5-28-82 NEVADA ASSEMBLER PAGE 1

NEVADA ASSEMBLER

Users' Reference Manual

Copyright (C) 1982 by Ellis Computing

Ellis Computing
600 - 41lst Avenue
San Francisco, CA 94121
(415) 751-1522

CP/M and MP/M are registered trademarks of Digital Research
Corp. NEVADA ASSEMBLER is a trademark of Ellis Computing.

5-28-82

SECTION
1
2

NEVADA ASSEMBLER

NEVADA ASSEMBLER

AN ASSEMBLER FOR CP/M

TABLE OF CONTENTS

INTRODUCTION .

OPERATING PROCEDURES
HARDWARE REQUIREMENTS .
SOFTWARE REQUIREMENTS .
FILES ON DISTRIBUTION DISKETTE . .
FILE TYPE CONVENTIONS .

GETTING STARTED
EXECUTING THE ASSEMBLER

STARTUP .
EXECUTING THE
MEMORY USAGE
TERMINATION
STATEMENTS .
INTRODUCTION
LINE NUMBERS
LABEL FIELD

OPERATION FIELD

OPERAND FIELD

Register Names

Labels .
Constants
Expressions

High and Low Order byte

COMMENT FIELD

PSEUDO-OPERATIONS

. 0BJ

FILE

ERROR CODES AND MESSAGES .

APPENDICES .

8080 OPERATION CODES .

TABLE OF ASCII
SAMPLE ASSEMBLER LISTING
SAMPLE PROGRAM

REFERENCES

. . .

WOWWOOOWJJU DD B W

PAGE 2

5-28-82 NEVADA ASSEMBLER PAGE 3

SECTION 1
INTRODUCTION

The assembler translates a symbolic 8080 assembly language
program "source code" into the binary instructions "object
code" required by the computer to execute the program.

The assembler operates on standard CP/M text files. Each
line of a normal text file consists of the characters of
that line followed by a carriage return (0ODH) and a line
feed (0AH).

When the assembler is invoked, it is loaded into memory
starting at location 100H. It processes the source code
file in two passes. On the first pass, it builds a symbol
table containing all of the labels defined in the source
program. The symbol table begins at the memory location
immediately following the assembler; each entry in the table
is 7 bytes long. Certain errors may be detected during the
first pass, causing error messages to be output to an error
file (usually the console). On the second pass, the object
code is generated and usually output to an object code file.
In addition, a formatted listing of both source and object
code may be output to a listing f£ile, and the symbol table
may be output to a file. Any errors detected during this
pass cause messages to be output to the error file.

To abort the assembly process at any time, press the Control
and C keys. A

After the assembly runs to completion and no errors are
detected, the resulting object code file (type .0OBJ) can be
executed by typing RUNA and its name.
EXAMPLE:

RUNA PROG loads and executes a file called PROG.

5-28-82 NEVADA ASSEMBLER PAGE 4

SECTION 2

OPERATING PROCEDURES

HARDWARE REQUIREMENTS

1. 8080/Z80/8085 microprocessor.
Z80 is a trademark of Zilog.
2. A minimum of 32K RAM.
3. Any disk drive.
4. CRT or Video display and keyboard.

SOFTWARE REQUIREMENTS
Digital Research Corp's CP/M operating system

Version 1.4 or 2.2.
CP/M is a trademark of Digital Research Corp.

FILES ON THE DISTRIBUTION DISKETTE

ASSM.COM is the assembler program.
RUNA.COM is the runtime loader.

FILE TYPE CONVENTIONS

Assembly source code files .ASM
COBOL source code files .CBL
FORTRAN source code files .FOR
Object code run time files .0BJ
Printer listing files ' . PRN
Symbol table listing files .SYM
Error files .ERR
Work files .WRK

GETTING STARTED

First, prepare a CP/M system's diskette for use as your
NEVADA ASSEMBLER operations diskette.

Then insert the newly created CP/M diskette in disk drive A,
and insert the NEVADA ASSEMBLER diskette in drive B and type
Control C to initialize CP/M. Now copy all the files from
the NEVADA ASSEMBLER diskette onto the CP/M diskette.

PIP A:=B:* *[VO]

At this point, put the NEVADA ASSEMBLER diskette in a safe
place. You will not need it unless something happens to
your operations diskette. By the way, back up your
operations diskette with a copy each week! If your system
malfunctions you can then pat yourself on the back for

5-28-82 NEVADA ASSEMBLER PAGE 5
having a safe back up copy of your work.

Now, boot up the newly created NEVADA ASSEMBLER operations
diskette. 'Notice that CP/M displays the amount of memory
for which this version of CP/M has been specialized. The
amount of memory available determines the size of the
programs that can be assembled.. The more memory available
the larger the program that can be assembled.

EXECUTING THE ASSEMBLER

The assembler is invoked by a CP/M command with the
following formats.

FORMAT-1:
ASSM file<CR>
FORMAT-2:
ASSM file[.uuu u$S#LP0O]<CR>
DESCRIPTION:
where:
file = [unit:]source-file-name
The name of the source code input file.
This parameter must be present; all others
are optional.
[1 = optional parameters

unit: = disk drive unit letter. If this parameter is
not included, the default drive is used.

u = the disk drive unit letter or the letter "x"
for output to the console, or the letter "Z"
for no output.

u for position one.
This single character code, if present,
represents the drive onto which the listing
file is to be written. If this argument is
absent then the listing will be written on
the default drive. Also, if the character
is an X the listing will be sent to the
console. If the character is a Z then no
listing is produced.

5-28-82

NEVADA ASSEMBLER PAGE 6

u for position two.

The second letter of the file type
represents the drive for the object (.0BJ)
file. If this argument is absent then the
file will be written on the default drive.
If this character is a Z then no object
code file will be produced.

u for position three.

The third letter of the file type represents
the drive for the error (.ERR) file. If this
argument is absent the console will be used
to display the errors. This argument must be
followed by a space or carriage return.

u for position one of the second set.

<$options>

+L

The first letter of the second set of
arguments represents the drive for the
symbol (.SYM) file. If this argument is
absent no symbol table file will be
produced.

Various assembler options may be controlled
by following the $ with one or more of the
following option specifiers. The list of
options is terminated by a carriage return.
For those options that may be preceded by +
or -, the + is optional and will be assumed
if absent.

The source file has line numbers in column
1-4 of each line.
The source file has no line numbers.

If neither of these is specified, the
assembler will examine the first line to
determine if the file has line numbers.

Instructs the assembler to generate its own
line numbers in the listing in place of
those in the source file (if any).

Instructs the assembler to paginate output
to the listing file. The file name of the
source code file will be printed on the top
left-hand corner of each page. A page
number will be printed on the top right-hand
corner of each page. If a TITL
pseudo-operation occurs in the source code,
a one- ot two-line title will be centered at.
the top of each page.

5-28-82 NEVADA ASSEMBLER PAGE 7

0,1,2, or 3 Specifies the spacing on the listing:
0 = no additional spacing
1 = 72 column output
2 = 80 column output (default)
3 = 132 column output
EXAMPLES:
ASSM TST

ASSM TST.AAX AS-L#PO

STARTUP

To assemble your program, type ASSM and the source file
name. The first thing that happens is the copyright message
is displayed on the screen and the disk drive(s) begin
working. When the assembly process is complete, a message
will be displayed and machine control will return to the
operating system.

A>DASSM source-file<CR>

NEVADA ASSEMBLER (C) COPYRIGHT 1982
ELLIS COMPUTING

REV 2.0 ASSEMBLING

NO ASSEMBLY ERRORS. . 4 LABELS WERE DEFINED.
A>

EXECUTING THE .OBJ FILE

To execute the program, type RUNA and the file-name. The
assembly process creates a file with the extension type of
(.0BJ). This object program file will be loaded into memory
and executed.

A>RUNA file-name

There are several options that also can be specified with
the RUNA command.

RUNA file-name[.ZLC]

Z = zero memory before loading the .0BJ file.
E\;\igad the program but don't execute it.
Control returns to CP/M.

C = create a .COM file for later execution.
Control returns to CP/M. Remember .COM files
alway begin execution at location 100H.

Example:

5-28-82 NEVADA ASSEMBLER PAGE 8

A>RUNA PROG.ZC this will zero memory and create a file
named PROG.COM.
A>RUNA PROG.L this will load PROG but not execute it.

NOTE: These object code files (.0BJ), if properly orged,
can also be loaded and executed by the NEVADA COBOL and
NEVADA FORTRAN run time packages.

MEMORY USAGE

The ASSEMBLER program is read into memory starting at
location 100H and uses all memory available up to the bottom
of Cp/M.

The runtime package RUNA loads into memory at location 100H
and relocates itself to just below CP/M and then begins
loading your program.

TERMINATION

The normal termination of the assembly is signaled by the
display of the following messages and return to CP/M.

NO ASSEMBLY ERRORS. 4 LABELS WERE DEFINED.
a>

The assembly process can be interupted at any time by
pressing the Control and C keys.

5-28-82 NEVADA ASSEMBLER PAGE 9

SECTION 3

STATEMENTS

INTRODUCTION

An assembly language program (source code) is a series of
statements specifying the sequence of machine operations to
be performed by the program.

Each statement resides on a single line and may contain up
to four fields as well as an optional line number. These
fields, label, operation, operand, and comment, are scanned
from left to right by the assembler, and are separated by
spaces. The assembler can handle lines up to 80 characters
in length.

LINE NUMBERS

Line numbers in the range 0000-9999 may appear in columns
1-4. Line numbers need not be ordered and have no meaning
to the assembler, except that they appear in listings. Line
numbers may also make it easier to locate lines in the
source code file when it is being edited. The disk and
memory space required for normal text files will be
increased by five bytes per line if line numbers are used;
this may become significant for large files.

If line numbers are not used, the label field starts in
column 1 and the operation field may not start before column
2. If line numbers are used, they must be followed by at
least one space, so the label field starts in column 6 and
the operand many not start before column 7.

Once the starting column for the label has been established,
the same format must be followed throughout the file: either
all of the lines or none of the lines can have line numbers.
Any other file(s) assembled along with the main file (using
COPY pseudo-operation) must conform to the format of the
main file. : ‘

Example of source statements with line numbers:

__ Column
1234567 :
0001 LABEL ORA A label field must start at column 6.
0002 JNZ NEXT operation field starts at column 7
0003 ; (minimum) .

0004 LOOP MOV A,B operation field starts one space after
0005 * label.

5-28-82 NEVADA ASSEMBLER PAGE 10

Example of source statements without line numbers:

Column

1234567 j

LABEL ORA A label field must start at column 1.

JNZ NEXT operation field starts at column 2 (minimum).

LOOP MOV A,B operation field starts one space after 1label.

LABEL FIELD

The label field must start in column 1 of the line (column 6
if line numbers are used). A label gives the line a
symbolic name that can be referenced by any statement in the
program. Labels must start with an alphabetic character
(A-Z,a-z), and may consist of any number of characters,
though the assembler will ignore all characters beyond the
fifth; e.g. the labels BRIDGE, BRIDG and BRIDGET cannot be
distinguished by the assembler. A duplicate label error
will occur if any two labels in a program begin with the
same five letters.

A label may be separated from the operations field by a
colon (:) insteat of, or in addition to, a blank.

The labels A, B, C, D, E, H, L, M, PSW, and SP are
pre-defined by the assembler to serve as symbolic names for
the 8080 registers. They must not appear in the label
field. '

An asterisk (*) or semi-colon (;) in place of a label in
column 1 (column 6 if line numbers are used) will designate
the entire line as a comment line.

OPERATION FIELD

The operation field contains either 8080 ins
mnemonics or assembler pseudo-operation mnemonics. Appendix
1 summarizes the standard instruction mnemonics recognized
by the assembler, and Appendix 4 lists several references to
consult if more information on the 8080 machine instructions
is needed. Assembler pseudo-operations are directives that
control various aspects of the assembly process, such as
storage allocation, conditional assembly, file inclusion,

and listing control.

v
-

.
v An
LA UV WALVl

An operation mnemonic may not start before column 2 (column
7 if line numbers are used) and must be separated from a
label by at least one space (or a colon).

5-28-82 NEVADA ASSEMBLER PAGE 11
OPERAND FIELD

Most machine instructions and pseudo-operations require one
or two operands, either register names, labels, constants,
or arithmetic expressions involving labels and constants.

The operands must be separated from the operator by at least
one space. If two operands are required, they must be
separated by a comma. No spaces may occur within the
operand field, since the first space following the operands
delimits the comments field.

Register Names

Many 8080 machine instructions require one or two registers
or a register pair to be designated in the operand field.
The symbolic names for the general-purpose registers are A,
B, C, D, E, H and L. SP stands for the stack pointer, while
M refers to the memory location whose address is in the HL
register pair. The register pairs BC, DE, and HL are
designated by the symbolic names B, D, and H, respectively.
The A register and condition flags, when operated upon as a
register pair, are given the symbolic name PSW.

The values assigned to be register names A, B, C, D, E, H,
L, M, PSW and sp are 7, 0, 1, 2, 3, 4, 5, 6, 6, and 6,
respectively. These constants, or any label or expression
whose value lies in the range 0 to 7, may be used in place
of the pre-defined symbolic register names where a register
name is required; such a substitution of a value for the
pre-defined register name is not recommended, however.

Labels

Any label that is defined elsewhere in the program may be
used as an operand. If a label is used where an 8-bit
quantity is required (e.g., MVI C,LABEL), its value must lie
in the range -256 to 255, or it will be flagged as a value
error.

If a label is used as a register name, its value must lie in
th range 0 to 7, or be 0, 2, 4, or 6 if it designates a
register pair. Otherwise, it will be flagged as a register
error.

During each pass, the assembler maintains an instruction
location counter that keeps track of the next location at
which an instruction may be stored; this is analogous to the
program counter used by the processor during program
execution to keep track of the location of the next
instruction to be fetched.

5-28-82 NEVADA ASSEMBLER PAGE 12

The special label $ (dollar Sign) stands for the current
value of the assembler's instruction location counter. When
$ appears within the operand field of a machine instruction,
its value is the address of the first byte of the next
instruction.

EXAMPLE:

FIRST EQU $ The label FIRST is set to the address
TABLE DB ENTRY of the entry in a table and LAST

* points to the location immediately after
* . the end of the table. TABLN is then

* the length of the table and will remain
LAST EQU $ correct, even if later additions or

TABLN EQU LAST-FIRST deletions are made in the table.

CONSTANTS
§

Decimal, hexadecimal, octal, binary'and ASCII constants may
be used as operands.

‘The base for numeric constants is indicated by a single
letter immediately following the number, as follows:

decimal
hexadecimal
octal

octal
binary

wWo oY
L T O 1}

If the letter is omitted, the number is assumed to be
decimal. Q is usually perferred for octal constants, since
O is so easily confused with 0 (zero). Numeric constants
must begin with a numeric character (0-9) so that they can
be distinguished from labels; a hexadecimal constant
beginning with A-~F must be preceded by a zero.

ASCII constants are one or two characters surrounded by
single quotes ('). A single quote within an ASCII constant
is represented by two single quotes in a row with no
intervening spaces. For example, the expression '''', where
the two outer quote marks represent the string itself, i.e.,
the single quote character. A single character ASCII
constant has the numerical value of the corresponding ASCII
code. A double character ASCII constant has the 16-bit
value whose high-order byte is the ASCII code of the first
character and whose low-order byte is the ASCII code of the
second character.

If a constant is used where an 8-bit quantity is required
(e.g., MVI C,10H), its numeric value must lie in the range

5-28-82 NEVADA ASSEMBLER PAGE 13
-256 to 255 or it will be flagged as a value error.

If a constant is used as a register name, its numeric value
must lie in the range 0 to 7, or be 0, 2, 4, or 6 if it
designates a register pair. Otherwise it will be flagged as
a register error,

Examples:

MVI A,128 Move 128 decimal to register A.

MVI C,10D Move 10 decimal to register C.

LXI H,2FH Move 2F hexadecimal to registers HL.
MVI B,303Q Move 303 octal to register B.

MVI A,'Y' Move the ASCII value for Y to reg A.
MVI A,101B Move 101 binary to register A.

JMP OFFH Jump to address FF hexadecimal.

EXPRESSIONS

Operands may be arithmetic expressions constructed from
labels, constants, and the following operators:

addition or unary plus
subtraction or unary minus
multiplication

division (remainder discarded)

N ¥ |+

Values are treated as 16-bit unsigned 2's complement
numbers. Positive or negative overflow is allowed during
expression evaluation, e.g., 32767+1=7FFFH+1=-32768 and
~32768-1=7FFFH=32767. Expressions are evaluated from left
to right; there is no operator precedence.

If an expression is used where an 8-bit quantity is required
(e.g., MVI C,TEMP+10H), it must evaluate to a value in the
range -256 to 255, or it will be flagged as a value error.
Examples:

MVI A,255D/10H-5

LDA POTTS/256*OFFSET
LXI SP,30*%2+STACK

High- and Low-order Byte Extraction

If an operand is preceded by the symbol <, the high-order
byte of the evaluated expression will be used as the value
of the operand. 1If an operand is preceded by the symbol >,
the low-order byte will be used.

5-28-82 NEVADA ASSEMBLER PAGE 14

Note that the symbols < and > are not operators that may be
applied to labels or constants within an expression. 1If
more than one < or > appears within an expression, the
rightmost will be used to determine whether to use the high-
or low-order byte of the evaluated expression as the value
of the operand. That is, the rightmost < or > is treated as
if it preceded the entire expression, and the others will be
totally ignored.

Examples:

MVI A,>TEST Loads register A with the least

* significant 8 bits of the value of

* the label TEST.

MVI B,<0CCOO0H Loads register B with the most

* significant byte of the 16-bit value
* CCO00OH, i.e., CCH.

MVI C,<1234H Loads register C with the value 12H.
MVI C,>1234H Loads register C with the value 34H.

"COMMENT FIELD

The comment field must be separated from the operand field
(or operation field for instructions or pseudo-operations
that require no operand) by at least one space. Comments
are not processed by the assembler, but are solely for the
benefit of the programmer. Good comments are essential if a
program is to be understood very long after it is written or
is to be maintained by someone other than its author.

An entire line will be treated as a comment if it starts
.with an asterisk (*) or semicolon (;) in column 1 (column 6
if line numbers are used).

Examples:

0001 ; -is input ready?

0002 LOOP IN STAT input device status
0003 ANI 1 test status bit
0004 JZ LOOP wait for data

0005 *data is now available

If listing file formatting is specified in the ASM command
($=options contains 1, 2, or 3), the comment field must be
preceded by at least two spaces to ensure proper output
formatting. Futhermore, instructions and pseudo-operations
requiring no operand must be followed by a dummy operand (a
peRiod is recommended) .

Examples:

MVI A,10 comments
RZ . comments

5-28-82 NEVADA ASSEMBLER PAGE 15

SECTION 4
PSEUDO-OPERATIONS

Pseudo-operations appear in a source program as instructions
to the assembler and do not always generate object code.
This section describes the pseudo-operations recognized by
the NEVADA assembler.

In the following pseudo-operation formats, <expression>
stands for a constant, label, arithmetic expression
constructed from constants and labels. Optional elements
are enclosed in square brackets []. '

Equate <label> EQU <expression>

This pseudo-operation sets a label name to the 16-bit value
‘that is represented in the operand field. That value holds
for the entire assembly and may not be changed by another
EQU.

Any label that appears in the operand field of an EQU
statement must be defined in a statement earlier in the
program.

Examples:

BELL EQU 7 The value of the label BELL is set to 7.
BELL2 EQU BELL#*2 The label BELL2 is ste to 7%*2.

Set Origin [<label>] ORG <expression>

This pseudo-operation sets the assembler's instruction
location counter to the 16-bit value specified in the
operand field. 1In other words, the object code generated by
the statements that follow must be loaded beginning at the
specified address in order to execute properly. The label,
if present, is given the specified 16-bit value.

Any label that appears in the operand field of an ORG
statement must be defined in a statement earlier in the
program.

If no origin is specified at the beginning of the source

5-28-82 NEVADA ASSEMBLER PAGE 16

code, the assembler will set the origin to 100H. ‘If no ORG

pseudo-operation is used anywhere in the source program,
successive bytes of object code will be stored at successive
memory locations.

Examples:

ORG 4000H Determines that the object code generated
* by subsequent statements must be loaded
* in locations beginning at 4000H.
START ORG 100H Determines that the object code generated
* by subsequent statements must be loaded
* in locations beginning at 100H.

Set Execution Address XEQ <expression>

This pseudo-operation specifies the entry point address for
the program, i.e., the address at which it is to begin
execution. If a program contains no XEQ pseudo-operation,
the object code file will contain a starting address of
100H. If more than one XEQ appears in a program, the last
will be used.

An example of the difference between ORG and XEQ is that a
program whose first 100 bytes are occupied by data will have
an ORG address 100 bytes lower in memory than its XEQ
address. '

Example:

XEQ 100H The entry point address for the assembled
* program is set to 100H.

Define Storage [<label>] DS <expression>
[<label>] RES <expression>

‘Either of these pseudo-operations reserves the specified
number of successive memory locations starting at the
current address within the program. The contents of these
locations are not defined and are not initialized at load
time. \

Any label that appears in the operand field of a DS or RES
statement must be defined in a statement earlier in the
program,

5-28-82 NEVADA ASSEMBLER PAGE 17

Examples:

SPEED DS 1 Reserves one byte.

DS 400 Reserves 400 bytes.

RES 177Q Reserves 177 (octal) bytes.

Define byte [<label>] DB <expression>[,<expression>,...]

This pseudo-operation sets a memory location to an 8-bit
value. If the operand field contains multiple expressions
separated by commas, the expressions will define successive
bytes of memory beginning at the current address. Each
expression must evaluate to a number that can be represented
in 8 bits.

Examples:
DB 1 one byte is defined.

DB OFFH,303Q,100D,11010011B,3*BELL,-10 multiple bytes.
"TABLE DB 'A','B','C','D',0 ~ multiple bytes are defined.

Define Word [<1label>] DW <expression>

This pseudo-operation sets two memory locations to a 16-bit
quantity. The least significant (low-order) byte of the
value is stored at the current address and the most
significant byte (high-order) is stored at the current
address + 1.

Examples:

SAVE DW 1234H 1234H is stored in memory, 34H in the

* low-order byte and 12H in the high-order

* ' byte.

YES DW 'OK' The ASCII value for the letters '0' and 'K'
* is stored with the 'K' at the lower memory
* address.

Define Double Byte [<1label>] DDB <expression>

This pseudo-operation is almost the same as DW, except that
the two bytes are stored in the opposite order: high-order
byte first, followed by the low-order byte.

5-28-82 NEVADA ASSEMBLER _ PAGE 18

Example:

FIRST DDB 1234H 1234H is stored in memory, 12H in the
; low-order byte and 34H in the high-order
byte.

we =

Define ASCII String [<label>] ASC #<ASCII string>#
[<label>] ASCZ #<ASCII string>#

The ASC pseudo-operation puts a string of characters into
successive memory locations starting at the current
location. The special symbols # in the format are
"delimiters"; they define the beginning and end of the ASCII
character string. The assembler uses the first non-blank
character found as the delimiter. The string immediately
follows this delimiter, and ends at the next occurence of
the same delimiter, or at a carriage return.

The ASCZ pseudo-operation is the same except that it appends
a NUL (00H) to the end of the stored string.

Examples:

WORDS ASC "THIS IS AN ASCII STRING"
ASCZ "THIS IS ANOTHER STRING"

Set ASCII List Flag ASCF 0
ASCF 1

If the operand field contains a 0, the listing of the
assembled bytes of an ASCII string will be suppressed after
the first line (four bytes). Likewise, only the first four
assembled bytes of a DB pseudo-operation with multiple
arguments will be listed. If a program contains many long
strings, its listing will be easier to read if the ASCF
pseudo-operation is used.

If the operand field contains a 1, the assembled form of
subsequent ASCII strings and DB pseudo-operations with
multiple argumrnts will be listed in full. This is the
default condition.

See Appendix 3 for an example of the listing format.

5-28-82 NEVADA ASSEMBLER PAGE 19

Conditional Assembly IF <expression>

source code
ENDF

The value of the expression in the operand field governs
whether or not subsequent code up to the matching ENDF will
be assembled. 1If the expression evaluates to a 0 (false),
the code will not be assembled. If the expression evaluates
to a non-zero value (true), the code will be assembled.
Blocks of code delimited by IF and ENDF ("conditional code")
may be nested within another block of conditional code.

Any label that appears in the operand field of an IF...ENDF
pseudo-operation must be defined in a statement earlier in
the program.

Example:
YES EQU 1 Sets the value of the label 'YES' to 1.
NO EQU 0 Sets the value of the label 'NO' to 0.
*
IF YES the expression here is true (1), so the
MVI A,'Y' code on this line will be assembled.
IF NO The expression here is false (0), so the
MVI A,'N' code on this line will not be assembled.
ENDF This terminates the NO conditional.
ENDF This terminates the YES conditional.

List Conditional code IFLS

This pseudo-operation enables listing of conditional source
code even though no object code is being generated because
of a false IF condition. The assembler will not 1list such
conditional source code if this pseudo-operation is not
used.

Copy file COPY [<unit:>]<file—name>

This pseudo-operation copies source code from a disk file
into a program being assembled. The code from the copied
file will be assembled starting at the current address.
When the copied file is exhausted, the assembler will
continue to assemble from the original file. The resulting
object code will be exactly like what would be generated if
the copied source code were part of the original file, but
the COPY pseudo-operation does not actually alter any source
file.

A mamiad £21 A mmccr smmdb mmarmir amablhAar £i1a AnA a1l fFileca

5-28-82 NEVADA ASSEMBLER PAGE 20

that are accessed by the COPY pseudo-operation must be of
the same format as the main source file, i.e., either having
or not having line numbers. The files must be type (.ASM).

EXAMPLES:

COPY FILEl
COPY B:FILE2

Listing Control NLST
LST

The NLST pseudo-operation suppresses all output to the
listing file. Object code will still be output to the
object code file and the lines containing errors will still
be output to the error file. The LST pseudo-operation
re-enables output to the listing file.

Listing Title TITL <first line>"<second line>

If the P option is specified in the ASM command, the one- or
two-line title specified by this pseudo-operation will be
printed centered at the top of each page of the listing.

Page Eject PAGE

If the P option is specified in the ASM command, this
pseudo-operation causes a skip to the top of the next page
of the listing.

End of Source file END

This pseudo-operation terminates each pass of the assembly.
Only one END statement should be in the file or files to be
assembled, and it should be the last statement encountered
by the assembler. Since an end-of-file on the sourec code
input file will also terminate each pass, the END statement
is unnecessary in most cases.

5-28-82 NEVADA ASSEMBLER PAGE 21

SECTION 5
ERROR CODES AND MESSAGES
ASSEMBLER COMMAND ERRORS

A number of console messages may be generated in response to
errors in the ASM command. When an error of this sort
occurs, the assembly is aborted and control returns to CP/M.

EXPECTED NAME The source code input file name is missing.
ILLEGAL OPTION An unrecognized option specifier follows $.

91 ERROR IN EXTENDING THE FILE

92 END OF DISK DATA - DISK IS FULL

93 FINE NOT OPEN

94 NO MORE DIRECTORY SPACE - DISK IS FULL
95 FILE CANNOT BE FOUND

96 FILE ALREADY OPEN

97 READING UNWRITTEN DATA

ASSEMBLY ERRORS

If a statement contains one of the following errors, there
will be a single letter error code in column 19 of the 1line
output to the listing and/or error files. An error detected
during both the first and the second pass of the assembler
will be flagged twice in the listing(s). 1If the error 1is
not an opcode error, NULs will be output as the second and ,
if appropriate, third bytes of object code for that
instruction. If the error is an opcode error, the
instruction will be assumed to be a three-byte instruction,
and three NULs will be written to the llstlng and/or error
files. The error codes are:

5-28-82

A ARGUMENT ERROR

D DUPLICATE LABEL

L LABEL ERROR

M MISSING LABEL
0 OPCODE ERROR

R REGISTER ERROR
S SYNTAX ERROR

U

\' VALUE ERROR

NEVADA ASSEMBLER PAGE 22

An illegal label or constant ‘appears
in the operand field. This might be
1) a number with a letter in it,

e.dg., 2L, 2) a label that starts

with a number, e.g., 3STOP, or 3) an
improper representation of a string,
e.g., '"'"'A''" in the operand field
of a statement containing the ASCII
pseudo-operation.

The source code contains multiple
labels whose first five characters
are identical.

The symbol in the label field
contains illegal characters, e.g.,
it starts with a number.

An EQU instruction does not have a
symbol in the label field.

The symbol in the operation field is
not a valid 8080 instruction
mnemonic or an assembler
pseudo-operation mnemonic.

An expression used as a register
designator does not have a legal
value.

A statement is not in the format
required by the assembler.

UNDEFINED SYMBOL A label used in the operand field

is not defined, i.e., does not
appear in the label field anywhere
in the program, or is not defined
prior to its use as an operand in
an EQU, ORG, DS, RES, or IF
pseudo-operation.

The value of the operand lies
outside the allowed range.

Jump CALL RETURN RESTART ROTATE® MOVE (cont) ACCUMULATOR* CONSTANT
i DEFINITION
C3 JMP CD CALL) C9 RET C? RST 0 07 RLC 58 MOV E.B 80 ADD B A8 XRA B
C2 UNZ C4 CNZ CO0 RNZ CF RST 1 OF RRC 59 MOV EC 81 ADD C A9 XRA C 0BDH He
CA Jz cc ¢z C8 Rz D7 AST 2 17 RAL " SA MOV ED 82 ADD D AA XRA D 1AH [TeX
D2 JUNC “D4 CNC D0 RNC DF RST 3 1F RAR 58 . MOV EE 83 ADD E AB XRA E
DA JC > Adr bC cC »Adr D8 RC E?7 RST 4 5C MOV EH 84 ADD H AC XRA H 105D o
E2 JPO E4 CPO E0 RPO EF RST 5 5D MOV EL 85 ADD L AD XRA L 105
EA JPE EC CPE €8 RPE F7 RST 6 SE MOV EM 86 ADD M AE XRA M .
F2 JpP F4a CP FO RP FF RST 7 CONTROL 5F MOV EA 87 ADD A AF XRA A 720 ol
FA UM/ FC CM) F8 AM 72q(V%?
E9 PCHL 00 NOP 60 MOV HB 868 ADC B B0 ORA B]
76 HLT 61 MOV . HC 89 ADC C Bt ORA C 1101181 .
F3 DI 62 MOV HD BA ADC D B2 ORA D 001108 | Binary
FB EI 63 MOV HE 88 ADC E B3 ORA E
MOVE Acc LOAD 64 MOV HH 8C ADC H B4 ORA H TEST'
IMMEDIATE IMMEDIATE* IMMEDIATE STACK OPS 65 MOV HL 8D ADC L B5 ORA L A g |ASCH
66 MOV HM 8E ADC M B6 ORA M
06 MVI B C6 ADI 01 X B C5 PUSH B MOVE 67 MOV HA 8F ADC A B7 ORA A
VI, o v i o pote Do PUSHD 4 MOV BB 68 MOV LB % SUB B B8 CMP B OPERATORS
1€ MVI E DE SBI 31 X SP, F5 PUSH Psw 41 MOV BC .69 MOV LC 91 sus C B9 TMP C
26 MVI H D8 E6 AN D8 42 MOV BD 6A MOV LD 92 SuB D BA CMP D
2E MVl L EE XA ci Pop B . 43 MOV BE 68 MOV LE 93 SUB E BB CMP E .
3 MV M F6 ORI DI POP D 44 MOV BH 6C MOV LH 94 SUB H BC CMP H :
E MV A FE CPI €1 POP H 45 MOV BL 6D MOV LL 95 SuB L BD CMP L
DOUBLE ADD} F1 POP PSw- 96 MOV BM 6E MOV LM 96 SUB M BE CMP M
09 DAD B 47 MOV BA 6F MOV LA 97 SuB A BF CMP A
19 DAD D E3 XTHL 48 MOV CB 70 MOV MB 98 SBB B
‘ 29 DAD H F9 SPHL 43 MOV CC 71 MOV MC 99 SBB C PSEUDO STANDARD
INCREMENT** DECREMENT** 39 DAD sP 4A MOV C.D 72 MOV MD 9A SBB D INSTRUCTION SETS =
48 MOV CE 73 MOV ME 98B SBB E m
04 INR B 05 DCR B SPECIALS 4C MOV GCH 74 MOV MH 9C SBB H ORG Adr A SET 7 S
0C INR C .0D DCR C 4D MOV CL 75 MOV ML 90 SBB L END B SEV 0 O
14 INR D 15 DCR D LOAD/STORE EB XCHG 4E MOV CM oo 9E SBB M EQU D16 C SET 1 ¥
1C INR E 1D DCR E 27 DAA* 4F MOV CA 77 MOV MA 9F SBB A D SET 2 >
24 INR H 25 DCR H 0OA LDAX B 2F CMA . DS D16 E SET 3
2C INR L 2D DCR L 1A LDAX D 37 STC* 50 MOV D.B 78 MOV AB A0 ANA B DB D8 (] H SET 4 O3
3 INR M '35 DCR M 2A LHLD Adr 3F CMCt 51 MOV D.C 79 MOV AC A1 ANA C OW D16 (] L SET 5 @®
3C INR A 3D DCR A 3A LDA Adr 52 MOV DD 7A MOV AD A2 ANA D M SET 6
53 MCV DE 78 MOV AE A3 ANA E SP SET 6 =
03 INX B 0B DCX B 02 STAX B INPUT/OUTPUT 54 MOV DH 7C MOV AH A4 ANA H PSWSET 6
13 INX D 1B DCX D 12 STAX D 55 MOV DL 7D MOV AL A5 ANA L
23 INX H 2B DCX H 22 SHLD Adr D3 OUuT D8 56 MOV DM 7E MOV AM A6 ANA M
33 INX SP 38 DCX SP 32 STA Adr DB IN D8 57 MOV DA 7F MOV AA A7 ANA A
D8 constant, or logical arithmetic expression that evaluates D16 - constant, or logicaVarithmetic expression that evaluates Adr = 16 bit address §
to an 8 bit data quantity. to a 16 bit data quantity. ** = all Flags except CARRY affected; -
all Flags (C.Z.S.P) affected . t = only CARRY affected (exception: INX & DCX affect no Flags) m
o
APPENDIX I, W

00 NOP 28 ---
DAD

01 LXI B.D6 29

02 STAX B 2A LHLD
03 INX B 2B DCX
04 INR B 2C INR
05 DCR B 2D DCR
06 MVl BDs 2E MvI
07 RLC 2F CMA
o8 --- 30 ---
09 DAD B 31 LXI
0A LDAX B 32 STA
cB DCx 8 ~ 33 INX
0C INR C 34 INR
o DCR C 35 DCR
0OE Mvi CDs 36 M
OF RRC 7 STC
10 --- 38 ---
11 Xt D.D16 39 DAL
12 STAX D 3A LDA
13 INX D 38 DCX
14 INR D 3C INR
15 DCR D 30 DCR
16 W™Mvl D.D8 38 MV
17 RAL 3F CMC
8 --- 40 MOV
19 DAD D 41 MOV
1A LDAX D 42 MoV
1B DCX D 43 MOV
1 INR E 44 MOV
1D DCR E 45 MOV
1E MVt EDS 46 MOV
'F RAR 47 MOV
20 --- 48 MOV
21 X1 H.D16 49 MOV
22 SHLD Acr 4A MOV
23 INX H 48 MOV
24 INR H 4C MOV
25 DCR H 4D MOV
26 MVi H.D8 4E MOV
27 DAA 4F MOV

H

Adr
H
L
L
L.D8

SP.D16
Adr

SP

M

M

M.Ca

50
51

52
53
54
55
56
57
58
59
5A
58

75

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
Mov
MOV
MGV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MoV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
HLT

MOV

D8 = constant, or logical/arithmetic expression that evaluates

to an 8 bit data quantity

78
79
7A
78
7C
70
7€
7F
80

82
82
84
85
86
87
88
89
BA
8B
6C
8D
8E
8F
90
N

92

94
95
6
97
98
99
9A
9B
9C
9D
9E
9F

MOV
MOV
MOV
MoV
MOV
MOV
MOV
MOV
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
suB
sus
suB
suB
sus
sus
suB
suB
sBes
sBeB
sBs
SB8
SBB
sSBB
ses
SB8

PITHrIMOOT>PIMrITMOORPLTIIMOOW>»ICrIMOO ®@;

ANA
ANA
ANA
ANA
ANA
ANA
ANA
ANA
XRA
XRA
XRA
XRA
XRA
XRA
XRA
XRA
ORA
ORA
ORA
ORA
ORA
ORA
ORA
ORA
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
RNZ
POP
JNZ Adr
JMP Adr
CNZ Adr
PUSH B

ADI D8

RST 0

PZrFrIMOOTPZIrIMOOE®PIrIMUO®P>PZICrIMOO®

@

RZ

RET

Jz

cz Adr
CALL Adr
ACl D8
RST 1
RNC

POP D
JINC Adr
ouTt D8
CNC - Adr
PUSH D
Sul D8
RST 2

RC

JC Adr
IN D8
cC Adr
SBI D8
RST 3
RPO

POP H
JPO Adr
XTHL

CcPO Adr
PUSH H
ANI D8
RST 4
RPE

PCHL

JPE Adr
XCHG

CPE Adr
XRI D8
RST 5

D16 = constant, or logical/arithmetic expression that evaluates
to a 16 bit data quantity.

FO
F1
F2
F3

FS5
F6
F7
F8
F9

FB
FC

FE
FF

RP

POP PSW
JP Adr
DI

cP Adr
PUSH PSW
ORI D8 .
RST 6

RM

SPHL

JM Adr
El

CM Adr
CPI (]:]
RST 7

HEX-ASCIl TABLE

A
Non-Printing

00
07
09
0A
08B
oc
oD
1

12
13
14
18
70
7F

NULL
BELL
TAB
LF
vT
FORM
CR
X-ON
TAPE
X-OFF

ESC
ALT MODE
RUB OUT

Adr = 16 bit address

HEX-ASCII TABLE

Printing Characters
30 0 40 @
31 1 20 space
32 2 21 !
33 3 22 h
34 4 23 #
35 5 24 $
36 6 25 %
37 7 26 &
38 8 27 !
39 9 28

29
41 A 2A
42 B 28 +
43 C 2C .
44 D 20 -
45 E 2E .
46 F 2F]
47 G 3A :
48 H 3B
49 | 3C <
4A J 3D =
48 K 3E >
4aC L 3F ?
4D M 58 {
4E N 5C \
4F o 5D]
50 P SE t (A
51 Q 5F — ()
52 R
53 S
54 T
55 u
56 \
57 w
58 X
59 Y
5A Z

H318W3ISSY YAYA3N

$2 Povd

APPENDIX 2

Paper tape Upper Octal Octal

123.4567P

TABLE OF ASCIl CODES (Zero Parity)

0000
0004
0010
0014
0020
0024
0030
0034
0040

0050

0054

0064
0070
0074
0100
0104
0110
0114

0120

0124
0130
0134
0140
014
0150
0154
0160
0164
0170
0174
0200
0204
0210
0214
0220
0224
0230
0234
0240
0244
0250
0254
0260
0264
0270
0274
0300
0304
0310
0314
0320
0324
0330
0334
0340
0344
0350
0354
0360
0364
0370

0374

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057

061
062
063

065

067
070
071
072
073
074
075
076
077

. APPENDIX 2
Decimal Hex
0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07
8 08
9 09
10 0A
11 0B
12 oC
13 0D
14 OE
15 OF
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E
31 IF
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
4 2C
45 2D
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 3A
59 3B
60 3C
61 3D
62 3E
63 3F

NEVADA ASSEMBLER

Character

ctrl @
cal A
crl B
cxl C
ctrl D
ctrl E
carl F
ctrl G
crl H
cul T
crl J
curl K
ctrl L
crl M
cul N
ctrl O
crl P
ctrl Q
ctrl R
ctrl S
cxl T
el U
ctrl V
ctrl W
ctrl X
cal Y
ctrl 2
ctrl [
ctrl \
ctrl]
ctrl
ctrl _
Space
t

+ ok~ D ROK

I~

WDV I A e OOV D WN-=20N"

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
)
St
DLE
DCl
DC2
DC3
DCA
NAK
SYN
ETB
CAN
EM
SUB

FS
GS

Us

Start of Heading
Start of Text
End of Text
End of Xmit
Enquiry
Acknowledge
Audible Signal
Back Space
Horizontal Tab
Line Feed
Vertical Tab
Form Feed
Carriage Return
Shift Out

Shift In

Data Line Escape
X On

Aux On

X Off

Aux Off

Negative Acknowledge

Synchronous File
End of Xmit Block
Cancel

End of Medium
Substitute

Escape

File Separator
Group Separator
Record Separator
Unit Separator

PACE2S

APPENDIX 2

NEVADA ASSEMBLER

TABLE OF ASCIl CODES (Cont’d) (Zero Parity)

Paper tape Upper Octal Octal

123.4567P
)

oo
o0
')
oe
'Y
o0
o0
()

oo

° Y X
e ., eoe

oo , ooe

o, eoo

o o, oo
oo, coo

eee, ooe

.0000

' Y Y X)
e ,ec00

T YY)

o.0000

o o0,0000
e0 0000

eeo0 0000

.

0400
0404
0410
0414
0420
0424
0430
0434
0440
0444
0450
0454
0460
0464
0470
0474
0500
0504
0510
0514
0520
0524
0530
0534
0540
0544
0550
0554
0560
0564
0570
0574

0604
0610
0614
0620
0624
0630
0634

0650
0654
0660

0670
0674
0700
0704
0710
0714
0720
0724
0730
0734
0740
0744
0750
0754
0760
0764
0770
0774

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
14
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

APPENDIX 2
Decimal Hex
64 40
65 41
66 42
67 43
68 4
69 45
70 46
1 47
72 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
9 4F
80 50
81 51
82 52
83 53
84 54
85 55
86 56
87 57
88 58
89 59
9% 5A
91 5B
92 5C
93 5D
94 SE
95 SF
96 60
97 61
98 62
9 63
100 64
101 65
102 66
103 67
104 68
105 69
106 6A
107 6B
108 6C
109 6D
110 6E
111 6F
112 70
113 71
114 72
115 73
116 74
n?
118 76
119 77
120 78
121 79
122 7A
123 7B
124 7C
125 7D
126 7E
127 F

Character

Y= SN IEICCAHNIOYOZICNAUHIOMBOOT P

-1

t—~—~NY XEJdCANHKRAQUTDOD 3 RFUHKITAMODALAQDD

Prefix
CEL Rubout

PAGE 2L

Pa¢e 27

APPENDIX 3

ASSEMBLER LISTING

Q 4§? S
o & & 0 & 9
o § % X TN & 5
&) &) 2
& &8 §F &
§ &GS & F & FF
¢ g g5 & 8§ COMMENT
0000 *
0001 #*SEARCH TABLE FOR MATCH TO STRING
0002 ®EACH TABLE‘ENTRY 1S FOLLOWED BY A TWO-BYTE DISPATCH:- ADDRESS.
0003 *TABLE MUST HAVE AT LEAST ONE ENTRY AND IS TERMINATED BY A
0004 ®ZERO BYTE.
_0005 ®ON ENTRY: HL POINTS TO STRING
0006 ® DE POINTS TO TABLE
0007 ® C IS NUMBER OF CHARACTERS IN TABLE ENTRIES
0008 ®ON KETURN: ZERO FLAG SET IF NO MATCH, ELSE DE POINTS TO
0009 DISPATCH ADDRESS
0010 #
0100 E5 0011 TSRCH PUSH H SAVE STRING ADDRESS
0101 41 0012 MOV B,C INITIALIZE CHARACTER COUNT
0102 1A 0013 TS1 LDAX D COMPARE CHARACTERS
" 0103 BE 0014 CMP M
0104 C2 11 01 0015 JNZ TS3
0107 23 . 0016 INX H CHARACTERS MATCH, GO ON TO NEXT
0108 13 0017 INX D
0109 05 0018 DCR B
010A C2 02 01 0019 JNZ TS1
010D F6 01 0020 ORI 1 MATCHING ENTRY FOUND
010F E1 0021 TS2 POP H
0110 C9 0022 RET
0111 BT 0023 TS3 ORA A TEST FOR END OF TABLE
0112 CA OF 01 0024 JZ TS2
0115 13 0025 TS4 INX D SKIP TO NEXT ENTRY
0116 05 0026 DCR B
0117 €2 15 01 0027 JNZ TS4
011A 13 0028 INX D
011B 13 0029 INX D
011C E1 0030 POP "H
011D C3 00 01 0031 JMP TSRCH
0032 ¢
0033 *EXAMPLE OF TSRCH USE:
0034 #
0035 #(ASSUME HL POINTS TO A FOUR-CHARACTER COMMAND STRING)
0120 11 35 01 003b LXI D,CTABL DE POINTS TO COMMAND TABLE
0123 CE 04 0037 MVI1 C,4 TABLE ENTRIES ARE FOUR CHARACTERS LONG
0125 CD 00 01 0038 CALL TSRCH
0128 CA 00 00 1] 0039 Jz ERHOR COMMAND NOT IN TABLE
0126 EB 0040 XCHG . SET UP STACK FOR RETURN TO MAIN ROUTINE
012C 11 00 00 1] o041 LXI D, COMMAND
012F D5 0042 PUSH D
0130 7E 0043 MOV A,M DISPATCH TO APPROPRIATE COMMAND ROUTINE
0131 23 0044 INX H
0132 66 0045 MOV H,M
0133 oF 004b MOV L,A
0134 E9 0047 . PCHL
004b *
0049 *COMMAND TABLE
0050 #
0135 43 4F 4D 31 0051 CTABL ASC 'COM1' FIRST ENTRY
0139 00 00 U 0052 DW SUB1 ADDRESS OF SuB1
013B 43 4F 4D 32 0053 ASC 'COM2' SECOND ENTRY
013F 00 00 U 0054 DwW SUB2 ADDRESS OF SUB2
0141 00 0055 DB 0 END OF TABLE MARK
SYMBOL TABLE LISTING
Label Addr. Label Addr. Label Addr. Label Addr.
CTABL 0135 T31 0102 52 010F
TS4 0115 TSRCH 0100 183 o

5-28-

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050

82 NEVADA ASSEMBLER PAGE 28

APPENDIX 4

This is a sample program. The loader source code.

khhhkhkhkhkhkhkhkhhhhkhkhhhkhkhhkhkkhhkhkkhkhkhkhkhkkhhhhkkhhkhkhkhkhkhkkkkxkhkk

* ‘ .
* RUNA file-name[.ZCL]

*

* An .0BJ file consists of one or more segments that
* have the format:

* #BYTES DESCRIPTION

* 2 Number of code and data bytes in

* segment

* 2 Load address of code and data

* belonging to the segment.

* Variable Code and/or data.

*

* The run time package will load each segment at the
* specified address until a starting address is

* encountered. A starting address is represented as
* load address with a zero byte count.

*

* hkkkkhkkkkhkkkhhkhkhhkhhhkkkkhkhkhhkhkhhkkkhhhkkhkkhkkhhkkkkkkkkkkx

*

RELOC EQU 0 ;4200H FOR TRS-80 MOD 1

BDOS EQU 5+RELOC ;CP/M

BLKSIZ EQU 128

OFCB EQU 5CH+RELOC ;IN CP/M
OEX EQU OFCB+12

OCR EQU OFCB+32

OBUF EQU 80H+RELOC ;IN CP/M
*

CSTART EQU $

LXI SP,STK

MVI C,0CH ;RETURN VERSION #
CALL BDOS

MOV A,L

ORA A

JNZ VER2X

LDA 4+RELOC ;CPM 1.4 DEFAULT DRIVE
CPI 5

JC SETDF

XRA A
SETDF EQU $;11-30-81 FOR MP/M 1II
STA ODRIVE ;DEFAULT DRIVE

* GET OPTIONS FROM TYPE FIELD
LXI H,SCH+8 ’
MVI C,4
NEXT EQU $

INX H

DCR C

JZ NOOPTIONS

MOV A,M

cpI ' !

5-28-82

0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
008l
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108

NEVADA ASSEMBLER

JZ NOOPTIONS

cpr 'z’
JZ ZEROFIL
CPI 'cC'
JZ COMFILE
CpI 'L’
JZ NOEXEC

* ERROR ILLEGAL OPTION

*

LXI H,MESGA

CALL DISPLAY

JMP 0+RELOC

GET SIZE OF INSTRUCTION
GETSZ LXI H,TBL-1
AGAIN MOV A,C

INX H

MOV B,M
ANA B

JZ BYTEl
INX H

MOV B,M
XRA B

INX H

JNZ AGAIN
MOV A,M
RET . EXIT

BYTEl1l MVI A,1l

*

RET . EXIT

REL EQU $ RELOCATION

N

*

PUSH H
PUSH D
PUSH PSW
INX H
MOV E,M
INX H
MOV A, M

ORA A WE DON'T RELOCATE BELOW 100+RELOC

JZ NOREL
MOV D,A
PUSH H
LHLD BASE

DAD D ADDRESS IS NOW ADJUSTED

XCHG
POP H

MOV M,D PUT IT BACK

DCX H

MOV M,E
OREL EQU §
POP PSW
POP D

POP H

RET

VER2X EQU $

*

MVI C,19H
CALL BDOS
JMP SETDF

;GET CPM 2.X DEFAULT DRIVE

PAGE 29

5-28-82 NEVADA ASSEMBLER PAGE 30

0109 MESGA ASC 'ILLEGAL OPTION'
0110 DB ODH,0AH

0111 ASC 'RUN D:FILE.ZCL<LCR>'
0112 DB ODH,0AH,0

0113 *

0114 TBL DB -1,11101001B,1

0115 DB -1,11001101B,3

0116 DB 11000111B,11000100B,3
0117 DB -1,11000011B,3

0118 DB 11000111B,11000010B,3
0119 DB 11000111B,11000111B,1
0120 DB -1,11001001B,1

0121 DB 11000111B,11000000B,1
0122 DB 11001111B,1,3

0123 DB 11100111B,00100010B,3
0124 DB 11110111B,11010011B,2
0125 DB 11000111B,6,2

0126 - DB 11000111B,11000110B,2
0127 DB 0 END OF TABLE
0128 *

0129 BASE DW 0 BASE ADJ TO ADD TO ADDRESS TO BE RELOCATED
0130 ETART DW 0 STARTING ADDR OF RELOCATED CODE
0131 ‘
0132 ZEROFILL EQU $

0133 STA ZX

0134 JMP NEXT

0135 *

0136 COMFILE EQU $

0137 STA CX

0138 JMP NEXT

0139 *

0140 NOEXEC EQU $

0141 STA LX

0142 JMP NEXT

0143 *

0144 OSET EQU $

0145 LXI D,OBUF

0146 MVI C,26 ;SET DMA

0147 CALL BDOS

0148 LDA ODRIVE

0149 MVI D,0

0150 MOV E,A

0151 MVI C,14 ;SET DRIVE

0152 CALL BDOS

0153 LXI D,OFCB

0154 RET

0155 *

0156 NOOPTIONS EQU $

0157 LXI H,080H+3+RELOC

0158 MOV A,M

0159 CPI ':' ;WAS DRIVE REQUESTED?
0160 JNZ DEFDRIVE ;DEFAULT IS SET
0161 DCX H

0162 MOV A,M

0163 CPI 'A'

0164 JC DEFDRIVE

0165 SUI 'A’

0165 STA ODRIVE

5-28-82 NEVADA ASSEMBLER

0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224

DEFDRIVE EQU $

CALL SETFCB

MVI M,'0’

INX H

MVI M,'B'

INX H

MVI M,'J’

CALL OSET

MVI C,15 ;OPEN
CALL BDOS

CPI -1

JZ OERR ;OPEN ERROR
XRA A

STA OCR

* RELOCATE CODE TO JUST BELOW CP/M

LHLD 6+RELOC
DCX H HIGHEST ADDR
LXI B,LAST-LOADFILE SIZE OF CODE TO BE RELOCATED
MOV A,L
SuB
MOV
MOV
SBB
MOV H,A
; H&L= STARTING ADDRESS
SHLD START
PUSH H
LXI D
MOV A
SUB E
MOV L,A
A,H
D
H

A
H

W0

OADFILE

MOV

SBB

MOV H,A

SHLD BASE

POP H

LXI B,CONSTANTS-LOADFILE SIZE OF INSTRUCTION MOVE
XCHG

NXTI EQU $

PUSH H

PUSH D

PUSH B

MOV C,M GET OPCODE

CALL GETSZ GET SIZE OF INSTRUCTION
POP B

POP D

POP H

CPI 3

JC SKPREL

CALL REL RELOCATE ADDR IN THIS 3 BYTE INST

SKPREL EQU $

PUSH B
PUSH PSW
MOV C,A SIZE

NXTM EQU $

MOV A, M
STAX D
INX H

PAGE 31

5-28-82 NEVADA ASSEMBLER PAGE 32

0225 INX D
0226 DCR C

0227 JNZ NXTM

0228 POP PSW

0229 POP B

0230 NXTD EQU $

0231 DCX B

0232 DCR A

0233 JNZ NXTD

0234 MOV A,C

0235 ORA B

0236 JNZ NXTI

0237 * RELOCATE CONSTANTS

0238 LXI B,LAST-CONSTANTS SIZE OF CONSTANTS
0239 NXTC EQU $

0240 MOV A,M

0241 STAX D

0242 INX H

0243 INX D

0244 DCX B

0245 MoV A,C

0246 ORA B

0247 JNZ NXTC

0248 LHLD START

0249 PCHL . CODE HAS BEEN RELOCATED NOW GO TO IT
0250 *

0251 khkhkkhkkkhhhhkhkhkhkkhkhhkkhkhkkkhkhkkhkhhkkkhhkhkhhhkhkkhkhkkkhkhkhhkhkkkkk
0252 * RUNA A:FILE.OBJ<KCR>

0253 *

0254 * MOVE PARAMETERS AND CHECK

0255 khkhkhkkhhkkhkhkhhkkhkhkkhkhkkhkkhkkkkhkhhkhkhhkhhkhkkhhkhkhkhkhkkkhkkkhhkkkkkkk
0256 *

0257 LOADFILE EQU $

0258 LXI SP,STK SET STACK AFTER RELOCATION
0259 LDA ZX ZERO FILL MEMORY?

0260 ORA A

0261 JZ SKPCLR

0262 LXI D,LOADFILE-1

0263 MVI H,1 STARTING ADDR +RELOC

0264 MVI L,0

0265 CLEAR EQU $

0266 XRA A

0267 MOV M,A

0268 INX H

0269 MOV A,L

0270 SUB E

0271 MOV A,H

0272 SBB D

0273 JC CLEAR

0274 SKPCLR EQU $

0275 CALL ORD ;GET 1ST RECORD OF .0BJ FILE
0276 OLOAD EQU $

0277 CALL GETOP

0278 MAO MOV A,M ;MOVE 4 BYTES FROM BUF TO WORK
0279 STAX D

0280 INX H

0281 INX D

0282 DCR C

5-28-82 NEVADA ASSEMBLER PAGE 33

0283 CZ ORD

0284 DCR B

0285 JNZ MAO

0286 ; H&L = BUFFER C=COUNT
0287 XCHG

0288 LHLD OWRK ;SIZE OF NEXT READ
0289 MOV A,L

0290 ORA H

0291 JZ CLOSE

0292 SHLD OSIZE

0293 LHLD OWRK+2

0294 XCHG

0295 MAOA MOV A,M ;MOVE FROM BUF TO OBJ ADDR
0296 STAX D

0297 INX H

0298 INX D

0299 DCR C

0300 CZ ORD

0301 PUSH H

0302 LHLD OSIZE

0303 DCX H

0304 SHLD OSIZE

0305 MOV A,L

0306 ORA H

0307 POP H

0308 JNZ MAOA

0309 CALL SAVOP

0310 JMP OLOAD

0311 *

0312 GETOP EQU $;GET O POINTERS
0313 LXI D,OWRK

0314 LHLD OCBA ;BUF ADDR
0315 MVI B,4 ;LENGTH OF WRK
0316 LDA OCBC ;BUF CNT
0317 MOV C,A

0318 RET

0319 * .

0320 ORD EQU $

0321 PUSH B

0322 PUSH D ;OPNT

0323 LXI D,OFCB

0324 MVI C,20 ;READ

0325 CALL BDOS

0326 POP D
0327 POP B
0328 ORA A

0329 JNZ RERR
0330 LXI H,OBUF

0331 MVI C,BLKSIZ

0332 RET

0333 *

0334 SAVOP EQU $

0335 SHLD OCBA ;BUFF ADDR
0336 MOV A,C

0337 STA OCBC ;BUF CNT
0338 LDA HIGH

0339 CMP D .

0340 RNC

5-28-82 NEVADA ASSEMBLER

0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356

0357

0358
0359
0360

0361

0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398

MOV A,D
STA HIGH
RET

CLOSE EQU §$

LXI D,OFCB

MVI C,16 ;CLOSE

CALL BDOS

LDA CX

ORA A

JNZ GENCOM

LDA LX

ORA A

JNZ O+RELOC LOAD BUT DON'T EXECUTE
LHLD OWRK+2 ;STARTING ADDRESS
PCHL

SETFCB EQU $

XRA A

STA OFCB
STA OCR
LXI H,OEX
MVI C,4

EXLUP EQU § ;10-2-81 ZERO CPM EXT AREA

MOV M,A

INX H

DCR C

JNZ EXLUP

LXI H,OBUF

SHLD OCBA

MVI A,BLKSIZ

STA OCBC

LXI H,5CH+9+RELOC ;CP/M FILE TYPE
RET

CREATE EQU $

LXI D,OFCB

MVI C,22 CREATE
CALL BDOS

CPI -1

RNZ

OERR EQU §

LXI H,MESGO OPEN ERROR
CALL DISPLAY
JMP OXT1

GENCOM EQU $ GENERATE .COM FILE

CALL SETFCB

MVI M,'C'

INX H

MVI M,'0O'

INX H

MVI M,'M' .COM IN FCB

*OPEN

LXI D,OFCB

MVI C,15 OPEN .COM FILE
CALL BDOS

CPI -1

PAGE 34

5-28-82 NEVADA ASSEMBLER

0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456

*

N

*

*

CZ CREATE

XRA A

STA OCR

WRITE

LDA HIGH

DCR A

MOV H,A

MVI L,OFFH .

SHLD SIZ OF THIS WRITE

MVI D,1 STARTING ADDRESS +RELOC

MVI E,O

LXI H,OBUF BUFFER ADDRESS

MVI C,BLKSIZ BUFFER SIZE

XTW EQU §

LDAX D

MOV M,A

INX H

INX D

DCR C BUFF COUNT

CZ WRITE

PUSH H

LHLD S1Z

DCX H

SHLD S1IZ

MOV A,L

ORA H

POP H

JNZ NXTW

CALL WRITE LAST BLOCK
CLOSE

LXI D,OFCB

MVI C,16 CLOSE

CALL BDOS

JMP O0+RELOC

WRITE EQU $

*

Kpphhkhhhhhhhkhhhhhhhhhhhokhhkhhhhrhhhhkhkhkhhohhkhkk
*S DISPLAY A MESSAGE TO THE CONSOLE

*

*
*
*
*

PUSH D

LXI D,OFCB

MVI C,21 WRITE
CALL BDOS

POP D

ORA A

JNZ ERRW

LXI H,OBUF

MVI C,BLKSIZ
RET

PAGE 35

ENTRY H&L CONTAIN STARTING ADDRESS OF THE MESSAGE

THE MESSAGE TEXT IS TERMINATED BY 0 HEX

CALL DISPLAY

——kkkkkkkhkhhkhkhkhkhhhkhhhkkhkhkkkhkhkhhhkhkhkhkhkhkhhhhkhkkhkhkhhhkhkkkx

DISPLAY EQU $

MOV A,M
ORA A
RZ . EXIT TO CALLING ROUTINE **

| 5-28-

0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497

82 NEVADA ASSEMBLER PAGE 36

MOV E,A

MVI C,2

PUSH H

CALL BDOS ;PUT THE CHAR TO THE CONSOLE
POP H

INX H

JMP DISPLAY

*

ERRW EQU $

LXI H,MESGW WRITE ERROR

CALL DISPLAY

JMP OXT1

*
RERR EQU $

LXI H,MESGR READ ERROR

CALL DISPLAY
OXT1 EQU $

LXI H,OFCB+1 ;FILE NAME

CALL DISPLAY

JMP 0+RELOC RETURN TO CP/M
khkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhhkkhkkhkhkkhkhhkhkkkkkkhhkhkhkkkk
CONSTANTS EQU $
HIGH DB 0 HIGHEST PAGE USED FOR .COM

ZX DB 0 DEFAULT NO CLEAR ;Z=ZERO FILL BEFORE LOADING
CX DB 0 DEFAULT NO .COM ;C=.COM FILE
LX DB 0 DEFAULT EXECUTE ;L=LOAD BUT NO EXECUTION
ODRIVE DB 0 ,
OWRK DB 0,0,0,0

OCBA DW OBUF ;CURRENT BUFFER ADDRESS
OCBC DB BLKSIZ ;CURRENT BUFFER COUNTER
OSIZE DW 0 ;SIZE OF NEXT OBJ BLOCK
SIZ DW 0 SIZE OF COM FILE CODE

MESGO ASC 'OPEN ERROR '
DB 0
MESGR ASC 'READ ERROR '
DB 0 ,
MESGW ASC 'WRITE ERROR '
DB O
DS 30
STK DB 'S’
LAST DB O

5-28-82 NEVADA ASSEMBLER PAGE 37

APPENDIX 5
REFERENCES
8080/8085 Assembly Language Programming Manual, Intel

Corporation, Santa Clara CA., 1977.

Leventhal, Lance A., 8080A/8085 Assembly Language Programming
Adam Osborne & Associates, Berkeley, CA., 1978.

ELLIS COMPUTING, NEVADA COBOL Application Packages Bookl, ELLIS
COMPUTING, 1980.

ELLIS COMPUTING, NEVADA EDIT, ELLIS COMPUTING, 1982.
ELLIS COMPUTING, NEVADA SORT, ELLIS COMPUTING, 1982.
ELLIS COMPUTING, NEVADA COBOL, ELLIS COMPUTING, 1979.

Starkweather, J., NEVADA PILOT, ELLIS COMPUTING, 1981.

5-28-82 NEVADA ASSEMBLER PAGE 11
OPERAND FIELD

Most machine instructions and pseudo-operations require one
or two operands, either register names, labels, constants,
or arithmetic expressions involving labels and constants. .

The operands must be separated from the operator by at least
one space. If two operands are required, they must be
separated by a comma. No spaces may occur within the
operand field, since the first space following the operands
delimits the comments field.

Register Names

Many 8080 machine instructions require one or two registers
or a register pair to be designated in the operand field.
The symbolic names for the general-purpose registers are A,
B, ¢, D, E, H and L. SP stands for the stack pointer, while
M refers to the memory location whose address is in the HL
register pair. The register pairs BC, DE, and HL are
designated by the symbolic names B, D, and H, respectively.
The A register and condition flags, when operated upon as a
register pair, are given the symbolic name PSW.

The values assigned to be register names A, B, C, D, E, H,
L, M, PSW and sp are 7, O, 1, 2, 3, 4, 5, 6, 6, and 6,
respectively. These constants, or any label or expression
whose value lies in the range 0 to 7, may be used in place
of the pre-defined symbolic register names where a register
name is required; such a substitution of a value for the
pre-defined register name is not recommended, however.

Labels

Any label that is defined elsewhere in the program may be
used as an operand. If a label is used where an 8-bit
quantity is required (e.g., MVI C,LABEL), its value must lie
in the range -256 to 255, or it will be flagged as a value
error.

If a label is used as a register name, its value must lie in-
th range 0 to 7, or be 0, 2, 4, or 6 if it designates a
register pair. Otherwise, it will be flagged as a register
error. :

During each pass, the assembler maintains an instruction
location counter that keeps track of the next location at
which an instruction may be stored; this is analogous to the
program counter used by the processor during program
execution to keep track of the location of the next
instruction to be fetched.

5-28-82 “ MNEVADA ASSEHBLER PAGE 12

The special label $ (dollar:. S1gn) stands for the current

- value:of the assembler's instruction location counter. When

$ appears within the operand fleld of a machine instruction,

its value is the address of the first byte of the next
‘1nstruct1on. A o

t

f - EXAMPLE:
FIRST EQU $ The label FIRST is set to the address
: TABLE DB ENTRY of the entry in a table and LAST
R * o ‘ points to the locat1on 1mmed1ate1y after
o . - the end of the table. TABLN is then
kS * . , the length of the table and will remain
: “LAST EQU $ - . correct, even if later additions:or

~TABLN EQU LAST-FIRST deletions are made in the table.

. CONSTANTS

' Decimal, hexadecimal, octal, binary and ,ASCII constants may
P be used as‘opefands.tz , Sy

. The base for numeric constants is indicated by a single
letter immediately follow1ng the number, as, follows:

o i n : [T L e gt %

D = decimal

H ="hexadecimal
0 = octal

Q = octal .
‘B‘=5binary1’ >

If the letter is omltted, the number 'is assumed to be
dec1ma1 .Q is usually perferred for octal constants, since
.0 is so ea511y confused with. .0 (zero),' Numerlc constants“‘
must begin with ‘a numeric character (0 9) so_that’ they canﬂ‘“
be distinguished from labels; a hexadecimal constant;
beginning with A-F must be preceded by a -zero. '

t

ety ey
R BRI

ASCII constants are one or two characters surrounded by
single quotes ('). A single quote within an ASCII constant
is represented by two:''single quotes in a row with no
intervening spaces. ~For example, the expression '''', where
the two outer quote marks represent the string itself, i.e.,
. the single quote character. A 51ngle character ASCII
.constant has the numerical value of the corresgondlng ASCII

% codé., A double character ASCII constant has. the 16-bit

! - value:- whose high-order byte 4is the ASCII code of the first

‘ ,,character and whose low-order byte is the ASCII code of the
second character.

If a constant is.used. where an 8-bit quant1ty is required o
" (el 9. MVI C, 10H), its numerlé value must lie in the range T

e . Vet LTI B e TN

REERAR

