XGCC

The Gnu C/C++ Language System for Embedded Devel opment

Revision: Beta 1, 1/23/2000
Copyright © 1999, 2000 by Embedded Support Tools Corporation. Printed in U.S.A.

All Rights Reserved. No part of this document may be reproduced or transmitted by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without express prior written permission from the copyright
holder.

Limits of Liability and Disclaimer of Warranty

Embedded Support Tools Corporation have used their best efforts in preparing the book and
the programsincorporated in this product. These efforts include the devel opment, research,
and testing of the theories and programs to determine their effectiveness.

Embedded Support Tools Corporation makes no warranty of any kind, expressed or implied,
with regard to these programs, or the documentation contained in this book. It is entirely your
responsibility to determine the suitability of these programs for your particular needs. Neither
Embedded Support Tools Corporation nor its employees, officers, directors, or distributors
shall be liable in any event for incidental or consequential damages in connection with, or
arising out of, the furnishing, performance, or use of this book or these programs, even if they
have been advised of the possibility of such damages.

Trademarks

XGCC and VisionClick are trademarks of Embedded Support Tools Corporation. PowerPC is
atrademark of IBM Corporation, used under license therefrom. ColdFire and BDM are
trademarks of Matorola Inc. Microsoft and Microsoft Windows are trademarks of Microsoft
Corporation. All other trademarks are acknowledged to be the property of their respective
OWnNers.

Page 3

1

Table of Contents

L geTo 18 ox i o] o HU SR UTPPPTTR 9
1.1 XGCC: Gnu CC from Embedded Support Tools Corporation.........cccceeeeeverreeeennne 9
A I 0T Y € 0 [V o0 = oX S 9
1.3 Technical SUPPOrt INFOrMELION.........coiiiieeeeeeeeeeee e 10
14 CD-ROM CONLENLS.......ueiiieeieeieeitee sttt ettt e st e b b sseesbessbe e saeesaeesaeeeeeeane 11

141 Gnu C/C++ compiler for M68K and PowerPC embedded systems.................. 12

14.2 Gnuassembler (as), linker (I d) and binary utilities..........cccocevvveeceiicieee, 12

143 newlib Cruntime library ... 12

144 Gnuiostream CH+ HDIarycccceece i e 13

145 EST'slibrom.al/O driver IDrary ... 13

T] U 0= = S 13

1.4.7 Gnudocumentation iN HTMLcocoiiiiiiiienesee e 13
1.5 Minimum System REQUIFEMENLS..........coviueiieiiseeee sttt sae e sresre e sne s 14

151 PrOCESSONcoiueiiueieieeteesiee st ettt et sbe et s e e st e be et e et e e saeesaeesaeeeabesabeasaeesneesnnas 14

152 RAM et b b 14

T T D TF T ot 14
L 1 01 = = o o U PRTSS 14

Hello, GCC: compiling your first program with Gnu CC.............c...ceeeeeee. 15
2.1 EnVironment VariallES..........oouoiiiiiieriseseee et 16
2.2 The COMMANG lINE ..ottt et ne e ee e eenees 16
2.3 Linking an executable fil€........ccoieeieieeece e 18
2.4 Creating asymbol file and download file for VisionClicK...........cccceevviveveieciennnee. 19
25 Downloading to the Target........ccocereieeiere e e 19

RUNNING the GNU TO0IS........ccvviiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee e 23
I R o 070 =0 0 1 = 1 OSSR 23
3.2 How gcc controls the compilation and link process...........ccoveeerveeeiencecenenee e 23
3.3 gcc handles C, C++, assembly language, object files, and libraries..........c.cccccuveneee. 25
3.4 Selecting the target system (- <NAME>)oceeciiiiciecece e 26
3.5 Target-Specific OPLtioNS (-MSXXX).c..iiiieeieeeeie e eee et eee e e eesee e eneesees 27
3.6 Specifying the optimization level (-O<N>).....cooiiiiiiiie e 30
3.7 Enabling generation of debug info (-0) .ceovvvveeriiieiesecese e 31
3.8 Position-Independent Code (-fPIC, -TPIC) ..ooeeceiicece e 32

http://www.estc.com

Page 4 Embedded Development with Gnu CC

3.9 Outputting an object file (-c) or assembly languagefile (-S) ...c.covvvevvvveceieceeee, 32
3.10 Specifying directoriesfor include files (-1, =1-) coiveveveieeceee e 33
3.11 Creating dependency fIleS (-MMD) ..o e 33
3.12 Define amacro (-D<NaMES) ..o e 34
3.13 VErbOSE MOUE (2V) .ottt sttt ettt e e e s n e e e e tesneeeenrs 35
3.14 Enabling warning messages (-Wall)ccooi oo 35
3.15 Specifying alinker script (-T <fillename>)cccoeviviieii e 36
3.16 Specifying library files (-I<libName>) ... 36
3.17 Specifying directoriesfor library files (-L<dirname>)..........cccccvveeevieiicceseceeeee 36
3.18 Passing options to the assembler and linker (-Wa, -WI)ccooeiiinininiicceee 37
3.18.1 Common AsSemMbBIer OPLiONS........cccceiieieiiee sttt ene 37
3.18.2 Common Linker OPLIONS.......cccciiiieiieiieiie e se e ete st rae e sae e nenne 38
3.19 Assembling & Linking viagcc vs. invoking thetoolsdirectlyccooveevieneenee. 38
3.20 The GNU 8SSEMDIEN ... oottt et e e e e e neas 39
3.20.1 COMIMENLS.....otiiuieeirteeee sttt ettt et et et et bt et st eshe e e bt saeebesbe et e sbesneesbesreensenbens 39
3.20.2 SEAEMENTS.....otiieiiiiiteeee ettt st bttt be et b s ae e nne e e e b 39
3.20.3 Escapesin CharaCter SIHNGS.......oeoereiiere et 40
3.20.4 LOCaAl SYMDBOIS......cciiiieeece ettt et e nre s 40
3.20.5 ASSEMDIEr DIFECLIVES........ciiiiiriirieieeeeee sttt 40
3.20.6 REQISIEr NAMES.. ..ot iteeesie ettt ee st e et ente e eeeseeeneesaesreensenneas 40
T R I 41 o 1) 40
3.21.1 CommON LinKer DIFECLIVEScoueiueieieieieriesie sttt 41
3.21.2 Thestandard linker scriptsrom.ld and ram.ldccocoooiiiieiiieiceeeeee 47
3.22 Building projects With GNU MaKe...........cooiiieiiiieerere e e 48
3221 MEKEDESICS ...ttt 48
3.22.2 Make COMMAENG lINEcoiriiiiirieieeee e 50
3.22.3 DependanCy FIlES.......cccoii et 51
3.22.4 The MaKefile temMPIate........cccoiiuicieeceee e 52

4 Embedded ESSentialS..........cooiiiiiiiiiiiiiie s 55
4.1 Preprocessor SYMDOIS.o e e 55
O R A | B = = SRS 55
B2 BBK .ttt bbbt e et b bbb e e 56
4.1.3 POWEIPC ...ttt te e sestestessesae e e e eseeseesesseneenaneenennens 57
4.2 Interfacing C and assembly language functions.............cccoevvvevevecceve e 58
D21 BBK ..ttt bbbttt bbbt e e 58
.22 POWEIPCoooiiitieieeiesie ettt st seesestessesae e e e eseeseesessesteseesenennens 60

Embedded Support Tools Corporation

4.3 Inline assembly language in C SOUrCe fil€Scoviieieiiiieii e 62
4.3.1 Optimizing assembly language CoUEcoeeeiiieeie e 63
o 00 o {0 X o LU 64
441 Initializing peripheralS Upon Startupcooveeereniere e 64
4.4.2 Softwareinitialization before entering main ()ccceevveecevecievece e, 70
443 Default exception handling procedure............ccooveeereieeeesie e 70
N ol (D= 011 YA 0 £ R 71
ST (@< o (0 T 7= 190 | = £SO 73
451 MBBK ...ttt bbbttt nn e 73
452 POWEIPC ...ttt seste s te st e ae e e e e seeseesesseneesaeaenennens 76
4.6 Position-Independent Code (PIC).....coii e 78
4.6.1 PlC OVEIVIEW ..ottt sttt st sttt bbb ne e 78
4.6.2 -fpic(little PIC) vS. —fPIC (‘Dig’ PIC) ..ceeieieeee e 79
4.6.3 Code and datafiXUPScocoieerrrieeiene et e nee e 80
4.6.4 Unhandled exceptions and the data fixup valuecccccevvveeveiecceeseseeee, 80
4.7 Omitting exception and RTTI support from C++ programs..........cccceeeeeeveeseeeennenn 81
4.8 RUNIME ITDIAIES ... coiiieeee et e e e 82
S T R 11 oo o3 - VSR 82
4.82 Thenewlib runtime libraryccccooceiiiieie i 82
4.8.3 Support functions required by NEWIID...........cooviiiiiiie 85
4.9 Linking the correct libraries (‘multiliD’) ..o 86
4.10 Customizing the link process: XGCC's“Modular Linking™ccccevvvveeveieeeennnne. 89
4.10.1 Replacing the startup module crt0.0 (link StEP 2)cvvveeeieiieeeeeee e 90
4.10.2 Replacing or eliminating the exception vector table module (link step 6) 90
4.10.3 Maodifying or eliminating run-time libraries (IiNK SteP 7).....oceevvvvveveeceieennee. 20
4.11 EST’slibrom.al/O SUDSYStEM.........ccviieieceseese et 91
4.11.1 librom implementation of newlib support fuNCtions............ccccceveeveeienencennne. 92
4.11.2 Implementing stream [/O With lIbBromcccoviiievi i, 94
4.11.3 The DeviceControl() function Callcccooveeeiiiieie e 95
4.11.4 Writing anon-buffered driVer ... 99
4115 Writing abuffered driVer ..o 102
4.11.6 Implementing the I/O devicetable..........cccooveveieeeie e 107
4.11.7 Building and linking application programs with librom.............c.ccoooiieiii. 109
LAY = Vo] 011 T L o 111
5.1 AdAitiONal FESOUICES.......cveueeieriiriesie ettt st s b e 111
D511 WED SIES.. ittt sttt en et sttt ne e 111

http://www.estc.com

Page 6 Embedded Development with Gnu CC

512 MaliNG LSS .ciiiieiiceee sttt b e st ne e 112
B5.1.3 NOWSHIOUDBSveeieeeereeteesteesieessesssteeseesseessesssesssesssesssesssesssesssessnsssnsesssesssesssenns 112
LT 1 o [USRI 113

Embedded Support Tools Corporation

Page 7

List of Figures

Figure 2.1: compiling 'Hello world' for the MDP860Basic board............cccveevevvieeiesieeiennns 15
Figure 2.2:Project settingS for NEO.PI ..ovvceeeii e 20
Figure 2.3: Downloading the BDX fileto thetargetccoovvviiieieicceseeeeeee 21
Figure 2.4: Select the appropriate COM port for your PC and set it to 9600 baud. 22
Figure 2.5: running the program on the target............ccceviieeie e 22
Figure 3.1: How filesare processed DY gCC......oieeeiieeere e 25
Figure 3.2: Basic syntax of the linker's SECTIONS direCtive..........ccccevveninineneneniceeene 43
Figure 4.1: Non-buffered 1/0 device implementation............cccoceeceveieeveiiccece e 99
Figure 4.2: Buffered 1/0O device implementation.............ccovvereeneseece s 102

http://www.estc.com

Page 8 Embedded Development with Gnu CC

List of Tables

Table 2.1: the components of the compiler command lin€...........ccccovvvevevinesie e 17
Table 2.2: Linker command [iN€ OPLIONS.........ccvevueiiiiiese et 18
Table 3.1: Filename extensions recognized DY gCCccovrerireririerieieeeeesese e 26
Table 3.2: Gnu CC identifiers for each microprocessor architecture............cocooeveieieiveeenns 27
Table 3.3: Processor-specific options for the 68k compilercocovveveiivevie e 29
Table 3.4: Processor-specific options for the PowerPC compilercccceoeinenencneieieenns 30
Table 3.5: Frequently-used assembler OpLIONS.........cccoveirerireriesereee e 37
Table 3.6: Frequently-used [inKer OPLioNS..........ccoeiiieevie i 38
Table 4.1: PowerPC SPRsimplemented with inline writeSin Crt0...........cceeevivveecievecceenene 68
Table 4.2: exception vector function namesfor the 68K ... 76
Table 4.3: exception vector function names for the PowerPC ... 78
Table 4.4: support functions required by NeWIiD...........cccooeeeii e 86
Table 4.5: multilib options and directory locations for 68K targets.........ccooeeerevreeneneeccenenne 88
Table 4.6: multilib options and directory locations for PowerPCccocoooeiiieeieii e 89
Table 4.7: librom’s implementation of the newlib support functions............ccccccceveeevvceenee 94
Table 4.8: Actions implemented in the DeviceControl () functioncccceeeeveveecevv e, 98
TahIE 4.9: DEVICE TlagS. ... ettt 99
Table 4.10: Buffered and Non-buffered functions for the 1/0O device table entries............... 108

Embedded Support Tools Corporation

Introduction Page 9

1 Introduction

1.1 XGCC: Gnu CC from Embedded Support Tools Corporation

This manual documents XGCC, EST’ srelease of Gnu CC which runs on the Microsoft
Windows family of operating systems and generates code for a variety of embedded
processor architectures. Much more than just a compiler, XGCC is a complete C/C++
language system that complements EST’ s premium C/C++ source-level debugger,
VisionClick, providing a high-quality end-to-end solution for embedded devel opment.

This manual is designed to be used together with the Gnu documentation that isinstalled on
your computer with the compiler tools. In some casesit will fill in some of the gapsin the
Gnu manuals, particularly on topics of interest to embedded developers; in other cases, it
pulls together and summarizes information that may be spread out over severa different
manuals. Finaly, it documents some of the enhancements and additions made to the Gnu
tools by EST.

1.2 The Gnu project

An organization called the Free Software Foundation was created in 1984 to sponsor the
development of (surprise...) free software. Since then the FSF have released dozens of
programs that have received high praise for their quality and reliability. All of these programs

http://www.estc.com

Page 10 Embedded Development with Gnu CC

were released in source code form, freely accessible by anyone who wanted to download
them.

The FSF define ‘free’ not in terms of cost, but in terms of access: the source code is always
available, and if you add or change something and give the resulting program to somebody,
you must also offer to give them the source code to your changed program, in order not to
deny them any rights of access that were given to you by the program’s original author. The
Gnu Public License (GPL) is the document that defines the legal license for the FSF
programs, and it has since been adopted by many other individuals and organizationsin
releasing their own free software to the public.

The FSF's Gnu project is an attempt to create a complete Unix work-alike operating system
that is entirely made up of free software. Although origina plans called for this system to be
based upon the FSF s own kerndl (called the Hurd), this goal has now been largely attained
through the Linux project, which is entirely based upon free (GPL’ d) software and is now
becoming a major force in the operating systemsworld.

This approach isradically different from the traditional approach of commercial program
development. The FSF survives through corporate and private donations of time, money,
computers, people, and office space. By releasing the code in source form with universal
access, many thousands of motivated programmers end up making contributions to the
programs, which ultimately resultsin very high-quality, feature-rich software. A different
paradigm to be sure, but one that has proven to be successful in attaining its goals of high-
quality, freely-available software.

1.3 Technical Support Information

EST Corporation provides free technical support for XGCC for aperiod of 90 days from date
of purchase. After theinitial 90 days, an Extended Support Agreement entitles you to
additional free technical support. EST may be reached as follows:

Mailing address and tel ephone number

EST Corporation Headquarters
120 Royall St.
Canton, MA 02021

(781) 828-5588

Embedded Support Tools Corporation

Introduction Page 11

EST Europe

12 Avenue De Pres

78180 Montigny Le Brettoneax
France

+33 (0) 1 3057 3200

For acomplete listing of EST’ s worldwide sales offices, please consult the EST web site at
http://www.estc.com/.

EST Technical Support Department Hours

Monday-Friday
8:30A.M.—-6:00 P.M.
Eastern Standard Time

Internet (e-mail)
estsupp@estc.com

URL
http://www.estc.com

FTP server
ftp://estftp.estc.com

1.4 CD-ROM Contents

The XGCC CD-ROM distributed by EST contains everything you will need to get started
quickly on your next embedded project. The following components are included:

http://www.estc.com

Page 12 Embedded Development with Gnu CC

1.4.1 Gnu C/C++ compiler for M68K and PowerPC embedded systems

EST have ported the Gnu CC compiler to run on the Win32 operating systems, cross-
compiling to embedded systems. Currently, the Motorola M68K family and IBM/Motorola
PowerPC families are supported. Over time, we will add support for other microprocessor
familiesin future releases of the CD-ROM. The CD-ROM will be updated to track the new
releases of the compiler.

The compiler comes with the latest version of the Silicon Graphics Inc. Standard Template
Library (STL) implementation.

1.4.2 Gnu assembler (as), linker (I d) and binary utilities

Included with the compiler are the Gnu assembler and linker, again running on Win32 and
cross-compiling to M68K and Power PC. Also included are the so-called binary utilities,
which are a set of utility programs to manipulate object files in various formats. The most
commonly-used binary utility programs are listed below:

obj copy, autility to copy object files between various different object and hex/ASCI|
formats

obj dunp, autility to examine the contents of object files
ar , the Gnu object library (archive) manager

nm autility to list symbols defined in object files

ranl i b, autility to index object libraries for faster access

si ze, which liststhe individual and total sizes of the sections contained in alist of
object files

st ri ngs, which lists printable strings contained in an object file

st ri p, autility to remove debug information from object files

1.4.3 newlib C runtime library

newlib is a compl ete implementation of the standard C runtime library suitable for embedded
applications. It is acollection of free software that was assembled by Cygnus Solutions to
address two common issues in embedded applications:

Embedded Support Tools Corporation

Introduction Page 13

Most standard C library implementations are not appropriate for small- or medium-scale
embedded systems, because of the amount of memory they require; and

Some libraries have licensing restrictions that make it difficult to embed the softwarein a
ROM-based product without also supplying source code to the end customer.

newlib is easy to adapt to embedded systems, and requires relatively small amounts of RAM
and processor bandwidth. In addition, it is licensed under a BSD-style license, which means
that there is no restriction against using the library in acommercial product.

1.4.4 Gnu iostream C++ library
This library implements iostreams on top of the standard C I/O library routines.

1.4.5 EST’s librom.a I/O driver library

The newlib standard C library requires severa supporting routines from the underlying
operating system to link and run successfully. For embedded targets which do not use an
operating system, we have provided the |l i br omsystem of 1/0 libraries which implement a
flexible and capable 1/0O subsystem for newlib while dramatically reducing the amount of
programming required to adapt the library to a new hardware platform. Like newlib, the
librom system islicensed under a Berkeley-style license that places no restrictions on
commercia use of the software.

1.4.6 Gnu make

Gnu make automates the rebuilding of object files and executabl es based upon the rules
specified by the programmer in a makefile.

1.4.7 Gnu documentation in HTML

The Gnu manuals are provided as HTML files, making it simple to search for help
information and navigate quickly between different topics. Manuals are provided for al the
programs on the CDROM.

http://www.estc.com

Page 14 Embedded Development with Gnu CC

1.5 Minimum System Requirements

1.5.1 Processor

Since these are command-line compiler tools and not interactive applications, there is no
particular minimum requirement for processor speed; any system capable of running
Windows 95, Windows 98, or Windows NT will serve adequately as a platform for running
these tools. Of course, faster is aways better!

1.5.2 RAM

As abare minimum, you should have at least 12 MB available under Windows 95/98. Under
Windows NT, we suggest at least 16 MB. Making more RAM available will significantly
improve the performance of the tools.

1.5.3 Disk Space

Thetools themselves take little hard drive space, but the total space required will vary
considerably depending upon how many sets of run-time libraries are installed. About 168
MB of spaceis needed for atypical installation of the PowerPC tools and libraries.

1.6 Installation

Installation iseasy: just run xgcc32. exe from the root directory of the CD-ROM; it will
ask you afew questions and then do all the work for you. The setup program will ask you to
select adestination directory for the compiler tools, and also to select which target
microprocessor families and other components you want to support. You can install the entire
toolset, or just the pieces you will need immediately; if your needs change later on, you can
aways re-run the installation program to install additional components.

Embedded Support Tools Corporation

Hello, GCC: compiling your first program with Gnu CC Page 15

2 Hello, GCC: compiling your first program
with Gnu CC

Figure 2.1 shows a compile session from start to finish, including (a) setting the compiler’s
environment variables, (b) running the compiler itself, and (c) converting the linked
executable to ahex/ASCI|I file. We'll discuss each step in alittle more detail.

Microsof t(R> Windows 28
(CHCopyright Microsoft Corp 1981-1999.

G:sUWINDOWS ¢ s wxgee32sxgee . bat
GCasWIMDOWS >ed “xgcc32vexample~868Basic

C:sxgocced2sexanple~B86BBasic >make
—01 —g —Wa,.—-a.>hello.lst -b powerpc—eahi —ncpu=860 —mnsdata —c hello.c —o he

.0
—01 —g -Wa.—a.>»B6@Basic.lst -bh powerpc—eabi —-mcpu=860 —msdata —-c B6BBasic.c
86BBasic.o
—1,-Map.hello.map —-b powerpc—eabi —mcpu=868 -msdata hello.o 86BBasic.o -T

EEBBaglc 1d —o hello.elf

c:sest3I2A/convert.exe g —bh —¢ —m gnu hello.elf —qg

convert v?.2E (32hit) Cupy}lght (c>» 1996—1999 Emhedded Support Tools Corp.

C:swgec32hexanples86BBasdic >

Figure 2.1: compiling 'Hello world' for the MDP860Basic board

http://www.estc.com

Page 16 Embedded Development with Gnu CC

2.1 Environment variables

Before any of the gnu tools may be run, the bin directory containing the gnu executables must
be included on your PATH so COVIMAND. COM(or CVD. EXE, for Windows NT) can find
them. The batch file XGCC. BAT located in the root directory of the compiler installation
(default c: \ xgcc32) was provided for this purpose; open a console window and execute
XGCC. BAT, and then you' re ready to compile.

There are no other environment variables that must be set in order to run the tools. However,
if you have other non-EST releases of the Gnu tools installed on your computer, your system
may have environment variables defined for those tools. If these are set when the XGCC
tools are executed, then they can cause problems where the EST tools may access the wrong
directories for executables, libraries, header files, and so on. For this reason, the XGCC. BAT
file provided with the EST rel ease sets most of these non-essential environment variables to
null stringsto avoid these types of problems.

2.2 The command line

Now that the environment variables are set, you can compile one of the example programs
included in the EXAMPLE subdirectory. We'll look at the sourcefileshel | 0. ¢ and
860Basi c. c inthedirectory C: \ xgcc32\ exanpl e\ 860Basi c. This program will be
run on the EST MPD860 Single-Board Computer:

Referring to Figure 2.1, sharp-eyed readers will see that we are building this project using the
Gnu make utility, since this demo program is supplied with a makefile. Although make
simplifies the task of building projects and keeping them up to date, in this section we want to
look at the command lines executed by make to compile and link the program. Please refer to
section 3.22 for more detail on how to use make.

C.\ WNDOW5S> cd \ xgcc32\ exanpl e\ 860Basi ¢

C.\ xgcc32\ exanpl e\ 860Basi ¢c> gcc -OL -g - W4, -
a,>hello.lst -b powerpc-eabi -ncpu=860 -nsdata -c
hello.c -0 hello.o

In the command line shown above, we have compiled the sourcefilehel | 0. ¢ intoan
executablefilehel | 0. 0. The program weinvoked isgcc. exe, the Gnu CC driver

Embedded Support Tools Corporation

Hello, GCC: compiling your first program with Gnu CC

Page 17

program. We gave gcc abunch of options, and it ran several subprograms (the C
preprocessor, the compiler proper, the assembler, and finally the gnu linker) to create the final

output file.

Table 2.1 lists each of the options:

Command line Description Detailed

Option description

-0l Selects an optimization level of one (possible values | Section 3.6
are 0 through 4)

-g The compiler includes symbolic debugging Section 3.7
information in the object file

-\, -a, >hel lo.1st | Causesthe assembler to create alisting and output it | Section 3.18
toafilenamed hel | 0. | st

-b power pc- eabi Tellsgcc to use the PowerPC family compiler Section 3.4

- mcpu=860 Instructs the compiler to use the CPU32 instruction Section 3.5
set, and tells the linker to use run-time libraries
compiled with this same option

-nedata Instructs the compiler to use the PowerPC EABI Section 3.5
(Embedded Application Binary Interface) small data
sections

-C Instructsgcc. exe to compile and assemble the C Section 3.9
source file without linking it; this leaves the object
file on disk for a subsequent link operation.

hello.c The source file we are compiling

-0 hello.o The filename to give to the object file.

Table 2.1: the components of the compiler command line

http://www.estc.com

Page 18 Embedded Development with Gnu CC

2.3 Linking an executable file

After the source files have been compiled into object files, the next step isto link them
together into an executable. Linking the files resolves any external references between files
into absolute address references. The linker command line looks like this:

C. \ xgcc32\ exanpl e\ 860Basi ¢c> gcc -W, - Map, hell o. map -b power pc-
eabi -ncpu=860 -nsdata hello.o 860Basic.0 -T 860Basic.ld -0
hel | 0. el f

Table 2.2 details each of the command line options passed during linking.

Command line Description Detailed
Option description
-W, - Causes the linker to create alink map and output it Section 3.18
Map, hel | o. map toafilenamed hel | 0. map

-b power pc- eabi Tellsgcc to use the PowerPC family compiler Section 3.4
- mcpu=860 Instructs the compiler to use the CPU32 instruction Section 3.5

set, and tellsthe linker to use run-time libraries
compiled with this same option

-medat a Instructs the compiler to use the PowerPC EABI Section 3.5
(Embedded Application Binary Interface) small data
sections

hel l 0.0 The object fileswe are linking

860Basi c. o

-T 860Basic. |d Passes the linker script 860Basi c. | d to the Section 3.15

linker; thisfile lists any additional library files
needed during linking, and specifies the location of
code and data memory

-0 hello.elf The filename to give to the ELF executablefile.

Table 2.2: Linker command line options

Embedded Support Tools Corporation

Hello, GCC: compiling your first program with Gnu CC Page 19

2.4 Creating a symbol file and download file for VisionClick

Once we have an executable program ready to debug, we must convert it to BDX format in
order to load it into the VisionClick debugger. In addition, a symbol file must be created in
order to be able to perform source-level debugging in VisionClick. Both these files are
created with the CONVERT utility which is supplied with VisionClick. The command line for
our example looks like this:

c:/est32/convert.exe -g -b -c -mgnu hello.elf —q

2.5 Downloading to the Target

To download the program to the target, we start VisionClick and create a new project file.
We'll call thisproject hel | o. prj . Figure 2.2 shows the settings we entered for this project.

http://www.estc.com

Page 20 Embedded Development with Gnu CC

+ PROJECTS / LOAD !E[E
Project Configuration | Load Dptinnsl Enmmunicatiunsl wigionl CE Ennfiguratiunl
j Active Project Iluallu.prj ﬂ
Parameter Setting (Type or Use Right Mouse)
----- %g Description 'Hello' test program for MDPE60 Basic board
----- % Symbol File C:hyxgoc32\examplel §60Basicihello. ab
----- j Dovmload File C:vagec32vexampley §60Basicihello . bdx

..... E Source Paths
..... @ Reset Symbol _start

..... @ Microprocessor MPCEG0

..... ' Target Control visionPROBE

..... RTOS Debugging HOHE

----- :. Event Svstem Hone LI

Mew | Activate Save .. Bazelir ... Delete (] | Cancel

Figure 2.2:Project settings for hello.prj

We then download the program by clicking the OK button and pressing F11. The download
dialog will confirm that the program was loaded into memory.

Embedded Support Tools Corporation

Hello, GCC: compiling your first program with Gnu CC

Page 21

+ LOAD COMFPLETE !

]|

D ownloading T arget Image

Initializing D ownload...
Download Port = LPT1
Loading To Target Rakd: Biaz = Hone

Dowrload Complete - 017 Sec:
Setting PC To &_start = 0x203C

4]

File = C:hwgoc32hexamplet8E0E azichhello. bdx
Size = BAO3A ‘Wiite/Read Verify iz OFF [Fastest]

| b

Symbol Reading: 100% Complete

Code: 100% Complete

(118

Figure 2.3: Downloading the BDX file to the target

Since this demo program interacts with a console on the SMC1 serial port, make sure to open
VisionClick’s I/0 window and configure it for 9600 baud (right click on the 1/0O window to
do this). In Figure 2.4 we are using COM1 on the PC; set this parameter for the COM port
that is appropriate for your system. Also, ensure that the serial cable is connected properly to

| COM1 CLOSED 3|

your PC.

- IEIEEIEI "I

I/0 Port and Rate ——
{EDM1

Open Port

Ok / Hide

Y

http://www.estc.com

Page 22 Embedded Development with Gnu CC

Figure 2.4: Select the appropriate COM port for your PC and set it to 9600 baud.

And now the moment of truth: we press F5 to run the program, and... the MPC860 says

Hel | o, worl d! Success! Wedo avictory dance at the workbench, and then quickly
compose ourselves and get back to work.

+1/0: COM1 Open At 9600 M=l
Hello, world! -
Enter wour name: E3T

I got 'EAT' in my buffer.

A | Ld

Figure 2.5: running the program on the target

We have moved very quickly through atrivial example in this section, in order that we could
focus on the big picture. The next section goes into more detail on each of the steps, and will

hopefully get you to the point where you can start work on developing your own embedded
code with Gnu CC.

Embedded Support Tools Corporation

Running the Gnu tools Page 23

3 Running the Gnu tools

We now go into alittle more detail on the most commonly-used command line options for the
gnu tools. Thisis not intended as, nor could it be, areplacement for the Gnu manuals; rather
wetry to cover only the options that are most often used.

3.1 Program names

Y ou can have multiple installations of the gnu tools on your hard drive at the same time, for
example you can have one set which generates code for the Motorola 68K family along side
another set for the PowerPC, Hitachi SH, etc. Each tool set comes with agaggle of compilers,
assemblers, linkers, utilities, and on and on. In order to easily separate them, each program is
prepended with the configuration name of the target that it supports. For example, the linker,
whichis canonically named | d, residesin thefilen68k- el f - | d. exe for the Motorola
68k version, power pc- eabi - | d. exe for PowerPC, sh- el f - | d. exe for the SH-3, etc.
Similiarly, the assembler isnamed 68k - as. exe, power pc- eabi - as. exe,sh-el f -
as. exe etc.

3.2 How gcc controls the compilation and link process

gcc. exe isthe program that you will almost always use to initiate a compile or link session.
However gcc.exe does not actually do the work itself; it is actually adriver program which

http://www.estc.com

Page 24 Embedded Development with Gnu CC

examines the options and filenames passed on its command line, and then calls other
programs to perform the requested operations.

Figure 3.1 shows the relationship between gcc. exe and the other programs, and how the
various types of input files are processed by each tool. When gcc. exe callsthese other
tools, it will construct acommand line that is based upon the contents of the original
command line passed to gcc. exe, modified as dictated by a script in the specs filefor the
target processor. Thespecs fileislocated in the directory c: \ xgcc32\ | i b\ gcc-

i b\ <target nanme>\<conpil er version>, where<t arget name> isthename
of the target compiler configuration (eg power pc- eabi for PowerPC), and <conpi | er
ver si on> isthe version number of the compiler being used (eg. 2. 95. 2).

Embedded Support Tools Corporation

Running the Gnu tools Page 25

CHnject Fles Lilerary Ries czzem v Gouroe Ssam bl ol e 2T b Gounse Hedd e Fils
[*.e] *-al .=l [*-5 *.cl *oeppl {*-h]

oo Connaiker

o I Pa s ey

Homesmaler

fas ware]

Funten & Lilbmwiies
[1ibswdott_a)
{1ibe.a)
{1ibm. a}

{librom._ a)

{Likgeo.al

atartupe Dode
{cxen. ol

ELF ©oject Fis X
[£ile. 21£]) E«septfion vizctos

Prectars_a)

A File
Gl

Figure 3.1: How files are processed by gcc

3.3 gcc handles C, C++, assembly language, object files, and libraries

gcc can accept any mix of C, C++, assembly language, object files and libraries on the
command line; it handles each one according to the filename extension. Table 3.1 defines the
key filename extensions that are recognized by gcc, and what it does with them:

http://www.estc.com

Page 26 Embedded Development with Gnu CC

Extension | File type Operation

.C C sourcefile gcc runsthe file through the preprocessor and then
the C compiler

.cpp, .cc, | C++ sourcefile gcc runsthefile through the preprocessor and then

.CXX the C++ compiler.

S Assembly sourcefile | gcc passesthe file to the assembler unchanged

S Assembly sourcefile | Gee runs the file through the preprocessor and then
the assembler

.0 Object file Gcc passes thefile to the linker unchanged

a Library file Gcc passes the file to the linker unchanged

Table 3.1: Filename extensions recognized by gcc

Looking at thistable, it isinteresting to note that gcc can run an assembly-language file
through the C preprocessor before passing the resulting output to the assembler proper. This
means that you can use C-style macros in your assembly source, which can be amagjor
convenience for things like defining repetitive structures in memory, or accessing constants
that are used in both C and assembly files. It al'so can simplify the interface between C and
assembly language functions, as discussed in section 4.1.

3.4 Selecting the target system (-b <name>)

If Gnu CC can compile code for many different target systems, then how do we know which
one we are targeting if thereisonly one ‘gcc’ command? That’ s what the —b option does. For
example, the —b option, followed by the symbolic identifier n68k- el f , tells gcc to run the
nm68k- el f version of the compiler, assembler, and linker tools.

Each different target architectureis assigned an identifier that uniquely identifies the
processor, system manufacturer, and operating system or object format. In traditional Unix-

! They arein \XGCC32\m68k-elf\bin (68k) and \X GCC32\powerpc-eabi\bin (PowerPC).

Embedded Support Tools Corporation

Running the Gnu tools Page 27

based Gnu compilers, these identifiers are made up of three words separated by hyphens, in
the order shown above (example: m68k-sun-sunos4). In the EST release of these compilers,
we picked the configurations that were most applicable to embedded devel opment and used
abbreviated names where possible to keep program names short.

Table 2-1 liststhe EST identifiers with the ‘ official’ Gnu CC identifier, and the
characteristics of each compiler port.

EST ID Full ID Comments

m68k-elf m68k-unknown-elf Embedded Motorola 68k family; ELF object
file format; no operating system

powerpc-eabi | powerpc-unknown-eabi | Motorola/lBM Power PC architecture; EABI
(Embedded Application Binary Interface)
calling convention; ELF file format; no
operating system

Table 3.2: Gnu CC identifiers for each microprocessor architecture

When you specify atarget identifier with the —b option, gcc turns that identifier into a
directory name of theform (base directory)\ (i dentifier)\binandlooksfor
the toolsin that subdirectory. If the directory does not exist, an error message is reported, like
this:

CGCC. EXE: installation problem cannot execute

‘ccl’: No such file or directory

If you see this message during a compilation, then one of the first things you should check is
the target name used with the —b option, to make sure it’s correct.

3.5 Target-specific options (-m<xxx>)

Within each target microprocessor family, there can be several different versions of the
instruction set implemented on different family members. In addition, there are often other
features that are specific to a particular family of microprocessors, which require special
command-line options to control. These options are set via the —mxxx x> family of command
line options.

http://www.estc.com

Page 28

Embedded Development with Gnu CC

Table 3.3 contains alist of the most important target-specific options that are available in the
68k port of Gnu CC. These options (except for - nshor t and —nr t d) also apply to the

assembler.

- m68000 Generates code for the original MC68000 implementation; also
valid for MC68008, MC68302 through MC68328, and M C68356

-ncpu32 Generates code for the any device based upon the CPU32
processor core; thisincludes MC68330 through M C68396
(except the 68356; see —n658000)

- 68020 Generates code for the MC68020. Thisisthe default if no —m
option is specified.

- m68030 Generates code for the MC68030.

- m68040 Generates code for the MC68040.

-nm68020- 040 Generates code that will run on any device from MC68020
through MC68040, ie: code is optimized for the MC68040, but
none of the 68040-only opcodes are used.

- m68060 Generates code for the MC68060.

-nb200 Generates code for any device based upon the Coldfire V2 (and

above) core. Thisincludes all devices with part numbersin the
MCF52xx and MCF53xx ranges.

-nsoft-fl oat

Prevents generation of hardware floating-point instructions, for
those processors which can support it.

- mhar d-f | oat

Forces generation of hardware floating-point instructions, even if
the target processor cannot support a floating-point coprocessor.

-nshort

Forcesi nt variables and function parameters to be 16 bits wide
rather than the default of 32 bits. Note: although the compiler will
accept this option for al targets, the XGCC CD-ROM does not
contain libraries built with this option for MC68060 or Coldfire
targets.

-nmrtd

Specifies use of the RTD instruction when returning from
functions, rather than the default RTS. RTD will result in dightly

Embedded Support Tools Corporation

Running the Gnu tools

Page 29

smaller and faster code, since it automatically reclaims the stack
space allocated for function parameters; however, the
programmer must be careful to only use this option if all
functions are declared before they are called, since the called
function must remove the exact same amount of stack space that
the caller allocated.

Although this option is accepted by the compiler for all targets
except MC68000, the XGCC CD-ROM only contains libraries
built with this option for cpu32 and MC68020 through M C68040.

Table 3.3: Processor-specific options for the 68k compiler

Table 3.4 documents the key processor-specific options available in the PowerPC port of Gnu

CC.

- MCPU=XXX Selects the processor variant in use. xxx may be one of ‘403,
‘505, ‘601, ‘602', ‘603, ‘604, ‘620", ‘821", or ‘860’. If xxx is
one of ‘403', ‘821", or ‘860’, then software floating point is also
selected (see —msoft-float below), otherwise hardware floating
point is selected.

- M une=xxx ‘Tunes the instruction scheduling for the processor variant xxx.
xxX is specified exactly the sasme asin—ntpu above.

-mittle Generate code that executes in little-endian mode.

-mittle-endian

-nbi g Generate code that executes in big-endian mode (the default).

—mbi g- endi an

-nmsof t-f | oat

Prevents generation of hardware floating-point instructions, for
those processors which can support it. Thisis the default for
—nmcpu=403, - ntpu=821, and —ntpu=860.

- mhar d-f | oat

Forces generation of hardware floating-point instructions, even if
the target processor does not implement hardware floating-point
support. Thisisthe default for all CPU types except when the
options—ncpu=403, - ncpu=821, and —ntpu=860 are
specified.

http://www.estc.com

Page 30

Embedded Development with Gnu CC

- nsdat a
- nsdat a=eabi

Causes the compiler to place al variables smaller than acertain
size threshold into one of the small data sections . dat a
(initialized variables), . sbss (uninitialized variables), or

. sdat a2 (const variables). In addition, variablesin these
sections will be accessed using the ‘load indexed’ and ‘ store
indexed’ instructions, using r13 (or r2 in the case of . sdat a2)
as abase address register. Thistypically resultsin smaller and
faster code, however the size of . sdat a and . sbss combined
cannot exceed 64K bytes.

Variableswhich are larger than the size limit are placed into the
. dat a, . bss, or. r odat a sections as appropriate. The size
threshold defaults to 8 bytes, and may be changed with the —Gn
option described below.

-Gn Sets the maximum size of variablesthat will be placed in the
small data sections, as described above for the—nsdat a option.
The default value is 8. If this option is passed to the compiler, the
same value must also be passed to the linker.

-ntal | - ai x Instructs the compiler to use the AlX calling convention rather

than the default System V.4/EABI calling convention. The two
calling conventions are incompatible; either al filesto be linked
together in aprogram must use—ntal | - ai x, or none of them
may use it.

Table 3.4: Processor-specific options for the PowerPC compiler

3.6 Specifying the optimization level (-O<n>)

The Gnu CC compiler supports several levels of optimization. Optimization is selected by
specifying —O<n> on the command line, where <n> is a number from 0 through 4 (can be up
to 6 on some targets). Asis probably obvious, increasing numbers mean higher and more
sophisticated levels of optimization. A good level to use for debugging is—OL; after

Embedded Support Tools Corporation

Running the Gnu tools Page 31

debugging is complete, re-building your code with higher optimization will give you dightly
better performance in the finished program.

High levels of optimization can cause funny things to happen when you run your program
under control of the debugger. Sometimes variables in afunction will only contain valid data
when they’ re being used, and junk before and after; sometimes they may even be completely
eliminated by the compiler, causing the debugger to report that it doesn't exist. In addition,
the code may not execute in the way that you envisioned; the compiler may sometimes re-
arrange loops, move certain statements out of loops into the main body of afunction, or may
not generate any code for some lines of source. Typically these effects will be minimal or
non-existent with optimization set to —OL.

3.7 Enabling generation of debug info (-g)

If you plan to test your code under the VisionClick debugger, you will want to include the
option —g on the compiler’s command line. This instructs the compiler to add symbolic
debug information to the compiled file, including symbol names and locations, source
filenames and line numbers, and the definition of st r uct sand user datatypesin the
program.

This option does not change the actual processor code that is generated by the compiler, it
only adds extra debugging information to the object file. For thisreason, it’s often used even
when not planning to debug the code; the extra debug information is sometimes useful
because can be accessed by some of the other Gnu CC tools. For example, if debug
information is present in the file, the Gnu assembler is able to generate an assembly listing
file which shows the original C or C++ source code intermixed with the compiler-generated
assembly language code.

Assembly-language source files may also have debug info generated for them, but the option
isdightly different: - WA, - gst abs. Refer to section 3.18 for more information on this
option.

Please refer to section 3.6 [Specifying the optimization level (-O<n>)] for a discussion on
debugging optimized code.

http://www.estc.com

Page 32 Embedded Development with Gnu CC

3.8 Position-Independent Code (-fpic, -fPIC)

In some applicationsit may be desirable for the compiler to generate code that usesrelative
addressing, rather than absolute addresses, to access functions and variables in the program.
Thisisreferred to as Position-Independent Code (PIC). Two forms of PIC are supported by
the Gnu tools; typicaly, —f pi ¢ generates code which is smaller and executes faster, but
limits the total size and/or number of functionsin aprogram, while—f Pl C generates code
which removes these limitations but typically uses larger function prologues and executes a
little more slowly.

In contrast to the standard FSF release of the Gnu tools, EST have made several
enhancements to the tools which improve support for Position-Independent Code; including:

Code and data are independently relocatable at run-time
Program and data relocation are fully supported in EST’ s startup code (cr t 0. 0)

For more details on the use of PIC in embedded applications, please refer to section 4.6.

3.9 Outputting an object file (-c) or assembly language file (-S)

The default action of gcc isto try to compile, assemble, and link a program into a finished
executable. Whilethisis fine for small programs, for larger projectsit would be cumbersome
to try to specify alarge number of source files all on one command line. In addition,
recompiling al source files when only one or two have changed is wasteful and can take alot
of time, even on modern computers. In this case, it makes sense to compile each file
separately and then link all the resulting object files. Specifying —c on the command line will
cause gcc to stop after compiling and assembling the specified sourcefiles, leaving the
object files ready for a subsequent link operation.

Sometimes you will want to see the assembly language code which is generated by the
compiler. Specifying the —S (that’'s an upper-case ‘' S’) will cause gcc to stop after compiling
the C/C++ source, producing an assembly language file with the same name as the C/C++
source file, but with the extension *.s". See section 3.16 to find out how to create an assembly
listing file without stopping after compilation.

Embedded Support Tools Corporation

Running the Gnu tools Page 33

3.10 Specifying directories for include files (-, -I-)

gcc maintainsalist of directories which contain ‘ system’ include files; each time the

#i ncl ude <fil ename> directiveisused in asourcefile, each directory inthislistis
searched to find the specified file. Y ou can add a directory to thislist by using the -

I <di r name> option on the command line. This option adds the specified directory to the
head of thelist, i.e. it is searched first before any predefined directories. Note that the
directory name must immediately follow the —I without any spaces separating them. If the
directory name itself has spacesin it, then the entire option including the—I should be
enclosed in double quotes.

If you follow one or more—I directiveswith —I - , then al of the preceding directories
specified with —I are added to the list of user directories, rather than system directories. User
directories are searched when the #i ncl ude “fil enanme” directiveisencounteredin a
sourcefile.

3.11 Creating dependency files (-MMD)

When compilation is performed under control of the make utility, make needsto know all
the source files upon which an object file depends. When compiling C and C++ source, any
file brought in by the#i ncl ude “fil enane” directive aso becomes a dependency of
the object file (meaning that the object file should be re-built if any of the included files have
changed). However, in amedium to large-scale project it can be very tedious and error-prone
to manually update the makefile. Nested include files make this task even more difficult.

Gnu CC’'s—MVD option dramatically simplifies this task. When —MVD is specified on the
compiler command line, a dependency fileis created with the same name as the object file
but with afilename extension of . d. Thisfile contains a snippet of text that lists the source
files (main and include files) upon which the object file is dependent. It may be included into
the body of the main makefile, either manually with atext editor or (the preferred way) at
compile time through the use of Gnu make'si ncl ude directive. Thus each timethefileis
re-compiled, gcc re-generates the list of dependencies automatically without manual
intervention.

See section 4.8.2 for more detail on compiling with the make utility.

http://www.estc.com

Page 34 Embedded Development with Gnu CC

3.12 Define a macro (-D<name>)

Y ou can define macro’ s on the command line using the —D<nare> option. In thisform, the
macro is defined to the value 1. The other form of this option, - D<opt i on>=<val ue>,
defines the macro to the specified value. For example,

- DDEBUGA NG

defines the symbol DEBUGE NGto have the value 1, while
- DDEBUGA NG=0

defines the symbol DEBUGE NGto have the value O.

It can be helpful to surround this option in double quotesin order to avoid text strings being
accidently interpreted as another part of the command line. For example if you want to define
the symbol | NT to have the value - 1, this can be done in the following option on the
command line:

“_ DI NT=-1"

One symbol that is often defined on the command line is NDEBUG. The ANSI C standard
says that defining NDEBUG disablesthe asser t macro, so sinceit’s already part of the spec,
you might aswell useit for your own debugging code as well

When you' re compiling your program in preparation for debugging, |eave NDEBUG
undefined; this symbol can be tested by a C preprocessor sequence, and debug code can be
conditionally compiled into the program, as in the example below:

#i f ndef NDEBUG

/* this code is used for debugging only */
printf (“Counter is %\n”, Counter);
#endi f

When debugging is complete, and it’ stime to re-build the program to burn EPROM’s, add
the option —DNDEBUG to the compiler command line and the call topri nt f () will beleft
out of the build.

Embedded Support Tools Corporation

Running the Gnu tools Page 35

3.13 Verbose mode (-v)

Normally gcc doesits work quietly, without displaying any messages except to report
warnings or errors. The—v command line option will cause gcc to display the exact
commands and options that it uses to do itsjob. This can be useful when trying to diagnose
compilation or linking problems, or if you just want to see how the whole system works.

3.14 Enabling warning messages (-Wall)

Gnu CC does a good job of checking your source for potential or real problems, and letting
you know about them —if you tell it to. Gnu CC has around a billion? individual warning
messages, and almost every one of them can be enabled or disabled with avariation on the —
W command line option. If you need to enable or disable a specific warning, we suggest you
refer to section 8 of the Gnhu CC manual for the specific options available. However, Ghu CC
also groups several of the most useful ones together under a*blanket’ option: - Wal | The
Gnu CC manual putsit thisway:

This enables all the warnings about constructions that some users consider questionable, and
that are easy to avoid (or modify to prevent the warning), even in conjunction with macros.

Some of the more useful checks performed are:
printf () format strings match the arguments passed
Nested comments
Implicit type declarations of variables or functions
Local variables possibly used before being initialized
Possibly incorrect comparision of signed and unsigned values

Unless you' re compiling legacy code which you know works and would be too much effort to
edit, you might want to consider using the—\\al | option every time you compile with GCC;
it can help catch problems which are sometimes hard to track down during debugging.

2 OK, that's a bit of an exaggeration, but there are quite afew. A single—Wall enables all the useful
ones.

http://www.estc.com

Page 36 Embedded Development with Gnu CC

3.15 Specifying a linker script (-T <filename>)

In most embedded systems, the memory map is complicated enough that it would be
impractical to try to specify all the required information on the linker command line. In this
case, the linker may be handed a script file that defines some or all of the required
parameters. The—T option is used to specify the name of thislinker script file when linking
viathegcc driver.

Section 3.21 discusses the layout of linker script filesin detail.

3.16 Specifying library files (-I<libname>)

When you link a program, it's almost certain that library files will be used to supply code
modules needed at runtime. Y ou can create your own library files and specify them on the
link command line just like any other file. Y ou can also specify library files with the —

| <I'i bname> option, in which case two additional things happen:

The library name specified by the <I i b> part of the option is expanded to the form
I'i b<li bname>. a; for example, if you specified —| ¢ on the command name, the
actual filenamethat gcc looksforisl i bc. a.

gcc searchesalist of library directories for the library file.

Thisis handy for libraries that are used in alarge number of different projects. Y ou can put
the library in one global directory which is on the library search path, and then each project
that needs that library can reference it with the shortened —I <I i bnanme> syntax. The linker
script filesram | d and r om | d supplied on the CD-ROM use this syntax for the standard
C runtime library files.

See section 3.17 for details on how directories are added to this search list.

3.17 Specifying directories for library files (-L<dirname>)

When you are using the—I <I i bnane> option to specify library files, you may want to add
your own library directoriesto thelist of directories searched by gcc. The—L<di r nanme>

Embedded Support Tools Corporation

Running the Gnu tools Page 37

doesjust that. The directory name <di r nanme> must follow the —L option with no spacein
between. For example, if you have a set of libraries stored in C: \ PROJECTS\ LI BS, this
directory will be searched by adding - LC: \ PRQJECTS)\ LI BS to the linker command line.

3.18 Passing options to the assembler and linker (-Wa, -WI)

If you need to pass an option directly to the assembler or linker, gcc provides an escape
mechanism to support this. passing —\\, <opt i ons>to gcc will causeit to pass

<opt i ons> directly to the assembler without any changes. For example, if you wanted to
pass the option —a to the assembler, to cause it to output alisting file, the gcc option would
be-W4, - a.

Did we say ‘without any changes ? OK, there is one change made. When you want to pass
multiple options to the assembler, or options that require a parameter, they can all be
specified in order with asingle—\Wa, option to gcc. Each option must be separated by a
comma, and gc ¢ will replace each comma with a space before passing the options to the
assembler. Without this feature, you would need to specify the -\, prefix for each
assembler option, which would get pretty tedious.

3.18.1 Common Assembler Options

Here we present the assembler options that are most commonly used, and the form for each
option as presented to gcc on the command line.

Assembler Option | Description Example (using gce)

-a Createlisting file -4, -a

- gst abs Output debug info -V, - gst abs

-1 <di rname> | Add directory to search list for . i ncl ude -V, -1, C.\ASM
directive

Table 3.5: Frequently-used assembler options

http://www.estc.com

Page 38 Embedded Development with Gnu CC

3.18.2 Common Linker Options

Similar to the assembler, gcc may also be used to pass options directly to the linker. The
gcc option to do thisis—W , <opt i ons>.

A table of the most commonly-used linker options appears below.

Linker Option Description Example (using gce)

-Map <filenarre> Create map listing in file -W, - Map, proj ect. map

- - def sym <nane>=<val ue> | Define the value of awmbol -W, - -def sym SYPCR=0xf f f a21
-u <synbol > Declares the symbol to be -W,-u, fir

undefined; this may be used to
force thelinker to bringin
modules from alibrary fileto
define to symbol

-t Lists the name of each input -W, -t
fileasit is processed by the
linker

Table 3.6: Frequently-used linker options

3.19 Assembling & Linking via gcc vs. invoking the tools directly

As mentioned earlier, you can pass any mix of C, C++, assembly and object filesto gcc and it
will call the correct tools to process them and end up with a compiled and linked executable.
But why would you want to do it thisway? For example, if you want to run an assembly
language file through the assembler, why not just invoke the assembler directly rather than
having gcc do the extrawork?

There' s nothing stopping you from doing it this way, but (as always) there are tradeoffs. If
you invoke the tools directly, you have complete control over every option passed to the tool;
however, you are also responsible for making sure that every single command line option
required by the target system is specified properly. If you use gcc to do the work, it can add
these options automatically. Some examples of the parameters automatically set by gcc:

Embedded Support Tools Corporation

Running the Gnu tools Page 39

Include and library paths
Adding required files to the command line (for example, crt0.o for linking)
Selecting the appropriate library files based upon compilation options (‘ multilibbing’)

Our recommendation isto always use gcc to do the work for you, unless you have a special
reguirement that demands the extra control provided by invoking the tools directly.

3.20 The Gnu assembler

The Gnu assembler has itsroots in the world of Unix operating systems, and uses syntax that
may be somewhat unfamiliar to embedded developers. This is unfortunate, since it means that
some existing assembly language files cannot be assembled successfully without some
editing. However, the differences in the Gnu syntax are easily learned; and hopefully we'll
have to use less and less assembly code as compilers and embedded processors get smarter
and more powerful.

The following sections describe some of the syntax elements that differ significantly from the
microprocessor manufacturer’s specified syntax, or differ from common practicein
embedded systems. It is not meant to be a complete description of the assembler’ s features;
the Gnu AS manual documents the complete features of the program.

3.20.1 Comments

The Gnu assembler supports both block comments and line comments. Block comments are
C-style, beginning with / * and closing with */ . Line comments start with a designated
comment character, which can vary for different target microprocessors, and continue to the
end of theline. For the M68K family, the line comment character isthe vertical bar, | ; for the
Power PC, it’ sthe pound sign, #.

3.20.2 Statements

The Gnu assembler can accommodate multiple statements per source line; each statement is
separated with asemicolon (;) or *at’ sign (@.

http://www.estc.com

Page 40 Embedded Development with Gnu CC

3.20.3 Escapes in character strings

The Gnu assembler accepts C-style character escapes, such as\ n (newline), \ b (backspace),
\ r (carriage return), etc. In addition, statements may be continued over multiple lines be
placing a backslash (\) immediately before the end-of-line character.

3.20.4 Local symbols

A symbol starting with . L (aperiod, followed by an upper-case‘L’) isalocal symbol, which
will not be visible to other modules when they are linked together.

3.20.5 Assembler Directives

Directives dways start with adot, for example. ext er n.

3.20.6 Register names

Register names must be prefixed with a percent sign, to avoid confusing them with symbol
names. For example, to load an immediate value into address register AO on the M68K
family, the assembly code would look likermove. | #SCl , %&0.

For PowerPC, the numeric register number may be used by itself rather than prepending an
‘r'; for example,

addi 3,3,1
is equivalent to the more verbose
addi % 3,%3,1

3.21 Linker scripts

Whileit is possible to specify on the command line everything the linker needs to know, for
most embedded applications this would be very cumbersome and error-prone. The more

common solution isto create alinker script file that specifiesall the parameters which don’t
change very often, and then put the project-specific parameters on the linker command line.

Embedded Support Tools Corporation

Running the Gnu tools Page 41

3.21.1 Common Linker Directives

The standard linker scripts provided on the XGCC CD-ROM will cover most typical
embedded requirements. This section documents some of the linker directives used in those
script files, to aid in understanding their operation. If you need to write your own script to
meet a specia requirement, we recommend you refer to the Gnu linker manual for a detailed
reference on each directive.

Thetasks handled in alinker script typically boil down to the following:
Specifying the names of run-time libraries, and the search paths for those libraries
Defining default values for symbols
Specifying the memory layout of the program
Defining options on sections in the output file
Adding startup and shutdown support to the program

We will cover thefirst four topicsin the following subsections. Startup and shutdown is
discussed in section 4.4.1, ‘Initializing peripherals upon startup’.

3.21.1.1 Specifying the names of run-time libraries, and the search paths for those
libraries

In atypical embedded application, there are library routines that are used in every single
program that is compiled; for example, the standard C runtime library. Since these are used so
often, it makes sense to reference these librariesin the script file, so they don’t have to be
specified on the command line every time a new program is linked.

Asan example, here are the first few lines of EST’slinker scriptr om | d for the 68K:
OUTPUT_ARCH(n68k)
SEARCH DI R(.)
I NPUT(vect ors. 0)
GROUP(-Itrgt -lrom-lc -1gcc)

The OUTPUT_ARCH() directive specifiesthat we are generating the M68K variant of the
object file format. SEARCH DI R(.) addsthe current working directory to the linker search
path; | NPUT(vect or s. 0) tellsthelinker to include the object filevect or s. o inthe
final program, to define the exception vectors for the program.

http://www.estc.com

Page 42 Embedded Development with Gnu CC

The GROUP() directive tellsthe linker to search the group of library fileslisted repeatedly
when undefined symbols exist. In the example above, several system libraries are referenced;
The libraries are searched until no more undefined symbols remain, or until the linker detects
that no more symbols were defined in the last pass through the group. Thisis extremely
useful where inter-library dependencies exist; for example, amoduleinlibrary I i btrgt. a
might reference a symbol whichisdefinedin| i br om a, which in turn might create a new
reference to asymbol defined inl i bt r gt . a which was not included in the previous pass
through thefiles. If these library files were simply referenced on the command line, or in the
script file through use of the | NPUT() directive, the linker would make only a single pass
through the files and then find that the newly-referenced symbol was still undefined, causing
an error and an unsuccessful link.

3.21.1.2 Defining the default values for symbols

In some cases it can be very useful to allow user code to define a symbol, but to define a
default valueto it if user code does not do so. This capability isimplemented by the linker’s
PROVI DE() directive.

An example of thisisthe symbol crt O_f | ags, an integer variable accessed by the startup
codeincrt 0. S. User code may define a variable with this name in order to control the
operation of the startup code which runs before main () is called. However, if no such symbol
existsin user code, the linker script file statement

PROVI DE(crtO_flags = 0);

defines the symbol with its default value of zero, facilitating a successful link. The startup
codeiswrittentotestcrt O_f | ags for this default value and take the appropriate action.

3.21.1.3 Specifying the memory layout of the program

A program is broken into different sections, each one containing a different type of
information. Three of the most common section namesare. t ext, . dat a, and . bss.
These names originated in the Unix operating system and today are used in many systems,
including embedded applications. The . t ext sectionisused to hold program code; the

. dat a section is used to hold initialized data; and the . bss section contains uninitialized
data, and quite often the stack space aswell.

Embedded Support Tools Corporation

Running the Gnu tools Page 43

Thisis probably a gross oversimplification of the process, but essentially from the point of
view of memory sections, the goal of the linking processin isto merge the text, data, and bss
sections from each input file into a single text, data, and bss section in asingle output file,
while resolving references to undefined symbols along the way. The rules for merging and
assigning memory addresses to each section are provided by the linker script’s SECTI ONS
directive.

3.21.1.3.1 The SECTIONS directive
The basic syntax of the SECTIONS directiveis asfollows:

SECTI ONS {
sectionl [options] : {
contents

section2 [options] : {
contents

section3 [options] : {
contents

}

Figure 3.2: Basic syntax of the linker’s SECTIONS directive

The section namessect i onl, secti on2,sect i on3 etc define the name of a section
that will appear in the output file. Inside the brackets (where the word cont ent s appearsin
the example above) are listed all the elements from the input files that will be placed in that
section.

Section contents are specified as one or morelinesintheformat f i | enane(secti on).
fil ename specifiesthe file name of an input object or library file, whilesect i on
specifies a section name within that object or library file. For example, the text section of the
filevect ors. o isspecifiedasvect ors. o(text).

http://www.estc.com

Page 44 Embedded Development with Gnu CC

In addition, either or both the filename and section name may be awildcard character * .
When replacing the filename, the wildcard indicates that the specified section of all input files
should go into this output section; similarly, when used in place of the section name, the
wildcard causes all sections of the file name to be placed in the output section.

For example, the SECTI ONS directive of avery simple linker script might look like this:

SECTI ONS {

text @ {
*(.text)
}

.data : {
*(.data)
}

.bss : {
*(. bss)
}

}

This script will create a single output file which contains three sections, named . t ext ,
.data,and. bss. The. t ext section will appear first in memory, starting at location O,
followed immediately by the. dat a section. The. bss section will not alocate any spacein
the output file, but addresses will be assigned to any symbolsin this section starting at the
first free location after the end of the . dat a section.

Each output section will contain the sum of the contents of the same section in the input files,
e.g.theoutput file's. t ext sectionwill contain all datainal . t ext sections of the input
files, and the samefor . dat a and . bss. Any sections with any other names in the input
fileswill not appear in the output file.

3.21.1.4 Defining options on output sections

The linker script shown in the previous section might work on some system, but typical
embedded applications need more flexibility; for example, each section may have to be
assigned to a particular starting address to match the locations of RAM and ROM memory in

Embedded Support Tools Corporation

Running the Gnu tools Page 45

the target system. These types of features are specified by a set of options that can be added
to the declaration of each output section.

3.21.1.4.1 Setting the section’s start address

The section’ s start address is defined by placing it immediately after the output section’s
name. Here is the example from section 3.21.1.3.1, thistime with the . dat a. section
assigned to address 0x8000:

SECTI ONS {

Jtext oo {
*(.text)
}

.data 0x8000 : {
*(.data)
}

.bss : {
*(. bss)
}

}

3.21.1.4.2 Section aignment

Very often asection will need to be aligned to a certain modulo boundary; for example, in
most members of the MotorolaM68K family, opcodes must be aligned on aword (16-bit)
boundary. Thisis achieved with the BLOCK() option. Here again is our sample script,
modified to align opcodes as required:

SECTI ONS {
.text BLOCK (2): {
*(.text)

}
.data 0x8000 : {
*(.data)

}

http://www.estc.com

Page 46 Embedded Development with Gnu CC

. bss :
*(. bss)

}

3.21.1.4.3 Defining symbols
A symbol is defined very easily, with the syntax
<name> = <val ue>;
The expression must be ended by a semicolon, to mark the end of the assignment.

The special symbol . isused to represent the current memory address. It may be changed by
assigning anew valueto it, or it may be used in an expression to assign values to other
symbols.

In the following example, we to assign the symbol _et ext to the addressimmediately
following the end of the . t ext section.

SECTI ONS {

.text BLOCK (2): {
*(.text)
_etext = .;

}
.data 0x8000 : {
*(.data)

}

*(. bss)
}

. bss :

Embedded Support Tools Corporation

Running the Gnu tools Page 47

3.21.1.4.4 Placing arbitrary datain a section

The linker alows usto place an arbitrary byte, word, or long-word value anywhere in any
output section that we define. Thisis done with the expressions BYTE() , SHORT() , and

LONG) respectively.

For example, let’s say that we wanted to put aJMP START instruction at the end of our
68K’ s code section; we could do it thisway:

SECTI ONS {
.text BLOCK (2): {
(.text)
SHORT(Ox4ef9) /* jnp */
LONG(start)
_etext = .;

}
.data 0x8000 : {
*(.data)

}
.bss : {

*(. bss)

}

3.21.2 The standard linker scripts rom.ld and ram.Id

We have provided two enhanced scripts, along with object files to define an exception vector
table and an enhanced crt0 startup module, to address the needs of typical embedded
applications.

Thescript r om | d supports targets where code is stored in ablock of read-only memory
(flash EPROM, UV EPROM, mask ROM, etc) and . dat a and . bss sectionsgo into a
single block of RAM. The other script file, r am | d, supports systems where all sections
(-text,.data,. bss, etc) go into asingle contiguous block of RAM. This script is most
useful when debugging a ROM-based system.

http://www.estc.com

Page 48 Embedded Development with Gnu CC

These scripts have the following common features:

Thesymbols __ram start and__ram si ze definethe start and size of the
available RAM in the target system. These symbols may be defined on the linker
command line to avoid the need to customize the script file for each new project.

Thesymbol __st ack_si ze definesthe amount of RAM that is allocated to the
processor’ s stack; stack space is allocated at the very top of free RAM (after the. bss
section). Any remaining RAM after the end of the . bss section becomes part of the
heap space which is available for allocation viacallstomal | oc() andfree() (orthe
newand del et e operatorsin C++).

Support is provided for user-defined interrupt and exception vectors. Any vectors that are
not defined by user code will automatically point to adefault handler located in the crtO
startup module.

In addition, ther om | d usesthesymbols __rom start and__rom si ze to definethe
starting address and size of the system’s ROM space, and supportsinitialization (in crt0) of
data RAM from a ROM image.

These scriptswork in conjunction with EST’s| i br omruntime libraries and enhanced crt O
startup module. For details on how to link applications using these scripts, please refer to
section 4.11.7, * Building and linking application programswith lib’.

3.22 Building projects with Gnu Make

3.22.1 Make basics

Makeisautility that controls the rebuilding of your project. It compares the date stamps of
the source and object files, and those of the object files and the final executables, and re-
compiles only the files that have changed. This can not only savetime, it also simplifiesthe
task of making sure that your executable is always up to date. For small projects, it'sa
convenience; for large projects, it's almost mandatory.

How does the make utility know what files make up your project, and what command lines
are needed to rebuild them? Y ou provide thisinformation in atext file, which by default is
named Makefile. The make utility reads the Makefile, and then checks the date stamps of

Embedded Support Tools Corporation

Running the Gnu tools Page 49

each file against the files from which it is made (these are called the file' s dependancies). If
any of the file's dependancies are newer than the file itself (indicating for example that a
source file has been updated since the last compile), then the associated command lineis
executed to bring the file up to date. If a dependancy does not exist, then it is considered to
have an extremely old date stamp for the purposes of this comparision.

As an example, say our project is made up of two sourcefiles, hel | 0. ¢ andgreeting. c.
The build process can be broken down into three steps:

1. hell o. c iscompiledto producehel | 0. 0.
2. greeting. ciscompiledto producegr eeti ng. o.

3. hello.oandgreeting. o arelinked with the runtime libraries to produce the
executablefilehel | 0. exe.

A makefile representing this project might look like this:
hell 0. exe: hello.o greeting.o
gcc —0 hello.exe hello.o greeting.o

hello.o: hello.c
gcc —c hello.c

greeting.o: greeting.c
gcc —c greeting.c

In this simple example, make will try to build hel | 0. exe since it is the first build target
listed in the makefile. hel | 0. exe has two dependancies, hel | 0. 0 and gr eeti ng. o.
hell 0.0 and greeting.o each have one dependancy, which are hell o.c and
greeti ng. c respectively.

If we edit hel | 0. c, then it will be saved with a timestamp that is newer than hel | 0. 0.
The next time make is run, it will detect this condition and initiate the command line to re-
make all dependants of hel | 0. ¢; so hel | 0. o will be compiled, and then hel | 0. exe
will be linked.

http://www.estc.com

Page 50 Embedded Development with Gnu CC

Makefiles may define make variables to replace strings that are used in multiple places. These
make variables can simplify the makefile, reduce the chance of errors, and help document the
makefile so others may better understand and maintain it. We can simplify the above example
by defining the variable OBJFI LES, producing the modified version below.

OBJFILES = hello.0 greeting.o

hel | 0. exe: $(OBJFI LES)
gcc —o hell o. exe $(OBJFI LES)

hello.o: hello.c

gcc —c hello.c

greeting.o: greeting.c
gcc —c greeting.c

3.22.2 Make command line

Listed in this section are some of Ghu make' s more useful and commonly-used options. The
full documentation for Gnu make is included on the CD-ROM, and it contains an excellent
tutorial on how make works; so we will refer you to that source for the full details.

3.22.2.1 Specifying the target to make

Normally when make runs, it tries to make the first build target listed in the makefile. If you
specify one or more targets on the command line, make will instead try to build those targets,
in the order listed.

3.22.2.2 Defining variables on the command line

Y ou may define a variable on the command line by using the syntax nanme=val ue, similar
to that used within the makefile. If you need to define a variable which contains embedded
spaces, then the definition should be surrounded by double quotes, for example

"OBJFI LES=hel | 0. 0 greeting.o”.

Embedded Support Tools Corporation

Running the Gnu tools Page 51

3.22.2.3 Specifying an alternate name for the makefile (-f <makefile>)

Normally the make utility expectsto read its build rules from afile called Makef i | e in the
current directory. Y ou can specify an aternate filename with the —f option, for exanpl e —
f file. mak.

3.22.2.4 —n: performing a dry run

If you use the —n option on the make command line, make will not actually execute the
commands to bring the build target up to date; instead, it will only print them on the standard
output, so that you can see what actions would be taken in areal build.

3.22.2.5 Forcing a rebuild with —-W

Y ou can force make to re-build afile's dependants by specifying it on the command line with
the —Woption. Thiswill cause make to act asif the specified fileis very new, and therefore
any fileswhich depend upon it will be re-built.

Using our earlier example, if you wanted to re-link the application hel | 0. exe, you could
invoke make with the command linenake —W hel | 0. o. Similiarly, if you wanted to
force hel | 0. ¢ to be recompiled and then linked, the command make —W hel | 0. ¢
would achieve this.

3.22.3 Dependancy Files

When an object file depends upon a C or C++ sourcefile, it aso depends upon any header
filesthat are included during the compilation. Therefore, when you create a makefile for your
project, you must list these header files as dependanciesin addition to the actual C source
file. Thisisamajor pain, because you have to scan the source filesfor any #i ncl ude
directives and list them all in the makefile; in addition, each time you add or delete an

#i ncl ude directivein asource file, you must remember to also update the makefile. Nested
include files make it even more difficult to keep the makefile up to date.

Fortunately, Gnhu CC implements a simple and effective solution to the problem. When you
compile a source file with the Gnu compiler, specifying the option —MVD on the compiler
command line will causeit to create atext file that contains the dependancies for the source
file that was compiled. Thisfile, which has the name of the source file with an extension of
. d, isin the format required by the make utility. Y our makefile can use Gnu make's

http://www.estc.com

Page 52 Embedded Development with Gnu CC

i ncl ude directive to include the dependancy file into the main makefile. Since the compiler
automatically updatesthe . d file each time the source is compiled, your main makefile
effectively isupdated at the sametime. This can dramatically simplify your job of creating
and maintaining a makefile for your project.

When including a makefile fragment, be sure to place adash in front of the include directive.
This tells make not to terminate the build session if the include directive failed, as could
happen when the program is being built for the first time and the dependency file does not yet
exist. An example might look like this:

-include main.d

3.22.4 The Makefile template

In the EXAMPLE subdirectory, we have provided a makefile template to get you going
quickly whenever you start a new project using the XGCC tools. The template implements
most of the commonly features of make and gcc while minimizing the amount of typing
required to set up a new makefile.

3.22.4.1 Basic setup

When you start a new project, we suggest that you create a new working directory for the
project and make a copy of the makefile template there. Then you need to edit the following
variables in the makefile:

SOURCEFI LES lists the name of all the source files, separated by spaces, which make up
the project.

PRQJ ECTNANME defines the name that will be given to the main executable or library file
that is built by make. It should not have any filename extension, just the base name of the
file; the extension is specified separately.

BUI LD_FI LE_TYPE defines the filename extension of the main build target. Typically
thiswill be either . s19 if you want to build an executable program, or . a if you are
building alibrary. If the main build target is a hex file with the . s19 extension, then an
executable file (COFF or ELF format, as appropriate) is also built automatically.

TARGET _NAME defines which compiler to use when running gec. This should beone of
theidentifiers (either m68k-€lf or powerpc-eabi) described in section 3.4.

Embedded Support Tools Corporation

Running the Gnu tools Page 53

TARGET_MACH defines the specific family member to be used, in order to select the
correct subset of the family’ sinstruction set.

TARGET _OPTS specify any other code-generation options needed.

LDSCRI PT specifies the name of the linker script file to be used when linking the
executable file. This can be one of the standard linker script filesrom | d orram | d, or
you can specify another file name if you have created your own script file for the project.

If you are using the standard linker script filer am | d, then the symbols RAM_START
and RAM _SI ZE should be defined to the starting address and size, respectively, of the
RAM memory in your target. If you are using the script filer om | d, then you will also
need to define the symbols ROM_START and ROM_SI ZE to specify the start address and
size of the ROM memory.

Once these symbols are tailored to the needs of your project, the makefileis ready to go.

3.22.4.2 Additional options

Some additional options are available which implement more features or provide more
precise control over how your project is built. These options are set to the most commonly-
used settings in the template, and if necessary you can change their settings to get the effect
you want.

LI BDI RS (default value: blank) may be used to define alist of directories which will be
searched for library files during the link process.

SOURCEDI R (default value: blank) allows you to store the source files in one directory
while compiling the project in adifferent location. This can be very handy if you need to
build multiple versions of the same program.

I NCLUDEDI RS (default value: blank) may be used to define alist of directories which
will be searched for header files during compilation.

DEBUGG NG (default value: - g) sets the debug flag for compiling C and C++ programs.
Normally the default value is fine, but you may need to edit it or remove it altogether for
special applications.

OPTI M ZATI ON (default value: - O2) setsthe level of optimization used when
compiling C and C++ programs.

http://www.estc.com

Page 54 Embedded Development with Gnu CC

EXTRA_CFLAGS (default value: blank) may be used to specify any additional options
when compiling C and C++ programs.

CREATE_ASM LI STI NG if thisvariableis set to Y, then alisting file will be created
when compiling C/C++ programs or assembly source files. The listing will contain the
original high-level language source code interspersed with the generated assembly
language code if debugging is enabled.

EXTRA ASFLAGS (default value: blank) may be used to specify any additional options
when building assembly language files.

LOADLI BES specifies the name of any library files that should be included when linking
the final executable program. If LI BDI RS specifiesalist of directories, then these
directories will be searched for the named library files.

LDLI BS: similar to LOADLI BES, but any library files specified here will be placed at
the very end of the linker command line, making LDLI BS suitable for library files which
are used in multiple projects (whereas LOADLI BES is more useful for libraries specific
to this project, since they may also need to access modules contained in the LDLI BS list
of files).

CREATE_MAPFI LE: if thisvariableis set to Y (upper-case), then amap file will be
created by the linker showing the names and absolute locations in memory of every
module in the executablefile.

EXTRA LDFLAGS (default blank): use this variable to specify any additional options
that may be required when running the linker.

Embedded Support Tools Corporation

Embedded Essentials

Page 55

4 Embedded Essentials

4.1 Preprocessor symbols

In addition to those specified by the ANSI language standards, Gnu CC defines several
preprocessor symbols during compilation of C, C++, and assembly language files that
provide information about the type of compilation being performed and the compiler options
in effect during compilation. These symbols may be tested with preprocessor statements such
as#i f,#i f def ,#i f ndef etcin order to control the code that is generated. In this section
we present some of the preprocessor definitions that are useful in embedded devel opment.

4.1.1 All targets

Symboal Comment
__embedded Always defined.

__GNUC_ When compiling C or C++ code, defined to the compiler’s
major version number. Not defined when preprocessing
assembly-language files.

__GNUC _MINOR_ When compiling C or C++ code, defined to the compiler’s
major version number. Not defined when preprocessing
assembly-language files.

__ASSEMBLER_ _ Defined when preprocessing assembly-language files, not

http://www.estc.com

Page 56

Embedded Development with Gnu CC

defined otherwise.

__STRICT_ANSI__

Defined when compiling without Gnu extensions.

__OPTIMIZE_SIZE__

Defined when optimizing for size (-Os).

__OPTIMIZE_ _ Defined when any level of optimization, other than —OO0, is
enabled.
__FAST MATH_ _ Defined when the —ffast-math command line option is
passed.
4.1.2 68k
Symbol Comment
mc68000, Always defined.
___ mc68000,
. mc68000_
mc68302, Defined when —n68302 command line option passed.
___mc68302,
. .mc68302_
mc68010, Defined when —n68010 command line option passed.
__mc68010,
__mc68010_
mcpu32, Defined when —ntpu32 or —-n68332 command line option
_ _mcpu32, passed.
__mcpu32_ _
mc68332, Defined when —n68332 command line option passed.
__mc68332,
. .mc68332_
mc68020, Defined when —n68020 or —nt 68020 command line
__mc68020, option passed (or no —moption passed, since —68020 isthe
__mc68020_ default.)
mc68030, Defined when —n68030 or —nt 68030 command line
__mc68030,

Embedded Support Tools Corporation

Embedded Essentials Page 57
__mc68030_ option passed.
mc68040, Defined when —n68040 or —nt 68040 command line
_ _mc68040, option passed.
__mc68040_
mc68060, Defined when —n68060 or —nt 68060 command line
_ _mc68060, option passed.
__mc68060_
mcf5200 Defined when —n5200 command line option passed.

_ _MAX_INT_ This symbol will have the value 32767 when the compiler
option - nshor t isin effect, indicating that thei nt data
typeis 16 bits wide. Any other value indicates that the i nt
datatypeis 32 bitswide.

_ _MRTD_ _ This symbol is defined when the compiler option—nrt d is
in effect, indicating that ther t d instruction is used to return
from subroutines.

__HAVE 688381 Defined when —n68881 command line option passed.

4.1.3 PowerPC

Symbol Comment
PPC Always defined.

__PIC__ Defined to the value 1 when the —f pi ¢ command line option
is passed. Defined to the value 2 when the —f PI C command
line option is passed. Otherwise not defined.

_ _NO RTTI_ Defined to the value 1 whenthe—f no-rt ti command line
__nortti option is passed; otherwise not defined.

__NO_EXCEPTIONS__,
___No_exceptions_ _

Defined to the value 1 when the —f no- except i ons
command line option is passed; otherwise not defined.

http://www.estc.com

Page 58 Embedded Development with Gnu CC

__EABI_SMALL_DATA_ _ | Defined to the value 1 when the—nsdat a or —
nedat a=eabi command line option is passed; otherwise
not defined.
_SOFT_FLOAT Defined when the—nsof t - f | oat command line optionis
passed.
_BIG_ENDIAN, Defined when compiling in big-endian mode.
__BIG_ENDIAN_ _
_LITTLE_ENDIAN, Defined when compiling in little-endianmode (- m i t t | e).
__LITTLE_ENDIAN_ _

4.2 Interfacing C and assembly language functions

4.2.1 68k

This section describes the function call interface used by the gnu compiler on the Motorola
M68k family of processors.

4.2.1.1 Calling convention

Functions are called with the JSR (jump to subroutine) instruction. If the function returns a
value, it will be in register DO when the function returns. If the function requires any
parameters, they are pushed onto the stack with the rightmost parameter first. All 8- and 16-
bit parameters are promoted to integers before being pushed onto the stack; the default size
for integersis 32 bits, or 16 bitsif the—nshor t option is passed on the compiler command
line.

The compiler maintains a stack frame pointer in register a6. The frame pointer isused asa
base register to allow access to both function parameters and local variables on the stack
using an indexed addressing mode. C functions save the frame pointer on the stack when they
are called, and restore it before they return. In addition, they save any processor registers that
they modify except for dO, d1, a0, and al; these are considered ‘ scratch’ registers which
may be used by functions without preserving their contents.

Embedded Support Tools Corporation

Embedded Essentials Page 59

Here' s an example of calling a C function from assembly language. Function abc hasthe
following prototype:

int abc (int a, char *b);

To call thisfunction, an assembly language routine would push b onto the stack, then a. It
would then call the function by executingj sr abc. Upon returning, register dO would
contain the return value of the function.

4.2.1.2 Register Usage

Registers DO, D1, A0, and A1 are scratch registers and are not saved and restored when
calling other functions. All other registers that are used by afunction must be saved on the
stack before being modified, and restored from the stack before the function returns.

If the target implements hardware floating point, either internally (such as the 68040) or
through afloating-point coprocessor, then FPO and FP1 are also scratch registers. All other
floating-point registers must be saved and restored by the function if used.

4.2.1.3 Stack cleanup

When a function returns control to the function that called it, the stack space consumed by the
function’ s parameters needs to be deallocated (i.e. the stack pointer must be incremented back
to its value before the parameters were pushed). There are two ways of doing this, depending
upon whether or not the compiler option —mrtd was used to compile the code.

The default strategy (that is, when —nt t d is not used) requires the calling function to
deallocate the stack space used by function parameters. In our abc example earlier, this can be
accomplished with the following instruction (after the JSR ABC):

addq.| #8, %p

The aternative approach, when —mrtd is used, requires the called function to clean up the
stack; in this case the assembly language function need not do anything, since the C function
that it called would have ended with the RTD #n instruction, which removes the parameter
space as part of its execution.

The problem for assembly language programmersis, how do you know when you write the
code which calling convention is being used? It would certainly be very inconvenient to have
to edit every function call if the calling convention were changed. The answer liesingcc’s
ability to preprocess assembly language programs before passing them to the assembler. The

http://www.estc.com

Page 60 Embedded Development with Gnu CC

68k version of gcc defines the preprocessor symbol _ MRTD__ if code is compiled or
assembled using the —nr t d command-line option. By testing for the presence of this symbol
using the #i f def preprocessor construct, you can put code in your program to handle both
cases and conditionally assemble the correct version.

In order to preprocess your assembly code, you must name the source file with the ‘.S’
extension (i.e. ‘pr ogr am S’ rather than ‘pr ogr am s’). In addition, you must usegcc to
assemble the program rather than invoking the assembler directly.

Several examples of this type of conditional assembly may befoundincrt 0. S, the source
file of the C startup module.

4.2.1.4 16-bitints

In addition to the RTD calling convention described in the previous section, the other issue of
which assembly language programmers need to be aware concernsthe size of i nt function
parameters. Normally, Gnu CC defaults to 32-bit i nt s, and all function parameters are
promoted to i nt size before being pushed on the stack. However, the 68k compiler has a
command-line option, - nshort , to set thesizeof i nt variables and function parameters to
be 16 bitswide. If this compiler option isin effect, then the amount of stack space allocated
by function parameters will be different from the default case. In addition, function
parameters on the stack will be located at a different offset from the stack pointer depending
on whether or not i nt sare 16 or 32 bits wide.

So how does the assembly language programmer know which caseisin effect? This problem
is solved in afashion similar to the RTD calling sequence described earlier. By running
assembly language source files through the C preprocessor, you will be able to test the value
of themacro | NT_MAX . The—nshort compiler optionwill cause | NT_MAX _to
have the value 32767. Any other value indicates that i nt sare 32 bitswide. By testing this
value using #i f /[#el se, you can write assembly language programs that have code for both
cases and conditionally assemble the correct version.

4.2.2 PowerPC

The PowerPC compiler adheres to the PowerPC EABI (Embedded Application Binary
Interface) specification, which among other things defines the calling convention for C
functions. We will provide some of the basic information here, and refer you to Motorola's

Embedded Support Tools Corporation

Embedded Essentials Page 61

web site (http://www.mot.com/SPS/A DC/pps/downl oad/8X X/ppceabi.pdf) for a more
detailed description.

4.2.2.1 Register usage and Calling convention

Registers r3 through r10 and f2 through f8 are used to pass parameters into afunction, in left
to right order; these registers are not preserved across function calls. If afunction requires
more than 32 bytes of integer parameters, or more than 7 floating-point parameters, the
remaining parameters are pushed on the stack. Integer function return values are placed in r3
and r4, and floating-point values are returned in f1.

Registers r14 through r30 and f9 through f13 may be used for local variables, and if modified
they must be saved on the stack by the function and restored before the function returns.

Register r13 contains a pointer to the symbol _ SDA BASE , which is the base address of the
small datasections. sdat a and . sbss. Any variablein either of those two sections may be
accessed with asingle PowerPC ‘load indexed’ or ‘store indexed’ instruction.

The function of register r2 changes depending upon the calling convention used. With the
default calling convention, r2 is unused. When small data sections are being used (- nsdat a
was passed on the command line), r2 will contain the address of the symbol _ SDA2 BASE
which isthe base address of the . sdat a2 and . sbhss2 sections. This alowsfast accessto
constant datain asimilar fashionto . sdat a/. sbss described earlier.

With position-independent code (PIC), r2 is used in the function prologue to find the global
offset table, atable of pointersto all variables and functions used in the program; however the
usage differs depending upon which variant of PIC isin use. When ‘small’ position-
independent code is being generated (ie the —f pi ¢ option was specified), r2 contains the
address of the symbol _G_.OBAL_OFFSET_TABLE . And when ‘large’ position-
independent code is generated (using —f PI C), r2 contains the difference between the data
fixup and code fixup offsets.

4.2.2.2 Stack management

Register rl is used as the stack frame pointer and must always be aligned on an eight-byte
boundary. The stack startsin high memory and grows downward. Stack frames are allocated
by the called function, rather than the caller. The stack frames form alinked list pointing back
toward the first dummy frame created by the startup code; new frames are allocated using the
STWU instruction, asin this example:

http://www.estc.com

Page 62 Embedded Development with Gnu CC

STWJ 1, - 8(1)

4.3 Inline assembly language in C source files

Sometimesit’s more convenient to insert a small amount of assembly language codeinto aC
function rather than writing a compl ete assembly language function from scratch. The Gnu C
compiler supports thisthrough theasni() operator. Here we provide an introduction to the
asn() operator; this operator isfully documented in sections 4.31 and 4.32 of the Gnu CC
manual.

Gnu CC'sasn() operator isavery powerful implementation of inline assembly language.
In particular, it alows easy access to C expressions (not just variables) from assembly
language. In addition, asn{) statements carry enough information that they can be
optimized by the Gnu CC optimizer similar to normal C code.

The parametersfor theasm() operator are listed in four groups; each group is separated by a
colon. The first parameter is the assembly code itself, inside double quote characters. The
second group specifies any output values generated by the assembly language code, while the
third group defines any input parameters required by the code. Finaly, the fourth set of
parameters specifies any processor registers altered by the assembly code which were not
listed in the output group.

Here's asimple example of a snippet of code that retrieves the status register in a M C68000
processor, and storesit in aC variable:

int statusreg;
asm ("nmove %Wsr, %" : "=r” (statusreg));

Thisasn() directive specifiesthe variable st at usr eg as an output parameter. The
parameter consists of aconstraint (thetext ” =r ") associated with the name of the variable in
parentheses. This particular constraint tells Gnu CC that the output value must be placed into
thevariable st at usr eg viaageneral-purpose processor register. If aregister is available,
the compiler will allocate st at usr eg in aregister, substituting its name for our %0
placeholder in the assembly code. Otherwise it will generate extra code to make aregister
available before inserting our assembly code, and to move the value from the register to

st at usr eg and finally restore the register’s value after inserting our code.

Embedded Support Tools Corporation

Embedded Essentials Page 63

Note that since sr isthe name of a CPU register, the gnu assembler requires us to prefix its
name with a percent sign. In order to place this percent character into the assembly language
output, we must put two percent charactersinto theasn{) directive.

As an example of an input parameter, we'll now useasmn() towrite avalue to the status
register:

asmvolatile ("nove %9, %sr” @ : "r” (statusreg));

Since this assembly language code produces no output value visible to the compiler, we leave
the output parameter blank. The input parameter specifiesthe variable st at usr eg, again
accessed through a general -purpose register. The compiler will allocate aregister and insert
the actual register name in place of the %0 placeholder in the assembly code.

4.3.1 Optimizing assembly language code

What isthevol at i | e keyword for in the above example? Because the asn{) code uses
no output parameters, this code is considered by the compiler to have no side effects, and
therefore would actually be removed by the optimizer unless specially declared to prevent
this. However it very definitely does have side effects (changing the interrupt mask in the
status register); they just aren’t visible to the compiler. The keyword vol at i | e isusedto
inform the compiler that the assembly code should be not be optimized out of the final
program.

Note that the earlier example where we read the value of the status register could also be
optimized out of the program if the value that was read was not actually used in a subsequent
operation. Thisisnormally desirable if we are only interested in the register’s value, but
sometimes when controlling peripheral registers the read may be necessary in order to cause
other things to happen, for example to clear an interrupt flag. If thisis the case, then the
asm() code that implements the read should also be tagged with thevol at i | e keyword to
ensure that it is not optimized out of the program.

One other note concerning optimization of assembly code: it's possible that the compiler
might re-arrang the the order of independent asm() blocks during the optimization process.
If your program depends upon the assembly language code being executed in the same order
that it is shown in the C source code, then the code should all go into the sameasn() block.

http://www.estc.com

Page 64 Embedded Development with Gnu CC

We have only scratched the surface of this powerful and useful feature; we strongly suggest
you review the relevant sections of the Ghu CC manual (one of the HTML documents
installed with the XGCC tools) if you plan to make use of it.

4.4 crt0.S/crt0.o

Most C and C++ compiler systems use a small module of assembly language code, called
crt 0, to set up the system before execution starts at mai n() , and Gnu CC is no different.
The abject modulecrt 0. o isautomatically included on the linker’s command line when
gcc calsthelinker. This module takes on additional responsibilities in systems where there
IS no operating system underneath the application code. In the EST port of Gnu CC, crtOis
responsible for the following:

initializing critical peripheral systems after reset
copying a ROM image of initialized datato RAM
clearing bss (uninitialized data RAM)

providing a default exception handler routine for exceptions not handled by user code

4.4.1 Initializing peripherals upon startup

In many embedded systems, there are often hardware peripheral registers that must be set up
before the system can start to execute any application code. For example, many embedded
microprocessors have chip select hardware to control the RAM and ROM devices on the
board, and when the microprocessor comes out of reset these chip selects will often need to
be set up before there is any RAM visible to the processor. Since the C compiler generates
code that requires the use of the processor stack, a mechanism isrequired to set up these
peripherals beforethe mai n() function isexecuted. It would be most convenient if crt 0
allowed the user to somehow specify how this setup is to be done without having to writing a
custom crt 0 module for every different hardware platform.

In the EST port of Gnu CC, cr t O offers two mechanisms to perform peripheral initialization.
Thefirst isasystem whereby cr t 0 can be directed to write user-supplied datato peripheral
registers, through the use of initialization records. The second mechanism is through a user-
defined function called har dwar e_i nit _hook() .

Embedded Support Tools Corporation

Embedded Essentials Page 65

4.4.1.1 Initialization records

Initialization records define the address of a periphera register that needs to have data written
to it by crtO upon power-up. Each record contains a header with the following fields:

The memory address of the peripheral or variable

A 32-bit field which encodes the data size (byte, word, or long word) of the datato be
written, aswell asthe number of items to be written

Each record is followed by one or more data items; the exact count is contained in the
header’s count field. A list of such records may be assembled, marking the end of the list with
anull pointer. Thesymbol crt O_initialization_list shouldbesetto point to the
first header in thelist (thisis done automatically by the linker scriptsram | d andr om | d).

Assoon ascrt 0 gains control, it checks the value of the symbol
crtO_initialization_|list.Ifitisnon-zero, crt O startsreading each record and
writing the data to the addresses indicated in the record headers, stopping when it reaches the
null pointer. It performs these writes without accessing any other memory in the target system
(except obvioudly for the locations specified in the initialization records), so it will run
without any RAM being accessible to the processor. This feature makes it ideal for setting up
chip selects and other critical peripheral registersin the target system.

It's very easy to define these recordsin a C program. We have provided a header file,

sys/ crt 0. h, which defines some macros to simplify declaration of theseinitialization
records. This mechanism is used in the example I/O drivers in the EXAMPLE directory; here's
afragment of the MPC860 driver 860Basi c. c:

#i ncl ude <sys/crtO0. h>
#def i ne BaseAddr ess Oxff 000000

/[* Set up SIU */

CRTO_I NI TLONGS (SIUl, BaseAddress, 3, 0x610000,
Oxffffff88, Oxffff0000);

CRTO_I NI TSI NGLEWORD (SI U2, BaseAddr ess+0xe, 0);
CRTO_I NI TLONGS (Sl U3, BaseAddress+0x10, 4, O,
0x400000, 0, 0x3c000000);

CRTO_I NI TLONGS (SI U4, BaseAddress+0x20, 1, 0);
CRTO_I NI TLONGS (Sl U5, BaseAddress+0x30, 1, 0x4001);

http://www.estc.com

Page 66 Embedded Development with Gnu CC

/* Menory controller. */

CRTO_I NI TLONGS (MEMC1, BaseAddress+0x100, 16,
Oxffc00801, Oxfffc0O0760, 0O, 0O, Oxcl, Oxffc00800, O,
o, o0 0,0 0,0 O, O, O, O, 0);

CRTO_I NI TLONGS (MEMZ2, BaseAddress+0x164, 2, O,
0x3f);

CRTO_I NI TLONGS (MEMC3, BaseAddress+0x170, 4,
0x30001000, Ox2fa20111, 0x800, Oxff0c0027);

The following sections document the macros defined in sys/ crt 0. h and how to use them
to generate initialization records.

44111 Byte, Word, and Long initialization records
CRTO_I NI TBYTES(nane, where, hownrany, stuff...)
CRTO_I NI TWORDS(nane, where, hownany, stuff...)
CRTO_I NI TLONGS(nane, where, hownany, stuff...)

These macros create an initialization record to write a string of byte, word, or long-word data
to aperipheral. They all have the same form of invocation; only the data size differs between
them.

nane isthe name given to the record; it must be unigue in the source file containing the
macro invocation. wher e isthe starting address of the peripheral register(s) to be written.
howrany defines how many units of data (each consisting of a single byte, word, or long
word of data); and st uf f isthe actual datato be written to the peripheral register(s).

44112 Single-byte and single-word records
CRTO_I NI TSI NGLEBYTE(nane, where, stuff)
CRTO_I NI TSI NGLEWORD(nane, where, stuff)

Single-byte and single-word initialization takes advantage of the underlying structure of the
initialization record to reduce the overhead in cases where a single, isolated byte- or word-
sized unit of data must be written.

Embedded Support Tools Corporation

Embedded Essentials Page 67

nane isthe name given to the record; it must be unique in the source file containing the
macro invocation. wher e isthe starting address of the peripheral register to be written.
st uf f isthe actual datato be written to the peripheral register.

44.1.1.3 SPRinitialization (PowerPC only)

The PowerPC architecture has a separate address space called the special -purpose registers
(SPRs) which are used to control many system-level functionsin the processor. These
registers are not visible in the processor’ s memory map; they are only accessible using the
nt spr and nf spr instructions. Since many SPRs are critical to systeminitialization, the
startup code for PowerPC systems provides an extratype of initialization record to facilitate
access to the SPR space.

CRTO_I NI TSPR(nane, whi ch, val ue)

nane isthe name given to the record; it must be unique in the source file containing the
macro invocation. whi ch isthe number of the SPR register to be written. val ue isthe
actual datato be written to the SPR register.

When an SPR init record is encountered by the standard crtO startup code provided by EST, it
tests the SPR number for several known values and writes the register using inline code if the
SPR number matches. This allows writing SPRs without having any RAM accessible to the
processor. If the SPR number is one which is not implemented as an inline write by crt0, then
crtO will construct an mt spr opcode in RAM and execute it to perform the write; obviously
in this case RAM must be accessible to the processor in order for these SPRs to be writable.

Thelist of SPR numbers implemented with inline writesis given in table Table 4.1.

Number Name Description

638 IMMR Memory mapping register (Motorola MPC5xx,
MPCB8xx, MPC82xx)

560, 561, | IC_CST, IC_ADR, Instruction cache, MPC8xx

562 IC_DAT

568, 569, | DC_CST, DC_ADR, Data cache, MPC8xx

570 DC_DAT

784,786, | MI_CTR, MI_AP, Instruction MMU (MPC8xx)

787,789, | MI_EPN, MI_TWC,

http://www.estc.com

Page 68 Embedded Development with Gnu CC

790, 816, | MI_RPN, MI_CAM,
817,818 | MI_RAMO, MI_RAM1

794,795, | MD_CTR, CAS ID, DataMMU (MPC8xXx).
796, 797, | MD_AP, MD_EPN,
798,799, | M_TWB,M_TWC,
824,825, | MD_RPN, M_TW,

826 MD_CAM, MD_RAMO,
MD_RAM1
149 DER Debug Enable Register (MPC5xx, MPC8xx)

Table 4.1: PowerPC SPRs implemented with inline writes in crt0

4.4.1.1.4 UPM initidization (PowerPC only)

Severa of Motorola's MPC8xx devices contain a memory controller called the User
Programmable Machine (UPM). These devicesrequire arelatively large, interleaved
command/data initialization sequence in order to start operation. In order to simplify the
setup of the UPM'’s, a special initialization record is defined for PowerPC targets.

CRTO_I NI TUPM nare, cndaddress, cndval ue,
dat addr ess, howmrany, stuff...)

nane isthe name given to the record; it must be unigue in the source file containing the
macro invocation. cndaddr ess isthe address of the UPM command register. cndval ue
istheinitial value to be written to the command register; this value will be incremented after
each write. dat aaddr ess isthe address of the data register; each datavalue is written to
thislocation. howrany defines how many long words of data follow the command header;
and st uf f isthe actual datato be written to the data register.

Here is an example taken again from 860Basi c. ¢ in the EXAMPLE directory:

[* UPMB. */
CRTO_I NI TUPM (UPMB1, BaseAddress+0x168, 0x00800000,
BaseAddr ess+0x17c, 64,

OxOf f f ec04, 0x08ffec04, O0x00ffec00, 0Ox3fffec47,
Oxffffffff, Oxffffffff, OxFfffffff, Oxffffffff,
OxOf f fcc24, OxOfffcc04, 0x08ffccO00, 0Ox03ffcc4c,

Embedded Support Tools Corporation

Embedded Essentials

Page 69

0x08f f cc00,

0x08f f cc00,
Oxffffffff,
0xO0f af cc04,
Oxffffffff,

0xO0f af cc04,
Ox01laf cc4c,
0x31bf cc43,
Oxffffffff,

OxcOf f cc84,
Oxffffffff,
Oxffffffff,
0x33ffcc07,

0x03f f cc4c,

0x33ffcc47,
Oxffffffff,
0x08af cc00,
Oxffffffff,

Ox0Ocaf cc00,
Ox0Ocaf cc00,
Oxffffffff,
Oxffffffff,

0x01ffcc04,
Oxffffffff,
Oxffffffff,
Oxffffffff,

4.4.1.2 hardware_init_hook ()

While theinitialization record mechanism is extremely useful, sometimesit is hecessary to
execute code in order to complete system initiaization. Thisisfacilitated through a user-
defined function called har dwar e_i nit _hook() .

Immediately after processing the initialization records, cr t O will check the value of the
symbol har dwar e_i ni t _hook. If thissymbol is defined (ie non-zero), cr t 0 will
perform afunction call to thislocation. This function may be defined by the user to perform
any hardware-related initialization that may be required.

0x08f f cc00,

Oxffffffff,
Oxffffffff,
Ox3f bf cc47,
Oxffffffff,

Ox01laf cc4c,
Ox01laf cc4c,
Oxffffffff,
Oxffffffff,

Ox7fffcc86,
Oxffffffff,
Oxffffffff,
Oxffffffff,

0x03f f cc4c,

Oxffffffff,
Oxffffffff,
Oxffffffff,
Oxffffffff,

Ox0caf cc00,
OxOcaf cc00,
Oxffffffff,
Oxffffffff,

OxffffccO5,
Oxffffffff,
Oxffffffff,
Oxffffffff);

It isgenerally not safe to call any C runtime library functions from with

har dwar e_i ni t _hook(), since neither the .data nor the .bss sections will have been set
up at this point. har dwar e_i ni t _hook() should be restricted to only performing any
hardware initialization functions that are required, and then exit. If application-level
initialization is required before mai n() iscalled, there isanother mechanism described in
section 4.4.2 which is well-suited to this task.

http://www.estc.com

Page 70 Embedded Development with Gnu CC

4.4.2 Software initialization before entering main ()

Thereisonefina initialization mechanismincrt 0, and this one may be useful for your
application code as opposed to hardware-related initialization. Just before mai n() is
entered, cr t O will call thefunctionsof t ware_i nit _hook(), if it exists. When this
function iscaled, al initialization is complete (ie bss will have been cleared to zero, and
initialized variables will have been set with their starting values) and you are free to call any
function defined in your application code or in the C runtime library. One warning: C++
constructors will not yet have been called when sof t war e_i nit _hook() executes, so be
careful not to perform any operationsin this function which would use C++ objects.

4.4.3 Default exception handling procedure

We spend alot of time thinking about the interrupt handlers that we write to support our
custom hardware. But what about the vast majority of exception vectors for which thereisno
handler? It's prudent to define handlers for al exception vectors, to avoid a situation where a
spurious hoise-triggered interrupt sends the processor off into space.

The EST implementation of crt O providesa“‘default’ exception handler, with the name
__vector_def aul t, to deal with this situation. In addition, the linker scripts rom.ld and
ram.ld use the PROVI DE command to force any vector table entries that are not defined in
user code to point to this default handler.

The default handler deals with unhandled interrupts and exceptions by re-starting the program
from scratch, just asif a hardware reset occurred. However, there is a mechanism by which
the application code can detect that the re-start was caused by an exception rather than areset.
crt O definesan integer variable called __unhandl ed_except i on. If crtO was entered
from a hardware reset, this variable will be zero; but if crtO was entered due to an unhandled
exception, this variable contains the number of the exception vector that caused the restart.
Another variable, called __unhandl ed_excepti on_pc, isset to the value contained in
the program counter at the point where the exception occurred.

The header filesys/ crt 0. h can be included into a C program to declare
__unhandl ed_except i on for access by C programs.

Embedded Support Tools Corporation

Embedded Essentials Page 71

4.4.4 crtO entry points

The crtO startup module providesthree entry points. _start, start2,and_restart.
Each of these entry pointsis described in the following sections. These functions are
prototyped in the header filesys/ crt 0. h.

4441 _start

_start isthe‘cold-start’ entry point, used to bring the system up from a system reset.
When your program is placed in ROM, the reset vector will be set (in vectors.o) to transfer
control to thislocation. _st art performsall initialization steps, in the following order:

Interrupts are disabled and some critical processor registers (for example the Machine
State Register in the PowerPC, or the Status Register in the M68k/ColdFire
architecture) are initialized.

The system’s critical peripherals areinitialized, as dictated by the user-defined
initialization records

The stack pointer is set to the value of the symbol st ack (if defined)
The function har dwar e_i ni t _hook() iscalled, if defined

The. bss sectioniscleared to all zeros, unlessthe symbol crt O_f | ags isdefined
andbit 1 of crt O_f | ags isnon-zero

If the program was linked as a ROM-resident executable (using the linker script
rom | d), aROM-resident image of the . dat a section is copied to RAM to set up
all initialized variables.

Thevariables__unhandl ed_excepti on and
__unhandl ed_excepti on_pc areinitialized to zero, to indicate to the
application program that it was entered as a result of a system reset.

If the program was compiled and linked using position-independent code (PIC), then
the processor’ s base pointer to the global offset tableisinitialized. The code fixup is
calculated based upon the program’ s offset from its linked address, and a data fixup
value of zero is assumed.

Aninitial dummy stack frameis set up, and any final processor-specific initialization
is done.

http://www.estc.com

Page 72 Embedded Development with Gnu CC

If defined, the function sof t war e_i ni t _hook() iscalled.

The application’smai n() functioniscaled, and if it returnsthe return valueis
passed totheexi t () function.

4,442 _start2

_start2 isalso a‘cold-start’ entry point, however it isintended for use when the program is
being hosted within another system environment, for example aROM monitor program. The
_Start 2 entry point has several function call parameters which provide the host
environment with the opportunity to control some of the startup parameters. It is prototyped
asfollows:

void start2 (int argc, char *argv [], void
*RanStart, LONG RantSize) attribute_ ((noreturn));

As shown in the prototype above, st art 2 alows the host environment to pass command
line parameters to the program in addition, the host environment may specify the address of
the program’s RAM buffer to be used for data, bss, heap, and stack memory. (The program
must be compiled with the—f pi ¢ or —f Pl Coption in order to use this feature. If the
Rantst art parameter (the address of the RAM block) is set to zero, then crtO will use the
default RAM addresses as specified at link time.

When control transfersto _start2, the same sequence of stepsis performed asfor _start,
except for the following:

The critical CPU registers (for example, MSR on PowerPC) are not altered upon
entry

For programs compiled as position-independent code, the global offset table will be
initialized to use the data fixup offset as cal culated based upon the Rantst ar t
parameter passed in the function call. The code fixup offset is calculated in the same
manner asfor _start.

4,443 _restart

Thesymbol restart isa‘warm-start’ entry point. It is prototyped as follows:

Embedded Support Tools Corporation

Embedded Essentials Page 73

void _restart (LONG new _unhandl ed_exception, void *
new_unhandl ed_exception_pc, int UseDat aFi xup)
__attribute__ ((noreturn));

_restart isused by the default exception handler to restart the system when an unhandled
exception occurs. It may also be called by user-defined exception handlersif arestartis
desired.

__restart peformsall thesameinitializationas_r est ar t , with the exception that the
variables__unhandl ed_excepti onand __unhandl ed_excepti on_pc aresetto
the vector number and execution address, respectively, that caused re-entry into crtO. These
variables may be inspected by the application program to determine why the program was re-
started, and take appropriate action if possible.

4.5 Exception handlers

It's easy to write your own interrupt and exception handlersin C. Each entry in the

processor’ s exception vector table is assigned a unique name. To define a handler routine for
that exception, ssimply define a C function with one of the reserved names; the codein
vectors. S/vect ors. o ensuresthat function will be called when the exception occurs.
Any exceptions for which you do not provide a handler will be vectored by the linker script to
call the default handler function __ vect or _def aul t , located in the crtO startup module.
Section 4.4.3 provides more detail on the exact operation of this function.

There are some specific requirements that each processor family places on exception
handlers; these are detailed in the following subsections.

45.1 M68K

M68k exception handlers are addressed directly in the processor’ s exception vector table,
whichisdefined inthefilevect or s. o (thisfileis supplied as part of the XGCC
installation). In order to generate the correct function entry/exit sequence, exception handlers
written in C must be declared using a special compiler directive -

__attribute_ ((interrupt)).Theexamplefragment below istaken from 332-

i 0. ¢ inthe EXAMPLE subdirectory.

http://www.estc.com

Page 74 Embedded Development with Gnu CC

void _ _vector_40 (void) _ _attribute__
((interrupt));

void _ vector_ 40 (void)

{

}
As shown in the example, you must first declare the function with the interrupt attribute. Y ou
can then write the function just like any other C function, except that the compiler will save
and restore the necessary registers in the function prologue and epilogue, and end the function
with the RTE (return from exception) instruction rather than RTS (return from subrouting).
Exception handlers must always be declared as shown above, i.e. with no parameters and
returning voi d.

Most of the reserved names for the user-defined m68k exception handlers arein the form
__vect or <nunber >, where <nunber > represents the vector number as two hexadecimal
characters. For example, __vect or _40 isthefirst user vector, number 64 in decimal. Most
of the Motorola-defined exceptions have the Motorol a-defined name in place of the number;
alistisgivenin Table 4.2.

Vector Description Function name
number
2 Access fault (bus error) __vector_access_fault
3 Address error __vector_address_error
4 Illegal opcode __vector_illegal _instruction
5 Divide by zero __vector_divbyzero
6 CHK, CHK2 instruction __vector_chk
7 TRAPC_C, TRAPV, FTRAPcc __vector_trapcc
instructions
Privilege violation __vector_privil edge
Trace __vector_trace

Embedded Support Tools Corporation

Embedded Essentials

Page 75

10 Line 1010 emulation __vector_lineA

11 Line 1111 emulation __vector_lineF

13 Coprocessor protocol violation | __vect or _CPpr ot ocol
14 Format error __vector_format

15 Uninitialized interrupt __vector_uninitialized
24 Spurious interrupt __vector_spurious
25 Autovector level 1 __vector_autol

26 Autovector level 2 __vector_auto?2

27 Autovector level 3 __vector_auto3

28 Autovector level 4 __vector_auto4d

29 Autovector level 5 __vector_autob

30 Autovector level 6 __vector_auto6

31 Autovector level 7 __vector_auto7

32 TRAP#0 __vector_trapO

33 TRAP#1 __vector_trapl

34 TRAP #2 __vector_trap2

35 TRAP#3 __vector_trap3

36 TRAP#4 __vector_trap4

37 TRAP#5 __vector_trap5

38 TRAP#6 __vector_trap6

39 TRAP #7 __vector_trap7

40 TRAP#38 __vector_trap8

41 TRAP#9 __vector_trap9

42 TRAP#10 __vector_trapA

http://www.estc.com

Page 76 Embedded Development with Gnu CC

43 TRAP#11 __vector_trapB

44 TRAP #12 __vector_trapC

45 TRAP #13 __vector_trapD

46 TRAP #14 __vector_trapE

47 TRAP#15 __vector_trapF

48 FP branch __vect or_Fpbranch

49 FP inexact result __vector_FPi nexact

50 FP divide by zero __vector_FPdi vbyzero
51 FP underflow __vector_FPunderfl ow
52 FP operand error __vect or _FPoper and

53 FP overflow __vector_FPoverfl ow
54 FP signalling NAN __vector_FPnan

55 FP unimplemented data type __vect or_FPuni npl enent ed
56 MMU configuration error __vector_MVJconfig

57 MMU illegal operation __vector_MVIJ | | egal
58 MMU access level violation __vector_MWaccess

Table 4.2: exception vector function names for the 68k

4.5.2 PowerPC
Power PC exception handlers should be defined as shown in the exampl e below:

void _ vector_externalinterrupt (LONG
new _unhandl ed_exception, void *
new_unhandl ed_excepti on_pc);

new_unhandl ed_except i on contains the exception vector number which caused entry
into the function. new_unhand| ed_except i on_pc isthe address of the opcode that was
executing when the interrupt occurred. Thereis no special compiler directive needed to

Embedded Support Tools Corporation

Embedded Essentials

Page 77

declare exception handlers for PowerPC; thefilevect or s. o contains the prologue code for
each vector that restores the machine to a safe state after the exception and then calls the
appropriate handler function.

Reserved names for the Power PC exception handler functions are listed in Table 4.3. These
functions are all declared in the header file sys/ ppc- except n. h.

Vector Description Function name

offset

0x200 Machine check __vector_machi necheck

0x300 Data access __vector_dat aaccess

0x400 I nstruction access __vector _instructionaccess
0x500 External interrupt __vector_externalinterrupt
0x600 Alignment __vector_alignnent

0x700 Program exception __vector_program

0x800 Floating-point unavailable __vector_fpunavail abl e
0x900 Decrementer __vector_decrenenter

0xa00 Reserved __vector_reservedl

0xb00 Reserved __vector_reserved2

0xc00 System call __vector_systental |

0xd00 Trace __Vvector_trace

0Oxe00 Floating-point assist __vector_fpassi st

Oxf00 Not assigned __vector_0f00

0x1000 Software emulation __vector_swemnul ati on

0x1100 Instruction TLB miss __vector_instructiontl bm ss
0x1200 DataTLB miss __vector_datat! bm ss

0x1300 Instruction TLB error __vector _instructiontl berror

http://www.estc.com

Page 78 Embedded Development with Gnu CC
0x1400 DataTLB error __vector_datatl berror
0x1500 Unassigned __vector_1500
0x1600 Unassigned __vector_1600
0x1700 Unassigned __vector_1700
0x1800 Unassigned __vector_1800
0x1900 Unassigned __vector_1900
0x1a00 Unassigned __vector_1a00
0x1b00 Unassigned __vector_1b00
0x1c00 Data breakpoint __vect or_dat abr eakpoi nt
0x1d00 Instruction breakpoint __vector_instructionbreakpoi nt
0x1e00 Maskable external breakpoint | __vect or _maskabl ebr eakpoi nt
0x1f00 Non-maskable external __vector_nonnmaskabl ebr eakpoi nt

breakpoint

Table 4.3: exception vector function names for the PowerPC

4.6 Position-Independent Code (PIC)

By default, the code generated by the Gnu compiler is position-dependant; the code uses
absol ute addresses when making reference to functions and variables, and therefore the
program will only operate correctly when loaded at its link address. However, the Gnu tools
also include support for generating Position-1ndependent Code (PIC) from your C and C++

programs.

4.6.1 PIC overview

Programs compiled as Position-1ndependent Code do not make use of any absolute addresses;
rather, when avariable or function addressis heeded in the program, it is loaded from atable

Embedded Support Tools Corporation

Embedded Essentials Page 79

of pointers, called the Global Offset Table (GOT), which is constructed automatically by the
compiler.

The GOT contains the address of each variable and function as calculated at link time by the
linker. The addresses in the GOT are modified, or ‘fixed up’, a runtime by the startup code,
which calculates the difference between the program’ s link address and the address at which
isactually executing, and adds that difference (called the ‘fixup’ value) to each pointer in the
GOT before the compiler-generated code runs.

4.6.2 -fpic (little’ PIC) vs. —fPIC (‘big’ PIC)
As described in section 3.8, Position-Independent Code is enabled with the command line

options—f pi c and—f PI C.—f pi c (‘'p’, ‘i’. And ‘Cc’ al lower-case) enables‘small’ PIC,
which typically resultsin faster and smaller code thanthe—f PI C('P’, ‘I'. And ‘C’ all upper-
case) option; it does this by limiting the size of the GOT to 64K bytes, or 16K entries, so any
entry may be accessed with a single-word offset. Each function or variable in the entire

program has exactly one entry in the GOT.

On PowerPC, register R2 is used as a base address to the GOT, and GOT entries are accessed
using the indexed load instructions. On 68k and ColdFire, address register A5 contains the
base address of the GOT, and the indexed addressing mode with 16-bit offset is used to
access its contents. In both cases, the ‘base address’ actually refers to the location midway
between the start and end of the GOT, to allow both positive and negative offsets for atotal
span of 64K.

In contrast, the—f Pl Coption (P, ‘I’. And ‘C’ al upper-case) enables ‘big’ PIC. In this
mode, the size of the GOT is unlimited; however, you pay a penalty in the form of dightly
larger and slower code. In the 68k and ColdFire families, the indexed addressing mode is
used, with 32-bit offsets, to load values from the GOT; thisis dightly larger and slower than
the 16-bit offset. In addition, only CPU32 and up (68020, 030, 040 etc) support the 32-bit
offset form of the indexed addressing mode, so ‘big’ PIC is not available on the original
MC68000 and its derivatives.

In PowerPC, ‘big’ GOT causes each function to allocate a‘ private’ areain the GOT, and the
function prologue calculates a base pointer to that areain a CPU register when the function is
called. Every function or variable referenced in the function causes an entry to be created in
that ‘private’ area of the GOT, so there will be multiple GOT entries for any variable that is
referenced in multiple functions. Since the PowerPC limitsindex values to 16 bits, this mode
allowsup to 16K GOT entries per function, as opposed to 16K entries for the entire program

http://www.estc.com

Page 80 Embedded Development with Gnu CC

in‘littte’ PIC. The function prologueislarger by afew instructions, since the compiler must
calculate a pointer to the ‘private’ areain the GOT; however, after the additional overhead of
the function prologue, variable accesses incur no additional penalty compared to ‘little’ PIC.

4.6.3 Code and data fixups

As mentioned in section 4.6.1, the reason that code generated with the —fpic or —fPIC options
is position-independent is that the addresses in the Global Offset Table are ‘fixed up’ by the
program’ s startup code so that they contain the correct run-time addresses. In the standard
Gnu distribution, the same fixup value is applied to al pointersin the GOT; thisimplies that
code and data must be relocated together as a unit, rather than being able to move code and
data separately. Practically speaking, it also implies that the program must be executed from
RAM, sinceit’svery unlikely that the exact same fixup value could be successfully applied to
both atext section resident in flash memory and the data and bss addressesin RAM.

The EST distribution has some enhancements to the compiler and startup code that make PIC
more suitable for embedded applications. Two fixup values are used, one for code pointers
and the other for data pointers. Any pointer containing an address that falls between the start
and end of the text section has the code fixup applied, while pointers with other values have
the data fixup applied. Null pointers are not fixed up. This allows data and code to be
relocated separately at runtime; for example, the code could be executed at its link addressin
flash memory, but data moved to anew location in RAM.

The fixup values are calculated in the startup modulecr t 0. o. It takes the address at which
it is executing and subtracts from that the address at which it was linked to run; this
difference is the code fixup. Since there is no automatic way to deduce what value to use for
the data fixup, it is calculated based upon the Rantst art parameter passed in the call made
intocrt0’s_st art 2 entry point. If this parameter is zero, then the data fixup value is zero
and the linked addresses are used for RAM variables. Otherwise, the linked address of the
starting address of RAM is subtracted from the RantSt ar t parameter to arrive at the data
fixup value. If crt0 is entered through the * cold start’ entry point _st art , RantSt art (and
therefore the data fixup value) is assumed to be zero.

4.6.4 Unhandled exceptions and the data fixup value

If an unhandled exception resultsin control passing to crtO to cause a warm start, then crtO
contains code which will re-calcul ate the data fixup value which it requiresin order to re-
initialize the system and re-enter mai n() .Recall that there is no automatic way to deduce

Embedded Support Tools Corporation

Embedded Essentials Page 81

what this value should be; it is an arbitrary value imposed by the external operating
environment. In arestart after an exception, it is possible to calculate the data fixup value
based upon the value of one of the critical CPU registers (R13 for PowerPC, A5 for
68k/ColdFire).

However, depending upon the requirements of your application and the type of exception
encountered, it may be possible that one or more CPU registers might have been corrupted
and may no longer contain the correct base address. For example, suppose that the processor
was subjected to an EMI pulse that caused it to jump out of its normal code section and start
executing some data locations as opcodes. Eventually an illegal opcode trap, bus error, or
watchdog timer would cause an exception to occur which resulted in arestart through
__vect or_def aul t . Having possibly run through dozens of unknown opcodes before
entering the exception handler, the register’ s contents quite easily could have been corrupted
before the exception occurred.

If thistype of catastrophic error is possible in your application, the default method used by
crtO to calculate the data fixup value will not bereliable. Y ou must either not use data fixup
(ie you must not relocate RAM addresses at runtime), or you must provide an alternate
method for obtaining the RAM start address and have your exception handler call _restart
directly

4.7 Omitting exception and RTTI support from C++ programs

The Gnu C++ compiler in XGCC includes full support for C++ exceptions and Run-Time
Type Information (RTTI). By default, any time you have at least one C++ module in your
program, the linker will include the run-time support code required to implement these
features. The total overhead of these run-time modulesis about 16K bytes of code and 2K
bytes of data (on PowerPC).

For larger programs, this overhead does not represent a problem, and many developers will
elect to leave the exception and RTTI support in their programs. However, this may represent
significant overhead for smaller projects; in addition, some devel opers may choose not to use
these features. For this reason, the XGCC system is configured to allow you to compile and
link programs without these features.

To remove exceptions and RTTI, compile all modulesin the program with the command-line
options—f no- excepti ons —f no-rtti.Inaddition, these options should be passed to

http://www.estc.com

Page 82 Embedded Development with Gnu CC

the linker so that it will select the run-time libraries that were compiled with these same
options. These options should always be used together; omitting one or the other will cause
errors at link time.

4.8 Runtime libraries

4.8.1 libgcc.a

libgcc isalibrary of support routines that are needed by the compiler to perform operations
that are too large to be efficiently open-coded; that is, operations that are used frequently and
cannot be implemented in a short instruction sequence. In this case, the compiler inserts a call
to a support subroutine rather than inserting the instruction sequence over and over againin
the compiled code. Thisresultsin smaller executables with little or no impact on
performance.

Examples of thistype of operation might include software floating-point math support,
integer multiply and divide (on some targets), memory-to-memory moves, saving and
restoring registers on function entry and exit, and functions for calling C++ constructors and
destructors.

The CD-ROM installs pre-built copies of libgcc.afor each target configuration, and it’s very
unlikely that you would ever have to change this library unless you are porting the compiler
to anew processor architecture.

4.8.2 The newlib runtime library

Asdescribed in section 1.4.3, newlib is a complete implementation of the standard C runtime
library suitable for embedded applications. It takes relatively small amounts of memory to
support the library functions, and applications built with newlib may be distributed without
royalties or disclosure of library source code.

4.8.2.1 Functions defined

Full documentation on these functionsis available in the newlib reference manual. Following
isasummary of the library functions implemented by newlib:

Embedded Support Tools Corporation

Embedded Essentials Page 83

Fromstdlib. h: abort, abs, assert, atexit, atof/atoff, atoi,
atol, bsearch, calloc, div, ecvt/scvtf/fcvt/fcvtf,
gevt/gevtf, ecvtbuf, fcvtbuf, exit, genenv, labs, |div,

mal | oc/real |l oc/free, nbtowc, qgsort, rand/srand,
strtod/strtodf, strtol, strtoul, system wctonb

Frommat h. h: acos/ acosf, acosh/acoshf, asin/asinf,

asi nh/ asi nhf, atan/atanf, atan2/atan2f, atanh/atanhf,
JNJNf/yN yNf, chrt/chrtf, copysign/copysignf, cosh/coshf,
erf/ferff/erfc/erfcf, exp/expf, expml/expmlf, fabs/fabsf,
floor/floorf/ceil/ceilf, fnod/fnodf, frexp/frexpf,

ganma/ ganmaf /| ganma/ | gammaf, hypot/ hypotf, il ogb/il ogbf,
infinity/infinityf,
isnan/isnanf/isinf/isinff/finite/finitef, |dexp/ldexpf,

| og/l ogf, 10gl0/10gl0f, |oglp/loglpf, natherr, nodf/modff,
nan/ nanf, nextafter/nextafterf, pof/powf,

rint/rintf/renmai nder/renai nderf, scal bn/scal bnf,
sqrt/sqgrtf, sin/sinf/cos/cosf, sinh/sinhf, tan/tanf,

t anh/ t anhf

Fromctype. h: isalnum isalpha, isascii, iscntrl, isdigit,
i slower, isprint, isgraph, ispunct, isspace, isupper,
isxdigit, toascii, tolower, toupper

Fromstdi o. h: clearerr, fclose, feof, ferror, fflush, fgetc,
fgetpos, fgets, fiprintf, fopen, fdopen, fputc, fputs,
fread, freopen, fseek, fsetpos, ftell, fwite, getc,
getchar, iprintf, nktenp/nkstenp, perror, putc, putchar,
puts, renove, renanme, rew nd, setbuf, setvbuf, siprintf,
printf/fprintf/sprintf, scanf/fscanf/sscanf, tnpfile,

t npnani t enpnam vprintf/vfprintf/vsprintf

Fromstring. h: bcnp, bcopy, bzero, index, nmenchr, nenctnp,
mencpy, nenmove, nenset, rindex, strcat, strchr, strcnp,
strcoll, strcpy, strcspn, strerror, strlen, strlw,
strncat, strncnp, strncpy, strpbrk, strrchr, strspn,
strstr, strtok, strupr, strxfrm

Fromsi gnal . h: raise, signal

http://www.estc.com

Page 84 Embedded Development with Gnu CC

Fromtine.h: asctine, clock, ctine, difftinme, gntine,
localtinme, nktinme, strftine, tine

From| ocal e. h: setl ocal e, | ocal econv

In addition, themacrosva_st art,va_ar g, andva_end are defined to support functions
with variable argument lists. Both the st dar g. h and var ar g. h, header files are included
to support both K& R and ANSI-compliant code.

4.8.2.2 Integer-only printf()

In order to help conserve memory space, the pri nt f () functions are implemented in both
integer-only and floating-point-capable versions. The integer-only versions are about half the
size of the standard versions, so you will save space there; in addition, if thereis no other
floating-point math in your program, usingi pri nt f () instead of pri nt f () will prevent
the floating-point support library routines from being linked into your program. This can also
save significant code space, particularly on targets that do not implement floating-point math
in hardware.

To use the integer-only versions, smply substitutei pri nt f wherever pri nt f would
normally be used. Thisappliesto all functionsinthepri ntf () family,ieii printf(),
fiprintf(),siprintf(),vfiprintf(),etc.

4.8.2.3 float versions of math functions

Each math function defined in mat h. h is defined to operate upon and return double-
precision values. newlib also makes available equivalent functions which operate upon and
return single-precision values. The advantage to using the single-precision versionsisthat if
you don’t need the extra precision of the double type, you will generally get better
performance with the single-precision version, especially on lower-cost processors that
implement floating-point math in software rather than hardware.

To use the single-precision functions, simply append the letter ‘f’ to the function name. For
example, t anh() isimplemented using doubles, whereast anhf () isimplemented with
floats.

Embedded Support Tools Corporation

Embedded Essentials

Page 85

4.8.2.4 Using newlib

Newlib is pre-compiled by EST and installed on your hard drive with the compiler tools.
Multiple versions are installed, one for each major family member and/or compiler option
setting. All you have to do ismake surethat - | ¢ and - | mare referenced at some point on
the linker command line. If you use EST'srom | d and r am | d linker scripts, thisis done

for you in the linker script.

4.8.3 Support functions required by newlib

A total of 18 supporting functions are required in order to implement the newlib library on a
new system. These functions are listed in the table below. newlib is fully capable of
implementing support for sophisticated OS features such asfile 1/0 and multitasking. If your
development project does not include these features however, then many of the support
functions may be stubbed out (ie perform no operation and return a default value).

Generic versions of many of these functions have already been implemented for you in the
librom library included with the XGCC CDROM. If they will meet your needs (as they will
for many systems), then there is very little work needed to get newlib running on your custom
hardware. Please refer to section 4.10 for more detail on EST’ s librom 1/0 subsystem.

Function/variable

Description

void _exit (int
resul t)

Return control to host system; called by exi t ()
andsyst en()

int close (int fd)

Closesthefileidentified by the file descriptor f d

char **environ

Pointer to environment strings

i nt execve(char *nane,
char **argv, char **env)

Transfers control to a new process

int fork (void)

Creates a new process

int fstat(int file,
struct stat *st)

Returns status of an open file.

int getpid (void)

Returns process ID of currently executing process

int isatty (int fd)

Returns non-zero if thefileindexed by f d isa
terminal device

http://www.estc.com

Page 86 Embedded Development with Gnu CC

int kill (int pid, int Signal aprocess

si g)

int link (char *old, Rename afile

char *new)

int lseek (int fd, int Sets the position of afile.

ptr, int dir)

int read (int fd, char Read | en characters from the fileindexed by f d
*ptr, int len)

caddr _t sbrk (int incr) Increase program data space

int stat (char *file, Returns status of file (by name)

struct stat *st)

int tinmes (struct tns Returns timing information for the current process.
*t buff)

int unlink (char Delete afile.

*fil enane)

int wait (int *status) Wait for a child process.

int wite (int file, Write| en charactersto thefileindexed by f d.

char *ptr, int |en)

Table 4.4: support functions required by newlib

4.9 Linking the correct libraries (‘multilib’)

Many embedded microprocessor architectures implement multiple versions of their
instruction sets; some high-end family members may (for example) implement hardware
floating-point math, which other less sophisticated members rely on software emulation. In
addition, many processor architectures offer a choice of multiple calling conventions, each
with its own advantages and disadvantages, in order to optimize performance for particular
applications. Typically, when you select a particular instruction set or calling convention to
use for your application code, you must insure that all runtime libraries that you link with

Embedded Support Tools Corporation

Embedded Essentials Page 87

your application code were also compiled with the same set of compiler options; otherwise
it'svery likely that your program will not work.

This seemingly obvious and simple issue can become something of a nuisance when you
need to support multiple projects that were built with different compiler options. If you had
installed only a single copy of the library, you would be forced to repetitively re-build it from
source code each time you wanted to link with a project built with a different set of compile
options. The XGCC compiler tools resolve this problem by installing multiple sets of the
runtime libraries, with each set built with a different combination of command-line options;
then, the compiler command line options given at link time are used to select the appropriate
libraries with those same options, by passing the appropriate directory name to the linker.

There is one catch to the scheme: it only worksif you link your program using the gnu driver
program, gcc. If you invoke the linker directly (for example, using n68k- el f -1 d or
power pc- eabi - | d onthe command line rather than gcc) then you are responsible for
specifying the exact location of all the object files and libraries that the linker should include
use to build the executable. Unless you have a particular requirement to control every option
passed to the linker, it’s advisable to always use gcc to link your programs, because it takes
care of many details for you in the link process. If you want to see the exact command line
that gcc uses to invoke the linker, then add the option —v on the gcc command line and it will
display the command line on the console when it links.

Thelibraries are stored in two sets of subdirectoriesin the compiler directory tree. Libraries
relating to the target environment (eg: | i bc. a, the startup codecrt 0. 0, etc) residein

\ xgcc32\ <t ar get nanme>\ | i b. Compiler-specific support libraries (for example:

I'i bgcc. a,libstdc++. a, etc) arestoredin\ xgcc32\ 1 i b\ gcc-

I i b\ <target name>\ <conpi | er versi on>. <t ar get nane> isthe ‘configure'
name for the target architecture (eg: n68k- el f for 68k, power pc- eabi for embedded
PowerPC, etc) and <conpi | er ver si on> isthe numeric version number of the compiler
release (e.g.: 2.95.2).

The name of each subdirectory roughly corresponds to the names of the command line
options with which they are compiled. Table 4.5 lists the directory name for each
combination of processor core and build option in the 68k family.

MC68000 CPU32 MC68020, MC68060 | Coldfire
[- m68000] [- mcpu3?] MC68030, [-m68060] | [-n5200]
MC68040

http://www.estc.com

Page 88 Embedded Development with Gnu CC

[none]

DefaL“ 68000 nmcpu32 n68060 5200

t

-mshort | nshort\n68000 mshort\ ncpu32 mshort

-mrtd nrtd\ ncpu32 nrtd

-mshort mshort\ nrtd\ncpu32 | mshort\nrtd

-nrtd

-nmsof t nsof t - f | oat

—f I oat

-nmsof t —f | oat
—nmshort

nmsoft-fl oat\nshort

-msof t —f | oat
-nrtd

nsoft-float\nrtd

-msof t —f | oat
—nmshort
—nmrtd

nsof t-fl oat\ nshort\nrtd

Table 4.5: multilib options and directory locations for 68k targets

For PowerPC, Table 4.6 lists the build options and directory names for the runtime libraries.

Calling Convention Big-endian Little-endian | Big-endian, Little-endian,
[-mittle] software software
floating-point | floating-point
[-nsoft-float] | [-mittle —
nsoft-fl oat]
Default le nof nof/le
-ncal | -ai x ca le\lca nof\ ca nof\ 1 e\ ca
- nmedat a nsdat a nedata\l e nof \ msdat a nof\| e\ nsdat a
-fpic pic le\pic nof\ pic nof\le\pic
-fPIC pi cREL | e\ pi cREL nof \ pi cREL nof\ | e\ pi cREL
-fno- exceptions, -fno- nortti\noexcp le\nortti nof\nortti nof\le\nortti\
rtti \ noexcp \ noexcp noexcp
-ncal | -ai x, -fno- ca\nortti lelca\nortti nof\ca\nortti nof\ 1 e\ca\nort
exceptions, -fno-rtti \ noexcp \ noexcp \ noexcp ti\ noexcp

Embedded Support Tools Corporation

Embedded Essentials

Page 89

-nsdata, -fno-

nsdata\nortti

| e\ nsdat a\ nor

nof \ nedat a\ no

nof \ | e\ nsdat a\

exceptions, -fno-rtti \ noexcp tti\noexcp rtti\noexcp nortti\noexcp
-fpic, -fno-exceptions, pic\nortti le\pic\nortti nof \ pi c\nortt nof\ | e\ pi c\ nor
-fno-rtti \ noexcp \ noexcp i \ noexcp tti\noexcp

-fPIC, -fno-exceptions, pi cREL\ nortti | e\ pi cREL\ nor nof\ pi cREL\ no | nof\I e\ pi cREL\
-fno-rtti \ noexcp tti\noexcp rtti\noexcp nortti\noexcp

Table 4.6: multilib options and directory locations for PowerPC

4.10 Customizing the link process: XGCC’s “Modular Linking”

When an executable program is linked, the following components are included in the link
process (listed in order of their appearance on the linker’ s command line):

1

© N o O

The ‘start file', if any, required by the compiler’s support code. For PowerPC thisfile
isnamedecrti . o.

The program’ s startup module, crt 0. o

The abject modules which make up the program (specified by the programmer on the
gcc command line)

(If linking with g++. exe) the C++ runtimelibrary | i bst dc++. a and the
floating-point math library | i bm a.

The compiler support library | i bgcc. a.
The exception vector table modulevect or s. 0.
Theruntimelibraries| i brom aandl i bc. a.

The compiler support library | i bgcc. a islinked again to resolve any remaining
compiler support routines.

The‘endfile, if any, required by the compiler’s support code. For PowerPC thisfile
isnamed ecrtn. o.

Of the components listed above, provision is made that nos. 2, 6, and 7 may be easily
replaced or eliminated by the developer. We refer to this as XGCC's “modular linking”
process, since these portions of the link process may be atered without affecting the other

http://www.estc.com

Page 90 Embedded Development with Gnu CC

(required) steps. The manner in which thisis done differs dlightly for each module, depending
upon itsrolein the process.

4.10.1 Replacing the startup module crt0.o (link step 2)

Theinclusion of the startup modulecr t 0. o iscontrolled by an | NPUT directive in the
linker script filest ar t up. | d, located in the compiler directory tree. Since this directive
causes the linker to search for an object file in itslist of library directories, in the default case
the linker will find EST’ s standard crt0.o module when it searches the compiler library
directories. However, the SEARCH_DI Rdirectiveinst art up. | d causesthe linker to add
the project’ sworking directory to this search list; this also means that you can substitute your
owncrt 0. o modulein place of the standard one simply by placing it in the project’s
working directory, since this directory will be searched first.

4.10.2 Replacing or eliminating the exception vector table module (link step 6)

The exception table module, vect or s. 0, isnecessary for applications that run on the ‘ bare
metal’ and assume control of the processor’s exception vector table. In some applications
however, it may be necessary to customize this module for special requirements. Still other
applications may run under control of a host software environment such as areal-time OS or
ROM monitor, which controls the processor’ s exception vector table itself; and in these cases
it may be desirable to removevect or s. o completely from the link process.

The inclusion of the exception vector table moduleis controlled by alinker script named
vect ors. | d, located in the compiler’slibrary directory tree. To substitute a custom
exception vector module, use the same trick as described for the startup module (see section
4.10.1): simply provide your own object module named vect or s. o inthe project’s
working directory, and the linker will find this module first asit searchesitslist of library
directories. To eliminate the vector table module altogether from the link, simply create an
empty filenamed vect or s. | d inyour project’sworking directory; again, this file will be
found first when the linker searchesfor it, and since it is empty the vector table module will
not be linked in. other specia requirements may also be accommodated by this technique.

4.10.3 Modifying or eliminating run-time libraries (link step 7)

By default, EST’s 1/O integration library | i br om a (described in section 4.11) and the
newlib standard C runtime library | i bc. a areincluded in the link process. While thiswill

Embedded Support Tools Corporation

Embedded Essentials Page 91

be appropriate for many applications, there will inevitably be occasions when one or both of
these libraries will need to be replaced or excluded from the link process.

Thelibraries are linked under control of the linker script | i bs. | d, located in the compiler’'s
library directory tree. To modify the set of libraries used in thislink step, simply create your
ownfilenamed| i bs. | d inyour project’sworking directory and specify the libraries you
need; since your working directory always appearsfirst in the linker’ slist of search
directories, thisfile will override the standard one in the compiler directory tree.

4.11 EST’s librom.a I/O subsystem

It's sometimes necessary to interface to newlib at the level described in section 4.8.3.
However, for many embedded products, it's possible to define a much simpler interface that
dramatically reduces the amount of work involved to write the hardware-specific driver code.
Thisistherolefulfilled by librom.

librom implement the following features:
Two versions of 1/O driver: buffered (interrupt-driven) and non-buffered (polled 1/O)
Any number of named devices may be defined
Devices may be opened by calling f open() with user-defined device name
Input routines support backspace processing for line editing on character entry
Character echo on input
Input tranglation of carriage returns to newlines
Output drivers support tranglation of newlinesto CR/LF sequence

All editing and trand ation features may be enabled/disabled at run time through simple
I/O control function call

User-defined ‘idle’ function may be called when waiting for input characters or output
buffer space

The following additional features are implemented in the buffered (interrupt-driven)
implementation of the library:

http://www.estc.com

Page 92 Embedded Development with Gnu CC

Function calls available to get number of characters waiting in input and output buffers

User-defined function can be called by the interrupt service routine upon receipt of
characters, or when the output buffer is emptied

Despite this wealth of features, it is very simple to implement this library on your custom
hardware. The MC68332 driver in the EXAMPLE subdirectory implements interrupt-driven
serial 1/0 on the SCI serial port with only 26 lines of C code in two functions.

A pre-built linker archive named | i br om a isinstalled with the XGCC toals; it contains all
the functions that provide the interface between newlib and your hardware driver routines.

Y ou must write and link an object file containing the hardware-specific driver functions that
are called by theroutinesin| i br om a and by newlib.

4.11.1 librom implementation of newlib support functions

Following is a summary description of how librom implements each support routine required
by newlib.

Function/variable I i br omimplementation

void _exit (int result) | Typicalyimplementedasan endlessloop, or a
debugger ‘trap’ instruction, since thereis no host
operating system to which we can exit.

int close (int fd) Implemented.
char **environ Null pointer

i nt execve(char *nane, er r no=ENOVEM
char **argv, char return -1;
**env)

| i br omonly implements one ‘process : the
application program.

int fork (void) er r no=EAGAI N,
return -1,

| i br omonly implements one ‘process : the
application program.

int fstat(int file, errno = EIQ

Embedded Support Tools Corporation

Embedded Essentials

Page 93

struct stat *st)

return O;

| i br omdoes not implement afile system, so this
function is not supported.

int getpid (void)

return 1;

| i br omonly implements one ‘process': the
application program.

int isatty (int fd)

return 1;

Asfar asl i br omisconcerned, everythingisa
terminal device.

int kill
sig)

(int pid, int

errno = ElI NVAL;
return -1;

[i br omonly implements one ‘process': the
application program.

int link (char *old,
char *new)

Errno = EM.I NK;
return -1;

| i br omdoes not implement atrue file system, so
this function is not supported.

int lseek (int fd, int
ptr, int dir)

return O;

| i br omdoes not implement afile system, so this
function is a no-op.

int read (int fd, char Implemented.

*ptr, int len)

caddr _t sbrk (int incr) | Implemented.

int stat (char *file, st->st_node = 0;

struct stat *st)

return O;

| i br omdoes not implement afile system, so this
function is not supported.

int tinmes (struct tns

return -1;

http://www.estc.com

Page 94 Embedded Development with Gnu CC

*t buf f)
int unlink (char Errno = ENOENT;
*fil enane) return -1;

I i br omdoes not implement afile system, so this
function is not supported.

int wait (int *status) errno = ECHI LD;
return -1,

[i br omonly implements one ‘process': the
application program.

int wite (int file, Implemented.
char *ptr, int |en)

Table 4.7: librom’s implementation of the newlib support functions

4.11.2 Implementing stream 1/O with librom

Librom uses a data structure called the I/O device table to keep track of the 1/O devices that
are available to newlib. Each entry in the table represents an individual 1/0 device. Any
number of devices may be implemented in the table, with anull entry to mark the end of the
table. Each device has a name associated with it, which is stored as a character string
referenced by the Name field of the table entry. This allows your application code to access
each device by name, using the open() and fopen() library functions.

Five functions are used to control each device: open(),cl ose(),read(),wite(),
and devi cecont r ol () .Each entry in the I/O device table contains a pointer to the
open(),close(),read(),wite(),anddevi cecontrol () functionfor that
device.

The 1/0 device table alows librom to support multiple, named devicesin your embedded
system, but it doesn’t necessarily make it easier to write the code that controls those devices.
To tackle that issue, librom also contains driver code to implement input/output control of
two classes of stream 1/0O device, which we refer to as Non-buffered (polled) devices and
Buffered (interrupt-driven) devices. In other words, librom contains a set of functions that
you can point to in your I/O device entries to implement either polled or interrupt-driven 1/0
on aparticular device. These functions trandate the function call interface required by newlib

Embedded Support Tools Corporation

Embedded Essentials Page 95

into another, much simpler interface that is quite easy to implement for most peripheral
systems in common use on current microprocessors. They also implement several handy
features such as line editing, character translation, and character buffering, which are not
addressed in newlib.

In order to use these functions, a second data structure is required for each device. This data
structure pointsto a small set of functions that implement the hardware-level interface to your
target system. In the case of a device using Buffered 1/0O, it also points to a set of FIFO
buffers that are used to transfer characters to and from the device under DMA or interrupt
control. Two data types are defined in the librom header files, tNonBufferedDevice and
tBufferedDevice, to represent non-buffered and buffered devices respectively. The address of
the device' s data structure should be stored in the Devicelnfo field of the I/O device table
entry.

4.11.3 The DeviceControl() function call

Devi ceCont rol () alows accessto several features of the librom driver library which do
not fit into the standard C library’s ‘ stream [/O’ model. It is similar in concept to the Unix
systemcall i oct | (), although much simpler and less capable. Devi ceCont r ol () has
the following capabilities:

Installs user alert functions to be called when datais received or the transmit buffer is
emptied (Buffered devices only)

Allows setting and querying the flags for a device, controlling character translation, line
editing, etc

Allows the application code to determine how many characters are stored in adevice' s
input or output buffer

A range of user-defined function codes is available for user-written driver routines.

Thedevi cecontrol () functionisdefined in the header filesys/ | ODct r | . h asshown
below:

long DriverControl (int filedes, int function,

)

http://www.estc.com

Page 96 Embedded Development with Gnu CC

Thef i | edes parameter refersto afile descriptor returned from the open(') function call.
If adevice was opened with f open() instead, then the newlib functionf i | eno() will
return the file descriptor.

Although the function returns along, the actual value returned is interpreted differently
depending upon the function code passed in the function parameter. The function parameter
tellsDevi ceCont r ol () which operation should be performed. Table 4.8 lists the various
actions performed by Devi ceControl ().

Function code Description

| ODFN_GETFLAGS Returns the flags for the device. Device flags are
documented in Table 4.9.

| ODFN_SETFLAGS This call requires an additional parameter after the function

code, an integer containing the new flags to be assigned to
the device. Device flags are documented in Table 4.9.

| ODFN_SETALERT This call sets an aert function that is called when data
received on the device’ sinput channel. This call requires an
additional parameter after the function code, a function
pointer defined as follows:

voi d (*Dat aRecei ved) (struct
sBuf f er edDevi ce *Devi ce);

The function will only be called if the device uses Buffered
I/O; the non-buffered drivers do not implement any alert
functions.

The return value of thiscall isthe old value of the alert
function that was stored in the device' s descriptor table.

| ODFN_SETEMPTY Thiscall setsan alert function that is called when the
transmit buffer is emptied on the device' s output channel.
This call requires an additional parameter after the function
code, afunction pointer defined as follows:

Void (*TXEnpty) (struct
sBuf f er edDevi ce *Devi ce);

The function will only be called if the device uses Buffered

Embedded Support Tools Corporation

Embedded Essentials

Page 97

1/0O; the non-buffered drivers do not implement any alert
functions.

The return value of this call isthe old value of the alert
function that was stored in the device' s descriptor table.

| ODFN_GETAVAI L

This call returns the number of charactersin the device's
receive buffer which are waiting to be read. This buffer is
independent of any buffering which may be performed by
newlib; see the documentation on set vbuf () for more
information on newlib’s buffering. If this function is not
implemented by the device, the value—1 is returned.

On a non-buffered device, this function can only return the
values zero (no characters waiting) or one (at least one
character isavailable).

| ODFN_GETBUFF

This call returns the amount of space availablein the
device stransmit buffer. This buffer isindependent of any
buffering which may be performed by newlib; see the
documentation on set vbuf () for moreinformation on
newlib’'s buffering. If this function is not implemented by
the device, the value -1 isreturned.

On anon-buffered device, this function can only return the
values zero (no space available) or one (there isroom for at
least one more character).

| ODFN_SETUSER

This call sets auser parameter into the device’ s descriptor,
returning the old value of the user parameter. The user
parameter isapointer of typevoi d *. Thisvaueis not
used by the device driver in any way, it isthere ssimply for
use by the user’ s application code. Thisfunctionisonly
implemented on buffered I/O devices.

| ODFN_USER

Thisisthefirst value of arange of function codesthat are
allocated for use by user-written drivers. Any function code
with this value or higher may be implemented by user
drivers without interfering with driver code from EST

http://www.estc.com

Page 98 Embedded Development with Gnu CC

Table 4.8: Actions implemented in the DeviceControl() function

A number of flags are maintained for each device, which control various options on the
device. These flags may be set using the | ODFN_SETFLAGS subfunction of

Devi ceCont rol (), and retrieved using the | ODFN_CGETFLAGS subfunction. Table 4.9
documents the function of each flag.

Flag name Function

| ODF_CRIN Setting this flag enables trandlation of carriage returns to
linefeed characters on the device sreceiver. If theflag is
cleared, no such trandation is performed.

| CDF_NLOUT Setting this flag enables trandation of linefeed charactersto
the string CR/LF (carriage return followed by aline feed) on
the device' stransmitter.

| ODF_EDI T Setting this flag enables line-editing features on the device's
receive side. When used with the | ODF_ECHOflags, this
facilitatesthe use of f get s() to provide interactive entry of
lines of text with simple editing features such as backspace
processing. The specific operations supported are:

If acarriage return character is encountered during a call
tor ead() , thefunction will return immediately with
any characters received from the device up to the carriage
return.

If a backspace character is encountered and one or more
characters have been read from the device, the preceeding
character will be removed from the buffer and the erase
sequence“\ b \ b” (backspace, space, backspace) will be
echoed to the device' stransmitter if character echois
enabled. If there are no previous charactersin the buffer
when the backspace is encountered, then no action will be
taken. In either case, the backspace character is not
returned from the call tor ead() .

| ODF_ECHO This flag enables automatic echo of characters from the

Embedded Support Tools Corporation

Embedded Essentials Page 99

device' sreceiver to its transmitter during the call tor ead() . |

Table 4.9: Device flags

4.11.4 Writing a non-buffered driver

Application Code

v
newlib
|
2 Y :
| newlib interface code I » 1/O Device
Table
. *Name ———» | “devicel”
Unbuffered driver code *Flags—
< . | int
(NBopen, NBclose, | *2&9;
NBread, NBwrite, | *read Iibtrgt
NBdrivercontrol) « *write
< *drivercontrol
“Devicainto I Non-Buffered
- Device Descriptor
Driver Code
DataAvailable() *DataAvailable
TXReady() * :TX Ready
. InByte() < *InByte
librom OutByte() + oubyte

[Device-specific info]

Figure 4.1: Non-buffered 1/0 device implementation

A non-buffered (polled 1/O) driver needs four functions defined: | nByt e() , Qut Byt e(),
Dat aAvai | abl e(), and TxReady() . Each function is described in the following
subsections.

The actual name of the function is not important, since each function will be addressed by a
pointer in a data structure, rather than by its name. What isimportant however, isthat the

http://www.estc.com

Page 100 Embedded Development with Gnu CC

function must match the prototypes listed here, and must operate in the manner described.
The data structure that stores the pointersto these functions, of type
t NonBuf f er edDevi ce, isdescribed in section 4.11.4.5.

4.11.4.1 InByte ()
int InByte (t1QODev *Device);
I nByt e() readsthe next available character from the device. The function should poll the

hardware until a character isavailable, calling | ODevi cel dl e() until acharacter isready
and then returning its value.

4.11.4.2 OutByte ()
void QutByte (tl ODev *Device, int Char);

Qut Byt e() writesthe next character Char to the device. The function should poll the
hardware, calling | QDevi cel dl e() until the deviceis ready to accept the character.

4.11.4.3 DataAvailable ()
int (*DataAvail able) (tlQDev *Device);

Dat aAvai | abl e() returnsaflag indicating whether a character is ready to be read from
the device. The function should return anon-zero value if datais available to be read,
otherwise it should return zero.

4.11.4.4 TxReady ()
int (*TxReady) (tlODev *Device);

TxReady() returnsaflag indicating whether the device is ready to send another character.
The function should return anon-zero value if the device isready, otherwise it should return
zero.

4.11.4.5 The tNonBufferedDevice structure

In order to make your driver functions accessible to librom, you must declare a variable of
typet NonBuf f er edDevi ce and initialize the variable to point to the | nByt e() ,

Embedded Support Tools Corporation

Embedded Essentials Page 101

Qut Byt e(), Dat aAvai | abl e(), and TxReady() functionswhich control the device.
The definition of t NonBuf f er edDevi ce lookslikethis:

t ypedef struct sNonBufferedDevice
{
int (*DataAvailable) (tlCODev *Device);
int (*TXReady) (tlODev *Device);
int (*InByte) (tlQDev *Device);
void (*QutByte) (tlODev *Device, int Char);
voi d *Devi cel nf o;
} t NonBuf f er edDevi ce;

Variables of typet NonBuf f er edDevi ce may be declared const , to conserve RAM
space by placing them in read-only memory.

As shown above, t NonBuf f er edDevi ce isbasically made up of pointersto your driver
functions. There is one structure member, Devicelnfo, which is available for use by your
driver routines; it is not used by the librom functions. This may be used (for example) to store
apointer to the hardware registers for the device.

If your device does not implement a particular function, for example it can receive data but
not transmit, then you should place a null pointer in the structure member associated with the
unimplemented function so that the librom functions will return an error to the application if
it tries to access the unimplemented functionality.

4.11.4.6 Example Non-buffered driver

Thefile NBi 0555. ¢ inthe EXAMPLE subdirectory implements non-buffered 1/0 for the
dual SCI ports on the Motorola MPC555. Since the SCI ports implement an identical set of
hardware registers, asingle set of driver functions was defined for both ports, and the

Devi cel nf o field of eacht NonBuf f er edDevi ce structure was used to store a pointer
to the first hardware register of each SCI port.

http://www.estc.com

Page 102 Embedded Development with Gnu CC

Application Code

v
newlib
I
v 3 -
| newlib interface code I » |/O Device
Table
*Name L —¥» “device2"
Buffered driver code | *Fags— 1 [.
*open libtrgt
(Bopen, Bclose, Bread, [« *close
Bwrite, Bdrivercontrol) [*read
< *write Buffered Device
< *drivercontrol / Descriptor
*Devicelnfo — TransmitEIEO— FIFO Buffers
RecelVeFIFO —— £FQ Buffers
Driver Code ReferenceCount
StartSend() < *StartSend
Enable() ¢ Enable
. [plusinterrupt *DataReceived
librom handler] *TXEmpty
*Applnfo
| [Device-specificinfo] [«— *Devicelnfo

Figure 4.2: Buffered 1/0 device implementation

4.11.5 Writing a buffered driver

Buffered drivers use asimilar structure to that employed by non-buffered drivers — a set of
functions which control the device are addressed by a data structure of function pointers. We
recommend that you read section 4.11.4 before diving into this one. However, there are some
differencesin the operation of buffered drivers, due to the inherent requirements and
capabilities of interrupt- or DMA-driven transfers.

Buffered devices are structured under the assumption that data will be transmitted and
received under control of some kind of background process; in most systems, thisis usually
an interrupt handler routine or aDMA controller. As such, they do not define functions to
send and receive characters to/from the device; rather, two FIFO (first-in first-out) buffers are

Embedded Support Tools Corporation

Embedded Essentials Page 103

defined, one for transmit and one for receive, and all data transfers happen through these
FIFO buffers.

To transmit data, the upper-level routinesin librom will move data into the transmit FIFO and
then call thedevice's St ar t Send() function, whose purposeisto initiate data transmission
within the device (ie enable the transmitter interrupt, set up the transmit DMA, etc).

Whenever datais available, triggering areceive interrupt or DMA transfer, the DMA
controller or interrupt handler should write data into the receive FIFO. When acall is made to
thelibrom’sr ead() function by the foreground application code, in order to read data from
the device, librom will remove the data from the driver’ sreceive FIFO and placeit in the
location requested by the application, polling the FIFO in aloop if necessary in order to get
the requested number of bytes.

4.11.5.1 The tBufferedDevice structure

In order to make your driver functions accessible to librom, you must declare a variable of
typet Buf f er edDevi ce andinitialize the variable to point to the functions that control the
device. Unliket NonBuf f er edDevi ce, variables of typet Buf f er edDevi ce must be
located in RAM since severa of the structure members are modified during execution.

The definition of t Buf f er edDevi ce lookslikethis:
t ypedef struct sBufferedDevice

t FI FO Transm t FI FO

t FI FO Recei veFI FG,

void (*StartSend) (struct sBufferedDevice
*Devi ce);

int (*Enable) (int NewState);

i nt ReferenceCount;

voi d (*Dat aRecei ved) (struct sBufferedDevice
*Devi ce);

void (*TXEnpty) (struct sBufferedDevice
*Devi ce);

voi d *Devi cel nf o;

voi d *Appl nf o;
} tBufferedDevi ce;

http://www.estc.com

Page 104 Embedded Development with Gnu CC

If your device does not implement a particular function, for example it can receive data but
not transmit, then you should place a null pointer in the structure member associated with the
unimplemented function so that the librom functions will return an error to the application if
it tries to access the unimplemented functionality.

4.11.5.2 Enable ()
int (*Enable) (int NewState);

Enabl e() iscaled both to initialize the device beforeit is used, and to de-initialize (shut
down) the device when it is no longer needed by the application.

The first time the application code makes acall to open() referencing abuffered device, the
device’'senabl e() function will be called with anon-zero valuein NewSt at e. Likewise,
when al file descriptors referencing the device are closed, librom will call the device's

Enabl e() function with NewSt at e equal to zero. The Enabl e() function should test
NewSt at e, initializing the deviceif it is non-zero and disabling the device otherwise.

4.11.5.3 ReferenceCount

Ref er enceCount isacounter used by librom to keep track of how many open file
descriptors are attached to the device. Normally your device driver functions will not need to
do anything with Ref er enceCount . However, if you define a buffered device which is
automatically opened and enabled upon power-up, you should set the Ref er enceCount
member to the number of file descriptors which are attached to this device, since there will be
no call to Enabl e() tosetit for you.

The most common case where thisis necessary is when a console device is defined and
attached to st di n, st dout , and st der r . In this case, the deviceis‘live’ when the system
starts executing main(), and the st di n/st dout /st der r file descriptors are already open
and attached to this device. In this case, the reference count should be set to 3.

4.11.5.4 StartSend ()
void (*Start Send) (struct sBufferedDevice *Device);

StartSend is called by librom when it writes data to the device' s transmit FIFO. This function
should enable the transmitter interrupt, set up the transmitter’s DMA controller, or do
whatever else is necessary to start transmitting characters from the transmit FIFO.

Embedded Support Tools Corporation

Embedded Essentials Page 105

4.11.5.5 Application alert functions

There are two function pointers in the tBufferedDevice data type which point to functionsin
the application code, rather than in the driver code. These function pointers permit the
driver’ sinterrupt handler to notify or ‘alert’ the application code when an event occursin the
driver. Two events may be handled in thisway: the reception of a character on the device's
receiver, and the emptying of the device stransmit FIFO. The function pointers may be set
and retrieved by the application code through the DeviceControl () library function.

4.11.55.1 DataRecieved()
voi d (*Dat aRecei ved) (tBufferedDevice *Device);

Thisfunction will be called each time a character is received by the device. The function call
is made from within the device' sinterrupt handler, so it isimportant that the function execute
quickly in order not to impact on the performance of the product. Also, it's important not to
call any C runtime library functions from within the DataReceived() handler, since most of
them are not reentrant and will likely crash if called from within an interrupt handler.

4.11.5.5.2 TxReady()
voi d (*Dat aRecei ved) (tBufferedDevice *Device);

This function will be called whenever the last character is removed from the transmit FIFO
by the device' sinterrupt handler. Similar to DataReceived() above, this function must
execute quickly and must not call any C runtime library functions.

4.11.5.6 The interrupt handler(s)

The interrupt handler must contain code to recognize both the ‘ Datareceived’ and ‘ TX
empty’ conditions, and call the appropriate function via the DataReceived/TxReady pointers
in the tBufferedDevice descriptor. Remember that the programmer may choose not to define
alert functions; if thisisthe case, then the associated function pointer will be null. The
interrupt handler will have to check the value of the pointer and only call the function if a
non-null pointer is found.

http://www.estc.com

Page 106 Embedded Development with Gnu CC

4.11.5.7 tBufferedDevice’s transmit and receive FIFOs

Thet Buf f er edDevi ce structure contains two members of typet FI FO, named
Transni t FI FOand Recei veFl FO. These FIFOs are used to store data being transmitted
to and received from the I/O device.

Thedatatypet FI FOimplements a circular buffer that operatesin afirst-in, first-out manner.
The data typeis defined in the header filesys/ t FI FO. h. A t FI FOstructure contains a
pointer to the FIFO’ s data buffer, an integer recording the size of the buffer, and ‘in’ and

‘out’ counters recording the current write and read position, respectively, in the buffer.

Several utility functions are available in librom to read and write data from/to at FI FO
These functions are documented in the following subsections.

4.115.7.1 FIFOgetc()

static inline int FIFOgetc (tFIFO *FI FO, char
*Dest) ;

This function gets the next character available in the addressed FIFO, and writes it to location
*Dest , updating the FIFO’ s read counter.

If the operation was successful, the function returns a non-zero value; if there was no
character available, the function returns zero.

4.11.5.7.2 FIFOputc()
static inline int FIFQuutc (tFIFO *FI FO, char c);

FI FOput c() writesthe character ¢ to the addressed FIFO, and returns a non-zero value if
the write was successful. If the FIFO was full when the write was attempted, the function will
return zero.

4.11.5.7.3 ReadFIFO()
i nt ReadFl FO (tFI FO *FI FO, int Mx, char *Dest);
ReadFl FQ() reads up to Max bytes from the addressed FIFO, writing them to the buffer

addressed by Dest . Thereturn value is the actual number of bytes that were read from the
FIFO, which will have avaluein the range of zero through Max.

Embedded Support Tools Corporation

Embedded Essentials Page 107

4.11.5.7.4 WriteFIFO()
int WiteFIFO (tFIFO *FIFQ, int Max, char *Source);

Wit eFl FQ() transfersupto Max bytes of datafrom the buffer addressed by Sour ce into
the addressed FIFO. The return value is the actual number of bytes transferred, which will be
avaluein therange of zero through Max. If the return valueisless than Max, then it indicates
that the FIFO became full duringthecall toWi t eFl FO ().

4.11.5.8 Example Buffered 1/O driver

Thefile332-i 0. ¢ inthe EXAMPLES subdirectory implements buffered I/0O on the SCI port
of the Motorola MC68332.

4.11.6 Implementing the 1/O device table

To complete the I/O driver, one more piece of information must be provided to librom: a
table that relates device namesto thet Buf f er edDevi ce ort NonBuf f er edDevi ce
structure representing the device, and to the top-level librom driver functions which control
them. To do this, define an array of typet | ODev with the name | ODevi ces. The array
should have one entry for each device, and one more null entry (all zeros) at the end to mark
the end of thetable.

Thedatatypet | ODev isdefined in the header filesys/ | ODev. h. The definition looks
like this:

t ypedef struct sl CDev
{

char *Nane;

int *Fl ags;

int (*open) (struct slODev *Device, int
filedes, int flags, va_list args);

int (*close) (struct sl ODev *Device, int
filedes);

int (*read) (struct slODev *Device, int
filedes, void *_buf, size_t _nbyte);

int (*write) (struct sl ODev *Device, int
filedes, const void * buf, size t _nbyte);

long (*drivercontrol) (struct slQODev *Device,

http://www.estc.com

Page 108 Embedded Development with Gnu CC

int filedes, int function, va_list args);
voi d *Devi cel nf o;
} t1CODev;

Thisdatatypeis also largely made up of pointersto functions.Y ou are required to define only
the FI ags member, which defines the options active on the device, and the Devi cel nf o
member, which should contain the address of thet NonBuf f er edDevi ce or

t Buf f er edDevi ce structure which defines your device. librom has two sets of functions,
one for buffered devices and one for non-buffered devices, which should be referenced in the
other members. If your device does not implement a particular function, for exampleit can
receive data but not transmit, then you should place a null pointer in the structure member
associated with the unimplemented function so that the librom functions will return an error
to the application if it tries to access the unimplemented functionality.

Structure member Buffered function Non-buffered function
open() Bopen() NBopen()

cl ose() Bcl ose() NBcl ose()

read() Br ead() NBr ead()

wite() Bwite() NBwrite()
drivercontrol () Bdri vercontrol () NBdri ver control ()

Table 4.10: Buffered and Non-buffered functions for the 1/0 device table entries

Here is an example of a definition of | ODevi ces, taken from the MC68332 buffered driver:

t1ODev | ODevices [] = {

{"consol e", &Consol eFl ags, Bopen, Bcl ose, Bread,

Bwite, Bdrivercontrol, &Consol e},

{0

1
In this example we define atable containing a single device called “console”. It is a buffered
device, so it references the Bxxx functions from librom. The Devi cel nf o member points
to astructure of typet Buf f er edDevi ce, caled Consol e.

Here' s another example, this time the non-buffered driver from NBi 0555. c.

Embedded Support Tools Corporation

Embedded Essentials Page 109

t1ODev | CDevices [] =

{

{
"scl 1,
&SCl 1f | ags,
0,
0,
NBr ead,
NBwri t e,
NBdr i ver control
&nbSCl 1

}

{
"scl 2,
&SCl 2f | ags,
0,
0,
NBr ead,
NBwri t e,
NBdri vercontrol,
&nbSCl 2

}

{0

}s

In this example, the table defines two devices, one called SCI 1 and the other called SCI 2.
Both are non-buffered devices, so they reference the NBxxx functions from librom. They
each reference at NonBuf f er edDevi ce structurein their respective Devi cel nf o
fields. We have defined routines to read and write data from/to these devices, but no
functions are available to determine if datais available from the receiver or whether the
transmitter isready, so we put null pointersin the Dat aAvai | abl e and TxReady fields.

4.11.7 Building and linking application programs with librom

When you have written your driver functions, they should be compiled and linked with the
other source files that make up your program. In the example below, we will compile an

http://www.estc.com

Page 110 Embedded Development with Gnu CC

application program hel | o. el f, using the file 332-i 0. ¢ to provide the necessary 1/0
drivers:

C: \ XGCQ\ EXAMPLE> gcc —b n68k-elf -2 —g hello.c
332-i0.c -0 hello.elf —wW ,--defsym __ram si ze=24Kk, -
-defsym __stack_size=4k -T ram|d

Embedded Support Tools Corporation

Wrapping Up Page 111

5 Wrapping Up

We hope that you will find the gnu tools presented here to be as useful and productive as we
have. One of the most important factors in using these tools is networking with other users. In
this section we would like to present some of the resources that we have found to be useful in
achieving this end.

5.1 Additional resources

5.1.1 Web sites

The EST home page:
http://www.estc.com

The CrossGCC Frequently-Asked Questions (FAQ) web page:
http://www.objsw.com/CrossGCC
This document discusses how to build cross-compilers using Gnu CC.

PowerPC SVRA4 function calling conventions:
http://www.esofta.com/pdfs/SV R4abi ppc. pdf

PowerPC Embedded Application Binary Interface:
http://www.esofta.com/pdfs/ppceabi.pdf or
http://www.mot.com/SPS/A DC/pps/downl oad/8X X/ppceabi.pdf

http://www.estc.com

Page 112 Embedded Development with Gnu CC

Coldfire developers will find the Wildrice web site to be a valuable resource and
jumping-off point to other resources on the web:
http://www.WildRice.com/ColdFire/

Another excellent ColdFire resource is David Fiddes' site. David has also done a port of
the Gnu tools to Win32, hosted on cygwin, and among other things has provided runtime
libraries for the Motorola ColdFire evaluation boards.
http://www.users.surfaid.org/~fiddes/col dfire/

If you are interested in using the Standard Template Library in your C++ programs, this
page has some good links:
http://www.cyberport.com/~tangent/programming/stl/resources.html

Tools for manipulating S-record files (in order to program EPROMs, embed S-record
information in C source, and other handy stuff) may be found here:
http://www.ti p.net.au/~millerp/srecord.html

5.1.2 Mailing lists

The crossgec mailing list discusses issues relating to the use of the Gnu tools as cross-
compilers, with special emphasis on targeting embedded systems. Subscribe to thislist by
sending an empty e-mail to crossgec-subscribe@sourceware.cygnus.com. Messages are
posted to the list by sending them to crossgcc@sourceware.cygnus.com.

Thereis an excellent mailing list dedicated to the Motorola Coldfire architecture. Y ou
can subscribe to it by sending an e-mail to requests@WildRice.com with the text
“subscribe ColdFire” in the body of the message; no subject isrequired. Leave out the
double quotes as well, just type the words in the body of the message. To post messages
to the list, send mail to ColdFire@WildRice.com.

5.1.3 Newsgroups

comp.sys.m68k
comp.sys.powerpc

comp.sys.powerpc.tech

Embedded Support Tools Corporation

Index Page 113
6 Index
@
39 @39
% _
% 40 __attribute__ ((interrupt)) ...oooveeevieeee. 73
QB0 ..o 40 CINT _MAX e 60
_ MRTD__ e 60
FAM SIZE..veeei e eeee e eireee e 48
46
(= A = T 48
BSS. e 44
FOM. SIZE e e e 48
.d 51 - =
FOM SEAMT e 48
o = v TR 44
__unhandled_exceptionccceeunenee. 70
S60 handled i 70
unhan exception PC......cccceeeenneen.
S 44 — —exeeption.p
__vector_defaultoccoeeviieeeiiieee, 70
; __vector_Xxxx reserved names
;39,46 B8K et 74
POWErPC.......ooeeeeeeeeee e, 77

http://www.estc.com

Page 114 Embedded Development with Gnu CC
ELEXE e 46 AULNOT <. 1
| B
| 39 b 40
1 -b<name> ... 26
AB-DIt IS 60 BIGrONIAN. .o 88
binary UtilitieS......cccooveeeveceeec e, 12
6 block comments........cccccovvveeieiieeene 39
68K- 8S. EXE i 23 BLOCK() +evereereerieeeenenesesesie s 45
68k-1d. eXe . 23 BSS .. 64
A Buffered and unbuffered functions...... 108
Buffered 1/O drivercccueu..... 102, 107
azz; BUILD_FILE TYPE...cccooiirireerieens 52
_ BYTE() «oveeeeeeeiee e 47
alert functions........cocvvvevenesicee 105
AlIgNMENt ... 45 C
ar 12 -c 32
=57 11 (3 OO TRRRON 62 calling convention..........cccoeeeerereeeccnnne 60
ASSEMDIEN ... 39 Calling convention...........c.ccuccuniueiennne, 58
Assembler CD-ROM
COMMENES ...evee et ee e eeeeeeeeeeas 39 COoNtENES....cccveeceecee e 11
Assembler Directives........oooeeveeeeeeeennn, 40 Installation.........ccceceeeveevenniee e 14
Assembler OptionS........ccccveevevrvereeennn. 37 command liNE......coceeeveeeeereeceee e 16, 23
Assembling ViageC.......ovuevvecerererereane. 38 command line options..........ccccceveeiennene 23
assembly language functions................ 58 comparision of signed and unsigned
ASSEMBIY SOUFCE FIlE oo 26 VAIUBS......ooiiieeeees s 35

Embedded Support Tools Corporation

Index Page 115
configuration name..........c.cceecevveeennnnne. 23 --defsym <name>=<value>.................... 38
(00]0)7/ ¢ [¢] o) SRR 2 dependancies........ccoovvveceeveieece e 49
CREATE_ASM_LISTINGccccenenee 54 Dependancy Files........cccovvvvivieieienennns 51
CREATE_MAPFILE ..o 54 dependency files......ccovvvvreveierieine, 33
(014 (O PSR 48, 64 DevicelNfo.....ccccoveveierinireneree 108
CrEO.N.e e 65, 70 diagnose compilation or linking problems,
oo BA s 35
rto.S 64 directoriesfor includefiles.................... 33
orto_flags 42 directoriesfor library files...................... 36
ctyp:a h 83 Disclaimer ..o 2
current memory agddress ... 46 Disk Spaceccoeevevieeeiiceeese e 14
documentation iNHTMLcccoevenenee. 13
D
-D<name>.......cooii e, 34 E
DABAVAEIEDIE () oo 100 EABI ..o 60
DAARECHVEA() oo 105 Enable ()..ccooeeiieee e 104
date stamps 48 environment variables..........c.cooeveennee. 15
datestamp 49 Environment variables...........ccccoceeneee. 16
debug info 31 Escapesin character strings................... 40
DEBUGGING 53 exception handlers..........ccovvveveieciene, 73
default exception handler ... 64 EXTRA_ASFLAGS. ... 54
default values for symbols................. 42 EXTRA_CFLAGS......cccoeeveeereeienns 54
Define amacro 2 EXTRA_LDFLAGS......ccciiieriiieins 54
Defining SsymboIS........ccoovveieiciiciene 46 F
Defining variables...........ccoooveriiennnns 50 £ <MEKEFIIE> .ovoorvve 51

http://www.estc.com

Page 116 Embedded Development with Gnu CC
FIFOQELC() .ooveeveeeeiieieerie e 106 I/0O devicetable.......ccccceecvevvcenennee. 94, 107
FIFOPULC() ..ovveeveeeeeie e 106 Implicit type declarations....................... 35
FIFOS....o i 106 INBYLE () ..veveverereeeeieesieesiesee e 100
filename extensions that are recognized by I NClUdE .o, 52
| OCC.vveeenne ... 25 include directories.............. 53
filename(SeCtionname) -.................. 43 INCIUGE FIlES. e 33,53
FIagS ..o 108 INCLUDEDIRS............. 53
frame pointerccoevvveveveceecee, 58, 61 initialization of data RAM from a ROM
Free Software Foundation 9 IMAJE ... 48
free software, definition of 10 Initialization records........ccccvveeveivecnenne. 65
function parameters.........cocveverereeenne. 60 Initializing peripherals.........cccceeee. 41, 64
G Inline assembly language....................... 62
31,53 INPUT() oo 41
OB e 31 IEITUDE v 3
GNUMaKE.......ceieirieieeeeeneeseee s 48 INEETUPLABNCIEI(S)..t v 105
S T — 9 TOSITEAM....co i 13
(€12(0 U] = TSR 41 L
H -L<dirname> ..o 36
hardware. init_ ook () oo 69 -I<libName>........cccovvinenneeee 36
hedASCH file 15 LDLIBS.....ciieeeee ettt 54
[1 13 LDSCRIPT vt 53
legacy COde.......ccevvvveeecieieee e 35
! T S L1 2
-1 33,37 LIBDIRS ... ceeeeeeeeeerneeeseesseesesenns 53, 54
-1-33] 07e 1o o= WY 82

Embedded Support Tools Corporation

Index Page 117
Libraries......coovveveienneneeee 41 =MBB020 ..o 28
libraries used in multiple projects.......... 36 -mMB8020-040........ccceereeeeeceece e 28
library directories..........ccceu..... 36, 53, 86 -MBB030 ...t 28
Library directories........ccoceeevvreecnnnnne 41 “MBBO40........eeeeeeeee e 28
Library fil€......ccooeevieiieececece e, 26 -MBBOBO........cccveeveeeerreereee e 28, 87
library files ... 36, 53 1720 (0T 26
library search pathc.cccooviiiieicinenne 36 MEKE ... 48
[iN€ COMMENTS.......ccoeriririeriieeeeeins 39 command linec.ccooeveveneneieinnens 50
line continuation..........c.ccoevenenereeiennens 40 MAKEFIE ..o 33
linker command line..........ccoccovvveenne. 36 MaKefile. ..o 438
Linker DireCtives.........cccevvvvveeveceecnennnns 41 Makefiletemplate.......cccoevveveieceennee. 52
[INKEr SCHPL....cccvvieeeeceeece e 36 -Map <filename>cccccvvvevvvveenne 38
[iNKer SCrPLS...ccvvieeeceeee e 47 math functions, single-precision............ 84
Linker SCriptS......cccoovveereneseere e 40 (0107 1 0 1 PR 83, 84
Linking ViagCC.....ccovvveveeieiiese e 38 e 11101 PSSR 29
Little-endianccccoovveveveiiece e 88 —mbig-endianc.ccceeeeveiieieneceee 29
LOADLIBES......c.ccooeeeeececee e, 54 e [O 88
Local symboals........ccccovevevincieiececee 40 “MCPUEXXX 1nvveveieeresreeeessessseseessesnsensens 29
localencoceeiieeceee e 84 SMCPUS2Z ..ot 28, 87
LONG() eeveeeeieeeeenienieenee e seeseeseeeeeneens 47 MEMONY MAP ..ceeerveeeeneeeeeeeeseeenee e 36, 42
M -mhard-floatoovevvveveeeeeeeeeeeeis 28, 29
e L1 o 11 >SS 27 Minimum System Requiremens......... 14
20 28 87 SMIHE . 29
B 1o1c10/0 0 O 28, 87 TN NN e 29

SMMD s 33

http://www.estc.com

Page 118 Embedded Development with Gnu CC
M e 28, 88 (@ o 1= ot B {1 = 26
SN e 59 OPtiMIZatioNccceevveeeeieieece e 30
111 010 P 28, 60, 88 Optimization
-MSOft-float.........coovvviiicce 28, 29, 88 debugging and..........c.cceeevenerenieinnnns 31
SMEUNESXXX wovvicveeieiveeeesie e ste e 29 specifying on command line.............. 30
MUIEHTD oo 86 OPTIMIZATIONcocoiiiririnerinieceeieas 53
library directory names..................... 87 OPLIMIZEM. ... 62
N (©10 11217, (=Y 100
N 40 OUTPUT_ARCH() ..eveveveeerieinieesieenns 41
n51 Outputting an assembly languagefile....32
NDEBUGcoomrerrereerneeeeensesseeseesnennes 34 OUIPULING &N ODJECt TIl@ . 2
Nested COMMENES...........ooeereereerereereenn. 35 P
NEWITD ..o 12,82 Passing options to the assembler............ 37
functions provided by..........ccccceeneene 82 Passing options to thelinker 37
[ICENSE.....ooiiee e 13 POWErPC EABI ... 60
Support fuNCLioNS.........cccververeeeenene 85 PPC-8S. EXC.iieeiriririeriesie e 23
010 PSRRI 12 PPC-1 d. EXE i 23
non-buffered driver.........cccooevveeeneennne, 99 preprocess assembly |anguage programs59
') PrePrOCESSONoovveeveeieeeere e 26
e T3 S 30,31 printf()
SO2. e 53 checking format strings ... %
S S 30 INEEGI-ONY e 84
(0] o] [el0] oS 12 PIOCESSON v vesvvsvssvssvns s 14
ODJAUMP ... 12 PROJECTNAME oo 52

Embedded Support Tools Corporation

Index Page 119
PROVIDE() ..vecvieeeieiieie e 42 section
PUDIIShEN ... 1 placing arbitrary data..............cccuee.... 47
R Section alignment..........ccccoeeeevereeeennnne 45
40 SECTIONS directive......ccccooevvvreeeennnne. 43
r
SELUP PrograM.....cccceeveeveenreesieesieeseee e 14
RAM Lo 14 PProg
SEUP.EXE .t 14
FaMId.. s 47, 53, 65
S [3 I 47
RAM_SIZE......coeeeeeeee e 53)
Signal.h....oee 83
RAM_START .o 53 _ _
_ single contiguous block of RAM 47
FANTTD .. 12
single-precision math functions............. 84
ReadFIFO().....coeeeeeeeeerse e 106
SIODEV ... 107
ReferenceCount............cccocevncieniiennne. 104]
] LS < 12
Register Names.........cccevvveveeveeieeseeennn 40
) sNonBufferedDevice.........ccoceeeevvveenns 101
Register Usage.........cooeeveeneeneeneeniee, 61
_ software_init_hook()......c..ccoevevvveenennne 70
Register Usage........ccoevieneenennieiiee, 59
. SOURCEDIR.......cocovirireninereieeee 53
REVISION.....ooiiiieee e 2
_ o SOURCEFILES........ccooviiiiiieeee 52
ROM image of initialized data.............. 64
Stack cleanupccoeveeereneerere e 59
(0] 10 Lo I 47,53, 65 _
stack frame pointer.........ccccveeennee. 58, 61
ROM_SIZE.......coooieiriieeeeee 53
Stack managementcccceeveveeeenene 61
ROM_START ..o 53
) .) stack space allocated by function
run-timelibraries........cccoooveeevviene. 41 e O LU (N 60
S Standard Template Library 12
S32 start address.......ocvvevvve v, 45
SBUFfFEredDeVICe. ..o 103 StartSend () .. 104
SEARCH_DI R() 41 Sa[aner]ts .. 39

http://www.estc.com

Page 120 Embedded Development with Gnu CC
stdarg.N e 84 tNonBufferedDevice.................... 100, 108
SO e 83 TXREAAY () o 100
SAD.N oo 83 TXREAY() coevevvveieeerieesee e 105
S SRS 12 U
SrEAM /O .o 9

—U<symbOol>......oceeiece e 38
SEING.N .o 83
SIHNGS e 12 \
S] TSRO 12 -v 35
STWU .o 62 VAAGN oo, 84
T Verbose mode........ooeevenenenenenieieen 35
-t 38 w
ST <filename>......cccooeevniieees 36 W 35
Target configurations............cccceceueuenee. 26 -W <filename> ..., 51
Target identifiers.......ccccceeevveeccceeiene, 26 SWaL 37
TARGET _MACH w..covoeeeeeeeceeeeseeeseen. 53 AW e 35
TARGET NAME......ooiieeieeeeererennn. 52 Warning MeSSAgEScocueuevnveennnsenenn. 35
TARGET_OPTS. ..o 53 WaITANLYoooeiieiiciicereesreesee e 2
tBufferedDeviceccceeeeveveenenn.. 103, 108 WL e 37
tIMEN s 84 WIEFIFO() .o 107
HHODEV ... 107

Embedded Support Tools Corporation

