ee 200 COMPUTER

REFERENCE MANUAL

S ———

ee 200 COMPUTER
REFERENCE MANUAL

ELDORADO ELECTRODATA CORP.
601 Chalomar Road
Concord, California 94520
Telephone: 415-686-4200
TWX: 910-481-9476

TABLE OF CONTENTS

SYSTEM DESIGN FEATURES

Introduction

Features

System Architecture
Addressing

Instructions

I/0 and Interrupts

Physical Characteristics
Options

Software

Peripherals Available

Special Engineering Services
Universal Bus

Asynchronous Memory Interface
Input/Output Interface

Global Stack Pointer
Interrupt Handling

Unlimited Functional Expansion
Hardware Bootstrap Loader

Powerful Instruction Set--Extensive Address

Modification

SYSTEM ORGANIZATION

Introduction

General Registers

Memory Modules

Computer Options

Data Formats

Control Instructions

Branch Instructions

Single Register Operations
Double Register Operations
Memory Reference Instructions
Effective Address Computation

INSTRUCTION SET

Introduction

Instruction Execution Time
Data Formats

Instruction Descriptions
Control Instructions
Branch Instructions
Single-Register Operations
Double Register Operations

Explicit Register Instructions (Two Bytes)

Memory Reference Instructions

AR ol ol ol ol el ol rull ol il el all ol

o]

1
HHOOAABRDWWNNNNKRERHH i~€

o

P
=
'—l

& O

w NNNMN[})NNNNN
!
| o HEWO0WIdWH K

wwwc;owww
HEONN

4, MEMORY AND INPUT/OUTPUT CHARACTERISTICS

Introduction

Data and Address Lines

Optional Lines

Memory Cycle

Input/Output Cycle

Capacity

Input/Output Device Controllers
Device Address Assignment
Serial Teletype

5. INTERRUPT STRUCTURE

Introduction
External Interrupt Lines

Dynamic Operational Register Allocation

Priority Within A Level

6. CONTROLS AND INDICATORS

Basic Control Panel
Restart

7. PACKAGING TECHNIQUES

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

ii

Introduction

Mechanical Configuration
Card Slot Dedication

Power Supply

A

ee 200 Instruction List

B

Hexadecimal/Decimal Integers
C

Hexadecimal/Decimal Fractions
D

Table of Powers of Two

E

Table of Powers of Sixteen

> g
[
~HQ
@

[A i S
1
OO IJIONNDN -

(S
1 1

U'IU'lQ'J'IU'I
WWHH

Ao o
11 1
W

\l\lTl\l ~
N

ILLUSTRATIONS
Figure 1-1, Universal Bus 1-5
Figure 1-2. ee 200 Memory Map 1-7
Figure 1-3. ee 200 Stack Operation 1-9
Figure 2-1. General Registers, Level 0 . 2=2
Figure 5-1. Register Allocation by Interrupt Level 5-4
Figure 6-1. Computer Controls 6-2

TABLES
Table 2-1., Memory Modulesg Available 2-6
Table 2-2., Effective Address Computation 2-14
Table 3-1. Typical Instruction Execution Times 3-1
Table 4-1. Control Lines 4-2
Table 5-1. Interrupt Level Memory Addresses 5=2

iii

1. SYSTEM DESIGN FEATURES

INTRODUCTION

This manual describes Eldorado Electrodata's ee 200 Digital
Computer System. Among the items covered are: system organi-
zation, the instruction repertoire, input/output device con-
trollers, and the memory input/output interface.

FEATURES

The ee 200 was designed to work efficiently in a real time
environment. It is low in cost and is built for high relia-
bility and ease of maintenance. The system is supported by a
comprehensive software package to minimize the time required
for user program development.

Some of the more specific features of the ee 200 are:
SYSTEM ARCHITECTURE

+ Universal high-speed data bus--both memory and I/0 de-
vices are attached to the same bus.

+ Modular memory capability--memory may be combinations of
various speed core, integrated circuit, and read only
memories to meet unique user requirements.

+ Dynamic register allocation--multiple sets of registers
eliminate need for saving program counter status or ope-
rands when responding to interrupts.

+ Eight 16-bit operating registers in each register set.

+ Automatic nesting of subroutines and stack operations--
both reentrant and recursive.

+ Parallel arithmetic capability, 2's complement, on either
8-bit byte or 16-bit word.

ADDRESSING
+ Up to 61,440 bytes of memory available.

+ Direct addressing of all 61,440 bytes of memory and 4,096
I/0 device addresses.

+ Extensive address modification capability, including:

- Direct

- Indirect

- Relative

- Relative Indirect

- Twelve modes of hardware index with eight index registers

INSTRUCTIONS

+ Sixty-nine basic instructions.

+ Instructions can be 8, 16, or 24 bits.

+ g}t instructions referring to operands operate on 8 or 16
its.

I/O AND INTERRUPTS

+ Multiple device direct memory access (standard).

+ Maximum transfer rate at memory speed.

+ Serial ASR 33/35 interface (standard).

+ Fifteen levels of hardware priority interrupts (standard)--

with unique response for each level.
+ Four sense switches.

PHYSICAL CHARACTERISTICS

+ Rack or desk mounted.

+ Environment Specifications:
- Temperature (with core memory) 0-50° C
- Temperature (with IC memory) 0-60° C
- Humidity 0-90% without condensation

+ TTL logic.

OPTIONS

+ Power failure/restart.

+ Memory and I/O parity.

+ Real-time clock.

+ Address boundary.

+ High-speed operational register files.

SOFTWARE

Software available for the ee 200 includes:

+ Standard System:

- Resident assembler

- Test operating system

- Transitional monitor

- Text editor

- ESP programming language compiler
- ESP I/0 and support routines

+ Conversion/data manipulation routines.
+ Interrupt routines.

+ I/0 drivers.

+ Comprehensive diagnostics.

+ Disc operating system.*

+ Communications monitor. *

PERIPHERALS AVAILABLE

+ IBM Selectric.*

+ ASR 33/35.

+ High-speed paper tape reader and punch.

+ IBM compatible magnetic tape--various transfer rates.
+ Removable media disc.

+ General-purpose interface.

+ Synchronous modem interface.

+ Asynchronous modem interface.

+ Low-cost card reader.

* Optional

+ Line printer, 60, 135, 600 lines per minute.
+ Digital input and output interfaces.

+ Digital cassette tape interface, 1-3 tape decks.

SPECIAL ENGINEERING SERVICES

Experienced engineering personnel are available to assist the
customer in implementing special interface and software appli-
cations.

UNIVERSAL BUS

Eldorado Electrodata's ee 200 Universal Bus concept is one of
the most important factors contributing to the computer's ex-
tremely versatile operational characteristics.

The basic ee 200 consists of an enclosure (ready for rack
mounting) with an operator's console, three circuit boards
containing the entire central processor unit, and a modular
power supply. Twelve additional card slots are available for
plugging in memories and input/output device controllers.

The memories and the input/output device controllers plug dir-
ectly into the common Universal Bus in any sequence or combin-
ation. This means that memory and I/0 devices all appear the
same to the CPU--the first 61K addresses are reserved for mem-
ory; the upper 4K are reserved for I/O device addresses.

All I/O devices can access memory without going through the
central processor. Direct memory access operations can be
performed without costly additional hardware. In addition,
peripheral devices can communicate directly with each other
without processor intervention. Transfer rates are limited
only by the speed of the selected memories and/or peripheral
devices.

No unique input/output instructions are required in the
ee 200--the memory reference instructions handle these opera-
tions.

Figure 1-1 shows the Universal Bus.

ee 200 CHASSIS

CPU
X UNIVERSAL BUS
--------------- R
ADDRESS l
| 1 1 oara || 1 1 1 |
! ! J corrrory ! ! ! |
|

— e — —— nm o— — — w— e —

_
EXPANDER--UP

¢-1

y | A i Y TO 15 ADDITIONA
DEVICES OR
MEMORY
I0DC MEMORY IODC MEMORY MEMORY I0DC

10

11

12

Figure 1-1. Universal Bus

ASYNCHRONOUS MEMORY‘INTERFACE

The asynchronous memory interface allows you to select various
combinations of memory size and speed. For example, high-
speed register files can be intermixed with MOS memory modules,
a l.2-microsecond core memory, and read-only memories of any
capacity. ‘

Since instruction execution time is directly related to memory
cycle time, desired processor speed can be achieved by approp-
riate memory selection. Thus, a 16-bit add operation can

range from 10.8 microseconds using core memory to 2 micro-
seconds using a 200-nanosecond file memory.

Memories presently available include:
Magnetic Core . « « « « « ¢« « « « « « « « « «» o« 4K bytes
High-speed Bipolar (IC) . 16, 32, 64, 128, 256, 512 bytes
Medium-Speed MOS 256, 512, 1024 bytes
Read-0Only . « . « « &+ « « « « « « . « . Variable capacity
Up to 61,440 bytes of memory are available with the ee 200. All

bytes are directly addressable. Figure 1-2 shows the ee 200
memory map.

INPUT/OUTPUT INTERFACE

The ee 200 Universal Bus concept makes interfacing to an input/
output device a simple task. All that is required is to plug
an input/output device controller into an available slot in the
computer chassis and connect a cable from the chassis to the
peripheral device. The connector in the chassis is already
wired to the combination memory and I/0 bus. The bus contains
16 address lines, 8 data lines, and several control lines.

The device controllers themselves are also simplified due to
the Universal Bus. The controllers are either word or byte
oriented and contain their own addressable registers. There
are no special I/O instructions; memory reference instructions
are used for I/O.

The controllers consist of an I/0 bus interface and control
section and a machine control section.

The I/0 bus interface and control sections are of two types:

(1) those that handle transfers under program control only; and
(2) those that include automatic block transfer capability.

1-6

i N
/ N
e N
/ N
// D
o 256 512 2048 4096 61,440 N \65,536
e 1 I 1 1 1]
! T 1 ! ! 1
BIPOLAR | | I | I
LC | | I
) | I | |
| | | |
S . .
MOS I.C - : : :
MAGNETIC CORE | | |
| g |
DIRECTLY ADDRESSABLE DISC ! ! -
|]
1
READ ONLY
|l I/0 II

DEVICES

Figure 1-2. ee 200 Memory Map

1-7

Because direct memory access in the ee 200 uses the same Uni-
versal Bus as memory and I/O devices, automatic block transfer
capability is a simple extension of any device controller.

The machine control circuits are different for each device to
be controlled. They vary from simple registers and multi-
plexers for digital I/O interface boards to long sequential
controllers and registers for more sophisticated machines;
e.g. magnetic tape units.

The use of separate data and address lines plus the asynchro-

nous nature of the I/O transfers eliminate complex timing and
control circuits.

GLOBAL STACK POINTER

One of the eight general registers (the S register) assigned
to the background processing level can be used as an index or
working register. However, its primary function is to main-
tain a stack during subroutine exits and entries which pro-
vides subroutine reentrancy in interrupt environments. The

S register value for level O is global. That is, S is common
to all 16 general register sets.

A stack is a time-ordered set of operands in memory. The S
register is the pointer used to define the last element of
the stack. The stack is ordered backwards in memory. That
is, the first element in is the last element out. Thus, the
S register is initially set to the value that is the starting
point of the stack and, as operands are pushed onto the stack,
S is decremented. When operands are pulled from the stack,

S is incremented. When a "Jump to Subroutine" instruction is
encountered, the contents of the X register are pushed onto
the stack and the program counter value is loaded into the

X register. On return from subroutine, the contents of X are
loaded into the program counter and X is loaded from the stack.

The stack can also be used for temporary storage of operands

from the A, B, or X registers. Figure 1-3 shows the stack
operation.

INTERRUPT HANDLING

The ee 200 was designed for real-time systems application.
Handling a real-time environment involves rapid context switch-
ing, that is, moving from one process to another with a minimum
of overhead in time and instructions. The usual approach is

to allow a "Jump and Save" instruction to save the current pro-
gram counter value. Switching of flags (fault, zero, etc.)

and storing of current operands requires significant hardware
or several software steps which must be noninterruptible.

1-8

10.

11.

. PROGRAM SETS S TO INITIAL VALUE.

. S IS DECREMENTED BY ONE--FIRST BYTE PUSHED ONTO

STACK AS RESULT OF "STAB (S-)" INSTRUCTION.

. S IS DECREMENTED BY TWO--FIRST WORD (X) PUSHED

ONTO STACK AS RESULT OF "JSR MUL'" INSTRUCTION.

. S IS DECREMENTED BY ONE--SECOND BYTE PUSHED ONTO

STACK AS RESULT OF "'STAB (S-) INSTRUCTION, E.G.,
PARTIAL PRODUCT DURING MULTIPLY SUBROUTINE.

. INTERRUPT OCCURRED, ENCOUNTERED "JSR MUL'" SUB-

ROUTINE WITHIN INTERRUPT. S IS DECREMENTED BY
TWO--SECOND WORD (X) PUSHED ONTO STACK.

S IS DECREMENTED BY ONE--THIRD BYTE PUSHED ONTO
STACK AS RESULT OF '"'STAB (S-)'' INSTRUCTION.
AGAIN, A PARTIAL PRODUCT DURING MULTIPLY SUB-
ROUTINE.

. THIRD BYTE IS PULLED FROM STACK AS RESULT OF

"LDAB (S+)" INSTRUCTION--S IS INCREMENTED BY
ONE.

""RSR"" INSTRUCTION CAUSES RETURN FROM SUBROUTINE
WITHIN INTERRUPT. SECOND WORD IS PULLED FROM
STACK--S IS INCREMENTED BY TWO.

. RETURNED FROM INTERRUPT BACK TO MULTIPLY SUB-

ROUTINE. SECOND BYTE IS PULLED FROM STACK AS
RESULT OF '"LDAB (S+)" INSTRUCTION--S IS INCRE-
MENTED BY ONE.

""RSR" INSTRUCTION CAUSES RETURN FROM SUBROUTINE
TO BACKGROUND PROGRAM. FIRST WORD IS PULLED
FROM STACK--S IS INCREMENTED BY TWO.

FIRST BYTE IS PULLED FROM STACK AS RESULT OF
"LDAB (S+)'" INSTRUCTION--S IS INCREMENTED BY ONE
AND RETURNED TO ITS INITTAL VALUE.

Figure 1-3.

S REGISTER
S

S—-I FIRST BYTE |

S—= (X) M.S
X) L.S
FIRST B

B.
.B.
YTE

S—e{ SECOND BYTE
(X) M.S.B.
(X) L.S.B.
FIRST BYTE

(X) M.S.B.
(X) L.S.B.
SECOND BYTE
(X) M.S.B.
(X) L.S.B.
FIRST BYTE

S —»

S—e{ THIRD BYTE
(X) M.S.B.
(X) L.S.B.
SECOND BYTE
(X) M.S.B.
(X) L.S.B.
FIRST BYTE

FIRST BYTE

BACKGROUND
PROGRAM

STAB (5-)

JSPR_MUL

| (04, (PO+(0)

LDAB (5+)

INTERRUPT

MULTIPLY
SUBROUTINE
o e

STAB (S-)

SECOND TIME
(X)>(PC), *+(X)

LDAB (S+)

INTEPRUPT
ROUTINE

RSR

FIRST TIME
(X)>(PC), +(X)

S—et SECOND BYTE

(X) M.5.B.

(X) L.S.B.

JSR_MUL

(X)+, (PCY~(X)

FIRST BYTE

S—e{ X) M.S.B.

(x) L.S.B.

FIRST BYTE

S FIRST BYTE

s 1]

ea 200 Stack Operation

1-9

In the ee 200 Computer, this entire process is eliminated.
Context switching is accomplished entirely automatically with
no need to save and restore register values and flags.

The operational registers, accumulators, index registers, etc.,
are addressable in memory locations. Normal background pro-
cesses are conducted with the operational registers residing
in memory locations O through F (the first sixteen bytes). The
fifteen sets of priority interrupt registers are allocated to
successive locations in memory. The fifteen interrupt levels
are designated ILOl through ILOF, with ILOl having the lowest
priority and ILOF having the highest.

During competitive situations, a higher priority level always
gains access ahead of a lower priority. If entry has already
been made to a lower priority handling routine, the higher
level can immediately draw the processor out of the lower
level. When the higher level is complete, a linkage is avail-
able to allow the processor to thread back to the lower level
program. A similar capability can often be claimed for other
machines but it is typically effected with significant soft-
ware overhead. This software overhead manifests itself in
real time during which the machine is nonresponsive to higher
levels. In the ee 200 Computer this time is never more than
one instruction time.

UNLIMITED FUNCTIONAL EXPANSION

No expensive software or hardware modifications to the CPU are
required to perform a special function. All that is required
is to plug a "black box" into the Universal Bus and assign an
address to it. When the "black box" is addressed and given an
execute command, the CPU halts, waits for the function to be
performed, and then resumes processing. All devices on the
Universal Bus have direct access to the computer's high-speed
general registers, thereby allowing for a variety of applica-
tions.

Some examples of what the "black box" might be designated to
do are:

- Logical functions

- Multiply

- Divide

- Sort

- Table look-up

- Table search

- Hardware algorithms (such as sample 128 Teletype lines)

It is readily apparent that this feature effectively gives the

user an unlimited "instruction list," thereby allowing you to
inexpensively customize your system.

1-10

HARDWARE BOOTSTRAP LOADER

A hardware bootstrap loader is furnished as a standard feature
in the ee 200 Computer. :

POWERFUL INSTRUCTION SET--EXTENSIVE ADDRESS MODIFICATION

The ee 200 has a powerful instruction set with the most exten-
sive address modification capability of any mini computer. The
instruction list includes 8, 16, and some 24-bit instructions.
There are 69 basic commands and hundreds of permutations.

The address modes include:

1. Direct addressing of any I/O device or up to 61K of
memory.

2. Fully extended indirect addressing.
3. Relative addressing.

4. Relative indirect.

5. One and two-byte literals.

6. Indexed addressing.

Any of the eight general-purpose registers can be used as index
registers.

The twelve indexing modes are:
1. Index.
2. Index with auto-increment.
3. Index with auto-decrement.
4. Index indirect.
5. Index indirect with auto-increment.
6. Index indirect with auto-decrement.
7. Index with displacement.
8. Index with displacement and auto-increment.

9. 1Index with displacement and auto-decrement.

10. Index with displacement indirect.

11. Index with displacement indirect and auto-increment.

12. Index with displacement indirect and auto-decrement.

The instructions can be categorized as follows:

Control (15)

Conditional Branches (16)

Single
Double

Memory

Both single
rate on byte or word operands.

Register (16)
Register (14)
Reference (8)

register and double register instructions can ope-

2. SYSTEM ORGANIZATION

INTRODUCTION

Eldorado Electrodata's ee 200 is a general-purpose digital
computer. Up to 61,440 bytes of memory can be directly
addressed. Communication between the central processor,
memory and I/O devices is accomplished on a single common
high-speed Universal Bus. The Universal Bus consists of
address, data, and control lines. Input and output share
the same data lines. The central processor uses the bus to
read and write from/to memory and I/0 devices. The maximum
transfer rate is limited only by memory cycle time.

GENERAL REGISTERS

Eight 16-bit general registers occupying the first 16 bytes

of addressable memory are used for normal background proces-
sing. In addition, there are eight 16-bit general registers
for each of the 15 interrupt levels. These registers reside
in the next 240 bytes of addressable memory.

Each register can be used in the word mode as a full 16-bit
register or in the byte mode as two 8-bit registers. Figure
2-1 shows the general registers for level zero. The even-
numbered register address refers to the most-significant
byte; the odd-numbered address refers to the least-signifi-
cant byte. When an interrupt occurs, the contents of the
value, minus, fault, and link indicators are stored in the
four high-order bits in the most-significant byte of the

C register; the last interrupt level is stored in the four
high-order bits in the least-significant byte of the C reg-
ister.

In the byte mode either the left or the right byte may be
specified. When using the word mode, each register is re-
ferred to by the register number of its left-most (most-
significant) byte. For example, the A register is specified
by "O". 1If the register number of the right-most byte is
specified, the right-most byte is used twice to form a 16-
bit operand.

REGISTER REGISTER NAME
ADDRESS
(M.S.B.) (L.S.B.)

o-1 A A
2-3 B B
4-5 X X
6-7 Y Y
8-9 z VA
A-B S S
c-D o C
E-F P P

Figure 2-1. General Registers, Level O

Certain byte instructions imply a specific register. 1In these
cases, it is the right-most byte that is implied.

Although all general registers may be used as index registers,
accumulators, counters, etc., certain of the registers have
functions or implied usages as follows:

Register Usage
A Primary accumulator
B Secondary accumulator
X Primary index
Y Secondary index or working register
Z Secondary index or working register
S Stack pointer
c Context register
P Program counter base

A AND B REGISTERS

The contents of the A and B registers may be loaded or stored
(byte or word) from/to memory using the full address modifica-
tion power of the ee 200. Also, these registers are implied
in most of the single-byte instructions.

X REGISTER

The X register can be loaded or stored from/to memory using
less extensive address modification power than that for A and
B. All X register operations are 1l6-bits (word mode).

Y AND Z REGISTERS

The Y and Z registers can be used as index registers or as work-
ing storage registers with A, B, and X.

S REGISTER

The S register is a general register capable of use as an index
or working register. 1In addition, the S register for level O
is used to maintain a stack during subroutine exits and entries
which provides subroutine reentrancy in interrupt environments.
The S register value for level O is global. That is, S is
common to all general register sets.

C REGISTER

The C register contains the settings for the status condition
indicators (fault, link, minus, and value) and the interrupt
level which preceded the current level.

P REGISTER

The P register contains the initial program counter value to be
used when starting up and on return from an interrupt subrou-
tine.

All of the general registers are fully usable in single and

double register operations as well as for general index regis-
ters in the memory reference instruction group.

MEMORY MODULES

The flexibility of the ee 200 provides the user with a choice
of memory types. Different types of memories can be mixed in
the same machine.

Each memory unit requires a single printed circuit card connec-
tion to the memory and I/O bus (Universal Bus). Any memory
module can be inserted into the bus at any bus connector.

COMPUTER OPTIONS

There are several'components to a computer system. These fall
generally into the categories of basic computer, basic computer
options, memories, and I/O device controllers.

The basic ee 200 Computer consists of:

+ The Central Processing Unit (with three printed-circuit
boards) .
+ Chassis (with printed-circuit mother board interconnect).

+ Power'Supply.
+ Basic Control Panel.
Options available for the basic computer are:

+ Central Processor Option Board.

Power Fail/Automatic Restart
Memory Parity

Real-Time Clock

Address Boundary

+ Augmented Control Panel.
+ Memory Options.
+ Input/Output Device Controller Options.

CENTRAL PROCESSOR OPTION BOARD

The CPU option board can contain the power fail/automatic re-
start option, the real-time clock option, the memory parity
option, and the address boundary option. When an interrupt is
generated by any one of these options, the processor switches
to interrupt level 15 which contains the address of an inter-
rupt subroutine. The subroutine checks the status of the
option board to determine which option initiated the interrupt.
When this is determined, a jump to the appropriate subroutine
is executed.

The power fail/automatic restart option provides an interrupt
when power is initially turned on and when a loss of primary
power is detected. This feature protects an operating program
by storing all volatile registers in memory when the interrupt
occurs. When power is restored, a second interrupt is gener-
ated and all registers are restored to their previous condition.
Normal processing is then resumed.

The real-time clock option provides a method of accurately
measuring time intervals. The clock frequencies of 10 Hz, 100 Hz,
1 KHz, and 10 KHz are selectable under program control. 1In addi-
tion, the 1 KHz counter can be programmed to generate other fre-
quencies. This is accomplished by loading the accumulator with

a number specifying the number of 1-KHz counts to be generated
between interrupts. This number is complemented as it is loaded
into a count register in the real-time clock logic. When the
count register overflows, an interrupt occurs.

The parity option contains a parity generator and a parity check
circuit for checking each word written into or read from memory
and selected input/output devices. Even parity is used. If a
byte containing an odd number of "ones" is detected, an inter-
rupt is generated.

The address boundary option provides an indication to the com-
puter if a nonexistent memory location or input/output device
address is given. When this occurs, an interrupt is generated
and a pseudo data ready signal (DRDY) is given to the processor.
The DRDY signal is required because of the closed-loop communi-
cation used by the processor. Each time the computer issues a
command, it pauses until it receives a response.

The basic computer contains a generator that provides a pseudo
DRDY signal after a 4.55-millisecond pause. This generator is
disabled when the address boundary option is included.

MEMORY OPTIONS

Memory options include Read-Write Memories (RWM) as well as
Read-Only Memories (ROM) of various cycle times (see table 2-1).

I/0 DEVICE OPTIONS

Device controllers are available for the following input/output
options:

+ IBM Selectric.

+ ASR 33/35.

+ High-speed paper tape reader and puncii.

+ IBM compatible magnetic tape--various transfer rates.
+ Removable media disc. |
+ General-purpose interface.

+ Synchronous modem interface.

+ Asynchronous modem interface.

+ Low-cost card reader.

+ Line printer, 60, 135, 600 lines per minute.

+ Digital input and output interfaces.

+ Digital cassette tape interface, 1-3 tape decks.

Table 2-1. Memory Modules Available

: Cycle Time
Size Type (Microseconds)
4096 bytes Magnetic Core RWM 1.2
1024 bytes Magnetic Core RWM 1.2
256 bytes MOS Integrated Circuit RWM 1.2
512 bytes MOS Integrated Circuit RWM 1.2
1024 bytes MOS Integrated Circuit RWM 1.2
16 bytes Bipolar Integrated Circuit RWM 0.2
32 bytes Bipolar Integrated Circuit RWM 0.2
64 bytes Bipolar Integrated Circuit RWM 0.2
128 bytes Bipolar Integrated Circuit RWM 0.2
512 bytes Custom ROM 1.2
1024 bytes Custom ROM 1.2
h

DATA FORMATS

Data is handled as one or two bytes, depending upon the instruc-
tion. Any operation code that references an operand can do so
with either 8- or 16-bit precision.

8-Bit Data Format:

SIGN
/

Binary Two's Complement; Range:-27:m<27
16-Bit Data Format:

SIGN
/
1
|
l
|
|

DATA DATA

1 L
76 5 473 2 1076 5 473 2 1 0

Binary Two's Complement; Range: -215<n<215

INSTRUCTION FORMATS

The instruction formats vary in length from one to three bytes.
In all cases, the most-significant byte consists of an operation
code which defines the class of instruction and the operation to
be performed. Additional bytes specify such things as jump
location in the case of branch instructions, source and destina-
tion registers, incrementation and decrementation. For memory
reference instructions the additional bytes contain address
data, register data, and address modification information.

Most instructions can be used in either the word mode or the
byte mode. 1In these cases, the operation code for the word mode
is shown first, followed by the code for the byte mode in paren-
thesis. When using the byte mode, the least-significant half of
the designated register is assumed.

The instructions can be categorized into the following groups:

- Control

- Branch

- Single Register
- Double Register
- Memory Reference

The formats for these groups are given in the following para-
graphns.

CONTROL INSTRUCTIONS

The control group instructions are single-byte instructions
which provide specific control functions. Control instructions
have the following format:

oP
CODE

1
76 S 413 2 10

0

The 0 in the most-significant half of the byte indicates that
the instruction is a control instruction. The least-signifi-
cant half of the byte defines the instruction.

BRANCH INSTRUCTIONS

The branch instructions have a two-byte format. The operation
code byte defines the condition being tested. The displacement
byte, b, contains an eight-bit signed value which specifies a
jump location relative to PC. The branch has a range of +127
bytes and -~128 bytes with reference to the current value in PC.
At the time of execution, the PC contains the address of the
next instruction following the branch instruction. The dis-
placement value is summed with the current contents of the PC
register if the test condition is met.

OP CODE DISPLACEMENT (b)
OoP
1 CODE + 127,l 128
1
76 5 4'3 2 1076 5 413 2 10

SINGLE REGISTER OPERATIONS

There are two types of single-register operations, explicit and
implicit. Explicit register instructions are two-byte instruc-
tions with the source register address contained in the second

byte. (See figure 2-1 for register designations.) The form of
an explicit single-register instruction is:

3(2) oP sT
, CODE N
76 5 4'3 2 1076 5 473 2 10

The four low-order bits of the second byte are used only for the
Increment Register and Decrement Register instructions and are
otherwise ignored.

Implicit register instructions are single-byte instructions with
the source register implicit in the operation code. The form of
an implicit single-register instruction is:

OP
3(2) CODE

1
76 S 413 2 10

The least-significant byte (8 bits) of a 16-bit word is implied
when using the byte mode.

DOUBLE REGISTER OPERATIONS

There are two types of double-register operations, explicit and
implicit. Explicit register instructions are two-byte instruc-
tions with the source register and destination register addresses
contained in the second byte. The form of an explicit double-
register instruction is:

OP CODE sr dr

1 [l
76 5 413 2 1076 5 413 2 10

The operation code may specify either a byte or full word opera-
tion. In the byte mode, the least-significant byte is assumed.
The source register and destination register may be the same.
See Figure 2-1 for register designations.

Implicit register instructions are single-byte instructions with
the source and destination registers implicit in the operation
code. The form of an implicit double-register instruction is:

oP
54) CoDE
1
76 S 413 2 10

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions are those which access an operand
from addressable memory. They can operate on either byte ope-
rands or word operands. When operating in the byte mode, the
least-significant half of the register is used. The instruc-
tions can be 8, 16, or 24 bits long, depending upon the address
modification used. The form of the memory reference instruc-
tion is:

Second Byte Third Byte

First Byte If Required If Required
opP 7

CODE M ADDRESS OR REGISTER DATA
|

76 5 4 :3 2 1076 5 4 %3 2 1076 5 4 %3 2 10

ADDRESS MODIFICATION

Address modification capability varies with the type of instruc-
tion and is a function of the M field. The codes used in the M
field and their effects on the address are discussed in the fol-
lowing paragraphs.

Basic Address Modification

M = O Literal

oP 1
CODE 0 LITERAL
1 1 L 1
76 5 413 2 107 ¢ 5 473 2 1076 5 413 2 10

With a word instruction, two bytes following the operation code
either contain the literal word or receive the literal word
from A, B, or X.

oP
CODEI

L
76 5 43 2 1076 5 413 2 10

0 LITERAL

With a byte instruction, one byte following the operation code
either contains the literal byte or receives the literal byte.

M = 1 Direct

oP 7
CODE 1 DIRECT ADDRESS

1 1 |]
7 6 5 413 2 107 6 5 413 2 10076 5 473 2 10

With a word or byte memory reference instruction, two bytes fol-
lowing the operation code contain a full 16-bit address which is
used to directly address the operand(s). The 16-bit address
allows direct addressing to 65,536l addresses. This gives the
facility for addressing memory (up~ to 61,43910), and I/0 device
controllers (61,44010).

M = 2 Indirect

oP Ll
CODE 2 INDIRECT ADDRESS

1 1] [l
76 5 413 2 1076 5 4V3 2 10176 5 4V3 2 10

With a word or byte memory reference instruction, 2 bytes follow-
ing the operation code contain a full 16-bit indirect address.
The operand(s) are located by using the contents of the 2-byte
memory location pointed to by the indirect address value as an
absolute address.

M = 3 Relative to Current Location Counter

op
CODE 3 DISPLACEMENT
7654'{32‘.7654%32|0

With a word or byte memory reference instruction, the address of
the operand(s) is constructed by adding the contents of the byte
following the operation code (the displacement) to the contents
of the program counter. The displacement is in two's complement
notation allowing access to operands +127 byvtes ahead or -128
bytes behind the value in the program counter. At the time of
execution, PC contains the address of the next instruction fol-
lowing.

M = 4 Relative to Current Location Counter, Indirect

CODE 4 DISPLACEMENT

[l
76 5 473 2 1076 5 4173 2 10

With a word or byte memory reference instruction, the address
of the operand(s) is constructed by adding the contents of the
byte following the operation code to the contents of the pro-
gram counter as with M = 3. At this point, however, the.
16-bit result is interpreted as pointing to another 2-byte
address which is used as the actual operand address.

M = 5 Indexed Addressing

When a word or byte instruction has an M code of 5, the byte
or bytes following are interpreted as register address modes.
The displacement byte is only included in those modes which
require it. The general form for indexed addressing is:

oP

CODE 5 r M' DISPLACEMENT
1 L

7654{32107654'31107654]3210

r refers to the base register as defined in figure 2-1.

M' is the new modification code and is defined as follows:

0 Use register directly as address

1 Use register as address and increment after use

2 Decrement register and use as address

3 Not used

4 Use register as indirect address

5 Use register as indirect address and increment after
use

6 Decrement register and use as indirect address

7 Not used

F

Add displacement byte to register and use as direct
address

Add displacement byte and use as direct address, then
increment register

Decrement register, and displacement byte, and use as
direct address

Not used
Add displacement to register, and use as direct address

Add displacement byte, and use as indirect address,
then increment register after use

Decrement register, add displacement byte, and use as
indirect address

Not used

Incrementation and decrementation will be by one or two, depend-
ing upon whether the instruction is a byte or word instruction.

Implicit Indexing (One Byte)

When using implicit indexing, the M code can be 8 through F.
With a word or byte memory reference instruction, the operand(s)
address is the 16-bit contents of the designated register. The
format shown is for M = 8.

M = 8 Register Addressing - A Register

opP

CODE 8

The M field codes and operand addresses for the instructions are:

M Field Operand(s) Address
8 A Register
9 B Register
A X Register
B Y Register
C Z Register
D S Register
E C Register
F P Register

EFFECTIVE ADDRESS COMPUTATION

Table 2-2 shows the method used to arrive at the effective
address. The symbol A as used in the table is equal to one or
two, depending upon whether the instruction is byte or word
mode.

Table 2-2. Effective Address Computation

M Effective Address Mode
0 Second and/or third Literal
byte of instruction
1 (Second and third Direct
byte of instruction)
2 ((Second and third Indirect
bytes of instruction))
3 (PC)+b Relative
4 ((PC)+b) Relative Indirect
5 M'
0 (r) Index
1 (r) Index; Index Returned

Incremented by A

5 M'

O w b= I)

o

2
4

Effective Address

(r)- A
((xr))
((xr))

((r)-4)

(r)+b

(r)+b

(r)-A+b

((r)+Db)

((r)+b)

((r)-A+b)

(a)
(B)
(X)
(Y)
(2)
(s)
(C)

‘P)

Mode

Decrement and Index
Index Indirect

Index Indirect; Index Re-
turned Incremented by A

Decrement and Index In-
direct

Index with Displacement
Index with Displacement;
Index Returned Incremented
by A

Decrement and Index with
Displacement

Index with Displacement In-
direct

Index with Displacement In-
direct; Index Returned
Incremented by A

Decrement and Index with
Displacement Indirect

Indexed by A ..zgister
Indexed by B Register
Incexed by X Register
Indexed by ¥ Reci ~er
Trdexed b Z .g1lster
Indexec by &

Ir sued by C

3. INSTRUCTION SET

INTRODUCTION

The basic instruction set for the ee 200 Computer System consists
of 69 instructions. Descriptions of these instructions, grouped
according to function, are given in this section. Refer to
Appendix A for a list of instructions. .

INSTRUCTION EXECUTION TIME

Instruction execution time is a function of the type of memory
selected. Some typical times are given in table 3-1. All times
are in microseconds.

Table 3-1. Typical Instruction Execution Times

Memory Type

Instruction Type High-Speed Core Core With
Files Only* Only Files**
16-Bit Load 4.6 9.4 7.8
16-Bit Add 4.4 - 10.8 6.0

16-Bit Single Register

Increment
Decrement
> 4.0 8.8 5.6
Complement
Clear J
* High-speed files used for operational registers as well as

storage; i.e., greater than 16 bytes.

** Files used for operational registers only.

3-1

DATA FORMATS

Data is handled as one or two bytes, depending upon the instruc-
tion. Any operation code that references an operand can do so
with either 8- -or 16-bit precision.

8-Bit Data Format

/SIGN '

DATA -

l iy
76 5 4al3 2 1 0

Binary Two's.CQmﬁlement; Range:—215511<2

16-Bit Data Format
/SIGN ‘

DATA DATA

1 L
76 5 473 2 1076 5 473 2 10

Binary Two's Complement; Range: -215<n<215

INSTRUCTION DESCRIPTIONS

All instructions are assigned a two- or a three-character alpha-
numeric mnemonic. The first character of the mnemonic must be

an alpha character. For example, the Load A instruction mnemonic
is LDA.

Byte operations'aré indicated by adding the letter B to the in-
struction mnemonic. 1In the absence of B, word operation is as-
sumed. For example:

LDA Load A - word mode (l16-bits)
LDAB Load A - byte mode (8-bits)

In the instruction descriptions, the letter B is added to the
mnemonic in parenthesis to indicate that the instruction can be
used in either the byte or the word mode. For example, the
Load A instruction mnemonic is shown as LDA(B). The operation
code for the byte mode is shown in parenthesis following the
code for the word mode.

3-2

CONDITION FLAGS

There are four condition flags used in conjunction with the com-
puter operations. They are: Fault (F), Link (L), Minus (M), and
Value (V). These flags may be tested (conditional branch instruc-
tions) to determine the result of an operation upon data. The
fault and link may also be used as programming flags or indicators.

All condition flags are set or reset by the contents of the con-

text (C) register when an interrupt occurs. The condition status
of the interrupted level is saved and then restored when the pro-
gram returns to that level. Also, specific control instructions

are provided to set and reset the fault and link condition indi-

cators.

The fault indicator is reset by the clear instruction and by the
reset fault instruction. The set fault instruction sets the
indicator. For increment, decrement, and arithmetic operations,
it is set if the sign of the result (destination register)
changes. For left shift and rotate instructions, the setting of
fault is the exclusive OR function of the link and minus flags
after the shift occurs. Thus, fault is set if the sign bit
changes. This feature is used primarily for normalization.

The link indicator is reset by the clear instructions and by the
reset link instruction. It is set by the set link instruction
and complemented by the complement link instruction. During
shift or rotate instructions, the link indicator is set if a one
is shifted into the link, otherwise, it is reset. For add ope-
rations, the indicator is first reset and then set if the carry
out of the most-significant bit is a one. For subtract instruc-
tions, it is first reset and then set if there is no carry out.

The minus indicator is reset by single register, double register,
and memory reference instructions and is then set if there is a
one in the most-significant bit of the source register, destina-
tion register, or operand, respectively.

The value indicator is also reset by single register, double reg-
ister, and memory reference instructions, and is then set if the
result equals zero.

The settings of the condition flags as the result of individual
instructions are shown in Appendix A.

NOTATION

Symbolic notation used in the instruction descriptions is as

follows:

General Registers

A

B
X
Y

N

0

P

CPU Registers

F
I
L

Lv

=

v

Descriptive Notation

()

Descriptions

General register
General register

General register

KoOoX W P

General register

N

General register
Stack register

Context register
General register P

Description

Fault condition indicator
Interrupt flip-flop

Link condition indicator
Interrupt level select register
Minus condition indicator
Memory address register

Program counter

Run flip-flop

Value condition indicator

Description

Contents of specified register,
field, etc.

Replaces

Addition

Descriptive Notation Description

- Subtraction or negation

A Logical AND

\Y Logical OR

v Logical exclusive OR

X Bar over symbol indicates one's
complement

b Byte

EA Effective address

r Any general register

sr/dr Source register/Destination
register

r-3 Subscript indicates bit(s)
affected

X Used in subscripts to indicate
8 or 16 bits

4 "Pop" from the stack:
((s)) (xr), (s)+ (s)

¥ "Push" into the stack:

(s)- (s), (xr) ((s))
A=1 or 2 depending on instruc-
tion, byte or word.
Each instruction description includes the following:

Instruction mnemonic

Name of instruction

Pictorial representation of instruction

Hexadecimal operation code

Instruction description

Affected registers, condition indicators, etc.

Symbolic operation statement

CONTROL INSTRUCTIONS

The control group instructions are single-byte instructions
which provide specific control functions. Control instruc-
tions have the following format:

oP
CODE
|

76 5 413 2 10

0

The 0 in the most-significant half of the byte indicates that
the instruction is a control instruction. The least-signifi-
cant half of the byte defines the instruction.

HLT - Wait for Interrupt (Halt)

0 0

i 1
76 S 413 2 10

The processor is halted. The content of the P Register is
the address of the half instruction plus one. The RUN state
is entered when the CPU receives an interrupt or when the RUN
switch on the control panel is activated.

(PC)>(P), O>R Affected: P, R

NOP - No Operation

No operations are performed by this instruction.

SF - Set Fault

0 2

1
76 S 4713 2 10

The fault condition flag is set to one.

1> (F) Affected: F

RF - Reset Fault

The fault condition flag is set to zero.

O~ (F) Affected: F

EI - Enable Interrupt System

The interrupt system is enabled, allowing the processor to rec-
ognize all external interrupts.

1>(1) Affected: I

DI - Disable Interrupt System

The interrupt system is disabled, preventing the processor from
recognizing any external interrupts.

0~>(I) / Affected: I

SL - Set Link

The link condition flag is set to one if its state is zero, and
is unaffected if its state is one.

1> (L) Affected: L

RL - Reset Link

The link condition flag is set to zero if its state is one, and
is unaffected if its state is =zero.

0~ (L) Affected: L

CL - Complement Link

The state of the link condition flag is complemented.

(L)> (L) Affected: L

RSR - Return from Subroutine

Used to exit from a subroutine. The contents of X is placed
in the program counter and X is loaded from the top of the stack.

(X)> (PC), * (X) Affected: X, PC, S

3-8

RI - Return from Interrupt

Used to exit from an interrupt service routine. The current
priority level is deactivated after saving the program counter
and status in the P and C registers for that level. The prev-
iously active priprity level is reactivated and executed.

(pC)»(P), Status C12-15, C4-7 LV Affected: P, C, LV, F, L, M, V

RIM - Return from Interrupt Modified

Used to exit from an interrupt service routine. ‘'he current
priority level is deactivated after saving the status for that
level in the C register. The program counter is not saved. The
previously active level is reactivated and executed.

Status*clz_lsl C4_7 LV Affected: C, Lv, F, L, M, V

ELO - Enable Link to Teletype

This instruction is used to output to the serial Teletype inter-
face. It transfers the status of the L condition indicator to
the Teletype. If L equals one, the output Teletype line is set
to the "MARK" condition. If L equals zero, the line is set to
the "SPACE" condition. Upon completion of the transmission,

L should be set to one and a final ELO issued to prevent the
Teletype from chattering. See section four for a description

of the serial Teletype interface.

(L) *Serial TTY Interface Affected: None

PCX - Move PC to X

The current value in PC is moved to the X register. The value
in PC at the time of the move is the address of the next in-
struction following PCX. The next instruction in sequence is
then executed. This instruction is used to access the current
value of PC in "relocatable" programs.

(PC) +(X) Affected: X

DLY - Delay

The processor is halted for 4.55 milliseconds. No processor
activity occurs during the halt. This instruction is used to
mark time during output to the Teletype.

Delay 4.55 milliseconds Affected: None

BRANCH INSTRUCTIONS

The branch instructions have a two-byte format. The operation
code byte defines the condition being tested. The displace-
ment byte, b, contains an eight-bit signed value which speci-
fies a jump location relative to PC. The branch has a range
of +127 bytes and -128 bytes with reference to the current
value in PC. At the time of execution, the PC contains the
address of the next instruction following the branch instruc-
tion. The displacement value is summed with the current con-
tents of the PC register if the test condition is met.

OoP
CODE | +127, -128
1 L

76 5 43 2 1076 5 413 2 10

1

3-10

The one in the most-significant half of the first byte indicates
that the instruction is a branch instruction. The least-signifi-
cant half of the first byte defines the instruction. Conditional
branches have no effect on condition codes or general registers.

BL - Branch if Link Set

1 0 +127, -128

76 5 43 2 1076 5 4V3 2 10

The content of the link condition flag is tested and if it con-
tains a one, a branch is made. If the link condition flag con-
tains a zero, no branch is made and the next sequential instruc-
tion is initiated.

If L=1, (PC)+b~»(PC)

BNL - Branch if Link Not Set

1 1 +127, -128

i L
76 5 4'3 2 1076 5 4V3 2 1 0

The content of the link condition flag is tested and if it con-
tains a zero a branch is made. If the link condition flag con-
tains a one, no branch is made and the next sequential instruc-
tion is initiated.

If L=0, (PC)+b~>(PC)

BF - Branch if Fault Set

1 2 +127, -128

The content of the fault condition flag is tested and if it con-
tains a one, a branch is made. If the fault condition flag con-
tains a zero, no branch is made and the next sequential instruc-
tion is initiated.

If F=1, (PC)+b~(PC)

BNF - Branch if Fault Not Set

1 3 +127, -128

The content of the fault condition flag is tested and if it con-
tains a zero, a branch is made. If the fault condition flag
contains a one, no branch is made and the next sequentlal in-
struction is initiated.

If F=0, (PC)+b >(PC)

BZ - Branch if Equal to Zero

1 4 +127, -128

76 5 4'3 2 1076 5 413 2 1 0

The content of the value condition flag is tested and if it con-
tains a one, a branch is made. If the value condition flag con-
tains a zero, no branch is made and the next sequential instruc-
tion is initiated.

If v=1, (PC)+b-»(PC)

BNZ - Branch if Not Equal to Zero

1 5 +127, -128

76 5 43 2 1076 5 413 2 10

The content of the value condition flag is tested and if it con-
tains a zero, a branch is made. If the value condition flag
contains a one, no branch is made and the next sequential in-
struction is initiated.

If v=0, (PC)+b™>(PC)

BM - Branch if Minus Set

1 6 +127, -128

The content of the minus condition flag is tested and if it con-
tains a one, a branch is made. If the minus condition flag con-
tains a zero, no branch is made and the next sequential instruc-
tion is initiated.

If M=1, (PC)+b~(PC)

BP - Branch on Plus

1 7 +127, -128

The content of the minus condition flag is tested and if it con-
tains a zero, a branch is made. If the minus condition flag
contains a one, no branch is made and the next sequential in-
struction is initiated.

If M=0, (PC)+b»> (PC)

BGZ - Branch if Greater than Zero

1 8 +127, -128

The contents of the minus flag and value flag are both tested and
if they both contain zeros, a branch is made. If either the minus
or value flag contains a one, no branch is made and the next se-
quential instruction is initiated.

If M=V=0, (PC)+b~(PC)

BLE - Branch if Less Than or Equal to Zero

1 9 .| +127, -128

The contents of the minus flag and the value flag are both tested
and if either flag contains a one, a branch is made. If both
flags contain a zero, no branch is made and the next sequential
instruction is initiated.

If M or V=1, (PC)+b.(PC)
3-13

BS1 - Branch if Sense Switch 1 Set

1 A +127, -128
1

76 5 473 2 1076 s 413 2 10

The state of the sense switch 1 is tested and if it is set,
a branch is made. If sepse switch 1 is not set, no branch
is made and the next sequential instruction is initiated.

If SSWl=1, (PC)+b»> (PC)

BS2 - Branch if Sense Switch 2 Set

1 B +127, -128

1 L
76 5 473 2 1076 5 413 2 1 0

The state of the sense switch 2 is tested and if it is set,
a branch is made. If sense switch 2 is not set, no branch
is made and the next sequential instruction is initiated.

If ssw2=1, (PC)+b-(PC)

BS3 - Branch if Sense Switch 3 Set

1 C +127, -128

| |
76 5 '3 2 1076 5 473 2 10

The state of the sense switch 3 is tested and if it is set,
a branch is made. If sense switch 3 is not set, no branch
is made and the next sequential instruction is initiated.

If SSwW3=1, (PC)+b~>(PC)

BS4 - Branch if Sense Switch 4 Set

1 D +127, -128

1
76 5 473 2 1076 5 403 2 1 0

The state of the sense switch 4 is tested and if it is set, a
branch is made. If sense switch 4 is not set, no branch is
made and the next sequential instruction is initiated.

If SSw4=1, (PC)+b> (PC)

BTM - Branch on Teletype MARK

1 E +127, -128
[l

76 5 473 2 1076 5 413 2 1o

The state of the serial Teletype input line is checked. If the
line is in the MARK or one condition, the branch is taken. Other-
wise, the. next instruction in sequence is initiated.

If MARK or one on TTY input line, (PC)+b> (PC)

BEP - Branch on Even Parity

1 F +127, -128

L
76 5 43 2 1076 5 4V3 2 10

The state of the parity line from the central processor option
board is checked. If the line indicates even parity, the branch
is taken. Otherwise, the next instruction in sequence is exe-
cuted. If the CPU option board is not installed, this instruc-
tion operates as an unconditional branch.

If even parity from CPU option board, (PC)+b-(PC)

SINGLE-REGISTER OPERATIONS

There are two types of single-register operations, explicit and
implicit. Explicit register instructions are two-byte instruc-
tions with the source register address contained in the second
byte. (See figure 2-1 for register designations.) The form of
an explicit single-register instruction is:

OP
3(2) CODE sr

1 1
76 5 473 2 1076 5 4T3 2 1 0

Implicit register instructions are single-byte instructions
with the source register implicit in the operation code. The
form of an implicit single-register instruction is:

oP
3(2) CODE
76 S 4 lr3 2 10

The least-significant byte (8 bits) of a 16-bit word is implied
when using the byte mode.

The explicit instructions are described first, followed by the
implicit instructions.

EXPLICIT REGISTER INSTRUCTIONS (TWO BYTES)

INR(B) - Increment Register

30(20) sr

1 1
76 5 43 2 10'76 5 473 2 1 0

The contents of the source register is incremented by one.

(sr)+1> (sr) Affected: sr, F, M, V

DCR(B) - Decrement Register

31(21) sr

1 §
76 5 4'3 2 1076 S 4713 2 1 0

The contents of the source register is decremented by one.

(sr)-1+ (sr) Affected: sr, F, M, V

CLR(B) - Clear Register

32(22) sr

d Il
76 5 473 2 1076 s 43 2 10

3

16

The contents of the source register is cleared. All condition
indicators except V are reset. V is set.

1 (V) Affected: sr, F, L, M, V

IVR(B) - Invert Register

33(23) sr
1

76 5 4'3 2 1076 5 473 2 10

The contents of the source register is set to the ones' comple-
ment.

(sT)~> (8Ir) Affected: sr, F, L, M, V

SRR(B) - Shift Register Right

34(24) sr
|

7 6 5 473 2 10'76 5 473 2 10

The contents of the source register is shifted right one bit
position. The least-significant bit of the register is shifted
into the link condition flag, and the sign bit is extended.

(sr)x+1+(sr)x' (sr) g (L) Affected: sr, F, L, M, V

SLR(B) - Shift Register Left

35(25) ST

1 1
76 S 473 2 1076 5 473 2 1 0

The contents of the source register is shifted left one bit
position. The most-significant bit of the register is shifted
into the link condition flag and a zero is shifted into the
least-significant bit.

(sr)y> (sr) g4y, (sr)> #L), 0+(sr)0 Affected: sr, F, L, M, V
15(7)

7

RRR(B) - Rotate Register Right

36(26) st

1 |
7 6 5 43 2 1076 S 413 2 10

The contents of the source register is rotated right one bit
position. The link condition flag is rotated into the most-
significant bit position, and the least-significant bit of
the register is rotated into the link flag.

(sr)x+r (sr)X (sr)0->(L), (L)~»>(sr)

15(7)
Affected: sr, F, L, M, V

’

RLR(B) - Rotate Register Left

37(27) sr

1 1
76 5 43 2 1076 5 473 2 1 0

The contents of the source register is rotated left one bit
position. The link condition flag is rotated into the least-
significant bit position, and the most-significant bit of the
register is rotated into the link flag.

(sr)x—>(sr)X (sr)

+1, 15(7)+(L), (L)+(sr)0

Affected: sr, F, M, L, V

IMPLICIT REGISTER INSTRUCTIONS (ONE BYTE)

INA(B) - Increment Accumulator by 1

38(28)

1
76 S 413 2 10

The accumulator is incremented by 1.

(A)+1 »(A) Affected: A, F, M, V

DCA (B) - Decrement Accumulator by 1

39(29)

1
76 5 413 2 10

The accumulator is decremented by 1.

(A)-1~>(Aa) Affected: A, F, M, V

CLA(B) - Clear Accumulator

3A(2A)

1
76 5 413 2 10

The accumulator is cleared. All condition indicators except V are
reset., V is set
1+ (V) Affected: A, F, L, M, V

IVA(B) - Invert Accumulator

3B(2B)

1
76 S 473 2 10

The accumulator is set to the one's complement.

(B) ~(A) Affected: A, M, V

SRA(B) - Shift Accumulator Right

3C(20)

1
76 S 413 2 10

The contents of the accumulator is shifted right one bit position.
The least-significant bit of the register is shifted into the link
condition flag and the sign bit is extended.

(B) gy (R) - (B) (L) Affected: A, F, L, M, V

3-19

SLA(B) - Shift Accumulator Left

3D(2D)

1
76 S 4713 2 10

The contents of the accumulator is shifted left one bit posi-
tion. The most-significant bit of the accumulator is shifted
into the link condition flag and a zero is shifted into the
least-significant bit.

(A) .~ (A)

X +(L)‘r0+(A)0 Affected: A, F, L, M, V

X+1,(A)15(7)

INX - Increment X Register

The X register (16 bits) is incremented by one.

(X)+1> (X) Affected: X, F, M, V

DCX - Decrement X Register

The X register (16 bits) is decremented by one.

(X)-1 %X) Affected: X, F, M, V

DOUBLE REGISTER OPERATIONS

There are two types of double-register operations, explicit and
implicit. Explicit register instructions are two-byte instruc-
tions with the source register and destination register
addresses contained in the second byte. The form of an
explicit double-register instruction is:

OoP CODE sr dr

76 5 473 2 1076 5 4al3 2 1 0

The operation code may specify either a byte or full word opera-
tion. In the byte mode, the least-significant byte is assumed.
The source register and destination register may be the same.
See figure 2-1 for register designations.

Implicit register instructions are single-byte instructions with
the source and destination registers implicit in the operation
code. The form of an implicit double-register instruction is:

oP
5(4) CODE

l
76 5 4713 2 10

The explicit instructions are described first, followed by the
implicit instructions.

EXPLICIT REGISTER INSTRUCTIONS (TWO BYTES)

ADD(B) - Add

50(40) sr dr

| [l
76 5 473 2 1076 5 473 2 10

The contents of the source register and the contents of the des-
tination register are added together. The sum is deposited in
the destination register.

(dr)+ (sr) »(dr) Affected£ dr, F, L, M, V

SUB (B) - Subtract

51(41) sr dr

L)
76 5 4'3 2 1076 5 413 2 1 0

The contents of the source register minus the contents of the
destination register is deposited in the destination register.

(sr)-(dr)»> (dr) Affected: dr, F, L, M, V

AND(B) - AND

52(42) sr dr

]
76 5 4'3 2 1076 5 413

The logical produét of the source register and the destination
register is deposited in the destination register.

(dr) A (sr) > (dr) Affected: dr, M, V

ORI (B) - OR Inclusive

53(43) sr dr

1 L
76 5 473 2 1076 5 413 2

10

The logical sum (OR) of the source register and the destination
register is placed in the destination register.

(dr) V (sr) - (dr) Affected: dr, M, V

ORE (B) - OR Exclusive
54 (44) ST dr
7 6 5 ¢=a 2 1076 S 4=3 2 1 0

The exclusive OR, or inequality function of the bits of the
source register, and the destination register is deposited in
the destination register.

(dr) ¥ (sr) = (dr)

Affected: dr, M, V

XFR(B) - Transfer

55(45) sT dr

L 1
76 5 43 2 10'76 5

3-22

The contents of the source register is deposited in the destina-
tion register. The source register is unaltered. The original
contents of the destination register is lost.

(sr) >(dr) Affected: dr, M, V

IMPLICIT REGISTER INSTRUCTIONS (ONE BYTE)

AAB(B) - Add A Register and B Register

58(48)

1
76 S 413 2 10

The contents of the A register and the contents of the B register
are added together. The sum is deposited in the B register.

(A)+(B) *(B) Affected: B, F, L, M, V

SAB(B) - Subtract A Register and B Register

59 (49)

|
76 S 413 2 10

' The contents of the A register minus the contents of the B regis-
ter is deposited in the B register.

(A)-(B) *(B) Affected: B, F, L, M, V

NAB(B) - AND A Register and B Register

5A(4A)

1
76 S 413 2 10

The logical product of the A register and the B register is
deposited in the B register.

(B) A (a) - (B) Affected: B, F, M, V

XAX (B)

- Transfer A Register to X Register

5B(4B)

1
76 § 413 2 10

The contents of the A register is deposited in the X register.

The A register is unaltered.

register are lost.

(A) > (X)

XAY (B)

The original contents of the X

Affected: X, M, V

- Transfer A Register to Y Register

5C(4C)

|

76 5 473 2 10

The contents of the A register is transferred to the Y reg-
The A register is unaltered. The original contents

ister.

of the Y register are lost.

(a) > (Y)

Affected: Y, M, V

XAB(B) - Transfer A Register to B Register

5D(4D)

76 § 413 2 10

The contents of the A register is deposited in the B register.

The A register is unaltered.

register are lost.

(A) >~(B)

The original contents of the B

Affected: B, M, V

XAZ (B) - Transfer A Register to Z Register

5E(4E)

3-24

76 S 413 2 10

The contents of the A register is
The A register is unaltered. The
register are lost.

(A)~>(2)

XAS (B) - Transfer A Register to S

transferred to the 2 register.
original contents of the 2

Affected: Z, M, V

Register

5F(4F)

1
76 S 413 2 10

The contents of the A register is
The A register is unaltered. The
register are lost.

(a) ~(s)

transferred to the S register.
original contents of the S

Affected: S, M, V

3-25

MEMORY REFERENCE INSTRUCTIONS

LDA(B) - Load A Register

9(8) M

L .
76 S 413 2 10

The load A register instruction references an operand located
in memory and deposits it in the A register. The instruction
may be one byte (register addressing), two bytes (relative
addressing), or three bytes (direct addressing).

(EA) 7(a) Affected: A, F, L, M, V

STA(B) - Store A Register

B(A) M

1
76 S 413 2 10

The store A register instruction takes the contents of the A
register and deposits it in memory. The instruction may be
one byte (register addressing), two bytes (relative addres-
sing), or three bytes (direct addressing).

(A) ~(EA) Affected: (EA), F, L, M, V

LDB(B) - Load B Register

D(C) M

|
76 S 413 2 V10

The load B register instruction references an operand located
in memory and deposits it in the B register. The instruction
may be one byte (register addressing), two bytes (relative
addressing), or three bytes (direct addressing).

(EA) «B) Affected: B, F, L, M, V

STB(B) - Storevg'Register

The store B register instruction takes the contents of the B
register and deposits it in memory. The instruction may be one
byte (register ,addressing), two bytes (relative addressing), or
three bytes (direct addressing).

(B) ~(EA) Affected: (EA), F, L, M, V

LDX - Load X Register Word

6 0y M

[|
76 S5 4713 2 V10

Load X register (word) instruction references a 16-bit operand
(always 16-bit) located in memory and deposits it in the 1l6-bit
file register designated X. M can be 0 through 5.

(EA) (X) Affected: X, F, L, M, V

STX - Store X Register Word

{
6 11 M
I
76 5 413 2 10

Store X register (word) deposits the X file register (always
16-bits) into memory. M can be 0 through 5.

(X) AEA) Affected: (EA), F, L, M, V

JMP - Unconditional Jump

The unconditional jump instruction takes the operand address
and deposits it in the program counter. M can be 1 through 5.

EA~>(PC) | Affected: None

JSR - Jump to Subroutine

[
A jump to a subroutine instruction causes an alternative to
the program counter similar to an unconditional jump. The
value loaded into the program counter is arrived at via
address modification in just the same way as the JMP instruc-
tion. Before this alteration of the program counter takes
place, however, certain other activities are performed.

The current program counter contents must be preserved so
that a return from the subroutine can be effected. This is
accomplished automatically by the hardware. The contents of
the X register (16 bits) is stored in memory at the locations
specified by the S register (files A, B). The S register is
decremented by two prior to storing and left pointing at the
l6-bit operand. The current program counter contents is
stored in the X register. The effective address is placed

in PC and in P. M can be 1 through 5.

(X) ¥, (PC)~>(X), EA~>(PC), EA~>(P) Affected: P, S, X

4. MEMORY AND INPUT/OUTPUT CHARACTERISTICS

INTRODUCTION

The interface point for memory modules and input/output device
controllers (IODC's) is the same Universal bus. The central
processor uses the bus to communicate with memory locations or
with I/O controllers. For all load and store operations an

I/0 controller is treated like a memory location with an address
equal to or greater than 61,44010 (F00016).

DATA AND ADDRESS LINES

DATA BUS

The data bus consists of eight lines which are designated DBO0O
through DB07. These lines represent a data byte to or from
either memory or an IODC. The logic levels are:

0 v 0.45 v = logical 1

logical O

+3 v to +5 v

ADDRESS BUS

The address bus consists of 16 lines which are designated ABOO
through AB15. These lines represent either a memory address
(0-61,339) or an IODC address (61,440-65,535). The logic
levels are:

0 v ¥o0.45 v = logical 1

+3 v to +5 v logical 0
CONTROL LINES

The control lines used in the memory and I/O interface are des-
cribed, mnemonics given, and source identified in table 4-1.

Table 4-1.

Control Lines

Signal

Mnemonic

Source

CPU

MEM | I/O

Meaning

SYNCHRONOUS
DEVICE

I/0 REQUEST

I/0 REQUEST

I/0
ACKNOWLEDGE

1/0 DONE

I/0 NOT
BUSY

SERIAL I/O
PRIORITY

DSYN

IORQ

INTR

IACK

IDON

IOBY

INPO/
INPI

This line is enabled
by all standard memory
modules and some I/O0
controllers. Ready
response of this mod-
ule will be synchron-
ous with the CPU clock
and saves a clock
cycle.

This line is activated
by an I/0 device wish-
ing to do an automatic
transfer to/from mem-
ory or operational reg-
isters.

This line is activated
by an I/O controller
wishing to do an inter-
rupt.

CPU response to IORQ
when it has reached a
point where it can re-
lease the bus for use
by an I/0 controller.

This line is activated
by an I/0 device when
it releases the bus
back to the computer.

CPU response to IDON.
Used by I/0 controller
to turn off IDON.

Serial chain for I/0
device controllers to
establish priority
during competitive
interrupt requests.

Signal

Mnemonic

Source

CPU

MEM

1,/0

Meaning

SERIAL PRI-
ORITY LINE
FOR AUTO-
MATIC I/0O

INITIATE
READ

INITIATE
WRITE

MEMORY OR
I1/0 BUSY

DATA READY

IOPO/
IOPI

RDIN

WTIN

BUSY

DRDY

Serial chain for I/O
device controllers to
establish priority
during competitive re-
quests for automatic
I/0.

Read Initiate from the
CPU starts a memory
read cycle or an I/0
transfer to the accum-
ulator. Read Initiate
from an I/0 controller
occurs during auto-
matic block I/O.

Write Initiate from
the CPU starts a mem-
ory write cycle or an
I/0 transfer from the
accumulator. Write
Initiate from an I/0
controller occurs dur-
ing automatic block
1/0.

Busy from a memory or
I/0 module will arrest
the CPU at the point
where it is about to
change address lines on
the bus. Allows synch-
ronous memory operations
and closed-loop I/0.

Data Ready from a mem-
ory or I/O module indi-
cates the completion of
the read access time.

The CPU or I/0 control-

"ler pauses and waits

for this line before
sampling the data bus.

Signal

Mnemonic

Source

CPU

MEM

I/0

Meaning

INTERRUPT
REQUEST

MASTER
RESET

ADDRESS
PRE-
EMPTED

-
Z
o
w

H
2
o]
N

(!
2
o)
=

-
2
o
o

MRST

X

These lines are activated
by an I/O interrupting
device when its priority
level is higher than the
current level and it
wishes the CPU to take
some immediate action.
The CPU executes a level

‘change to a new register

set at the base location
supplied on the encoded
lines. For example, a
code of 0100 causes a
level change to the reg-
ister set at location

40;¢.

This line is used to ini-
tialize all I/0O device
controllers.

High priority memory mod-
ule indicates it has an
address the same as ano-
ther memory module. The
second memory module
should ignore the address;
e.g., in basic, op reg-
isters are mapped into
0-0F of main memory. When
high-speed file of 16
bytes is inserted, it
assumes addresses 0-0F
and should disable main
memory for those addres-
ses. This line is also
used to enable/disable
parity generation and
checking when the CPU
option board is in the
system. When this line
is enabled, parity gene-
ration and checking is
disabled.

Source

Signal Mnemonic Meaning
CPU |MEM | I/0
CURRENT CL3 X Indicates current pro-
LEVEL cessor priority level.
CL2
CL1
CLO

OPTIONAL LINES

PARITY DATA BIT - MDOS8

A ninth memory or I/0 data bit is provided for the optional
parity generation, check feature. This bit is active for any
memory or I/O transfer when the parity option is installed.

PARITY ERROR STATUS LINE
When the optional parity checker detects a parity error on a
memory read, or an I1/0 controller detects a parity error on a

data byte transfer, this status line causes a program inter-
ruption to a programmable interrupt level.

MEMORY CYCLE

ADD - Address (CPU)

X X
Unit Select (Internal to Memory) , __
Synchronous Device (Memory)————————-\ Ve
BUSY - Busy (Memory) \ /-——-————(a)
RDIN - Read Initiate (CPU) —___/ (b)
DRDY - Data Ready (Memory) \ , (c)

(a) Turns off when internal memory cycle is complete.
(b) Turns off when data ready turns on.
(c) Determined by memory access time.

The beginning of a memory cycle is defined by the Read Initiate
(or Write Initiate) line. Prior to this the address must have
been applied to the bus and the bus given time to settle. This
is accomplished by delaying one CPU clock time from address to
Read Initiate.

Read Initiate starts the selected memory module through a read
cycle in nondestructive memory or through a Read/Restore cycle
if destructive.

Data Ready identifies the point when data access from memory
storage is complete and data is on the bus.

Busy is generated by the memory module to identify the total
cycle time. It prevents the CPU from initiating a new cycle
or changing the memory address until the restore operation has
been performed (as for example in a magnetic core memory).

For high-speed files or some ROM's, Busy may go "off" with
Data Ready going "on" to signify that the cycle is complete
at the same time that the data access is complete.

Device Synchronous indicates to the CPU that the return of
"Data Ready" is synchronous to the CPU clock. The CPU loads
the memory bus data on the next clock pulse, thereby elimin-
ating the time lost in synchronizing the Data Ready line.

A memory module need not use the line, but for minimum access
time it is recommended.

INPUT/OUTPUT CYCLE

The basic criterion for input/output device controllers is

that they look like memory modules to the CPU. The CPU instruc-
tions Read I/0, Write I/O are similar to the memory Load and
Store instructions. The only real difference is the address

value.

ADD - Address (CPU)

X X
Unit Select (Internal to IODC)
) W—
Synchronous Device (IODC) —_— —
BUSY - Busy (IODC) \ s

RDIN - Read Initiate (CPU) —____/

DRDY - Data Ready (Memory)
J S—

The timing is similar to a memory cycle with the IODC acting
as one or more 8-bit storage registers addressable by the CPU.

CAPACITY

The total mix of memory modules and I/O device controllers in
the basic chassis is limited to 12. These can be divided
between them in any mix.

The expansion capacity is limited by the number of electrical
sources and loads each bus line can accommodate.

4-7

To expand this number of attachments, an interface expander

board is used. This expander adds a driver-receiver pair to
each line and uses one of the available loads. The expander
allows an additional 10 devices (memory or I/O controllers)

to be added. For highest instruction execution rate, memory
modules should be placed before the expander.

INPUT/OUTPUT DEVICE CONTROLLERS

The input/output device controllers (IODC's) for the ee 200
consist of an I/0 bus interface and control section and a
machine control section.

The I/0 bus interface and control sections are of two types:
(1) those that handle transfers under program control only;

and (2) those that include automatic block transfer capability.
Within these two categories, the design is similar for all
controllers.

The machine control circuits are different for each device to
be controlled. They vary from simple registers and multi-
plexers for digital input/output interface boards to long
sequential controllers and registers for more sophisticated
machines; e.g., magnetic tape units.

PROGRAM CONTROL

Program control of an IODC means total software manipulation
of a data transfer or control function. 1In general, it re-
quires the following:

+ Execution of a control instruction to alert the de-
vice to get ready for transfer; e.g., start paper
tape reader.

+ Execution of an instruction to determine device
readiness to transfer a piece of data; e.g., test
or sense status.

+ Execution of an instruction which will transfer the
data unequivocally; i.e., open-loop.

AUTOMATIC BLOCK TRANSFER

Automatic block transfer capability significantly reduces
software overhead. This capability is achieved by adding
address generating and memory control capability to the basic
hardware. The address generator is a register which is
loaded via a program control transfer with the starting
address of the block to be transferred. When the machine

control is ready, a data byte is automatically transferred
into or out of memory at the desired address. The address is
updated as each transfer occurs until the end address is
reached. At this time, the process is terminated.

A device coupler with automatic block transfer capability
also has program transfer capability.

L3

DEVICE ADDRESS ASSIGNMENT

The address to an IODC is 16 bits in length. Bits 12 through
15 form the I/0 flag and are all "ones" for input/output ope-
rations. Bits 0 through 11 are the device address and function

expanslon blts.

Bits 10 and '11: of the device address can be changed by instal-
ling jumpers on the IODC board. This enables the use of more
than one of the same type peripheral device in a single system.

The 12-bit address field provides a total of 4,096 device

addresses. The address plus the output data byte (or word)
allows 24 or 32 bits for control.

SERIAL TELETYPE

Included in the basic hardware is a teletype interface for an
ASR 33 or 35 Teletype. This serial channel is not a part of
the bus system but resides instead inside the CPU.

The majority of the work in using this interface is in the pro-
gram.

The Enable Link Out instruction (ELO) gates the content of the
link flag to the serial output channel, thereby sending a

MARK (1) or SPACE (0) to the Teletype. The processor program
then times out the required period and changes to the next bit

of the code to be sent.

When completed, the line must be returned to the MARK (1) con-
dition which is the quiescent state for teletypes.

The Branch on Teletype MARK instruction (BTM) is dedicated to
detecting the state of the serial input line from the Teletype.

To monitor for the initial MARK to SPACE transition, the com-
puter must constantly examine the line. When it detects the
initial transition it uses a timing loop similar to the output
operation to mark off a bit period before sampling the line.

All the timing, searching, assembly for input; as well as the
disassembly and timing for output are accomplished by software.

4-9

5. INTERRUPT STRUCTURE

INTRODUCTION

The ee 200 Computer was designed for real-time systems applica-
tions. This requires the system to be responsive to a variety
of external stimuli such as external alarms, end-of-block sig-
nals for I/0 device controllers, timing flags, etc. The fre-
quency and urgency of these conditions are not always related.
For example, a power-loss signal from the power supply seldom
occurs but has extreme urgency. A real-time clock interrupt
occurs frequengly, but servicing it is a nonurgent requirement.

To accommodate this range of frequency and urgency requires
rapid attention by the processor; i.e., low overhead time in
arresting the current process and transferring to the interrupt
handling subroutine, and a priority scheme where conflicting
interrupts are serviced in the proper order.

EXTERNAL INTERRUPT LINES

When an interrupting source desires attention, it first exam-
ines the Current Level Status lines (CLO-CL3) from the CPU.

If the current processor level is below that of the requesting
device, it supplies an Interrupt Request Line (INRQ). When

the request is acknowledged by the processor (INAK), the inter-
rupting device supplies a 4-bit code (1-F) on lines INRO-INR3.
Upon completion of the current instruction, the processor auto-
matically jumps to a routine whose address is stored in the

P register at the level defined by the encoded lines.

Table 5-1 shows the memory locations associated with each in-

terrupt level. These locations must be initialized prior to
servicing interrupt requests.

5-1

Table 5-1. Interrupt Level Memory Addresses

Interrupt Corresponding Subroutine Address
Line Code Interrupt Stored in Memory
Level Locations (P Register)

0001 ILO1 1E, 1F

0010 IL02 2E, 2F

0011 ILO3 3E, 3F

0100 IL04 4E, 4F

0101 , ILOS 5E, 5F

0110 ILO6 6E, 6F

0111 ILO7 7E, 7F

1000 ILO8 8E, 8F

1001 ILO9 9E, 9F

1010 ILOA AE, AF

1011 ILOB BE, BF

1100 ILOC CE, CF

1101 ILOD DE, DF

1110 ILOE EE, EF

1111 | ILOF FE, FF

The 15 levels have attendant priorities; ILOF is the highest
and ILOl is the lowest. During competitive situations, a
higher priority level will always gain access ahead of a lower
priority level. If entry has already been made to a lower
priority handling routine, the higher level can immediately
draw the processor out of the lower routine to service the
higher level. When the higher level is complete, a linkage
is available to allow the processor to thread back to the
lower level program. A similar capability can often be
claimed for other machines but it is typically effected with
significant software overhead. This software overhead mani-
fests itself in real time during which the machine is

nonresponsive to higher levels. In the ee 200 Computer this
time is never more than one instruction execution time.

There are no noninterruptible instruction sequences. A HLT

instruction is interruptible. An interrupt moves the machine
to the Run State at the interrupt level program.

DYNAMIC OPERATIONAL REGISTER ALLOCATION

Handling a real time environment involves rapid context switch-
ing; i.e., moving from one process to another with a minimum
of overhead in time and instructions.

The usual approach is to allow a jump and save instruction to
store the current program counter value. Switching of flags
(fault, zero, etc.) and storing of current operands requires
significant hardware or several software steps (which must be
noninterruptible).

In the ee 200 Computer, this entire process is eliminated. Con-
text switching (the changing of processor environments) is
accomplished entirely automatically with no need to save and
restore register values and flags.

The operational registers, accumulators, index registers, etc.,
are addressable in memory locations. Normal background pro-
cesses are conducted with the operational registers residing

in memory locations 0 through F (the first 16 bytes). Interrupt
levels which are higher than the background process in priority
allow the register definition to be reallocated to successive
locations in memory.

The actual location is related to interrupt line number. ILOl
will cause relocation of operational registers to locations
10-1F; ILOF causes reallocation to FO-FF.

Each time a new allocation is made, a link to the old level is
saved. In this manner higher priority interrupts cause immed-
iate context switching with the ability to thread back through
the lower processes when the high one is complete. Eventually
this linkage will cause the register allocation to return to
0-F, the normal background registers.

Figure 5-1 shows the register allocation by interrupt level.

PRIORITY WITHIN A LEVEL

More than one interrupting device may share an interrupt level.
When an interrupt occurs on a shared level, the CPU polls the
sharing devices to determine which one initiated the interrupt.

PROCESS ADDRESS

0 AQ

BO

X0

YO0

Background Z0

Process SO

CO

Bl

Interrupt X1

Level 1 Y1l

ILO1 Z1

Sl

Cl

1F Pl

20 A2

Interrupt B2

Level 2 X2

ILO2 Y2

Z2

S2

C2

2F P2

FO AF

BF

Interrupt XF

Level F YF

ILOF ZF

SF

CF

FF PF

Figure 5-1. Register Allocation by Interrupt Level

5-4

6. CONTROLS AND INDICATORS

BASIC CONTROL PANEL

The basic control panel, shown in figure 6-1, connects directly
into the CPU and controls processor fundamentals such as RUN,
HLT, RESET, etc. The basic control panel controls and indi-
cators are described in the following paragraphs.

SENSE Switches

There are four two-position sense switches located on the control
panel. The switches are designated 1 through 4. The state of
each switch is sensed by a branch instruction. If a switch is

ON (DOWN) when sensed, a branch is made. If a switch is OFF (UP)
when sensed, the next instruction in sequence is executed.

RUN Switch and Indicator

The RUN switch is a pushbutton switch. Pressing RUN puts the
computer in the RUN mode and program execution begins. The RUN
indicator is located immediately above the switch and is illum-
inated when the computer is in the RUN mode.

HALT Switch and Indicator

The HALT switch is a pushbutton switch. If the computer is in
the RUN mode and HALT is pressed, the computer will go to the
HALT (WAIT) mode at the end of the current instruction. If the
computer is in the HALT mode and HALT is pressed, a single
instruction is executed. The HALT indicator is located immed-
iately above the switch and is illuminated when the computer is
in the HALT mode.

RESET Switch

The RESET switch is a pushbutton switch. Pressing RESET initi=
alizes all CPU and input/output device coupler logic.

LOAD Switch
The LOAD switch ie a pushbutton switeh. Pressing LOAD forees

the CPU to the RUN state and initiates program loading frem
the device as specified in a ROM loader program.

COMPUTER CONTROLS sense
run halt reset restart load save

(00

Figure 6-1. Computer Controls

RESTART

The RESTART switch is a pushbutton switch. Pressing RESTART
forces the CPU to the RUN state with an initial address deter-
mined by sense switches 1 and 2. Switch 1 causes the start
address to be taken from 1A and lB16 Switch 2 causes the
address to be taken from 2A16 and 2B16: Switches 1 and 2 will

refer to 3A16 and 3B16.

LINK Indicator

The LINK indicator is ON when the link condition flip-flop is
set and is OFF when the flip-flop is reset.

OVERFLOW Indicator

The OVERFLOW indicator is ON when the fault condition flip-flop
is set and is OFF when the fault condition flip-flop is reset.

TTY LOAD

Depression of TTY Load switch causes automatic load from the
Teletype directly via the CPU.

7. PACKAGING TECHNIQUES

INTRODUCTION

This section describes the packaging techniques used in con-
structing the ee 200 Computer.

MECHANICAL CONFIGURATION

The basic computer housing is a rack-mounted chassis with dim-
ensions as follows:

Height: 8.75 inches
Width: 19 inches
Depth: 18.5 inches

The printed-circuit boards are mounted vertically and plug in
from the rear of the chassis. Circuit board dimensions are:

Height: 8 inches

Length: 14.3 inches
Each circuit board has one connector on the front edge of the
board (Pl) and either one or two connectors on the rear (P2
and P3). Connector Pl plugs into the input/output memory bus.

Connectors P2 and P3 (if required) are used for interboard
connections and I/0 device connection.

CARD SLOT DEDICATION

When viewing the chassis from the card entry view, card slots
are numbered 1 through 16, from left to right. Card slot
assignments are:

Slot Usage

1-3 CPU (Control Board 1, Control Board 2,
Data Board)

4 ROM Loader

5-16 High-speed register files, MOS main memory,
core main memory, all peripheral device
controllers

POWER SUPPLY

The self-cooled power supply is of modular construction and
is mounted separately from the computer to allow customizing
for expanded systems. Connection to the computer is via a
cable of up to 5 feet in length. Remote sensing of the
supplied voltages is provided. The ac input is 115/230 v ac,
*10%, 47-63 Hz. The power supply dimensions are:

Height: 6.5 inches
Width: 11 inches
Depth: 6 inches

APPENDIX A

INSTRUCTION LIST

oP CONDITION
CODE MNEMONIC NAME OP STATEMENT FLAGS
FLMV
Control (1 Byte)
00 HLT Wait for Interrupt (Halt) (BC)>(P), O>(K) . « « « « - - - -
01 NOP No Operation None « « & v o o & - - - -
02 SF Set Fault 1+(F) 1 ---
03 RF Reset Fault 0+(F) s e e o e e e e s s 0 - - -
04 EI Enable Interrupt System 1+(I) s e e s e e e e e --—--
05 DI Disable Interrupt System 0-(I) e e e e e e e e -=- - -
06 SL Set Link 1+(L) e e e e e e e -1 - -
07 RL Reset Link 0>(L) Ce e e e e e e e -0 - -
08 CL Complement Link (L) +(L) C e e e e e e e c - -
09 RSR Return from Subroutine (X)+(PC), M (X) - - - -
0A RI Return from Interrupt (pC) ~(P), Status-Cy,_;g
Cqq*LV 7. .. cccec
0B RIM Return from Interrupt
Modified Status*Clz_lsl Cy977LV . . ccce
oc ELO Enable Link Out (L) *Serial TTY Interface . --—-
0D PCX Transfer PC to X (PC)*(X) & ¢ o o o « « o« & - -- -
OE DLY Delay 4.55 milliseconds Delay 4.55 milliseconds . - ===
Conditional Branches (2 Bytes) If Condition True, (PC)+b=+(PC).
Otherwise, continue with next
Instruction.
10 BL Branch if Link Set (L)=1 P e e e e e e e e s -— - -
11 BNL Branch if Link Not Set (L)=0 e e v e e e a o . -— -~
12 BF Branch if Fault Set (F)=1 v e e e e e e e e -—-—
13 BNF Branch if Fault Not Set (F)=0 e e e o e o . . - - - -
14 BZ Branch if Equal to Zero (V)=1 e e e e e e e e - - - -
15 BNZ Branch if Not Equal to
Zero (V)=0 e e e e e e e e --— -
16 BM Branch if Minus Set (M)=1 © e e e e e e e e -—— -
17 BP Branch on Positive (M)=0 e e e e e e e e e ----
18 BGZ Branch if Greater than
Zero (M) A (V) =0 e e e e e - - -
19 BLE Branch if Less Than or
Equal to Zero M) V (V) =1 - —— -
1A BS1 Branch if Sense Switch 1
Set SSW1l=1 « e s e e e o o o - - -
1B BS2 Branch if Sense Switch 2
Set SSwW2=1 e e e e s e s e . - - - -
1C BS3 Branch if Sense Switch 3
Set SSW3=1 e e e e e e e e - - - =
1D BS4 Branch if Sense Switch 4
Set SSW4=1 e e e e e e e e e - - -
1E BTM Branch on Teletype MARK MARK on TTY Input Line . . ----
1F BEP Branch on Even Parity If CPU Option Board In and :
Parity Even. If No Option
Board, Branch Unconditional. - - - -
Single Register Operations (1 or 2 Bytes)
30(20) INR(B) Increment Register by 1 (sr)+1+(sr) e e e e e e c-cc
31(21) DCR(B) Decrement Register by 1 (sr)-1~+(sr) C e e e e e c-cc
32(22) CLR(B) Clear Register 0's~*(sr) c e e e e e e . 0001
33(23) 1IVR(B) Invert Register (l's
complement) (sT)~+(sr) e i e e e e .. ==cec
34 (24) SRR(B) Sshift Right (sr)x+l'>(sr)x (sr)o+(L) . - ccc
’
35(25) SLR(B) Shift Left (sr)x+(sr)x+l' (sr)ls (7)»(1‘,), 0->(sr)0 ccgc
36(26) RRR(B) Rotate Right (sr)x+l»(sr)x’ (sr)ow(L), (L)W(sr)15(7) - ccc
37(27) RLR(B) Rotate Left (sr)x+(sr)x+l, (sr)15(7)*(L), (L)-»(sr)0 cccc
38(28) INA(B) Increment A by 1 (A)+1+(n) e e e e e e c-cc
39(29) DCA(B) Decrement A by 1 (a)-1+(a) e e e e e e c-cc
3A(2A) CLA(B) Clear A 0+(A) . P e e e . 0001
3B(2B) IVA(B) Invert A (B) »(n) e e i e e e . =—--cec
3C(2C) SRA(B) Shift Right A (a) +(A) (a) 4> (L) . -ccc
x+1 X, 0
3D(2D) SLA(B) Shift Left A (A)x»(A)X+1, (A)15(7)+(L), 0+(a) o . . cccc
3E INX Increment X (Word) by 1 (X)+1+(X) « e s e e e o c-cc
3F DCX Decrement X (Word) by 1 (X)=1+(X) e e e ele o o o c-cc

op
CODE

MNEMONIC

APPENDIX A
INSTURCTION LIST (CONT'D)

NAME

Double Register Operations (1 or 2 Bytes)

50(40)
51(41)
52(42)
53(43)
54(44)
55(45)
58(48)
59(49)
SA(4A)
SB(4B)
5C(4C)
SD(4D)
SE(4E)
SF(4F)

Memory Reference (1,

ADD(B)
SUB(B)
AND(B)
ORI (B)
ORE(B)
XFR(B)
AAB(B)
SAB(B)
NAB (B)
XAX(B)
XAY (B)
XAB(B)
XAZ(B)
XAS (B)

Add

Subtract

AND

OR Inclusive

OR Exclusive

Transfer

Add A Register and B Register
Subtract A Register and B Register
AND A Register and B Register
Transfer A Register to X Register
Transfer A Register to Y Register
Transfer A Register to B Register
Transfer A Register to Z Register
Transfer A Register to S Register

2 or 3 Bytes)

90(80)
BO(A0)
DO (CO)
FO(E0)

NOTES

1. When an instruction can be used in either the byte or the word mode, the hexadecimal operation
the word mode is given first, followed by the byte operation code in parenthesis.

LDA(B)
STA(B)
LDB(B)
STB(B)
LDX
STX
JMP
JSR

Load A Register
Store A Register
Load B Register
Store B Register
Load X Register
Store X Register
Jump

Jump to Subroutine

OP_STATEMENT

(dr)+(sr)-+(dr)
(sr)-(dr)~>(dr)
(dr) A (sr) » (dr)
(dr) V (sr) » (dr)
(dr) ¥ (sr) + (dr)
(sr)+(dr)
(B)+(A)+(B)
(A)-(B)+(B)

(B) A (A) » (B)
(A)+(X)

(A)>(Y)

(A)~+(B)

(A)+(2)

(A)~>(S)

(EA)~(A)
(A)~(EA)
(EA)~(B)
(B)>(EA)
(EA)~+(X)
(X)+(EA)
(EA)~(PC)

(X)+, (PC)+(X), EA>(PC), EA+(P)

CONDITION

FLAGS

FLMV

0OO0OO0O0O000000000o0
O0OO0O0O00O000000O0

cc

cc
--cec
--cec
--cc
--cc
--cc
--cc
code for

2. Instructions which can be used in either the byte or the word mode are indicated by a '"B'" enclosed in
parenthesis immediately following the instruction mnemonic.

3. Notation used in the operation statements is described in section two.

4. Condition flag notation is as follows:

A-2

Reset
Set

LN e B)

Conditionally Set/Reset
Not Affected

APPENDIX B

HEXADECIMAL/DECIMAL INTEGERS

Hex Decimal]Hex Decimal Hex Decimal |Hex Decimal |Hex|Decimal|Hex|Decimal{Hex |Decimal [Hex|Decimal |Hex|Decimal
0 0] 0 ol 0 0 0 0] 0 0| 0 0} 0 o} o 0 0 0
1 4,294,967,296) 1 268,435,456(1 16,777,216 1 1,048,576 1 | 65,536] 1 4,096 | 1 256 | 1 16 1 1
2 8,589,934,592} 2 536,870,912 2 | 33,554,432| 2| 2,097,152} 2 |131,072| 2 | 8,192 | 2 512 | 2 32 2 2
3 112,884,901,888] 3 805,306,368 3 | 50,331,648| 3| 3,145,728| 3 |196,608| 3 [12,288 | 3 768 | 3 48 3 3
4 117,179,869,184| 4 |1,073,741,824| 4 | 67,108,864 4 | 4,194,304] 4 |262,144] 4 116,384 | 4 1,024 | 4 64 4 4
s |21,474,836,480 5 |1,342,177,280f 5 | 83,886,080 5 | 5,242,880| 5 |327,680{ 5 |20,480 | 5 1,280 | 5 80 S S
6 |25,769,803,776] 6 |1,610,612,736| 6 |100,663,296| 6 | 6,291,456 6 | 393,216/ 6 [24,576 | 6 1,536 | 6 96 6 6
7 |30,064,771,072| 7 |1,879,048,192| 7 |177,440,512| 7 | 7,340,032} 7 1458,752| 7 |28,672 | 7 1,792 | 7 112 7 7
8 |34,359,738,368| 8 |2,147,483,648 8 |134,217,728| 8 8,388,603[1@ 524,288| 8 |32,768 | 8 | 2,048 | 8 128 8 8
9 | 38,654,705,664| 9 |2,415,919,104] 9 |150,994,944] 9 9,437,184T 9 1589,824| 9 [36,864 | 9 | 2,304 | 9 144 9 9
A |42,949,672,960| A |2,684,354,560] A |167,772,160| A |10,485,760f A |655,360| A |40,960 | A | 2,560 | A 160 A 10
B |47,244,640,256{ B |2,952,790,016] B |184,549,376(B |11,534,336] B |720,896| B |45,056 | B | 2,816 | B 176 B 11
Cc |{51,539,607,552} C |3,221,225,472| C |201,326,592] C |12,582,912| C |786,432| C |49,152 | C | 3,072 | C 192 C 12
D |55,834,574,848| D |3,489,660,928 D | 218,103,808 D |13,631,488] D |851,968} D {53,248 | D | 3,328 | D 208 D 13
E |60,129,542,144| E | 3,758,096,384{ E |234,881,024| E |14,680,0064| E |917,504| E |57,344 | E | 3,584 | E 224 E 14
F | 64,424,509,440| F |4,026,531,840| F |251,658,240| F |15,728,640] F |983,040| F 61,440 | F | 3,840 | F 240 F 15

9 8 . 7 6 S 4 3 2 1

DECIMAL TO HEXADECIMAL

To convert decimal to hexadecimal using the table:

HEXADECIMAL TO DECIMAL
This table allows for conversion of hexadecimal numbers

of up to nine characters in length to their decimal

(1) Select the largest decimal number that is equal to
equivalents. or less than the number to be converted. Record
Locate the columns in the table corresponding to the the hexadecimal equivalent as the most-significant
position of each character of the hexadecimal number. character of the hexadecimal number.

Record the decimal equivalents of the characters. The (2) Subtract the selected number from the number to
sum of these numbers is the converted number. lexa- be converted.
decimal number F4D is used as an example. (3) Select the decimal number that is equal to or less
Hex. Char. Column Decimal Equiv. than the result obtained from step 2 and record
F 3 3,840 the hexadecimal equivalent as the second most-
2 64 significant digit.
1 13 (4) Continue the process until there is no remainder.
3,917 = F4D Decimal number 3,917 is used as the example.

Decimal Number
from Table

To convert a number without using the table:

. . . X h
(1) Assign the units decimal equivalent to eac 3,840 3,917
hexadecimal character. -3,840 —»F4D
(2) Starting with the decimal equivalent of the most- 64 21///’
significant character, multiply by 16, add the 13 13
decimal equivalent of the next most-significant -13
character to the result and again multiply by 16. Conversion without using the table is accomplished by
(3) Repeat this process until the last character is successively dividing by 16 and collecting the remainders
added. in reverse order as shown below.
Hexadecimal number F4D is again used as the example. 244
16 3917
Hex. Char. Units Dec. Equiv. 32
F 15 15 71
X16 6;;.7
240
64
4 4] I
244 y
X16
3,904 16 'fz"
D 13 +13 84
3,917 = F4D 80
)
0

16 [T5.
\Fan

APPENDIX C

HEXADECIMAL/DECIMAL FRACTIONS

Hex |Decimal |Hex Decimal Hex Decimal Hex Decimal Hex Decimal
o .0000 |.00 |.0000 0000 |.000 |.0000 0000 0000 |.0000| .0000 0000 0000 0000| .00000{ .0000 0000 0000 0000 0000
T 10625 .01 |.0039 0625 |.001 |.0002 4414 0625 [.0001] .0000 1525 8789 0625| .00001| .0000 0095 3674 3164 0625
11350 1,02 10078 1250 |.002 |.0004 8828 1250 [.000Z| .0000 3051 7578 1250(.00002] .0000 0190 7348 6328 1250
—1—T1875 0% 10117 1875 [.003 ..0007 3242 1875 [.0003! .0000 4577 6367 1875 .00003 .0000 0286 1022 9492 1875
17550104 1. 0156 2500 |.004 |.0009 7656 2500 |.0004| .0000 6103 5156 2500| .00004| .0000 0381 4697 2656 2500
31751705 1.0105 3125 |.005 |.0012 2070 3125 |.0005| .0000 7629 3945 3125 .00005] .0000 0476 8371 5820 3125
13750106 10234 3750 |.006 |.0014 6484 3750 |.0006| .0000 9155 2734 3750 .00006[.0000 0572 2045 8984 3750
~———4375 107 10273 4375 | 007 |.0017 0808 4375 |.0007| .0001 0681 1523 4375 .00007| .0000 0667 5720 7148 4375
—8 15000 108 |.0312 5000].008 |.0019 §312 5000 |.0008| .0001 2207 0312 5000| .00008[.0000 0762 9394 5312 5000
5156351709 0357 5625 |.009 |, 0021 9726 5625 |.0000| 0001 3732 9101 5625 .00009| .0000 0858 3068 8476 5625
16750 T 0K 10390 6350 | 00A 10024 3140 6250 |.000A| 0001 5258 7890 6250] .0000A[.0000 0953 6743 1640 6250
5 T—€875 08 10379 6575 | 008 1 0026 8554 6875 |.000B| 0001 6784 6679 6875 .00008| .0000 1049 0417 4804 6875
7500 0C 10368 7500 1. 00C | 0070 20968 7500 |.000C| 0001 B310 5468 7500 .0000C| 0000 1144 4091 7968 7500
BT BT25 10D 0507 8125 |- 00D |- 0037 7382 3125 |.0000]| 0001 9836 4257 8125/ 000000000 1239 7766 1132 8125
E | .8750 [.0E [.0540G 7501 00F 10034 1796 8750 [.00 0007 1387 3046 RISN[. 0000T| L0000 1335 1440 4296 8750
T o3Ts 1 OF T 058% 9375 | 00F |, 00% &210 0375 [.000F| 0002 2888 1835 0375 .0000F[0000 1430 ST14 7460 9375
1 2 3 4 S

FRACTIONAL HEXADECIMAL TO DECIMAL

When using the table, fractional hexadecimal to decimal

conversion is accomplished in the same manner as for

integer conversion.

shown below:

Hexadecimal

.F4D is converted as

8125 _

Hex. Char. Column Decimal Equiv.
.F 1 L9375
.04 2 L0156 2500
.00D 3 .0031 7382

.9562 0882 8125

.F4D

Conversion without using the table is accomplished as

follows:
.F4D = .956298828125
F4D16 3917
.F4D = = —— = .956298828125
16 4096

FRACTIONAL DECIMAL 10 HEXADECIMAL

Fractional decimal to hexadecimal conversion is accomplished

in the same manncr as for intcger conversion when using the

table.

L9563
-.9375
.0188
-.0156
L0031
-.0031
.0000 0117

0000
2500
7500 0000
7382 8125
1875

= .04

= .00Db
"F4D

Decimal .9563 is converted as shown below.

Conversion without using thc tahle is accomplished by multi-

plying successively by 16 and collecting the integers from

the products.

L9563
X160
15.3008
X16
4.8128
X16

1370048
/

.F

0o N

17
34

68
137
274
549

1 099

AN -

16
33
67
134

268
536
073
147

294
589
179
359

719
438
877
755

511

s N =

16
32

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

AN

32
64
128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776

=]

W NOUTh_, WN~O

O ODOO0OO OO0 OO0 OO0 OO0 oo QOO0 OO0 OO0 OO N

APPENDIX D

TABLE OF POWERS OF TWO

|
=

.

- N o
N
(Sa]

(=]
(o))
N

.031
.015
.007

.003
.001
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000
.000
.000
.000

.000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

25

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

5
25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

45
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

5
25

625

312 5
156 25
078 125

039 062 5

D-1

APPENDIX E

TABLE OF POWERS OF SIXTEEN

16

=}

4

68

1 099

17 592

281 474

4 503 599

72 057 594

1 152 921 504

16
268
294
719
511
186
976
627
037
606

65
048
777
435
967
476
627
044
710
370
927
846

16
256
096
536
576
216
456
296
736
776
416
656
496
936
976

WOV WUND-=O

el e Sy
TEWN~=O

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	7-01
	7-02
	A-01
	A-02
	B-01
	C-01
	D-01
	E-01

