lkCMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-159

DATA COMPRESSION FOR INFORMATION INTERCHANGE
- BINARY ARITHMETIC CODING ALGORITHM -

December 1991

Free copies of this document are available from ECMA,
European Computer Manufacturers Association
114 Rue du Rhone - CH-1204 Geneva (Switzerland)

Phone: +4122 7353634 Fax: +4122 786 5231

b CMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-159

DATA COMPRESSION FOR INFORMATION INTERCHANGE
- BINARY ARITHMETIC CODING ALGORITHM -

December 1991

BRIEF HISTORY

In the past decades ECMA have published numerous ECMA Standards for magnetic tapes, magnetic tape
cassettes and cartridges, as well as for optical disk cartridges. Those media developed recently have a very
high physical recording density. In order to make an optimal use of the resulting data capacity,
compression algorithms have been designed which allow a reduction of the number of bits required for the
representation of user data in coded form.

In future, these compression algorithms will be registered by an International Registration Authority to be
set up by ISO/IEC. The registration will consist in allocating to each registered algorithm a numerical
identifier which will be recorded on the medium and, thus, indicate which compression algorithm(s) has
been used.

ECMA has undertaken work on a series of ECMA Standards for compression algorithms. The first of these
ECMA Standards was published in June 1991:

ECMA-151: Data Compression for Information Interchange - Adaptive Coding with Embedded
Dictionary - DCLZ Algorithm

The present ECMA Standard is the next one of this series. Both Standard ECMA-151 and the present
Standard ECMA-159 have been contributed to ISO/IEC for adoption as International Standards under the
fast-track procedure.

Adopted by the General Assembly of ECMA in December 1991,

Table of Contents

1 Scope
2 Conformance
3 References
4 Conventions and Notations
S Algorithm ldentifier
6 Definitions
6.1 Block
6.2 Code Block
6.3 Code String
6.4 Encoding
6.5 Input Event
6.6 Logical Data Record
6.7 Trailer
6.8 Unique Table Pair
7 List of Acronyms
8 Compression Algorithm
8.1 General
8.2 Encoders
8.3 Formation of a Code Block
8.4 Code String
8.5 Table Pairs
8.6 Encoding
8.6.1 Normal Mode
8.6.2 Run Mode
8.7 Completion of the Encoding of a Block

Annex A - Example of a binary arithmetic coding algorithm

Page

—

N AEd WLWWWINNNN N N NN NN = = = m -

—
—

6.1

6.2

6.3

6.4

Scope

This ECMA Standard specifies an algorithm for the reduction of the number of bits required to
represent information. This process is known as Data Compression. The algorithm uses binary
arithmetic coding. The algorithm provides lossless compression and is intended for use in
information interchange.

Conformance

A compression algorithm shall be in conformance with this Standard if it satisfies all mandatory
requirements of this Standard.

References
International Register of Algorithms for Lossless Compression of Data

(to be established).

Conventions and Notations
The following conventions and notations apply in this Standard unless otherwise stated:

- In each field the bytes shall be arranged with Byte 1, the most significant, first. Within each
byte the bits shall be arranged with Bit 1, the most significant bit, first and Bit 8, the least
significant bit, last.

- Letters and digits in parentheses represent numbers in hexadecimal notation.
- The setting of bits is denoted by ZERO or ONE.

- Numbers in binary notation and bit combinations are represented by strings of ZEROs and
ONEs.

- Numbers in binary notation and bit combinations are shown with the most significant bit to the
left.

Algorithm Identifier

The numeric identifier of this algorithm in the International Register shall be 16.

Definitions
For the purposes of this Standard, the following definitions apply.
Block
A portion of the Logical Data Record, usually having a length of 512 bytes (see 8.2).
Code Block
A Block after compression with a Trailer appended.
Code String
The encoded Logical Data Record.
Encoding

The process of generating Code Blocks from Blocks.

Input Event

The sample of the input to an encoder currently being examined; in Run Mode it is a byte; in
Normal Mode it is a bit.

Logical Data Record

The data entity that is the input to the data compressor.

Trailer

Data appended to a Block after compression and addition of pad bits.
Unique Table Pair

The last of the 256 Table Pairs, used only in Run Mode.

List of Acronyms

Cv Current Value

EV Estimated Value
LDR Logical Data Record
TP Table Pair

Compression Algorithm
General

The LDR is transformed to a Code String by a one-pass, adaptive encoding technique designed to
provide lossless data compression. By the use of a suitable decoding technique the exact original
LDR can be recovered from the Code String.

Encoders

The LDR shall be divided into 512-byte Blocks, except for the last Block, which may be of any
length less than, or equal to, 512 bytes. The Blocks shall be routed sequentially to eight encoders,
numbered from 0 to 7, commencing with encoder 0. If the LDR contains more than 4 096 bytes
the compressor shall return to encoder 0 and repeat the process (see figure 2).

Formation of a Code Block

The output of each encoder is a Code Block (see figure 1).

Pad bits | Trailer | Trailer | Pad Byte

for Byte 1 Byte 2 if byte |
COMPRESSED BLOCK Tast count odd'!

data (FF) (00)

byte

Figure 1 - Code Block

Since the degree of compression achieved in an encoder depends upon the relative frequency of
the bit patterns in the LDR, and upon the presence of sequences of identical bytes, the length of
the compressed data cannot be predicted. Pad bits set to ZERO shall be added at the end to
form an integral number of 8-bit bytes.

8.4

8.5

8.6

The Code Block shall be completed by appending a Trailer. The Trailer shall consist of two or
three bytes.

Byte 1 shall be set to (FF).
Byte 2

Bits 1 to 4 shall be set to 1100 if the Code Block has been generated from the last Block of the
LDR.
shall be 1001 for all other Code Blocks.

Bit 5 shall be set to ZERO if the number of bytes after encoding is even.
shall be set to ONE if the number of bytes after encoding is odd.

Bits 6 to 8 shall specify the number of pad bits that have been added to form an integral
number of bytes.

If the number of bytes in the Compressed Block plus the pad bits, is odd, a third byte set to (00)
shall be appended after Trailer Byte 2 to give an even number of bytes.

Code String

The Code String shall be assembled from the outputs of the encoders, with the first portion
being that generated by encoder 0, the second that generated by encoder 1, and so on (see
figure 2).

Table Pairs

Each encoder shall be allocated a table of 256 pairs of numbers, numbered from 1 to 256. The
first number of each Table Pair shall be the estimated value (EV) of the Input Event to be
encoded; it shall be 1 or 0. The second number (K) shall be a measure of the probability of the

Input Event being equal to the EV. K shall have the value 1, 2, 3 or 4, with the probability
shown in table 1.

Table 1- Probability values of K

K Probability
1 1-2
2 2 -4
3 4 -8
4 8 - 16

The probabilities shall be a measure of how much more likely it is that the value of the Input
Event is equal to the EV rather than being unequal (e.g. for K=2 the probability that the Input
Event is equal to the EV shall be 2 to 4 times as great as the probability that it would not be
equal).

Before commencing the encoding of the LDR all EVs shall be set to ZERO and all values of K
shall be set to ONE.

Encoding

The data shall first be examined on a byte basis. Bytes shall be fetched sequentially from the
Block, starting with the first byte, and compared with the previous byte. The first byte in a Block
shall be compared with (40).

Run Mode (see 8.6.2) shall be disabled when the first byte is fetched.

8.6.1

8.6.1.1

If the current byte differs from the previous byte and Run Mode is not enabled, then the byte
shall be encoded, bit by bit, in Normal Mode (see 8.6.1).

If the current byte differs from the previous byte and Run Mode is enabled, then encoding shall
proceed as defined in 8.6.2.2.

If the two bytes are identical and Run Mode is not enabled, then Run Mode shall be enabled and
the byte shall be encoded, bit by bit, in Normal Mode.

If the two bytes are identical and Run Mode is enabled, then encoding shall proceed as defined in
8.6.2.1.

Normal Mode

The first (most significant) bit of the byte shall be compared with the EV in the first Table
Pair. Depending upon the result of this comparison, one of two actions, which are described in
8.6.1.1, shall result. The choice of which Table Pair to select for the remaining bits of the byte
shall be determined by the bits previously encoded in the byte.

The first bit of each byte shall always use the first Table Pair.

The second bit shall use the second or third Table Pair, depending upon whether the first bit
was ZERO or ONE, respectively.

The third bit shall use one of the next four Table Pairs depending upon the first two bits. The
fourth Table Pair shall be used if the first two bits were 00, and so on (see figure 3).

This procedure requires the first 255 Table Pairs. The remaining Table Pair is the Unique
Table Pair; it shall be used in the Run Mode only (see 8.6.2).

The process of encoding is then performed in two stages:

- The bit is encoded as in 8.6.1.1.

- The values of K and EV are revised as described in 8.6.1.2.
Bit Encoding

Two values shall be developed during the bit comparison portion of the compression
process. Both are fractional binary numbers to four binary places. One value, termed the
Current Value (CV), shall be used to generate the output (Code Block).

The second value, termed the Width, shall have values in the range 0.0000 to 1.1111.

For each Block the CV shall be initialized to 0.0000 and the Width value shall be initialized
to 1.0000.

Each Input Event shall cause the two values to be modified according to the following rules:
i) The Input Event is equal to the EV

The CV shall be increased by 27K

The Width shall be decreased by 27K

where K is the measure of the probability of the Input Event (see 8.5).

If the Code Block is not null the bit to the left of the point in the CV shall be
logically added to the last bit appended to the Code Block and replaced in the CV
by a ZERO. If this addition causes the most recently generated complete byte in
the Code Block to become (FF), then (0) shall be appended to the Code Block at
the end of that byte to prevent a carry from propagating beyond the last complete
byte.

8.6.1.2

If the Code Block is null the bit to the left of the point in the CV will already be a
ZERO.

The Width shall then be compared with 1.0000.

If it is equal to, or greater than, 1.0000, then the Table Pair shall be revised (see
8.6.1.2) and the next bit fetched for encoding.

If it is less than 1.0000, then all the bits of the Width shall be shifted left one
position; the leftmost bit, set to ZERO, shall be dropped, and the rightmost
position shall be filled with a ZERO. The bit in the first position to the right of
the point in the CV shall be appended to the encoder output as part of the Code
Block. The remaining bits to the right of the point in the CV shall be shifted left
one position and the rightmost position shall be filled with a ZERO.

To prevent a carry from propagating beyond the last complete byte, each byte in
the Code Block shall be examined as it is completed. If it equals (FF) then (0)
shall be appended to the Code Block.

The Input Event is not equal to the EV.
The Width shall be reset to 1.0000.

The K bits to the right of the point in the CV shall be shifted out and appended to
the Code Block, the leftmost bit first. As each bit is appended to the Code Block a
check shall be made to determine whether a Byte boundary has been reached. If it
has, then the byte just completed shall be checked; if it equals (FF) then (0) shall
be appended to the Code Block.

The rightmost K bit positions of the CV shall be set to ZERO:s.

Revision of K and EV (see figure 4)

As each Input Event is compared with the EV the values of K and the EV for that Table
Pair shall be amended.

A four-stage binary counter (Mc counter) shall be set to 0000 at the beginning of each
Block and incremented as described below.

i)

The Input Event is equal to the EV
K shall be incremented according to table 2, where bits marked X shall be ignored.

Table 2 - Rules for incrementing K

Current value | State of | New value
of K Counter of K

XX11
X111
1111
XXXX

HwWM =
HSEDhwro

For all other states of the counter K shall be unchanged.

The counter shall then be incremented by 1. If the counter value was 1111
incrementing by 1 shall result in a counter value of 0000.

The EV shall be unchanged.

8.6.2

8.6.2.1

8.6.2.2

8.7

ii) The Input Event is not equal to the EV
For K greater than 1 : The value of K shall be decremented by 1
the counter shall not be incremented
the EV shall be unchanged
‘For K equal to 1 : the value of K shall be unchanged
the counter shall not be incremented
the EV shall be inverted
Run Mode
Run Mode shall have been enabled if the last two bytes to be encoded were identical.

If the current byte is identical with these two bytes, then the Unique Table Pair is selected
and the EV is compared with ONE; the values of the Width, CV, K and EV are amended,
as defined in 8.6.1.1 and 8.6.1.2. This may result in the Code Block being extended.

If the current byte differs from these two bytes then the Unique Table Pair is selected and
the EV is compared with ZERO; the values of the Width, CV, K and EV are amended, as
defined in 8.6.1.1 and 8.6.1.2. This may result in the Code Block being extended.

The byte is then encoded in Normal Mode and the values of the Width, CV, K and EV are
amended as defined in 8.6.1.1 and 8.6.1.2. This may result in the Code Block being
extended. Run Mode shall then be disabled.

Completion of the Encoding of a Block

If, when the final byte of the Block has been encoded and Run Mode is enabled, action shall be
taken as defined in 8.6.2.2, except that no byte remains to be encoded in Normal Mode.

When this action has been taken, or if Run Mode was not enabled, the encoder shall be cleared
as follows:

The four bits to the right of the point in the CV shall be appended to the Code Block, starting
with the leftmost bit. As each bit is appended to the Code Block a check shall be made to
determine whether a byte boundary has been reached. If it has, then the byte just completed shall
be checked; if it equals (FF) then (0) shall be appended to the Code Block. Any remaining bits
from the CV shall be appended to the Code Block. Pad bits and the Trailer shall then be
appended to the Code Block as described in 8.3.

LDR
(n + 1) DATA BLOCKS
No.1|No.2|No.3|No.4|No.5|No.6|No.7|No.8|No.9|No.10|No.11 No. n+1
Il
/
<> ’
’ 4 \To encoder
I /“ (n+1) mod 8
Encoder|Encoder |Encoder |Encoder|Encoder|Encoder |Encoder |Encoder
No. O | No. 1 | No. 2 | No. 3 | No. 4 | No. 5| No. 6 | No. 7
\
\
\
\
> N
Code |Code |Code |Code |[Code [Code |Code |Code |Code |Code |Code Code
Block|Block|Block|Block|Block|{Block|Block|Block|Block|Block|Block ... |Block
No. 1|No. 2{No. 3|No. 4{No. 5|No. 6|No. 7|No. 8|No. 9|No.10|No.11 No. n+l1
-« Code String o

Figure 2 - Sequence of Encoding

BYTE TO BE ENCODED TABLE PAIRS
112|3(4|5]|]6]|7]8 1| EV PROB
2
3
256
BIT 1
TP 1
BIT 1 = ZERO BIT 1 = ONE
BIT 2 BIT 2
TP 2 TP 3
BIT 2 = ZERO BIT 2 = ONE BIT 2 = ZERO BIT 2 = ONE
BIT 3 BIT 3 BIT 3 BIT 3
TP 4 TP 5 TP 6 TP 7
) N /\
\ \ \
// \ II ' ,, \ /’ \
/ \ / \ \ / *
r oy y

Figure 3 - Choice of Table Pairs

K=K-1

Y
K=K+1
CNT = CNT +1

Figure 4 - Determination of K

-10 -

Al

A2
A.21

A.2.2

A23

-11 -

Annex A

(informative)

Example of a binary arithmetic coding algorithm

Introduction

The following is a description of a Binary Arithmetic Coding Algorithm, expressed in structured
English, also known as pseudo code. It is intended to give an overall understanding of the
algorithm; it is not intended to be a complete and accurate description of the particular
implementation described in this Standard.

The compression of a data record requires several successive processes. This example defines nine
separate processes, which are linked together by Calls, that is, when a particular process requires
the action of another process to be completed, the required process is called from within the
calling process. These Calls are denoted by the called process being written in upper case.

The pseudo code structure uses basic operators such as IF, THEN, ELSE, SET, and DO WHILE.
The only exception is the CASE statement which is used to replace several IF, THEN, ELSE
statements. Indentation is used to clarify which operators are related. For instance, the IF, THEN,
and ELSE operators of a given IF operation are all indented by the same distance.

Description of the Processes
Compact

Compact divides the Logical Data Record into Blocks of 512 bytes or less, and directs them
sequentially to one of eight encoders. The Blocks are encoded and then concatenated to form the
output, called the Code String.

Block Encode

This process covers the actual encoding of the individual Blocks. The Width and Current Value
are introduced. The Current Value is used to generate the actual encoded output whilst the
Width controls the level of compression achieved. Compression is achieved by deciding, based on
the previous content of the Logical Data Record, what is the most probable state of the next bit
in the byte. If this estimate is correct and the probability of the estimate being correct is high,
the Width changes very little and one bit, or no bit is added to the Code Block. If the estimate is
incorrect, then one to four bits are added to the Code Block.

Obviously, the more repetitive the data is, the more likely it is that the actual data will match the
estimate and the greater will be the compression achieved.

Another mode of operation is also defined in this process. If the current byte is equal to the
previous two bytes, then the whole byte is handled at once in Run Mode. The Unique Table Pair
is used and the estimate is compared with 1. Width and Current Values are modified in the same
way as they are for the comparison of individual bits.

Compute

Compute determines how the Width and Current Value are changed when the bit being
examined matches the Estimated Value.

A24

A.2.5

A.2.6

A.2.7

A.2.8

A29

12 -

Bit Encode

This details how the individual bits within a byte of a Block are processed, and the order in
which they are handled.

Check

This process is used to move data from the Current.Value to the Code Block. There are two
ways of doing this; the first is to take the value to the left of the point in the Current Value and
logically add it to the Code Block. Since this may cause a carry, a mechanism has been added to
limit how much of the Code Block can be modified by the carry. The most recently formed
complete byte of the Code Block is examined; if it is equal to (FF), four ZERO bits are
appended after this byte. Any further carries caused by logically adding the value to the left of
the point in the Current Value will thus be prevented from propagating further by the (0).

The second way to move data is to append one or more bits from the right of the point in the
Current Value to the Code Block. The number of bits to add is determined by whether the bit in
question matches the estimate and, if not, what was the probability that the two would match.
Again, as bits are appended to the Code Block, if an (FF) byte is formed, (0) is appended to
prevent any subsequent carries from propagating more than one byte into the Code Block.

Table Pairs Update

The manner in which the estimates and probabilities are updated is defined. The CASE
statement can be read as a cascading IF statement; that is, each set of conditions is checked until
a match is found or until the end of the CASE statement is reached. If a match is found, the
probability is set as described for that set of conditions.

Next Table Pair

This process determines which Table Pair will be used to evaluate the next bit in the byte. The
first Table Pair is always used for the first bit of each byte. The second or third Table Pair is
used for the second bit, depending upon whether the first bit was a ZERO or a ONE,
respectively, In a similar fashion, the proper Table Pair to be used for each bit is determined,
based on all the previously processed bits of the byte.

Clear Encoder

This terminates the encoding when the complete Block has been processed. If Run Mode is
enabled, then the estimate in the Unique Table Pair is used to close out Run Mode.

If Run Mode is not enabled, or once Run Mode has been closed out, then the four bits to the
right of the point in the Current Value are appended to the Code Block, again checking for an
(FF) byte. ZEROs are appended to the Code Block to reach a byte boundary.

Trailer

This final process adds the Trailer, which is composed of an (FF) byte, an information byte, and,
if necessary, an all ZEROs byte to make the total number of bytes in the completed Code Block
an even number.

- 13-

A.3 Description of the Process in Pseudo Code

A.3.1 COMPACT - Compact describes the overall process of breaking the Logical Data Record into
Blocks and encoding them in the appropriate Encoder.

PROCESS
RECEIVE
RESET
SET

SET

IF

THEN

ELSE

= COMPACT

Logical__Data__Record

Code__String

Encoder_ Number = 0

256 Table__Pairs (1:256) to {0,1} in each of 8 Tables (0:7)
Logical__Data__Record > 512 bytes

ROUTE first 512 byte Block from the Logical__Data__Record to Encoder 0 and
BLOCK_ENCODE (see A.3.2) using Table 0. The Code_ Block (output of
Encoder) is the first portion of the Code__String (compressor output).

DO WHILE remainder of Logical__Data__Record is > 512 bytes
SET Encoder__Number = Encoder__Number + 1
1IF Encoder__Number is £ 7
THEN ROUTE next 512-byte Block to Encoder (Encoder__Number) and
BLOCK__ENCODE using Table (Encoder__Number).
ELSE SET Encoder__Number = 0

ROUTE next 512-byte Block to Encoder 0 and BLOCK__ENCODE using
Table 0.

APPEND Code__Block to Code__String.
END DO
SET Encoder__Number = Encoder__Number + 1
IF Encoder__Number is £ 7

THEN ROUTE remainder of Logical__Data__Record to Encoder (Encoder__Number) and
BLOCK_ENCODE using Table (Encoder__Number).

ELSE SET Encoder__Number = 0

ROUTE remainder of Logical__Data__Record to Encoder 0 and
BLOCK__ENCODE using Table 0.

APPEND Code__Block to Code__String.

ROUTE Logical__Data__Record to Encoder 0 and BLOCK__ENCODE using Table 0.
Code__Block (output of Encoder) is the Code__String (compressor output).

END PROCESS = COMPACT

- 14 -

A.3.2 BLOCK_ENCODE - Encoding Blocks is the process of converting Blocks of 512 bytes or less into
Code_BIo_cks. Code__Blocks are terminated with Trailers.

PROCESS = BLOCK__ENCODE

SET Width = 1.0000

SET Current__Value (CV) = 0.0000

SET Previous__Byte = (40)

SET Run__Mode = 0

SET Mc__Count = 0000

SET Block__Bytes__Remaining = number of bytes in Block
SET Byte__Number = 1

DO WHILE Block__Bytes__Remaining > 0
SET Current__Byte = byte (Byte_ Number) of Block
SET Byte__Number = Byte_ Number + 1
SET Block__Bytes__Remaining = Block__Bytes__Remaining - 1
1IF Current__Byte = Previous__Byte
THEN IF Run__Mode =1,
THEN IF first value of Unique__Table_ Pair = 1
THEN COMPUTE (see A.3.3)

ELSE SET Width = 1,0000
SET Compare = false
SET Shift__Left = second value in Unique__Table__Pair
CHECK

TABLE__PAIRS__UPDATE
ELSE BIT_ENCODE (see A.3.4)

SET Run__Mode = 1
ELSE SET Previous__Byte = Current__Byte
IF Run__Mode = 1
THEN IF first value of Unique__Table__Pair = 0
THEN COMPUTE
ELSE SET Width = 1,0000

SET Compare = false
SET Shift__Left = second value of Unique__Table__Pair

CHECK
TABLE__PAIRS__UPDATE
SET Run_Mode = 0
ELSE continue
BIT__ENCODE

END DO
CLEAR__ENCODER (see A.3.8)
END PROCESS = BLOCK_ ENCODE

-15 -

A3.3 COMPUTE - Computes the correct value to add to the Current__Value and subtract from the
Width. It also determines how much of the Current__Value to shift to the Code__Block.

PROCESS = COMPUTE

SET Width = Width - (2 raised to negative power of second value in Table__Pair (Number))
SET CV = CV + (2 raised to negative power of second value.in Table__Pair (Number))
SET Compare = true
IF Width < 1.0000
THEN SHIFT Width left one place

APPEND zero to rightmost end of Width

SET Shift__Left = 1
ELSE SET Shift__Left = 0

CHECK (see A.3.5)
TABLE__PAIRS__UPDATE (see A.3.6)
END PROCESS = COMPUTE

A3.4 BIT_ENCODE - When the Encoders are not in Run Mode, Block bytes are encoded on a bit by
bit basis. '

PROCESS = BIT_ENCODE
SET Number = 1
SET Bit_ Count = 1
DO WHILE Bit__ Count < 9
IF bit (Bit__Count) of Current__Byte = first value in Table__Pair (Number)
THEN COMPUTE
NEXT__TABLE__PAIR (see A.3.7)
ELSE SET Width = 1.0000
SET Shift__Left = second value in Table__Pair (Number)
SET Compare = false
CHECK
TABLE_PAIRS__UPDATE
NEXT__TABLE_ PAIR
SET Bit__Count = Bit__Count + 1
END DO
END PROCESS = BIT_ENCODE

- 16 -

A.3.5 CHECK - The Current__Value is checked and the proper data is appended to the Code__Block.
PROCESS = CHECK

IF Code__Block = null

THEN continue

ELSE SET Count = 0
ADD bit (Count) of CV to rightmost end of Code__Block
SET bit (Count) of CV to 0

IF Rightmost integral 8 bits of Code__Block = (FF)

THEN INSERT (0) after last integral 8 bits of Code__Block

ELSE continue

SET Count = Count + 1

DO WHILE Shift__lLeft > 0
APPEND bit (Count) of CV to rightmost end of Code__Block
SET bit (Count) of CV 10 0
SHIFT CV left one place
APPEND ZERO to rightmost end of CV

SET Shift__Left = Shift__Left - 1

IF Code__Block = integral multiple of 8 bits

THEN IF rightmost 8 bits of Code__Block = (FF)
THEN APPEND 0000 to Code__Block
ELSE continue

ELSE continue

END DO
END PROCESS = CHECK

-17-

A.3.6 TABLE__PAIRS__UPDATE - The Table__Pairs values are updated to the correct values, if
required. If Mc__Count = 1111 and 1 is added to it, Mc__Count = 0000.

PROCESS = TABLE__PAIRS_ UPDATE
1F Compare = true

THEN CASE second value of Table__Pair (Number) AND Mc__Count

[second value of Table__Pair (Number) = 1 AND Mc__Count (3:4) = 11]
second value of Table__Pair (Number) = 2

[second value of Table__Pair (Number) = 2 AND Mc__Count (2:4) = 111]
second value of Table__Pair (Number) = 3

[second value of Table__Pair (Number) = 3 AND Mc__Count (1:4) = 1111]
second value of Table__Pair (Number) = 4

END CASE
SET Mc__Count = Mc__Count + 1
ELSE IF second value of Table__Pair (Number) > 1
THEN second value of Table__Pair (Number) = second value of Table__Pair (Number)
-1
ELSE invert first value of Table__Pair (Number)

END PROCESS = TABLE__PAIRS__ UPDATE

A.3.7 NEXT_TABLE_ PAIR - The next Table__Pair to be used in the encoding process is determined.
PROCESS = NEXT_TABLE__PAIR
IF Bit_ Count < 8
THEN IF bit (Bit_Count) of Current__Byte = 1
THEN Number = Twice Number + 1
ELSE Number = Twice Number
ELSE SET Number = 1
END PROCESS = NEXT__TABLE__PAIR

- 18 -

A3.8 CLEAR__ENCODER - The Encoder must be cleared whenever a Block encoding is complete.
PROCESS = CLEAR__ENCODER

SET Zero__Count = 000
IF Run_Mode = 1
THEN IF first-value of Unique__Table__Pair = 0
THEN COMPUTE
ELSE SET Width = 1.0000
SET Compare = false
SET Shift__Left = second value in Table__Pair (Number)
CHECK

TABLE__PAIRS__UPDATE

ELSE continue

SET Shift__Left = 4

CHECK

IF Code__Block = integral multiple of 8 bits

THEN TRAILER (see A.3.9)

ELSE DO WHILE Code__Block # integral multiple of 8 bits

APPEND 0 to Code__Block
SET Zero__Count = Zero__Count + 1
END DO
TRAILER
END PROCESS = CLEAR__ENCODER

- 19 -

A.3.9 TRAILER - A trailer needs to be appended to each Code__Block to be used during the decoding
process.

PROCESS = TRAILER

SET Trailer__Byte = (00)

IF Number of bytes in Code__Block is odd
THEN SET Trailer__Byte, bit 5 = 1

ELSE SET Trailer__Byte, bit 5 = 0
APPEND (FF) to Code__Block

SET Trailer__Byte, bits 6:8 to Zero__Count

IF Block is last Block in Logical__Data__ Record
THEN SET Trailer__Byte, bits 1:4 to 1100
ELSE SET Trailer__Byte, bits 1:4 to 1001

APPEND Trailer__Byte to Code__Block

IF Trailer__Byte, bit 5 = 1
THEN APPEND (00) to Code__Block
ELSE Continue

END PROCESS = TRAILER

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

