is set to ONE and the

other bits of A 12:15 are reset to

ZERO. This is a byte load in­

struction.

2. CEHM8 m,X,fj Complement A,

Either High to Memory; 8-bit

byte; first byte position; which

means the complement of (A 0:7)

is compared to (E o:7)' bit by bit.

If either bit of a pair is high, the

corresponding bit position in

memory is set high, . otherwise it

remains low.

2.11.1.2 * Special Cases (BEQT Replacing

AHA, MHM). The two codes accumulator high to

accumulator (AHA) and memory high to memory

(MHM) appear to do nothing. This is nearly true,

for the specified byte is simply restored (unchanged),

to its original location. However, MHM is a useful

ZERO byte test, since the Z flag is set if the result

of the logical function is a byte of all ZEROES. The

only action of MHM is to indicate a ZE RO byte in

memory which, if E = 0, refers to the accumulator.

The AHA code is therefore redundant and is replaced

by the more useful Byte Equality Test (BEQT) for

which the byte size and position options are the same

as above. Tl\e action of BEQT is to set the Z flag if

and only ifall accumulator and memory bytes are

the same.

2.11. 2 Addressing

Indirect addressing and half-word addressing options

are valid for Boolean instructions, however immedi­

ate addressing is not possible with M-type

instructions. An effective address of ZERO refers to

the accumulator. This results in each A and M pair

of instructions being equivalent. An effective ad­

dress of ONE refers to core memory cell number

one for M-typ~ instructions. It does not refer to

$A register since storing in the Save Register is

only possible by means of the $ prefix operator.

See Paragraph 2.3.2.

In the following table of instructions, all of the pos­

sible combinations of byte sizes and byte positions

are given by way of example. Any instruction may

address any of the bit combinations illustrated.

In the following examples, if the result of the logical

operations yields a byte (in the referenced position)

consisting of all zeroes, the Z flag is set; otherwise it

is reset.

Table 2.5. Boolean Instruction

set and reset

SAl ~,~,~

SM1 m,X, 1

RA1 ~,~, 2

RM1 m,X,3

¢ byte equality test

BEQT1 m,X,4

store and load

AHM1 m,X, 5

MHA1 m,X, 6

zero byte test

MHM1 m,X,7

complement accumulator

ALA1 ~,~,8

store and load complement

ALM1 m,X, 9

MLA1 m,X, 10

complement memory

MLM1 m,X, 11

1 - (Ao) reset Z

1 - (E1) reset Z

~ - (A2) set Z

~ - (E 3) set Z

(one bit/byte)

(one bit/byte)

if (A4) = (E 4) set Z, if ",reset Z

(A5) - (E 5)

(E 6) - (A6)

(one bit/byte)

(one bit/byte)

if (E7) = ~ set Z, if ",reset Z

(A9) - (E9)

(E 10) - (A 10)

(E 11) - (E 11)

(one bit/byte)

(one bit/byte)

(one bit/byte)

2-19

2-20

Table 2.5. Boolean Instruction (Cont)

QR, AND

EHAI m,X, 12

EHMI m,X, 13

BHAI m,X, 14

BHMI m,X, 15

NOR, NAND

BLA2 m,X,~

BLM2 m,X, 1

ELA2 m,X,2

ELM2 m,X,3

XOR, EQU

BDA2 m,X,4

BDM2 m,X, 5

BSA2 m,X,6

BSM2 m,X,7

complement A, then OR, AND

CEHA4 m,X,~

CEHM4 m,X, 1

CBHA4 m,X,2

CBHM4 m,X,3

complement A, then NOR, NAND

CBLA8 m,X,~

CBLM8 m,X, 1

CELA m,X,~

CELM m,X,~

(one bit/byte)

(A12) OR (E 12)-(A12)

(A13) OR (E 13)- (E 13)

(A14) AND (E 14)- (A 14)

(A15) AND (E 15)- (E 15)

(2 bits/byte)

(AO} NOR (E o:1)-(Ao:1)

(A2:3) NOR (E 2:3)-(E2:3)

(A4:5) NAND (E 4:5)-{A4:5)

(A 6:7) NAND (E 6:7)-{E6:7)

(2 bits/byte)

(AS:9) XOR (Es:9)- (As:9)

(A 10:11) XOR (E10:11)-(E10:11)

(A 12:13) EQU (E 12:13)-(A 12:13)

(A 14:15) EQU (E 14:15)-(E 14:15)

(4 bits/byte)

(AO:3) OR (E o:3) -(AO:3)

(A 4:7) OR (E 4:7)- (E 4:7)

(A 8:11) AND (E 8:11) - (A 8:11)

(A 12:15) AND (E 12:15)- (E 12:15)

(8 and 16 bits/byte)

(AO:7) NOR (E o:7) - (AO:7)

(A 8:15) NOR (E 8:15)- (E s:15)

(Ao:15) NAND (E o:15)- (A o:15)

(A o:15) NAND (EO:15)-{EO:15)

2.12 CONDITIONAL INSTRUCTIONS

2.12.1 The Flag Operations

The execution of each of the following instructions

HJc halt and jump to E

EXc execute and instruction at E

Lc link to E

LRc reset flag, link to E

JTc trigger (complement) flag, jump to E

JSc set flag, jump to E

JRc reset flag, jump to E

Jc jump E

is conditional upon the state of the flag indicated by

c; c can refer to any flag of the flag register in its

set or reset state.

Example: HJ1 START

The halt will occur, with subsequent transfer to

START, only if flag 1 is set. If it is not set, no halt

occurs, and transfer to the instruction following HJ1

takes place. On the other hand, the reverse applies

to the example:

HJN1 START

that is, the halt will occur if flag 1 is not set, etc.

LR, JT, JS, JR cause the indicated change to the

referenced flag whether the instruction is executed

or not; the instruction is executed conditional to the

present state of the flag. If unconditional execution

of the instruction is required, c is left blank.

If unconditional non-execution of the instruction is

required for creating a class of no-operations, c

could be set to N. For this purpose HJN, EXN, LN

and IN would serve. Of these the last, IN, has been

selected in the assembler as the non-operation in­

struction, NOP.

The condition code c, may have thirty-two values;

these are the 16 codes for the bits of the flag register

and the same codes prefixed by N to denote the in­

verse condition. They are:

Z, G, L, Y, C, B,

1, 2, 3, 4, 5, 6, 7, 8

N, NZ, NG, NL, NY, NC, NB, NE

N1, N2, N3, N4, N5, N6, N7, N8

Normal indirect addressing is available with all

instructions.

Halt

tHJc m,X user mode:

if (c) = 0, NOP; if (c)

interrupt no. 2

monitor mode:

1,

if (c) = 0, NOP; if (c) 1,

computer halts with

(E) - (L)

Execute

EXc m,X if (c) = 0, NOP; if (c) = 1,

execute the instruction located

at E

Link

Lc m,X if (c) = 0, NOP; if (c) 1,

(L + 1)- (E),

(E + 1)- (L)

LRc m,X if (c) = 0, reset flag;

if (c) = 1, reset flag,

(L + D- (E)),

(E + 1) - (L)

t Privileged instructions, see Chapter 3.

2-21

Jump

Jc m,X

JRc m,X

JSc m,X

JTc m,X

if (c) = 0, NOP; if (c) 1,

(E) - (L)

if (c) = 0, reset flag;

if (c) = 1, reset flag,

(E) - (L)

if (c) = 0, set flag;

if (c) = 1, set flag,

(E) - (L)

if (c) = 0, trigger (comple­

ment) flag; if (c) = 1, trigger

flag, (E) - (L)

2.12.2 Index Jumps XJ, XJT

2.12.2.1 Unconditional Jump - XJ m,X,A.

The specified index register X is algebraically incre­

mented by the value A, and transfer takes place to

location m (NOT to location m, c).

A is accorded 8 bits (8-15) in, the instruction and is

interpreted as (-) if bit 8 is "1", or (+) if bit 8

is "o!~ Thus, -128 :s A :s 127.

2. 12.2.2 Conditional Index Jump - XJT,

m,X,A. The contents of index register X are alge­

braically incremented by A, and if the sign of the

resultant index register contents is found to be the

same as that of A, transfer takes place to the instruc­

tion following the XJT instruction. If these differ,

transfer takes place to m. A has the same signifi­

cance as described above.

The speCified index register is not used in the effec­

tive address determination. If indirect addressing is

used with XJ or XJT, address modification by indexing

does not take place at any level.

index, jump

XJ m,X,A

2-22

(X) + A-(X), -128:s A:s 127

E-(L)

index, jump test

XJT m,X,A (X) + A- (X), -128 :s A:s 127

then if sgn (X) = ~ A,

(L + 1)- (L); if I, E- (L)

2. 13 INSTRUCTIONS TO LOAD AND STORE
SPECIAL REGISTERS

Each of the several 16-bit registers in the 8400 and

the 16-bit input and output busses are serviced by a

pair of instructions that gather and store a half-word

from either half of the memory word. The address­

ing options *, /, and X apply in each case and the

Immediate option (=) is available for all load instruc­

tions. Exec bits are not affected or moved by these

instructions, and except for the direct effect on the

flag register with LDF, there is no associated

change to the flag register. The 32-bit data channel

control registers (CCR) are serviced by a similar

pair of instructions; however, the half-word address­

ing options = and / do not apply. In the case of

the 16-bit channel data registers (CDR), a half-word

and Exec bit are moved between memory and the

registers; however, the = option does not apply

and the Left-Right option is determined by another

register (CFR) in the data channel. See 4. 1.

2.13.1 Load Register or Bus

LDAE m,X

LDF m,X

LDL m,X

LDT m,X

LDM m,X

LDE m,X

(E) - (AE) external accu­

mulator register

(AE) destroyed

(E) - (F) flag register

(E) - (L) location counter

(E) - (T) timer register

(E) - (M) interval interrupt

mask register

(E) - (EM) external

interrupt mask register

LDC m,X (E) - (C) console register

LDOB m,X,R (E) - Output bus R where

R:s 178

LDCC m,X,k (EO:31) - (CCRk) channel

control register k

LDCD m,X,k (Eo: 15,32)- (CDRk) or

(Fh6: 31, 3S> (CDRk) channel

data register k according to

the L bit of channel junction

register

2.13.2 Store from Register or Bus

STAE m,X

STF m,X

STL m,X

STT m,X

STM m,X

STE m,X

STC m,X

tSTIB m,X,R

tSTCC m,X,k

tSTCD m,X,k

(AE) - (E)

(F) (E)

(L) (E)

(T) (E)

(M) (E)

(EM)- (E)

(C) (E)

Input Bus R - (E)

(CCRk) (E 0:31)

(CDRk) (E o:15 , 32) or

(E 16:31, 33) laccording to the

L bit of channel function

register

All I/o instructions plus those that modify the limiter,

console, mask register are privileged instructions

and in user mode they are not executed by activate

the internal interrupt number two (see 3.6.1). In a

computer lacking an automatic data channel LDCC

and STCC cause this interrupt in monitor mode as

well.

tPrivileged instructions

There are 15 bus addresses, R, which are written

as octal numbers, and eight channel numbers, k

~ through 7). When indexing is not employed, these

instructions must be written with two commas, e. g.,
"

LDOB m" 1.0 loads output bus number 8. Note that

LDOB = .0, 3,.0 loads bus zero from index register

three.

2. 13.3 The Flag Register

The sixteen bits of the flag register, F, are moved

as a group, although they are set and reset individu­

ally by other instructions and machine functions.

The zero bit of F is not really a flag and cannot be

reset; it is always set. Hence, when tested by con­

ditional instructions, a positive test always results

(see Paragraph 2.12).

Bits F 1:30 are the Z (zero), G (greater than), and

L (less than) flags that are set to the sign of A

after each arithmetic instruction, except the index

class. For the index class, they are set by the

sign resulting from the index arithmetic operation.

The Boolean connective instructions also set and

reset flag Z. Bit F 4 is V (overflow flag) which

remains set, until reset. Bit F5 is C (carry flag)

which indicates if a carry from the accumulator

occurred with the last arithmetic instruction. Bit

F 6 is B (busy flag) which indicates whether or not

the last I/o instruction was executed. Bit F 7 is

E (enable flag), enables the entire interrupt system

when set. This flag cannot be changed in user

mode. (See 3.6.1.). Register bits F8:15 are eight,

general purpose flags available to the programmer

(called flag 1, 2, ... flag 8). These eight flags

can be set and reset manually at the computer

console.

2.13.4 Location Counter

The LDL instruction is quite equivalent to the jump

instruction, but there are differences in addressing

2-23

options. Note the following fWlCtionally equivalent

pairs:

LDL

LDL

=m,X J

m/,X J*

m,X

m, X to one level of
indirectness

There are no direct equivalents of:

LDL* m/,X LDL* /m,X

LDL* -m/,X LDL* =/m,X

LDL /m,X

Thus, LDL can jump direct or indirect to addresses

stored in right half-words. LDL*m,X reaches to one

more level of indirectness than does J*m,X. Note

that the Indirect-immediate option is possible (LDL* =

m,X). This differs from LDLm,X only when the con­

tents of the effective address m, X specifies indirect

or index modification.

2. 13. 5 Timer

The timer may be read, but not changed in user

mode. The operation is suchthat the contents of

T is decremented. once every millisecond. When (T)

reaches zero, internal interrupt number six is acti­

vated (see Paragraph 3.6). This interrupt forces the

mode into monitor mode and then the T register is

reloaded by the monitor program.

2. 13.6 Mask Register

The internal mask register (M) and the external mask

register (EM or E) contain 16 bits each, which indi­

vidually enable interrupt lines. These registers can­

not be modified in user mode. See Chapter 3.

2.13.7 Console Register

Instructions LDC and STC are privileged instructions,

and can be performed only in monitor mode. The

contents of this register can be set and reset manu­

ally at the computer console.

2-24

iLDOB, LDCC, LDCD, STIB, STCC, STCD
Instructions

These instructions are treated in the Input/Output

Instructions found in Paragraph 2. 14.3.

2. 14 EXEC Brr INSTRUCTIONS

Every memory word (in core memory and on the

Rapid Access Drum) contains 32 data bits plus two

special bits that are identified as left and right Exec

bits. The left Exec bit (Ed is in position 32, and

the right Exec bit (ER) is in poSition 33, however,

EL is always associated with the left half-word (bits

0:15), and ERwith bits 16:31. EL is used by all sys­

tem programs to designate a relocatable address in

the left half-word. ER is primarily used to protect a

word located in core memory. E R operates with the

interrupt system to interrupt the computer when an

illegal reference is made to the memory. cell in user

mode. See Paragraph 3.6. 1.

Exec bits are set, reset, and tested respectively by

the three instructions: SEX, REX, TEX. In each

case, the contents, other than EL or ER, of the ef­

fective address is ignored. The slash option speci­

fies left or right Exec bit; for example, REX m, X

resets EL and REX /m,X resets En. The test in­

struction sets the Z flag if the specified exec bit is

set.

2. 14. 1 Exec Bit Controls

SEX m,X 1 - (E'30 set EL

SEX /m,X 1 - (E33~ set ER

REX m,X ~ - (E32) reset EL

REX /m,X ~- (E 33) reset ER

TEX m,X (E 32) - Z flag test EL

TEX /m,X (E33) - Z flag test ER

2. 14. 2 Accumulator Exec Bits

The accumulator is the only register that accepts

Exec bits. Bit A32 is associated with the EL of a

left half-word loaded from memory. Bit A33 is

associated with the E R of a whole word loaded into

AAF. A32 and A33 are addressed by the above in­

structions with an effective address of zero.

The accumulator Exec bits each exist for a specific

purpose. A33 is used when a word is to he moved

with its protection bit Er from one core location to

another. The instruction pair, FCAU, FST, moves

all 34 bits from core to core. Similarly, DCAU,

DST is used to move double precision data (and must

not be used to move pairs of words of any other type

of data). All arithmetic instructions (except FCAU

and DCAU) and all Boolean instructions that change

the contents of the accumulator reset A33' Any in­

struction that does not change the contents of the

accumulator does not alter (A33). Only FST and DST

store (A33) in memory.

The accumulator left Exec bit, A32' is used to pre­

serve the relocation information throughout address

calculations, as follows. The difference of two re­

locatable address values must be an absolute value;

the sum of such numbers, however, is not defined in

these terms. The sum or difference between an

absolute value and a relocatable one must be re­

locatable. Therefore, after either of the instructions

AD m/,X and SB m/,X (note: left half option only),

the contents of A32 is the exclusive OR of (E 32) with

the initial (A32)' A32 is located from memory only

by the instructions: FCAU, FCSU, DCAU, DCSU,

CA (left half), and CS (left half). All other arithmetic

and Boolean instructions that change the contents of

the accumulator, reset A 32' All others that do not

change (AAFAD), do not alter A32' Only the instruc­

tions FST, DST, ST (left half) store A 32 in memory.

A 32 and A 33 are not saved by the Save Register

option. Index registers do not contain bits for holding

relocated Exec bits; however, by programming

system conventions, index registers 5, 6, and 7 are

assumed always to contain relocatable address

values.

2. 15 INPUT/OUTPUT INSTRUCTIONS

The instructions in this group are:

SFL =M" k Set a function line in bankok

TSL =M, , k Test a sense line in bank k

LDCD M,X,K Load channel data register,

channel K (output)

STCD M,X,K Store channel data register,

channel K (input)

STCC M,X,K Store channel control word,

channel K (input)

LDOB M,X,R Load output bus R

STill M,X,R Store input bus R

LDCC and STCC instructions are only available with

the Automatic Data Channel Processor expansion and

once initiated, govern the transfer of data without

further intervention of the central processor.

Programmed half-word transfer using LDCD and

STCD are available with or without ADCP. In addi­

tion, the System Interface Instructions LDOB and

STill provide data transfer between registers of

external devices.

A more complete summary of these instructions is

given in Chapter 4, Paragraphs 4.3 to 4.5.

2.15.1 SFL Instruction (Set Function Line)

Immediate addressing must always be used with SFL

instructions. Within this instruction indexing and

indirect addressing may also be used. The effective

address, E, is therefore always used as an im­

mediate operand, whose bit pattern determines the

channel, device, and function required.

2-25

The data channel SFL's fall into two broad categories

(1) initialize channel and connect device, or (2) chan­

nel clear, disconnect, set/reset ready interrupt, and

set/reset signal interrupt. A non-zero 4-bit byte

(bits 4-7) denotes the former category, whose bit

pattern significance is as follows:

bit ,l:S

bit 1-3

bit 4-7

always set

channel number (0-7)

device designation (non-zero byte,

1-15)

bit 8 transfer Exec bits if set, omit Exec

bits if reset

bit 9

bit 10

bit 11

bit 12

binary mode if set, BCD if reset

start transfer with left half-word

initially if set, right if reset

alternate left to right, right to left,

if set; if reset continue transfers

from word half specified by bit 10

transfer to memory (input) if set; if

reset, transfer to device (output)

bit 13-15 code for bits per byte/number of

bytes per half-word transferred.

Bits 4-7 Device

01000 Paper Tape Reader

01400 Card Reader

02000 Paper Tape Punch

02400 Card Punch

03000 Typewriter

03400 Line Printer

04000 Magnetic Tape

2-26

Bits 13-15 Byte Size/Count

00000 Exec bits only

00001 8/1 (i. e., signifies 8 bytes
of 1 bit each)

00002 8/2

00003 16/1

00004 4/4

00005 4/1

00006 4/2

00007 4/3

In the second category of data channel functions de­

noted by a zero byte (bits 4-7), bits have the following

significance:

bit ,l:S unconditional channel clear

bit 1-3 channel number (0-7)

bit 4-7 (zero byte)

bit 8-10 no significance

bit 11 Reset Channel signal interrupt

bit 12 Set Channel signal interrupt

bit 13 Reset Channel ready interrupt

bit 14 Set Channel ready interrupt

bit 15 Channel disconnect

compatible combinations of channel data functions

may be called with one SFL instruction by setting the

corresponding bits.

Each device has a set of SFL's for establishing de­

vice dependent conditions, e. g., on the typewriter -

type red or type black; on the paper tape reader -

read forward or read reverse; on the paper tape

punch - turn power on or turn power off; and so on.

Available SFL's are specified in device descriptions,

Paragraph 4. 5 in this manual.

The successful completion of the SFL instruction is

indicated by the busy (B) flag in the flag register,

which changes to a reset condition after completion.

2.15.2 TSL Instruction (Test Status Line)

Immediate addressing is required with TSL instruc­

tions; within this restriction, indexing and indirect

addressing may be used. The effective address E,

is therefore always used as an immediate operand,

whose bit pattern specifies which test is required, on

which device, on which channel. As with SFL in­

structions, bit 1-3 specify the channel, and bits 4-7

the device; with the remaining bits specifying the

test.

For the data channel functions the following tests are

available.

00001 Test channel signal

-00001 Test channel signal and clear

00002 Test channel parity

-00002 Test channel parity and clear

00004 Test channel ready

With peripherals, device related tests are available.

For example: for card reader, test if the reader is

ready; test if the reading of the previous card is

complete: for magnetic tape, test if tape movement

has ceased; and so on. The available tests are speci­

fied in device descriptions in Paragraph 4. 6 of this

manual.

The Z flag is set if the result of a TSL is true, reset

is false.

2.15.3 LDCD, STCD Instructions

Having connected a device for data transfer, the

actual transfer of data is effected by the LDCD or

STCD instruction.

There must be one of these instructions per half­

word transferred. If bit 11 of data channel SFL

calling for left and right alternate transfer is set,

two instructions per memory location are required.

Since initial and subsequent left/right half positioning

is implicit in the SFL call, address specification in

this case is identical for both instructions and refers

apparently only to the left half.

The instruction modifier X, *, may be used with both

LDCD and with STCD. The / modifier is irrelevant

and should not be used with either.

The accumulator cannot be accessed directly by an

STCD or LDCD instruction. (E = 0 or 1 refer to

core location 0 or 1 with LDCD and STCD.)

Example:

The following example reads paper tape, punched in

autoload format, for N words, starting the loading

at memory location MEMORY. The device SFL

connects the paper tape reader (PTR) to transfer

Exec bits, binary mode, starting with left half mem­

ory word, alternating left/right/left, etc., reading

from device to memory, half-words comprising four

4-bit bytes.

SFL

SFL

JB

XCS

=1,,1 conditional disconnect

channel 0, bank 1

='-1374" 1 connect PTR

*-1

-N,X

wait until device

connected

count of N in index

register X

2-27

STCD MEMORY + transfer first half-

N,X word to memory

STCD MEMORY + transfer second

N,X half-word to memory

XJT *-2,X,1 loop until N words

transferred

SFL =1,,1 disconnect.

2.15.4 LDCC, STCC Instructions

Available only with ADCP, these instruction govern

transfer of data according to a data control word of

the form

ARG(*) ADDRSS,X, COUNT

where ADDRSS is the starting address of a block size

given by COUNT, in a manner specified by the * and

X bits (16-19).

The options implied by bits 16-19 are:

bit 16 - Transfer data if set, skip if reset (T or S)

bit 17 - Disconnect at end if set, do not disconnect

if not set (D or I)

bit 18 - Skip or transfer until signal (S)

bit 19 - Skip or transfer until count complete (C)

and are summarized mnemonically by one of the

following OP symbols: -

TCD, SCD, TCI, SCI, TSD, SSD, TSI, SSI, TED, SED, TEl,

SEI in the formal context:

OP ADDRSS" COUNT

2-28

Example

SCI .§kip data until gount is zero then

,!nterrupt (but do not disconnect)

TED Transfer data until]!ither count is zero

or signal is received, then Qisconnect

(and interrupt)

These ADC OP symbols could be used as shown below

to cause the skipping of the first 500 words of a data

record, then the transfer into memory of either the

remaining portion of the record if there were fewer

than 1500 words, or of the next 1000 words.

SFL

JB *-1

LDCC OMIT

OMIT SCI ,,500

connect device

for transfer to

memory

wait until

connected

initiate skip

action

ADC OP symbol

READ IN TED START,,1000 definitions

with an interrupt routine containing

LDCC READIN initiate actual

data transfer

If a signal, due to the advent of a terminating charac­

ter or situation (stop code on paper tape, end-of-

record gap on magnetic tape, end-of-card on card

reader) precedes the completion of the specified

count, the number of words transmitted can be as­

certained by performing STCC after interrupt, and

examining the count field.

Transfer of data, one initiated, proceeds automati­

cally under control of the ADCP without the need of

central processor intervention.

An interrupt is always generated on the completion

of these ADCP functions.

2. 15. 5 LDOB, STIB Instructions

These system interface instructions effect the trans­

fer of 17 bit data (16 bits plus 1 exec bit) from E via

the output buss to the specified external register

(LDOB), or from the specified external register via

the input buss to the effective address E (STm).

The X, *, =and / options are available with LDOB,

and X, * and / with STm

2.16 SHIFT, ROTATE AND NORMALIZE

INSTRUCTIONS

These instructions are available in single or ex­

tended precision form. If extended preciSion, the

A-AE registers are involved; if single precision,

the A register only.

Each instruction in this group may use the Save

option.

2. 16. 1 Arithmetic Shift

Although = is not written in the first character posi­

tion of the address field of shifts or rotates, the

immediate mode is .assumed· by the hardware. Thus,

if N=3, and (X)=1, so that E=4

ASH N,X

is a request for an arithmetic shift of the A register

contents 4 places to the right (equivalent to a division

by 24). The same affect is achieved by

ASH 4

or by:

ASH* SAM

where the left half contents of SAM is 4. These are

examples of positive shifts.

With arithmetic shifts, the sign bit ~ is propagated

for right shifts, so that a negative number remains

negative, a positive one positive. Similarly for left

shifts (negative shifts) the sign bit does not change,

and bit 1 is lost for each left shift.

For extended shifts, the sign bit of the AE register

does not change. Therefore, only bits 1-15, 17-31

are involved. For example,

EASH -15

shifts the AE register, considered as an arithmetic

quantity, to the A register.

The Z, G, L and V flags reflect the resultant state

of the A, or A-AE registers.

Bits in positions 15-E to 15 for ASH right shift or

31-E to 31 for EASH right shifts, where E is the

number of shifts, are permanently lost. For left

shifts, the same applies to bits in positions 1 to E

for both ASH and EASH. If a 1 bit is lost in the

latter cases for initially positive value, or a ~ bit

for an initially negative value, the overflow flag is

set.

The nominal effective address is truncated by hard­

ware to provide an effective immediate address E

such that -64sEs63.

2-29

The Save option prefix may be used to save (A) in ($A)

prior to shifting. H indirect addressing is used, the

immediate operator is still implied and the value of E

is taken as the shift count. Actually E is truncated at

7 bits, and the effective count is:

2-30

-64 $ (Eo, 10:15) $ 63.

2.16.1.1 right arithmetic shift

ASH

EASH

(EO, 10:15) positive

where e = (E 0,10:15) modulo 15

m,X shift (A 1:15) right bye bits

(Ao> -- (AI:e)

right-most e bits are lost

where e = (E 0,10:15) modulo 31

m,X shift (AAE 1:15,17:31) right by

e bits

(Ao) - left most e bits

(excluding AAE 16)

right-most e bits are lost

(AAE l d unchanged

2. 16. 1. 2 left arithmetic shift

ASH

(E 0,10:15) negative

where e = (Eo, 10:15) modulo 15

m,X shift (A l :15) left by e bits

.0 - right most e bits

(A l :e) lost, V flag set if any

lost bits I (Ao)

where e = (E 0,10:15) modulo 31

EASH m,X shift (AAE 1:15,17:31 } left by

e bits

.0 - right most e bits

(excluding AAE 16)

left most e bits lost (excluding

AAE 16)

V flag set if any lost bits I
(A 0)

2. 16. 2 Rotates

The contents of the A register for single precision

or of the A-AE register for extended precision, are

regarded as a bit pattern having no arithmetic signif­

icance, so that bit .0 and bit 16 for extended preCi­

sion are treated as any other bit.

In contrast with arithmetic shifts, no bits are lost:

for Single precision, right-rotation (positive E) the

bit in position 15 is transferred to position .0; the

reverse applies to left (negative) rotation. For

extended precision rotation, the bit in position 31 is

transferred to bit position .0; the reverse applies to

left (negative) rotation.

The save prefix operator may be used, and the same

immediate addressing rules apply as above for shifts.

The flags are unaffected by rotates. For example,

EROT 16

exchanges the contents of the A and AE registers.

The rotate instructions are formally summarized as

follows:

rotate, right

or left

ROT m,X

EROT m,X

Normalize

(EO, 10:15) positive or negative

for e = (EO, 10:15)

(AO:15) - (Ae :(15+e))
modulo 16

(AAEO:31> - (AAEe :(1+e))
modulo 32

The specified index register receives a count of

shifts required to normalize the contents of the A

register if single precision is required, or A-AE

registers if extended precision desired. The contents

of the accumulator are considered arithmetic, and

the shifts follow the rules of ASH or EASH operations.

The count appearing'in the specified index register is

a positive quantity, so that the two instructions

NRM

ASH

~, 2

~, 2

would leave the A register unchanged, but with the

number of shifts to achieve normalization in index

register 2.

NaTE

The criterion for normalization is that bits !1

and 1 of the A register must be different.

The normalize instructions are formally summarized

as:

Single Precision

NRM ~,x for (A)~~, Arith.Single Prec.

left shift until [Ao] ~ [AI]'

positive count of shifts c-

(X).

for (A)=O, 0- (X).

Extended Precision

ENRM ~,x for (A)~~, Arith. Extend.

Prec. left shift until TAo] ~

[A I], positive count of shifts

c-(X).

for (AAE)=O, O-(X)

2-31/2-32

CHAPTER 3

PRIORITY INTERRUPT SYSTEM

3.1 INTRODUCTION

The 8400 Interrupt System provides a means of inter­

rupting a program sequence at the occurrence of some

event, and executing a routine that corresponds to the

event. Conditions both internal and external to the

machine can cause interrupts. Hardware is provided

to maintain an assigned priority among the interrupt

conditions, and to maintain the priority while an inter­

rupt routine is in progress. When the machine is

interrupted, the continuity of the instruction sequence

is preserved, and interrupt routines as small as one

instruction can be used.

3.2 BASIC OPERATION

The elements of the interrupt system are as follows:

1. A 16-bit Internal Interrupt Register with

associated decoding logic and scan circuits.

2. Up to sixteen 16-bit External Interrupt

Registers with associated decoding logiC

and scan circuits.

3. The Enable Flag in the Flag Register de­

noted by (E).

4. A 16-bit Internal Mask Register denoted

by (IMR).

5. A 16-bit External Mask Register denoted

by (EMR).

6. An additional external mask bit denoted

by (EMB).

When an interrupt condition occurs, a bit correspond­

ing to that condition is set in one of the interrupt

:registers. If the enable flag E and the Mask bit

corresponding to that position in the interrupt regis­

ter are set, a signal is gated to the scan circuits. At

various points in the instruction cycle, the scanner

,searches for any interrupt signals. The order of

scanning determines the priority of one interrupt con­

dition relative to another. If an interrupt condition is

detected by the scanner, and no higher priority Sig­

nals were detected, the interrupt logic generates an

unique address for that interrupt. At certain pOints

in the instruction cycle, the machine acknowledges

the detected interrupt by breaking the program se­

quence, and executing the instruction at the location

specified by the interrupt logic.

The Enable Flag, E, can either enable or disable

all signals from the interrupt registers. When the E

flag is reset (set to zero, disabled, turned off), no

interrupt condition can be acknowledged, except upon

power failure, and the program, sequence cannot be

interrupted. Instructions pertaining to the flags are

discussed in Chapter 2.

The interrupt registers themselves cannot be disabled.

.An interrupt condition will always set the correspond­

ing bit in the interrupt register independent of the E

flag and the mask bits. The interrupt registers

provide a buffer to remember the occurrence of
.~

interrupt conditions until the interrupt logic can ac-

,knowledge the signal. Depending on the type of inter­

rupt routine used, a bit in the interrupt register is

reset either automatically when the interrupt condi­

tion is acknowledged or is reset by program. Figure

3-1 shows the interrupt register mask configuration.

3.3 PRIORITY

There are two aspects in determining the interrupt

priority of specific interrupt requests:

1. When multiple interrupt conditions occur

simultaneously, which condition will be

first acknowledged by the system?

/3-1

ICO SET

RESET
ICI SET

RESET
IC2 SET

RESET

ICI5 SET

} CONTROL
SIGNALS

1.115!ANd' GATES

L FLIP FLOPS IN THE INTERRUPT
REGISTER

:~~} INTERRUPT CONDITIONS

MO} MASK BITS
1.115

E } ENABLE FLAG

Figure 3-1. Interrupt Register Mask
Enable Configuration

2. Once an interrupt has been acknowledged,

an interrupt routine is in progress, what

conditions will cause that routine to be

interrupted?

Regarding the first, the scan action of the interrupt

detection logic determines which interrupts take pre­

cedence over other interrupts. That is, if conditions

occur simultaneously, the scan determines which

will be acknowledged first. This feature of the inter­

rupt system is referred to as hardware priority. The

memory locations associated with the interrupts

reflect the hardware priority. The highest priority

interrupt has the lowest memory location as shown in

Table 3-1.

Table 3 -1. Memory Locations

Octal Decimal Interrupt Name

40 32 . Power Failure/Memory Parity
Error

41 33 Data Exec

42 34 Illegal Instruction

43 35 Instruction Exec

44 36 Exponent Fault

3-2

Table 3-1. Memory Locations (Cont)

Octal Decimal Interrupt Name,

45 37 Memory Protect

46 38 Timer

47 39 Console

50-57 40-47 Data Channels 0-7

60-77 48-63 External Group 1

100-117 64-79 External Group 2

120-137 80-95 External Group 3

140-157 96-111 External Group 4

160-177 112-127 External Group 5

200-217 128-143 External Group 6

220-237 144-159 External Group 7

240-257 160-175 External Group 8

260-277 176-191 External Group 9

300-317 192-207 External Group 10

320-337 208-223 External Group 11

340-357 224-239 External Group 12

360-377 240-255 External Group 13

400-417 256-271 External Group 14

420-437 272-287 External Group 15

440-457 288-303 External Group 16

The first 16 interrupts (highest priority) are internal.

All remaining interrupts are called interrupts. The

first 6 interrupts refer in some way to the instruction

sequence. The meaning of all internal interrupts is

explained in Paragraphs 3.7.

Once an interrupt has been acknowledged, there are

two methods by which a given priority can be main­

tained for the duration of the interrupt routine. One

method is through the use of the mask registers. By

manipulation of the mask registers, any priority

sequence - not necessarily the same as hardware

priority - can be achieved and maintained. Pr ogrammed

priority allocation is discussed in Paragraph 3. 5, If

the hardware priority sequence is acceptable to the

user, this priority will be maintained automatically

for the duration of an interrupt routine by the hard­

ward. If certain programming rules are observed.

The automatic maintenance of hardward priority is

discussed in Chapter 4.

3.4 INTERRUPT CONTROL

Interrupts can be acknowledged only at certain times

during the instruction sequence:

1. After gathering of instruction,

2. After each level of address modification,

and

3. After the execution of an instruction.

The actual execution of an instruction can never be

interrupted. Also, interrupts can never occur at the

following times:

1. When executing the first instruction of an

interrupt routine,

2. After the machine has been halted from

console, and

3. When the E flag is reset.

An exception to the above is the po~er failure inter­

rupt which has the highest hardware priority. This

interrupt can occur, independent of its mask bit and

the E flag, during auto load or auto dump and after

the machine has been halted manually.

When an interrupt is acknowledged, the machine is

forced to execute the instruction at the interrupt

location. The interrupt location address is not placed

in the .location counter. The resulting action depends

on the type of instruction at the interrupt location.

The four possible cases are as follows:

1. Link instructions (L or LR).

2. Jump instructions (J, JS, JR, JT, HJ,

XJ, XJT, LDL).

3 . Execute instruction (EX).

4. other instructions.

A link instruction serves to inform the interrupt sys­

tem that an interrupt route is being initiated. When

the link at the interrupt location is executed, the

system enters a scan-limiting state, and the inter­

rupt condition is not reset. Once in the acknowledged,

but not reset state, the scan is limited so that only

interrupts of higher priority can be acknowledged.

The use of the link instructions, therefore, permit

the hardware priority to be maintained for the dura­

tion of an interrupt routine.

The Jump Trigger (JT) instruction is the means by

which a program informs the interrupt system that

an interrupt routine has been completed. If the sys­

tem is in a scan-limiting state, and a JT instruction

is executed, the system then resets the highest pri­

ority interrupt condition that has been acknowledged

but not reset. There are three states for each type

of interrupt.

1. Idle; no interrupt condition present.

2. Set; an interrupt condition has set the bit in

the interrupt register, but the condition has

not yet been acknowledged.

3. Acknowledged but not reset; a link instruc­

tion at the interrupt location was executed,

and no JT instruction has yet been executed.

The possible states of the interrupt system are shown

in Figure 3-2. While an interrupt is in the acknowl­

edged state, no more interrupt of that type can be

received until the JT instruction is executed. The

bit in the interrupt register remains set until the

JT is executed. If no interrupt is in the acknowledged

state, then JT instructions have no effect on the

interrupt system.

The link JT technique for interrupt routines provides

multi-level interrupt capability with the proper

priority without resorting the mask manipulation. An

example of multi-level interrupts is shown in Figure

3-3. For each interrupt routine, the use of the lin

3-3

OCCURENCE
INTERRUPT
CONDITION

EXECUTING A LINK AT
THE INTERRUPT LOCATION

Figure 3-2. Interrupt States

MAIN
PROGRAM

INTERRUPT
ROUTINE

WITH PRIORITY
P2>PI

INTERRUPT
ROUTINE

WITH PRIORITY
P3 > P2

Figure 3-3. Multi-LevelInterrupts

instruction guarantees that only higher priority inter­

rupts can occur while the routine is in progress.

When the routine is complete, the use of the JT

guarantees that the status of the interrupt system

before the interrupts will be re-established.

3-4

Note that the resetting of the interrupt is independent

of any flags associated with the JT instruction. For

the instruction JTf, where f is some flag, the follow­

ing occurs:

1. The jump is performed if flag f is true.

2 . Flag f is triggered unconditionally.

3. The highest priority acknowledged inter­

rupt is reset unconditionally.

When the instruction executed at the interrupt location

is not a link, the interrupt conditions is automatically

reset. If the instruction is not a jump type instruction

that alters the location counter, the interrupt instruc­

tion is then executed as a one-instruction interrupt

routine. The return is made to the interrupted pro­

gram to insure that no instructions will have been

missed.

If the instruction at the interrupt location is a jump

instruction, the interrupt is automatically reset, and

the jump is executed. Since the location counter is

loaded with a new address, the location counter value

at the time of the interrupt is lost. In this case, it

is impossible to determine by program at which

point the program was interrupted.

Should the instruction at the interrupt location be an

Execute (EX), the resulting action depends on the

object of the Execute instruction. The interrupt con­

dition is reset automatically, independent of the object

instruction unless it is a Link. If multiple Execute

instructions are chained together, the entire chain,

including the object instruction, is non-interruptable .•

Interrupts that refer to machine instructions (inter­

rupts 0-5) are handled in a special way. If one of

these interrupts is acknowledged either after gather­

ing of instruction or after address modification, the

location counter is incremented by one before the

instruction at the interrupt location is executed.

For example, if an illegal instruction at location L

causes an interrupt after gathering instruction the

following occurs:

1. With a link instruction at the interrupt

location, the address L + 1 is stored at

the effective address of the instruction.

2. With a non-link, non-jump instruction,

return would be made to L + 1, after

execution of the one instruction routine.

A personalized interrupt is one in which a transfer

of control takes place immediately, should the inter­

rupt condition arise, where immediately means

following the execution of the instruction currently

being obeyed.

This is critical for such interrupts as "unvalid

instruction". On the other hand, other interrupts

cause the transfer of control to take place one in­

struction later than this and this is satisfactory for

interrupts generated externally.

However, the 8800 interfacy busy interrupt is not

personalized, and so the occurrence of an 8800

instruction which causes an 8800 busy interrupt to

occur, causes the interrupt routine to save the

address of the instruction after the one that caused

the interrupt to occur. It is wise therefore for the

programmer to follow every 8800 interface instruc­

tion that can result in an '8800 busy' interrupt, by a

NOP. If the interrupt occurs the address of the NOP

will be saved, and the interrupt routine can occur

properly.

3.5 MASKING

If some priority sequence other than the hardware

priority is needed, masking must be used. For

those interrupts with individual mask bits, any

sequence of priority can be achieved. The

instructions pertaining to the mask bits are the

following:

LDM m Load the Internal Mask Register
" with a hali-word from memory.

LDE m Load the External Mask Register

a half-word from memory.

Options: *, X, /, =

Flags: none

STM m Store the contents of the Internal

Mask Register into a hali-word in

memory.

STE m Store the contents of the External

Mask Register into a hali-word in

memory.

Options: *, X, /

Flags: none

SFL = '60, , 0 Set the external mask bit (EMB)

SFL = '61,,0 Reset the external mask bit (EMB)

The B flag is set following either SFL instruction if

the EMB was set prior to the instruction.

TSL = '60, 00 Test the external mask bit (EMB)

The Z flag is set following this instruction if the EMB

was set, and the flag is reset if the EMB was not set.

Dynamic priority allocation can be achieved by using

the masks in the following way:

1. Determine for each interrupt condition

which of the others are to have higher or

lower priority.

3-5

2. During the main program, keep all mask

bits set and all interrupts enabled, and

perform a JT instruction to release the

machine from its limited-scan control

state.

3. Store the existing mask registers; then

change the masks so that only bits for in­

terrupts of priority greater than the given

interrupt (in the new sequence) are set.

4. Set the E flag to re-enable the interrupt

and execute the interrupt routine.

5. When the interrupt routine is completed,

the interrupts should be disabled, the

original masks restored, and the interrupts

again enabled before returning to the point

that was originally interrupted.

3.6 USER/MONITOR MODE AND THE INTERNAL

INTERRUPTS

3.6.1 User/Monitor Modes

Every 8400 is equipped with a feature to facilitate

multi-programming and time sharing. 'rhe User/

Monitor mode feature prevents a user program from

interfering with the continuous operation of the com­

puter. In USer mode, any instruction that initiates

input/output operations or modifies the state of cer­

tain control register is not executed. In monitor

mode all instructions are permitted.

The monitor mode flip-flop controls the mode of the

computer. The machine is placed in monitor mode

when any interrupt occurs, or by the INITIALIZE

button from the console. The flip-flop can be reset

and tested by the following instruction:

SFL = '65,,0 Reset Monitor Mode

TSL = '65,,0 Test Monitor Mode

3-6

The Reset Monitor mode instructiop., in addition to

placing the machine in :usermode, also enables the

interrupt system. Once in user mode, the interrupts

cannot be disabled. The interrupts can then be dis­

abled only after an interrupt has occurred, and the

machine has been returned to monitor mode.

Instructions that cannot be executed in user mode are

called privileged instructions. They are:

1. LDT, LDM, LDE, LDC

2. SFL, TSL

3. LDOB, STm

4. LDCD, STCD, LDCC, STCC

5. HJ

When one of these instruction is attempted in user

mode, the instruction is not executed, a privileged

instruction flip-flop is set, and an interrupt is gen­

erated. The privileged instruction flip-flop can be

tested and reset with the following instructions:

SFL = '21,,0 Reset Privileged Instructions

TSL = '21n 0 Test Privileged Instructions

Other illegal instructions generate this interrupt as

usual, but do not set the Privileged Instruction flip­

flop.

Since the interrupt system cannot be disabled in user

mode, instructions that refer to the E flag in the flag

register are not allowed to change its state. Instruc­

tions of this type are executed, but do not affect the

E flag, as shown by the following:

Instruction

JSE

JSNE

JRE

Acts Like

JE

JNE
JE

lns true tion Acts Like

JRNE JNE

LRE LE

LRNE LNE

JTE JE

JTNE JNE

In user mode, the LDF instruction does not change

the E bit, and the JT instruction has no affect on the

interrupt system.

3. 6. 2 Internal Interrupts

Tne internal interrupts are summarized in Figure

3-4. The interrupt number represents the bit num­

ber for the corresponding bit in the Mask Register.

The lowest number has the highest priority. Each

interrupt is discussed in detail below.

(0) Interrupt Name: Power failure and memor:y

parity error interrupt.

Interrupt Location: '40

o

2

3

4

5 MEM
PROT

6 TIMER

7

8
DATA

CHNO

9 DATA
CHNI

10
DATA
CHN2

\I DATA
CHN3

12

13

14

15

Interrupt Mask: Does not affect this

interrupt.

If the voltage level varies beyond a safe limit, a

power failure interrupt is generated. Memory parity

is checked whenever the memory is accessed -

either for normal program execution or for the auto­

matic data channel operation. Both power failure

and memory parity error are considered catastrophic.

Restart may be from the beginning of the present job

or from the last SAVE point in the job. The follow­

ing instructions are used to determine cause: TSL =

'23" 0 for Test Memory Parity Failure, and SFL =
'23,,0 for Reset Memory Parity Failure.

(1) Interrupt Name: Data Exec

Interrupt Location: '41

Internal Mask: '40000

The Data Exec interrupt is set for any gathering of

data in the monitor mode of a word with the left Exec

(POWER FAILURE)+(ANY READ)(MEMORY AIIRITY FAILURE)

(DATA FETCHi(RIGHT EXEC)(USER MODE)HLEFT EXEC)
(MONITOR MODEl]

UNSTRUCTION FETCHi(PRIVILEGED INST)(USER MODE)
+ULLEGAL INST)HLDCC+STCC)(NO ADCP~

(INSTRUCTION FETCH)(RIGHT EXEC)(USER MODE)

EXPONENT OVERFLOW OR UNDERFLOW

(USER MODE)(ANY WRITE)(RIGHT EXEC)(MEMORY PROTECT
ENABLE)HMEMORY ACCESS)(ADDRESS OUT OF
MEMORY)

TIMER DECREMENTED TO ZERO

CONsa.E INTERRUPT BUTTON DEPRESSED

DATA CHANNEL INTERRUPTS
(SEE CHAPTER 5 FOR DEFINITION OF INTERRUPT
CONDITIONS)

Figure 3-4. Internal Interrupt Conditions

3-7

bit set, or in user mode of a word with the right

Exec bit set.

Exceptions: TEX, LDCC, LDCD, LDOB.

The cycle of instruction gathering lasts until the ef­

fective address has been fully calculated, including

indirect addressing and indexing. Instructions that

have operands in a memory location given by the ef­

fective address, have a data gathering cycle that fol­

lows the instruction gathering cycle. Immediate

instructions do not have a data gathering cycle.

(2) Interrupt Name: Illegal Instruction

Interrupt Location: '42

Internal Mask: '20000

In general, any instruction that is undefined or would

result in stopping machine operation will cause this

interrupt. Immediately after gathering instruction

the interrupt is generated and the instruction is not

executed. The following specific instructions cause

this interrupt:

1. Undefined OP codes

2. STCC or LDCC when no Automatic Data

Channel Processor is present

3. Privileged instructions in user mode

(3) Interrupt Name: Instruction Exec

Interrupt Location: '43

Internal Mask: ' 10000

This interrupt is generated following instruction

gathering in user,. mode if the right Exec bit at the

location of the obtained instruction is high. The

instruction is not executed.

3-8

(4) Interrupt Name: ExPonent Fault

Interrupt Location: ' 44

Internal Mask: '04000

This interrupt is generated by a floating-point expo­

nent exceeding the proper range as the result of some

floating-point operation. The proper range for expo­

nents is -128 :s Exp:s 127. Exponent overflow does

not inhibit a floating-point operation.

(5) Interrupt Name: Memory Protect

Interrupt Location: '45

Internal Mask: '02000

This interrupt results when an instruction tries to

modify any half-word, full-word, or Exec bit in a

protected area of memory. Specifically, this inter­

rupt occurs on a store instruction, in user mode, if

and only if the right Exec bit is set at the location and

the memory protect mode has been enabled for that

memory bank. The memory protect mode can be en­

abled and disabled individually for up to four memory

banks. The instructions pertaining to the memory

protect mode are the following:

Test Set Reset

Bank 1 TSL ='40,,0 SFL = '40, ,0 SFL='41,,0

Bank 2 TSL = '42,,0 SFL ='42,,0 SFL='43,,0

Bank 3 TSL = '44, ,0 SFL = '44,,0 SFL ='45,,0

Bank 4 TSL ='46,,0 SFL = '46, ,0 SFL ='47, ,0

The SFL instructions set the B flag if the specified

mode control was set prior to the SFL action. The

TSL instructions set the Z flag if the specified mode

control was set, and reset the Z flag if the control

was reset.

This interrupt will also occur if memory is refer­

enced by an illegal address (for example, an address

out of memory). If an instruction attempts to access

memory with an illegal address, the memory access

is bypassed, the instruction cycle is completed, and

the interrupt is generated.

(6) Interrupt Name: Timer

Interrupt Location: ' 46

Internal Mask: '01000

The interval timer is an optional feature on the 8400,

and this interrupt cannot occur on those machines

without a timer. This interrupt occurs when the

timer is decremented to zero.

The basic element of the timer is the 16-bit Timer

Register. The following instructions pertain to the

timer:

LDT m

STT m

Options

Flags:

Load the Timer Register with a

half-word from memory

Store the Timer Register into a

half-word in memory.

*, X, /, =

none

SFL = '62,,0 Start the timer

TSL = '62,,0 Test the timer

SFL = '63,,0 Stop the timer

The B flag is set following the SFL instructions if the

timer was operating prior to the SFL; the Z flag is

set follOWing the TSL if the timer was operating.

Once the timer is operating, the Timer Register is

decremented every millisecond. Decrementing con­

tinues until the timer is stopped with the appropriate

SFL instruction. Note that the timer runs while the

machine is in a manual halt condition. After zero is

reached, the next decrement produces the maximum

value in the Timer Register, and decrementing pro­

ceeds from there.

(7) Interrupt Name: Console

Interrupt Location: '47

Internal Mask: '00400

The console interrupt is generated when anyone of

the four console interrupt buttons (CI1-CI4) is de­

pressed. Each button is buffered with a flip-flop as

shown in Figure 3-5. Pushing the button sets a cor­

responding flip-flop, and generates the interrupt.

An indicator in the button lights when the flip-flop is

set. The flip-flops can be tested and reset by pro­

gram to determine which of the buttons caused the

interrupt. When the flip-flop is reset, the indicator

light goes out. The instructions related to the con­

sole interrupt are listed below:

TSL = '25" 0 Test Console - Interrupt 1

SFL ='25,,0 Reset Console - Interrupt 1

TSL '='27,,0 Test Console - Interrupt 2

SFL ~'27"O Reset Console - Interrupt 2

TSL ='31,,0 Test Console - Interrupt 3

Figure 3-5. Console Interrupt Buttons

3-9

SFL = '31,,0 Reset Console - Interrupt 3

TSL = '33, , 0 Test Console - Interrupt 4

SFL = '33, , 0 Reset Console - Interrupt 4

The TSL instructions set the Z flag if the specified

flip-flop was set. The SFL instructions set the B

flag if the specified flip-flop was set.

The JT instruction that resets the bit in the interrupt

register has no affect on the flur flip-flops associated

with the console interrupts. Following a console in­

terrupt, both the interrupt bit and the console flip-flop

must be reset before another console interrupt can be

generated.

(8) - (15) Interrupt Name: Channel Interrupt

Interrupt Location: '50 - '57

Internal Mask: '00377

Each data channel has. one interrupt. Channel 0

corresponds to location '50, channell to '51, and so

forth. When a device is connected to a data channel,

interrupts can result from the channel itself, or from

the connected device. When no device is connected

to a channel, interrupts can result from those

devices on the channel which have been properly

enabled.

3.7 EXTERNAL INTERRUPTS

The conditions that cause external interrupts are a.

function of the external equipment tied to the interrupt

lines. There are up to 16 groups of 16 interrupts.

The external mask register pertains only to the first

external group which is shown below:

Interrupt Location External Mask

(1, 0) '60 '-00000

(1, 1) '61 '40000

(1, 2) '62 '20000

(1, 3) '63 '10000

(1, 4) '64 '04000

3-10

Interrupt Location External Mask

(1, 5) '65 '02000

(1, 6) '66 '01000

(1, 7) '67 '00400

(1, 8) '70 '00200

(1, 9) '71 '00100

(1, 10) '72 '00040

(1, 11) '73 '00020

(1, 12) '74 '00010

(1, 13) '75 '00004

(1, 14) '76 '00002

(1, 15) '77 '00001

For those machines with no more than four data

channels, the interrupts corresponding to channels

4-7 are available as external interrupts. In this

case, lines for these interrupts are available through

the system interface. A response line is available

tl}rough the system interface that indicates when the

interrupt has been serviced.

The interrupts are set by a positive transistion in a

signal. Therefore, either pulse or level Signals can

be used to generate external interrupts.

When a signal on an interrupt line is set, an inter­

rupt will occur. If the external signal maintains its

position level, no more interrupts will result from

that signal until it falls and is set again. A positive

transition is required for both internal and external

interrupts.

3.8 CONSOLE INDICATORS

The following items pertain to the interrupt system:

1. The INITIALIZE button on the console sets

all interrupts in the interrupt registers,

returns all inter~upts to the idle state, and

resets the console interrupt flip-flops.

2. The INTERNAL INTERRUPT indicator on

the console is lit when any internal inter­

rupt is not in the idle state.

3. The CHANNEL INTERRUPT indicator on the

console is lit when any channel interrupt is

not in the idle state.

CHAPTER 4

INPUT/OUTPUT SYSTEM

4. 1 INTRODUCTION

The input/output of the 8400 resides in the Exchange

Module which contains the following functional units:

1. An Exchange Module Central CC5ntroller

(EMCC) with up to 8 bi-directional data

channels for buffered data transfer to a

number of devices.

2. An Automatic Data Channel Processor

(ADCP) which automates the data channel

operation, provides direct memory access,

and permits simultaneous input/uutput/

compute operations.

3. A System Interface which permits direct

data transfer with external data handling

systems.

Each peripheral device is provided with a device

controller which enables all devices to use the gen­

eralized data and control interface of the exchange

module.

The operators desk, which uses the features of the

Exchange Module, is discussed in detail in Chapter 5.

A functional representation of the Exchange Module

is shown in Figure 4-1.

4.2 DATA CHANNELS

Every 8400 is equipped with at least one data channel

and may be expanded to 8. Up to 15 devices can be

connected to each channel, although only one device

can be selected for data transfer at a given time.

EMCC= EXCHANGE MODULE CENTRAL CONTROLLER
ADCP = AUTOMATIC DATA CHANNEL PROCESSOR
5.1. = SYSTEM INTERFACE
K = CHANNEL NUMBER
D = DEVICE NUMBER

Figure 4-1. Exchange Module

4. 2. 1 Function

The purpose of an 8400 data channel is to facilitate

data transfers to or from peripheral devices with a

minimum of programming effort. Byte assembly

and disassembly is provided for handling 4 and 8-bit

bytes. All transfers between memory and a channel

are made as 17-bit halfwords (16 data bits and Exec

bit), while transfers between the channel and a device

can be in terms of 4, 8 or 16-bit bytes and an Exec

bit.

Character buffering is provided so that character

devices need not have their own external buffer reg­

ister. Buffering is also provided for control signals

and error indicators so that all external devices can

be programmed and operated in a generalized and

consistent manner.

Code conversion circuitry is provided so that exter­

nal devices which require a binary coded decimal

4-1

(BCD) code can be IUtndled as well as those that gen­

erate or accept the 8400 internal binary code. On

input, the BCD code from a device is converted to.

binary code, and on output, the internal binary code

is converted to the device oriented BCD code.

Parity generation and checking logic is provided for

4 and 8-bit byte transfers. On output, the parity bit

is generated and sent with the data; on input, a parity

bit is generated and checked against the parity bit

received with the data. With binary data transfers,

odd parity is used, and with BCD transfer, even

parity is used.

4.2.2 Structure

The data channel complex includes the Exchange

Module Central Controller (EMCC) plus up to 8 indi­

vidual channels. Associated with the individual data

channels are the followi.ng elements:

4-2

1. Channel Function Register (CFR)

This 8-bit register holds a code word which

specifies the type of operation to be per­

formed on the channel--input or output,

binary or BCD, 4, 8, or l6-bit bytes, etc.

Details of the Channel Function Register

format are discussed with the SFL instruc­

tions. Associated with the Channel Func­

tion Register is the channel control and

device selection logic which actively con­

nects one device to the channel. It also

prevents the Channel Function Register

from being changed while a cha.nnel opera­

tion is in progress.

2. Channel Data Register (CDR)

This l7-bit (16 data bits plus one exec bit)

register represents the interface between

the data channel and memory. For output,

the Channel Data Register can be loaded

with a half-word from memory to be

transferred to a device. During input, this

register holds an assembled half-word

which is to be stored in memory.

3. Channel Buffer Register (CBR)

This 8-bit register is the character buffer

register to which the selected device is

connected. With either 4-bit or 8-bit data

transfers, 8-bit bytes are transferred

between the Channel Data Register and the

Channel Buffer Register. Assembly of 4-

bit bytes into 8-bit bytes, or disassembly

of 8-bit bytes into 4-bit bytes is performed

in the Channel Buffer Register. Parity

checki.ng and code conversion is also done

in conjunction with the Channel Buffer Reg­

ister. With l6-bit data transfers, data is

transferred directly between the Channel

Data Register and the selected device, by­

passing the Channel Buffer Register. No

parity checking or code conversion is pro­

vided for l6-bit transfers.

4. Control indicators as follows:

Channel Read'), (CDRY) indicator is true

whenever the Channel Data Register is

ready to transfer a half-word to memory

on input, or accept a half-word from

memory on output.

Channel Automatic (CHA) indicator is true

whenever the channel is under control of

the Automatic Data Channel Processor.

Details of this indicator are discussed with

the ADCP.

Channel Parity (CHP) indicator is set

when either the channel or a selected de­

vice detects a parity failure during data

transfer; the indicator is reset by a TSL

instruction, or when a new channel opera­

tion is initiated.

Channel Signal (CBS) indicator can be set

by the selected device on the channel when

certain conditions on the device exist. The

specific conditions that set CHS are differ­

ent for each device, and are described in

the section pertaining to devices.

When the Channel Ready Interrupt (CHRI)

indicator is true, a channel interrupt will

be generated whenever the CHRY indicator

becomes true. The CHRI indicator, which

enables the interrupt, can be set by an SFL

instruction, and is reset by an SFL in­

struction.

When the Channel Signal Interrupt (CBSI)

indicator is true, a channel interrupt will

be generated whenever the CBS indicator

becomes true. The CBSI indicator, which

enables the interrupt, can be set by an

SFL instruction, and is reset by an SFL

instruction.

Channel Disconnect (CHD) control is used

to implement the conditional disconnect

action. The CHD control indicator is set

by an SFL instruction and reset when a new

channel operation is initiated. Disconnect

procedures are discussed with the SFL

instructions.

A block diagram of a data channel is shown in Fig­

ure 4-2.

The Exchange Module Central Controller (EMCC) is

shared by all the data channels in the Exchange

Module. The EMCC is available to only one channel

at a time. A scan mechanism searches for activity

on the channels. When a request for EMCC action is

detected, the scan locks on the particular channel.

When the required transfers are complete, the EMCC

is released and the scan continues. Included in the

___ !!PI~!.... ___ _

DEVICE

COR=CHANNEL DATA REGISTER
CBR-QlANNEL BUFFER REGISlER
CFR=CHANNEL FUNCTION REGISTER
CHRY=CHANNEL READY
CHRI = CHANNEL READY INTERRUPT
CHSI = CHANNEL SIGNAL INTERRUPT
CHA = CHANNEL AUTOMATIC
CHS = CHANNEL SIGNAL
CHP= CHANNEL PARITY
CHD = CHANNEL DISCONNECT
CHB= CHANNEL BUSY

i

CBRY= CHANNEL BUFFER REGISTER READY

DCHB

DCBRY
CFR

T

Figure 4-2. The Elements of a Data Channel

EMCC is an Exchange Assembly Register (EAR)

which serves the following purposes:

1. All accesses to the Channel Data Registers

are made through the Exchange Assembly

Register. The Exchange Assembly Regis­

ter acts as an intermediate buffer on all

transfers between memory and the Channel

Data Register.

2. With 4 or 8-bit byte operations, the as­

sembly or disassembly of 8-bit bytes is

performed in the Exchange Assembly

Register. The Excha.nge Assembly Reg­

ister, therefore, also acts like an inter­

mediate buffer on all transfers between

the Channel Data Register and the Channel

Buffer Register.

4-3

3. During 16-bit operations, the Exchange As­

sembly Register also is a buffer between

the Channel Data Register and the selected

device. On output, when the device is

ready, data is transferred from the Chan­

nel Data Register through the Exchange

Assembly Register to the device. Simi­

larly, on input, data from the device goes

through the Exchange Assembly Register

to the Channel Data Register.

The SFL i.nstructions related to the data channels are

as shown on Figure 4-3.

The SFL instruction for initialize channel/connect

device will be executed only if the channel is idle,

and no device is already connected to the channel. If

a device is already connected, the SFL will be re­

jected and the B flag set. When the channel is not

busy, the SFL performs three functions:

1. Device D is logically connected to the

4.2. 3 Instructions channel, and is initialized for data transfer.

Instructions required to use the data channels are

described below:

SFL

TSL

Options:

Flags

=M"l

=M"l

*

Set a Function Line in bank

1 as defined by the effective

address.

Test a Sense Line in bank

1 as defined by the effective

address.

B for SFL instructions

Z for TSL instructions

There are four banks associated with TSL and SFL

instructions. The data channels are considered

bank 1, and any SFL or TSL instructions which refer

to the data channels or devices connected to the

channels should use the ba.nk 1 deSignation.

Immediate addressing always must be used with all

SFL and TSL instructions. Indirect addressing and

indexing may also be used if desired.

The B flag is set following an SFL instruction if the

specified function could not be performed; the B flag

will be reset if the specified function was performed.

The Z flag is set following a TSL instruction if the

specified sense line or indicator was true; the Z flag

will be reset if the specified sense line is not true.

4-4

2. All channel registers and indicators (ex­

cept for CHRI and CHSI) are reset to initial

conditions.

3. The Channel Function Register (CFR) is

loaded with the 8 least sig.nificant bits of

SFL address which specify the operation

to be performed. These bits in the SFL

address have the following meaning:

Bits Value Operation

Exec bit transfer E 1

o

B 1

o

L 1

0

A 1

0

No exec bit transfer

Binary transfer without code con­

version

BCD transfer with code conversion

Left half for half-word transfers to

or from memory

Right half for half-word transfers to

or from memory

The L bit of the CFR is to be com-

plemented after each half-word

transfer to or from memory is com-

pleted

The L bit is not to be complemented

Bits Value

I 1

0

N 0

1

2

3

4

5

6

7

Operation

Input operation

Output operation

Transfer E bits only

Transfer 8-bit bytes, one per half-

word

Transfer 8-bit bytes, two per half-

word

Transfer 4-bit bytes, four per half-

word

Transfer 4-bit bytes, four per half-

word

Transfer 4-bit bytes, one per half-

word

Transfer 4-bit bytes, two per half-

word

Transfer 4-bit bytes, three per half­

word

Details of the byte assembly/disassembly are dis-

cussed later. None of the remaining SFL instructions

are ever rejected.

FUNCTION

INITIALIZE CHANNELl
CONNECT DEVICE

CHANNEL CLEAR

CHANNEL DISCONNECT

SET CHANNEL READY
INTERRUPT (CHRI)

RESET CHANNEL READY
INTERRUPT (CHRll

SET CHANNEL SIGNAL
INTERRUPT (CHSt)

RESET CHANNEL SIGNAL
INTERRUPT (CHSII

EFFECTIVE ADDRESS

III KID IEIBIYAlII :N: I
I I I K 10000 Ixlxl~~xI3xjxl
pi K 10000Ixlxl~+0xl'l

101 K 10000 IxlxlXl~xl~ I I~
@ K 10000 Ixlxl3xIXI I Ixlxl
@ K loooolxlxlifl'13x!X1
pi K 10000 ~lx~II l~xlXlXI
01 34 7891011121514111

WHERE' K = CHANNEL NUMBER 0-7

D = DEVICE NUMBER 1-15

x= cp UNLESS COMBINED OPERATIONS NEEDED

Figure 4-3. Data Channel SFL Instructions

The SFL Channel Clear instruction is an unconditional

command; this instruction will disconnect the selected

device and terminate any current operation, regard­

less of the state of the current operation. All chan­

nel indicators will be reset, and all indicators· on

devices connected to the channel will be reset.

whether or not the device was selected when the SFL

was executed. This instruction is similar to the

console initialize control, but it affects only one data

channel, rather than all channels. If conditional dis­

connect command is properly used, the unconditional

disconnect need not be used except in error routines.

Care should be exercised in the use of this instruc­

tion to avoid interfering with valid channel operations.

The SFL Disconnect instruction sets the CHD control

indicator in the channel. The CHD indicator being

set causes a disconnect action which is conditional

on the state of the channel as follows:

1. If an output operation is in progress (I = 0),

then the device will be disconnected when

the channel is ready (CHRY = 1). This

feature permits the channel to complete

the transfer of. its current half-word be­

fore disconnecting the device.

2. If the ADCP is not in control (CIlA = 0) and

an input operation is in progress (I = 1),

then the device will be disconnected im­

mediately when CHD gets set.

3. If the ADCP is in control (CIlA = 1), and

an input operation is in progress (I = 1),

then the device will be disconnected im­

mediately after the next transfer into

memory. This feature permits the use of

SFL disconnect to terminate an ADCP op­

eration in the middle of a block transfer

without lOSing a completely assembled

half-word. The data transfer operation

can be resumed and completed later. pro­

vided that the channel control word is

saved (using an STCC instruction).

4-5

The TSL instructions related to the data channels are

shown OQ Figure 4-4.

The Z flag is set following a TSL instruction if the

specified indicator is true, and reset if the indicator

is not true.

The instructions pertaining to the Channel Data

Register are the following:

LDCD

STCD

Cha.nnel:

M"K

M"K

Load the Channel Data

Register in channel K with

a half-word at the effective

address. The L bit in the

Channel Function Register

in the channel determines

whether the right half or

left half of the word at the

effective address will be

used.

Store the contents of the

Channel Data Register in

channel K into the half­

word at the effective ad­

dress. The L bit in the

Channel Function Register

determines whether to

store into the right half or

left half.

K = channel number 0-7

Options: *

Flags: None

For both LDCD and STCD instructions, the computer

waits for CDRY to be true before executing the trans­

fer. If a given Data Channel is under ADCP control

(CRA is true), no instruction to that Data Channel

will be executed.

4-6

FUNCTION EFFECTIVE 4DDRESS

TEST CHANNEL SIGNALlCHSllOI K foooFlxl*lxFI~11

~1lAtN(~H~AR CHANNEL III K lOoooFFlflxlxlxl'l

TEST CHANNEL PARITY (CHP) 101 K 1000 oElxHX§§I, H

~,.¢N~H~~EAR CHANNEL III K lOoooElxMXFlxl'l~

TEST CHANNEL REAOY(CHRYllOI K pooo\x~I+HpClXj

TEST CHANNEL AUTOMATIC 101 K lOooOlXlx\XIxlllXlxlxl
(CHAI 0 I 54 71 III

WHERE'K = CHANNEL NUMBER 0-7

X = ¢ UNLESS COMBINED OPERATIONS NEEOED

Figure 4-4. Data Channel TSL Instructions

4.2.4 Programming

The various modes of data transfer which can be

achieved with the data channel are as follows:

1. Program controlled data transfer without

interrupts.

2. Pragram controlled data transfer using

interrupts.

3. Autamatic data channel transfers.

4. Auto load or auto dump operations.

Auto. load and auto dump operations are discussed

under console operatians. Automatic data channel

operatians are discussed in Paragraph 4. 3.

In program controlled operations, data is transferred

between memory and a data channel by executing

LDCD or STCD instructions.

The general sequence of instructions required for

program controlled transfers without interrupts is the

following:

1. Initialize the channel and connect a device

with an appropriate SFL instruction.

2. Test the B flag to make sure the channel

command was nat rejected.

3. Transfer half-words to or from the data

channel using LDCD or STCD instructions.

4. Test channel or device conditions using

appropriate TSL instructions.

5. Terminate the operation and disconnect

the device with a SFL disconnect instruc­

tion.

Since LDCD and STCD instructions are not executed

until the channel is ready (CHRY = 1), no special

timing considerations are required to transfer the

data. The transfer i.nstructions will be executed at

a rate determined by the speed of the selected device.

For relatively slow peripheral devices, this method

of data transfer can be inefficient.

The use of the channel interrupt capability frees the

processor for other tasks during the time that the

data channel is not ready for a transfer to or from

memory. The general sequence of instructions

required to achieve program-controlled output with

interrupts is the following:

1. Initialize the channel and connect a device

with an appropriate SFL instruction; test

the B flag to assure that the SFL was ac­

cepted.

2. Set C HR.I to enable a channel ready inter­

rupt and proceed with processing task.

Note steps 1 and 2 may be inter-changed

if desired.

3. When the channel interrupt occurs due to

the channel becomi.ng ready. transfer a

half-word to or from the channel with an

LDCD or STCD instruction. If more

transfers are needed, return to the

processing task.

4. Repeat the interrupt procedure until all

data is transferred; then execute an SFL

channel disconnect to terminate the process.

The basic programming sequences are illustrated in

Figure 4-5.

4.2.5 Byte Assembly/Disassembly

The Exchange Assembly Register (EAR) handles the

assembly of 8-bit bytes into half-words on input. and

the disassembly of half-words into 8-bit bytes on

output. When the exec bit is transferred with a half­

word, it is treated like an additional 8-bit byte dur­

ing assembly or disassembly. The Channel Buffer

Register handles the assembly of 4-bit bytes into

8-bit bytes on input. and the disassembly of 8-bit

bytes into 4-bit bytes on output.

All possible variations for byte size/byte count are

shown in Figure 4-6. Note that bytes are right

justified and left precedent within the half-word.

That is, the left most byte to be transferred will al­

ways be transferred first. The numbers in the

figure refer to the order of bytes transferred to or

from the device.

WITHOUT INTERRUPTS WITH INTERRUPTS

Figure 4-5. Program-Controlled Data Transfer

4-7

£.=..L ~

~J TRANSFER [I BITS Q
o 1 I 2 1 n 1 1 I 1

N =1 TRANSFER B BIT BYffs!- I PER HALFWORD

01213J 011121
N=2 TRANSFER 8 BIT BYTES -2 PER HALFWORD

8 1 2 0
N=3 TRANSFER 16 BIT BYTES

8 12 1 3 1 4 1 5 1 0 1 1 1 2 1 3 1 4
N=4 TRANSFER 4 BIT BYTES-4 PER HALFWORD

[~lJ JRANlFEJ ~ L J~~L b LJwJ~
8 111 2 1 3 1 D 111112

N=6 TRANSFER 4 BIT BYTES-2 PER HALFWORD

~ ~ 1 2 1 3 1 4 1 D 11 1 1 2 1 3
N- TRANSFER 4 BIT BYTES-3 PER HAL.FWORD

BYTE SIZE / BYTE COUNT VARIATION
N = BYTE SIZE / BYTE COUNT FIELD OF THE

CHANNEL FUNCTION REGISTER

Figure 4-6. Byte Size/Byte Count Variation

All bits to the left of the first byte transferred will

be set to zero on input, and ignored on output.

4.2.6 Code Conversion

The code conversion controlled by the B bit in the

Channel Function Register, converts binary to BCD

on output, and BCD to binary on input. The charac­

ters of the 8400 character set and the corresponding

binary and BCD codes are shown in the Appendixes.

4.3 AUTOMATIC DATA CHANNEL PROCESSOR

4. 3. 1 Function

The Automatic Data Channel Processor (ADCP) is

an optional expansion to the Exchange Module. This

feature permits automatic transfer of data blocks,

direct access to memory from the Exchange Module,

as well as simultaneous program execution and data

transfer.

The ADCP, using its own set of control words, per­

mits data transfer, independent of the processor,

between memory and an external device. Once an

automatic data channel operation is initiated, the

4-8

data transfer continues autonomously until the opera­

tion is completed or intervention by the processor.

When referring to separate memory banks, the ADCP

and processor operate at full speed without inter­

action from one another. Concurrent requests from

the ADCP and the processor to the same memory

bank are handled on a cycle stealing baSiS, with the

ADCP having priority. The presence of the ADCP

option does not preclude program controlled opera­

tions on a data channel.

4. 3. 2 Structure

The ADCP involves the following elements:

1. One 32-bit Channel Control Register (CCR)

for each channel. These registers are

arranged in a high speed integrated circuit.

2. A 32-bit Exchange Control Register (ECR)

which holds the control word for the opera­

tion currently in progress. All accesses to

the CCR stack are made through ECR.

3. Direct data and control busses between

the Exchange Module and memory.

4. One Channel Automatic Indicator (CHA)

for each channel. The CHA is set when­

ever the CCR is loaded with a new com­

mand and reset whenever the channel is

cleared or disconnected.

4.3.3 Control Words

The contents of the Channel Control Register (CCR)

specifies the type of data transfer operation to be

performed. In general, data is transferred to or from

consecutive memory locations starting at some speci­

fied location M. The length of the block to be transferred

is controlled either by a count decrementing to zero,

or by the receipt of a signal in the data. The format

of the Channel Control word is shown in Figure 4-7.

M FIELD c

where

M address of the first memory location in­
volved in the transfer

OP operation code which specifies how to
transfer the data, and how to terminate the
operation

C count specifying the number of memory
locations involved in the transfer.

Figure 4-7. Channel Control Word Format

For symbolic assembly purposes, the 32-bit control

word for the Channel Control Register is expressed

as:

OP M"C

The OP codes and their meaning are listed below:

Table 4-1. OP Codes

Mnemonic Binary

OP-Code OP-Code Function

TCD 1101 Transfer until count is

zero, then disconnect and

interrupt.

SCD 0101 Skip until count is zero,

then disconnect and

interrupt.

TCI 1001 Transfer until count is

zero, then interrupt.

SCI 0001 Skip until count is zero,

then interrupt.

TSD 1110 Transfer until signal is

received, then disconnect

and interrupt.

Table 4-1. OP Codes (Cont)

Mnemonic Binary

OP-Code OP-Code Function

SSD 0110 Skip until signal is received,

then disconnect and

interrupt.

TSI 1010 Transfer until signal is

received, then interrupt.

S81 0010 Skip until signal is received

and then interrupt.

TED 1111 Tra.nsfer until either count

is zero, or signal is re-

ceived, then disconnect and

il!terrupt.

SED 0111 Skip until either count is

zero, or signal is received,

then disconnect and interrupt

TEl 1011 Transfer until either count

is zero, or signal is re-

ceived, then interrupt.

SEI 0011 Skip until either count is

zero, or signal is received,

then interrupt.

Note that an interrupt is generated following all

ADCP operations.

The skip operation is useful for passing over a

block of data on input without tra.nsferring any infor­

mation.

The count refers to the number of memory locations

involved in the operation. If an alternate mode is

used, then two half-word transfers constitute a count

of one. If non-alternate mode is used, then each

half-word transfer corresponds to a count of one.

4-9

The signal refers to those conditions appropriate to

the selected device that would set the signal flip flop

(CHS) in the channel.

The Channel Control Register is loaded with a con­

trol word using the instruction

where

K

M

LDCC M"K

channel number 0-7

location in core memory of the 32-bit control

word to be loaded into the CCR.

The contents of the Channel Control Register can be

stored using the instruction

where

K

M

STCC M"K

= channel number 0-7

location in core memory in which the 32 bits

of the CCR should be stored.

4.3. 4 Operation

Initiating an ADCP operation on a data channel in­

volves two steps:

1. Initializing the channel and connecting a

device

2. Loading the Channel Control Register with

a control word.

Channel initialization is performed by the channel

SFL instruction which specifies the following:

4-10

channel number

device number

exec bits/no exec bits

code conversion/no code conversion

left half first/right half first

alternate/no alternate

to memory/from memory

byte size

byte count

The Channel Control Register is loaded with an LDCC

instruction which also sets the Channel Automatic

Indicator. Once the channel is initialized and Channel

Automatic Indicator is set, the channel operation is

under ADCP control and the processor is no longer

required.

The LDCC instruction can either precede or follow the

SFL instruction for channel initialization. Before

.initiating a new ADCP operation it is important to

check that the channel is not busy on a previous ADCP

request. An appropriate instruction sequence is as

follows:

SFL =CFCODE" 1

JB =*-1

LDCC =CCWORD" K

INIT CHANNEL

TEST IF CHANNEL
BUSY

LOAD CCR

An alternate sequence is as follows:

TSL =CHA"l

JZ *-1

LDCC CCWORD, , K

SFL =CFCODE, , 1

TEST AUTOMATIC

WAIT IF CHA SET

LOAD CCR

INIT CHANNEL

Once the Channel Automatic Indicator is set and the

channel is initialized, all transfers to/from memory

are under ADCP control. The instructions LDCD and

STCD cannot be executed by the processor when the

Channel Automatic Indicator is set.

If the transfer is in non-alternate mode, the M field

is incremented and the C field decremented after

every transfer to/from memory. If the transfer is in

alternate mode, the M field is incremented and the C

field decremented after every second transfer to/from

memory, independent of the initial L/R bit in the

Channel Function Register.

The Channel Control Register is updated immediately

following the transfer to or from memory. The se­

quence of operations is summarized in Figure 4-8.

ADCP OPERATION INITIATED

IS C '" 0 ?
YES

TRANSFER HALFWORD

ALT-ERNATE MODE? NO

~~0:J
M-M+I

C-C-I

DISCONNECT AND ~

GENERATE INTERRUPT

C = COUNT
M = MEMORY ADDRESS

Figure 4-8. ADCP Action jor a TCD Operation

Note that if a device is selected to read or write, and

an ADCP count operation is started with the count

zero, a record of information could be skipped on the

external device. Care should be exercised in ini­

tiating operations with the count zero.

An ADCPoperation can be terminated in several ways:

1. The count in the Channel Control Register

reaching zero while a count operation is in

progress.

2. A signal being detected in the data while a

signal operation is in progress.

3. The processor executing an SFL instruc­

tion for channel disconnect.

4. The processor executing an SFL instruc­

tion for channel clear.

5. DepreSSing INITIALIZE pushbutton on

console.

6. Depressing AUTO LOAD pushbutton on the

console.

7. Depressing AUTO DUMP pushbutton on the

console.

When an operation is terminated, the Channel Control

Register is not changed; it remains as it was when

the operation was completed. The STCC instruction

can be used following an ADCP operation to examine

the contents of Channel Control Register. Note that

when reading, there is a half-word uncertainty--as

measured by the remaining count in Channel Control

Register--as to how many words were transferred

to memory.

On termination, if disconnect was specified, the

Channel Disconnect (CRD) flip-flop is set. The data

channel and device are disconnected after the current

half-word transfer is complete. For details on the

disconnect action, refer to the section on operation

of the Exchange Module.

If an SFL for conditional disconnect is executed dur­

ing an ADCP input operation, the operation is stopped

after the next complete half-word transfer. If an

SFL for channel clear is executed, the ADCP opera­

tion is terminated immediately and all channel indi­

cators are reset.

Note, that after reading data with a TCI and TCD

operation, the SFL conditional disconnect waits for

the next transfer before disconnecting the device. If

no further data is to be transferred to the channel,

an SFL channel clear must be used to disconnect.

4.4 SYSTEM INTERFACE

4.4.1 Function

The System Interface is designed for general com­

munication to or from external devices where the

function of the data channel is not required nor ap­

propriate. Means are provided for direct data trans­

fer between the processor and the registers of ex­

ternal devices. The capability for testing Signals

4-11

and setting conditions on external devices is also

provided. This interface facilitates direct computer

control with a variety of system configurations.

4. 4. 2 Structure

The elements of the system interface are the follow­

ing:

1. A 17-bit data output buss

2. A 17 -bit data input buss

3. A 4-bit address field R

4. Up to 256 external interrupt lines

5. Command and control lines

6. The outputs from four system control but­

tons (SCl-SC4) on the operator's console.

The 17 bits (16 data plus 1 exec) of the output buss

can be directed to any of 16 external registers as de­

fined by the address field R. The output buss also

transfers the address field of SFL and TSL instruc­

tions to external devices.

The input buss can receive data from any of 16 ex­

ternal registers as specified by the address field R.

Details of the external interrupts are discussed with

the interrupt system in Chapter 3.

The outputs from the system control buttons are pro­

vided to enable operator control of external devices

from the console. The system control buttons are

latching switches. When the button is depressed,

the output line is high (+ 5 volts); when the button is

released, the output line is low (ground).

Provision is also made for four internal interrupt

lines on the system interface. For those machines

with no more than four data channels, the internal

interrupt lines corresponding to channels 4, 5, 6,

4-12

and 7 are accessible through the interface. For

machines with more than four data channels, these

interrupt lines are not available for use with the sys­

tem interface.

All operations with the system interface operate on

an asynchronous request/response/release basis with

the external device. The general sequence of events

during one operation is as follows:

1. The processor generates a request signal

(input or output command) signal to the se­

lected device, as defined by the address

steering field "R".

2. The external device addressed by the re­

quest raises a ready signal when it is pre­

pared to transfer or receive data.

3. A transfer complete signal is generated by

the computer when the data is ready to

transmit on output, or after the data has

been received on input.

4. The device resets the ready signal when it

has completed the transfer, and releases

the computer from the current operation.

The output control lines associated with the system

interface are listed below. The signals on these

lines, generated by the computer, inform the exter­

nal devices about the operation in progress.

Table 4-2. System Interface Output Control Lines

Output
Line Meaning

LOOB Load output buss operation

STIB Store input buss operation

SFL2 SFL operation in bank 2

SFL3 SFL operation in bank 3

TSL2 TSL operation in bank 2

TSL3 TSL operation in bank 3

TCS Transfer complete strobe. (This signal
is set when data is ready for output, or
has been received on input.)

The input control lines are listed below. The sig­

nals on these lines, generated by external devices,

are in response to the output control signals.

Table 4-3. System Interface Input Control Lines

Input
Line Meaning

SBY2 B flag response for bank 2 SFL's

SBY3 B flag response for bank 3 SFL's

SZE2 Z flag response for bank 2 TSL!s

SZE3 Z flag response for bank 3 TSL's

SRDY System Ready. (This signal is set when
the device is ready to transmit or re-
ceive information, and reset when the
operation is complete.)

The SRDY signal must be reset by the external de­

vice before the computer will be released and allowed

to proceed. The execution time, therefore, of all

instructions pertaining to the system interface de­

pends on the speed of the external device addressed

by the instruction.

4.4.3 SFL/TSL Instructions

SFL = M, ,B Set Function Line in bank B. The

effective address is transferred

over the 16 data lines of the output

buss, and appropriate control sig­

nals are set to indicate an SFL in­

struction in Bank B.

Banks: B 2 or 3 for the system interface

Options: *

Flags: The B flag is set if the selected line (or

lines) is already set, or if some condi­

tions prevent the setting of the selected

line (or lines).

TSL "" M, , B Test Sense Line in bank B. The

effective address is transferred

over the 16 data lines of the output

Banks: B

Options: *

buss and appropriate control signals

are set to indicate a TSL instruction

in Bank B.

2 or 3 for the system interface

Flags: The Z flag is set if the selected line is

set (binary 1). If multiple lines are ad­

dressed, the Z flag is set if any of the

selected lines are high.

There are no restrictions on the use of address fields

for either SFL or TSL instructions in Bank 2 or 3.

External decoding logic can be added to the system

interface to permit selection of up to 216 line for

each bank. Note, however, that EAI standard Sys­

tem Interface Expansion codes have been allocated to

ensure satisfactory field expansion of a system and

programming compatibility.

LOOB M" R Load external register R on the

Output Buss with the contents of

memory location M.

STIB M, ,R Store the contents of external regis­

ter R on the Input Buss into memory

location M.

Registers: R 0, 1, 2 , 15

Options: *, =, /

Flags: None

If more than 16 external registers are to be used,

an external address buffer can be added to the inter­

face. LOOB and STIB instructions could then be

preceded by an SFL instruction to set up the exter­

nal address buffer. Standard EAI modules in this

area (such as I/O Buss Controllers) are available.

4-13

4. 5 PERIPHERAL DEVICES

4. 5. 1 Typewriter

The 8400 desk typewriter is a 132 column IBM Selec­

tric. The typewriter can be connected to the data

channel as an input or an output device, or it can be

used for entering data directly into the computer reg­

isters. Details. of the latter capability are discussed

with console operations, Chapter 5. Parity is checked

on both input and output. The maximum data rate is

15 characters per second.

A Typewriter Ready indicator on the console is lit

when the typewriter is connected to the channel and

waiting for input.

The typewriter keyboard and the corresponding char­

acter octal codes are shown in Figure 4-9.

4. 5. 1. 1 Data Format. The typewriter trans­

mits and receives two types of information: data

characters and control characters. The data char­

acters are the 64 members of the EAI 8400 character

set. Control characters on the typewriter are the

following:

carriage return

tab

backspace

upper case shift

lower case shift

index

Eight lines are used to transfer information to or

from the typewriter--6 data lines, 1 control line, and

1 parity line. The parity bit is used by the data

.channel, and this bit never appears in core memory.

Refer to Figure 4-10. The control line is high for all

control characters, and low for all data characters.

The position of a typewriter character in an 8-bit byte

in core memory is shown in Figure 4-11.

4-14

The typewriter transmits and receives data charac­

ters in BCD mode. The data channel makes the re­

quired code conversion from BCD code to internal

8400 code on input, and vice versa on output. Details

of the code conversion are also discussed in Appen­

dix 5.

H byte size 4 mode is used, only the 4 least signifi­

cant bits per character are transferred. In this

mode, however, parity may not be correct.

4. 5. 1. 2 Programming. The general sequence

of instructions required to transfer data to or from

the typewriter is the following:

1. Initialize the channel and connect the de­

vice with a channel SFL instruction. The

SFL code should specify BCD mode to

achieve proper code conversion.

2. Test busy to assure that the channel in­

struction was accepted by the Exchange

Module.

3. Select ribbon color with a device SFL in­

struction.

4. Transfer data.

5. Disconnect the typewriter with a channel

SFL instruction.

The ribbon color can be selected by an SFL instruc­

tion with the address field shown in Figure 4-12.

The SFL instruction for ribbon control can be issued

any time, where the device is active or not; these

instructions are never rejected. Black is considered

the normal color. The ribbon color will be set to

black when any of the following occur:

1. Channel Clear SFL is executed

2. Console Initialize

3. Auto Load

4. Auto Dump

60

Figure 4-9. Typewriter Keyboard

o 2 3 4 5 6 1

DATA

TYPEWRITER P DATA

P = PARITY BIT
C = CONTROL BIT
X =0 ON INPUT
X = DON'T CARE ON OUTPUT

Figure 4-10. Connection of Typewriter
to the Channel Buffer Register

I x I c o

K

D

x

FUNCTION

SET REO

SET BLACK

C

0

0

0

K

I 2 3

000

000

DEV

456 1

o I 10

o I I 0

channel number 0-7

device number 1-15

"don It care" positions

L

B 9 10 II 121314 15

XXXXXXIO

XXXXXXO I

Figure 4-12. Typewriter SFL Codes

No TSL instructions are associated with the type­

writer. Parity can be tested using the channel parity

indicator. The channel signal indicator will be set in

two situations:

1. During input when a carriage return is

where: typed. The occurrence of channel signal

D

c

c

x

6 data bits

1 for control characters

o for data characters

o following input (forced by hardware)
(X is ignored on output)

Figure 4-11.. Typewriter Character
Position in Memory

on input will always terminate the current

word assembly permitting transfer of the

(possibly incomplete) half-word into

memory.

2. During output if the typewriter printing

mechanism fails to respond to an output

character within a preset amount of time

(approximately 110 msec).

4-15

4. 5.2 Card Reader (Models 8452, 8453, and
8454)

The card reader is an input device which reads

punched cards. All models can handle either 51 or

80 column cards. In addition, some units can handle

60 and 66 column cards. The Model 8452 Card

Reader reads 400 cards per minute (cpm), the

Model 8453 reads 800 cpm, and the Model 8454 reads

1400 cpm. All models provide read-check circuits

and validity-checking apparatus; the models are in­

terchangeable and can be programmed and operated

in the same way.

4.5.2.1 OPerator Controls and Indicators. The

following switches and indicators are located on the

control panel of the card reader:

4-16

Power On This switch when pressed, applies

power to the card reader.

Power Off This switch, when pressed turns

off the card reader,

Not Ready This indicator is lit whenever the

reader is not ready. The ready

condition is defined under pro­

gram indicators.

Feed Check This indicator is lit whenever a

jam occurs in the card feeding

mechanism.

Read Check This indicator is lit whenever a

fault in the read circuitry is de­

tected.

Validity On This latching switch, when de­

pressed, enables the validity­

checking circuit, and lights the

indicator. Releasing the switch

inhibits the validity checking.

Validity Off This indicator is lit when the

validity-checking circuits detect

an invalid character.

Reset This switch, when pressed, clears

the error indicators.

start This switch, when pressed, resets

the Not Ready indicator and permits

the reader to be put on line for data

transfer.

Stop This switch, when pressed, places the

reader in a Not Ready condition.

4.5.2.2 Data Format. In general, cards have

80 columns and 12 rows. The card reader is capa­

ble of reading two types of cards: Hollerith cards

and binary cards. Hollerith cards have one alpha­

numeric character per column, and each character

is expressed in a 12-bit Hollerith code. The Hollerith

code for the EAr 8400 character set is shown in Fig­

ure 4-13. When reading Hollerith cards, the card

reader translates the 12-bit card code into a 6-bit

BCD code. By using the BCD mode in the data chan­

nel, the BCD code is automatically converted to in­

ternal 8400 binary codes. Cards will be read as

Hollerith cards when the data channel is selected in

BCD mode. The validity checking in the reader per­

tains to Hollerith cards only; the reader checks that

the 12-bit character punched on the card is a legal

Hollerith character.

Binary cards are read as two 6-bit binary characters

per column. The card reader strobes each column

twice, reading the top 6-bits of a column first, and

then the lower 6-bits of the same column. Each card

contains 160 total characters. No decoding or valid­

ity checks are performed for binary cards. The cor­

respondence between a binary card character and its

image in core memory is shown in Figure 4-14.

Cards are always selected as binary cards when the

data channel is selected in binary mode.

Provision is made for reading mixed decks of binary

and Hollerith cards as follows: if the data channel is

selected in BCD. mode, and the first column of a

card has the 7 and 9 holes punched, the mode will be

automatically switched to binary, and that card will

(ROW
12 I I
II I I
o I ? !

A J I

2 B K S -6

3 C L T == . $

4 0 M U
I) *

E N V . [] . 5

F 0 W > < . • 6

7 G P X r -t t:.

8 H Q y I I I
9 I R Z

NO PUNCH = SPACE CHARACTER
='60 INTERNAL BINARY CODE
='20 EXTERNAL BCD CODE

+

-
I 0

I

~ 2

• 3

(4

"...,... 5

\ 6

"* 7

I 8

9

Figure 4-13. Hollerith-BCD Code on a Card

be read as a binary card. The first column will also

be strobed twice in this situation, and 160 binary

characters will result from a binary card in mixed

mode. At the end of the card, the mode is switched

back to the BCD state.

The 8-bit mode in the data channel normally will be

used with the card reader. Since 6-bit characters

are generated by the reader, the 2 most significant

bits per 8-bit byte are set to zero by the data channel

prior to transfer into memory. The 4-bit mode in

the data channel can be used in Binary mode only; in

this case, only the 4 least significant bits of each

6-bit character generated by the reader are trans­

ferred to the data channel.

4

5
6

7
8
9

caR

CBR: CHANNEL BUFFER REGISTER

THE TWO MOST SIGNIFICANT BITS ARE SET TO ZERO
IN 8 BIT MODE. ONLY THE FOUR LEAST SIGNIFICANT
BITS ARE USED IN 4 BIT MODE.

Figure 4-14. Position of Binary
Card Characters in an

8-bit byte

4.5.2.3 Program Controls and Indicators.

The controls and indicators accessible by program

are the following:

Reader Ready This indicator is true when the

following conditions exist on

the reader:

1. Power on

2. Hopper not empty

3. Stacker not full

4. Start button depressed

5. No feed check error

6. No read check error

7. No validity check error

8. All covers in place

4-17

4-18

Binary Status This indicator is set when a

Card Cycle
In Progress

Reader
Error

7 -9 punch is detected in the

first column of card and is re­

set by any of the following:

1. SFL instruction for channel

clear

2. Initiating a new card cycle,

whether by SFL instruc­

tion, or by continuous card

feeding

3. Manual reset control on

the reader

This indicator is set when a

new card cycle is initiated­

either by SFL instruction, or

by continuous card feed-and

reset when all 80 columns have

been read.

This indicator is set when one

of the following:

1. A read-circuit malfunction

is detected

2. An invalid character is

detected while reading in

Hollerith mode with the

Validity switch on

This indicator is reset by any

of the following:

1. SFL instruction for channel

clear

2. SFL instruction which con­

nects the reader to the

channel

3. Manual r.eset control on the

reader

Overflow

Start Card
Cycle

Device
Interrupt
Enable
(DINE)

This indicator is set when the

data channel fails to accept a

character from the reader

before another character is

read, and, reset by any of the

following:

1. TSL instruction for test and

reset

2. SFL instruction for channel

clear

3. SFL instruction which con­

nects the reader to the

channel

This command starts a card on

the way to the read station, and

sets the Card Cycle in Progress

indicator.

This program-controlled

switch, when set, enables a

channel interrupt to occur

whenever the Reader Ready

indicator is high. This switch

can be set only when no device

is currently connected to the

channel, and is automatically

reset whenever a device is

connected to the channel, or a

channel clear instruction is

executed.

The TSL instructions associated with the card reader

use the address field shown in Figure 4.15.

01 34 7 8 9 10 " 12 1314 15

0 K 0 X X X I X X X X CARD READER ERROR

0 K 0 XI X X X X X X CARD READER CONTINUE LEVEL

0 K 0 XX X X I X X X END OF FILE

0 K 0 XX X X X I X X CARD CYCLE LEVEL

0 K 0 X X X X X x I X CARD READY LEVEL

0 K 0 XX X X xx X I BINARY MODE

I K 0 XX I X X X X X OVERFLOW

Where

K = channel number 0-7

D = device number 1-15

X = don't care

Figure 4-15. Card Reader TSL Codes

The Z flag is set in response to a TSL instruction, if

the tested indicator is true; the flag is reset if the

tested indicator is false.

The SFL instructions associated with the card reader

use the address field shown in Figure 4. 16.

FUNCTION

START CARD CYCLE 101 K

EFFECTIVE ADDRESS

D Ixlxlxlxlxlxlxlll

SET DEVICE INTERRUPT 101 K D III xlxl xlxl x I x I x I
ENABLE (DI N E) '-0-'-1--3-'-4---7--'-8 '------'----L--'--'----'----'--'15

K = channel number 0-7

D = device number 1-15

X = don't care

Figure 4-16. Card Reader SFL Codes

The SFL for Start Card Cycle is rejected, and the B

flag set if a card cycle is in progress, or if the

reader is not ready.

If another device is connected to the data channel, the

SFL to set the DINE switch is rejected, and the B

flag set.

4.5.2.4 Programming. The general sequence

of instructions required to use the card reader is the

following:

1. Test for end of previous card cycle with a

TSL instruction.

2. Initiate a new card cycle with a device SFL

instruction.

3. Test busy to make sure the SFL instruction

was accepted, and take delay action if the

reader is busy.

4. Initialize the channel and connect the reader

with a channel SFL command.

5. Test busy to make sure the channel com­

mand was accepted.

6. Transfer data.

7. Disconnect the transfer.

8. Test error conditions using channel and

device TSL instructions.

A new card cycle can be initiated either with the SFL

for Start Card Cycle, or the SFL instruction which

connects the reader to the channel. Once a card

cycle is started, the card moves at a fixed rate

through the read station, and data is generated at a

rate determined by the card reader. If the SFL Start

Card Cycle command is used, the reader must then

be connected to the channel within 10 milliseconds,

or the SFL channel command will be rejected and

one card may be skipped.

In general, the channel SFL instruction which con­

nects the reader to the channel will be rejected if

either the reader is not ready, or if more than 10

milliseconds have elapsed since a new card cycle

was started.

When the card reader is connected to the channel,

the channel signal indicator will be set at the end of

a card cycle (i. e., after all 80 columns are read).

At the same time the channel signal indicator is set,

a 100 microsecond timing signal will be triggered.

At the end of the 100 microsecond period, if the

reader has not been disconnected from the channel,

a new card cycle will be started automatically.

Therefore, once the reader is connected to the chan­

nel, cards are read continuously until the reader is

disconnected from the channel.

No parity checking is performed by the data channel

with the card reader. The channel parity indicator

will be set when the reader is connected to the chan­

nel and any of the following occur:

1. Reader overflow

2. Read-Check error

3. Validity-Check error

4-19

A channel interrupt will result from the card reader

in the following two cases:

1. When the reader is connected to .the channel,

and the reader becomes not ready.

2. When no device is connected to the channel,

the DINE switch on the reader is set, and

the reader becomes ready.

If the reader becomes not ready while connected to

the channel, the data continues to be transferred, and

the card will continue to move until the present cycle

is complete. Once disconnected, however, the

reader cannot again be connected until the not ready

condition is reset (i. e., the cause of the not ready

condition is removed).

4.5.3 Paper Tape Reader

The paper tape reader is an EAI model which can

read 5, 7, or 8 channel tapes. The device reads

500 characters per second in either forward or re­

verse direction. Fanfold tape containers for tape

supply and take-up are provided.

Desk controls and indicators pertaining to the reader

are the following:

4-20

Power On/Off This switch controls the power

to the reader transport and

electronics.

Run/Load

Reader
Ready

This switch must be in load

position to insert or remove

tapes from the reader. The

switch must be in run position

for the tape to move.

This indicator is lit when the

reader has been connected to

the data channel.

4.5.3.1 Data Format. Paper Tapes can be

read in either forward or reverse direction using

either binary or BCD channel options. In all cases,

the most significant bit per character on the tape is

considered a parity bit. The data channel checks the

lateral parity of each character, using odd parity in

binary mode and even parity in BCD mode. The

channel parity indicator is set when bad parity is

detected.

Either a 4 or 8-bit mode can be used, with or without

exec bits. In the 8-bit mode, the 7 least significant

bits per character are transferred into the 7 least

significant bits per byte, and the most significant bit

is set to zero. In the 4-bit mode, only the 4 least

significant bits per character plus the parity bit are

transferred to the data channel. The connection of

the reader to the channel buffer register is similar

to that of the typewriter as shown in Figure 4.10.

Blank tape is always skipped automatically in both

binary and BCD mode.

4.5.3.2 Programming. The general sequence-­

of instructions required to use the paper tape reader

is the following:

1. Set forward or reverse direction with a

device SFL instruction.

2. Test busy flag to see if the direction com­

mand was accepted.

3. Initialize the channel and connect the reader

with a channel SFL instruction.

4. Test busy flag to ensure that the channel

command was accepted.

5. Transfer data.

6. Disconnect the reader with a channel SFL

instruction.

The reader direction can be selected by an SFL in­

struction with the address field shown in Figure 4-17.

I c: K
I I D I ,
I I L

M FIELD

FWD

REV

oil 2 3 : 4 5 6: 7 : 8 9 10 II 12 13 14 15

o : 0 0 0 i 0 0 I ,0 : x x x x x x 0 I
I I I I

o : 0 0 0 : 0 0 1:0: x x x x x X I 0
I I I 1

K = channel number 0-7

D = device number 1-15

X = don't care

Figure 4-17. Paper Tape Reader
SFL Instructions

The direction control instructions will be rejected if

the tape is moving in a direction contrary to that of

the SFL command. This interlock prevents damage

to the reader due to sudden reversal of drive power.

The forward direction is considered normal. The

Forward Direction is set when any of the following

occur:

1. SFL channel clear instruction is executed

2. Console initialize

3. Auto Load

4. Auto Dump

When reading in reverse mode, the data channel

assembled half-word has the same form as when the

tape is read in the forward direction. The half-word

transfers into memory, however, must be pro­

grammed differently in forward and reverse mode to

achieve identical full-word formats in memory.

The SFL instruction which connects the reader to the

channel starts the tape in motion. The channel SFL

command will be rejected and the B flag set if the

reader power is off, or if the reader is in a load (not

run) condition. Tape motion will be automatically

inhibited if either the channel buffer register is not

ready to accept a character from the reader, or if

the channel data register is not ready to accept a

character from the buffer register. The channel buf­

fer is not ready when it contains a completely assem­

bled a-bit byte, and is waiting to transfer its contents

through the assembly register into the channel data

register. The channel data register is not ready when

it contains a completely assembled half-word, and is

waiting to transfer its contents to core memory.

The stopping time for the tape reader (when running

at 500 characters per second) is less thaIl 500 micro­

seconds. When the tape motion is inhibited by the

channel, the tape stops on the character just trans­

ferred to the channel.

There are no TSL instructions associated with the

tape reader. Parity can be tested using the channel

parity indicator.

The channel signal indicator will be set whenever a

stop code (octal 100) is detected. The detection of a

stop code will also terminate the current word assem­

bly' permitting transfer of the (possibly incomplete)

half-word into memory. stop code detection is enabled

even in 4-bit mode. Direction of a stop code during

an auto load operation will terminate the input and

disconnect the reader.

4. 5.4 Paper Tape Punch

The paper tape punch is an EAI Model which handles

5 to a channel paper tapes. Ten characters per inch

are punched at 110 characters per second.

Desk controls and indicators pertaining to the punch

are the following:

Power On/Off This switch, when on, enables

program control over the punch

power. When this switch is off,

the punch power remains off

unconditionally.

Tape Feed

Tape Low

Punch Ready

This switch, if pushed when the

punch power is on, causes

blank tape to be punched as

long as the switch is depressed.

This indicator is lit when only

one foot or less of tape remains

to be punched.

This indicator is lit whenever

the punch has been connected

to the data channel for data

transfer.

4-21

4. 5. 4. 1 Data Format. Both binary and BCD

mode may be used for transfer of information to the

punch. A parity bit is generated in the data channel-­

odd parity for binary mode, and even parity for BCD

mode. The parity bit is punched as the most signifi­

cant Qit of each character. The connection of the

punch to the Channel Buffer Register is similar to

that of the typewriter.

Either 4 or 8-bit mode can be used, with or without

exec bits. In the 8-bit mode, the 7 least significant

bits per byte are transferred to the punch, and the

most significant bit is ignored. If exec bits are

transferred, they are always punched first on the

tape.

Blank tape can be produced by program by punching

two characters (octal 12) in BCD mode, transferring

8 bits per byte, and no exec bits.

No parity checking is performed during output to the

punch.

The stop code, a control character peculiar to paper

tape, is defined as octal 100.

4. 5.4.2 Programming. The general sequence

of instructions required to use the punch is the

following:

4-22

1. Turn on punch power with a device SFL

instruction.

2. Initialize the channel and connect the punch

with a channel SFL instruction.

3. Test the busy flag to assure that the channel

initialization instruction was accepted.

4. Output the data.

5. Disconnect the punch with a channel SFL

instruction.

6. Turn off the punch powex: (if desired) with a

device SFL instruction.

The punch power is controlled by SFL instructions

with the address field shown in Figure 4-18.

C K 0:
M FIELD 0 I 23 4 5 6:7

POWER ON 0 000 o I oio
POWER OFF 0 000 o I 0:0

I

K = channel number 0-7

D = device number 1-15

X = don Vt care

L

B 9 10 II 12 13 1415

XXXXXXIO

'<XXXXXOI

Figure 4-18. Paper Tape Punch
SFL Instructions

The SFL instructions for punch power can be issued

anytime, whether the device is active or not; these

instructions are never rejected.

The SFL instruction for channel initialization will be

rejected, and a busy response generated if:

1. Punch power is not turned on

2. Tape low signal is true

3. Data channel is unavailable

No TSL instructions are associated with the punch.

The channel signal indicator will be set if the tape

low indicator becomes true while the punch is con­

nected to the channel. Punching can continue in this

situation.

4. 5. 5 Line Printer (Models 8461, 8462,
and 8463)

The line printer is an output device which prints one

line of information at a time. Printers are available

with the following specifications:

300, 600, or 1000 lines. per minute
136 characters per line
10 characters per inch
6 or 8 lines per inch
65 character set
100 kcps data transfer rate

Model 8461, 300 LPM; model 8462, 600 LPM; model

8463, 1000 LPM, are all programmed as one printer.

The printer is internally buffered, and can hold one

complete line of information at a time.

4.5.5.1 Operator Controls and Indicators. The

controls and indicators located on the control of the

printer are as follows:

Start

Stop

Top-of­
Form

Test

Yoke Open

No Paper

6 Line/
8 Line

Alarm Status

This switch is used to put the

printer on-line, and permit

the printer to accept data from

the computer.

This switch is used to put the

printer Off-line, and make it

unable to accept data from the

computer.

This switch, if pushed when

the printer is off-line, advances

the paper to the first printing

position of the next form.

This switch, if pushed when the

printer is off-line, initiates

printing of a test pattern. ,

Printing continues to the end

of the current form after the

release of the switch.

This indicator is lit when the

yoke is open.

This indicator is lit when the

printer is out of paper.

This sWitch/indicator selects

the number of lines per inch

that will be printed.

This indicator is lit when any

condition exists which keeps

the printer from being ready.

4.5.5.2 Data Format. The line printer ac­

cepts characters in internal 8400 Binary Code. The

binary mode in the data channel must be used, and

all data transfers to the printer should use odd parity.
,-

The printer checks parity on all characters, and sets

the channel parity indicator if a parity failure is de­

tected. Any characters transferred with faulty

parity are not printed.

All transfers must be in the 8-bit mode. The seven

least significant bits per byte are transferred to the

printer. With one exception, the first bit (the most

significant bit transferred) is ignored by the printer,

and the six least significant bits determine the char­

acter to be printed. The end-of-line character which

initiates the printing of a line is an octal 155, cor­

responding to a carriage return on the typewriter.

This is the only control character recognized by the

printer. In all other cases, a bit in the most signifi­

cant position of a character is ignored.

4.5.5.3 Vertical Format. The general se­

quence of events in the printing of one line is the

following:

1. Space paper

2. Send data followed by end-of-line character

3. Print line

4. Wait for next line

Paper spacing can be initiated in two ways:

1. By SFL command

2. By the first character in a line

When the first character in a new line is received by

the printer, it is interpreted as vertical format

specification and the character is not placed in the

printer buffer. Receipt of the first character, the

paper spacing, and the transfer of the remaining

data overlaps with the paper advance operation. After

4-23

the paper spacing is completed, the line of charac­

ters is then printed.

If paper spacing is initiated by SFL instruction, the

first character in the next line to be transferred to

the printer will be ignored, and the character will

not be printed. There is also an SFL instruction to

inhibit paper spacing; the first character in the next

line is also ignored following this SFL instruction.

If a parity failure is detected during printing of data

by the printer, after printing the line, it is possible

to inhibit paper advance via an SFL, and overprint

the line by re-transmitting the information.

Two types of vertical formatting are available:

1. The count mode in which the number of

lines is specified.

2. The tape mode in which the paper is to be

advanced until a space in a specified

channel on an external format tape is

detected.

The external format tape is an 8 channel tape that

can be punched in any desired pattern. The format

tape can be easily changed by the operator.

The vertical format codes for use in first character

paper control are as shown on Figure 4-19

4-24

FUNCTION ~

TAPE MODE 10 I X I c I c I c I

COUNT MODE I I I X I N I N I N I

where:

C = 0-7

N=1t07

X = don't care

16 8 4 2

Figure 4-19. Vertical Format Codes

4.5.5.4 Program Controls and Indicators.

The control and indicators accessible by program

are the following:

Printer Ready

N ext Line Request

(NLR)

Next Character

Request

Buffer Overflow

Paper AdvanCing

Device Interrupt

Enable

This indicator is true when

the power is on, the char­

acter drum or yoke is in

place, the paper is in

position, and the start

switch has been depressed.

When this indicator is low,

the printer cannot be con­

nected to the channel, or

accept data from the

channel.

This indicator is true when

the printing of a previous

line is complete, and the

p:dnter is ready for the

next line. NLR is set

following Channel Clear if

the printer is ready.

This indication will be true

when the printer is ready

to accept another charac­

ter from the data channel.

During printing, this

indicator will be false.

This indicator is set when

more than 136 characters

have been transmitted to

the printer. This indicator

is optional, and is not

found on all printers.

This indicator is true

whenever the paper is

advancing.

This program -controlled

switch, when set, enables

a channel interrupt to occur

whenever the Next Line

Request indicator becomes

true. This switch can be

set by program only when

no device is currently

connected to the channel.

This switch is automat­

ically reset whenever a

device is connected to the

channel, or a channel clear

instruction is executed.

1. Test conditions on the printer, if desired,

with device TSL instructions.

2. Initiate delay procedures, if required, if

conditions prevent immediate transfer of

data.

3. Specify paper advance with appropriate

SFL instruction if it is desired to override

or ignore the first character format

specification.

4. Test the busy flag to make sure the paper

The TSL instructions associated with the line print- spacing command was accepted.

er use the address field shown in Figure 4-20.

FUNCTION EFFECTIVE ADDRESS

PAPER ADVANCE I'-'-0J...I ---,-K_,-I _"'----'-'-'-'-"-J..:.:LC.L..:J..:J.~

LINE PRINTER BUFFER FULL 1c::0J...I---.::K,--,-1 _=----'-'-'-"-'J..:..:.L:'-'-'---'-.c:..:.L:..:J...:..:..J

LI N E PR I NTER READY ',-OJ... 1 _K_,-I __ ~--L-'----'---'----'--'---L--'

NEW LI N E REQU EST I,-0J...I --C.-K_,-I _"'----'-'-=J..:C.L:.:J...:..:.L:.:.l.-'-'-'-'-J

D I xlxlxlllxlxlxlx I

D I X Ixlxlxll Ixlxl X I

D 0 XJX] xl xl "xix I

D I xlxlxlxlxlxllix I

LINE PRINTER SEND DATA 101 K I
~0J...1--C.-~3'-4-~-L-=~~.L:.:.l.~-'

D I xlxlxlxlxlxlxll I
7 8 9 10 II 12 13 14 15

K = channel number 0-7

D = device number 1-15

X = don't care

Figure 4-20. Line Printer TSL Instructions

The Z flag is set, in response to a TSL instruction,

if the tested indicator is true, and the flag is reset

if the tested indicator is false.

The SFL instructions associated with the line printer

are shown on Figure 4-21.

SFL instructions for paper spacing are rejected if

either a paper spacing or a printing cycle is in

progress. The SFL to set the device-interrupt­

enable-switch is rejected if any device is currently

connected to the channel.

4. 5. 5. 5 Programming. The general sequence

of instruction required to use the line printer is as

follows:

5. Initialize the channel and connect the

printer with a channel SFL command,

specifying 8-bit bytes and binary mode.

6. Test the busy flag to make sure the channel

command was accepted.

7. Transfer data followed by an end -of -line

character.

8. Disconnect the printer.

9. Test error conditions using channel and

device TSL instructions.

FUNCTION

COUNT MODE PAPER ADVANCE 101

TAPE MODE PAPER ADVANCE 101

NO PAPER ADVANCE 10 1

SET DEVICE INTERRUPT ENA8LE 10 1
0

K = channel number 0-7

D = device number 1-15

X = don't care

C = tape channel 0-7

N = number of lines 1-7

I

EFFECTIVE ADDRESS

K I D IxlllxlxlllNININ I

K I D Ixlllxlxlolclcic I
K I D 10 I olxlxlxlx Ix II]

K I D Illxlxlxlxlxlxlx I

34 7 8 9 10 II 12 13 14 15

Figure 4-21. Line Printer
SFL Instructions

4-25

The channel SFL command to set up the channel and

connect the printer will be rejected only if the

printer is in a not ready condition. It is possible

to connect the printer when it is spacing paper or

printing a previous line, but data transfer cannot

commence until the Next Line Request signal comes

high.

4.5.6 Card Punch (Models 8455 and 8456)

Type 8455 is an 80 column, row-oriented card

punch capable of feeding, punching and checking

cards at rates of 100 and 300 cards-per-minute re­

spectively. Both types are equipped with individual

controllers and storage buffers permitting indepen­

dent card punching operation.

Transmission of data between the buffer and the

punch is checked for parity to insure data integrity.

A read after punch feature is provided to give a

hole-count accuracy check on the data.

All units contain readily identified console buttons to

facilitate operator control. Model 8455 has a hopper

and stacker capacity of 800 cards. Model 8456 has a

hopper capacity of 3500 cards, a primary stacker

capacity of 3000 cards, an auxiliary stacker capacity

of 850 cards and an error stacker capacity of 750

cards. Both types may be loaded and unloaded while

operating.

4.5.6.1 Operator Controls and Indicators. The

switches and indicators listed below are located on

the control panel of the card punch.

Power On

Power Off

4-26

Pressing this switch-indicator

applies power to the card punch.

The indicator is illuminated

when the power is on.

Pressing this switch turns off

the card punch.

Not Ready Indicator is illuminated whenever

the punch is not ready. This will

not occur if the following condi _.

tions exist:

Punch
Check On

Punch
Check

1. Start switch depressed;

2. Cards in hopper;

3. Punch die in place;

4. Card stacker not full;

5. Card at ready station;

6. Covers in place;

7. No feed check error; and

8. No punch error.

Depressing this latching switch

enables post punch checking and

illuminates the indicator. Re­

leasing the switch inhibits the

punch checking.

Indicator is illuminated whenever

a punch error is detected.

Feed Check Indicator is illuminated whenever

a jam occurs in the card-feeding

mechanism.

Start Switch Pressing this switch moves a card

to the ready station. It will reset

the NOT READY indicator pro­

vided the punch was ready except

for the absence of a card at the

ready station.

Reset
Switch

Pressing this switch clears all

error indicators on the punch.

Stop

Runout

Pressing this switch stops the

card feed and makes the punch not

ready. If a card cycle is in

progress, it will be completed.

When this switch is depressed,

cards are run through the unit

without punching. This switch is

effective only when the punch is in

a not ready condition.

4.5.6.2 Programming. The following instruc­

tion sequence is required to operate the card punch

when the IOCS package (supplied by EAI) is not used:

1. Generate the binary card image of the data

to be punched;

2. Initiate a punch cycle with the proper SFL

instruction;

3. Initiate the channel and connect the punch

with a channel SFL command;

4. Test busy to make sure the channel com­

mand was accepted;

5. Transfer data - the odd numbered binary

cards are transferred six times, and then

the even numbered characters are trans­

ferred six times;

6. Disconnect the punch; and,

7. Test error conditions using channel and

device TSL instructions.

The Channel Signal Indicator (CHS) will be set, if the

punch is connected to the channel and becomes ready

to accept data for the next card.

The Channel Parity Indicator (CHP) will be set, if

the punch is connected to the channel and the punch­

check circuits detect a punch error.

A channel interrupt from the card punch will occur in

the following cases:

1. When the punch is connected to the channel,

and the punch becomes not ready;

2. When there is no device connected to the

channel, the DINE switch on the punch is

set, and the punch becomes ready to ac­

cept data for a new card.

4. 5. 6.3 Card Punch Operation. The general

sequence of operation for punching a card consists of

the four cycles listed below.

Feed Cycle When the power is on and the start

switch has been depressed, a card

will move to the ready station.

Punch
Cycle

Check
Cycle

Stack
Cycle

A card is moved from the ready

station under the line of 80

punches. Cards are fed Sideways,

and information is punched one

row at a time starting at the top

of the card.

During this cycle, the card is fed

through the post punch check

brushes and checked for errors.

Checking is performed by reading

the punched row, comparing this

row of information with that stored

in the punch buffer. The compari­

son is accomplished by a hold

count technique.

The card is placed on the output

stack.

The cards follow one another through each cycle. The

action is continuous; when one card is being punched

one is being picked from the hopper, one is being

read and another is being stacked.

4-27

4. 5. 6. 4 Program Controls and Indicators.

The controls and indicators that are accessible to a

program by SFL instructions are listed below.

Start Card
Punch
Cycle

Reject
Card

Setting this control starts a card

toward the punch station without

connecting the Card Punch Con­

trolier to the Data Channel.

When set, this control directs the

card being punched into the aux­

iliary stacker or offsets it by 1/2"

in the output hopper.

Eject Card The card being punched is ejected

to the output hopper. The next

card is brought to the Registration

Station and waits for the next

START CARD PUNCH CYCLE

Set DINE
(Device
Interrupt
Enable)

start Card
Punch
Cycle and
Connect
Punch to
Data
Channel

command.

Setting this control enables a chan­

nel interrupt whenever the punch

is ready and the punch cycle indi­

cator is low. The switch can be

set only when a device isn't cur­

rently connected to the channel.

It becomes reset automatically

whenever a device is connected to

the channel or a channel clear is

executed.

Setting this control initiates a

card punch cycle and connects the

card punch controller to the Data

Channel.

The indicators accessible to the program are listed

below.

4-28

Test
"Punch
Ready"
Status

Indicator is set when the cards

are in the hopper, the die is in

place, the card is in a position to

be punched, the stacker is not full,

the power is on, and there are no

jams or punch errors.

Test
"Ready
to Punch
Next Row"
Status

Test
"Punch
Cycle"
Status

Test
"Punch
Error"
Status

Indicator is set when the unit is

ready to punch the next row on the

card.

Indicator is set when the card is

in the punch cycle and remains

set during the punching of the

card.

Indicator is set when an invalid

Hollerith character is punched.

4.5.7 Magnetic Tape Systems (Models 8472,
8474, 8476 and 8478)

System Type 8472 8474 8476 8478

Cont17oller Oper- 45 IPS 75 IPS 120 IPS 150 IPS ating Speed

Transport Type* 8473 8475 8477 8479

Recording Width -7 or 9-track-

Density -556 and 800 BPI-

*Standard system includes one tape transport.

The SFL Instruction codes for these commands are

shown below.

Start Card Punch
Cycle

Reject Card

Eject Card

Set DI NE

Start Card Punch
Cycle and
Connect Punch
To Data Channe I

C K

0 K

0 K

0 K

0 K

1 K

0 1

0 L

D XXXXXXX 1

D XXXXXX1X

D XXXX1XXX

D lXXXXXXX

D XXXXXXXX

3, 4 7 8 15

C = 0 Used to set channel/device control conditions,
SFL (Cl

Initialize channel/connect device, clear channel,
SFL (Fl

K Data channe I number, 0 to 7
o Device number, 1 to 15

Figure 4-22. Card Punch SFL Instructions

The TSL Instruction codes for the above commands

are shown below.

Test •• Punch
Ready" Status

Test "Punch
Cyc Ie" Status

Test "Ready
Ta Punch
Next Row"
Status

Test "Punch
Error" Status

C

C

C

C

C

0 1

K 0

K D

K D

K D

K D

3 4 7

C=O Test status level only, TSLC

L

X X X X X X X 1

X X X X X X 1 X

X X X 1 X X X X

X X X X 1 X X X

8 15

1 Test status and then reset status flip-flop, TSLF
F Data chon ne I number, 0 to 7
o Device number, 1 to 1S

Figure 4-23. Card Punch TSL Instructions

4.5.7.1 Description. Four types of magnetic

tape systems are available, Types 8472, 8474, 8476

and 8478. Each system is provided with a single tape

transport, a controller that can handle up to four

transports, and protection facilities.

Transports are available for either of two tape re­

cording widths, 7-track (compatible with IBM 729)

and 9-track (compatible with IBM 360). If desired,

the standard, 7-track transports may be updated in­

the-field to provide them with the 9-track recording

capability. The standard, 7-track unit provides six

channels for data and one for parity, with both binary

and BCD modes available. The optional, 9-track unit

provides eight channels for data and one for parity

with all data transfers in the odd-parity, binary

mode.

Controllers for the four systems are of two types to

handle the two tape recording widths. The controller

used with 9-track tapes can also handle 7-track tapes.

The 9-track tapes are handled by the 9-track system

controller alone. Each controller can accommodate

up to four tape transports, controlling one at a time

except during a rewind operation. Having started the

rewinding of one tape transport, the controller is

immediately available to handle the control of an­

other. This control is implemented using the follow­

ing control facilities:

1. Power On/Off - switch and indicator

2. Remote - switch and indicator

3. Local - -switch and indicator

4. Reset - switch

5. Forward - switch

6. Reverse - switch

7. Rewind - switch

8. Medium/High/Low Density - switch and

indicator

9. File Protect - indicator

10. Unit Address - switch and indicator

4. 5. 7. 2 Operation and Format. The record­

ing of information in the binary mode involves the

transfer of odd parity data, without code conversion,

to and from the magnetic tapes. In the BCD mode,

there is an output data conversion from the 8400 com­

puter's internal code to the IBM compatible 5 code,

and the data is transferred with even parity. Input

data in the even-parity, IBM compatible 5 code, is

converted to data expressed in the 8400'8 internal

code.

Records on tape are separated by an end-of-record

(EOR) gap (0.75 inch of blank tape). A record ends

with three consecutive blank characters followed by a

longitudinal parity character (LPC). These charac­

ters together constitute the end-of-record (EOR)

mark. Files on tape are separated by an end-of-file

(EOF) gap (3.75 inches of blank characters on tape)

followed by an end-of-file (EOF) mark. The EOF

4-29

mark consists of a single character record with the

LPC and EOR gap.

A reflective marker on one side of the tape located

about ten feet from the starting end denotes begin­

ning-of-tape (BOT). When this mark is encountered,

the tape stops, and the BOT indicator is set to pre­

vent tape reversal. The next forward command will

reset this indicator. When a write command is given

with the tape in the BOT position, a 3.75 inch gap in

the tape results before writing begins.

A second reflective marker located on the other side

of the tape about twelve feet from the other end de­

notes end-of-tape (EOT). When this mark is en­

countered, the EOT indicator is set but operations in

the forward direction are not inhibited. The indica­

tor will be reset when the first rewind command is

given.

Parity checking is included with each data transfer

operation. If either lateral or longitudinal parity

failure is detected after writing, the error flagis set.

The tape can then be back-spaced for a rewrite oper­

ation. This operation can be repeated up to ten times

if necessary.

Information in a tape file can be protected in two

ways. The operator can arrange the file security by

placing on a tape reel a write enable ring to prevent

writing on that reel. Another way involves the use of

monitor-controlled flags in the unit control block.

These flags can be used to prohibit placing the tape

inmotion and to prevent reading and writing opera­

tions.

4. 5.7.3 Instructions. Each tape controller

has an 8 -bit control register whose configuration is

described as,

cc xyz uuu
I /'" t "-.. I

control forward! file! write! unit

bits reverse record read number 0 to 7

4-30

This. control register is loaded by one of the 8400's

Set Function Line (SFL) instructions. The contents

of the control register are placed in the 8-bit, L­

Field of the SFL instruction address. The format of

tQis instruction address appears below with a list of

SFL instructions.

15

L ,
Zero Channel
Character Number

Device 8-bit Control Board
Number

Figure 4-24. Magnetic Tape SFL Instruction

Table 4-4. SFL Instruction List

No. F\Jllction L-Field Remarks

1. Read re- 010000-7 Move tape forward to

cord(s) read data. If channel

forward initialized, transfer

data until channel dis-

connected, other-

wise skip one record.

2. Read re- 011000-7 Same as 1 but in

cord(s) reverse direction.

reverse

(optional)

3. Write 01 001 0-7 Move tape forward to

record write data. If channel

forward initialized, write data

only until data no longer

presented. Then

write LPC and inter-

record gap. If chan-

nel not initialized,

write .4 inch blank

tape and stop.

Table 4-4. SFL Instruction List (Cont)

No. Function L-Field Remarks

4. Write 01 011 0-7 Write 3-3/4 inch

blank blank (all zero) tape.

tape

forward

only

5. Search 01 010 0-7 Move tape forward

EOF until a file mark is

forward detected.

6. Search 01 110 0-7 Same as 5 but in

EOF reverse direction.

reverse

7. Write 11 011 0-7 Write 3-3/4 inch of

EOF blank tape, and an

EOF mark (octal

17) with its LPC.

8. Rewind 001100-7 Rewind tape until

to load the BOT mark is

point detected.

9. Rewind 00 111 0-7 Same as 8, but tape

and switched to local

unlock mode when rewind

is complete.

10. Set unit 000000-7 Set up the unit field

field of control register

but do not initiate

any tape operation.

11. Device 10 XXX xxx Set the device in-

interrupt terrupt enable

enable (DINE) switch if no

device is connected

to the channel.

SFL instructions (except 10 and 11) are rejected and

the B busy monitor-controlled flag is returned if any

of the following conditions exist:

1. the selected unit is not ready

2. the select unit is rewinding

3. any tape unit is in motion

4. The SFL instruction to set the unit field

(number 10) is rejected only if the control­

ler is not able to accept a new command

due to some tape unit being in motion.

This instruction is useful for determining

if the controller is available, and for

preceding certain TSL instructions which

have no unit field.

5. The SFL instruction to set the DINE

switch (number 11) is rejected only if a

device is connected to the channel.

The indicators used in each tape system to signify

various conditions include the following: EOR - end

of record; EOF - end of file; ERR - error; BOT -

beginning of tape; and EOT - end of tape. These

indicators and other signals in the system can be

tested by the 8400 computer's Test Status Line (TSL)

instructions. The format of the instruction address

field appears below with a list of TSL instructions.

o for test only;
1 for test and
reset

o 1 3 4 7 8 15

Channel Device Code DeSignating
Number Number Which Signals or

Indicators

Figure 4-25. Magnetic Tape TSL Instruction

4-31

Table 4-5, TSL Instruction List

No. Function L-Field Remarks

1. Test and 10XXXXX1 Test end of re-

clear cord for the se-

EOR lected tape, and

then reset the

indicator.

2. Test and 10XXXX1X Test end of file

clear for the selected

EOF tape, and then

reset the indi-

cator.

3. Test and 10XXX1XX Test and clear

clear the error indi-

ERR cator for the se-

1ected tape.

4. Test tape 10XX1XXX Test if selected

unit unit is ready:

ready power on, reel in

place, automatic

mode, etc.

5. Test BOT 10X1XXXX Test if selected

unit is at begin-

ning of tape.

6. Test EOT 101XXXXX Test if selected

unit has detected

the end of tape

mark.

7. Test 11XXXXX1 Test if selected

automatic unit is in auto-

mode matic (not loeal)

mode.

4-32

,

I

No. Function L-Field Remarks

8. Test file llXXXX1X Test if selected unit

protect is loaded with a reel

with a file-protect

ring.

9. Test high 11 xx 1 XXX Test if selected unit

density is set for high

density (800 charac-

ter per inch).

10. Test 11X1XXXX Test if selected unit

medium is set for medium

density density (556) charac-

ter per inch.

11. Test tape ll1XXXXX Test if selected

in motion unit has its tape

in motion.

12. Test if 01XXX 0-7 Test if the unit

rewinding addressed is in

the rewinding

state.

13. Test 11XXX1XX Test if selected

7-track unit is set for

mode 7 -track (not 9-

track) mode.

In response to all TSL instruction, the Z (end)

monitor-controlled flag is set if the specified signal

or indicator is high, and the Z flag is reset if the

specified signal or indicator is low. Note that most

TSL instructions do not have a unit field in the L

code. This means that if the controller is in use

with one of the units, the TSL's refer only to that

unit. If the controller is idle, an SFL instruction

can be used to set the unit field, permitting TSL

instructions to refer to any of the tapes as needed.

,

CHAPTER 5

COMPUTER CONSOLE OPERATIONS

5. 1 INTRODUCTION

The system console, shown in Figure 5.1, provides

complete and efficient organization of all display and

control elements for the 8400. All operafing controls

are within arms reach of a seated operator. The

control buttons are combination indicators and push­

buttons for ease of observation of system status

(Figure 5.2).

A system display panel and console typewriter to the

immediate left of the operating controls is shown in

Figure 5.3. The system display panel accommodates 7

registers and one counter. The operator may choose

alternative registers using controls to the immediate

right of the display panel. The typewriter is a stand­

ard electric model with the 8400 character set.

The optional paper tape reader is housed to the right

of the operating controls immediately above the

Figure 5.1 . Control Console

5-1

system maintenance panel, as shown in Figure 5.4.

The paper tape reader is a 500 character per second

photoelectric device. The 110 character per second

paper tape punch is also housed in the system console.

5.2 CONTROLS AND INDICATORS

Figure 5.5, depicting the system control panel, is

overlayed with a circled number key to the corres­

ponding description in this section.

5.2. 1 Register Controls

I AF I AE I CD These two pushbuttons determine which

data is displayed on the ACCUMULATOR portion of

display panel. Depressing the AF button causes bits

o through 15 of A, and the AF portions of the Accumu­

lator, to be displayed (32 bits). In this

I A AFI

mode the display is used for monitoring floating-point

operations. Depressing the AE button causes bits 0

through 15 of A, and the AE portions of the Accumu­

lator to be displayed (32 bits).

This configuration is used for monitoring extended

fixed-point operations.

T yp fXPONENT INTERNAL EXTERNAL
RE ADY FAUl T INTERRUPT NTERRUPT

"I CI CI CI CI SC SC SC SC
I 234 I 234

, I

I. _= ___ 1

(DIMe]

c c c c c c C C C C C C C C C C
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Figure 5.2. Control Panel

5-2

~
D D ® These five interlocking pushbutton in-

E DE dicators determine which data is dis-

EC played in the DISPLAY REGISTER

portion of the Display Panel. Only the first is of real

interest to a programmer.

AD - The AD portion (bits 0 through 23), of the Accu­

mulator is displayed together with the A and AF reg­

isters to show a 56 bit floating point operand.

DE - displays bits 0 through 15 of the D Register in

the left half of the DISPLAY REGISTER and bits 0

through 15 of the E Register in the right half.

Q - displays bits 0 through 31 of the D Register,

which accepts incoming data from memory and acts

as an operand register for all arithmetic operations.

E; - displays bits 0 through 31 of the E register, which

is used to store the contents of the A Register during

some arithmetic operations, and as an extension to

the D Register during double precisioR operations.

EC - displays bits 0 through 31 of the Exchange Con­

trol Register. The Exchange Control Register controls

the sequence of operations within the Exchange Module

when using the Automatic Data Channel Processor.

5.2.2 Typewriter Input Controls

I

MA

RD

SA G)
MD

WR

These six interlocking

pushbutton indicators de­

termine where typewritten

inputs are routed within the comput~r. These controls

are needed in a manual system for loading and may be

I
I
I

Figure 5.3. Register Display/Input-Output Typewriter

5-3

Figure 5.4. Paper Tape Reader and Maintenance Panel

21--1----1

Figure 5.5. System Control Panel

5-4

used for memory readout and alteration. Data typed

on the console typewriter are stored in the typewriter

input register (W).

I (Instruction) - The W Register contents (bits 0-31)

are transferred to the Instruction Register when the

CR key is depressed.

SA (Starting Address) - The W Register contents (bits

0-15) are transferred to the Location Counter and the

m field of the Instruction Register when the CR key

is depressed.

MA (Memory Address) - The W Register contents

(bits 0-15) are transferred to the m field of the In­

struction Register when the CR key is depressed.

RD (Read from Memory) - Information is read from

memory using the contents of MA as the location, and

is displayed on the Memory Data Register (bits 0-35).

MD (Memory Data) - Typewriter information is

transferred from the W Register to the Memory Data

Register (bits 0-33) when the CR key is depressed.

WR (Write Into Memory) - Contents of the Memory

Data Bus (bits 0-35) are transferred to the Memory

Data Register and then written into the addressed

memory location.

TYP RDY (Typewriter Ready) G)

This indicator when illuminated indicates that the

typewriter has been selected as an input device.

5.2. 3 Exponent Fault ®

This indicator when illuminated indicates an exponent

overflow or underflow within the Arithmetic Module.

It remains on until reset by the program.

5.2. 4 Interrupt Indicators

INTERNAL INTERRUPT ®

This indicator, when illuminated, indicates an

unserviced internal interrupt. (Chapter 3.)

EXTERNAL INTERRUPT G)

This indicator, when illuminated, indicates an

unserviced external interrupt.

CHANNEL INTERRUPT GD

When lit this indicator indicates an unserviced

exchange channel interrupt. The affected chan­

nel is determined by the setting of the CHANNEL

SELECT switch on the Maintenance Panel.

When the CHANNEL SELECT switch is in the

OFF position an interrupt on any exchange

channel will illuminate this indicator.

5.2.5 Channel Condition Indicators

These three indicators indicate the various conditions

as listed in the following paragraphs. In the AUL

(Auto Load) or AUD (Auto Dump) mode the condition

indicated applies to the channel selected by the

CHANNEL SELECT switch located on the Maintenance

Panel. In the Program Control mode the condition

indicated is on any addressed channel. The particu­

lar channel may be determined by the CHANNEL

SELECT switch.

CHANNEL READY ®

This indicator when illuminated indicates that

the Exchange Channel selected is ready to ac­

cept information from, or load information into,

memory.

CHANNEL BUSY @

This indicator when illuminated indicates that

a data channel has been initialized and a device

has been selected for data transfer.

5-5

CHANNEL SIGNAL @

This indicator when illuminated indicates that

a peripheral device has sent a status signal,

(e.g., gap on magnetic tape; STOP code on

paper tape reader, low paper on paper tape

punch, etc.) to the Exchange Module.

5. 2.6 Parity Indicators

CHANNEL PARITY @

This indicator, when illuminated, indicates

that an error has occurred during transfer

from or to the peripheral selected device.

EXCHANGE PARITY @

This indicator, when illuminated, indicates

than an error has occurred within the Exchange

Module, which implies a data channel device

error.

MEMORY PARITY @

This indicator when illuminated indicates that

a memory parity error has occurred.

5.2.7 System Flag Indicators

These eight indicators display machine conditions

occur during the course of a program. (See

Chapter 1.)

UNC (Unconditional) - Illuminated when the rounding

flip-flop of the Accumulator is in the 1 state.

ZERO (Z Flag) - Illuminated when the contents of the

Accumulator are zero, as a true result of TSL'S and

Boolean Connect Instruction, and when the results of

a Compare are equal.

GTR (G Flag) - Illuminated when the contents of the

Accumulator is greater than zero, .or as the result

of a Compare instruction.

5-6

LSS (L Flag) - Illuminated when the contents of the

Accumulator is less than zero, or as the result of a

Compare instruction.

OFW (V Flag) - Illuminated when there is an over­

flow condition in the Accumulator.

CR Y (C Flag) - Illuminated when there has been a

carry out of the most significant bit of the Accumula­

tor (A1, not AO).

BSY (B Flag) - Illuminated when an addressed func­

tion line or data channel is busy.

ENB (E Flag) - llluminated when the interrupt system

is enabled.

5.2.8 Programmer Flag Controls and Indicators

F1 Through F8 @ - These eight indicator push­

buttons are the programmer flags. Depressing the

pushbutton complements the flag. The indicator is

illuminated when the flag bit is a logic ONE.

5.2.9 Console Interrupt Controls and Indicator s

C1 Through C4 ® - These four indicator pushbut­

tons are manual console interru!Jts. When illuminated

they indicate an unserviced console interrupt. The

indicator is extinguished when the interrupt is serv­

iced or the pushbutton is depressed a second time.

Paragraph 3.4 describes the console interrupts in

detail.

5.2.10 Configuration Switches

SC1 Through SC4 ® - These four pushbutton in­

dicators are control switches for special 8400 con­

figurations. The outputs of these switches are

accessible through the System Interface.

5.2. 11 AUTO LOAD and AUTO DUMP

AUTO LOAD @ and AUTO DUMP @ - These

indicator pushbuttons are used to load information

from a single peripheral device into memory, or

dump onto a single peripheral device during manual

operations. Each is illuminated during the operation.

5.2. 12 Clock Controls

RUN/SGL/HAF/FUL @ - These four indicator

pushbuttons establish the mode of operation of the

8400. The RUN, HAF, FUL pushbuttons are electri­

cally interlocked so only one is functional at a time.

The SGL pushbutton mechanically locks when

depressed.

RUN - When depressed sets the system in nor­

mal sequential control cycle.

SGL (Single-Step) - When depressed sets the

system to operate clock pulse by clock pulse.

Each time the EXECUTE pushbutton is de­

pressed one clock pulse is generated.

HAF (Half) - When depressed the system will

perform half the instruction control sequence.

The first time the EXECUTE pushbutton is de­

pressed the instruction word will be transferred

to the I Register and any address modification

called for will be performed. Depressing

EXECUTE a second time allows the system to

finish the instruction cycle and halt.

FUL - When depressed sets the system to per­

form the complete instruction and halt, each

time the EXECUTE pushbutton is depressed.

5.2. 13 System Controls and Indicators

INITIALIZE @ - This indicator pushbutton is used

to put the machine into an initial state. All data

channels are cleared, all interrupts are reset, all

flags are reset, and the machine is placed in a halt

condition. Memory is not cleared.

(HLT/HPR) Halt and Halt/proceed(§)

HL T - This indicator pushbutton is used to halt

the system. It is illuminated when the system

is in the halt condition.

HPR - When illuminated indicates the system

has been halted by a Halt Jump instruction.

DepreSSing the EXECUTE pushbutton restarts

the system.

POWER @ - Depressing this pushbutton energizes

the system. The indicator is illuminated when sys­

tem power is on. Depressing the pushbutton again,

de-energizes the system.

EXECUTE @ - This pushbutton indicator is used

to start execution of a program. The location of the

first instruction to be executed is specified by the

contents of the location counter.

5.2. 14 Console Register

CO Through C 15 @ - The pushbutton indicators

represent bits 0 through 15 of the Console Register.

The individual bits may be set and reset manually or

by programming. Depressing a pushbutton comple­

ments the bit.

5.3 CONSOLE DISPLAY

The system display panel immediately above the con­

sole typewriter is described below. (Refer to Figure

5.6.)

5.3. 1 Accumulator CD

This area displays bits 0 through 15 of the accumula­

tor (A segment) and bits 0 through 15 of either the AE

or AF segment dependent on which button on the con­

trol panel is depressed.

5. 3.2 Display Register ®

This area is a general purpose display. The data

display is determined by five pushbuttons as indi­

cated below:

Pushbutton

AD

Data Display

Bits 0 through 23 of the AD seg­

ment of the Accumulator.

5-7

Figure 5.6. System Display Panel

Pushbutton

D

E

DE

EC

Data Display

Bits 0 through 31 of the D Reg­

ister in the Arithmetic Module.

Bits 0 through 31 of the E Register

in the Arithmetic Module.

Bits 0 through 15 of the D Reg­

ister and bits 0 through 15 of the

E Register. The D Register is

displayed in the left half of this

area.

Bits 0 through 31 of the Exchange

Control Register in the Exchange

Module. Used only if system has

ADCP (Automatic Data Channel

Processor) option.

5.3.3 Memory Data ®

This area displays the contents of the memory

location that is addressed in either manual or

program controlled operation. However, it will not

display if the BANK SELECT switch is in AUTO

position unless memory is being requested by control.

5-8

5.3.4 Memory Address 0

This area displays the address of the memory location

being accessed by the Control Module.

5.3.5 Exchange Assembly ®

This area displays the contents of the Exchange

Assembly Register in the Exchange Module.

5. 3. 6 Location Counter ®

This area displays the address of the next instruction

to be executed.

5.3.7 Channel Function (i)

This area displays the condition of flip-flops within

the Channel Function Register. When data is being

transferred to or from a peripheral device by th~

Exchange Module, the bits are interpreted as follows:

Indicator

Bit 0

Function

This indicator when illuminated

specifies that an EXEC bit accom­

panies each data word to or from

memory. When extinguished an

EXEC bit does not accompany data.

Indicator Function

Bit 1 This indicator when illuminated speci­

fies that data is being transferred in

binary code without code conversion.

When extinguished data is in BCD form,

using the hardware code conversion in

the data channel.

Bit 2

Bit 3

Bit 4

The indicator specifies which half of

the memory word is being addressed.

When illuminated this indicator specifies

that alternate left and right half words

are being accessed in memory during

data transfer between memory and the

Exchange Module.

This indicator specifies the direction of

data transmission. When illuminated it

indicates transmission to memory from

the Exchange Module.

Bits 5,6,7 These indicators display the byte size

and number of bytes per half-word of

data being transmitted as follows:

5 6 7 BitS/Byte Bytes/Half-Word

0 0 0 8 0

0 0 1 8 1

0 1 1 16 1

0 1 0 8 2

1 0 0 4 4

1 0 1 4 1

1 1 0 4 2

1 1 1 4 3

5.3.8 Channel Buffer ®

This area displays the 8 bits of the Channel Buffer

Register which is located in the Exchange Module.

5. 3.9 Instruction ®

This area displays the contents of the Instruction Reg­

ister located in the Control Module.

5. 3. 10 Typewriter Input @

This area displays the contents of the W Register

located in the Console Desk. Data enters the register

during manual input from the typewriter.

5.4 Maintenance Panel

The Maintenance Panel contains controls and indica­

tors y.rhich are used for both test and normal operat­

ing purposes. The circled numbers in the following

descriptions are keyed to Figure 5. 7.

5.4.1 Lamp Test

ON/OFF CD - In the ON position, this two position

toggle switch enables all light drivers in the console,

providing a quick check of all lights and light drivers.

This switch is depressed only momentarily.

5. 4.2 Keyboard

UNLCK/LCK ® - This two pOSition toggle switch

controls the keyboard lock on the typewriter. In the

"UNLCK" position the typewriter keyboard is uncon­

ditionally unlocked. In the "LCK" position the key­

board is under program control and cannot be used

unless unlocked by the program.

5.4.3 Clock Control

NOR/MAR/MED/LOW/EXT CD - This 5 position

rotary switch determines the clock frequency of the

system.

NOR - Normal clock frequency.

MAR - Higher marginal clock frequency used for

system testing and maintenance.

MED - Medium clock frequency of approximately 1.2

kilocycles.

LOW - Low clock frequency approximately of 1. 5

cycles per second.

EXT - System clock supplied by an external device.

5-9

Figure 5.7. Maintenance Control Panel

5.4.4 Mode

SEQ/RPT @ - This two position toggle switch

determines the operational mode of the Control

Module. ill the sequential (SEQ) position, upon

completion of an instruction, the Location Counter

in the Control Module defines the location of the next

instruction in a normal manner. In the repetitive

(REP) position the instruction fetch portion of the

program is omitted and the Location Counter is not

incremented; the present instruction is repeated.

5.4.5 Left Half, Right Half, Left Exec, and

Right Exec ®

These four, two position toggle switches determine

the memory word format during manual data entry

from the typewriter. When in the OFF position,

information in memory is protected; no manual

entries or modifications can take place. In the ON

position, manual entry of data is permitted accord­

ing to the format determined by the switches in the

ON position.

5-10

'5.4.6 PCO, PCl, PC2, and PC3 ®

These four indicators, show the state of the Control

Module Phase Counter flip-flops. The binary weigh­

ing of each stage is as follows:

PCO - 8

PCl - 4

PC2 - 2

PC3 - 1

5.4.7 Data Test (j)

When generating a memory test pattern, the DATA

TEST indicator is lit when "l"s are being loaded

into, or unloaded from, the addressed memory

location.

5.4.8 ERR (Error) ®

This indicator is illuminated if a memory error is

detected during unloading of the memory test

pattern.

5.4.9 Bank Select ®

Each memory bank has a separate Memory Data

Register and Memory Address Register. The posi­

tion of the BANK SELECT switch determines which

bank is displayed on the System Display Panel

MEMORY DATA and MEMORY ADDRESS indicators.

The AUT (automatic) pOSition is used to display the

address and data specified by the normal program.

5. 4. 10 Pattern Control @

The PATTERN CONTROL switch is a five pOSition

rotary switch used to select the memory test pattern

during memory self test. The patterns are as

follows:

l's

D's

OFF

WP

WPC

All ones are written into each

location of the memory bank

under self test.

All zeros are written into

each location of the memory

bank under self test.

The memory self test function

is disabled.

Logic ONES and ZEROS are

alternately written into the

memory bank, creating a

checkerboard pattern.

The complement of WP is

written into the memory

bank.

5.4.11 Memory - LD/NORM/UNLD @

This switch is used during memory self test to load

or unload the test pattern to/from memory.

5.4.12 Clock - STEP/NORM/START @

During the memory self test procedure this switch

controls the memory clock generator. Depressing

the switch momentarily to the START position starts

the 0.5 megacycle memory clock. Depressing the

switch momentarily to the STEP position stops the

clock.

To manually increment the memory address register,

the switch is moved from the NORM to the STEP posi­

tion. The address is incremented by one each time

the switch is depressed to the STEP position.

5.4.13 Channel Select @

This nine pOSition switch performs the following

functions:

1. Selects the Exchange Module Data

Channel to be used during an Auto

Load or Auto Dump operation.

2. Connects the Channel Function Reg­

ister to the selected channel.

3. Connects the Channel Buffer Reg­

ister to the selected channel.

4. Connects the following indicators on

the System Control Panel to the

selected Data Channel:

CHANNEL INTERRUPT

CHANNEL READY

CHANNEL BUSY

CHANNEL SIGNAL

CHANNEL PARITY

5.4.14 Device Select @

This 12 position switch selects the device to be used

during Auto Load or Auto Dump operations.

5-11

5.4.15 Byte 4/8 @

During Auto Load or Auto Dump this switch determines

the byte size for data assembly or disassembly.

5.4. 16 E BIT E/E @

The E ~IT switch is a two position switch that deter­

mines whether or not an EXEC bit is associated with

each data word during an Auto Load or Auto Dump

operation.

5.4.17 Code-BIN/BCD @

This two position switch, when in the BIN position,

specifies that data is transferred without code con­

version and that odd parity generation and checking is

performed. The BCD pOSition specifies collating to

binary code conversion and even parity generation and

checking. This switch is used during an Auto Load or

Auto Dump operation.

5.4.18 DBCO, DBC1, DBC2 @

These three indicators monitor the state of the Device

Buffer Counter in the Exchange Module. The indica­

tors are illuminated when the corresponding bit is in

the" 1" state. Table 5. 1 illustrates the coding of

these indicators.

Table 5. 1. Exchange Module Counter Coding

DBCO DBCl DBC2

Counter DSCO DSCl DSC2

Status CSCO CSCl CSC2

C1CO C1Cl

0 0 0 0

1 0 0 1

2 0 1 1

3 0 1 0

4 1 1 0

5-12

5.4.19 DSCO, DSC1, DSC2 @

The Data Stack Counter in the Exchange Module is

monitored by these three indicators. The indicators

are illuminated when the corresponding bit position

is in the" 1" state. Table 5. 1 illustrates the coding

of these indicators.

5.4.20 CSCO, CSC1, CSC2 @

These three indicators monitor the status of the Con­

trol Stack Counter in the Exchange Module, if the

system is equipped with an Automatic Data Channel

Processor. The indicator is illuminated when the

corresponding bit is in the" 1" state. Table 5. 1

illustrates the coding of these indicators.

5.4.21 C1CO, C1Cl @

The status of the Control Interface Counter in the Ex­

change Module is monitored by these two indicators.

The indicator is illuminated when the corresponding

bit is in the "1" state. Table 5.1 illustrates the cod­

ing of these indicators.

5.4.22 CCO Through CC4 @

These five indicators monitor the status of the Cycle

Counter in the Arithmetic Module. The Cycle Coun­

ter is used to control the sequence of operations with­

in the Arithmetic Module. The indicators are

illuminated when the corresponding bit position is in

the "1" state. The indicators are coded as shown in

Table 5.2.

CCO

16

Table 5.2 Arithmetic Module Cycle

Counter Coding

CCl CC2 CCl

8 4 2

CCO

1

APPENDIX 1

WORD FORMATS

1. INSTRUCTIONS

Instructions are of the form:

o

Where:

M

*
x
OP

M

1516171920 .31

OP

INSTRUCTION

represents a 16 bit address

represents a 1 bit indirect indicator

represents a 3 bit indexing modifier

represents a 12 bit operation code

A generalized representation of an instruction written

in assembly language is shown below, where the modi­

fiers are optional.

OP* M,X

2. LOGICAL DATA

Logical data is of the form:

o

Where:

M/

/M

15 16 31

M/ /M
Logical Data

represents 16 binary bits of information -

left-half word

represents 16 binary bits of information -

right-halfword

Logical data is normally written using a "slash conven­

tion" such that a full word is "LEFT/RIGHT" and half­

words are "LEFT/" or "/RIGHT".

A logical instruction accesses only halfword data. It

is written OP* M, X for left half and OP* /M, X for

right halfword.

A logical instruction can access a left halfword in the

immediate mode. The data is the left halfword of the

instruction itself and is written OP* = M, X where the

= character is used to designate this immediate mode.

If both indirect and immediate options are called for in

an instruction, indirect chaining occurs first; the final

effective address is modified and is subject to imme­

diate interpretation.

3. FIXED POINT FRACTIONS

Fixed point fractions are defined as signed, scaled 15

bit single or paired quantities of the form:

o 1 151617 31

M/ 1M
Fixed Point Data

There are arithmetic instructions which access half­

word data in a manner similar to logical instructions.

There are also extended arithmetic instructions which

treat a 32 bit word as a single fixed point quantity.

The left halfword contains the mos! significant 15 bits

and the right halfword the least significant 15 bits of a

30 bit fraction. ~ign bit 0 determines sign bit 16 in

this case.

Al-l

APPENDIX 1

Note that in halfword arithmetic, the partial words can

be treated independently, whereas in the extended op­

erations whole words must be used.

4. FLOATING POINT NUMBERS

Floating point numbers are single or paired quantities

of the form:

o 23 24 25 31

I S I MANTISSA I S I EXPONENT I
. Floating-Point, One Word

Note that a single 32 bit word consists of a signed 23

bit fractional part and a signed 7 bit exponential part.

There are arithmetic instructions which also handle

paired (double-precision) words of this format where

the fractional part is continued in a succeeding memory

word and the exponential parts differ by 223 This

latter form is called double preCision floating pOint.

o 232425 31

S MOST SIG. S EXPONENT (X) MANTISSA

s LEAST SIG. S EXPONENT (X-23) MANTISSA

Floating-Point, Two Words

A floating point quantity is said to be normalized if

absolute value of the mantissa lies between one­

half and one; otherwise, it is unnormalized .

. 5. INTEGERS

There are instructions called integer instructions

which can handle halfwords in floating point oper­

ations. In the integer mode, halfwordfixed (Joint

signed 15 bit numbers are automatically changed

into floating (Joint format scaled as integers as (Jart

@ of an o(Jeration.

Al-2

WORD FORMATS

Conversely, a floating point number can be automati­

cally integerized and stored as halfword information.

Since a 16 bit address can be the data in these integer-.
floating point operations, immediate addressing is very

useful. Normalized and unnormalized modes are also

possible.

6. ALPHANUMERIC DATA

Alphanumeric data is stored in 8-bit bytes within

memory. Usually word boundaries are not useful in

manipulating alphanumeric or byte size data - that is,

data whose size is less than 16 bits.

An alphanumeric word (8-bits/byte) would normally

take the form:

o 7 8 15 16 23 24 31

I I "0" "1" I "2" I "3"

Alphanumeric

Where each" " above is·a binary coded character.

A.binary-coded decimal word (4-bits/byte) would take.

the form:

o 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

Binary-Coded Decimal

Where eachn is a binary-coded decimal number.

In manipulating byte data, the logical instructions can

be written to access 1, 2, 4, 8 of 16 bits at a time within

the halfword. Logical operations comprise the 16 boo­

lean connectives for two variables including and, or

not, equivalence, nor, and nand among others.

APPENDIX 1 WORD FORMATS

7. GENERALIZED DATA

Generalized data may be thought of as being stored in any arbitrary form. One such format is

"signed octal" which is used extensively in EAI 8400 Documentation. Each hal/word is written

as a sign (+ or -) and five octal digits (15 bits):

o 1-3 4-6 7 - 9 10 - 12 13 - 15 16 17 - 19 20 - 22 23 - 25 26 - 28 29 - 31

I ±I n n Inn n I ± Inn n n I n I

Octal

The same information is written in assembly language

as
I ± nnnnn/ I ±nnnnn

using the slash convention to separate halfwords and

the apostrophe to denote signed octal representation.

Another arbitrary format is hexadecimal. Here, 4-

bit bytes are encoded from the character set

0,1, --- 9, A, B, C, D, E, F

0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31

Ihlhl hi hi hi hi h I hi

Hexadecimal

Hexadecimal words may be written in assembly lan-

guage
" hhhh/" hhhh

where the slash convention is used to separate half­

words and the double apostrophe is used to indicate hex­

adecimal representation.

A user may develop other arbitrary formats as his

needs demand, using the VFD (Variable Field Data)

pseudo-operation.

AI-3/ AI-4

APPENDIX 2

Flag Test (0000-0377)

16 17 18 19 20 21 22 I 23 24 25 I 26 27 28 I 29 30

* X 0 0 0 o I FL I OP

OCTAL C CONDITION (1)

OOOa UNCONDITIONALLY TRUE
001a N UNCONDITIONALLY FALSE
002a Z RESULT = 0 AFTER ARITH. OR BOOL. INSTR.
003a NZ RESULT ¢ 0 AFTER ARITH. OR BOOL. INSTR.
004a C RESULT> 0 AFTER ARITH. INSTR.
005a NC RESULT NOT> 0 AFTER ARITH. INSTR.
006a L RESULT < 0 AFTER ARITH. INSTR.
007a NL RESULT NOT < 0 AFTER ARITH. INSTR.
010a V OVERFLOW SINCE FLAG RESET
011a NY NO OVERFLOW SINCE FLAG RESET
0112 C CARRY IN LAST ARITH. INSTR.
013a NC NO CARRY IN LAST ARITH. INSTR.
014a B LAST 1-0 INSTR. NOT EXECUTED (BUSY)
015a NB LAST 1-0 INSTR. WAS EXECUTED
016a E INTERRUPT SYSTEM ENABLED
017a NE INTERRUPT SYSTEM NOT ENABLED
020a 1 FLAG 1 TRUE
021a Nl FLAG 1 FALSE
022a 2 FLAG 2 TRUE
023a N2 FLAG 2 FALSE TRUE = SET
024a 3 FLAG 3 TRUE FALSE = RESET
025a N3 FLAG 3 FALSE TRIGGER = COMPLEMENT
026a 4 FLAG 4 TRUE
027a N4 FLAG 4 FALSE
030a 5 FLAG 5 TRUE
031a N5 FLAG 5 FALSE
032a 6 FLAG 6 TRUE
033a N6 FLAG 6 FALSE
034a 7 FLAG 7 TRUE
035a N7 FLAG 7 FALSE
036a 8 FLAG 8 TRUE
037a N8 FLAG 8 FALSE

a MNEMONIC FLAGS OPERATION

0 HJc m,X HALT AND JUMP TO EFFECTIVE ADDRESS (EA)
1 EXcm,X EXECUTE THE INSTR AT EA
2 Lc m,X LINK TO THE SUBR. AT EA
3 LRcm,X LINK TO EA AND RESET FLAG
4 JTc m,X JUMP TO EA AND TRIGGER FLAG (2)
5 JSc m,X JUMP TO EA AND SET FLAG
6 JRc m,X JUMP TO EA AND RESET FLAG
7 Jc m,X JUMP TO EA

(1) HALT, EXECUTE, LINKS AND JUMPS ARE CONDITIONAL UPON THE STATE OF THE FLAG
TESTED WHEREAS SET, RESET AND TRIGGER ARE NOT CONDITIONAL

(2) PERMITS LOW PRIORITY INTERRUPTS AFTER A HIGHER .'ffiIORITY INTERRUPT
HAS OCCURRED.

31

A2-1

APPENDIX 2

Input-Output (0400-0577)

All in this group are privileged instructions

OCTAL

0420 + R
0440 + R
0460 + R
0500 + R
0520 + R
054k
055k
056k
057k

MNEMONIC FLAGS

LDOB = m"R
STIB m"R
LDOB m"R
STIB /m"R
LDOB /m"R
STCC m, ,k
STCD m, ,k
LDCC m"k
LDCD m, ,k

MNEMONICS

INSTRUCTION

LOAD OUTPUT BUSS R WITH E. A. O:SR :S 178
STORE (INPUT BUSS R) AT E.A.
LOAD OUTPUT BUSS R WITH (E. A.)
STORE (INPUT BUSS R) AT /E.A.
LOAD OUTPUT BUSS R WITH (fE.A.)
STORE CHANNEL k's CONTROL WORD AT E.A. OS k8:S7
STORE CHANNEL k's DATA WORD AT E.A. (1)
LOAD CHANNEL k's CONTROL WORD WITH (E.A.)
LOAD CHANNEL k's DATA WORD WITH (E.A.)(1)

Registers, TSL's and SFL's-Exec Bits (0600-0777)

SFL, TSL, LOT, LDM, LDE and LDC are privileged instructions

IMMEDIATE

0607
0617
062k
0627
0630 + b

0634 + b

LEFT HALF

064s
0647
0657
066s
0667

RIGHT HALF

070s
0707
0717
072s
0727

REX = m,X
TEX = m,X Z
LDs = m,X
SEX = m,X
TSL =m, ,b Z

SFL = m"b B

STs m,X
REX m,X
TEX m,X Z
LDs m,X
SEX m,X

STs /m,X
REX /m,X
TEX /m,X Z
LDs /m,X
SEX /m,X

(0') IS READ AS "THE CONTENTS OF 0::"

SPECIAL REGISTER S

o
1
2
3
4
5
6

AE
F
L
T

M
E
C

RESET L.H. EXEC. BIT AT INSTRUCTION ADDRESS
TEST L.H. EXEC. BIT AT INSTRUCTION ADDRESS
LOAD REGISTER s WITH E.A.
SET L.H. EXEC. BIT AT INSTRUCTION ADDRESS
TEST SENSE LINE(S) IN BASE 0 SPECIFIED BY E .A.

o :S bS :S 3
SET FUNCTION LINE(S) IN BANK b SPECIFIED BY E.A.

STORE (REGISTER s) AT E.A.
RESET L.H. EXEC. BIT AT E.A.
TEST L.H. EXEC. BIT AT E.A.

. LOAD REGISTER s WITH (E.A.)
SET L.H. EXEC. BIT AT E.A.

STORE (REGISTER s) AT /E.A.
RESET R.H. EXEC. BIT AT E.A.
TEST R.H. EXEC. BIT AT E.A.
LOAD REGISTER s WITH (fE.A.)
SET R.H. EXEC. BIT AT E. A.

EXTENDED FIXED POINT ACCUMULATION
FLAG REGISTER
LOCATION COUNTER
TIMER REGISTER
INTERNAL INTERRUPT MASK REGISTER
EXTERNAL INTERRUPT MASK REGISTER
CONSOLE REGISTER

(1) IN STCD AND LDCD THE FORMAT OF STORAGE DEPENDS ON THE CHANNEL FUNCTION REGISTER
WmCH IS SET UP BY SPL TO DEVICE 0 ON THE CHANNEL.

A2-2

APPENDIX 2 MNEMONICS

Index Jump Test (1000-1777)

OCTAL

1000
1400

16 17

*
MNEMONIC

XJ m, X.± C
XIT m, X.± C

18

X

19 20 21 22 23 24 25 1 26 27 28 1 39 30 31

0 I 0 1 T I.± I C

FLAGS OPERATIONS

ZGL INCREMENT INDEX X BY C AND JUMP TO M
ZGL INCREMENT INDEX X BY C AND JUMP TO M

IF THE RESULT IN X HAS OPPOSITE SIGN OF C. -128::::; C ::::; 127

Arithmetic (2000-3777)

2000 + C
2100 + C
2200 + C
2300 + C
2400 + C
2400+ C
2440 + C
2600' + C
2640 + C
2700 + C
3400 + C
3440 + C
3500 + C
3540 + C
3600 + C
3640 + C
3700 + C

Shifts (3000-3377)

16 17 18 19 20 21 22
123 24

* X 0 1 I Mode

NORMALIZED 32 BIT FLOATING POINT (FL PT)
NORMALIZED 56 BIT FL PT
UNNORMALIZED 32 BIT FL PT
UNNORMALIZED 56 BIT FL PT
INTEGER EXECUTED AS FL PT IMMEDIATE
INTEGER EXECUTED AS FL PT LEFT HALF
INTEGER EXECUTED AS FL PT RIGHT HALF
UNNORMALIZED INT EXECUTED AS FL PT IMM.
UNNORMALIZED INT EXECUTED AS FL PT L.H.
UNNORMALIZED INT EXECUTED AS FL PT R. H.
INDEX ARITHMETIC IMMEDIATE
INDEX ARITHMETIC LEFT HALF
INDEX ARITHMETIC RIGHT HALF
EXTENDED FIXED POINT
FIXED POINT IMMEDIATE
FIXED POINT LEFT HALF
FIXED POINT RIGHT HALF

N - NORMALIZED

25

EXTENDED 16 17 18 19 20 21 22 I 23 24

1 26 27 28 1 29 30 31

1 $ 1 OP

C

00 SB
01 CS
02 CA
03 AD
04 CP
05 CP
06 ST
07 SR
10 DV
11 CD
20 $SB
21 $CS
22 $CA
23 $AD
24 $CP
25 $MP
26 $ST
27 $SR
30 $DV
31 SCD

25 26 27 28 I 29 30 E­

L- LOGICAL * X 0 1 1 0 IN J L l $ J - UNUSED

3000
3020
3040
3060
3100
3120
3140
3160
3200
3220
3300
3320

ASH ± m, X ZGLV ARITHMETIC SHIFT
$ASH ± m, X ZGLV

ROT ± m, X LOGICAL ROTATE
$ROT ± m, X
EASH ± m, X ZGLV EXTENDED ARITHMETIC SHIFT

$EASH ± m, X ZGLV
EROT ± m, X EXTENDED LOGICAL ROTATE

$EROT ± m, X
NRM , X NORMALIZE AND LOAD SHIFT COUNT IN X

$NRM , X
ENRM , X EXTENDED NORMALIZE AND LD S. C. IN X

$ENRM , X

IMMEDIATE MODE IS ASSUMED
IF EA IS POSITIVE, SHIFT OR ROTATE RIGHT
IF EA IS NEGATIVE, SllFT OR ROTATE LEFT

31

A2-3

!

APPENDIX 2

Boolean Connectives (4000-7777)

16 17 18 19 20 21 22 I 23 24 25 26 27 28 I 29

* X 1 I OP b

OCTAL MNEMONIC FLAGS OPERATION

RA Z A-ZEROES
BLA Z A-A NORm

CBHA Z A-AANDm
ALA Z A-A

CBLA Z A-A NOR m
MLA Z A-in
BDA Z A-A EXCL. OR m
ELA Z A-A NAND m
BHA Z A-AANDm
BSA Z A-A EQUIV. m

MHA Z A-m
CEHA Z A-AORm

4000 + b
4100 + b
4200 + b
4300 + b
4400 + b
4500 + b
4600 + b
4700 + b
5000 + b
5100 + b
5200 + b
5300 + b
5400 + b
5500 + b
5600 + b
5700 + b

BEQT Z A-A- Z SET IF A = m -' CELA Z A-A NAND m
EHA Z A-AORm

SA Z A-ONES

FORMAT OPNn m, x, BYTE

n, 1, 2, 4, 8 BYTE SIZE: UNSPECIFIED = 16 BIT BYTE
BYTE = 0, 1, ••• ,15 BYTE POSITION

OPTIONS: * ALL BYTE SIZE/BYTE POSITIONS
IS BIT BYTE TO ACCUM. ONLY

30 31

ALL BOOLEAN CONNECTNES ONLY EFFECT A 1, 2, 4, 8, OR 16 BIT BYTE OF THE
ACCUMULATOR WHICH IS SPECIFIED BY THE b FIELD OF THE INSTRUCTION. THE
VALUE OF b MAY BE DETERMINED FROM THE TABLE OPPOSITE

IS READ
"IS REPLACED BY"

A2-4

MNEMONICS

APPENDIX 2 MNEMONICS

Boolean Connectives (4000-7777)

NAME OCTAL MNEMONIC FLAGS OPERATION

RESET 6000 + b RM Z m - ZEROES
BOTH LOW 6100 + b
BOTH mGH USING A 6200 + b

BLM Z m-ANORm
CBHM Z m-AANDm

ACCUMULATION LOW 6300 + b
BOTH LOW USING A 6400 + b

ALM Z m-A
CBLM Z m-ANORm

MEMORY LOW 6500 + b MLM Z m-ffi
BOTH DIFFERENT 6600 + b BDM Z m - A EXCL. OR m
EITHER LOW 6700 + b ELM Z m-ANANDm
BOTH HIGH 7000 + b BHM Z m-AANDm
BOTH SAME 7100 + b
MEMORY HIGH 7200 + b

BSM Z m - AEQUIV. m
MHM Z m-m

EITHER HIGH USING A 7300 + b CEHM Z m-AORm
BYTE EQUAL. TEST 7400 + b AHM Z m-A
EITHER LOW USING A 7500 + b CELM Z m-ANANDm
EITHER HIGH 7600 + b EHM Z m-AORm
SET 7700 + b SM Z m - ONES

TABLE FOR COMPUTING THE VALUE OF b

BYTE SIZE 1 2 4 8 16

OPERAND 1M 1M 1M 1M = 1M
BYTE # 0 01 41 02 42 04 44 10 50 00 20 60

1 03 43 06 46 14 54 30 70
2 05 45 12 52 24 64
3 07 47 16 56 34 74
4 11 51 22 62
5 13 53 26 66
6 15 55 32 72
7 17 57 36 76
8 21 61
9 23 63

10 25 65
11 27 67
12 31 71
13 33 73
14 35 75
15 37 77

A2-5

APPENDIX 2 MNEMONICS

Double Precision D

FORMAT OPN m,X (1)

OPTIONS FLAGS OPERATIONS

* U
ZGL A:AF:AD - m:m + 1 A:AF:AD

$ = C

* U
ZGL -m: m + 1 A:AF:AD

$ = (5)

* U
ZGL m: m+ 1 A:AF:AD

$ = (5) (7)

* U
ZGL A:AF:AD + m: m + 1 A:AF:AD

$ = C

*
ZGL (2)

$ =

* U
ZGL (2)

$ =

* A:AF:AD _ m: m + 1
$ (3) (6) (7)

*
(2) (4)

$ Vc

*
ZGL (2)

$ V

*
ZGL (2)

$ = V

(1) (3) DST FUNCTIONALLY EQUIVALENT TO DSTU

USE OF EQUAL SIGN (=) (4) DSTU FUNCTIONALLY EQUIVALENT TO DSRU
OPTION CAUSES DATA
GIVEN (56) BITS TO BE (5) DCAU, DCSU LOAD ACCUMULATOR EXEC BITS
PLACED IN LITERAL
POOL (6) DSTU STORES ACCUMULATOR EXEC BITS

TITLE

SUBTRACT

CLEAR & SUBTRACT

CLEAR & ADD

ADD

COMPARE

MULTIPLY

STORE

STORE ROUNDED

DIVIDE

CLEAR & DIVIDE

OPTIONS

* INDIRECT
/ HALF WORD
= IMMEDIATE
$ SAVE
U UNNORMALIZED.

(2) SUBROUTINE (7) DCAU, DSTU USED TO MOVE DOUBLE PREC. DATA
THE $ SYMBOL IS THE
ONLY OPTION THAT
IS A PREFIX

A2-6

APPENDIX 2

INTEGER 1

MNEMONIC OCTAL

SB 00

CS 01

CA 02

AD 03

CP 04

MP 05

ST 06

SR 07

DV 10

CD 11

(1)

USE OF THE SLASH (1) OPTION IS
REQUIRED FOR RIGHT HALF WORD
ADDRESSING, IF OMITTED LEFT
HALFWORD IS ASSUMED

FORMAT

OPTIONS

*/U

$ =

*/U

$ =

* / U

$ =

*/U

$ =

*/U

$ =

* / U

$ =

* / U

$

*
/

$

* / U

$ =

* U
/

$ =

mf 16 BIT MEMORY OPERAND CONVERTED
TO FLOATING POINT (MANTISSA
FILLED WITH TRAILING ZEROS,
EXPONENT + 15 ATTACHED)

mi 32 BIT FLOATING POINT NUMBER
SHIFTED UNTIL EXPONENT IS +15.
LEADING 16 BITS OF MANTISSA IS
STORED AS INTEGER

MNEMONICS

OPN /m,X (1)

FLAGS OPERATIONS

ZGL A:AF - mf - A:AF
C

ZGL -mf - A:AF

ZGL mf - A:AF

ZGL A:AF = mf - A:AF
C

Z SET IF A:AF = m A:AF UNCHANGED
ZGL G SET IF A:AF >m

L SET IF A:AF <m

ZGL A:AF m - A:AF:AD

V A:AF - mi A:AF UNCHANGED
(2)

VC A:AF (ROUNDED) - m, A:AF
UNCHANGED (3)

ZGL A:AF:AD mf - QUOTIENT A:AF
V

ZGL CLEAR AD THEN INTEGER DNIDE
V

FLAGS

Z = ACCUM. ZERO
G = ACCUM. ZERO
L = ACCUM. ZERO
V = OVERFLOW
C = CARRY

(2) 1ST FUNCTIONALLY EQUNALENT TO ISTU

(3) ISR FUNCTIONALLY EQUNALENT TO ISRU

A2-7

APPENDIX 2

32 Bit Floating Point F

FORMAT OPN m,X (1)

OPTIONS FLAGS OPERATIONS

* U
ZGL A:AF -m - A:AF

$ = C

* U
ZGL -m _ A:AF

$ = (3)

* U
ZGL m - A:AF

$ = (3) (5)

* I U
ZGL A:AF + m - A:AF

$ = C

* U Z SET IF A:AF = m A:AF UNCHANGED
ZGL G SET IFA:AF > m

$ = L SET IF A:AF < m

* U
ZGL A:AF m -A:AF:AD

$ =

* A:AF _ m

$ (1) (4) (5)

* U
C A:AF (ROUNDED) _ m, A:AF UNCHANGED

$ (2)

* U
ZGL A:AF:AD + m QUOTIENT A:AF

$ = V

* U
ZGL CLEAR AD THEN FLOATING DIVIDE

$ = V

USE OF THE EQUAL SIGN (=)
OPTION CAUSES DATA (32 BITS)
TO BE PLACED IN THE LITERAL
POOL.

(1) FST FUNCTIONALLY EQUIVALENT TO FSTN

(2) FSR DIFFERS FROM FSRU IF ROUNDING
RESULTS IN AN UNNORMALIZED NUMBER

(3) FCAl1, FCSU LOAD ACCUMULATOR EXEC BITS

(4) FSTU STORES ACCUMULATOR EXEC BITS

(5) FCAU, FSTU USED TO MOVE WHOLE WORDS
& EXEC BITS

A2-8

MNEMONICS

TITLE

SUBTRACT

CLEAR & SUBTRACT

CLEAR & ADD

ADD

COMPARE

MULTIPLY

STORE

STORE ROUNDED

DIVIDE

CLEAR & DIVIDE

OPTIONS

* INDIRECT

/ HALF WORD

IMMEDIATE

S SAVE

U UNNORMALIZED

APPENDIX 2

16 Bit Fixed Point

FORMAT OPN /m,X (1)

MNEMONIC OCTAL

SB 00

CS 01

CA 02

AD 03

CP 04

MP 05

ST 06

SR 07

DV 10

CD 11

(1)

USE OF THE SLASH (/)
OPTION IS REQUIRED FOR
RIGHT HALF-WORD ADDRESSING
IF THE SLASH IS OMITTED
LEFT HALF-WORD ADDRESSING
IS ASSUMED.

(2) 0 - AF
o - AD (1-8)

OPTIONS

* /
$ =

* /
$ =

* /
$ =

* /
$ =

* /
$ =

* /
$ =

* /
$

* /
$

* /
$ =

* /
$ =

(3) CA, CS LOAD LEFT ACCUMULATOR EXEC BIT

(4) ST STORES LEFT ACCUMULATOR EXEC BIT

FLAGS

ZGL
VC

ZGL
V

ZGL

ZGL
VC

ZGL

ZGL
V

VC

ZGL
V

ZGL
V

MNEMONICS

OPERATIONS

A-m _ A

-m - A (2)
(3)

m _ A (2)
(3)

A+ m _ A

Z SET IF A = m A UNCHANGED
G SET IF A > m
L SET IF A < m

A m -A:AE

A-m

A (ROUNDED) - M

A:AE -;.. m QUOTIENT - A
REMAINDER - AE

CLEAR AE THEN DIVIDE

FLAGS

Z = ACCUM. ZERO
G = ACCUM. > ZERO
L = ACCUM. < ZERO
V = OVERFLOW
C = CARRY

A2-9

APPENDIX 2

Index X

FORMAT OPN/m, X

OPTIONS

* $1=

* $1=

* $1=

* $1=
-* 1

$:

* $1:

* $1=

*1
$ =

* $1=

* $1=

A2-10

FLAGS

ZGL
VC

ZGL
V

ZGL

ZGL
vc

ZGL

C

AGL
V

ZGL
V

X-m-X

-m - X

m - X

(1, 2, 4)

OPERATIONS

X+ m - X

Z SET IF X - m X UNCHANGED
G SET IFX > m
L SET IF X < m

(3)

X_m

(3)

(3)

(3)

(1)

USE OF THE SLASH (/) OPTION
IS REQUIRED FOR RIGHT HALF­
WORD ADDRESSING IF THE SLASH
IS OMITTED LEFT HALFWORD
ADDRESSING IS ASSUMED

(2)

AN INDEX REGISTER MUST BE
SPECIFIED

(3)

SUBROUTINE

(4)

ADDRESS m IS NON-INDEXABLE

MNEMONICS

TITLE

SUBTRACT

CLEAR &
SUB 'IRAC T

CLEAR &
ADD

ADD

COMPARE

MULTIPLY

STORE

STORE
ROUNDED

DIVIDE

CLEAR &
DIVIDE

OPTIONS

* INDIRECT
1 HALFWORD

IMMEDIATE
$ BLANK
U UNNORMALIZED

APPENDIX 2

Extended Precision

MNEMONIC OCTAL OPTIONS

SB

CS

CA

AD

CP

MP

ST

SR

DV

CD

* 00 $=

* 01 $ =

* 02
$ =

* 03 $

* 04
$ =

* 05
$ =

* 06 $

* 07 $

* 10
$ =

* 11
$ =

(1)

SUBROUTINE

(2)

USE OF THE EQUAL SIGN (=)
OPTION CAUSES DATA
(32 BITS) TO BE PLACED
IN THE LITERAL POOL
(3)

o -+ AF
o - AD (1-8)

FORMAT OPN m, X

FLAGS

ZGL
VC

ZGL
V

ZGL

ZGL
VC

ZGL

ZGL

C

ZGL
V

ZGL
V

MNEMONICS

OPERATIONS

A:AE -m - A:AE

-m _ A:AE (3)

m _ A:AE (3)

A:AE + m _ A:AE

(1)

(1)

A:AE _m

(1)

(1)

(1)

FLAGS

Z ACCUM ZERO
G ACCUM> ZERO
L ACCUM < ZERO
V OVERFLOW
C CARRY

A2-11/A2-12

APPENDIX 3

T ABLE OF INTERRUPT ADDRESS CODES

Mask (M Mask (M
Internal Mask Internal Mask

Octal E External Octal E External

Interrupt Name Priority Address Mask) Interrupt Name Priority Address Mask)

pip 1 '40 Cannot be External Interrupt 24 '67 E '400
masked (1,7)

Data Exec 2 '41 M '40000 External Interrupt 25 '70 E '200

Priv. Inst. 3 '42 M '20000 (1,8)

Inst. Exec 4 '43 M'10000 External Interrupt 26 '71 E'100

Exp. Fault 5 '44 M '4000 (1,9)

Mem. Protect 6 '45 M '2000 External Interrupt 27 '72 E '40
(1,10)

Timer 7 '46 M'1000 External Interrupt 28 '73 E '20
Console 8 '47 M '400 (1,11)

Data Channel 0 9 '50 M '200 External Interrupt 29 '74 E'10

Data Channel 1 10 '51 M'100
(1,12)

Data Channel 2 11 '52 M '40
External Interrupt 30 '75 E '4

(1,13)
Data Channel 3 12 '53 M '20 External Interrupt 31 '76 E '2
Data Channel 4 13 '54 M'10 (1,14)

Data Channel 5 14 '55 M '4 External Interrupt 32 '77 E'l

Data Channel 6 15 '56 M'2
(1,15)

Data Channel 7 16 '57 M'l
External Interrupt 33 '100 Set by SFL =

(2,0) '60,0
External Interrupt 17 '60 E '_0 Reset by SFL =

(1,0) * '61,,0 I
External Interrupt 18 '61 E '40000

(1, 1)
This enables

External Interrupt 19 '62 E '20000 or disables
(1,2) External Interrupt 271 '457 all interrupts

External Interrupt 20 '63 E '10000 (16, 15) in banks 2-16
(1,3)

External Interrupt 21 '64 E '4000
More than one interrupt is enabled by forming.a.com-(1,4)

External Interrupt 22 '65 E '2000 posite mark code that is the arithmetic sum of the in-

(1,5) dividual code; e. g. , for External Interrupts 4,5,6,

External Interrupt 23 '66 E'1000 mark = E '7400.
(1,6)

*(b. n) Where b=Bank number

n ... Number of the interrupt in the bank.

A3-1

APPENDIX 3 TABLE OF INTERRUPT ADDRESS CODES

HYBRID OPERATIONS

Operation Codes for High-Speed Conversions

1. ANALOG-TO-DIGITAL CONVERSIONS

SFL = '-47 400+a, ,2

SFL = '+47400+a" 2

SFL = '+17400+a" 2

SFL = '+07400+a" 2

SFL = '+37400+a" 2

SFL = '+27400+a" 2

SFL = '+47600, ,2

TSL = '+07400,,2

Sequential Conversion

Random Conversion

Individual T /S : Store

Individual Tis: Track

Block of T /S : Store

Block of T /S : Track

ADC Control Readout

ADC Test

Digital-to-Analog Conversions

SFL = '-07000+a, ,2

SFL = '-47000+a, ,2

SFL = '+07000+a, , 2

SFL = '+47000+a, , 2

SFL = '+27000+a" 2

SFL = '+17000+a" 2

SFL = '+47200, , 2

TSL = '+07000,,2

Sequential Load DAC

Sequential Jam DAC

Random Load DAC

Random Jam DAC

Individual DAC Channel:
Transfer

Block of DAC Channels:
Transfer

Clear all DAC Registers

DAC Test

a = conversion channel address or block address.

2. OPERATION CODES FOR ANALOG
MONITOR/ CONTROL

DVM Conversion

DVM Readout

Analog Address
Selection

Analog Address
Readout

LOOB = '16+c" 12

LDOB = 'Ol+c" 12

LOOB = '04+c" 12

LDOB = '04+c, ,12

Analog Address Step LDOB = '17+c" 12

Analog Value Selection LOOB = '05+c" 12

A3-2

Potentiometer Setting LDOB = '15+c" 12

Single Print LDOB = '14+c" 12

Analog Mode Selection LDOB = '07 +c+m, , 12

Analog Time Constant

Selection, 1000: 1

10:1

Logic Mode Selection

Logic Word Input

Logic 16 Bit Word
Output

Logic B Bit Word
Output

LDOB = '10+c+t1" 12

LOOB= '11+c+t2" 12

LOOB = '12+c+d" 12

LOOB = '02+c, , 12

LDOB = '02+c, , 12

LDOB = '13+c, , 12

Mask Register Loading LOOB i" 12

Status Word Readout LDOB = '06+c, , 12

Fault Word Readout LOOB = '03+c, , 12

Monitor Word Readout STIB = M" 12

where c = analog console number times 25 in octal

for example: c = 40 for console 1

and

and

c = 100 for console 2

m follows the table below:

OD '0400

RT '1000

ST '1400

OP '2000

H '2400

IC '3000

PS '3400

tl follows the table below:

MSEC

SEC

'000

'400

APPENDIX 3

and

and

t2 follows the table below:

FAST

MED

SLO

'0400

'1400

'1000

d will be determined by the following table:

RUN

STOP

CLR

'0400

'1000

'1400

TABLE OF INTERRUPT ADDRESS CODES

finally i corresponds to a mask placed into the most

significant two octal digits of the address, thus vary­

ing between '00000 and '77000 changing only the left­

most two digits.

3. HYBRID SENSELINES AND FUNCTION LINES

TSL = '6000 + C + S " 2

SFL = '6000 + C + S " 2

where c is console # as defined above and

s is the address of the sense or control line

in octal.

A3-3/ A3-4

APPENDIX 4

TABLE OF SFL/TSL CODES

1. PROCESSOR INTERRUPT SFL

SFL Function Flag Indication SFL Function Flag Indication

21 Reset Privileged Instruction B flag if set 65 Reset Monitor Mode Indicator B flag if set
Interrupt Occurred Indicator 67 Reset Memory Protect In- B flag if set

23 Reset Memory Parity Error B flag is set terrupt Occurred Indicator
Indicator

25 Reset Console Interrupt 1 B flag if set
Indicator 2. PROCESSOR INTERRUPT TSL

27 Reset Console Interrupt 2 B flag if set
Indicator TSL Function Flag Indication

31 Reset Console Interrupt 3 B flag if set
Indicator 21 Tested Privileged Instruction Z flag if set

33 Reset Console Interrupt 4 B flag if set Interrupt Occurred Indicator

Indicator 23 Tested Memory Parity Error Z flag if set

40 Set Memory Protect Bank 1 B flag if set Indicator

Indicator 25 Tested Console Interrupt 1 Z flag if set

41 Reset Memory Protect B flag if set Indicator

Bank 1 Indicator 27 Tested Console Interrupt 2 Z flag if set

42 Set Memory Protect B flag if set Indicator

Bank 2 Indicator 31 Tested Console Interrupt 3 Z flag if set

43 Reset Memory Protect B flag if set
Indicator

Bank 2 Indicator 33 Tested Console Interrupt 4 Z flag if set

44 Set Memory Protect Bank 3 B flag if set
Indicator

Indicator 40 Tested Memory Protect Z flag if set

45 Reset Memory Protect B flag if set
Bank 1 Indicator

Bank 3 Indicator 42 Tested Memory Protect Z flag if set

46 Set Memory Protect Bank 4 B flag if set Bank 2 Indicator

Indicator 44 Tested Memory Protect Z flag if set

47 Reset Memory Protect B flag if set Bank 3 Indicator

Bank 4 Indicator 46 Tested Memory Protect Z flag if set

60 Set External Interrupt B flag if set Bank 4 Indicator

Enable Indicator 60 Tested External Interrupt Z flag if set

61 Reset External Interrupt B flag if set Enable Indicator

Enable Indicator 62 Tested Internal Timer On-Off Z flag if set

62 Set Internal Timer On-Off B flag if set Control Indicator

Control 65 Tested Monitor Mode Indicator Z flag if set

63 Reset Inte1'nal Timer On- B flag if set 67 Tested Memory Protect Z flag if set
Off Control Interrupt Occurred Indicator

A4-1

APPENDIX 4

3. EXCHANGEINTERRUPTSFL

SFL Function Flag Indication

-OOOOO+K* Unconditional Channel B
Clean

00001+K Disconnect Channel B

00002+K Enable Channel Ready B
Interrupt

00004+K Disable Channel Ready B
Interrupt

00010+K Enable Channel Signal B
Interrupt

00020+K Disable Channel Signal B
Interrupt

4. EXCHANGE INTERRUPT TSL

TSL Function Flag Indication

00001+K Test Channel Signal Z

-OOOOl+K Test Channel Signal and Z
Clear

00002+K Test Channel Parity Z

-00002+K Test Channel Parity and Z
Clear

00004+K Test Channel Ready Z

*K= 00000 jor Channel 0

= 1 0000 jor Channell

= 20000 jor Channel 2

= 30000 jor Channel 3

= 40000 jor Channel 4

= 50000 jor Channel 5

= 60000 jor Channel 6

= 70000 jor Channel 7

A4-2

TABLE OF SFL/TSL CODES

5. HYBRID SFL's

Digital-to-Analog Conversion

SFL

0700+a**

47000+a

-07000+a

-47000+a

27000+a

17000+a

07200

Function

Sequential/Normal Conversion

Sequential/Jam Conversion

Random/Normal Conversion

Random/Jam Conversion

Individual Channel Transfer

Block Transfer

Clear all DAC Registers

Analog-to-Digital Conversion

47400+a Sequential Conversion

-47400+a Random Conversion

17400+a Individual T /S Store

07400+a Indi vidual T /S Track

37400+a Block T /S Store

27400+a Block T /S Track

27600 Control Readout

**a = DAC Channel Address or Block Address.

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL AND TSL CODES FOR 8400 STANDARD PERIPHERAL EQUIPMENTS

GENERAL FORMAT

(Applicable to all Data Channels and Device Controllers attached to Data Channels.)

SFL Instructions

K D L
C rr--~A--~I,rr----~·~--~,r,--------~·~--------~

"M" Field I II I I II I I II I I II I I II I I I
o 1 3 4 7 8 15

C :;: O-SFLC. Used for general Channel/Device control conditions.

C:;: 1-SFLF. Used to Initialize Channel and Connect Device.

Also, for Unconditional Channel/Device Disconnect if D :;: O.

K :;: Data Channel Designator, 0 to 7.

D :;: Peripheral Device Designator, 1 to 15.

L :;: M field allocated for:

1. Setting Channel Function Register (CFR), if C :;: 1 and D :;: O.

2. Device Control, if C :;: 0 and D f 0, (i. e., Device Control Word).

3. Channel Control, if C :;: 0 and D :;: 0, (i. e., CHRI and CHSI).

TSL Instructions
K D L

C ~(A lr~--------""'''-----------~

"M" Field I " I I " I I II I I II I I II II I o 1 3 4 7 8 15

C :;: O-TSLC. Intended for general Channel/Device status testing.

C :;: 1_TSLF. Intended for general Channel/Device status testing, followed by

resetting the addressed status line(s) to zero on the same instruction.

K :;: Data Channel Designator, 0 to 7.

D:;: Peripheral Device Designator, 1 to 15.

L :;: M field allocated for:

1. Testing Channel conditions, if D :;: O.

2. Testing Peripheral Device conditions, if. D f O.

A4-3

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL/TSL INSTRUCTIONS FOR TYPEWRITER OPERATIONS

A4-4

SFL(C) "M"

SFL(F) "M"

K=Ot07
D = (N)p = (3)0

Function

Set Ribbon Black
SFL(C)

Set Ribbon Red
SFL(C)

K D L
C , 'r~--------~'rr----------~--------~,

1 0 II I I II I I i~/Ol I II I I II I I I
o ~,-_-...-_-,J'-.,J 15

N P

K D CFR

I ~ f I I 1,.--�---''--� -----~1/01~1-1 -----'I 1"'"'"---1-1 -----I 1
o \ J~

N p 15

"L" Code/CFR Comments

Set Additional
Channel/Device
Control Conditions

Initialize Channel/
Connect Device and
Clear Channel/Device

Indicators
Affected

X X X X X X X 1 Normal state when Data None
Channel is cleared or
disconnected.

X X X X X X 1 X None

Initialize Channel/ CFR Permits input or output Channel Signal
Connect Device (Channel transfer to Typewriter. Unlocks Channel Parity conditions, data for- keyboard for input.

mat.) Channel Interrupt

TSL Instructions

There are no TSL instructions associated directly with Typewriter status signals. Parity error

and certain Signals (carriage return, illegal control character) are tested via the Channel Parity

and Channel Signal indicators, respectively.

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL/TSL INSTRUCTIONS FOR PAPER TAPE READER OPERATIONS

K D L
C ~~f A _______ ,

Set Up Channell
Device Control
Conditions

SFL(C) "M" I 0 II I I II I I !! I I II I I II I I I
o '----v---l"--' 15

N P

K D CFR
C ,---A----,~, . A \

SFL(F) "M" 11 II I I II I I II I I II I I II I I I
o '---v----J'-.rJ 15

Initialize Channell
Connect Device or
Disconnect Channell
Device

N P

K=Ot07
D = (N)p = (1)0 x - Don't Care Bits

Function "L" Code/CFR Comments Indicators
Affected

Set Reader Forward X X X X X X X 1 Set direction of tape Device "Busy"
SFL(C) motion to Forward. response sets

"Busy" flag if
tape in motion.

Set Reader Reverse X X X X X X 1 X Set direction of tape As Above
SFL(C) motion to Reverse.

Initialize Channel/ CFR Connects Reader to Data Channel Parity
Connect Device Channel and starts tape Channel Signal SFL(F) motion.

Channel Interrupt

Stop Code

Device "Busy" if
Power off or
Reader in "Load"
state.

TSL Instructions

No status lines are tested via TSL instructions directly.

A4-5

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL/TSL INSTRUCTIONS FOR PAPER TAPE PUNCH OPERATIONS

A4-6

K D L
C ~ J. J. _______ --,.
r~ ~(v ,

SFL(C) "M"I II I I II I I Ii I I II I I II I I I Set Additional
Channel/Device
Control Conditions

"---v---'Y
N P

K D
C ~rr----~A~------,."

SFL(F) "M" 11 II I I II I I 111/°1
~y

N P

K=Ot07

D = (N)p = (2)0

Function "L" Code/CFR

Power On X X X X X X 1 X
SFL(C)

Power Off X X X X X X X 1
SFL(C)

Initialize Channel/ CFR
Connect Device (Channel data trans-
SFL(F) fer conditions, for-

mat, etc.)

TSL Instructions

CFR
J.

I II I I II I I I
Initialize Channel/
Connect Device or
Clear Channel/Device

X - Don't Care Bits

Comments Indicators
Affected

None

None

Set up Channel transfer "Busy" flag in
conditions, connect Flag Register if:
Punch and start data a) Power off and
transfer if Channel and b) Tape is low.
Punch are ready. Channel Parity

Channel Signal

Channel Interrupt

There are no status levels tested by TSL instructions.

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL INSTRUCTION LIST (FUNCTIONS AND CODES)
SERIAL (COLUMN-BY-COLUMN) CARD PUNCH

K D L
C ~~(r _____ --'J.", _____ -"

I II I I II I I II I I II I I II I I I
01 34 78 15

'--y----Jy
N P

M field
C = O-SFLC - Used to Set Channel/Device Control Conditions
C ::r: 1---SFLF - Used to Initialize Channel, Connect Device,

Unconditional Channel/Device Disconnect (D = 0)
K = Data Channel Number, 0 to 7
D = Device Number; Card Punch Device No. = (N)p = (2)1
L = M Field Allocated for Setting of Data Channel Function Register,

CFR (C = 1) or Device Control Conditions (D, C = 0)
X = Don't Care

SFLC CFR (for SFLF Program

Function or or L (for SFLC)
Comments Indicators

SFLF 8 9 10 11 12 13 14 15 Affected

Start Card SFLC X XX XX X X 1 Initiate "Card Punch "Busy" Flag. See
. Punch Cycle Cycle" w/o connect- other sections for

ing CP Controller to conditions.
Data Channel.

Start Card SFLF CFR Initiate "Card Punch See, other sections
Punch Cycle A Cycle" and connect for conditions.
and Connect 'X

,
CP controller to XX XX XX X

Punch (Cont) Data Channel. I

to Data I,

Channel ,

Eject Card* SFLC XX XX 1 X X X Card ejected to out- Non~
(Terminate put hopper after

Uncdnditional Card Cycle) punching previous
Command column. Next card

brought to Reg.
Station - - waiting

"

for next "Start Card
Punch Cycle"

"

command.

Reject (Off- SFLC XX XX X X 1 X Ejected mispunched None
set) Card card appears offset

by 1/2 inch output Unconditional
hopper. Command

Set DINE SFLC 1 X X X X X X X Set Dev. Int. Enable "Busy',' Flag,
Flip-Flop flip-flop to allow if DINE flip-
(DINE = Dev. Dev. Int. when Dev. flop could not be
Interrupt is NOT selected, set.
Enable) DINE flip-flop set

and Card Punch is
ready for next Card
Punch Cycle.

*A card is also ejected in response to "Carriage Return" character, (155)8' This character

is not punched.

A4-7

APPENDIX 4 TABLE OF SFL/TSL CODES

TSL INSTRUCTION LIST (FUNCTIONS AND CODES)

SERIAL (COLUMN-BY-COLUMN) CARD PUNCH

A4-8

K D L
C ~, J. II J. I

I II I I II I I ;; I I II I I II I I I
3~~8

N P

o 1 15

M Field

C = 0, Test Only, TSLC

C = 1, Test and Reset, TSLF

K = Data Channel Number, 0 to 7

D = Device Number; Card Punch Controller Code = (N)p = (2)1

L = Channel/Device Control Field (Channel Field if D = 0)

TSLC L Field
or

Function TSLF 8 9 10 11 12 13 14 15 Comments

Test "Card TSLC X X X X X X X 1 See other section for definition
Punch Oper- when Signal is true.
able" Status

Test "Card TSLC X X X X X X 1 X This line becomes true on start
Punch Cycle" of new card cycle (in response
Status to SFL command) and is reset

when card is ejected.

Test "Binary TSLC X X 1 X X X X X This line is "true" when the card
Mode" Status is being punched in "Binary Mode"

and "false" when card is being
punched in "Hollerith Mode. "

Test "End of TSLC X X X X X 1 X X This line becomes true on ejection
Card" Status of card and remains true until next

card is in Register Station. Start
"Card Punch Cycle" SFL commands
will be rejected during this period.

Test "Punch TSLF X X X X 1 X X X This line becomes true when an
Error" Status error (E'Echo-check'j error or

"overflow") is detected on punch-
ing a particular column. The
Punch Controller will ej ect the
card in response to the Punch
"next column data request. "
Data Channel will be disconnec-
ted and an interrupt generated.

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL INSTRUCTIONS FOR CARD READER OPERATIONS

SFL(C) "M"

SFL(F) "M"

D = (N)p =(1)1

K=Oto7

Function

Start Card
Cycle SFL(C)

Initiate
Channel/Con-
nect Device
SFL(F) In-
struction

Disconnect
Power from
Card Reader
SFL(C)

Set "Device
Interrupt
Enable"
(DINE) Flip-
Flop

K D L
C ~r.---J."'-----"H"'-----oA_------,

I 0 II I I /I I I Ii I I /I I I II I I I Set Up Additional
Channel/Device
Control Conditions o l Jl J

T -y- 15
N P

K D CFR
C~r i H .1 ,

Initialize Channel/
Connect Device and
Disconnect Channel/
Device

11 " I I II I I !! I I II I I " I I I
o ~y 15

N P

x = Don't Care Bit Positions,
Combined Operations Possible

"V' Code/CFR Comments

X X X X X X X 1 A card is started on its
way to Read Station. An
SFL(F) must follow with-
in a period of time to en-
able reading.

CFR (Data Channel Connects Card Reader
Options) to Data Channel initiates

"Card Cycle" if not al-
ready started. Cards
are read continuously
until Data Channel is
disconnected.

X X X X X 1 0 X Disconnect Power when
Reader not expected to
be used for some time.

1 X X X X X X X Enables Channel Inter-
rupt if Reader is Ready
for next card cycle, (i. e.,.
Card Reader Ready =
"1").

Indicators

Device "Busy" setting
"Busy" Flag if Card
Cycle in Progress or
Card Reader not Ready.

Channel Signal, Channel
Interrupt, Channel
Parity

No Device "Busy" Re-
sponse

"Busy" response if any
device already selected
on this Data ChanneL

NOTE: The two different instructions to start a card cycle are available to permit the use

of Data Channel with other devices on the channel while a card is being moved

relatively slowly into "read station".

A4-9

APPENDIX 4 TABLE OF SFL/TSL CODES

TSL INSTRUCTIONS FOR LINE PRINTER OPERATION

K D L
C~I A V A ,

TSL "M" I II I I II I I ;;1/°1 I II I I II I I I
° '---y---A-y-J 15

N P

D = (N)p = (3)1

C = 0, Test Status Line Only

C = 1, Test Status Line, Then Clear Status Indicator

X = 0, Unless Combined Test Specified

Function "L" Field Status Definition and/or Comments

Test Printer Ready X X X X X 1 X X Printer in operable condition. Power
turned on. "Operate-Standby" switch on
Operator Panel in "operate" position, down
gate is closed. Paper is in printing position.

Next Character X X X X X X X 1 Printer available to accept next character.
Request (=Send The line will be false during printing or
Data) paper spaCing operations.

N ext Line Request X X X X X X 1 X Printing of previous line is complete. The
Printer is ready for next line.

Printer Buffer Full X X X X 1 X X X 132 characters transmitted to Printer
Buffer without print (end of message) com-
mand.

Paper AdvanCing X X X 1 X X X X Paper advanCing not complete.

A4-10

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL INSTRUCTIONS FOR PARALLEL (ROW-BY-ROW)

CARD PUNCH OPERATIONS

SFL(C)

SFL(F)

K=Ot07

D = (N)p = (2)1

= Device #

Function

Start Card
Punch Cycle

Reject Card
to AUX Stacker

Initialize
Channel/
Connect
Device

Set "Device
Interrupt
Enable"
(DINE) Flip-
Flop

K D L

I ~ If I I 1"'--1--"--1 -----::1101,.--1-11-1 --"--I -II -I -----I 1 Set Channel/DeVice
Control Conditions

o '" _.....,..._~J'-.,-J 15
N P

K D CFR
C(){" "\ Initialize Channel/

Connect Device, Clear
Channel 11 I I I II I I !! I I II I I II I I I

o "'-.,-J 15
N P

x = Don't Care Unless Combined Operation Desired

"L" Code/CFR Comments Indicators Affected

X X X X X X X 1 Start card on its way Device "Busy" response if
to Punch Station. a) Punch not Ready
Stop after one card b) Power to Punch off.
moved unless Punch
connected to Data
Channel.

X X X X X X 1 X The card being None
punched to be
ejected to AUX
Stacker.

CFR Permits data transfer Device "Busy" response
and punch operation. if instruction is too 'late
Allows bringing next to punch complete card.
card into punch Channel Signal, Channel
station if Channel/ Parity, Channel Interrupt.
Device not discon ..
nected.

1 X X X X X, X X Permits an Interrupt Channel Interrupt "Busy"
when device becomes response if at least one
operable again - device already connected
following some fail- to channel.
ure.

A4-11

APPENDIX 4 TABLE OF SFL/TSL CODES

TSL, INSTRUCTIONS FOR CARD READ OPERATION

K D L
C~~f " ,

TSL "M" I " I I I I I Ii I I II I I II I I I
o "---v----..J '-v-' 15

N P

C = 0, Test Only
C = 1, Test and Clear
D = (N)p, K = 0 to 7

= (1)1

x = Don't Care Conditions Unless Combined Tests Requested

Function "L" Code Status Definition and/or Comments

Test "Card Reader X X X X X X 1 X No jams. Stacker not full. Covers in place.
Ready" Status Power on. Start button depressed. Feeder

ready (Model 1). Read Circuits OK. Card
line mechanism locked (Model 1). Hopper
not empty. No character validity error.

Test "Read Cycle in X X X X X 1 X X Response to "Start Card Cycle" command.
Progress" Status "True" until all 80 columns are read. New

card cycle initiated, after some delay when
this Signal goes "False" provided Data
Channel remains connected.

Test "Hopper Empty" X X X X 1 X X X True when hopper is empty and End of File
Status button has been depressed.

Test "Reader Error" X X X 1 X X X X A photo cell malfunctioning or invalid
Status character detected (Hollerith Mode) - if

validity switch is on.

Test "Overflow" X X 1 X X X X X A character has been missed. Once a card
Status cycle is initiated characters are available

at fixed intervals.

Test "Binary Card" X X X X X X X 1 The card being read is a "Binary Card".
Status

Test "Card Reader X 1 X X X X X X Card Reader has been put on-line again and
Continue" Status the operator has depressed "Card Reader

Continue" button.

A4-12

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL INSTRUCTIONS FOR LINE PRINTER OPERATION

K D L
C ~~r'----~~'------'l

SFL(C) "M" I 0 II I I II I I 111/ 01 I II I I I I I I
o L-.,---Jy 15

N P

K D CFR

Cr A H " 11

SFL(F) "M" I II I I II I I I
o l ~v---'Jt.y-1 15

N P
K=Oto7
D = (N)p = (3)1
X = Don't Care Bit Positions

Function "L" Code/CFR Comments Indicators
Affected

Initialize Channell CFR Connects Printer to Device "Busy" re-
Connect Device Data Channel and makes sponse if Printer
SFL(F)

L
the latter responsive to is not ready.

, Signals from the Printer
(, buffer.

Set "Device Inter- 1 o X X X X X X Enables Channel Inter-
rupt Enable" (DINE) rupt Device Busy if
Flip-Flop DES=="l".

Advance Carriage Top of Form
to Control Tape
Hole on Chan-
nell X 1 X X 0 0 0 0

2 X 1 X X 0 0 0 1 Different tapes avail- Device "Busy" re-

11 X 1 X X 0 0 1 0
able to suit particular sponse if a) print-
format requirements. ing cycle not com-

4 X 1 X X 0 0 1 1 plete b) previous

5 X 1 X X 0 1 0 0 space operations
not complete.

6 X 1 X X 0 1 0 1

7 X 1 X X 0 1 1 0

8 X 1 X X 0 1 1 1

Adv. Carr. by 1 Line X 1 X X 1 0 0 X Permit direct paper Same as in previous

2 X 1 X X 1 0 1 0
spacing control with- case.
out reference to tape

3 X 1 X X 1 0 1 1 loop.

4 X 1 X X 1 1 0 0

5 X 1 X X 1 1 0 1

6 X 1 X X 1 1 1 0

7 X 1 X X 1 1 1 1

"1" in this Position ~
I . I The same codes are

Specifies Paper L used to obtain paper
Space Instructions spacing by 1st char-

acter in a line.

Disable Auto Car- 0 o X XX X X 1 To permit overprinting Device "Busy" re-
riage Advance on of a line if desired. sponse if paper
1st Character of a spacing taking place.
Line

Set Up Channel/
Device Operating
Conditions

Initialize Channel/
Connect Device or
Clear Channel De­
vice Conditions

A4-13

APPENDIX 4

TSL INSTRUCTIONS FOR PARALLEL (ROW-BY-ROW)

CARD PUNCH OPERATION

C (

11/ 01
0

K D
• \(

A

"
I I II I I ::1/01 I

\ , I~

N P

K=Ot07
D = (2)1 = (N)p = Device Number
C = 0 Test Status Level Only

TABLE OF SFL/TSL CODES

L
• \

I II I II I I I
15

C = 1 Test Status and Then Reset Status Flip-Flop
X = Don't Care Bits, Unless Combined Tests Desired

Function "L" Code Status Definition and Comments

Test "Punch Ready" Status X X X X XX X 1 Cards in hopper. Die in place. Card line
mechanism locked up. Card in position to
be punched. Stacker not full. Power on.
No jam condition. Covers are in place.
No punch error.

Test "Ready to Punch Next X X X X Xl X X Punch is ready to punch next row on card.
Row" Status

Test "Punch Cycle" Status X X X X XX 1 X Card is in punch cycle. Status remains
true for the duration of punching a card.

Test "Punch Error" Status X X X X 1 X X X An invalid Hollerith character punched.
Inhibited in "BIN" mode.

A4-14

APPENDIX 4
TABLE OF SFL/TSL CODES

TSL INSTRUCTION LIST AND CODES FOR MAGNETIC TAPE OPERATIONS

K D L
C ,---A.-----.~,. A ,

TSL "M" I II I I I I I ; I I I I I I I I I
D = (N)p = (4)0
K=Ot07

o

X = 0, Unless "Combined" Tests Preferred

Function "L" Field

Test and Clear End 1 o X X X X X 1
of Record Indicator

Test and Clear End 1 0 X X X X 1 X
of File Indicator

Test and Clear 1 0 X X X 1 X X
Overflow Indicator

Test if Tape Unit 1 0 X X 1 X X X
Ready

Test if Tape is at 1 0 X 1 X X X X
Load Point (BOT)

Test if End of Tape 1 0 1 X X X X X
(EOT) has been
Reached

Test if File-Protect 1 1 X X X X 1 X
is On

Test for High Den- 1 1 X X 1 X X X
sity

Test for Medium 1 1 X 1 X X X X
Density

Test if Tape Unit is 0 1 X X X Unit 0
Rewinding to 7

Test if selected tape 1 1 X X X 1 X X
unit is set for 7-
track mode.

15

If C = 0 Test Only
If C = 1 Test and Clear Status Indicator

Status Definition and/or Comments

This indicator is needed only to enable
programmer to test whether EOR has been
reached when Data Channel is not connected
to tape unit.

Set up by EOF marker in Read or Write
(by Check head) operations.

Set up when Character is missed in Read
operation or is late (Rate check) in Write
operation.

Tape Unit is ready to accept a new instruc-
tion.

Load point tab is at photo sense head.

End of tape tab has passed the photo sense
head.

Tape unit is loaded with reel equipped with
a file-protect ring.

Tape unit selected for High Density (800 bpi)
recording.

Tape unit selected for Medium Density
(556 bpi) recording.

The unit addressed is in the Rewinding state.
A number of tape units can be in the Re-
winding status at the same time.

This test is relevant when both the 7 -track
and the 9-track features are available in a
particular Magnetic Tape System.

A4-15

APPENDIX 4 TABLE OF SFL/TSL CODES

SFL INSTRUCTION LIST AND CODES FOR MAGNETIC TAPE OPERATIONS

SFL(C) "M"

SFL(F) "M"

FWD/REV
F/R
W/R
D

A4-16

K D
C~~I

lo~ I I II I I ~1/01
0 '---v-/'-..r'

N P

C K D
~~I

It/! I I II I I :[1/01
0 '----v--''-..rJ

N

= Forward/Reverse Motion
= File/Record
= Write/Read
= (N)p = (4)0

"L" Code or CFR
Function

Control Fwd/Rov' F/R w/R

1. Read Record(s) 0 1 0 0 0
FWD

2. Read Record(s) 0 1 1 0 0
REV

3. Search End of 0 1 0 1 ,0
FUeFWD

4. Search End of 0 1 1 1 0
FUeREV

5. Write Record(s) 0 1 0 0 1
(FWD Only)

6. Write Blank 0 1 0 1 1
Tape (=Erase)
FWD

7. Set Unit Field 0 0 0 0 0

8. Write End of 1 1 0 1 1
File

9. Rewind 10 Load 0 0 1 1 0
Point

10. Rewlnd and Un- O 0 1 1 1
lock

11. Initialize Chan- CFR
nel Connect De-
viee

12. Set "Device In- 1 0 X X X
terrupt Enable"
(DINE) FlIp-
Flop

P

Unit #

0107

0107

0107

Oto 7

o to 7

o to 7

o to 7

0107

0107

0107

X

L
A , Set Up Channel/

I I I I I I I
I_DeVice Operating

Conditions (Other
15 than CFR)

CFR
A , Initialize Channell

I I I I I 1 I I Connect Device or
--Clear Channel/De-

15 vice Conditions

X't:: 0, Unless "Combined" Operations Required

Indlcators Comments
~led)

Read record and en- Channel Parity, Chan-
able data transfer if nel Signal, Channel
Channel Initialized Interrupt, EOR, EOT,
and Device connected. Overfiow.
otherwise skip one
record.

As 1 but tape moves As in 1 but BOT instead
in REV direction. of EOT.

As In 1 but Channel
InltiaUze/Devtce

EOT, EOF

Connect Instr. omit-
ted. Stop after one
record. Search for
File Mark instead of
End of Record.

As in 3 hut tape moves BOT, BOF
in REV direction.

Write a record after Channel Parity, Chan-
Channe1lnltlalize/ nel Signal, Channel In-
Device Connect Instr. terrupt, EOR, EOT J

and write LPC at end Overflow
of record (word. count
= 0).

Write as in 5 but re- Channel Parity (H tape
cord "an zero" char- not blank), EOT
acters. Stop tape af-
ter 3-3/4 Inches.

Set up the unit field of
control register, but
do not initiate any tape
operat1on to allow test-
ing of se1. unit status.

Write EOF mark and
its LPC, (17}8 in both

EOF,EOT

cases, under control of
Tape Controller.

Initiate Rewind opera- BOT
tlon via a trigger.
Transfer to other tape
units not inhibited while
rewinding.

As in 9 but tape unit BOT
switched to "LOCAL"
mode.

This instruction enables "Busy" flag If data
data transfer and makes transfer not possible at
channel responsive to that· time. "
Device signals.

Allow channel inter- "Busy" response if any
rupt when MT becomes device on this Data
operable again and this Channel already con-
flip-flop is set. nected for data transfer

(DES flip-flop set).

APPENDIX 5

CHARACTER CODE EQUIVALENCE TABLE

Card
Punch Octal

Char. (Hollerith) ** * Hex

0 0 00 00 00
1 1 04 01 01
2 2 10 02 02
3 3 14 03 03
4 4 20 04 04
5 5 24 05 05
6 6 30 06 06
7 7 34 07 '07
8 8 40 10 08
9 9 44 11 09

1) 2-8 50 12 OA
= 3-8 54 13 OB , 4-8 60 14 OC
: 5-8 64 15 OD

J 6-8 70 16 OE
7-8 74 17 OF

+ 12 100 20 10
A 12-1 104 21 11
B 12-2 110 22 12
C 12-3 114 23 13
D 12-4 120 24 14
E 12-5 124 25 15
F 12-6 130 26 16
G 12-7 134 27 17
H 12-8 140 30 18
I 12-9 144 31 19
? 12-0-8 150 32 1A
. 12-3-8 154 33 1B
) 12-4-8 160 34 1C
[12-5-8 164 35 1D
< 12-6-8 170 36 1E

$ 12-7-8 174 37 1F

,

CARRIAGE RETURN 664 155
TAB 764 175
BACKSPACE 670 156
UPPER CASE 470 116
LOWER CASE 770 136
INDEX 764 135
STOP CODE 400 100

Card
Punch Octal

Char. (Hollerith) ** * Hex

.. 11 200 40 20
J 11-1 204 41 21
K 11-2 210 42 22
L 11-3 214 43 23
M 11-4 220 44 24
N 11-5 224 45 25
0 11-6 230 46 26
P 11-7 234 47 27
Q 11-8 240 50 28
R 11-9 244 51 29
! 11-0-8 250 52 2A
$ 11-3-8 254 53 2B
* 11-4-8 260 54 2C
J 11-5-8 264 55 2D
; 11-6-8 270 56 2E
t::. 11-7-8 274 57 2F

Blank No Punch 300 60 30
/ 0-1 304 61 31
S 0-2 310 62 32
T 0-3 314 63 33
U 0-4 320 64 34
V 0-5 324 65 35
W 0-6 330 66 36
X 0-7 334 67 37
y 0-8 340 70 38
Z 0-9 344 71 39
f- 0-2-8 350 72 3A
, 0-3-8 354 73 3B
(0-4-8 360 74 3C
n 0-5-8 364 75 3D
\ 0-6-8 370 76 3E
~ 0-7-8 374 77 3F

* = Right 8 Bit Byte in Each Half-Word

** = Left 8 Bit Byte in Each Half-Word

A5-1/A5-2

2n

1
2
4
8

16
32
64

128

256
512

1 024
2 048

4 096
8 192

16 384
32 768

65 536
131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864

134 217 728

268 435 456
536 870 912

1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

n

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

APPENDIX 6

POWERS OF TWO

1.0
0.5
0.25
0.125

'0.062 5
0.031 25
0.015 625
0.007 812 5

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5,
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 .059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0:000000000465 661,287 307'739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

TABLE POWERS OF TWO

A6-1/A6-2

0000
to

0777
(Octal)

0000
to

0511
(Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000 0512
to to

1777 1023
(Octal) (Decimal)

0000
001.0
0020
0030
0040
0050
0060
0070

0100
0110
0120
0130
.0140
0150
0160
017.0

0200
0210
0220
0230
0240
0250
0260
.0270

0300
0310
0320
0330
0340
0350
0360
0370

1000
10to
1020
1030
1040
1050
1060
1070

1100
1110
1120
1130
1140
1150
1160
1170

1200
1210
1220
1230
1240
1250
1260
1270

1300
1310
1320
1330
1340
1350
1360
1370

APPENDIX 7

OCTAL-DECIMAL INTEGER CONVERSION

.0 1 2 3 4 5 6 7 0 1 2

0000 0001 0002 0003 0004 0005 0006 bo07 0400 0256 0257 .0258
0008 0009 0010 0011 0012 0013 0014 0015 0410 0264 0265 0266
0016 0017 0018 0019 0020 0021 0022 0023 0420 0272 0273 0274
0024 0025 0026 0027 0028 0029 0030 0031 0430 0260 0281 0262
0032 0.033 0034 0035 0036 0037 0036 0039 0440 0268 0269 0290
0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0296
0048 0049 0050 0051 0052 0053 0054 0055 0460 0304 0305 0306
095~ 0057 0058 0059 0060 0061 0062 0063 0470 0312 0313 0314

0064 0065 0066 0067 0068 0069 0070 0071 0500 0320 0321 0322
0072 0073 0074 0075 0076 0077 0078 0079
0060 0081 0082 b083 0084 0065 0086 0087

0510 0326 0329 0330
0520 0336 0337 0338

0088 0089 0090 0091 0092 0093 0094 0095 0530 0344 0345 0346
0096 00~7 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354
0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362
0112 0113 0114 0115 0116 0117 0118 0119 0560 0368 0369 0370
.0120 0121 .0122 .0123 0124 0125 0126 0127 0570 0376 0377 0376

0128 0129 0130 0131 .0132 0133 0134 0135 0600 0364 0365 0366
0136 0137 0138 0139 0140 0141 0142 0143 0610 0392 0393 0394
0144 0145 0146 0147 0148 0149 0150 0151 0620 0400 0401 0402
0152 0153 0154 0155 0156 0157 0158 0159 0630 0408 0409 0410
0160 0161 0162 0163 0164 0165 0166 0167 0640 0416 0417 0416
0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426
0176 0177 0176 0179 0180 0181 0182 0183 0660 0432 0433 0434
0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442

0192 0193 0194 .0195 0196 0197 0198 0199 0700 0448 0449 0450
0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0456
0208 0209 0210 0211 0212 0213 0214 0215 0720 0464 0465 0466
0216 0217 0218 0219 0220 0221 0222 0223 0730 0472 0473 0474
0224 0225 0226 0227 0226 0229 0230 0231 0740 0460 0461 0482
0232 0233 0234 0235 0236 0237 0236 0239 0750 0466 0489 0490
0240 0241 0242 0243 0244 0245 0246 0247 0760 0496 0497 0498
0248 0249 0250 0251 0252 0253 0254 0255 0770 0504 0505 0506

0 1 2 3 4 5 6 7 0 1 2

0512 0513 0514 0515 0516 0517 0516 0519 1400 0766 0769 0770
0520 0521 0522 0523 0524 0525 0526 0527 1410 0776 0777 0776
0526 0529 0530 0531 0532 0533 0534 0535 1420 0764 0765 0786
0536 0537 0536 0539 0540 0541 0542 0543 1430 0792 0793 0794
0544 0545 0546 0547 0548 0549 0550 0551 1440 0600 0801 0602
0552 0553 0554 0555 0556 0557 0556 0559 1450 0806 0809 0610
0560 0561 0562 0563 0564 0565 0566 0567 1460 0816 0617 0616
0566 0569 0570 0571 0572 0573 0574 0575 1470 0624 0625 0826

0576 0577 0576 0579 0560 0581 0562 0583 1500 0832 0833 0634
0564 0565 0566 0567 0586 .0589 0590 0591 1510 0640 0641 0642
0592 0593 0594 0595 0596 0597 0598 0599 1520 0648 0649 0650
0600 0601 0602 0603 0604 0605 0606 0607 1530 0656 0657 0656
0606 0609 0610 0611 0612 0613 0614 0615 1540 0664 0865 0666
0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0673 0874
0624 0625 0626 0627 0628 0629 0630 0631 1560 0660 0881 0662
0632 0633 0634 0635 0636 0637 0638 0639 1570 0886 0889 0690

0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898
0646 0649 0650 0651 0652 0653 0654 0655 1610 0904 0905 0906
0656 0657 0658 0659 0660 0661 0662 0663 1620 0912 0913 0914
0664 0665 0666 0667 0668 0669 0670 0671 1630 0920 0921 0922
0672 0673 0674 0675 0676 0677 0676 0679 1640 0926 0929 0930
0680 0681 0682 0683 0684 0685 0666 0667 1650 0936 0937 0938
0688 0669 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946
0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954

0704 0705 0706 0707 0708 0709 0710 0711 1700 0960 0961 0962
0712 0713 0714 0715 0716 0717 0716 0719 1710 0966 0969 0970
0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977 0978
0728 0729 0730 0731 0732 0733 0734 0735 1730 0984 0965 0966
0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0994
0744 0745 0746 0747 0746 0749 0750 0751 1750 1000 1001 1002
0752 0753 0754 0755 0756 0757 0758 0759 1760 1008 1009 1010
0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018

Octal-Decimal Integer Conversion Table (Sheet 1 of 7)

3 4 5 6 7

0259 0260 0261 0262 0263
0267 0268 0269 0270 0271
0275 0276 0277 0278 0279
0263 0284 0285 0286 0267
0291 0292 0293 0294 0295
0299 0300 0301 0302 0303
0307 030Q 0309 0310 0311
0315 0316 0317 0318 0319

0323 0324 0325 0326 0327
0331 0332 0333 0334 0335
0339 0340 0341 0342 0343
0347 0346 0349 0350 0351
0355 0356 0357 0356 0359
0363 0364 0365 0366 0367
0371 0372 0373 0374 0375
0379 0380 0361 0382 0383

0367 0368 0389 0390 0391
0395 0396 0397 0396 0399
0403 0404 0405 0406 0407
0411 0412 0413 0414 0415
0419 0420 0421 0422 0423
0427 0428 0429 0430 0431
0435 0436 0437 0438 0439
0443 0444 0445 0446 0447

0451 0452 0453 0454 0455
0459 0460 0461 0462 0463
0467 0468 0469 0470 0471
0475 0476 0477 0478 0479
0463 0464 0465 0486 0467
0491 0492 0493 0494 0495
0499 0500 0501 0502 0503
0507 0508 0509 0510 0511

3 4 5 6 7

0771 0772 0773 0774 0775
0779 0780 0761 0762 0783
0787 0766 0789 0'(90 0791
0795 0796 0797 0796 0799
0603 0804 0605 0606 0807
0611 0812 0613 0614 0615
0619 .0620 0821 0622 0823
0627 0826 0629 0830 0831

0635 0636 0637 0838 0839
0643 0644 0645 0846 0647
0651 0852 0853 0854 0655
0659 0660 0861 0662 0663
0667 0866 0669 0870 0871
0875 0676 0877 0678 0679
0863 0884 0685 0886 0887
0691 0692 0693 0694 0895

0699 0900 0901 0902 0903
0907 0906 0909 0910 0911
0915 0916 0917 0918 0919
0923 0924 0925 0926 0927
0931 0932 0933 0934 0935
0939 0940 0941 0942 0943
0947 0946 0949 0950 0951
0955 0956 0957 0956 0959

0963 0964 0965 0966 0967
0971 0972 0973 0974 0975
0979 0980 0961 0982 0983
0987 0988 0989 0990 0991
0995 0996 0997 0998 0999
1003 1004 1005 1006 1007
1011 1012 1013 1014 1015
1019 1020 1021 1022 1023

A7-1

APPENDIX 7

0 1 2 3 4

2000 1024 1025 1026 1027 1028
2010 1032 1033 1034 1035 1036
2020 1040 1041 1042 1043 1044
2030 1048 1049 1050 1051 1052
2040 1056 1057 1058 1059 1060
2050 1064 1065 1066 1067 1068
2060 1072 1073 1074 1075 1076
2070 1080 1081 1082 1083 1084

2100 1088 1089 1090 1091 1092
2110 1096 1097 1098 1099 1100
2120 1104 1105 1106 1107 1108
2130 1112 1113 1114 1115 1116
2140 1120 1121 1122 1123 1124
2150 1128 1129 1130 1131 1132
2160 1136 1137 1138 1139 1140
2170 1144 1145 1146 1147 1148

2200 1152 1153 1154 1155 1156
2210 1160 1161 1162 1163 1164
2220 1168 1169 1170 1171 1172
2230 1176 1177 1178 1179 1180
2240 1184 1185 1186 1187 1188
2250 1192 1193 1194 1195 1196
2260 1200 1201 1202 1203 1204
2270 1208 1209 1210 1211 1212

2300 1216 1217 1218 1219 1220
2310 1224 1225 1226 1227 1228
2320 1232 1233 1234 1235 1236
2330 1240 1241 1242 1243 1244
2340 1248 1249 1250 1251 1252
2350 1256 1257 1258 1259 1260
2360 1264 1265 1266 1267 1268
2370 1272 1273 1274 1275 1276

0 1 2 3 4

3000 1536 1537 1538 1539 1540
3010 1544 1545 1546 1547 1548
3020 1552 1553 1554 1555 1556
303.0 1560 1561 1562 1563 1564
3040 1568 1569 1570 1571 1572
3050 1576 1577 1578 1579 1580
3060 1584 1585 1586 1587 1588
3070 1592 1593 1594 1595 1596

3100 1600 1601 1602 1603 1604
3110 1608 1609 1610 1611 1612
3120 1616 1617 1618 1619 1620
3130 1624 1625 1626 1627 1628
3140 1632 1633 1634 1635 1636
3150 1640 1641 1642 1643 1644
3160 1648 1649 1650 1651 1652
3170 165.6 1657 1658 1659 1660

3200 1664 1665 1666 1667 1668
3210 1672 1673 1.674 1675 1676
3220 1680 1681 1682 1683 1684
3230 1688 1689 1690 1691 1692
3240 1696 1697 1698 1699 1700
3250 1704 1705 1706 1707 1708
3260 1712 1713 1714 1715 1716
3270 1720 1721 1722 1723 1724

3300 1728 1729 1730 1731 1732
3310 1736 1737 1738 1739 1740
3320 1744 1745 1746 1747 1748
3330 1752 1753 1754 1755 1756
3340 1760 1761 1762 1763 1764
3350 1768 1769 1770 1771 1772
3360 1776 1777 1778 1779 1780
3370 1784 1785 1786 1787 1788

A7-2

5 6 7 0 1 2

1029 1030 1031 2400 1280 1281 1282
1037 1038 1039 2410 1288 1289 1290
1045 1046 1047 2420 1296 1297 1298
1053 1054 1055 2430 1304 1305 1306
1061 1062 1063 2440 1312 1313 1314
1069 1070 1071 2450 1320 1321 1322
1077 1078 1079 2460 1328 1329 1330
1085 1086 1087 2470 1336 1337 1338

1093 1094 1095 2500 1344 1345 1346
1101 1102 1103 2510 1352 1353 1354
1109 1110 1111 2520 1360 1361 1362
1117 1118 1119 2530 1368 1369 1370
1125 1126 1127 2540 1376 1377 1378
1133 1134 1135 2550 1384 1385 1386
1141 1142 1143 2560 1392 1393 1394
1149 1150 1151 2570 1400 1401 1402

1157 1158 1159 2600 1408 1409 1410
1165 1166 1167 2610 1416 1417 1418
1173 1174 1175 2620 1424 1425 1426
1181 1182 1183 2630 1432 1433 1434
1189 1190 1191 2640 1440 1441 1442
1197 1198 1199 2650 1448 1449 1450
1205 1206 1207 2660 1456 1457 1458
1213 1214 1215 2670 1464 1465 1466

1221 1222 1223 2700 1472 1473 1474
1229 1230 1231 2710 1480 1481 1482
1237 1238 1239 2720 1488 1489 1490
1245 1246 1247 2730 1496 1497 1498
1253 1254 1255 2740 1504 1505 1506
1261 1262 1263 2750 1512 1513 1514
1269 1270 1271 2760 1520 1521 1522
1277 1278 1279 2770 1528 1529 1530

5 6 7 0 1 2

1541 1542 1543 3400 1792 1793 1794
1549 1550 1551 3410 1800 1801 1802
1557 1558 1559 3420 1808 1809 1810
1565 1566 1567 3430 1816 1817 1818
1573 1574 1575 3440 1824 1825 1826
1581 1582 1583 3450 1832 1833 1834
1589 1590 1591 3460 1840 1841 1842
1597 1598 1599 3470 1848 1849 1850

1605 1606 1607 3500 1856 1857 1858
1613 1614 1615 3510 1864 1865 1866
1621 1622 1623 3520 1872 1873 1874
1629 1630 1631 3530 1880 1881 1882
1637 1638 1639 3540 1888 1889 1890
1645 1646 1647 3550 1896 1897 1898
1653 1654 1655 3560 1904 1905 1906
1661 1662 1663 3570 1912 1913 1914

1669 1670 1671 3600 1920 1921 1922
1677 1678 1679 3610 1928 1929 1930
1685 1686 1687 3620 1936 1937 1938
1693 1694 1695 3630 1944 1945 1946
1701 1702 1703 3640 1952 1953 1954
1709 1710 1711 3650 1960 1961 1962
1717 1718 1719' 3660 1968 1969 1970
1725 1726 1727 3670 1976 1977 1978

1733 1734 1735 3700 1984 1985 1986
1741 1742 1743 3710 1992 1993 1994
1749 1750 1751 3720 2000 2001 2002
1757 1758 1759 3730 2008 2009 2010
1765 1766 1767 3740 2016 2017 2018
1773 1774 1775 3750 2024 2025 2026
1781 1782 1783 3760 2032 2033 2034
1789 1790 1791 3770 2040 2041 2042

3

1283
1291
1299
1307
1315
1323
1331
1339

1347
1355
1363
1371
1379
1387
1395
1403

1411
1419
1427
1435
1443
1451
1459
1467

1475
1483
1491
1499
1507
1515
1523
1531

3

1795
1803
1811
1819
1827
1835
1843
1851

1859
1867
1875
1883
1891
1899
1907
1915

1923
1931
1939
1947
1955
1963
1971
1979

1987
1995
2003
2011
2019
2027
2035
2043

OCTAL-DECIMAL INTEGER CONVERSION

4 5

1284 1285
1292 1293
1300 1301
1308 1309
1316 1317
1324 1325
1332 1333
1340 1341

1348 1349
1356 1357
1364 1365
1372 1373
1380 1381
1388 1389
1396 1397
1404 1405

1412 1413
1420 1421
1428 1429
1436 1437
1444 1445
1452 1453
1460 1461
1468 1469

1476 1477
1484 1485
1492 1493
1500 1501
1508 1509
1516 1517
1524 1525
1532 1533

4 5

1796 1797
1804 1805
1812 1813
1820 1821
1828 1829
1836 1837
1844 1845
1852 1853

1860 1861
1868 1869
1876 1877
1884 1885
1892 189.3
1900 1901
1908' 1909
1916 1917

1924 1925
1932 1933
1940 1941
1948 1949
1956 1957
1964 1965
1972 1973
1980 1981

1988 1989
1996 1997
2004 2005
2012 2013
2020 2021
2028 2029
2036 2037
2044 2045

6

1286
1294
1302
1310
1318
1326
1334
1342

1350
1358·
1366
1374
1382
1390
1398
1406

1414
1422
1430
1438
1446
1454
1462
1470

1478
1486
1494
1502
1510
1518
1526
1534

6

1798
1806
1814
1822
1830
1838
1846
1854

1862
1870
1878
1886
1894
1902
1910
1918

1926
1934
1942
1950
1958
1966
1974
1982

1990
1998
2006
2014
2022
2030
2038
2046

7

1287'
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
1391
1399
1407

1415
1423
1431
1439
1447
1455
1463
1471

1479
1487
1495
1503
1511
1519
1527
1535

7

1799
1807
1815
1823
1831
1839
1847
1855

1863
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

2000 1024
to to

2777 1535
(Odol) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000
to

3777
(Octo/)

1536
to

2047
(Decimal)

octal-Decimal Intp.f{er Conversion Table (Sheet 2 of 7)

APPENDIX 7 OCTAL-DECIMAL INTEGER CONVERSION

to
2.5.59

(Decimol)

Octal Decimal
10000 - .4096
20000 - 8192
30000 - 12288
«1000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000 2.560
to to •

.5777 3071
(Octo I) (Decimol)

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
4310
4320
4330
4340
4350
4360
4370

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
5140
5150
5160
5170

5200
5210
5220
5230
5240
5250
5260
5270

5300
5310
5320
5330
5340
5350
5360
5370

0 1 ·2 3 4 5 8 7 0 1 2 3 4 5 6 7

2048 2049 2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311
2058 2057 2058 2059 2080 2081 2082 2083 4410 2312 2313 2314 2315 2316 2317 2318 2319
2084 2085 2088 2087 2088 2089 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327
2072 2073 2074 2075 2078 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
2080 2081 2082 2083 2084 2085 2086 2087 4440 2338 2337 2338 2339 2340 2341 2342 2343
2088 2089 2090 2091 2092 2093 2094 2095 4450 2344 2345 2348 2347 2348 2349 2350 2351
2098 2097 2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359
2104 2105 2106 2107 2108 2109 2110 2111 4470 2380 2381 2382 2383 2384 2365 2388 2387

2112 2113 2114 2115 2116 2117 2118 2119 4500 2368 2389 2370 2371 2372 2373 2374 2375
2120 2121 2122 2123 2124 2125 2126 2127 4510 2378 2377 2378 2379 2380 2381 2382 2383
2128 2129 2130 2131 2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
2136 2137 2138 2139 2140 2141 2142 2143 4530 2392 2393 2394 2395 2398 2397 2398 2399
2144 2145 2146 2147 2148 2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2408 2407
2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
2160 2161 2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423
2168 2169 2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439
2184 2185 2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
2192 2193 2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
2200 2201 2202 2203 2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 2463
2208 2209 2210 2211 2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471
2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487
2232 2233 2234 2235 2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495

2240 2241 2242 2243 2244 2245 2246 2247 4700 2496 2497 2498 2499 2500 2501 2502 2503
2248 2249 2250 2251 2252 2253 2254 - 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
2264 2265 2266 2267 2268 2269 2270 2271
2272 2273 2274 2275 2276 2277 2278 2279

4730 2520 2521 2522 2523 2524 2525 2526 2527
4740 2528 2529 2530 2531 2532 2533 2534 2535

2280 2281 2282 2283 2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543
2288 2289 2290 2291 2292 2293 2294 2295 4760 2544 2545 2546 2547 2548 2549 2550 2551
2296 2297 2298 2299 2300 2301 2302 2303 4770 2552 2553 2554 2555 2556 2557 2558 2559 ---

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2560 2561 2562 2563 2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822 2823
2568 2569 2570 2571 2572 2573 2574 2575 5410 2824 2825 2826 2827 2828 2829 2830 2831
2576 2577 2578 2579 2580 2581 2582 2583 5420 2832 2833 2834 2835 2836 2837 2838 2839
2584 2585 2586 2587 2588 2589 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 2847
2592 2593 2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855
2600 2601 2602 2603 2604 2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862 2863
2608 2609 2610 2611 2612 2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870 2871
2616 2617 2618 2619 2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 2879

2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
2632 2633 2634 2635 2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894 2895
2640 2641 2642 2643 2644 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903
2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
2656 2657 2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919
2664 2665 2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
2672 26.73 2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
2680 2681 2682 2683 2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 2943

2688 2689 2690 2691 2692 2693 2694 2695
2696 2697 2698 2699 2700 2701 2702 2703
2704 2705 2706 2707 2708 2709 2710 2711

5600 2944 2945 2946 2947 2948 2949 2950 2951
5610 2952 2953 2954 2955 2956 2957 2958 2959
5620 2960 296.1 2962 2963 2964 2965 2966 2967

2712 2713 2714 2715 2716 2717 2718 2719 5630 2968 2969 2970 2971 2972 2973 2974 2975
2720 2721 2722 2723 2724 2725 2726 2727 5640 2976 2977 2978 2979 2980 2981 2982 2983
2728 2729 2730 2731 2732 2733 2734 2735 5650 2984 2985 2986 2987 2988 2989 2990 2991
2736 2737 2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
2744 2745 2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007

2752 2753 2754 2755 2756 2757 2758 2759 5700 3008 3009 3010 3011 3012 3013 3014 3015
2760 2761 2762 2763 2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
2768 2769 2770 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
2776 2777 2778 2779 2780 2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038 3039
2784 2785 2786 2787 2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
2792 2793 2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
2800 2801 2802 2803 2804 2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063
2808 2809 2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

Octal-Decimal Integer Conversion Table (Sheet 3 oj 7)

A7-3

APPENDIX 7

0 1 2 3 4 5 6 7

6000 30n 3073 3074 3075 3076 3077 3078 3079
6010 3080 3081 3082 3083 3084 3085 3086 3087
8020 3088 3089 3090 3091 3092 3093 3094 3095
6030 3096 3097 3098 3099 3100 3101 3102 3103
6040 3104 3105 3106 3107 3108 3109 3110 3111
8050 3112 3113 3114 3115 3116 3117 3118 3119
8060 3120 3121 3122 3123 3124 3125 3126 3127
6070 3128 3129 3130 3131 3132 3133 3134 3135

6100 3138 3137 3138 3139 3140 3141 3142 3143
6110 3144 3145 3146 3147 3148 3149 3150 3151
6120 3152 3153 3154 3155 3156 3157 3158 3159
8130 3160 3181 3162 3163 3164 3165 3166 3167
6140 3168 3189 3170 3171 3172 3173 3174 3175
8150 3176 3177 3178 3179 3180 3181 3182 3183
8160 3184 3185 3186 3187 3188 3189 3190 3191
8170 3192 3193 3194 3195 3196 3197 3198 3199

8200 3200 3201 3202 3203 3204 3205 3206 3207
6210 3208 3209 3210 3211 3212 3213 3214 3215
6220 3216 3217 3218 3219 3220 3221 3222 3223
6230 3224 3225 3226 3227 3228 3229 3230 3231
6240 3232 3233 3234 3235 3236 3237 3238 3239
6250 3240 3241 3242 3243 3244 3245 3246 3247
6260 3248 3249 3250 3251 3252 3253 3254 3255
6270 3256 3257 3258 3259 3260 3261 326a 3263

6300 3264 3265 3266 3267 3268 3269 3270 3271
6310 3272 3273 3274 3275 3276 3277 3278 3279
6320 3280 3281 3282 3283 3284 3285 3286 3287
6330 3288 3289 3290 3291 3292 3293 3294 3295
6340 3296 3297 3298 3299 3300 3301 3302 3303
6350 3304 3305 3306 3307 3308 3309 3310 3311
6360 3312 3313 3314 3315 3316 3317 3318 3319
6370 3320 3321 3322 3323 3324 3325 3326 3327

0 1 2 3 4 5 6 7

7000 3584 3585 3586 3587 3588 3589 3590 3591
7010 3592 3593 3594 3595 3596 3597 3598 3599
7020 3600 3601 3602 3603 3604 3605 3606 3607
7030 3608 3609 3610 3611 3612 3613 3614 3615
7040 3616 3617 3618 3619 3620 3621 3622 3623
7050 3624 3625 3626 3627 3628 3629 3630 3631
7060 3632 3633 3634 3635 3636 3637 3638 3639
7070 3640 3641 3642 3643 3644 3645 3646 3647

7100 3648 3649 3650 3651 3652 3653 3654 3655
7110 3656 3657 3658 3659 3660 3661 3662 3663
7120 3664 3665 3666 3667 3668 3669 3670 3671
7130 3672 3673 3674 3675 3676 3677 3678 3679
7140 3680 3681 3682 3683 3684 3685 3686 3687
7150 3688 3689 3690 3691 3692 3693 3694 3695
7160 3696 3697 3698 3699 3700 3701 3702 3703
7170 3704 3705 3706 3707 3708 3709 3710 3711

7200 3712 3713 3714 3715 3716 3717 3718 3719
7210 3720 3721 3722 3723 3724 3725 3726 3727
7220 3728 3729 3730 3731 3732 3733 3734 3735
7230 3736 3737 3738 3739 3740 3741 3742 3743
7240 3744 3745 3746 3747 3748 3749 3750 3751
7250 3752 3753 3754 3755 3756 3757 3758 3759
7260 3760 3761 3762 3763 3764 3765 3766 3767
7270 3768 3769 3770 3771 3772 3773 3774 3775

7300 3776 3777 3778 3779 3780 3781 3782 3783
7310 3784 37.&5 3786 3787 3788 3789 3790 3791
7320 3.792 3793 3794 3795 3796 3797 3798 3799
7330 3800 3801 3802 3803 3804 3805 3806 3807
7340 38{)8 3809 3810 3811 3812 3813 3814 3815
7350 3816 3817 3818 3819 3820 3821 3822 3823
7360 3824 3825 3826 3827 3828 3829 3830 3831
7370 3832 3833 3834 3835 3836 3837 3838 3839

8400
6410
8420
8430
6440
6450
6460
6470

6500
6510
6520
6530
6540
6550
6560
6570

6600
6610
6620
6630
6640
6650
6660
6670

6700
6710
6720
6730
6740
6750
6760
6770

7400
7410
7420
7430
7440
7450
7460
7470

7500
7510
7520
7530
7540
7550
7560
7570

7600
7610
7620
7630
7640
7650
7660
7670

7700
7710
7720
7730
7740
7750
7760
7770

OCTAL-DECIMAL INTEGER CONVERSION

0 .1 2 3 4 5

3328 3329 3330 3331 3332 3333
3338 3337 3338 3339 3340 3341
3344 3345 3346 3347 3348 3349
3352 3353 3354 3355 3356 3357
3360 3381 3362 3363 3364 3365
3368 3369 3370 3371 3372 3373
3376 3377 3378 3379 3380 3381
3384 3385 3386 3387 3388 3389

3392 3393 3394 3395 3396 3397
3400 3401 3402 3403 3404 3405
3408 3409 3410 3411 3412 3413
3416 3417 3418 3419 3420 3421
3424 3425 3426 3427 3428 3429
3432 3433 3434 3435 3436 3437
3440 3441 3442 3443 3444 3445
3448 3449 3450 3451 3452 3453

3456 3457 3458 3459 3460 3461
3464 3465 3466 3467 3468 3469
3472 3473 3474 3475 3476 3477
3480 3481 3482 3483 3484 3485
3488 3489 3490 3491 3492 3493
3496 3497 3498 3499 3500 3501
3504 3505 3506 3507 3508 3509
3512 3513 3514 3515 3516 3517

3520 3521 3522 3523 3524 3525
3528 3529 3530 3531 3532 3533
3536 3537 3538 3539 3540 3541
3544 3545 3546 3547 3548 3549
3552 3553 3554 3555 3556 3557
3560 3561 3562 3563 3564 3565
3568 3569 3570 3571 3572 3573
3576 3577 3578 3579 3580 3581

0 1 2 3 4 5

3840 3841 3842 3843 3844 3845
3848 3849 3850 3851 3852 3853
3858 3857 3858 3859 3860 3861
3864 3865 3866 3867 3868 3869
3872 3873 3874 3875 3a76 3877
3880 3881 3882 3883 3884 3885
3888 3889 3890 3891 3892 3893
3896 3897 3898 3899 3900 3901

3904 3905 3906 3907 3908 3909
3912 3913 3914 3915 3916 3917
3920 3921 3922 3923 3924 3925
3928 3929 3930 3931 .i932 3933
3936 3937 3938 3939 3940 3941
3944 3945 3946 3947 39~ 3949
3952 3953 3954 3955 3956 3957
3960 3961 3962 3963 3964 3965

3968 3969 3970 3971 3972 3973
3976 3977 3978 3979 3980 398r
3984 3985 3986 3987 3988 3989
3992 3993 3994 3995 3996 3997
4000 4001 4002 4003 4004 4005
4008 4009 4010 4011 4012 4013
4016 4017 4018 4019 4020 4021
4024 4025 4026 4027 4028 4029

4032 4033 4034 4035 4036 4037
4040 4041 4042 4043 4044 4045
4048 4049 4050 4051 4052 4053
4056 4057 4058 4059 4060 4061
4064 4065 4066 4067 4068 4069
4072 4073 4074 4075 4076 4077
4080 4081 4082 4083 4084 4085
4088 4089 4090 4091 4092 4093

6 7

3334 3335
3342 3343
3350 3351
3358 3359
3366 3367
3374 3375
3382 3383
3390 3391

3398 3399
3406 3407
3414 3415
3422 3423
3430 3431
3438 3439
3446 3447
3454 3455

3462 3463
3470 3471
3478 3479
3486 3487
3494 3495
3502 3503
3510 3511
3518 3519

3526 3527
3534 3535
3542 3543
3550 3551
3558 3559
3566 3567
3574 3575
3582 3583

6 7

3846 3847
3854 3855
3862 3863
3870 3871
3878 3879
3886 3887
3894 3895
3902 3903

3910 3911
3918 3919
3926 3927
3934 3935
3942 3943
3950 3951
3958 3959
3966 3967

3974 3975
3982 3983
3990 3991
3998 3999
4006 4007
4014 4015
4022 4023
4030 4031

4038 4039
4046 4047
4054 4055
4062 4063
4070 4071
4078 4079
4086 4087
4094 4095

6000 3072
ta ta

6777 3583
(Octal) (Decimal)

Octal Decimal
10000· .4096
20000· 8192
30000· 12288
40000 • 16384
50000 • 20480
60000· 2.4576
70000 • 28672

7000 3584
ta ta

7777 4095
(Octal) (Decimal)

Octal-Decimal Integer Conversion Table (Sheet 40/7)

A7-4

APPENDIX 7 OCTAL-DECIMAL INTEGER CONVERSION

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000 .000000 .100 .125000 .200 .250000 .300 .375000

.001 .001953 .101 .126953 .201 .251953 .301 .376953

.002 .003906 .102 .128906 .202 .253906 .302 .378906

.003 .005859 .103 .130859 .203 .255859 .303 .380859

.004 .007812 .104 .132812 .204 .257812 .304 .382812

.005 .009765 .105 .134765 .205 .259765 .305 .384765

.006 ;011718 .106 .136718 .206 .261718 .306 .386718

.007 .0131171 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625

.011 .017578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 .023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .0:i3203 .121 .158203 .221 .283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .164062 .224 .289062 .324 .414062

.025 .041015 .125 .166015 .225 .291015 .325 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .426781

.033 .052734 ,133 .177734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.1135 .056640 .135 .181840 .235 .306840 .335 .431640 .- .058593 .136 .183593 .236 .308593 .336 .433593

.037 .060546 .137 .185546 .237 .310546 .337 .435546

.040 .062S00 .140 .187500 .240 .312500 .340 .437500

.041 .064453 .141 .189453 .241 .314453 .341 .439453

.042 .066406 .142 .191406 .242 .318406 .342 .441406

.043 .068359 .143 .193359 .243 .318359 .343 .443359

.044 .070312 .144 .i95312 .244 .320312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 .074218 .146 .199218 .246 .324218 .346 .449218

.047 .076171 .147 .201171 .247 .326171 .347 .451171

.OSO .078125 .156 .203125 .250 .328125 .350 .453125

.051 .080078 .151 .205078 .251 .330078 .351 .455678 .- .082031 .152 .207031 .252 .332031 .352 .457031

.053 .083984 .153 .208984 .253 .333984 .353 .458984

.054 .085937 .154 .210937 .254 .335937 .354 .460937

.055 .087_ .155 .212890 .255 .337890 .355 .462890

.056 .089843 .156 .214843 .256 .339843 .356 .464843

.057 .091796 .157 .216796 .257 .341796 .357 .466796

•• .0t3750 .160 .218750 .260 .343750 .360 .468750
.Ml ._703 .161 .220703 .261 .345703 .361 .470703
.062 .097U6 .162 .222656 .262 .347656 .362 .472656
.062 .- .163 .224609 .283 .349609 .363 .474609
.OM .10ll6J .184 .226562 .264 .351562 .364 .476562
.115 .loasl1 .165 .228511 .265 .353111 .365 .47851510CS4l8 .IM .230468 .266 .355468 .366 .480468
... 7 .107421 .167 .232421 .267 .357421 .367 .482421

.070 .10t3T1S .170 .234375 .270 .359375 .370 .484375

.071 .111328 .171 .236328 .271 .361328 .371 .486328

.012 .113281 .172 .238281 .272 .363281 .372 .488281

.073 .115234 .173 .240234 .273 .365234 .373 .490234

.17" .117187 .174 .242187 .274 .367187 .374 .492187

.075 .119140 .175 .244140 .2TS .369140 .375 .494140
• ITS .1210t3 .176 .246093 .276 .371093 .376 .496093
• OTT .123046 .1,., .248046 .2,., .373046 .377 .498046

Octal-Decimal Integer Conversion Table (Sheet 5 oj 7)

A7-5

APPENDIX 7 OCTAL-DECIMAL INTEGER CONVERSION

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .00020$.000511 .000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .00031l .000766

.000012 .000038 .0001l2 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .00/)049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000084 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000318 .000223 .00Q560 .000323 .000805

.000024 .000076 .000124 .000320 .000224 .000584 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 -.000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .'000235 .000598 .000335 .000843

.000038 .000114 .000136 .000358 .000236 .000602 .000336 .000846

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850

.000040 •. 000122 .000140 .000386 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 .000250 .000840 .000350 .000885

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

.000052 ';000160 .000152 .000404 .000252 .000848 .000352 .0~892

.000053 .000184 .000153 .000408 .0002113 .000652 .000353 .000896

.000054 .000167 .0001M .000411 .0002&4 .000656 .000354 .00C!900

.000066 .000171 .000155 .000415 .000255 .0006&9 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000863 .000356 .000907

.000057 .000179 .000157 .000423 .000267 .000687 ,.000357 .00091l

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000182 .000434 .000282 .000679 .000362 .000923

.000083 .000194 .000163 .000438 .000283 .000682 .000363 .000926

.000084 .000198 .000184 .000442 .000184 .000686 .000384 .000930

.00006& .000201 .000165 .000446 .000185 .000690 .000365 .000934

.000068 .000106 .000166 .00Cl45O .000266 .000694 .000366 .000938

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000171 .000705 .000371 .000949

.000072 .00001 .000172 .000465 .000272 .000709 .000371 .000953

.000073 .ooom .000173 .000469 .000273 .000713 .000373 .000957

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961

.000075 .000232 .000175 .000476 .000275 .000710 .000375 .000965

j
.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968
.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972

Octal-Decimal Integer Conversion Table (Sheet 6 oj 7)

A7-6

APPENDIX 7 OCTAL-DECIMAL INTEGER CONVERSION

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.0.0.0.40.0. .0.0.0.976 .0.0.0.50.0. .0.0.1220. .0.0.0.60.0. .0.0.1464 .0.0.0.70.0. .0.0.170.8

.0.0.0.40.1 .0.0.0.980. .0.0.0.50.1 .0.0.1224 .0.0.0.60.1 .0.0.1468 .0.0.0.70.1 .0.0.1712
,.0.0.0.40.2 .0.0.0.984 .0.0.0.50.2 .0.0.,1228 .0.0.0.60.2 .0.0.1472 .0.0.0.70.2 .0.0.1716
.0.0.0.40.3 .0.0.0.988 .0.0.0.50.3 .0.0.1232 .0.0.0.60.3 .0.0.1476 .0.0.0.70.3 .0.0.1720.
.0.0.0.40.4 .0.0.0.991 .0.0.0.50.4 .0.0.1235 .0.0.0.60.4 .0.0.1480. .0.0.0.70.4 .0.0.1724
.0.0.0.40.5 .0.0.0.995 .0.0.0.50.5 .0.0.1239 .0.0.0.60.5 .0.0.1483 .0.0.0.70.5 .0.0.1728
.0.0.0.40.6 .0.0.0.999 .0.0.0.50.6 .0.0.1243 .0.0.0.60.6 .0.0.1487 .0.0.0.70.6 .0.0.1731
.0.0.0.40.7 .0.0.10.0.3 .0.0.0.50.7 .0.0.1247 .0.0.0.60.7 .0.0.1491 .0.0.0.70.7 .I}D1735

.0.0.0.410. .0.0.10.0.7 .0.0.0.510. .0.0.1251 .0.0.0.610. .0.0.1495 .0.0.0.710. .0.0.1739

.0.0.0.411 .0.0.10.10. .0.0.0.511 .0.0.1255 .0.0.0.611 .0.0.1499 .0.0.0.711 .0.0.1743

.0.0.0.412 .0.0.10.14 .0.0.0.512 .0.0.1258 ,0.0.0.612 .0.0.150.2 .0.0.0.712 .0.0.1747

.0.0.0.413 .0.0.10.18 ,0.0.0.513 ,90.1262 ,0.0.0.613 .0.0.150.6 .0.0.0.713 ,0.0.1750.
,0.0.0.414 ,0.0.10.22 ,0.0.0.514 ,0.0.1266 ,0.0.0.614 ,90.1510. .0.0.0.714 ,90.1754
.0.0.0.415 .0.0.10.26 .0.0.0.515 .0.0.1270. ,0.0.0.615 ,0.0.1514 .0.0.0.715 .0.0.1758
,0.0.0.416 .0.0.10.29 .0.0.0.516 .0.0.1274 ,0.0.0.616 ,0.0.1518 ,0.0.0.716 ,0.0.1762
,0.0.0.417 ,0.0.10.33 ,0.0.0.517 ,0.0.1277 .0.0.0.617 ,0.0.1522 ,0.0.0.717 .0.0.1766

,0.0.0.420. ,0.0.10.37 ,0.0.0.520. ,0.0.1281 ,0.0.0.620. ,0.0.1525 .0.0.0.720. ,0.0.1770.
.0.0.0.421 ,0.0.10.41 .0.0.0.521 ,0.0.1285 ,0.0.0.621 .0.0.1529 .0.0.0.721 .0.0.1773
,0.0.0.422 .0.0.10.45 .0.0.0.522 ,0.0.1289 .0.0.0.622 .0.0.1533 .0.0.0.722 ,0.0.1777
.0.0.0.423 ,0.0.10.49 .0.0.0.523 .0.01293 ,0.0.0.623 ,0.0.1537 .0.0.0.723 ,0.0.1781
,0.0.0.424 ,0.0.10.52 ,0.0.0.524 .0.0.1296 .0.0.0.624 .0.0.1541 ,0.0.0.724 ,0.0.1785
.0.0.0.425 .0.0.10.56 ,0.0.0.525 ,0.0.130.0. .0.0.0.625 .0.0.1544 .0.0.0.725 .0.0.1789
,0.0.0.426 .0.0.10.60. .0.0.0.526 .0.0.130.4 .0.0.0.626 ,0.0.1548 ,0.0.0.726 .0.0.1792
,0.0.0.427 .0.0.10.64 .0.0.0.527 .0.0.130.8 ,0.0.0.627 ,0.0.1552 .0.0.0.727 .0.0.1796
.0.0.0.430. ,0.0.10.68 ,0.0.0.530. .0.0.1312 ,0.0.0.630. .0.0.1556 .0.0.0.730. .0.0.180.0.
,0.0.0.431 .0.0.10.71 .0.0.0.531 .0.0.1316 .0.0.0.631 ,0.0.1560. .0.0.0.731 .0.0.180.4
.0.0.0.432 ,0.0.10.75 .0.0.0.532 .0.0.1319 .0.0.0.632 .0.0.1564 .0.0.0.732 .0.0.180.8
.0.0.0.433 ,0.0.10.79 .0.0.0.533 .0.0.1323 .0.0.0.633 .0.0.1567 ,0.0.0.733 .0.0.1811
,0.0.0.434 ,0.0.10.83 ,0.0.0.534 .0.0.1327 .0.0.0.634 ,0.0.1571 .0.0.0.734 .0.0.1815
,0.0.0.435 .0.0.10.87 .0.0.0.535 .0.0.1331 .0.0.0.635 .0.0.1575 ,0.0.0.735 .0.0.1819
,0.0.0.436 .0.0.10.91 .0.0.0.536 .0.0.1335 .0.0.0.636 ,0.0.1579 ,0.0.0.736 ,0.0.1823
.0.0.0.437 ,0.0.10.94 .0.0.0.537 .0.0.1338 .0.0.0.637 ,0.0.1583 .0.0.0.737 ,0.0.1827

,0.0.0.440. .0.0.10.98 .0.0.0.540. ,0.0.1342 ,0.0.0.640. .0.0.1586 .0.0.0.740. .0.0.1831
.0.0.0.441 .0.0.110.2 .0.0.0.541 .0.0.1346 ,0.0.0.641 .0.0.1590. ,0.0.0.741 ,0.0.1834
,0.0.0.442 .0.0.1196 .0.0.0.542 .0.0.1350. .0.0.0.642 .0.0.1594 .0.0.0.742 .0.0.1838
.0.0.0.443 .0.0.1110. .0.0.0.543 .0.0.1354 .0.0.0.643 .0.0.1598 .0.0.0.743 .0.0.1842
.0.0.0.444 .0.0.1113 .0.0.0.544 ,0.0.1358 .0.0.0.644 .0.0.160.2 .0.0.0.744 .0.0.1846
.0.0.0.445 .0.0.1117 .0.0.0.545 .0.0.1361 .0.0.0.645 .0.0.160.5 .0.0.0.745 .0.0.1850.
.0.0.0.446 .0.0.1121 .0.0.0.546 .0.0.1365 .0.0.0.646 .0.0.160.9 .0.0.0.746 .0.0.1853
.0.0.0.447 .0.0.1125 .0.0.0.547 .0.0.1369 .0.0.0.647 .0.0.1613 .0.0.0.747 .0.0.1857
.0.0.0.450. .0.0.1129 .0.0.0.550. .0.0.1373 .0.0.0.650. ,0.0.1617 ,0.0.0.750. .0.0.1861
.0.0.0.451 .0.0.1132 .0.0.0.551 .0.0.1377 .80.0.651 .0.0.1621 .0.0.0.751 .0.0.1865
.0.0.0.452 .0.0.1136 ,0.0.0.552 .0.0.1380. .0.0.0.652 .0.0.1625 .0.0.0.752 .0.0.1869
.0.0.0.453 .0.0.1140. .0.0.0.553 .0.0.1384 .0.0.0.653 .0.0.1628 .0.0.0.753 .0.0.1873
.0.0.0.454 .0.0.1144 .0.0.0.554 .0.0.1388 .0.0.0.654 .0.0.1632 .0.0.0.754 .0.0.1876
,0.0.0.455 .0.0.1148 .0.0.0.555 .0.0.1392 .0.0.0.655 ,0.0.1636 .0.0.0.755 .0.0.1880.
.0.0.0.456 .0.0.1152 .0.0.0.556 .0.0.1396 .0.0.0.656 .0.0.1640. .0.00756 .0.0.1884
.0.0.0.457 .0.0.1155 .0.0.0.557 .0.0.1399 .0.0.0.657 .0.0.1644 .0.0.0.757 .0.0.1888

.0.0.0.460. .0.0.1159 .0.0.0.560. .0.0.140.3 .0.0.0660. .0.0.1647 .0.0.0.760. .0.0.1892

.0.0.0.461 .0.0.1163 .00.0.561 .0.0.140.7 ,0.0.0.661 .0.0.1651 .0.0.0.761 .0.0.1895

.0.00.462 .0.0.1167 ,0.0.0.562 .0.0.1411 .0.0.0.662 .0.0.1655 .00.0.762 ,0.0.1899

.0.0.0.463 .0.0.1171 .0.0.0.563 .0.0.1415 .0.0.0.663 .0.0.1659 .0.0.0.763 .0.0.190.3

.0.0.0.464 .0.0.1174 .0.0.0.564 ,0.0.1419 .0.0.0.664 .0.0.1663 .0.0.0.764 .0.0.190.7

.0.0.0.465 .0.0.1178 .0.0.0.565 .0.0.1422 .0.0.0.665 .0.0.1667 ,0.0.0.765 .0.0.1911

.0.0.0.466 .0.0.1182 ,,0.0.0.566 .0.0.1426 .0.0.0.666 .0.0.1670. .0.0.0.766 .0.0.1914

.0.0.0.467 .0.0.1186 .0.0.0.567 .0.0.1430. .0.0.0.667 .0.0.1674 .0.0.0.767 .0.0.1918

.0.0.0.470. .0.0.1190. .0.0.0.570. .0.0.1434 .0.0.0.670. .0.0.1678 .0.0.0.770. ,0.0.1922

.0.0.0.471 .0.0.1194 .0.0.0.571 .0.0.1438 .0.0.0.671 .0.0.1682 .0.00771 .0.0.1926

.0.0.0.472 .0.0.1197 ,0.0.0.572 .0.0.1441 .0.0.0.672 .0.0.1686 ,0.0.0.772 .0.0.1930.

.0.0.0.473 ,0.0.120.1 .0.0.0.573 .0.0.1445 .0.0.0.673 .0.0.1689 .0.0.0.773 :0.0.1934

.0.0.0.474 ,0.0.120.5 ,0.0.0.574 .0.0.1449 .0.0.0.674 .0.0.1693 .0.0.0.774 .0.0.1937
,0.0.0.475 .0.0.120.9 .0.0.0.575 .0.0.1453 .0.0.0.675 ,0.0.1697 .0.0.0.775 .0.0.1941
.0.0.0.476 .0.0.1213 ,0.0.0.576 ,0.0.1457 .0.0.0.676 .0.0.17.01 ,0.0.0.776 .0.0.1945
.0.0.0.477 .0.0.1216 .0.0.0.577 .0.0.1461 ,0.0.0.677 ,0.0.170.5 ,0.0.0.777 .0.0.1949

Octal-Decimal Integer Conversion Table (Sheet 7 of 7)

A7-7/A7-8

Standard

APPENDIX 8

HOLLERITH CARD CODES

Internal standard Internal
8400 Hollerith Binary 8400 Hollerith Binary

Graphics Card Codes Code Graphics Card Codes Code

ti (ZERO) 0 00 - 11 40
1 1 01 J 11-1 41
2 2 02 K 11-2 42
3 3 03 L 11-3 43
4 4 04 M 11-4 44
5 5 05 N 11-5 45
6 6 06 0 11-6 46
7 7 07 P 11-7 47
8 8 10 Q 11-8 50
9 9 11 R 11-9 51

BLANK 8-2 12 ! 11-0 52
= 8-3 13 $ 11-8-3 53
I 8-4 14 * 11-8-4 54
: 8-5 15 J 11-8-5 55
> 8-6 16 ; 11-8-6 56

../ 8-7 17 ~ 11-8-7 57

+ 12 20 BLANK NO PUNCH 60
A 12-1 21 / 0-1 61
B 12-2 22 S 0-2 62
C 12-3 23 T 0-3 63
D 12-4 24 U 0-4 64
E 12-5 25 V 0-5 65
F 12-6 26 W 0-6 66
G 12-7 27 X 0-7 67
H 12-8 30 y 0-8 70
I 12-9 31 Z 0-9 71
? 12-0 32 + 0-8-2 72
. 12-8-3 33 , 0-8-3 73
) 12-8-4 34 (0-8-4 74
[12-8-5 35 ,.,.. 0-8-5 75
< 12-8-6 36 \ 0-8-6 76

+ 12-8-7 37 -H+- 0-8-7 77

NOTES: 1. In the binary mode do.tafrom a card reader is transferred without conversion.

Each Card column is divided into two characters. Either 4- or 6-bit charac­

ters will be transferred depending upon the format option specified.

2. In the Hollerith mode do.ta from the card reader (assumed to be in BCD codes)

is automatically converted to collating codes.

3. Data to a card punch is presented in collating code - character by character -

in the same manner as to the line printer.

4. No parity bit is presented with do.ta to/from card equipment. Error and code

validity checks are performed at the respective card device.

A8-1/A8-2

PREPARED BY ______________ _ PHONE ___ _ DATE _____ PROJECT ___ _

PROGRAM TITLE _____ ~ _______________ _ PAGE _____ OF _____ _

12 ,T,T, IT, IT, T, IT, IT T, 1

~~116I'I.191"1111"113I14I""I"I1811YIN'"lnl"I":,,

11 0, , • ~, I~, I ~ I., +-'-.J..-f''-H ,-+"'I.~+_'_~,j~y-~_M~IL___'___fJ.""---'--
~~~~~y~~~IL-y,~¥~~~~-~~~"-~~~~-~I~~,~~I~~~1mIHr~IX~",~~~-I"-~~~­
~~~12~~T~IT~,~~I~T,~IT~,~~I~T~~~-~~~~~I~T~~~~~~~+~~I~T~+-'-~+ __ ~~~~1 .. 8~~~~ 

C, IR, T IRI
H, ~,-I~, Iw Iw, Iw, Iw Iw, 101
E, ,0 0, 10, 10, 10, 10, 10, 10 10 :0,

17

! I

L I I ! ! ! _~_~'~~IL_L ! I

L_~~~~'~~~L~~~_~~~~~~~~~~~~~~~~~~~,~~2

"~_~,~~,~,~, ~,~,~,~,~~,~~,~~~_~~~~~4_~~-"-i,~~2

22~,-,~~,~~~-~,-~,~~~,~~~L.-,-~~,~-~~~,~~~~~-~~~~,~,~,~~,~~1~~~,-,~~~~~~_r~~-~~_42

23rt'-~~~~L~~L~~"-~~_~_.L.~~~J~~~,~~~~~~,~~~,~,~~~~,~_,~~~~~~,~~+~~~~"

24 f--'--~~++L.,L.! , I I L~'--'--'-~L.L--..-L' I ! L.~L_~~~~,'~~~~~, ~~~,~~_~~~~~, .L.L_L~~~' "-+~ __ -'-'~~-'--'--j2
25 " , J ", ,

l' '/'/' /' 1'1' '/"/' /"/13/14 /"/,,/,,/,/,,/20/"1,,1,,1,,1,,1,,/,,/,,/,,/,,/,,/32/33/,, /"/"/"/"/"/"/"/ ,,/,,1 ... I ",I" 1,,/.++-/, 1"/"/ "/"/"/"/"/ "/"/"/

APPENDIX 10

PAPER TAPE FORMAT

Left Exec Bit
0

} 0 0 0 0 0
0

0 0 0 0 0 0
Left Half Word Corresponding 0

0 0 0 0 0 0
Contents of Memory 0

0 0 0 0 0 0
0

Example '-77777/' -77777B 0 0 Right Exec Bit 0
0 0 0 0 0 0

} 0
0 000 0 0 Right Half Word 0
0 0 0 0 0 0

0
0 0 0 0 0 0

0
0 0

0
0 0
0

Example '12345/' 54321R
00
0

0 000 0
0
00 0 0

0 0 0
0
00 0
0

00
0

000 0 0
0 0
0

Stop Code 0 0

Paper Tape Format

For 4 Bit Mode with Parity
Exec Bits Channel

AlO-l/ AlO-2

APPENDIX 11

TWO'S COMPLEMENT ARITHMETIC

1. THE TWO'S COMPLEMENTS SYSTEM

In the sign-magnitude system, the sign bit has a value

of -1 or ±1. The sign is multiplied by the value repre-

sented by the magnitude bits to form the implied num­

ber.

: In two's complements, the sign bit has a variable nega­

tive weight, depending on the position of the binary

point. The weight of the sign is added to the value re­

pre.sented by the magnitude bits to form the implied

number.

The Representation of a 2's Complements Number

If bs is the content of the sign bit, and bj the content of

any other bit in position j, the number N represented

by the bit configuration is given by

m

N = -b· 2n + L: b 2n- j
s j

j=1

Note that the summation in the equation is always

positive.

2. RANGE OF NUMBERS

Let the binary point be immediately to the right of the

sign bit (n = 0). Then m bits can represent -1 :;:; N :;:;
-m 1-2 • Note that -1 is inside the range (bs = 1,

bj = 0), but +1 is not.

3. TRUNCATION AND ROUND-OFF

In the natural, real number system, a given number X

can assume any value on the continuous range - ro :;:; x :;:;.

Natural numbers have infinite precision (i. e., their

representation requires an infinite number of digits).

The numbers that the digital computer must deal with

are finite-precision, quantized numbers. We shall

refer to these as "digital" or "synthetic" numbers.

Digital numbers are evidently a function of the continu­

ous natural argument X. Two such consistent functions

are:

y = l x J ("least integer in x", L. I.)

Y = r xl ("greatest integer in x', G.I.)

These functions (Figure 1) are defined as follows: In

L. I., if n is an integer, y = n-l for n-l :;:; x <no In

G. I., y = n for n-l :;:; x < n. A third, less consistent

scheme, also shown in Figure 2, is defined by y = n-l

for n-l :;:; x < n, x > 0, but y = n for n-l < x < n, x < o.

In the discussion above and in the following, we assume

y to have integer values only (binary point to the right

of least significant bit of A register, say). This does

not detract from the generality of the results. To con­

vert the y values to fractions, simply multiply by 2-15•

In the 8400, the "lease integer" functions, y = lxJ, is

used, as this is most compatible with two's complement

notation. The "a symetry" in the range of numbers,

discussed in Section 2. 1 can now be seen as a direct

consequence of the L. I. function.

AU-l

APPENDIX 11

Al1-2

-3 -2 -I

Y
4

3

2

1
-\

-----------~---------X
234

-\

-2
-3
-4

y= lX J

--------r--+~---------X

A less-consistent scheme, often

used in sign-magnitude computers.

Here y = (sgn x) (lxl).

TWO'S COMPLEMENT ARITHMETIC

4

3

2

y

I

-I

-2
-3

-4

y = r xl

X
2 3 4

Figure All.l. Digital Numbers as Functions oj Continuous Natural Numbers

4

3

2

Yr

~--~~---;----~~--~------. X
%%%

-\

-2
-3

-4

Figure All. 2. Rounded Digital Numbers as a Function oj Natural Numbers

APPENDIX 11

Truncation

The implication of the y = l x J function is that when an

8400 number is truncated, it automatically assumes

its "least integer" value. Thus dividing 1 (bit 15 = 1,

all others zero) by 2 (ASH 1) results in the natural num­

ber O. 5., which, truncated, becomes ze~o. On the

other hand, the number -1 (b = b. = 1 in the first ex-s J .
ample, vis all bits high) when divided by 2 results in

the natural number -0. 5, which the 8400 truncates to

-1.

Round-Off

To round a number, one can use the SR instruction.

For example, doing

EASH k

SR o

will divide the number in the A register by 2k and round

it. The rounded function y r appears as in Figure 2.

The function y r is defined as y r = llx I - 1/2 J. Thus

O. 5 yields 0 for the truncated result, but 1 for the

rounded r-esult and -0.5 yields -1 truncated and 0

rounded. Note that the error committed in round-off is

E 2 O. 5.
r

Programming for C. I. and "Sign-Magnitude"

If the programmer needs y = r xl, he can simply do:

(operation resulting in A:AE)

AD = 1

ST = GI

TWO'S COMPLEMENT ARITHMETIC

It is also quite easy to get the function (sgn x) ~x~ (Fig­

ure 2) by doing:

(operation resulting in A:AE)

EXL ADD

ST SAVE

ADD AD =1

Note, in particular, that the 1ST instruction will trun­

cate (i. e., get the "least integer in x") a floating-point

number prior to storing. The schemes just discussed

of obtaining other types of truncation are particularly

useful here. For example, a floating point number can

be "greatest-integer" truncated by

FCA

lAD

1ST

NUMBER

= 1

or "sign-magnitude" truncated by

4. SIDFTS

FCA

EXL

1ST

ADD lAD

NUMBER

ADD

=1

Left shifts must have zero-fill for low order bits.

Right shifts must have sign-fill for high order bits.

The need for sign fill in right shifts is that a right shift

of k is a division by 2k of the magnitude bits if they are

zero filled in the vacated high order bits. As the sign

bit is an additive value in two's complement it must also

A11-3

APPENDIX 11

be divided by two and added to the shifted mantissa.

Note that _zn/Zk = _Zn-k which is represented in two's

complement as a one in the sign bit position followed

by k one's. Adding this value in gives the appearance

of a sign fill in vacated high order bits.

5. OVERFLOWS

An overflow indicates that the result of an arithmetic

operation exceeds the permissible range of the com­

puter. In two's complement, the overflow V is defined

as the exclusive -OR of the carry C and the drop-off D:

V=CD+CD

where D is a carry from bit position S. That this defini­

tion is correct can be quickly verified by noting that,

if a number has bs = b1 = 1, it cannot be more positive

then -0. 5, so it is well within the permissible range

and will remain so when shifted left once (multiplied by

2). Thus, a carry accompanied by a drop-off is not an

overflow, and, of course, neither is C = D = O. A

carry without a drop-off signifies a positive overflow,

while a drop-off without a carry indicates a negative

overflow.

6. MULTIPLE PRECISION

An extended precision number X can be regarded as a

single number. In fact, all legitimate extended (E)

and double-floating (D) instructions of the 8400 re­

gard numbers in this way; that is, the computer effec­

tively ignores the sign of the AE (AD) registers in all

legitimate operations (including properlY,,:,programmed

combat subroutines).

MP and ASH, EASH, reset the sign of AE, ECA, ECS,

DCA, DCAU, DCS, and DCSU set the sign bit of the

AE(AD) as the corresponding memory bit was set.

Al1-4

TWO'S COMPLEMENT ARITHMETIC

EST and DST set to corresponding sign bit in memory

to the value of the sign bit of AE(AD). All other arith­

metic operations ignore this bit.

When X is to be treated as.two separate single preci­

sion numbers, their sum must clearly add up to X.

That is,

X = (A) + (AE) • 2-15

It should be clear that, unless the sign of AE is zero,

the equation is not satisfied.

Similar considerations show that the sign of the AD

register must be zero if the content of that register is

to be operated on by F-type instructions.

Note that a single-precision number which is to become

the least-significant portion of an extended-precision

number is treated as follows

CA

EASH

LO

15

To convert a single preCision number to extended pre­

cision you do

CA

LDAE

HO

=0

Converting a single preCision floating point number to

double can be done by clearing the AD register:

or

FCAU

FMPU

DST

$DCAU

FCAU

DST

NUMBER

= '40000/1

=0

$

>
l\)

I

>-......
l\)
I

l\)

Operation

Time is in
Microseconds,
and Includes

Instruction
Fetch (1)

Arithmetic

CA, AD

CS, SB

MP

CD, DV

CP

ST

SR

Operand
Address

HIGH SPEED I !
REGlBTERS -

(2) 1 $

MEMORY

HIGH SPEED I !
REGlBTERS 1 $

MEMORY

HIGH SPEED I ~
REGISTERS

1$

MEMORY

HIGH SPEED I ~
REGlBTERS

1$

MEMORY

MEMORY

HIGH SPEED I +
REGlBTERS

MEMORY

32 Bit 56 Bit 16 32 Bit 16 Bit

Fit. pt. FIt. pt. Integer Fix. Pt.

(Prefix (Prefix F) (Prefix D) (Prefix I)
[Blank])

3.89 NA 3.89 3.06

4.17 4.72 4.17 3.33

5.28 8.06*' 5.28 4.45

6.67 By Sub 6.67 5.28

6.94 By Sub 6.94 5.56

8.06 By Sub 8.06 6.67

10.00 By Sub 10.00 7.78

10.28 By Sub 10.28 8.06

11.39 By Sub 11.39 9.17

3.89 By Sub .3.89 3.33

4.17 By Sub 4.17 3.61

5.28 By Sub 5.28 4.72

4.17 6.11 5.00 4.17

3.06 By Sub 3.33 2.78

4.72 By Sub 5.00 4.45

32 Bit 16 Bit
Fix Pt. Index Indexing Indirect Addressing

(Prefix E) (Prefix X) OP M, (X) OP . M

NA 3.06 For each level of For each level of indirect

3.89 3.33 indexing addressing

5.28* 4.45 Add.561IH.S.
Register
Addressed

By Sub By Sub Add .281I MEM

By Sub By Sub addressed ex-
cept .. Add • 56

By Sub By Sub Add 2.00

By Sub By Sub

By Sub By Sub

By Sub By Sub

By Sub 3.33

By Sub 3.61

By Sub 4.72

4.17 4.17 Add.56 Add 2.00

By Sub By Sub

By Sub By Sub

Save --
$ OPM

For a prefiXed
Save

*no additional
time required.
Add 0

Add. 28 except
it Save also
addressed
($ 01'$)

Add .56

Add.56

1. Time shown for arithmetic
operations is minimum
execution tlme and does not
include pre- alignment or
post normalization. For
each pre-alignment or
post normalization-add
0.28 !-Lsec.

EXAMPLES,

$DST Mov. X = 5.84

DST Mov. X '" 4. 72

= .56

X = .56

5.84

$CA = 3.X =3.90
CA=3 = 3.06
$ = .28
X = ~

3.90.

$FMP $, X = 8.06
FMP$ = 6.94

$ (OP$) = .56
X = ~

8.06

2. High Speed Registers Are:

+ Self addressing accumulator

Immediate addressing (16
Bit Operand field of
instruction Reg.)

Save Register

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	A01-01
	A01-02
	A01-03
	A01-04
	A02-01
	A02-02
	A02-03
	A02-04
	A02-05
	A02-06
	A02-07
	A02-08
	A02-09
	A02-10
	A02-11
	A02-12
	A03-01
	A03-02
	A03-03
	A03-04
	A04-01
	A04-02
	A04-03
	A04-04
	A04-05
	A04-06
	A04-07
	A04-08
	A04-09
	A04-10
	A04-11
	A04-12
	A04-13
	A04-14
	A04-15
	A04-16
	A05-01
	A06-01
	A07-01
	A07-02
	A07-03
	A07-04
	A07-05
	A07-06
	A07-07
	A08-01
	A09-01
	A10-01
	A11-01
	A11-02
	A11-03
	A11-04
	A12-01

