"ENGLISH ELECTRIC’

DQ E. UoCo E.
PROGRAMMING MANUAL

The ENGLISH ELECTRIC Company Limited

NS-y-16/5-56

NS-y-16/5-56

CONTENTS

1. INTRODUCTION

2. REPRESENTATION OF NUMBERS

3. METHOD OF STORAGE

4. PROGRAMMING FOR ‘DEUCE’

5. THE INSTRUCTION WORD

6. OTHER SOURCES AND DESTINATIONS
7. SUB-ROUTINES

8. INITIAL INSTRUCTIONS

APPENDIX I - Hollerith Timing

APPENDIX II - List of Sources and Destinations

NS-y-16/5-56

INTRODUCTION

Page 1

1. INTRODUCTION..

The DEUCE is a universal electronic digital computer capable of
carrying out automatically and rapidly a sequence of arithmetical or other
operations comprising a computation. In using the machine the problem to
be solved is broken down into a series of elementary operations, which
will be performed in the correct order by the machine. A ‘programme’,
consisting of the appropriate instructions directing the machine to per-
form this sequence of operations, is fed into the computor together with
the initial arithmetic data, and the computation then proceeds without
further intervention from the operator.

The process of making out a programme may take a few weeks for a
complicated problem, considerably longer than would be occupied in carry-
ing out the steps individually on a desk calculating machine.

The utility of the DEUCE lies in the element of repetition, both of
individual instructions within a programme and of numbers of computations
of exactly the same type. In the solution of a set of simultaneous linear
equations, for example, the process of eliminating one variable between
two equations consists of subtracting a fixed multiple of the coefficients
of one equation from the corresponding elements of the other. Only one
copy need be made of the instructions dealing with a pair of coefficients;
the required number of repetitions is specified by a few extra instructions
and carried out automatically by the Machine. There is a further stage of
repetition in eliminating a particular variable from all but one of.the
equations, and again in eliminating successive variables from successively
smaller numbers of equations to reduce the set to triangular form. Thus
the whole process is built up from one small group of instructions, with
extra groups to ensure the correct number of repetitions at each stage.

Once a programme has been made, it is retained in permanent form on
punched cards and may be run into the DEUCE in a few seconds. As a result
of the two or three weeks originally spent in making a programme for the
solution of a set of simultaneous linear equations, any set may now be
solved in a matter of minutes.

An account is given in this report of the basic principles of con-
struction of programmes for the DEUCE, reference being made also to such
features of construction of the machine as are necessary to an adequate
understanding of its use.

It must be emphasised that construction of programmes without sub-
sequent testing on the machine is of little value, and for a programme of
any size the testing and elimination of errors can be effectively carried
out only by the programmer himself. However, the testing facilities and
methods of tracing errors have not been described in this report,as a
demonstration is thought to be much more satisfactory.

NS-y-16/5-56

Page 2

Reference is made to the library of ‘sub-routines’ or elementary
programmes available for incorporation in the programmes of larger com-
putations, but as this library is extensive and still expanding it is
considered that a list of available sub-routines could not usefully be
included in the report and is issued separately.

This manual is intended primarily for initial training purposes
and therefore is not up to date with particular techniques as they are
developed. Such techniques are recorded regularly in DEUCE NEWS.

The DEUCE was developed as a direct result of work at the National
Physical Laboratory, Teddington, on the Pilot ACE. Consequently, many
programmes made for use on that machine can be translated for DEUCE, if
it is not considered worthwhile to revise them.

NS-y-16/5-56

REPRESENTATION OF NUMBERS

Page 3

2. THE REPRESENTATION OF NUMBERS

2.1. BINARY NOTATION.

In an electronic equipment it is inconvenient to represent digits in
the decimal scale, as this requires the use of circuits having ten possible
states. Such circuits can be produced, but compare unfavourably in reli-
ability and economy of equipment with circuits having but two possible
states. For this reason, the DEUCE, in common with many other computing
machines, is constructed to operate in the binary scale. Programmes are,
however, normally constructed in such a manner that the machine translates
input data presented to it in decimal notation into binary form during the
process of taking in such data, and in a similar manner converts the
results of computations into decimal form before feeding out the solutions.

In the familiar decimal scale, the significance of a digit is multi-
plied by ten by each displacement to the left; ten different symbols are
required for the digits from O to 9. In the binary scale each displacement
to the left multiplies the significance of a digit by two. Here, only two
symbols are needed, for the digits 0 and 1, since the number 2 appears as
‘10’ , and any one digit may be represented by the condition of an element
having only two possible states. The successive natural numbers are
written 0,1,10,11,100.101, 110 etc.

Example.

The decimal number 185 means 1 x 102-+ 8 x 10 + 5. In binary this
number is represented as 10111001, or

1x2T+ 0x 28+ 1x29+1x2%+ 1x28+0x22+40x24+1

The decimal number 13.25 means 1 x 10+ 3 + 2 X 10-1 4+ 5 x 1072,

In binary, this would be 1101.01, the last digit signifying 1 x 272, 1t
will be observed that any fraction whose denominator is not a power

of two will recur when expressed in binary form.

More digits are in general required to express a number in binary form.
than in decimal. For large numbers, the ratio is approximately log 10:
log 2, or about 10:3.

In a desk calculating machine, the size of the number which can appear
on any cf the registers is limited to a fixed number of digits. This is
true of any digital calculating apparatus. Throughout the DEUCE, the limit
is 32 binary digits covering any number that can be expressed in nine decimal
digits. If two numbers being added together are so large that there is a carry
from the 32nd place and 33 digits are required to express the sum, the extra
digit is lost, and only the last 32 digits of the true sum appear.

NS-y-16/5-56

Page 4

Example.
For the purpose of illustration, the number length will be taken as
six binary digits. In this case, the sum of 59 and 43, both within the
six-digit limit, is 102, which is outside the limit.

111011 59
- 101011 43
(1)100110 38

The answer given is less than the true sum by 64, the value of the
missing digit.

Care must be taken in programming either to keep within the allowed
limit or to give an indication of failure if it is exceeded (though it is
always possible to extend the accuracy by arranging the programme to work
with double-length numbers, or even more), The fact that extra digits
generated in an addition are lost is not entirely a disadvantage; it is
used in forming a convention in which both positive and negative numbers
may be expressed. In the following paragraphs reference is again made to
a machine having a six digit number length. The extension to a machine using
32 digit numbers will be apparent.

With six binary digits, it is possible to express 26 different
numbers. These have so far been taken as running from 0 to 2¥ - 1, rep-
resented respectively by 000000 and 111111. This convention (‘Unsigned’)
is useful for some types of work, particularly in the theory of numbers.
For general computation, however, both positive and negative numbers
must be represented. No extra provision is made for indicating the sign
of a number, so that with six digits a range of numbers more or less
equally spaced about zero must be represented. The greatest possible
positive number will be only half what it was, but an equal negative
number will also be represented.

Several different “Signed conventions" are possible. The one used on
the DEUCE allows exactly the same process of binary addition to be used
as in the Unsigned convention; the Machine may thus be used for either
signed or unsigned arithmetic, the result of a given operation being
interpreted according to the convention being used in that particular

programme.

2.2 SIGNED CONVENTION

(a) The positive numbers from 0 to %.26—1 (= 31) are represented
by the same binary numbers as in the Unsigned convention.

(b) The negative numbers ‘-n’, from -%.26 (= -32) to -1 are

represented by the binary numbers which previously stood for
“29 - n” (= 64 - n).

NS-y-16/5-56

Page 5

Examples.
Binary Number Unsigned Convention Signed Convention
100000 32 ' -32
100001 33 -31
100010 34 -30
111101 61 -3
111110 62 -2
111111 63 -1
000000 0 0
011111 31 31

Adding 1 to ‘111111’ produces the sum ‘000000’, since the first digit
of the true sum is lost. This result is false in the unsigned conven-
tion, but true in the other, where “111111” represents “-1”. Similarly,
in the example given above, the first two numbers could represent “-5”
and “-21”, and the sum “-26”, in which interiretation the result is

correct.
A few more examples will be given of addition in the Signed convention.
000101 = 5 000101 = 5 00001t - 3
111011 = -5 111101 - -3 111011 - -5
000000 = O 000010 = 2 111110 - -2

So far, numbers have been treated as integers. In dealing with
fractional numbers, the same conventions of sign are applied, but the
programmer must bear in mind the position of the binary point at each
stage of the computation.

In the Signed convention, we ar§ limited to numbers of 31 binary
digits (with the single exception -2 1). This is still sufficient to cover
any number of nine decimal digits. Since all positive numbers have the
first digit 0 and all negative numbers the first digit 1, the most
significant digit is known as the “sign digit”, and is used as the
criterion whenever the sign of a number has to be examined. To change

the sign of a number, the ones and zeros are interchanged and 1 is

added to the result.

Example.
Take a binary number, say 000101 = 5
Interchange ones and zeros 111010 = -6
Add one to the result 111011 = -5

That this result is true in general is apparent, since the sum of
the first two rows is 111111, or -1; the sum of the first and third rows
is therefore 0.

2.3. MULTIPLICATION AND DIVISION BY 2

Facilities are provided for multiplying or dividing a number by
2. This is mainly a matter of shifting the whole number a single place
to the left or right respectively. A complication is introduced by the
fact that these results are arranged to be correct in the Signed
Convention, and false in the Unsigned convention if the two results
differ.

NS-y-16/5-56

Page 6

Example.

Original Multiply by 2 Divide by 2

000110 = 6 001100 = 12 000011 = 3
000011 = 3 000110 = 6 (a) 000001 = 1
111010 = -6 (c) 110100 = =12 (b) 111101 = -3
111101 = -3 (d) 111010 = -6 (e) 111110 = -2
100111 = -25 (f) 001110 = 14 (g) 110011 = -13
010111 = 23 (h) 101110 = -18 (i) 001011 = 11

(The decimal equivalents are derived in accordance with the Signed
convention).

NOTES.

(a,e, g, 1,) If an odd number is divided by 2, the last digit is
lost, giving an error of %.

(b,e,g,) If a negative number is divided by 2, a digit “1” is
automatically inserted at the beginning to give a result
true in the Signed but false in the Unsigned convention.

(c,d,) These results are also true for signed numbers and false
for unsigned.

(f,) This result is false in any convention; the original
number was too big to be multiplied by 2 without exceeding
the digit capacity.

(h,) This is false in the Signed convention, for the same
reason; in the Unsigned, however, it is true, since
unsigned numbers go up to 63 instead of only 31.

2.4. MULTIPLICATION.

The DEUCE has an automatic multiplier. Two 32-digit numbers are multi-
plied together, giving a product which may have up to 64 digits, though
usually only 32 of these.digits are taken on to the next stage of the
computation. The result as given is true in the Unsigned convention; cor-
rections must be made if either of the factors is to be treated as a
negative number. In the Signed cgzvention for double-length numbers, the
number ‘-n’ is represented by *2 - n".

2.5. DIVISION.

There is also an automatic divider. This gives the quotient of two
32-digit integers to 31 binary places. If the divisor and dividend are
taken to represent fractions with two different numbers of binary places,
the number of binary places in the quotient will differ from 31 by the
difference between the number of binary places in the two input quantities.
The divider works with dividend and divisor of either sign and in all
four cases produces a correct, correctly signed quotient within the sign

NS-y-16/5-56

Page 7

convention. The quotient produced is single-length; the dividend must
therefore not exceed the divisor in absolute value or the quotient will
exceed the 32-digit capacity.

2.6. STATIC REPRESENTATION.

Although binary notation has been adopted principally to facilitate
construction of reliable and economical electronic circuits, advantage is
taken in other parts of the machine of the fact that a digit may be
represented by a mechanical or electrical element having two possible
states. These elements may, for example, be lamps, switches or holes
punched in a card.

A single number which is required in a computation, such as the order
of a set of linear equations, may be set up in binary form on a row of 32 lamps
on the control panel, each of which is controlled by a Kkey. Those lamps
corresponding in position to digits «1” in the number are put on; those
corresponding to digits “0” are left off. They are known as the Input
Dynamiciser lamps. There is also on the control panel a second row of 32
lamps, on which single numbers arising from a computation may be displayed
in binary form in a similar way. This second row of lamps is called the
Output Staticiser.

The principal method of reading numbers in and out of the Machine is
by Hollerith Punched cards. Each card has 80 columns and 12 rows; only 32
of the 80 columns are used by the DEUCE; they are columns 21 to 52,
numbering from the left-hand end of the card. The rows are numbered, from
the top of the card, “Y, X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9”. This is the
order in which the rows pass through the machine to be read or punched;
the various holes in any particular row are all read or punched simul-
taneously. The pattern of holes punched on a card may represent either
decimal or binary numbers. In the reading of initial data and the punching
of final results, decimal notation is used; each column carries only one
hole, which is in the row carrying the number of the corresponding digit.
A positive or negative number may be indicated by a hole punched respect-
jvely in the Y or X row of a column reserved for this purpose. Thus the
number + 59378 could be represented by a card punched in row Y of the left-
hand column and in rows 5, 9, 3, 7, 8 of the next five columns.

Where the computation is too large to be dealt with all at once, it
is done by stages, with a separate programme for each stage. The inter-
mediate results are usually punched in binary form. In this case, only
one row is required for each number, since the holes may represent “1”s
and the blanks “0”s, and twelve numbers may be punched on each card.

As will be explained below, binary numbers are always punched with their
least significant digit on the left.

NS-y-16/5-56

Page 8

2.7. SERIAL REPRESENTATION.

In the examples previously considered, the digits of a number have
been assumed to be present simultaneously, and in these circumstances a
set of 32 units, such as switches or holes in a card, is needed to
represent each number. Within the DEUCE, however, the digits of a number
appear one after another at fixed intervals of time. A single unit is
used to display all 32 digits of number in succession. The difference is
similar to that between a number printed on a page and one spoken aloud.
The two systems are known respectively as ‘Parallel’ and ‘Serial’

representation.

A number is represented by a sequence of 32 electrical pulses
occurring at intervals of one microsecond. (This is not strictly true,
since only those pulses corresponding to unit digits are present, the
pulses corresponding to zero digits being omitted). A number thus occupies
a time of 32 microseconds.

Some confusion is caused by the fact that the first digit to appear
is always the least significant. This convention is necessitated by the
process of additioh, since a particular digit of the sum of two numbers
may be affected by a carry from a less significant place. Since; in
physics and engineering, the time scale is normally drawn from left to
right, this convention has led indirectly to the system of representing
binary numbers on the DEUCE with the least significant digit on the left,
in contrast with the normal convention. This is true of the Input
Dynamiciser and Output Staticiser, and of the representation of binary
numbers on Hollerith cards.

There is some difference of opinion, in work and reports on the DEUCE
as to whether binary numbers should be written with the least significant
digit on the right or the left; to avoid confusion, it must always be
remembered whether “forward” or *“backward” binary is being used.

Example.
The number 13 (14 4 + 8) is represented by the following signal:-

1st. Microsecond a pulse appears
2nd. Microsecond nothing happens
3rd. & 4th. Microseconds two more pulses

and 28 more inactive microseconds.

NS-y-16/5-56

METHOD OF STORAGE

Page 9

3. METHOD OF STORAGE
3.1. DELAY LINE STORES,

In order to carry out a computation, both the numbers involved and the
instructions specifying the computation are stored in the machine in the
form of sequences of 32 electrical pulses. Such a sequence of pulses, which
may represent either a number or an instruction, is known in general as a
“word”.

(Incidentally, the fact that numbers and instructions are stored in
exactly the same form permits the use of the arithmetic facilities to
modify or create an instruction. This facility is a vital feature of this
type of machine).

The method of storage is based on a special delay element which may be
regarded as having two terminals. Any pulse applied to the input terminal
appears at the Output terminal after a delay of 32 microseconds (or more -
see below). To store a number or instruction, the sequence of pulses is
applied to the Input of such a delay element; it will appear unchanged at
the Output 32 microseconds later. Since the last digit occurs only 31
microseconds after the first, there will be a time when the last pulse has
reached the Input, but the first pulse has not yet appeared at the Output.
At this moment, a connection is made between the two terminals. Immediately
after this, the first digit emerges at the Output terminal, and is at once
returned to the Input, to reappear after a further 32 microseconds. It is
followed in succession by the other 31 digits. So long as the back connection,
or “circulation path” is maintained, the complete sequence of pulses will
continue to repeat its appearance at the Output terminal of the delay
element once every 32 microseconds.

In order to replace the word being stored by a new word, the circu-
lation path is temporarily broken and the new sequence of pulses applied to
the Input terminal. During this time, any pulses appearing at the output are
lost, since this terminal is disconnected. After 32 microseconds the whole
of the old word has gone, all the digits of the new word have been applied
successively to the Input of the delay, and its first digit is due to appear
at the output. At this point, the circulation path is re-established, and
the required replacement has taken place.

A word in such a storage position is repeated indefinitely; the last
digit is always followed immediately by a copy of the first, and there is
no indication in the stream of pulses of where the word begins and ends. In
order to keep track of this point, the operation of the DEUCE is controlled
" by a sequence of special pulses occurring at intervals of 32 microseconds.
Every operation begins and ends at the time marked by one of these pulses.
The period of 32 microseconds between two of these pulses is known as a
‘minor cycle’ or “m.c.”.

There are 22 such storage positions in the DEUCE each with its own
delay element. The delay is not the same in all cases, for in the same way

NS-y-16/5-56

Page 10

that 32 digits may be stored by introducing a delay of 32 microseconds,
1024 digits ere stored in a delay of 1024 microseconds. In this case,
however, the 1034 digits are regarded as making up 32 quite independent
words of 32 digits eagh. The 32 words stored in such a position, of
course, appear successively at the output terminal, so that a particular
word is presented only once in every 32 minor cycles. In order to replace
a single word, the circulation path is broken for only 1 m.c., while the
new word is applied to the input, and is then restored. The other 31
words in the same storage position are thus not disturbed.

As well as the storage positions holding one and 32 words respect-
ively, there are three positions with delays of 64 microseconds, each
holding two 32 digit words and two delays of 128 microseconds, each
holding four 32-digit words. The former are useful in double-length
arithmetic and for holding the 64-digit product of two 32-digit numbers.
The storage system may now be set out in detail.

3.1.1. Temporary Stores.

There are five of these, holding one word each. One, T.S.COUNT,
forms part of the Control mechanism, which interprets and obeys
instructions, and is not available for the storage of numbers.
The other are TS13, TS14, TS15 and TS16.

3.1.2. Double-length Stores.

There are three of these, each holding two words. They are DS19,
DS20 and DS21.

3.1.3. Quadruple Stores.

There are two of these, each holding four words. They are QS17
and QS18.

3.1.4. Delay Lines.

There are twelve of these, each holding 32 words. They are numbered
DL1 to DL12 inclusive. Numbers are generally stored in DLs and
moved into the smaller stores when they are required for arithmetic
processes. The object in designing the layout of the store was to
combine adequately rapid access to numbers in immediate use with
economy of storage equipment.

3. 2. NUMBERING OF MINOR CYCLES.

So long as the DEUCE is switched on, the controlling pulses continue
to be generated at intervals of 32 microseconds, dividing time into
sections of one “minor rycle” each. For convenience, the minor cycles are
referred to by numbers, from 0 to 31 and then starting again at 0. Suppose
we send a word into DL1 during m.c. 5, by breaking the circulation path
for this minor cycle only while the sequence of digits is applied to the
Input terminal. Each digit will appear at the Output of DL1 1024 micro-
seconds after it is sent to the Input. In other words, the whole word will

NS-y-16/5-56

Page 11

emerge, just as it went in, during the 32nd minor cycle after that in
which it was inserted. Unless the circulation path is broken during this
minor cycle, the same word will re-emerge after a further 32 minor cycles,
and again in every 32nd minor cycle until it is replaced. Every one of
these minor cycles will bear the number “5*. We say that the word has
been stored in “‘DL1, m.c. 5”, or simply in “15”

The notation for a QS or DS is slightly less obvious. Suppose, for
example, that a word has been sent to QS17 in m.c. 25; it will reappear
in m.c. 29, again in m.c. 1 and in m.c. 5, m.c. 9, etc. The notation
uses the lowest number from this list; the word is said to be stored in
174. The other three words in the QS are in 175, 17,9 and 175.

The two words in a DS are said to be stored in m.c.2 and 3; the
numbers 0 and 1 are rejected to avoid confusion with a previous, now
obsolescent, notation. A word in a TS is available in every minor cycle
and is simply said to be stored, for instance, in °‘IS15 or in ‘15

This numbering of minor cycles has no particular significance in
the operation of the Machine. Before a programme is run in, the entire
storage (except magnetics - see below) is cleared by pressing a key. The
instructions of the programme are then read from Hollerith cards and
placed in the storage. The minor cycle in which the first word is sent
to a Delay Line is given the number “0”, and the others are numbered
successively. Between programmes, while the store is empty, the minor
cycles may be considered anonymous.

During any period when the Machine is inactive (i.e. when the
circulation paths of all delay elements are closed and no transfers or
arithmetic operations are in progress) the state of all parts of the
machine is repeated exactly at intervals of 32 minor cycles, the delay
period of the Delay Lines. This period of 32 minor cycles (1024 us) is
referred to as a ‘Major Cycle’.

3.3 MAGNETIC STORE.

In addition to the high-speed Delay Line Store described above, the
DEUCE has an auxiliary Magnetic Drum Store. This holds 8192 words
altogether, but has the disadvantage that information takes longer to
get in and out.

The drum is a continuously rotating cylinder with a surface of
magnetic material. Digits are represented by small magnetic dipoles
induced in this surface by a writing head held close to the drum. As the
drum revolves, this head writes a circumferential track of information.
There are 256 tracks each holding 32 words, the contents of one DL. The
information is read from the Drum by a reading head held close to it
opposite the same track.

NS-y-16/5-56

Page 12

There are actually sixteen writing heads held solidly together in a
block which is capable of movement into anyone of sixteen positions along
the Drum. Information is transferred to and from the Magnetics only in
blocks of 32 words, that is one track. To write such a block on to a
particular track, two operations are in general necessary. The first is
to shift the write head block into the appropriate position (this is
necessary only if it is not already known to be there); the second is to
write on the Drum through the appropriate head. The tracks may be con-
sidered as numbered from 0 to 255, those numbered 0 to 15 being reached
with the head block in position 0, those from 16 to 31 with it in
position 1, and so on. If the track number is written as an eight-digit
binary number the most significant four digits represent the head block
position, numbered from O to 15, and the bottom four digits represent
‘the particular head to be used. In the normal notation a track number
is written in the form “a/b”, where “a” represents the head-block
position and “b” the head number.

There is a similar arrangement of sixteen reading heads in a block
which is moveable into any of sixteen positions. The two mechanisms are
independent, so that an operation which requires repeated reading from
tracks 48, 49 and 50 (reading head block position 3) and repeated
writing on tracks 80, 81 and 82 (writing head block p0s1t10n 5) does
not need any shifting operations.

Information is always written from and read into DL11. There are
thus four basic operations ooncerned with the Magnetics, shift read
heads into a specified position,shift write heads, write the contents
of DL11 on to the track now under a specified writing head: and read the
track now under a specified reading head into DL11.

NS-y-16/5-56

PROGRAMMING FOR DEUCE

Page 13

4. PROGRAMMING FOR THE DEUCE.
4.1. REPLACEMENT TRANSFER.

The DEUCE works by carrying out a sequence of instructions in a
prescribed order. In the simplest case, an instruction requires merely a
replacement transfer from one to another of the twenty-one storage
positions on the Machine.

Example.)

The instruction “13 to 15” replaces the content of TS15 with that
of TS13, leaving TS13 unchanged. There are thus now two copies of
the former content of TS13. An instruction is normally written in
the form “i3 - 15 (the sign being a dash and not a minus).

4.2, FORM OF INSTRUCTION.

It will be seen that an instruction must specify both a Source
number and a Destination number. Each of these may take any value from
0 to 31. Of these, 21 Source numbers and 21 Destination numbers relate
to the storage location listed above, the number of the 1l ccation (with
the appropriate prefix TS, DS, QS or DL) being the same as its Source
and Destination numbers. The remaining 11 Sources and 11 Destinations
are used for various purposes including the arithmetic operations and
the operation and control of the Hollerith Read and Punch machines and
the Magnetic Store. There is in general no particular relationship
between the Source and the Destination bearing the same number, apart
from those corresponding to the various storage positions.

4.3. ADDITION AND SUBTRACTION.

Addition and subtraction may be performed in only two of the
storage positions, TS13 and DS21. Each of these four facilities has
its own special destination. Destinations 25 and 26 are respectively
the additive and subtractive inputs to TS13; destinations 22 and 23 are
respectively the additive and subtractive inputs to DS21.

Example.

The instruction *“14 - 26" subtracts the content of TS14 from that of
TS13, leaving TS14 unchanged and the difference in TS13.

The sequence of instructions:- 15 - 13
18 - 25
13 - 15

replaces the content of TS15 with the sum of those of TS15 and TS16
leaving TS16 unchanged and a copy of the sum in TS13. These three
instructions form an elementary “Programme’’.

4.4. FUNCTIONAL SOURCES.

Destinations 22, 23, 25 and 26 may be called “functional destinations”.
There are also certain functional sources, associated with TS14, TS15 and
DS21, For instance, Sources 23 and 24 give the contents of TS14 respect-
ively divided by two and multiplied by two (in the signed convention).

NS-y-16/5-56

Page 14

Exanmple.

“24 - 25” adds twice the content of TS14 into TS13, leaving TS14
unchanged and the sum in TS13. “23 - 14” halves the content of TS14,
leaving all other storage positions unchanged.

4.5 FIXED NUMBERS.

Also available at Sources are certain useful fixed numbers which are
built into the machine. Thus the numbers 0, 1 and -1 (in the least signi-
ficant place) are obtained from Sources 30, 27 and 31 respectively.
Source 31 in fact gives a continuous sequence of “ones”, of which the 32
occurring in any given minor cycle represent -1 in the signed convention.

Example.

430 - 16” clears TS16. Either “27 - 26” or “31 - 25” subtracts 1
from the content of TS13.

4.6. OTHER FACILITIES.

With a few examples already given of this form of instruction,
specifying a Source and a Destination, it is possible to carry out
several different types of operation including replacement transfer,
addition, subtraction and multiplication or division by 2. In each case,
the particular type of operation, as well as the storage positions
involved, is specified by the chosen Source and Destination numbers. One
of the Sources and seven of the Destinations do not fall into any of the
classes which have yet been mentioned. These are used to give further
types of operation with the same form of instruction.

4.7. DESTINATION TRIGGERS.

In some cases, an Instruction does not involve the transfer of a
sequence of digits, as all the previous examples do, but merely requires
that something shall happen or start happening. This ‘something’ may be
the passage of cards through the Hollerith Reader or Punch, or a process
of multiplication or division. Most of these operations (twelve, in fact)
are grouped under one Destination, D24, which is called “Destination
Triggers’”. Which of the twelve more or less independent operatimons is
intended is specified by the Source Numbers. Only one example will be
given here, the others being mentioned in appropriate subsequent para-
graphs including the one immediately following.

Example.

“0 - 24" initiates the multiplication operation associated with DS21
and TS16. This operation replaces the contents of DS21 with the
product of the two 32-digit numbers previously in TS16 and in DS21,,
leaving the number in TS16 unchanged (remember that the two words ?n'
DS21 are said to be stored in 21, and 21,). More will be said about
mul tiplication later, and also about div s1on

NS-y-16/5-56

Page 15

4.8 INPUT AND OUTPUT

The Instruction “10 - 24” causes a sequence of cards to start passing
through the Hollerith Punch; this by itself gives no output of information.
The 21 storage positions may be completely full of numbers, but none of
them will be punched on the card unless the number to be punched is sent
to the output, which is Destination 29. The sequence of cards is stopped
by the Instruction “9 - 247,

Example.

The three-instruction programme “10 - 24

15 - 29

9 - 24” causes one card to pass
through the Punch and the contents of TS15 to be punched upon it.

When the Punch is idle, Destination 29 cannot send a number to a
card. Instead of wasting the Destination, its function is in these cir-
cumstances transferred to the upper row of lamps on the control panel,
known as the Output Staticiser: e.g. “16 - 29” displays the content of
TS16 on the OS lamps (provided the Punch-is not running).

A similar mechanism applies to the input of information. The Hollerith
Read machine is started by the instruction “12 - 24, and subsequently
Source O supplies the information being read from the current row. When
the Read machine is not running Source O supplies the number which has
been set up manually at the Control Panel by means of the I.D. switches.
The sequences of cards passing through the Reader is stopped by the
instruction “9 - 24”. The same stopping instruction does for both Read
and Punch since they are never in practice used simultaneously.

The method of input and output is complicated by the difference in
speed between the DEUCE and the Hollerith Machines; this problem will be
dealt with later.

4.9. CONSTRUCTION OF A SIMPLE PROGRAMME.

Example.

Although several facilities remain to be described, it is already
possible to make a programme for a simple problem. The following
programme forms the squares of successive natural numbers,
starting at 1, from the property that the second difference is
constant. This second difference is stored in TS14, the first
difference in TS15 and the square itself in TS16. The only
arithmetic facility used is the additive input to TS13 (Destin-
ation 25). Once the initial values are in place, the arithmetic
is done by the following cycle of instructions; the content of
each TS is given for two typical cycles.

NS-y-16/5-56

Page 16

Instructions. First Time Second Time
TS 14 15 16 13 14 15 16 13
14 ¥ 13 2 3 4 2 2 5! 9 2
15 - 25 2 3 4 5 2 5 9 7
13 - 15 2 5 4 5 A 2 7 9 7
16 - 25 2 5 4 9 2 7 9 16
13 - 16 2 5 9 9 2 7T 16 16

.Y |
Extra instructions must be inserted in the loop to punch the answers
obtained, and at the beginning to set up the appropriate initial
values. The complete programme might be as given below, though one or
two instructions could be saved by taking more advantage of the fact
that all storage positions are cleared at the start of a programme
and by feeding in the constant second difference with the instructions
rather than building it up in the programme.

Instructions. TS 14 15 16 13
27 - 13 0 0 0 1
27 - 25 0 0 0 2
13 - 14 2 0 0 2
27 - 15 2 1 0 2
27 - 16 2 1 1 2

10 - 24 (start punch)

o)

16 = 29 (Punch content of TS 16)

14 - 13 2 2n-1 n2 2

15 - 25 2 2n-1 n2 2n+1

13 - 15 2 on+l n2 on+1

16 - 25 2 on+1 n2 (n+1)2

13 - 16 2 ontl (m+1)2 (n41)2
|

An important feature of this programme is the ggpeated loop. By means
of twelve instructions, all the squares less than 2°4 - 1 (about 60,000 in
number) are punched out. As the programme stands, in fact, it will not stop
at this point; the 32 least significant digits will be runched of higher
and higher squares, of which the upper digits have been lost, and this was
hardly the result intended. Before dealing with the facilities which enable
a programme to stop at a prescribed point, a little more must be said about
the programme in its present form.

NS-y-16/5-56

Page 17

4.10 THE NEXT INSTRUCTION.

The operation of a programme is determined as much by the order in
which instructions are obeyed as by the individual instructions. These
must therefore be linked together in some way, to ensure the required sequence.
For this reason, each instruction is made to specify, as well as its
Source and Destination numbers, the storage location of the instruction
which is to follow it.

Instructions are initially read from Hollerith cards and stored in
locations decided by the programmer. The “Next Instruction™ section of
an instruction cannot be filled in nntil its successor has been assigned
to a storage location.

Example.

Suppose the first two instructions in the previous example are to be
stored in DL1, in minor cycles 3 and 5 respectively. The first
instruction would then read ‘27 - 13', Next instruction in DLI1,

2 m.c. on from this one. (Minor cycles are counted from the one in
which the current instruction is stored). If the first instrwction
were placed instead in DL3, m.c.3, it would remain unchanged,
provided that the second instruction were still in 1g.

4.11. DISCRIMINATION FACILITIES.

In most cases, the location of the Next Instruction is specified
uniquely. An instruction which sends a number to Destination 27 or 28
however, may take its successor from either of two locations, depending
on the number being sent. With D27, the choice is between positive and
negative numbers; that is,between numbers whose 32nd digit is repect-
ively 0 and 1. (In this convention, zero is treated as a positive number).
With D28, it is between zero and non-zero numbers.

Example. 'ﬁ‘
13-27 | 0-28
+ ‘///// \\\\\‘ - Zero i lNon-zero
24-14 15-25 0-14

In the first case, the number in TS13 is examined to see whether
it is positive or negative.

If it is positive, the next instruction is ‘24 - 14’ which shifts
up the number in TS14 (i.e. multiplies it by 2); if negative, the next
instruction is ‘15 - 25’, which adds the content of TS15 to that of
TS13. These few instructions form part of one method of programming a
square root calculation. In the second example, the number on the
Input Dynamiciser is examined to see whether or not it is zero; so long
as there is no digit on the I.D. this instruction is repeated indefinitely;
as soon as any digit is inserted by depressing the appropriate switch,

NS-y-16/5-56

Page 18

the machine proceeds to the next instruction, transferring this digit
into TS14. These are the first two instructions in a programme for reading
decimal numbers from the I.D., one digit at a time.

4.12 THE ALARUM.

In completing the Successive Squares programme, an additional facility
will be used. This is the Alarum which sounds a buzzer and lights a
special red lamp on the Control Panel. The Alarum is started by the
instruction “7 - 24” and may be stopped either by the instruction “6 - 24”
or by pressing a special key on the Control Panel.

The Alarum is most often used to indicate the failure of some check
which has been incorporated in the programme. In the present case, however,
it will indicate the completion of the required number of results.

Example.

Two simple ways of completing the Successive Squares programme will be
given, in each case inserting a ‘“discrimination” between the last
two instructions of the loop.

16-25 16-25
A 13-28 \ 13-27
Non zero ero + -
13-16 9124 13-16 9-24
7]24 | 7124

The right-hand path in each case indicates that all the required
squares have been punched; “9 - 24” stops the stream of cards through
the Punch and ‘7 - 24” sounds the alarum.

For both discriminations, TS13 contains the number (n+ 1)2, the
result due to be punched during the next repetition of the loop. This
is never zero for any result within the digit capacity; the discrim-
ination in the first example will then take the left-hand path,
completing the loop agd punching all the Xalid results. The first
excessive result is 2 2, the square of 9l ; the first 32 digits of
this are zero and the 33rd, a “1”, is lost, leaving the number zero
in TS13. At this point, the right-hand alternative is chosen, and
the buzzer sounds. In the second case, the loop is repeated until
the number in TS13 has a “1” as its 32nd digit; i.e. until the value
to be punched exceeds 2°!, The words “positive” and ‘negative’” are
misnomers in this case, but they are normally used in this situation,
even when working, as here, in the Unsigned convention. The second
method produces fewer results, but is legs specialised, since it
works despite the fact that the number 2 1 is not a rerfect square.
The “next instruction” part of an Instruction cannot be left blank;
there must always be a successor. Since, in this case, no useful
action is required after 7 - 24”, this Instruction is made to

NS-y-16/5-56

Page 19

specify its own storage position as the location of the next Instruc-
tion. It is therefore repeated indefinitely until stopped by external
action.

4.13 LONGER TRANSFERS.

An instruction specifies the transfer of information from a Source to
a Destination. So far, this information has in each case consisted of one
word; the connection between, say, the Output of one DELAY element and the
Input of another has been maintained for just one minor cycle, long
enough for 32 digits to pass between the two storage positions. If
required, this connection can, by one instruction, be maintained for any
number of minor cycles up to 32.

Examples.

#15 - 25 (3 m.c.)”; since the same number appears at the Output of a
TS in every minor cycle, this instruction simply adds the content of
TS15 into TS13 three times. In other words, it adds three times the
number in TS15 to the number in TS13.

“13 - 25 (5 m.c.)”; in the first m.c., the number in TS13 is added
to itself, and thus doubled; in the second m.c., it is doubled again,
and so on. The net effect of the transfer is to multiply the number
in TS13 by 32.

“1 - 25 (32 m.c.)”; 32 different numbers appear at the Output of a
DL before the first one is repeated. This instruction therefore
adds together into TS13 all the 32 numbers stored in DLI1.

“16 - 15 (2 m.c.)”; after one m.c., the contents of TS15 and TS16
are identical; the second minor cycle, in which the content of
TS15 is again replaced with that of TS16, is therefore redundant.

4.14. TIME OF OPERATION

It is sometimes important to know the time occupied by a sequence
of Instructions, particularly when using the Hollerith Punch or Read. In
the above examples, the transfers occupy respectively 3 m.c., 5 m.c.,

32 m.c., and 2 m.c.

To calculate the total time occupied by an Instruction, one must add
to the period of transfer a minor cycle which is occupied in setting up
the Source and Destination connections, and also the duration of any pauses
which the Instruction may specify both before and after the period of
transfer. The question of timing will be reconsidered when the Instruction
word is studied in detail.

NS-y-16/5-56

Page 20

4.15 TRANSFER FOR A PARTICULAR MINOR CYCLE.

In a large computation most of the numbers involved are stored in
Delay Lines, and only transferred into a Temporary Store when they are
required for an arithmetic operation. In order to select the desired one
of the 32 different numbers stored in a DL, the instruction must apecify
not only the appropriate Source but also the particular minor cycle in
which transfer is to take place. In fact, every instruction does specify
the minor cycle or cycles of transfer but for transfers between
Temporary Stores it is immaterial, and is therefore not mentioned.

Examples.

“15 - 16" transfers the number in DL1, m.c.5, into TS16. The Output
of DL1 is connected to the Input of TS16 for m.c. 5 only.

“31 - 411”; it is not possible to transfer directly from one m.c.
of one DL to a different m.c. of another DL. This may, however, be
done in two instructions, using a vacant T.S. as an intermediate
store. Similarly, a word cannot be transferred directly from any
even m.c. of a DL to the odd half of a double-length Store, or
vice versa. Transfers to or from a QS are subject to similar
restrictions.

491, - 27" discriminates on the sign of the number in the odd half
of DS21.

4.16. COUNTING CYCLES OF REPETITIVE LOOPS.

In a previous example, the termination of a programme for punching
successive squares was indicated by sounding the buzzer when the capacity
of a storage location was about to be exceeded. A method of more general
application is to count directly the number of repetitions of a closed
loop of instructions, an alternative path being followed after the cycle
has been performed the required number of times.

Example.

A second version will now be given of the Successive Squares
programme; this time, just twenty results will be punched before
sounding the alarum. To achieve this, the number ‘20’ will be
placed in the even half of DS21 before entering the repeated loop,
and ‘1’ subtracted from it once in each repetition.

NS-y-16/5-56

Page 21

Instructions. Contents of Storage.
TS15 TS16 TS13 DS21,
‘20 - 21q 0 0 0 20
271 - 15 1 0 0 20
‘ First Time General (only given
—\ at changes)
15 Y 25 1 0 1 20 2n-3 (n-1)2 2n-1 21-n
13 - 15 1 0 1 20 2n-1
16 - 25 1 0 1 2 n2
13 - 16 1 1 1 20 n2
10 - 24
16 - 29
27 - 23, 11 1 19 20-n
219 -, 28
Non Zero
Zero
v =13 9 - 24 1 1 2 19 2
7 ¥4 |

|

The programme above contains one or two other ideas not previously
mentioned. The numbers ‘20’ and ‘2’ are punched on the programme cards and
fed into the storage along with the instructions; the Source number in
90’ - 21 will be that of the storage position where the number ‘20’ has
been ‘planted’. This will normally be in a DL and in this case the number
must be planted in an even minor cycle in order that a transfer may be
made to DS21,. This method contrasts with the previous version of the
programme, where the number “2” was built up in TS13. There is often more
than one way of producing a required result; the choice of method is made
so as to reduce the amount of storage required and the time (in minor
cycles) of operation. These two requirements may conflict in a particular
example; in the present case, however, the ‘planted number’ technique
wins on both counts. An additional advantage of planting the number “2”
is that TS14 need not now be used; if this programme were part of a
larger one, TS14 could be storing some parameter of the main computation.

The repeated loop is entered at a different point in the two versions.
In the second version, some of the instructions in the loop are used in
the first repetition to set up the initial values of the variables; an
instruction is thus saved in the part of the programme before entering the

loop.

NS-y-16/5-56

Page 22.

4.17. STOP INSTRUCTIONS.

There is a little more to be said about the output of results on to
cards or the Output Staticiser lamps. In the programme above, for instance,
successive results will be calculated and sent to the output Ly the
Instruction “16 - 29” and cards will pass through the Punch presenting
their rows successively beneath the punching knives; so far, however,
there is no provision for the synchronisation of the two trains of events.
As it stands, in fact, the programme will calculate all 20 results and
try to punch them before the first row of the first card has reached the
punching knives.

This synchronisation depends on the fact that any Instruction may be
made a Stop Instruction or “Stopper”. When a Stopper is reached in the
course of a programme, the Machine stops and there is no further action
until an external stimulus is supplied called a “Single-Shot” which
causes the Stopper to be obeyed and to call in its sticcessor. The programme
then proceeds until it comes to another Stop Instruction, when it waits
for a further Single-Shot.

A Stopper is indicated in the programme by an X after the Instruction.

4.18., SINGLE-SHOTS.

A Single-Shot may be supplied by pressing a special key on the Control.
Panel. When either the Punch or Reader is running, however, this key is no
longer operative. Instead, the Reader or Punch (whichever is running - they
are never used simultanéously) supplies a succession of Single- Shots one
for each row of a card, occurring just as the row comes into posit1on to be
read or punched.

Example.

To synchronise the Successive Squares programme with the Punch, we
need only make the Instruction “16 - 29”, which sends the successive
squares to the output, a Stopper (16 - 29X"). In each repetition of
the loop, this Instruction can now only be obeyed as a row of a card
comes into position under the punching knives and the Punch gives a
Single-Shot. The Programme then hurries round the loop until it reaches
this Instruction again; by this time the next result has been calcul-
ated and placed in TS16. The DEUCE then waits in suspended animation
until the arrival of the next row at the punching knives enables this
next result to be punched in its turn.

The same technique is used in reading from cards. In some cases it is

also necessary when reading from the ID. keys or displaying on the 0S lamps
on the Control Panel; in these cases, of course, the Single-Shots come from
the Control Panel key, not the Reader or Punch.

NS-y-16/5-56

Page 23

4.19. STOP KEY.

It may be worth mentioning here that there is a key on the Control
Panel which in effect makes all Instructions behave like Stoppers. It is
then possible to trek through the whole programme, one Instruction at a
time, by the Single-Shot key on the Control Panel, having a good look at
each Instruction and at its effect. This can be very useful in finding
mistakes in programmes. (Every programmer makes just one programme which
is correct without the need for such testing - usually his first).

NS-y-16/5-56

THE INSTRUCTION WORD

Page 24

5. THE INSTRUCTION WORD.

A general view of the operation of the DEUCE has now been given, but
several points remain to be explained before it can be fully understood.
The most important of these is the precise form in which an Instruction
is represented by a 32-digit word.

5.1. CONTROL.

The section of the DEUCE which interprets instructions is called
“Control”. It incorporates a special storage position, TS COUNT, in which
is stored the instruction being obeyed. ‘Obeying an Instruction’” implies
two operations, first carrying out the required transfer, and then taking
the next instruction into TS COUNT. The first of these may occupy up to
64 minor cycles, the second takes just one.

5.2. INSTRUCTION REQUIREMENTS.

The details of an instruction are contained in a word of 32 digits.
This word must specify the Source, Destination and minor cycle or cycles
of transfer, whether the instruction is a Stopper, and the storage
position and minor cycle in which the next instruction is stored. The
choice of the storage Position from which the next instruction is to be
taken is limited to the first eight DLs. There is thus rapid access to a
maximum of 256 Instructions. Larger programmes can of course be accom-
modated by keeping further instructions in the magnetic store and
bringing them into one of the first eight DLs as they are required.

5.3. THE INSTRUCTION WORD.

The instruction word comprises seven separate numbers of up to
five digits each, with a few digits spare. Each of these numbers
occupies a particular place in the word, and has its own function and
range of values. These are set out briefly below, but the precise
operation of some of the numbers will be explained in later paragraphs.

NS-y-16/5-56

Digits. Name and Range.
2 to 4 Next Instruction
Source (NIS)
0to1
5to9 Source (S)
0 to 31

10 to 14 Destination (D)
0 to 31

15,16 Characteristic (C)

0, 1or 2.

17 to 21 Wait Number (W)
0 to 31

26 to 30 Timing Number (T)
0 to 31

32 Go Digit (G)

Oor1

Page 25

Function.

Number of DL (1 to 7) in which
instruction is stored; NIS “0”
means DLS.

Number of selected Source
Number of selected Destination
Determines length of Transfer

(explained below).

Specifies first m.c. of Transfer
(explained below).

Specifies m.c. of next instruction,
and sometimes also last m.c. of
Transfer (explained below).

If G is 0, the instruction is
a Stopper, and waits for a One-

Shot; if G is 1, the instruction
is obeyed immediately.

Digits 1, 22 to 25 and 31 are not used in the instruction word; their
value is ignored by Control and has no effect on the operation.

5.4, ADDRESS SECTION.

The numbers NIS (sometimes called simply “N’), S and D are said to
form the “Address Section” of the instruction. As soon as a new instruction
begins to emerge from TS COUNT, Control interprets these numbers, digit by
digit, to select the required Source, Destination and NIS. Connection
between the selected Source and Destination, and from the selected NIS to
TS COUNT, will not, however, be made until the minor cycles determined by
the other numbers in the instruction.

5.5. SET-UP MINOR CYCLE.

The process of reading the Address Section and setting up the appro-
priate connections occupies the first half of a minor cycle, which is
therefore called the “Set-Up minor cycle”. Nothing else must happen in
this minor cycle, since any words transferred would come partly from each
of two sources (those of the old and new instructions) and would therefore
be meaningless. The Set-up m.c. immediately follows that in which the new
instruction enters TS COUNT; if this new instruction comes from a Delay
Line in the normal way it can, of course, enter TS COUNT only in the minor
cycle in which it has been stored.

NS-y-16/5-56

Page 26

Example.
Before explaining the rest of the instruction word, a demonstration
will be given of the simplest type of operation, taking as an
example the first few instructions of the Successive Squares pro-
gramme (first version) on Page 16.

These instructions were: A 27 - 13
B 27 - 25
CcC 13 - 14
D 27 - 15
ete.

We will suppose that Instruction ‘A’ enters TS COUNT in m.c. O.
During this minor cycle, the transfer ordered by a previous instruction
may still be in progress. The precise timing is then, in the simplest
case, as follows: -

Minor Cycle TS COUNT Action
0 takes in instruction “A” (? transfer by previous instruction)
1 holds “A* “A" set up
2 takes in “B” transfer 27 - 13 ("A”)
3 holds “B” “B” set up
4 takes in “C” transfer 27 - 25 (“B”)
etce.

During each even m.c. in the present example, two “transfers” take
place, the main transfer specified by the instruction and the “transfer”
of the next instruction into ‘TS COUNT”. Instructions are normally stored
in a Delay Line, and must be stored in the proper minor cycles to be
available to enter TS COUNT when required. In this case, successive
instructions would be stored in successive even m.c. of a DL. In a programme
of this size, all the instructions could be kept in one DL: we might
use DL1 for the purpose, in which case they would be stored in successive
even minor cycles of DL1 and would all have NIS number “1”. In the example,
all odd m.c. are set-up m.c. during which there is no action except the
setting up of the N, S and D connections.

5.6. TIMING SECTION.

The numbers C, W and T are said to form the timing section of the
Instruction. The Characteristic C divides Instructions into three types,
those requiring a Single Transfer (C = 0) a Long Transfer (C = 1) and a
Double Transfer (C = 2). The Single Transfer will be described first.

5.7. SINGLE TRANSFER (C =2 0)

If C = 0, transfer takes place for just one minor cycle. If the
Instruction enters TS COUNT in m.c.m, transfer is in m.c. m+ W 4 2 and the
next Instruction enters TS COUNT in m.c. m+ T + 2. In the above example,

-

NS-y-16/5-56

Page 27

all the Instructions could have had C = W = T = O; in each case, transfer
would occur in m.c. m + 2 and the next Instruction would enter TS COUNT

in the same minor cycle. In other words, each successive Instruction would
take effect, and also would call in its successor, two minor cycles after
it entered TS COUNT. This corresponds with the scheme given above.

Example.
An Instruction stored in 117 is required to transfer TS13 to 325
and take its successor from 59g. The details of the Instruction would be

N S D C W T G
5 13 3 0 6 10 1

The detailed operation of this Instruction would be

m.c.
m (17) Instruction enters TS COUNT
m+ 1 (18) N, S and D connections set up
m+ 2 (19)
to Pause of W(6) m.c.
m+ W +1 (24)
m+ W + 2 (25) Transfer from TS13 to DL3
m+ W + 3 (26)
to Pause of T - W - 1 (3) m.c.
m+ T +1 (28)
m+ T +2 (29) Next Instruction enters TS COUNT from DL5
m+ T +3 (30) N, S and D connections of next Instruction

set up.

The Instruction would normally be written "5, 13-3, 6, 10",

An instruction is assumed to be single-transfer (C=0) unless
otherwise specified. This is done by inserting a symbol between
the "D" and "W" numbers; the symbol is "1" or "1" for a long
transfer (C=1), "2" or "d" for a double transfer (C=2) and "3"
or "q" for C=3 if this is ever used. Single transfer is indicated
by "O" or "s", but this, as mentioned above, is usually omitted
in the coding. The numbers are preferred to the letters. A
Stopper (G=0) is indicated by an "X" at the end.

5.7.1, W Greater than T.

An Instruction clearly must not call in its successor before it has
been obeyed itself. If W exceeds T, the value of T is effectively increased
by 32 and the next Instruction enters TS COUNT not in m.c. m+ T + 2 but
in m.c. m + T + 34.

NS-y-16/5-56

Page 28

Example.
The Instruction 0,4 - 16,10,1” stored in 227 would transfer from

DL4 to TS16 in m.c. 39, i.e. m.c. 7 of the next Major Cycle and
would call its successor from DL8 in m.c. 62, i.e. m.c. 30 of the
next Major Cycle. During the operation of the Instruction, the
next Instruction emerges twice from the delay element of DL8 but
is refused admission to TS COUNT on its first attempt.

5.8. DOUBLE TRANSFER.

If C = 2, transfer is for two successive minor cycles, m+ W + 2
and m + W + 3. Everything else is as for the case of Single Transfer.
There is one difficulty; if W= T, m+ W+ 3 =m+ T + 3, the Set-up
minor cycle of the next Instruction. To overcome this, it is arranged
that where C = 2 the value of T shall be increased in effect by 32
when W = T as well as when W> T. This gives plenty of room for the
two-minor-cycle transfer.

[

Example.

“4,20 -17,2,1,5" stored in 1; transfers from DS20 to QS17 in m.c.
16 and 17 and takes the next Instruction from 4. This replaces
17, and_171 with a copy of the contents of DS20.

“3,21 ~-11,2,0,0" stored in 34 transfers from DS21 to DL11 in m.c
6 and 7 and takes the next Instruction from 3g in the next Major
Cycle.

5.9. LONG TRANSFER.

If C = 1, transfer is for a sequence of T - W + 1 minor cycles
fromm.c. m+ W +2 tom + T + 2 inclusive. The next Instruction still
enters in m.c. m + T + 2, in the last minor cycle of transfer. If W
exceeds T, transfer is for T - W + 33 minor cycles, fromm + W + 2 to
m + T + 34 and the next Instruction enters in m.c. m+ T + 34.

Example.
7. 15 -25,1,29,1" stored in 65 adds TS15 into TS13 for five minor
cycles from m.c. 36 to 40 inclusive i.e. from m.c.4 to 8 of the
next Major Cycle. It takes the next Instruction from T7g at the
second time of asking. The effect is to add five times the contents
of TS15 into TS13; the particular minor cycles of operation
didn’ t matter, and this is often true of a long Transfer.

5.10. C = 3.

It is not intended that the Characteristic should ever be given the
value 3. This might happen by accident, however, and the result had
better be stated to avoid possible confusion.

NS-y-16/5-56

Page 29

If Wand T differ, C = 3 has just the same effect as C = 1; that is,
a Long Transfer for T - W + 1 minor cycles from m.c. m+ W + 2 to m.c.
m+ T + 2 inclusive,taking the next Instruction from m.c. m + T + 2.
(If Wexceeds T, read m+ T +34 for m + T+ 2 and T - W + 33 for
T-W+1),

When W« T, C = 3 increases the effective value of T by 32. Transfer
is for 33 minor cycles fromm+ W + 2 tom + W + 34 inclusive (remember
W = T) and the next Instruction enters during m.c. m + W + 34.

5.11 TIME OF COMPUTATION,

The total time taken by a piece of computation must sometimes be
known quite accurately. When a card is running through the Hollerith
punch, for instance, the rows succeed each other at an interval of about
38 Major Cycles. Where computation is done between rows, it must be kept
within this limit. An instruction, in effect, occupies the time between
entering TS COUNT itself and calling in its successor. This period, in
minor cycles, is T+ 2 if T exceeds W. If T 2=Wand C = Oor 1 it is also
T + 2; in all other cases it is T + 34.

Examples.
The first few instructions of the programme on page 21 will be coded.
The positions of the instructions and planted numbers are arranged
to allow the greatest economy of time while using only one of the

Delay Lines.

Flow Diagram Corresponding Coding
Position Instruction Position Instruction Position
DL(m.c.) DL(m.c.) (or number) of next

‘ Instruction
1g 15 - 214 1g 1, 1 -21, 0, 1 13
13 27 - 15 15 “20”
15 15 - 25 15 1,27 - 15, 0, O 1g
1g 1,15 - 25, 0, O 17

An instruction is referred to by the position in the storage which
it occupies. In the Flow Diagram, only the Source, Destination and
if necessary the m.c. of transfer are mentioned. Instruction 1p is
single-transfer, so that transfer from S1 to D21 takes place only
in mc. O+ W + 2 i.e. m.c. 2; the content of DL1, m.c. 2, is thus
transferred to the even m.c. of DS21; the next instruction is taken
from DL1 in m.c. O+ T + 2, i.e. m.c. 3.

The next example shows what may happen towards the end of coding a
large programme, when only a few scattered spaces remain in the

NS-y-16/5-56

Page 30

storage and the coding must be arranged accordingly. It is required to
punch the contents of m.c. O and 1 of DL10 on the first two rows of a
card and then to sound the Buzzer to show that computation is complete.

Flow Diagram Corresponding Coding
Position Instruction Position ~Instruction Position
DL(m.c.) DL(m.c.) of next
.Instruction

297 10 - 24 (Stim PUNCH) 215 2, 7T - 24, 0, 30 215

45 10p- 29 X 29n 4,10 - 24, 0, 8 45

3g 104- 29 X 38 5,10 - 29,23, 26 X 54

54 9 - 24 (Clear PUNCH) 45 3,10 - 29,25, 1X 3g

54 2,9-24,0, 9 25

215 l 7 l 24 (Stim ALARUM)

5.12. MODIFICATION OF INSTRUCTIONS.

It will be observed that instructions do not necessarily occur in
the same order in the coding as in the flow diagram, and that two
instructions in the last example lead to 215 as next instruction, both
54 and 215 itself. For the precise problem stated, this is the best
method o% coding. If many more m.c. of DL10 had to be punched, or if
some arithmetic operation had to be performed on each number before
punching, this would no longer be true. In this case, there would be a
sequence of instructions which is repeated exactly except that in one
of the instructions the m.c. of transfer must move on one for each
repetition. This involves a change only in the Wait number of that
instruction.

The method used is to store the instructions once only and arrange
the Timing numbers to form a closed loop; in this loop, extra instruc-
tions are included which use the arithmetic facilities to modify the
instruction in question. In the present case, the modification required
is simply an increase of 1 in the Wait number. Since this is often
needed, the digit which represents a unit in the Wait number position,
the 17th digit of the word, is made available at Source 28 as one of
the ‘useful constant numbers’ already referred to.

The instruction to be modified is transferred to TS13 and modified
during each repetition of the loop by the instruction “28 - 25”. There
remains the problem of getting it back into the programme, since TS13
is not available as a Next Instruction Source. This could be achieved
by transferring from TS13 to a vacant space in a DL which would later
be named as the next instruction position. This method, however, is
wasteful of space, and an alternative is provided in the facility
associated with Destination O.

NS-y-16/5-56

Page 31

5.13. DESTINATION 0.

Destination O provides an entry to TS COUNT which overrides the
function of the NIS selection.

Example.

“15 - 0,1” takes as its next Instruction the word in TS15. The NIS
part of the Instruction is ignored.

A transfer to DO must in general be Long (C = 1). The reason for this
is that the words from the selected NIS are replaced with those from the
selected Source only so long as transfer is taking place.

Example. .
“5, 15 - 0,1, 4” stored in m.c. 7 has no effect. Transfer occurs in m.c.10
which means that for this minor cycle the word from the NIS (5iq) is
replaced with that from the Source (TS15). This has no effect,
however, since the word from the selected NIS would not be entering
TS COUNT anyway -in this minor cycle. From m.c. 11 to m.c. 13, the
words from DL5 are again being presented at the entrance to TS COUNT
In m.c. 13, the word from DL5 is let in to TS COUNT and then forms
the next Instruction.

«, 15 - 0, 1, 0, 4” in m.c. 7 takes its next Instruction from TSI15
in m.c. 13 and the NIS number is irrelevant. Transfer, which replaces
the words from DLX with copies of the word in TS15, continues from
m.c. 9 to m.c. 13 inclusive; in the last of these, m.c. 13, the word
presented to TS COUNT is allowed in.

“X, 15 - 0, 3, 3” in m.c. 7 does take its successor from TS15 in
m.c. 12. Since W = T, C = 0, gives an identical effect with C = 1.

Example.

To punch the contents of successive minor cycles of DL10 on successive
rows of one or more cards, starting with m.c. 0.

Flow Diagram Corresponding Coding

15 15 - 13 5 1, 1-13, 0, 1
13 10 - 24 1; 1, 28 - 25, 0, 2

1 15 (1, 10 - 29, 23,24 X)
15 13 -“o 13 1, 10 - 24, 0, O
Q; OBEY (10, - 29 X) 15 (0) 13 - 0,1, 0, O
14 28 - 25

| E—

NS-y-16/5-56

Page 32

When instruction 1g is reached for the first time, TS13 contains the
instruction ‘1, 10 - 29, 23, 24’. Since 1g has zero Timing number,
the planted instruction enters TS COUNT in m.c. 5+ 0+ 2, i.e. m.c. 7.
Its Timing and Wait numbers must therefore be calculated as though it
had been stored in m.c. 7 of a DL. The notation ‘Q+’ stands for
“Quasi 7" meaning that the Instruction must be coded as if stored in
m.c. 7. In successive repetitions of the loop, instruction 14
modifies the content of TS13 to “1_ 10 - 29, 23 + n, 24”. At the
first two repetitions, this instruction occupies a time of 26 m.c.
(T + 2), subsequently it occupies 58 m.c. since W is now greater

than T. The programme could have been arranged to save some of this
time, but there would have been little point in this as the loop
takes at most two Major Cycles and instruction Qq can be repeated
only at intervals of about 38 major cycles as the successive rows

of the card pass the punching station.

The problem of time assessment is greatly simplified by the fact that
a repeated loop must occupy an exact number of Major Cycles. The details
of all the above examples should be closely studied to see how the required
effects are achieved by the given values of the instruction parameters.

5.14. DISCRIMINATION INSTRUCTION.

The last example includes no provision for leaving the repeated loop

' when the required number of values has been punched from DL10. To meet

this requirement, use may be made of the Discrimination facilities, which
are closely linked with the Control mechanism. It will be remembered that
a transfer to D27 or D28 may be followed by either of two next instructions
depending on the number being transferred.

If an instruction uses Destination 27 or 28 the next instruction may
enter TS COUNT one minor cycle later than normal, that is, in m.c. m + T + 3.
This will happen only if the number being transferred is negative in the
case of D27 and non-zero when using D28. Otherwise, the operation is
normal. There is no other effect. The result is the selection, as next
instruction word,of either that inDL “N”, m.c. m + T + 2 or that in DL *N”,
m.c. m + T + 3.

NS-y-16/5-56

Page 33

Example.
Flow Diagram Coding

143 13 - 27 113 1, 13 - 27, 0, 2
¢//+ - 147 3, 24 - 14, 0, 4

147 24 - 14 148 5 15 - 25, 0,15

118 l 15 - 25 393 -, 27 - 25, 0, -

393 27T - 25 I 54 -, 16 - 14, 0, -

53 16 - 14

The N and T numbers of instruction 117 and 118 depend on the
instruction which follows each of them.

1p I 0 i 28 | lp, 1, 0- 28 0,30

Zero Non-zero 11 -, 0- 14, 0, -

11 0 - 14

In each case, the two instructions which may follow a discrimination
are in adjacent minor cycles of a DL. The timing number is that
which would, in any other type of instruction, always select the
first of this pair. In the above examples, the discrimination
transfer was for only one minor cycle. Where a succession of
different numbers is transferred to D27 or D28, the next instruc-
tion comes from m.c. m+ T 4+ 3 if any of them is negative, or non-
zero, and from m.c. m + T + 2 only if all are positive or zero.

NS-y-16/5-56

OTHER SOURCES AND DESTINATIONS

Page 34

6. OTHER SOURCES AND DESTINATIONS.

The facilities associated with the various Source and Destination
numbers will now be described in detail. Some of them have already been
briefly mentioned. ‘

6.1. USEFUL CONSTANTS.

Five of the Sources give constant numbers. For reference, a word
consisting of 31 zeros and a “1” in the nth digit is called “Pn”. The
five Sources are:-

Source Output

S27 P1 - the least significant digit

S28 P17 - this is the units digit in the Wait
number (see above).

S29 P32 - The most significant digit.

S30 zeros - a transfer from this source to a
storage position clears the latter.

S31 ones - represents -1 in the Signed convention.

6.2. LOGICAL OPERATIONS.

Four Sources give various functions of the numbers in TS14 and
TS15. Two of them depend only on TS14, the other two on both TS14 and
TS15. For brevity, the symbol “TS14” is here used to mean ‘theword in
TS14’. For instance, “TS14 + 2” means ‘one half (in the Signed convention)
of the number in TS14’.

Source.
S23 TS14 <+ 2 The digits P1 to P31 are copies, respectively
of the digits P2 to P32 of the word in TS14;
P32 is a copy of P32 in TS14. This is true
division (without round-off) in the Signed
convention.
S24 TS14 x 2 The P1 digit is zero; digits P2 to P32 are

copies, respectively, of the digits in TS14,
P1 to P31. This is true multiplication, in
either the Signed or Unsigned convention,
provided that the capacity of the machine is
not exceeded.

S25 TS14 &TS15 This has a digit ‘1’ only in posit1ons where
both TS14 and TS15 contain a "*1 and zeros
everywhere else.

526 TS14 %= TS15 This has a digit “1* wherever the digits in
TS14 and TS15 are different: and a ‘O’ where
they are the same. (spoken as ‘14 not
equivalent to 15°).

NS-y-16/5-56

Page 35

An example will be given of the words at the various Sources for
particular contents of TS14 and TS15; only the first eight and last four
digits are shown, (the least significant digit is on the left).

Word in TS14 11000111 0011

Word in TS15 10101010 1110

S23 (TS14 + 2) 1000111 ..evnnnn. 00111

S24 (TS14 x 2) 011000111 001

S25 (TS14 & TS15) 10000010 0010

S26 (TS14 =ETS15) 01101101 1101
Example.

The following programme divides the number in TS13 by that in TS16
giving the quotient in TS14. Both initial numbers must be positive,
the dividend being less than twice the divisor. A few added
instructions would enable the programme to deal with numbers of
either sign. This programme is given purely for illustration,

since division is normally done by using the automatic divider.

The quotient will have 31 digits, one above the binary point and 30
below; its 32nd (top) digit will always be zero.

27T - 15 (a)

27T - 14 . (b)

24 - 14 (c)
14 - 27 (d)

16 l 26(63)\‘26 - 14 G)
13 -< (

+
26 -_14 (g) 16 - 25 (h)

Sl

f)
13 "-"25 (1)

|

+

29 - 15 (k)
26 - 14 1)

NS-y-16/5-56

Page 36

Notes.

(a)

(b)

(c)

(d)

(e)
()
(8

(h)

(1)

(3

(k)

Put P1 in TS15; this remains throughout the division, and is used
to generate the successive digits of' the quotient.

Put P1 in TS14; this is the "marker digit". It is shifted up one
place as each digit of the quotient is formed; when it reaches the
P32 position, the division is complete.

Move the contents of TS14 up by one place. TS14 contains the marker
digit and the digits so far found of the quotient. These digits are
found successively, from the top, each being inserted in the Pl
position; the partial quotient is then shifted up, by this instruction,
to make room for the next digit.

Has TS14 a "1" in the P32 position? Not until the marker digit has
been shifted 31 times, which is after 30 repetitions of the loop. At
this stage, the marker digit is in P32, and the top quotient digit
is in P31, as required for the final answer.

Subtract the divisor from what remains of the dividend.
Is the difference positive or negative?

If positive, the divisor "goes" into the remainder, and the current
quotient digit is "1". This instruction has the effect of adding P1
into TS14, in which the P1 digit is always zero at this stage. TS15
has no other non-zero digits, so the other digits of TS14 are
undisturbed.

If negative, the divisor ‘does not "go" into the previous remainder;
the current quotient digit is "O". This instruction "restores" the
remainder ready for finding the next quotient digit.

This doubles the remainder, thereby shifting it up one place. When
dividing on paper, one effectively lets the remainder stand and shifts
the divisor -down one for each digit of the quotient, but the effect is
the same as this.

At this stage, TS14 contains the marker digit in P32, the top 30
digits of the quotient in P31 to P2, and the P1 digit is zero. This
instruction merely changes the P1 digit to "1". Previously, the
number in TS14 represented the quotient with a possible error
ranging from 0 to -2 in the lowest place; now the range of error is
from 1 to -1. It is desirable, wherever possible, to make the

range of error symmetrical about zero. In this case, a further
repetition of the loop would have halved the range of error, but

to make it symmetrical would then have required several extra
instructions.

Put P32 in TS15.

NS-y-16/5-56

Page 37

(1) Remove the marker digit. TS14 now contains the quotient, and we can
proceed to the next stage of the main programme.

Example.

A more practical example is the calculation of a square root, again
by the schoolroom method. In this case the marker digit is shifted
down at each stage and the answer kept still, instead of keeping the
marker digit at P1 and shifting up the answer, as was done in the
division. The remainder is again shifted up at each stage. This
reflects the fact that in normal square root process the answer
shifts up oneplace and t mainder two places at each stage. The
process actually finds x rather than just /x, because the latter
would have only half the number of significant digits of x itself.
Again, the answer is given rounded to the nearest odd integer. The
arithmetic process of square root is more complicated than that of
division; the reader is advised to verify the programme with
examples. The number x is originally in TS13 and the answer(/2°Y x
to the nearest odd integer) is producgg in TS14. The process will
work only for values of x less than 29Y.

30 - 15 (a)
P29 - 14 (b)
2}‘ l 26 (c)
13 - 217 (d)
+ -
24 - “14 (D) 26 - 25 (e
26 - 15 (g)
23 -_14 (h)
\\\\\\\13"- 25 (i)
23 - 28 ()
non / zZero i
zZero
23 - 14 (k)
L____J 26 v

14 (1)

NS-y-16/5-56

Page 38

(a) Clear TS15, in which the answer is to be built up.

(b) TS14 contains the marker digit; this sets its initial position at P29.

(c) S26 gives 14=E15; TS14 holds the marker digit and TS15 the partial
answer which at any stage contains only those digits of the answer
above and not including the marker digit. Thus S26 gives the sum
of the partial answer and the marker digit; this sum is subtracted
into TS13, which contains the remainder (in the first instance, the
original number Xx).

(d) 1Is the result positive or negative?

(e) If negative, restore the remainder.

(f) If positive, shift the marker up one place ---

(g) --- add it to the partial answer ---

(h) --- and shift the marker digit down again. Instructions (f), (g) and
(h) have the effect of adding twice the marker digit to the partial
answer.

(i) Shift up the remainder by one place.

(j) Would TS14 + 2 give the answer zero? This will happen for the first
time when the marker digit has been shifted down to P1 by repeated
applications of instruction (k). By then, instructions (c) to (1)
will have been repeated 29 times.

(k) Shift the marker digit down one place and proceed to calculate the
next digit.

(1) At this stage, TS15 contains the digits of the answer from P30 to P2
and TS14 contains Pl. This instruction adds P1 to the previous
answer and puts the result in TS14, completing the round off as
specified.

6.3. OPERATION OF THE PUNCH AND READER

The instruction "10-24" causes a succession of cards to start passing
through the Punch. As each successive row comes into position under the
punching knives, there is punched on columns 21 to 52 of that row the
configuration currently on the Output Staticiser. The OS is automatically
cleared on starting the Punch and immediately after punching each row;
the configuration to be punched on the next row must be sent to D29 some-
time after this clearing of the OS and the arrival of the next row. To
assist in the timing, a Single-Shot signal is sent from the Punch to the
DEUCE just before the arrival of each row at the punching knives. The
normal procedure is to make all these transfers to D29 stoppers, so that
not more than one such transfer is made for each row. There remains the

NS-y-16/5-56

Page 39

danger that there is so much computation between some two adjacent stoppers
that the Single-Shot signal which should have operated the second has
passed and gone before the instruction concerned has arrived in TS COUNT.
This danger must be guarded against by the programmer.

The twelve Single-Shots relating to a given card follow each other at
intervals of not less than 38 Major Cycles. The time between the last Single-Shot
of one card and the first Single-Shot of the next is not less than 116 Major
Cycles. These times, of course, determine the maximum amount of computation
which can be done between rows and between cards. A complete schedule of
relevant timings on the Punch and Reader is given as an appendix. The Reader,
by the way, runs about twice as fast as the Punch.

It is useful to be able to distinguish the last row of a card from
any other. For this purpose, a signal is provided called TIL (Twelfth
Impulse Line), which lasts from shortly before the arrival of the last
row at the knives to some time afterwards. TIL is used by the instruction
"9 - 24" which has the effect of sending TIL signal to D28; if TIL is
present, the next instruction is taken in m.c. m + T + 3, otherwise in
m.c. m + T + 2, where the instruction "2 - 24" enters TS COUNT in m.c. m
and has timing number T. This enables a different course to be followed
after the last row from that followed after any of the others.

The Punch may be stopped at any time by the instruction "9 - 24",
If this is done in the middle of a card, the rest of the card will run
through before the motor stops, but there will be no more Single-Shots
or TIL signal and no further punching on that card will be possible. If
punch is called again by "10 - 24" while this card is running out, it will
take effect only at the end of the card, and will then cause another card
to follow with full Single-Shot, TIL and punching facilities.

If punch is called when there are no cards in the Punch, it will take
effect only when cards have been run in by the operator.

The operation of the Reader is very similar. It is called by "12 - 24"
and stopped by "9 - 24". The same instruction is used to stop both the Punch
and Reader because they are never in practice used simultaneously. On
starting to read, Source O is switched from the Input Dynamiciser lamps on
the Control Panel to the reading brushes; at the end of reading, SO reverts
to the ID which still has the same configuration as at the beginning
(unless it has been changed manually in the meantime). The Single-Shot
and TIL facilities are identical with those on the Punch.

The Reader has the additional facility of being stopped by a hole
punched in column 54 of the card being read. As such a hole passes the
reading brushes it stops the Reader just as would the instruction "9 - 24";
the Single-Shot occurs for that row (the one in which P34 is punched),
but not for any subsequent ones. There is no corresponding facility for
the Punch. '

NS-y-16/5-56

Example.

Page 40

To punch out results, up to 128 in number, on successive rows of
several cards and then proceed to read in more data. The number of
results is determined by a parameter "n", and they are stored in 7,

71, --- 731, 8p etc. up to 103;. They will be referred to as
A(0), A(1), --- A(i), --- A(n-1), the number "i" being stored in
TS15.
30 - 15
10 - 24
Y
"I - 13 (a)
15 - 14 (b)
14 - 25 (c)
23 - 14 (21 m.c.) (d)
24 - 14 (4 m.c.) (e)
14 - 25 ()
13 - 0 (m.c. 30) (g)
Qgp A(1) - 29X (h)
137 15 - 13 (1)
28 - 25 G3)
13 - 15
"n" - 14 (k)
26 - 28 (1)
non zero / Zero
9 - 24 (m)
12 - 24 (n)
Read more
data

NS-y-16/5-56

Page 41

Notes.
(a) "I" is "1,7 - 29, 0,31,X".
(b) Place "i" in TS14, which has shifting facilities.

(c) Add "i" to the Wait number. Since the maximum value of "i" is 127,
reaching the 23rd digit, this addition can never spill over into
the Timing number, which starts in the 26th digit.

(d) Shift down 21 places, wiping out the lowest five digits of "i".
What is left must be added to the Source number.

(e) Shift the result of instruction (d) into the Source number position.
(f) Add it to the instruction.

(g) The modified instruction enters TS COUNT in m.c. 30, so that its
Wait and Timing numbers are respectively the minor cycles of
transfer and of the next instruction.

(h) The modified instruction must be "1, (7 + a) - 29, b,31,X", where
"i" has reached the value (32a + b) "b", in fact, is the lowest
five digits of "i", and "a" the remaining digits, reduced to
units of P5. !

(i) The storage location of this instruction determines the N and T
numbers of "I".

(j) Add P17 to "i". This happens in every cycle, so that TS15 contains
"i" units of P17, ready to add into the Wait number without the
need for any shifting.

(k). Place "n" in TS14. Since this is to be compared with the "i" x P17
in TS15, "n" must originally have been punched (or set on the
I.D.) in units of P17. This is very common practice.

(1) S26 gives zero only if the numbers in TS14 and TS15 are equal;
that is if "i" and "n" are equal. The machine therefore proceeds
back to instruction (a) if there are more results to be punched,
and otherwise to instruction (m).
(m) Stop the Punch.
(n) Start the Reader.
6.4. MAGNETIC INSTRUCTIONS.
Operations involving the magnetic store are initiated by instructions

using D30 and D31. D31 is used for head shifts and D30 for reading or
writing.

NS-y-16/5-56

Page 42

The Characteristic of the instruction determines whether the reading
or writing apparatus is intended. An even characteristic gives
reading (D30) or shift reading heads (D31); an odd characteristic
gives writing (D30) or shift writing heads (D31).

Examples.
5 - 31(0)" shifts the Reading Heads into position 5.
"g - 31(1)" shifts the Writing Heads into position 9.

"15-30(1)" writes the contents of DL1l on to the track now under
writing head 15.

" 0-30(0)" reads the contents of the track now under reading
head O into DL11.

To read from track 121 (7/9) first do "7 - 31(0)" which shifts the
reading heads into position 7, and then "9 - 30(0)" which reads into
DL11 the track now under reading head 9.

.~ Having been initiated by one of these instructions, each operation
takes a fixed time to complete, 13 Major Cycles for reading or writing and
'64 Major Cycles for a head shift. During this time, any sequencesof
instructions may be obeyed which do not use DL11 or the Magnetics. If
during the course of a magnetic operation, however, an instruction enters
TS COUNT which uses S11, D11, D30 or D31, this instruction is held
suspended in TS COUNT without being obeyed, as though it were a stopper;
it is obeyed only on completion of the current magnetic operation. This
feature is known as "Control-Magnetics Interlock" or CMI.

6.5. TRIGGER TCA.

Normally S16 is the Source of the word in TS16, but it has an
alternative function. Instead of the successive digits in TS16, it may
give the digits in DL10, delayed by one minor cycle. When it is performing
its second function, the words in DL10 are available at two Sources, but
in different minor cycles. The word stored in DL10 in m.c. 5, for
instance, also appears at S16 in m.c.6. In this case, TS16 no longer acts
as a storage position, and any word previously stored in it is lost.

The alternative functions of S16 are controlled by an electronic
switch called "TCA". This is said to be "off" when S16 gives the word
in TS16, and "on" when it gives those in DL10 a minor cycle late. TCA is
put on by the instruction "3 - 24". There is no point in putting it off
until TS16 is again to be used as a storage position. TCA is therefore
automatically cleared at the beginning of any transfer to TS16 and no other
provision is made for clearing it.

NS-y-16/5-56

Page 43

Example.

In a previous example, the facilities associated with S28 and DO
were used to carry out an operation on the numbers stored in
successive minor cycles of DL10. This operation was that of
punching the numbers on successive rows of a card. TCA provides
an alternative method. When TCA is on, the transfer "16 - 10
(m.c. 5)" replaces the word in 105 with that in 104, leaving

two copies of the latter and noneof the former. Extending this,
the transfer "16 - 10 (32 m.c.)" replaces the word in each m.c.
of DL10 with that formerly stored in the previous minor cycle.

3 - 24 "Stimulate" (put on) TCA

27 - 14 P1 in TS14 (for counting

operations).

10 - 24 Start Punch.

100"l 29X Punch word in 10g

16 - 10 (32 m.c.) Move words in DL10 (see below)

24 - 14 Move up digit in TS14

14 - 28 Has this yet been lost by moving
/ to "P33" position?

Non zero Zero

9-24 Stop Punch

Next stage of
programme

Moving the words in DL10 puts that formerly in m.c. 31 into m.c. 0,<
and so on. On successive repetitions of the loop, the words punched
on successive rows are those originally in 103, 1037, 103, etc.,

round to 10;. This reverses the order obtained by the previous method.
However, the numbers must first have been placed in DL10, after
calculating them, by using either TCA or S28 and DO. So long as the
same one of the two methods was used both for putting them in and
taking them out, the numbers will be punched in the same order as
that in which they were calculated.

The first method given of selecting successive words in a Delay
Line is more flexible; the order of selection may be reversed by
subtracting one from the Wait number of the transfer instruction, instead
of adding it, and the method applies equally to any DL, whereas TCA is
connected only with DL10, and always works backwards. Where the repeated
loop is more complicated, and uses TS16, TCA must be Stimulated
separately each time the move round is required.

NS-y-16/5-56

Page 44

Example.
3 - 24 This pair of instructions may be inserted in any
16 - 10 (32 m.c.) repeated loop; the word previously stored in

TS16 is lost, however.

6.6. DOUBLE-LENGTH ARITHMETIC.

The 64 digits in a DS may be treated as comprising either one double-
length number or two single-length numbers. To allow for this, the
operation of arithmetic facilities associated with DS21 is modified by
an electronic switch called "TCB"; this is put on and off respectively by
instructions "5 - 24" and "4 - 24". When TCB is off, the arithmetic is
double-length; when it is.on, single-length.

No special provision is required for simple transfers;the instruction
"20 - 21 (2 m.c.)", for instance, transfers the 64 digits in DS20 into
DS21, whether they comprise one or two separate numbers. The only =
distinction, in fact, lies in the treatment in arithmetic operations of
the 32nd (most significant) digit of the two minor cycles. In double-
length numbers, the less significant half is always assumed to be in
the even minor cycle.

Numbers transferred to D22 are added into DS21. If TCB is on, DS21
acts as two separate single-length accumulators; any carry from the 32nd
digit of either minor cycle is lost, and is not added to the 1st digit
in the next minor cycle. If TCB is off, however, any carry generated
from the 32nd digit of the even m.c. is added to the first digit of the
odd m.c.; carry from the 32nd digit of the odd m.c. is lost in either
case. Numbers transferred to D23 are subtracted into DS21 with the same
provision for single-length or double-length arithmetic controlled by TCB.

For both addition and subtraction, there is a special provision for
operating on the bottom half of a double-length number. This provision
effectively extends to double-length a single-length number added or
subtracted into the even minor cycle of DS21 when TCB is off; putting
this another way, if TCB is off and a single-length number is transferred
to either D22 or D23 in an even minor cycle, 32 copies of the sign digit
of this number are respectively added or subtracted into DS21 in the
following odd minor cycle. This provision also comes into effect if the
transfer lasts for several minor cycles ending with an even one.

NS-y-16/5-56

Page 45

Examples.

20 - 22 (2 m.c.). If TCB is on, this adds the two single-length
numbers in DS20 to those in DS21. If TCB is off, it is intended to
add the double-length number in DS20 into DS21; if the even P32 digit
in DS20 is a "1", however, and the transfer is for an odd m.c.
followed by an even one, the special provision mentioned above will
result in an unwanted "1" being subtracted into the top half of
DS21. To make sure of getting the correct result, the transfer must
be for an even minor cycle followed by an odd; this is indicated by
writing the instruction "20 - 22 (2 m.c. e,o0)".

15 - 23 (odd m.c.). The number in TS15 is subtracted into the odd
m.c. of DS21, which may contain either a 32-digit number or the top
half of a 64 digit number.

15 - 229. In this case, the state of TCB affects the operation. If
it is on, so that DS21 contains two single-length numbers, carry
from the 32nd digit of the addition is suppressed, and does not
interfere with the number in the top half of DS21. If TCB is off,
DS21 contains one double-length number, and the process of addition
effectively extends the number in TS15 to double-length.

19 - 22 (6 m.c. e,o0), (TCB off). This adds three times the (double-
length) number in DS19 to that in DS21.

21 - 22 (2 m.c. e,0). (TCB off). This doubles the number in DS21.

21 - 22 (4 m.c. e,0). (TCB off). This quadruples the number in DS21,
i.e. shifts it up by 2 places.

6.7. SOURCE 22.

It will be remembered that S23 gives the number in TS14, divided
by two in the Signed convention. S22 is similar in operation; it
gives the number or numbers in DS21, divided by two in the Signed
convention. If the digits in 212 are Al, A2 ... A32 and those in 214
are Bl, B2 ... B32, the digits at S22 will be A2, A3 ... A32,X in
the even m.c. and B2, B3 ... B32, B32 in the odd m.c. "X" depends
on the state of TCB. If TCB is off, X is Bl; if it is on, X is A32.
Thus, with TCB on, the two words at S22 are independent, and give
respectively one-half of the words in DS21. With TCB off, S22 gives
one half of the double-length number in DS21, each digit being
shifted down by one except for the 64th, which is repeated.

NS-y-16/5-56

Page 46

Examples.
If TCB is off,
22 - 21 (2m.c. e,0) halves the number in DS21.
22 - 21 (2n m.c. e,0) divides the number in DS21 by 20.
Transfer must always start with an even m.c. and end with an odd m.c.

22 - 22 (2 m.c. e,0) multiplies the double-length number in DS21
by 1.5.

6.8. MULTIPLICATION.

The DEUCE contains an automatic multiplier associated with DS21 and
TS16. The answer produced is the 64-digit product of two 32-digit numbers,
true in the Unsigned convention. The two factors are the words previously
in TS16 and DS213. DS21, must be empty at the start of multiplication.
Multiplication is started by the instruction "0 - 24", which must be
obeyed in an odd m.c. The process of multiplication occupies 65 m.c. or
just over two Major Cycles. During this time, D16, D21, D22 and D23 must
not be used, and S21 and S22 will give sequences of digits representing a
partly completed product. TCB is automatically cleared at the start of a
multiplication, and is left off at the end. TCA is automatically cleared
when the multiplicand is sent to TS16 and must not be switched on again
before completion of the multiplication. The completed product appears
in DS21.

Example.

To multiply the positive numbers in TS16 and TS14 and send the
result to DS19.

m. c. m. c.
(a) 0 30 - 219 0 30-21, 0,0
(b) 2 14 - 213. 2 14 -21, 1,1
(¢) 5 0-24 (oddmec.) 4 30-29, 1,0
(d) 4 30 - 29 ‘ 5 0-24, 0,29
() 6 21 -19 (2 m.c.) 6 21 - 19,2,0,1

9 etc. 9 next instruction

Notes.

(a) (b) Before starting multiplication, 215 is cleared and the
multiplier sent to 213.

NS-v-16/5-56

Page 47

(c) Multiplication is controlled by an electronic switch
called MULT. This is stimulated at the start of the
transfer 0 - 24 and then remains on for a period of
65 m.c. after which it is automatically cleared. Further
or continued transfer 0 - 24 during multiplication is
jneffective. Instruction (c), even if it had characteristic
1, would give transfer only fromm. c.7 tom. c. 4 of the next Major
Cycle, inclusive; MULT remains on till the end of m.c. 7
of the Major Cycle after this.

(d) The product is not yet available, and a dummy instruction 7
is inserted to use the time until it is. Since W exceeds
T, the instruction occupies 34 m.c., which added to the
31 m.c. occupied by instruction (c), gives the 65 m.c. for
multiplication.

(e) Transfer is in m.c. 8 and m.c. 9. This is the tightest
possible timing since multiplication finished only at the
end of m.c. 7. The period of multiplication may be used for
useful instructions if the programme permits. For instance,
if the factors are liable to be negative, certain corrections
must be added to the product to give the correct Signed result.
These may be calculated during the multiplication.

6.9. SIGNED MULTIPLICATION.

A negative number "-a" is represented by n932_a", If we multiply such
a number by a positive number "b", the "product" will be (232-a)b, or
232p-ab, The double-length product of "-a" and "b" is represented in the
Signed convention By no 4_ab". A correction must therefore be added equal
in value to 264-232 p or 232(232-p). This is equivalent to adding the
single-lengh signed representation of "-b" to the top half of the "product™

If twonegative numbers are multiplied, the immediate result is (232-a) (232-b) ,

or 264-9323.932p.ab. The required addition to the top half is here (a + b),
or -(-a)-(-b), since only "-a" and "-b" are immediately available. The
correction for any pair of signs is made up as follows; if either

factor is negative, the other is subtracted from the top half of the
result of the multiplication.

NS-y-16/5-56

Example.

Page 48.

To multiply the numbers in TS14 and TS16, allowing for the sign of

either.
DL2. m.c. e Coding.
(31) 30 - 21, (a) m. c.
(19) 14 - 213~ “{b) 19 2, 14-21, 0, 0
(21) 0 - 24 ’“Ec) 20 2, 16-21, 0, 1
(25) 27 -~ (d) 21 2, 0-24 0, 2
‘/////\\\\\N ? 22 2, 13 - 23, 1, 2
(29) < 13(30) 16 - 13 (f) 23 2, 30-29, 0,29
\\\\\ {//// 24 2, 14 - 25, 0,28
(20) 1627 25 2, 14-27, 0, 2
¢////\\\\\ 26 2, 21 - 22,1, (32-2n), 31
(23) (h) dummy (24) 14 -~ 25 (1) 27 1, 29 - 23, 1,1
L 28
(22) (j) 13°° 23é(after mulq 29 2, 30 - 13 0,21
(26) (k) 21 - 22 (2n m.c. e,0) 30 2, 16 - 13 0,20
(27 (1) 29 - 239 | 31 2, 30 - 21, 1,18
130 Next part of pfogramme.
Notes.
(a), (b), (c) Start multiplication as before.
(d) to (i) Build up the sign correction ready to subtract into

(h)

NS-y-16/5-56

the top half of the product after multiplication. The
correction consists of zero if both factors are
positive, one factor if only the other is negative,
and the sum of both factors if both are negative.

The coding must allow a time of at least two major
cycles between (¢) and (j). If the dummy were omitted,
a third major cycle would elapse between (g) and (j) if
the number in TS16 were positive.

08213;
"1 - 24"

)

(k)

(D

Page 49

Subtract in the correction. This happens in m.c. 25

(see coding), whereas multiplication started in m.c. 23
two Major Cycles before. In other words, we are just all
right.

Shift the product up n places. n can be any number from
1 to 16, and is determined by the Wait number of the
instruction (in m.c. 26). This allows for binary places.
When working to 27 b.p., for example, the product of
two numbers with 27 b.p. each has 54 b.p. The binary
point after multiplication comes between P22 and P23

of the top half. Shifting up by five b.p. brings the
point between P27 and P28 of the top half. Taking this
top half as the answer leaves us still with 27 b.p.

Subtract P32 into 21,. Well, that’s what it looks like.
The actual effect is to add P32 into 21,. Remember that
a transfer to D22 or D23 in an even m.c. only, with TCB
off, of a number which has a "1" in P32 position, is .
automatically followed by the transfer of 32 "1" s to
the same destination. This means that P32 (even) when
sent to D22 or D23 looks just like -P32 (even) so that
in order to add it you have to subtract. The object is
to balance the error, as was done at the end of the
division and square root examples. It is assumed that
only the top half of the product is to be taken on to
the next stage of the calculation. Without this
preliminary addition of P32 (even) the error caused by
dropping the bottom half would vary from zero to -1 in
the bottom binary place. With the round off, the -
resultant error varies from -+ to + in the bottom

place.

The coding of this example may appear a little eccentric,
but there is method in the madness. The salient points
are that all the instructions are crammed as tightly as
possible into bottom of DL2 (except for the gap at 29g
which will be explained) and that the last instruction
of the multiplication, 297, leads on to 13¢ for the
first instruction in the next part of the programme.

The reason for both of these manoceuvres will appear

in section 7.1.

6.10. DIVISION.
There is also an automatic divider associated with TS16 and DS21.

NS-y-16/5-56

This accepts divisor and dividend of either sign and produces a correctly
signed quotient. First, the divisor is sent to TS16 and the Dividend to
219 should be cleared. Division is started by the instruction
which must be obeyed in an odd minor cycle; the process takes
66 minor cycles, one more than for multiplication. The quotient appears
in 21,, and a modified form of remainder in 21g.

Page 50

The process needs more careful definition than does multiplication.
The quantities involves are:-

Dividend
Divisor
Quotient
Remainder
Modified form
of remainder r

JOW >

These are linked by the relationship: -

3 ‘
231 A=QB + R R = 1 -g- = ’9;3%ﬂ=3
for B>0, 0SR <B (ol G)

for B<<0, BCR<T O

The limitations are imposed that A, B and Q@ must all be single-length
within the signed convention. Q being single-length implies that |A| << |B)
and that |A|and |B| can be equal only if A is negative and B is positive.

We thus have 1A < |B] <23

It will be observed that Q is always algebraically less than or equal to
the true quotient; where an exact quotient is possible, Q will reach this
value only if B is positive and will otherwise fall short of it
(algebraically) by one unit in the lowest binary place. Since the result
is truncated, a few further instructions are required to give a balanced
-round-off where this is required.

If the true remainder must be found as well as the quotient, an
additional limitation is imposed that |A] < |[B| < 230. The modified
form of remainder, r, actually found in 215 after division, is related to

the true remainder R by:-
r=2(2R -B)

So that R ¢ r + B)

D=

It will be clear that if 2305:; B <:;231, r may be out of single-length
in which case R will not be recoverable. This is the reason for the extra

limitation.

The divider gives the quotient to 31 binary places of two integers
(or two quantities with an equal number of binary places). Shifts may be
necessary after division to restore the position of the binary point and
before division to ensure that [B] > |A|

The detailed construction of the divider imposes one slightly awkward
limitation; this is that the divisor must not be sent to TS16 in the odd

NS-y-16/5-56

Page 51

minor. cy¢le immediately preceding the odd minor'cycle in which division
is started. TCB, by the way, is stimulated automatically at the start of
a division and left on at the end.

Examples.

To divide the number in TS14 by that in TS16, knowing the latter to
be larger in absolute value, giving the quotient in TS16 to 30 b.p.
with balanced error of * 4 in the lowest place.

14 - 215 (a)
30 - 21, (b)

1-24 (odd m.c.) (¢)
dummy (d)

27 - 229 (after division) (e)
229- 16 : ()
Notes.
(a) dividend to 214
(b) clear 21,
(c) start division
(d) waste time to cover division process

(e) before this instruction, the quotient has an error ranging
from 0 to -1. We are about to drop the bottom digit
(instruction (f)), Before doing so, the result should be
brought to the nearest even integer (ignoring the bottom
digit). If the bottom digit is "1", the rest of the
quotient needs increasing by one (i.e. P2); if the bottom
digit is zero, the rest of the quotient should be taken as
it stands. Adding one in the bottom place carries out this
requirement.

(f) Shift the result of (e) down one place, dropping the Pl
digit (remember TCB is on). »

To divide the number in TS16 by the number in TS14 to 31 binary

places knowing the latter to be the greater and less than 2°Y,
and to find the exact remainder.

NS-y-16/5-56

(a)
(b)
(c)
(d)

(e)
()

(8)
(h)

Page 52

16 - 214 (a)
30 - 215 (b)
14 - 16 (c)

1-24 (odd m.c.) (d)
dummy (e)

22 - 215 (after div.) (f)
16 - 223 (g)
22 - 213 (h)
dividend to 213
clear 215
divisor to TS16
start division. N.B. if (c) transfers in an odd m.c., coding
must be such that start of division is not in the immediately

following odd minor cycle.

waste time to allow for division

shift down modified remainder ---
--- add in divisor ---

--- and shift down again. (f), (g) and (h) generate the true
remainder R from the modified remainder r by the formula
R={-(—§-r+B).

The quotient to 31 b.p. is in 2l,.

NS-y-16/5-56

SUB-ROUTINES

Page 53

7.0. SUB-ROUTINES.

7.1. A SUB-ROUTINE.

In the example above in 6.9, a programme of twelve instructions was
given for multiplying two numbers. At this rate, a computation involving
much multiplication would soon fill the Machine with instructions solely
for that purpose. However, it is possible to store this group of
instructions just once, and to call on them whenever a multiplication is
required.

Example.
To replace the number in TS14 with its fourth power.
(a) 14 - 16
"MULT"

(b) 213 14

(c) 14 - 16
"MULT"
(d) 215- 14

The word "MULT" represents the group of 12 instructions from the
previous example. It has the effect of forming in DS215 the product
of the numbers initially in TS16 and TS14. Its firdt instruction lies
in m.c. 31 of DL2, and its last in m.c. 27. Thus both imstructions
(a) and (c) are followed by instruction 2 1 This is easy. However,
instruction 297 must be followed in the first case by (b) and in the
second by (d). This is achieved by placing first (b) and then (d)

in the storage location specified by 297 as containing its successor.

Main Programme MULT Sub-Routine
1 14 - 16 298 13 - 139
12 14 (Link A) - 13 231 30 ‘212
219 14 -215
228
to MULT and so on, as in previous example
227 |
139 (link A) 213- 14 : 29¢ 21 - 22 (2n m.c. e,0)
14 14 - 16 297 29 - 239 (a)
15 lg (Link B) - 13 139 Link
29g enter MULT" ‘

130 (link B) 213- 14
NS-y-16/5-56

Page 54
Note (a)

297 specifies, as its next instruction position 13,
which now contains the word which was in TS13
at the start of MULT.

A group of instructions for performing a particular operation, such
as multiplication, is called a "Sub-Routine". If it is to be used more
than once in the programme, the instruction which follows it in each case
is called a "1ink". In order to be used, the link must be placed in a
position fixed by the last instruction of the sub-routine; this fixed
position is usually 13o. Before entering the sub-routine, the link is
placed in a vacant TS; it is tranferred to 13y by the sub-routine itself.
The alternative method of placing the link directly in 1lggy from m.c. 30
of another DL would not work if the sub-routine were to be used more than
eleven times, and is therefore discarded in the interests of uniformity
and ease of programming. The use of m.c. 30 leads to some simplification of
arithmetic, since the Wait and Timing numbers of an instruction stored
there are precisely those of the first and last minor cycles of the
specified transfer.

The advantages of the method can be seen from the example. The 12
instructions of multiplication are called upon by only one instruction,
that which plants the link in TS13. The cost is the addition to the
process of one instruction "13 - 133", and the forfeiture of 133 as a
normal storage position. This last, however, will do for any number of
sub-routines, since all use lgg as their link position.

If the position of the binary point varies in the programme, the
shift after multiplication must also be altered. In this case, instruction
226 must be modified before each entry to the sub-routine.

In the example, the sub-routine takes a total time of four Major
Cycles. This would have been reduced by planting the link from TS13 to 13g
only after multiplication had been started; the time occupied by planting
the link would then become part of the 2 Major Cycles of multiplication,
which have to be wasted anyway. '

Furthermore, the coding given takes the same time for any other
number of places of shift as for the maximum (16 places). If the number of
places were known in advance, it might be possible to recode so as to save
still more time. It is generally worth taking a great deal of trouble in
coding sub-routines, since these are the parts of a programme which are
most often repeated.

7.2. OTHER SUB-ROUTINES.
As well as for multiplication, sub-routines may be made for Division,
Square Root, Double-Length Multiplication, Division and Square Root, and

other simple operations. These are called "First-Order Sub-Routines". From
these, more complicated Sub-Routines may be built up.

NS-y-16/5-56

Page 55

A Sub-Routine may be made for the Summation of Polynomials. This
incorporates a Multiplication Sub-Routine, and is therefore called a
"Second-Order Sub-Routine". This, in its turn, may be part of a Sub-
Routine for taking Logarithms, which would be a Third-Order Sub-Routine.

A Second-Order Sub-Routine plants its Link in 134 since 1l3g is used
during its operation by the inner Sub-Routine. In general, an Nth-order
Sub-Routine plants its link in log,N-

7.3. LIBRARY SUB-ROUTINES.

The technique of Sub-Routines has a further great advantage. Once a
Sub-Routine has been made for, say multiplication, and punched on cards to
occupy half of DL2, it may be used in exactly the same form in any programme
where it is required. A library is kept of all Sub-Routines as they are made
for a particular programme, and these are available for any future user. For
the sake of flexibility, several copies are made of each, storing the
instructions in different Delay Lines or halves of Delay Lines. For instance,
there are fourteen copies of MULT, using the top and bottom halves of DL2
to 8. The Sub-Routines are not punched for storage in DL1, since this is
usually occupied by the main Programme.

Fitting library sub-routines together is facilitated by the convention
of coding them in a block at one end of a DL, as was seen in the MULT sub-
routine above. Larger sub-routines are coded to occupy completely as many
DLs as necessary with any extra instructions in a block at one end of a
further DL.

As the Library increases, Programming may come to consist mainly of
placing words in the positions required by Sub-Routines and planting links.
The Sub-Routines are collected from the Library, and copied into the
programme by means of a Hollerith Reproducer.

NS-y-16/5-56

INITIAL INSTRUCTIONS

Page 56

8. INITIAL INSTRUCTIONS
'8.1. INITIAL INPUT.

In reading in a programme, the words to be placed in one DL are
punched in order on three cards, leaving the first four rows of the first
card free for the special input instructions. Taking DL2 as an example,
the three cards would be as follows:-

Row First Card Second Card Third Card
Y blank 2g 290
X 2, 0 - 2, 1,26,25X 29 291
0 2, 0 -2, 30,31X 210 299
1 1, 0 - 2 30, 31X 211 293
2 20 212 224
3 21 213 225
9 27 219 231

Depression of the initial input key on the Control Panel has the
effect of clearing the whole Delay Line store, and then calling a ‘Read’
just as it is called by the instruction "12 - 24". The three cards are
now run into the Hollerith Read.

TS COUNT is cleared along with the others, and therefore initially
contains the instruction "0, 0 - 0, W, T X"; the numbers W and T may have
any arbitrary values, because of the organisation of Control. The
operation of this instruction is ambiguous. It will be remembered that a
transfer to Destination 0 will generally work only if it is a long ’
transfer; otherwise, transfer will have ceased before the TS COUNT gate
is opened to let the next instruction in, and this next instruction will
come in the usual way from the DL named in the NIS number. However, if
T=W + 1, the transfer to DO will work for a double transfer and (which
is the point here) if W = T it will work for a single transfer instruction
(C = 0). The instruction is in any case obeyed on the Single-Shot which
marks the first row of the first card. If, by accident, W = T after
clearing store, this row will be placed in TS COUNT;*otherwise, zeros will
be placed in TS COUNT from some minor cycle of DL8 (the DL specified by
NISO). The only way to overcome the ambiguity is to leave blank the first
row of the first card read in after clearing store. This is made a general
rule for DEUCE programmes. It is usually achieved on an Initial Card which
is also required for other purposes (see below). In the present case, the
first row is blank anyway, so no more bother is needed.

NS-y-16/5-56

Page 57

Returning to the example, the instruction "0, 0 - 0, W, T X" is
obeyed on the first row of the first card. This has the effect of placing
"0, 0 - 0, 0, 0 X" (Zeros) in TS COUNT, either from the first row
or from some minor cycle of DL8. This is obeyed in turn at the second row,
and sends "2, 0 - 2, 1,26,25 X" to TS COUNT. At the "O" row, this fills
D2 Bkt with 32 copies of "2, 0 - 2, 30,31 X", and takes one of these as

the next Instruction.

The effect of "2, 0 - 2, 30, 31 X" entering TS COUNT in m.c. m is to
send the word on the next row to 2, and take the next instruction from
.1 In other words, each of these instructions replaces itself with a
row from the card and then proceeds to the next. The first of them is
replaced with "1, 0 - 2, 30,31 X", the second with 24, the third with 2,
and so on, until the 32nd is replaced with 255. The next instruction is
now "1, 0 - 2, 30,31 X" which replaces itsel with 2,1 and takes the next

instruction from

. This is still empty, and TS now contains

"0, 0 - 0, 0, 0 X", ready to start on a similar triad of cards relating

to, say, DL3.

While the storage is empty, the minor cycles are considered anonymous
The m.c. in which the word "23" arrives in DL2 is called "m.c. 0". We will
now consider the minor cycles in which the subsequent operations take place.

Minor Cycle.
0
1
30
31
0
2
4
0 to 31
also in 31
in a later 31
0
1

etc.

NS-y-16/5-56

Operation
"20" placed in DL2

"21" ditto
"230" ditto
"231" ditto Instruction has NIS "1".

"Q,0 - 0,0,0 X" enters TS COUNT from 1

ditto from card.
"3,0 - 3,1,26,25 X" enters TS COUNT from
card.
32 copies of "3,0 - 3,30,31,X" enter DL3
from card.

one of these enters TS COUNT.
"1,0 - 3,30,31 X" enters DL3
"3o" placed in DL3

"31" placed in DL3

Page 58

It will be seen that, with the given Wait and Timing numbers, words
occupying corresponding position in the triads relating to different
Delay Lines will enter their respective DLs, in the same minor cycle.

In general, the first four rows of the triad filling DL"N" are:-

blank
"N, O-N, 1,26,25 X"
"N, O-N, 30,31 X"
"1, O-N, 30,31,X"

There are two exceptions to this. Firstly, in the triad filling the
last DL used in the programme, the fourth row is replaced with "M, O-N,
30,m-1,X" where the first instruction of the programme to be obeyed is
in DL"M", m.c. - "m". Secondly, since the method uses the fact that each
DL has an NIS, a modification is needed, to fill DLs 9 to 12. In these
cases, one of the first eight DLs, not yet filled itself, is used as an
auxiliary. The first four rows of a triad which filled DL9 by using

DL7 might be:-
’ 1, 0-7, 1,29,28,X
7, 0-9, 30,31,X
7, 0-7, 27,28,X
1, 0-9 30,31,X

The first row fills DL7 with copies of the second row; the third row
replaces one of these with the fourth row. The other 31 are obeyed in order,
placing successive rows in DL9; the fourth row is now obeyed, completing
DL9 and returning to NIS "1" for filling the next DL, which might be DLT

itself.

The reader is advised to work through the operation of this group of
input instructions in the same way as set out above for the filling of
DL2. He will find that DL 1is asked to supply a word of zeros on two
occasions and that the Wait and Timing numbers have been cunningly
arranged to bring both these referenceg‘at minor cycle 0. A blank minor
cycle somewhere in the machine is always required for this method of filling
a DL (as well as a spare DL if DL9, 10, 11 or 12 is being filled). By
fiddling the NIS and T numbers, this blank minor cycle may be taken
anywhere in the first eight DLs; 13, is often a convenient minor cycle,
though 1g has been used in both the examples.

8.2. INITIAL INPUT TO THE MAGNETIC DRUM STORE.

With a large programme, it is often useful to read part of it initially
on to the Magnetic Drum and the rest of it in to the D.Ls. A system is

NS-y-16/5-56

Page 59

therefore needed for reading triads of 32 instructions on to specified
tracks on the Drum. In this case, the first four rows of each triad are
insufficient to accommodate the special input instructions. The space is
used instead to designate the number of the track on which the subsequent
32 rows are to be stored, and a special routine is used to see them home.

The following card will plant that routine in DLS.

Row

Y Blank

X 0, 0-8, 1, 27, 25X

0 0, 0-8, 30, 2X

1 0, 0-8, 30, 31X

2 0, 8-13, 6, 10 Stored 83
3 0, 0-8, 20, 26 X 89
4 7, 0-7, 30, 31X 811
5 0,13-7, 1, 3, 2 815
6 | 7, 8-17, 10, 11 819
7 0, 7-11,1, 3, 2 893
8 0, 8-0, 0, O 8o7
9 0, 0-7, 30, 22 X 831

Its own introductory 4 rows differ from normal in that
(a) X Row. Wait No. 27 instead of 26: to ensure zero in 80

(b) O Row. Timing No. 2 instead of 31: After replacing itself, each
filler instruction jumps 4 minor cycles instead of the usual
one minor cycle getting back to 831 after 8 jumps instead of
32. The essential instructions are thus stored (as indicated)
and TS COUNT returned to zero after one card only.

(c) 1 Row. NIS O instead of 1 : because 8o is left blank.

This subroutine will read into track a/b of the drum the last 32 rows
of a triad which bears the introductions.

Y - row Blank

X - row 0, a-31,1, 0, 1 X
0 - row Blank

1 - row 0, b-30,1, 0, 1

NS-y-16/5-56

Page 60

The detailed operation is as follows: -

Control contains Q, 0,0-0,00 X

One shot from: ’ Instruction obeyed Action
1st.card Y-row QO 0, 0-0 0, 0 X Y-row enters TS COUNT
X-row Q 0, 0-0 0, 0X X-row " "
0-row Q 0, a-31, 1,0, 1 X Appropriate head block shift
started
1-row 870, 0-89g X Files "writing instruction"
in 829
83 8;ri3 32 copies of "filler"
instruction
815 13 -7 (32 mec.)) to DLT.
819 831‘ 731 Final filler to 731
2-row 70 0 - 70 X
3-row 7, 0-T; X DL 7 filled with 32 words
from the cards.
ete. to
3rd.card 9-row 731 0 - 731 X

893 7-11 (32 mc.) DLT to DLI1

897 89g- 0 DL 11 to track a/b.
Qg b-3011

8, 0-0 X

The buffer delay line (in this case DL7) has to be used because after
giving the head block shift instruction (a - 31 1) DL11 may be inaccessible
for a period of about 66 m.s.

Since the return after each triad is to 8p, triads for drum and DL’s
may be in any order provided only that DL8, 11 and 7 are not filled until
drum filling is complete. It is usual to read into the drum first and fill
the DL’ s afterwards.

8.3. INITIAL CARD.

To ensure uniformity of conditions, an Initial Card which provides a
leading blank row and clears TCB, is placed in front of each programme.
Because even and odd minor cycles are still distinguished even when the
Store is empty, the Initial Card is also used to ensure that the first
word shall be stored during an even minor cycle. One version is :-

NS-y-16/5-56

Page 61

Row of Initial Card. Functionk

Y blank Initial blank row

X blank

0 4-24, 0, 0, X Clear TCB

1 blank

2 31-21,1,0,1,X Fill DS21 with "1"s

3 blank

4 27 - 22, 0,0,X add 1 into DS21. This leaves DS21
either empty or half full, depending
on whether it is done in an even or
odd minor cycle.

5 blank

6 21 - 28,1,0,1,X take next instruction into TS COUNT
either 3 or 4 m.c. later depending on
whether or not DS21 is now empty.

7 blank

8 30 - 21,1,0,1,X clear DS21

9 blank

8.4. RUNNING IN.

Having made all the necessary triads, some copied from the Library,
they are packed together with an initial card and placed in the Hollerith
Reader. A key on this is pressed which performs all the functions of
clearing Store, calling for a Read and running in the cards. The last
card is punched on row 9 in column 54, and this stops the Reader when
all have been read in.

8. 5. LARGE PROGRAMMES.

A programme too large to be contained in the storage may consist
of a sequence of separate operations based on the same initial data. In
this case, blocks of new instructions may be read in at the completion
of each stage. The method is to punch cards just as for the Initial
Input. The pair of instructions "12 - 24;1, 30 - 8, n, n} will then call
in the new information; the number "n" is chosen to call the next
instruction in m.c. O.

NS-y-16/5-56

APPENDIX 1

HOLLERITH TIMING

In order to link the operation of the DEUCE with the Hollerith Read
and Punch, it is useful to know the time in Major Cycles between various
operations on the two-Machines. A chart of these is attached. The column
referring to the Reader will be explained, that for the Punch being very
similar.

(a) From the time of the Hollerith one-shot, Source O continues to give
the current row for a period of 2 Major Cycles. From 6 Major Cycles
onwards Source O gives zeros, representing the space between rows.

(b) Not less than 15 and not more than 21 Major Cycles elapse between
successive one-shots from the same cards. Thus, computations which
take place between rows should not last more than 15 Major: Cycles
if one-shots are not to be missed.

(c) When cards are following each other at maximum speed, the first one-

shot of one card follows the last one-shot of the previous card after

an interval of not less than 80 and not more than 100 Major Cycles.

Computations which take place between cards should not last more than
80 Major Cycles if first one-shots on each card are not to be missed.

(d) Between the 11th one-shot and the beginning of TIL there is a period
of at least 11 Major Cycles. From the beginning of TIL to the 12th
one-shot there are not less than 2 and not more than 7 Major Cycles.
After the 12th one-shot TIL lasts for not less than 18 and not more
than 23 Major Cycles. Also, after a P54 on the 12th row, or 9-24X
using the 12th row stopper, TIL will certainly be off after 23 Major
Cycles. For continuous reading, the first one-shot of the next card
is at least 57 Major Cycles after the end of TIL. Source O does not
revert to the I.D. between cards, provided cards are running contin-
wusly. Otherwise, Source O reverts to the ID lamps within 13 Major
Cycles after the 12th one-shot.

(e) When the Read has been idle, there is a period of at least 130 Major
Cycles between calling for a Read ("12-24") and the arrival of the
first one-shot.

(f) When the reader is cleared by a P34 on the last row of a card it may
(g) be recalled immediately by the instruction 12-24 (using the single-
shot from the last row if desired). .

If however the reader is cleared, (either by a P34 or by an instruction

9-24) before the last row of a card it should not be recalled within
2 Major Cycles, or further rows of the same card will be read as if
the reader had not been cleared. (This means that single-shots and
the TIL signal will not be inhibited).

NS-y-16/5-56

(h)

H

(k)

(1

(m)

APPENDIX 1 cont’d
HOLLERITH TIMING

If the reader is cleared within 40 Major Cycles after the S.S. from
the last row of a card, no further cards will be fed.

If the reader is cleared between 40 and 70 Major Cycles after the
S.S. from the last row of a card, a further card may be fed, but
will not be read and will give a ‘MISSED CARD’ alarm.

If the reader is cleared more than 70 Major Cycles after the S.S.
from the last row of a card, but before the first S.S. of the next
card, a further card will be fed, and not read, without giving a
‘MISSED CARD’ alarm.

In order to inhibit the S.S. from the subsequent row of a card,
reader or punch must be cleared within 13 and 35 Major Cycles
respectively of the stop instruction for a given row.

If a transfer to destination 29 is made more than 20 Major Cycles
after the stop instruction for any row other than the last, the
word sent will be successfully punched on the next row, unless an
instruction 8-24 precedes the time of the next row.

This is similar to a ‘MISSED CARD’ on the Reader. If the punch is
not cleared within 20 Major Cycles of the last row of a card,
another card will pass through the punch. This card will be blank
in the DEUCE field but will carry punching in the Job and card
numbering sections.

If a programme finishes with the punch and then uses D29 for the
0.S. lights there is a possibility that the first transfer to D29
after the punch is cleared will punch the next row of the card.
This will not occur if the punch is cleared within 24 Major Cycles
from the last row on which punching is required.

NS-y-16/5-56

APPENDIX 1 CONT’D

HOLLERITH TIMING TABLE

Event from which time is Time Requirement after
measured. Reader Punch this time.
a Stop instruction for any 2 4 Successful read or
row of a card. punch.
6 Read zeros.
b Stop instruction for 15 .38 Catch S.S. for next
any of first 11 rows. row.
21 46 Miss S.S. for next row.
c Stop instruction for 80 116 Catch 1st S.S. of next
12th row. card when running
continuously.

100 135 Miss 1st S.S. of next
card when running
continuously.

d Stop instruction for 11 33 TIL not yet on.
11th row.
Start of TIL. 2 2 Catch 12th S.S.
7 9 Miss 12th S.S.
Stop instruction for 18 35 TIL not yet off.
12th row.
23 50 TIL off.
23 - TIL off after P34 on
12th row.
23 30 TIL off after 9-24X on
12th row. :

Read cleared by P34 or 13 - I.D. switches can be used.

9-24X on any row.

End of TIL. 57 75 Catch 1st S.S. of next
card when running con-
tinuously.

e Call READ or PUNCH when 130 180 Catch 1st S.S. of card.
machine has stopped (or

re-call at least 1 sec-

ond after end of TIL).

f Read cleared by P34 on 0 - Recall read by 12-24.
any row.

NS-y-16/5-56

APPENDIX 1 CONT’ D
HOLLERITH TIMING TABLE

Event from which time is Time | Requirement after
measured. " [Reader Punch this time.
g Clear READ or PUNCH by | 2 2 Not read or punch same
9-24, card on re-calling.
h Stop instruction for 12th 40 - ‘Clear READ and not pass
row of a card. extra card through reader.
70 - Clear READ and pass extra

card through reader with-
out giving MISSED CARD’

alarm.
j 'Stop instruction for any 13 35 Clear READ or PUNCH by
row of a card. 0-24 and not get next S.8S.
k Stop instruction for any - 20 Successful punch on
row of a card. following row.
1 §S.S. on last row of card. - .20 Clear PUNCH and not pass
extra card through punch.
m Stop instruction for any - 24 Clear PUNCH and not punch
row of a card. on next row of card.

NS-y- 16/5-56

APPENDIX 2 g

LIST OF SOURCES AND DESTINATIONS FOR THE DEUCE.

Source Destination ‘N.I.S.
0 ID or Reader TS COUNT DL 8
1 DL 1 DL 1 DL 1
2 DL 2 v DL 2 DL 2
3 DL 3 DL 3 DL 3
4 DL 4 DL 4 DL 4
5 DL 5 DL 5 DL 5
6 DL 6 DL 6 DL 6
7T DL 7 DL 7 DL 7
8 DL 8 DL 8
9 DL 9 DL 9
10 DL10 DL.10 Triggers
11 DL11 DL11 0 - 24 Stim. Mult.
(DL11 Associated with magnetics) 1 - 24 Stim. Divide.
12 DL12 DL12 2-24 T.1.L. - Discrim. (Zero)
13 TS13 TS13 . 3 - 24 Stim. T.C. A.
14 TS14 ~1s14 4 - 24 Clear. T.C. B.
15 TS15 TS15 5 - 24 Stim. T.C.B.
(a)16 TS16 (a) TS16 6 - 24 Clear. Alarum
(or DL10 delayed by 1 m.c.) 7T - 24 Stim. Alarum
17 QSs17 - Q817 8 - 24 Clear. O?P.S.
18 QS18 QsS18 9 - 24 Clear. Punch & Read.
19 DS19 ‘ DS19 10 - 24 Stim. Punch.
20 Ds20 DS20 12 - 24 Stim. Read.
21 DS21 DS21
(b)22 DS21 + 2 (b) Ds21t
23 TS14 + 2 (b) DS21°
24 TS14 x 2 ' Triggers
25 . 14 &15 ¥ 513"
26 1415 TS13"
271 P1 _Discrim. (Sign)
28 P17 Diéb:im. (Zero).
29 P32 "0.P.S. or Punch. B
30 Zeros Magnetics read or write. '

31 Ones. Magnetics head block shift.
(a) Modified by T.C.A. - ,
(b) Modified by T.C.B.

NS-y-16/5-56 0 1Y vIC () i 2

INDEX

Page.
Addition and subtraction. 13, 44
Address Section. 25
Alarum. 18
&"and" 34
Binary Notation. 3
Bluary Point 50,4
Carry. 44
Characteristic. 26-29
Characteristic of Magnetics Instructions. 41
Constants, useful. 34
Control-Magnetics Interlock (C.M.I.) 49
Counting cycles of repetitive Loops. 20
Delay-Line Storage. 9
Delay-Lines. 10
Non Instruction Source (see DL 9-12) 58
Destinations, List of. Appendix 2.
Destination 0 31
Destination Triggers. 14
Discrimination. 17, 32
Division. 6, 49
division by 2. J, 34, 45
Double-length Arithmetic. 44
Double-length Stores. 10
Double Transfer. 28
Dummy Instruction. 46
Fixed numbers. 34, 14
Form of Instruction. 13, 24
Functional Sources. 13, 34, 45
Hollerith Timing, Appendix 1.

Para.

4.3, 6.6
5.4
4.12
6.2

2.1

7.2 6:10
6.6

5.7 - 5.10
6.4

6.1

6.4

4.16

3.1
3.1.4
8.1

5.13

4.7

4.11, 5.14
2.5, 6.10
2.3, 6.2, 6.7
6.6

3.1.2

5.8

6.8

6.1, 4.5
4.2, 5.3
4.4, 6.2, 6.7

NS-y-16/5-56

Initial Card.
Initial Input.

Initial Instructions.
Input and Output.
Operation of Punch and Reader.
Input Dynamiciser (I.D.)
Initial Input to Magnetic Drum Store.

Instruction,

Introduction.

dummy

form of
Initial
Magnetic Drum
Modification
Next
Requirements
Stop

Word

Large Programmes.
Library Sub-routines.

Link.

Logical Operations.

Long Transfer.
Loop.

Counting cycles of repetitive loops.

Magnetic Drum Instructions.

Magnetic Store.

Marker digit.
Minor Cycles.

Modification of Instructions.

Multiplication,

signed
by 2

Page.

60
56

56
15
38
15, 39
58
46
13, 24
56
11, 41

17
24
22, 38
24

61, 58
55
53
34

19, 28
15
20

5, 34, 44

Para.

8‘3
8'1

4.8
6.3
4.8, 6.3
8.2
6.8
4.2, 5.3

3.3, 6.4
5.12
4.10
5.2
4.17, 6.3
5.3

8.5, 8.2
7.3
7.1
6.2
4.13, 5.9
4.9
4.16

6.4

3.3

6.2(b)

3.2

5.12

2.4, 6.8

6.9

2.3, 6.2, 6.6

NS-y-16/5-56

Page. Para.
Next Instruction. 17 4.10
Non Instruction source (see DL 9-12) 58 8.1
Eﬁ "Not equivalent". 34 6.2
Numbering of minor cycles. : 10 3.2
"Ones" (Source 31). 34 6.2
Operation of Punch .and Reader. 38 6.3
Order of a Sub-Routine. 54 7.2
Output. 15 4.8
Output Staticiser. 38 6.3
Py, Py7, Pgo. (Source 27-29). 34 6.1
P5q 39 6.3
Parameter. 40 6.3
Programme Examples,
Successive Squares. 15, 20 4.9, 4.16
Programmed division. 35 6.2
Square root. 37 6.2
Punch out 128 results & read in more data. 40 6.3
Signed Multiplication. 47 6.9
Division using automatic divider. 49 6.10
Quadruple Stores. 10 3.1.3
‘Quasi’ minor cycle numbers. 31 5.13
Remainder after division. 49 6.10
Replacement Transfer. 13, 9 4.1, 3.1
Representation of Numbers,
Binary Notation. 3 2.1
Signed Convention. 4 2.2
Static Representation. 7 2.6
Serial Representation. 8 2.7
Round off. 49 6.9 (1)
Running In. 61 8.4

NS-y-16/5-56

Serial Representation.
Set-up Minor Cycle.
"Shift".

Sign Correction.
Signed Convention.
Signed Multiplication.
' Single Shots.

' Single Transfer.
Source 22.

Source 23-31.

Source and Destinations, List of, Appendix
Static Representation.
Stop Instructions.
Stop Key.

Storage, Delay-Line.
Delay Lines.
Temporary Stores.
Double Length Stores.
Quadruple Stores.
Magnetic.

Sub-Routines.
Subtraction.

Temporary Stores.
T.I.L.

Time of Computation.
Timing Section.

Transfer, double.
for a particular minor cycle.
long
replacement.
single.

Triggers.

Trigger T.C.A.
T.C.B.

T.S. Count.
' Wait Number.

"Zeros" (Source 30)

Page.

25

5, 34, 4
45, 49

47

47
22, 38
26
45
34

22, 38
23

10
10
10

11}041

53, 54
13, 44

10

29
26

28
20, 26
19, 28
13, 9
26, 20

14
42

10, 24
26, 30

Para.

2.7
5.5

2.3, 6.2, 6.6,
6.7, 6.9 (k)

6.9
2.2
6.9
4.18, 6.3
5.7
6.7
6.1, 6.2

2.6
4.17, 6.3
4.19

3.1
3.1.4
3.1.1
3.1.2
3.1.3
3.3, 6.4

7.1, 1.2
4.3, 6.6

3.1.1
6.3
5.11
5.6

5.8

4.15, 5.7
4.13, 5.9
4.1. 3.1
5.7, 4.15

4.7

6.5
6.6

3.11, 5.1
506 - 5.11

6.1

NS-y-16/5-56

A Short Description of the Automatic Instruction Modifier on "DEUCE"

Up to now,- thé usual method of modifying a DEUCE instruction has been by
means of ane of the scoumilators. This has the dissdventage that the accumilator
used is not availasble for the calculation in progress at the time of modification.
Furthermore, a modifying instruction is necessary and in many cases a modifying
word. The A.I.M. facility has been developed to overcome these difficulties.
Operation

When an instruction of the form 17-0 or 18-0 is executed, the first minor
cycle of Q.S.17 or Q.S.18 in the transfer period is modified eutomatically
according to the rules given be‘low.b Modification does not take place in ‘
subsequent minor cycles of transfer. If the transfer of the Word in this minor
cycle to COUNT actually takes place (i.e. if ¢ = O or 1 and w = T) the modified
word is taken as the next instruction. o ’

Operation of "Destination 0" is unchanged in that the normal next
instruction is replaced by a word from the quadruple store only if transfer is
still taking place when the timing number has counted down. Hence, if it is
required that the word modified by the transfer enters control as the next
instruction, it is necessary that the last minor cyéle of transfer should also

be the first, or differ from it by an exact multiple of four minor cycles.

Rules for Specifiying Modification
1. For Q.S8.17 (instruction 17-0)
(a) If ¢ = O in the instruction 17-0, then if in this instruction the

first two digits are considered as a binary number n, when

n =0, P5is added to the word in Q.S.17.

=]
i

1, P10 is added to the word in Q.S.17.

n =2, P17 is added to the word in Q.8.17."

=]
1]

3, P18 is added to the ward in Q.S.17.

Note that if W £ T (as vwhen 17-0 is a dummy instruction used for automatia
counting) the use of the P2 digit imposes a restriction on the Next Instruction
Source. |

(b) If ¢ = 1, then the first two digits have the same effect as above, wish
the following additional facilities:

| if P3 = 1, P22 is also added into Q.S.17,

if P4 =1, all djgifs controlled by P1, P2; P3 are subtracted instead
of being added.

2. For Q.8.18 (instruction 18-0)

Operation is as for Q.S.17, but addition and subtraction operations are
interchanged.
" '

If a modification to an instruction in Q.S.17 or Q.5.18 includes a P22
there will be no spill fram the wait number to the J digits.

There is no carry from the modified minor cycle of the Q.S. to the next
minor cycle.

Request Stop

Request Stop should not be used on instructions 17-0 or 18-0., If it is,
the appropﬂaté modification will occur repeatedly, once per major cycle, so

long as the Request Stop condition holds.

Flow Diagrams

Tt has been decided that in flow diagrams of published programs and
subroutines 17-0 and 18-0 instructions will be written in the same way as 13-0
instructions in the past? with three additions as follows: (nP1) between the
location and the 17-0, with the characteristic and modification digits following

the 17-0, For instance, -
2,g(6P1) 172 = 0, 1 (P17 + P22)

Subroutines and programs which use the A,I.M, have an M in the alphabetic

Qode number.

Example of Use of Instruction Modifier

A detailed flow diagrain is given below of a routine for storing data on the
magnetic drum. This illustrates four different'types of modification. The

coding of the Destination O instructions is of interest thus:

245 is (8%, 18-0,1, 0, 0) (shift)
2, is (6p4, 18=-0, s, 0, 1) (count)
2p7 is (10Pq, 18 -0, 1, 0, 0) .(assemble)

2; is (12py, 18 -0, 1, 1, 1) (transfer)

Tt should be noted in this example that the use of Q.S.17 has been avoided
in order that it can be used as a normel store in the calculation if desired.
A1 instructions of the routine have been confined to D.L.2 for the sake of
compactness, |

The parameters P, H, and N may be varied by coding 26, 2, and 2,, as indicated.

-l -

To produce N numbers and store them consecutively on the Magpetic. Drum,

sterting at m.c,0 of track Py/H,

times

2 26,7 2,3 o 0.3)
2 2,5 - 18, (N By)
23 (8P)85 = 0,1 (+p5) =€ — - -‘
U5 ® - 3,1) (Shift Write Heads)
30 - 10 (32)
250 18, =28
z 255 EXIT
256 259 - 18 . [2,13=10,0 (15),31].
(62,18, - 0,5 (-By) (Cownt)
| IN TS13
257 (10p4)18; - 0,1 (+P17)
Q29 (13 _~_10,) (Asserble Numbers)
%
250 18, -8/231 131

%

Q6

(2; (H0-1)—3031 ,O(Ho)1 2) ;. (2’ (Po"1)

10 \- 11 (32)

25 (12py) 18,

(7

- 0,1 (+F5 + Ppp)

- 30,1) (Magnetic Write)
o,

S

2,1 240 - 18, [2,31 - 29,1,0,(0),1@

NG

	001
	002
	003
	1.00
	1.01
	1.02
	2.00
	2.03
	2.04
	2.05
	2.06
	2.07
	2.08
	3.00
	3.09
	3.10
	3.11
	3.12
	4.00
	4.13
	4.14
	4.15
	4.16
	4.17
	4.18
	4.19
	4.20
	4.21
	4.22
	4.23
	5.00
	5.24
	5.25
	5.26
	5.27
	5.28
	5.29
	5.30
	5.31
	5.32
	5.33
	6.00
	6.34
	6.35
	6.36
	6.37
	6.38
	6.39
	6.40
	6.41
	6.42
	6.43
	6.44
	6.45
	6.46
	6.47
	6.48
	6.49
	6.50
	6.51
	6.52
	7.00
	7.53
	7.54
	7.55
	8.00
	8.56
	8.57
	8.58
	8.59
	8.60
	8.61
	A-01
	A-02
	A-03
	A-04
	B-01
	I-01
	I-02
	I-03
	I-04
	_01
	_02
	_03
	_04

