- PROGRAMMERS
 REFERENCE
- MANUAL

(DRAFT) | |

N G573 EEEE%ﬁEEDE:E;ﬁ}

4

ENTREX, INC. ,
168 Middlesex Turnpike)
Burlington, Mass. 01830 .
617-273-0480

—

N

This Programmers' Reference Manual constitutes a draft or preliminary
version. A final publication is scheduled for September 1, 1973. It is
requested that if the reader has any comments or corrections that they

be sent to:

Dale Lydigsen

Entrex, Inc.

168 Middlesex Turnpike
Burlington, Massachusetts 01803
(617)-273-0480

Rocid icd Sedl

Pt

A\

N S el St G 0
, L

Ml el e

'DEFINITIONS

RECORD EDIT

7 o
LIMITATIONS

BATCH EDIT

e e 092 0008 0 00

OUTPUT REFORMATTING ..

CODING

® o0 0 00 000

FIELD NUMBER....Q..,..

NUMERIC LITERAL

VARIABLE

ALPHAMERIC LITERAL ...

ARITHMETIC EXPRESSION

ADD

- DECLARE.

DIVIDE

FLAG

GoTo

CIF

MOVE

e e 8 0 88 s

...I’...‘.l
e ® & @ 0 & " 00
* 2 6 2 8 & & 0 0 0
® & 8 ¢ 0 0 0 0 &0
s es ee e o e

¢ 8 a8 000 0 00

TABLE of CONTENTS

+

’

SECTION 1.
"INTRODUCT FON

oooo‘oa.-co;oo‘c'.ac'-ooocoooocoo
i sessveesosescssssccesscssboocscece
....‘.l.Q._..'...._..............
.’..O‘..‘............5....0_'...

® 00 00 es s 0 e ss s OsELOGOGIOLESTOTAETETILE

SECTION 2

ARGUMENTS

® 6 6005 000 9 8 9 00 00 0000 S0 es e e
® 8 6 5 0 920 ¢ 06 60 05 S 0 s 80O e OB s OGO

® 0 0 86 0 00 ¢ 0 8 S 00 SO0 s e e ee s N

Onon'.ooo-no..ooo'o.-ool‘otlioll
M N

SECTION 3
STATEMENTS

e e e s s 000000000 s0 000 0e0 00000
@ & 8 0 00 ¢ ¢ 0 5 8 0 0 0 9 O 90t et e UL e
-

® 8 & © 08 0 0 90 8 00 S8 00 s e 00080 e

® 6 0@ 9 05 00 00 000 SO G E T e eSO

® 9 2 2 0 0 06 08 00 0 060000000 Ess s e

® 6 8 6 0 068 0 0 5 0 0 ¢ 62 90 00 9P e et sV e

S @ 6 0 8 06 05 0 0 0060 0 0 80 00 8 0080 008000

111

PAGE
1-2
1-2
1-3
1-4
1-6

1-8

MULTIPLY
;OUTPUT'
© PAUSE
éERFonu
RELEASE
SORT
STOP
:,SUBTRACT

WHEN .

7

GRAMMAR

® 0 0 0 5 0 0 0 0 0 0 S 00 S0P B GO E L LN N0 SO P et e

'.. . ® 0 6 & 6 & 0 0 8 ¢ 8 0 0% S 06 e * o
.".‘ * 8 o5 60 o) ...‘..'..f..'....'.'..
oo.noon-o.uooooo'_o-oo'iooooco~c.occ'
...".A.......'..........l.........'.
.’.......?....'.......‘.....‘..'...
® 5 & & 0.8 0 06 8 0 0 0 0o ..-.....;‘.-.'

® 6 9 0.0 8 00 % 00 20 Q0GOS S0P Rs e e

CONDITIONAL EXECUTION

" SENTENCE LABLES

.PUNCTUATION

APPENDIX A

APPENDIX B

. APPENDIX C

SECTION 4

SENTENCES

¢ s 00 0 0 0

¢ o 0 00 0 0 o

o o g 00 0 00

. - .
000'000.....06._....0..-

® 60 06 00 40600 000080000
® & s 00 8 s 0 e 0 8t e s

s oo evs0esessesnesss e

N

COMPILER ERROR CODES

EFFICIENTLY USING THE EDITOR

- TAPE OUTPUT CODES IN OCTAL NOTATION

iv

SECTION 1!
INTRODUCTION

[
’ .
RN

3

f : The Entrex S480 presents exteﬁded.editihg and validating features in
the form of a high level Cobol-iike'laqguage. This language allows a
l " user to pe:form his own input validation checks and Output Reformatting

with Arithmetic, Logical, Output and Program Control Statements. The
following features are in addition to the character and field error

detection described in "Forﬁatting Teghniques" (S-8):

-Character Error Detection '
+« Field Type (Alpha, Numeric, etc.)

. Field Boundary Check

~Fleld Error Detection
. Range Checks
. ‘Check Digit Verification
"+ Value Table Lookup
-+ Mandatory Entry/Complete
‘"« Batch Balancing

.« Ascendency Check

(" The exﬁended editing features provide record and batch error detection.
The following features allow for a much greater degree of flexibility and

may be- performed ‘depending on specified conditions'

Record Error Detection °

. Complex Range Checks

. Contents Checks

« Arithmetic Crossfoot Checks

Batch Error Detection
. Complex Contents Checks
.« Complex Arithmetic Checks
"+ Batch Totals and Subtotals

jOutpﬁtlFotmatting is accomplished by means of Editor Formats Programs

uéing.§6Werful output statements. This manual describes record edit,

" batch edit, and Output Formats and gives examples of each.

.This programmers' reference manual is concerned only with the syntactic
and.operatidnal description of these basic program building blocks. It, ;
therefore, is geared to that iﬁdividual responsible for the technical

design of the keypunch/unit-reeord shop, and assumes at least a minimal
or cursory familiarity with programming terminology and. functions.

DEFINITIONS o - B

A program is made up of one or more English langudge sentences. Each

sentence is made up of a function word or a function word with omne or’

more arguments. Two types of programs are used:

e Error Detection programs
.o Output Reformat programs

The major difference between the two 1s' that Error Detection Programs
check or validate data, whereas an Output Reformat Program may change
and generate data. For instance, an Error Detectioo.Program may codpure
A x B and compare the results with C, whereas an Output. Reformat Program
may compute A x B and store the results in C.

|

RECORD EDIT

A record edit is performed at the end of each record in ENTRY mode. In
VERIFY mode it is performed only if the record is changed (if CORRECT
key 1is deptessed) '

Immediately after an operator releases (manually or eutomatically) out of
a record, the information just keyed is passed through the record edit
format. All operations pertain only to the immediate record just released.
Data cannot be carried over from record to.record.

A record edit 1is ueed t& edit or check data that can be corrected by the

operator at the time it is initially keyed. If the operator cannot correct
the data the edit should be performed either at batch edit time or through

a separate edit run. This procedure prevents interrupting the operator's -

keying cadence. : .

y-2

- =

The program will continue either until a RELEASE or STOP statement or

until the final program statement.is executed. A RELEASE statement returns

_the sjstem to the ENTRY mode until the end of the next record when it will

again retain control. A STOP statement also returns the system to the

ENTRY mode however, no further execution of the program will occur.
/ - . ' '

LIMITATIONS (To prevent system degradation)

1. Data cannot be carried forward from one record to another record.
(This can be done at batch edit time) oD

2. Totalling of any kind, except within a record' is not possible. A
record edit is performed within one record. The system will initialize

all variables within the program for each new record.

3. Three variables are allowed per terminal (one variable may be ‘used over
and over to perform many operations within a record) since variables
may not be used for cumalative operations between records only a few
variables are ‘needed. '

-4, Data cannot be changed. A record edit is used to check data within a

record only. Changing data can be done via an output format at-output
time. : : ‘ e :

5., The output statement is notlvelid.

Error Handling

A program may handle data input errors in one or two ways:

1. The program may specify the insertion of an error character into a -
specified field using the FLAG statement.

,2.' The program may display an error:message using the PAUSE statement.

Program Example.

i el) ﬂﬁﬂ T _fhd

P

The following example performs content checking, range checking, cross-

_footing and extension checking.

1-3.

- ‘ ENTRE™ “YSTEM 480
EDITOR LODING FORM

Program Name Program Example . Originator .
Application _Emndﬁndlm;.t___ Date

PAGE

' LNE#
1 DECLARE TOQTAL, PRODUCT ..y 4 ¢+ ¢ v 4 v 4 v v 4 43173
2 IF, ((2) = 133 OR ;= 354 OR, =, 42, JFLAG G2) 4.y
3 IF; G3)y a= 1By JIF, ((,4), 2 10,6, OR < 142, 1 PBAUSE, |
4 JRANGE CHECK EERROR; (JN (FIELD. 34"tey sy 1t 4 44
5 ADD (1) +(2) ¢+, (3), 7O TOTAL. IF TOTAL, # ,6,,
6 FLAG (G6y)ve 000wy by a4
7 IF, (1900, 4=, ,0,, GQTO, , I NEXT e, \ v 4 v 1 1 4 4 3 4 4 4 v 44
8 MOJVJEI l(lal)lxl"('lg l)l l']-l‘q JPIRIQIDIUICITI'I lI FJ IPRODUICiTl‘ l#l l]'l¢

';' 9 |P|A|UlSrEL l' IR'IEI{JEIYI lFlIFPPlSI‘JB_ﬁ 121 IAINIDI 111¢4 [l SN N U WO D W |
& 10 UINEXT, RELEASE, AT END STOP ., 4+ 1 4 4 3 1 3 1 1 1 4

PAGE_____ : ~ ‘
LINE #
1 | S WO WO WA U U NN NN W SN WUS NN WUNN SN NN SN U SUUN SN UUN SN NUUY RSN SN U SN N N NI NUN S SHN NN U N S B S
2 (S YT NS NNNE VAN VON00 VRN NN TNNY NN N OO SO NS WS WU NN NENO0 SN Y Y WA WA LN YUY VT G SN U TR TN NN TN G SN N O
3 § I TN S N N N W Y NN NN N A WO S S N TS N VY NN RO TN U (NN U SN UG NN TN SN NN NN B SN B |
4 | W NN (U TR VS N N SN T NN DY (N TN U TN N S | [S W W NS N N NN NN NN U VO NN NN TR SN W N N |
5 F NS S YA NN SO N VSN NSNS NN N U DAY TS U TSN (NN NI UHDU WO SNS SUNN U U VAN SN SN S AN UG N NS S NN TN NN S N B |
6 W N NS SRS U N NS (NN NNUN SR AN (NN WOUN N NS SN NN U W SO NN TN U SN SN NN SN NN RN SN NN SN AN NN G W B N |
7 S A WA R N N SN SN N NUNS SIN NN TN DU NN TN SN N MO NN NS (NN AN NN NNUNY AN W0 WY SN SN NN NN N0 NN SO N B |
8 N R T WO AN NN S S T NN SN VA TN SRS NN (U0 TRUN WU WA N Y NS SO NUUN WU SN UUNN N UUUN NN SN SN N U S MY SN EN U
9 lllllllllLllJJlll.llllllllllllJlllLlllll.
10 ll!lllllejllllllllllllIll.llllJllLlllll

M-10 3/73

BATCH EDIT

A Batch Edit is an Error Detection Program executed to check or validate

. data, and includes:

.Complex Range Checks
.Complex Content Checks
.Complex Arithmetic Crossfooting

.Complex Batch Totalling/Subtotalling

It is performed upon batch termination in either'ENTRY‘or VERIFY mode
or both., Immediately after an operator terminates a‘batch(not interrupts),
the program will perform all specified operations on that batch. Batch'

End variables are cumalative and therefore batch totalling, subtotalling

and.record to record checks may be'performed. The variables are initial-
ized just once for the entire batch as opposed to once for each record.

Initializing a variable means assigning it a value of zero so that the .

programmer need not initialize the accumulators. The number of variablee_

‘allowed is 100,

Execution of the program will coutinue until a: STOP statement is encountered
It is also possible to perform ‘an edit on a terminated batch using an edit

batch function.

‘.Limitations

1. Batch edits are error detection formats therefore data cannot be
K _
changed. Changing ddta only be accomplished by an output formatting

program. _ : ' _ : oo

Error Handling

Both of the methods described in Record Edit error handling above apply

in Batch Edit.

ifSl

Another error handling method available with batch'edit formats is the
creation of an error log. The error log associated with the batch being
processed is created with the OUTPUT statement. The error log is capable
of accepting any information, formatted in any way. During edit program
execution OUTPUT statements generate a disk file which is associated with

the particular batch in process.

"Batch Edit Program Example

The following example performs content checks, range cﬁecks, arithmefic
crossfoot checks, batch totalling and subtotalling. It creates an error
log of those records with range check errors, subtotal errors and lists

entered and accumulated batch totals 1f they do not match.

OUTPUT REFORMATTING

"The output reformats reformats a batch and outputs it to any existing
output device. All statements are valid for output reformatting. This

allows for conditional output of records and data changes based on some

predetermined factors.

An Output Reformat Program is executed by a Supervisor request, and

follows the same rules that govern Batch Edit Progréms.

Limitations

The OUTPUT statement initiates output to a specified outbut device
rather than to a disk resident error log. It will not operate an error

log. An error ldg is generated by a Batch Edit Program only.

OQutput Reformat Edit Program example'

The following example outputs one record for each input record. It also
outputs a trailer record including the system maintained date and block
count. A record count 18 kept to serialize output records. An extension

is calculated and then punctuated.

1-6 | .

(-1

ENTREX $.<TEM 480
-EDITOR CODING FORM
'. Program Name'" 4Progra131 Ef?‘f_nl?le - Originatot; e
Application . ."Batch End’ Edit Date
PAGE _
LINE# - — . ' - 4 :
1 DECLARE TQTALYL,;, TOTAL2,; RECNO.L, 4 4 1 31 11
2 Aan'111 ‘1Tp‘| RECNO .,) 1 4 IR EOU T G WY Y N T N S W TN Y T O B T
3 WHEN ,PGM ,2,, GOTQ, |!|STP|T1A|L|- YN TR W TR RO MY WO TRON TN N NS N I A1
4 WHEHEN PGM 13,3 1GOTO +IWTOTA L.y 101 011 v v 1 a1 1y
5. IF, (2, 4=, 8, , JJIF, (3), 4 1, FLAG, ,(;3) e 1+ + 1 4 3 L
6 IF, 1 (14,), <y 12,9, OR, 2 56,,, PERFORM ,L,RANGE., | .,
7 IF, (5 4> 608,86, QR < 1258,,, TJPBERFQRM I!IRIA]NIGIEI- L1
8 LF, (80 /11980 4 # (Lbi o FLAG (110)), PRI S S S T R N N A WX
. ~ .
9 ADD; (41294 1 TO0 TIOT ALl 4 U U SN WO TN TN TN TN WY SR AT SO W SO UM YO B W
10 ADD ,G13), ;79 ,TQT AL2., , IR RN WS AT YOO WO T T W DU Y T WO Y A 3 Lo
PAGE

-
o

B4 Q/7N®

f

PRI,

RELFEASE.,

4« 1t 2 3 %t & -t .+ & g % g & 0 2 4 o 1 {-

[1L ¢t 2t t 1

!1T1qT1A1LIJIF‘l ITIOITIAIIilzl l#l 1(121)101 |O4U1TIBUJTL1'1ALQCIU1MUI-¢A

T, E, D,

0T ALy

l.=l 'y 4 TOTAL2,, " ENTERED,

ITJ_QITIAILI ' 12]

(23) 101 10

I IS N TR T T O INN FNUUE SN SN NS N TN T TN N N NN W . |

| EE WS N I SN N S - |

RELEASE . | 3 1 1 00 01 3 0t 0 &t 11 Lttt .
LRIAINIGE, (EINNTEIR,; j]OUTHUYT ;'lRANGE, ERROR, ,IN, REC

N

D ORD #' L DREGNQ. JBXIT) ot by y v v b Ly 0

LST.AQTAL JIF, (1), 44 TOTIALL,,, OUTPUT, ,' RECORDJ

cooou'mula-wn-sg
LY

l'l AJRIEICINlOl l'lINleB'BIEI(::I‘I lSqulT‘quLJAIIJIZ'i

TOTAL1l.
T S T T B |

RIEILIEIAISIE'A' |

| S OO [N OO N JS (N SR NS VO NN TN NN NN NN NN N N N S N

| Y O I A S N S T |

CODING

The coding sheet used to code Edii, Sort; and-Output formatg is Entrex
"Order No, M-10,

The form outlines pages consisting of ten lines of forty characters_each_

as they appear in their respective libraries.

'As many pages as needed to accomodate the coding can be used and will

represent one page (or screen) in the format libraries.

The statements are coded in a "free-forn" style.' The }anguage consists

of English sentences made up of statements.

Statements are sepafated by spaces (or a comma and a apacei. Sgntenées

are ended with a period.

1-8

.6-1

Yl
ENTRE. ' YSTEM 480 : L
EDITOR CODING FORM : '
Program Name _PROGRAM EXAMPLE Originator
 Application " EFORMAT" ED ' Date N,
PAGE____ 1
LINE# — :
1 wiLIALRLEL_B“EJﬂJMM.A_LLD.MMLJ_L_L_LLJAJ_LQJJ_u_MA_
2 ADD,; 1, 17,00 R:E\CNyOp 1 o & 3 4 ¥ 4 4 4 ¢ 4 4 1 o4 o4 44y do3o o4y
3 MO WIEL 1 OSi ik 660y 1Ti0) PRIODIUIC Tien o4 v 0 4 43 4 1 4 0 4 3
’ 4 DJUJTIEIUITL lechlnjojpl ‘xlj)nL 1(131)1'1 1(12 1) 19} 1(14!)191 Apliloignujc
5 T 0:90, 8, 0 o 1(i1:0:) ' Xava2,! (9) 1 0,181) |
6 'RELEMASE, AT, END 60,70, L FLNISHiey o 0441 a0y
7]]] . >
8 | At OB LK 62,0 B8 B 0 0 0 w00 s b
9 P WU TIPIUITy (<E O F1 21,1 ¢ 1 | [N N N VNS VK WU WS NUNES NNVE T NS VU S WA NN A S NN AN NN A
10 T 10 1P .1 ll'lLlJJllL'll_Lll.lel‘l M YO W R Y W AN S SR SO N T G MY
- PAGE.
LINE #
1. TR NS VN O OO VU SO WS WU SEUUK NN WU VAN NS NN ST TN NUN U NN NS NN SN SN SN SR UL NN NN S LIS S HUNE VRN SN S BN B
2 [N YOS N N TS (OO NN ME AV MUY NEE NN DU SHEN S N B NN TS SR NS TUNE NN R SN S G NN S NN U N SN Y B SUNS SN S
3 llll!J_ll_LllLlLJlllllllliL_illJllLl)LLLlll
4 XN W A T N DS NN S NS [N U N SN DN N NN NN NN SN SN NN U NUNS U DU NN NS WU SUNY LA NS SN SRS M NN SN N B
B |G WS N WO N NSNS NN JONNE DU N NN N NN (N WS RS N DN RO G NN VNN (U0 TS SN NN NS N W NN VNN VNN SO NN O SN N
6 [T U N W DO W AU NN W (VRN WA (U VAU WU RO UAN (VU NN OO NN VS NSNS SR TN UNE NN YOUNS CUNN YUY SN W SHUN NS W W W N S |
7 [NN W NG NN YU (NN N WS SO SN AN TN URUEY WU 1NN AN AUV TSN AN WU SHEN AN VRN SR YOS U N U NN N S W WA SN N N DA
8 ’ R S S U NG TV MO NN YH! N WS WA TN MO NN NN W WS S N SN AU (NS NN SN U SN WS TUN AN SN A NN AN WU YR NN S |
9 114L1|111L14|11L114|4||i.||JLJ;1::LL1¢11
10 PR TSN TN TS VIR S SN N N SN L I R S S O P S N S R A B T A S S i1

M-10 3/73_

(n:p-q) where the

i Kl W S BRedd 2

SECTION 2

7 ARGUMENTS B
/s .
Within the EDITOR language, there are five legal argument types: field,
numeric literal, alphameric literal, variable ‘and arithmetic expression.

Within the context of a particular statement, some argument types may

be illegal.

FIELD NUMBER

-

A fieié number is defined as a number from 1 to 2847 and must’ be én?'

closed in parenthesis. .

Exgméies: (5)
(22)
(29013)

Addi;ionally, System/480 providgs-the facility'to handle sub-field
or sub—string specifications. The spécification is in the form of
' represents the field number, and 'p' and 'q'
represent the relative bositions'within a field of the first and

last character of the sub—étring. When only one character of the

S)
_‘field is desired, the form (n:p) would suffice.

‘This sub-string feature allows the system to now manipulate data
down to the character instead of field level. Throughout this

document, 'field #' should be taken to mean aﬁy'sub—field or sub-

vs;fing within the field number.

| Examples: (5:2-4)
‘ (22:3)
(2013:4-12)

2-1

P

NUMERIC LITERAL

A numeric literal is defined as an unsigned or overpunched string

of digits comprising an integer value. The méximum legal size of

a numeric literal is 14 characters.

The overpunch may appear in any posiéion in the string exggbt t@é
ﬁ;rs;y(due to the possibility of confusing the string with a vari-
able name). '

Examples: 9824

, 9827

. : +
9824

ALPHAMERIC LITERAL i.»

An alphameric literal is defined as a string of up to 132 char5¢téfsf
enclosed in single or double quotation marks. Single quotation marks R
may appear within a literal enclosed within donble quotation marks and"
vice versa. Any keyboérd character is legal within an alphame;ié
literal. ‘ ' o

Examples: 'MESSAGE'
' S MIHELP!'"

Another form of an alphameric literal would be nnn'X' where nnn is

- the number of times (14132) the sinéle character in quotes wouldvbe

repeated. In other words '@@@@' may also be written 4'@'. This
form of an alphameric literal requires that 6n1y one charéctéf be
specified within quotes. This feature facilitates the filiidg of/
blanks or zeroes in an output record for béth the user and the ‘
system. It also make more: explicit the definition of the size of

a variable when used in a MOVE statement.'

2-2

ALPHAMERIC LITERAL Continued

Examples: 5'2°
i 120'6'
. VARIABLE

A va;iable is defined as a name associated with a valuef .The_pame

may be 1-8 characters in length, the first character being A-Z and

all following characters being A-Z or $#-9. The value may be either
alphameric or numeric. A numeric variable may coatein up to 14 digits
including a sign. An Alphameric variable may contain up to 2¢ char-
acters. The type (alpha or numeric) and logical size of a variable

is generally defined with a HOVE statement as follows:

. JMOVE field/sub-field to variaeble -
' glze = gize of field/subfield
type = type of field/subfield

.MOVEAnumeric literal to VariAbieA
size = 14

type = numeric

N

«.MOVE alpha literal to variable
size = size of alpha literal
type = elphameric o

.MOVE variable to variable
size = size of first v%riable

type = type of first variable _ .

-.MOVE arithmetic expression to variable _.
gize = 14 o
type = numeric
Examples: X
P131 -
TOTAL

SUBTOTAL
D1A43BC.

Gl ol L s

2-3 . | 4’ B 1 S

W — i P

ARITHMETIC EXPRESSION

An arithmetic expreSsion'isbdefined»as‘two or more of any of the
previousiy defined arghment types connected by any_bf the follow-

ing arithmetiéloperatofs; + (plus),-— (minué), * (times), /] (divided
by). An arithmetic expression is 1nterbreted and performed simply
from left to right (e.g., there is no‘hierarchy of dperators), and
it's result is always considered to be 14 numeric positions and right-
"justified. o 1 ‘

~ Examples: (1) + (2).

RATE * WEIGHT o
- (21)/90 + TEMP - (6)

2-4

y

]

SECTION 3

" STATEMENTS

With the EDITOR language there are basically two types of statements:

'Action'

statements and

‘Conditional’

statements.

Action statements are

used to perform arithmetic, editing, output, error signalling and pro-

gram control functions.

logical and special tests.

the following pages:

 ACTION Verbs

ADD °
DECLARE
DIVIDE
FLAG
GOTO
MOVE
MULTIPLY
OUTPUT
PAUSE
PERFORM
RELEASE
SORT
STOP
SUBTRACT

CONDITION verbs

IF
WHEN

Conditional statements are used to perform

The statements shown below are described on

3-10
" 3-11
3-17
3-18
3-19
3-20
3-21
3-22

3-7
3-23

i1,

i11. -

ADD :
yE
Format:
/ FIELD ; ‘ L
| LITERAL ° R »
ADD '{ VARIABLE) =~ . TO . < VARIABLE) .
. ARITH. /- . N
EXPR.) o :

Description:

‘The data defined by the source argument is added to the current
contents of the destination argument and the sum replaces the

. current contents of the destination argument. The contents of

the source argument remain undisturbed.

If the logical size of the destination argument is exceeded dur-
ing this operation, the overflow indicator is turned on and can

'be sensed and utilized by the program. However, if the physical
size of the system accumulators (14 decimal digits) is exceeded

at any time during this operation, results of this and future
arithmetic operations are unpredictable.

-Exaﬁplés:

ADD (1) TO TOTAL.

'ADD (2) + (3) 10 CREDITS.

ADD WEIGHT TO RATE.
ADD 109 TO COUNT.

ADD (13:3-5) TO TEMP.

3-2

Nl Sd
~ .
‘e

/ : DECLARE

i. Format:

DECLARE <VARIABLE> , <VARIABLE> , <VARIABLE> ,.

11. Description:

ﬁ

The DECLARE statement is used purely as an EDITOR program de-
bugging tool. All variables must be declared within an EDITOR
program prior to being used. This minimizes the possibility of
an EDITOR programmer referencing invalid variables within his
or her program.

sl S

- 1414, 'Example:

o~

DECLARE TOTAL1l, TOTAL2, COUNT . . .

W R

=2 NN
5

e

3-3

%

ii.

iii.

"PIVIDE

Format:
FIELD ° 3 i :
- // LITERAL \ : L e
DIVIDE VARIABLE> INTO \NARIABLE> .
: \ ARITH. : - L ,
EXPR. / .
,Description'

"The data defined by the source argument is divided into the cur-

rent contents of the destination argument and the quotient replaces:
the current contents of the destination argument. The contents

of the source argument remain undisturbed.

If the logical size of ‘the destination argument 1is. exceeded during

‘this operation, the overflow indicator is turned on and can be

sensed and utilized by the program. However, the physical size -
of the system accumulators (14 decimal digits) is exceeded at any’
time during this operation, results of this and future arithmetic
operations are unpredictable.

B P S S ot 2

Examples. L. Y ._-_".» ,‘ :..-.:...A:.‘--,:‘ :. j_.-‘..r. R o ‘-:.

DIVIDE (1) INTO TOTAL.'

DIVIDE (2) + (3) INTO CREDITS.

"DIVIDE WEIGHT INTO-RATE. LI B S

.DIVIDE 199 INTO COUNT. : - R

DIVIDE (13:3-5) INTO TEMP. .
- . _ | y

s | RLAG

FLAG FIELD.) R

i1. Description'
The FLAG statement is one of two error signalling statements.
It 18 used to insert an S480 error character into the left
most position of a specified field, sub-field, or character.

This statement would most probably be used in conjunction with
" a conditional statement. : : .

i i. Format:

114 Example:
- FLAG (2).
FLAG (2:3). R ;*.I°

FLAG (233-5),

. 3=5 "

14,

111

a subroutine or out of a subroutine.

' .GOTO !TEST:

-6 O0TO .
Format: ' o ' S . o , _ '
GOTO !LABEL : ' ST I i
Description: . A I . o o - E
The GOTO statement is a program'control statement which 1is used
to modify the sequential execution of EDITOR sentences by allow- E
ing a program branching capability. A branch may be executed

to anywhere within an EDITOR program with the exception of 1nto

Ekamp}é:

T R

i il Sl

i.

A.

. I F
/ Format:
Simple
IF <wc>l R-<k>2
Compound ‘ '.., o
IF<$>1 R<<A>2 OR IF <A>3 R~<Afﬁ
" Compound, implied first argument.
IR <
IF A>1 R.<A>2 OR Rv <A>3
(i.e.: IF<A> R<A> OR IF <A>'1_ R <A>;)
WHERE: ‘éyGUMENT'= FIELD \,
¥ LITERAL 3
.+ VARIABLE
ARITH. EXPR
RELATIONSHIP = '=' or '#' or '>" or '<'
Description:.
The IF statement is used for performing simple and compound log-
ical comparisons. Comparisons are considered to be either alpha-
meric or numeric. Alphametic comparisons are performed one
character at a time from left to right. Numeric comparisons are
performed on numeric values which is to say numeric arguments
. which look differently but have equal values are considered equal.
For instance, '-$021' 1is equal to '-21' and equal to '2J' (least
-significant digit oversign). When comparing an alphameric argu-
ment, the comparison is a. numeric one., '
. The results of the IF comparison are used to determine the logical

.direction of an EDITOR program. If the comparison is true, the

next statement is executed - 4if it is false the next sentence is
executed.) : Co ’ :

Note: Although there is no explicit 'AND'“eonnectof, the AND
function can be 1mplied by utilizing a series of conditional
IF statements. ‘ - . :

327

e e ot = 7

S id4d.

Example:

" IF
" 1IF

1F
IF
1F
IF
IF

(1) = (2):

(4) # 'Y

TOTAL > 199

(1) * (2)= X/3

(1) = 'AB' OR IF (2) .= 'cD’'
TEMP €99 OR 762

DATE = TODAY, IF AMT <'4509% . °

3-8

Vs
MOVE
i. Format:
FIELD \ RS
LITERAL 3
MOVE VARIABLE) TO <VARIABLE> .
ARITH.
EXPR.
i1, Description:-

The data defined by the source argument is duplicated in the des-
tination argument, destroying the current contents of the destin-
ation argument. The contents of the source argument remain undis-
turbed.

SN

One of the properties of a MOVE statement is that it is a way of
defining the logical size and type (alpha or numeric) of a var-
iable. This is simply done by allowing the variable to take on
the attributes of the data being moved to it.

ii1. Examples:
MOVE (1) TO TOTAL.

MOVE (2) + (3) TO CREDITS.

MOVE WEIGHT TO RATE.

MOVE 1¢¢ TO COUNT.

MOVE (13:3-5) TO TEMP.

MOVE 'DEPT. NO.' TO HEADER.

!(

3-9

ii.

iii.

MULTIPLY

Format:
FIELD
LITERAL ‘ :
MULTIPLY , VARIABLE \ TIMES <VARIABLE> .
ARITH.) '
EXPR. /
Deécription:

The data defined by the source argument is multiplied by. the
current contents of the destination argument and the product
replaces the current contents of the destination argument.
The contents of the source argument remain undisturbed.

If the logical size of the destination argument is exceeded dur-

ing this operation, the overflow indicator is turned on and can
be sensed and utilized by the program. However, the physical
size of the system accumulators (14 decimal digits) is exceeded
at any time during this operation, results of this and future
arithmetic operations are unpredictable. o '
Examples:

MULTIPLY (1) TIMES TOTAL.

MULTIPLY (2) + (3) TIMES CREDITS.

MULTIPLY WEICHT TIMES RATE.

MULTIPLY 109 TIMES COUNT.

MULTIPLY (13:3-5) TIMES TEMP.

3-10

r—— [ron—y [. pro— o - ol el SN o oy] [s | o] b b . b] b,] [} [.]]

O TPUT

i. Format:

FIELD / FIELD FIELD

VAR LITERAL - LITERAL LITERAL
' OUTPUT "\ VARIABLE , " VARIABLE /\ VARIABLE .
S CONTROL ‘ CONTROL CONTROL
: | g |
l , /
" 44. Description: o L .

The OUTPUT statement in the EDITOR allows the creation of a new
record consisting of parts of or the entire current record; alpha
. or numeric literals; alpha or numeric variables; and control
. - functions. . :

‘A, "Argument Modifiers - may be used to further define any field,
‘variable, or arithmetic expression to allow for character editing.
- 'An argument modifier consists of a vertical :Bar (1) followed
- by an edit specification, and immediately follows the argument
.which it modifies.

 Ihé follbwing are iegal_edit specifications:'

{LS Truncate all leading spaces

_ILZ - Truncate all ieadiﬁg'ieroes

JRS - Truncate all trailing Spaceé

" IRZ - Truncate all trailing zeroes

L

{PK Packed decimal format

-{"MASK' - Where MASK is an alphameric literal whose largest
size is 20 characters including all MASK characters.
If the argument is longer than the MASK, the argument
"will be truncated and any floating or fixed dollar sign
will be lost.

" Legal Characters for 'MASK''"

-An underséoré in the edit mask is replaced by the corres-
ponding digit from the specified variable.

3-11

- iy

e

OUTPUT

Description:

Legal Characters for 'MASK' continued

9

B.

:]
A zero is used to indicate zero suppressfion. It is placed
in the right most position where zero suppression is to
take place. It is replaced with the corresponding char-
acter from the variable unless that character is a zero.

An asterisk is used for asterisk protection and zero supp-
ression. It is put in the right most position where aster-
isk protection is to take place.

A dollar sign entered immediately to the left of the zero
suppression code or asterisk protection code causes the
insertion of a dollar sign in the position to the left of
the first significant digit. - :

A dollar sign in the left most position of the MASK is con-
sidered fixed. A fixed dollar sign 1s placed in the same
location each time.

Decimal points, commas and blanks are placed in the output
field in the relative positions they were written in the
MASK unless they are to the left of significant digits.

The characters CR or a minus sign in the last positions of
the edit MASK are undisturbed if the sign of the variable
field is negative. If the sign is plus the CR or minus
sign is blanked out. - A I S

N.B., Zero and asterisk are mutually exclusive. If they
should both occur the one in the least significant position
will take precedence. : : : A

Control functions - may be used at any time within an OUTPUT

statement. They must be enclosed in angle brackets., The follow-
ing are legal control functions:

< ALL mm-nn>

The ALL function allows the outputting of multiple fields
with one control statement. - ~

1if nn 1is not specified output is from. field {# mm to the
end 0f the record.

if neither mm nor nn is specified, the entire record
is output.

3-12

e s B P ES

OUTPUT

1./ Deséription:
‘Control Functions Continued

<BATCH> /
When the control function is encountered, it causes the current
"‘batchname to be inserted into the next ten character positions
. of the output record. : '

: <BLK n>

block count. 'an° specifies the size of the field in characters
within which the count is output. If n is smaller than the ac~
. tual count the count will be truncated. If n is zero there is
. no output regardless of the count. K
<, -Note: ¢_<n$5
' <COUNT XXXX>

‘This control function, wﬂen encountered indicates that number of
characters contained in the .current record are to be inserted in-
‘to the output record. The count may be from 1-4 characters with
leading or trailing spaces but no imbedded spaces. The count may
be in binary or decimal digits, specified by placing a B or D in

gl G V'.The BLK function allows the EDITOR to output the physical tape
a -the correct positions. Examples of COUNT :

- DDSS Two digit decimal count two trailing spaceé
BBSS . 7wo digit binary count two trailing spaces
. DDD "ree digit de¢cimal count
- SSBB ‘0 digit binary count with two leading spaces.
. <DATE X> |
5 :IhéfDATE function allows! EDITOR access to the system Global date
. which consists of 6 characters in the format in which it was en-
tered by the user. The optional use of 'X' provides the follow-
! ing facilities' ' .
U' Six—character formatless
!; ’ R X eight-character of format mdedey where 'X' is any legal
' . character except underscore () which is used to signify
E blank. :
3-13

{
{

ii.

7S RYRTTRpY R Lt B e, ML IR RS 4L

OUTPUT

Description: ,
Control Functions Continued

<DEFER> _
This control function which may appear anywhere within an OUTPUT .
statement would be used to specify that the arguments within an
OUTPUT statement do not make up a complete output record but on-
ly a partial one. This would facilitate building just one output
record from many input records.

<<EOF>
The EOF function allows for the closing on files. If a pad char-
acter has been specified it will pad out the current block, and
write an industry compatible tape mark. If no pad character is
specified it will write a short block followed by an industry
compatible tapemark. If no tape drive is available instruction
is ignored. ’

<HEX XX>
The EBCDIC equivalent of 'XX' is generated.

<JOB> '
This causes the name of the standard job used to ehter the curreént
batch to be inserted into the next eight character positions of
the output record.

<<LABEL>
This control function,Awhich may appeer anywhere within an OUTPUT
statement would be used to specify that the current record is a
label and not a data record. occurrence of such a record would
cause the output buffer to be ha dled as if an EOF were encountered,
with the exception of writing a tape mark, after which the 1label
would be output regardless of any specified blocking options.

<LF> ' : o ' o/

The LF function causes a line feed and carriage return to be ex-~
_ecuted by the printer. : '

<PGM>

-

This causes the number of the input format under which the current
record was created to be inserted in the output record.

1

3-14 . .

B O 6 5 Ll

OUTPUT

ii. Description:

Control Functions Continued

/<<RWND>

141,

fhe.RWND function causes an unconditional rewind of the tape.
If no tape is mounted instruction is bypassed.

This function would when executed insert blanks into the output
record starting from the current character position up to and
including the character position as specified by nnnn.

< SKIP nnnn)

-

L R

‘* This function would wﬁen executed insert blanks into the

output record starting from the current character position
up to and including the character position as specified by

nnnn.

<TOP>

The TOP function allows for the p
" ‘available print line as determine
"On devices where this function wo

ositioning of forms to the first
d by the carriage control tape.
uld not be valid it will be ig-

nored.

Examples:

OUTPUT- (1), (2), (3), '123', ABC

OUTPUT <ALL™> ,<DATE> . |

OUTPUT (1), <LF¥F>, (2),<LF>, (3), <TOP>.
OUTPUT <EOF> &<RWND>.

OUTPUT FILENAM, <DATE>, << BLK{#5)-

OUTPUT <SKIP 60>, 'TOTAL', TOT|'_ _ _ $. _ _ ®CR'.
OUTPUT '!', <JOB> ;<BATCH>.

OUTPUT <PGM > ,<ALL> .

3-15

91-¢

RESULT

Examples of the 'MASK' Edit-Specificatio#

.

MASK VARIABLE +DATA -DATA
0. ! 000005 .05 .ON

' so._ 000005 $.05 $.0N

'$_ _o.__° 000005 $BEPB.05 $BBY. ON

g *._ 000005 $*** 05 $*** ON
L 13560 135.60 135.60-

' _._ _cr 13560 135.60 135.60CR

' . _¥cR' 13560 135.60 135.60¢CR
'$__ 0%, ' 149363 $%1493.63 $%1493.63~

'$_ _ _*0._ - 149363 $¥1493.63 $$1493.63-
v, 80, _ = 1763421 $1,763.421 $1,763.421-
'_ _ _$¥0._ _CR' 17631 $1746.31 $1766.31CR
0 ' 000005 005 00N

> .

-

I

g" ‘.
5
a

iid.

/~‘ ._ .) A ‘ . . '
Format: . . ¢

PAUSE ALPHAMERIC LITERAL.

s

ﬁesdription:

' The PAUSE statement is the second of two error signalling state-'

ments., It is used to display a specified error message of up to
forty characters on the error line of the data/scope terminal.
Execution of this statement also causes the error beeper to sound
off which remains on until the 'reset' key is struck. This state-
ment would most probably be used in conjunction with a conditional
statement. This statement may also be used as a debugging tool
when testing new EDITOR programs. This statement may be used with-
out specifying an alphameric literal for display. In this case,

- the system message 'PAUSE' is displayed.

.

Example:

PAUSE. . |
. PAUSE 'TOTAL IN FIELD 3 INCORRECT'
"~ PAUSE 'ARITHMETIC OVERFLOW, ABORT!'

3-17

i

ii.

ii.

N

PERFORM

Format:

PERFORM 'LABEL

Description:

The PERFORM statement is a program control statement which is ﬁsed

to execute a specified group of sentences from different points -
within an EDITOR program by allowing a single ~level subroutine
call capability.

An EDITOR subroutine is a closed subroutine with only one way in
and one way out. The entrance and exit (beginning and end) are

‘defined by the special words ENTER and EXIT. A program branch

(GOTO) to the entrance of or anywhere within a subroutine is

illegal. Also illegal is a program branch out of a subroutine. :
However, a program branch within a subroutine is legal. In. fact,
it may be necessary to branch to the subroutine EXIT. ::%

Example:) .--:."mt: ;,;": ;f:“:_ [I

PERFORM iTEST _ l:. : :;v.fﬁ T R E P

o0 o
i

!TEST, ENTER .,.EXIT

3-18

[— [T [e R -t o 4 [wien g . [. A P o ey SRRy

ey

—~

« P, . o R

=l

-
-

G W s N

1.

ii.

S 444,

‘RELEASE

Fdrmét:

RELEASE (AT END, STATEMENT).

PR,

Description. /

The RELEASE AT END statement is a program control statement which
.18 used to perform several functions. When executed, this state-

.ment will cause program control to release the current record,

. get the next record and branch to the very beginning of the EDITOR
program for further execution. If at the end of a batch (no next
record to get), program control will execute the sentence immedi-
ately following. If no RELEASE statement is encountered during

.program execution, the RELEASE function will be performed immedi-

‘ately following execution of the last statement in the progrm.
.If the AT END option is not employed after the RELEASE and END
OF FILE is reached, a STOP statement is implied.

-The first time a RELEASE STATEMENT is executed within an EDITOR
program, the second record of the batch will be fetched. This

implies that the first record of a batch is automatically fetched
by the system and ready to be processed at the very start of
EDITOR program execution. It is, important to remember this so
that the first record is not inadvertantly dignored.

The RELEASE statement is an exception in regard to grammatical
rules pertaining to statements and sentences.

Example:

RELEASE, AT END STOP:.

RELEASE, AT .END GOTO !FINISH.

* RELEASE.

3-19

ii.

& &

SORT. o

Format:] '
FIELD FIELD FIELD
‘SORT LITERAL LITERAL . LITERAL
VARIABLE ’ VARIABLE R VARIABLE
CONTROL CONTROL A a CQNTROL‘ :
Description:

The SORT verb is used to generéte a sort kéy to be used during
any SORT/MERGE operations. It is identical in format to the ,
OUTPUT statement with the addition of the following two address
modifiers.

|AN - Aécendiﬁg key
[DN - Decending key.
In the absence of either of the above modifiers, ascending is as-
sumed. Note that ascending and descending may be intermixed with—
in any SORT statement. :

Examples:

SORT (1:2-4) |DN (5), '1'.

SORT <PGM> , (1) | AN (6:3).

SORT <DATE> ,<ALL 2-4> .

-t s

STOP ‘
y.
i. Format:
STOP.
ii. Description: |) o ;

The STOP statement is a program control statement which is used
to halt execution of an EDITOR program. Should the EDITOR pro-
gram not contain at least one STOP statement, execution will be
-halted upon encountering the end of file. : '

114, Example:

- | RN £ 3%

S

ii.

111,

‘ " SUBTRACT

Format:

FIELD

LITERAL : , :
SUBTRACT VARIABLE FROM < VARIABLE >.
. ARITH,

EXPR.

Description:

-

The data defined by the source argument is subtracted from the
current contents of the destination argument and the difference
replaces the current contents of the destination argument. The
contents of the source argument remain undisturbed.

If theAlogical size of the destination argument is exceeded dur-
ing this operation, the overflow indicator is turned on and can
be sensed and utilized by the program. However, the physical size
of the system accumulators (14 decimal digits) is exceeded at any
time during this operation, results of this and future arithmetic
operations are unpredictable.

Examples:

SUBTRACT (1) FROM TOTAL.

SUBTRACT. (2) +(3) FROM CREDITS.

SUBTRACT WEIGHT FROM RATE.

SUBTRACT 10§ FROM COUNT.

SUBTRACT (13:3-5) FROM TEMP.

"3-22

L.
.-

——

B

m

.

° ii.

' WHEN CONDITION . '

"Format:

Description:

I,

'The WHEN statement functions exactly as does the IF statement

except that it tests certain conditions or states within the
system as opposed {9 logical relationships. The conditions tested

- are:

-,hQ WHEN FLAG

The WHEN. FLAG statement is used to test for the presence of the ER-

ROR ° character anywhere in the current record. This should be used
sparingly as it greatly decreases system efficiency due to the nec-

essity of completely scanning the record upon encountering this

‘'statement.

b. WHEN OVERFLOW N

.The WHEN OVERFLOW statement is used for checking for logical

arithmetic overflow. It refers to the last arithmetic opera-

" tion that took place, and applies to arguments which are arith-

metic expressions as well as the ADD, SUBTRACT, MULTIPLY AND

.DIVIDE statements. It is important to note that arithmetic

overflow occurs in two different forms:

‘ Logical Overflow - is when a number within a variable
exceeds the number of decimal positions specified by the user.

.in a MOVE statement. That is, of course, when the logical
size is less than the physical size. In this case a trunc-
ation is performed thereby retaining only the specitied amount

. of decimal digits. The overflow switch is turned on and it

"+ 48 up to the user to test this switch with a '"WHEN OVERFLOW'

statement.

* " Physical Overflow - is when the system encounters a
number it cannot handle (greater than 14 digits). In this
case a warning message is displayed on the error line and
the user would have the option of aborting or proceeding.

- Subsequent arithmetic operations are not predictable. This

- overflow type cannot be tested by 'WHEN OVERFLOW'.

3~23l

ii.

111.

VHEN

Description:

'¢. WHEN NOT PGM n (where n = §-9)

The WHEN PGM statement is used for testing which input format
the current record was or was not entered under. - The NOT is
optional ’

d. WHEN RECORD nn (where # >nn < 65¢40)

The WHEN RECORD statement is used for testing for the relative
number within the batch of the current record. It also may be
used to check for the beginning of a batch by apecifying record
number one.

fExamples.
_WHEN FLAG, GOTO ERROR.

© WHEN OVERFLOW, PAUSE 'EXCEEDED 999'

WHEN PGM 4, GOTO D04

'WHEN NOT PGM 4, ADD 1 TO COUNT.

'WHEN RECORD 1, PERFORM IHEADER.

3-24,

.
- e I O P O e 3

2 DB bR ey by s

Guletad

I‘P‘.‘rl

TN

SECTION 4

// ' " SENTENCES

GRAMMAR

_ A program sentence may comprise one and only one action statement Or

one and only one 'action' statement preceded by any number of condi-
tional statements. An action statement may be considered an indepen-
dent clause, therefore, one or more conditional statements alone do

not constitute a valid sentence.

Examples: IF (1) = (2). (illegal - no action statement)
'IF (1) = (2), ADD (5) TO TOTALl.
WHEN PGM2, IF (1) = (2), ADD (5) TO TOTALl.

Note: An exception to the above rules of grammar occurs in
the RELEASE statement.

'CONDITIONAL EXECUTION

When executing a sentence with conditional statements the following .
rule applies: When a conditional test proves to be false, program

control will branch to the next sentence by-péssing all statements up

~to that sentence, otherwise the very next statement will be executed.

SENTENCE LABELS

Sentences may be preceded with a label so that they may be branched
to with a GOTO statement or called with a PERFORM statement. A

label must be immediately preceded by exclamation point and may be
up to 8 characters in length with the first character being A-Z and

all other characters A-2Z or ¢-9.

P it 0 ah oD & gt s it e gee

Example: ISTART, ADD 1 TO COUNT,
' IFINISH, STOP. . o

PUNCTUATION

. Period is used as a sentence delimiter just as in the English
language. It is critical that the period be used correctly
so that sentences with conditional statements will be executed
properly.) ' ' .

+ Commas are most commonly used to separaté statemenfs. ‘When
separating two conditional statements, the comma impiicitly
defines ailogicai "AND'. Commas may also be.used to separéte
‘'sentence labels from sentences, RELEASE from AT END and just.
about anywhere they make sense. Commas are primafily~f6r

program legibility and are not really necegsary:

Example: ITEST, WHEN PGM2, IF (1) = X, ADD (2) TO TOTAL.
equates to: - '

ITEST WHEN PGM2 IF (1) = X ADD (2) TO TOTAL.

. Spaces are used to separate all verbs arguﬁenté,'connectors"
and stateménts that are not otherwise separated by'pefiod;

comma, or arithmetic operator.

4
¢

