

An English Electric-Leo-Marconi mini-manual

KDF 9

ALGOL programming

@ All rights reserved

ENGLISH ELECTRIC-LEO-MARCONI COMPUTERS Ltd.
KIDSGROVE STOKE-ON-TRENT STAFFORDSHIRE Telephone: Kidsgrove 2141

Publication 1002 mm (R) 1000565 price: five shillings

i
ALGOL PROGRAMIING FCOR KDF 9

CONTENTS

LIST OF ABBREVIATIONS USED IN THIS MANUAL

SECTION 1. INTRODUCTION

SECTION 2- TWO STMPLE PROGRAMS
SECTION 3. PROGRAM STRUCTURE AND BASIC SYMBOLS
SECTION 4- DECIMAL NUMBERS

SECTICN 5- IDENTIFIERS

SECTION 6+ SIMPLE ARITHMETIC EXPRESSIONS
SECTION 7- SIMPLE BOOLEAN EXPRESSIONS
SECTION 8- ARITHMETIC AND BOOLEAN EXPRESSIONS
If Clauses

Use of the If Clause in Arithmetic Expressions
Use of the If Clause in Boolean Expressions
A Use for Parentheses

SECTION 9- STANDARD FUNCTIONS
SECTION 10- STATEMENTS

SECTION 11- ASSIGNMENT STATEMENTS y
SECTION 12- GOTO STATEMENTS AND LABELS

Goto Statements
Labelled Basic Statements
SECTION 13. FOR STATEMENTS

The General Form of the For Statement
Arithmetic Expression Element

Section

121

Page

iv

11

13

17

19
19
20
21
23
25

27

31
31
31
33

33
34

ii

CONTENTS

(Continued)

Step-until Element
While Element
Miscellaneous Notes on For Statements

- SECTION 14+ COMPOUND STATEMENTS
SECTION 15- CONDITIONAL STATEMENTS
SECTION 16 SUBSCRIPTED VARIABLES AND AREAYS

Use of Subscripted Variables in Expressions
Use of Subscripted Variables in Statements

SECTION 17- INPUT ARD OUTPUT OF DATA

Device Numbers

Simple Forms for Reading and Writing Numbers
Further Input and Output Statements

The Layout

The Format Expression

Input and Output of Text

Initialisation and Closure of Devices
Manipulation of Magnetic Tapes

Restrictions

SECTION 18- DECLARATIONS, BLOCKS AND PROGRAMS

Declaration of Simple Variables
Array Declarations

Blocks

Definition of a Program

SECTION 19 PROCEDURES

The Purpose and Application of Procedures

Procedure Declarations and Corresponding Calls
Declaration of Procedures Defining a Function Designator
The Value Part

The Specification Part

The Procedure Body

The ALGOL Procedure Library

SECTION 20- CCMMENT CONVENTIONS

Section

13.
13.
13.

AS I RSN

1741
17.2
17-3
17-4
17-5
17-6
177
178
17-9

Page

34
34
35

37

39

41

41
42

43

43
44
45
46
47
48
49
49
50

53

53
54
56
57

61

61
62
63
64
66
67
68

g

SECTION 21-

SECTION 22-

iii

CONTERTS
(Continued)

Section

SWITCHES AND DESIGNATIONAL EXPRESSIONS

BLOCK STRUCTURE AND ASSOCIATED RESTRICTIONS

The Relation between Procedures and the Block Structure‘ 221
Restrictions Imposed upon Array Bounds by the

Block Structure 22.2
The Influence of Block Structure on Switch Designators 2243
Use of the Block Structure 22+4
SECTION 2}? ADVANCED USE OF PROCEDURES
Jensen's Device 231
Array Identifiers as Parameters 23.2
Procedure Identifiers as Parameters 23.3
Switch Identifiers and Designational Expressions as

Parameters 23-4
Recursive Use of Procedures " 235
Use of Non-local Variables in Procedure Bodies . 236
SECTION 24- CHECKING AN ALGOL PROGRAM BEFORE TEST
APPENDIX 1 A Specimen ALGOL Program
APPENDIX 2 Simple Boolean Expression - General Form
APPENDIX 3 Action of For List Elements -
APPENDIX 4 Own Variables and Arrays
APPENDIX 5 Procedure Bodies in KDF 9 Code
APPENDIX 6 Strings
APPENDIX 7 Solutions to Problems
APPENRDIX 8 Basic Symbols - Standard Representations

INDEX

Page
73

7

4

87
871
88
89
91

93

97
101
105
107
109
13
115
129

iv

LIST OF ABBREVIATIONS USED IN THIS MANUAL

array identifier
arithmetic expression
array name

actual parameter
boolean expressicn
basic statement
boolean variable
designational expression
number of dimensions
rdevice number

format expression
for list

for list element
formal parameter

for statement

A3 I EEYEBEEEREE "

label
LAY layout
1B lower bound of subscript
LO logical operator
LS letter string
LV logical value
N unsigned number
0 arithmetic operator
P procedure identifier
R relation
RO relational operator
S statement
SAE simple aritkmetic expression
SBE simple boolean expression
SDE simple designational expression
ST string
SUB subscript
Sw switch identifier
T type
UB upper bound of subscript
UBS unlabelled basic statement
Us unconditional statement

v variable

1. AUTHOR'S INTRODUCTTON 1.

ALGOL 60 is a programming language for describing numerical processes
and has the unique advantage of internstional recognition as a common
language. ALGOL's inherent merits are the bases of its widening acceptance
for both scientific and engineering applications. The power of its state-
ments often surprises newcomers. Its conciseness avoids much of the tedium
in other forms of programming, simplifies the programming of complex
problems, and makes it an acceptable medium for solving the occasional
problem. The use of conventional symbols of mathematics and the borrowing
of ordinary English words to form ALGOL symbols helps to make an ALGOL
program easy to read and understand. The ALGOL identifiers are much more
easily recognised and distinguished by the human eye than the numerical
storage representation of computer codes. These advantages, by making
programming easier, also enable a program to be written in a shorter time
and result in fewer mistakes. :

Of particular value are the ALGOL programs and procedures published
throughout the world, which are immediately available to the user of the
language. By their means he has access to the work of recognised experts
in the field of numerical analysis and to a wider variety of computer
programs and techniques than can be obtained by using one machine code
only.

The ALGOL 60 language is defined in an official publication entitled:
"Revised Report on the Algorithmic Language ALGOL 60"

There are practical objections to the implementation of the complete
language for programming use on KDF 9. TFor the information of those
already familiar with ALGOL, KDF 9 ALGOL is a proper subset of ALGOL 60
consisting of the complete language restricted as follows:

(1) TWo integer labels.
(2) No own arrays with "dynamic bounds".

(3) Each formal parameter must appear in the specification part of the
procedure; actual parameters corresponding to a formal parameter
called by name to which assignments are made, or which is specified
as an array, must have the same type as specified for the formal
parameter. .

(4) Actual procedures used in place of the same formal parameter must
have similar specification parts.

The ALGOL 60 Report allows procedure bodies to be expressed in "non-
ALGOL language". For KDF 9 this possibility offers two advantages:

(i) Procedure bodies in KDF 9 user code may be used for the realis-
ation of input-output facilities, or perhaps to obtain increased
speed of execution of computational procedures;

#The Computer Journal, Vol. 5 No. 4. January 1963.

1. Author's Introduction (cont.) 1.

(ii) Segmentation of large programs bscomes convenient - a code body
can be a call of an already translated ALGOL procedure; a preliminary
description of segmentation is given in a KDF 9 Library Service note -
ALGOL Note 1.
It must be understood that the input-output facilities described in
this manual are not part of the language as such; they are provided in the
form of procedures and consequently can be accepted, or rejected and others
used in their place. In practice some procedures will come to be regarded
as standard; but, equally, the range of available procedures may be
extended to cover requirements as yet unforeseen.

Before a program written in the ALGOL language can be run on KDF 9 a
compiler is needed to produce an equivalent program in machine code. Two
such compilers accepting the same ALGOL programs are provided.* One aims
at fast compiling and is of particular application to/ALGOL programs in
the testing stage. The other takes longer to compile but produces a
faster object program, and is therefore more suitdble at a later stage of
progran development. Given the Advance Control facility of KDF 9 it is
predicted that there will be little difference in speed of operation
between the translated program and an ordinary hand-coded version, when
this second compiler is used.

The present edition of the manual is a revision of the "Simple
Introduction to ALGOL Programming for KDF 9" (December 1961) and includes
a description of those aspects of KDF 9 ALGOL omitted in that document.
Subscripted variables and arrays are introduced immediately after ALGOL
statements. = The section on input and output of data is re-written to
convey the new system as now being implemented. Switches and designa-
tional expressions are introduced in Section 21. This could be omitted
at a first reading. Another new section (Section 23) on the advanced use
of procedures discusses some important ideas, although there again
paragraph 234 dealing with parameters which are switches or designational
expressions could be omitted on first reading. Own variables, procedure
bodies in code, and strings are considered in new appendices.

Systems adapted to the needs of KDF 9 users, programmers, and operators
are being built around the KDF 9 ALGOL compilers both for compiling, testing
and running programs. Since description of these is expected to appear in
a separate publication it is not attempted here, except that the final
section of this manual touches slightly upon testing facilities.#»

Por a working knowledge of ALGOL, merely reading the text of the
manual is hardly sufficient. The reader should attempt at least a fair
proportion cf the problems and if possible find someone capable of
correcting his answers.

*For descriptions of the compiling methods see the following vapers:

(1) "A mul¢i-pass translation scheme for ALGOL 60" by D. H. R. Huxtable
and E. N. Hawkins, Annual Review in Automatic Programming, Vol. III,
1963,

(2) "The Whetstone KDF 9 ALGOL Translator" by B. Randell to appear in

Automatic Programming Systems, A.P.I.C. Studies in Data Processing,
Vol. IV.

**The description is now published in English Electric-Leo ALGOL
Notes { and 3

1+ Author's Introduction (cont.) 1e

We gratefully acknowledge that some of the examples and problems are
due to Dr. P. Naur and are indebted to Mr. M. Woodger for reading the
manuscripts of both editions. Comments on the first edition received
from many different sources, especially Prof. H. Rutishauser, have greatly
helped in making the present revision.

I+t is perhaps also appropriate here to acknowledge help and encourage-
ment over long periods received by our compiler writers from Professors
A. van Wijngaarden, E. W. Dijkstra, W. L. van der Poel, and Dr. Naur.

J. S. GREEN, Ph.D.
ENGLISH ELECTRIC-LEO COMPUTERS LTD.
Kidsgrove, Stoke-on-Trent, Staffs.

2. TWO SIMPLE PROGRAMS 2¢

Here is an ALGOL program:

begin real x. y, z;
open (20);
x := read (20);
y := read (20);
close (20);
=X + Y3
open (10);
output (10, z);
close (10)

end

This program will read two numbers supplied by means of punched paper
tape. It will add the numbers together and then punch the result on
paper tape. (The output paper tape may be printed when desired on an
off-line flexowriter).

The above program illustrates some of the elements of ALGOL
programming which we shall now proceed to examine. The actual operations
on the computer are stimulated by the statements:

x := read (20), y := read (20)y z := x + y, and output (10, z).

The first two of these read two consecutive numbers from device
number 20, a paper tape reader, respectively assigning them as values to
x and y. The third statement

2 3=X +Y

takes the values of x and y, adds them and assigns the result to the new
variable z. Finally, the fourth statement takes the value of z and
punches it out on a paper tape punch, device number 10, in a standard
form.

The reader will note that besides the four statements which stimulate
the actual operations of the program, it contains also the underlined
words begin and end at the beginning and end of the program respectively,
a rather odd phrase, real x, y, z, and four further statements containing
the words'open' and 'close'. The underlining indicates a word that is
to be taken as a basic ALGOL symbol. The begin and end brackets, as
they are called, are used to bracket together pieces of program which are
to be treated as one whole.* In this particular case they enclose a
single program.

*¥A vertical line is often inserted to connect a corresponding
begin and end. This may help to improve the appearance of a
program by showing up its structure, but it has no operational
significance.

2. Two Simple Programs (cont.) 2.

The phrase real x, yy 2z is called a declaration and the particular
declaration given here states that the quantities represented by x, y and
z are to be treated as ordinary numbers. Any arithmetic performed upon
these numbers will use a floating decimal point. The statements using
the word 'open' are concerned with preparing the reading and writing
devices the numbers of which appear as arguments. Statements using the
word 'close': shut down the devices specified. Finally, the reader will
also notice & sprinkling of semicolons. These are used to mark the
divisions between declarations and statements.

Here 1s another program:

hESiB real X, ¥y 2;

open (20);

x 3= read (20);

¥y := read (20);

close (20);

z := (xt2 + 3) X (x +1) X (x Xy - 2)/3;
open (10);

output (10, 2);

close (10)

end

This program again reads the values of x and y, but computes a much
more complicated arithmetic expression before finally punching out the
result. Writing the formula for z in normal mathematical form we have:

2= (% + 3)(x + 1)(xy - 2)/3.

By comparing this with the ALGOL form readers will be able to
appreciate the meaning of the ALGOL arithmetic operator symbols. This
example serves to illustrate the inherent power of an ALGOL statement.
Even more complicated expressions are allowed and the rules for
constructing them will be described later.

In ALGOL the symbols Xy y, and z are known as identifiers and in
the two programs given here they represent variables which take numerical
values. The 'read', 'output', 'open' and 'close' occurring in the
programs are also called identifiers, but they are used to identify a
particular process or procedure to be followed by the computer.

The reader may now wish to glance at a larger and more practical
type of program. Such a program has been provided in Appendix 1 of
this manual, but at this stage it is not expected to be fully understood
by the reader.

In KDF 9 ALGOL it is possible to stipulate completely the form in
which results are to be laid out when printed. The program of Appendix 1
contains such stipulations about layout, the result of which can be seen
in the results sheet following the program. The headings, column layout,
and line spacing are all fixed by statements in the program itself.

DELIMITERS

DECLARATORS
OPERATORS SEPARATORS BRACKETS & SPECIFICATORS
own
) (boolean
ARITHMETIC RELATIONAL LOGICAL SEQUENTIAL .) integer
o L real
+ < and (A) go to :] array
- < or (V) if H E (‘) procedure
X = not (—1) then = J (*) switch
/ > v (=) else * (V) begin label
- > imp (D) for step end string
t = do until value
while
comment

FIGURE 1 KDF 9 ALGOL DELIMITERS (8-CHANNEL PAPER-TAPE VERSION)

Wherever the KDF 9 ALGOL symbol differs from the corresponding symbol
of the ALGOL 60 Reference Language. the latter is given in parentheses.

3. PROGRAM STRUCTURE AND BASIC SYMBOLS 3e

In the previous section we have attempted to convey some idea of the
general structure of an ALGOL program by means of two simple examples.
Vile propose in the following sections to examine the detailed grammatical
structure of the ALGOL language, considering first the basic ALGOL symbols
and in later sections the various language entities which may be built up
from these symbols. The review includes:

1. Basic symbols.

2. Numbers.

3. Identifiers.

4. Expressions.

5. Statements.

6. Declarations, blocks and programs.
T. Procedures.

Some of the above entities will provide ideas new to the reader but
few of them are inherently difficult to understand. Together with their
associated rules they are required in order to systematize the expression
of computational processes. Computers are not sufficiently versatile to
absorb information about problems without such systematization. Because

of this it is the duty of the programmer to obey the rules in formulating
his problem.

The building bricks of an ALGOL program are called basic symbols.
These are:

1.. The letters of the English alphabet, both lower
and upper case.

2. The digits 0 to 9.

3« The logical values true and false.

4. Symbols called delimiters.
Delimiters are:

1. Operators.

2. Separators.

3. Brackets.

4. Declarators and specificators.

Figure 1 lists delimiters in diagrammatic form. Some of the symbols
in the diagram have a conventional significance and may be clear to the
reader; others have no obvious significance. It may help him to note
that sequential operators define the path to be taken through the program;
separators serve the purpose of marking divisions between certain ALGOL
entities, while declarators and specificators are symbols used to describe
the properties of identifiers. The meaning of symbols not understood at
this stage should become clear later.

3. Program Structure and Basic Symbols (cont.) 3.

All the basic symbols in XDF 9 ALGOL have been collected together in
this section for reference. The ALGOL Report allows different 'hardware
representations' for equipment with different sets of symbols and the set
shown in Figure 1 is that available for use with eight-channel paper tape
on KDF 9. Vherever this differs from the official ALGOL 60 reference
language, the latter is given in parentheses. There is another 'hardware
representation' available for equipment using five-channel paper tape
listed in Appendix 8, but throughout the rest of this manual the eight-~ -
channel representation is used.

The reader should note that when words from the English language have
been appropriated for use as basic symbols and given a particular ALGOL
significance, they have also been distinguished by means of an underline.
Thus the logical values true and false and delimiters such as if, begin,
integer, and label must always retain their underlines.* They are
treated as single symbols, the component letters having no individual
significance.

Insertion of blank spaces makes no difference to the meaning or
operation of any part of ALGOL.¥* This facility enables the programmer
to write his program in a format which makes it easier for others to
follow its course of action.

When used in a program the basic symbols are strung together in a
linear sequence with appropriate spacing, making the end of one line of
program continue on the next. As already stated, the basic symbols are
used to build up decimal numbers, identifiers, expressions, statements,
declarations, blocks, procedures, and, ultimately, programs according to
certain rules. We now explain the purpose of these entities, and rules
for their construction.

*Bold type is allowed in lieu of underline in published ALGOL 60 programs.

**When spaces with operational significance are required in strings (%o ve
explained later), the symbol * is inserted to indicate their position.

4. DECIMAL NUMBERS 4.

Normal signed and unsigned decimal numbers using the digits O to 9
may be written in ALGOL and have the ordinary meanings.* A decimal
point may only be used when it is followed by a fractional part,
consisting of at least one digit. Use of decimal integer exponents is
also allowed, and these must be written with the base 10 inserted below
the line in small type, thus:

decimal number , integer exponent.

The exponent may be signed or unsigned. The preliminary decimal number
may be omitted, while if the subscript , appears the integer exponent may
" not be omitted. -

The following examples are alloweds**

0 16 +6 -79 +10 127 783
123.56 -0.00312 +.65 74.0 .00
7+5,06 -33.264,,+2 +2,5-1 -.7.5 w0-15

The following examples are NOT allowed:

23. 4,.25 3%, 2 14..5 +6,62¢ 10,000
15, 3.56(=T)

Numbers in ALGOL and variables denoting numbers are said to be of
type integer or real. Type integer refers to integers having neither
exponent part nor decimal fraction part. Type real refers to any
allowed form of number which is not of type integer. Integer arithmetic
is normally used within the computer for type integer numbers and
floating point arithmetic for type real.

Examples of type integer: O 2 +63 -9710
Examples of type real: +6.0 -2.9%31 6,4

. The maximum working accuracy available in KDF 9 ALGOL for real
quantities is between eleven and twelve significant decimal figures.

An integer quantity must lie in the range -259 to +239-1.

*Though defined in the ALGOL 60 Report, signed numbers are never in fact
used in programs, signs always being invoked via the definition of
axpressions (See Section 6). - They may however be used for input data
or results in KDF 9 ALGOL.

*¥For the purpose of the lists of examples shown in this and the next
section a string of five or more spaces is used to separate each
example.

10

4. Decimal Numbers (cont.) 4.
Problems

(1) Write numbers having the same values as the following, but which &o
not inciude an exponent part.

+7.293.8 43 -6
98.12,42 -.1834,5 -4.83
Soluticns to Problems will be found in Appendix 7.)
(2) The values given by the following numbers may, in some cases, be

expressed more economically by using a number with an exponent part.
Show where this is the case.

17000 -0.00134 -0.0020041298
1000 1.0024 170

(3) Some of the following sequerces of chzracters represent ALGOL
numbers, scme do not. Mark those whick do.

-.0 0¢ -17.2.30 13.411 732
+13.47,+18 .2 2.48,n
4 X 0=2 -88,,~7 X 643.2

(16.20) 1,243 12. .8

11

5e IDENTIFIERS 5

Mention of identifiers has already been made in Section 2. They may
be single letters of the English alphabet, upper or lower case, or
sequences of letters and numbers.* The first symbol of a sequence must
be a letter. The following could be used as identifiers.

i Days 1335
J1 exp
abCD4 3e Delta alpha

In accord with Section 3 the spaces within the identifiers Days 1335
and Delta alpha are ignored by the ALGOL translator. Note that though
the sequence A256b might be vsed as an identifier, 256b may not.

Identifiers are used for a variety of purposes. Amongst others,
they may denote labels which mark reference points in the program, and
they may also denote variable quantities which take a value in the usual
mathematical sense.

An identifier which is a variable is said to be of type real, integer,
or boolean. Variables of type real and integer were mentioned in Section 4.
Variables of type boolean can take the logical values true .or false. The
means of defining the type of a variable will be explained in Section 18.

Problem

Some of the following sequences of characters can be used as
identifiers, others cannot. llark those which can.

begin p7.2 TveQ
axv Start value v7

4711 number a29v3
ppP3 Q(2) epsilon

*Note that though the length of an identifier may be almost unlimited only
the first eight characters are significant to the Whetstone produced

KDF 9 ALGOL translator, while 155 characters are significant to that
produced at Kidsgrove.

) .

13
6. SIMPLE ARTTHMETIC EXPRESSIONS 6-

Numbers, those identifiers which represent variables, and other
ALGOL entities having a single numerical value may be used in combination
with arithmetic or logical and relational operators and certain sequential
operators to form arithmetic expressions or boolean expressions.
Initially we shall restrict our attention to subclasses of both these
types of expression, namely, simple arithmetic expressions (considered in
this section) and simple boolean expressions (considered in the next).*

It is even necessary to leave a general definition of simple
arithmetic expressions in ALGOL to Section 8. However, we may now say
that they include arithmetic expressions as understood in the normal
mathematical sense, when these are written in the linear form which
follows:

N

N N N N
v OV O.......Ov OV

N
OVO

\

Sas’

Here N stands for an unsigned number, V for a variable of real or integer
type, and O for an arithmetic operator. The diagram is intended to
indicate that N and V are interchangeable. The initial operator may
only be an adding operator (+, -) and the broken parentheses indicate
that in any case its presence is optional. At least one operand (N or
V) must be present in an arithmetic expression.

Example:
2Xx t3+n22

The meanings of the operators used in this example are given below.

The order of execution of arithmetic operations follows certain
definite rules. The operations are executed in order of occurrence from
left to right unless the adjacent operation has a higher priority accord-
ing to the following list:

18t 1
2nd X/ ¢
3rd + -

Parentheses may be introduced within a simple arithmetic expression to
override the order of evaluation given by the above rules provided that
the enclosed symbols form a legitimate arithmetic expression. The
arithmetic expression with its enclosing parentheses may be introduced
within the simple arithmetic expression in any situation where an unsigned
number or variable is allowed.

The arithmetic operators have the following meanings:

*ie use this last phrase to maintain the parallel with simple arithmetic
expressions. Both the old and the revised ALGOL 60 Reports use the
phrase "simple Booleans".

14

6. Simple Arithmetic Expressions (cont.) 6.
4 is the sign of exponentiation. The base precedes the sign and the

exponent follows. The operation is effected as in ordinary
arithmetic with the following comments and exceptions. No values
of base and exponent which would lead to infinite, indeterminate,

or imaginary results are allowed, and when the exponent is real. the
value of the base may never be negative. The result of exponentia-
tion is of the same type as the base, if the exponent is integer,
and positive or zero. Otherwise the result is of type real.

X + = all have their conventional meanings. The type of the result is integer
if both operands are integer, otherwise the result is real. ’

/ + Dboth denote division. The first operator may be used with any
combination of operands and produces a result of type real. The
operator + is only used for two operands both of type integer and
yields a result of type integer as follows:

n + m = sign(n/m)X whole number part (modulus(n/m))

The type of any result obtained by the operation of the above rules
is as stated. If, for example, the result of some operation involving
real type numbers happens to have an integer value, its type is not
thereby changed from real to integer. In terms of the internal working
of the computer, though the result happens to be an integer it is still
in floating-point form.

Notes:

(1) In multiplication the multiplication sign must never be omitted.
One may write 5X y and (a + 2) X b, but not 5 y and (a +2)b.

(2) Two operators must not appear adjacent to one another. One
may write +3 X (-x) and y#(-4), but not +3 X -x and yt-4.

Examples of simple arithmetic expressions:
2 +23 = 2+8=10

(2+2)13 = 413 =064
1+ 2x5 - 312 1 +10 =342 =11 =382 =11 -9 =2

[}

The results of these three expressions are of integer type. The
following give real type:
3/2 .5 = 1.5 = .5 = 1.0
9tS513 =722 = 3.003-722=27.0=-72%2
= 27.0 = 3 = 24.0

If x = 4.5, y = 2.3,

X+ 3xy1212 = 4.5 + 3% 5.2912 = 4.5 + 3 X 27.9841
= 4.5 + 83.9523 = 88.4523

15

6e Simple Arithmetic Expressions (cont.) 6
Problems

(1) Evaluate
resiult.

(1)
(i1)

the following expressions stating the type of the final

-4.6/4 X (16 + 2)
+60 = 5 X (3 +2M4 - 1)).

(2) sSome of the following sequences are arithmetic expressions, some

are not.
(1)

(ii)
(iii)
(iv)

(v)

(vi)
(vii)

(viii)

(3)

Mark those which are.
a X b/ehd/e X £

+a X -b

2w6 X 4.3 +Q

2% 6/4.3

3.84,(7 + n)/4

M+ 7.3

=(+(=v))

p/ars Xtu - v

Assuming that at & certain point in a program the values of seven

simple variables are as follows,

va =

find the
(1)

(i)
(iii)
(iv)

(v)

(vi)
(vii)
(viii)

(4)

2y vb =3, vc = 4, vd =5y Ve = 6, v{ = T, vg = 8,

values of the following expressions:
va + ve X vb/ve

va X (vc + vg)/ve/va

ved(vd - vb)

vitva X (v - ve)/vb/(vb + ve)
veivbtva

(ve = vf =~ va) = ve

ve ¢ (vg - vb)

(vg = va)tvb = ve

Write the following mathematical expressions as ALGOL expressicns,

without using redundant parentheses:

(1)
(ii)
(iii)
(iv)
(v)

s -t
S + >
v
3
a
(v-w) O -y
n+n
a
n
aP
b+ s
a

16

6 Simple Arithmetic Expressions (cont.)

(vi) (d")8
(vii) _p%
rs + t

(viii) a - b

c(d -ef * 9
n
hi(j-k)+q<n+9)

6e

17
T SIMPLE BOOLEAN EXPRESSIONS Ic

A boolean expression is a rule for computing a logical value. The
result may be either the value true or the value false. The boolean
expressions which occur in practice usually also belong to a subclass
called simple boolean expressions.

’

A simple boolean expression consists most frequently of a single
relation which takes the value true or false. By a relation we mean
two s.imple arithmetic expressions separated by means of one of the
relational operatois:

<< ==> #
These overators have their conventional mathematical meanings.
An example of a relation might be:
n=0

This relation takes the value irue if n is zero and the value false if n
is not zero. Other examples might be:

nxhx(nxh+2Xxz)>11.51

(at2 + bt2)42<a + b

The form of a relation can be depicted as follows:
SAE RO SAE

where SAE stands for a simple arithmetic expression and RO for a relational
operator. In performing the operations involved in such a relation to
find its logical value, the simple arithmetic expressions are evaluated
first, from left to right, and the relational operation is performed last.

A sirple boolean expression need not be a relation. It could be
merely a2 logical value or a boolean variable. It could take a complicated
form involving a number of relations, boolean variables and logical values,
the values of which are operated upon by means of the logical operators
not (™), and (A) and or (V), amongst others. Appendix 2 describes the
forms which are allowed, but the reader may wish to leave this to a second
reading.

Problem

Ifi=2y j=3.x=4.5 and y = 2.2, what are the values of the
following simple boolean expressions:

(1) ixj=i+;

(i1) /i< x/y

(1) (x+y)x(x-y) £0
(iv) i -1 $+¢5X5=0

8e

19

ARITHMETIC AND BOOLEAN EXPRESSIONS 8.

8+1 If Clauses

It is extremely useful in any programming language to be able to
make a program choose its course of action depending upon the
situation arising at run time. Such facility is allowed in ALGOL by
means of the 'if clause'. Depending upon the truth or falsity of a
boolean expression the program will either obey different instructions
or supply the values of different expressions.

For example we might wish to have an arithmetic expression which
supplies the value of x2 + 1 if x is greater than zero but otherwise
supplies the value -1. We could write the ALGOL expressions to do
this as follows:

if x—=0 then x%2 +1 elge -1
The first part of this expression,

if x =0 then
is called an if clause. An if clause is always written in the form:

if BE then

where BE stands for a boolean expressions (as yet not fully defined
but including simple boolean expressions). The basic symbols if
and then are sequential operators.

Example of another if clause:

if lambda = .70710678 then

8+2 Use of the If Clause in Arithmetic Expressions

As already shown in the first of the above examples it is possible
to extend the idea of the arithmetic expression by means of the if
clause. Besides the simple arithmetic expressions considered in
Section 6 it is also legitimate to have arithmetic expressions
commencing with an if clause and completed by two alternative
expressions, the first a simple arithmetic expression, the second
itself an arithmetic expression. Thus, an arithmetic expression may
be of the form,

if BE then SAE else AE

where SAE and AE stand for a simple arithmetic expression and
arithmetic expression respectively.

8e

20

Arithmetic and Boolean Expressions (cont.) 8-

Examples:
(a) if n = O then 0.5 else 1

(b) if lambda # O then alpha x (1 - alpha) x exp(lambdat2)/
(lambda x 2.3282180) else 0.48394

In the above examples both the alternztive exprecsions following
then are simple arithmetic expressions. We could, however, take our
more complicated definition for an arithmetic expression and use it
for the expression following the symbol else. We might then obtain
arithmetic expressions like those which follow,

(a) if i = 2 then p - q else if i = 3 then p + q else O
|] L |

T T
SAE AE

T
AE

(v) (Appendix 2 must be read in order to appreciate this example.)
if p<0 and q< O then (px q - p +)12

else if p=0 and >0 then p x (q + 1)12

else if p = 0 and q = O then 1 else O

8+3 Use of the If Clause in Boolean Expressions

Boolean expressions run parallel to arithmetic expressions;
they may use if clauses in a similar manner. Thus a boolean
expression may be of the following form:

if BE then SBE else BE
Of course, boolean expressions also include simple boolean expressions.

The following example shows a boolean expression of a fairly
complex form. The quantities B1, B2, B3, B4, B5, B6 and BT are
variables ol type boolean and some are used as simple boolean
expressions and others as boolean expressions.

BE
I

BE SBE BE
1

1 I
if [1_ B1 then B2 else B3 then B4 else if B5 then B6 else B';

Wi T NV

BE SBE BE BE SBE BE

The grammatical structure has been indicated by means of bracketing.

._,

21

8+ Arithmetic and Boolean Expressions (cont.) 8-

8+4 A Use for Parentheses

An arithmetic expression or boolean expression commencing wjth
an if clause may be incorporated within a simple arithmetic or simple
boolean expression wherever a variable of the corresponding type is
allowed, if and only if, it is enclosed within parentheses. This
means that simple arithmetic and simple boolean expressions iray be
quite complicated. In practice such forms do occur occasionally.
The following is an example of a simple arithmetic expression
incorporating an arithmetic expression in parentheses.

JO + (x = y) x (if n = O then 0.5 else 1)

Problems

(1) Vrite an arithmetic expression which.will evaluate _ 2t
2
1+t

if A is greater than pi/2, otherwise will evaluate 1 - £2
2
1+t

(2) Write down an arithmetic expression which will evaluate
x -1 (x=<0)
X -3x+4 (Osxe<t)

x+1 (x=>1)

23

9e STANDARD FUNCTIONS 9-

The scope and value of ALGOL expressions are enhanced by a facility
for inserting functions, just as variables may be inserted. One merely
writes down a function's name with appropriate argument or arguments.

Here we consider certain standard functions which may be used, although
other functions are also available as explained in Section 19 on Procedures.

The standard functions are some of the more frequently occurring
functions of analysis and are listed below:

abs (AE) for the modulus (absolute value) of the value of the
expression AE.

sign (AE) for the sign of the value of AE (+1 for AE=0, O for
AE = 0, -1 for AE <=0).

sqrt (AE) for the square root of the value of AE.

sin (AE) for the sine of AE radians.

cos (AE) for the cosine of AE radians.

arctan (AE) for the principal value in radians of the arctangent
of the value of AE.

1n (AE) for the natural logarithm of the value of AE.

exp (AE) for the exponential function of the value of AE.

entier (AE) for the largest integer not greater than the value
of AE.

These functions operate indifferently on arguments both of type real
and integer, which must be arithmetic expressions. The functions all
yield values of type real except for sign (AE) and entier (AE) which have
values of type integer. When quoting a standard function within a
program, it is unnecessary to make there any specification of the effect
expected from this function.

The following examples show the use of standard functions in arithmetic
expressions:

FUNCTION ARITHVMETIC EXPRESSION

abs (AE) abs (1 - 2 X J1/30)

sqrt (AE) (1 - alpha)/ sqrt (2 X alpha)

exp (AE) JO + exp(- x12) X (if n = O then 0.5 else 1)

The effect of the function entier is shown by the following results:

entier (6.99) = 6
entier (-4.2) = -5

A useful expression is entier (x + 0.5) which takes the value of the
nearest integer to x.

24

G+ Standard Functions (cont.) 9.

Problem .

Write the following expressions in ALGOL using standard functions:
o2leos3al, '\/—{log arctan Va2 + b2},

a cos x +b sin x - 1

2 .. 2
acos x+ bsin x + 1

25
10- STATEMENTS 10-

Those assemblies of basic symbols which form units of operation within
an ALGOL program are called statements. Statements written consecutively
are usually also executed consecutively, and two independent statements
written consecutively are always separated by a semicolon, thus:

S; S

The statements contained in the two simple programs of Section 2 obey
this rule. We repeat the statements of the first of these programs
below for the reader to note that this is so.

open (20);

x := read (20);

¥y := read (20);

close (20);

Z =X+ ¥;

open (10);

output (10, z);

close (10)

It is possible to write a statement containing other statements

within itself by forming either a block or a compound statement and we

shall consider these new ALGOL entities in later sections. We consider
now some of the possible forms of the simple statement.

27
11 ASSIGNMENT STATEMENTS 1.

Some of the ALGOL statements appearing in the previous section are
assignment statements, for example:

Z =X +Yy
This statement is executed by giving the quantity z the value of x + y.

The symbol, :=, is the assignment symbol and is pronounced as "is
assigned the value of" or "becomes".* The complete statement would
read:

z is assigned the value of x + y.

Tne above example is particularly simple, but more complex forms are
allowed. Thus, on the right hand side of the assignment symbol, one
could have any arithmetic expression, or even a boolean expression if the
variable on the left side were also of type boolean. It is possible to
extend the left hand side by writing down a 1list of variables (called
left part variables) with assignment symbols inserted to separate each
from its neighbour. The value of the expression is then assigned to all
the left part variables.

The assignment statement in its general form may therefore be
illustrated as follows using V to stand for any variable:
AE
[V = V e= eevccen Vj BE

[
Left part list

The name left part list is given to the list of all the left part
variables together with the assignment symbols as shown in the diagram.

Examples of Assignment Statements:

h := 0.1

JO :=n :=

x:t=2+nXh

JO := JO + exp(-x!2) X (if n = O then 0.5 else 1)

B := B2 := B3 := falge

Bool :=n £ m + 1

Types in assignment statements must obey certain rules, for the most

part a fairly obvious set. Thus, all variables in a left part list must
be of the same type. If the variables are boolean, so must be the

expression on the right. If the variables are of type real or integer
the expression must be arithmetic. However, it is allowable to have the

*The symbol := has a different meaning from the symbol =, denoting
equality. The latter asserts the current situation to have a
particular property, while the former performs an operation which may
change the current situation.

28

11+ Assignment Statements (cont.) 1.

arithmetic expression differing in type from the variables. In this
event it is understood that the numerical value of the expression is
transferred to real variables and the largest integer not greater than

AE + 0.5 to integer variables (that is, the nearest integer). Note

that the rule for assignment of a real arithmetic expression to an integer
variable does not correspond to the system followed in integer division.

Example:

Find the action of the following assignment statements, given that
n is of integer type, and x and y real.

n :=1;
X 1= 3.2
Yy :=x + 1;
n:=n+ 2;
x

t=x+y /2Nn + 1);
ys=if n=0 then x + y else x -~ y

We form a table containing a column for each variable, in which each new
value of this variable is entered.

n x ¥y
1 3.2 4,2
0 5.3 9.5

Final values:- n = Oy X = 5.3, y = 9.5

Problems

1) Using the scheme of the example above, follow the action of the
following statements and find the final values of the variables.
They are all to be taken as type real.

i=b = T;
t=a+ 3XDb - 2.3,-1;

:=p + (a+ 3)/(-b - 13);
t=p t=q - b X 0.2

® o " P

29

11. Assignment Statements (cont.) 11.

(2) Using the same system find the final values of real variables ri,
ra, rb, and integer variables n, i, jJ.
n := 53
 := n/(n + 15);
Tb :=n + 6/(6 X 1 + 0.5);
ist=nzs=n-2;
Jj = 1b - 13
ra = (j - i) x 1 X (rb - 4);
I s=rTa+rb+n+i+ J+8Xrl;
b := (1 = rbXn+ j=-ra)Mrd - j) + ra;
Ji=mn=1+nz:(j-3);
is:=n+ra
(3) Using the same scheme again find the final values of the real
variables ra, rb, the integer variable ia, and the boolean variables
ba, bb. -
ra = Te5;
ia 8= 53
rb t= 3 X ra - 2 X iaj
ba := rb>ia and ia>raj
ra := 2 X (ra - ia) =13
ba := not ra>ia or baj
bb := ba and rb>ia and ra<rb

(This example requires a knowledge of the contents of Appendix 2).

12

12.1

31

GOTO STATEMENTS AND LABELS 12

Goto Statements

Goto statements usually take the form:

goto L

where L stands for any label. They interrupt the normal sequential
flow in the execution of statements by causing a jump to the statement
prefixed by the label L. The label L may be any identifier not used
for some other purpose,* while the basic symbol goto may also be
written as go_to if desired. The following might occur as goto
statements.

goto R goto L25
goto SKIP goto Xy zZP

goto Repeat

Corresponding to the label appearing in the goto statement, the same
label must be inserted elsewhere in the program to specify the
destination. Insertion of this label is performed by labelling
statements, as now described.

Labelled Basic Statements

The two forms of statement, assignment and goto statements
already mentioned are included in the category of unlabelled basic
statements (UBS). A dummy statement also exists and is included
in the same category. This is simply an empty space which does
nothing.

A label may be prefixed to an unlabelled basic statement in
the following way:

L : UBS
The result is called a basic statement (BS).

The general form for a basic statement allows any number of
labels:

L:Ls: eese L 2 UBS
It also includes the unlabelled basic statement as a special

case. (It will now be seen that a dummy statement might sometimes
be useful for setting a label).

*In ALGOL 60 an unsigned decimal integer may also be used as a label but
this is not allowed in KDF 9 ALGOL.

32
12. Goto Statements and Labels (cont.) 12

Problem

The following piece of program generates a sequence of values
for SUM. TFind the first four of these values. The variables p,
q and SUM are real, while n is integer.

n = 1;
p = 0.5
SUM := O3
q:=1;

loop : SUM := SUM + q/n;
q:=4qXPp;
n:=n+1;

goto loop

33
13. FOR STATEMENTS 13

ALGOL has a special form which enables the execution of any
statement to be repeated a number of times. This is called the 'for
statement'. It is the most appropriate ALGOL equivalent to a repeated
loop in normal machine language programs and next to the assignment state-
ment it is probably the most valuable statement available.

Two simple examples will help to explain what a for statement is like
before we define the general form.)

for i :=1 stép 1 until 5 do x := x + 12
for x := 2 while y<O do y :=y + x
The first of these for statements increases the value of x by 12 on
five consecutive occasions at the same time incrementing the value of i
by 1 until it becomes greater than 5. The second example repeats the

statement, y :=y + x, for as long as y«<O, keeping x at the value 2
during that time.

13+1 The General Form of the For Statement

The general form of the for statement is written as follows:
for V:=FL do S

where V stands for a controlled variable and S for any statement.
FL stands for a 'for list' which we now explain.

The for list is constructed of for list elements (FLE) according
to the form,

FLEy FLEy ¢seee FLE

A for list element may take any of the following forms:

AE
AE step AE until AE
AE while BE

where the basic symbols step, until and while are separators, }
separating the arithmetic expressions (AE; and boolean expression (BE).

The for list gives a rule for computing the values which are
consecutively assigned to the controlled variable before each
execution of the statement following do. This sequence of values
is obtained from the for list elements by taking these one by one in
the order in which they are written. The effect of the three types
of for list element may best be explained by means of examples.

34

13+ For Statements (cont.) 13

13+2 Arithmetic Expression Element
for x := (p+q)3 pxqgdoy :=y/x

This for statement assigns the value of the arithmetic expression
(p + q)13 to x and then executes the statement y := y/x. It then
returns to the for list and assigns p x q to x. The statement

y = y/x is again executed. The for statement has now been
completed and control passes to the next statement in the program.

13+3 Step-until Element
for n := 1 step 1 until 10 do m := n?3

This statement calculates the cubes of the first ten integers.

It begins by assigning the value 1 to the controlled variable n

and then obeys the statement following the symbol do. The controlled
variable is now increased by a step of 1 making it n = 2. The
statement is again obeyed using the new value of n, and n increased
once more. The process continues until n becomes greater than 10
when the for statement is finished and all cubes up to 103 have been
calculated (but only 103 remains as the value of m).

Any arithmetic expression may be used for the initial value,
the step and the limit in the step-until element. This may lead to
negative steps or even to steps which change sign during the execution
of the for statement. A complete specification of the action in
such circumstances is given in Appendix 3.

Problem

(1) Follow the action of the following statements

Delta x := 0.1;
for x := O step Delta x until 0.55 do y := (1 - x)t2

(2) wvrite a for statement to add together the first n integers.
First solve the problem by writing a preliminary assignment
statement before the for statement, then find another solution
which only requires a for statement.

13-4 While Element

fork :=i + 1 whileix (i =1)<20do i =k + 2

In this for statement the value of the arithmetic expression i + 1
is repeatedly assigned to k and the statement i := k + 2 executed
for as long as the boolean expression i x (i - 1)<<20 is true.
Assuming an initial value for i of i = 0, the following values of
the variables are obtained.

35

13. For Statements (cont.) 13,

k i(i - 1) i

Initially - - 0
1 3
4 6 6
7 30

The values of i and k immediately before leaving the for statement
are i = 6y k = 7.
Problems

Follow the action of the following for statements.

(1) for p := p + 2 while pt2 + q12<100 do q := p + 1
where before entry p =1 and q = -7.

(2) fori :=2,5, 6 step 1 until 10, -1 while m<O do
mi=1ix (i+1)

(3) If py gy Ty s are real and k, m are integer, find the values
assigned to controlled variables in the following for statements
and the final value of s:

-

pP:=1; q:=2;5 1 :=3; 8 :=0;
fork:=p+qyq-pyrxp=-qdo s =5 +Kkj;
for m := q step r until 7 xq + 1 do s := s - m;
for k := 2, 8, 2 step 2.until 6 do s :=s5 + 2 X k;
form :=s + 45, m + 2 while s<O do s := 8 - m;
for k := 1 step 1 until 5 do

for m := 3 gtep -1 until 0 do s :=8 +k + m

13+5 Miscellaneous Notes on For Statements

Note (1) 1In ALGOL the controlled variable has no defined value after
the for statement has been completed by exhaustion of the
for list. However, the value left by one for list element
may be used in the next element of the same list, as in

for i :=1, i + 1 while ...

Note (2) Labels may be prefixed to a for statement. The complete
form of a for statement is:

L:L: eeoL:forV :=FLdoS

36

13+ For Statements (cont.) 13.

Note (3)

Note (4)

Exits from within a for statement body, that is the
statement following a do, by means of goto statements are
allowed. In such an event the controlled variable keeps
its current value on exit. (The importance of this and
the following note will be better appreciated when later
sections of the manual have been read and it is realised
that a for statement body can contain many statements.)

A goto statement outside a for statement may not refer to
a label within the for statement; that is, a jump into
a for statement body from outside is not allowed.

37
14. COMPOUND STATEMENTS 14.

In Section 10 the reader was told that statements might be grouped
together to form blocks or compound statements. We now write down the
form to be taken by the compound statement:

L:Lz: eoeee L s begin S5 S5 eceee S5 S end

The sequence of one or more statements is surrounded by the statement
brackets, begin and end. These two basic symbols enable the sequence of
statements to be employed as one whole.* Labels may also be prefixed if
required, but are not essential. Note also as a matter of punctuation
that the final statement S in the sequence need not be followed by a
semicolon; there is no following statement from which it must be
separated.

Examples:

(1) Dbegin x :=2z + n x h;
JO := JO + exp(-x*2) x (if n = O then 0.5 else 1)
end
(2) begini :=2; n :=1; h := h/2;
goto R

end

The compound statement may be used wherever a statement is allowed,
in particular, after the do in a for statement. This extends the scope
of the for statement, and enables & number of statements contained within
the compound statement to be obeyed repeatedly. Thus Example (1) above
forms part of a for statement in the specimen program of Appendix 1.
Problems

(1) TUse a for statement to evaluate the product

Ly + 1 C
(1-90+35) .. (1 2)
(2) wWrite a for statement to evaluate the function

2 2

y = —_— b2 + 2 1 - 0-23) + —28b__ e‘a(a sinb + b cosb)-t
2 2 2
a +b a +b

28
-8

t
wherea:T(1-s),b=1

for s = 0.1 (0.1)0.9.

*The programmer will often find it helpful to connect the begin and end by a
vertical line. This will tend to bring out the program structure but is not
by any means essential. It also helps to ensure that an end corresponding
to a begin is not omitted.

39
15 CONDITIONAL STATEMENTS 15.

Basic statements and compound statements (but not for statements*)
are classified as unconditional statements (US). There is also a
conditional statement and this takes one of the following forms:

if clause

LtLt ecoee L t)if BE then US i olge S!

if statement

if clause
L:L: eeees Lz if BE then FS

where FS stands for a for statement.

Examples:
if x = O then y :=1 else y s=x - 1
if Boo then for I := 1 step 1 until mdo n :=n x (n - 1)

The if clauses and if statement are essential components of the forms
of conditional statement in which they are marked. The broken parentheses
around else S following the if statement in the first form indicate that
this part may be omitted if there is no alternative statement to be
executed. Thus an if statement alone can always be a conditional statement.

In the first form the conditional statement is executed as follows:
if BE has the value true, then US is obeyed and the remainder of the
conditional statement is ignored; otherwise, if BE has the value false,
then US is ignored and S is obeyed. If the conditional statement is
merely a labelled or unlabelled if statement, so that S does not exist
and also BE happens to have the value false, then the statement produces
no action beyond that caused by the evaluation of BE. 1In the second
form, if BE has the value true then FS is obeyed; otherwise the state-
ment again produces no action beyond that caused by the evaluation of BE.

Further Examples:
if abs(1 - 1/lambda)>,-5 then goto Repeat
if v=u then X : q :=n + m else goto R
Problems

(1) Find the final values of all variables when the following statements
have been executed. The variables u and W are real and B boolean.
(Appendix 2 is needed in solving this example).

*In accord with the Revised Report on ALGOL 60, paragraph 4.5.1.

40
15¢ Conditional Statements (cont.) 15.

u s

[}
N

H
B := true;

repeat: W :=u - 2;
if u#2 - 1/u=0 and W=-2 then u := 1/u
else if B then goto 2

else goto end;
Zs B := false;

u =W+ 2 x uj

goto repeat;
end: B = uxW

(2) Construct a loop to evaluate iteratively a root ;of the equation,
x2 +x =16,

using the formula

16
x=x+‘l

and the starting value x = 3.0.

Use a conditional statement to exit from the loop when x has been
determined to four decimal places. Afterwards, write a single for
statement which will evaluate the root and follow its action for
three iterations.

(3) Write a conditional statement which will cause a jump to four
different points in a program, labelled P, Q, R and S. Make the
jumps depend respectively upon two boolean variables, B1 and B2, by
Jjumping to Py if both true, to Q if B1 true and B2 false, to R if
B1 false and B2 true and to S if both false. When finished check
that you have no if following a then; this will not be the case if
the definitions of the present section have been followed. (Refer
to Appendix 2 if necessary, in solving).

(4) Making use of a compound statement, write a for statement to evaluate,
n

Xt 1

-1
for the first 100 integers n, the value of x being already known.
Make provision to jump out of the loop whenever x* - 1 is zero.

y

#
16 SUBSCRIPTED VARTIABLES AND ARRAYS 16

In computational work it is often necessary to perform the same
operation on many different sets of data. When this is so, it is very
convenient to be able to allocate a single name or identifier to groups
of data and distinguish between individual items by means of subscripts.
The notation using an identifier with subscripts, familiar in mathematics,
is available in ALGOL, where it is known as the notation of subscripted
variables.

In the particular form it takes in ALGOL we write the identifier
common to the variables followed by square brackets enclosing the
subscripts, for example,

As the subscripts are varied one obtains the various subscripted variables
which are said to form the elements of an array. This array has the
common identifier as its name; in the example above, this is ar.

The form taken by any subscripted variable may be depicted as follows:
A [suB, SUBy SUB]

Here A stands for the array identifier. SUB stands for a subscript

vhich may be any arithmetic expression. If this arithmetic expression
(AE) is real then the largest integer not greater than AE + 0.5 is taken
as the value of the subscript (i.e., the nearest integer). The subscripts
are evaluated in the order of occurrence.

Examples:

ABC [1], f[i - 2], sigma [p + gy 4y p - 2]
Scorpion [k, 1, m, n:l

Subscripted variables may be of one of the three types real, integer
and boolean, but variables corresponding to a single array identifier
must be of one type only. In the same way as simple (non—subscripted)
variables are admitted to the class of ALGOL variables, so are
subscripted variables. It follows that the uses of subscripted variables
to be described in the following sections are allowed.

16+1 Use of Subscripted Variables in Exgressj.ons

Expressions involving subscripted variables may be written,
and at execution time the program will evaluate the expressions
using the subscripted variables selected according to the current
values of their subscripts.

Examples of arithmetic expressions using real and integer
type subscripted variables as operands follow:

Mx [a1, a2]

a[j]xa[k+j] -v[32]

16

162

42

Subscripted Variables and Arrays (cont.) 16

if A>B then X [i x j] else Y [i]
PQ [1, 2y if j<2 then r else s]

The following might be boolean expressions using subscripted
variables:

Boolean [i, jy k]
WX [3] >Y2Z [rho]"

Use of Subscripted Variables in Statements

The important use of subscripted variables as left part
variables in assignment statements is allowed. In such a case the
subscript expressions occurring in any left part variables are
evaluated before the expression on the right of the assignment.
When more than one left part variable is subscripted, subscript
expressions are evaluated in the order of occurrence, i.e., from
left to right.

Examples:

for i := 1 step 1 until n do
E[n] := E [n] + A (ilxsS [ilh

para 1 := arr 1 [i] :=,arr 2 [i,j] := O

Finally, subscripted variables may also be used as controlled
variables in for statements but special care should be taken when
the values of the subscripts of the controlled variable are liable
to be changed during the execution of the for statement. The
actual mode of operation in such cases accords with the action of
for list elements defined in Appendix 3.

Problems

(1) Calculate the final values of the variables involved in the
following statements:
B [1, 2] := B [2y =1] 3= V[3] := 2;
i =3 xB[2, -1] -2;
B[, i+2]:=i:=1;
vV[B [, 2] +B[2y -1]] := B [1. i] := 6 -V[3]

(2) Two one-dimensional arrays CAT and DOG each have 15 elements
with subscripts commencing at 1. Write statements to evaluate

SC the sum of the squares of the elements of CAT, and SCD the
sum of the products of corresponding elements of CAT and DOG.

43

17 INPUT AND OUTPUT OF DATA AT

The ALGOL language as so far defined provides no means for the initial
setting of program parameters when these are to vary from job to job, nor
does it provide means of printing out the results of program operation
before they are lost. Thus, to produce ALGOL programs of practical value,
it is necessary to add to our stock of statements and functions forms
which provide input and output facilities.

The ALGOL Report indicates a means of providing these through ALGOL
procedures which have bodies written in user-code. (Procedures are
explained in detail in Section 19). TIn agreement with this indication
English Electric-Leo has produced a KDF 9 ALGOL input/output scheme which
the programmer may use. If, however, he knows the details of how the
peripheral devices work on KDF 9 at the user-code level, there is nothing
to prevent the user writing his own scheme, or making additions to the
English Zlectric-Leo system. The compilers work independently of what
input/output scheme is adopted since the text which defines the scheme
must be written into the program and is processed just as any normal
ALGOL text (see Section 19-6).

The scheme written by English Electric-Leo follows.

17-1 Device Numbers

Since there are a number of different input and output devices
on KDFF 9, a word is needed about the way the programzer calls for a
particular device. The KDF 9 ALGOL statements and functions
specified later in Section 17 allow him to write down a device
number which will call a particular kind of device according to the
ranges given below.

Input/Output Device Device Number

Monitor typewriter* 00
Special input/output devices ot - 07
Paper tape punch (8-channel) 10 - 17
Paper tape reader (5 or 8-channel) 20 - 27
Line printer 30 - 37
Card reader 40 - 47
Paper tape punch (5-channel) 50 = 57
free 60 - 67
Line printer/Paper tape punch, 70 - 77
common output
Magnetic tape . {:?g : 1?;

*The monitor typewriter should be used as little as possible, preferably
not at all. This device will be used for purposes other than any the
programmer may have.

44
17 Input and Output of Data (cont.) 17+

Though the programmer has full control over the kind of device
to be called by using a device number in the correct range, the
computer (via a fixed control program called the director) in
collaboration with the operator decides which actual device will be
chosen for a particula}' device number.

172 Simple Forms for Reading and Writing Numbers
The form for reading a decimal number in characters is
read (DV)
where DV stands for a device number.

The identifier read is a function for use within arithmetic
expressions. It is of type real and has as its value the next
number on the input device, DV. Any device which is suitable for
reading may be specified by the device number. Any arithmetic
expression is valid as a device number, the nearest integer value
being used to call the device.

The number to be read on the input medium must be an ALGOL
number (see Section 4 for definition) and must be delimited by an
ALGOL basic symbol which is not a digity +y =y +y - A failure
message will be printed and the program thrown off the machine if
a number being input as data is non-ALGOL, out of range, or has an
exponent out of range. The non-ALGOL symbol — (end message symbol,
'?' for 5-channel working) must appear after the last delimiter of
any data paper tape.

Examples:
j :=read (21); x := (read (j) + 1)12

(The value assigned to J is being used as the device number in the
second statement).

The simplest form for writing data to an output device is
output (DV, AE)

This is an ALGOL statement. It evaluates the arithmetic expression
AE, which could of course be a variable, and outputs it to the device,
DV. The number produced is in standard floating decimal with an 11
place signed mantissa in the range, 1<<N<<10, followed by subseript o
and a 2 digit signed integer exponent. Each number output by this
statement is followed by a semicolon and a new line symbol, so that a
print-out for more than one such number produces a single column.

Examples: ‘

output (12, a=b); output (10, k [1,p]).

45
17+ Input and Output of Data (cont.) 17

17+3 Further Input and Output Statements

The following forms are available for the input and output of
boolean data, and binary and decimal arrays:

read boolean (DV)

This function of type boolean takes the value of the next boolean
value on the input device, either the symbol true or false.

write boolean (DV, BE)

This statement outputs the value of the boolean expression BE as
either false or true followed respectively by one or two spaces.

read binary (DV, A, [AN])
This statement finds an array with the array name AN on the magnetic
tape and reads it to the ALGOL array A. The array name must be

enclosed by the string quote symbols [;a.nd ;I (square brackets under-
lined) as shown.

write binary (DV, 4, [AN])

This statement stores the array A on magnetic tape in a form suitable
for input by the statement read binary and gives it the array name AN.

read array (DV, A, [AN])

This statement reads from paper tape an array headed by the array
name AN and certain other information. (See reference given at end
of Section 17).

write array (DV, FE, DM, A, [AN))

This statement outputs the array A with preliminary information

including the array name AN. The format expression FE specifies
the layout of the eleients of the array according to rules explained
in Sections 174 and 17-5. DM stands for the number of dimensions

of the array which must be specified. The elements of the array are

listed so that the earlier subscripts change faster.

The use of a format expression in another most important state-
ment allows a fine control over the output of simple decimal numbers.
This statement is

write (DV, FE, AE)

which, like output (DV, AE) above, outputs the value of the arithmetic
expression AE on the device DV. The format expression FE denotes an

argument of type integer and provides the number of a layout which
itself specifies the particular field and format required in output.

The form and meaning of the layout and format expression are explained

in the next two sections.

46

17+ Input and Output of Data (cont.) 17.

Examples:

write (12, format ([-dad.d]), x x (xt2-1));
write (11, f1, a x bf(k + 1))

17-4 The Layout

The layout provides a picture of the number which is to be
printede It shows where digits, zeros, spaces, sign, decimal
point, and, in the case of a floating number, the exponent are to
be printed in the output field. It may also call for a new line or
new page on the output medium or print a semicolon to separate one
number from the next. This makes the write statement very versatile.

We shall now proceed through the various facilities in more
detail, showing how the layout is constructed.

(1) Digits Wherever a digit is required in the output field we
put a letter d in the corresponding position in the layout.
The letter n-may be used in the first digit position in which
case if the number is too small to fill the digit layout, zeros
on the left are suppressed. Zeros in the units position and
to the right of the decimal point are never suppressed.

(2)~'/ jmal Point ~The decimal point is inserted in the appropriate
position, when required.

(3) Sign The sign + inserted before all d's and the decimal point
will ensure that either + or - appears in the result as
aprropriate. When n appears in the layout and zeros on the
left are suppressed. the sign is moved to the right.

The sign - inserted in the layout has the same effect as
+ except thet a space is inserted instead of + for positive
numbers.

The symbol # causes a sign (either + or -) to be printed
but always in the position specified.

Finally, if there is no sign in the layout, no sign is printed.

(4) Spaces The letter s inserted in the layout causes a blank
space to be printed in the corresponding position. A maximum
of 15 spaces are allowed in front of the sign, and these
initial spaces may be abbreviated by inserting a single s
preceded by the number required. They are still available
when no sign is present in which case up to the first 15 spaces
are counted as initial spaces.

(5) Zeros Zeros may be inserted at the end of a decimal layout
one having no exponent). These allow the printing field to
float keeping the number of significant figures specified by

n and d.

47

17- Input and Output of Data (cont.) 17.

(6) Exponent A floating point number in ALGOL form will be
output if the layout includes a mantissa and an exponent.
The mantissa should be of the form "d." followed by a fractional
part containing only d's and s's. The exponent immediately
following the mantissa should be of the form ",.", followed by
a sign, followed by "nd". The sign used in the exponent may
take any of the three forms mentioned above and has a similar
effect. Any symbol in the layout following the exponent must
be a terminator.

(7) Terminators When required the layout may be concluded by one
of the following symbols which have the effect- specified.

H A semicolon is output in the position specified.
¢ A carriage return line feed is output.

P A page change is output on a line printer and page
shift on a paper tape punch.

The following nine combinations of terminators are allowed:
H c P ce cce 3P H scc scece

Examples of layouts:
sndd.ddds000s
Tsgnddd
-d.dddd +nd;
sss+dd.djcce

175 The Format Expression

The format expression provides a means of calling a particular
layout. Using a function called format it is possible to associate
an integer with the layout. Thus, using LAY to stand for a layout,

format ([LAY])
will provide the integer corresponding to LAY.
This integer may be used as a format expression parameter in the
statement,
write (DV, FE, AE).

The string quote symbols [and]which enclose the layout are
essential.

Example:

write (30, format ([+sddd.ddds;c]), A[j + 41).

48

17- Input and Output of Data (cont.) 17,

Whenever the same layout is to be used to output more than one
number it is advantageous to assign the integer value produced by
the function format to an integer variable, and use the variable as
the format expression.

Example:

:= format ([ndddc));
for i :=1 step 1 until n do write (30, F, List [i])

176 Input and Output of Text

There are two statements dealing with the input and output of
text.

write text (DV, ST)

This statement outputs the text written as ALGOL basic symbols in
the string ST. (For explanation of strings see Appendix 6). The
string contains the text for output enclosed by string quotes

[and J. Editing symbols ¢, p and s preceded if desired by an
integer and enclosed by additional quotes may be inserted in the
string to produce the effect of carriage return line feed, page
change, and space, respectively. The integer before one of these
letters specifies the number of such symbols to be output.
Alternatively for space, one or more asterisks may be inserted in
the text without additional quotes.

Examples:

write text (12, [p]Result [c7s] x*=#x])
write text (13,[[5c4s]])

copy text (DV, DV, ST)

This statement copies ALGOL basic symbols from the input device
specified by the first parameter, to the output device defined by
the second parameter. The third parameter ccnsists of either one
or two basic symbols in string quotes: for one basic symbol copying
continues from the actual starting position of input to the first
occurrence of this symbol; for two symbols, copying starts
immediately after the occurrence of the first symbol and ceases on
occurrence of the second. The basic symbols inserted in the third
parameter are not themselves copied.

Example:

copy text (20, 12, [335])

49

17. Input and Output of Data (cont.) 17,

177 Initialisation and Closure of Devices

178

Certain statements are required in order to allocate and de-
allocate actual devices corresponding to those called by the ALGOL
programmer and inform the operator of the choice for purposes of
loading and unloading tape reels, etc. These statements are as
follows:

open (DV)

This statement must precede the first use of a device DV and auto-
matically produces on that device the effect of carriage return
line feed followed by case normal. It applies to all devices save
the monitor typewriter and magnetic tape decks. The monitor type-
writer requires no initialisation by the ALGOL program, while
magnetic tapes are initialised by the find statement to be described
next.

Example:
open (22)
find (DV, ST)
This statement will look at all tapes loaded and find the tape with
the label referred to in the string ST. The corresponding deck is
allocated as the device with number DV. The string may enclose in

quotes [and] either the number of a device from which a tape label
may be read within string quotes, or the tape label itself.

Examples:
find (103, [XDSGR562])
find (100, [21])
When a device has been initialised the operator is informed of
the device number allocated, and a standard format is automatically

output, including program identification and blanks and leaving the
device at the beginning of a line ready for the programmer's output.

close (DV)

This statement closes device DV and should be applied to all
initialised devices before the program ends. After closure a
device must be re-initialised by an open or find statement before
use again. Closing a device early helps to reduce buffer storage.
The close statement has no application to the monitor typewriter.

Manipulation of Magnetic 'l‘ages'

Various statements for the manipulation of magnetic tapes are
available or under consideration. Amongst these there is

interchange (DV)

17.

17.9

50

Input and Output of Data (cont,) 17.

This statement is used to change a magnetic tape deck from a reading
to a writing mode, and vice versa, See Algol Users Manual for
further details,

skip (DV, N)

This statement skips N binary arrays on the magnetic tape corresponding
to device number DV,

Restrictions

Apart from the restriction limiting initial spaces in a layout
to 15 as already mentioned, a total of 23 n's, d's, zeros and s's are
allowed from the close of initial spaces to a subseript (or the
close of the layout if there is no exponent), The layout should not
allow more than 12 significant digits (n and 4) in output,

Up to 120 positions maximum will be available per printing line
in output on the paper tape punch, line printer and magnetic tape.
For cards the full field of 80 characters will probably be available
when using the punch,

If a number does not fit the layout an alarm printing occurs,
This means that it appears on a fresh line to the standard layout;

#d,ddddsddddsddds 1 #ndjc
Each alarm printing will be preceded by an asterisk and as the
layout shows will end with a sewicolor, An alarm printins will

not disturb the overall layout,

Details of other facilities in this input/output scheme can
be found in the ALGOL Users Manual,

Problems

(1) Write a for statement which r-ads ten numbers from paper tape
and sums their squares,

(2) Assign a format expression to the integer variable f and use
it in a for .statement which reads 100 numbers and outputs their
cubes to the format ddd.dd in a single column on a paper tape
punch,

(3) Write an output statement which will print on & line printer
the heading -

Co-ordinates of the Parabola, y$2 = 4x,

51

17+ Input and Output of Data (cont.) 17.

4)

(5)

(6)

Write statements to produce on a line printer the positive co-
ordinates of the parabola y2 = 4x in two parallel columns with
headings x and y. The abscissa x should take the values 0(0.01)5.
Write a piece of progran to read N integers (each less than 106)
from reader 20, and print them out in a column with their prime
factors in a parallel column on punch 10. Restrict the
search to the factors two and three only. When both occur,
list them with a semicolon as separator (thus, 233). Allow
three spaces to separate the two columns.

Write statements which will output the diagonal elements of a
22 x 22 array called BRUTE, elements commencing BRUTE [1,1],
on the paper tape punch 11. lake the output appear five
elements per line in columns each separated by five spaces.
Use a floating decimal point allowing eight significant digits
in the mantissa.

53

18- DECLARATIONS, BLOCKS AND PROGRANS 18-

Having considered most of the forms of statement allowed in an ALGOL
program, we shall now congider how the statements ought to be arranged
and vhat means exist for cementing them together to form a complete
program. This should put the reader in a position to write simple
programs .

18+1 Declaration of Simple Variables

We come first to the idea of the declaration. This may have
been entirely new to the reader when he read of it in Section 2.
The declaration is the programmer's means of conveying informetion
to the ALGOL translator about the kind of quantities represented by
the identifiers used in the program. This makes it possible for
the translator to treat each identifier in the way most appropriate
to its kind in allocating storage and using arithmetic routines.

The rules associated with the declaration are as follows:

(1) All identifiers having an operational significance except those
representing labels and standard functions must be declared.*

(2) For simple variables the declaration consists of a basic symbol
denoting the type of the variable (real, integer or boolean),
followed by a list of simple variables separated by commas.

A declaration for such variables will look like

T Vy Vy eeeee ¥V

where T stands for a type symbol and V for a variable. Each
variable listed after a given type symbol is of that type. For
variables of a different type, different declarations must be
made using the appropriate type symbols. The order chosen in
writing more than one type declaration or in listing variables
is immaterial.

(3) A declaration must be placed at the head of the block to which

it is intended to apply. (Blocks are considered in Section 18-3).

As already mentioned in discussing types of numbers in Section 4
type real denotes real quantities which are to be treated in floating
point. Type integer quantities are treated using fixed point integer
arithmetic.

In addition to the type symbol appearing at the head of a simple
variable declaration the symbol own may appear. The meaning and use
of this symbol is explained in Appendix 4.

*This rule includes the identifiers used for input/output statements and
functions which must all have procedure declarations. For the purposes
of the present chapter and the problems appearing at the end, these

declarations are omitted. They will in practice be obtained automatically

from the ALGOL procedure library in accordance with the rules explained in
Section 19-7.

18-

54
Declarations, Blocks and Programs (cont.) 18-

One or two other basic symbols are used in declarations in order
to specify such things as arraye, switches, and procedures. The
declaration of ALGOL procedures will be considered when we come to
discuss procedures in Section 19. Switch declarations are discussed
in Se~tion 21, while array declarations are considered in the following
section.

Examples of Simple Variable Declarations:

integer i, J
real alpha, P, stress, radius

boolean STABIE, BY, B2, B3

182 Array Declarations

Just as a simple variable must be defined before its use, so
before using a subscripted variable the array to which it belongs
must be defined. This is done by means of an array declaration
which appears along with other declarations in the head of an
appropriate block. The object of the array declaration, besides
noting the existence of the array, indicates the type of its elements,
whether real, integer or boolean. It aleo limits its size by noting
upper and lower bounds on the subscripts.

The form of an array declaration and its correspondence to a
subscripted variable may be shown as follows:

Array declaration
Bound pair list

I U
%—md pair : 1
{} array AL :v8 , 13: UB ,..c., LB s UB]
Y one to one .
Subscripted varjable correspondence

A[SUB 4 SUB geeeey SUBJ

T stands for type and may be real, integer or booleg;. If no type
symbol appears in the declaration then the elements of the array are
understood to be of tyre real. array is a declarator in the list
of basic symbols.

A stands for the array identifier.

LB stands for lower bound and UB for upper bound.

SUB stands for subscript.

By means of bracketing the diagram also defines the meaning of

a bound pair and a bound pair list. The following notes on the
bound pair list are important.)

55

18- Declaratjong, Blocks and Programs (eont.) 18-

(1) The bounds may be arithmetic expressions and are evaluated in

(2)

(3)

4)

(s)

the same way as subscript expressions. Thus if the arithmetioc
expression (AE) is real then the value of the subscript is
taken as entier (AE + 0.5). (See Section 9 for the standard
function entier).

The bound pairs give the bounds of corresponding subscripts and
a subscripted variable is only defined if its subscripts lie
within these bounds. An array is not defined if a lower bound
is greater im value than its upper bound.

The order of evaluation of the bound pairs is from left to
right.

The bound pairs are evaluated every time control reaches the
array declaration and only the surrent values of these bownds
are valid in considering the legitimaey of some subscripted
variable (See Note 2).

A bound pair expression may only depend om variables and
functions whieh are declared in a block enclosing the block

for which the array deelaration is valid. Note (5) should be
understood more clearly after reading Seetion 18:-3. A more
thorough explanatiom of the poimnt will be found in Seection 22-2.

Examples of array declarations:

array AB [1:10, 1:10, 1:3J
real array MiI[p+n : qy p+m : r]
integer arrgy ARRAY [1 : if 1 = O then n else 2 x n]

The form of the array declaration defined above is not as general

as it could be. In fact it may be extended so that any number of
arxray declarations may be strung together and repetition of similar
information eliminated. Thus, after the symbol array a list of
idemntifiers may appear, followed by a bound pair list enclosed in the
wsual square brackets. [Each of the identifiers is thereby declared
ae representing an array of the same type as all the others in the
list and having the same number of dimensions and the same upper and
lower bounds on its subscripts. Other arrays of the same type btut
having different dimensions and/or bounds may be declared by adding
them on to the above declaration and following them with the new
bowad pair list.

Apart from the appearance of own for which see Appendix 4, the

goneral form for an array declaration may be depicted as follows:

::‘T:: ma! A, A’ oo A[BPL], ‘y A'coo(BH‘} oco‘v ‘,ooo‘(BPL]

BPL stands for bound pair list.

Farther exemples of array declarations:

array A, B, C[1:1, 1:m, 1:n]
boolean array b1[0:20], b2, b3(-10:a?2, ~5:n x m -1]

56

18- Declarations, Blocks and Programs (cont.) 18.

18¢3 Blocks '
A block of ALGOL program is constructed in the same form zs a
compound statement but with the essential addition of at least one
declaration. The form of a block may be represented thus:

Blocﬁ head

L:L: eoeesl s gegin D;jDj; eee D35S 5535 eveeS end

where L stands for a label, D for a declaration and S for a statement.
Note that the declarations are all followed by a semicolon. A
declaration appearing in the block head only epplies for the correspond-
ing block. A block need not be labelled.

An important use of blocks is provided by the following complete
definition of the unconditional statement.

besic stetements
Unconditional statements include compound statements
blocks

The inclusion of blocks as unconditional statements means that
blocks may be used within for statements (Section 13), compound
statements (Section 14), conditional statements (Section 15) and
also within other blocks.

Examples:

(1) The two simple programs given in Section 2 are both blocks.
We reproduce one of them here in an abbreviated form.
begin real xy ¥, 23
open (20);
x:= read (20);

end
There is one declaration in the head of this block, namely
real x, y, 2

and the reader will notice that it is correctly followed by
a semicolon.

(2) 1Insert appropriate declarations and begin and end brackets to
make the statements of the problem in Section 122 into a block:

18-

18+4

57

Declarations, Blocks and Programs (cont.) 18-

begin real p, q, SUM;
integer n;
n := 1;
p := 0.5;5
SUM := O;
q :=1;

loop : SUM := SUM + q/n;

2= Q4 X Pj
n:=n+ 1;

goto loop

end

Problems

Insert appropriate declarations and begin and end brackets to
make the statements of the following problems appearing earlier in
this manual into blocks.

(1) Prob. (1) Section 11.
(2) Prob. (3) Section 11.

Definition of a Program

A program is officially defined as a block or compound statement
which is not contained within another statement and which makes no
use of other statements not contained within it. Normally, a
program will have identifiers declared at its beginning, so that it
will be most naturally constructed as a block.

The reader will appreciate that the uses of blocks mentioned in
the previous section allow a complicated program structure involving
blocks within blocks. Since there are certain rather complex rules
associated with the use of identifiers when inner blocks exist, it
will be advisable for the beginner to restrict his programs to those
containing one block with all declarations made in its block head.
Section 22 will explain the restrictions on the use of identifiers
when a complex block structure is used, and the value in some
circumstances of such a structure.

Example:
Write a program to solve the equations ax + by = ¢y Ax + By = C

for n sets of coefficients a, by ¢y A, B and C with a provision for
failure when aB - bA is small or zero.

59

18« Declaration, Blocks and Programs (cont.) 18+

(5) wWrite a program to group n integers between O and 99 into classes
0=-9, 10 =19, ¢ve. 90 - 99, and print out the number of
integers in each class.

(6) Write a program to find the first n positive roots of
x tanx = a
with an error less than e. Use the iterative relation

xr + 1

- tan™" (a/x..)

T
to improve an approximate root x,. For the first root take
0.5% is an initial guess. For the second root take m plus
the first root and so on.

(7) Write a program to find the area of a triangle given the length
of the sides as data. Use [dd.dddd] as the layout of digits
for output.

A = Ab(s-2a)(s-b)(s -c); s=2(a+b+c), where a,
by and ¢ are the lengths of the sides.

(8) Tabulate the binomial coefficients nCr, r = 0(1)n, for given n.

[Note nCr =nn-1)0n-2) oo (n -1 + 1)]
1e 2¢ 3 eoee T

19-

61

PROCEDURES 19-

19+1 The Purpose and Application of Procedures

ALGOL provides a facility similar to that of the subroutine in
a mechine-coded program. This facility is known as the procedure.
It enables the programmer to use a single piece of program in a
number of places in his program or even in different programs without
having to rewrite it on each occasion to suit new parameters. To
each procedure there is attached an identifier and each occurrence of
this identifier within some ALGOL statement initiates a call of the
procedure concerned.

As an example the programmer may decide to have a procedure
which provides the tangent of an angle. He associates with this
procedure the identifier TAN, and on any occasion when he desires
the tangent to be evaluated, he merely writes down the procedure
identifier together with the angle in which he is interested.
Suppose the angle were x, then writing

TAN(x)

would give him the tangent of the angle x. He might decide to use
this in an arithmetic expression such as

(2 x TAN(x) + 1)/(TaN(x) - 1)

The use of a procedure like TAN obviously implies some means of
defining its action. The means available is the procedure declaration.
This declaration contains a body in which the operation of the
procedure is defined (usually by means of ALGOL statements). It
also has a heading in which the procedure identifier may be associated
with a set of parameters, known as formal parameters. When the
procedure is to be called, the programmer inserts the actual parameters
upon which the procedure is required to operate instead of the formal
parameters to which they correspond. At the time of executing this
call the procedure body is entered and obeyed.

In different calls, different sets of actual parameters may be
used. In the example mentioned above the procedure TAN might be
declared as TAN(z), where z is a formal parameter. The call of this
procedure mentioned earlier uses x as an actual parameter to correspond
to z, but on some other occasion a different actual parameter might be
used and the programmer might call for TAN(y), or even TAN(x x y§.

There are two ways of using procedures. TAN(z) above is being
used to provide function designators TAN(x) and TAN(x x y) which
supply values through the procedure identifier for use in the
expressions in which they occur. It is also possible to call
procedures by procedure statements which are used in a manner
similar to other ALGOL statements. In this case, though information
may be supplied to the program via the parameters, a value, is not
supplied through the procedure identifier.

62

19 Procedures (cont.) 19.

19+2 Procedure Declarations and Corresponding Calls

As already suggested, the declaration of an ALGOL procedure
specifies its action. This declaration is inserted in the block
head to which it applies in the same way as any other kind of
declaration. Figure 2 shows the form taken by a procedure declar-
ation, and also included is the procedure statement or function
designator to show the correspondence between the declaration and
the call. '

In this diagram P stands for a procedure identifier, AP for an
actual parameter and FP for a formal parameter. T stands for a type
symbol placed before the ALGOL symbol, procedure, the broken
parentheses indicating that it is not always required. When the
procedure defines the value of a function designator, the type
symbol must be included in the declaration and specifies the type
of this value.

In the procedure declaration the basic symbol procedure is
followed by the procedure heading which includes the procedure
identifier, formal parameter part, value part and specification
part. The procedure heading is followed by a procedure body.

The formal parameter part consists of a formal parameter list
enclosed in parentheses. The formal parameter list in turn consists
of one or more formal parameters separated by parameter delimiters.
The actual parameter part, actual parameter list and actual parameters
in the procedure call are analogous. In both cases the parameter
delimiters may be commas as in Figure 2 or they may take the form:

YLs s (

where LS stands for a letfer string. This enables the programmer
to include an indication of the meaning of parameters in the formal
parameter list.

A formal parameter is simply an ALGOL identifier, while an
actual parameter which corresponds to it might be an arithmetic,
boolean or designational expression, or an array, procedure or
switch identifier or a string (see Section 19¢5). The correspondence
of formal and actual parameters shown in Figure 2 means that there
must be the same number of actual parameters in a call as formal
parameters in the declaration. Taking the parameters in order
there must also be a compatibility in kind and type. The specification
part of the procedure declaration mentioned in Figure 2 defines the
kind and type of formal parameters and is described in Section 19-5.

Information concerning the way actual parameters are to be
treated is provided by the value part of the declaration. This is
described in Section 19-4. :

The value and specification parts complete the procedure heading
in the declaration and are followed by a procedure body. This
commonly contains a number of ALGOL statements within which the
formal parameters appear, being used as variable identifiers, array

ALGOL FORM NOTES

{T;procedure Formal parameter
f part
A
r N
P (FP, FP, FP);
4 4 4
PROCEDURE DECLARATION Value Part |————— Procedure heading

(Definition of Procedure) Specification part

Procedure body
One-to-one
correspondence of

[

parameters.
&
[
Els
al=
al§
=
T ~ Type symbol
P ~ Procedure identifier
v v v v FP ~ Formal parameter
PROCEDURE STATEMENT P (AP, AP, AP) AP ~ Actual parameter
OR FUNCTION DESIGNATOR ‘
Actual parameter
{Call of Procedure) list

FIGURE 2

63
Procedures (cont.) 19.

identifiers, etc. At each execution of the procedure certain
changes associated with the parameters are made and these statements
are then obeyed.

Here is an example of a program which contains a procedure
declaration and a call of that procedure by a procedure statement.
begin real a, b, D;
procedure EXAUPLE (x, y) Result: (R); |
value x, y3
real x, ¥y R; Procedure
begin B Declaration
X i=X + Y3

R := xt2 + y12

L

end

a =13

b := 23

EXAMPLE (a, a+b, D); Call
write (30, format ([d.dddd ndJ), D)

end

The procedure declaration of EXAMPLE uses the three formal parameters
Xy ¥y and R. The procedure statement supplies the actual parameters
a, a+b and D to corresponde In this example the body of the
procedure consists of a compound statement containing two assignment
statements.

19+3 Declaration of Procedures Defining a Function Designator

For a procedure to be used as a function designator, the
procedure body appearing in the declaration must contain one or more
statements which assign a value to the procedure identifier. At
program run time at least one of these assignments must be executed
per call of the procedure. The value held by the procedure identifier
on exit from the procedure body is used as the value of the function
designator in evaluating the expression in which this function
designator occurs. A procedure which is to be used as a function
designator must always have a type symbol (T in Figure 2) appearing
at the commencement of the procedure declaration as already mentioned.
This declares the type of the values taken by the function designator,
whether real, integer or boolean.

The following is a declaration of a procedure for use as a
function designator:

19.

19-4

64

Procedures (cont.) 19.

real procedure TAN(z);
value 2; real =z;

if abs(z)=>1.570796326 then goto Failure
else TAN := sin(z)/cos(z)

In this procedure abs, sin and cos are the identifiers of standard
functions; while Failure is a label in the main program.

The Value Part

The value part of the procedure heading, which immediately
follows the semicolon after the formal parameter part takes the
following form:

value FPy, FPy..ceeeeoFP;

A formal parameter appearing in the formal parameter list may or may
not appear in the list following the basic symbol value. If it does
appear then the formal parameter is said to be called by value
otherwise it is said to be called by name. If no parameters are to
be called by value, then the value part will be empty.

The difference between the call by value and call by name lies
in the different ways the parameters are treated on entry to and
execution of the procedure at the time control reaches the procedure
call. The beginner sometimes finds considerable difficulty in under-
standing these different treatments. To help him it is suggested
that he take some examples and carefully work through them executing
exactly the operations specified in the next two paragraphs. One
example is given in the text following these two paragraphs and the
reader may construct others for himself.

Call by Value

When formal parameters are called by value, the corresponding
actual parameters are evaluated and assigned as initial values to
the formal parameters before entry to the procedure body occurs.
After entry to the procedure body operations are performed upon the
formal parameters as specified by the ALGOL text.

Call by Name

Before entry to the procedure body formal parameters called by
name are replaced in the text of the body by the corresponding actual
parameters. Parentheses are placed around these actual parameters
whenever possible. After entry to the procedure body operations are
performed upon the actual parameters using the revised text. This
may occasion the evaluation of the actual parameters at any time

19- Procedures (cont.) 19.

during the execution of the procedure body.*

That there is a real difference between calling by value and
name can be illustrated by the program at the end of Section 19.2.
In this program the procedure EXAMPLE has two of its formal
parame ters appearing in the value part, thus:

value x, y;

The procedure is called once by the statement EXAMPLE (a, a+b, D)
with the variables a and b currently holding the values 1 and 2
respectively. We work out below the effect of the procedure csll
(a) when the procedure declaration is altered by making the value
part blank, so that all formal parameters are called by name, and
(b) when the value part stands as in the program above, so that
some parameters are called by value.

(a) All formal parameters called by name

Formal parameters called by name are replaced by the
actual parameters in the text. The two statements in the
procedure body therefore become

a := (a) + (a + b);
D:= (a)f2 + (a + b)T2

The procedure body is now executed with the following effect
upon the variables.
a ©® D x y R

Initially 1 02 -1 - - - :
On entering procedure body | 1 2 =| - = =T
After first etatement 4 2 - - - - I
After second statement 4 2 52 - - - !

(b) Formal parameters x and y called by value, R called by name

In this case, the second statement only is modified and
that because R is called by name. We have,

X =X+ Y3
D :=x12 + yT2

#hen a duplicate use of identifiers has been made, such as will be
described in Section 22, confusion between identifiers inserted via
formal parameters called by name and the same identifiers already
occurring within the procedure with other meanings is automatically
avoided by a systematic change of identifiers involved.

19.

19-5

66

Procedures (cont.) 19«

Before entry to the procedure body the actual parameters a and
(a + b) are evaluated and their values assigned to x and y.
The procedure body is now executed with the following effect
upon the variables.

a b D x y R

Initially 1 2 = - - -
On entering procedure body | 1 2 -| 1 3 -
After first statement 12 -1 4 3 -
After second statement 12 25 3 -

From the above example it will be seen that, when called by
name, formal parameters are dummies, i.e., no values are actually
assigned to them. In fact they are truly formal. When called by
value they serve the purpose of working variables local to the
procedure, while the variables used in the corresponding actual
parameters remain unchanged, (unless the procedure body as appearing
in the declaration explicitly assigns to them).

Sometimes the kind of call of a formal parameter, whether by
value or name, has no effect upon the final result of a procedure.
Thus, as the reader may check for himself in the example quoted above,
when we have x called by value and R by name, whether y is called by
value or nsme makes no difference to the final values of the program
variables a, b and D. For the sake of efficiency of tramslation it
is recommended that call by value be specified whenever possible.

Note that R cannot be called by value in the above example
because an assignment of the value of D to R would be involved on'
entering the procedure and at this time D has no value. Note
also that the insertion of parentheses around actual parameters
called by name can be essential. Thus a different result would be
obtained in (a) above, if the a + b were not so enclosed in the
statement assigning to D.

The Specification Part

The specification part of the procedure heading is very like
the declaration list which occurs in the head of a block. It gives
information about the kinds and types of the formal parameters used
in the procedure. In KDF 9 ALGOL all formal parameters must be
included in the specification part with full specification. (This

is not essential in ALGOL 60). The specification part appears in

the form:

Specifier FPy ¢... FP;
Specifier FPy ¢e.. FP;

Specifier FPy +e.. FP;

67

19+ Procedures (cont.) 19.

where a specifier may be any of those listed in the following table
(T stands for a type symbol).

Specifier Corresponding Actual Parameter
T arithmetic or boolean expression
':T, array array identifier
T procedure | procedure identifier
label designational expression
switch switch identifier
string string

Like the value part, the specification part closes with a semicolon.

The use of parameters, specified merely by a type symbol should
be clear; the use of parameters specified by most of the other
symbols in the above list is explained in some detail in Section 23
on the Advanced Use of Procedures; while an explanation of the
general use of strings and the symbol string appears in Appendix 6.

In addition ALGOL only allows an actual parameter to be of a
kind and type which is 'compatible' with those of the corresponding
formal parameter. For example, a formal parameter which occurs as
a left part variable in an assignment statement and is called by
name can only correspond to an actual parameter which is a variable.®
It is recommended as good programming practice that the types of
formal parameters called by name and the corresponding actual
parameters be not merely 'compatible' but the same.

An example of a specification part was provided by the
declaration of the procedure EXAMPLE in Section 19¢3. Thus:

real Xy ¥y R;
The specification part for another procedure might be:
integer i, j;
real X, Y; real array Ki;

integer procedure IT;
procedure P, Qs

19+6 The Procedure Body

The procedure body which follows the procedure heading may be any
ALGOL statement. In practice it is usually also an ALGOL block. of
course, this definition allows the procedure body to include whole
pieces of program containing many statements.

*KDF 9 ALGOL has a further restriction of a similar kind, for which see
Restriction (3) on page 1 in the Introduction.

19-

68
Procedures (cont.) 19.

Means are also available for the programmer to write the)
procedure body in KDF 9 machine code, if he so wishes, and the ALGOL
Users Manual (Section 5) explains how to do this,

It was explained in Section 19¢4 that the procedure identifier
could occur within its own body on the left of an assignment and
that such procedures could be used to define function designators.
It is also possible for the procedure identifier to be used in some
other way within its procedure body, such as in an expression.

If this is so, its occurrence signifies a new call of the procedure.
Though such applications receive some discussion in Section 23+5,
they are to be avoided by the inexperienced ALGOL programmer.

19-7 The ALGOL Procedure Library

The ability to use a procedure on a number of different
occasions makes this ALGOL congtruction extremely useful. There
are some procedures such as those for input and output, which are
of such general application and required so often that it has been
decided to include them in an ALGOL procedure library. This
library saves the programmer having to write out the declarations
of these common procedures each time he needs them. It includes
pieces of ALGOL text as well as single procedures and is stored
on magnetic tape.

Wherever an insertion in a program is required the symbol
library must appear followed by a list of unsigned integers

specifying the particular portions of ALGOL text to be inserted.

see for example the program in Appendix 1, of this manua}, and also
Section 4 of the ALGOL Users Manu=al,

Contributions to the library will be published from time to
time after thorough test.
Problems
(1) Trace the various parts of the procedure declaration for erfc
given in the specimen program of Appendix 1. Ignore the
commentary which will be explained in Section 20.
(2) What is the vdalue of the function designator,
AP(1, 3, 5)

if its procedure declaration is as follows?

69
19- Procedurss (cont.) 19.
real procedurg AP(a, d n); value a, d, nj

real a, d; integer n;
begin integer i; real t;

t 1= O3
for i := 1 step 1 until n do
begin
t := ¢t + a3
a:=a+d
end H
AP := t
end |

(3) Assuming the above procedure declaration but with a and d
omitted from the value list, what would be the final values of
the variables on exit from the last of the following statements?
The variables p, qy Ty and s are real.

P:=-1; q:=2; r:=3
o := iP(qs - (p + qfr) x p, 2);

ecccece

(4) (1) Write a procedure declaration which defines a function
designator Jo(x) based upon the series
%2 o x°
J(x) =1 -5 +t=——m 55—+

° 22 2% 224262

(i) Use this procedure declaration in a program which evaluates
the expression

Jo(z) + Jo {Jo' (xz)}

for x = 0(0.1)1.

T

20- COMMENT CONVENTIONS 20-

If the reader has studied the specimen program of Appendix 1, he
will have noticed the occurrence of commentary. This is a convenient
feature of ALGOL. By its means the programmer is able to record
information which mey help other users of his program or even himself at
some later date when his memory of the program is dimmed.

The rule governing the use of comment is:-
Any sequence of basic symbols is ignored while the program is being
executed and may be used as commentary if it belongs to one of the
following categories.

(i) Sequences following ";" or "begin" which commence with "comment"
and are closed by ";", but do not contain ";".

(ii) Sequences following "end" and not containing "end", ";" or
"elsge".
Example:

begin comment A program to illustrate the use of comments;
integer i ; real x;
comment start program begin for i := 1 gtep 1 until

10 do calculation end;

for i :=1 step 1 until 10 do
begin if i =5
then begin x :=1i x (i + 1);
x 3= xtx
end | the Special Case
else begin x :=1i x(i-1);
x := xt(x + 1)
end if i £ 5 then Normal Case

end

end program

72
20. Comment Conventions (conte)

When all commentary has been eradicated this example appears as
follows:

begin integer i ; real x;
for i := 1 step 1 until 10 do
begin if i =5
then begin x :=41ix (i + 1);

x = xPx

end

else begin x :=1i % (i - 1);
x :=xN(x +1)

end

end

end

73
21- SWITCHES AND DESIGNATIONAL EXPRESSIONS 21

Sometimes a programmer may wish to jump from a point in his program
to one of a number of others depending on the value of some variable or
expression. In common programming parlance he wishes to use a multiple
branch or switch. Although it is possible to do this in ALGOL by means
of conditional statements, they become long-winded for a many-branched
switch. A much simpler facility is provided. The programmer writes
down what is called a switch designator in place of a label in his goto
statement. This looks precisely like a one-dimensional subscripted
variable.

Example: goto EXIT [n]

The declaration of the switch identifier, however, looks very
different from that of an array. It will usually contain a list of
labels, and depending on the value of the subscript of the switch
designator one of these labels is chosen for action in the goto statement.
Before defining the form of a switch declaration precisely let us generalise
the use of labels and switch designators in the goto statement.

A goto statement may take the form:
goto DE
where DE stands for a designational expression.

A designational expression is a rule for finding a label. 1In a
manner analogous to the arithmetic expression it is defined as being
either

a simple designational expression (SDE)
or of the form

if BE then SDE else DE

A simple designational expression is one of the following:

a label,
a switch designator,

or a designational expression enclosed in parentheses.
Further Examples of Goto Statements using Designationdl Expressions:

goto if a<b then FAIL else CONTINUE
goto S[3 + (if x=0 then p else q)]

We may now define the forms allowed for a switch declaration and its
corresponding switch designator. These are shown below.

T4

21+ Switches and Designational Expressions (cont.) 21,

Switch Declaration

Switclh List

switch SW:= IDI:'.', DEy eeeey DEJ

Switch Designator
sw [suB]
where SW stands for a switch identifier.

The following is a possible declaration corresponding to the switch
designator EXIT [nl

switch EXIT := L1, L2, FATL [m]

The evaluation of the switch designator EXIT [n] at run time would
proceed as follows. Depending on whether the value of n is 1, 2 or 3,
the appropriate element of the switch list is selected. Thus the value
of EXIT (1] is the label L1; for EXIT [2] it is the label L2. EXIT[3]
leads to the switch designator FAIL [m] which in turn must be evaluated by
referring to the switch list in the declaration of the switech identifier
FAIL.

In the general case the evaluation of a designational expression at
run time to produce a label proceeds as follows:

(1) The boolean expressions select a simple designational expression.
If this is a label we have the result desired.

(2) If it is a switch designator, the numerical value of its subscript
expression is calculated to the nearest integer in the same way as
an array subscript. The result is used to select a designational
expression from the corresponding switch declaration switch list
counting these 1, 2, 3 etc., from left to right. (If the subscript
expression is not within the number of entries of the list or is
negative, the value of the switch designator is undefined and will
produce a failure in the KDF 9 ALGOL system).

(3) The evaluation processes (1) and (2) are repeated for the new
designational expression thus found using current values of all
variables involved, and so on, until finally a unique label is
reached.

Problem

Follow the action of the program below, noting all labels passed
and the final values of n and m.

21. Switches and Designational Expressions (cont.)

75

begin integer n, m;

switch Branch := 11, L2, L3;
switch S := R, Branch[n - m], R;
n:=3; m:=1;
R: goto if n=0 then Branch [n]
else STOP;
If:m:=n-m+ 13
L2: n :t=n - 13
L3: goto S[m + 1];
STOP:

end

21.

11

22 - BLOCK _STRUCTURE AND ASSOCIATED RESTRICTIONS 22.

Let us remind ourselves at this stage that a block consists essentially
of a sequence of statements preceded by one or more declarations, the whole
being surrounded by begin and end brackets and containing a sprinkling of
semicolons to act as separators. The form of a compound statement differs
from a block in that it contains no declarations.

The beginner was advised in Section 18¢4 to write his program as a
single block with all declarations inserted at the beginning of the program.
We now suggest that the reader make use of the advantages to be gained from
a block structure. (These are mainly advantages in storage economy).

As he reads this section he will appreciate that the block structure often
allows identifiers to have more than one meaning. In his own programs,
however, he is strongly urged to use identifiers uniquely.

The definition of Section 18+3 which allows a compound statement or a
block to be considered as an unconditional statement makes it possible for
the structure of a program to be quite complicated. Here we are interested
in the structure arising from the use of blocks rather than that due to the
occurrence of compound statements, because the declarations at the heads of
the blocks impose certain restrictions on the use of the identifiers
declared. The present section will explain these restrictionms.

On page T8 (overleaf) we provide a program which illustrates how
blocks may appear in sequence with other statements and blocks, or may be
nested, that is, may appear within other blocks. The block structure in
skeletal form is depicted on the right hand half of page 79.

78

22+ Block Structure and Associated Restrictions (cont.) 22¢

begin real a ;

open (20);

L: a := read (20);

a :=a + 1/a;

begin real v, x;

v iz a+ 1

x i= VA2 + vM(-2);

for v := 0 step 0.1 until 1.55 do
begin integer v;

real y;

y = 0;

L:| for v := O step 1 until 10 do
y =y + xtvy
for v := 1 step 1 until 9 do
begin y =y + ytv;

Xi=Xx+y
end
end | ;
v i= x/a
end | ;
if a=0 then goto L;
be‘n real v;

vi=a-~-1;
v = vA2 + vi(-2)
end H)

if a<O then goto L

-

end

19

22. Block Structure and Associated Restrictions (cont.) 22
begin real a; 8 v, Vv, V5 X y L L,
L:
begin xeal v, X;
begin integer v;
real y;
B2 L:
B3
B1 end
end H
begin real v;
B4
end
end
Block Structure Scopes of Identifiers Declared

It will be noticed that the program reproduced above consists of a
block, the block Bi. Blocks B2 and B4 are nested within B1 and block B3
is nested within B2. Blocks B2 and B4 follow the general sequence of the
program within block Bi.

Having determined the block structure of this or any program, we may
relate to the structure the restricted scope of each of the entities
represented by the identifiers appearing in the program. By scope of an
entity we mean that part of the program where its identifier may be
legitimately employed to represent it. For the preseni example the right
side of the diagram shows the scope of the variables a, v, X, and y and the
labels L determined according to certain rules now to follow.

In Section 18+1, it was stated that a declaration must be placed at
the head of the block to which it is intended to apply. On its own, this
rule is insufficient to fix the scope of the entities. Confusion of
scopes is particularly liable to occur if an identifier is used to
represent more than one entity. It is therefore necessary to add the
following general rules:

80
22. Block Structure and Associated Restrictions (cont.) 22.

(1) No identifier may be declared more than once in any one block head,

nor may an identifier be both declared and occur as a label* or occur

as a label twice in the same block.

(2) The entity represented by an identifier declared in a block head does

not exist outside that blocke.

(3) The entity represented by an identifier declared in the head of a

block is inaccessible in an inner block, if the identifier has there

been re-declared or occurs as a label.*

(4) A label is not accessible from outside the block in which it ocours.

This means that though it is possible to jump out of a block by means

of a goto statement, it is not possible to jump into a block. All
entries to a block must be through the begin.

(5) A label occurring in a given block is not accessible from an inner
block, if the correspoding identifier occurs as a label in the
inner block or has been declared in its head.

Before going on to discuss the application of these rules to the
example given albove, we illustrate each rule by noting incorrectly and
correctly written programs.

INCORRECT PROGRAMS CORRECT PROGRAMS
RULE (1
begin real x; begin real x;

iriteggr b & eessese

seccoee begin intesgr X3
end cocee

end

end

*By occurrence as a label, we mean the occurrence of the identifier as a
label on the left hand side of a statement and separated from it by a
colon.

81

22. Block Structure and Associated Restrictions (cont.) 22.
INCORRECT PROGRAMS CORRECT PROGRAMS
begin real L; begin real L;
L: veses begin real a;
goto L; L: ecoe}
end goto L;
end
end
begin real x; : begin real x;
Ls ceve L: veoe
PR begin real y;
L: coee L PR
goto L goto L
end end
end

(goto refers to second label L)

RULE (2
begin real x; begin real x;

begin real y; begin real ¥y;

Y = eee Y t= oo}
end 3 write (10, format
write (10, format ([aa)),y)
([aad)s ¥) end ‘

end | end

82

22+ Block Structure and Associated Restrictions (cont.) 22
’INCOR’RECT PROGRAMS CORRECT PROGRANMS

RULE (3)

begin real X; begin real X;
begin integer i, J; begin integer i, j;
X: veee} L: eeee?
X :=1X j; X :=1iXJs
goto X goto L
end end
end end

begin real X, Y;

begin integer i, J;
¢ eooe}
Y := 1 X Js
goto X
end H
X:=Y
end ‘
RULE]“
begin real a, b; begin real a, bj
begin array M[2 : 50]; begin array M[2 : 50];
Ls 'oo/c; L: coee}
end H goto L
goto L end
end end

83

22+ Block Structure and Associated Restrictions (cont.) 22.
INCORRECT PROGRAMS CORRECT PROGRALS

RULE (5)

begin real x; begin real x;
L: cese Ls ceoe
begin boolean L; begin real y;
coee L: cece
goto L goto L;
end H ceee
cooe end H
end | goto L
end |

(Note that the first goto refers to
the second label L and the second
goto refers to the first label L).

Returning to our example and applying to it the rules described above
we obtain the scopes of a, vy xy y and L depicted in the diagram of block
structure and scopes of declared variables to be found earlier in this
section. Thus the variable a is declared for the outer block Bi and not
declared again elsewhere (or used as a label). Rules (2) and (3) there-
fore allow it to be used in any statement of the program. The variable
x is declared by block B2 and is not declared again. Rules (2) and (3)
allow it to be used throughout B2 but not outside. The variable y is
declared for block B3 and is not declared again. The Rules (2) and (3)
allow it to be used throughout B3 but not outside.

The situation with regard to the variable v is a little more complex.
It is declared afresh in the head of each of the blocks B2, B3 and B4.
On each occasion this is equivalent to declaring a new variable which is
entirely independent of the others. The entity represented by v in the
declaration integer v, we call v,. This applies throughout tlock B3, but
vo is not accessible outside B3.” The entity represented by v in the third
declaration of v, we call v3. This applies throughout block B4 but is not
accessible outside. The entity represented by v in the first declaration
of v we call v4« It may not be used outside B2, and even within B2 it may
only be used when the declaration of integer v in B3 does not apply, that
is, outside block B3.

The first label L is accessible throughout the parts of the block Bi
which are outside B3, while the second label L is only accessible within B3.

22-

oy

Block Structure and Associated Restrictions (cont.) 22.

Problem

™)

(2)

22-1

In the following program find the scopes of all the identifiers.
Pollow the action of the program and find the values of those variables
which are defined at the label STOP.
begin real W, S, B, C;
W= 8;
S =3
B:=2X%XVW-3S;
C:=3B -W;
begin real P, W;
W:=B-2XC;
P := Ch2 - B;
AA: W:=P~-2XW;
C:=C+ 13
if W=1 then goto AA;
S:=W-P+8S
end | .
W:=W-C + S; \

STOP:
end

In the above program find the number of unlabelled basic statements,
basic statements, unconditional statements, statements, block heads,
compound statements and blocks.

The Relation between Procedures and the Block Structure

As far as restrictions on identifiers are concerned, the body
of a procedure is treated as if it were a block, whether this be so
or not. Specifications are treated as declarations; so that formal
parameters, in particular those called by value and therefore used
as working variables, are no longer accessible after exit from the
procedure body.

Of all the entities declared outside a procedure, its body may
only operate upon those which are current at the time of the procedure
call. This applies, whether they are inserted via the actual
parameter list or already occur inherently within the procedure body
as non-local quantities. KDF 9 ALGOL makes a further stipulation
upon the latter class. All non-local quantities occurring in the
procedure body as declared must be accessible at the time of the
procedure declaration when they must have the same meaning as at the
time of the call.

22

85

Block Structure and Associated Restrictions (cont.) 22.

As noted in a footnote of Section 19¢4 any conflict which arises
between identifiers introduced to the body of a procedure via parameters
called by name and identifiers already present within the procedure
body is resolved by suitable systematic changes of the formal or local
identifiers involved.

22.2 Restrictions Imposed upon Array Bounds by the Block Structure

22.3

2244

The block structure also imposes restrictions upon array bound
expressions occurring in an array declaration in some block head.
They may only depend on variables and procedures which are non-local
to the block for which the array declaration is valid. That is to
say all variables and procedures which occur in these expressions
must have been declared outside in some enclosing block. Standard
functions and constants can of course always be used in these expressions,
for these are considered to be declared in a block enclosing the whole
program.

The effect of the above restriction is to prevent the use of any
other than constant bounds in the outermost block of a program. It
also restricts the data input of arrays with variable bounds, because
the bounds cannot be read with the arrays themselves when more than
one array is declared in a single block head.

The restriction on reading the bounds of an array of data with
the array itself reduces the convenience of using ALGOL arrays to
represent matrices. However, a matrix scheme avoiding this difficulty
and yet remaining within ALGOL will be found described in the
'English Electric' Manual, 'KDF 9 Matrix Scheme'.

The Influence of Block Structure on Switch Designators

Under the rules mentioned in Section 22 it is possible for
identifiers occurring in designational expressions belonging to a
switch declaration to have been re-declared with new meanings by the
time the corresponding switch designator occurs. If this is so the
conflict between the identifiers occurring in the designational
expression and those whose declarations are valid at the place of the
switch designator is resolved by suitable systematic change of the
latter identifiers.

Use_of the Block Structure

In order to avoid the complex restrictions on identifiers
imposed by a block structure, it was suggested in Section 18+4 that
the beginner should write his program as a single block with all
declarations inserted at the beginning of the program. Of the
rules in Section 22 above only Rule (1) is then necessary. Since
by Rule (1) no identifier may represent more than one entity in any
single block, the programmer of a single block must ensure that all
quantities are represented by their own unique identifier.

22¢

86

Block Structure and Associated Restrictions (cont.) 22.

It is, of course, possible to ensure the uniqueness in meaning
by suitable choice of all identifiers and at the same time keep the
block structure in accord with the recommendation at the beginning
of Section 22. This simplifies the rules considerably but not as
radically as in the previous paragraph. Only Rules (1), (2) and
(4) are now necessary.

Although it would appear simpler and therefore better to write
one's program as a single block without an inner block structure,
such a block structure can be useful. Its main value lies in
helping to economise on data storage requirements.

This is essential when a program is likely to over-reach the
capacity of the computer, perhaps because the program is so large
that 1little room is left for data and working space, or because it
uses a number of large arrays. The block structure is also useful
when it is necessary to construct parts of a large program independently
of each other, as for example when more than one programmer is working
on the same project. Division by block structure would avoid the
confusion due to overlapping use of identifiers representing different
quantities. Procedures, of course, can be used in this way and are
of particular value when a block of program has wide application.

In the next section we return to the subject of procedures and
extend their application further than the incomplete treatment of
Section 19.

23

2341

2342

87
ADVANCED USE OF PROCEDURES 23

Jensen's Device

A very powerful use of ALGOL procedures involves what is called
Jensen's Device.* This employs the ability to make actual
parameters of a procedure depend upon one another. Suppose for
example we declare the procedure Sum series as follows:
procedure Sum series (r) Term: (t) Order: (n) Result: (y);

value n ; intege_v T Ty n; real t, y;
begin 1real s ; s := O;
for r := 1 gtep 1 until n do

s := s + t;

end

If this procedure were used in a statement of the form:

Sum series (i, T, m, R)

then its effect would be rather meagre resulting simply in assigning
the value m < T to R.

However, if the parameter corresponding to t is made to depend
on that corresponding to r, then n different terms in a series may be
summed. Thus, using subscripted variables (though plenty of examples
could arise in which subscripted variables are not used), the procedure
statement

Sum series (i, A[i-1] x y?(i-1), 12, R)
would evaluate the series,

u 12 i1
ALO] + AlMdy+eer... +A[M1]y" " = 3 ali-1] y*~
: i=t

and assign the result to R. The coefficients of the series are
stored as the elements of the array A.

Other examples using the above procedure are mentioned in the
problems appearing after Section 23+6.

Array Identifiers as Parameters

A rather different use of arrays from that mentioned in the
previous section arises when formal parameters of procedure declaration
are specified as arrays. In this case the actual parameter cannot be
a subscripted variable but both formal and actual parameters appear
simply as array identifiers.

*The device, which is used in the example 'Innerproduct' in the ALGOL
Report, is due to J. Jensen of Regnecentralen, Copenhagen.

23.

88
Advanced Use of Procedures (cont.) 23

The actual arrays upon which operations are performed already
have their bounds declared in the program outside the procedure. It
is therefore unnecessary to specify bounds on the formal array
appearing in the procedure declaration. The array specification in
the procedure specification part merely appears as:

2N
‘T array Ay Ay ee.. A

The symbol, array, is here used as a specifier as allowed by Section 19+5.
Note that in KDF 9 ALGCL formal and actual arrays must exactly correspond
in type.

A good example of the use of an array in a parameter list is
found in the procedure Transpose of the ALGOL 60 Report, para 5.4.2.
The first parameter conveys the name of a two dimensional square
array, while the second parameter conveys its size.

procedure Transpose (a) Order: (n); value n;
array a; integer n;
begin real w; integer i, kj;
for i :=1 step 1 until n do
for k :=1 + i step 1 until n do
begin w :=a[i, kJ;
a[irk]:= a[k,i];
a[kyi]:=

end

end | Transpose

Note that the parameter a appears in the specification part as array
and in the body of the procedure is used with subscripts attached.

The reader might wonder at the need for parameters which are
arrays. Why not use subscripted variables and insert extra parameters
for use in varying the subscripts? This can be done, but may not be
convenient as the reader will discover from revising the procedure
Transpose above.

23<3 Procedure Identifiers as Parameters

The use of procedure identifiers in a procedure parameter list
is another important facility. The specification in. the specification
part appears as:

.

T} procedure Py Py.... P;

.

oo

The following declaration of the procedure CONVOLUTE makes use
of three procedure identifiers Int, g and h in its parameter list.
Note the way these are specified and later used, g and h in function
designators and Int in a procedure statement.

89

23« Advanced Use of Procedures (cont.) 23

real procedure CONVOLUTE (Int, g, h, a, b);
value a, b;

procedure Int; comment The integration process required is
supplied through the parameter Int;

real procedure g, h; comment The parameters g and h supply
the functions appearing in the
integrand;

real a, b; comment The parameters a and b supply the lower
and upper limits of integration;

begin real u, R;
Int (g{u) h(u),u,a,b)Result:(R);
CONVOLUTE :=R

end
The procedure CONVCLUTE is intended to evaluate the integral

b
a g(u) h(u) du

The names of various real procedures may be inserted for various
functions g(u) and h(u), while various integration processes may be
incorporated via the procedure identifier Int. The variable u
declared in the procedure body is equivalent to the variable of
integration.

23+4 Switch Identifiers and Designational Expressions as Parameters

Of the list of specifiers allowed to appear in the specification
part of a procedure declaration by Section 19¢5, there remain
undiscussed the symbols label and switch. For both these the
specifying symbol is followed by one or more formal parameters to
which the symbols apply in a manner analogous to the specifications
described in the previous two sections.

label is the specifier used when the formal parameter corresponds
to actual parameters which are designational expressions, each actual
having a label as its value. It is by this means that the programmer
may best jump out of a procedure which is to be used in several con-
texts, say for a failure. The use of non-local labels would often
be inconvenient.
Example:
procedure Complex Divide (a, b, ¢, d, e, f, Failure);
value a, b, c, d;
real a, b, ¢, dy e, f; label Failures
begin real g;
g = cf2 + dt2;
if g = O then goto Failure
e:=(axc+bxad)e;
Fi=(bxc=-axd)/g
end

23.

23+5

90

Advanced Use of Procedures (cont.) 23

The specifying symbol switch is used when the formal and actual
parameters are switch identifiers. 1In this case a complete switch
is transferred via the parameter list. The facility, which is
illustrated by the following procedure will not be found of frequent
application. Use is made of an own variable, for explanation of
which see Appendix 4.

procedure GOTO (S, bool);

switch S; boolean bool;

begin own integer ij;
i = if bool then i + 1 else 1;
goto S[i]

end

The above procedure will cause a jump to a label of the actual

switch supplied in place of S. If bool be false then the first label

is used. If bool be true, the position of the label to be used is
stepped on by one.

Recursive Use of Procedures

When an ALGOL program is being executed and control reaches the
procedure identifier of a procedure statement or function designator,
the identifier initiates a call of the procedure according to rules
already explained in Section 19. It may happen that, in the process
of executing the procedure, control reaches the same procedure
identifier again in a position where it expects to give rise to a
new call of the procedure. This is allowable and in the jargon is
called a recursion.

We have already met a simple type of recursion without having
called it such. The solution of Problem 4 (ii), Section 19 makes use
of the procedure identifier Jo recursively in the function designator
Jo(Jo(x?2)). Here the second call of the procedure Jo arises from
the arithmetic expression inserted as the actual parameter for the
first calle The procedure Jo itself is not recursive, but the use
made of it is.

In this example as in all cases of recursion the new call of the
procedure sets up a new layer of storage for parameters and locally
declared quantities,* so as not to interfere with those already
current for the first call. Further levels of recursion may be
entered at appropriate calls of the procedure, thus we might use the
following function designator, Jo(x + Jo(Jo(xf2))-1), which recurses
twice.

*However, new storage is not required of course for parameters called by
name, or for own variables and arrays which as far as their storage is
concerned are treated as non-local to the procedure (See Appendix 4).

91

23+ Advanced Use of Procedures (cont.) 23

The above recursive use of a simple procedure by making a new
call of the procedure in the actual parameter list is the simplest
form of recursion. Another type of recursion arises when the new
call of the procedure lies within its own body. The following is
an example of a recursive procedure to calculate the binomial
coefficient =

integer procedure BC (n,r); value n,r; integer n,r;
BC 3= if T = O then 1 else (n-r+1)/r x BC(n,r-1)

In this procedure the body contains two occurrences of the procedure
identifier, the occurrence on the left of the assignment is not a
call of the procedure and does not produce a recursion. The second
occurrence does occasion recursions.

It should be pointed out that though the use of this second type
of recursion may often produce an elegant ALGOL program, more often
than not a less efficient use is made of KDF 9 by this means than by
straight-forward ALGOL programming.

23.6 Use of Non-local Variasbles in Procedure Bodies

The mamual has already stated in Section 22+1 that procedures
may use non-local variables within their bodies (as long as for KDF 9
ALGOL these are accessible and have the same meaning both at declaration
time and at the procedure call). Use of such non-local quantities can
occasion unexpected consequences particularly if assignments are made
to them within the procedure body.

One might have an apparently harmless function designator, Sheep
(20), which however has the following declaration:
integer procedure Sheep (s); value 8; real s;
begin Sheep := s8;
Wolf := 2 X Wolf end

A call of this procedure will not reveal openly the effect upoa the
non-local variable Wolf, and because of this hidden 'side effect' the
two expressions:

Sheep (20) x Wolf
and Wolf x Sheep (20)

will lead to two different results.

We assume here that the operands occurring within an expression
are always evaluated from left to right (in addition to operations
which are usually performed in this order, see Section 6). This is
the case with KDF 9 ALGOL. There is, however, no express ruling on
this matter in the ALGOL 60 Report, so that other compilers may adopt
a different order of evaluation and therefore produce a different
result when'side effects' are involved.

23

92
Advanced Use of Procedures (cont.) 23.

Other procedures than those used as function designators can
produce 'side effects' but function designators are the more
insidious in practice as they are capable of being used in the very
varied positions allowed for expressions. Thus the mere evaluation
of an array subscript or the obedience of a goto statement using a
designational expression may produce an effect on other quantities.

There is, however, very little excuse for the average ALGOL
programmer obscuring his program by the use of procedures having such
hidden effects, since he can always bring their effects into the open
by incorporating non-local variables in the procedure parameter lists,
calling these variables by name.

Problems

(1) Use the procedure Sum series of Section 23+1 to sum to n terms
(i) an arithmetic progression, first term a, common
difference d,

(ii) a geometric progression, first term a, common ratio r.

(2) Use the procedure Sum series to produce the effect of the
procedure statements:

(i) Spur (A) Order: (7) Results to : (V)
(ii) Innerproduct (A[t,P,u], B[P],10,P,Y).

Procedure declarations of Spur and Innerproduct appear in the
ALGOL 60 Report, para 5.4.2

(3) Construct a type procedure to evaluate the area under a curve
using Simpson's Rule, expecting an array of the co-ordinates at
equal intervals of the independent variable to be provided as
one of the parameters.

b-a
[I = s (Yo + 4y1 + 2y2 + 4y3 + 2y4 +.....+2yn -2t 4yn -1 +yn)

independent variable passing from a to b, co-ordinates ¥y and n
evene. .

(4) Write a recursive procedure to discover the highest common factor
of two integers p and q.

93
24. CHECKING AN ALGOL PROGRAM BEFORE TEST 24.

Although the simplicity and efficiency of ALGOL programming is such
that one may expect a fairly low error density when compared with other
forms of programming, there is still a strong possibility of errors
occurring, particularly in large prograns. To prevent wastage of machine
time in re-translation, it is most important that an ALGOL program should
be checked by hand before translation is started. The following are
points to notice particularly.

(i) Check that the underlining of basic symbols has not been
forgotten.

(ii) Check that semicolons have not been forgotten. Look particularly
at the ends of lines, between declarations and specifications,
at the ends of declaration and specification lists, and following
comments introduced by the basic symbol comment.

(iii) Check that each begin has a corresponding end and that each if
has a corresponding then.

(iv) Check for the omission of compound statement brackets begin and
end, such as those which should appear round for statement bodies
and the branches of conditional statements, when they contain
more than one independent statement.

(v) Check that an if never follows a then, or an arithmetic, logical,
or relaticnal operator.

(vi) Check that except within strings the exponent base 0 18 only
used within numbers and is always followed by a signed or
unsigned integer number (not a variable).

(vii) Check that two arithmetic or two logical operators do not appear
in juxtaposition.

(viii) Check that each opening bracket in an arithmetic expression has
a corresponding closing bracket and vice versa.

(ix) Check that the multiplication sign X has not been omitted.

(x) Check that integer division ¢ is only used to operate upon
integer operands.

(xi) Check that declarations of simple variables have not been omitted.
(xii) Check that specifications of formal parameters have not been

omitted, and also that upper and lower bound information has not
been provided for array specifications.

(xiii) Check that each variable has not been used before a value has
been assigned to it.

(xiv) Check that after exhaustion of the for list of any for statement
the controlled variable is not used again until an assignment is
first made to it. (The controlled variable keeps its current
value if exit from the for statement is by a goto statement before

exhaustion).

o
24+ Checking an Algol Program Before Test (cont.) 24.

(xv) Check that no division by zero, square root of negative quantity,
logarithm of zero or negative quantity, or disallowed use of the
exponentiation operation, etc., can occur-

(xvi) Check that the absolute value has been taken when testing
magm".tudes of quantities.

(xvii) Check the program thoroughly by following it through step by step
using test data to enable one to check all parts of the program.
Check also for special values of parameters, such as zero.

Since it is still possible that an ALGOL program may contain errors,
even after the above checks have been made, automatic checking facilities
are incorporated in the translator. Nearly every disobedience of the
rules of KDF 9 ALGOL is discovered by the translation process and notice
of it printed out, pin-pointing the position of the error in the program
so far as this is possible. In the remaining few cases however, such as
incompatibility of formal and actual parameters, the error is not discovered
until the program is run. Again notice will be given. There are also
other checks automatically made at run-time, such as those needed to ensure
that the storage capacity of the machine is not exceeded or that numbers do
‘not become too large during calculation. .

It is, of course, not possible to check automatically for a wrong
program. The. translator will accept for translation any program which
obeys the rules and the KDF 9 ALGOL system will run it. The programmer
himself must compare the results produced with those he desires, before he
may be sure of having the right program.

In order to help the programmer discover where a program has been
written wrongly, he is able to output partial results and other inforwation
by means of program-testing procedures. The identifier of each such
procedure must commence with a particular group of letters and is written
and declared by the programmer himself. When the program is compiled in

~ the testing mode, procedure statements and declarations using these
identifiers are included; while in the non-testing mode they are excluded
For further details see KDF 9 Library Service Note - ALGOL.Note 1.

Problem
List the errors in the following program:

begin- comment Program to evaluate x
real term, s, pi;
n = O3
for n :=n + 1 while abs(term)=,-10 do
term := 1/(2n - 1)14;
s :=.8 + term;
pi := sqrt (sqrt(96s)
write (10, format([d.dddsdddsddd]), pi)

end
(Problem continued overleaf).

95

24+ Checking an Algol Progrem Before Test (cont.) 24.

The intention is to evaluate = from the series

14/96=iz+i4-+—4-~ ceces
1 3 5
continuing until terms are less than 10-10. The program as given acove

contains thirteen errors.

97

A1 APPENDIX 1 At

A SPECIMEN ALGOL PROGRAM

The specimen program supplied here should help to give readers some
idea of the appearance of a program for a practically occurring problem
in engineering. The program which is in strict KDF 9 ALGOL illustrates
many of the programming tools available to the ALGOL user.

The problem and numerical method of solution is as follows:

Tabulate the functions A(xX), \ x (2«)% and g(x) for o = 0 (A) 1.0,
where \(x) is given by

w1) = (5 N7 ok exed)/
and g(x) is given by
go) = 2% = (1 -), A= A/
cx(1 - QX JONE) A<t/

The function erfc Ais sometimes called the complementary error function
and is given by the integral

2 [P 5P
=X
erfol = NE f 2 © dx
An initial value of A is obtained from the approximation

A= (1 - /w2

This value of A is improved using the following formulae in an iterative

manner:
1 =J{ﬁ§ ﬂ?-?ﬁ)_ (X erfch elz)}

and new)l = 1 + 0.835x(1 - 1)

When « is zero, A becomes infinite and the above formulae cannot be
used in numerical calculation. In this instance the limiting values are
output directly.

It is not claimed that the numerical method used for solving the above
problem is particularly efficient. In fact the method used to evaluate
erfcA, being based upon the trapezoidal rule, is rather slow (except when
A is near zero). For present purposes this does not matter as we wish to
illustrate a form of programming rather than produce a fast program. The
problem is taken from a paper by J. W. Miles (The Propagation of an Impulse
into a Viscous-locking medium, A.S.M.E. Trans. Series E. Jour. Appl. Mechs.
March 1961, 21 - 24).

98

A+1 Appendix 1 - A Specimen ALGOL Progran (cont.) A1
begin comment This is a program for a practically arising problem. It

illustrates the use of many of the facilities available to the
ALGOL user;

real alpha, lambda, Delta alpha; irnteger i, f1, f2, f3, f4, £5;
real procedure erfc (z); value z; real z;

begin comment This procedure evaluates the complementary
error function of z using the trapezoidal rule. It
halves the interval until the required accuracy is
attained, but avoids repeating the evaluation of
ordinates more than oncej

real x, h, JO, J1; integer n, i;

h :=0.13 JO := O; n = 03 i = 1;

Rl J1 :=JO;

for n := n, n + i while
nxhx(nxh+2Xxz}<11.51 do
begin x :=2z + n X h;

JO := JO + exp(-x%2)
X (if n = O then 0.5 else 1)

end 3

if abs(1 - 2 X J1/J0)=>0.00001 then
begin i :=2; n :=1; h 1= h/2;

goto R
end H
erfc := 1.,128379 X JO X h

end erfcs

library A6; comment The word library under lined and followed by a
list of numbers separated by commas and ending with semi-
colon is an instruction to the KDF 9 ALGOL operating
system to insert at this point the specified passages of
ALGOL text from the library. In thie case library A6
is required .- this contains the declarations of the
1input and output procedures named open, close, read,
write, formet, and write text,

open (20);
Delta alpha := read (20); close (20);
comment Delta alpha is the only input data item required by the

_ program;

open (10);

write text (10, [Propagation*of*an*Impulse*into¥a*Viscous-locking*
Medium [4c4s] Delta*alpha¥=*]);

write (10, format ([d.ddddccc]), Delta alpha);

99

A+l Appendix 1 - A Specimen ALGOL Program (cont.) Aed

;s

write text (10, [[4s] alpha [15s] lambda[7s] lambda
x 8qrt (2X alpha) (98] g [2c 48] 0.0000[13s]

INFINITY [138] 1.00000 [12s] 1.00000[¢]J);

f1 := format ([ssssd.dddd]);
£2 := format ([12sd.dddd gnd]);
£3 := format ([12sd.dddad]);
£4 := format ([12sd.dddddec]);
£5 3= format ([12sd.dddddc]);

is=13

for alpha := Delta alpha step Delta alpha until 1.0 do

bosts

Repeat:

SKIP:

end
close (10)
program

real 11, 12;
i:=1i+ 13
lambda := (1 - alpha)/sqrt (2 x alpha);
if alpha = 1 then goto SKIP;
11 := lambda;
12 := sqrt (0.886227 X (1-alpha)/alpha x 11
xerfe (11) x exp(+1112));
lambda := 12 + 0.835 X alpha x (12-11);
if abs (1-12/lambda)>,,-5 then goto Repeat;
write (10, 1, alpha);
write (10, £2, lambda);
write (10, £3, lambda x sqrt (2 X alpha));
write (10, if i -1 25 x5 = O then f4 else 15,
if lambdaz.70710678
then 2 % lambdaf2 x alpha x (1-alpha)
else if lambda # O
then alpha x (1 - alpha) x exp (lambda?2)/
(lambda x 2.3282180)
slse 0.483%4)

100

A1 Appendix 1 - A Specimen ALGOL Program (cont.) A1

Layout of Results

Below we show the layout of results expected from the above program
for the input data tape containing O.1—». The results are first punched
out on paper tape and subsequently tabulated.

Propagation of an Impulse intg a Viscous-locking Medium

Delta alpha = 0.1000

alpha lambda lambdaxsqrt(2>xalpha) g

0.0000 INFINITY 1.00000 1.00000
0.1000 2.0201,, +0 0.90340 0.73452
0.2000 1.2812,, +0 0.81029 0.52525
0.3000 9.2712,, -1 0.71814 0.36101
0.4000 6.9943, -1 0.62559 0.24038
0.5000 543160, -1 0.53160 0.26796
0.6000 3.9727, -1 0.43519 0.30384
0.7000 2.8340,0 =1 0.33532 0.34489
0.8000 1.8242, -1 0.23075 0.38947
0.9000 8.9284,, -2 0.11979 0.43642

1.0000 0.0000 . 0.00000 0.48394

101

A.2 APPENDIX 2 A-2
SIMPLE BOOLEAN EXPRESSION - GENERAL FORM

Amongst the logical operators which may be used in a boolean expression
we have not (—), and (A), or (V) imp () and egv (=).* Denoting these

logical operators by LO, a logical value by LV, a boolean type variable by
BV-and a relation by R, we may write a simple boolean expression in the form:

v v v
BY L0 BV IO LO BV
R R R

For example we might have the following simple boolean expressiaon:

B1 and true or x<y

and tLrue or | ,

BV LO LV LO R

The various components of the expression are marked.
The function of the logical operators is as follows:

not will chenge the value of the boolean quantity which follows it.
and will take the pessimistic view that the result of the operation on

the two boolean quantities on either side of it is true if both have
the value true, otherwise the result is false.

or will take the optimistic view that the whole has the value true if
at least one of the two boolean quantities on either side has the
value true otherwise the result is false.

imp short for implies, will produce the result true if the boolean quantity
to the right of the symbol is at least as true as the boolean quantity
to the left.

eqv short for equivalent, will produce the result true if the boolean
quantities on either side have the same value.

Evaluation of a simple boolean expression proceeds from left to right
except that the following order of precedence must be observed:

1st arithmetic expressions in accord with Section 6 and 8
2nd relational operators

3rd not
4th and
5th or

6th imp
7th eaqv

*The KDF 9 ALGOL (flexowriter) symbols are given here with the ALGOL 60
equivalents in parentheses.

102

A2 Anpendix 2 - Simple Boolean Expression - General Form (cont.) Ae?

Brackets may also be used within boolean expressions to alter the natural
order of evaluations.

Examples:
(1) Ifx =0,y = =2, 2 =5, find the value of the boolean expression
not (x<2 and z>6 or 2 +y = 0)

The following steps are necessary. The first operator, not, is
followed by a bracket which must be evaluated first. We have 'theny

not (true and z>6 or 2 + y = 0)

not (true and false or 2 +y = 0)

not (false or 2 + y = 0)

not (false or 0 = 0)

not (false or trve)

not (true)

not true

false

Note: to be certain that 2 + y comes to exactly zero, y must be
an integer type veriable.

(2) For the same values of x, y and z, evaluata
not x<2 or z>6 and y £ 3
Again, we follow each step through.

Dot true or z=6 and y £ 3
false or z>6 and y £ 3
false or false and y # 3
false or false and true

false or false

false

Problems

(1) Ifa=1,b=1.5,c¢c = ~0.3, d = 2 find the values of the following
simple boolean expressions. a and d are integer type and b and ¢
real.

{i) b<a
(ii) a + bz={(1 + ct2 x d)
(iii) b>c and d<2
(iv) c?d £ a or b?2 -~ a = d or not bz»1.499

103

A-2 Appendix 2 - Simple Boolean Expression - General Form (cont.) Ae2

(2) If ay b, c and d are variables of type integer, which of the following

(3)

(4)

are valid simple boolean expressions?

(i) a =244 and 5 = 4 or not true
(ii) a=2M not c - 1 and 2<a
(iii) b<(a and a<d) and (d<ec) or c<bd
(iv) not 4 + ¢ + b=b or true or ¢ = 2
If B1, B2, B3 are boolean variables such that B1 and B3 have the value

true and B2 has the value false, find the value of the following
boolean expression:

not (B1 and B2 or B3 and true) or not B3 or (B1 and false)

Show that whatever the values of the boolean quantities b1 and b2,
the value of the expression

(b1 imp v2) egv (not b1 or v2)

is always true.

105

A3 APPENDIX 3 A3

ACTION OF FOR LIST ELEINENTS

The action of a for statement of the form
for V := A step B until C do S,

where A, B and C are arithmetic expressions, V is a variable and S a
statement, may be described in terms of the following ALGOL statements.

V1 2= V := A;

V2 := B;

L: if sign (V2) x (V4 - (C))=0

then goto Element exhausted;

S;

V2 := B;

Vi :=V 3=V + V2;

goto L

V1 and V2 are auxiliary simple variables, V1 of same type as V and
V2 of type real. V2 is used so that the above statements may evaluate
the expression B only once per cycle. The statements are also arranged
so that A, B and C are evaluated in the correct order. This is of
importance if the expressions are such as to introduce side effects.
The use of V1 helps to reduce the occurrence of side effects introduced
via the subscripts of V, if it is a subscripted variable.

The statement,
goto Element exhausted
leads on to the next element in the for list which recommences assignment
to the controlled variable according to this new element. If there is

no new element in the for list, as in the for statement written above,
control passes to the next statement in the program.

The action of the while element occurring in a statement of the form
for V := E vhile F do S,

vhere E is an arithmetic expression, F a boolean expression and V and S
as above, may be described in terms of the following ALGOL statements.
L:V:=E;
if not (F) then goto Element exhausted;

Ss.
goto L

107

A-4 APPENDIX 4 A4

OWN VARIABLES AND ARRAYS

The symbol own is available to designate variables and arrays as own.
Own quantities like others may be used in.the block and only in the block
where they are declared. They differ from others in keeping their values
unchanged on exit from a block, so that on re-entry to the same block
access is available to the old values.

A simple variable or an array is designated own by preceding the type
symbol by the declarator own in the type declaration, or array declaration.
The type symbol may not be omitted for own array declarations. 1In
parameter specifications, however, the symbol own may not be used.

Examples of declarations using own:

own integer x, y
own real array PIG [1:30, 1:40]]

The following declaration would not be allowed;

own array A[1:10]

There is a restriction on own arrays in KDF 9 ALGOL. The bound pairs
in their array declarations must be constant. In the jargon of ALGOL
experts, 'dynamic own arrays' are not allowed.

The effect of recursion on an own quantity is the same as the effect
of a normal re-entry to the block in which it is declared. One and the
same quantity becomes available; no new quantity is defined on a fresh
level.

109-112

PROCEDURE BODIES IN KDF 9 CODE

See ALGOL Users Manual for full details,

113

A6 APPENDIX 6 A-6
STRINGS

The form of a string may be defined as follows: A string is any
sequence of basic symbols such that each string quote [or J contained
therein has a corresponding string quote of the opposite kind; the
closing quote] corresponding to an opening quote [must follow it later
in the sequence; and the whole sequence must be enclosed i» quotes [
and J.%

Strings are purely of use as parameters for procedures with bodies
in code, such as the procedure called format used in Section 17 for output
of results.

Within the machine strings are stored as sequences of basic symbols
in an 8-bit internal code which is given in the last column of Appendix 8.

#In the ALGOL 60 Reference Language these symbols are ‘and’.

115

AT APPERDIX 7 AT

SOLUTIONS TO PROBLEMS

Section 4
Problem (1)
+729300000 1000 -. 000001
9812 -.000001 834 -4800
Problem (2)
1 7:03 -134,,-5
103

Problen (3)

-.0 08 -88,e=T
+ 13.47,418 13.411-732
Section 5
Problem
begin Start value a29v3
ppP3 number epsilon
Section 6
Problem (1)
(i) -20.7, real (ii) +5, integer

Problem (2)
(1), (iii), (div), (vii), (viii).
Problem (3)

(1) 4 (di) 5 (di4i) 16 (iv) 7 (v) 4096 (vi) O
“(vii) 0 (viii) 4

Problem (4)

(i) s+ (s - t)/v12 (41) (U-wW)x (1 -a3/x/(a - k)
(iii) a%n + m) (iv)’ at(vtn)

(v) at(b + stn) (vi) aqtvie
(vii) pra / (s + ¢) (viii) (a - b/c/(a - ef(f + q)))/

(n#i%(§ - k) + a¥n/(n + p)))

116

A*7 Appendix 7 - Solutions to Problems (cont.) AT
Section 7
Problem

(1) true (11) true (i11) true (iv) false

Section 8-4

Problem (1)
Af A>pi/2 then 2 x t/(1 + t12)
else (1 - ¢12)/(1 + t12)
Problem (2)

if x<O then x - 1 else if x>1 then x + 1
else xf2 - 3 Xx + 4

Various other answers are allowed, but any containing an if following
a then are incorrect. Any containing O<x«1 as a boolean expression
are’ also wrong. If required, it should be written O<x and x«1.

Section 9
Problem
exp(2 x abs(cos(3 x a)))
sqrt(1n(arotan(sqrt(at2 + v42))))
(a x cos(x) + b x sin(x) - 1)/
(a x cos(x)?2 + b x sin(x)42 + 1)

Section 11

Problem (1)

Final values a = 25.87, b = 7, p = 25.87, q = 27.27.
Problem (2)

M =23, ra=2, rb =10, n =2, 1 =4, j =2,

Problem (3)
ra = 4, b = 12.5, ia = 5, ba = true, bb = true.

Section 122

Problem
SWM = 0y 1y 1.25y 1:3333300-e

17

A7 Appendix 7 - Solutions to Problems (cont.) AT

Section 13-3
Problem (1)

Delta x 0.1

x 0 0.1 0.2 0.3 0.4 0.5 0.6

y 1 0.81 0.64 0.49 0.36 0.25

In this example 0.55 is used instead of 0.5 after until because of the
possibility of rounding errors arising when dealing with real
quantities. If 0.5 were used, the last values of x and y might get
omitted.

Problem (2)
(i) 8 :=0; for 1 :=1 step 1 until ndo S := 5 + i

(ii) for i := O step 1 until n do
S 3= if 1 = O then O else S + i

Section 13-4

Problem (1)
P 1 3 5 7 9
P2 + q2 58 LY 85 145
qQ -7 4 6 8

Problem (2)

i 2 5 6 7 8 9 10 -1

n 6 30 42 56 72 90 110

Note that the for list element, =1 while m«<O, and in particular its
boolean expression are not considered until after the three previous
for list elements have been used up. See comments on the for list,
Section 13-1.

118

A7 Appendix 7 - Solutions to Problems (cont.) A7

Problem (3)

k=3 1,1,8=5; m=2, 5, 8 11, 14, s = =353
k=2’ ‘319 29 4, 6; 53-69; m'-249 "22’ —20, -'187

s = 153

k=1, m=3,2,1,0, 8=25
k=2, ma=ditto, 8 = 39
k=3, m=ditto, 8 = 57
k=4, m=dittoy 8 =179

k =5y m= ditto, 8 =105

Section 14
Problem (1)

for i := 2 step 1 until n do P := (1-(-1)Pi/i12) X
(if 1 = 2 then 1 else P)

In practice one would write this more naturally in two statements, thus,
P =13
for i := 2 gtep 1 until n do P := P x (1-(-1)4i/it2)

Problem (2)

for s 1= 0.1 step 0.1 until 0.95 do
begin a := t/T x (1 - 8); b := 2 x8/(1 - 8);
y-1= (b42 + a/2 x (1 - exp(=2 X a))
+2 x a x-b/(at2 + b12)
X (exp(-a) x (a X sin(b) + b X cos(b))
- 1b))/(at2 + bt2)

end

Section 15
Problem (1)
U = +86666c000y W= -1.13333...., B = true
Problem (2)

x and y are real variables.
X = 3,03
loop: ¥y := x3
x = 16/(y + 1);
if abs(y - x)>,-5 then goto loop

119

AT Appendix 7 - Solutions to Problems (cont.) AT

An alternative solution not using a conditional statement is:-

for y := 3, 16/(y + 1) vwhile abs(x - y)=,-5 do x := ¥y
3.2 3¢8095¢0ee ceee
3.2

Af ter leavmg the for statement the controlled variable y, which gives
the answer to one step greater accuracy than x, will be lost.

Problem (3)

This problem is solved either by resorting to the contents of Appendix 2

or using a compound statement such as described in Section 14. Using

the logical operator and of Appendix 2 we have the following solution:-
if B1 and B2 then goto P else if B1 then goto Q else if B2

then goto R else goto S

Problem (4)

for n := 1 step 1 until 100 do
begin y := xtn;
if y = 1 then goto Singularity
else y := (y +1)/(y - 1)
end

Other answers are possible.

Section 16-2
Problem (1)

B, =4; BA,2] =1; B[2,-1]= 2;
V[}] = 4; i=1.

Problem (2)

SC:= SCD:=03
for i:=1 step 1 until 15 do
begin SC:= SC + CAT[i]*2;
SCD:= SCD + CAT[i] X DOG[i]

end

120
A-7 Appendix 7 - Solutions to Problems (cont.) A7

Section 17-9
Problem (1)

for i := 1 step 1 until 10 do ,
:= (if i = 1 then O else S) + read (20)%2

S could be set at zero initially outside the for statement, eliminating
the need for an arithmetic expression containing an if clause.

Problem (2)

1= format ([ddd.ddec]); ,
for i := 1 step 1 until 100 do write (10, f, ‘read (20)13)

2roblem (3)

write text (30, [Co-ordinates % of * the * Parabola, * yt2 = 4x.])

Problem (4)

write text (30, [**x [98] y [¢]]);
f1:= format ([d.dd]); f2:= format ([ssssssd.ddc]);
for x s="0 gstep 0.01 until 5.005 do
begin write (30, f1;, x); write (30, £2, 2 xsqrt(x)) end

Problem (5)

fi= format ([dddddsss]);
for i :='1 step 1 until N do
begin x3:= read (20);
Bl t=mx +2%x2-x = 0;
B2 t=x ¢+ 3%x3~x= 0
write (10, f, x);
if B1 and B2 then write text (10,[2; 3[c]]);
if B1 apd pot B2 then write text (10, [2[¢]D);
if not B1 and B2 then write text (10, [3(c]))

end

Problem (6)

f1:= format ([5s-d.ddddddd gndc]);
£2:= format ([5s-d.ddddddd +nd]);
for i :=1 step 1 until 22 &
write (11, if i + 5X 5 =i = O then f1 else f2,
BRUTE [i,i])

121

A7 Appendix 7 - Solutions to Problems (cont.) Ae7

Section 18-3
Problem (1)

be, real a, b, Dps Q3
as=b = T;
pi=a+3xb- 231
qt=p+ (a+3)/(-b=-13)
at=pt=sq=->bx 0.2

end

Note that b cannot be taken as integer type because it appears in a
left part list with real a.

Problem (2)

begin real ra, rb; integer ia;
: boolean ba, bb;
ra 3= T.53

XXX

bb := ba and rb>ia and ra<rb

end

Section 18-4
Problem (1)

(i) begin real S; integer i;
open (20);
for i := 1 step 1 until 10 do
S := (if i = 1 then O else S) + read (20)#2;
close (20)

end

123

A-7 Appendix 7 - Solutions to Problems (cont.)

Problem (4)

begin real x, sum; integer r, i, nj

open (20);

n:= read (20);

sum := O;

for r := 1 step 1 until n do
begin x:= read (20);

i := sqrt(r);

if r = i12 then sum := sum + x

end H
close (20)

end
Problem (5)

kggiq integer i, kyn, f;

integer array j [0:97];

open (20); n:= read (20);

for ki= 0 step 1 wntil 9 do j[k] := O3

for it= 1 step 1 watil ndo

begin k:= entier (read (20)/10 + 0+05);

if k=9 then goto miss;
JLK] e= 30K + 15

miss: end H

close (20); open (10);

f:= format ([dddddde]);

for k:= O step 1 until 9 do write (10, f, j[k]),

close (10)

end

124

A-7 Appendix 7 - Solutions to Problems (cont.) AT

Problem (6)

begin

real e, x1, x2, a;
integer i, n, f;
open (21); a:= read (21); e:= read (21); n:= read (21);
close (21); open (10); f:= format ([nddd.ddddddo00c]);
x1 := =0.5 X 3.1415926536;
for i := 0 step 1 until n - 1 do
begin x1 := 3.1415926536 + x1;
for x2 := i x 3.1415926536 + arctan(a/x1)
while abs(x2 - x1)=e do x1 := x2;
write (10, £, x1)

end H
close (10)
end
Problem (7)
begin real a, b, c, 8, Delta;
open (20);
a:= read (20); b:= read (20); c:= read (20);
close (20);
8 :=(a+b+c)2;
Delta := sqrt(s x (s ~a) x (s - b) x (s - ¢));
open (10);
write text (10, [Delta * = *]);
write (10, format ([dd.dddd]), Delta);
close (10)
end
Problem (8)
beg‘ integer r, n, BC, f;

end

open (20); n := read (20); close (20);
:= formet ([dddddsddddde]);
open (10);
for r:= 0 step 1 until n do
begin BC := if r = O then 1 else
(n -1 +1)/r xBC;
write (10, £, BC)
end H
close (10)

125

A7 Appendix 7 - Solutions to Problems (cont.) AT

Section 19-8

Problem (1)

All the various parts of a procedure declaration appear, commencing
with the type declarator, real, and the symbol procedure, and
continuing with the procedure heading:-

erfc (z); value z ; real z;

The procedure heading is followed by the procedure body. In this
example as is most usual it commences and closes with begin and end
brackets.
The value part is: yvalue z;
The specification part is: real z;
Problem (2)
35.
Problem (3)
p=-1,q=7T37, r =3, s = 113 all others are undefined.

Problem (4)

(i) zeal procedure Jo(z); value z; real z;
begin real term, y; integer n;
term :=y := 13

for n :=1 step 1 until 12 do

begin
term := -term x z12/(2 X n)12;
y =y + term
end | ;
Jo =y

end

126

A+7 Appendix 7 - Solutions to Problems (cont.)

(ii) begin real x; integer f1, f2;

real procedure Jo(z); value z; real z;

begin real term, y; integer n;
ceesens (as above)

end H

open (11);

f1:= format ([d.dssssss]);

f2:= format ([-d.dddddsdddde]);

for x := O step 0.1 until 1.05 do

begin write (11, f1, x);
write (11, f£2,
Jo(x) + Jo(Jo(x12)))

..

end

close (11)

end

Section 21
Problem

Labels: R, L3, L2, L3, I1, L2, L3, Ry L1, L2, L3, R, STOP.
n=0,m=0.

Section 22

Problem (1)
w; W2 S B c P AA STOP
begin
o “ “ I
end |
end t
Scopes

W=-8 S=-9, B=13, C=T7.

127

A+7 Appendix 7 - Solutions to Problems (cont.)

Problem (2)

Unlabelled basic statements 12
Bagic statements 14
Unconditional statements 16
Statements AT
Block heads 2
Compound statements 0
Blocks 2

Section 236
Problem (1)

(i) Sum series (i, a + d x (i-1), n, R)

(ii) Sum series (i, a X r?(i-1)yn, R)

Problem (2)

(i) Sum series (k, A [k,k]y 7y V)
(ii) Sum series (P, A [t,P,u] x B[P], 10, Y)

Problem (3)
(Solution adapted from P. E. Hennion, Algorithm 84, Comm.A.C.M.,
No. 5, April 1962.)
real procedure SIM (n, a, b, y);
value n, a, b; real a, b; integer n; array y;
begin real s; integer ij
s:= (y [0] -y [n])/2;
for i :=1 step 2 until n -1 do
st=8+2Xy[i]+y[iv];
SIM := 2 X (b-a) X s/(3 Xn)

end

Problem (4)

procedure HCF (p,qsR); value p, q;
integer p,qsR;
if q=0 thenR :=p
else HCF (qy p-p + @ X qy R)

128

A7 Appendix 7 - Solutions to Problems (cont.) A7
Section 24
Problem

1. % in comment is not a basic symbol of KDF 9 ALGOL as listed
in Section 3.

2. 3 omitted after comment.
3. n not declared.
4, 5. 8 and term both used before being assigned values.

6. Underlining omitted from while.

7. begin and end brackets omitted after do. The assignment to
8 should be included in loop, otherwise terms will not be
summed.
8y 9. X sign omitted between 2 and n and also between 96 and s.
10.) omitted:~ required to complete arithmetic expression.

1. s omitted after assignment statement.
12, 13. Device 10 neither opened nor closed.
Appendix 2

Problem (1)

(1) true (4i) true (iii) false (iv) true

Problem (2)

Only (i) and (iv) are valid

Problem (3)
false

Problem (4)
b1 false false true true
b2 false true false true
not bl or b2 | true true false e
b1 imp b2 true true false true

It follows that the complete expression is always true.

129

A8 APPENDIX 8 A8

BASIC SYMBOLS - STANDARD REPRESENTATIONS

BASIC SYMBOL 8-CHANNEL 5-CHANNEL LINE PRINTER 8-BIT INTERNAL
(Reference (Flexowriter) (Creed) (Program Text) (Octal value)

Language) VERSION VERSION VERSION REPRESENTATION
a-z a-z A-Z A-Z 046-077
A-2 A-Z A-Z 014-045
L |

0-9 0-9 0-9 0-9 000-011

true true *TRUE TRUE 335

false false #*FALSE FALSE 315

+ + + + 301

- - - - 321

X X X * 261

/ / / / 241

$: *DIV / 221
I

i t " U 201
P

< = * = L 202
T

< < * > L 222
E

= = = = 242

= = = G 262
E

> > = G 302
T

N 522
E

= eqv *EQV EQV 303

D imp *IMP MP 263

Vv or *CR OR 243
A and *ARD AND 223

130

A+8 Appendix 8 - Basic Symbols - Standard Representations (cont.) A8

BASIC SYMBOL 8~-CHANNEL 5~CHANNEL LINE PRINTER 8~BIT INTERNAL
(Reference (Flexowriter) (Creed) (Program Text) (0ctal value)

Language) VERSION VERSION VERSION REPRESENTATION
— not *NOT NOT 203
go to goto or go to *GOTO GOTO 210
if if *IF IF 205
then then *THEN THEN 225
else else *ELSE ELSE 245
for for *FOR FOR 206
do do *DO DO 326
’ ’ ’ ’ 246
. . . . 013
o . v] 012
: : — H 271
H H *, - H 239
= = *= i= 265
L *» ' £ 216
step step *STEP STEP 266
until until *UNTIL UNTIL 306
while while *WHILE WHILE 226
comment comment *COMMENT COMMENT 200

(((204

)))) 224

L L *((211
*

131

A-8 Appendix 8 - Basic Symbols - Standard Representations (cont.) A8

BASIC SYMBOL 8-CHANNEL 5-CHANNEL LINE PRINTER 8-BIT INTERNAL
(Reference (Flexowriter) (Creed) (Program Text) (Octal value)

Language) VERSION VERSION VERSION REPRESENTATION
] 1 *)) 231
*
P C *Q (215
Q
’] *7) 235
begin begin *BEGIN BEGIN 214
end end *END E-I;T;-- 234
om own *OWN ;-m-l 217
Boolean boolean or Boolean *BOOLEAN };;:)LEAN 103
integer integer *INTEGER Z-[;'-l.';:;;‘.l-i 102
real real *REAL ;;:;“_ 101
array array *ARRAY ;;;;Y ' 110
switch switch *SWITCH ;;f;-wc-a 130
procedure rocedure *PROCEDURE ;;;};;URE 120
sirine string wmme smme i
label label *LABEL I:;;.. 171

value value *VALUE VALUE 237

Actual parameterxr
AIGOL 60

Arithmetic expression
Arithmetic operator
Array

azxray

Array bound

Array declaration
Assignment statement
Asterisk *

Basic statement

Basic symbol

begin

Block, Block structure
boolean

Boolean expression
Bound pairs

Bound pair list
Bracket

Call by value, name
Checking a progranm
Code body

Comment

comment

Compound statement
Conditional statement

Controlled variable

Decimal number
Declaration

Declarator

Delimiter

Designational expression

Device number

INDEX

Page

61-62

1

13, 19-20, 41
Fig. 1, 13-14
41, 87-88

54

54-55, 85
54-55

27-28

(See Space in strings)

31, 39

T, 129

5

56, 86

1

17, 20-21, 42
54-55

54-55

Ty 37

(See Value, Name)
93-95

68

T4

T1

37

39

33, 42

6, 53-55

7

7

73-74, 89-90
43

Digit
do
Dummy statement

else

end

entier
Exponentiation

false
for

For list

For list element
For statement
Formal parameter
Format expression

Function, Function designator

Goto statement
to, go to

Hardware representation

Identifier

if

If clause

If statement
Input and output
Integer

integer

Integer division

Jensen's device

vi

INDEX
(Continued)

Page

33
3

19, 39

23
14

Ty 17

33

33

33-35, 105
33-36

61-67, 87-90
45, 47-48
23, 63

31
31

8, 129
6, 11
19-20
199 59
39
43-51

14

87

Label
label

Labelled basic statement

Layout

Left part list
Left part variable
Letter

Letter string

Library of ALGOL procedures

library
Logical operator
Logical value

Lower bound

Name, Call by
Non-local variable

Number

Operator
Own variable

Parameter

Parameter delimiter
Parenthesis
Procedure

procedure

Procedure quy
Procedure call
Procedure declaration
Procedure, Recursive
Procedure statement

Program

real

Recursive procedure

INDEX
(Continued)

Page

34

67, 89-90
31

46-47

27

27, 35

7

62

68

68

Fig. 1, 101
Ty 17

54

64-66
84-85, 91-92
9

6, 7
107

61

62

21

61-68, 87-92
62

67-68, 84-85
61-63

61-68

90-91

62-63

57-58

90-91

Relation
Relational operator

Restrictions to ALGOL 60

Scope of identifier
Segmentation
Semicolon
Separator
Sequential operator
Side effect

Simple arithmetic expression

Simple boolean expression

Simple variable
Space

Space in strings
Specification Part
Specificator
Specifier

Standard function
Statement
Statement bracket
String

String quote
Subscript

Subscipt
Subscripted variable
Switch

switch

Switch declaration
Switch designator

‘Perminator
then
true
Type

viii

INDEX
(Continued)

Page

17
Fig. 1, 17
1

77-83

2

6, 25

7

Fig. 1

90-91

13-14

17, 101-103
41, 53

8

8 (footnote), 48
66-67, 88-90
7

66-67

23

25

37

48, 67

48,

41

9

41-42, 54-55
73-74, 89-90
67, T4, 89-90
T4

73-74, 85

47
19
T, 17

Unconditional statement
Unlabelled basic statement
Upperbound

Value, Call by
Value part
Variable
Vertical line

INDEX
(Continued)

Page

39, 56
31
54-55

64-66
64-66
1, 13
5 (footnote), 37 (footnote)

NOTES

NOTES

NOTES

NOTES

NOTES

Note: The Company’s policy is one of continuous development and improvement
of its products and, therefore, the right is reserved to supply products which
may differ slightly from those described in this publication.

