

An English Electric-Leo-Marconi mini-manual

KDF9

ALGOL programming

C All rights reserved

ENGLISH ELECTRIC-LEO-MARCONI COMPUTERS Ltd.

KIDSGROVE STOKE .ON. TRENT STAFFORDSHIRE Telephone: Kidsgrove 2141

Publication 1002 mm (R) 1000565 price: five shillings

i

ALGOL PROGRAMMING FOR, KDF 9

CONTENTS

Section Page

LIST OF ABBREVIATIONS USED IN THIS MANUAL iv

SECTION 1· INTRODUCTION

SECTION 2· 'IWO STIIll'LE PROGRAMS 5

SECTION 3' PROGRAM STRUCTURE AND BASIC SYMBOLS 7

SECTION 4· DECIMAL NUMBERS 9

SECTION 5' IDENTIFIERS 11

SECTION 6· SDlIPLE ARI'J.'H!.{ETIC EXPRESSIONS 13

SEXlTION 7' SIMPLE BOOLEAN EXPRESSIONS 17

SECTION 8· ARITHMETIC AND BOOLEAN EXPclESSIONS 19

If Clauses 8·1 19
Use of the If Clause in Arithmetic Expressions 8·2 19
Use of the If Clause in Boolean Expressions 8'3 20
A Use for Parentheses 8·4 21

SECTION 9' STANDARD FUNCTIONS 23

SECTION 10· STATEMENTS 25

SECTION 11- ASSIGNMENT STATEMENTS 27

SECTION 12- GOTO STATEMENTS AND LABELS 31

Goto Statements 12·1 31
Labelled Basic Statements 12·2 31

SEXlTION 13- FOR STATEMENTS 33

The General Form of the For Statement 13.1 33
Arithmetic Expression Element 13-2 34

Step-until Element
While Element

it

CONTENTS

(Continued)

Miscellaneous Notes on For Statements

SECTION 14· COMPOUND STATEMENTS

SECTION 15· CONDITIONAL STATEMENTS

SECTION 16· SUBSCRIPTED VARIABLES AND ARRAYS

Use of Subscripted Variables in Expressions
Use of Subscripted Variables in Statements

SECTION 17· INPUT AND OUTPUT OF DATA

Device Numbers
Simple Forms for Reading and Writing Numbers
Further Input and Output Statements
The Layout
The Format Expression
Input and Output of Text
Initialisation and Closure of Devices
Manipulation of Magnetic Tapes
Restrictions

SECTION 18· DECLARATIONS, BLOCKS AND PROGRAMS

Declaration of Simple Variables
Array Declarations
Blocks
Definition of a Program

SECTION 19· PROCEDURES

The Purpose and Application of Procedures
Procedure Declarations and Corresponding Calls
Declaration of Procedures Defining a Function DeSignator
The Value Part .
The Specification Part
The Procedure Body
The ALGOL Procedure Library

SmTIOJi 20· CCIIIIElI'r COBVEHTIONS

Section

1,. ,
1,·4
13·5

16·1
16·2

17 ·1
17·2
17·,
17·4
17·5
17·6
17·7
17·8
17·9

18·1
18·2
18·,
18·4

19·1
19·2
19·,
19·4
19·5
19·6
19·7

Page

34 ,4
35

37

,9

41

41
42

43

43
44
45
46
47
43
49
49
50

5,
5,
54
56
57

61

61
62 6,
64
66
61
68

11

iii

CONTENTS

(Continued)

SECTION 21· SWITCHES AID DESIGNATIONAL EXPRESSIONS

Sec tiOD Page

SECTION 22· BLOCK STRUCTURE AND ASSOCIATED RESTRICTIONS 77

84 The Relation between Procedures and the Block Structure
Restrictions Impo'sed upon Arr83 Bounds by the

Block S true ture
The Inf'luenoe of Block Structure on Sri tch Designators
Use of the Block Structure '

SECTION 2:5· ADVANCED USE OF PROCElXJ1IES

Jensen's Device
lrraT Identifiers' as Parameters
Procedure Identifiers as Parameters
Switch Identifiers and Designational Expressions as

Parameters
Recursive Use of Procedures
Use of Non-local Variables in Procedure Bodies

SECTION 24·

APPENDIX 1

APPENDIX 2

APPENDIX :5

APPENDIX 4

lPPERDIX 5

lPPElIDIX 6

lPPERDIX 7

lPPElIDIX 8

IlfJla

CHroKING .AN ALGOL PROGRAM BEFORE TEST

A Specimen ALGOL Program

Simple Boolsan Expression - General Form

Action of Por List Elements

Own Variables and ~s

Procedure Bodies in KDI' 9 Code

Strinss

Solutions to Problems

Basic SJ1IIbols - Standard Representations

2:5·1
2:5·2
2:5·:5

2:5·4
. 2:5·5

2:5·6

87

87
87
88

89
90
91

93

97

101

105

107

1m
113

115

12.9

iv

LIST OF ABBREVIATIONS USED IN THIS NUUfITAL

A array identifier

AE arithmetic expression

AN array name

AP actual parameter

BE boolean expression

BS basic statement

BV boolean variable

DE designational expression

DM number of dimensions

DV device number

FE format expression

F1 for list

FLE for list element

FP formal parameter

FS for statement

L label

LAY layout

LB lower bound of subscript

LO logical operator

LS letter string

LV logical value

N unsigned number

o arithmetic operator

P procedure identifier

R relation

RO relational operator

S statement

SAE simple arithmetic expression

SBE simple boolean expression

SDE simple designational expression

ST string

SUB subsoript

SW switch identifier

T type

UB upper bound of subscript

UBS unlabelled basic statement

US unconditional statement

V variable

1 • AUfHOR'S INTRODUCTION

ALGOL 60 is a programming language for describing numerical processes
and has the unique advantage of international recognition as a common
language. ALGOL's inherent merits are the bases of its widening acceptance
for both scientific and engineering applications. The power of its state­
ments often surprises newcomers. Its conciseness avoids much of the tedium
in other forms of programming, simplifies the programming of complex
problems, and makes it an acceptable medium for solving the occasional
problem. The use of conventional symbols of mathematics and the borrowing
of ordinary English words to form ALGOL symbols helps to make an ALGOL
program easy to read and understand. The ALGOL identifiers are much more
~asily recognised and distinguished by the human eye than the numerioal
storage representation of computer codes. These advantages, by making
programming easier, also enable a program to be written in a shorter time
and result in fewer mistakes.

Of particular value are the ALGOL programs and procedures published
throughout the world, which are immediately available to the user of the
language. By their means he has access to the work of recognised experts
in the field of numerical analysis and to a wider variety of computer
programs and techniques than can be obtained by using one machine code
only.

The ALGOL 60 language is defined in an official publication entitled:

"Revised Report on the Algorithmic Language ALGOL 60"*

There are practical objections to the implementation of the complete
language for programming use on KDF 9. For the information of those
already familiar with ALGOL, KDF 9 ALGOL is a proper subset of ALGOL 60
consisting of the complete language restricted as follows:

(1) No integer labels.

(2) No own arrays with "dynamic bounds".

(3) Each formal parameter must appear in the specification part of the
procedure; actual parameters corresponding to a formal parameter
called by name to which assignments are made, or which is specified
as an arr~, must have the same type as specified for the formal
parameter.

(4) Actual procedures used in place of the same formal parameter must
have similar specification parts.

The ALGOL 60 Report allows procedure bodies to be expressed in "non­
ALGOL language". For KDF 9 this possibilit,y offers two adTantages:

(i) Proced1It'e bodies in KDF 9 user code may be used for the realis­
ation of input-output facilities, or perhaps to obtain increased
speed of execution of computational procedures;

*The Computer Journal, Vol. 5 No.4. JaDJJB.ry 1963·

2

1· Author's Introduction (cont.) 1·

(ii) Segmentation of large programs becomes convenient - a code bo~
can be a call of an already translated ALGOL procedure: a preliminary
description of segmentation is given in a KDF 9L1brary Service note -
ALGOL Note 1.

It must be Q~derstood that the input-output facilities described in
this manual are not part of the language as such; they are provided in the
form of procedures and consequently can be accepted, or rejected and others
used in their place. In practice some proce~ures will come to be regarded
as stand~rd; but, equally, the range of available procedures. may be
extended to cover requirements as yet unforeseen.

Before a program written in the ALGOL language can be run on KDF 9 a
compiler is needed to produce an equivalent program in machine code. Two
such compilers accepting the same ALGOL programs are provided.* One aims
at fast compiling and is of particular application to'ALGOL programs in
the testing stage. The other takes longer to comyile but produces a
faster object program. and is therefore more suitable at a later stage of
program development. Given the Advance Control facility of KDF 9 it is
predioted that there will be little difference in speed of operation
between the translated program and an ordinary hand-coded version, when
this second compiler is used.

The present edition of the manual is a reV1S1on of the "Simple
Introduction to ALGOL Programming for KDF 9" (December 1961) and includes
a description of those aspects of KDF 9 ALGOL omitted in that document.
Subscripted variables and arrays are introduced immediately after ALGOL
statements. The section on input and output of data is re-written to
convey the new system as now being implemented. Switches and designa­
tionsl expressions are introduced in Section 21. This could be omitted
at a first reading. Another new section (Section 23) on the advanced use
of procedures discusses some important ideas, although there again
paragraph 23·4 dealing with parameters which are switches or designational
expressions could be omitted on first reading. Own variables, procedure
bodies in oode, and strings are considered in new appendices.

Systems adapted to the needs of KDF 9 users, programmers, and operators
are being built around the KDF 9 ALGOL compilers both for compiling, testing
and running programs. Since description of these is expecte1 to appear in
a separate publication it is not attempted here, except that the final
section of this manual touches slightly upon testing facilities •••

gor a working knowledge of ALGOL. merely reading the text of the
manual is hardly sufficient. T'ne reader should attempt at least a fair
proportion cf the problems and if possible find someone capable of
correcting his answers.

*For descriptions of the compiling methods see the followiDg papers.

(1) "A muli;i-pass translation scheme for ALGOL 60" by D. H. B. Huxtable
and E. N. Hawkins, Annual Review in Automatic Programming, Vol. III,
1963-

(2) "The Whetstone KDF 9 ALGOL Translator" by B. Randell to appear in
Automatic Programming ~ystems, A.P.I.C. Studies in Data Prooessing,
Vol. IV.

*~The description is now published in English Eleotric-Leo ALGOL
Notes 1 and;

1. Author's Introduction (cont.)

We gratefully acknowledge that some of the examples and problems are
due to Dr. P. Naur and are indebted to Mr. M. Woodger for reading the
manuscripts of both editions. Comments on the first edition received
from many different sources, especially Prof. H. Rutishauser, have greatly
helped in making the present revision.

It is perhaps also appropriate here to acknowledge help and encourage­
ment over long periods received by our compiler writers from Professors
A. van Wijngaarden, E. W. Dijkstra, W. L. van der Poel, and Dr. Naur.

J. S. GREEN. Ph.D.
ENGLISH ELreTRIC-LEO COMPUTERS LTD.
Kidsgrove, Stoke-an-Trent, Staffs.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5

2· 'fiIW SHa'LE PROGRAMS

Here is an ALGOL program:

be in ~x,y, Z;
open (20);

x := read (20);

y ,- read (2O);

close (20);

z := x + Yj

open (1O);

output (10, z);

close (10)

end

This program will read two numbers supplied by means of punched paper
tape. It will add the numbers together and then punch the result on
paper tape. (The output paper tape may be printed when desired on an
off-line flexowriter).

The above program illustrates some of the elements of ALGOL
programming which we shall now proceed to examine. The actual operations
on the computer are stimulated by the statements:

x := read (20), y := read (20), z := x + y, and output (10, z).

The first two of these read two consecutive numbers from device
number 20, a paper tape reader, respectively assigning them as values to
x and y. The third statement

z := x + y

takes the values of x and y, adds them and assigns the result to the new
variable z. Finally, the fourth statement takes the value of z and
punches it out on a paper tape punch, device number 10, in a standard
form.

The reader will note that besides the four statements which stimulate
the actual operations of the program, it contains also the underlined
words begin and ~ at the beginning and end of the program respectively,
a rather odd phrase, ~ x, y, z, and four further statements containing
the words 'open' and 'close'. The underlining indicates a word that is
to be taken as a basic ALGOL symbol. The begin and ~ brackets, as
they are called, are used to bracket together pieces of program which are
to be treated as one whole.* In this particular case they enclose a
single program.

*A vertical line is often inserted to connect a corresponding
begin and ~. This may help to improve the appearance of a
program by showing up its structure, but it has no operational
significance.

6

2· Two Simple PrOgrams (cont.)

The phrase real x, y, z is called a declaration and the particular
declaration given-here states that the quantities represented by x, y and
z are to be treated as ordinary numbers. Any arithmetic performed upon
these numbers will use a floating decimal point. The statements using
the word 'open' are concerned with preparing the reading and writing
devices the pumbers of which appear as arguments. Statements using the
word 'close', shut down the devices specified. Finally, the reader will
also notice a sprinkling of semicolons. These are used to mark the
divisions between declarations and statements.

,
Here iSianother program:

be n real x, y, z;

open (20);

end

x :z read (20);

y := read (20);

close (20);

z := (xt2 + 3) X (x + 1) X (xX y - 2)/3;

open (10);

output (10, z);

close (10)

This program again reads the values of x and y, but computes a much
more complicated arithmetic expression before finally punching out the
result. Writing the formula for z in normal mathematical form we have:

z = {x2 + 3){x + 1)(xy - 2)/3.

By comparing this with the ALGOL form readers will be able to
appreciate the meaning of the ALGOL arithmetic operator symbols. This
example serves to illustrate the inherent power of an ALGOL statement.
Even more complicated expressions are allowed and the rules for
constructing them will be described later.

In ALGOL the symbols x, y, and z are known as identifiers and in
the two programs given here they represent variables which take numerical
values. The 'read', 'output', 'open' and 'close' ooourring in the
programs are also called identifiers, but they are used to identify a
particular process or procedure to be followed by the computer.

The reader may now wish to glance at a larger and more practical
type of program. Such a program has been provided in Appendix 1 of
this manual, but at this stage it is not expected to be fully understood
by the reader.

In KDF 9 ALGOL it is possible to stipulate completely the form in
which results are to be laid out when printed. The program of Appendix 1
contains such stipulations about l~out, the result of which can be seen
in the results sheet following the program. The headings, column l~out,
and line spacing are all fixed by statements in the program itself.

I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I

DELIMITERS

/~ DECU RA TO"'
OPERATORS SEPARATORS BRACKETS & SPECIFICATORS

own

(boolean

ARITHMETIC RELATIONAL LOGICAL SEQUENTIAL) integer

[real
10 --

+ < and (1\) go to] array

~ QE (V) if ; C (.)
procedure

X - not (0) then .- J (.) switch 0-

/ ~ ~ (=) else * (w) begin label . > (=» . i!!!P for .lli.E. end string

f ¥: do until value

while

~

FIGURE 1 KDF 9 ALGOL DELIMITERS (S-CHANNEL PAPER-TAPE VERSION)

Wherever the KDF 9 ALGOL symbol differs from the corresponding symbol
of the ALGOL 60 Reference Lam!ualle. the latter is ltiven in Darentheses.

7

PROGRAM STRUCTURE AND BASIC gOLS

In the previous section we have attempted to convey some idea of the
general structure of an ALGOL program by means of two simple examples.
We propose in the .following sections to examine the detailed grammatical
structure of the ALGOL language, considering first the basic ALGOL symbols
and in later sections the various language entities which may be built up
from these symbols.' The review includes:

1. Basic symbols.

2. Numbers.

3· Identifiers.

4. Expressions.

5. Statements.

6. Declarations, blocks and programs.

7· Procedures.

Some of the above entities will provide ideas new to the readsr but
few of them are inherently difficult to understand. Together with their
associated rules they are required in order to systematize the expression
of computational processes. Computers are not sufficiently versatile to
absorb information about problems without such systematization. Because
of this it is the duty of the programmer to obey the rules in formulating
his problem.

The building bricks of an ALGOL program are called basic symbols.
These are:

1., The letters of the English alphabet, both lower
and upper case.

2. The digits 0 to 9.
3. The logical values .E:!!!. and l!!!!!!..
4. S1JIlbols called delimiters.

Delimi ters are:

1 • Operators.

2. Separators.

3. Brackets.

4. Declarators andspecificators.

Figure 1 lists delimiters in diagrammatic form. Some of the symbols
in the diagram have a conventional 'significance and may be clear to the
reader; others have no obvious significance. It IIISY help him to note
that'sequential operators define the path to 'be taken through the program;
separators serve the purpose of marking divisions between certain ALGOL
entities, while declarators and specificators are symbols used to describe
the properties of identifiers. The meaning of symbols not understood at
this stage should become clear later.

8

3- Program Structure and Basic Symbols (cont.)

All the basic symbols in KDF 9 ALGOL have been collected together in
this section for reference. The ALGOL Report allows different 'hardware
representations' for equipment with different sets of symbols and the set
shown in Figure 1 is that available for use with eight-channel paper tape
on KDF 9. \7herever this differs from the official ALGOL 60 reference
language, the latter is given in parentheses. There is another 'hardware
representation' available for equipment using five-channel paper tape
listed in Appendix 8, but throughout the rest of this manual the eight- '
channel representation is used.

The reader should note that when words from the English language have
been appropriated for use as basic symbols and given a particular ALGOL
significance, they have also been distinguished by means of an underline.
Thus the logical values ~ and ~ and delimiters such as if, begin,
integer, and ~ must always retain their underlines.* They are
treated as single symbols, the component letters having no individual
significance.

Insertion of blank spaces makes no difference to the meaning or
operation of any part of ALGOL.** This facility enables the programmer
to write his program in a format which makes it easier for others to
follow its course of ac tion.

When used in a program .the basic symbols are strung together in a
linear sequence with appropriate spacing, making the end of one line of
program continue on the next. As alreaQy stated, the basic symbols are
used to build up decimal numbers, identifiers, expressions, statements,
declarations, blocks, procedures, and, ultimately, programs according to
certain rules. We now explain the purpose of these entities, and rules
for their construction.

*Bold type is allowed in lieu of underline in published ALGOL 60 programs.

**When spaces with operational significance are required in strings (to be
explained later), the symbol * is inserted to indicate their position.

9

DECIMAL NUMBERS 4'

Normal signed and unsigned decimal numbers using the digits 0 to 9
may be written in ALGOL and have the ordina17 meanings.* A decimal
point may only be used when it is followed by a fractional part,
consisting of at least one digit. Use of decimal integer exponents is
also allowed, and these DlUst be written with the base 10 inserted below
the line in small type, thus:

decimal number '0 integer exponent.

The exponent may be signed or unsigned. The prelimiD8l7 decimal number
may be omitted, while if the subscript ~ appears the integer exponent ~
not be omitted.

The following examples are allowed:-

0 16 +6 -79 +10 127 783

123·56 -0.00312 +.65 74.0 .00

7.5106 -33. 261'0+2 +210-1 -'7,05 /0-15

The following examples are NOT allowed:

23· 4'0. 25 3"-102 14.,.,5 +6102. 10,000

15'0 3.510(-7)

Numbers in ALGOL and variables denoting numbers are said to be of
type integer or .!:!!!. Type integer refers to integers having neither
exponent part nor decimal fraction part. Type .!:!!! refers to any
allowed form of number which is not of type integer. Integer arithmetic
is normally used within the computer for type integer numbers and
floating point arithmetic for type ~.

Examples of type integer: 0

Examples of type ~: +6.0

2

-2·931

-9710

6";'

The maximum working accuracy available in KDF 9 ALGOL for l:!!!J.
quantities is between eleven and twelve significant decimal figures.

An integer quantity must lie in the range _239 to +239_1.

*Though defined in the ALGOL 60 Report, signed numbers are never in fact
used in programs,' signs alw~s being invoked via the definition of
expressions (See Section 6). They may however be used for input data
or results in KDF 9 ALGOL.

**For the purpose of the lists of examples shown in this and the next
section a string of five or more spaces is used to separate each
example.

10

4· Decimal Numbers (cont.)

Problems

(1) Write numbers having the same values as the folloYiing. but which co
not include an exponent part.

+7. 293,08

98 •12,0+2

(Solutions to Problems will be found in Appendix 7.)

(2) The values given by the following numbers may, in some Clises, be
expressed more economically by using a number wit.h an exponent part.
Show where this is the case.

17000

1000

-0.00134

1.0024

-0.0020041298

170

(3) Some of the following sequences of Ch2..1'acters represent ALCOL
numbers, some do not. Mark those which do.

-.0 ot:

+13. 4710+16

4 X 10-2

(16.20)

-17.2·30

,i4.2

-88'0-7

1,241()3

13·411 732

2.48,on

X 643.2

12.'08

11

IDENTIFIERS

Mention of identifiers has already been made in Section 2. They may
be single letters of the English alphabet, upper or lower case, or
sequences of letters and numbers.* The first symbol of a sequence must
be a letter. The following could be used as identifiers.

i

J1

abCD43e

D~s (~35
exp

Delta alpha

In accord with Section 3 the spaces within the identifiers Days 1335
and Delta alpha are ignored by the ALGOL translator. Note that though
the sequence A256b might be used as an identifier. 256b may not.

Identifiers are used for a variety of purposes. Amongst others,
they may denote labels which mark reference points in the program, and
they may also denote variable quantities which take a value in the usual
mathematical sense.

An identifier which is a variable is said to be of type·!!!!, integer.
or boolean. Variables of type l!!1 and integer were mentioned in Section 4.
Variables of type boolean can take the logical values ~.Dr~. The
means of defining the type of a variable will be explained in Section 18.

Problem

Some of the following sequences of characters can be used as
identifiers, others cannot. Mark those which can.

begin

a xv

4111

ppp3

p1·2
Start value

number

Q(2)

7VPQ

Y.1
a29v3
epsilon

*Note that though the length of an identifier may be almost unlimited only
the first eight characters are significant to the ;1hetstone produced
KDF 9 ALGOL translator, while 155 characters are significant to that
produced at Kidsgrove.

13

6· SrnPLE AlUTHMETIC EXPRESSIONS 6·

Numbers, those identifiers which represent variables, and other
ALGOL entities having a single numerical value may be used in combination
with arithmetic or logical and relational operators and. certain sequential
operators to form arithmetic expressions or boolean expressions.
Initially we shall restrict our attention to subclasses of both these
types of expression, namely, simple arithmetic expressions (considered in
this section) and simple boolean expressions (considered in the next).*

It is even necessary to leave a general definition of simple
arithmetio expressions in ALGOL to Section 8. However, we may now s~
that they include arithmetic expressions as understood in the normal
mathematical sense, when these are written in the linear form which
follows:

, , , ,
\0 :

, I

N o ••••••• 0 V o N
V

Here N stands for an unsigned number, V for ~ variable of ~ or integer
type, and 0 for an arithmetic opera tor. The diagram is intended to
indicate that N and V are interchangeable. The initial operator may
only be an adding operator (+, -) and the broken parentheses indicate
that in any case its presence is optional. At least one operand (N or
V) must be present in an arithmetic expression.

Example:

2Xx t3+n+2

The meanings of the operators used in this example are given below.

The order of execution of arithmetic operations follows certain
definite rules. The operations are executed in order of occurrence from
left to right unless the adjaoent operation has a higher priority accord­
ing to the following list:

1st

2nd X / i-

3rd +-

Parentheses may be introduced within a simple arithmetic expression to
override the order of evaluation given by the above rules provided that
the enclosed symbols form a legitimate arithmetic expression. The
arithmetic expression with its enclosing parentheses may be introduced
within the simple arithmetic expression in aDf situation where an unsigned
number or variable is allowed.

The arithmetic operators have the following meanings:

*We use this last phrase to maintain the parallel wi th simple arithmetic
expressions. Both the old and the revised ALGOL 60 Reports use the
phrase "simple Booleans".

14

6· Simple Arithmetic Expressions (cont.) 6·

t is the sign of exponentiation. The base precedes the sign and the
exponent follows. The operation is effected as in ordinary
ari thmetic ~Ii th the following comments and exceptions. No values
of base and exponent which would lead to infinite, indeterminate,
or imaginary results are allowed, and when the exponent is ~ the
value of the base may never be negative. The result of exponentia­
tion is of the same type as the base, if the exponent is integer,
and positive or zero. O~herwise the result is of type real.

x + - all have their conventional meanings. The type of the resul t is integer
if both operands are integer, otherwise the result is ~.

/ T both denote division. The first operator ~ be used with any
combination of operands and produces a result of type~. The
operator;. is only used for two operands both of type integer and
yields a result of type integer as folloVls:

n ~ m = sign(n/m»(whole number part (modulus(n/m»

The type of any resul t obtained by the operation of the above rules
is as stated. If, for example, the result of some operation involving
~ type numbers happens to have an integer value, its type is not
thereby changed from ~ to integer. In terms of the internal working
of the computer, though the result happens to be an integer it is still
in floating-point form.

Notes:

(1) In multiplication the multiplication Sign must never be omitted.
One may wri te 5 X' y and (a + 2) >< b, but not 5 y and (a +2)b.

(2) Two operators must not appear adjacent to one another. One
may vnrite +3)((-x) and yf(-4), but not +3)(-x and yt-4.

Examples of si~ple arithmetic expressions:

2 + 2t3 = 2 + 8 = 10
(2 + 2)t3 413 = 64

'1 + 2>< 5 - 3t2 1 + 10 - 3'2 = 11 - 3t2 = 11 - 9 = 2

The results of these three expressions are of integer type. The
following give ~ type:

3/2 - ·5 1.5 - .5 = 1.0

9t.5t3 - 7 t 2 3.0'3
27.0 - :3

If x = 4.5. y = 2.3,

7 ~ 2 = 27.0 - 7 ~ 2

24.0

x + 3 X yt2t2 4.5 + 3 X 5.2912 = 4.5 + 3 X 27·9841
4.5 + 83.9523 = 88.4523

15

6· Simple Arithmetic Expressions (cont.)

Problems

(1) Evaluate the following expressions stating the type of the final
res,tlt.

(i) -4.6/4 X (16 + 2)
(ii) +60 - 5 X (3 + 2 t(4 - 1).

(2) Some of the following sequences are arithmetic expressions, some
are not. Uark those which are.

(i) a X b/c'd/e X f

(ii) +aX -b

(iii) 2'06 X 4.3 + Q

(iv) 2 X 6/4.3
'0

(v) 3.84,0(7 + n)/4

(vi) PQt+ 7.3

(vii) -(+(-v))

(viii) p/qrs X tu - v

(3) Assuming that at a certain point in a progTam the values of seven
simple vaxiables are as follows,

va = 2, vb = 3, vc = 4, vd = 5, ve = 6, vf = 7, vg = 8,

find the values of the following expressions:

(i) va + vc X vb/ve

(ii) vd X (vc + vg)/ve/va

(iii) vct(vd - vb)

(iv) vftva X (vf - vc)/vb/(vb + vc)

(v) vctvbtva

(Vi) (ve - vf - va) f vc

(Vii) vc f (vg - vb)

(Viii) (vg - vd)tvb t ve

(4) Write the following mathematical expressions as ALGOL expressions,
wi thout using red'mdant parentheses:

(i) S + .!....::...!
v2

(ii) (u - w) (1

(iii) n + m a

(iv) bn
a

b + s n
(v) a

a3
- k(a - k))

16

6· Simple Arithmetic Expressions (cont.)

(vi) (qv)g

(vii) ~

(viii)

s + t r

17

SIMPLE BOOLEAN EXPRESSIONS

A boolean expression is a rule for computing a logical value. The
res~lt may be either the value t~le or the value false. The boolean
expressions which occur in practICe usually also belong to a subclass
called simple boolean expressions.

A simple boolean expression consists most frequently of a single
relatie'n v/hich takes the value !!:!a!. or false. By a relation we mean
two s.~mple ari thmetic expressions separated by means of one of the
re la tional opera toJ. E. :

These operators have their conventional mattematical meanings.

An example of a relation might be:

n = 0

This relation takes the value true if n is zero and the value il!:!!!!. if n
is not zero. Other examples might be:

n)(h X (n X h + 2 .>(z) > 11.51

(at2 + bt2)t2 -< a + b

The fo~ of a relation can be depicted as follows:

SAE RO SAE

where SAE stands for a simple arithmetic expression and RO for a relational
operator. In performing the operations involved in such a relation to
find its logical value, the simple arithmetic expressions are evaluated
first, from left to right, and the relational operation is performed last.

A sireple boolean expression need not be a relation. It could be
merely a logical value or a boolean variable. It could take a complicated
form involving a number of relations, boolean variables and logical values,
the values of which are operated upon by means of the logical operators
!!2! (-,), !!!§., (A) and $: (V), amongst others. Appendix 2 describes the
forms which !U'e allowed, but the reader may wish to leave this to a second
reading.

Problem

If i = 2, j .. 3. x .. 4.5 and y = 2.2, what are the values of the
following simple boolean expressions:

(i)

(ii)

(iii)

(iv)

i><j~i+j

j/ic::::: xjy
(x + y) X (x - y) .;, 0

1-i+5X5 .. 0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

19

8· ARIT~~TIC ANn BOOLEAN EXPRESSIONS 8·

8·1 If Clauses

It is extremely useful in any programming language to be able to
make a program choose its course of action depending upon the
situation arising at run time. Such facility is allowed in ALGOL by
mAans of the 'if clause'. Depending upon the truth or falsity of a
boolean expression the progr~n will either obey different instructions
or supply the values of different expressions.

For example we might wish to have an arithmetic expression which
supplies the value of x2 + 1 if X is greater than zero but otherwise
supplies the value -1. We could write the ALGOL expressions to do
this as follows:

II x;::> 0 ~ xt2 + 1 ~ -1

The first part of this expression,

if x;:::>O then

is called an if clause. An if clause is always written in the form:

llBE~

where BE stands for a boolean expressions (as yet not fully defined
but including simple boolean expressions). The basic symbols it
and ~ are sequential operators.

Example of another if clause:

if lambda;;;o. 7071 0678 ~

8·2 Use of the If Clause in Arithmetic Expressions

As already shown in the first of the above examples it is possible
to extend the idea of the arithmetic expression by means of the if
clause. Besides the simple arithmetic expressions considered in
Section 6 it is also legitimate to have arithmetic expressions
commencing with an if clause and completed by two alternative
expressions, the first a simple arithmetic expression, the second
itself an arithmetic expression. Thus, an arithmetic expression may
be of the form,

if BE then SAE ~ AE

where SAE and AE stand for a simple arithmetic expression and
arithmetic expression respectively.

20

8· Arithmetio and Boolean Expressions (oont.)

Examples:

(a) if n, = 0 !!wl 0.5 ~ 1

(b) g lambda f 0 ~ alpha X (1 .. alpha) x exp{lambd.af2)/

(lambda x 2.3282180) .!!.!!. 0.48394

8·

In the above eX8lllples both the al terna ti ve expreesions following
!!wl are simple arithmetic expressions.' We could, however, take our
more complioated definition for an arithmetioexpression arid use it.
for the expression following the symbol!!!!. We might then obtain
arithmetio expressions like those which follow.

(a) g i .. 2 l!l!!l p .. q !!!! .!! i = 3 ~ p + q!!!! 0

t I I 1
~ I

SAE AE

I
AE

(b) (Appendix 2 mUst be read, in order to appreoiate this exa~ple.)

.!! p <:: 0 !!!S q<:: 0 then (px q .. p + q)t2

.!1!!.!. if p::> O~ q> 0 .l!'!!n p)((q + 1)t2

8·3 Use of the If Clause in Boolean Expressions

Boolean expressions run parallel to arithmetic expressions;
they may use if olauses in a similar manner. Thus a boolean
expression may be of the following form:

.!! BE ~ SBE ~ BE

Of oourse, boolean expressions also include simple boolean expressions.

The following example shows a boolean expression of a fair~
complex form. The quantities Bi, B2, B3, B4, B5, B6 and B7are
variables of type boolean and some are used as simple boolean
expressions and others as boolean expressions.

BE
I

BE SBE BE
I 0 ,----__ .1.-1 ----,

if IUBi then B2 else B3 then B4 .!!!!,Iif B5 ~ B6 !!!! B1
--Y-, I,J-y- t,J ~ t,J

BE SSE BE BE SBE BE

The grammatioal struoture has been'indioated by means of bracketing.

21

8· Arithmctic and Boolean Expressions (cont.) 8-

8-4 A Use for Parentheses

An arithmetic expression or boolean expression cODUDencing with
an if clause may be incorporated wi thin a simple arithmetic or s~ . .Inple
boolean expression wherever a variable of the corresponding type is
allowed, if and only if, it is enclosed within parentheses. This
means that simple arithmetic and simple boolean expressions IrAY be
quite complicated. In practice such forms do occur occasionally.
The following is an example of a simple arithmetic expresoion
incorporating an arithmetic expression in parenthesed.

JO + (x - y) x (if n ~ 0 ~ 0.5 ~ 1)

Problems

(1) Wri te an arithmetic expression which. will evaluate -1.L
1 + t 2

if A is greater than pi/2, otherwise will evaluate ~
1 + t 2

(2) Write down an arithmetic expression which will evaluate

x - 1

x2 _ 3x + 4 (Ooo;;xtE;;;1)

x+1 (x::>1)

STANDARD FUNCTIONS 9'

The scope and value of ALGOL expressions are enhanced by a facilit,y
for inserting functions, just as variables m~ be inserted. One merely
writes down a function's name with appropriate argument or arguments.
Here we consider certain standard functions which may be used, although
other functions are also available as explained in Section 19 on Procedures.

The standard functions are some of the more frequently occurring
functions of analysis and are listed below:

abs (AE)

sign (AE)

sqrt (AE)

sin (AE)

cos (AE)

arctan (AE)

In (AE)

exp CAE)

entier (AE)

for the modulus (absolute value) of the value of the
expression AE.

for the sign of the value of AE (+1 for AE >- 0, ° for
AE = 0, -1 for AE <0).

for the square root of the value of AE.

for the sine of AE radians.

for the cosine of AE radians.

for the principal value in radians of the arctangent
of the value of AE.

for the natural logarithm of the value of AE.

for the exponential function of the value of AE.

for the largest integer not greater than the value
of AE.

These functions operate indifferently on arguments both of type !!!l
and integer, which must be arithmetic expressions. The functions all
yield values of type real except for sign CAE) and entier (AE) which have
values of type integer:-- When quoting a standard function within a
program, it is unnecessary to make there any specification of the effect
expected from this function.

The following examples show the use of standard functions in arithmetic
expressions:

FUNCTION

abs (AE)

sqrt (AE)

exp (AE)

ARITHMETIC EXPRESSION

abs (1 - 2 X J1/JO)

(1 - alpha)/ sqrt (2 X alpha)

JO + exp(- x12) X (g n = 0 then 0.5 ~ 1)

The effect of the function entier is shown by the following results:

entier (6.99) 6

en tier (-4.2) = -5

A useful expression is entier (x + 0.5) which takes the value of the
nearest integer to x.

24

9' Standard Functions (cont.) 9-

Problem

Write the following expressions in ALGOL using standard functions:

a cos x + b sin x -

a cos2 x + b sin2 x +

25

10· STATEMENTS 10·

Those assemblies of basic s,ymbols which form units of operation within
an ALGOL program are called statements. Statements written consecutively
are usually also executed consecutiyely, and two independent statements
written consecutively are always separated by a semicolon, thus:

S; S

The &tatements contained in the two simple programs of Section 2 obey
this rule. We repeat the statements of the first of these programs
below for the reader to note that this is so.

open (20);

x := read (20);

y := read (20);

close (20);

z := x + y;

open (10);

output (10, z);

close (10)

It is possible to write a statement containing other statements
within itself by forming either a block or a compound statement and we
shall consider these new ALGOL entities in later sections. We consider
now some of the possible forms of the simple statement.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I

I

I
I
I
I

27

ASSIGmmrT STATEMENTS

Some of the ALGOL statements appearing in the previous section are
assignment statements, for example:

z := x + y

This statement is executed by giving the quantity z the value of x + y.

The symbol, :", is the assignment symbol and is pronounced as "is
assigned the value of" or "becomes".* The complete statement would
read:

z is assigned the value of x + y.

Tne above example is particularly simple, but more complex forms are
allowed. Thus, on the right hand side of the assignment symbol, one
could have any arithmetic expression, or even a boolean expression if the
variable on the left side were also of type boolean. It is possible to
extend the left hand side by writing down a 'list of variables (oalled
left part variables) with assignment symbols inserted to separate each
from its neighbour. The value of the expression is then assigned to all
the left part variables.

The assignment statement in its general form ~ therefore be
illustrated as follows using V to stand for any variable:

IV : = V: = V: =/ {:
I

Left part list

The name left part list is given to the list of all the left part
variables together ,dth the assignment symbols as shown in the diagram.

Examples of Assignment Statements:

h := 0.1

JO : .. n := 0

x := z + n X h

JO := JO + exp(-xt2) X (,ll n .. 0 then 0.5 !!§.! 1)

Bi := B2 1- B3 := ~

Bool 1- n f m + 1

TYPes in assignment statements must obey oertain rules, for the most
part a fairly obvious set. Thus, all variables in a left part list must
be of the same type. If the variables are boolean, so I1II1St be the
expression on the right. If the variables are of type I.!!!! or integer
the expression must be arithmetic. However, it is allowable to have the

*The symbol := has a different meaning from the symbol =, denoting
equality. The latter asserts the current situation to have a
particular property, while the former performs an operation whioh ~
ohange the o1arent situation.

28

11· Assignment Statements (cont.). 11·

arithmetic expression differing in type from the variables. In this
event it is understood that the numerical value of the expression is
transferred to I!!! variables and the largest integer not greater than
AE + 0.5 to integer variables (that is, the nearest integer). Note
that the rule for assignment of a real arithmetic expression to an intege~
variable does not correspond to the system followed in integer division.

Example I

Find the action of the followillg assignment statements, given that
n is of integer type, and x and y I!!!.

n 1= 1;

x 1= 3.2;
y 1= x + 1;

n 1= n + 2;

x 1= X + y /2t(n + 1);
Y 1= II n - 0 .!!W! x + yo .!!!!. x - yo

We form a table containing a column for each variable, in which each new
value of this variable is entered.

n x y

1 3·2 4.2
0 5·3 9.5

Final valuesl- on = 0, x - 5.3, y a 9.5

Problems

(1) Using the scheme of the example above, follow the action of the
following statements and find the final values of the variables.
!hey are all to be taken as type I!!!.

a Is b := 7;
p 1= a + 3 X b - 2.~-1;

q 1= P + (a + 3)/(-b - 13);
a 1= p 1= q - b X 0.2

29

11· Assignment Statements (oont.) 11·

(2) Using the same system find the final values of real variables r1,
ra, rb, and integer variables n, i, j.

n := 5;
r1 :s n/(n + 15);

rb := n + 6/(6 X r1 + 0.5);

i := n := n - 2;

j :- rb - i;

ra :,. (j - i) X r1 X (rb - 4);

r1 := ra + rb + n + i + j + ax r1;

rb := (r1 - rb X n + j - ra)t(rb - j) + raj

j := n := 1 + n + (j - 3);
i := n + ra

Using the same soheme again find the final values of the real
variables ra, rb, the integer variable ia, and the booleaii"Variables
ba, bb.

ra := 7.5;

ia := 5;
rb :.. 3 X ra - 2 X ia;

ba :- rb>ia sa ia>ra;

ra :- 2 X (ra - ia) -1;

ba : = !!2! ra >1& .2£ ha;

bb : .. ba sa rb::>ia sm. ra.<rb

(This example requires a knowledge of the oontents of Appendix 2).

12· GOTO STATEMENTS AND LABELS 12·

12·1 Goto Statements

Goto statements usually take the form:

goto L

where L stands for any label. They interrupt the no~~l sequential
flow in the execution of statements by causing a jump to the statement
prefixed by the label L. The label L may be any identifier not used
for some other purpose,* while the basic symbol ~ may also be
written as ~ if desired. The following might occur as goto
statements.

R

SKIP

&l.1Q. Repeat

L25
x y Z P

Corresponding to the label appearing in the goto statement, the same
label must be inserted elsewhere in the program to specify the
destination. Insertion of this label is performed by labelling
statements, as now described.

12·2 Labelled Basic Statements

The two forms of statement, assignment and goto statements
already mentioned are included in the category of unlabelled basic
statements (UBS). A d~ statement also exists and is included
in the same category. This is simply an empty space which does
nothing.

A label may be prefixed to an unlabelled basic statement in
the following way:

L : UBS

The result is called a basic statement (BS).

The general form for a basic statement allows any number of
labels:

L : L : •••• L : UBS

It also includes the unlabelled basic statement as a special
case. (It will now be seen that a d~ statement might sometimes
be useful for setting a label).

*In ALGOL 60 an unsigned decimal integer may also be used as a label but
th.is is not allowed in KllF 9 ALGOL.

12· Goto Statements and Labels (cont.) 12·

Problem

The following piece of program generates a sequence of values
for SUM. Find the first four of these values. The variables p,
q and SUM are ~, while n is integer.

n 1= 1;

P 1= 0.5;

SUM 1= 0;

q 1= 1;

loop I SUM 1= SUM + qfn;

q 1= q X p;

n Is n + 1;

goto loop

FOR STATEMENTS

ALGOL has a speoial form whioh enables the exeoution of any
statement to be repeated a number of times. This is oalled the 'for
statement'. It is the most appropriate ALGOL equivalent to a repeated
loop in normal maohine language programs and next to the assignment state­
ment it is probably the most valuable s'\O&tement available.

Two simple examples will help to ~lain what a for statement is like
befor~ we define the general form.

!2! i := 1 stElp 1 Jmll! 5 .S2 x : .. x + 12

!2! x :,. 2 .!!lll! y<.O .S2 y :- y + x

The first of these for statements inoreases the value of x by 12 on
five oonseoutive oooasions at the same time incrementing the value of i
by 1 until it beoomes greater than 5. The seoond example repeats the
statement, y := y + x, for as long as y<O, keeping x at the value 2
during that time.

13·1 The General Form of the For Statement

The general form of the for statement is written as follows:

is. V := FL .S2 S

where V stands for a oontrolled variable and S for any statement.
FL stands for a 'for U.st' whioh we now explain.

The for list is oonstructed of for list elements (FLE) according
to the form,

FLE, FLE, ••••• FLE

A for list element ~ take any of the following forms:

AE

AE step AE until AE

AE.!hll! BE

where the basio symbols step, .B!U!! and wbile are separators,
separating the arithmetio expressions (AE) and boolean expression (BE).

The for list gives a rule for computing the Values which are
oonseoutively assigned to the oontrolled variable before. eaoh
execution of the statement following do. This sequenoe of values
is obtained from the for list elements by taking these one by one in
the order in whioh they are written. The effeot of the three types
of for list element ~ best be explained by means Of examples.

34

13' For Statements (cont.)

13·2 Arithmetic Expression Element

for x := (p + q)i3, p X q 2£ Y := y/x

This for statement assigns the value of the arithmetic expression
(p + q)t3 to x and then executes the statement y := y/x. It then
returns to the for list and assigns p x q to x. The statement
y := y/x is again executed. The for statement has now been
completed and control passes to the next statement in the program.

13'3 Step-until Element

i2!: n := 1 step 1 .!Yill1. 102£ m := nf3

This statement calculates the cubes of the first ten integers.
It begins by assigning the value 1 to the controlled variable n
and then obeys the statement following the symbol do. The contI~lled
variable is noVl increased by a step of 1 making i t-;;: = 2. The
statement is again obeyed using the new value of n, and n increased
once more. The process continues until n becomes greater than 10
when the for stateJ:lent is finished and all cubes up to 103 have been
calculated (but only 103 remains as the value of m).

Any arithmetic expression may be used for the initial value,
the step and the limit in the step-until element. This ~ lead to
negative steps or even to steps which change sign during the execution
of the for statement. A complete specification of the action in
such circumstances is given in Appendix 3.

Problem

(1) Follow the action of the following statements

Delta x : = 0.1;

~ x := 0 step Delta x B!!.ll!. 0.55 do y := (1 - x)f2

(2) Write a for statement to add together the first n integers.
First solve the problem by writing a preliminary assignment
statement before the for statement, then find another solution
which only requires a for statement.

13·4 While Element

i2!: k := i + 1 :!hilii x (i "- 1)<202£ i : .. k + 2

In this for statement the value of the arithmetic expression i + 1
is repeatedly assigned to k and the statement i := k + 2 executed
for as long as the boolean expression i x (i - 1)<20 is true.
Assuming an initial value for i of i .. 0, the following values of
the variables are obtained.

35

13' For Statements (cont.)

k i(i - 1) i

Initially - - 0

1 0 3
4 6 6

7 30

The values of i and k immediately before leaving the for statement
are i = 6, k = 7.

Problems

Follow the action of the following for statements.

(1) fQr p := p + 2.Y!h.lli pt2 + qt2<:100 .9£ q := p + 1
where before entry p = 1 and q - -7.

(2) for i := 2, 5, 6 sJep 1 .!:!!Ull10, -1 :!hili m<:0.9£
m := i x (i + 1

(3) If p, q, r, s are ~ and k, m are integer, find the values
assigned to controlled variables in the following for statements
and the final value of s:

p := 1; q := 2; r := 3; s := 0;

for k := p + q, q - p, r X p - q .9£ s := s + k;

for m := q step r.!:!!Ull 7 X q + 1 ~ s := s - m;

for k := 2, s, 2 step 2 . .!:!!llil 6 ~ s := s + 2 x k;

for m := s + 45. m + 2 ~ s<:O .9£ s := s - m;

fQ!: k : = 1 step 1 .!:!!Ull 5 ~

ill m : = 3 step -1 ~ 0 do s : '" s + k + m

13'5 Miscellaneous Notes on For Statements

Note (1) In ALGOL the controlled variable has no defined value after
the for statement has been completed by exhaustion of the
for list. However, the value left by one for list element
may be used in the next element of the same list, as in

fQr i := 1. i + 1 while •••

Note (2) Labels may be prefixed to a for statement.
form of a for statement is:

L : L : ••• L : i2!:. V := FL .9£ S

The complete

13· For Statements (cont.)

Note (3) Exits from within a for statement body, that is the
statement following a~, by means of goto statements are
allowed. In such an event the controlled variable keeps
its current value on exit. (The importance of this and
the following note will be better appreciated when later
sections of the manual have been read and it is realised
that a for statement body can contain many statements.)

Note (4) A goto statement outside a for statement may not refer to
a label within the for statement; that is, a jump into
a for statement body from outside is not allowed.

14· COMPOUND STATEMENTS 14·

In Section 10 the reader was told that statements might be grouped
together to form blocks or compound statements. We now write down the
form to be taken by the compound statement:

L : L : ••••• L : begin S; S; ••••• S; S ~

The sequence of one or more statements is surrounded by the statement
brackets, begin and ~. These two basic symbols enable the sequence of
statements to be employed as one whole.* Labels ~ also be prefixed if
required, but are not essential. Note also as a matter of punctuation
that the final statement S in the sequence need not be followed by a
semicolon; there is no following statement from which it must be
separated.

Examples:

(1) ~ x := z + n>< h;

JO := JO + exp(-xf2) >< ill n = 0 ~ 0.5 else 1)

(2) begin i := 2; n .- 1; h := h!2;

goto R

The compound statement may be used wherever a statement is allowed,
in particular, after the do in a for statement. This extends the scope
of the for statement, and-enables a number of statements contained within
the compound statement to be obeyed repeatedly. Thus Example (1) above
forms part of a for statement in the specimen program of Appendix 1.

Problems

(1) Use a for statement to evaluate the product

1 1 ~ (1 - '4)(1 +"9) •••• (1 - - 2)
n

(2) Write a for statement to evaluate the function

y - 2 1 2 [b2 + ~ (1 - e-2a) + 22ab 2 fe-a(a sinb + b cosb)-l
a+b a+bT

where a = -Tt (1 - s), b = ~
1 - s

for s = 0.1 (0.1)0.9.

*The programmer will often find it helpful to connect the begin and .!.!l! by a
vertical line. This will tend to bring cut the program structure but is not
by any means essential. It also helps to ensure that an ,g ccrresponding
to a begin is not omitted.

39

CONDITIONAL STATEMENTS 15'

Basic statements and compound statements (but not for statements*)
are classified as unconditional statements (US). There is also a
conditional statement and this takes one of the following forms:

L L

if clause
I

..... L :Ig BE ~ USI(~~:
I

if statement

if cJause

L : L : ••••• L : lif BE therl FS

where FS stands for a for statement.

Examples:

g x .. ° .ih!m y := 1 ~ Y := x - 1

g Bo0.ih!m.!2! I := 1 step 1 B!!Yl m ~ n := n)((n - 1)

The if clauses and if statement are essential components of the forms
of conditional statement in which they are marked. The broken parentheses
around ~ S following the if statement in the first form indicate that
this part may be omitted if there is no alternative statement to be
executed. Thus an if statement alone can always be a conditional statement.

In the first form the conditional statement is executed as follows:
if BE has the value ~, then US is obeyed and the remainder of the
condi tional statement is ignored; otherwise, if BE has the value ~,
then US is ignored and S is obeyed. If the conditional statement is
merely a labelled or unlabelled if statement, so that S does not exist
and also BE happens to have the value false, then the statement produces
no action beyond that caused by the ev~ion of BE. In the second
form, if BE has the value ~ then FS is obeyed; otherwise the state­
ment again produces no action beyond that caused by the evaluation of BE.

Further Examples:

g abs{ 1 - 1/lambda):>,o-5 .!h!!1 ~ Repeat

g v;;-u .!h!!1 X : q := n + m ~ !2.!2. R

Problems

(1) Find the final values of all variables when the following statements
have been executed. The variables u and W are real and B boolean.
(Appendix 2 is needed in solving this example). --

*In accord with the Revised Report on ALGOL 60, paragraph 4.5.1.

40

15· Conditional Statements (cont.)

u := 3;
B : = .k.l!!,;

repeat: W:= u - 2;

i! ut2 - 1/u""O ~ W::>-2 ~ u := 1/u

else if B ~ goto Z

~ &2!2 end;

Z: B :=~;

u := W + 2 X u;

~ repeat;

end: B := u~W

(2) Construct a loop to evaluate iteratively a root of the equation,

x2 + x .. 16,

using the formula

16 x.=---x + 1

and the starting value x = 3.0.

Use a condi tional statement to exi t from the loop when x has been
determined to four decimal places. Afterwards, write a single for
statement which will evaluate the root and follow its action for
three iterations.

(3) Write a conditional statement which will cause a jump to four
different points in a program, labelled P, Q, R and S. Make the
jumps depend respectively upon two boolean variables, B1and B2, by
jumping to P, if both.k.l!!" to Q if B1 .k.l!!, and B2 ~, to R if
B1 false and B2 true and to S if both false. When finished check
tha t you have no if following a~; this will not be the case if
the definitions of the present section have been followed. (Refer
to Appendix 2 if necessary, in solving).

(4) Making use of a compound statement, write a for statement to evaluate,

xn + 1
y .. ---

xn _ 1

for the first 100 integers n, the value of x being already known.
Make provision to jump out of the loop whenever. :tf1 - 1 is zero.

41

16· SUBSCRIPTED VARIABLES AND ARRAYS 16·

In computational work it is often necessary to perform the same
operation on ~ different sets of data. When this is so, it is very
convenient to be able to allocate a single name or identifier to groups
of data and distinguish between individual items by means of subscripts.
The notation using an identifier with subscripts, familiar in mathematics,
is available in ALGOL, where it is known as the notation of subscripted
variables.

In the particular form it takes in ALGOL we write the identifier
common to the variables followed by square brackets encloSing the
subscripts, for example,

As the subscripts are varied one obtains the various subscripted variables
which are said to form the elements of an array. This arr~ has the
common identifier as its name; in the example above, this is ar.

The form taken by any subscripted variable may be depicted as follows:

A [SUB, SUB, SUB]

Here A stands for the array identifier. SUB stands for a subscript
Y/hich may be any arithmetic expression. If this arithmetic expression
(AE) is ~ then the largest integer not greater than AE + 0.5 is taken
as the value of the subscript (i.e., the nearest integer). The subscripts
are evaluated in the order of occurrence.

Examples:

Scorpion [k, 1, m, nJ

Subscripted variables may be of one of the three types ~, integer
and boolean, but variables corresponding to a single arr~ identifier
must be of one type only. In the same 'fIB3 as simple (non-subscripted)
variables are admitted to the class of ALGOL variables, so are
subscripted variables. It follows that the uses of subscripted variables
to be described in the following sections are allowed.

16·1 Use of Subscripted Variables in ExpreSSions

Expressions involving subscripted variables may be written,
and at execution time the program will evaluate the expressions
using the subscripted variables selected according to the current
values of their subscripts.

Examples of arithmetic expressions using !!!! and integer
type subscripted variables as operands follow:

Mx [d1, d2]
a [j] X a [k + j] - b [3,2J

42

16· Subscripted Variables and Arra,ys (cont.) 16·

g A>B.!ru!a X [i x j] .~ Y [iJ

PQ [1, 2, if j..::::2 .!ru!a r ~ sJ

The following might be boolean expressions using subscripted
variables:

Boolean [i, j, kJ
WX DJ >-YZ [rho]

16·2 Use of Subscripted Variables in Statements

The important use of subscripted variables as left part
variables in assignment statements is allowed. In such a case the
subscript expresaions occurring in any left part variables are
evaluated before the expression on the right of the assignment.
When more than one left part variable is subscripted, subscript
expressions are evaluated in the order of occurrence, i.e., from
left to right.

Examples:

!.2£ i : .. 1 step 1 !!!ill1. n ~

E en] :" E [n] + A [i]x: S [i]1n

para 1 :- arr 1 [iJ :-,arr 2 [i,jJ := 0

Finally, subscripted variables may also be used as controlled
variables in for statements but special care should be taken when
the values of the subscripts of the controlled variable are liable
to be changed during the execution of the for statement. The
actual mode of operation in such cases accords with the action of
for list elements defined in Appendix 3.

Problema

(1) Calculate the final values of the variables involved. in the
following statements:

B [1, 2J :- B [2, -1J :- V [3J :- 2;

i : .. 3 x B [2, -1J -2;
B [1, i .;. 2J : .. i :- 1;

V [B [1,2] + B [2, -1]] :- B [1. i1 1- 6 -V [3]

(2) Two one-dimensional arrays CAT and DOG each have 15 elements
with subscripts commenCing at 1. Write statements to evaluate
SO the sum of the squares of the elements of CAT, and SCD the
sum of the products of corresponding elements of CAT and DOG.

43

11· INPUT AND OUTPUT OF DATA 11·

The ALGOL language as so far defined provides no means for the initial
setting of program parameters .when these are to vary from job to job, nor
does it provide means of printing out the results of program operation
before they are lost. Thus, to produce ALGOL programs of practical value,
it is necessary to add to our stock of statements and functions foms
which provide input and output facilities.

The ALGOL Report indicates a means of providing these through ALGOL
procedures which have bodies ~Titten in user-code. (Procedures are
explained in detail in Section 19). In agreement with this indication
English Electric-Leo has produced a ICDF 9 ALGOL input/output scheme which
the progra~er may use. If, however, he knows the details of how the
peripheral devices work on KDF 9 at the user-code level, there is nothing
to prevent the user writing his own scheme, or making additions to the
English 3lectric-Leo system. The compilers work independently of what
input/output scheme is adopted since the text Which defines the scheme
must be \7ritten into the pro~m and is processed just as any normal
ALGOL text (see Section 19·6).

The scheme written by English Electric-Leo follows.

11·1 Device Numbers

Since there are a number of different input and output devices
on KDF 9, a word is needed about the way the progr~er calls for a
particular device. The KDF 9 ALGOL statements and functions
specified later in Section 11 allow him to write down a device
number which will call a particular kind of device according to the
ranges given below.

Input/Output Device Device NUClber

Monitor typewriter*

Special input/output devices

Paper tape punch (a-channel)

Paper tape reader (5 or a-channel)

Line printer

Card reader

Paper tape punch (5-channel)

iree

Line printer/Paper tape punch,
common output

Magnetic tape

00

01 - 01

10 - 11

20 - 21

30 - 31
40 - 41

50 - 51

60 - 61

10 - 11

{ 100 - 101
110 .. 117

*The monitor typewriter should be used as little as possible, preferably
not at all. This device will be used for purposes other than any the
programmer lDIly have.

44

17- Input and Output of Data (cont.)

Though the programmer has full control over the kind of device
to be called by using a device number in the correot range, the
computer (via a fixed control program called the director) in
collaboration with the operator deoides which actual device will be
chosen for'a particul~ device number.

17·2 Simple Forms for Reading and Writing Numbers

The form for reading a decimal number in characters is

read (DV)

where DV stands for a device number.

The identifier read is a function for use within arithmetic
expressions. It is of type I!!! and has as its value the next
number on the input device, DV. Any device which is suitable for
reading may be specified by the device number. Any arithmetic
expression is valid as a device number, the nearest integer value
being used to call the device.

The number to be read on the input medium must be an ALGOL
number (see Section 4 for definition) and must be delimited by an
ALGOL basic symbol which is not a digit, +, -, ., '0' A failure
message will be printed and the program thrown off the machine if
a number being input as data is non-ALGOL. out of range, or has an
exponent out of range. The non~A1GOL symbol -- (end message symbol,
'?' for 5-channel working) must appear after the last delimiter of
any data paper tape.

Examples:

j := read (21); x := (read (j) + 1)t2

(The value assigned to J is being ueed as the device number in the
second statement).

The simplest form for writing data to an output device is

output (DV, AE)

This is an ALGOL statement. It evaluates the arithmetic expression
AE, which could of course be a variable, and outputs it to the device,
DV. The number produced is in standard floating decimal with an 11
place signed mantissa in the range, 1oe;;N<10, followed by subscript 10

and a 2 digit signed integer exponent. Each number output by this
statement is followed by a semicolon and a new line symbol, so that a
print-out for more than one such number produces a single column.

Examples:

output (12, a-b); output (10, k [1,p]).

45

17' Input and Output of Data (cont.)

17'3 Further Input and Output Statements

The following forms are available for the input and output of
boolean data, and binary and decimal arrays:

read boolean (DV)

This function of type boolean takes the value of the next boolean
value on the input device, either the symbol ~ or !!l!!.

write boolean (nv, BE)

This statement outputs the value of the boolean expression BE as
either!!l!! or ~ followed respectively by one or two spaces.

read binary (DV, A, ~ANJ)

This statement finds an arr9:3' with the arr9:3' name AN on the magnetic
tape and reads it to the AWOL arr9:3' A. The arr9:3' name muet be
enclosed by the string quote symbols [and] (square brackets under-
lined) as shown. - -

write binary (DV, A, ~ANJ)

This statement stores the arr9:3' A on lIII4Pletic tape in a form suitable
for input by the statement read binary and gives it the arr9:3' name AN.

read arr9:3' (nv, A, ~AN J)

This statement reads from paper tape an arr9:3' headed by the arr93
name AN and certain other information. (See reference given at end
of Section 17).

wri te arr9:3' (DV, FE, Dill, A, ~AN]

This statement outputs the array A with preliminary information
including the array name AN. The format expression FE specifies
the layout or the ele:'lents of the array according to rules explained
in Sections 17'4 and 17'5. DM stands for the number of dimensions
of the array which must be specified. The elements of the arr9:3' are
listed so that the earlier subscripts change faster.

The uee of a format expression in another most important state­
ment allows a fine control over the output of simple decimal numbers.
This statement is

wri te (nv, FE, AE)

which, like output (DV, AE) above, outpute the value of the arithmetic
expression AE on the device DV. The format expression FE denotes an
argument of type integer and provides the number of a 19:3'out which
itself specifies the particular field and format required in output.
The fom.and meaning of the 19:3'out and format expression are explained
in the next two sections.

46

17' Input and Output of Data (cont.) 17'

Examples:

write (12, format ([-ddd.d]), x X (xf2-1»;

write (11, f1, a)(' b t(k + 1»

17 • 4 The Layout

The layout provides a picture of the number which is to be
printed. It shows where digits, ze'ros, spaces, sign. decilllal
point, and, in the case of a floating number, the exponent are to
be printed in the output field. It ma;y also c311 for a new line or
new page on the output l!ledium or print a semicolon to separate one
number from the next. This makes the write s ta temen t verJ versa tile.

We shall now proceed through the various facilities in more
detail, showing how the layout is constructed.

(1) ~ Wherever. a digi t is required in the output field we
put a letter d in the corresponding position in the layout.
The l,ettern may he use<l in the first digit position in which
case if thenUlllber is too small to ·fill the digit la.Yout, zeros
on tb8 left. are suppressed. Zeros in the units position and
t()the r.1aht of the dec~l p(,)int are never suppressed.

(2) llte:j,pl Poi,t The 'deci:llla point is inserted in the appropriate
position, wbenrequired.

(3) ~ 'l'hesign + inserted before all d's and the decinal point
will ensuretha t either + or - appears in the result as
appropriate. \Then n appears in the layout and zeros on the
left are suppressed. the Sign is moved to the right.

(4)

The Sign - inserted in the layout has the same effect as
+ except that a space is inserted instead of + for positive
numbers.

The symbol I causes a sign (either + or -) to be printed
but always in the position specified.

Finally, if there is no sign in the layout, no Sign is printed.

Spaces The letter s inserted in the layout causes a blank
space to be printed in the corresponding position. A maxilllum
of 15 spaces are allowed in front of the sib~' and these
initial spaces may be abbreviated by inserting a Single s
preceded by the number required. They are still available
when no sign is present in which case up to the first 15 spaces
are counted as initial spaces.

Zeros Zeros may be inserted at the end of a decimal layout
(one having no exponent). These allow the printing field to
float keeping the number of significant figures specified by
n and d.

47

17· Input and Output of Data (cont.)

(6) Exponent A floating pOint number in ALGOL form will be
output if the layout includes a mantissa and an exponent.

17·

The mantissa should be of the form "d." followed by a fractional
part containing only d's and s's. The exponent immediately
following the mantissa should be of the form "rd', followed. by
a sign, followed by "nd". The sign used in the exponent may
take any of the three forms mentioned above and has a similar
effect. Any symbol in the layout following the exponent must
be a terminator.

(7) Terminators When required the layout may be concluded br one
of the following symbols which have the effect· specified.

A semicolon is output in the position specified.

c A carriage return line feed i8 output.

p A page change is output on a line printer and page
shift on a paper tape punch.

The following nine combinations of terminators are allowed:

c p cc ccc

Examples of layouts:

17·5 The Format Expression

sndd.dddsOOOs

7s,lnddd

-d.dddd,o+nd;

sss+dd.d;ccc

;p ;c ;cc ;ccc

The format expression provides a means of calling a particular
layout. Using a function called format it is possible to associate
an integer with the layout. Thus, using LAY to stand for a layout,

format [LAY))

will provide the integer corresponding to LAY.
This integer may be used as a format expression parameter in the
statement,

wri te (DV, FE, AE).

The string quote symbols C ·and J which enclose the layout are
essential.

Example:

write (30, format (l+sddd.ddds;cJ), AU + 4]).

48

17' Input and Output of Data (cont.)

Whenever the same layout is to be used to output more than one
number it is advantageous to assign the integer value produced by
the function format to an integer variable, and use the variable as
the format expression.

Example:

F := format ([nddd~);

for i := 1 step 1 B!llil. n .9& write (,0, F, List [i])

17·6 Input and Output of Text

There are two statements dealing with the input and output of
text.

write text (DV, ST)

This statement outputs the text.written as ALGOL basic symbols in
the string ST. (For explanation of strings see .Appendix 6). The
string contains the text for output enclosed .by string quotes
[and] • Edi ting symbols c, p and s preceded if desired by an
integer and enclosed by additional quotes may be inserted in the
string to produce the effect of carriage return line feed, page
change, and space, respectively. The integer before one of these
letters specifies the number of such symbols to be output.
Alternatively for space, one or more asterisks may be inser.ted in
the text without additional quotes.

Examples:

write text (12,CCpj Result bc7sJ x*=**J)
wri te text (1" kb 5c4sJJ)

coRt text (DV, DV, ST)

This statement copies ALGOL basic symbols from the input device
specified by the first parameter, to the output device defined by
the second parameter. The third parameter cor~ists of either one
or two basic symbols in string quotes: for one basic symbol·copying
oontinues from the actual starting position of input to the first
occurrence of this symbol; .for two symbols, cop,ying starts
immediately after the occurrenoe of the first symbol and ceases on
ocourrence of the seoond. The basic symbols inserted in the third
parameter are not the~elves copied.

Example:

oop,y text (20, 12, C ;;J)

49

17· Input and Output of Data (cont.)

17-7 Initialisation and Closure of Devices

Certain statements are required in order to allocate and de­
allocate actual devices corresponding to those called by the ALGOL
programmer and inform the operator of the choice for purposes of
loading and unloading tape reels, etc. These statements are as
follows:

open (DV)

This statement must precede the first use of a device DV and auto­
matically produces on that device the effect of carriage return
line feed followed by case normal. It applies to all devices save
tne monitor typewriter and magnetic tape decks. The monitor type­
writer requires no initialisation by the ALGOL program, while
magnetic tapes are initialised by the find statement to be desoribed
next.

Example:

open (22)

find (DV, ST)

This statement will look at all tapes loaded and find the tape with
the label referred to in the string ST. The oorresponding deok is
allocated as the device with number DV. The string may enclose in
quotes C and ~ ei ther the number of a device from which a tape label
may be read within string quotes, or the tape label itself.

Examples:

find (10~, CKDSGR562J)

find (100, C21J)

\Vhen a device has been initialised the operator is informed of
the device number allocated, and a standard format is automatically
output, including program identification and blanks and leaving the
device at the beginning of a line ready for the programmer's output.

close (DV)

This statement closes device DV and should be applied to all
initialised devices before the program ends. After closure a
device must be re-initialised by an open or find statement before
use again. ClOSing a device early helps to reduce buffer storage.
The close statement has no application to the monitor typewriter.

11·8 Manipulation of Magnetic Tapes

Various statements for the manipulation of magnetic tapes are
available or under consideration. Amongst these there is

interchange (DV)

17.

50

Input and Output of Data (cont.)

This statement is used to change a magnetic tape deck from a reading
to a writing mode, and vice versa. See Algol Users Manual for
further details.

skip(DV, N)

17.

This statement skips N binary arrays on the magnetic tape corresponding
to device number DV.

17.9 Restrictions

Apart from the restriction limiting initial spaces in a l~out
to 15 as already mentioned, a total of 23 n's, d's, zeros and s's are
allowed from the close of initial spaces to a subscript 10 (or the
close of the l~out if there is no exponent). The layout should not
allow more than 12 significant digits (nand d) in output.

Up to 120 positions maximum will be available per printing line
in output on the paper tape punch, line printer and Dagnetic tape.
For cards the full field of 80 characters will prohably be available
when using the punch.

If a number does not fit the layout an alarm pri~ting occurs.
Tr~s means that it appears on a fresh line to the standard layout~

~d.ddddSddddsddds,o~nd;c

Each alarm printing will be preceded by an asteriSK and as the
layout shows will end with a se~:icolon. An alarm pr:llltin,~ will
not disturb the overall layout.

Details of other facilities in this input/output scheme can
be f01IDd in the ALCOL Users 'Ianual.

Problems

(1) Write a for statement which reads ten nwnbers from paper tape
and sums their squares.

(2) ASSign a format expression to the integer variable f and use
it in a for.statement which reads 100 numbers. and outputs their
cubes to the format ddd.dd in a single column on a paper tape
punch.

(3) Write an output statement which will print on a line printer
the heading -

Co-ordinates of the Parabola, yt2 4x.

51

17' Input and Output of Data (cont.)

(4)

(5)

(6)

Write statements to produce on a line printer the posiUft co­
ordina tes of the parabola 12 • 4x in two paralllil colU1198 wi til
headings x and y. The abscissa x should take t~. value. 0(0.01)5.

Wri te a piece of prograc to read N integers (each Ie.. than 106)
from reader 20, and print tlwm out in a colwm wi til their prime
factors in a parallel colUlllll Oil punch 10. Restrict 1Ihe
search to the factors wo &Ild three onl¥. When both ocour,
lis t theII wi th a semicolon &8 separator (thus. 2; ~) • lilow
three space. to separate the two colUlll98.

Wri te statements which will output the diagonal el_eats of a
22 x 22 array called BRUTE, elements c08l8nc:j.ng BRUTE [1,1),
on the paper tape punch 11. Make the output appear five
elements per line in columns each separated by five space ••
Use a Cloating decimal point allowing eight .ignificant digits
in the mantissa.

I
I
I
I
I

I
I
I
I

I
I
I

I
I
I
I

I
I

I
I
I
I

I
I

I

I
I
I
I

I
I

I
I
I
I

18· DECLARATIONS, BLOCKS AND PROGRAMS 18·

Having considered most of the forms of statement allowed in an ALGOL
program, we shall now consider how the statements ought to be arranged
and what means exist for cementing the~ together to form a complete
program. This sho!lld put the reader in. a position to write simple
programs.

18·1 Declaration of Simple Variables

We come first to the idea of the declaration. This may have
been entirely new to the reader when he read of it in Section 2.
The declaration is the progrwruner's means of conveying info~~ation
to the ALGOL translator about the kind of quantities represented by
the identifiers used in the program. This makes it possible for
the translator to treat each identifier in the way most appropriate
to its kind in allocating storage and using arithmetic routines.

The rules associated with the declaration are as follows:

(1) All identifiers having an operational significance except those
representing labels and standard functions must be declared.*

(2) For simple variables the declaration consists of a basic symbol
denoting the type of the variable (~, integer or boolean),
followed by a list of simple variables separated by commas.
A declaration for such variables will look like

T V, V, •.••• V

where T stands for a type symbol and V for a variable. Each
variable listed after a given type symbol is of that type. For
variables of a different type, different declarations must be
made using the appropriate type symbols. The order chosen in
writing more than one type declaration or in listing variables
is immaterial.

(3) A declaration must be placed at the head of the block to which
it is intended to apply. (Blocks are considered in Section 18·3).

As already mentioned in discussing types of numbers in Section 4
~JPe ~ denotes real quantities which are to be treated in floating
point. Type integer quantities are treated using fixed point integer
arithmetic.

In addition to the type symbol appearing at the head of a simple
variable declaration the symbol 2!n may appear. The meaning and use
of this symbol is explained in Appendix 4.

*This rule includes the identifiers used for input/output statements and
functions which must all have procedure declarations. For the purposes
of the present chapter and the problems appearing at the end, these
declarations are omitted. They will in practice be obtained automatically
from the ALGOL procedure library in accordance with the rules explained in
Section 19· 7.

54

16" DeclaraUoll8. Bloop and Procruut (coat.) 18·

One or two other basic s,..bols are used in deolaraUou in order
w specifY such thiDgB as arra,ys, swUches, and prooed.ures. 'lbe
declaration ot ALGOL prooaduras will be. considereel when .. ooma W
diaouss prooedura8 in Section 19. Switch declarations are diacusll8d
in $e'ltioa 21, while a.rrtq deolarations are oonsidered in the tollowing
88CUoa.

EEamplee ot Simple Variable Declaratioul

illtegr i, j

.!:!!! alpha, P, 8tre .. , radius

boolean STABlE, 131, B2, B,

18·2 Arrar Declarations

JU8t a8 a simple variable must be detined betore its use, so
betore USing a sub8cripted variable the ar~ to whioh it belong8
must'be detined. 'lbis is done b.r means ot an array declaration
whioh appears along wUh other declaratiou in the head ot an
appropriate blook. The object ot the arrA¥ declaration. besides
noting the existence ot the ~, inelicates the t.rpe ot its elemente,
whether!!.!!. in\ep!r or boolean. It also lilaUs Ue slae b,y noting
upper and lower ~de on the subscripts.

'!'he tom ot aD arrq declaration and i t&correspondenoe w a
subscripted variable mq be shown as tollowsl

Bound.pair list
C-. __ ._--.. --- _ ... 1_ ----- _. _.--'
Bound pair .

I

A['LB 1 UJ , LD I un , ,

Subscripted .ariable

A[
1 I

SUB SUB , ,

LD 1 UB]

I one to one .
'---correspondenoe

SUB]

T stand3 tor tl'p8 and mq be real. integr or boole~. U DO t7P8
IIJIIbol appeU's in the declaration then the elamants ot the arr8¥ are
understood to be ot tYJ"l t!!!. arrv is a deolarator in the list
ot basic symbols.

A 8tande tor the arrq identifier.

LB etands tor lower bound and UB tor upper bound.

SUB stands tor subscript.

Dr _&118 ot bracketing the diagram alao detiD8a the JII8&Ding ot
a boua4 pair and a bound pair Ust. The tollewing notes on the
bound pair list are important.

55

18· DeolaraUOM' 11 •• ap4 ProBrama (OOllt.)

(1) !he bouD48 mq be ari tbmetic e%pr.8.iona and are lIYalua.~ 1B
......... wtq &8 .ubacript expre.8iOll8. '1'bu it the ari tlaetio
'%pre8Bioll (AE) i8!:!!:! th.n the value ot the .ubPCr1pt 11
taken &8 .ntier (AE + 0.5). (Se. Section 9 tor the .taDdeft
tURCtioll .Ilti.r).

(2) '1he bo1U1d pair. give the bound! ot corre.ponding .ubacripta and
a aubacripted variable i8 onlJ defined if i~8 8ubacript8 11.
wUhin th.,. bounda. An arrq i8 not derined it a lower boUD4
i, greater ia value than ita upper bound.

(3) !ke ord.r of evaluation of the boWlcl pain i8 trom l.ft to
right.

(4) '!he bound pairi are evalua ted ev'17 tWe ooatrol reaches the
~ declaratioa aad onlT the ourreat value, of the .. bo.ade
are valid ia conaidering VIe le"i t1macy of 80M 81lbacripwd
variable (S.e Kow 2).

(,) A bound pair expre8a10n ~ oaly depend Oil variabl'8 ant
funCtions which are declared ia a blook enclOSing the block
tor llhich the &.rrfq d .. laration i8 valid. 1I0te (5) show.d be
\Uldenitood more cleariT atter reading Section 1S·3. A more
thoroueb explanatioa ot the poi.t will be fouad ill Sectioa 22·2.

lzamplea ot arr~ decl~tioll'l

array AB[1:10, 1:10, 1:}J

.!!:!:! array 111 t p+n : q, p+m r]

intefl!r arry ARRAY [1 : j.(l' • 0 .l!!!! Il .!!!£ 2)(Il]

!he form ot the array declaration defined above ia not as general
u it cow.d be. III tact it lfIB¥ be extended '0 that an:r nUlllber ot
arr~ declaratione ~ be strung together and repetition of similar
intormation elimillB.kd. Thus, atter the symbol array a list ot
ideAtitiera ms.:r appear, toll owed by a bound pair list enclosed in the
usual square bracketa. Each ot the identifiers is thereby declared
ae :representing 811 array ot the slUlle type as all the others in the
l1,t and having the same number ot dimensions and the same upper and
lower bounds on its subscript.. Other arrays of the SAme type but
having different dimensions and/or bounds ~ be declared by adding
them on to the above declaration and following them with the new
bo-.4 pair liat.

Apart trom the appearance of ~ tor whioh ... Appenclix 4. the
... _al t01'll tor an array declU'8tioft M7 be depicted a8 tollow8:

(T) array A, A, ... A(BPL], A, A, ... j(BPL). ... A. A, ••• J[BPL]

BRo "-de tor boundpo.ir list.

further examples ot arra~ declU'8tioDBI

~dl A. B. C[1:1. 11m, 11ft]

boolean arra: b1[O:20], b2. b}[-10u,t2, -5ID x m -1J

56

18· Deolara tiona, Blooks and Programs (oont.) 18·

A blook of ALGOL program is oonstruoted in the same form ~s a
oompound statement but with the essential addition of at least one
deolaration. The form of a blook may be represented thus:

Block head
I

L : L : ••••• L : ~egin D ; D ; ••• D\ ; S ; S ; •••• s ~

where L stands for a label, D for a deolaration and S for a statement.
Note that the declarations are all followed by a semioolon. A
deolaration appearing in the blook head only applies for the correspond­
ing blook. A blook need not be labelled.

An important use of blocks is provided by the following oomplete
definition of the unoonditional statement.

{
basio statements

Unconditional statements inolude compound statements
blocks

The inclusion of blocks as unconditional statements means that
blocks may be used within for statements (Seotion 13), oompound
statements (Section 14), oonditional statements (Seotion 15) and
also within other blooks.

Examples:

(1) The two simple programs given in Seotion 2 are both blooks.
We reproduoe one of them here in an abbreviated form.

be in ~ x, y, Z;

open (20);

x:= read (20);

end

There is one declaration in the head of this blook, namely

~ x, y, z

and the reader will notice that it is oorrectly followed by
a semicolon.

(2) Insert appropriate declarations and begin and end braoKets to
make the statements of the problem in Section 12·2 into a block:

57

18· Declarations. Blocks and Programs (cont.)

Problems

begin I!!!l p, q, SUM;

integer n;

n : .. 1;

p := 0.5;

SUM := OJ

q := 1;

loop SUM:= SUM + q/n;

q := q')(p;

n := n + 1;

£i!2.!2. loop

18'

Insert appropriate declarations and begin and end brackets to
make the statements of the following problems appearing earlier in
this manual into blocks.

(1) Prob.

(2) Prob.

(1) Section 11.

(3) Sec tion 11 •

18·4 Definition of a Program

A program is officially defined as a block or compound statement
which is not contained within another statement and which makes no
use of other statements not contained wi thin it. Normally, a
program will have identifiers declared at its beginning, so that it
will be most naturally constructed as a block.

The reader will appreciate that the uses of blocks mentioned in
the previous section allow a complicated program structure involving
blocks within blocks. Since there are certain rather complex rules
aSRociated with the use of identifiers when inner blocks exist, it
will be advisable for the beginner to restrict his p~'ograms to those
containing one block with all declarations made in its block head.
Section 22 will explain the restrictions on the use of identifiers
when a complex block structure is used, and the value in some
circumstances of such a structure.

Example:

Write a program to solve the equations ax + by = c, Ax + By = C
for n sets of coefficients a, b, c, A, B and C with a provision for
failure when aB - bA is small or zero.

59

18· Declaration, Blocks and Programs (cont.) 18·

(5) Write a program to group n integers between 0 and 99 into classes
o - 9, 10 - 19, •••• 90 - 99, and print out the number of
integers in each class.

(6) Write a program to find the first n positive roots of

xtanx=a

with an error less than e. Use the iterative relation

to improve an approximate rqot xr • For the first root take
O.~ is an initial guess. For the second root take ~ plus
the first root and so on.

(7) Write a program to find the area of a triangle given the length
of the sides as data. Use ~dd.ddddd as the layout of digits
for output.

(8)

~ ~(s - a)(s - b)(s - c); s = ~(a + b + c), where a,

b, and c are the lengths of the sides.

Tabulate the binomial coefficients nC ,
r r = O(1)n, for given n.

nC
r

n(n - 1)(n - 2) ••• (n - r + 1)]
1. 2. 3 r

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

61

19' PROCEDURES

19·1 The Purpose and Application of Procedures

ALGOL provides a facility similar to that of the subroutine in
a machine-coded program. This facility is known as the proced=e.
It enables the programmer to use a single piece of program in a
number of places in his program or even in different programs without
having to rewrite it on each occasion to suit new parameters. To
each procedure there is attached an identifier and each occurrence of
this identifier within some ALGOL statement initiates a call of the
procedure concerned.

As an example the programmer may decide to have a procedure
which provides the tangent of an angle. He associates with this
procedure the identifier TAN, and on any occasion when he desires
the tangent to be evaluated, he merely writes down the procedure
identifier together with the angle in which he is interested.
Suppose the angle were x, then writing

TAN (x)

would give him the tangent of the angle x.
this in an arithmetic expression such as

(2 x TAN(x) + 1)/(TAN(x) - 1)

He might decide to use

The use of a procedure like TAN obviously implies some means of
defining its action. The means available is the procedure declaration.
This declaration contains a body in which the operation of the
procedure is defined (usually by means of ALGOL statements). It
also has a heading in which the procedure identifier may be associated
with a set of parameters, known as formal parameters. When the
procedure is to be called, the programmer inserts the actual parameters
upon which the procedure is required to operate instead of the formal
parameters to 1;,hich they correspond. At the time of executing this
call the procedure body is entered and obeyed.

In different calls, different sets of actual parameters may be
used. In the example mentioned above the procedure TAN might be
declared as TAN{z), where z is a formal parameter. The call of this
procedure mentioned earlier uses x as an actual parameter to correspond
to z, but on some other occasion a different actual parameter mi~ht be
used and the programmer might call for TAN{y), or even TAN {x 'X 1)'

There are two ways of using procedures. TAN{z) above is being
used to provide function designators TAN{x) and TAN(x'X y) which
supply values through the procedure identifier for use in the
expressions in which they occur. It is also possible to call
procedures by procedure statements which are used in a manner
similar to other ALGOL statements. In this case, though information
may be supplied to the program via the parameters, a value,is not
supplied through the procedure identifier.

62

19· Procedures (cont.) 19·

19·2 Procedure Declarations and Corresponding Calls

As already suggested, the declaration of an ALGOL procedure
specifies its action. This declaration is inserted in the block
head to which it applies in the same w~ as any other kind of
declaration. Figure 2 shows the form taken by a procedure declar­
ation, and also included is the procedure statement or function
designator to show the correspondence between the declaration and
~~ll. .

In this diagram P stands for a procedure identifier, AP for an
actual parameter and FP for a formal parameter. T stands for a type
symbol pl~ed before the ALGOL symbol, procedure, the broken
parentheses indicating that it is not al~s required. When the
procedure defines the value of a function designator, the type
symbol must be included in the declaration and specifies the type
of this value.

In the procedure declaration the basic symbol procedure is
followed by the procedure heading which includes the procedure
identifier, formal parameter part, value part and specification
part. The procedure heading is followed by a procedure body.

The formal parameter part consists of a formal parameter list
enclosed in parentheses. The formal parameter list in turn oonsists
of one or more formal parametere separated by parameter delimiters.
The actual parameter part, actual parameter list and actual parameters
in the procedure call are analogous. In both cases the parameter
delimi ters ~ be commas as in Figure 2 or they may take the form:

) LS : (

where LS stands for a letter string. This enables the programmer
to include an indication of the meaning of parameters in the formal
parameter list.

A formal parameter is simply an ALGOL identifier, while an
actual parameter which corresponds to it misht be an arithmetic,
boolean or designational expression, or an ar~, procedure or
switch identifier or a string (see Section 19·5). The correspondence
of formal and actual parameters shown in Figure 2 means that there
must be the same nwnber of actual parameters in a call as formal
parameters in the declaration. Taking the parameters in order
there must also be a compatibility in kind and type. The specification
part of the procedure declaration mentioned in Figure 2 defines the
kind and type of formal parameters and is described in Section 19·5.

Information concerning the w~ actual parameters are to be
treated is provided by the value part of the .declaration. This is
described in Section 19·4.

The value and specification parts completa the procedure heading
in the declaration and are followed by a procedure body. This
commonly contains a nwnber of ALGOL statements within which the
formal parameters appear, being used as variable identifiers, ~

ALGOL FORM NOTES

(T) procedure Formal parameter
part

A r ,
P (FP, FP, ••.. FP): "I

PROCEDURE DECLARATION Value Part Procedure heading

(Definition of Procedure) Specification part ,J

Procedure body
One-to-one
correspondence of
parameters •

....
C1> C1>

E ;;:
til :.::: -
til = C1>

'tl
T - Type symbol
P - Procedure identifier
FP - Formal parameter

PROCEDURE STATEMENT P (AP, AP, •••. AP) AP - Actual parameter

OR FUNCTION DESIGNATOR it Actual parameter
(Call of Procedure) list

FIGURE 2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6~

19' Proced~es (cont.) 19'

identifiers, etc. At each execution of the procedure certain
changes associated with the parameters are made and these statements
are then obeyed.

Here is an example of a program which contains a procedure
declaration and a call of that procedure by a procedure statement.

be n ~ a, b, D;

end

procedure EXAI.lPLE (x, y) Result: (R);

~x, y;

E& x, y, R;

J
e~

end

x := x + y;

R := xt2 + y1'2

a := 1;

b := 2;

EXAl\IIPLE (a, a+b, D);

write (~O, format «(d.ddddm+nd]), D)

Procedure
Declaration

Call

The procedure declaration of EXAMPLE uses the three formal parameters
x, y and R. The procedure statement supplies the actual parameters
a, a+b and D to correspond. In this example the body of the
procedure consists of a conpound statement containing two assignment
statements.

19'3 Declaration of Procedures Defining a Function Designator

For a procedure to be used as a function deSignator, the
procedure body appearing in the declaration must contain one or more
statements which assign a value to the procedure identifier. At
progra~ run time at least one of these assignments must be executed
per call of the procedure. The value held by the procedure identifier
on exit from the procedure body is used as the value of the function
designator in evaluating the expression in which this function
designator occurs. A procedure which is to be used as a function
designator must always have a type symbol (T in Figure 2) appearing
at the commencement of the procedure declaration as already mentioned.
This declares the type of the values taken by the function designator,
whether~, integer or boolean.

The following is a declaration of a procedure for use as a
function designator:

1,· Procedures (cont.)

l:!!! prooedureTAN(zh

~ Z; l:!.!! Zf

64

!! abs(z}:::o-1.5707,96}26 then ~ Failure

!!!! TAN 1- sin(z}/oos(z}

In this procedure abs, sin and cos are the identifiers of standard
functions, while Failure is a labsl in the main prosram.

19'4 The Value Part

The value part of the procedure heading, which immediately
follows the semicolon after the formal parameter part takes the
following forml

!!!2! FP, FP, •••••••• FP;

A formal -parameter appearing in the formal parameter list m83 or m83
not appear in the list following the basic symbol value. If it does
appear then the formal parameter is lIaid to be called by value
otherwise it ie said to be called by name. If no parameters are to
be called by value, then the value part will be empty.

The differenoe between the call by' value and call by name lies
in the differsnt W8Ts ths parameters are treated on entry to and
execution of the procedure at the time control reaches the procedure
oall. The beginner sometimes finde considerable difficulty in under­
standing these different treatments. To help him it is suggested
_that he take some examples and carefully work through them,exeouting
exactly the operations specified in the next two paragraphS. One
example is given in the tsxt following these two paragraphs and the
reader ma:r construot others for himself.

Call by Value

When formal parameters are called by '9alue, the oorresponding
actual parameters are evaluated and assigned as initial values to
the formal parameters before entry to the procedure bod1' occurs.
Atter entry to the procedure bodT operations are performed upon the
formal parameters as specified by the ALGOL text.

Call by Name

Before entrT to the procedure bod1' formal parameters oalled by
JI8III8 are replaced in the tszt of the bodT by' the corresponding actual
parameters. Parentheses are placed around these actual parameters
whenever possible. Atter entry to the procedure bodT operations are
performed upon the actual parameters ueing the revised 'text. 'lb.is
ma:r ooolUJion the evaluation of the actual parameters at azq time

19· ProoedUF!s (cont.)

dur1llg the execution ot the proced~ boq.*

n.t there is a real difterence betweeD call1D6' by value and
n!Ulle can be illustrated by the procru at the eDd ot Section 19.2.
In this program the procedure EXAMPLE baa two ot its tormal
parameters sppearing in the val-. part, thusl

value s, 71

The procedure is 'Called once b7 the statement EXANPLE (a, a+b, D)
wi th the variables a and b currentl7 holding the values 1 and 2
respectively. We work out below the etteet of the procedl11"8 call
(a) when the procedure declaration is altered b7 makiD6' the value
part blank, so that all formal parameters are called by DIIIIIe, and
(b) when the value part stands as in the P%'08l'8lD above, so that
some parameters are called by value.

(a) All formal parametere called b,r pa!D!!

Formal parameters called by name are replaced by the
actual parametere in the text. 'lhe two state_nta in the
procedure'body therefore become

a 1- (a) + (a + b);

D :- (a)t2 + (a + b)t2

The procedure body is now executed with
upon the variables.

a

Initially

On entering procedure bo~ 1

After first sta tament 4

After second statement 4

the following eftect

il D x' l' It

2 -! -!
j

2 - r
2 -I
2 52 -I

(b) Formal parameters x and 1 called b,r va::'ue. R called by nrune

In this case, the second statement only is modified afid
that because R is called by II81II8. We have,

X :z X + 1'1

D 1= x'2 + 1'12

*When a duplicate use of idenUrien has been ..u, each as will be
described in Section 22, contusion between identifiers iDserted via
tormal parameters called by name and the __ identif1era alread;y
occurring within the procedure with other aeanirJcs is auta.aUcallJ'
avoided by a systematic change ot identitiers iDvcl~.

66

19· Procedures (cont.)

Before entry to the procedure body the actual parameters a and
(a + b) are evaluated and their values assigned to x and y.
The procedure body is now executed with the following effect
upon the variables.

a b D x Y R

Initially 1 2 - - - -
On entering procedure body 1 2 - 1 3 -
After first statement 1 2 - 4 3 -
After second statement 1 2 25 4 3 -

From the above example it will be seen that, when called by
name, formal parameters are dummies, i.e., no values are actually
assigned to them. In fact they are truly formal. When called by
value they serve the purpose of working variables local to the
procedure, while the variables used in the corresponding actual
parameters remain unchanged, (unless the procedure body as appearing
in the declaration explicitly assigns to them).

Sometimes the kind of call of a formal parameter, whether by
value or name, has no effect upon the final result of a procedure.
Thus, 'as the reader may check for himself in the example quoted above,
when we have x called by value and R by name, whether y is called by
value or name makes no difference to the final values of the program
variables a, band D. For the sake of efficiency of translation it
is recommended that call by value be specified whenever possible.

Note that R cannot be called by value in the above example
because an assignment of the value of D to R would be involved on'
entering the procedure and at this time D has no value. Note
also that the insertion of parentheses around actual parameters
called by name can be essential. Thus a different result would be
obtained in (a) above, if the a + b were not so enclosed in the
statement assigning to D.

19·5 The Specification Part

The specification part of the procedure heading is very like
the declaration list which occurs in the head of a block. It gives
information about the kinds and types of the formal parameters used
in the procedure. In KDF 9 ALGOL all formal parameters must be
included in the specification part with full specification. (This
is not essential in ALGOL 60). The specification part appears in
the form:

Specifier FP, FP;

Specifier FP, FP;

Specifier FP, •••• FP;

67

19· Procedures .(cont.)

where a specifier may be ~ of those listed in the following table
(T stands for a type symbol).

Specifier Corresponding Actual Parameter

T arithmetic or boolean expression
" \ ','J!) array arnq identifier

(~ procedure procedure identifier

lI!1?.tl
~
stri!l£j

designational expression

switch identifier

string

Like the value part, the specification part closes with a semicolon.

The use of parameters, specified merely by a type symbol should
be clear; the use of parameters specified u,y most of the other
symbols in the above list is explained in some detail in Section 23
on the Advanced Use of Procedures; 'while an explanation of the
general use of stringe and the'symbol' stri!l£j appears in Appendix 6 •

. In addition ALGOL only. allows an actual parameter to be of a
kind and type which is 'compatible' with those of the corresponding
formal parameter. For example, a formal parameter which occurs 8S

a left part variable in an assignment statement and is called by
name can only correspond' to an ac.tual parameter which is a variable.*
It is recommended as good programming practice that the types of
formal parameters called by ·name and the corresponding actual
parameters be not merely 'compatible' but the same.

An example of a specification part was provided by the
declaration of the procedure EXAMPLE in Section 19·3. Thwi:

~ x, y, R;

The specification part .for another procedure might be:

integer i, j;

~ X, Y; ~ array K1;

integer procedure IT;

procedure P, Q;

19·6 The Procedure Body

The procedure bo~ which follows the procedure heading may be ~
ALGOL statement. In practice it is usually also an ALGOL blook. Of
oourse, this definition allows the procedure bo~ to inolude whole
pieoes of program oontaining ~. statements.

*KDF 9 ALGOL has a further restriotion of ·a similar kind, for whioh see
Restriction (3) on P8B8 1 in the Introduction.

68

19' Procedures (cont.)

Means are also available for the programmer to write the
procedure body in KDF 9 machine code, if he so wishes, and the AUlOL
Users Manual (Section 5) explains how to do this.

It was explained in Section 19'4 that the procedure identifier
could occur within its own body on the left of an assignment and
that such procedures could be used to define function designators.
It is also possible for the procedure identifier to be used in some
other W83 within its procedure body, suoh as in an expression.
If this is so, its ocourrenoe signifies a new oall of the procedure.
Though such applications receive some disoussion in Section 2}'5,
they are to be avoided by the inexperienoed ALGOL programmer.

19'7 The ALGOL Procedure Library

The ability to use a procedure on a number of different
occasions makes this ALGOL con!3truotion extremely useful. There
are some procedures suoh as those for input and output, whioh are
of such general applioation and required so orten that it has besn
decided to include them in an ALGOL procedure library. This
library saves the programmer having to write out the declarations
of these oommon procedures each time he needs them. It includes
pieces of ALGOL text as well as single procedures and is stored
on magnetic tape.

Wherever an insertion in a program is required the symbol
~ must appear followed by a list of unsigned integers
specifying the particular portions of ALGOL text to be inserted.
see for example the program in Appendix 1 t or this manW4. and also
Seot10n 4 of ~he ALGOL Users 1BDual.

Contributions to the library will be published from time to
time after thorough test.

Problems

(1) Trace the various parts of the procedure deolaration for erfc
given in the specimen program of Appendix 1. Ignore, the
commentary which will be explained in Seotion 20.

(2) What is the value of the function designator,

AP(1, }, 5)

if its procedure declaration is as follows?

69

19· Procedures (coat.)

!!.!!. procedure AP(a, d. n); valve a, d, n;

!!!l a, d; inteser n;

be a inteser i; !!.!!. t;
t I" 0,

m 1 : - 1 step 1 !!B!!! n ~

J t :- t i- a;

a :- a + d

end

AP I- t

en.i

(~) Assuming the above procedure declnTatlon but with a and d
omitted from the value list, what would be the final valuos of
the variables on exit from the last of the following statements?
The variable,s p, q, r, and s are !:!!!!.

p :- -1; q:- 2; r:- 3;
o :,. np(q. - (p .. qtr) ~ P. 2);

(4) (i) Write a procedure doclaration which defineD a function
de3i~lator Jo(x) based u~n the series

2 4 6 _ L... .. _x ___ -:;:~x~-=
)2 72.42 2 2 2" .••• _ _ 2 .4 .6

(ii) Use this procedure declaration in a pro!,TnIII which 8val'lr'ltes
the expression

Jo(x) t Jo {Jo (x2)}

for x .. 0(0.1)1.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I

I
I
I
I

71

20· COMMENT CONVENTIONS 20·

If the reader has studied the specimen program of Appendix 1, he
will have noticed the occurrence of commentary. This is a convenient
feature of ALGOL. By its means the programmer is able to record
information which may help other users of his program or even himself at
some later date when his memory of the program is dimmed.

The rule governing the use of comment is:-

Any sequence of basic symbols is ignored while the program is being
executed and may be used as commentary if it belongs to one of the
following categories.

(i) Sequences following ";n or "begin" which commence with "comment"
and are closed by";", but do not contain ";".

(ii) Sequences following "~" and not containing "~", n;" or

Example:

end

"~".

comment A program to illustrate the use of comments;

integer ill:!.!! x;

comment start program begin 12!: i :~ 1 step 1 ~

10 ~ calculation ~;

for i:= step 1 .sa!!! 10 ~

be n if i = 5

.!h!I! begil x := i ><- (i + 1);

x := xtx

end the Special Case

w.. begil x := i>«i-1};

J x :,. xt(x + 1)

end if i I 5 ~ Normal Case

program

72

20· Comment Conventions (cont.)

When all commentary has been eradicated this example appears as
follows:

be 0 n integer i;!!!! x;

for i : .. 1 step 1 .!mlli 10 ~

be on g i .. 5

-"1 x := i x (i + 1);

x := xtx

end

~ "&!j x : = i)<. (i - 1);

x := xt(x + 1)

end

end

end

20·

13

SWITCHES AND DESIGIfATIOlfAL EXPm;sSIONS

Sometimes a programmer may wish to jump from a point in his program
to one of a number of others depending on the value of some variable or
expression. In oommon programming parlanoe he wishes to use a multiple
branoh or swi toh. Al though it is possible to do this in ALGOL by means
of oonditional statements, they beoome long-winded for a many-branohed
switoh. A much simpler faoility is provided. The programmer writes
down what is oalled a switch designator in plaoe of a label in his goto
statement. This looks preoisely like a one-diaensional subsoripted
variable.

Example: ~ EXIT [n]

The declaration of the switoh identifier, however, looks very
different from that of an array. It will usually oontain a list of
labels, and depending on the value of the subsoript of the switch
designator one of these labels is chosen for aotion in the goto statement.
Before defining the form of a switch declaration preoisely let us generalise.
the use of labels and switch designators in the goto statement.

A goto stateJRent may take the form:

&2!2 DE

where DE stande for a designational expression.

A designational expression is a rule for finding a label. In a
manner analogous to the arithmetic expression it is defined as being
either

a simple designational expression (SDE)

or of the form

g BE .!!l!!! SDE ~ DE

A simple designational expression is one of the following:

a label,

a switch designator,

or a designational expression enclosed in parentheses.

Further Examples of Goto Statements using Designation&l Expressions;

.!2!2 if ac::b ~ FAIL ~ CONTINUE

~ S[3 + (g x >0 lb!n p !l:!! q)]

We may now define the forms allowed for a switch declaration and its
oorresponding switch designator. These are shown below.

74

21. Switches and Designational Expressions (cont.)

Switch Declaration

Switch Designator -r
Switch List

I 1----,
DE, DE, •••• , DE'

sw [SUB]

where Sw stands for a switch identifier.

The following is a possible declaration corresponding to the switch
designator EXIT [n]

.!!!i.i2.h EXIT:= 11, L2, FAIL [m]

The evaluation of the switch designator EXIT [n] at run time would
proceed as follows. Depending on whether the value of n is 1, 2 or 3,
the appropriate element of the switch list is selected. Thus the value
of EXIT [1] is the label L1; for EXIT [2J it is the label L2. EXIT [3J
leads to the switch designator FAIL [m] which in turn must be evaluated by
referring to the switch list in the declaration of the switch identifier
FAIL.

In the general case the evaluation of a designational expression at
run time to produce a label proceeds as follows:

(1) The boolean expressions select a simple designational expression.
If this is a label we have the result desired.

(2) If it is a switch designator, the numerical value of its subscript
expression is calculated to the Dearest integer in the same w~ as
anarr~ subscript. The result is used to select a designational
expression from the corresponding switch declaration switch list
counting these 1, 2, 3 etc., from left to right. (If the subscript
expression is not within the number of entries of the list or is
negative, the value of the switch designator is undefined and will
produce a failure in the KDF 9 ALGOL system).

(3) The evaluation processes (1) and (2) are repeated for the new
designational expression thus found using current values of all
variables involved, and so on, until finally a unique label is
reached.

Problem

Follow the action of the program below, noting all labels passed
and the final values of n and m.

75

21· Switches and Designaticnsl Expressions (cont.)

begin integer n, m;

~ Branch :- L1, L2, L3;

~ S:= R, Branch [n - m], R;

n := 3; m :- 1;

R: m!2. if' n".O ~ Branch [nJ

.!!!!.! STOP;

L1: m := n - m + 1;

L2: n := n - 1;

L3: ~ SCm + 1J;

STOP:

21.

77

.22· BLOCK STRUCTURE AND ASSOCIATED RESTBICTIONS 22·

Let us remind ourselves at this stage that a block consists essentiall7
of a sequence of statements preceded b7 one or more deo1arations, the who1.
being sUrrounded b7 begin and g brackets and containing a sprinkling of
semicolons to act as separators. The form of a compound statement differe
from a block in that it contains no declarations.

The beginner was advised in Section 18·4 to write his program as a
single block with all declarations inserted at the beginning of the program.
We now suggest that the reader make use of the advantages to be gained from
a block structure. (These are main17 advantagee in storage econo~).
As he reads this section he will appreciate that the block etructure often
allows identifiers to have more than one meaning. In his own programs,
however, he is strongly urged to use identifiers unique17'

The definition of Section 18·~ which allows a compound statement or a
block to be considered as an unconditional statement makes it possible for
the structure of a program to be quite complicated. Here we are interested
in the structure ariSing from the use of blocks rather than that due to the
occurrence of compound statements, because the declarations at the heads of
the blocks impose certain restrictions on the use of the identifiers
declared. The present section will explain these restrictions.

On page 78 (overleaf) we provide a program which illustrates how
blocks IIIlQ' appear in sequence with other statements and blocks, or ~ be
nested,that is, IIIlQ' appear within other blocks. !he block structure in
skeletal form is depicted on the right hand half of page 79.

78

22· Block Structure and Associated Restrictions (cent.)

be n ~ a;

open (20);
L: a:= read (20);

a := a + 1/a;

end

be in ~ v, x;
v := a + 1;

end

x :- v'2 + v~(-2);

for v := 0 step 0.1 B!1lli 1.55 iQ
be in integer v;

~y;

y := 0;

L: .!2l: v := 0 step 1 ~ 10 ~

Y := Y + xtv;

end

v :. x/a

.!2l: v : = 1 step 1 .!:!!!lli 9 do Jeon

end

Y := Y + ytv;

x := x + y

if a>O~~L;

~ v;
v := a- 1;

v := vt2 + v+(-2)

22·

79

22· Blook Structure and Associated Restriotions (oont.) 22·

L:

B1

end

~a;

be n real v, x;

B2

end

je on

B4

end

L:

B3

end

~ v;

inteser v;

!!!!. Yi

Block Structure

a x

II

Scopes of Identifiers Declared

It will be noticed that the program reproduced above oonsists of a
block, the block B1. Blocks B2 and B4 are nested within B1 and block B3
is nested within B2. Blocks B2 and B4 follow the general sequence of the
program within block B1.

Having determined the block structure of this or any program, we mq
relate to the structure the restricted scope of each of the entities
represented by the identifiers appearing in the program. By scope of an
entity we mean that part of the program where its identifier may be
legitimately employed to represent it. For the presen~ example the right
side of the diagram shows the scope of the variables a, v, x, and y and the
labels L determined according to certain rules now to follow.

In Section 18·1, it was stated that a declaration must be placed at
the head of the block to which it is intended to apply. On its own, this
rule is insufficient to fix the scope of the entities. Confusion of
scopes is particularly liable to occur if an identifier is used to
represent more than one entity. It is therefore necessary to add the
following general rules:

80

22· Block Structure and Associated Restrictions (cont.) 22·

(1) No identifier ~ be declared more than once in aqy one block head,
nor may an identifier be both declared and occur as a label* or occur
as a label twice in the same block.

(2) The entity represented by an identifier declared in a block head does
not exist outside that block.

(}) The entity represented by an identifier declared in the head of a
block is inaccessible in an inner block, if the identifier has there
been re-declared or occurs as a label.*

(4) A label is not accessible trom outside the block in which it occurs.
This means that though it is possible to jump out of a block by means
of a ~ statement, it is not possible to jump into a block. All
entries to a block must be through the begin.

(5) A label occurring in a given block is not accessible from an inner
block, if the correspoding identifier occurs as a label in the
inner block or has been declared in its head.

Before going on to discuss the application of these rules to the
example given aLove, we illustrate each rule by noting incorrectly and
correctly written programs.

RULE (1)

Je n

end

INCORRECT PROGRAMS

~X;

integer X;

end

CORRECT PROGRAMS

~X;

~
~

integer x;

*By occurrence as a label, we mean the occurrence of the identifier as a
label on the left hand side of a statement and separated from it by a
colon.

81

22· Block Structure and Associated Restrictions (cont.)

INCORRECT PROGRAMS CORRECT PROGRAMS

be n ~L; .!:!!!. L;

L: , be n ~ a;

goto L; L: ;
end ~L;

end

end

~ X; be in ~x;

L: L:

end
]

.!:!!! y;

L:

mi2. L
end

L:

goto L

end

(~ refers to second label L)

RULE (2)

be n ~x; be n .!:!!:l x;

J
~Y; be n n!!. y;

y : .. y 1= ... ;
end write (10, format

write (1O, format ([dd],y)

(CddJ), y) end

end end

22· Block Structure and Associated R~Btrictions (cont.) 22'

INCOBBECT PR0GIW4S CORBECT PROGRAMS

be in !!!!:!X; be n l:!J!i X;

integer i, ;1; integer i, ;1;

X: .•.. , L: •••• 1

X :- i X j; X := i X j;

SS!!2. X ~L

end end
end end

b.e n real X, Y;

integer i, j;

X: ;
Y :- i X ;1;

~X

end ;

X :- Y
end

RuLE (4)

I!!i a, b; l:!J!ia., b,
.....

Att!.l: Ii [2 50J; array)([2 I 50J,

L: ; L: ,

end S2!2 L
B2!2'L end

end end

8~

22· Block Structure and Associated Bestrictions (cont.) 22·

INCORRECT PROGRAMS

RULE (5)

be n ~ X;

L:

J
boolean L;

goto L

end

end

CORRECT PROGRAMS

be ~x;

L.

end

]

e ~:

end

i02!2. L

.!:!§:! y;

m!2. L;

(Note that the first ~ refers to
the second label L and the second
goto refers to the first label L).

Returning to our example and applying to it the rules described above
we obtain the scopes of a, v, x, y and L depicted in the diagram of block
structure and scopes of declared variables to be found earlier in this
section. Thus the variable a is declared for the outer block B1 and not
declared again elsewhere (or used as a label). Rules (2) and (3) there­
fore allow it to be used in any statement of the program. The variable
x is declared by block B2 and is not declared again. Rules (2) and (3)
allow it to be used throughout B2 but not outside. The variable y is
declared for block B3 and is not declared again. The Rules (2) and (3)
allow it to be used throughout B3 but not outside.

The situation with regard to the variable v is a little more complex.
It is declared afresh in the head of each of the blocks B2, B 3 and B4.
On each occasion this is equivalent to declaring a new variable which is
entirely independent of the others. The entity represented by v in the
declaration inteser v, we call v2' This applies throughout block B3, but
v2 is not accessible outside B3. The entity represented by v in the third
declaration of v, we call v3' This applies throughout block B4 but is not
accessible outside. The entity represented by v in the first declaration
of v we call Vi' It may not be used outside B2, and even within B2 it may
only be used when the declaration of inteser v in B3 does not apply, that
is, outside block B3.

The first label L is accessible throughout the parts of the block B1
which are outside B3, while the second label L is only acoessible within B3.

22· Block Structure and Associated Restrictions (cont.) 22·

Problem

(1) In the following program find the scopes of all the identifiers.
Follow the action of the program and find the values of those variables
which are defined at the label STOP.

STOP:

end

~ W, S, B, C;

W : .. 6;

S :- 3;
B :- 2)(W - S;

,C : .. B - W;

be· ~ P, W;

W : .. B-2 XC;

P := C'2 - B;

AA.: W:=P-2XW;

end

C :- C + 1;

!! W.:>1 ~ &lUg, AA;

S :- W - P + S

W :- W - C + S;

(2) In the above program find the number of unlabelled basic statements,
basic statements, unconditional statements, statements, block heads,
compound statements and blocks.

22·1 The Relation between Procedures and the Block Structure

As far as restrictions on identifiers are concerned, the body
of a procedure is treated as if it were a blook, whether this be so
or not. Specifications are treated as declarations; so that formal
parameters, in particular those called by value and therefore used
as working variables, are' no longer acoessible after exit from the
prooedure body.

Of all the entities declared outside a procedure, its body ~
only operate upon those which are current at the time of the proced~
call. This applies, whether they are inserted via the actual
parameter list or already occur inherently wi thin the procedure body
as non-local quantities. KDF 9 ALGOL .akes a further stipulation
upon the latter class. All non-local quantities occurring in the
procedure body as declared must be accessible at the time of the
procedure declaration when they- must have the same meaning as at the
time of the call. '

22· Block Structure and Associated Restrictions (cont.) 22·

As noted in a footnote of Section 19·4 any conflict which arises
between identifiers introduced to the body of a procedure via parameters
called by name and identifiers already present within the procedure
body is resal ved by sui table systematic changes of the formal or lo~al
identifiers involved.

22·2 Restrictions Imposed upon ArraY Bounds by the Block Structure

The block structure also imposes restrictions upon array bound
expressions occurring in an array declaration in some block head.
They may only depend on variables and procedures which are non-local
to the block for which the array declaration is valid. That is to
say all variables and procedures which occur in these expressions
must have been declared outside in some enclosing block. Standard
functions and constants can of course always be used in these expressions,
for these are considered to be declared in a block enclosing the whole
program.

The effect of the above restriction is to prevent the use of any
other than constant bounds in the outermost block of a program. It
also restricts the data input of arrays with variable bounds, because
the bounds cannot be read with the arrays themselves when more than
one array is declared in a single block head.

The restriction on reading the bounds of an array of data with
the array itself reduces the convenience of using ALGOL arrays to
represent matrices. However, a matrix scheme avoiding this ditticult,r
and yet remai ni ng wi thin ALGOL will be found described in the
'English Electric' Manual, 'Im)' 9 Jlatrix Scheme'.

22'3 The Influence of Block Structure on Switch Designators

Under the rules mentioned in Section 22 it is possible for
identifiers occurring in designational expressions belonging to a
switch declaration to have been re-declared with new meanings by the
time the corresponding switch designator occurs. It this is 80 the
conflict between the identifiers occurring in the designational
expression and those whose declarations are valid at the place of the
switch designator is resolved by suitable systematic change of the
latter identifiers.

22·4 Use of the Elock Structure

In order to avoid the complex restrictioD8 on identifiers
imposed by a block structure, it was suggested in Section 18·4 that
the beginner should write his program as a single block with all
declarations inserted at the beginning of the program. Of the
rules in Section 22 above only Rule (1) is then necessary. Sinoe
by Rule (1) no identifier may represent more than one entity in anT
single block, the programmer of a single block must ensure that all
quantities are represented by their own unique identifier.

86

22. Block Structure and Associated Restrictions (cont.) 22·

It is, of course, possible to ensure the uniqueness in meaning
by suitable choice of all identifiers and at the same time keep the
block structure in accord with the recommendation at the beginning
of Section 22. This simplifies the rules considerably but not as
radically as in the previous paragraph. Only Rules (1), (2) and
(4) are now necessary.

Although it would appear simpler and therefore better to write
one's program as a single block without an inner block structure,
such a block structure can be useful. Its main value lies in
helping to economise on data storage requirements.

This is essential when a progrrun is likely to over-reach the
capacity of the computer, perhaps because the program is so large
that little room is left for data and working space, or because it
uses a number of large arrays. The block structure is also useful
when it is necessary to construct parts of a large program independently
of each other, as for example when more than one programmer is working
on the same project. Division by block structure would avoid the
confusion due to overlapping use of identifiers representing different
quantities. Procedures, of course, can be used in this way and are
of particular value when a block of program has wide application.

In the next section we return to the subject of prooedures and
extend their application further than the inoomplete treatment of
Section 19.

87

AJJVANCED USE OF PROCEDUllES

23·1 Jensen's Device

A very powerful use of ALGOL procedures involves what is called
Jensen's Device.* This employs the ability to make actual
parameters of a procedll.re depend upon one another. Suppose for
example we declare the procedure Sum series as follows:

procedure Sum series (r) Term: (t) Order: (n) Result: (y);

~ n ; integer r, n; ~ t, y;

~ s ; s := 0; Je.n

~ r := 1 step 1 until n ~

S : = S + t;

y := s

end

If this procedure were used in a statement of the form:

Sum series (i, T, m, R)

then its effect would be rather meagre resulting simply in assigning
the value m X T to R.

However, if the parameter corresponding to t is made to depend
on that corresponding to r, then n different terms in a series may be
summed. Thus, using subscripted variables (though plenty of examples
could arise in which subscripted variables are not used), the procedure
statement

Sum series (i, A[i-1] x yf(i-1), 12, R)

would evaluate the series,

A [OJ + A[1]y+ •••••• +A[11]y11
12
~ A[i-1] l-1
i~1

and assign the result to R. The coefficients of the series are
stored as the elements of the array A.

Other examples using the above procedure are mentioned in the
problems appearing after Section 23·6.

23-2 Array Identifiers as Parameters

A rather different use of arra;y-s from that mentione,d in the
previous section arises when formal parameters of procedure declaration
are specified as arrays_ In this case the actual parameter cannot be
a subscripted variable but both formal and actual parameters appear
simply as array identifiers.

*The device, which is used in the example 'Innerproduct' in the ALGOL
Report. is due to J. Jensen of Regnecentralen, Copenhagen.

88

23· Advanced Use of Procedures (cont.)

The actual ar.r~s upon which operations are performed already
have their bounds declared in the program outside the procedure. It
is therefore unnecessary to specify bounds on the fOllWal ar.r~
appearing in the procedure declaration. The arr~ specification in
the procedure specification part merely appears as:

, .
~ ... T) array At A, •••• A;

The symbol, array, is here used as a specifier as allowed by Section 19·5.
Note that in KIlF 9 ALGOL formal' and actual arr~s must exactly correspond
in type.

A good example of the use of an array in a parameter list is
found in the procedure Transpose of the ALGOL 60 Report, para 5.4.2.
The first parameter conveys the name of a two dimensional square
array, while the second parameter conveys its size.

procedure Transpose (a) Order: (n); value n;

array al integer nj

!!!! w; integer i, k;

.!.2.!: i := 1 step 1 ~ n .92
is!!: k := 1 + i step 1 .!!!W:1 n .92 Je.n

end

end Transpose

\If := a [i, kJ;

a [i,k] := a [k,i);

a [k,iJ := w

Note that the parameter a appears in the specification part as ~
and in the body of the procedure is used with subscripts attached.

The reader might, wonder at the need for parameters which are
arrays. ~~ not use subscripted variables and insert extra parameters
for use in varying the subscripts? This can be done, but ~ not be
convenient as the reader will discover from revising the procedure
Transpose above.

23-3 Procedure Identifiers as Parameters

The use of procedure identifiers in a procedure parameter list
is another important facility. The specification in, the specification
part appears as:

, .
:Tl ptocedure'P, P, •••• P;
'. ,

The following declaration of the procedure CONVOLUTE makes use
of three procedure identifiers Int, g and h in its parameter list.
Note the way these are specified and later used, g and h in function
designators and Int in a procedure statement.

89

23- Advanced Use of Procedures (cont_)

~ procedure CONVOLUTE (Int, g, h, a, b);

~a,b;

procedure Int; comment The integration process required is
supplied through the parameter Int;

~ procedure g, h; comment The parameters g and h supply
the functions appearing in the
integrand;

~ a, b; comment The parameters a and b supply the lower
and upper limits of integration;

begin ~ u, R;

Int (g(u) h(u),u,a,b)Result:(R);

CONVOLUTE : =R

The procedure CONVOLUTE is intended to evaluate the integral

J! g(u) h(u) du

The names of various real procedures may be inserted for various
functions g(u) and h(~while various integration processes may be
incorporated via the procedure identifier Int. The variable u
declared in the procedure body is equivalent to the variable of
integration.

23-4 Switch Identifiers and Designational Expressions as Parameters

Of the list of specifiers allowed to appear in the specification
part of a procedure declaration by Section 19' 5, there remain
undiscussed the symbols label and switch. For both these the
specifying symbol is fol~ by o~more formal parameters to
which the symbols apply in a manner analogous to the specifications
described in the previous two sections.

~ is the specifier used when the formal parameter corresponds
to actual parameters which are designational expressions, each actual
having a label as its value. It is by this means that the programmer
may best jump out of a procedure which is to be used in several con­
texts, say for a failure. The use of non-local labels would often
be inconvenient.

Example:

procedure Complex Divide (a, b, c, d, e, f, Failure);

~ a, b, c, d;

~ a, b, c, d, e, f; label Failure;

end

n ~g;

g : .. ct2 + dt2;

.li g .. 0 .ll!!.!l K2i2 Failure

e :- (a x c + b x d)/g;

F :- (b x c - a x d)/g

90

23· Advanced Use of Procedures (cont.)

The specifying symbol switch is used when the formal and actual
parameters are switch ident~. In this case a complete switch
is transferred via the parameter list. The facility, which is
illustrated by the following procedure will not be found of frequent
application. Use is made of an £!B variable, for explanation of
which see Appendix 4.

procedure GOTO (S, bool);

~ S; boolean bool; Jeon

end

.2!!! integer i;

i : = i! bool then i + 1 ~ 1;

K2!2 S[iJ

The above procedure will cause a jump to a label of the actual
switch supplied in place of S. If bool be ~ then the first label
is used. If boo 1 be~, the position of the label to be used is
stepped on by one.

23·5 Recursive Use of Procedures

When an ALGOL program is being executed and control reaches the
procedure identifier of a procedure statement or function designator,
the identifier initiates a call of the procedure according to rules
already explained in Section 19. It may happen that, in the process
of executing the procedure, control reaches the same procedure
identifier again in a position where it expects to give rise to a
new call of the procedure. This is allowable and in the jargon is
called a recursion.

We have already met a simple type of recursion without having
called it such. The solution of Problem 4 (ii), Section 19 makes use
of the procedure identifier Jo recursively in the function designator
Jo(Jo(xt2». Here the second call of the procedure Jo arises from
the arithmetic expression inserted as the actual parameter for the
first call. The procedure Jo itself is not recursive, but the use
made of it is.

In this example as in all cases of recursion the new call of the
procedure sets up a new layer of storage for parameters and locally
declared quantities,* so as not to interfere with those already
current for the first call. Further levels of recursion may be
entered at appropriate calls of the procedure, thus we might use the
following function designator, Jo(x + Jo(Jo(xf2»-1), which recurses
twice.

*However, new storage is not required of course for parameters called by
name, or for own variables and arr~s which as far as their storage is
concerned are "treated as non-loc&l. to the procedure (See Appendix 4).

91

23· Advanced Use of Procedures (cont.)

The above recursive use of a simple procedure by making a new
call of the procedure in the actual parameter list is the simplest
form of recursion. Another ~pe of recursion arises when the new
call of the procedure lies within its own body. The following is
an example or a recursive procedure to calculate the binomial
coefficient '~r:

integer procedure BC (n,r); ~ n,r; integer n,r;

BC :~ 1! r = 0 ~ 1 .!!!! (n-r+1)/rx BC(n,r-1)

In this procedure the body contains two occurrences of the procedure
identifier, the occurrence on the left of the assignment is not a
call of the procedure and does not produce a recursion. The second
occurrence does occasion recursions.

It should be pointed out that though the use of this second t,ype
of recursion ~ often produce an elegant ALGOL program, more often
than not a less efficient use is made of KDF 9 by this means than by
straight-forward ALGOL programming.

23·6 Use of Non-local Variables in Procedure Bodies

The manual has already stated in Section 2,2·1 that procedures
~ use non-local variables within their bodies (as long as for KDF 9
ALGOL these are accessible and have the same meaning both at declaration
time and at the procedure call). Use of such non-local quantities can
occasion unexpected consequences particularly if assignments are made
to them within the procedure body.

One might have an apparently harmless function designator, Sheep
(20), which however has the following declaration:

integer procedure Sheep (s); ~ s; ~ S;

begin Sheep:- 8;

Wolf :z 2 X Wolf ~

A call of this procedure will not reveal openly the effect upon the
non-local variable Wolf, and because of this hidden 'side effect' the
two expressions:

and

Sheep (20) x Wolf

Wolf x Sheep (20)

will lead to two different results.

We assume here that the operands occurring wi thin an expression
are alw~s evaluated from left to right (in addition to operations
which are usually performed in this order, see Section 6). This ill
the case with KDF 9 ALGOL. There 18, however, IlO express ruling on
this matter in the ALGOL 60 Report, so that other compilers ~ adopt
a different order of evaluation and therefore produce a different
result when 'side effects' are involved.

92

23' Advanced Use of Procedures (cont.) 23'

Other procedures than those used as function designators can
produce 'side effects' but function designators are the more
insidious in practice as they are capable of being used in the very
varied positions allowed for expressions. Thus the mere evaluation
of an array subscript or the obedience of a goto statement using a
designational expression may produce an effect on other quantities.

There is, however, very little excuse for the average ALGOL
programmer obscuring his program by the use of procedures having such
hidden effects., since he can always bring their effects into the open
by incorporating non-local variables in the procedure parameter lists,
calling these variables by name.

Problems

(1) Use the procedure Sum series of Section 23·1 to sum to n terms

(i) an arithmetic progression, first term a, common
difference d,

(ii) a geometric progression, first term a, common ratio r.

(2) Use the procedure Sum series to produce the effect of the
procedure statements:

(i) Spur (A) Order: (7) Results to : (V)

(ii) 1nnerproduct (A[t,P,u], B[P],10,P,Y).

Procedure declarations of Spur and 1nnerproduct appear in the
ALGOL 60 Report, para 5.4.2

(3) Construct a type procedure to evaluate the area under a curve
using Simpson's Rule, expecting an array of the co-ordinates at
equal intervals of the independent variable to be provided as
one of the parameters.

[I = b3~ a (Yo + 4Y1 + 2Y2 + 4Y3 + 2y4 +·····+2yn _ 2 + 4Yn _ 1 +Yn)

independent variable passing from a to b, co-ordinates y. and n
even.] 1

(4) Write a recursive procedure to discover the highest cODlJlOn factor
of two integers p and q.

93

24· CHECKING AN ALGOL PROGRAM BEFOllE TEST 24'

Although the simplicit,y and efficiency of ALGOL programming is such
that one may expect a fairly low error density when compared with other
forms of programming, there is still a strong possibility of errors
occurring, particularly in large programs. To prevent wastage of machine
time in re-translation, it is most important that an ALGOL program should
be checked by hand before translation is started. The follpwing are
pOints to notice particularly.

(ii)

(iii)

(iv)

(v)

(Vi)

(vii)

Check that the underlining of basic symbols has not been
forgotten.

Check that semicolons have not been forgotten. Look particularly
at the ends of lines, between declarations and specifications,
at the ends of declaration and specification lists, and following
comments introduced by the basic symbol comment.

Check that each begin has a corresponding ~ and that each if
has a corresponding ~.

Check for the omission of compound statement brackets ~ and
end, such as those which should appear round for statement bodies
~ the branches of conditional statements, when they contain
more than one independent statement.

Check that an if never follows a ~, or an arithmetic, logical,
or relational ~rator.

Check that except within strings the exponent base 10 is only
used within numbers and is always followed by a signed or
unsigned integer number (not a variable).

Check that two arithmetic or two logical operators do not appear
in juxtapOSition.

(viii) Check that each opening bracket in an arithmetic expression has
a corresponding closing bracket and vice versa.

(ix) Check that the multiplication sign x has not been omitted.

(x) Check that integer division + is only used to operate upon
integer operands.

(xi) Check that declarations of simple variables have not been omitted.

(xii) Check that specifications of formal parameters have not been
omitted, and also that upper and lower bound information has not
been provided for array specifica.tions. --

(xiii) Check that each variable has not been used before a value has
been assigned to it.

(xiV) Check that after exhaustion of the for list of any for statement
the controlled variable .is not used again until an assignment is
first made to it. (The controlled variable keeps its current
value if exit from the for statement is by a goto statement ~
exhaustion) •

24· Checking an Algol Program Before Test (cont.) 24·

(xv) Check that no division by zero, square root of negative quantity,
logari thm of zero or negative quantity, or disallowed use of the
exponentiation operation, etc., can occu~-

(xvi) Check that the absolute value has been taken when testing
magn~tudes of quantities.

(xvii) Check the program thoroughly by following it through step by step
using test data to e.nable one to check all parts of the program.
Check also for special values of parameters, such as zero.

Since it is still possible that an ALGOL program may contain errors,
even after the above checks have been made, automatic checking facilities
are incorporated in the translator. Nearly every disobedience of the
rules of KDF 9 ALGOL is discovered by the translation process and notice
of it printed out, pin-pointing the position of the error in the program
so far as this is possible. In the remaining few cases however, such as
incompatibility of fonne~ and actual parameters, the error is not discovered
until the program is run. Again notice will be given. There 8.re also
other checks automatically made at run-time, such as those needed to ensure
that the storage capacity of the machine is not exceeded or that numbers do
not become too large during calculation.

It is, of course, not possible to check automatically for a wrong
program. The, translator will accept for translation any program which
obeys the rules and the KDF 9 ALGOL system will run it. The programmer
himself must compare the results produced with those he desires, before he
may be sure of having the right program.

In order to help the programmer discover where a program has been
written wrongly, he is able to output partial results and other inforll~tion
by means of program-testing procedures. The identifier of each such
procedure must commence with a particular group of letters and is written
and decl'ared by the programmer himself. When the program is compiled in
the testing mode, procedure statements and declarations using these
identifiers are included; while in the non-testing mode they are excluded
For further details see KDF 9 Library Service Note - ALGOL.Note 1.

Problem

List the errors in the following program:

end

comment Program to evaluate 'It

~ term, s, pi;

n := 0;

.!:2!: n : = n + 1 while abs (term)::>'10-1 0 ~

term := 1/(2n - 1)t4;
s := s + term;

pi := sqrt (sqrt(96s)

write (10, format«(d.dddsdddsdddJ), pi)

(Problem continued overleaf).

95

24· Checking an Algol Program Before Test (cont.)

The intention is to evaluate?': from the sel'ies

~4/96 = .1. + .1. + .L •
14 34 54

24·

continuing until terms are less than 10-1°. The program as given aoove
contains thirteen errors.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

97

APPENDIX 1

A SPECIMEN ALGOL PROGRAM

The specimen program supplied here should help to give readers some
idea of the appearance of a program for a practically occurring problem
in engineering. The program which is in strict KDF 9 ALGOL illustrates
IJIaDY of the programming tools available to the ALGOL user.

The problem and numerical method of solution is as follows:

Tabulate the functions).(0("),). X (2cC)i and g(oc) for oC - ° (.10<:) 1.0,
where >-(0(") is given by

2
oc (1 - ex) ,. (~ ~ e A erfc).)/).

and g(oe) is given by
2

g(oc) = 2A cx:(1 -at),
2

'" Q(1 - ee)e). /Q'V'28) ,

The function erfc ~is sometimes called the complementary error function
and is gi van by the integral

erfc). = ~ J~ e _x2
dx

An initial value of ~ is obtained from the approximation

A = (1 - cF.)/~

This value of A is improved using the following formulae in an iterative
manner:

1 =j{t:Lf (1 ;oc) CA erfcA eA2)}

and new). = 1 + 0.835oC(1 -),)

When at is zero, ~ becomes infinite and the above formulae cannot be
used in numerical calculation. In this instance the limiting values are
output directly.

It is not claimed that the numerical method used for solving the above
problem is particularly efficient. In fact the method used to evaluate
erfc~, being based upon the trapezoidal rule, is rather slow (except when
). is near zero). For present purposes this does not matter as we wish to
illustrate a form of programming rather than produce a fast program. The
problem is taken from a paper by J. W. Miles (The Propagation of an Impulse
into a Viscous-locking medium, A.S.M.E. Trans. Series E. Jour. Appl. Mechs.
March 1961, 21 - 24).

98

A·1 Appendix 1 - A Specimen ALGOL PrOgr~ (cont.)

be ~ This is a program for a p~tieallT arising problem. It
illustrates the use of mBnT of the·facilities available to the
ALGOL user;

.m! alpha. lambda. Delta alpha; integer i. f1, f2, f3. f4, 1'51

.m! procedure errc (zh ~ ZI real Zl

be n comment This procedure evaluates the co:nple_nt&r7
error function of • using the trapezoidal rule. It
halves the intenal until the required accuracT is
attained, but avoids repeating the evaluation of
ordinates more than oncel

.m! x, h, JO. J11 integer n. i;

h I- 0.11 JO I- 0; n I- 01 i I- 1;

RI J1 ID JO;

~ n I- n, n + i ~

n X h X (n X h + 2 X .)<11.51 !2 Je. X la Z + n X hi

JO I- JO + exp(-xt2)

X (ll n - 0 .!h!!! 0.5 .!l!!. 1)
end ,

II abs(1 - 2 X J1/JO)::>O.0OOO1 !!w!

~
~

i :- 21 n :- 11 h I- h/2;

li2!2 R ,
erfc la 1.128379 x JO X h

end erfci

~ .4.6, 2!!!!!!!!!1 The word librar,y under lined and followed bT a
list of numbers separated bT commas and ending with semi~
oolon is an instruction to the KDP 9 ALGOL operating
sTstam to insert at this point the specified passaps of'

open (20);

ALGOL text t'roa the libr·a.rY. In this case l1brarr A6
is require' .~ 1;b1a 01111'1;.' D8 the declaratiOns of the
l.nput and output procedures named open, cl088, read,
Wl't1Ie, fomall, and wr1:lIe tfIrl.

Delta alpha I-read (20); close (20);

comment Delta alpha is the oDIT input data i tam required bT the
. programl

open (10);

wri te text (10, b Propagation*ofl'an*Impulse*into*a*Viscous-locking*
Medium [4c48J Del ta*alpha*a*J);

write (10, format (~d.ddddoccJ), Delta alpha);

99

A·1 Appendix 1 - A Specimen ALGOL Program (cont.)

write text {10. CL 4sJ alpha [15sJ 18lllbda [7sJ 18lllbda

X sqrt (2X alpha) [9sJB~2c 4sJ 0.OOOO('1}sJ

DfFINIi"i C1}sJ 1.00000 [12eJ 1.00000[cJJ);
£1 s= format {Cssssd.dddd:D;

f2 s- format ([12sd.ddddG+ndJ);

f} Sa format <[12sd.ddd4d)1

£4 s= format «12ed.dddddCCJ),

f5 s- format «12sd.dd4dclcJh

i :- 1,

m alpha 1= Delta alpha step Delta alpha until 1.0.92

be n l:!!! 11, 12;

i:-i+1;

lambda s- {1 - alpha)/sqrt (2 X alpha);

!!: alpha = 1 ~ ~ SKIP;

Repeat 1 11:- 18lllbda,

12 :- sqrt {0.886227 X (1-alpha)/alpha xli

xerfo (l1) X exp{+l1t2);

lambda :- 12 + 0.8;5 ~ alpha ~ (12-11);

!!: abs {1-12/1ambda»,o-5 lh!n ~ Repeat;

SKIP: write (10. f1. alpha);

write (10. £2. lambda);

end

closs (10)

program

write {10, f}. 18lllbda ~ sqrt (2 ~ alpha)) I

write {10, !!: i - i + 5)(5 - ° .!!wl f4 !!!!. [5.

!!: lambda-..70710678

then 2 x lambdaf2)(alpha x (i-alpha)

!le.!! lambda .; 0

~ alpha)((1 - alpha) X exp (lambda1'2)/

(lambda X 2.}282180)

els8 O.48}94)

100

A·1 Appendix 1 - A Specimen ALGOL Program (cont.)

Layout of Results

Below we show the layout of results expected from the above program
for the input data tape containing O.1~. The results are first punched
out on paper tape and subsequently tabulated.

Propagation of an Impulse int9 a Viscous-locking Medium

Delta alpha = 0.1000

alpha lambda lambdaxsqrt(2xalpha) g

0.0000 INFINITY 1.00000 1.00000
0.1000 2.0201,. +0 0·90,40 0.7)452
0.2000 1.281210 +0 0.81029 0.52525
0·3000 9.2712/0 -1 0·71814 0·36101
0.4000 6.994310 -1 0.62559 0.24038

0·5000 5.3160", -1 0.53160 0.26796
0.6000 3.972710 -1 0.4,519 0·30384
0·7000 2.834010 -1 0.3)532 0·34489
0.8000 1.8242,0 -1 0.23075 0·38947
0·9000 8.9284,0 -2 0.11979 0.43642

1.0000 0.0000 0.00000 0.48394

101

APPENDIX 2

SIMPLE BOOLEAN EXPRESSION - GENERAL FORM

Amongst the logical operators which IDtJ:Y be used in a boolean expression
we have !!2! (-,), ~ (1\), .e.t (V), ~ (:::.) and.!.9.!: (==).* Denotil1g these
logical operators by LO, a logical value by LV, a boolean type variable by
BVand a relation by R, we IDtJ:Y write a simple boolean expression in the form:

LV LV

BV LO BY 10

R R

LV

LO BV

R

For example we might have the following simple boolean expression:

B1 g ..!!:!!! .e.t ~

BV LO LV LO R

The various components of the expression are marked.

The function of the logical operators is as follows:

!!2! will change the value of the boolean quantity which follows it.

~ will take the pessimistic view that the result of the operation on
the two boolean quantities on either side of it is..!!:!!! if both have
the value ..!!:!!!' otherwise the result is ~.

~ will take the optimistic vie~ that the whole has the value ~ if
at least one of the two boolean quantities on either side has the
value ~ Otherwise the result is ~.

~ short for implies, will produce the result ~ if the boolean quantity
to the right of the symbol is at least as true as the boolean quantity
to the left •

.!!9.!: short for equivalent, will produce the resul t ~ if the boolean
quantities on either side have the same value.

Evaluation of a simple boolean expression proceeds from left to right
except that the following order of precedence must be observed:

1st arithmetic expressions in accord with Section 6 and 8

2nd relational operators

~rd ~

4th ~

5th .e.t
6th i!!!£
7th .!!9.!:

*The KDF 9 ALGOL (flexowriter) symbols are given here with the ALGOL 60
equivalents in parentheses.

102

/,·2 Anpnndix 2 - Simple Boolean glCPl~8sion - GCOI'rnl Pom (cont.) A-;>

Bracke.ts may also be used within boolean expressions to alter the natural
order of evaluations.

Examples:

(1) If x = 0, y ~ -2, z - 5, find the value of the boolean expression

.!!2!(xc::2 .am z>6 .2£ 2 + Y - 0)

The follOwing steps are necessary. The first operator, not~ is
followed by a bracket which must be evaluated first. We~ve·the~

.!!2! (m!.am z>6 .2£ 2 + Y - 0)

.!!2! (m!.am false .2£ 2 + y - 0)

!!2! (l!!!!!..2£ 2 + y - <»

l!2! (false .2£ 0 D 0)

n21 (l!!!!!. or ~)

n21 (true)

.!!2! true

I.!l!!.
Note: to be certain that. 2 + y comes to exactly zero, y must be

an inteeer type verial.le.

(2) For tho same valuea of x, y and z, evaluate

Again, we follow each step throU6'h.

Problems

!!2!~.2£ z_6 .am y f ~

l!!!!.!..2£ z>6 .am y f ,
.&:!!!!. .2£ .!!l!! .am y , ~

l!!!!.!. .2£ l!!!!!. .am ~
false .2£ .!!!e
false

(1) If II = 1, b - 1.5. c - -0.3, d .. 2 find t~ values of the following
sir.'plc boolean expressions. a and d are integer type and band c
~.

(i) b<:d

(ii) a + b~(1 .. ct2 I(d)
(iii)

(iv)

b>c.am d<2

ctd ,a ~ bt2 - a -d .2£ !!2! b;ao1.499

10}

A·2 Appendix 2 - Simple Boolean Expression - General Form (cont.) A.2

(2) If a, b, c and d are variables of type integer, which of the following
are valid simple boolean expressions?

(i) a .. 2~d ~ 5 .. 4 £!!: !!2! .!£!!!
(11) a = 2td !!2! c - 1 ~ 2c::a

(iii) b«a ~ ac:::d) ~ (d..:::::c) £!!: c<:b

(iv) .!!21 d + c of b::>b £!!: ~ £!!: c c 2

(}) If B1, B2, B3 are boolean variables such that B1 and B3 have the value
true and B2 has the value false, find the value of the following
~ean expression: ------

.!!2! (B1 ~ B2 £!!: B3 ~ ~) £!!: .!!21 B} £!!: (B1 and false)

(4) Show that whatever the values of the boolean quantities b1 and b2,
the value of the expression

(b1 ~ b2) !.9Y. (!!2! b1 £!!: b2)

is always ~.

105

APPENDIX ,

ACTION OF FOR LIST EW.!t'NTS

The action of a for statement of the form

for V ,= A step n ~ c ~ S,

\lhere A, n and C are arithmetic expressi:ms, V is a variable and S a
statement, may be described in terms of the following ALGOL statements.

1:

Vi :_ V :a A;

V2 := B;

.if. sign (V2) x (Vi

~~Element

S;

V2 := B;

Vi •• V := V + V2;

£Q!Q. L

- (C)):::=-O

exhausted;

Vi and V2 are auxiliary simple variables, Vi of same type as V and
V2 of type real. V2 is used so that the above statements may evaluate
the expression B only once per cycle. The statements are also arranged
so that A, B and ~ are evaluated in the correct order. This is of
importance if the expressions are such as to introduce side effects.
The use of Vi helps to reduce the occurrence of side effects introduc~d
via the subscripts of V; if it is a subscripted variable.

The statement,

goto Element exhausted

leads on to the next element in the for list which recommences assignment
to the controlled variable according to this new eleraent. If there is
no new element in the for list, as in the for statement written above,
control passes to the next statement in the program.

The action of the while element occurring in a statement of the form

!2.!: V :- E ~ F do S,

\7here E is an ari tlunetic expression, F a boolean expression and V and S
as above, may be described in terms of the following ALGOL statements.

L : V :a E;

.if. !l2! (F) .!h!ill £2.!2. ElemGnt exhausted;

S;.

£2.!2. L

107

APPENDIX 4

OWN VARIABLES AND ARRAYS

The symbol ~ is available to designate variables and arrqs as om.
Own quantities like others ~ be used in.the block and only in the block
where they are declared. They differ from others in keeping their values
unchanged on exit from a block, so that on re-entr,y to the same block
access is available to the old values.

A simple variable or an arrIq is designated own b.Y preceding the type
symbol by the declarator .2!!a in the type declaration, or &.rra;f declaration.
The type symbol ~ not be omitted for own arrq declarations. In
parameter specifications, however, the symbol 2!a ~ not be used.

Examples of declarations using ~:

£E integer x, y

.2!!! ~ ~ PIG [1 :30, 1 :40J

The following declaration would not be allowed;

.2!!! array A [11 1 0]

There is a restriction on own arrIqs in ImP 9 ALGOL. The bound pairs
in their array declarations must be constant. In the jargon of ALGOL
experts, 'dynamic own arrays' are not allowed.

The effect of recursion on an own quantity is the same as the effect
of a normal re-entry to the block in which it is declared. One and the
same quantity becomes available; no new quantity is defined on a fresh
leTel.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

109-112

PROCEDURE BODIES IN !{DF 9 CODE

See ALGOL Users Manual for full details,

113

APPENDIX 6

STRINGS

The form of a string may be defined as follows: A string is any
sequence of basic symbols such that each string quote ~ or J contained
therein has a corresponding string quote of the opposite kind; the
closing quote J corresponding to an opening quote C must follow it later
in the sequence; and the whole sequence must be enclosed in quotes !:
and :1.*

Strings are purely of use as parameters for procedures with bodies
in code, such as the procedure called format used in Section 11 for output
of results.

Within the machine strings are stored as sequences of basic symbols
in an 8-bit internal code which is given in the last column of Appendix 8.

*In the ALGOL 60 Reference Language these IJ1IIlbols are 'and'.

115

APPENDIX 7

SOLUTIONS TO PROBLEMS

Section 4

Problem (1)

+729300000
9812

Problem (2)

Problem (3)

-.0 08

+ 13.4710+18

Section 5

Problem

begin

ppp3

Section 6

Problem (1)

(i) -20.7,!!!1

Problem (2)

1000

-.000001 834

-88'0-7
13.41 1 732

Start value

number

(ii) +5, integer

-.000001

-4800

epsilon

(i), (iii), (iv), (vii), (viii).

Problem (3)

(i) 4 (ii) 5 (iii) 16 (iv) 7 (v) 4096 (vi) 0
. (vii) 0 (viii) 4

Problem (4)

(i) S+ (s - t)/v12

(iii) af(n + m)

(v) af(b + stn)

(vii) pfq / rt(s + t)

(ii) (U - W) X (1 - a13/ k /(a - k)
(iT) at(btn)

(Ti) qfv1g

(viii) (a - b/c/Cd - et(£ + q»)/
(htit(j - k) + qt(m/(n + p»)

U6

A·7 Appendix 7 - f'9lutiona to Probl_ (oont.)

Section 7

Problem

Section 8·4

Problem (1)

(iii) .l!:.!!!.

II A:;:.pi/2 then 2)(t/(1 . + tt2)

!!.!!. (1 - tt2)/(1 + t1'2)

Problem (2)

II x< 0 .!b!n x - 1 !!.!!. II x:>1 then x + 1

!!.!!. xt2 - 3)t x + 4

(iv) false

Various other answers are allowed, but any containing an it following
a then are incorrect. A:n:s containing O.;;x.,;;;;1 as a boolean expression
are also wrong. If required, it should be written O.;;x .!S4 x __ 1.

Section 9

Problem

exp(2)(abs(cos(3 x a»)

sqrt(ln(arctan(sqrt(at2 + bt2»»

(a ~ cos(x) + b x sin(x) - 1)/

(a ~ cos(x)t2 + b)(. sin(x)t2 + 1)

Seotion 11

Problem (1)

Final values a - 25.87, b • 7, p • 25.87, q - 27.27·

Problem (2)

r1 - 23, ra - 2, rb • 10, n • 2, i - 4, j ~ 2.

Problem (:3)

ra • 4, rb • 12.5, ia • 5, ba - .E!!!, bb - .E!!!.

Section 12'2.

Problem

SUM = 0,1, 1.25, 1.33333 •••••

117

A-1 Appendix 7 - Solutions to Problems (oont.) A-1

Section 1~-~

Problem (1)

I~l:xl 0.1

0 0.1 0.2 O.~ 0.4 0.5 0.6

0.81 0.64 0.49 0.~6 0.25

In this example 0.55 is used instead of 0.5 after until because of the
possibility of rounding errors arising when dealing with ~
quanti ties_ If 0.5 were used, the last values of x and y might get
omitted.

Problem (2)

(i) S:= 0; fs!!: i :- 1 step 1 J:!nlli n ~ S := S + i

(ii) 12l: i := 0 step 1 ~ n ~

Section 13-4

Problem (1)

Problem (2)

-7

2

6

S 1- 1£i - 0 ~ 0 ~ S + i

~

58

4

5

~O

5

41

6

6

42

7

85

8

7

56

9

145

8

72

9

90

10

110

-1

Note that the for list element, -1 while m«:O, and in particular its
boolean expression are not consider~til after the three previous
for list elements have been used up. See comments on the for list,
Sec tion 1 ~.1 •

118

A·1 Appendix 7 - Solutions to Problems (oont.)

Problem (3)

k = 3, 1,1, s .. 5; m = 2,5, 8, 11, 14, s" -35;

k = 2, -31, 2, 4, 6, s. = -69; m .. -24, -22, -20, -18,

s .. 15;

k = 1, m .. 3, 2, 1 , 0, s .. 25

k - 2, m .. ditto, s = 39

k = 3, m .. ditto, s .. 51

k .. 4, m = ditto, s .. 19

k .. 5, m .. ditto, s .. 105

Seotion 14

Problem (1)

l!1E. i :- 2 step 1 .l!!Wl n E.2. P := (1-(-1)ti/U2) X
(ll i .. 2 .:!il!!!.!!. 1 ~ p)

In practice one would write this more naturally in two statements, thus,

P a- 1;

l!1E. i :- 2 step 1 .!YillJ. n E.2. P a- p)((1-(-1)ti/if2)

Problem (2)

l!1E. s a- 0.1 step 0.1 .l!!Wl 0·95 E.2.

end

Section 15

Problem (1)

a := tiT ')((1 - s); b :- 2 x s/(1 - s);

y.:. (bt2 + &/2)((1 - exp(-2 X a»

+2 x a xb/(at2 + bt2)

X (exp(-a))((a ~ sin(b) + b Xco8(b»

- b»/(at2 + bt2)

u - .86666 •••• , w .. -1.13333 •••• , B .. ~

Problem (2)

x and y are l!!! variables.

x :- 3.0;

loop: y :- x;

x :- 16/(y + 1);

II abs(y - x)::> ,0-5 llwl &2!2. loop

119

A·7 Appendix 7 - Solutions to Problems (cont.)

An alternative solution not using a conditional statement is:-

for y := 3, 16/(y + 1) ~ abs(x - y);;;'10-5 ~ x := y

~3
G3

4

4

3·8095 ••••

After leaving the for statement the controlled variable y, which gives
the answer to one step greater accuracy than x, will be lost.

Problem (3)

This problem is solved either by resorting to the contents of Appendix 2
or using a compound statement such as described in Section 14. Using
the logical operator ~ of Appendix 2 we have the following solution:-

if B1 ~ B2 ~ &2!2 P ~ if B1 .!h!!l £i2!2 Q. ~ if. B2

~~R~m12.S

Problem (4)

.!2!: n:.. step 1 ~ 100 ~ Je.n

end

y := xtn;
if. y = 1 ~.B!U2. Singularity

~ y := (y + 1)/(y - 1)

Other answers are possible.

Section 16·2

Problem (1)

B[1,1] .. 4; B[\,2] D 1; B[2,-1] .. 2;

V[3] .. 4; i=1.

Problem (2)

SC:= SCD: ~O;

for i: = 1 step 1 until 15 do

bo.,;n, 80 •• SC + CAT[iJt2;
SCD:= SCD + CAT[i] X DOG[i]

end

120

A-7 Appendix 7- Solutions to Problems (cont.)

Section 17- 9

Problem (1)

!.2!: i :-1 step 1 until 10 ,gg,
S :- (.!! i .. 1 .run 0 .!!!!. s) + read (20)12

S could be set at zero initially outside the for statement, eliminating
the need for an ari thmeticexpression containing an if clause.

Problem (2)

f:= format (Cddd.ddcJ);

!.2!: i 1= 1 step 1 ~ 100 ~ write (10, f, 'read (20)t3)

?roblem (:~)

write text (:~O, Ceo-ordinates * of * the * Parabola, * yf2 = 4x.J)

Problem (4)

write text (30, b**x C9sJ y (cJ]);

f1:- format «(d.ddJ); f2:= format (Cssssssd.ddcJ);

!.2!: x 1= 0 step 0.01 mg 5.005 ,gg,
begin write (:~O, f1, x); write (30, f2, 2 xsqrt(x» .!!l9.

Problem (5)

fl- format ([dddddsssJ);

!.2!: i := 1 step 1 ~ N ~

be"n x:- read (20);

end

Problem (6)

Hi :- x + 2 x 2 - x .. 0;

B2 := x + 3 x 3 - x = 0;
write (10, f, x);

.!! B1 ~ B2 .!l!.!m write text (10, [2; 3 I: cJJ);

.!! B1 !!!! B21 B2 then wri te text (1 0, C 2 ~ c D) ;

.!! l!2! B1 .!m!! B2 ~ write text (10, C 3 ~ c JJ)

£1:= format ([5s-d.ddddddd,o+ndcJ);

f2:= format «(5s-d.ddddddd~+ndJ);

is. i 1- 1 step 1 .!mlli·22 JQ.

write (11, g: i + 5 X 5 -i .. 0 .run t1 .!!!!. f2,

BRUTE [i,i])

121

A'7 Appendix 7 - Solutions to Problems (cant.)

Section 1S'3

Problem (1)

!".!!! a, b, P. q,

a :- b :- 7;

p :- a + 3 x b - 2.~-1;

q :- p + (a + 3)/(-b - 13),
a :- p :- q - b x 0.2

Note that b cannot be taken as integer type because it appears in a
left part list with I!!! a.

Problem (2)

be in I!!!. ra, rb; integer ia;

boolean ba, bb;

end

Seotion 18·4

Problem (1)

ra :- 7.5;

bb :- ba ~ rb>ia ~ rac::rb

~ S; integer i;

open (20);

for i :- 1 step 1 E!!ll! 10 ~

S :- (1£ i - 1 ~ 0 !!!! S) + read (20)t2;
close (20)

end

123

A·7 Appendix 7 - Solutions to Problems (cont.)

Problem (4)

be in real x, sum; integer r, i, n;

open (20);

end

n:= read (20);

sum := 0;

for r := 1 step 1 .1!!!E1. n ~ Je.n

end

close (20)

x: = read (20);

i := sqrt(r);

if r - it2 then sum := sum + x

Problem (5)

be in integer i, k,n, f;

integer array j [0:9J;

open (20); n:= read (20);

end

~ k:= 0 step 1 .B!illl 9 ~ j [kJ := 0;

for i:= 1 step 1 .B!!.lll n ~ JSin

miss: end

k:= entier (read (20)/10 + 0.05);

if k:>9 ~ !!U.2. miss;

j[kJ:= j[kJ + 1;

close (20); open (10);

f:= format (bddddddcJ);

~ k:= 0 step 1 ~ 9 ~ write (10, f, j [k]);

close (10)

124

A·7 Appendix 7 - Solutions to Problems (cont.)

Problem (6)

end

~ e, x1, x2, a;

integer i, n, f;

open (21); a:= read (21); e:- read (21); n:= read (21);

close (21); open (10); f:= format ([nddd.ddddddOOOc]),

x1 := -0.5 X 3.1415926536;

!2!: i : = 0 step 1 ~ n - 1 .!!2. Jeon

end

close (10)

xi := 3.1415926536 + xi;

!2£ x2 := i X 3.1415926536 + arctan(a/x1)

.!hil! abs (x2 - xi);;. e .!!2. xi : = x2;

write (10, f, xi)

Problem (7)

be On ~ a, b, c, s, Delta;

open (20);

end

Problem (8)

end

a:= read (20), b:- read (20); c:= read (20);

close (20);

s := (a + b + c)/2;

Delta := sqrt(s X (s - a) X (s - b) X (s - c»;
open (10);

write text (10, [Delta * = *J);
write (10, format ([dd.ddddJ), Delta),

close (10)

integer r, n, BC, f;

open (20), n :m read (20); close (20);

f:- format «(dddddsdddddcJ);

open (10),

for r:= 0 step 1 .!!:!llll n .!!2. Jeon

end

close (10)

BC : = .if r = 0 .:lli!!! 1 ~

(n - r + 1)/r x Be,
write (10, f, BC)

125

A-7 Appendix 7 - Solutions to Problems (cont.)

Section 19·8

Problem (1)

All the various parts of a procedure declaration appear, commencing
with the type declarator, ~, and the symbol procedure, and
continuing with the procedure heading:-

erfc (z); ~ z ~z;

The procedure heading is followed by the procedure body. In this
example as is most usual it commences and closes with begin and ~
brackets.

The value part is: ~ z;

The 3pecification part is: ~ z;

Problem (2)

35.

Problem (3)

p = - 1, q 737, r 3, s = 11. all others are undefined.

Problem (4)

(i) ~ procedure Jo(z); ~ z; ~ z;

be . n £.!.!!:! term, y; integer n;

end

term : = y : = 1;

for n : = 1 step 1 .!!!llll 12 ~ Jein

end

Jo := y

term := -term)(zt2/(2 X n)t2;

y := y + term

126

A·7 Appendix 7 - Solutions to Problems (cont.)

(ii) be in ~ x; integer f1, f2;

end

Section 21

Problem

~ procedure Jo(z); ~ Zj real Zj

~
~

~ term, y; integer n;

(as above)

open (11);

f1:= format (Cd.dssssssJ);

f2:= format [-d.dddddsddddcJ);

!9.!: x := 0 step 0.1 ~ 1.05 ~

write (11, f1, x); Jeon

end

write (11, f2,

Jo(x) + Jo(Jo(xt2»)

close (11)

Labels: R, L3, L2, L3, L1, L2, 13, ~, L1, L2, 13. ~. STOP.

n = 0, m = O.

Section 22

Problem (1)

be n

end

~
~

B c P AA STOP

\I II

Scopes

W'"' -8, S -9, B = 13, c 7.

127

A·7 Appendix 7 - Solutions to Problems (cont.)

Problem (2)

Unlabelled basic statements 12

Ba~ic statements 14

Unconditional statements 16

Statements 17

Block heads 2

Compound s ta tements a
Blocks 2

Section 2:2.6

Problem (1)

(i) Sum series (i, a + d x (i-1) , n, R)

(ii) Sum series (i, a X rf(i-1), n, R)

Problem (2)

(i) S1Lll series (k, A [k,kJ, 7, V)
(ii) Sum series (p, A [t,P,u.] X B[P], 10, Y)

Problem (3)

(Solution adapted from P. E. Rennion, Algorithm 84, Comm.A.C.M.,
No.5, April 1962.)

~ procedure Sill! (n, a, b, y);

~ n, a, b; ~ a, b; integer n; array y;

be 'n ~ s; integer i;

end

Problem (4)

s:= (y [OJ -y [n])/2;

for i : = 1 step 2 .!!!!li1. n -1 ~

s .- s + 2 x: y [i] + Y [i+1J;

SIM := 2 x: (b-a) X s/(~ X n)

procedure RCF (p,q,R); ~ p, q;

integer p,q,R;

1£ q = a 1h!n. R := p

~ RCF (q, p-p q x q. 3.)

128

A'7 Appendix 7 - Solutions to Problems (oont.)

Section 24

Problem

1. ~ in oomment is not a basic ~bol of KDF 9 ALGOL as listed
in Section }.

2. omi tted after cOIDIIent.

}. n not deolared.

4, 5. s and term both used before being assigned values.

6. Underlining omitted from while.

7. 3!!S and g brackets omi tted after So2,' The assignment to
s should be inoluded in loop, otherwise tems will not be
stllDlD.ed.

8~ 9. X sign omitted between 2 and n and also between 96 and s.

10.) omitted:- required to oomplete arithmetio expression.

11. omitted after assignment statement.

12, 13. Devioe 10 neither opened nor olosed •

. AppendiJt 2

Problem (1)

(i) S!!! (11) ..5!!!. (iii) ~ (iv) ..5!!!.

Problem (2)

0n.l7 (i) and (iv) are valid

Problem (})

Problem (4)

b1 talse !!l!!. ~ 3:B!
b2 !!l!!. 3:B! ~ ~

e! b1 .2!: b2 ~ ~ .!'.!!e 3:B!
b1 1& b2 3:B! 3!!!! IA!!!. .£!!!

It follows that the coaplete expression is aln,rs 3:B!.

129

APPEImIX 8

BASIC SDlBOLS - STAIIDARD REPRlSEftAfiOBS

BASIC SYMBOL 8-CHANNEL 5-CHANNEL LINE PRINTER 8-BIT INTEI!NA.L
(Reference (Flexowri ter) (Creed) (Program Text) (Octal value)
Language) VERSION VERSION VERSION REPRESENTATION

a-z a-z A-Z A-Z 046-071

A-Z A-Z A-Z 014-045
t t

0-9 0-9 0-9 0-9 000-011

E!!! E!!! *'mUE 'mUE 335

.!!.!!.! .!!.!!.! *FALSE FALSE 315

+ + + + 301

321

X X X * 261

/ / / / 241

+ ... *DIV / 221
I

t ** U 201
P

<::: <::: *> L 202
T

..;;;; <: *> L 222
E

242

~ 2: > G 262
E

> > ::> G 302
T

l- f. l- N 322
E

;;; !!I!. *EQV EQV 303

:::> m *DIP DIP 263

V .2!: *00 OR 243

/\ !l!! *Am> Am> 223

130

A·8 A~Eendix 8 - Basic 5mbols - Standard ReEresentations (cont.) A-8

BASIC SYMBOL 8-CHANNEL 5-CHANNEL LINE PRINTER 8-BIT INTERNAL
(Reference (Flexowriter) (Creed) (Program Text) (Oc tal value)
Language) VERSION VERSION VERSION REPRESENTATION

-,
~ *NOT NOT 203

go to S2!2 or S2...J2 *GOTO GOTO 210

.li !! *IF IF 205

!h!n !h!n *THEN THEN 225

.!!12! else *ELSE ELSE 245

1:2£ 1:2£ *FOR FOR 206

~ ~ *DO DO 326

246

013

10
v <I 012

10

271

*, 230

:= :- *- : .. 265
LJ * l. 216

steE step *STEP S'ffiP 266

sill. sill. *UNTIL UNTIL 306

:!h!.!! ~ *WHILE VIRILE 226

comment comment *CCJ.WENT COMMENT 200

(((204

))) 224

[[*(211
*

131

A·a AEEendix a - Basic S~bols - Standard ReE£esentations (cont.) A-a

BASIC SYMBOL a-CHANNEL 5-CHANNEL LINE PRINTER 8-BIT INTERNAL
(Reference (Flexowriter) (Creed) (Program Text) (Octal value)
Language) VERSION VERSION VERSION REPRESENTATION

]] *) 231
*

[*Q. (215
Q

] *U) 235
Q

begin begin *BEGIN BEGIN 214

end ~ *END END 234

.2!n .2!!! *OWN IJNN 217

Boolean boolean or Boolean *BOOLEAN BOOLEAN 103

inteS!r inteS!r *INTEGER INTEGER 102

l:!!l ~ *REAL REAL 101

arra,y array *ARRAY ARRAY 110

~ ~ *SWITCH SWITCH 130

:erocedure :erocedure *PROCEDURE PROCEDURE 120

~ ~ *STRING STRING 172

~ !!!:l?!!. *LABEL LABEL 171

~ ~ *VALUE VALUE 237

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

Actual parameter

ALGOL 60

Arithmetic expression

Arithmetic operator

Arr83

a::-ra.y

Arr83 bound

Arr83 declaration

Assignment statement

Asterisk *

Basic stai;ement

Basic symbol

begin

Block, Block structure

boolean

Boolean expression

Bound pairs

Bound pair lis t

Bracket

Call by value, name

Checking a program

Code body

Comment

comment

Compound statement

Conditional statement

Controlled variable

Decimal number

Declaration

Declarator

Delimiter

Designational expression

Device number

v

INDEX

Page

61-62

13, 19-20, 41

Fig. 1, 13-14
41, 87-88

54
54-55, 85

54-55
27-28
(See Space in strings)

31, 39
7, 129

5
56, 86
11

17. 20-21, 42

54-55
54-55

7, 37

(See Value, Name)

93-95
68

71

71

37

39
33, 42

9
6, 53-55

7

7

73-74, 89-90

43

Digit

S!?
Dummy statement

&!!.
~
entier

Exponentiation

~

~
For list

For list element

For statement

Formal parame tar

Format expression

Function, Function designator

Goto statement

.!2l2, ~

Hardware representation

Identifier

i!
Ii' clause

Ii' statement

Input and output

Integer

integer

Integer division

Jensen's device

vi

INDEX

(Continued)

Page

7
33
31

19, 39
5

23
14

7, 17
33

33
33-35. 105
33-36
61-67, 87-90
45. 47-48

23. 63

31

31

8, 129

6, 11

19-20
19, 39

39
43-51

9

9
14

87

Label

~
Labelled basic statement

Layout

Left part list

Left PAXt variable

Letter

Letter string

Library of ALGOL procedures

library

Logical operator

Logical value

Lower bound

Name, Call by

Non-local variable

Number

Operator

Own variable

Parameter

Parameter delimiter

Parenthesis

Procedure

procedure

Procedure body

Procedure call

Procedure declaration

Procedure, Recursive

Procedure statement

Program

~
Recursive procedure

vii

INDEX

(Continued)

Page

31
61, 89-90

31

46-41

21
21, 35

1
62

68
68
Fig. 1, 101

1, 11

54

64-66

84-85, 91-92

9

6, 1
101

61

62
21

61-68,
62

61-68,
61-63
61-68

90-91
62-63

51-58

9
90-91

81-92

84-85

Relation

Relational operator

Restrictions to ALGOL 60

Scope of identifier

Segmentation

Semicolon

Separator

Sequential operator

Side effect

Simple arithmetic expression

Simple boolean expression

Simple variable

Space

Space in strings

Specification Part

Specificator

Specifier

Standard function

Statement

Statement bracket

StriIIg

String quote

Subscript

Subscipt 10

Subscripted variable

Switch

~
Switch declaration

Switch designator

,'.jio

'Teminator

viii

INDEX

(Continued)

Page

17
Fig. 1, 17
1

77-83
2

6, 25

7
Fig. 1

90-91
13-14
17, 101-103
41, 53
8

8 (footnote), 48
66-67, 88-90

7
66-67
23
25

37
48, 67
48,
41

9
41-42, 54-55
73-74, 89-90
67, 74, 89-90
74
73-74, 85

47
19
7, 17

9

Unconditional statement

Unlabelled basic statement

Upperbound

Value, Call by

Value part

Variable

Vertical line

ix

INDEX

(Continued)

Page

39, 56

31

54-55

64-66
64-66
11, 13
5 (footnote), 37 (footnote)

NOTES

NOTES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NOTES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NOTES

NOTES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Note: The Company's policy is one of continuous development and improvement
of its products and, therefore. the right is reserved to supply products which
may differ slightly from those described in this publication.

