File: CBUG.DOK

CBUG - User Manual

Release 3.0
Matthias Wille
29 September 1986

The Monitor CBUG presented in this paper serves as a low-level debugging aid for the workstation
Ceres (Computing Engine for Research Engineering and Sience). Ceres is based on the N532032
processor and has been developped at the Institut fiir Informatik of ETH. The Ceres hardware is
described in [HE]

CBUG is a tool that enables the user to change and display all CPU registers and gives read/write
access to the whole address space. The whole chipset comprising the CPU, FPU and MMU is
supported by CBUG. The monitor provides a downloading facility to load programs directly into
Ceres' memory. Three datatypes are provided, namely byte, word and doubleword. The commands to
display and change information in the registers and the memory may be parametrized by these types.
A set of fundamental routines dealing with serial and parallel 170 is provided for the user. The
following sections describe the commands and the interface of the monitor in detail.

1. Machine Configuration

CBUG works together with the program NServer (see appendix A) running on a Lilith. The NServer
serves both as a terminal and a program loader for the Ceres. The interface between the Ceres and the
Lilith consists of a RS232 serial interface and an optional 16 bit bidirectional parallel interface. The
serial interface is used both as terminal and to load programs while the parallel interface is used only

for downloading.

2. General Command Syntax
A command is generally of the following syntax.

Command = CommandCode [TypeSpecifier] [" " Parameter {",” Parameter}] [<CR>|]
| CommandCode [ImmediatePar].

CommandCode = "single letter".

TypeSpecifier ="B" | "W" | "D".

Parameter ="."

ImmediatePar = "single letter".

The type specifier immediately follows the command code. It denotes the type of the parameters or
operands. Note, that not all commands may be parametrized with a type. The parameters are
separated from the command code by a space. The parameters itself are separated by comma unless
defined otherwise or the second form of command is used. CBUG makes no distinction between
lowercase and uppercase letters.

2.1. Types
The philosophy of the types stoms from the fact that there are two different methods to store the
data on the Ceres. The first one is used for the registers while the second one applies onto data in the
memory .

OA| DA[12 |34 34 (12 | DA|OA

Register Memory

Both figures show the same 32-bit quantity with the value 0ADA1234H. The first denotation is the
one that a programmer thinks of when he writes his program. The most significant byte apears at
leftmost position and the least significant byte at the rightmost position. The memory
representation is exactly vice-versa. In order to avoid confusion when viewing at the same value in a
register and in memory, we propose the types byte, word and doubleword. If one wants to look for a
word the representation is the same in both cases. Thus it is quite easy to look e.g. at the dump of a
word oriented list or array. No byte swapping in mind is necessary because it is done by CBUG's
display routine.

34 (12 |DA [0A
Memory

34 | |12 | |DA| [0A
Byte

12 (34 0A |DA
Word

OA| DA|12 |34

Doubleword

As seen above converting of memory to different types is just a matter of the order of the bytes. Thus

kg,

the user is responsible to give a proper start address to produce meaningful output. Types may be
applied only on data in the memory. Registers are handled as a whole. Most of them are double
words except the MOD and PSR registers which are words.

2.2. Expressions and Registers

An expression is a term that yields an effective address to be used as parameter for a CBUG command.
The term may be either a hexadecimal value or a valid address expression of the NS32000. For
simplification we allow only the modes register relative, memory relative and absolute[NS]. We
propose this feature in order to avoid complex hexadecimal computations in mind or on paper when
debugging a program.

A register may be every CPU, FPU and MMU register as described in [NS]. In the CBUG all register
names longer than two characters are shortened as shown below.

NS CBUG
INTBASE IN - interrupt base register
SPO,SP1 S0, S1 - interrupt and user stack pointers

MOD MO - module descriptor

PSR PS - program status register

FSR FS - floating point status register (FPU)

EIA El - Error/Invalidate Address register (MMU)
MSR MS - MMU Status register (MMU)

PTBO,PTB1 PO, P1 - page table registers (MMU)

The general purpose registers are named RO.R7 and FO.F7. For indexing in expressions only the
registers RO.R7, PC, SB, FP, SO and S1 are allowed.

2.3. Data Representation

The CBUG monitor works with a virtual register file. It is a copy of the CPU registers at the time the
program was stopped. All changes of CPU registers refer to the virtual registers while FPU and MMU
registers are modified directly. Note, that when the coprocessors are not set in the configuration
register (DIP-switch on the CPU board) their registers are inaccessable. Memory inspections and
changes are made in the real memory. When a program is started again the virtual registers are copied
to the real ones before.

3. Command Description

3.1. Display data
The display command is used to display the contents of specified memory locations or registers. It
has the form
D [BIWID] fromexpression {":"toexpression} <CR> |
D register.
The parameters are separated from the command and the typespecifier by a space char. The first form
of the parameters displays a range of memory starting at 'fromexpression’ and ending at
'toexpression’. If the 'toexpression’ is omitted 16 bytes are shown. The memory is displayed according
to the type specifier. The second form shows the contents of a register.
Examples:
D RO displays the contents of RO
DW 5(R0O) displays the word pointed to by the
contents of RO incremented by the displacement 5
DB FFH:1FFH displays the bytes from the memory locations
FFH to 1FFH

The output of data may be stopped by pressing CTRL-S and restarted by pressing CTRL-Q. If a display
command should be aborted CTRL-X has to be issued.

3.2. Change Data

The change command is used to change the contents of specified memory locations or registers. It
has the form

C [BIWID] expression {, value} <CR> |
C register {, value <CR>}.

In the first form of the change command the contents of the location at the address yielded by
‘expression’ will be replaced by 'value'. If the second parameter is specified the contents of the
location is changed without showing the old contents of the location. If the second parameter is
omitted the old contents of the location is shown before a new value will be aquired. The new value
has then to be entered after typing a colon. The range of the value depends on the specified type. If
e.g. byte was specified only the LSB of the value will be used. When the new value is terminated with
a"," the next location can be changed according to the given type specifier. A "\" as terminator offers
the previous location to change. The <CR> returns control to the command mode, i.e. the next
command can be entered. The second form is used to change the contents of a register either with or
without showing the old contents.

Examples:
CRO display the contents of RO and change if wanted
cs1,0 sets the current user stackpointer to zero, without notice

on the old value
CW FF,DADA changes the word at address FF to the value DADA

3.3. Display Status
The status command will be invoked by typing
S

without <CR>. It displays the contents of all registers in the virtual register file and the type of the
last exception and were it took place.

34. Loading of Programs

In order to cross-test programs developped for Ceres on the Lilith a load command is provided. It uses
either the serial or the parallel interface to download programs into memory from the disk of the
Lilith. The transfer format is described in the appendix. The command is started by typing

A

| LS or LP
without a <CR>. The second letter is an immediate parameter and selects the serial ('S') or the parallel
("P") interface for transmission. The server program on the Lilith now waits for a file name to be
typed. The code has to be either on a REL file as produced by the assembler or on an ABS file generated
by the cross linker. The code is loaded starting at the addresses transmitted with the code. During the
transfer a check for transmission errors is performed. The transferred data contains the start address
of the program. This address is stored for a further call to the go command.

3.5. Running a program

The current version of CBUG supports two different kinds of programs namely assembler programs
and absolute linked Modula-2 programs. Both may be loaded using the load command mentioned
above. They are started using the go-command. It has the form

G {expression} <CR> or

GM.
For both variants the current virtual register file is copied to the processor registers and the control is
tranferred to the user program. In the first case either the transferred start address or the one
specified in the expression is used to set the PC before starting. In the second case an absolute linked
Modula-2 program is started by calling the initialization procedure of the main module of the
program, i.e. procedure 0 of the first module.

3.6. Stopping a program
A program running under CBUG may be stopped by software using flag or breakpoint traps. After the
program is stopped the contents of all registers is saved to the virtual register file. When the program
should be started again at the address where the abort has occured the resume command issued by
typing

R
can be used. It restores the saved registers and resumes the execution.

3.7. Exceptions

All possible exceptions on the NS are handled by CBUG although the handlers may be replaced by a
user program. On the occurence of a trap or interrupt CBUG saves all CPU registers and restores its
own former state. The user is informed about the type of the exception and the module and address
where it happened. If the address is within an absolute Modula-2 program it is displayed as a value
relative to the start of the modules code. All other addresses are displayed absolute.

3.8. Bootfiles
Assuming that the Ceres fixed disk contains a Medos-2 file system, CBUG provides two commands to
handle bootfiles. The commands allow for two bootfiles named PC.BootFile0 and PC.BootFile1 under
Medos-2. The first one has a length of 64KBytes and usually contains the Medos-2 operating system.
The second file has a length of 96KBytes and may be used either as a backup or for an experimental
operating system. The files start at fixed positions and occupy contiguous sectors. As a further
possibility to load programs on Ceres, CBUG allows to use the floppy as a boot medium. The
following table summarizes the possible files.
, Medium Name SectorSize
7[e fixed disk (normal)PC.BootFile016 64 KByte
™ fixed disk (alt) PCBootFile1144 96 KByte

floppy -—- 5 max. 358 KByte
The command to write boot files is quite similar to that which loads files into memory. It has the
form

WS or WP.

As in the load command the second immediate parameter selects the 170 interface which is used to
transmit the bootfile. Either the serial ('S’) or the parallel ('P') interface may be choosen. After
entering the command, CBUG asks for the destination of the bootfile by issueing the message

write boot file

<SP> = normal, <CTL-A> = alt, <CTL-B> = floppy.
The normal bootfile is PC.BootFile0, while alt means the alternate bootfile PC.BootFile1. After having
selected the bootfile the transmission starts. The transfer is finished by displaying a message
containing the number of blocks written onto the boot medium. A block consists of 512 bytes.
Booting a program is done using the boot command which is initiated by typing

B.
CBUG then asks for the source of the bootfileby writing

load file from

<SP> = normal, <CTL-A> = alt, <CTL-B> = floppy.

When the source is selected the bootfile is loaded and started immediately. Note, that a bootfile
must contain an absolute linked Modula-2 program.

Literature:
[HE] Eberle, Hans: The Personal Workstation Ceres, 1986, Institut fiir Informatik, ETH Ziirich
[NS] National Semiconductor Corp.: NS32000 Instruction Set Reference Manual, 1983, Publ.

No.420010099-001A

Appendix A

A. The Lilith Server Program

This section gives a rough description of the Lilith server program NServer. It provides a terminal to
the Ceres as well as a facility to load programs from the Lilith disk into the memory of Ceres. The
program maintains two windows namly 'dialog’ and 'Ceres-Terminal'. The latter is the screen of the
Ceres while the first one is used for dialogs on the Lilith and to display status information. The
NServer is always in one of the states 'undef, 'terminal’, 'load’ or 'bootload’. The current state is
designated by one of the letters 't','I' or 'b' displayed in inverted mode in the dialog window. A certain
state is entered from CBUG by sending an appropriate control code via the V24. The code is
acknowledged by NServer. The following paragraphs describe the states in detail.

A. Terminal Mode

In this mode the NServer behaves as a normal terminal, i.e. all keys pressed at the keyboard are sent
to the Ceres and all bytes received from the Ceres are displayed in the Ceres-Terminal window. The
receiving includes a flow control protocol using XOFF and XON to stop/start the Ceres sender. This
feature is needed because of the limited speed of the Lilith especially when scrolling the screen. The
terminal mode accepts all control codes and makes the appropriate switches in the NServer.

A.2.Load Mode and Bootload Mode

In this mode the NServer asks the user for a file to be loaded into the memory of Ceres. The file may
be either of type ABS (default) or REL The first filetype will be produced by the absolute linker the
second one by the Ceres cross assembler. While ABS files describe their address itself for a REL file a
load address is aquired by NServer. After loading the program CBUG enters the terminal mode. Note
that the NServeris unable to act as terminal when in load mode.

Appendix B

B. Transmission Format for Downloading

The data can be downloaded using either the 16-bit parallel interface or the serial interface. The
actual used by the CBUG must be selected by calling the procedure 'SelDatalO’ (see Appendix C). All
data except transmission control information is sent within a packet preceeded by a word count and
followed by a 16-bit checksum. The checksum is the sum of all words transmitted including the
count (mod 216). Each received packet is acknowledged by sending either an ASCIlI code ACK
(acknowledge) or NAK (non acknowledge) within one word back to the sender. After receiving a
NAK the sender retries the transmission two times. If all retries fail sender and receiver abort the
transmission. The sender in the NServer program sends all words in NS order, i.e. least significant byte
first.

B.1. Downloading of Programs

The downloading format is word oriented, i.e. all data sent is aligned to word boundaries. The general
transmission format described above is used. The sent file is divided into several blocks. Each block of
data is is preceeded by a header block containing the size and address. This is done to prevent from
overwriting the memory in case of a wrong received load address. The following paragraphs show the
format of the two types of blocks.

B.2. Header Block Format
The header block contains information about the following data block. It has a fixed length of 3
words. The layout is shown in fig. B1.

count

- address

A header with count zero is interpreted as end of transmission. The address will be used by CBUG as
start address for the Go command.

B.3. Data block format
The data block contains as much words as specified in the previous header block. There is no limit on
the length.

Appendix C

C. Using the CBUG Software Interface
This section describes with an example how to use the ROM resident CBUG procedures within a user
program. The procedures are accesible via a linktable located at a certain position in the ROM. The
routines are callable using the CXPD instruction as shown below. The following table gives a
summary of the procedures and their entry/exit conditions.

Name Purpose Parameters Registers
InitTerm initialize terminal none R7
Read read a char R6> char none
BusyRead read a without waiting R6> char none
F bit> =1 got one
Write write a char >R6 char none
WriteS write a string terminated with OC>RO0 string address none
Writeln write newline none none
ReadHex read a hex value R6> terminator none
R7> value
F bit> =1 no hex
C bit> =1 overflow
WriteHex write a hex value >Ré6 value none
>R7 type
=0 byte, =1 word,
=2 double word
PIA.Init parallel interface initialization none R7
PIA.Read read a word from par. interfaceR6> word R6, R7
PIABRead read a word without waiting R6> word R6, R7
F bit> =1 got one
PIAWrite write a word to par. interface >R6 word R6, R7
ReadBlk read a block in general format >R1 number of words none
>R2 address
F bit> = 1 transmission err.
WriteBlk write a block in general format>R1 number of words none
>R2 address
F bit> = 1 transmission err.
SelDatalO select transmission interface >RO device code none
=0V24, =1 parallel
GetCFG get configuration register RO> configuration reg. none

CA. Summary of the routine addresses
The following table shows the addresses of the link entries in the CBUG ROM.
Itt!*!*i‘“C“‘lt-tttit'ttttttt‘tt‘t““‘i“*'!"'

| Procedure entry addresses

I
ROMProcs EQU $FE0014

InitTerm EQU ROMProcs+0=4
Read EQU ROMProcs+1=4
BusyRead EQU ROMProcs+2*4
Write EQU ROMProcs+3#4
WriteS EQU ROMProcs+4#4
Writeln EQU ROMProcs+5+*4
ReadHex EQU ROMProcs+6+4
WriteHex EQU ROMProcs+7+4
PIA.Init EQU ROMProcs+8#*4
PIA.Read EQU ROMProcs+9+4
PIA.BRead EQU ROMProcs+10*4
PIA.Write EQU ROMProcs+11#4
ReadBlk EQU ROMProcs+12=4

WriteBlk EQU ROMProcs+13+4
SelDatal0 EQU ROMProcs+14+*4
GetCFG EQU ROMProcs+15#%4

|‘t""*tﬂ““ttt.t.“tt#t####t'#t'.ttt‘ttttt“*‘t

C.2. Example

Itttttttt‘ttt!!t‘*'“t“‘#t““#"*“‘.tlt.tt.tttt

I#*#***#tttttttttttttttttttttttttt‘ttt“##tttt#ttt
| Procedure table

|

ROMProcs EQU $FEQO14

InitTerm EQU ROMProcs+10#*4

WriteS EQU ROMProcs+14+4

Writeln EQU ROMProcs+15=4

Itttttt*tItt!t!t.‘t‘t#ttt’#"lttt#tttt*tt‘ltt-tttt

l
Msg.Samp1 BYTE " this is a sample program ",$00

JUMP Start

Start LPRD SP,$1E000 init stack pointer
CXPD @InitTerm initalize terminal
Loop ADDR Msg.Hurra,RO
CXPD @WriteS display Msg.Sampl
CXPD @Writeln display newline
BR Loop

I##t#t#tttt'tt*‘t‘*‘**t‘“““#'tttt.i’ttttttttttt

