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Porting Medos-2 onto the Ceres Workstation
Frank Peschel, Matthias Wille

Abstract

Medos-2 is a single-user operating system that is entirely written in the language
Modula-2. It has been developed for the Lilith workstation at the Institut fir Informatik, of
ETH Ziirich. Ceres is a personal workstation based on the 32-bit microprocessor N532000.

This paper describes the tools for the cross-development of Modula-2 software as well as
the actual porting of Medos-2.
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1. Introduction

This paper describes the software part of the Ceres-Project which has been launched at the
Swiss Federal Institute of Technology (ETH) in 1984. Ceres stands for Computing Engine for
Research, Engineering and Science.

The project started in spring 1984 when the concept of a new personal workstation has been -
proposed by N. Wirth and H. Eberle. The goal was the development of a simple and yet
powerful workstation, cheap enough to be sold as a kit to each student at the computer
science department. The concept was not based on a proprietary processor as the Lilith
[Wirg1] but on a standard microprocessor. Note, that the Lilith is a microprogrammed
implementation of a stack machine based on the AMD2900 bit-slice family. The choice of
the processor for Ceres was influenced by the need of an architecture which is well suited for
the compilation of high-level languages namely the language Modula-2. For this reason the
NS32000 family of microprocessors was chosen. With respect to the support of high-level
languages it has the best instruction set among the available processors [Wir86]. After
building the first prototype with the NS32016 processor the idea of the student machine has
been buried due to the high costs compared to competitors in the 16-bit market. The new
aim was now the development of a true 32-bit machine using the software compatible
NS32032 processor. This machine should be a follower of the Lilith. The goal has been
reached in summer 1986 when the first 5 Ceres workstations have been operational. A
complete description of the Ceres hardware design is given in [Ebe87].

The work presented herein concerns the operating system that has been created for Ceres.
The software project started in summer 1984 and comprised the tools for the cross
development as well as the actual porting of the Lilith operating system Medos-2 [Knu83].
The paper is divided into four parts and an appendix. First we present some theory about
portability. The second part describes the tools for the cross development of Modula-:
programs. The third part gives a detailed description of the Medos-2 implementation anc
some performance measurements. The last part contains some concluding remarks about
the porting of Medos-2.




2. About Porting

2.1. Software Portability

As Tanenbaum stated in [Tan84], since the building of the second computer it has been a
matter of research to write a program that runs on more than one machine without being
rewritten. Thus the portability of programs is a major goal of software design. The need for
portability is still due to the variety of machines and machine architectures used today and
the need for standardized software packages. Although is has been a research topic for lots
of years we would like to sketch a few ideas about portability.

Why should programs be portable? As the costs of hardware have dramatically declined in
the last years, it turned out that the software is the most critical part in a computer system,
The value of a new system heavily depends on the programs that are provided. Another
reason for programs to be portable are the high costs and error prone rewriting. While in the
first days of computer programming each tool was in some sense unique, because it was
written for a special machine, the evolution of the high-level languages opened the doors
towards portability. Starting with FORTRAN in 1956 dozends of high-level languages have
been created to aid the development of portable software.

Because of the growing complexity of systems and software the need of reusable program
parts, so called libraries emerged. Programs and interfaces should be available not on just
one machine. Totally different machines should run the same programs and thus make them
easier to use because of known user interfaces. Even whole operating systems, like Unix have
been made portable.

2.2, Steps during Porting

This section describes not only the steps necessary to port a program but shows how a
language, in our case Modula-2, can be made available on a new hardware. First we
introduce some terminology. Porting involves two computers. The computer for which a
program was originally written, is called the host machine or host. The computer onto which
the program is to be transferred is referred to as the target machine or target. To illustrate the
porting steps we use the common method of T-diagrams [Ear70] as shown in Figure 2.1.
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Figure 2.1 Basic T-Diagrams

The diagram 2.1a denotes a certain program P that is written in language M and thus
executable on machine M. The program transforms an input / into an output O. A special
case of such a program is a compiler, which is shown in 2.1b. It is itself written in language
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M and translates a program written in L7 into a program written in (2. The figure 2.1c
denotes an interpreter running on a machine M’ interpreting instructions of a machine M.

2.2.1. Making the Language Available

The first step is to make the implementation language available for the new hardware. There
are different methods to achieve this goal. The first method uses a compiler that is already
present on the host machine. On the target machine an interpreter is needed for the code
produced by the compiler. This interpreter is mostly written in the machine language of the
target machine. Note, that for most microprocessors there exists at least an assembler. The
compiled program is loaded together with the interpreter into the target machine and then
executed by simulating each host instruction. Figure 22 expresses this method using
T-diagrams. The host is the Lilith (Li) while the target machine is the NS32000 processor
(NS). The language to be implemented is Modula-2 (M2).
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Figure 2.2 Language Interpretation

Obviously efficiency is bad compared to native code but this is the fastest way to get
programs running on a new target machine, especially when the host code model is rather
simple, like the Pascal P-code or Lilith's M-code. However, this method has a major
drawback, because the advantages of a better hardware and a comfortable instruction set

cannot be exploited when there are significant differences between the host and target
architectures.
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Figure 2.3 Native Code Generation

The second method needs a change of the compiler's backend to produce code for the target
machine. The compiler may produce either assembly code or binary code (Figure 2.3).
Although the first alternative needs one more step and assumes the availability of an
assembler it supports much better the task of debugging the generated code. However, the
same can be achieved by having a decoder for the target machine’s native language.

In our project we followed the second method. The backend of the one-pass compiler for
the Lilith has been changed to produce NS binary code instead of M-code.
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2.2.2. Making the Program Portable

Assuming that code can be produced, another not less importiimt step is to make the
program portable. Of course one may say that the use of a hlgf-u—level language alone
guarantees this quality of a program, but most language implementations have some hidden
pitfalls. The more a program is adapted to its original host machine, the more pits may open
up. Although the problem of the hardware dependencies like wordlength, byte order and
arithmetic etc. exists with most programs, the level of abstraction in a system is a measure
for the degree of these dependencies. While a program doing simple 1/0 and arithmetics is
easy to transfer the porting of an operating system seems to be a harder task. Hence an
operating system makes heavy use of the specific resources and facilities of the host machine
to execute its tasks as efficient as possible. A commented list of the problems mentioned
above as well as guidelines to achieve portable programs can be found in [Tan83].

Modula-2 itself has some constructs which allow to make assumptions about the
underlying hardware. The following list sketches some of them:

- all type transfers and especially the relations of the standard types to SYSTEM types like
BYTE, WORD and ADDRESS

- BITSET and the assumptions about the exact location of the highest and lowest bit, when
interpreting a BITSET as an integer value

- variant records, especially untagged variants, where assumptions are made about the
memory allocation of the record fields

- the order of bits and bytes in memory, especially in type transfers
- value ranges and object sizes

- possible inline instructions within the code, e.g. code procedures on Lilith

One can say that the above step can be omitted or at least minimized, when software is
designed from the first step with porting in mind. This is unfortunately not true for an
operating system, because it is itself a basis for further implementations and is expected to
be as efficient as possible. However, the dependencies can be isolated in the lowest levels of
the operating system and are thus easier to exchange for a new target machine.

Concerning higher level programs written in Modula-2 a lot of effort has been invested in
creating a library standard [Mod85, Hei86]. Today no such standard is widely accepted,
because there is no agreement about the features to incorporate.
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3. The Medos-2 Bootstrap

This chapter describes the bootstrap of the Medos-2 operating system onto the Ceres
workstation as a an exercise in porting a large program. The first section gives a rough
specification of the Ceres. The second section describes the tools needed for the bootstrap,
while the last gives a historical overview over the project.

3.1. Target Machine

3.1.1. The NS32000 Processor

The heart of Ceres is a NS32000 series CPU manufactured by National Semiconductor. The
main advantage against its commercial competitors is its architecture and the corresponding
instruction set [NSC83]. It has some properties that are heavily used by programs defined in
a high-level language [Wirg61. In addition to the usual registers like program counter (PC),
condition code register, general purpose registers, and stack pointers (SP) it incorporates
base registers for global data (static base, SB) and for local data (frame pointer, FP). The
latter is used in procedural languages to address local variables and parameters.

In most systems separate compilation of modules, which is an integral property of
Modula-2, leads to a separate linking phase prior to program loading. This is not true for the
NS32000 processor, because it supports the separation of programs into modules. Each
module has its own environment defined by a module descriptor. It contains the base
addresses of data, code and link information of the corresponding module. The address of
the current module's descriptor is stored in the processor's module register (MOD).

AL
Module Desc
old MOD SB !
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Figure 3.1 Call of an External Procedure (CXP)

The binding between modules is done at load-time by using the link tables, which are
constructed by the loader. Therefore there is no need for fix-ups inside the code segment.
This mechanism of accessing external objects is used for variable access as well as for
procedure calls across module boundaries. The instructions for calling external procedures
and return form external call provide this mechanism including reloading of the involved CPU



registers (MOD, SB). Figure 3.1 shows the memory locations and registers involved in an
external procedure call.

In general the processor offers an orthogonal architecture with respect to the instructions
and the addressing modes. Two addressing modes are especially well suited for high-level
language programs: the indexed and the so-called memory relative addressing mode. The
former is used for array access, the latter has two displacements and is especially useful to
access record fields via pointers.

3.1.2. The Ceres Workstation

This paragraph introduces the Ceres workstation. It only sketches some of its highlights to
give the reader a notion of its internal structure. A detailed technical description of Ceres is

given in [Ebe87].

Ceres is a single-user workstation. It incorporates a 32 bit CPU (NS32032), primary and
secondary memory, user-1/0 devices and some communication devices. One of the design
goals of the Ceres hardware was its extensibility. Therefore Ceres is a bus-system with a
motherboard. Six slots are available, the basic system occupies three of them.

The NS32032 chip is the main processor of Ceres. It is accompanied by the Floating-Point
coprocessor and the Memory-Management Unit (which is not used by Medos). The
address range of the processor is 16MByte. The system operates at a clock rate of 10MHz.

The main memory consists of up to 256 kByte ROM, at least 2 MByte dynamic RAM and
256 kByte VRAM. The latter is used as refresh memory for the raster scan display. The boot
loader and some hardware diagnostic programs are stored in the ROM. Secondary storage
consists of a 40MByte (formatted) 525" winchester disk drive and a 3.5" floppy-disk drive
(1 MByte unformatted).

The user-1/0 devices are a keyboard, a mouse as pointing device and a high resolution raster
scan display. The display has a resolution of 800 lines and 1024 dots per line (landscape
format) and a refresh rate of 62 frames per second. This leads to a flicker-free screen. There
is no hardware support for the bitmap operations, everything is done by the main processor.

For communication purposes Ceres has one RS-232-C and two RS-485 serial ports. The
latter provides a transmission speed of up to 234 kbit/s. They can be used to implement a
low cost network.
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3.2. Development Tools for the Bootsirap

3.2.1. Overview

The components of the Ceres Cross Development System, i.e. the tools that are needed to
produce programs on the Lilith which are then executed and tested on the Ceres are shown
in Figure 3.1. Each box in the figure represents a tool, the arrows indicate the flow of
information. The labels show the types of files exchanged between the tools.

Lilith Ceres
SMB
DEF l RFN DEC I
® Modula-2 Objectfile >
MOD H OBN
VOB Compiler » Decoder |
SMB I
MAP
l Absolute [ |
OBN Li ABS
» Linker >
Asm [ NS32032 NS Server | CBUG
Assembler| RE : . ' Monitor
Note:  ASM - Assembler Source OBN - Object File ABS - Absolute File
DEF - Definition Module SMB - Symbol File DEC - Decoded Object File
MOD - Implementation Module RFN - Reference File MAP - Loader Map

Figure 3.2 Ceres Cross Development System

The software for Ceres may be written in either assembly language or in Modula-2. While
the latter is the major implementation language the former is needed to implement time
critical program parts as well as program parts that need special instructions not supported
in Modula-2. The compiler and the assembler generate a common object file format, that
allows the linkage of Modula-2 and assembly objects. Linkage is done on the host system
using an absolute linker that reads all objects files belonging to the program, resolves the
external references, and creates a binary load image, the so-called absolute file. The binary
load image is then loaded into the Ceres memory using the Lilith host server and the Ceres
ROM monitor. After loading the program it can be started using the ROM monitor with the
Lilith functioning as its terminal.

The following paragraphs give more detailed information about the particular tools
mentioned above. The description follows the figure from right to left and bottom-up.

3.2.2. The Ceres ROM Monitor

The Ceres ROM monitor is called CBUG which is an acronym for Ceres deBUG. It is both a
versatile program loader and a low-level debugging tool for the development of programs
on the Ceres workstation. Of course the test facilities are restricted to the testing of low-level
software like the kernel and device drivers in an operating system. Once the higher-levels are
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established CBUG stands in the background leaving the work to more sophisticated
debugging tools.

0 I 0 [CBUG module des¢
i Module table 10
1 Module table
1000
i« CBUG data 1 1000
_—— i Interrupt vectors:
2000 '
Program E 1100
Code and Data X 1 CBUG variables 1
] § |
]
Stack | 1500 e
? ' . Supervisor stack
200000 :
1 unused ) ' 15FF ?
1600 CBUG
1 ] Userstack
E00000 ' 16FF
1 Video-Memory 1 E
£40000 X i reserved ‘
]
' unused ) v JEFF
Fg0000 CBUG code :
' (ROM) !
FC0000
' Devices !

Figure 3.3 CBUG memory layout

CBUG can be seen as a quite simple operating system. It provides a small and
comprehensive set of commands that allow testing of both assembler and Modula-2
programs. It contains rudimentary device drivers for the keyboard, the external RS-232-C
interface, a general purpose parallel interface and the disk. The latter is used by the monitor
exclusively, while the other devices are accessible to user programs through a small set of
routines. Note that the parallel interface was implemented in the Ceres prototypes >nly.

The memory may be inspected as a sequence of bytes, words or doublewords. CBUG allows
to access all processor registers as well as those of the coprocessors, namely Floating-Point
Unit (FPU) and Memory Management Unit (MMU).

Programs can be downloaded either from the serial or the parallel interface in a special
format that is produced by the absolute linker. Additionally, programs may be written as
bootfiles onto the winchester disk or a 3.5" floppy disk. When a program traps or an
interrupt occurs control is transferred to CBUG. After having inspected and/or changed the
registers and/or memory a program may be resumed.
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The monitor assumes a memory layout that is shown in Figure 3.3. CBUG allows for max.
127 modules whose descriptors are located in the module table. Each loaded module has a
certain layout that is described in more detail in the paragraph about the absolute linker. The
module table contains the module descriptors as described in 3.1.

The private data of CBUG contain variables of the monitor, the interrupt vectors [NSC83]
and two stacks, one for the user mode and one for the supervisor mode. The actual program
starts at address 2000H. The stack for the user program grows downwards and begins
therefore at the highest physical address.

The 170 routines of CBUG mentioned above are callable using the CXPD instruction with
ROM based procedure descriptors. They provide a functionality similar to those of the
module Terminal in Medos-2. The routines are callable only from assembler programs
because they do not have the same entry/exit conditions as Modula-2 procedures. A list of

the routines together with the specification of their entry/exit conditions can be found in
[wilge].

3.2.3. The Host Server

An important companion of the ROM monitor is the host server program. It is
subsequently called NServer. During the development of the Ceres hardware this program
has provided several different services. Among them are

- terminal for CBUG
- program loader
- device simulation

The first and most important service has been that of a terminal to communicate with CBUG.
Note, that a first version of Medos-2 used this terminal as its output medium due to the
lack of a screen. A service of no less importance is the loading of programs. Based on a
simple protocol NServer transfers programs from the Lilith's disk to Ceres using the fast
parallel link or the slower RS-232-C. Programs are either transferred directly into Ceres’
memory or written onto the bootfile on hard disk or floppy disk.

The development of the Ceres hardware has been done stepwice starting with the
CPU-board. Due to this fact some devices had not been operational when they were needed,
e.g. the disk and the display. For these cases the NServer provided the Lilith devices to Ceres
using the two communication interfaces. Generally, the RS-232-C has been used for sending
control information while the higher bandwidth of the parallel interface has been used for
the bulk of data transfers.

An interesting example for the device simulation has been the display. All graphical
operations on Ceres are done by the CPU in a memory mapped bitmap. To test the raster
operations the bitmap was simply placed into the already available RAM. After performing a
screen operation the test program sent the whole bitmap to the NServer where it was
prepared and displayed in a dedicated window on the Lilith screen.
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3.2.4. The Ceres Assembler

The Ceres Assembler was first designed to produce relocatable code sequences [Wan8g5].
This was needed for writing the first short test programs and, above all, the CBUG
ROM-Monitor. The assembler implements the complete instruction set (excluding the
custom slave instructions) and all addressing modes.

In contrast to Lilith, Ceres has no special instructions for process switching and bitmap
operations. On Ceres, this has to be done in software. Although Modula-2 is a
system-implementation language, these operations should or even must be written in
assembly language. The coroutine management operations as well as the interrupt/trap
handler part need certain processor-specific instructions that cannot be generated by the
Modula-2 compiler.

Therefore, we had to solve the integration of assembler-written code into the Modula-2
world. We have not done this by introducing special code procedures consisting of a
sequence of numerical constants (as on Lilith), or by introducing an INLINE procedure
exported by the pseudo-module SYSTEM (as in the MC68000 compiler). We decided to
extend the assembler in such a way that an implementation module can be defined in
assembler code. This preserves the distinction between interface description and realization
of a module. Assembler modules have an ordinary interface description (definition module
as well as symbol file). Therefore our integration of assembler programs maintains type
checking of Modula-2. Furthermore the programmer is forced to separate this low-level
programming from the Modula-2 code.

3y introducing new pseudo-ops the assembler supports the programmer to write such
nodules. An assembler module starts with a Modula-2 module header. If it is an
implementation module the assembler reads the corresponding symbol file and inserts all
declared objects in the local symbol table. Therefore the names of these objects can be used
in the assembler program. A code sequence representing an exported procedure is labelled
by its procedure name. Additionally the programmer can define an import list. This is mainly
used for data definitions of imported objects. Record fields can be used as offsets to base
addresses. Due to the lack of a WITH-statement all record fields are known in qualified
mode only.

The pseudo-ops INIT and ENDINIT denote the entry and exit point of the initialization part
of an assembler module. The assembler produces the same entry/exit code as the Modula-2
compiler. STATBEG and STATEND are the brackets for the variable declarations. All
data-objects defined inside that section are referenced via the SB-register.

For more infomation about the assembler the reader is referred to [Pes87].

Nevertheless, our intention was not to introduce "seperate compilation of assembler
programs". Assembler modules should only be used if it is impossible to express the
program in Modula-2 or if there are genuine performance reasons.

A
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3.2.5. The Modula-2 Cross Compiler

The Modula-2 Cross compiler is a member of the single-pass compiler family introduced in
1985 [Wir85]. A comparison with the compiler for Lilith and for the MC68000 .is done in

[Wirg86]. For this reason the description is restricted to particular features of the NS
compiler.

Due to the nature of a single-pass compiler an object has to be defined textually before it is
referenced. In most cases this rule poses no problems. Only in the case of cydlic recursive
procedures this rule cannot be satisfied. Therefore a forward declaration of procedures is
introduced. This is done by simply appending the keyword FORWARD to a complete
procedure header.

Modula on Ceres also offers a code procedure declaration. In contrast to Lilith-Modula,
however, it is used in definition modules only and serves to introduce procedures
implemented by supervisor calls. The format is

PROCEDURE P(parameter list) CODE n;

The code number n specifies the identification inserted as a byte after the SVC instruction.
Evidently, such definitions are provided with the operating system used.

Module Desc

SB < MOD
LB 1 variables
PB : '
nused ST
flags
: constants :

‘ l" | program |_ PC
| Link Table | ) code _Pc |
L —

. work

| P

Figure 3.4 Runtime Allocation of a Module

Ceres uses byte addressing. However, data are transferred to and from memory in 32-bit
words. The compiler aligns data such that the number of memory accesses is minimized.
Each type T has an alignment factor k. Variables of type T are aligned by the compiler to
lie at an address a, such that a MOD k = 0.
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Each Modula-2 module is represented in one module in the sense of the NS architecture as
shown in Figure 3.4. The module's variables and constants are accessed via the SB-register.
The FP register is the base address for local variables.

The compiler generates an object code file with the following syntax:

Module = HeaderBlock ImportBlock EntryBlock LinkBlock
{CodeBlock | DataBlock | AlignBlock}.

MODULE BlockSize VersionNumber Flags

LinkSize VarSize ConstSize CodeSize ModuleName.

HeaderBlock

ImportBlock = IMPORT BlockSize Noflmports {ModuleName}.

EntryBlock = ENTRY BlockSize {EntryAddress}.
(%BlockSize/2 = no. of entriesx)

LinkBlock = LINK BlockSize {ModuleNumber ProcNumber}.
(»BlockSize/2 = no. of linksx)

CodeBlock = CODE BlockSize Offset {Byte}.

DataBlock = DATA BlockSize Offset {Byte}.

AlignBlock = ALIGN BlockSize {Byte}.

BlockSize = Word.

VersionNumber= Word.

Flags = Word.

ModuleName = ModuleKey Moduleldentifier.
Moduleldentifier=String.
ModuleKey = Word Word Word.

VarSize = Word.
ConstSize = Word.
CodeSize = Word.
LinkSize = Word.
Nofimports = Word.

EntryAddress = Word.
ModuleNumber= Byte.

ProcNumber = Byte.
Offset = DoubleWword.
MODULE = 81H.
IMPORT = 82H.
ENTRY = 83H.
LINK = 84H.
CODE = 85H.
DATA = 86H.
ALIGN = 87H.

BlockSize, VarSize, ConstSize, CodeSize, LinkSize, and Offset are numbers of bytes. The BlockSize
does not include itself, nor its preceding specifier. The first character of a string indicates the
length of the string (including itself).

The fixup frame of the Lilith version is replaced by two new blocks: the entry block and the
link block. The former contains the list of entry addresses of the module's exported
procedures, and the link block establishes the link table. Each pair <module number,
procedure number> is translated into the corresponding MOD / PC pair, where the PC value
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is taken from the entry block of the referenced module. The "procedure number” 255 is an
exception: the link table entry is loaded with the referenced module’s data address (SB).

The size of the data area is the sum of VarSize and ConstSize; the area for constants follows
that of the variables, and the SB register points to the beginning of the constant area, and
thereby also to the end of the variable area. The loader places the link table address into the
first 4 bytes of the constant area. Bit 0 of byte 4 is used as an initialization flag and is
cleared by the loader. Bytes 4 - 7 are reserved for the system. The link table, the data area,
the workspace, and the code are allocated at addresses which are multiples of 4. The lengths
of the data and code segments are multiples of 4, and they are properly aligned in the file. A
program is activated by a call to procedure 0 of its main module.

3.2.6. The Ceres Absolute Linker

The object files generated by the Modula-2 compiler and the assembler are not yet
executable. Even a standalone module must first be brought into a form that allows the
processor to load and execute it. The tool that is used to make an executable core image out
of one or several object files is called the absolute linker. As input it takes the object files of
all the modules that belong to a program and binds them. It resolves the external references
and computes exact locations for code and data of each module. The generated output is an
absolute core image of the program, i.e. merely a one-to-one image of the program in
memory. Furthermore, the absolute linker optionally generates a load map containing the
sizes and addresses of all loaded modules and an import reference dictionary. In the
following paragraphs we give a rough description of the linker's data structures and sketch
the algorithm used to link a program.

The data maintained by the absolute linker is contained in two global tables called the
module table and the import table. Internally modules are identified by a number, the
so-called module number, which is the index of an entry within the module table. Basically,
an entry in the module table contains a module name and key and some other information,
depending on the module's current state, i.e. loaded or to-be-loaded. A module with state
to-be-loaded has a list with the numbers of all referencing, i.e. importing modules, such that
forward calls may be fixed. A loaded module's entry contains the exact, i.e. absolute,
addresses of code and data as well as a link table and an entry table. The latter two tables
contain the module's external link information and the entry offsets of the exported
procedures. The information in these tables is created from the corresponding blocks in the
object file. For a description of the object file format we refer to the previous section. The
import table always contains the numbers of those modules that are imported but not yet
loaded. It is filled from the import block in the object file. At the end of the linkage process
the import table is empty.

The algorithm to link a module is straight-forward. It reflects the structure of the object file,
i.e. it reads all blocks sequentially, filling its tables with the appropriate information. In the
following we give a skeleton of the linking algorithm.
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PROCEDURE LoadObjectFile(VAR mnr: ModuleNumber);

BEGIN
ModuleHeader(mnr); Imports(mnr);
EntryTable(mnr); :
AddressComputation(mnr);
SatisfyReferences(mnr);
LinkTable(mnr);
CodeHeader(mnr); DataHeader(mnr);
WHILE ~ eof DO
IF codeBlock THEN Code(mnr)
ELSIF dataBlock THEN Data(mnr)
END
END
END LoadObjectFile;

ModuleHeader reads the information contained in the header block and creates a new entry
in the module list if necessary, returning its number in the parameter mnr. Imports reads
module names and keys in the import block. Each imported module is searched first in the
import list and second among the already loaded modules. When a module is not found, a
new module entry is created and its number is inserted into the import table. During
separate compilation, each imported module gets a local module number. Imports
establishes the mapping from local to global numbers. EntryTable reads the entry block and
creates a table that is attached to the module table entry. AddressComputation determines
the location of a module's code and data and prepares the module descriptor.
SatisfyReferences follows the list of references attached to the module list entry and fixes the
link tables of the contained modules. LinkTable reads the link block of the object file and
expands it to form a link table as defined in 3.1. All entries referring to already loaded
modules are fixed. CodeHeader and DataHeader produce the module environment desc and
linker tables as well as the header of the data frame (see Figure 3.5). Code and Data copy the
contents of the corresponding blocks directly to the core image file. No modification of the
code is necessary because all information for accessing external procedures and variables is
contained in the link tables.

During linkage a file is created, the so-called ABS-file. The ABS-file contains a compressed
form of the core image. In fact, it is a sequence of blocks containing a 32-bit absolute
address, a 16-bit byte count and the actual data to be loaded at the prespecified address.
The last block in the file has a byte count of zero. This format has two advantages. On the
one hand it allows an efficient storage of the core image, because the uninitialized data must
not be part of the ABS-file. On the other hand it enables the linker to write the ABS-file
strictly sequentially, because the output of yet incomplete information like the linktables
may be delayed. :

The absolute linker generates a special memory layout for a loaded module that is described
below. Generally a loaded module consists of two memory frames as in the Lilith
implementation, namely a code frame and a data frame. Whereas the code frame contains a
module's code and linker information, the data frame consists of both initialized and

. &2
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uninitialized data, i.e. variables and string constants. The structure of the two frames is
shown in Figure 3.5.

Module Code Frame Data Frame
Descriptor
SB —-————-—l codesize datasize
LB DB ————-I
PB EB variables
unused NB
] program ] [} ]
i+ code ) ‘
Lyl module LB
key flags
module
' name | X .
> entryl entry constants
SB - static base ' \
LB - link base > ink
PB - program base
DB - data base ' 1
EB - entry base |
NB - name base

Note: All tables are double-word aligned

Figure 3.5 Frame structure of a loaded module

Each module has a 32-byte descriptor consisting of the NS module descriptor which is
located in the module table of CBUG (see section 3.2.2) and an environment descriptor of 16
byte which is located immediately in front of the module’s code.

The NS module descriptor contains three pointers used by the processor to perform external
procedure calls and external data access. The pointer SB points to the static data of the
module, i.e. the variables and constants. The pointer LB holds the address of the module's
link table. The third pointer PB points to the start address of the code of the module. The
last double word in the descriptor is not yet used by the processor. We leave it unused to be
compatible with further versions of the processor.

The code frame consists of the environment descriptor, the module code, the module name,
the entry table and the link table. All parts except the code are necessary to allow the
dynamic linkage of modules to the operating system or other already loaded modules. The
pointers EB and NB in the environment descriptor support this task by giving fast access to
the module name and to the entry table. The code frame size and the pointer DB, as well as
the data frame size are needed to later release the frame space used by a module.

The data frame contains the data of a module divided into uninitialized data and initialized
data. Both kinds of data are accessed using the pointer SB register as base. Unitialized data
has negative offsets while constants are addressed using positive offsets. The LB pointer is
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used to access external variables. The flags contain eg. a module initialization flag that is set
upon execution of the module’s main part. ~

The described memory layout is identical to that of Medos-2. It enables the dynamic linking
capability by storing the essential linkage information together with the module. Part of the
above format is also known to the ROM monitor, i.e. the location of the module name. This
allows to give meaningful error messages when a trap occurs that is not handled by the user
program.

3.2.7. The Object File Decoder

The object file decoder was originally designed to be a help for writing the code generator of
the cross compiler. Thus the first version simply analyzed the object file and disassembled
the generated code. During the porting of the first Modula-2 programs onto Ceres it helped
to find the reasons for certain runtime errors. However, the larger the ported programs the
more clumsy it was to find the place of an error in the source file. Thus the decoder has been
upgraded to include source information by using the compiler-generated reference files.
Note, that these files contain so-called ref points that provide a mapping between code
addresses and source positions. The ref points are also used by the Medos-2 debugger
inspect to find the location of an error in the source. Although the decoder does not provide
the interactive capabilities of the debugger, it turned out to be a useful tool for the cross
development.

3.3. From the First Program to Medos-2

In order to describe the process from porting the first Modula-2 program up to the Ceres
version of the Medos-2 operating system, we present a table that shows both the
development of the Ceres hardware and the milestones of the software development.

Date Hardware Software

spring 1984 start of CPU-board development

summer 1984 CPU-board with NS32016 small ROM test programs
for the CPU-board

RAM-board with 256 kByte CBUG 1.0 for downloading
programs via RS-232-C

parallel interface (16-bit) faster program loading
first version of the cross
compiler for Modula-2

first version of the absolute linker

porting of DiskPatch as first
reasonable Modula-2 program using
the Lilith-disk with NServer

autumn 1984  adding the disk controller DiskPatch working on local disk

Kernel for coroutines and interrupt
handling

CBUG upgrade allowing to abort
and resume programs and to inspect
the memory and the registers

ol
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In winter 1984 the 16-bit prototype of Ceres was operational with the exception of the
display and the mouse interface. In December 1984 we started to port the Medos-2
operating system, beginning with its file system.

Date Hardware Software
Dec. 1984 porting & testing of )
- Jan. 1985 the Medos-2 file system
Feb. 1985 170 drivers for keyboard & display
porting Medos-2 Processes and
Programs
March 1985 testing the raster operations with
NServer on the Lilith
porting the Medos-2 program
loader
April 1985 first version of Medos-2
without display
May 1985 display controller & mouse porting of the Debugger and the
interface available Modula-2 compiler
June 1985 porting of the Medos-2 utilities
and the Maple file system
July 1985 improved version of Medos-2

All steps have been accompanied by a continuous improvement of the tools described
above. It must be mentioned that we did not have any debugger until the Medos-2
operating system was fully available, i.e. by the end May 1985. Program testing has been
done solely with the ROM Monitor CBUG and an improved object file decoder that
incorporated source code.
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4. Characteristics of Medos-2 on Ceres

4.1. System Overview

Before we start to describe the particular implementation of Medos-2 on the Ceres, we will
give an overview of its structure. We present a view somewhat different from that presented
in [Knu83l. It is not primarily based on the import/export relations but on a logical
grouping of modules that implement certain parts of the whole system. Dependencies are
shown only between the modules of the same logical group. With these assumptions the

structure of Medos-2 is described in Figure 4.1.

SEK Control [
3
Program Loader Users UserHandling
e —
FileSystem J¢&—>{DiskSystem Terminal | CardinallO
VirtualDiskf®| Names Eg;rginal L Display
i e
inDi Keyboard Displa
WinDisk Dnyver J Dri\}/)ery
FileMessage FileSystem Fonts »| RasterOps
£ 3
Locks Clock
L) L
1 {
Heap > Processes Basic Resources
Programs KernelBase KERNEL SYSTEM Basic Structures

Note, that there are no arrows leading from the lowest module group to the higher ones.
This is in consideration of the fact that just these imports from the lowest level of a program
make a module graph unreadable. Thus we decided to leave these arcs out, saying that there

Figure 4.1 Medos-2 Overview
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may be imports from the lowest level in any of the groups above. The subsequent
paragraphs follow the structure in Figure 4.1 in bottom-up manner.

4.2. Basic Structures

The current version of Medos-2 was designed for the Lilith [Knu83, Sch85]. Some of its
parts, especially the implementation of processes and interrupt handling depend on the
special instruction set of this machine (M-Code) and its hardware architecture [Jac82]. (The
notion process is used in this chapter in the sense of a Modula 2 process, i.e. of a coroutine).
The purpose of this chapter is to describe the implementation of these features as a basis for
Medos-2 on Ceres.

The module KERNEL described in this chapter is normally not used by programmers. Its
description is included to show the way concurrency is implemented on Ceres only.

At first we should have a look at the features of the Lilith architecture which support
handling of processes:

- P-Register

This processor register is a pointer to the process descriptor (pcd) of the currently
running coroutine,

~ TRANSFER

This M-Code instruction performs a switch from the current to a dedicated process,
given by the address of a process variable.

- interrupt handling mechanism

On occurence of an interrupt the system performs a transfer operation to the interrupt
handler process. The address of the process variable of the interrupted process is stored
in the interrupt vector.

Because Lilith is a stack machine, it has to save only a few special registers on switching
between processes. Due to this fact the transfer operation is very efficient. Interrupts can be
handled by a process switch. The interrupt vector entries are not addresses of routines but of
process variables. All these features are not directly supported by the NS32000 processor.
Subsequently we describe their implementation on Ceres.

On occurence of a process switch the complete status of the interrupted process has to be
saved, i.e. all relevant registers must be saved in the pcd (see Figure 4.2). In our case this
incorporates all registers of the NS-chip set with the exception of

- INTBASE because it is a global value in Medos-2
- SB because it will be automatically updated after realoading the MOD register
- MMU-registers because they are not used in Medos

There are three additional entries in each pcd. In the first entry (error) the reason for
termination of a process is stored. The second entry (mask) holds the current interrupt
(priority) mask of the process. The third entry is the stack-limit, i.e. the upper bound
(lowest possible address) of this stack.
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error | mask
stack-limit
SP
FP
pC
moD | PSR
RO ..R7
FSR
FO . F7

Figure 4.2 Image of a Process Descriptor

In general programs are executed in user mode. Only the routines for process switching and
changing of the process priority are executed in supervisor mode. These routines are
collected in a monitor, and they are umnterruptable For that reason there must be only one
global supervisor stack.

These monitor routines are called via a supervisor call instruction (SVC). The value of the
byte following the instruction determines the called routine. The possible parameters of such
a call are on top of the caller's stack (like in ordinary procedure calls).

VAR currentP: PROCESS;
PROCEDURE NEWPROCESS(p: PROC; a: ADDRESS; size: LONGINT; VAR pr: PROCESS);
PROCEDURE TRANSFER (VAR from, to: PROCESS);

KERNEL exports the type PROCESS and the procedures NEWPROCESS, TRANSFER formerly
exported by the pseudo-module SYSTEM. The variable currentP plays the role of Lilith's
P-register. Due to the Modula-2 compiler register allocation strategy the general purpose
registers (including the FPU-registers) are not saved.

PROCEDURE IOTRANSFER (VAR from, to: PROCESS; dev: CARDINAL);
PROCEDURE SetDriver(p: PROC; dev: CARDINAL);
PROCEDURE Trap(error: CARDINAL);

There are two different interrupt handling schemes. The program can choose whether it
installs an ordinary interrupt handler or a coroutine which will be resumed on occurence of
the desired interrupt. Note, that the first method is only possible with an assembler-written
handler.

After calling /OTRANSFER an interrupt dispatcher is installed in the corresponding entry of the
processor's interrupt vector. The dispatcher performs the desired process switch. The choice
between the two ways of interrupt handling is done individually for each device. There is no
protection agz:nst overriding of handlers; this coordination has to be done at a higher level.

All error traps of the CPU result in an interrupt of the pseudo device 7. Call of procedure Trap
terminates the caller with the specified error code, i.e. it is "interrupted’ by device 7.
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4.3. Basic Resources

4.3.1. Storage Management

Due to hardware restrictions Medos-2 offers on Lilith three areas of dynamic memory: stack,
heap and frame. Heap and stack area have to reside in the first 64kWords (Lilith addresses
words), whereas the frame area is accessed by special instructions to extend the 16-bit
address range. The code has to be located in the first 128kWords. This hardware driven
restrictions influenced the Medos-2 storage management.

On Ceres, the processor does not force such separations. It has a linear address space of
16MByte. Therefore the frame area is discarded (for compabiiity reasons the module Frames
still exists as library module, using the heap). The stack grows from the highest valid
memory (RAM) address, the heap starts on top of Medos. Both areas grow against each
other. Program code as well as static data are loaded into the heap area.

0
MEDOS

Heap l

highest valid stackT

RAM address

Figure 3.3 Memory Areas

Note, that Ceres has no hardware stack-overflow check. This error is only recognized during a
process switch, but prior to its detection the program may have damaged big portions of
memory. We felt that in future microprocessor designs a stacklimit register is indispensable
for safe computer systems.

The bitmap memory is not managed by the storage management, because it is completely

reserved for the system. Programs should access that area only by using the display
operations.

4.3.2. Timer handling

Ceres offers a real-time clock chip. Therefore, unlike on Lilith, time need not be computed
by counting internal timer interrupts. The module Clock is is the standard interface to the
clock chip. Due to the clock chip this time has only a granularity of 1 second.

4.4. Display

This section describes the implementation of the display software in Medos-2 on Ceres. The
module structure is shown in Figure 4.4.
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Figure 4.4 Structure of the Display Software

We confine our description to the two low level modules Fonts and RasterOps. The modules
above are nearly the same as on Lilith[Knu83]. The next paragraphs describe the graphical
objects and operations and the handling of fonts. They are followed by some remarks about
the implementation and a performance analysis of the Ceres raster operations.

4.4.1. Raster Operations

A bitmap is a two-dimensional entity that stores boolean informations, so called pixels or
picture elements. It is defined by a bitmap descriptor of the form:

TYPE BitMap=RECORD
bmPtr: ADDRESS;
width, height: CARDINAL
END;

The field bmPtr contains a pointer to the bitmap's data. The field width specifies the length
of one line in bytes, while height is the number of lines. A bitmap may have any dimension
with the exception that the width must be a multiple of 4. Note, that a double word (4 byte)
is the basic unit handled by the raster ops due to the data bus width of 32 bits. A bitmap
may lie anywhere in memory. The bitmap which representation lies within the current refresh
memory of the display controller appears on the screen.

A bitmap defines the first quarter of a cartesian coordinate system. The coordinates are in
the range 0.width-1 and 0.height-1. When a bitmap is displayed the origin is in the lower
left corner of the screen. The pointer bmPtr points to the upper left corner such that the
address of a certain pixel (x, y) is computed by

address := bmPtr + (height - y - 1) x width + x DIV 32
bitoffset := x MOD 32.

A Block defines a rectangular area (with sides parallel to the coordinate axes) within a
bitmap by specifying its lower left corner and the width and height in pixels.

TYPE Block = RECORD x, y, w, h: CARDINAL END;
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A pattern is a small area of raster data. Its height is fixed to a maximum of 16 lines while a
lines contains a maximum of 32 pixels. A pattern is appropriately described by

TYPE Pattern=RECORD
pheight: CARDINAL;
pat: ARRAY [0..15] OF LONGINT
END;

The representation of the pattern, contained in pat starts in the upper left corner of the area,
i.e. the bit 0 of the doubleword pat[0] contains the leftmost pixel on the topmost line. Only
the doublewords 0..(pheight - 1) MOD 16 contain valid pattern data.

The basic operations on objects presented above:

PROCEDURE BBLT(VAR sBmd: BitMap; VAR sBlk: Block;
VAR dBmd: BitMap; VAR dBlk: Block; m: Mode);
PROCEDURE REPL(VAR bmd: BitMap; VAR blk: Block; VAR p: Pattern;
m: Mode);

PROCEDURE DDT (VAR bmd: BitMap; x, y: CARDINAL; m: Mode);

Each operation specifies a source, a destination, and a mode, ie. logical operation to
combine the two operands. The current implementation knows four different modes:

TYPE Mode = (replace, paint, invert, erase);

The operands are combined as follows:

mode result

replace dest := source

paint dest := dest OR source

invert dest := dest XOR source
erase dest := dest AND NOT source

For convenience two additional operations have been implemented. The first is called SCR
and represents an optimized, special case of BBLT, namely the vertical scrolling of a block
within a bitmap. The second operation LIN draws arbitrary lines within a bitmap. For lines
that are parallel to the coordinate axes it is an optimization of REPL. The two operations are
specified by

PROCEDURE SCR (VAR bmd: BitMap; VAR blk: Block; lineHeight: INTEGER);
PROCEDURE LIN (VAR bmd: BitMap; x1, y1, x2, y2: CARDINAL; m: Mode);

Note, that the sign of the parameter lineHeight in SCR controls the direction of the scrolling,
i.e. up/down for a positive/negative value.

All operations clip their result into a predefined rectangular clipping region. This region is
defined in the bitmap descriptor. For this reason the descriptor shown above gets an
additional field. Its complete definition is now:

TYPE BitMap=RECORD
bmPtr: ADDRESS;
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width, height: CARDINAL;
clipR: Rect
END;

The field clipR describes the clipping region as a rectangle defined by its lower left and upper
right corner coordinates.

TYPE Rect = RECORD xl, yl, xu, yu: CARDINAL END;

The choice of this method is primarily based on efficiency. The clipping mechanism should
not slow down the case where an operation may be executed directly on the screen. For this
reason the test for clipping must be as fast as possible. Using only a block as description of
the clipping area implies the expression

(x >= clipBx) & (clipBx + clipBw > x) & (y >= clipBy) & (clipB.y + clipB.h > y)

to check if the point (x, y) lies within c/ipB. Note, that for each test the coordinates of the
right and upper boundary of clipB are recomputed. Using the rectangle cl/ipR, the test for
inclusion is

(x >=clipRxI) & (clipRxu >x) & (y >= clipRyl) & (clipRyu > y).

This is much shorter in execution time compared to the first method, because the additions
are removed.

4.4.2. Fonts

Ceres allows for different fonts to be displayed simultaneously. Basically a font is a collection
of character descriptions consisting of metric data and raster data.

T
xw

.

N\

— baseline

L2
Figure 4.5 Character Box Information

The metric data describes a virtual box that contains the character image and the minimal
horizontal distance to the next character. The raster data contains the actual image
information, i.e. a raster. Figure 4.5 shows two characters and their box information. Each
box defines a local coordinate system for a character. The origin (o and o) of such a local
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system is relative to the origin of the bitmap coordinate system. The values x and y are
relative to their corresponding origin.

All data for a font is contained in a so-called font file. The font file format is described in
EBNF as follows [Gut86].

FontFile = FileType FontName Header Directory MetricData [RasterData].
FileType = 330C Abstraction.

Abstraction = 0C | 1C.

FontName = fontID fontType.

Header = fontHeight minX maxX minY maxy.

Directory = nofRuns {Run}.

Run = firstChar nofChars.

MetricData = {dxxyw h}.

RasterData = ({pattern}.

The symbols fontHeight, minX, maxX, minY, maxy, dx, x, y, w, h denote two byte integers (low
order byte first). The value Abstraction tells if the font file contains both metric and raster
data (0C) or metric data only (1C). The pattern is split into pattern lines describing the
character from top to bottom. Each line is made up of (w + 7) DIV 8 byte.

A character is displayed using the procedure DCH of module RasterOps.

PROCEDURE DCH(VAR bmd: Bitmap; X, Y: INTEGER;
f: Font; ch: CHAR; m: Mode);

The parameters X and Y specify the origin of the local coordinate system of the character
relative to the origin of the bitmap bmd (Figure 4.5). As with the basic raster operations, the
parameter m defines a logical operation performed between the bits in the character pattern
and the pixels on the screen. As stated above the data of a font is contained in a font file.
When a font should be used by DCH it must be loaded into main memory. The following
procedure manages this task.

PROCEDURE LoadFont(VAR fnt: Font; fn: ARRAY OF CHAR:
abstr: INTEGER; VAR err: INTEGER);
PROCEDURE UnloadFont(VAR fnt: Font; VAR err: INTEGER);

The procedure LoadFont creates a memory image out of the font file, which may then be
used by DCH. The parameter fn is the name of the font file, while abstr determines whether
only metric data or both metric and raster data should be loaded (see above). A font is

unloaded using the procedure UnloadFont. Figure 4.6 shows the memory layout of a loaded
font.

The font header resembles the header information in the font file. The box indices define the
mapping from the set of possible character codes, ie. 0C to 377C onto the set of
implemented characters. The implemented characters are represented by their box
descriptors. All unimplemented characters map onto the box descriptor 0, i.e. the empty box.
Note, that the character code 0C may never be used for a printable character.
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Figure 4.6 Memory Image of a Font

Medos-2 defines a default font that is used for all display 1/0. Initially this default font is set
to the so-called system font that is contained in the boot file. However, it may be changed.
Some procedures are provided to handle the default font.

PROCEDURE SysFont():Font;
PROCEDURE DefFont():Font;
PROCEDURE SetDefFont(fnt: Font);

The metric data may be extracted from a loaded font by the following procedures:

PROCEDURE ChW(fnt: Font; ch: CHAR):INTEGER;
PROCEDURE ChBox(fnt: Font; ch: CHAR; VAR x, Y, W, h: INTEGER);
PROCEDURE FontBox(fnt: Font; VAR fnX, fnY, faw, fnH: INTEGER);

4.4.3. Implementation and Performance

The type definitions and procedures specified in section 44.1 and the procedure DCH are
implemented in the module RasterOps. The font loader, i.e. the procedure LoadFont and the
other font operations are contained in the module Fonts. RasterOps is a module which is
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implemented in assembler and benefits from the clean integration of assembly code and
Modula-2.

In the following we provide some measurements about the performance of the raster
operations on Ceres. Some of the tests have been done both on Lilith and Ceres. For most
operations the Lilith is faster. However, a comparison of the speed of Ceres with other
workstations that have no special display hardware, namely the Sun/1 and Sun/2 and the
Blit [Pik85] shows that our raster ops are at least equally efficient.

Test Ceres Lilith
BBLT

block 512 x 512 130 ms 75 ms
scroll screen 281 ms 163 ms
REPL

horizontal line | = 700 033ms 02ms
vertical line | = 320 186 ms 2.8ms
cursor pattern 16 x 16 082ms 021 ms
fill screen 108 ms 109 ms
DCH

GACHA14 029ms 0.09ms
SYNTAX24 032 ms 021 ms
DDT 73 us 60 us

One major reason that slows down the execution of the raster ops is the lack of a barrel
shifter in the NS32032 processor because shifting is an often performed operation. Another
reason are the nested loops that are inherent to the raster ops. Note, that the N$32032
processor has no instruction cache but only a 8-byte prefetch queue. While a cache wouid
allow to keep small loops in fast memory, the prefetch queue is emptied on each loop cycle.

The effect of throwing out an inner loop has been shown in the comparision of BBLT and
SCR, as well as REPL and LIN.

Test BBLT SCR
scroll block up by 16 lines

size 1024 x 800 3420 ms 88.8ms
size 512 x 800 1920 ms 550 ms
size 256 x 400 560ms 223 ms
Test REPL LIN
horizontal line | = 700 033 ms 03ms
vertical line | =320 186 ms 48 ms

Even for small blocks the replacing of the inner loop that copies one line from the source to
the destination block by a single MOVS instruction caused speed increases of about 100 %.
Another interesting example was made by implementing the scroll operation such that the
actual code to copy one line was produced at runtime. This on-the-fly code generation
showed nearly the same speed improvements, although additional time was needed to
compile the code. A detailed discussion of this method can be found in [Pik85].

The presented model for the raster operations turned out to be useful for porting the
Medos-2 software available on Lilith onto Ceres. For applications like the editors sara and
lara which highly depend on good response times the speed seems to be sufficient. But for
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other projects like font design or 3D-graphics where more complex graphics are involved it
would be worth having a dedicated graphics processor.

4.5, Loader

The program loader of Medos-2 is realized by the module Program (see figure 4.1). Basically
it has the same task as the absolute linker (see 32.6). Its input is the name of a program
module to be loaded. The program is linked and loaded to the current environment of
already loaded modules. When the whole program is in memory the loader calls the
nitialization procedure of the program module.

duting the loading phase nearly the same data structures and algorithms can be used as
lescribed for the absolute linker. The major difference is, that the absolute linker runs as a
tand-alone program and may thus use the whole available memory for its tables, because
he linked program is never in real memory. In the program loader both the administrative
data and the program code and data compete for the available memory. Thus the emphasis
has been put on minimizing the administrative data, i.e. to put as much data to its definitive
location in memory and not to duplicate information. In order not to fragmentize the heap,
the loader's data is put on the stack and thus vanishes when loading is finished. Basically the
same two global tables import list and module list exist. However, due to the above memory
constraints the module list contains only information that is discarded after loading the
program. Link table and entry table as well as the module name, module key and the
descriptor data are all put into their final locations.

e algorithm to load a module is the same with the exception that the search strategy for

ported modules is different. Where the absolute linker searches a module in its module
t, the program loader searches in memory using the module table.

L.6. File System

The file system of Medos-2 is implemented by several modules.

FileSystem ¢ »DiskSystem

f—— 1

VirtualDisk » Names

f

WinDisk

v 1

FileMessage

[y

Figure 4.7 File System Structure

The structure shown in figure 4.7 is nearly the same as in the Lilith implementation. The
module FileSystem provides the programming interface. The modules DiskSystem, VirtualDisk,
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Names and WinDisk implement files on the Winchester disk of Ceres. Two major changes of
the implementation are outlined in the following paragraphs.

4.6.1. Searching of File Names

One major drawback of the linear directory structure of Medos-2 [Knu83] is the long time
needed for. searching. Although the separation of file name and file allocation information
allows for a dense packing in the name directory, i.e. 16 names per disk block, the checking
of 2048 names implies the reading of 64 kByte in the worst case. One way to solve this
problem would be a lexical ordering of the file names plus a memory based data structure to
make binary search possible.

Our solution to the problem takes into account that a user normally works only on a
relatively small subset of his files at one time. Working with the document editor involves
one or more document files and a couple of fonts. The development of a Modula-2 program
is usually a cycle of calling the editor, the compiler and the debugger. In this case there is
also a limited number of files needed. Due to this situation the faster access is realized with
a small cache holding the 64 least recently used file names. Each name is represented by a
hash code in the cache. When the code for a name is found in the cache the corresponding
directory entry is loaded to authenticate the name. The latter is done to detect collisions. The
cache is implemented in module Names.

4.6.2. Initialization Speedup

One of the most annoying things with the Medos-2 file system is the long startup time,
especially when the directory is large. Although the booting of the machine happens only a
few times per day, it wastes time. Note that on Ceres the initialization of Medos-2 requires
about 30 seconds. The major amount of time is needed for the establishment of the
allocation bitmaps of the file system. This includes the reading of all file descriptor, i.e. 512
kByte. One advantage of this strategy is the robustness of the file system against failures.
This seems to be adequate in the original environment this concept was designed for.
Remember that Lilith had a removable disk cartridge, where a lot of 'hard’ situations may
cause a failure, e.g. disfigured disk spindle, different temperature conditions etc.

Because of the more trustworthy fixed disk of Ceres we use a different strategy for the
initialization. A copy of the allocation bitmaps for file descriptors and disk pages is always
stored on the disk. As long as this copy is valid, it is read at system startup instead of
rebuilding the bitmaps. The crucial point is the saving of the bitmaps. To be sure that the
disk always contains the correct bitmaps they have to be written after each allocation or
deallocation of a block or file. Of course this is not feasible because of the enormous
overhead of disk 1/0. Therefore the most recent bitmaps are always those in memory. The
copy on the disk is valid as long as no change occured in the memory bitmaps. Because it is
not possible to determine the best moment of creating the copy, the file system is passive in
the sense that it invalidates the current copy of the bitmaps upon the first change. The user
itself has to initiate a new copy. This needs some discipline when the machine is to be
switched off. A special command shutdown has to be executed before powering off Ceres. In
order to help the user, the command interpreter makes a disk copy of the bitmaps after 3
minutes in the idle state, i.e. when it waits for keyboard input.
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4.6.3. File Implementation

Along with the change of the initialization strategy, the administration files, i.e. the directory
files, boot files and dump files have been changed in size. The most important difference to
Lilith is the absence of back-up directories which saves about 600 kByte of disk space. The
names and sizes of the administration files can be found in [Pes86]. Another change
concerns the larger disk sectors, resulting in a higher throughput in the disk /0.

One major complaint about the Medos-2 file system is the limited file size. This problem is
not solved in our implementation. The justification for this decision is twofold. On the one
hand larger files can be achieved by making the file descriptor farger. On the other hand the
basic allocation unit can be made larger.

Making the file descriptor larger is only a fix. The old limit of 192 kByte per file is due to
storing all allocation information within the descriptor. Making the descriptor twice as long
replaces the old limit by a new one, i.e. 478 kByte. Without sacrificing the redundancy and
security of the Medos-2 file system, the number of pages cannot be increased far beyond 16
MByte. All in all, a larger medium requires additional space for more file descriptors. The
directory becomes unmanageable larger because no substructuring is supported. The
invention of a different directory structure for Medos-2 was not taken into account.

The file system implementation uses only the first 16 MByte of the 40 MByte on the
Winchester disk. However, the remaining disk space may be managed in different ways.
Generally a new file implementation must be installed using the module FileSystem.
Currently a test version of VF the file system of Vamos, the future multitask operating system
is available. VF was originally based on the Maple file system [Ost85] which is used on the
file server of the Lilith network. VF is also used to implement files on the 3.5" floppy disk.

Another implementation of files is provided by the program ramdisk. The program organizes
a part of the memory as a file system. This implementation is thought as an accelerator for
program loading. Thus the installed medium is known to the program loader.
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5. Conclusions

The operating system Medos-2 has been ported from a totally Modula-2 oriented
environment to the new workstation Ceres. Although Medos-2 has been written completely
in Modula-2, some facts prevented a simple recompilation of the program.

First of all, Lilith and Ceres have different architectures. As expected, some low-level parts
especially device drivers have to be rewritten. The Lilith-instructions for bitmap operations
and for coroutine handling are emulated by new modules. This category of problems is
inherent to the porting of an operating system.

Another source of troubles are the 'covered' machine dependencies. They are incorporated
by the so-called CODE procedures and by type transfers (both too often used on Lilith).
Absolute variables lead to another problem, if they are misused for hidden communcation
between modules. This scheme was unfortunately used once in Medos-2.

Medos-2 makes heavy use of its knowledge about the allocation of data structures by the
Modula-2 compiler. With the new compiler this strategy changed. This influenced especially
those data structures that have to fit into a certain amount of memory, eg. the file
descriptors. Reordering of the record fields of the file descriptor helped in this case.

During the project a number of errors have been found in the Modula-2 compiler. Because
of the lack of adequate test software some of the errors were extremly hard to find. In our
view it seems to be worth investing more time to test the compiler before using it for larger
programs. However, some seldom situations occur under real-life conditions only.

Some of the program parts were so ctitical in execution time that writing them in Modula-2
was not adequate. To avoid scattering of machine dependencies mentioned above a method
has been implemented to allow the interfacing of assembler-coded modules with ordinary
Modula-2 programs retaining the benefits of strong type checking and structured interfaces.

A number of tools has been built throughout the project that facilitated the cross
development of software for Ceres. The most important ones, i.e. the compiler, the
assembler, the absolute linker and the ROM monitor are still in use.

After the project has been finished one may ask wether it would have been a better decision
to adapt Medos-2 more to the hardware. However, the current solution has shown that it
was possible to transport most of the utility programs and the whole cross development
software with a minimal effort.
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