Prepared for
GEORGE C. MARSHALL SPACE FLIGHT
CENTER, NASA

Huntsville, Alabama

STORED PROGRAM

CONCEPT
FOR

ANALOG COMPUTERS

FINAL REPORT

EAl PROJECT 320009
NASA ORDER NASB-21228

PRINTED IN U.S,A, JUNE 1968

STORED PROGRAM CONCEPT FOR ANALOG COMPUTERS

Finad: s Report

Prepared for

GEORGE C. MARSHALL SPACE FLIGHT
CENTER, NASA

Huntsville, Alabama

EAI Project #320009

NASA Order #NAS8-21228

George Hannauer
Applications Engineer
Digital/Hybrid Programming
Department

Electronic Associates, Inc.
Princeton, N.J.

Se

TABLE OF CONTENTS

INTRODUCTION
DEFINITION OF TERMS

1 Matrix, Inputs, Outputs

2 M and N, Expansion Factor E

3 Expander, Concentrator, Simple Matrix,
Composite Matrix

2.4 Rectangular Matrix

2.5 Programs

2.6 Abstract and Concrete Programs

COMPARISON WITH THE TELEPHONE SYSTEM

1 Size

2 Static versus, Dynmmic Consideratioms
3 Interchangeability

4 Traffic Density

5 Fanout

6 Blocking Penalty

THREE-STAGE MATRICES (WITHOUT FANOUT)

1 Parameters of the Three-Stage Matrix
2 Static and Dynamic Accuracy
3 Optimizing the Matrix
N Divisibility Considerations
5 Comparison with Rectangular Matrix
6 Summary

THREE-STAGE MATRIX THEORY WITH FAROUT

5.1 The Programming Array

5.2 Implementing a Program

5.3 Blocking

5.4 Construction of "Worst CaseY Programs

5.5 Construction of Optimal Three-Stage Matrix
With Fanout

5.6 The Asymptotic Fovmula

5.7 Adequacy of the Three-Stage Matrix
5.8 Summary

5.9 Alternatives

DESIGN OF THE ANALOG CONFIGURATION (GENERAL CONSIDERATIONS)

6.1 The Cost per Input or Output

6.2 Analog Flexibility

6.2 Modular Design

6.4 Determining Module Size

6.5 Design of the External Matrix

6.6 Input Blocks, Output Blocks and Modules
6.7 Assignment of Components

10.

DESIGN OF THE ANALOG CONFIGURATION (SPECIFIC DETAILS)

7.1 Configuration Switching

7.2 Internal and External Access

7.3 Committed Pots

7.4 Description of a Module

7.5 Miscellaneous Components and Features
7.5.1 Logic
7.5.2 Track/Store Units
7,5.3 Hard-Zero Limits
7.5.4 Feedback Limiters

7.6 Detailed Component Description
7.6.1 Summers
7.6.2 Integrators
7.6.3 Multipliers
7.6.4 The Multiplier-Squarer (MSQ)
7.6.5 The Dual Function Generator
7.6.6 The Resolver Multipliers
7.6.7 The Comparator ‘
7.6.8 Readout Lines

7.7 The External and Internal Matrices

7.8 The Large System

RESULTS OF NASA SAMPLE PROGRAMS

8.1 Voyager, First-Stage Ascent
8.2 Satuen IV Stage Control, Phase 3
8.3 Summary of Problems Programmed

COMPUTER RESULTS

9.1 The Switch Assignment Algorithm
9.2 The Statistical Studies

' SOFTWARE

10,1 The Switch Assignment Routine

10.2 The Matrix Terminal Assignment Routine
10.3 Interconnection Routine

10.4 A Component Assignment Routine

10.5 Further Software Capabilites

10-1

10-1
10-1
10-1
10-2
10-3

1-1

1. INTRODUCTION

Eliminating the patchpanel has long been the dream of analog computer users,
for a number of reasons. One of these is psychological; the sight of a large
mass of wires hanging from the front of a computer is ugly and disturbing to
almost anyone except a true 'dyed-in-the-wool analog man', and even some members
of this select group are more than willing to see the patchpanel give way to a
deck of cards or a punched tape. These aesthetic considerations alone are enough
to discourage many novices and cause them to turn to a digital computer with a
simulation language.

Aesthetics aside, there are sounder reasons for desiring to replace the
patchpanel with a switching matrix. The most obvious among these are the following:

a. Ease of Programming. Patching an analog problem is tedious and time-
consuming, and there is little doubt that an automatic patching system (in con-
junction with appropriate software) would greatly simplify programming. This is
desirable, not because programmers are lazy, but because they are expensive.

The cliche "time is money'" is as applicable to the analog computer (and programmer)
as it is to the digital.

b. Stored-Program Capability. Patchpanels can be stored, of course, but
good ones are expensive, heavy, and space-consuming. Cards and tape provide a
much more desirable storage medium,

c. Reliability. This is something of a question mark, since it is not clear
that a relay matrix, static card reader, or other system would be inherently more
reliable than a patchpanel, However, there is some reason to believe that it
would be, if only because it is stationary. Most of the wires that fall out of
present-day patchpanels do so because the panel must be carried away from the
machine for storage.

In addition to the above considerations, an additional application is con-
ceivable, namely, some form of multi-programming. By this I do not mean allowing
two people to share the same components in alternate 10-millisecond time intervals,
but rather allowing one user to use 757 of the components in a machine for a big
problem while another user uses the remaining 25% for a smaller problem. This is
possible in principle on a patchpanel, and, in fact, has been done at EAI's
Princeton facility, but is not very practical; the users get in each other's way.

It is possible that an automatic programming/patching system would have the
same effect on analog computer utilization that FORTRAN had for the digital
computer. IBM is currently publicizing the fact that before FORTRAN was developed,
a leading business magazine predicted that the total market for digital computers
(not the annual market) would be limited to about fifty consoles, because the’
programming was so involved and expensive! Since then, the total number of install-
ations has exceeded this estimate many times over. If the demand for analogs were
to expand by the same order of magnitude, the market would be a healthy one indeed.

Any automatic patching system will obviously be expensive. Previous attempts
to design such systems for medium-to-large systems (200 to 400 amplifiers and up)
have run into "the N° problem', that is, the fact that the number of switches
necessary grows faster than linearly with matrix size. Keeping the total size

and cost of such a system within reasonable bounds requires a two-pronged attack
on the problem: reducing the number of necessary switches to a minimum, and
designing a switch with sufficiently low cost, noise, contact resistance, and
crosstalk, ‘

In 1967, NASA contracted with EAI for a feasibility study for the development
of an automated patching system. This report covers the results of phase 1 of
that study: the reduction of the number of switches,

The last study made of this problem within EAI was done by Joe Marshall and
Bill Hagerbaumer in 1961, Concurrently, Wolfgang Ocker undertook a similar study
for a DDA. The 231-R analog used by Marshall and Hagerbaumer as the basis of
their study was approximately equivalent to the 680 used in this study. Marshall
and Hagerbaumer concluded that between 25,000 and 35,000 switches would be necess-
ary. However, they did not actually test their proposed system on any actual
problems. Examining their proposed system in the light of actual problems, it
appears that the number of switches required would be somewhere between 50,000
and 100,000.

At the start of this project, I was given a target value of 'under 10,000
switches for a 680-size machine'. Thus the task is to effect a reduction by a
factor of five to ten,

This report describes two proposed systems: a ''small" system (one 680)
requiring between 8,000 and 9,000 switches, and a ''large' system (two 680"s or
an 8800) requiring between 21,000 and 22,000 switches, Details of the design
are given in Chapters 6 and 7. Furthermore, the switching system appears ade-
quate to handle typical analog programs, including those furnished by NASA as
sample programs to implement (see Chapters 8 and 9). Thus the design goals
have been met.

It should be pointed out that the 'typical 650" used in this report is
larger than the fully-expanded standard 680: it contains 30 integrators, 36
summers, 3 resolvers, 39 multipliers (not counting the 12 multipliers within
the resolvers) and 18 variable DFG's. It is possible to get all this equipment
into one system consisting of a 680 console and half of a resolver expansion
rack. Hence the large system (60 integrators, 72 summers, 6 resolvers, 78 multi-
pliers, 36 variable DFG's) would fit into two 680 consoles and one resolver
expansion rack.

This raises the question of whether the system should be implemented on an
existing analog (by hard-wiring the relay matrix to a patchpanel) or whether a
new machine should be developed. The system is obviously 'cleaner'" and more
economical if the analog is designed from the ground up to accomodate the switch="
ing matrix, but obviously, any prototype matrix must be evaluated on an existing
machine. Furthermore, the possibility of producing a plug-in matrix for existing
machines as a standard product should not be overlooked.

I have kept the 680 in mind throughout this project as a possibility for
plug-in implementation of the matrix. This is in accord with the wishes of NASA
personnel and also with my own inclinations, since I am more familiar with this
machine than any other. The resulting design appears feasible for implementation
on a 680 (or 8800) with two qualifications. One of these is minor; the other
may be major.

~——

1-3

The minor qualification has to do with configuration switches (that is,
the switches that convert a summer into an integrator or a multiplier into a
dividex). Ideally, these switches should be within the analog console itself,
for two reasons: first, because they do not involve component-to-component
connection (and hence do not need to be in the main matrix), and second, be-
cause some of them switch summing junctions, and hence should be kept as close
as possible to the components themselves. There is a third reason: some of
them involve form-C or multi-pole switching and hence might be more economical
with conventional relays. To implement the configuration switching on a 680
or 8800 may require some changes in internal tray wiring, but I do not believe
this problem is insurmountable.

The more serious problem is the handling of pots. To keep the number of
inputs and outputs down (and to avoid the switching of relatively high-impedance
pot outputs) pots are committed to summer inputs, integrator inputs, integrator
IC's, and comparator biasing. This, of course, increases the necessary pot
complement, since in any given problem, some of the pots will not be used. I
strongly believe that the number of contacts saved justifies this decision
(further information on this point is given in Chapter 6), and there is no
inherent problem in increasing the pot complement in future machines if this
decision is, in fact, sound. However, it raises the question of what to do with
existing machines. The 680 configuration used in this report requires over 300
pots, so that implementing the full system on an existing 680 would require a
pot expansion rack. The pots are the only components (except for the configur-
ation relays and the switching matrix itself) that need to be added to the 680
to complete the system,

As far as a prototype is concerned, the pots should be no problem, since a
prototype (for evaluating noise, crosstalk, and packaging problems) need not be
full-size. There should be enough pots on a fully-expanded 680 for implementing
a prototype matrix.

The proposed design divides the 680 into six nearly-identical modules.
Components within a module are interconnected by means of a small matrix, and
the components have limited access to inputs and outputs of other modules through
a large matrix. Hence, for a prototype, it is only necessary to build a matrix
for about one-third of the machine (two modules). This will allow the concept
and the hardware to be evaluated without any additional external analog equipment.

2-1

DEFINITION OF TERMS

This section defines most of the terminology to be used in this
report. It is divided into sub-sections to facilitate reference.

2.1 Matrix, inputs, outputs

A matrix is any collection of switches that allows terminals of one
type (called inputs) to be connected to terminals of another type
(called outputs). The use of the terms 'input'' and ''output'' requires
some clarification; the inputs to the switching matrix are the outputs
of computing components and vice-versa. Thus, whether a given
terminal is called an input or an output depends on whether one looks
at it from the viewpoint of the computing components or from the
viewpoint of the switching matrix. Wherever there might be doubt,
the term '"'matrix input', '"component output', etc. will be used.
When used alone, the terms '"input'' and '"output'' will be used from the
viewpoint of the matrix; that is, the term '"input' will, by convention,
refer to a matrix input (a component output).

2.2 M and N, Expansion Factor E

The letters N and M will be used to refer to the number of matrix inputs
and outputs respectively. In many cases, it is desirable to describe

the size of the matrix in terms of a single parameter, rather than two.
For this reason, we define the expansion factor of a matrix by E = M/N.
The matrix may then be described by specifying the size by means of
the parameter N and the ''shape'' by the parameter E. Note that when
two or more identical computers (each with N matrix inputs and M
matrix outputs) are slaved together, the result is a larger computer
with the same expansion factor. The expansion factor is thus independent
of size. It depends on the computer configuration. A preliminary
investigation indicates that E will lie in the range from 1.5 to 2.5 for

a practical analog programming matrix.

2.3 Expander, concentrator, simple matrix, composite matrix

A matrix with more outputs than inputs (E»1) will be called an expander.
A matrix for which E€1 will be called a concentrator. If E =1, the matrix
is a square matrix. The term ''concentrator' is taken from telephone
usage; the term ''expander'' is a natural extension.

Matrices may be classified according to the number of switching stages;
an n-stage matrix is one in which every path from an input to an output

passes through n switches. If some paths take more switches than
others, the matrix is a composite matrix; if all paths are of the
same length, it is a simple matrix. The telephone company uses
composite matrices (a long-distance call uses more switches than
a local call) and it seems reasonable to consider the same sort d
approach for analog programs.

2.4 Réctangular Matrices

A one-stage matrix is, by definition, a matrix in which each input-
to-output connection passes through a single switch. For N inputs
and M outputs, such a matrix is usually arranged (physically and in
circuit diagrams) in an N x M rectangular array, and hence is often
called a rectangular matrix. If any input is to be connectable to any
output, then MN switches are required. Such a matrix will be called
a complete rectangular matrix. A rectangular matrix with fewer than

MN switches will be called an incomplete or restricted rectangular matrix.

Some restriction of matricies appears desirable (for example, a pot
output need not be connected te the input of another pot, nor to its
own input, nor to the inputs on a multiplier).

Note, in passing, that if the number of switches is expressed in terms
of the parameters N and E, a complete rectangular matr ix requires
N2E switches. This gives the expected result that for rectangular
matricies of different sizes but with the same value of E, the number of
switches is proportional to the square of the matrix size. A straight-
forward rectangular matrix requires far too many switches to be
practical, but it serves as a natural basis of comparison for evaulatix{g
other matrix configurations.

2.5 Programs

The purpose of any GPAC switching matrix is to implement programs.
From the matrix point of view, a program may be defined as a list of
connection statements of the form ''connect input i to outputj' where
1€i £ Nand 1€ j€ M. However, not every such list represents a
valid analog program. We must add an additional restriction that no
two connection statements in a program involve the same matrix output.
Such a pair of connection statements would require that two analog
component outputs be tied to the same input (remember component
outputs are matrix inputs and vice versa). It is, however, perfectly
possible for a single matrix input to connect to many different outputs;
this corresponds to an analog component whose output drives several
other components. A matrix input that is to be conncected to n different
matrix outputs is said to have a fanout of n.

Since a matrix output connects to at most one matrix input, an alternative
mathematical description of a program is as a single-valued function

whose domain is the set of matrix outputs and whose range is the set

2-3

of matrix inputs plus one additional symbol which represents ‘'no
connection'. In other words, one may index the N inputs 1, 2, ... N,
with the symbol "O'" representing ''no connection'’ and define for

each output j (1€j € M) the function

f(j) = i if matrix output j is connected to input i
f(j) = o if matrix output j is not used.

This approach makes it immediately obvious that the number of possible
programsfor an N by M matrix is (N+1)M If the matrix contains n ‘
switches, then it has 2" possible states, and hence if it is to be able

to handle all possible programs, we must have n 2 M log, (N+1).

In fact, if N is one less than an integral power of 2, say N = 2k -1,

then it is possible to design a switching matrix with M logy(N+l) = Mk
switches which can handle all programs. The catch is that each "'switch'
must be a relay with several sets of contacts. Each matrix output is
wired to the arm of a form- C relay, and each contact of this relay is
wired to one of the arms of a 2 pole relay (2 form C sets of contacts),
and so on. This "binary tree'' design uses k relays per matrix output
(Mk relays total) and allows each matrix output to connect to any one of
the N = 2k_] inputs, or to nothing (the last matrix input being grounded).

However, since the first input stage must be a relay with 2k-lform C
contacts, the size of the relays makes this scheme impractical. The
technique might prove practical with cascaded stepping switches rather
than relays, but the cost would probably be prohibitive.

Incidentally, if this scheme is implemented with relays, then since each
relay has twice as many contacts as the preceding one, the total number
of sets of ferm -C contacts per matrix output is 1+2+44+. .. +2k"1, which
sums to 2K-EN, Hence the total number of form C contacts for the
entire N by M matrix is MN. If each set of form-C contacts is replaced by
two form-A contacts, this binary tree method takes exactly twice as
many form A switches as a simple rectangular matrix.

2.6 Abstract and Concrete Programs

The definition of a '"program'' in the previous se ction leaves out one
important point; the interchangeability of components. The analog
programmer does not (or, at any rate, should not) care which components
of a given type are used to solve a given problem. If integrator 35 and
integrator 45 are interchanged, the program (in the sense of the connection
statements) is changed, but the same analog problem is being solved.

2=4

To keep this distinction in mind, let us define a concrete program

as a set of connection statements (or, equivalently a function from
outputs to inputs) in the sense of the last section. Two concrete
programs will be called equivalent if one is obtainable from the other
by permutation of components of similar type (i.e. renumbering the
integrators, the pots, the summers, etc.) An abstract program is
defined as an equivalence class of concrete programs. In other words
we ''identify' any two programs which are '"abstractly equivalent''. An
abstract program is essentially what the analog programmer has
produced after he has drawn the circuit diagram, complete with all
component interconnections, but has not written any numbers inside the
-component symbols. After assigning all components, he has reduced
the abstract program to a concrete program.

A digital computer routine for implementing a program should probably
consist of two successive algorithms: a component assignment algorithm
for assigning components (thus reducing the abstract program to a concrete
one), followed by a switch assignment algorithm, which chooses appropriate
switch paths to implement the concrete program. Initially, it appeared
desirable to combine the two: that is, at each stage of the algorithm,
choose the ''nearest'' component of the desired type and the choose the

best switch path to implement the desired connection. The result would

be a single algorithm assigning components and switch paths alternately.
This line of attack has proved fruitless. The two types of choices (choice
of component and choice of switch path) seem too dissimilar to "'mesh"
well., It now appears that two separate algorithms are preferable

(although if the switch-assignment algorithm experiences blocking, it

may be possible to re-assign a few components to relieve the blocking

and try again.

g o m e e

NP

3-1
3. COMPARISON WITH THE TELEPHONE SYSTEM

Any study of the automatic patching problemmust, at some point, make reference
to the experience of the Bell System. This is so for two reasons. The most obvious

-reason is the success of the system in getting around '"the N2 problem", that is,

the fact that the number of switches in any switching matrix grows faster than
linearly with the matrix size.

A system of over ten million telephones, which allows (with rare exceptions)
anyone to call anyone else must have a large number of switches. If a straight -
forward rectangular array were used, ten million phones would require 1014 switches,
Even at the ridiculously low price of a penny a switch, such a system would cost
10+4 dollars, which is more than the entire country's annual Gross National Product.
Even more interesting is the marginal cost of adding one additional subscriber. If
this subscriber is to-have direct access to all ten million existing subscribers,
ten million additional switches would be required. Using again the optimistic price
of a penny a switch, the subscriber would have to pay 100,000 dollars for the in-
stallation,

Now, of course, the Bell System does not provide direct access between sub-
scribers, but instead provides indirect access through several levels of switching.
It is the multi-stage nature of the switching system that prevents the number of
switches from growing excessively, In fact, as the number of telephones has in-
creased, the cost per telephone has actually decreased - a remarkable tribute to
the efficiency of the system.

The second reason for interest in the Bell System is that much of the published

‘literature on switching theory is based upon the particular switching problem faced

by Bell. 1In fact, the three-stage matrix theory presented in Chapter 4 is based
on ideas originally published by Charles Clos in the Bell System Technical Journal.

Despite the wealth of published literature on the subject of switching theory,
there is very little that is relevant to the automatic analog patching problem.
This is because our problem differs from Bell's in a number of important respects.
It is worthwhile to list these differences to obtain some perspective on the
nature of the automatic patching problem. There are basically six significant
differences, three of which tend to make our problem easier than Bell's and three
of which tend to make it harder. Taken together, they make the problem not necess-
arily harder or easier than Bell's, but merely different.

3.1 Size

The largest contemplated analog system is much smaller than the Bell System.
This fact not only tends to make our problem easier than Bell's, but changes its
character as well. In Chapters 4 and 5, we will see that a simple rectangular
matrix is the most economical design for small systems, while a large system is
more efficient with multi-stage matrices., Thus differences in size mean differ-
ences in type as well.

3.2 Static Versus Dynamic Considerations

The Bell System must allow dynamic access between callers, that is, a switch path

must be chosen for a given connection without prior knowledge of what other connect-
ions may be made in the future. Confronted with a Chicago-San Francisco call, the
system has to decide whether to route it through Denver or Salt Lake City without
knowing which city is going to have the heaviest traffic a few minutes later. 1In

contrast, the analog programmer knows all connections before the first connection

32

is made, and once made, they do not change. Occasional program changes (the
equivalent of re-patching) are made so seldom that the entire switch assignment
may be re-computed if necessary. Hence our problem is static, while Bell's is
dynamic. 1In the static problem, every switch path may be chosen with full know-
ledge of the entire problem. In Chapter 4, we will see that this fact "buys"
us about a factor of two; that is, the static case takes about half as many
switches as the dynamic case.

3.3 Interchangeability

In analog programming it is not necessary for every component to be able to
communicate with every other component, since component assignment is arbitrary.
If I want to connect a summer to an integrator, I may not care whether the summer
is A21 or A36, but when I want to talk to Joe Green in Chicago, I won't be satisfied
with Jim Black in Cleveland instead. Summers are interchangeable; integrators are
interchangeable; people aren't. In other words, we are interested in abstract,
rather than concrete programs (See Chapter 2). The ability to interchange com-
ponents at will should prove a significant advantage, if we take advantage of it
properly.

The preceding three points are all in our favor. The three disadvantages
are as follows:

3.4 Traffic Density

At any given time, only a small percentage of the country's telephones are
in use. 1In contrast, a typical analog program may use most of the components in
the machine. Hence, although Bell works with much larger matrices, the traffic
on them is much lighter. One way that Bell takes advantage of this fact is to
use concentrator matrices at the inputs to their large switching systems. This
keeps the number of inputs and outputs to their large systems within reasonable
bounds, but it also means that only a small fraction of the people in a given
exchange can use the phone at any given time, and a still smaller fraction may
make long-distance calls. Fortunately, traffic is normally light enough that
blocking does not often take place. In the event of a catastrophe, such as a
fire, flood, or earthquake, when many people in a given area want to use the phone
at once, a number of them will find the trunklines all busy. The analog programmer
must operate under such conditions of moderate-to-heavy traffic density most of
the time.

3.5 Fanout

Fanout is quite rare in the Bell System, but quite common in analog pro-
grams. Cases of fanout occuring within the Bell System (e.g. conference calls)
probably require manual intervention; at any rate, I don't know any way to set
up a conference call between three different cities by direct dialing.

The "cost'" of fanout in terms of switches is less than I had originally
anticipated; comparison of the results of Chapter 4 and Chapter 5 indicate that
the cost is about /2; that is, about 1.4 times as many switches are needed to
- cover the case of fanout.

3.6 Blocking Penalty

In order to program an analog problem it is necessary to make all connections;
if even one connection is omitted, the entire simulation is affected, A typical
200-amplifier problem may require 500 connections. If one of these is blocked
(and cannot be un-blocked by re-assigning components) then the problem can not be
run. If this happens in the Bell System, it merely means that one person in 500

3-3

can't complete his call because the trunk lines are busy; the other 499 people
are satisfied and the 500th can always try again later. (In this case, the
dynamic nature of the Bell System pointed out in section 2 becomes an advantage).

Thus a level of blocking that Bell might find acceptable may be unacceptable
in an analog switching scheme.

The advantages that the analog programmer enjoys over the Bell System may be
summarized as follows: he is concerned with a relatively small switching matrix
making static connections between interchangeable components, while Bell's System
is large, and makes connections dynamically between unique subscribers. Bell's
advantages may be summed up as follows: they operate under conditions of low
traffic density (low percentage utilization) and negligible fanout, and they can
tolerate a small percentage of blocked connections at any time. The analog pro-
grammer operates under conditions of high traffic density (over 50% of the com-
ponents are in use in a given problem) and moderate-to-heavy fanout (fanouts of
2 or 3 are quite common, and fanouts of 8 to 10 occur occasionally). Furthermore,
any blocking is not merely undesirable; it is catastrophic.

. @

4-1

THREE STAGE MATRICES (WITHOUT FANOUT)

The theory of the three-stage matrix is a natural starting point for

any study of automated analog patching. Almost all proposed systems
utilize three-stage matrices (sometimes in combination with other
matrices). If fanout is ignored, the theory assumes an especially

simple form. It is fairly easy to prove that a three-stage matrix can

be found that can handle any non-fanout program with fewer switches

than a straightforward rectangular matrix, if the matrix i rge

enough. Most of the theory in this chapter is due to Clos |1} , but

is summarized here in a slightly different form to facilitate generalization
to the fanout case, which is covered in Chapter 5.

4.1 Parameters of the three-stage Matrix

The type of three-stage matrix considered in this report consists of

three types of rectangular matrices, called input blocks, middle blocks,
and output blocks. The input blocks are connected to the matrix inputs,
the output blocks are connected to the matrix outputs, and the input blocks
are connected to the output blocks through the middle blocks. Each
middle block has one connection to each input block and one connection

to each output block. Figure 4.1 illustrates the configuration. The input
blocks are 2 by 2 rectangular matrices; the middle blocks are 3 by 4 rec-
tangular matrices, and the output blocks are 2 by 3.

An arbitrary matrix of this type is characterized by the following
parameters:

t he number of inputs

the number of outputs

the number of inputs per input block
the number of outputs per output block
the number of input blocks

the number of middle blocks

the number of output blocks

NXE B g2

From the definition, it is obvious that N = Xn and M = Zm. Eq. 4.1

The total number of switches in the matrix may be expressed in terms of the
parameters as follows:

The input blocks are n by Y matrices; hence they each contain nY switches.
Hence the total number of switches in all input blocks is XnY. Since

Xn = N, this can be written as NY. The same reasoning leads to the
conclusion that MY switches are needed in the output blocks. Finally,

the middle blocks have X inputs and Z outputs each, and hence the total
number of switches required in the middle blocks is XYZ. Thus the

total number of switches is given by

—_——— —— 4 . wmr wr TN

N=6
INPUTS <

:
1%

/
l

ms2

|

m=2»

INPVT
BLocKS

(2 Byl)

4=2

MLDDLE
BLOCKS

(36y%)

Fi; wre L{cl

[m =3

‘:m=3

OUTPQr
BLocks
(2 By3)

> 0UTPUTS

/

M=12

O

4-3

If we eliminate X and Z in favor of m and n, we get a form that
turns out to be more useful:

M N
S =Y (M+tN++wX T) Eq. 4.2

In a practical design problem, M and N may be taken as given (that

is, the problem is to find the most efficient matrix for connecting N
inputs to M outputs). Hence m, n, and Y are the design parameters

to optimize. We want the minimum number of switches for an adequate
matrix, where the term '""adequate'' meana that the matrix contains
enough switches to implement a particular class of programs. Any
definition of "adequate'' will impose some constraints on m, n, and Y
and the problem becomes one of choosingm, n, and Y to minimize S
subject to these constraints. Since S is a monotonic increasing function
of Y and a monotonic decreasing function of m and n, we want to choose
Y as small as possible and m and n as large as possible. Thus one
would expect any definition of "adequacy'' to impose a lower bound on Y
and /or upper bounds on m and n.

In this chapter, two definitions of '""adequate' are considered (for the
case of non-fanout programs). In the next chapter, an additional
definition is. considered for the case of fanout. In all cases, the
definitions lead to upper bounds on m and n and lower bounds on Y, as
expected. The problem thus reduces to a problem in constrained
parameter optimization. Solution of these problems yields design
criteria for optimal three-stage matrices and formulas for the optimal
numbers of switches,

4.2 Static and Dynamic Adequacy

A matrix will be called statically adequate i it is capable of handling any
concrete program (that is, any concrete program, as defined in Chapter 2
can be implemented on it). It will be called dynamically adequate if any
transition from one such program to another can be made without breaking
any connections common to both. The dynamic case is not particularly
important for ananalog programming matrix, since transitions from

one program to another (the equivalent of re-patching) are normally made
between runs, not during runs. Switching during runs will ordinarily

be done with electronic switches for reasons of speed. The dynamic

case is, of course, the one that interests the telephone company, and
hence most of the published theory is based on dynamic considerations.

4=4

- The terms ''statically adequate without fanout' and ""dynamically
adequate without fanout' will be used in the obvious sense (one
considers only non-fanout programs). In the non-fanout case, the
adequacy conditions assume very simple forms as follows:

Therorem 4,1 For a three-stage matrix to be dynamically adequate
without fanout, it is necessary and sufficient that Y = m+n-1.

Proof: At any given time, it must be possible to connect any unused
input to any unused output. There are n-1 other inputs on the same
input block as the input to be connected. If these inputs are all in use,
they tie up n-1 middle blocks. (No middle block can handle more than
one connection from a given input block). Similarly, the m-1 other
outputs on the output block might all be in use, tying up an additional
m-1 middle blocks. Thus at most m+n-2 middle blocks are tied up

by existing connections. The actual number of middle blocks tied up
may be less than this, because some of the n-1 middle blocks that are
tied up on the input side may be the same as some af the m-1 middle
blocks tied up on the output side. However, the worst case occurs
when there is no such overlap (and there will be no overlap if there is
no pre-existing connection between the input block and the output block
under discussion). In this case m+n-2 middle blocks are tied up, and
ifYy >m+n-1, there will be one middle block left to make the necessary

connection. Since this is a '"worst case'' the condition is both necessary
and sufficient.

Therorem 4.2 For a three-stage matrix to be statically adequate without
fanout, it is necessary that Y>m and Y>> n.

Proof: In order to handle the case where all m outputs in a given output
block are in use, we must have Y >m. In order to handle the case where
all n inputs in a given input block are in use, we must have Y > n.

Hence both conditions are necessary.

Furthermore, it appears likely that these two conditions taken together

are also sufficient, that is, that any non-fanout program can be implemented

on a three-stage matrix as long as the number of middle blocks is at

leagt as great as m and n. This is asserted without proof in the literature
21 . I suspect it could be proved rigorously, but the proof appears

trickier than I had first suspected. At any rate, practical experience

indicates that it is at least approximatelysufficient; that is, that the number

of middle blocks is necessary, at worst, not much greater than m or n.

For the purposes of this report, it will simply be assumed that these

conditions are sufficient. If this assimption turns out to be false, it

will not really affect the overall conclusions of this report, since the

4-5

real practical interest is in programs with fanout. The non-fanout
case is of interest only as a prelude to the more realistic case
covered in Chapter 5.

With these assumptions, the problem becomes one of minimizing S
(given in Eq. 4.2) subject to the constraints

Y Zmin-1 for the dynamic case 4.3

Y Z m and Y =n for the static case 4.4

4.3 Optimizing the Matrix

As expected, the constraints impose upper bounds on m andn and lower
bounds on Y. It is fairly clear that these inequalities must reduce

to equalities for an optimum design. For example, if Y®™m+n-1, then
we could reduce Y or increase m or n without violating 4.3. Reducing
Y or increasing m or n would reduce S according to 4.2. Hence, for
the optimum designs, 4.3. and 4.4 must reduce to equalities. .

We can use these equalities to eliminate Y and express S as a function
of m and n. Minimization then becomes a straightforward problem in
elementary calculus. We have

S = (m+n-1) [M+N+ ——g] in the dynamic case 4.5
MN :
- : i 4.
S=n [M+N+ v] in the static case 6

Setting 3s/d m andds/dn equal to zero, we get for the dynamic case

h [M+N} =z 4.7

[MN 1

2 = s
n¢ = [+J (1) 4.8

and for the static case

MN
M+N

Although 4.7 and 4.8 are difficult to solve for m and n, we observe that

if m and n are much greater than unity, we may make the obvious
approximations on the right-hand sides, in which case 4.7 and 4.8

reduce to 4.9. It should be noted that even 4.9 is itself an ""approximation"
in the sense that it usually does not yield integral values for m énd n;

so that the calculated values must be rounded off to the nearest integer
anyway. Hence for pract1ca1 purposes, the static and dynamic cases

yield the same values of m and n.

Substituting 4.9 into 4.5 and 4.6, we get, for the dynamic case
S =4 VMN(M+N) -2 (M+N) 4.10

and for the static case
=2 VMN (M+N) ‘ 4,11

Note that the second term in 4.10 is much smaller than the first; in

fact, dropping this term is equivalent to using Y = m+n instead of

Y = m+n-1, which introduces only a small error if m and n are large.
Hence, to a first approximation, we see that the dynamic case takes

about twice as many switches as the static case. In other words, knowmg
all connections beforehand allows a saving of a factor of two.

4.4 Divisibility Considerations v
All the formulas in the previous section are approximate. For example
equation 4.9 does not usually yield integer values of m and n. Even if

the values turn out to be integers, they may not be divisible into M and N.

To get around this, one does the
obvious things: round off the calculated m and n to the nearest integer, and
then round M and N upto the next larger multiple of this value. This
gives a matrix slightly larger than®quired, allowing a few more inputs
and outputs to be terminated in the matrix. However, for matrlcxes
sufficiently large to be of interest, the percentage error in 4. 10 and
4.11 is small,

4,5 Comparison with Rectangular Matrix

To see how fast the number of switches increases as a function of
matrix size, we may express S in terms of N and E (see Chapter 2)
rather than N and M. This gives

S = 4N3/2 V E(14E) (dynamic case) 4.12

s = 2N3/2 E(1+E) (static case) 4.13

4-7

Since S = EN? for a rectangular matrix (see Chapter 2), it follows
that for small systems, a rectangular matrix is more economical,
while for large systems, the three-stage matrix has the advantage.
The ''crossover'' point may be found for the static case by setting

2N3/2 VE(I+E) = EN.2

Solving for N, we get N = 4(%2) 4.14

For E =1, this gives a crossover value of N = 8. For E=>=], the
crossover value is even smaller. Hence even fairly small rectangular
matricies may be profitiably replaced by three-stage matrices.

However, small matricies tend to be dominated by divisibility considera-
tions (rounding m and n to thenearest integer and increasing M and N

to the next larger multiple of this value will introduce more error if

m, M, and N are small). Furthermore, the existence of fanout alters
the crossover value (see Chapter 5).

4.6 Summary

The results of this chapter may be summarized as follows:

a. The number of switches required by a three-stage matrix
is given approximately by S = 2N \/E(1+E) (for static, non-
fanout programs).

b. To handle the same programs dynamically (in terms of
the telephone analogy, to allow any one of the inputs to "'call'' any
of the outputs at any time without breaking previous connections)
approximately twice as many switches are required.

¢, In either case, the number of switches increases in

proportion to the 3/2 power of the matrix size, rather than the
square,

d. The optimum values of m and n are the same for either

the static or the dynamic case: m =n = YN /| E :
, 1I+E

4-8

Thus the number of inputs per input block (and outputs per output
block) varies as the square root of the matrix size: doubling the
size of the computer should result in approximately 41% more input
blocks, each having 41% more inputs,

Note, in passing, that the expansion factor of a three-stage matrix
is the product of the expansion factors of the individual matricies of

which it is comf(aosed. he input blocks have expansion factor E| =Y/n;
the middle blocks have the expansion factor
' _ Z _ M/m
E2 - X - N/n

and the output blocks have E3 = m/Y. The product of these factors
reduces to M/N, the expansion factor of the overall matrix. This

fact is somewhat analogous to the fact that the gain in a multi-stage
amplifier is the product of the individual stage gains. The optimization

of the matrix design may be thought of as determining the most '
economical distribution of expansion among the three stages. In

terms of expansion factors of the submatricies, we may statethe f ollowing:

e. In the optimally designed static case, the input and ,
~output blocks are identical square matricies, and tle middle blocks

have the same expansion factor as the overall N-by-M matrix. In other
words '"all the expansion takes place in the middle blocks." In the
dynamic case, the input blocks are approximately 1:2 expander s; the
output blocks are approximately 2:1 concentrators, and the middle blocks
have the same expansion factor as the overall matrix.

. f. In either the static or the dynamic case, half the switches

are in themiddle blocks, with the other 50% divided between the output
blocks and input blocks in the ratio E:l. This fact will be important
later when we consider the effect various modifications to the three-
stage matrix: the middle blocks are the most prolific users of switches;
the output blocks are next (since E=>1); and the input blocks use the least.

5-1

THREE -STAGE MATRIX THEORY WITH FANOUT

The optimum design problem for three-stage matrices without
fanout has been solved in Chapter 4. Most of the contents of that
chapter are not new; the basic ideas were part of the published
literature at the beginning of this project. However, comparatively
little had been done to obtain similar results in the case of programs
with fanout.

It is fairly clear that fanout increasesthe possibility of blocking; in
fact, programs with fairly light fanout exist for which the conditions
Y Z mand Y Z n are not sufficient to ensure that the program can
be implemented (Examples will be given later).

The design parameters of a three-stage matrix, as pointed out in

Chapter 4, are Y (the number of middle blocks), n (the number of

inputs per input block) and m (the number of outputs per output block).
The problem is to choose these parameters so as to minimize the
number of switches while still allowing a significant class of programs

to be implemented. Optimizing a function of three variables by trial

and error is a tedious process, especially if the constraint is not specifed
precisely. The previously published studies attack the problem by

fixing m and n according to Equation 4. 9:

MN
M+N

m=n=

This leaves only the single parameter Y to be determined. Obviously,
the greater the value of Y, the more switches there are in the matrix

and the more likely thematrix is to be adequate. Hence, the problem
becomes one of determing the smallest number of middle blocks which
will still allow a significant class of programs to be implemented. This
should not be too difficul t to determine by examing sample pro ms.
This is the approach suggested by Marshall and Hagerbaumer |2 and,
to an extent, by Ocker f3] » but they did not actually carry out thé details.

The use of equation 4.9 to determine m and n is apparently based on
the assumption that if it gjves optimal results for the non-fanout case
then it is problably optimal (or near-optimal) even in the case offanout.
In fact, equation 4.9 gives the correct answer to two diferent problems
(static and dynamic) and hence it seems reasonable to assume that it
provides '"'efficient' values of m and n for all cases. ’

5-2

This assumption turns out to be incorrect. In this chapter, the
theory of Chapter 4 will be extended to cover fanout, and it will be
seen that in the presence of fanout, we should choose Y = m =n

for an optimal design. Formulas for optimal values of m, n, and

Y are developed in this chapter. The main result is that the number
of switches must be increased by a factor of \/E— to cover the case
of fanout. The analysis is performed by constructing a ''worst case'
program and determining the number of middle blocks required.

5.1 The Programming Array

A program was defined in Chapter 2 as a set of connection statements,

or, equivalently, as a function from outputs to inputs. For purposes

of analysis it is desirable to present programs in a visual form. If

the N matrix inputs and the M matrix outputs are arranged in a rectangular
array (with each input corresponding to a row and each output corresponding
to a column) then an X may be marked on the array for each connection

to be made; that is, an X in row i, column j indicates that the i-th input

is to be connected to the j=th output. Thus a program might also be
defined as an array whose entries are binary digits. Note that if the
program is to be implemented on a rectangular matrix of switches, the
X's indicate which switches are to be closed. The restriction that no

two matrix inputs connect to the same matrix output means that no column
contains more than one X. Any pattern of X's satisfying this constraint
represents a legitimate program.

If the program is to be implemented on a three-stage matrix, then a

few modifications can be made to simplify programming array. Instead
of numbering the inputs 1, 2, ... N, they should be grouped into input
blocks and doubly indexed. Of course, the total number of inputs remains
the same, no matter how they are indexed. As far as outputs are concerned,
we can greatly reduce the size of the array by observing that we really
don't need to specify which inputs are connected to which outputs, but only
which inputs are connected to which output blocks. Since an output block
is a complete rectangular matrix, it follows that if an input is connected
(via an appropriate middle block) to any terminal on a given output block
is can easily be connected to any or all of the outputs on that block.
Hence, instead of one column per output, we need only one column per
output block, which reduces the size of the array by a factor of m. The
number of X's in a column cannot exceed m (the number of outputs per
output block). It should be clear that any array of X's that meets this
requirement represents a legitimate program for that matrix.

5.2 Implementing a Program

A program is implemented by choosing an appropriate path for each
connection. In terms of the programming array, all that needs to

be specified is which middle block is used to make which connection.
Once this is determined, the path from the input blocks to the output
blocks is completely defined. If themiddle blocks are numbered
1,2,...Y, then a program may be implemented by erasing each X from
the programming array and replacing it by the number of the middle
block used to make the connection. The assignment of middle blocks
must satisfy the following restrictions:

5.2.1 No number may appear more than once in a column.,
This is because each middle block has but one connection to a given
output block.

5.2.2 No number may appear more than once in any input
block exceptin the same row. This is because each row represents an

input, and a given input block has but one connection to a given middle
block.

Any assignment of numbers that meets these restrictions represents
a valid implementation of the program.

Figure 5.1 illustrates these concepts for a small matrix with 3 input
blocks of 4 inputs each, and 6 output blocks of 4 outputs each. This is
a legitimate program, since no column contains more than four entries.
It is also a ""worst case'' program in the sense that every column has

exactly four entries. The reader should be able to verify that £,1b represents

a valid implementation of the program with six middle blocks. (It will
be proved later that six middle blocks are really necessary for this
matrix, despite the fact that m and n are only four).

If an input has to fanout to several outputs, this fanout could take place
at several points inthe matrix: within an input block, within a middle
block, or within an output block. It is worthwhile to take a few minutes
to observe what this fanout looks like on the programming array:

5=4

~p mne T
t W o~ 3 -~
,,wM M~ M
°Sf¥Hl— | A b
Togpl |— A AT~ A M [~
A0 —
LngN | N ~
0 XX X
WK ny X X X X
asauM XX X X
X~
N> X X |
~|XX > >x ¥
Zdnil— A -t~y m >
N»018 —_—
ANndNi 2 m

O

S b

So’ﬂ_

5-5
If a particular input fans out within an input block, then two or more
different numbers appear in the corresponding row (e.g. the first
input in the second input block in Figure 5. 1b).

If a particular input fans out within a middle block, then the same
number appears several times within the row (e.g. the first input
in the first input block in Figure 5. 1b).

If any input fans out within an output block, then the column corresponding

to that output block must have less than m entries.
Conversely, if a column has fewer than m entries, then the corresponding
output block must eithe r have fanout or idle outputs or both.

Incidentally, fanout within an output block is desirable, since it reduces
the number of X's in a column and hence makes it more likely that

the program can be implemented. This means, forexample, that a
summer should not have all its inputs on one output block; they should
be $pread " among several output blocks to enhance the possibility of
output block fanout.

Input block fanout is occasionally necssary; in fact, it is for this reason
that it is undesirable to take Y=m=n, as we did in Chapter 4. Consider,
for example, the program in Figure 5.2 the matrix has N=8, n =4,

M=12, m=4. Since no column has more than four entries, this is a permissible

program for this matrix. However, four middle blocks are not enough
This can be seen as follows:

1 2 3 | 23
T X XX TR
2l X X X W 222
I} X XX 3] 333
y| X)| 1?
i : ‘
A 2| |
3 3
Y Y

52a - 5.25b

5-6

The first column contains four entries. Hence it must use at least
four middle blocks. We may assume without loss of generality that
they are numbered in order 1, 2,3,4. Numbering them in any other
order would make no difference, since it would merely amount to a
re-labeling of the middle blocks. Since four middle blocks are used in
the first.input block, it follows that if only four middle blocks are
available, then there can be no fanout within input block number 1.
Hence, the remaining entries in input block number 1 are forced, that
is, we must use the same number that is already present in the row.

Now look at the unassigned entries in input block number 2. Since

the same number cannot appear more than once in a column, both
entries in the second block must be 4. But this is impossible since
they are in different rows. Hence, four middle blocks are insufficient.
Note that it is the presence of heavy fanout in a gingle input block with
all its inputs in use that causes this difficulty. Sincé many analog
programs use most of the components available, it is quite possible
that there will exist at least one input block with all its inputs in use.

If Y=n, then that input block cannot have any fanout. If the inputs in this
block must fanout to several output blocks, there will be a lot of forced
choices of the type encountered in the above example. To avoid this
difficulty, we should take Y >n, so that the input blocks are expanders,
rather than square matrices.

Now how about the other condition encountered in Chapter 4, namely
Y g m. Should this also be replaced by Y2 m? At this point, we
cannot tell (it will turn out later that the answer is ''no', that is, we
should have Y=m for an optimal design). The point to note here is
that the above argument does not apply to output blocks, since fanout
within an output block helps us, rather than hurting us.

In this context, it is worth noting that in the absence of fanout, there

is a- symmetry between inputs and outputs. In fact, a non-fanout
program is a one-to-pnecorrespondence between some of the inputs and
some of the outputs. Hence if we interchange the words "input'' and
"output'' and interchange M and N, the same formulas apply. This
explains why formula 4.9 is symmetric with respect to m and n.

For programs with fanout, there is a fundamental difference between
inputs and outputs, in that one input can connect toc many outputs, but
not vice versa. This makes it intuitively reasonable that one should

expect m = n in the non-fanout case, but m # n when fanout is allowed.

5-7

5.3 Blocking

Two inputs will be said to block each other if they must go to the
same output block. In terms of the programming array, this means
that they have an X in the same column. A set of inputs will be called
a blocking set if any two inputs in the set either block each other or
are in the same input block. The reason for the definition is given

in the following theorem:

Lherorem 5.1 If two inputs in a blocking set do not fanout within
their input blocks, then they cannot share the same middle block.

Proof: If the two inputs are in the same input block, then they

obviously cannot share the same middle block , regardless of whethor
they have input block fanout or not. If they are in different input

blocks, then, by definition of a "blocking set, ' they must have connections
to the same output block. If they don't fanout within their respective

input blocks, then each is connected to just one middle block. But one
middle block cannot connect them both.to the same output block, so

they must use different middle blocks.

The "'worst case'' of blocking occurs when a large blocking set is concentrated
in a small number of input blocks. This is seen in the following theorem
due to Marshall and Hagerbaumer|Reference 2:)

Theorem 5.2 Suppose a blocking set contains P inputs, and suppose these
inputs are in P/n input blocks (so that each input block is ''full" i.e. all

its inputs are in use). Then the number of middle blocks required must

sétisfy the condition

y = 2 . _2Pn 5.1
- Pl Ptn

Proof: Let Nf be the number of inputs in the set with fanout in the
input block and Ny be thenumber without input block fanout. Then

No = Y by Theorem 5.1

N; = (P/n) (Y-n) because there are Y-n unused
inputs in each input block.

Hence P=No +Ny = Y + (P/n) (Y-n)
Solving for Y, we get condition 5.1

Note that this condition is necessary, but has not been proved sufficient.

However, extensive experience indicates that it is a sufficiently strong condition

so that in practice, it is usually sufficient. For example, the first

eight inputs in Figure 5.1 form a blocking set concentrated in the first

two input blocks. By formula 5.1, we must have Y Z 5.33. Since Y

must be an integer, this implies YZ 6. Since the program is actually

implemented with 6 middle blocks in Figure 5.1, this number is both
_necessary and sufficient.

Incidentally, the program in figure 5.1 was implemented simply by
proceding column by column, filling up each column with numbers,
keeping the necessary restrictions in mind. The necessity for the fifth
middle block becameevident in column 2 (this is the same sort of blocking
illustrated in Figure 5-2). The sixth block was not needed until the

very last column. Thus the program almost succeeded with five, but
"almost' isn't good enough: Theorem 5.2 shows that six are really
necessary.

To use this formula as a design tool, we need some means of relating
P (the size of a maximal blocking set) to the matrix parameters. This

relation is derived in the next section.

5.4 Construction of "Worst Case'' Programs

The greater the value of P, the more middle blocks are required.

Construction of a worst case program therefore requires determination of

a maximal blocking set. If we enter an X in every row and every column
of the programming array, then every input blocks every other input,
but this is not a legitimate program since the number of X's in a column
cannot exceed m. Hence we want to generate the maximum amount of
blocking without too many entries in a column.

If one input blocks another, then there must be some column with at
least two entries (namely the column in which blocking takes place for
these two inputs). It seems reasonable to ask how many more inputs
we could add without increasing the number of column entries beyond
two. Each new input must block all previous entries in the set, and
this blocking must not take place in one of the columns that already has
blocking, since that would mean three entries in a column. Hence new
columns are needed for each new input to block the preceding ones.

o

5-9

a3 7182191/
(X[x| | X X
2 Xl X X
3 X| X X
9 X\ X X X
g x| x| 1%
6 |X|X X X
7 Xl X X X
g X X X
9 X) x| X X
10 XX XL X
nopXix) 1 X X
o |A X X X
i3 X| X X X
1Y X|X|X X
g KX

.3

5-10

Figure 5.3 shows the construction. If inputs 1 and 2 block each other,
they must have entries in the same column, and we might as well call
that column 1. If input 3 is to block both inputs 1 and 2 without more
than two entries in a column, then we must add two more columns (one '
for input 3 to block input 1 and one for input 3 to block input 2.). We i
may as well label these columns 2 and 3. Each new input needs one
new column for each of the preceding ones. Adding the fourth input '
requires adding three more columns, and adding the fifth input requires

four additional columns. Therefore, any set of five mutually blocking inputs,
with only two entries per column must look like the pattern of the first

five rows in Figure 5.3 (except for re-arrangement of rows and/or columns.)

The total number of columns required may be obtained by summing
an arithmetic progression. Table 5.1 illustrates the trend and gives
the general formula.

NUMBER OF NUMBER OF

BLOCKING INPUTS COLUMNS

(ROWS) REQUIRED |

l

y |

O

2 1 :

3 3 l

4 6

5 10 ‘

6 15 |

U U(U-1)/2 o
Table 5.1

We may continue this construction until we run out of columns,
Since the number of columns is Z(=M/m), we have

p
U(u-1)/2 =Z. | | | |

Solving for U, we obtain, by quadratic formula:

U=1/2 [\/SZH +1] -

5-11

Of course, this formula is exact only in case Z happens to be of the
form U(U-1)/2, so that the calculated value of U turns out to be an
integer. However, for large matrices, Z is sufficiently large so that
we do not introduce much error by rounding U to the nearest integer.

In fact, for large Z, we can make the approximation:

U = Vaz.

This formula gives (approximately) the maximum number of mutually
blocking sets with only two entries per column. Since we are allowed

m entries per column, we may repeat this pattern m/2 times (if m is
even) obtaining P= Izn_) VZZ mutually blocking inputs. Figure 5.3
illustrates this construction for U=5, Z =10 and m =6.

Since this formula was obtained by generating the maximum number of
blocking inputs for a given colurmlength, it appears to be the worst-case
value of Por at least close to it, and experience bears this out.

Eliminating Z in favor of the more familiar parameter m, we obtain

P= \/Mm/Z

Using this value of Pin Theorem 5.2, we obtain

2
==
— n-l+ \/Z/Mm

Y

as a necessary condition to prevent this type of blocking.

5.5. Construction of an Optimal Three-St age Matrix With Fanout

A three-stage matrix should minimize the number of switches, given by
MN
S =Y (M+N+ e) .5.1

subject to the constraints

Y > n 5.2
Y > m » 5.3
Y - 2 5.4
-
- n"1+ 2 '
Mm

. 5-12

The first two conditions are necessary for the same reasons given in
Chapter 4, and the third was derived in the last section. Since the

right-hand side of 5.4 is a monotonic increasing function of m and n,
if follows that all three constraints impose upper bounds on m and n
and lower bounds on Y, as expected (see chapter 4).

When a system to be optimized is subject to inequality constraints, then,

at the optimum point, some of these inequalities reduce to equalities,

while the others remain strict inequalities. Furthermore, those that

remain strict inequalities do not affect the optimum point, since a

small change in the optimum point could be made without violating them,
which means that the optimum point must

also be optimum with respect to a reduced set obtained by ignoring all

the inequalities that turn out to be strict.

Farexample, suppose we ignore condition 5.4 and optimize the system
subject to 5.2 and 5.3 only. Then if we take the optimum values of

m, n, and Y and substitute into 5.4 and find that it is satisifed also,
then the new optimum is the same as the old and the additional contition
(5.4) has no effect on the optimum. Conversely, if 5.4 is not satisfied,
then this means that the new condition (5. 4) does affect the optimum, and
in fact, 5.4 must reduce to a strict equahty

Now the optimum in the absence of 5.4 has already been calculated in
Chapter 4. For this optimum point, Y = m =n. Hence, substitituing
into 5.4, eliminating Y and n, we get

- —2
= mlt
Mm

< 2.

m

which reduces to
M
m

Since M/m is the number of output blocks, it follows that for any
matrix with more than two output blocks (and this includes all matrices
of practical interest), this inequality is violated. In other words,

if we ignore the new condition 5.4 and solve the optimization problem
subject only to 5.2 and 5.3 then the resulting optimum point does not
satisfy 5.4. Hence the introductibn of 5.4 does affect the optlmum
point, which, in turn, implies that 5.4 must 't be an eguahty at the
optimum point.

5-13

Further analysis (details omitted here) shows that, in fact, 5.3 also
reduces to an equality at the optimum point, while 5.2 remains a
strict inequality. (In fact, we have already seen that Y>,n is
necessary to allow fanout within an input block).

Using the two equalitites (5.2 and 5. 3) allows us to eliminate two of
the three variables and reduce the problem to optimization of a function
of one variable. Substituting Y = min 5.1, we get

S = m (M+N) + 1? MN 5.5

1
Solving 5.4 for o (remembering that 5.4 is actually an equality at the
optimum point) we get

2 2
— Smn— - - 5'
m Y Mm 6

Substituting 5.6 into 5.5 yields

S = m(M+N) +MN '{25 -\ /Z 5.7

Setting dS/dm = 0 and simplifying,

(M+N)m2+N \/-I;I— ym = 2MN 5.8

The left hand side of equation 5.8 is a monotonic increasing function
of m for fixed values of M and N. Hence the re is a unique positive
root m, which can easily be obtained by it eration. Substituting

this value of m into equation 5.6 allows us to solve for n, thus yielding
the optimal design values.

As an example, consider the case N = 60, M = 144,

Equation 5.8 yields m = 8.8 and
equation 5.6 yields n =5.3. Thus we should have m = 8 or 9 and
n=5or6. All these values are, in fact, divisible into M and N, so
that we do not have to increase M or N to allow the inputs and outputs
to be grouped intothe appropriate number of blocks.

5-14

Tabulating the four possible cases, we get the following results
(Table 5.2):

m n X=N/n Z=M/m Y=m S=Y (MtN+X2Z)
8 5 12 18 8 3360
8 6 10 18 8 3072
9 5 12 16 9 3564
9 6 10 16 9 3276

Table 5.2 Possible Candidates for
Optimum Design (N=60;M=144).

Examination of the table indicates m=8, n=6 yields the optimum, and
requires 3,072 switches. By contrast, a 60 by 144 rectangular matrix
requires 8,640 switches.

5.6 The Asymptotic Formula

For large matrices, a simple approximate solution is possible. Since
the first term in equation 5.8 is propertional to m2 and the second to

m, it follows that the first term predominates for large m. Ignoring
the second term, we may solve for m, obtaining

2MN
m = AN 5.9

This is of the same form as formula 4.9, which was obtained in

Chapter 4 for the non-fanout case, except for the additional factor in

the numerator. To calculate n approximately for large matrices, we observe
that equation 5. 6 can also be written

[

2 2 1
m t-\om?) T m G-\ st

B

where Z (=M/m) is the number of output blocks. For large matricies,
Z becomes large so that the first term dominates, and we have,
approximat ely:

1

- 2
n m

5

15

and hence

m MN
- m [MN 5.
nET 2(M+N) 1

Subsituting equation 5.9 (for m and Y) and equation 5.11 (for n)
into equation 5.1, we get

s = 2V2 \/MN(M+N) =2\/E'N3/2 \/E(1+E) 5.12

Thus a three-stage matrix optimized for handling programs with
fanout takes about 41% more switches than the non-fanout case.
(See Chapter 4).

5.7 Adequacy of the Three Stage Matrix

It should be remembered that the system has been optimized subject

to three constraints (5.2, 5.3, and 5.4) which are known to be necessary,
but have not been proved to be sufficient. However, experience indicates
that a matrix designed according to these rules will actually be adequate
for most practical problems.

As an illustration, consider what the ''"worst case'' construction looks

like on the matri x described above (N=60; M=144; n =5; m =8). Figure
5.3 shows the construction for the case where Z (the number of output
blocks) is of the form U(U-1)/2. Such a number is called a triangular
number (because a number of objects can be arrangedin a triangle if

and only if the number is of this form- for example, the pins in bowling).
If Z is not a triangular number, then the construction of figure 5.3

cannot be carried out exactly, and all computations based on this
construction are only approximate.

In fact, since a number of approximations were made inderiving the
optimal design formula, it turns out to be possible to find a program
requiring nine, rather thaneight middle blocks. Figure 5.4 illustrates
this program. Since 15 is a triangular number, the first 15 columns
allow 6 mutually blocking inputs to be generated with only two entries per
column. Repeating this pattern four times gives 24 mutually blocking
inputs which fill the first'15 columns, with the maximum permissible
number of entries (eight) in a given column. The remaining three
columns are just enough to provide enough entries to allow the 25th input
to block each of the first 21. (Note that in order to use Theorem 5.2,

it is only necessary that the 25th input should block the first 20 ; it

need not have any column entries in common with the inputs in the

same input block, since it cannot share a middle block with them in

any case).

5-16

S ol 3 X X x X

S P x x X X | %

FIES X | X SRS X X
Q| | X X % X X %
E3 X |X x| X X % x X

3 X X X X X X X x
X x X X X XX b

8| > % x> X X X

o~ x X X X X X x X

ol X bed X X X] x
NX X X X X R4

Y 3 % XX | % > X

W X X x A X X Xl X

X bad X X X X X X

o X | X X ™ X | X

dlx X x ¥ x X < ¥

~[>x % > X | > X >
,1137§Il3751237ﬁll37§12375

5.4 a

5-17

<

® 3~ To~ -~ | ™) (U »

g N b 3~ ~ N M~ Wi

¥ o~ O ™M - N %))

9 NWw N ™~ ™M W - O~

¥ ® |W» N » R M o

2 >~ o - o 34# 9 N ~

A ™ o I o N | N = ~

=|= oM % 4 Y. o~

8 oo w0 Mo S I~ V) ~

LN b o - It o N %

wl N ol > s N~ vy - o

N =~ 2| M Ny > N~ L)

9 V) & — I\ o> 8 >~

| N 0 > W ~ o o

™ dn 3% ~m™ e

Nl 3~ N O n M N

—-—- M nwg r~
f.!13ul-)~..l_23u!r))239r>?2 30._5»!.239-5—

549 b

5-18

Applying Theorem 5.2, we find P = 25 entries in 5 input blocks with O

5 in a block. According to the theorem, we see that Y = 8.33 is
‘necessary. Since Y must be an integer, it follows that at least nine
middle blocks are necessary. Furthermore, nine are also sufficient,
as can be seen by examining Figure 5.4b which implements the
program with nine middle blocks.

Thus, because of approximations and round-off errors, the recommended
matrix design is not capable of handling every possible program with

Y = m = 8 middle blocks, Of course, we could design the s'jrstem with
nine middle blocks, which would add only and additional 420 switches

to the matrix, but is this really necessary? Figure 5.4 is a legitimate
program in the sense of Chapter 2, but is it really a possible program

on an actual analog system? How likely is such an extreme case to

occur in practice?

Notice that although the matrix has 12 input block s of 5 inputs each,

only 25 of the inputs are used, and they are all concentrated in the first

5 input blocks. Note also that every matrix output is used (since every

column has eight entries). How likely is a program to use evérz matrix

output and yet use less than half of the matrix inputs? Remembering ‘

that component outputs are matrix inputs and vice versa, it follows

that Figure 5.4 corresponds to an analog program in which every input ﬂ
on every component is connected to something, and yet over half of the)
component outputs are not connected to anything '

Since this sort of program is not feasible on an
analog computer, it seem that a more reasonable ''worst case'’ program
would be one that used every matrix outptit and every matrix input; even
this ""worst case'' is worse than what we are likely to encounter in
practice.

Suppose we repeat the '"worst case' construction, subject to the
restriction that every row in the matrix should contain at least one
entry. These extra entries reduce the number of column entries that
are available for generating blocking sets. To provide these necessary
entries without‘filling up any column more than necessary we may

enter them diagonally as in Figure 5.5. Two diagonals plus a few)
extra entries at the bottom (in the last three columns) fill up the
bottom rows of the matrix and still allow the basic blocking pattern to
be repeated three times in the upper rows. '

5-19

8Locy

INPYVT

%
»
W

X
P

OvTPYTI BLOCK
%S‘ é ® 9 (0 (2)3)YI5(b 121

A4 M P | P
XX

X
> X

X

£

w N —=|W-twp —|wpeT

XX

x| X

X

XX
>>g
Xl | X X

XX

X
>
=
‘XXP(

Pat
XX

X

X

e
X

X

X
XX
X

hcWwi~fowisk~VIncw N ~V~L W ~M-L

"I

W

i l

FL; ure 5. Sa (Fint six input b/oul(s)

5-20

INPYT
geocK]

OUTPUT BLOCK

|l 23 456 789 IO'(1213 1415 & 17 1%

=

¥

A

< WN =N WwN=|ln-swWwN~]| INPIT

[0

1

)

~:\~N~r-cw-w-:w-

| F‘?’“VC S, 5a (L-u'é“'St'X‘ 'Mf‘u"ﬁ' é/oak’)

O

O

5-21

R T% wv T
N -9 B
=N vy . |
L4 %L ~ x> N &
x i L "W ™ > &
Y 2 & ~ - > N W
N oAl o~ N X m N0 o
M 8 - ®f ~~ >m -
o > W - ~ ™M N
rUl wl 1 7Y 3 r~ - ~a >®
Q. r~f— Al ™ N & DN 3~
~ o > < ~) N[~ "~
D o N e I~ oo - |
O = - M of th N I o~
ml ~w ~ s] ™M
o~ = m ‘o ta o
—-|—- m X o \® r~
, .nbﬁ&ﬂ.r’l?«u...«a —F A It e O N I~ TR U0 SPNTS ¥ S - 2 V)
A2a19 —_ o~ ™ J- (¥ Y
LadNt |

FA?%N— 5.5 b, (Fint &6 45/““#' “”"“kﬁ)

5222

S¥s OUTrpPUT BLock
a3 |a O
e 3123754777:»&!113'78“-’7”-
!
| 2 51
713 3
:
1 -
2 LY
313, | é
e
IRRGP ‘
2l |
13 3 | |
|’ ! s | 3
1 3 .
2] | 8| | é O
03] | 2
i 7|
1 i 5 n
1|3 3 |
| Y
z, |l
l l g 2
2
12 |3 7
y | 3
! 111 1y

F(}u»(55 b (L—a.sir b m/m'f 5/00/{'5) |
| , o

5-23

Since the first 15 inputs form a blocking set which completely fills
three input blocks, we may use theorem 5.2 with P =15, to conclude
that Y = 7.5. Since Y must be an integer, this implies Y =.8.

The first fourinput blocks do not forma a blocking set, since the last

two inputs in the fourth input block do not block any inputs in the second
and third input blocks. However, even if they did, we would only have

P =20, which gives by theoremn: 5. 2, Y >8. Hence, in this case, theorem
5.2, is useless. It tells us only that we need at least eight middle blocks
which is obvious anyway, since all columns have eight entries.

Furthermore, eight middle blocks are sufficient in this case, as shown
in Figure 5.5b, Hence if werestrictthe worst case construction to the
worst case likely to be actually encountered in practice, (namely, all
inputs and outputs in use) it appears that eight middle blocks are
sufficient. Experience with actual problems submitted by NASA indicates
that actual problems do not yield nearly as dense, concentrated traffic

as the examples in this chapter so that eight middle blocks are more

than adequate.

Incidentally, figures 5.4b and 5.5b were programmed manually, before
an algorithm was developed for computer implementation. The interested
reader may try covering up the solution and trying to solve 5.4 with a
nine middle blocks or 5.5 with eight. Every X must be replaced by a
number from lto 9 (for 5.4°) or 1 to 8 (5.5) without using the same
number twice in a given column, or using the same number twice in an
input block except in the same tow. Theproblem is not a trivial one.

5.8 Summarz

The number of switches necessary for a three-stage matrix with fanout
is given (approximately) by

S =2 \IZN?’/2 -~ VE(1+E) for the static case

This has the same form as the formulas for the non-fanout case derived
in Chapter 4, except for the different multiplicative constant. As before,
the number of switches varies as the 3/2 power of matrix size. The
matrix parameters are given approximately by

Y_m_zn_\/ZMN _\/ZNE
- - M+N N 1+E

The matrix parameters (X, Y,Z, m, and n) all grow as the square root
- of the matrix size. Thus, doubling M and N (hence keeping E fixed)
will increase X, Y,Z, m, and n approximately by a factor of 2.

5-24

In terms of expansion factors of the submatrices, the input blocks
are approximately 1:2 expanders; the output blocks are square and

hence the middle blocks have half the expansion factor of the main

matrices. Compare this conclusion with comments (e) and (f) at
the end of Chapter 4.

It may also be verified by direct substitution that half the switches
are in themiddle blocks, just as in the non-fanout case.

5-25

5.9 Alternatives

The type of three-stage matrix studied in Chapters 4 and 5 is characterized
by the fact that each middle block has exactly one connection to each input
block and one connection to each output block. The theory developed in
these chapters is concerned with finding the most efficient matrices of
this general type. But is this type of matrix itself optimal? Perhaps it
would be.even more efficient to allow several connections between a given
input or output block and a given middle block., Or perhaps an input block
should have access to only a fraction of the input blocks and output blocks.
We might say in the former case that a middle block has multiple access,
and in the latter case, fractional access. The matrices covered so far

in this report have had middle blocks with single access. It is worth
investigation to see if this type of access is really optimal. '

Consider, for example, a middle block with two connections to each input
block and two connections, to each output block. Such a middle block would
be more flexible than the conventional single-access middle block. In fact,
such a middle block could be used twice in any column of the programming
array and could be used in two different rows in the same input block. Hence
it would be equivalent, for programming purposes, to two conventional middle
blocks. However, since it would have twice as many inputs and outputs,

it would take four times as many switches as a conventional middle block,

or twice as many switches as a pait of conventional middle blocks. Hence
single access is more efficient than multiple access.

How about fractional access? For concretness, assume that the inputs to

the matrix are partitioned into two subsets A and B, each containing half

the inputs. Similarly, assume the outputs are partitioned into equal sets

C and D. Let a given middle block have access to inputs in subset A or B, but
not both, and similar ly for output blocks. In such a matrix the middle blocks
have only half as many inputs and outputs as in the conventional design, and
hence only one-fourth as many switches. However, they are less flexible

than conventional single-access middle blocks so that more of them will
be needed.

Implementing a given program on such a matrix can be broken down into

four subprograms. To make the desired connections, we must make

the conncections between inputs in subset A and outputs in subset C, and
similarly, connections from A to D, Bto C, and B to D. These four sub-
programs are independent of each other; in fact, we can really regard the
matrix as partitioned into four small matrices, each of which has N/2 inputs
and M/2 outputs (and hence the same expansion factor as the original). Since
the size of a three-stage matrix varies as the 3/2 power of the matrix size,
the four small matrices will require a greater total number of switches than
a single large matrix with conventional single-access middle blocks. This
reasoning can be extended to other partitionings (e.g., into unequal subsets).
Thus we see that the single access structure does provide the optimal design
for a three-stage matrix.

5-26

One other possibility should be considered; the possibility of using

more than three stages of switching between inputs and outputs. The
optimal number of stages is, in fact, a function of matrix size; the

larger the matrix, the more stages should be used. The larger a three-
stage matrix grows, the larger its submatrices grow. If the matrix

is sufficiently large, its input blocks, output blocks, and middle blocks will
be large enough to justify replacing them by 3-stage matrices.

Examination of the formulas developed in this chapter (and the specific
examples given in Chapters 6 and 7) indicate that the middle blocks are
the largest of the three types of submatrices. Hence they should be the
first to be replaced by three-stage matrices. The crossover value at
which the rectangular matrix and the three-stage matrix are equal may
be found by setting

2 Van>/? VE(ITE) = EN°

Solving for N, we get N = 8 (KI+E)‘ This is the same formula that
we saw in Chapter 4, except for the factor of /2 (due to fanout) which

doubles the crossover value. The middle blocks of the recommended
matrices in Chapters 6 and 7 are approximately square (E=1)

so that the crossover occurs at N=16. Hence a square matrix

should be made three-stage only if it is large=~ than about 16 by 16.

The largest rectangular matrices used in Chapter 7 are 15 by 16

matrices; thus it appears that these submatrices should remain one-stage.

Actually the formulas on which this crossover value is based are only
approximations, valid for large matrices. Any matrix as small as 15 by 16
should be examined on its individual merits. When we do this, we see that a
15 by 16 rectangular matrix requires 240 switches. In contrast, dividing
the inputs into 5 input blocks of 3 inputs each and the outputs into 4 output
blocks of 4 outputs each, we get a total of 204 switches, assuming four
middle blocks are adequate. Furthermore, analysis of the programming
array indicates that even the '"worst case'' program constructed along the
lines of Figure 5.3 requires only four middle blocks. Thus we could
probably replace these 15 by 16 middle blocks with three stage matrices, at
a saving of 36 switches per middle block ..

Since the large system (two 680's) takes 12 middle blocks, the saving would
bé 232 switches (out of a total of about 20, 000). This saving is achieved at
a cost of making the overall main matrix five-stage (one stg e of input
block switching, three stages in the middle blocks and one in the output
blocks). Since an analog signdl undergoes some degradation for each stage
of switching it passes through, the 2% overall switch saving probably does
not justify the added complication of five stages.

iéi

6-1

DESIGN OF THE ANALOG CONFIGURATION (GENERAL CCNSIDERATIONS)

The proposed configuration of analog hardware and switches is
described in detail in Chapter 7. The present chapter is intended
to explain to some extent how this proposed system evolved. There
are at least three reasons for explaining the '"why'' as well as the
"what'' of the proposed system:

a, Understanding the System
The system description in Chapter 7 will be easier to follow if some
of the reasons for it are understood beforehand. From this point of

view, this chapter may be thought of as an introduction to Chapter 7.

b. '"Proof'' of Adequacy and Optimality

Is the proposed system adequate to handle most problems, and is

it optimal or near optimal in terms of the number of switches? The
first question is answered in Chapters 8 and 9. The second question
cannot be answered with mathematical precision; I know of no way of
proving that no system with fewer switches would do the job. How-
ever, the least that can be done is to document some of the ''blind
alleys' that were explored in order to answer some of the anticipated
questions of the type, "Why didn't you do such and such?"

Actually, I am reasonably sure that the proposed system is not opti-
mal; it would be extraordinary if there were no room for improve-
ment. Further experience with this system will doubtless suggest
further refinements and improvements. However, the design goals
have been met, and further improvement should only be marginal.

A 10% or 20% reduction in cost is important in designing a produc-
tion system, but probably does not make the difference between a
feasible and an unfeasible system.,

c. Further Research

Anyone attempting to improve the system may benefit from some
of the concepts and conclusions in this chapter.

6.1 The Cost Per Input or Output

In weighing one analog configuration against another, the cost of
any analog component should be adjusted to account for the number

6-2

of switches it adds to the switching matrix. In other words, the
cost should include a portion of the switches in the matrix as well

as the cost of the component itself. This ""switch cost' is depend-
ent only on the number of inputs and outputs and not on the mathe -
matical operation performed. From the point of view of the switch-
ing matrix, a two-input summer, a two-input integrator and a multi-
plier are similar; they are all two-input-one-output devices.

The exact number of inputs and outputs in a 680 depends on how it

is configured (which components are ''buried' and which are ter-
minated within the matrix, how many inputs a summer has, and

so on)., However, the approximate number of outputs must be some-
where around 150, exclusive of pots, and the approximate number

of inputs about twice that. In fact, if we add up 36 summers, 30
integrators, 39 multipliers, 18 VDFG's and 6 resolvers, we get

a total of 282 inputs and 147 outputs. This total assumes an aver-
age of 3 inputs per summer and two per integrator, and assumes

the resolver has three inputs (X, Y, 0) and four outputs (U, V, sin
0, cos 0). The inclusion of comparators and readout devices, which
‘have inputs but no analog outputs will increase the ;input count addi-
tionally. ' v

The actual proposed configuration has 150 outputs and 372 inputs
(see Chapter 7). These values will be used in subsequent calcula-
tions. The main point to note is that even with a slightly different
configuration, the number of inputs and outputs (exclusive of pots)
would be approximately the same.

Now assume that the design goal (10,000 switches) can, in fact, be
met. If this is the case, then we have 10,000 switches in the sys-
tem and 522 inputs and outputs (150 + 372). The average number of
switches per input or output works out to 19. Thus, a one-input-one-
output device bears an overhead burden of about 38 switches; a two-
input-one-output device bears a burden of 57 switches, and so forth.

Of even more interest is the incremental cost (i.e., the number of
switches that must be added to the matrix to accommodate an addi-
tional input or output). If a rectangular matrix is used, then the
incremental cost is twice the average cost, since the number of
switches is proportional to the square of the matrix size. That is,
if S = ENZ, then the average number of switches per input is EN,
(which is obtained by'divis ion), while the incremental number of
switches per input (obtained by differentiation) is 2EN. Actually,

it turns out to be more economical to use a three-stage matrix,

in which case the incremental cost is only 1.5 times the average

6-3

cost, or about 29 switches per input or output. This is only a
rough estimate; the '"proper' way to proceed is to use the formu-
las S = MN (for a rectangular matrix) and S = 22 /MN(M + N)
(for a three-stage matrix), and calculate 0S/ 2M and 2S/ SN.

It turns out, in fact, that 28/ ZN > 7S/ M, so that an addi-
tional matrix input (component output) is more expensive than an
additional matrix output (component input). However, the esti-
mate of 29 switches is the right ''"ballpark' in either case.

Of course this figure does not really mean that we could add a
single input or an output to a three-stage matrix by adding 29
switches. Adding one extra input would mean that the new value
of N would no 1ongér be divisible by n. However, the figure gives
a rough guide to the incremental cost of adding a moderate number
of inputs or outputs provided the expanded matrix satisfies the ap-
propriate divisibility conditions.

The incremental figure of 29 switches per input or output is the
important one to keep in mind when deciding whether certain in-
puts and outputs should be buried or ''terminated' in the main
matrix., A detailed evaluation of such tradeoffs requires knowledge
of the dollar cost of the switches (including, of course, driving
logic, labor, testing, and so forth), versus the dollar value of the
buried analog hardware, At present the cost of the switches is

not known, but a few conclusions may be drawn without such knowl-
edge. '

For example, the recommended design commits a pot to each inte-
grator input and each summer input. If one of these pots is ter-
minated as a free component, thewone input and one output are added.
The incremental cost of this operation is an additional 58 switches.
The incremental benefit is that the pot is now free to be used with
other components, so that we need fewer pots overall. The pro-
posed design uses about two times as many pots as the standard 680
because of the way they are committed. If we terminate the pots

as free components, then we can reduce the pot count back down

to the regular 680 complement. In the proposed design, two amplifier
inputs require two pots; if the pots are terminated as free components,
these two inputs will require only one pot, since some inputs may be
used without pots and some may be idle in a given problem. This free
pot adds one input and one output to the system, and hence 58 switches.
Thus we have a tradeoff of 58 switches added versus one pot saved.

If a pot is cheaper than 58 switches, then we are justified in burying
the pots.

6-4

It seems likely that a pot is considerably cheaper than 58 switches.
In fact, we can get an adjustable gain from 0, 0000 to about 6.4 on
any amplifier by using 16 switches and weighted input resistors.
These resistors do not have to be precision resistors; if we set
them in a closed-loop fashion, then 1/2% resistors are perfectly
adequate, so that the switches themselves are the main part of

the cost. This is, after all, the way one sets servo pots; not by
carefully controlling the pot resistance, but by closed-loop nulling.

There are other ways to implement an adjustable gain on an am-
plifier. Solid-state switches may be cheaper than mechanical
switches for this application, or the conventional servo-set pot
may be cheaper still. If this is the case, then a pot is cheaper
than 16 switches; in any case, it can't be much more expensive.

There is, incidentally, one other reason for committing pots to
amplifier inputs, namely, impedance. If all outputs are low-
impedance amplifier outputs, the crosstalk and contact resistance
problems are lessened.

6.2 Analog Flexibility

Any automatic patching system will have to restrict the flexibility
of the analog components to some extent., As a minimum, the ana-
log programmer will have to give up his summing junctions, un-
grounded pots, and various configurations of loose resistors,
diodes, and capacitors hanging from the patchpanel. At this pros-
pect, many people will say '"good riddance!'" Of course, the pro-
grammer should still be allowed to do what he wants to do, but he
will be restricted in how he does it. He will have to express what
he wants to do mathematically, rather than saying, "I'll just stick
a diode in here'.

Actually, there has been a trend in this direction for some time,
even without the impetus of automatic patching. The introduction
of patched logic replaces the need for many of the old diode and
amplifier circuits that only a few years ago cluttered up the litera-
ture of the analog field. Most of the rest of the '"loose diode' ap-
plications can be handled with the hard-zero limit feature of the
680. Dead space, backlash/hysteresis, absolute values, peak
sampling, and similar nonlinearities can be easily and accurately
programmed by means of this feature (see the 680 Reference Hand-
book). Of course, this circuit is not new; it's one of the oldest
tricks in the book, but to my knowledge, the 680 is the first machine

6-5

to include it as a standard feature. Like logic, this circuit be-
longs within the machine, not hanging off the patchpanel; this is
desirable in any case, and it becomes mandatory when there is
no patchpanel. Like the standard 680, the proposed system in-
cludes 12 summers with this feature: Configuring a summer for
this feature requires four form-A contacts.

Another obvious way to reduce the number of inputs and outputs
in the matrix is to commit input inverters and output amplifiers
to nonlinear components. With the present integrated-circuit
amplifiers, this is desirable even on machines with patchpanels.
The '"'waste'' caused by redundant amplifiers is clearly tolerable.

Certain other schemes for giving up analog flexibility can back-
fire. For example, consider the following propositions:

a. It is not necessary to have multi-input integrators,
In fact, many programmers prefer to generate the
derivative explicitly anyway. If all integrators have
only one input instead of five or six, then the size of
the switching matrix is reduced.

b. '""We can cut down on (or eliminate)configuration
switching by not allowing integrators to be used as
summers, or multipliers as dividers.' This is in
line with the 'black box' approach; a single-purpose
component is simpler than a multi-purpose component.

c. One of the principal difficulties encountered in this
problem is the high traffic density (see Chapter 3).
Since blocking is less likely in a low-density program,
it may be desirable to restrict the density of a pro-
gram. If, for example, not more than half the com-
ponents are used at any one time, then the traffic
density is at most 50%. If a matrix designed for 50%
density uses significantly fewer switches then one
designed for near 100% density, then perhaps we should
design the matrix for low-density traffic and tell the
programmer not to use more than 50% of the compon-
ents in any problem. Of course, this wastes analog
equipment, but perhaps this is one of these cases where
sacrifice of analog equipment is justified by the switch
saving.

6-6

All three of these propositions have a certain surface plausibility,
but, in fact, they are at best misleading and at worst simply false.

It is probably easiest to see the difficulty with Proposition (a).
Suppose three inputs must be summed and integrated. If the
derivative is not explicitly required, we may sum into a three-
input integrator. This integrator has three inputs and one output.
If only single-input integrators are available, we must use a sum-
mer (three inputs, one output) followed by an integrator (one input,
one output). Thus four inputs and two outputs are tied up, rather
than three and one.

Thus combination of several functions (e. g., summation and in-
tegration) is desirable, but for slightly different reasons (to save
inputs and outputs, rather than analog hardware). In an ordinary
analog computer, functions are combined only when it seems like
a natural thing to do according to the electrical design of the unit,
For example, the padded servo function generator can multiply at
negligible added expense; all one needs to do is feed the padded
servo cup with a problem variable instead of reference voltage.
Thus one obtains a function multiplier (multiplying one input by a
function of the other) at essentially the same cost as the function
generator alone. Since modern computers use all-electronic
function generators and multipliers, there is no such natural ad-
vantage. Hence the tendency is to terminate DFG's and multipliers
as separate components,

The above reasoning also applies to Proposition (b). If I need
more summers, and have only integrators left with a module, I
must add another module to solve the problem and this module

ties up additional switches. (The modular nature of the proposed
system will be described later in this chapter and in Chapter 7.

At present, it is enough to point out that the 680 is divided into six
nearly identical modules, and the unused modules are available for
other problems.)

t
Looked at another way, each component bears a ""burden' repre-
senting its share of the switches in the matrix. It has access to
other components through the matrix, and if it is not used, then
not only is its analog hardware (amplifier, capacitors, mode con-
trol switches) wasted, but its access to other components is also
wasted. ‘

In fact, in the extreme case where the cost of analog components
is negligible in comparison with the cost of the switching matrix,

0O

it follows that every component should be capable of performing
every mathematical operation consistent with the number of in-.
puts and outputs it has. Every two-input integrator should be
capable of operating as a summer, or a multiplier.

Of course such a component would contain a lot of analog hard-
ware that would be unused much of the time, but that would be

justified if the analog hardware were sufficiently cheap.

In fact,, the analog hardware isn't all that cheap, so this much
combination of functions is not practical at present.

Note the similarity between this analysis and the analysis of
proposition (a). Conventional analogs allow a component to be
used for many different things only when the combination is
'""electrically natural' (e. g., a multiplier and a divider use the
same networks, so it makes sense to convert one to the other).
Since analog hardware is expensive, the proposed system allows
only the conventional changes of function (integrator/summer,
multiplier/divider, and so forth). Some, but not all of the multi-
pliers have dual X2 capability. The reason for not giving all
multipliers this capability is not that it takes a lot of configura-
tion switches (although that is true) but, more importantly, it
makes the multiplier a two-input-two-output device, which en-
larges the overall switching matrix unnecessarily., Hence only

9 of the 39 multipliers are allowed dual x2 capability, My own
rule of thumb, based on experience, but not on a formal survey,
is that over 50% of the multiplier applications call for multipli-
cation, less than 25% call for division, and 25% or less call for
squares and square roots. The proposed system allows 30 prod-
ucts or quotients and 18 square or square root functions; this should
be adequate for almost all applications, and examination of the NASA
problems bears this out. :

In summary, a component should be allowed to be re-configured
for different functions by internal '"configuration switches' when-
ever this is ''electrically natural' (i.e., uses essentially the same
analog networks for the various configurations.)

Note, incidentally, that whenever a re-configuration of a component
is not electrically natural, then we really Lhave two separate com-
ponents sharing the same input and output terminals. For example,
a combination integrator/multiplier would consist of two essentially
separate components. The only analog hardware they would share

6-8

would be the output amplifier, which would be a small portion
of the total cost. The real reason for associating sueh compo-
nents together is to allow them to share input and output ter-
minals and hence share access to the other components. If
they share this access, then they cannot both be used in the
same problem; at any time at least one of them must be idle.
Thus a '"combination integrator/multiplier" is really just a
way of allowing an idle integrator to ''give'' its switches (i.e.,
its access to other components) to another component (in this
case, a multiplier). Alternatively, this component could also
be regarded as a multiplier, which, if unused, can ''give' its
access to an integrator,

Of course, the switches committed to an idle component are
wasted, and it is certainly desirable to minimize this waste.
This goal is achieved by the use of a three-stage matrix, Not
only does it use fewer switches than the rectangular matrix,

but it wastes fewer of them if any component is idle. In a
rectangular matrix, every switch is committed to two components:
it connects an input of one component with an output of another.
Hence it is idle if either component is idle. In the three-stage
matrix, half of the switches are in the middle blocks (see Chap-
ters 4 and 5) and hence are not committed to any specific com-
ponent. Furthermore, the other switches (those in the input and
output blocks) are each committed to only one component, so
that the probability of a given switch being idle is much less.

For example, consider the matrix discussed in Chapter 5 (60
matrix inputs and 144 matrix outputs). If a rectangular matrix
were used, each of its switches would be committed to a specific
input and output. Suppose a component with two inputs and one
output is idle. The two component inputs are connected to two

of the 144 matrix outputs, and each of these has 60 switches asso-
ciated with it (two columns of the 60 by 144 rectangular matrix

or 120 switches in all). The component output is one of the matrix
inputs, and has 144 switches associated with it. This gives a
total of 120 + 144 - 2 = 262 switches (the two switches which are
common to the row and two columns are subtracted in this compu-
tation so that they don't get counted twice).

In contrast, in the three-stage matrix configuration, the compo-
nent output terminates in an input block, and has 8 switches asso-’
ciated with it (to connect it to each of the eight middle blocks).

The two component inputs terminate in 8 by 8 output blocks, where
each has 8 switches associated with it. Hence if this component

is idle, only 24 (rather than 262) switches are rendered useless.
Thus, the three-stage matrix provides "shared access' capability
without constructing such unnatural ''components'' as integrator/
multipliers.

Consideration of idle components leads to an investigation of
Proposition (c). If we design a matrix for 50% traffic, then only
half the components can be used at one time, and a given problem
will require a computer twice as large. Since the number of
switches grows faster than linearly with matrix size, it appears
extremely dubious that a double-sized computer will really be
more economical of switches. Suppose a problem requires 20
integrators and 30 multipliers. FolloWing the '"50% traffic density"
suggestion, we put this problem on a machine with 40 integrators
and 60 multipliers. If we succeed in programming the problem on
this machine, then half the analog components are idle. If we re-
move these components and the switches committed to them, we ob-
tain a reduced system with only 20 integrators and 30 multipliers.
It should be clear that the problem is really being programmed on
this reduced system. In other words, any system capable of han-
dling this problem must contain at least 20 integrators, 30 multi-
pliers, and enough switches to allow them to be connected in the
appropriate manner. If we further burden the system with addi-
tional analog equipment that we know in advance we are not going
to use, then the extra equipment does us no good.

This point may be stated another way: if the cost of a computer is
measured solely by the cost of its computing components, there is

a strong motivation to put a problem on the smallest possible com-
puter, since larger computers are proportionally more expensive.
If the switch cost becomes a significant percentage of the total, this
motivation is not reduced, but rather increased, since the cost of
the computer grows faster than linearly with size. Thus the switch-
ing system should be designed for heavy traffic; we should count on
most of the available componénts actually being in use at a given
time.

Of course, 100% utilization of all components is unlikely for sev-
eral reasons: grouping, balance, and burying. Grouping refers

to the fact that analog components come in groups, and to use any
of the components, one usually ties up the whole group. In a con-

6-10

ventional analog system, the ''group' is usually an entire console
with its patchpanel. All of us have had the occasional frustrating
experience of slaving two analog consoles together merely to use
a handful of components on the second console. This gives a sys-
tem with low percentage utilization due to grouping. The proposed
system has smaller groups (the group is one module, which is one-
sixth of the 680). Hence the waste due to grouping will be less
with the proposed system than with a conventional patched analog,

- and the traffic density correspondingly greater. Actually, there
is no absolute reason why two users couldn't share some compo-
nents within the same module, but the programming becomes more
awkward. It is probably best to regard an entire module as "'be-
longing'' to one programmer at a time, and not try to split it up.

The main reason for some components being idle is balance. The
component requirement for a given problem is actually a multi-
dimensional vector (one must specify the requirement for inte-
grators, multipliers, summers, DFG!s, and so forth), It is ex-
tremely unlikely that a given problem will use these components

in exactly the same ratios as they are present on the computer.

A problem with very few nonlinearities (e. g., a control problem)
will need enough modules to provide the necessary summers and
integrators, and many of the DFG's and multipliers in these modules
will be idle. Conversely, a six-degree-of-freedom simulation
needs lots of multipliers and DFG's; in such a simulation there will
probably be idle integrators. The automatic patching system will
have little or no effect on this cause of idleness.

A component in a conventional analog may also be idle if it is
buried, that is, not terminated on the patchpanel. For example,
some of the components within an electronic resolver are not
fully available in the free component mode. In the proposed sys-
tem there are lots of buried pots and inverters, but these are not
considered '"components'' at all., This report considers a summer
with built-in pots as a single component and the same is true of a
multiplier with built-in inverters.

To summarize this section, an automatic patching system will have to
""waste'' some analog hardware. This is necessary, but not sufficient,
As the analysis of Propositions (a), (b), and (c) shows, it is possible,
unless one is very careful, to pay the price in analog hardware without
gaining the expected benefit in switch saving. '

The only way to waste analog components and acttially' enjoy a switch
reduction appears to be a straightforward "burying'' of components;

6-11

the ""waste'' is reflected in the fact that these components are pro-
vided in excess of what would otherwise be required (e. g., pots
and inverters).

6.3 Modular Design

An important consideration that has not been discussed so far is
the modular nature of most analog problems. Most systems can
be broken down into subsystems, with many complex interconnec-
tions within a subsystem, and relatively few signals trunked be-
tween subsystems. Any good systems analyst will try to subdivide
a system in this manner merely because it facilitates his analysis
and understanding of the system, regardless of the type of com-
puter he intends to use (if any).

Analog computers are also laid out in a madular arrangement, to
facilitate patching and addressing, and it seems reasonable that

this approach should also be used in reducing the number of switches
in an automatic patching system. A modular system, as used in
this report will mean a system of analog components satisfying the
following conditions:

a. The system is divided into a number of subsystems called
modules.
b. Considerable flexibility of interconnection is allowed be-

tween components within the same module, by means of
a matrix called an internal matrix., There is an internal
matrix for each module.

c. A limited number of connections are allowed between com-
ponents in different modules through an external matrix.

6.3.1 Elementary Considerations

Letting S, be the number of switches in the external matrix, SI the
number of switches in all the internal matrices, and S7(= Sg + Sj)
be the total number of switches in the system, we have the following
obvious comments:

a., Increasing the number of modules (for a machine of a
fixed size) decreases the switch requirement in a given
internal matrix at a faster than linear rate. Hence, if
the number of modules is large, Sy is small, because

6-12

the internal matrices are very small (ex)en though there
are many of them).

b. On the other hand, increasing the number of modules re-
duces the size of each module, and thus increases the
percentage of connections that must be made through the
external matrix. Hence Sy is increased.

c. An optimum design must strike a balance between the
above considerations. As a rough general guide, it
should be clear that Sy and Sg should be approximately
equal for an optimum design. That is, if SI is consider-
ably greater than Sg, then an increase in the number of
modules would cut down Sy substantially; and this would
probably more than offset the increase in Sp. Similar
considerations would hold in case Sy were much greater
than SI' It is not necessary that SI and SE be exactly equal,
but neither should be negligible in comparison with the
other.

d. An important parameter in the design is the percentage
of connections that can be made internally. If this per-
centage is less than about 50%, then the modular idea is
probably not worth bothering with. Unless the majority
of connections can be made internally, we are probably
better off with only the external matrix.

For example, suppose exactly half the connections are made inter-
nally. The external matrix needs to have only half as many inputs
and outputs as would otherwise be required. (Otherwise here refers
to the case where modularization is not used, so that the ""external"
matrix is the only one.) Now reducing the inputs and outputs by a
factor of two would reduce the external ma trix by a factor of 4 if
‘the external matrix were a rectangular matrix. However, we have
seen that the external matrix is so big that the optimal design is
three-stage. This means that halving the number of inputs and
outputs reduces the external matrix only by a factor of 2/2 . Thus
the external matrix has about 35% as many switches as it would
need if it had to carry the burden alone. Assuming SI is approxi-
mately equal to S, the total number of switches is about 70% of
what would be required without modularization. Now a saving of
30% is substantial, but it is probably not enough to make the differ-
ence between feasibility and unfeasibility, Clearly if the percentage
of connections made by the external matrix is much greater than 50%.

o

6~13

the saving is not large enough to justify the programming com-
plexity and loss of flexibility,

Fortunately, it turns out to be possible to reduce the number of
inputs and outputs on the main matrix to about 25% to 35% in typi-
cal problems,

6.3.2 Additional Questions

This section consists of '"documentation of dead ends, ' that is,
listing and discussing briefly some of the approaches that didn't
work, One of these '"dead ends'' (three-level modularization) may
not actually be completely '"dead.''" Further experience may indi-
cate that is is a good idea for very large systems.

a. Similar or Dissimilar Modules? Should each module con-
tain integrators, summers, multipliers, and so forth, in
the same ratio as the whole computer, or should some
contain lots of multipliers and few integrators while others
have an excess of integrators and few multipliers? At

0 first, it appeared that several different types of modules
were desirable, because systems rarely break down nicely
into identical subsystems. For example, a nonlinear reac-
tor may be controlled by a complex, but nearly linear, con-
troller. If a typical problem is modularized in a natural
way, it turns out that some modules require more of one
type of equipment than others. However, after examining
several '""'unbalanced' module configurations, I feel that
the balanced approach is better after all. Every attempt
to design a system with dissimilar modules seems to lead
to a ""custom design,' tailored for the requirements of a
particular problem, or small class of problems. Of course,
it is no trick at all to design a system to solve any one prob-
lem with no switches at all--the ridiculous extreme in switch
economy at the expense of flexibility. Although the distribu-
tion of different types of components appears to be a random
variable, the balanced distribution is the most probable.

(Standardized design, parts stocking, and production are

also easier if modules are identical, or nearly identical),

b. Universal Access or '""Adjacent" Access? Should each
module have access, through the external matrix, to each
0 other module, or should it have access only to a few
'"adjacent" modules? The external matrix can be made
smaller if each module is allowed to have access to only
a few of the other modules instead of all of them,

6-14

The simplest '"adjacent access'' system is one in which the modules
are arranged in a linear array. Suppose the modules are numbered
1, 2, 3. . K, and suppose module i has access only to modules
i+1andi- 1. Thatis, ‘module 2 has access only to modules 1 and
3; module 3 has access to modules 2 and 4, and so forth. Modules
1 and K are considered to be ''adjacent, " go that every module has
access to exactly two modules. The convention of regarding the
first and last modules as adjacent not only makes the system more
symmetric, but it allows all modules to be connected in a single
closed loop.

An obvious two-dimensional generalization of the procedure is to
consider the modules arranged in a rectangular array. Each module
would have access to four others (the ones directly above, directly
below, and to the left and the right). This rectangular arrangement
is strongly suggested by the appearance of a conventional patchpanel.
Of course, the patchpanel is two-dimensional for obvious, physical
reasons which have little or nothing to do with structure of actual
problems.

If the two-dimensional approach is used, it is probably desirable to
avoid treating the edges and corners of the rectangle as exceptions.
This can be done by considering a module at the extreme right of
the array as ''‘adjacent' to the corresponding module on the left,
and similarly for the modules on the top and bottom, This assures
that each module has access to exactly four others. The method
may easily be extended to three or more dimensions.

In evaluating such a structure, the obvious que stion is whether or not

typical problems can be broken down in such a way that each subsystem
"feeds'' information to only a few of the other subsystems. There are
certain types of problems where this limited access between modules

works fairly well. For example, a design which allows the modules

to be arranged in a single closed loop should be adequate for simple

control problems in which there is only one major feedback loop, and .

all minor loops can be programme’d within a module, or at mest two adjacent
modules. However, as the number of minor feedback loops (and even
feedforward paths) grows, there is an increasing demand for modules to
access other modulés nremote' from them (a path between two modules that
are not adjacent is analogous to a long patchcord). Even the two dimensional

array is not much better in this respect.

If access is necessary between remote modules, one must link
from module to module, passing the signal through many switches

¥

6-15

and tying up access lines in each module through which the sig-
nal passes, Unless such connections are very rare (which they
aren't), they tie up too many switches.

Aerospace problems are even worse in this respect than process
control problems. After all, many industrial processes are linear
or nearly so. (The word ''linear' here does not refer to the differ-
ential equations, but to the topological interconnection of the sub-
systems. An assembly line is linear in this sense, and most
plants are organized, at least conceptually, in such a manner

that the raw materials enter at one point, are processed suc-
cessively by various subsystems, and emerge at some point as

a finished product., Thus there is an overall flow from input to
output in an approximately linear manner, and the concept of
"adjacent'' subsystems has some meaning). In contrast, the
various subsystems in a typical aerospace problem might consist

of "integration of the translational equations,' 'integration of the
rotational equations,' ''generation of the aerodynamic co-efficients, "
and ""simulation of the on-board controller.' In such problems,

almost every subsystem needs to connect to many other subsystems,
and the ''limited access' design is not applicable. Even process
control problems need a number of "long patchcords" for large
feedback loops.

For obvious reasons, the concept of "access to adjacent modules
only"' should work nicely for partial differential equations, but it
does not appear to be adequate for other applications.

Fortunately, it does not add very many additional switches to allow
universal access to all modules, provided the external matrix is
multi-stage, rather than single-stage. We have already seen (in
the analysis of Proposition b, Section 6.2) that only a small por-
tion of the switches in a three-stage matrix are actually committed
to a specific component. If a component in one module accesses a
component in another module only rarely, then the switches that
provide this access are still useful for other purposes in problems
that do not require access between these two modules. Thus allow-
ing any module to access any other module is not particularly ex-
pensive. (This would not be true if the main matrix were rectangu-
lar.)

c. Multi-level Modularization?

The possibility of more than two levels of modularization should
be considered. Perhaps the modules should be further divided

6-16

into submodules, with a very small internal matrix to inter-
connect the components within a submodule, an intermediate-
size matrix to interconnect components within a module but in
different submodules, and a large external matrix to make the
connections between modules.

Intuitively, it appears plausible that this should become desir-
able at some point if the system becomes large enough. For
large systems, the external matrix becomes very large, since

it grows in proportion to the 3/2 power of the size of the system.
If the system is very large, it is imperative to hold down the size
of the external matrix by making the modules bigger. (This allows
a greater percentage of the connections to be internal, and hence
allows a smaller external matrix.) Thus as a system grows in
size, its modules should also ‘grow. At some point, the modules
become sufficiently large that it becomes practical to divide them
into submodules.

Note the similarity between this discussion and the case of the
three-stage matrix discussed in Chapter 5. As the three-stage
matrix grows, its submatrices grow, and at some point they be -
come large enough to be profitably replaced by three-stage matrices
also.

I do not think that the systems proposed in this report are large
enough to justify further subdivision, but I am not sure. The
question should be left open for now (especially for the case of
the two-console system) and should be re-examined later when
more experience has been gained with the modular approach,

In fact, the proposed system could be considered a three-stage
modularization, if one regards the configuration switches as an
"internal matrix' connecting '"components' (resistors, amplifiers,

diodes) within a very small '"submodule’ (e.g., a multiplier/
divider).

6.4 Determining Module Size

It would be desirable to have an analytical formula for determining
the best size for a module, similar to the formulas developed in
Chapter 5 for determining the best size for the input and output
blocks. In the absence of such an analytical formula, the best
approach is to examine analog programs to see if they have a
""natural" module size. The module size is probably fairly close

Ne)

6-17

to optimal if it satisfies the following criteria:

a. The total number of switches is significantly less than
what would be required for a single large matrix con-
necting the same components.

b. More than half the connections can be made internally.

c. The total number of switches in all internal matrices
(S1) is of the same order of magnitude as the number of
switches in the external matrix (Sg).

The proposed module size satisfies all these criteria. It was
developed by examining a number of problems to determine the
smallest module size that would allow at least half the connections
to be made internally. Further experience in programming prob-
lems on the proposed system indicates that less than half the com-
ponent inputs and one-third of the component outputs need to have
access to the external matrix.

The module size can also be estimated roughly by the following
argument. Once the decision is made to use identical or nearly-
identical modules (See Section 6. 3. 2), we can describe the size

of a module by a single component. Suppose we ask ourselves

how many integrators there should be in a module. OCnce that
question is answered, the number of summers, multipliers, DFG's,
and so forth, is determined by the ratio of these components to the
integrators.

As a bare minimum, a module should contain at least two inte-
grators, so that a second-order loop can be programmed with in-
ternal connections only. A two-integrator module, however, is
probably too small. Since second-order loops often occur in groups
with considerable coupling between the loops within a group, it
appears desirable to use a module large enough to contain at least
two such loops, and possibly three. Thus from four to six inte-
grators per module seems like a reasonable complement.

The proposed design contains five integrators per module, which
allows two second-order systems and one first-order system to
be internally interconnected. The choice of five integrators in-
stead of four or six was dictated largely by the existing 680 struc-
ture. Since, by tradition, a 30-integrator machine normally has

6-18

three resolvers, and since the 680 resolver expansion rack is
designed on the assumption of three resolvers per 680 console,
it was desirable to have the number of modules divisible by
three. Thus, the proposed module (one-sixth of the machine)
contains 5 integrators, 6 summers, 6 multipliers, 3 variable
DFG's, and half of a resolver. The way in which the resolver
is split up between two modules is discussed in detail in Chap-
ter 7,

Summing up, I am not absolutely sure what the optimum module
size is, but the above considerations indicate that a 680-sized
‘machine should have between four and eight modules., The exact
figure six was chosen for reasons of divisibility, as explained
above. Since this module size satisfies criteria a), b), and c)
as outlined above, it is probably fairly close to optimal,

The complement of other types of equipment in the module was
obtained in most cases by dividing the normal 680 complement
by six. The multiplier complement was increased slightly be-
yond the normal 680 complement to account for the heavy use of
multipliers in aerospace problems.

The summers deserve some special consideration. Most prob-
lems require somewhat fewer summers than integrators, This
fact is obscured on many machines by the fact that some of the
amplifiers supplied as ""summers'' are actually used as output
amplifiers for nonlinear equipment, or as inverters., Since the
proposed system assumes committed amplifiers for nonlinear
equipment, the need for summers is reduced.

The proposed system actually uses more summers than the stand-
ard 680, because of the occasional need for summers with a large
number of inputs. Suppose, for example, a six-input summation
is required. Since the system has no six-input summers, it will
be necessary to use two three-input summers and one two-input
summer. This procedure is somewhat contrary to the reasoning
in Section 6. 2 discussing Proposition a). The three summers to-
gether contribute 8 inputs and 3 outputs to the switching matrix
rather than the 6 inputs and one output required by a single sum-
mer. However, the use of modularization alters the picture, If
the three amplifiers are in the same module, they may be con-
nected together through that module's internal matrix. The ex-

ternal matrix will then have only the same six inputs and one output

O

Q.

6-19

that a single summer would have. However, the three summers
are more flexible than one six-input summer, since they can be
used separately in problems not requiring six-input summation.

Another point in favor of eliminating summers with many inputs

is that whenever four or more variables are to be combined, they
are almost certain to come from several different modules. Sup-
pose, for example, that three variables generated in module 1 are
to be summed with three variables generated in module 2, and the
sum is needed as an input to a component in module 3. If a six-
input summer within module 3 were used, all six variables would
have to be trunked between modules. The number of inter-module
connections could be reduced to four by locating the six-input sum-
mer in module 1 or 2, However, one can reduce the inter-modular
traffic even more by using more summers with fewer inputs., If
the three inputs are summed within their respective modules, then
only two variables need be sent from module to module through

the external matrix: the partial sums are generated with modules
1 and 2 and summed in module 3.

An even better approach is to sum three variables within module 1,
trunk the result to module 2, combine it with the three other vari-
ables by means of a four-input summer within module 2, and trunk
the sum to module 3. Only two summers are needed, and only two
signals are sent between modules.

The balance of different kinds of summers in the proposed system
was determined as follows: First, the problems furnished by NASA
were analyzed to obtain distribution functions, i.e., plots of the
number of summers required versus the number of inputs. I had
performed a similar study in 1965 in connection with the 680 de-
sign, and it was gratifying to note that the NASA problems matched
the distribution obtained from the previous study. This distribution
dictated the number of two-input summers, three-input summers,
and so forth, that the system should contain. Then all summers
with five or more inputs were replaced by combinations of summers
with fewer inputs, in accord with the reasoning given above. The
same process was followed with the integrators, with additional
summers added to compensate for the elimination of five-and-six-
input integrators. '

The resulting summer complement was rounded off to the nearest
multiple of six and divided into six equal modules. This comple-

6-20

ment of equipment has worked out fairly well in actual program-
ming, This explains why there are more summers than integra-
tors in the proposed system.

The above discussion of the various. alternative means of summing
six inputs ignores the sign inversion associated with summation or
integration. If one uses a six-input summer, there is a sign inver-
sion. If one uses a pair of three-input summers followed by a two-
input summer, there is no sign inversion, since each signal passes
through two amplifiers., If a three-input summer and a four-input
summer are used, three inputs are inverted and the other three are
not,

If the inputs to the summer are from nonlinear components (multi-
pliers or variable DFG's), then the sign of the input can be chosen
arbitrarily, since one may obtain either sign by appropriate pro-
gramming. In loops that are purely linear, additional inverters
may be necessary,

6.5 Design of the External Matrix

This section covers the design of the external matrix for
a 680-sized system. The design is strongly influenced by the density
of traffic expected on this matrix. We have already seen that more
than half of the connections should be made internally, so that the
external matrix may be designed for relatively light traffic,

The detailed structure of a module is covered in Chapter 7. For
the present purposes, we need only note that each module has 25
component outputs and 62 component inputs. Thus the entire sys-
tem (6 modules) has 150 component outputs (matrix inputs) and
372 component inputs (matrix outputs). Several different possible
designs based on these figures are given below.

6.5.1 Rectangular Matrix

For comparison purposes, the switch count for a 150-by-372 rec-
tangular matrix may easily be calculated. It requires (150)(372) =
55, 800 switches. ‘

6.5.2 Three-Stage Matrix

Suppose a single three-stage matrix is used (no modularization).
With N = 150, M = 372, the formulas of Chapter 5 yield m = 14,

O

6-21

n = 8, The values of N and M must be increased to make them
divisible by n and m respectively. Hence we need 19 input blocks,
with 8 inputs per block (a total of 152 matrix inputs) and 27 output
blocks, with 14 outputs per block (a total of 378 matrix outputs).
Fourteen middle blocks are needed, and the total switch require-
ment is 14, 602,

6.5.3 Modularized Array

We have seen that a modularized design, if it is to do any good,
must be based on the assumption that only a fraction of the com-
ponent inputs and outputs need to use the external matrix at any
one time. The actual percentage is best determined by program-
ming problems on the proposed modules.

The procedure followed was to draw the analog circuit diagram

in the conventional way and then '"'section' it visually by drawing
lines on the diagram marking the borders between the modules.
The procedure is largely intuitive, and I don't have an algorithm
for it, but it isn't too difficult to carry out in practice. Of course,
analog programmers often divide a diagram into sections anyway,
just to facilitate analysis, and this procedure is similar except for
the need to match the number of components in any section with the
complement of components available in a module.

With proper sectioning of the problem, it turns out that only about
5 or 6 out of the 25 component outputs and 10 or 12 of the compo-
nent inputs in a module need access to the external matrix at any
time. Let us include a little safety margin and allow 8 component
outputs and 16 component inputs per module to access the external
matrix, The main matrix then has 48 component outputs (matrix
inputs) and 96 component inputs (matrix outputs).

Using the formulas of Chapter 5 with N = 48, M = 96, we get m = 8
and n = 5, Since 48 is not divisible by 5, we increase the number
of inputs to 50, and we obtain 10 input blocks of 5 inputs each, 12
output blocks of 8 outputs each, and 8 middle blocks, each of which
is a 10-by-12 matrix.

The total switch count for this matrix is 2, 128, which is satisfyingly
small, in comparison with the figures obtained for the other matrices.
Cf course, we must include the switches in the six internal matrices.
However, the internal matrices are small, and if the total switch
count in these six matrices is of the same order of magnitude as the

6-22

switch count in the external matrix, then the system will use

fewer switches than the single large matrix discussed in Sec-
tion 6.5, 2,

The proposed system allows one-third of the component outputs
to have access to the external matrix, but which ones should
they be? On the principle that all modules should be identical,
we should allow external access to two of the six summers, two
of the six multipliers, one or two of the five integrators, one of
the three DFG's, and so forth, in each module.

Any attempt to program problems on such an arrangement turns
out to be hopeless. The difficulty is that although fewer than one
third of the component outputs need external access in any given
problem, the requirements differ widely from problem to problem
and from module to module within a problem. Eight component
outputs out of 25 are.almost always more than enough, but the re-
quirement in one module may be for 4 integrators, 3 summers
and 1 multiplier with external access, while another may need ‘
2 DFG's and 4 mulitpliers with external access. A similar com-
ment holds for component inputs.

Thus, even though only about one component output in three will
use the external matrix in a given problem, all outputs should
have access to it,

The telephone company faces this same situation: at any given
time only a small fraction of the telephones are in use, but every
telephone must have access to every other (cf. Section 3.4). They
solve the problem by using concentrators, and we can do the same
thing,

6.5.4 Modularized Array with Concentration

Consider the 50 by)6 three-stage matrix designed in
Section 6.5.3, Each of the 150 component outputs should have ‘
access to the 50 matrix inputs, and each of the 372 component
inputs should have access to the 96 matrix outputs.

To achieve this goal, we may insert a 150 by 50 concentrator
matrix between the 150 component outputs and the 50 matrix in-
puts. Similarly, a 96 by 372 expander may be inserted between

6-23

the 36 matrix outputs and the 372 component inputs, This ar-
rangement provides the needed flexibility. Although only 50
of the 150 component outputs can use the external matrix at
any one time, all have access to it. The output expander per-
forms a similar function for the 372 component outputs, (The
phone company would probably refer to both matrices as '""con-
centrators, ' since they are not concerned with fan:out, and
hence need not distinguish between inputs and outputs).

Although this system has the necessary flexibility, it uses al-
most as many switches as the 150 by 372 rectangular matrix
described in Section 6.5. 1, and more switches than the 150 by
372 three-stage matrix described in Section 6.5.2. The con-
centrator matrices use far too many switches to be practical,
Although the principle of concentration is sound, it must be
implemented in some other manner.

6.5.5 Combining Concentrators with Input Blocks

The price of concentration can be greatly reduced by combining
the input concentrators and output expanders with the input blocks
and output blocks of the three-stage matrix. The 50 by 96 three-
stage matrix has 10 input blocks and 12 output blocks.

If we enlarge the input blocks to accommodate 150 inputs, we
obtain the necessary input concentration at a modest cost in
switches. The input blocks must have 15 inputs each (15 x 10 =
150). The same trick applied to the output block results in 31
outputs on each of the 12 output blocks (31 x 12 = 372).

The net result is a three-stage matrix with 10 input blocks (each
of which is 15 by 8), 3 middle blocks (each of which is 10 by 12),
and 12 output blocks (each of which is 8 by 31). The total number
of switches is 5, 136, Although this is considerably more than the
2,128 required by the system in Section 6. 5. 3 (which proved ade-
quate), it is also considerably less than the 14, 602 switches re-
quired by the system in Section 6. 5. 2 (which has the same number
of inputs and outputs).

Note that although this matrix has 150 inputs and 372 outputs (and
carries light traffic; only 1/3 of its inputs and about 1/4 of its out-
puts in use at any time), it was designed as a 48 by 96 matrix carry-
ing heavy traffic. It was pointed out in Section 3.4 that the Bell

6~24

System enjoys the advantage of light traffic. In Section 6.2 it
was pointed out that we should not attempt to design a light-
density matrix which would allow only a small fraction of the
components to be used. The design in this section does use a
light-density matrix, but not at the cost of forcing a large per-
centage of the analog components to be idle., Components whose
input and output terminals are not used in the external matrix
are not necessarily idle; they may still be used internally.

It also appears that this is probably a good way to design a three-
stage matrix for light traffic density: first, use the estimated
maximum traffic density (in this case, 33% on inputs and 25% on
outputs) to determine the maximum number of matrix inputs and
outputs likely to be actually used in a given problem (e.g., 48 and
96); second, design the matrix for heavy traffic with this many
inputs and outputs; and third, enlarge the input and output blocks
to include all inputs and outputs that actually need access to the
matrix at one time or another.

Note that enlarging the input and/or output blocks does not affect
the middle blocks--neither their number nor their size. It has
already been pointed out in Chapters 4 and 5 that the middle blocks
are the most prolific users of switches in an optimized three-stage
matrix. This fact offers a partial explanation for the fact that
tripling the size of the middle blocks and quadrupling the size of
the output blocks only increases the number of switches by about

a factor of two, Although the input and output blocks in the main
matrix carry fairly light traffic, we should expect the traffic in
the middle blocks to be quite heavy.

The three-stage matrix described inthissection is not intended to
be adequate for implementing all possible programs in the sense
of Chapter 2. In fact, any program that uses more than 8 of the

15 inputs on a single input block or more than 8 of the 31 outputs
on a given output block obviously requires more than 8 middle
blocks. In fact, the matrix is not even adequate for all programs
using 48 or fewer inputs and 96 or fewer outputs. A program
might use only 75 matrix outputs, but if more than 8 of them are
on the same output block, the program cannot be implemented with
only 8 middle blocks.

In order for a program to be implementéd on this matrix, two
conditions are necessary: first, that the total nu}mber of inputs

6-25

and outputs in use should not be too great, and second, that they

be distributed approximately evenly over the input and output blocks.
The first condition has been met by determining the module size

to reduce the traffic on the external matrix (allowing most connec-
tions to be made internally), The second condition can be met by
proper assignment of components, if the matrix is suitably de-
signed (see Section 6. 7).

6.6 Input Blocks, Qutput Blocks, and Modules

The component outputs terminate in the matrix input
blocks, and the component inputs terminate in the ma trix output
blocks. We have not yet decided how these blocks are to be re-
lated to the modules, Two questions present themselves:

a. Should all component outputs within a module terminate
on the same matrix input block, or should they be scat-
tered over all input blocks? I turns out that the optimal
matrix design calls for more input blocks than modules;
hence the question should be amended to read '"should the
component outputs in a module terminate in the minimum
number of input blocks, or should they be spread out over
the maximum number of input blocks? !

b. Should a given input block terminate many similar compo-
nents or a balanced complement of different types of com-
ponents?

Note that we really have four questions here, since we must answer
these two questions for both input an d output blocks.

The answers to this question are partly constrained by divisibility
considerations. For example, the recommended design for the ex-
ternal matrix uses 10 input blocks and 12 output blocks. The 12
output blocks allow an easy division (two per module) while the 10
input blocks do not. However, it turns out that both inputs and out-
puts within a module should actually be spread out fairly widely over
the matrix output and input blocks, so that these divisibility consi-
derations are not crucial after all.

Consider first the output blocks. We have already seen (Chapter 5)
that it is desirable to have fanout occur within an output block, rather
than an input block or a middle block. The greater the output block

6-26 - \

fanout, the fewer entries in the programming array, and the
greater the chances of successfully implementing the program
on the switching matrix. For example, if 25 component outputs
(matrix inputs) are using the external matrix to connect to 50
component inputs (matrix outputs) then the number of entries

in the programming array can vary from 25 to 50, depending on
output block fanout. If all fanout takes place within output blocks,
then each row has just one entry, and there are only 25 entries
altogether. If none of the fanout takes place within output blocks,
then there will be 50 entries.

The output blocks should be arranged to increase the likelihood
of output block fanout. We have already seen that this implies
that no summer, integrator, or multiplier should have two of its
inputs on the same output block, since there is no reason to feed
the same variable into both inputs on one component,

An additional contribution to output-block fanout is made by ob-
serving that large-fanout variables usually feed many components
of the same type, rather than many different components. For
example:

¥
a. In aerospace problems, there are a few variables such
as Mach number and altitude that drive many DFG's.

b. In many problems, there are time-varying co-efficients
that are common to several equations; such variables
must feed several multipliers. Such co-efficients often
occur in applications involving the adjoint technique or
Pontryagin's Maximum Principle, but also occur in
other contexts; a variable-frequency sinewave oscillator
is an example. k

c. In partial differential equations, because of their sym-
metry, many variables will feed several summers or
several integrators,

d. In harmonic analysis it is often desired to feed the same
signal into several tuned filters with different transfer:
functions; this means that the signal will fan out to many
integrators or summers, k

In short, if a component has a high fanout, it is much more likely
to feed many similar components than it is to feed a '"balanced"

6-27

sample of the available components. We can take advantage of
this fact by grouping many similar component inputs on the same
matrix output block. If, for example, we terminate all variable
DFG's on one output block, then a variable (such as Mach num-
ber) can drive many DFG's and still have an apparent fanout of
one in the programming array (only one entry in its row). This
extreme is probably not desirable, as it would limit the access
to the DFG's in programs where they were all driven by different
variables (e.g., P.D.E.'s with temperature-dependent functions
generated within each cell). The proposed ''large system'' (2
680's) puts all 36 variable DFG's on 4 of the 16 output blocks
(although they could have fitted on two, since there are 20 outputs
per block). With this arrangement, a variable can drive 10 or
12 DFG's and still have an __effective fanout of only 4 at most.
Careful assignment of components should reduce this figure to

2 or 3,

In addition, if a variable feeds several similar components, it
is fairly likely that they will be on the same module (e. g., the
frequency factor in a sineware oscillator, or the aerodynamic
co-efficientsin an aerospace simulation, which are concentrated
within a few computing loops). Hence all three DFG's within a
module appear on the same output block.

With fixed DFG's, the situation is different. There is no need
to generate X2 or sinX or log X more than once, so that inputs
to similar DFG's should be '"spread out" over as many output
blocks as possible.

As for input blocks, the major consideration is to arrange the
terminations to distribute the load as close to equally over the
input blocks as possible. This design problem is linked to the
problem of an algorithm for assigning components. If there are
very many inputs in one input block in use (especially if some

of these have high fanout) then many middle blocks will be re-
quired. To relieve this problem, one can interchange similar
components on different input blocks, For example, suppose one
input block has too many inputs in use while another has very few.
Suppose integrator A is terminated on the '"heavily loaded' input
block and has high fanout, while integrator B is terminated on
the '"lightly loaded" input block, and has a fanout of zero. (This
does not mean that integrator B is not used; it might connect to
other components within its own module, but is does not use the

6-28

external matrix.) If we interchange integrators A and B, then

we transfer one row from the heavy input block to the light input
block, and thus even the load. To allow us the maximum freedom
in doing this, we should not put many identical component outputs
on the same input block. Thus each input block, unlike the output
blocks, should terminate a balanced assortment of different types
of components.

Also, this swap will not gain very much unless A and B are in the
same module. We were assuming that B used only internal con-
nections and hence had no entries in its row on the programming
array. If integrators in different modules are swapped, then the
connections that were internal become external, so that both rows

of the programming array have entries, and we have not succeeded
in reducing the number of inputs in use on the ""heaviest'' input block.
Thus, priority should be given in the algorithm to those exchanges
that can be made between components within a module. This answers
question a): Identical components within a module should be spread
out over as many input blocks as possible. (This also is in direct
contrast to the situation for output blocks.)

6.7 Assignment of Components

Any algorithm to assign components should have two main

parts: a sectioning routine for dividing the problem into sections
(corresponding to modules) and a routine for assigning components
within a module. The sectioning problem is fairly tricky; no attempt
has been made to write such a subroutine in this project. Sample
problems have simply been sectioned ''by eye'' after careful examina-
tion of the block diagram. This turns out to be fairly easy to do, but
it would probably take a considerable amount of work to reduce it

to an algorithm. Such an algorithm should be included in any operat-
ing system, but I don't think it's necessary for a feasibility study.

The second part of the assignment algorithm is much more straight-
forward. This routine has not actually been written, but the general
outlines are clear. In fact, this problem had to be considered to
some extent in order to answer the questions in Section 6. 6.

The best approach at present seems to be iterative. Assignments
are initially made in a ''random'' manner (although if any rules are
available for determining a good starting point, they should be in-
corporated). Once the assignment is made, the programming array

6-29

is generated, and examined to determine the number of middle
blocks required, and, more importantly, where the worst
blocking occurs. The number of middle blocks cannot be less
than the maximum number of entries in any column (the maximum
number of outputs in use on any output block). It also cannot be
less than the maximum number of inputs in use on any input block,
although it will be greater than this if several of these inputs have
high fanout and hence must fan out within the input block.

Hence we should start by determining the worst input and output
blocks as follows:

a. Count the entries in each column and note the column with
the most entries. This is the worst output block.

b. Count the inputs in use in each input block. Inputs with
high fanout should count more heavily than inputs with
low fanout. Hence a set of weighting factors should be
introduced. These weighting factors should be deter-
mined empirically, but approximate values can be esti-
mated a priori. According to the theory developed in
Chapter 5, the input blocks should be approximately
2-to-1 expanders if the matrix is large$ which allows
each input to fan out to two middle blocks. Examination
of several hundred programs (see Chapter 9) indicates
that it is quite rare for an input to fan out to more than
two middle blocks, even in ""worst case'' programs.
Hence an input with a fanout of one should have a weight-

- ing factor of one (indicating that it will require one middle
block) and the weighting factor should gradually increase
to a limiting value of two as the fanout increases, indi-
cating the increasing probability that it will require two
middle blocks. As a starter, we may take a weighting
factor of 1.5 for an input with a fanout of two, 1.75 for
a fanout of three, and so on, with each additional fanout
contributing only half as much as the preceding one. The
sum of all such weighting factors in a given input block is
the probable number of middle blocks required by that in-
put block, and the maximum of these numbers determines
the ""worst' input block.

Once the worst input block and output block are determined, they
are compared, to determine which is worse (i.e., which has the
heaviest load, and hence which contributes most to the need for

6-30

middle blocks). Suppose, for example, the worst input block is
the culprit. Attention is now focused on this input block and the
various opportunities for swapping components to relieve this
blocking are examined. Since each input block contains a balanced
assortment of multipliers, DFG's, summers, and integrators, and
since each of these components is interchangeable with several
similar components which are within the same module, but on dif-
ferent input blocks, there are many opportunities for interchanging
some of these components with similar ones on other input blocks
which do not require external access. Each such swap will inter-
change two rows of the matrix and shift part of the '"load'" from the
most heavily used input block to some other, less heavily used in-
put block.

After each swap, steps a) and b) should be repeated to see if the

situation really has improved, and if a different input block (or

output block) is now the worst. The swapping should continue until

several successive swaps fail to bring about improvement; when]
this happens, it means that there are several different ""worst'' in-)
put and output blocks, all approximately equal, so that the load is 1
more evenly distributed.

|
Of course, if two component outputs are interchanged to relieve O '
congestion within an input block, then it is also necessary to inter- :
change the inputs to these components as well. This will have some
effect on the output blocks, but it will probably not make the worst
output block any worse. For example, suppose two variable DFG's
within a module are interchanged. Since variable DFG's within :
a module have their inputs on the same matrix output block, the i
interchange of inputs will not affect the programming array. Even
if two components with inputs on different output blocks are involved
in the swap, the probability that the worst output block is one of
the two involved in the swap is fairly low (unless there are several
different equally heavily-loaded output blocks).

If the worst output block is the limiting factor, then many inter-
changes can be made without disturbing the worst input block. For
example, we have already seen that two inputs to a multiplier or a
summer or integrator should be on different output blocks. These
may be swapped at will without affecting the output of the component.
(The software must be sufficiently sophisticated to realize that this .
can be done with a multiplier only when it is in the MULTIPLY mode, |
not when it is in the DIVIDE mode.) In any column with many entries, |

6-31

the majority of these entries will be interchangeable with terminals
in sume other column; by interchanging two such connections, an
entry is transferred from one column to another. Thus, exchanges
can be found which will transfer entries from the worst column to
others less heavily loaded (unless the load is evenly distributed
already).

7-1

7. DESIGN OF THE ANALOG CONFIGURATION: SPECIFIC DETAILS
This chapter describes the suggested systems, including the analog
components and the switching matrices, Two systems are proposed;

a small system (one 680) and a large system (two 680's),

7.1 Configuration Switching

The proposed components are fairly complex in that they require a lot
of configuration switching. I have already pointed out in Section 6, 2
that this is desirable, but the question still remains whether all com-
ponents of a given type need configuration switching. Must all multi-
pliers be capable of division, for example? In a given problem, less
than half the multipliers will be used as dividers,so that we could
specify that only 50% of the multipliers have division capability and
save some configuration switches, The same holds true for sign
inversion; we might eliminate the relays that allow interchanging +

and - inputs on a multiplier. If the multipliers were hard-wired so that
half of them had sign inversion and the other half did not, then we might
be able to satisfy our programming requirements with proper assignment
of components.

The reason for allowing so much configuration switching is to preserve
interchangeability of components, We have seen in Sections 5.2 through
5. 4 that many middle blocks are needed when many inputs are concen-
trated in one input block (especially if they have high fanout) and it is also
obvious that heavy traffic on a single output block will also increase the
number of middle blocks needed. In Section 6.7 an algorithm was out-
lined for distributing the ''load'" evenly by interchanging components.

This will only work if there are sufficiently many interchangeable com-
ponents. If one multiplier has division capability and the other does not,
then they are no longer interchangeable. The proposed single-680 system
uses only about 1000 configuration switches. The saving of switches in
the switching matrix itself more than makes up for these configuration
switches.

7.2 Internal And External Access

We saw in Section 6. 5.5 that it does not cost too much to allow every
component input and output to have access to the external matrix pro-
vided they don't all use this access in any single problem. FEach com-
ponent output in the proposed system has access to both external and
internal matrices, but it turns out to be desirable to allow some of the
component inputs to have access to one or the other, but not both, There
are two main types of components for which this should be done:

7-2

7.2.1 Linear Components

Consider a summer with two inputs, both of which have access to both
the internal and external matrix, Such a summer contributes two
matrix output terminals to the external matrix and two to the internal,
Now consider a summer with four inputs, two of which have external
access only and two of which have internal access only. Both summers
contribute the same number of terminals to both matrices, but the
second one can do everything the first one can and much more. Hence
every linear component (summer or integrator) in the proposed system
is provided with at least one internal and one external input, and no
inputs with access to both.

7.2.2 Components With Inputs Only (Or Outputs Only)

Special consideration should be given to components with no analog out-
puts and components with no analog inputs. In an analog system there
are a small number of '"output only' signals: plus reference, minus
reference, ground, and a noise generator. There are many more 'input
only' devices, namely comparators, (which have no analog output) and
all readout devices (plotters, scopes, strip-chart recorders, etc.). In
a hybrid system, one should include A/D and D/A conversion channels
as examples of "input only'' and "output only' devices (although multiply-
ing DAC's are an exception; they do have analog inputs). Trunks, of
course, fall in the "input only" or "output only'' category. No trunks
per se have been included in this system, since a problem requiring two
consoles may be solved more efficiently by simply enlarging the external
matrix. As far as the programming of the switching matrix is concerned,
it makes no difference whether two modules are physically in the same
console or two different consoles. Of course, the inter-module trunking
by means of the external matrix is analogous to inter-console trunking
in a conventional analog system.

It appears that '"input only' and "'output only" components should be
accessed only through the internal matrix, For example, compare an
"input only' component such as an A/D channel, with a device like a
DFG, which has an input and an output. Suppose I have the variable x
generated in module 1 and I need f(x) as an input to a component in module
5. I can locate the DFG in either module 1 or 5, and send only one signal
between modules. If I run out of DFG's in modules 1 and 5, thenI can
generate f(x) in some other module, but then I must send_two signals
between modules. A two-input-one-output device (such as a two-input
summer or a multiplier) is best located in the sending module rather

than the receiving module (If I want to multiply two variables that are
generated in module 1 and use the result in module 5, it is better to locate

O

7-3

the multiplier in module 1). With an "input only'" component like an
A/D channel, there is no "receiving module', so that one can avoid
trunking the signal by using an A/D channel in the same module as

the one in which the variable is generated. Of course, one may run
out of A/D channels within a given module, thus making it necessary

to send the signal to some other module for conversion, This indicates
that it is probably a good idea to have some channels in each module
with both external and internal access, and some with internal access
only.

However, if the "input only' components are sufficiently cheap, it is
probably a good idea to reduce traffic on the external matrix by allow-
ing such components to have internal access only and supplying slightly
more than are likely to be needed. This was done in the proposed
system with the comparators (which are fairly cheap) and the readout
lines (which are very cheap; see Section 7. 6. 8).

The same sort of reasoning applies with ""output only' devices; there
seems little point in sending plus or minus reference over the external
matrix, Since reference is assumed to be supplied to every IC pot and
every comparator bias pot, the only other use for reference is to feed
summers and integrators. It is assumed that every internal input to a
summer or integrator has access to both plus and minus reference. This
adds only 38 switches per module. Furthermore, since each input has
a committed pot (or the equivalent in weighted resistors), half of these
switches might be the same ones that are needed to put plus reference
on the pot for setting purposes anyway,

7.3 Committed Pots

Each summer or integrator input in the proposed system has a pot com-
mitted to it., This committment is justified in Section 6.1 by comparing
the cost of the extra pots with the cost of the switches saved, It should
also be pointed out that the extra pots affect programming as well. The
effect is a beneficial one, for at least two reasons. First, the pot need
not be drawn on the circuit diagram, which not only saves effort, but
reduces clutter, and second, the programmer need not separate a co-
efficient into a '"pot-setting'' and a ''gain of 1 or 10", but can simply
think of each input as having an adjustable gain, varying between 0 and
10. These adjustable gains can be addressed, set, and read just like a
pot-setting.

As an example, consider the two diagrams in Figure 7-1. Both show the
same scaled program for the equation

Y=_1_/.IJ‘X1+_IYI_£.X2
K K,

[s05] “ s) ﬂ.Eze»rJ (yy r@-l'} [-500y]

il (@ Bﬂ: L] | °

L) With Commri’f«r{ po{.f

Fl/()l Eftect ot Committed /91«{5 on P/’O/"“"”’”Y”’;J :
0:

7-5

Figure 7-1 a is programmed in the conventional manner, with separate
pots. Each pot is labeled with an address (e. g. PO5, P10) and with

an expression for the setting which may be either numerical (e. g. PO5
= 2/5) or algebraic (e, g. PO7 = 25M1/1K1). Pot-settings greater than
one must be divided by an appropriate value (usually 2, 5, or 10) to
make them less than one, and the diagram must be modified to include
this factor as an input gain to the amplifier (e. g. P10). The product
of the pot-setting and the amplifier gain is what counts,

Figure 7-1 b shows the same scaled diagram with committed pots. Since
each input has an adjustable gain, there is no reason to draw the pots
explicitly. The inputs are labeled with the co-efficients just like the
pots in Figure 7-1 a. For setup and readout, the co-efficients may be
addressed with the number of the amplifier and a letter distinguishing
among the various amplifier inputs (e.g. 12A is set to 25M1/K;). The
co-efficient can have any value between zero and a maximum value of
about 10 or 20, The fact that an IC pot is committed to each integrator
eliminates the need to draw and label the pot on the diagram. The IC
pot may be addressed with the letter I, (e.g. 10I for the IC pot on inte-
grator 10), which maintains the number-letter format similar to ampli-
fier gains (e.g. 12B, 11A), The integrator IC's (and also comparator bias
pots) can have negative values, unlike ordinary pot-settings.

Note the relatively uncluttered appearance of Fig. 7-1 b due to the elimina-
tion of pots. Equally important, although more subtle, is the fact that
scaling is simplified because an input co-efficient does not have to be
factored into a pot-setting and an amplifier gain.

7.4 Description of a Module

Figure 7-2 indicates the complement of equipment in a module of the
proposed system. There are 25 components with addressable analog out-
puts and several additional addresses for "input only' components. Each
component output has access to both internal and external matrices;
component inEuts can have internal access, external access, or both,
Inputs which terminate in horizontal lines are external. Thus, component
number 5 is a four-input summer, of which three inputs (B, C, and D)
are internal, and one (A) is external., Component number 15 is a multi-
plier with two inputs, eacb of which has access to both internal and
external matrices. Note that different letters are used for the same
input, depending on whether internal or external connections are to be
made. This double-labeling was done to simplify the digital program '
for assigning components (see Chapter 10).

>
>

20A
218

S
R Q2 — P F 23 —
: Wi u)] ——
Nl m |

Il

E? 72 The {7/»(4/ MOA/M/E.

24 .
= T 25
s

g“‘:"‘-dm

2R
29B | £
29c¢ /g
29D 0
296
HT_F T

7-7

The letters for component inputs were chosen to be mnemonically
meaningful for the programmer whenever this was possible; where
it was not, the letters A, B, C, etc. were used arbitrarily. For
example, the inputs to an integrator or summer are simply labeled
A, B, C, etc, For a single-input device such as a DFG, there is
no need for a letter to distinguish the input, but in order to label
the internal and external inputs differently, letters must be used.
DFG number 12, for example, has a single input, referred to as
12F if it is to be connected internally, and simply as 12 if it is to
be connected externally. Similar remarks hold for inputs such as
24X and 24, which repres ent the same input to the same component,
but the former is external and the latter internal.

This section provides a brief summary of the components available

in a given module; more detail on each component is given in Section
7. 6.

Components 1 through 6 are summers. The output is minus the sum
of the inputs, with each input multiplied by an adjustable gain. Note
that the first four summers have logically-controlled D/A switches
associated with them; it is assumed that these switches can be left
permanently on, so that the inputs can be used as ordinary unswitched
inputs to the amplifier when not otherwise in use.

Components 7 through 1l are combination integrator/summers. All
are assumed to have built-in IC pots (not shown in Figure 7-2). It

is also assumed that each integrator has an additional input (with
adjustable gain) which can be connected only to its own output. This
capability was included because many applications require adjustable
damping co-efficients. This connection is sufficiently common to
justify including it in each integrator, without adding additional inputs
or outputs to the switching matrices.

Components 12, 13 and 14 are variable function generators, generating
arbitrary functions of a single input variable., They may be either
DFG's or hybrid function gene rators using logic and multiplying DAC's,

Components 15 through 19 are multiplier/dividers. Each is capable of
either multiplication or division, and each has an adjustable gain,
which is desirable for multiplication and essential for division; see
Section 7. 6.3 for more details. Each multiplier/divider is also
assumed capable of being programmed for sign inversion or not, at
the programmer's option. '

Inputs to multipliers are interchangeable if the component is in the
MULTIPLY mode, but in the DIVIDE mode they must be distinguished

7-8

by "N" for numerator and "D" for denominator. Hence these letters
are used to identify the inputs (even in the MULTIPLY mode),

Components 20 through 25 are different from the others, in that they
have two outputs, '

Components 20 and 21 form a MSQ (multiplier/squarer), This is a
multiplier which can be separated into two square or square-root
circuits. In the MULTIPLY mode, the inputs 20N and 21D are
multiplied and the result appears at output terminal number 20,
Note that the input addresses use different numbers as well as dif-
ferent letters, because in the dual squaring mode, they are thought
of as inputs to different components.

Components 22 and 23 form a dual function generator. Functions such
as the loganthm, exponential, square and square-root, sine and cosine
may be installed at the customer's option. For customers wanting
resolvers, a dual sine/cosine unit may be installed. Since generating
the sine and cosine of the same angle is a very common application, '
an internal relay is assumed which connects the two inputs together,

so that the sine and cosine of a given input may be generated with only
one external input connection.

One additional characteristic of the dual sine/cosine generator that
distinguishes it from other DFG's is the internal switching that allows
it to operate on all values of the input, and not merely values between
-180° and + 180°, Integrator #ll is assumed to have the necessary
switching capability to enable it to operate in conjunction with sine/
cosine unit 22/23 in rate-input resolver modes.

By long-standing tradition, a 680-sized computer is assumed to have
three resolvers, Hence one resolver for every two modules is
assumed. The modules are numbered 1 through 6 (1 through 12 in

the ""two-console' system) and every odd-numbered module is assumed
to have a dual sine-cosine unit in this position, Each even-numbered
module is assumed to have an additional multiplier/squarer in this
position. Hence the total multiplier count consists of 30 multiplier/
dividers (5 per module) and 9 MSQ's (one per odd-numbered module
and two per even-numbered module).

Components 24 and 25 form the other half of the resolver: the multi-
pliers. If resolver operation is not desired, these components may be
used as free multipliers, in which case the output of component 24 is
the product of the 24X and 24S inputs, and a similar stateme nt holds
for component number 25. In this mode of operation, the 24/25 com-

ponents may be thought of as a pair of free multipliers, and all modules
are identical in this respect.

O

7-9

For the axis rotation mode and the rectangular-to-polar mode, we
must generate the expressions

U=Y cos88- == X 5in©® and V = X cos© + Y 8inQ

These outputs appear &t terminals 24 and 25 respectively, Note

that these modes of operation require four multipliers, rather than
two. In such modes, an odd-numbered module (such as module 3)
will "borrow' the two multipliers (numbers 24 and 25) from the
corresponding even-numbered module (e. g. module 4). In this case,
the even-numbered module has two idle inputs and two idle output
terminals, with amplifiers. To increase programming flexibility

at relatively little cost, these amplifiers may be used as two-input
summers when their multipliers are "borrowed' by the other module,

Components 26, 27, and 28 are electronic comparators, each with a
built-in bias pot capable of any bias setting between - Reference and
+ Reference. Thus they are one-input-no-output devices,

Addresses 29A through 29F are for connections to readout devices
(plotters, scopes, recorders, etc.). They may be considered inter-
changeable for programming purposes (see Section 7, 6. 8).

In summary, all six modules are identical except for the resolver com-_
ponents, which consist of components 22 through 25 and component 11

(in odd-numbered modules, this integrator contains the switches and
logic necessary for continuous operation with angular rate input; in
even-numbered modules, it is identical with the other two-input inte-
grators). The total complement of equipment is as follows:

36 summers

30 integrators

39 multipliers (of which 9 have dual squaring/square-
root capability)

3 resolvers (including 12 multipliers, which are not
included in the 39 multipliers above)

18 electronic comparators

36 readout lines

7.5 Miscellaneous Components and Features

This section deals with components that are either ignored or simply
taken for granted in the rest of this report,

7.5.1 Logic

Since logic signals and analog signals are never connected together,
they form two separate switching problems. Since there are fewer

7-10

logic compone nts than analog components, the logic matrix will be
smaller than the analog matrix. The logic matrix also enjoys
additional advantages in that it can use integrated-circuit gates
instead of bulkier, more expensive mechanical relays. Noise and
crosstalk should be much less of a problem than with the analog
matrix, Hence it appears that if the analog matrix problem is solva-
ble, then the logic matrix problem is ‘almost certainly solvable. This
report simply assumes that the needed logic signals are available to
drive D/A switches, integrator mode control, etc.

Although this is a reasonable approach for a feasibility study, a few
words should be said about the actual design problem. The straight-
forward approach of duplicating the complement of components on the
logic panel of a conventional analog and interconnecting them by relays
or logic gates is probably not the best. Consider, for example, such
components as general-purpose logic gates. If logic gates instead of
relays are used to interconnect these components, then the '"components'
become indistinguishable from the '""switches' that interconnect them.

As another example, consider the memory elements in a logic system
(flip/flops and various aggregates of flip/flops, such as registers and
counters). Many of the functions of such elements are essentially
sequential or stored-program functions that would probably be handled
better by a GPDC. The original packaged logic systems were designed
on the premise that GPDC's were expensive, and hence it was better to
do as much as possible with the patched logic. Early logic systems con-
tained such features as patchable binary adders and serial memory to
allow arithmetic and storage functions to be carried out without a GPDC.
Modern hybrid systems generally perform such functions by stored-
program control.

It seems fairly clear that any automatic patching system must include a
GPDC to handle the necessary setup calculations; fortunately, GPDC's
today are sufficiently inexpensive to make this economically feasible.
If such a system is available with the analog at run-time, it may also
take over much of the control functions that would otherwise be patched
with shift registers and counters. Under these conditions, the logic
system might be reduced to a network of gates connecting comparator
outputs t> D/A switch and mode control inputs, with the GPDC changing
the interconnections dynamically under stored-program control.

Although the desired logic connections may simply be assumed to exist
for purposes of a feasibility study, the actual design of such a logic
system is not a trivial task, and is worthy of a separate study if the
analog hardware proves to be feasible.

7-11

7.5.2 Track/Store Units

Early track/store applications used integrators as the storage elements;
modern machines generally build the track/store network into summing
amplifiers so as not to waste the precision feedback capacitors and
other expensive components within an integrator. This approach is
probably desirable for an automatically patched system as well. Some
modifications may be desirable. For example, track/store units are
usually used in pairs. In view of the importance of having as few input
and output terminals as possible, it might be desirable to construct a
track/store pair from two amplifiers and treat it as a single component
from the point of view of the relay matrix.

In fact, the inclusion of a digital computer as an integral part of the
analog raises the question of whether it is not preferable to do most or
all of the data storage digitally, thus eliminating or at least reducing
the need for track/store units as such. If every A/D channel had a
committed track/store unit and every D/A channel a committed analog
interpolator, there would be less need for track/store units as separate
components.

7.5.3 Hard-Zero Limits

The hard-zero limit has already been discussed in Section 6. 2. At
least two summers per module should have this feature, and perhaps

it is even desirable to provide it on all summers to maintain a greater
degree of component interchangeability. Figure 7-3 shows two possible
schematics for such a feature. One requires three form-C switches and
the other requires four form-A. In both cases, the switches are shown
in the normal (non-limited) state.

7.5.4 Feedback Limiters

The feedback limiter is especially tricky because it requires a summing-
junction connection to attach it to a specific amplifier, and summing-
junction switching may lead to serious crosstalk and stability problems.
Examination of applications for feedback limiters indicates that they
fall into three categories. Sometimes it is necessary to establish an
upper or lower bound on an analog variable; this is a true limiting
application. Sometimes amplifiers are used with no feedback except

a limiter; such an amplifier is always in one or the other of its limited
states, and is therefore a binary device. Comparators, gates, and
even flip/flops can be constructed in this way, but in a modern analog
there is little need for such tricks; it is cheaper (and faster) to use
packaged logic. The third use of a feedback limiter is as a "'pacifier”
to prevent overloads. Such an application does not require the limit to
be adjustable.

7-12

ovTpPuT

233

-~
:

E

3

‘}:/3 73 /7’4// =zere L;Mi ¢ on gumm oy

7-13

To avoid summing-junction switching, one may commit a feedback
limiter to each amplifier that is likely to need one (principally
summers and integrators). This seems very wasteful of equipment,
but perhaps it is not as expensive as it appears. The actual limiting
circuitry appears to be fairly cheap: a few resistors and diodes for
a soft limit, and a few extra transistors for a hard limit. The main
cost seems to be in the adjustment pot (which, in a system like this,
should be a servo-set pot or perhaps a switched resistor network; at
any rate, it should be digitally set).

In any given problem, only a few amplifiers will need limiters, but we
don't know in advance which ones they will be, and we want to maintain
as much component interchangeability as possible, for the reasons
covered in Section 6. 7. Suppose we commit a feedback limiter to
every summer and every integrator (a total of eleven limiters per
module) but share the adjustment pots. If we provide two pots for
upper limits and two pots for lower limits in each module, then any
two of these eleven amplifiers can be limited to independent upper and
lower limits. More than two amplifiers can be limited if some are
limited only in one direction, or if several amplifiers have the same
limits - a fairly common occurrence.

Figure 7-4 illustrates the principle. Simple passive diode limiters
are used for illustration, but active (hard) limiters could also be used.
The total cost is 66 switches and 4 pots per module, not counting the
limiter circuitry itself. No summing-junction switching is required.
When an amplifier is not supposed to be limited at all, the switches
set the limits to + 12 volts (+ 1.2 units) which is outside the normal
computing range. Hence the limiter will not affect normal operation,
except for the beneficial effect of preventing hard saturation and improv-
ing overload recovery tirme. It should also be possible to improve the
dynamic characteristics of the limiter if it is committed to a specific
amplifier and has no long summing-junction leads.

7.6 Detailed Component Description

The proper way to define a component is in terms of what it does, rather
than what's in it. Although schematics are provided for each of the
components, these schematics are only suggestions. Different configur-
ations of switches may perform the same analog function better or

more economically; it is the functions themselves that count.

This section describes the analog components as if they were built
from scratch. I am not sure how practical it is to implement these
ideas on an existing computer. As pointed out in the introduction, it

7-14

"‘/QEF
. f%
~
——ﬂ—%—-’\ﬂ\—- SWITCHES FOUR poTS
"f“—>lz‘?— PR PER MopuLE
A””PLIFIE;Q
P2 ¢ |
iwk : | +REF

/ P

E? 7/7 Fpetjéﬂck Lim ter i
5/),;2,;':?/ Pofg ,

7-15

would almost certainly be necessary to make some internal modi-
fications within the analog console, but I'm not sure how extensive
this job would be.

7.6.1 Summers

Every summer has a committed pot for each of its inputs. Some
economic justification has been given for this step in Sections 6.1
and 7. 3, but there is no doubt that the committed pot approach is
more expensive (in terms of analog components) than a simple input
resistor. This section describes one method of reducing the cost
somewhat., With eommitted pots, it is not really necessary to use
precision resistors. In addition, some of the setup and readout relays
can be absorbed into the switching matrix itself. It is assumed here
that the pot is set through the stored-program capability of a GPDC,
which has access to the matrix relays. The general idea is equally
applicable if weighted input resistors, instead of pots are used. The
proposed pot-setting procedure may also give better accuracy than
conventional pot-setting techniques, since it is not dependent on net-
work resistor accuracy.

Figure 7-5 illustrates the suggested schematic. None of the resistors
shown need be very precise; 1% tolerance is adequate. When setting
the pot, the digital computer temporarily disconnects the pot input
from its programmed connection (using the regular matrix relays),
and connects reference voltage instead. Note that either + or -
reference may be connected to the pot. Of course, only one of these
is necessary to set the pot, but both are provided because the actual
programmed input may be + or - reference. The digital program also
disconnects all other input pots from this amplifier, and then connects
the amplifier output to the readout bus. This may be done with the
regular readout relay for that particular amplifier. The pot is then

driven until the amplifier output has the desired value (it is nulled against

a precision voltage source, just as in conventional pot-setting). Even
though low-accuracy resistors are used, the overall gain is correct.
After a null is reached, the original problem connections are restored.

Note that the input resistor is 90K, allowing a gain of at least 1.1 with
the 100K feedback resistor. If greater gains are required, the 10K
input resistor may be switched in, allowing a gain of 11 or more. For
setting large gains without overloading the amplifier, the reference
input should be replaced by 0.1 times reference. This requires an
additional amplifier and precision resistors, or some equivalent low-
impedance voltage source, but only one such source is needed for the
entire machine, not one per pot. The entire reference bus is tempor-

7-16

100K

To OTHer
INPLTS

F\ﬁ 7.5 Summey with Pot - St Feolure

o |

7-17

arily switched to this source for the pot-setting operation, and the
precision voltage source containing the pot-setting (a precision DAC)
is modified accordingly.

With this arrangement, the operator can enter (manually, or from
tape or cards) any co-efficient between 0 and 11 and have it set to
four-figure accuracy.

7.6.2 Integrators

Input pots on integrators may be set the same way as for summers.
Each integrator is also capable of acting as a summer, and hence
internal switching must be included to allow the feedback capacitor

to be replaced by a resistor. This resistor may be switched into

the circuit and the capacitor removed when the input pots are being
set, so that the procedure becomes the same as for a summer. The
feedback resistor value need not be precise, but all capacitors in the
integrator should be trimmed to provide the correct RC time constant
in conjunction with the integrator's own feedback resistor, since this
resistor is used in setting input co-efficients.

To set the committed IC pot, the digital program forces the integra-
tor into the IC mode and turns the pot until the desired value is
obtained at the amplifier output. The IC feedback resistor should be
slightly larger than the IC input resistor, allowing a nominal over-
range of about 5%. This will assure that a setting of 1. 0000 can be
obtained despite resistor mismatch and pot end-resistance.

7.6.3 Multipliers

Figure 7-6 gives the suggested schematic for a multiplier/divider.
A relay with two form-C contacts is used to select the MULTIPLY
and DIVIDE modes, and another to select the output polarity.

The scaling relays allow the feedback resistor to have any value from
10K to 100K, in multiplies of 10K, except for 50K and 60K. In the
MULTIPLY mode, this feature allows more accurate generation of
products of ""out-of-phase' variables (that is, one input is very small
when the other is large). One of the most common examples is
dynamic pressure (pVZ), where p is large and V small at low altitudes
and the opposite is true at high altitudes. Although this scaling
feature is desirable for multiplication, it is essential for division,
where the '"feedback' resistor becomes an input resistor. If the
numerator is not attenuated, the quotient will probably ove rload.

7-18

v 91 by

AY 12y
AL13Y 7 0d

1

VAN

Ll

A¥Y 73y
AlG/LI0wW

3.

N\
~NJ

Noj) MNol Mot Ma9

P

21 9 |V
SA¢¥ 13y i |
ON(IYOS - -

El

L 4

7-19

In the division mode, the programmer does not really have choice

of output polarity. He must choose the polarity relay setting accord-
ing to the sign of the denominator, to make the loop stable. There

may or may not be a sign inversion in the division, but the programmer
has no sign option.

This option may be added by means of a form-C relay at the output, as
shown in Figure 7. 6-b. The programmer (or the software) positions
the input polarity relay according to the sign of the denominator, and
then uses the output polarity relay to determine the sign of the quotient.

7.6.4 The Multiplier-Squarer

In the dual squaring mode, an MSQ requires four amplifiers. The pro-
posed design incorporates a fifth to allow some freedom of output
polarity choice. This is necessary because conventional quarter-
square circuitry normally provides -X% and + Y2 in the dual squaring
mode. Interchanging + X and - X terminals to the squaring network
does not change the sign of the output.

Usually, when two variables are squared, it is desirable to have the
same sign available for both outputs (e. g. to generate X2 +Y2), 1f

they had different signs, it would be necessary to pass one of the
signals through an external inverter, which would tie up ma trix switches
and general-purpose equipment.

Relay K¢ allows the second amplifier to produce the inverted ouztput

in the MUL TIPLY and DIVIDE modes. When used in the dual X" mode,
Relay K¢ allows X2 + Y2 to be generated directly without an external
summer.

7.6.5 The Dual Function Generator

This is a two-input-two-output device (or a pair of independent single-
input-single-output devices). Log/exponential units or sine/cosine
units may be terminated here. One could also terminate a dual squaring
unit here, but if that is done, it appears desirable to go ''all the way"
and use a regular MSQ, so that it can multiply and divide as well.

For a six-module, three-resolver system oriented toward aerospace
applications, this report recommends a dual sine/cosine unit in odd-
numbered modules and ar additional MSQQ in even-numbered ones.
The sine/cosine DFG is different from the other types of dual DFG's
in several respects:

991 b

A2y
ALI¥Y10d _ind /|

| 1, %
i A3 ll “IAV
At&hgq }
1dlnQ
ﬁ e
i Lﬁ Ilwl

SAY 73y
DM IS

7-21

1z Inding
0¢
Indang
-
)

944

O wyod ¥ng-

7-22

a) It must contain more amplifiers, since it generates a non-
monotonic function.

b) It should contain comparators, logic, and switches to enable
it to operate in conjunction with integrator 11 (in the rate input
modes) and with amplifier 24 (in the rectangular-to-polar mode)
to generate the correct values of 8in® and cos@ when © is
unbounded. This circuitry may be a plug-in expension, or
perhaps it should be built into the unit from the start.

c) An internal relay should be provided to connect the two inputs
together under program control. This will allow the genera-
tion of s8in©® and cos© with only one matrix connection, rather
than two.

7.6.6 The Resolver Multipliers

At first glance, the electronic resolver appears to be a desirable
""black box' component with only a few inputs and a few outputs. For
example, in the polar-to-rectangular mode, the inputs are R and &,
and the outputs are X (=Rcos®) and Y (=Rsin®). In the inverse

mode, the inputs are X and Y and the outputs R and &. The axis
rotation mode requires three inputs (X, Y, ©) and produces two outputs
(U = XcosO + Ysin©® -~ andV = Ycos© - Xsin®). Thus it appears that

the resolver should be terminated as a three-input-two-output device.
This is consistent with the '"black box'" or '"committed component"
approach used in other components.

Examination of the actual uses of a resolver dispels this notion. More
terminals must be added. For example, the "'intermediate variables"
sin© and cosG are generated within the resolver. Very often these
variables are needed elsewhere. Also, it is often desirable to use the
multipliers as free components, which requires additional input terminals.
Hence the present design treats the resolver as two separate components:
a sine/cosine unit and a quadruple multiplier. '

The multiplier part terminates as a four-input-two-output device within
each module. It has already been explained in Section 7. 4 that a
resolver in an odd-numbered module "borrows' the multipliers from
the corresponding everrnumbered module. Figure 7-8 shows how this
may be done. The relays are shown de-energized, which is the proper
state for the axis-rotation mode. By energizing relays K; through Kg,
the multipliers are separated into free components.

S12y Y saty0say dof

uw.uxt*cm \\ﬁé\\x |
S 81 % ’
N
| v
lllanqJ mk -
} |
| . “ o
| M
| — «
_ |
R |
q \im ~ "
| v
‘ g
T ANGOn
M M P 13
. N [37ngoW
B A
2 ,) :
A ﬁlyxo}tz) X
L gayes
Q! w ! v , !
e
, _ Q@ !

7-24

Additional relays (not shown in Figure 7-8) perform the following
functions:

a) Switch in input resistors to allow amplifiers 24 and 25 in
module 2 to be two-input summers when their multipliers
are ""borrowed'" by module 1.

b) Connect the "S" and ""C" inputs to the resolver in module 1 ,
to the sine and cosine. outputs (22 and 23) without going through
the switching matrix.

c) Connect the "©'" inputs on sine/cosine unit 22/23 to integrator
11 for rate modes.

d) Connect the X and Y inputs in both module 1 and 2 together (for
the polar-to-rectangular mode).

Note that b), c), and d) represent connections that could have been made
with the internal matrix within the modules, but these connections are
so common that it is probably worth while to make them directly, thus
reducing the traffic on the switching ma trices.

Figure 7-9 illustrates connections to be made for the various modes.
Dotted connections are not part of the switching matrix, but are made
within the resolver.

In 7-9 a, the axis rotation mode, all relays are de-energized, as shown
in Figure 7-8. Components 24 and 25 in module 2 are available as two-
input summers. '

In 7-9 b, the PR-1 mode, components 24 and 25 in module 2 are avail-
able as multipliers. Relays Kj through K¢ are energized.

In Figure 7-9 ¢, the PR-2 mode is illustrated. Relays Kj, K3, K4, and
Kg are energized, but K, is not. Note that two resolutions with a common
angle are being performed in different modules, but it is not necessary

to trunk sinG and cos© through the external matrix, because K, is

left de-energized. ' ‘

In Figure 7-9 d (R-P mode), only K¢ is energized within the resolver,
thus substituting a stabilizing network for the feedback resistor. In
addition to the stabilizing network, this relay also connects the necessary
logic and switching circuitry to assure proper operation when © goes
beyond + 180 degrees.

7-25

X 2y V= Yeos b “Xsul
Y“"“‘"'Lr_é‘—lﬁ Ysin8 +X cos §

0”
ﬂ—"'_? 2DIMY
L-1 adcesd _)

F//a 7.7a AX%S Rotat 1pn Mede

R"‘:“" 2 =Y = =R sné
1 X = + Rcos®
6 ——| :m_ﬂ_} ;
'n.__gﬂsf__x

Rl—l—| A:ng: 'I'Y; = + Ry smb
— L +X, = +
h;x 7. 9c .z. Ra cosf

7-26

I I

méi | |

r s@. _J :
- _ _ _ 1

Fj({ 7'7 . k/q'tf In/v:"{f //Mff‘//s (PR"L /DR’;«
-~ or Rafctl'en)

7-27

Figure 7-9 e illustrates the rate input modes. Connections for PR-],
PR-2, or axis rotation modes are made as usual, but the input to the
sine/cosine unit is derived from the integrator 11, which contains the
necessary switches and logic for continuous rotation.

Figure 7-8 f shows the free multiplier mode. Note that only multiplier
24 in the odd-numbered module has sign inversion. The signs were
chosen for reasons of stability in the inverse mode. It may prove
desirable to introduce division relays and polarity relays to allow
these multipliers to be interchangeable with the standard multipliers,
but I have not done so because it appears that these multipliers will

be used in the resolver mode most of the time.

7.6.7 The Comparator

Although most comparators have two inputs (and the 680 comparator has
three), the most common use is to compare a varying voltage against a
fixed bias level. Hence a fixed bias pot is included, so that the compara-
tor becomes a single-input device. The bias pot has switches that allow
either or - reference to be connected.

7.6.8 Readout Lines

Most analog computers have terminals on the patchpanel marked
plotter'!, ''scope', '"recorder' etc. for connection to the various
readout devices. It is my feeling that this is not the best way to
terminate readout devices, even on a conventional computer with a
patchpanel. The display scope furnished with the 8800 and 680 com-
puters contains a signal selector that allows any one of the 18 channels
to be selected manually from the readout device itself, The advantage
of this method over the conventional method of connecting output
devices was brought home to me vividly the first time I used the
display scope. With many different variables patched into the scope,
I was able to produce any desired display by pushing a few buttons,
but whenever I obtained a display worth recording permanently, I

had 'to go back to the patchpanel and change X-Y plotter connections,
The ease of selection of displays is in sharp contrast to the tedious
re-patching needed to obtain hard copy output. There is no reason
why a plotter or recorder shouldn't contain its own signal selector.
This would not have to be a fancy arrangement with relays, logic,

and lights. A rotary switch or a set of latching pushbuttons would

be perfectly adequate.

This idea seems like a sound one for any analog computer, and it is
especially important for a computer with automatic patching, as it
allows us to treat all readout devices as interchangeable.

7-28

The proposed system assumes that every module terminates six
readout lines, which have access to any of the components within

the module through the module's internal matrix. The 36 readout
lines are terminated on a connector on the computer console. Each
channel on any readout device has a signal selector which selects one
of the 36 inputs. This signal selector may be a rotary switch, or
preferably, two columns of latching pushbuttons, with one column
labeled 1 through 6 (for module selection, and one labeled A through
F). All readout devices select from the same 36 lines.

7.7 The External and Internal Matrices

Each module has 25 component outputs, all of which have both internal
and external access. Hence the external matrix has 6 X 25 =150 matrix
inputs. If each of the 62 component inputs had external access, the
external ma trix would have 6 X 62 = 372 matrix outputs. This 150-by-
372 matrix was used as the basis for the discussions in Chapter 6,
Section 6. 5.

However, we have seen that component inputs, unlike component outputs,
do not all need external access., Linear components, because of their
input summing capability, have some internal inputs and some external
ones. All non-linear components inputs have both types of access with
one exception: the ''S" and ''C" inputs on the electronic resolver. This
was because the resolver was originally conceived as a single packaged
unit. After examining several problems, I decided to treat the resolver
as two separate components, as described above. These extra input
terminals were allowed internal access only, as a compromise between
full external access and complete '"burying'. I now believe that it would
be better to be consistent and allow external access to all non-linear
component inputs, but the configuration has not been changed, to avoid
invalidating programs that had already been prepared. '

The "input only" components are allowed only internal access; this
reduces the external matrix eonsiderably. Counting external component
inputs, we find that thege are only 32 (not 62) in a module. Hence
there must be 192 matrix outputs. The external matrix is thus 150 by
192, but it should be designed on the assumption that only a fraction of
the inputs and outputs will be in use at one time.

Assuming 8 out of 25 component outputs per module and 16 out of 32
component inputs per module use external access, we design the external
matrix as a 48-by-96 three-stage matrix. The theory of Chapter 5
dictates 10 input blocks of 5 inputs each and 12 output blocks of 8 outputs
each. Expanding the input and output blocks to allow greater access,

O

7-29

as was done in Chapter 6, we get 15 inputs per input block (of which
we expect to use only 5) and 16 outputs per output block (of which
we expect to use only 8 in any one problem). The external matrix
has the following structure:

10 input blocks (15 X 8) 1200 switches
12 output blocks (8 X 16) = 1536 switches
8 middle blocks (10 X 12) 960 switches

Total switches in external matrix = 3696 switches

All 25 component outputs have internal access, and there are 49 compon-
ent inputs with internal access. Hence the internal matrix has 25 inputs

and 49 outputs. Breaking the inputs into 5 blocks of 5 and the outputs
into 7 blocks of 7, we have the following structure:

5 input blocks (5 X 7) = 175 switches
7 output blocks (7 X 7) = 343 switches
7 middle blocks (5 X 7) 245 switches

' 763 switches

Note that a 25-by-49 rectangular matrix would require 1225 switches.

The sum of switches in both matrices is thus as follows:

One external matrix = 3696 switches
Six internal ma trices (763

switches each) = 4578 switches

Total 8274 switches

Note that the number of internal and external switches is approximately
equal, which was one of the criteria set forth in Chapter 6.

This figure does not include configuration switches (there are about
1000 of these, counting a form-C relay as two switches).

The assignment of component outputs to matrix input blocks and com-
ponent inputs to matrix output blocks was done on the basis of the
principles outlined in Section 6. 6. Component outputs within a.

module are spread over as many different input blocks as possible, with
special care taken to terminate interchangeable components within a
module on different input blocks.

Each input block contains as many different types of components on it as
possible, to facilitate interchanging of components to equalize the
traffic on the various blocks. In contrast, there is deliberate group-

7-30

ing of similar components on an output block, to increase output-block
fanout. The matrix assignments were punched on cards, and are
printed out in tables 7-1 through 7-4. An entry such as 5-2A means
module 5, component 2, input A.

7.8 The Large System

Since several of the test problems proposed by NASA were too large
for a single 680, a two-console system was also defined for program-
ming these problems. It is probably a good idea to increase the module
size for larger computers, but this was not done for two reasons:

a) It allows the same internal matrix to be used in both cases,
thus simplifying the programming.

b) Since we do not yet know for certain what the optimal module

size is, it is probably a good idea to try the same module on
two different size computers.

Hence the large matrix contains 12 modules. It has 300 matrix inputs
and 384 matrix outputs. Assuming 33% input traffic and 50% output
traffic , we consider it as a 100-by-192 matrix. We use 15 matrix
input blocks, each with 20 matrix inputs (of which we expect to use
about 7 in any problem) and 16 matrix output blocks with 24 outputs, of
which we expect to use 12, and 12 middle blocks.

The switch count is as follows:

15 matrix input blocks (20 by 12)
16 matrix output blocks (12 by 24)
12 middle blocks (15 by 16)

3600 switches
4608 switches
2880 switches

Total switches in external matrix = 11, 088 switches
Total switches in 12 internal matrices= , 9,156 switches
Total switches for large system = 20, 224 switches

Since we have not changed the module size, but merely doubled the
number of modules, the two-console system uses exactly twice as
many internal switches as the single console system. The external
matrix, since it grows as the 3/2 power of the number of components,
should have about 2f2 = 2.8 times as many switches. The actual ratio
is three-to-one. For both matrices, the number of internal
and external switches are about equal, but the internal switches pre-

dominate in the small system and the external ones predominate in the
large system.

Tables 7-5 and 7-6 give the input and output block éssignments for
the external matrix of the two-console system.

7=31

DdInd 669214692146931‘5693..— OO0 ¢~ 00 & ~m o ol ocolmwentolmocoxc ~
amnaoml 25134364AJ54165652361635121a223 ™ Of¢ ntjnunenjunne ®
1018 LndNif= ~ =~~~ a v o nmoje e e o r 0o ORc O C 0o ~ ~jo cojlc 00 JOoCc T CO
ol o gy gt ol
dndnijnoocaw oMo o o e ™ anin oo N nEm N N VITS! [NVO RN o S (VITs] IR oI N VI3 |
" - - et -t — g Lo g4 vt gt —t e L B] e
40d1no MO =P NT~PNNDD~N DO~ N0~ DD~ O o~y POl N OONn R~ O
IMWIN ~ oMM ~Oje MO NNIND T~ IR0 NS ~= 00NN N STe} (] NDjE o~ = O N NO
X018 LdWi]~ ~ = = =jJnnawlm oo nfe ¢ e e e nlo 0 e O g ~ ~jo cojcocoorrcjcoocce
-t pd w4 e e
NN D= amtjun o~ ~afuin 0~ © — S ~ iy ~gjlu 0 ~gju 0~ 2

Nd NI
-t owa - e - et - e d o -~ g Lo B) owt g oy vt - =
-Lnd Lna nnronjupnronmnjuunr~ogfuinr~celjlu~ o NGO ™ O ~ o oM~ ~0oD]~3 T CO
P ERTE L LD RVRSIESIES VIR VEESRIVERS! VIR VRSN VIR FVIRURSSGVIRS! HVINVIRS VIR AVALUR IR - ~
\UQ.E‘SQZ‘111.1122222333334&44455555666667 ~ ~jo o ojo o0 JOOOOO
dadni ~anrcelmgsrofmar cifmetCOf- g COf g C c of- oM~ 3 03_14703

Terminal Connections for External Matrix Input Blocks

(Single-Console System).

Table 7-1.

7-32

LT <X T > ru.NNNNN -DDDDY Z2Z22Z2 X .DDDDY
e onnmrorralor ot mjorvoresaloro0nm

FINWWNF ol non ~f~amnmanal-aumnnualenconmlen comm
.h\:&banuré VO NY OO0 NNOIMO NN YN 00 N OIN 0 O NN OIN 0 & N WO
N2078 Lndingl =~ —~~~jwananananapnnonnmnjetssredffovonnnloo oo oo
Loy T az a0 (22222 jooono §zzzzz Jooaoao
oMM~ onnm ~OIN V0V OoONIRN VO D~ OO DONINOO D —-mM

FJINAOWI~ NN et O N~~~ noualennomnnle nnomnm
L:Qk:ozsalamrzselaezsaua NND ~g 2581M6ﬁ258146

L I) >l gy e >l 4 et ey Ll -y " ey ey
&uoqm.S&.:olxx111222222333333444444555555—66666?

AndNI
dnvaNod we >

3ndow

Lndlno

>0 UInd_ing

Terminal Connections for External Matrix

Table 7-2,

First of

ystem).

Output Blocks (Single - Console S

two sheets,

7-33

ANdNT Ja<aax Jaaca> jaagaX ﬁaaev S<d 9% [<« >
y PRSI PY] U R] X Nl ~nunmnnemnceaeinOO OO
FINdOW]~ Mmoo e ele n 00T ounpnlyvmvovnjamin oo Vjum OO0
k\.o.L30369256369256—H6 npolPvoenwolmor v oMo o NGO

— e e . et et - et - -t o o Lol B o)]

A0 dndipo e rlooo o ©ofe &0 030 ©O00O0O0OI~m——~—~~UNN&N
2NINT Jaqaaz laacao laaaz |PODDO |[eaeaZ jadqa0
cooronllocom ~nju N ~ouf¥ N~ =0l M OO NONON -~

N3N odwod oo oo Mo oo @ ol N NN Qo NN
BINAINl~ O e e N0 In T S~ O O MNMTVNN=MILTOOYY~MIT OO
Lindinolavo~cs o vo ~csojuw o ~e VP T~ OUIND =3 QU D ~ <0

-t v e - et et -t v o e e -t et ou o

X074 Indinglerrrrrlooo o oo 000 a2 02000~~~ m - AJUNN NN
_AndNT dqaaz2 ladaqdn aaqaz [@POODO |KMALCZ L4420
Smkn&.:o0999752_99985312 Nt NN MNIne O T ANO N ON M
FINAoW|~umns e e N0 e TN wounlm NI VY]~ es 00O~ OO0
drdiNnQl—~ ¢~ O0M Of—~ ¢~ O MO~ ¢ ocmgl-eromnUl~eromYj~er~r0MO

- o -t e e - ot ot Ll) - e o — e o=

N2079 10dL00|p rrr Mo oo 0 0oj0 00 0000 C0000fm = NN NNN

(Continued).

Table 7-2

7-34

g
LT
3 ngow

X207g Lnd NI
Ladpi

11

16

dndino
AN3Madwo o

JNdoN

g _indwi
dndni

-Ld Lno
LNINOM 32

Smnaow

Andwi

ﬂdcqm LN

23
14

1 - 4

17
9

19
25

J

1 24
20

18
10
5

1

3. Terminal Connections for Internal Matrix Input Blocks.,

Table 7-

7-35

. —

< Jo ojuo o vju ojo wu «wlo w

Li\Lﬁk&teunaww...SW—s 0 xww.m&@

FD&LDQBGZSI««?B I\ - 3 M O~

X078 Indino~ —|v N 0 ofe a0 66L777

< <|n o ojo o ofo L joou

LndNI LAINOd WO D0 o fa © ofm ofw ~fin amﬁn%w

V]

dndd no = ¢ ~lo oju o]~ @] A0 ~

X3078 LNdLno|~ ~fu & afm ofe <fo 0 0o o~~~
-t ko

«<doujunjoooju oje WD b w

AN 3N od WD 2 2 YT AN L QT 22 YT R)

MJ:QO;EIY.I.III!.! = ot o ot e e

dodLnol~a o oju o]~ ¢ Mo oy Y= @~

N2078 1ndL No]- ~ 4o ado mls ¢ o ol

Terminal Connections for Internal Matrix Output Biocks.

Table 7-4.

S 2
W E:EE x gk w kagg
~ Lg S| - gg g%i ~ L;f 3 3
S D Qz; D - I > D Q%g
T §5 peelzs® gE3|fzd g8
— £y e = S = v
T 'R 1 2 1 2 1 3 1 3
2 1 1 16 2 2 1 17 2 3 1 18
3 1 2 6 3 2 2 7 3 3 2 8
a4 1 2 21 4 2 2 22 4 13 2 23
5 1 311 5 2 312 5 3 313
& 1 4 12 6 2 4 13 6 3 4 ta
7 1 4 2 7 2 4 3 7 3 4 a
8 1 5 17 a8 2 S 18 8 3 5 19
9 1 s 7 9 2 5 8 9 3 5 9
10 1 6 22 10 2 6 23 10 3 6 24
11 1 7 8 11 2 7 9 11 3 7 10
12 1 723 |12 2 7 24 12 3 7 25|
13 1 8 13 13 2 B 14 13 3. 8 15
1a 1 8 3 14 2 8 4 14 3 8 5
15 1 9 18 15 2 9 19 15 3 9 20
16 1 . 10 19 16 2 10 20 16 3 10 21
17 1 10 9 17 2 10 10 17 3 10 11
18 1 11 24 18 2 11 25 186 3 111
19 1 11 14 19 2 11 15 19 3 11 16
20 1 12 4 20 2 12 5 20 3 12 6
 —" T3 1.5 1 5 1 1 6 1 6
2 & 1 19 2 s 1 20 2 6 1 21
3 a 2 9 3 5 "2 10 3 6 2 11
a a4 2 24 a s 2 2% 4 6 3 1
5 4 3 14 5 5 315 5 & 3 16
6 4 a 15 6 S 4 16 6 6 4 17
7 a 4 5 7 5 4 6 7 6 a 7
8 a 5 20 8 s 5 21 8 6 5 22
9 a 5 10 9 5 5 11 9 6 6 12
10 & 6 25 10 5 6 1 10 6 6 2
11 4 7 11 11T 5 712 11 6 7 13
12 a4 7 1 12 5 7 2 12 6 7 3
13 a 8 16 13 5 8 17 13 6 8 18
14 a 8 6 146 5 8 7 14 6 9 8.
15 4 9 21 15 5 9 22 15 6 9 23
16 4 10 22 16 S 10 23 16 6 10 24
17 & 10 12 17 S 10 13 17 6 10 14
18 a 1T 2 18 5 11 3 18 6 11 4
19 a 11 17 19 S 11 18 19 & 12 19
20 & 12 7 20 5 12 8 20 6 12_9
1 7 T 7 1 8 1 8 1 9 1 9
2 7 1 22 2 8 1 23 2 9 1 24
3 7 2 12 3 8 2 13 3 9 2 14
4 7 3 2 4 8 3 3 4 9 3 4
5 7 3 17 5 8 3 18 5 9 3 19
6 7 a 18 6 8 4 19 &6 9 4 20
7 7 4 B8 7 8 4 9 7 9 4 10
8 7 5 23 8 8 5 24 8 9 5 25
9 7 6 13 9 8 6 14 9 o9 6 15
10 7 & 3 1c 8 6 4 10 9 6 S
11 7 7 14 11 8 7 15 11 9 7 16
12 7 7 a 12 8 7 5 12 9 7 6
13 7 8 19 13 8 8 20 13 9 8 21
14 7 9 9 14 8 9 10 14 9 9 11

-

Table 7-5, Terminal Connections for External Matrix Input Blocks

(Iwo-Console System).

First of two sheets.

7-36

) -
Wy ﬁ. }5‘5 §"
X X2 I, ©>
ool FiEls e BEs sy iE
a QU .o a o Q3
$F 3@ <s53|= 38 z?,%J I 54 8%
15 7 9 24 | 15 8 9251 15 9 9 1
16 7 10 25 | 16 8 10 1| 16 9 10 2
177 10 15 | 17 8 1016} 17 o 10 17
18 7 11 5 |18 8 11 6| 18 9 17
19 7 1220 | 19 8 1221} 19 9 12 22
oz 1210 lz0 ® 1211] go o 12 1%
1 10 1 10 T 11 1 11 1 12 T 1
2 10 1 25 2 11 2 1 2 12 2 2
3 10 2 15 311 2 16 312 2 17
4 10 3 5 a 11 3 6 4 12 3 7
5 10 3 20 5 11 3 21 5 12 3 22
6 10 a 21 6 11 a 22 6 12 a 23
7 10 4 11 7 11 5 12 7 12 5 13
8 10 5 1 8 11 5 2 8 12 5 3
9 10 6 16 9 11 6 17 5 12 6 18
& 6 | 10 1 6 7] 1012 & 8
717 | 11 n 718 11 12 7 19
7 7 |12 n 8 8| 1212 8 9
8 22 | 13 11 8 23| 13 12 8 24
o 12 | 14 1 9 13| 16 12 9 14
o 2 |15 11 s 3] 1512 9 a
10 3 | 16 11 10 4] 16 12 10 S
1n 18 § 17 11 11 19 | 17 12 11 20
11 8 18 11 11 9 18 12 11 10
12 23 | 19 11 12 264 | 19 12 12 25
12 13 | 20 11 12 14 | 20 12 12 15
11 1 14 1 14 T 15 1 15
2 3 2 14 2 4 2 15 2 s
2 18 3 14 2 19 315 2 20
3 8 a 14 3 9 4 15 3 10|
3 23 5 14 3 24 5 15 3 25
4 24 6 14 a 25 6 15 4 1
5 14 7 14 5 15 715 5 16
5 4 8 14 5 5 8 15 5 6
6 19 S 1a 6 20 9 15 6 21
& 9 | 10 14 6 10) 10 15 6 11
720 {11 14 721 | 11 15 7 22
8 10 | 12 14 g8 11]| 12 15 8 12
B 25 | 13 14 8 1| 1315 8 2
9 15 | 14 14 9 16 | 14 15 9 17
5 5 § 15 14 9 6| 15 15 9 7
10 6 |16 14 1o 7| 1615 10 8
11 21 17 14 11 22 17 15 11 23
11 11 18 14 11 12 18 18 11 13
12 1 |19 14 12 2 | 19 15 12 3
12 16 | 20 14 12 17) 2015 1218

Table 7-5. (Continued)

7-37

(Two-console System).

First of three sheets,

-
g g 5
SR F T TR R TR
IR 2 £2 ‘Si‘x& 3 &% R & 2 €2
S S S o= N 2z 39 S S X3
a © T 9 SRS £ 3 Q d £ o~
T 1 T 12 2 1 3 12 "3 1 B 25 V-
1 2 1 13 2 2 4 13 3 2 7 13
1 3 1 14 2 3 4 14 3 3 7 14
) Y 2 12 2 a 5 12 3 a4 8 12 :
1 5 2 13 2 s 5 13 3 s 8 13
1 6 2 14 2 6 S 14 3 6 8 14
17 3 12 2 7 6 12 3 7 9 12
T 8 313 2 8 6 13 3 8 9 13
1 9 3 14 2 9 6 1a 3 9 9 14
1 10 1 11 A 2 10 a 11 A 3 10 7 11 A
1 11 2 11 A 2 11 S 11 A 311 8 11 A
1 12 311 A 212 6 11 A 3 12 9 11 A
1 13 1 19 N 213 1 19 D 313 7 19 N
1 14 2 19 N 2 14 2 19 D 3 14 8 19 N
1 15 3 19 N 2 15 319D 3 15 9 19 N
1 16 4 19 N 2 16 4 19 D 3 16 10 19 N
1 17 5 19 N 2 17 5 19 D 317 11 19 N
1 18 6 19 N 2 18 6 19 D 3 18 12 19 N
1 19 1 20 N 2 19 1 21 D 319 2 20 N
1 20 7 20 N 2 20 7 21 D 3 20 8 20 N
1 21 1 22 2 21 1 23 3 21 2 22
1 22 7 22 2 22 7 23 3 22 '8 22
1 23 1 24 X 2 23 1 25 v 3 23 2 24 X
1 24 7 24 X 2 24 7 25 Y 3 24 8 24 X
4 1 10 12 5 1 1 1S N 6 1 1 15 D
a 2 10 13 5 2 1 16 N 6 2 1 16 D
4 3 10 14 5 3 2 15 N & 3 2 15 D
a 4 11 12 S a4 2 16 N 6 4 2 16 D
a 5 11 13 5 5 3 15 N 6 5 3 15 Df
4 6 11 14 5 6 3 16 N 6 6 316D
4 7 12 12 5 7 4 15 N 6 7 4 15 D
4 8 12 13 5 8 4 16 N 6 8 4 16 D
4 9 12 14 5 9 5 15 N 6 9 5 15 D
4 10 10 11 A S 10 S 16 N 6 10 5 16 D
4 11 11 11 A 5 11 6 15 N 6 11 6 15 D
4 12 12 11 A 5 12 6 16 N 6 12 6 16 D
4 13 7 19 D 5 13 1 7 A 6 13 4 7 A
4 14 8 19 D 5 14 1 8 A 6 14 4 8 A
4 15 9 19 D 5 15 2 7 A 6 15 5 7 A
4 16 10 19 D S 16 2 8A 6 16 5 8 A
a 17 11 19 D 5 17 3 7 A 6 17 6 7 Al
4 18 12 19 D 5 18 3 8A 6 18 6 8 A
4 19 2 21D 5 19 3 20 N 6 19 3210
4 20 8 21 D 5 20 9 20 N. 6 20 9 21 D
4 21 2 23 5 21 3 22 6 21 3 23
4 22 8 23 5 22 9 22 6 22 9 23
4 23 2 25 Y 5 23 3 24 X 6 23 325 v
a4 24 8 25 Y 5 24 S 24 X 6_24 9.85 Y
7 1 7 15 N 8 1 7 1S D 9 1 1 17 N
7 2 7 16 N 8 2 7 16 D 9 2 1 18 N
7 3 8 1S N 8 3 8 15 D 9 3 2 17 N
7 a 8 16 N 8 & 8 16 D 9 4 2 18 N
7 5 9 15 N 8 5 9 15 D 9 5 317N
7 6 9 16 N 8 6 9 16 D 9 6 3 18 N
Table 7-6. Terminal Connections for External Matrix Output Blocks

7-38

3 £ 3
w
T BRI AT
P A §3 3 & 3 s S 3 D=
43 Q — = -3

20 Q S0 > Q - SR 2 Q £ ~
Q- 0 S & T S R g £ 23
7 7 10 15 N 8 7 10 15 O S 7 1T N
7 8 10 16 N 8 8 10 16 D 9 8 4 18 N
7 9 11 15 N 8 o9 11 15 D 9 9 5 17 N
7 10 11 16 N 8 10 11 16 D 9 10 S 18 N
7 11 12 15 N 8 11 12 15 D 9 11 6 17 N
7 12 12 16 N 8 12 12 16 D 9 12 6 18 N
7 13 7 7 A 8 13 10 7 A 9 13 1 9 A
7 14 7 8 A 8 14 10 8 A 9 1a 1 10 A
7 15 8 7 A 8 15 11 7 A 9 15 2 9 A
7 16 8 B8 A 8 16 11 8 A 9 16 2 10 A
7 17 s 7 A 8 17 12 7 A 9 17 3 9 A
7 18 9 8 A 8 18 12 8 A 9 18 3 10 A
7 19 4 20 N 8 19 4 21 D 9 19 5 20 N
7 20 10 20 N 8 20 10 21 D 9 20 11 20 N
7 21 4 22 8 21 4 23 9 21 5 22

7 22 10 22 8 22 10 23 9 22 11 22

7 23 4 24 X 8 23 4 25 v 9 23 5 24 X
7 24 10 24 X 8 24 10 25 v 9 24 11 24 X
o 1 1 17 D 11 1 7 17 N 12 1 7 17 O
o 2 1 18 D 11 2 7 18 N 12 2 7 18 O
1o 3 2170 11 3 8 17 N 12 3 8 17 D
10 4 2 18 D 11 & 8 18 N 12 4 8 18 D
10 5 317 D 11 5 9 17 N 12 S 9 17 O
e 6 318D 11 6 9 18 N 12 € 9 18 O
10 7 4 17 D 117 10 17 N 12 7 10 17 O
1o 8 4 18 D 11 8 10 18 N 12 8 10 18 D
10 9 5 17 D 11 9 11 17 N 12 9 11 17 d
10 10 5 18 D 11 10 11 18 N 12 10 11 18 0
10 11 & 17 D 11 11 12 17 N 12 11 12 17 ©
10 12 6 18 D 11 12 12 18 N 12 12 12 18 0O
10 13 a4 9 A 11 13 7 9 A 12 13 10 9
10 14 4 10 A 11 14 7 10 A 12 14 10 10
10 15 S 9 A 11 15 8 9 A 12 15 11 9
10 16 5 10 A 11 16 8 10 A 12 16 11 10
10 17 6 9 A 11 17 9 9 A 12 17 12 9
10 18 6 10 A 11 18 9 10 A 12 18 12 10
10 19 5 21 D 11 19 6 20 N 12 19 6 21 O
10 20 11 21 O 11 20 12 20 N 12 20 12 21 D
10 21 5 23 11 21 6 22 12 21 6 23
10 22 11 23 11 22 12 22 12 22 12 23
10 23 5 25 Y 11 23 6 24 X 12 23 6 25 Y
10 24 11 25 v 11 24 12 24 X 12 24 12 25 Y|
13 1 T 1 A 14 1 7 1 A 15 1 1 1 8
13 2 1 2 A 14 2 7 2 A 15 2 1 2 8
13 3 1 3 A 14 3 7 3 A 15 3 1 S a
13 4 1 4 A 14 a 7 4 A 15 4 1 6 A
13 5 2 1 A 1a s 8 1 A 15 S 2 1B
13 6 2 2 A 14 6 8 2 A 15 6 2 26
13 7 2 3 A 14 7 8 3 A 15 7 2 5 A
13 8 2 a4 A 14 8 8 4 A 15 8 2 6 A
13 9 3 1A 14 9 9 1 A 15 9 2 1B
13 10 3 2 A 14 10 9 2 A 15 10 3 28
13 11 3 3 A 14 11 9 3 A 15 11 3 5 A
13 12 3 4 A 14 12 9 4 A 15 12 3 6 A

Table 7-6 (Continued),

7-39

< = X

, W % v

5§y 5 S 3L[5YS 4 ‘Et ¥S w3,
I N Q & . R &3 NS S &3
g > S g2 :&";‘; S &3 >0 D s £%
SRS T g Q- o E o~ o Q E o™
T T ———i T T &
13 14 a 2 A 14 14 10 2 A 1S 1a a 28
13 15 4 3 A 14 15 10 3 A 15 15 a 5 A
13 16 4 4 A 14 16 10 4 a 15 16 4 6 A
13 17 5 1 A 14 17 11 1 A 1S5 17 s 1B
13 18 5 2 A 14 18 11 2 A 15 18 5 2B
13 19 5 3 A 14 19 11 3 A 15 19 &5 5 A
13 20 S 4 A 14 20 11 & A 1S5 20 5 6 A
13 21 6 1 A 1a 2 12 1 A 15 21 & 1 8B
13 22 6 2 A 14 22 12 2 A 15 22 6 28
13 23 6 3 A 14 23 12 3 A 15 23 6 5 A
13 24 6 4 A 14 24 12 4 A 15 24 6 6 A
16 1 7 1B 16 2 7 28 16 3 7 S A
16 & 7 6 A 16 5 8 18 16 6 8 28
16 7 8 5 A 16 8 8 6 A 16 o9 9 18
16 10 9 28 16 11 9 5 A 16 12 9 6 A
16 13 10 1 B 16 14 10 2 8B 16 15 10 S A
16 16 10 6 A 16 17 11 18 16 18 11 28
16 19 11 5 A 16 20 11 6 A 16 21 12 1 8
16 22 12 2 8 16 23 12 S A 16_24 2 6 A

Table 7-6 (Continued).

7-40

8-1

RESULTS OF NAS2A SAMPLE PROGRAMS

The adequacy of the proposed systems can only be demonstrated

by programming actual problems. NASA has submitted five problems
for analysis. One of these is in two parts which are sufficiently
different that they can be considered as two different problems:

phase 1 and phase 3 of the Saturn IV Stage Control Study.

All but one of these problems have been implemented on the proposed
systems. The fifth (the J-2 rocket engine) appears on visual

inspection to be sufficiently straightforward that it could be programmed
fairly easily using eight modules, with fairly light traffic on the

external matrix, but I did not actually go through the details. It is
quite- clear from the problems already programmed that the traffic

is quite a bit lighter than originally anticipated. In fact, the systems
are not merely adequate, but probably overdesigned by about 10 or

20%. None of the problems took more than 6 of the 8 middle blocks

on the single-console system or 10 of the 12 on the two-console system;
and these results were achieved without any interchanging of components
to equalize input and output blocks.

Two of the analog programs are presented in detail in this chapter,
complete with analog diagrams, connection statements, and computer
printout of the programming arrays. These should be enough to

give the reader a ''feel' for programming the recommended systems.
Programs for the other problems, although not included in this report,
will be furnished to the contractor upon request.

8.1 Voyager, First Stage Ascent

This program uses essentially the same equations as the NASA version
(Reference 5) with the following modifications. (References to page
numbers are to the NASA publication; references to equation numbers
are to the listing given later in this section).

(a) The last equation on page 5 (sin o = u/V) requires a division
which becomes O/O when V = O. However, the variable sino{ is
used only in two places, and in both equations it is multiplied by Ve,
Hence the division is not really necessary. The singularity may be
removed by substitution and cancellation. The same thing holds true
for the q/V expression in the § equation on page 10. The NASA program
used feedback limiters and relays to ''pacify'' these division circuits
when V = O, but this is not necessary if the singularities are cancelled
out.

(b) Certain complicated algebraic expressions were given explicit
names to facilitate labelling the outputs on the diagram. New equations
defining these variables were introduced. (equations 8A, 8B, 9A, 9B,
and 10A).

D e =

2) F =
3 F =

¥) A

(c) On pagé 7, the sloshing acceleratmns (A) are
defined in terms of the variables FL1 Further down the page, the
FLj are defined in terms of the A This leads to algebraic
loops which can be easily ehmmated by algebraic substitution.
Furthermore, the sloshing mass ms; may be entirely removed
from the loop. This leads to equations 87through 28.

(d) Redundant integration in the equation for Mt may be
eliminated by writing the equations in terms of M., This leads
to equations 16 through 20.

Equations - Voyager First Stage

o(9-%) +a, 4

s -A) ~ 43 /;>
Ay (/QC"/&?)) ﬁ’

={5;'+A/;>

5> /‘91 ='/9;‘ +A/8

e}}j’
) i =

9) !

) 4y =

= (R, /L,)l‘:; - d«é/é,’

(RZ/L)) F;L = 47/9:
'—"/49 = Geos ¢ +/u'3,
l/mt(Eg + T+ - 2FN;)

98) Bo= - & CD, pV*S

_q) o

A7 + 6 SM¢ "V’ﬁr

) #y= '//”t(57 T (A1) + ZFLé)

B) By = -4 o 4PVS

1) ¢ = l/In(Aw -L T (/s+/@2) +Z FN A + 5 FL; 1,)
1oA) A= L (Cmy th + Comg 7,)/0\/5 |

O

8-3

&3))"2 7f&95¢—,u. Sm?
/L/> /\; = YV smg +u cos @

/5> me) C/nog) C Do) C/ynr) ’/1‘%2) L) andP are funetions
¥ y M.
1) Me= 1/6L, (T,+T:4T3) om

\7> T =To*'/40(Po"P)
hg) .= T/y or 0 (Sw;fche/)

) =T,
'20) T3 =T/2 or 0 KSW/chAM/)
) M= v/y,

22) V= Ve

23) «Q, =4, -‘—j?—d/y (cons%amf)

24 mo=at + \Vy cos

25) m =V, smp

26) \/w) '/VS) /O) and P ay< ")&um({"lonj of Y

27) X - Ji'[?s’w ‘A"Lf?}*?”z -Wzl/\z] =1, 23
28) FLL :/Vﬂgz'()":' +‘W‘:1 X[) '-.::/) 2)3

D_q) Five = /W\St-[fwssﬁ-)-l}’—ééil_ 2"\“'5’ -—A‘. Z] £=)23

30) A¢) AC(:) ¢C y MS, Wélj and é; (é=/,2,3) ar< WCMncfm»S
ot time. |

A AB= AC6/L

8-4

Figure 8-1 shows the analog diagram. Table 8-1 shows the listing
of connections.

A sirgle line in this table provides all the interconnection statements
for a single component. The first numbers entered identify the
module and the component within the module. The subsequent
numbers identify the various inputs of this component and define what

they are connected to. For example, the first line says that component

1-3 (the third component in module number one) receives its ""A"

input from module 3, component 15, and its ""B'" input from module
1, component 15.

Each of these lines corresponds to a single punched card, so that
the entire program is defined by one card per component. In an
operating gsystem, symbols for the component's operational mode
would also be iincluded (whether it is a summer or an integrator,
whether it is a multiplier or divider, etc). These would operate the
configuration relays within the component.

Table 8-2 gives the printout of the programming array. Below the |
matrix is a printout of the following variables:

IS; the number of inputs per input block
(called n in Chapter 4)

JS; the number of input blocks
(called X in Chapter 4)

KS; the number of output blocks |
(called Z in Chapter 4)

LS; a matrix identifier. I.S = 0 identifies this as
'~ the main (external) matrix, LS =i identifies
the internal matrix for module i.

MSMAX; the maximum number of middle blocks allowed.
If the algorithm uses more than this many middle
blocks, an error message will be generated. In an
operating system, LSMAX would be set equal to
the number of middle blocks actually present in the
hardware; for this study, it was taken to be large
enough to allow virtually all programsto be implemented.

8~5

ALG; the identifier for the algorithm used. Several
algorithms were ttried, the one described in
Chapter 9 and used in this report is number 3.

MS; the number of middle blocks actually required
by this particular program.

Below this line are printed the middle blocks assigned for each
input block. '

Table 8 - 3 gives the same information for each of the six internal
matrices.

Note that only 10 (not 12) middle blocks are u‘sed in the external
matrix, and a maximum of 5 (not 7) middle blocks are used in the
internal matrices.,

(s31o9gs x Is JO 1si113) wolqoxd x33ehop 103 umaldelq IINDIT) 1°Q 2an31g

[21q0W

- dus? = - n

¢t @-3
+ T ¢

(#\/m\

I °v

n &&c@mu By + 2,77

S 3naow

YW %)

YENCAE)]

(EIRYUERD,

8g (4/-h)
FEN;

Aml_ (ci-0)
L

Y d

8-7

T AINAOW

(779)

8-8

- o
€ ; A (cth)
Q\ h.ﬂsmqs ,
| A N /me— %tAQTQ |
\N w:_\nQ E n%\ St A Q.Lv
| " | — .
: - R]
m 9 NS £ - _
.) _ o W (s-1)
T 310N . _
. — (b1-1)
A T\t LW
nﬂ* _Il.lll.. |I||l_ N (8/-7)
= W Jed) L
° 4 ué .|é WA\ | e ndz (0-¢
!) »N&N A_lh\
4 . B
‘ %él._ |
/ } A o # 8@ / 23y
% $ N g

8-9

7 (b-)

a&l@a)

4 fQN \._v

wrpurrd (h)
.N* 335)
& (1-h)

(1=2) & 37000 W

8-10

£ Imaew

-

Qﬁlr&.%*\ . g (be-s)

X
,\%

(c=1) 9 3710doW

8-11

£ 3mddwW

7 £ .
i 2= N

w& T74- A}N\mv
(9774+ '774)- -9

14— (52-¢)

(4+4)= (s-9)

7 ()

e h)
TN-@.

G ..lui (1)

2FP5TE (5-))

Pk
I E—y)

8-12

15

3 18 A

22
1 24

1 22 S
1 23 C

25
15

11

4 11 N

B

1 24 B
1 25 B

10
12
13
14
19
17
18

10 F
10
10

1

4 22 N

13 B
1 23 B

1

14
14
17

1

22 8

1

8 B
18

C

20

21

21 D

1

20 C

1

22

o @
<~

NN

NN

o

24

B8

4 18 A

2 25 B
2108
211 C

10

11

25

2 11 B

18 A

11O RS
OO M

40 g
o o

T NN

< @

15

NN

4 25 B 2 15 C

3 100

A

A

M

MM

)

10

17

3

.3 16 B

10

15
12

4 10 C 4

9 F
9 F
13 B

4 24 C

4 17 D

(o)

<M

nad

I T

T~

0 ~0

e

313D
4 20 B.
4 11 B

4 21

11

10

Connection Statements for Voyager Problem

(First of three sheets)

Tab].e 8"1.

uooooomoomooo\ooooa:ummmmmmwwmmmwwmmwmaabbAmmmwbmmmuuuaa

23 4 11 F
17 2 15 N
12 1 19
13 1 19
14 1 19
12 1 19
13 1 19
14 1 19
18 3120
19 3 14 N
17 2 12 B
1 2 19 C
18 2 13 8
24 2 1 X
25 2 18 v
15 1 1 D
19 2 14 N
16 4 22 B
12 1 10
12 4 9
15 4 20 N
17 4 23 N
5 1 4 A
13 4 9
19 -5 13 A
7 5 S 8B
11 5 78
20 5 7 A
21 4 1t D
16 5 11 8
18 5 12 B
6 1 3 A
14 4 9
24 5 12 s
25 5 5 C
16 5 6 N
19 3 16 B
12 4 9
15 4 20 N
17 4 23 N
5 1 4 A
13 4 9
19 6 13 A
7 6 5 B8
11 6 78
20 & 7 A
21 4 11 D
16 6 11 B
18 6 12 B
6 1 3 A
14 4 9
24 6 12 S
25 6 S C
17 & 6 N

Table 8-1 (Continued)

8-13

aumuy [V - [] ODLEODPELE—~N—-pp

oo

o W 2

(00 ¢)

12

12
11

17

i6
16
12
1S
12

12
11
15

11
19

20
23
20

25
14
14
11

12
11
15

11
19

20
23
20

25
14
14

ZODZOWZOZOD>»

s eI

oz2Z

wZzZz

5 16 C

6 17 C

6 16 C

S

6

<]

19

18 D

19 D

18

8-14

o (o]

o ©

- -

~ ~

[V O

~ Y]

-t Ll

~ ~
Xoo OO m Qo Z2Zm O>aoo
- N g N~ - O oMo nNnaes -0
- NN - ot om - N NN O o e Oy N
0900 Ll T o ~~ < T ™ i o A
Vadd 224 AODODAODODC VUVZUACA
FOITIOOMNMEe NP = NMNMOPNINODOM
NnNnNnaess~aepibdrhrhbedbpPbte—gsgtPMNMOY
TOHOTANNMNNNOMN ~C o YDOITTHONMS
N o et - e 0] O\l o o - 0O o~ N
Lo RV TR0 20 o B S S A S R S A A A i o B Il

319 8B 323 ¢C 3 24 D

(Continued)

Table 8-1

8-15

INTERCONNECTION MATRIX

1% 16

14

13

11

10

v vd vt

-~

vt vt et

10
11
1?2

13
14
15
16
17

aRalal

18
19
2@

%]

NN

. S S

¥\ O

NNNONNNN

NS IRV BN TR B

NNN NN

NN

External Matrix Assignments, Voyager Problem
(first of eight sheets)

Table 8-2.

o

-4

SR eEes

-4
A

Ss SS9
sosseS
eSS
sS=v eSS
ESSSSS

SIS S

SeES8SS
ssssss
NSO S

™IS

I[N

STV SSD

I

sSsessS
Ssssaesn
|SsassS3

=TS8 sSsSsS

TSR CECIISS

TSRS S

IS S

IS RS BRI IS B

SeeSss9

ISV

SNessSS

RSIESTE IR~

[I

T IS

IS I

R R R R R A R R R B

HOAMITPCNTOS
~—t

11
12

13
14

LS E N N

T8 SsSSsS

SRS O]

TN ES

SSess

SIS

SIS

VI STS

Ssas

TRsex

IS

IS

I

I SIS

S8

sSss

[N SR
;e =
|Se S

SRR

SIS S

B B NN

S &S

¥T= 8

=TS S

Te 9

I}

SIS

TR

DM MMM Vv

15
16
17

18
19
29

- O\ M

T N O

N~ @

4

10

11

=TEsS

[\NEE-VEY

4
4
4

12
13

14

15
16
17

Table 8-2 (continued)

i8
19
29

8-16

SSESISSTTSeSSSS8SS
SSE8SSIssssSSsSsessassSs

S ESVIRSIRN NN S BRI S IS IS TR N

TR SSSSSESS
IO IS SIS
SN CNS S S
SSANESSNISISSSS
SIS SSVDINNST S
SSOSSSESSSSSS
NS NEONOINEW
ISSSENSSNDS SIS
VA AASITIIIIIIII
SS9

SIS ITINVYIIS IS
»

5
5
5
5
5
5

O UV DN 0

MITIDNONC O

14
15
16
17
18
19
29

A

A
Vi
v

&

]

)

Table 8-2 (continued)
8-17

¥

6
&
6
6
6
6
6
6
6
6

H NN N D

19
11
12
13
14
15
16
17
18
19
2

~ N

o=

=S
s s
S ™S
ss
!
s®
==
a9
s
)
=S

=23

=T =

VIS

LIRSS

LIS

S S

IS

S IR BN RN

sSsee

STAI

TeSS

o S B BN

I

SIS S

NN

- N T IO

IS STE
BRI VIR S IR SR

S-S S
$

IS ITEESS
’

sSSsSsesEssasX

VSN[

[IIIISOE

S SsSeoeaes

SIS

[0S IR B BB RS

SIS

TS ITaN

VAN S

II_ISNETEsI

AN ININASN IS

11
12
13
14
15

TSE&ES S

sSEssS

NSNS

16
17
18
19

20

%
A

0 T X

M

Y’
7

O~

v

S

g

1a
11

RSN

IS

==

12
13

ﬂ”@ﬂ@”,ﬂ
SSIsSsSeNSs
TETSCSE&ESISS S
[SSERCSTRRS B SRS B NN
SIS IS

. 9 NSTSS S

SIS TS
SEasSsSaass
IS
SIS
SIS
wmw@mwnw
IR

S TIITIIIID

0 0V X WV OO

14
15
16
17
18
19
29

Table 8-2 (continued)

8-18

AN ol o NN« &}

=TS8

4

v

9

10
11

-

V

v

1?
13

9

9
v
9
9

14

15

LS—

A

16
17

Y
9
9

18
19

]

A

i

¢

»

]

v

2

)
4
4

1¢
1y

9]

1
i)

1y
in
i
e
1v
10
1y
i
1y
in
1o
19

4

10

11

)

¥
¥

12
13

[t

A

¢

i

14

15
16
17

©

v

Y]

18
19

¥

]

v

1]

2N

Table 8-2 (continued)

8-19

‘HGGWGGMHGBWMWMMWEBQG 00%%%0@
S eSS T E S S SES S S SESSSS S SesSNSSS
Gﬁ@ﬂﬁ@@ﬂﬂﬂ@ﬂﬂ@ﬁﬂ@ﬂww SSSSSSS
P S UNSSENON IS S SSSSSS S sSssSsSsS8
S T L T e SsEsSsSsSsS
SISO ITINNSSSISISS S SSSSSHS
S YNNI STNSSSTS SIS S NS S

%

s I
= ’ .

VWSSOI NS S ssSsaIsses
VEVNYL VTSI NN IS DN [IIIWVWIIES

SIS INIIININNDS TSI

8- 20

¥

’
LR o IR o B o BRI B I B IR B BRI I R R S S g S NN NNONON N
(ol ol ol oI I I o SRR B B B R R R B IR o B S gy o v v v e e
" ONMITINDNONTOPRFNNMITLCNTOES N T INCN
™Merd et ot vt v -

v
v

12
12
12
12
12
12

19

/]

11
12
13

7

e
12
12
12
12

14
15
16
17

%

18

19

29

‘Table 8-2 (continued)

138
13

ESSISS
SSISSSsSS
cSSsSsass
SSOA8NSS
IS SSS
SSIE IR SIS IS I
SIS SesS
SIS S
oSS sS S
SS9
M.Wnuavm.ﬂ
VWSS
_|LRNIDSS
VDIV S
SIS

TITIIIIE

M)) MM)
vt v v e
MTINCNT

SesS

=SS

;IS

[NSES RN

Sex

[SIS I

Tas

[Faaw

S B

[\

=S8

SIS

DI

S I S

I

s

0

18
18

9
12

13
13
13

11

o

=S

S =

RV

|[Ix

PN

PR

1?2
13
14

sS88S

SESSS

sSesagS

sS8s =

S E

VIS TR IR

=TRS R

[NSERNCIRS BN

sSTE=

ssexsS

[

2DasSS

S BRSBTS

STSsS

;IS

14
14
18
13

15
16
17
18
19

s

=8 S

Es s

SIS

S

=SS

=SS

SRS N

DR

[N

SIS

sSs s

SeS

SsS =

138
13
1

20

]
%]

14
14

14

8

NI

14
14
14
14

9
ig
11

s8s

v

A
d

4]

12
13

14

v

14
14
14
14

¥

15
le
17

14
14
14

i8

19
2@

7]

14

(continued)

Table 8-2

8-21

e 9

S eEsSsssEesssSsEeEsaesssesesssEnesSS TS0 SsSSeSSSsSSsSsSsoessES
ﬂ@ﬂﬁug@ﬁﬂﬂﬂﬂﬂﬂﬂﬁﬂﬁww . SIS SIS SISSESIISNSsSS
SOV IS S , CE ST |ETRESTOQS S
TS SS8NS TN ISEsTISs S SISV
DO SN NSNS S S TSI ES
T SIS TITIIIINSIS S S . ESNSISSSSNISTSIST NS S
VIV N IO S VDI SIS
SIS IV T SIS SsS S I /IS EIINNNISEISS
TNV ORI N - U T I S TSRS N
3
SV NSOAIIVNVOVUINSNNINCSEIINSE S (&) VSISO S
—J”m
- ¢
.ﬂﬂ.@ﬂggﬁugmggﬁggﬂweﬂw SIS IINNIICIIIIIETES
: L)
L] >
a < .
QS aeIRVSIYTESVESMSSTSSSSaeSEeS TN VIS MSIS NSRS S
L} []] g -
x
S S AT IR NTNIDESSYS STV ITNIIIIMPOTVTIT TS
= i
N
- - .
RNV IINIINIIIINSSIISIIISS DV VI IIARRAIPDNANANIIDST
N3] -
Z
c <
VSIS [/NIIIN IO SSIISES S N —~ A NVNTIAITOLSTOLCMIRNOSI
, X w Ll
N
’ <
S ITVIAIIITIIITIII_ISFIIINETIIISSSS O ONNDNON N NN N
' €0 [V - -
[] x
vl [&]
o
-4
g o]
S
OH DD N DH D DD DD H 0D 0D N0 DN N N UANDTLONDOODRI AN TN
™ vl vl vl vl vl et e et et et e v e vt L - ol sl ol o B B o
O
[I VO T T VIO T I T ¥ T T I T T T VI T I I}
)T ODYTIDIYDIYTITD D
- AMTNnNONTTOOS AN CNTOCOS X
L R e IR R R I R I IR NaY)

8-22

{(continued)

Table 8-2

8-23

JNTERCONNECT]ON MATRIX

11 12 13 14 15 16 17

1o

sSSsess

sssEse®

SIS SEEES

sTeSaew.

LS OISR IR

(SIS SIS

TSI

sasaw

[SELSTLS I IS

TSR

Swsas

eNe8s

WIS

S oSS vVY

s ssS

SSII

PIIIID

4 v o

— O M TN

~—
-
-——

(4 UlNe Ul q Vi

¥
)

-5

S8 S

Y]
4
-4

H NN

M T 0

KS LS MSMAX ALG MS

JSs

IS

15

sSSsSesSs

IS

=9 s

[SRS BN

o33N O

GNE

I
1
1
4

4
3
3

1
2
S

MIDDLE BLUCKS ASS
JE '
JE
J=

-

Jes

5

Je

Internal Matrices for Voyager Problem

Table 8-3,

(first of seven sheets)

8-24

kNT#RCONNECTION MATRI X

11 1?2 13 14 15 16 17

10

2]

&N

[T EsES
ESERSRS S N
S aess
[SIECSEN SIS BN
eSS sS
SIS e
ST es
I

VDS

I3

aSMmaSss
)

SN

[TII

s ssss

v vt v v

— O\ M) oD

~ O

S8 .

S 3

SR~

i NN

M N

SSSSS
ssees
sssssS
sEsssSS
SESESECE
sSessSS
SSTSS
SNSSS
SESSS
sss8s
SESISEES
SSEeSS
SeSS®
Sese

VYT

Dol R R W)

- N M T

sSTsSsss s

SSSsSS8S

SSsSSSS

sSesess

sSssSsSs9s

SIS S

IS sSS

S0 S

B ISR IS]

TFIIIIS

ST I

[INNSsSID

TETID

TIET I ITT

QS SS

sss8s

SISSS

Sses

=SS Ss

seee

SeESS

RSB BRI

SRS S

o> NN

H D NN

Lo AV 20 4

n

KS LS MSMA X ALG MS
? 15 3

JS

IS

MIDOLE BLOCKS ASS]GNEL

SSsSsS®

STESsS =

SIS S

[N IS ISR

EsSEs

TS SS

EsSsaas

SIS BRASTRGS Ja

IS S

TSN

[I_SI

IV S

| S

VRV T D~

¥
2
1
3
4
2

MIT NI

M N

1
Z
3
4
5

J2
Js
Js
JE
Js

Table 8-3 (continued)

8-25

INTERCONNECTION MATRIX

11 t2 13 14 15 16 17

10

SesSIS
R SERSIR LS IR NN
asees
sSsessss
(SIS IS SR
D IS I I
ST e:
D\ SEEN SIS B S
TN .
(SIS RS IS LN
SR s.
IS8R
oS B S B BN
™IS
BENS IS SIS

— vt

S ESS8 S

— TN

=

-4

RS

WS

JS Kb LS MSMAX ALG MS

1S

15

M{DULE BLOCKS ASS|GNFD

SESsS =

SN~

J2s

5

JE

Table 8-3 (continued)

8-26

INTERCONNECTION MATRIX

11 12 13 14 15 16 17

10

sSsass

sSsassS

sSsssss

sSEsssese
asssoos
[SETSS

[SSJRESSEIN SIS B

eeas s

SS9 SS

xS BRSSO IRS B S

IV

IR

ssss=s

i vt et

- ONM T N

T T Iy O OU SIS P

S SESSS
SIS~
S8SsSS
asses
SSEsSsS®
sSssssS
sssss
SIS SS
SIS SS
SRS S S
Zﬂﬂﬂ..@
eSS
SIS
SSESS S

SIS

NN NG

- 0N M TN

SESsSSSsSS

Eses S

IS SSS

sSeEesS8

=ENS8SsSS

sSsSsSsSSsSSs

SIS SS

TS

S asER8

VY™

SS IS S

SIS

Lo e B ol Ryl

- N TN

SSSSS
sessS
sSsSsSSs
sSosSsSsS
ssssSs
sSssss
Seess
sesss

[Ees=

SIS

RN S N

TSRS

ST

v oo TIT

- O M T D

SSSSSsSS

EsSs8SsSs

SeSSS

;TS e

STsSs s

EESESsSISS

ESESSSS

S B SRR I

ITAIZII

TS A

O DN D

- (N M TN

MS

MSMAX ALG

LS

KS

JS

IS

15 3 3

4

D

MIDULE SLOCKS ASS]GNE

SS9 ss

S8 SsSS

SO ES
sSassSs
RIS T VER S TR
[SIS RS I SIS
T8
sSasI=

1
1
¥
1
3

M NM M

NM et NN

1
2
3
4
5

J=
J=x
Jz
JE
JE

Table 8-3 (continued)

8-27

INTERCONNECT]ON MATRIX

11 12 13 14 15 116 17

10

=S

Q]

[ES

aas

S8

;e

IR

<t vt v

M TN

NNNNN

O M TN

- 0N

==

=S

)

< N

]
¢
]
¥
4

- M T N

JS KS LS MSMAX ALG MS

1)

15

IS

=SS

@
4
)]

1
2
3

MIDDLE BLOCKS ASSIGNED
JE
JB
JE

S S

=3

=SS

=2

(SN

JE®
JE

Table 8-3 (ceontinued)

8-28

INTFRCONNECTION MATRIX

oessEs

ENeES

sSs98S

SIS

sSIIsSsEsS

S90S

sSesSs

SRS IS B S JRCS

ce8es S

S m

SR R e

oS IS IR B SJR

WIS

la R B oo

Lol AU 20 gl 1)l

NN IVN N

MmN

SE8SS
sSssSsSsS
sessSs
SS8SS
sssss
ﬂ@@.ﬂﬂ
SesSsS
sSsass
sSsS=S
sssss
Ssa®
sses s
sSSsos
SSISS

IS

M D) M) D

- O\ M TN

aEsSsSsesS
SaAaSSsSe
TSI
S oS
SSSSS

SEsssMm2
TSI S
SIS BRI NTRN]
A= IS IR RN

TN

T T I ITT

— M TN

S sSssSSsS®

S&ESSES
[SEIES RSN
SS9 SsSCS
S e8ssS
SEITII
(S IS ERSRS IN
SIS S R
TSI
M Se e

SS9 s

[alNTa NI ANTANTa

ALG MO
15 3

MSMAX

LS
6

JS KS

IS

v

MIDOLE BLOCKS ASS|GNE

sesss
sssss
SSeS8
sSeases
SETESSS
sSSSeS
SSSSe
SIS
sSssS9S
asass
eSS
sssss

0
4
)
1
K]

DN

1
2
3
4
5

Je
Js
JE
JE
JE

(continued)

Table 8-3

8-29

INTERCONNECTION MATRIX

11 12 13 14 15 16

ia

Teases

CESSEeS

SRS s
eSS S
sSseosaas
SIS
I ER
SIS IS IR
[IE
VSIS
VWIS

nNnuWeaR

v =t v

~ M TN

[SURQ VRS U Q)

-t .M

N

n

=S

M TN

v
4]

'
%

H AN

< N

JS KS LS MSMAX ALG MS

IS

15

MIDOLE BLOCKS ASSIGNED

—

S S BRSNS TS

SIS

N AW
S NN

NI

JE
J2
)
NE
JE

(continued)

Table 8-3

8.2 Saturn IV Stage Control, Phase 3 8-30

This program, as originally furnished by NASA (Reference 4) used

a large number of non-standard components, such as a feedback limiter

built with a battery and a a number of resistors, diodes, and capacitors

in conjunction with operational amplifiers for generating pulses of 0
certain specified duration, delaying these pulses, etc. For implement-

ing on a system such as the proposed one, these must be replaced

by standard analog and logic circuits.

The '"battery limiter'' was used in place of the convention#l feedback
limiter because of its flat limiting characteristic. Examination of

the description of this limiter indicates that its limit is not as flat

as that of a modernfeedbacklimiter, which contains active circuitry.
Hence the regularfeedback limiters may be used. The pulse and tirning
circuits were replaced by gates, flip/flops and monostable timers.

For reasons given in Cha pter 7, the logic connections are not included
in the list of connection statements.

Since the problem requi®es six analog modules, it could be run on
the single-console system except for the need for six resolvers. The
problem was programmed on the two-console system using the six
odd-numbered modules (the resolver modules) and the results are
included in the tabulation given in Section 8. 3. V

The problem was also programmed on the single-console system,
using variable DFG's for the extra sine/cosine functions. This gives
a very dense one-console problem; that is, most of the equipment in

all six modules is used. Only the single-console program is presented 0
in full in this report.

The program used essentially the same equations as the original
program provided by NASA, but the equations involving axis

rotation were written in a different form. The difference is in

the grouping of the terms. The original equations were programmed
on servo multipliers and resolvers, which places strong emphasis
on arranging the equations in terms of products with common factors.
When the problem is prpggrammed with quarter-square multipliers,
the emphasis is on reducing the total number of multiplications,

since two products with a common factor use as much equipment

as two products with completely different factors.

In re-grouping the equations, I noticed that terms such as sin@zcosX, —
cos@, sinX, were needed. This is equivalent to sin(8,-X,), and

if it is generated by subtracting X, from 6,, several multipliers

are saved. I deliberately did not do this in the program given in this
chapter, since I wanted to use all six modules as fully as possible

in order to test the system capability.

To aid the programmer in following.the diagram, the re-grouped
rotatienal equations are given below: 0

&;7p /G? = S'/H[l(ag 'Xg)(OS D}’(J (DSQ)/

—¢'¢9y/é, = SM[E/%'X;\} cos s | Sin b,

- 8-31

- Ver/ Ao = | 506044 cosﬁ] j, + [l xg/,wj G
+ [sm (6, -xy) sw] cos 5,

‘¢'-:~7/Aa, [%/”(ﬁ -1z 6055’]/5””)t ’o (5, /(\ smd

| # [smloy-23) sim 9{/ 516,

- Vy = [smle-8)cosb sim Xy = [59,] cony

_ _WP - [yn(,Yz)co 52'(X -}-Lsmf)] SMX
- Q,R: Q”SY ‘[\-0 (9x66s9]§/)(y

<

— Figure 8-2 gives the circuit diagram, and Tables 8-4 theough 8-6
give the connection statements and the printout of the programming array.

~ - The external matrix program required all 8 middle blocks, according
to the algorithm. This was not due to the heavy matrix traffic, but due
to a deficiency in the algorithm. With a little re-assignment, I1Was able
- to eliminate two middle bbocks. Hence this program, like all other
single-console programs studied in this project, requires only six middle
blocks (one of the others took only five; see Section 8. 3).

I think I know how to modify the algorithm to improve its performance

on problems like this one, but this would require additional programming

effort and re-compiling. The important thing is to demonstrate the

feasibility of the switching network, and the programming array in
Figure 8-5 does this.

e e

o s399ys iInoJ Jo 1s1)
¢ oseyd .>H«umuuow~ Ewuwm.“m uu:owmw 2°8 2an3T1Jd

S31qo0wW -

8-32

(-5)

m\ \?.@

2 4.4

| e

& 3IndoW —

IMaawW

(1-9)

| 270q0W

(9/~¢)

M%\@W

8-33
S,

by

T I7naan

(penut3juod) z°g 2and1g

,AnAv
< 31100 W
(% AMX.IM% ues m,ﬂ
, -9
—X 1 =) 5e9)
mw | J“maﬁu m ﬁmﬁ.Mb
MV A -
m ﬂ N% S92 AMlﬂl Mv\
.,Mﬂv X%:\M. , dlﬁ‘l mv
AWX.?.NQ\ urs . dw lwy
L .
) X2]505 %.?mv
Gr-s)
LG uis
; .
9 & Jmnaaw |

8-34

9 3704w

ﬂmx.*u% MIS N\

A 2y m%M s

1¢

ANX: m&mow

“A

=

(penutjuod) z°g 2and1g

¥ N

m : [eUI3]U
A72A0W A1uo M%Mn AT
-7 au aie . ! nSu S50
€1 PUB 7T s,04Q Amwscﬂcﬂmoaw Z
! *g 9an31g

—&r ..
L5 7uTS (ze-g)

" L4 74ad. ! ¢ i@l X
m | | tgzor (-g)
7w L i s (0
/ Ex-7g)50 Q.N\&
% Xg WIS (z1- mu
(Zx-1g)Uls Gay)
am
— w
507 K¢ <! g% > j
s | 0 e <! : & e
g Xg uts v 5 ery
& 37 |
NAoW MQ "

8-36

1§

511 A

B

C

10
1 24 A

10

~

m

10
10

.3 10 A

4

3 10 A

< 0
n o

AUV

T 0

10

]

10

o

11

25 A

1

e

'y

3 20 A

3 13 B

N
3 15 F
323 A

18
14
18
16
22

14

3

3 22 8B

3 14 A

3 22 A 6 24 D

17
15
17
24

3 12 O
3 23 N
2 17 S
1 23 D
3 23 N

N
2 15 B
317 X
2 24 A

19
16

3130

g}

26

2 16 A

20
21

22 D
19
6 25 N

1

2 20 C

25

3130
1 22 S
1 23 C

18
24

2 16 X
218 v

25

22

10

24

(first of two sheets)

Table 8-4. Connection Statements for S-IV Problem, Phase 3.

o002 00000000CCCUHOURNULUURIUYWWLWWWWWWW

27

8-37

25 5 7%
11 3 24 B
12 311 F
13 311 F
19 312 A
20 3 25 A
21 313 8
19 312 A
7 319 ¢C
22 3 7F
17 5 22 B
16 S 23 B
12 3 23
13 3 22
15 5 17 A
18 5 17 A
24 5 16
25 318 v
8 5 15 B
11 5 18 B
12 2 7
13 2 7
16 6 12 B
18 6 13 B
17 6 13 B
19 6 12 B
24 6 16
25 6 17
9 6 19 8
8 6 17 B
5 1 7 A
1 1 7 A
2 6 5 C
3 6 1 B
6 6 1B
26 & 6
4 6 2 B
7 6 2 8B
6 7

Table 8-4 (continued)

(S1IRS NG I ¥ IS)) W w

(RN ORNS Y E I)

23

20

20
10

12
12

12
13
12
13
24
25

22
23
22
23
18
19

Zz Z >PO0O00Nn00T Z

oOwZ

o

o o

8-38

INTERCONNECTION MATRI]X

c
Lol

o
Lo]

11 1?2 13 14

10

™

(Y]

e ESSESSSS

SRS

(oo I |

S

4 v

oA SN TaRE o

e R

12

10
11
13
14
15

3~
saSxss 2w
»

NN NN N

-\ ML

%]
!
¥
g
¢
)

NN NN

in
11
12
13
14
15

SS9 S

(%
4
Vi
4
#
¥
%

M M M) N NV

“ M TN

he o Bt Bhd)

2

4

Table 8-5 External Matrix Connections for S-1V, Phase 3

(first of four sheets)

[V NI

adMs s S

()
7
%
]
(%]

. 8 &

in

4
4
4
4

11

12

e=

13
14

15

7]
“
U]

- O™

PRt o]

< o

¥

?
h
/]

5

12
11

A

¢

7

1?

13

¥

14

A

7

15

i
@

¥
@

)

A
@
7

SRSV

SIS IR

TR

6
6
6
6
6
6

i9

11

12

&

13

v

=

14

15

(continued)

Table 8-5

8-39

8-40

ECEESESSOSSSOSSS
S S SSSSSSSSSSSSS
S TSNS SSOESESSSSS
S SO SSSSSSSTESESE
ﬂ%ﬂﬂﬂ%ﬂﬂ@mﬂn@%wxw
~
W@WM@MMJ@WMWWMM%
S SIS SSISIISIISEISI
MMMMM.MMM@MWM%UU«.
SS2SSSSENINDINT
TS OESSRINIST IS
ﬂﬁwwwﬂ,ﬂﬁwﬁwwwvaﬂ
@ﬁ@ﬁﬂ@@ﬂ@ﬁmmwﬁﬂ
TSV TSIV
SN IIISISS DS I
 $ S SSSNSSYISSSSSSS

(]
NS SSSSTIISTINWSSTIS S
i

-“-AMmeTRNCNTOOS-OAMmT
R wt et

/A .

v

v

]

'

¥

4

¢

3

10

R S

vl

11

7

12
13

=SS S

8
8
o}

14
15

4
»
v

-¥X5 -X5
A
@
@

i
4
[
@

¥
¥
¥
4

WS RS

- NN

(SRR I

SSSsS S

NN

EISTSSS
DEIIT
SIS S S

=TWME S S

*

VIS

11
12
13

A

14
15

Table 8-5 (continued)

s sE s ss88sS

TesSsY83

[SS IR S SR RN RN

1o
19
10
10
10
1p

IsExes

S SSSsSsIIIssSS

S BRI

STSs8s IS

0
Muﬂﬁuww.

ssss s
sssSss
m
ssXe s
’

DLW S

TS ssSas
I IeS
T~ BRS BRSNS B B
IS
Wﬂ%wmm

TR

T[S =
1 vl v et v
PE AN M

v v 4

]

M>

AL

MEMAX
15

e}

12

Js
1v

19

14

IS
15
1
2
3
5
7

J=
J=
J

Jz
Jz
J=
J=
J=

MIDDLE SLOCKS ASS]GNED
J= ¢

14
15

-

N

1p

J=

8-41

Table 8-5 (continued)

8-42

INTERCONNECTION MATRIX

ssses
SSSSS
SS9sSS
asese
sSsssw
sSsESs =
eSS
s sSs
SIS
ssses
S8 ®
ssass
NSSeS
SHsSS
S ILIS

VIWEIS

B

— O M T

- OV

NSRS

~

<

-3

(4

M TN

]

]

‘\5

"l

'z

(4]

(9]

7

A

=

7]

¥

Js KS LS MSMAX ALG MS

IS

™

15

MIDULE HLOCKS ASS]GNED

NN

— M

Je
J=
J=

2

Jds

v

5

JE

(first of six sheets)

Internal Matrices for S-1IV, Phase 3.

Table 8-6.

8-43

INTEKCONNECTION MATRIX

11 12 13 14 1% 16 17

17

b B~ ISR N N

SESESS

SIS

sSe8sSsS =

VeSS S

SIS

[ISSTED

SIS

[T ®

oeaes

SIS

LTSN

—“sSI®3

QI

SIS

VIS

i vt

(N TN

sssss sSSESSS SEssssS SsssSS TSSSSS
sSsSSsS TI&SS SsSSSS SSSESE ssss=
ssass SessSS =TssSS SSO9S© SESESEE
sSsssS SESESEES SSossS sssssS SSSES&
=SsEs =S ISRESIISEE RS SsSssSsS SESs=SsSS S SsS®sS S
sssss SSSSS SSSSS sSSsssS sssss
sSSSsSS SIS sSsssS SESE Y & SS9
SIS SsSSSS IO S SSsS8S sSsSs3=
M
SIS SSST sSsSssS :IISSTS N IsSSTS T
x
sSassSsS SS IS S SSsSSS sswss O ISSSS
’ am™m
<
TS SSS S sSss3IS SN SEVES SIS S
' '
>
< 0
EERNON VTV eSS SsSS S8 I SIS
»
z
SN S SIS SOSNSS SmssS-sS TS SN
' ’ o
N
.
SRR ssssS SN S s sSsssS oSS IS
» N
z
~ O ‘
SEXE R VSIS S®s3w SSSISs n —~R MM
' x n
)]
<
sSssssS SIS SS ST |=W sssSS R R
t oo
n x
- o
o
.
B3
TS
— -
Q
OoOn & 8 H» n
e e Toe T B)
LAV OB ST o) LAV Lo B AT o - (\' M) T I0 « N AN x

~

(continued)

Table 8-6-

8-44

INTERCONNECTION MATRIX

12 13 14

11

10

sEES8SS
sSssS8esS
SIS IR SRR
ESS8S
sSsSssss
SRS S
eSS N

S eSS

SIS
S YQ9W
QI

DS

- et v

- M TN

Lo AVEL AR AN 3

=%

=9

DTS

=S

=S

TR

[SE]

M M

<

- O\ M T

A

o]

9
@
0
(4

v N M T

KS LS MSMAX ALG MS
3 15 3

JS

IS

MIDULE BLOCKS ASDSIGNED

J=

2

Je

=2

JB

=

Js

JS

Table 8-6 (continued)

8-45

INTERCONNECTION MATRIX

11 12 13 14 15 16 17

12

«~t 4

fa VIl o}

4 v

< n

©
4

M)) M) VD

- 0N

]

V)

Vi
v

) <

NN

JS KS LS MSMAX ALG M5

IS

15

MIDDLE BLOCKS ASSIGNED

1

Jz

JE

S
4
5

Jz

JE

J!

(continued)

Table 8-6

8-46

INTERCONNECTION MATRI[X

11 12 13 14 15 16 17

10

SsSssSSS.

sS=sSSsS

SIS S

sSsass

TEeEIS S

TSNS

SN

[SSIxIEeS

I T =S

TSNS

sSeesew

Lol I

SN S

- NS S R

LA

IS

et vt

- ONM T

NN NN

- O\ M T

)

.5

¥

-3

-3

— 0T N

[N TaINT ATV RRT o)

w (VTN

M>

JS KS LS MSMAX ALG

1S

3

15

5

-~

V’ .

2

1

1

MIDDOLE BLOCKS ASS|GNED
JE

[

sSE8 S8 sS

SSESS

SIS

Mot

2
3
4
5

J=
J=
JE
J=

Table 8-6 (continued)

8-47

INTERCONNECTION MATRIX

11 12 13 14 15 16 17

19

sS9S

LI

[SS RIS

)
7]
]
4

- O\ M T

A

%
v

M

« O

]
i

[TANRI o RNT o}

- O M

¢
4

T N

MS

Js KS LS MSMAX ALg
3

IS

15

A e

9
S

2.
Z

4
4

1
2
3
4
5

MIDDLE BLOCKS ASSIGNED
Je

Js

JE

Je

Je

(continued)

Table 8-6

8-48

8.3 Summary of Problems Programmed

In all, five problems furnished by NASA were programmed on the prdposed
systems. They ranged from fairly small and almost linear problems

(the heat-flux partial differential equation) to moderately large and highly
nonlinear ones, such as the two presented in this chapter. One of the
problems was programmed in two different ways (as a two-console problem

- with six- resqlvers, and as a one-console problem with variable DFG's

for some of the siwe-cosine generation). This gave a total of six: programs:

two on the large system (two-consoles) and four on the small system (one '
- console).

Table 8-7 lists the results. This table gives, for each program, the
number of modules required, the number of consoles, the number of middle

blocks on the external matrix, and the maximum number of middle blocks
on the internal matrices.

The following points should be noted:

(a) Both two console problems required only 10 (rather than
12) middle blocks on the external matrix.

(b) All one-cbnsole problems took 6 (rather than 8) middle
blocks on the external matrix, except for the mass cable
problem, which took only five.

(c) No problem required more than 5 middle blocks on the
internal matrix, and one (the heat-flux problem) took
only four.

Note that these results were achieved without any component interchanging
to equalize the traffic on the input and output blocks. Perhaps we could

do even better if an interchanging algorithm were included. Thus we «
have faitly strong evidence that we could probably reduce the number of
middle blocks in each maitrix by 1 or 2, thus reducing the total switch
count by 10% to 20%, Exactly how much we could reduce the matrices is
hard to determine. A large number of analog prohlems, rather than a
small sample, would have to be examined. A proper optimization of the
system would include actually writing the software for sectioning the
problems and assigning components, and programming dozens of different
problems, but the problems studied so for indicate that the proposed system
is adequate, and probably can be reduced further.

Additional evidence for this contention may be seen in the study of twenty
randomly-generated program with typical fanout distributions given in
Chapter 9. '

8-49

0w w

X oo

9] .8

= SR

B I

T

h 23 =7

; w Ma ~

g2 2 eg 2 2

-g w ",g S ﬁ 5

[} = - = a

S ° g ¥ > 5

Problem Name ®) =

Phase 1, S-IV Stage Control 5 1 6 5
Phase 3, S-IV Stage Control 6 2 10 5
Phase 3, S-IV Stage Control 6 1 6 5
Mass-cable System 5 1 5 5
Heat Flux (P.D.E.) 4 1 6 4
Voyager -First Stage Ascent 8 2 10 5

Table 8-7

Summary of NASA Sample Problems

9-1

9. COMPUTER RESULTS

In addition to programming sample problems on the proposed systems,
a fairly extensive statistical evaluation was performed of the three-
stage matrices. This chapter describes the algorithm used to program
the matrices, the types of experimental cases run, and the results.

9.1 The Switch Assignment Algorithm

Given a program (defined by its programming array, as in Chapter 5),
how should middle blocks be assigned to implement this program, and
what is the minimum number of middle blocks required? Quite a bit
of effort was expended developing an assignment algorithm. The cur-
rent version of the algorithm has been tried on hundreds of programs
and has been found fairly efficient. Ideally, an algorithm should
implement every program with the minimum number of middle blocks,
but it is not always easy to decide what the minimum number is. Sup-
pose the algorithm takes eight middle blocks to implement a given
program. How can we be sure that it can't be done with seven?
Theoretically the problem is trivial; all we have to do is try all pos-
sible combinations. A fairly dense program on the external matrix of
the single-console system may contain as many as 96 entries in its
pProgramming array (eight entries per column times twelve columns).
If we want to see whether such a program can be implemented with
seven middle blocks, we may try all possible middle block assignments.
Each entry may be replaced by an integer from one to seven; hence
there are 77° ways of making these assignments. We can, in principle,
examine each of these assignments to see if it satisfies the necessary
conditions (each number is used at most once in a column, and each
number is used in at most one row in any input block). If one of these
assignments satisfies both conditions, we have found a way to solve the

_problem with seven middle blocks; if none of them does, we have proved

that the problem cannot be solved with seven middle blocks. However,
no sane person would attempt to examine all 72 possibilities, even
with a computer.

There is one obvious lower bound that is easy to calculate. By
counting the entries in each column, we can determine the maximum
''column length." The number of middle blocks must be at least this
great. If, in fact, the algorithm does solve the problem with that many
middle blocks, then we know that the solution is optimal (for that par-
ticular program). However, we have seen in Chapter 5 that sometimes
it is necessary to use more middle blocks; the maximum column length
is not a sufficient condition. ‘

9-2

The current version of the algorithm has been tested on hundreds of
"random output-full'' programs (as defined in Section 9. 2) and the
following conclusions may be drawn: '

a. In about half the cases, the number of middle blocks used
was equal to the maximum column length. In these cases,
the algorithm obviously produced optimum results.

b. In the rest of the cases, almost all of them used just one
more middle block than the maximum column length. In
these cases, the result may or may not have been opti-
mal, but in any case, it wasn't far from it. I suspect
that the "extra middle block was actually necessary in
most of these cases, but this is fairly hard to prove (the
methods of Chapter 5 are good for constructing arrays
with maximal blocking, but very poor for analyzing any
given array).

In any case, it is fairly clear that the algorithm is close enough to opti-
mal for practical parposes.

This section describes the general idea of the algorithm without
presenting the detailed flow chart, which is quite complicated. The
algorithm proceeds column by column; that is, it makes all connections
within a column before proceding to the next column. The first thing

it does is to count the entries in each column and re-arrange them in
order of decreasing column length, so that the worst columns are
tackled first. (The computer printout, however, prints the columns

in their original order.)

The first column can be assigned arbitrarily, since this can be consid -
ered as an "initial labeling'' of the middle blocks.

Once one or more columns are assigned, certain possibilities are
ruled out for making subsequent connections. In starting out with a
new column, the first thing the algorithm does is to tabulate, for each
connection in that column, the middle blocks that can't be used for
that particular connection, because they have already been used for
some other input in the same input block. The connections are then
examined to see which one has the fewest remaining possible middle
blocks. This is the most "urgent' connection, and the algorithm
decides that this is the connection to be made first. The next step is
to determine which middle block to use (assuming more than one is
available). The one chosen is the one that will block the fewest future
connections. For example, suppose a given connection has only two

9-3

possibilities left, namely middle block number 3 and middle block
number 8. Suppose, on examining the tabulation of impossible connec-
tions, we discover that middle block number 3 is a possible candidate
for three of the connections that we have yet to make in this column,
while middle block number 8 is a possible candidate for five of these
connections. We would make the connection with middle block number
3 on the grounds that it is the least useful for other purposes, and
hence by using it, we are foreclosing the fewest future possibilities.

In short, the algorithm makes the most urgent connection first, and
makes it with the least flexible middle block. After each connection
is made, the number of possibilities for other connections is reduced,
so that the table of impossible connections must be updated after each
assignment, '

There will be many ''ties" in making such comparisons; that is, sev-
eral connections may be equally urgent or several middle blocks
equally flexible. In such cases, additional tests are made, based on
such additional criteria as the fanout for the various inputs, the num-
ber of inputs in use within a given input block, and so on. These tests
are fairly complicated and will not be covered here.

If a connection has no possibilities left, then the algorithm adds one
more middle block and starts over again, reassigning the entire
matrix from the beginning. The strategy of adding one more middle
block and continuing without re-starting was also tried, but it turned
out to give poorer results (more middle blocks required) than the
""go back and start over!'' strategy. Even with restarting, the entire
algorithm takes less than ten seconds on a large matrix (the external
matrix for the two-console system).

The algorithm has been coded in FORTRAN IV and run on the 8400.

It uses a lot of memory, chiefly because of the need to store the
programming array. The large system, for example, has 300 matrix
inputs and 16 matrix output blocks. Hence the programming array ‘
alone requires 4800 words of storage. This could be reduced consid-
erably by '"packing, ' since we don't need a full 32-bit word to store
the middle-block address; but tnis packing is somewhat awkward in
FORTRAN. For execution on a small computer, the algorithm may
have to be coded in assembly language.

9.2 The Statistical Studies

In addition to programming actual problems furnished by NASA, the
algorithm was used to implement randomly generated programs. Two

9-4

kinds of randomly generated programs were used: .the random output-
full programs and random fanout programs.

9.2.1 Random Output-Full Programs

A program will be called output-full if it uses every matrix output.
Any legitimate program can be expanded to an output-full program
merely by adding more connection statements. The expanded program
- is at least as hard to implement as the original, and probably harder.
Hence a matrix capable of handling output-full programs is capable of
handling all programs; put another way, the set of all output-full
programs constitutes a '"worst-case'' set. '

An N-by-M matrix has (N“&-J)M programs; of these, NM are output-full.
We cannot examine all of these for lack of time, but we can pick one
at random simply by picking one of the N inputs at random to connect
to output number 1, another to connect to output number 2, etc. Since
M>N for any practical analog matrix (i.e. the matrix outputs outnum-
ber the inputs) an output-full matrix will of necessity have quite a bit
of fanout; in fact, if all matrix outputs are used, the average fanout is
M/N; that is, it is equal to the expansion factor of the matrix, which
is about two for most matrices.

If the algorithm is tried on a number of randomly-selected output-full
programs, we should have a fairly good test of both the algoritam and
the matrix. Accordingly, such tests were run on the following four
matrices: '

Matrix A: 50 inputs grouped in 10 blocks of 5; 96 outputs ’grouped
in 12 blocks of 8. Expansion factor = 1.92. Eight middle blocks.

Matrix B: 105 inputs grouped in 15 blocks of 7; 192 outputs
grouped in 16 blocks of 12, Expansion factor =1.83, Twelve
middle blocks. '

Matrix C: 25 inputs grouped in 5 blocks of 5; 49 outputs grouped
in 7 blocks of 7. Expansion factor = 1.96. Seven middle blocks.

Matrix D: 27 inputs grouped in 9 blocks of 3; 50 outputs grouped
in 10 blocks of 5. Expansion factor = 1.85. Five middle blocks.

Matrices A and B are not really part of the proposed system. Tuey are
based on the maximum expected traffic on the single-console and
double-console system respectively. As pointed out in Chapters 6 and 7,
the recommended external matrix for the single-console system was

9-5

obtained by enlarging the input blocks of Matrix A to 15 inputs each
and the output blocks of Matrix A to 16 outputs each. This enlarged
matrix obviously requires at least 16 middle blocks to handle all
possible programs; but remember tnat we are assuming two things:
first, taat the traffic on the external matrix is ligit; and second, that
we can interchange components to distribute tne traffic equally. We
intend to use no more than eignt outputs in any one output block and
five inputs in any one input block. Any program that satisfies these
restrictions is equivalent to a program on Matrix A. In fact, all we
have to do is delete 10 unused inputs in each input block and renumber
the remaining ones 1 through 5. This gives us a programming array
on Matrix A. Hence the study of arbitrary programs on matrix A is
equivalent to tne study of programs on the actual recommended matrix
which use at most five inputs per input block and eight outputs per
output block.

Similar remarks hold for Matrix B which is the basis for the design
of the two-console system.

Both Matrix A and Matrix B were designed by the formulas in Chapter
5. By this theory, eight middle blocks should be adequate for A and
twelve for B. The formulas are only approximate; and there is no
rigorous proof that the restrictions used in Chapter 5 are sufficient,
only that they are necessary to prevent a particular type of ''worst
case' construction. However, if my conjecture is correct, eight mid -
dle blocks should be adequate for most programs on Matrix A and
twelve should be adequate for most programs on Matrix B.

Matrices C and D represent two possible designs for the internal matrix
(which is common to both the small and the large systems). The analog
configuration described. in Chapter 7 requires 25 matrix inputs and 49
matrix outputs. Applying the formulas of Chapter 5, we find that m=5
and n=3 are the "optimum!' values. Since the value of N is not divisible
by n and the value of M is not divisible by m, we increase the number
of inputs from 25 to 27 and the number of outputs from 49 to 50. This
gives Matrix D, which requires 835 switches. This design is presum-
ably optimal for 27 inputs and 50 outtputs; but because it has two more
matrix inputs and one more matrix output than necessary, it may not

be the optimal design for 25 inputs and 49 outputs. Small matrices are
generally dominated by divisibility considerations; rounding off a num-
ber to the nearest integer makes a much greater difference if the
number is small. Matrix C was designed by taking divisibility into
account: no extra inputs or outputs were added. The numbers 25 and
49 were simply factored in the only way possible. Note that this gives
n=5 and m=7 so that n<{m, as it should be.

9-6

9.2.2 Results of Random Qutput-full Programs

About 20 randomly generated programs should be enough to determine
if a matrix is, in fact, adequate for most programs. Twenty programs
were run on Matrix A and 17 on Matrix B, The formulas in Chapter 5
suggest eight middle blocks for Matrix A,and eight were adequate in 18
out of 20 cases. The other two out of 20 took 9. There were no cases
taking fewer than eight or more than nine. Since these 20 cases were
all output-full, which is a "worst-case'' condition, it appears that
eight middle blocks should be adequate for much more than 90% of all
programs,

For Matrix B, the formulas dictate 12 middle blocks. Out of 17 pro-
grams run, 16 took 12 and one took 13 middle blocks. Hence 12 middle
blocks should be sufficient for the vast majority of programs.

For matrix C and D we want not only to evaluate the efficiency of the
matrices and the algorithm, but also to compare the matrices against
each other. This requires more than 20 runs for each matrix.
Fortunately, these matrices are small, so that they don't take much
time.

A total of 90 programs were run on Matrix C. As expected, most of
them took seven middle blocks, but three of them took only six and
eleven took eight. Out of 50 runs on Matrix D, 45 took five middle
blocks and five took six. In both cases, the recommended number of
middle blocks (Y=m) is adequate for about 90% of the tested cases.
Hence Matrix C is recommended because it uses fewer switches.

In all four cases (Matrices A, B, C, and D) we found the recommended
number of matrices adequate about 90% of the time. Should we add an
additional middle block to take care of the remaining 10%? It turns

out that the answer is no. Remember that output-full programs con-
stitute a "worst-case' set. The more relevant question is whether the
proposed matrices are adequate for "typical' programs. This ques-
tion is taken up in the next section.

9.2.3 Random Programs with Prescribed Fanout Distribution

The results of Section 9. 2.2 indicate that the design formulas in
Chapter 5 are good ones for ''worst case'' programs. But how likely
is a "worst case' to actually occur? What results are we likely to
find for typical, rather than pessimistic, assumptions?

9-7

It seems clear that the number of components used and their fanout
are the most important parameters in determining the difficulties we
are likely to encounter. Hence a routine was written to generate
random programs with a prescribed probability distribution.

Let Pi be the probability that a given randomly selected input has a
fanout of i. We include the case i=0 (which means that the component
is either idle or has internal connections only). Given any sequence
Py, P, Py vy Pj for which all Pj are non-negative and the sum of
the Pj is unity, this routine generates random programs according to
this distribution. It works as follows:

For each input a '"random' (really pseudo-random) trial with
this probability distribution is made. This determines the fanout for
that input. Suppose the result is the integer k. Then that component
output (matrix input) must connect to k component inputs (matrix out-
puts). These matrix outputs are selected at random (equal probability
for all) from the set of available outputs. Since a matrix output
cannot be connected to more than one matrix input, each output that
is selected is removed from the list of ''available'' outputs. Hence as
outputs are chosen, the choice is made from a steadily shrinking set.

This process is continued until all inputs are taken care of. Since the
number of matrix inputs is fairly large (50 for Matrix A, 100 for
Matrix B), the resulting program should have a fanout distribution
close to the given one.

It is conceivable that this routine will run out of outputs before every
matrix input is taken care of. How likely this is depends upon the
expected number of outputs used. The fanouts form a sequence of
random variables with a common distribution function. The mean
value of this distribution (i.e. the average fanout per input) is

F= S$i-P;=Pp+2Py+3P3+...

Since there are N matrix inputs, the expected number of outputs used
is NF. If this is less than the number of matrix outputs M, then the
majority of the programs will use less than M inputs; if it is greater,
then the majority will use more than M inputs. (This means that, on
the average, most programs can be expected to use more outputs than
the matrix has, which is impossible.)

Hence we expect the distribution to satisfy the condition

% iP; £ M/N = E

9-8

In other words, the average fanout cannot exceed the expansion factor
of the matrix. : o

Even if this condition is met, the random program generator routine

will occasionally generate a program which uses up all the outputs

before all inputs are taken care of. Such a program does not repre-

sent a valid analog program and should not be included in statistical : .
tabulations. Fortunately, this happens rarely if the average fanout is

much less than E. |

Fanout distribution data may be obtained by programming an actual
problem and counting the components with fanout of 0, 1, 2, etc. For
example, the Saturn IV stage control study (phase 3) was programmed
in six modules, with a total of 150 component outputs (matrix inputs).
Of these inputs v ' ‘

117 had fanout of O
25 n 1" "
3 3] " 1]

1

2

3

2 " 1" n 4
5

6

1
1
1 " 1" 1"
0

150 total
This table refers only to external matrix connections. Components
with fanout of zero were not necessarily idle, but they did not need
connections on the external matrix.

From this, we could calculate the probability of a particular fanout by
dividing the number of inputs having that fanout by 150. Note that 117
out of the 150, or 78%, of the inputs had fanout of zero. This is in
agreement with the assemption of light traffic that was used in
designing the matrix; we allowed for 50 of the 150 inputs to be in use
at any one time, and this problem (which uses most of the components
in six modules) uses only 33 of them.

However, if we use these probabilities in the actual 150-by-192 matrix,
then it may happen by chance that more than five inputs are in use in
one input block or more than eight outputs are used in one output
block, even though the average number of inputs per input block is only
3.3 and the average number of outputs per output block is only 4.42.
We assume (see Section 6.7) that if this happens, we can equalize the
input blocks and/or output blocks by interchanging some components. '
Hence our real interest is in the 50-by-96 matrix (Matrix A). We have

O

9-9

seen that every program on the recommended 150-by-192 matrix is
equivalent to a program on Matrix A provided it uses no more than
five inputs per input block and eight outputs per output block. To
translate such a program into a Matrix A program, all we need to

do is delete ten unused inputs from each input block. When we do
this, of course, the probabilities change. We still use only 33 inputs,
but it is 33 out of 50, not 33 out of 150.

In terms of Matrix A, the distribution looks like this:

17 inputs have fanout of 0

25 1" " 1" o1
3 " 1 " o2
1 1" 1] " no3
2 " 1" " n 4
1 " 1" "o 5
1 no n v

50 total inputs
This gives P=0.34; P1=0.50; P,=0.06; P3=0. 02; P4=0. 04; P5=P6=0.02.

Using this distribution, 20 programs were generated and implemented
on Matrix A. Three of them used five middle blocks, eight used six,
and nine used seven. Note that none of the 20 required eight middle
blocks. The median number of middle blocks used was six; with this
many middle blocks, 55% of the programs could have been implemented.
The mean number of middle blocks required was 6.3. When the .
actual Saturn IV, phase 3, program was implemented, it took six mid-
dle blocks.

Thus this specific program is typical of programs with this distribution.
But how typical is the distribution itself? Several other programs
which used most of the analog equipment were examined; in each case,
the distribution was about the same, except for the '"tail end' of the
curve. In other words, the percentage of inputs with fanouts of 0, 1, 2,
or 3 was about the same; but some programs had noticeably more
high-fanout inputs than others.

Such large fanouts generally tend to fall into one of the patterns
covered in Section 6. 6; that is, they tend to feed several similar com-
ponents so that the deliberate grouping of similar components in the
same output block allows a considerable amount of output-block fanout,
and hence the effectivefanout (on the programming array) is much less
than the actual fanout. Of course, what really counts is how many
entries there are in the programming array for a given input (i.e. how . '
many output blocks it must be connected to).

9-10

As an example, consider the Voyager first-stage ascent problem
described in Chapter 8. This program took ten middle blocks
(instead of twelve) on the large system external matrix. The fanout
distribution was as follows: '

Fanout Number of Inputs Probability

0 22 .328
1 34 .507
2 3 . 045
3 2 . 030
4 0 . 000
5 1 .015.
6 4 . 060
9 1 .015 .

Since this problem used eight modules instead of six, the probabilities
were calculated on the basis of 67 matrix inputs instead of 50. (That
is, the eight modules contain 200 matrix inputs, and the external
matrix is designed for a maximum density of 1/3) The number of
matrix inputs actually used was 45, so that the number of ''zero fan-
out'" inputs was taken as 67-45=22.

When this particular program was implemented on the external
matrix, only one matrix input had a ''fanout" of four and none of the
others had an effective fanout greater than two. (The term leffective
fanout" here refers to the number of output blocks to which the input
connected, which is simply the number of entries in the programming
array for that row.) Since there were six inputs with fanouts greater
than four and eight with fanouts greater than two, this result would be
extremely surprising if it occurred in a randomly generated matrix.
Fanout within an output block is quite rare in randomly generated
programs; but in actual problems like this one, it is fairly common
because of the matrix design described in Section 6.6, Hence a ran-
domly generated set of programs based on this probability distribu-
tion would be misleading as it would not reflect the fact that output/
block fanout is much more common than a random selection would
suggest,

It would be desirable to modify the routine for generating random
programs to increase the probability of output block fanout, at least
for the high-fanout variables. A simpler way of achieving approxi-
mately the same objectives would be to reduce the large fanouts
arbitrarily. Suppose we decrease all fanouts of four or greater by

9-11

one (that is, list an input with a fanout of four as if it had a fanout

of three, and similarly for higher fanouts). Suppose we also truncate
the distribution at a maximum of six; that is, treat all variables with
fanouts above six as if the fanout were six. This goal could actually

be achieved by using a redundant amplifier to drive some of the fan-
outs; and, in fact, it may be necessary for electrical buffering anyway.
These rules are arbitrary of course, but they seem reasonable and
they do not reduce the fanout as much as the deliberate matrix design
in Section 6. 6 did.

If we apply these rules to the above distribution, the values of P, Pj,
P;, and P3 remain unchanged; but Py becomes 0,015, Py becomes
0.060, and P¢ becomes 0.015. This makes the distribution extremely
close to the Saturn IV, phase 3, distribution.

Figure 9-1 shows the cumulative distribution functions for the above
distributions; that is, each entry represents the probability of a fanout
less than or equal to the value on the horizontal axis. These values
may be obtained from the P; values by summation. The actual cumu-
lative distribution function is discontinuous (it has jump discontinu-
ities at each integer value on the horizontal axis). However, the trends
may be seen more clearly by joining the points with straight lines.

Curve number 1 is the Saturn, phase 3, distribution; curve number 2
is the Voyager, first stage ascent, distribution; and curve number 3
is the result of reducing and truncating the Voyager distribution
according to the rules given above. Note that the curves are virtually
indistinguishable for fanout values of 0, 1, and 2. For higher fanouts,
the curves are noticeably different, but the above rules for reducing
large fanouts make then fairly close.

Examination of other problems tends to confirm this distribution; it
is fairly typical of problems that use most of the analog equipment
within each module. Problems which leave many components idle
within a module have less fanout since there is a greater percentage
of idle inputs. This is typical of problems which do not have approx-
imately the same balance of components as the computer itself. For
example, the heat flux problem submitted by NASA (a partial differ-
ential equation) used lots of integrators and very little nonlinear
equipment; hence traffic on the matrix was extremely light for this
problem.

PROBARIL ITY

9-12

S
o

o o
& N

R
=

0.1

0.0

FANOVT

F17 9-1. Fansut /oroh,é//ﬂ‘/ Distributions.,

10

10-1

SOFTWARE

This chapter describes the various types of software that are either
necessary or desirable for the proposed system. A few of the routines
in this chapter have already been written, since they proved necessary
for the feasibility study. However, in their present form, they cannot
really be considered ""'software'’ in the official sense. They lack the
detailed documentation and the other backup services of regular soft-
ware. Of course, they also lack analog hardware with which to operate.

10.1 The Switch Assignment Routine

This algorithm is described in Section 9.1. It accepts as input a
programming array, that is, a set of statements of the form '"The
I-th input on the J-th input block is to be connected to the K-th output
block.!'" Note that this is not a complete description of the original
program since it does not specify which output or outputs it connects
to within the output block, but this is not necessary for a feasibility
study. The output is a print-out of the programming array with a
middle-block number for each entry.

10.2 The Matrix Terminal Assignment Routine

This routine accepts as input a set of connection statements of the
form '"Connect input A on component 4-2 (that is, summer number 2
in module 4) to the output of 3-15 (multiplier number 15 in module 3)."
The routine also uses as input matrix description data specifying
which input and output terminals correspond to these inputs and out-
puts. This information, which is listed in Tables 7-1 through 7-6,

is presently fed in on punched cards. Inan operating system, such
information would be kept on the system tape.

This routine produces as output a description of the programming
array in the proper format for use as input to the switch assignment
algorithm.

The first two routines have been written and were used to program
the problems in Chapter 8. The following routines have not been
written. In some cases the writing of the routine is a straightforward
(but tedious) task; in some cases a considerable amount of effort may
be required to devise a suitable algorithm.

10.3 Interconnection Routine

This routine, operating in conjunction with the other two, would
generate the bit-patterns for actually energizing the switches. This

LU~&

bit-pattern might be put out on cards or paper tape for later setup
(like stored pot-settings) or it might be used to close the switches
directly if the GPDC is operating on-line with the GPAC.

These three routines taken together constitute a bare minimum of
software for an operating system. This system will be called

System A. With System A, the user prepares his circuit diagram

in the conventional manner, sections it into modules, and writes
connection statements which are punched on cards and used as input.
The GPDC takes over from there, either setting up the GPAC directly
or providing him with a punched tape or cards to do it. If there are
not enough middle blocks in the switching matrix to do the job, then
the programming array may be printed out and the user can examine
it off-line, and decide if he can relieve the blocking by re-assignment
of components.

10.4 A Component Assignment Routine

The next step would be to add a routine for component assignment.
Such a routine would accept the same type of input (connection state-
ments) as in System A, but with arbitrary labels. The programmer
could call a particular integrator I15 or 122, without regard to the
numbering system of the computer. He could even call it XDOT or
THETA or some other mnemonic label. Of course he must specify
that the component is an integrator. '

As pointed out in Section 6.7, such a routine would consist basically
of a sectioning subroutine and a subroutine for interchanging compo-
nents within a module. A general outline of the latter is given in
Section 6.7, but the former is quite difficult. I have sectioned enough
programs visually to convince myself that it can be done, but the
process is an art rather than a science. Much research is needed to
get this process into the form of an algorithm. '

Originally, I thought that the number of components used and their
type would be independent of sectioning. The input was considered
as a: set of statements about what m’of component was connected
to what type of other component and was therefore equivalent to a
circuit diagram without component assignment. The assignment
algorithm was thought of as equivalent to writing numbers inside the
triangles and rectangles, that is, deciding which particular compo-
nent to use. Sectioning the problem is part of this process.

It now appears that this description is too simple. Sectioning also
includes re-arranging the triangles and adding or subtracting a few.

o

10-3

Consider, for example, the discussion in Section 6.4 about the various
ways to add variables in one module and send the sum to another module,.
Some methods require fewer inter-module signal paths than others,

but perhaps the one that uses fewest signal paths cannot be used because
there are not enough summers available in a particular module. Every
program that I have sectioned involved decisions of this type, and the
final circuit diagram was not topologically equivalent to the original
unassigned diagram. The sectioning algorithm should have the freedom
to make such changes so that the programmer may feed in a connec-
tion statement calling for a three-input integrator and get back a pro-
gram which uses a three-input summer followed by a one-input integrator
or perhaps a two-input summer followed by a two-input integrator.

The software has to be capable of doing this in such a way that the

signs work out properly; this includes changing the polarity assignment.
on multipliers or DFG's and shifting the inverters around in linear
loops. The bookkeeping problems are by no means trivial.

A system including automatic component assignment will be called
System B. System A was described as a bare minimum of operational
software; some users may feel that this is too Spartan and insist on B
as a minimum system. It may be desirable to define a system between
A and B, (System B flat?) which would force the user to section the
problem himself but would include the routine for interchanging
components within a module. The reason for suggesting this is that
the interchanging routine appears to be less of a task to write than ‘
the sectioning routine.

oftware Capagbilities
System B contains all the capability that I (as an analog programmer)
would consider necessary to solve the problem of automatic patching
(and, hence, cheap and convenient analog stored program capability).
However, there are many additional features that are desirable and
probably feasible, once we have gone this far. System C (the deluxe
system) might contain any or all of the following:

a) The ability to generate the necessary connection statements
for a complicated algebraic expression from a FORTRAN statement.

b) The ability to generate the connection statements for a second-
order loop, a Pad+ filter, a backlash circuit, etc. from a single
statement.

c) Automatic static check calculations.

d) Automatic scaling.

10-4

e) Automatic generation of dynamic check solutions.

f) Diagnostics for checking switch “continuity, accuracy of
analog components, etc..

g) Character generation for labeling of plots, recordings,
scope displays, etc..

Most of Systems A and B can be written in FORTRAN and hence

made available on any computer. A fair part of System C may have

to be written in assembly language to avoid excessive storage and
time requirements. In fact, the capabilities of System C make it
look very much like a compiler itself. Creating such a system would
be very much like writing a compiler, although there would doubtless
be some features unique to this task because of the modular parallel
nature of the analog computer.

0

REFERENCES

Clos, Charles. ''A Study of Non-Blocking Switching Networks"
Bell System Technical Journal, March 1953 Vol 32 pp 406-423

Hagerbaumer, William G, and Marshall, Joseph H.

"Switching Network Considerations and Configurations in an
Automatic Patching Network for the GPAC" Elect ronic Associates
ASG Report 5-61 May 24, 1961

Ocker, Wolfgang. ''Considerations and Configurations of an
Automatic Patching System for the Idea Computer.' Electronic
Associates ASG Report 7-61 July 13, 196l

Allen, D.W. '"S-IV Stage Control Study'. Problem Number 750152
(furnished by NASA)

Brown, Donald R. 'Simulation of the Saturn IB/S-IV/Voyager during
First-stage Ascent.'" A&ES Publication 65-750102 Contract NAS8-11209,
December 1964 (furnished by NASA).

