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Preface 

The most amazing fact about the computing industry is the dramatic 
improvement in the performance of computing machinery - a trend 
observed for three decades and projected to continue unabated. Not 
only is this trend exponential - a doubling of the power every two to 
four years - it also takes place at costs that are roughly constant for each 
machine class, CPU, minicomputer, PC or workstation. In other words, 
the price-performance drops the same way as performance increases. 

In contrast to the hardware, the programs that make computers 
useful do not show anything close to steady advancement - let alone 
exponential progress. Historically, innovation took place in short 
intensive spurts, interrupted by long plateaus during which armies of 
programmers struggled to embody new concepts in useful software. In 
the field of personal computing, such a surge took place during the 
seventies, lead by the famous Palo Alto Research Center (PARC). The 
eighties, in contrast, are a rather dull period characterized by a 
predominant product orientation. 

As the industry tries to implement the personal computing paradigm, 
more and more difficulties emerge. The operation systems that became 
standards fail even to capitalize on the 'software engineering principles' 
available at the time. The premature rush into standards froze 
innovation in that area and led to the phenomenon of grafting layer 
upon layer of code onto a dated base system. 

A critical eyewitness may conclude that software is well on its way to 
neutralizing the phenomenal gains of the hardware. The reasons are 
many, and there is no single patent answer. We observe, however, that 
despite claims of doing 'software engineering,' the most basic of 
engineering principles is rarely practiced: to strive for economy of 
means and simplicity of solutions. 'Software engineers' are still beating 
the lather, rather than using the razor of Occham! 

It is precisely at this point that one of us started research: to build a 
system from scratch - led by the quote by Albert Einstein: 'make it as 
simple as possible, but not simpler.' The result of that research is Oberon: a 
language and an operating system for a personal computer or 
workstation. 

v 
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This book is one of three. It describes the language Oberon (the others 
being Reiser, 1991; Wirth and Gutknecht, 1992). Its concept follows 
Programming in MODULA-2 (Wirth, 1982): 

• It is a language reference. 
• It is a programming tutorial, exhibiting modern programming 

concepts. 

• It implements these concepts in Oberon. 

The book should therefore serve the professional programmer as well 
as university professors and students. The text is composed of reference 
sections and examples. 

Writing a book on programming poses many challenges, in particular 
how to choose the order in which concepts and constructs are 
introduced and how to choose examples that are exciting and realistic, 
yet rely solely on material explained earlier in the text. Our approach is 
distinguished in two ways: the procedure and module are introduced 
early, right after the control structures, and the examples share a 
common theme: simulation. In the end, a complete and realistic 
simulation package is obtained. 

The Oberon language was purposefully designed to serve as an 
implementation tool for the Oberon system, an efficient, concise 
operating system founded on object-oriented programming. The 
language, however, is not tied to the system - compilers can be 
provided for any machine under most current operating systems. 
Programming in Oberon therefore requires no knowledge of the Oberon 
system, and digresses only minimally into a discussion of Oberon 
system concepts. 

The book is organized into three parts as follows. 

Part I: Tokens, basic types, assignment, control 
structures, procedures, modules 

Part I is about basic programming constructs. At the end, all knowledge 
is available to write complete Oberon modules that use scalar variables 
only. 

The syntax of Oberon is introduced rigorously using the well-known 
EBNFI notation. The semantics of the assignment and the control 
structures are formally defined using transformation rules of predicates 
that define the state of the computation prior and after execution of a 

1 Extended Backus Naur formalism. 
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statement: The formalism, due to Dijkstrai is introduced by means of 
easy examples and presented in a notation close to that of Oberon. 

The early introduction of the procedure and the module is made 
possible by using a stimulating example: drawing a fractal fern. To 
complete the example, the basic concepts of input and output are 
introduced through the notion of the stream and a module providing 
graphic output. Oberon takes the view that input and output are not 
parts of the language, but are provided by modules that can be 
considered extensions of the operating system. 

Part II: Arrays, records, pointers, dynamic data, 
stepwise refinement, data abstraction 

Part II introduces classic programming. At the end, roughly the scope of 
Modula-2 is covered. 

The array and dynamic data structures are the turf of 'data structures 
and algorithms' - a classical topic of computer science. This text is not 
in competition with the many excellent textbooks in that area. 
Nevertheless, searching in arrays (but not sorting), the list and the tree 
are discussed. The list processing procedures lay the foundation for the 
completed examples that will follow. 

Part II ends with Chapter 10, which introduces the important 
programming techniques of stepwise refinement, abstract data structures 
and abstract data types. These programming concepts are introduced by 
developing a simulation package composed of several modules. 

Part III: Type extension, procedure types, object­
orientation 

Here starts the new and exciting material that sets Oberon aside from 
its predecessor Modula-2. The goal is a programming technique that 
makes programs extensible and reusable. Type extension in combination 
with procedure variables lay the foundation. Chapter 11 is a reference 
for Oberon type extension and procedure types. 

Object-orientation as a programming technique, together with object­
oriented programming languages, is a fashionable topic. Oberon is true 
to its spirit: a minimal language extension - namely extension of record 
types - suffices. This is in contrast to other approaches that introduce a 
wealth of new concepts many simply renaming established notions. 
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Chapter 12 introduces object-orientation, the Oberon way. The example 
of a graphics editor is used to avoid talking in abstract terms only. 

Chapter 13 restates the simulation program of Chapter 10 using an 
object-oriented approach. A fully functional package is presented that is 
actually fit to serve in the practice of discrete event simulations. 

Oberon objects differ from those defined by other languages (such as 
C++) by the fact that procedures (methods) are bound to instances, not 
to the type of objects. Chapter 14, finally, describes Oberon-2, a small 
and fully upward compatible extension of Oberon proper (Mossenbock 
and Wirth, 1991). The major addition of Oberon-2 is the type-bound 
procedure that implements dynamic binding to the type. 

Appendices 

A revised version of the original report on the programming language 
Oberon is found in Appendix A (Wirth, 1988). Appendix B gives an 
ASCII table and lists common extremal values of the basic types. 
Throughout the book, we make use of certain input/output abstraction 
that are provided by three modules, In, Out and XY plane. The source 
text of these modules is given in Appendix C. 

On the examples and exercises 

We conclude this preface with some remarks about the examples used 
and the exercises suggested in this text. The selection of examples and 
exercises is always important - but it is crucial in the area of pro­
gramming. Every teacher of programming also knows from experience 
that this choice is also burdened by an inherent dilemma. Obviously, 
this book cannot banish it. On the one hand, every extensive and com­
plex subject must be taught in steps, and in each step exercises should 
be confined to the concepts presented. They have to be reasonably small 
and concentrate on the essentials. On the other hand, true mastery of 
programming requires experience in the construction of large, non­
trivial designs. Such experience, however, cannot be acquired only by 
study, nor through solving small exercise problems. It requires active 
involvement in projects, and is earned through years of deep 
involvement. But it finally rests on certain basic rules of discipline, and 
these rules may very well be taught - in fact should be taught - in in­
troductory courses. The irony lies in the fact that such rules are largely 
considered as irrelevant in the solution of typical course exercises. They 
are ridiculed by most students, if they are mentioned at all, as 
idiosyncrasies and expressions of the pedantry of the teacher. Their ba­
sic value is recognized only when large projects are undertaken and fail 
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- which happens long after the introductory course has been completed 
successfully. We must accept this dilemma and muster the courage to 
stress the importance of details, even if pedantic insistence on discipline 
is mistakenly interpreted as hindrance to creativity. Pedantry in 
programming is not a luxury, but a necessity. 

Students on most programming courses are given the impression that 
the essence of programming is to concoct code that causes a computer 
to operate in a specific fashion. While this may be true for typical 
commercial endeavors, we maintain that ultimately a program is 
worthless if it cannot be understood by other human beings. Its for­
mulation must be chosen with the goal of providing the conviction to 
human beings that it satisfies its purpose. Every program should be a 
publishable design. This is a far cry from the usual goal that the 'program 
runs'! 

We can at least assure the reader that a notation which encourages 
the programmer to be precise and explicit is indispensable for 
approaching this goal. Oberon is such a notation. 

Oberon system implementations 

It is self-evident that this book will be most useful if the reader has an 
Oberon compiler at his or her disposal. Besides the original Oberon 
version running on the Ceres workstation built at the Swiss Federal 
Institute of Technology (Eberle, 1987), many implementations are 
currently available as freeware, in particular for 

• RS / 6000 (IBM) 
• Sparcstation (SUN microsystems) 

• Macintosh II (Apple) 

• DECStation/3100 and 3500 (DEC). 

How to get Oberon 

Oberon can be obtained via anonymous internet file transfer ftp (at 
no charge) or on floppy disks (for a fee of 50 Swiss Francs per 
implementation, which is about 35 US Dollars). We accept payment 
via Eurocard/Mastercard or VISA. To order by credit card, specify 
your card number, expiry date and your name exactly as it appears 
on the card. Please remember to specify your type of machine when 
ordering. 
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FTP Hostname: 
Internet Address: 
FTP Directory: 

neptune.inf.ethz.ch 
129.132.101.33 
Oberon 

For further information, please contact 

The Secretary, Institut fiir Computersysteme ETH, 8092 Zurich, 
Switzerland 
Telephone (+41-1) 254 7311. Facsimile (+41-1) 261 5389. 

Sample Programs from Programming in Oberon 

Various sample programs from within this book are also available in 
Source form from the ETH Server via anonymous internet file transfer 
ftp (at no charge). 
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Algol 60 

1 Why Oberon? 

This is a book about programming, and in particular about program­
ming in the language Oberon. Why should the reader be interested in 
learning to program in Oberon instead of one of the widely known 
languages? The answer is because it is a language that is defined in 
terms of relatively few, fundamental programming concepts, because it 
is rigorously structured, and because it is efficiently implemented on 
modern computers. These are essentially the same reasons that 20 years 
ago spoke for the language Pascal. These properties encourage a 
systematic approach to the design of programs, and are the 
prerequisites for using the essential technique of modular design based 
on abstractions. Oberon is a 'small' language, which makes it 
particularly suited as notation for an introduction to programming. Yet 
its concepts are general and powerful, making it equally appropriate' 
for the construction of large software systems. These claims have been 
substantiated by the use of Oberon both in teaching and in the design of 
the Oberon system itself. 

1.1 The Algol family 

Oberon is both new and old. It is new, because it is not merely an 
extension of another language. And it is old in the sense that most of its 
concepts have been taken over from existing languages. Oberon is the 
latest descendant in the family of languages whose root is Algol 60 
(1960), and whose other members are Pascal (1970), Modula-2 (1979) 
and Oberon (1988). It is therefore appropriate to comment on these 
members and thereby to explain the family's evolution and the 
'philosophy' behind it. 

Algol 60 was designed by a a committee of 13 experts from many coun­
tries (Naur, 1963). The goal was to establish a common notation for the 
formulation of algorithms (programs), for the purpose of having them 
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Pascal­
structured 
programming 

not only interpreted by computers, but also studied and understood by 
programmers. A necessary condition for approaching this latter goal 
was that the language be rigorously defined without reference to any 
specific computer or abstract mechanism. The goal was splendidly 
reached with regard to syntax. Algol 60 was the first language where it 
was easily decidable whether or not a sequence of symbols formed a 
(syntactically) correct program. The influence of this rigor had a 
tremendous impact on defining, explaining and implementing lan­
guages. With regard to defining the semantics of various language 
constructs, the goal of a mechanism-independent static definition still 
remains elusive. Nevertheless, much progress has been made - all 
based on the prerequisite that a language's syntax be clearly structured. 

However, Algol 60 was a mixture of elegant, fundamental constructs 
and of strangely baroque features. Not surprisingly, the latter turned 
out to be largely unsuccessful and quite superfluous. We mention the 
overly general for statement, the own variables, and the name 
parameters. At the same time, facilities that emerged as indispensable 
for certain applications, such as record and pointer variables were 
entirely missing. Algol 60 had been designed by mathematicians for the 
formulation of their numerical algorithms, and its designers had little 
background in other areas. 

Many descendants of Algol 60 were proposed and even implemented. 
The most successful was Pascal (Wirth, 1971; Hoare and Wirth, 1973), 
which is still in wide use at the present time. It followed the Algol 
tradition of being a structured language well suited for practicing 
structured programming. Algol's oddities had been left out, and a few 
facilities for widening its range of applications had been added. The 
single most important innovation was to apply the same approach to 
the definition of data as was introduced by Algol for executable 
statements: recursive structuring. 

Algol 60 featured the basic data types of integers, real numbers, and 
Boolean truth values, and it allowed the programmer to define arrays of 
variables of these types. Pascal provides, in addition to further basic 
types, the array, record, set and file structures. User-defined structures 
can be given names and can be used as types of components of other 
structures. Hence it is possible to define nested structures, such as 
arrays of records and records with arrays as components. Records, in 
particular, extended the range of applications beyond that of numerical 
computation. 

Of special importance was the introduction of pointers and dynamic 
allocation. This facility opened the door to all sorts of applications 
requiring dynamic data structures; that is, structures that grow and 
shrink during the computation. In contrast to address manipulation as 
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it is used in assembler coding, pointer manipulation provides much 
greater safety against mistakes, because every pointer variable is, by 
virtue of its declaration, bound to point to an object of a given type. 
Therefore a compiler is capable of guarding against violations, and the 
error can be detected while the program is still being developed and in 
its designer's hands. To extend the notion of static type checking to 
dynamic variables was indeed a significant achievement. 

But Pascal too suffered from deficiencies. They are perhaps not sig­
nificant in the context of exercises in an introductory course, but cer­
tainly are relevant in the realm of programming larger systems. 
Whereas Pascal encouraged structured design, in the meantime modular 
design had become important in software engineering. This notion has 
at least two aspects. The first became known as information hiding. Any 
large system is composed of modules that are to be designed in relative 
isolation. This implies that definitions of interfaces exist that specify all 
properties accessible to partner modules and that hide all others. The 
second aspect is of a technical nature: separate compilation of modules. 
It implies that in every module all modules to which references occur 
(so-called imports) be explicitly specified and that a compilation 
proceed under the availability of the interface definitions of those 
imports. 

The principal innovation of the language Modula-2 (Wirth, 1982) with 
respect to Pascal was indeed the module concept, incorporating 
information hiding and separate compilation. In contrast to 
independent compilation known from assemblers and other language's 
compilers, separate compilation enables a compiler to perform the same 
type-consistency checks across module boundaries as within a module. 
The explicit definition of interfaces and the retention of full type safety 
turned out to be a tremendous benefit. 

Modules exporting one or several data types, typically record or 
pointer to record types, together with a set of procedures operating on 
variables of these types, represented the notion of abstract data type. In 
these cases, only the names of the types appear in the module's 
interface, whereas the structure of the records remains hidden in the 
module's implementation. This guarantees that access to the record's 
fields is possible via exported procedures only, which can therefore rely 
on the validity of certain invariants governing the abstract types. 

Furthermore, Modula-2removed one of the most aggravating 
handicaps introduced by strong typing: it introduced dynamic arrays as 
parameters of procedures. Also noteworthy were the introduction of 
procedure types for variables, and facilities for concurrent processes 
and for low-level programming. The latter allow a programmer to refer 
directly to specific machine facilities, such as interface registers for con-
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trolling input/output operations. Once again, these features con­
tributed to the widening of the language's range of applications, par­
ticularly into the areas of system design and process control. And last 
but not least, certain unfortunate syntactic properties of Pascal were 
remedied, notably the open-ended if, while and for statements. These 
were precisely the structures that were adopted from Algol 60 and left 
unchanged in order to maintain tradition and to avoid alienating the 
Algol community - a mistake in hindsight. 

Several years of experience of practicing modular design with 
Modula-2 and other system programming languages revealed that the 
ultimate goal was extensible design and that structured programming 
and modular programming were merely intermediate steps towards 
that goal. The introduction of abstractions represented by modules and 
the use of procedures calling procedures declared at lower levels of the 
abstraction hierarchy embodies extensibility in the procedural domain. 
Equally important for a successful design, however, is extensibility in 
the domain of data definition. In this respect, Modula-2 is inadequate, 
because types cannot be extended and at the same time remain 
compatible. 

In this respect, so-called object-oriented languages provided a viable 
solution, and became the wave of the 1980s. They offer a facility to 
define subtypes Tl, called subclasses, of a given type (class) TO with the 
property that all operations applicable to instances of TO are also 
applicable to instances of Tl. We recognize at this point that the ulti­
mate innovation was data type extensibility, which unfortunately re­
mained obscured behind the much less expressive term 'object-ori­
ented.' Rather unfortunately, this term was accompanied by a whole 
new nomenclature for many already familiar concepts with the aim of 
perpetrating a new view or metaphor of programming at large. Thus 
types became classes, variables instances, procedures methods and 
procedure activations messages. 

The primary merit of the language Oberon (Wirth, 1988a, b), defined in 
1986, lies in the provision of data type extensibility on the basis of the 
established, well-understood notions of data type and procedure. The 
consequence is that no break with traditional programming technique 
is necessary and no familiarization with a whole new class of concepts 
and notions is required. The only new facility is that for extending a 
record type. Oberon thereby unifies the traditional concepts of 
procedural programming with the techniques required to obtain data 
extensibility. 

This single new facility might well have been added to Modula-2. 
Why was yet another new language to be created? The reason was the 
desire to have a language available that upholds the principle of pro-
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gramming at a truly machine-independent level, in contrast to creating 
programs that appeared to be machine-independent, yet where too 
many interspersed uses of system-dependent low-level facilities in fact 
rendered programs highly implementation-dependent. Indeed, 
Modula-2's low-level facilities had become far too frequently misused 
in order to overcome the lack of extensible types. Modula-2 also had 
become rather too large: it contains features that can be ignored without 
loss of generality and expressive power. Oberon thus became not only a 
modest extension, but also a strongly streamlined descendant of 
Modula-2. The result is manifest in the form of its defining report of 
only 16 pages. This figure compares well with the Modula report's 45 
pages. 

Simplification and unific~ation mark genuine progress and are 
particularly appreciated in teaching the fundamentals of a scientific 
subject. Oberon's design truly follows the spirit of Algol 60. 

1.2 The Oberon system 

The development of the language Oberon was only a part of a more 
comprehensive project. In 1985, while visiting the Xerox Palo Alto 
Research Center, J. Gutknecht and N. Wirth decided to design and 
implement a new operating system (Wirth and Gutknecht, 1989, 1992). 
In order not to be hindered by imposed constraints, they decided to 
design the Oberon system from scratch. The ultimate goal was to create 
a system for personal works~tions that was not only powerful and 
convenient for practical use, but also describable and explicable in a 
convincing way. Since there exists relatively little published literature 
explaining how a system was designed - in contrast to how it could be 
designed - this was felt to be not only a formidable challenge but also a 
worthwhile endeavor. 

A driving force behind the project was a deep dissatisfaction with 
widespread practices in software development. It appears that systems 
are - with few exceptions - unnecessarily bulky and their design 
contorted. One reason for this is the lack of extensibility of existing 
software, invariably leading to innumerable additions that usually 
include and duplicate functions that are already there but deeply 
embedded in some part of the existing system. These parts, however, 
can seldom be re-used - either because they need to be slightly 
modified or simply because they are inaccessible in their original place 
due to fixed linking and packaging strategies. It is now quite common 
that operating systems on workstations require several megabytes of 
memory and hundreds of megabytes of secondary store in order to be 
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functional. Even though there is no intrinsic necessity for such 
bulkiness, the situation is unfortunately tolerated by users, because the 
tremendous advances of semiconductor technology have made large 
memories affordable at reasonably modest expense - modest at least by 
the standards of a decade ago. 

The much deeper problem, however, is not the need for large stores, 
but the unreliability and unadaptability (called unmaintainability) of 
large software systems. Certainly, the size of a program alone is only a 
crude measure for the number of mistakes it contains. But it is an 
established fact that the number of errors grows rapidly with a system's 
increasing size. It should be recognized that the single most important 
contribution towards a design's reliability is the elimination of 
superfluous features andtacilities, and the containment of its complexity. One 
is left with the nagging impression that many systems have grown into 
gigantic monsters not because their complexity is inherent in the 
desired functionality, but rather because of inadequate design and 
because of chosen structures that later could not be corrected. And even 
more disconcerting is the circumstance that many customers are 
impressed by complex designs more than by economical engineering. 
After all, impenetrable software may still hide some promises and 
surprises. We call this psychological phenomenon - which is 
surprisingly common in the world of computing - 'gigalomania.' 

It is of course much easier to design a large system than an economical 
one. The latter requires experience, much careful planning and minute 
attention to details - in short, more time from its designers. Project 
Oberon has driven this knowledge home with indubitable clarity. The 
object-code size of the so-called outer core of the Oberon system is less 
than 200 kBytes, and comprises 

• a kernel; 

• a dynamic loader and a garbage collector; 

• a file system; 

• drivers for disk, diskette, mouse, keyboard, asynchronous and 
synchronous communication, printer and a bitmapped display; 

• local area network services; 

• support for texts and fonts; 

• a window subsystem; 

• a text editor; 

• the Oberon compiler. 

Even allowing for the fact that the National Semiconductor 32000 series 
processor produces denser code than many other popular micro-
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processors, Oberon is easily an order of magnitude smaller than system 
of comparable (or even lesser) functionality. 

The Oberon system is a hierarchy of modules, most of which export 
one or a few abstract data types. Each user is encouraged to extend the 
system - extensions are created by simply adding new modules. There 
is no boundary between 'the system' and 'the application program.' 
Figure 1.1 shows the modules that comprise the so-called outer core of 
Oberon. Except for modules Kernel and Display, the entire Oberon 
system is expressed in the programming language Oberon (for a system 
reference see Reiser, 1991). 

Much emphasis is nowadays placed on the use of sophisticated tools. 
We warn the reader against putting too much hope and trust in the 
potential of tools. None can produce miracles, and none has ever 
replaced careful and competent designers. But good tools certainly 
increase the designer's productivity. In fact, the better the designer, the 
higher is the gain of using appropriate tools. 
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Figure 1.1 Module hierarchy of the outer core of the Oberon system. Arrows 
depict import relations; for example, module Oberon imports module Input. 
Note that only the major import relations are shown, and several driver and 
command modules are omitted for clarity. 

Among all possible tools, we find that the programming language 
plays by far the most important role. In Project Oberon, it was initially 
planned to use Modula-2 because of its support of structured and 
modular program construction. But it was soon realized that the same 
principle of economy in design that was declared fundamental for the 
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system should also be applied to the language. The design of the 
Oberon language evolved in parallel with a large software project. 
Modula-2 was stripped of features that did not genuinely contribute to 
its power of expression. The principal concept that was added - type 
extension - was, on the other hand, the sorely needed missing part in 
the otherwise most important asset of Modula-2: in its strict, static 
typing of variables and functions. Thus Oberon is not another design 
conducted in the abstract with the attitude 'let's invent another nice 
feature.' It is purposefully tuned to be an efficient, convenient and safe 
instrument to express programs in the large. 

The result, the language Oberon, is presented in this book. A detailed 
account of Project Oberon is found in Wirth and Gutknecht (1992). Not 
surprisingly, an economically designed language is particularly suitable 
as a basis for teaching the subject of programming. After all, program­
ming is inherently difficult, and hence a student must be protected from 
having to carry the additional burden of a complex language. 
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2 A first Oberon program 

In this chapter we will follow the steps of writing a simple program, 
technically speaking a module, and thereby explain some of the 
fundamental concepts of programming and of the facilities of Oberon. 
The task is to provide a random number generator - a program that 
'throws dice' and produces successive unpredictable numbers. Such 
random number generators are an important utility in a computer. We 
will frequently use it ourselves in subsequent examples. 

The concepts of randomness and algorithm - a recipe for compu­
tation - are of course irreconcilable. All one could hope for is an al­
gorithm capable of producing a very long sequence of numbers in such 
a way that no pattern becomes discernible. 

The non-specialist might expect that the more ingeniously random 
such a program would be, the better its results. Knuth (1971) gives an 
example of such a 'super random numbers generator' that produced 
periodic sequences of very short length (a few thousands). Says Knuth: 
'The moral to this story is that random numbers should not be generated 
with a method chosen at random. Some theory should be used.' A method 
proposed by D. H. Lehmer some 40 years ago - the multiplicative linear 
congruential algorithm - withstood the test of time (see Box 2.1). 

The basic recipe - the so-called algorithm - is contained in Equations 
(1) - (2) of Box 2.1. We have to put this prescription into terms of 
Oberon. A first attempt leads to 

z:= (a*z) MOD m; 
"Return the real value zlm as result" 

This piece of text is yet far from being a program. However, an attempt 
to make one on its premise would be doomed. It is not difficult to see 
that the product a*z may easily exceed the range of integers that can be 
represented with 32 bits. There is a clever trick due to Schrage that 

9 
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Box 2.1 
Linear 
congruential 
random number 
generator 

Declaration 

The mathematical foundation is a beautiful example of the elegance of 
simplicity. All that is needed is a judicious choice of two integer 
parameters - the modulus m and the multiplier a - in the simple 
recurrence formula 

Zn+1 = azn mod m (1) 

The sequence must be started with an initial value Z1 called the seed. It 
turns out that the choice of m and a is critical. With m = 23 1 - 1 

= 2147483647 and a = 75 = 16 807, all numbers between 1 and m appear 
exactly once in the sequence defined by Equation (1) - there will be over 2 
billion random numbers that passed stringent statistical tests. For a 
discussion of random number generators, see the survey paper by Park 
and Miller (1988). 

In practice, one seldom needs random integers as large as 
2147483 647. We therefore normalize: 

r = zn 1m (2) 

The real random numbers rn are now from the interval 0 < rn ::;; 1. 

circumvents this difficulty. Select new constants q = Lm/ aJ = 1277731 

and r = m mod a = 2 836 and compute 

gamma := a*(z MOD q) - r*(z DIV q); 
IF gamma> 0 THEN 

z :=gamma 
ELSE 

z:=gamma+m 
END; 
"Return the real value z / m as result " 

The meaning of these Oberon statements should be quite obvious. Less 
obvious is that the modified computation is the same as (1). For our 
example, the mathematical detail is not essential. We refer the 
interested reader to Park and Miller (1988). 

The quantities z and gamma are variables; m, a, q and r are constants. 
Many programming languages require that the variables and constants 

1 LxJ denotes the largest integer not greater than x. 
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be explicitly defined and their type (such as integer or real) specified. 
Also, we need to express formally the fact that our program is a 
function that returns real values. 

Groups of statements that have a name and may be invoked from other 
locations in a program are called procedures. Constant, variable and 
procedure declarations read as follows: 

PROCEDURE UniformO: REAL; 
CaNST a = 16807; m = 2147483647; q = m DIVa; r = m MOD a; 
V AR gamma: LONGINT; 
BEGIN 

gamma := a*(z MOD q) - r*(z DIV q); 
IF gamma> 0 THEN 

z:=gamma 
ELSE 

z:= gamma + m 
END; 
RETURN z*(1.0/m) 

END Uniform; 

The first line expresses the fact that the procedure Uniform1 is a function 
procedure (without arguments) which returns a real value when 
invoked. The procedure statement is followed by the declarations of the 
constants and the variable gamma. Note that q and r are declared in the 
form of constant expressions that can be evaluated without the need to 
actually run the program. The operator DIV denotes the integer 
division and MOD the modulus. Constants and variables thus declared 
are local to the procedure. Therefore the variable z, which needs to 
retain its value from execution to execution, must be declared in a 
larger context. 

This larger context is the module. A module is a text unit that is accepted 
by the Oberon compiler and translated into machine executable code. 
But a module is more than that. It provides mechanisms for: 

(1) structuring of a program into independent units; 
(2) the declaration of variables that keep their value for the duration 

the module is active (that is, in memory) - these variables are 
called global to the module; 

(3) export of variables and procedures to be used in other modules. 

1 The name Uniform suggests that the random numbers all have the same 
probability - they are uniformly distributed. 
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Export 

Body 

The module therefore provides the facilities for abstractions - abstract 
data types - which we will explore in detail in Chapter 10 and Part III. A 
module, RandomNumbers, encapsulating our procedure Uniform reads 

MODULE RandomNumbers; 
VAR z: LONGINT; (* global variable *) 

PROCEDURE Uniform*O: REAL; 
CONST a = 16807; m = 2147483647; q = m DIVa; r = m MOD a; 
V AR gamma: LONGINT; 
BEGIN 

gamma := a*(z MOD q) - r*(z DIV q); 
IF gamma> 0 THEN 

z:= gamma 
ELSE 

z := gamma + m 
END; 
RETURN z*(1.0/m) (* value of the function *) 

END Uniform; 

PROCEDURE InitSeed*(seed: LONGINT); 
BEGIN 

z:= seed 
END InitSeed; 

BEGIN 
z := 314159 (* initial value of seed *) 

END RandornNumbers. 

The asterisk following the procedure name marks that procedure for export. In 
other words, it may be used in other modules that import module 
RandomNumbers. Similarly, a module may export variables. 

The statements between BEGIN and END at the trailing of the program 
text are called the module's body. They are executed when the module is 
loaded into the computer's primary memory. In our example, the body 
consists of a single statement that is initializing the global variable z. 
Initialization of variables is a typical task for the statements comprising 
a module's body. 

A random number generator is a utility to be used in other programs. 
Module RandomNumbers, independently compiled and available in 
object form in the system's program library, makes the utility available 
to procedures contained in other modules. These modules are clients of 
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module RandomNumbers. Let us illustrate the concept with a further 
example. Module ListRN prints a table of 100 tandom numbers. We 
realize that we need to specify an action that makes results visible. For 
this purpose, we should actually know the computer's facilities to 
communicate with its user. Since we do not wish to refer to a specific 
system running Oberon programs, we introduce abstractions that we 
postulate to be available. We stress, however, that they are not part of 
the language. 

MODULE ListRN; 
IMPORT Out, RandomNumbers; 

PROCEDURE List*; 
V AR i, max: INTEGER; rn: REAL; 
BEGIN 

max := 100; i:= 0; 
WHILE i < max DO 

rn := RandomNumbers.UniformO; 
Out.Real(rn,14); (* print random number *) 
Out.Ln; (* skip line *) 
i:= i + 1 

END 
END List; 

END ListRN. 

Import, qualified The procedure Out.Real(x, n) writes a real variable x to a suitable output 
name medium, for example a display window (n measures the total number 

of characters). Similarly, Out .Ln appends a line break. The import 
statement specifies which modules should become accessible within the 
scope of ListRN, namely module Out and module RandomNumbers. 

Procedures and variables from those imported modules appear with 
qualified identifiers. For example Out.Real (x) means call the procedure 
Real (x) from module Out. Similarly, RandomNumbers.UniformO invokes 
the function UniformO exported by module RandomNumbers. 

Client module We say that module ListRN is a client of modules Out and 
RandomNumbers. Thus the module is also a package of data and functions 
to be reused by other modules. To ListRN, both module Out and module 
RandomNumbers are utilities. They can be used without recompilation or 
access to the source texts. 

We trust that even though the Oberon statements used so far were 
not defined rigorously, the reader - even if he or she has little prior 
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Command 

Oberon system 

exposure to programming - could easily grasp their meaning. One 
thing, however, remains mysterious: where is the main program? Module 
ListRN has no body and comprises a procedure declaration only. How 
then can ListRN be run? 

The answer is that Oberon departs from the notion of a main program 
that can be run and procedures that are constituents of such a main 
program. An exported Oberon procedure is called a command.1 

The system that runs Oberon must provide facilities to start 
commands. Procedure List in module ListRN is such a command that 
can be executed from the computer's controls and as a result, lists 100 
random numbers. 

Computers run programs. One can distinguish between system programs and applicallon programs or in short applications. 
Well known applications running on workstations are Spreadsheets, Editors, Desk Top PuDlishing and Oraw or Paint 
programs. 
The operating system has facUities to load application programs and pass control to them. The application in tum seizes 
control and typiCally projects a user interface onto the screen. The interface provides a command and input mecnanism 
Operating sys-Iems differ in the level of common functions provided fOr display and 110 management 
The Simpler operating systems (e.g. MSIOOS up to version 3, Apple Finder) allOw only one appliCation to be resident in 
memory. USing Simultaneously more than one application is quile impractical since loading and saving typically lakes tens of 
seconds up to minutes. More sophisticated systems therelOte provide for multiple open applications with fast switching 
between them (e.g. Apple Multi Finder. IBM OSf2. UNIX). However. the faCT remains that the user alternates b8\W88n 
appliCalionswhichresloretheirownintertaceuponaClivation 
Interactive applications have 8 user interfaca which is typically structured into a set 01 menU8 whlc hare supported with a 

System.TIme 13.12.89 12:26:14 

~::::~; 
Edit.Search 
Edll.Store 

Compiler.Compile* 
Compiler.Compile-

System. Recall 
System.Openlog 
System.Open 

Edi1.TooI lada.TooI Draw.Tool Palnt.Tool 
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Edlt.Locale 
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Figure 2.1 Display screen of an Oberon system. 

Let us provide an example of a system running commands written in 
the Oberon programming language: the Oberon operating system 

1 To be precise, a procedure without formal parameters. 
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(Reiser, 1991). The display of a workstation running Oberon is 
portrayed in Figure 2.1. 

The screen is exhaustively tiled into non-overlapping rectangles 
called viewers, which display documents such as texts, graphics and 
pictures. If the name of a command appears anywhere in a text viewer, 
it can be activated by pointing at it with the mouse cursor and clicking 
the (middle) mouse key. 

Figure 2.2 shows a close-up view of two text viewers with titles 
System.Log and ListRN. Tool. System.Log is the name of a special viewer 
where commands display progress or error messages. The procedure 
Out.Real exported by module Out is assumed to write into that viewer. 
The viewer ListRN.Tool shows the command name ListRN.List. It was 
typed into this viewer using a text editor. The command can be 
executed by pointing at it with the mouse cursor. Thus the viewer 
ListRN. Tool operates like the menus of a conventional system. In our 
example, the command was executed and 100 random numbers are 
written into the viewer with name System.Log. -

1.745911 E-01 
8.745628E-03 
5.725493E-01 
4.745386E-09 
7.649856E-01 
3.674534E-01 
1.114252E-01 
8.725292E-01 
2.221318E-05 
6.305649E-02 

ListRN.List 

" 
Figure 2.2 Output produced by the command ListRN.List. 

A few more comments to our example are in order. The command 
List produces an editable text as output that is displayed in the viewer 
System.Log. From the 100 items, we see only 10. The others are accessible 
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Summary 

by scrolling, which is done in the usual manner using the scroll bar 
located at left. 

This concludes the discussion of our example. We remind the reader 
that the short excursion into the Oberon operating system was meant to 
illustrate one of many environments that could support commands 
written in the Oberon language. 

In summary, we have learned 

• Oberon' programs' are texts composed of procedural statements 
that specify an algorithm. 

• The procedure is the executable unit. The texts that specify proce­
dures are contained in modules, which are accepted by the com­
piler for translation. 

• All variables used in procedures are defined in declaration state­
ments. Variables may be local to a procedure or global to a 
module. 

• Besides data declarations and procedure texts, modules have a list 
of statements that is executed when the module is loaded into the 
computer's memory. 

• The module selectively exports procedures and variables. It 
serves as a utility for other modules that import that module. 
Hiding the implementation details of data structures in a module 
and providing access through procedures only is an important 
tool to structure large systems.1 

• The notion of a main program, a mainstay of traditional lan­
guages, is absent in Oberon. Oberon 'programs' are families of 
commands. The system running Oberon code provides facilities to 
execute commands, which are procedures exported by modules. 

Lastly, the example of random number generation has taught im­
portant lessons about program design. Let us conclude with another 
quote from Knuth: ' .. .look at the subroutine library of each computer 
installation in your organization, and replace the random number 
generators by good ones. Try to avoid being too shocked at what you 
find.' Our advice to readers is to use another generator only if you have 
positive evidence that it is better than the standa:rd generator discussed 
in this section. Many in current use are worse! 

1 Called abstract data structure or abstract data type - see Chapter 10 and Part III. 
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2.1 A notation to describe the syntax of Oberon 

The discussion of the last section was kept quite informal. This was 
permissible for an introductory example. However, programming is 
creating new programs. For this purpose, only a precise formal de­
scription is adequate. 

Formal language A formal language is a set of sequences of symbols. Elements of this set are 
called sentences. The term 'sentence' is more reminiscent of the 
applications of formal languages in linguistics. In the case of a pro­
gramming language, these sentences are programs - in Oberon techni­
cally termed modules. 

The symbols originate from a finite set called the vocabulary. The set 
of programs (which is infinite) is defined by rules of their composition. 
Sequences of symbols that are composed by these rules are said to be 
syntactically correct or well formed. The set of rules is the syntax of the 
language. The program (or sentence of the formal language) consists of 
parts called syntactic entities, such as declarations, statements or 
expressions. 

Syntactic factors If a construct A consists of B followed bye - that is, the concatenation 
Be - then we call Band e syntactic factors and describe A by the 
syntactic formula 

Syntactic terms 

A=BC. 

If, on the other hand, A is composed of a factor B or, alternatively a e 
we call Band e syntactic terms and express A by 

A=BIC. 

In addition to concatenation and choice, it is convenient to have a 
notation for option and repetition. If a construct A may be either B or 
nothing, this is expressed as 

A = [B]. 

If A consists of the concatenation of any number of Bs, including none, 
this is denoted by 

A = {B}. 
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Parentheses may be used to group factors or terms. One should note 
that A, Band C denote syntactic entities whereas I, =, [, ] { , }, (,) and 
the period are symbols of the meta-notation describing our syntax. 
Obviously, they are termed meta-symbols, and the notation introduced 
here is known as Extended Backus-Naur Formalism (EBNF). 

A few examples show how sets of sentences are defined by EBNF 
formulas: 

(A IB)(C I D) 
A[B]C 
A{BA} 
{AIB}C 

AC AD BC BD 
ABC AC 
A ABA ABABA ABABABA ... 
C AC BC AAC ABC BAC BBC ... 

Besides syntactic entities denoted by identifiers, we have a need to 
substitute elements - also called tokens - taken from the formal lan­
guage's vocabulary. We will adopt the widely used conventions for 
programming languages, namely: an identifier consists of a sequence of 
letters and digits, where the first character must be a letter; a string consists of 
any sequence of characters enclosed by quote marks. 

2.2 Exercises 

2.1 Provide an EBNF definition of identifiers and strings as defined above. 

2.2 The production A = T {I/+/I T} defines the sentences T, T+T, T+T+T and so on. 
The braces are only a convenient abbreviation. List two production rules, not 
involving braces or brackets, that define the same language. 

2.3 Consider the EBNF syntax 

E = [1/+/1 I 1/_/1] T tao T}. 
ao = 1/+" I 1/_". 

T =F {moF}. 
rno= 1/*" I "I". 
F=nu I id I "("EI/)". 

nu = digit {digit}. 
id = letter {letter I digit}. 

The entities letter and digit have their usual meaning. Construct sentences E of 
this language. What are these sentences? Reformulate the grammar using more 
suggestive names for the nonterminal symbols. 
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2.4 Clearly EBNF is itself a formal language. If it suits its purpose, it should at least 
be able to describe itself. Construct such a description. Use the following names 
for entities: 

syntax: 
statement: 
expression: 
term: 
'factor: 

a sequence of statements 
a syntactic equation 
a list of alternative terms 
a concatenation of factors 
an identifier, a string or a parenthesized 
expression 

The terminal symbols are identifiers, strings and the following symbols: I = [ ] . 
{ } ( ). 
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Synopsis 

Part I introduces the fundamental concepts of programming: the 
basic types, the assignment statement, control structures and 
procedures and modules. 

An extended Backus-Naur formalism is used to describe the 
syntax. The semantics of the control structures, namely the if 
statement, the case statement, and the loop expressed by while, 
repeat and loop statements are defined formally by means of 
predicates and their transformations. 

Input and output operations are introduced as service 
modules, based on the notion of the stream. The part ends with a 
complete module, drawing a fractal fern. . 



3 Tokens and basic types 

The formal definition of a programming language must eventually be 
given in terms of the characters available from the computer's 
keyboard. The creation of an intermediate level of representation by 
symbol sequences, called tokens, provides a useful decoupling between 
the language and its ultimate representation. Examples of tokens are 

• 1024,3.1415 

• gamma, a, pi 
• +, -, * 
• BEGIN, END, IF 

Numbers 

Identifiers 

Operators 
Keywords. 

The introductory example taught us that Oberon programs - more 
precisely Oberon modules and procedures - contain variables 
(designated by identifiers) that are bound to a type by means of a 
declaration. This data type represents information about the variable 
that is permanent, in contrast, for example, to its value. The type of a 
variable determines its set of possible values together with the 
operations that may be applied to it. Data types may be declared in the 
program (see Section 8.1). Such constructed types are usually based on 
composition of basic types. There exists a number of most frequently 
used elementary types that are basic to the language and need not be 
declared. In Oberon, these types are SHORTINT, INTEGER, LONGINT, 
REAL, LONGREAL, BOOLEAN, SET and CHAR. Since Oberon 
programs will execute on computers, the basic types have a close 
association with facilities of contemporary hardware. 

3.1 The vocabulary of Oberon 

The tokens of the Oberon vocabulary are divided into the following 
classes: 

(1) identifiers 

(2) numbers 

23 
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(3) character constants 

(4) strings 

(5) operators and delimiters. 

The rules governing their representation in the standard character set 
are as follows. 

3.1.1 Identifiers 

I 

ident = letter {letter I digit}. 
letter = "A" I "B" I ... I "Z" I "a" I "b" I ... I "z". 
digit = "0" I "1" I "2" I ... I "9". 

Upper and lower case letters are considered distinct. Examples of well­
formed identifiers are: 

List list a12 nextItem Viewers SRI01 

Examples of words that are not identifiers 

List element 
List-element 
List_element 
2N 

3.1.2 Numbers 

number = integer I real. 

blank space not allowed 
neither is a hyphen 
nor an underscore 
first character must be a letter 

integer = digit {digit} I digit {hexDigit} "H"~ 
hex Digit = digit I "A" I "B" I "e" I "D" I "E" I "F". 
real = digit {digit} "." {digit} [ScaleFactor]. 
ScaleFactor = ("E" I "D") ["+" I "-"] digit {digit}. 

Numbers are unsigned integers or unsigned real numbers. Decimal 
integers are sequences of digits. Hexadecimal integers must start with a 
digit followed by a sequence of hexadecimal digits and trailed by the 
suffix "H". Real numbers always contain a decimal point and a 
fractional part. A scale factor may optionally be appended. It starts 
with a "E" or a "D" which reads 'times ten to the power of.' The prefix 
"E" or "D" in the scale factor determines the type of the real number, 
either REAL or LONGREAL. 
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Examples of well-formed numbers are 

1024 
1AFH 
3.1416 2.99792458D8 

an integer in decimal notation 
an integer in hexadecimal notation (=431) 
real numbers 

The following character strings are not recognized as well-formed 
Oberon numbers: 

FFFFH 3,14159 .665; 1.35-43 

3.1.3 Character constants 

I CharConstant = """ character """ I digit {hexDigit} "X". 
character = digit I letter I "" I specialChar. 

Special characters are all the printable characters on the computer's 
keyboard that are not digits, letters or a blank. The following special 
characters are common to the ASCII character set: ! " # $ % & ' ( ) * + , - . 
/ : ; < = > ? @ [ \ ] A _ '{ I } '""'. 

A character constant may, instead of enclosing the character in quote 
marks, be specified by its ordinal numberl in hexadecimal notation, 
followed by the letter X. 

Examples of character constants are "a", ''b'', 1/1", "@" and 61X. Both 
"a" and 61X denote the same character, namely 'lower case A' (if the 
ASCII code is assumed). 

3.1.4 Strings 

I string = """ {character} """. 

A string is a sequence of printable characters, including blanks and 
special characters, enclosed in quote marks. In order that the closing 
quote mark be recognized unambiguously, the string cannot contain 
such a quote mark. Example: "This is a string". 

3.1.5 Operators and delimiters 

Delimiters and operators are either special characters (or pairs thereof) 
or reserved words written in capital letters. They serve as terminal 

1 A character's ordinal number is defined by the encoding scheme. In most 
contemporary personal computers and workstations, this is the standard ASCII 
code. 
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symbols in the Oberon syntax - their meaning will be explained 
throughout subsequent chapters. A complete list is found in Appendix 
A, Section A.3, page 283. 

Examples include: 

• + - * / < <= > >= 
• () [ ] : ; := 

• BEGIN END PROCEDURE MODULE 

Operators 

Delimiters 

Reserved words 

The term reserved word means that these letter sequences must not be 
used as identifiers. 

3.1.6 Predeclared identifiers 

Besides the set of reserved words, which act as separators and are part 
of the vocabulary of the Oberon definition, there is a list of predefined 
or standard identifiers. Syntactically, they appear at places where user­
defined identifiers may also apply. 

Predeclared identifiers are used as: 

• truth values: TRUE, FALSE; 

• type identifiers, for example INTEGER, REAL, SET, CHAR; 

• standard functions and procedures, for example ABS, LEN, INC. 

The predeclared identifiers can be visualized as if declared in a context 
that encompasses the module being created by the programmer. 
Therefore they are also called pervasive since they are valid in all parts of 
the module's text. A completed list is found in Appendix A, Section A4, 
page 284. 

3.1.7 Rules for blanks and carriage returns 

Oberon programs are sequences of the tokens defined above. The syn­
tactic rules governing these sequences will be the object of the following 
chapters. There is one further rule, which will not be expressed 
formally: blanks, tab and carriage return characters may be added or removed 
from the program text, except where a token's identity would be lost. An 
example will make the point: 

IFx=yTHEN ... 
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The space before x and after y is essential. If omitted, IFx and yTHEN 
will be parsed as identifiers. On the other hand, the spaces enclosing the 
equal sign "= 1/ are optional. 

Blanks and tabs should be used liberally to make program texts more 
readable. For example, the spaces enclosing the equal sign above 
improve the appearance of a program text. Similarly, in the in­
troductory example, indentation was used to enhance the structure of 
programs. 

Comments At any point in the program's text, comments may be interspersed. A 
comment is any sequence of characters enclosed in the brackets 1/(*" 
and 1/*)',. Comments may also contain instructions for the compiler. 

3.2 Basic types 

There are eight basic types in Oberon. They are identified by the 
predeclared identifiers SHORTINT, INTEGER, LONGINT, REAL, 
LONGREAL, BOOLEAN, SET and CHAR (see also Appendix A, 
Section A.6.1). 

For the basic types, the set of admissible values is bounded by ex­
tremal values, which may be accessed in Oberon programs through the 
(predeclared) functions 

MIN(T): 
MAX(T): 

The minimum value of type T 
The maximum value of type T 

For example, if SHORTINT is represented by 8 bits, then 
MAX(SHORTINT) = 127 and MIN(SHORTINT) = -128. Typical 
extremal values are listed in Appendix B. For obvious reasons the first 
five types are called the numeric types. They form a set hierarchy (see 
Section 3.2.3). 

3.2.1 The types SHORTINT, INTEGER and LONGINT 

The three types comprise the integer types. They represent the integer 
numbers and differ by the cardinality of the set of numbers represented 
by each type. The need for different types arises from the architectures 
of machines, which - for reasons of efficiency - provide various word 
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formats with corresponding machine instructions. It is the re­
sponsibility of the programmer to insure that the result of a computa­
tion a<gain lies within the set of numbers represented by each type. 
Otherwise, an overflow is said to have occurred, leading in general to a 
termination of the program that caused the overflow.1 

3.2.2 The types REAL and LONGREAL 

The real types approximate the real numbers. Each element from the set 
of REAL or LONG REAL is representative of an interval of genuine real 
numbers. Variables of a real type are represented by pairs of integers, a 
mantissa and an exponent. This is called floating-point representation. The 
two types are distinguished by the number of digits of the mantissa (the 
fractional part) and the exponent. As with the integer types, overflow 
may occur and result in termination of the program. 

Floating-point numbers are only an approximation to the real num­
bers of mathematics. As a consequence, computations involving float­
ing-point values are inexact because each operation may be subject to 
truncation. The resulting problems have been investigated in detail, and 
are treated in every text on numerical mathematics. 

3.2.3 Hierarchy of the numeric types 

The numeric types are comprised of the integer and real types and form a 
set hierarchy. 

LONGREAL ~ REAL ~ LONGINT ~ INTEGER ~ SHORTINT 

The range of the larger type includes the ranges of the smaller types. 
For example, REAL includes LONGINT ... SHORTINT. The smaller type 
is said to be compatible with the larger one in the sense that it can, 
without danger of loss of leading digits, be converted. In most cases, 
such a conversion is also exact.2 In assignments and in expressions, the 
conversion of internal representations is automatic. 

1 Some implementations allow trapping of overflow to be switched on and off. 
2 The typical exception is REAL ~ LONGINT, where truncation may occur. 
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3.2.4 The type BOOLEAN 

A Boolean value is one of the logical truth values, which are represented 
in Oberon by the standard identifiers TRUE and FALSE. 

3.2.5 The type SET 

The values belonging to the type SET are elements of the power set of 
{O, I, ... , N} where N = MAX(SET). N is a constant defined by the im­
plementation. It is typically the word length of the computer (or a small 
multiple of it). In fact, sets are efficiently implemented as bit operations. 

The notation for sets follows the mathematical convention: 

I set = "{" [element { "," element}] "}". 
element = expression [ " .. " expression]. 

If expression is an integer constant (or a constant expression, see Section 
4.1), we speak of a set constant. The double period is a shorthand 
notation for a range of integers, for example {O, 2 . .4, 8} = {O, 2, 3, 4, 8}. 

Examples of set constants are 

{ } {1, 6, 10} {O, 2 . .4, 8} 

where { } denotes the empty set. 

3.2.6 The type CHAR 

A major portion of the input and output of computers is in the form of 
strings of numerals, characters from the roman alphabet and a small set 
of special symbols such as punctuation marks and symbols used 
frequently in commerce and mathematics. This set consists the value 
range of the type CHAR. For the computing machine, each symbol 
must be represented by a binary value that encodes the symbol. Different 
brands of computers may use different character sets. However, there is 
a strong trend towards the so-called ASCII code (of ISO) which defines 
a set of 128 characters, 33 of which are so-called control characters. The 
remaining 95 are printable characters (see Appendix B). 

rdinal numbers The set representing the type CHAR is ordered, and each character has 
a fixed position or ordinal number. This is reflected in the notation for 
character constants, which may be written as "a" or 61X, the first form 
denoting the value of a variable of type CHAR by the representation, 
the second by the (hexadecimal) ordinal number. 
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4 Declarations, expressions 
and assignments 

Computers execute sequences of machine instructions, each one trans­
forming the machine's state, which is defined as the contents of mem­
ory and registers. A programming language is an abstraction of such a 
machine instruction sequence. The basic unit is the statement, which­
when interpreted or executed - specifies an action. 

The most elementary action is the assignment of a value to a variable. 
Let us introduce a few examples of assignment statements: 

i:= 1 
i:= i + 1 
x := a1 * X + b1 * Y + e1 
det := b * b - a * c 
r1 := (ABS(b) + sqrt(det»/a 

We observe that the assignment statement consists of a variable on the 
left and an expression on the right of the assignment symbol 1/:=". The 
expression is evaluated, and its result replaces the value that the vari­
able had prior to the assignment. 

In this chapter, we will introduce form and semantics of expressions 
and of the assignment statement. Since all variables have to be declared, 
the topic of constant and variable declarations is considered first. The 
declaration binds an identifier to properties of the object that it 
represents. These properties are expressed by the object's type. The type 
defines the set of values and the operations that are applicable. 

4.1 Declarations 

In Oberon, every object of the language such as constants, variables, 
procedures and even types must be declared. The declaration creates 
the object and defines its type. 
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4.1.1 Constant declarations 

The constant declaration binds an identifier to a constant or a constant 
expression. It observes the syntax: 

I ConstDeclaration = ident [1/*,,] 1/=" ConstExpression. 
ConstExpression = expression. 

The simplest expression is a number, a character, a truth value or a set 
constant. More complex expressions are treated in the next section. The 
evaluation of a constant expression must be possible by a mere textual 
scan without actual execution of the program - the operands are 
restricted to constants. 

The asterisk is called the export mark. Identifiers thus marked will be 
visible outside the module containing the declaration. We will say more 
about this in Chapter 6. A sequence of constant declarations, separated 
by semicolons, is preceded by the symbol "CaNST", for example 

CaNST a = 16807; m = 2147483647; q = m DIVa; r = m MOD a; 

Constants with suggestive names help make a program readable. The 
use of identifiers declared as constants rather than their value has the 
additional benefit that if the constant value should change, there is only 
one place where the program text need be updated. This avoids a common 
mistake that one or a few instances of an explicit constant, spread 
throughout the program, remain unrevised. 

4.1.2 Variable declarations 

The state of an Oberon computation is defined by a set of variables. Such 
variables have two properties: 

• a type that defines the set of values it may assume as well as the 
operations applicable to it; 

• a value. 

The variable declaration defines a variable and binds an identifier and a 
type to it. The value of the variable however, remains undefined. We 
say that the variable is an instance of its type and that the identifier 
denotes (or represents) the variable. In the computer implementation, a 
variable of the basic types is a byte, a word or a double word of 
memory; the identifier can be visualized as its address. 
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Terms 

The syntax of the variable declaration is 

VarDeclaration = IdentList u:" type. 
IdentList = ident [u*"] {U," ident [u*"]}. 

At this point, type stands for one of the predefined identifiers repre­
senting standard types, namely SHORTINT, INTEGER, LONGINT, 
REAL, LONGREAL, BOOLEAN, CHAR and SET. Again the asterisk is 
the export mark. More types will be introduced in Chapters 8 and 11. 

Variables of the same type may be grouped in the same declaration; a 
sequence of variable declarations, separated by semicolons, is preceded 
by the symbol ''V AR"; for example, 

VAR 
i, m, n: INTEGER; index: LONGINT; 
a, b, time* : REAL; 
ch:CHAR; 

The identifier time is marked for export. 

4.2 Expressions 

4.2.1 Syntax and general semantics 

An expression is, in general, composed of several operands and opera­
tors. Its evaluation consists in applying the operators to the operands in 
a prescribed order, in general from left to right. Parentheses are used to 
modify this left-to-right rule. The operands may be constants, variables 
or functions. 

An expression consists of consecutive terms: 

TO Et> TI Et> ••• Et> Tn. (1) 

The symbol Et> stands for an add operator such as + or - from ordinary 
arithmetic. Parentheses are used to indicate precedence, that is, the 
order in which the expression is evaluated. Using parentheses, the left­
to-right order of evaluation in (1) is made explicit: 

( ... ((TO Et> Tl) Et> T2) ... ) Et> Tn. (2) 
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Each term of the expression similarly consists of factors: 

FO ® F1 ® ... ® Fn. (3) 

where (3), like (1), is evaluated from left to right, that is, is parenthe­
sized like (2). The symbol ® stands for a multiplication operator. As is 
usual in mathematics, multiplication operators take precedence over 
add operators, a fact that we express symbolically as @ ~ EB. 

In EBNF notation, an expression is defined by 

expression = SimpleExpr [relation SimpleExpr]. 
relation = "=" I "#" I "<" I "<=" I ">=" I ">" I "IN" I "IS"l. 

SimpleExpr = ["+" I "-"] term {AddOperator term}. 
AddOperator = "+" I "-" I "OR". 
term = factor {MulOperator factor}. 
MulOperator = "*" I "I" I "DIV" I "MOD" I "&". 
factor = number I CharConstant I string I set I NIL2 

I designator I FunctionCall 
I "(" expression ")" I "-" factor. 

FunctionCall = designator "(" [ActuaIParameters] ")". 
ActualParameters = expression {" ," expression}. 

designator = ident. 

As the term suggests, a designator designates a variable or a constant. 
For the time being, it is simply an identifier. More complex designators 
will be introduced later. For example, a designator may represent an 
array element ali] or a field f of a record r expressed as r.f. 

A function call looks like the familiar mathematical function notation, 
for example 

sin(x) cos(omega*t) sqrt(b*b - 4*a*c). 

Function calls as factors act exactly as one would expect from ordinary 
mathematics. They stand for a result that is obtained through a pre­
scribed operation on the arguments. 

1 Explained in Chapter 11. 
2 See chapter 9. 
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Examples It is instructive to study a set of examples. In fact, we encourage the 
reader to parse the following expressions into their syntactic con­
stituents: 

a+b-c+d 
b*b-4*a*c 
a=b 

(a + b) - (c + d) 
-y + ABS(x) 

(-b + sqrt(b*b - 4*a*c»/(2*a) 
(NextString = "END") OR flag 
(i DIV j) - 3.14159 

..... (a*a < b) & ~ (a = 4.0) OR c & d 61X= "a" 

The meaning - or semantics - of the examples is straightforward. They 
are either numerical expressions, yielding results that are simple 
numeric types, or they are relations and Boolean expressions resulting 
in TRUE or FALSE. 

The following symbol strings are not Oberon expressions: 

bb-4ac 

a+-b 
a<b&c=5 

4.2.2 Type rules 

multiplication operator missing, should read 
b*b-4*a*c 
adjacent operators, should read a + (-b) 
parentheses missing, should read 
(a < b) & (c = 5) 

Let us look at a second set of syntactically well-formed expressions: 

"a"+ 3.14159 
(a = b) - sqrt("144") 

It is not clear how these expressions should be evaluated. What sense 
does it make to add a character constant to a number? Can a truth value 
be used as a number? There are various schools of thought with respect 
to these questions. Some languages (e.g. PL/I) define elaborate type 
conversion rules or treat truth values as the numerical constants 0 and 1 
(e.g. APL). We believe that what such languages teach us is the way not 
to do it. In essence, Oberon requests the type of operands to be identical 
and allows mixing of types in only a few well-understood cases, for 
example when the type of one operand includes the type of the other 
one. For a given operator, the types of operands that are expression 
compatible are listed in Table 4.1. More details about the basic types 
follow in subsequent sections; the types ARRAY, POINTER and 
RECORD await later chapters. 
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Table 4.1 Expression compatibility. 

Operator Valid operand types Result type 
(or operands) 

+ - * numeric types largest numeric type of the 
operands 

/ numeric types smallest real type that in-
cludes both operands 

+ - * / SET SET 

DIV MOD integer types largest integer type of the 
operands 

OR &- BOOLEAN BOOLEAN 

= # < <= numeric types, CHAR, ARRAY BOOLEAN 

»= OF CHAR, 
string constant 

= # BOOLEAN, SET, POINTER, BOOLEAN 
procedure variable 

IN left: integer type BOOLEAN 
right: SET 

IS left: POINTER, RECORD1 BOOLEAN 
right: type identifier 

4.2.3 Relations 

Relations are expressions of syntax 

I expression = SimpleExpr relation SimpleExpr. 
relation = "=" 1"#" 1"<" 1"<=" 1">=" I ">" I "IN" I "IS". 

They yield a result of type BOOLEAN. The type compatibility rules are 
stated in Table 4.1. The relational operators are 

equal 
# not equal 
< less 
<= less or equal 

1 Must be a variable parameter. 

> 
>= 
IN 
IS 

greater 
greater or equal 
set membership 
type test 
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Type rules 

The meaning of comparison operators is straightforward. A relation 
i IN S holds if integer i is member of set S. More on the type test will be 
found in Section 11.2.2. 

Examples of relations include 

"a" <"b" 
"abc" >= "xyz" 
e < pi 
2 IN {I, 3 .. 7, II} 
"a" < "ab" 

TRUE ORD("a") = 97, ORD("b") = 98) 
FALSE, collating sequence 
TRUE 
FALSE 
illegal, argument types not compatible 

For the precise definition of relations involving strings and character 
arrays of different length, we refer to Section 8.2.6. 

4.2.4 Arithmetic expressions 

Arithmetic expressions are composed of numeric constants, variables of 
numeric types, functions whose evaluation results in a number, and the 
(dyadic) operators: 

+ 

* 

addition 
subtraction 
multiplication 

/ 
DIV 
MOD 

real division 
integer division 
modulus 

Integer division DIV and modulus MOD admit integer arguments only 
and are defined by the algeb!aic identity 

x == (x DIV y)*y + (x MOD y) 
o ~ (x MOD y) < y or y < (x MOD y) ~ 0 

(1) 
(2) 

Thus the integer division yields the largest value not greater than the 
quotientx/y and the modulus is the remainder of the integer division. 
Parentheses are used to control the order of evaluation. The monadic 
minus sign is used to express negative numbers and to negate terms, for 
example -3 or -a. 

The numeric types may be mixed in arithmetic expressions. At the ap­
plication of each operator, the smaller type, Tl, is first converted to the 
larger one, T2 say. The result of the operation is then also of type T2 (see 
Table 4.1). 
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Let us illustrate the type rule with a few examples. Assume 
s: SHORTINT; i: INTEGER; 1: LONGINT; r: REAL; lr: LONGREAL. 
Then 

IMODs 
1.0/s 
i -lr 

LONGINT 
REAL 
LONGREAL 

i*r 
rDIVi 
l/lr 

REAL 
illegal 
LONGREAL 

Type conversion In arithmetic expressions, most type conversions are handled automat­
functions ically. There are, however, cases where explicit type conversions are 

required. The example r DIV i is such a case. For this purpose, Oberon 
affords the following type conversion functions: 

Table 4.2 Type conversion functions. 

Name Argument type Result type Function 

ENTIER(a) real type LONGINT LaJ 1 

SHORT(x) x: LONGINT INTEGER identity (truncation is 
x: INTEGER SHORTINT possible) 
x: LONG REAL REAL 

LONG (x) x:SHORTINT INTEGER identity 
x: INTEGER LONGINT 
x: REAL LONGREAL 

Using explicit type conversions, the erroneous expression r DIV i may 
be corrected; that is, ENTIER(r) DIV i. 

4.2.5 Boolean expressions 

The constituents of a Boolean expression are the truth values denoted 
by the standard identifiers TRUE and FALSE, variables of type 
BOOLEAN, relational expressions and the operators 

OR logical disjunction ...- logical negation 
& logical conjunction 

The precedence relation is "...-" ~ II &" ~ "OR". Therefore 

P OR q & s OR t = P OR (q & s) OR t 

1 Largest integer not greater than a . 
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Oberon defines the Boolean connectives as conditional evaluations; that is, 

pORq 
p&q 
---p 

=> if P then TRUE else q 
=> if P then q else FALSE 
=> if P then FALSE else TRUE 

where p and q are variables or expressions of type BOOLEAN. This 
definition is different from the mathematical one using truth tables. It 
implies that the second argument is not evaluated if the result is already 
known from the first argument. The notable property of this definition 
is that the result may be well defined even if the second argument is 
not. As a consequence, the order of the operands may be significant -
they are not commutative. 

De Morgan's law Boolean expressions may often be simplified using De Morgan's law 
stating the equivalences 

(---p) & (---q) == ---(p OR q) 
(---p) OR (---q) == ---(p & q) 

(1) 
(2) 

Relation as factor Relations result in the type BOOLEAN and thus may appear as factors 
in Boolean expressions. For example, 

(i < N) & --- eof 

It relations appear in Boolean expressions, they must always be enclosed in 
parentheses. Thus a construct such as i < N & ---eot is illegal because it 
would be parsed as i < (N & ---eo!>, which violates type rules. 

4.2.6 . Set expressions 

Sets are factors defined syntactically as 

I set = "{" [element {"," element}] "}". 
element = expression [ " .. " expression]. 

The expressions must evaluate to numerical results of integer type. The 
notation E1..E2 is a shorthand for E1, E1 + I, E1 +2, ... E2-1, E2. 
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Examples include 

{} the empty set 
{I, 4 .. 8, 20} the set {I, 4, 5, 6, 7, 8, 20} 
{I, n+ 1 .. 2 * k} the set {I, n+I, n+2, ... 2k-I,2k} 

Set expressions comprise sets, set variables and the operators 

+ set union 
set difference 

/ 
* 

symmetric set difference 
set intersection 

The monadic minus sign denotes the complement, that is -U represents 
the set of integers between 0 and MAX (SET) that are not elements of U. 
The operators 1/*" and 1//" are multiplicative operators and hence take 
precedence over 1/+" and 1/_". 

As an exercise, let us express the definition of the set operators in 
Oberon notation, using the membership relation IN: 

iIN (-U) =:} 

iIN(U+V) =:} 

iIN (U - V) =:} 

iIN(U*V) =:} 

iIN (U/V) =:} 

(i IN {O .. MAX(SET)}) & -(i IN U) 
(i IN U) OR (i IN V) 
(i IN U) & -0 IN V) 
(i IN U) & (i IN V) 
«i IN U) # (i IN V» 

where i is an integer and U and V are sets. 

4.2.7 Predeclared functions 

Oberon provides a set of predeclared functions for 

• some frequently occurring computations; 

• access type-specific information. 

An example of the first kind is ABS(x) that computes the absolute value 
of a variable x of integer type. The functions MAX(T) or MIN(T) that we 
encountered earlier are typical for the second kind. A complete list of 
the predeclared functions is given in Appendix A, Tables A.I and A.2, 
page 302. 

4.3 The assignment statement 

The assignment statement serves to evaluate an expression and assign 
its value to a variable. Its syntax is: 
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I assignment = designator ":=" expression. 

The action of the assignment statement consists of three parts: 

(1) evaluate the designator resulting in a variable; 

(2) evaluate the expression yielding a value; 

(3) replace the current value of the variable identified in 1 by the 
value obtained in 2. 

In the simple case that we consider here, evaluating a designator means 
accessing the memory location that holds its value. When discussing the 
array data structure, we will encounter designators such as a[i + 1] 
whose evaluation involves integer computations. 

4.3.1 Type rules 

The type of the designator must be compatible with the type of the expression. 
In general, this means that the two types must be identical, or in the 
case of numerical types the designator may be of a larger type that in­
cludes the type of the expression. 

For reference purposes, Table 4.3 lists the full set of rules for assign­
ment compatibility of an expression with a given designator. Rows 3-7 
relate to concepts that will be introduced in later chapters. 

Table 4.3 Assignment compatibility of v:= e. 

Type or value of expression e I Type of designator v 
Both types are equal (but not an open array) 

numeric type numeric type, includes type of expression 

record type record type, type is a base type of expression1 

pointer type pointer type, type is a base type of expression 

value NIL pointer or procedure type 

string of length 1 ARRAY n OF CHAR (n > 1) 

name of a procedure procedure type with matching parameter list 

1 Condition is met if the type of the designator is equal to the type of the expression. 
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4.3.2 Formal definition, pre-condition and post-condition 

Pre-condition, 
result condition 

Axiom of 
assignment 

Examples 

A formal way to reason about the effects of an assignment is to record 
explicitly the states holding before and after its execution. We charac­
terize a set of states by a predicate over the involved variables (see 
references at end of Chapter 5). Then all states satisfying the predicate 
belong to the considered set. 

Let R denote a predicate that defines the set of states after the execution 
of the assignment statement. It is natural to view these states as the 
result of the assignment, and hence R is referred to as the result condition 
(the term post-condition is sometimes used synonymously). The 
predicate P holding before execution is called the pre-condition. It is 
often useful to add the pre-condition and the result condition as com­
ments to the left and to the right of our statement S: 

(4) 

This formalism is useful since, given the goal R, it is possible to infer the 
precondition P. We state the main result in the following axiom. 

Consider the assignment 
(* P *) v:= e (* R *) 

where v is a variable and e an expression. 

The weakest precondition P is derived from R by substituting every 
(free) occurrence of v in R bye. 

Let us proceed with the simplest example. The goal R is i = 1 and the 
assignment i:= 1. We substitute 1 for i in the relation i = 1 and obtain 
the pre-condition 1 = 1 or TRUE; in other words, 

Thus, whatever the state prior to executing the assignment i:= 1, the 
assertion i = 1 holds afterwards. 

In a second example, we strive for the result condition i = N after the 
assignment i:= i + 1. Substitution of i + 1 for i in the relation i = N 
yields i + 1 = N or i = N -1; hence 



42 Declarations, expressions and assignments 

HALT 

The following table lists a number of further examples: 

P S R 
c=a*b x:= a * b x=c 
x<y+2 x:= x-2 x<y 
i<N i:= i + 1 i $;N 

4.3.3 Statement sequence 

A computation is a sequence of actions that transforms an initial state 
into a final one that, it is hoped, satisfies the stated result condition. In 
Oberon, the statement is the basic unit of action. Thus the sequence of 
actions is expressed in a statement sequence 

The semicolon is a statement separator that indicates that the action 
specified by a given statement, Sj say, is to be succeeded by the one tex-
tually following the separator. 

It is straightforward to express the syntax of the statement sequence 
in EBNF notation: 

I StatementSequence = statement {";" statement}. 

The assignment discussed here is just one of a number of statements 
that will be treated in later chapters: 

statement = [assignment I ProcedureCall 
I If Statement I CaseStatement 
I WhileStatement I RepeatStatement 
I LoopStatement I WithStatement 
I ExitStatementl ReturnStatement]. 

The syntax of statements implies that a statement may consist of no 
symbols at all. In this case, the statement is said to be empty, and evi­
dently denotes the null action. This curiosity among statements has a 
reason: it allows semicolons to be inserted at places where they are ac­
tually superfluous, such as at the end of a statement sequence. 

A statement sequence is terminated, and the enclosing program 
brought to an abnormal halt if the predeclared procedure 
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HALT(e) 

is called (call statement: see Section 6.1). The argument e is an integer 
expression whose value identifies the termination. Typically, that value 
is displayed by the operating system. 

Return statement A statement sequence is also terminated if a return statement is exe­
cuted (see Section 6.4.2). 

Formal Given the result condition R, the pre-condition of the statement se-
definition quence may be computed by stepwise application of the substitution 

rule, starting with 5n and ending with 51: 

Consider the task of determining P in the following example: 

We introduce intermediary predicates: 

(* P *) == (* PI *) 
(* PI *) i:= i + 1; (* Rl *) == (* P2 *) 

(* P2 *) j:= 2*i (* R2 *) == (* R *) 
(* R *) 

We know R2, namely j = n, and 52, the assignment j:= 2*i. Using the 
substitution rule, we find for P2 the predicate n = 2*i. Now we equate 
Rl = P2 and derive PI == n = 2*(i + 1): 

Next we invert the order of evaluation; that is, our sample statement 
sequence is j := 2*i; i:= i + 1. Similar formal manipulations yield 

(* 2*i = n *) j:= 2*i; i:= i + 1; (* j = n *). 

It is evident that the two pre-conditions specify different states. For 
example, if n = 4 then the preconditions are i = 1 for the first case and 
i = 2 for the second one. From this simple example, we conclude that the 
order in which the statements are executed matters. 
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4.3.4 Special assignment statements as predeclared procedures 

For some frequently occurring assignment statements, Oberon provides 
an alternative notation. For example, to increment an integer variable i, 
the assignment i := i + 1 may be replaced by INC(i). Similarly, DEC(i) is 
equivalent to i := i-I. 

Syntactically, INC (i) and DEC(i) are procedure calls (see Chapter 6). 
All predeclared procedures that abbreviate assignments are listed in 
Appendix A, Table A.3, page 303. The rationale behind these 
procedures is the possibility of producing efficient code, using special 
machine instructions. The programmer is thus advised to use the 
procedures whenever applicable. 

4.4 Summary 

In Oberon, all identifiers must be declared. In this chapter, we have 
introduced the constant and the variable declarations. A constant 
declaration associates an identifier with a constant. As the name 
implies, the variable declaration defines a variable that is represented 
by an identifier. The variable declaration associates a type with the 
variable. This association is constant and valid throughout the existence 
of the variable. The type defines the set of values that the variable may 
assume and the operations in which it can participate. 

A fundamental construct of procedural languages, such as Oberon, is 
the assignment statement 

v:=e 

Expression e is evaluated and the result replaces the old value of the 
variable v. 

Expressions differ by the operator and the type of the operands. For 
example, we introduced relations, arithmetic expressions, Boolean 
expression and set expressions. 

Of particular importance is the requirement that the factors entering 
expressions and the constituents of the assignment must be type-com­
patible. Expression compatibility and assignment compatibility are 
summarized in Tables 4.1 and 4.3. This compatibility requirement, 
called strong typing, empowers the compiler to check whether 
expressions and assignments are meaningful, thereby diagnosing a 
large number of programming errors. 

We have introduced a formal method for defining the semantics of 
the assignment. The set of desired states after the assignment is 
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characterized with a predicate: the result condition or post-condition. The 
axiom of assignment is used to transform that predicate into a pre­
condition defining the admissible set of states prior to the assignment. 

A number of statements, separated by semicolons, is called a state­
ment sequence. It represents a sequential computation. The statements 
are executed from left to right. 

4.5 Exercises 

4.1 Identify well-formed identifiers: 
next_item nextItem IstStreet FirstStreet LONGINT 
WHILE OFFFH 

4.2 Identify well-formed numbers: 
a4.4.3 15,13222t 10 .2213 1.33333E354777 3FFX 3FFH 
1.44E-88 7FFH E-18 

4.3 Identify the predeclared identifiers: 
ARRAY TRUE ABS DIV MOD COPY DEC 
INTEGER OR RETURN Max MAX FFFFH 

4.4 Identify legal declarations. Some are legal but nonsensical: why? 
CaNST a = 11; CONST a := 234; 
CaNST TRUE = FLSE; CONST DO = TRUE; 
caNST i = ORD("a"); INF = MAX(real); inf = MAX (REAL); 
CONST random = RandomNumbers.UniformO; 
VAR REAL: INTEGER; V AR DO: REAL; V AR do: REAL; 
V AR Real: INTEGER; V AR Real := INTEGER; 
V AR a; b; c: REAL; V AR i, j, k: INTEGER; 

4.5 Determine the value and the type of the following constants (assuming 
extremal values of Appendix B): 

CONST 
i = 3; j = 10000; k = 300000; 1= 7FFAH; s = {1,2,3}; pi = 3.14159; 
inf = MAX (INTEGER); p = ENTIER(pi); 1 = i*pi; ich = ORD(44X); 

4.6 Assume the declaration 
CONSTz=O; 
V AR si: SHORTINT; i: INTEGER; Ii: LONGINT; ch: CHAR; 

s: SET; r: REAL; lr: LONGREAL; b: BOOLEAN; 
Evaluate the following assignments. Some of them are illegal: which? 

si := ORD(CHR(71»; i:= ORD("G"); Ii:= ORD(CHR(72»; 
i:= 1 + ENTIER(r); si:= SHORT(ENTIER(3.14»; 
b := 3 < MAX(REAL) OR Ii > i + 4; ch:= 44X; b:= 44X > "a"; 
ch := "this is true"; b:= ("abc" > "this") & (MAX(REAL) > 1/ z); 
b := (CAP(6DX) = "M") & (Ii = 1 / z); 
i := 4 + CHR("a"); 



46 Declarations, expressions and assignments 

4.7 Determine the pre-condition P of the following assignments, for which result 
conditions R are known: 

Assignments 

j:= i DIV 2 

d := a*a - 4*a*c 

r := r - Y; q:= q + 1 

x:= x*n 

Result condition R 

j = 0 

d~O 

qY+r=X 

x=n! 

4.8 Write a statement sequence that interchanges the values of two variables a and 
b. Prove the result using the axiom of assignment. 
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The prime characteristic of a computation is a sequence of actions to be 
executed sequentially. If this sequence were a fixed one, the computer 
would not have developed in its present form. Individual actions can be 
selected, repeated or performed conditionally, depending on previ­
ously computed results. Hence the temporal sequence of actions is 
normally not identical to the textual sequence of statements. It is this 
dynamic sequencing of actions, also known as control structure, that is 
the foundation of the phenomenal success of software. 

The sequence of actions is determined by control statements indicating 
conditional execution, selection, or repetition of statements or whole 
statement sequences. Since a control statement governs other 
statements, it is said to be a structured statement. Languages with struc­
tured statements are known as structured languages. Years of experience 
prove that proper control structures go hand in hand with purpose 
tuned development of a program text - thereby making it readable and 
ultimately trustworthy. This goal, however, is only achieved if the 
structure is made visible - the use of one line per statement (or 
statement sequence) and proper indentation are indispensable tools. 
For example, recall from the introduction 

IF gamma> 0 THEN 
z:= gamma 

ELSE 
z:= gamma + m 

END; 

Syntactically, structured statements are expressed recursively, having 
StatementSequence and hence statement as constituents. As in the case of 
the assignment statement, we will formally define the control structures 
by means of predicates and their transformation rules (Gries, 1981; 
Cohen, 1990). 

47 
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5.1 Conditional statements 

5.1.1 The if statement 

Selecting a statement sequence among a set of sequences under the 
control of Boolean expressions is one of the main constituents of pro­
grams. As an introductory example, consider the the signum function 
y = sign(x) = (1 if x > 0, 0 if x = 0, -1 otherwise) which in Oberon 
notation is expressed as follows, with obvious meaning: 

IF x<O THEN y:=-l 
ELSIF x > 0 THEN y:= 1 
ELSE y:= 0 
END; 

The conditional statement, also called the if statement, observes the 
syntax 

If Statement = "IF" expression "THEN" StatementSequence 
{"ELSIF" expression "THEN" StatementSequence} 
["ELSE" StatementSequence1 
"END". 

The expressions must be of type BOOLEAN, which means they yield, 
after evaluation, one of the truth values TRUE or FALSE. Note that the 
if statement is always terminated with an END, even in the simplest 
form IF B THEN 5 END, where 5 is a single statement. 

To explain the operation of the if statement, we express its general 
form as follows: 

IF Bl THEN SI 
ELSIF B2 THEN S2 

ELSIF Bn THEN Sn 
ELSE S 
END 

Here Bl ... Bn denote Boolean expressions and 5, 51 ... 5n denote state­
ment sequences (a single statement is also a statement sequence). The 
else clause ELSE 5 is an abbreviation for ELSIF -Bl & -B2 & ... & -Bn 
THEN 5. 

Bl is evaluated. If it yields FALSE then B2 is evaluated, and so forth, 
until the first Boolean expression that is satisfied is encountered: Bi, say. 
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The statement sequence Si associated with Bi is executed and the if 
statement terminated. Note that at most one of the statement sequences 
executes; if the ELSE clause is present, exactly one is carried out. 

The Boolean expression Bi (i = 1, 2 ... n) is also termed the guard of its 
statement sequence Si. 

5.1.2 Formal definition of the if statement 

As in the case of the assignment, we wish to be able to state 

What are the necessary and sufficient properties of the component 
statements (or statement sequences) that let us make the above con­
clusion? They are specified in the axiom of alternatives, which serves as 
a formal specification of the semantics of the if statement. It demon­
strates the essence of a structured language: it is possible to derive prop­
erties of a composite statement from those of its components and, vice-versa. 

Before stating the axiom of alternatives, let us consider a simple ex­
ample: the computation of the absolute value of an expression; that is, 
y:= ABS(x).1t can be expressed by an if statement: 

IF x < 0 THEN y:=-x 
ELSE y:=x 
END. 
(.y = ABS(x) .) 

As before, we have added the result condition R == Y = ABS(x) as a 
comment at the end of the if statement. The condition R can be 
expressed as follows 

R == (x < 0) & (y = -x) OR (x ~ 0) & (y = x). 

If, prior to the if statement, precondition P is satisfied, then (x < 0) & P 
holds before the assignment y = -x. Similarly, the predicate (x ~ 0) & P is 
the precondition of the assignment y = x. Therefore 

(* p *) 
IF x < 0 THEN (* (x < 0) & P *) y:= -x (* R *) 
ELSE (* (x ~ 0) & P *) y:= x (* R *) 

END; 
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Axiom of 
alternatives 

Thus we seek a pre-condition P such that 

(* (x < 0) & P *) y:= -x (* R *) and 
(* (x ~ 0) & P *) y:= x (* R *) 

can be established. For ~ur simple example, this is not a difficult task. 
Direct application of the axiom of assignment yields for the first state­
ment y:= -x (* R *): 

(x < 0) & (-x = -x) OR (x ~ 0) & (-x = x) == x:s; 0 

Similarly, y:= x (* R *) leads to 

(x < 0) & (x = -x) OR (x ~ 0) & (x = x) == x ~ 0 

from which we conclude P == TRUE, establishing unconditional validity 
of the computation of the absolute value. 

These preliminaries motivate the following axiom: 

(* P *) 
IF Bl THEN 51 
ELSIF B2 THEN S2 

ELSIF Bn THEN Sn 
ELSE S 
END 

(* R *) 

holds if there exist conditions Pi such that 

(* Pi *) Si (* R *) for all i = 1,2, ... n (1) 
P & .... Bl & .... B2 & ... & .... Bi - 1 & Bi ==> Pi (2) 
P & .... Bl & .... B2 & ... & .... Bn ==> R (else clause is missing) (3a) 
(* P & -Bl & -B2 & ... & -Bn *) S (* R *) (with else clause) (3b) 

A ==> B means A implies B in the sense of predicate calculus (that is, 
.... A ORB). 

The following example illustrates the use of the axiom of alternatives. 
The task is to compute y := sign(x), which can be expressed by the if 
statement s: 



IF x < 0 THEN Y := -1 
ELSIF x > 0 THEN y:= 1 
ELSE y:=O 
END; 
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We have Bl == x < 0 and B2 == x> O. Our goal is to establish 

(* TRUE *) S (* y = sign(x) *). 

The result condition R == Y = sign(x) can be written as 

R == (x < 0) & (y = -1) OR (x > 0) & (y = 1) OR (x = 0) & (y = 0). 

The axiom of assignment applied to y := -I, y := 0 and y := 1 (in that 
order) yields 

(x < 0) & (-1 = -1) OR (x > 0) & (-1 = 1) OR (x = 0) & (-1 = 0) == x < 0 
(x < 0) & (1 = -1) OR (x > 0) & (1 = 1) OR (x = 0) & (1 = 0) == x > 0 
(x < 0) & (0 = -1) OR (x > 0) & (0 = 1) OR (x = 0) & (0 = 0) == x = 0 

Therefore 

Pl==X<O: (*x<O*) x:=-1 (*R*) 
P2 == x> 0: (* x> 0 *) x:= 1 (* R *) 

(* x = 0 *) x:= 0 (* R *) 

The assertion (* TRUE *) s (* p *) can be established according to the 
axiom of alternatives if 

TRUE & Bl => PI 
TRUE & ..... Bl & B2 => P2 
(* TRUE & ..... Bl & .... B2 *) S (* R *) 

using (2) 
using (2) 
using (3a) 

Substituting Bl == x < 0 and B2 == x > 0 into the above predicates, we find 

TRUE & Bl == x < 0 
TRUE& ..... Bl &B2== x>O 
TRUE & ..... Bl & ..... B2== x = 0 
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In all three cases, the above conditions are satisfied, and the correct 
computation of sign(x) is thus formally established. 

5.1.3 The case statement 

An if statement with a number of ELSIF clauses allows the selection of a 
statement sequence under the control of several conditions - one for 
each sequence. In practice, one often finds a series of comparisons of a 
common expression with a set of constants. 

Let us illustrate this situation. Assume that we have renamed a file. 
The appropriate system routine yields a so-called result code, an integer 
variable res that reports various termination conditions. An appropriate 
message is generated by the if statement: 

IF res = 0 THEN Out.String("renamed") 
ELSIF res = 1 THEN Out.String(IIname existed already") 
ELSIF res = 2 THEN Out.String("name does not exist") 
ELSIF res = 3 THEN Out.String(IIsystem error") 
END; 

The following case statement is equivalent: 

CASE res OF 
0: Out.String("renamed") 
1: Out.String("name existed already") 
2: Out.String(IIname does not exist") 

I 3: Out.String("system error") 
END; 

Besides notational convenience, the case statement allows the compiler 
to generate very efficient code if the compared values are constants and 
more or less contiguous. 

The formal EBNF specification of the case statement reads 

CaseStatement = "CASE" expression OF 
case {I/ I " case} 
["ELSE" StatementSequence1 

"END". 
case = [CaseLabelList 1/:" StatementSequence1. 
CaseLabelList = CaseLabels {"," CaseLabels}. 
CaseLabels = ConstExpression [" .. " ConstExpression1. 
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The expression and all the case labels must be of the same type, which 
is either an integer type or CHAR. Case labels are constants or constant 
expressions, and no value must appear more than once. The following rules 
determine the execution of the case statement: 

(1) The expression is evaluated. 

(2) The first statement sequence whose case label list contains the 
value obtained from step 1 is executed and the case statement 
terminates. 

(3) If no match exists, the statement sequence following ELSE is se­
lected. If it is omitted then lack of a match is considered an error. 

As in set notation, E1..E2 is shorthand for the filled-in series El, El+l, 
... E2-1, E2. 

5.1.4 Formal definition of the case statement 

Once again, we wish to find the assertions about the component 
statements that must hold in order to establish (* P *) CASE k OF k1: 51 

I k2: 52 I ... I kn: 5n END (* R *). These assertions follow easily from 
the axiom of alternatives, and they are as follows: 

(* P *) CASE kOF 
k1: S1 I k2: S2 I ... I kn: Sn 

END (* R *) 

holds, if there exist conditions Pi such that for all i = 1, 2, ... n 

(* Pi *) Si (* R *) 
P & (k = ki ) ~ Pi 

5.2 Repetitive statements 

The repetition of a statement or a statement sequence under the control 
of a condition is a frequent constituent of programs. Oberon features 
three kinds of repetitive statements: the while statement, the repeat state­
ment and the loop statement. The three statements are, in essence, 
equivalent but cater for different programming situations. 
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5.2.1 The while statement 

Assume that a statement, or a statement sequence, should execute ex­
actly n times; a requirement that we specify as follows: 

j:= 0; 
WHILE j<n DO 

... ; j:= j + 1 
END; 

Since variable j, the control variable, counts from 0 to n - 1, we call the 
preceding repetition a counting loop. 

The syntax of the while statement reads 

I WhileStatement = "WHILE" expression "DO" 
StatementSequence 

"END". 

The expression must be of type BOOLEAN. The action of the while 
statement is described by the rules: 

(1) Evaluate the expression, which results in a truth value. 

(2) If the value is TRUE, execute the statement sequence and then 
repeat with step 1; if the value is FALSE, terminate. 

If the condition is not satisfied initially (that is, the expression· yields 
FALSE), then the statement is vacuous; that is, no action takes place. 

The while statement introduces for the first time the danger of a 
nonterminating program, a frustrating experience every programmer, 
novice or expert, is familiar with. Evidently, loops must be considered 
with care. Consider, for example, 

WHILE j#O DO j:= j-2 END; 

It is easy to realize that this loop terminates only under the pre-condi­
tion (j >= 0) & (j DIV 2 = 0). The program must enforce that pre-condi­
tion, otherwise it will be in error about half of the time it is run. 

5.2.2 Formal definition of the while statement 

Verification of the daim that a repeated statement establishes a 
specified result characterized by the condition R rests on the notion of a 
condition Q that holds invariably, no matter how many times a 
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statement (or statement sequence) has already been executed. Q is 
therefore called a loop invariant, or simply invariant. 

Let us explain this concept with a simple example. We wish to com­
pute z:= X*Y (for x ~ 0) using repeated addition. The obvious solution 
is 

x:= X; z:= 0; 
WHILE x > 0 00 z:= z + Y; x:= x-I END; 
(* z = XY *) 

The relevant invariant (that is, the condition holding before each execu­
tion of the repeated statement sequence) is 

Q == (z + x Y = XY) & (x ~ 0). 

It holds at the beginning, because 0 + XY = XY. It remains unchanged 
during the repetition because each time 1 is subtracted from x, Y is 
added to z, leaving the sum intact. Most importantly, this invariant 
yields the desired result, if the condition x > 0 no longer holds and 
repetition terminates: 

..... (x > 0) & (z + xY = XY) & (x ~ 0) == 
(x = 0) & (z + x Y = XY) == (z = XY) == R 

The verification condition of the while statement is summarized in the 
axiom of repetition: 

holds if an invariant Q exists such that 

P=>Q 
(* Q & B *) S (* Q *) 
Q& ..... B=>R 

If a while statement satisfies the axiom of repetition, it is said to be par­
tially correct. It establishes the result condition R whenever it manages to 
falsify B. However, it may never do that, and repetition never termi­
nates. 

In order to demonstrate full correctness, we also have to show that the 
repetition terminates. In order to do so, we have to establish that at each 
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iteration, the loop makes some progress towards a goal. This is the case 
if we can find an expression involving variables participating in the 
condition B, that is strictly decreasing at each turn, and whose falling 
below a fixed threshold, for example 0, implies -B - that is, termination 
of the loop. Such a function is termed a loop variant, or again simply a 
variant. 

In our example of multiplication, x is that variant. It is decremented 
by the repeated statement sequence, and x ~ 0 implies -( x > 0), and 
hence termination. 

In order to exemplify these ideas, we present a more sophisticated 
version of a multiplication algorithm, which happens also to be much 
more efficient: 

x := X; y:= Y; z:= 0; (* x >= 0 *) 
WHILEx>ODO 

IF ODD(x) THEN z:= z + y; x:= x - 1 END; 
y:= 2*y; x :=x DIV 2 

END; 

The invariant Q remains the same, and so does the variant x. We must 
demonstrate that the statement sequence leaves Q invariant and de­
creases x. We leave this exercise to the reader, but point out an impor­
tant detail. 

In order that Q not be invalidated by the statement sequence 

y := 2*y; x:= x DIV 2 

x must be even; otherwise the DIV operation loses the remainder 1. 
However, this condition is established - if it does not already hold - by 
the preceding x:= x -1, which is executed (or guarded) by the condi­
tion ODD(x). 

A second example concerns the division of positive integers 
q:= X DIV Y. The algorithm proceeds by repeatedly subtracting the 
divisor Y from the dividend X; that is, 

r:= X; q:= 0; 
WHILE r >= Y DO 

r := r - Y; q := q + 1 
END; 

The invariant is 

Q == (qY + r = X) & (r ~ 0). 
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Q is established by the initial statements. It is maintained by the state­
ment pair r := r - Y; q := q + 1, because it leaves the sum qY + r un­
changed. The condition (guard) r > 0 guarantees that r does not become 
negative. And finally; Q & -B or Q & (r < Y) yields the desired result 

R == (q Y + r = X) & (0 ::; r < Y) 

which, as we recall, is the definition of the division 

XDIVY=q, XMODY=r. 

The expression r - Y is a variant function. At each repetition of the loop, 
Y is subtracted from r; hence r - Y is strictly decreasing. In addition, 
r - Y::; 0 implies r::; Y and hence -B, the terminating condition of the 
loop. Thus correctness of the integer division is guaranteed. 

5.2.3 The repeat statement 

The second repetitive statement is syntactically defined as 

I RepeatStatement = "REPEAT" 
StatementSequence 

"UNTIL" expression. 

Again, the expression is of type BOOLEAN. The essential difference 
from the while statement is that the termination condition is checked 
each time after (instead of before) execution of the statement sequence. 
As a consequence, the sequence is executed at least once. The advantage 
is that the condition may involve variables that are undefined when the 
repetition is started. 

For example, a counting loop may also be expressed as 

j := 0; 
REPEAT 

... ; j := j + 1 
UNTILj = n; 

In this version of the counting loop, it must be guaranteed that j = 0 is a 
valid pre-condition for the statement sequence. 

The 'danger' of using the repeat statement lies in the fact, that the 
statement sequence is not guarded by an explicit condition. As a 
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consequence, it is easier to overlook the proper termination condition. 
For example, the calculation of the harmonic series: 

i:= 0; s:= 0; 
REPEAT s:= s + Iii; INC(i) UNTIL i = n; 

does not terminate for n ~ O. In general it is wise to use the while statement 
whenever repeat does not offer a clear advantage. 

5.2.4 Formal definition of the repeat statement 

The loop invariant and variant play the same role as in the case of the 
while statement. We will be brief and state the appropriate axiom 
without further examples: 

holds, if there exists an invariant Q such that 

(* P *) S (* Q *) 
(* Q & ..... B *) S (* Q *) 
Q&B=>R 

5.2.5 The loop statement 

The third repetitive statement is the loop statement, which specifies the 
unconditional repeated execution of a statement sequence. It is termi­
nated by the execution of an exit statement within the statement se­
quence. Syntactically, the loop statement looks as follows: 

I LoopStatement = "LOOP" StatementSequence "END". 
ExitStatement = "EXIT". 

The execution of an exit statement in the statement sequence causes 
termination of the loop. Program execution will continue with the 
statement immediately following the END of the loop. Thus exit 
statements are contextually - although not syntactically - bound to their 
loop statement. 

Evidently, the loop statement is more general than either the while 
statement or repeat statements. The latter two can easily be expressed in 
terms of a loop statement with a single exit. However, we recommend 
the use of the loop statement only for cases with more than one exit 
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point (or with an exit point that must lie in the middle of the statement 
sequence). 

The composition of a loop statement typically looks like 

LOOP 
... , 
IF Bl THEN EXIT; 

IF B2 THEN EXIT; 

END; 

where Bl and B2 denote expressions of type BOOLEAN. 

5.3 Summary 

Control statements allow conditional execution of a statement sequence 
under the control of a Boolean expression. They are structured 
statements; that is, their definition is recursive. 

The most basic control statement is the if statement that puts a 
statement sequence under a guard - which means the statement 
sequence is only executed if a Boolean expression holds. The case 
statement specifies the selection of a statement sequence - a case -
according to the value of an integer expression or character variable. 

Two repetitive statements control the iterated execution of a state­
ment sequence under the control of a Boolean expression: the while 
statement and the repeat statement. A third repetitive statement, the loop 
statement, allows several exit points within the statement sequence 
indicated by exit statements. 

Like the assignment, the control statements are defined formally by 
axioms that state how a post-condition is transformed into a pre-con­
dition that must hold in order that the specified result be obtained. The 
axiom of alternatives covers the if statement. In the case of repetition, 
we have introduced the important concept of a loop invariant, a condi­
tion that holds prior to every execution of the loop's statement se­
quence. In addition, a variant function is used to assure termination of 
the repetition. 

We have given several simple examples, and have used the axioms to 
prove their correctness. A more ambitious example is given in Section 
8.2.5, where we prove the binary search algorithm. 
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5.4 Exercises 

5.1 Which of the following control statements are well-formed? 
CONST c = 3; V AR i, j, k: INTEGER; 

(a) REPEAT j:= j -1 UNTIL j = 0; 

(b) WHILE j # 0 DO INC(j); IF ODD(j) THEN EXIT END; 

(c) IF j> 10 THEN j := 10; 

(d) CASE i OF 1: j := ilk: j := k END; 

(e) CASE i OF 1: j := i I c: j := k END; 

(f) LOOP j:= j + c UNTIL j > k; 

(g) REPEAT j:= j + c UNTIL j > k; 

5.2 Which of the following loop statements terminate? 
V AR i, j, k: INTEGER; V AR y: REAL; 

(a) j:= 5; REPEAT j:= j -1 UNTIL j = 0; 

(b) j:= 5; REPEAT j := j - 2 UNTIL j = 0; 

(c) j:= 5; REPEAT j:= j - 2 UNTIL j < 0; 

(d) j:= -5; REPEAT j:= j DIV 2 UNTIL j = 0; 

(e) i:= 1 j := 1; WHILE i # 100 DO k := i; i := j + i; j := k END; 

(f) i:= 1 j:= 1; WHILE i < 100 DO k:= i; i:= j + i; j:= k END; 

(g) i:= 1 j:= 1; WHILE i < 100 DO j:= j + i END; 

, (h) j := 5; LOOP j := j - 1 END; 

5.3 [Min] Write an if statement that assigns the minimum of three integers x, y and 
z to min. Prove correctness, using the axiom of alternatives and the axiom of 
assignment. 

5.4 [Fast multiplication] The following statement sequence computes the product 
X* Y slightly faster than the sophisticated version of the multiplication given in 
Section 5.2.2: 

x:= X, y:= Y; z:= 0; 
WHILEx>ODO 

IF ODD(x) THEN z:= z + y END; 
Y := 2*y; x:= x DIV 2 

END; 

Why is it permissible to omit the statement x := x-I that followed z := z + y in 
the original version? 

5.5 [Power] Use repeated multiplication to compute the power xn, where x is a real 
and n a positive integer. Formulate invariant and variant functions. 
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5.6 [Logarithm base 2] The following statement sequence computes the logarithm 
to the base 2 for real values 1 ~ x < 2: 

V AR x, a, b, s: REAL; 
a:= x; b:= 1; s:= 0; 
WHILEb>ODO 

a:= a*a; b:= b/2; 
IFa>=2THEN s:=s+b; a:=a/2 END 

END; 

Establish the invariant log2(X) = s + b*log2(a). Can you find a variant? Why does 
the loop terminate? How many iterations are needed to complete? 

5.7 [Greatest common divisor] Write a program fragment that computes the 
greatest common divisor of two integers x and y, denoted by gcd(x, y), by 
repeated subtraction. Formulate an invariant. 

Hint: use the identities (1) gcd(x, x) = x, (2) gcd(x, y) = gcd(y, x) and (3) if 
x> y then gcd(x, y) = gcd(x - y, y). 

5.8 [Euclid's algorithm] The following method to compute gcd(x, y) is known as 
Euclid's algorithm: 

WHILEy>ODO 
r := x MOD y; x:= y; y:= r 

END; 

State pre-condition, invariant and variant functions. How can the computation 
be generalized to include negative integers x and y? 

5.9 Work out a few examples of gcd computation using both methods. Which is 
faster? (See Knuth, 1971). 

5.10 [Bisection] Let I(x) denote an expression 
that computes a real value for a given 
argument x (how to actually specify user­
programmed functions in Oberon is the 
subject of Chapter 6). 

We are interested in finding the root 
of I(x). A simple and robust method is 
bisection. The procedure starts with an 
interval (xl, x2) such that l(x1) > 0 and 
l(x2) < 0 (or vice versa). The intervals are 
then successively halved and either xl or 
x2 is set to the midpoint, depending on 
the sign of I(x) there. 

The method of bisection is expressed 

((x) Step 1: 
x2 := (x1 + x2) / 2 

x1 

by the following while loop (assume that lex) stands for an expression of type 
REAL): 
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V AR xl, x2, y: REAL; 

(* (f(xl) > 0) & (f(x2) < 0) & (xl < x2) *) 
x := (xl + x2)/2; 
WHILE (xl < x) & (x < x2) DO y:= f(x); 

IF y > 0 THEN xl := x ELSE x2:= x END; 
x := (xl + x2)/2 

END; 

Questions: 

(a) Work out an example by hand. 

(b) Determine the invariant of the loop. 

(c) Determine a variant function. 

(d) Does the loop terminate for all xl ~ x ~ x2? If yes, how accurate is the 
computation of the root? 

(e) Is the following statement sequence equivalent? 

WHILE xl < x2 DO 
x := (xl + x2) /2; 
y := f(x); 
IF y > 0 THEN xl := x ELSE x2 := x END 

END; 

References 

Cohen E. (1990). Programming in the 19905: An Introduction to the Calculus of 
Programs. New York: Springer-Verlag. 

Gries D. (1981). The Science of Programming. New York: Springer-Verlag. 
Knuth D.E. (1971). The Art of Computer Programming Vol II: Seminumerical 

Algorithms, pp. 293-338. Reading, MA: Addison-Wesley. 



6 Procedures and modules 

Thus far, we have introduced two broad notions: 

(1) declarations that bind an identifier to a type or a value; 

(2) statement sequences including control statements that express algo­
rithms. 

This chapter connects the two concepts by establishing textual scopes, 
namely procedures and modules. 

In its simplest form, the procedure can be visualized as a named 
statement sequence. In essence, a module is a textual scope comprising 
constant and variable declarations and a number of procedures. 1 The 
module is the unit that is accepted by the compiler. Translated modules, 
termed object modules, can be stored in the computer's library, and are 
units that are loaded into the memory for execution. 

Operating systems afford controls that allow the user to execute code 
stored in the computer's object library. In Oberon, the unit that can be 
executed is the procedure. This contrasts with the traditional notion of a 
main program being the basic executable unit.2 

A procedure, however, goes far beyond the simple notion of a named 
statement sequence. In particular, it encompasses: 

• the concept of local variables; 
• the concept of a result: a procedure with a result can be used as a 

factor in expressions, like the predeclared functions such as 
ABS(x); 

• the concept of parameters that are passed to the procedure like the 
arguments of a mathematical function. 

In the way that a procedure is more than a named statement 
sequence, a module goes beyond a mere compilation unit. It may have 

1 Later we will also introduce type declarations. . 
2 For example, in PLfI it is the procedure with the option main, in Modula-2 the 

main module. 
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an optional statement sequence and - more importantly - controls the 
visibility of declared identifiers beyond its scope. For example, if a 
procedure is intended to be invoked by the computer operator, it must 
be marked for visibility outside the module. 

Box 6.1 Fractals are fascinating objects of mathematics. 
A fractal fern The observation by Mandelbrot of the 

existence of a 'fractal geometry of nature' has 
led to a new way of thinking about many 
natural phenomena such as the length of 
coastlines or the edges of clouds (Mandelbrot, 
1977). 

A simple algorithm - known as the iteratefl 
function system (lFS) - produces the fractal fern 
shown on the left (Barnsley, 1988). The fern is 
drawn by a pen that moves over the drawing 
area and paints a dot at a computed sequence 
of consecutive points. If the pen is at a point 
'(x, y) then the next point is computed by 
applying a simple transformation of its 
coordinates: 

xnew = ax + by + e (1) 
Ynew = ex + dy + f (2) 

Equations (1) and (2) are called an affine transformation. The art of 
producing an interesting picture such as a natural scene is to find a se­
quence of such transformations that are applied at random to determine the 
position of the moving pen. The fern is produced by the following four 
transformations: 

a b e d e f p Action 

0 0 0 0.16 0 0 0.01 Stem 
0.85 0.04 -0.04 0.85 0 1.6 0.85 Turn of leave 
0.2 -0.26 0.23 0.22 0 1.6 0.07 Right sub-leaves 

-0.15 0.28 0.26 0.24 0 0.44 0.07 Left sub-leaves 

The column labelled p contains the probability with which the respective 
transformation is applied. The table contains all the information about the 
fern. While storing the pixels of the fern's image may require hundreds of 
thousands or even millions of bits, the table can be stored in about 1000 
bits - a tremendous compression. However, finding the set of 
transformations characterizing an arbitrary scene remains a difficult task. 

Both procedures and modules play important roles in the structuring 
of complex programs. An explanation of these roles, however, has to wait 



Box 6.2 
Itera ted function 
system: Oberon 
formulation 

Procedures and modules 65 

until Chapter 10. In this chapter, we will deal with the syntax and 
semantics of procedures and modules. We will do this by means of an 
example - drawing a fractal fern, see Boxes 6.1 and 6.2. 

The algorithm for drawing a fractal fern relies on a random selection of a 
particular transformation. Assuming that rn is a uniform random variable 
between 0 and 1, a random selection with given probabilities p1, p2, p3 
and p4 is achieved as follows: 

IF rn < p1 THEN ." (* first selection *) 
ELSIF rn < (p 1 + p2) THEN '" (* second selection *) 
ELSIF rn < (p1 + p2 + p3) THEN ... (* third selection *) 
ELSE ... (* fourth selection *) 
END; 

It is now easy to write the statement sequence of an algorithm to draw the 
fractal fern: 

"open a viewer representing a drawing plane"; 
X := 0; Y:= 0; (* initial position of pen *) 
REPEAT 

"Generate a real random number rn (0 < rn <=1)"; 
IF rn < p1 THEN 

x:= a1*X + b1*Y + e1; y:= c1*X + d1*Y + f1 
ELSIF rn < (p1 + p2) THEN 

x := a2*X + b2*Y + e2; y := c2*X + d2*Y + f2 
ELSIF rn < (p1 + p2 + p3) THEN 

x := a3*X + b3*Y + e3; y := c3*X + d3*Y + f3 
ELSE 

x:= a4*X + b4*Y + e4; y:= c4*X + d4*Y + f4 
END; 
X:=x; Y:=y; 
"Paint dot at position (X, Y)" 

UNTIL "User terminates loop"; 

This sequence of statements is merely a fragment of an Oberon program. 
The actions to open a viewer, compute a random number, paint a dot, 
and provide a user-enacted termination stimulus are not yet formally 
specified. We also know that all variables must be declared. We will fill in 
the missing part in the remainder of this chapter and in Chapter 7. 
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6.1 The procedure: a statement sequence with a name 

Procedure call 

Like all objects of the Oberon language, a procedure needs to be de­
clared. The procedure declaration consists of a procedure heading and a 
procedure body. The heading specifies the procedure identifier and 
possibly parameters and a result type. The body is composed of a 
declaration sequence and a statement sequence. The procedure decla­
ration is terminated with the symbol "END" followed by a repetition of 
the identifier. Formally, the syntax is given by 

ProcedureDeclaration = 
ProcedureHeading ";" ProcedureBody ident. 

ProcedureHeading = 
"PROCEDURE" ident ["*"] [FormaIParameters]. 

ProcedureBody = DeclarationSequence 
["BEGIN" StatementSequence] 
"END". 

The declaration sequence, the export mark (asterisk "*") and the formal 
parameters will be described in subsequent sections. 

In its simplest form, the procedure is composed of a heading with a 
mere identifier and a body that consists of a statement sequence only. 
This is the named statement sequence mentioned before. We are now 
able to complete the example of Box 6.2 by casting the statement se­
quence that draws a fractal fern into a procedure called Draw: 

PROCEDURE Draw; 
BEGIN 

... (* Statement sequence of Box 6.2 *) 
END Draw; 

Note that it is assumed that all variables that occur in the statement 
sequence are declared in a larger context (the module) in which the 
procedure is embedded. 

To exercise the statement sequence of a procedure, it has to be called or 
invoked. Such a call can originate from another procedure or from a hu­
man operator of the computing system. 

For the simple (parameter-less) procedure, the call statement consists 
simply of the procedure identifier, for example 

... Draw; ... 
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When the call statement is executed, control passes to the first 
statement in the statement sequence of the procedure. After the proce­
dure is finished, processing resumes with the statement that follows the 
call. 

Processing of a procedure terminates with the execution of the last 
stateinent in its statement sequence or explicitly with a return statement 
(see Section 6.4.2). 

The procedure concept would be useful, even if restricted to the 
simple form discussed so far. Two additional features, however, forge it 
into an essential programming tool: the locality of identifiers and the 
notion of parameters. 

6.2 The concept of locality 

Procedure Draw operates on two groups of variables: 

(1) X, Y, x, y and rn; 
(2) al ... a4, bl ... b4, c1 .. . c4, dl ... d4, el ... e4, fl ... f4 and pl ... p4. 

The first group comprises variables defining pen position and random 
numbers. They are strictly local to the procedure; hence they are termed 
local variables. In contrast, the variables of the second group have global 
significance. 

All objects - in particular, variables - must be declared. The declaration 
sequence in the procedure body is used to define local objects such as the 
variables of the first group. The syntax of the declaration sequence is 
given by the EBNF production 

DeclarationSequence = 
{ "CONST" {ConstDeclaration ";"} 
I "TYPE" {TypeDeclaration ";"}1 
I "V AR" {V ar Declaration ";"}} 
I {ProcedureDeclaration ";"}. 

The declaration sequence lists constant declarations, variable declara­
tions and type declarations in any order, followed by the procedure 
declarations. Since the declarations in the body of a procedure are 
strictly local to that procedure, export marks are not meaningful. 

To give an example, we refine procedure Draw by making the first 
group of variables local: 

1 Type declarations are the subject of Section 8.1. 



68 Procedures and modules 

PROCEDURE Draw; 
VAR 

X,Y: REAL; (* local variables for pen position *) 
x, y: REAL; (* local variables for new position *) 
rn: REAL; (* local variable for random number *) 

BEGIN 
... (* Statement sequence of Box 6.2 *) 

END Draw; 

6.2.1 Scope 

The section of program text in which an identifier is defined is called its 
scope. The object represented by such an identifier can only be used 
within its scope. The scope of declarations appearing in the body of a 
procedure is the remainder of that body. Applied to variables, the lo­
cality concept asserts that they exist only within their scope. Therefore 
the value of a local variable is not defined when the procedure is called, 
and, similarly, its value is lost upon termination. Hence, if a variable 
should retain its value between successive calls of a procedure, it must 
be declared outside of the procedure. As a consequence, local variables 
consume memory resources only during the execution of the statement 
sequence of their procedure. As soon as control reverts to the statement 
following the call, the memory of the local variables is released. 

In our example, the scope of the variables X, Y, x, y and rn is the 
procedure Draw - specifically the text from their declaration to the 
terminating symbol "END". Suppose that the identifier rn also desig­
nates an object outside of Draw, a procedure, say. The local declaration 
of rn excludes this procedure from the scope of the text representing the 
procedure Draw. The programmer is thus free to reuse identifiers. In fact, 
local identifiers can be used without the need to know all globally 
defined objects. This decoupling of knowledge about different program 
parts is particularly useful- even vital- in the design of large programs 
created by a team of programmers. 

6.2.2 Nesting of scopes 

What is noteworthy about the syntax of the declaration sequence is that 
the procedure declaration is recursive. In other words, the declaration 
sequence of a procedure may contain nested procedure declarations. In 
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analogy to local variables, the procedures thus defined are local objects 
within the scope of their enclosing procedure. 

Since procedure declarations can be nested, their scopes follow this 
nesting pattern. The scope rules are best remembered by the method 
used to search the declaration of an identifier, i say. First, search the 
declarations of the procedure P in which i is used. If the declaration of i 
is not among them, continue the search in the procedure or module (see 
Section 6.3) surrounding P; then repeat this rule until the declaration is 
encountered. If an identifier is not declared, the text is not a valid 
Oberon program unless it is one of the predeclared identifiers. These 
standard identifiers are considered to be declared in an imaginary global 
scope enveloping all modules. 

6.2.3 Advantage of locality 

It is good programming practice to declare objects locally. This confines 
their existence to the procedure in which they have meaning. In 
summary, the use of local variables has the following significant ad­
vantages: 

• The declaration is textually close to the use of the object, aiding 
in the readability of the program text. 

• The inadvertent use of a global object locally is eliminated. There 
is no need to know all global objects. 

• Memory requirements can be minimized because local variables 
are released upon termination of the procedure to which they be­
long. 

6.3 Modules 

The module is another construct that defines a scope. In the previous 
section, we have referred to a 'larger context' in which variables were 
assumed to be declared. For procedures that are not local to other 
procedures, such as Draw, this context is the module. Oberon modules 
observe the syntax 
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Declaration 
sequence 

Statement 
sequence 

module = "MODULE" ident ";" 
[ImportList] 
DeclarationSequence 
["BEGIN" StatementSequence] 
"END" ident".". 

The two identifiers must match. The import list and the statement se­
quence are optional. 

"Let us cast the IFS example into a module: 

MODULE IFS; 
VAR 

aI, bl, cl, dl, e1, fl, pI: REAL; (* 1st affine transformation *) 
a2, b2, c2, d2, e2, f2, p2: REAL; (* 2nd affine transformation *) 
a3, b3, c3, d3, e3, f3, p3: REAL; (* 3rd affine transformation *) 
a4, b4, c4, d4, e4, f4, p4: REAL; (* 4th affine transformation *) 

PROCEDURE Draw*; 
... (* Procedure body *) 

END Draw; 

BEGIN 
al := 0.0; 
b1 := 0.0; 
cl:= 0.0; 
dl := 0.16; 
e1 := 0.0; 
fl := 0.0; 
pI := 0.01; 

ENDIFS. 

a2:= 0.85; 
b2:= 0.04; 
c2:= -0.04; 
d2:= 0.85; 
e2:= 0.0; 
f3 := 1.6; 
p3:= 0.07; 

a3:= 0.2; 
b3:= -0.26; 
c3:= 0.23; 
d3:= 0.22; 
e3:= 0.0; 
f3:= 1.6; 
p3:= 0.07; 

a4:= -0.15; 
b4:= 0.28; 
c4:= 0.26; 
d4:= 0.24; 
e4:= 0.0; 
f4:= 0.44; 
p4:= 0.07 

Our sample module contains a declaration sequence specifying the 
variables a1 ... p4, the procedure Draw and a statement sequence that 
assigns values to the global variables. 

6.3.1 The scope defined by a module; declaration of global variables 

Like the procedure, the module defines a scope for the identifier de­
clared in its declaration sequence. The scope extends from the point 
where the identifier is declared to the final "END" of the module. 
Procedures declared within the module open a nested scope, and the 
rules for nested scopes apply. 
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Each time the procedure is executed, its scope is newly opened - the 
local variables are newly defined. In contrast, the scope of the module is 
static. The module is in existence for the whole computation or the 
whole user session. This means that variables declared in a module also 
exist - and consume storage - throughout the duration of the module's' 
activation. We call these variables global variables. In contrast to 
procedures, modules cannot be nested. 

In order for Oberon texts to be executable on a machine, they require a 
translation into machine code by a compiler. In Oberon, the syntactical 
unit accepted by the compiler is the module. Translated modules are 
called object modules. They are part of libraries residing on disk storage, 
and may be loaded into the machine's memory for execution. 

6.3.2 The statement sequence of a module 

Export mark 

The statement sequence of a module is executed when the module is 
first activated and thus loaded into memory. The statement sequence in 
our example is quite typical- it is used to initialize global variables. Thus, 
when module IFS is first loaded into memory, the assignments are 
carried out and the global variables receive their initial values. 

6.3.3 Export and import of declarations 

Declared objects such as variables and procedures are visible only 
within their scope that is opaque if viewed from the outside. This scope 
rule also applies to the module - its only external property is the 
module name. Clearly, a mechanism is needed to make objects of the 
module accessible from the outside. The procedure Draw from module 
IFS is an example: it should be made known to the operating system, to 
be invoked from the computer's controls. Procedure Uniform from 
module RandomNumbers, which we encountered in Chapter 2, is 
another example. We would like to be able to call it in procedures 
declared in other modules - for example in IFS, where random numbers 
are needed. The export mark and the import list are the constructs that 
Oberon provides to make the module scopes partially transparent. 

Any identifier being declared in a module may be marked for export. 
Exported variables or procedures are visible outside the scope of the 
module. The export mark is an asterisk following the identifier being declared. 
For example, in the decJaration sequence 
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Import list 

Qualified 
identifier 

VAR height*, width*, i, j: INTEGER; 
PROCEDURE Draw*; 

. .. (* declaration and statement sequence *) 
ENDProc; 

the variables height and width and the procedure Draw are marked for 
export. 

The library of a given computer may contain a large number of mod.;. 
ules. Clearly, it is not beneficial if all objects exported by them are si­
multaneously visible within each module. One of the important benefits 
of the module·concept is that programs may be written by different 
programmers, who do not need to know the declarations and 
conventions made in other modules except, of course, those that they 
intend to use. The import list and the qualified identifier provide the 
mechanism to avoid naming conflicts. 

Those modules whose exported declarations should become visible in 
a given module have to be imported explicitly. The imported modules 
appear in the import list, which immediately follows the module 
heading and has syntax 

I importList = "IMPORT" import {"," import} ";". 
import = ident [":=" identl. 

For example, 

MODULE IFS; 
IMPORT RN:= RandomNumbers, XYplane; 
. .. (* declaration and statement sequence *) 
ENDIFS. 

Within the scope of module IFS, the declarations of the exported objects 
of modules RandomNumbers and XYplane are visible. In the form 
Ml := M, the imported module is known under the alias Ml in the scope 
of the importing module. Thus, in the example, RandomNumbers is 
known as RN. 

Imported objects are always referred to by a qualified identifier consisting 
of a prefix - the exporting module's name or alias - followed by the 
name of the object. For example, assume that V is an exported variable 
of a module M. Then it is referred to in a module that imports M as 

M.V 
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A qualified identifier is used as a designator in expressions and as­
signments in the same way as a simple identifier. In EBNF notation, 

I qualident = [ident '/1.,,] ident. 
designator = qualident.1 

A qualified identifier is composed of two juxtaposed identifiers sepa­
rated by a period. Oberon considers the qualified identifier M. V to be 
different from the simple identifier V. Therefore V may be simultane­
ously declared in module M as well as in the client of M. 

In the previous example of module IFS, the procedure Uniform from 
module RandomNumbers is called as RN. Uniform. Assuming that module 
XYplane exports a variable W, that variable is referenced by XYplane.W. 

Commands In an Oberon system, the main computations are performed by the 
statement sequences of procedures that are exported by modules.2 Such 
procedures are also called commands. Draw in sample module IFS is 
such a command. 

The system running Oberon provides facilities allowing the operator 
to activate commands from the system controls. An example of such a 
system was provided in Chapter 2. 

6.4 Function procedures and parameters 

The function is an important concept in mathematics. The formula 

r = f(x, y) (1) 

states that r is the result of the computation f applied to the arguments x 
and y. While the notation (1) makes the value of the arguments explicit, 
mathematicians often use another notation - that of the mapping. If we 
assume that f is integer-valued and operates on integer arguments x 
and y, the mappingfis expressed formally as 

1 More general designators will be introduced later. 
2 To be precise, parameter-less procedures (parameters will be discussed in 

subsequent sections). 

(2) 
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In (2), 3 denotes the set of integer numbers and .s x 3 their Cartesian 
product. Equation (2) reads 'f maps each pair of integers into an inte­
ger.' In contrast to (1), the rangqof values admissible as arguments and 
produced by the mapping are clearly indicated. 

Oberon supports the notion of the mathematical function. In Chapter 
4 we have already come across a number of predeclared functions such 
as ABS(x), ASH(i, n) and ODD(i) that perform a computation on their 
arguments and return a result. Such functions may be factors in 
expressions, for example 

x:= y + ABS(z). 

The function introduces two new concepts: 

(1) The function identifier stands for a statement sequence (a 
computation) as well as for a result. 

(2) The function has arguments, called parameters, which pass input 
values to the computation. 

Oberon allows programmers to define their own functions by declaring 
function procedures. Let us start with a simple illustration: 

PROCEDURE Min(x, y: INTEGER): INTEGER; 
BEGIN 

IF x <= Y THEN RETURN x ELSE RETURN Y END 
END Min; 

The procedure heading defines the identifier Mi~ to be a function pro­
cedure. It specifies formal parameters (x and y) and their type as well as a 
result type (after the colon). The return statement terminates the state­
ment sequence and returns the result to the point of invocation. 

6.4.1 The function procedure heading 

The function procedure heading must have formal parameters. The formal 
parameter list is enclosed in parentheses and follows the function 
identifier. It consists of formal parameter sections, which look like 
variable declarations. The formal parameter sections define name and 
type of the parameters that serve as arguments of the function. The type 
of the result is shown following the right parenthesis,from which it is 
separated by a colon. The EBNF definition of the funmon procedure is 
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ProcedureHeading = 
"PROCEDURE" ident [1/*,,] FormalParameters. 

FormalParameters = 
"(" [FPSection {";" FPSection}] ")" ":" qualident. 

FPSection = [ "VAR" ] ident {"," ident} ":" FormalType. 
FormalType = qualident.1 

The qualident that terminates FormalParameters denotes the type of the 
result. It must be a simple type; that is, array and record structures can­
not be the result of function procedures (see Chapter 8). The option 
V AR preceding the identifier list will be explained in Section 6.5.2. 

A few examples of function procedure headings may be instructive: 

PROCEDURE gcd(x, y: INTEGER): INTEGER; 
PROCEDURE power(x: REAL; i: INTEGER): REAL; 
PROCEDURE XYinRect(x, y, X, Y, W, H: REAL): BOOLEAN; 
PROCEDURE New* (text: Texts.Text; pos: LONGINT): Frame;2 
PROCEDURE InitText*(f: Files.File; p: LONGINT): Texts.Text; 
PROCEDURE UniformO: REAL; 

The last example is a procedure heading without parameters, such as 
our random number generator of the introduction. The empty paren­
theses are mandatory. 

In a sense, the Oberon procedure heading combines the characteris­
tics of the two mathematical notations: it introduces names for the pa­
rameters as in (1) and defines the ranges of parameter and function 
values as in (2). 

6.4.2 Formal parameters and the return statement 

Within the statement sequence of the procedure, the formal parameters 
may be used exactly like local variables. The fact that they are declared in 
the procedure heading rather than in the body's declaration sequence 
ensures that they have a defined initial value, namely the one specified by 
their corresponding actual parameters at the time of the call (see Section 
6.4.3). As is the case with local variables, memory for formal parameters 
is only tied up when the function's scope is active. 

1 A more general FormalType will be introduced in Chapter 8. 
2 This is an example involving declared types. The type Frame is declared in the 

same module whereas Text is a type exported by module Texts. See Chapter 8. 
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The function declaration is characterized by the indication of the re­
sult's type behind the parenthesized list of formal parameters. In the 
function's body, the return statement ends the computation and passes 
the result to the point of invocation. It consists of the symbol 
"RETURN" followed by an expression yielding a result: 

I ReturnStatement = RETURN [expression]. 

The expression must be assignment-compatible with the result type 
specified in the procedure heading (Table 4.3); at least one return 
statement is mandatory. 

6.4.3 Actual parameters, the function call 

The function call is a factor in an expression. We recapitulate its syntax: 

I FunctionCall = designator "(" [ActuaIParameters] ")". 
ActualParameters = expression {"," expression}. 

For the time being, a designator is simply a qualident that denotes a 
function procedure. We will encounter more complex designators later. 

Each expression is an actual parameter that is used to initialize a 
corresponding formal parameter. Evidently, the number of expressions 
must match the number of formal parameters. Actual parameters are 
paired with formal parameters according to their respective position in 
the list. At the time of the function call, the expression is evaluated and 
its value assigned to the formal parameter. Therefore the expression must 
be assignment-compatible with the type of the formal parameter (see 
Table 4.3). 

For example, consider the procedure Min listed earlier. A possible 
function call to Min is 

Min(3*i + j, 17) 

At the time of the call, the expression 3*i + j is evaluated and assigned 
to formal parameter x. Subsequently, the constant 17, syntactically also 
an expression, is assigned to y. Then control passes to the first statement 
of procedure Min. The result is returned to the point of call after the 
first return statement executed. 
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6.5 Proper procedures 

Earlier, we portrayed the procedure as a named statement sequence 
that can be called from another point in a program text or that can be 
executed as a command. To distinguish it from the function procedure, 
we also speak of a proper procedure. 

Parameters can also be associated with proper procedures. The ben­
efits are twofold: 

(1) When the procedure represents a general computation, such as 
determining the roots of a polynomial, it can be applied to vari­
ous sets of variables without changing its text. 

(2) Identifiers used within the procedure are decoupled from the 
names adopted elsewhere in the program. 

Such a decoupling is essential if a large programming task should be 
attempted by a team of programmers. For this purpose, however, the 
parameter mechanism needs to be generalized to encompass the concept 
of substitution. Before we will turn to this generalization, we state the 
syntax of the proper procedure and of the call statement. 

6.5.1 Syntax, the call statement 

The proper procedure is identified through its heading with EBNF 
syntax: 

ProcedureHeading::; "PROCEDURE" ident [1/*,,] [FormaIParameters]. 
FormalParameters = "(" [FPSection {I/;" FPSection}] n)". 
FPSection = [ "VAR" ] ident {"," ident} ":" FormalType. 
FormalType = quali<ilent.1 

Proper procedure headings are, for example, 

PROCEDURE Draw*; 
PROCEDURE ComputeRoots(a, b, c: REAL; V AR rI, r2, il, i2: REAL); 

Return statement The return statement may also appear in a proper procedure. In this 
case, it is optional and consists of the solitary keyword "RETURN". 
When executing a return statement, processing of the procedure's 

1 A more general FormaZType will be introduced in Chapter 8. 
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Call statement 

statement sequence is terminated and control returns to the statement 
immediately following the call. 

The call of a proper procedure is a statement with syntax: 

I ProcedureCall = designator [ "(" ActualParameters ")" ]. 
ActualParameters = expression {" ," expression}. 

As in the case of the function procedure, the actual parameters are 
paired with the formal ones. 

6.5.2 Value and variable parameters 

From previous examples, we are familiar with the fact that a (proper) 
procedure may interact with the state of the computation through global 
variables. The benefit that one expects from the concept of parameters is 
a decoupling of the procedure text from global variables. 

Value parameters The formal parameters introduced so far are like local variables. In 
order to refer to this type of parameter, we speak of a value parameter­
the value of the expression that represents the actual parameter is as­
signed to the formal parameter prior to execution of the procedure's 
statement sequence. 

Variable Evidently, value parameters serve only to pass information to the pro-
parameters cedure. We seek a parameter scheme that empowers the proper proce­

dure to change the global state of the computation. This is possible 
through the notion of substitution. 

Such a scheme passes an actual variable and not merely its value to 
the procedure. We therefore speak of a variable parameter. Variable pa­
rameters are specified with the keyword "V AR" in front of the formal 
parameter section. For example, 

PROCEDURE ComputeRoots{a, b, c: REAL; VAR rl, r2, il, i2: REAL); 

has two sets of parameters: a, band c are value parameters, and rl, r2, il 
and i2 are variable parameters, used to return results. 

As the name implies, the actual parameter corresponding to a vari­
able parameter must be a variable. If the formal variable parameter 
changes its value within the procedure, for example by means of an 
assignment, the corresponding actual parameter is changed accord­
ingly. Thus the formal variable parameter substitutes a different local name 
for the corresponding a~tual parameter. This achieves the desired decou-
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pling from the global environment and represents a flexible substitu­
tion mechanism of variable names. 

Syntactically, actual parameters are expressions. An actual parameter 
corresponding to a formal variable parameter must be an expression 
composed of a single designator. At this point, the only such expression is a 
solitary qualident. Designators corresponding to structured types may 
be a little more complex, such as an array element (a[i+jD or the field of 
a record (r./>. Structured types are introduced in Chapter 8. No memory 
is consumed in the procedure to account for variable parameters and no 
assignment takes place. 

The substitution mechanism of the variable parameter requires that the 
types of the actual parameter and the corresponding formal parameter 
must be identical.1 

Let us proceed with an example - the evaluation of the roots of the 
quadratic equation 

ax2 + bx + c = o. 

There are two solutions, which may be complex numbers. Their re­
spective real and imaginary parts are denoted by rl, r2, il and i2. The 
multitude of output variables precludes the use of a function procedure, 
which would be natural for such computations as the square root. 

We therefore opt for a proper procedure that returns the result by 
means of variable parameters: 

PROCEDURE ComputeRoots(a, b, c: REAL; V AR rl, r2, il, i2: REAL); 
V AR det: REAL; 
BEGIN 

b := b/2; det:= b*b - a*c; 
IF det >= 0 THEN (* real roots *) 

rl := (ABS(b) + sqrt(det»/a; 
IF b >= 0 THEN rl := -rl END; 
r2 := c/(a*rl);2 il := 0; i2:= 0 

1 This is somewhat generalized in the case of record types and their extension; see 
Chapter It. 

2 The second real root is computed using the theorem of Vieta to avoid possible 
loss of accuracy when one of the roots is close to zero. 
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ELSE (* complex roots *) 
r1 := -b/a; r2:= r1; i1 := sqrt(-det); i2:=-il 

END 
END ComputeRoots; 

The first three formal parameters are value parameters and pass the 
coefficients a, band c to the procedure. 

The remaining four parameters are variable parameters used to re­
port the real and imaginary parts of the roots. A possible call of the 
procedure ComputeRoots is 

ComputeRoots(2.0, x*y, q, r1, r2, il, i2); 

6.6 More on function procedures 

6.6.1 Side-effects 

Pursuing a tutorial development, we have introduced the concepts of 
the function procedure and value parameters together. However, 
function procedures are by no means restricted to that mechanism - in 
addition to the result returned to the point of call, they may change the 
state of the computation through global variables and through variable 
parameters. Such a change is termed a side-effect of the function. 

Our very first example, the procedure Uniform, is a function proce­
dure with a side-effect. We recapitulate: 

PROCEDURE UniformO: REAL; 
CaNST a = 16807; m = 2147483647; q = m DIV a; r = m MOD a; 
V AR g: LONGINT; 
BEGIN 

g := a*(z MOD q) - r*(z DIV q); 
IF g > 0 THEN z:= g ELSE z:= g + mEND; 
RETURN z*1.0 / m 

END Uniform; 

The side-effect of a call to Uniform is the change of the global variable z. 
This is, of course, the essence of the intended recurrence relation that 
produces our random numbers. However, consider the following two 
statement sequences: 

z:= 1; x:= z + UniformO; 
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and 

z := 1; x:= UniformO + z; 

In the first case, the value of x is 1.0000080E+OO; in the second case, we 
find 1.6807000E+04 - seemingly defying the commutative law of addi­
tion. The programmer should always be fully aware of the capability of 
side-effects to produce unexpected results when the function is used 
inappropriately. 

We emphasize that changes of global variables through side-effects of 
functions is considered neither desirable practice nor good pro­
gramming style. Nevertheless, it is sometimes justified, as in the case of 
Uniform. In any case, side-effects should be restricted to variables that do not 
occur in the call's parameter list. 

6.6.2 Recursion 

Of course, the statement sequence of a procedure may contain calls to 
other procedures. Since any procedure that is visible can be called, a 
procedure may call itself. This self-reactivation is called recursion. Its use 
is natural when either the algorithm or the data structure is defined 
recursively. 

One of the simplest examples is furnished by the factorial, which is 
defined by: 

fact(O) = 1 
fact(n) = n fact(n - 1) for n = 1, 2, ... 

which translates into 

PROCEDURE fact(n: INTEGER): LONGINT; 
BEGIN 

IF n = 0 THEN RETURN 1 
ELSE RETURN n *fact(n - 1) 

END fact; 

(1) 
(2) 

It is important that the recursion terminate. The test for n = 0 ensures 
termination in the case of fact. Besides loop statements, recursive pro­
cedures are another source of nonterminating programs. 

Of course, we recognize that the factorial can be almost as easily 
computed using iteration: 
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PROCEDURE fact(n: INTEGER): LONGINT; 
V AR fact: LONGINT; 
BEGIN fact:= 1; 

WHILE n > 0 DO fact:= fact*n; DEC(n) END; RETURN fact 
END fact; 

Since every procedure call causes some overhead for bookkeeping, the 
second version should be expected to run more efficiently. A repetitive 
formulation is always possible, in principle, but it may obscure the al­
gorithm to such a degree that the gain in execution time is not worth the 
effort. 

We will introduce more interesting examples of recursive procedures 
in Section 9.3 when discussing trees. 

6.7 Compiler hints 

The goals of the designer of a language and the implementer of its 
compiler are sometimes at odds - the former wishing to adopt con­
structs of maximal convenience to the user, the latter advocating com­
promises in the syntax leading to a simple compiler. One such com­
promise is the one-pass compiler that promises to be especially fast. Since 
such a compiler cannot look ahead, it requires a forward declaration 
when a procedure call occurs textually before the respective procedure 
declaration. The forward declaration has syntax: 

DeclarationSequence = 
{ "CONST" {ConstDeclaration ";"} 
I "TYPE" {TypeDeclaration ";"} 
I ''V AR" {VarDeclaration ";"}} 
I {ProcedureDeclaration ";" I ForwardDeclaration ";" }. 

ForwardDeclaration = "PROCEDURE" "t"l 
ident ["*"] [FormaIParameters]. 

The actual declaration following the forward declaration - which 
specifies the body of the procedure - must have exactly the same name 
and formal parameter list. The symbol "t" decrees the forward decla­
ration. 

1 Inthe standard ASCII character set ut"is represented by the caret UA" with 
ORD(UA ") = 94. 
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Some Oberon compilers require that procedures intended to be 
assigned to procedure variables or used as parameters are marked with 
an asterisk following "PROCEDURE", viz. 

I ProcedureHeading = 
"PROCEDURE" ["*"] indent ["*"] [FormaIParameters]. 

Note that only one of the asterisks is required, in other words, the 
export mark (after indent) implies the first mark. 

6.8 Summary 

In this chapter, we have introduced a wealth of concepts and constructs 
that can be summarized in a cursory fashion only. 

(1) Modules and procedures define a scope - that is, a stretch of pro­
gram text in which declarations are valid. The concept of locality 
states that declarations are local to their scope. 

(2) The module establishes a global scope - its declarations define 
global objects, constants, types (see Chapter 8), variables,·and pro­
cedures that are valid throughout the computation. The module 
is also the compilation unit. Declarations may be made visible 
outside of the module's scope by means of export marks, and ex­
ported identifiers of other modules can be imported. 

The module may have an optional statement sequence that exe­
cutes at the time the module is loaded into memory. This state­
ment sequence is typically used to initialize global variables. 

(3) The procedure is a named statement sequence and a parameter 
mechanism. Procedures are either function procedures or proper 
procedures. The statement sequence of the procedure can be exe­
cuted from any point in the program through a call statement or 
a function call. Procedures can be recursive. 

(4) Parameters are used to pass values to and from the procedure. 
The formal parameters appear in the procedure heading, actual pa­
rameters in the call statement. Parameters come in two varieties: 
value parameters and variable parameters. 

A value parameter acts like a local variable that is initialized by 
the results of evaluating their corresponding actual parameters. 
An assignment takes place. Memory is allocated for the formal 
parameter during the time the procedure is active. 
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A variable parameter ("V AR") implements the notion of 
substitution. The actual parameter is substituted for the formal 
one. Assignments made to the formal parameter are assignments 
to the actual parameter. Variable parameters are used to return 
results. 

(5) The return statement terminates the execution of a procedure. In 
the case of a function procedure, it returns the result to the point 
of call. 

(6) If a function procedure changes the state of the computation 
through assignments made to global variables or variable 
parameters, a side-effect is said to have occurred. 

We have used a common example to derive the main concepts: 
drawing a fractal fern. This chapter is about the basics: how to apply 
procedures and modules properly will remain a major theme 
throughout the rest of the book. The example of the fractal fern will be 
completed in Chapter 7, after the introduction of appropriate input and 
output operations. 

6.9 Exercises 

6.1 Which of the following procedure headings are legal? 

(a) PROCEDURE f(x: REAL): ARRAY OF CHAR; 

(b) PROCEDURE f(x: REAL): REAL; 

(c) PROCEDURE g(i: INTEGER): V AR x: REAL; 

(d) PROCEDURE P(x: REAL, y: CHAR); 

(e) PROCEDURE P(x: REAL), (y: CHAR); 

(f) PROCEDURE Q(a, b, c: REAL; V AR rl, r2, il, i2: REAL); 

6.2 Assume 

CONST xl = 1; x2 = 2; x3 = 3; x4 = 4; x = 3.14159; 
V AR a, b, c, aR, bR, aI, bI: REAL; i: INTEGER; 

xR, yR, xl, yI: LONGREAL; . 
PROCEDURE Root(a, b, c: REAL; VARxl, x2, yl, y2: REAL); 
PROCEDURE Sin(x: REAL): REAL; 
PROCEDURE Min(x, y: INTEGER): INTEGER; 

Which of the following statements containing procedure calls are correct? 

Root(a, b, c, aR, bR, aI, bl); Root(1, 3, 4, xl, x2, x3, x4); 
Sin(3.14159); a:= Sin(xl); i:= Min(x, xl); i := Min(xl, x2); 
Root(a, b, c, 3, 4, 5, 6); Root(a, 3*b, c + 1, xR, yR, xl, yl); 
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6.3 Is the following an Oberon module? If not, which are the errors? 

MODULEM; 
CaNST a = 10; IMPORT Math; 
PROCEDURE P(x: INTEGER): INTEGER; 

RETURNx*x 
ENDP; 
VARy: REAL; 
BEGIN y:= P(a) 
ENDM; 

6.4 [Scope rules] Identify the scopes of all identifiers in the following module. Find 
one error. What is the value of the global variables after module M is loaded 
into memory (given that the error is corrected)? 

MODULEM; 
V AR i, j: INTEGER; 
PROCEDURE A*; 
VAR i: INTEGER; 
PROCEDURE B*(V AR i, j: INTEGER); 
V AR k: INTEGER; 
BEGIN k := i; i:= j; j := k END B; 
BEGIN i:= 2; B(i, j) 
END A; 
PROCEDURE C; 
BEGIN A; i := 2*j END C; 
BEGIN C 
ENDM. 

6.5 What is wrong with the following procedure? 

PROCEDURE Square(x: REAL): REAL; 
VARy: REAL; 
BEGIN y:= x*x 
END Square; 

6.6 [Fibonacci numbers] The Fibonacci numbers are defined by the recurrence 
relation 

fo=I, 1I=I, fn=fn-l +fn-2 forn=2,3,,,. 

Using recursion and iteration, write two versions of a procedure with heading 

PROCEDURE Fibonacci(n: INTEGER): INTEGER; 

that computes fn-
How many recursive invocations of Fibonacci result from a call to 

Fibonacci(n)? Similarly, how many iterative steps are needed? Why is the 
iterative solution so much faster (independent of the bookkeeping of recursive 
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function calls)? Hint: consider whether the work to compute fn-l is independent 
offn-2' 

6.7 Determine the number of function calls of the recursive version of Fibonacci 
empirically. Hint: use a side-effect. Is this a legitimate use of a side-effect? 

6.8 What mathematical function does F compute? 

PROCEDURE F(n: INTEGER): INTEGER; 
V AR i, j: INTEGER; 
BEGIN i:= 1; j := 1; 

WHILE n > 1 DO i := i + j; j := i - j; DEC(n) END 
ENDF; 

6.9 [Exponential random numbers] An exponential random number rnexp can be 
obtained from a uniform random number rnuni (see Box 10.1). Augment module 
RandomNumbers from Chapter 2 with 

PROCEDURE Expimu: REAL): REAL 

which produces exponentially distributed random numbers. Assume that a 
module Math is available that exports the logarithm In(x: REAL): REAL. 
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One of the foundations of the success of high-level programming lan­
guages is the principle of abstraction. The essence of abstraction is the 
hiding of details pertaining to the specific computer that is used to ex­
ecute a program. Different languages and systems differ in the abstrac­
tions that are advocated. Since abstraction means hiding of details, it 
invariably also precludes the use of some facilities - presumably 
existing to perform a certain task directly and efficiently. Simplification 
and generalization by suppression of details is then in direct conflict 
with the desire for transparency for efficient use. 

While a consensus seems to emerge as far as basic types and control 
structures are concerned, a great diversity is observed in the area of 
input and output operations, especially when considering the graphics 
subsystems of modern workstations. 

Recognizing this intrinsic dilemma, Oberon does not incorporate 
input and output abstractions in its language definition. This approach 
is made possible by two facts: 

(1) Abstractions are not only delivered through the language, but also 
through the module concept. The module allows hiding of details­
only those data and procedures consciously marked for export 
will be visible in client modules. We will say more about this role 
of the module in Chapter 10 and Part III. 

(2) It is assumed that the system that runs Oberon offers input and 
output operations packaged in Oberon modules. Such modules, al­
ready compiled and ready for use, comprise part of the 
computer's library. Suitable modules can be imported by the 
user's program, and yield access to the input and output devices. 
Typically, there is not only one such module, but a whole 
hierarchy, where each layer advances the level of abstraction -
that is, hides more details. 

87 
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Module In 

7.1 Sequential input and output, modules In and Out 

One of the most successful abstractions in the domain of input and 
output is that of the stream. A stream is a sequence of data elements. 
The number of data elements is not known a priori - the stream is 
therefore a simple case of a dynamic data structure. The number of 
elements is called the stream's length. Only one element is visible at a 
given time, namely the element at the stream's current position. That 
element can be read - the read operation implicitly increments the po­
sition. Writing (normally) occurs at the end of the stream. 

Historically, the vast majority of input and output devices have been 
sequential: paper tape, punched cards and then magnetic tapes. For 
these devices, the abstraction of the stream is quite close to the actual 
device operation. Today, the importance of sequential devices is waning 
- they are supplanted by disk storage capable of random access and by 
graphical output devices that are inherently non-sequential. The stream 
abstraction, however, has not lost its usefulness, since many operations 
are still sequential on the logical level. 

In the examples of this book, we assume the existence of two mod­
ules, In and Out, that implement an input stream and an output stream, 
respectively.1 To document a module, we list its exported constants, 
variables and procedure headings. 

For module In, such a definition reads as follows: 

DEFINITION In; 
V AR Done: BOOLEAN; 
PROCEDURE Open; 
PROCEDURE Char(VAR ch: CHAR); 
PROCEDURE Int(V AR i: INTEGER); 
PROCEDURE LongInt(V AR 1: LONGINT); 
PROCEDURE Real(VAR x: REAL); 
PROCEDURE Name(VAR nme: ARRAY OF CHAR);1 
PROCEDURE String(V AR str: ARRAY OF CHAR); 

END In. 

The meaning, or semantics of the variable and the procedures exported 
by module In are as follows: 

1 The source text of a particular implementation is listed in Appendix C. 
2 A variable of type ARRAY OF CHAR may have a string as value, see Section 

8.2.6. 
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• The variable Done holds as long as read operations terminate 
properly. The first abnormal termination falsifies Done, which 
will remain FALSE until the next call to Open. This variable 
should be tested before using the variable parameter that returns 
the result of the input operation. 

• Open initializes the input stream. The position is set to the origin 
and Done = TRUE. 

• Char: If Done holds, returns the character found at the position of 
the input stream and increments that position. If an attempt is 
made to read beyond the end of the stream, Done is falsified. 

• Int, Longlnt, Real, Name: If Done holds, these procedures scan the 
input stream for a token of appropriate type, starting at the 
current position. The syntax is that of the basic Oberon tokens (a 
name is a sequence of identifiers, juxtaposed with periods). 
Leading blanks, tabs or carriage return characters are skipped. If 
a token is found, it is translated into internal representation and 
returned in the variable parameter. The position is advanced to 
the character immediately following the token. If no token of 
appropriate type is encountered, Done = FALSE. 

• String: If Done holds, the input stream is scanned for the first 
non-blank character. All consecutive characters whose value is at 
least a blank are returned in s. Done is falsified if the end of the 
stream was encountered. 

If a sequence of input operations is performed, Done = TRUE after the 
last call indicates that all operations were successful. 

In the same style, the exported procedures of module Out are sum­
marized in the definition 

DEFINITION Out; 
PROCEDURE Open; 
PROCEDURE Char(ch: CHAR); 
PROCEDURE Ln; 
PROCEDURE Int(i, n: LONGINT); 
PROCEDURE Real(x: REAL; n: INTEGER); 
PROCEDURE String(s: ARRAY OF CHAR); 

END Out. 

The meanings of the procedures of module Out are as follows: 

• Open initializes the output stream. 

• Char writes character ch at the end of the stream. 
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• Ln appends a carriage return control character to the end of the 
stream. On a printer or on a display device, a new line will be 
started. 

• Int and Real: translates the internal representation of the actual 
parameter to a textual representation composed of n characters, 
and appends it to the end of the stream. 

• String appends the characters of the string passed as parameter 
to the end of the stream. ' 

The noteworthy fact is that neither the input nor the output data stream 
appears explicitly in the definition of module In or Out. Their data 
structure, which is quite complex is completely hidden. This . hiding is 
the essence of the abstraction termed stream. 

Browser In Modula-2 the text between "DEFINITION" and the keyword "END" 
is termed a definition module. It lists all exported declarations - hence it 
is also known as the public view of the module. Such a definition module 
is accepted by the compiler. Its function is the identification of exported 
objects - it substitutes for Oberon's export marks. 

The advantage of the definition module is its textual compactness. 
Oberon systems therefore typically offer a tool called the browser that 
accepts the module text and constructs the public view in the form of 
the definition module. 

7.2 Graphics output 

As we have indicated, finding generally agreed upon abstractions for 
programming the display of a graphics-based workstation is still a chal­
lenge. Here we merely wish to introduce a high-level module providing 
graphics output for animated simulations, such as drawing the fractal 
fern. 

The model is that of a Cartesian plane with origin in the lower left 
corner of the screen. Graphics output devices provide a raster of points, 
called pixels. The pixel is the smallest unit that can be turned black or 
white - or be assigned a color. It is therefore sensible to choose the pixel 
size as unit and measure the coordinates in multiples of that unit; that 
is, to use integers to represent x and y (Figure 7.1). 

The visible area of the Cartesian plane (window provided by 
viewer) has its lower left corner at coordinates (X, Y), is of width Wand 
heightH. 
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Figure 7.1 Raster display. 

Catering to the special task of animation is a provision to read the 
keyboard while the simulation is running. This allows the definition of 
'command keys' useful to interrupt the action and control the course of 
events. 

We introduce the definition of module XYplane1 in the same style 
adopted for modules In or Out: 

DEFINITION XYplane; 
CONST erase = 0; draw = 1; 
V AR X, Y, W, H: INTEGER; 
PROCEDURE Open; 
PROCEDURE Dot(x, y, mode: INTEGER); 
PROCEDURE IsDot(x, y: INTEGER): BOOLEAN; 
PROCEDURE ReadKeyO: CHAR; 
PROCEDURE Clear; 

END XYplane. 

The actions of the procedures can be easily guessed; the following is a 
short description: 

• Constants erase and draw are the values for the formal parameter 
mode in procedures Dot and Line. 

• Variables X, Y, Wand H report location and size of the visible 
drawing area. They are defined after a call of procedure Open. 

• Open initializes a drawing area. 

1 The source text of a particular implementation of module XYplane is found in 
AppendixC. 
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• Dot draws (erases) a dot at coordinates x, y controlled by mode. 

• IsDot tests whether a dot is drawn at coordinates x, y. 
• ReadKey reads the keyboard. If a key was pressed prior to invoca­

tion, it is returned; else OX results. 

• Clear erases all dots in the drawing area. 

7.3 The fractal fern, completion of the example 

We have now all the required knowledge to complete the initial ex­
ample of drawing fractals. Procedure Draw is capable of painting an 
infinite variety of fractals. The fern is just one of them. We are therefore 
interested in reading the parameters of the iterated function system 
from the input stream. This has the distinct advantage that the user 
does not have to change the program text and recompile module IFS for 
each change in the parameters. We assume that the modules 
RandomNumbers, XYplane, In and Out are in the computer's library. 

The coordinates in module IFS are reals, whereas the display coor­
dinates of XYplane are integers. The two sets of coordinates are related 
by the transformation 

~ = Xo + ENTIER(X * e), 11 = Yo + ENTIER(Y* e) 

where Xo and Yo are the pixel coordinates of the origin of the plane and e 
measures the unit interval (in pixels). 

With these preliminaries, we can restate our module IFS: 

MODULE IFS; 
IMPORT RandomNumbers, In, Out, XYplane; 

VAR 
aI, bl, cI, dl, eI, £1, pI: REAL; (* IFS parameters *) 
a2, b2, c2, d2, e2, f2, p2: REAL; (* IFS parameters *) 
a3, b3, c3, d3, e3, f3, p3: REAL; (* IFS parameters *) 
a4, b4, c4, d4, e4, f4, p4: REAL; (* IFS parameters *) 
X, Y: REAL; (* the position of the pen *) 
xO: INTEGER; (* Distance of origin from left edge[pixelsl *) 
yO: INTEGER; (* Distance of origin from bottom edge[pixelsl *) 
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e: INTEGER; (* Size of unit interval [pixels] *) 
initialized: BOOLEAN; (* Are parameters initialized? *) 

PROCEDURE Draw*; 
VAR 

x, y: REAL; 
xi, eta: INTEGER; 
rn: REAL; 

BEGIN 
(1) ~ IF initialized THEN 

REPEAT 

(* command marked for export *) 

(* new position *) 
(* pixel coordinates of pen *) 
(* temp. variable for random number *) 

rn := RandomNumbers.UniformO; 
IF rn < pI THEN 

x:= al*X + bl *Y + el; y:= cl*X + dl*Y + f1 
ELSIF rn < (pI + p2) THEN 

x := a2*X + b2 *Y + e2; y := c2*X + d2*Y + f2 
ELSIF rn < (pI + p2 + p3) THEN 

x := a3*X + b3 *Y + e3; y := c3*X + d3*Y + f3 
ELSE 

x:= a4*X + b4 *Y + e4; y:= c4*X + d4*Y + f4 
END; 

(2) ~ X:= x; xi:= xO + SHORT(ENTIER(X*e»; 
Y := y; eta:= yO + SHORT(ENTIER(Y *e»; 
XYplane.Dot(xi, eta, XYplane.draw) 

(3) ~ UNTIL "s" = XYplane.KeyO 
END 
END Draw; 

PROCEDURE Init*; (* command marked for export *) 
BEGIN 

X := 0; Y:= 0; (* Initial position of pen *) 
initialized := FALSE; In.Open; 
In.Int(xO); In.Int(yO); In.Int(e); 
In.Real(al); In.Real(a2); In.Real(a3); 
In.Real(bl); In.Real(b2); In.Real(b3); 
In.Real(cl); In.Real(c2); In.Real(c3); 
In.Real(dl); In.Real(d2); In.Real(d3); 
In.Real(el); In.Real(e2); In.Real(e3); 
In.Real(fl); In.Real(f2); In.Real(f3); 
In.Real(pl); In.Real(p2); In.Real(p3); 

In.Real(a4); 
In.Real(b4); 
In.Real(c4); 
In.Real(d4); 
In.Real(e4); 
In.Real(f4) ; 
In.Real(p4); 
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IF In. Done THEN XYplane.Open; initialized := TRUE 
ELSE Out.String("Parameter error "); Out.Ln 
END 

END Init; 

(4) -+ BEGIN initialized:= FALSE 
ENDIFS. 

Notes 

(1) initialized is a Boolean variable that prevents execution of Draw 
unless the parameters are properly initialized. 

(2) Note the type transfer function SHORT. 

(3) The keyboard is read and the computation ended if the "s" key is 
hit. 

(4) initialized is set to FALSE when the module is loaded. 

The procedures Draw and Init are exported. They are commands, 
since they have no formal parameters. Why are we dividing 'the work 
into two procedures? The initialization performed by the statement se.;. 
quence of Init could just as well be prefixed to the statement sequence 
of Draw. 

";.; .:" .. 
I',;· .. ':',?" 

! 

Figure 7.2 Four stages in the computation of the fractal fern. 

The reason lies in the nature of the method for drawing a fractal. 
After the parameters have been initialized, executing Draw will start 
drawing a fern. First, there are only a. few points. The fern becomes 
visible after a short while. Now press the liS" key - the computation 
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stops. If a continuation is desired, one may invoke Draw again - the 
drawing continues and the fern gets darker and darker. Four stages 
towards convergence are shown in Figure 7.2, the last the result of 
about 30 minutes of computation.} 

7.4 The Oberon system: a short digression 

As a language, Oberon does not impose any particular requirement on 
the system on which programs will execute. However, it was conceived 
as a tool for developing an extensible operating system for a graphics­
based workstation. As suggested earlier in this chapter, the Oberon 
system is composed of a hierarchy of modules, each providing an 
abstraction on a suitable level (see Figure 1.1). 

The Oberon system departs from the 'bandwagon trail' in many 
important ways. An adequate treatment is the object of several journal 
papers and two other books (see Reiser, 1991; Wirth and Gutknecht, 
1989, 1992). In this section, we will restrict the discussion to two key 
concepts: 

• Execution of commands - instead of programs. 

• A new and unifying role played by the notion of a text. 

7.4.1 Execution of commands 

Running a program on a conventional computer system entails the fol­
lowing steps: 

(1) All the parts of the program (for example its modules) are 
translated, and in a separate step2 coalesced into a single 
executable unir that is stored on disk. 

(2) The operating system affords controls that enable the user to 
start programs. The program is loaded into memory, and control 
passed to the first instruction. 

(3) Upon termination, memory and possibly other resources, such as 
files, are released. 

} On a 15.6672 MHz Motorola MC68030 processor with MC68882 math co­
processor. 

2 Usually performed by a program called the linkage editor. 
3 Also termed the object program. 
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Program loading is known to be a slow process, and, since memory is 
released upon termination, a sequence of programs can only commu­
nicate through files. It is therefore not attractive to compose an interac­
tive application as a set of programs that are called from the operation 
system's command interpreter. 

The command activation mechanism of the Oberon system is meant 
to support efficiently the design of extensible interactive programs. This 
goal requires an architecture that has the following characteristics: 

• The smallest unit of program text that can be executed from the 
computer's controls is reduced: it is the exported procedure 
without formal parameters - also termed the command in Oberon 
terminology. 

• To avoid the overhead of swapping programs in and out of 
memory, the modules are loaded only once, when one of their 
resources 1 is referenced first. After a module has been 
dynamically loaded, it remains memory-resident for the rest of the 
session (or until it is explicitly unloaded). At the time of the first 
loading, the statement sequence of the module is executed. 

• Oberon allows the user to execute commands using the 
computer's controls, in particular the mouse. Once a command 
gains control, it runs to completion. It does not require (or allow) 
any further interactions with the user. 2 

The result is that the Oberon command mechanism is highly efficient. 
An important additional benefit of memory-resident modules is the fact 
that commands may communicate through data structures in memory. This 
makes the notion of abstract data types particularly relevant. They are 
explored in Chapter 10 and Part III. 

7.4.2 The role of texts 

One of the first surprises of the novice gaining acquaintance with a 
computer is the discovery that text displayed on the monitor is modal. 
Some text is merely meant to be looked at. It is a volatile entity on the 
screen, written by the system. Other text, written in a special place, will 
be interpreted as commands, instructing the system what to do. The 
special place is known as the command line. Still a third kind - close to 

1 Procedures or global data. 
2 With the exception of the CTRL-SHIFT-DEL key combination, which (on Ceres) 

aborts the execution of a (long-running) command. 



Command 
activation 

Tool texts 

7.4 The Oberon system: a short digression 97 

what a naive user would expect as normal- is text ready to be edited, 
changed, stored or printed. 

In Oberon, there is only one kind of text: it is editable, storable, 
printable, and can be interpreted as commands. Texts exist in windows 
called text viewers. In every text viewer, a simple editor is available. The 
text modes are abolished. 

The layout of a text viewer is depicted in Figure 7.3. The perimeter of 
the viewer is marked with a thin line. On top is a title bar, rendered in 
reverse video. A scroll bar with a position mark is placed at left. The 
title bar contains the viewer name separated by a vertical bar" I" from 
the commands System.Close, System.Copy, System.Grow, Edit.Locate and 
Edit.Store. These commands can be executed with the mouse and 
perform operations on tH.e viewer or on the text contained in the viewer. 

Position mark Title bar 

PROCEDURE Draw*; (* command marked for export *) 
VAR 

x, y: REAL; (* new position *) 
xi, eta: INTEGER; (* pixel coordinates of pen *) 
rn: REAL; (* temp. variable for random number *) 

_+ _~5~I~n_~i~li~~~:rfl~Flf\l~_~~;_____ __ 

Scroll bar Editable text 

Figure 7.3 Layout and elements of an Oberon text viewer. 

Commands are identified through a qualified identifier of the form 
Mod.Proc, where Proc is the name of the command and Mod denotes the 
module in which Proc is declared. Oberon provides the facility to 
execute any command by simply pointing at its name - typed anywhere 
in a text - and pressing the execute key of the mouse. 

The fact that commands are activated out of text viewers allows the 
user to create a highly efficient working environment. One simply types 
the group of commands that comprise the current work into a text 
viewer and stores the text on disk. Such a text is appropriately termed a 
tool. Figure 7.4 portrays such a tool, written to execute the commands 
from our sample module IFS. Three commands are prepared: IFS.Init, 
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Text output 

IFS.Draw and Paint.Print, the last will print the file XYplane.Pict that can 
be created from a XYplane viewer. The mouse pointer (arrow) is over 
IFS.lnit, which appears underlined. That means the user is pressing the 
execute key. Upon release of that key, IFS.lnit will execute. 

Note that tool texts in text viewers are like menus of conventional user 
interface designs - except that they offer a lot more flexibility. 

IFS.Tool I System.Close System. Copy Syste 

IFS.lnit * 
IFS.~w 

---- ----~-~!~~:-~~~~!--~~~~~-~~:-~~~~~-------------------------------! 

Figure 7.4 A tool viewer; the command IFS.Init is about to be executed. 

If commands produce output, a new text viewer is opened and the 
output text displayed within its perimeter. Again, the text can be 
modified, printed and stored. Module Out can be used to create such 
text output. 

7.4.3 Modules In and Out 

The abstractions of modules In and Out are general enough to be im­
plementable on any computer. Such implementations differ in the way 
the input and output streams are defined. The input stream may be the 
keyboard or a file - the output stream a display device or again a file. In 
the Oberon system both streams are texts that are displayed in viewers. 

The output Invocation of Out.Open opens an empty text viewer with title Out.Text. 
stream The text displayed in that viewer represents the output stream. Each 

time a write procedure is called, the textual addition becomes visible in 
the viewer. The important thing to remember is that, even though 
viewer Out. Text is home of the output stream, it is also a normal text 
viewer. That means that the displayed text can be edited, stored or 
printed at any time the system admits input from mouse and keyboard. 
Such modifications do not interfere with the fact that further calls of 
write procedures add output at the end of the text. 

The input stream The input stream is also embedded in a text displayed in a text viewer. 
There are three possibilities, depending on the character that follows 
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the command name whose execution led to a call of In.Open: 

(1) If that character is an asterisk, "*", then the text displayed in the 
marked viewer represents the input stream that begins at the 
first character of that text. A viewer may be marked by pointing 
at it and pressing a special mark key. An asterisk identifies the 
marked viewer. 

he input stream starts here ... 

nnnnnnnn~nnnnnnnnnnnnJ ~mm~ 
The marked viewer lJ ___ ~ ________________________________ j 

Figure 7.5 The input stream is in the marked viewer. 

(2) If that character is the upward-pointing arrow, "t",l then the text 
that contains the most recent selection contains the input stream. 
The first selected character is also the first character of the 
stream. 

InText I System_Close S stem_Co y 

The selection 

Figure 7.6 The input stream starts at the first selected character. 

(3) If neither case 1 or case 2 applies, the text from which the com­
mand was executed contains the input stream. The stream starts 
with the character that follows the blank after the command 
name. 

1 In the standard ASCII character set,"t" is represented by the caret "A", with 
ORD("A") = 94. 
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My.Tool I System.Close System.Copy System.( 

~(The input stream starts here ..... 

Figure 7.7 The input stream starts after the command name. 

7.4.4 Module XYplane 

If a command results in the execution of XYplane.Open then a viewer 
entitled XYplane opens in the user track. The viewer consumes the 
whole track. However, it is created as an overlay; hence, when the 
command System.Close is executed, the previous screen is restored. 
After a plane is opened, draw procedures are used to create a graphic. 
The graphic may be stored to disk using the command XYplane.Store 
from the title bar. 

Figure 7.8 shows an XYplane viewer that was opened as a 
consequence of executing the command IFS.Init. A fractal fern is in the 
process of being painted. The inset enlarges the tool from which the 
command IFS.Draw was executed. 

7.5 Summary 

It is debatable whether a programming language should define input 
and output operations. Our point of view is that appropriate abstrac­
tions should be provided through modules that extend the operating 
system. 

In this chapter, we have provided the definition of two modules, In 
and Out, that are based on the abstraction of the input and output stream 
and will be used in the examples in this book. We have introduced a 
useful notation called the definition module for documentation purposes. 

Abstractions for graphics output are even less established than tex­
tual input and output. A module XYplane is presented that allows 
writing to individual pixels of the display and reading the keyboard. 

Using those input and output modules, we have completed the 
example of the fractal fern that was begun in Chapter 6. An important 
notion is that of the command - a parameter-less procedure exported by 
a module. The command is the unit accepted for execution by the 
Oberon operating environment. 
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IFS.TooI S stem.Clos 

IFS.lnit 
IFS.Dra 

Command that 
started simulation 

Figure 7.8 An XYplane viewer, opened after execution of IFS.lnit. 

We have concluded this chapter with a digression: a short 
introduction to the basic user interface of the Oberon system based on 
viewers and non-volatile texts. A particular implementation of modules 
In, Out and XY plane is portrayed in this context. 

7.6 Exercises 

7.1 [Summation of infinite series] Write procedures to compute sin (x) for 
x: REAL according to the series: 

. x 3 x 5 x 7 

sm(x) = x - - + - - - + ... 
3! 5! 7! 

Find an appropriate condition for terminating the addition. Count the number 
of required terms to obtain the desired accuracy. Evaluate sin (x) for various 
arguments and compare the results with a function table (or the result 
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produced by a mathematical library). If you observe incorrect results, explain. 
Does the use of double precision (type LONGREAL) help? 

Note: Efficient and accurate computation of mathematical function requires 
mathematical sophistication. We recommend the use of standard libraries. 

7.2 [Harmonic function] Write a procedure to compute the harmonic function H(n) 
for integer arguments n: 

1 1 1 
H(n) = 1 + - + - + ... + -

2 3 n 

Compute this function in two ways: once by beginning the summation with the 
first term (1), once by beginning with the last (lIn). Compare the results for 
large n and explain any difference. 

7.3 [Square root] Write a function procedure to compute the square root Y of a real 
argument x according to Newton's method; that is, by computing a sequence of 
Yi until two consecutive values differ by less than a specified small value: 

Formulate an invariant first. Is Yi+l = Yi a correct stopping condition? How 
accurate is the result? 

7.4 [Input of integer] Using only procedure Char of module In implement the 
procedure Int of the same module. Hint: ORD("O") = 48, ORD("l ") = 49, ... 

7.5 [Calculator] Implement a calculator that uses RPN notation (reversed Polish 
notation). The number format is that of reals. Four registers X, Y, Z and T form 
a stack. Command Enter pushes new numbers onto the stack according to the 
statement sequence T := Z; Z := Y; Y := X; X := newNumber. Commands Add 
results in X := X + Y; Y := Z; Z := T. Commands Suht, Mult and Div are defined 
analogously. 

Provide visual feedback as shown on the right. Numbers > 3.14159 
entered are prefixed with a ">" sign. The results show an > 2.71828 
explanative sign such as a "+". + 5.85987 

Insure that only syntactically correct numbers can be 
entered. Display an error message in the case of a violation. When the module 
is first loaded, the registers are initialized to o. Hint: study the operation of a 
calculator from Hewlett-Packard Company. 

7.6 [IFS] Implement module IFS. Prepare the text shown in Figure 7.9 in an Oberon 
text viewer with title IFS.Text. The second parameter set will produce a fractal 
that looks like a maple leaf. 
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IFS.Text S stem.Close S stem.Co S stem.Grow Edit.Search 

Fractal fern 
320 0 64 
0.0 0.85 0.2 -0.15 0.0 0.04 -0.26 0.28 
0.0 -0.04 0.23 0.26 0.16 0.85 0.22 0.24 
0.0 0.0 0.0 0.0 0.0 1.6 1.6 0.44 
0.01 0.85 0.07 0.07 
Fractal maple leaf 
90 0 450 
0.65 0.65 0.32 -0.32 -0.013 -0.026 -0.32 0.32 
0.013 0.026 0.32 0.32 0.65 0.65 0.32 0.32 
0.175 0.175 0.2 0.8 0.0 0.35 0.0 0.0 

....... O ... 3. .......... Q:~ ........... Q:.~ ......... 9.:~ ............................................................................... .. 

Figure 7.9 Sample input viewer for module IFS. 

7.7 [Module Shapes] Using procedure Dot from module XYplane, implement 
module Shapes with definition 

DEFINITION Shapes; 
IMPORT XYplane; 
PROCEDURE Hline(x, y, I, mode: INTEGER); 
PROCEDURE Vline(x, y, I, mode: INTEGER); 
PROCEDURE FilledRect(x, y, w, h, mode: INTEGER); 
PROCEDURE Rect(x, y, w, h, mode: INTEGER); 
END Shapes; 

Formal parameter mode takes the values XYplane.erase and XYplane.draw. Rline 
and Vline draw horizontal or vertical lines of length I starting at (x, y). FilledReet 
draws a filled rectangle with a corner at coordinates x and y, width wand 
height h. Reet produces a 'wire frame' rectangle. It is assumed that 
XYplane.Open is issued prior to the use of the procedures exported by Shapes. 

Remark: For real applications, module Display, which is part of the Oberon 
system, affords a far more efficient solution to drawing a filled rectangle (see 
next exercise). 

7.8 The standard Oberon library has a module Display for basic output to the 
screen. Among its export is 

PROCEDURE ReplConst(col, x, y, w, h, mode: INTEGER) 

which draws a rectangle, filled with color col, with lower left corner at position 
x, y, width wand height h. Use Display.ReplConst to implement module Shapes. 

Procedure ReplConst does not limit output to the drawing area of XYplane (as 
XYplane.Dot does). Make sure that drawing is limited to the visible area of the 
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viewer. Hint: use the variables XYplane.X, XYplane.Y, XYplane. Wand XYplane.H 
for clipping. 

Display.white and Display.black are the color values, Display.replace is used in 
place of mode. Note that Display.white and Display.black are defined relative to a 
black background. 

Compare the speed of the two implementations of Shapes. If one is faster, 
discuss the reason why. 

7.9 [Drawing a line] Bresenham's algorithm for lines is used to draw a straight line 
between the coordinate origin and the endpoints a, b 
where a ~ b by marking dots in the discrete raster using 
XYplane.Dot. In order to make the computation of the 
dot coordinates fast, integer arithmetic is used 
exclusively. 

The principle of Bresenham's algorithm is the 
following: proceed from x = 0 towards x = a, in each 
step incrementing x by I and y by 0 or 1. Hint: use a 
variable h = (bx - ay + b - a/2), and increment y if h > O. 

7.10 Add a procedure with heading 

PROCEDURE Line(xl, yl, x2, y2, mode: INTEGER) 

a 

to module Shapes that draws a line between the points with coordinates xl, yl 
and x2, y2. Use appropriate coordinate transformations such that Bresenham's 
algorithm becomes applicable for all xl, yl, x2 and y2 values. Hint: distinguish 
between the eight octants of the plane. 

7.11 [Turtle Graphics] Implement module Turtle with definition 

DEFINITION Turtle; 
IMPORT Shapes; 
PROCEDURE SetPen(x, y: INTEGER); 
PROCEDURE Move(l: INTEGER); 
PROCEDURE TurnLeft; 
PROCEDURE TurnRight; 
END Turtle. 

A pen draws curves composed of vertical and horizontal lines. Turtle has a 
global state comprised of the pen position and a direction that is restricted to 
north, west, south and east. SetPen sets the pen position to x and y. Move draws 
a line segment of length I emanating at the current position. After Move, the pen 
position is at the end of the new line segment. TurnLeft and TurnRight turn the 
direction relative to the current direction by a right angle. 

Discuss the implication of Turtle relative to the abstraction of the stream. 

7.12 [Mandelbrot set] Write a module Mandelbrot that displays the Mandelbrot set 
M. M is composed of those points c of the complex plane for which ziremains 
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bounded as i tends to infinity, where the values Zjare computed according to 

Zo = 0, Zi = ZT-1 + c, i = 1,2, ... 

Select a square of N by N pixels in the XYplane viewer. Map the raster defined 
by the pixels onto an area of the complex plane. Each complex point so defined 
is one of the c values for which the sequence {Zj} is computed. Select a maximal 
value, Imax say, for the index i. If for any i < Imax: I Zj I > 2, then color the pixel 
white. If the maximal value is reached, color the pixel black-the corresponding 
c value is in the Mandelbrot set (or close to it), 

The number of pixels N, the maximum value of iteration Imax and the 
location of the square in the complex plane are parameters to be read from the 
input stream. A good first choice is 

-2.1:5 Re(c) :5 0.7, -1.4 :5 Im(c) :5 1.4. 

Zoom into various areas for example, try the values 

-0.66 
-0.5373 
-1.8293 
-0.793 

~ Re(c) ~ 
~ Re(c) ~ 
~ Re(c) ~ 
~ Re(c) ~ 

-0.41, 
-0.5195, 
-1.7173, 
-0.7, 

0.49 
0.6597 
-0.056 
0.0466 

~ Im(c)::; 0.74 
~ Im(c)::; 0.6775 
~ Im(c)::; 0.056 
~ Im(c)::; 0.14 

7.13 If you have a color monitor, color the pixels according to the index i for which 
I zi I ~ 2 for the first time. Experiment with various color assignments. If you 
have a monochrome monitor, divide the range 0 ~ i ~ Imax into black and white 
bands. 

7.14 The points 

Zl = C, Zi = ZT-l + c, i = 2,3, ... 

are said to form an orbit. Add two commands StartOrbit and StepOrbit to the 
module Mandelbrot. StartOrbit selects a c value, StepOrbit steps through the 
orbit, point by point. Make the points of the orbit visible. If an orbit point is 
inside the Mandelbrot set, show it in white; if it is outside, draw it black. Use a 
mark that is bigger than just a pixel so that the orbit point clearly stands out. 

7.15 [Deterministic IFS] Write a deterministic IFS module. Divide the drawing area 
of XYplane into two square areas. In each area, a coordinate system with origin 
at the lower left corner is assumed. In the first square, draw an initial shape, for 
example a filled rectangle. Then apply each one of the four transformations to 
every point that is black (use XYplane.IsDot). Draw the transformed points in 
the second square. Erase the point that is thus processed. Once all points in the 
first square are processed, switch the role of the two squares. Iterate until the 
stop key is pressed. The first four iterations together with iteration 100 are 
depicted in Figure 7.10. 
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Figure 7.10 The 1st, 2nd, 3rd, 4th and 100th iterate of the deterministic IFS 
algorithm. 
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Synopsis 

Part I contains all the necessary knowledge needed to write 
complete Oberon programs. However, if the language were 
restricted to that scope, a solution to most real problems would 
be tedious at best - but more likely downright impractical. 

The reason is that each variable is identified with a single 
name. In Part II, we will introduce two structured types - the 
array and the record - each comprising elements of basic types. 

Records and arrays are static structures. There are situations 
where the volume of data and the relationship of data elements 
changes dynamically. The pointer, in conjunction with records, 
allows the construction of such dynamical data structures as lists, 
trees or graphs. 

Using these tools, we will develop a realistic sample program: 
simulation of a queue. We will write the program in a structured 
way known as stepwise refinement. In this context, we will 
discover the virtue of hiding details in modules - a technique 
called data abstraction. 



8 Type declarations, array and 
record types 

So far, we have given each variable an individual name. This may be te­
dious - if not downright impractical - in the case of a large number of 
variables of the same type. In other situations, it is desirable to refer to a 
collection of variables, possibly of different types, with a common 
name. In this section, we will encounter two such structured types that 
are familiar in programming languages: the array and the record. 

The model for the array data structure is the indexed variable of 
mathematics: 

aU] 
aU, j1 

The array carries a name for the whole set of variables. Individual array 
elements are selected with a computable index. Obviously, arrays play 
a major role in numerical programs. But they also model tables and 
sequences of characters. 

Records have their origin in commercial data processing. They rep­
resent collections of variables that are typically of different types. A 
personnel record with fields for name, address, date of birth and salary 
furnishes an often used example. Records are also of great utility in 
system programming, where they are known as control blocks. Finally -
in conjunction with the pointer type - records provide the basis to 
construct dynamic data structures such as lists and trees. 

A declaration is a specification of an identifier. Through the decla­
ration, the given identifier represents an object of the Oberon language 
such as a variable or a procedure. Oberon treats the type also as an 
object that may be declared. Such type declarations go beyond a mere 
convenience - together with the module concept, they are the basis for 
abstract data types - a topic that will be introduced in Chapter 10 and 
expanded in Part III. 
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8.1 Type declaration 

Type 
compatibility 

The declaration binds an identifier to properties of the object that it 
represents. In Oberon, the declared properties are constant and valid 
within the scope of the identifier. While the value of a variable may 
change, its declared properties remain the same throughout the time of 
its existence. 

The concept of type is important because it divides the variables into 
disjoint classes. Each type defines the set of values that a variable may 
assume. Inadvertent assignments among members of incompatible 
classes can therefore be detected by mere inspection of a program's text 
without executing the program. Similarly, factors in an expression and 
the pairing of actual to formal parameters can be checked· for 
compatibility. 

In Chapter 3, we have encountered the primitive types that reflect 
properties of the underlying computing machine. The primitive types 
are SHORTINT, INTEGER, LONGINT, REAL, LONG REAL, 
BOOLEAN, SET and CHAR. That the standard types are named with 
predeclared identifiers rather than with reserved keywords suggests 
that the user may declare identifiers to introduce additional types. 

Such a type declaration in fact exists, for example 

TYPE 
Time* = REAL; 
Vector = ARRAY 3 OF REAL; 
Person = RECORD first, given: Name END; 

The general syntax of a type declaration is expressed by: 

I TypeDeclaration = ident [1/*"] 1/=" type. 
type = qualident I ArrayType I RecordType I 
. PointerType I ProcedureType. 

The asterisk is the familiar export mark that renders the identifier vis­
ible in importing modules. The qualident represents a type - either one 
of the predeclared types or one declared by the programmer. Array and 
record types are covered in subsequent sections, pointer types are 
covered in Chapter 9 and procedure types await Chapter 11. 

Recall that the operands of operators must be expression-compatible (see 
Table 4.1). Similarly, the type of the designator in an assignment Oeft­
hand side) must be assignment compatible with the type of the expression 
of that assignment (Table 4.3). 
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Generally, for a type T2 to be (assignment-) compatible with another 
type Tl, we require that 

(1) T2 be included in Tl, that is, 
LONG REAL ~ REAL ~ LONGINT ~ INTEGER ~ SHORTINT 

(2) 12 be declared equal to Tl. 

For example in the type definition, 

TYPE Tl = REAL; T2 = Tl; T3 = INTEGER; 

T2 is compatible with Tl (equal), and T3 is compatible with Tl and T2 
(included). 

However, in the type declaration 

TYPE 
Al = ARRAY 10 OF INTEGER; 
A2 = ARRAY 10 OF INTEGER; 
A3 = AI; 

only A 1 and A3 are compatible. A 1 and A2 are incompatible, even 
though the specifications on the right-hand side of the equal sign are 
the same. Technically, rule (2) is known as a name equivalence - as op­
posed to the structural equivalence of A 1 with A2. 

A variable, t say, may be declared to be of a certain type in either of two 
ways: 

TYPE T = someType; VAR t: T; 

or simply 

VAR t: someType; 

In both cases, t is of the same type - only, in the second case, the type 
remains anonymous (unless, of course, someType is an identifier). For 
example, in the declaration 

VAR a: AI; b: ARRAY 10 OF INTEGER; 

the type of b is an anonymous array type. Furthermore, because of the 
name equivalence rule, variable b is not type-compatible with a. 
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8.2 Arrays 

8.2.1 The array type and the array declaration 

An array is a data type that represents a set of elements that are all of 
the same type - the element type. The number of elements is fixed and is 
called the array's length. The name of an array variable refers to all 
elements. An individual member is identified with a number - the so­
called index. Indices are integers between 0 and the length minus one. 

The array is said to be a structured data type. It is a homogeneous 
structure, because all elements are of the same type. The structure is 
defined mathematically by the mapping of the set of integers 
{O ... length - I} onto the set of values defined by the element type (Figure 
8.1). 

a: ARRAY N OF elementType 

a: I, ali] 1 

o i 
index 

Figure 8.1 An array. 

N-1 
length = N 

In the following example of an array declaration, the variable v con­
sists of 3 elements, each of type REAL: 

V AR v: ARRAY 3 OF REAL; 

If we wish to make the array type explicit, we may give it a name, for 
example Vector: 

TYPE .Vector = ARRAY 3 OF REAL; V AR v: Vector; 

The array type declaration haa.the syntax 

I ArrayType = "ARRA Y" length {" ," length} "OF" type. 
length = ConstExpression. 

We see that the array length may be expressed by a constant expression. 
For example, we could declare type Vector as follows: 
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CONST n = 3; 
TYPE Vector = ARRAY n OF REAL; 

Multidimensional The elements of an array are all of the same type. The element type, 
array however, is not restricted to the basic or unstructured types. In partic­

ular, the array elements may themselves be arrays. An array of arrays is 
called a multidimensional array, because each index may be considered as 
spanning a dimension in a Cartesian space. For example a three-di­
mensional array type, ThreeD, with element type T is declared as fol­
lows: 

Predeclared 
function LEN 

TYPE ThreeD = ARRAY kI OF 
ARRAY k2 OF 

ARRAY k3 OF T; 

The total number of elements of type Tis klxk2xk3. For such a multi­
dimensional array declaration, Oberon admits the shorthand notation 

TYPE ThreeD = ARRAY kI, k2, k3 OF T; 

The outermost nesting level is said to be dimension zerb. In the example, 
this is the index that ranges over {O ... kI - I}. The next nesting level 
corresponds to dimension one, and so on. 

The predeclared function 

LEN(a, n) 

produces the length of dimension n of an array a. For example, if a is of 
the type ThreeD, then LEN(a, 0) = kI, LEN(a, 1) = k2 and LEN(a, 3) = k3. 
LEN(a) is a shorthand notation for LEN(a, 0). 

8.2.2 The array designator, assignment and expressions 

An element in an array is a variable that is designated by the array's 
identifier followed by a selecting index that is set in square brackets. For 
the example, v: Vector has the elements v[O], v[1] and v[2]. 

Syntactically, v[i] is an array designator and [i] is the selector. Selectors 
are integer expressions in square brackets. Thus, a selector may be 
computed - a fact on which the prominent role of arrays in pro­
gramming is founded. The array designator has the syntax: 
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Rules 

Abbreviated 
index notation 

I designator = qualident { "[ " ExpList "]" }. 
ExpList = expression {"," expression}. 

The expressions must be of integer type, and the number of entries in 
the expression list must not exceed the dimension of the array declara­
tion. 

The semantics of an array designator a[expr] observe the straightfor­
ward rules: 

(1) The expression expr is evaluated and results in the integer j, say. 

(2) [j] is the selector of the designated array element aU], which 
results in a variable. This variable may enter as a factor in an 
expression, serve as actual parameter or appear on the left-hand 
side of an assignment statement. 

(3) If the designator has two selectors, a[exprl][expr2], then exprl is 
evaluated and applied to a. The resulting variable must again be 
of array type. Next, expr2 is evaluated and applied to that vari­
able. 

The generalization of rule (3) to more than 2 selectors is self-evident. It 
is obvious that the value of expr must be within the range 0 ~ expr < 
LEN (a). What happens if this condition is violated depends on the 
computing system used. Normally, Oberon programs will come to an 
abnormal halt.1 

The syntax of designators allows for a similar abbreviation as used in 
the corresponding declarations, namely A[i, j] is equivalent to A[i] [j] 
etc. For example consider the declaration 

TYPE 
Vector = ARRAY n OF REAL; 
Matrix = ARRAY m OF Vector; 
Tensor = ARRAY k OF Matrix; 

VAR x, y: Vector; A: Matrix; T: Tensor; i, j: INTEGER; 

Then we have 

xU] 
AU] 
AU][j] or AU, jl 

ith element of array x (type REAL) 
sub-array of A (type Vector) 
jth element of ith sub-array (type REAL) 

lSince checking array bounds consumes computing cycles, some compilers afford 
options to switch range checking on and off. 
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T[i] ith sub-array of T (type Matrix) 
T[i][j] or T[i, j] jth sub-array of ith sub-array of T (Type Vector) 
T[i][j][k] or T[i, j, k] element of type REAL 

Of course, more complicated expressions, such as A[i*j + k] may substi­
tute for i, j and k. 

An array variable may be the recipient of an assignment. The only array 
expression, however, is a solitary array designator or a string. Array 
variables cannot be compared with the exception of the type ARRAY n OF 
CHAR (see Section 8.2.6). 

For example, considering the above declarations, the following are 
valid array assignments: 

y := x; y := A[i + 1]; A[j]:= T[i, j]; 

After an assignment y := x, y is equal to x, element by element. 

8.2.3 Parameters of array type 

Arrays can be parameters of procedures. The array type appears ex­
plicitly in the formal parameter section. For example, 

TYPE: Vect = ARRAY n OF REAL; 

PROCEDURE Norm(v: Vect): REAL; 
V AR s: REAL; j: INTEGER; 
BEGIN 

j:= 0; s:= 0; 
WHILE j < LEN (v) DO s := s + v[j]*v[j]; INC(j) END; 
RETURNs 

END Norm; 

A declaration of formal parameters that leaves the array type 
anonymous, is illegal; an example is the heading 

PROCEDURE Norm(v: ARRAY n OF REAL): REAL; 

Oberon provides a relaxation of the need to give array parameters ex­
plicit types: the open array parameter, to be discused in the next section. 

If the formal parameter is of array type, the actual parameter is al­
ways a solitary array designator or a string. We distinguish between value 
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Array designator 
as actual 
parameter 

and variable parameters - the same rules as in the scalar case apply. 
Recall the following: 

• A formal value parameter is a local variable of the procedure that 
is initialized at the time of the call. When the procedure's scope is 
activated, memory is allocated for the formal array parameter. 
The corresponding actual parameter is assigned to the formal 
parameter. 

• A formal variable parameter (keyword "V AR") represents the 
actual parameter, and assignments made to the formal parameter 
within the scope of the procedure are reflected in the actual 
parameter. No memory is tied up and no assignment takes place. 

We emphasize that an array assignment can be an expensive opera­
tion. Value parameters for arrays should therefore be used only if truly justi­
fied. The lack of an array constant (an exception is a string; see Section 
8.2.6) should make such justification a rare case. Observing this 
recommendation, our previous example, procedure Norm, should really 
have the heading 

PROCEDURE Norm(VAR v: Vector}: REAL; 

even though parameter v remains unchanged. 

Of course, an array designator may serve as an actual parameter. If it is 
paired with a value parameter, the designator is simply evaluated and 
the result assigned to the formal parameter. What happens in the case 
of a variable parameter is more interesting: 

(1) In executing the call statement, the selector is evaluated and ap­
plied to the array, resulting in a variable. 

(2) That variable is substituted for the formal parameter. 

This substitution is sometimes referred to as call by reference. Note that 
there exists a more general substitution mechanism where the 
unevaluated designator is substituted for the formal parameter. This is 
known as call by name, but is not present in Oberon. 

Consider another example, procedure SetZero, which initializes an ar­
ray passed as parameter: 

PROCEDURE SetZero(VAR v: Vector}; 
V AR j: INTEGER; 
BEGIN 

j := 0; 
WHILE j < LEN(v} DO v[jl := 0; INC(j) END 

END SetZero; 
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Assuming the earlier declarations (that is, x: Vector; A: Matrix), we may 
call SetZero as follows: 

SetZero(x) ; 
i := 2; SetZero(A[i + 1]); 

The second call statement illustrates the rule governing array designa­
tors as actual parameters. The selector [i + 1] is evaluated, resulting in 
[3]. Then variable A[3] is passed to the procedure. it is of compatible 
type Vector. After completion of the call, all elements of the 3rd sub­
array of A are zero. The other elements of A remain unaffected. 

Loops over arrays The two preceding examples, simple as they are, exhibit a typical 
feature of array processing: the loop ranging over all elements. The 
while loop is recommended for that purpose. The integer that is in­
cremented in the loop is called the control variable. The predeclared func­
tion LEN is convenient to refer to the array length. Upon termination, 
the control variable has the definite value LEN(v). 

8.2.4 The open array parameter 

To appreciate the rationale for the introduction of the open array pa­
rameter, consider the following example. A module LinAlg is being 
created by a group of numerical analysts. It should offer a collection of 
matrix methods using one- and two-dimensional array types, for ex­
ample 

DEFINITION LinAlg; 
CONST n = 100; 
TYPE 

Vector = ARRAY n OF REAL; 
Matrix = ARRAY n, n OF REAL; 
... (* Further declarations, including procedures *) 

END LinAlg. 

But the designers face a dilemma: what array bound n should they 
choose? If the bound is high, considerable storage is consumed and 
quite likely wasted in most cases. If the bound is chosen low, important 
users will probably be frustrated. 

For the user, there is a dilemma too. Suppose an existing program 
should be converted to be a client of LinAlg. This requires the owner to 
convert all array types to LinAIg.Matrix and LinAIg.Vector, a task which 
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multiplication 

is tedious and error prone. The solution is provided by the open array 
parameter. 

The open array parameter is a formal type that is compatible with any 
actual array parameter with the same dimension and the same element type. Its 
syntax is 

I FormalType = {"ARRAY" "OF"} qualident. 

The previous example SetZero can benefit from making its parameter an 
open array: 

PROCEDURE SetZero(V AR v: ARRAY OF REAL); 
V AR j: INTEGER; 
BEGIN 

j:= 0; 
WHILE j < LEN(v) DO v[jl := 0; INC(j) END 

END SetZero; 

Formal parameter v is an open array. Any actual (one dimensional) 
array parameter with element type REAL is compatible with v. The 
array bound of v is left open - hence the name open array parameter. 

Open array parameters may be multidimensional too. For example, 

ARRAY OF ARRAY OF REAL 

is compatible with all two-dimensional arrays with element type REAL. 

A general procedure for matrix multiplication is usually given as an 
example for array processing. Let 

A: left operand (m by I matrix) 
B: right operand (l by n matrix) 
C = A x B: product (m by n matrix). 

The matrices are stored in two-dimensional arrays of appropriate 
lengths. The procedure for multiplication reads 

PROCEDURE Mult(V AR A, B, C: ARRAY OF ARRAY OF REAL; 

V AR i, j, k: INTEGER; s: REAL; 
BEGIN i:= 0; 

WHILE i < m DO j:= 0; 
WHILE j < n DO k:= 0; s:= 0; 

m, n, 1: INTEGER); 
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WHILE k < 100 s:= s + AU, k]*B[k, j]; INC(k) END; 
CU, j] := s; INC(j) 

END; 
INC(i) 

END 
END Mult; 

Formal parameter C yields the result and must be a V AR parameter. A 
and B may be value parameters. However, as stated earlier, a V AR pa­
rameter is recommended for efficiency reasons. 

8.2.5 The array as a table 

The common characteristics of the examples we have given so far is the 
fact that the loops always range over all elements of the arrays. 

One of the typical applications of the array structure is a table that 
may be updated, sorted and searched for entries. In this case, loops 
often run only until an appropriate element is found. 

To give a simple illustration, we wish to find the index j that corre­
sponds to a given entry x in a table t: 

TYPE Table = ARRAY n OF INTEGER; 
V AR t: Table; j, x: INTEGER; 

j:= 0; 
WHILE (j < n) & (t[j] # x) DO INC(j) END; 

From the negation of the continuation condition, applying De Morgan's 
law, we infer that upon termination of the while statement, the 
condition (i = n) OR (t[j] = x) holds. If the first term is FALSE, the 
desired element is found and j is its index; if j = n, no t[j] equals x. 

The number of inspections needed to find x grows, on average, lin­
early with the size of the table. Hence this algorithm is also known as 
linear search. 

Let us briefly consider a slightly changed version of the above pro­
gram, namely 

WHILE (t[j] # x) & (j < n) DO INC(j) END; 

The interchange of the two Boolean factors appears quite legitimate at 
first sight. But if we consider the case where all elements differ from x, 
we find that at the very end the relation t[n] # x would be tested, 
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Loop invariant 

implying access to an undeclared element. Hence this version is wrong. 
We now recall that the Boolean connectives p & q and p OR q have 
been defined in the form of a conditional evaluation of the second 
operand. As a consequence, they are not commutative. This conditional 
evaluation avoids, in the first and correct version, evaluation of t[j] # x 
whenj=n. 

A more challenging problem is the search for a desired element, x say, 
in an array that is ordered; that is, t[i] ~ t[j] for all i and j: 0 ~ i < j < n 
where n denotes the size of the table. 

The best technique in this case is the so-called binary search: inspect 
the middle element, then apply the same method to either the left or the 
right half of the array: 

PROCEDURE Search(VAR t: Table; x: INTEGER; VAR i: INTEGER); 
V AR j, m: INTEGER; 
BEGIN 

i := -1; j:= LEN(t); 
WHILE j # i + 1 DO (* t[i] <= x < t[j] *) 

m := (i + j) DIV 2; 
IF t[m] <= x THEN i:= m ELSE j:= mEND 

END 
(* (t[i] <= x < tUD & (j = i + 1) *) 

END Search; 

Formal parameter i reports the position of x; hence it has to be a vari­
able parameter. This is not the case for x, for which we choose a value 
parameter. A value parameter is also admissible for t, the table. 
However, for the stated reasons of efficiency, a variable parameter is 
advisable. Another good possibility is to make t an open array para­
meter. 

We take this opportunity to use the formalism introduced in 
Chapters 4 and 5 to give a proof of this elegant piece of program. A 
clever· trick avoids the need to consider special cases: the table t is 
augmented with two virtual elements t[-1] = -00 and t[n] = 00. The vir­
tual elements enter only into the predicates - they are not accessed in 
the statements. 

The loop invariant is the assertion 

t[i] ~ x < t[j]. 



8.2 Arrays 121 

Formal parameter i and local variable j initially satisfy i = -1 and j = n. 
Using the value of our virtual elements, the invariant is easily estab­
lished. 

If the left branch of the if statement is taken, the value of i changes. 
We know, however, from the guard that t[i] ~ x. Since j remains un­
changed, the invariant still holds. 

If the right branch is activated, it follows that -(t[j] ~ x), which is 
equivalent to x < t[j]. Again, since in this case i remains unchanged, the 
invariant remains valid. 

Variant function In order to prove the program correct, we have to find a variant func­
tion that decreases monotonically with each iteration. In our case, 

j-i 

is this function. 
At the start of each iteration, i + 1 < j. It follows that i < m < j after the 

assignment to m is executed. Hence both assignments, i:= m and j:= m, 
decrease the value j - i. 

The binary search is therefore guaranteed to stop and to yield two 
indices i and j such that j = i + 1 and x is in the interval t[i] ~ x < t[j]. Test 
element x is found if 0 ~ i < n 'and t[i] = x. If, on the other hand, 

• i =-1 

• i=n-1 

then x < t[O]; 

then x > t[n -1]. 

before END of loop search x = 15 

m 

3 23 -1 3 23 

/ ~ 
14 3 

/ 14" /69"" 

2 15 2 3 10 15 31 70 

L ~ L ~ L ~ L 
t[i]: 110 14 15 23 31 69 70 

i: -1 0 2 3 4 5 6 

~ 
951 

7 

Figure 8.2 Analysis of the binary search algorithm. 

8 
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Figure 8.2 portrays the binary search algorithm at work. The tree 
displays of all possible sequences t[m] that may occur for any argument 
x. The interpretation as a tree reveals that the number of inspections is 
given by log2(n) - a substantial saving over the linear count. 

8.2.6 Strings and the type ARRAY n OF CHAR 

Besides matrices and tables, texts are a third major application of arrays. 
A natural model of a text is an ordered sequence of characters. The 
character array (that is, an instance of the type ARRAY n OF CHAR) 
represents this notion in Oberon terms. Some sample declarations are 

CONST n = 4048; m = 32; 
TYPE 

Text = ARRAY n OF CHAR; 
Pattern = ARRAY m OF CHAR; 
NameList = ARRAY n OF ARRAY m OF CHAR; 

VAR 
txt: Text; pat: Pattern; nl: NameList; str: ARRAY 5 OF CHAR; 

Oberon affords facilities to assist in the manipulation of character ar­
rays: 

(1) String constants may be assigned to a character array. 

(2) Character arrays can be compared; that is, they may form rela­
tions <, <=, >, >=, = and #. Variables and string constants can be 
mixed in such comparisons. 

A string is represented as an ARRAY n OF CHAR with n greater than 
the length of the string (in characters). The string is terminated with the 
special character ox. Similarly, if s denotes a character array, its textual 
value is represented by the array elements up to the first occurrence ox. 
The length of a string s is the index of the terminator ox. It should not be 
confused with LEN(s), the number of array elements ois. 

The effect of the assignment s := "this" is depicted in Figure 8.3. 

s: ARRAY 8 OF CHAR; 

s := "this" 
undefined .---.----,----.-----.--

o 234567 

Figure 8.3 String termination and assignment. 
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To render the discussion of length more precise and to provide a first 
example, consider the function Len: 

PROCEDURE Len(x: ARRAY OF CHAR): INTEGER; 
V AR j: INTEGER; 
BEGIN (* there exists a k: a <= k < LEN(x): x[k] = ox *) 

j := 0; 
WHILE xlj] > ox DO INC(j) END; 
RETURNj 

END Len; 

Note that the open array parameter is essential. Also, since x is a value 
parameter, the function may be called with a string as actual parameter, 
for example Len("abc") = 3. The type ARRAY OF CHAR is one of the 
(few) good justifications for using a value parameter of array type. 

At first sight, the predeclared function COpy seems identical to the ar­
ray assignment x := s. However, in COpy, only those elements of x 
participate in the copy operation that have indices smaller or equal to 
the length of s; that is, to that of the first OX character. It follows that a 
precondition for COpy is LEN (x) > Len(s). COpy can be expressed as 

PROCEDURE COPY(s: ARRAY OF CHAR; VAR x: ARRAY OF CHAR); 
V AR j: INTEGER; 
BEGIN (* Len(x) > Len(s) *) 

j := 0; 
WHILE s[j] # OX DO x[j]:= s[j]; INC(j) END; 
x[j] := OX 

END COPY; 

Note that since s is a value parameter, COpy may be called with a 
string as actual parameter. Such a call COPY("string", x) is identical to 
the assignment x:= "string"'. Obviously, LEN (x) must be bigger than the 
string length. In x, only those array elements with indices less than 
Len("string") are affected. 

Character arrays and strings may be compared. The type rules are re­
laxed, the operands may be strings, variables of type ARRAY n 
OF CHAR or open array parameters. Using the declarations of our 
earlier example, the following comparisons are legal: 

txt = pat str = n1[3] pat <= "really?" 
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Let Lx = Len(x) and Ly = Len(y). Then the definitions of the comparison 
operations are 

x = y == (Lx = Ly) & (\::I k: O:S k< Lx: x[k] = y[k]) (1) 
x < y == (Lx < Ly) OR (3 k: 0 :S k < Lx: x[k] < y[k] & 

(\::I j: 0 :S j < k: x[j] = y[j]) (2) 

The inequality # follows from (1), and the comparisons <=, > and >= are 
defined analogously to (2). 

It may be easier to remember the definitions of string comparison by 
the following rule: the shorter of the operands is padded with OX to 
match the longer operand. The two are then compared using the ASCII 
collating s~quence. Note, however, that this definition is algorithmic in 
nature, whereas Equations (1) and (2) are not. 

A few examples should elucidate these concepts. Let s: ARRAY 8 OF 
CHAR and s := "this". Then the following hold: 

s = "this" s # "this." s > "that" s < "Xenon". 

With these definitions, we have laid the groundwork for a few pro­
gramming examples. 

Let the first task be to search a table nl of type NameList for a given 
character array x. 

PROCEDURE Search(V AR nl: NameList; x: ARRAY OF CHAR; 

BEGIN 
j:= 0; 

V AR j: INTEGER); 

WHILE (j < LEN(nl) & (nUj] # x) DO INC(j) END 
END Search; (* x found if j < LEN (nl) *) 

We observe that, thanks to the convenience afforded by the Oberon 
definition of comparing strings and character arrays, the search proce­
dure is almost identical to the simple search for an integer in an integer 
array. If the name list nl is sorted, the efficient binary search can be 
easily adopted. 

A more exacting problem is the search for a pattern x in a text txt. Both 
the text and the pattern are assumed to be character arrays, properly 
closed with the string terminator OX. 
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PROCEDURE Locate(V AR txt: ARRAY OF CHAR; 
x: ARRAY OF CHAR; V AR pos: INTEGER); 

V AR j, Lx, Lt: INTEGER; 
BEGIN Lx := Len(x); Lt := Len(txt): pos:=-l 

REPEAT j:= 0; 
INC(pos); 
WHILE (x[j] = txt[pos + jD & (j < Lx) DO INC(j) END 

UNTIL (j = Lx) OR «pos + Lx) > Lt); 
IF j < Lx THEN pos:= -1 (* pattern not found *) END 

END Locate; 

Text search is often paired with a deletion, a replacement or an insertion 
of a pattern. We illustrate the insert operation of a pattern x into the text 
txt after the character with index pos. We assume that 0 ~ pos < Len(t). 

PROCEDURE Insert(V AR txt: ARRAY OF CHAR; 

V AR j, Lt, Lx: INTEGER; 
BEGIN 

x: ARRAY OF CHAR; pas: INTEGER); 

Lt:= Len(txt); Lx:= Len(x); 
IF (Lx + Lt < LEN(txt» & (pos >= 0) & (pos <= Lt) THEN 

(* make room *) j:= Lt; 
WHILE j >= pos DO txt[j + Lx] := txt[j1; DEC(j) END; 
(* copy pattern x after character txt[pos] *) 
j:= 0; 
WHILE j < Lx DO txt[pos + j] := x[j1; INC(j) END 

END 
END Insert; 

This example illustrates two typical disadvantages of arrays if used as 
data structures for tables or texts: 

(1) We have to make sure that there is room for an insertion within 
the size of the table or of the character array and deal properly 
with the overflow exception. 

(2) Prior to inserting an entry or string, we have to make room by 
shifting part of the table or of the character array. 

Both problems may be circumvented using dynamic data structures. 
However, such an approach has also its price in either a more complex 
program and/ or less efficient usage of storage resources. 
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8.3 Records 

8.3.1 The record type and the record declaration 

In an array all elements are of the same type. Elements may be accessed 
through a computed index. In contrast, the record structure offers the 
possibility to declare a collection of elements as a unit, even if the 
elements are of different types. The record is therefore called a 
heterogeneous structure. 

The origin of this data structure lies in commercial data processing.1 

Records model rows in a table drawn on paper. If matrix multiplication 
is inevitable in the introduction of arrays, the personnel record is a 
similar requirement in the case of records. An excerpt from such a list of 
employees appears in Figure 8.4. 

Name Salary 

Record 

Figure 8.4 An excerpt of a personnel record in table form. 

A row in the list is called a record. The description of an employee 
consists of the person's name, given name, identification number, the 
date of birth and salary. In Oberon, this is expressed in the following 
type declaration: 

TYPE 
Name = ARRAY 32 OF CHAR; 
Employee = RECORD 

family, first: Name; 
id, salary: INTEGER 

END; 

1 Programming language COBOL. 
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The record type declaration observes the following syntax: 

RecordType = "RECORD" FieldListSequence "END". 
FieldListSequence = FieldList { ";" FieldList }. 
FieldList = [ IdentList ":" type ]. 
IdentList = ident [ "*" ] { ident [ "*" ] }. 

The record structure makes it possible to refer either to the entire col­
lection of data or to individual elements. Elements of a record are also 
called record fields, and their names are the field identifiers. Each identifier 
of the IdentList defines a record field of the declared type. 

The asterisk is the familiar export mark that applies selectively to the 
fields. Only exported fields are visible in client modules. They are 
called public fields. Unmarked fields are known as private fields: they are 
only visible within the module containing the record declaration. 
Selective export is an important programming tool - leading to the 
notion of data abstraction. We will say more about this in Chapter 10. 
Note that when fields in a record r are exported, r should be exported 
too. 

Recursive type declarations are prohibited. The following is an example 
of such a recursive type declaration that is not ruled out by the formal 
syntax but is still illegal: 

R = RECORD x: REND; 

The fields are local objects of their record. The scope of the field identi­
fier is the record definition itself (from keyword "RECORD" to 
keyword "END"). Outside this scope, they are visible, but in the form of 
field designators of the form r.f, where r is the record and f the field 
identifier (see the next section). This implies that outside of the record 
scope, the identifier f may be reused. For example, the following 
declaration sequence is valid: 

TYPE R = RECORD a: INTEGER; b: REAL END; 
VARa: REAL; 

A variable of type record is declared in the usual way, for example 

V AR worker, manager: Employee; 

As with arrays, a variable of record type may be declared with the type 
left anonymous. Instances of records that are identically structured to 
the type Employee are generated by the following declaration: 
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Nested records 

Mixed record 
and array types . 

VAR 
person: RECORD 

family, first: Name; 
id, salary: INTEGER 

END; 

Applying the type compatibiliry- rules set forth in the first section of this 
chapter, we conclude that the type of the variable person is not 
compatible with the type of the variables worker and manager. Thus an 
assignment person := worker is rejected by the compiler. 

Similarly to arrays, where an array element could itself be of array type, 
a record field may be of record type. We may augment the definition of 
the type Employee with the date of birth: 

TYPE 
Date = RECORD mo, day, yr: INTEGER END; 
Employee = RECORD 

family, first: Name; 
birth: Date; 
id, salary: INTEGER 

END; 

In the preceding sections we have introduced the array and record 
structures as separate entities. The alert reader may have noted, 
however, that both declarations are recursive on type, not on ArrayType 
or RecordType. Thus the elements of arrays may be records and the field 
of records arrays - or arrays of arrays - in any desired order and depth 
of nesting. 

We saw that the array is the model of a table and the record of a row 
in such a table. Hence only the combination of the two structured types 
properly models a table such as the employee data sheet depicted in 
Figure 8.4. A sample declaration may read as follows: 

V AR DataSheet: ARRAY n OF Employee; 

Fields of records may be arrays. For example, the type Name is likely a 
character array; that is, name = ARRA Y n OF CHAR. 

8.3.2 The record designator, assignments and expressions 

We denote the field f of record r by 

r.f 
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The field designator is thus composed of the record identifier followed 
by the field's name, juxtaposed with a period in between. The general 
syntax of a record designator is: 

I designator = qualident {"." selector }. 
selector = ident. 

We note that the added generality of the record compared with the 
array, namely its possible heterogeneity, is compensated by a 
restriction: the identification of an element is limited to a fixed name, the 
field's identifier. This is in contrast to the array, where elements may be 
selected by a computable index. 

In the case of nested record types (that is, records that contain sub­
records), selectors can be sequenced. Assume that worker is a variable of 
type Employee declared at the end of the preceding section. Then: 

worker.id 
worker.birth 
worker.birth.yr 

field of type INTEGER 
sub-record, type Date 
field of type INTEGER 

Assume now that the variable manager which is of type Employee is 
imported from a module Personnel. Then we can construct the designa­
tors 

Personnel. manager .id 
Personnel. manager . birth 
Personnel. manager . birth.mo 

type INTEGER 
type Date 
type INTEGER 

Looking at these designators, we observe that the first period belongs to 
the qualident Personnel.manager and thus differs from the subsequent 
use of the period to delineate field selectors. 

A variable of record type may appear on the left-hand side of an as­
signment. The only expression is a mere solitary designator. Record 
variables cannot be operands or be compared~ 

For example, the following are valid record assignments: 

worker:= manager; person.birth:= manager.birth; 

The rules for parameters of record type are analogous to simple vari­
ables or arrays. The type must be explicit. In the case of a value pa­
rameter, storage is reserved and a copy operation takes place at the time 
of the call. This is avoided with V AR parameters, where the actual 
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parameter substitutes as variable. No extra storage is required and no 
copying takes place. Therefore, as with arrays, we recommend the use 
of VAR parameters for efficiency reasons, even if they remain 
unchanged by the procedure. 

8.3.3 Use of records 

The use of variables of record type in commercial programming has 
been mentioned. Databases, from small to gigantic, are a main appli­
cation in this business, and the elements they contain are typically 
records. 

Another use also goes back to the earliest days of operating systems: 
the control block, a record variable defining a collection of parameters 
describing a resource or a request. Terms such as file control block or 
task control block are familiar to most system programmers. Facilities to 
create records were already part of the more sophisticated assemblers in 
existence 30 years ago. 

The record is always indicated if a set of parameters define a single 
object. For example, take a rectangle to be drawn on a display device. 
The rectangle is defined by the coordinates x and y of one of the 
corners, a width wand a height h. To handle a number of such rectan­
gles, the programmer might declare four arrays: 

V AR x, y, w, h ARRAY n OF INTEGER; 

Experience shows, however, that the clarity of the program will often 
benefit substantially if a record type is used: 

TYPE Rect = RECORD 
x, y, w, h: INTEGER 

END; 
VAR r ARRAY n OF Rect; 

It is now possible to refer to rectangles as entities, for example in pro­
cedures such as 

PROCEDURE XYinRect(x, y: INTEGER; r: Rect): BOOLEAN; 

Finally the record is the building block of dynamic data structures - one 
of the most powerful programming constructs. In such dynamic data 
structures, a reeord is composed of data fields and pointer fields pro-
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viding links to other records. Pointers and dynamic data structures will 
be the object of Chapter 9. 

8.4 Summary 

In this chapter, we have introduced the type declaration and two 
important structured data types: the array and the record. 

The type declaration allows user-defined types. An identifier is bound 
to a type that may be a basic type such as INTEGER or REAL or - more 
importantly - a structured type such as an array or a record. The type 
declaration is an essential tool in the formulation of abstract data types, 
a topic explored in Chapter 10 and Part III. 

The array is a variable of array type. The array type defines a structure 
composed of a number of elements of the same type. Elements are 
selected by means of a computable index. The number of elements is 
called the length of the array. An array designator is of the form a[i]. The 
expression i is evaluated and selects the ith element of the array a. The 
array type definition is recursive: it allows the declaration of arrays of 
arrays or multidimensional arrays. 

As with any variable, an array may serve as a parameter of a 
procedure. Especially versatile is the open array parameter, which is 
compatible with any array of the same dimension and element type. 

Programming would hardly be what it is today without the array. 
Examples have been presented from the fields of numerical procedures, 
processing of tables and text handling. 

Of special interest is the representation of textual data by the type 
ARRA Y n OF CHAR. Oberon relaxes type rules to allow assignments of 
strings to character arrays and comparisons of character arrays with 
character arrays and strings. 

While the array is a structured type of like elements, the record type 
offers the possibility of declaring a collection of fields as a unit, even if 
the fields are of different type. A field f of a record r is designated by r.f. 
Records are used in commercial programming, and they are the 
building blocks of dynamic data structures and represent abstract data 
types, the topics of Chapters 9 and 10. 

8.5 Exercises 

S.l [Galton board] A Galton board is an apparatus named after the pioneering 
Victorian statistician Sir Francis Galton (1822-1911). 
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It is a triangular array of pegs in a slanted board. 
Marbles are released at the top and proceed to the 
bottom, where they are collected in an array of 
channels. Of interest to the experimenter is the 
resulting shape of the curve formed by the stacked 
marbles. Implement a module that simulates a 
Galton board. 

Hi n t: there is no need to represent the 
configuration of pegs - all that matters is the number 
of left and right bounces. 

Use an array to accumulate the balls in the 
channels. Run the simulation for 1000 balls and 
produce a print-out using procedures of module Out. 

Repeat the experiment with 1000, 10 000 and 100 000 balls. Draw the graph of 
the resulting curve. 

8.2 [Histogram] Write a module Histogram that contains procedures and 
commands to compute and display histograms (see Box 10.1). The number of 
intervals, their width and the number of random samples are read from the 
input stream. Using module XYplane, provide graphical output of the 
histogram in the form of a bar chart like that in Box 10.1. 

Experiment with uniform random numbers and with exponential random 
numbers. In the latter case, choose a variety of parameter values mu. 

8.3 [Backup file name] An Oberon file name is composed of identifiers juxtaposed 
with periods, such as "Syntax.Scn.Fnt" or "IFSl.Mod". Write a procedure that 
takes a file name and appends the suffix "Bak", yielding for example 
"Syntax.Scn.Fnt.Bak" or "IFS1.Mod.Bak". Make sure that no index violation can 
occur. 

8.4 [Matrix output] Write a procedure that displays a matrix (filled with random 
numbers) as a two-dimensional table of properly aligned rows and columns. 

8.S [Extremal array elements] Write a procedure that computes indices min and 
max such that a[min] and a[max] are the smallest and the largest elements of an 
array a: ARRAY n OF REAL. Note: a solution with 3n/2 comparisons is possible. 
Can you find it? 

8.6 [Sorting] Given an array a of n numbers, write a procedure to sort them by 
repeating the following process for i = I, 2, ... ,n -1: 

(1) Find the least number among a[i] ... a[n]. 
(2) Interchange this number with ali], if appropriate. 

Specify invariants for the repetition. 

8.7 [Phone directory] Write a module PhoneDir that provides a phone directory 
based on the type declaration 
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TYPE Dir = ARRAY n OF RECORD 
name: ARRAY 32 OF CHAR; 
phone: ARRAY 16 OF CHAR 

END; 
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Provide commands to open the directory and add, delete and query entries. 
Guard against table overflow. Provide two versions: one based on a simple 
linear search, and another using a binary search. 

[Random walk] Let a particle move on a discrete square lattice. From the 
current position, the next one is chosen at random from the four neighboring 
points. 

Write a module that displays a random walk in a N by N square on the 
XYplane viewer. At any point in time, display the past k positions. Consider 
different strategies when the particle hits the boundary: (1) compute the 
position modulo N; (2) reflect the particle; (3) wait until the particle re-enters 
the area; or (4) the particle is lost. 

[Diffusion-limited growth] Particles originating in random direction move 
according to a random walk. When a particle hits a growing aggregate, it sticks 
there. Diffusion-limited growth occurs in nature, for example in the 
accumulation of soot, the growth in electrolytic solutions and leaders in 
electrical discharge. The resulting figure is a 
fractal. 

Work with a square lattice centered around 
the origin. Inscribe two circles. Random walks 
originate at an arbitrary position on the smaller 
circle. If a particle passes the extinction circle, it 
is lost and a new random walk is started. If a 
particle meets the aggregate, it sticks and a new 
random walks commences. When the process 
starts, the aggregate consists of a single square 
at the origin. 

Working with XYplane, make the path of the 
random walk visible and draw the growing 
aggregate. 

Extinction circle 

Source circle 
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9 Dynamic data structures and 
pointer types 

So far, we have introduced the eight basic types SHORTINT, INTEGER, 
LONGINT, REAL, LONGREAL, BOOLEAN, CHAR and SET. These 
basic types have a strong kinship with the hardware facility of the un­
derlying computing machines. 

The two structured types ARRAY and RECORD are built from ele­
ments of basic type. The array is an ordered assemblage of elements of 
identical type that can be selected by a computable index. The record is 
a named collection of fields, possibly of different types. Figure 9.1 
depicts the array and record structures. 

RECORD ARRAY 

f1 f2 f3 o N-1 

Figure 9.1 Mapping of a record and an array onto a linear address space. 

Both the array type and the record type have the common trait that they 
are static. This implies that variables of such type maintain the same 
structure during the whole time of their existence. The array and the 
record also share the property that they can be easily mapped onto a 
linear address space - hence the compiler is able to generate efficient 
code for assignments and expressions. 

Many applications process data that not only change their value - but 
also their relationship and bulk. Typical examples are lists (or chains) and 
trees that grow and shrink iynamically. Rather than adding further 
structured types to the language, Oberon offers the basic tool to 
construct arbitrary structures: the pointer type. 

Every complex structure ultimately consists of elements whose 
structure is static. Pointers are used to establish relationships among 



Dynamic data structures and pointer types 135 

those static elements - often called nodes. We say that a pointer links 
nodes or points to nodes. 

What makes pointers such a powerful tool is the fact that they may 
point to records that themselves contain pointers. Consider the follow­
ing declarations: 

TYPE 
ListNode = POINTER TO ListNodeDesc; 
ListNodeDesc = RECORD 

key: Key; next: Node 
END; 
V AR first: ListN ode; 

The definition is obviously recursive. A schematic diagram of a list 
composed of instances of the type ListNodeDesc is shown in Figure 9.2. 

Type: 
first: ListNode ListNodeDesc 

key next 

Figure 9.2 A linear list composed of records with pointer fields. 

The variable first, which is a pointer of type ListNode, affords access to 
the first element of the list. Each node contains a pointer field that 
points to the next node in the list. Thus, from the first node, one can 
gain access to the second one, and so forth. 

Evidently, different pointer variables may point to the same node, 
hence providing the possibility to construct arbitrarily complex struc­
tures. This apparent power of the pointer type is at the same time its 
nemesis - opening boundless possibilities for programming mistakes 
that are difficult to pinpoint. We end this introduction with a warning: 
operating with pointers requires utmost care. 

There is a substantial body of knowledge concerning dynamic data 
structures and their algorithms. (Many textboks exist. Good 
introductions are Wirth (1976), Smith (1987) and Sedgewick (1988).) 
This chapter deals only with elementary examples of lists and trees. 
However, the list processing procedures will resurface in many 
subsequent examples and merit the reader's attention. 
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9.1 Pointers 

9.1.1 The pointer type and pointer declarations 

Assignment and 
expressions 

The value NIL 

In Oberon, a pointer cannot point to arbitrary variables but only to an 
instance of a given array or record type. The pointer type is said to be 
bound to the referenced object's type, also termed the pointer's base type. 
The syntax of a pointer type declaration is 

I PointerType = "POINTER" "TO" baseType. 
baseType = qualident I ArrayType I RecordType. 

The qualident represents a type that is also either an array type or a 
record type. 

The following are a few examples of pointer and pointer type 
declarations: 

TYPE 
TreeNode = POINTER TO TreeNodeDesc; 
TreeNodeDesc = RECORD 

key: Key; 
left, right: TreeN ode 

END; 

FileCtlBlock = POINTER TO RECORD 
length, date, pos, sectorTable: LONGINT; 
name: ARRAY 32 OF CHAR 

END; 

Vect = POINTER TO ARRAY n OF REAL; 

Pointers may be assigned to pointer variables of compatible type. 
Pointers of compatible type can be compared for equality or inequality -
the only expressions in which pointers enter as operands. At this stage, 
only pointer variables of equal type are compatible. 

A special pointer value is provided that points to no object and is com­
patible with all pointer types. The predeclared identifier NIL represents 
that constant. NIL may be assigned to or compared with every pointer. . 
NIL is typically used to end referencing recursion. 
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9.1.2 Creation of variables referenced by pointers 

Like the other variables that we have encountered so far, a pointer may 
be created in a VAR declaration. We say that the declaration creates an 
instance of the pointer type, P say. Storage for the pointer variable is 
allocated when the scope containing its declaration becomes active. If 
different from NIL, the value of such a pointer designates a variable. The 
type of that variable is the base type of P. 

However, the declaration of the pointer does not produce the variable 
it points to. Such a variable must be explicitly generated invoking the 
predeclared procedure 

NEW(p) 

where the actual parameter p is a pointer of type P. NEW(p) creates a 
variable that is an instance of the base type of P. The pointer p is initialized 
such that it points to that instance (Figure 9.3). 

VAR p:P; p p1' 

Anonymous instance 
of the base type of P 

Figure 9.3 Creation of an instance of type P. 

For example, assume first: ListNode and root: TreeNode. Then 

NEW (first) A variable of type ListNode is created, which is 
designated by pointer first. 

NEW (root) A variable of type TreeNode is created, which is 
designated by pointer root. 

9.1.3 Dereferencing a pointer 

NEW(p) creates a variable that is an instance of the base type of P. This 
variable is dynamically created. It is therefore not designated by an 
identifier - we say the variable is anonymous. In order to reference an 
anonymous variable, the dereferencing operator t is applied to the 
pointer, written as pt.1 Thus the designator pt denotes the variable 

1 In the standard ASCII character set "t" is represented by the caret IIIV' , with 
ORD(""") = 94. 
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dereferencing 

Nested 
dereferencing 

pointed at by p. A pointer cannot be dereferenced if its value is NIL. 
Oversight of this rule results in abnormal program termination. 

We are ready to generalize the syntax of the designator to include the 
dereferencing operator: 

I designator = qualident { ident I "[" ExpList "]" I lit"}. 

In programs using pointers, dereferencing occurs quite frequently. As a 
convenience for the programmer and to enhance the readability of pro­
gram texts, Oberon implies dereferencing in the case where a record field 
or array element is accessed through a pointer variable. For example, 
using our earlier sample declarations and the array pointer vector: Vect, 
we find that 

first. next 
root.key 
vector[i] 

stands for 
stands for 
stands for 

firstt .next 
roott.key 
vectortU] 

Thus if a field or index selector is present we may use the pointer as if it 
were a name of the variable pointed at. We stress, however, that this ab­
breviation holds only for fields and array elements. The designator first, 
for example, denotes a pointer value, not an object of type ListNode. 
Such an object is referenced by firstt. To refine this point, let 
node: ListNode and consider the assignments: 

node := first 
node := firstt 

illegal assignment, pointer to record 
legal assignment, record to record. 

Dereferencing may be nested. To illustrate this concept consider the list 
shown in Figure 9.4, for which the following relations hold: 

firstt.key = first.key = kl 
firstt.nextt.key = first.next.key = k2 
firstt nextt.nextt.key = first.next.next.key = k3 
firstt.nextt.nextt.next = first.next.next.next = NIL 
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first: ListNode 

~r-k-1 Ir-~--' k21 ~ k3 eX] 

Figure 9.4 Sample list composed of three nodes. 

9.1.4 Memory management 

Memory resources for a module's statement sequence, the statement 
sequences of its procedures, and for its global variables is allocated, at the 
latest, when an exported identifier is used. These memory resources are 
statically allocated. They exist as long as the module remains loaded. 

At the time the statement sequence of a procedure is activated, memory 
for the local variables (including parameters) is allocated. This memory is 
tied up only during the time the procedure is active. The combined local 
memory of the procedures active at a given time is known as stack -
owing to a standard method of implementation. It grows and shrinks 
with the nesting of procedure calls. The memory allocation for the stack 
is called dynamic. 

The storage for pointer variables is managed like any other variable - it 
is either allocated globally or on the stack. However, memory for the 
objects pointed to by pointers is only reserved at the time of a call to 
NEW. Since calls of NEW may occur at any time, it is advantageous to 
allot a third kind of memory known as the heap. 

Without special measures, the heap grows monotonically in time. 
However - as the term implies - dynamic data structures may grow 
and shrink. Computing systems differ in the way the heap is kept under 
control. It is still customary to relegate this task to the programmer. 
Such systems afford a predeclared function FREE(p) or 
DEALLOCATE(p). The task to free unused nodes of dynamic data 
structures is not only a burden on the programmer - it is also error 
prone. Suppose a node is freed up, but pointers which referenced that 
node are still in existence. Any attempt at dereferencing such a pointer 
will result in a catastrophic error. Oberon advocates the use of auto­
matic cleanup of the heap, known as garbage collection, and thereby re­
lieves programmers from the burden of keeping track of allocation 
problems while, at the same time, eliminating a source of errors that are 
difficult to pinpoint. 
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Create node 

9.2 Lists 

9.2.1 Simple or linear lists 

In the last section, we developed the tools necessary to deal with dy­
namic data structures. The list structure provides a suitable first ex­
ample. Lists appear in a variety of applications, spanning the breadth 
from commercial programming over system simulations to operating 
systems. A list is a chain of records, linked together through pointers. 

We recapitulate the type declaration of a list node, for simplicity 
named Node (rather than ListNode as before): 

TYPE 
Node = POINTER TO NodeDesc; 
N odeDesc = RECORD 

key: Key; 
next: Node 

END; 

Note that the node type (NodeDesc) must be explicit to avoid an illegal 
recursive type definition of the form 

Node = POINTER TO RECORD key: Key; next: Node END; 

Since we want to concentrate on the essentials, we do not carry data 
fields in the list nodes - the field key stands for the data stored in the list 
node. The name key suggests a special usage: the list is searched for a 
record matching a given key. For that purpose, lists are frequently 
sorted according to increasing or decreasing key values. In real appli­
cations, a node usually has a variety of data fields of different type. Key 
denotes the type of the key. It may by any type that is compatible with 
the relations 'less than', for example INTEGER, REAL or ARRAY n OF 
CHAR. 

Declaration of a pointer of type Node does not create a list. The list has to . 
be built dynamically during program execution. 

Let us start with the empty list x, which is represented by x = NIL. A 
longer list is most conveniently constructed by inserting new nodes at 
its front. An instance new of type Node with key k is created as follows: 

NEW(new); new.key:= k; new.next:= NIL; 
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These three statements produce a structure that may be viewed itself as 
a small list composed of one single element (see Figure 9.5). 

new NodeDesc 

~klXI 

Figure 9.5 A newly created list node. 

The simplest operation is to insert a newly created node at the begin­
ning of a list. Let the variable new denote such a node and first be a 
pointer that provides a link to the first node of the list. The pointer first 
is also termed the anchor of the list. Two assignments suffice to add the 
new node to the list as shown in Figure 9.6 and in the sample procedure 
Insert: 

PROCEDURE Insert(VAR first: Node; new: Node); 
BEGIN (* new # NIL, no test for duplicate nodes *) 

new.next:= first; first:= new 
END Insert;. 

new first 

~klXI ~k11 ~k21XI 
first 

1. new.next 1= first 

new 

2.fi(st:;' neW 

Figure 9.6 Insertion of a node at the head of the list. 

Removal of the first node of a list is also an easy operation. 
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PROCEDURE FirstNode(V AR first: Node): Node; 
YARn: Node; 
BEGIN 

n := first; IF n # NIL THEN first:= n.next END; 
RETURNn 

END FirstNode; 

Note the guard n # NIL that is necessary to avoid potential dereferenc­
ing of a NIL pointer. As subsequent examples will reveal, it is quite 
typical that the empty list needs to be treated as a special case. Also 
observe that first is a VAR parameter through which procedure 
FirstNode produces a side-effect. 

A basic operation on dynamic data structures is their traversal. Each 
node n is visited exactly once in a specified order, and a certain opera­
tion, P(n) say, is applied. For example, the node's key is listed or the 
node itself is copied. The following example of procedure Enumerate 
traverses a list and applies procedure P to every node: 

PROCEDURE Enumerate(first: Node); 
BEGIN 

WHILE first # NIL DO P(first); first:= first.next END 
END Enumerate; 

The while statement expresses list traversal both naturally and effi­
ciently. Observe that the formal parameter first also serves as local 
variable used in the while-loop. This is permitted, since first is a value 
parameter. Hence the actual parameter passed to first remains un­
changed, as is required for a proper operation of Enumerate. 

Adding a node at the head of the list is particularly simple, since the 
anchor points directly to the first node. No such direct link exists to the 
last element. Adding a node there requires first a traversal of the list - an 
operation whose complexity is proportional to the number of list 
elements 

PROCEDURE InsertLast(VARfirst: Node; new: Node); 
VARn:Node; 
BEGIN (* new # NIL *) 

IF first = NIL THEN new.next:= first; first:= new 
ELSE 

n:= first; 
WHILE n.next # NIL DO n:= n.next END; 
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new. next := n.next; n.next:= new 
END 

END InsertLast; 

9.2 Lists 143 

In this example, first is a V AR parameter - hence an additional local 
variable n is needed for list traversal. 

Lists are sometimes sorted, for example in order of ascending key val­
ues. If a new node is inserted in such a ranked list, it should be done 
such that the order is preserved. Procedure InsertRanked fulfills this re­
quirement: 

PROCEDURE InsertRanked(VAR first: Node; new: Node); 
VARn:Node; 
BEGIN (* new # NIL *) 

IF (first = NIL) OR (new.key < first. key) THEN 
new.next := first; first:= new 

ELSE 
n := first; 
WHILE (-n.next # NIL) & (new.key >= n.next.key) DO 

n:= n.next 
END; 
new.next := n.next; n.next:= new 

END 
END InsertRanked; 

If no node with the specified key exists, NIL is returned. Again, the list 
is traversed until the appropriate element is found. It is essential that 
the compound condition be written as (first # NIL) & (first . key # k) and 
not the other way around, otherwise dereferencing of a NIL pointer 
may take place and the computation will abort. 

Another frequent operation is the extraction of an element with a given 
key: 

PROCEDURE Search(first: Node; k: Key): Node; 
BEGIN 

WHILE (first # NIL) & (first.key # k) DO first := first.next END; 
RETURN first 

ENDSearch; 

If no node with the specified key exists, NIL is returned. The list is tra­
versed until the appropriate element is found. 
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Delete 

Summary 

As a final example, we will study how a given node is deleted from the 
list: ' 

PROCEDURE Delete(VAR first: Node; node: Node); 
YARn: Node; 
BEGIN (* node # NIL *) 

IF first # NIL THEN 
IF first = node THEN first:= node.next 
ELSE 

n:= first; 
WHILE (n.next # NIL) & (n.next # node) DO 

n:= n.next 
END; 
IF n.next # NIL THEN n.next := n.next.next END 

END 
END 

END Delete; 

We could give many more examples of procedures operating on simple 
lists. They all turn out to be variations on the themes that we en­
countered previously and that we summarize as follows: 

(1) Operations at the head of the list are simple. Their execution is 
fast and independent of the size of the list. In contrast, operations 
at the end of the list require that the list be traversed. Their 
execution time is therefore proportional to the size of the list. 

(2) The programmer must always ensure that dereferencing pointers 
whose value is NIL is excluded. Typically, the NIL case is a spe­
cial branch in an if statement. 

9.2.2 FIFO lists 

Lists are a natural representation of waiting lines or queues. Such lines 
always form if a serially reusable resource is shared among many re­
quests that arrive at arbitrary points in time. If requests are served in 
order of arrival the line is said to be operating under the first-in, first-out 
discipline - in short, FIFO. 

FIFO operation is achieved if procedures InsertLast and FirstNode are 
used in combination. However, adding an element at the end of a linear 
list is an expensive operation. In implementing a FIFO queue, therefore, 
we strive for a special optimization of that operation. For this purpose, 
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we will introduce an additional record type that comprises two pointers 
designating the last and the first node in the waiting line: 

TYPE 
FIFO = RECORD 

first, last: Node 
END 

Figure 9.7 depicts the dynamic data structure of a FIFO queue. 

first last 

'---t--L--+--' 
q: FIFO 

Figure 9.7 Structure of a FIFO queue. 

The information afforded by field last is redundant. It is already con­
tained in the pointer first. The extra field, should therefore be consid­
ered as a hint, to be used to improve the performance of the append 
operation. 

Enqueueing and dequeueing of entries is performed by the following 
pair of procedures: 

PROCEDURE Enqueue(V AR q: FIFO; n: Node); 
BEGIN 

n.next := NIL; 
IF q.first # NIL THEN q.last.next:= n ELSE q.first:= n END; 
q.last:= n 

END Enqueue; 

At first sight, the guard q.first # NIL seems perplexing - q.last # NIL 
seems the logical choice. A study of DequeuedNode reveals that last is not 
set to NIL when the queue empties out. This is permissible, since last is 
only considered a hint. It is, of course, possible to make last more 
precise - at the cost, however, of an additional if statement: 
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PROCEDURE DequeuedNode(VAR q: FIFO): Node; 
VARn:Node; 
BEGIN 

n := q.first; 
IF n # NIL THEN q.first := n.next END; 
RETURNn 

END DequeuedNode; 

9.3 Trees 

Binary search 
tree 

The use of an array to represent a table was introduced in Section 8.2.5. 
It is easy to see that lists may serve the same purpose - the data at­
tached to each list node is an entry in the table. 

The disadvantages of the array structure to represent tables are the 
need to specify a maximum size and the fact that to insert an element at 
a given position, one has to J;Il.ove entries to make room. Experienced 
programmers know the dilemma of choosing a maximal table size: 
every choice - however well reasoned - is wrong in some applications. 
The list structure neither has an upper limit nor is there a need to shift 
elements around. When it comes to sorted (static) tables, however, the 
array structure scores well, because of the fast binary search algorithm. 

Our goal, is to design therefore a dynamic data structure that admits 
fast search and sort algorithms. The essence of the binary search is the 
possibility of accessing the middle and deciding whether the test key is 
in the left or right half. Obviously, if the nodes are arranged in an 
ordered tree, the same procedure can be formulated. An example of 
such a tree is given in Figure 9.8. 

A search tree is an ordered binary tree. A binary tree is said to be 
ordered if every node has two successors for which the key value of the 
node at left is smaller than the key value of the node at right. 

69 

15 31 

Figure 9.8 A binary search tree. 
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Other trees The tree structure also occurs naturally in many other contexts. One 
does not have to be a programmer to know the pedigree (or family) 
tree. Closer to computer science are parsing trees, which are at the heart 
of compilers. Another example is furnished by game-playing programs, 
which are typically based on a tree representation of the future moves 
emanating from a given position. 

Type definitions Let us recapitulate the type definitions of a binary tree: 

TYPE 
Node = POINTER TO NodeDesc; 
NodeDesc = RECORD 

key: Key; 
left, right: Node 

END; 

As in Section 9.2, we call a tree node simply Node, rather than TreeNode. 
Similarly, the field key represents all the data stored in a tree node. A 
diagram in the same style adopted for lists is presented in Figure 9.9. 

The tree definition is again recursive. The pointer root serves as 
anchor and provides a link to the first node which is also known as the 
root node. The pointer fields left and right point themselves to tree 
nodes which are the roots of sub-trees. The data recursion stops at NIL 
pointers. Nodes without links to sub-trees are termed leaves. 

root: Node 

Figure 9.9 Data structure of a binary tree. 
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9.3.1 Inherently recursive procedures 

Tree traversal 

The fundamental type definitions of both the list and the tree are re­
cursive. Therefore one would expect that their processing also leads 
naturally to recursive procedures. In the realm of trees, this is indeed 
the case. A first example is furnished by the fundamental operation of 
traversing an ordered (binary) tree. 

To each node n of a given ordered tree, a specific procedure pen) is 
applied. Often it is desirable to sequence the operations in order of in­
creasing key values. 

If we look at the preceding diagram, we realize that tree traversal is 
not simply expressible as a loop. We follow all the left branches to the 
first leave. Then we have to backtrack to the first node with a right 
branch, which we take, just to repeat the whole procedure. This infor­
mal description again points to the recursive nature of the problem. 

Assume that root is a pointer providing a link to the· root node. If the 
tree is empty (that is, if root = NIL) then no work has to be done. If not, 
we know that all nodes in the sub-tree pointed at by root.left have key 
values that are smaller than root.key. Hence we apply the whole pro­
cedure to root.left first. Once this is done, it is the root's turn. The action 
is applied to the node pointed at by root. Subsequently, it is the turn of 
all keys bigger than or equal to root.key - hence the whole procedure is 
applied again to root.right. In Oberon notation, this recursive algorithm 
is translated into the procedure: 

PROCEDURE Enumerate(root: Node); 
BEGIN 

IF root # NIL THEN 
Enumerate(root.left); P(root); Enumerate(root.right) 

END 
END Enumerate; 

We observe that the recursive data definition leads naturally - one 
might say effortlessly - to the recursive algorithm. The same, of course, 
is also true for lists. Recursion is used in the following variant of list 
traversal: 

PROCEDURE Enumerate(first: ListNode); 
BEGIN 

IF first # NIL THEN 
P(first); Enumerate(first.next) 

END 
END Enumerate; 



Insert a 
node 

Deletion of a 
node 

9.3 Trees 149 

In the case of lists, the recursive formulation is not really simpler than 
the iterative one. Since each procedure call requires some overhead for 
bookkeeping operations, the iterative formulation, using a while statement, 
will execute faster, and hence is the method of choice. 

No simple iterative formulation exists for traversing a tree. In fact, a 
close examination reveals that non-recursive formulations closely 
mimic the mentioned bookkeeping of recursive procedure calls 
(method of local stacks). Therefore recursion is the appropriate method 
for tree traversal. 

Another inherently recursive operation is the insertion of a new node 
into an ordered tree, such that the order is preserved. For the special 
case of the empty tree (that is, root = NIL), the insert operation is easily 
solved: the new node, new say, simply becomes the root. This is stated 
as follows: 

root:= new; 

In the case of a non-empty tree, we have to find the appropriate place 
to add the new node. Being at the root, all we know is whether the node 
will go to the left or to the right sub-tree. Therefore, we simply apply 
the whole procedure to the appropriate sub-tree until an empty tree is 
found. Using the facilities of Oberon, this idea is expressed in the 
following procedure: 

PROCEDURE Insert(VAR root: Node; new: Node); 
BEGIN (* new # NIL *) 

IF root = NIL THEN (* stop recursion *) 
root := new; root.left:= NIL; root.right:= NIL 

ELSIF new.key < root.key THEN Insert(root.left, new) 
ELSIF new.key > root.key THEN Insert(root.right, new) 
ELSE (* duplicate key, add desired action *) 
END-

END Insert; 

Deletion of a given node - also a recursive operation - is somewhat 
more complicated than insertion. 

First, the node to be deleted has to be found. If it turns out to have 
only one descendant, the task is easy. However, if two sub-trees are 
present the situation is more involved - one pointer cannot point to two 
objects! In this case, a node further down in the tree has to be promoted 
to replace the node being deleted. It is the node with the maximum key 
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value in the left sub-tree of the node being deleted as clarified in Figure 
9.10. Procedure RemoveMax locates this node. 

Delete 69 

Figure 9.10 Deletion of a node in a binary search tree. 

PROCEDURE RemoveMax(VAR root, max: Node); 
BEGIN 

IF root.right # NIL THEN RemoveMax(root.right, max) 
ELSE max := root; root:= max.left 
END 

END RemoveMax; 

Using Remove Max, we formulate the program text of procedure Delete: 

PROCEDURE Delete(V AR root: Node; key: Key); 
VARnode: Node; 
BEGIN 

IF root # NIL THEN 
IF key < root.key THEN Delete(root.left, key) 
ELSIF key> root.key THEN Delete(root.right, key) 
ELSE (* delete root *) 

IF root.left = NIL THEN root := root.right 
ELSIF root.right = NIL THEN root := root.left 
ELSE (* root has two sub-trees *) 

RemoveMax(root.left, node); 
node.left := root.left; node.right:= root.right; 
root:= node 

END 
END 

END 
END Delete; 
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9.3.2 Searching in trees 

We introduced the tree with the motivation of a fast search algorithm in 
a table represented by a dynamic data structure. Such an algorithm is 
now simple to formulate: 

PROCEDURE Search(root: Node; key: Key): Node; 
BEGIN 

WHILE (root # NIL) & (root.key # key) DO 
IF key < root.key THEN root := root.left 
ELSE root:= root.right 
END 

END; 
RETURN root 

END Search; 

It is noteworthy that while the previous procedures are intrinsically 
recursive, Search is presented as an iterative algorithm. The reason is 
that to search a node, no backtracking takes place. The algorithm simply 
chooses between the left and right branches of the binary tree. While a 
recursive formulation is easily possible, it is not simpler but less effi­
cient. 

Balancing search A crucial question is the speed of procedure Search. The answer de­
trees pends on the structure of the tree. A tree is said to be perfectly balanced if, 

for each node, the number of nodes in its left and right sub-trees differ 
by at most one. Ordered binary trees are not balanced a priori. Figure 
9.11 shows two extreme cases. 

If N denotes the number of nodes then it is easily verified that the 
number of levels in a perfectly balanced binary tree is of order log2 (N). 
On the other hand, an ordered binary tree may be extremely 
unbalanced. The number of levels in such an unbalanced tree may be as 
large as the order of N. 

In a given tree, the worst-case performance of the search algorithm is 
proportional to the number of levels. Hence the magnitude of the 
number of iterations of procedure Search is between log2 (N) and N. To 
ensure logarithmic search performance, the tree has to be balanced. Our 
procedures Insert and Delete do not achieve balance. Fortunately, if the 
keys are dra.wn randomly between minimum and maximum values, it 
can be shown that the resulting tree has a very high probability of being 
reasonably balanced. 
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Summary 

level 2 

level 3 1 

Balanced: 

root 

level 1 

Number of levels:::: log N 

7 

level 1 

level 2 6 

level 3 5 

level 4 4 

level 5 3 

level 6 2 
Unbalanced: 

root 

level 7 1 Number of levels:::: N 

Figure 9.11 Balanced and unbalanced binary search trees. 

In most appiications, we know little about actual key distribution. We 
therefore have to take measures to rebalance the search tree. Balancing 
an ordered tree perfectly is a complex operation - both with respect to 
the length of the program text and the number of operations. The prac­
tical trade-off is therefore between the number of balancing steps and 
the increased length of the search paths, arising from imbalance. How 
often and how perfectly one balances the search tree depends on the 
frequency of insert and delete operations compared with the frequency 
of searches. If searches are highly predominant, it pays to balance the 
tree quite well. On the other hand, if updates predominate, balancing is 
hardly worthwhile. 

To strike a practical balance, the perfect balance criterion can be re­
laxed - with the goal of reducing the balancing overhead. Several such 
schemes have been published. 

Detailed coverage is beyond the scope of this book and we refer to 
the literature (Wirth, 1976; Smith, 1987; and Sedgewick, 1988). 

Trees are among the most important dynamic data structures. Some of 
their properties are summarized below: 

(1) The tree data structure arises in many practical situations: tables 
with efficient search algorithms, compilers, game playing pro­
grams, to mention just a few. 

(2) Tree traversal is most appropriately formulated with a recursive 
algorithm that takes care of backtracking. 

(3) Ordered trees composed of N nodes admit search algorithms of 
the complexity log(N) if they are balanced. 

(4) Most tree algorithms are naturally expressed recursively. Those 
procedures, however, that do not backtrack also have usually a 
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simple iterative solution using the while statement. An iterative 
formulation of backtracking procedures is possible but 
cumbersome and its speed advantage marginal. 

(5) In search trees, the trade-off between the gain in search perfor­
mance and balancing cost leads to a variety of schemes that 
allow a measured degree of imbalance in order to reduce the 
number of balancing steps. 

9.4 Other dynamic data structures 

Alternative list 
representations 

Linear lists and binary trees are just two important examples of dy­
namic data structures. Many more exist - some with the aim of im­
proving the performance of certain operations, others reflecting gen­
uinely more complex models. Subsequently, we will give an example of 
each category. 

In the examples of Section 9.2, we used the simplest list representation. 
The empty list is a NIL pointer and the list is accessed through an an­
chor. There exist a variety of other representations with the aim of 
simplifying and optimizing certain procedures. One such representa­
tion always contains two (virtual) nodes as shown in Figure 9.12. These 
nodes are sometimes dubbed sentinels. If the key of the sentinel is the 
supremum of all possible keys, the condition of the search loop can be 
abridged. The use of a tail that points to itself to terminate the list 
simplifies the delete action. 

head tail 

1l~:itM~I;[f4'~~:lji))l)lf~ empty list 

Figure 9.12 Simple list with two permanent virtual nodes. 

It is also possible to organize the list node in a doubly linked ring, as 
Figure 9.13 illustrates. In the doubly linked ring, removal of a node is 
particularly easy - no traversal of the structure is required. Similarly, 
FIFO (first-in, first-out) and LIFO (last-in, first-out) operation is 
efficiently achieved. 
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n-waytree 

Figure 9.13 A list represented as a doubly linked ring. 

Graphs are a powerful mathematical abstraction for many problems. 
The binary trees discussed in Section 9.3 are a special case of graphs. A 
simple generalization of the binary tree is the tree of degree n. In such a 
tree, each node has at most n successors. If n is fixed and reasonably 
small then the following node declaration can be used (see Figure 9.14): 

TYPE 
Node = POINTER TO NodeDesc; 
NodeDesc = RECORD 

key: INTEGER; 
descendants: ARRAY n OF Node 

END; 

descendants 

Figure 9.14 Node for a 4-way tree. 

There are situations, however, where the number of descendants is 
variable and may become large. In this case, using an array for the de­
scendants is wasteful and should be replaced again by a list. 

9.5 Summary 

In many programs, data change their relationship and bulk. Oberon 
provides a basic tool to construct dynamic data structures: the pointer 
type. 

In this chapter, we have introduced the pointer type and the pointer: 
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a variable whose value is a reference to another object. The following 
points should be remembered: 

(1) A pointer cannot point to any object. The pointer type is bound 
to a record or array type: the pointer base type. 

(2) If P is a pointer then the variable to which it points is obtained 
from the dereferencing operator applied to p; that is, pt. As a conve­
nience, Oberon implies dereferencing in the case of a record field or 
array index. 

(3) NIL is a value compatible with all pointer types. Dereferencing 
of a NIL pointer leads to program termination. 

(4) An (anonymous) variable pt of pointer base type is created with 
the predeclared procedure NEW(p); at the same time, p is initial­
ized. The variable pt is allocated on the heap memory. 

A dynamic data structure is composed of nodes that are of record 
type and themselves contain pointer fields. The definition of the 
dynamic data structure is thus recursive. One of the simplest (but most 
versatile) dynamic structures is the list: a chain of nodes. We have given 
a number of examples of inserting and deleting nodes in lists. A key 
observation is that accessing the last element requires list traversal, 
which is an expensive operation. 

Since access to the last element occurs frequently in a first-in, first-out 
list, a special hint has been introduced to deal with the insert operation 
efficiently. The hint is a pointer providing a link to the last element. 

Another useful dynamic structure is the binary tree. In contrast to the 
list, the tree allows search of a given node in logarithmic time. We have 
given examples of tree processing using recursion. Trees provide a good 
example of how recursive data definition and recursive processing may 
complement each other. 

9.6 Exercises 

9.1 Which of the following declarations are correct: 

(a) V AR p: POINTER TO REAL; 

(b) VAR q: POINTER TO RECORD END; 

(c) VAR v: POINTER TO ARRAY OF REAL; 

(d) VAR a: POINTER TO ARRAY N, N OF REAL; 

(e) VAR b: ARRAY 100 OF REAL; p: POINTER TO b; 

(0 TYPE A: ARRAY 100 OF REAL; a: POINTER TO A; 
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9.2 Find the errors in the following procedure: 

PROCEDURE Search(V AR first: Node; k: Key): Node; 
BEGIN 

WHILE (first.key # k) & (first # NIL) 00 first := first.next END; 
RETURN first 

END Search; 

9.3 [Lists] Implement a module Lists with definition 

DEFINITION Lists; 
IMPORT Out; 
TYPE 

Data, Key = INTEGER; 
Node = POINTER TO NodeDesc; 
NodeDesc = RECORD 

key: Key; data: Data; next: Node 
END; 

PROCEDURE Insert(V AR first: Node; new: Node); 
PROCEDURE InsertLast(VAR first: Node; new: Node); 
PROCEDURE InsertRanked(VAR first: Node; new: Node); 
PROCEDURE FirstNode(V AR first: Node): Node; 
PROCEDURE Search(first: Node; k: Key): Node; 
PROCEDURE Delete(V AR first: Node; node: Node); 
END Lists. 

Using modules In and Out compose a module UseLists that is a client of module 
Lists. The commands exported by UseLists are 

• Make: creates an instance of a list. 

• Add: reads key and data values from the input stream, creates an 
instance of a node and adds it to the list. 

• Query: reads a key value from the input stream and prints the 
corresponding data value if the key is found, "not found" otherwise. 

• Delete: reads a key value from the input stream and deletes the 
corresponding list node. 

9.4 Repeat Exercise 9.3 for the list representation with virtual head and tail 
elements (Figure 9.12). In the procedures of 9.3, the formal VAR parameter first 
is replaced by a value parameter head, for example 

PROCEDURE Insert(head: Node; new: Node); 

Provide 

PROCEDURE NewO: Node; 
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which creates an empty list. Why are no VAR parameters required? Why is 
there a need for a procedure New now but not previously? 

Hint: study the following implementation of Delete: 

PROCEDURE Delete(head: Node; k: Key); 
VARy: Node; 
BEGIN 

y:= head; 
WHILE (y.next # tail) & (y.next.key # k) DO Y := y.next END; 
y.next:= y.next.next 

END Delete; 

9.5 Repeat Exercise 9.3 for doubly linked rings (Figure 9.13). 

9.6 [Trees] Write a module Trees that implements the procedures Insert, Search, 
Delete of Section 9.3. Implement a module UseTrees analogously to UseLists. 

9.7 [Tree enumeration] Expressions can be conveniently represented by trees 
called parse trees .. Write procedures that traverse the parse tree of Figure 9.15 in 
the following order: 

(a) Preorder: 

(b) Inorder: 

(c) Postorder: 

*+a/bc-d*e! 

a+b/c*d-e*! 

abc/+de!*-* 

a 

Figure 9.15 Tree representation of the expression (a + b / ch(d - e*f). 

Hint: consider procedure Enumerate of Section 9.3.1 with modified order of the 
statement sequence 

Enumerate(root.left); P(root); Enumerate(root.right). 
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10 Stepwise refinement and 
data abstraction 

When tackling a compleXi'I'0gramming task, it is easy to. get swamped 
by the details of the data structures or the intricacies of the algorithms. 
It is therefore advisable to proceed on carefully chosen levels of 
abstractions, first drawing a broad outline of the task in terms of 
subtasks, then specifying the actions of the subtask, possibly again 
pushing details to a further round of refinements. In this process of 
stepwise refinement, the procedure is an indispensable tool (Wirth, 1971, 
1974; Dahl et al., 1972). If the subtasks are performed by appropriately 
named procedures, the inherent structure of the program remains 
visible, and the tasks may be performed by different groups of 
programmers. The module adds a further level of structure through 
carefully chosen interfaces and import relations. 

In this chapter, we will discuss a realistic example: the simulation of a 
waiting line. We will practice stepwise refinement and illuminate the 
role of the procedure and more importantly of the module in creating 
abstractions. The scenario is the simulation of a waiting line, an example· 
from the class of discrete event simulation programs. 

10.1 Discrete event simulation of a waiting line 

The digital computer is a new and powerful analytical tool in the hands 
of scientists and engineers. The graphical capability of modern work­
stations is a great help in visualizing complex results. The computation 
of the fractal fern is a good example. Who would see the structure of the 
limiting set by pondering over piles of 7-digit floating-point numbers? 

Many systems elude a formulation as a set of deterministic equations. 
Consider a waiting line in front of a ticket counter. The arrival of 
customers and their departure is the collective result of the individual 
decisions of a large number of persons. 
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The only model we may use in such a situation is a statistical one. 
Random numbers are used to generate events such as customer arrivals 
and departures. The state changes only at discrete time epochs such as 
arrivals and departures. Nothing happens between events. Thus when 
evolving the waiting line on the computer, time jumps from event to event. 
We speak therefore of a discrete-time, discrete-event simulation. 

To simulate the waiting line, we need two sequences of random 
numbers: one to measure the times between arrival events and the other 
to determine the time needed to serve a customer. The properties of 
these sequences are described by their distribution. For simplicity, we 
will work with the exponential distribution (see Box 10.1). 

The operation of the waiting line is governed by two types of event: the 
arrival and the departure of a customer. Each event has an associated 
time - its due time. An algorithmic description of the operation of the 
waiting line rests on the notion of a calendar of such events. The 
calendar is defined by two actions: an event may be scheduled and the 
most imminent event may be retrieved. 

Using these concepts, the operation of the waiting line can be expressed 
more rigorously in an algorithmic notation similar to Oberon: 

REPEAT 
"Retrieve event from the calendar"; 
IF event = arrival THEN 

"Schedule a new arrival event"; 
"If the queue is empty, schedule a departure event, 
else join queue" 

ELSIF event = departure THEN 
"Remove head of the queue. If the queue is not empty, 
schedule a new departure event" 

END 
UNTIL "Simulation time exceeds given limit"; 
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Box 10.1 Assume that we have made a 
The distribution of 
random numbers 

System state 
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:::J 

8 

x 

large number of observations of a 
random phenomenon. A good 
way to characterize the set of 
observations is to plot a 
histogram. The abscissa is divided 
into equal intervals, and the 
number n(x) of observations 
falling into the interval beginning 
at x is graphed as a bar chart. 

If we decrease the width of the intervals and simultaneously increase 
the number of observations we call the normalized limiting function (if it 
exists) the distribution of the random observations.1 
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Sometimes such a chart looks like 
the diagram on the left: the shape 
approaches a negative 
exponential curve - we speak of a 
negative exponential distribution. 
The time between arrivals of 
phone calls is an example where 
the exponential distribution is 
found in practice. 

An exponential random number rnexp can be obtained from a uniform 
random number rnuni according to the simple formula: 

where 1/ f.l is the mean value of the random numbers. If the random 
variables are used to measure the time between events, the parameter f.l is 
also the rate (in events/s). 

The state of the queue is an integer n that measures the number of cus­
tomers in the waiting line and in service. The action 

• 'join queue' means incrementing n; 

• 'remove head of the queue' means decrementing n. 

1 Technically distribution of random variable. 
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10.2 Putting the operation of the queue into Oberon 
terms 

The last section provides a description of the queueing operation that is 
quite rigorous. However, it is still far from an executable Oberon 
program. The specification of such a program will require 

(1) a data representation of the system state (queue, events and so 
on); 

(2) a precise definition of the calendar, in particular the actions 
'schedule an event' and 'retrieve an event'; 

(3) translation of the algorithmic description of the queue's opera­
tion into an Oberon procedure; 

(4) specification of further procedures that initialize the model, 
gather statistical results and produce output; 

(5) embedding all procedures in one (or several) modules. 

The difficulty in attacking a complex programming task is to decide 
where to start - and how to proceed in a methodological fashion. Many 
problems of data design and procedural specification are interrelated­
it seems all has to be done at once. 

Abstraction is the key technique that allows the programmer to break 
the vicious cycle. To abstract means to leave out detail. The procedure is 
a powerful concept in this respect: we can write down a procedure call 
without need to specify the text of that procedure right away. Having this in 
mind, our plan to attack the queueing simulation is to start with task 
(1), defer (2) and proceed with (3), then return to (2) and 'complete (4) 
and (5) subsequently. The methodology behind this approach is known 
as structured programming or stepwise refinement. 

10.2.1 Data representation of the system state 

The entities of the queueing systems are the events, the calendar, the 
queue and a random number generator. Also required to describe the 
global state is the notion of the simulation time. 

Mathematically, the events are labels on the time axis. In our example, 
there are two kinds of events: arrivals and departures. It is expedient to 
represent event types as integers. Therefore an event is a tuple (e, t), 
where.e serves as event label (or identifier) and t is the event's due time. 
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Calendar 

Queue 

In order to specify the queueing simulation, we also need the calendar. 
One possibility is to now focus on that problem. This is not the course 
we have chosen. However, we have to make an assumption about the 
actions supported by the calendar. We postulate the following proce­
dures: 

PROCEDURE GetNextEvent(VAR e: INTEGER; V AR t: REAL); 
PROCEDURE Schedule(e: INTEGER; t: REAL); 

At this point, the calendar remains abstract - a lot of detail is hidden 
behind those two procedures. A data structure that is defined solely by 
procedures acting on it is known as an abstract data structure - a concept 
that we will refine in Section 10.3. 

Recall that since customers have no identity, the state of the queue is 
simply an integer. This compact state description greatly simplifies the 
program. 

Random Random numbers, finally, are already available through module 
numbers RandomNumbers, which we assume to be part of the program library of 

our workstation. We will use the procedure RandomNumbers.Exp. Two 
parameters have to be specified: the arrival rate A (in customers/s) and 
the mean service time 1//1. 

Global variables With these preliminaries, we are ready to list the declarations of the 
global variables needed in our simulation program: 

CONSTarrival = 0; departure = 1; 
VAR 

event: INTEGER; 
time: REAL; 
n:INTEGER; 
lambda: REAL; 
mu:REAL; 

(* The current event type*) 
(* The current time *) 
(* The number of customers in the queue *) 
(* The arrival rate *) 
(* The service rate *) 

The named constants arrival and departure will render the resulting 
program text readable. Their use should be considered essential and not 
just a nicety. 

10.2.2 A first round of refinement of the queueing algorithm 

The preparations are now complete to make a first round of refinement 
of the algorithm stated in Section 10.1: 
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REPEAT 
GetNextEvent(event, time) (* retrieve event from calendar *) 
IF event = arrival THEN ProcessArrival 
ELSIF event = departure THEN ProcessDeparture 
END 

UNTIL time> tEnd; 

Clearly, the description of the simulation task has been made in terms 
of subtasks, emphasizing the dominant structure and suppressing de­
tails. 

Of course, suitable data structures must be chosen, and the subtasks 
ProcessArrival and Process Departure must now be further described with 
all the necessary details. GetNextEvent is part of the calendar operation 
and its specification awaits one more round of refinement. 

Instead of replacing the descriptive English words with more or less 
elaborate Oberon program texts, we may consider these words as 
procedure identifiers, and we will proceed to write their program texts. 

Let us first focus on the processing of an arrival event. With the pre­
ceding discussion, the 'pseudocode' of Section 10.1 translates easily into 
a formal Oberon procedure: 

PROCEDURE ProcessArrival; 
BEGIN 

Schedule(arrival, time + RandomNumbers.Exp(lamda»; 
IFn = o THEN 

Schedule(departure, time + RandomNumbers.Exp(mu» 
END; 
INC(n) 

END ProcessArrival; 

The actions taken upon a departure event are similarly simple: 

PROCEDURE ProcessDeparture; 
BEGIN 

DEC(n) 
IFn>OTHEN 

Schedule(departure, time + RandomNumbers.Exp(mu» 
END 

END ProcessDeparture; 

The actions corresponding to the subtasks are now specified except for 
the calendar and the embedding into a final module, which we consider 
in a second and a third round of refinements. 
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10.3 Hiding of details 

10.3.1 Implementation of module Calendar 

The calendar is a central component of every discrete event simulation. 
Therefore we will encapsulate it in its own module, which we name 
Calendar. Such a module may support many particular simulation 
models - it will serve as a service module in the computer's library. 

In the preceding section, we described the calendar abstractly as a 
repository of timed events, admitting the operations GetNextEvent and 
Schedule. We are now at the stage where the abstract definition has to be 
concretized; that is, a data representation for the calendar needs to be 
chosen and the actions specified. 

To store events, we need a table. Events in the calendar have a natural 
order defined by their due time. It is therefore an obvious choice to 
maintain a ranked list, with the head of the list being the most imminent 
event. 

For the purpose of module Calendar, the definition of the type Node of 
Section 9.2 has to be modified. There we deliberately omitted ap­
plication specific fields. In our case, we need such 'data' fields for the 
integer that serves as event identifier. The application-specific meaning of 
the key is the due time. Therefore it is of type REAL. 

To render the program text more readable, we also rename the type 
Node as Event and key as time. The text of the procedures FirstNode and 
InsertRanked can be easily adapted - the program text of module 
Calendar should be quite self explanatory. 

MODULE Calendar; 
CaNST deadlock* = MAX(INTEGER); 
TYPE 

Event = POINTER TO EventDesc; 
EventDesc = RECORD 

id: INTEGER; 
time: REAL; 
next: Event 

END; 
(1) ~ V AR clndr: Event; 

PROCEDURE GetNextEvent*(VAR id: INTEGER; VAR t: REAL); 
BEGIN 

IF clndr # NIL THEN 
id := clndr.id; t:= clndr.time; 
clndr := clndr .next 



(2) -+ 

(3) -+ 

ELSE id := deadlock 
END 

END GetNextEvent; 
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PROCEDURE Schedule* (id: INTEGER; t: REAL); 
V AR x, y: Event; 
BEGIN . 

NEW(x); x.id:= id; x.time:= t; 
IF (clndr = NIL) OR (t < clndr.time) THEN 

x.next := clndr; clndr:= x 
ELSE 

y:= clndr; 
WHILE (y.next # NIL) & (t >= y.time) DO y:= y.next END; 
x.next:= y.next; y.next:= x 

END 
END Schedule; 

PROCEDURE Reset*; 
BEGIN clndr:= NIL 
END Reset; 

BEGIN 
(4) -+ Reset 

END Calendar. 

Notes 

(1) Global variable clndr is the anchor of the calendar list. 

(2) If the calendar is empty, a deadlock is said to have occurred. A 
special event identifier is returned, the time is undefined. The 
client of module Calendar has to test for this event, if it is not 
guaranteed that the simulation remains active. 

(3) An instance of type Even t is created and initialized. 
Subsequently, the event is inserted into the calendar list such that 
it remains ranked with respect to time. 

(4) In the body of module Calendar, the calendar list is initialized. 

Besides the familiar procedures GetNextEvent and Schedule, a third 
one is added, namely Reset. It empties an existing calendar and is useful 
when a new simulation run is started. 

There is little more to explain about module Calendar, except for the 
choice of exports. Module Calendar performs no computations on its own. 
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It is a service module that exports procedures to be used in a client 
module. 

Clearly, we have to export the procedures Reset, GetNextEvent and 
Schedule. But do we also have to export the calendar - that is, the global 
variable cindr? At first sight, this clearly seems necessary. 

But we already know that the importing module is perfectly served if 
it has access to the procedures Reset, GetNextEvent and Schedule. 

We deliberately opt for export of those procedures only. The conse­
quence is that we hide the dynamic data structure that represents the cal­
endar. The client has no access to that data structure. The exported dec­
larations, seen from a module that imports Calendar, are in the style of a 
definition module: 

DEFINITION Calendar; 
CONST deadlock = MAX(INTEGER); 
PROCEDURE GetNextEvent(VAR id: INTEGER; VAR t: REAL); 
PROCEDURE Schedule{id: INTEGER; t: REAL); 
PROCEDURE Reset; 

END Calendar. 

Abstract data We call a data structure that is not visible outside of a module but that 
structure can be created and changed by a set of exported procedures an abstract 

data structure. 
It is abstract in the sense that only its properties are known - not its 

implementation. The properties of the data structure that are visible in a 
client module are called the interface. In our example, the interface is 
composed of the constants deadlock and the procedures Reset, 
GetNextEvent and Schedule. . 

What is hidden is the type Event as well as the anchor of the calendar 
list (the global variable cindr). An importing module is thus unable to 
traverse the list, to enter events on its own or to remove events. 

Increased safety What purpose is served by data hiding? Could the client not do more if 
it had full access to the dynamic data structure of the· calendar? Yes it 
could - and this may be an advantage as well as a bane. 

For example, an already scheduled event could be removed or a 
group of almost simultaneous events could be inserted at once, thereby 
saving execution time. But it is as easily possible to introduce errors, for 
example to insert an event at the wrong place in the ranked list and - as 
a consequence - completely annihilate the results of the simulation. 

The notion is that a service module affords a set of carefully validated 
functions. The data structure is protected, and thus its integrity is 

. guaranteed - no tampering with it can invalidate the results of the pro­
cedures operating on it. 
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We are all aware that the documentation of programs is a tedious and 
hence often neglected duty of the programmer. Using data abstraction, 
implementation details remain hidden, and their documentation (or 
lack thereof) does not affect others whose work depends on availability 
of our module. Only the interface needs documentation. If the names of 
variables and parameters are well chosen, the interface almost 
documents itself - a significant advantage of deliberately chosen thin 
interfaces. 

Data hiding - or data abstraction - has a third important benefit: the 
implementer is free to change the data structure without affecting any of 
the importing modules. 

For example, instead of a linear list, an array could as well serve as 
basis for the calendar, using the deClaration 

V AR clndr: ARRAY max OF RECORD 
id: INTEGER; time: REAL 

END; 

An implementation based on arrays admits the heap structure, which 
allows insertion in log (n) operations (where n measures the number of 
calendar entries); see Wirth (1976). The heap algorithms work similarly 
to the binary search (Section 8.2.5). An implementation of the procedure 
Schedule using such a binary search to pinpoint the insertion point may 
hold a speed advantage over its cousin working on lists. Another 
possibility is the use of a tree structure that also allows insertion in 
log(n) time rather than in linear time. In any case, such improved 
implementations will show a significant gain only for large simulation 
models whose calendars grow really big. For small models, they may 
even be counter-productive. 

Using data abstraction, it is possible to substitute a new and im­
proved implementation of a service module in a program library. None 
of the clients will have to be modified or even recompiled, as long as the 
interface remains the same. 

10.3.2 Computing statistics: module Paths 

We have now all the elements in place to complete the simulation pro­
gram. However, running the algorithm as stated in Section 10.2 would 
not be too exciting - its only result is a busy computer. Clearly, the 
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Box 10.2 
Mean and path 
of a queue 

simulation experiment has to be instrumented with the goal of 
gathering statistics about the system's behavior. 

It turns out that in practice, a great deal of the size of a simulation 
program is devoted to instrumentation and data analysis. Therefore it is 
a good idea to provide some tools to facilitate this task. Our goal, again, 
is to provide a service module usable for many applications. 

In order to compute the mean value of a queue, one has to analyze its 
path (see Box 10.2). In a realistic simulation, there is not only one but 
many different queues with their respective paths that the investigator 
wants to analyze. We therefore need a mechanism that allows the user 
of the service module to declare an open-ended number of paths and 
gather data about them. 
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One of the simplest statistics that we can compute for our queue is the 
mean number of customers found waiting or in service over a given 
period of length T. This mean number, L say, is computed according to 
the formula 

L=WjT 

where W denotes the cumulative waiting time defined as the area under the 
graph 'customers in queue versus time' measured from time 0 to T. Such 
a graph is also known as the path of the queueing process. 

In Oberon, that mechanism is the type - our goal is to design a 
module that exports a type called Path. Clients are then able to declare 
multiple instances of that type in the customary manner. 

Each time the path jumps one unit up or down, the accumulated 
waiting time W is updated. In order to do this, we need a record of the 
path value n at the time of the last change, as well as the epoch t of that 
change. Thus a path is an instance of the following record type: 



TYPE Path = RECORD 
n:INTEGER; 
W, t: REAL 

END; 
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It is now easy to write the program text of module Paths: 

MODULE Paths; 
TYPE Path* = RECORD 

n*: INTEGER; 
W, t: REAL 

END; 

PROCEDURE Init * (V AR p: Path); 
BEGIN p.W:= 0; p.n:= 0; p.t:= 0 
END Init; 

PROCEDURE Up* (V AR p: Path; t: REAL); 
BEGIN p.W:= p.W + p.n*(t - p.t); INC(p.n); p.t:= t 
END Up; 

PROCEDURE Down* (V AR p: Path; t: REAL); 
BEGIN p.W:= p.W + p.n*(t - p.t); DEC(p.n); p.t:= t 
END Down; 

PROCEDURE Mean* (p: Path; tEnd: REAL): REAL; 
BEGIN RETURN (p.W + p.n*(tEnd - p.t»/tEnd 
END Mean; 

END Paths. 

The actions of the procedures are so simple that a few comments suf­
fice: 

• Init: Initializes the fields of a path. 

• Up: At time t, the path makes a jump of one unit in the up­
ward direction. 

• Down: Like Up, but jump is downward. 

• Mean: Returns the mean value of the path variable for the 
time interval starting at 0 and ending at tEnd. 
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Abstract data 
type 

As in the case of the calendar, the choice of exports justifies further 
discussion. 

The client of module Paths is not interested in the accumulated waiting 
time W or in the time stamp t. It is the mean queue length that really 
matters. With this in mind, module Paths only exports the record type 
Path and field n measuring the instantaneous value of the path. Since 
details remain hidden from the client, we speak of an abstract data type. 
The visible declarations that provide the interface to module Paths are 

DEFINITION Paths; 
TYPE Path = RECORD 

n:INTEGER 
END; 

PROCEDURE Init (VAR p: Path); 
PROCEDURE Up (VAR p: Path; t: REAL); 
PROCEDURE Down (VAR p: Path; t: REAL); 
PROCEDURE Mean (p: Path; tEnd: REAL): REAL; 
END Paths. 

Instances of an abstract data type are initialized and manipulated exclu­
sively through procedures~ Each one of the procedures needs a formal par­
ameter that identifies the particular instance of the abstract data type, upon 
which actions are performed. It is good practice to start the parameter 
list with this identification parameter. 

The data structure itself is hidden. The advantage of hiding details 
are no different in the case of an abstract data type from the abstract 
data structure: simplicity of the interface, security and freedom of im­
plementation. The disadvantage is also the same, namely a possible re­
striction of operations that the client may legitimately want to perform. 

10.4 Completion of the simulation example 

We have now all the elements in place to list the complete program text 
of the simulation program. We know that this means to create a 
module, which we call Model. We draw on the services of imported 
modules, namely Calendar, RandomNumbers, Paths, In and Out. 

The following program text should be self-explanatory: 



(1) -+ 
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MODULE Model; 
IMPORT Paths, Calendar, RandomNumbers, In, Out; 
CONST arrival = 0; departure = 1; 
VAR 

event: INTEGER; 
time: REAL; 
q: Paths. Path; 
lamda: REAL; 
mu: REAL; 

(* current time *) 
(* state of queue and statistics *) 
(* arrival rate *) 
(* inverse of mean service time *) 

PROCEDURE ProcessArrival; 
BEGIN 

Calendar.Schedule(arrival, time + RandomNumbers.Exp(lamda»; 
IF q.n = 0 THEN 

Calendar.Schedule(departure, time + RandomNumbers.Exp(mu» 
END; 

(2) -+ Paths.Up(q, time) 

(3) -+ 

END ProcessArrival; 

PROCEDURE ProcessDeparture; 
VARs:REAL; 
BEGIN 

Paths.Down(q, time); 
IF q.n > 0 THEN 

Calendar.Schedule(departure, time + RandomNumbers.Exp(mu» 
END 

END ProcessDeparture; 

PROCEDURE Simulate(dt: REAL); 
VAR tEnd: REAL; 
BEGIN 

tEnd := time + dt; 
REPEAT 

Calendar.GetNextEvent(event, time); 
IF event = arrival THEN ProcessArrival 
ELSIF event = departure THEN ProcessDeparture 
END 

UNTIL time> tEnd 
END Simulate; 

PROCEDURE Setup*; 
BEGIN 

In.Open; In.Real(lamda); In.Real(mu); 
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Out. Open; 
Out.String("lamda ="); Out.Real(lamda, 10); 
Out.String(" mu ="); Out.Real(mu,10); Out.Ln; 
Calendar.Reset; Paths.Init(q); 
Calendar. Schedule (arrival, 0.0) 

END Setup; 

PROCEDURE Run*; 
V AR dt: REAL; 
BEGIN 

In.Open; In.Real(dt); 
Simulate(dt); 
Out.String("mean ="); Out.Real(Paths.Mean(q, time), 11); Out.Ln 

END Run; 

END Model. 

Notes 

(1) Instead of employing a simple integer to describe the state, we 
make use of the abstraction Path, which also reflects the number 
of customers in q.n. 

(2) The call Paths. Up replaces INC(n) in the preliminary version. 

(3) The call Paths.Down replaces DEC(n) in the preliminary version. 

To execute a simulation run, two commands need to be executed in 
sequence: Setup and Run. The command Setup fixes the basic parame­
ters lamda and mu and initializes the data structure for a new simulation 
run. Note that an initial arrival event must be entered into the calendar 
- otherwise the simulation would never start. 

Executing the command Run starts a particular simulation. The in­
cremental simulation time dt is a parameter. After completion, the 
command Run displays the mean queue length. Run has the property 
that it can be iterated. A second invocation will continue from where 
the first one stopped. 

The division between Setup and Run is deliberate. Typically, the re­
sults of a simulation converge to a stationary state. Whether a result is 
close to that limit is not known beforehand. Issuing one Setup and exe­
cuting Run several times will help the investigator to evaluate the de­
gree to which steady state is reached. 

Observe that module Model is mainly composed of declarations and calls 
to procedures exported by service modules. This is demonstrated by the 
predominance of qualified identifiers and is quite typical of a properly 
modularized Oberon program. 
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10.5 More on program structuring and abstraction 

Structuring and abstracting are the main techniques leading to under­
standable and hence trustworthy programs. To abstract literally means 
to pull out the essence from irrelevant details. 

The quality of a program is an elusive property, and may mean dif­
ferent things to different groups of people. All would agree, however, 
that program correctness is of fundamental importance. To demonstrate 
a program's correctness is ultimately a matter of convincing a person 
that the program is trustworthy. How can we approach this goal? While 
great progress was made in proving program correctness through 
assertions, the method is still far from being a panacea. Provable 
programs are still a small- albeit growing - minority. 

The only salvation for the rest lies in structure. A program must be 
decomposed into partitions that can be considered one at a time 
without too much regard for the remaining parts. At the lowest level, 
the elements of the structure are statements; at the next level, proce­
dures; and at the highest level, modules. In parallel with program struc­
turing proceeds the structuring of data. The essence of programming is 
finding the right - or at least an appropriate - structure. 

10.5.1 Decomposition into modules, data hiding 

The distinctive property of the module as the largest structuring unit is 
its capability to hide details and thereby to establish a new level of ab­
straction. Decomposing a program into modules divides programmers 
into providers and users. The provider of an abstraction writes a module 
and carefully chooses which variables or procedures to export. As we 
mentioned earlier, those exports are called the interface of the module. 
The provider creates a service module. The user deals with the facilities of 
a service module through the interface only. Since abstraction is a 
hierarchical concept, every provider is usually also a user of abstrac­
tions at a lower level. 

Partitioning of a program into modules establishes a hierarchy of ab­
stractions. The hierarchy is defined by the relation 'module C imports 
module S.' C is called a client of S, which itself is a service module for C. 

To reveal the structure of a hierarchy of abstractions, the graph con­
sisting of modules as nodes and import relations as edges is useful. 
Properly structured abstractions avoid mutual dependency - which 
means that their module graph is cycle-free. An example of a module 
hierarchy is depicted in Figure 10.1. 
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Even if there does not exist a recipe to determine the most favorable 
decomposition, there have emerged some criteria separating the good 
from the bad. A basic rule is that the connection between modules - the 
interface - be simple or 'thin.' A crude measure is the number of items 
participating in the interface. Naturally, it is difficult to find an opti­
mum, since this number would vanish if the entire program could be 
collapsed into a single module - clearly an undesirable solution. 

We can distinguish the following typical cases: 

(1) The module contains no data of its own, but exports a· collection 
of procedures. The typical example is a mathematical subroutine 
library. Such modules are packages of procedures. 

(2) The module's essence is a set of data. It hides the details of the 
data representation by granting access to these data through calls 
of its exported procedures only. We speak of an abstract data 
structure. 

(3) The module exports a data type together with associated proce­
dures. The data type may again represent a dynamic structure. In 
contrast to (2), the client of such a module may declare multiple 
instances of the type - now termed an abstract data type. 

Hiding details has three benefits: 

• The user or client of a service module is not bothered with 
unnecessary characteristics of the implementation. Only the 
interface must be described - a task that is much easier than a 
complete documentation of the module. 

• In the case of abstract data structures or abstract data types, the 
user is not only not bothered with detail - but is effectively 
prevented from tampering with the data structure. If the 
functions of the service module are carefully tested, their validity 
is not endangered by inappropriate use. Certain invariants can 
be guaranteed. Data abstraction increases the safety of programs. 

• The implementer is free to choose and even change. the data 
representation without bothering or invalidating client modules. 

However, data abstraction also prevents the client from performing 
perfectly correct and sensible operations on the data. The trade-off is 
not always easy, and has to be made judiciously. 

10.5.2 Module Out: an example of an abstract data structure 

Let us revisit module Out that we introduced in Chapter 7 for textual 
output. It depends on operating system services dealing with files and 
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the viewer subsystem. Assuming a standard Oberon operating envi­
ronment, the provider of module Out uses the whole hierarchy of 
Oberon system modules shown in Figure 10.1. Each module provides 
an abstraction of its own. 
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Figure 10.1 Module Out embedded into the hierarchy of the Oberon system 
(there are more import relations - only the major ones are depicted). 

Modules TextFrames, Oberon, Texts and MenuViewers are directly 
imported by module Out. However, since those modules themselves 
depend on the lower modules in the hierarchy, almost the entire 
Oberon operating system is at the service of Out. 

The user of Out deals with all that complexity through six simple 
procedures only: Open, Char, Ln, Int, Real and String. Behind the six 
procedures is a single instance of a data structure - the stream - that we 
know only through its properties: (1) it is composed of elements that have 
a successor and possibly a last element and (2) a position. 

The advantage of the abstraction provided by module Out is obvious. 
A simple concept, the stream, and six procedures allow the user to deal 
with output operations. Furthermore, the abstraction on a level high 
enough that it can be implemented on any contemporary computer, 
from PC to a large mainframe. 

However, does module Out supplant the functions of the foundation 
comprising the modules Kernel, FileDir, Modules, Display, Input, Files, 
Fonts, Texts, Viewers, Oberon, MenuViewers and TextFrames? Of course 



176 Stepwise refinement and data abstraction 

not. Those other modules deliver a wealth of functions that are useful, 
even essential, but abstracted from (or hidden) by Out. The price of ab­
straction is therefore a loss of functionality - traded for simplicity of concept, 
correctness of the functions and freedom of implementation. Where to draw 
the line in making this trade-off is always a matter of judgement and 
debate. 

10.5.3 Module Files, example of an abstract data type 

We came across the abstract data type in Section 10.3.2, where we in­
troduced the type Path. Admittedly, module Paths is a simple example­
while the reason for hiding two record fields t and W is plausible, some 
readers may find it somewhat less than compelling. 

To illustrate a truly convincing example, we make a digression into 
the Oberon file system, where the amount of hidden detail is massive and 
the benefits of abstraction overwhelming. The interface definition reads 
as follows: 

DEFINITION Files; 
TYPE 

File = POINTER TO Handle; 
Handle = RECORD END; 

Rider = RECORD 
res: LONGINT; 
eof: BOOLEAN 

END; 

(* a result code *) 
(* end of the file reached *) 

(* Procedures operating on the type File *) 
PROCEDURE New(name: ARRAY OF CHAR): File; 
PROCEDURE Old(name: ARRAY OF CHAR): File; 
PROCEDURE Register(f: File); 
PROCEDURE Length(f: File): LONGINT; 

(* Procedures operating on the type Rider *) 
PROCEDURE Set(V AR r: Rider; f: File; pos: LONGINT); 
PROCEDURE Read (V AR r: Rider; V AR ch: CHAR); 
PROCEDURE Write (V AR r: Rider; ch CHAR); 
PROCEDURE Pos(V AR r: Rider): LONGINT; 
PROCEDURE Base(V AR r: Rider): File; 
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(* Procedures operating on the directory *) 
PROCEDURE Rename(old, new: ARRAY OF CHAR; 

V AR res: INTEGER); 
PROCEDURE Delete(name: ARRAY OF CHAR; 

V AR res: INTEGER); 
END Files. 

A file is a pointer to a record termed file handle. None of the fields of 
that handle is visible to the client. Instead, the user needs to know only 
the following properties of a file: 

• A file is an sequence of characters (stored on a permanent 
medium such as a hard disk). 

• A file has, apart from the sequence of characters, a name, a length 
and a creation date. 

Module Files also implements the notion of a directory in which files are 
registered by their name. Procedures Rename and Delete perform the 
indicated operations on the directory; the integer parameter res is a 
result code stating termination conditions. . 

A file (pointer) can be obtained in one of two ways: procedure 
New(name) yields a new file representing the empty sequence; and 
procedure Old(name) yields the file registered under name in the file di­
rectory, or NIL if this name is not registered. 

For the purpose of reading and writing files, the module provides a 
further abstract data type called Rider. As its name suggests, it acts as a 
rider through the sequence of characters, and advances by one position 
after each read or write operation represented by procedure Read(R, ch) 
and Write(R, ch). Thus,the properties of the rider are 

• a position (hidden); 

• an integer field res providing a termination (or result) code 
indicating the success of a read/write operation; 

• a Boolean field eot that indicates whether read/write operations 
reach the end of the file. 

Procedure Set(R, F, pos) places rider R onto file F at position pos. 
Function procedure Base(R, F) yields the file F associated with rider R. 
Procedure Read(R, ch) reads a character at rider R's position and returns 
it in ch. Similarly, Write(R, ch) writes character ch at rider R's position. In 
both cases, the position is incremented. 

In the following program template, a registered file named "Laura" is 
accessed and for each character a procedure Consume is invoked: 
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V AR ch: CHAR; F: Files.File; R: Files.Rider; 

F:= Files.Old(ILaura"); 
IF F # NIL THEN 

Files.Set(R, F, 0); Files.Read(ch); 
WHILE R.eofOO Consume(ch); Files.Read(R, ch) END 

END; 

The rider field eat indicates whether or not a read operation has reached 
the end of the file. If it did, the value assigned to ch is not a character 
from the file, it is OX. 

In the next example, characters are produced and written sequentially 
to a new file that is eventually registered in the directory. We use the 
same declaration as in the previous example: 

F:= Files.New(ILaura"); 
Files.Set(R, F, 0); 
WHILE ""';done 00 Produce(ch); Files.Write(R, ch) END; 
Files.Register(F) ; 

Variable done is a Boolean set by procedure Produce to indicate the end 
of sequential character generation. Procedure Register(F) closes the file 
and registers its name in the directory. If it already exists, the previ­
ously registered file is unregistered. 

As a last example, we append a character ch at the end of a file F: 

Files.Set(R, F, Files.Length(F»; Files.Write(F, ch); 

Length(F) yields the length of the file, hence the call statement 
Files.Set(R, F, Files.Length(F» positions rider R at the end of file F. 

We refrain from elaborating on further details of the file concept and 
its realization in the Oberon system, except for the following remarks: 

(1) Procedure· Set allows the user to place a rider at any position be­
tween 0 and the file's length. Access to file elements, therefore, 
need not be sequential. However, for various reasons it is highly 
recommended to access files in a sequential manner as shown 
above. Files are practically always generated sequentially, 
whereas for reading, the recommendation is somewhat less strin­
gent. 

(2) To be exact, files are defined to be sequences of the data type 
SYSTEM.BYTE (see Appendix A, Section A.12). Similarly, the for­
mal parameter ch of the procedures Read and Write is of type 
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SYSTEM. BYTE and not CHAR. However, SYSTEM.BYTE may be 
replaced anywhere by CHAR, but not vice versa. 

The purpose of this example of module Files is to demonstrate the ex­
tent to which abstraction is successful at reducing the complexity of 
documenting an interface, and at reserving enough freedom for the 
implementer to use appropriate techniques. We must be aware that this 
succinctly described interface rests on a mechanism of substantial 
complexity, comprising a disk driver, an allocation strategy, a buffering 
mechanism and a directory management for fast searching, inserting 
and deleting entries (see Figure 10.2). 

file2 

,,' length 

date 
name 

buffers 

disk sectors 

Figure 10.2 Some of the data structures behind the abstract data type File. 

10.5.4 Textual structure and naming 

The textual structure of the program is of essence. This is easily ap­
preciated if we take away the structure of module Model - that is, print 
it as a simple sequence of characters and words: 

MODULE Model; IMPORT Paths, Calendar, RandomNumbers, In, Out; 
CONST arrival = 0; departure = 1; V AR event: INTEGER; time: REAL; 
(* current time *) q: Paths. Path; (* state of queue and statistics *) 
lamda: REAL; (* arrival rate *) mu: REAL; (* inverse of mean service 
time *) PROCEDURE ProcessArrival; BEGIN Calendar. Schedule 
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arrival, time + RandomNumbers.Exp(lamda»; IF q.n = 0 THEN 
Calendar.Schedule(departure, time + RandomNumbers.Exp(mu» END; 
Paths.Up(q, time) END ProcessArrival; PROCEDURE 
ProcessDeparture; V AR s: REAL; BEGIN Paths.Down(q, time); IF q.n > 
o THEN Calendar.Schedule(departure, time+RandomNumbers. 
Exp(mu» END END ProcessDeparture; PROCEDURE Simulate(dt: 
REAL); VAR tEnd: REAL; BEGIN tEnd := time + dt; REPEAT 
Calendar.GetNextEvent(event, time); IF event = arrival THEN 
ProcessArrival ELSIF event = departure THEN ProcessDeparture END 
UNTIL time > tEnd END Simulate; PROCEDURE Setup*; BEGIN 
In.Open; In.Real(lamda); In.Real(mu); Out.String(ltlamda =It); Out. 
Real(lamda, 10); Out.String(It mu ="); Out. Real(mu, 10); Out.Ln; 
Calendar. Reset; Paths.Init(q); Calendar.Schedule(arrival, 0.0) END 
Setup; PROCEDURE Run*; V AR dt: REAL; BEGIN In.Open; 
In.Real(dt); Simulate(dt); Out.String(ltmean ="); Out.Real (Paths. Mean 
(q, time), 11); Out.Ln END Run;BEGIN Out.Open END Model. 

Although still perfectly well formed and hence accepted by the com­
piler, without textual structure, the program Model is next to unintel­
ligible. In all the examples presented so far, we have adopted a strongly 
recommended style: 

• Generally restrict the number of statements to one or a small 
number per line. 

• Use indentation to exhibit the recursive nature of structured 
statements. 

The appropriate choice of names is also of great importance, and either 
elucidates or obscures the action of a program. From long practice, we 
recommend the use of 

• Verbs for proper procedures such as Insert, Delete, Search and 
Schedule. 

• Nouns for variables (except variables of type BOOLEAN), for ex­
ample time, queue, event. 

• Adjectives for Boolean variables and function procedures, for 
example, empty and full. 

• Nouns for function procedures such as NewCustomer, Uniform 
and Exponential. 

• Nouns (singular) for modules that export an abstract data 
structure, for example Calendar. 

• Nouns (plural) for modules that export an abstract data type, for 
example Paths, Texts and Lists. Note that the identifier for the 
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(main) type is normally the singular form of the module name 
such as Paths.Path, Texts.Text and Lists.List. 

It is advisable not to make names cryptic - in the case of doubt opt for a 
longer name. This may not hold for local objects in short procedures, 
however, where long names do not serve any purpose except promote 
verbosity. Again, rigid rules cannot replace good judgement. 

10.6 Summary 

This chapter has introduced the proper use of data structures, 
procedures and modules in programming; in particular, it has been 
about 

(1) the programming process at large; 

(2) the role of the procedure and of the module to structure pro­
grams; 

(3) data hiding and the notions of an abstract data structure and an 
abstract data type. 

The method that we adopt is stepwise refinement and data abstraction. 
Formulation of the programming task starts at a high level, using a 
pseudo-Oberon notation, and is subsequently refined in various 
rounds. The procedure is a particularly useful structural tool: descrip­
tive English words are replaced by a procedure call. The corresponding 
procedure definition is formulated later. 

One of the most powerful tools is abstraction: hiding of details. When 
the programmer uses a procedure call instead of writing an elaborate 
stretch of program text, he or she practices abstraction. However, the 
capability of the module to selectively export certain declarations while 
hiding others provides even more powerful tools: the abstract data 
structure and the abstract data type. 

An abstract data structure is hidden in a module, and is accessible 
only through procedure calls. In the case of the abstract data type, the 
user can declare multiple instances, each one representing a hidden 
(hence abstract) data structure. 

The benefit derived from data abstraction is simplicity of the interface, 
security and freedom of implementation. A potential drawback is a loss 
of function, otherwise available (to good use) to the client. 

The chapter has concluded with further examples of abstract data 
structures and abstract data types and with a recommendation for 
program structuring and naming. 
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10.7 Exercises 

10.1 [Stack] Implement a module Stacks that exports the abstract data type Stack: 

DEFINITION Stacks; 
TYPE 

Data = INTEGER; 
Stack = RECORD END; 

PROCEDURE Push(s: Stack; i: Data); 
PROCEDURE Pop(s: Stack): Data; 
PROCEDURE Empty(s: Stack): BOOLEAN; 
PROCEDURE Open(s: Stack); 
END Stacks. 

A stack is a repository for data element. A data element i is stored by means of 
Push. The most recently stored data element is recovered using Pop. Empty 
informs whether the stack is empty or not. A stack is initialized through a call to 
Open. 

What happens if Pop is called when the stack is empty? Two solutions come 
to mind: (1) a special value undefined is returned (for example MIN(lNTEGER» 
or (2) the program comes to an abnormal termination (HALT). Discuss 
advantages and disadvantages of the two solutions. 

Provide two implementations: one based on the list structure and one using 
an array. In the latter case, how is index overflow dealt with? 

Implement a module UseStack with commands New, Push and Pop. Push reads 
an integer from the stream and pushes it onto a stack, Pop recovers an integer 
from the stack and writes it to the output stream. 

10.2 [Mean and variance] In simulation, one often encounters sequences of successive 
observations, represented by real numbers {xi:i = 1,2,3, ... , n}. Of interest are the 
sample mean and the sample variance, which are defined by 

n 

Xn = (lin) LXi' forn > 1 (1,2) 
i=O 

In a simulation, the observations xi occur one at a time as the run progresses. It 
is quite fortuitous that the sample mean and the sample variance can be 
calculated with a recurrence relation, without storing the whole sequence: 

forn> 1 (3) 

for n 2:: 1 (4) 

Note that computation of the sample variance by means of (2) should be 
avoided; the difference of possibly large, but nearly equal quantities may lead 
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to loss of accuracy (cancellation). Besides the amenity of computation 'on the 
go,' equations (3) and (4) are free from such numerical instabilities. 

Write a module Sequences that exports an abstract data type named Sequence. 
An instance of Sequence is used to compute the sample mean and the sample 
variance of a given sequence of observations. Module Sequences has definition: 

DEFINITION Sequences; 
TYPE Sequence = RECORD END; 
PROCEDURE Init(V AR s: Sequence); 
PROCEDURE Add(V AR s: Sequence; x: REAL); 
PROCEDURE Mean(s: Sequence): REAL; 
MODULE Var(s: Sequence): REAL; 
END Sequences. 

Why are the fields X, S2 and n not exported? The procedures Mean and Var are 
rather trivial. What is their purpose? 

10.3 [Path distribution] Change module Paths such that the sample path distribution, 
in addition to the mean is evaluated. The sample path distribution is the set of 
probabilities 

P(n) = Pr{path is in state n} = T(n)/T 

where 

T(n) = Cumulative time the path spends at value n 
T = Length of simulation run 

Use an array T to accumulate T(n). Is the index bounded? Make sure no index 
exceptions occur. 

Add a parameter max to procedure Open that specifies the maximal value of 
n. Also augment Paths with a procedure Distr that provides ~(n). 

10.4 [Simulation of tandem queues] Implement a module Tandem that simulates 
two queues in tandem, using the services of modules Calendar and Paths. Tandem 
queues operate as follows: an arriving customer joins the first queue. After 
service completion at the first queue, a customer immediately joins the second 
one - being satisfied there, it leaves the system. All random numbers have 
exponential distribution. Use the following constants and global variables: 

CONST 
arrival = 0; 
departure1 = 1; 
departure2 = 2; 

VAR 

(* arrival event *) 
(* departure event at queue 1 *) 
(* departure event at queue 2 *) 

event: Calendar. Event; 
time: REAL; (* current time *) 
q1, q2: Paths.Path; (* state of queue and statistics *) 
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lamda: REAL; 
sl: REAL; 
s2: REAL; 

(* arrival rate *) 
(* mean service times at queue 1 *) 
(* mean service times at queue 2 *) 

Hint: the parameter of the exponential distribution is the inverse of the mean 
service time. 

10.5 [Files] Support the phone directory of Exercise 8.7 with a file. The command 
Open takes a name as parameter. If a file of that name exists, initialize the 
directory from that file, otherwise open an empty directory. 

Add a command Store to write a (new or changed) directory to disk storage. 
Retain the old file version as a backup. Hint: first rename the file with a backup 
name (Exercise 8.3). Then create a new file with the original name, write the 
directory to that file, and register the new file. 
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Synopsis 

To date, programming remains a craft characterized by the fact 
that the wheel is re-invented daily. Every, experienced 
programmer has programmed algorithms operating on trees and 
lists - not once but many times. Why is there this waste in a time 
where standardization of parts and methods is so successful in 
other areas such as hardware design? 

The answer may not be clear-cut. But a major reason is 
obviously that traditional languages are deficient in tools that 
allow the user of an existing object library to bind data or 
procedures to those afforded by a service module. 

To provide the tools to encapsulate standard methods into 
reusable modules is the object of much current research. In the 
remaining chapters we will discuss Oberon's answer: type 
extension. As user-definable dflta types distinguished Pascal from 
its ancestor, Algol, and as modules and information hiding 
separated Modula-2 from Pascal, type extension is the most 
important feature differentiating Oberon from its predecessor. 



11 Type extension and 
procedure types 

Extension of 
record types 

In Chapter 9 we learned how complex dynamic data structures can be 
composed from nodes that contain pointers to other nodes of the struc­
ture. A node is an (anonymous) instance of a record type - as such, it is 
the static constituent of the structure. While these dynamic structures 
may be arbitrarily complex in the relation among the nodes, they are 
homogeneous as far as the node type is concerned. This is a serious re­
striction that is overcome by type extension. The notion of type extension 
is simple in concept: from any existing record type, new types can be 
derived that have additional fields but remain compatible with the 
existing type (Wirth, 1988). 

We will subsequently introduce the concept of a procedure variable. In 
Chapter 6, we defined the procedure as a named statement sequence. A 
procedure declaration is in a sense like a constant declaration - a fixed 
relationship between name and value is established. It is not difficult to 
visualize the concept of a procedure variable whose value is a statement 
sequence. Its type, the procedure type, is specified by the parameter list of 
the procedure. 

Both type extension and the procedure variable have one thing in 
common: they allow the creation of service modules that lack certain 
information that has to be provided if programming is conducted 
according to Chapter 10. The missing part - that is, data fields or spe­
cific actions - is furnished by the client module later. Type extension 
allows late addition of data fields, the procedure variable of actions. 

For an introductory example of type extension, we revert to the decla­
ration of the list node as used in Section 9.2.1, namely 

TYPE 
Node = POINTER TO NodeDesc; 
NodeDesc = RECORD 

key: Key; 
next: Node 

END; 

187 
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A list composed of such nodes may serve as a directory, with the key 
representing the name of persons. Rather than adding further data 
fields such as a phone number to the node directly, we may extend the 
type Node elsewhere. The declaration of such an extended type reads as 
follows: 

TYPE 
Entry = POINTER TO EntryDesc; 
EntryDesc = RECORD (NodeDesc) 

phone: ARRAY 16 OF CHAR 
END; 

An instance of type Entry is comprised of three fields: key, next, and 
phone. Field phone is declared directly, whereas the fields key and next 
are inherited from NodeDesc. Type NodeDesc is called the base type of 
EntryDesc that is said to be an extension of NodeDesc. Syntactically, the 
base type is listed in parentheses after the reserved word RECORD. 

MODULE PhoneBook; 
IMPORT Directories; 
TYPE 

User interface part 

Entry = POINTER TO EntryDesc; 
EntryDesc = RECORD (Directories.NodeDesc) 

phone: ARRAY 16 OF CHAR 
END; 

MODULE Directories; 
TYPE 

List processing algorithms 

Key* = ARRAY 32 OF CHAR; 

Node* = POINTER TO NodeDesc; 
NodeDesc* = RECORD 

key* = Key; 
next: Node 

END; 

I key 
next 

Figure 11.1 Adding 'data' fields in a client module. 

It is essential that the extended type remain compatible with the base type. 
Suppose that base is a pointer of type Node and ext one of type Entry. 
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Compatibility means that an assignment base:= ext is possible. 
Moreover, the concept of type is made dynamic. That means that after 
the assignment, the pointer base 'remembers' the type of ext. We shall 
say more about the use of this concept later. 

Type extension is especially powerful if the declaration of the base 
type and the extension are in different modules. For example, assume 
that module Directories implements the function of searching and up­
dating a directory. PhoneBook is a client module that yields phone 
numbers for given names. The task is split in two independent parts. 
Module Directories works on a dynamic data structure whereas the 
client, in our example module PhoneBook, implements the application­
specific parts, most notably the user interface. This frees the service 
module from all application-specific details - it serves a potentially 
large class of directory applications - we may truly speak of a generic 
module (see Figure 11.1). 

Like type extension, procedure types help to decouple a service module 
from its client. A good example is furnished by numerical routines for 
extracting roots of equations, integrating functions or solving 
differential equations. Consider a procedure Bisection that finds the root 
of an equation I(x) = O. Instead of passing the function through a global 
identifier I, we may use a formal parameter of procedure type as shown 
in the following heading: 

TYPE RealFunct = PROCEDURE (x: Real): REAL; 
PROCEDURE Bisection(f: RealFunct; xl, x2: REAL): REAL; 

As in the previous example, the procedure Bisection may be part of a 
service module. The particular function is provided in the client, where 
its root needs to be calculated. 

Our introductory examples show how type extension and procedure 
variables are instrumental to realize the notion of a generic module. 
Through their combination, however, an even more powerful concept 
emerges - that of an object.1 This is a record with procedure fields that 
can be regarded an instance of an abstract data type. More about this 
follows in Chapters 12 and 13. 

1 In the specific sense of object-oriented programming. 
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11.1 Extension of record types 

11.1.1 Declaration of an extended type 

In Oberon, record types are extensible. The syntax of Section 8.3.1 needs 
generalization, the boldfaced terms are added: 

RecordType = "RECORD" [ "(" BaseType ")" ] 
FieldListSequence 

"END". 
BaseType = qualident. 
FieldListSequence = FieldList { "i" FieldList }. 
FieldList = [ IdentList ":" type ]. 
IdentList = ident ["*"] { "," ident ["*"] }. 

If a record type definition extends another type, that type is called base 
type and appears in parentheses after the keyword RECORD. The 
qualident specifying'the base type must itself designate a record type. 

The fields defined in the field list sequence are added to the fields of the 
base type. Therefore an instance of the extended type comprises the 
union of the fields of the base type and those defined in the field list 
sequence. The fields of the base type are sometimes said to be inherited. 

Type extensions may be cascaded. Consider the following example of 
type declarations TO, Tl and T2. TO is the familiar list node, this time 
without a key or data. Tl extends TOi the data field a is added. T2 fur­
ther extends Tl, adding yet another data field b. The diagrams on the 
right-hand side are a schematic representation of the fields a and b. 

PO = POINTER TO TOi 
TO = RECORD 

next: PO 
END; 

Tl = RECORD (TO) 
a: Datal 

END; 

T2 = RECORD (Tl) 
b: Data2 

END; 

next 

~ inherited 

~ added 

~ inherited 

b added 
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Both Tl and T2 are extensions of TO. Tl is said to be a direct extension. 
Similarly, T2 is an direct extension of Tl. Analogously, Tl and TO are 
base types of T2. Tl is termed a direct base type of T2, and TO is a direct 
base type of Tl. 

We may regard an extended type as a specialization of its base type. It 
represents those instances to which additional attributes apply, namely 
the attributes expressed by the added fields. 

Typically, extensions are declared in a module different from the one 
containing the declaration of the base type. In this case, the base type is 
a qualified name. Only the public fields of the base type are visible in 
the client module. 

It is useful to define the relation 'Tl extends TO' to be transitive. In 
other words, Tl extends TO if it is either equal to TO or it is a direct ex­
tension of an extension of TO. 

11.1.2 Record designators and assignments 

All the fields of a record variable of an extended type can be referenced 
in the usual manner. Consider 

V AR xO, yO: TO; xl, yl: Tl; x2, y2: T2; 

Then 

x2.next x2.a x2.b 

are designators referencing the three fields of the record variable x2. 
Similarly, xl.next and xl.a comprise the fields of xl. The variable xO has 
only one field, xO.next. 

What about assignments? The essence of a language featuring strong 
typing is that the type of the expression on the right-hand side of U:=" 
must be assignment-compatible (see Table 4.3) with the type of the 
designator on the left-hand side. The compiler enforces that com­
patibility, even across module boundaries. 

Can a base type be compatible with its extension or vice versa? 
Consider the assignment y2 := x2, where both participating variables 
are of identical type (Figure 11.2). This assignment is equivalent to the 
assignments of the three fields 

y2.next := x2.next; 
y2.a := x2.a; 
y2.b := x2.b; 
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which are all necessary to establish pre-condition P in 

as the predicate R in which all occurrences of y2 were replaced by x2. 

y2 := x2 

y2 x2 
next ~ next I 

a H a I 
b b I 

Figure 11.2 Assignment of records of equal type. 

We now contemplate yl := x2, the case where the type T2 of x2 ex­
tends the type Tl of yl. Figure 11.3 depicts this assignment in a dia­
gram like the previous one. 

y1 := x2 

x2 

next 

a 
b 

Figure 11.3 Assignment of a record of extended type to its base type. 

This assignment may be defined as being equivalent to 

yl.next:= x2.next; 
yl.a := x2.a; 

Only those fields that comprise type Tl participate in the assignment. Tl is a 
base type of T2; that is, x2 is not only an instance of T2, but has also all 
properties of a Tl. Therefore it is assured that there always exists a one­
to-one correspondence. 
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This definition has an analogy in mathematics: the projection of a 
higher-dimensional vector onto a lower-dimensional space; see Figure 
11.4. Using this analogy, we say that the assignment is a projection of type 
T2 onto type Tl. 

projection of (x, y, z ) 
onto (x-y) plane 

Figure 11.4 Projection. 

Finally, visualize the reverse case y2 := xl. The type of the assigment 
target extends the type of the variable being assigned. From Figure 11.5, 
we infer that there is not enough information to unambiguously specify 
y2. Such an assignment is illegal in Oberon. An attempt at an artificial 
definition, such as 'field b remains unchanged' cannot be reconciled 
with the axiom of assignment. 

,"Y2 ~= x1 

2 

Figure 11.5 Illegal assignment of a record to an extended type. 

We can now summarize the modified type compatibility rule. Type T2 
is compatible with T1; that is, an assignment of an expression of type T2 
to a designator of type T1 is possible if 

. (1) T2 is an extension of T1 

(2) T2 is included in T1 (such as INTEGER in REAL) 



194 Type extension and procedure types 

Recall that (1) includes the case where T2 is identical with Tl or de­
clared equal to Tl. 

The type rule for V AR parameters is relaxed: the type of the actual 
parameter can be an extension of the type of the formal V AR parameter. 
For example, a procedure 

PROCEDURE Proc(V AR to: TO); 

can be called as Proc(x2), where x2: T2. 

11.2 Pointers, type guards and type tests 

11.2.1 Extension of pointer types 

Record variables accessed through pointers are the basic ingredient of 
dynamic data structures. In Section 9.1.2, we learned how a call of the 
predeclared procedure NEW(p) allocates an anonymous instance of the 
pointer base type on the heap and, at the same time, assigns a pointer to 
the new instance to variable p. Exactly the same mechanism applies if 
the pointer base type is an extension of another record type. Consider 
the type declarations 

PO = POINTER TO TO; PI = POINTER TO Tl; P2 = POINTER TO T2; 
TO = RECORD Tl = RECORD (TO) T2 = RECORD (Tl) 

next: PO a: Data 1 b: Data2 
END; END; END; 

Let p2: P2. The effect of NEW(p2) is depicted in Figure 11.6. As we 
would expect, an instance of T2, including all the inherited fields is 
created and allocated on the heap. The pointer p2 now points to the new 
(anonymous) instance of T2. 

VAR p2: T2; p2 p2 f 

NEW(P2) ~ext Anonymous 
a instance of T2 

b 

Figure 11.6 Creation of an instance of an extended type. 
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A pointer is bound to its pointer base type. Programmers often 
regard the pointer and the dereferenced record variable as synonyms, a 
fact enhanced by the implied dereferencing afforded by Oberon. Recall 
that implied dereferencing, for example, allows us to abbreviate p2t.b 
by p2.b. It is therefore appropriate to generalize the concept of type ex­
tension to pointers. Consider again the previous declaration, in 
particular 

• PO is a pointer type with base type TO; 

• PI is a pointer type with base type Tl; 

• Tl extends TO. 
In this case, we say that pointer type PI extends PO. 

In general, a pointer type PI extends a pointer type PO if its base type Tl 
extends the base type TO of PO. As in the case of records, PI is said to be 
a (direct) extension of PO and PO is a (direct) base type l of Pl. 

With our sample declaration, it follows that P2 is a direct extension of 
PI and an extension of PO. 

11.2.2 Static and dynamic type, type guard, type test 

The rule governing the assignment of records is also governing the 
assignment of pointers: a pointer of type PI can be assigned to a pointer 
of type PO if PI extends PO. 

p1 := p2 

projection pointed 
at by p1 

Figure 11.7 Assignment of pointers referencing the same record variable. 

Let pI: PI and p2: P2 according to the type declarations of the last 
section. The effect of the assignment pI := p2 is depicted in Figure 11.7. 
We assume that an instance of type 12 was created previously. After the 
assignment, both pointers afford' access to the same anonymous 

1 Note the difference between pointer base type and base type in the sense of type 
extension. 
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variable p2t. Nevertheless, since pI is of type PI, it yields a projected 
view of p2t; the field b cannot be referenced through pI. 

However, if we know that pI points to an instance of T2, then field b 
could be unambiguously accessed - if only the type rules could be 
generalized from the static view to a dynamic one, accounting for the 
actual state of the computation. 

Oberon provides such a generalization. After the assignment pI := p2, 
pI is said to be of dynamic type P2, and field b can be referenced. The 
dynamic type is distinct from the declared or static type, which is still 
PI. We must assert, however, that pI can be assumed to be of an ap­
propriate dynamic type through a type guard expressed as 

pl(P2) 

The dynamic type is indicated in parentheses immediately following 
the pointer's identifier. Under the provisions of a type guard, the fol­
lowing assignments are legal: 

y2 := pl(P2)t; d2 := pl(P2).b; 

where y2: T2 and d2: Data2. The type guard asserts that currently pI t is 
of type T2. If, during the execution of a program, the type guard is 
violated, the program comes to an abnormal halt. 

We are now ready to list the syntax of the designator in full generality: 

I designator = qualident {"." ident I "[" ExpList "]" 
I "(" qualident ")" I lit"}. 

ExpList = expression {"," expression}. 

The type guard is highlighted in boldface. A type guard of the form v(T) 
is applicable only if 

(1) T extends the declared (or static) type of the variable v; and 

(2) variable v is a pointer or a formal V AR parameter of record type. 

The use of extended pointer types can only come to full bloom if a test 
can be applied that reveals the dynamic type of a pointer variable. The 
relation operator "IS" performs such a type test: 

v IS T 
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which is satisfied if the actual (or dynamic) type of v is an extension of 
T; that is equal to T or a proper extension of T. Variable v and type T 
must satisfy the same two conditions listed above for the type guard 
v(TI. If v = NIL the result of the type test remains undefined. 

For example, consider 

VAR pO; TO; pI: Tl; p2: T2; 

NEW(pl); pO := pI; 

where TO and 12 are those of Section 11.2.1. Then the following holds: 

(pO IS PO) = TRUE (pO IS PI) = TRUE (pO IS P2) = FALSE. 

Unless it is assured a priori that a type guard is satisfied, the 
guarded designator must be within the protection of an IF statement. 
For example, take the previous statement sequence y2 := pl(P2)t; 
d2 := pl(P2).b. If it is not certain that pI is of the dynamic type P2, we 
have to write 

IF pI IS P2 THEN 
y2 := pl(P2)t; d2 := pl(P2).b 

END 

11.2.3 With statement, regional type guard 

It is quite typical that in a statement sequence, the same type guard 
appears a number of times. Therefore a type guard with a bigger textual 
scope is desirable to aid clarity and avoid unnecessary clerical work. 
The with statement provides such a regional guard. Using a with 
statement, the above example can be expressed as 

IF pI IS P2 THEN 
WITH pI: P2 DO 

y2 := pI t; d2 := p1.b 
END 

END; 

In formal syntax notation, 
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I WithStatement = "WITH" guard "DO" StatementSequence 
"END". 

guard = qualident ":" qualident. 

In a statement 

v is a variable and T a type. The rules of type guards apply as described 
in Section 11.2.2. Within the statement sequence, v is regarded as if it 
had been declared of type T. 

Programming languages such as Pascal and Modula-2 feature special 
language constructs for records with variant parts. Oberon deals with 
variant records through type extension. The timeworn personnel record 
should serve a last time as an example: 

TYPE 
Person = RECORD 

first,last: Name; 
idno: INTEGER; 
birth: Date 

END; 

Pilot = RECORD (Person) 
hoursInFlight: INTEGER 

END; 

Clerk = RECORD (Person) 
jobCode: INTEGER 

END; 

Two variants - that is, extensions or rather specializations of Person are 
defined, namely pilots and clerks. In a procedure processing records of 
type Person, we can distinguish the variants using a type test, for 
example 

PROCEDURE ProcessPerson(V AR p: Person); 
BEGIN 

... (* process common Person data name, idno and birth *) 
IF P IS Pilot THEN 

WITH p: Pilot DO 
... (* process pilot specific data *) 

END 
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ELSIF P IS Clerk THEN 
WITH p: Clerk DO 

... (* process clerk specific data *) 
END 

END 
END ProcessPerson; 

Note that it is essential that the formal parameter of the procedure 
ProcessPerson be a variable parameter, otherwise the type tests are not 
legal. 

11.3 Procedure types 

11.3.1 The procedure type and procedure variables 

So far, we have regarded procedures exclusively as named statement 
sequences. They specify actions to be performed on variables. However, 
we may take the view that procedures are themselves objects that can 
be assigned to variables. In this light, a procedure declaration appears 
as a special kind of a constant declaration, the value of the constant 
being a statement sequence and a parameter mechanism, for example 

CONST white = 0; 

PROCEDURE Init; 
NEW (list); list.next:= NIL 

END Init; 

The first declaration binds the identifier white' to the integer O. The sec­
ond declaration associates Init with the statement sequence NEW(list); 
list. next := NIL. 

If we allow procedure variables, in addition to procedure constants, it 
must be possible to declare types whose instances are procedures. 
These are called procedure types. A procedure type declaration specifies 
the number and the types of the formal parameters and, in the case of a 
function procedure, the type of the result. 

Consider the examples 

RealFunct = PROCEDURE (x: REAL): REAL; 
Quadratic = PROCEDURE (a, b, c, x: REAL): REAL; 
Handler = PROCEDURE (obj: Object; V AR msg: Message); 
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Matching 
parameter lists 

The identifiers that appear in the formal parameter list of the procedure 
type declaration are dummy names - they serve only as a mnemonic 
indicating the purpose of the parameter. It is merely their type that is 
important. 

The formal syntax of the procedure type "declaration is 

I ProcedureType = PROCEDURE [ FormalParameters ]. 

Two procedure types are compatible with each other if their formal pa­
rameter lists match; that is, if the following three conditions are satisfied: 

(1) they have the same number of parameters; 

(2) they have the same function result type, or none; 
(3) corresponding parameters have equal types and are either both 

V AR parameters or both value parameters. 

Variables of procedure type can be declared in the usual manner, for 
example 

VAR 
f, g, trig: RealFunct; 
combinatorial: PROCEDURE (x: INTEGER): INTEGER; 
q: Quadratic; 
handleFigure: Handler; 

11.3.2 Expressions and assignments 

NIL 

Procedure variables can be compared for equality or inequality. They re­
ceive their values through normal assignment statements. Ultimately, 
values assignable to procedure variables are defined through normal 
procedure declarations. Oberon imposes the following restriction on an 
assignment v := proc1d, where procId is a procedure identifier: 

(1) procId must represent a procedure that is neither local to other 
procedures nor predeclared; 

(2) the parameter list of procId must match the one of the type of v. 

A special value, NIL, specifies abortion, and is compatible with all pro­
cedure types; that is, NIL may be assigned to or compared with every 
procedure variable. NIL is typically used to initialize a procedure vari­
able at a time when no definite action is yet determined. 
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Consider the procedure declarations: 

PROCEDURE Square(x: REAL): REAL; 
BEGIN RETURN x*x END Square; 

PROCEDURE Quadratic(a, b, c, x: REAL): REAL; 
BEGIN RETURN a*x*x + b*x + c END Quadratic; 

The following assignments are possible (the declaration of the variables 
is given above): 

f := Square; g:= f; q:= Quadratic; handleText:= NIL; 
trig := Math.sin; 

The assignment f:= q, however, is illegal, since the types of the vari­
ables f and q are incompatible. 

11.3.3 Call of procedure variables 

A procedure variable may be called. If it is a proper procedure, the call is 
a statement - in the case of a function procedure, a factor in an ex­
pression. If the type of the procedure variable specifies formal 
parameters, actual parameters must be specified. Syntactically, the 
actual parameters are specified in the same way as in the case of 
procedure constants, namely 

factor = designator [ActuaIParameters]. 
ProcedureCall = designator [ActuaIParameters]. 
ActualParameters = "(" ExpList ")". 
ExpList = expression { "," expression}. 

where the designator stands for the procedure variable. The call of a 
procedure variable binds actual parameters to formal ones and evalu­
ates the statement sequence associated with the variable. The rules are 
identical to the call of a procedure constant (see Chapter 6). Note that an 
attempt to call a procedure variable whose value is NIL results in ab­
normal program termination. 

The variables defined in the earlier examples can be called in the fol­
lowing ways: 

y:= f(x); a := g(3.14); s := q(1, 2, c, y); 
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An evaluation of a function procedure is characterized by always 
having a parameter list (possibly empty). 

11.3.4 Formal parameters of procedure type 

Variables and formal parameters of procedure type free the program­
mer from having to provide a procedure declaration prior to the call. 

A good example is given by numerical routines for finding roots, in­
tegrating functions, or solving differential equations, for example 

PROCEDURE Bisection(f: RealFunct; xl, x2: REAL): REAL; 

If the only reason for a named procedure type, such as RealFunct, is to 
specify a formal parameter, Oberon admits the short cut 

PROCEDURE Bisection(f:PROCEDURE (x: REAL): REAL; 
xl, x2: REAL): REAL; 

The EBNF definition of FormalType is therefore augmented as follows: 

I FormalType = { "ARRAY OF" } qualident I Procedure Type. 

The important benefit from using a procedure parameter is the fact that 
Bisection can be part of a service module, while the declaration of the 
function, whose root we seek, is contained in the context of the client 
module. The service module can be compiled once and put in the 
computer's library of object modules. 

Another good example of the use of a procedure parameter is the 
traversal of dynamic data structures with the purpose of applying a 
procedure, P say, to each node. For example, consider the procedure 
Enumerate from Section 9.2.1. Passing the action P as a parameter makes 
it general-purpose - the algorithm used for traversing the list structure 
is decoupled from the action to be performed on each node: 

PROCEDURE Enumerate(first: Node; P: PROCEDURE (n: Node»; 
BEGIN 

WHILE first # NIL DO P(first); first:= first.next END 
END Enumerate; 
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11.3.5 Up-calls 

Typically, a module provides an abstraction and a programming task is 
divided into a hierarchy of such abstractions. A client module imports a 
service module and makes use of the exported data structures and 
procedures. For example, if a random number is needed, module 
RandomNumbers is imported and RandomNumbers. Un iform 0 called. 
Modules higher up in the hierarchy use objects of modules that are 
further down. 

Using procedure variables, we can invert the relationship of the 
service module and its client: a module can call a procedure defined 
higher up in the hierarchy. Such a call is known as an up-call. Up-calls 
are instrumental in object-orientation, a methodology that we will intro­
duce in the remaining chapters. 

Here we will introduce the notion of an up-call by means of an ex­
ample. An application is found in Section 12.4.3. The scenario is a ser­
vice module S that generates an object in a procedure Generate. In order 
to create that object, a procedure variable new is called. The value of that 
variable originates from an assignment made in the client module C. 
Hence, the statement sequence of a procedure declared in a module that 
is not imported by S is executed: 

MODULEC; 
IMPORTS; 

(1) -+ PROCEDURE New; ... END New; 

PROCEDURE Seh; 
BEGIN 

(2) -+ S.new:= New 
END Set; 

ENDC. 

MODULES; 
(3) -+ V AR new*: PROCEDURE; 

PROCEDURE Generate*; 
BEGIN 

.... 
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(4) ~ new; 

END Generate; 

ENDS. 

Notes 

(1) Procedure New is declared. We assume that it generates a certain 
object. 

(2) Within the statement sequence of the command Set, the proce­
dure New is assigned to procedure variable S.new. This is an 
assignment to a global variable exported by S. 

(3) Here new is declared as a global procedure variable exported by 
module S. 

(4) In procedure Generate, the procedure variable new is called. It is 
assumed that prior to that call, new was initialized through exe­
cution of the command C.Set. The call of new is an up-call, since 
the statement sequence that is executed is declared in module C 
(namely that of procedure New). 

11.4 Summary 

This chapter has introduced three new concepts: 

(1) From a given record type, an extended type may be derived that 
adds new data fields to its base type. Variables of extended types 
may be assigned to variables of their base types, but not vice 
versa. Such an assignment is called a projection - only the record 
fields of the base type participate in the assignment. 

(2) A pointer to an extended type is said to extend the pointer to the 
base type. The same assignment rule applies to pointers: ex­
tended pointers may be assigned to instances of their base types. 
After such an assignment, the base pointer assumes a dynamic 
type differing from the declared type. Under the auspices of a 
type guard, the extended fields may be accessed. A type test al­
lows guarding of such references. The with statement affords a 
type guard of extended textual scope: it is a regional type guard. 

(3) The procedure type defines a parameter list and a result type. A 
procedure may be assigned to such a variable if that procedure's 
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formal parameter types and result type match those declared in 
the procedure type of the variable. 

The aim of type extension and the procedure variable is to make pro­
grams extensible. A program is said to be extensible if addition of new 
functions is textually localized - ideally by simply adding a new mod­
ule to an existing module hierarchy, without needing to change or re­
compile any of the existing parts. 

Through type extension, record fields may be added to a given base 
type later, usually in a different module. In this manner, generic 
modules operating on lists and trees may be composed without de­
termining the 'data fields.' The procedure variable allows placement of 
a call prior to specifying the actions of the procedure. For example, in a 
scientific subroutine library, a function to be integrated may be called 
that is provided later by the client. 

But it is really the combination of type extension and procedure vari­
ables that advances extensibility in the most significant way. The 
technique is known as object-orientation, a topic explored in depth in 
Chapters 12 and 13. 

11.5 Exercises 
11.1 Consider the declarations 

TYPE 
LN = POINTER TO LND; LND = RECORD next: LN END; 
TN = POINTER TO TND; TND = RECORD right, left TN END; 
M = RECORD END; 

Identify legal extensions: 

(a) LNI = POINTER TO LNID; LNID = RECORD(LN) a: Data END; 
(b) LN2 = POINTER TO LN2D; LN2D == RECORD(LND) a: Data END; 
(c) LN3 = POINTER TO LN3D; LN3D = RECORD(M) a: Data END; 
(d) LN4 = POINTER TO LN4D; LN4D = RECORD(LND); next: LN4 END; 
(e) TNI = POINTER TO TNID; TNID = RECORD(LND) a: Data END; 
(f) TN2 = POINTER TO TN2D; TN2D = RECORD(TND) a: Data END; 
(g) Ml = RECORD: M; a: Data END; 
(e) M2 = POINTER TO RECORD(M) c: Data END; 

11.2 Assume the type declarations of Exercise 11.1 and 

LNI = POINTER TO LNI D; LNI D = RECORD(LN) a: Data END; 
TNI = POINTER TO TNID; TNID = RECORD(TN) b: Data END; 
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Ml = RECORD(M) x, y: Data END; 
V AR a: LN; b: LNl; c: TN; d, t: TNl; e: M; f, m: Ml; g: Data; 

Which of the following assignments and relations are legal? 

a := b; b := a; a := c; at := bt; f := e; a(LNl).a := d.a; 
c.a := f.x; d(TNl).a := g; WITH a: LNI DO g := a.a END; 
a IS b a IS LNI a IS TNI e IS M e IS Ml 

11.3 Given the declaration of Exercise 11.2 and 

PROCEDURE H(t: TN; VAR m: M); 
VARmsg:M; 
BEGIN c:= t; msg := m; IF m IS Ml THEN g := m(Ml).x END 
ENDH; 

Assuming a call H(t, m), what is the dynmaic type of c and msg? Is the 
assignmentg:= m (Ml).x executed? 

11.4 [Directory based on lists] Implement a module Directories. A directory is a 
repository of entries that can be entered, deleted and recovered according to a 
key. Use a list (Section 9.2) to represent a directory. 

DEFINITION Directories; 
TYPE 

Key = ARRAY 32 OF CHAR; 
Entry = POINTER TO EntryDesc; 
EntryDesc = RECORD key: Key END; 
Directory = Node; 
NodeProc = PROCEDURE(n: Node); 

PROCEDURE Insert(V AR dir: Directory; new: Node); 
PROCEDURE Search(dir: Directory; k: Key): Node; 
PROCEDURE Delete(V AR dir: Directory; k: Key); 
PROCEDURE Enumerate(dir: Directory; P: NodeProc); 
PROCEDURE NewO: Directory; 
END Directories. 

11.5 [Phone directory] Write a module PhoneDir that is a client of module Directories. 
Design a suitable user interface with commands Open, Add, Delete and Query. 
Hint: use a type PhoneEntry that extends Directories.Entry, for example 

TYPE 
PhoneEntry = POINTER TO PhoneEntryDesc; 
PhoneEntryDesc = RECORD (Directories.Entry) 

phone: ARRAY 10 OF CHAR 
END; 

11.6 [File support] Support the phone directory with a file PhoneDir.Open opens the 
directory from the file, if one exists. Otherwise a new directory is created. 
PhoneDir.Store writes the directory back to the file. 
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11.7 [Directories based on trees] Base module Directories on a tree data structure. 
Leave the interface unchanged. Show that the new module can substitute for 
the old one without affecting its client. 

11.8 [Phone and address directory] Expand the functionality of the phone directory. 
Some (but not all) of the entries list not only the phone number but also 
addresses. Hint: use a type PhoneEntry that extends Directories.Entry and a type 
AddrEntry that extends PhoneEntry. 

11.9 [File support] Support the phone and address directory with a file. Hint: Define 
a type flag, for example a character OX means 'Type is PhoneEntry' and IX 
means 'type is AddrEntry.' Organize the file such that each entry is preceded by 
a type flag. Reading the flag first enables you to create the appropriate variable. 

Reference 

Wirth N. (1988). Type extension. ACM Transactions on Programming Languages 
and Systems, 10, 204-14. 
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Structuring and abstraction are major software design techniques. 
Chapter 10 introduced these concepts using a realistic example. Proper 
structure is essential to make a program text readable - and ultimately 
trustworthy. Abstraction - in particular the notion of the abstract data 
type - aids in the specification of clearly defined interfaces between 
modules and helps in dividing a large programming task into different 
areas of concern that may be tackled by different programmers or pro­
gramming teams. 

Since its inception some twenty years ago, structured programming 
has become a well-known programming technique. If programming is 
practiced as described in Chapter 10, at the time a module is ready for 
compilation, all variables are declared and all procedures fully speci­
fied. The declarations may reside in imported modules - in this case, 
those modules must be compiled first. As we will see shortly, this im­
poses limitations on the extensibility of programs - limitations that a 
programming technique, known as object-orientation, will remove or 
diminish. 

It is a common experience that programs need maintenance. If they are 
useful, their capabilities will expand over time. Unfortunately, even 
excellent structuring often fails to make the addition of a feature a mere 
local change in the program text. Instead, the places that need change 
are numerous and spread over many modules. Making a change in 
such a program is not only tedious - it is also error-prone. All too easily, 
one of the necessary changes is overlooked or one of the consequences 
of a change is ignored. Clearly, a design technique that helps to make 
feature upgrades a localized task is of utmost value. The ultimate goal is 
a system that allows adding of features by simply adding modules to 
the library - without even having to recompile the existing modules of a 
system. 
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Reusing modules The term module is also encountered in hardware design, where it is 
used as a synonym for a common part - typically, a VLSI component. 
Hardware modularization is highly successful through a proper choice 
of the building blocks and standardization of their interfaces. 

While in programming, the module concept is well over a decade old, 
similar success is still quite elusive. The goal is a standard library of 
service modules, provided by experts and available in object form. It is 
essential for the success of this concept that the user of such service 
modules have no need to modify their source code. Programmers have a 
well-justified hesitation in opening somebody else's source code and 
modifying it. It either solves their problem - then it can be used - or the 
function will be re-created, even though only slightly different from 
already existing code. Moreover, for practical or commercial reasons, 
source code is often unavailable. 

The earliest and still one of the most successful examples of reusable 
procedure libraries is furnished by scientific subroutine packages. 
Fortunately, those programmers who still insist on producing their own 
sine or exponential functions are becoming quite rare. A second success 
story is the use of abstract data structures and abstract data types in 
operating systems. On the other hand, good list and tree processing 
programs are still rare. 

The primary reason for the difficulty in localizing functional 
extensions and the lack of success of the concept of reusable libraries 
stems primarily from the fact that in traditional programming 
languages1 

• data fields are bound statically to their record variable; 

• procedures are associated statically with a module - hence the 
procedures of an abstract data type are bound statically to the 
type. 

Substantial progress in the direction of reusable and extensible pro­
gramming systems is being made - the methodology is known as object­
orientation. In Oberon, object-orientation is achieved through use of type 
extension and procedure variables. 

This chapter is an introduction to the key notions of object-orienta-
tion, namely 

• the generic module; 
• the heterogeneous data structure; 
• the object and its representation; 
• the dynamic binding of procedures; 
• the module structure of an object-oriented program. 

1 Such as PL/I, Pascal or Modula-2. 
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We will develop and motivate the object-oriented concepts with ex­
amples rather than ina deductive style. However, in order not to 
drown in a sea of details, we refrain from presenting large programs, 
and concentrate on the essential ideas of the design of data structures 
and types. 

One of those examples is a graphics editor. Editors in general are 
good cases for programs that benefit from object-orientation. Other 
applications are found in the area of system "Softwarel and simulation. 
A complete simulation package based on object-oriented design prin­
ciples is presented in Chapter 13. 

12.1 Generic modules 

To amplify the concept of the generic module, we consider the example 
of a FIFO queue that we encounted in Chapter 9. The definition of a 
module FIFOs may read as follows: 

DEFINITION FIFOs; 
TYPE 

FIFO = RECORD END; 

Node = POINTER TO NodeDesc; 
NodeDesc = RECORD END; 

PROCEDURE Enqueue(V AR q: FIFO; n: Node); 
PROCEDURE DequeuedNode(VAR q: FIFO): Node; 
PROCEDURE Open(V AR q: FIFO); 
ENDFIFOs. 

In this interface, the data types FIFO and Node are abstract. 
A possible implementation is that of Section 9.2.2. In this case the 

initialization procedure Open is particularly simple: 

PROCEDURE Open(V AR q: FIFO); 
BEGIN q.first := NIL 
END Open; 

Prior to type extension, such an interface, while syntactically correct, 

1 In particular, the window subsystem of graphic based workstations. An example 
is the Oberon system itself (see Wirth and Gutknecht, 1992). 
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would be pretty pointless. To make FIFOs useful, the type Node would 
have to make application-specific fields visible. But this violates the 
condition that a service module should not have to be modified and 
recompiled by its user. 

Type extension, however, makes a module FIFOs immediately useful 
in many applications that need FIFO lists: the application-specific I data' 
fields are added by the client. Paying tribute to its generality, we call FIFOs 
a generic module. 

Client of module An excerpt of a client of FIFOs follows. It is a simulation program where 
FIFOs customers are queueing for a resource. 

MODULESim; 
IMPORT FIFOs, ... ; 
TYPE 

Customer = POINTER TO CustomerDesc; 
CustomerDesc = RECORD (FIFOs.NodeDesc) 

priority: INTEGER 
END; 

VAR c: Customer; q: FIFOs.FIFO; temp: FIFOs.Node; 

A customer c is created and enqueued in FIFO queue q as follows: 

NEW(c); c.priority = 0; FIFOs.Enqueue(q, c); ... 

It is essential that c be a variable of the extended type Customer. This 
type will be 'remembered' in the list, since the appropriate list pointer 
will assume Customer as its dynamic type. 

The following statement sequence retrieves a customer c from the 
waiting line q: 

temp := FIFOs.DequeuedNode(q); 
IF (temp # NIL) & (temp IS Customer) 

c := temp(Customer); 
END; 

We need an ancillary variable temp of type FIFOs.Node that matches the 
result type of FIFOs.DequeuedNode. The reason is that a type guard 
cannot be applied to function calls. A type guard is required because 
FIFOs.DequeuedNode returns a result of type FIFOs.Node, not Customer. 
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Summary A generic module is one to be used by many clients, typically involving 
type extension. In the case of dynamic data structures, it is possible to 
separate (into different modules) the algorithm operating on the 
pointers from the processing of the 'data.' 

(1) Often, the generic module encapsulates the algorithms operating 
on a dynamic data structure such as list and tree processing. 
Such data structures are hidden and represented as abstract data 
types. 

(2) The client module adds application-specific fields to the node 
type of the generic module. 

(3) It is the task of the client to generate instances of data items and 
to add them to the data structure using its procedures. 

(4) When items are retrieved, appropriate type guards are required. 

(5) It is the task of the generic module to initialize instances of its 
abstract types (typically, the procedure is termed Open or Init). 

12.2 Heterogeneous data structures 

The dynamic data structures that we know from Chapter 9 are com­
posed of static elements - or nodes - linked by pointers. Since the 
pointers refer to the node type, the entire data structure is composed of 
nodes of the same type. In many cases, this is an unacceptable re­
striction. 

Type extension is the tool for building heterogeneous dynamic 
structures; that is, structures composed of different (but related and 
compatible) node types. The key idea is to declare a common base type 
that incorporates the links and possibly data common to all node types 
and add 'private data' by extending that base type. 

Consider module FIFOs. Different customers may be declared as ex­
tensions of base type FIFOs.Node, for example 

Customer 1 = POINTER TO CID; 
CID= 
RECORD (FIFOs.NodeDesc) 

priority: INTEGER 
END; 

Customer2 = POINTER TO C2D; 
C2D= 
RECORD (FIFOs.NodeDesc) 

timeStamp: REAL; 
workDemand: REAL 

END; 
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Both types, Customerl and Customer2, are extensions of FIFOs.Node; 
hence they can be enqueued in the same FIFO queue. It is important 
that the dynamic type not be lost upon retrieval- a type test will reveal it 
and allow type-specific processing of the customers. 

To make the last point more transparent, we will study a list of 
graphical objects or figures used by a graphics editor. The editor uses 
such a list to keep track of the shapes displayed on the screen. Typical 
items in that list are straight lines, rectangles, circles, ellipses, polygons, 
spline curves and captions. 

We base our figure descriptors on the type Figure that contains only 
structure information: 1 

TYPE 
Figure = POINTER TO FigureDesc; 
FigureDesc = RECORD 

next: Figure 
END; 

Each specific figure is represented by an instance of a type that extends 
the base type Figure. From the many possibilities, we give two exam­
ples, namely the types Line and Rect that define the corresponding 
figures: 

TYPE 
Line = POINTER TO LineDesc; 
LineDesc = RECORD (FigureDesc) 

xl, y1, x2, y2: INTEGER 
END; 

Rect = POINTER TO RectDesc; 
RectDesc = RECORD (FigureDesc) 

x, y, w, h: INTEGER 
END; 

x2,y2 

/ 
x1, y1 

A heterogeneous list composed of two lines and two rectangles is de­
picted in Figure 12.1. 

1 The type Figure assumes the role of Node in Section 9.2. 
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type= type= type= type= 
LineDesc RectDesc LineDesc RectDesc 

Figure 12.1 A list of heterogeneous records. The dynamic type of the pointers is 
shown. 

We will discuss two typical actions: the creation of a new figure and 
processing all the elements of a heterogeneous list of figures. 

An instance of the type Line is created and inserted into the list of 
figures as follows: 

PROCEDURE NewLineOist: Figure; xl, yl, x2, y2: INTEGER); 
VARI: Line; 
BEGIN 

NEW(l); (* Create instance of Line *) 
l.xl := xl; l.yl := yl; l.x2 := x2; l.y2:= y2; (* Initialize fields *) 
InsertLast(list, 1) 

END NewLine; 

Formal parameter list is the anchor of the list of figures that comprise 
the graph. The text of procedure InsertLast is found in Section 9.2 (with 
the difference that here it works on the base type Figure rather than 
Node). Similar initialization procedures are required for each shape such 
as NewRect and NewCircle. 

Another action typically performed by graphics editors is to draw all 
the figures contained in the list. A procedure DrawAll does this. It 
traverses the list structure and acts according to the type of a particular 
figure: 

PROCEDURE DrawAll(list: Figure); 
V AR f: Figure; 
BEGIN 

f:= list; 
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WHILE f # NIL DO 
IF f IS Line THEN DrawLine(f(Line» 
ELSIF f IS Rect THEN DrawRect(f(Rect» 
ELSIF ... (* Other shapes *) 
END; 
f:= f.next 

END 
END Draw All; 

where DrawLine and DrawRect are procedures that produce the respec­
tive figures on the display. They have headings 

PROCEDURE DrawLine(l: Line); 
PROCEDURE DrawRect(r: Rect); 

Typical for a procedure processing a heterogeneous list is the selection 
based upon the dynamic type of the list node. 

Heterogeneous dynamic data structures usually occur when object­
oriented program de~igns are pursued. The following points are typical 
of the processing of heterogeneous data structures and should be noted: 

(1) Operations involving pointers are performed on the base type, in 
our example type Figure. 

(2) Elements of the heterogeneous data structure are created as in­
stances of the extended type, Line or Rect. 

(3) When an element is inserted into the list, the assignments insure 
that the list pointers (variable list or field next) assume the dy­
namic type of the object. 

(4) When processing the elements of the data structure, their type is 
determined with a type test and appropriate actions are taken. 
Typically, a type guard is required. The type test guarantees that 
the type guard is never violated. 

12.3 Objects, dynamic binding of procedures 

Assume that a new figure, an ellipse say, is being added to the graphics 
editor. What changes are necessary to the program text? First, a new 
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type has to be defined. Like Line and Rect, the new type, called Ellipse, 
extends the base type Figure: 

TYPE 
Ellipse = POINTER TO EllipseDesc; 
EllipseDesc = RECORD (FigureDesc) 

x, y: INTEGER; (* Coordinates of center *) 
a, b: INTEGER (* Major and minor axes *) 

END; 

Next, a procedure NewEllipse has to be furnished that creates an in­
stance of the type Ellipse and inserts it into the list of figures. Similarly, 
procedures such as DrawEllipse need to be specified. Finally, wherever 
type-specific actions occur, such as in the procedure DrawAll, the fol­
lowing statements have to be added: 

ELSIF f IS Ellipse THEN 
WITH f: Ellipse DO 

... (* handle ellipse *) 
END 

ELSIF ... 

As we said in the introduction, such modifications can be expected to be 
numerous and dispersed throughout the program text - defying the 
stated goal to localize the modifications to a single place. Localization 
can only be achieved if operations can be performed on the list of ob­
jects that are applicable to all figures irrespective of their dynamic type. 

The key idea is to augment the state description of the figure with proce­
dure variables. Our example considered drawing of figures; we therefore 
add a procedure field draw to the type Figure: 

TYPE 
Figure = POINTER TO FigureDesc; 
FigureDesc = RECORD 

draw: PROCEDURE (f: Figure); 
next: Figure 

END; 

Additions over the previous version are shown in boldface. Using the 
redefined type Figure, we can now provide a general type-independent 
procedure that draws all the members of a list of figures: 
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PROCEDURE Draw All(list: Figure); 
V AR f: Figure; 
BEGIN 

f := list; 
WHILE f # NIL DO f.draw(f); f:= f.next END 

END Draw All; 

Note that the new procedure draws the figures abstractly. It is valid for all 
possible figures handled by the editor - now and in the future. In fact, 
the new figure is more than just an item in a list, it is an instance of an 
abstract data type Figure. Its properties are a next figure (or none) and 
the ability to draw itself. The data necessary to describe the figure, as 
well as the detailed drawing action is hidden to DrawAll. 

For this general scheme to work, the appropriate type-specific pro­
cedures must be assigned to the field draw when a figure is created. 
Each figure type has its initialization procedure - that for the newly 
added ellipse reads: 

PROCEDURE NewEllipse(list: Figure; x, y, a, b: INTEGER); 
V AR e: Ellipse; 
BEGIN 

NEW(e); e.x:= x; e.y:= y; e.a:= a; e.b:= b; 
e.draw:= DrawEllipse; 
InsertLast(list, e) 

END N ewEllipse; 

What is different from the initialization routines of the previous section 
is only the assignment of DrawEllipse to e.draw (marked in bold face). 
This assignment statement associates the type-specific procedure with 
the graphical object; that is, to the instance e of type Ellipse. We also use 
the term 'the procedure DrawEllipse is installed in the object.' 

Suppose we revert to the previous way in which we handled the 
heterogeneous list and write a guarded call to the procedure 
DrawEllipse: 

ELSIF f IS Ellipse THEN 
WITH f: Ellipse DO 

DrawEllipse(f) 
END; 

The compiler has all the necessary information to pass parameter and 
control directly to the statement sequence of the procedure DrawEllipse. 
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Object 

Compare this with a call of the procedure variable draw in DrawAll: 

f.draw(f) 

The statement sequence to which control should be passed is not 
available to the compiler. It is determined at run time and consists of the 
action performed by the procedure assigned to the field draw in the 
record variable ft. If f is an ellipse then this action is the statement se­
quence of DrawEllipse; iff is a rectangle, it is DrawRect and so on. The 
binding of a specific action at run time is known as dynamic binding, as 
opposed to static binding, which takes place at compile time. 

So far, we have dealt with the term 'object' rather informally. For 
example, we used to say that variables and types are objects of the 
Oberon language. From now on, object will have a precise meaning: a 
record with procedure fields, accessed through a pointer. The object may have 
other fields that define its state. The procedure variable (or variables) 
governs the object's behavior in the same way as procedures define the 
abstract data type. The object is an instance of an abstract data type with 
dynamic binding of the procedures (see also Section 12.4). 

Finally, let us focus on the specific procedure that has to be 
assignable to the field draw of a graphics object. The formal parameter 
of the procedure type of draw is of base type Figure. The text of specific 
procedures such as DrawLine, DrawRect or DrawEllipse therefore 
requires a type guard over their entire scope, as shown schematically for 
DrawEllipse: 

PROCEDURE DrawEllipse(f: Figure); 
BEGIN 

WITH f: Ellipse DO 

END 
END DrawEllipse; 

What have we gained by supplying the graphics objects with an 
individual procedure? Primarily, we have a decoupling of the actions 
performed with all objects in the list from the definition of individual 
actions that apply to a specific type of object. The addition of a new 
type of object therefore becomes a localized addition of program text, 
declaring 

• a type extension, for example Ellipse; 
• type-specific procedures such as DrawEllipse; 
• a procedure to create an instance of the new object. 
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In the preceding discussion, the only action considered was to draw 
a figure. Of course, this is a deliberate oversimplification. Other typical 
operations performed by graphics editors on their figures are selecting 
and deselecting, copying, moving, shading, changing size and so on. A 
more realistic declaration of a figure therefore shows a number of 
procedure variables, each one representing a specific operation. The 
following object 'knows' how to draw, clear, mark and move itself: 

TYPE 
Figure = POINTER TO FigureDesc; 
FigureDesc = RECORD 

draw, clear, mark: PROCEDURE (f: Figure); 
move: PROCEDURE (f: Figure; dX, dY: INTEGER); 
next: Figure 

END; 

The following essential points are worth remembering: 

(1) An object is represented by a pointer to a descriptor record that, 
among other state information, contains fields of procedure type. 
The values of these procedure variables define the operations 
that can be applied to the object. The object is an instance of an 
abstract data type. 

(2) The type of an object is commonly extended in various ways 
such as in our example, Figure is extended to Line, Rect and 
Ellipse. 

(3) The object pointer is a parameter of the action procedures. The 
type of the formal parameter is the base type of the object. Within 
the text of a specific action procedure, a regional type guard is 
required to allow access to the state variables defined in the ex­
tension of the base type. 

(4) Procedure variables enable the programmer to write general pro­
cedures that operate abstractly on all the objects contained in a 
heterogeneous data structure without having to declare - or even 
anticipate all the extensions. 

(5) The benefit is that new extensions can be added without chang­
ing many procedures that comprise an application. The modifi­
cation is textually localized. The extension can even be within the 
scope of another module - a most important structuring concept 
explored in the next section. 
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12.4 Objects and modules 

Heterogeneous data structures and dynamic binding of procedures are 
the technical essence of object-orientation. The concept, however, comes 
to full bloom only if paired with proper modularization of a large 
program or system. In Oberon, it is the module that controls visibility of 
declarations and hence defines levels of abstraction. 

Let us return to the graphics editor. If programmed in the traditional 
style, such an editor may be broken down into modules as shown in 
Figure 12.2. Each shape, such as a line, a rectangle, or a circle is handled 
in its own module. Actions on all shapes such as a procedure DrawAll 
are carried out in module Draw that is also responsible for the user 
interface. 

Step 2: modify and recompile 

Step 1: add module 

Figure 12.2 Normal module hierarchy. 

If a new shape is added, a new shape module is provided, and the 
main module Draw has to be modified and recompiled. As stated, it is 
precisely this modification of module Draw that makes such a system 
hard to maintain and even harder to extend in functionality. 

simply add a module 

Figure 12.3 An extensible module hierarchy. 

Desirable is a module structure that puts Figure 12.2 upside down. 
Such an extensible structure is depicted in Figure 12.3. Adding a new 
shape, an ellipse for example, simply means adding a module Ellipses to 
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the system's library. No changes to the other modules are needed, in 
particular no recompilation. This implies that an extension is possible 
without requiring availability of the source text of the base. 

The overall work is divided as follows between the modules of 
Figure 12.3: 

• Module Graphics declares the fundamental data type Figure and 
data structures comprising a graph. It deals with the ensemble of 
figures abstractly (such as in DrawAll) and maintains the 
heterogeneous list of figures. 

• Module Lines, Rectangles, Ellipses etc. declare all data structures 
and procedures that are shape-specific such as DrawLine and 
generate an instance of the figure (such as in NewLine). 

• Module Draw handles the user interface - especially mouse and 
keyboard and their semantics. 

An interesting framework of abstract data types and up-calls is behind 
the extensible structure of Figure 12.3. Of special interest is the way 
Draw creates new figures. We will explore the essential features of this 
framework in the sequel. 

12.4.1 Module Graphics 

Module Graphics defines two basic abstract data types: Graph and 
Figure. We are already familiar with Figure. Instances of type Figure are 
objects in the sense of object-orientation. 

graph 
~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, 

DD 
Figure 12.4 A graph composed of lines and rectangles, one being selected. 

A graph represents a Cartesian plane as depicted in Figure 12.4. 
Graphs are instances of the abstract data type Graph. In this simple 
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version, the only property of Graph is a list of figures. In a realistic 
implementation, there would be other properties such as a selection and 
a scrolling position. The type declaration for Graph is therefore 

TYPE 
Graph = POINTER TO GraphDesc; 
GraphDesc = RECORD list: Figure END; 

The familiar procedure DrawAll is a typical action applicable to a graph. 
Other procedures encompass Select, Deselect, DeleteSelection and 
MoveSelection, with obvious meaning. 

With these preliminaries in mind, we state an abbreviated version of 
module Graphics: 

MODULE Graphics; 
TYPE 

Figure* = POINTER TO FigureDesc; 
FigureDesc* = RECORD 

draw*, c1ear*, mark*: PROCEDURE (f: Figure); 
move*: PROCEDURE (f: Figure; dX, dY: INTEGER); 
next: Figure 

END; 

Graph* = POINTER TO GraphDesc; 
GraphDesc* = RECORD list: Figure END; 

... (* other type and variable declarations *) 

PROCEDURE DrawAll*(g: Graph); 
V AR f: Figure; 
BEGIN 

f:= g.list; 
WHILE f # NIL DO f.draw(f); f:= f.next END 

END Draw All; 

... (* other procedure declarations *) 

PROCEDURE Open*(V AR g: Graph); 
BEGIN g.list := NIL 
END Open; 

END Graphics. 

We note that Graph is an ordinary abstract data type as we know it from 
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Chapter 10. In particular, its procedures are bound statically through 
the context of module Graphics. That means that in a call 
Graphics.DrawAll, for example, the compiler can generate the transfer of 
control to the statement sequence of DrawAll directly. Each of the 
procedures has a formal parameter of type Graph, identifying the par­
ticular instance on which to operate. 

Most of the procedures of Graphics operate on the (heterogeneous) 
list of figures. The data type Figure is also abstract - however, in a 
different sense than we are used to. Normally, a data type is abstract in 
the client but concrete in the service module. Here the reverse is the 
case. Figure is abstract in Graphics: the actions draw, clear, mark and move 
are not specified. They are concretized in shape-specific client modules 
such as Rectangles or Lines. Thus, wherever a procedure of Figure is 
called, for example f.draw(fJ in DrawAll, dynamic binding takes place 
and an up-call is enacted~ 

12.4.2 Shape-specific modules 

The task of the shape-specific modules, such as Rectangles, Lines, Ellipses 
etc. is to implement the abstract type Figure - in particular, to 

• extend type Figure with shape-specific data; 

• declare procedures for drawing, clearing, marking and moving 
figures; 

• create an instance of a figure. 

Each one of these modules implements a specialization of the abstract 
data type Figure. For example, an excerpt of module Rectangles reads as 
follows: 

MODULE Rectangles; 
IMPORT Graphics, ... ; 
TYPE 

Rectangle* = POINTER TO RectangleDesc; 
(1) ~ RectangleDesc* = RECORD (Graphics.FigureDesc) 

x*, y*, w*, h*: INTEGER 
END; 

PROCEDURE Draw*(rect: Graphics.Figure); 
BEGIN 

(2) ~ WITH rect: Rectangle DO 
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... (* display rectangle on screen *) 
END 

END Draw; 

... (* Declarations of Clear, Mark and Move *) 

PROCEDURE New*O: Graphics.Figure; 
V AR rect: Rectangle; x, y, w, h: INTEGER; 
BEGIN 

(3) -+ NEW(rect); 

Notes 

rect.draw := Draw; rect.clear:= Clear; 
rect.mark := Mark; rect.move:= Move; 
(* obtain values x, y, w, h typically using the mouse *); 
rect.x :.= x; rect.y:= y; rect.w:= w; rect.h:= h; 
RETURNrect 

END New; 

END Rectangles. 

(1) Here the type Figure is extended with rectangle-specific data 
fields x, y, wand h. Other shapes require other data structures, in 
the case of a polygon, this may even be a list structure. 

(2) Note the required type guard in Draw: the formal parameter 
must be of base type Graphics.Figure. 

(3) An instance of the extended type Rectangle is created and the pro-
cedure fields are initialized. 

The only identifier that must be exported is New. The reason that 
module Rectangles also makes the type Rectangle and the procedures 
Draw, Clear, Mark and Move visible will be discussed in Section 12.4.4, 
where the rectangle will be redefined. The majority of the procedures in 
shape-specific modules deal with programming the display, an 
intricacy that we shun at this point. 

12.4.3 Creation of a new figure 

The initiative to create a new figure originates in module Draw in re­
action to a mouse or keyboard command issued by the user. The in­
formation for creating an instance of the appropriate type, however, is 
contained in the shape-specific modules Lines, Rectangles and so on. But 
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Draw does not import those modules. How can this predicament be re­
solved? 

An up-call mediated by Graphics is the answer. The method is an 
application of the example given in Section 11.3.5 on up-calls. A pro­
cedure variable newFigure is declared in module Graphics, which also 
exports a general procedure CreateFigure for the use by Draw. 
CreateFigure makes the up-call, draws the newly created figure and in­
serts it into the list of figures. 

MODULE Graphics; 

(1) ~ V AR newFigure*: PROCEDURE 0: Figure; 

PROCEDURE CreateFigure*(g: Graph); 
V AR f: Figure; 
BEGIN 

(2) ~ f := newFigure(); 

Notes 

f.draw(f); InsertLast(g.list, f) 
END CreateFigure; 

END Graphics. 

(1) newFigure is a global procedure variable used to make an up-call 
to the shape-specific module. Its value must be initialized by 
those modules. 

(2) Here procedure variable newFigure is called and the up-call takes 
place. 

We have now discussed all the essential features of module Graphics, 
whose definition we list: 

DEFINITION Graphics; 
TYPE 

Figure = POINTER TO FigureDesc; 
FigureDesc = RECORD 

draw, clear, mark: PROCEDURE (f: Figure); 
move: PROCEDURE (f: Figure; dX, dY: INTEGER); 

END; 

Graph = POINTER TO GraphDesc; 
GraphDesc = RECORD END; 
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V AR newFigure: PROCEDURE 0: Figure; 

PROCEDURE DrawAll(g: Graph); 
PROCEDURE Select(g: Graph; x, y: INTEGER); 
PROCEDURE Deselect(g: Graph); 
PROCEDURE DeleteSelection(g: Graph); 
PROCEDURE MoveSelection(g: Graph; dX, dY: INTEGER); 
PROCEDURE CreateFigure(g: Graph); 
PROCEDURE Open(g: Graph); 
END Graphics. 

With the initialization of the global procedure variable 
Graphics.newFigure, the final piece of the puzzle falls into place. Clearly, 
only one of the shape-specific modules can do that. This initialization 
takes place in a command that we call Set. For the example of module 
Rectangles, the implementation of Set reads as follows: 

MODULE Rectangle; 

PROCEDURE Set* 
BEGIN Graphics.newFigure:= New; 
END Set; 

END Rectangles. 

Each of the modules Lines, Rectangles, Ellipses etc. has its own Set 
command. We have now also covered all the functions of the shape­
specific modules. Representative of all, let us list the definition of 
Rectangles: 

DEFINITION Rectangles; 
IMPORT Graphics; 
TYPE 

Rectangle = POINTER TO RectangleDesc; 
RectangleDesc = RECORD (Graphics.FigureDesc) 

x, y, w, h: INTEGER 
END; 

PROCEDURE Draw(rect: Graphics.Figure); 
PROCEDURE Clear(rect: Graphics.Figure); 
PROCEDURE Mark(rect: Graphics.Figure); 
PROCEDURE Move(rect: Graphics.FIgure; dX, dY: INTEGER); 
PROCEDURE NewO: Graphics.Figure; 
PROCEDURE Set; 
END Rectangles. 
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Execution of a Set command puts the graphics editor into a mode: all 
subsequently created figures are of the particular shape. In commercial 
graphics editors, this mode is usually termed a 'tool.'} The user selects 
the 'rectangle tool,' for example, and subsequently draws a number of 
rectangles with the mouse. The selection of such a tool is typically done 
by clicking at an icon. 

The suitability of modes in user interfaces is controversial. While 
modes are not deficient per se, there are many bad examples. The 
graphics 'tool' modes are well tried in practice. An important condition, 
however, that renders modes acceptable is their visibility. Graphics 
editors usually use iconic buttons to make the selected 'tool' visible. 

12.4.4 Redefining a dynamically bound procedure 

Considerations of easy extensibility of the graphics editor led to the 
remarkable structure of Figure 12.3. All actions having to do with the 
user interface are completely isolated in module Draw. Adding a new 
figure shape such as a spline, for example, simply requires the writing 
of a module Splines, compiling it, and adding the object module to the 
computer's library. 

Here we want to demonstrate an even more striking feature of objects 
with dynamically bound procedures: the ability to re-use a module only 
partially - yet without modification of the source text. We are going to 
add a new figure to the editor: a filled rectangle. 

The filled rectangle consists of a solid line around its perimeter that is 
filled in with a pattern. FilledRectangles is the name of the module that 
exports the shape-specific procedures. 

A filled rectangle The essential observation is that only the drawing of a filled rectangle 
differs from an ordinary rectangle. All the other actions such as Mark, 
Clear and Move are identical. But even drawing a filled rectangle is not 
completely different from the base shape. The filled rectangle consists 
of a 'wire frame' and a filled interior. The first part is already handled in 
module Rectangles, and need not be re-created. 

The key idea leading to an implementation that re-uses all the exist­
ing functions is to make the type FilledRect an extension of the type 
Rectangles.Rect and to redefine only those type-bound procedures that 
change. We now understand why module Rectangles exports its type 
and procedures. Thus module FilledRectangle's text reads as follows: 

1 Not to be confused with the use of the term 'tool' in Oberon. 
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(1) -+ 

(2) -+ 

MODULE FilledReetangles; 
IMPORT Graphics, Rectangles, ... ; 

TYPE 
FilledRech = POINTER TO FilledRectDesc; 
FilledRectDesc* = RECORD (Rectangles.ReetDesc) 

pah: Pattern 
END; 

PROCEDURE Draw*(rect: Graphics.Figure); 
BEGIN 

WITH rect: FilledReet DO 
Rectangles.Draw(rect)i 
... (* fill perimeter of reet with a pattern *) 

END 
END Draw; 

PROCEDURE New*O: Graphics.Figure; 
V AR fr: FilledRect; x, y, w, h: INTEGER; pat: Pattern; 
BEGIN 

(3) -+ NEW(fr); 

Notes 

fr.draw:= Draw; fr.clear:= Rectangles.Clear; 
fr.mark:= Reetangles.Mark;fr.move:= Rectangles.Move; 
(* obtain values x, y, w, h, and pat *); 
fr.x := x; fr.y:= y; fr.w:= w; fr.h:= h; fr.pat:= pat; 
RETURNfr 

END New; 

END FilledReetangles. 

(1) FilledRect extends Rectangles.Rectangle. Field pat identifies a fill 
pattern. 

(2) Draw from module Rectangles is invoked to draw the 'wire 
frame.' Subsequently, the pattern is filled in. 

(3) An instance of FilledRect is created. The procedures fields draw, 
clear, mark and move are initialized. Note that draw receives the 
modified procedure Draw, whereas the other procedures are 
from module Rectangles. 
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12.4.5 Summary 

In Oberon, object-orientation results in module hierarchies that are 
'upside-down' (Figure 12.3) and rely heavily on up-calls. In particular, 
we note 

(1) The heterogeneous data structure plays a central role. 
(2) This data structure is typically abstract, in particular an instance 

of an abstract data type (Graph in our example). The module ex­
porting that type (for example Graphics) is at the basis of the 
module hierarchy. The procedures of that type fall in three broad 
classes: (1) actions dealing with the ensemble of objects (for 
example DrawAll), (2) the procedure initializing the type (for 
example Open) and (3) creation of new objects and insertion into 
the heterogeneous structure (in our case, CreateFigure.) 
Sometimes class (4) is reduced to merely insert objects into the 
data structure. 

(3) The elements of the heterogeneous structure are objects; that is, 
instances of a record type with procedure fields, also termed 
methods. The procedures of type (1) such as DrawAll make use of 
the methods to deal with the ensemble of objects abstractly. In 
the base module, the methods are often left unspecified, or ab­
stract. Alternatively, a common basic behavior of the objects 
could be implemented. 

(4) The implementation of the methods (or specialization if methods 
are already implemented in the base) is provided in modules 
higher up in the hierarchy, such as in Rectangles. These modules 
import the base module. Different specializations of the object, 
such as rectangles and lines, are implemented in different mod­
ules. An important task of such an implementation module is to 
create an instance of the specialized object. 

(S) Often the user interface can also be isolated in its own module. 
The creation of objects, their initialization and insertion into the 
heterogeneous data structure require careful design, possibly re­
lying on addi~ional up-calls. 

(6) Sometimes, a new specialization of the object differs only slightly 
from an existing implementation. In this case, that implementa­
tion can be re-used without recourse to its source text. Only the 
method that differs has to be programmed and assigned when 
the object is created. 

The benefit of object-orientation is the isolation of different concerns in 
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different modules. Most importantly, those modules can be added with­
out recompilation of any of the other parts of the system. Through re­
definition of some methods, further specializations of the object can 
often be obtained by reusing existing code. 

12.5 Message and handlers 

An object is an instance of an abstract data type represented by a record 
variable containing procedure fields. These procedure variables define 
the actions admitted by the object - in the sense of the abstract data 
type. 

We recapitulate the declaration of the type Figure from Section 12.3: 

TYPE 
Figure = POINTER TO FigureDesc; 
FigureDesc = RECORD 

draw, clear, mark: PROCEDURE (f: Figure); 
move: PROCEDURE (f: Figure; dX, dY: INTEGER); 
next: Figure 

END; 

A figure has a next figure and four procedure fields draw, clear, mark 
and move. The basic assumption is that the number of procedures and their 
parameters is invariant. 

There are programming tasks where neither number nor meaning of 
all the actions of an object are known a priori. A good example is a 
simulation event. We recall from Chapter 10 that such an event is 
always paired with a specific action - that action may be the procedure 
of an object. We will pursue this idea in Chapter 13. 

We will now introduce a different way of representing the actions; 
that is, we will unite them with only a single universal procedure field, 
termed handle. The procedure assigned to this field is called the handler. 
A simulation event, for example, can be visualized as an instance of 

TYPE 
Event = POINTER TO EventDesc; 
EventDesc = RECORD 

handle: Handler; 
time: REAL; 
next: Event 

END; 
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The simulation event has a due time, a pointer next that admits the 
event to the calendar list and the procedure field handle of type Handler. 

The problem that at first sight seems to render this idea impracticable 
is the fact that an open-ended set of actions requires an open-ended 
number of parameters of possibly different type - a facility that is not 
part of the Oberon procedure definition. Type extension, however, 
comes to our rescue and allows just such a parameter. 

12.5.1 Message and handler 

The key idea is simple and elegant: the formal parameter is a record that 
contains the identification of the individual action to be performed and its par­
ameters. We dub such a record containing parameters a message. 

How type extension and type tests work hand in hand to create 
handlers that accept a variable number of messages is best explained by 
continuing with the example of the graphics editor - now cast in terms 
of objects with handlers. We start by introducing an empty record as 
base type for messages: 

TYPE Message = RECORD END; 

Specific messages are defined as extensions of the type Message as need 
arises. Each action performed on our graphics objects is characterized 
by its own message type, for example 

TYPE 
DrawMsg 
ClearMsg 
MarkMsg 
MoveMsg 

END; 

RECORD (Message) END; 
= RECORD (Message) END; 

RECORD (Message) END; 
RECORD (Message) dX, dY: INTEGER 

The example makes it clear how the formal parameter sections, which 
appeared in the previous procedure headings, now emerge as record 
fields in message types. Procedures without parameters lead to exten­
sions of the type Message still being empty. The procedure Move with 
two formal parameters of integer type corresponds to a message type 
MoveMsg with two integer fields. 

The new figure i~ an instance of the following type: 

TYPE 
Figure = POINTER TO FigureDesc; 
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FigureDesc = RECORD 
handle: Handler; 
next: Figure 

END; 

The type Handler can now be stated: 

TYPE Handler = PROCEDURE (f: Figure; V AR msg: Message); 

The handler procedure therefore has access to its object (here assumed 
to be of type Figure) and to the message. Note that it is essential that msg 
is a V AR parameter, since the handler will apply type tests and type 
guards to it. 

As before, specific shapes have types that extend Figure, for example 

TYPE 
Rectangle = POINTER TO RectangleDesc; 
RectangleDesc = RECORD (FigureDesc); 

x, y, w, h: INTEGER 
END; 

The structure of a handler for a rectangle is 

PROCEDURE HandleRect(rect: Figure; V AR msg: Message); 
BEGIN 

WITH rect: Rectangle. DO 
IF msg IS DrawMsg THEN 

WITH msg: DrawMsg DO 
· .. (* draw rectangle *) 

END 
ELSIF msg IS ClearMsg THEN 

WITH msg: ClearMsg DO 
· .. (* clear rectangle *) 

END 
ELSIF msg IS MarkMsg THEN 

WITH msg: MarkMsg DO 
... (* mark rectangle *) 

END 
ELSIF msg IS MoveMsg THEN 

WITH msg: MoveMsg DO 
· .. (* move rectangle by vector msg.dx, msg.dy *) 

END 
ELSE 

. . . (* message not understood, typically no action *) 
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END 
END 

END HandleRect; 
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Which action is to be performed is deduced from the type of the mes­
sage. The parameters for the action, such as the displacement vector for 
the move operation, are found in the message fields. Note the global 
type guard asserting that the object is of dynamic type Rectangle and the 
type guard on the message. For the message-based design to be of full 
generality, it is essential that an else clause be present. Typically, it is 
empty, but guarantees that the handler can be called with any message 
that extends the base type Message. 

A rectangle rect, which is an instance of type Rectangle, is created as 
follows: 

NEW(rect); rect.handle:= HandleRect; 
rect.x:= x; rect.y:= y; rect.w:= w; rect.h:= h; 

The assignment of the procedure HandleRect to the field handle is termed 
installation of the handler. 

Finally, let us show how to move a rectangle represented by the 
variable recto First, the displacement (dX, dY) is determined. Then the 
message fields are filled and the handler is called, viz. 

V AR m: MoveMsg; rect: Rect; 

... (* determine the displacement dX, dY *) 
m.dX := dX; m.dY:= dY; rect.handle(rect, m); 

The above operation is known as sending a message m to the object reet, 
or sending a move message to the rectangle recto 

12.5.2 Message broadcast 

Objects are typically members of a dynamic data structure. For exam­
ple, figures are contained in a figure list and events in the simulation 
calendar. Frequently, operations are performed on the whole ensemble 
of objects. Procedures performing such operations have to traverse the 
data structure. DrawAll is a good example. 

In the case of objects with handlers, the list traversal can be isolated 
in a procedure Broadcast that sends a given message to all objects. For 
the list of graphics objects, such a broadcast is executed as follows: 
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PROCEDURE Broadcast(g: Graph; V AR msg: Message); 
V AR f: Figure; 
BEGIN 

f:= g.list; 
WHILE f # NIL DO f.handle(f, msg) END 

END Broadcast; 

Using the broadcast, DrawAll is considerably simplified: 

PROCEDURE Draw All; 
V AR m: DrawMsg; 
BEGIN Broadcast(m) 
END DrawAll; 

12.5.3 Generality of handlers 

Objects with handlers can do exactly the same as our earlier objects 
with procedure variables. However, handlers are more general. Assume 
that, without changing the definition of type Figure of Section 12.4.1, a 
call statement 

f.rotate(f, angle) 

would appear somewhere in the source text. The compiler would reject 
such a module. 

The analogous situation in the paradigm of handlers is the sending of 
a rotate message to the object I, in Oberon notation, 

TYPE RotateMsg = Record(Message) angle: INTEGER END; 
VAR m: RotateMsg; 

m.angle:= 45; f.handle(m); 

Clearly, the compiler accepts such a program without need to redefine 
the type Figure. Note that the type RotateMsg as well as the actual 
sending of a message of that type can be added in later modules. The 
message broadcast allows such modules to address all objects in the 
heterogeneous structure. All objects therefore do not necessarily 
'understand' all messages. 

We summarize by stating that handlers will accept any message that 
extends the common base type Message, but will 'understand' and 
therefore react only to those message types that appear explicitly in the 
IF ... ELSIF ... ELSIF ... ELSE ... END statement of their statement sequence. 
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12.5.4 Summary 

In this section, we have introduced a special class of objects: those with 
a handler. The following points are worth recapitulating: 

(1) The object is represented by a pointer to record. The record has 
only one procedure field, typically termed handle. The procedure 
assigned to handle is termed handler and has two formal 
parameters. The first designates the object on which the handler 
operates. The second, a VAR parameter, identifies the operation 
to be performed. Its type is the base type Message, representing a 
record (usually empty). 

(2) The handler defines the semantics of the object. A handler is 
typically called with an extended object type. A regional type 
guard is therefore required (WITH f: Rectangle in our example). 

(3) The actual parameter paired with the second formal parameter 
of the handler is an extension of the (record) type Message. It is 
known as message. Its type specifies the action, its fields contain 
the parameters that pertain to that action. Their number is 
variable. 

(4) The handler, in essence, comprises a big IF ... ELSIF ... 
ELSIF. .. ELSE ... END statement. Type tests discriminate between 
messages of different types. 

(5) Assigning the handler procedure to the field handle is called in­
. stallation of the handler. 

(6) Assigning values to the fields of a particular message and calling 
the handler of a given object is referred to as sending a message to 
the object. 

(7) Messages may be broadcast to all objects of a heterogeneous data 
structure; that is, the message is sent to each object in turn. The 
use of such broadcast often simplifies the procedures that act on 
the ensemble of objects. 

12.6 Conclusions and outlook 

The concepts type extension, procedure variable and abstract data type 
advance the state-of-the-art in program extensibility in a major way. 
The programming methodology is called object-orientation. If successful, 
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object-oriented designs allow augmenting functionality by a mere 
addition of modules. The normal module hierarchy is thus turned 
upside-down, as we saw in the example of a graphics editor. Figure 12.5 
recapitulates the new module structure. 

redefinition 

... extension 

Figure 12.5 Module hierarchy from object-orientation. 

Extension may take place in two ways: through addition of entirely 
new functions and through specialization of existing ones. 

The technical foundation is the notion of the object, an instance of an 
abstract data type with dynamically bound procedures. Objects 
typically belong to a heterogeneous data structure that is managed in 
the base module (for example Graphics in Figure 12.5). 

Historically, the techniques of object-orientation were first introduced 
in the area of discrete event simulation (Dahl and Nygaard, 1966). 
Currently, it is permeating most problem domains: operating systems, 
word and graphics processors, and last but not least data bases. 

12.6.1 Two categories of Oberon objects - a comparison 

Multitude of 
procedure 
variables 

In this chapter we have introduced two categories of objects: those with 
a number of procedure variables and those with a single handler. There 
follows a brief comparison. In summary, we will conclude that both 
types of objects have advantages and disadvantages, and should be 
used where appropriate. 

The operations that can be applied to the object are defined as proce­
dures in the same way as in the case of an ordinary abstract data type. 
The difference is dynamic binding: in a call, the specific procedure is 
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selected at run time rather than at compile time. The number of the 
procedures and their type is fixed and specified at the place where the 
object's type is declared. The storage demand grows with the number of 
procedures; their call, however, is as efficient as any call of a procedure 
variable. New functionality is confined to the scope provided by the set 
of procedures. Extending that scope means a recompilation of the entire 
module structure. For example, in our graphics editor, new functions 
must be expressed in terms of draw, clear, mark and move. A function 
copy, for example, would lead to a global change. 

In all procedures that deal with the ensemble of objects, an individual 
structure traversal needs to be programmed explicitly (see the while loop 
in the example DrawAll). 

The object has only one general procedure - hence is likely to consume 
less memory. At the place of the type declaration, the actions that the 
object may perform are not defined - neither in terms of number, name 
nor parameters. That specification is only made in the implementation of 
the handler. An object may be called with any message compatible with 
the base message type. If the message is 'understood' the requested 
action is performed; otherwise nothing happens. Message broadcasting 
is an effective way of dealing with the ensemble of objects; sparing the 
programmer the chore of coding many structure traversals. 

Obviously, all objects need not understand the same basic set of 
messages. Using the broadcast mechanism, it is possible to send any 
message to all objects of the structure. In fact, such broadcasts may take 
place from an arbitrary part of the system - they are not confined to the 
base module. Similarly, new message types can be defined in any 
module. This generality is sometimes quite useful. For example, the 
Oberon operating system bases the viewer subsystem on objects with 
handlers (Wirth and Gutknecht, 1992). The handler is the command 
interpreter that operates behind the viewer. 

The added generality has its price, however. At each call of the 
handler, the action has first to be re-determined, executing the 
IF ... ELSIF ... ELSIF ... ELSE ... END statement and performing type tests, 
an overhead not incurred with the first kind of object. 

The fact that the compiler cannot check whether a message is 
'understood by the object' may be an advantage or a disadvantage, 
depending on the type of the application. 

12.6.2 On the object-oriented programming paradigm 

The programmer practicing object-orientation needs appropriate lan­
guage tools. Object-orientation in its current sense was introduced as a 



238 Object-orientation 

paradigm by Smalltalk-80 (see for example Goldberg and Robson, 1983). 
Similar to Oberon, Smalltalk is not merely a language but an entire 
system. In other respects, however, Smalltalk is at the opposite end of 
extremes - in particular it lacks strong typing and uses peculiar 
terminology. In the wake of Smalltalk, a number of languages appeared 
that emulate its terminology but reintroduce typing. Some are additions 
to existing languages (Tesler, 1985; Stroustrup, 1986); some are new 
creations, for example, the language Eiffel (see Meyer, 1988). 

This is not a text on the history of object-orientation. For the reader 
familiar with the subject, we establish briefly the correspondence be­
tween object-oriented programming terminology (OOP) and Oberon 
concepts in Table 12.1. 

Table 12.1 Standard object-oriented terminology. 

OOP terminology Oberon terminology 

Class Record typel with procedure variable(s), 
defining an abstract data type 

Object Variable of that type 

Method One of the procedures of the record type 

Message A call of a procedure, for example 
reet .draw(rect) 

Sub-class Extension of the base record type 

Super-class The base type of such an extension 

Inheritance Type extension 

Overriding a method Changing the procedure assigned to a field in 
an extension 

Self The object passed as actual parameter to a 
procedure, for example reet in rect.draw(reet) 

Super call Call of a procedure in the module defining 
the base of an extension 

Dynamic binding Call of a procedure variable 

In Table 12.1 we assumed languages that feature typing such as C++ 
or Eiffel. Smalltalk-80 is even more general. In a sense, it corresponds 

1 More precisely, a pointer type bound to a record with one or several procedure 
variables, defining an abstract data type. 
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more to the second kind of Oberon object, that with a handler. The term 
'method' is not so well defined in the case of the handler. In a sense, the 
method is embodied by the message type and the corresponding program 
segment in the handler procedure. We should stress, however, that an 
Oberon program employing handler objects is still substantially more 
efficient than all Smalltalk implementations known to date. 

12.7 Exercises 
12.1 [Object-oriented calculator] Implement an extensible stack-based calculator. 

The calculator comprises the four modules Calc, Integers and FPNs. Calc 
contains the stack and exports the basic calculator commands. Integers and 
FPNs (floating-point numbers) are supported number types. 

The base module Calc has definition 

DEFINITION Calc; (* Basic Calculator *) 
IMPORT Out; 
TYPE 

Number = POINTER TO NumberDesc; 
NumberDesc = RECORD 

add, sub, mult, div: PROCEDURE(a, b: Number): Number; 
display: PROCEDURE(n:Number)( * display a number *) 

END; 
PROCEDURE Add; 
PROCEDURE Sub; 
PROCEDURE Mult; 
PROCEDURE Div; 
PROCEDURE Clear; 
END Calc. 

The stack is not limited in size and not 
defined, unless numbers are explicitly 
entered (note that this stack definition differs 
from Exercise 7.5). Numbers are implemented 
as objects. 

The commands Add, Sub, Mult and Div 
operate on the two topmost stack elements, 
which are replaced by the result. Make sure 
that the program does not abort if the stack is 
empty (display an error message in that case). 

Module Integers implements integer 
numbers based on the type INTEGER. It exports the command Enter that reads 
an integer from the input stream and pushes it onto the stack. An error message 
is displayed if the input is invalid. 
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DEFINITION Integers; 
IMPORT Calc, In, Out; 
TYPE 

Integer = POINTER TO IntegerDesc; 
IntegerDesc = RECORD(Calc.NumberDesc) n: INTEGER END; 

PROCEDURE Enter; (* Push an integer onto the stack *) 
END Integers. 

Similarly module FPNs handles floating-point numbers based on the type 
REAL. 

12.2 Extend the calculator with module Fractions defined by 

DEFINITION Fractions; (* rational numbers *) 
IMPORT Calc, Integers, In, Out; 
TYPE 

Fraction = POINTER TO FractionDesc; 
FractionDesc = RECORD(Calc.NumberDesc) 

num, denom: Integers.lnteger 
END; 

PROCEDURE Enter; (* Push a rational number onto the stack *) 
END Fractions. 

Rational numbers are pairs of integers. Use the syntax integer" /"integer to 
display rational numbers. 

A key design principle is the requirement that module Integers may be 
exchanged without consequences for Fractions. This requires that n;lOdule 
Fractions work exclusively with resources exported by module Integers, in 
particular with the type Integers.Integer and the procedures Integer.Add and so 
on. To eliminate common factors, Integers has to provide a procedure 

PROCEDURE gcd(Calc.Number, Calc.Number): Calc.Number; 

that computes the greatest common divisor. Also, reading an integer from the 
input stream should be handled by Integers, not by Fractions, for example with a 
function Integers.ReadO. 

12.3 Extend the calculator with a module Complex operating on complex numbers. 

12.4 [Object-oriented directory] The generality of the generic type Entry in Exercise 
11.4 is limited by the fact that the type of the key must be specified. Use object­
orientation to make that type client-defined. 

Hint: In module Directories the key is an empty record to be extended in the 
client. The object Entry has two procedure variables called eq (equal) and It (less 
than) that compare an entry with a key. Don't forget to make key a VAR 
parameter to allow type tests, for example PROCEDURE Search(dir: Directory; 
VARk: Key). 
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12.5 [Very tiny graphics editor] Implement a very tiny graphics editor that draws 
rectangles. The modules are Graphics, Rectangles and Draw, with definitions 

DEFINITION Graphics; 
TYPE 

Figure = POINTER TO FigureDesc; 
FigureDesc = RECORD draw: PROCEDURE (f: Figure) END; 
Graph = POINTER TO GraphDesc; 
GraphDesc = RECORD END; 

VAR 
newFigure: PROCEDURE (g: Graph): Figure; 
span Vect: PROCEDURE (V AR xl, yl, x2, y2: INTEGER); 

PROCEDURE DrawAll(g: Graph); 
PROCEDURE CreateFigure(g: Graph); 
PROCEDURE Open(g: Graph); 
END Graphics. 

DEFINITION Rectangles; 
IMPORT Graphics, Display; 
TYPE 

Rectangle = POINTER TO RectangleDesc; 
RectangleDesc = RECORD (Graphics.FigureDesc) 

x, y, w, h: INTEGER; 
END; 

PROCEDURE Draw(rect: Graphics.Figure); 
PROCEDURE NewO: Graphics.Figure; 
PROCEDURE Set 
END Rectangles. 

DEFINITION Draw; 
IMPORT Graphics, XYplane, In; 
PROCEDURE Open; 
PROCEDURE Draw All; 
PROCEDURE New; 
END Draw. 

Procedure variable spanVect in module Graphics returns start and end point of a 
vector. It is called in Rectangles.New to define the location and extent of a 
rectangle. The procedure assigned to spanVect is declared in Draw. What is the 
reason to introduce span Vect? 

In a real graphics editor, spanVect would use the mouse to define the vector. 
To avoid this complication, read the vector from the input stream, for example 

PROCEDURE Span Vect(V AR xl, yl, x2, y2: INTEGER); 
BEGIN In.Open; In.lnt(xl); In.lnt(yl); In.lnt(x2); In.lnt(y2) 
END Span Vect; 
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Use module XYplane to open a drawing area. For drawing horizontal and 
vertical lines, consult Exercises 7.7 and 7.8. The commands exported by module 
Draw are: 

• Draw.Open opens an XYplane viewer 

• Draw.DrawAll draws all figures. To test DrawAll, erase the XYplane 
(XYplane.Clear) and restore the drawing. 

• Draw.New creates a figure (depending on the most recently issued Set 
command). 

12.6 Write module Lines and add it to the very tiny graphics editor (see Exercises 7.9 
and 7.10). 

12.7 Write module FilledRectangles and add it to the very tiny graphics editor. Use 
the technique of Section 12.4.4. Produce a grey pattern by drawing a 
checkerboard pattern of black and white pixels. Hint: more efficient than a loop 
invoking XYplane.Dot is the use of the procedures: 

V AR pat: Display.Pattern; 
pat:= Display1.Pattern(3); (* a grey pattern *) 
Display.RepIPattern(Display.white, pat, x, y, w, h, Display.replace) 

12.8 [Mouse-based control] Oberon system knowledge a prerequisite (Reiser, 1991). 
Provide a version of module Draw that uses the mouse to create figures. Make a 
graph (instance of Graphics.Graph) a proper Oberon viewer. Figures are created 
under mouse control: dragging the mouse over the drawing area while the left 
key is pressed defines the diagonal of a rectangle or the end-points of a line. 
After the dragging operation ceases, the figure is drawn. 

Hint: The type Graph extends type Display.Frame. Write a handler compatible 
with a menu viewer. The command Draw;Open first creates a graph and installs 
the handler. Then it opens a menu viewer and installs the graph in the new 
menu viewer. 

Module XYplane is no longer a suitable base for programming the display. 
The library of many Oberon systems has a module GraphicOps that draws some 
geometric shapes and performs clipping. Use module GraphicOps or, if not 
available, module Displayl or Display. In the latter case, clipping has to be taken 
care of explicitly. 

12.9 [Tiny graphics editor] Add the following functions to the very tiny graphics 
editor, making it a tiny graphics editor. 

• One figure can be selected and thus singled out to be operated on by 
subsequent commands. If a selection exists, a new selection neutralizes the 
existing selection. The command Draw.Select x y selects the (oldest) figure 
that is close to the point (x, y). 

• The selection can be neutralized (command Draw.Neutralize) 
• The selected figure can be deleted (command Draw.Delete) 
• The selected figure can be moved (command Draw.Move dX, dY). 
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Hint 1: Types FigureDesc and GraphDesc are augmented as follows: 

TYPE 
FigureDesc = RECORD 

isClose(f: Figure; x, y: INTEGER): BOOLEAN; 
draw, clear, mark: PROCEDURE(f: Figure); 
move(f: Figure; dX, dY: INTEGER); 
next: Figure 

END 
GraphDesc = RECORD 

selection, list: Figure 
END 

Method is Close reports whether a point (x, y) is close to the figure. It is used 
to determine which figure is selected. Method mark makes the selection visible 
(see Figure 12.4) Method clear removes a figure or the selection markings from 
the display. 

Hint 2: If a figure or its markings is removed, a hole is left behind. The easiest 
way to restore the graph is to invoke Graphics.DrawAli. 

12.10 [Mouse control for tiny graphics editor] Oberon system knowledge a prerequisite 
(Reiser, 1991). Provide mouse control for the tiny graphics editor. A click with 
the right mouse key will select a close figure (isClose(f, x, y) = TRUE). An 
interclick1 with the left mouse key while selecting will delete the selected figure. 
A vector spanned on the middle mouse key will move the selected figure. 

12.11 [Message-based tiny graphics editor] Rewrite the tiny graphics editor using 
objects with handlers and messages. Discuss the two versions - which do you 
prefer? 

12.12 [File support for graphics editor] Oberon system knowledge a prerequisite (Reiser, 
1991). Amend procedure Graphics.Open with the ability to read a graph from a 
file. Provide a procedure Graphics.Store that externalizes a graph. 

To store a graph, endow the figure object with an additional method store. To 
read a graph from a file, the approriate shape-specific module may have to be 
(dynamically) loaded first. 

Hint: On the file, each figure section is preceded with a string that contains a 
command name such as "Rectangles. Load" or "Lines.Load". This command 
string is read by module Graphics. Then that command is executed via dynamic 
loader using the call 

Oberon.Call(cmd, Oberon. Par, FALSE, res) 

where cmd: ARRAY 32 OF CHAR holds the command string and res: 
INTEGER is a result code. 

1 Clicking the left mouse key while dragging on the right key. 
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13 A simulation example 

Chapter 12 introduced the concepts of object-orientation, and their ex­
pression in terms of Oberon. The concepts are introduced using pro­
gram excerpts. In line with Chapter 10, we wish to conclude with the 
development of a complete example - a framework of abstract data types 
and modules serving as a simulation package. 

We are familiar with the fundamentals of discrete event simulation 
from Chapter 10. Simulation is indeed a classical area for the use of ab­
stract data types - in particular, objects. We wish to demonstrate the 
usefulness of generic modules and of objects with handlers. Again we 
aim at a structure that is extensible in the sense that adding function­
ality means simply adding modules to the library - without change or 
recompilation of those parts of the package that were conceived earlier. 

13.1 Generic module Qs 

In Chapter 10, customers do not occur explicitly - nor does the waiting 
line. This is possible in very simple situations only. In general, both 
customers and queues must be represented by appropriate data struc­
tures- of the simulation program. The goal of this section is a generic 
queue module to be used by the simulation package. 

Module Qs implements the three basic queueing disciplines FIFO, 
LIFO and ranked as abstract data types. The contents of queues, also 
called items, have to be compatible with queues operating under all 
three disciplines. That means, for example, that an item may be de­
queued from a FIFO queue and subsequently enqueued in a ranked 
queue. We also require that the implementation make the queueing 
discipline an invariant - the client is assured that the FIFO, LIFO or 
ranked properties cannot be violated. The invariant is guaranteed 
against incompetent and even malicious use by the client. 

245 
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13.1.1 Definition 

Fundamental to module Qs are two abstract data types: Queue and Item. 
The property of a queue is its queueing discipline. Each item has a key 
that is used by the ranked discipline. There are two basic operations: 
enqueueing and dequeueing of items. 

A queue - an instance of type Queue - belongs to one of the classes 
FIFO, LIFO or ranked. In traditional programming, the finer character­
ization is often implemented with a type flag, typically an integer. Type 
extension, however, affords a much more elegant solution: FIFO, LIFO 
and Ranked are types that extend the base type Queue. Instances of the 
extended types are compatible with the formal parameter of type Queue 
in the procedures Enqueue and DequeuedItem. The action taken therein 
can be discriminated using a type test. This type design is depicted in 
Figure 13.1. 

FIFO LIFO Ranked 

~/ 
Queue 

Figure 13.1 The queue types of module Qs. 

With this design in mind, we state the definition of module Qs: 

DEFINITION Qs; 
TYPE 

Key = REAL; 
Item = POINTER TO ItemDesc; 
ItemDesc = RECORD 

key: Key 
END; 

Queue = POINTER TO QueueDesc; 
QueueDesc = RECORD END; 

FIFO = POINTER TO FIFODesc; 
FIFODesc = RECORD (QueueDesc) END; 

LIFO = POINTER TO LIFODesc; 
LIFODesc = RECORD (QueueDesc) END; 
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Ranked = POINTER TO RankedDesc; 
RankedDesc = RECORD(QueueDesc) END; 

PROCEDURE Enqueue(q: Queue; i: Item); 
PROCEDURE DequeuedItem(q: Queue): Item; 
PROCEDURE Empty(q: Queue): BOOLEAN; 
PROCEDURE Enumerate(q: Queue; P: PROCEDURE (i: Item»; 
PROCEDURE Open(q: Queue); 

ENDQs. 

The names of the procedures are self-explanatory; in particular, 

• Enqueue puts item i into queue q. 
• DequeuedItem removes the head of queue q. 
• Empty returns TRUE if the q is empty, FALSE otherwise. 

• Enumerate traverses q and applies procedure P to every item. 

• Open initializes instance q of type FIFO, LIFO or Ranked. 

13.1.2 Implementation 

To implement module Qs, we must first decide on a data representa­
tion. For simplicity, we revert to the linear list - the groundwork for 
module Qs was laid in Section 9.2. 

We wish to be able to infer the queueing discipline from the dynamic 
type of the queue. We therefore represent each queue by a record (type 
Queue) that contains the anchor in a field first. 

The optimized method of Section 9.2.2 is employed for FIFO queues. 
The pointer to the last element is in the extension FIFO of base type 
Queue. 

The text of module Qs is as follows: 

MODULEQs; 
TYPE 

Key = REAL; 
Item* = POINTER TO ItemDesc; 
ItemDesc* = RECORD 

key*: Key; 
next: Item 

END; 
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Queue* = POINTER TO QueueDesc; 
QueueDesc* = RECORD 

(1) ~ first: Item 
END; 

FIFO* = POINTER TO FIFODesc; 
FIFODesc* = RECORD (QueueDesc) 

(2) ~ last: Item 
END; 

LIFO* = POINTER TO LIFODesc; 
LIFODesc* = RECORD (QueueDesc) END; 

Ranked* = POINTER TO RankedDesc; 
RankedDesc* = RECORD (QueueDesc) END; 

PROCEDURE InsertFIFO(q: FIFO; i: Item); 
BEGIN 

i.next := NIL; 
IF q.first # NIL THEN q.last.next:= i 
ELSE q.first := i 
END; 
q.last:= i 

END InsertFIFO; 

PROCEDURE InsertLIFO(q: LIFO; i: Item); 
BEGIN i.next:= q.first; q.first:= i 
END InsertLIFO; 

PROCEDURE InsertRanked(q: Ranked; i: Item); 
VARx: Item; 
BEGIN 

IF (q.first = NIL) OR (i.key < q.first.key) THEN 
i.next := q.first; q.first:= i 

ELSE 
x := q.first; 
WHILE (x. next # NIL) & (i.key >= x.next.key) DO 

x:= x.next 
END; 
i.next := x.next; x.next:= i 
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END 
END InsertRanked; 
PROCEDURE Enqueue*(q; Queue; i; Item); 
VARx; Item; 
BEGIN 

(3) ~ IF q IS FIFO THEN InsertFIFO(q(FIFO), i) 
ELSIF q IS LIFO THEN InsertLIFO(q(LIFO), i) 
ELSIF q IS Ranked THEN InsertRanked(q(Ranked), i) 
END 

END Enqueue; 

PROCEDURE Dequeuedltem*(q; Queue): Item; 
VARx: Item; 
BEGIN x:= q.first; 

IF x # NIL THEN q.first;= x.next END; 
RETURN x 

END DequeuedItem; 

PROCEDURE Enumerate*(q; Queue; P: PROCEDURE (i: Item»; 
VARx: Item; 
BEGIN x;= q.first; WHILE x # NIL DO P(x); x ;= x.next END 
END Enumerate; 

PROCEDURE Empty*(q: Queue); BOOLEAN; 
BEGIN RETURN q.first = NIL 
END Empty; 

PROCEDURE Open*(q: Queue); 
BEGIN q.first:= NIL 
END Open; 

ENDQs. 

Notes 

(1) Field first is the (hidden) anchor for the list that represents the 
queue. 

(2) Field last is added to first in the extension FIFO of the type Queue. 
It is used to optimize FIFO operations as described in Section 
9.2.2. 

(3) In this if statement, the type-specific queueing disciplines are in­
voked. Note the type guards in the call statements. 
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13.2 An object-oriented simulation calendar 

13.2.1 Data type Actor and basic module structure 

Data-centered 
design 

In Chapter 10, we advocated a programming approach that started with 
a formulation of the action of the program on a high level of ab­
straction. Successive refinements are aimed at the final specification. 

Here we start with the specification of the most fundamental data type. 
This view is quite typical when adopting object-orientation. We call this 
design approach data-centered. Stepwise refinement, however, is not 
invalidated - its application is only delayed to the time when individual 
module texts are composed. 

The simulation program of Chapter 10 is built around the notion of a 
calendar of events. An event can be visualized as a label on the time axis. 
The main simulation program always pairs an action with an event. 
This pairing of the event with its action immediately suggests the use of 
an object that makes this association explicit. Since the nature of the 
action is still open, an object with handler is the natural choice. We call 
that object an actor. Actors can be put into the simulation calendar, and 
when they are due, their procedure variable handle is called with an 
appropriate message parameter. 

In an actual simulation, entities such as customers, sources or servers 
will be represented by instances of types that extend the base type 
Actor. Therefore actors need to be furnished with the capability to be 
members of different queues of types FIFO, LIFO or Ranked. From Section 
13.1 we are familiar with a service module, Qs, that provides just that. If 
Qs fulfills the promise of being a generic module, we should be able to 
use it here. 

We will try and declare our type Actor as an extension of Qs.Item: 

TYPE 
Actor = POINTER TO ActorDesc; 
ActorDesc = RECORD (Qs.ltemDesc); 

handle: Handler 
END; 

Let us now specify the basic module structure of our simulation pack­
age. From Chapter 10, we remember the service modules Paths and 
Sequences (Exercise 10.2) that facilitate the computation of results. They 
will be as useful here as they were there. The module that implements 
the abstract data type Actor is termed Sim. Thus the foundation of the 
simulation package is the module structure depicted in Figure 13.2. 
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Figure 13.2 Basic module structure of the simulation package. 

13.2.2 Module Sim: an abstract simulation 

Like its cousin Calendar (see Section 10.3.1), module Sim embodies the 
calendar as an abstrC;1ct data structure. Module Sim also exports the 
definition of the abstract data type Actor. 
In fact, one design option is to implement Sim very much like Calendar. 
Procedures Schedule and GetNextActor would enter actors into the 
calendar and retrieve the most imminent actor from there. 

However, such an implementation ignores the fact that actors rep­
resent' active' events. In fact, any particular simulation can be expressed 
in the following abstract form: 

REPEAT 
"Retrieve actor from calendar"; 
"Set simulation time to actor's time"; 
"send calendar message to actor" 

UNTIL "simulation time exceeds given limit" OR "calendar empty" 

Module Sim is not a specific simulation - hence the actual actions as­
signed to the procedure variables handle are not specified in its scope. 
Still, all knowledge is present to implement the canonical simulation 
loop. We may say that Sim performs an abstract simulation, the details 
of which are furnished by its clients, that is modules higher up in the 
hierarchy. These clients are specified long after Sim is completed, 
compiled and put into the system's library. 

Note that this abstract treatment of a simulation is analogous to the 
way the graphics editor treated all objects abstractly, for example in the 
procedure DrawAll. 
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After these preliminaries, we present the definition of module Sim: 

DEFINITION Sim; 
IMPORTQs; 
TYPE 

Message = RECORD END; 
CalendarMessage = RECORD (Message) END; 
Handler = PROCEDURE (a: Actor; V AR msg: Message); 
Actor = POINTER TO ActorDesc; 
ActorDesc = RECORD (Qs.ltem) 

handle: Handler 
END; 

V AR time: REAL 

PROCEDURE Schedule(a: Actor; t: REAL); 
PROCEDURE Simulate(dt: REAL); 
PROCEDURE Reset; 
ENDSim. 

The simulation calendar is based on the ranked queue exported by 
module Qs: 

• Message is the prototype of the messages understood by the 
handlers of actors. 

• CalendarMsg is the type of a specific message that is sent to the 
current actor when it is due and removed from the calendar (we 
say the actor enters its passive state). 

• Actor is the type of the simulation object. 
• Variable time reports the current global time of the simulation. 

• Schedule enters actor a into the calendar and sets its due time to 
time + t. The actor is said to enter the active state. 

• Simulate performs the (abstract) simulation starting at the current 
time and ending at time + dt. Sets actors into the passive state (Le. 
removes them from the calendar) and sends calendar messages 
to them. 

• Reset clears the calendar and sets time to O. 

All the elements are now in place to list module Sim: 

MODULESim; 
IMPORT Qs, Out; 
TYPE 

Actor* = POINTER TO ActorDesc; 
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Message* = RECORD END; 
CalendarMsg* = RECORD (Message) END; 
Handler* = PROCEDURE (a: Actor; V AR msg: Message); 
ActorDesc* = RECORD (Qs.ltemDesc) 

handle* : Handler 
END; 

VAR 
time* : REAL; (* Global simulation time *) 
clndr: Qs.Ranked; (* Abstract data structure *) 

(1) ~ PROCEDURE Schedule* (a: Actor; t: REAL); 
BEGIN a.key:= t; Qs.Enqueue(clndr, a) 
END Schedule; 

(2) ~ 

(3) ~ 

(4) ~ 
(5) ~ 

PROCEDURE Simulate* (dt: REAL); 
VAR 

cur: Qs.ltem; 
msg: CalendarMsg; 
tEnd: REAL; 

BEGIN 
tEnd := time + dt; 
LOOP 

IF ,...Qs.Empty(clndr) THEN 
cur := Qs.DequeuedItem(clndr); 
WITH cur: Actor DO 

time := cur. key; cur.handle(cur, msg) 
END 

ELSE Out.String(lfempty calendarlf ); Out.Ln; EXIT 
END; 
IF time> tEnd THEN EXIT END 

END 
END Simulate; 

PROCEDURE Reseh; 
BEGIN Qs.Open(clndr); time:= 0 
END Reset; 

(6) ~ BEGIN NEW(clndr); Reset 
ENDSim. 
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Notes 

(1) Whether the time should be a parameter of Schedule or simply a 
property of the actor (its key) is worth some deliberation. Both 
are valid solutions. We prefer the explicit parameter, since the 
identifier key is not meaningful in the simulation context. 

(2) Observe that the variable cur, the current actor, must be of base 
type Qs .Item to be compatible with the procedure 
Qs.DequeuedItem. 

(3) The test for an empty queue is necessary. An empty simulation 
calendar means deadlock in the simulated system. When dead­
lock occurs, Simulate terminates. 

(4) Do not forget the type guard, cur is of base type Qs.ltem; here we 
deal with actors. Since the calendar contains only entries of type 
Actor or extensions thereof, no type test is required. 

(5) The message msg of type CalendarMsg is sent to the actor. The 
message informs the handler that it is current and enters the 
passive state. 

(6) Within the body of module Sim, the abstract data structure is cre­
ated and initialized. 

13.3 A simulation based on module Sim 

LJli~ 
t Station t t ro--.--- _______________________ , 
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Figure 13.3 A simple queue composed of a single station. 

Let us now demonstrate how the new tools can be used to simulate a 
queueing system. Chapter 10 introduced the basic concepts of the op­
eration of a queue. A broad class of queueing system can be decom­
posed into the entities customers, sources and queueing stations. Figure 
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13.3 shows these elements for the case of a single queue. In actual sim­
ulation practice, a single waiting line is seldom the object of investiga­
tion. 1 Much more common are whole networks of stations through 
which customers proceed (Figure 13.4). 

Switching Node 

Figure 13.4 A communication network modeled as a system of queues. 

More precisely, we have the following: 

• Customers proceed through the system of queueing stations. They 
determine the sequence in which the stations are visited and the 
service demands placed on them. 

• Sources generate customers according to a given probabilistic 
rule. 

• Stations are entities composed of a server and a waiting line. The 
station puts customers in the waiting line and schedules them to 
receive service. 

Note that in modeling practice, a number of station types occur that are 
characterized by the size of the waiting room, the number of servers, 
and the queueing discipline. In our example, we discuss the simplest 
case: an unlimited waiting room and a single server that works on 
customers in order of their arrival (FIFO). 

The interaction of customers with stations can be defined in a variety of 
ways. We take the following view: 

1 The mathematical theory of single queues is well developed. Hence cases are 
solved analytically instead of experimentally. 
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(1) The customer decides which station to visit and requests service 
from that station. 

(2) The station notifies the customer when the server is ready. It is the 
customer (not the server) that determines the end of the service 
period. 

(3) At the end of the service period, the customer frees the server prior 
to requesting service elsewhere or leaving. 

The entities customer, source, and station appear in multiple instances. 
But multiple instances of a given entity suggest the introduction of a 
data type. The design and implementation of such data types is our 
next task. 

13.3.1 Data types and module structure 

In Oberon, the design of data types and module structure go hand in 
hand, since the module is the basis for abstraction. Our goal is to pro­
vide three types: Customer, Source and Station. 

Generally, customers, sources and stations are implemented as actors 
since they have time-dependent behavior. Their types extend the base 
type Sim.Actor. 

The types Customer and Source are intimately related to the details of 
a specific simulation experiment - also called a model. They are 
therefore naturally declared in the module that implements a particular 
model, such as a communication network simulation. We call that 
module simply Model. 

Queueing stations, on the other hand, come in various well-under­
stood standard versions. The simplest station is one operating the FCFS 
discipline and having unlimited waiting room. If such a station is 
implemented as an abstract data type, it can be used by a potentially 
large number of client modules. We will provide a module Stations that 
exports the type Station. 

The simple station that we implement has no time-dependent be­
havior. There is therefore no need to make it an actor. It is not difficult, 
however, to think of station classes that would need the calendar, for 
example a station that breaks down from time to time. 

The module structure that we have in mind is depicted in Figure 13.5. 
Our goal is an extensible simulation package where new station types can 
be encapsulated into modules and added to the package without 
changes or recompilations of existing parts, in particular module Sim. It 
is the object-oriented design that makes this possible. 
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... Further station types 

Figure 13.5 Module hierarchy (only major import relations are shown). 

13.3.2 Definition of module Stations 

According to the basic paradigm, it is the station that manages the 
waiting line. In particular, the station determines the customer to be 
served and calls its handler with a begin service message. 

We now witness the generality of the object with a handler. There is 
no need to anticipate a 'begin service' method in module Sim. Module 
Stations simply declares a BeginMsg type that extends Sim.Message and 
sends a begin message to the objects that request service or are removed 
from the queue. 

Other station types may have a need for other messages, such as a 
'breakdown message.' Again, the appropriate message type is declared 
in the module that has the need - not in the base module. 

We are now able to state the definition of module Stations: 

DEFINITION Stations; 
IMPORT Qs, Sim, Paths; 
TYPE 

Station = POINTER TO StationDesc; 
StationDesc = RECORD 

path: Paths.Path 
END; 
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BeginMsg = RECORD (Sim.Message) s: Station END; 

PROCEDURE Request(s: Station; customer: Sim.Actor); 
PROCEDURE Free(s: Station); 
PROCEDURE Open(s: Station); 
END Stations. 

The abstract data type Station has three properties: 

• a path that is used to compute statistics about the queue 
distribution observed at the station; 

• a waiting line operating the FIFO queueing discipline (hidden); 

• a server that is either busy or free (hidden). 

The station sends a begin message (message of type BeginMsg) to the 
customer upon start of service. The begin message identifies the station 
in field s. The procedures defining the actions of the station are as 
follows: 

• Request: The customer customer requests service at station s. The 
action depends on the state of the server at the time of call. If it is 
busy, the customer is enqueued. If it is free, it changes state to 
busy and starts serving customer. 

• Free: Station s is told that the currently served customer is 
finished. The server is freed. If the queue is not empty, the head 
of the line is removed. The server changes to busy and starts 
serving the head of the line. 

• Open: Initializes an instance of s type Station. 

It is important to remember that Open does not create a station. It is 
the client that issues a call to NEW and passes the newly created station 
to Open for initialization. That station may be of type Station or an 
extension thereof. 

13.3.3 Implementation of module Stations 

After the preceding discussion the implementation of module Stations is 
straightforward: 

MODULE Stations; 
IMPORT Qs, Sim, Paths; 

TYPE 
Station* = POINTER TO StationDesc; 
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StationDesc* = RECORD 
wI: Qs.FIFO; (* Waiting Line *) 
path* : Paths.Path 

END; 

BeginMsg* = RECORD (Sim.Message) s*: Station END; 

PROCEDURE Request* (s: Station; customer: Sim.Actor); 
V AR msg: BeginMsg; 
BEGIN 

IF s.path.n = a THEN (* Server empty *) 
(1) ~ msg.s := s; customer.handle(customer, msg) 

ELSE Qs.Enqueue(s.wl, customer) 
END; 
Paths.Up(s.path, Sim.time) 

END Request; 

PROCEDURE Free* (s: Station); 
VAR 

(2) ~ customer: Qs.ltem; 

(3) ~ 

Notes 

msg: BeginMsg; 
BEGIN 

Paths.Down(s.path, Sim.time); 
IF s.path.n > a THEN (* Customers are waiting *) 

customer:= Qs.DequeuedItem(s.wl); 
WITH customer: Sim.Actor DO 

msg.s:= s; customer.handle(customer, msg) 
END 

END 
END Free; 

PROCEDURE Open* (s: Station); 
BEGIN 

Paths.lnit(s.path); NEW(s.wl); Qs.Open(s.wl) 
END Open; 

END Stations. 

(1) The field s of the message (type BeginMsg) is initialized and the 
customer's handler called (a begin message is sent to the cus­
tomer). 
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(2) Note that customer must be of base type Qs.Item to be compatible 
with the procedure Qs.DequeuedItem. 

(3) A begin message is sent to the customer. Note the type guard 
that is necessary as a consequence of point (2). 

13.3.4 Implementation of module Model 

Module Model implements a simulation of the simple queue depicted in 
Figure 13.3. The goal is to gather statistics about the waiting time of 
customers. For that purpose, customers must be represented explicitly. 
Each customer keeps a time stamp that records the time of arrival. 
Module Sequences is used to gather the mean and variance of the 
waiting times (see Exercise 10.2). 

Programming the simulation is in essence providing the handlers for 
customers and sources as shown in the following program text: 

MODULE Model; 
IMPORT Sim, Stations, Paths, Sequences, RandomNumbers, In, Out; 
TYPE 

(1) ~ Customer = POINTER TO CustomerDesc; 
CustomerDesc = RECORD (Sim.ActorDesc) 

ts: REAL (* Time stamp of arrival epoch *) 
END; 

V AR (* Global state variables *) 
lambda, mu: REAL; 
s: Stations. Station; 

(2) ~ srce: Sim.Actor; 
w: Sequences.Sequence; 

(3) ~ PROCEDURE HandleCust(cust: Sim.Actor; VAR msg: Sim.Message); 
BEGIN 

(4) ~ 

(5) ~ 

(6) ~ 

WITH cust: Customer 00 
IF msg IS Stations.BeginMsg THEN 

Sim.Schedule(cust, Sim.time + RandomNumbers.Exp(mu» 
ELSIF msg IS Sim.CalendarMsg THEN 

Stations.Free(s); Sequences.Add(w, Sim.time - cust.ts) 
END 
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END 
END HandleCust; 

(7) -+ PROCEDURE HandleSrce(srce: Sim.Actor; V AR msg: Sim.Message); 
V AR c: Customer; 
BEGIN 

(8) -+ NEW(c); c.handle:= HandleCust; C.ts:= Sim.time; 
Stations.Request(s, c); . 
Sim.Schedule(srce, Sim. time + RandomN umbers.Exp(lambda» 

END HandleSrce; 

(9) -+ PROCEDURE Setup*; 
V AR c: Customer; 
BEGIN 

(10) -+ 

(11) -+ 
(12) -+ 

In.Open; Sim.Reset; Sequences.Open(w); Out.Open; 
NEW(srce); srce.handle:= HandleSrce; 
In.Real(lambda); Out.String("lambda ="); Out.Real(lambda, 10); 
Sim.Schedule(srce, 0); 
NEW(s); Stations.Open(s); 
In.Real(mu); Out.String(II mu ="); Out.Real(mu, 10); 

END Setup; 

(13) ~ PROCEDURE Run*i 
V AR dt: REAL; q: REAL; 
BEGIN 

In. Open; In.Real(dt); 
(14) -+ Sim.Simulate(dt); 

Out.String("Sim.time =It); Out.Real(Sim.time, 10); 
Out. String (It E[W]=It); Out.Real(Sequences.Mean(w),10); 
Out.String(It var[W]=It); Out.Real(Sequences.Var(w), 10); 
Out.Ln 

END Run; 

END Model. 

Notes 

(1) The type Customer extends Sim.Actor. The added variable is the 
time stamp ts that is used to gather waiting time statistics. 

(2) Since the source has no special state variables, there is no need 
to extend Sim.Actor. 

(3) This is the handler for customers. 
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(4) A global type guard is required, since cust is of base type 
Sim.Actor. Under the auspices of this type guard, the extended 
fields of the customer (here ts) can be referenced in the 
handler's text. 

(5) The handler is called with a message of type Sources.BeginMsg. 
This means that service may begin. The handler schedules its 
customer (formal parameter cust) in the calendar at the time the 
service period- expires. Note that here the handler does not 
make use of the field s of the begin message. If s were used, a 
type guard would be required (see Exercises). 

(6) The handler is called with a message of type Sim.CalendarMsg. 
This is a notification that the service period expired. The station 
s is freed, the waiting time is determined and added to the se­
quence w. 

(7) This is the handler for the source. 

(8) The handler can only be called from module Sim (with a 
calendar message). Therefore no type test is required. When 
called, a new customer is generated. The customer immediately 
requests service at station s. Then the source is re-scheduled to 
generate the next customer. 

(9) Setup is a command that initializes a simulation run. 

(10) An instance srce of type Sim.Actor is created and HandleSource is 
assigned to the field srce.handle. 

(11) It is essential that the source be scheduled here for the first 
time. This triggers the whole simulation. Without it, nothing 
will ever happen. 

(12) An instance s of type Stations.Station is created and initialized. 

(13) This is a command that initiates an incremental simulation run 
lasting dt time units and printing waiting time statistics. 

(14) This starts the simulation loop that is encapsulated in module 
Sim. 

13.4 Summary 

In this chapter, we have designed a complete simulation package using 
generic modules and objects with handlers. The essence is a framework of 
abstract data types that are interrelated. 

We demonstrate the usefulness of the notion of the generic module. 
Extension of abstract data types exported by module Qs are used for the 
simulation calendar and for explicit representation of waiting lines. An 
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important property of an abstract data type - the guarantee of in­
variants - is demonstrated. In our case, these invariants are the prop­
erties of the queueing discipline. 

The notion of the event, introduced in Chapter 10, is generalized. To 
reflect that added generality, the type of the event is termed Actor. 
Actors are objects with a handler. The calendar, encapsulated in module 
Sim, calls the actors with a calendar message, prompting their handlers 
to perform the action paired with the event. 

The simulation package can be extended with modules implementing 
various station types. The station defines a protocol such as one of the 
Request / Free pair of procedures. Of particular interest is the way the 
module Stations defines a message type BeginMsg and sends 
appropriate begin messages to customers. 

Other station modules (not given in this chapter) may similarly in­
troduce their own message types, for example, a breakdown message. 
·The possibility of adding message types in those modules that need to send 
the message, rather than in the base module, is a particular strength of 
the object with a handler. Note that this flexibility is not part of the 
standard paradigm using classes and methods. 

13.5 Exercises 
13.1 [Tandein queues] Repeat Exercise 10.4 with the new simulation package of this 

chapter. 

13.2 [Stations with limited waiting room] Module Stations of Section 13.3.2 allows 
the waiting line to become arbitrarily long. In most practical situations, 
however, the waiting room is limited. Add a module StationsN to the simulation 
package that reflects this limitation. 

Hint: Endow the type Station with two queues: a pending queue and the 
waiting line proper. If a request is placed when the waiting line is full, the 
requesting actor is put into the pending queue. Upon the next departure (a call 
of procedure Free) the head of the pending queue is moved into the waiting 
line. Use a new message type, AcceptMsg say, to notify the actor when it is 
accepted to the waiting line. 

Thus the definition of StationsN reads as follows: 

DEFINITION Stations; 
IMPORT Qs, Sim, Paths; 
TYPE 

Station = POINTER TO StationDesc; 
StationDesc = RECORD 

path: Paths. Path 
END; 
BeginMsg = RECORD (Sim.Message) s: Station END; 
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AcceptMsg = RECORD (Sim.Message) s: Station END; 
PROCEDURE Request(s: Station; customer: Sim.Actor); 
PROCEDURE Free(s: Station); 
PROCEDURE Open(s: Station; n: INTEGER); (* n = max. size *) 
END Stations. 

13.3 Using module StationsN, simulate two queues with limited waiting room in 
tandem. Gather statistics about the overall time a customer spends in the 
system. Compare results with Exercise 13.1. 

13.4 [Packet network] Simulate a packet network like the one depicted in Figure 
13.4. Assume 

• M switching nodes with unlimited buffer capacity and infinite 
processing rate. 

• N communication lines characterized by their transmission rate (in 
bits/s). 

• R routes connecting a source node with a destination node. A route is a 
sequence of communication lines that are traversed sequentially. Each 
route has a source that generates packets. 

• The parameters of a source are: (1) its arrival rate (packets/s), (2) the 
average size of the packet (bits). Use exponential random numbers for 
interarrival time and packet size. 

Choose appropriate data structures to represent the network. Provide 
commands to initialize a configuration. Evaluate statistics of packet delay for 
each route and for the whole network. Determine appropriate buffer sizes at the 
nodes. 

Provide commands to save the network configuration in a file and load it 
from there. 

13.5 Repeat Exercise 13.4 with switching nodes of finite capacity and processors of 
finite speed. 
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The Oberon language was designed to serve the implementation of a 
novel operating system using object-orientation. The major goal was 
conceptual elegance without sacrificing ease of programming. During 
the implementation of that operating system, the language was tuned 
towards that goal. 

The latest reflection of that evolution is Oberon-2 (Mossenbock and 
Wirth, 1991), a slight extension that is fully upward-compatible with 
Oberon. There is one major and three minor additions. The principal one 
is the type-bound procedure. Effectively, it allows the association of 
procedure constants to record types. The remaining additions are 

• the for statement, a construct expressing repetition with 
guaranteed termination; 

• the open array type which is applicable to variables instead of 
parameters only; 

• an extended form of the with statement simplifying conditional 
execution; 

• a mark specifying read-only export. 

14.1 Type-bound procedures 

Objects are instances of an abstract data type whose procedures are 
bound dynamically. In Oberon, this dynamic binding is achieved 
through procedure variables that appear as fields in a record. 

If we reflect on the example of the graphics editor, however, we 
realize, that assignments to the procedure variables are made only once 
- at the time the object is created. This behavior is quite typical: proce­
dures are assigned when the object is created, and stay constant there­
after. The consequence is that dynamic binding could equally well be based 
on the dynamic type of the object, rather than on its instance. The type-bound 
procedure of Oberon-2 is such a language construct that associates 

265 
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procedures with record types, not with record instances. The advan­
tages are twofold: 

• At the time of object creation, the assignment of procedure 
names to procedure variables is avoided and cannot be omitted 
by mistake. 

• The memory consumed by the procedure variables in each object 
is reduced. 

Using type-bound procedures, the graphics object of Chapter 12 is 
expressed as follows: 

TYPE 
Figure* = POINTER TO FigureDesc; 
FigureDesc* = RECORD 

next: Figure 
END; 

PROCEDURE (fig: Figure) Draw*; 

END Draw; 

... (* declarations of procedures Clear and Mark *) 

PROCEDURE (fig: Figure) Move*(dX, dY: INTEGER); 

END Move; 

The procedure fields are omitted in the definition of type Figure. In the 
declarations of the procedures Draw, Clear, Mark and Move, the formal 
parameter fig, representing the object itself, is now specified in front of 
the procedure name. This distinguished formal parameter is called re­
ceiver. Its type, Figure, indicates that these procedures are bound to 
Figure; that is, they are operations applicable to Figure objects. 
Compared with the Oberon implementation of the methods (Section 
12.3), there is no need for a regional type guard enclosing the statement 
sequence of type-bound procedure. This results in a textual 
simplification as well as a slight run-time advantage. 

Procedures Draw and Move are invoked through the call statements 

fig. Draw; fig.Move(x, y); 

In these call statements, the identifier fig serves two purposes: it denotes 
an actual parameter paired with the receiver, and its dynamic type 
determines which procedure is called. 
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Contrast this with a call of the procedure field move in our earlier 
formulation of the Figure object: 

fig.move(fig, x, y); 

Here the two purposes are met by the two distinct appearances of the 
identifier fig. The first occurrence selects the operation, the second 
constitutes the actual parameter passing the object to the procedure. 

Consider the call fig.Draw. If the dynamic type of fig is Line then the 
procedure Draw that is bound to Line is called; if it is Rect then another 
Draw bound to Rect is invoked, and so on. This mechanism is called 
dynamic binding, since the requested operation (here Draw) is bound to a 
specific procedure according to the dynamic type of the receiver. 

14.1.1 Syntax and general semantics 

Explicit and 
implicit bindings 

The syntax of the procedure heading, found in Section 6.1, is aug­
mented with a syntactic entity Receiver that acts as a formal parameter 
to the procedure as well as an indicator that the procedure is type­
bound: 

I ProcedureHeading = 
"PROCEDURE" [Receiver] ident ["*"] [FormaIParameters]. 

Receiver = "(" [''V AR"] ident ":" ident ")". 

Consider a procedure P bound to a type TO. The following declaration is 
said to define an explicit binding: 

PROCEDURE (p: TO) P( ... further formal parameters ... ); 
BEGIN 

... (* statement sequence *) 
ENDP; 

Procedure P is implicitly also bound to all extensions Tl, T2 ... Tn of TO. It 
is possible to bind another procedure, Q say, to types that extend TO, for 
example to Tl: 

PROCEDURE (p: Tl) Q( ... further formal parameters ... ); 
BEGIN 

... (* statement sequence *) 
ENDQ; 
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Locality 

Redefinition 

In this case, Q is also bound to all types that extend Tl, that is T2 ... Tn, 
but not to TO. This situation is depicted in Figure 14.1. 

T2 -- P,Q 

t 
T1 -- P,Q 

t 
TO -- P 

Figure ').4.1 Type hierarchy with type-bound procedures. 

Type-bound procedures are local to their record type, comparable to 
procedure fields. Highlighting this locality, a type with bound proce­
dures could be visualized as follows:1 

DEFINITION Graphics; 
TYPE 

FigureDesc = RECORD 
next: Figure; 
PROCEDURE (fig: Figure) Draw; 
PROCEDURE (fig: Figure) Move(dX, dY: INTEGER) 

END; 

Since it is a local entity, a type-bound procedure is uniquely defined 
only with the pair name/receiver-type. We adopt the notation PT in 
subsequent discussions, where T is the type and P the procedure name. 

Adding new procedures to extended types, such as Q in Figure 14.1, is 
not nearly as important as redefining the action performed by a type­
bound procedure. 

Assume two distinct procedures with the same name bound explicitly 
to two types TO and Tl respectively. If Tl extends TO then the pro­
cedure bound to Tl is said to redefine the one bound to TO. This rela- . 
tionship is depicted in Figure 14.2. Procedure Pn may redefine PTO only 
if its formal parameters match those of PTO. 

1 This is the style adopted by the browser that compiles definition modules. 
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t 
TO 
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If the dynamic type of v is T1 
then v. P performs action of P T1 

If the dynamic type of v is TO 
then v.P performs action of P TO 

Figure 14.2 Re-definition of procedure P. 

For example, consider the type Rect, which is an extension of Figure: 

Reet = POINTER TO ReetDesc; 
RectDesc = RECORD (FigureDesc) 

x, y, w, h: INTEGER 
END; 

The following procedures can be declared: 

PROCEDURE (fig: Figure) Draw; 
PROCEDURE (fig: Reet) Draw; 

DraWRect redefines DraWFigure' 

If v is a designator and P is a type-bound procedure then 

v.P 

denotes the procedure P that is bound to the dynamic type of v. Note that 
this may be a different procedure from the one bound to the static type 
of v. If P has a formal parameter list, actual parameters are provided in 
the usual manner. The variable, designated by v, is passed to P 
according to the parameter passing rules. 

For example, assume rect: Figure. Then the following are valid calls: 

reet.Draw; reet.Move(x, y); 

Looking at Figure 14.2, the notion of dynamic binding may be clarified 
with an example: 

VAR vO: TO; vI: TI; 

NEW(vO); (* Instance of vO is created *) 
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Super call 

NEW(vl); 

vO.P; 
vO := vI; 
vO.P; 

(* Instance of vI is created *) 

(* Statement sequence of PTO is executed *) 
(* The dynamic type of vO becomes Tl *) 
(* Statement ,sequence of PTl is executed *) 

Assume that Pn redefines Pro. It is often useful to be able to call the 
redefined procedure Pro from within the scope of Pn. This is possible 
using the formulation 

r.Pt 

where r is the receiver parameter of PT1. In object-oriented terminology, 
this is known as a super call. 

We are familiar with the notion of the super call from Section 12.4.4, 
where we extended module Rectangles to create a rectangle filled with a 
pattern. The type FilledRect is an extension of Rect. To draw such a filled 
rectangle, it is useful to use the already existing procedure DraWRect to 
produce the wire frame and add only those statements needed to fill its 
interior. This leads to the following program excerpt: 

TYPE 
FilledRect = POINTER TO FilledRectDesc; 
FilledRectDesc = RECORD (RectDesc) pat: Pattern END; 

PROCEDURE (fig: FilledRect) Draw; 
BEGIN 

fig.Drawt; (* Call to DrawRect *) 
... (* Fill area within wire frame with pattern fig.pat *) 

END Draw; 

14.1.2 Example: graphics editor 

To illustrate the concepts of the type-bound procedure, we reformulate 
the implementations of modules Graphics and Rectangles from the ex­
ample of Section 12.4: 

MODULE Graphics; 
TYPE 

Figure* = POINTER TO FigureDesc; 



(1) ~ FigureDesc* = RECORD 
next: Figure 

END; 
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Graph* = POINTER TO GraphDesc; 
GraphDesc* = RECORD list: Figure END; 

... (* other type and variable declarations *) 

(* type-bound procedure declarations *) 
(2) ~ PROCEDURE (f: Figure) Draw*; END Draw; 

PROCEDURE (f: Figure) Clear*; END Clear; 
PROCEDURE (f: Figure) Mark*; END Mark; 
PROCEDURE (f: Figure) Move*(dX, dY: INTEGER); END Move; 

(* procedures operating on all objects *) 
PROCEDURE DrawAll*(g: Graph); 
V AR f: Figure; 
BEGIN 

f := g.list; 
(3) ~ WHILE f # NIL DO f.draw; {:= f.next END 

END Draw All; 

... (* other procedure declarations *) 

END Graphics. 

Notes 

(1) No procedure variables are declared. 

(2) Type-bound procedures must be declared, even if they do not 
define any action. Such a declaration is said to define an abstract 
procedure. It is a good idea to supply the abstract procedure with 
a call of the predeclared procedure HALT. If the programmer 
forgets to redefine one of these procedures - an obvious error -
program termination results. 

(3) Note the call statement: no parameter appears, in contrast to the 
earlier version. 

Inspection of the text of module Graphics reveals an essential fact: the 
object's procedures (methods) must already be defined in the base 
module. 
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In the shape-specific modules, the methods are redefined, as can be 
seen in module Rectangles: 

MODULE Rectangles; 
IMPORT Graphics, ... ; 
TYPE 

Rectangle* = POINTER TO RectangleDesc; 
RectangleDesc* = RECORD (Graphics.FigureDesc) 

x*, y*, W*, h*: INTEGER 
END; 

(1) -+ PROCEDURE (rect: Rectangle) Draw*; 
BEGIN 

END Draw; 

... (* Declarations of Clear, Mark and Move *) 

(2) -+ PROCEDURE New*O: Graphics.Figure; 
VAR rect: Rectangle; x, y, w, h: INTEGER; 
BEGIN 

(3) -+ NEW(rect); 

Notes 

(* obtain values x, y, w, h typically using the mouse *) 
rect.x := x; rect.y:= y; rect.w:= w; rect.h:= h; 
RETURNrect 

END New; 

END Rectangles. 

(1) The receiver must be of type Rectangle, not, as in the previous 
version, Graphics.Figure. Therefore, the regional type-guard 
becomes superfluous. 

(2) The result type of New, however, is still the base type 
Graphics.Figure, since it will be inserted into the list of graphics 
objects. 

(3) The assignment statements initializing the procedure variables in 
the previous version are not needed. 
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14.2 For statement 

A counting loop expresses the repeated execution of a statement 
sequence for a fixed number of times while a progression of values is 
assigned to an integer variable called the control variable. Consider the 
simplest case: control variable i is ranging over the integers m, m + 1, ... , 
n -1. In Oberon, such a loop is typically expressed with the following 
while statement: 

i:= m; 
WHILE i < n DO ... (* some processing *) INC (i) END; 

The for statement expresses this counting loops more succinctly, 
namely: 

FOR i = m TO n - 1 DO ... (* some processing *) END; 

The for statement has the advantage of guaranteed termination. In par­
ticular, the common mistake to forget to increment the control variable i 
is avoided. Its EBNF definition reads 

statement = ForStatement. 
ForStatement = "FOR" ident ":=" expression "TO" expression 

["BY" ConstExpression] "DO" 
StatementSequence 

"END". 

The control variable ident is of integer type, as are both expression and 
Const Expression. 

The semantics of the for statement 

FOR i := m TO n BY k DO StatementSequence END; 

is expressed by the Oberon statement sequence 

i := m; temp:= n; 
IFk>OTHEN 

WHILE i <= temp DO StatementSequence; i := i + k END 
ELSE 

WHILE i >= temp DO StatementSequence; i := i + k END 
END; 
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The variable i, and the expressions m, nand k are of integer type. In 
particular, m and n must be assignment-compatible with i, k must be 
expression-compatible with i, and k must be nonzero. If k is not speci­
fied, it is assumed to be 1. The variable temp is a hidden anonymous 
variable. After termination of the for statement, the control variable 
always assumes a definite value defined by the above semantic 
definition. 

14.3 The open array variable 

From Section 8.2.4, we recall the open array parameter. The length of 
such an array is given by the length of the actual parameter. In 
Oberon-2, open arrays may be declared not only as formal (parameter) 
types but also as base types of pointers. In this case, the predeclared 
function NEW is used to create an anonymous instance of the open ar­
rayon the heap. For example, 

V AR pI: POINTER TO ARRA Y OF INTEGER; 
... NEW (pI, 100); ... 

will create an anonymous integer array of length 100 and initialize pI to 
point to it. 

The EBNF syntax of the array type is modified as follows: 

I ArrayType = II ARRA Y" [ length {." ," length} ] "OF" type. 
length = ConstExpression; 

In Oberon-2, the length specification is optional. Open arrays are re­
stricted to formal parameter types and pointer base types. 

If T is an n-dimensional open array and the variable p is declared as 
POINTER TO T then the corresponding predeclared function NEW has 
n + 1 arguments: 

where T is allocated with length given by the expressions eo, 
el, ... , en - 1 in the respective dimensions. A pointer to the anonymous 
variable is assigned to p. The referenced variable pt is of type T, and the 
i-th element of the O-th dimension is given by the designator p[i]. 

The open array frees the programmer to specify maximum array 
bounds at compile time - often a difficult trade-off between generality 
and memory economy. 
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14.4 The Oberon-2 with statement 

The with statement of Oberon provides a regional type guard. In 
Chapters 12 and 13, we encountered with statements in the processing 
of heterogeneous data structures and in the formulation of handlers. 

Typically, the with statement is used in conjunction with a type test, 
serving as guard to avoid abnormal termination. For example, a 
heterogeneous list of graphics objects is processed using 

f := list; 
WHILE f # NIL DO 

IF f IS Line THEN 
WITH f: Line DO 

... (* process line *) 
END 

ELSIF f IS Rect THEN 
WITH f: Rect DO 

... (* process rectangle *) 
END 

ELSIF ... 
END; 
f:= f.next 

END; 

The Oberon-2 with statement makes the following shorthand notation 
possible: 

f := list; 
WHILE f # NIL 00 

WITH 
f: Line DO ... (* process line *) 

I f: Rect DO ... (* process rectangle *) 
I f: ... 
END; 
f:= f.next 

END; 

The first statement sequence whose regional guard is fulfilled executes 
under that guard. 

The EBNF syntax of the Oberon-2 with statement is 
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WithStatement = "WITH" 
guard ''~O'' StatementSequence 
{" I" guard "DO" StatementSequence} 
["ELSE" StatementSequence] 

"END". 
guard = qualident ":" qualident. 

In a guard v: T, variable v and type T satisfies two conditions: 

(1) Tis an extension of the declared type of v, 
(2) v is a pointer or a formal V AR parameter of record type. 

The statement sequence of the first guard (in textual sequence) that is 
fulfilled executes. The else clause executes if no guard is satisfied. 
Absence of an else clause will result in abnormal program termination 
in that case. 

To give a further example, we express the handler HandleRect of 
Section 12.5.1 using the Oberon-2 with statement: 

PROCEDURE HandleRect(rect: Figure; V AR msg: Message); 
BEGIN 

WITH 
msg: OrawMsg DO 

... (* draw rectangle *) 
msg: ClearMsg DO 

. . . (* clear rectangle *) 
msg: MarkMsg DO 

. . . (* mark rectangle *) 
msg: MoveMsg DO 

... (* move rectangle by vector msg.dx, msg.dy *) 
ELSE 

. .. (* message not understood *) 
END 

END 
END HandleRect; 

14.5 Read-only export 

In the design of an abstract data type, one sometimes faces the desire to 
make a variable visible, but in a read-only way. The requirement not to 
change that variable through an assignment stems from the need to 
guarantee certain properties or invariants of the abstract type. 
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An example is furnished by the type Sequences (see Exercises 10.2). 
The record field X is used to accumulate mean values through recur­
rence relations. To protect X, it is not exported. The client gains access 
to X through a function procedure Mean. 

TYPE 
Sequence* = RECORD 

X: REAL; (* the sample mean *) 
n: LONGINT (* the number of samples *) 

END; 

PROCEDURE Mean* (s: Sequence): REAL; 
BEGIN RETURN s.X 
END Mean; 

The use of function procedures just to protect a record field seems 
somewhat extravagant. Therefore Oberon-2 provides the read-only ex­
port mark, a minus sign "_/1 instead of the asterisk ,,*/1. Syntactically, the 
read-only export mark may appear wherever an export mark is 
allowed. Its proper use, however, is to protect variables and record 
fields from receiving assignments in client modules. 

Using read-only export, the type Sequence will be defined as 

TYPE 
Sequence* = RECORD 

X-: REAL; n: LONGINT 
END; 

and the procedure Mean becomes superfluous. 

14.6 Summary and discussion 

Type-bound procedures are objects that are local to the scope of a 
record type. The procedures can be redefined for each extension of an 
object's type. The advantages claimed for type-bound procedures are 
summarized as follows: 

(1) At the time of object creation, there is no need to assign proce­
dures to variables, thereby eliminating the mistake of improper 
initializa tion. 

(2) The objects are not burdened with memory needed for the pro­
cedure variables. 
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Compared with objects based on handlers, type-bound procedures are 
similarly efficient as procedure variables. 
A possible disadvantage is that all type-bound procedures must be 

declared in the same module that defines the record type (abstract 
procedures if no action is defined). 

Assuming memory sizes common in contemporary PCs, not to speak 
of workstations, the memory-saving argument is rarely vital. 

In many practical situations, however, the two implementations can 
be considered equivalent, and the choice is a matter of personal prefer­
ence. Since in Oberon proper the memory overhead can also be reduced 
greatly by means of method suites (for details see Wirth and Gutknecht, 
1992), the addition of type-bound procedures may be viewed as a 
concession to the traditional object-orieRted paradigm. 

The for statement, the open array variable, the extended with 
statement and the read-only export are convenient features, reducing 
textual bulk and making some operations more convenient. 

14.7 Exercises 
14.1 Write a matrix multiplication procedure using for loops. 

14.2 Repeat Exercise 12.1 (object-oriented calculator) using, type-bound procedures. 

14.3 Repeat Exercise 12.9 (tiny graphics editor) using type-bound procedures. 
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Appendix A 
The programming language 
Oberonl 

A.l Introduction 

Make it as simple as possible, but not simpler 
A. Einstein 

Oberon is a general-purpose programming language that evolved from 
Modula-2. Its principal new feature is the concept of type extension. It 
permits the construction of new data types on the basis of existing ones 
and provides relations between them. 

This report is not intended as a programmer's tutorial. It is inten­
tionally kept concise. Its function is to serve as a reference for pro­
grammers, implementors and manual writers. What remains unsaid is 
mostly left so intentionally, either because it is derivable from stated 
rules of the language or because it would require one to commit the 
definition when a general commitment appears as unwise. 

A.2 Syntax 

A language is an infinite set of sentences, namely the sentences well 
formed according to its syntax. In Oberon, these sentences are called 
compilation units. Each unit is a finite sequence of symbols from a finite 
vocabulary. The vocabulary of Oberon consists of identifiers, numbers, 
strings, operators, delimiters and comments. They are called lexical 
symbols and are composed of sequences of characters. (Note the 
distinction between symbols and characters). 

To describe the syntax, an extended Backus-Naur Formalism called 
EBNF is used. Brackets [ and ] denote optionality of the enclosed sen­
tential form, and braces { and} denote its repetition (possibly 0 times). 
Syntactic entities (non-terminal symbols) are denoted by English words 
expressing their intuitive meaning. Symbols of the language vocabulary 
(terminal symbols) are denoted by strings enclosed in quote marks or 

1 By Niklaus Wirth: this is a revised version of a paper "The programming 
language Oberon." Software - Practice and Experience, 18, 671-90 (1988). 
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words written in capital letters, so-called reserved words. Syntactic 
rules (productions) are marked by a bar at the left margin of the line. 

A.3 Vocabulary and representation 

The representation of symbols in terms of characters is defined using 
the ASCII set. Symbols are identifiers, numbers, strings, operators, de­
limiters, and comments. The following lexical rules must be observed. 
Blanks and line breaks must not occur within symbols (except in 
comments, and, in the case of blanks, in strings). They are ignored 
unless they are essential to separate two consecutive symbols. Capital 
and lower-case letters are considered as being distinct. 

1. Identifiers are sequences of letters and digits. The first character 
must be a letter. 

I ident = letter {letter I digit}. 

Examples include 

x scan Oberon GetSymbol firstLetter 

2. Numbers are (unsigned) integers or real numbers. Integers are se­
quences of digits and may be followed by a suffix letter. The type is the 
minimal type to which the number belongs (see Section A.6.1). If no 
suffix is specified, the representation is decimal. The suffix H indicates 
hexadecimal representation. 

A real number always contains a decimal point. Optionally, it may 
also contain a decimal scale factor. The letter E (or D) is pronounced as 
'times ten to the power of.' A real number is of type REAL, unless it has 
a scale factor containing the letter D, in which case it is of type 
LONG REAL. 

number = integer I real. 
integer = digit {digit} I digit {hexDigit} liB" . 
real = digit {digit} "." {digit} [ScaleFactor]. 
ScaleFactor = (liE" I liD") ["+" I "_"] digit {digit}. 
hexDigit = digit I "A" I liB" I "c" I liD" I "E" I "F". 
digit = "0" I "1" I "2" I "3" I II 4" I "5" I "6" I "7" I "8" I "9". 

Examples include 
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1987 
100H 
12.3 
4.567E8 
0.57712566D-6 

=256 

= 456700000 
= 0.00000057712566 

3. Character constants are either denoted by a single character 
enclosed in quote marks or by the ordinal number of the character in 
hexadecimal notation followed by the letter X. 

I CharConstant = """ character """ I digit {hexDigit} "X". 

4. Strings are sequences of characters enclosed in quote marks ("). A 
string cannot contain a quote mark. The number of characters in a string 
is called the length of the string. Strings can be aSSigned to and 
compared with arrays of characters (see Sections A.9.1 and A.8.2.4). 

I string = "'''' {character} """. 

Examples include 

"OBERON" "Don't worry!" 

5. Operators and delimiters are the special characters, character pairs, 
or reserved words listed below. These reserved words consist 
exclusively of capital letters and cannot be used in the role of identifiers. 

+ .- ARRAY IS TO 
/\ BEGIN LOOP TYPE 

* CASE MOD UNTIL 
/ # CONST MODULE VAR 

< DIV NIL WHILE 
& > DO OF WITH 

<= ELSE OR 
>= ELSIF POINTER 

END PROCEDURE 
I EXIT RECORD 
( IF REPEAT 
[ IMPORT RETURN 
{ IN THEN 

6. Comments may be inserted between any two symbols in a 
program. They are arbitrary character sequences opened by the bracket 
(* and closed by *). Comments do not affect the meaning of a program. 
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A.4 Declarations and scope rules 

Every identifier occurring in a program must be introduced by a dec­
laration, unless it is a predefined identifier. Declarations also serve to 
specify certain permanent properties of an object, such as whether it is a 
constant, a type, a variable or a procedure. 

The identifier is then used to refer to the associated object. This is 
possible only in those parts of a program that are within the scope of 
the declaration. No identifier may denote more than one object within a 
given scope. The scope extends textually from the point of the decla­
ration to the end of the block (procedure or module) to which the dec­
laration belongs and hence to which the object is local. The scope rule 
has the following amendments: 

(1) If a type Tis defined as POINTER TO Tl (see Section A.6.4), then 
the identifier Tl can be declared textually following the 
declaration of T, but it must lie within the same scope. 

(2) Field identifiers of a record declaration (see Section A.6.3) are 
valid in field designators only. 

In its declaration, an identifier in the global scope may be followed by 
an export mark (*) to indicate that it be exported from its declaring 
module. In this case, the identifier may be used in other modules, if 
they import the declaring module. The identifier is then prefixed by the 
identifier designating its module (see Section A.l1). The prefix and the 
identifier are separated by a period and together are called a qualified 
identifier. 

I qualident = [ident 1/."] ident. 
identdef = ident [1/*"]. 

The following identifiers are predefined; their meaning is defined in the 
indicated sections: 

ABS (A.I0.2) LEN (A.I0.2) 
ASH (A.I0.2) LONG (A.I0.2) 
BOOLEAN (A.6.1) LONGINT (A.6.1) 
CAP (A.I0.2) LONG REAL (A.6.1) 
CHAR (A.6.1) MAX (A.I0.2) 
CHR (A.I0.2) MIN (A.I0.2) 
COPY (A.I0.2) NEW (A.6.4) 
DEC (A.I0.2) ODD (A.I0.2) 
ENTlER (A.I0.2) ORD (A.I0.2) 
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EXCL 
FALSE 
HALT 
INC 
INCL 
INTEGER 

(A.lO.2) 
(A.6.l) 

(A.lO.2) 
(A.lO.2) 
(A.lO.2) 
(A.6.1) 

A.S Constant declarations 

REAL 
SET 
SHORT 
SHORTINT 
SIZE 
TRUE 

(A.6.l) 
(A.6.l) 

(A.lO.2) 
(A.6.l) 

(A.lO.2) 
(A.6.1) 

A constant declaration associates an identifier with a constant value. 

I ConstantDeclaration = identdef 1/=" ConstExpression. 
ConstExpression = expression. 

A constant expression can be evaluated by a mere textual scan without 
actually executing the program. Its operands are constants (see Section 
A. 8).Examples of constant declarations include 

N 100 
2*N -1 limit = 

all = {O .. WordSize-l} 

A.6 Type declarations 

A data type determines the set of values that variables of that type may 
assume, and the operators that are applicable. A type declaration is 
used to associate an identifier with the type. Such association may be 
with unstructured (basic) types, or it may be with structured types, in 
which case it defines the structure of variables of this type and, by 
implication, the operators that are applicable to the components. There 
are two different structures, namely arrays and records, with different 

. component selectors. 

I 

TypeOeclaration = identdef 1/=" type. 
type = qualident I ArrayType I RecordType I PointerType I 

ProcedureType. 
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Examples include 

Table 
Tree 
Node 

= ARRAYNOFREAL 
= POINTER TO Node 
= RECORD key: INTEGER; 

left, right: Tree 
END 

CenterNode = RECORD (Node) 
name: ARRAY 32 OF CHAR; 
subnode: Tree 

END 
Function* = PROCEDURE (x: INTEGER): INTEGER 

A.6.1 Basic types 

The following basic types are denoted by predeclared identifiers. The 
associated operators are defined in Section A.8.2, and the predeclared 
function procedures in Section A.10.2. The values of a given basic type 
are as follows: 

1. BOOLEAN the truth values TRUE and FALSE. 
2. CHAR the characters of the extended ASCII set 

(OX ... OFFX). 
3. SHORTINT the integers between MIN(SHORTINT) and 

MAX(SHORTINT). 
4. INTEGER the integers between MIN (INTEGER) and 

MAX(INTEGER). 
5. LONGINT the integers between MIN(LONGINT) and 

MAX(LONGINT). 
6. REAL real numbers between MIN (REAL) and 

MAX(REAL). 
7. LONGREAL real numbers between MIN(LONGREAL) and 

MAX(LONGREAL). 
8. SET the sets of integers between 0 and MAX (SET) . 

Types 3 to 5 are integer types, 6 and 7 are real types, and together they 
are called numeric types. They form a hierarchy; the larger type includes 
(the values of) the smaller type: 

LONGREAL;;;2 REAL ;;;2 LONGINT ;;;2 INTEGER;;;2 SHORTINT 
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A.6.2 Array types 

An array is a structure consisting of a fixed number of elements that are 
all of the same type, called the element type. The number of elements of 
an array is called its length. The elements of the array are designated by 
indices, which are integers between 0 and the length minus 1. 

I ArrayType = ARRAY length {"," length} OF type. 
length = ConstExpression. 

A declaration of the form 

ARRAYNO,Nl, ... ,NkOFT 

is understood as an abbreviation of the declaration 

ARRAY NO OF 
ARRAYNI0F 

ARRAYNkOFT 

Examples of array types include 

ARRAY N OF INTEGER 
ARRAY 10,20 OF REAL 

A.6.3 Record types 

A record type is a structure consisting of a fixed number of elements of 
possibly different types. The record type declaration specifies for each 
element, called a field, its type and an identifier that denotes the field. 
The scope of these field identifiers is the record definition itself, but 
they are also visible within field designators (see Section A.B.l) 
referring to elements of record variables. 

RecordType = RECORD [1/(" BaseType ")"] FieldListSequence 
END~. 

BaseType = qualident. 
FieldListSequence = FieldList {I/;" FieldList}. 
FieldList = [IdentList 1/:" type]. 
IdentList = identdef {I/," identdef}. 
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If a record type is exported, field identifiers that are to be visible outside 
the declaring module must be marked. They are called public fields; 
unmarked fields are called private fields. 

Record types are extensible; that is, a record type can be defined as an 
extension of another record type. In the examples above, CenterNode 
(directly) extends Node, which is the (direct) base type of CenterNode. More 
specifically,CenterNode extends Node with the fields name and subnode. 

Definition: A type TO extends a type T if it equals T or if it directly 
extends an extension of T. Conversely, a type T is a base type of TO if it 
equals TO or if it is the direct base type of a base type of TO. 

Examples of record types include 

RECORD day, month, year: INTEGER 
END 

RECORD 
name, firstname: ARRAY 32 OF CHAR; 
age: INTEGER; 
salary: REAL 

END 

A.6.4 Pointer types 

Variables of a pointer type P assume as values pointers to variables of 
some type T. The pointer type P is said to be bound to T, and T is the 
pointer base type of P. T must be a record or array type. Pointer types 
inherit the extension relation of their base types. If a type TO is an ex­
tension of T and PO is a pointer type bound to TO then PO is also an ex­
tension of P. 

I PointerType = POINTER TO type. 

If P is a variable of type P = POINTER TO T then a call of the predefined 
procedure NEW(p) has the following effect (see Section A.I0.2): A 
variable of type T is allocated in free storage, and a pointer to it is 
assigned to p. This pointer p is of type P; the referenced variable pt is of 
type T. Failure of allocation results in p obtaining the value NIL. Any 
pointer variable may be assigned the value NIL, which points to no 
variable at all. 
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A.6.S Procedure types 

Variables of a procedure type T have a procedure (or NIL) as value. If a 
procedure P is assigned to a procedure variable of type T, the (types of 
the) formal parameters of P must be the same as those indicated in the 
formal parameters of T. The same holds for the result type in the case of 
a function procedure (see Section A.lO.l). P must not be declared local 
to another procedure, and neither can it be a predefined procedure. 

I ProcedureType = PROCEDURE [FormaIParameters]. 

A.7 Variable declarations 

Variable declarations serve to introduce variables and associate them 
with identifiers that must be unique within the given scope. They also 
serve to associate fixed data types with the variables. 

I VariableDeclaration = IdentList ":" type. 

Variables whose identifiers appear in the same list are all of the same 
type. Examples of variable declarations (refer to the examples in Section 
A. 6) include 

i, j, k: INTEGER 
x, y: REAL 
p, q: BOOLEAN 
s: SET 
f: Function 
a: ARRAY 100 OF REAL 
w: ARRAY160F 

RECORD ch: CHAR; 
count: INTEGER 

END 
t: Tree 

Variables of a pointer type TO and VAR-parameters of a record type TO 
may assume values whose type Tl is an extension of their declared type 
TO. 
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A.8 Expressions 

Expressions are constructs denoting rules of computation whereby 
constants and current values of variables are combined to derive other 
values by the application of operators and function procedures. 
Expressions consist of operands and operators. Parentheses may be 
used to express specific associations of operators and operands. 

A.S.l Operands 

With the exception of sets and literal constants, that is numbers and 
character strings, operands are denoted by designators. A designator 
consists of an identifier referring to the constant, variable, or procedure 
to be designated. This identifier may possibly be qualified by module 
identifiers (see Sections A.4 and A.I1), and it may be followed by 
selectors, if the designated object is an element of a structure. 

If A designates an array, then A[E] denotes that element of A whose 
index is the current value of the expression E. Note that E must be of 
integer type. A designator of the form A[EI, E2, ... , En] stands for 
A[El][E2] ... [En]. If p designates a pointer variable, pt denotes the 
variable that is referenced by p. If r designates a record then r.f denotes 
the field f of r. If p designates a pointer, p.f denotes the field f of the 
record pt(that is, the dot implies dereferencing and p.f stands for pt.!> 
and prE] denotes the element of pt with index E. 

The typeguard v(TO) asserts that v is of type TO; that is, it aborts 
program execution if it is not of type TO. The guard is applicable if 

(1) TO is an extension of the declared type T of v, and 

(2) v is a formal variable parameter of record type or v is a pointer. 

designator = qualident {"." ident I 1/[" ExpList 1/]" I 
1/(" qualident 1/)" II/t" }. 

ExpList = expression {I/," expression}. 

If the designated object is a variable then the designator refers to the 
variable's current value. If the object is a procedure, a designator with­
out parameter list refers to that procedure. If it is followed by a 
(possibly empty) parameter list, the designator implies an activation of 
the procedure and stands for the value resulting from its execution. The 
(types of the) actual parameters must correspond to the formal par­
ameters as specified in the procedure's declaration (see Section A.IO). 

Examples of designators (see the examples in Section A.7) include 



i 
aU] 
w[3].ch 
t.key 
t.left.right 
t(CenterNode).subnode 

A.S.2 Operators 

(INTEGER) 
(REAL) 
(CHAR) 
(INTEGER) 
(Tree) 
(Tree) 
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The syntax of expressions distinguishes between four classes of opera­
tors with different precedences (binding strengths). The operator - has 
the highest precedence, followed by multiplication operators, addition 
operators and relations. Operators of the same precedence associate 
from left to right. For example, x - y - z stands for (x - y) - z. 

expression = SimpleExpression [relation SimpleExpression]. 
relation = "=/1 I "#" I "</I I "<=/1 I ">/1 I ">=/1 I IN I IS. 
SimpleExpression = ["+/1 I ,,_/I] term {AddOperator term}. 
AddOperator = "+/1 I "_/I I OR. 
term = factor {MulOperator factor}. 
MulOperator = ,,*/1 I "//1 I DIV I MOD I "&/1 . 
factor = number I CharConstant I string I NIL I set I 

designator [ActuaIParameters] I "(/I expression ")/1 
"_/I factor. 

set = ~T' [element {",/I element}] "}/I. 
element = expression [" .. /1 expression]. 
ActualParameters = "(/I [ExpList] ")/1 . 

The available operators are listed in Sections A.8.2.1-A.8.2.4. In some 
instances, several different operations are designated by the same 
operator symbol. In these cases, the actual operation is identified by the 

. type of the operands. 

A.S.2.1 Logical operators 

Symbol 

OR 
& 

Result 

logical disjunction 
logical conjunction 
negation 

These operators apply to BOOLEAN operands and yield a BOOLEAN 
result. 
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pORq 
p&q 
-p 

stands for 
stands for 
stands for 

A.S.2.2 Arithmetic operators 

Symbol 

+ 

* 

Result 

sum 
difference 
product 
quotient 

"if P then TRUE, else q" 
"if P then q, else FALSE" 
"not p" 

/ 
DIV 
MOD 

integer quotient 
modulus 

The operators +, -, *, and / apply to operands of numeric types. The 
type of the result is that operand's type which includes the other 
operand's type, except for division U), where the result is the real type 
which includes both operand types. When used as operators with a 
single operand, - denotes sign inversion and + denotes the identity 
operation. 

The operators DIV and MOD apply to integer operands only. They 
are related by the following formulas defined for any dividend x and 
positive divisors y: 

x (x DIV y) * y + (x MOD y) 
o <= (xMODy) < y 

A.S.2.3 Set operators 

Symbol Result 

+ union 
difference 

* intersection 
MOD modulus 

Sets are values of type SET. Set operators apply to operands of this type. 
The monadic minus sign denotes the complement of x; that is, -x de­
notes the set of integers between 0 and MAX (SET) that are not elements 
ofx. 

x- y = x * (- y) 
x / y = (x - y) + (y - x) 
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Relations 

Symbol Relation 

equal 
# unequal 
< less 

<= less or equal 
> greater 
>= greater or equal 
IN set membership 
IS type test 

Relations are Boolean. The ordering relations <, <=, > and >= apply to 
the numeric types, CHAR and character arrays (strings). The relations = 
and # also apply to the type BOOLEAN and to set, pointer and pro­
cedure types. x IN s stands for IX is an' element of s.' x must be of an 
integer type, and s of type SET. v IS T stands for IV is of type T' and is 
called a type test. It is applicable if 

(1) T is an extension of the declared type TO of v, and 

(2) v is a variable parameter of record type or v is a pointer. 

Assuming, for instance, that T is an extension of TO and that v is a 
designator declared of type TO, then the test IV IS T' determines whether 
the actually designated variable is (not only a TO, but also) a T. The 
value of NIL IS T is undefined. 

Examples of expressions (refer to the examples in Section A.7) 
include 

1987 
iDIV3 
---pORq 
(i + j) * (i - j) 
s - {8, 9, 13} 
i + x 
a[i + jl * aU - j] 
(0 <= i) & (i < 100) 
t.key = a 
k IN {i.. j -I} 
tIS CenterNode 

(INTEGER) 
(INTEGER) 
(BOOLEAN) 
(INTEGER) 
(SET) 
(REAL) 
(REAL) 
(BOOLEAN) 
(BOOLEAN) 
(BOOLEAN) 
(BOOLEAN) 
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A.9 Statements 

Statements d-enote actions. There are elementary and structured state­
ments. Elementary statements are not composed of any parts that are 
themselves statements. They are the assignment, the procedure call, and 
the return and exit statements. Structured statements are composed of 
parts that are themselves statements. They are used to express 
sequencing and conditional, selective and repetitive execution. A 
statement may also be empty, in which case it denotes no action. The 
empty statement is included in order to relax punctuation rules in 
statement sequences. 

statement = [assignment I ProcedureCall I If Statement I 
CaseStatement I WhileStatement I RepeatStatement I 
LoopStatement I WithStatement I EXIT I 
RETURN [expression] ]. 

A.9.1 Assignments 

The assignment serves to replace the current value of a variable by a 
new value specified by an expression. The assignment operator is writ­
ten as ":=" and pronounced as, becomes. 

I assignment = designator ":=" expression. 

The type of the expression must be included by the type of the variable, 
or it must extend the type of the variable. The following exceptions 
hold: 

(1) The constant NIL can be assigned to variables of any pointer or 
procedure type. 

(2) Strings can be assigned to any variable whose type is an array of 
characters, provided the length of the string is less than that of 
the array. If a string s of length n is assigned to an array a, the re­
sult is ali] = Si for i = 0, ... , n-l, and a[n] = OX. 

Examples of assignments (see the examples in Section A.7) include 

i:= 0 
p:= i = j 
x:= i + 1 



k := log2(i + j) 
F:=log2 
s:= {2, 3,5, 7, 11, 13} 
aU] := (x + y) * (x - y) 
t.key:= i 
wU + l].ch:= "A" 

A.9.2 Procedure calls 
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A procedure call serves to activate a procedure. The procedure call may 
contain a list of actual parameters that are substituted in place of their 
corresponding formal parameters defined in the procedure declaration 
(see Section A.10). The correspondence is established by the positions of 
the parameters in the lists of actual and formal parameters respectively. 
There exist two kinds of parameters: variable and value parameters. 

In the case of variable parameters, the actual parameter must be a 
designator denoting a variable. If it designates an element of a struc­
tured variable, the selector is evaluated when the formal! actual par­
ameter substitution takes place; that is, before the execution of the 
procedure. If the parameter is a value parameter, the corresponding 
actual parameter must be an expression. This expression is evaluated 
prior to the procedure activation, and the resulting value is assigned to 
the formal parameter, which now constitutes a local variable (see also 
Section A.10.1). 

IProcedureCall = designator [ActuaIParameters]. 

Examples of procedure calls include 

ReadInt(i) (see Section A.10) 
WriteInt(j*2 + 1, 6) 
INC(w[k].count) 

A.9.3 Statement sequences 

Statement sequences denote the sequence of actions specified by the 
component statements, which are separated by semicolons. 

I StatementSequence = statement {";" statement}. 
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A.9.4 If statements 

If Statement = IF expression THEN StatementSequence 
{ELSIF expression THEN StatementSequence} 
[ELSE StatementSequencel 
END. 

If statements specify the conditional execution of guarded statements. 
The Boolean expression preceding a statement is called its guard. The 
guards are evaluated in sequence of occurrence, until one evaluates to 
TRUE, whence its associated statement sequence is executed. If no 
guard is satisfied, the statement sequence following the symbol ELSE is 
executed, if there is one. 

An example is 

IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier 
ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber 
ELSIF ch = 22X THEN ReadString 
END 

A.9.S Case statements 

Case statements specify the selection and execution of a statement se­
quence according to the value of an expression. First the case expres­
sion is evaluated; then the statement sequence is executed whose case 
label list contains the obtained value. The case expression and all labels 
must be of the same type, which must be an integer type or CHAR. 
Case labels are constants, and no value must occur more than once. If 
the value of the expression does not occur as a label of any case, the 
statement sequence following the symbol ELSE is selected, if there is 
one. Otherwise it is considered as an error. 

CaseStatement = CASE expression OF case {I/I" case} 
[ELSE StatementSequencel END. 

case = [CaseLabelList 1/:" StatementSequencel. 
CaseLabelList = CaseLabels {I/," CaseLabels}. 
CaseLabels = ConstExpression [1/ .. " ConstExpressionl. 

An example is 

CASEchOF 
"A" .. "Z": ReadIdentifier 



I "0" .. "9": ReadNumber 
I 22X: ReadString 

ELSE SpecialCharacter 
END 

A.9.6 While statements 
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While statements specify repetition. If the Boolean expression (guard) 
yields TRUE, the statement sequence is executed. The expression eval­
uation and the statement execution are repeated as long as the Boolean 
expression yields TRUE. 

I WhileStatement = WHILE expression DO StatementSequence END. 

Examples include 

WHILEj > 0 DO 
j := j DIV 2; i:= i + 1 

END 

WHILE (t # NIL) & (t.key # i) DO 
t := t.left 

END 

A.9.7 Repeat statements 

A repeat statement specifies the repeated execution of a statement se­
quence until a condition is satisfied. The statement sequence is executed 
at least once. 

I RepeatStatement = REPEAT StatementSequence UNTIL expression. 

A.9.S Loop statements 

A loop statement specifies the repeated execution of a statement se­
quence. It is terminated by the execution of any exit statement within 
that sequence (see Section A.9.9). 

I LoopStatement = LOOP StatementSequence END. 
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An example is 

LOOP 
IF t1 = NIL THEN EXIT END; 
IF k < t1.key THEN t2:= tl.left; p:= TRUE 
ELSIF k > t1.key THEN t2 := t1.right; p := FALSE 
ELSE EXIT 
END; 
t1 := t2 

END 

Although while and repeat statements can be expressed by loop 
statements containing a single exit statement, the use of while and re­
peat statements is recommended in the most frequently occurring sit­
uations, where termination depends on a single condition determined 
either at the beginning or the end of the repeated statement sequence. 
The loop statement is useful to express cases with several termination 
conditions and points. 

A.9.9 Return and exit statements 

A return statement consists of the symbol RETURN, possibly followed 
by an expression. It indicates the termination of a procedure, and the 
expression specifies the result of a function procedure. Its type must be 
identical to the result type specified in the procedure heading (see 
Section A.I0). 

Function procedures require the presence of a return statement 
indicating the result value. There may be several, although only one 
will be executed. In proper procedures, a return statement is implied by 
the end of the procedure body. An explicit return statement therefore 
appears as an additional (probably exceptional) termination point. 

An exit statement consists of the symbol EXIT. It specifies termination 
of the enclosing loop statement and continuation with the statement 
following that loop statement. Exit statements are contextually, 
although not syntactically, bound to the loop statement that contains 
them. 

A.9.10 With statements 

If a pointer variable or a variable parameter with record structure is of a 
type TO, it may be designated in the heading of a with clause together 
with a type T that is an extension of TO. Then the variable is guarded 
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within the with statement as if it had been declared of type T. The with 
statement assumes a role similar to the type guard, extending the guard 
over an entire statement sequence. It may be regarded as a regional type 
guard. 

I WithStatement = WITH qualident ":" qualident DO 
StatementSequence END. 

An example is 

WITH t: CenterNode DO name:= t.name; L := t.subnode· END 

A.to Procedure declarations 

Procedure declarations consist of a procedure heading and a procedure 
body. The heading specifies the procedure identifier, the formal par­
ameters and the result type (if any). The body contains declarations and 
statements. The procedure identifier is repeated at the end of the pro­
cedure declaration. 

There are two kinds of procedures, namely proper procedures and 
function procedures. The latter are activated by a function designator as a 
constituent of an expression, and yield a result that is an operand in the 
expression. Proper procedures are activated by a procedure call. The 
function procedure is distinguished in the declaration by indication of 
the type of its result following the parameter list. Its body must contain 
a RETURN statement that defines the result of the function procedure. 

All constants, variables, types and procedures declared within a 
procedure body are local to the procedure. The values of local variables 
are undefined upon entry to the procedure. Since procedures may be 
declared as local objects too, procedure declarations may be nested. 

In addition to its formal parameters and locally declared objects, the 
objects declared in the environment of the procedure are also visible in 
the procedure (with the exception of those objects that have the same 
name as an object declared locally). 

The use of the procedure identifier in a call within its declaration 
implies recursive activation of the procedure. 



300 The programming language Oberon 

ProcedureDeclaration = 
ProcedureHeading ";" ProcedureBody ident. 

ProcedureHeading = 
PROCEDURE ["*"] identdef [FormaIParameters]. 

ProcedureBody = 
DeclarationSequence [BEGIN StatementSequence] END. 

ForwardDeclaration = 
PROCEDURE IIA" identdef [FormaIParameters]. 

DeclarationSequence = 
{CONST {ConstantDeclaration ";"} I 
TYPE {TypeDeclaration ";"} I 
VAR {VariableDeclaration ";"}} 
{ProcedureDeclaration 1/;" I ForwardDeclaration ";"}. 

A forward declaration serves to allow forward references to a procedure 
that appears later in the text in full. The actual declaration - which 
specifies the body - must indicate the same parameters and result type 
(if any) as the forward declaration, and it must be within the same 
scope. 

An asterisk following the symbol PROCEDURE is a hint to the 
compiler, and specifies that the procedure is to be usable as a parameter 
and assignable to variables. (Depending on the implementation, the 
hint may be optional or required.) 

A.lO.l Formal parameters 

Formal parameters are identifiers that denote actual parameters 
specified in the procedure call. The correspondence between formal and 
actual parameters is established when the procedure is called. There are 
two kinds of parameters, namely value and variable parameters. The kind 
is indicated in the formal parameter list. Value parameters stand for 
local variables to which the result of the evaluation of the 
corresponding actual parameter is assigned as initial value. Variable 
parameters correspond to actual parameters that are variables, and they 
stand for these variables. Variable parameters are indicated by the 
symbol V AR, value parameters by its absence. A function procedure 
without parameters must have an empty parameter list. It must be 
called by a function designator whose actual parameter list is empty 
too. 

Formal parameters are local to the procedure; that is, their scope is 
the program text that constitutes the procedure declaration. 
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FormalParameters = 1/(" [FPSection {I/;" FPSection}] 1/)" 
[":" qualident]. 

FPSection = [VAR] ident {"," ident} ":" FormalType. 
FormalType = {ARRAY OF} qualident I ProcedureType. 

The type of each formal parameter is specified in the parameter list. For 
variable parameters, it must be identical to the corresponding actual 
parameter's type, except in the case of a record, where it must be a base 
type of the corresponding actual parameter's type. For value par­
ameters, the rule of assignment holds (see Section A.9.1). If the formal 
parameter's type is specified as 

ARRAY OFT 

the parameter is said to be an open array parameter, and the correspond­
ing actual parameter may be any array with element type T. 

If a formal parameter specifies a procedure type then the corre­
sponding actual parameter must be either a procedure declared globally 
or a variable (or parameter) of that procedure type. It cannot be a 
predefined procedure. The result type of a procedure can be neither a 
record nor an array. 

Examples of procedure declarations include 

PROCEDURE ReadInt(V AR x: INTEGER); 
V AR i : INTEGER; ch: CHAR; 

BEGIN i := 0; Read(ch); 
WHILE ("0" <= ch) & (ch <= "9") DO 

i := 10*i + (ORD(ch)-ORD(IO"»; Read(ch) 
END; 
x:= i 

END ReadInt 

PROCEDURE WriteInt(x: INTEGER); (* 0 <= x < 10.0E5 *) 
VAR 

i: INTEGER; 
buf: ARRAY 5 OF INTEGER; 

BEGIN i:= 0; 
REPEAT buf[i] := x MOD 10; x:= x DIV 10; INC (i) UNTIL x = 0; 
REPEAT DEC(i); Write(CHR(buf[i] + ORD("O"») UNTIL i = 0 

END WriteInt 

PROCEDURE log2(x: INTEGER): INTEGER; 
V AR y: INTEGER; (* assume x > 0 *) 

BEGIN y:= 0; 



302 The programming language Oberon 

WHILE x > 1 DO x := x DIV 2; INC(y) END; 
RETURNy 

ENDlog2 

A.I0.2 Predefined procedures 

Tables A.I-A.3 list the predefined procedures. Some are generic 
procedures; that is, they apply to several types of operands. v stands for 
a variable, x and n for expressions, and T for a type. 

Table A.I Function procedures. 

Name Argument type Result type Function 

ABS(x) numeric type type of x absolute value 

ODD (x) integer type BOOLEAN xMOD2 = 1 

CAP(x) CHAR CHAR corresponding capital letter 

ASH (x, n) x, n: integer type LONGINT x 2n, arithmetic shift 

LEN(v, n) v: array LONGINT the length of v in dimension n 
n: integer type 

LEN(v) array type LONGINT LEN(v,O) 

MAX(D T = basic type T maximum value of type T 
T=SET INTEGER maximum element of sets 

MIN(D T = basic type T minimum value of type T 
T=SET INTEGER 0 

SIZE(D T= any type integer type number of bytes reqUired by T 

Table A.2 Type conversion procedures. 

Name Argument type Result type Function 

ORD(x) CHAR INTEGER ordinal number of x 

CHR(x) integer type CHAR character with ordinal number x 

SHORT(x) LONGINT INTEGER identity (truncation possible) 
INTEGER SHORTINT 
LONGREAL REAL 

LONG (x) SHORTINT INTEGER identity 
INTEGER LONGINT 
REAL LONGREAL 

ENTIER(x) real type LONGINT largest integer not greater than x 
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Note that ENTIER(i/j) = i DIV j 

~ 

Table A.3 Proper procedures. 

Name Argument types Function 

INC(v) integer type v:= v + I 

INC(v, x) integer type v:= v+x 

DEC (v) integer type v:= v-I 

DEC (v, x) integer type v:= v-x 

INCL(v, x) v: SET; x: integer type v:= v + {x} 

EXCL(v, x) v: SET; x: integer type v:= v - {x} 

COPY(x,v) x: character array, string v:=x 
v: character array 

NEW (v) pointer type allocate vt 

HALT(x) integer constant terminate program execution 

In HALT(x), x is a parameter whose interpretation is left to the 
underlying system implementation. 

A.tt Modules 

A module is a collection of declarations of constants, types, variables, 
and procedures, and a sequence of statements for the purpose of as­
signing initial values to the variables. A module typically constitutes a 
text that is compilable as a unit. 

module = MODULE ident 1/;" [ImportList1 DeclarationSequence 
[BEGIN StatementSequence1 END ident 1/." . 

ImportList = IMPORT import {I/," import} 1/;" . 
import = ident [1/:=" ident1. 

The import list specifies the modules of which the module is a client. If 
an identifier x is exported from a module M, and if M is listed in a 
module's import list, then x is referred to as M.x. If the form 'M := MI' 
is used in the import list, that object declared within MI is referenced as 
M.x. 

Identifiers that are to be visible in client modules, that is outside the 
declaring module, must be marked by an export mark in their decla­
ration. 
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The statement sequence following the symbol BEGIN is executed 
when the module is added to a system (loaded). Individual (parameter­
less) procedures can thereafter be activated from the system, and these 
procedures serve as commands. 

An example is 

MODULE Out; 
(* exported procedures: Write, WriteInt, WriteLn *) 
IMPORT Texts, Oberon; 
V AR W: Texts.Writer; 

PROCEDURE Write*(ch: CHAR); 
BEGIN Texts.Write(W, ch) 
END Write; 

PROCEDURE WriteInt*(x, n: LONGINT); 
V AR i: INTEGER; a: ARRAY 16 OF CHAR; 

BEGIN i:= 0; 
IF x < 0 THEN Texts.Write(W, "_"); x := -x END; 
REPEAT 

a[i] := CHR(x MOD 10 + ORD("O"»; x:= x DIV 10; INC(i) 
UNTIL x = 0; 
REPEAT Texts.Write(W, II "); DEC(n) UNTIL n <= i; 
REPEAT DEC (i); Texts.Write(W, a[i]) UNTIL i = 0 

END WriteInt; 

PROCEDURE WriteLn*; 
BEGIN Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf) 
END WriteLn; 

BEGIN Texts.Open Writer(W) 
END Out. 

A.12 The Module SYSTEM 

The module SYSTEM contains definitions that are necessary to program 
low-level operations referring directly to resources particular to a given 
computer and/or implementation. These include, for example, facilities 
for accessing devices that are controlled by the computer, and facilities 
to break the data type compatibility rules otherwise imposed by the 
language definition. It is recommended that their use be restricted to 
specific low-level modules. Such modules are inherently non-portable, 
but are easily recognized due to the identifier SYSTEM appearing in 
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their import lists. The subsequent definitions are those that hold for the 
NS32000 implementation, but they are applicable to most modern 
computers. Individual implementations may differ and include defini­
tions that are particular to the specific, underlying computer. 

Module SYSTEM exports the data type BYTE. No representation of 
values is specified. Instead, certain compatibility rules with other types 
are given: 

(1) The type BYTE is compatible with CHAR and SHORTINT. 

(2) If a formal variable parameter is of type ARRAY OF BYTE then 
the corresponding actual parameter may be of any type. 

The procedures contained in module SYSTEM are listed in Tables A.4 
and A.5. They correspond to single instructions compiled as in-line 
code. For details, the reader is referred to the processor manual. v 
stands for a variable, x, y, a, and n for expressions, and T for a type. 

Table A.4 Function procedures. 

Name Argument types Result type Function 

ADR(v) any LONGINT address of variable v 

BIT(a, n) a: LONGINT BOOLEAN bit n of Mem[a] 
n: integer type 

CC(n) integer constant BOOLEAN Condition n 

LSH(x, n) x: integer type or SET type of x logical shift 
n: integer type 

ROT (x, n) x: integer type or SET type of x rotation 
n: integer type 

VAL(T, x) T, x: any type T x interpreted as of type T 

Table A.S Proper procedures. 

Name Argument types Function 

GET(a, v) a: LONGINT v:=Mem[a] 
v: any basic type 

PUT(a, x) a: LONGINT Mem[a]:= x 
x: any basic type 

MOVE(s, d, n) s,d: LONGINT Mem[d] ... Mem[d+n-l] := 
n: integer type Mem[s] ... Mem[s+n-l] 

NEW (v, n) v: any pointer type allocate storage block of n bytes, 
n: integer type assign its address to v 



Dec Hex Char 
0 OX NUL 
1 IX SOH 
2 2X STX 
3 3X ETX 
4 4X EOT 
5 5X ENQ 
6 6X ACK 
7 7X BEL 
8 8X BS 
9 9X HT 
10 OAX LF 
11 OBX VT 
12 OCX FF 
13 ODX CR 
14 OEX SO 
15 OFX 51 
16 lOX DLE 
17 llX DC1 
18 12X DC2 
19 13X DC3 ~ 

20 14X DC4 
21 lSX NAK 
22 16X SYN 
23 17X ETB 
24 18X CAN 
25 19X EM 
26 lAX SUB 
27 1BX ESC 
28 1CX FS 
29 1DX GS 
30 lEX RS 
31 1FX US 
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Appendix B 
ASCII Character set and 
extremal values 

Dec Hex Char Dec Hex Char Dec Hex 
32 20X sp· 64 40X @ 96 60X 
33 21X ! 65 41X A 97 61X 
34 22X " 66 42X B 98 62X 
35 23X # 67 43X C 99 63X 
36 24X $ 68 44X D 100 64X 
37 25X % 69 45X E 101 65X 
38 26X & 70 46X F 102 66X 
39 27X , 

71 47X G 103 67X 
40 28X ( 72 48X H 104 68X 
41 29X ) 73 49X I 105 69X 
42 2AX * 74 4AX J 106 6AX 
43 2BX + 75 4BX K 107 6BX 
44 2CX I 76 4CX L 108 6CX 
45 2DX - 77 4DX M 109 6DX 
46 2EX 78 4EX N 110 6EX 
47 2FX / 79 4FX 0 111 6FX 
48 30X 0 80 SOX P 112 70X 
49 31X 1 81 SIX Q 113 71X 
50 32X 2 82 52X R 114 72X 
51 33X 3 83 S3X S 115 73X 
52 34X 4 84 54X T 116 74X 
53 35X S 85 55X U 117 75X 
54 36X 6 86 56X V 118 76X 
55 37X 7 87 57X W 119 77X 
56 38X 8 88 58X X 120 78X 
57 39X 9 89 59X Y 121 79X 
58 3AX : 90 SAX Z 122 7AX 
59 3BX ; 91 5BX [ 123 7BX 
60 3CX < 92 SCX \ 124 7CX 
61 3DX = 93 5DX ] 125 7DX 
62 3EX > 94 SEX /\1 126 7EX 
63 3FX ? 95 5FX 127 7FX -

1 Oberon fonts print an upward arrow lit" instead of the caret "IV'. 

Char 
, 

a 
b 
c 
d 
e 
f 
g 
h 
i 
j 
k 
1 
m 
n 
0 

P 
q 
r 
s 
t 
u 
v 
w 
x 
Y 
z 
{ 
I 
} 

-
DEL 
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TypeT bits MIN(D MAX(D 

SHORTINT 8 -128 127 
INTEGER 16 -32768 32767 
LONGINT 32 -2147483648 2147483647 
REALI 32 -3.40282346E38 3.40282346E38 
LONGREAL 64 -at a 
CHAR 8 0 255 
SET 32 0 31 

t a = 1.7976931348623157E308 

1 REAL and LONGREAL values are extended one full digit beyond their 
represented accuracy to help in generating rounding and conversion algorithms. 
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AppendixC 
Modules In, Out and 
XYplane 

Throughout this book we have relied on the input/ output abstractions 
provided by modules In, Out and XYplane. A particular implementation 
of these modules is given in this appendix. The modules have 
been tested on the original Ceres implementation, as well as on the 
Oberon system provided for IBM RS/6000, SUN Sparcstation, Apple 
Macintosh II and DECStation (see the list in the preface). 

MODULE In; 
IMPORT Texts, Viewers, Oberon, TextFrames; 
VAR 

T: Texts.Text; 
S: Texts.Scanner; W: Texts.Writer; 
beg: LONGINT; 
Done*: BOOLEAN; 

PROCEDURE Put(txt: ARRAY OF CHAR); 
BEGIN Texts.WriteString(W, txt); Texts.WriteLn(W); 
Texts.Append(Oberon.Log, W.buf) 
END Put; 

PROCEDURE Open*; 
VAR 

end, time: LONGINT; 
V: Viewers. Viewer; 

BEGIN 
Texts.OpenScanner(S, Oberon. Par . text, Oberon. Par . pos); 
Texts.Scan(S); 
IF (S.c1ass = Texts.Char) & (S.c = "t") THEN 

(* Start input stream at beginning of selection *) 
Oberon.GetSelection(T, beg, end, time); 
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IF time >= 0 THEN 
Texts.OpenScanner(S, T, beg); Done:= -S.eot 

ELSE 
Put("No selection"); Done:= FALSE 

END 
ELSIF (S.c1ass = Texts.Char) & (S.c = "*") THEN 

(* Start input stream at beginning of text in marked viewer *) 
V := Oberon.MarkedViewerO; 
IF -Oberon. Pointer .on THEN 

Put("Pointer not visible"); Done:= FALSE 
ELSIF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN 

T.:= V.dsc.next(TextFrames.Frame).text; beg:= 0; 
Texts.OpenScanner(S, T, beg); Done:= -S.eot 

ELSE 
Put("Marked viewer not a text viewer"); Done:= FALSE 

END 
ELSE 

(* Start input stream after command name *) 
T := Oberon.Par.text; beg:= Oberon.Par.pos; 
Texts.OpenScanner(S, T, beg); Done:= -S.eot 

END 
END Open; 

PROCEDURE Char*(V AR ch: CHAR); 
BEGIN 

IF Done THEN 
ch := S.nextCh; Done:= -S.eot; Texts.Read(S, S.nextCh) 

END 
END Char; 

PROCEDURE Int*(VAR i: INTEGER); 
BEGIN 

IF Done THEN 
Texts.Scan(S); i:= SHORT(S.i); Done:= (S.c1ass = Texts.lnt) 

END 
END Int; 

PROCEDURE Longlnt*(VAR i: LONGINT); 
BEGIN 

IF Done THEN 
Texts.Scan(S); i:= S.i; Done:= (S.c1ass = Texts.lnt) 

END 
END LongInt; 
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Module Out 

PROCEDURE Real*(V AR x: REAL); 
BEGIN 

IF Done THEN 
Texts.Scan(S); x:= S.x; Done:= (S.c1ass = Texts.Real) 

END 
END Real; 

PROCEDURE Name*(VAR nme: ARRAY OF CHAR); 
BEGIN (* Read a ,name such as Syntax.Scn.Fnt from input stream *) 

IF Done THEN 
Texts.Scan(S); COPY(S.s, nme); Done:= (S.c1ass = Texts.Name) 

END 
END Name; 

PROCEDURE String*(VAR str: ARRAY OF CHAR); 
CONST CR = ODX; NUL = OX; 
V AR ch: CHAR; j: LONGINT; 
BEGIN (* Read blank delimited character sequence *) 

IF Done THEN 
REPEAT Char(ch) UNTIL «ch # II ") & (ch # CR» OR -Done; 
j:= 0; 
WHILE Done & (ch # II ") & (ch # CR) DO 

IF j < LEN(str) - 1 THEN str[j1 := ch; INC(j) END; 
Char(ch) 

END; 
str[j1 := NUL; Done := j # 0 

END 
END String; 

BEGIN Texts.OpenWriter(W); Done:= FALSE 
END In. 

MODULE Out; 
IMPORT Texts, Oberon, MenuViewers, TextFrames; 
VAR 

T: Texts.Text; S: Texts.Scanner; W: Texts.Writer; 
beg: LONGINT; 

PROCEDURE Open*; 
VAR 

x, y: INTEGER; 
menuF, mainF: TextFrames.Frame; 
V: MenuViewers.Viewer; 
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BEGIN 
T:= TextFrames.Text("Out.Text"); 
menuF := TextFrames.NewMenu("Out.Text", 
"System. Close System.Copy System.Grow Edit.Search Edit.Store"); 
mainF:= TextFrames.NewText(T, T.len - 200); 
Oberon.AllocateUserViewer(Oberon.Mouse.X, x, y); 
V:= MenuViewers.New(menuF, mainF, TextFrames.menuH, x, y) 

END Open; 

PROCEDURE Char*(ch: CHAR); 
BEGIN Texts.Write(W, ch); Texts.Append(T, W.buf) 
END Char; 

PROCEDURE String*(str: ARRAY OF CHAR); 
BEGIN Texts.WriteString(W, str); Texts.Append(T, W.buO 
END String; 

PROCEDURE Real*(x: REAL; n: INTEGER); 
BEGIN Texts.WriteReal(W, x, n); Texts.Append(T, W.buO 
END Real; 

PROCEDURE Int*(i, n: LONGINT); 
BEGIN Texts.WriteInt(W, i, n); Texts.Append(T, W.buf) 
END Int; 

PROCEDURE Ln*; 
BEGIN Texts.WriteLn(W); Texts.Append(T, W.buf) 
ENDLn; 

BEGIN Texts.OpenWriter(W); T:= Oberon.Log 
END Out. 

Module XYplane MODULE XYplane; 
IMPORT Display, MenuViewers, Oberon, TextFrames, Input; 
CONST 

max = 32768; replace = Display.replace; 
black = Display.black; white = Display.white; 
erase* = 0; draw* = 1; (* values for parameter mode in Dot *) 

TYPE 
XYframe = POINTER TO XYframeDesc; 
XYframeDesc = RECORD (Display.FrameDesc) END; 
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VAR 
F: XYframe; 
bitmap: ARRAY max OF SET; 
X*, Y*, W*, H*: INTEGER; (* location and extent of viewer *) 

PROCEDURE Modify(F: XYframe; VAR M: MenuViewers.ModifyMsg); 
BEGIN 

IF (M.id = Menu Viewers. extend) & (M.dY > 0) THEN 
Display.RepIConst(black, F.X, F.Y + F.H, F.W, M.dY, replace) 

END; 
IF M.Y < F.Y THEN 

Display.RepIConst(black, F.X, M.Y, F.W, F.Y - M.Y, replace) 
END; 
X := F.X; Y:= M.Y; W:= F.W; H:= M.H 

END Modify; 

PROCEDURE Handle*(F: Display.Frame; VAR M: Display.FrameMsg); 
BEGIN 

WITH F: XYframe DO 
IF MIS Oberon.lnputMsg THEN 

WITH M: Oberon.lnputMsg DO 
IF M.id = Oberon. track THEN 

Oberon.DrawCursor(Oberon.Mouse, Oberon. Arrow, 
M.X,M.Y); 

END 
END 

ELSIF M IS Menu Viewers.ModifyMsg THEN 
WITH M: Menu Viewers.ModifyMsg DO 

Modify(F, M) 
END 

END 
END 

END Handle; 

PROCEDURE Clear*; 
V AR j: LONGINT; 
BEGIN 

Display.RepIConst(black, F.X, F.Y, F.X + F.W, F.Y + F.H, replace); 
j:= 0; WHILE j < max DO bitmap[j] := 0; INC(j) END 

END Clear; 

PROCEDURE Open*; 
VAR 

menuF: TextFrames.Frame; 



x, y: INTEGER; 
V: MenuViewers.Viewer; 

BEGIN 
Oberon.OpenTrack(Display.Left, 0); 
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menuF:= TextFrames.NewMenu("XY Plane", "System. Close"); 
NEW(F)~ F.handle:= Handle; 
Oberon.AllocateUserViewer(Display.Left, x, y); 
V := MenuViewers.New(menuF, F, TextFrames.menuH, x, y); 
Clear 

END Open; 

PROCEDURE Dot*(x, y, mode: INTEGER); 
V AR k, i, j: LONGINT; 
BEGIN 

IF (x >= F.X) & (x < F.X + F.W) & (y >= F.Y) & (y < F.Y + F.H) THEN 
k:= LONG(y)*F.W + x; i:= k DIV MAX (SET); 
j := k MOD MAX(SET); 
CASE mode OF 

0: Display.Dot(black, x, y, replace); EXCL(bitmap[i], j) 
11: Display.Dot(white, x, y, replace); INCL(bitmap[i], j) 

END 
END 

END Dot; 

PROCEDURE IsDot*(x, y: INTEGER): BOOLEAN; 
V AR k, i, j: LONGINT; 
BEGIN 

IF (x >= F.X) & (x < F.X + F.W) & (y >= F.Y) & (y < F.Y + F.H) THEN 
k:= LONG(y)*F.W + x; i:= k DIV MAX(SET); 
j := k MOD MAX(SET); 
IF j IN bitmap[i] THEN RETURN TRUE 
ELSE RETURN FALSE 
END 

ELSE RETURN FALSE 
END 

END IsDot; 

PROCEDURE Key*O: CHAR; 
V AR ch: CHAR; 
BEGIN ch:= OX; 

IF Input.AvailableO > a THEN Input.Read(ch) END; 
RETURNch 

END Key; 
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