
Ceres Handbook

A Guide for Ceres Users and Programmers

Editors:
Frank Peschel
l\,'\atthias Wille

December 1986

Copyright by lnstitut fur lnformatik ETH Zurich

The type setting of this handbook was done using Lara (version 1.4) on the Lilith computer.
All figures (except bitmaps) are directly integrated in the Lara document file.

Editors:
Date of Publication:
Publisher:

Frank Peschel, Matthias Wille
December 1986
lnstitut fUr lnformatik ETH Zurich

1.

2.

3.

4.

5.

6.

Table of Contents

30.11.85

Introduction
1.1. Handbook Organization

1.1.1. Overview of the Chapters
1.1.2. Page Numbers

1.2. Overview of Ceres
1.2.1. Software
1.2.2. Hardware

1.3. References

Running Ceres
2.1. Getting Started
2.2. Termination of a Session

Running Programs
3.1. The Command Interpreter

3.1.1. Program Call
3.1.2. Typing Aids
3.1.3. Loading and Execution Errors

3.2. Command Files
3.3. Program Loading

Things to l<now
4.1. Special Keys
4.2. File Names

4.2.1. File Names Accepted by the Module FileSystem
4.2.2. File Name Extensions
4.2.3. File Name Input from Keyboard

4.3. Program Options
4.4. The Mouse l'l

The Editor
5.1. Introduction
5.2. Starting the Editor
5.3. Keyboard and Mouse, Special Keys
5.4. Text Entry and Selection
5.5. Scrolling
5.6. Window Commands
5.7. Menu Commands
5.8. Error Recovery

Utility Programs
6.1. directory
6.2. delete, protect, and unprotect
6.3. copy and rename
6.4. list
6.5. inspectfile
6.6. compare
6.7. xref
6.8. link
6.9. decobj
6.10. hermes and fhermes
6.11. futil

1001
1001

1002

1003

2001
2001
2002

3001
3001

3004
3004

4001
4001
4001

4003
4003

5001
5001
5002
5002
5003
5004
5004
5005
5005

6001
6002
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013

7.

8.

9.

6.12. asm32
6.13. vfinit and vfopen

The Compiler
7.1. Glossary and Examples
7.2. Compilation of a Program Module
7.3. Compilation of a Definition Module
7.4. Symbol Files Needed for Compilation
7.5. Compiler Output Files
7.6. Program Options for the Compiler
7.7. Module Key
7.8. Program Execution
7.9. Value Ranges of the Standard Types
7.10. Restrictions
7.11. Compiler Error Messages

The Debugger
8.1. Introduction
8.2. Starting the Debugger
8.3. Global Commands
8.4. Local Commands
8.5. Debugger Command Summary

The Medos-2 Interface
9.1. Module FileSystem

9.1.1. Introduction
9.1.2. Definition Module FileSystem
9.1.3. Simple Use of Files

9.1.3.1. Opening, Closing, and Renaming of Files
9.1.3.2. Reading and Writing of Files
9.1.3.3. Positioning of Files
9.1.3.4. Examples

9.1.4. Advanced Use of Files
9.1.4.1. The Procedures FileCommand and DirectoryCommand
9.1.4.2. Internal File Identification and External File Name
9.1.4.3. Creation, Opening, and Closing of Files
9.1.4.4. Permanency of Fifes
9.1.4.5. Protection of Files
9.1.4.6. Reading, Writing, and Modifying Files
9.1.4.7. Examples
9.1.4.8. Directory Information

9.1.5. Implementation of Files
9.1.6. File Representation

9.1.6.1. Main Characteristics and Restrictions
9.1.6.2. System Files
9.1.6.3. Error Handling

9.2. Module Processes
9.2.1. Introduction
9.2.2. Definition Module Processes
9.2.3. Process Concept of Medos-2
9.2.4. Explanations
9.2.5. Implementation Notes
9.2.6. Examples

9.3. Module Program
9.3.1. Introduction
9.3.2. Definition Module Program
9.3.3. Execution of Programs
9.3.4. Error Handling
9.3.5. Object Code Format

9.4. Programs
9.5. Heap

6014
6015

7001
7001
7002
7002
7002
7002
7002
7003
7003
7003
7004
7005

8001
8001
8002
8003
8003
8004

9001
9002

9020

9023

9028
9030

9.6. SEK 9031
9.7. Terminal Base 9033
9.8. Terminal 9034
9.9. Users 9035
9.10. Clock 9037

10. Screen Software 10001
10.1. Summary 10001
10.2. CursorMouse 10002
10.3. Menu 10003
10.4. Windows 10004
10.5. TextWindows 10005
10.6. GraphicWindows 10007
10.7. DisplayDriver 10009
10.8. RasterOps 10010
10.9. Fonts 10011

11. Library Modules 11001
11.1. In Out 11002
11.2. ReallnOut 11004
11.3. LonglnOut 11005
11.4. MathlibO 11007
11.5. ByteBlocklO 11010
11.6. FileNames 11012
11.7. Options 11014
11.8. V24 11016
11.9. Profile 11017
11.10. String 11018

12. Modula-2 on Ceres 12001
12.1. Implementation Details 12001

12.1.1. Forward References
12.1.2. Type Transfer
12.1.3. Procedure Parameters
12.1.4. Code Procedures
12.1.5. Standard Procedures and Functions
12.1.6. Numeric Constants

12.2. The Module SYSTEM 12002
12.3. Data Representation 12003

13. Hardware Problems and Maintenance 13001
13.1. What to Do if You Assume some Hardware Problems 13001
13.2. DiskCheck and DiskPatch 13002
13.3. DiskCheck 13002
13.4. DiskPatch 13004

Introduction 1001

1. Introduction
The Ceres workstation has been developed by Hans Eberle in a project headed by Niklaus Wirth. The
name Ceres is an acronym and stands for Computing Engine for Research Enginnering and Sience. The
Ceres computer is intended to be used as a flexible workstation by individual users. This guide will give
an introduction to the use of the machine and the basic software environment running on it.

As Ceres is a follower of the Lilith workstation, the current operating system of Ceres is an improved
version of the Lilith operating system Medos-2. This implies that all software running under Medos-2
can easily be ported onto Ceres. Most of the library modules and utility programs implemented on the
Lilith are available on Ceres. Thus we used the Lilith handbook as a basis for this document. Among the
numerous people who have contributed to the Lilith-documentation as well as the Lilith-software are
Leo Geissmann, JUrg Gutknecht, Werner Heiz, Jirka Hoppe, Svend E. Knudsen, Eliyezer Kohen, Hans-Ruedi
Schar, Christian Vetterli, Thorsten v. Eicken, Bernhard Wagner, WernerWiniger and Niklaus Wirth.

The readers of the handbook are invited to report detected errors to the authors. Any comments on
content and style are also welcome.

1.1. Handbook Organization

As the range of users spans from the non-programmer, who wants only to execute already existing
programs, to the active (system-) programmer, who designs and implements new programs and
thereby extends the computer's capabilities, this guide is compiled such that general information is
given at the beginning and more specific information toward the end. This allows the non-programmer
to stop reading after chapter 6.

1.1.1. Overview of the Chapters

Chapter1 gives introduCtional comments on the handbook and on Ceres.

Chapter 2 gives instructions on how Ceres is started.

Chapter 3 describes how programs are called with the command interpreter.

Chapter4 provides information about the general behaviour of programs.

Chapter 5 describes the use of the text editor.

Chapter6 is a collection of important utility programs, needed by all Ceres users.

Chapter7 describes the use of the Modula-2 compiler.

Chapter 8 describes the use of the post-mortem debugger.

Chapter9 is a collection of library modules constituting the Medos-2 interface.

Chapter10 is a collection of library modules constituting the screen software interface.

Chapter11 is a collection of further commonly used library modules.

Chapter12 describes the Ceres-specific features of Modula-2.

Chapter13 describes procedures to follow if Ceres is not working as expected.

1002 Introduction

1.1.2. Page Numbers

It is intended that the page numbers facilitate the use of the handbook. It should be possible to find a
chapter quickly, because the chapter number is encoded within the page number. The pages belonging
to a chapter are enumerated in the thousands digit of the chapter number, i.e. in the first chapter the
page numbers start with 1001, in the second chapter with 2001, etc. As a chapter has less than one
hundred pages, the chapter number is always separated from actual page number within the chapter by
a zero.

1.2. Overview of Ceres

1.2.1. Software

The Ceres workstation provides as its major language Modula-2, which is defined in the Modula-2
Manual [1]. For time-critical system applications like 1/0-drivers it is possible to write assembly code
for the Ceres processor NS32032. The ~As-truction set is defined in [2]. The specialities of the·
Ceres-implementation of Modula-2 are mentioned in chapter 12 of this handbook.

The resident operating system on Ceres is called Medos-2. It is responsible for program execution and
general memory allocation. It also provides a general interface for input/output on files and to the
terminal. It is the same operating system as that running on the Lilith workstation. The original Lilith
implementation is described in [3] while more information about the Ceres version can be found in [4].

For the programmer on Ceres a software development package is provided containing a versatile text
editor, the fast Modula-2 single-pass-compiler and as an aid in program testing a post-mortem
debugger. An assen:ibler which produces Modula-2 compatible object code is also part of the package.

The handling of the screen display is provided by the screen software package. It enables writing and
drawing at any place on the screen. A window handler provides the subdivision of the screen into
smaller independent parts, called windows.

Further, there exists a large number of utility programs and library modules. The most commonly used
subset is described in this handbook; the handbook should never be considered to give a complete
overview of the Ceres software.

1.2.2. Hardware

The Ceres hardware consists of a 32-bit processor based on the National Semiconductor Series 32000
chip set, primary memory, secondary memory and miscellaneous input and output devices. These
include a high resolution display, a serial keyboard and a mouse pointing device, a RS-232-C serial line
interface and a RS-485 serial line interface. A detailed description of the Ceres hardware can be found in
[5]. However, the following paragraph will give a rough overview. .

The heart of the Ceres computer is a National Semiconductor NS 32032 32-bit microprocessor. Two
slave processors add the capabilities of virtual memory and the support of floating point arithmetic.
The processor runs at a clock rate of 10 MHz and it has an addressing range of 16 MBytes.

The primary storage of Ceres contains 2 MBytes of dynamic RAM, 256 KBytes of video RAM and 32
KBytes of ROM. The ROM memory contains bootstrap and diagnostic software. The secondary storage
of Ceres consists of a winchester hard disk drive and a floppy disk drive. The 5 1/4" hard disk has a
formatted capacity of 40 MBytes and average access time of 40 ms. For backup purposes a 31/2" floppy
disk is available with a formatted capacity of 720 KBytes.

The display of Ceres is a high resolution raster scan monitor. It can display 819'200 dots stored in a
matrix called bitmap which is 1024 dots wide and 800 dots high. The picture is refreshed with a
frequnency of 62.15 Hz (non-interlaced) which results in a flicker-free image. The bitmap information is

Introduction 1003

stored in a separate,, dedicated memory implemented with video RAMs. Ceres has two such bitmaps
which may be switched back and forth to allow highspeed graphics like dragging and animation.

Ceres has a standard serial ASCII keyboard with VT100 key layout. The optomechanical mouse has three
push-buttons and a resolution of 380 pulses per inch. The standard RS-232-C interface works with data
transfer rates ranging from 50 up to 38400 bps. A higher transmission speed can be obtained with the
two RS-485 serial ports which allow data rates up to 230.4 Kbps. In a multipoint configuration this
interface allows to implement a low cost computer network. ·

1.3. References

[1]

[2]

[3]

[4]

[5]

N. Wirth: Programming in Modula-2,
3rd. Edition, Springer-Verlag, Heidelberg, NewYork, 1985.

N. Wirth: The personal computer Lilith,
in
- Sofware Development Environments, A.I. Wassermann, Ed., IEEE Computer Society Press, 1981.
- Proc. 5th International Conf. on Software Engineering, IEEE Computer Society Press, 1981.

S.E. Knudsen: Medos-2: A Modula-2 Oriented Operating System for the Personal Computer Lilith,
Ph.D. thesis No. 7346, ETH Zurich 1983

F.Peschel, AA.Wille: Porting Medos-2 onto the Ceres workstation,
lnstitut fUr lnformatik, ETH ZUrich, to be published

H. Eberle: The personal computer Ceres,
lnstitut fUr lnformatik, ETH Zurich, to be published

Running Ceres 2001

2. Running Ceres

2.1. Getting Started

Ceres is switched on using the green power switch on the front panel of the cabinet. After power on the
disk needs about 10 seconds to have the correct speed. Now the bootstrap of the machine starts
automatically.

The resident operating system Medos-2 is now loaded from the winchester disk. After successful
loading it first displays a version message, e.g.

Ceres/Medos V5.2C (1.12.86)

The operating system now makes now some initializations, i.e. the consistency of the file system is
checked. When the last session has been properly terminated (see 2.2), this check is not needed.
However, a full check lasts for about 20 seconds. When the check has been passed a dot appears behind
the version message and the command interpreter is started. After telling its version it displays a login
message of the form

Login on Tuesday, 1.12.86, 10:00:11

and prompts for the user id. After entering the user id which consists of two numbers denoting the
group and the member number a password has to be entered. The password is a character string
allowing access to various services. After the password is accepted, an asterisk * is displayed. The
command interpreter is now ready to accept the name of a program which should be executed next.
How programs are called is described in chapter 3.

2.2. Terminating a Session

To leave the filesystem in consistent state, a session has to be terminated using the program shutdown. ·
This program saves the state of all memory resident administration data of the filesystem into a known
area on the disk.

After running shutdown, rebooting is necessary for a next session. This is accomplished by pressing the
small reset button that is located under the power switch. About three seconds after the reset the
bootstrap is started following the same steps as described in 2.1.

In seldom cases a faulty program may block the whole system and thus makes rebooting necessary. In
order to avoid the time consuming check of the filesystem the above mentioned administration data
are periodically saved by the command interpreter during idle time.

2.3. Individual Bootstraps

A feature that is of special interest to the system designer is the possibilty to specify individual sources
for the system bootstrap, i.e. the loading of other programs instead of Medos-2. For this reason,
Medos-2 provides two preallocated bootfiles that are accesible using the normal filesystem utilities,
namely PC.BootFileO and PC.BootFile1. The normal, i.e. automatic, bootstrap is made using PC.BootFileO.

An individual bootstrap is initiated by pressing the reset button and selecting the bootstrap source by
typing one of the following characters:

CTL-A
CTL-B
CTL-F

boot from PC.BootFileO (same as auto boot)
boot from PC.BootFile1
boot from floppy disk (service programs only).

Note, that the character must be typed within 3 seconds after resetting Ceres. The program contained in
the specified bootfile or on the floppy is immediately started after loading.

Running Programs 3001

3. Running Programs
This chapter describes, how programs are called with the command interpreter of the Medos-2
operating system. An often used sequence of program calls may be controlled by a command file.

3.1. The Command Interpreter

The command interpreter is the main program of the Medos-2 operating system. After the initialization
of the operating system, the command interpreter repeatedly executes the following tasks

- Read and interprete a command, i.e. read a program name and activate the
corresponding program.

- Report errors which occured during program execution.

In order to keep the resident system small, a part of the command interpreter is implemented as a
nonresident program. But, this fact is transparent to most users of Medos-2.

3.1.1. Program Call

The command interpreter indicates by an asterisk * that it is ready to accept the next command.
Actually there exists only one type of commands: program calls.

To call a program, type a program name on the keyboard and terminate the input by either hitting the
RETURN key or pressing the space bar.

*directory

The program with the typed name is activated, i.e. loaded and started for execution. If the program was
executed correctly, the command interpreter returns with an asterisk and waits for the next program
call. If some load or execution error occured, an error message is displayed, before the asterisk appears.

*direx
program not found
*directory

directory program is running
*

A program name is an identifier or a sequence of identifiers separated by periods. An identifier itself
begins with a letter (A .. Z, a .. z) followed by further letters or digits (0 .. 9). At most 16 characters are
allowed for a program name, and capital and lower case letters are treated as distinct.

Program Name= Identifier { "."Identifier}.
Identifier= letter { letter I digit} .

Programs are loaded from files on the disk. In order to find the file from which the program should be
loaded, the Medos-2 loader converts the program name into a file name. It inserts the medium name
DK at the beginning of the program name, appends an extension OBJ, and searches for a file with this
name. If no such file exists, the loader inserts the prefix SYS into the file name and searches for a file
with this name.

Accepted program name
First file name
Second file name

directory
DK.directory.OBN
DK.SYS.directory.OBN

If neither of the searched files exists, the command interpreter displays the error message program not
found.

3.1.2. Typing Aids

3002 Running Programs

The command interpreter provides some typing aids which make the calling of a program more
convenient. Most typing errors are handled by simply ignoring unexpected characters. Further, th~re are
the automatic extension of a typed character sequence and some special keys.

Automatic Extension

The command interpreter automatically extends an initially typed character sequence to the name of an
existing program. This means that a long program name may be identified by afew characters. If several
programs exist whose names start with the typed character sequence, the sequence is only extended up
to the point where the names start to differ. In this case, further characters are needed for
identification. The input of a program name must be terminated by either hitting the RETURN key or
pressing the space bar.

The command interpreter needs a few seconds to find all the names of available programs. Therefore,
automatic extension is only possible after that time. If a command is typed very fast (or probably
before the asterisk is displayed), the meaning of the termination character may be different.
Termination with RETURN means that the command should be accepted as it is, termination with the
space bar means that the command interpreter should try to extend the character sequence to a
program name before accepting it.

Special Keys

While typing a program name, the command interpreter also accepts some special keys which are
executed immediately.

?

DEL

HELP character. It causes the display of a list of all programs, whose names start with the
same character sequence as the typed one. At the end of the list, the already typed part of
the program name is displayed again, and the rest of the program name is accepted.

Delete the last typed character.

CTRL-X
Cancel. Delete the whole character sequence which has been typed

CTRL-L

ESC

Form feed. Clear the screen and accept a new command at the upper left corner of the
screen. This key must be typed just behind an asterisk. It is not accepted within a character
sequence.

Terminate the execution of the command interpreter.

CTRL-C
Kill character. This key may be typed at any time. The currently executed program will be
killed and a dump will be written on the disk. The dump may be inspected with program
inspect.

3.1.3. Loading and Execution Errors

Messages about loading and execution errors are displayed on the screen. They are reported either by
the command interpreter, the resident system, or the running program itself.

Loading Errors

It is possible that a called program cannot be loaded. It may be that the corresponding file is not found
on the disk, that some separate modules imported by the program are not found, or that the module
keys of the separate modules do not match.

The following types of loading errors may be reported

call error parameter error at program call

program not found
program already loaded
module not found
incompatible module
too many modules
heap full
code version mismatch
syntax error in object file
some load error

Execution Errors

Running Programs 3003

a program must not be loaded tvvice

a module found witha wrong module key
maximal number of loaded modules exceeded
program needs too much memory space
code of a module is not from the same generation
a file may be damaged
maximal number of imported, not yet loaded modules exceeded

If a program is successfully loaded, it is possible that the execution of the program is terminated
abnormally. In such a case several errors may have occurred, e.g. a run time overflow, the program may
have called the standard procedure HALT, or the user may have killed the program by typing CTRL-C. In
all of these cases, the operating system first causes the memory contents to be dumped on the dump
files of the disk. These dump files namely PC.DumpFileO and PC.DumpFile1 may be inspected with the
post-mortem debugger inspect.

The ·following types of execution errors may be reported

killed
HALT called
function exit not by RETURN
space error
REAL error
zero divide error
CASE range error

program was killed byCTRL-C
standard procedure HALTwas called
function not terminated by a RETURN statement
available memory space exceeded

range error
address error illecra/ pointer access
priority error calf of a procedure on lower priority
SVC error an unknown SVC/unction code has been specified
undefined instruction executed illegal instruction, i.e. the code may be overwritten
undefined execution error code

The error messages displayed by the command interpreter are intended to be self-explaining. They are
written just before the asterisk which indicates that the next command will be accepted.

Errors Reported by the Resident System

The messages directly displayed by the resident system (and possibly other non-resident modules and
programs), appear according to following example

- DiskSystem.OpenVolume: bad pointer in directory file

This example indicates that procedure OpenVolume in module DiskSystem has detected
that the descriptor of the directory contains a bad page pointer

3.2. Command Files

It is possible that a sequence of program executions must be repeated several times. Consider for
example the transfer of a set of files between two computers. Instead of typing all commands
interactively, it is in this case more appropriate to substitute these commands as a batch to the
procedures which normally read characters from the keyboard. For this purpose the operating system
allows the execution of command files.

A command file must contain exactly the same sequence of characters which originally would be typed
on the keyboard. This includes the commands to call programs and the answers given in the expected
dialog with the called programs. To initialize the command file input, the program commandfile must
be started. This program prompts for the name of a command file (default extension is COM) and
substitutes the accepted file to the input procedures.

*commandfile
Command file> transfer.COM

3004 Running Programs

* input characters are read from the command file,
instead of from the keyboard

End command file end of command file substitution

*
After all characters have been read from the substituted command file, the input is read again from the
keyboard. Reading from the command file is also stopped when a program is not loaded correctly or a
program terminates abnormally. Command files must not be nested.

The commandfile facility may also be used to execute certain initialization commands after starting a
session on the Ceres. The command interpreter executes the command file 'SEK.Start.COM' after the
login procedure has been finished. When the machine is idle, i.e. no keystrokes appears for about 3
minutes, the command interpreter looks for a command file 'SEK.Idle.COM' and initiates its execution.

3.3. Program Loading

Programs are normally executed on the top of the resident operating system. After the program name is
accepted by the command interpreter, the loader of Medos-2 loads the program into the memory and,
after successful loading, starts its execution. Medos-2 also allows a program to call another program.
This chapter describes, how programs are loaded on the top of Medos-2. More details about program
calls, program loading, and program execution are given in the description of module Program (see
chapter 9.3.).

Usually, a program consists of several separate modules. These are the main module, which constitutes
the main program, and all modules which are, directly or indirectly, imported by the main module.

Upon compilation of a separate module, the generated code is written on an object file {extension
OBN). This file can be accepted by the loader of Medos-2 directly. A program is ready for execution if it
and all imported modules are compiled. To execute the program, the main module must be called. The
loader will first load the main module from the substituted object file, and afterwards the imported
modules from their corresponding object files.

The names of the object files belonging to the imported modules are derived from {the first 16
characters of) the module names. If a first search is not successful, a prefix LIB is inserted into the file
name and the loader tries again to find the object file.

Module name BufferPool
First file name DK.BufferPool.OBN
Second file name DK.LIB.BufferPool.OBN

A module cannot be loaded twice. If an imported module is already loaded with the resident system
(e.g. module FileSystem), the loader links the program to this module.

If a module cannot be loaded because of a missing object file, a loading error is signalled. The loader
also signals an error if a module found on an object file is incompatible with the other modules. For
correct program execution, it is important that the references across the module boundaries refer to the
same interface descriptions, i.e. the same symbol file versions of the separate modules. The compiler
generates for each separate module a module key (see chapter 7.7.) which is also known to the
importing modules. For successful loading, all module keys refering to the same module must match.

After termination of the program, the memory space occupied by the previously loaded modules is
released. This also happens with the resources used by the program (e.g. heap, files).

The loading speed may be improved if a program is linked before its execution. The linker collects the
imported modules in the same manner as the loader and writes them altogether on one file. It is also
possible, to substitute a user selected file name for an imported module to the linker. If a program is
linked, the loader can read all imported modules from the same object file, and therefore it is not
necessary to search for other object files. For a description of program link refer to chapter 6.8.

Things to Know 4001

4. Things to Know
This chapter provides you with information about different things which are worth knowing if you
want to get along with Ceres. There are some conventions which have been observed when utility
programs or library modules were designed. Knowing these should allow you to be more familiar with
the behaviour of the programs.

4.1. Special Keys

Consider the following situations: You want to stop the execution of your program, because something
is going wrong; or, you want to cancel your current keyboard input, because you typed a wrong key; or,
you want to get information about the active commands of a program, because you actually forgot
them; and so on. In all these situations it is very helpful to know a way out.

For these problems, several keys on the keyboard can have a special meaning, when they are typed in an
approf riate situation. Some of these special keys are always active, others have their special meaning
only i a program is ready to accept them. The following list should give you an idea of which keys are
used for what features in programs and to invite you to use the same meanings for the special keys in
your own programs.

DEL
Key to delete the last typed character in a keyboard input sequence. This key is active in
most programs when they expect input from keyboard.

CTRL-X

ESC

l<ey to cancel the current keyboard input line. This key is active in special situations, e.g.
when a file name is expected by a program.

Key to tell the running program that it should terminate more or less immediately in a soft
manner. This key is active in most programs when they expect input from keyboard.

CTRL-C

?

Key to stop the execution of a program immediately. This key is always active, even if no
keyboard input is awaited. Typing CTRL-C is useful if the actions of a program are no longer
under control.

Key to ask a program for a list of all active commands.

CTRL-L
Key to clear the screen area on which a program is writing. This key is active in special
situations, e.g. when the command interpreter is waiting for a new program name. .

4.2. File Names

4.2.1. File Names Accepted by the Module FileSystem

Most programs work with files. This means that they have to assign files on a device. For this purpose
the module FileSystem provides some procedures to identify files by their names. File names accepted
by these procedures have the following syntax:

FileName = MediumName ["." Fileldent].
MediumName=ldent.
ldent = Letter { Letter I Digit} .
Capital and lower case letters are treated as distinct.

MediumName means the device on which a file is allocated. This name must be an identifier with at

4002 Things to Know

most 7 characters. It is used to access files on other media. To assign a file on the disk of your Ceres
computer, the medium name DK must be used.

Fileldent means the name of a file under which it is registered in the name directory of the device. The
Fileldent is device-dependent, i.e. its length and the characters it contains may differ among the devices.
This is necessary to allow the transparent access to filesystems with other naming conventions. A
hierarchy of directories that is usually reflected in pathnames may need additional separators to
distinguish between ordinary idents and directory names. However, the resident filesystem allows for
Fileldents with the syntax given below:

Fil el dent · = I dent { "." I dent} .

The length of a Fileldent is restricted to 24 characters.

A file name consisting solely of a MediumName means a temporary file on the device, i.e. the file is not
registered in the name directory and will be deleted automatically when it is closed.

4.2.2. File Name Extensions

The syntax of a Fileldent, with identifiers separated by periods, allows structuring of the file names. On
Ceres, the following rule is respected by programs dealing with file names:

The last identifier in a Fileldent is called the extension of the file name. If a Fileldent
consists of just one identifier, then this is the extension.

File name extensions allow to categorize files of specific types (e.g. OBN for object code files, SMB for
symbol files), and there are programs which automatically set the extension, when they generate new
files (e.g. the compiler, the editor).

4.2.3. File Name Input from Keyboard

Many programs prompt for the names of the files they work with. In this case you have to type a file
name from keyboard according to following syntax:

lnputFileName = Fileldent I "#" MediumName ["." Fileldent].

Normally you want to specify a file on the disk of your Ceres computer and therefore it is more
convenient, to type Fileldent only. Medium Name DK is then added internally. If you want to specify
another MediumName, then you must start with a# character.

Harmony.MOD
#XV.Color.DOK

is accepted as file name
is accep~ed as file name

DK.Harmony.MOD
XV.Color.DOK

Many programs offer a default file name or a default extension when they expect the specification of a
file name. So, it is possible to solely press the RETURN key to specify the whole default file name, or to
press the RETURN key after a period to specify the default extension.

For application programs that require the input of file names the module FileNames of the standard
library is recommended (see Library).

4.3. Program Options

To run correctly, programs often need, apart from a file name, some additional information which must
be supplied by the user. For this purpose so-called program options are accepted by the programs.
Program options are an appendix which is typed after the file name. The following syntax is applied.

FileNameAndOptions = lnputFileName { ProgramOption } .
ProgramOption = "/" OptionValue.
OptionValue = { Letter I Digit}.

Every program has its own set of program options, and often a default set of OptionValues is valid. This
has the advantage that for frequently used choices no options must be specified explicitly.

Things to Know 4003

Harmony.MOD/query/nolist

For application programs the module Options of the standard library is recommended (see Library).

4.4. The Mouse

An important input device, along with the keyboard, is the mouse. It allows positioning and command
selection. It has three pushbuttons on its front and a ball embedded in its bottom. The ball rotates when
the mouse is moved around on the desktop.

To use the mouse, take it in your hand with the middle three fingers in position to press the three
pushbuttons and the thumb and little finger apply slight pressure from the sides.

For positioning, e.g. for tracking a cursor, the mouse is moved around on the desktop. The movements
are translated by the programs into movements on the screen:

mouse screen

forward up
backward down
left left
right right

The mouse indicates movements only if it is driven on the table. If it is lifted and set down at another
place on the table, no movement is indicated. This allows to reposition the mouse without changing
the actual position on the screen.

The pushbuttons on the front of the mouse are pressed for sending commands to programs. Th_ey are
named according to their position:

left
button

middle
button

right
button

Generally it may be assumed that a menu selection becomes active when the middle button is used. In
scroll bars usually the left button is used for scrolling a text up, the right button for scrolling a text down,
and the middle button for flipping on the text.

The actual meaning of the mouse buttons is given in the program descriptions. Some programs also
display it on the screen.

Application programs may use the module CursorMouse that supports cursor tracking and the handling
of the mouse buttons (see chapter 10.).

The Editor 5001

5. The Editor

5.1. Introduction

The Ceres text editor is called Sara. It is a full-screen text editor, specially designed to create and change
programs. It imposes no restriction on file size, as it uses an incremental method (piece-list) for
editing.

5.2. Starting the Editor

You start the editor by typing sara followed by <return>. Then you see a· small window on the bottom
of the screen, possibly giving you a default file name for editing (the last compiled file is the default).
Press <return>, <space> or tne left mouse button to accept the name, or enter an alternate name (to
create a new text enter the empty name). If you end your file name with ".",the extension "MOD" is
appended.

The editor now creates another window displaying the first page of your program. If your program
contains errors (detected by the compiler in an earlier compilation) the caret (the text insertion point)
is automatically placed after the first error. The dialog window displays the type of error.

5.3. Keyboard and Mouse, Special Keys

The following notation, commands are used throughout this documentation.

ML
MM
MR
ESC
EOL
LF
SPC
TAB
DEL
Ctrl-G
Ctrl-0

left mouse button
middle mouse button
right mouse button
escape key
return key
return key (without auto indentation)
space bar _
tabulator key (same effect as two SPC)
backspace key (delete character left)
delete character right
insert character by typing its number

For non-ASCII-keyboard characters use the toggle switches Ctrl-T (german) and Ctrl-S (trench).

In german mode:

type: to obtain:

@ a
1' 6
\ U
' A

b
0

In trench mode:

type: to obtain:

a
{ e

i
> 6
I a

@

]
\
[
}
1'

<
$

a
e
u
e
e
"i
~

5.4. Text Entry and Selection

The Editor 5002

(blank with same width as a digit)

The text insertion point (caret) is represented by a small triangle which can be positioned by ML (press
and release). The entered text is inserted at the caret and does not overwrite a previous text. You can
delete the last character by typing DEL The next character can be deleted by typing Ctrl-G.

A text portion can be selected by moving the mouse over the text with the ML button down (dragging).
If at the same time another button is active, the following commands are executed directly: Copy (MM),
Delete (MR), or Move (MM and MR). The selection is canceled by pressing ESC. An existing text
selection can be extended/shortened by pointing to the last selected character and dragging (see also
command Split to easily select greater text portions). Selecting the same character again increases the
selection level (character->word->line->lineblock->document).

5.5. Scrolling

The text of a window is scrolled by pressing a mouse button in the scroll-bar (vertikal bar) of a
window:

Button

ML
MM

MR

Command

scroll-up
flip

scroll-down

5.6. Window Commands·

Explanation

cursor line gets top line.
first line-> begin of document,
last line-> end of document
cursor line gets bottom line.

The window commands are activated with ML and MR in the title bar of a window.

Button

ML
MR
ML
MR

Kind

no cursor movement
no cursor movement
cursor movement
cursor movement

5.7. Menu Commands

Command

Put window on top.
Put window on bottom.
Move title bar.
Move window.

The editor commands are selected with MM. They can be classified into 3 groups: Dialog, Window,
and Text.

Group

Dialog
Window
Text

Location

dialog window
title bar
text region

Commmands

open, exit.
split, redefine, close.
copy, move, delete, find, error,
save, replace, adjust, autoind.

The continuation menu of Text is reached by pressing MR additionally. The commands are explained in
more detail below. Together with the e}{planation the messages produced by the commands are listed.

The Editor 5003

In order to distinct them from the rest of the text we use the italic font style.

Dialog

Open

Exit

Window

Split

Open a document. The name is read from the keyboard (the default name is the name of the
last compiled file or a valid text selection). An empty name creates a new document. The
document may be located on another medium (remote file).
Then the window dimensions have to be specified. When using the mouse, the start point
(pressing the button) and the end point (releasing the button) are taken to compute
missing parameters.
name>
SPC, EOL, ML
DEL
ESC,MM,MR
define window
ML
MM
MR
SPC, EOL
ESC

Terminate the input. A trailing"." is expanded to ".MOD".
Delete the last character.
Abort the command.

Window with maximal width.
Window with maximal width and maximal height
Arbitrary window.
Default window.
Abort the command.

Leave the editor without updating the dowment(s).

exit?
"y","Y",ML
any other key

Leave the editor.
Abort the command.

Split a window into subwindows. Each subwindow can be scrolled independently.
Selection beyond subwindow bounderies is allowed (all text between is selected). This
allows you to select text portions greater than the window size.
define separation line
ML, MM, MR

ESC

Used to point to the location where separation should take place
(dragging allowed).
Abort the command.

Redefine
Redefine the dimensions of a window. The new dimensions are entered in the same way as
described for Open.

Close
Close a window. If the window is the only window to show a document, the editor asks if
the document should be written on disk. The name is read from the keyboard (the default
name is the name given in the Open command or a valid text selection). After closing the
last file the Exit command is called automatically.
name>
SPC, EOL, ML

DEL
ESC,MM,MR

Terminate the input. A trailing "." is expanded to ".MOD". The
document is stored on disk and the previous version of the
document gets the extension ".BAK".
Delete the last character.
Release the document without updating.
release?
"y","Y",ML
any other key

Close the document without updating.
Abort the command.

Text

The Editor 5004

Copy
Copy a piece of text. If a text sequence is selected, it is copied to the internal buffer. Then
the buffer contents are inserted at the caret.

Move
Move a piece of text. This command corresponds to the command sequence Delete, Copy.

Delete

Find

Delete a piece of text. If a text sequence is selected, it is copied to the internal buffer and
deleted.

Find a text portion starting at the caret position.

find>
text selected
keyboard

ML
ESC,MM,MR

Find the selected text.
Enter text by keyboard.
EOL Terminate input.
DEL Delete last entered character.
ESC, MM, MR Abort the command.
Find next occurrence of a previously searched text.
Abort the command.

While searching the text, ESC may be pressed to abort.

Error

Save

Search for the next (compiler detected) error starting at the caret position.

Copy a text portion to the internal buffer. If no text is selected the internal buffer is cleared
(to allow to the replace command to delete a found string).

Replace
Replace a text portion (to be searched for) by the internal buffer contents, starting at the
caret position. The text to be found is specified as in the Find command. The new text has
to be moved to the internal buffer (e.g. with Save). If the text is found the editor asks
whether it should be replaced.

replace by buffer content?>
"y", "Y", ML Replace and search again.
"n", "N", MR Do not replace but search again.
"O", "1 ", ... , "9" Replace 0, 1, ... , 9 times.
EOL Replace all occurences starting at the caret. Typing any key stops

ESC,MM
SPC
any other key

Adjust

the replacing.
Abort the command.
Replace.
Do not replace.

Shift a piece of text horizontally. The selected lines are shifted to the left or to the right
(useful to indent a whole procedure).

adjust(-9 .. 9)>
"O", "1", ... , "9"
"-1", ... , "-9"
"("

")"

"[",ML
"]",MR
"{,,

"}"

ESC,MM
any other key

Autolnd

Shift 0, 1, ... , 9 position (s) to the right.
Shift 1, ... , 9 position (s) to the left.
Shift 1 position to the left.
Shift 1 position to the right.
Shift 2 positions to the left.
Shift 2 positions to the right.
Shift4 positions to the left.
Shift 4 positions to the right.
Abort the command.
Don't shift.

Toggle automatic indentation mode on/off. Default is on.

5.8. Error recovery

The Editor 5005

The editor writes the current state periodically on a file. In case of an illegal program termination,
simply restart Sara (without any renaming of files!). Then the last saved state is restored.

Utility Programs 6001

6. Utility Programs
This chapter gives an overview of some utility programs which provide the most important services on
Ceres. Utility programs are usually stored on the winchester disk (medium name DK). The file name is
derived from the program name, beginning with the prefix SYS and ending with the extension OBN.
Programs are called for execution by their name.

Program name
File name

List of the Programs

directory
delete
protect
unprotect
copy
rename
list
inspectfile
compare
xref
link
decobj
h erm es/fh erm es
futil
asm32
vfinit/vfopen

directory
DK.SYS.directory.OBN

Give a list of file names
Remove files from the disk
Set protection on files
Cancel protection on files
Make copies of the file contents
Change file names
List text files on screen
Inspect the contents of a file
Compare textfiles
Generate a reference list of a text file
Link separate modules to a program
Disassembler of object files
Transfer files via V24/SCC
File-Utility
Assembler
Floppy-Medium

6.1.
6.2.
6.2.
6.2.
6.3.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.
6.12.
6.13.

Most programs are operating on files, and they therefore will prompt for a file name and probably will
also accept program options. The syntax of file names and program options is given in chapter4.

There are some programs which may operate on a group of files. For this purpose the accepted file name
may contain asterisk * and percent % characters as wildcard symbols. An asterisk stands for any
(including the empty) sequence of legal characters (letters, digits, periods), a percent for just one legal
character. This allows to select all file names that match the pseudo file name.

Pseudo file name
Matching file names

Pseudo file name
Matching file names

Pseudo file name
Matching file names

M•2.DOK
M2.DOK
Modula2.DOK
Modula2.Version2.DOK

M%.DOK
Ml.DOK
M2.DOK

Mouse.*
Mouse.Head
Mouse. Ta i1
Mouse.old.Head

An asterisk enclosed by two periods would match a single period and a leading or trailing asterisk with
a separating period would match the empty sequence. Therefore Mouse would also be a matching
name in the third example.

6002 Utility Programs

6.1. directory

The program directory shows directory information of the selected files. It accepts a file name with
wildcard symbols. Hitting the RETURN key instead of specifying a name means that all files on the
standard medium should be selected. For all files with a name matching the specified name, the
program displays directory information in the following sequence:

- Protection symbol: A# if the file is protected
- File name
- Length in blocks (1 block= 1 K Word)
- Date of creation o.r last modification

Example

Mouse.old.Head
Mouse.Head
Mouse.Tail
Mouse

6
7
3
1

22.Sep.86
12.Jan.86
30.Sep.86
17.Feb.86

Before terminating, the program displays a summary

Number of listed files
Number of blocks used by the files
Number of free blocks on medium
Number of free files on medium

If the information fills more than one screen page, the string ... is displayed and the program is waiting
until any key is pressed on the keyboard (ESCwould stop the program immediately).

With program option EXtra, supplementary information is displayed for each file. In this case the
information sequence is as follows

- Protection symbol: A# if the file is protected
- File name
- Length in blocks (1 block= 2 Kbyte)
- Exact length in Bytes
- Number of the directory entry
- Date of creation or last modification
- If modified: Modification version
- If modified: Date of creation

To get the directory information on a file instead on screen, the program option Output must be
specified. In this case the program asks for a file name and writes the information on a file with this
name.

*di rectory
director~> Mouse.•/output
output file> Mouse.Directory

Program Options

Alpha
Information is listed in the alphabetic order of the file names.

NOAlpha
Information is listed in the order of the directory. Default.

Equal
Capital and lower case letters are treated as equal.

NO Equal
Capital and lower case letters are treated as distinct. Default.

Utility Programs 6003

o~~ .
Information is listed on an output file. Program will ask for the name of an output file.

Page

Scroll

Information displayed on screen page by page. A key must be pressed after each page.
Default.

Information displayed on screen continuously. After a key is pressed, output is stopped
until a second key is pressed.

SHort
Short information. Only file names are listed.

NORMal

EXtra

Normal information, as described above. Default.

With supplementary information, i.e. exact length in bytes, the file number and
modification information.

Continue
Program continues after execution of the operation and prompts again for a file name.

Terminate
Program terminates after execution of the operation. Default.

DAtesort
Information is listed in order of creation date.

TO Day
Only file information of the current day is listed.

BEfore

AFter

Only file information of files elder than the given date are listed. Program will
ask for the date.

Only file information of files written after the given date are listed. Program
will ask for the date.

RAnge
Only files created in a given date range are listed. Program will ask for the first
and last date of the range.

Capitals mark the abbreviations of the option values.

6004 Utility Programs

6.2. delete, protect, and unprotect

The program delete allows to remove the selected files, protect and unprotect handle the protection of
the files. In the current implementation of the file system, protection means that a file cannot be
changed.

The programs accept a file name with wildcard symbols. For all files with a matching name on the disk
the programs display the file name and prompt for an assertion Cy for yes; nor RETURN for no) before
doing the desired operation.

Mouse.Head delete? yes
Mouse.Tail delete? no

Each program skips those files on which the operation cannot be applied, i.e. protected files are skipped
by delete and protect, and unprotected files are skipped by unprotect.

Program Options

Query
Operation on file must be asserted. Default.

NOQuery
Operation on file without assertion.

Equal
Capital and lower case letters are treated as equal.

NO Equal
Capital and lower case letters are treated as distinct. Default.

Continue
Program continues after execution of the operation and prompts again for a file name.

Terminate
Program terminates after execution of the operation. Default.

Capitals mark the abbreviations of the option values.

Utility Programs 6005

6.3. copy and rename

The program copy handles the copying of files, rename the change of file names.

Two file names with wildcard symbols are accepted by the programs: a from-name and a to-name. The
from-name specifies the selected files, to-name the corresponding new names. In to-name only
asterisks are accepted as wildcard symbols, and these must be separated by periods from other·
identifiers.

The compatibility of from-name and to-name is checked and an error message is displayed, if a
projection is impossible. Be aware that the projection of the names is not always clear and that the
programs might come to an interpretation which differs from the intended one.

For all files with a name matching from-name, this name and the new generated name are displayed
and the programs prompt for an assertion (y for yes; nor RETURN for no) before copying or renaming
the file. If a file with the new generated name already exists, the replacement of the existing file must
be asserted.

Mouse.He~d to Mice.Headcopy? yes replace? yes
Mouse.Tail to Mice.Tail copy? no

Program Options

Query
Operation on file must be asserted. Default.

NOQuery
Operation on file without assertion.

Equal
Capital and lower case letters are treated as equal.

NO Equal
Capital and lower case letters are treated as distinct. Default.

Replace
Existing files with new name are replaced without assertion.

NOReplace
Existing files with new name must not be replaced. Default, if NOQuery is specified.

Continue
Program continues after execution of the operation and prompts again for a file name.

Terminate
Program terminates after execution of the operation. Default.

Capitals mark the abbreviations of the option values.

6006 Utility Programs

6.4. list

Utility to list textfiles on your system's display.

The program asks for a filename which may include wildcard symbols. If there are more than one file
that matches the specified filename, then the listing of every file has to be confirmed. As option you
may specify whether you want to see the file page after page or scrolled up after each line.

Example:

•list
list> Example.MOD/P

MODULE Example;

In the scroll mode the program may be interrupted temporarily by typing any key. The ESC-key then
will terminate it, any other key resumes displaying of the file.

With the "?"-key instead of a filename you may ask the program for the available options.

The following options are available:

Paging
The file is displayed pagewise. The program writes " ... " on the bottom line of the display
and waits until you press a key. ESC in this situation terminates the program.

Query
Operation on file must be asserted. Default.

NOQuery
Operation on file without assertion.

Equal
Capital and lower case letters are treated as equal.

NO Equal
Capital and lower case letters are tree1:ted as distinct. Default.

Continue
Program continues after execution of the operation and prompts again for a file name.

Header
The program asks for the number of lines which has to be displayed of the
specified file(s). (Default value= 15). ·

Utility Programs 6007

6.5. inspectfile

The program inspectfi/e displays the contents of a file in several formats on the screen. It is normally
used to inspect files consisting of encoded information. The program repeatedly prompts for a file name
and for program options.

inspect> Salary.DATA/octal

If the file name is not specified, the previously accepted name is used. If no program options specifying
the output format are given, the previous format is used. The default output format at the beginning is
set according to the program options Hexadecimal and Byte.

If more than one display format (Ascii, Octal or Hexadecimal) is given, each dumped item will be
displayed in each of the formats given. For example

inspect> /byte/ascii/hex

will display bytes as both ASCII characters and hexadecimal numbers.

ASCII codes from OC to 40C are displayed as the corresponding control code (1C is displayed as 1'A).
ASCII codes>= 177C are displayed as octal numbers.
The leftmost column of the output is the address of the data and is in hexadecimal. Unless program
option output is used, the dump will appear on the screen.

The output may be paused by typing any character except ESC or CTRL-C and restarted by typing
another character. Typing ESC will stop the printout and ask for another file to dump.

Program options

Byte
Information on file is displayed as a sequence of bytes. Default.

Word
Information on file is displayed as a sequence of words.

Ase ii
Displayed values are represented as ASCII characters.

Octal
Displayed values are represented as octal numbers.

Hexadecimal
Displayed values are represented as hexadecimal numbers. Default.

Startaddress
Information is displayed from this file position. Will prompt for specification of the start
position. Default value is the beginning of the file.

Endaddress
Information is displayed until this file position. Will prompt for specification of the start.
position. Default value is the end of the file.

output
Information is written on an output. Will prompt for a file name.

HELP
Program will display information concerning its operation.

Capitals mark the abbreviations of the option values.

6008 Utility Programs

6.6. compare

Program compare detects differences between two text or document files. It first asks for two files to be
compared. Then you are asked whether you want to change some parameters. Type RETURN to use
default values. If you type "y", a window with the parameter values is opened. You may now change a
value by pointing at it and clicking a mouse button. Finish modifications by pressing a mouse button in
the EXIT field.

The program searches now for a difference between the two files. If there is one, it is displayed. Hit
spacebarto search forthe next difference orESCto abort.

Utility Programs 6009

6.7. xref

Program xref generates cross reference information tables of text files, especially of Modula-2
compilation units. ·

The program reads a text file and generates a table with line number references to all identifiers
occuring in the text. It respects the Modula-2 syntax. This means that all word symbols of Modula-2
are omitted from the table. The program also skips strings· (enclosed by quote marks nor apostrophes
')and comments (from(* to the corresponding*)).

The program prompts for the name of the input file. Default extension is lST.

*Xref
input file> BinaryTree.LST

The generated table is listed on a reference file in alphabetical order. In identical character sequences,
capitals are defined greater than lower case letters.

If the lines on the input file start with a number, these numbers are taken as referencing line numbers,
otherwise a listingfile with line numbers is generated (see also program options Land N).

The names of the output files are derived from the input file name with the extension changed as
follows

XRF for the reference file
LST for the listing file

Program Options

s

L

N

Display statistics on the terminal.

Generate a listing file with new line numbers.

Generate no listing file. The line numbers in the reference table will refer to the line
numbers on the input file. All lines on the input file without leading line numbers are
skipped (e.g. error message lines).

6010 Utility Programs

6.8. link

The program link collects the codes of separate modules of a program and writes them on one file. The
program link is called linker in this chapter.

Upon compilation of a separate module, the code generated by the Modula-2 compiler is written on an
object file. An object file may be loaded by the load-er of Medos-2 directly.

As a program usual!{ consists of several separate modules, the loader has to read the code of the
modules from severa object files which are searched according to a default strategy. On the one hand,
this is time consuming because several files must be searched, on the other hand, it could be useful to
subsitute a module from a file with a non-default name. These are some reasons for having a linke~
program.

The linker simulates the loading process and collects the codes of all (nonresident) modules which are,
directly or indirectly, imported by the so-called main module, i.e. the module which constitutes the
main program. The linker applies the same default strategy as the loader to find an object file. A file
name is derived from (the first 16 characters of) the module name. If a first search is not successful, the
prefix LIB is inserted into the file name, and a file with this name is searched.

Module name
First default file name
Second default file name

Options
DK.Options.OBN
DK.LIB.Options.OBN

The linker first prompts for the object file of the main module (default extension OBN). Next, it
displays the name of the main module. If the file already contains some linked modules, the names of
these modules are displayed next. Afteiwards, a name of a not yet linked imported module is displayed,
followed by the file name of the corresponding object file. On the next lines the names of the modules
linked from this file are listed. This is repeated until all imported modules are linked.

•link
Linker V2.0 for Medos-2
object file> delete.OBN

Delete
NameSearch: DK.LIB.NameSearch.OBN

NameSearch
Options: DK.Options.OBN

Options
Fil eNames

end of linkage

main module
second default file name

first default file name

module was linked to Options

After successful linking, all linked modules are written on the object file of the main module!

The linker accepts the program option Q (query) when it prompts for the main module. If this option is
set, the linker also prompts for the file names of the imported modules. Type a file name (default
extension OBN) or simply press the RETURN key to apply the default strategy. A prompt is repeated
until an adequate object file is found, or the ESC key is pressed. The latter means that this module
should not be linked.
With the query option the linker also asks whether or not a module on a object file should be linked.
Type y or RETURN to accept the module, otheiwise type n.

object file> delete. OBN/ q query option set
Delete

NameSearch> NameSearch.new.OBN
NameSearch 1 yes

Options> DK.Options.OBN
Options 7 yes
FileNames ? no

FileNames> FileNames.own.OBN
FileNames ? yes

own file substituted

default file name

module not linked from this file

Utility Programs 6011

6.9. decobj

Program decobj disassembles an object file.

The program reads an object code file and generates a textfile with mnemonics for the machine
instructions. It respects the structure of the object file as generated from the compiler.

The program prompts for the name of the input file. Default extension is OBN.

•decobj
in> program. OBN
out>

Then the program prompts for the output file. Entering ESC instead of a normal file name directs the
output onto the screen. The default extension of the output file rs DEC.

The intended usage of this program is to check the compiler after modifications of the code generation;
however this program may be used also fo learn about the code generation. In production there is no
need to know the code generated by the compiler.

6012 Utility Programs

6.10. hermes/fhermes

The program hermes transfers files between two computers connected by a V24 (RS 232) cable, fhermes
transfers via a RS 422 connection (channel A of Ceres). Both programs use the same transfer protocol.

To transfer a file do the following steps:

1) Connect both computers with a cable. For hermes be sure that the speed on both computers is set
to the same speed (recommended is 19200 baud between Ceres, 9600 baud between Ceres and
Lilith). The speed is changed using the program baudrate.

2) Start the hermes program on both computers.

3) The both programs ask you: are you a master? Answer with yon the computer where you will give
the transfer commands (master), answer. with n on the other computer (slave). It is
recommended to start first the slave computer and later the master. The master will respond with
opening line When the connection with the slave is established, a message line opened will be
displayed. _

4) The master now asks you for the names of the files that should be transferred. The syntax of a file
name is the standard syntax with a prefix allowing to distinguish between both computers. The
prefix ME: identifies the master, the prefix YOU: identifies the slave. Type M for ME:, type Y for
YOU:.

If you try to write a file that already exists, the program asks you if you would like to replace the
old file. Answer with y to replace the file or with n to abandon this file transmission. This query
may be turned off by an option n (no query) following the from file.

When specifying the name of the to: file you may type a RETURN only. In that case the name of the
from: file will be taken·as default.

Examples
from>ME:MyMoney.All<cr>
to>YOU:debt<cr>

This transfers a file 'MyMoney.All' from the master computer to the file
'debt' on the slave computer. If the file already exists on the master
computer, you will be asked if the file should be overwritten.

from>YOU:hundred.francsln<cr>
to>ME:<cr>

transfers file 'hundred.francs' on the slave computer to the file
'hundred.francs' on the master computer. If the file already exists on the
master computer, it will be overwritten without any notice:

5) At the end of the transmission you could exit from the master with typing ESC. The program asks
you in which way you like to exit. Type:
Kor ESC to exit and turn off the slave process
S to exit but let the slave process active to reopen the session next time the master starts

hermes.
R to return back to the hermes program

If the slave process is turned off by the master, a message the transmission is finished, you may use
your machine again will be displayed on the his screen.
The slave must be killed by CTRL-C, if he is not turned off by the master.

Remarks

If the program reports the 1 ost 1 i ne or if the line could not be opened at the beginning, please restart
both programs. In the normal case checksum of each packet is computed and packets with any kind of
troubles are retransmitted.

Utility Programs 6013

6.11. futil

This program is a window-oriented tool for file-handling. Currently it can copy, rename, list and delete
files. It can handle two media at the same time.
FUTIL divides the screen into three windows : a dialog window and two directory windows. Three
menus are available through the middle mouse button : the general menu in the dialog window, the
medium menu in the title bars of the directory windows and the disk menu in the directory
windows as soon as a medium has been choosen.
The two directory windows display part of the directory of the medium they represent. The directory
may be scrolled and sorted. A subset of the directory may be specified using file names with
wildcards. Files may be picked by pointing at them with the mouse and pressing the left button.
Picked files appear highlighted. Once one or more files are picked, an operation can be performed o"n
them using the disk menu.
The key idea of FUTIL is that the user should not have to type in any file name.

Simple use

Here is an example on how to do a simple backup operation from the Ceres 'DK' medium onto a
floppy disk.

1. Install floppy-medium. Startfutil. You will be asked 'Default setup?', answer with 'y'. This will
define 'DI<' as medium for the left directory window. The directory will be read immediately.

2. Open the floppy-medium in the right window (medium menu: remote). Enter the
floppy-medium name. The directory will be read immediately, too.

3. The directories are sorted backwards .. by date such that the last modified files will appear first..
If the files you want to backup do not appear in the Ceres directory window, play with the scroll,
sort and select commands until you find them. Then pick the desired files by pointing at them
with the mouse and pressing the left button. Depressing the right button drops ('unpicks') all
files. Note that files remain picked even if they disappear from the display because of a
scroll.sort or select command.

4. Once you have picked all the files you want to backup, choose the copy command in the
source directory window (i.e. Ceres directory window).jutil will display all the files you have
picked in the dialog window so that you may verify your choice. Next 'Copy all files ?' will be
asked. Answer 'Y' to copy all the files, 'N' to abort the command but leave all files picked.

4. If you have typed 'Y', all the files you have picked are copied. For every file,jutil displays the
operation in the dialog window. The copy operation may be aborted by hitting the escape key.
Files not copied remain picked so that you may continue the copy operation easily.

To restore the files, just pick them in the floppy directory window and use the copy operation in
that window. Other operations· available are rename, delete and list. They also operate on all the
files you have picked.

6014 Utility Programs

6.12. asm32

This program is an assembler for the NS32000 microprocessor family. It can handle two different
"kinds" of programs

- ordinary assembler programs which may be executed on every NS 32000 based
system

- assembler modules that can be used as if they were written in Modula 2. It is
recommended to use it only if it is really necessary. It should be used only by
programmers which are very familiar with the Ceres workstation and the
Modula-2 run-time organization.

The assembler produces, on user demand, a listing file and a cross-reference of all defined
symbols.

Assembly of a program or a module

The assembler is called by typing asm32. After displaying the string "in>", the assembler is
ready to accept the filename of the program to be compiled-.

Default medium is DK and default extension is ASM.

The assembler produces a relocateable code-file (extension REL) for assembler programs or an
object-code file (extension OBN). The program listing and/or the cross-reference is written
onto the list-file (extension LST).

Program Options

In

/x

The assembler does not generate a listing file.

The assembler generates a listing file that includes a cross-reference of all user
defined symbols.

Utility Programs 6015

6.13. vfopen and vfinit

The two programs described in this section allow the use of the floppy disk of Ceres. The program vfinit
formats diskettes and initializes the file system on the floppy. The program vfopen installs the floppy
disk as an ordinary medium in Medos-2. The floppy may then be used with all Medos-2 utility
programs. H.owever, it is substantially slower than the winchester and therefore better suited as a
backup medium.

The programs allow to work with both single- and double sided 3 1/2" inch floppy disks. The capacities
are 360 KBytes resp. 720 KBytes. The file organization on the floppy disk is described in [1]. The
following sections describe the two programs in more detail.

The program vfinit _initializes and formats 3 112" floppy disks for the use as medium under Medos-2. It
allows the transparent use of single- and double sided floppy disks. Because the file organization on
the floppy uses preallocated space for the directory and allocation information, the number of files per
floppy disk is fixed. A single sided floppy allows a maximum of 64 files, while 128 files are possible on a
double sided floppy disk.

After vfinit is started the user is asked for the medium name and the size of the diskette. It is possible
just to initialize the file system information on the floppy without physical reformatting. The following
example shows the dialog. The characters typed by the user are printed in the italic font style.

*vfinit
vfinit V3.0 28.11.86
VF medium initialization
mediumName: backup
s(ingle sided), d(ouble sided)? single sided
format floppy (y/-)? yes
formatting floppy ... done
initialize file directory done
initialize name directory ... done

*
When th.ere are problems during the initialization they are reported by vfinit. However, when problems
occur during the formatting of a diskette the physical media must be seriously damaged.

Once a floppy disk has been initialized with vfinit it can be made accessible as a medium in Medos-2
using the program efopen. This program contains the implementation of the two procedures necessary
to announce a medium to the module FileSystem (see section 9.1.5. of this document). vfopen
introduces a new level and calls the command interpreter on top of it. Before calling vfopen you must be
sure that the floppy disk is installed in the drive. After using the floppy disk the program vfopen must be
left properly by typing ESC in order to leave the floppy disk in a consistent state. During one run of
vfopen the diskette must not be changed for the same reason. However, when the floppy disk has not
been closed properly the main data structures, i.e. the allocation tables are rebuild when it is used next.
The following example shows how to use vfopen.

*vfopen
vfopen 28.11.86
... #backup opened, press ESC to leave

*
..... now the floppy is accessible as #backup
*ESC
Close #backup (y/-)?y

#backup closed

*
We recommend to use the floppy utilities together with the program futil, which is described in
section 6.11.

[1] F.Peschel, M. Wille: Porting Medos-2 onto the Ceres workstation,
· lnstitut fi.ir lnformatik, to be published

The Compiler 7001

7. The Compiler
This chapter describes the use of the Modula-2 compiler. For the language definition refer to the
Modula-2 manual [1]. Ceres specific language features are mentioned in chapter 12 of this handbook.

7.1. Glossary and Examples

Glossary

compilation unit
Unit accepted by compiler for compilation, i.e. definition module or program module (see
Modula-2 syntax).

definition module
Part of a separate module specifying the exported objects.

program module
Implementation part of a separate module (called implementation module) or main
module.

source file
Input file of the compiler, i.e. a compilation unit. Default extension is MOD.

symbol file
Compiler output file with symbol table information. This information is generated during
compilation of a definition module. Assigned extension is SMB.

reference file
Co.mpiler output file with debugger information, generated during compilation of a
program module. Assigned extension is RFN.

object file
Compiler output file with the generated code in loader format. Assigned extension is OBN.

Examples

The examples given in this chapter to explain the compiler execution refer to following compilation
units:

MODULE P rog1;

END Prog1.

MODULE Prog2;
BEGIN

a := 2
END PROG2.

DEFINITION MODULE Prog3;

END Prog3.

IMPLEMENTATION MODULE Prog3;
IMPORT Storage;

END Prog3.

7002 The Compiler

7.2. Compilation of a Program Module

The compiler is called by typing compile. After displaying the string "in>", the compiler is ready to
accept the filename of the compilation unit to be compiled.

Default device is DK and default extension is MOD.

After compilation, the compiler again requests a file name for a further compilation. Terminate by
typing ESC.

7.3. Compilation of a Definition Module

For definition modules the filename extension DEF is recommended. The de.finition part of a module.
must be compiled prior to its implementation part. A symbol file is generated for definition modules.

7.4. Symbol Files Needed for Compilation

Upon compilation of a definition module, a symbol file containing symbol table information is
generated. This information is needed by the compiler in two cases:

At compilation of the implementation part of the module.

At compilation of another unit, importing objects from this separate module.

The filenames of imported modules are shown by the compiler.

If a required symbol file is missing, the compilation process is stopped.

7.5. Compiler Output Files

Several files are generated by the compiler. Their file names are taken as the compilation unit's module
name with the appropriate file name extension:

SMB symbol file
RFN reference file
OBN object file

The reference file is used by the symbolic debugger. The compiler produces two error listing files (err.LST
and err.DAT). The latter is interpreted by other programs, e.g. the program editor sara.

7.6. Program Options for the Compiler

When reading the source file name, the compiler also accepts some program options from the keyboard.
Program options are marked with a leading character I and must be typed sequentially after the file
name (see chapter4.).

The compiler accepts the option values:

Ir
The compiler does generate instructions to check subrange values.

/v
The compiler does generate instructions to check against overflow.

/x
The compiler does not generate instructions to check index bounds.

The Compiler 7003

7.7. Module l<ey

With each compilation unit the compiler generates a so called module key. This key is unique and is
needed to distinguish different compiled versions of the same module. The module key is written on
the symbol file and on the object file.

For an implementation module the key of the associated definition module is adopted. The module
keys of imported modules are also recorded on the generated symbol files and the object files.

Any mismatch of module keys belonging to the same module will cause an error message at
compilation or loading time.

WARNING

Recompilation of a definition module will produce a new symbol file with a new module key.
In this case the implementation module and all units importing this module must be

recompiled as well.

Recompilation of an implementation module does not affect the module key.

7.8. Program Execution

Programs are normally executed on top of the resident operating system Medos-2. The command
interpreter accepts a program name and causes the loader to load the module on the corresponding
object file into memory and to start its execution.

If a program consists of several separate modules, no explicit linking is necessary. The object files
generated by the compiler are merely ready to be loaded. Besides the main module, the module which is
called to be executed and therefore constitutes the main program, all modules which are directly or
indirectly imported are loaded. The loader establishes the links between the modules and organizes the
initialization of the loaded modules.

Usually some of the imported modules are part of the already loaded, resident Medos-2 system (e.g.
module FileSystem). In this case the loader sets up the links to these modules, but prohibits their
reinitialization. A module cannot be loaded twice.

After termination of the program, all separate modules which have been loaded together with the main
module are removed from the memory. More details concerning program execution are given in chapter
3.

Medos-2 also supports some kind of a program stack. A program may call another program, which will
be executed on the top of the calling program. After termination of the called program, control will be
returned to the calling program. For more details refer to the module Program (see chapter 9.4.).

7.9. Value Ranges of the Standard Types

The value ranges of the Modula-2 standard types on Ceres are defined as follows

INTEGER
The value range of type INTEGER is [-32768 . .32767]. Sign inversion is an operation within
constant expressions. Therefore the compiler does not allow the direct definition of
-32768. This value must be computed indirectly, e.g. -32767-1.

LONGINT
The value range of type INTEGER is [-2147483648 .. 2147483647]. The smallest LONGINT can
be defined indirectly (see INTEGER).

CARDINAL
The value range of type CARDINAL is [0 .. 65535].

7004 The Compiler

REAL

CHAR

Values of type REAL are represented in 4 bytes. The value range expands from -1.7014E38 to
1.7014E38.

The character set of type CHAR is defined according to the ISO - ASCII standard with
ordinal values in the range [0 .. 255]. The compiler processes character constants in the
range [OC..377C].

BITS ET
The type BITSET is defined as SET OF [0 .. 31]. Consider that sets are represented from the
low order bits to the high order bits, i.e. {0} corresponds to the ordinal value 1.

7.10. Restrictions

For the implementation of Modula-2 on Ceres some differences and restrictions must be considered.

Forward References

Sets

No forward references are permitted, except in definitions of pointer types and in forward
procedure declarations.

Maximal ordinal value for set elements is 31. If, in {m .. n}, mis a constant, then n must also
be a constant.

FOR statement
The values of both expressions of the for statement must not be greater than 32767
(777778).

Function procedures
The result type of a function procedure must neither be a record nor an array.

Index types in array declarations
The index type must be a subrange type

Standard functions, procedures, and types
The functions VAL, the procedures NEW, DISPOSE, TRANSFER, NEWPROCESS, and the type
PROCESS are not predeclared (although defined as standard objects in earlier reports on the
language).
The function SIZE is a standard procedure (globally defined), and it is identical to the
function TSIZE defined in module SYSTEM. Its argument is a type or a variable; the result is
the size of the type (of the variable) in number of bytes required for the variable or for a
variable of that type.

Subranges .
The bounds of a subrange must be less than 215 in absolute value.

Opaque types
If a type Tis declared in a definition module to be opaque, it cannot (in the corresponding
implementation module) be declared as equal to another, named type.

Procedures declared in definition modules
If a procedure (heading) is declared in a definition module, its body must be declared in the
corresponding implementation module proper; it cannot be declared in an inner, local
module.

7.11. Compiler Error Messages

Syntax errors

10 identifier expected
11 , comma expected
12 ; semicolon expected
13 : colon expected
14 . period expected
15) right parenthesis expected
16] right bracket expected
17 } right brace expected
18 = equal sign expected
19 := assignment expected
20 END expected
21 .. ellipsis expected
22 (left parenthesis expected
23 OF expected
24 TO expected
25 DO expected
26 UNTIL expected
27 THEN expected
28 MODULE expected
29 illegal digit, or number too large
30 IMPORT expected
31 factor starts with illegal symbol
32 identifier, (,or [expected
33 identifier, ARRAY, RECORD, SET, POINTER, PROCEDURE,

(,or [expected
34 Type followed by illegal symbol
35 statement starts with illegal symbol
36 declaration followed by illegal symbol
37 statement part is not allowed in definition module
38 export list not allowed in program module
39 EXIT not inside a LOOP statement
40 illegal character in number
41 number too large
42 comment without closing*)
43
44 expression must contain constant operands only
45 control character within string

Undefined

50 identifier not declared or not visible

Class and type errors

51 object should be a constant
52 object should be a type
53 object should be a variable
54 object should be a procedure
55 object should be a module
56 type should be a subrange
57 type should be a record
58 type should be an array
59 type should be a set
60 illegal base type of set
61 incompatible type of label or of subrange bound
62 multiply defined case (label)
63 low bound >high bound

The Compiler 7005

7006 The Compiler

64 more actual than formal parameters
65 fewer actual than formal parameters

66 - 73 mismatch between parameter list D in definition and I in
implementation module

66 more parameters in I than in D
67 parameters with equal types in I have different types in D
68 mismatch between VAR specifications
69 mismatch between type specifications
70 more parameters in D than in I
71 mismatch between result type specifications
72 function in D, pure procedure in I
73 procedure in D has parameters, but not in I

74 code procedure cannot be declared in definition module
75 illegal type of control variable in FOR statement
76 procedure call of a function
77 identifiers in heading and at end do not match
78 redefinition of a type that is declared in definition part
79 imported module not found
80 unsatisfied export list entry
81 illegal type of procedure result
82 illegal base type of subrange
83 illegal type of case expression
84 writing of symbol file failed
85 keys of imported symbol files do not match
86 error in format of symbol file
88 symbol file not successfully opened
89 procedure declared in definition module, but not in implementation

Implementation restrictions of compiler

90 in {a .. b}, if a is a constant, b must also be a constant
91 code procedure can have at most 8 bytes of code
92 too many cases
93 too many exit statements
94 index type of array must be a subrange
95 subrange bound must be less than 2t15
96 too many global modules
97 too many procedure in definition module
98 too many structure elements in definition module
99 too many variables, or record too large

Multiple definition

100 multiple definition within the same scope

Class and type incompatibilities

101 illegal use of type
102 illegal use of procedure
103 illegal use of constant
104 illegal use of type
105 illegal use of procedure
106 illegal use of expression
107 illegal use of module
108 constant index out of range
109 indexed variable is not an array, or the index has the wrong type
110 record selector is not a field identifier
111 dereferenced variable is not a pointer
112 operand type incompatible with sign inversion
113 operand type incompatible with NOT
114 x IN y: type(x) # basetype(y)

115 type of x cannot be the basetype of a set, or y is not a set
116 {a .. b}: type of either a orb is not equal to the base type of the set
117 incompatible operand types
118 operand type incompatible with*
119 operand type incompatible with I
120 operand type incompatible with DIV
121 operand type incompatible with MOD
122 operand type incompatible with AND
123 operand type incompatible with+
124 operand type incompatible with -
125 operand type incompatible with OR
126 operand type incompatible with relation

127-131: assignment of a procedure P to a variable of type T
127 procedure must have level 0
128 result type of P does not match that of T
129 mismatch of a parameter of P with the formal type list of T
130 procedure has fewer parameters than the formal type list
131 procedure has more parameters than the formal type list

132 assignment of a negative integer to a cardinal variable
133 incompatible assignment
134 assignment to non-variable
135 type of expression in IF, WHILE, UNTIL clause must be BOOLEAN
136 call of an object which is not a procedure
137 type of VAR parameter is not identical to that of actual parameter
138 value assigned to subrange variable is out of bounds .
139 type of RETURN expression differs from procedure type
140 illegal type of CASE expression
141 step in FOR clause cannot be 0
142 illegal type of control variable
143
144 incorrect type of parameter of standard procedure
145 this parameter should be a type identifier
146 string is too long
147 incorrect priority specification
148
149

Name collision

150 exported identifier collides with declared identifier

Implementation restrictions of system

200 character assigned to array (not yet implemented)
201 integer too small for sign inversion
202 set element outside word range
203 overflow in multipliaction
204 overfolow in division
205 division by zero, or modulus with negative value
206 overflow in addition
207 overflow in subtraction
208 cardinal value assigned to integer variable too large
209 set size too large
210 array size too large
211 address too large (compiler error?)
212 character array component cannot correspond to VAR parameter
213 illegal store operation (compiler error?)
214 set range bounds must be constants
215 expression too complex (stack overflow)
216 double precision multiply and divide are not implemented

The Compiler 7007

7008 The Compiler

222 output file not opened (directory full?)
223 output incomplete (disk full?)
224 too many external references
225 too many strings
226 program too long

The Debugger 8001

8. The Debugger

8.1. Introduction

Program execution errors cause the operating system to make a complete dump of the main memory to
the disk, thus preserving the computer's state at error time. The debugger is an interpreter of this dump
file. It allows you to search for execution errors on the same abstraction level that you origin.ally
created your program (see Fig. 1). The debugger is of great help in finding the reasons for your
program's crash.

Program Development

Abstraction
Level
Modula-2

Text

Fig. 1: Debugger Environment

The debugger gets its information from three sources:

Debugging

- Source File(s) source text of yourJrogram
- Reference File(s) compiler-generate file with names, types, etc. of your program
- Dump File operating system generated dump of the computer's main memory

If your program consists of several modules, the debugger needs the source and reference file of each
module.

8002 The Debugger

8.2. Starting the Debugger

After a runtime error, you start the debugger by typing inspect. The debugger now reads the dump file,
the applicable source file and all the necessary reference files and presents you with the following
screen image:

MODULE Buggy; (* W. Heiz, 31.10.85 *)

VAR x: CARDINAL;

a: ARRAY [0 .. 10] OF BOOLEAN;

PROCEDURE P(i: CARDINAL; p: BOOLEAN);

BEGIN

~~
END P;

BEGIN

x := 12;
P(O, TRUE);

P(x, FALSE);

END Buggy.

[P in Buggy

Initialization of Buggy

p

Type= PROCEDURE

Procedure 39 in Progra 12 CARDINAL

p FALSE BOOLEAN

26 Screen

27 BitmaplO

28 ScreenDriver2

29 ScreenResourcesO

30 ByteBlocklO

31 Buggy

Buggy

Type= MODULE
x 12

a * 22

Fig. 2: Debugger Screen Image

The seven windows are:

CARDINAL

ARRAY

- Source Window: Contains the source listing with the erroneous statement marked.
- Procedure Chain Window: Shows the calling sequence of the active procedures.
- Data 1 Window: Contains all the variables of the last called procedure.
- Module List Window: Lists all loaded modules.
- Data 2 Window: Contains all the variables of the active module.
- Process Window: Displays the reason for the program crash.
- Memory Window: Shows the memory in an uninterpreted form.

Subsequently we shall take a closer look at each window.

The Debugger 8003

8.3. Global Commands

Each Window has a scroll bar at the left side. Clicking inside the scroll bar causes the contents to scroll
as in the editor. Three marks in the scroll bar (" [", "]" and "I") give additional information on the
window state. The marks " [" and "]"tell that the beginning or end, respectively, of the information is
visible. The mark "I" gives feedback of the relative position of the window in the information being
displayed. The three mouse buttons (ML, MM and MR) are used as follows:

ML: Display data of selected object.
MR: Display source or memory of selected object.
MM: Display menu.

8.4. ·Local Commands

The Source Window

The source window contains a listing which is selected through the procedure chain or the module list
window. If selected through the procedure chain window the error position is highlighted.

ML: -
·MR: -
MM: Menu:

The Data Windows

Ask On
Ask Off

Ask user for alternate filenames if source file cannot be found.
Don't ask user for alternate filenames.

The two data windows display the data related with selected modules, procedures, arrays, records and
pointers.

ML: Show further data of selected object if there is such.
Objects with further data are marked with"*"·
The top line shows a path through which the present structure was reached.
The path can be retraced in reverse order by selecting a previous component

MR: Show memory corresponding to a selected object. This includes objects in the structure
path.

MM: Menu: Expand Expand window.
Shrink Shrink window.

The Procedure Chain Window

The procedure chain window shows the calling sequence of the active procedures in the current
selected process.

ML: Show local data of selected procedure.
MR: Show source listing of selected procedure.
MM: Menu: Data 1 Use data window 1 to display local data of procedures.

Data 2 Use data window 2 to display local data of procedures.

The Module List Window

The module list window shows the list of loaded modules.
ML: Show global data of selected module. .
MR: Show source listing of selected module.
MM: Menu: Data 1 Use data window 1 to display global data of modules.

Data 2 Use data window 2 to display global data of modules.
DEF Show the definition listing of future selected modules.
MOD Show the implementation listing of future selected modules.

8004 The Debugger

The Process Window

The process window shows the process status.
ML: -
MR: -
MM: Menu: Process After selecting this option, a process can be selected from

the data window by pointing to a variable of type ADDRESS
or from the memory window by pointing to any memory
cell.

The Memory Window

Main Pr
Exit

Return to the main process.
Leave the debugger.

The memory window shows the memory in an uninterpreted form.
ML: Interpret selected memory cell as an address for further memory dump.
MR: -
MM: Menu: Expand

Shrink
Char
Byte
Word
Double

Expand window.
Shrink window.
Display mode is character.
Display mode is byte (in hex notation).
Display mode is word (in hex notation).
Display mode is double word (in hex notation).

8.5. Debugger Command Summary

show show show
further local global
data of data of data of
selected selected selected
object procedure module

show show show
memory source source
of of of
selected selected selected
object procedure module

Menu: Menu: Menu: Menu: Menu:
Ask On Expand Data 1 Data 1 Process
Ask Off Shrink Data2 Data2 Main Pr

DEF Exit
MOD

Fig. 3: Debugger Command Summary

show
memory
dump of
selected
address

Menu:
Expand
Shrink
Char
Byte
Word
Double

The Medos-2 Interface 9001

9. The Medos-2 Interface
This chapter describes the interface to the Medos-2 operating system. It contains the following
modules:

FileSystem
Processes
Program
Programs
Heap
SEK
Terminal Base
Terminal
Users
Clock

Module forthe use of files 9.1.
Module for the handling of processes 9.2.
Facilities for the execution of programs 9.3.
Module for handling programs and resources 9.4.
Module for storage arlocation and deallocation 9.5.
Module for activation of the command interpreter 9.6.
Module for substitution of terminal input and output9.7.
Module for terminal inf ut and output 9.8.
Module for handling o user identifications 9.9.
Module for setting and requesting the current time 9.10.

9002 The Medos-2 Interface

9.1. Module FileSystem

9.1.1. Introduction

A (Medos-2) file is a sequence of bytes stored on a certain medium. Module FileSystem is the interface
the normal programmer should know in order to use files. The definition modufo is listed in chapter
9.1.2. The explanations needed for simple usage of sequential (text or binary) files are given in chapter
9.1.3. More demanding users of files should also consult chapter 9.1.4. The file system supports several
implementations of files. At execution time a program may declare that it implements files on a certain
named medium. How this is achieved is mentioned in chapter 9.1.5. On Ceres 16 Mbyte of the
winchester disk drive act as the standard medium for files. Some characteristics and restrictions of the
current implementation, as well as a list of possible error messages, are given in chapter 9.1.6.

9.1.2. Definition Module FileSystem

DEFINITION MODULE FileSystem;

FROM SYSTEM IMPORT ADDRESS, WORD;

TYPE
Flag
FlagSet

Response

Command

= (er, ef, rd, wr, ag, bm);
SET OF Flag;

= {done, notdone, lockerror, permissionerror,
notsupported, callerror,
unknownmedium, unknownfile, filenameerror,
toomanyfiles, mediumfull,
deviceoff, parityerror, harderror);

= {create, open, opendir, close, rename,
setread, setwrite, setmodify, setopen, doio,
setpos, getpos, length,
setpermission, getpermission,

Lock

Permission

MediumType

File

setpermanent, getpermanent);

= {nolock, sharedlock, exclusivelock);

= {noperm, ownerperm, groupperm, allperm);

=ARRAY (0 .. 1] OF CHAR;

= RECORD
bufa: ADDRESS;
ela: ADDRESS; elodd: BOOLEAN;
ina: ADDRESS; inodd: BOOLEAN;
topa: ADDRESS;
flags: FlagSet;
eof: BOOLEAN;
res: Response;
CASE com: Command OF

create, open: new: BOOLEAN; lock: Lock

I
opendir: selections: BITSET;
setpos, _ge~pos, length: ~ighpos, lowpos:
setperm1ss1on, getperm1ss1on:

readpermission: Permission;
modifypermission: Permission

I setpermanent, getpermanent: on: BOOLEAN
£ND·
mt:'MediumType; mediumno: CARDINAL;
fileno: CARDINAL; versionno: CARDINAL;
openedfile: ADDRESS;

END;

CARDINAL

PROCEDURE Create{VAR f: File; filename: ARRAY OF CHAR);
PROCEDURE Lookup{VAR f: File; filename: ARRAY OF CHAR; new: BOOLEAN);

PROCEDURE Close{VAR f: File);

The Medos-2 Interface 9003

PROCEDURE Delete(VAR f: File);

PROCEDURE Rename(VAR f: File; filename: ARRAY OF CHAR);

PROCEDURE ReadWord(VAR f: File; VAR w: WORD);
PROCEDURE WriteWord(VAR f: File; w: WORD);
PROCEDURE ReadChar(VAR f: File; VAR ch: CHAR);
PROCEDURE WriteChar(VAR f: File; ch: CHAR);

PROCEDURE Reset(VAR f: File);
PROCEDURE Again(VAR f: File);

PROCEDURE SetPos!VAR f: File; highpos, lowpos: CARDINAL);
PROCEDURE GetPos VAR f: File; VAR highpos, lowpos: CARDlNAL);
PROCEDURE Length VAR f: File; VAR highpos, lowpos: CARDINAL);

PROCEDURE GetPosL VAR f: File; VAR pos: LONGINT);
PROCEDURE SetPosL!VAR f: File; pos: LONGINT);

PROCEDURE LengthL VAR f: File; VAR pos: LONGINT);

PROCEDURE FileCommand(VAR f: File);
PROCEDURE DirectoryCommand(VAR f: File; filename: ARRAY OF CHAR);

PROCEDURE SetRead(VAR f: File);
PROCEDURE SetWrite(VAR f: File);
PROCEDURE SetModify(VAR f: File);
PROCEDURE SetOpen(VAR f: File);
PROCEDURE Doio(VAR f: File);

TYPE
FileProc =PROCEDURE (VAR File);
DirectoryProc =PROCEDURE (VAR File, ARRAY OF CHAR);

PROCEDURE CreateMedium(mt: MediumType; mediumno: CARDINAL;
. fp: FileProc; dp: DirectoryProc; VAR done: BOOLEAN);

PROCEDURE DeleteMedium(mt: MediumType; mediumno: CARDINAL;
VAR done: BOOLEAN); .

PROCEDURE ·AssignName(mt: MediumType; mediumno: CARDINAL;
mediumname: ARRAY OF CHAR; VAR done: BOOLEAN);

PROCEDURE DeassignName(mediumname: ARRAY OF CHAR; VAR done: BOOLEAN);

PROCEDURE ReadMedium(index: CARDINAL;
VAR mt: MediumType; VAR mediumno: CARDINAL;
VAR mediumname: ARRAY OF CHAR; VAR.original: BOOLEAN;
VAR done: BOOLEAN);

PROCEDURE LookupMedium(VAR mt: MediumType; VAR mediumno: CARDINAL;
mediumname: ARRAY OF CHAR; VAR done: BOOLEAN);

END FileSystem.

9004 The Medos-2 Interface

9.1.3. Simple Use of Files

9.1.3.1. Opening, Closing, and Renaming of Files

A file is either permanent or temporary. A permanent file remains stored on its medium after it is closed
and normally has an external (or symbolic) name. A temporary file is removed from the medium as
soon as it is no longer referenced by a program, and normally it is nameless. Within a program, a file is
referenced by a variable of type File. From the programmer's point of view, the variable of type File
simply is the file. Several routines connect a file variable to an actual file (e.g. on a disk). The actual file
either has to be created on a named medium or looked up by its file name. The syntax of medium name
and file name is

medium name
identifier

file name
local name

= r identifier] .
= letter { letter I digit } .

= medium name ["." 1oca1 name] ·.
= identifier { "." identifier } .

Capital and lower case letters are treated as being different. The medium name is the name of the
medium, upon which a file is (expected to be) stored. The local name is the name of the file on a
specific medium. The last (and maybe the only) identifier within a local file name is often called the/i/e
name extension or simply extension. The file system does, however, not treat file. name extensions in a
special way. Many programs and users use the extensions to classify files according to their content
and treat extensions in a special way (e.g. assume defaults, change them automatically, etc.).

Dl<.SYS.directory.OBN

File name of file SYS.directory.OBN on medium DK. Its extension is OBN.

Create(f, filename)
Procedure Create creates a.new file. The created file is temporp.ry {and nameless) if the
substituted filename parameter is a medium name. The created file is permanent if the
substituted filename parameter contains a local name. After the call

f.res =done
f.res = notdone
f.res = ...

Lookup {f, filename, new)

if file f is created,
if a file with the given name already exists,
if some error occured.

Procedure Lookup looks for the actual file with the given file name. If the file exists, it is
connected to f {opened). If the requested file is not found and new is TRUE_, a permanent
file is created with the given name. After the call

f.res =done
f.res = notdone
f.res = ...

if file f is connected,
if the named file does not exist,
if some error occured.

If file f is connected, the field f.new indicates:

f.new = FALSE
f.new =TRUE

Close(f)

File f existed already
File f has been created by this call

Procedure Close terminates any actual input or output operation on file f and disconnects
the variable f from the actual file. If the actual file is temporary, Close also deletes the file.

Delete(f)
Procedure Delete terminates any actual input or output operation on file f and disconnects
the variable f from the actual file. The actual file is deleted hereafter. Procedure Delete is
equivalent to:

Rename{f, "");
Close{f);

{*See next description *)

The Medos-2 Interface

Rename(f, filename)
Procedure Rename changes the name of file f to filename. If filename is empty or contains
only the medium name, f is changed to a temporary and nameless file. If filename contains
a local name, the actual file will be permanent after a successful call of Rename. After the
call

f.res =done
f.res = notdone
f.res = ...

Related Module

if file f is renamed,
if a file with filename already exists,
if some error occured.

9005 .

Module FileNames makes it easier to read file names from the keyboard (i.e. from module Terminal, see
chapter9.8.) and to handle defaults (see chapter11.6.).

9.1.3.2. Reading and Writing of Files

At this level of programming, we consider a file to be either a sequence of characters (text file) or a
sequence of words (binary file), although this is not enforced by the file system. The first called routine
causing any input or output on a file (i.e. ReadChar, WriteChar, ReadWord, WriteWord) determines
whether the file is to be considered as a text or a binary file.

Characters read from and written. to a text file are from the ASCII set. Lines are terminated by character
36C (= eol, RS).

Reset(f)
Procedure Reset terminates any actual input or output and sets the current position of file f to the
beginning off.

WriteChar(f, ch), WriteWord(f, w)
Procedure WriteChar (WriteWord) appends character ch (word w) to file f.

ReadChar(f, ch), ReadWord(f, w)
Procedure ReadChar (ReadWord) reads the next character (word) from file f and assigns it to ch
(w). If ReadChar has been called without success, OC is assigned to ch. f.eof implies ch= DC. The
opposite, however, is not true: ch= DC does not imply f.eof. After the call

f.eof = FALSE ch (w) has been read
f.eof =TRUE Read operation was not successful

If f.eof is TRUE:

f.res =done
f.res = ...

End of file has been reached
Some error occured

Again(f) ·
A call of procedure Again unreads the last read byte (e.g. character) on file f. As a consequence,
the last byte read just before the call of Again will be read again as the first byte the next
(sequentially) read-operation.

Related Modules

Module ByteBlock/O makes it easier (and more efficient) to transfer elements of any given type (size).
This module also transfers words correctly if the current position of the file is odd (see note above)!

9.1.3.3. Positioning of Files

All input and output routines operate at the current position of a file. After a call to Lookup, Create or
Reset, the current position of a file is at its beginning. Most of the routines operating upon a file change
the current position of the file as a normal part of their action. Positions are encoded into long cardinals,
and a file is positioned at its beginning, if its current position is equal to zero. Each call to a procedure,
which reads or writes a character (a word) on a file, increments the current file position by 1 (2) for
each character (word) transferred. A character (word) is stored in 1 (2) byte(s) on a file, and the
position of the element is the number of the (first) byte(s) holding the element By aid of the

9006 The Medos-2 Interface

procedures GetPos, Length, and SetPos it is possible to get the current position of a file, the position just
behind the last element in the file, and to change explicitly the current position of a file. For Ceres there
also exist the procedures GetPosL, LengthL and SetPosl which have only one position argument of type
LONGINT.

SetPos (f, high pos, lowpos)
A call to procedure SetPos sets the current position of file f to highpos * 216 + lowpos. The new
position must be less or equal the length of the file. If the last operation before the call of SetPos
was a write operation (i.e. if file f is in the writing state), the file is cut at its new .current
position, and the elements from current position to the end of the file are lost. · ·

GetPos(f, highpos, lowpos)
ProcedureGetPos returns the current file position. It is equal to highpos * 216 + lowpos.

Length (-f, highpos, lowpos)
Procedure Length gets the position just behind the last element of the file (i.e. the number of
bytes stored on the file). The position is equal to highpos * 216 + lowpos.

9.1.3.4. Examples

Writing a Text File

VAR
f: File;
ch: CHAR; endoftext: BOOLEAN;

Lookup(f, "DK.newfile", TRUE);
IF (f .res<> done) OR NOT f.new THEN

(* f was not created by this call to "Lookup"*)
1F f .res= done THEN Close(f) END

ELSE
LOOP

(* find next character to write --> endoftext, ch •)
tF endoftext THEN EXIT END;
WriteChar(f, ch)

END·
c1ose(f)

END

Reading a Text File

VAR
f: File;
ch: CHAR;

Lookup(f, "DK.oldfile", FALSE);
IF f .res<> done THEN

(* file not found *)
ELSE

LOOP
ReadChar(f, ch);
IF f .eof THEN EXIT END;
(* use ch *)

ENO·
c1ose(f)

END

The Medos-2 Interface 9007

9.1.4. Advanced Use of Files

9.1.4.1. The Procedures FileCommand and DirectoryCommand

In the previous sections, the file variable served, with few exceptions, simply as a reference to a file. The
e.xcepti~ns were the fields_ eof, ~es, and ~ew within a_ file ~ariabl~. ~enerall_y, how.ever, al.I operations on a
file are implemented by either inspecting or changing fields w1thm the file variable directly and/or by ·.
encoding the needed operation (command) into the file variable followed by a call to either routine
FileCommand or DiredoryCommand. The commands create, open, opendir, close, and rename (constants
of type Command) are executed by procedure DiredoryCommand, all other by procedure FileCommand.
An implementation of SetPos and Lookup should illustrate this:

PROCEDURE SetPos(VAR f: File; highpos. lowpos: CARDINAL);
BEGIN

f .com := setpos;
f .highpos := highpos; f .lowpos := lowpos;
Fil eCommand (f) ;

END SetPos;

PROCEDURE Lookup(VAR f: File; filename: ARRAY OF CHAR; new: BOOLEAN);
BEGIN

f .com := lookup;
f . new : = new ; f . lock : = nolock;
DirectoryCommand(f. filename)

END Lookup;

Commands may be executed either by procedure FileCommand or by procedure DiredoryCommand.
Unless the command is create, open, opendir, close, or rename, a call to DiredoryCommand will be

··converted to a call to FileCommand by the file system. Similarely, the file system converts calls to
procedure FileCommand with command create, open, opendir, close, or rename to DiredoryCommand calls
with empty file name parameters ..

Below is a list of all commands and a reference to the section where each is explained:

create
open
opendir
close
rename
setread
setwrite
setmodify
setopen
doio
setpos
getpos
length

· setpermission
getpermission
setpermanent
getpermanent

create a new temporary (and nameless) file
open an existing file by /Fl
open a directory file by wildcard filename
close a file
rename a file
set a file into state reading
set a file into state writing
set a file into state modifying
set a file into state opened
get next buffer
change the current position of the file
get the current position of the file
get the length of the file
change the protedion of the file
get the current protedion of the file
change the permanency of the file
get the permanency of the file

(9.1.3.1)
(9.1.4.2)
(9.1.4.6)
(9.1.3.1)
(9.1.3.1)
(9.1.4.5)
(9.1.4.5)
(9.1.4.5)
(9.1.4.5)
(9.1.4.5)
(9.1.3.3)
(9.1.3.3)
(9.1.3.3)
(9.1.4.4)
(9.1.4.4)
(9.1.4.3)
(9.1.4.3)

After the execution of a command, field res of the file reflects the success of the operation. Other fields
of the file variable might, however, contain additional return values, depending on the executed
command and the state of the file (see 9.1.4.5.). Here, the normal way of setting the fields before a
return from procedure FileCommand is given:

9008 The Medos-2 Interface

WITH f DO
(* set other fields *)
res : = " ... ";
flags :=flags - FlagSet{er, ef, rd, wrl;
IF "state= opened"(* see 9.2.4.5. *) iHEN

bufa := NIL; (* no buffer assigned *)
ela ·- NIL; elodd .- FALSE;
ina ·- NIL; inodd := FALSE;
topa .- NIL;
eof .- TRUE

ELSE
bufa := ADRl"buffer"); (*buffer at current position of file*)
ela := ADR "word in buffer at current position");
elodd .- ODD "current position");
ina .- ADR "first not (completely) read word in buffer");
inodd := "word at ina contains one byte";
top a : = ADR("first word after buffer");
eof .- "current position = length";
IF "!state = reading) OR (state = modifying!" THEN INCL~flags, rd) END·
IF " state = writing) OR (state = modifying " THEN INCL flags, wr) END~
IF e odd OR ODD("length") THEN INCL(flags, ytemode) EN ;

END·
IF res <> done THEN eof := TRUE; INCL(flags, er) END;
IF eof THEN INCL(flags, ef) END

END

The states of a file and the file buffering are explained in 9.1.4.5. The field flags enables a simple (and
therefore efficient) test of the current state of the file, whenever it is accessed. The "flag" ag is set by
routine Again and cleared by routines, which changes the current position of a file (e.g. read routines) or
which removes the rd-flag field/lags of the file (command setopen and setwrite) ..

9.1.4.2. Internal File Identification and External File Name

All files supported by the file system have a unique identification, the so called internal file
identification (!Fl) and might also have an external (or symbolic) file name.

Both the internal file identification and the file name consist of two parts, namely a part identifying the
medium upon which a file is (expected to be) stored, and a part identifying the file on the selected
medium.

The two parts of an internal file identification are called the internal medium identification (!Ml) and
the local file identification (LFI). The two parts of a file name are called the medium name and the local
file name.

The IFI of a connected (opened) file may be obtained at any time: The IMI is stored in the fields mtand
mediumno of the file variable. The LFI is stored in the fields fileno and versionno of the file variable.

A file f can be opened, if it exists and its IFI is known:

f.mt := ... ; f.mediumno := ... ;
f.fileno := ... ; f.versionno .­
f.com :=open;
f.new := ... ; f.lock .- ... ;
Di recto ryCommand (f, '"')

••• t

The identification of a file by a user selected or computed name (a string) is however both commonly
accepted and convenient. The syntax of a file name is given in 9.1.3.1. The routines Create, lookup,
Rename and DirectoryCommand all have a parameter specifying the file name.

If the medium name is contained in the file name, it is looked up and replaced by an IMI and stored into
the file variable, except when the rename command is used. In this case, the "converted" IMI is checked
against the IMI stored in the file variable. If the medium name is missing in the actual file name
parameter, it is assumed that the corresponding IMI is already stored in the file variable.

The local file name part of the file name will be handled by the routine implementing DirectoryCommand
for the medium given by the IMI (see also 9.1.5.}.

The Medos-2 Interface 9009

9.1.4.3. Creation, Opening, and Closing of Files

The most convenient way to create, open, and close files have already been mentioned in chapter 9.1.3.1.
This is done by the/rocedures Create, Lookup, and Close. For special problems, the command create or
open may be invoke directly. Concurrent accesses to files and nameless files may be handled that way.

A file lock specify, how concurrent accesses to a file has to be handled. This is interesting, when there
are several access-paths to one file at the same time. E.g. a file on a file-server may be accessed from
several client machines at the same time. In Medos-2, the wanted handeling of concurrent accesses is
specified when a file is created or opened. This is done by assigning the field lock in the file-variable a
value of type Lock. · ·

Lock = (nolock, shared lock, exclusivelock)

no lock: concurrent accesses are unrestrictedly allowed
sharedlock: concurrent non-modifying accesses are unrestrictedly allowed
excl usivelock: no concurrent accesses are allowed

The specific lock holds for the time the file is opened. This implies that a file is opened with sharedlock
cannot be changed during the time the file is opened. It can, however, be opened several times with
shared lock at the same time, if the underlaying system permits it (i.e. if no other conditions forbid it). If
a file is created or opened with exc/usivelock it is guaranteed that the file is not opened a second time
until the first opened file is closed again.

Create a nameless (and temporary) file on medium "DK"

f .com :=create;
f.new :=TRUE; f.lock := nolock;

DirectoryCommand(f, "DK")

The field new must always be set TRUE for command create. An existing database
"Dl<.EvR1.WS84.students" is opened for exclusive access the following way:

f .com :=open;
f .new := FALSE; f .lock := exclusivelock;
DirectoryCommand(f, "DK.EvR1.WS84.students");
IF f .res= done tHEN

END

Closing of files is done by command close:

f. com : = close;
DirectoryCommand(f, "")

9.1 .4.4. Permanency of Files

As explained in 9.1.3.1, a file is either temporary or permanent. The rule is that, when a file is closed
(explicitly, implicitly, or in a system crash), a temporary file is deleted and a permanent file will remain
on the medium for later use. Normally, a "nameless" file is temporary, and a "named" file is permanent.
It is, however, possible to control the permanency of a file explicitly. This is useful, if for some reason, it
is better to reference a file by its IFI instead of its file name (e.g. in data base systems, other directory
systems).

Set File Permanent

f .on :=TRUE; f .com .- setpermanent;
F i1 eCommand (f)

Set File Temporary

f .on := FALSE; f.com .- setpermanent;
F i1 eCommand (f)

9010 The Medos-2 Interface

Get File Permanency

f .com := getpermanent;
FileCommand(f);

(* f .on= TRUE if and only if f is permanent*)

9.1.4.5. Protection of Files

It is possible to control accesses to a file by changing its access-permissions. A file has a read- and a
modify-permission. A permission can be given to nobody, to the owner of the file only, to group
members, and to everybody. The read-permission allows a user to read the information stored in the file
and to get information (e.g. statistics) about the file. A user need the modify-permission on a file in
order to be able to change it. The only exception to these rules is that the owner of a file may always
inspect and change the permissions of the file. A certain permission is indicated by a constant of type
Permission:

Permission = (noperm, ownerperm, groupperm, all perm).

In Medos-2, the modification of a file implies reading of the file. A file's read-permission must
thereforalways be less restrictive or the sames as its modify-permission. This is given by the following
rule:

read-permission of file >= modify-permission of file

Set Permissions

f.readpermission := ... perm; f.modifypermission .- ... perm; _
f .com := setpermission; FileCommand(fJ

Protect File against changes

f .readpermission := allperm; f .modifypermission .- noperm;
f .com := setpermission; FileCommand(fJ

Unprotect File

f .readpermission := allperm; f .modifypermission .­
f .com := setpermission; FileCommand(fJ

Get File Permissions

f .com := getpermission; FileCommand(f);

all perm;

(*now f.readpermission and f.modifypermission describe permissions*)

9.1.4.6. Reading, Writing, and Modifying Files

A file can be in one of four possible //0 states (or simply, states), namely in state opened, reading,
writing or modifying. Just after a file has been connected (e.g. by a call to procedure Create), a file is in
state opened, and its current position is zero. The state of a file can only be changed by a direct or
indirect call to one of the routines Setopen, SetRead, Setwrite, and Set:Modify or by executing one of the
commands setopen, setread, setwrite, and setmodify. The actual state of a ffle may be inspected in field
flags of the file:

opened flags* FlagSet{rd, wr} = FlagSet{}
reading flags* FlagSet{rd, wr} = FlagSet{rd}
writing flags* FlagSet{rd, wr} = FlagSet{wr}
modifying flags* FlagSet{rd, wr} = FlagSet{rd, wr}

The buffers needed for the transfer of data to and from files are supplied and managed by the file
system. The changes of a file's 110 state and normally the command doio (or procedure Doio resp.)
control the system's buffering. The commands setread, setwrite, setmodify_, setopen, and doio (and the
corresponding routines) do, however, not change the current position of a file as a side effect.

The Medos-2 Interface 9011

In state opened, no buffer is assigned to a file (seen from a user's point of view). Any internal buffer
with new or changed information has been written back onto the medium on which the file is
physically stored. The addresses describing the buffer in the file variable (bufa, e/a, ina, and topa) are all
equal to NIL Any written or changed information within a file can therefore be forced out (flushed) to
the corresponding medium by a call to SetOpen. ·

In the other three states (reading, writing and modifying), a buffer is assigned to the file. The following
figure shows how bufa, e/a, elodd, ina, inodd, and topa describe the buffer supplied by the system: . ·

bu fa
ela
el odd
in
inodd
top a

bu fa
top a
ina
in odd
ela
elodd

f: File

L

~

1

I
TRUE -~

I

FALSE

J

LJ
7

buffer

i

l

I I
I

first word in buffer

byte at current position

information read into the buffer

currently unused part of buffer

first word after buffer

address of the first byte of the buffer
address of the first byte behind the buffer
address of the first byte behind the data read from the file
TRUE, if the last read byte is a high order byte
address of the word containing the byte atthe current position
TRUE, if the byte atthe current position is a low order byte

The following two assertions should always hold for bufa, e/a, ina, and topa:

bufa <= ela <= topa
bufa <= ina <= topa

The fields bufa, ina, inodd, and topa are read-only, as they contain information which must never be
changed by any user of a file.

If the file is not in. state opened, the byte at the current position will be in the buffer after procedure
FileCommand has been executed. The read information is stored in the buffer between bufa and (ina,
inodd). The pair (e/a, e/odd) always points to the byte at the current position of the file, i.e. to the byte
(or to the first byte of the element) to read, write, or modify next in the file. If (e/a, e/odd) points
outside the buffer, and no other command has to be executed, the byte at the current position can be
brought into the buffer by a call to Doio or by the execution of command doio respectively.

The following two assertions also hold after a call to FileCommand, if the state of the file is reading,
writing, or modifying.

(ela. elodd) <= (ina. inodd)
ela < topa

The current position of a (connected) file can only be changed by either an (explicit or implicit)
execution of command setpos or by changing e/a and/or elodd (implicitly or explicitly). In the latter
case of course, the file system "knows" the exact value of the current position only after an activation
of the routine FileCommand.

9012 The Medos-2 Interface

Fih~Sta. t:;s

s;tmodify modifying

satwriu writing

s;tr;a.d r;ading

op;n;d 1--.::...-'-------------~~ s;top;n

Command

Sta.ta

This figure shows how the 1/0 state of a file is changed when different commands are executed.
Commands not shown in the figure do not affect the 1/0 state of a file. Whenever the command
setopen is omitted, the system might execute setopen before executing the following command.

SetOpen (f)
A call to Setopen flushes all changed buffers assigned to file f, and the file is set into state opened.
A call to SetOpen is needed only if it is desirable for some reason to flush the buffers (e.g. within
database systems or for "replay" files), or if the file is in state writing, and it has to be positioned
backward without truncation. If an 1/0 error occured since the last time the file was in state
opened, this is indicated by field res.

f.res =done
f.res = ...

SetRead (f)

Previous 110 operations successful
An error has occured since the last time the file was in state opened.

A call to SetRead sets the file into state reading. This implies that a buffer is assigned to the file
and the byte at the current position is in the assigned buffer.

SetWrite(f)
A call to SetWrite sets the file into state writing. In this state, the length of a file is always (set)
equal to its current position, i.e. the file is always written at its end, ana the file will be truncated,
if its current position is set to a value less than its length. A buffer is assigned to the file, and the
information between the beginning of the buffer and the current position (=length) is read into
the buffer. Information in the buffer up to the location denoted by (ela, elodd) is considered as
belonging to the file and will be written back onto the actual file.

SetModify(f)
A call to Sef:1111odify sets the file into state modifying. This implies that a buffer is assigned to the
file and the byte at the current position is read into the buffer. In this state, information in the
buffer up to MAX((e/a,e/odd), (ina,inodd J) is considered as belonging to the file and will
therefore be written back onto the actual file. The length of the file mignt hereby be increased
but never decreased!

Doio(f)
If the state of the file is reading, writing or modifying, the buffer with the byte at current position
is assigned to the file after a call to Doio. A call to Doio is essentially needed, if (ela,e/odd) points
outside the buffer and no other command has to be executed.

9.1.4.7. Examples

Procedure Reset(/)

PROCEDURE Reset(VAR f: File);
BEGIN .

SetOpen(f);
SetPos(f, 0, 0);

END Reset;

Write File f

(* assume, that file f is positioned correctly *)
SetWrite(f); ·
WHILE "word to write" DO

IF ela = topa THEN Doio(f) END;
ela1" := "next word to write";
INC(ela);

END·
SetOpen(f);
IF f .res<> done THEN

(* some write error occured *)
ENO;

Read File f

(* assume, that file f is positioned correctly *)
SetRead(f);
WHILE NOT f .eof DO

WHILE ela < ina DO
"use ela1"";
INC(ela);

END·
ooio(f);

END·
SetOpen(f);
IF f .res<> done THEN

(* Some read error occured *)
ENO;

Procedure WriteChar

PROCEDURE WriteChar(VAR f: File; ch: CHAR);
VAR chPtr: CharP01nter;

BEGIN
WITH f DO

LOOP

The Medos-2 Interface 9013

IF flags * FlagSet{wr, bm, er} <> FlagSet{wr, bm} THEN
IF NOT (wr IN flags) THEN

IF rd IN flags THtN
(* Forbid to change directly from reading to writing! •)
res := callerror; eof := TRUE;
flags := flags + FlagSet{er, ef}

ELSE SetWrite(f)
END

END·
IF er IN flags THEN RETURN END;
INCL(flags, 5m)

ELSIF ela >= topa THEN Doio(f)
ELS

chPtr := ela; chPtr1" := ch;
INC(ela); elodd :=NOT elodd;
RE TORN

END
END

END
END WriteChar;

9014 The Medos-2 Interface

9.1.4.8. Directory Information

Information about the files stored on a certain medium may be obtained by executing command ·
opendir. This command is activated by a call to procedure DirectoryCommand. The command causes the
system to create a new temporary file containing the desired directory information. The "filename" ·
supplied to DirectoryCommand may contain wildcard symbols, and such a wildcard filename selects
hereby the set of files for which information is desired. The field selections in the file variable will further
specify the expected extent of the desired information. The generated file may be read and interpreted·
afterwards, e.g. by a directory or copy program.

The following wildcard characters may be part of a wildcard filename:

* $
%

{letter I digit I "."}
{ letter I digit}
(letter I digit I ".")

any (including the empty) sequence of legal file name characters
any (including the empty) sequence of identifier characters
exactly one legal file name character

The wildcatd characters may not be used in the mediumname of a filename, i.e. on execution of opendir
only information can be delivered about files on one single medium.

The following elements in selections are assigned:

0
1
2
3
6
7

equal
dirstat
dironly
files tat
groupmem
allmem

Capital and lower case letters are treated as being equal
Provide statistics about the directory
Only directory information requested
Provide statistics about the selected files
Select desired information among files belonging members in the same group
Select desired information among all files on the selected medium

Currently no futher elements should be present in selections. They may be assigned later on if necessary.

The directory information is encoded on the generated file in the following format. The information
consists of a sequence of blocks, each containing information according to the type of the block. The
type and the size of each block is specified in the first word of the block.

File=
Block=
TypeAndSize =

{ Block}.
TypeAndSize { Words } .
Number. \Type+ number of words after header * 256\

The format of a directory file is specified as follows:

DirectoryFile =
Dirlnfo =
DirName =
Dirldent =
Filelnfo =
FileName =
Fileldent =
Statisticlnfo =

String=
CharWord =
ByteSize =
FlexNumber =
Date=

Dirlnfo I Filelnfo.
{ DirName } Dirldent { Statisticlnfo } { Dirlnfo I Filelnfo } DIREND.
DIRNAME String.
DIRID CharWord Number. \medium type, medium number\
{ Filename } Fileldent { Statisticlnfo } .
FILENAME String.
FILEID Number Number. \file number, version number\
FILES FlexNumber I FREEFILES FlexNumber I
SIZE ByteSize I FREESIZE ByteSize I
CREATEDATE Date I
MODIFYDATE Date I MODIFYCOUNT Number I
ACCESSDATE Date I ACCESSCOUNT Number I
OWNER Userldent I
PERMISSION Permission Permission I
MESSAGE String.
{ CharWord } .

\read-perm, modify-perm\

Number.
FlexNumber.
Number [Number] .
Number Number Number.

\ORD (leftChar) +ORD (rightChar) * 256\
\Size in bytes\
\ [long] cardinal value\
\day, minute, millisecond as in module Clock\

The Medos-2 Interface 9015

Userldent = Number Number.
Permission= Number.

\group member\
\ ORD(Permission-value) \

DIRNAME = 0 + n * 256.
DIRID = 1+2 * 256.
DI REND= 2 + 256.

FILNAME = 16 + n * 256.
FILID = 17 + 2 * 256.

FILES= 32 + n * 256.
FREEFILES = 33 + n * 256.
SIZE= 34 + n * 256.
FREEFILES = 35 + n * 256.

CREATEDATE = 48 + 3 * 256.
MODIFYDATE = 49 + 3 * 256.
MODIFYCOUNT = 50+1*256.
ACCESSDATE = 51+3 * 256.
ACCESSCOUNT = 52+1*256.

OWNER= 64 + 3 * 256.
PERMISSION = 65+1 * 256.

MESSAGE= 80 + n * 256.

9016 The Medos-2 Interface

9.1.5. Implementation of Files

A program may implement files on a certain medium and make these files accessible through the file
system (i.e. through module FileSystem). This is done with procedure CreateMedium. The medium .
which the calling module will support, is identified by its internal medium identification (/Ml). The two
procedures given as parameters should essentially implement procedure FileCommand (jileproc) and
DirectoryCommand (directoryproc) for the corresponding medium.

After a call to procedure DeleteMedium, the indicated medium is no longer known by the file system.
This procedure can, however, be called only from the program which "created" the medium. A medium
will automatically be removed, if the program within which it was "created" is removed.

The external name of a medium is computed from the medium's type and number: One or two letters
are taken from argument mt to procedure CreateMedium and the argument mediumno is apended to the
letter(s) as decimal digits if mediumno is less than 1777776. This mediumname is the original.
medium name of the created medium.

It is possible to assign additional names to a known medium. This is done by procedure AssignName.
The assigned mediumname must a letter followed by zero to seven letters or.digits, and it must not be
known to the filesystem. An assigned medium name may be removed again by procedure DeassignName.

Two additional procedures are provided for the management of mediumnames. Procedure ReadMedium
returns known mediumnames and information about them. Procedure LookupMedium converts a known
mediumname to the corresponding internal medium identification IMI.

Whenever a ·command is executed on a file, module FileSystem activates the procedure which handles
the command for the medium upon which the file is (expected to be) stored. The commands create,
open, opendir, close, and rename will cause procedure directoryproc to be called; all other commands will
cause procedure fileproc to be called. The string supplied as parameter to procedure directoryproc
contains normally only the local file name part of the original file name. The corresponding IMI is stored
in the file variable.

If the medium was "created" with MediumType = "",the string supplied a.s parameter to procedure
directoryproc contains the whole filename (i.e. including its mediumname), and the field mt in the
affected file is equal "". The medium "" is used in (direct or indirect) calls of procedure
DirectoryCommand where an unknown mediumname is specified in its filename-parameter. Only one
medium may be "created" with name"".

The field openedfile in the file variable may be used freely by the module implementing files (e.g. as an
index into a table of connected files).

As connected files should have "lifetimes" like Modula-2 pointers (dynamically created variables), a
medium should only be declared from an unshared program (i.e. if Sharedlevel() = Currentlevel(), see
module Programs, cnapter 9.4.).

CreateMedium (mediumtype, mediumnumber, fileproc, directoryproc, done)

Procedure CreateMedium announces a new medium to the file system. done is TRUE if the new
medium was accepted.

DeleteMedium (mediumtype, mediumnumber, done)

After a call to DeleteMedium, the given medium is no longer known to the file system. done is
TRUE if the medium was removed.

AssignName(mt, mediumno, mediumname, done)

Procedure AssignName assigns an additional mediumname to the given medium. It must be an
identifier of at most eight cnaracters. done is TRUE if the assignment is made. If the mediumname
exists already, if there is no space available in the internal tables, o.r if any of the arguments are
not valid, no new mediumname is assigned and done is set FALSE.

The Medos-2 Interface· 9017

DeassignName(mediumname, done)

Procedure DeassignName deassigns a mediumname previously assigned be procedure
Assign Name. The original name of a medium, i.e. the one generated by procedure CreateMedium,
cannot be deassigned. done is TRUE if the assignment is made. Automatic deassignment of a
mediumname occurs when the corresponding medium deleted.

ReadMedium (index, mt, medium no, medium name, original, done)

Procedure ReadMedium returns for the given index a mediumname and the corresponding ·
medium identification. original indicates whether or not the returned name is the implicitly
generated name of the medium. done is TRUE if a mediumname was returned. The index is
understood as an index into an internal table of module FileSystem in which the mediumnames
are stored. The lowest index is 0, the highest depends upon the number of known mediumnames.
By calling ReadMedium several times with incremented indices, all known mediumnames will be
returned.

LookupMedium(mt, mediumno, mediumname, done)

Procedure. LookupMedium converts a known mediumname into the corresponding medium
identification IMI. done is TRUE if the mediumname was known.

Implementation Note

Eight is the highest number of media that the current version of module FileSystem can support at the
same time.

9018 The Medos-2 Interface

9.1.6. File Representation

9.1.6.1. Main Characteristics and Restrictions

Files are implemented by the module DiskSystem. The module is accompained by the disk driver module,
i.e. the module WinDisk for the winchester disk drive. The common characteristics of the current
implementation of files are listed below:

max. file length 192 kbyte
local file name length 1 - 24 characters
max. number of opened files 14 (16)
medium name "WD"
internal medium identification ("WD", 65535)
maximum number of files 2048
disk capacity 16 MByte

Each actual file can be connected to only one file variable at the same time. As long as essentially only a
single program runs on the machine, this should be acceptable, as it is more an aid than a restriction.

Actually 16 files can be connected at the same time. Module DiskSystem uses two of them internally for
access to the two directories on the disk. The remaining 14 files may be used freely by ordinary
programs.

9.1.6.2. System Files

The space on a disk is allocated t9 actual files in pages of 2 kbyte each (or 4 sectors). The pages
belonging to a file as well as its length and other information is stored in a file descriptor, which itself is
stored in a file on the winchester disk (file directory). The local file names of all files on a disk are
stored in another file on the disk (name directory). When a disk is initialized, seven (system-Hiles are
allocated on the disk. These preallocated files can not be truncated or removed. Except for the two
directory files and the file containing the disk's bad sectors, all files can be read and written (modified).
The preallocated files are:

FS.FileDirectory
FS.NameDirectory
FS.BadPages
PC.BootFile0
PC.BootFile1
PC.Dumpfile0
PC. Dump Fil e1

9.1.6.3. Error Handling

File with file directory
File with name directory
File with unusable sectors
Normal boot file (size= 64k)
Alternate boot file (size= 128k)
File onto which main memory is dumped (size= 64k)
File onto which main memory is dumped (size= 64k)

Normally all detected errors are handled by assigning a Response indicating the error to field res in the
file variable. Whenever a detected error cannot be related to a file or if a more serious error is detected,
an error message is written on the display. This is done according to the following format:

"-"module name ["."procedure name]":" error indicating text

module name and procedure name are the names of the module and the procedure within the module,
where the error was detected. In the explanations of the messages, the following terms are used for
inserted values:

page number
page
file number
local file name
response
status bits
disk address

Page in an affected file
Disk address of page= page DIV 7 * 4
Number of the affected file
Local file name of affected file
Text describing the response
Status from disk interface
"Logical" address of sector on disk

Note, that all inserted values are displayed as hexadecimal numbers.

The Medos-2 Interface 9019.

If some of the following error messages are displayed, please consult the description of program
DiskCheck!

Di skSystem. ShortSetToBITSET: bad bitmap entry found
Module DiskSystem has found an incorrect entry in the allocation bitmap.

- Di skSystem. PutBuf: bad page: pageno =page number f no =file number
Page indicates a disk address which is allocated to a "system file", but the file is not a
"system file", or the page indicates a disk address for normal files, but the file is a "system
file".

- DiskSystem.GetBuf: bad buffering while reading ahead
The disk address of a certain allocated sector was not found.

- Di skSystem. Fi 1 eCommand: ·bad directory entry: f no =file number read f no =file number
An inconsistency in the file directory was detected.

- DiskSystem.OpenVolume: bad page pointer:
f no =file number pageno =page number page =page

An inconsistency in the file directory was detected during the initialisation of Medos.

- DiskSystem.(ReadName, WriteName or SearchName): bad file number in name entry
f i 1 e name = local file name
found f no =file number, expected fno =file number

An inconsistency in the name directory was detected.

The following error messages are produced by the disk driver modules.

- Wi nDi sk. Di skRead: response
diskadr = diskaddress, statusbits =statusbits

The driver detected an error, which did not disappear after three retries.

- Wi nDi sk. Di skWrite: response
diskadr =diskaddress, statusbits =statusbits

The disk driver detected an error, which did not disappear after three retries.

9020 The Medos-2 Interface

9.2. Processes

9.2.1. Introduction

In Medos-2, a Modula-2 program is executed sequentially by one process only, by the so-called main
process. Module Processes makes it possible to execute programs with (pseudo-) concurrency, i.e. to
execute programs by several processes. Module Processes makes it also possible to handle interrupts
from devices connected to the Ceres computer. The definition module is given in 9.2.2. The process
concept of Medos-2 is explained briefly in 9.2.3. Explanations of the provided routines are given in 9.2.4.
and some implementation notes are given in 9.2.5.

9.2.2. Definition Module Processes

DEFINITION MODULE Processes;

PROCEDURE CreateProcess(p: PROC; size: LONGINT; VAR done: BOOLEAN);
PROCEDURE Pass;
PROCEDURE Delay(ms: CARDINAL);

TYPE Signal;
PROCEDURE InitSignal(VAR s: Signal);
PROCEDURE Send(VAR s: Signal);
PROCEDURE SendAll(VAR s: Signal);
PROCEDURE Wait(VAR s: Signal);
PROCEDURE TimedWait(VAR s: Signal; ms: CARDINAL);

TYPE Device= [0 .. 15];
PROCEDURE CreateDriver(p: PROC; size: LONGINT; dev: Device;

VAR done: BOOLEAN);
PROCEDURE Waitinterrupt;
PROCEDURE TimedWaitinterrupt(ms: CARDINAL);

END Processes.

9.2.3. Process Concept of Medos-2

Concurrency

A program may be executed by one or several (pseudo-concurrent) sequential processes. A program
may start a process by calling either procedure CreateProcess or procedure CreateDriver. These procedures
creates and starts a process, which executes the parameterless procedure given as argument to
CreateProcess or CreateDriver. A process terminates and removes itself after it has executed the
parameterless procedure. The lifetime of a process created by CreateProcess or CreateDriver is restricted
to the lifetime of the program, which started the process. ·

The owner of a new process is the program, for which the creator of the process executes. The terms
owner, program, and activated program are explained in the description of module Program and
Programs. Within Medos-2 VS, a process always executes for its owner (with the exception of the main
process, which may change the program for which its work by calling a program or returning from a
program).

The Medos-2 Interface 9021

Mutual Exclusion

Medos-2 provides mutual exclusion by so-called priority monitors (or simply monitors). A priority
monitor is identified by the priority number of a Modula-2 module. It is guaranteed that upmost one
process executes statements inside a certain monitor. Medos-2 for the Ceres computer distinguishes 16
such monitors by priority numbers from 0to15. .
A process executing code inside a monitor may only call routines declared outside monitors, inside the
same monitor or inside monitors with a higher priority number.
A monitor may be opened (for other processes) by a (direct or indirect) activation of one of the
procedures defined by module Processes.

Synchronization

Synchronization between processes has to be programmed explicitly by the user, i.e. the program has to
wait for the desired event (or condition). In such situations it is recommended to give a hint to the
scheduler, that this process may only waste its time-slice. This is done by calling one of the procedures
Pass, Delay, Wait, TimedWait, Waitlnterrupt or TimedWaitlnterrupt.

Interrupts

1
On occurance of an interrupt, the currently process is suspended if it is running without prioritr or with
a priority that is lower than the number assigned to that interrupt. An interrupt handler wil only be
interrupted by an interrupt with a higher number.

Scheduling

The descriptors of the processes which can be activated are collected in the so-called readylist. Each
process gets at its creation time a so-called base priority which is a parameter for the scheduler.
If the clock interrupt occurs and the currently running process runs without any priority it will be
preempted. Processes running on priority for a longer timeperiod has to call explicitly the scheduler.
Otherwise no other process will get the CPU.

9.2.4. Explanations

CreateProcess (p, size, done) ·

Pass

Procedure CreateProcess creates a new process that will execute procedure p. It reserves a
memory area of size size in the heap area of that program. This area is used by the new
process as its stac.k area. The return parameter done is set TRUE, if the creation of the
process was successful I.

Procedure Pass is the explicit call to the scheduler. The descriptor of the calling process is
appended at the end of the readylist.

Delay(ms)
The calling process won't be activated for at least ms milliseconds.

Send(s)
Procedure Send includes the descriptor of a process that is waiting for s into the readylist. If
no process is currently waiting for s Send has no effect.

SendAll (s)
Procedure SendAll includes the descriptors of all processes that are waiting for s into the
readylist. If no process is currently waiting for s SendAll has no effect.

Wait(s)
Procedure Wait deactivates the calling process and excludes its descriptor from the
readylist. The descriptor will only be reincluded into that list due to a call of an other
process to Send or SendAll withs as parameter.

9022 The Medos-2 Interface

TimedWait(s, ms)
Procedure TimedWait deactivates the calling process and excludes its descriptor from the
readylist. The descriptor will be reincluded into that list due to a call of an other process to
Send or SendAll with s as parameter or the process is waiting for that event as long as ms
milliseconds.

CreateDriver(p, size, dev, done)
. Procedure CreateDriver creates a new process that will execute procedure p. It reserves a

memory area of size size in the heap area of that program. This area is used by the new
process as its stack area. The priority of the caller has to be at least a high as the specified
interrupt number specified in parameter dev. The return parameter done is set TRUE, if the
creation of the process was successful. . ·

Waitlnterrupt ·
Procedure Waitlnterrupt installs the calling process as interrupt handler of that interrupt
that has been specified in the parameter dev of CreateDriver. Only processes that are created
by CreateDriver may call Waitlnterrupt. The process will be reactivated as soon as the
according interrupt will occur.

TimedWaitlnterrupt(ms)
Procedure TimedWaitlnterrupt installs the calling process as interrupt handler of that
interrupt that has been specified in the parameter dev of CreateDriver. Only processes that
are created by CreateOriver may call TimedWaitlnterrupt. The handler will wait for that
interrupt only ms milliseconds, i.e. it will be activated after that period has passed by.

9.2.5. Implementation Notes

The minimal working space for a process is as long as 200 bytes.
The number of processes is restricted to 16. Medas itself installs 4 processes.
The system clock is assigned to device number 15. If a process is running with this priority the system
clock is disabled. Processes which run with that priority can't be stopped by the user.

9.2.6. Exam pies

An interrupt handler is typically written according to the following scheme:

MODULE DevHandle[13l; (* priorit~ >= interrupt number *)
FROM Processes IMPORi CreateDr1ver, Waitinterrupt;
CONST wsp = ... ; (* wsp >= 200 *)
VAR ok: BOOLEAN; wsp: CARDINAL;

PROCEDURE DevDriver;
BEGIN

(* initialization of driver and device *)
LOOP

Wai tI nte rrupt;
(* interrupt handling *)

END
END DevDriver;

BEGIN
CreateDriver(DevDriver, wsp, 13, ok);
IF NOT ok THEN ... END;

END DevHandle

The Medos-2 Interface 9023

9.3. Program

9.3.1. Introduction

A Modula-2 program consists of a main module and of all separate modules imported directly or
indirectly by the main module. Module Program provides facilities needed for the execution of
Modula-2 programs upon Medos-2. The definition module is given in chapter 9.3.2. The program
concept and explanations needed for the activation of a program are given in-· chapter 9.3.3. Possible
error messages are listed in 9.3.4. The object file format may be inspected in 9.3.5. ·

9.3.2 Definition Module Program

DEFINITION MODULE Program;

FROM SYSTEM IMPORT ADDRESS;

TYPE
Status= (normal, warned, halted, killed, executionError, callError,

moduleNotFound, moduleAlreadyLoaded, loadError);

PROCEDURE Call(programName: ARRAY OF CHAR; shared: BOOLEAN; VAR st: Status);
PROCEDURE Include(programName: ARRAY OF CHAR; VAR st: Status);
PROCEDURE Terminate(warn : BOOLEAN);

END Program.

9.3.3. Execution of Programs

A Modula program consists of a main module a.nd all separate modules imported directly and/or
indirectly by the main module. Within Medos-2, any running program may activate another program
just like a call of a procedure. The calling program is suspended while the called program is running, and
it is resumed, when the called program terminates.

All active programs form a stack of activated programs. The first program in the stack is the resident
part of the operating system, i.e. the (resident part of the) command interpreter together with all
imported modules. The topmost program in the stack is the currently running program.

T·;pical Execution of Programs

Dynamic
Activation

4 Level

3

2

Commt edit Commt

SEK (resident pro~ram)
0

Init

...-'
modula

P.us 1 p~ 2 Sym Li3tef

L.-.l .._. ..__ .._. '---I r-
(compiler ba:se)

time

~--~

9024 The Medos-2 Interface

The figure illustrates, how programs may be activated. At a certain moment, the dynamic activation level
or simply the level identifies an active program in the stack.

Some essential differences exist, however, between programs and procedure activations.

A program is identified by a computable program name.

The calling program is resumed, when a program terminates (exception handling).

Resources like memory and connected files are owned by programs and are retrieved again,
when the owning program terminates (resource management).

A program can only be active once at the same time (programs are not reentrant).

The code for a program is loaded, when the program is activated and is removed, when the
program terminates.

A program is activated by a call to procedure Call. Whenever a program is activated, its main module is
loaded from a file. All directly or indirectly imported modules are also loaded from files, if they are, not
used by already active programs i.e. if they are not already loaded. In the latter case, the just called
program is bound to the already loaded modules. This is analog to nested procedures, where the scope
rules guarantee, that objects declared in an enclosing block may be accessed from an inner procedure.

After the execution of a program, all its resources are returned. The modules, which were loaded, when
the program was activated, are removed again.

The calling program may, by a parameter to Call, specify that the called program shares resources with
the calling program. This means, that all sharable resources allocated by the called program actually are
owned by the active program on the deepest activation level, which still shares resources with the
currently running program. The most common resources, namely dynamically allocated memory space
(from the heap) and (connected) files, are sharable. Any feature implemented by use of procedure
variables can essentially not be sharable, since the code for an assigned routine may be removed, when
the program containing it termina'tes.

A program is identifi~d by a program name, which consists of an identifier or a sequence of identifiers
separated by periods. At most 16 characters are allowed for program names. Capital and lower case
letters are treated as being different.

Program name
Identifier

= Identifier {"."Identifier} . I At most 16 characters I
= Letter { Letter I Digit } .

In order to fi.nd the object code file, from which a program must be loaded, the program name is
converted into a file name as follows: The prefix DK. is inserted before the program name, and the
extension .OBN is appended. If no such file exists, the prefix DK. is replaced by the prefix DK.SYS., and a
second search is carried out.

An object code file may contain the object code of several separate modules. Imported but not already
loaded modules are searched sequentially on the object code file, which the loader is just reading.

Missing object code to imported modules is searched for like programs. The (first 16 characters of the)
module name is converted to a file name by inserting DK. at the beginning of the module name and
appending the extension .OBN to it. If the file is not found, a second search is made after the prefix DK.
has been replaced by the prefix Dl<.LIB .. If the object code file is not/et found, the object code file for
another missing module is searched. This is tried once for all importe and still not loaded modules.

Program name
First searched file
Second searched file

Module name
First searched file
Second searched file

di rectory
DK.directory.OBN
DK.SYS.directory.OBN

Storage
DK.Storage.OBN
DK.LIB.Storage.OBN

The Medos-2 Interface 9025

Call(programname, shared, status)
Procedure Call loads and starts the execution of program programname. If shared is TRUE, the
called program shares (sharable) resources with the calling program. The status indicates if a
program was executed successfully.

status= normal
status= warned
status = halted
status= killed
status= execution Error
status IN {call Error .. load Error}

Program executed normally
Terminate(TRUE) called in program .
HALT called in program
Program terminated by CTRL c from keyboard
Some execution error detected
Some load error detected

lnclude(programname, status)
Procedure Include loads and initializes the program (or library-module) programname. The loaded
program is part of the callers program, and it remains loaded as long as the caller of Include
remains loaded. status indicates the success of the program inclusion. The meanings of status are
given above.

Terminate(warn)
The execution of a program may be terminated by a call to Terminate. If warn is FALSE, normal is
returned as status to the calling program, otherwise warned is returned as status.

Implementation Notes

The current implementation of procedure Call may only be called from the mainprocess, i.e. the process
within which function MainProcess of module Programs returns TRUE.

Only up· to 127 modules may be loaded at any time. The resident part of Medos-2 consists of 23
modules. The loader can handle up to 40 already imported but not yet loaded modules.

The maximum number of active programs is 8.

Related Program

The program link collects the object code from several separate modules onto one single object code
file. link enables the user to substitute interactively an object code file with a non-default file name.
"Linked" object code files might also be loaded faster and be more robust against changes and errors in

the environment. ·

Example: Command Interpreter

MODULE Comint;
FROM Terminal IMPORT Write, WriteString, WriteLn;
FROM Program IMPORT Call, Status·

CONST
programnamelength = 16;

VAR
programname: ARRAY [0 .. programnamelength-1] OF CHAR;
st: Status;

BEGIN
LOOP

Write('*');
(* read programname *)
Call(programname, TRUr, st);
IF st <> normal THEN

WriteLn;
WriteString("- some error occured"); Writeln

END
END (* LOOP *)

END Comint.

9026 The Medos-2 Interface

9.3.4. Error Handling

All detected errors are normally handled by returning an error indicating Status to the caller of procedure
Call. Some errors detected by the loader are also displayed on the screen in order to give the user more
detailed information. This is done according to the following format:

- Program.Call: errorindicatingte~t

The number of hyphens at the beginning of the message indicates the level of the called program.

- Program.Call/Include: incompatible module
'module name' on f i 1 e 'file name'

Imported module module name found on file file name has an unexpected module key.

- Program.Call/Include: incompatible module
'module1 name' imported by 'module2 name' on file 'file name'

Module module1 name imported by module2 name on file file name has another key as the
already loaded (or imported but not yet loaded) module with the same name.

- Program.Call/Include: module(s) not found:
module1 name
module2 name

The listed modules were not found.

9.3.5. Object Code Format

The format of the object code file generally has the following syntax:

Module = HeaderBlock ImportBlock EntryBlock LinkBlock
{CodeBlock I DataBlock I AlignBlock}.

HeaderBlock= ~ODULE Bloc~Size
VersionNumber Flags LinkSize VarSize ConstSize CodeSize ModuleName.

ImportBlock= IMPORT BlockSize ~ofimports {ModuleName}.
EntryBlock = ENTRY BlockSize {EntryAddress}.

(•BlockSize/2 = no. of entries•)
LinkBlock = LINK BlockSize {ModuleNumber ProcNumber}.

(*BlockSize/2 = no. of links•)
CodeBlock = CODE BlockSize Offset {Byte}.
DataBlock = DATA BlockSize Offset {Byte}.
AlignBlock = ALIGN BlockSize {Byte}.

BlockSize = Word.
VersionNumber = Word.
Flags = Word.

ModuleName = ModuleKey Moduleidentifier.
Moduleidentifier = String.
ModuleKey = Word Word Word.

VarSize = Word.
ConstSize = Word.
CodeSize = Word.
LinkSize = Word.
Nofimports = Word.

EntryAddress = Word.
ModuleNumber = Byte.
ProcNumber = Byte.
Offset = DoubleWord.

MODULE
IMPORT

= 81H.
= 82H.

ENTRY
LINK
CODE
DATA
ALIGN

= 83H.
84H.

= 85H.
86H.

= 87H.

The Medos-2 Interface 9027

BlockSize, VarSize, ConstSize, CodeSize, LinkSize, and Offset are numbers of bytes. The block size does not
include itself, nor its preceding specifier. The first character of a string indicates the length of the string
(i n c I u d i n g its e If).
The fixup frame of the Lilith version is replaced by two new blocks: the entry block and the link block.
The former contains the list of entry addresses of the module's exported procedures, and the link block
establishes the link table. Each pair <module number, procedure number> is translated into the
corresponding MOD I PC pair, where the PC value is taken from the entry block of the referenced
module. The "procedure number" 255 is an exception: the link table entry is loaded with the referenced
module's data address (SB).
The size of the data area is the sum of VarSize and ConstSize; the .area for constants follows that of the
variables, and the SB register points to the beginning of the constant area, and thereby also to the end
of the variable area. The loader places the link table address into the first 4 bytes of the constant area.
Bit 0 of byte 4 is used as an initialization flag and is cleared by the loader. Bytes 4 - 7 are reserved for

the system. The link table, the data area, the workspace, and the code are allocated at addresses which
are multiples of 4. The lengths of the data and code segments are multiples of 4, and they are properly
aligned in the file.

A program is activated by a call to procedure 0 of its main module.

9028 The Medos-2 Interface

9.4. Programs

Module Programs enables to activate {call) and terminate execution of programs.

NOTE: This module should only be used by users who are very familiar with Medos-2.

DEFINITION MODULE Programs;

TYPE
Status= (normal, warned, halted, killed, executionError, callError);

PROCEDURE Call(p: PROC; shared: BOOLEAN; VAR st: Status);
PROCEDURE Term1nate(warn: BOOLEAN);
PROCEDURE Kill; .
PROCEDURE CurrentStatus(): Status;

PROCEDURE MainProcess(): BOOLEAN;

PROCEDURE Currentlevel{): CARDINAL;
PROCEDURE Sharedlevel(): CARDINAL;

PROCEDURE InitProcedure(init: PROC; VAR done: BOOLEAN);
PROCEDURE TermProcedure(term: PROC; VAR done: BOOLEAN);

END Programs.

Explanations

Call { p, sh a red, st) ·
Procedure Call activates a new program that executes procedure p. The current level is
incremented by one before the execution of the program. If shared is TRUE, the shared level
of the new program remains unchanged, othetwise it is set equal to the respective current
level. After the execution of the program st indicates the termination cause.

Terminate{warn)

Kill

The currently running process may be terminated by a call to Terminate. If warn is FALSE the
process terminates normally. If warn is TRUE the process terminates with status warned.

A call to procedure !<ill terminates the currently running program.

CurrentStatus {):Status
Function Currentstatus returns the state of the program for which the current process runs.

Main Process{): BOOLEAN
Function MainProcess returns TRUE if the currently executed process is the one which
executes the initialization part of the main module in the running program.

CurrentLevel ():CARDINAL
. Function Currentlevel returns the program level of the calling process.

Shared Level ():CARDINAL
Function Sharedlevel returns the level number of the lowest program sharing resources with
the calling process's level

lnitProcedure(init, done)
A call to procedure lnitProcedure causes that the procedure init will be called whenever a
program on a higher level will be started. These so-called initialization procedures are
called just after the installation of the new execution level in question (i.e. after current
level and shared level are incremented) and in order of their announcement. The result
parameter done is set TRUE if the assignment was done.

The Medos-2 Interface 9029

TermProcedure(term, done)
A call to procedure TermProcedure causes that the procedure term will be called whenever a
program on a higher level is terminated. These so-called termination procedures are called
just before the termination of the execution level in question (i.e. before current level and
shared level are reset) and in reverse order of their announcement. The result parameter
done is set TRUE if the assignment was done.

Implementation Note

The totally number of installed initialization and termination procedures is limited to 32.

9030 The Medos-2 Interface

9.5. Heap

This module handles for each shared level its own heap.

NOTE: This module should only be used by users who are very familiar with Medos-2.

DEFINITION MODULE Heap;

FROM SYSTEM IMPORT ADDRESS;

PROCEDURE Allocate(VAR a: ADDRESS; size: LONGINT);
PROCEDURE Deallocate(VAR a: ADDRESS; size: LONGINT);

END· Heap.

Explanations

Allocate(a, size)
Procedure Allocate tries to allocate a memory area of the given size size in the heap that
belongs to the shared level of the caller. If that space is not available, a returns NIL
otherwise it returns the address of the reserved area.

Deallocate(a, size)
Procedure Deallocate releases the memory area given by address a and size size. Deallocate
checks if the given memory area resides inside a heap. If the check failed the program is
halted. a returns the value NIL

Implementation Note

The minimal memory area that will be reserved by Allocate is as big as 8 bytes.
Only the heap of the program that runs on the topmost level can be expanded. All other heaps are
frozen at that moment a new program level is activated.

The Medos-2 Interface 9031

9.6. SEK

Module SEI< (Sequentiel Executive l<ernel) is the main program of the operating system Medos-2. The
module is actually the resident part of the standard command interpreter. Currently the two
nonresident parts of the command interpreter are the program Comint and CommandFile. The module
also serves the configuration of the system by importing (directly or indirectly) the needed modules.

DEFINITION MODULE SEK;

FROM Program IMPORT Status;

PROCEDURE CallComint(loop: BOOLEAN; VAR st: Status);
PROCEDURE PreviousStatus(): State;

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

NextProgram(programname: ARRAY OF CHAR);
SetParameter(param: ARRAY OF CHAR);
GetParameter(VAR param: ARRAY OF CHAR);

Login(): BOOLEAN;
Leavelogin;

PROCEDURE TestDK(actualstate: BOOLEAN): BOOLEAN;

END SEK.

Explanations

CallComint(loop, st)
A call to procedure Cal!Comint activates the standard command interpreter. If loop is TRUE,
the command interpreter repeatedly reads in commands and activates the corresponding
programs. The loop is terminated when the command interpreter reads an ESC character. If
loop is FALSE only one single command is interpreted. The return parameter st reflects the
success of the most recently executed program.

PreviousStatus ():Status;
F~nction PreviousStatus returns the status of the most recently executed program.

NextProgram (program name)
A program activated by module SEK may by call to procedure NextProgram define, which
program should be executed after its own termination. If a program makes no call to
NextProgram, the command interpreter will be executed after the termination of the
program.

SetParameter(param)
By a call to procedure SetParameter, a program may pass over a textual parameter to the
following program.

GetParameter(param)
By a call to procedure GetParameter, a program receives the parameter passed over to it
from the previous program.

Login(): BOOLEAN
The function Login is TRUE during the login period, i.e. from system intialization time until
procedure Leavelogin has been called.

LeaveLogin
A call to procedure Leavelogin terminates the login period, i.e. the period in which the
function Login is TRUE.

TestDK (actual state): BOOLEAN
Function TestDK senses the state of the disk drive. If the argument actualstate is TRUE, the
value of the function is the sensed state, otherwise TestDK is only TRUE, if the current state
of the drive is ok and all activations of TestDK since the most recent system initialization
found the state of the drive to be ok.

9032 The Medos-2 Interface

Implementation Notes

Procedure GetParameter acceptes only the first 64 characters of the argument param. If the argument to
pa ram is "smaller" than the string handled over by SetParameter was, the actual argument is truncated
to the length of the argument to GetParam.
If the disk drive has been in a not ready state since the last system initialization, and this has been
detected by a call to TestDK, the system is reinitialized when the program on level one is terminated. ·

The Medos-2 Interlace 9033

9.7. TerminalBase

Module TerminalBase makes it possible for programs to define their own read and write procedures for
module Terminal. For example, this facility is needed, if the normal keyboard input has to be substituted
by the text in a command file or if the terminal output has to be written to a log file.

DEFINITION MODULE TerminalBase;

TYPE ReadProcedure = PROCEDURE(VAR CHAR);
PROCEDURE AssignRead(rp: ReadProcedure; VAR done:BOOLEAN);
PROCEDURE Read(VAR ch: CHAR);

TYPE WriteProcedure = PROCEDURE(CHAR);
PROCEDURE AssignWrite(wp: WriteProcedure; VAR done:BOOLEAN);
PROCEDURE Write(ch: CAAR); .

END TerminalBase.

Explanations

AssignRead(rp, done)
By a call to AssignRead, the terminal input procedure for the currentJrogram is set to be
procedure rp. The proce·dure rp must be similar to procedure BusyRea in module Terminal,
i.e. it must return character OC, if no input is available. A previous assignment of a read
procedure will be overwritten by a new call to AssignRead in the same program. The result
paramater done is set TRUE, if the assignment was done.

Read(ch)
Procedure Read reads in the next character. If no character is available, character OC is
returned. Read normally activates the read procedure belonging to the highest program
level, within which AssignRead has been called. If, however, Read is called from an assigned
read procedure, that read procedure is activated, which was assigned on the highest
program level below the level, on which the current executing read procedure was assigned.

AssignWrite(wp, done)
By a call to AssignWrite, the terminal output procedure for the current program level is set to
be procedure wp. A previous assignment of a write procedure will be overwritten by a new
call to AssignWrite on the same program level. The result parameter done is set TRUE, if the
assignment was done.

Write(ch)
Procedure Write writes out the next character. Write normally activates the write procedure
belonging to the highest program level, within which AssignWrite has been called. If,
however, Write is . called from an assigned write procedure, that write procedure is
activated, which was assigned on the highest program level below the level, on which the
current executing write procedure was assigned.

Implementation Restrictions

Read procedures and write procedures can "only" be assigned on five different program levels. The
return parameter done is set FALSE, if a further assignment would exceed this limit.

9034 The Medos-2 Interface

9.8. Terminal

Module Terminal provides the routines normally used for reading from the keyboard (or a
commandfile) and for the sequential writing of text on the screen.

DEFINITION MODULE Terminal;

PROCEDURE Read(VAR ch: CHAR);
PROCEDURE BusyRead(VAR ch: CHAR);
PROCEDURE ReadAgain;

PROCEDURE Write(ch: CHAR);
PROCEDURE WriteString(string: ARRAY OF CHAR);
PROCEDURE WriteLn;

END Te rm i n al .

Explanations

Read(ch)
Procedure Read gets the next character from the keyboard (or the commandfile) and
assigns it to ch. Lines are terminated with character 36C (=eo/, RS). The procedure Read
does not" echo" the read character on the screen.

BusyRead(ch)
Procedure BusyRead assigns OC to ch if no character has been typed. Otherwise procedure
BusyRead is identical to procedure Read.

ReadAgain
A call to ReadAgain prevents the next call to Read or BusyRead from getting the next typed
character. Instead, the last character read before the call to ReadAgain will be returned
again.

Write(ch)
Procedure Write writes the given character on the screen at its current writing position. The
screen scrolls, if the writing position reaches its end. Besides the following lay-out
characters, it is left undefined what happens, if non printable ASCII characters and non
ASCII characters are written out.

eol 36C Sets the writing position at the beginning of the next line
CR 1 SC Sets the writing position at the beginning of the current line
LF 12C Sets the writing position to the same column in the next line
FF 14C Clears the screen and sets the writing position into its upper left corner
BS 10C Sets the writing position one character backward
DEL 177C Sets the writing position one character backward and erases this character

Wri teStri n g (string)
Procedure WriteString writes out the given string. The string may be terminated with
character OC.

WriteLn
A call to procedure Writeln is equivalent to the call Write(eo/).

The Medos-2 Interface 9035

9.9. Users

The module Users serves the identification of (not necessarily) human users within Medos-2. A user is
uniquely identified by a pair of numbers, namely the group and the member-of-group number. A
user-chosen password is al$o encoded into a pair of numbers.

DEFINITION MODULE Users;

TYPE
User = RECORD

group, member: CARDINAL;
gassword1, password2: CARDINAL

EN ;

PROCEDURE GetUser(VAR u: User);
PROCEDURE SetUser(u: User; VAR done: BOOLEAN);
PROCEDURE ResetUser

END Users.

Explanations

A program is executed on behalf of a certain user, the so-called real user of a running program. Each
process executes, however, on behalf of a so-called current user. The current user and the real user are
handled according to the following rules:

1) The real user of a program is set when the program is called (activated) and cannot be change_d. It is
set equal to the current user of the calling process.

2) The current user of a process activating a program is not changed by the activated program (i.e. the
current user of a process just after a program activation is equal to its current user just before the
program activation).

3) The current user of a new process is initially set equal to the current user of its creator process.

Getuser(u)
Procedure Getuser returns the current user of the current process.

Setuser(u, done)
Procedure Setuser sets the current user of the current process. If the assignment contradicts
a security rule, the assignment is not done and the parameter done is set FALSE.

Resetuser
Procedure Resetuser sets the current user of the current process equal to the real user of the
program, within which it executes.

The Assignment of Group and Member

The (group, member) pair has the following semantic:

group= OB
18 <= group <= 777778

1000008<= group <=1777778
group= 1000008.

no user
normal user groups (*clients*)
trusted user groups (*servers*)
os group

Members of a group may have any member number. The current user cannot be set to a user of a trusted
group, if the real user is not from a trusted group.

The Assignment of Password1 and Password2

The (password1, password2) pair has the following semantic:

password1 = 0 no password
1 <= password1 <1777778 normal password

password1 =1777778 special password

9036 The Medos-2 Interface

Password2 may have any value. The internal password (password1, password2) is encoded from a
string by the following algorithm. The password string should be restricted to an identifier beginning
with a letter and followed by letters or digits. Note, that the procedure ConvertPassword does not
generate a special password!

PROCEDURE ConvertPassword(password: ARRAY OF CHAR;
VAR pw1, pw2: CARDINAL);

VAR c, h: CARDINAL;
BEGIN c := 0; .

~~fLE=(~;<~w~IGH(~~ssword)) & (password[c] # 0C) DO
h := pw2; pw2 := pw1;
pw1 := (h MOD 509 + 1) * 127 + ORD(password[c]);
INC(c)

END
END ConvertPassword

The Medos-2 Interface 9037

9.10. Module Clock

Module Clock is used to obtain the current date and time of day stored in a real-time clock chip. The
module is also used to initialize (or correct) the internal clock setting.

DEFINITION MODULE Clock;

TYPE
Time = RECORD

weekday: CARDINAL; !*=* day: CARDINAL;
minute: CARDINAL;
millisecond: CARDINAL;

END;

PROCEDURE SetTime(t: Time);
PROCEDURE GetTime(VAR t: rime);

END Clock.

Explanations

Time

mo = 0, .. , so = 6 *)
((year - 1900)•208 + month)•40B + day *)
hour•60 + minute *}
second*1000 + millisecond *)

·The field day is defined to be equal to (year - 1900) * 512 +month* 32 +day. The field minute is
the minute within the given day and must therefore be in the range 0 to 24 * 60 - 1. The field
millisecond indicates tfte millisecond within the given minu'te of the day; its value must
consequently be in the range 0 to 60*1000 -1. The field weekday reflects the day of the week.

SetTime(time)
The internally maintained clock can be set by calls of procedure SetTime. If the argument to
SetTime is apparently incorrect, the internal clock is not adjusted. The correct execution of
procedure SetTime can be validated by geting the time just after the clock has been set and a
comparison of the new time with the set time.

GetTime(time)
The internally maintained clock can be read by calls of procedure GetTime. The field day of the
variable time has the value zero as long as the clock has not been set.

Implementation Notes

The field millisecond is actualized at a granularity of about 20 millisecond.

Module Clock is programmed with priority 7. Consequently, procedure SetTime and GetTime cannot be
called by processes executing on a priority higher than 7 (i.e. executing with priority 8to15).

10. Screen Software

The screen software chapter describes the following modules:

CursorMouse
Menu
Windows
TextWindows
GraphicWindows
DisplayDriver
RasterOps
Fonts

10.1. Summary

(10.2.)
(10.3.)
(10.4.)
(10.5.)
(10.6.)
(10.7.)
(10.8.)
(10.9.)

Screen Software 10001

For default sequential output the use of module Terminal is recommended; the use of the higher level
modules should be reserved to the case when the output is not strictly sequential. Terminal is
described in an operating system description (9.8.) and is not explained in the screen software chapter.
Formatting modules (e.g. lnOut) are found in the chapter11. ·

The modules CursorMouse, Menu and Windows provide a de-facto standard package for window
applications under Medos-2. Textwindows and GraphicWindows are modules based on Windows that
define routines for character output and simple graphics within windows. The whole package is
described in [1].

The modules DisplayDriver, RasterOps and Fonts form the interface to the display hardware of Ceres.

Throughout this chapter some articles are referenced which contain more information about the screen
software. They are summarized below. .

[1] J. Gutknecht: Mouse and Bitmap Display - System Programming in Modula-2
lnstitut fUr lnformatik, report 56, ETH Zurich 1983

[2] F.Peschel, AA.Wille: Porting Medos-2 onto the Ceres workstation,
lnstitut fUr lnformatik, ETH Zurich, to be published

[3] J. Gutknecht: Ceres Font Machinery
lnstitut fUr lnformatik, internal paper, ETH Zurich 1986

10002 Screen Software

10.2. Cu rsorMouse

This module can be used to request the mouse buttons and the mouse position. A cursor can .be
displayed on the screen as a visual feedback of the mouse movements. A description of this module is
included in [1].

Definition Module

DEFINITION MODULE CursorMouse;

IMPORT RasterOps;

CONST ML = 2; MM = 1; MR = 0;

TYPE
Pattern = RasterOps.Pattern;

PROCEDURE SetMouse(x, y: CARDINAL);
(•Set Mouse to point (x, Y)*)

PROCEDURE GetMouse(VAR s: BITSET; VAR x, y: CARDINAL);
(*Get current mouse state

ML IN s = "Left mouseKey pressed";
MM IN s = "Middle mouseKey pressed";
MR IN s = "Right mouseKey pressed"*)·

PROCEDURE MoveCursor(x, y: CARDINAL);
(*Move cursor to specified location*)

PROCEDURE EraseCursor;

PROCEDURE SetPattern(VAR p: Pattern);
(•Activate private cursor pattern•)

PROCEDURE ResetPattern
(*Reactivate standard arrow pattern•)

END CursorMouse.

Explanations

Procedure Setvlouse sets the mouse coordinates to the point (x,y) on the screen.
Getvlouse returns the state of the buttons and the position of the mouse.

MoveCursor moves the cursor to screen position (x, y).
EraseCursor deletes the cursor on the screen.

SetPattern is used to install a private cursor pattern. Subsequent calls of MoveCursorwill use this
pattern. The cursor need not to be erased before calling SetPattern.
ResetPattern returns to the default pattern (arrow) after SetPattern has been called.

Imported Modules

Resident system modules

Screen Software 10003

10.3. Menu

This module implements so called pop-up menus that allow a graphical selection of commands using
the mouse. A description of this module is included in [1].

Definition Module

DEFINITION MODULE Menu;

PROCEDURE ShowMenu(X, Y: CARDINAL;
VAR menu: ARRAY OF CHAR; VAR cmd CARDINAL)

(*menu = title l"I" item\ .
item =name['\(" menu 1')"].
name = !char} .
char = } any character except 0C, "I", " (", ")"' .
title = name .

Nonprintable characters and characters exceeding
maximum namelength are ignored.

The input value of "cmd" specifies the command initially
to be selected.

The sequence of selected items is returned via
the digits of "cmd" (from right to left),
interpreted as an octal number*)

END Menu.

Explanations

Procedure ShowMenu draws a menu at screen position (X, Y), waits for a command selection and
returns the selected command code as soon as all mouse buttons are released. Variable cmd
contains the (coded) command number. crr1d = O --> no command has been selected at all.

Submenus are specified in paranthesis after an item name, a continuation menu by an empty item
name followed by a menu in paranthesis.

Imported Modules

CursorMouse
Resident system modules

10004 Screen Software

10.4. Windows

This is a library module for handling windows on the display. A window is a rectangle on the screen
where text and graphic operations may be performed like on a regular display. Windows can be
compared to pieces of paper on a desk. They can overlay each other in arbitrary order and can be moved.
A complete description of the implementation of the Ceres window package is given in [1].

Definition Module

DEFINITION MODULE Windows;

CONST Background = 0; FirstWindow = 1; LastWindow = 15;

TYPE Window= [Background .. LastWindow];
(*Background serves as a possible return value for the

UpWindow procedure and is not accessible to the user•)

RestoreProc = PROCEDURE(Window);

PROCEDURE OpenWindow(VAR u: Window; x,y,w,h: CARDINAL;
Repaint: RestoreProc; VAR done: BOOLEAN);

(*Open a new window u and initialize its rectangle
by clearing it and drawing a frame of width 1;
procedure Repaint will be called when restoration
becomes necessary•)

PROCEDURE DrawTitle(u: Window;_ title: ARRAY OF CHAR);
(*Draw title bar; height = lineHeight of default font•)

PROCEDURE RedefineWindow(u: Window; x,y,w,h: CARDINAL;
VAR done: BOOLEAN};

(*Change and reinitialize rectangle of window u•)

PROCEDURE CloseWindow(u: Window);

PROCEDURE OnTop(u: Window): BOOLEAN;

PROCEDURE PlaceOnTop(u: Window);

PROCEDURE PlaceOnBottom(u: Window);

PROCEDURE UpWindow(x,y: CARDINAL): Window
(*Return the uppermost opened window containing (x,y),

if there is any, and take the value Background otherwise•)

PROCEDURE GetWindowFrame(u: Window; VAR x. y, w, h: CARDINAL);

END Windows.

Imported Modules

Resident system modules

Screen Software 10005

10.5. TextWindows

Textwindows is a library module for writing non-proportional text into a window. Text windows may
be operated as scrolling displays or as forms {with positioning). A description of this module is
included in [1].

Definition Module

DEFINITION MODULE TextWindows;

IMPORT Windows;

TYPE Window = Windows.Window;
RestoreProc = Windows.RestoreProc;

VAR Done: BOOLEAN; (*Done = "previous operation was successfully executed"•)
termCH: CHAR; (*termination character of all read procedures*)

PROCEDURE OpenTextWindow(VAR u: Window; x, y, w, h: CARDINAL;
name: ARRAY OF CHAR);

(*Open new standard text window. Draw title bar iff "name" is not empty•)

PROCEDURE RedefTextWindow(u: Window; x,y,w,h: CARDINAL);
(*Redefine and reinitia1ize window U*)

PROCEDURE CloseTextWindow(u: Window);

PROCEDURE TextWindowHeight(lines: CARDINAL):CARDINAL;
(*returns the window fieight needed to have the given

number of lines when tfie default font is used•)

PROCEDURE TextWindowSize(u: Window; VAR lines, columns: CARDINAL);
(•returns the actual size of the window u according to

the default font size•)

PROCEDURE AssignFont(u: Window; frame, charW, lineH: CARDINAL);
(•Assign non-proportional font at frame-address f to window u.

Character width = w, Character height = h*)

PROCEDURE AssignRestoreProc(u: Window; r: RestoreProc);
(*Assign procedure to restore window U*)

PROCEDURE AssignEOWAction(u: Window; r: RestoreProc);
(•Assign procedure to react on "end of window" condition

for window U*)

PROCEDURE ScrollUp(u: Window);
(*Scroll one line up in window u (standard EOW-action)*)

PROCEDURE DrawTitle(u: Window; name: ARRAY OF CHAR);

PROCEDURE DrawLine(u: Window; line, col: CARDINAL);
(*col = 0: draw horizontal line at line;
· line = 0: draw vertical line at col•)

PROCEDURE SetCaret(u: Window; on: BOOLEAN);
(*on TRUE (FALSE): turn caret on (off)*)

PROCEDURE Invert(u: Window; on: BOOLEAN);
(•on TRUE (FALSE): set to inverse video (normal) mode•)

PROCEDURE IdentifyPos(u: Window; x, y: CARDINAL; VAR line, col: CARDINAL);

PROCEDURE GetPos(u: Window; VAR line, col: CARDINAL);
(*Get current caret position of ·window U*)

PROCEDURE SetPos(u: Window; line, col: CARDINAL);
(•Set position within window u•)

10006 Screen Software

PROCEDURE ReadString(u: Window; VAR a: ARRAY OF CHAR);
(*Read string and echo to window U*)

PROCEDURE ReadCard(u: Window; VAR x: CARDINAL);
(*Read cardinal and echo to window u.

Syntax: cardinal = digit {digit}.
Leading blanks are ignored*)

PROCEDURE Readint(u: Window; VAR x: INTEGER);

PROCEDURE Write(u: Window; ch: CHAR);
(*Write character ch at current position.

Interpret BS, LF, FF, CR, CAN, EOL and DEL characters•)

PROCEDURE WriteLn(u: Window);

PROCEDURE WriteString(u: Window; a: ARRAY OF CHAR);

PROCEDURE WriteCard(u: Window; x, n: CARDINAL);
(*Write x with (at least) n characters.

If n is greater than the number of digits needed,
blanks are added preceding the number•)

PROCEDURE Writeint(u: Window; X: INTEGER; n: CARDINAL);

PROCEDURE WriteOct(u: Window; X, n: CARDINAL);

PROCEDURE WriteHex(u: Window; x, n: CARDINAL);

END TextWi ndows.

Imported Modules

Windows
Resident system modules

Screen Software 10007

10.6. GraphicWindows

GraphicWindows is a library module for drawing lines, circles and filled rectangles in a window
(supports "turtle graphics"). A description of this module is included in [1].

Definition Module

DEFINITION MODULE GraphicWindows;
IMPORT Windows, RasterOps;

TYPE Window = Windows.Window;
RestoreProc = Windows.RestoreProc;

Mode = RasterOps.Mode;

VAR Done: BOOLEAN; (* Done = "operation was successfully executed" *)

PROCEDURE OpenGraphicWindow(VAR u: Window; x,y,w,h: CARDINAL;
name: ARRAY OF CHAR; Repaint: RestoreProc);
(* Open new graphic window. Draw title bar if "name" not empty •)

PROCEDURE RedefGraphicWindow(u: Window; x,y,w,h: CARDI~AL);
(* Change rectangle and reinitialize graphic window u *)

PROCEDURE Clear(u: Window);
(* clear window u *)

PROCEDURE CloseGraphicWindow(u: Window);
(* close window u *)

PROCEDURE SetMode(u: Window; m: Mode);
(*set mode "replace, paint, invert or erase"*)

PROCEDURE Dot(u: Window; x, y: CARDINAL};
(* place dot of current mode at coordinate x,y *)

PROCEDURE SetPen(u: Window; x,y: CARDINAL);
(*set pen at (x, y); window need not be on top*)

PROCEDURE TurnTo(u: Window; d: INTEGER);
(* turn direction of the pen to d degrees *)

PROCEDURE Turn(u: Window; d: INTEGER);
(* turn direction of the pen by d degrees *)

PROCEDURE Move(u: Window; n: CARDINAL);
(*move pen and draw line of length n in direction specified before *)

PROCEDURE MoveTo{u: Window; x,y: CARDINAL);
(* move pen and draw line to (x, y) *)

PROCEDURE Circle(u: Window; x, y, r: CARDINAL);
(* draw circle with center at (x, y) and radius r *)

PROCEDURE Area(u: Window; c: CARDINAL; x,y,w,h: CARDINAL);
(* paint rectangular area of width w and height h

at coordinate x,y in color c: ·
0: white, 1: light grey, 2: dark grey, 3: black *)

PROCEDURE CopyArea{u: Window; sx,sy,dx,dy,dw,dh: CARDINAL);
(* copy rectangular area at (sx, sy) into rectangle at (dx,

of width dw and height dh *)

PROCEDURE Write(u: Window; ch: CHAR);
(*write ch at pen's position *)

PROCEDURE WriteString(u: Window; s: ARRAY OF CHAR);
(*write string s at pen's position *)

PROCEDURE IdentifyPos(VAR u: Window; VAR x,y: CARDINAL);

dy)

10008 Screen Software

(* return uppermost opened window and the
window oriented coordinates (x, y)
for given screen coordinates (x, y) •)

END GraphicWindows.

Restrictions
Graphic objects (e.g. a circle) are only drawn if they will lie completely in the specified window.
If something has to be drawed in a window overlaid by another window, it is first put on top. In

all other cases nothing is displayed and Done is set to FALSE.

Imported Modules
Windows
Resident system modules

Screen Software

10.7. DisplayDriver

Module Disp!ayDriver gives access to the display hardware. A description is included in [2].

Definition Module

DEFINITION MODULE DisplayDriver;

FROM RasterOps IMPORT BitMap;
FROM SYSTEM IMPORT ADDRESS;

VAR BMD, BMDB: BitMap;

10009

(* BMD
BMDB

= default bitmap desc.
= background bitmap desc.•)

PROCEDURE BuildBmd(ptr: ADDRESS; width, height:
(* build a bitmap desc. for a bitmap starting

with size width x height. Note: width must

CARDINAL; VAR bmd: BitMap);
at address 'ptr'
be a multiple of 32! •)

PROCEDURE ScreenWidth(): CARDINAL;
PROCEDURE ScreenHeight(): CARDINAL;

PROCEDURE CharWidth(}: CARDINAL;
PROCEDURE LineHeight(): CARDINAL;
PROCEDURE MapHeignt(): CARDINAL;

PROCEDURE ShowBitmap(on, inv: BOOLEAN);
(* on -> show or suppress the disp1ay of the current bitmap

inv ->invert the display, i.e. display black on white *J

PROCEDURE SwitchBitmap(bank: CARDINAL; VAR done: BOOLEAN);
(* switch between forground and backgound bitmap;

bank = 0 denotes tne default bitmap BMD;
bank = 1 denotes the background bitmap BMDB;
Note: The user- has to manage which bitmap is currently

displayed. However, after termination of a user
application the display is reset to BMD •)

PROCEDURE Write(ch: CHAR);
(* display a character on the systems default bitmap

the following control characters are interpreted:
10C BS backspace one character
12C LF next line, same x position
14C FF clear page
15C CR return to start of line
30C CAN clear line
36C EOL next line

177C DEL backspace one character and clear it.

BMD.

Note: Write supports up to 256 characters per line and
allows deletion only within one line. •)

END DisplayDriver.

Imported modules
Resident system modules

1001 O Screen Software

10.8. RasterOps

The module RasterOps defines the primitive operations on the Ceres raster scan display. Because the
operations work on the whole screen instead of windows they should be used carefully. The module is
described in [2].

Definition Module

DEFINITION MODULE RasterOps;

FROM SYSTEM IMPORT ADDRESS;
FROM Fonts IMPORT Font;

CONST maxheight = 16;

TYPE Mode= (replace, paint, invert, erase);

Block = RECORD

Re ct

BitMap

Pattern

x, y, w, h : CARDINAL
END;

= RECORD
xd, yd, xu, yu: CARDINAL

END;

= RECORD
bmPtr : ADDRESS;
width, height : CARDINAL;
clipB: Block; (* for further use *)
clipR: Rect (* for further use *)

END;

= RECORD
pheight : CARDINAL;
gat : ARRAY [0 .. maxheight-1] OF LONGINT

EN ;

PROCEDURE DDT (VAR bmd: BitMap; x, y: CARDINAL; m: Mode);
PROCEDURE OCH (VAR bmd: BitMap; x, y: CARDINAL; font: Font;

ch: CHAR; m: Mode);
PROCEDURE REPL (VAR bmd: BitMap; VAR blk: Block; VAR p: Pattern;

m: Mode);
PROCEDURE BBLT (VAR sBmo: BitMap; VAR sBlk: Block;

VAR dBmd: BitMap; VAR dBlk: Block; m: Mode);

PROCEDURE LIN (VAR bmd: BitMap; xt, y1, x2, y2: CARDINAL; m: Mode);
PROCEDURE SCR (VAR bmd: BitMap; VAR blk: Block; lineheight: CARDI~AL);
PROCEDURE RECT (VAR bmd: BitMap; VAR blk: Block; m: Mode);

END RasterOps.

Restrictions
The fields c/ipB and clipR in the tyf.e Bitmap are restricted to the use by Medos-2. Changing
these values is considered harmfu.

Imported modules
Resident system modules

Screen Software 10011

10.8. Fonts

The module Fonts allows the use of multiple different fonts on Ceres. It defines the default font which is
used by the resident system as well as procedures to load arbitary fonts from the disk. Some routines
provide information about particular characters. The font file format on Ceres is defined in [3]. The
module Fonts itself is described in detail in [2].

Definition Module

DEFINITION MODULE Fonts;

TYPE Font;

PROCEDURE LoadFont(VAR fnt: Font; fn: ARRAY OF CHAR;
abstr: INTEGER; VAR err: INTEGER);

(* loads the font in file 'fn' with abstraction 'abstr'
into memory yielding a handle 'fnt' to be passed to
DCH; errors are reported in 'err' *)

PROCEDURE UnloadFont(VAR fnt: Font; VAR err: INTEGER);
(* unloads the font 'fnt' by releasing its resources;

errors are reported in 'err' *)

PROCEDURE SysFont():Font;
(* returns a handle to the current system font *)

PROCEDURE DefFont():Font;
(* returns a handle to the default font *)

PROCEDURE SetDefFont(fnt: Font);
(* allows to set the default font *)

PROCEDURE ChW(fnt: Font; ch: CHAR):INTEGER;
(* returns the width of a character 'ch' in font 'fnt' *)

PROCEDURE ChBox(fnt: Font; ch: CHAR; VAR x, y, w, h: INTEG~R);
(* returns the box of character 'ch' in font 'fnt';

x and y are relative to a baseline *)
PROCEDURE FontBox(fnt: Font; VAR fn~. fnY, fnW, fnH: INTEGER);

(* returns the maximal box of font 'fnt', i.e. the
union of all character boxes in 'fnt' *)

END .Fonts.

Imported modules
Resident system modules

Library Modules 11001

11. Library Modules
This chapter is a collection of some commonly used library modules on Ceres. For each library module a
symbol file and an object file is stored on the disk. The file names are derived from (the first 16
characters of) the module name, beginning with the prefix LIB and ending with the extension SMB for
symbol files and the extension OBN for object files. It is possible that some object files are pre-linked
and therefore also contain the code of the imported modules.

Module name
Symbol file name
Object file name

FileNames
DK.LIB.Fi I eN am es.SMB
D l<.LI B.Fi I eN am es.O BN

List of the Library Modules

lnOut
ReallnOut
LonglnOut
MathlibO
ByteBlocklO
FileNames
Options
V24
Profile
String

Simple handling of formatted input/output
Formatted input/output of real numbers
Formatted input/output of long integers
Basic mathematical functions
Input/output of byte blocks on files
Input of file names from the terminal
Input of program options and file names
Driver for the RS-232 (V24) line interface
Reading from the user profile
String handling

11.1.
11.2.
11.3
11.4.
11.5.
11.6.
11.7.
11.8.
11.9.
11.10.

11002 Library Modules

11.1. lnOut

Library module for formatted input/output on terminal or files. A description of this module is included
to the Modula-2 manual [1].

Imported Library Modules

Terminal
FileSystem

Definition Module

DEFINITION MODULE InOut;
FROM SYSTEM IMPORT WORD;
FROM FileSystem IMPORT File;

CONST EOL = 36C;
VAR Done: BOOLEAN;

termCH: CHAR; (•terminating character in Readint, ReadCard•)
in, out: File; (•for exceptional cases only•)

PROCEDURE Openinput(defext: ARRAY OF CHAR);
(•request a file name and open input fi1e "in".

Done : = "file was successfully opened".
If open, subsequent input is read from this file.
If name ends with ".", append extension defext•)

PROCEDURE OpenOutput(defext: ARRAY OF CHAR);
(•request a file name and open output fi1e "out"

Done := "file was successfully opened.
If open, subsequent output is written on this file•)

PROCEDURE Closeinput;
(•closes input file; returns input to terminal•)

PROCEDURE CloseOutput;
(•closes output file; returns output to terminal•)

PROCEDURE Read(VAR ch: CHAR);
(•Done := NOi in.eof•)

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);
(•read string, i.e. sequence of characters not containing

blanks nor control characters; leading blanks are ignored.
Input is terminated b.y any character <= " ";
this character is assigned to termCH.
DEL is used for backspacing when input from terminal•)

PROCEDURE Readint(VAR x: INTEGER);
(*read string and convert to integer. Syntax:

i n ~ e g e r = r "+" I " - ·: J d i g it { d i g i t} .
Leading blanKs are ignored.
Done := "integer was read"*)

PROCEDURE ReadCard(VAR x: CARDINAL);
(•read string and convert to cardinal. Syntax:

cardinal = digit {digit}.
Leading blanks are ignored.
Done := "cardinal was read"*)

PROCEDURE ReadWrd(VAR w: WORD);
(•Done := NOT in.eof•)

PROCEDURE Write(ch: CHAR);

PROCEDURE WriteLn; (•terminate line•)

PROCEDURE WriteString(s: ARRAY OF CHAR);

Library Modules 11003

PROCEDURE Writeint(x: INTEGER; n: CARDINAL);
(*write integer x with (at least) n characters on file "out".

If n is greater than the number of digits needed,
blanks are added preceding the number•)

PROCEDURE WriteCard(x,n: CARDINAL);

PROCEDURE WriteOct(x,n: CARDINAL);

PROCEDURE WriteHex(x,n: CARDINAL);

PROCEDURE WriteWrd(w: WORD);

END InOut.

11004 Library Modules

11.2. ReallnOut

Library module for formatted input/output of real numbers on terminal or files. It works together with
the module In Out. A description of this module is included to the Modula-2 manual (1].

Imported Library Module

In Out

Definition Module

DEFINITION MODULE RealinOut;
VAR Done: BOOLEAN;

PROCEDURE ReadReal(VAR x: REAL);
(*Read REAL number x from keyboard according to syntax:

["+"!"-"]digit {digit}["." digit {digit}] ["E"["+"I"-"] digit [digit]]

Done := "a number was read".
At most 7 digits are significant, leading zeros not
counting. Maximum exponent is 38. Input terminates
with a 5lank or any control character. DEL is used
for backspacing*)

PROCEDURE WriteReal(x: REAL; n: CARDINAL);
(*Write x using n characters. If fewer than n characters

are needed, leading blanks are inserted*) ·

PROCEDURE WriteRealOct(x: REAL);
(*Write x in octal form with exponent and mantissa•)

END Rea linOut.

Library Modules 11005

11.3. LonglnOut

This module can be used for formatted input/output of real numbers on terminal or files. It works
together with the module In Out.

Imported Library Module

In Out

Definition Module

DEFINITION MODULE LonginOut;

PROCEDURE Writelongint(x: LONGINT; n: INTEGER);
(*Write x on current active stream of module InOut.

n characters will be used, with x right justified.*)

PROCEDURE Readlongint(VAR x: LONGINT);
(*Read x from tne active stream of module InOut.•)

END LonglnOut.

Explanations

Writelonglnt(x, n)
Writelonglnt writes x on the current output stream of module lnOut. It uses n characters
with x right justified.

ReadLonglnt(xJ
Readlonglnt reads x from the active stream of module lnOut.

11006 Library Modules

11.4. MathlibO

Library module providing some basic mathematical functions. A description of this module is included
to the Modula-2 manual [1]. .

Definition Module

DEFINITION MODULE MathLib0;

PROCEDURE sqrt(x: REAL): REAL;

PROCEDURE exp(x: REAL): REAL;

PROCEDURE ln(x: REAL): REAL;

PROCEDURE sin(x: REAL): REAL;

PROCEDURE cos(x: REAL): REAL;

PROCEDURE arctan(x: REAL): REAL;

PROCEDURE real(x: INTEGER): REAL;

PROCEDURE entier(x: REAL): INTEGER;

END MathL i b0.

Library Modules 11007

11.5. ByteBlocklO

Module ByteBlock/O provides routines for efficient reading.and writing of elements of any type on files.
Areas, given by their address and size in bytes, may be transferred efficiently as well.

DEFINITION MODULE ByteBlockIO;

FROM SYSTEM IMPORT BYTE, ADDRESS;

PROCEDURE ReadByteBlock(VAR f: File; VAR block: ARRAY OF BYTE);

PROCEDURE WriteByteBlock(VAR f: File; VAR block: ARRAY OF BYTE);

PROCEDURE ReadBytes(VAR f: File; addr: ADDRESS; count: CARDINAL;
VAR actualcount: CARDINAL);

PROCEDURE WriteBytes(VAR f: File; addr: ADDRESS; count: CARDINAL);

END ByteB 1 ockIO.

Explanations

Read ByteBlock (f, block); WriteByteblock (f, block)
ReadByteBlock and WriteByteBlock transfer the given block (ARRAY OF WORD) to or from
file f. The bytes are transferred according to the description given for ReadBytes and
Write Bytes.

ReadBytes(f, addr, count, actualcount); WriteBytes(f, addr, count)
Read Bytes and WriteBytes transfer the given area (beginning at address addr and with count
bytes to or from the file f. The number of the actually read bytes is assigned to actualcount.

Example

MODULE ByteBlockIODemo;

FROM FileSystem IMPORT File, Response, Lookup, Close;
FROM ByteBlockIO IMPORT ReadByteBlock;

VAR r: RECORD(• ... *) END;
f: File;

BEGIN
Lookup{f, 'DK.Demo', FALSE);
IF f .res = done THEN

LOOP
ReadByteBlock(f, r);
IF f .eof THEN EXIT END;
(* use r *)

ENO·
c1ose(f)

ELSE (* file not found *)
END

END ByteBlockIODemo.

Restriction

The longest block which can be tr~nsferred by a single call to ReadByteBlock or WriteByteBlock
contains 215 -1 bytes.

Imported Modules

SYSTEM
FileSystem

Algorithm

The routines repeatedly determinates the longest segment of bytes, which can be moved to or

11008 Library Modules

from the file buffer and move this segment by use of the MOVE function provided by the module
SYSTEM.

Library Modules 11009

11.6. FileNames

Module FileNames makes it easier to read in file names from the keyboard (i.e. from module Terminal)
and to handle defaults for such file names.

DEFINITION MODULE FileNames;

PROCEDURE ReadFileName(VAR fn: ARRAY OF CHAR; dfn: ARRAY OF CHAR);

PROCEDURE Identifiers(fn: ARRAY OF CHAR): CARDINAL;
PROCEDURE IdentifierPosition(fn: ARRAY OF CHAR; identno: CARDINAL): CARDINAL;

END FileNames.

Explanations

ReadFileName(fn, dfn)
Procedure ReadFileName reads the file name fn according to the given default file name dfn.
If no valid file name could be returned, fn [0] is set to QC. The character typed in in order to

terminate the file name, must be read after the call to ReadFileName. One of the characters
eol," ","/",CAN and ESC terminates the input of a file name. If CAN or ESC has been typed,
fn[O] is setOC too.

Identifiers (filename)
Function Identifiers returns the number of identifiers in the given file na~e.

ldentifierPosition (filename, identifierno)
Function !dentifierPosition returns the index of the first character of the identifier
identifierno in the given file name. The first identifier in the file name is given number 0.
The length of a given file name fn is returned by the following function call:
!dent1fierPosition(fn, !dent1fiers(fn)).

Syntax of the Different Names

FileName = MediumName ["." LocalFileName] [OC I ""] .
MediumName Identifier.
LocalFileName = [Qualldentifier "."] Extension.
Qualldentifier = Identifier { "."Identifier}.
Extension = Identifier.
Identifier = WildcardLetter { WildcardLetter I Digit} .
WildcardLetter Letter I "*" I "%".

DefaultFileName
DefaultLocalName

lnputFileName
lnputLocalName
Quallnput

[MediumName] ["." [DefaultLocalName]] [OC I ""] .
[[Qualldentifier] "."] Extension.

["#" [MediumName] ["." lnputLocalName] I lnputLocalName].
[Quallnput "."] Extension.
[Qualldentifier ["."]] ["." Qualldentifier].

The scanning of the typed in lnputFileName is terminated by the characters ESC and CAN or at a
syntatically correct position by the characters eol, " " and "/". The termination character may be read
after the call. For correction of typing errors, DEL is accepted at any place in the input. Typed in
characters not fitting into the syntax are simply ignored and not echoed on the screen.

Wild card characters ("*", "%") are only accepted, if the default file name contains wild card characters.

For routine ReadFileName a file name consists of a medium name part and of an optional local file name
part. The local file name part consists of an extension and optionally of a sequence of identifiers
delimited by periods before the extension. In order to allow filenames for the hierarchical filesystem of
the future operating system Vamos the':' is accepted as an additional separator. Of course these names
are invalid in the context of the Medos-2 filesystem.

When typing in an lnputFileName, an omitted part in the lnputFileName is substituted by the

11010 Library Modules

corresponding part in the given default file name whenever the part is needed for building a
syntactically correct FileName. If the corresponding part in the default file name is empty, the part must
be typed.

Note: As all file names contain at least a medium name, don't forget the default medium name in a call
to ReadFileName.

Examples

ReadFileName(fn, "DK")
ReadFileName(fn, "DK..MOD")
ReadFileName(fn, "DK.Temp.MOD")
ReadFileName(fn, "DK.*")

Error Message

Default for medium name
Defaults for medium name and extension
Defaults for all three parts of a file name
Defaults for medium name and extension,
wildcards accepted

ReadFileName called with incorrect default

Imported Module

Terminal

Library Mqdules 11011

11.7. Options

Library module for reading a file name followed by program options from the keyboard. File name and
options are accepted according to the syntax given in 4.2.3. and 4.3.

Imported Library Modules

Terminal
FileNames

Definition Module

DEFINITION MODULE Options;

TYPE Termination= (normal, empty, cancel, escape);

PROCEDURE FileNameAndOptions(default: ARRAY OF CHAR; VAR name: ARRAY OF CHAR;
VAR term: Termination; acceptOption: BOOLEAN);

PROCEDURE GetOption(VAR optStr: ARRAY 0££HAR; VAR length: CARDINAL);

END Options.

Procedure FileNameAndOptions first reads a file name by calling procedure ReadFil_eName of module
FileNames. If acceptOption is TRUE, it afterwads reads program options from the terminal. The
procedure reads all characters from terminal until one of the keys RETURN, BLANK (space-bar), CTRL-X,
or ESC is typed.

For the file name, a default file name may be proposed. The accepted name is returned with parameter
name, and term indicates, how the input was terminated. The meaning of the values of type
Termination is

normal
empty
cancel
escape

input normally terminated
input normally terminated, but name is empty
CTRL-X was typed, input line is cancelled
ESC was typed, no file is specified.

Consider that name[O] = OC when term<> normal.

Procedure Getoption may be called repeatedly after FileNameAndOptions to get the accepted options.
It returns the next option string in optStr and its length in length. The string is terminated with a OC
character, if length<= HIGH(optStr). Length gets the value 0, if no option is returned.

Example

LOOP
Terminal .WriteString("file > ");
Options.FileNameAndOptions(default, name, termstat, TRUE);
IF termstat = Options.escape THEN

Terminal.WriteString(" -- no file");
Terminal.WriteLn;
continue := FALSE;
EXIT;

ELSIF termstat = Options.cancel THEN
Terminal .WriteString(" -- cancelled");
Terminal.WriteLn;

ELSE (* normal OR empty *)
IF termstat = Options.empty THEN

Terminal.WriteString(default);
name := default;

END·
Terminal.Writeln;
FileSystem.Lookup(file, name, FALSE);
IF file.res = FileSystem.done THEN

Options.GetOption(opttext, optlength);
WHILE optlength > 0 DO

11012 Library Modules

(* ... interprete program option ... *)
Options.netOption(opttext, optlength);

END;
continue := TRUE;
EXIT;

ELSE
Terminal.WriteString(" ----file not found");
Terminal.WriteLn;

END;
END·

END; {• LOOP *)

Library Modules 11013

11.8. V24

Module V24 is used for reading or writing characters over the RS-232 asynchronous line adapter. No
character conversions are implied in the routines.

DEFINITION MODULE V24;

PROCEDURE BusyRead(VAR ch: CHAR; VAR got: BOOLEAN);

PROCEDURE Read(VAR ch: CHAR);

PROCEDURE Write(ch: CHAR);

END V24.

Explanations

Read(ch)
Procedure Read gets the next character from the line and assigns it to ch.

BusyRead (ch, got)
Procedure BusyRead assigns FALSE to got if no character is received on the line. Otherwise,
the received character is assigned to ch.

Write(ch)
Procedure Write writes the given character on the line.

R estri dio n s

The received characters might be lost, if procedure Read or BusyRead are not called frequently
enough._ Buffering cannot easily be provided because the line adapter generates no interrupts.

11014 Library Modules

11.9. Profile

Module Profile reads entries from the file User.Profile. This file is used to specify user dependent
defaults for different programs.

Definition Module

DEFINITION MODULE Profile;

PROCEDURE OpenProfile(title: ARRAY OF CHAR);

PROCEDURE FindKey(key: ARRAY OF CHAR);

PROCEDURE GetString(VAR s: ARRAY OF CHAR);

PROCEDURE GetFileName(VAR name: ARRAY OF CHAR; ext: ARRAY OF CHAR);

PROCEDURE GetNumber(VAR x: CARDINAL);

PROCEDURE CloseProfile;
END Profile.

Explanations

OpenProfile(title)
Opens the file User.Profile and searches for the title entry "title".

FindKey(key)
Searches for 'key' starting from the position of the previously found 'title'. Position the file
after the entry 'key' so that further calls of GetString, GetFifeName and GetNumber return
the values of 'key'.

GetString(s)
Procedure GetString reads a string at the current position.

GetFileName(name, ext)
Reads file name with default extension ext.

GetNumber(x)
Reads a number.

CloseProfile
Closes the file User.Profile.

Imported Module

FileSystem

11.10. String

This module provides a set of primitves for character string manipulations.

Definition Module

DEFINITION MODULE String;

CONST
first = 0B;
last = 177777B;

PROCEDURE Length(VAR string: ARRAY OF CHAR): CARDINAL;

PROCEDURE Occurs(VAR s: ARRAY OF CHAR; start: CARDINAL;
w: ARRAY OF CHAR): CARDINAL;

Library Modules

PROCEDURE Insert(VAR s: ARRAY OF CHAR; at: CARDINAL; w: ARRAY OF CHAR);

PROCEDURE Append(VAR s: ARRAY OF CHAR; w: ARRAY OF CHAR);

PROCEDURE InsertCh(VAR s: ARRAY OF CHAR; at: CARDINAL; ch: CHAR);

PROCEDURE AppendCh(VAR s: ARRAY OF CHAR; ch: CHAR);

PROCEDURE Delete(VAR s: ARRAY OF CHAR; start, length: CARDINAL);

PROCEDURE Copy(VAR s: ARRAY OF CHAR;
source: ARRAY OF CHAR; start, length: CARDINAL);

PROCEDURE Assign(VAR s: ARRAY OF CHAR; source: ARRAY OF CHAR);

PROCEDURE Same(VAR s: ARRAY OF CHAR; start, length: CARDINAL;
w: ARRAY OF CHAR): BOOLEAN;

PROCEDURE Equal(s, w: ARRAY OF CHAR): BOOLEAN;

END String.

Explanations

Character strings are represented the same way as the compiler generates string constants:

StringType =ARRAY [0 .. maxlength-1] OF CHAR;

11015

Either all elements (characters) are used or the string is terminated by a (single) OC character;

The first (leftmost) character has position O; the last (rightmost) character has position
length-1.

Length (string)
Function Length returns the number of characters in string (without counting a terminating
OC).

Occurs(string, start, substring)
Function Occurs checks if substring occurs as a substring of string starting at the character
at position start or more to the right; The function returns the index of the first character, or
1777778 if it does not occur.

Insert(string, at, substring) ·
Procedure Insert inserts substring into string left of the character at position at. If the
resulting string is to long to be stored in its memory available, it is clipped;

If at> length (string) blanks are inserted in string.

If at= last substring is appended to string.

11016 Library Modules

Append (string, substring)
· Insert(string, substring)

lnsertCh(string, at, ch)
Procedure lnserteh inserts ch into string left of the character at position at.

If the resulting string is to long to be stored in its memory available, it is clipped;

If at> length (string) blanks are inserted.

If at= last ch is appended to string.

QC is considered as being no character.

AppendCh (string, ch)
lnsertCh (string, last, ch)

·Delete(string, start, length)
Procedure Delete removes the substring in string starting at position start with length
length.

If start points to the right of the end, nothing happens.

Copy(string, source, start, length)
Procedure Copy copies a substring from source to string-, the substring starts with the
charader at the position start (inclusive) and is length characters long.

If start and length denote non-existent characters (characters to the right of the last
character) then the non-existent characters are ignored. If the resulting string does not fit
into the memory for string, then it is clipped.

Assign (string, source)
Copy(string, source, first, last)

Same(string, start, length, substring)
Function Same denotes if the substring of string is equal to substring-, the substring starts at
position start (inclusive) and is length characters long.

If start and length denote non-existent characters (characters to the right of the last
character) then the non-existent characters are not part of the substring used to compare.

All characters inside the string and the used substring are compared (including blanks).

Equal(s,w)
Same(s, first, last, w)

Imported Modules

none

Modula-2 on Ceres 12001

12. Modula-2 on Ceres
Differences between programming for various implementations can be attributed to the following
causes:

1. Extensions of. the language proper, i.e. new syntactic constructs.

2. Differences in the sets of available standard procedures and data types, particularly
those of the standard module SYSTEM.

3. Differences in the internal representation of data.

4. Differences in the sets of available library modules, in particular those for handling
files and peripheral devices.

Whereas the first three causes affect "system-level" programming only, the fourth pervades all levels,
because it reflects directly an entire system's available resources in software as well as hardware. This
chapter gives an overview of the Ceres specific features.

12.1. Implementation Details

12.1.1. Forward References

Due to the nature of a single-pass compiler an object has to be defined textually before it is
referenced. In most cases this rule poses no problems. Only in the case of cyclic recursive
procedures this rule cannot be satisfied. Therefore a forward declaration of procedures is
introduced. This is done by simply appending the keyword FORWARD to a complete procedure
header.

12.1.2. Type Transfer

Type transfer functions are not accepted by the standard compiler. (See VAL in 12.2.)
The types INTEGER and CARDINAL are assignment compatible with LONGINT, REAL with
LONGREAL, and LONGREAL with REAL

12.1.3. Procedure Parameters

Procedures can be used as parameters, or can be assigned, only if they are declared on the global
level. This restriction also holds for Modula on Ceres. Furthermore, they must be declarea in a
definition module or in a foward declaration, or their heading must be followed by an asterisk.

PROCEDURE Assignable(parameters)•;
This not very pleasing rule is necessary, because the NS processor uses different return
instructions for external procedures and others, and they must correspond with the call
instruction used. The compiler cannot determine the kind when generating a formal call. Hence
we postulate the external mode for all formal and assigned procedures. Those defined in a
definition module or defined in a forward declaration are automatically "external".

12.1.4. Code Procedures

Modula on Ceres also offers a code procedure declaration. In contrast to Lilith-Modula, however,
it is used in definition modules only and serves to introduce procedures implemented by
supervisor calls. The code number n specifies the identification inserted as a byte after the SVC
instruction. Evidently, such definitions are provided with the operating system used. The format
is

PROCEDURE P(parameter list) CODE n;

12002 Modula-2 on Ceres

variables. INC and DEC accept a single parameter only.
The new, standard function LONG converts an argument of type INTEGER or REAL to the types
LONGINT or LONGREAL, and the function SHORT performs the inverse transformation (in the case
of integers without range check). The two additional standard functions FLOATD and TRUNCD
are analogous to FLOAT and TRUNC; they yield results of types LONGREAL and LONGINT
respectively.

12.1.6. Numeric constants

Consta.nt values as well as variables are of a specific type. Character constants can be denoted by
numbers appended by a capital C ('A'= 101C in the ASCII character set).
Constants of type INTEGER (or CARDINAL) can be denoted as decimal, hexadecimal or octal
numbers (4096 = 1000H = 100008). Those of type LONGINT or ADDRESS are denoted by decimal or
hexdecimal numbers (4096D = 1000L). Constants of type LONGREAL are distinguished by the use
of the letter Din place of E in the scale factor (or simply a suffix D if the scale factor is missing).
Examples: 1.0D, 37.82D-7.

12.2. The Module SYSTEM

The module SYSTEM offers some further tools of Modula-2. Most of them are implementation
dependent and/or refer to the given processor. Such kind of tools are sometimes necessary for the so
called low-level programming. The module SYSTEM is directly known to the compiler, because its
exported objects obey special rules, that must be checked by the compiler. If a compilation unit imports
objects from module SYSTEM, then no symbol file must be supplied for this module.

Finally, there are the explicitly system-dependent features imported from module SYSTEM, to which we
also count the declaration of code procedures. On Lilith, the module SYSTEM contains the types
ADDRESS and WORD, and the procedures ADR, TSIZE, and LONG. On Ceres, the type ADDRESS is not
compatible with CARDINAL, but rather with LONGINT for address arithmetic. The new type BYTE
represents the unit of addressable storage. The type WORD is eliminated from the Standard Compiler,
but retained in the Ceres-Medas Compiler for obvious reasons. Programmers should aim at its
elimination.

On Ceres, the module SYSTEM contains a larger number of objects. This is a reflection of the fact that
machine code cannot be defined by code procedures as on Lilith. The following definition is an attempt
to summarize the facilities contained:

DEFINITION MODULE SYSTEM;
(*FOR NS32032. for details of instructions refer to manual•)
TYPE ADDRESS;. (*compatible with type LONGINT and with all pointer types•)
TYPE BYTE;
TYPE.WORD; (•16 bit entity; in Medos Compiler only•)
PROCEDURE ADR(VAR x: T): ADDRESS; (•address of variable x•)
PROCEDURE TSIZE(T): INTEGER; (•size in bytes of variables of type T•)
(*T subsequently denotes any type of size <= 4 bytes;

T0 stands for either INTEGER or LONGINT•)
PROCEDURE ASH(x: T; n: T0): T; (* x * 2~n •)
PROCEDURE LSH(x: T; n: T0): T; (* x shifted by n positions•)
PROCEDURE ROT(x: T; n: T0): T; (* x rotated by n positions•)
PROCEDURE COM(x: T): T; (•binary complement of x•)
PROCEDURE FFS(VAR x: T; VAR n: INTEGER): BOOLEAN;

(•assign to n the position of the first one bit of x with position >= n;
FFS = "a one-bit was found" •)

PROCEDURE GET(a: LONGINT; VAR x: T); (•assign value at address a to x•)
PROCEDURE PUT(a: LONGINT; x: T); (•assign x to storage at address a•)
PROCEDURE MOVE(VAR src, dest: ARRAY OF BYTE; count: T0);
PROCEDURE VAL(T; x: T1): T;

END SYSTEM.

The procedures GET and PUT are used to access device registers. The absolute addressing mode, i.e.

Modula-2 on Ceres 12003

variable declarations specifying an absolute address, is not available. All these facilities must be used
only in few, low-level modules.

The generic function procedure VAL(T, x) is effectively a replacement for type transfer functions T(x).
Its value is x, interpreted as type T. No code is generated forth is "procedure". Its function is to make the
uses of machine-dependent type transfers more explicit and more readily locatable.

12.3. Data Representation

1. Ceres uses byte addressing. However, data are transferred to and from memory in 3i-bit words. Each
type has an alignment factor k. Variables are aligned by the compiler to lie at an address a, such that
a MOD k = O. Since allocation is sequential, i.e. variables are allocated in the order of their textual
occurrence, the least amount of storage gets waisted through alignment, if declarations are grouped
according to size. The same holds for record fields, and in this case is even more important. The
following are the sizes and alignment factors of types:

Type
CHAR, BOOLEAN, enumerations, BYTE
INTEGER, CARDINAL, (WORD)
LONGINT, REAL, BITSET, sets, pointers, procedures
LONG REAL
arrays, records

Size
1
2
4
8
multiple of 4

Alignment Factor
1
2
4
4
4

Disk Problems and Maintenance 13001

13. Disk Problems and Maintenance

13.1. Introduction

The programs DiskCheck and DiskPatch are used to maintain and repair errors of the file system on the
fixed disk of Ceres. Both programs share the same base code, the user interface is, however, different.
The program DiskCheck can be run by a casual user. It checks the structure of the disk and tries to fix
automatically some simple errors. The program DiskPatch should be used by experienced users only. This
program allows manual changes and initialization of a disk. In this way even harder problems can be
fixed, on the other hand it is possible to destroy the entire disk information by a few key strokes.
The manual changes should be done only by users that are familiar with the structure of the disk
system. It is not purpose of this description to discuss this topic, interested readers are invited to read
[1] for the structure of the disk system and [2] for the details about its implementation on Ceres. A
very simple description of some fields of the file descriptor is given in the description of DiskPatch
(chapter 13.2.2).
Both programs provide procedures to recover from some simple error situations. It happens in three
ways:

1) by reading and writing back a damaged sector. In this way sectors with recovered parity and partly
with an unrecovered parity may be rescued. The sectors with other hardware problems are,
however, definitely lost.

2) by computing a new probable value and setting it into the directory. This fixes errors like
inconsistent version numbers, wrong file numbers, etc

3) by giving you hints what to do. An example of such a situation is the following: When one sector is
allocated to two files, one of these file must be deleted. The user must decide which file should be
deleted.

It is indicated in the following description of possible errors which method is used to fix the problem.
The user should be aware that the program cannot repair all possible error situations, it tries with the
best effort to fix them, but one cannot expect miracles.

Both. programs are provided together with the operating system on the winchester disk of Ceres.
However, when is disk is damaged seriously, i.e. the operating system does not start,, the program
DiskPatch may be loaded using a special boot floppy.

13.2. DiskCheck

If some problems are encountered with a disk, the Jrogram DiskCheck should be run. This program
checks the directory for consistency and on deman alf sectors of the disk for hardware probfems.
Initially the program is set in a default state enabling to check the disk without a possibility to repair
errors. This state may be changed such that the program tries some fixes.

If some problems are encountered, error messages are displayed. A long chain of error messages may be
stopped by hitting a key and may be continued by hitting a key another time. ESC may be used to stop
the checking procedure.

The program gives the following error messages:

- disk error on sect= nnnnn xxxxx
file name= yyyyy

nnnnn is the sector number
xxxxx is a further description of the error (e.g. time out, parity err, ..)
yyyyy is the name of the file that contains this sector.

A hardware error occured during a read or write operation. The program asks for confirmation.
The sector will be written back and read again. If the read operation still produces an error, the
program asks whether this sector should be linked into the file FS.BadPages.

- bad file number= nnnnn on sector mmmmm

13002 Disk Problems and Maintenance

the sector number of the data directory sector mmmm is destroyed. The program computes a
correct number and replaces it.

- wrong page pointer, dir sector= nnnnn, pointer= mmmmm index=oooo
file name= yyyyy

a data directory pointer has an illegal value.

- double allocated page, page= nnnnn

file name= yyyyy file#: nnnn file name= zzzzz file#: mmmm
delete one of these files and immediately boot

After the program DiskCheck finished, delete either yyyyy or zzzzz and immediately bootstrap.
If you forget to bootstrap, the same error will occur soon!!!!

- bad pointer: name->data directory, sector= nnnnn

pointer between name and data directory is destroyed. The program computes a correct
pointer and replaces it.

- name dir points to a free block, name dir sect= nnnnn,
block dir sect= mmmmm, file name= yyyyy

the pointer from name to data directory points ~o an unused block.

- version# conflict, name dir sect= nnnnn, version= mmmmm,
data dir sect= 00000, version= ppppp
file name= yyyyy

the version number of data directory is set equal to the version number of the name directory.

- illegal name dir entry kind, filenr = nnnn, kind= mmmm

The kind of the name directory sector has an illegal value.

If some fixes are made on the disk, the computer should be bootstraped and program DiskCheck
should be run again to be sure that the disk is all right now.

13.3. DiskPatch

13.3.1. Introduction

The program DiskPatch allows you to initiate the winchester disk of Ceres and to recover from some
crashes of either the file system or the hardware. All actions to fix a disk are done manually and the
user must know the structure of the file system.

After DiskPatch is started, a greeting message is displayed on the screen. Now a set of commands is
available. You may get the menu by typing'?'. Every command is activated by typing a key character
from the menu. The hexadecimal representation is used for all numbers.

13.3.2. Commands

B bad block link

This command is used to insert a damaged sector into a 'FS.BadPages' file. Type the sector
number in hexadecimal.

In case of problems there may be the following error messages:

problems ... not done=> hardware problems when reading or writing directory
too many bad blocks=> the BadPages file is already full
already linked =>the sector is already inserted in the Bad Pages file

C character dump

The last read sector is displayed in ASCII characters. Nonprintable characters are displayed
as'.'

Disk Problems and Maintenance

G get file to sector

This command finds a name of a file containing a specified data sector. If the sector is not
in use a message not allocated is displayed.

F find name

This command finds an internal file number of specified file name. Type the full file name,
(you may use DEL) and close the string by RETURN. If the file is found, the internal file
number is displayed, if the file does not exists, not found is displayed.

H hex dump

The current sector (opened by R command) will be displayed in hexadecimal mode either
byte- or word-wise.

inspect

The last read sector may be inspected and changed in a hexadecimal representation either
byte- or word-wise. Type the address and the content of the specified word will be
displayed. Now you may type':' to enter the change mode and to specify the new value. By
typing',' the next address will be displayed, typing any other key will terminate the inspect
command.

I< consistency check

The constistency of the directory is checked. For detailed information see the description of
the DiskCheck program.

L illegal block build up

This command is used to write and to read the entire disk and to find damaged sectors.
Such sectors will be inserted later into the FS.BadPages file using the 'S' command. (After
you have run the 'Z' command: no problems, the program will help you.) The execution of
the 'L' command takes about 15 minutes. At the end a statistic about your disk is
displayed. It contains the number of bad sectors and their position if they are located
within the fixed files. When in doubt consult some specialist.

WARNING: THIS COMMAND DESTROYS THE ENTIRE DISK INFORMATION!!!!

N name directory update

This command is used to inspect and change the name directory and has 5 subcommands.
Type 'ESC' to get back to the main menue:

display
The current directory sector is displayed. Such a sector contains 16 file entries
(O .. F). Each entry consists of:

name - 24 characters; left adjusted, filled with BLANKs,

kind - (0 = > fi I e is not in use, 1 = > fil e is used) ,

file number- acting as a pointer to the 'block directory',

version number - which must be the same as the version number in the block
directory

The number in parentheses gives the address of the information, that may be
used by the inspect command.

read sector
This procedure reads a name directory sector that will be used for next
operations. You may either type a sector number or'=' to get the same sector
again or',' to get the next sector.

13003

13004 Disk Problems and Maintenance

inspect
The same as Inspect from the main menu.

name change
The name entry will be changed by this command. The procedure asks you for
the index of the name (O .. F), displays the old name and asks for the new name.
The name input is closed by RETURN. ·

write sector
The sector is written back onto the disk. You may either type a sector number
or'=' to write to the same sector as read. The program asks you to confirm the
sector number. Type 'y' if you agree that this sector should be written.

R read sector

This command reads a disk sector that will be used for next operations. You may either
type a sector number or '='to get the same sector again or ','to get the next sector.

S set illegal blocks into directory

The information as computed by the 'L' command is inserted into the file FS.BadPages.

U update directory

This command is used to inspect and change the block directory and has 4 subcommands;
Type 'ESC' to get back to the main menue:

display

The current block directory sector is displayed.

There is the following relevant information being displayed.

file#
is the internal index of the file; it must be the same as
the relative sector number in the directory

version Nr

kind

version number of the file, it must be the same as the
version number of the same file in the name directory

O =>file is free; 1 =>file is in use

length.block
how many page blocks are used

length.byte
number of bytes in the last used page

page table
pointers to data sectors. Data sectors are assigned in
blocks of 4 sectors. To compute the physical address
make the following computation

physical.address:= (page DIV 7) * 4 decimal /hexadecimal

A pointer to an unused page has a value D5B8
(hexadecimal).

The number in parentheses of each identifier of the
display command gives the address of the information,
that may be used by the inspect command.

Disk Problems and Maintenance

read sedor
This command reads a directory sector that will be used for next operations.
You may either type a sector number or'=' to get the same sector again or',' to
get the next sector.

insped
The same as Inspect from the main menu

writesedor
The sector is written back on the disk. You may either type a sector number or
'=' to write to the same sector as read. The programs asks you to confirm the
sector number. Type 'y' if you agree that this sector should be written.

W write sector

The sector is written back on the disk. You may either type a sector number or'=' to write
to the same sector as read. The program asks you to confirm the sector number. Type 'y' if
you agree that this sector should be written.

Z zero directory

· The directory is initialized.

WARNING: THIS COMMAND DESTROYS THE ENTIRE DISK INFORMATION!!!!

+ hexadecimal calculator

This is a simple calculator able to add, subtract, multiply and divide two hexadecimal
numbers. Type ESC to exit to the main menu.

13.3.3. The most Frequent Problems

13005

The following section gives you an overview of the most frequent problems with your disk and gives
proposals how to fix them. Some of these problems will be encountered during the bootstrap sequence,
where the file system refuses to complete the bootstrap, since the directory is out of order; some other
problems will be detected either by the K consistency command or the DiskCheck program.

Most problems can be solved, when the damaged file is entirely removed by setting the kind field of the
damaged file in both directories (name and block) to 0. This is however a rather brutal, but simple
method.

13.3.3.1. It is Impossible to Boot Ceres

There is message on the screen

DiskSystem.FileCommand: bad directory entry: fno= nnnn; read fno = mmmm

Solution: read the directory sector nnnn using the commands 'U' (update directory) and 'R'; correct the
file number (address 1) to the value nnnn and write the sector back using the 'W' command'. Find the
name of the corresponding file by entering the 'N' (name directory) command and reading the sector
nnnn DIV 10 (hexadecimal). The file name will be found on the position nnnn MOD 10 (hexadecimal).
This file may contain garbage. Boot the system and check this file.

There is message on the screen

DiskSystem.OpenVolume:bad page pointer; fno = nnnn, pageno = mmmm, page= 0000

Solution:
All page pointers must be divisible by 7 (hexadecimal). Enter 'U'(update directory)
command, read the sector nnnn and check the pointer mmmm using the '+' (calculator).
Replace the bad pointer by the NIL value DSB8 (hexadecimal). If too many pointers are

damaged, read another directory sector, change the file number, set length to zero, put all

13006 Disk Problems and Maintenance

page pointers to NIL and write the sector on nnnn.

Find the name of the file as described above and check the file for garbage.

13.3.3.2. Consistency Problems

double allocated page .
A single page belongs to two files. Delete both files and immediately bootstrap!!!!

name dir points to free block, name dir sect=nnnn
Enter the 'N' (name directory) command; read the sector nnnn DIV 10 (hexadecimal), and
set the kind of the file on the position nnnn MOD 10 (hexadecimal) to zero. Write the
sector back.

version# conj/id . .
The version number of a file in the name and block directory must be the same. Change one
version number so that they match.

13~4. References

[1] S.E. Knudsen: Medos-2: A Modula-2 Oriented Operating System for the Personal Computer Lilith,
Ph.D. thesis No. 7346, ETH ZOrich 1983

[2] F.Peschel, M.Wille: Porting Medos-2 onto the Ceres workstation,
lnstitut for lnformatik, to be published, ETH Zurich, Nov.1986

)

)

1

Modula-2 for Ceres

N. Wirth 1. 1. 86 I 1. 2. 86

A Modula-2 compiler ls now available for Ceres. The accepted language differs in some details from
Modula for Lilith. This memo describes these differences, and it serves two purposes: First, it is intended
for programmers who wish to port their software ·to Ceres. Second, it ls a reminder for
machine-independent programming and points out which points have to be observed, if new programs are
to be easily transferrable either to Ceres or other machines. A summary of hints that should be of interest to
·all Modula programmers ls given at the end

New Data Types

The primary differences lie in the fact that Ceres is a 32~bit machine. This becomes manifest in the
definition of some standard data types:

BITSET = SET OF [O •• 31]
LONGINT integers in the range -2147483648 .. 2147483647
LONGREAL a new type representing real numbers by 64 _bits

All set and pointer types use 32.bits. These are.extensions, and therefore do not require changes to existing
programs, unless one wishes to profit from the new definitions. For example, routines operating on arrays
of sets might be reprogrammed to save storage, since only half as many elements are needed, if effective use
is made of their extended range.

Constants of type LONGINT are· integers with a suffix letter D (e.g. 1986D). Constants of type
LONG REAL are distinguished by the use of the letter Din place of E in the scale factor (or simply a suffix
D if the scale factor is missing). Examples: 1.0D, 37 .82D-7.

The new, standard function LONG converts an argument of type INTEGER or REAL to the types
LONGINT or LONGREAL, and the function SHORT performs the inverse transformation (in the case of
integers without range check). Also, the types INTEGER and CARDINAL are assignment compatible with
LONGINT, REAL with LONGREA4 and LONGREAL with REAL. The two additional standard
functions FLOATD and TRUNCD are analogous to FLOAT and TRUNC; they yield results of types
LONGREAL and LONGINT respectively. Given the declarations below, the following correct assignments
summarize these new facilities:

i: INTEGER; k: LONGINT; x: REAL; z: LONGREAL;

i: = SHORT(k); i: = TRUNC(x); i: = TRUNC(z);
k : = i; k : = LONG(i); k : = TRUNCD(x); k : = TRUNCD(z);
x : = z; x : = SHOR T(z); x : = FLOAT(i); x : = FLOAT(k);
z : = x; z : = LONG(x); z : = FLOATD(i); z : = FLOATD(k);

The Type CARDINAL

A more subtle change concerns the type CARDINAL. The NS32000 processor supports unsigned
arithmetic, but multiplication and division are cumbersome, requiring double registers. We must also
recognize that through the availability of a type LONGINT the primary justification for the type
CARDINAL, namely to enlarge the range of positive integers to cover all address values, has vanished The

(

(

)

)

2

second reason, namely to express that a variable assumes only natural numbers as values, has lost in
attractivity, simply because the NS processor does not provide for convenient means to check against
overflow. One is therefore tempted to abolish the type CARDINAL. However, our goal to make Lilith
software easily portable to Ceres requires that Medas be available as an operating system. Medos makes
heavy use of the type CARDINAL, and its elimination would require a very substantial rewrite of Medos.
Our solution to this dilemma is to provide two compilers:

The Standard Compiler treats the type CARDINAL as the subrange [O .. 32767) with base type INTEGER.
The implementation offers the standard range check for assignment. The welcome benefit of this solution is
that the nasty incompatibility of the types INTEGER and CARDINAL in expressions disappears. {The
result type of the functions ORD and HIGH is now INTEGER, and so is the base type of subranges, even if
the lower bound is not negative).

The Medos Compiler retains the type CARDINAL as on Lilith ([O .. 65535D, but does not provide· any
checks against overflow or assignment of illegal, negative values of type INTEGER.

We strongly recommend to adapt programs to the Standard Compiler, unless compelling reasons exist
against it, and in particular to design new programs without the use of the type CARDINAL. The Medos
Compiler will not be distributed outside, and we hope that it can be eliminated after some time.

Type Conversions

So far, conversion seems to pose no severe problems. In fact, genuine difficulties appear only where
machine-dependent features of Modula were used. They are supposedly highlighted by imports from
module SYSTEM, an import that everybody knows should only be taken as a last resort. Programmers who
have imported from SYSTEM too generously are now receiving the bill. Another, much less obvious and
therefore easily abused machine-dependence is the type transfer function. I strongly recommend to abstain
from using type transfer functions; in fact, they are not accepted by the Standard Compiler (see below).
Particularly frequent cases of their use are the packing of characters to and the unpacking from a word file:

VAR n: CARDINAL; chO, chl: CHAR;
n : = 256*CARDINAL(ch0) + CARDINAL(chl); WriteWord(wf, n)

On Ceres, the transfer function CARDINAL is inapplicable to values of type CHAR. The use of ORD saves
the situation. It becomes more difficult, if we also wish to eliminate the type CARDINAL. Simply replacing
it by INTEGER creates two pitfalls. First, overflow may occur in multiplication. Second, n is then not
compatible with ORD, when using the Lilith or the Ceres-Medos compiler. The suggested solution is to use
a shift function imported from SYSTEM, and to make the machine-dependence explicitly visible: n : =
LSH(ORD(ch0),8) + ORD{ chl).

ReadWord(wf, n); chO : = CHAR(n DIV 256); chl : = CHAR(n MOD 256)

In this case, the transfer function CHAR will not be applicable, because variables of types CARDINAL and
CHAR require different amounts of storage, whereas on Lilith they both use 1 word. Replacing CHAR by
CHR solves that problem. Note, however, that it is customary to store the "right byte" first on files on
Ceres, since byte numbering in words proceeds from right to left, like bit numbering. Hence, the two
assignments should be interchanged. Here again, the use of an explicitly system dependent function is
recommended: chl : = CHR(LSH{n,-8)); chO: = CHR(n). A much better solution, however, is to refrain
from word files alltogether, and to treat all files as byte files.

(

(

)

)

3

Integer Arithmetic

Here we point out a discrepancy between the DIV and MOD operators on Lilith and·Ceres, when applying
them to negative operands. In fact, DIV ls wrong on Lilith (and probably most other computers) for
negative arguments, as it represents the zero-symmetric integer division, generally expressed by I.
Therefore, the unpacking cannot be accomplished on Lilith with DIV /MOD, if the arguments are of type
INTEGER. On Ceres, this ls possible, and DIV is implemeted by a right shift, whenever the divisor· is a
powerof2.

Lilith: -10 DIV 3 = ~3

-10 MOD 3 not allowed

Module SYSTEM

Ceres: -10 DIV 3 = -4
-10MOD3 = 2

Finally, there are the explicitly system-dependent features imported from module SYSTEM,· to which we
also count the declaration of· code procedures. On Lilith, the module SYSTEM contains the types
ADDRESS and WORD, and the procedures ADR, TSIZE, and LONG. On Ceres, the type ADDRESS is
not compatible with CARDINAL, but rather with LONGINT for address arithmetic. The new type BYTE
represents the unit of addressable storage. The type WORD is eliminated from the Stai:idard Compiler, but
retained in the Ceres-Medos Compiler for obvious reasons. Programmers should aim at its elimination.

On Ceres, the module SYSTEM contains a larger number of objects. This is· a reflection of the fact that
machine code cannot be defined by code procedures as on Lilith. The following definition is an attempt to

summarize the facilities contained:

DEFINITION MODULE SYSTEM; (*NW 7.12.85*)
(*FOR NS32032. for details of instructions refer to manual*)

TYPE ADDRESS; (*Compatible with type LONG INT and with all pointer types•)
TYPE BYTE;
TYPE WORD; (*16 bit entity; in Medas Compiler only*)

PROCEDURE ADR(VAR x: T): ADDRESS; {*address of variable X*)
PROCEDURE TSIZF.(T): INTEGER; (*size in bytes of variables oftype T*)

(*T subsequently denotes any type of size<= 4 bytes;
TO stands for either INTEGER or LONGINT*)

PROCEDURE ASH(x: T; n: TO): T; (• x * 21'n •)
PROCEDURE LSH(x: T; n: TO): T; (* x shifted by n positions*)
PROCEDURE ROT(x: T; n: TO}: T; (* x rotated by n positions*)
PROCEDURE COM(x: T): T; (*binary complement of X*}
PROCEDURE FFS{VAR x: T; VAR n: INTEGER): BOOLEAN;

(*assign ton the position of the first one bit ofx with position>= n;
FFS = "a one-bit was found" *)

PROCEDURE GET(a: LONGINT; VAR x: T); (*assign value at address a to x•)
PROCEDURE PUT{a: LONGINT; x: T); (*assign x to storage at address a•)
PROCEDURE MOVF.(VAR src, dest: ARRAY OF BYTE; count: TO);
PROCEDURE VAL(T; x: Tl): T;

END SYSTEM.

The procedures GET and PUT are used to access device registers. The absolute addressing mode, i.e.
variable declarations specifying an absolute address, is not available. All these facilities must be used only
in few, low-level modules.

(
\

/

4

The generic function procedure V AL(T, x) is effectively a replacement for type transfer functions T(x). Its
value is x, interpreted as type T. No code is generated for this "procedure". Its function is to make the uses
of machine-dependent type transfers more explicit and more readily locatable.

Another source of potential problems is the inhomogeneous store on Lilith, manifest in the form of frames.
Ceres offers a single, linear address space, and all programs making use of frames should be changed by
eliminating frames.

Modula on Ceres also offers a code procedure declaration. In contrast to Lilith-Modula, however, it ls used
in definition modules only and serves to introduce procedures implemented by supervisor calls. The code
number n specifies the identification inserted as a byte after the SVC instruction. Evidently, such
definitions are provided with the operating system used. The format is

PROCEDURE P(parameter list) CODE n;

On Lilith, procedures can be used as parameters, or can be assigned, only if they are declared on the global
level. This restriction also holds for Modula on Ceres. Furthermore, they must be declared in a definition

) module, or their heading must be followed by an asterisk.

PROCEDURE Assignable(parameters)*; ...

This not very pleasing rule is. necessary, because the NS processor uses different return instructions for
external procedures and others, and they must correspond with the call instruction used. ·The compi_ler ·
cannot determine the kind when generating a formal call. Hence we postulate the external· mode for all
formal and assigned procedures. Those defined in a definition module are automatically "external".

Compiling Options

The compiler optionally generates various redundancy checks. They can be enabled or disabled for each
compilation by appending option characters to the source file name. The occurrence of an option character
signals the inverse of its default value.

x array index bound check default = on
r subrange assignment check default = off
v arithmetic overflow check default = off

) Example: SomeName.MOD/rv (all checks on)

Some programming hints

1. Ceres uses byte addressing. However, data are transferred to and from memory in 32-bit words. Each
type has an alignment factor k. Variables are aligned by the compiler to lie at an address a, such that a
MOD k = O. Since allocation is sequential, i.e. variables are allocated in the order of their textual
occurrence, the least amount of storage gets waisted through alignment, if declarations are grouped
according to size. The same holds for record fields, and in this case is even more important. The following
are the sizes and alignment factors of types:

Type

CHAR, BOOLEAN, enumerations, BYTE
INTEGER, CARDINAL, (WORD)
LONGINT, REAL, BITSET, sets, pointers, procedures
LONG REAL
arrays, records

Size

1
2
4
8
multiple of 4

Alignment Factor

1
2
4
4
4

(

(

)

5

2. The statements INC(n), DEC(n}, INCL(s,n), EXCL(s,n) generate considerably denser code than their
equivalents n : = n+ l, n : = n-1, s : = s + {n}, s : = s - {n}, even in the case that nor s are simple
variables. INC and DEC accept a single parameter only.

3. As on Lilith, access to so-called intermediate-level variables is slower and requires more code than access
to local or global variables. Such accesses should therefore be made only after careful justification.
Intermediate-level variables should be considered as implicit, additional procedure parameters.

4. Unlike Lilith, Ceres does not use indirect addressing for structured variables; all variables are allocated
in sequence with ascending addresses. Frequently accessed variables should be placed at the beginning of
the declaration list in order to obtain small addresses. This reduces the size of the code.

Judging from my own experience in porting the compiler, there are usually more hidden
machine-dependent features in a program than one is likely to assume, even in one's own concoctions. The
event of porting a program is a good occasion to become aware of them and to eliminate (at least some of)
them. I recommend to first write a version eliminating CARDIN~, word files, and type transfer
functions, still operating on Lilith. The constructs that make use of features in which Lilith-Modula and
Ceres-Modula genuinely differ can then be tackled in a separate, second step.

The worst kind of machine-dependence, because it is so well hidden, is the use of an (untaged} variant
record and its misuse by accessing a value as type TO which was stored (to an overlaid field} as type Ti. The
only valid recommendation ls to reprogram the algorithm.

Some General Hints for Programming in Modula

One of the main purposes of using a high-level language is to eliminate dependence on a· particular
implementation and computer. Even if only a single computer (type) is ever used, it is advisable to refrain
from using machine-specific features of a language. The following are suggestions for programming. on
Llllth in general; they obtain additional relevance, if later on the use of Ceres is envisaged

1. Refrain from using the type CARDINAL, unless use of values > = 32768 is relevant.

2. Refrain from the use of type transfer functions.

3. Refrain from the use of untagged variant records.
Make sure that only fields of the variant indicated by the current tag field value are accessed

) 4. Use byte (character) flies rather than word flies.

5. Make reference to modula SYSTEM only in carefully isolated places (modules).

(

DK.PUB.Sara.Errors.DOK

Format of the compiler error data file ("err.DAT"):

H.R.Schar, 26.11.86

The error data file is a byte file generated by the Modula-2 compiler.
It contains the information of 11 err.LST 11 (error listing file) in machine
readable form to be interpreted by other programs (mainly the text editor
Sara with its "error" command).

ErrorFile : :• [ListNameBlock]{CompUnit}.
CompUnit : :• FileNameBlock {ErrorBlock}.
ListNameBlock : :• LNM {Char} NUL.
FileNameBlock : :• FNM {Char} NUL.
ErrorBlock : :• ERR FilePos ErrorNumber.
FilePos : :• Longint. (• >· 0 •)
ErrorNumber : :• Integer. (• >· 0 •)
NUL : :- 0C.
FNM : :• 300C.
ERR : :• 301C.

)LNM : :- 302C.
Char : :• byte.

J

Integer : :• byte byte. (• least significant byte first •)
Long Int : :• byte byte byte byte. (• least significant byte first •)

The error text of each error number is looked up in the error listing file.
Its default name 11 DK.Errlist.DOK 11 may be replaced by a ListNameBlock.
Other applications (mainly other compilers) may therefore use their
own error listing file.

1

r
\

(

1. Aufruf des Assemblers

NS16032 Assembler

Benutzeranleitung
J.E. Wanner 15. Juni 1984

Der Assembler ist unter dem Namen 'asml6000' verfiigbar. Nach dem Aufruf erscheint der
Prompt ftir das Inputfile. Die Defaultextension ftir ein Source File ist '.ASM'. Es gibt die
Moglichkeit die Option 'Nolist' anzugeben um ein Assembly ohne Listing durchzuftihren.
Andemfalls kreiert der Assembler ein Listingfile mit demjselben Namen wie das Sourcefile und
der Extension '.LST'. Des weiteren wird ein Codefile kre1ert mit Extension '.REL'.

) 2. Assembler Syntax

)

Ein Assembler Programm besteht aus einer Sequenz von Statements, die je eine Zeile
umfassen. Die Syntax ftir ein Statement sieht in EBNF folgendermassen aus :

statement = [[label] opcode [operanden] [kommentar] I
'I' [kommentar]] 'eol'.

('eol' bezeichnet ein Zeilenende)

Ein Statement kann in vollig freiem Format eingegeben werden, d.h. die Position innerhalb
einer Zeile ist irrelevant. Leerzeilen und Kommentarzeilen sind zulassig, allerdirigs miissen
letz'bre mit einem vertikalen Sttich 'I' beginnen. Nach einem vollstiindigen Statement wird alles
auf derselben Zeile als Kommentar interpretiert. Eine Ausnahme bilden die
Pseudoinstruktionen BYTE, WORD und DOUBLE, bei denen allfalliger Kommentar auch mit
dem vertikalen Strich beginnen muss.

2.1 Labels
Ein Label ist ein vom Benutzer definiertes Symbol, dem der momentane Wert des
Programmzahlers zugeordnet wird. Mit der Pseudoinstruktion 'EQU' kann man allerdings
einem Label einen beliebigen Wert zuordnen.

2.2 Opcode
Der Opcode muss entweder eine giiltige Maschinen- oder Pseudoinstruktion sein. Die Funktion
jeder Maschineninstruktion ist im NS16000 Instruction Set Reference Manual beschrieben. Fiir
eine Beschreibung der Pseudoinstruktionen siehe Abschnitt ~
Gross- und Kleinschreibung wird nicht unterschieden flir Mnemonics und
Assemblerdirektiven. Das heisst

movd aPtr, R0
word $ce00

ist aquivalent zu
MOVD aPtr, R0
Word $ce00

2.3 Operanden
Jede Maschinen- bzw. Pseudoinstruktion besitzt eine gewisse Anzahl Operanden, die nach dem
betreffenden Mnemonic durch Kommata getrennt a.ufzuftihren sind. Einzelne
Pseudoinstruktionen besitzen eine variable Anzahl von Operanden (BYTE, WORD und

1

(

)

)

DOUBLE).

2.4 Kommentar
Als Kommentar wird alles interpretiert, das zwischen dern Ende einer giiltigen lnstruktion und
dem nachstfolgenden Zeilenende steht. Ausserdem kann Kommentar auch mittels eines
vertikalen Strichs 'I' eingeleitet werden. Auch in diesern Falle gilt das Zeilenende als
Kommentarende. Innerhalb des Kommentars sind beliebige Zeichen ausser natiirlich einern
Zeilenende zulassig.

3. Symbole und Ausdriicke

3.1 Symbole
Ein vom Benutzer definiertes Symbol bzw. Label kann aus einer beliebigen Anzahl von Zeichen
bestehen. Es gelten folgende Regeln :

Giiltige Zeichen sind 'A'·'Z', 'a'-'z', '0'-'9' und '.'. Jedes Symbol muss mit einem
Buchstaben beginnen und nur die ersten 16 Zeichen sind relevant. Gross- und
Kleinschreibung wird unterschieden, also 'LOOP' <> 'loop'.

Symbole konnen auf zwei verschiedene Arten definiert werden :
1. Als Label eines Statements. Das betreffende Symbol erhfilt den momentanen
Wert des Prograrnmzahlers.
2. Mit der Pseudoinstruktion 'EQU'. Hier kann einem Symbol ein beliebiger
Wert zugeordnet werden, z.B. konnen so Konstanten definiert werden.

3.2 Konstanten
Alle Konstanten werden als absolute Werte interpretlert. Konstanten sind zulassig, solange sie
als 32 Bit Grosse darstellbar sind. Es konnen sowohl dezimale als auch hexadezimale Zahlen
benutzt werden. Eine hexadezimale Zahl muss aber immer durch ein unmittelbar
vorausgehendes Dollarzeichen gekennzeichnet werden (z.B. $fe00, $20ED). ASCII Zeichen
konnen als Strings eingegeben werden, wobei diese in Apostroph-Zeichen eingeschlossen
werden miissen. Es sind sowohl der Apostroph (') als auch das Ganseftlsschen (") zulassig.

3.3 Operatoren
Es gibt genau einen unaren Operator, narnlich die Negation dargestellt durch das
Minuszeichen. Binare Operatoren sind :

+ Addition
Subtraktion

• Multiplikation
I Division

Alle binaren Operatoren arbeiten mit 32-Bit Grossen, allerdings muss bei der Division der
Divisor in 16 Bit darstellbar sein.

3.4 Terme
Terme sind Komponenten von Ausdriicken, sie konnen folgendermassen aussehen :

1. Eine Konstante, wie in 3.2 definiert worden ist.
2. Ein Symbol, wie in 3.1
3. Ein Ausdruck oder Term eingeschlossen in Klammern
4. Ein Minuszeichen gefolgt von einem Term (Negation, z.B. -a)

3.5 Ausdriicke
Ausdriicke sind Kombinationen von Termen, zusammengefiigt durch binare Operatoren. Jeder
Ausdruck wird als 32 Bit Zahl interpretiert. Die Auswertung eines Ausdrucks geschieht mit der
iiblichen Operatorenprazedenz (also Multiplikation und Division werden vor Addition und

2

(

(

)

J

Subtrakion ausgewertet.
Jeder Ausdruck ist nach der Auswertung entweder absolut oder relozierbar :

1. Ein Ausdruck ist absolut, wenn sein Wert eine fixe Grosse ist. Ein Ausdruck dessen Terme
Konstanten, oder Symbole dessen Werte Konstanten sind, ist absolut. Ein relozierbarer
Ausdruck subtrahiert von einem relozierbaren Ausdruck ist auch absolut.
2. Ein Ausdruck ist relozierbar, wenn sein Wert fix relativ zu einer Basisadresse ist. Alle
Labels eines Programms sind relozierbare Terme und jeder Ausdruck, der solche enthalt kann
nur noch Konstanten addieren oder subtrahieren. Nehmen wir zum Beispiel an, dass 'loop' als
Label in einem Programm definiert wurde. Dann gelten folgende Regeln :

loop
loop+5
loop-$20
20-loop
loop-end loop

re 1 ozi erbar
relozierbar
relozierbar
nicht relozierbar
absolut, da sich die Offsets von loop und endloop
gegenseitig aufheben

4. lnstruktionen und Adressiermodi

4.1 Instruktionsmnemonics
Die Mnemonics sind im vorher schon erwahnten NS16000 Instruction Set Reference Manual
beschrieben. Die meisten Instruktionen konnen auf verschieden lange Operanden angewendet
werden, d.h. an den Mnemonic wird ein B, W oder D als liingenangabe angehangt.
Displacements in Branch Instruktionen oder bei PC relativer adressierung konnen 1, 2 oder 4
Bytes lang sein. Falls die referenzierte Adresse kleiner als die gegenwartige ist, so wird einfach
das kiirzest mogliche Displacement generlert. Bei Vorwartsreferenzen kann optional eine Lange
ftir das Displacement angegeben werden, andernfalls wird ein 4-Byte Displacement generiert.
Beispiel:

loop mo vb 0 (R0), 0 (R2)
addqd 1, R2
acbb -1, R1, loop hier wi rd ein 1-Byte Displacement

generiert
cmpqb 0, 0(R2)
beq endloop:B durch die Angabe :B oder :D kann

ein 1- bzw. 2-Byte Displacement
erzwungen werden

sprb US, R0
sbitb 2 t R0
lprb US, R0

endloop ret 0

4.2 Adressiennodi
Die folgende Tabelle zeigt eine iibersicht iiber die Adressiermodi die vom Assembler erkannt
werden. displ und disp2 bezeichnen Displacements, dies miissen absolute Ausdriicke sein. Rx
bezeichnet ein CPU Register, Fx ein FPU Register, dreg ein 'dedicated register' in der CPU
und mreg ein MMU Register.

3

(_

(,_ -

Adressmodus

Register

Register Relative

Memory Relative

Immediate

Notation

Fx, Rx

disp1(Rx)

disp2(disp1(FP))
di sp2(di sp1(SB))
di sp2(di sp1(SP))

absoluter Ausdruck

Beispiel

MOVL F0, F4
MOVD R0, R2

MOVB 1(R0), R3

MULW R0, 10(2(FP))

MOVW $2000, R0

Absolute @absoluter Ausdruck JUMP @$f e00

External

Top Of Stack

Memory Space

Scaled Index

EXT(disp1)+disp2

TOS

disp1(FP)
disp1(SB)
disp1(SP)
re 1 ozi erbarer
Ausdruck

BaseMode[Rx:B]
BaseMode[Rx:W]
BaseMode[Rx:D]
BaseMode[Rx:Q]

DIVD EXT(1)+20, 10(R0)

CMPQB 5, TOS

MOVQB 2, 2(FP)

COMB R0, data
COMB R0, data@

ROTW 2, 10(R0)[R1:W]

Bei der Adressierart 'Memory Space' wird, falls einfach ein · relozierbarer Ausdruck erkannt
wird, relativ zum Programmzahler adressiert. Der 'BaseMode' in 'Scaled Index' ist ein
beliebiger Adressiermodus ausser 'Scaled Index'.

5. Assemblerdirektiven (Pseudoinstrnktionen)

5.1 BLOCK
Mit der Instruktion BLOCK kann Platz ftir Daten reserviert werden. Wie bei den meisten
normalen Mnemonics muss unmittelbar nach der Direktive eine Uingenangabe folgen, d.~. die
folgenden Versionen sind gilltig: BLOCKB, BLOCKW und BLOCKD. Als Operand wird ein
absoluter Ausdruck erwartet. Beispiele:

JumpTable BLOCKD 20

BLOCKB 2•tablelength

5.2 BYTE, WORD, DOUBLE

Dies reserviert 20 Doppelworte
also 80 Bytes

Mit diesen Instruktionen konnen Datenfelder initialisiert werden. Zugleich wird der dazu
benotigte Platz reserviert. Alle drei Instruktionen akzeptieren eine beliebige Anzahl Operanden
und jeder wird in der angegebenen Grosse abgespeichert. Eine Ausnahme bilden
Stringkonstanten, die als aufeinanderfolgende Bytes abgelegt werden. Die Operanden dilrfen
auch Vorwartsreferenzen enthalten (z.B. um Sprungtabellen ftir die CASE Instruktion zu
definieren). Beispiele :

message BYTE "Fehler in Adressiermodus", $0d, 0

4

0

(

)

J

TabPtr DOUBLE I so wird einfach ein Doppelwort reserviert
WORD $fff8, 23, $100

st CASES casetab[R2:B]
casetab BYTE case1 - st

BYTE case2 - st
easel MOVF F0, 1(SP)

BR endcase
case2 MOVF Ft, 1(SP)
endcase

5.3EQU
Die Instruktion weist einem Symbol einen beliebigen Wert zu. Falls der Ausdruck der
zugewiesen wird relozierbar ist, so hat auch dieses Symbol einen relozierbaren Wert. Der
Ausdruck darfkeine Vorwartsreferenzen enthalten. Beispiele:

EntrySize EQU
NumberOfEntries EQU
Tablelength EQU

10
100
EntrySize • NumberOf Entries

s

(.--

r

)

)

The Ceres-Assembler
Frank Peschel

1.3.1987
lnstitut fur lnformatik

ETH Zurich

Ceres-Assembler 1

This paper describes the use of the assembler on Ceres. It produces code for the NS 32000 Series
CPU, wnich is the heart of this workstation. It can handle two different "kinds" of programs

- ordinary assembler programs which may be executed on every NS 32000 based
system

- assembler modules that can be used as if they were written in Modula 2. It is
recommended to use only use if it is really necessary. It should be only used by
programmers which are very familiar with the Ceres workstation and the
Moaula-2 run-time organization.

The assembler produces, on user demand, a listing and a cross-reference of all defined symbols.
The first version of the assembler was written by JUrg Wanner as cross-assembler on Lilith in
his diploma work.

1. Assemblation of a program or a module

The assembler is called by typing asm32. After displar.ing the string "in>", the assembler is
ready to accept the filename of the program to be compilecf.

Default medium is DI< and default extension is ASM.

The assembler produces a relocateable code-file (extension REL) for assembler programs or an
object-code file (extension OBN). The program listing and/or the cross-reference is written
onto the list-file (extension LST).

2. Program Options for the Assembler

In

/x

The assembler does not generate a listing file ..

The assembler generates a listing file that includes a cross-reference of all user
defined symbols.

3. Syntax of an Assembler Program
An assembler program consists of a statement sequence. The syntax of a statement is given
below. Each statement has to be defined on one line. The rest of the line (behind a valid
statement) is interpreted as comment. Empty and comment lines are allowed, the latter have
to start with a vertical bar ('I').

statement= [[label] opcode [operands][comment] I 'I' [comment] 'eol'.
operands= operand {',' operand}.

3.1. Labels
A label is a user defined symbol that represents a constant or a memory location (data or
code). Each label has a specific type. The assembler distinguishes the types absolut,
program-counter relative (PC-relative), static-base relative (SB-relative) and external. Each

(
\

Ceres-Assembler ·2

identifier in front of a valid mnemonic is interpreted as a label and is included into the internal
symbol-table.

3.2. Opcodes
Each opcode is a J?rocessor instruction or a so-called pseudo instruction (assembler directive).
The semantics of the processor instructions is described in the Instruction Set Reference
Manual [1]. A description of the pseudo instructions will follow in paragraph 6. Mnemonics
and assembler directives are not case sensitive, i.e.

movd aPtr, R0 is equivalent to MOVD aPtr, R0
word $ce00 is equivalent to Word $ce00

3.3. Operands
Every instruction has a specific number of operands. The operands are separated by a colon.
Some pseudo instructions may have a variable number of operands (see paragraph 6.).

) 3.4. Comments

)

The starting symbol of a comment is the vertical bar character. The rest of this line is
interpreted as comment. There is no explicit closing symbol. Everything between the end of a
valid instruction and the following end-of-line is interpreted as comment.

4. Symbols and Expressions
4.1. Symbol
Each user defined symbol consists of an arbitrary number of characters with respect to the
following rules: ·

The set of valid characters consists of: 'A' - 'Z', 'a' - 'z', 'O' - '9' and '.'.
The first character must be a letter.
Only the first 16 characters are relevant.
Symbols are case sensitive, i.e. 'loop'<>. 'LOOP'.

4.2. Constant
Constants are absolute values. Constant numbers must be representable in 32 bits. Constants
can be defined in decimal as well as in hexadecimal form. Hexadecimal numbers are identified
by a preceeding dollar character (eg $fe00). String constants are enclosed in quote marks
(quote or doubfe quotes). The opening and closing marks must be the same character.

4.3. Operator
There are four operators defined:

'+' addition '-' subtraction
'*' multiplication '/' division

Each operator apply to two operands.'-' with a single operand only denotes sign inversion. All
operands are internally represented as 32bit values.

4.4. Expression
Term = Symbol I Constant I "(" Expressions ")" I "-" Term.
Expression= Term {Operator Term}.

The evaluation of an expression is done according to the usual operator precedence. The
assembler distinguishes three types of expressions:

(

)

)

Ceres-Assembler 3

- absolute
Constants are absolute expressions

- PC-relative
All labels, except those defined in the static base segment and those defined by EQU, are
PC-relative expressions.

- SB-relative
All labels inside the static base segment, except those defined by EQU, are SB-relative
expressions.

In the following section relocatable expression denotes both, PC-relative as well as SB-relative,
expressions. Labels defined by EQU get their type from the operand of their definition. The
following rules apply to the evaluation of expressions:

- multiplication and division is restricted to operands of the type absolute

- relocatable operands of one expression must be of the same type

- sum of a relocatable and an absolute Term is of type relocatable

- a reclocatable Term subtracted by an absolute Term gives a relocatable Expression

- an absolute Term subtracted by a reclocatable Term gives an absolute Expression

- addition or subtraction of two relocatable Terms gives an absolute Expression

5. Instructions and Addressing Modes
5.1. Mnemonics
As mentioned above all mnemonics are described in the Instruction Set Reference Manual.
Most of the instructions apply to different types of operands. Those mnemonics are suffixed be
the characters 'B', 'W', 'D', 'F' or 'L'.

Displacements may have the length of 1, 2 or 4 bytes. Forward references (e.g. forward jumps)
are stored in 4 bytes unless the programmer forces the assembler to use a smaller space. This is
done by appending ':B' for 1 byte ana ':W' for 2 byte displacements.

Example:
loop

end loop

MOVB
ADDO
ACBB
BEQ

5.2. Addressing Modes

0(R0),0(R2)
D1,R2
-1,R1,loop
endloop:B

generates 1 byte displacement
forces 1 byte displacement

The following table shows the addressing modes known by the assembler. disp1 and disp2
denote displacements. Displacements are always absolute expressions. Rx denotes a
CPU-register and Fx a FPU-register.

Adressmode Notation Example

Register Fx, Rx MOVL F0, f 4
MOVD R0, R2

Register Relative disp1(Rx) MOVB 1(R0), R3

Memory Relative di sp2(di sp1(FP)) MULW R0, 10(2(FP))
disp2(disp1(SB))
di s p 2 (di. s p 1 (SP))

(
\

/

)

)

Immediate

Absolute

External

Top Of Stack

Memory Space

Scaled Index

disp2(SB-rel.Ausdr.)

absolute expression

@absolute expression

EXT(disp1)+disp2

TOS

disp1(FP)
disp1(SB)
disp1(SP)
rel. expression

BaseMode[Rx:B]
BaseMode[Rx:W]
BaseMode[Rx:D]
BaseMode[Rx:Q]

Ceres-Assem b I er

LSHW 5, 3(dPointer)

MOVW $2000, R0

JUMP @$f e00

DIVD EXT(1)+20,

CMPQB 5, TOS

MOVQB 2, 2(FP)

COMB R0, data
COMB R0, data:W

10(R0)

ROTW 2, 10(R0)[R1:W]

4

In addressing mode "Memory Space" the assembler choose the base register according tq the
type of the relocatable expression. "Basemode" in "scaled index" denotes any mode with the
exception of "scaled index" and "immdiate".

6. Pseudo Instructions
Pseudo Instructions are used to reserve memory space for variables, assign values to user
defined identifiers and to force the assembler to give some support for U1e "realization" of
implementation modules by an assembler program.

6.1. BLOCK

This instruction reserves space for data. This instruction has a length attribute (restricted to 'B',
W', 'D'). It has one operano of type absolute.

Example:
Jump Tab 1 e BLOCKD 20 I 80 bytes

BLOCKB 2•tablelength 2•tablelength bytes

6.2. BYTE, WORD, DOUBLE

These instructions reserves memory space and initializes it to given values. All three
instructions acceRts operand lists. Each operand is stored in the size given by the instruction.
This do not hold for strings, which are always stored as sequence of oytes. The operands may
contain forward references (e.g. to produce jump tables for the CASE instruction).

Examples:

message BYTE "invalid addressing mode", $0d, 0
TabPtr DOUBLE I reserves 4 bytes

WORD $fff8, 23, $100

s1 CASES casetab:B[R2:B]
casetab BYTE case1 - s1

BYTE case2 - s1
case1 MOVF F0, 1(SP)

(
\

)

)

BR
case2 MOVF
endcase

6.3. EQU

endcase:B
F1, 1(SP)

Ceres-Assembler 5

This instruction assigns a value and its type to a user given identifier. The right hand side
expression must not contain forward references.

Example:

EntrySize EQU 10
NumberOfEntries EQU 100
TableLength EQU EntrySize • NumberOfEntries

6.4. STABEG, STATEND

Labels defined by BLOCK, BYTE, WORD, DOUBLE between the STATBEG and STATEND
statements denote variables, i.e. the labels have the type SB-relative. It is allowed to have more
than one pair of these brackets. All labels outside these brackets are PC-relative.

6.5. Assembler Modules

As already mentioned above the assembler can produce object files, i.e. the realization of an
implementation module can be done in assembly language. This sometimes useful, but only
necessary in very rare cases, for modules on a very low leve[

6.5.1. Identification of assembler modules

Assembler modules have to start with the keywords MODULE or IMPLEMENTATION MODULE
appended by the module name. If the module is an implementation module, the assembler
scans the module's symbol file. All exported identifiers can be referenced in this module.
Offsets of exported procedures are stored in the entry table. If the module defines a record type
in its export list, a field identifier can be used as displacement, but this identifier is only known
in qualified mode.

6.5.2. INIT, ENDINIT

INIT labels the body of the pseudo module. The assembler produces code for the normal
Modula-2 initialization and stores the program offset of the body into the first entry of the
module's entry-table. ENDINIT produces the correct return instruction.

(

(
'

)

)

Ceres-Assembler 6

7. Error messages
- missing right paranthesis
- error in factor (unexpected symbol)
- illegal displacement length modifier
- illegal scale option in scaled index mode
- missing right bracket
- colon expected
- error in external addressing
- illegal symbol in memory relative addressing
- 'until' and 'while' options are mutually exclusive
- missing left bracket
- only 4-bit constant ins short value
- comma expected
- symbol defined twice
- ident or opcode expected, line ignored
- opcode expected, line ignored
- constant too long
- illegal address mode
- illegal forward reference
- undefined symbol : 'xxxxxx'
- relocatable expression illegal for displacements
- displacement expected in fixup
- fixup failed (displacement requires more space)
- basemode in scaled index must not be immediate
- integer overflow
- string exceeds end of line
- static data can't be initialized
- regular mnemonic encountered, end of static segment
- end of file encountered, end of static segment
- incompatible types of operands in expression
- multiplication or division not allowed with relocatable operands
- illegal module name
- module name expected
- name conflict in import export list
- error in import list
- ident not exported
- ident expected
- implementation module construct
- undefined exported procedure
- not expected pseudo instruction
- strings are restricted to BYTE
- inconsistent symbol file (no of procedures)

Reference
[11 NS3000 Series Instruction Set Manual

National Semiconductor, November 1984

(

Lara 2.0 on Ceres

H.R. Schar, 1.3.87

' -. _ _,...--

Version 2.0 of the doc.ument editor Lara is also ·running on Ceres. Use the "Editor"-floppy of the
Software Dit,ribution Box (l.Noack,RZ H2) to get the necessary files. · ·

Differences to the Lilith version:

1) The functional extensions:

- Commands to send and receive electronic mai'I

- Spelling checker

are not yet available.

) 2) Remote printing in laraprint is not yet available.

)

3) The font data files with extension WID (and PSW) are replaced by MD2.FNT (and MDP.FNT)
files. The description files for generic symbols in formulas have therefore the new extensions
SCR.FNTD, MD2.FNTD and MDP.FNTD.

4) The file FormulaKeys.KMC contains some function key definitions to enter.formulas.

5) Lara accepts also pressing a mouse button to confirm commands as in the editor Sara.

Cereslara. DOK

·.

\ .

)

)

1

Lara 2.0
H.R. Schar, 1.2.87

A new version of the document editor Lara is available on the file server. Use the commandfile
#ma.ED.Getlara2.COM to get the necessary files.

Changes:

1) The interactive editor Lara is available in different variants. Each variant consists of a common
Lara-kernel and a (possibly empty) set offunctional extensions.

Functional extensions:

- Mathematical formulas (see the next chapter for a description).

- Commands to send and receive electronic mail (see PUB.LaraMailDOK).

- Spelling ch~cker (see PUB.LaraSpel/DOK).

Each variant is identified by a letter appended to its program name ("f"=formula, "m"=mail,
"s"=spelling checker, "n"=none). For example, the program SYS.larafm.081 denotes a variant with
mathematical formulas and mail commands.
I recommend copying the most frequently used variant to SYS.Iara.OBJ. Some variants may be too
big to run on the "small" Lilith machines (with memory sizeJ128 kWords). The smallest variant
SYS.laran.OBJ should cause no problems. ·

2) The file Lara.User Section contains modified standard user profile entries. The font SYNTAX12 is
now used as the default font If only fonts of the families SYNTAX and BARBEDOR are used, the
entry 'Resolution' (header entry "Screen") should be set to 80 to get a ratio of 1:3 (instead of
1:2.4) on 240dpi printers.
The default values for (unformatted) ASCII-files have been changed to improve printer output
for program listings.

3) The print program laraprint has an improved page breaking algorithm to avoid single lines at the
end or at the beginning of a page. For each paragraph at least two lines are left at the end of the
current page or at the beginning of the next page. A paragraph with one line is recognized as title
belonging to the next paragraph, if the following line is indented or has some defined difference
in its font

4) laraprint may also be used to generate a local output file. Press "f" instead <RETURN> when
asked to select the name of the printer.
Post5cript format for the Apple LaserWriter is also supported. Lara.User Section contains the
relevant entries required for your user profile.

(

\
)

)

2

Mathematical Formulas in Lara

Lara provides an easy way to generate and modify mathematical formulas. The following short
description shows the major concepts and illustrates the usage of fomiulas in documents. For a more
detailed description, see [1].

Definition of a fonnula in Lara

To integrate formulas into normal text, the definition of a paragraph as a sequence of characters has
been extended in the following way:

- A paragraph is a sequence of cells. -

A cell contains a character or a formula.

- A formula is a fixed sequence of operands with an optional generic symbol..

- Generic symbols are: Integral symbol, summation symbol, parenthesis, etc.

- An operand is·a sequence of cells.

The definition of formulas is re.cursive, i.e. a formula may contain other formulas.

n-1

L 2i+1
Example: -.--

1 +n
i=1

If your Lara does not include mathematical formulas, a aJ symbol instead of a summation formula
is displayed.
The summation formula has three operands: "i=1" Clower bound), "n-1" (upper bound) and
2i + 1
--- (sum content).

i + n
The user cannot define new kinds of formulas. This would contradict the basic Lara concept that
documents are self-contained.

How to select fonnulas

Formulas are selected in the same way as ordinary characters. Repeated selection of the same
character first extends the selection to the formula operand, then to the whole formula. This way of
extending a selection is repeated until the selected formula is no more part of another operand. After
that the whole paragraph is selected.

Dragging a selection inside a formula is restricted by the end of the current operand.

Selected formulas can be copied or deleted with the normal text commands copy and delete.

How to Insert text into fonnulas

The insertion point (caret) can be positioned inside a formula. Clicking the left mouse button on the
same character again positions the caret at the beginning of the operand, then at the beginning of the
formula. This way of positioning can be repeated until the caret is no longer inside a formula. Then
the beginning of the paragraph is taken as caret position.
If the caret is adjacent to a formula, a dotted frame surrounding the formula appears. It helps to
recognize different caret positions with nearly identical locations on the screen.

(

Example:

1

1) ·JfCx)dx~
0

·;1·······.
2) ~J f(x)d~~

0 : ~

3

In the first case the caret is at the end of the third operand of the integral. In the second case it
is at the end of the integral.

Keyboard, Special Keys

The following keys are interpreted differently inside a formula.

<RETURN> return key: skip operand. .
<Ctrl-J>,<LINE FEED> end of paragraph command: skip formula(s), then enter <Ctrl-J>.
<Ctrl-L> end of chapter command: skip formula(s), then enter <Ctrl-F>.
DEL backspace key: ignored after a formula or before an operand.

) Initial entry of fonnulas

)

Formulas can be entered either by copying them from other documents or by using "macros". A
macro is a "\" followed by a defined name. As soon as a macro is typed in (terminated with " " or
<RETURN>), it expands to a corresponding text sequence representing a formula.
Macros are interpreted by the separate program KeyboardMacros, i.e. you have to start
KeyboardMacros before starting Jara.

If you want to enter a"\" (or "Q" or "u") in a document, press"\" twice.
The file Formulas.DOK contain es all defined formulas and their correspondig macro names.

Example:

1

J
dx

The formula --- is entered by the following keyboard input:
3

0 l1 +l

Display Keyboard Entry Display Keyboard Entry

1) \int<RETURN> 2) O<RETURN>

/). 1
3) J 1<RETURN> 4) 1~ \frac<RETURN>

0 0

1 1

5) J~ dx<RETURN> 6) J~ \root< RETURN>

0 0

1 1

7) f !x
0 f

3<RETURN> 8) Jt
0 a:

1+

(

\
,)

1

9) J dx

3

0 11 + !::.

1

11) J dx
3 .

i1+xl::. 0

1

13) J ~
0 ~-~-"!".'!.:!::.

15) ·s· . : dx . ·:
: 3 . :t::.
: ~r-2:·
b f1 + x- :
•············•

4

1

\sup<RETURN> 10) J
3

dx

11 + !::.

x<RETURN>

0

1

2<RETURN> 12) -s dx ---- - <RETURN>

~·2'
0 1+;c'A

···~

1

<RETURN> 14) J: ~.ax ... :~' <RETURN>

o ~ V1 + l ~ ·
'··········

This example shows that a formula is entered (without repositioning the caret) top-down, i.e. from
the outside to the inner parts.

It is very important to always leave a formula before continuing with ordinary text

Generic.symbols

Generic symbols like J ~r ~ as parts of formulas are automatically generated (in their required size)

by Lara. They are usually characters taken from a special font Currently the two fonts GENSYMA and
GENSYMB (and Symbol for PostScript output) are used.
Character codes are assigned (installed) to generic symbols by a textual entry in a description file.
The currently used decription files are GENSYMSCFD (Screen), GENSYM.WIDD (print file) and
GENSYM.PSWD (PostScript).
If a symbol is not installed by an entry in a description file, Lara draws a simple symbol using a fixed

) sequence of straight lines.

Some formulas without generic symbol

There are some formulas without explicit generic symbol. They only define how some operands have
to be grouped together.

1) Matrix

3 4
A matrix is a sequence of operands arranged in a rectangular form, e.g.:

7 10
(\mat)

Usually a matrix is used inside parenthesis: (
3 4

), 1
3 4

1, [
3 4 J

7 10 7 10 7 10
Enter first the parenthesis formula, then the matrix formula.

2) Sub- and Superscription

. dcb
The general case has a base operand and six circularly arranged operands: F (\circum)

efa

(
\

)

)

5

. x k -
Special cases are: ai (\sub),. e (\sup), \j (\subsup), X (\upper), lim (\lower)

.n-.oo

3) Elementary formula

-b ± Vb2
-4ac

The elementary formula has only one operand, e.g.: x1 2 = (\fma)
• 2a

References

[11 Schar, H.R. Die Integration mathematischer Formeln in den Dokumenteneditor Lara.
lnformationstechnik (.it), Oldenbourg Verlag Munch en, Dezember 1986~

PUB.lara.V20.DOK

(

1

NrOp Nr Type Symb Macro Comment

any 0 any CD \anyfma unknown fonnula (e.g. extended file fonnat)
any 1 any am \errfma error symbol (NrOp or Type wrong)

1 2 1 (F \lpar left parenthesis
1 2 2 F) \rpar right parenthesis
1 2 3 (F) \pars parentheses

1 3 1 [F \lbrack left bracket
1 3 2 Fl \rbrack right bracket
1 3 3 [Fl \bracks brackets

1 4 1 {F \lbrace left brace
1 4 2 F} \rbrace right brace
1 4 3 {F} \braces braces

) 1 5 1 IF \lvert left vertical line
1 s 2 Fl \rvert right vertical line
1 5 3 IFI \verts vertical lines
1 5 6" UFll \Verts double vertical lines ·

1 6 1 (F \langle left angle
1 6 2 F) \rangle right angle
1 6 3· (F) \angles angles

1 9 1 F \fma fonnula
-1 9 2 ~ \frame frame
1 9 3 ~ \dframe dotted frame

A
1 10 1 F \hat hat
1 11 ·1 F \tilde tilde
1 12 1 F \ol overline -1 13 1 F \vec vector

) 2 17 1 FtQ \root, \sqrt root

2 19 1
F

\frac, \over fraction
G

2 20 1 ~ \cfrac continued fraction

F
2 21 1 ~

G
\rarrow right arrow

F
2 22 1 .,_. \mapsto maps to

G

2 23 1 F \ubrace underbrace
~

G

(

2

G
~

2 23 2 F \obrace overbrace

b
3 25 1 IJF \prod product

a

b
3 26 1 I,F \sum sum

a

b
3 27 1 nF \cap cap (intersection)

a

b
3 28 1 UF \cup cup (union)

) a

b
3 29 1 'ef F \forall for all

a

b
3 30 1 jF \exists exists

a

b
3 31 1 NF \number number

a

b
3 35 4 f F \int integral

a

b

) 3 -35 8 ff F \int2 double integral
a

b
3 35 12]J°F \int3 triple integral

a

b
3 35 5 f F \oint contour Integral

a

b
3 35 6 jF \pvint principle value integral

a

2 40 1 Fl \sub subscripted

2 40 2 p1 \sup superscripted

(
\

3

3 40 3 ~ \subs up sub- and superscripted

l
2 40 4 F \upper upper

2 40 32 F \lower lower
l

7 40 63 ~b
efa

\circum circumscrlpted

ab
matrix (uniform spacing, n rows, m columns) n*lll 50 m

c d
\matu22

ab
matrix (spacing for each row, column) n*m 51 m

c d
\mat22

) n*lll 52 m
ab

c d
\matl22 matrix (individual spacing for each element)

)

(

Some mathematical formulas

p.

1

42 I dx 3
0 li+x2 ·

-b+ Vb2-4ac
45 . (xr x Um l+- = e z1.2·= 2a n4qOO· n

47 ID DAU=
J

) 57 F = p+q fJii
2.

F = p+q fI>Ci
2

59 1 ffx 2+x. 1 1 nx 2+x 1 f(x) = - 2x+----f{x) = - 2x+ -- --
2 2 nx 2 2 ax

I
I

(

71

72

74

81

)

)

k>

10s(¢i)
logf F(s)f

a) 1 + --;:==l==-b) V 1+ ~~l + ...

v 1 + -1-1 :-•• -.

llm
~ + 1 F'(s) F'(s) 2

= -2- ~+1 - -2-~
k"QOO ~

~+b
=---~a=-

2

2

f= .

3

82 lg(x)I = ~ (J x-~(x))
dx _ l+e dx J x J x - F(x) - xe x _

1

86 x = ·F(x) = _ f(x) G(f(x)f'{x))
f(x) f(x)2

x = F(x) = - f(x) a(f(x)r'(x) .)
f (x) f(x)2

n
n k I p(k)(z)

98 p n(x) · = L · p n-k(x-z)
n k

P n(x) = . kl (x-~)
k=O

k=O

101 ~ r = 2 max --
l<k<n an

) 142
xfl234

y f 5751

x
151 f(x) = J eslntdt

()

2
x z --

. 161 1 Je 2 dz f(x) = -
v:;

-00

)

163

166

194

199

)

)

r-:._

n-1 ('1+1) 3 n-1 L f f(x}dx - Ti(h) = - ~ L f'(~i)
i=O Xi i=O

b

f f(x}dx - S{h} =
a

4
(b-a}h If 4)<~>I

180

4

I
'·

5

. 00

202 x = ~ Bk xk
x ~ kl

e -1 k=O

b

209 abs(i2) < 1J J f(x)dx
a

00 x

213 f !e- 2
dx

1

216 x''(t) = ____ cx(_t_) __
----3

(V x(tl + y(t)
2 >

) 5

232

)

(

)

)

Some formulas from the TEX Book

p.

3 4
129 ((x2

))

142 Clo+

180

1
1

1
~+---1-

~+­
a4

6

8nk ~ .. ·) 0 1

7

· 186 I zl =<(um sup ll anl)-l
n"QOO

li~ ~ = 2 ln(n) = 2 ln(2) = 1.386 ...
a' . log(n)
n

(4.59)

)

)

1

LaraPrint 2.0
Hansrudolf Schar, 1.2.87

LaraPrint is a program to produce hardcopy for Lara documents. Its output is a file in the Lilith print
file format (further called print file), or a PostScript file. A print file serves as input for a Lilith
computer accessing a laserbeam printer to produce the hardcopy. Normally, LaraPrint sends the print
file to the printer server over the local area network. If the output file must remain on the local disk,
e.g. for inspection by the program pisa, press "f" when selecting the name of the printer station.
Furthermore, an Ap_ple LaserWriter connected to a Lilith can be used.

LaraPrint requires a user profile entry Printer.

Example:

"System"
'Printer' PRISMA HAMPEL LaserWriter

) Usage

)

After starting /ar'!print, the name of the printer is requested. Type RETURN to send the file to the
printer who's name is currently displayed. Type "/" to display the next printer name. Type "f" to
generate a local output file. Pressing ESC here lets you leave the program.

After checking the availability of the printer and the permission to print, the program p·rompts forthe
name of a file to be printed (default extension is DOK). Enter the filename terminating with spacebar
or RETURN (or" le" and "y" for a confidental printout) or ESC to cancel the name entered.

Now, the number of copies is requested. Type one digit to print from 0 to 9 copies or spacebar or
RETURN for exactly 1 copy.

Following this, laraprint asks for the number to be printed on the first page. If you type spacebar or
RETURN, the pages will not be numbered.

The prompt pages> allows you to restrict printing a consecutive range of pages. Enter one page
number or two numbers separated by"-" (e.g.14-19). Spacebar or RETURN prints all pages.

The required fonts are now loaded and the file is subsequently printed. Each processed page is
indicated on the screen by a"." character.

After completion the message in> appears again for a next file to be printed. Press ESC if you want to
leave the program. -

In case of local output, the name of the output file is requested.

Example: (characters entered by the user are underlined)

•laraprint
Printer: PRISMA
print file format (PRT)
remote printing
CIPON 21.12 .84
installation of printer service PRISMA Prisma: printer ready
User: Schar Hans-Rudolf

laraprint 2.0, 1-Feb-87,
in> PUB. Letter. DOK
font TIMESROMAN12
font GACHA14
font TIMESROMAN12B
font HELVETICA10
font HELVETICA12
font TIMESROMAN121
formatting.
in>

HRS, ETHZ
copies> .! pageno> .!_pages> _

(
\

)

)

1 page to print
•

Installation

The following fifes are needed:

SYS.laraprint.OBJ
LIB.PrDr.PRT.OBJ
LIB.PrDr.PRTC.OBJ
LIB.PrDr.PSR.OBJ
LIB.PrCh.Rem.OBJ
LIB.PrCh.Loc.OBJ
LIB.PrCh.V24.0BJ
LIB.PrDr.PSRprologue
SYS.setprinter.OBJ
lasercopy.OBJ
LaserPrint.OBJ
GENSYM*
*.WID

Print Program.
Program module to generate a print file.
Program module to generate a Ceres print file.
Program module to generate a Postscript file.
Program module for remote printing.
Program module for local printing.
Program module for printing over the serial link (9600 Baud).
Postscript header.
Program to select a current printer.
Program to transmit a Postscript file over the serial link.
Program to transmit a Postscript file over the serial link.
Data files for generic symbols of mathematical formulas.
Font data files used to generate print files.

*.PSW
SILtemplate.DOK
DRAWtemplate.DOK
Lara.User.Section
PUB.LaraPrint.V20.DOK

Font data files used to generate Postscript files.
Template document to print SIL-files directly.
Template document to print DSP-files directly.
Standard user profile entries.
This documentation.

User profile entries

Each Printer may have a user profile entry to specify a number of print parameters.

Example:

11 LaserWriter 11

'Type'
'Version'
'Channel'
'Resolution'
'XI
'Y'
'W'
'H'
'XB'
'YB'
'FontScale'
'MDext'

PSR
B
V24
24BB
B
B
2B48B
3B72B
B
B
B.81
PSW

2

The following table contains all possible attributes of the user profile and their values. If an attribute
name is not in the user profile, the corresponding default value is taken.

Attribute Name Default value Possible values

'Type' PRT PRT, PRTC, PSR
'Version' B positive number
'Channel' Rem Rem, Loe, V24
'Resolution' 24B positive number
'X' B positive number
'Y' B positive number
'W' 2B48 positive number
'H' 3072 positive number
'XB' B number
'YB' B number
'FontScale' 1.B real number greater than 0
'MDext' WID WID, PSW
'MDprx' string

(
\

(

3

'Type' (printer type) specifies the output file format (PRT = print file, PRTC =Ceres print file, PSR =
Postscript file).

'Version' specifies the version of the file format For print files, the value 0 indicates that the printer
cannot print arbitrary curves. It only prints horizontal and vertical lines.

'Channel' defines the output channel of the program (Rem= remote, Loe= local, V24 =serial link).

'Resolution' specifies the resolution on the printed page in pixels per inch.

'X', 'Y', 'W', 'H': size of the printable region in pixels for the given resolution. The origin is the top left
corner. X increases to the right, Y increases to the bottom. ·

'XO', 'YO': displacement of the origin in pixels for the given resolution. Increasing XO shifts the content
of a page to the right. Increasing YO shifts the content of a page to the bottom.

'FontScale' is used· to scale the size of each font For print files, values other than 1.0 are not
interpreted.

'MDext': extension of font metric data files.
'MDprx': prefix of font metric data. files. Mainly used to identify WID-files for a different resolution.

) Standard user profile entries

)

The following initial entries may be used in the user profile.

"System"
'Printer'

"OMEGA"
'Version'

"OMEGAS"

PRISMA HAMPEL OMEGA OMEGAS LaserWriter CERES

1

'Version' 1
'Resolution' 300
'X0' -200
'Y0' -100
'MDprx 1 R3

"LaserWriter"
'Type'
'Version'
'Channel'
'Resolution'
1x I
'Y'
·w·
'H'
'X0'
'Y0'
'FontScale'
1MDext 1

"CERES"
'Type'
'Version'
'Channel•
'Re so 1 ut ion'

"Lara"
'Font'
'Underline'
'Voffset'
'OverWrite'
'LeftMargin'
'RightMargfo 1

'FirstLineindent'
'LineSpacing'
'Pspace'
'Mode'
'TabStops'

PSR
0
V24
2400
0
0
20480
30720
0
0
0.81
PSW

PRTC
0
Loe
240

SYNTAX12
0
0
no
2.01
168
0
4.24
0.96
adjust
10,20,30,40,50,60,70,80,90,100,110,120,130,140,150

)

)

'Wspace'
'Figure'
'FigDelayed'
'TopMargin'
'BottomMargin'
'Header 1

'PnoFont'
1 Pn0Mode 1

'Pnoloc'
'Pageleft'
'PageRight'
'PageTop'
'PageBottom'

11 Asci i 11

'Font'
'Underline'
'Voffset'
'Overwrite'
'LeftMargin'
'RightMargin'
'Firstline!ndent'
'LineSpacing'
'Pspace'
'Mode'
'TabStops'
'Wspace'
'Figure'
'FigDelayed'
'TopMargin'
'BottomMargin'
'Header'
'PnoFont'
'PnoMode'
'Pnoloc'
'Pageleft'
'PageRight'
'PageTop'
'PageBottom'

PUB.LaraPrint.V20.DOK

0
NoFig
yes
11
255
NoHeader
SYNTAX12
right
top
20
188
12
285

GACHA10L
0
0
no
1.02
181

·0
3.4
0
leftadjust
10,20,30,40,50,60,70,80,90,100,110,120,130,140,150
0

·NoFig
yes
10.5
262
NoHeader
GACHA10L
right
top
11.5
192.5
13.5
285

4

(
\

Introduction

KeyboardMacros
Hansrudolf Schar, 1.2.87

1

KeyboardMacros, a program that runs on Lilith and Ceres, adds some functionality to the keyboard. It
is loaded prior to starting other applications. Its main use is to enter mathematical formulas in Lara,
but it also offers a service useful to other applications. The following things can be done with it:

1) Entering an arbitrary text string by typing a short name.
2) Entering ASCII characters which are not available on the keyboard.
3) Definition of function keys.
4) Input the content of a file to another application (like executing a command file).

This documentation de.scribes version 1.0 (1-Feb-87) of that program.

) Installation

)

The following files are needed to run KeyboardMacros:

KeyboardMacros.OBJ program running on Lilith.
KeyboardMacros.OBN program running on Ceres.

-KeyboardMacros.KMC Startup file.
Lara.KMC Definitions usable in Lara.
Formula.KMC Definitions to enter mathematical formulas-in Lara.
Sara.KMC Definitions usable in Sara.

l<eyboard, Special Keys

The following notation is used throughout this documentation.

ESC escape key (aborts the current command)
EOL return key (end of line)
SP space bar
DEL backspace key (deletes previous character)
CAN <Ctrl-X>, cancel key (deletes current line)
NUL null character (OC)

Using l<eyboardMacros

The program is started by typing KeyboardMacros followed by EOL. After some initializations the
command interpreter is called to allow you to start other programs. From now on, the character"\"
(backslash) is used to call a macro (see next paragraph). If you need to enter the backslash character
without interpretation, type in "\" twice.
To leave the program, press £SC while in the command interpreter and confirm with "y".

Calling a Macro

To call a macro type \name followed by EOL or SP. A macro is a defined name referring to a built in
command (standard macro) or referring to a defined text (user defined macro). The standard macros
are (see following description of all commands):

def, dir, reset, chdef, chredef, chdir, chrem, chreset, text, read, echo, noecho.

If the macro name has a defined text, the corresponding text is now entered. To define a text, the
standard macro \def is used. A text itself may contain macro calls to allow more complex macros by
using existing ones.
If a given name has no defined text, the macro call is ignored.

When typing in \name, you may use DEL or CAN to correct or ESC to abort. All characters are shown,
but not passed to the application. As soon as EOL or SP is typed, the string \name disappears.

)

)

2

Example:

Assume the text "programming language" has been assigned to the macro name "pl". Typing \pl
will then immediately expand to

programming language

The text" Modula-2 \pl environment" assigned to "m2" will expand to

Modula-2 programming language environment

whenever \ m2 is typed.

Function l<eys

A Function Key is a character with a macro assigned to it. See \chdef, \chredef and \chrem on how to
assign (deassign) a macro to a character. As soon as the character is typed in, the corresponding
macro is called.

Example:

Assume the macro "pl" has been assigned to the character "1'". Typing "1'" will then immediately
expand to

programming language

Function keys are neither interpreted while typing the name of a macro to be called nor during all
standard macro calls.
Function keys are also called "character macros". -

Error Messages

The program shows error messages as soon as some (known) error occurs. Every error message starts
with "----". This helps to locate errors on log-files and to identify a message as one from
KeyboardMacros during other applications. The following errors may generally occur:

---- recursive macro call
---- macro stack overflow
---- fatal error in KeyboardMacros

\def define a macro

recursive calls are not allowed
_ too many nested macro calls

some unrecoverable error

The standard macro \def associates a text with a name. A text is a sequence of characters not
containing NUL. It may contain up to 300 characters. A text is entered in symbolic form. The following
EBNF definition illustrates the format. -

symbolic text = {symbol}.
symbol = string I charconst I macro call.
string = ""'{char}'"" I '"'{char}"".
charconst = octal Digit {octal Digit} "C" I digit {digit} ["N"].
macrocall = "\"char{ char}("" IEOL).

A string is defined as in Modula-2. A charconst can be a character constant as in Modula-2 (octal
code) or a decimal number (decimal code). For convenience in the description of mathematical
formulas used in Lara, an unconventional decimal code starting at "O" was also introduced. In this
case the decimal number is followed by "N".
A symbolic text may also contain comments as in Modula-2.

Example:

The character "8" may be specified in the following ways: "8", '8', 70C, 56, SN.

The name of a macro is a sequence of characters not containing ESC, EOL, SP, DEL. CAN, NUL or"\". Its
maximal length is 15 characters.

The \def macro first asks for the name of the macro, then requests the text (in symbolic form). To
allow the definition of longer texts, the program asks for more than one text line. Type EOL at the
beginning of a line to terminate an entered text.

(

(

)

)

Examples:

\def
macro name> pl
macro text> "programming language"
macro text>
macro pl defined

\def
macro name> m2
macro text> "Modula-2 \pl environment"
macro text>
macro m2 defined

3

Note that no macro is called (expanded) and function keys are not interpreted while typing in a
symbolic text.
A text entered symbolically is automatically converted into actual text. An already defined name may
not be redefined with another text. Macros specified inside a text need not be defined in advance.

Error messages:

---- name too long
---- text too long
---- predefined macro name
---- macro already defined
---- too many macros (table overflow)

\dir directory of defined macros

The \ dir macro shows already defined macro names. Specify a search string (wildcard characters"*"
and "%" are allowed) to list particular macros or simply press EOL to get a list of all names.

Examples:

\dir
dir>
def dir reset chdef chredef
chdir chrem chreset text read
mat echo no echo
13 of 13 macros listed (7000 bytes free)

\dir
dir> •ch•
chdef chredef chdir chrem chreset
echo no echo
7 of 13 macros listed (7000 bytes free)

\dir
d i r > ·1. •1. •1:1. •
reset chdef chredef chdir chrem
chreset text read echo noecho
10 of 13 macros listed (7000 bytes free)

All macro names and texts are stored internally in a buffer. Messages of the type

7000 bytes free

show the amount of unused space.

\reset initialize, remove all macro definitions

This macro initializes all macro definitions, which means that all user defined macros are cancelled.
Also all function keys are cancelled, since they refer to defined macros. If \reset is called from a macro,
the calling macro is aborted.
\reset is primarily used before reloading macro definitions from a file that has been modified (see
also \read).

\chdef define a function key

The \ chdef macro assigns a macro to a function key. A function key may be specified in two ways. It
can be typed in directly or a symbolic text (see \ dir) of length 1 may be entered.

(
\

)

)

Examples:
\chdef
enter ch by typing a key? (yin) > y
type a key> t

macro name> pl
character macro defined

\chdef
enter ch by typing a key? (yin) > n
character (e.g. 11 .a" or 201C)> 11

"'
11

macro name> m2
character macro 9efined

4

The characters ESC, EOL, DEL, CAN, NUL and "\" may not be used as function keys. Note that characters
in existing macro texts may become function keys.

Error messages:
text too long
only one character expected
unknown macro
character already used
this character cannot not be used

\chredef redefine a function key

\chredef is like \chdef, but additionally allows the replacement of a function key definition.

Error messages:
text too long
only one character expected
unknown macro
this character cannot not be used

\chdir directory of defined function keys

The \ chdir macro lists the names assigned to all function keys.

Example:
\chdir
II f 11 :pl
""'" :m2
2 character macros listed

\chrem remove a function key definition

Cancel a function key definition. The function key is specified in the same way as in the \chdef macro.

Example:
\ch rem
enter ch by typing a key? (yin) > y
type a key> ...
character macro removed

Error messages:
text too long
only one character expected
character macro not used
this character cannot not be used

\chreset initialize function keys, remove all function keys

All defined function keys are cancelled.

\text enter a (symbolic) text

The \text macro asks for a text to be entered immediately. See \def on how to enter a symbolic text.
\text is like defining and calling a macro with no name. It is mainly used to enter control characters.

(

)

)

Example:
\text
text> 14C (• for~ feed •)

Error messages:
---- text too long

\read read a file

5

The \read macro takes the content of a file as a text to be entered. Type in the name of the file. If the
name ends with a".", the extension KMC is appended automatically.

Example:
\read
macro file name> Lara.KMC

If the file contains calls of the \def macro, \read can be used to install a set of frequently used
macros. To ease the installation of frequently used definitions, the file.KeyboardMacros.KMC is read
automatically at the beginning of the program KeyboardMacros. . .
If \read is called in the command interpreter, a file without \def macros is like a commandfile.
A file may contain calls of \read to include other files.

Error messages:
file not found

---- file already opened
---- too many file~ opened

\mat enter a matrix (used in Lara)

The control sequence of a matrix is entered. The editor Lara interpretes this sequence as a
mathematical formula with type matrix.

Example:
\mat
mat: mode(left,center,right)>
mat: spacing(uniform,normal,individual)> n
mat: 1 ines> 3
mat: columns> 4

Error messages:
unknown mode

---- unknown spacing
---- nr of lines must be >• 1
---- too many lines
---- nr of columns must be >· 1
---- too many columns

\ noecho switch dialog off

The \ noecho macro switches the display of dialog messages off. From now on the call of a macro is no
longer echoed on the display. Use \noecho at the beginning of a KMC file (see \read).
The display of error messages is not surpressed by \noecho.

\echo switch dialog on

The \echo macro switches the display of dialog messages on.

PUB .KeyboardMacros.DOK

)

)

1

LaraMail

M. Grieder, 11.11.86

Kurze Benutzungsanleitung fUr LaraMail

Einleitung:
Lara wurde um insgesamt 5 Mail-Befehle erweitert, die zusammen mit.den ublichen Editierfunktionen
ein benutzerfreundliches Mail-System bilden. Die expliziten Operationen sind: Mailbox-lnhalt
anzeigen, eine Meldung anzeigen oder loschen, ein Dokument formatiert oder unformatiert absenden.
Funktionen, wie z.B~ beantworten, weiterleiten, abspeichern usw., sind (implizit) sehr rasch moglich.

mai/-Befehl:
Bewirkt das lesen des Mailbox-lnhalts. 1st keine Meldung vorhanden, wird dies im Dialog-Fenster
vermerkt, andernfalls muss ein Fenster eroffnet werden um die Mailbox-Eintrage als Dokument
anzuzeigen. Dieses Mailbox-Dokument kann nicht verandert werden, es wird als read-only
Lara-Dokument betrachtet Die als Paragraph dargestellten Meldungen konnen mit Doppelklick
selektiert werden; darauf wirken dann die Befehle show und remove im Mail-Menu (statt
Text-Menu).

show-Befehl:
Die entsprechend selektierte Meldung wird als Laradokument aufbereitet und kann angezeigt
werden. Bei unlesbaren Files (Larafiles fUr welche Fonts fehlen, Module, binare Oaten usw.) wird
zumindest der Header mit einer entsprechenden Meldung dargestellt, zum Obertragen der Mail muss
"mailtransfer" verwendet werden (s.u.).

remove-Befeh I:
Loscht eine selektierte Meldung im Mail-Fenster und in der Mail-Box, wobei als einzige Sicherheit
eine Bestatigung verlangt wird. Es ist hier auch moglich mehrere Meldungen gleichzeitig zu loschen.

send- und send u-Befehle:
Erlauben jedes Lara.dokument (als Meldung) zu verschicken. Dazu schreibt man vome im Dokument
einen Header. Er besteht aus zwei Rubriken, die mit den Schlusseln 'Subject:' und 'To:' eingeleitet
werden. Als Titel sind maximal 63 Zeichen erlaubt Die Adressen der externen Empfanger entsprechen
der heutigen uucp-Norm an der ETH. Fur die internen Teilnehmer genilgt meist der Name, ist dieser
nicht eindeutig, bedarf es Name und Vorname. Der Titel muss mit EOL, jede Adresse mit Komma oder
EOL und der Header als ganzes durch ein LF (Paragraph) abgeschlossen sein.

Beispiel:

Subject:
To:

LaraMail
Gutknecht, Grieder
Meier

..... Meldung

Beim Aufruf von send oder send u im Balken-Menu wird der Header untersucht Dabei schicktsend die
Meldung als Larafile (formatiert). send u hingegen sendet die Meldungen als Asciifiles
(unformatiert), was filr externe Em pf anger unerlasslich ist

)

)

2

Adress-Liste:

Das File "#mbx.PUB.MailUser.LST" beinhaltet alle berechtigten Mail-Benutzer. Es wird automatisch
auf dem neuesten Stand gehalten und kann zum Erstellen eigener Adress-Listen verwendet werden.

Eine Adressen-Liste "DK.MailUser.MAP" kann sich jeder Benutzer selbst erstellen. In diesem
'Mapping'-File steht: Listenname '=' Adresse ',' Adresse ',' usw. ';'.
Hier sind verschiedene Adressen durch Komma oder EOL gtrennt und der Strichpunkt schliesst eine
Liste ab. Kommentare konnen in (Klammern) hinter jedem Namen stehen. Auch hier existiert ein
Hilfs-File "#mbx.PUB.MailUser.MAP" als Grundlage zum Erstellen des eigenen 'Mapping'-Files.

Im To-Feld konnen die Listen durch Pfeil und Name spezifiziert werden (s.u.). Beim senden werden
die entsprechenden Namen eingefUgt; dabei ist Rekursion zugelassen und bei geoffnetem
'Mapping'-File wird der aktuelle Zustand verarbeitel

Beispiel:

DKMai/User MAP:

Header:

Hilfs/isten:

Grp.Gutkn =Gutknecht, Grieder,

(* = Gruppe Gutknecht*)

Subject: LaraMail
To: tGrp·.Gutkn

..... ,

#mbx.PUB.MailUser.LST beinhaltet alle berechtigten Mail-Benutzer.
#mbx.PUB.MailUser.MAP ist ein Grundstock an Adress-Listen.

Re_playfile:
Mailbox-Befehle im Replayfile konnten zu irreparablen lnkonsistenzen fuhren, dies darf also nicht
unterstutzt werden:
Das Replayfile ist nur bis zum ersten Aufruf eines Mailbox-Befehls aktiv !

SYS.mailtransfer.OBJ:
Dieses Modul Obertragt Meldungen beliebigen Formats von der Mailbox auf die lokale Disk. Der
Dialog ist sehr einfach. Bejaht man "read ?", so wird Header und Body (auf Anfrage; "show body?")
angezeigt und man kann auf "write to>" den Filenamen (Default: DK.*.MSG) spezifizieren, existiert
das File bereits, muss "replace?" beantwortet werden. lst eine Mail Obertragen ("done"), kann sie auf
der Mailbox geloscht werden ("delete mail ?"),was ebenfalls mit "done" quittiert wird. Im Obrigen
kann die Maus als Antwort-Beschleuniger eingesetzt werden (ML= 'yes', MM= ESC, MR= 'no').

Fragen, Anregungen:
Fur Fragen, allfallige Fehler oder Anregungen, wende man sich bitte direkt an:
Grieder Markus resp. Grieder®ifi.ethz.chunet

)

)

1

LaraSpell

Benutzeranleitung

M. Grieder 31.1.87

1. Vorbemerkung

"Spell" ist ein auf 4 Sprachen ausgerichteter Dictionary-Lookup-Spelling-Checker. Er ist im lara
als 'spell'-Befehl eirigebaut und eine Batch-Version ist unter dem Namen "Spell.OBJ" verfiigbar.

Das Programm vergleicht den Text mit einem codierten Dictionary, wobei ein Wort als
Buchstabenkombination inklusive eingeschlossener Apostrophs definiert ist. lnsbesondere
werden mit Bindestrich unterteilte oder getrennte Worte ebenfalls aufgeteilt.

Die Online-Version ist auf dem File-Server verfugbar:
#ma.ED.SYS.laras.OBJoder
#ma.ED .SYS.I arafms. 0 BJ
(s: spell, f: formula, m: mail; wie das File lokal heisst, ist unwesentlich).

Die zentral verwalteten Dictionary-Files (sprachabhangig) sind ebenfalls auf Maple.
english: #ma.ED.*.DIC
deutsch: #ma.ED.*.DIX
(Lokal sind die Files*·*· also gleich zu nennen; Erklarungen s.u.).

Momentan steht ein deutscher Dictionary mit 16'000 Worten und ein englischer mit 8'000
Worten auf Maple. lch habe weitere 16'000 deutsche Worte in unkodierter Form bereit und
40'000 englische Worte in Aussicht, die bei Gelegenheit hinzu kommen sollen. _Um die
Dictionarys zu vergrossern, konnen Sie sich mit Listen unbekannter Worte oder umfangreichen
Texten all er Art (au ch franzosisch) an mi ch wend en (mail: grieder®ifi.ethz.uucp).

2. Benutzung der Online-Version

Im Lara hat das "TEXT"-Menu einen Befehl 'spell' mit Folge-Menu:
"SPELL" 'english' 'german' 'french' 'others' 'clear'

Beim ersten Aufruf wahlt man die Sprache (resp. Default 'english') und der entsprechende
Dictionary wird eroffnet. Eventuelle Fehler oder Meldungen werden im Dialog-Fenster
angezeigt (s. u.) ansonsten beginnt der Priifvorgang sofort.

Der Spelling-Checker sucht ab der momentanen Caret-Position das nachste unbekannte Wort
und positioniert das Caret neu an die gefundene Stelle (wie 'find') oder es erscheint im
Dialog-Fenster die Meldung "no unknown words found".

1st die Sprache initialisiert, so gilt sie bis man eine andere oder 'clear' wahlt, d.h. fur weitere
Aufrufe genilgt 'spell' ohne Folge-Menu.

)

)

2

1st eine Textstelle selektiert, sucht der Spelling-Checker nur innerhalb dieser Auswahi, wobei
die Start-Position durch das Caret bestimmt wird: ist das Caret ausserhalb, wird vom Beginn
der Selektion, sonst von der momentanen Caret-Position gepruft.

Da beim Prlifen viele File-Opeationen gemacht werden, ist es sinnvoll ein Laradokument (nur)
paragraphen-weise "(Bsp: MR MR ML ML 'spell') und ganze Dokumente mit der Batch-Version
zu testen. Auf den kleinen Liliths (128 kWorte Hauptspeicher) ist es auch angezeigt, nach dem
prufen mit 'clear' den Speicher wieder zu entlasten.

3. Benotigte Files·

Der Spelling-Checker benotigt einige Dictionary-Files, die im folgenden aufgelistet sind. Die
Extensions sind sprac.habhangig: ".DIX" filr Deutsch, ".DIC" filr Englisch, ".VOC" filr Franzosisch
und ".VOK" filr die vierte Sprache. Diese zusatzliche Sprache ist nicht festgelegt, der
Spelling-Checker verwendet einfach alle Files mit Extension ".VOK", was es dann auch immer
sei, insbesondere wird dazu auch kein zentraler Dictionary verwaltet.

Dictionary.*
ist das eigentliche Dictionary-File. Es muss zum Prufen auf der Disk sein und kann periodisch
vom File-Server (z.B. als verbesserte Version) kopiert werden.

Structural.*
beinhaltet die Strukturworte (der, die, und, .. .) und am lnstitut sehr haufig verwendete Worte
(Computer, Prof., Zentrum, ...). Diese Worte werden eingelesen und schnell gepruft. Fehlt dieses
File, funktioniert der Spelling-Checker trotzdem, aber etwas langsamer.

Project.*
ist ebenfalls ein Wortlisten-File, das z.B. pro Forschungsgruppe einmal erstellt werden kann.
Auch diese Worte werden wie die Strukturworter eingelesen und rasch gepruft. Der Name
"Project" ist ein Default-Name, der mit einem Eintrag im "User.Profile" geandert werden kann
(siehe unten).

User.*
Dieses dritte Wortlisten-File ist, wie schon der Name sagt, ganz speziell filr den Benutzer. Es
kann im Editor oder Lara erstellt werden und wird wie oben behandelt. Auch "User" ist ein
Default-Name der im "User.Profile" umbenannt werden kann (siehe unten).

Temp.*
Fur spezielle Anwendungen ist es sinnvoll, auch eine spezielle Wortliste bereit zu haben. Sie
kann Fachausdrucke des momentanen Teilprojekts oder kurzfristig haufig verwendete Namen
enthalten. Es ist auch moglich, dieses File wahrend der Session im Lara zu schreiben oder zu
verandern, die neuen Worte sind aber erst verfugbar, nachdem das File geschlossen und der
Dictionary neu geladen ist.

User.Profile
Hier stehen (even tu ell) unter dem Ti tel "spell" die Namen fi.ir Projekt- und Benutzerfile.
Beispiel: "spell"

'project'
'user'

Bemerkungen:

SpellCheck
MarkusG

ergibt z.B. "DK.SpellCheck.DIX"
ergibt z.B. "DK.MarkusG.DIX"

- Die Wortlisten-Files konnen klein und gross geschriebene Worte beinhalten.

..

)

)

3

Steht nur das kleine Wort, so wird die grosse Form trotzdem akzeptiert.
- Mischformen (zT, uAwg, GmbH, .. .) akzeptiert der Spelling-Checker nur zweibuchstabig,

d.h. langere Mischformen mussen in den Wortlisten-Files stehen, damit sie erkannt werden.
- Einbuchstabige "Worte" sind immer korrekt!

4. Fehler- und System-Meldungen

Eine Fehlermeldung wird beim Eroffnen des Dictionary ausgegeben, falls der Speicherplatz nicht
genligt oder File-Operationen unkorrekt ausgefUhrt wurden. Erscheint eine Fehlermeldung,
kann der Spelling-Checker auch nicht prUfen. Moglich sind:

not enuogh space
not found
not opened
not loaded
notdone

zum Eroffnen des Dictionary
"Dictionary.*" ist nicht auf der Disk
Fehler beim Eroffnen oder Lesen auf "DK.Dictionary.*"
Fehler beim Einlesen von Wortlisten-Files
Nicht lokalisierter Fehl er

Systemmeldungen sind rein informativ, das Prufen geht trotzdem, und sie stehen deshalb auch
nur in Klammern:

(no wordlist)
(no wordbuf)
(no strc-WL)
(no proj-WL)
(no user-WL)
(no temp-WL)
(not all)

Speicherplatz zu klein flir die interne Wortliste
Speicherplatz zu klein um Worte zu lesen
"Srtuctural.*" nicht oder unvollstandig eingespeichert
"Project*" nicht oder unvollstandig eingespeichert (obiges gel ad en)

. "User.*" nicht oder unvollstandig eingespeichert (obige geladen)
"Temp.*" nicht oder unvollstandig eingespeichert (obige geladen)

·r-·Hcht genugend Speicherplatz

Im Normalfall und bei genugendem Speicherplatz steht aber:

done all es korrekt Calle Wortlisten geladen)

U. D~ u D~ ~ {:::::. D.: {:::::
~ t:::. C= ~ ub ub u D@ k: {:::: ~ ~

0:,, U,, u D~ {).: 1>.: ~ ·~

k: {:::;, ~ ~ ud ud u D~ k: ~ ~ ~
A

'00
B c

'02
D E

'04
F [

'06
]

)
.../

D .. U. 0,,, ~,. D,,, Ll~ D,~ u.
D.b ub D,,b ~>b D,,b {),@ D,,b ub Q., u D"' ~,,
D.d ud D,1d ~>d D,,, Ll~ D"' u.

H
'08

I < '09 > J
'10

K L
'11

M

)

u19a u20a U. (t ~ D,,, D.. w D
u19b u20b ub Om

I~ D,,b D.b w D
[),;, {),,, N 0 p Q

'20 '25
R

'27
s

'30

Zurich mac1a.PIN Author: N.Wirth Date: 5.12.81

(

(
\

U. U. U. u [~~
h n. u. u. [},, u D [>. ..

.
u5a

U, U, [},, D~ D [>.6< h n. .
u5b

ud ud [},d D4d [>..d I ® #

u v () z
'32 '38 '60 '86 '260

)

Cr.10. C?-un.
Cr.1ob {::?-,,," D> D

u14a u14a

f>.ao, C?-u11< D> D
Cr.10d {::?-,,,,d u14b u14b

w *[*]
*6 *8

'64 '126 '125 '133 '265

) !1)107 75114 *"' *z

s ~ tf.;~ ~h ~1~
*q u17a

1?D ~ tf.;., {:r.,,, kf:,,
75110 u17b

~ t>-u18• -
tf.;., ~2< ~"' 0

a *r

~ t>-u18b k(.;.d tr.12d ~13d
0

b

75115 75189 8T09 8T96

Zurich mac1a Author: N.Wirth Date: 9.1.82

u3

u1a u1b u2a u2b •XO u4a u4b

0 0 Q Q •YO X>Y I-

0 0 • X1 X=Y ~ • Y1
• X2

X<Y I-• Y2
• X3
• Y3

> = <
0 1 I I I a =

'73 '74 '85 '112

ulb
c *9 u10a

rt-t-
ula

u8 -119_

1'
u5a Q ~ • FC -I FC QO't- AO' ~

QO'

• RNG y I- • RNG y I- Q1' t- -IAS2 A1' ~
S2 Q1'

~
• S4 Q2' ~ b -IAS1 A2' ~ • S1 Q2't-

Q'
c c Q3' ~ A3' ~ E' Q3't-

R c • S2
CL' u5b

Q4' ~ BO' ~
I

Q • c c • S1
QS't-

-I BS2 B1' ~ u10b l Q6't-
G' G' Ql' ~ -I BS1 B2' ~

~ Q'
I E' EE' B3' ~

QO't-

)
EA' EB'

• S2 Q1't-

~
T

'123 '124 *B '138 -1s1 Q2't-
l '139 E' Q3't-

I

u13
u14 u11

DO XO
GS' D1 X1 ox~ -1DO' EO' d -1D2 f X2 -1 D1' e -1 D3 y I- X3 g

-1D2'
HOt- u12 D4 W't--1D3' 10 DS YO -1D4'
H1 t- 11 D6 Y1 -1 DS'

12 Dl Y2 OY ~
-1D6'

H2 -1 13 Y3 -1D7'
14 S4

El' • 15 S2 '151 S2 '153 T 16 S1 E' S1
'148 17 T '251 EX' EY' '253

18 W't- T

-1 19
110

u15
-I 111
-i 112 u16 u17

QO' t-
113

• 114
• DQ

Q1' t- .., 115 -!DO
QOI- i -!DO QO' j Q2' t- ·BO ·BO

Q3' t- h -I E's1 S2 S4 58 • D1
Q1

• D1 Q1' I-
T T T T -1 B1 B1

)
DR' RO' t- -1D2

Q2
-1D2

Q2' I-R1' t- -1 B2 -1 B2
52 R2' t- -1D3 -1D3
S1 R3' I- B3 Q3 B3 Q3' I-

EQ' ER' '150
SB E' '157 SB E' '158 I r-

I I I I

'155 '257 '258

u20

u18 u19 A u21

COt- DA HOt- B
c -1UD RC'~ -1 BO HOt- •DB H1 t-

• D -1 B1 H1t- k H2t- I • E 7
-i BO HO~

*d -1 B2 H2t- H3t- B1 H1 ~
-I B3 H3t- H4t- • F QH B2 H2 G

HSt- H
• B3 H3 t-

• EP H6t-
-i ET H7t- SI

• ET'

CL' CK LD' CK CL' • SL
• EP'

TT T ~ I I CK LD'
CK CL' CE' T T

TT T

'160 - '163 '164 '166 '169

Zurich mac2a Author: N.Wirth Date: 6.12.81

)

)

u1

-<RO
""R1
.,wo

W1

DO
D1

• D2
• D3

RE'
I

QO
Q1
Q2 l­
Q3 1-

WE'
I

'170 '670

-I
..,
-I
-I
-I

"" ..,
..,

""EVI
""ODI

EVN t­
ODq..

'180

u9

AO

m

p

A1 4
A2

• A3

-DO QO'i-
• D1 Q1' 1-
• D2 Q2' 1-

D3 Q3' 1-
C5' WE'

I I

'189

.-:...__.K-,..113

-1 DO QOI-
.., D1 Q11-
.., D2 Q21-
-1 D3 Q31--

""LD
"I CLR

Q3' ...

CK

'195

ll17

D QO
Q1

54 Q2
• 52 Q31-
• 51 Q41-

Q51-
• EN' Q61--
• CL' Q71-

'259

Zurich

*k

u2

-I DO QO
-I D1 Q1 1-
-1 D2 Q21-
-1 D3 Q3
-1 CLR
"" G1 OE2

G2 OE1 1-

CK

'173

u6

_,DO
-I EO
_, D1
_, E1
""D2
""E2
"I D3
_,B

HO 1-

H1 1-

H2 1-

H3 1-

Gg' 1-
Pg' 1-
A=B I-

• CIN COUl)-

M FO F1 F2 F3
I I I I

u10

RC'

q

'181

-1 BO HO 5
-1 B1 H1 t-

B2 H21-
B3 H31-

MftlJ:.
-iUD
-<CK

CE' LD'
I I

'190 '191

u14

DO Q01-
D1 Q1
D2 Q2
D3 Q3
D4 Q41-

"'CKI CKOi-
"'CLR' ORi-

OE' IR
CKA CKB

~ I I

'225

u18

-!DO QOt-
..,01 Q1 I- *e -1D2 Q21-
-1 D3 Q3t-
"'D4 Q4t-
""DS QSt-
"'D6 Q61--
• D7 Q7i--

CK CL'
T T

'273

mac3a

u3

_,DO Q01-
"'D1 Q11-
-1 D2 Q2i-

D3 Q3i-
D4 Q4
DS QS
CK CL'
T T

'174

CIN
GIO'

·PIO'
• Gl1'
• Pl1'
• Gl2'
• Pl2'
• Gl3'
• Pl3'

CZ t­

CY t­

CX 1-

Gg' 1-

Pg' t-

'182

u11

CO't-

n

r

BO H01- t
B1 H1 t-
B2 H2
B3 H3 i-

cu
"'CD

BO' i-

CL LD'
I I

'192 '193

u15

DO YO 1-
-i D1 Y1 1--
-1 D2 Y2 I--
., D3 Y3 1--
-1 D4 Y4 1--
-< DS YS I--
""D6 Y6 I--
""D7 Y7 I--

GO' G1'
I I

'240 '244

. u19

P1

""DO YO *'
"'D1 Y1

D2 Y2
D3 Y3

PO G
T T

'278

Author: N.Wirth

r-1!i--,
·DO QOl­

QO'i­
-1 D1 Q1 1-

Q1' l­
D2 Q2 1-

Q2'1-
-1 D3 Q3 t­

Q3'
CK CL'

'175

-IAO
-IA1
-IA2
-1A3
-IA4

u8

QOl­
Q11-
021-
Q31-
Q41-
QS1-
Q61-
Q71-

C5'
I

'188

u12
RI

0

?

DO HO U
D1 H1 l-
D2 H21-

• D3 H3 I-
• LI
• 52
• 51

CK CL'
I I

'194

u16

-<AO BO
"I A1 B1
-I A2 B2
_,A3 B31-
_,A4 B41-
_, A5 BS I-
_, A6 B6 I-
_,Al B71-

DIR G'
T I

'245

~
*K

'279

Date: 6.12.81

(
\

(

)

)

{

..u1.

...

.. EVN

.. ODD1-

-
'280

.i. u5

• 10 El'
• 11 AO 1-
- 12 A1 1-
- 13 A2 1-
114
-! 15
91 16 GS' I­

-! 17 EO'
T

'348

u9

DO QO
Q0' 1-

-1 D1 Q1 l­
Q1' I-

-!D2 Q2 l­
Q2' I-

-! D3 Q3 l­
Q3' I-

G01 G02
T T

'375

u13
25S10

"'1-3 YO 1-
"'1-2 Y1 1-
-1 1-1 Y2 I-
"'10 Y3 I-
"' 11

12
13

S1 SO OE'
I I I

25510

v

'50 D u18a

~

~
y

Bv
'51

Zurich

4DO
4EO
1 D1
1 E1
4D2
1 E2
-!D3
-! E3

u2

Cl
I

co1-

HO I-

H1

H2

H3

'283

S2
S1

u6

OX'I-

OY' I-

5

EX' EY'
._T--T"""' '352

u10

DO QO
-! D1 Q1
-! D2 Q2
-! D3 Q3
-! D4 Q4
-! D5 Q5
-! D6 Q6
-! D7 Q7

CK CE'
T T

'377

u14

F9401
-! D Ql-

1 CK'

1 CWE
1 MR

P' ER I-

SO S1 S2
I I I

F9401

~
b

u21
b

c x'
T c T

OJ
'53

mac4a

}

.. Do
"'BO
"'D1
"'B1
"'D2
.. B2
.. D3

• B3

u3

QOl­

QH

Q21-

Q3

SB CK'
T T

'298

ul

DO QOI-
• D1 Q11-
- D2 Q21-
- D3 Q31-
1 D4 Q41-
1 D5 Q51-
1 D6 Q61-
1 D7 Q71-

G OE'
I I

'373

u11

1 DO Q01-
1 D1 Q11-
1 D2 Q21-
1 D3 Q31-
1 D4 Q41-
1 D5 Q51-

CK CE'
I I

'378

u15
"ilDO
-11D1 QO
-!DO Q1 l-
-!D1 Q21-
1 D2 Q3 l-
1 D3
1 ODO 8T10
-!OD1

CK CL
T T

8T10

Author:

2

$

N.Wirth

1 SRI

"'SU

-fsR'
-fsL'

u4

QO

DQOl­
DQ1
DQ21-
DQ3 I­
DQ41-
DQ5 I-

CL' DQ61-
DQ71-

CK G1' G2'Q71-
' ~T

u8

- DO QOi-
1 D1 Q1 l-
91 D2 Q21-
-! D3 Q3 l-
1 D4 Q4
1 D5 Q51-
1 D6 Q6 I-
"'D7 Q71-

CK QC'
I I

'374

If

'299

u12a u12b

QOI- QOl-

Q1 I- Q1 l-

Q21- Q21-

1 D3' Q3 I- - D3' Q3 1-

CL CL
I I

'393

Date: 6.12.81

(.,

(

...u.3... u4
..LL1.. .112.. •AO DI I- AO

AO *j AO Dl1- 3 A1 *< -1 A1
A1 QO A1 A2 '1 A2
A2 A2 A3 '1 A3 DOUT !
A3 Q1 A3 A4 DO '1 A4

• A4 A4 D01- AS -1 AS
• AS Q2 AS A6 -1 A6

2114 -1 A6 • A6 -1 A7
-1 A7 03t- • A7 -1 AB -1 DIN

2148 -1 AB 2115 ·AB 2147 -1 A9 RAS' CAS' WE'
-1 A9 • A9 -1 A10 I

CS' WE' CS' WE' -1 A11 4116 I -.- I .- CS' WE'
I I

u5 u6
AO JJL u8
A1

QOt- 2SS1B ·AO AO
QO

·A2
*i DO YO t- 9 • A1 8 A1 * A3

A2 A4 Q11- • D1 Y1 t- • A2

• A3 Q1 t- • AS -1 D2 Y2 t- • A3 DOUl}

• A4 -1A6 Q21- -1 D3 Y3 I- -1 A4
Q2 QO I- • AS

·AS ·A7
Q3 OE' Q1 I-

A6 AB
91A7 Q3 A9

Q2 I- • DIN
'1CK Q3 I- RAS' CAS' WE'CS'

)
cs· CS' CS' CS' I I I
T T I I

825129 3625 25518 4096

u9 u10 u11 __u12_

74S471 -1 AO
·AO 001-

-1AO ""AO • A1 QOt-
• A1 01 t- *J *V

-1 A1 QOt- *n
-1 A1 QOt- *m A2 Q1 t-

-1A2 021- -1A2 Q1 t- "1A2 Q1 t- A3 Q2t-
-1 A3 03 t- "1 A3 Q2t- ""A3 Q2t- -1 A4 Q3t-
..., A4 04 I-

-1A4 Q31- ""A4 Q3t- -1 AS Q4t-
-1 AS OS ""AS Q41-

.., AS
Q41- -1 A6 QS1-

-1 A6 061- ""A6 QS 1- • A6 QSI- -1 A7 Q61-
-1 A7 071- A7 Q6 I- A7 Q61- -1 AB Q71-

AB Q71- AB Q71- -1 A9
OE1' OE2' A9 A9 -1 A10

I I CS' A10 -1 A11

745471 2708 VE VD PD' 2716 VPP CS' PD' 2732 VPP PD' -.- I T T I I I I

u14

u13 -<,AO
u15 -<,A1

N7S13B

*h
-<,A2 F3341A

*b
_L u20

"'I DO RO t- *C -1A3 F93422 -<,DO QOt- + RST YO' t- -1A4 -<, D1 Q1 t-
-1 D1 R1 t- -1AS -<, D2 Q2t-

• R Qt- *1' Y1' t- 4A6 "'D3 Q31- c 555

) ""D2 R2 t- 4A7
Y2' t- SI IRt-

""D3 R3 t- -1DO QO so ORI-
-1 TR BP

Y3' -1 D1 Q1 -
OE' CL' V12 I

I -1D2 021-

75138 4D3 Q3 F3341A 555 CE1' CE2 WE'OE'
T T .- T

u16 u17
B2S1B1

-1 AO
-1 AO 91 A1 00 -1 A1 DO t- '1 A2 01 J11R u19
..., A2 D1 t- 91 A3 02 FPLAT DipCable -1 A3 D2 t- *o '1 A4 03 *x "1 P1 P20 t-

*o *I -1 A4 D3 t- -1 AS 04 "1 P2 P19 I- -1 P1 P16
"1 AS D4t- '1 A6 OS "1 P3 P1B '1 P2 P1S
"1 A6 DS t- '1 A7 06 t- -1 P4 P17 -1 P3 P14 1-
"1 A7 D61- -1 AB PS P16 .., P4 P13 t-
""AB D7 A9 ""P6 P1S .., PS P12 t-
.. A9

-1 A10 3242 "'I P7 P14 P6 P11 1-

A11 "'I P8 P13 -1 P7 P10 1-
"' CS1' -1 A12 "'I P9 P12 "'P8 P9 I-

CS2' -1 A13 z t- -1 P10 P11
CS3
CS4 RF RE CK

I I

825181 3242

Zurich mac5a Author: N.Wirth Date: 6.12.81

I
i.

(

*p
*L *M *N u4

TBL DRR
u1

u3 10 00
RO QO CO P' G' CK 11 01

10 AO co Z CK 2940 12 02

11 A1 DO YO DO AO 13 03

12 A2 D1 Y1 D1 A1 14 04

13 A3 D2 Y2 D2 A2 IS OS

14 2901 D3 Y3 D3 A3 16 06

IS BO D4 A4 17 07

16 B1 2911 DS AS
6011

so 2
17 B2 S1 D6 A6 PS PE

18 B3 FE D7 A7 WLS1 FE
WLS2 OVE

pp
DO YO AC1' ACO' SBS

D1 Y1 C3 RE' OE' WC1' wco· Pl DR

D2 Y2
CRL TBRE

D3 Y3 10 OE' TRE

11 DONE RESET
R3 3 C3 OV F ZOE' 12

RX TX
CK OE'

RCK TCK SFD

) 2901 2911 2940 6011

*Q

u5 *R *(
EX x ul *)

RES Er AO u6 us
A1 NMI' msb A1S

IRQ' A2
6850 IRQ' A14 VCC1 IRQ'

A3 E DO RES Er A13 GND1

NMI' A4 R/W D1 A12

AS RS D2 so A11 cs

A6 D3 A10 cs· msb PA7

A7 cso D4 RDY A09 RS' PA6

AS CS1 DS A08 RESIT PAS

A9 CS2' D6 A07 PM

A10 D7 VCC1 A06 CK2 PA3

A11 DCD' IRQ' GND1 AOS A06 msb PA2

6802 A12 CTS' RTS' GND2 A04 AOS PA1

A13 RXD TXO A03 A04 lsb PAO

A14 RCK TCK A02 A03

A1S A01 A02 msb PB7

) lsb AOO A01 PB6

DO AOO lsb PBS

01 R/W PB4

D2 R/W PB3

HALr D3 msb 07 PB2

RE D4 06 07 msb PB1

Vee DS MCS6502 DS D6 lsb PBO

Vee D6 D4 DS

D7 D3 D4

CK1o 02 03 MCS6532
VMA D1 D2

R/W lsb DO D1

E SYNC DO lsb

GND GND CK2i CK2o

6802 6850 6502 6532

Zurich rnac6a Author: N.Wirth Date: 6.12.81

' '? *" *#
u1

u2 u'3 u4
NS32016 CPU

NS32032 CPU NS320S2MMU NS320S1 FPU
INT'

BE3' 031 INT' A24 ST1 D1S
NMI' A23

BE2' 030 PAV' A23 STO 014
ILO' A22

BE1' 029 ST3 A22 SPC' 013
m A21

BEO' D2S ST2 A21 012
ST2 A20

INT' 027 ST1 A20 RST' D11
ST1 A19

NMI' 026 STO A19 CU< 010
STO A1S

ILO' 025 PFS' A1S D9
PFS' A17

ST3 024 DDIN' A17 DS
ODIN' A16

ST2 AD23 ADS' A16 07
ADS' AD1S

ST1 AD22 U/S' AD1S D6
U/S' AD14

STO AD21 AT'/SPC' AD14 DS
AT'/SPC' AD13

PFS' AD20 FLT' AD13 04
DS'/FLT' AD12 HLDAO' AD12 03
HBE' AD11 DDIN' AD19 HLDAI' AD11 vcc 02
HLDA' AD10 ADS' AD1S

HOLD' AD10 GNDL 01 U/S' AD17 HOLD' AD9
AT'/SPC' AD16 RST' AD9 GNDB DO

RST'/ABT' ADS
DS'/FLT' AD1S ABT' ADS

ROY AD? ROY AD?
PH12 AD6 HLDA' AD14

PH12 AD6
PHl1 ADS HOLD' AD13

PH11 ADS
AD4 RST'/ABT' AD12

AD4
BBG AD3 ROY AD11

AD3
vcc AD2 PHl2 AD10 vcc AD2

) GNDL AD1 PHl1 AD9
GNDL AD1

GNDB ADO RES ADS
GNDB ADO AD?

AD6
ADS

BBG AD4
vcc AD3
GNDL AD2
GNDB1 AD1
GNDB2 ADO

32016 CPU 32032 CPU 32082 MMU 32801 FPU

*$ *& *3 *>
u5 u6 ul u8
NS32201 TCU NS32202 ICU DPS40S DPS409
XIN PER' IR14/G7 A4 B1 Q7 B1 QS
XOUT CWAIT' IR12/G6 A3 BO Q6 BO Q7

WAITS' IR10/GS A2 R7 QS RS Q6
ODIN' WAIT4' IRS/G4 A1 R6 Q4 R7 QS
ADS' WAIT2' IR6/G3 AO R5 Q3 R6 Q4

)
RSTI' WAIT1' IR4/G2 R4 Q2 RS Q3
RSTO' IR2/G1 WR' R3 Q1 R4 Q2
ROY WR' IRO/GO RD' R2 QO R3 Q1
PHl2 RD' IR1S CS' R1 R2 QO
PH11 RWEN' IR13 RO R1
FCLK DBE' IR11 07 Cl RO
CTTL TSO' IR9 06 C6 RAS3' cs

IR7 OS cs RAS2' Cl
IRS 04 C4 RAS1' C6 RAS3'
IR3 03 C3 RASO' cs RAS2'
IR1 02 C2 CAS' C4 RAS1'

01 C1 C3 RASO'
INT' DO co C2 CAS'
ST1 C1
HBE' CLK cs· co
RST' COUT/SCIN ADS

WIN' WE' CS'
vcc RASIN' M2 ADS
GND CASIN' M1 WIN'

R/C' MO RASIN'
CASIN'

VCC RFl/O RIC'
GND
GND vcc RFl/O

GND
GND

32201 TCU 32202 ICU DP8408 DP8409

Zurich mac7a Author: H.Eberle Date: 13.1.85
REV. 24.4.SS

)

)

u1

75188

1AO
1A1
1 81
1A2
-182
-1A3
-183

1Vcc+
1Vcc-
1GND

YO' I-

Y1' I-

Y2' ~

Y3' ~

75188

u5

AO DI~
A1 DO
A2
A3
A4

"'A5
•A6 VCC l-

A7 GND

RAS' CAS' WE'
T T T

4164

*'

u9

"'1SI
-1DO QO ~

D1 Q1 ~
D2 Q2

-1D3 Q3 ~

CK1 CK2 LD
I I I

'95

Zurich

u2
75189

1YO'

1Y1'

AO 1-
CO l­
A1 l­
C1
A2
C2
A3 l­
C3 I-

75189

u6

AO DI~
A1 DO~
A2
A3. SI 1-
A4 so I-

• AS SOE' 1-
• A6 SCK 1-
• A7 T/OE' ~

VCC
GND I-

RAS' CAS' WE'
I I I

4161

*}

u10

SI
·DO

01
D2

- D3
- D4
- DS
1D6
1D7
- D8
- 09
1010
1 D11
1012
1013
- D14
- D1S so I-

CS' CK LO
I I T

'676

mac8a

u3...----.
Oscillator

CLK I-

-1NC

Oscillator

ul

"'AO DI~
"'A1 DO~
"'A2
• A3
"'A4
•AS

A6
A7 VCC
A8 GNO

RAS' CAS' WE' -.

41256

*®

u11

Cl'I-
-1 BO HOI-
1 B1 H1 I-
1 B2 H21-
1 B3 H31-
1 B4 H41-
18S HSI-
1 B6 H61-
187 H71-

CO'I-
1U'/D

CK LD' OE'
I I T

u/d counter

Author: H.Eberle

*" r
u4

TL7705

1 Vref SENSE 1-

-1 RSTI' RSTO

-1 Ct RSTO'

TL7705

u8

1AO
"'A1
"'A2
"'A3
·A4 QOl-
"'A5 Q1 l-

A6 Q21-
A7 Q3
A8 Q4

• A9 QS~
1A10 Q61-
1A11 Q71-
1A12
1A13/NC
1A14/PGM'
1 A1S/VPP

cs· OE'
I

eprom
27641128/256

Date: 20.6.85

..

)

)

*+

u1

1 DO YO I-
, D1 Y1 I-
, D2 Y2 I-
, D3 Y3 I-
, D4 Y4 t-
, DS YS t-
, D6 Y6 t-
, D7 Y7 I-

GO' G1'
T T

'540 '541

**

u5

1AO BO 1-
1A1 B1 t-
1A2 B2 t-
o;A3 B3 1-
1A4 B4 t-
1A5 BS 1-
1A6 B6 t-
1A7 B7 t-

1 CLR' BP 1-
1 CLK ERR' 1-

OIT OER'
T

Am29833

u9

1 CEP'
"'CIT

PE'
1MR'
1 SR'
1 U/D'

1001-
1011-
1021-
1031-
1041-
IOSI-
1061-

"'VCC 1071-
GND CO'l-

CK cs· OE'
I I -1

'579

Zurich

*r

u2

1AO BO I-
1 A1 B1 I-
, A2 B2 I-
1 A3 B3 I-
, A4 B4 I-
1 AS BS I-
1 A6 B6 I-
1 A7 B7 I-

DIR G'
T T

'645

*I

u6

Z8S30

, D7 TxDA I-
, D6 RxDA

DS TRxCA'
D4 RTxCA' I-

, D3 SYNCA' I-
, D2 WREQA' I-
, D1 DTRA'
1 DO RTSA'

CTSA'
cs· DCDA'
RD'

1WR'
1A/B' TxDB I-
1 DIC' RxDB I-
"'INr TRxCB' I-

INTA' RTxCB' t-
"'IEI SYNCB' t-
"'IEO WREQB' I-
"'PCLK DTRB' I-

RTSB' I-
.. vcc CTSB' I-
.. GND DCDB' 1-

zs530 sec

u10

1CIT 100
101

so 102
, S1 103

104
IOS
106

1VCC 107
1GND CO'

CK OE'
I I

'779

mac9a

*-

u3

1 DO QOI-
, D1 Q1 I-
, D2 Q21-
, D3 Q31-
, D4 Q41-
, DS QSI-
, D6 Q61-
, D7 Q71-

G OE'
I I

'573

*4

ul

SC2661

1AO TxD I-
"'A1 RTS' I-

DTR' t-
DO

"'I D1 RxD I-
, D2 CTS' I-
, D3 DCD'I-
, D4 DSR' 1-
, DS

D6
o;D] TxRDY' t-

RxRDY' I-
1R'/W TxEMr I-
"'CE'

RESET
BRCLK I-

"'Vee TxC' 1-
"'GND RxC' I-

SC2661

u11

1A
1B
1C
"'D

E
1F
1G
"'H RCO't-

"'RCLK
"'CLOAD'

CLK CLR' EN'
-1 I I

'592

Author: H.Eberle

*·

u4

.; DO QO
"'D1 Q1 I-
"'D2 Q21-
.. D3 Q31-
.. D4 Q41-
"'DS QSI-
"'D6 Q61-
"'D7 Q71-

CK OC'
I I

'574

Date: 6.11.87

*s *T *u

u1 u2 u3

NS32332 CPU NS323S2MMU NS323S1 FPU

"'BRT' AD31 I- "'AD31 PA31 I- "'SPC' AD31 I-
"'BER' AD30 I- "'AD30 PA30 I- .. ST3 AD30
"'BOUT' AD29 I- "AD29 PA29 I- ST2 AD29
"'BIN' AD2S I- "'AD2S PA2S I- ST1 AD2S I-
"'BW1 AD27 I- "'AD27 PA27 I- STO AD27 I-
"'BWO AD26 I- "'AD26 PA26 I- DONE332' AD261-
"'INT' AD25 I- "'AD2S PA25 I- DONES32' AD2S
"NMI' AD241- "'AD24 PA24 I- "'TRAPS32' AD241-
"'BB' AD23 I- "'AD23 PA23 I- .. NOE' AD23 I-
-i BE2' AD221- "'AD22 PA22 I- "'PS1 AD22 I-
-i BE1' AD21 I- "'AD21 PA21 I- -i PSO AD21 I-
-i BEO' AD20 I- "'AD20 PA20 I- "'TE AD20 I-
"'ILO' AD19 I- "'AD19 PA19 I- "'DDIN' AD19 I-
"'PFS' AD1S I- "AD18 PA1S I- "'RST' AD1S I-
"'U/S' AD17 I- ""AD17 PA17 I- .. CU< AD17 I-

SPC' AD16 "'AD16 PA16 I- AD16 I-
-!STS' AD1S I- "'AD1S PA1S I- AD1S I-

ST3 AD141- AD14 PA14 I- AD14 I-
ST2 AD13 AD13 PA13 I- AD13 I-

)
ST1 AD12 AD12 PA12 I- AD12 I-
STO AD11 AD11 PA11 I- AD11 I-
SDONE' AD10 AD10 PA10 I- AD10 I-

-i FLT' AD91- AD9 PA9 AD91-
-IMC' ADSI- "'ADS PAS ADS I-
-iDDIN' AD? I- "'AD7 PA? I- AD71-
-iADS' AD6 I- "'AD6 PA6 I- AD61-
"'HLDA' ADS I- "'ADS PAS I- ADSI-
"'HOLD' AD4 "'AD4 PA4 I- AD41-
-I RSr/ABT' AD3 I- _,AD3 PA3 I- AD3 I-
-IRDY AD21- -iAD2 PA2 I- -ivcc AD21-
_, PHl2 AD1 I- "'AD1 PA1 I- GNDL AD1 I-
-i PHl1 ADOI- "'ADO PAO I- -iGNDB ADOI-

VCCL "'BRT' CINHI-
VCCB BER' MILO'I-
BBG "'U/S' SDONE' I-
GNDL SPC' FLT' I-
GNDB ST3 DDIN'I-

ST2 PAV' I-
ST1 MADS' I-

"'STO HLDAO' I-
"ADS' ABT' I-
"'HLDAI'
•HOLD'
.. RSTI'
"'RDY BBG 1-
.. PHl2 VCCt-

"'PHl1 GND1-

) 32332 CPU 32382 MMU 32381 FPU

..

Zurich mac10a Author: H.Eberle Date: 6.11.87

14018 Application Programs

'
.. # $ % & I () •

Q .L l
0 -u- c:::I

~ _,,.,,. -0 -<==>- T T c::::>

+ I - I I < = > ?

) A ?'{(~

* !/]! J. .. T .. %~~ • y ~ ~

\

01t %-

0 1 2 3 --

D D) C>

4 5
)

6 7

D- D) C>
& f::i - A b

- Q .:q-_

E T H

E T H

ETH Zurich SYMBOL32 Author: N.Wirth Date: 4.5.82.

I

\,

)

)

14016 Application Programs

Mouse

Menu

exit
mac1
macO
get
put
font
width
grid

Keyboard

draw
menu

select

_....
...

c
_

Helvetica20S
Helvetica121
Helvetica16
Helvetica12

Symbol32
Helvetica81
Helveticaa
Helvetica12

Text input; tenninate with RETURN; DEL for corrections
Special commands:

ESC delete
- DEL delete

LINEFEED restore
<cntl>t ticks on/off
<cntt>u Umlaut on/off
<cntl>n upper/lower part

Special characters in HEL VETICA20S:

$ % & \

?'f,%
~;;~ ~ 11111111 {Ir

ETH Zurich File: Summary.SIL Author:

-·

4
3
2 _....
1 -.-

8 -- 4
2
1

{} D <>+I

N.Wirth

move
copy

select

@·

a o

Date:

I

\

1.2.83

'-....../
, ~

. :": '-..._./ ~.

Decimal Odal Hex ASCII Decimal Odal Hex ASCII Decimal Odal Hex ASCII Decimal Odal Hex ASCU

0 000 00 NUL 32 040 20 SPX 64 100 40 @ 96 140 60
1 001 01 SOH 33 041 21 I 65 101 41 A 97 141 61 a
2 002 02 STX 34 042 22 .. 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 # 67 103 43 c 99 143 63 c
4 004 04 EOT 36 044 24 $ 68 104 44 0 100 144 64 d
5 005 05 ENO 37 045 25 O/o 69 105 45 E· 101 145 65 8

6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 ' 71 107 47 G· 103 147 67 g
8 010 08 BS 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29) 73 111 49 I 105 151 69 i
10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A j
11 013 OB VT 43 053 2B + 75 113 4B K 107 153 68 k
12 014 oc FF 44 054 2C • 76 114 4C L 108 154 6C I
13 015 OD CR 45 055 2D - n 115 40 M 109 155 60 m
14 016 OE so 46 056 2E . 78 116 4E N 110 156 6E n
15 017 OF SI 47 057 2F I 79 117 4F 0 111 157 6F 0

16 020 10 OLE 48 060 30 0 80 120 50 p 112 160 70 p
17 021 11 DC1 49 061 31 . 1 81 121 51 a 113 161 71 q
18 022 12 DC2 50 062 32 ·2 82 122 52 R 114 162 72 r
19 023 13 DC3 51 063 33 3 83 123 53 .S 115 163 73 s
20 024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NAK 53 065 35 5 85 125 55 u 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 v 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 w 119 167 n w
24 030 18 ·CAN . 56 070 38 . 8. ··es . 130 58 x 120 170 .78 x
25 031 19 EM 57 071 39 9 89 131 59 y 121 171 79 y
26 032 1A SUB 58 072 3A . 90 132 5A ~ 122 172 7A z .
27 033 1B ESC -~59. 073 3B . 91 133 5B [~ 123 173 78 { ~ •
28- 034 1C FS 60 074 3C < 92 134 5C \ '6 124 174 7C I ~
29 035 1D GS 61 075 30 - 93 135 50] u 125 175 70 } \'l

30 036 1E RS 62 076 3E > 94 136 5E A 126 176 7E -~
31 037 1F us 63 077 3F ? 95 137 SF - 127 1n 7F DEL

l frx+ <£re>
Ct ~t (..t?f"C)

,5 -k<-C L Fs-c)

f7 ~-! <€SC;:>

)
:r ~a-eue-

~.,

%~
~j;)

~~

:

~J

~ ~,-~ekst:h~~

~~~~ ~ ~ r-/~ 

u..t.., "',£ ~~k.rJ,.-e,• k ... 

~~ 

~~~ 
fr,,l.rftlHk!.. uexf n da--f . ~ &x~

~,:,/'~d' ~r ~d' ~ /,,~

n?h~ pa ~~) ~~ /~ffe'r Rlf ev;:rlf';-~J

,£~,e.. (... .l'Nr L; /~/-.r/ n s~6~ ~;. /'n n n~..s
~~(~ ~Kz: W'P>-«

::Jt~ e;2;;/ .lr.,:I~
~M --1"'d.:arr- ~pr .>..6V' ~ fi'.r,,.?f,;~ ... ~4'~

: un«c; {it..rl-- r ~ ~~

