
NEVADA
TM

ELLIS COMPUTING ™

SOFTWARE TECHNOLOGY

9-9-83 NEVADA BASIC

NEVADA BASIC (tID)

Users' Reference Manual

Copyright (C) 1983 by Ellis Computing, Inc.

Contributing Authors for the CP/M(r) version:

Ian D. Kettleborough
John A. Starkweather, Ph.D.

Ellis Computing, Inc.
3917 Noriega Street

San Francisco, CA 94122

PAGE 1

9-9-83 NEVADA BASIC PAGE 2

COPYRIGHT

Copyright, 1983 by Ellis Computing, Inc. All rights
reserved worldwide. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval
system or translated into any human or computer language in
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the express
written permission of Ellis Computing, Inc.

TRADEMARKS

NEVADA COBOL(tm), NEVADA FORTRAN (tm) , NEVADA PILOT(tm),
NEVADA EDIT (tm) , NEVADA BASIC(tm) and Ellis Computing(tm)
are trademarks of Ellis Computing, Inc. CP/M is a
registered trademark of Digital Research, Inc.

DISCLAIMER

All Ellis Computing, Inc. computer programs are distributed
on an "AS IS" basis without warranty.

ELLIS COMPUTING makes no warranties, expressed or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. In no
event will ELLIS COMPUTING be liable for consequential
damages even if ELLIS COMPUTING has been advised of the
possibility of such damages.

Printed in the U.S.A.

9-9-83 NEVADA BASIC

NEVADA BASIC

A BASIC INTERPRETER FOR CP/M

TABLE OF CONTENTS

SECTION

1 INTRODUCTION.. 6
How to use this book 7
Symbols and Conventions 8

2 OPERATING PROCEDURES 9
HARDWARE REQUIREMENTS • 9
SOFTWARE REQUIREMENTS • 9
FILES ON DISTRIBUTION DISKETTE • 9
FILE TYPE CONVENTIONS • 9
GETTING STARTED . 9
HOW TO INITIALIZE AND LEAVE BASIC • 10
DEMONSTRATION PROGRAMS. • 12
DEFINITIONS OF COMMANDS & STATEMENTS13
DESCRIPITON OF BASIC STATEMENTS. • 14
CONSTANTS • • 14
VARIABLES • • 15
EXPRESSIONS • 15
DEFINITION OF A PROGRAM • 16
THE CALCULATOR MODE OF BASIC • 16

3 HOW TO CREATE, EDIT, EXECUTE & SAVE • 18
CREATING A PROGRAM . • 18
COMMANDS TO AID IN CREATING PROGRAMS19

LIST • 20
LLIST • • 22
DEL • 24
SCRATCH . 26
REN • 27
EDIT • 29

COMMAND KEY LIST • 30
CURSOR POSITIONING COMMANDS. • 31
SCREEN SCROLL COMMANDS • 31
DIRECT FILE POSITIONING COMMANDS 31
FILE MODIFICATION COMMANDS • 32

RUN • 34
CONT . 36
CLEAR • • 37
HANDLING PROGRAM FILES ON DISKETTE 38
SAVE • 39
GET . 41
XEQ • 42
APPEND • 43
KILL • 44
CAT • 45

P~GE 3

9-9-83 NEVADA BASIC PAGE 4

4 BEGINNER'S SET OF BASIC STATEMENTS • 46
REM • 47
LET • 48
GETTING DATA INTO & OUT OF PROGRAMS49
INPUT . • 50
PRINT . • 52
LPRINT • 54
RETRIEVING DATA WITHIN A PROGRAM • 56
READ • 57
DATA • 58
TYP(O) • 59
RESTORE • 60
ON •• RESTORE • • 61
STOPPING OR DELAYING EXECUTION • 62
END • 63
STOP • 64
PAUSE • • 65
EXECUTION CONTROL • • 66
GO TO • • 67
ON •• GO TO • 68
FOR • 69
EXIT • 71
ON •• EXIT • • 72
EXPRESSION EVALUATION • 73
IF • 78

5 ADVANCED BASIC • 79
SUBROUTINES • • 80
GOSUB • • 81
RETURN • 83
ON •• GOSUB • 85
FUNCTIONS • 86
ABS, EXP, INT, LOG, LOG10, RND, 87
SQR, SGN, SIN, COS, TAN, ATN, 98
USER-DEFINED FUNCTIONS • 99
DEF FN .100
FNvar .103
CHARACTER STRINGS • .104
DIM .107
SEARCH .108
FILL .109
STRING FUNCTIONS .110
VAR SUBSTRING .111
LEN .113
ASC .114
CHR .115
VAL .116
STR .117
DIMENSIONED VARIABLES .119
DIM .120
USING DISK FILES FOR DATA STORAGE 122
FILE SERIAL • .124
FILE RANDOM • .126
PRINT SERIAL .128
PRINT SPACING .130

9-9-83 NEVADA BASIC PAGE 5

PRINT RANDOM .132
READ SERIAL .134
READ SPACING .135
READ RANDOM .137
REWIND .139
CLOSE .140
PURGE .141
EOF .142
CONTORLING FORMAT OF NUMERIC .143
PRINT FORMATTED .144
CONTROLLED INPUT .149
INPUT. .150
ERROR CONTROL .151
ERRSET .152
ERRCLR .153
ON •. ERRSET .154
ERR(O) .155
FREE (0) .156
SYST .157
SYSTEM .158
COMMANDS CAN BE STATEMENTS. .159
SET, BYE, SCRATCH. .160
CURSOR CONTROL .160
CURSOR .161
ERASE .162
POS(O) .163
MACHINE LEVEL INTERFACE • .164
POKE .165
OUT .166
PEEK .167
INP .168
LOAD .169
CALL .170
WAIT .171
MATRIX OPERATIONS. .173
SCALER. .176
INVERSE .179
TRANSPOSE. .180

APPENDICES .183
COMMAND SUMMERY. .183
FUNCTION SUMMERY. .194
BASIC ERROR MESSAGES .197
TABLE OF ASCII CODES .202
HEXADECIMAL-DECIMAL TABLES .204
BIBLIOGRAPHY. .211
CONFIGURING AN UNKNOWN TERMINAL. .212

SOFTWARE LICENSE .214
CORRECTIONS AND SUGGESTIONS .216
INDEX. .217

9-9-83 NEVADA BASIC PAGE 6

SECTION 1

INTRODUCTION

NEVADA BASIC is a special adaptation of BASIC (Beginner's
all-purpose Symbolic Instruction Code) for use with the CP/M
Operating System. The BASIC interpreter was selected for
adaptation because it is simple and easy to learn while
providing the powerful capabilities of a high-level
language. Thus, it is ideal for the user who is a novice at
using programming languages as well as for the advanced user
who wants to work with subroutines, functions, strings, and
machine-level interfaces.

Some of the outstanding features available in NEVADA BASIC
are:

1. Fully-formatted output to a variety of devices.

2. Many function subprograms, including mathematical,
string, and video functions.

3. Program and data storage on floppy disk.

4. Full eight-digit precision and twelve-digit precision.

5. User-defined functions on one or more lines.

6. Calculator mode for immediate answers.

7. Full screen editing on video display.

8. Complete capability for string handling.

9. Functions and statements for communicating with any
number of input/output channels.

10. Ability to view memory locations, change values, and
branch to absolute addresses.

11. DATA files.

12. Matrix functions including INVert.

9-9-83 NEVADA BASIC PAGE 7

BASIC is a conversational language, which means that you can
engage in a dialog with BASIC by typing messages at a
terminal and receiving messages from a display device. For
example:

BASIC: Ready -BASIC indicates it is
ready to receive
instructions.

User: 10 PRINT "WHAT IS THE VALUE OF XII <CR> -The user
20 INPUT X <CR> enters the lines of a
30 LET Y = XA 3 <CR> program each followed by a
40 PRINT IIX CUBED IS ";X A 3 <CR> carriage return.
DEL 30 <CR> -User deletes line 30.
LIST <CR> -User tells BASIC to

list what has been typed.
BASIC: 10 PRINT "WHAT IS THE VALUE OF XII -BASIC lists all

User:

BASIC:
User:
BASIC:

20 INPUT X but line 30,
30 PRINT IIX CUBED IS ";X A 3 which was deleted.

RUN <CR>

WHAT IS THE VALUE OF X
?3 <CR>
X CUBED IS 27
Ready

-The user tells BASIC to
execute the program.

-The user types 3 in
response to the? prompt.

HON TO USE THIS BOOK

This book is intended as a description of this particular
version of BASIC, namely NEVADA BASIC. Several useful
beginning books are listed in Appendix 6 for those who need
more background.

Read this book from cover to cover first, as a text. The
material is presented in increasing difficulty from front to
back. After you are familiar with NEVADA BASIC, you can use
the book as a reference. In addition, statement and command
summaries are given in Appendix 1. Appendix 2 is a function
summary.

Section 2 gives background information needed for working
with BASIC. It presents the fundamental definitions and
modes of operation, and tells how to initialize and leave
BASIC.

Section 3 describes the mechanics of writing BASIC programs,
executing them, saving programs on diskette, and retrieving
them at the appropriate time.

Section 4 describes an introductory set of statements, the
instructions that make up a BASIC program. The statements
described in section 4 are the simplest in the language, but

9-9-83 NEVADA BASIC PAGE 8

they can be used to solve many math and business
applications.

Section 5 is referred to as "Advanced BASIC", but do not be
taken aback by the term "Advanced". All of BASIC is, as the
name implies, relatively simple to learn. Section 5 merely
goes further into the language by teaching the use of
subroutines and functions, how to work with strings of
characters, saving data on diskette, and formatting output
data.

Section 6 is for specialists. Those of you who have
expanded your computer to send and receive data at a number
of input/output ports will be interested in reading about
the machine-level interfaces of BASIC.

Section 7 involves special statements, preceded by MAT,
which involve the manipulation of matrices (two-dimensional
arrays) •

Symbols and Conventions

The symbols below are used in examples throughout this
document:

<CR> The user depresses the carriage return key.
<LF> The user depresses the line feed key.

Command and statement forms use uppercase and lowercase
characters to differentiate between characters to be typed
literally and data to be supplied by the programmer. For
example, the following command form indicates that the word
LIST should be typed followed by a number selected by the
user:

LIST n

Punctuation in command and statement forms should be
interpreted literally. For example, the statement form
below indicates that the word INPUT should be followed by
one or more variable names separated by commas:

INPUT varl, var2,

The ellipsis (•••), three consecutive periods, indicate that
preceeding arguments can be repeated.

Optional parts of command and statement forms are enclosed
in square brackets. For example, the form SCR[ATCH]
indicates that both SCR and SCRATCH are val id forms of the
command. The form EXecute indicates that only the first two
characters need be typed.

9-9-83 NEVADA BASIC

SECTION 2

OPERATING PROCEDURES

HARDWARE REQUIREMENTS

1. 8080/Z80/8085 microprocessor.
(Z80 is a trademark of Zilog.)

2. A minimum of 32K RAM.
3. Any disk drive.
4. CRT or Video display and keyboard.

SOFTWARE REQUIREMENTS

The CP/M(r) operating system version 1.4, 2.2
or 3.0. CP/M is a registered trademark of
Digital Research, Inc.

FILES ON THE DISTRIBUTION DISKETTE

NVBASIC.COM is the BASIC interpreter 8-digit
version.

NVBASI2.COM is the BASIC interpreter 12-digit
version.

PAGE 9

BASKEY.COM is used to change Editing Control keys.
NVBASIC.PRN is a source code listing of the

user changeable CRT driver.
SAMPLE.BAS is a BASIC source code sample program.

FILE TYPE CONVENTIONS

BASIC source code files .BAS
Assembly source code files .ASM
COBOL source code files .CBL
FORTRAN source code files .FOR
Object code run time files .OBJ
Printer listing files .PRN
Symbol table listing files .SYM
Error files .ERR
Work files .WRK

GETTING STARTED

If the master disk is not write protected, do it now!

1. NEVADA BASIC is distributed on a DATA DISK without the
CP/M operating system. There is no information on the

9-9-83 NEVADA BASIC PAGE 10

system tracks, so don't try to "boot it up", it won't work!

2. On computer systems with the ability to read several
disk formats, such as the KayPro computer, the master
diskette must be used in disk drive B.

3. Do not try to copy the master diskette with a COpy
program! On most systems it won't work. You must use the
CP/M PIP command to copy the files.

4. First, prepare a CP/M system's diskette for use as your
NEVADA BASIC operations diskette. On 5 1/4 inch diskettes
you may have to remove (use the CP/M ERA command) most of
the files in order to make room for the BASIC files. None
of the CP/M files are needed for NEVADA BASIC, but PIP. COM
and STAT.COM are useful if you have the space. You may want
to do a CP/M STAT command on the distribution disk so you
will know how much space you need on your operational
diskette. For more information read the CP/M manuals about
the STAT command.

5. Then insert the newly created CP/M diskette in disk
drive A, and insert the NEVADA BASIC diskette in drive Band
type (ctl-c) to initialize CP/M. Now copy all the files
from the BASIC diskette onto the CP/M diskette:

PIP A:=B:*.*[VO]

If you get a BOOS WRITE ERROR message from CP/M during the
PIP operation it usually means the disk is full and you
should erase more files from the operational diskette.

At this point, put the NEVADA BASIC diskette in a safe
place. You will not need it unless something happens to
your operations diskette. By the way, back up your
operations diskette with a copy each week! If your system
malfunctions you can then pat yourself on the back for
having a safe back up copy of your work.

NOw, boot up the newly created NEVADA BASIC operations
diskette. Notice that CP/M displays the amount of memory
for which this version of CP/M has been specialized. The
amount of memory available determines the size of the
programs that can be run. The more memory available the
larger the program that can be run.

HOW TO INITIALIZE AND LEAVE BASIC

NEVADA BASIC is stored on diskette under the name NVBASIC
for the 8-digit version or under the name NVBAS12 for the
12-digit version.

9-9-83 NEVADA BASIC

1. To create your specialized working version, type:

NVBAS IC <CR)
or NVBAS12 <CR)

2. Next the screen is filled with terminal choices:

NVBASIC VERSION 2.1 (0) CONFIGURING
COPYRIGHT (C) 1983 ELLIS COMPUTING, INC.
@ ANSI MODE TERMINAL
A ADVANTAGE
B APPLE COMPUTER, 40 COLUMN DISPLAY
C APPLE COMPUTER + VIDEX 80 COLUMN BOARD
o BEEHIVE 150 OR CROMENCO 3100
E COMMODORE 64
F FREEDOM 100
G HAZELTINE 1400 SERIES
H HAZELTINE 1500 SERIES
I HEATH H19/H89 OR ZENITH Z19/Z89
J HEWLETT-PACKARD 2621

TYPE A SINGLE LETTER TO SELECT TERMINAL.
<CARRIAGE RETURN) FOR MORE TERMINALS

K IBM PERSONAL COMPUTER+ BABY BLUE CARD
L INFOTON 1-100
M LEAR-SEIGLER ADM-3A
N LEAR-SEIGLER ADM-31
o MICROTERM ACT-IV
P OSBORNE I
Q PERKIN-ELMER 550 (Ban tom)
R PROCESSOR TECHNOLOGY SOL OR VDM
S SOROC IQ-120/140
T SUPERBRAIN
U TELEVIDEO 950
V TRS-80, MOD II (P. & T. CP/M)
W NONE OF THE ABOVE
TYPE A SINGLE LETTER TO SELECT TERMINAL.
<CARRIAGE RETURN) FOR MORE TERMINALS R

BASIC.COM is now saved on the default drive.

PAGE 11

Since BASIC is stored as a (.COM) file, you can now enter
BASIC by simply typing BASIC <CR).

After you are finished working in BASIC, you can exit to
CP/M by simply typing BYE <CR).

If you have a BASIC program stored as a CP/M (.BAS), and you
want to load BASIC, and load and run the program at the same
time, use the one command:

BAS IC file-name

9-9-83 NEVADA BASIC

using the program's file name.
execution automatically.

DEMONSTRATION PROGRAMS

PAGE 12

The program will begin

The BASIC disk contains demonstration programs which
illustrate the power of this version of BASIC and may be
studied as examples of advanced programming techniques, by
LISTING them.

9-9-83 NEVADA BASIC PAGE 13

DEFINITIONS OF COMMANDS AND STATEMENTS

Whenever you type a line of text ending with a carriage
return in the BASIC environment, BASIC interprets it as a
command or as a statement. A command is an instruction that
is to be executed immediately, while a statement is an
instruction that is to be executed at a later time, probably
in a sequence with other statements.

BASIC differentiates between commands and statements by the
presence or absence of line numbers. A statement is
preceded by a line number. A Command is not. Examples of
command lines are:

LIST 10, 90, <CR)
DEL 70 <CR)
BYE <CR)

Examples of statement lines are:

10 LET A = 100 <CR)
70 PRINT Al,Z7 <CR)

100 INPUT X,Y,C <CR)

You can enter more than one statement on a line by using the
colon as a separator. For example:

10 LET X = 0 : GO TO 150

is the same as

10 LET X = 0
20 GO TO 150

When entering multiple statements on a line, precede only
the first statement with a line number. For example:

100 INPUT A,B,C:LET X A - B*C

A command or statement has a keyword that tells what is to
be done with the rest of the line. In the examples above,
the keywords are LIST, DEL, BYE, LET, PRINT, and INPUT.
Keywords can be abbreviated by eliminating characters on the
right and following the abbreviation with a period. For
example, the following statements are equivalent:

10 PRINT X,Y
10 PRIN. X,Y
10 PRI. X,Y
10 PRe X,Y
10 P. X,Y

9-9-83 NEVADA BASIC PAGE 14

The minimum number of characters allowed in the abbreviation
is determined by the number of characters required to
uniquely identify the keyword and by a hierarchy of keywords
in statements or commands. Appendices 1 and 2 indicate the
minimum abbreviations allowed for all command and statement
keywords.

DESCRIPTION OF BASIC STATEMENTS

A statement is preceded by a line number which must be an
integer between 1 and 65534. This line number determines
the statement's place in a sequence of statements. The
first word following the statement number tells BASIC what
operation is to be performed and how to treat the rest of
the statement. For example:

200 PRINT "THIS IS AN EXAMPLE"

Indicates what is to be printed.
Tells BASIC that a printing operation is
to take place.

Indicates that this statement will be executed
before statements with line numbers greater than
200 and after statements with line numbers less
than 200.

Blanks do not affect the meaning of a statement in BASIC.
That is the following are equivalent statements:

20 GO TO 200
20GOT0200

BASIC automatically removes blanks from statements as you
enter them. Blanks in strings (discussed later) are not
al tered •

BASIC statements specify operations on constants, variables,
and expressions. These terms are discussed in the units
below.

Constants

A constant is a quantity that has a fixed value. In NEVADA
BASIC constants are either numerical or string. A numerical
constant is a number, and a string constant is a sequence of
char ac ter s.

A numerical constant can be expressed in any of the
following forms:

Integer
Floating po int
Exponential·

1, 400, 32543, -17
1.73, -1123.01, .00004
3.1001E-5, 10E4, 230E-12

9-9-83 NEVADA BASIC PAGE 15

A string constant is indicated by enclosing a string of
characters in quotation marks. For example:

"Nevada"
"The answer is"

Strings are discussed in more detail in section 5.

Variables

A variable is an entity that can be assigned a value. In
NEVADA BASIC a variable that can be assigned a numerical
value has a name consisting of a single letter or a single
letter followed by a digit. The following are examples of
numerical values being assigned to numerical varibles:

A = 17
B9 = 147.2

A variable that can be assigned a string value has a name
. consisting of a single letter followed by a ($) dollar sign
or a single letter followed by a digit followed by a ($)
dollar sign.

Examples of string values being assigned to string variables
are:

A$ = "J. PAUL JONES"
X$ = "711 N. Murry"
R9$ = "Payables, Dex. 9"

Expressions

An expression is any combination of constants, variables,
functions, and operators that has a numerical or string
value. Examples are:

X 2 + Y - A*B
22 + A
"NON" + A$
NOT N

A numerical expression is an expression with a numerical
value. It may include any of the following arithmetic
operators:

expoen tia te
* multiply
/ divide
+ add

subtract

However, a negative number cannot be raised to a power

9-9-83 NEVADA BASIC PAGE 16

((_X)Ay) since the result could be a complex number. In an
expression arithmetic operators are evaluated in the order
shown below:

highest
next highest
nex t highest
lowest

(unary negate)

* and I
+ and -

Expressions in parentheses are evaluated before any other
part of an expression. For example:

A I 2
third

fourth

* B - (4/C) A 2
first

second

fifth

Numerical expressions can also include logical and
relational operators. These are introduced in section 4.

Operations in string expressions are described in section 5.

DEFINITION OF A PROGRAM

A program is a stored sequence of instructions to the
computer. The instructions are specified in statements
arranged to solve a particular problem or perform a task.
The statement numbers determine the sequence in which the
instructions are carried out. For example, the following
program averages numbers:

10 PRINT "HOW MANY NUMBERS DO YOU WANT TO AVERAGE";
20 INPUT N
30 PRINT "TYPE ", N; "NUMBERS"
40 FOR I 1 TO N
50 INPUT X
60 S = S + X
70 NEXT I
80 PRINT "THE AVERAGE IS " SIN

THE CALCULATOR MODE OF BASIC

Earlier, a statement was described as a user-typed line
preceded by a statement number and a command was described
as a user-typed line without a statement number. In NEVADA
BASIC you can also type a statement without a statement
number and it will be treated as a command. That is, BASIC
executes the statement as soon as you type the carriage
return at the end of the line. For example:

User: PRINT "5.78 SQUARED IS ", 5.78 A2 <CR)

9-9-83 NEVADA BASIC PAGE 17

BASIC: 5.78 SQUARED IS 33.3084

ThuSi you can use BASIC as a calculator to perform immediate
computations.

If you perform a sequence of operations in calculator mode,
BASIC will remember the results of each statement just as it
does in a program. For example:

User: LET A = 20.78 <CR)
INPUT X

BASIC: ? 2 <CR)

User: LET B = A*X <CR)
IF B) X THEN PRINT B

BASIC: 41.56

The user types 2 in response
to the ?

In the documentation of individual statements in sections 4
and 5, statements that can be used in calculator mode are
marked CALCULATOR.

Without exception, all numbers in BASIC are decimal. This
includes not only data values in constants, variables, and
expressions, but the operands of BASIC statements and
commands when they call for numeric values.

9-9-83 NEVADA BASIC PAGE 18

SECTION 3

HOW TO CREATE, EDIT, EXECUTE, AND SAVE A PROGRAM

A BASIC program is a stored sequence of instructions to the
computer. This section tells how to enter a program into
the computer, view the text of the program and alter it,
execute the program, save it for future use, and retrieve it
from s tor age.

CREATING A PROGRAM

To create a program, simply type statements of the program
in BASIC. Precede each statement with a statement number
and follow it with a carriage return. For example:

User: 10 INPUT X,Y,Z <CR>
20 PRINT X+Y+Z <CR>

A program now exists in BASIC. When executed the program
will accept three numbers from the terminal and then print
their sum.

When entering statements be careful not to create lines that
will be too long when formatted by BASIC. BASIC will expand
abbreviated statements; for example P. will become PRINT in
a listing or edit. BASIC will insert blanks to improve
readability, if the program was typed without them. These
two factors can expand a line beyond the limit set bye SET
LL = length command or statement. For more information
about line length errors, see "LL" in Appendix 3.

It is not necessary to enter statements in numerical order.
BASIC will automatically arrange them in ascending order.
To replace a statement, precede the new statement with the
statement number of the line to be replaced. For example:

User: 20 INPUT X,Y <CR> The user enters the
10 PRINT "TYPE X AND Y" <CR> statements out of
30 PRINT X*Y <CR> sequence.
30 PRINT liTHE PRODUCT IS II ,x*y <CR> Duplicate
LIST <CR> statement number.

10 PRINT "TYPE X AND y" BASIC orders the
20 INPUT X,Y sta tements and keeps
30 PRINT liTHE PRODUCT IS II X*Y only the last line

entered for a given
statement number.

9-9-83 NEVADA BASIC PAGE 19

While entering statements or commands in BASIC, you can use
any of the following keys on the terminal to correct the
line being typed:

Control-H

Control-C

Control-M
RETURN

Control-X

Deletes the current character and shifts the
remainder of the line to the left.

Aborts a running program, infinite loop,
listing, and getting or saving operations.
Deletes a line being typed. If used to stop
a running program, all open files will be
closed.

Terminates the line. The line remains as
it appeared when the RETURN key was type.

Cancels the line being typed, and positions
the cursor ort a new line. The cancelled
line remains on the screen. May also be
used while the user is typing a responce to
an INPUT statement in a running program.

If a control character (I ike CONTROL-X above) is typed at
the beginning of a line on the video display or terminal, it
will be displayed on the screen or terminal, and will be
ignored by BASIC.

COMMANDS TO AID IN CREATING A PROGRAM

The commands described in this section are likely to be used
while creating a program. The LIST command display the
program. DELETE and SCRATCH are used to erase statements.
REN lets you automatically renumber statements. The EDIT
command makes the screen editor available.

NEVADA BASIC PAGE 20

LIST LIST

FUNCTION: To display the indicated program statements.

FORMAT-1:

LIST [n]

FORMAT-2:

LIST [n1,n2]

RULES:

1. The command LIST will display the entire program.

2. The command LIST n will display the statement number n.

3. The command LIST nl, will display the statement number
n1 through the end of the program.

4. The command LIST ,n2 will display all the statements
from the first through the statement number n2.

5. The command LIST n1,n2 will display statements numbered
n1 through n2.

6. The LIST command displays the indicated statements in
increasing numerical order. It automatically formats the
text of the statements, indenting and adding spaces where
appropriate.

9-9-83 NEVADA BASIC

EXAMPLES:

User: 10 FOR I = 1 TO 100 <CR)
30 NEXT I <CR)
20 PRINT 1"2 <CR)
LIST <CR)

10 FOR 1=1 TO 100
20 PRINT 11'2
30 NEXT I

EXAMPLES:

LIST 100,150 <CR)
LIST 50, <CR)

PAGE 21

NOTES: You can control the display of material using the
following keys:

Control-C

Control-S

Aborts listing

Causes a pause in the listing. Striking any
key causes the listing to resume.

9-9-83 NEVADA BASIC PAGE 22

LLIST LLIST

FUNCTION: To list the indicated program statements on
the printer.

FORMAT-l:

LLIST [n]

FORMAT-2 :

LLIST [nl,n2]

RULES:

1 • Th e comma nd LL I S T will 1 i s t the en t ire pro gram 0 nth e
s y stem s p r in t e r •

2. The command LLIST n will list the statement number n.

3. The command LLIST nl, will list the statement number nl
through the end of the program.

4. The command LLIST ,n2 will list all the statements from
the first through the statement number n2.

5. The command LLIST nl,n2 will list statements numbered
nl through n2.

6. The LLIST command lists the indicated statements in
increasing numerical order. It automatically formats the
text of the statements, indenting and adding spaces where
appropriate.

9-9-83 NEVADA BASIC

EXAMPLES:

User: 10 FOR I = 1 TO 100 <CR)
30 NEXT I <CR)
20 PRINT IA2 <CR)
LLIST <CR)

10 FOR 1=1 TO 100 on the printer
20 PRINT IA2
30 NEXT I

PAGE 23

NOTES: You can control the list of material using the
following keys:

Control-C

Control-S

Aborts listing

Causes a pause in the listing. Striking any
key causes the listing to resume.

9-9-83 NEVADA BASIC PAGE 24

DEL DEL

FUNCTION: To delete the indicated statements.

FORMAT-l:

DEL [n]

FORMAT-2:

DEL [nl,n2]

RULES:

1. The command DEL will delete all the statements in the
program.

2. The command DEL n will delete statement number n.

3. The command DEL nl, will delete all statements from nl
through the end of the program.

4. The command DEL ,n2 will delete all statements from the
first through statement n2.

5. The command DEL nl,n2 will delete statement numbers nl
through n2.

6. It should also be noted that entering a statement
number, followed by a carriage return will also delete that
sta tement.

9-9-83 NEVADA BASIC

EXAMPLE:

User: 100 LET A = 100 <CR>
110 INPUT X,Y,Z <CR>
120 PRINT (X+Y+Z)/A <CR>
DEL 110, <CR>
LIST <CR>

BASIC: 100 LET A=lOO

EXAMPLES:
DEL ,150 <CR>
DEL 75,90 <CR>

PAGE 25

NOTES: Also, entering a line number that is not followed by
a statement deletes a line.

EXAMPLE:

User: 100 <CR>
LIST 100 <CR>

BASIC: Ready Line 100 has been deleted.

\9-9-83 NEVADA BASIC PAGE 26

SCRATCH SCRATCH

FUNCTION: To delete the entire program and clear all
variable definitions.

FORMAT:

RULES:

SCR
SCRATCH

1. The SCRATCH command deletes the entire program and
clears all variable definitions established during previous
program run or by statements executed in the calculator
mode.

EXAMPLE:

User: A = 100 <CR)
PRINT A <CR)

BASIC: 100
User: 'SCR <CR)

PRINT A <CR)
BASIC: 0
User: LIST <CR)

A receives a value of 100.

Prints the assigned value for A.
The SCR command clears variables.

A's value is now O.
The SCR command has deleted all
statements previously existing in
the BASIC environment.

9-9-83 NEVADA BASIC PAGE 27

REN REN

FUNCTION: To renumber all statements of the program.

FORMAT-I:

REN [n]

FORMAT-2:

REN [n, i]

RULES:

1. The command REN will renumber all statements. The first
statement will be numbered 10 and subsequent statement
numbers will increments of 10.

2. The, command REN n will renumber all statements. The
first statement will be numbered n and subsequent statements
numbers will be increments of 10.

3. The command REN n,i will renumber all statements. The
first statement will be numbered n and subsequent statement
numbers will be increments of integer i.

4. The REN command renumbers all statements of the program
as indicated, maintaining the correct order and branches in
the prog ram.

\9-9-83

EXAMPLE:

EXAMPLE:

User:

NEVADA BASIC

REN <CR)
REN 100,5 <CR)

10 INPUT A,B <CR)
20 PRINT "A*B IS 11 ,A*B <CR)
30 GO TO 10 <CR)
REN 100
LIST <CR)

100 INPUT A,B
110 PRINT "A*B IS ",A*B
120 GO TO 100

PAGE 28

Notice in line 120 that GO TO 10 has been changed to GO TO
100. IF line 30 had been GO TO 50, thus referring a line
number which does not exist in the program to be renumbered,
GO TO 50 would have been changed to GO TO 0, and an error
message would have been printed. All references to
non-existant line numbers will be changed to 0 before an
error message is given.

9-9-83 NEVADA BASIC PAGE 29

EDIT EDIT

FUNCTION: To make available a new set of commands that can
be used to create and alter text and program
files.

FORMAT:

EDIT [n]

NOTES:

In EDIT the cursor may be positioned anywhere on the
screen, lines may be scrolled up and down, and characters
and entire lines may be inserted or deleted. There are also
provisions for searching the file for strings, and for
moving quickly to anyone-tenth portion of the file from 0
to 9.

If you enter the EDIT command specifying line number (n),
then that line number will be at the top of the Screen with
the cursor set to it.

If you enter the EDIT command wi thout a I ine number (n)
specified, the first page of the file in memory is
displayed, with the cursor at line one and position one
(column 0). If the existing text is not enough to fill the
screen, the remaining portion of the screen will be filled
with blanks.

The next few pages tell how to go about changing a file by
using control characters.

Below is a list of the command keys used by the EDITor. A
more complete description of each command is given after the
list. These are default commands that will be used unless
modified during a configuration process by the program
BASKEY. Other control codes or special character sequences
may be substituted, thus allowing use of special keys on
some terminals. The specific memory locations to be changed
will be found in the file NVBASIC.PRN.

.9-9-83 NEVADA BASIC PAGE 30

COMMAND KEY LIST

CONTROL KEYS

CONTROL E
CONTROL X
CONTROL S
CONTROL D
CONTROL V
CONTROL G
CONTROL N
CONTROL Y
CONTROL Q
CONTROL Z
CONTROL W
CONTROL C
CONTROL R
CONTROL A
CONTROL F
CONTROL L
CONTROL K
TAB
RETURN
LINE FEED
BACKSPACE
DELETE

move cursor up one line
move cursor down one line
move cursor left one character
move cursor ri~ht one character
toggle insert character mode; ON/OFF
delete character under cursor
insert line above cursor
delete line
move cursor to upper left corner of screen
move file up one line
move file down one line
scroll file up one-half page
scroll file down one-half page
move cursor to a mid line, column 1
initiate string search mode
continue search for string
exit from the editor or editor text search
move cursor to next tab position (CNTL-I)
insert line below cursor (CONTROL-M)
position cursor one line down (CONTROL-J)
backspace and erase a character
(or RUBOUT) same action as backspace

When you leave EDIT mode by pressing ctrl-K, the program you
have prepared resides in memory and is ready to RUN. But
it has not been saved. If you wish it to be stored in a
disk file for later use, you must type "SAVE <file name>"
before leaving BASIC.

9-9-83 NEVADA BASIC PAGE 31

DETAILED COMMAND DESCRIPTION

Cursor Positioning Commands

The keys S,D,E,X form a diamond on the input keyboard. When
pressed simultaneously with the 'CTRL' (control) key, they
move the cursor as indicated below:

CONTROL E move cursor up one line
CONTROL X move cur sor down one line
CONTROL S move cursor left one character
CONTROL D move cursor right one character
CONTROL A move cursor to mid screen, column 1
CONTROL Q move cursor to home po si tion, upper left

NOTE: Moving the cursor does not change the text.

Screen Scroll Commands

Screen scroll commands are provided to allow the file to be
"rolled" through the screen area until the desired file line
is reached.

CONTROL Z
CONTROL W
CONTROL C
CONTROL R

scroll up one line
scroll down one line
scroll up one-half page
scroll down one-half page

(Please note that BASKEY.COM program can be used to change
the scrolling from one half page to a full page scrolling.)

Direct File Positioning Commands

In addition to cursor positioning controls, the EDITor
offers a way of searching for a specific string of text
within your file. The search (find) command is CONTROL F.

CONTROL F editor text search

When you type control F, the last line of the display is
cleared and the normal video reversed for this 1 ine. If an
extra line is available, such as a 25th line on some
terminals, this line is activated and used. The cursor is
placed at the first position in the line. At this point the
EDITor is waiting for you to enter either: 1) An input line
consisting of one or more characters, or 2) a single digit.
The input is terminated by a carriage return.

1. Character entry:

9-9-83 NEVADA BASIC PAGE 32

Any occurrence of the string entered, regardless of
preceding or following characters, will represent a find.
Therefore, only enough characters to define the desired
text uniquely need be supplied. As an example, lithe qu" can
be used to locate a line in the file containing lithe quick
brown fox. 11

Upon receiving a carriage return, the EDITor searches the
file, beginning one line below the current cursor position,
until a string match is made or until the end of the file is
reached. At the beginning of a file, the search begins at
the first line. If a match is found, the EDITor positions
the line containing the match at the top of the screen.

CONTROL L continue search

If you wish to continue searching for text matches after
having left edit text search, pressing CONTROL L will cause
continued searching for the string that was last designated.
The EDITor resumes the search at the first line following
that in which the cursor resides at the time of the command
and continues until a match is made or until the end of file
is reached. This command may be given as often as is
desired.

2. Digit entry:

If you enter a digit from 0 to 9 in the command line, the
file will be scrolled so that the top line on the video
display screen marks the end of that tenth of the file which
corresponds to the number entered. Thus, if the number is
5, the file will be positioned at the half-way point. If 0
is entered, the file will be positioned at the beginning.
ESCAPE will cause an exit from editor text search and a
return to EDIT mode.

File Modification Commands

CONTROL V character insert mode switch (on-off-on .••.)

Normal file characters input from the terminal are placed in
the file in either of two modes. These modes, normal and
insert, are alternately selected using the insert mode
control.

When insert mode is OFF (default mode when EDITor is
entered), each character that you type replaces what was
formerly at the current cursor position, and the cursor
moves to the right one place. When insert mode is ON,
characters are actually inserted BEFORE the current cursor
position, moving the character at that location, and any
characters to the right of it, one position to the right.
The cursor also advances one position. A line contains a

9-9-83 NEVADA BASIC PAGE 33

maximum number of characters, so you may begin to lose text
that is pushed off the screen by the insertion.

CONTROL G delete character

The delete character command removes the character at the
current cursor position and moves each character to the
right of the cursor one position to the left.

CONTROL N insert line command

The insert line command puts a new blank line at the
present cursor position, and moves each subsequent line of
the file one row down. The cursor is moved to the first
character position of the new line. Use this command to
insert a new line "above" the current line.

CONTROL Y delete line command

This control removes the current cursor line from the file.

CONTROL T blank remaining line

This control deletes all characters to the right of the
current cursor position (on the cursor line). The cursor
appears at the beginning of the next line in the file.

CARRIAGE RETURN (CONTROL M) . scroll up & inser t 1 ine

Carriage return scrolls up one line and inserts a blank line
in the file. The cursor is moved to the first character
position of the new line. The new line is automatically
numbered one greater than the previous line number, if the
new line number does not already exist in the program. If
the new line does exist, the program should be renumbered to
make room for the new line. Use RETURN to insert a line
'BELOW' the current cursor position. No characters on the
current line are deleted. The exception to this rule is
that, if a file contains fewer than one page of text,
RETURN will open a new blank line below the last line of
text but will not scroll the file.

TAB (CONTROL I) horizontal tab

When TAB is pressed, the cursor will move to the next column
divisible by eight (columns 8, 16, 32, •••).

CONTROL K exit from editor to BASIC.

When CONTROL K is struck the editor mode is terminated and
control is returned to BASIC. The changes can then be
tested by typing RUN.

9-9-83 NEVADA BASIC PAGE 34

RUN RUN

FUNCTION: To execute all or part of the current program.

FORMAT:

RUN [n]

RULES:

1. The command RUN will execute all of the current program.

2. The command RUN n will execute the current program
beginning with statement number n.

3. If no statement number is specified, the command clears
all variables and then executes the program.

4. If a statement number is indicated, the command executes
the program beginning with that statement number, but does
not clear the variable definitions first.

5. When a program is executed with the RUN command, BASIC
interprets each of the statements sequentially, then it
carries out the instructions.

6. If BASIC encounters a problem during any of these steps,
it prints a message describing the error. The meanings of
BASIC error messages are given in Appendix 3.

7. During execution a program can be interrupted by
pressing Contro1-C keys. This is true weather the program
is running correctly, is in a loop, or is waiting of input.
No information is lost and you can continue execution by
giving the CONT command.

8. When a program run terminates for any reason, all open
files are closed.

9-9-83

EXAMPLE:

User:

BASIC:

User:
BASIC:

NEVADA BASIC PAGE 35

10 LET A = 10, B = 20, C
20 PRINT AA2*B-C <CR>
30 STOP <CR>
40 PRINT AA2*{B-C) <CR>
RUN <CR>

1970
STOP IN LINE 30

RUN 40 <CR>
-1000

Ready

30 <CR>

The STOP statement
interrupts the program.

Notice that A, B, and C
still have the values
assigned in statement 10.

9-9-83 NEVADA BASIC PAGE 36

CONT CONT

Function: To continue program execution.

FORMAT:

CONT

RULES:

1. The CONT statement continues the execution of a program
that was interrupted by Control-C Keys or stopped by the
execution of a STOP statement.

2. If you edit any part of a program after interrupting
execution, all variable definitions are lost. Thus you
cannot stop a program's execution, change a statement in
that program, and then CONTinue execution or print variable
names.

3. When a program run is terminated for any reason, all
open files are closed, which also could interfere with
subsequent CONTinuation.

9-9-83 NEVADA BASIC PAGE 37

CLEAR CLEAR

FUNCTION: To erase the definitions of all variables and
leave the program intact.

FORMAT:

CLEAR

RULES:

1. The CLEAR command clears all variable definitions but
does not erase the statements of the current program.

2. If CLEAR is used as a statement, all open files will be
closed.

EXAMPLE:

User: 10 A=lO, B=20,C=30 <CR>
20 STOP <CR>
30 PRINT A,B,C <CR>
RUN <CR>

BASIC: STOP IN LINE 20

User: RUN 30
BASIC: 10 20

Ready

User: CLEAR <CR>
RUN 30 <CR>

BASIC: 0 0
Ready

User: LIST <CR>

30

o

10 A=10,B=20,C=30
20 STOP
30 PRINT A,B,C

The variables have the
values assigned in line
10.

Variable definitions
have been cleared.

The program remains
intact.

9-9-83 NEVADA BASIC PAGE 38

HANDLING PROGRAM FILES ON DISKETTE

Once you have created and tested a program you can save it
on diskette for future use. The commands described in this
section can be used to save the program on diskette, read it
as a file, read and automatically execute it, or read the
program and append it to the statements currently in BASIC.
Additional commands allow you to kill files or make a
listing of all files of a specified type.

Text and Semi-Compiled Modes of Program Storage

The four commands involved in storing and retrieving
programs from diskette are SAVE, GET, APPEND, and XEQ. Only
SAVE has optional parameters T, for text mode of storage, or
C, for semi-compiled mode of storage. In text mode, the
current program is saved literally, as the program would
appear when listed. If a program may be used with other
versions of BASIC, or other editors, it should be saved in
this form. In semi-compiled mode, the program is partially
compiled, and is stored on diskette in a condensed form
which saves space, allows programs to be recorded and
accessed faster. The semi-compiled program may not be
intelligible to other versions of BASIC, however, and cannot
be manipulated in a meaningful way by other editors.

Commands for Handling Diskette Program Files

Most of the commands for manipulating diskette program
files, which are described next, use the following general
form:

COMMAND file name

The file name is the name of a CP/M file, and subject to the
same conditions as any other CP/M file. The file name can
be from one to eight alphanumeric characters. Two extra
characters can prefix the file name which specify the
diskette drive unit to be used in the command.

If the file name is given alone in the command, without a
unit specification, the default unit (usually A) is used.
CP/M allows the user to change which unit will be the
default unit.

9-9-83 NEVADA BASIC PAGE 39

SAVE SAVE

FUNCTION: To save the current program on a diskette file.

FORMAT:

SAVE file-name [,mode]

RULES:

1. The SAVE command writes the current program on a disk
file and labels the file with the specified name.

2. If the diskette already contains a file of the specified
name, that file will be overwritten.

3. The mode option can be either T or C. T specifies that
the verbatem text of your program is to be saved. And C
specifies that a semi-compiled version of the program is to
be saved. C (semi-compiled) is the default option and need
not be specified.

4. The C (semi-compiled) version is more efficient, loads
more quickly, can be saved more quickly, might be dependent
on version of BASIC in use, and cannot be edited by external
editors.

5. The T (text) version .is recognizable as a sequence of
BASIC statements, can be edited by editors outside BASIC,
and is independent of the version of BASIC in use.

6. For programs you intend to preserve and use frequently,
it is best to save in both modes: in text mode to preserve
complete documentation and enable compatibility with other
editors, and in semi-compiled form for rapid loading.

7. Both the T and C modes, create a CP/M file with the file
extension type of (.BAS), if no file extension is explicitly
given.

9-9-83 NEVADA BASIC

EXAMPLE:

User: 10 PRINT "ENTER INTEREST RATE" <CR)
20 INPUT R <CR)
25 S = 1 <CR)
30 FOR lITO 100 <CR)
40 S = S + S*R <CR)
50 IF S)= 2 THEN 70 <CR)
60 NEXT I <CR)

PAGE 40

70 PRINT "INVESTMENT DOUBLES IN ",I;"YEARS" <CR)
SAVE INV <CR)

BASIC: (Records the program on diskette)
Ready

9-9-83 NEVADA BASIC PAGE 41

GET GET

FUNCTION: To read the specified file from disk.

FORMAT:

GET file-name

RULES:

1. The GET command searches the directory for the specified
file, then reads the file making the program contained on it
available in BASIC.

2. Any statements residing in BASIC before the file was
read are lost.

3. The GET command determines whether the file was SAVEd in
text or semi-compiled form and acts accordingly.

4. The file extension (.BAS) will be used if now file
extension is explicitly given •.

EXAMPLE:

User:

BASIC:

User:
BASIC:

LIST <CR) BASIC generates no listing--there
are no statements residing in BASIC

GET INV <CR)
(Reads the file from diskette)

Ready

LIST <CR)
10 PRINT "ENTER INTEREST RATE"
20 INPUT R
25 S = 1
30 FOR I 1 TO 100
40 S = S + S* R
50 IF S)= 2 THEN 70
60 NEXT I

BASIC now contains
the program that
was read from
diskette.

70 PRINT "INVESTMENT DOUBLES IN ",Ii"YEARS"

9-9-83 NEVADA BASIC PAGE 42

XEQ XEQ

FUNCTION: To read the specified file from diskette and
execute the program contained in it.

FORMAT:

XEQ file-name

RULES:

1. The XEQ command reads the specified file, making the
program contained on it available in BASIC, and begins
execution.

2. Any statements residing in BASIC before the file was
read are lost.

3 • The f i 1 e ext en s ion (. BAS) will be used i f no f i 1 e
extension is explicitly given.

EXAMPLE:

User: XEQ INV <CR)
BASIC: ENTER INTEREST RATE

?
BASIC begins execution of
the program contained on
the file INV.

9-9-83 NEVADA BASIC PAGE 43

APPEND APPEND

FUNCTION: To read the specified file from disk and merge
the program contained on it with the statements
already residing in BASIC.

FORMAT:

APPEND file-name

RULES:

1. The APPEND command searches the directory for the named
file. Without erasing the statements currently in BASIC, it
reads the file and merges the statements found there with
the existing statements.

2. The line numbers of statements from the appended file
determine their positions with respect to the statements
already in BASIC.

3. If a line number from the file is the same as that of a
statement residing in BASIC, the statement from the file
replaces the previous statement.

4. Only T (text) files can be appended.

5. The file extension (.BAS) will be used if no file
extension is explicitly given.

EXAMPLES:

User: LIST <CR>
BAS IC : 10 LET X=O

20 PRINT "ENTER Y AND Z1I
30 INPUT Y, Z

User: APPEND PART2 <CR>
BASIC: (Reads the file from diskette)

Ready

User: LIST <CR>
10 LET X=O Now BASIC contains the
20 PRINT "ENTER Y AND Z1I statements read from
30 INPUT Y,Z diskette as well as

100 A1=X+Y+Z the original statements.
110 A2=X+Y-Z
120 A3=X-Y+Z
130 PRINT Al,A2,A3

9-9-83 NEVADA BASIC PAGE 44

KILL KILL

FUNCTION: To kill (erase) the named file.

FORMAT:

KILL file-name

RULES:

1. KILL performs operations that may be thought of as
"erasing" the named file: the file name is removed from the
directory, and the space used by the file is made available
for other files.

EXAMPLE:

'KI LL JEC. BAS
KILL A:USELESS.CCC

9-9-83 NEVADA BASIC PAGE 45

CAT CAT

FUNCTION: To display a catalog of files of the specified
type on the specified diskette drive unit.

FORMAT:

CAT [u:] [type.ext]

RULES:

1. CAT reads the directory of the specified unit, or the
default unit if none is specified, and prints a listing of
files of the specified type.

2. The CAT command will also show is a file has been marked
as $R/O or $SYS by the CP/M STAT program. If a file is
both, the $SYS is the only attribute shown.

3. If [u:] is omitted, then the default drive is used.

4 • I f [t Y P e • ex t] i s om itt ed, the n *. * will be used a nd all
files will be displayed.

9-9-83 NEVADA BASIC PAGE 46

SECTION 4

A BEGINNER'S SET OF BASIC STATEMENTS

You can write BASIC programs for a multitude of mathematical
and business applications using just the statements
described in this section. This section tells how to assign
values to variables, perform data input and output, stop a
program, control the sequence in which statements are
executed, and make logical decisions. These include the
simpler BASIC concepts. After you have become familiar with
the statements presented in this section, read Section 5 to
learn about the more advanced BASIC concepts.

9-9-83 NEVADA BASIC PAGE 47

REM REM

FUNCTION: To allow comments within a program.

FORMAT:

REM [any series of characters]

RULES:

1. The REM statement allows you to insert comments and
messages within a program. It is a good practice to include
remarks about the purpose of a program and how to use it.

2. The REM statement has no effect on program execution.

EXAMPLE:

10 REM - THIS PROGRAM COMPUTES THE TOTAL INTEREST
20 REM - ON A TEN-YEAR LOAN
30 REM
40 REM - TO USE IT YOU MUST SUPPLY THE PRINCIPAL
50 REM - AND THE INTEREST RATE
60 REM
70 PRINT "ENTER THE PRINCIPAL"
80 INPUT P

200 PRINT "THE INTEREST IS ";1

9-9-83 NEVADA BASIC PAGE 48

LET LET

FUNCTION: To assign the value of an expression to a
variable.

FORMAT-I:

[LET] var iable expression

FORMAT-2 :

[LET] variablel=expressionl, variable2=expression2, •••

CALCULATOR MODE.

RULES:

1. The LET statement evaluates an expression and assigns
its value to a variable.

2. The variable may be a numeric or string variable and the
value of the expression can be a number or a character
string.

3. The value of the expression and the variable must be the
same type.

4. The equal sign is not a mathematical "equals" operator.
It is an assignment operator. Thus A A + B assigns to A
the previous value of A plus the value of B.

5. The word "LET" is optional; LET X=l is equivalent to
X=l.

EXAMPLE:

10 LET A=O, B=lOO, C$="FIRST"
20 PRINT A, C$
30 A = A + B, C$ "SECOND"
40 PRINT A, C$

9-9-83 NEVADA BASIC PAGE 49

GETTING DATA INTO AND OUT OF THE PROGRAM

A program must read and write information to communicate
with a user. Using the INPUT and PRINT statements is the
simplest way to have your program perform input and output.

The INPUT statement reads data typed at the terminal. The
form of the PRINT statement described next displays
information at the terminal's display device. Using these
two statements, you can make your program converse with a
user at the terminal.

9-9-83 NEVADA BASIC PAGE 50

INPUT INPUT

FUNCTION: To read one or more values from the terminal
and assign them to variables.

FORMAT-I:

INPUT varl [,var2, •••]

FORMAT-2:

INPUT "message", varl [,var2, •••]

RULES:

1. The INPUT statement accepts one or more values entered
at the terminal and assigns them in order to the specified
variables.

2. The values entered must agree with the type of variable
receiving the value.

3. When an INPUT statement is executed, BASIC requests
values from the terminal by printing a question mark or, in
the case of format-2, the message.

4. You may enter one or more values after the question
mark, but not more than one are required by the INPUT
statement.

5. If you enter several values on one line, they must be
separated by commas.

6. BASIC prompts for additional value with two question
marks until all values required by the INPUT statement have
been entered.

7. If the message used is "" (no message) then the normal ?
prompt is surpressed.

8. If a comma is placed in the statement after the word
INPUT, then the carriage return and line feed will be
supressed when the user depresses the carriage return key.
In this way the next message printed by BASIC may appear on
the same line.

9 • I fan I N PUT s tat em e n t r e que s t sin put for anum e ric
variable, and the user's response contains and inappropriate
character, the message INPUT ERROR, RETYPE appears, and the

9-9-83 NEVADA BASIC PAGE 51

user is given another chance to type appropriate values. If
the ERRSET statement is in effect, no message is given, but
an IN error message is made availabe through the ERR(O}
function.

EXAMPLES:

10 PRINT "ENTER VALUES FOR A, B, C, & D "
20 INPUT A,B,C,D
30 PRINT "A*B/C*D IS ";A*B/C*D

When executed, this program accepts data from the terminal
as follows:

User: RUN <CR>
BASIC: ENTER VALUES FOR A, B, C, & D
User: ?5.7 <CR> The user types values in response

??8.9, 7.4 <CR> to BASIC's? prompt. Notice that
??10.5 <CR> one or more can be typed per line.

BASIC: A*B/C*D IS 71.981757

When a message is included in the INPUT statement, that
message is displayed as a prompt before data is accepted
from the terminal. For example:

User: 10 INPUT "WHAT IS YOUR NAME? ", N$ <CR>
20 PRINT "HI "iN$ <CR>
RUN <CR>

BASIC: WHAT IS YOUR NAME? SUE <CR> -The user types SUE in
HI SUE response to the prompt.

The next examples illustrates supressing the carriage return
line feeds by using a comma. See line 10.

User: 10 INPUT, "GIVE A VALUE TO BE SQUARED: ", A
20 PR INT " *"; A; " ="; A * A
RUN <CR>

BASIC: GIVE A VLAUE TO BE SQUARED: 3 * 3 = 9

The user typed only 3 <CR> as input; BASIC completed the
line.

9-9-83 NEVADA BASIC PAGE 52

PRINT PRINT

FUNCTION: To display information to the terminal.

FORMAT-I:

PRINT [expl, exp2, •••]

FORMAT-2:

PRINT [expl; exp2; •••]

CALCULATOR MODE.

RULES:

1. The PRINT statement displays the value of each
expression at the terminal.

2. Each expression is displayed in order and the separation
between one value and the next is determined by the
separator used.

3. If a comma is used as a separator, each value is printed
at the left of a field of 14 character positions.

4. If a semicolon is used between two expressions, the
second is printed one space after the first.

5. The output of each PRINT statement begins on a new line
unless the statement ends with a separator. In this case,
the next PRINT statement will cause values to be displayed
on the same line and the separator will determine the
position at which the cursor (or print head) will remain.

6. The following expressions can be used in a PRINT
statement for further control over the position of output:

TAB (exp)

"\c"

Causes the cursor to move horizontally to
the character position given by the value
of exp (any numerical expression.) This
function may only be used in a PRINT
statement.

Prints the control character c. Printing
certain control characters performs a
function on the video display. Note that
the character is preceeded by a back
slash (\). A few of the special control

9-9-83 NEVADA BASIC

characters and their functions are:

Control M -
Control J -

Carr iage Return
Line feed

PAGE 53

7. While the PRINT statement is executing and values are
being output, it is possible to interrupt the printing by
depressing the Contro1-S on the keyboard. Depressing any
key will cause printing to resume.

8. More complex forms of the PRINT statement are covered in
Section 5.

EXAMPLES:

User: 10 PRINT 5, 10, 15; 20 <CR)
RUN <CR)

BASIC: 5 10 15 20

User: 5 LET Al = 1, A2 = 2, A3 =3, A4
10 PRINT A1;A2; <CR)
20 PRINT A3,A4 <CR)
30 PRINT "NEXT LINE" <CR)

RUN
BASIC: 1 2 3 4

NEXT LINE
Ready

4 <CR)

10 PRINT TAB(I); "DECIMAL";TAB(I+30);"ENGLISH"
1 0 0 PR I NT X," \J", Y, "\J", Z

Statement 10 above prints ENGLISH 30 columns beyond DECIMAL;
100 prints the values of X, Y, and Z, each on a new line.

10 PRINT X
100 PRINT "THE SUM IS "; A+B+C+D
200 PRINT X,Y,Z;A,B/X;L$

9-9-83 NEVADA BASIC PAGE 54

LPRINT LPRINT

FUNCTION: To list information to the systems printer.

FORMAT-I:

LPRINT [expl, exp2, •••]

FORMAT-2:

LPRINT [expli exp 2 i •••]

CALCULATOR MODE.

RULES:

1. The LPRINT statement lists the value of each expression
at the systems printer.

2. Each expression is 1 isted in order and the separation
between one value and the next is determined by the
separator used.

3. If a comma is used as a separator, each value is printed
at the left of a field of 14 character positions.

4. If a semicolon is used between two expressions, the
second is printed one space after the first.

5. The output of each LPRINT statement begins on a new line
unless the statement ends with a separator. In this case,
the next LPRINT statement will cause values to be listed on
the same line and the separator will determine the position
at which the print head will remain.

6. The following expressions can be used in a LPRINT
statement for further control over the position of output:

TAB (exp)

"\c"

Causes the cursor to move horizontally to
the character position given by the value
of exp (any numerical expression.) This
function may only be used in a LPRINT
s ta temen t •

Prints the control character c. Printing
certain control characters performs a
function on the printer. Note that
the character is preceeded by a back
slash (\). A few of the special control

9-9-83 NEVADA BASIC

characters and their functions are:

Control M -
Control J -

Carriage Return
Line feed

PAGE 55

7. While the LPRINT statement is executing and values are
being output, it is possible to interrupt the printing by
depressing the Control-S on the keyboard. Depressing any
key will cause printing to resume.

8. The LPRINT statement can also have the same function as
the PRINT FORMATTED statement described later.

EXAMPLES:

User: 10 LPRINT 5, 10, 15; 20 <CR)
RUN <CR)

BASIC: 5 10 15 20

9-9-83 NEVADA BASIC PAGE 56

RETRIEVING DATA FROM WITHIN A PROGRAM

You can place data in a BASIC program using the DATA
statement and access it as needed using the READ statement.
The RESTORE statement allows you to start reading data again
from the first DATA statement or from a specified DATA
statement. The TYP(O) function allows you to determine the
type of data to be read from the DATA statement
corresponding to the next READ statement.

Data may also be stored as diskette data files.
subject is covered in Section 5.

This

9-9-83 NEVADA BASIC PAGE 57

READ READ

FUNCTION: To read one or more values from DATA statements
and store them in variables.

FORMAT:

READ varl [,var2, •••]

RULES:

1. The READ statement reads one or more values from one or
more DATA statements and assigns the values to specified
variables.

2. The value read must be the same type as the variable it
is assigned to.

EXAMPLES:

10 READ X2
100 READ Al, A2, A3, M$

9-9-83 NEVADA BASIC PAGE 58

DATA DATA

FUNCTION: To specify one or more values that can be read
by a READ statement.

FORMAT:

DATA constantl [, constant2, •••]

RULES:

1. The DATA statement is used with the READ statement to
assign values to variables.

2. The values listed in one or more DATA statements are
read sequentially by the READ statement.

EXAMPLE:

10 DATA 47.12
100 DATA "ALPHA",400,"BETA",22.6,"GAMMA",74.4

or

User:

BASIC

10 DATA 44.2,76.4,18.9 <CR>
20 DATA 100,47.8,11.25 <CR>
30 READ A,B,C,D <CR>
40 PRINT "SUM IS "; A+B+C+D
50 READ X,Y <CR>
60 PRINT "SUM IS "; X+Y <CR>
RUN <CR>

<CR>

SUM IS 239.5
SUM IS 59.05
Ready

(44.2+76.4+18.9+100)
(47.8+11.25)

9-9-83 NEVADA BASIC PAGE 59

TYP(O) TYP(O)

FUNCTION: To indicate the data type of the next DATA item.

FORMAT:

TYP(O)

RULES:

1 • The T Y P (0) s tat ern en t ret urn s val u e s 1, 2, 0 r 3,
depending on the type of the next DATA item which will be
read by the next READ statement.

2. The values returned are:

1 numeric data
2 string data
3. data exhausted

3. TYP(O) does not work for file READ.

EXAMPLE:

10 IF TYP(O) = 3 THEN 30
20 READ X

The example above skips a READ statement if the data in the
corresponding DATA statement is exhausted.

9-9-83 NEVADA BASIC PAGE 60

RESTORE RESTORE

FUNCTION: To reset the pointer in the DATA statement so
that the next value read will be the first value
in the first DATA statement.

FORMAT:

RESTORE [n]

RULES:

1. The n represents a statement number.

2. The RESTORE statement lets you change the reading
sequence in DATA statements.

3. You can start over or move to a particular DATA
sta tement.

EXAMPLE:

User: 10 READ X,Y,Z <CR>
20 PRINT X+Y+Z <CR>
30 RESTORE 70 <CR>
40 READ X,Y,Z <CR>
50 PRINT X+Y+Z <CR>
60 DATA 100 <CR>
70 DATA 200,300 <CR>
80 DATA 400 <CR>
RUN <CR>

BASIC: 600
900
Ready

10 RESTORE
100 RESTORE 50

(100+200+300)
(200+300+400)

9-9-83 NEVADA BASIC PAGE 61

ON ••• RESTORE ON ••• RESTORE

FUNCTION: To specify the line from which the next data
statement will be read.

FORMAT:

ON exp RESTORE nl [,n2, •••]

RULES:

1. The ON ••• RESTORE statement lets you specify the line
from which the next data statement will be read.

2. The next READ statement will start reading from the DATA
statement selected.

EXAMPLE:

10 READ X, Y, Z, A, B, C
20 ON X-Y RESTORE 100, 110, 120

100 DATA 4,1,0,4,7,2
110 DATA 3,2,7,2,8,1
120 DATA 2,0,3,0,2,2

The first two values read
determine which line will
be read next.

9-9-83 NEVADA BASIC PAGE 62

STOPPING OR DELAYING EXECUTION

There are two ways to stop execution of a program from
within the program. The END statement ends execution of a
program. The STOP statement stops execution and displays a
message telling where execution stopped. The CONT command
can be used to resume execution at the next statement.
However, any time a program run terminates due to STOP, END,
the Control-C Keys, or an error, all open files are closed.
The PAUSE statement can be used to delay execution of the
statement following it, for a period of .1 second to 1.82
hours on a 2 MHZ 8080.

9-9-83 NEVADA BASIC PAGE 63

END END

FUNCTION: To terminate the execution of a program.

FORMAT:
END

RULES:

1. The END statement terminates execution of a program.

2. All open files will be closed.

EXAMPLE:

10 INPUT "WHAT IS THE DIAMETER ", 0
20 PRINT "THE CIRCUMFERENCE IS "; 3.1416*0
30 END
40 PRINT "THE AREA IS "; 3.1416*(0/2)"'2

When the RUN command is given, only the first three lines of
this program are executed. Statement 40 can be executed
with the command:

RUN 40 (CR)

9-9-83 NEVADA BASIC PAGE 64

STOP STOP

FUNCTION: To stop program execution.

FORMAT:

STOP

RULES:

1. The STOP statement stops execution of a program.

2. All open files are close.

3. A message is displayed as follows:

STOP IN LINE n

where n is the line number of the STOP statement.

4. Execution can be continued with the CONT command.

EXAMPLE:

User: LIST <CR>
BAS IC: 10 INPUT "WHAT IS THE DIAMETER? ",0

20 PRINT "THE CIRCUMFERENCE IS ";3.1416*D
30 STOP
40 PRINT "THE AREA IS ";3.1416*{0/2)"'2

User: RUN <CR>
BASIC: WHAT IS THE DIAMETER? 2 <CR> -The user enters 2 for

THE CIRCUMFERENCE IS 6.2832 the diameter.
STOP IN LINE 30

User: CONT <CR>
BASIC: THE AREA IS 3.1416

-The CONT command
continues execution
with the next statement.

9-9-83 NEVADA BASIC PAGE 65

PAUSE PAUSE

FUNCTION: Causes a pause before execution of the following
statement.

FORMAT:

PAUSE nexpr

RULES:

1. The nexpr may be from 1 to 65535.

2. The argument nexpr is first evaluated, and truncated to
a positive integer between 1 and 65535.

3. A pause of approximately nexpr tenths of seconds then
occurs before the next statement in the program is executed.

4. If nexpr has a value less than 1, it will be truncated
to zero and no pause will occur.

5. If nexpr has a value greater or equal to 65536 an error
message will appear.

6. The precise duration of the pause is controlled by the
clock rate of the microprocessor.

7. Of course mUltiple PAUSE statements or a loop can create
a pause of any length.

EXAMPLE:

PAUSE 100 gives a pause of 10 seconds
on a 2 MHZ 8080.

9-9-83 NEVADA BASIC PAGE 66

EXECUTION CONTROL

The statement described next will allow you to control the
order in which statements are executed. With the GO TO and
ON ••• GO TO statements you can branch to a different part of
the program. The FOR and NEXT statements let you repeatedly
execute a set of statements a specified number of times.

9-9-83 NEVADA BASIC PAGE 67

GO TO GO TO

FUNCTION: To transfer control to another part of the
program.

FORMAT:

GO TO n

RULES:

1. The GO TO statement causes a specified statement to be
the next statement executed.

2. The statement number (n) should be either greater than
or less than the number of the GO TO statement.

EX.AMPLE:

10 PRINT "ENTER A VALUE FOR X"
20 INPUT X
30 PRINT "X SQUARED IS "~XA2
40 GO TO 10

When executed, this program repeats statements 10 through 40
over and over. To escape such an infinite loop, strike the
Control-C keys. For example:

User:
BASIC:

user:
BASIC:

RUN <CR)
ENTER A VALUE FOR X

?10 <CR)
X SQUARED IS 100
ENTER A VALUE FOR X

User: ?5 <CR)
BASIC: X SQUARED IS 25

ENTER A VALUE FOR X
? (The user strikes the Control-C keys)
STOP IN LINE 20

9-9-83 NEVADA BASIC PAGE 68

ON ••• GO TO ON ••• GO TO

FUNCTION: To depart from the normal sequence of statements.

FORMAT:

ON exp GO TO nl [,n2, •••]

RULES:

1. Transfer of control passes to nl is exp is 1, n2 if exp
is 2, etc.

2. The ON ••• GO TO statement lets you branch to one of
several statements numbers depending on the value of an
expression.

3. If the value of the expression is not an integer, BASIC
truncates it to an integer.

4. If there is no statement number corresponding to the
value of the expression or truncated expression, the next
line is executed.

EXAMPLE:

User: LIST <CR)
BASIC: 10 INPUT "ENTER VALUES FOR X AND Y ",X,y

20 PRINT "TYPE 1 TO ADD AND 2 TO SUBTRACT X FROM y"
30 INPUT N
40 ON N GOTO 60,70
50 GO TO 10
60 PRINT "THE SUM IS "iX+Y:GO TO 10
70 PRINT "THE DIFFERENCE IS "iY-X:GO TO 10

User: RUN <CR)
BASIC: ENTER VALUES FOR X AND Y ?23.6,98.04 <CR)

TYPE 1 TO ADD AND 2 TO SUBTRACT X FROM Y

User: ?2 <CR)
BASIC: THE DIFFERENCE IS 74.44

User:
BASIC:

ENTER VALUES FOR X AND Y ?234,89 <CR)
TYPE 1 TO ADD AND 2 TO SUBTRACT X FROM Y

?1.9 <CR)
THE SUM IS 323
ENTER VALUES FOR X AND Y ?
STOP IN LINE 10

The user types Control-C
keys to escape the loop

9-9-83 NEVADA BASIC PAGE 69

FOR FOR

FUNCTION: To execute a set of statements an indicated
number of times.

FORMAT:

FOR var expl TO exp2 [STEP i]

NEXT [var]

RULES:

1. The FOR and NEXT statements allow you to execute a set
of statements an indicated number of times.

2. The variable specified in the FOR and (optionally) NEXT
statements increases in value at each repetition of the
loop.

3. The variable's first value is expl, subsequent values
are determined by adding 1 (or i, if specified) to the
previous value, and the final value of the variable is exp2.

4. If the starting value is greater than the ending value
in the FOR statement, the statements in the loop are not
executed.

5. After var reaches its final value and the loop is
executed the last time, the next sequential statement is
executed.

6. The value of a variable specified in a FOR statement can
be changed within the loop, affecting the number of times
the loop will be executed.

EXAMPLES:

5 S=l
10 FOR 1=1 TO 10
20 S=S*I
30 PRINT Ii" FACTORIAL IS ''is
40 NEXT I
50 PRINT "THE LOOP IS FINISHED AND I = nil

When executed, this program prints the factorials of 1

9-9-83 NEVADA BASIC PAGE 70

through 10 as follows:

User: RUN <CR)
BASIC: 1 FACTORIAL IS 1

2 FACTORIAL IS 2
3 FACTORIAL IS 6
4 FACTORIAL IS 24
5 FACTORIAL IS 120
6 FACTORIAL IS 720
7 FACTORIAL IS 5040
8 FACTORIAL IS 40320
9 FACTORIAL IS 3628800
10 FACTORIAL IS 3628800
THE LOOP IS FINISHED AND I 10
Ready

The next FOR loop will be executed only once because I is
set to its final value during the first pass through the
loop.

10 FOR 1=100 TO 50 STEP -5
20 PRINT I
30 LET 1=50
40 NEXT I

Yo~ can include FOR/NEXT loops within other FOR/NEXT loops
provided you do not overlap parts of one loop with another.

10 FOR A=l TO 3
20 FOR B=A TO 30
30 PRINT A*B
40 NEXT B
50 NEXT A

10 LET Y =10
20 FOR X=l TO Y
30 FOR Z=Y TO 1
40 PRINT X+Y
50 NEXT X
60 NEXT Z

is legal

STEP -2 is not legal

NOTE: A GO TO or ON ••• GO TO statement should not be used to
enter or exit a FOR loop. Doing so may produce a fatal
error. Use the EXIT statement, described next, to exit a
FOR loop.

9-9-83 NEVADA BASIC PAGE 71

EXIT EXIT

FUNCTION: To transfer control to a statement outside the
the current FOR/NEXT loop.

FORMAT:

EXIT n

RULES:

1. The EXIT statement allows escape from a FOR/NEXT loop.

2. The statement number n will be executed next.

3. Only the current FOR/NEXT loop is terminated; if it is
nested in others, they will not be terminated.

EXAMPLE:

100 FOR I = 1 TO N
110 FOR J = 1 TO I
120 C =C+l
130 IF C) 100 THEN EXIT 300

200 NEXT J
201 IF C< 100 THEN EXIT 300
202 NEXT I
250 END
300 PRINT "MORE THAN 100 ITERATIONS"

9-9-83 NEVADA BASIC PAGE 72

ON ••• EXIT ON ••• EXIT

FUNCTION: To escape the current FOR/NEXT loop depending on
the value of an expression.

FORMAT:

ON exp EXIT nl, n2 [, •••]

RULES:

1. The ON ••• EXIT statement lets you escape the current
FOR/NEXT loop to a statement determined by the value of an
expression.

2. If exp or its truncated value corresponds to a statement
number following EXIT, the current FOR/NEXT loop is
terminated and control is transferred to that statement.

3. If exp does not correspond to a statement number
following EXIT, the ON ••• EXIT statement is ignored.

4. The value of exp must correspond to the position of a
statement number in the list following EXIT, not to the
value of the statement number itself.

EXAMPLE:

10 FOR I = 1 TO 9
20 READ S
30 ON S+4 EXIT 500,600,700

100 NEXT I
110 DATA 1,4,3,6,4,7,9,4,-1
115 DATA 4,3,7,5,4,3,4,6,-2
120 DATA 4,9,4,0,4,5,7,8,-3

The program above operates as follows: When a value of S is
read, it is added to 4 and the result is truncated to an
integer. If this integer is +1, the current FOR/NEXT loop
is terminated and statement 500 is executed; if the integer
is +2, statement 600 is executed; if the integer is +3,
statement 700 is executed. If the integer is not +1, +2, or
+3, the ON ••• EXIT statement is ignored.

9-9-83 NEVADA BASIC PAGE 73

EXPRESSION EVALUATION

An expression is any combination of constants, variables,
functions, and operators that has a numerical or string
value. An expression is evaluated by performing operations
on quantities preceding and/or following an operator. These
quantities are called operands. Examples of some expression
and their operands and operators are:

Operand

X
A
I

Operator

+
OR

NOT

Operand

y
B
2
X

The NOT operator precedes an operand. All other operators
join two operands.

When BASIC evaluates an expression, it scans from left to
right. It performs higher-order operations first, and the
results become operands for lower-order operations. For
example:

A-B > C The value of A-B becomes an operand
for the> operator.

Thus, operators act on expressions.

The order of evaluation for all BASIC operators is as
follows:

Highest

Lowest

(unary negation)

NOT
* /
> >=
AND
OR

<> <= <

where operators on the same line have the same order, and
are evaluated from left to right.

You can enclose parts of a logical expression in parentheses
to change the order of evaluation. Expressions in
parentheses are evaluated first.

BASIC operators are divided into four types: arithmetic,
string, logical, and relational.

9-9-83 NEVADA BASIC PAGE 74

Arithmetic Operators

The arithmetic operators act on numerical operands as
follows:

exponentiate
* multiply
/ divide
+ add·

subtract

The results are numerical.

Note: BASIC evaluates X*X faster than it does X"2.
Evaluation of X*X*X is about the same speed as X"3.
Remember that (-X)"y is not allowed, and that -x"y is
e qui val e nt t 0 (- X) "Y, sin c e una r y neg a t ion pre c e ed e s
exponentiation.

STRING OPERATOR

The plus operator can be used to concatenate string
constants or variables, or expressions. No blanks are
added. For example:

User: PRINT "BAR" + "tok" <CR>
BASIC: BARtok

RELATIONAL OPERATORS

A relational operator compares the values of two expressions
as follows:

expressionl relational operator expression2

The result of a relational operation has a numerical value
of 1 or 0 corresponding to a logical value of true or false.

The relational operators are:

Operator

<>
>
>=
<
<=

Meaning

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

The following expressions with relational operators are
evaluated for Al = 1, A2 =2, X =3, and Y = 4:

9-9-83 NEVADA BASIC PAGE 75

Al > A2
Al <= A2
X + Y/4 <> 7
X = Y

LOGICAL OPERATORS

Logical Value
false
true
true
false

Numerical
o
1
1
o

Value

The results of a logical operation has a numerical value of
1 or 0, which corresponds to a logical value of true or
false. The logical operators AND and OR join two
expressions with the following results:

expressionl AND expression2 True only if both expressionl
and expression2 are true;
otherwise false.

expressionl OR expression2 False only if expressionl and
expression2 are false;
otherwise true.

The following expressions are evaluated for A 1, B
and C = 3 :

Logical value Numerical value
C > B AND B > A true 1
C > B AND A B false 0
C B AND B A false 0
C > B OR B > A true 1
C > B OR A B true 1
A > C OR A = C false 0

2,

The logical operator NOT reverses the logical value of the
expression it precedes. For example, if A, B, and C have
the values shown above, the values of logical expression
using the NOT operator are as follows:

NOT (C > A)
NOT (A B)
NOT C

Logical value Numerical value
false 0
true 1
false 0
(C is true because it has a
nonzero value.)

Logical and Relational Operations in Algebraic Computations

The numerical value resulting from a logical or relational
operation can be used in algebraic computations as shown in
the example that follows.

The program below counts the number of 3's in 100 values
read from DATA statements:

9-9-83 NEVADA BASIC

10 FOR 'I = 1 TO 100
20 READ A

PAGE 76

30 LET X = X + (A =3) When A = 3, X is increased
40 NEXT I by 1.
50 PRINT "OF 100 VALUES "iXi" WERE THREE'S"

100 DATA 1,5,4,7,8,9,9,2,3,4,5,3,2,6,7,8,9,3
110 DATA 4,6,7,4,6,8,2,3,8,4,6,9,6,0,4,0,3,1

EVALUATING EXPRESSIONS IN IF STATEMENTS

The IF statement evaluates an expression and decides on an
action based on the truth or falsity of that expression.
The IF statement determines the logical value of a statement
as follows:

Numer ical Val ue
o

nonzero

Logical Value
false
true

Some examples of expression evaluations in IF statements
are:

IF A > B THEN ••••••

IF A THEN
A > B has a value of true (1) or false (0).

A has a value of true (nonzero) or
false (0).

IF A AND B THEN •••••••
A and B each have a value of true (nonzero)
of false (0). A AND B is true only if both
A and B are nonzero.

IF A < B > C THEN •••••

IF A B

An expression is evaluated from left to
right for operators of the same order. In
this example, A < B has a value of true
(1) or false (0). That value is then
compared to C. (lor 0) > C is either true
(1) or false (0).
Warning: This is not the way to Compare B
with A and C. For such a comparison, use
the AND operator:

IF A < BAND B > C THEN •••

C THEN •••
A = B has a value of true (1) or false (0).
That value is then compared to C. (lor 0)
= C is either true (1) or false (0).
Warning: this is not the way to test for

9-9-83

IF A

NEVADA BASIC ,PAGE 77

the equivalence of A, B, and C. For such
a test, use the AND operator:

IF A = BAND B = C THEN •••

B + C THEN •••
The arithmetic operation is performed
first, giving a value for B+C. Then A is
either equal to that value (true or 1) or
not equal to that value (false or 0) •

9.,...9-83 NEVADA BASIC PAGE 78

IF IF

FUNCTION: To evaluate a logical expression and then
take action based on its value.

FORMAT-I:

IF exp THEN n

FORMAT-2 :

IF exp THEN nl ELSE n2

RULES:

1. The IF statement evaluates a logical expression and then
takes action based on its value.

2. A true value causes the statement number or statement(s)
following THEN to be executed next.

3. If there is an ELSE clause, a false value for exp causes
the statement number or statement(s) following ELSE to be
executed next.

4. Execution continues with the statement following the IF
statement, provided control has not been transferred
elsewhere.

EXAMPLE:

10 INPUT "WHAT IS THE TAXABLE INCOME? $",1
20 IF I <= 2000 THEN T .01*1: GO TO 200
30 IF I <= 3500 THEN T 20 + .02*1 GOTO 200
40 IF I <= 5000 THEN T 50 + .03*1 GOTO 200
50 IF I <= 6500 THEN T 95 + .04*1 GOTO 200
60 IF I <= 9500 THEN T 230 +.06*1 GOTO 200
70 IF I <= 11000 THEN T =320 +.07*1 GOTO 200
80 IF I <= 12500 THEN T =425 +.08*1 GOTO 200
90 IF I <= 14000 THEN T =545 +.09*1 GOTO 200

100 IF I <= 15500 THEN T =680 +.1*1 : GOTO 200
110 T = 830 + .11*1
200 PRINT "THE TAX IS $";T

9-9-83 NEVADA BASIC PAGE 79

SECTION 5

ADVANCED BASIC

The statements described in this section make NEVADA BASIC's
more powerful features available for use:

1. With subroutines and functions, you can define
activities that will be performed when a simple call is made
or when a function name is specified.

2. By using string functions and statements, you can
manipulate character data.

3. With dimensioned variables, you can set aside storage to
quickly and easily manipulate large volumes of data.

4. Using the diskette storage and retrieval commands and
statements, you can save data for later use.

5. With the formatting capabilities of the PRINT statement,
you can control the appearance of numeric output.

6. Using time and space constraints in the INPUT statement,
you can control the response to an INPUT prompt.

7. Through cursor-controlling statements and functions, you
can draw on the screen.

8. Calling upon commands as statements in a program, you
can set systems characteristics, leave BASIC, and delete the
program.

9. with the error control statements, you can predetermine
a course of action if an error should occur in a program.

9-9-83 NEVADA BASIC PAGE 80

SUBROUTINES

If you have a particular task that must be performed several
times during the execution of a program, you can write a
subroutine to perform that task and then simply activate the
subroutine at the appropriate time. When a subroutine is
called from any point in the program, the statements of the
subroutine are executed and then control returns to the
statement following the calling statement. Variables are
not reset or redefined before or after a subroutine's
execution.

In NEVADA BASIC, subroutines are called by specifying the
first statement number of the routine in a GOSUB or
ON ••• GOSUB statement. Control returns to the statement
after the calling statement when a RETURN statement is
encountered.

9-9-83 NEVADA BASIC PAGE 81

GOSUB GOSUB

FUNCTION: To execute a subroutine.

FORMAT:

GOSUB n

RULES:

1. The GOSUB statement causes immediate execution of the
subroutine starting at the specified statement number.

2. After the subroutine has been executed control returns
to the statement following the GOSUB statement.

3. Calls
subroutine.
subroutines.

to subroutines can be included within a
NEVADA BASIC allows any level of nested

4. Nested subroutines are executed in the order in which
they are entered.

9-9-83

EXAMPLE:

NEVADA BASIC

100 P = 2000, Y = 5, R = .06
110 GOSUB 200

PAGE 82

120 PRINT "THE PRINCIPAL AFTER 5 YE~RS IS ": P

200 REM: This subroutine finds the principal after
210 REM: Y years on an R% investment of P dollars.
220 FOR N = 1 TO Y
230 P = P + R*P
240 NEXT N
250 RETURN

EXAMPLE-2:

100 GOSUB 200
110 PRINT A

200 FOR 1= 1 TO R

210 IF I = R GOSUB 370
220 A = A + X"'2
230 NEXT I
240 RETURN

370 INPUT "J=",J

430 RETURN

execution of this
subroutine is
interrupted when I=R. After
the subroutine at 370 is
executed, statements 220
- 240 are executed and
control returns to statement
110.
This subroutine is executed
before the execution of the
subroutine at 200 is
complete.

9-9-83 NEVADA BASIC PAGE 83

RETURN RETURN

FUNCTION: To transfer control to the statement following
the GOSUB or ON ••• GOSUB statement that called
the subroutine.

FORMAT:
RETURN

RULES:

1. The RETURN statement causes the exit from a subroutine.

2. When a GOSUB or ON ••• GOSUB statement transfers control
to a set of statements ending with a RETURN statement, the
line number of the calling statement is saved and control is
returned to that line plus one when the RETURN statement is
encountered.

3. A RETURN statement will terminate as may FOR/NEXT loops
as necessary to return to the calling GOSUB statement.

4. RETURN statements can be used at any desired exit point
in a subroutine.

9-9-83 NEVADA BASIC PAGE 84

EXAMPLE:

10 GOSUB 50

50 X = 700
60 FOR I = 1 TO X

90 RETURN
100 NEXT I

EXAMPLE-2:

10 X = 100
20 FOR I = 1 TO X

100 GO SUB 150

.
150 INPUT X,Y,Z
160 IF X = 0 THEN RETURN

200 RETURN
210 NEXT I

9-9-83 NEVADA BASIC PAGE 85

ON ••• GOSUB ON ••• GOSUB

FUNCTION: To execute a subroutine, if an expression is
true.

FORMAT:

ON exp GOSUB nl [,n2, •••]

RULES:

1. The ON ••• GOSUB executes the subroutine beginning with
statement nl if the value of exp is 1, executes the
subroutine beginning with statement n2 if exp is 2, etc.

2. The ON ••• GOSUB evaluates, then truncates the expression
(exp).

3. If the truncated value of exp is less than 1 or greater
than the number of statements specified, BASIC executes the
next line.

4. After the subroutine has been executed, control is
transferred to the statement following the ON ••• GOSUB
statement.

EXAMPLE:

5 INPUT "ENTER TWO NUMBERS ",X,Y
10 PRINT "DO YOU WANT TO ADD (1), SUBTRACT (2),"
20 PRINT "MULTIPLY (3), OR DIVIDE (4) THE NUMBERS"
30 INPUT I
40 ON I GOSUB 100,200,300,400
50 PRINT "THE ANSWER IS ";A
60 END

100 A = X+Y
110 RETURN
200 A = X-Y
210 RETURN
300 A = X*Y
310 RETURN
400 A = X/Y
410 RETURN

9-9-83 NEVADA BASIC PAGE 86

FUNCTIONS

Functions are similar to subroutines in that they perform a
task that may be required several times in a program. They
differ in that functions can be used in expressions. For
example:

10 LET A = SQR(176) + B

SQR is the square root function and 176 is its argument.
When statement 10 is executed, BASIC computes the square
root of 176 and assigns the value to SQR(176); then B is
added and the sum is assigned to A.

SQR is one of many functions supplied by NEVADA BASIC.
Others are presented on the pages that follow.

Besides the functions supplied by BASIC, you can create your
own one-line or multi-line functions using statements
described in this section.

NEVADA BASIC PAGE 87

ABS ABS

FUNCTION: To obtain the absolute value of an expression.

FORMAT:

ABS(exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

200 IF ABS(X A 2-y A 2) > 10 THEN 250

9-9-83 NEVADA BASIC PAGE 88

EXP EXP

FUNCTION: To raise the constant e to the power of an
expression.

FORMAT:

EXP (exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

10 LET X EXP(X) - LOG(Y)

9-9-83 NEVADA BASIC PAGE 89

INT INT

FUNCTION: To obtain the integer portion of an
expression.

FORMAT:

INT (exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

100 PRINT "THE ANSWER IS "; INT(A*B)

9-9-83 NEVADA BASIC PAGE 90

LOG LOG

FUNCTION: To obtain the natural logarithm of an
expression.

FORMAT:

LOG (exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

10 LET X EXP(X) - LOG(Y)

9-9-83 NEVADA BASIC PAGE 91

LOGIO LOGIO

FUNCTION: To obtain the logarithm base 10 of an
expression.

FORMAT:

LOGIO (exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

10 LET X LOGIO(X)

9-9-83 NEVADA BASIC PAGE 92

RND RND

FUNCTION: To obtain a random number between 0 and 1.

FORMAT:

RND(exp)

RULES:

1. The exp may be 0, -1, or n.

2. This function behaves as if a table of random numbers
were available, and an entry in the table were returned.
The selection of which entry in the table is returned
depends on the argument:

Argument

o
-1

n

Value returned

Returns the next entry in the table
Returns the first entry, and resets
the table printer to the first entry
Returns the entry following n

3. Although the random numbers generated are between 0 and
1, numbers in any range may be obtained with an appropriate
expression. The following example gives random integers
between 1 and 99:

EXAMPLE:

20 X INT(RND(0)*100)

9-9-83 NEVADA BASIC PAGE 93

SOR SOR

FUNCTION: To obtain the square root of an expression.

FORMAT:

SQR(exp)

RULES:

1. The expression (exp) must be positive.

EXAMPLE:

10 LET A SQR (176) + B

9-9-83 NEVADA BASIC PAGE 94

SGN SGN

FUNCTION: To obtain the sign of the value of an expression.

FORMAT:

SGN(exp)

RULES:

1. The expression (exp) must be a numerical expression.

2. The value is 1 if positive, -1 if negative, and 0 if
zero.

EXAMPLE:

10 LET A = SGN(B)

9-9-83 NEVADA BASIC PAGE 95

SIN SIN

FUNCTION: To obtain the sine of an expression in radians.

FORMAT:

SIN(exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

10 PRINT "THE SIN OF Y IS "i SIN(Y)

9-9-83 NEVADA BASIC PAGE 96

COS COS

FUNCTION: To obtain the cosine of and expression in
radians.

FORMAT:

COS (exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

100 LET R SIN (A) + COS (A) 2

9-9-83 NEVADA BASIC

TAN

FUNCTION: To obtain the tangent of an expression in
radians.

FORMAT:

TAN (exp)

RULES:

PAGE 97

'rAN

1. The expression (exp) must be a numerical expression.

EXAMPLE:

200 IF TAN(14.7) < 1 THEN 400

NEVADA BASIC PAGE 98

ATN ATN

FUNCTION: To obtain the arctangent of an expression in
radians.

FORMAT:

ATN (exp)

RULES:

1. The expression (exp) must be a numerical expression.

EXAMPLE:

200 IF ATN(14.7) < 1 THEN 400

NEVADA BASIC PAGE 99

USER-DEFINED FUNCTIONS

You can define your own functions making them available for
use in the current program. A function's value is
determined by operations on one or more variables. For
example, the definition below determines that any time FNA
is specified with two values, it will compute the sum of the
squares of those values:

10 DEF FNA(X,y) = X*X+y*y

(X*X and y*y are used instead of XA2 and yA2 because the *
operator is faster than the A operator for squaring
numbers.)

The function defined in statement 10 can be used as follows:

100 A = 50, B = 25
110 PRINT FNA(A,B)

When executed, statement 110 will print 50 squared + 25
squared or 3125.

9-9-83 NEVADA BASIC PAGE 100

DEF FN DEF FN

FUNCTION: To allow the user to create a single-line or
multi-line function.

FORMAT-l:

DEF FNvar (varl, var2, •••) exp

FORMAT-2:

DEF FNvar (varl, var2, •••)

RETURN exp

FNEND

RULES:

1. FORMAT-l defines a one-line function that evaluates exp
based on the values of varl, var2, etc.

2. FORMAT-2 defines a multi-line function that evaluates
exp based on the values of varl, var2, etc.

3. The variables and expression used to define a
single-line or multi-line function can be either numeric or
string. However, the variables and expression must agree in
type. That is, if you are defining a numeric function, use a
numerical variable in the function's name and return a
numeric value as the value of the expression. The same is
true for string functions. See example-2 below.

4. In mul t i-I i ne f unc t ion defini tions, the val ue returned
is the value of the expression on the same line as the
RETURN statement.

5. RETURN statements can be used to exit multi-line
function definitions as desired.

6. Each definition must end with a FNEND statement.

9-9-83 NEVADA BASIC

EXAMPLE-l:

10 DEF FNX(A,B,C) A*B/SIN (C)

100 DEF FNA1(R,S)
110 x=o
120 FOR I = 1 TO R
130 X = X + R*S
140 NEXT I
150 RETURN X
160 FNEND

EXAMPLE-2:

10 DEF FNA1(U) = SIN(U) + COS(U)
100 DEF FNA1$(U) = "NON"+U$
200 DEF FNZ(X$) = VAL(X$(2,4»

EXAMPLE-3:

100 DEF FNL(A,B,X,Y)
110 S = 0
120 FOR I = 1 TO X
130 S= S+X*Y
140 NEXT I

PAGE 101

150 IF A > B THEN RETURN S-A -The value of FNL will be S-A
160 RETURN S-B -The value of FNL will be S-B
170 FNEND

In the above example, the variable names listed in
parentheses after FNL in line 100 are called formal
parameters. In user-defined functions, all formal
parameters are locally defined within the function; if any
statement in the function modifies the value of a variable
which is also a formal parameter, the value of that variable
outside the function will NOT be changed. This is true for
numerical variables only, not strings, arrays or matrices.

9~9-83 NEVADA BASIC

EXAMPLE-4:

1 Q = 40
10 DEF FNAl(X,Y,Z)
20 X = X+l, Q = X+Y, Z Q/3
25 S = 4
30 RETURN Z
40 FNEND
50 X = 1, Y = 2, Z = 3
60 PRINT FNAI (X,Y,Z), X, Y, Z, Q, S
RUN
11233 4

Ready

PAGE 102

Note that the values of X, Y, and Z, outside the function
were not changed by line 20 which is inside the function.
Note also that Q, which was not a formal parameter, WAS
changed by line 20. Variable S, introduced within the
function, retains its value outside the function.

9-9-83 NEVADA BASIC PAGE 103

FNvar FNvar

FUNCTION: To evaluate a user-defined function with the
same name and assign the computed value to
itself.

FORMAT:

FNvar(varl, var2, •••)

NOTES:

1. The FNvar function call evaluates a user-defined
function with the same name and assigns the computed value
to itself.

EXAMPLE:

10 PRINT FNX(A,B)
100 Al = FNA1(Xl,X2,X3)

EXAMPLE-2:

10 DEF FNB (I, J)
20 FOR X = 1 TO I
30 FOR Y = 1 TO J
40 Z = Z+Y
50 NEXT Y
60 NEXT X
70 RETURN Z
80 FNEND
90 LET U = 2, V = 3

100 PRINT FNB(U,V) -function call

The above program prints 12 (1 + 2 + 3 summed twice). If X
and Y were already defined in the main program, this
function will change their values.

9-9-83 NEVADA BASIC PAGE 104

CHARACTER STRINGS

A character string is simply a sequence of ASCII characters
treated as a unit. NEVADA BASIC performs operations with
strings as it does with numbers. The string operations use
string constants, string variables, string expressions, and
string functions.

String Constants

You have encountered string constants earlier in this text.
THE ANSWER IS, in the statement below, is a string constant:

10 PRINT "THE ANSWER IS ";X+Y

A string constant is indicated in a program by enclosing the
characters of the string in quotation marks. However no
quotation marks are used when entering a string value from
the terminal. Quotation marks cannot be included as part of
a string constant.

The size of a string constant is limited only by its use in
the program and the memory available.

Some examples of string constants are:

"JULY 4, 1776"
"Dick's stereo"
"APT #"
""

a string with no charaacters
is called the null string.

In NEVADA BASIC all lowercase characters are automatically
converted to uppercase, except for characters in strings or
REM statements. Lowercase characters in strings can be
entered from or displayed on terminals having lowercase
capability.

For example:

INPUT S$ This string has UPPER- and lowercase characters.
PRINT S$ This string has UPPER- and lowercase characters.

feletypes print lowercase characters as their uppercase
e qui val en t s • I f you h a v eat e rm ina 1 wit h 0 utI 0 we rca s e
capability, refer to the terminal's users guide to find out
how it treats lowercase characters.

Control Characters can be included in a string. They may be
entered by pressing the control key and the character,
simultaneously, if the character has no immediate function;
or control characters can be typed as \c where c is the
character. When a control character is printed, the symbol

9-9-83 NEVADA BASIC PAGE 105

for the character is displayed, or if it has a function, the
character's function is performed,. For Example:

10 PRINT "ALPHA \M\JBETA \M\JGAMMA"

prints the following when executed because the function of
control-M is carriage return and the function of control-J
is line feed:

ALPHA
BETA
GAMMA

To print a single backslash, use this form: \\".

String Variables

A string variable is a variable that can be assigned a
string value. To distinguish it from a numerical variable,
it's symbol is a single letter followed by a dollar sign;
or, a letter, digit, and then a dollar sign. For example:
A$, S$, CO$ Z2$.

A string variable can contain one to ten characters unless
it's maximum size has been declared as a value larger than
10 in a DIM statement.

The assignment statement assigns values to string variables
as it does with numerical variables. For example:

10 LET A$ = "MISSOURI"
100 S$ A$
200 R$ = "BOX i", T$ = "Address"

String Expressions

String expressions can include string constants, string
variables and any of the string functions described later.
In addition, they may include the + operator, which means
"concatenate", when used with strings. For example:

PRINT "ARGO"+NAUT"

S$ = "REASON"
PRINT S$ +."ABLE"

prints ARGONAUT

prints REASONABLE

String expressions are treated like numerical expressions in
the LET, INPUT, READ, DATA, and PRINT statements. For
Example:

5 PRINT "WHAT IS THE SOURCE OF THE DATA"
10 INPUT S$

9-9-83 NEVADA BASIC

20 IF S$ "DATA" THEN 70
30 INPUT X$, Y$, Z$
40 PRINT "THE LAST VALUE READ WAS ";Z$
60 END
70 READ X$, Y$, Z$
80 GO TO 40

100 DATA "FIRST", "SECOND", "THIRD"

PAGE 106

The treatment of strings in logical expressions differs from
that of numbers as follows:

1. Strings can be compared using relational operators only
within IF statements.

2. No logical operators are allowed in string expressions.

When strings are compared in an IF statement, they are
compared one character at a time, left to right. If two
strings are identical up to the end of one of them, the
shorter is logically smaller. The characters are compared
according to their ASCII representations (see Appendix 4).
Examples are

"ASCI I"
"ALPHA"
"94.28"

is greater than
is greater than
is greater than

"073234"
"AL"
"i and name"

The program below shows how an IF statement can be used to
compare string values:

10 INPUT "WHAT RANGE OF NAMES DO YOU WANT?",A$,Z$
20 FOR I = 1 TO 35
30 READ S$
40 IF S$ < A$ THEN 60 Notice that 40 and 50
50 IF S$ <= Z$ THEN PRINT S$ cannot be combined
60 NEXT I because logical

100 REM operators are not
110 REM allowed.
120 "SMITH,JB", "RONSON,CH" "PEAL,JP", ADAMS,J"

9-9-83 NEVADA BASIC PAGE 107

DIM DIM

FUNCTION: To specify the maximum size of a string that can
be contained in a variable.

FORMAT:

DIM var (n)

RULES:

1. The DIM s~atement for strings declares the maximum size
of a string variable. The maximum size is specified as an
integer between 1 and the amount of memory available.

2. The actual length of the variable at any time is
determined by the size of the string currently assigned to
it.

3. If a string value with more characters than allowed by
the DIM statement is assigned to a variable, the rightmost
characters are truncated.

EXAMPLE:

10 DIM S$ (12)
20 LET S$ = "ALPHA IS THE FIRST SERIES"
30 PRINT S$

When executed, this program prints 1IALPHA IS THE1I, the first
12 characters of the string constant.

9-9-83 NEVADA BASIC PAGE 108

SEARCH SEARCH

FUNCTION: Searches exp2 for the first occurance of expl and
sets var to the number of the position at which
it is found or 0 if it is not found.

FORMAT:
SEARCH expl, exp2, var

RULES:

1. The SEARCH statement evaluates expl and looks for that
string as all or part of the value of exp2.

2. If it is found, its location is given by var.

3. If expl is not found the value of var is o.

EXAMPLE:

10 LET X$ = "ANOTHER"
20 LET Y$ = "THE"
30 SEARCH Y$, X$, A
40 PRINT A

When executed, this program prints 4 as the value of A
b~cause THE begins at the fourth position of ANOTHER.

9-9-83 NEVADA BASIC PAGE 109

FILL FILL

FUNCTION: Fills the string or substring with a copy of the
first character in the string expression.

FORMAT:

FILL string, string expression

RULES:

1. The FILL statement fills a string specified by a string
variable or a substring specified by a substring function
with a series of characters identical to the character
specified by the string expression.

2. If the string expression yields a string containing more
than one character, only the first is used.

3. The expression must yield at least one character.

4. One way of displaying a table or other pattern of
characters is to use a string variable which represents one
line of output. Appropriate elements of the string are then
filled with the characters to be displayed.

5. Elements of the string variable that should not show
characters may be FILLED with blanks. A blank may be
represented as CHR(32) or II II.

6. The FILL statement may also be used as a command.

EXAMPLE:

RUN
XXXXX

IDIMA$(5)
10 FILL A$, IIXYZII
20 PRINT A$

9-9-83 NEVADA BASIC PAGE 110

STRING FUNCTIONS

The functions described next deal with characters and
character strings. The. substring function lets you extract
or alter part of a string. The LEN function gives the
current length of a character string. The ASC and CHR
functions perform conversions between characters and their
USACII codes. The VAL and STR functions convert numbers to
strings and vice versa.

9.;...9-83 NEVADA BASIC PAGE 111

var-substring var-substring

FUNCTION-I: To extract characters from a string variable.

FORMAT-I:
var(expl, exp2)

FORMAT-2:
var(expl)

RULES:

1. The substring function extracts part of a string
allowing that section to be altered or used in expressions.

2. The portion of a string to be extracted is indicated by
subscripts between 1 and n, where n is the total number of
characters in the string.

3. Expressions may be used which yield a value for the
subscripts, provided that the value is greater than 1 and
less than the number of characters in the string plus two.

4. Noninteger subscript expressions are truncated to
integers.

USER: LET A$ = "HORSES" <CR)
PRINT A$(4, 6) <CR) SES Characters 4 through the

end of the string are
extracted.

5. If the subscripts specify a substring not contained
within the string it refers to, an error message appears.
For example, statements 20 and 30 below result in errors:

10 LET X$
20 LET Y$
30 LET Z$

"TERMINAL"
X$ (1,9)
X$ (7,10)

6. Substrings can be used to change characters within a
larger string as shown in the example below:

USER: 100 A$ = "abcdefgh" <CR)
200 A$(3,5) = "123" <CR)
300 PRINT A$ <CR)
RUN <CR)

BASIC: abl23fgh

7. A string may be used as if it were like an array of

9-9-83 NEVADA BASIC PAGE 112

subscripted strings.

EXAMPLE:

10 REM.
20 REM. CONSTANTS
30 REM.
40 LET L1=6: REM. LENGTH OF SUBSTRING
50 LET N1=5: REM. NUMBER OF SUBSTRING
60 REM.
70 DIM S$(L1*N1)
80 REM.
90 REM. PACK ALL SUB-STRINGS INTO A$

100 REM.
110 FOR 1=1 TO N1
120 READ 1$
130 LET S$=S$+I$
140 NEXT I
150 REM.
160 REM. PRINT SUBSTRING OF S$ USING INDEX OF
170 REM. LOOP FOR POINTER INTO S$
180 REM.
190 FOR 1=1 TO 5
200 PRINT S$ (I*L1- (L1-1), I*L1)
210 NEXT I
220 END
230 REM. NOTE: ALL SUBSTRINGS ARE THE SAME LENGTH
240 DATA II APPLEII , IIBANANA II , IIFIGS II , II MELON II , IIPEARII

9-9-83 NEVADA BASIC PAGE 113

LEN LEN

FUNCTION: Finds the number of characters in a string.

FORMAT:

LEN (var)

RULES:

1. The LEN function supplies the current length of the
specified string (var). The current length is the number of
characters assigned to the string, not the dimension of the
str ing .

EXAMPLE:

10 DIM S$ (15)
15 LET S$ = "COW"
20 PRINT LEN (S$)

When executed, this program prints 3, the length of the
string COW.

9 ... 9-83 REVADA BASIC PAGE 114

ASC ASC

FUNCTION: To supply the USASCII code for the first
character in a string expression.

FORMAT:

ASC (exp)

RULES:

1. The ASC function performs conversions between characters
and their USASCII equivalents.

2. ASC returns the USASCII code for a character whose value
is given by a string expression.

EXAMPLE;

lO Z = ASC (" A")
20 PRINT Z will print 41

9-9-83 NEVADA BASIC PAGE 115

CHR CHR

FUNCTION: To supply the character whose USASCII
code is given by an expression.

FORMAT:

CHR(exp)

RULES:

1. The CHR function performs conversions between characters
and their USASCII equivalents.

2. CHR returns a character whose USASCII code is given by
the value of a numerical expression.

EXAMPLE:

10 PRINT CHR(41) will print nAn

9-9-83 NEVADA BASIC PAGE 116

VAL VAL

FUNCTION: VAL (exp) supplies the numerical value of the
string whose value is given by an expression.

FORMAT:
VAL (exp)

RULES:

1. The VAL function performs conversions between decimal
numbers and strings that can be converted to numbers.

2. The VAL function evaluates the string argument as a
number. Evaluation stops on the first character which is
not legal in an arithmetic constant.

EXAMPLE:

10 Z = VAL ("1+3+5")
20 PRINT Z will pr int 9

9-9-83 NEVADA BASIC PAGE 117

STR STR

FUNCTION: STR(exp) supplies the string value of the
number whose value is given by an expression.

FORMAT:
STR(exp)

RULES:

1. The STR function performs conversions between decimal
numbers and strings that can be converted to numbers.

2. The STR function produces a string that represents the
result of its argument, based on the current default number
printing format set by a PRINT statement.

9-9-83

EXAMPLE:

NEVADA BASIC

10 LET X$ = "33.4"
20 A = 76.5 + VAL (X$)
30 PRINT STR(A)

PAGE 118

When executed, this program adds 33.4 to 76.5 and assigns
the value, 109.9, to A. Then the STR function converts A to
a string and prints the string "109.9".

USER: PRINT %#10F3 <CR)
PRINT STR(100.01) <CR)

BASIC: 100.010 Note th~ use of the 10 character field

USER: PRINT %#$C
PRINT STR (99999999)

BASIC: $99,999,999 Note the use of the dollar sign ($)
and commas (,) as specified in the
first PRINT statement.

USER: PRINT VAL("99,999,999) This statement will result
an IN error due to the $.

PRINT VAL(199,999,99") Evaluation will stop the
first comma:

BASIC: 99

9-9-83 NEVADA BASIC PAGE 119

DIMENSIONED VARIABLES

You can assign many values to a single variable name by
allowing additional space for that variable. Such a group
of values is called an array and each individual value is an
element of that array. The values can be referred to by
using subscripts with the variable name. For example, if Al
is an array with 10 elements, individual elements of Al can
be referred to as follows:

Al(l)
Al (2)
Al(lO)

refers to
refers to
refers to

the first element.
the second element.
the last element.

An array can have more than one dimension as in the
following two-dimensional, 4 by 3 array:

10
8.2

11.4
8

15
7.4
4.0

11

30
8.6

15
8.4

A two-dimensional array is referred to as a matrix. The
elements in the example above are referred to by using two
subscripts. For example, if the name of the preceding array
is T:

T (1,1) 10
T(I,2) 15
T (1,3) 30
T(2,1) 8.2
T(4,3) 8.4

To assign additional space to a variable name so that it can
contain an array of values, you must dimension it with the
DIM statement. The number of dimensions is determined by
the number of subscripts specified in the DIM statement.

9-9-83 NEVADA BASIC PAGE 120

DIM DIM

FUNCTION: To define an array with one or more dimensions.

FORMAT-I:

DIM var (expl, exp2, •••)

FORMAT-2:

DIM varl (expl,exp2, •••), var2 (exp3,exp4, •••), •••

RULES:

1. The DIM statement allots space for an array with the
specified variable name.

2. The number of dimensions in the array equals the number
of expressions in parentheses following the variable name.

3. The number of elements in the array is the product of
the expressions.

4. Elements of an array are referred to as follows:

var(expl, exp2, •••)

5. String dimension expressions can be included as well.

9-9-83 NEVADA BASIC PAGE 121

EXAMPLE:

10 DIM R(5,5)
20 FOR I = 1 TO 5
30 FOR J = 1 TO 5 These statements store 25
40 READ R(I,J) values in matrix R.
50 NEXT J
60 NEXT J
70 INPUT "WHICH ELEMENT?",A,B
80 PRINT R(A,B)

100 DATA 7.2, 8.4, 9.4, 8.6, 7.2
110 DATA 3.4, 3.7, 3.8, 9.5, 7.8
120 DATA 7.7,2.1,3.2,5.4,5.3,7.6,5.3,6.4,2.1,2.0
130 DATA 4.8, 9.7, 8.6, 8.2, 11.4

When executed, this program prints the requested elements as
shown below:

User:
BASIC:

User:
BASIC:

RUN <CR)
WHICH ELEMENT?
3.8
RUN <CR)
WHICH ELEMENT?
2.1

2,3, <CR)

3,2 <CR)

The amount of storage necessary for a given array is given
by:

9 + (dimension1) * (dimension2) * (dimension3) •••

The amount of storage that can be assigned to a variable is
determined by the total storage available to BASIC. The
memory limit for BASIC can be changed using the command:

SET ML = numeric expression

To find out how much free storage you have left at any time,
use the FREE(O) function, which prints the number of bytes
of space left for program and variables. For example:

PRINT FREE (0) <CR)
2960

9-9-83 NEVADA BASIC PAGE 122

USING DISKETTE FILES FOR DATA STORAGE

The statements described next allow you to store data on
diskette, retrieve it, and perform other manipulations.

A data file is a collection of data items stored on
diskettes under one file name. The user may create,
manipulate, or destroy a file. Structurally, a file
consists of a set of uniformly sized blocks of disk space.
The physical block structure is controled by the operating
system. There is no limit to the number of blocks in a
file, except for diskette capacity.

Data stored in diskette files is more permanant than data
stored in variables, arrays, or DATA statements. Once data
is placed in a file, it can be changed only by a series of
special statements designed to change it. Data stored in
variables and arrays disappears if the memory containing it
is overwritten or if the systems power is turned off or
fails. The capacity of diskette files is much greater than
the amount of system memory which could be made available
for the data.

Data in diskette files can be accessed in three ways:
serial access, serial access with spacing, and random
access, each progressively more complex. File READ and file
PRINT statements of all three types are available.

In serial access files, data is read or printed as a
sequential list of items. Each PRINT statement prints items
on the file where the last READ or PRINT statement left off.
To read the file, the file is "rewound" to the beginning,
and read item by item until the desired items are found, as
if the data were stored on magnetic tape. Serial access
with spacing is similar to serial access, except that items
may be read forward or backward. It is also possible to
skip over items in either direction. Random access files
have a fundamentally different structure than serial files,
described later in this section.

All programs which use diskette data files must request
access to the file ("open" the file) with the FILE
statement, before any reading or writing takes place. The
maximum number of files which can be open at one time is
limited. Access to open files may be concluded with the
CLOSE statement.

Two forms of the FILE statement are described below: one
for opening serial access files, and one for opening random
access files.

For each open file there is a pointer in the file called the

9-9-83 NEVADA BASIC PAGE 123

file cursor, which keeps track of where the last access
ended. Each open file also has an EOF function which keeps
track of the last operation performed on the file.

Statements which print data into diskette files can include
format elements, as described in Section 5, which do not get
printed into the file, but control the format in which the
data is printed.

The syntax of most data file statements includes the key
word, followed by a series of arguments, separated by
commas. Optional arguments are shown enclosed in {braces}.
When the commas separating such arguments are not enclosed
within the braces, they themselves must be included within
the command, even if the argument is not included. This is
to "hold the argument's place", when other arguments will
follow. If commas are included within the braces, they may
be omitted along with the argument. However, no commas are
needed after the last argument; the statement does not need
to end in a comma.

Two forms of the FILE statement and three forms each for
PRINT and READ are described below. Actually there is only
one highly general form each for FILE, PRINT, and READ
statements, but presentation of the general forms would be
hard to understand. The PRINT and READ statements can
include a non- zero expression for cursor displacement
("spacing"), or a non- zero expression for a record number
(in w h i c h cas e the f i lei s a ran d om a c c e s s f i 1 e). Sin c e
spacing is used in serial access files but not random access
files, and record numbers are used in random access but not
serial access files, the expression for one or the other
must equate to zero. When the syntax descriptions below
allow for "an expression which, if present, must equate to
zero", this is the reason.

with certain limitations, data and program diskette files
created in BASIC may be manipulated from within CP/M, and
CP/M may be used to create files for use in BASIC. See
Section 3 for a discussion of this subject and for
information about file names for use in the statements
below.

9-9-83 NEVADA BASIC PAGE 124

FILE-SERIAL FILE-SERIAL

FUNCTION: To open or create a serial file.

FORMAT:

FILE in; name, {access}, rag}"~

RULES:

1. This form of the FILE statement must be used prior to
any of the following file access statements:

(1) Serial File PRINT Statement
(2) Serial File PRINT with Spacing Statement
(3) Serial File READ Statement
(4) Serial File READ with Spacing Statement

2. The REWIND and CLOSE statements may also be used to
manipulate the file after the FILE statement.

3. The FILE statement opens the file (makes it accessible
to BASIC), assigns a file reference number for use in the
above file access statements, and requests access for
reading, printing or both.

4e If the named file does not already exist, this statement
will create it, if the access requested was 2 or 3.

5. A file of a given name may be opened with more than one
FILE statement, for different purposes, provided that
different file reference numbers are assigned.

Argument

n

name

access

1

2

Description

An expression which equates to a file
reference number to be assigned.

A string literal ("A:FILE.TXT" for
example) or string variable (A$ for
example) which is the file's name.

An optional number 1, 2 or 3, which
specifies what type of access is
requested:

READ only.
statements.
PRINT only.

No subsequent PRINT
File must already exist.
No subsequent READ

9-9-83 NEVADA BASIC PAGE 125

statements.
3 READ or PRINT statements.

If the access is not specified, type 3 access will
be requested.

ag An optional access granted variable.
A Value of 1, 2 or 3 will be assigned
to the variable by the FILE statement,
in accordance with the access
requested. If no ag variable is used,
a comma must be inserted to hold the
place. Note that an extra comma must
be inserted here (since no record size
is specified for Serial Access files).

6. The FILE statement sets the file cursor to the first
item in the file and sets its EOF function to 1. (The EOF
function is described at the end of this section.) The
number of files open at one time is limited (see Section 5) •
Any open file may be closed with the CLOSE statement. Any
termination of the run of a program closes all open files.

7. A given named file may be opened by more than one FILE
statement, provided different file reference numbers are
assigned.

8. All PRINT statements on the named file must use the
first file reference number assigned. Second and subsequent
FILE statements assign the value 1 (READ only) in the ag
(access granted variable) which prevents printing.

9. Commas must be inserted to hold the places of items,
which are not specified in the command, if there are items
to follow. No commas are needed after the last item
specified.

EXAMPLE:

10 FILE #10; S$, 2", 1024
100 FILE #3-Fi "file" + STR(3-F)
210 FILE il; "X", 1, X

9-9-83 NEVADA BASIC PAGE 126

FILE-RANDOM FILE-RANDOM

FUNCTION: To open or create a random access file.

FORMAT:

FILE in; name, {access}, {ag}, {rs},

RULES:

1. This form of the FILE statement is used to open or
create a random access file as opposed to a serial access
file.

2. The syntax is similar to the Serial Access FILE
Statement above, except that an expression is included which
specifies a record size.

3. The EOF function is set to 1, as with the Serial Access
FILE statement.

4. A random access file contains sub-structures called
records, each a uniformly sized collection of data.
Statements which access a serial access file, must move
sequentially through the file to find or print data, but the
various records in a random access file may be accessed
directly.

5. The rs (record size) expression specifies how many
characters (bytes) can be stored in each record. BASIC
actually uses two extra characters for each item (collection
of characters) in a record.

6. If 3 items, each containing 30 characters, are printed
in a record, BASIC will use 98 characters of the record. If
no record size is specified, the statement becomes a Serial
Access FILE statement, described above.

7. Every FILE statement used with a random access file must
include the rs (record size) argument and each FILE
statement which refers to the same named file must specify
an rs expression which yields the same value. BASIC cannot
maintain the file structure unless this rule is observed.

8. The Random File READ and PRINT statements, described
later in this section, include an extra argument which
specifies which record will be accessed.

9 9-83 NBVADA BASIC PAGE 127

EXAMPLE:

FILE #25; "X"", 200

9-9-83 NEVADA BASIC PAGE 128

PRINT-SERIAL PRINT-SERIAL

FUNCTION: To print values sequentially on the referenced
file, starting at the current file cursor
position.

FORMAT:

PRINT in; elel {,ele2} {,ele3} •••

RULES:

1. A previous FILE statement must have already opened the
file; n is the file reference number that was assigned by
that FILE statement.

2. elel, ele2, etc., are general expressions which result
in numerical or string values to be printed on the file.
elel, ele2, etc., may also be format elements.

3. The expressions are printed sequentially forward on the
file, starting at the current file cursor position. If this
statement is the first statement after the opening FILE
statement to use the file, the beginning file cursor
position will be at the end-of-file. Otherwise, the file
cursor will be where it was left by the last file READ or
file Print statement.

4. After a statement of this form, the Serial File READ
(without spacing) statement cannot be used on the file.
This statement leaves the file cursor positioned at the end
of the 1st data item printed. The EOF function for the file
is set to 3 (last was PRINT).

9-9-83 NEVADA BASIC

EXAMPLE:

User: LIST <CR>
1 0 FILE # 3 ; " EMP", 2
20 DIM S$ (30)
30 PRINT "ENTER EMPLOYEE NAMES AND SS #'S"
40 INPUT S$
50 IF S$ = "END" THEN CLOSE #3: END
60 PRINT #3; S$
70 GO TO 40

RUN <CR>

BASIC: ENTER EMPLOYEE NAMES AND SS #'S
User: ?John Dixon 343338749 <CR>

?Alfred Dill 322679494 <CR>

PAGE 129

?END <CR>
BASIC: Ready

Periodically there is a pause while
data is written on a diskette file.

9-9-83 NEVADA BASIC PAGE 130

PRINT-SPACING PRINT-SPACING

FUNCTION: The file cursor of the referenced file is
displaced by d, and the values of elel, ele2,
etc., are sequentially printed on the file.

FORMAT:

NOTES:

Argument

n

re

d

elel,
ele2,
etc.

PRINT in, Ire}, d; el~l {,ele2} •••

Description

The file reference number assigned
when the file was previously opened
in a FILE statement.

An optional expression for record
size, if present, must evaluate to
zero. Record size may be other
than zero only if n specifies a
random access file.

The desired file cursor
displacement from its present
position. d may range from -65535
to +65535 inclusive. A
displacement of 1 prints the next
item in the file. A displacement
o~ -1 re-prints the last item
accessed. If the displacement d is
zero, the file cursor is not moved
and the statement functions exactly
like the Serial File PRINT statement
(without spacing) above.

General expressions which result in
numerical or string values to be
printed on the file. These
expressions may also be format
elements as described in Section
5. One or more expressions may
be present.

9-9-83 NEVADA BASIC PAGE 131

RULES:

1. This statement is the same as Serial File PRINT
described above, except that the file cursor may be moved
before printing. The file which will be printed on must be
already opened by a FILE statement.

2. If this type of PRINT statement is the first statement
executed on the file, the file cursor will be at the
end-of-file.

3. The displacement d will then move the file cursor
relative to the end of file. Otherwise the file cursor will
be wherever it was left by the last file READ or file PRINT
statement.

4. Overprinting old items with larger or smaller items may
damage the file structure. For this reason, numerical
formatting, is recommended to ensure uniform numerical
fields for all items.

5. If strings are printed, some "padding" may be needed to
keep a new string the same size as the last item in that
position.

6. You must take care to maintain the file structure.

7. This form of the PRINT statement sets the EOF function
to 35.

EXAMPLE:

10 PRINT#3,0,-5;A;B,S$,"CONST",%Z10F3,74.8+B*C
100 PRINT #1" X-4; X(I); Y(J)

9-9-83 NEVADA BASIC PAGE 132

PRINT-RANDOM PRINT-RANDOM

FUNCTION: To position the file cursor of the referenced
random access file.

FORMAT:

NOTES:

record

PRINT in, record I,d}; elel {,ele2} •••

Argument

n

d

elel,
ele2,
etc.

Description

The file reference number assigned
when the file was previously opened
in a FILE statement. That FILE
statement must have defined the file as
a random access file, by the inclusion
of the rs argument which specifies
record size.

An expression which evaluates to a
record number in the file, or zero,
where the file cursor will be placed
prior to printing. The expression
must not exceed the total number of
records in the file plus one; the file
cursor cannot be positioned beyond the
first nonexistent record. If the
expression evaluates to zero, this
statement will function exactly like
the Serial File PRINT statement.

An expression for cursor displacement.
Since this form of the PRINT statement
does not use cursor displacement, this
expression must equate to zero, if
present.

General expression, which result in
numerical or string values to be
printed on the file or format
elements as described in Section 5.6.
One or more of either type of element
may be present.

9-9-83 NEVADA BASIC PAGE 133

RULES:

1. The file to be printed on must be a random access file
and it must be opened by a prior FILE statement. The file
cursor is positioned to the beginning of the specified
record and the values of elel, ele2, etc., are printed in
the record.

2. The EOF function is set to 35.

3. If the sum of the total length of all expressions to be
printed, plus the number of such items, is greater than the
record size of the file, a record overflow error message is
printed and the program run is terminated.

4. If the example PRINT statement above is executed on a
file containing three records, then record four will be
created and the listed items will be printed into it.

5. The Serial File PRINT statement may also be used to
print on a random access file. However, the Serial File
PRINT with Spacing statement, may not be used.

EXAMPLE:

PRINT iF, 4~ "HELLO HUMAN!", "?QUE PASA?"

9-9-83 . NEVADA BASIC PAGE 134

READ-SERIAL READ-SERIAL

FUNCTION: Items from the referenced file are read and
assigned.

FORMAT:

READ #ni varl {,var2} {,var3} ••• {statementl: statement2 ••• }

RULES:

1. A FILE statement must have previously opened the file
with type 1 or type 3 access.

2. The READ statement reads items, starting at the current
file cursor position and assigns them as the values of the
variables.

3. One or more variables may be present.

4. The number of values read is equal to the number of
variables present in the statement.

S. If this is the first statement which accesses the
referenced file after the FILE statement which opened it,
reading will begin at the first element of the file.
Otherwise, reading will begin from where the file cursor was
left by the last access.

6. The statement itself leaves the file cursor positioned
just after the last data item read.

7. The EOF function is set to 2.

8. The optional statement(s) is executed only if an end of
file is encountered.

EXAMPLE:

10 FILE #li "VAL", 1
20 DIM A(SOO)
30 FOR I = 1 TO SOO
40 READ #liA(I) : EXIT 200
SO NEXT I

--Only if the end of
the file is reached
before SOO values are
read is statement 200

200 PRINT Ii"VALUES READ FROM VAL" executed.

9-9-83 NEVADA BASIC PAGE 135

READ-SPACING READ-SPACING

FUNCTION: To position the file cursor

FORMAT:

NOTES:

Argument

n

rn

d

varl,
var2
etc.

READ in, {rn,} d; var1 {,var2} •••
{statement1: statement2 ••• }

Description

The file reference number assigned
when the file was previously opened
in a FILE statement.

An optional expression for record
number. Since this form of the READ
statement accesses only serial access
files, this expression must equate to
zero if present.

The desired file cursor displacement
from its present position before
reading takes place. d may range from
-65535 to +65535 inclusive. A
displacement of +1 reads the next item
from the file. A displacement of -1
re-reads the last item accessed. If
the displacement equates to zero, the
file cursor is not moved and the
statement functions exactly like the
Serial File READ (without spacing)
statement above.

Each variable in this list will
receive values, unless the end of
file (EOF) is reached first, in
which case any following optional
statements are executed.

9-9-83 NEVADA BASIC PAGE 136

RULES:

1. This statement is the same as Serial File READ (without
spacing) except that the file cursor may be moved before
reading.

2. A FILE statement must have previously opened the file
with type 1 or type 3 access.

3. The file cursor is displaced by d items and enough items
are read to fill the variables given.

4. If this type of READ statement is the first statement
executed on the file, after the FILE statement, reading will
begin with the first item in the file, or the displacement d
will move the file cursor relative to the first item.

5. Otherwise, the file cursor will be wherever it was left
by the last access. This statement itself leaves the file
cursor positioned just after the last item read.

6. The EOF function is set to 18.

9-9-83 NEVADA BASIC PAGE 137

READ-RANDOM READ-RANDOM

FUNCTION: The file cursor of the referenced random access
file is positioned to the specified record.

FORMAT:

NOTES:

Argument

n

rn

d

varl,

READ in, rn {,d}; varl {,var2} •••
{statementl: statement2 ••• }

Description

The file reference number assigned
when the file was previously opened
in a FILE statement. The file must
be open with type 1 or 3 access, the
FILE statement must have defined the
file as a random access file, by the
inclusion of the rs argument that
specifies record size.

An expression which evaluates to a
record number in the file, or zero,
where the file cursor will be placed
prior to reading. The expression must
not exceed the total number of records
in the file plus one; the file cursor
cannot be positioned beyond the end
of-file mark. If the expression
evaluates to zero, this statement will
function exactly like the Serial File
READ statement.

An optional expression for file cursor
displacement. Since the file cursor
is displaced by the record expression
but not by the file cursor displace
ment expxression in this form of the
READ statement, d must equate to zero
if present.

Names of variables which will receive
the values read. Enough values will
be read to fill all variables present
unless the record is exhausted first,
in which case any following optional
statements are executed.

9-9-83 aEVADA BASIC PAGE 138

RULES:

1. The file to be read must be a random access file and
opened by a FILE statement with type 1 or 3 access.

2. The file cursor is positioned to the beginning of the
specified record and the values are read into varl, var2,
etc., until all variables are filled or the record is
exhausted.

3. The Serial File READ statement may also be used to read
from a random access file. However, the Serial File READ
with Spacing statement may not be used.

4. If the end-of-file (EOF) mark is read, the file cursor
wi1 be left at the end of the file and the EOF function will
be set to 38 (last was READ EOF) •

5. If the end of the current record is encountered, the
file cursor will be left pointing to the first item in the
next record and the EOF function will be set to 37 (last was
end-of-record) •

EXAMPLE:

10 READ #Q, R9, 0; X, Y, Z$:PRINT "EOF" :END
120 READ #3-F, FNA(X); R9, R8, L$, P

9-9-83 NEVADA BASIC PAGE 139

REWIND REWIND

FUNCTION: To rewind the specified files.

FORMAT:

REWIND #nl,#n2, •••

RULES:

1. The REWIND statement positions the file cursors of the
referenced files to the first data item in the files.

2. If the EOF function for a file is 3, meaning that the
last access was Serial File Print (without spacing), the
REWIND statement will end-file the file before REWINDING it.

EXAMPLE:

10 REWIND #3
100 REWIND #1-1,#5

9-9-83 NEVADA BASIC PAGE 140

CLOSE CLOSE

FUNCTION: To close the specified files.

FORMAT:

CLOSE #nl,#n2, •••

RULES:

1. The CLOSE statement makes the specified files
unavailable for reading or writing.

2. They cannot be accessed again until another FILE
statement requests access.

3. If the EOF function for a file is 3 at the time of the
CLOSE, the CLOSE statement will end-file the file at the
current cursor position.

4. All the data items after the file cursor are "erased".

EXAMPLE:

110 FILE #1; "NAMES", 2
120 PRINT "1; N$

200 CLOSE "1
210 FILE #1; "SALS", 2

Here file "1 refers to a
file called NAMES.

Here file #1 refers to a
file called SALS.

9-9-83 NEVADA BASIC PAGE 141

PURGE PURGE

FUNCTION: To erase (kill) a file.

FORMAT:

PURGE string

RULES:

1. The file whose name is defined by the string expression
is erased.

NEVADA BASIC PAGE 142

EOF EOF

FUNCTION: Supplies the status of the specified file.

FORMAT:

EOF(file number)

RULES:

1. Every diskette data file which has been opened with a
FILE statement has an associated End-Of-File (EOF) function.

2. The EOF function supplies the current status of the
specified file as follows:

VALUE OF EOF

EXAMPLE:

a
1
2
3
4
5

6

18

19

34
35
37

38

10 PRINT EOF(2)

MEANING

File number was not assigned
Last operation was FILE
Last operation was READ
Last operation was PRINT
Last operation was REWIND
Last operation was READ EOR (end of
record)
Last operation was READ EOF (end of
file)
Last operation was Serial File READ
with Spacing
Last operation was Serial File PRINT
with Spacing
Last operation was Random File READ
Last operation was Random File PRINT
Last operation was Random File READ
EOR
Last operation was Random File READ
EOF

100 IF EOF(I) = 4 THEN 150

9-9-83 NEVADA BASIC PAGE 143

CONTROLLING THE FORMAT OF NUMERIC OUTPUT

This section gives additional material about the PRINT
statement which prints on the user's terminal or standard
output device. Forms of the PRINT statement which print on
diskette files are covered in the preceding section, but
format elements, as described in this section, may be
included in file PRINT statements.

In Section 4 the PRINT statement was described in its
simplest form, in which the output is automatically
formatted. Additional format specifiers may be added to the
PRINT statement which give great control over the format.

9-9-83 NEVADA BASIC PAGE 144

PRINT-FORMATTED PRINT-FORMATTED

FUNCTION: To send information to the console.

FORMAT-l:

PRINT exp, exp, •• format element,exp, exp, ••

FORMAT-2:

PRINT ele, ele, ele; ele ••

RULES:

1. The general form consists of zero or more expressions to
be printed according to default format, followed by a format
element, followed by one or more expressions to be printed
according to the format specified in the format element.

2. The same PRINT statement can also contain additional
format elements which control additional expressions which
follow them.

3. The format element produces no printed results of its
own; it controls the form in which subsequent numbers are
printed.

4. A format element controls only the expressions following
in the same PRINT statement, up to the next format element,
if any.

5. Using a special format option it is possible to redefine
the default format used in all following PRINT statements
which contain expressions not controlled by a specific
format element.

6. A format element has the general form: %{format
options} {format specifier}. The percent sign % is required
and distinguishes the format element from an expression to
be printed.

7. Format options, which are not required, add special
features such as commas and define the default format.

8. The format specifier, also not required, defines:

1) The number of columns to be occupied by a
PRINTED expression (field width) ,

9-9-83 NEVADA BASIC PAGE 145

2) The type of number to be printed: integer,
floating point or exponential and

3) The number of places to the right of the decimal
point to be printed.

9. The following format options are available:

Option Purpose

$ Places a dollar sign $ in front of the
number.

C Places commas (,) every three places as re
quired, for example: 3,456,789.00

Z Suppresses trailing zeros after the decimal
point.

+ Places a plus sign + in front of all positive
numbers. (A minus sign - is always printed
in front of negative numbers.)

Sets the format element containing it as a
new default format used by subsequent PRINT
statements, as well as by expressions
immediately following.

o Resets the format to the current default.
Since the default format is already defined,
this option is used alone only: %0 is the
complete format element.

10. Only one format specifier may appear in a format
element.

Format specifiers have the following four forms:

Specifier Format

nI Integer. Numbers will be printed in a field
of width n. n must be between 1 and 26. If
the value to be printed is not an integer, an
error message will be printed.

nFm Floating Point. Numbers will be printed in a
field of width n, with m digits to the right
of the decimal point. n must be between 1 and
26 and m must be between 1 and n. Trailing
zeros are printed to fill width m, unless the
Z option is specified. If the specified field
cannot hold all the digits in the value to be
printed, the value is rounded up to fit.

9-9-83

n~

none

NEVADA BASIC PAGE 146

Exponential. Numbers will be printed in a
field of width n, with m digits to the right
of the decimal point. At the end of the field
five characters will be printed containing the
letter E, a plus or minus sign, and space for
an exponent of one to three digits. The
exponent may range from -126 to +126. One and
only one digit is printed to the left of the
decimal point. The field width n must be at
least 7 to contain one significant digit plus
the 5 characters of the exponential notation.
n must be from 7 to 26 and m must be from 0 to
n. Here is an example of a number printed in
lOE3 format: 1.234E-123. If the specified
field cannot hold all the digits in the value
to be printed, the value is rounded up to fit.

Free Format. If a format element consisting
of a percent sign alone is used, the format
will become the free format as used in the
simple unformatted PRINT statement. In free
format, integer, floating point or
exponential, format is automatically selected
depending on the value of the number to be
printed and a field width sufficient to hold
all the digits of the number is used. The
format options may be added to free format by
using a percent sign followed by one or more
format options with no format specifier.

11. The field width n in the format specifiers above must
be large enough to hold all the characters to be printed,
including signs, decimal points, commas, dollar signs and
exponents.

12. If the field width is larger than necessary to contain
all the characters to be printed, extra blank spaces are
added to the left of the printed characters to fill the
field. (In its exponent.) Extra field width can be used to
create columns of printer output spaced at desired
intervals.

13. If semicolons are used to separate the format elements
and expressions in a PRINT statement, the field widths given
in the format specifiers will be adjoining in the output.
This does not mean that numbers printed will have no spaces
between; that depends on whether the number fills its field.

14. If commas are used to separate the format elements and
expressions, there may be extra space added between the
fields. The total width of the output is tabulated at fixed
14-character intervals.

15. If a given number has not used the full 14-characters,

9-9-83 NEVADA BASIC PAGE 147

the field for the next number will begin at the next 14-
character interval. In other words, if field widths of 14
or less are used, the numbers will appear in 14-character
columns.

16. If field widths of 15 to 26 are used, the numbers will
appear in 28-character columns. A mixture of semicolon and
comma separators may be used to give variable spacing.

17. Normally, after a PRINT statement has been executed,
the cursor or print head moves to the beginning of the next
line, so that the output from the next PRINT statement
appears on a new line.

18. If a semicolon is used at the end of a PRINT statement,
the return of the cursor or print head is inhibited so that
the output from the next PRINT statement will appear on the
same line.

19. If a comma is used at the end, the cursor or print head
advances to the beginning of the next 14-character interval,
as when commas separate elements within the PRINT statement.

EXAMPLE:

10 PRINT A; %C8I; SQR{2 + C); %#10F3
20 PRINT %Z5Fl; ({A=12) AND B), %0., A, B,
30 PRINT %; A{l, 1); "next is"; B{2,2)

MONETARY FORM:
%$CIIF2

Examples of output:
$200.00 $9,983.00

$35.34 $100,000.00

SCIENTIFIC FORM:
%Z15E7

Examples of output:
1.1414 E+ 2
9.4015687E-I04
3. E+ 0

(How format elements can interact)

10 PRINT %#$CIIF2;

20 PRINT A, 42.3, plI

This statement sets the
monetary form given above
as the new default format.

The values of these
expressions will be
printed according the de-

9-9-83 NEVADA BASIC PAGE 148

fault format in statement 10.

30 PRINT B9; %+26F8; P, I; %0; plI
B9 will be printed according
to statement 10. %+26F8 sets
a new format for P and I which
follow it. %0 resets the
format to the default of
statement 10. plI is printed
accordingly.

9-9-83 NEVADA BASIC PAGE 149

CONTROLLED INPUT

You can include parameters in the INPUT statement to control
the number of characters that can be entered from the
terminal and the time allowed to enter them. This feature
is useful when you want only certain types of answers to
questions, or when testing someone's ability to answer
quickly.

9-9-83 NEVADA BASIC PAGE 150

INPUT INPUT

FUNCTION: Enters values from the terminal and assigns them.

FORMAT:

INPUT{,}(#chars,t)varl,var2, •••
INPUT{,} (#chars,t) "message" ,varl,var2, .••

RULES:

1. The controlled INPUT statement lets you specify how many
characters can be entered and how much time is allowed for
response.

2. As soon as #chars characters have been typed, BASIC
generates a carriage return and accepts no more characters.

3. If the user takes more than t tenths of a second to
respond, BASIC assumes a carriage return was typed.

4. If the optional comma follows INPUT the cursor will
remain where the user left it after typing his response,
instead of moving to a new line.

5. If the value of #chars is 0, as many as 131 characters
can be entered. If the value of t is 0, the user has an
infinite amount of time to respond.

EXAMPLE:

5 DIM A$(3)
10 FOR X = 1 TO 9
20 FOR Y = 1 TO 9
30 PR I NT X;" * " ; Y ;" = "
40 INPUT (3, 100) A$
42 IF A$=""THEN PRINT"YOU ARE SURE SLOW!":GO TO 30
45 A = VAL (A$)
50 IF A <> X*Y THEN PRINT "TRY AGAIN":GO TO 30
60 NEXT Y
70 NEXT X

When executed, this program accepts a three-character answer
from the user and waits 10 seconds for a response. If the
user does not respond within 10 seconds, the message YOU ARE
SURE SLOW is printed. If the user types the wrong response,
the message TRY AGAIN is printed.

9-9-83 NEVADA BASIC PAGE 151

ERROR CONTROL

BASIC detects many kinds of errors. Normally, if an error
occurs, BASIC will print one of the error messages listed in
Appendix 3. However, using the error-control statements
described below, you can tell BASIC to execute another
statement in the program instead. The ERR(O) function gives
a string containing the last error message provided by
BASIC.

9-9-83 NEVADA BASIC PAGE 152

ERRSET ERRSET

FUNCTION: Statement n will be executed if any error
occurs, cancelling the last ERRSET statement.

FORMAT:

ERRSET n

RULES:

1. The ERRSET n statement lets you determine that statement
n will be executed when any error occurs. The error could
be an error that would normally result in one of the error
messages listed in Appendix 3.

2. If an error does occur and the ERRSET n statement does
cause a transfer to statement n, before statement n is
executed, the ERRSET statement itself is cancelled (as if an
ERRCLR statement were executed.)

3. The transfer to statement n clears all current FOR/NEXT
loops, GOSUBS and user-defined function calls (as if a CLEAR
statement was executed.)

6. However, if the ERRSET statement is executed again, it
will again set the error trap statement n, as if the ERRSET
was encountered for the first time.

EXAMPLE:

10 ERRSET 75

9-9-83 NEVADA BASIC PAGE 153

ERRCLR ERRCLR

FUNCTION: To clear the last ERRSET statement.

FORMAT:

ERRCLR

RULES:

1. The ERRCLR statement cancels the most recent ERRSET
statement.

2. If a statement executed after an ERRCLR statement
produces an error, BASIC will print a standard error message
(See Appendix 3), rather than going to statement n.

3. However, if the ERRSET statement is executed again, it
will again set the error trap statement n, as if the ERRSET
was encountered for the first time.

EXAMPLE:

10 ERRSET 75
100 ERRCLR

9-9-83 NEVADA BASIC PAGE 154

ON •• ERRSET ON •• ERRSET

FUNCTION: Establishes which statement will be executed in
the event of an error.

FORMAT:

ON exp ERRSET nl, n2, •••

RULES:

1. The ON ••• ERRSET allows you to conditionally determine
which statement will be executed if an error occurs.

2. Once an error has occurred, the ON ••• ERRSET statement is
no longer in effect, as if an ERRCLR statement had been
executed.

EXAMPLE:

10 ON I ERRSET 105, 250, 400
100 ON A-J ERRSET 50, 300

9-9-83 NEVADA BASIC PAGE 155

ERR(O} ERR(O}

FUNCTION: Returns a string consisting of the last error
message from BASIC.

FORMAT:

ERR(O)

RULES:

1. The ERR(O) function returns a USASCII string constant
containing the last error me.ssage which appeared on the
user's terminal.

2. If the ERRSET statement kept the error message from
appearing, then the string contains the error message which
would have appeared.

3. The argument 0 must be given. Since error messages can
take two forms: "XX ERROR", or "XX ERROR IN LINE 00000",
care must be used in comparing the ERR(O) string to other
strings.

4. The first two characters in the error message are
sufficient to identify which error has occurred and may be
used in comparisons.

5. In the example below, the error message string is stored
in string variable A$, then the first two characters of A$
are compared with "NI" (not implemented). If there is a
match, then a message appears on the terminal.

6. Similar statements can be used to branch to special
routines when certain errors occur.

7. If the error detected was a CP/M error, ERR(O) will
return "FS ERROR".

EXAMPLE:

10 A$ = ERR(O)
20 IF A$1,2="NI" THEN PRINT "DELETED FUNCTION USED"

9-9-83 NEVADA BASIC PAGE 156

FREE FREE

FUNCTION: To provide the amount of free storage available.

FORMAT:

FREE(O)

NOTES:

1. To find out how much free storage you have left at any
time, use the FREE(O) function, which prints the number of
bytes of space left for program and variables.

EXAMPLES:

PRINT FREE (0) <CR>
2960

9-9-83 NEVADA BASIC PAGE 157

SYST SYST

FUNCTION: Returns miscellaneous systems information.

FORMAT:

SYST (EXP)

NOTES:

1. EXP can have the following values.

1 The Control-C key can be used to abort a
running program. This feature can be disabled by the SYSTEM
5 statement. The SYST(l) function returns the value of 1 if
the program user typed the Control-C key while its abort
function was disabled by a SYSTEM 5 statement. Once the
value of 1 is read, it is cleared. A subsequent SYST(l)
will return 0, unless the user type a Control-C again.

2. Returns last control character sent.
Returns 128 is none sent since last call.

3 Returns the time left from a timed input
statement.

4.

EXAMPLE:

10 A

Returns the count left from a count input.

SYST(l)

9-9-83 NEVADA BASIC PAGE 158

SYSTEM SYSTEM

FUNCTION: Special system functions.

FORMAT:

SYSTEM (EXP)

NOTES:

1. EXP can have the following values.

o disk reset
3 contiol character echo on
4 control character echo off
5 control-c on (enable)
6 control-c off (disable)
7 control character off
8 control character on
9 close all files

11 system reset

9-9-83 NEVADA BASIC PAGE 159

COMMANDS CAN BE STATEMENTS AND STATMENTS COMMANDS

There are a number of commands that can be included in
programs as statements. Most commands that can be
statements are used for system control. The SET commands
set system characteristics and the BYE and SCRATCH commands
let you leave BASIC or erase your program. The Calculator
Mode of BASIC, shows how statements may be directly executed
without being in a program. Appendix 1, the command and
statement summary, lists which commands may be used as
statements and which statements as commands.

THE SET COMMANDS

The SET Commands let you determine system characteristics.
Each Set command except SET ML can be used as a statement in
a program. Three SET commands related to diskette data
files are covered in Section 5. Other SET commands are:

SET LL = exp

SET ML exp

SET CP exp

SET CM exp

Sets the ouput line length to exp.
LL is initially set to 64.

Sets the memory limit. BASIC will not
use addresses higher than exp for pro
gram or data storage. Cannot be used
as a program statement. BASIC
initially uses all available memory.

Sets the character polarity: white
characters on black rectangles, or
black characters on white. If exp is
zero, characters will appear in normal
polarity as set by the video display
circuitry. If exp is other than zero,
characters appear in opposite
polarity. Can be used as a program
statement. Initially O.

Sets the cursor mode. If exp is zero,
the cursor will not appear. If exp is
other than zero, the cursor will
appear. Can be used as a program
statement.

Note: SET CP and CM are terminal dependant.
terminals support these functions.

No tall

EXAMPLE:

User: 10 SET LL 10 <CR)

9-9-83 NEVADA BASIC

20 PRINT "THE LINE IS TOO LONG" <CR>
RUN <CR>

BASIC: THE LINE I
S TOO LONG

BYE AND SCRATCH COMMANDS

PAGE 160

The BYE and SCRATCH command can be used a statement, so you
can exit BASIC from a program or erase the current program.
For example:

10 PRINT "NOW I'M HERE"
20 PRINT "NOW I'M NOT"
30 SCRATCH

When executed, this program prints:

NOW I'M HERE
NOW I'M NOT

and then erases itself.

CURSOR CONTROL

You can control the position of the cursor or use it to draw
on the screen using the CURSOR statement and other devices
described in this unit. The current horizontal position of
the cursor or print head is given by the POS(O) function.

9-9-83 NEVADA BASIC PAGE 161

CURSOR CURSOR

FUNCTION: To position the cursor.

FORMAT:

CURSOR {expl}{,exp2}

RULES:

1. You can use the CURSOR statement to position the cursor
and then use a PRINT statement to display a character or
characters in that position.

2. You can also print any of the control characters which
has an effect on the screen.

EXAMPLE:

10 PRINT n\K n

20 FOR I = .1 TO 3.14 STEP .1
30 LET X = SIN (I)
40 CURSOR I*10,X*10
50 PRINT n*n
60 NEXT I

Appendix 4 contains a table of ASCII codes.

9-9-83 NEVADA BASIC PAGE 162

ERASE ERASE

FUNCTION: To clear the CRT screen and home the Cursor.

FORMAT:

ERASE

NOTES:

1. The CRT screen is cleared and the cursor is set to the
first line and first position.

9-9-83 NEVADA BASIC PAGE 163

POS (0) pos (0)

FUNCTION: Returns a number between 0 and 131,
representing the current horizontal position
of the cursor or print head.

FORMAT:

POS(O)

RULES:

1. In Nevada BASIC a line of output from the PRINT
statement can be up to 132 characters long. The character
positions are numbered 0 to 131 starting from the left.

2. After a PRINT statement and after some other types of
operations, the cursor on the video display (or the print
head if the output device is a printer or teletype) is left
in a new position.

3. The value of the POS(O) function is a number between 0
and 131, representing the current position of the cursor (or
print head) •

4. If the SET LL = exp command or statement has limited the
line length to less than 132 characters, the value returned
by the POS(O) function will be limited to the new value.

5. Line length varies with output device. The video
display of the Sol Terminal Computer has a line length of 64
characters, but if a line longer than 64 characters is
printed, some of the extra characters will be automatically
printed on a new line.

6. In the example below, the number of characters remaining
on the line (63 - POS(O» is compared with a string A$ which
will be printed.

7. If the string will not fit on the remainder of the line,
the statement PRINT is executed which positions the cursor
on the beginning of a new line.

EXAMPLE:

10 IF (63 - POS(O» < LEN(A$) THEN PRINT

9-9-83 NEVADA BASIC PAGE 164

MACHINE LEVEL INTERFACE

One of the functions of BASIC is to isolate the user from
the operations and requirements of the specific computer on
which he is working. BASIC does all interpreting and
executing of commands and programs on whatever computer is
in use and the user is free to concentrate only on the
logical flow of his program. He can ignore matters such as
the absolute locations of his program and data in memory and
the flow of input and output through ports. This isolation
could prevent the user from dealing with programs not
written in BASIC and from interfacing with other hardware
and software, if special tools were not available within
BASIC for doing so.

BASIC provides three tools for addressing absolute memory
locations and three tools for using I/O ports. The POKE
statement stores data in a specified memory address, while
the PEEK function reads data from a specified address. The
CALL function transfers program control to a routine outside
of BASIC. The OUT statement places a value in a specified
I/O port, while the INP function reads a value from a
specified port. The WAIT statement delays program execution
until a specified value appears in a port.

Remember that BASIC assumes all numeric expressions are
decimal, so all addresses and port numbers must be converted
to decimal before use. Appendix 5 contains a table for
conversion between hexadecimal and decimal numbers.

In the descriptions of syntax which follow, "numerical
expression between 0 and 255" may be interpreted to mean
"any expression allowed in BASIC, which when evaluated,
yields a decimal value between 0 and 255."

9-9-83 NEVADA BASIC PAGE 165

POKE POKE

FUNCTION: To write to a memory location.

FORMAT:

POKE expl, exp2

RULES:

1. The POKE statement place a value between a and 255 in a
specified memory address.

2. Since the SOSO/SOS5/ZS0 microprocessor can address
65,536 memory locations, this value is set as a limit to the
value of expl.

3. The value of exp2 is converted to a one-byte binary
value.

EXAMPLE:

10 POKE 4095, 11

9-9-83 NEVADA BASIC PAGE 166

OUT OUT

FUNCTION: To write to an I/O port.

FORMAT:

OUT expl, exp2

RULES:

1. The OUT statement place a value between 0 and 255 in a
specified I/O port.

2. Since the 8080/8085/Z80 microprocessor has 256 ports,
this value is set as a limit to the value of expl.

3. The value of exp2 is converted to a one-byte binary
value.

EXAMPLE:

100 OUT 248, 0

9-9-83 NEVADA BASIC PAGE 167

PEEK PEEK

FUNCTION: To supply the numerical value contained in the
specified memory location.

FORMAT:

PEEK (exp)

RULES:

1. The PEEK function returns a value equal to the contents
of a memory location.

2. Since the SOSO/SOS5/ZS0 processor can address 65,536
memory locations, this value is set as a limit to the value
of exp.

3. One byte is retrieved and its value interpreted as a
number between a and 255.

EXAMPLE:

10 X PEEK(4095)

9-9-83 NEVADA BASIC PAGE 168

INP INP

FUNCTION: To supply the numerical value contained in the
specified I/O port.

FORMAT:

INP (exp)

RULES:

1. The INP function returns a value equal to the contents
of an I/O port exp.

2. Since the SOSO/SOS5/ZS0 processor has 256 I/O ports,
this value is set as a limit to the value of exp.

3. One byte is retrieved and its value interpreted as a
number between a and 255.

EXAMPLE:

100 Y INP(249)

9-9-83 NEVADA BASIC PAGE 169

LOAD LOAD

FUNCTION: Loads the named CP/M (.OBJ) file into memory and
places its starting address in var, if present.

FORMAT:

LOAD string {, var}

RULES:

1. The LOAD statement loads a CP/M (.OBJ) file.

2. If var is present, the file's starting address is placed
in it.

3. The file may not be loaded below the "first protected
memory address" set upon initialization.

4. The first protected address may be changed with the
BASIC SET ML command. This statement may be used as a
command.

5. However, in a command, "string" must be the actual file
name and not a string.

6. The CALL function may be used to execute the loaded
image, with the value of var used for expl.

EXAMPLE:

100 LOAD X$, Y
35 LOAD "GUN"

9-9-83 NEVADA BASIC PAGE 170

CALL CALL

FUNCTION: Invokes a machine language program.

FORMAT:

CALL(expl{, exp2})

RULES:

1. The CALL function invokes a machine language program
that begins at address expl.

2. If exp2 is given, it must be present as a two byte
binary value in the D and E registers of the 8080 when
control is transferred.

3. A return address is placed on the 8080 stack, so that a
RET or equivalent return instructions at the end of the
machine language program may return control to the BASIC
program that invoked it.

4. The routine may place a value in the Hand L registers
to become the value of the CALL function.

5. Since Hand L consist of 16 bits, the value returned
will consist of a positive integer between 0 and 65535.

9-9-83 NEVADA BASIC PAGE 171

WAIT WAIT

FUNCTION: Program execution pauses for a value given.

FORMAT:

WAIT expl, exp2, exp3

RULES:

1. When a WAIT statement is executed, program execution
pauses until a certain value is present in I/O port expl.

2. To determine this value, exp2, exp3 and the value in
port ex pI are converted to one-byte binary values. Each bit
in the selected port is "ANDed" with the corresponding bit
of exp2.

3. If the result is equal to exp3, program execution
continues at the next statement.

4. If the result is not equal to exp3, the program continues
to wait for the specified value.

5. Depressing the Control C key will escape from a WAIT
statement.

6. Exp2 and the logical AND operation provide a way to mask
at the selected port bits which are not of current interest.

NOTES:

1. Assume, for example, that you want a program to wait,
until bit 7 at port F8 (hexadecimal) becomes a 1.

2. First look in Appendix 5 and find that the decimal value
for F8 is 248, so the first part of the statement is WAIT
248, •••

3. Next, create an eight bit binary mask, with only the bit
of interest, bit 7, set to 1: 10000000.

4. Note that a 0 results when a 0 in the mask is ANDed with
either 0 or 1 from the selected port. Thus the mask has
zeros for all ,the "don I t care" bi ts.

5. The decimal value for 10000000 binary is 128, so the
WAIT statement now consists of WAIT 248, 128, •••

9-9-83 NEVADA BASIC PAGE 172

6. The value from the port is ANDed with the mask and
compared for equivalence with exp3.

7. Since the mask 128 or 10000000 sets the last seven bits
of of the incoming value from the port to zero, the last
seven bits of exp3 must also be zero to achieve a match.

8. You are waiting for bit 7 from the port to become 1.
Since you "care" about this bit, bit 7 of the mask is also
one, and the result of the AND operation is also one.

9. Thus bit 7 of exp3 should be 1 and the entire byte will
be 10000000. Converted to decimal, this value is 128.

10. The complete statement is WAIT 248, 128, 128.

9-9-83 NEVADA BASIC PAGE 173

MATRIX OPERATIONS

A matrix variable is a numeric variable which has been
dimensioned with the DIM statement for two dimensions. A
branch of mathematics deals with the manipulation of
matrices according to special rules. Nevada BASIC contains
an extension, described in this section, which allows
programs to be written involving matrix calculations
according to these special rules. No attempt is made here
to present the mathematics of matrices; a prior background
is assumed. •

Since a matrix has two dimensions, any element is located by
two positive integers. One of these integers may be thought
of as representing rows and the other columns in a table of
values. A three (row) by five (column) matrix arranged as a
table and containing real constants is shown below:

three rows
3.1
3.1
4.4

five columns

4.6
9.9
1.9

7.0
0.0
5.6

3.1
7.2
3.3

0.0
0.0
0.0

Before any calculations are made involving matrix variables,
the program must first declare the variables to be matrices
in a dimension satement.

EXAMPLE:

10 DIM A (1 0, 2), B 9 (1, B +C) , •••

Here, numeric variable A is given dimensions of 10 rows by 2
columns and numeric variable B9 is given dimensions of A
rows by B+C columns. Any valid BASIC expression may be used
as a dimension. Simple variables and matrices of the same
name may co-exist in the same program. The matrix A,
declared in the example above, is independent of the
variable A which has not been dimensioned. Matrix B9 is
therefore given a first dimension equal to the value of
numeric variable A, not the number of elements in matrix A.

9-9-83 NEVADA BASIC PAGE 174

EXAMPLE:

100 DIM C(5, A(9, 1))

Matrix C is given 5 rows and a number of columns equal to
the value of matrix element A(9, 1). The memory space
needed for the 8-digit version to dimension a matrix is
given by the following expression.

EXAMPLE:

9 + «first dimension) * (second dimension) * 6)

Since a matrix such as A may co-exist with a variable A in
the program, care must be taken to distinguish the two in
program statements. In general, A always refers to the
variable, while matrix A must have subscripts (A(I, J)).

Matrix elements may be manipulated by all the methods given
in earlier sections of this manual. The program below, for
example, adds corresponding elements of matrices X and Y
into matr ix Z.

EXAMPLE:

10 DIM X(5, 5) , Y(5, 5) , Z (5, 5)
20 FOR I = 1 TO 5
30 FOR J = 1 TO 5
40 Z (I, J) X (I, J) + Y (I, J)
50 NEXT J
60 NEXT I

In this respect a matrix can be treated like any
multi-dimensional array. This section presents a special
group of statements which can manipulate entire matrices in
one statement, as compared to the example program above,
while it has the effect of adding two matrices, actually
deals with individual matrix elements, one at a time. These
special statements all begin with MAT (for matrix). MAT
identifies the statement as one dealing with matrices, so
within such a statement it is not necessary to include
subscripts.

EXAMPLE:

10 MAT Z = X + Y

The statement accomplishes the same addition process as the
program example above, but in only one statement. Note the
effect of the same statement without the initial "MAT".

EXAMPLE:

10 Z X + Y

9-9-83 NEVADA BASIC PAGE 175

Here the value of X+Y would be assigned to variable z.

In the descriptions of matrix manipulations which follow,
mvar is used to refer to a matrix variable. Shape is used
to refer to correspondance in dimensions. The matrix
defined by DIM A(5,2) has the same shape as the matrix
defined by DIM B9(5,2), but the matrix defined by DIM C(3,4)
has a different shape. A matrix defined by DIM 0(2,5) is
said to have dimensions opposite those of matrices A and B9.

MATRIX INITIALIZATION

The following three statements may be used to define or
redefine the contents of a matrix:

MAT mvar = ZER

MAT mvar CON

MAT mvar ION

Sets every element in matrix
mvar to zero.

Sets every element in matrix
mvar to one.

Sets the matrix to an identity
matrix. mvar must have equal
dimensions for rows and
columns.

9-9-83 NEVADA BASIC PAGE 176

MATRIX COpy

If two matrices have the same shape, the values in one may
be assigned to the corresponding elements of the other with
a statement of the form:

MAT mvarl = mvar2

If the matrices in this statement have a different shape,
the values will be assigned only where there are
corresponding elements with the same subscript.

EXAMPLE:

10 DIM A(5, 5), B(lO, 2)
20 MAT A = B

Here the values in the first five rows of B will be assigned
to the five rows of A, but only the first two columns of A
will receive new values since B has only two columns. The
elements in A which have no corresponding elements in B will
retain their original value.

SCALAR OPERATIONS

Each element of a matrix may be added, subtracted,
multiplied or divided by an expression and placed into a
matrix of the same shape, using a statement of the form
shown.

9-9-83 NEVADA BASIC PAGE 177

SCALER SCALER

FUNCTION: Each element may be arithmetic by an expression
of a matrix.

FORMAT:

MAT mvarl mvar2 op (expr)

RULES:

1. A statement performs the same scalar operation on each
element of a matrix. mvarl and mvar2 must have identical
dimensions.

2. The parentheses around expr are required.

3. Matrix elements such as A(5,4) may appear in expr, but
not entire matrices.

4. If mvarl and mvar2 are the same matrix, the resulting
new elements will be placed in the old matrix.

EXAMPLE:

10 MAT A
20 MAT C
30 MAT E

B * (2.3356)
D / (2.35 * C(I, J) + SIN(X))
E + (1)

9-9-83 NEVADA BASIC PAGE 178

MATRIX ARITHMETIC OPERATIONS

A matrix may be added, subtracted or multiplied (but not
divided) by another matrix, and the result placed in a third
matrix. A statement of the following general form is used:

MAT mvar3 = mvar1 op mvar2

Differing rules apply, depending on the arithmetic operator
used. In addition and subtraction, mvarl, mvar2 and mvar3
must all have the same shape.

In multiplication:

1. mvar 3 must not be the same matrix as mvarl or mvar2.
No check is made to insure this rule is adhered to.
If it is broken, unpredictable results will occur.

2. The first dimension (rows) of mvar3 must be the same as
the first dimension of mvarl.

3. The second dimension (columns) of mvar3 must be the
same as the second dimension of mvar2.

4. The second dimension (columns) of mvarl must equal the
first dimension (rows) of mvar2.

MATRIX FUNCTIONS

Two matrix functions may be used to place the inverse or
transpose of a matrix into another matrix.

9-9-83 NEVADA BASIC PAGE 179

INVERSE INVERSE

FUNCTION: Places the inverse of mvar2 into mvar1.

FORMAT:

MAT mvarl INV (mvar2)

RULES:

1. mvarl and mvar2 must not be the same matrix.

2. In both functions, mvarl and mvar2 must have equal
d imens ions.

3. No check is made to insure that mvar1 is not the same
matrix as mvar2. If they are the same, unpredictable
results will occur.

4 • As wit hall fun c t i on s , the a r 9 um en t m u s t b e wi t h in
parentheses.

EXAMPLE:

20 MAT C INV (09)

9-9-83 NEVADA BASIC PAGE 180

TRANSPOSE TRANSPOSE

FUNCTION: Places the transpose of mvar2 into mvarl.
mvarl and mvar2 must have opposite dimensions.

FORMAT:

MAT mvarl TRN (mvar2)

RULES:

1. mvarl and mvar2 must not be the same matrix.

2 • I n bot h fun c t ion s, m v a r 1 and m v"a r 2 m u s t h a vee qua 1
dimensions.

3. No check is made to insure that mvarl is not the same
matrix as mvar2. If they are the same, unpredictable
results will occur.

4. As with all functions, the argument must be within
parentheses.

EXAMPLE:

10 MAT A TRN(B)

9-9-83 NEVADA BASIC PAGE 181

REDIMENSIONING MATRICES

The total number of elements in a matrix is the product of
its two dimensions. In any MAT statement, a matrix may be
given new dimensions, as long as the number of elements is
not increased. The new dimensions are assigned merely by
giving the new dimensions in parentheses following the
matrix variable name.

EXAMPLE:

10 DIM A(20, 20)
20 MAT B = A(25, 5) + 1

Here matrix A is redimensioned from 20 by 20 to 25 by 5 and
put in matrix B.

To understand how the elements of the original matrix are
reassigned by the new dimensions, consider how the matrix
initially dimensioned DIM X(2,3) is reorganized by
including new subscripts X(3,2). Let us number the
original elements:

123
456

Visualize these same elements in an equivalent linear array
(as they are actually stored in the computer's memory):

1 2 3 4 5 6

When the matrix is given new dimensions, elements are taken
row by row from this equivalent linear array. When the last
element of the first row is filled, the first element of the
second row is filled and so forth. Here is the resulting
arrangement:

1 2
3 4
5 6

If there are more elements in the original matrix than in
the new matrix, elements at the end of the equivalent linear
array are not assigned to the new matrix, but remain
available if another redimension should increase the size.
A redimension may only be done in a MAT statement and may
not be done in a second DIM statement.

9-9-83 NEVADA BASIC PAGE 182

The following attempted redimension will not work:

DIM A(10, 10)

DIM A(5, 5)

A matrix variable may appear in a DIM statement only once.
The example above violates this rule.

9-9-83 NEVADA BASIC PAGE 183

APPENDIX 1 APPENDIX 1

BASIC COMMAND AND STATEMENT SUMMARY

Minimum keyword abbreviations are underlined. An
abbreviation must be followed by a period. Functions and
some commands and statements do not have abbreviations. An
S following a command description means it may be also used
as a statement; a C following a statement means it may be
used as a command.

Command

APPEND file

BYE

CAT {/unit}{type}

CLEAR

CONT

DEL

DEL n

DEL nl, n2

DEL nl,

DEL ,n2

COMMANDS

Description

Reads a program stored on a
diskette file and appends it
to the current program.

Leaves BASIC and returns to
CP/M. S

Displays a catalog of BASIC
program or diskette data
files, from the specified
disk drive unit, of type T,
or C.

Erases all variable defini
tions. S

Continues execution of a
program stopped with the
MODE key or by a STOP state
ment.

Deletes all statements.

Deletes statement n.

Deletes statements nl
through n2.

Deletes statements nl through
the last statement.

Deletes the first statement
through statement n2. Note
space before comma.

9-9-83

EDIT n

GET file

KILL file

LIST

LIST n

LIST nl,

LIST nl,

LIST ,n2

LLIST

LLIST n

LLIST nl,

LLIST nl,

LLIST ,n2

REN

REN n

REN n,l

RUN

n2

n2

NEVADA BASIC PAGE 184

Allows the edit of statement n.

Reads a diskette file program
of type C or T for execution
later.

Kills the named program file.

Lists the entire program.

Lists statement n.

Lists statements n1 through
n2.

Lists statements nl through
the last statement.

Lists the first statement
through statement n2.
Lists the entire program.

Lists statement n.

Lists statements n1 through
n2.

Lists statements nl through
the last statem~nt.

Lists the first statement
through statement n2.

Renumbers the statements
starting with 10 in increments
of 10.

Renumbers the statements
starting with n in increments
of 10.

Renumbers the statements
starting with n in increments
of 1.

Clears all variable definitions
and executes the program begin-

9-9-83

RUN n

SAVE file {,C}{,T}

SCRATCH

SET CM=exp

SET CP=polarity

SET LL=length

SET ML=size

XEQ file

NEVADA BASIC PAGE 185

ning with the first line.

Executes the program beginning
with statement n and does not
clear variable definitions.

Saves the current program on a
diskette file of the name indi
cated. C saves the program in
semi-compiled format or T saves
the program in text format.
The default is C.

Deletes the entire program
and clears all variable
defini tions. S

If exp equates to zero, the
video cursor will not appear;
if exp is non-zero, it will
appear. S

If the polarity expression is
zero, video characters will
appear in normal polarity;
if non-zero, characters will
appear in reverse video. S

Sets the line length for BASIC
output to the value
spec i f i ed • S

Sets the memory limit for BASIC
to the number of bytes
specified.

Reads and executes a diskette
file program of type C or T.

9-9-83 NEVADA BASIC PAGE 186

STATEMENTS

Statement Description

CLOSE #file numberl, #file number2, •••

CURSOR {L}{,C}

Closes the specified files so that they
cannot be accessed unless another FILE
statement requests access.

Moves the cursor to line L, position C, on
the screen. If L or C is omitted, its
value from the last CURSOR statement is
used. C

DATA constantl, constant2, •••

Specifies numerical or string constants
that can be read by the READ statement.

DEF FNvariable(variablel, variable2, •••)=expression

Defines a one-line function that evaluates
an expression based on the values of the
variables in parantheses.

DEF FNvariable(variablel, variable2, •••)

Defines a multi-line function that
executes statements following, using the
values of the variables in parentheses in
calculations.

RETURN expression

FNEND

and,when a RETURN statement is encountered,
returns the value of the expression on
the same line.

FNEND ends the function on definition.

DIM variable(dimensionl, dimension2, •••)

Defines a multi-dimensional numerical
array with the number of dimensions
specified.

9-9-83 NEVADA BASIC PAGE 187

DIM string variable (size)

END

ERRCLR

ERRSET n

EXIT n

Declares the number of characters that
can be contained in the specified
string variable.

Terminates execution of the program.

Clears the error trap line number set by
the most recent ERRSET statement. C

When an error occurs, BASIC executes
statement n next. C

Escapes from and terminates the current
FOR/NEXT loop. Statement n is executed
next.

FILE In; name, {access}, lag}, {rs}, {bs}

Opens or creates a random access diskette
data file, or if the rs expression is
absent or equates to zero, opens or
creates a serial access file. File
reference number n is assigned to the
named file for use in later statements.
An access is requested: 1 for READ
only, 2 for PRINT only and 3 (default)
for either. If the variable ag is
present, it receives the access granted.
If rs is present, it specifies the
record size of a random access file.

FILL string, string expression

Fills a string variable or substring
function with a copy of the first
character, which the first string
expression yields. C

FNEND Ends a function definition.

FOR variable expressionl TO expression2 {step interval}

The value of expressionl is assigned
to the variable, then the statements

NEXT {variable} between FOR and NEXT are executed
repeatedly until the variable equals
expression2. After each iteration,
the variable is incremented by 1 or by

9-9-83

GOSUB n

GOTO n

NEVADA BASIC PAGE 188

the STEP interval if given.

Executes the subroutine beginning at
statement number n. Execution continues
with the statement following the
GOSUB statement.

Transfers control to statement
number n.

IF expression THEN n

Executes statement n if the value of
the express~on is true; otherwise,
executes the next statement in
sequence.

IF expression THEN nl ELSE n2

Executes statement nl if the value of the
expression is true; otherwise, executes
statement n2.

IF expression THEN statementl:statement2: •••

Executes statementl, statement2, etc.,
if the value of the expression is true;
otherwise, executes the next statement
in sequence. C

IF expression THEN statementl:statement2: •••

ELSE statement3: •••

Executes the statements following THEN
if the value of the expression is true;
otherwise, executes the statements
following ELSE. C

IF expression THEN n ELSE statementl:statement2: •••

Executes statement n if the value of
the expression is true; otherwise,
executes the statements following
ELSE.

IF expression THEN staternentl:staternent2: ••• ELSE n

Executes the statements following
THEN if the value of the expression
is true; otherwise, executes
statement n .•

9-9-83 NEVADA BASIC PAGE 189

INPUT variablel, variable2, •••

Accepts values from the terminal and
assigns them to variablel, variable2,
etc. C

INPUT "message", variablel, variable2, •••

Displays the message as a prompt and
then accepts values from the terminal,
assigning them to variablel, variable2,
etc. C

INPUT (characters, time) variablel, variable2, •••

Accepts values from the terminal and
assigns them to variablel, variable2,
etc •• The user can only type the
number of characters indicated and
has time (in tenths of a second) to
respond.

INPUT (characters, time) "message", variablel, variable2, •••

Displays the message as a prompt and
them accepts values form the terminal,
assigning them to variablel, variable2,
etc •• The user can only type the number
of characters indicated in parentheses
and has time (in tenths of second) to
respond.

{LET} variable = expressionl {,variable2=expression2} •••

Assigns the value of each expression to
the corresponding variable. The word
LET may be absent. C

LOAD string {,var}

Loads the CP/M type (.OBJ) file, whose name
is given by the string expression, into
memory. The variable receives its
starting address. The file may be
executed with the CALL function. C

LPRINT ele {,ele,ele ••• }{,}

Prints numerical or string expression
elements according to format elements.
Commas or semicolons may separate
elements or terminate the LPRINT
statement.

9-9-83 NEVADA BASIC PAGE

MAT mvar=ZER Sets every element in matrix
mvar to zero. C

MAT mvar=CON Sets every element in matrix
mvar to one. C

MAT mvar=IDN Sets the matr ix to an iden ti ty
matrix. C

MAT mvar1=mvar2 Copies matrix variable 1 into
matrix variable 2. C

MAT mvarl=mvar2 op mvar2

Performs the same scalar operation
on each element of m·atr ix variable 2.
op is + - * or I C

MAT mvar3=mvarl op mvar2

Adds, subtracts or multiplies matrix
variable 1 by matrix variable 2.
op is + - or * C

MAT mvarl=TRN(mvar2)

Places the transpose of matrix
variable 2 into matrix variable 1. C

MAT mvarl=INV(mvar2)

Places the inverse of matrix
variable 2 into matrix variable 1. C

mvar(expressionl, expression2)

Matrix mvar may be redimensioned
by including the new dimensions
expressionl and expression2 after
the matrix. variable name in a MAT
statement.

NEXT{variable} Ends a FOR loop.

ON expression ERRSET nl, n2, ••.

If the value of the expression is 1,
sets nl is the statement to be
executed when an error occurs;
if the value is 2, sets n2 is the
statement to be executed when an
error occurs; etc ••

190

9-9-83 NEVADA BASIC PAGE 191

ON expression EXIT nl, n2, •••

If the value of the expression is 1,
transfers control to statement nl and
terminates the currently active
FOR/NEXT loop; if 2, transfers to
statement n2; etc ••

ON expression GOSUB nl, n2, •••

If the value of the expression is 1,
executes the subroutine starting at
statement nl; if the value is 2,
execuctes the subroutine starting
at statement n2; etc ••

ON expression RESTORE nl, n2, •••

If the value of the expression is 1,
executes statement nl next; if it is
2, executes statement n2 next; etc ••

ON expression RESTORE nl, nl, •••

OUT port, value

PAUSE nexpr

If the value of the expression is 1,
resets the pointer in the DATA
statements so that the next value
read is the first data item in line
nli if it is 2, resets the pointer
to n2; etc ••

Places the specified value in the
indicated I/O port. C

Delays further execution for nexpr
tenths of a second.

POKE location, value

Places the specified value in the
specified memory location. C

PRINT ele {,ele,ele ••• }{,}

Displays numerical or string expression
elements according to format elements.
Commas or semicolons may separate
elements or terminate the PRINT
statement.

PRINT #file number; ele {,ele, ele ••. }

Sequentially prints the values of

9-9-83 NEVADA BASIC

numerical or string expression
elements, according to format
elements, onto the referenced
diskette data file. C

PAGE 192

PRINT ifile number, {record} {,d}; elel {,ele2} •••

PURGE string

If the file cursor displacement
expression d is non-zero, the file
cursor is displaced by d and the
values of the element(s) are printed
on a serial access diskette data file;
or if the record number expression is
non-zero, the file cursor is positioned
to the given record number in a random
access data file, and the values of
the element(s) are printed.

Kills the diskette data file whose
name is the value of a string expression.

READ variablel, variable2, ••.

Reads values from DATA statements and
assigns them to variablel, variable2,
etc ••

READ in;varl {,var2} ••• {:statementl :statement2}

Reads values from the specified file
starting at the current file cursor
position and assigns them to varl,
var2, etc. If EOF is encountered,
the optional statement(s) are
executed.

READ in,{rn}{,d};varl{,var2} ••• {:statementl :statement2}

If the file curosr displacement
expression d is non-zero, the file
cursor is displaced by d and items
from a serial access diskette data
file are read and assigned to varl,
var2, etc.; or if the record number
expression rn is non-zero, the file
cursor is positioned to the given
record number in a random access data
file, and items are read into the
variables. If EOF is encountered,
the optional statement(s) are executed.

REM any series of characters

9-9-83

RESTORE {n}

RETURN

RETURN exp

NEVADA BASIC PAGE 193

The characters appear in the program as
remarks. The statement has no effect
on execution.

Resets the pointer in the DATA
statements to the beginning. If n
is present, the pointer is set to the
first data item in statement n.

Returns from a subroutine.

Returns from a function. The value
returned is exp.

REWIND "file numberl, #file number2, •••

Rewinds the specified files.

SEARCH string expressionl, string expression2, variable

STOP

Searches the second string for the
first occurance of the first string
specified. The variable is set
equal to the character position at
which the first string was found.
If is is not found, the variable is
set equal to zero.

Terminates execution of the program
and prints "STOP IN LINE nil, where n
is the line number of the STOP
sta tement.

WAIT expl, exp2, exp3

XEQ file

The next statement is not executed
until the value in port expl, ANDed
with exp2, is equal to exp3.

Reads the program from the specified
diskette file and begins execution.
The file name is a string expression
so it must be enclosed in quotation
marks if given directly.

9-9-83 NEVADA BASIC PAGE 194

APPENDIX 2 APPENDIX 2

BASIC FUNCTION SUMMARY

In the function forms below, which are arranged
alphabetically, n represents a numeric expression and s
represents a string expression. Function names may not be
abbrev ia ted.

Function

ABS (n)

ASC (s)

ATN (n)

Value Returned

The absolute value of the numerical
expression n.

The USASCII code for the string
expression s. Only the first character
of the string is interpreted.

The arctangent of the numerical
expression n in radians.

CALL(address{,parameter})

CHR (n)

COS (n)

EOF(file number)

The value in HL. CALL places a return
address on the 8080 stack, calls the
routine at the specified memory address
and optionally passes the value of a
parameter in the DE register. The
routine may return a value in HL, which
becomes the value of the CALL function.

The character whose USASCII code is the
value of numerical expression n.

The cosine of n in radians.

The status of the specified file.
o file number was not assigned
1 last operation was FILE
2 last operation was READ
3 last operation was PRINT
4 last operation was REWIND
5 last operation was READ EOR (end of

record)
6 last was READ EOF (end of file)

18 last was Serial FIle READ with
Spacing

19 last was Serial File PRINT with

9-9-83

ERR(O)

EXP (n)

NEVADA BASIC PAGE 195

Spacing
34 last was Random File READ
35 last was Random File PRINT
37 last was Random File READ EOR
38 last was Random FIle READ EOF

A string containing the last error
message.

The constant e raised to the power n.

FNvariable(variablel, variable2, •••)

FREE (0)

INP (exp)

INT (n)

LEN (name)

LOG (n)

LOGI0 (n)

PEEK (n)

POS(O)

RND(exp)

SGN (n)

SIN (n)

SQR (n)

STR (n)

SYST (n)

The value of used-defined function
FNvariable. variablel, variable2, etc.
are arguments.

The number of bytes of space left avail
able in BASIC for program and
variables.

Supplies the numerical value contained in
I/O port exp. Exp is between and 255~

Truncates n to its integer part.

The number of characters in the string
variable whose name is specified.

The natural logarithm of n.

The logarithm base 10 of n.

The value contained in memory location
n.

The current position of the cursor
(0 - 131).

A random number between 0 and 1.
exp = 0, -lor n.

The sign of the value of ni 1 if
positive, -1 if negative, 0 if n is
zero.

The sine of n in radians.

The square root of n.

The character representation of the
value of n.

Returns systems information.

9-9-83

TAB (n)

TAN (n)

TYP(O)

VAL (s)

NEVADA BASIC PAGE 196

Moves the cursor or print head
horizontally to character position n.
Use only in a PRINT statement.

The tangent of n in radians.

A value representing the type of data
that will be read from the DATA state
ment corresponding to the next READ
statement: 1 for numeric data, 2 for
string data, or 3 for data exhausted.

The numerical value of the string s.
The value of s must be convertible to a
legal numerical constant.

string variable (expl{,exp2})

Characters expl through exp2 of the
specified string if e~p2 is present.
Characters expl through the end of the
specified string if exp2 is omitted.

numerical variable (nl{, n2, ••• })

An element of an array with the specified
name. The element's position is given
by nl, n2, etc ••

9-9-83 NEVADA BASIC PAGE 197

APPENDIX 3 APPENDIX 3

ERROR MESSAGES

All errors are fatal and stop the execution of the program
or command causing the error, unless an ERRSET statement is
in effect. If the error occurs while writing data on a file
or saving a program, some information may be lost. Errors
are arranged below alphabetically by error message.

Message Meaning

AC

AM

BC

BV

CA

CC

Access error. An attempt
has been made to access a
file in the wrong mode
(read, wr i te or read/wr i tel •

Argument error. A function
has been called with the
wrong number or type of
arguments.

Bad semi-compiled file.

Bad CP/M
version.

Cannot append. The file
indicated in the last
APPEND command is the wrong
type. It must be a text
format file.

Can't convert. The last VAL
function attempted to deter
mine the value of a string
which did not contain a
number.

CL File close error.

CS Control stack error.
possible causes are:
-RETURN without a prior
GOSUB
-Incorrect FOR/NEXT nesting
-Too many nested FOR loops

What to Do

Check the File State
ment requesting
access. Change the
access mode if it is
incorrect.

Review the function's
definition in Appendix
2 or in your program
if it is a user
defined function.

Check your hardward.
Re-create file.

Must be version 2.0
or greater.

SAVE the file in text
format.

Provide a string which
contains a number.
Study the program
logic.

List the statements
surrounding the error
causing statement and
check the logical
flow. Execute just a
few statements at a

9-9-83 NEVADA BASIC

DO

01

OM

DZ

FD

FM

FN

FO

-Too many neste~ function
calls

Double definition. An
attempt has been made to
define a function with a name
that is already defined.

Direct execution error. The
statement last typed cannot
be executed in calculator
mode.

Dimension error. A dimension
statement contains a variable
name that is already dimen
sioned or cannot be
dimensioned.

Divide by zero error. An
expression in the last
statement attempted to
divide by zero.

Format definition error or
file declaration error. The
last PRINT statement con
tained a bad format defini
tion, the last statement
referring to a file number
specified an undeclared file,
or the last FILE statement
could not declare the file as
requested.

Format error. A field
definition in the last
formatted PRINT statement
is not large enough or it
is too large.

File name error. A filename
is too short, too long or
contains illegal characters.

Field overflow. An attempt
has been made to print a
number larger than Nevada
BASIC'S numerical field size.

PAGE 198

time and list variable
values to find out
where things go wrong.

Rename the function.

Give the statement a
1 ine number and
execute it as all or
part of a program.

Rename the dimensioned
variable. Make sure
the variable name is
valid.

Set the value of the
divisor to a non-zero
number before
d iv id ing.

Either check the
format definition
against the documen
tation under "For
matted PRINT State
ment" or find the most
recent FILE statement
and verify its syntax
and the file number
declared.

Use the PRINT state
ment in calculator
mode to determine the
size of the value to
be printed. Adjust
the field declaration
accordingly.

Check for spelling
errors or use a
different name.

Display values used
to compute the number.
Trace the source of
the overflow in
reverse order through
the prog ram.

9-9-83 NEVADA BASIC PAGE 199

FP Floating Point error. BASIC No solution.
cannot handle numbers greater

FS

IN

IS

KI

LL

LN

MD

MP

than 10 to the 126th power or
less than 10 to the -126th power.

File Structure error. A
CP/M error occurred.

INput error. The ERRSET
statement is in effect and
non-numeric input was given
to a numeric INPUT statement.

Internal stack error. An
expression was too complex
to evaluate.

Kill attempted on an open
file.

Line too long. The next
line to be listed is too
long for BASIC. It cannot
be edited or saved in the
text mode.

Line number reference
error. A statement re
ferred to a line that does
not exist.

Matrix Dimension Error.
Dimensions are incompatible
with the operation attempted.

Memory Protect error. An
attempt was made to over
write BASIC or the current
BASIC program. This error
can be produced by the LOAD
command/statement.

Check diskette for
damage.

Rerun the program,
using appropriate
input.

Divide the expression
into parts, using
assignment statements.

Close file and then
retry.

If you don't know the
number of the next
line to be listed,
renumber the program
and give the LIST
command again. Re
place the long line
with shorter lines.
You cannot list the
long line, so you must
reconstruct its mean
ing from the context
of the surrounding
statements.

List the area of the
program around the
line referred to.
Find the correct line
number and revise the
reference.

Redimension the matrix
or restructure the
operation.

Check image file load
address if the LOAD
statement was used.

9-9-83 NEVADA BASIC

MS Matrix Singular Error.
The operation attempted
cannot be performed on a
singular matrix.

NA Not available. A command is
not presently available.

NC Not CONTinuable. The current
program, if any, cannot be
CONTinued.

NI Command or function not
implemented.

NP

OB

No program. BASIC was
instructed to act on the
current program and none
exists.

Out of bounds. The argument
or parameter given is not
within the range of the
function or command last
executed.

OP File open error.

RD

RO

Read error from
file.

Record overflow. An attempt
was made to write more items
into a record of a random
access date file than the
record could hold.

RW Rewind error.

SN

SO

Syntax error. The statement
or command last executed was
constructed incorrectly.

Storage overflow. There is
insufficient storage to
complete the last operation.

PAGE 200

The operation cannot
be performed on the
data in the given
matrix.

Don't use offending
command.

Make sure a BASIC
program is ready to
run. You cannot
CONTinue after edit
ing a program, using
the CLEAR command,etc.

Type the program or
read it from diskette.

Display the values of
the argumnts or para
meters used. If they
seem reasonable, look
up the definition of
the function or the
command.

File may not exist or
bad data.

Write the extra items
into a new record,
write less items per
record, or rewrite the
file with a new record
size.

Check the syntax of
the command or state
ment in Appendix 1.

Use the FREE command
to find out how much
storage is left. Use
SET ML to change the
memory limit for

9-9-83

TY

UD

UR

WT

NEVADA BASIC

Type error. The variable or
function name appearing in
the last statement is the
wrong type. The types are
string variable, simple
variable, dimensioned variable
and function.

Undimensioned matrix. A
variable name was used which
was not previously.

Unresolved line number
reference. During a
RENumber command, a control
transfer statement referred
to a nonexistent line number.

File write error.

PAGE 201

BASIC.

Check the names of
functions and dimen
sioned variables.
Make sure the opera
tion is appropriate
for the type of data
indicated.

DIMension the matrix
in an earlier DIM
statement.

Look for typos in the
program. Unresolved
references will have
been changed to O.

Disk may be full.

9~9-83 NEVADA BASIC PAGE 202

APPENDIX 4
TABLE OF ASCII CODES (Zero Parity) APPENDIX 4

Paper tape Upper Octal Octal Decimal Hex Character
123.4567P

I I 0000 000 0 00 ctrl @ NUL

I· I 0004 001 1 01 ctrlA SOH Start of Heading

I • I 0010 002 2 02 ctrl B STX Start of Text

I·· I 0014 003 3 03 ctrl C ETX End of Text · . I 0020 004 4 04 ctrl D EOT End of Xmit

• · . I 0024 005 5 05 ctrl E ENQ Enquiry ... I 0030 006 6 06 ctrl F ACK Acknowledge I 0034 007 7 07 ctrl G BEL Audible Signal

· . I 0040 010 8 08 ctrl H BS Back SPlice

• · . I 0044 011 9 09 ctrl I HT Horizontal Tab

• · . I 0050 012 10 OA ctrl J LF Line Feed

•• · . I 0054 013 11 OB ctrl K VT Vertical Tab ... I 0060 014 12 OC ctrl L FF Form Feed

• ... 0064 015 13 OD ctrl M CR Carriage Return 0070 016 14 OE ctrl N SO Shift Out

••••• 0074 017 15 OF ctrlO SI Shift In

• 0100 020 16 10 ctrl P DLE Data Line Escape

• • 0104 021 17 11 ctrlQ DCl xOn
• • 0110 022 18 12 ctrlR DC2 Aux On

•• • 0114 023 19 13 ctrl S DC3 X Off · . • 0120 024 20 14 ctrl T DC4 Aux Off

• · . • 0124 025 21 15 ctrl U NAK Negative Acknowledge ... • 0130 026 22 16 ctrl V SYN Synchronous File

•••• • 0134 027 23 17 ctrl W ETB End of Xmit Block ... 0140 030 24 18 ctrl X CAN Cancel

• ... 0144 031 25 19 ctrl Y EM End of Medium

• ... 0150 032 26 lA ctrl Z SUB Substitute

I·· ... 0154 033 27 IB ctrl [ESC Escape

I •••• 0160 034 28 lC ctrl \ FS File Separator

I· •••• 0164 035 29 lD ctrl] GS Group Separator

I ••••• 0170 036 30 IE ctrl "- RS Record Separator

•••••• 0174 037 31 IF ctrl _ US Unit Separator

• 0200 040 32 20 Space

• • 0204 041 33 21 !
• • 0210 042 34 22

•• • 0214 043 35 23 # · . • 0220 044 36 24 $

• · . • 0224 045 37 25 '" ... • 0230 046 38 26 &

•••• • 0234 047 39 27

· . • 0240 050 40 28

• · . • 0244 051 41 29

• · . • 0250 052 42 2A * •• · . • 0254 053 43 2B + ... • 0260 054 44 2C

• ••• • 0264 055 45 2D • 0270 056 46 2E

••••• • 0274 057 47 2F /
•• 0300 060 48 30 0

• •• 0304 061 49 31 1

• •• 0310 062 50 32 2
•• •• 0314 063 51 33 3 · . •• 0320 064 52 34 4
• · . •• 0324 065 53 35 5 ... •• 0330 066 54 36 6
•••• •• 0334 067 55 37 7

•••• 0340 070 56 38 8
• •••• 0344 071 57 39 9

• •••• 0350 072 58 3A

•• •••• 0354 073 59 3B

••••• 0360 074 60 3C <
• ••••• 0364 075 61 3D

•••••• 0370 076 62 3E >
••••••• 0374 077 63 3F ?

9-9-83 NEVADA BASIC PAGE 203

TABLE OF ASCII CODES (Cont'd) (Zero Parity)

Paper tape Upper Octal Octal Decimal Hex Character

123.4567P

• I 0400 100 64 40 @

• • I 0404 101 65 41 A

• • I 0410 102 66 42 B

•• • 0414 103 67 43 C · . • 0420 104 68 44 D
• · . • 0424 105 69 45 E .. . • 0430 106 70 46 F • 0434 107 71 47 G

· . • 0440 IlO 72 48 H

• · . • 0444 III 73 49 I

• · . • 0450 Il2 74 4A J

•• · . • 0454 113 75 48 K ... • 0460 114 76 4C L
• ... • 0464 Il5 77 40 M • 0470 Il6 78 4E N

••••• • 0474 117 79 4F 0

• • 0500 120 80 50 P

• • • 0504 121 81 51 Q

• • • 0510 122 82 52 R

•• • • 0514 123 83 53 S · . • • 0520 124 84 54 T

• · . • • 0524 125 85 55 U ... • • 0530 126 86 56 V • • 0534 127 87 57 W ... • 0540 130 88 58 X

• ... • 0544 131 89 59 y

• ... • 0550 132 90 5A Z

•• ... • 0554 133 91 58 [.... • 0560 134 92 5C \
• •••• • 0564 135 93 50]

••••• • 0570 136 94 5E

•••••• • 0574 137 95 5F

•• 0600 140 96 60

• •• 0604 141 97 61 a

• •• 0610 142 98 62 b
•• •• 0614 143 99 63 c · . •• 0620 144 100 64 d

• · . •• 0624 145 101 65 e ... •• 0630 146 102 66 f •• 0634 147 103 67 9
· . •• 0640 150 104 68 h

• · . •• 0,644 151 105 69 i
I • · . •• 0650 152 106 6A j I·· · . •• 0654 153 107 68 k

I ... •• 0660 154 108 6C 1
I· .. , . •• 0664 155 109 60 m
I •••• •• 0670 156 1I0 6E n

I···· · •• 0674 157 III 6F 0

I ••• 0700 160 1I2 70 P
I· ••• 0704 161 1I3 71 q

I • ••• 0710 162 ll4 72 r I·· ••• 0714 163 ll5 73 s
I · . • •• 0720 164 1I6 74 t
I· · . • •• 0724 165 1I7 75 u

I ... • •• 0730 166 1I8 76 v

I···· ••• 0734 167 1I9 77 w

I ••••• 0740 170 120 78 x
I· ••••• 0744 171 121 79 Y
I • ••••• 0750 172 122 7A z I·· ••••• 0754 173 123 78 {

I •••••• 0760 174 124 7C

I· •••••• 0764 175 125 70

I ••••••• 0770 176 126 7E Prefix

I········ 0774 177 127 7F DEL Rubout

9-9-83

APPENDIX 5

NEVADA BASIC

HEXADECIMAL-DECIMAL INTEGER
CONVERSION TABLE

PAGE 204

APPENDIX 5

The table appearing 011 the following pages provides a means for direct conversion of decimal integers in the
range of 0 to 4095 and for hexadecimal integers in the range of 0 to FFF.

To convert numbers above those rangel;, add table values to the figures below:

Hexadecimal Decimal Hexadecimal Decimal

01000 4096 20000 131072
02000 8 192 30000 196608
03000 12 288 40000 262 144
04000 16384 50000 327680
05000 20480 60000 393216
06000 24576 70000 458752
07000 28672 80000 524288
08000 32768 90000 589824
09000 36864 AOOOO 655360
OA 000 40960 BO 000 720896
OB 000 45056 CO 000 786432
OC 000 49 152 DO 000 851968
OD 000 53248 EO 000 917504
OE 000 57344 FO 000 983040
OF 000 61440 100000 1 048576
10000 65536 200000 2097 152
11 000 69632 300000 314572e
12000 73728 400000 4194304
13000 77 824 500000 5242880
14000 81 920 600000 6291 456
15000 86016 700000 7 340032
16000 90112 800000 8388608
17000 94208 900000 9437 184
18000 98304 AOO 000 10485 760
19000 102400 BOO 000 11 534336
lA 000 106496 COO 000 12582912
IB 000 110592 DOO 000 13 631 488
1C 000 114688 EOO 000 14680064
1D 000 118784 FOO 000 15728640
IE 000 122 880 1 000000 16777 216
IF 000 126976 2000000 33554432

000
010
020
030

~O

050
060
070

080
090
OAO
OBO

OCO
000
OEO
OFO

100
110
120
130

140
150
160
170

180
190
lAO
IBO

lCO
100
lEO
IFO

WO
210
220
230

240
250
260
270

280
290
2AO
200

2CO
200
2EO
2~

9-9-83 NEVADA BASIC PAGE 205

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

o

0000 0001 0002 0003
0016 0017 0018 0019
0032 0033 0034 0035
0048 0049 0050 0051

0064 0065 0066 0067
0080 0081 0082 0083
0096 0097 0098 0099
0112 0113 0114 0115

0128 0129 0130 0131
0144 0145 0146 0147
0160 0161 0162 0163
0176 0177 0178 0179

0192 0193 0194 0195
0208 0209 0210 0211
0224 0225 0226 0227
0240 0241 0242 0243

0256 0257 0258 0259
0272 0273 0274 0275
0288 0289 0290 0291
0304 0305 0306 0307

0320 0321 0322 0323
0336 0337 0338 0339
0352 0353 0354 0355
0368 0369 0370 0371

0384 0385 0386 0387
0400 0401 0402 0403
0416 0417 0418 0419
0432 0433 0434 0435

0448 0449 0450 0451
0464 0465 0466 0467
0480 0481 0482 0483
0496 0497 0498 0499

0512 0513 0514 0515
0528 0529 0530 0531
0544 0545 0546 0547
0560 0561 0562 0563

0576 0577 0578 0579
0592 0593 0594 0595
0608 0609 0610 0611
0624 0625 0626 0627

0640 0641 0642 0643
0656 0657 0658 0659
0672 0673 0674 0675
0688 0689 0690 0691

0704 0705 0706 0707
0720 0721 0722 0723
0736 0737 0738 0739
0752 0753 0754 0755

4 6

0004 0005 0006 0007
0020 0021 0022 0023
0036 0037 0038 0039
0052 0053 0054 0055

0068 0069 0070 0071
0084 0085 0086 0087
0100 0101 0102 0103
0116 0117 0118 0119

0132 0133 0134 0135
0148 0149 0150 0151
0164 0165 0166 0167
0180 0181 0182 0183

0196 0197 0198 0199
0212 0213 0214 0215
0228 0229 0230 0231
0244 0245 0246 0247

0260 0261 0262 0263
0276 0277 0278 0279
0292 0293 0294 0295
0308 0309 0310 0311

0324 0325 0326 0327
0340 0341 0342 0343
0356 0357 0358 0359
0372 0373 0374 0375

0388 0389 0390 0391
0404 0405 0406 0407
0420 0421 0422 0423
0436 0437 0438 0439

0452 0453 0454 0455
0468 0469 0470 0471
0484 0485 0486 0487
0500 0501 0502 0503

0516 0517 0518 0519
0532 0533 0534 0535
0548 0549 0550 0551
0564 0565 0566 0567

0580 0581 0582 0583
0596 0597 0598 0599
0612 0613 0614 0615
0628 0629 0630 0631

0644 0645 0646 0647
0660 0661 0662 0663
0676 0677 0678 0679
0692 0693 0694 0695

0708 0709 0710 0711
0724 0725 0726 0727
0740 0741 0742 0743
0756 0757 0758 0759

8 9 A B

0008 0009 0010 0011
0024 0025 0026 0027
0040 0041 0042 0043
0056 0057 0058 0059

0072 0073 0074 0075
0088 0089 0090 0091
0104 0105 0106 0107
0120 0121 0122 0123

0136 0137 0138 0139
0152 0153 0154 0155
0168 0169 0170 0171
0184 0185 0186 0187

0200 0201 0202 0203
0216 0217 0218 0219
0232 0233 0234 0235
0248 0249 0250 0251

0264 0265 0266 0267
0280 0281 0282 0283
0296 0297 0298 0299
0312 0313 0314 0315

0328 0329 0330 0331
0344 0345 0346 0347
0360 0361 0362 0363
0376 0377 0378 0379

0392 0393 0394 0395
0408 0409 0410 0411
0424 0425 0426 0427
0440 0441 0442 0443

0456 0457 0458 0459
0472 0473 0474 0475
0488 0489 0490 0491
0504 0505 0506 0507

0529 0521 0522 0523
0536 0537 0538 0539
0552 0553 0554 0555
0568 0569 0570 0571

0584 0585 0586 0587
0600 0601 0602 0603
0616 0617 0618 0619
0632 0633 0634 0635

0648 0649 0650 0651
0664 0665 0666 0667
0680 0681 0682 0683
0696 0697 0698 0~99

0712 0713 0714 0715
0728 0729 0730 0731
0744 0745 0746 0747
0760 0761 0762 0763

c o E F

0012 0013 0014 0015
0028 0029 0030 0031
0044 0045 0046 0047
0060 0061 0062 0063

0076 0077 0078 0079
0092 0093 0094 0095
0108 0109 0110 0111
0124 0125 0126 0127

0140 0141 0142 0143
0156 0157 0158 0159
0172 0173 0174 0175
0188 0189 0190 0191

0204 0205 0206 0207
0220 0221 0222 0223
0236 0237 0238 0239
0252 0253 0254 0255

0268 0269 0270 0271
0284 0285 0286 0287
0300 0301 0302 0303
0316 0317 0318 0319

0332 0333 0334 0335
0348 0349 0350 0351
0364 0365 0366 0367
0380 0381 0382 0383

0396 0397 0398 0399
0412 0413 0414 0415
0428 0429 0430 0431
0444 ~45 0446 0447

0460 0461 0462 0463
0476 0477 0478 0479
0492 0493 0494 0495
0508 0509 0510 0511

0524 0525 0526 0527
0540 0541 0542 0543
0556 0557 0558 0559
0572 0573 0574 0575

0588 0589 0590 0591
0604 0605 0606 0607
0620 0621 0622 0623
0636 0637 0638 0639

0652 0653 0654 0655
0668 0669 0670 0671
0684 0685 0686 0687
0700 0701 0702 0703

0716 0717 0718 0719
0732 0733 0734 0735
0748 0749 0750 0751
0764 0765 0766 0767

9-9-83 NEVADA BASIC PAGE 206

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

0 2 4 6 8 9 A B C D E F

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880.0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3eo 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

400 1024 1025 0126 0127 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1f43 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4DO 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1291 1293 1294 1295
510 1296 1297 1298 1299 1399 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1329 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1367 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1.\69 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 2385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1429 1421 1422 1423
590 1324 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
380 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1515 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600
610
620
630

640
650
660
670

680
690
6AO
6110

(,CO
(1)0

0EO
6FO

700
710
no
730

740
750
700
778

780
790
7AO
7BO

7CO
71)()
7EO
7FO

HOIl
Rill
H20
8JO

84()
8,SO
H(>!)

R70

880
89()
HAO
HI\O

8eo
8/)0
HEO
HFO

9-9-83 NEVADA BASIC PAGE 207

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

o

1536 1537 1538 1539
1552 1553 1554 1555
1568 1569 1570 1571
1584 1585 1586 1587

1600 1601 1602 1603
1616 1617 1618 1619
1632 1633 1634 1635
1648 1649 1650 1651

1664 1665 1666 1667
1680 1681 1682 1683
1696 1697 1698 1699
1712 1713 1714 1715

1728 1729 1730 1731
1744 1745 1746 1747
1760 1761 1702 1703
1776 1777 1778 1779

1792 1793 179~ 17'15
1808 1809 1810 1811
1824 1825 1820 18~7
1840 1841 1842 1843

1856 1857 1858 185')
1872 1873 1874 1875
1888 1889 189ll 1891
1904 1905 1900 19U7

1920 1nl 192~ In3
1930 1937 1938 1939
1952 1953 1954 1955
1908 1969 1970 1971

191H 1')85 1986 1987
200t) 2001 200~ 2003
~016 2017 201H ~019

2032 2033 ~034 2035

~048 204<) 2050 20SI
20<>4 2005 ~00(i 200"'
20RO 21181 2082 2083
~09<> 2097 209H ~09q

II ~ 113 11·1 115
128 129 130 131
144 145 1·lh 147
I(,(l 1(>1 Ih2 1(13

176 177 17M 179
192 193 194 195
208 209 210 211
~24 225 226 227

2·\() 241 2·12 4.\
~50 257 25H 5')
272 273 274 7)
2H8 ~89 290 91

4 6

1540 1541 1542 1543
1556 1557 1558 1559
1572 1573 1574 1575
1588 1589 1590 1591

1604 1605 1606 1607
1620 1621 1622 1623
1636 1637 1638 1639
1652 1653 1654 1655

1668 1669 1670 1671
1684 1685 1686 1687
1700 1701 1702 1703
1716 1717 1718 1719

1732 1733 1734 1735
1748 1749 1750 1751
1764 1765 1766 1767
1780 1781 1782 1783

1796 1797 1798 1799
1812 1813 1814 1815
1818 1829 1830 1831
1844 1845 1846 1847

1860 1861 1862 1863
1870 1877 1878 1879
1892 1893 1891 1895
1908 1909 1910 1911

1924 1925 1920 1927
11)40 1941 1942 1943
1956 1957 1958 1959
1972 1973 1974 1975

1988 1989 1990 1991
2004 2005 2000 2007
2020 2021 2022 2023
2U36 2037 2038 2039

2052 2053 2054 2055
200R 2069 2070 2071
2084 208S 2086 2087
2100 21tl! 2102 2103

2116
2132
2148
2104

180
1%
212
228

117 n 18 21 II)
133 2134 2135
14') 2150 2151
1(15 2166 2167

181 2182 2183
197 2198 2199
213 2214 2215
229 22JO 2231

244 245 246 47
200 201 262 63
27h 277 278 79
292 29J 294 95

8 9 A B

1544 1545 1546 1547
1560 1561 1562 1563
1576 1577 1578 1579
1592 1592 1594 1595

1608 1609 1610 1611
1624 1625 1626 1627
1640 1641 1642 1643
1656 1657 1658 1659

1672 1673 1674 1675
1688 1689 1690 1691
1704 1705 1706 1707
1720 1721 1722 17231

1736 1737 1738 1739
1752 1753 1754 1755
1768 1769 1770 1771
1784 1785 1786 1787

1800 1801 8102 1803
1816 1817 1818 1819
1832 1833 1834 1835
1848 1849 1850 1851

1864 1865 1866 1867
1880 1881 1882 1883
1896 1897 1898 1899
1912 1913 1914 1915

1928 1929 1930 1931
1944 1945 1946 1947
1960 1961 1962 1963
1976 1977 11)78 1979

1992 1993 1994 1995
2008 2009 2010 2011
2024 2025 2026 2027
2040 2041 2042 2043

2056 2057 2058 2059
2072 2073 2074 2075
2088 20RI) 20YO 2091
2104 2105 2106 2107

120 2121 2122 2123
13G 2137 2138 2139
152 2153 2154 2155
168 2109 2170 2171

184 2185 2186 :187
200 2201 2202 2203
216 2217 2218 2219
232 2233 2234 2235

248 2249 2250 2251
264 2265 2266 2267
280 2281 2282 2283
296 2297 2298 2299

c D E

1548 1549 1550 1551
1564 1565 1566 1567
1580 1581 1582 1583
1596 1597 1598 1599

1612 1613 1614 1615
1628 1629 1630 1631
1644 1645 1646 1647
1660 1661 1662 1663

1676 1677 1678 1679
1692 1693 1694 1695
1708 1709 1710 1711
1724 1725 1726 1727

1740 1741 1742 1743
1756 1757 1758 1759
1772 1773 1774 1775
1788 1789 1790 1791

1804 1805 1806 1807
1820 1821 1822 1823
1836 1837 1838 1839
1852 1853 1854 1855

1868 1869 1870 1871
1884 1885 1886 1887
1900 1909 1902 1903
1916 1917 1918 19/<1

1932 1933 1934 1935
1948 1949 1950 1951
1964 1965 1966 1967
1980 1981 1982 1983

1996 1997 1998 1999
2012 2013 2014 2015
2028 2029 2030 2031
2044 2045 2046 2047

2060 2061 20G2 2063
2076 2077 2078 2079
2092 2093 2094 2095
2108 2109 21 10 21 1 1

2124 2125 2126 2127
2140 2141 2142 2143
2156 2157 2158 2159
2172 2173 2174 2175

2188 2189 2190 2191
2204 2205 2206 2207
2220 2221 2222 2223
2236 2237 2238 2239

2252 2253 2254 2255
2268 2269 2270 2271
2284 2285 2286 228-1
2300 2301 2302 2)03

9-9-83 NEVADA BASIC PAGE 208

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

0 3 4 6 7 8 9 A B C D E F

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 3496 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 24351 2436 2437 2438 2439 2440 2441 244:t 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2479 2471 2472 2473 2474 2475 2476 2477 2478 2479
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

geO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
QEO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AIO 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2581' 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 261 I 2612 2613 2614 2615 2626 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2027 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2M3 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2074 2675 2676 2677 2678 2679 2680 2681 2682 2683 268.4 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 7.109 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
Abo 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 27(>1 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
1.110 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
820 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
830 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
850 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
1.160 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
1.170 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

880 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 296(, 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
1\1\0 2992 2993 2994 2995 299b 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

Ben .1008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
l\I)(l 3024 3025 3026 3027 3028 302') 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
"'EO 3040 3041 3042 3043 3044 3045 3046 3047 3048 30·19 3050 3051 3052 3053 3054 3055
liFO 30S6 3057 3058 3059 .1060 J061 3062 3063 3064 JObS 3066 3067 3068 3069 3070 3071

coo
CI0
C20
00

C40
C50
C60
C70

C80
C90
CAO
CBO

CCO
coo
CEO
CFO

000
010
020
030

040
050
060
070

080
090
OAO
OBO

OCO
000
OEO
OFO

EOO
EI0
E20
E30

E40
E50
E60
E70

E80
E90
EAO
EBO

9-9-83 NEVADA BASIC PAGE 209

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

o 3

3072 3073 3074 3075
3088 3089 3090 3091
3104 3105 3106 3107
31203121 3122 3123

3136 3137 3138 3139
3152 3153 3154 3155
3168 3169 3170 3171
3184 3185 3186 3187

3200 3201 3202 3203
3216 3217 3218 3219
3232 3233 3234 3235
3248 3249 3250 3251

3264 3265 3266 3267
3280 3281 3282 3283
3296 3297 3298 3299
33123313 3314 3315

3328 3329 3330 3331
3344 3345 3346 3347
3360 3361 3362 3363
3376 3377 3378 3379

3392 3393 3394 3395
3408 3409 3410 3411
3424 3425 3426 3427
3440 3441 3442 3443

3456 3457 3458 3459
3472 3473 3474 3475
3488 3489 3490 3491
3504 3505 3506 3507

3520 3521 3522 3523
3536 3537 3538 3539
3552 3553 3554 3555
3568 3569 35703571

3584 3585 3586 3587
3600 3601 3602 3603
3616 3617 3618 3619
3632 3633 3634 3635

3648 3649 3650 3651
3664 3665 3666 3667
3680 3681 3682 3683
3696 3697 3698 3699

3712 3713 3714 3715
3728 3729 37303731
3744 3745 3746 3747
3760 3761 3762 3763

4 6 7

3076 3077 3078 3079
3092 3093 3094 3095
3108 3109 3110 3111
3124 3125 3126 3127

31403141 31423143
3156315731583159
3172317331743175
3188 3189 3190 3191

3204 3205 3206 3207
3220 3221 3222 3223
3236 3237 3238 3239
3252 3253 3254 3255

3268 3269 3270 3271
3284 3285 3286 3287
3300 3301 3302 3303
3316 3317 33183319

3332 3333 3334 3335
3348 3349 3350 3351
3364 3365 3366 3367
3380 3381 3382 3383

3396 3397 3398 3399
341 2 34 13 34 14 34 1 5
3428 3429 3430 3431
3444 3445 3446 3447

3460 3461 3462 3463
3476 3477 34783479
3492 3493 3494 3495
3508350935103511

3524 3525 3526 3527
35403541 35423543
3556 3557 3558 3559
3572 3573 3574 3575

3588 3589 3590 3591
3604 3605 3606 3607
36203621 3622 3623
3636 3637 3638 3639

3652 3653 3654 3655
3668 3669 3670 3671
3684 3685 3686 3687
3700 3701 3702 3703

3716371737183719
373237333734 3735
37483749 3750 3751
3764 3765 3766 3767

8 9 A B

3080 3081 3082 3083
3096 3097 3098 3099
3112311331143115
312831293130 3131

3144 3145 3146 3147
31603161 3162 3163
31763177 3178 3179
3192 3193 3194 3195

32083209 3210 3211
3224 3225 3226 3227
32403241 3242 3243
3256 3257 3258 3259

3272 3273 3274 3275
3288 3289 3290 3291
3304 3305 3306 3307
33203321 3322 3323

3336 3337 3338 3339
3352 3353 3354 3355
3368 3369 3370 3371
3384 3385 3386 3387

3400 3401 3402 3403
3416 3417 3418 3419
3432 3433·3434 3435
3448 3449 3450 3451

3464 3465 3466 3467
3480 3481 3482 3483
3496 3497 3498 3499
35123513 3514 3515

3528 3529 3530 3531
3544 3545 3546 3547
3560 3561 3562 3563
3576 3577 3578 3579

3592 3593 3594 3595
3608 3609 3610 3611
3624 3625 3626 3627
3640 3641 364 2 364 3

3656 3657 3658 3659
3672 3673 3674 3675
3688 3689 3690 3691
3704 3705 3706 3707

3720 3721 3722 3723
3736 3737 3738 3739
3752 3753 3754 3755
3768 3769 3770 3771

C D E F

3084 3085 3086 3087
3100 3101 3102 3103
3116311731183119
3132313331343135

31483149 31503151
3164 3165 3166 3167
31803181 3182 3183
3196319731983199

3212321332143215
3228 3229 3230 3231
3244 3245 3246 3247
3260 3261 3262 3263

3276 3277 3278 3279
3292 3293 3294 3295
33083309 3310 3311
3324 3325 3326 3327

3340 3341 3342 3343
3356 3357 3358 3359
3372 3373 3374 3375
3388 3389 3390 3391

3404 3405 3406 3407
3420 3421 3422 3423
3436 3437 3438 3439
3452 3453 3454 3455

3468 3469 3470 3471
3484 3485 3486 3487
3500 3501 3502 3503
3516351735183519

3532 3533 3534 3535
3548 3549 3550 3551
3564 3565 3566 3567
3580 3581 3582 3583

3596 3597 3598 3599
3612 3613 3614 3615
3628 3629 3630 3631
3644 3645 3646 3647

3660 3661 3662 3663
3676 3677 3678 3679
3692 3693 3694 3695
37083709 3710 3711

3724 3725 3726 3727
37403741 3742 3743
3756 3757 3758 3759
3772 3773 3774 3775

ECO
EDO
EEO
EFO

FOO
FlO
F20
F30

F40
F50
F60
F70

F80
F90
FAD
FBO

FCO
FDO
FEO
FFO

9-9-83 NEVADA BASIC PAGE 210

HEXADECIMAL - DECIMAL INTEGER CONVERSION TABLE (Continued)

o 2 3

3776 3777 3778 3779
3792 3793 3794 3795
3808380938103811
3824 3825 3826 3827

38403841 3842 3843
3856 3857 3858 3859
3872 3873 3874 3875
3888 3889 3890 3891

3904 3905 3906 3907
39203921 3922 3923
3936 3937 3938 3939
3952 3953 3954 3955

3968 3969 3970 3971
3984 3985 3986 3987
40004001 4002 4003
4016401740184019

4032 4033 4034 4035
4048 4049 4050 4051
4064 4065 4066 4067
4080 4081 4082 4083

4 6

3780 3781 3782 3783
3796 3797 3798 3799
38123813 3814 3815
3828 3829 3830 3831

3844 3845 3846 3847
3860 3861 3862 3863
3876 3877 3878 3879
3892 3893 3894 3895

3908 3909 3910 3911
3924 3925 3926 3927
3940 3941 3942 3943
3956 3957 39583959

3972 3973 3974 3975
3988 3989 3990 3991
4004 4005 4006 4007
4020 4021 4022 4023

4036 4037 4038 4039
4052 4053 4054 4055
4068 4069 4070 4071
4084 4085 4086 4087

9 A B

3784 3785 3786 3787
3800 3801 3802 3803
3816 3817 3818 3819
3832 31133 3834 3835

3848 3849 3850 3851
3864 3865 3866 3867
3880 3881 3882 3883
3896 3897 3898 3899

39123913 3914 3915
3928 3929 3930 3931
3944 3945 3946 3947
3960 3961 3962 3963

3976 3977 3978 3979
3992 3993 3994 3995
4008 4009 4010 4011
4024 4025 4026 4027

4040404140424043
4056 4057 4058 4059
4072 4073 4074 4075
4088 4089 4090 4091

C 0 E F

37883789 3790 3791
3804 3805 3806 3807
38203821 3822 3823
3836 3837 3838 3839

3852 3853 3854 3855
3868 3869 3870 3871
3884 3885 3886 3887
3900 3901 3902 3903

39 16 3917 3918 3919
3932 3933 3934 3935
39483949 3950 3951
3964 3965 3966 3967

3980 3981 3982 3983
3996 3997 3998 3999
40124013 40144015
4028 4029 4030 4031

4044 4045 4046 4047
40604061 40624063
4076 4077 4078 4079
4092 4093 4094 4095

9-9-83 NEVADA BASIC PAGE 211

APPENDIX 6 APPENDIX 6

BIBLIOGRAPHY

AN INTRODUCTION TO "MICROCOMPUTERS, VOLUME 0, THE BEGINNER'S
BOOK, Adam Osborne and Associates, Inc. 1977.

BASIC PROGRAMMING IN REAL TIME, Don Cassel, 1942, Reston
Publishing Company, Inc. 1975.

SIMPLIFIED BASIC PROGRAMMING, Gerald A. Silver, McGraw-Hill
Co., 1974.

Basic BASIC, James S. Coan, Hayden, 1970.

Advanced BASIC, James S. Coan, Hayden, 1977.

PROBLEMS FOR COMPUTER SOLUTION, Fred Gruenberger and George
Jaffray, wiley, 1965.

BASIC, Samuel L. Marateck, Academic Press, 1975.

SOME COMMON BASIC PROGRAMS, Lon Poole and Mary Borchers,
Adam Osborne & Associates, Inc. 1977.

GAME PLAYING WITH BASIC, Donald D. Spencer, Hayden, 1975.

GAME PLAYING WITH COMPUTERS, Donald D. Spencer, Hayden,
1975.

101 BASIC COMPUTER GAMES, Digital Equipment Corporation,
1975.

THEORY AND PROBLEMS OF MATRICES, Schaum's Outline Series,
Frank Ayres, Jr., McGraw-Hill Co., 1962.

NEVADA COBOL Application Packages Bookl, Ellis C., ELLIS
COMPUTING, 1980.

NEVADA EDIT, Ellis C., & Starkweather,J., ELLIS COMPUTING,
1982.

NEVADA COBOL, Ellis C., ELLIS COMPUTING, 1979.

Hogan, T., CPM Users Guide, Osborne, 1981.

NEVADA PILOT, Starkweather, J., ELLIS COMPUTING, 1981.

9-9-83 NEVADA BASIC PAGE 212

CONFIGURING AN UNKNOWN TERMINAL

In many cases you will find the terminal you are using
listed for a simple choice. Also, most of the newer
machines emulate one of the listed terminals. For example
the KAYPRO II emulates the Lear-Seigler ADM-3A. Other
frequently emulated terminals are the Lear-Seigler ADM-31
and the SOROC IQ-120. SO if your machine is not listed try
these emulations first.

A>NVBASIC

NVBASIC VERSION 2.1 (0) CONFIGURING
COPYRIGHT (C) 1983 ELLIS COMPUTING,
@ ANSI MODE TERMINAL
A ADVANTAGE

INC.

B APPLE COMPUTER, 40 COLUMN DISPLAY (sends soroc IQ-120)
C APPLE COMPUTER + VIDEX 80 COLUMN BOARD (soroc IQ-120)
D BEEHIVE 150 OR CROMENCO 3100
E COMMODORE 64
F FREEDOM 100
G HAZELTINE 1400 SERIES
H HAZELTINE 1500 SERIES
I HEATH H19/H89 OR ZENITH Z19/Z89
J HEWLETT-PACKARD 2621

Type a single letter to select terminal.
<Carriage Return> for more terminals

K IBM PERSONAL COMPUTER+ BABY BLUE CARD
L INFOTON 1-100
M LEAR-SEIGLER ADM-3A
N LEAR-SEIGLER ADM-31
o MICROTERM ACT-IV
P OSBORNE I
Q PERKIN-ELMER 550 (BANTOM)
R PROCESSOR TECHNOLOGY SOL OR VDM
S SOROC IQ-120/140
T SUPERB RAIN
U TELEVIDEO 950
V TRS-80, MOD II (P. & T. CP/M)
W NONE OF THE ABOVE
Type a single letter to select terminal.
<Carriage Return> for more terminals W

Enter 2 digits for number of lines
in the display. 24

Enter 2 digits for number of characters
per line. ('U' will restart entries.) 80

Enter M for memory-mapped display (bank 0 only), T for

9-9-83 NEVADA BASIC

a serial-connected terminal. (M or T) T

Most terminals position the cursor from
a sequence of characters as follows:

Lead characters, differing for
different terminals.

The line number, sometimes offset
Sometimes separator characters
The column number, sometimes offset
Sometimes ending characters

On some terminals column is before line.
Does your terminal follow
this general pattern? (Y/N) Y

Enter no. of lead characters
for cursor positioning. 2

Enter the first lead character
in hex, e.g. 'lB'. lB
Enter the next lead character. 59

Enter the no. of line/col separator
characters. 0

Enter the no. of ending characters. 0

Enter offset to be added to line value.
Enter 2 hex characters,e.g. 20 20

Enter offset added to column value. 20

Is column entered before line? (Y/N) N

Following controls will speed editing.
If control is not available, enter zero.

Enter no of characters to clear screen
and home the cursor to upper left. 2
Enter two hex characters for each. lB45

Enter no. of characters to insert line
above cursor position. 2
Enter two hex characters for each. lB4C

Enter the no. of characters to delete
the cursor line. 2
Enter two hex characters for each. 1B4D

Configuring of BASIC.COM is complete.

BASIC.COM saved on the default drive.

PAGE 213

9-9-83 NEVADA BASIC PAGE 214

Ellis Computing
3917 Noriega Street, San Francisco, CA 94122

SOFTWARE LICENSE AGREEMENT

IMPORTANT: Afl Ellis Computing programs are sold only on
the condition that the purchaser agrees to the following
License.

ELLIS COMPUTING agrees to grant and the Customer agrees to
accept on the following terms and conditions nontransferable
and nonexclusive Licenses to use the software program(s)
(Licensed Programs) herein delivered with this Agreement.

TERM:

This Agreement is effective from the date of receip~ of the
above-referenced program(s) and shall remain in force until
terminated by the Customer upon one month's prior written
notice, or by Ellis Computing as provided below.

Any License under this Agreement may be discontinued by the
Customer at any time upon one month's prior written notice.
Ellis Computing may discontinue any License or terminate
this Agreement if the Customer fails to comply with any of
the terms and conditions of this Agreement.

LICENSE:

Each program License granted under this Agreement authorizes
the Customer to use the Licensed Program in any machine
readable form on any single computer system (referred to as
System). A separate license is required for each System on
which the Licensed Program will be used.

This Agreement and any of the Licenses, programs or
materials to which it applies may not be assigned,
sublicensed or otherwise transferred by the Customer without
prior written consent from Ellis Computing. No right to
print or copy, in whole or in part, the Licensed Programs is
granted except as hereinafter expressly provided.

PERMISSION TO COpy OR MODIFY LICENSED PROGRAMS~

The customer shall not copy, in whole or in part, any
Licensed Programs which are provided by Ellis Computing in
printed form under this Agreement. Additional copies of
printed materials may be acquired from Ellis Computing.

The NEVADA BASIC Licensed Programs which are provided by
Ellis Computing in machine readable form may be copied, in
whole or in part, in machine readable form in sufficient

9-9-83 NEVADA BASIC PAGE 215

number for use by the Customer with the designated System,
for back-up purposes, or for archive purposes. The
original, and any copies of the Licensed Programs, in whole
or in part, which are made by the Customer shall be the
property of Ellis Computing. This does not imply that Ellis
Computing owns the media on which the Licensed Programs are
recorded.

The Customer agrees to reproduce and include the copyright
notice of Ellis Computing on all copies, in whole or in
part, in any form, including partial copies of
modifications, of Licensed Programs made hereunder.

PROTECTION AND SECURITY:

The Customer agrees not to provide or otherwise make
avai.lable the NEVADA BASIC Program including but not limited
to program listings, object code and source code, in any
form, to any person other than Customer or Ellis Computing
employees, without prior written consent from Ellis
Computing, except with the Customer's permission for
purposes specifically related to the Customer's use of the
Licensed Program.

DISCLAIMER OF WARRANTY:

Ellis Computing makes no warranties with respect to the
Licensed Programs.

LIMITATION OF LIABILITY:

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL ELLIS COMPUTING BE
LIABLE FOR CONSEQUENTIAL DAMAGES EVEN IF ELLIS COMPUTING HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GENERAL:

If any of the provisions, or portions thereof, of this
Agreement are invalid under any applicable statute or rule
of law, they are to that extent to be deemed omitted. This
is the complete and exclusive statement of the Agreement
between the parties which supercedes all proposals, oral or
written, and all other communications between the parties
relating to the subject matter of this Agreement. This
Agreement will be governed by the laws of the State of
Cal i fornia.

9-9-83 NEVADA BASIC PAGE 216

CORRECTIONS AND SUGGESTIONS

All suggestions and problems must be reported in writing.
Please include samples if possible.

BASIC VERSION SERIAL # ___ _

Operating system and version --------------------
Hardware configuration -------

ERRORS IN MANUAL:

SUGGESTIONS FOR IMPROVEMENTS TO MANUAL:

ERRORS IN BASIC:

SUGGESTIONS FOR IMPROVEMENT TO BASIC:

MAIL TO:

FROM:

Ellis Computing
3917 Noriega Street
San Francisco,CA 94122

NAME -------------------
ADDRESS ----------------

DATE -----------

CITY,STATE,ZIP _______________________________ __

PHONE NUMBER ______________ __

If you wish a reply include a self-addressed postage-paid
envelope. Thank you.

9-9-83 NEVADA BASIC

A
ABS 87, 194
ADVANCED BASIC 79
APPEND 43, 183
ARITHMETIC OPERATORS 74
ASC 114, 194
ATN 98, 194

B
BASIC.COM 11
BASIC FUNCTION SUMMARY 194
BASIC COMMAND AND STATEMENT SUMMARY 183
BASKEY.COM 9
BEGINNER'S SET OF BASIC STATEMENTS 46
BIBLIOGRAPHY 211
BYE 160, 183

C
CALCULATOR MODE 16
CALL 170, 194
CAT 45, 183
CHARACTER STRINGS 104
CHR 115, 194
CLEAR 37, 183
CLOSE 140, 186
COMMANDS 13, 159,183
CONFIGURING 11
CONFIGURING AN UNKNOWN TERMINAL 212
CONSTANTS 14
CONT 36, 183
CONTROLLED INPUT 149
CONTROLLING THE FORMAT OF NUMERIC OUTPUT 143
CORRECTIONS 216
COS 96, 194
CP/M 1, 2, 9
CREATING A PROGRAM 18
CURSOR CONTROL 160, 161, 186
CURSOR POSITIONING COMMANDS 31

o
DATA 58, 186
DEF FN 100, 186
DEL 24, 183
DEMONSTRATION PROGRAMS 12
DIM 107, 119, 120, 186, 187
DIRECT FILE POSITIONING COMMANDS 31

E
EDIT 29, 184
END 63, 187
EOF 142, 194
ERASE 162

PAGE 217

9-9-83

ERR (0) 155, 195
ERRCLR 153, 187
ERROR MESSAGES 197
ERROR CONTROL 151
ERRSET 152, 187

NEVADA BASIC

EVALUATING EXPRESSIONS IN IF STATEMENTS 76
EXECUTION CONTROL 66
EXIT 71, 187
EXP 88, 195
EXPRESSIONS 15
EXPRESSION EVALUATION 73

F
FILE MODIFICATION COMMANDS 32
FILE-SERIAL 124, 187
FILE-RANDOM 126
FILL 109, 187
FNEND 186, 187
FNvar 103, 195
FOR 69, 187
FREE 156, 195
FUNCTIONS 86

G
GET 41, 184
GETTING STARTED 9
GETTING DATA INTO AND OUT OF THE PROGRAM 49
GO TO 67, 188
GOSUB 81, 188

H
HANDLING PROGRAM FILES ON DISKETTE 38
HARDWARE REQUIREMENTS 9
HOW TO INITIALIZE BASIC 10
HOW TO USE THIS BOOK 7

I
IF 78, 188
INP 168, 195
INPUT 50, 150, 189
INT 89, 195
INTRODUCTION 6
INVERSE 179

K
KILL 44, 184

L
LEN 113, 195
LET 48, 189
LICENSE AGREEMENT 214
LIST 20, 184
LLIST 22,-184
LOAD 169, 189

PAGE 218

9-9-83

LOG 90, 195
LOG10 91, 195
LOGICAL OPERATORS 75
LPRINT 54, 189

M

NEVADA BASIC

MACHINE LEVEL INTERFACE 164
MAT 190
MATRIX INITIALIZATION 175
MATRIX FUNCTIONS 178
MATRIX COpy 176
MATRIX OPERATIONS 173
MATRIX ARITHMETIC OPERATIONS 178
MVAR 190

N
NEXT 187, 190
NUMERICAL VARIABLE 196
NVBASIC.PRN 9
NVBASIC.COM 9, 10
NVBAS12.COM 9, 10

o
ON ••• GO TO 68
ON ••• GOSUB 83, 85, 191
ON ••• RESTORE 61, 191
ON ••• EXIT 72, 191
ON •• ERRSET 154, 190
OPERATING PROCEDURES 9
OUT 166, 191

P
PAUSE 65, 191
PEEK 167, 195
POKE 165, 191
POS (0) 163, 195
PRINT 52, 191, 192
PRINT-FORMATTED 144
PRINT-RANDOM 132
PRINT-SPACING 130
PRINT-SERIAL 128
PROGRAM 16
PURGE 141, 192

R
READ 57, 192
READ-RANDOM 137
READ-SPACING 135
READ-SERIAL 134
REDIMENSIONING MATRICES 181
RELATIONAL OPERATORS 74
REM 47, 192
REN 27, 184
RESTORE 60, 193

PAGE 219

9-9-83 NEVADA BASIC

RETRIEVING DATA FROM WITHIN A PROGRAM 56
RETURN 83, 186, 193
REWIND 139, 193
RND 92, 195
RUN 34, 184

S
SAMPLE.BAS 9
SAVE 39, 185
SCALAR OPERATIONS 176, 177
SCRATCH 26, 185
SCREEN SCROLL COMMANDS 31
SEARCH 108, 193
SEMI-COMPILED MODE Program Storage 38
SET COMMANDS 159, 185
SGN 94, 195
SIN 95, 195
SOFTWARE REQUIREMENTS 9
SQR 93, 195
STATEMENTS 13, 14, 186
STOP 62, 64, 193
STR 117, 195
STRING VARIABLES 105, 196
STRING OPERATOR 74
STRING EXPRESSIONS 105
STRING CONSTANTS 104
STRING FUNCTIONS 110
SUBROUTINES 80
SUGGESTIONS 216
SYMBOLS AND CONVENTIONS 8
SYST 157, 195
SYSTEM 158

T
TAB 196
TAN 97, 196
TEXT MODE PROGRAM STORAGE 38
TRANSPOSE 180
TYP(O) 59, 196

U
USER-DEFINED FUNCTIONS 99
USING DISKETTE FILES FOR DATA STORAGE 122

V
VAL 116, 196
VAR-SUBSTRING 111
VARIABLES 15

W
WAIT 171, 193

x
XEQ 42, 185, 193

PAGE 220

