
XGCC
The Gnu C/C++ Language System for Embedded Development

Revision: Beta 1, 1/23/2000

Copyright © 1999, 2000 by Embedded Support Tools Corporation. Printed in U.S.A.

All Rights Reserved. No part of this document may be reproduced or transmitted by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without express prior written permission from the copyright
holder.

Limits of Liability and Disclaimer of Warranty

Embedded Support Tools Corporation have used their best efforts in preparing the book and
the programs incorporated in this product. These efforts include the development, research,
and testing of the theories and programs to determine their effectiveness.

Embedded Support Tools Corporation makes no warranty of any kind, expressed or implied,
with regard to these programs, or the documentation contained in this book. It is entirely your
responsibility to determine the suitability of these programs for your particular needs. Neither
Embedded Support Tools Corporation nor its employees, officers, directors, or distributors
shall be liable in any event for incidental or consequential damages in connection with, or
arising out of, the furnishing, performance, or use of this book or these programs, even if they
have been advised of the possibility of such damages.

Trademarks

XGCC and VisionClick are trademarks of Embedded Support Tools Corporation. PowerPC is
a trademark of IBM Corporation, used under license therefrom. ColdFire and BDM are
trademarks of Motorola Inc. Microsoft and Microsoft Windows are trademarks of Microsoft
Corporation. All other trademarks are acknowledged to be the property of their respective
owners.

Page 3

http://www.estc.com

Table of Contents
1 Introduction ..9

1.1 XGCC: Gnu CC from Embedded Support Tools Corporation..................................... 9
1.2 The Gnu project.. 9
1.3 Technical Support Information... 10
1.4 CD-ROM Contents... 11

1.4.1 Gnu C/C++ compiler for M68K and PowerPC embedded systems 12
1.4.2 Gnu assembler (as), linker (ld) and binary utilities .. 12
1.4.3 newlib C runtime library.. 12
1.4.4 Gnu iostream C++ library.. 13
1.4.5 EST’s librom.a I/O driver library .. 13
1.4.6 Gnu make... 13
1.4.7 Gnu documentation in HTML ... 13

1.5 Minimum System Requirements .. 14
1.5.1 Processor.. 14
1.5.2 RAM .. 14
1.5.3 Disk Space ... 14

1.6 Installation .. 14

2 Hello, GCC: compiling your first program with Gnu CC..........................15
2.1 Environment variables.. 16
2.2 The command line .. 16
2.3 Linking an executable file .. 18
2.4 Creating a symbol file and download file for VisionClick... 19
2.5 Downloading to the Target... 19

3 Running the Gnu tools..23
3.1 Program names ... 23
3.2 How gcc controls the compilation and link process ... 23
3.3 gcc handles C, C++, assembly language, object files, and libraries........................... 25
3.4 Selecting the target system (-b <name>) .. 26
3.5 Target-specific options (-m<xxx>)... 27
3.6 Specifying the optimization level (-O<n>)... 30
3.7 Enabling generation of debug info (-g) ... 31
3.8 Position-Independent Code (-fpic, -fPIC) .. 32

Page 4 Embedded Development with Gnu CC

Embedded Support Tools Corporation

3.9 Outputting an object file (-c) or assembly language file (-S) 32
3.10 Specifying directories for include files (-I, -I-) .. 33
3.11 Creating dependency files (-MMD) ... 33
3.12 Define a macro (-D<name>) .. 34
3.13 Verbose mode (-v).. 35
3.14 Enabling warning messages (-Wall)... 35
3.15 Specifying a linker script (-T <filename>)... 36
3.16 Specifying library files (-l<libname>).. 36
3.17 Specifying directories for library files (-L<dirname>)... 36
3.18 Passing options to the assembler and linker (-Wa, -Wl) .. 37

3.18.1 Common Assembler Options... 37
3.18.2 Common Linker Options ... 38

3.19 Assembling & Linking via gcc vs. invoking the tools directly 38
3.20 The Gnu assembler ... 39

3.20.1 Comments .. 39
3.20.2 Statements.. 39
3.20.3 Escapes in character strings ... 40
3.20.4 Local symbols.. 40
3.20.5 Assembler Directives... 40
3.20.6 Register names... 40

3.21 Linker scripts.. 40
3.21.1 Common Linker Directives ... 41
3.21.2 The standard linker scripts rom.ld and ram.ld ... 47

3.22 Building projects with Gnu Make .. 48
3.22.1 Make basics ... 48
3.22.2 Make command line .. 50
3.22.3 Dependancy Files... 51
3.22.4 The Makefile template... 52

4 Embedded Essentials...55
4.1 Preprocessor symbols ... 55

4.1.1 All targets... 55
4.1.2 68k ... 56
4.1.3 PowerPC .. 57

4.2 Interfacing C and assembly language functions ... 58
4.2.1 68k ... 58
4.2.2 PowerPC .. 60

Page 5

http://www.estc.com

4.3 Inline assembly language in C source files .. 62
4.3.1 Optimizing assembly language code ... 63

4.4 crt0.S/crt0.o .. 64
4.4.1 Initializing peripherals upon startup .. 64
4.4.2 Software initialization before entering main ().. 70
4.4.3 Default exception handling procedure... 70
4.4.4 crt0 entry points ... 71

4.5 Exception handlers ... 73
4.5.1 M68K... 73
4.5.2 PowerPC .. 76

4.6 Position-Independent Code (PIC)... 78
4.6.1 PIC overview ... 78
4.6.2 -fpic (‘little’ PIC) vs. –fPIC (‘big’ PIC) .. 79
4.6.3 Code and data fixups ... 80
4.6.4 Unhandled exceptions and the data fixup value .. 80

4.7 Omitting exception and RTTI support from C++ programs....................................... 81
4.8 Runtime libraries .. 82

4.8.1 libgcc.a... 82
4.8.2 The newlib runtime library .. 82
4.8.3 Support functions required by newlib.. 85

4.9 Linking the correct libraries (‘multilib’) .. 86
4.10 Customizing the link process: XGCC’s “Modular Linking”...................................... 89

4.10.1 Replacing the startup module crt0.o (link step 2) .. 90
4.10.2 Replacing or eliminating the exception vector table module (link step 6) 90
4.10.3 Modifying or eliminating run-time libraries (link step 7).................................. 90

4.11 EST’s librom.a I/O subsystem.. 91
4.11.1 librom implementation of newlib support functions.. 92
4.11.2 Implementing stream I/O with librom ... 94
4.11.3 The DeviceControl() function call ... 95
4.11.4 Writing a non-buffered driver.. 99
4.11.5 Writing a buffered driver ... 102
4.11.6 Implementing the I/O device table... 107
4.11.7 Building and linking application programs with librom.................................. 109

5 Wrapping Up ..111
5.1 Additional resources... 111

5.1.1 Web sites.. 111

Page 6 Embedded Development with Gnu CC

Embedded Support Tools Corporation

5.1.2 Mailing lists ... 112
5.1.3 Newsgroups ... 112

6 Index ..113

Page 7

http://www.estc.com

List of Figures
Figure 2.1: compiling 'Hello world' for the MDP860Basic board...15

Figure 2.2:Project settings for hello.prj ...20

Figure 2.3: Downloading the BDX file to the target ...21

Figure 2.4: Select the appropriate COM port for your PC and set it to 9600 baud.22

Figure 2.5: running the program on the target...22

Figure 3.1: How files are processed by gcc...25

Figure 3.2: Basic syntax of the linker’s SECTIONS directive..43

Figure 4.1: Non-buffered I/O device implementation ...99

Figure 4.2: Buffered I/O device implementation...102

Page 8 Embedded Development with Gnu CC

Embedded Support Tools Corporation

List of Tables
Table 2.1: the components of the compiler command line..17

Table 2.2: Linker command line options...18

Table 3.1: Filename extensions recognized by gcc ...26

Table 3.2: Gnu CC identifiers for each microprocessor architecture27

Table 3.3: Processor-specific options for the 68k compiler ..29

Table 3.4: Processor-specific options for the PowerPC compiler ...30

Table 3.5: Frequently-used assembler options ..37

Table 3.6: Frequently-used linker options...38

Table 4.1: PowerPC SPRs implemented with inline writes in crt0 ...68

Table 4.2: exception vector function names for the 68k ...76

Table 4.3: exception vector function names for the PowerPC ..78

Table 4.4: support functions required by newlib...86

Table 4.5: multilib options and directory locations for 68k targets...88

Table 4.6: multilib options and directory locations for PowerPC ...89

Table 4.7: librom’s implementation of the newlib support functions94

Table 4.8: Actions implemented in the DeviceControl() function ..98

Table 4.9: Device flags..99

Table 4.10: Buffered and Non-buffered functions for the I/O device table entries...............108

Introduction Page 9

http://www.estc.com

1 Introduction

1.1 XGCC: Gnu CC from Embedded Support Tools Corporation

This manual documents XGCC, EST’s release of Gnu CC which runs on the Microsoft
Windows family of operating systems and generates code for a variety of embedded
processor architectures. Much more than just a compiler, XGCC is a complete C/C++
language system that complements EST’s premium C/C++ source-level debugger,
VisionClick, providing a high-quality end-to-end solution for embedded development.

This manual is designed to be used together with the Gnu documentation that is installed on
your computer with the compiler tools. In some cases it will fill in some of the gaps in the
Gnu manuals, particularly on topics of interest to embedded developers; in other cases, it
pulls together and summarizes information that may be spread out over several different
manuals. Finally, it documents some of the enhancements and additions made to the Gnu
tools by EST.

1.2 The Gnu project

An organization called the Free Software Foundation was created in 1984 to sponsor the
development of (surprise…) free software. Since then the FSF have released dozens of
programs that have received high praise for their quality and reliability. All of these programs

Page 10 Embedded Development with Gnu CC

Embedded Support Tools Corporation

were released in source code form, freely accessible by anyone who wanted to download
them.

The FSF define ‘free’ not in terms of cost, but in terms of access: the source code is always
available, and if you add or change something and give the resulting program to somebody,
you must also offer to give them the source code to your changed program, in order not to
deny them any rights of access that were given to you by the program’s original author. The
Gnu Public License (GPL) is the document that defines the legal license for the FSF
programs, and it has since been adopted by many other individuals and organizations in
releasing their own free software to the public.

The FSF’s Gnu project is an attempt to create a complete Unix work-alike operating system
that is entirely made up of free software. Although original plans called for this system to be
based upon the FSF’s own kernel (called the Hurd), this goal has now been largely attained
through the Linux project, which is entirely based upon free (GPL’d) software and is now
becoming a major force in the operating systems world.

This approach is radically different from the traditional approach of commercial program
development. The FSF survives through corporate and private donations of time, money,
computers, people, and office space. By releasing the code in source form with universal
access, many thousands of motivated programmers end up making contributions to the
programs, which ultimately results in very high-quality, feature-rich software. A different
paradigm to be sure, but one that has proven to be successful in attaining its goals of high-
quality, freely-available software.

1.3 Technical Support Information

EST Corporation provides free technical support for XGCC for a period of 90 days from date
of purchase. After the initial 90 days, an Extended Support Agreement entitles you to
additional free technical support. EST may be reached as follows:

Mailing address and telephone number

EST Corporation Headquarters
120 Royall St.
Canton, MA 02021
(781) 828-5588

Introduction Page 11

http://www.estc.com

EST Europe
12 Avenue De Pres
78180 Montigny Le Brettoneax
France
+33 (0) 1 3057 3200

For a complete listing of EST’s worldwide sales offices, please consult the EST web site at
http://www.estc.com/.

EST Technical Support Department Hours

Monday-Friday
8:30 A.M. – 6:00 P.M.
Eastern Standard Time

Internet (e-mail)
estsupp@estc.com

URL
http://www.estc.com

FTP server
ftp://estftp.estc.com

1.4 CD-ROM Contents

The XGCC CD-ROM distributed by EST contains everything you will need to get started
quickly on your next embedded project. The following components are included:

Page 12 Embedded Development with Gnu CC

Embedded Support Tools Corporation

1.4.1 Gnu C/C++ compiler for M68K and PowerPC embedded systems

EST have ported the Gnu CC compiler to run on the Win32 operating systems, cross-
compiling to embedded systems. Currently, the Motorola M68K family and IBM/Motorola
PowerPC families are supported. Over time, we will add support for other microprocessor
families in future releases of the CD-ROM. The CD-ROM will be updated to track the new
releases of the compiler.

The compiler comes with the latest version of the Silicon Graphics Inc. Standard Template
Library (STL) implementation.

1.4.2 Gnu assembler (as), linker (ld) and binary utilities

Included with the compiler are the Gnu assembler and linker, again running on Win32 and
cross-compiling to M68K and Power PC. Also included are the so-called binary utilities,
which are a set of utility programs to manipulate object files in various formats. The most
commonly-used binary utility programs are listed below:

• objcopy, a utility to copy object files between various different object and hex/ASCII
formats

• objdump, a utility to examine the contents of object files

• ar, the Gnu object library (archive) manager

• nm, a utility to list symbols defined in object files

• ranlib, a utility to index object libraries for faster access

• size, which lists the individual and total sizes of the sections contained in a list of
object files

• strings, which lists printable strings contained in an object file

• strip, a utility to remove debug information from object files

1.4.3 newlib C runtime library

newlib is a complete implementation of the standard C runtime library suitable for embedded
applications. It is a collection of free software that was assembled by Cygnus Solutions to
address two common issues in embedded applications:

Introduction Page 13

http://www.estc.com

• Most standard C library implementations are not appropriate for small- or medium-scale
embedded systems, because of the amount of memory they require; and

• Some libraries have licensing restrictions that make it difficult to embed the software in a
ROM-based product without also supplying source code to the end customer.

newlib is easy to adapt to embedded systems, and requires relatively small amounts of RAM
and processor bandwidth. In addition, it is licensed under a BSD-style license, which means
that there is no restriction against using the library in a commercial product.

1.4.4 Gnu iostream C++ library

This library implements iostreams on top of the standard C I/O library routines.

1.4.5 EST’s librom.a I/O driver library

The newlib standard C library requires several supporting routines from the underlying
operating system to link and run successfully. For embedded targets which do not use an
operating system, we have provided the librom system of I/O libraries which implement a
flexible and capable I/O subsystem for newlib while dramatically reducing the amount of
programming required to adapt the library to a new hardware platform. Like newlib, the
librom system is licensed under a Berkeley-style license that places no restrictions on
commercial use of the software.

1.4.6 Gnu make

Gnu make automates the rebuilding of object files and executables based upon the rules
specified by the programmer in a make file.

1.4.7 Gnu documentation in HTML

The Gnu manuals are provided as HTML files, making it simple to search for help
information and navigate quickly between different topics. Manuals are provided for all the
programs on the CDROM.

Page 14 Embedded Development with Gnu CC

Embedded Support Tools Corporation

1.5 Minimum System Requirements

1.5.1 Processor

Since these are command-line compiler tools and not interactive applications, there is no
particular minimum requirement for processor speed; any system capable of running
Windows 95, Windows 98, or Windows NT will serve adequately as a platform for running
these tools. Of course, faster is always better!

1.5.2 RAM

As a bare minimum, you should have at least 12 MB available under Windows 95/98. Under
Windows NT, we suggest at least 16 MB. Making more RAM available will significantly
improve the performance of the tools.

1.5.3 Disk Space

The tools themselves take little hard drive space, but the total space required will vary
considerably depending upon how many sets of run-time libraries are installed. About 168
MB of space is needed for a typical installation of the PowerPC tools and libraries.

1.6 Installation

Installation is easy: just run xgcc32.exe from the root directory of the CD-ROM; it will
ask you a few questions and then do all the work for you. The setup program will ask you to
select a destination directory for the compiler tools, and also to select which target
microprocessor families and other components you want to support. You can install the entire
toolset, or just the pieces you will need immediately; if your needs change later on, you can
always re-run the installation program to install additional components.

Hello, GCC: compiling your first program with Gnu CC Page 15

http://www.estc.com

2 Hello, GCC: compiling your first program
with Gnu CC

Figure 2.1 shows a compile session from start to finish, including (a) setting the compiler’s
environment variables, (b) running the compiler itself, and (c) converting the linked
executable to a hex/ASCII file. We’ll discuss each step in a little more detail.

Figure 2.1: compiling 'Hello world' for the MDP860Basic board

Page 16 Embedded Development with Gnu CC

Embedded Support Tools Corporation

2.1 Environment variables

Before any of the gnu tools may be run, the bin directory containing the gnu executables must
be included on your PATH so COMMAND.COM (or CMD.EXE, for Windows NT) can find
them. The batch file XGCC.BAT located in the root directory of the compiler installation
(default c:\xgcc32) was provided for this purpose; open a console window and execute
XGCC.BAT, and then you’re ready to compile.

There are no other environment variables that must be set in order to run the tools. However,
if you have other non-EST releases of the Gnu tools installed on your computer, your system
may have environment variables defined for those tools. If these are set when the XGCC
tools are executed, then they can cause problems where the EST tools may access the wrong
directories for executables, libraries, header files, and so on. For this reason, the XGCC.BAT
file provided with the EST release sets most of these non-essential environment variables to
null strings to avoid these types of problems.

2.2 The command line

Now that the environment variables are set, you can compile one of the example programs
included in the EXAMPLE subdirectory. We’ll look at the source files hello.c and
860Basic.c in the directory C:\xgcc32\example\860Basic. This program will be
run on the EST MPD860 Single-Board Computer:

Referring to Figure 2.1, sharp-eyed readers will see that we are building this project using the
Gnu make utility, since this demo program is supplied with a makefile. Although make
simplifies the task of building projects and keeping them up to date, in this section we want to
look at the command lines executed by make to compile and link the program. Please refer to
section 3.22 for more detail on how to use make.

C:\WINDOWS> cd \xgcc32\example\860Basic
C:\xgcc32\example\860Basic> gcc -O1 -g -Wa,-
a,>hello.lst -b powerpc-eabi -mcpu=860 -msdata -c
hello.c -o hello.o

In the command line shown above, we have compiled the source file hello.c into an
executable file hello.o. The program we invoked is gcc.exe, the Gnu CC driver

Hello, GCC: compiling your first program with Gnu CC Page 17

http://www.estc.com

program. We gave gcc a bunch of options, and it ran several subprograms (the C
preprocessor, the compiler proper, the assembler, and finally the gnu linker) to create the final
output file.

Table 2.1 lists each of the options:

Command line
Option

Description Detailed
description

-O1 Selects an optimization level of one (possible values
are 0 through 4)

Section 3.6

-g The compiler includes symbolic debugging
information in the object file

Section 3.7

-Wa,-a,>hello.lst Causes the assembler to create a listing and output it
to a file named hello.lst

Section 3.18

-b powerpc-eabi Tells gcc to use the PowerPC family compiler Section 3.4

-mcpu=860 Instructs the compiler to use the CPU32 instruction
set, and tells the linker to use run-time libraries
compiled with this same option

Section 3.5

-msdata Instructs the compiler to use the PowerPC EABI
(Embedded Application Binary Interface) small data
sections

Section 3.5

-c Instructs gcc.exe to compile and assemble the C
source file without linking it; this leaves the object
file on disk for a subsequent link operation.

Section 3.9

hello.c The source file we are compiling

-o hello.o The filename to give to the object file.

Table 2.1: the components of the compiler command line

Page 18 Embedded Development with Gnu CC

Embedded Support Tools Corporation

2.3 Linking an executable file

After the source files have been compiled into object files, the next step is to link them
together into an executable. Linking the files resolves any external references between files
into absolute address references. The linker command line looks like this:

C:\xgcc32\example\860Basic> gcc -Wl,-Map,hello.map -b powerpc-
eabi -mcpu=860 -msdata hello.o 860Basic.o -T 860Basic.ld -o
hello.elf

Table 2.2 details each of the command line options passed during linking.

Command line
Option

Description Detailed
description

-Wl,-
Map,hello.map

Causes the linker to create a link map and output it
to a file named hello.map

Section 3.18

-b powerpc-eabi Tells gcc to use the PowerPC family compiler Section 3.4

-mcpu=860 Instructs the compiler to use the CPU32 instruction
set, and tells the linker to use run-time libraries
compiled with this same option

Section 3.5

-msdata Instructs the compiler to use the PowerPC EABI
(Embedded Application Binary Interface) small data
sections

Section 3.5

hello.o
860Basic.o

The object files we are linking

-T 860Basic.ld Passes the linker script 860Basic.ld to the
linker; this file lists any additional library files
needed during linking, and specifies the location of
code and data memory

Section 3.15

-o hello.elf The filename to give to the ELF executable file.

Table 2.2: Linker command line options

Hello, GCC: compiling your first program with Gnu CC Page 19

http://www.estc.com

2.4 Creating a symbol file and download file for VisionClick

Once we have an executable program ready to debug, we must convert it to BDX format in
order to load it into the VisionClick debugger. In addition, a symbol file must be created in
order to be able to perform source-level debugging in VisionClick. Both these files are
created with the CONVERT utility which is supplied with VisionClick. The command line for
our example looks like this:

c:/est32/convert.exe -g -b -c -m gnu hello.elf –q

2.5 Downloading to the Target

To download the program to the target, we start VisionClick and create a new project file.
We’ll call this project hello.prj. Figure 2.2 shows the settings we entered for this project.

Page 20 Embedded Development with Gnu CC

Embedded Support Tools Corporation

Figure 2.2:Project settings for hello.prj

We then download the program by clicking the OK button and pressing F11. The download
dialog will confirm that the program was loaded into memory.

Hello, GCC: compiling your first program with Gnu CC Page 21

http://www.estc.com

Figure 2.3: Downloading the BDX file to the target

Since this demo program interacts with a console on the SMC1 serial port, make sure to open
VisionClick’s I/O window and configure it for 9600 baud (right click on the I/O window to
do this). In Figure 2.4 we are using COM1 on the PC; set this parameter for the COM port
that is appropriate for your system. Also, ensure that the serial cable is connected properly to
your PC.

Page 22 Embedded Development with Gnu CC

Embedded Support Tools Corporation

Figure 2.4: Select the appropriate COM port for your PC and set it to 9600 baud.

And now the moment of truth: we press F5 to run the program, and… the MPC860 says
Hello, world! Success! We do a victory dance at the workbench, and then quickly
compose ourselves and get back to work.

Figure 2.5: running the program on the target

We have moved very quickly through a trivial example in this section, in order that we could
focus on the big picture. The next section goes into more detail on each of the steps, and will
hopefully get you to the point where you can start work on developing your own embedded
code with Gnu CC.

Running the Gnu tools Page 23

http://www.estc.com

3 Running the Gnu tools

We now go into a little more detail on the most commonly-used command line options for the
gnu tools. This is not intended as, nor could it be, a replacement for the Gnu manuals; rather
we try to cover only the options that are most often used.

3.1 Program names

You can have multiple installations of the gnu tools on your hard drive at the same time, for
example you can have one set which generates code for the Motorola 68K family along side
another set for the PowerPC, Hitachi SH, etc. Each tool set comes with a gaggle of compilers,
assemblers, linkers, utilities, and on and on. In order to easily separate them, each program is
prepended with the configuration name of the target that it supports. For example, the linker,
which is canonically named ld, resides in the file m68k-elf-ld.exe for the Motorola
68k version, powerpc-eabi-ld.exe for PowerPC, sh-elf-ld.exe for the SH-3, etc.
Similiarly, the assembler is named 68k-as.exe, powerpc-eabi-as.exe, sh-elf-
as.exe etc.

3.2 How gcc controls the compilation and link process

gcc.exe is the program that you will almost always use to initiate a compile or link session.
However gcc.exe does not actually do the work itself; it is actually a driver program which

Page 24 Embedded Development with Gnu CC

Embedded Support Tools Corporation

examines the options and filenames passed on its command line, and then calls other
programs to perform the requested operations.

Figure 3.1 shows the relationship between gcc.exe and the other programs, and how the
various types of input files are processed by each tool. When gcc.exe calls these other
tools, it will construct a command line that is based upon the contents of the original
command line passed to gcc.exe, modified as dictated by a script in the specs file for the
target processor. The specs file is located in the directory c:\xgcc32\lib\gcc-
lib\<target name>\<compiler version>, where <target name> is the name
of the target compiler configuration (eg powerpc-eabi for PowerPC), and <compiler
version> is the version number of the compiler being used (eg. 2.95.2).

Running the Gnu tools Page 25

http://www.estc.com

Figure 3.1: How files are processed by gcc

3.3 gcc handles C, C++, assembly language, object files, and libraries

gcc can accept any mix of C, C++, assembly language, object files and libraries on the
command line; it handles each one according to the filename extension. Table 3.1 defines the
key filename extensions that are recognized by gcc, and what it does with them:

Page 26 Embedded Development with Gnu CC

Embedded Support Tools Corporation

Extension File type Operation

.c C source file gcc runs the file through the preprocessor and then
the C compiler

.cpp, .cc,

.cxx
C++ source file gcc runs the file through the preprocessor and then

the C++ compiler.

.s Assembly source file gcc passes the file to the assembler unchanged

.S Assembly source file Gcc runs the file through the preprocessor and then
the assembler

.o Object file Gcc passes the file to the linker unchanged

.a Library file Gcc passes the file to the linker unchanged

Table 3.1: Filename extensions recognized by gcc

Looking at this table, it is interesting to note that gcc can run an assembly-language file
through the C preprocessor before passing the resulting output to the assembler proper. This
means that you can use C-style macros in your assembly source, which can be a major
convenience for things like defining repetitive structures in memory, or accessing constants
that are used in both C and assembly files. It also can simplify the interface between C and
assembly language functions, as discussed in section 4.1.

3.4 Selecting the target system (-b <name>)

If Gnu CC can compile code for many different target systems, then how do we know which
one we are targeting if there is only one ‘gcc’ command? That’s what the –b option does. For
example, the –b option, followed by the symbolic identifier m68k-elf, tells gcc to run the
m68k-elf version of the compiler, assembler, and linker tools1.

Each different target architecture is assigned an identifier that uniquely identifies the
processor, system manufacturer, and operating system or object format. In traditional Unix-

1 They are in \XGCC32\m68k-elf\bin (68k) and \XGCC32\powerpc-eabi\bin (PowerPC).

Running the Gnu tools Page 27

http://www.estc.com

based Gnu compilers, these identifiers are made up of three words separated by hyphens, in
the order shown above (example: m68k-sun-sunos4). In the EST release of these compilers,
we picked the configurations that were most applicable to embedded development and used
abbreviated names where possible to keep program names short.

Table 2-1 lists the EST identifiers with the ‘official’ Gnu CC identifier, and the
characteristics of each compiler port.

EST ID Full ID Comments

m68k-elf m68k-unknown-elf Embedded Motorola 68k family; ELF object
file format; no operating system

powerpc-eabi powerpc-unknown-eabi Motorola/IBM Power PC architecture; EABI
(Embedded Application Binary Interface)
calling convention; ELF file format; no
operating system

Table 3.2: Gnu CC identifiers for each microprocessor architecture

When you specify a target identifier with the –b option, gcc turns that identifier into a
directory name of the form (base directory)\(identifier)\bin and looks for
the tools in that subdirectory. If the directory does not exist, an error message is reported, like
this:

GCC.EXE: installation problem, cannot execute
‘cc1’: No such file or directory

If you see this message during a compilation, then one of the first things you should check is
the target name used with the –b option, to make sure it’s correct.

3.5 Target-specific options (-m<xxx>)

Within each target microprocessor family, there can be several different versions of the
instruction set implemented on different family members. In addition, there are often other
features that are specific to a particular family of microprocessors, which require special
command-line options to control. These options are set via the –m<xxx> family of command
line options.

Page 28 Embedded Development with Gnu CC

Embedded Support Tools Corporation

Table 3.3 contains a list of the most important target-specific options that are available in the
68k port of Gnu CC. These options (except for -mshort and –mrtd) also apply to the
assembler.

-m68000 Generates code for the original MC68000 implementation; also
valid for MC68008, MC68302 through MC68328, and MC68356

-mcpu32 Generates code for the any device based upon the CPU32
processor core; this includes MC68330 through MC68396
(except the 68356; see –m68000)

-m68020 Generates code for the MC68020. This is the default if no –m
option is specified.

-m68030 Generates code for the MC68030.

-m68040 Generates code for the MC68040.

-m68020-040 Generates code that will run on any device from MC68020
through MC68040, ie: code is optimized for the MC68040, but
none of the 68040-only opcodes are used.

-m68060 Generates code for the MC68060.

-m5200 Generates code for any device based upon the Coldfire V2 (and
above) core. This includes all devices with part numbers in the
MCF52xx and MCF53xx ranges.

-msoft-float Prevents generation of hardware floating-point instructions, for
those processors which can support it.

-mhard-float Forces generation of hardware floating-point instructions, even if
the target processor cannot support a floating-point coprocessor.

-mshort Forces int variables and function parameters to be 16 bits wide
rather than the default of 32 bits. Note: although the compiler will
accept this option for all targets, the XGCC CD-ROM does not
contain libraries built with this option for MC68060 or Coldfire
targets.

-mrtd Specifies use of the RTD instruction when returning from
functions, rather than the default RTS. RTD will result in slightly

Running the Gnu tools Page 29

http://www.estc.com

smaller and faster code, since it automatically reclaims the stack
space allocated for function parameters; however, the
programmer must be careful to only use this option if all
functions are declared before they are called, since the called
function must remove the exact same amount of stack space that
the caller allocated.

Although this option is accepted by the compiler for all targets
except MC68000, the XGCC CD-ROM only contains libraries
built with this option for cpu32 and MC68020 through MC68040.

Table 3.3: Processor-specific options for the 68k compiler

Table 3.4 documents the key processor-specific options available in the PowerPC port of Gnu
CC.

-mcpu=xxx Selects the processor variant in use. xxx may be one of ‘403’,
‘505’, ‘601’, ‘602’, ‘603’, ‘604’, ‘620’, ‘821’, or ‘860’. If xxx is
one of ‘403’, ‘821’, or ‘860’, then software floating point is also
selected (see –msoft-float below), otherwise hardware floating
point is selected.

-mtune=xxx ‘Tunes’ the instruction scheduling for the processor variant xxx.
xxx is specified exactly the same as in –mcpu above.

-mlittle
–mlittle-endian

Generate code that executes in little-endian mode.

-mbig
–mbig-endian

Generate code that executes in big-endian mode (the default).

-msoft-float Prevents generation of hardware floating-point instructions, for
those processors which can support it. This is the default for
–mcpu=403, -mcpu=821, and –mcpu=860.

-mhard-float Forces generation of hardware floating-point instructions, even if
the target processor does not implement hardware floating-point
support. This is the default for all CPU types except when the
options –mcpu=403, -mcpu=821, and –mcpu=860 are
specified.

Page 30 Embedded Development with Gnu CC

Embedded Support Tools Corporation

-msdata

-msdata=eabi

Causes the compiler to place all variables smaller than a certain
size threshold into one of the small data sections .data
(initialized variables), .sbss (uninitialized variables), or
.sdata2 (const variables). In addition, variables in these
sections will be accessed using the ‘load indexed’ and ‘store
indexed’ instructions, using r13 (or r2 in the case of .sdata2)
as a base address register. This typically results in smaller and
faster code, however the size of .sdata and .sbss combined
cannot exceed 64K bytes.

Variables which are larger than the size limit are placed into the
.data, .bss, or .rodata sections as appropriate. The size
threshold defaults to 8 bytes, and may be changed with the –Gn
option described below.

-Gn Sets the maximum size of variables that will be placed in the
small data sections, as described above for the –msdata option.
The default value is 8. If this option is passed to the compiler, the
same value must also be passed to the linker.

-mcall-aix Instructs the compiler to use the AIX calling convention rather
than the default System V.4/EABI calling convention. The two
calling conventions are incompatible; either all files to be linked
together in a program must use –mcall-aix, or none of them
may use it.

Table 3.4: Processor-specific options for the PowerPC compiler

3.6 Specifying the optimization level (-O<n>)

The Gnu CC compiler supports several levels of optimization. Optimization is selected by
specifying –O<n> on the command line, where <n> is a number from 0 through 4 (can be up
to 6 on some targets). As is probably obvious, increasing numbers mean higher and more
sophisticated levels of optimization. A good level to use for debugging is –O1; after

Running the Gnu tools Page 31

http://www.estc.com

debugging is complete, re-building your code with higher optimization will give you slightly
better performance in the finished program.

High levels of optimization can cause funny things to happen when you run your program
under control of the debugger. Sometimes variables in a function will only contain valid data
when they’re being used, and junk before and after; sometimes they may even be completely
eliminated by the compiler, causing the debugger to report that it doesn’t exist. In addition,
the code may not execute in the way that you envisioned; the compiler may sometimes re-
arrange loops, move certain statements out of loops into the main body of a function, or may
not generate any code for some lines of source. Typically these effects will be minimal or
non-existent with optimization set to –O1.

3.7 Enabling generation of debug info (-g)

If you plan to test your code under the VisionClick debugger, you will want to include the
option –g on the compiler’s command line. This instructs the compiler to add symbolic
debug information to the compiled file, including symbol names and locations, source
filenames and line numbers, and the definition of structs and user data types in the
program.

This option does not change the actual processor code that is generated by the compiler, it
only adds extra debugging information to the object file. For this reason, it’s often used even
when not planning to debug the code; the extra debug information is sometimes useful
because can be accessed by some of the other Gnu CC tools. For example, if debug
information is present in the file, the Gnu assembler is able to generate an assembly listing
file which shows the original C or C++ source code intermixed with the compiler-generated
assembly language code.

Assembly-language source files may also have debug info generated for them, but the option
is slightly different: -Wa,-gstabs. Refer to section 3.18 for more information on this
option.

Please refer to section 3.6 [Specifying the optimization level (-O<n>)] for a discussion on
debugging optimized code.

Page 32 Embedded Development with Gnu CC

Embedded Support Tools Corporation

3.8 Position-Independent Code (-fpic, -fPIC)

In some applications it may be desirable for the compiler to generate code that uses relative
addressing, rather than absolute addresses, to access functions and variables in the program.
This is referred to as Position-Independent Code (PIC). Two forms of PIC are supported by
the Gnu tools; typically, –fpic generates code which is smaller and executes faster, but
limits the total size and/or number of functions in a program, while –fPIC generates code
which removes these limitations but typically uses larger function prologues and executes a
little more slowly.

In contrast to the standard FSF release of the Gnu tools, EST have made several
enhancements to the tools which improve support for Position-Independent Code; including:

• Code and data are independently relocatable at run-time

• Program and data relocation are fully supported in EST’s startup code (crt0.o)

For more details on the use of PIC in embedded applications, please refer to section 4.6.

3.9 Outputting an object file (-c) or assembly language file (-S)

The default action of gcc is to try to compile, assemble, and link a program into a finished
executable. While this is fine for small programs, for larger projects it would be cumbersome
to try to specify a large number of source files all on one command line. In addition,
recompiling all source files when only one or two have changed is wasteful and can take a lot
of time, even on modern computers. In this case, it makes sense to compile each file
separately and then link all the resulting object files. Specifying –c on the command line will
cause gcc to stop after compiling and assembling the specified source files, leaving the
object files ready for a subsequent link operation.

Sometimes you will want to see the assembly language code which is generated by the
compiler. Specifying the –S (that’s an upper-case ‘S’) will cause gcc to stop after compiling
the C/C++ source, producing an assembly language file with the same name as the C/C++
source file, but with the extension ‘.s’. See section 3.16 to find out how to create an assembly
listing file without stopping after compilation.

Running the Gnu tools Page 33

http://www.estc.com

3.10 Specifying directories for include files (-I, -I-)

gcc maintains a list of directories which contain ‘system’ include files; each time the
#include <filename> directive is used in a source file, each directory in this list is
searched to find the specified file. You can add a directory to this list by using the -
I<dirname> option on the command line. This option adds the specified directory to the
head of the list, i.e. it is searched first before any predefined directories. Note that the
directory name must immediately follow the –I without any spaces separating them. If the
directory name itself has spaces in it, then the entire option including the –I should be
enclosed in double quotes.

If you follow one or more –I directives with –I-, then all of the preceding directories
specified with –I are added to the list of user directories, rather than system directories. User
directories are searched when the #include “filename” directive is encountered in a
source file.

3.11 Creating dependency files (-MMD)

When compilation is performed under control of the make utility, make needs to know all
the source files upon which an object file depends. When compiling C and C++ source, any
file brought in by the #include “filename” directive also becomes a dependency of
the object file (meaning that the object file should be re-built if any of the included files have
changed). However, in a medium to large-scale project it can be very tedious and error-prone
to manually update the makefile. Nested include files make this task even more difficult.

Gnu CC’s –MMD option dramatically simplifies this task. When –MMD is specified on the
compiler command line, a dependency file is created with the same name as the object file
but with a filename extension of .d. This file contains a snippet of text that lists the source
files (main and include files) upon which the object file is dependent. It may be included into
the body of the main makefile, either manually with a text editor or (the preferred way) at
compile time through the use of Gnu make’s include directive. Thus each time the file is
re-compiled, gcc re-generates the list of dependencies automatically without manual
intervention.

See section 4.8.2 for more detail on compiling with the make utility.

Page 34 Embedded Development with Gnu CC

Embedded Support Tools Corporation

3.12 Define a macro (-D<name>)

You can define macro’s on the command line using the –D<name> option. In this form, the
macro is defined to the value 1. The other form of this option, -D<option>=<value>,
defines the macro to the specified value. For example,

-DDEBUGGING

defines the symbol DEBUGGING to have the value 1, while

-DDEBUGGING=0

defines the symbol DEBUGGING to have the value 0.

It can be helpful to surround this option in double quotes in order to avoid text strings being
accidently interpreted as another part of the command line. For example if you want to define
the symbol INT to have the value -1, this can be done in the following option on the
command line:

“-DINT=-1”

One symbol that is often defined on the command line is NDEBUG. The ANSI C standard
says that defining NDEBUG disables the assert macro, so since it’s already part of the spec,
you might as well use it for your own debugging code as well

When you’re compiling your program in preparation for debugging, leave NDEBUG
undefined; this symbol can be tested by a C preprocessor sequence, and debug code can be
conditionally compiled into the program, as in the example below:

#ifndef NDEBUG

/* this code is used for debugging only */
printf (“Counter is %d\n”, Counter);
#endif

When debugging is complete, and it’s time to re-build the program to burn EPROM’s, add
the option –DNDEBUG to the compiler command line and the call to printf() will be left
out of the build.

Running the Gnu tools Page 35

http://www.estc.com

3.13 Verbose mode (-v)

Normally gcc does its work quietly, without displaying any messages except to report
warnings or errors. The –v command line option will cause gcc to display the exact
commands and options that it uses to do its job. This can be useful when trying to diagnose
compilation or linking problems, or if you just want to see how the whole system works.

3.14 Enabling warning messages (-Wall)

Gnu CC does a good job of checking your source for potential or real problems, and letting
you know about them – if you tell it to. Gnu CC has around a billion2 individual warning
messages, and almost every one of them can be enabled or disabled with a variation on the –
W command line option. If you need to enable or disable a specific warning, we suggest you
refer to section 8 of the Gnu CC manual for the specific options available. However, Gnu CC
also groups several of the most useful ones together under a ‘blanket’ option: -Wall The
Gnu CC manual puts it this way:

This enables all the warnings about constructions that some users consider questionable, and
that are easy to avoid (or modify to prevent the warning), even in conjunction with macros.

Some of the more useful checks performed are:

• printf() format strings match the arguments passed

• Nested comments

• Implicit type declarations of variables or functions

• Local variables possibly used before being initialized

• Possibly incorrect comparision of signed and unsigned values

Unless you’re compiling legacy code which you know works and would be too much effort to
edit, you might want to consider using the –Wall option every time you compile with GCC;
it can help catch problems which are sometimes hard to track down during debugging.

2 OK, that’s a bit of an exaggeration, but there are quite a few. A single –Wall enables all the useful
ones.

Page 36 Embedded Development with Gnu CC

Embedded Support Tools Corporation

3.15 Specifying a linker script (-T <filename>)

In most embedded systems, the memory map is complicated enough that it would be
impractical to try to specify all the required information on the linker command line. In this
case, the linker may be handed a script file that defines some or all of the required
parameters. The –T option is used to specify the name of this linker script file when linking
via the gcc driver.

Section 3.21 discusses the layout of linker script files in detail.

3.16 Specifying library files (-l<libname>)

When you link a program, it’s almost certain that library files will be used to supply code
modules needed at runtime. You can create your own library files and specify them on the
link command line just like any other file. You can also specify library files with the –
l<libname> option, in which case two additional things happen:

• The library name specified by the <lib> part of the option is expanded to the form
lib<libname>.a; for example, if you specified –lc on the command name, the
actual file name that gcc looks for is libc.a.

• gcc searches a list of library directories for the library file.

This is handy for libraries that are used in a large number of different projects. You can put
the library in one global directory which is on the library search path, and then each project
that needs that library can reference it with the shortened –l<libname> syntax. The linker
script files ram.ld and rom.ld supplied on the CD-ROM use this syntax for the standard
C runtime library files.

See section 3.17 for details on how directories are added to this search list.

3.17 Specifying directories for library files (-L<dirname>)

When you are using the –l<libname> option to specify library files, you may want to add
your own library directories to the list of directories searched by gcc. The –L<dirname>

Running the Gnu tools Page 37

http://www.estc.com

does just that. The directory name <dirname> must follow the –L option with no space in
between. For example, if you have a set of libraries stored in C:\PROJECTS\LIBS, this
directory will be searched by adding -LC:\PROJECTS\LIBS to the linker command line.

3.18 Passing options to the assembler and linker (-Wa, -Wl)

If you need to pass an option directly to the assembler or linker, gcc provides an escape
mechanism to support this. passing –Wa,<options> to gcc will cause it to pass
<options> directly to the assembler without any changes. For example, if you wanted to
pass the option –a to the assembler, to cause it to output a listing file, the gcc option would
be –Wa,-a.

Did we say ‘without any changes’? OK, there is one change made. When you want to pass
multiple options to the assembler, or options that require a parameter, they can all be
specified in order with a single –Wa, option to gcc. Each option must be separated by a
comma, and gcc will replace each comma with a space before passing the options to the
assembler. Without this feature, you would need to specify the –Wa, prefix for each
assembler option, which would get pretty tedious.

3.18.1 Common Assembler Options

Here we present the assembler options that are most commonly used, and the form for each
option as presented to gcc on the command line.

Assembler Option Description Example (using gcc)

-a Create listing file -Wa,-a

-gstabs Output debug info -Wa,-gstabs

-I <dirname> Add directory to search list for .include
directive

-Wa,-I,C:\ASM

Table 3.5: Frequently-used assembler options

Page 38 Embedded Development with Gnu CC

Embedded Support Tools Corporation

3.18.2 Common Linker Options

Similar to the assembler, gcc may also be used to pass options directly to the linker. The
gcc option to do this is –Wl,<options>.

A table of the most commonly-used linker options appears below.

Linker Option Description Example (using gcc)

-Map <filename> Create map listing in file -Wl,-Map,project.map

--defsym <name>=<value> Define the value of a symbol -Wl,--defsym,SYPCR=0xfffa21

-u <symbol> Declares the symbol to be
undefined; this may be used to
force the linker to bring in
modules from a library file to
define to symbol

-Wl,-u,fir

-t Lists the name of each input
file as it is processed by the
linker

-Wl,-t

Table 3.6: Frequently-used linker options

3.19 Assembling & Linking via gcc vs. invoking the tools directly

As mentioned earlier, you can pass any mix of C, C++, assembly and object files to gcc and it
will call the correct tools to process them and end up with a compiled and linked executable.
But why would you want to do it this way? For example, if you want to run an assembly
language file through the assembler, why not just invoke the assembler directly rather than
having gcc do the extra work?

There’s nothing stopping you from doing it this way, but (as always) there are tradeoffs. If
you invoke the tools directly, you have complete control over every option passed to the tool;
however, you are also responsible for making sure that every single command line option
required by the target system is specified properly. If you use gcc to do the work, it can add
these options automatically. Some examples of the parameters automatically set by gcc:

Running the Gnu tools Page 39

http://www.estc.com

• Include and library paths

• Adding required files to the command line (for example, crt0.o for linking)

• Selecting the appropriate library files based upon compilation options (‘multilibbing’)

Our recommendation is to always use gcc to do the work for you, unless you have a special
requirement that demands the extra control provided by invoking the tools directly.

3.20 The Gnu assembler

The Gnu assembler has its roots in the world of Unix operating systems, and uses syntax that
may be somewhat unfamiliar to embedded developers. This is unfortunate, since it means that
some existing assembly language files cannot be assembled successfully without some
editing. However, the differences in the Gnu syntax are easily learned; and hopefully we’ll
have to use less and less assembly code as compilers and embedded processors get smarter
and more powerful.

The following sections describe some of the syntax elements that differ significantly from the
microprocessor manufacturer’s specified syntax, or differ from common practice in
embedded systems. It is not meant to be a complete description of the assembler’s features;
the Gnu AS manual documents the complete features of the program.

3.20.1 Comments

The Gnu assembler supports both block comments and line comments. Block comments are
C-style, beginning with /* and closing with */. Line comments start with a designated
comment character, which can vary for different target microprocessors, and continue to the
end of the line. For the M68K family, the line comment character is the vertical bar, |; for the
Power PC, it’s the pound sign, #.

3.20.2 Statements

The Gnu assembler can accommodate multiple statements per source line; each statement is
separated with a semicolon (;) or ‘at’ sign (@).

Page 40 Embedded Development with Gnu CC

Embedded Support Tools Corporation

3.20.3 Escapes in character strings

The Gnu assembler accepts C-style character escapes, such as \n (newline), \b (backspace),
\r (carriage return), etc. In addition, statements may be continued over multiple lines be
placing a backslash (\) immediately before the end-of-line character.

3.20.4 Local symbols

A symbol starting with .L (a period, followed by an upper-case ‘L’) is a local symbol, which
will not be visible to other modules when they are linked together.

3.20.5 Assembler Directives

Directives always start with a dot, for example .extern.

3.20.6 Register names

Register names must be prefixed with a percent sign, to avoid confusing them with symbol
names. For example, to load an immediate value into address register A0 on the M68K
family, the assembly code would look like move.l #SCI,%a0.

For PowerPC, the numeric register number may be used by itself rather than prepending an
‘r’; for example,

addi 3,3,1

is equivalent to the more verbose

addi %r3,%r3,1

3.21 Linker scripts

While it is possible to specify on the command line everything the linker needs to know, for
most embedded applications this would be very cumbersome and error-prone. The more
common solution is to create a linker script file that specifies all the parameters which don’t
change very often, and then put the project-specific parameters on the linker command line.

Running the Gnu tools Page 41

http://www.estc.com

3.21.1 Common Linker Directives

The standard linker scripts provided on the XGCC CD-ROM will cover most typical
embedded requirements. This section documents some of the linker directives used in those
script files, to aid in understanding their operation. If you need to write your own script to
meet a special requirement, we recommend you refer to the Gnu linker manual for a detailed
reference on each directive.

The tasks handled in a linker script typically boil down to the following:

• Specifying the names of run-time libraries, and the search paths for those libraries

• Defining default values for symbols

• Specifying the memory layout of the program

• Defining options on sections in the output file

• Adding startup and shutdown support to the program

We will cover the first four topics in the following subsections. Startup and shutdown is
discussed in section 4.4.1, ‘Initializing peripherals upon startup’.

3.21.1.1 Specifying the names of run-time libraries, and the search paths for those
libraries

In a typical embedded application, there are library routines that are used in every single
program that is compiled; for example, the standard C runtime library. Since these are used so
often, it makes sense to reference these libraries in the script file, so they don’t have to be
specified on the command line every time a new program is linked.

As an example, here are the first few lines of EST’s linker script rom.ld for the 68K:

OUTPUT_ARCH(m68k)
SEARCH_DIR(.)
INPUT(vectors.o)
GROUP(-ltrgt -lrom -lc -lgcc)

The OUTPUT_ARCH() directive specifies that we are generating the M68K variant of the
object file format. SEARCH_DIR(.) adds the current working directory to the linker search
path; INPUT(vectors.o) tells the linker to include the object file vectors.o in the
final program, to define the exception vectors for the program.

Page 42 Embedded Development with Gnu CC

Embedded Support Tools Corporation

The GROUP() directive tells the linker to search the group of library files listed repeatedly
when undefined symbols exist. In the example above, several system libraries are referenced;
The libraries are searched until no more undefined symbols remain, or until the linker detects
that no more symbols were defined in the last pass through the group. This is extremely
useful where inter-library dependencies exist; for example, a module in library libtrgt.a
might reference a symbol which is defined in librom.a, which in turn might create a new
reference to a symbol defined in libtrgt.a which was not included in the previous pass
through the files. If these library files were simply referenced on the command line, or in the
script file through use of the INPUT() directive, the linker would make only a single pass
through the files and then find that the newly-referenced symbol was still undefined, causing
an error and an unsuccessful link.

3.21.1.2 Defining the default values for symbols

In some cases it can be very useful to allow user code to define a symbol, but to define a
default value to it if user code does not do so. This capability is implemented by the linker’s
PROVIDE() directive.

An example of this is the symbol crt0_flags, an integer variable accessed by the startup
code in crt0.S. User code may define a variable with this name in order to control the
operation of the startup code which runs before main () is called. However, if no such symbol
exists in user code, the linker script file statement

PROVIDE(crt0_flags = 0);

defines the symbol with its default value of zero, facilitating a successful link. The startup
code is written to test crt0_flags for this default value and take the appropriate action.

3.21.1.3 Specifying the memory layout of the program

A program is broken into different sections, each one containing a different type of
information. Three of the most common section names are .text, .data, and .bss.
These names originated in the Unix operating system and today are used in many systems,
including embedded applications. The .text section is used to hold program code; the
.data section is used to hold initialized data; and the .bss section contains uninitialized
data, and quite often the stack space as well.

Running the Gnu tools Page 43

http://www.estc.com

This is probably a gross oversimplification of the process, but essentially from the point of
view of memory sections, the goal of the linking process in is to merge the text, data, and bss
sections from each input file into a single text, data, and bss section in a single output file,
while resolving references to undefined symbols along the way. The rules for merging and
assigning memory addresses to each section are provided by the linker script’s SECTIONS
directive.

3.21.1.3.1 The SECTIONS directive

The basic syntax of the SECTIONS directive is as follows:

SECTIONS {
section1 [options] : {
 contents
 }
section2 [options] : {
 contents
 }
section3 [options] : {
 contents
 }
 .
 .
 .
}

Figure 3.2: Basic syntax of the linker’s SECTIONS directive

The section names section1, section2, section3 etc define the name of a section
that will appear in the output file. Inside the brackets (where the word contents appears in
the example above) are listed all the elements from the input files that will be placed in that
section.

Section contents are specified as one or more lines in the format filename(section).
filename specifies the file name of an input object or library file, while section
specifies a section name within that object or library file. For example, the text section of the
file vectors.o is specified as vectors.o(text).

Page 44 Embedded Development with Gnu CC

Embedded Support Tools Corporation

In addition, either or both the filename and section name may be a wildcard character *.
When replacing the filename, the wildcard indicates that the specified section of all input files
should go into this output section; similarly, when used in place of the section name, the
wildcard causes all sections of the file name to be placed in the output section.

For example, the SECTIONS directive of a very simple linker script might look like this:

SECTIONS {
.text : {
 *(.text)
 }
.data : {
 *(.data)
 }
.bss : {
 *(.bss)
 }
 .
 .
 .
}

This script will create a single output file which contains three sections, named .text,
.data, and .bss. The .text section will appear first in memory, starting at location 0,
followed immediately by the .data section. The .bss section will not allocate any space in
the output file, but addresses will be assigned to any symbols in this section starting at the
first free location after the end of the .data section.

Each output section will contain the sum of the contents of the same section in the input files,
e.g. the output file’s .text section will contain all data in all .text sections of the input
files, and the same for .data and .bss. Any sections with any other names in the input
files will not appear in the output file.

3.21.1.4 Defining options on output sections

The linker script shown in the previous section might work on some system, but typical
embedded applications need more flexibility; for example, each section may have to be
assigned to a particular starting address to match the locations of RAM and ROM memory in

Running the Gnu tools Page 45

http://www.estc.com

the target system. These types of features are specified by a set of options that can be added
to the declaration of each output section.

3.21.1.4.1 Setting the section’s start address

The section’s start address is defined by placing it immediately after the output section’s
name. Here is the example from section 3.21.1.3.1, this time with the .data. section
assigned to address 0x8000:

SECTIONS {
.text : {
 *(.text)
 }
.data 0x8000 : {
 *(.data)
 }
.bss : {
 *(.bss)
 }
 .
 .
 .
}

3.21.1.4.2 Section alignment

Very often a section will need to be aligned to a certain modulo boundary; for example, in
most members of the Motorola M68K family, opcodes must be aligned on a word (16-bit)
boundary. This is achieved with the BLOCK() option. Here again is our sample script,
modified to align opcodes as required:

SECTIONS {
.text BLOCK (2): {
 *(.text)
 }
.data 0x8000 : {
 *(.data)
 }

Page 46 Embedded Development with Gnu CC

Embedded Support Tools Corporation

.bss : {
 *(.bss)
 }
 .
 .
 .
}

3.21.1.4.3 Defining symbols

A symbol is defined very easily, with the syntax

<name> = <value>;

The expression must be ended by a semicolon, to mark the end of the assignment.

The special symbol . is used to represent the current memory address. It may be changed by
assigning a new value to it, or it may be used in an expression to assign values to other
symbols.

In the following example, we to assign the symbol _etext to the address immediately
following the end of the .text section.

SECTIONS {
.text BLOCK (2): {
 *(.text)
 _etext = .;
 }
.data 0x8000 : {
 *(.data)
 }
.bss : {
 *(.bss)
 }
 .
 .
 .
}

Running the Gnu tools Page 47

http://www.estc.com

3.21.1.4.4 Placing arbitrary data in a section

The linker allows us to place an arbitrary byte, word, or long-word value anywhere in any
output section that we define. This is done with the expressions BYTE(), SHORT(), and
LONG() respectively.

For example, let’s say that we wanted to put a JMP START instruction at the end of our
68K’s code section; we could do it this way:

SECTIONS {
.text BLOCK (2): {
 (.text)
 SHORT(0x4ef9) /* jmp */
 LONG(start)
 _etext = .;
 }
.data 0x8000 : {
 *(.data)
 }
.bss : {
 *(.bss)
 }
 .
 .
 .
}

3.21.2 The standard linker scripts rom.ld and ram.ld

We have provided two enhanced scripts, along with object files to define an exception vector
table and an enhanced crt0 startup module, to address the needs of typical embedded
applications.

The script rom.ld supports targets where code is stored in a block of read-only memory
(flash EPROM, UV EPROM, mask ROM, etc) and .data and .bss sections go into a
single block of RAM. The other script file, ram.ld, supports systems where all sections
(.text, .data, .bss, etc) go into a single contiguous block of RAM. This script is most
useful when debugging a ROM-based system.

Page 48 Embedded Development with Gnu CC

Embedded Support Tools Corporation

These scripts have the following common features:

• The symbols __ram_start and __ram_size define the start and size of the
available RAM in the target system. These symbols may be defined on the linker
command line to avoid the need to customize the script file for each new project.

• The symbol __stack_size defines the amount of RAM that is allocated to the
processor’s stack; stack space is allocated at the very top of free RAM (after the .bss
section). Any remaining RAM after the end of the .bss section becomes part of the
heap space which is available for allocation via calls to malloc() and free() (or the
new and delete operators in C++).

• Support is provided for user-defined interrupt and exception vectors. Any vectors that are
not defined by user code will automatically point to a default handler located in the crt0
startup module.

In addition, the rom.ld uses the symbols __rom_start and __rom_size to define the
starting address and size of the system’s ROM space, and supports initialization (in crt0) of
data RAM from a ROM image.

These scripts work in conjunction with EST’s librom runtime libraries and enhanced crt0
startup module. For details on how to link applications using these scripts, please refer to
section 4.11.7, ‘Building and linking application programs with lib’.

3.22 Building projects with Gnu Make

3.22.1 Make basics

Make is a utility that controls the rebuilding of your project. It compares the date stamps of
the source and object files, and those of the object files and the final executables, and re-
compiles only the files that have changed. This can not only save time, it also simplifies the
task of making sure that your executable is always up to date. For small projects, it’s a
convenience; for large projects, it’s almost mandatory.

How does the make utility know what files make up your project, and what command lines
are needed to rebuild them? You provide this information in a text file, which by default is
named Makefile. The make utility reads the Makefile, and then checks the date stamps of

Running the Gnu tools Page 49

http://www.estc.com

each file against the files from which it is made (these are called the file’s dependancies). If
any of the file’s dependancies are newer than the file itself (indicating for example that a
source file has been updated since the last compile), then the associated command line is
executed to bring the file up to date. If a dependancy does not exist, then it is considered to
have an extremely old date stamp for the purposes of this comparision.

As an example, say our project is made up of two source files, hello.c and greeting.c.
The build process can be broken down into three steps:

1. hello.c is compiled to produce hello.o.

2. greeting.c is compiled to produce greeting.o.

3. hello.o and greeting.o are linked with the runtime libraries to produce the
executable file hello.exe.

A makefile representing this project might look like this:

hello.exe: hello.o greeting.o

gcc –o hello.exe hello.o greeting.o

hello.o: hello.c

gcc –c hello.c

greeting.o: greeting.c

gcc –c greeting.c

In this simple example, make will try to build hello.exe since it is the first build target
listed in the makefile. hello.exe has two dependancies, hello.o and greeting.o.
hello.o and greeting.o each have one dependancy, which are hello.c and
greeting.c respectively.

If we edit hello.c, then it will be saved with a timestamp that is newer than hello.o.
The next time make is run, it will detect this condition and initiate the command line to re-
make all dependants of hello.c; so hello.o will be compiled, and then hello.exe
will be linked.

Page 50 Embedded Development with Gnu CC

Embedded Support Tools Corporation

Makefiles may define make variables to replace strings that are used in multiple places. These
make variables can simplify the makefile, reduce the chance of errors, and help document the
makefile so others may better understand and maintain it. We can simplify the above example
by defining the variable OBJFILES, producing the modified version below.

OBJFILES = hello.o greeting.o

hello.exe: $(OBJFILES)

gcc –o hello.exe $(OBJFILES)

hello.o: hello.c

gcc –c hello.c

greeting.o: greeting.c

gcc –c greeting.c

3.22.2 Make command line

Listed in this section are some of Gnu make’s more useful and commonly-used options. The
full documentation for Gnu make is included on the CD-ROM, and it contains an excellent
tutorial on how make works; so we will refer you to that source for the full details.

3.22.2.1 Specifying the target to make

Normally when make runs, it tries to make the first build target listed in the makefile. If you
specify one or more targets on the command line, make will instead try to build those targets,
in the order listed.

3.22.2.2 Defining variables on the command line

You may define a variable on the command line by using the syntax name=value, similar
to that used within the makefile. If you need to define a variable which contains embedded
spaces, then the definition should be surrounded by double quotes, for example
”OBJFILES=hello.o greeting.o”.

Running the Gnu tools Page 51

http://www.estc.com

3.22.2.3 Specifying an alternate name for the makefile (-f <makefile>)

Normally the make utility expects to read its build rules from a file called Makefile in the
current directory. You can specify an alternate filename with the –f option, for example –
f file.mak.

3.22.2.4 –n: performing a dry run

If you use the –n option on the make command line, make will not actually execute the
commands to bring the build target up to date; instead, it will only print them on the standard
output, so that you can see what actions would be taken in a real build.

3.22.2.5 Forcing a rebuild with –W

You can force make to re-build a file’s dependants by specifying it on the command line with
the –W option. This will cause make to act as if the specified file is very new, and therefore
any files which depend upon it will be re-built.

Using our earlier example, if you wanted to re-link the application hello.exe, you could
invoke make with the command line make –W hello.o. Similiarly, if you wanted to
force hello.c to be recompiled and then linked, the command make –W hello.c
would achieve this.

3.22.3 Dependancy Files

When an object file depends upon a C or C++ source file, it also depends upon any header
files that are included during the compilation. Therefore, when you create a makefile for your
project, you must list these header files as dependancies in addition to the actual C source
file. This is a major pain, because you have to scan the source files for any #include
directives and list them all in the makefile; in addition, each time you add or delete an
#include directive in a source file, you must remember to also update the makefile. Nested
include files make it even more difficult to keep the makefile up to date.

Fortunately, Gnu CC implements a simple and effective solution to the problem. When you
compile a source file with the Gnu compiler, specifying the option –MMD on the compiler
command line will cause it to create a text file that contains the dependancies for the source
file that was compiled. This file, which has the name of the source file with an extension of
.d, is in the format required by the make utility. Your makefile can use Gnu make’s

Page 52 Embedded Development with Gnu CC

Embedded Support Tools Corporation

include directive to include the dependancy file into the main makefile. Since the compiler
automatically updates the .d file each time the source is compiled, your main makefile
effectively is updated at the same time. This can dramatically simplify your job of creating
and maintaining a makefile for your project.

When including a makefile fragment, be sure to place a dash in front of the include directive.
This tells make not to terminate the build session if the include directive failed, as could
happen when the program is being built for the first time and the dependency file does not yet
exist. An example might look like this:

-include main.d

3.22.4 The Makefile template

In the EXAMPLE subdirectory, we have provided a makefile template to get you going
quickly whenever you start a new project using the XGCC tools. The template implements
most of the commonly features of make and gcc while minimizing the amount of typing
required to set up a new makefile.

3.22.4.1 Basic setup

When you start a new project, we suggest that you create a new working directory for the
project and make a copy of the makefile template there. Then you need to edit the following
variables in the makefile:

• SOURCEFILES lists the name of all the source files, separated by spaces, which make up
the project.

• PROJECTNAME defines the name that will be given to the main executable or library file
that is built by make. It should not have any filename extension, just the base name of the
file; the extension is specified separately.

• BUILD_FILE_TYPE defines the filename extension of the main build target. Typically
this will be either .s19 if you want to build an executable program, or .a if you are
building a library. If the main build target is a hex file with the .s19 extension, then an
executable file (COFF or ELF format, as appropriate) is also built automatically.

• TARGET_NAME defines which compiler to use when running gcc. This should beone of
the identifiers (either m68k-elf or powerpc-eabi) described in section 3.4.

Running the Gnu tools Page 53

http://www.estc.com

• TARGET_MACH defines the specific family member to be used, in order to select the
correct subset of the family’s instruction set.

• TARGET_OPTS specify any other code-generation options needed.

• LDSCRIPT specifies the name of the linker script file to be used when linking the
executable file. This can be one of the standard linker script files rom.ld or ram.ld, or
you can specify another file name if you have created your own script file for the project.

• If you are using the standard linker script file ram.ld, then the symbols RAM_START
and RAM_SIZE should be defined to the starting address and size, respectively, of the
RAM memory in your target. If you are using the script file rom.ld, then you will also
need to define the symbols ROM_START and ROM_SIZE to specify the start address and
size of the ROM memory.

Once these symbols are tailored to the needs of your project, the makefile is ready to go.

3.22.4.2 Additional options

Some additional options are available which implement more features or provide more
precise control over how your project is built. These options are set to the most commonly-
used settings in the template, and if necessary you can change their settings to get the effect
you want.

• LIBDIRS (default value: blank) may be used to define a list of directories which will be
searched for library files during the link process.

• SOURCEDIR (default value: blank) allows you to store the source files in one directory
while compiling the project in a different location. This can be very handy if you need to
build multiple versions of the same program.

• INCLUDEDIRS (default value: blank) may be used to define a list of directories which
will be searched for header files during compilation.

• DEBUGGING (default value: -g) sets the debug flag for compiling C and C++ programs.
Normally the default value is fine, but you may need to edit it or remove it altogether for
special applications.

• OPTIMIZATION (default value: -O2) sets the level of optimization used when
compiling C and C++ programs.

Page 54 Embedded Development with Gnu CC

Embedded Support Tools Corporation

• EXTRA_CFLAGS (default value: blank) may be used to specify any additional options
when compiling C and C++ programs.

• CREATE_ASM_LISTING: if this variable is set to Y, then a listing file will be created
when compiling C/C++ programs or assembly source files. The listing will contain the
original high-level language source code interspersed with the generated assembly
language code if debugging is enabled.

• EXTRA_ASFLAGS (default value: blank) may be used to specify any additional options
when building assembly language files.

• LOADLIBES specifies the name of any library files that should be included when linking
the final executable program. If LIBDIRS specifies a list of directories, then these
directories will be searched for the named library files.

• LDLIBS: similar to LOADLIBES, but any library files specified here will be placed at
the very end of the linker command line, making LDLIBS suitable for library files which
are used in multiple projects (whereas LOADLIBES is more useful for libraries specific
to this project, since they may also need to access modules contained in the LDLIBS list
of files).

• CREATE_MAPFILE: if this variable is set to Y (upper-case), then a map file will be
created by the linker showing the names and absolute locations in memory of every
module in the executable file.

• EXTRA_LDFLAGS (default blank): use this variable to specify any additional options
that may be required when running the linker.

Embedded Essentials Page 55

http://www.estc.com

4 Embedded Essentials

4.1 Preprocessor symbols

In addition to those specified by the ANSI language standards, Gnu CC defines several
preprocessor symbols during compilation of C, C++, and assembly language files that
provide information about the type of compilation being performed and the compiler options
in effect during compilation. These symbols may be tested with preprocessor statements such
as #if, #ifdef, #ifndef etc in order to control the code that is generated. In this section
we present some of the preprocessor definitions that are useful in embedded development.

4.1.1 All targets

Symbol Comment

_ _embedded_ _ Always defined.

_ _GNUC_ _ When compiling C or C++ code, defined to the compiler’s
major version number. Not defined when preprocessing
assembly-language files.

_ _GNUC_MINOR_ _ When compiling C or C++ code, defined to the compiler’s
major version number. Not defined when preprocessing
assembly-language files.

_ _ASSEMBLER_ _ Defined when preprocessing assembly-language files, not

Page 56 Embedded Development with Gnu CC

Embedded Support Tools Corporation

defined otherwise.

_ _STRICT_ANSI_ _ Defined when compiling without Gnu extensions.

_ _OPTIMIZE_SIZE_ _ Defined when optimizing for size (-Os).

_ _OPTIMIZE_ _ Defined when any level of optimization, other than –O0, is
enabled.

_ _FAST_MATH_ _ Defined when the –ffast-math command line option is
passed.

4.1.2 68k

Symbol Comment

mc68000,
_ _ mc68000,

_ _ mc68000_ _

Always defined.

mc68302,
_ _ mc68302,

_ _ mc68302_ _

Defined when –m68302 command line option passed.

mc68010,
_ _mc68010,

_ _mc68010_ _

Defined when –m68010 command line option passed.

mcpu32,
_ _mcpu32,

_ _mcpu32_ _

Defined when –mcpu32 or –m68332 command line option
passed.

mc68332,
_ _mc68332,

_ _mc68332_ _

Defined when –m68332 command line option passed.

mc68020,
_ _mc68020,

_ _mc68020_ _

Defined when –m68020 or –mc68020 command line
option passed (or no –m option passed, since –m68020 is the
default.)

mc68030,
_ _mc68030,

Defined when –m68030 or –mc68030 command line

Embedded Essentials Page 57

http://www.estc.com

_ _mc68030_ _ option passed.

mc68040,
_ _mc68040,

_ _mc68040_ _

Defined when –m68040 or –mc68040 command line
option passed.

mc68060,
_ _mc68060,

_ _mc68060_ _

Defined when –m68060 or –mc68060 command line
option passed.

mcf5200 Defined when –m5200 command line option passed.

_ _MAX_INT_ _ This symbol will have the value 32767 when the compiler
option -mshort is in effect, indicating that the int data
type is 16 bits wide. Any other value indicates that the int
data type is 32 bits wide.

_ _MRTD_ _ This symbol is defined when the compiler option –mrtd is
in effect, indicating that the rtd instruction is used to return
from subroutines.

_ _HAVE_68881_ _ Defined when –m68881 command line option passed.

4.1.3 PowerPC

Symbol Comment

PPC Always defined.

_ _PIC_ _ Defined to the value 1 when the –fpic command line option
is passed. Defined to the value 2 when the –fPIC command
line option is passed. Otherwise not defined.

_ _NO_RTTI_ _,
_ _no_rtti_ _

Defined to the value 1 when the –fno-rtti command line
option is passed; otherwise not defined.

_ _NO_EXCEPTIONS_ _,
_ _no_exceptions_ _

Defined to the value 1 when the –fno-exceptions
command line option is passed; otherwise not defined.

Page 58 Embedded Development with Gnu CC

Embedded Support Tools Corporation

_ _EABI_SMALL_DATA_ _ Defined to the value 1 when the –msdata or –
msdata=eabi command line option is passed; otherwise
not defined.

_SOFT_FLOAT Defined when the –msoft-float command line option is
passed.

_BIG_ENDIAN,
_ _BIG_ENDIAN_ _

Defined when compiling in big-endian mode.

_LITTLE_ENDIAN,
_ _LITTLE_ENDIAN_ _

Defined when compiling in little-endian mode (-mlittle).

4.2 Interfacing C and assembly language functions

4.2.1 68k

This section describes the function call interface used by the gnu compiler on the Motorola
M68k family of processors.

4.2.1.1 Calling convention

Functions are called with the JSR (jump to subroutine) instruction. If the function returns a
value, it will be in register D0 when the function returns. If the function requires any
parameters, they are pushed onto the stack with the rightmost parameter first. All 8- and 16-
bit parameters are promoted to integers before being pushed onto the stack; the default size
for integers is 32 bits, or 16 bits if the –mshort option is passed on the compiler command
line.

The compiler maintains a stack frame pointer in register a6. The frame pointer is used as a
base register to allow access to both function parameters and local variables on the stack
using an indexed addressing mode. C functions save the frame pointer on the stack when they
are called, and restore it before they return. In addition, they save any processor registers that
they modify except for d0, d1, a0, and a1; these are considered ‘scratch’ registers which
may be used by functions without preserving their contents.

Embedded Essentials Page 59

http://www.estc.com

Here’s an example of calling a C function from assembly language. Function abc has the
following prototype:

int abc (int a, char *b);

To call this function, an assembly language routine would push b onto the stack, then a. It
would then call the function by executing jsr abc. Upon returning, register d0 would
contain the return value of the function.

4.2.1.2 Register Usage

Registers D0, D1, A0, and A1 are scratch registers and are not saved and restored when
calling other functions. All other registers that are used by a function must be saved on the
stack before being modified, and restored from the stack before the function returns.

If the target implements hardware floating point, either internally (such as the 68040) or
through a floating-point coprocessor, then FP0 and FP1 are also scratch registers. All other
floating-point registers must be saved and restored by the function if used.

4.2.1.3 Stack cleanup

When a function returns control to the function that called it, the stack space consumed by the
function’s parameters needs to be deallocated (i.e. the stack pointer must be incremented back
to its value before the parameters were pushed). There are two ways of doing this, depending
upon whether or not the compiler option –mrtd was used to compile the code.

The default strategy (that is, when –mrtd is not used) requires the calling function to
deallocate the stack space used by function parameters. In our abc example earlier, this can be
accomplished with the following instruction (after the JSR ABC):

addq.l #8,%sp

The alternative approach, when –mrtd is used, requires the called function to clean up the
stack; in this case the assembly language function need not do anything, since the C function
that it called would have ended with the RTD #n instruction, which removes the parameter
space as part of its execution.

The problem for assembly language programmers is, how do you know when you write the
code which calling convention is being used? It would certainly be very inconvenient to have
to edit every function call if the calling convention were changed. The answer lies in gcc’s
ability to preprocess assembly language programs before passing them to the assembler. The

Page 60 Embedded Development with Gnu CC

Embedded Support Tools Corporation

68k version of gcc defines the preprocessor symbol __MRTD__ if code is compiled or
assembled using the –mrtd command-line option. By testing for the presence of this symbol
using the #ifdef preprocessor construct, you can put code in your program to handle both
cases and conditionally assemble the correct version.

In order to preprocess your assembly code, you must name the source file with the ‘.S’
extension (i.e. ‘program.S’ rather than ‘program.s’). In addition, you must use gcc to
assemble the program rather than invoking the assembler directly.

Several examples of this type of conditional assembly may be found in crt0.S, the source
file of the C startup module.

4.2.1.4 16-bit ints

In addition to the RTD calling convention described in the previous section, the other issue of
which assembly language programmers need to be aware concerns the size of int function
parameters. Normally, Gnu CC defaults to 32-bit ints, and all function parameters are
promoted to int size before being pushed on the stack. However, the 68k compiler has a
command-line option, -mshort, to set the size of int variables and function parameters to
be 16 bits wide. If this compiler option is in effect, then the amount of stack space allocated
by function parameters will be different from the default case. In addition, function
parameters on the stack will be located at a different offset from the stack pointer depending
on whether or not ints are 16 or 32 bits wide.

So how does the assembly language programmer know which case is in effect? This problem
is solved in a fashion similar to the RTD calling sequence described earlier. By running
assembly language source files through the C preprocessor, you will be able to test the value
of the macro __INT_MAX__. The –mshort compiler option will cause __INT_MAX__ to
have the value 32767. Any other value indicates that ints are 32 bits wide. By testing this
value using #if/#else, you can write assembly language programs that have code for both
cases and conditionally assemble the correct version.

4.2.2 PowerPC

The PowerPC compiler adheres to the PowerPC EABI (Embedded Application Binary
Interface) specification, which among other things defines the calling convention for C
functions. We will provide some of the basic information here, and refer you to Motorola’s

Embedded Essentials Page 61

http://www.estc.com

web site (http://www.mot.com/SPS/ADC/pps/download/8XX/ppceabi.pdf) for a more
detailed description.

4.2.2.1 Register usage and Calling convention

Registers r3 through r10 and f2 through f8 are used to pass parameters into a function, in left
to right order; these registers are not preserved across function calls. If a function requires
more than 32 bytes of integer parameters, or more than 7 floating-point parameters, the
remaining parameters are pushed on the stack. Integer function return values are placed in r3
and r4, and floating-point values are returned in f1.

Registers r14 through r30 and f9 through f13 may be used for local variables, and if modified
they must be saved on the stack by the function and restored before the function returns.

Register r13 contains a pointer to the symbol _SDA_BASE_, which is the base address of the
small data sections .sdata and .sbss. Any variable in either of those two sections may be
accessed with a single PowerPC ‘load indexed’ or ‘store indexed’ instruction.

The function of register r2 changes depending upon the calling convention used. With the
default calling convention, r2 is unused. When small data sections are being used (-msdata
was passed on the command line), r2 will contain the address of the symbol _SDA2_BASE_,
which is the base address of the .sdata2 and .sbss2 sections. This allows fast access to
constant data in a similar fashion to .sdata/.sbss described earlier.

With position-independent code (PIC), r2 is used in the function prologue to find the global
offset table, a table of pointers to all variables and functions used in the program; however the
usage differs depending upon which variant of PIC is in use. When ‘small’ position-
independent code is being generated (ie the –fpic option was specified), r2 contains the
address of the symbol _GLOBAL_OFFSET_TABLE_. And when ‘large’ position-
independent code is generated (using –fPIC), r2 contains the difference between the data
fixup and code fixup offsets.

4.2.2.2 Stack management

Register r1 is used as the stack frame pointer and must always be aligned on an eight-byte
boundary. The stack starts in high memory and grows downward. Stack frames are allocated
by the called function, rather than the caller. The stack frames form a linked list pointing back
toward the first dummy frame created by the startup code; new frames are allocated using the
STWU instruction, as in this example:

Page 62 Embedded Development with Gnu CC

Embedded Support Tools Corporation

STWU 1,-8(1)

4.3 Inline assembly language in C source files

Sometimes it’s more convenient to insert a small amount of assembly language code into a C
function rather than writing a complete assembly language function from scratch. The Gnu C
compiler supports this through the asm() operator. Here we provide an introduction to the
asm() operator; this operator is fully documented in sections 4.31 and 4.32 of the Gnu CC
manual.

Gnu CC’s asm() operator is a very powerful implementation of inline assembly language.
In particular, it allows easy access to C expressions (not just variables) from assembly
language. In addition, asm() statements carry enough information that they can be
optimized by the Gnu CC optimizer similar to normal C code.

The parameters for the asm() operator are listed in four groups; each group is separated by a
colon. The first parameter is the assembly code itself, inside double quote characters. The
second group specifies any output values generated by the assembly language code, while the
third group defines any input parameters required by the code. Finally, the fourth set of
parameters specifies any processor registers altered by the assembly code which were not
listed in the output group.

Here’s a simple example of a snippet of code that retrieves the status register in a MC68000
processor, and stores it in a C variable:

int statusreg;

asm (”move %%sr, %0” : ”=r” (statusreg));

This asm() directive specifies the variable statusreg as an output parameter. The
parameter consists of a constraint (the text ”=r”) associated with the name of the variable in
parentheses. This particular constraint tells Gnu CC that the output value must be placed into
the variable statusreg via a general-purpose processor register. If a register is available,
the compiler will allocate statusreg in a register, substituting its name for our %0
placeholder in the assembly code. Otherwise it will generate extra code to make a register
available before inserting our assembly code, and to move the value from the register to
statusreg and finally restore the register’s value after inserting our code.

Embedded Essentials Page 63

http://www.estc.com

Note that since sr is the name of a CPU register, the gnu assembler requires us to prefix its
name with a percent sign. In order to place this percent character into the assembly language
output, we must put two percent characters into the asm() directive.

As an example of an input parameter, we’ll now use asm() to write a value to the status
register:

asm volatile (”move %0,%%sr” : : ”r” (statusreg));

Since this assembly language code produces no output value visible to the compiler, we leave
the output parameter blank. The input parameter specifies the variable statusreg, again
accessed through a general-purpose register. The compiler will allocate a register and insert
the actual register name in place of the %0 placeholder in the assembly code.

4.3.1 Optimizing assembly language code

What is the volatile keyword for in the above example? Because the asm() code uses
no output parameters, this code is considered by the compiler to have no side effects, and
therefore would actually be removed by the optimizer unless specially declared to prevent
this. However it very definitely does have side effects (changing the interrupt mask in the
status register); they just aren’t visible to the compiler. The keyword volatile is used to
inform the compiler that the assembly code should be not be optimized out of the final
program.

Note that the earlier example where we read the value of the status register could also be
optimized out of the program if the value that was read was not actually used in a subsequent
operation. This is normally desirable if we are only interested in the register’s value, but
sometimes when controlling peripheral registers the read may be necessary in order to cause
other things to happen, for example to clear an interrupt flag. If this is the case, then the
asm() code that implements the read should also be tagged with the volatile keyword to
ensure that it is not optimized out of the program.

One other note concerning optimization of assembly code: it’s possible that the compiler
might re-arrang the the order of independent asm() blocks during the optimization process.
If your program depends upon the assembly language code being executed in the same order
that it is shown in the C source code, then the code should all go into the same asm() block.

Page 64 Embedded Development with Gnu CC

Embedded Support Tools Corporation

We have only scratched the surface of this powerful and useful feature; we strongly suggest
you review the relevant sections of the Gnu CC manual (one of the HTML documents
installed with the XGCC tools) if you plan to make use of it.

4.4 crt0.S/crt0.o

Most C and C++ compiler systems use a small module of assembly language code, called
crt0, to set up the system before execution starts at main(), and Gnu CC is no different.
The object module crt0.o is automatically included on the linker’s command line when
gcc calls the linker. This module takes on additional responsibilities in systems where there
is no operating system underneath the application code. In the EST port of Gnu CC, crt0 is
responsible for the following:

• initializing critical peripheral systems after reset

• copying a ROM image of initialized data to RAM

• clearing bss (uninitialized data RAM)

• providing a default exception handler routine for exceptions not handled by user code

4.4.1 Initializing peripherals upon startup

In many embedded systems, there are often hardware peripheral registers that must be set up
before the system can start to execute any application code. For example, many embedded
microprocessors have chip select hardware to control the RAM and ROM devices on the
board, and when the microprocessor comes out of reset these chip selects will often need to
be set up before there is any RAM visible to the processor. Since the C compiler generates
code that requires the use of the processor stack, a mechanism is required to set up these
peripherals before the main() function is executed. It would be most convenient if crt0
allowed the user to somehow specify how this setup is to be done without having to writing a
custom crt0 module for every different hardware platform.

In the EST port of Gnu CC, crt0 offers two mechanisms to perform peripheral initialization.
The first is a system whereby crt0 can be directed to write user-supplied data to peripheral
registers, through the use of initialization records. The second mechanism is through a user-
defined function called hardware_init_hook().

Embedded Essentials Page 65

http://www.estc.com

4.4.1.1 Initialization records

Initialization records define the address of a peripheral register that needs to have data written
to it by crt0 upon power-up. Each record contains a header with the following fields:

• The memory address of the peripheral or variable

• A 32-bit field which encodes the data size (byte, word, or long word) of the data to be
written, as well as the number of items to be written

Each record is followed by one or more data items; the exact count is contained in the
header’s count field. A list of such records may be assembled, marking the end of the list with
a null pointer. The symbol crt0_initialization_list should be set to point to the
first header in the list (this is done automatically by the linker scripts ram.ld and rom.ld).

As soon as crt0 gains control, it checks the value of the symbol
crt0_initialization_list. If it is non-zero, crt0 starts reading each record and
writing the data to the addresses indicated in the record headers, stopping when it reaches the
null pointer. It performs these writes without accessing any other memory in the target system
(except obviously for the locations specified in the initialization records), so it will run
without any RAM being accessible to the processor. This feature makes it ideal for setting up
chip selects and other critical peripheral registers in the target system.

It’s very easy to define these records in a C program. We have provided a header file,
sys/crt0.h, which defines some macros to simplify declaration of these initialization
records. This mechanism is used in the example I/O drivers in the EXAMPLE directory; here’s
a fragment of the MPC860 driver 860Basic.c:

#include <sys/crt0.h>

#define BaseAddress 0xff000000

/* Set up SIU. */
CRT0_INITLONGS (SIU1, BaseAddress, 3, 0x610000,
0xffffff88, 0xffff0000);
CRT0_INITSINGLEWORD (SIU2, BaseAddress+0xe, 0);
CRT0_INITLONGS (SIU3, BaseAddress+0x10, 4, 0,
0x400000, 0, 0x3c000000);
CRT0_INITLONGS (SIU4, BaseAddress+0x20, 1, 0);
CRT0_INITLONGS (SIU5, BaseAddress+0x30, 1, 0x4001);

Page 66 Embedded Development with Gnu CC

Embedded Support Tools Corporation

/* Memory controller. */
CRT0_INITLONGS (MEMC1, BaseAddress+0x100, 16,
0xffc00801, 0xfffc0760, 0, 0, 0xc1, 0xffc00800, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0);
CRT0_INITLONGS (MEMC2, BaseAddress+0x164, 2, 0,
0x3f);
CRT0_INITLONGS (MEMC3, BaseAddress+0x170, 4,
0x30001000, 0x2fa20111, 0x800, 0xff0c0027);

The following sections document the macros defined in sys/crt0.h and how to use them
to generate initialization records.

4.4.1.1.1 Byte, Word, and Long initialization records

CRT0_INITBYTES(name, where, howmany, stuff...)

CRT0_INITWORDS(name, where, howmany, stuff...)

CRT0_INITLONGS(name, where, howmany, stuff...)

These macros create an initialization record to write a string of byte, word, or long-word data
to a peripheral. They all have the same form of invocation; only the data size differs between
them.

name is the name given to the record; it must be unique in the source file containing the
macro invocation. where is the starting address of the peripheral register(s) to be written.
howmany defines how many units of data (each consisting of a single byte, word, or long
word of data); and stuff is the actual data to be written to the peripheral register(s).

4.4.1.1.2 Single-byte and single-word records

CRT0_INITSINGLEBYTE(name, where, stuff)

CRT0_INITSINGLEWORD(name, where, stuff)

Single-byte and single-word initialization takes advantage of the underlying structure of the
initialization record to reduce the overhead in cases where a single, isolated byte- or word-
sized unit of data must be written.

Embedded Essentials Page 67

http://www.estc.com

name is the name given to the record; it must be unique in the source file containing the
macro invocation. where is the starting address of the peripheral register to be written.
stuff is the actual data to be written to the peripheral register.

4.4.1.1.3 SPR initialization (PowerPC only)

The PowerPC architecture has a separate address space called the special-purpose registers
(SPRs) which are used to control many system-level functions in the processor. These
registers are not visible in the processor’s memory map; they are only accessible using the
mtspr and mfspr instructions. Since many SPRs are critical to system initialization, the
startup code for PowerPC systems provides an extra type of initialization record to facilitate
access to the SPR space.

CRT0_INITSPR(name, which, value)

name is the name given to the record; it must be unique in the source file containing the
macro invocation. which is the number of the SPR register to be written. value is the
actual data to be written to the SPR register.

When an SPR init record is encountered by the standard crt0 startup code provided by EST, it
tests the SPR number for several known values and writes the register using inline code if the
SPR number matches. This allows writing SPRs without having any RAM accessible to the
processor. If the SPR number is one which is not implemented as an inline write by crt0, then
crt0 will construct an mtspr opcode in RAM and execute it to perform the write; obviously
in this case RAM must be accessible to the processor in order for these SPRs to be writable.

The list of SPR numbers implemented with inline writes is given in table Table 4.1.

Number Name Description

638 IMMR Memory mapping register (Motorola MPC5xx,
MPC8xx, MPC82xx)

560, 561,
562

IC_CST, IC_ADR,
IC_DAT

Instruction cache, MPC8xx

568, 569,
570

DC_CST, DC_ADR,
DC_DAT

Data cache, MPC8xx

784, 786,
787, 789,

MI_CTR, MI_AP,
MI_EPN, MI_TWC,

Instruction MMU (MPC8xx)

Page 68 Embedded Development with Gnu CC

Embedded Support Tools Corporation

790, 816,
817, 818

MI_RPN, MI_CAM,
MI_RAM0, MI_RAM1

794, 795,
796, 797,
798, 799,
824, 825,
826

MD_CTR, CAS_ID,
MD_AP, MD_EPN,
M_TWB, M_TWC,
MD_RPN, M_TW,
MD_CAM, MD_RAM0,
MD_RAM1

Data MMU (MPC8xx).

149 DER Debug Enable Register (MPC5xx, MPC8xx)

Table 4.1: PowerPC SPRs implemented with inline writes in crt0

4.4.1.1.4 UPM initialization (PowerPC only)

Several of Motorola’s MPC8xx devices contain a memory controller called the User
Programmable Machine (UPM). These devices require a relatively large, interleaved
command/data initialization sequence in order to start operation. In order to simplify the
setup of the UPM’s, a special initialization record is defined for PowerPC targets.

CRT0_INITUPM(name, cmdaddress, cmdvalue,
dataddress, howmany, stuff...)

name is the name given to the record; it must be unique in the source file containing the
macro invocation. cmdaddress is the address of the UPM command register. cmdvalue
is the initial value to be written to the command register; this value will be incremented after
each write. dataaddress is the address of the data register; each data value is written to
this location. howmany defines how many long words of data follow the command header;
and stuff is the actual data to be written to the data register.

Here is an example taken again from 860Basic.c in the EXAMPLE directory:

/* UPMB. */
CRT0_INITUPM (UPMB1, BaseAddress+0x168, 0x00800000,
BaseAddress+0x17c, 64,

0x0fffec04, 0x08ffec04, 0x00ffec00, 0x3fffec47,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0x0fffcc24, 0x0fffcc04, 0x08ffcc00, 0x03ffcc4c,

Embedded Essentials Page 69

http://www.estc.com

0x08ffcc00, 0x03ffcc4c, 0x08ffcc00, 0x03ffcc4c,

0x08ffcc00, 0x33ffcc47, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0x0fafcc04, 0x08afcc00, 0x3fbfcc47, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,

0x0fafcc04, 0x0cafcc00, 0x01afcc4c, 0x0cafcc00,
0x01afcc4c, 0x0cafcc00, 0x01afcc4c, 0x0cafcc00,
0x31bfcc43, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,

0xc0ffcc84, 0x01ffcc04, 0x7fffcc86, 0xffffcc05,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0x33ffcc07, 0xffffffff, 0xffffffff, 0xffffffff);

4.4.1.2 hardware_init_hook ()

While the initialization record mechanism is extremely useful, sometimes it is necessary to
execute code in order to complete system initialization. This is facilitated through a user-
defined function called hardware_init_hook().

Immediately after processing the initialization records, crt0 will check the value of the
symbol hardware_init_hook. If this symbol is defined (ie non-zero), crt0 will
perform a function call to this location. This function may be defined by the user to perform
any hardware-related initialization that may be required.

It is generally not safe to call any C runtime library functions from with
hardware_init_hook(), since neither the .data nor the .bss sections will have been set
up at this point. hardware_init_hook() should be restricted to only performing any
hardware initialization functions that are required, and then exit. If application-level
initialization is required before main() is called, there is another mechanism described in
section 4.4.2 which is well-suited to this task.

Page 70 Embedded Development with Gnu CC

Embedded Support Tools Corporation

4.4.2 Software initialization before entering main ()

There is one final initialization mechanism in crt0, and this one may be useful for your
application code as opposed to hardware-related initialization. Just before main() is
entered, crt0 will call the function software_init_hook(), if it exists. When this
function is called, all initialization is complete (ie bss will have been cleared to zero, and
initialized variables will have been set with their starting values) and you are free to call any
function defined in your application code or in the C runtime library. One warning: C++
constructors will not yet have been called when software_init_hook() executes, so be
careful not to perform any operations in this function which would use C++ objects.

4.4.3 Default exception handling procedure

We spend a lot of time thinking about the interrupt handlers that we write to support our
custom hardware. But what about the vast majority of exception vectors for which there is no
handler? It’s prudent to define handlers for all exception vectors, to avoid a situation where a
spurious noise-triggered interrupt sends the processor off into space.

The EST implementation of crt0 provides a ‘default’ exception handler, with the name
__vector_default, to deal with this situation. In addition, the linker scripts rom.ld and
ram.ld use the PROVIDE command to force any vector table entries that are not defined in
user code to point to this default handler.

The default handler deals with unhandled interrupts and exceptions by re-starting the program
from scratch, just as if a hardware reset occurred. However, there is a mechanism by which
the application code can detect that the re-start was caused by an exception rather than a reset.
crt0 defines an integer variable called __unhandled_exception. If crt0 was entered
from a hardware reset, this variable will be zero; but if crt0 was entered due to an unhandled
exception, this variable contains the number of the exception vector that caused the restart.
Another variable, called __unhandled_exception_pc, is set to the value contained in
the program counter at the point where the exception occurred.

The header file sys/crt0.h can be included into a C program to declare
__unhandled_exception for access by C programs.

Embedded Essentials Page 71

http://www.estc.com

4.4.4 crt0 entry points

The crt0 startup module provides three entry points: _start, _start2, and _restart.
Each of these entry points is described in the following sections. These functions are
prototyped in the header file sys/crt0.h.

4.4.4.1 _start

_start is the ‘cold-start’ entry point, used to bring the system up from a system reset.
When your program is placed in ROM, the reset vector will be set (in vectors.o) to transfer
control to this location. _start performs all initialization steps, in the following order:

• Interrupts are disabled and some critical processor registers (for example the Machine
State Register in the PowerPC, or the Status Register in the M68k/ColdFire
architecture) are initialized.

• The system’s critical peripherals are initialized, as dictated by the user-defined
initialization records

• The stack pointer is set to the value of the symbol __stack (if defined)

• The function hardware_init_hook() is called, if defined

• The .bss section is cleared to all zeros, unless the symbol crt0_flags is defined
and bit 1 of crt0_flags is non-zero

• If the program was linked as a ROM-resident executable (using the linker script
rom.ld), a ROM-resident image of the .data section is copied to RAM to set up
all initialized variables.

• The variables __unhandled_exception and
__unhandled_exception_pc are initialized to zero, to indicate to the
application program that it was entered as a result of a system reset.

• If the program was compiled and linked using position-independent code (PIC), then
the processor’s base pointer to the global offset table is initialized. The code fixup is
calculated based upon the program’s offset from its linked address, and a data fixup
value of zero is assumed.

• An initial dummy stack frame is set up, and any final processor-specific initialization
is done.

Page 72 Embedded Development with Gnu CC

Embedded Support Tools Corporation

• If defined, the function software_init_hook() is called.

• The application’s main() function is called, and if it returns the return value is
passed to the exit() function.

4.4.4.2 _start2

_start2 is also a ‘cold-start’ entry point, however it is intended for use when the program is
being hosted within another system environment, for example a ROM monitor program. The
_start2 entry point has several function call parameters which provide the host
environment with the opportunity to control some of the startup parameters. It is prototyped
as follows:

void _start2 (int argc, char *argv [], void
*RamStart, LONG RamSize) __attribute__((noreturn));

As shown in the prototype above, _start2 allows the host environment to pass command
line parameters to the program in addition, the host environment may specify the address of
the program’s RAM buffer to be used for data, bss, heap, and stack memory. (The program
must be compiled with the –fpic or –fPIC option in order to use this feature. If the
RamStart parameter (the address of the RAM block) is set to zero, then crt0 will use the
default RAM addresses as specified at link time.

When control transfers to _start2, the same sequence of steps is performed as for _start,
except for the following:

• The critical CPU registers (for example, MSR on PowerPC) are not altered upon
entry

• For programs compiled as position-independent code, the global offset table will be
initialized to use the data fixup offset as calculated based upon the RamStart
parameter passed in the function call. The code fixup offset is calculated in the same
manner as for _start.

4.4.4.3 _restart

The symbol _restart is a ‘warm-start’ entry point. It is prototyped as follows:

Embedded Essentials Page 73

http://www.estc.com

void _restart (LONG new_unhandled_exception, void *
new_unhandled_exception_pc, int UseDataFixup)
__attribute__((noreturn));

_restart is used by the default exception handler to restart the system when an unhandled
exception occurs. It may also be called by user-defined exception handlers if a restart is
desired.

__restart performs all the same initialization as _restart, with the exception that the
variables __unhandled_exception and __unhandled_exception_pc are set to
the vector number and execution address, respectively, that caused re-entry into crt0. These
variables may be inspected by the application program to determine why the program was re-
started, and take appropriate action if possible.

4.5 Exception handlers

It’s easy to write your own interrupt and exception handlers in C. Each entry in the
processor’s exception vector table is assigned a unique name. To define a handler routine for
that exception, simply define a C function with one of the reserved names; the code in
vectors.S / vectors.o ensures that function will be called when the exception occurs.
Any exceptions for which you do not provide a handler will be vectored by the linker script to
call the default handler function __vector_default, located in the crt0 startup module.
Section 4.4.3 provides more detail on the exact operation of this function.

There are some specific requirements that each processor family places on exception
handlers; these are detailed in the following subsections.

4.5.1 M68K

M68k exception handlers are addressed directly in the processor’s exception vector table,
which is defined in the file vectors.o (this file is supplied as part of the XGCC
installation). In order to generate the correct function entry/exit sequence, exception handlers
written in C must be declared using a special compiler directive -
__attribute__((interrupt)). The example fragment below is taken from 332-
io.c in the EXAMPLE subdirectory.

Page 74 Embedded Development with Gnu CC

Embedded Support Tools Corporation

void __vector_40 (void) __attribute__
((interrupt));

void __vector_40 (void)
{
.
.
}

As shown in the example, you must first declare the function with the interrupt attribute. You
can then write the function just like any other C function, except that the compiler will save
and restore the necessary registers in the function prologue and epilogue, and end the function
with the RTE (return from exception) instruction rather than RTS (return from subroutine).
Exception handlers must always be declared as shown above, i.e. with no parameters and
returning void.

Most of the reserved names for the user-defined m68k exception handlers are in the form
__vector<number>, where <number> represents the vector number as two hexadecimal
characters. For example, __vector_40 is the first user vector, number 64 in decimal. Most
of the Motorola-defined exceptions have the Motorola-defined name in place of the number;
a list is given in Table 4.2.

Vector
number

Description Function name

2 Access fault (bus error) __vector_access_fault

3 Address error __vector_address_error

4 Illegal opcode __vector_illegal_instruction

5 Divide by zero __vector_divbyzero

6 CHK, CHK2 instruction __vector_chk

7 TRAPcc, TRAPV, FTRAPcc
instructions

__vector_trapcc

8 Privilege violation __vector_priviledge

9 Trace __vector_trace

Embedded Essentials Page 75

http://www.estc.com

10 Line 1010 emulation __vector_lineA

11 Line 1111 emulation __vector_lineF

13 Coprocessor protocol violation __vector_CPprotocol

14 Format error __vector_format

15 Uninitialized interrupt __vector_uninitialized

24 Spurious interrupt __vector_spurious

25 Autovector level 1 __vector_auto1

26 Autovector level 2 __vector_auto2

27 Autovector level 3 __vector_auto3

28 Autovector level 4 __vector_auto4

29 Autovector level 5 __vector_auto5

30 Autovector level 6 __vector_auto6

31 Autovector level 7 __vector_auto7

32 TRAP #0 __vector_trap0

33 TRAP #1 __vector_trap1

34 TRAP #2 __vector_trap2

35 TRAP #3 __vector_trap3

36 TRAP #4 __vector_trap4

37 TRAP #5 __vector_trap5

38 TRAP #6 __vector_trap6

39 TRAP #7 __vector_trap7

40 TRAP #8 __vector_trap8

41 TRAP #9 __vector_trap9

42 TRAP #10 __vector_trapA

Page 76 Embedded Development with Gnu CC

Embedded Support Tools Corporation

43 TRAP #11 __vector_trapB

44 TRAP #12 __vector_trapC

45 TRAP #13 __vector_trapD

46 TRAP #14 __vector_trapE

47 TRAP #15 __vector_trapF

48 FP branch __vector_Fpbranch

49 FP inexact result __vector_FPinexact

50 FP divide by zero __vector_FPdivbyzero

51 FP underflow __vector_FPunderflow

52 FP operand error __vector_FPoperand

53 FP overflow __vector_FPoverflow

54 FP signalling NAN __vector_FPnan

55 FP unimplemented data type __vector_FPunimplemented

56 MMU configuration error __vector_MMUconfig

57 MMU illegal operation __vector_MMUillegal

58 MMU access level violation __vector_MMUaccess

Table 4.2: exception vector function names for the 68k

4.5.2 PowerPC

Power PC exception handlers should be defined as shown in the example below:

void __vector_externalinterrupt (LONG
new_unhandled_exception, void *
new_unhandled_exception_pc);

new_unhandled_exception contains the exception vector number which caused entry
into the function. new_unhandled_exception_pc is the address of the opcode that was
executing when the interrupt occurred. There is no special compiler directive needed to

Embedded Essentials Page 77

http://www.estc.com

declare exception handlers for PowerPC; the file vectors.o contains the prologue code for
each vector that restores the machine to a safe state after the exception and then calls the
appropriate handler function.

Reserved names for the Power PC exception handler functions are listed in Table 4.3. These
functions are all declared in the header file sys/ppc-exceptn.h.

Vector
offset

Description Function name

0x200 Machine check __vector_machinecheck

0x300 Data access __vector_dataaccess

0x400 Instruction access __vector_instructionaccess

0x500 External interrupt __vector_externalinterrupt

0x600 Alignment __vector_alignment

0x700 Program exception __vector_program

0x800 Floating-point unavailable __vector_fpunavailable

0x900 Decrementer __vector_decrementer

0xa00 Reserved __vector_reserved1

0xb00 Reserved __vector_reserved2

0xc00 System call __vector_systemcall

0xd00 Trace __vector_trace

0xe00 Floating-point assist __vector_fpassist

0xf00 Not assigned __vector_0f00

0x1000 Software emulation __vector_swemulation

0x1100 Instruction TLB miss __vector_instructiontlbmiss

0x1200 Data TLB miss __vector_datatlbmiss

0x1300 Instruction TLB error __vector_instructiontlberror

Page 78 Embedded Development with Gnu CC

Embedded Support Tools Corporation

0x1400 Data TLB error __vector_datatlberror

0x1500 Unassigned __vector_1500

0x1600 Unassigned __vector_1600

0x1700 Unassigned __vector_1700

0x1800 Unassigned __vector_1800

0x1900 Unassigned __vector_1900

0x1a00 Unassigned __vector_1a00

0x1b00 Unassigned __vector_1b00

0x1c00 Data breakpoint __vector_databreakpoint

0x1d00 Instruction breakpoint __vector_instructionbreakpoint

0x1e00 Maskable external breakpoint __vector_maskablebreakpoint

0x1f00 Non-maskable external
breakpoint

__vector_nonmaskablebreakpoint

Table 4.3: exception vector function names for the PowerPC

4.6 Position-Independent Code (PIC)

By default, the code generated by the Gnu compiler is position-dependant; the code uses
absolute addresses when making reference to functions and variables, and therefore the
program will only operate correctly when loaded at its link address. However, the Gnu tools
also include support for generating Position-Independent Code (PIC) from your C and C++
programs.

4.6.1 PIC overview

Programs compiled as Position-Independent Code do not make use of any absolute addresses;
rather, when a variable or function address is needed in the program, it is loaded from a table

Embedded Essentials Page 79

http://www.estc.com

of pointers, called the Global Offset Table (GOT), which is constructed automatically by the
compiler.

The GOT contains the address of each variable and function as calculated at link time by the
linker. The addresses in the GOT are modified, or ‘fixed up’, at runtime by the startup code,
which calculates the difference between the program’s link address and the address at which
is actually executing, and adds that difference (called the ‘fixup’ value) to each pointer in the
GOT before the compiler-generated code runs.

4.6.2 -fpic (‘little’ PIC) vs. –fPIC (‘big’ PIC)

As described in section 3.8, Position-Independent Code is enabled with the command line
options –fpic and –fPIC. –fpic (‘p’, ‘i’. And ‘c’ all lower-case) enables ‘small’ PIC,
which typically results in faster and smaller code than the –fPIC (‘P’, ‘I’. And ‘C’ all upper-
case) option; it does this by limiting the size of the GOT to 64K bytes, or 16K entries, so any
entry may be accessed with a single-word offset. Each function or variable in the entire
program has exactly one entry in the GOT.

On PowerPC, register R2 is used as a base address to the GOT, and GOT entries are accessed
using the indexed load instructions. On 68k and ColdFire, address register A5 contains the
base address of the GOT, and the indexed addressing mode with 16-bit offset is used to
access its contents. In both cases, the ‘base address’ actually refers to the location midway
between the start and end of the GOT, to allow both positive and negative offsets for a total
span of 64K.

In contrast, the –fPIC option (‘P’, ‘I’. And ‘C’ all upper-case) enables ‘big’ PIC. In this
mode, the size of the GOT is unlimited; however, you pay a penalty in the form of slightly
larger and slower code. In the 68k and ColdFire families, the indexed addressing mode is
used, with 32-bit offsets, to load values from the GOT; this is slightly larger and slower than
the 16-bit offset. In addition, only CPU32 and up (68020, 030, 040 etc) support the 32-bit
offset form of the indexed addressing mode, so ‘big’ PIC is not available on the original
MC68000 and its derivatives.

In PowerPC, ‘big’ GOT causes each function to allocate a ‘private’ area in the GOT, and the
function prologue calculates a base pointer to that area in a CPU register when the function is
called. Every function or variable referenced in the function causes an entry to be created in
that ‘private’ area of the GOT, so there will be multiple GOT entries for any variable that is
referenced in multiple functions. Since the PowerPC limits index values to 16 bits, this mode
allows up to 16K GOT entries per function, as opposed to 16K entries for the entire program

Page 80 Embedded Development with Gnu CC

Embedded Support Tools Corporation

in ‘little’ PIC. The function prologue is larger by a few instructions, since the compiler must
calculate a pointer to the ‘private’ area in the GOT; however, after the additional overhead of
the function prologue, variable accesses incur no additional penalty compared to ‘little’ PIC.

4.6.3 Code and data fixups

As mentioned in section 4.6.1, the reason that code generated with the –fpic or –fPIC options
is position-independent is that the addresses in the Global Offset Table are ‘fixed up’ by the
program’s startup code so that they contain the correct run-time addresses. In the standard
Gnu distribution, the same fixup value is applied to all pointers in the GOT; this implies that
code and data must be relocated together as a unit, rather than being able to move code and
data separately. Practically speaking, it also implies that the program must be executed from
RAM, since it’s very unlikely that the exact same fixup value could be successfully applied to
both a text section resident in flash memory and the data and bss addresses in RAM.

The EST distribution has some enhancements to the compiler and startup code that make PIC
more suitable for embedded applications. Two fixup values are used, one for code pointers
and the other for data pointers. Any pointer containing an address that falls between the start
and end of the text section has the code fixup applied, while pointers with other values have
the data fixup applied. Null pointers are not fixed up. This allows data and code to be
relocated separately at runtime; for example, the code could be executed at its link address in
flash memory, but data moved to a new location in RAM.

The fixup values are calculated in the startup module crt0.o. It takes the address at which
it is executing and subtracts from that the address at which it was linked to run; this
difference is the code fixup. Since there is no automatic way to deduce what value to use for
the data fixup, it is calculated based upon the RamStart parameter passed in the call made
into crt0’s _start2 entry point. If this parameter is zero, then the data fixup value is zero
and the linked addresses are used for RAM variables. Otherwise, the linked address of the
starting address of RAM is subtracted from the RamStart parameter to arrive at the data
fixup value. If crt0 is entered through the ‘cold start’ entry point _start, RamStart (and
therefore the data fixup value) is assumed to be zero.

4.6.4 Unhandled exceptions and the data fixup value

If an unhandled exception results in control passing to crt0 to cause a warm start, then crt0
contains code which will re-calculate the data fixup value which it requires in order to re-
initialize the system and re-enter main().Recall that there is no automatic way to deduce

Embedded Essentials Page 81

http://www.estc.com

what this value should be; it is an arbitrary value imposed by the external operating
environment. In a restart after an exception, it is possible to calculate the data fixup value
based upon the value of one of the critical CPU registers (R13 for PowerPC, A5 for
68k/ColdFire).

However, depending upon the requirements of your application and the type of exception
encountered, it may be possible that one or more CPU registers might have been corrupted
and may no longer contain the correct base address. For example, suppose that the processor
was subjected to an EMI pulse that caused it to jump out of its normal code section and start
executing some data locations as opcodes. Eventually an illegal opcode trap, bus error, or
watchdog timer would cause an exception to occur which resulted in a restart through
__vector_default. Having possibly run through dozens of unknown opcodes before
entering the exception handler, the register’s contents quite easily could have been corrupted
before the exception occurred.

If this type of catastrophic error is possible in your application, the default method used by
crt0 to calculate the data fixup value will not be reliable. You must either not use data fixup
(ie you must not relocate RAM addresses at runtime), or you must provide an alternate
method for obtaining the RAM start address and have your exception handler call _restart
directly

4.7 Omitting exception and RTTI support from C++ programs

The Gnu C++ compiler in XGCC includes full support for C++ exceptions and Run-Time
Type Information (RTTI). By default, any time you have at least one C++ module in your
program, the linker will include the run-time support code required to implement these
features. The total overhead of these run-time modules is about 16K bytes of code and 2K
bytes of data (on PowerPC).

For larger programs, this overhead does not represent a problem, and many developers will
elect to leave the exception and RTTI support in their programs. However, this may represent
significant overhead for smaller projects; in addition, some developers may choose not to use
these features. For this reason, the XGCC system is configured to allow you to compile and
link programs without these features.

To remove exceptions and RTTI, compile all modules in the program with the command-line
options –fno-exceptions –fno-rtti. In addition, these options should be passed to

Page 82 Embedded Development with Gnu CC

Embedded Support Tools Corporation

the linker so that it will select the run-time libraries that were compiled with these same
options. These options should always be used together; omitting one or the other will cause
errors at link time.

4.8 Runtime libraries

4.8.1 libgcc.a

libgcc is a library of support routines that are needed by the compiler to perform operations
that are too large to be efficiently open-coded; that is, operations that are used frequently and
cannot be implemented in a short instruction sequence. In this case, the compiler inserts a call
to a support subroutine rather than inserting the instruction sequence over and over again in
the compiled code. This results in smaller executables with little or no impact on
performance.

Examples of this type of operation might include software floating-point math support,
integer multiply and divide (on some targets), memory-to-memory moves, saving and
restoring registers on function entry and exit, and functions for calling C++ constructors and
destructors.

The CD-ROM installs pre-built copies of libgcc.a for each target configuration, and it’s very
unlikely that you would ever have to change this library unless you are porting the compiler
to a new processor architecture.

4.8.2 The newlib runtime library

As described in section 1.4.3, newlib is a complete implementation of the standard C runtime
library suitable for embedded applications. It takes relatively small amounts of memory to
support the library functions, and applications built with newlib may be distributed without
royalties or disclosure of library source code.

4.8.2.1 Functions defined

Full documentation on these functions is available in the newlib reference manual. Following
is a summary of the library functions implemented by newlib:

Embedded Essentials Page 83

http://www.estc.com

• From stdlib.h: abort, abs, assert, atexit, atof/atoff, atoi,
atol, bsearch, calloc, div, ecvt/scvtf/fcvt/fcvtf,
gcvt/gcvtf, ecvtbuf, fcvtbuf, exit, genenv, labs, ldiv,
malloc/realloc/free, mbtowc, qsort, rand/srand,
strtod/strtodf, strtol, strtoul, system, wctomb

• From math.h: acos/acosf, acosh/acoshf, asin/asinf,
asinh/asinhf, atan/atanf, atan2/atan2f, atanh/atanhf,
jN/jNf/yN/yNf, chrt/chrtf, copysign/copysignf, cosh/coshf,
erf/erff/erfc/erfcf, exp/expf, expm1/expm1f, fabs/fabsf,
floor/floorf/ceil/ceilf, fmod/fmodf, frexp/frexpf,
gamma/gammaf/lgamma/lgammaf, hypot/hypotf, ilogb/ilogbf,
infinity/infinityf,
isnan/isnanf/isinf/isinff/finite/finitef, ldexp/ldexpf,
log/logf, log10/log10f, log1p/log1pf, matherr, modf/modff,
nan/nanf, nextafter/nextafterf, pof/powf,
rint/rintf/remainder/remainderf, scalbn/scalbnf,
sqrt/sqrtf, sin/sinf/cos/cosf, sinh/sinhf, tan/tanf,
tanh/tanhf

• From ctype.h: isalnum, isalpha, isascii, iscntrl, isdigit,
islower, isprint, isgraph, ispunct, isspace, isupper,
isxdigit, toascii, tolower, toupper

• From stdio.h: clearerr, fclose, feof, ferror, fflush, fgetc,
fgetpos, fgets, fiprintf, fopen, fdopen, fputc, fputs,
fread, freopen, fseek, fsetpos, ftell, fwrite, getc,
getchar, iprintf, mktemp/mkstemp, perror, putc, putchar,
puts, remove, rename, rewind, setbuf, setvbuf, siprintf,
printf/fprintf/sprintf, scanf/fscanf/sscanf, tmpfile,
tmpnam/tempnam, vprintf/vfprintf/vsprintf

• From string.h: bcmp, bcopy, bzero, index, memchr, memcmp,
memcpy, memmove, memset, rindex, strcat, strchr, strcmp,
strcoll, strcpy, strcspn, strerror, strlen, strlwr,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn,
strstr, strtok, strupr, strxfrm

• From signal.h: raise, signal

Page 84 Embedded Development with Gnu CC

Embedded Support Tools Corporation

• From time.h: asctime, clock, ctime, difftime, gmtime,
localtime, mktime, strftime, time

• From locale.h: setlocale, localeconv

In addition, the macros va_start, va_arg, and va_end are defined to support functions
with variable argument lists. Both the stdarg.h and vararg.h, header files are included
to support both K&R and ANSI-compliant code.

4.8.2.2 Integer-only printf()

In order to help conserve memory space, the printf()functions are implemented in both
integer-only and floating-point-capable versions. The integer-only versions are about half the
size of the standard versions, so you will save space there; in addition, if there is no other
floating-point math in your program, using iprintf() instead of printf() will prevent
the floating-point support library routines from being linked into your program. This can also
save significant code space, particularly on targets that do not implement floating-point math
in hardware.

To use the integer-only versions, simply substitute iprintf wherever printf would
normally be used. This applies to all functions in the printf() family, ie: iprintf(),
fiprintf(), siprintf(), vfiprintf(), etc.

4.8.2.3 float versions of math functions

Each math function defined in math.h is defined to operate upon and return double-
precision values. newlib also makes available equivalent functions which operate upon and
return single-precision values. The advantage to using the single-precision versions is that if
you don’t need the extra precision of the double type, you will generally get better
performance with the single-precision version, especially on lower-cost processors that
implement floating-point math in software rather than hardware.

To use the single-precision functions, simply append the letter ‘f’ to the function name. For
example, tanh() is implemented using doubles, whereas tanhf() is implemented with
floats.

Embedded Essentials Page 85

http://www.estc.com

4.8.2.4 Using newlib

Newlib is pre-compiled by EST and installed on your hard drive with the compiler tools.
Multiple versions are installed, one for each major family member and/or compiler option
setting. All you have to do is make sure that -lc and -lm are referenced at some point on
the linker command line. If you use EST’s rom.ld and ram.ld linker scripts, this is done
for you in the linker script.

4.8.3 Support functions required by newlib

A total of 18 supporting functions are required in order to implement the newlib library on a
new system. These functions are listed in the table below. newlib is fully capable of
implementing support for sophisticated OS features such as file I/O and multitasking. If your
development project does not include these features however, then many of the support
functions may be stubbed out (ie perform no operation and return a default value).

Generic versions of many of these functions have already been implemented for you in the
librom library included with the XGCC CDROM. If they will meet your needs (as they will
for many systems), then there is very little work needed to get newlib running on your custom
hardware. Please refer to section 4.10 for more detail on EST’s librom I/O subsystem.

Function/variable Description

void _exit (int
result)

Return control to host system; called by exit()
and system()

int close (int fd) Closes the file identified by the file descriptor fd

char **environ Pointer to environment strings

int execve(char *name,
char **argv, char **env)

Transfers control to a new process

int fork (void) Creates a new process

int fstat(int file,
struct stat *st)

Returns status of an open file.

int getpid (void) Returns process ID of currently executing process

int isatty (int fd) Returns non-zero if the file indexed by fd is a
terminal device

Page 86 Embedded Development with Gnu CC

Embedded Support Tools Corporation

int kill (int pid, int
sig)

Signal a process

int link (char *old,
char *new)

Rename a file

int lseek (int fd, int
ptr, int dir)

Sets the position of a file.

int read (int fd, char
*ptr, int len)

Read len characters from the file indexed by fd

caddr_t sbrk (int incr) Increase program data space

int stat (char *file,
struct stat *st)

Returns status of file (by name)

int times (struct tms
*tbuff)

Returns timing information for the current process.

int unlink (char
*filename)

Delete a file.

int wait (int *status) Wait for a child process.

int write (int file,
char *ptr, int len)

Write len characters to the file indexed by fd.

Table 4.4: support functions required by newlib

4.9 Linking the correct libraries (‘multilib’)

Many embedded microprocessor architectures implement multiple versions of their
instruction sets; some high-end family members may (for example) implement hardware
floating-point math, which other less sophisticated members rely on software emulation. In
addition, many processor architectures offer a choice of multiple calling conventions, each
with its own advantages and disadvantages, in order to optimize performance for particular
applications. Typically, when you select a particular instruction set or calling convention to
use for your application code, you must insure that all runtime libraries that you link with

Embedded Essentials Page 87

http://www.estc.com

your application code were also compiled with the same set of compiler options; otherwise
it’s very likely that your program will not work.

This seemingly obvious and simple issue can become something of a nuisance when you
need to support multiple projects that were built with different compiler options. If you had
installed only a single copy of the library, you would be forced to repetitively re-build it from
source code each time you wanted to link with a project built with a different set of compile
options. The XGCC compiler tools resolve this problem by installing multiple sets of the
runtime libraries, with each set built with a different combination of command-line options;
then, the compiler command line options given at link time are used to select the appropriate
libraries with those same options, by passing the appropriate directory name to the linker.

There is one catch to the scheme: it only works if you link your program using the gnu driver
program, gcc. If you invoke the linker directly (for example, using m68k-elf-ld or
powerpc-eabi-ld on the command line rather than gcc) then you are responsible for
specifying the exact location of all the object files and libraries that the linker should include
use to build the executable. Unless you have a particular requirement to control every option
passed to the linker, it’s advisable to always use gcc to link your programs, because it takes
care of many details for you in the link process. If you want to see the exact command line
that gcc uses to invoke the linker, then add the option –v on the gcc command line and it will
display the command line on the console when it links.

The libraries are stored in two sets of subdirectories in the compiler directory tree. Libraries
relating to the target environment (eg: libc.a, the startup code crt0.o, etc) reside in
\xgcc32\<targetname>\lib. Compiler-specific support libraries (for example:
libgcc.a, libstdc++.a, etc) are stored in \xgcc32\lib\gcc-
lib\<targetname>\<compiler version>. <targetname> is the ‘configure’
name for the target architecture (eg: m68k-elf for 68k, powerpc-eabi for embedded
PowerPC, etc) and <compiler version> is the numeric version number of the compiler
release (e.g.: 2.95.2).

The name of each subdirectory roughly corresponds to the names of the command line
options with which they are compiled. Table 4.5 lists the directory name for each
combination of processor core and build option in the 68k family.

MC68000

[-m68000]

CPU32

[-mcpu32]

MC68020,
MC68030,
MC68040

MC68060

[-m68060]

Coldfire

[-m5200]

Page 88 Embedded Development with Gnu CC

Embedded Support Tools Corporation

[none]

Defaul
t

m68000 mcpu32 . m68060 m5200

-mshort mshort\m68000 mshort\mcpu32 mshort

-mrtd mrtd\mcpu32 mrtd

-mshort
–mrtd

mshort\mrtd\mcpu32 mshort\mrtd

-msoft
–float

msoft-float

-msoft–float
–mshort

msoft-float\mshort

-msoft–float
–mrtd

msoft-float\mrtd

-msoft–float
–mshort
–mrtd

msoft-float\mshort\mrtd

Table 4.5: multilib options and directory locations for 68k targets

For PowerPC, Table 4.6 lists the build options and directory names for the runtime libraries.

Calling Convention Big-endian Little-endian
[-mlittle]

Big-endian,
software
floating-point
[-msoft-float]

Little-endian,
software
floating-point
[-mlittle –
msoft-float]

Default . le nof nof/le

-mcall-aix ca le\ca nof\ca nof\le\ca

-msdata msdata msdata\le nof\msdata nof\le\msdata

-fpic pic le\pic nof\pic nof\le\pic

-fPIC picREL le\picREL nof\picREL nof\le\picREL

-fno-exceptions, -fno-
rtti

nortti\noexcp le\nortti
\noexcp

nof\nortti
\noexcp

nof\le\nortti\
noexcp

-mcall-aix, -fno-
exceptions, -fno-rtti

ca\nortti
\noexcp

le\ca\nortti
\noexcp

nof\ca\nortti
\noexcp

nof\le\ca\nort
ti\noexcp

Embedded Essentials Page 89

http://www.estc.com

-msdata, -fno-
exceptions, -fno-rtti

msdata\nortti
\noexcp

le\msdata\nor
tti\noexcp

nof\msdata\no
rtti\noexcp

nof\le\msdata\
nortti\noexcp

-fpic, -fno-exceptions,
-fno-rtti

pic\nortti
\noexcp

le\pic\nortti
\noexcp

nof\pic\nortt
i\noexcp

nof\le\pic\nor
tti\noexcp

-fPIC, -fno-exceptions,
-fno-rtti

picREL\nortti
\noexcp

le\picREL\nor
tti\noexcp

nof\picREL\no
rtti\noexcp

nof\le\picREL\
nortti\noexcp

Table 4.6: multilib options and directory locations for PowerPC

4.10 Customizing the link process: XGCC’s “Modular Linking”

When an executable program is linked, the following components are included in the link
process (listed in order of their appearance on the linker’s command line):

1. The ‘start file’, if any, required by the compiler’s support code. For PowerPC this file
is named ecrti.o.

2. The program’s startup module, crt0.o

3. The object modules which make up the program (specified by the programmer on the
gcc command line)

4. (If linking with g++.exe) the C++ runtime library libstdc++.a and the
floating-point math library libm.a.

5. The compiler support library libgcc.a.

6. The exception vector table module vectors.o.

7. The runtime libraries librom.a and libc.a.

8. The compiler support library libgcc.a is linked again to resolve any remaining
compiler support routines.

9. The ‘end file’, if any, required by the compiler’s support code. For PowerPC this file
is named ecrtn.o.

Of the components listed above, provision is made that nos. 2, 6, and 7 may be easily
replaced or eliminated by the developer. We refer to this as XGCC’s “modular linking”
process, since these portions of the link process may be altered without affecting the other

Page 90 Embedded Development with Gnu CC

Embedded Support Tools Corporation

(required) steps. The manner in which this is done differs slightly for each module, depending
upon its role in the process.

4.10.1 Replacing the startup module crt0.o (link step 2)

The inclusion of the startup module crt0.o is controlled by an INPUT directive in the
linker script file startup.ld, located in the compiler directory tree. Since this directive
causes the linker to search for an object file in its list of library directories, in the default case
the linker will find EST’s standard crt0.o module when it searches the compiler library
directories. However, the SEARCH_DIR directive in startup.ld causes the linker to add
the project’s working directory to this search list; this also means that you can substitute your
own crt0.o module in place of the standard one simply by placing it in the project’s
working directory, since this directory will be searched first.

4.10.2 Replacing or eliminating the exception vector table module (link step 6)

The exception table module, vectors.o, is necessary for applications that run on the ‘bare
metal’ and assume control of the processor’s exception vector table. In some applications
however, it may be necessary to customize this module for special requirements. Still other
applications may run under control of a host software environment such as a real-time OS or
ROM monitor, which controls the processor’s exception vector table itself; and in these cases
it may be desirable to remove vectors.o completely from the link process.

The inclusion of the exception vector table module is controlled by a linker script named
vectors.ld, located in the compiler’s library directory tree. To substitute a custom
exception vector module, use the same trick as described for the startup module (see section
4.10.1): simply provide your own object module named vectors.o in the project’s
working directory, and the linker will find this module first as it searches its list of library
directories. To eliminate the vector table module altogether from the link, simply create an
empty file named vectors.ld in your project’s working directory; again, this file will be
found first when the linker searches for it, and since it is empty the vector table module will
not be linked in. other special requirements may also be accommodated by this technique.

4.10.3 Modifying or eliminating run-time libraries (link step 7)

By default, EST’s I/O integration library librom.a (described in section 4.11) and the
newlib standard C runtime library libc.a are included in the link process. While this will

Embedded Essentials Page 91

http://www.estc.com

be appropriate for many applications, there will inevitably be occasions when one or both of
these libraries will need to be replaced or excluded from the link process.

The libraries are linked under control of the linker script libs.ld, located in the compiler’s
library directory tree. To modify the set of libraries used in this link step, simply create your
own file named libs.ld in your project’s working directory and specify the libraries you
need; since your working directory always appears first in the linker’s list of search
directories, this file will override the standard one in the compiler directory tree.

4.11 EST’s librom.a I/O subsystem

It’s sometimes necessary to interface to newlib at the level described in section 4.8.3.
However, for many embedded products, it’s possible to define a much simpler interface that
dramatically reduces the amount of work involved to write the hardware-specific driver code.
This is the role fulfilled by librom.

librom implement the following features:

• Two versions of I/O driver: buffered (interrupt-driven) and non-buffered (polled I/O)

• Any number of named devices may be defined

• Devices may be opened by calling fopen() with user-defined device name

• Input routines support backspace processing for line editing on character entry

• Character echo on input

• Input translation of carriage returns to newlines

• Output drivers support translation of newlines to CR/LF sequence

• All editing and translation features may be enabled/disabled at run time through simple
I/O control function call

• User-defined ‘idle’ function may be called when waiting for input characters or output
buffer space

The following additional features are implemented in the buffered (interrupt-driven)
implementation of the library:

Page 92 Embedded Development with Gnu CC

Embedded Support Tools Corporation

• Function calls available to get number of characters waiting in input and output buffers

• User-defined function can be called by the interrupt service routine upon receipt of
characters, or when the output buffer is emptied

Despite this wealth of features, it is very simple to implement this library on your custom
hardware. The MC68332 driver in the EXAMPLE subdirectory implements interrupt-driven
serial I/O on the SCI serial port with only 26 lines of C code in two functions.

A pre-built linker archive named librom.a is installed with the XGCC tools; it contains all
the functions that provide the interface between newlib and your hardware driver routines.
You must write and link an object file containing the hardware-specific driver functions that
are called by the routines in librom.a and by newlib.

4.11.1 librom implementation of newlib support functions

Following is a summary description of how librom implements each support routine required
by newlib.

Function/variable librom implementation

void _exit (int result) Typically implemented as an endless loop, or a
debugger ‘trap’ instruction, since there is no host
operating system to which we can exit.

int close (int fd) Implemented.

char **environ Null pointer

int execve(char *name,
char **argv, char
**env)

errno=ENOMEM;
return -1;

librom only implements one ‘process’: the
application program.

int fork (void) errno=EAGAIN;
return -1;

librom only implements one ‘process’: the
application program.

int fstat(int file, errno = EIO;

Embedded Essentials Page 93

http://www.estc.com

struct stat *st) return 0;

librom does not implement a file system, so this
function is not supported.

int getpid (void) return 1;

librom only implements one ‘process’: the
application program.

int isatty (int fd) return 1;

As far as librom is concerned, everything is a
terminal device.

int kill (int pid, int
sig)

errno = EINVAL;
return –1;

librom only implements one ‘process’: the
application program.

int link (char *old,
char *new)

Errno = EMLINK;
return –1;

librom does not implement a true file system, so
this function is not supported.

int lseek (int fd, int
ptr, int dir)

return 0;

librom does not implement a file system, so this
function is a no-op.

int read (int fd, char
*ptr, int len)

Implemented.

caddr_t sbrk (int incr) Implemented.

int stat (char *file,
struct stat *st)

st->st_mode = 0;
return 0;

librom does not implement a file system, so this
function is not supported.

int times (struct tms return –1;

Page 94 Embedded Development with Gnu CC

Embedded Support Tools Corporation

*tbuff)

int unlink (char
*filename)

Errno = ENOENT;
return –1;

librom does not implement a file system, so this
function is not supported.

int wait (int *status) errno = ECHILD;
return –1;

librom only implements one ‘process’: the
application program.

int write (int file,
char *ptr, int len)

Implemented.

Table 4.7: librom’s implementation of the newlib support functions

4.11.2 Implementing stream I/O with librom

Librom uses a data structure called the I/O device table to keep track of the I/O devices that
are available to newlib. Each entry in the table represents an individual I/O device. Any
number of devices may be implemented in the table, with a null entry to mark the end of the
table. Each device has a name associated with it, which is stored as a character string
referenced by the Name field of the table entry. This allows your application code to access
each device by name, using the open() and fopen() library functions.

Five functions are used to control each device: open(), close(), read(), write(),
and devicecontrol().Each entry in the I/O device table contains a pointer to the
open(), close(), read(), write(), and devicecontrol() function for that
device.

The I/O device table allows librom to support multiple, named devices in your embedded
system, but it doesn’t necessarily make it easier to write the code that controls those devices.
To tackle that issue, librom also contains driver code to implement input/output control of
two classes of stream I/O device, which we refer to as Non-buffered (polled) devices and
Buffered (interrupt-driven) devices. In other words, librom contains a set of functions that
you can point to in your I/O device entries to implement either polled or interrupt-driven I/O
on a particular device. These functions translate the function call interface required by newlib

Embedded Essentials Page 95

http://www.estc.com

into another, much simpler interface that is quite easy to implement for most peripheral
systems in common use on current microprocessors. They also implement several handy
features such as line editing, character translation, and character buffering, which are not
addressed in newlib.

In order to use these functions, a second data structure is required for each device. This data
structure points to a small set of functions that implement the hardware-level interface to your
target system. In the case of a device using Buffered I/O, it also points to a set of FIFO
buffers that are used to transfer characters to and from the device under DMA or interrupt
control. Two data types are defined in the librom header files, tNonBufferedDevice and
tBufferedDevice, to represent non-buffered and buffered devices respectively. The address of
the device’s data structure should be stored in the DeviceInfo field of the I/O device table
entry.

4.11.3 The DeviceControl() function call

DeviceControl() allows access to several features of the librom driver library which do
not fit into the standard C library’s ‘stream I/O’ model. It is similar in concept to the Unix
system call ioctl(), although much simpler and less capable. DeviceControl() has
the following capabilities:

• Installs user alert functions to be called when data is received or the transmit buffer is
emptied (Buffered devices only)

• Allows setting and querying the flags for a device, controlling character translation, line
editing, etc

• Allows the application code to determine how many characters are stored in a device’s
input or output buffer

• A range of user-defined function codes is available for user-written driver routines.

The devicecontrol() function is defined in the header file sys/IODctrl.h as shown
below:

long DriverControl (int filedes, int function,
...);

Page 96 Embedded Development with Gnu CC

Embedded Support Tools Corporation

The filedes parameter refers to a file descriptor returned from the open() function call.
If a device was opened with fopen() instead, then the newlib function fileno() will
return the file descriptor.

Although the function returns a long, the actual value returned is interpreted differently
depending upon the function code passed in the function parameter. The function parameter
tells DeviceControl() which operation should be performed. Table 4.8 lists the various
actions performed by DeviceControl().

Function code Description

IODFN_GETFLAGS Returns the flags for the device. Device flags are
documented in Table 4.9.

IODFN_SETFLAGS This call requires an additional parameter after the function
code, an integer containing the new flags to be assigned to
the device. Device flags are documented in Table 4.9.

IODFN_SETALERT This call sets an alert function that is called when data
received on the device’s input channel. This call requires an
additional parameter after the function code, a function
pointer defined as follows:

void (*DataReceived) (struct
sBufferedDevice *Device);

The function will only be called if the device uses Buffered
I/O; the non-buffered drivers do not implement any alert
functions.

The return value of this call is the old value of the alert
function that was stored in the device’s descriptor table.

IODFN_SETEMPTY This call sets an alert function that is called when the
transmit buffer is emptied on the device’s output channel.
This call requires an additional parameter after the function
code, a function pointer defined as follows:

Void (*TXEmpty) (struct
sBufferedDevice *Device);

The function will only be called if the device uses Buffered

Embedded Essentials Page 97

http://www.estc.com

I/O; the non-buffered drivers do not implement any alert
functions.

The return value of this call is the old value of the alert
function that was stored in the device’s descriptor table.

IODFN_GETAVAIL This call returns the number of characters in the device’s
receive buffer which are waiting to be read. This buffer is
independent of any buffering which may be performed by
newlib; see the documentation on setvbuf() for more
information on newlib’s buffering. If this function is not
implemented by the device, the value –1 is returned.

On a non-buffered device, this function can only return the
values zero (no characters waiting) or one (at least one
character is available).

IODFN_GETBUFF This call returns the amount of space available in the
device’s transmit buffer. This buffer is independent of any
buffering which may be performed by newlib; see the
documentation on setvbuf() for more information on
newlib’s buffering. If this function is not implemented by
the device, the value –1 is returned.

On a non-buffered device, this function can only return the
values zero (no space available) or one (there is room for at
least one more character).

IODFN_SETUSER This call sets a user parameter into the device’s descriptor,
returning the old value of the user parameter. The user
parameter is a pointer of type void *. This value is not
used by the device driver in any way, it is there simply for
use by the user’s application code. This function is only
implemented on buffered I/O devices.

IODFN_USER This is the first value of a range of function codes that are
allocated for use by user-written drivers. Any function code
with this value or higher may be implemented by user
drivers without interfering with driver code from EST

Page 98 Embedded Development with Gnu CC

Embedded Support Tools Corporation

Table 4.8: Actions implemented in the DeviceControl() function

A number of flags are maintained for each device, which control various options on the
device. These flags may be set using the IODFN_SETFLAGS subfunction of
DeviceControl(), and retrieved using the IODFN_GETFLAGS subfunction. Table 4.9
documents the function of each flag.

Flag name Function

IODF_CRIN Setting this flag enables translation of carriage returns to
linefeed characters on the device’s receiver. If the flag is
cleared, no such translation is performed.

IODF_NLOUT Setting this flag enables translation of linefeed characters to
the string CR/LF (carriage return followed by a line feed) on
the device’s transmitter.

IODF_EDIT Setting this flag enables line-editing features on the device’s
receive side. When used with the IODF_ECHO flags, this
facilitates the use of fgets() to provide interactive entry of
lines of text with simple editing features such as backspace
processing. The specific operations supported are:

• If a carriage return character is encountered during a call
to read(), the function will return immediately with
any characters received from the device up to the carriage
return.

• If a backspace character is encountered and one or more
characters have been read from the device, the preceeding
character will be removed from the buffer and the erase
sequence “\b \b” (backspace, space, backspace) will be
echoed to the device’s transmitter if character echo is
enabled. If there are no previous characters in the buffer
when the backspace is encountered, then no action will be
taken. In either case, the backspace character is not
returned from the call to read().

IODF_ECHO This flag enables automatic echo of characters from the

Embedded Essentials Page 99

http://www.estc.com

device’s receiver to its transmitter during the call to read().

Table 4.9: Device flags

4.11.4 Writing a non-buffered driver

Application Code

newlib

newlib interface code

Unbuffered driver code

(NBopen, NBclose,
NBread, NBwrite,
NBdrivercontrol)

librom

I/O Device
Table

*Name
*Flags
*open
*close
*read
*write
*drivercontrol
*DeviceInfo

Non-Buffered
Device Descriptor

*DataAvailable
*TXReady
*InByte
*OutByte
*DeviceInfo

int

libtrgt

Driver Code
DataAvailable()
TXReady()
InByte()
OutByte()

“device1”

[Device-specific info]

Figure 4.1: Non-buffered I/O device implementation

A non-buffered (polled I/O) driver needs four functions defined: InByte(), OutByte(),
DataAvailable(), and TxReady(). Each function is described in the following
subsections.

The actual name of the function is not important, since each function will be addressed by a
pointer in a data structure, rather than by its name. What is important however, is that the

Page 100 Embedded Development with Gnu CC

Embedded Support Tools Corporation

function must match the prototypes listed here, and must operate in the manner described.
The data structure that stores the pointers to these functions, of type
tNonBufferedDevice, is described in section 4.11.4.5.

4.11.4.1 InByte ()

int InByte (tIODev *Device);

InByte() reads the next available character from the device. The function should poll the
hardware until a character is available, calling IODeviceIdle() until a character is ready
and then returning its value.

4.11.4.2 OutByte ()

void OutByte (tIODev *Device, int Char);

OutByte() writes the next character Char to the device. The function should poll the
hardware, calling IODeviceIdle()until the device is ready to accept the character.

4.11.4.3 DataAvailable ()

int (*DataAvailable) (tIODev *Device);

DataAvailable() returns a flag indicating whether a character is ready to be read from
the device. The function should return a non-zero value if data is available to be read,
otherwise it should return zero.

4.11.4.4 TxReady ()

int (*TxReady) (tIODev *Device);

TxReady() returns a flag indicating whether the device is ready to send another character.
The function should return a non-zero value if the device is ready, otherwise it should return
zero.

4.11.4.5 The tNonBufferedDevice structure

In order to make your driver functions accessible to librom, you must declare a variable of
type tNonBufferedDevice and initialize the variable to point to the InByte(),

Embedded Essentials Page 101

http://www.estc.com

OutByte(), DataAvailable(), and TxReady() functions which control the device.
The definition of tNonBufferedDevice looks like this:

typedef struct sNonBufferedDevice
{

int (*DataAvailable) (tIODev *Device);
int (*TXReady) (tIODev *Device);
int (*InByte) (tIODev *Device);
void (*OutByte) (tIODev *Device, int Char);
void *DeviceInfo;

} tNonBufferedDevice;

Variables of type tNonBufferedDevice may be declared const, to conserve RAM
space by placing them in read-only memory.

As shown above, tNonBufferedDevice is basically made up of pointers to your driver
functions. There is one structure member, DeviceInfo, which is available for use by your
driver routines; it is not used by the librom functions. This may be used (for example) to store
a pointer to the hardware registers for the device.

If your device does not implement a particular function, for example it can receive data but
not transmit, then you should place a null pointer in the structure member associated with the
unimplemented function so that the librom functions will return an error to the application if
it tries to access the unimplemented functionality.

4.11.4.6 Example Non-buffered driver

The file NBio555.c in the EXAMPLE subdirectory implements non-buffered I/O for the
dual SCI ports on the Motorola MPC555. Since the SCI ports implement an identical set of
hardware registers, a single set of driver functions was defined for both ports, and the
DeviceInfo field of each tNonBufferedDevice structure was used to store a pointer
to the first hardware register of each SCI port.

Page 102 Embedded Development with Gnu CC

Embedded Support Tools Corporation

Application Code

newlib

newlib interface code

Buffered driver code

(Bopen, Bclose, Bread,
Bwrite, Bdrivercontrol)

librom

I/O Device
Table

*Name
*Flags
*open
*close
*read
*write
*drivercontrol
*DeviceInfo

Buffered Device
Descriptor

TransmitFIFO
ReceiveFIFO
ReferenceCount
*StartSend
*Enable
*DataReceived
*TXEmpty
*AppInfo
*DeviceInfo

int libtrgt

Driver Code
StartSend()
Enable()
[plus interrupt
handler]

“device2”

[Device-specific info]

FIFO Buffers

FIFO Buffers

Figure 4.2: Buffered I/O device implementation

4.11.5 Writing a buffered driver

Buffered drivers use a similar structure to that employed by non-buffered drivers – a set of
functions which control the device are addressed by a data structure of function pointers. We
recommend that you read section 4.11.4 before diving into this one. However, there are some
differences in the operation of buffered drivers, due to the inherent requirements and
capabilities of interrupt- or DMA-driven transfers.

Buffered devices are structured under the assumption that data will be transmitted and
received under control of some kind of background process; in most systems, this is usually
an interrupt handler routine or a DMA controller. As such, they do not define functions to
send and receive characters to/from the device; rather, two FIFO (first-in first-out) buffers are

Embedded Essentials Page 103

http://www.estc.com

defined, one for transmit and one for receive, and all data transfers happen through these
FIFO buffers.

To transmit data, the upper-level routines in librom will move data into the transmit FIFO and
then call the device’s StartSend() function, whose purpose is to initiate data transmission
within the device (ie enable the transmitter interrupt, set up the transmit DMA, etc).

Whenever data is available, triggering a receive interrupt or DMA transfer, the DMA
controller or interrupt handler should write data into the receive FIFO. When a call is made to
the librom’s read() function by the foreground application code, in order to read data from
the device, librom will remove the data from the driver’s receive FIFO and place it in the
location requested by the application, polling the FIFO in a loop if necessary in order to get
the requested number of bytes.

4.11.5.1 The tBufferedDevice structure

In order to make your driver functions accessible to librom, you must declare a variable of
type tBufferedDevice and initialize the variable to point to the functions that control the
device. Unlike tNonBufferedDevice, variables of type tBufferedDevice must be
located in RAM since several of the structure members are modified during execution.

The definition of tBufferedDevice looks like this:

typedef struct sBufferedDevice
{

tFIFO TransmitFIFO;
tFIFO ReceiveFIFO;
void (*StartSend) (struct sBufferedDevice

*Device);
int (*Enable) (int NewState);
int ReferenceCount;
void (*DataReceived) (struct sBufferedDevice

*Device);
void (*TXEmpty) (struct sBufferedDevice

*Device);
void *DeviceInfo;
void *AppInfo;

} tBufferedDevice;

Page 104 Embedded Development with Gnu CC

Embedded Support Tools Corporation

If your device does not implement a particular function, for example it can receive data but
not transmit, then you should place a null pointer in the structure member associated with the
unimplemented function so that the librom functions will return an error to the application if
it tries to access the unimplemented functionality.

4.11.5.2 Enable ()

int (*Enable) (int NewState);

Enable() is called both to initialize the device before it is used, and to de-initialize (shut
down) the device when it is no longer needed by the application.

The first time the application code makes a call to open() referencing a buffered device, the
device’s enable() function will be called with a non-zero value in NewState. Likewise,
when all file descriptors referencing the device are closed, librom will call the device’s
Enable() function with NewState equal to zero. The Enable() function should test
NewState, initializing the device if it is non-zero and disabling the device otherwise.

4.11.5.3 ReferenceCount

ReferenceCount is a counter used by librom to keep track of how many open file
descriptors are attached to the device. Normally your device driver functions will not need to
do anything with ReferenceCount. However, if you define a buffered device which is
automatically opened and enabled upon power-up, you should set the ReferenceCount
member to the number of file descriptors which are attached to this device, since there will be
no call to Enable() to set it for you.

The most common case where this is necessary is when a console device is defined and
attached to stdin, stdout, and stderr. In this case, the device is ‘live’ when the system
starts executing main(), and the stdin/stdout/stderr file descriptors are already open
and attached to this device. In this case, the reference count should be set to 3.

4.11.5.4 StartSend ()

void (*StartSend) (struct sBufferedDevice *Device);

StartSend is called by librom when it writes data to the device’s transmit FIFO. This function
should enable the transmitter interrupt, set up the transmitter’s DMA controller, or do
whatever else is necessary to start transmitting characters from the transmit FIFO.

Embedded Essentials Page 105

http://www.estc.com

4.11.5.5 Application alert functions

There are two function pointers in the tBufferedDevice data type which point to functions in
the application code, rather than in the driver code. These function pointers permit the
driver’s interrupt handler to notify or ‘alert’ the application code when an event occurs in the
driver. Two events may be handled in this way: the reception of a character on the device’s
receiver, and the emptying of the device’s transmit FIFO. The function pointers may be set
and retrieved by the application code through the DeviceControl() library function.

4.11.5.5.1 DataRecieved()

void (*DataReceived) (tBufferedDevice *Device);

This function will be called each time a character is received by the device. The function call
is made from within the device’s interrupt handler, so it is important that the function execute
quickly in order not to impact on the performance of the product. Also, it’s important not to
call any C runtime library functions from within the DataReceived() handler, since most of
them are not reentrant and will likely crash if called from within an interrupt handler.

4.11.5.5.2 TxReady()

void (*DataReceived) (tBufferedDevice *Device);

This function will be called whenever the last character is removed from the transmit FIFO
by the device’s interrupt handler. Similar to DataReceived() above, this function must
execute quickly and must not call any C runtime library functions.

4.11.5.6 The interrupt handler(s)

The interrupt handler must contain code to recognize both the ‘Data received’ and ‘TX
empty’ conditions, and call the appropriate function via the DataReceived/TxReady pointers
in the tBufferedDevice descriptor. Remember that the programmer may choose not to define
alert functions; if this is the case, then the associated function pointer will be null. The
interrupt handler will have to check the value of the pointer and only call the function if a
non-null pointer is found.

Page 106 Embedded Development with Gnu CC

Embedded Support Tools Corporation

4.11.5.7 tBufferedDevice’s transmit and receive FIFOs

The tBufferedDevice structure contains two members of type tFIFO, named
TransmitFIFO and ReceiveFIFO. These FIFOs are used to store data being transmitted
to and received from the I/O device.

The data type tFIFO implements a circular buffer that operates in a first-in, first-out manner.
The data type is defined in the header file sys/tFIFO.h. A tFIFO structure contains a
pointer to the FIFO’s data buffer, an integer recording the size of the buffer, and ‘in’ and
‘out’ counters recording the current write and read position, respectively, in the buffer.

Several utility functions are available in librom to read and write data from/to a tFIFO.
These functions are documented in the following subsections.

4.11.5.7.1 FIFOgetc()

static inline int FIFOgetc (tFIFO *FIFO, char
*Dest);

This function gets the next character available in the addressed FIFO, and writes it to location
*Dest, updating the FIFO’s read counter.

If the operation was successful, the function returns a non-zero value; if there was no
character available, the function returns zero.

4.11.5.7.2 FIFOputc()

static inline int FIFOputc (tFIFO *FIFO, char c);

FIFOputc() writes the character c to the addressed FIFO, and returns a non-zero value if
the write was successful. If the FIFO was full when the write was attempted, the function will
return zero.

4.11.5.7.3 ReadFIFO()

int ReadFIFO (tFIFO *FIFO, int Max, char *Dest);

ReadFIFO() reads up to Max bytes from the addressed FIFO, writing them to the buffer
addressed by Dest. The return value is the actual number of bytes that were read from the
FIFO, which will have a value in the range of zero through Max.

Embedded Essentials Page 107

http://www.estc.com

4.11.5.7.4 WriteFIFO()

int WriteFIFO (tFIFO *FIFO, int Max, char *Source);

WriteFIFO() transfers up to Max bytes of data from the buffer addressed by Source into
the addressed FIFO. The return value is the actual number of bytes transferred, which will be
a value in the range of zero through Max. If the return value is less than Max, then it indicates
that the FIFO became full during the call to WriteFIFO ().

4.11.5.8 Example Buffered I/O driver

The file 332-io.c in the EXAMPLES subdirectory implements buffered I/O on the SCI port
of the Motorola MC68332.

4.11.6 Implementing the I/O device table

To complete the I/O driver, one more piece of information must be provided to librom: a
table that relates device names to the tBufferedDevice or tNonBufferedDevice
structure representing the device, and to the top-level librom driver functions which control
them. To do this, define an array of type tIODev with the name IODevices. The array
should have one entry for each device, and one more null entry (all zeros) at the end to mark
the end of the table.

The data type tIODev is defined in the header file sys/IODev.h. The definition looks
like this:

typedef struct sIODev
{

char *Name;
int *Flags;
int (*open) (struct sIODev *Device, int

filedes, int flags, va_list args);
int (*close) (struct sIODev *Device, int

filedes);
int (*read) (struct sIODev *Device, int

filedes, void *_buf, size_t _nbyte);
int (*write) (struct sIODev *Device, int

filedes, const void *_buf, size_t _nbyte);
long (*drivercontrol) (struct sIODev *Device,

Page 108 Embedded Development with Gnu CC

Embedded Support Tools Corporation

int filedes, int function, va_list args);
void *DeviceInfo;

} tIODev;

This data type is also largely made up of pointers to functions.You are required to define only
the Flags member, which defines the options active on the device, and the DeviceInfo
member, which should contain the address of the tNonBufferedDevice or
tBufferedDevice structure which defines your device. librom has two sets of functions,
one for buffered devices and one for non-buffered devices, which should be referenced in the
other members. If your device does not implement a particular function, for example it can
receive data but not transmit, then you should place a null pointer in the structure member
associated with the unimplemented function so that the librom functions will return an error
to the application if it tries to access the unimplemented functionality.

Structure member Buffered function Non-buffered function

open() Bopen() NBopen()

close() Bclose() NBclose()

read() Bread() NBread()

write() Bwrite() NBwrite()

drivercontrol() Bdrivercontrol() NBdrivercontrol()

Table 4.10: Buffered and Non-buffered functions for the I/O device table entries

Here is an example of a definition of IODevices, taken from the MC68332 buffered driver:

tIODev IODevices [] = {
{"console", &ConsoleFlags, Bopen, Bclose, Bread,
Bwrite, Bdrivercontrol, &Console},
{0}
};

In this example we define a table containing a single device called “console”. It is a buffered
device, so it references the Bxxx functions from librom. The DeviceInfo member points
to a structure of type tBufferedDevice, called Console.

Here’s another example, this time the non-buffered driver from NBio555.c.

Embedded Essentials Page 109

http://www.estc.com

tIODev IODevices [] =
{
{

"SCI1",
&SCI1flags,
0,
0,
NBread,
NBwrite,
NBdrivercontrol,
&nbSCI1

},
{

"SCI2",
&SCI2flags,
0,
0,
NBread,
NBwrite,
NBdrivercontrol,
&nbSCI2

},
{0}
};

In this example, the table defines two devices, one called SCI1 and the other called SCI2.
Both are non-buffered devices, so they reference the NBxxx functions from librom. They
each reference a tNonBufferedDevice structure in their respective DeviceInfo
fields. We have defined routines to read and write data from/to these devices, but no
functions are available to determine if data is available from the receiver or whether the
transmitter is ready, so we put null pointers in the DataAvailable and TxReady fields.

4.11.7 Building and linking application programs with librom

When you have written your driver functions, they should be compiled and linked with the
other source files that make up your program. In the example below, we will compile an

Page 110 Embedded Development with Gnu CC

Embedded Support Tools Corporation

application program hello.elf, using the file 332-io.c to provide the necessary I/O
drivers:

C:\XGCC\EXAMPLE> gcc –b m68k-elf –O2 –g hello.c
332-io.c –o hello.elf –wl,--defsym,__ram_size=24k,-
-defsym,__stack_size=4k –T ram.ld

Wrapping Up Page 111

http://www.estc.com

5 Wrapping Up

We hope that you will find the gnu tools presented here to be as useful and productive as we
have. One of the most important factors in using these tools is networking with other users. In
this section we would like to present some of the resources that we have found to be useful in
achieving this end.

5.1 Additional resources

5.1.1 Web sites

• The EST home page:
http://www.estc.com

• The CrossGCC Frequently-Asked Questions (FAQ) web page:
http://www.objsw.com/CrossGCC
This document discusses how to build cross-compilers using Gnu CC.

• PowerPC SVR4 function calling conventions:
http://www.esofta.com/pdfs/SVR4abippc.pdf

• PowerPC Embedded Application Binary Interface:
http://www.esofta.com/pdfs/ppceabi.pdf or
http://www.mot.com/SPS/ADC/pps/download/8XX/ppceabi.pdf

Page 112 Embedded Development with Gnu CC

Embedded Support Tools Corporation

• Coldfire developers will find the Wildrice web site to be a valuable resource and
jumping-off point to other resources on the web:
http://www.WildRice.com/ColdFire/

• Another excellent ColdFire resource is David Fiddes’ site. David has also done a port of
the Gnu tools to Win32, hosted on cygwin, and among other things has provided runtime
libraries for the Motorola ColdFire evaluation boards.
http://www.users.surfaid.org/~fiddes/coldfire/

• If you are interested in using the Standard Template Library in your C++ programs, this
page has some good links:
http://www.cyberport.com/~tangent/programming/stl/resources.html

• Tools for manipulating S-record files (in order to program EPROMs, embed S-record
information in C source, and other handy stuff) may be found here:
http://www.tip.net.au/~millerp/srecord.html

5.1.2 Mailing lists

• The crossgcc mailing list discusses issues relating to the use of the Gnu tools as cross-
compilers, with special emphasis on targeting embedded systems. Subscribe to this list by
sending an empty e-mail to crossgcc-subscribe@sourceware.cygnus.com. Messages are
posted to the list by sending them to crossgcc@sourceware.cygnus.com.

• There is an excellent mailing list dedicated to the Motorola Coldfire architecture. You
can subscribe to it by sending an e-mail to requests@WildRice.com with the text
“subscribe ColdFire” in the body of the message; no subject is required. Leave out the
double quotes as well, just type the words in the body of the message. To post messages
to the list, send mail to ColdFire@WildRice.com.

5.1.3 Newsgroups

• comp.sys.m68k

• comp.sys.powerpc

• comp.sys.powerpc.tech

Index Page 113

http://www.estc.com

6 Index

#

39

%

% 40

%a0.. 40

.

. 46

.bss... 44

.d 51

.data ... 44

.S 60

.text .. 44

;

; 39, 46

@

@ 39

_

__attribute__((interrupt))73

__INT_MAX__......................................60

__MRTD__..60

__ram_size ...48

__ram_start ..48

__rom_size...48

__rom_start ..48

__unhandled_exception70

__unhandled_exception_pc....................70

__vector_default70

__vector_xxx reserved names

68k ...74

PowerPC ..77

Page 114 Embedded Development with Gnu CC

Embedded Support Tools Corporation

_etext ... 46

|

| 39

1

16-bit ints... 60

6

68k-as.exe 23

68k-ld.exe 23

A

-a 37

a6 58

alert functions 105

alignment ... 45

ar 12

asm() ... 62

assembler ... 39

Assembler

Comments ... 39

Assembler Directives............................. 40

Assembler Options 37

Assembling via gcc................................ 38

assembly language functions................. 58

Assembly source file 26

Author ..1

B

b 40

-b <name> ..26

Big-endian..88

binary utilities ..12

block comments39

BLOCK() ...45

bss ..64

Buffered and unbuffered functions108

Buffered I/O driver102, 107

BUILD_FILE_TYPE.............................52

BYTE() ..47

C

-c 32

calling convention..................................60

Calling convention58

CD-ROM

Contents ...11

Installation ...14

command line...................................16, 23

command line options23

comparision of signed and unsigned
values...35

Index Page 115

http://www.estc.com

configuration name................................ 23

Copyright... 2

CREATE_ASM_LISTING 54

CREATE_MAPFILE 54

crt0... 48, 64

crt0.h.. 65, 70

crt0.o.. 64

crt0.S.. 64

crt0_flags ... 42

ctype.h ... 83

current memory address 46

D

-D<name>.. 34

DataAvailable () 100

DataRecieved() 105

date stamps .. 48

datestamp... 49

debug info.. 31

DEBUGGING 53

default exception handler 64

default values for symbols..................... 42

Define a macro 34

Defining symbols................................... 46

Defining variables 50

--defsym <name>=<value>....................38

dependancies ..49

Dependancy Files...................................51

dependency files.....................................33

DeviceInfo..108

diagnose compilation or linking problems,
...35

directories for include files33

directories for library files36

Disclaimer ..2

Disk Space ...14

documentation in HTML13

E

EABI ..60

Enable ()...104

environment variables............................15

Environment variables16

Escapes in character strings40

exception handlers73

EXTRA_ASFLAGS54

EXTRA_CFLAGS.................................54

EXTRA_LDFLAGS54

F

-f <makefile> ...51

Page 116 Embedded Development with Gnu CC

Embedded Support Tools Corporation

FIFOgetc() ... 106

FIFOputc()... 106

FIFOs... 106

filename extensions that are recognized by
gcc ... 25

filename(sectionname) 43

Flags .. 108

frame pointer 58, 61

Free Software Foundation 9

free software, definition of 10

function parameters 60

G

-g 31, 53

gdb ... 31

Gnu Make .. 48

Gnu project, the 9

GROUP()... 41

H

hardware_init_hook () 69

hex/ASCII file 15

HTML.. 13

I

-I 33, 37

-I-33

I/O device table94, 107

Implicit type declarations.......................35

InByte () ...100

include...52

include directories..................................53

include files......................................33, 53

INCLUDEDIRS.....................................53

initialization of data RAM from a ROM
image ...48

Initialization records65

Initializing peripherals41, 64

Inline assembly language62

INPUT() ...41

interrupt..73

interrupt handler(s)...............................105

iostream..13

L

-L<dirname> ..36

-l<libname>..36

LDLIBS..54

LDSCRIPT...53

legacy code...35

Liability..2

LIBDIRS..53, 54

libgcc.a ...82

Index Page 117

http://www.estc.com

Libraries... 41

libraries used in multiple projects.......... 36

library directories....................... 36, 53, 86

Library directories 41

Library file... 26

library files 36, 53

library search path 36

line comments.. 39

line continuation 40

linker command line 36

Linker Directives 41

linker script.. 36

linker scripts .. 47

Linker scripts ... 40

Linking via gcc 38

Little-endian .. 88

LOADLIBES... 54

Local symbols.. 40

locale.h .. 84

LONG() ... 47

M

-m<cpu> .. 27

-m5200... 28, 87

-m68000... 28, 87

-m68020 ...28

-m68020-040..28

-m68030 ...28

-m68040 ...28

-m68060 ...28, 87

macros ..26

Make ..48

command line50

makefile ...33

Makefile ...48

Makefile template52

-Map <filename>38

math functions, single-precision84

math.h...83, 84

-mbig ..29

–mbig-endian ...29

-mcall-aix..88

-mcpu=xxx ...29

-mcpu32 ...28, 87

memory map36, 42

-mhard-float28, 29

Minimum System Requirements............14

-mlittle..29

–mlittle-endian29

-MMD ..33

Page 118 Embedded Development with Gnu CC

Embedded Support Tools Corporation

-mrtd .. 28, 88

–mrtd ... 59

-mshort....................................... 28, 60, 88

-msoft-float 28, 29, 88

-mtune=xxx ... 29

multilib .. 86

library directory names 87

N

n 40

–n51

NDEBUG .. 34

Nested comments................................... 35

newlib .. 12, 82

functions provided by........................ 82

license.. 13

Support functions 85

nm.. 12

non-buffered driver................................ 99

O

-O<n> .. 30, 31

-O2... 53

–O2 .. 30

objcopy .. 12

objdump... 12

Object file...26

optimization ...30

Optimization

debugging and....................................31

specifying on command line..............30

OPTIMIZATION...................................53

optimized..62

OutByte () ..100

OUTPUT_ARCH()41

Outputting an assembly language file....32

Outputting an object file32

P

Passing options to the assembler............37

Passing options to the linker37

PowerPC EABI60

ppc-as.exe..23

ppc-ld.exe..23

preprocess assembly language programs59

preprocessor ...26

printf()

checking format strings35

integer-only..84

Processor ..14

PROJECTNAME...................................52

Index Page 119

http://www.estc.com

PROVIDE() ... 42

Publisher .. 1

R

r 40

RAM.. 14

ram.ld... 47, 53, 65

RAM_SIZE.. 53

RAM_START 53

ranlib.. 12

ReadFIFO().. 106

ReferenceCount 104

Register names....................................... 40

Register usage.. 61

Register Usage....................................... 59

Revision... 2

ROM image of initialized data 64

rom.ld .. 47, 53, 65

ROM_SIZE.. 53

ROM_START 53

run-time libraries 41

S

-S 32

sBufferedDevice 103

SEARCH_DIR().................................... 41

section

placing arbitrary data47

Section alignment...................................45

SECTIONS directive43

setup program...14

setup.exe ..14

SHORT()..47

signal.h ...83

single contiguous block of RAM47

single-precision math functions84

sIODev ...107

size ...12

sNonBufferedDevice............................101

software_init_hook()..............................70

SOURCEDIR...53

SOURCEFILES52

Stack cleanup ...59

stack frame pointer...........................58, 61

Stack management61

stack space allocated by function
parameters..60

Standard Template Library12

start address..45

StartSend () ..104

Statements ..39

Page 120 Embedded Development with Gnu CC

Embedded Support Tools Corporation

stdarg.h .. 84

stdio.h .. 83

stdlib.h ... 83

STL.. 12

stream I/O .. 94

string.h... 83

strings .. 12

strip.. 12

STWU.. 62

T

-t 38

-T <filename>.. 36

Target configurations............................. 26

Target identifiers 26

TARGET_MACH 53

TARGET_NAME.................................. 52

TARGET_OPTS 53

tBufferedDevice 103, 108

time.h... 84

tIODev ... 107

tNonBufferedDevice100, 108

TxReady () ...100

TxReady() ..105

U

-u <symbol>...38

V

-v 35

vararg.h ..84

Verbose mode ..35

W

–W..35

-W <filename>.......................................51

-Wa...37

-Wall ..35

warning messages35

Warranty ..2

-Wl ...37

WriteFIFO() ...107

