
PRIMER ON ANALOG COMPUTATION 

Introduction 

In engineering, the analog computer can be an ef­
fective tool in either of two categories: model 
building - an inductive process, and model analy­
sis - a deductive process. In model building, an 
analytical relation between variables is hypothe­
sized to describe the physical system of interest. 
Forcing functions identical to those in the physical 
system then can be applied to the hypothetical 
model so that a comparison of the response of the 
model with that of the actual physical system will 
indicate changes that should be made in the model 
to better fit it to the system and thus establish 
the validity of the model. Because of the ease with 
which parameter variations and model Changes 
can be accomplished, the analog computer is use­
ful in conducting many "trial and error" experi­
ments on the model to obtain the best fit to the 
physical system. It is also possible to have the 
computer mechanized so that it will seek the best 
fit automatically once a desired optimum is quanti­
tatively defined. 

Printed in U. S. A. 164 

On the other hand,.in model analysis, it is neces­
sary to have a mathematical statement available 
which describes the physical system to be studied. 
These mathematical statements (equations) are 
often supplemented by graphical information as 
well as logic statements, and a definite range for 
the parameter values are assigned for the study. 
Experiments are then performed, varying the in­
puts and the parameters describing the system, 
to obtain, finally, an optimum response for the 
system, or to develop a better understanding of 
the intrinsic nature of the system by studying 
input-output relations. Here; again, because of its 
speed, flexibility, and similarity to the physical 
system, the analog computer is an effective en­
gineering tool. 

Although the analog computer has been used for 
both model building and model ¥lalysis, we will 
develop its principles of operation and program­
ming from the point of view of model analysis. 
This approach is preferable since computer use 
in analysis is straight-forward and more readily 
defined than in the case of model building. 
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PRIMER ON ANALOG COMPUTATION 

Concept of the Analog Computer 

An analog computer is a collection of operational 
devices which are capable of performing basic 
mathematical operations. By interconnecting com­
ponents which can integrate, add, multiply by -1, 

multiply by a constant, and multiply variables, we 
can analyze dynamic systems which are described 
by ordinary differential equations. 
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Figure 1. Schematic Diagram of a Simple Linear 
Mechanical System 

The use of these mathematical building blocks can 
be illustrated by analyzing the mechanical system 
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shown in Figure 1. Equation 1 defines dynamic 
equilibrium for this simple spring-mass-dash pot 
combination: 

d 2 X dx • 
m d t 2 + c Cit + kS:. = Po sin cut (1) 

Here, we are interested in investigating the mo­
tion of the mass, m, subjected to an external ex­
citing force, Po sin wt. If x represents the motion 
of the mass, and we look upon the problem as a 
mathematical exercise, then we must find the 
dependent variable, x, as a function of the inde­
pendent variable time, t [i.e. x = f(t)] • 

Let us re-write equation 1 so that we have 
m(d2x/dt2), the inertial force, on one side of the 
equation: 

m d 2 x = _ c..£!. _ kx + E sin cut (2) 
dt 2 dt 0 

If we assume that m(d2x/dt2) is known, then 
double integration and multiplication by l/m are 
required to produce the dependent variable, x. 
With dx/dt available as the first integral of d2x/ 
dt2, x available as the integral of dx/dt, and Po 
sin wt, a known function of time, we can produce 



the three terms on the R,H.S. of Equation 2 by 
simple mathematical operations, and then sum them 
as shown in the mathematical block diagram of 
Figure 2. To force equality between m (d2x/dt2) 
and the R.H.S. of Equation 2, we connect Point a 
to Point b on the diagram, as shown by the dotted 
line. 
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Figure 2. Mathematical Block Diagram for the 
Solution of Equation 2 
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In the physical system, the mass could have an 
initial velocity dxoNt and an initial deflection xo. 
This is introduced by allowing for initial condition 
inputs to the integrating devices. With initial con­
ditions applied, the output of the integrator is now 
the definite integral of the input between the limits 
t = 0 and some instant of time t = tr 

Dynamic Model of Physical System 

While analysis of the system in Figure 1 was taken 
from a mathematical point of view, it can be shown 
that the mechanical elements have transfer func­
tions (input/output relationships) which can be used 
to describe the system in a manner similar to the 
mathematical block diagram approach of Figure 2. 

Table 1 describes the relations between force and 
motion (transfer function) for simple mechanical 
elements. If we consider that mass motion (velocity) 
is due to an applied force, and that spring or dash­
pot force is the result of a relative motion across 
the element, then we can picture a mass as an 
integrator (of forces) and a multiplier (by the 
constant l/m) , and a spring as an integrator (of 
motion) and a multiplier (by k). The dashpot is 
simply multiplication (of velocity) by a constant c. 
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TABLE I. RELATIONS BETWEEN FORCE AND MOTION 
FOR MECHANICAL ELEMENTS 

MASS 

Eq 3a F = m....!!. (ftx) 
m dt \dt 

Eq 3b dx =~fF dt 
dt m m 

SPRING 

DASHPOT 

dx 
Eq 3d F c = edt 

From Nt;lwton's second law, (F =ma), we know that 
the forces (Fk' F e' Po sin wt) exerted on the mass, 
m, produce the inertial force, m(d2x/dt2) (acting 
in the plus direction, positive upward). Figure 3 
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Figure 3. Free Body Diagram for Mass of Figure 1 



shows the forces acting on m as a free body. The 
resulting motion of m is 

(3) 

Since the spring and dashpot each have one end 
attached to the mass, while the other end is fixed 
to the earth (a rigid reference), the motion across 
these elements is also dxm/dt. For positive mo­
tion of the mass, there is a negative force exerted 
by the spring and dashpot on the mass. For the 
dashpot, this force is -c dxm/dt, and for the 
spring, -kxm, where xm is the instantaneous de­
flection of the spring. For dynamic equilibrium 
we must connect a to b. 

Initial kinetic energy of the system is defined by 
the initial velocity of the mass, dxo/dt. Initial 
potential energy is introduced by an initial deflec­
tion, xo , of the spring. Figure 4 shows a transfer 
function diagram of the system. Comparison of 
this with Figure 2 reveals that the interconnection 
of mathematical computing components produces 
a diagram similar to the one obtained by consider­
ing the dynamic equilibrium for the physical system. 
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Figure 4. Transfer Function Diagram for Figure 1 

Computational Elements 

We have next to consider the appropriate physical 
medium in which the mathematical operations out­
lined above should be performed. Although analog 
computers can and have used mechanical, hydrau-

3 

lic, pneumatic and other elements, an electrical 
medium is most desirable for several reasons: 

1. wide dynamic range, 

2. ease of interconnection, 

3. availability of recording devices activated 
by electrical signals, 

4. availability of preCision components, 

5. availability of highly developed analytical 
techniques. 

We will, therefore, devote our attention to the 
electronic general purpose analog computer, or 
electronic differential analyzer, in which theprob­
lem variables and their derivatives appear as 
voltages. 

Attenuator: The attenuator is the simpiest com­
puting element. Its output is a voltage which is the 
product of the input voltage times a constant, 
say p (05 P 51.0). The programmer's symbol and 
input-output relation for an attenuator are shown 
in Figure 5. The attenuators are usually pre­
cision potentiometers with calibrated dials. 

R 

1 
:>0&--.-- Y ; P x 

pR 

l 
SCHEMATIC DIAGRAM 

p 

~ 
X~y 

SYMBOL 

{olGROUNDED 

R ;?4-r- y;{x-zlp+z 

pR 

z ~ 
SCHEMATIC DIAGRAM 

z 

L..... ___ y 

SYMBOL 

{bl UNGROUNDED 

Figure 5. Attenuator 

Operational Amplifier: The operational amplifier, 
shown schematically and symbolically in Figure 6, 
is the basic component of the modern electronic 
analog computer. The area shown enclosed by the 
dashed line in Figure 6a is a block diagram of 
the operational amplifier. The triangular symbol 



represents a high-gain, direct-coupled amplifier 
having a wide frequency range usually extending 
from zero to beyond 25 kilocycles, and effectively 
zero grid current. Zf and Zi are passive electrical 
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Figure 6. Operational Amplifier 

components with impedance (voltage-to-current 
ratio) that can be matched to better than 0.01 per­
cent, an accuracy more than adequate for the 
majority of engineering calculations. The gen­
eral relationship between the output, y, and the 
input, x, for the operational amplifier is 

(4) 

The amplifier inherently performs the operation 
of mathematical inversion (multiplication by 
minus 1), while Zf and Zi establish the specific 
mathematical operation of the device. For ex­
ample, if Zf were 1 megohm (106 ohms) and Zi 
were 0.1 megohm (105 ohms), the input-output 
relation, as shown in Figure 6b, would be 

Y = - (106 / 10 5 ) X = - lOx (5) 
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By introducing additional input paths to the DC 
amplifier, as seen in Figure 7, we can perform 
summation with the same device. 
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Figure 7. Summer Ampl ifier 
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In addition to inverSion, multiplication by a con­
stant, and summation, the operation of integration 
also can be performed using a feedback capacitor 
with the DC amplifier. Figure 8a is a schematic 
diagram for an integrator (integration is with re­
spect to time). High quality operational amplifiers 
are chopper-stabilized to reduce drift, i.e. ampli­
fier output with zero input, which is characteristic 
of DC amplifiers. 

Multipliers: In linear problems with time-varying 
coefficients, as well as in nonlinear problems, 
in general, it is necessary to produce the product 
of one variable times another. This occurs in such 
problems as the calculation of the mass change 
of a missile during flight due to fuel consumption, 
the measurement of energy dissipation where 
damping coefficients are a function of pOSition as 
well as velocity, the analysis of flexible elements 
having cubic elasticity, etc. Although there are 
several methods for multiplying two variables, 
the most common techniques are the servo multi­
plier and the quarter- square multiplier. 
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Figure 8. Integrator Amplifier 

In the servo mechanical multiplier, as shown in 
Figure 9, a potentiometer wiper is positioned as 
a function of one variable, say x, by means of a 
position feedback control loop. The voltage ap­
plied to the potentiometer is a function of a second 
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Figure 9. Servo Multiplier 
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variable, say y, and thus the output of the wiper 
will be proportional to the product of the two 
variables. By ganging several potentiometers, it 
is possible to obtain, simultaneously, products of 
x times the several variables applied to the addi­
tional potentiometers (XZ, XW, etc.). 

The quarter square multiplier operation is based 
on the relation 

1 [ 2 2J = 4' (x + y) - ( x - y ) (6) 

which reduces multiplication to the operations of 
summation and squaring. Squaring is done by 
means of solid state electronic switching, in con­
junction with a DC amplifier which produces a 
straight line segment approximation of the rela­
tion k(x + y)2. The programmer's symbol for a 
quarter-square multiplier is shown in Figure 10. 
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Figure 10. 1/4 Square Multiplier 
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This multiplier, when used as the feedback ele­
ment of a DC amplifier, can perform division and 
square rooting. 

Function Generators: In certain problems, two vari­
ables may be related but have no analytical de­
scription existing for the relationship. This usually 
occurs where data is obtained experimentally. 
When these relationships cannot be apprOXimated 
by an analytical expression, it is necessary to use 
a function generator to approximate the function. 
The general technique for function generation is 
first to divide the curve into a number of straight 
line segments, as shown in Figure 11. These seg­
ments then can be reproduced by means of a func­
tion generator on which either the segment slopes, 
or breakpoints and slopes, or both can be set 
to provide the best fit to the curve. 

Two common analog computer function generators 
are the tapped servo potentiometer and the diode 



y 

BREAK POINT 

__________________ r; ______________ ~~--~x 

--- FUNCTION 

--- STRAIGHT LINE 
APPROXIMATION 

Figure 11. Straight line Approximation of a 
Non-Analytic Function 

function generator (DFG) , both of which produce 
single-valued functions. 
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Figure 12. Tapped Servo Potentiometer Function 
Generator 
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Figure 12a is a schematic diagram of a tapped 
multiplying potentiometer of a standard servo­
multiplier, with the wiper positioned by the vari­
able x. Voltages e1 to en are established at fixed 
intervals along the potentiometer by means of an 
external source to produce an output voltage similar 
to the one shown in Figure 12b. The symbol for a 
tapped servo potentiometer is shown in Figure 12c. 
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Figure 13. Diode Function Generators 

The DFG (Figure 13) is a series of diodes and 
resistor networks used in conjunction with two DC 
amplifiers. By means of potentiometers, both 
breakpoints and slopes of the straight line seg­
ments can be adjusted. Ten (10) to twenty (20) 
straight line segments are normally available on 
this unit. 

Fixed function generators are also available to 
produce a given function of a variable such as x2, 
x4, log x, etc, Their operation is essentially the 
same as the variable DFG, 

The trigonometric functions, sin e and cos e, are 
produced by using special potentiometers on servo 
multipliers, shown symbolically in Figure 14, or 
by using shaping networks in conjunction with DC 
amplifiers, 

With sin e and cos e available, transformation 
from rectangular-to-polar coordinates and polar­
to-rectangular coordinates is possible, 

Special Devices: fu certain problems, it is neces­
sary to include discontinuous phenomena such as 
limits, backlash, and dead zone, These functions 
can be simulated by means of biased diodes used 
in conjunction with high gain amplifiers (Figure 15), 
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In addition, high-speed relays- comparators- (Fig­
ure 16), and electronic switches are available to 
perform additional logic operations. 

Connecting Components 

Once an assemblage of computer building blocks 
is available, it is then necessary to provide a 
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x+y ~ 0 CONTACT BETWEEN (-) AND A 

x +y > 0 CONTACT BETWEEN + AND A 

F igure 16. Compa rator 

means to interconnect the output of one unit to 
the input of one or more other units . For some 
computers, this is accomplished by connecting 
directly from the output of one device into the in­
put of another by means of a cord or wi re, as 
shown in Figure 17. By terminating all the input 

Figure 17. TR 20 Patch Area 

and output pOints for the building blocks at a single 
area on the computer, however, it is possible to 
make connections by means of a removable patch 
panel, as shown in Figure 18. When the patch 



Figure 18. 231R Patch Panel 

panel is put on the computer, the component inter­
connections are made by means of the patch cords 
on the patch panel. Thus, one problem can be run 
on the computer while connections are being made 
away from the machine on separate patch panels 
for other problems. 

Computer Control 

Analog computers have two basic operating modes­
reset (or initial condition) and operate-which are 
analogous to the physical systems which they 
model. In reset, on the physical system, initial 
conditions are introduced and parameter adjust­
ments or system changes made. To do this, the 
system is usually de-energized, permitting changes 
in valve settings, liquid level in tanks , relative 
position of elements, deflection of springs, re­
placement of weights, etc. In operate, power is 
applied to the system and the dynamic response 
(or operation) under imposed initial conditions 
or forcing functions is allowed to take place. 

On the computer, mode control is accomplished 
by means of switching associated with the inte­
grators. Figure 19 shows an integrator network 
and amplifier and the two relays used to produce 
the RESET (initial condition) and OPERATE modes. 
The relays for all integrators are thrown simul­
taneously and are controlled by master Operate 
and Initial Condition switches loc ated on the con­
trol panel of the computer. 

It is worthwhile to note that by opening all the 
Ope rate switches (input to the integrators) during 
a problem run-leaving the r e set switch open-it 
is possible to "freeze" the variables and their 
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Figure 19. Integrator Network and Control Circuit 

derivatives at a particular instant in the problem 
solution. This is the HOLD mode of the computer. 

When the computer is returned to the OPERATE 
mode, it will have, in effect, a new set of initial 
conditions, i.e. the conditions existing when the 
computer was placed in the HOLD mode (or modi­
fied during HOLD by the programmer). 

Computer Readout 

There are several methods available for displaying 
the results obtained in a computer solution. 

A Digital' Voltmeter-Printer Combination allows 
monitoring and subsequent printout of all voltages 
in a problem at a particular instant, or when the 
voltage reaches a fixed value, as shown in Figure 
20. Readout is available to 0.01%. 

In addition to the digital voltmeter readout, a con­
tinuous record can be made of problem variables 
as functions of time. Strip chart recorders, as 
shown in Figure 21, with either single or multi­
channel capabilities, are available for this task. 

If it is desired to plot one variable versus another, 
as in the case of a phase-plane plot, an X- Y 



Figure 20. Digital Voltmeter Printer 

Figure 21. Strip Chart Recorder 

plotter, as shown in Figure 22, can be used. By 
means of these devices, dynamic response data 
for the problem can be obtained. 
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Figure 22. x-Y Plotter 

Programming 

Using the symbols we have developed, let us 
illustrate computer programming by preparing a 
computer diagram to solve Equation (1). To do 
this, we shall use the following routine as a pro­
gramming procedure: 

1. Separate the highest order derivative(s) 
(nth order) to the left hand side of the 
equation. 

2. Assuming that the highest derivative(s) is 
available, integrate n times to produce the 
dependent variable, as shown in Figure 23. 

d
2

x -~ 
dt 2 dt 

~--------------~ 

Figure 23. Generating the Dependent Variable 
from the Highest Derivative 

3. Using the variable(s) and the (n-l) th order 
derivatives produced by integration, gen­
erate the terms on the right hand side of 
the equation(s), as shown in Figure 24. 

4. Sum the terms produced by step 3, invert, 
and introduce them as inputs to the first 
integrator, as shown in Figure 24. (If 
d2x/dt2 is not required explicitly, the volt­
ages representing the terms on the R.H.S. 
could be summed in integrator 1, saving 
amplifiers 4 and 5. 

5. Introduce required initial condition inputs 
to integrators. The outputs of integrators 
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Figure 24. Computer Program for Solution 
of Equation 1 

1 and 2, as shown in Figure 24, will be 
voltages varying in a manner analogous to 
the problem variables dx/dt and x, re­
spectively. Problem parameters are ad­
justed by potentiometers 1 and 2. By chang­
ing the I.C. potentiometers on the inte­
grators, we can change problem initial con­
ditions. 

Scaling 

In physical systems, we have such variables as 
pressure, displacement, velocity, time, etc. On 
the analog computer, voltage is the dependent 
variable while the independent variable is time. 
To fit a problem to the computer, it is necessary 
to provide definite relations between the problem 
variables and the computer voltage (voltage scal­
ing) , and also between the problem independent 
variable and time on the computer (time scaling). 
Let us first consider voltage scaling. 

Voltage Scaling: On the basis of amplifier design, 
there is a voltage range in which the computer can 
operate to produce the mathematical functions de­
Scribed previously. On modern general purpose 
analog computers, this voltage will usually be 
either :!: 10 volts or :!: 100 volts. We shall use 
:!: 100 volts as the basis for further discussions 
of scaling. 

In a physical system, the maximum value of the 
dependent variable can be quite small, ~ 1.0 (e.g. 
motions of intricate mechanisms). On the other 
hand, acceleration forces due to shock blast result 
in a very large variable ( ~ 103 pounds force). In 
order to transform the problem variable(s) into 
a computer voltage, and assure that the maximum 
allowable voltage on the computer will not be ex­
ceeded when the maximum value of the variable 
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in the problem is reached, we must develop a set 
of scaled relations between problem variables 
and computer voltages. 

In relating problem variables to voltage, we need 
scale factors of the form volts per inch, volts per 
degree, volts per foot per second, and so forth. To ob­
tain these scale factors, we must first estimate 
the maximum values of the variables which will 
occur in the problem. Estimates of maximum 
values of the variables and their derivatives are 
guided by the experience of the engineer, coupled 
with information obtained from the analysis of 
simplified forms of the equations describing the 
physical system. However, errors in estimating 
maximum values are not serious since, once the 
problem is put on the computer, these errors are 
quickly indicated by overloads of computing ele­
ments, and then one can rescale as necessary. 
(Most analog computers have both an audible as 
well as a visual alarm to indicate overload of 
computing elements.) In addition to not exceeding 
the voltage limitation of the computing elements, 
proper scaling also requires that the voltages be 
greater than some minimum voltage level at some 
time during a problem. Ie is desirable, therefore, 
to check the voltage levels at the outputs of com­
puting components to be certain that they exceed 
some reasonable minimum value. 

In order to develop a system of scale factors for a 
problem that will permit simple conversion from 
problem variable to voltage and vice versa, and to 
avoid introducing a new set of symbols, the follow­
ing voltage scaling procedure is suggested: 

1. Estimate maximum values for all the vari­
ables and their derivatives. 

2. Round off estimated maximum values (in the 
upward d ire c t ion) and express them as 
powers of 10 times such integers as 1, 2, 
4, 5, and 8. 

3. Obtain the scale factors for the problem 
variable and their derivatives by the ratio: 

Maximum Computer Voltage 
Maximum Value of Variable from Step (2) 

Scale factors can be identified by the sym­
bol S with an appropriate subscript for each 
variable. For example, the scale factor for 
x could be designated S for X, S· etc. x' , x' 

4. Set up a table similar to Table 11, listing 
problem variables and their derivatives 
(show units), scale factors (show units), 



and scaled variables which are now voltages 
which we will produce on the computer. 

TABLE II. DEVELOPING SCALE FACTOR FOR 
PROBLEM VARIABLES 

PROBLEM ESTIMATED SCALE FACTOR = COMPUTER 
VARIABLE MAXIMUM 100 VARIABLE 

VALUE ROUND OFF OF MAX. 

100 
[2 X,] X t in. 32 50 = 2 volts/in. 

100 
[O.S(X, - X2 )] (X, - X2 ) in. 190 200= 0.5 volts/in. 

10· e-kx lbs. 1 D· ~= 10-4 volts/in. 
106 

[10 2 e-kx] 

sinO 
100 [loo sinO] -= 100 

1 

To prepare the computer patching diagram, use 
scaled voltage equations which can be obtained 
from the original problem equations, and scaled 
voltage variables, obtained by the following pro­
cedure: 

1. Use the problem equation(s) in the form 
where the highest derivative(s) of the de­
pendent variable(s) is alone on the left hand 
side of the equation. 

2. Multiply through the equation by the scale 
factor for the highest derivative (or the 
scale factor for the (n-1) th derivative, if 
the highest derivative is not required ex­
plicitly as an output voltage of a computing 
element). This converts each of the terms 
in the equation from units of the problem 
variable to a voltage. 

3. On the right hand side of the equation, re­
place the problem variables by the scaled 
variables. In order to maintain equality in 
the equation, it is then necessary to multi­
ply each term by the reciprocal of the scale 
factor. Each term now consists of two parts: 
a voltage and a coefficient. 

4. Factor the coefficient into a potentiometer 
setting (a number less than one for all 
values of the parameters) and an amplifier 
gain. (The magnitude of the amplifier gains 
developed in this step are an indication of 
the possible need for time scaling the prob­
lem. This will be discussed below.) 

Time Scaling: Whether or not time scaling is re­
quired in a problem is determined by several 
factors: 
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1. Limitation of dynamic response of computing 
elements. 

2. Limitation of dynamic response of recording 
elements. 

3. Length of time required for problem so­
lution. 

Time scaling can be reduced to a straight-forward 
procedure which will not affect the voltage scale 
factors previously established for the dependent 
variables of the problem. 

To increase or decrease the time required for a 
phenomenon to occur, it is necessary simply to 
increase or decrease the rate at which the phe­
nomenon takes place. Since the inputs to all inte­
grators are rates, to increase or decrease the 
rate of problem solution on the computer we have 
only to increase or decrease the gain of the 
integrators. 

Let us relate t, the time required for solution of 
the physical problem to T , the time required on 
the machine, by T = {3 t. If a physical system takes 
ten seconds to reach steady state, a {3 equal to ten 
would result in the solution requiring 100 seconds 
on the computer. The relation between T and t 
can be mechanized by having integrator inputs 
modified by the factor 1/{3 • Thus, for {3 equal to 
10, 1/{3 will be a number less than one, the rate 
to the integrators will be decreased, and the solu­
tion time on the computer will be increased. For 
{3 less than 1, 1/{3 will be a number greater than 
1, and the solution time on the computer will be 
reduced accordingly, due to the increase in inte­
grator gain (rate). 

In the preliminary analysis of a problem, it is of­
ten possible to estimate frequencies (or time con­
stants) that will occur in the system. Time scaling 
may be necessary if these frequencies are either 
less than 0,01 cycles per second or greater than 
5 cycles per second, During programming and 
voltage scaling, the resulting amplifier gains are 
also an excellent indication as to whether or not 
time scaling is required, If large integrator gains 
are required, then it may be desirable to slow the 
problem solution by introducing large values for 
{3, On the other hand, if small pot settings, say 
less than 0,01, are required throughout a problem, 
time scaling is usually appropriate, using a {31ess 
than 1,0 to increase problem solution speed, and 
to obtain suitable pot settings, 

If time scaling is accomplished by changing the 
gain of integrators, it is not necessary to rescale 
the voltage scale factors, One simply has to note 



on the computer diagram that (3 is other than one 
and to take this into consideration when evaluating 
response data as a function of the independent 
variable. 

Problem Checking 

Once the computer program has been completed, 
it is of utmost importance to ascertain that the 
final computer program is actually the model of 
the original problem equations. This can be ac­
complished as follows: 

1. Select an arbitrary set of initial conditions 
for all the derivatives and variables on the 
right hand side of the equation. (Initial con­
ditions selected should not result in zero 
terms.) 

2. With the initial conditions chosen in step (1) 
and appropriate values selected for the 
parameters, calculate the voltages that 
should exist at each point in the computer 
diagram (directly on the diagram) as well 
as the inputs to all integrators. 

3. Substitute the same initial condition and 
parameter into the original problem equa­
tions and solve for the highest derivatives 
of the unknown. This should be related to 
the calculated VOltage from Step (2) repre­
senting the highest derivative (input to inte­
grators) by the following expression: 

d
n 

x 0 ~ (3 -- (from equatlOn) = ) 
dt n dn 

scale factor for __ x 

dtn 

(

voltage calculated ) 
from c:mputer diagram 

for ...fLJL (7) 0
0 

dt n 

This verifies that the computer diagram is 
the correct mechanization of the original 
equation. 

When the problem is actually set up on the com­
puter, the problem check initial condition and 
parameters are programmed as a static check 
run. The voltage existing at the input to the inte­
grator (whose input is analOgous to dilx/dtn) 
should equal the voltage calculation in Step (2) 
above. This final check verifies computer patching, 
pot settings, amplifier gains, and functioning of 
the nonlinear computing elements. 

Partial Differential Equations 

In general, the analog computer can handle dif­
ferential equations with only one independent vari-
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able. However, partial differential equation can be 
solved if they can be replaced by a set of simul­
taneous ordinary differential equations. This can 
be illustrated by considering Equation (8), de­
scribing the transverse vibration of a beam: 

a\ a2 

p- = ---
at 2 a x 2 

~ a2 y) 
EI -­ax 2 (8) 

The right hand side of the equation can be written 
as four first order derivatives with respect to x 
using the following relations: 

S(shearforce) - -__ a tEl Jy)_ aM 
ax ax2 ax 

M (bending momen t) 

(J (slope) 

to give us 
2 

ay 
ax 

a y as 
p--=-

at 2 a x 

S 
aM 
ax 

M -El .i!!...-ax 

(J =~ ax 

(9) 

(10) 

(11) 

( 12) 

Replacing the first order derivatives by a finite 
difference approximation will result in a set of 
N simultaneous ordinary differential equations of 
the form: 

d 2 Yl Si+l/2 -Si-l/2 
p--= 

dt 2 !1 x 
( 13) 

where 

(14) 

( 15) 

(16) 



These equations can now be handled in the same 
manner as ordinary differential equations. 

Illustrative Example 

To illustrate the application of the analog computer 
to a specific problem let us analyze the motion 
of a setback leaf system which is used as a safety 
mechanism in a projectile fuse*. 

Setback Leaf Analysis: 

With optimum parameters, the setback leaf system 
shown in Figure 25 will always arm a projectile 

STOP 

COIL SPRING 

PIVOT 
AXIS 

__ ..---PIVOT SUPPORT 

Figure 25. Setback Leaf Geometry 

fuse when subjected to an acceleration of sufficient 
magnitude and duration. It will keep the fuse safe 
when subjected to short term accelerations that 
can occur when the fuse is accidentally or para­
chute dropped. In the system considered, three, 
interlocked, spring-restrained cams are rotated 
by the force due to acceleration. If Hooke's Law 
is assumed for the springs, and the coefficient 
of friction is assumed to have the form k, e -c 6 0, 
then the general differential equation of motion 
for each cam becomes: 

where 

r -C OJ LCOS 0 - C 2 e 6 

C -C 6 0 
- 5 e 

A (t) = driving force (Figure 28) 
o < A (t) < 1000 

C, A (t) cos 0 = torque due to acceleration 

(17) 

* The data and information on this problem was 
given through the courtesy of the Diamond Ord­
nance Fuze Laboratory, National Bureau of 
Standards. The original analysis was performed 
by Mr. Arthur Hausner of D.O.F.L. 
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C 
rna 

1 

C 3 + C4 0 = torque due to torsion spring 

k 
2 

C4 =-1-

C -C 0 
5 e 6 = torque due to leaf on leaf 

friction (anal. approx. to expo 
data) 

C2 e -C6 e = bearing friction for spring vs. 
shaft and leaf 

Tabulation of Parameter Values 

C 900 
1 

C 0.4875 
2 

C 100,000 
3 

C 40,000 
4 

C 25,000 
5 

C 0.0023 
6 

Tabulation of Initial Conditions and Variable 
Maxima 

0 
0 

_ 20 0 

Or + 40 0 

e < 2000 rod/sec 

e < 106 rad/sec 

Initial Condition 

= 0, 0 = 00 , ,0 = 0 

Because of the interlock design, only one cam moves 
initially. When (} == 8 r, the next cam releases. The 
value of A(t) at that time is an initial condition 
for the next cam. If ij < 0 when A(t) starts, the 
first leaf does not move; i.e. (} == 8 until ij > 0 o • 

Cams are analyzed separately until all three are 
analyzed or until one does not reach 8 • In tli s 
case, the system does not operate. r 

Function Generation (Exponential Function): The 
function e-c60 can be generated analytically. 

Let y == e 
-cO 



Differentiating y with respect to t we obtain 

J!L = _ C e -C6 e ~ 
dt 6 de (18) 

The value of y can be obtained by integrating ~ , 
which is obtained from the circuit outlineddtin 
Figure 26. Since the maximum of y oc~urs at 

e = 0, we can scale to generate 100 e -c6 e 

-c e ....... ---. 
y=e 6 

SMI 

r----8 

-c e 
Figure 26. Generating the Function e 6 

Acceleration Pulse: Rather than utilize a function 
generator, the acceleration pulse can be closely 
approximated by summing three exponential de­
cay functions: 

(19) 

These functions are the solution of first order 
differential equations and can be mechanized as 
shown in Figure 27. 

REF 

Figure 27. Generating AC + 7 

Figure 28 compares the shape of the actual ac­
celeration pulse with the computer generated func­
tion. The para..'lleters ai and Ki are obtained ex­
perimentally by means of the computer to provide 
the best fit to the function A(t). 
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Cosine: The cos e can be produced by means of 
a servo resolver which will produce the cosine 
and sine of the input variable. The input to the 
resolver must be scaled so as not to exceed 90 
volts for the maximum value of the input. An 
appropriate scale factor is [~ ]. allowing for angles 
up to 180°. 

Scaling: On the basis of previous experience, 
estimates of the problem variables are available 
as shown in Table III. 

TABLE III - SAMPLE PROBLEM - VOLTAGE SCALE FACTORS 

ESTIMATED SCALE COMPUTER 
VARIABLE MAXIMUM FACTOR VARIABLE 

e ~ = 100 volts/rad 
[100 e] 1 rad 

1 

e 2000 rad/sec ~= .05 volts/rad/sec [.05 8] 
2000 

e 40,000 rad/sec 2 ~ = 10-'volts/rad/sec2 [10-'e] 
106 

-C e 100 [100 e-c; e] 
e 6 -

1 

100 t ~~I)J A (I) 900 
1000 

cos e 100 
[100 e] 

Since the duration of the acceleration pulse is of 
the order of 20-30 milliseconds, it is obvious that 
the problem will have to be time scaled. A factor 
of (3 = 1000 would be reasonable. 

Scaled Voltage Equation: The scaled voltage equa­
tion was obtained using the procedures suggested 
above: 

1. Mul~iply equation (14) by the scale factor 
for e 

[10 -, eJ 10-'C,A(t) [cose-c2 e-C6 eJ 

(20) 

2. Replace remammg problem variables by 
computer voltages. Combine exponential 
functions to reduce the number of separate 
products. Factor of (100) is scale factor of 
multiplier. 
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Figure 28. Acceleration Function 

C 
_ 4 [lOoe] (21) 

10 6 

4. The integrator gains are established from 
the ratios of scaled values of 8, e, and e 

[0.05 e] - [100 e] 

\--- gain of 500 -aa",,\ __ -- gain of 2000.\ 

3. Factor the coefficients on the R.H.S. of the 
equation into a potentiometer setting and an 
amplifier gain (or reference voltage in the 
case of constants) 

From this integrator gain it is also indicated that 
a time scaling of {3 = 1000 is required. 

Static Check Calculation: Using the following values 
for the initial conditions and forcing functions, 
together with parameters assigned, we can calcu­
late e from our original equation: 

A (t) 39.80 g's 

1100 Cs + C, C 2 rA(t)ll_lOo C 3 _ C 4 [lOoe] 
10 6 10 3 LlO J 10 6 10 6 

(22) 
- 0.3500 radians 

2000 radl sec 

15 



= 0.5000 

0= 900(-398)[+0.9400-(0.4875)(0.5000)]-100,000 

-( 40,000)( -0.3500)-25,000(0.5000) 

=-249,427 -100,000 + 14,000 - 12,500 

= -347,927 rad/sec 2 

Input to integrator whose output is (O.lIj) should 
be 

FSI 

.. 500 -4 500 
-[10- 4 19] X - = - 10 (-347,927) x--

~ 1000 

= +17.39* volts 

Equipment Assignment Sheets: Figure 29 is the final 
scaled computer diagram. Equipment assignment 
sheets are presented in Figures 30 and 31 show­
ing potentiometer settings and voltages that should 
exist to verify computer patching. 

*(See Amplifier Assignment Sheet-Amplifier 00) 

,. 1 o~oo 
-100 -----J. .. ~-IOO 13= 1000 

+100 

5 L A R . 
~ -cse 
{3, I (!.ooeJ 

8 05>-~~~~ 

FS3 L 
~A 

~R ___ A~~ 
+100 

0_7000 -[100 e) 

0.5730 
FOR STATIC TEST: 
ALL F.S. TO RIGHT + 100 
FS3SHOULD BE THROWN TO -100 
LEFT .AND THEN RIGHT BEFORE EACH RUN 

Figure 29. Computer Mechanization of Set Back Leaf System 
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ELECTRONIC ASSOCIATES INC. 
EDUCATION & TRAINING GROUP 

AMPLIFIER ASSIGNMENT SHEET 

PROBLEM Set Back Leaf Analysis 1000 
DA TE 9-29-61 

AMP FB FUNCTION, AND/OR STATIC CHECK DYNAMIC CH ECI< NOTES 
NO, VARIABLE CHECK PT. OUTPUT CHECK PT. OUTPUT 

0 0 I + [.10 0] + 17.39 +100.00 

1 I - [100 0] +200.00 + 35.00 

2 Inv [57.3 Jl..] - 10.00 
2 

3 

4 Inv -100.00 

5 I [ -c 0 + 100 e 6 ] - 40.00 + 50.00 

6 I _ 100e-142.0t - 14.20 -100.00 
f3 

7 Inv (10- 4 ih (e -Co 0) - 17.38 

8 

9 

1 0 I +100e-361. 1c + 36.11 +100.00 
f3 

1 I -100 e-7OOt 
f3 

- 35.00 - 50.00 

2 S + [~6t)J - 39.80 

3 Inv - [~6t)J + 39.80 

4 Inv (~6c2) (cos 0) - 37.40 

5 

6 

7 H.G. -Co o(c C C ) -e _'_2 A(t)+2 + 14.92 
lO" 1if 

8 s -[10- 4 0] + 34.76 

9 

Figure 30. Amplifier Assignment Sheet 
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PROBLEM 
DATE 

Set Back Leaf Analysis 

9-29-61 

POT PARAMETER SETTING 

NO. DESCRIPTION STATIC 
CHECK 

1 500/ f3 0.5000 

2 200/ f3 0.2000 

3 eo 0.3500 

4 0.573/2 0.2865 

5 Static Test I.e. 0.5000 

6 0.3090 

7 142.0/ f3 0.1420 

8 10" C6/S 0.2300 

9 388.6/ f3 0.3886 

10 361.1/ f3 0.36Il 

11 700.0/ f3 0.7000 

12 0.7960 

13 Static Test I.e. 0.5000 

14 C1 C 2/ 10 3 0.4388 

15 C5/ W " 0.2500 

16 C4/ 10 6 0.0400 

17 C3/ 10 6 0.1000 

18 C1/10 3 0.9000 

19 

20 

21 

22 

23 

24 

ELECTRONIC ASSOCIATES INC. 
EDUCATION & TRAINING GROUP 

POTENTIOMETER ASSIGNMENT SHEET 

f3 = 1000 

SETTING SETTING SETTING NOTES 
RUN NO. RUN. NO. RUN NO. 

Set with FSI to Right 

Set with FS2 to Right 

Figure 31. Potentiometer Assignment Sheet 
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Results 

The results for 8 vs. time are plotted in Figure 32. 
The magnitude of A(t) at the instant of release 
(8 = 40°) would be used as the input to the second 
leaf to analyze its motion. 

60 
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~ 4001:20 
ILl II) 
tJ 0 
~ tL 

200 ~ 10 
..J 
~ 
C!) 

z 
040f-__ ~_~~--I::---..I:----±-----:! 

-20L-----

Figure 32. 
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It should be noted that this paper-touching only 
lightly on the high spots of analog computation-is, 
at best, but a brief survey of the field and one in­
tended more to introduce than to edify. Several 

good reference works are available, as indicated 
in the following list, which cover in detail both 
the operation and application of analog computers 
in engineering analysis and design work. 

(1) Rogers, A.E. and Connolly, T. W., Analog Computation in Engineering Design, McGraw-Hill Book 
Co., New York, NY, 1960 

(2) Lauher, V. A. and Williams, T. J., Demonstration Problems-Analog Computer Applications 
Course, Monsanto Chemical Co., st. Louis, Mo., 1959 

(3) Handbook of Analog Computation, in preparation by the Education and Training Group of Electronic 
Associates Inc., Princeton Computation Center, Princeton, New Jersey 

(4) Truitt, T. D. and Rogers, A. E., Basics of Analog Computers, J. F. Rider, New York, NY, 1960 
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