| “%g;;ﬁ]\/Iartin Reiser o Niklaus Wirth

s A
,é

f

 PROGRAMMING IN

© ' STEPS BEYOND
PASCAL AND MODULA

ADDISON-WESLEY

Programming in Oberon

ACM PRESS

Editor-in-Chief Peter Wegner Brown University
International Editor Dines Bjorner Technical University
(Europe) of Denmark
SELECTED TITLES

Advances in Database Programming Languages Frangcois Bancilhon and
Peter Buneman (Eds)

Algebraic Specification].A. Bergstra,]. Heering and P. Klint (Eds)

Software Reusability (Volume 1: Concepts and Models) Ted Biggerstaff
and Alan Perlis (Eds)

Software Reusability (Volume 2: Applications and Experience)
Ted Biggerstaff and Alan Perlis (Eds)

Object-Oriented Concepts, Databases and Applications Won Kim and
Frederick H. Lochovsky (Eds)

Performance Instrumentation and Visualization Rebecca Koskela and
Margaret Simmons (Eds)

Distributed Systems Sape Mullender (Ed)
The Programmer's Apprentice ~ Charles Rich and Richard C. Waters

Instrumentation for Future Parallel Computer Systems Margaret
Simmons, Ingrid Bucher and Rebecca Koskela (Eds)

User Interface Design Harold Thimbleby

The Oberon System: User Guide and Programmer's Manual
Martin Reiser

Preface

The most amazing fact about the computing industry is the dramatic
improvement in the performance of computing machinery - a trend
observed for three decades and projected to continue unabated. Not
only is this trend exponential — a doubling of the power every two to
four years - it also takes place at costs that are roughly constant for each
machine class, CPU, minicomputer, PC or workstation. In other words,
the price-performance drops the same way as performance ircreases.

In contrast to the hardware, the programs that make computers
useful do not show anything close to steady advancement - let alone
exponential progress. Historically, innovation took place in short
intensive spurts, interrupted by long plateaus during which armies of
programmers struggled to embody new concepts in useful software. In
the field of personal computing, such a surge took place during the
seventies, lead by the famous Palo Alto Research Center (PARC). The
eighties, in contrast, are a rather dull period characterized by a
predominant product orientation. v

As the industry tries to implement the personal computing paradigm,
more and more difficulties emerge. The operation systems that became
standards fail even to capitalize on the "software engineering principles’
available at the time. The premature rush into standards froze
innovation in that area and led to the phenomenon of grafting layer
upon layer of code onto a dated base system.

A critical eyewitness may conclude that software is well on its way to
neutralizing the phenomenal gains of the hardware. The reasons are
many, and there is no single patent answer. We observe, however, that
despite claims of doing 'software engineering,” the most basic of
engineering principles is rarely practiced: to strive for economy of
means and simplicity of solutions. ‘Software engineers’ are still beating
the lather, rather than using the razor of Occham!

It is precisely at this point that one of us started research: to build a
system from scratch — led by the quote by Albert Einstein: ‘make it as
simple as possible, but not simpler.’ The result of that research is Oberon: a
language and an operating system for a personal computer or
workstation.

vi Preface

This book is one of three. It describes the language Oberon (the others
being Reiser, 1991; Wirth and Gutknecht, 1992). Its concept follows
Programming in MODULA-2 (Wirth, 1982):

* It is a language reference.

¢ It is a programming tutorial, exhibiting modern programming
concepts. '

¢ It implements these concepts in Oberon.

The book should therefore serve the professional programmer as well
as university professors and students. The text is composed of reference
sections and examples.

Writing a book on programming poses many challenges, in particular
how to choose the order in which concepts and constructs are
introduced and how to choose examples that are exciting and realistic,
yet rely solely on material explained earlier in the text. Our approach is
distinguished in two ways: the procedure and module are introduced
early, right after the control structures, and the examples share a
common theme: simulation. In the end, a complete and realistic
simulation package is obtained.

The Oberon language was purposefully designed to serve as an
implementation tool for the Oberon system, an efficient, concise
operating system founded on object-oriented programming. The
language, however, is not tied to the system — compilers can be
provided for any machine under most current operating systems.
Programming in Oberon therefore requires no knowledge of the Oberon
system, and digresses only minimally into a discussion of Oberon
system concepts. :

The book is organized into three parts as follows.

Part I: Tokens, basic types, assignment, control
structures, procedures, modules

Part I is about basic programming constructs. At the end, all knowledge
is available to write complete Oberon modules that use scalar variables
only.

The syntax of Oberon is introduced rigorously using the well-known
EBNF! notation. The semantics of the assignment and the control
structures are formally defined using transformation rules of predicates
that define the state of the computation prior and after execution of a

1 Extended Backus Naur formalism.

Preface vii

statement. The formalism, due to Dijkstra, is introduced by means of
easy examples and presented in a notation close to that of Oberon.

The early introduction of the procedure and the module is made
possible by using a stimulating example: drawing a fractal fern. To
complete the example, the basic concepts of input and output are
introduced through the notion of the stream and a module providing
graphic output. Oberon takes the view that input and output are not
parts of the language, but are provided by modules that can be
considered extensions of the operating system.

Part II: Arrays, records, pointers, dynamic data,
stepwise refinement, data abstraction

Part I introduces classic programming. At the end, roughly the scope of
Modula-2 is covered.

The array and dynamic data structures are the turf of ‘data structures
and algorithms’ — a classical topic of computer science. This text is not
in competition with the many excellent textbooks in that area.
Nevertheless, searching in arrays (but not sorting), the list and the tree
are discussed. The list processing procedures lay the foundation for the
completed examples that will follow.

Part II ends with Chapter 10, which introduces the important
programming techniques of stepwise refinement, abstract data structures
and abstract data types. These programming concepts are introduced by
developing a simulation package composed of several modules.

Part III: Type extension, procedure types, object-
orientation

Here starts the new and exciting material that sets Oberon aside from
its predecessor Modula-2. The goal is a programming technique that
makes programs extensible and reusable. Type extension in combination
with procedure variables lay the foundation. Chapter 11 is a reference
for Oberon type extension and procedure types.

Object-orientation as a programming technique, together with object-
oriented programming languages, is a fashionable topic. Oberon is true
to its spirit: a minimal language extension — namely extension of record
types — suffices. This is in contrast to other approaches that introduce a
wealth of new concepts many simply renaming established notions.

viii

Preface

Chapter 12 introduces object-orientation, the Oberon way. The example
of a graphics editor is used to avoid talking in abstract terms only.

Chapter 13 restates the simulation program of Chapter 10 using an
object-oriented approach. A fully functional package is presented that is
actually fit to serve in the practice of discrete event simulations.

Oberon objects differ from those defined by other languages (such as
C++) by the fact that procedures (methods) are bound to instances, not
to the type of objects. Chapter 14, finally, describes Oberon-2, a small
and fully upward compatible extension of Oberon proper (M6éssenbock
and Wirth, 1991). The major addition of Oberon-2 is the type-bound
procedure that implements dynamic binding to the type.

Appendices

A revised version of the original report on the programming language
Oberon is found in Appendix A (Wirth, 1988). Appendix B gives an
ASCII table and lists common extremal values of the basic types.
Throughout the book, we make use of certain input/output abstraction
that are provided by three modules, In, Out and XY plane. The source
text of these modules is given in Appendix C.

On the examples and exercises

We conclude this preface with some remarks about the examples used
and the exercises suggested in this text. The selection of examples and
exercises is always important — but it is crucial in the area of pro-
gramming. Every teacher of programming also knows from experience
that this choice is also burdened by an inherent dilemma. Obviously,
this book cannot banish it. On the one hand, every extensive and com-
plex subject must be taught in steps, and in each step exercises should
be confined to the concepts presented. They have to be reasonably small
and concentrate on the essentials. On the other hand, true mastery of
programming requires experience in the construction of large, non-
trivial designs. Such experience, however, cannot be acquired only by
study, nor through solving small exercise problems. It requires active
involvement in projects, and is earned through years of deep
involvement. But it finally rests on certain basic rules of discipline, and
these rules may very well be taught — in fact should be taught - in in-
troductory courses. The irony lies in the fact that such rules are largely
considered as irrelevant in the solution of typical course exercises. They
are ridiculed by most students, if they are mentioned at all, as
idiosyncrasies and expressions of the pedantry of the teacher. Their ba-
sic value is recognized only when large projects are undertaken and fail

Preface ix

— which happens long after the introductory course has been completed
successfully. We must accept this dilemma and muster the courage to
stress the importance of details, even if pedantic insistence on discipline
is mistakenly interpreted as hindrance to creativity. Pedantry in
programming is not a luxury, but a necessity.

Students on most programming courses are given the impression that
the essence of programming is to concoct code that causes a computer
to operate in a specific fashion. While this may be true for typical
commercial endeavors, we maintain that ultimately a program is
worthless if it cannot be understood by other human beings. Its for-
mulation must be chosen with the goal of providing the conviction to
human beings that it satisfies its purpose. Every program should be a
publishable design. This is a far cry from the usual goal that the ‘program
runs’!

We can at least assure the reader that a notation which encourages
the programmer to be precise and explicit is indispensable for
approaching this goal. Oberon is such a notation.

Oberon system implementations

It is self-evident that this book will be most useful if the reader has an
Oberon compiler at his or her disposal. Besides the original Oberon
version running on the Ceres workstation built at the Swiss Federal
Institute of Technology (Eberle, 1987), many implementations are
currently available as freeware, in particular for

e RS/6000 IBM)

* Sparcstation (SUN microsystems)
* Macintosh II (Apple)

e DECStation/3100 and 3500 (DEC).

How to get Oberon

Oberon can be obtained via anonymous internet file transfer ftp (at
no charge) or on floppy disks (for a fee of 50 Swiss Francs per
implementation, which is about 35 US Dollars). We accept payment
via Eurocard/Mastercard or VISA. To order by credit card, specify
your card number, expiry date and your name exactly as it appears
on the card. Please remember to specify your type of machine when
ordering.

x Preface

FTP Hostname: neptune.inf.ethz.ch
Internet Address: 129.132.101.33
FTP Directory: Oberon

For further information, please contact

The Secretary, Institut fiir Computersysteme ETH, 8092 Zurich,
Switzerland

Telephone (+41—1) 254 7311. Facsimile (+41—1) 261 5389.

Sample Programs from Programming in Oberon

Various sample programs from within this book are also available in
Source form from the ETH Server via anonymous internet file transfer
ftp (at no charge).

Acknowledgements

The authors thank Peter Méssenbock for many helpful suggestions and
a careful manuscript reading. '

References

Eberle H. (1987). Development and analysis of a workstation computer. Ph. D.
Thesis, Swiss Federal Institute of Technology, ETH Nr. 8431.

Mossenbock H. and Wirth N. (1991). The programming language Oberon-2.
Structured Programming, 12, 179-95.

Reiser M. (1991). The Oberon System: User Guide and Programmer’s Manual.
Wokingham: Addison-Wesley.

Wirth N. (1982). Programming in Modula-2. Berlin: Springer-Verlag.

Wirth N. (1988). The programming language Oberon. Software—Practice and
Experience 18, 671-90.

Wirth N. and Gutknecht J. (1992). Project Oberon. Wokingham: Addison-Wesley.

Trademark notice

AppleTM and Macintosh™ are registered trademarks of Apple Computer, Inc.
DECstation™ is a trademark of Digital Equipment Corporation -

IBM RISC System/6000™ is a trademark of International Business Machines Corporation
Smalltalk™ and Smalltalk-80™ are trademarks of Xerox Corporation

MC 68030™ and MC 68882™ are trademarks of Motorola Corporation

Series 32000R™ is a trademark of National Semiconductor Corporation

SUN Sparcstation™ is a trademark of Sun Microsystems Incorporated

Contents

Part1

Preface

Why Oberon?
1.1 The Algol family
1.2 The Oberon system

A first Oberon program
2.1 A notation to describe the syntax of Oberon
2.2 Exercises

Tokens, Basic types, Assignment, Control structures,
Procedures, Modules

Tokens and basic types
3.1 The vocabulary of Oberon
311 Identifiers
3.12 Numbers
313 Character constants
314 Strings
315 Operators and delimiters
3.1.6. Predeclared identifiers
3.1.7 Rules for blanks and carriage-returns
3.2 Basic types
321 The types SHORTINT, INTEGER and LONGINT
322 Thetypes REAL and LONGREAL
3.23 Hierarchy of the numeric types
324 The type BOOLEAN
3.25 Thetype SET
3.2.6 The type CHAR

Declarations, expressions and assignments
4.1 Declarations

4.1.1 Constant declarations

4.1.2 Variable declarations

23
23
24
24
25
25
25
26
26
27
27
28
28
28
29
39

30
30
31
31

Xi

Xii

Contents

4.2 Expressions
421 Syntax and general semantics
422 Typerules
423 Relations
424 Arithmetic expressions
425 Boolean expressions
42.6 Set expressions
4.2.7 Predeclared functions
4.3 The assignment statement
431 Type rules
432 Formal definition, pre-condition and post-condition
433 Statement sequence
434 Special assignment statements as predeclared
procedures
44 Summary
4.5 Exercises
Control structures
5.1 Conditional statements
51.1 The if statement
512 Formal definition of the if statement
513 The case statement
514 Formal definition of the case statement
5.2 Repetitive statements
52.1 The while statement
52.2 Formal definition of the while statement
52.3 The repeat statement
524 Formal definition of the repeat statement
525 The loop statement
5.3 Summary
5.4 Exercises

Procedures and modules

6.1
6.2

6.3

The procedure: a statement sequence with a name

The concept of locality

6.2.1 Scope

6.2.2 Nesting of scopes

6.2.3 Advantage of locality

Modules

6.3.1 The scope defined by a module declaration
of global variables

6.3.2 The statement sequence of a module

6.3.3 Export and import of declarations

32
32
34
35
36
37
38
39
39
40
41
42

44
44
45

47
48
48
49
52
53
53
54
54
57
58
58
59
60

63
66
67
68
68
69
69

70
71
71

Part I1

6.4

6.5

6.6

Contents xiii

Function procedures and parameters

6.4.1
6.4.2
6.4.3

The function procedure heading
Formal parameters and the return statement
Actual parameters, the function call

Proper procedures

6.5.1
6.5.2

Syntax, the call statement
Value and variable parameters

More on function procedures

6.6.1 Side-effects
6.6.2 Recursion
6.7 Compiler hints
6.8 Summary
6.9 Exercises
Input and output
7.1 Sequential input and output, modules In and Out
7.2 Graphics output
7.3 The fractal fern, completion of the example

74

7.5
7.6

The Oberon system: a short digression
74.1 Execution of commands

742 Therole of texts

74.3 Modules In and Out

744 Module XYplane

Summary

Exercises

Arrays, Records, Pointers, Dynamic data, Stepwise
refinement, Data abstraction

Type declarations, array and record types

8.1
8.2

8.3

Type declaration

Arrays

82.1 The array type and the array declaration

822 The array designator, assignment and expressions
82.3 Parameters of array type

824 The open array parameter

82.5 Thearray as a table

8.2.6 Strings and the type ARRAY n OF CHAR
Records

83.1 The record type and the record declaration

8.32 The record designator, assignments and expressions
8.3.3 Use of records

8.4 Summary
8.5 Exercises

73
74
75
76
77
77
78
80
80
81
82
83
84

87
88
90
92
95
95
96
98
100
100
101

109
110
112
112
113
115
117
119
122
126
126
128
130
131
132

xiv Contents

10

Part 111

11

Dynamic data structures and pointer types

9.1

9.2

9.3

94
9.5
9.6

Pointers

9.1.1 The pointer type and pointer declarations
9.1.2 Creation of variables referenced by pointers
9.1.3 Dereferencing a pointer

9.14 Memory management

Lists :

9.2.1 Simple or linear lists

922 FIFOlists

Trees

9.3.1 Inherently recursive procedures

9.3.2 Searching in trees

Other dynamic data structures

Summary

Exercises

Stepwise refinement and data abstraction

101

10.2 Putting the operation of the queue into Oberon terms

10.3

10.4

10.5

10.6
10.7

Type extension, Procedure types, Object orientation

Discrete event simulation of a waiting line

10.2.1 Data representation of the system state

10.2.2 A first round of refinement of the queueing algorithm

Hiding of details

10.3.1 Implementation of module Calendar
10.3.2 Computing statistics: module Paths
Completion of the simulation example

More on program structuring and abstraction
10.5.1 Decomposition into modules, data hiding

10.5.2 Module Out: an example of an abstract data structure
10.5.3 Module Files: an example of an abstract data type

10.54 Textual structure and naming
Summary
Exercises

Type extension and procedure types

11.1

11.2

Extension of record types

11.1.1 Declaration of an extended type
11.12 Record designators and assignments
Pointers, type guards and type tests

11.2.1 Extension of pointer types

11.2.2 Static and dynamic type, type guard, type test

11.2.3 With statement, regional type guard

134
136
136
137
137
139
140
140
144
146
148
151
153
154
155

158
158
161
161
162
164
164
167
170
173
173.
174
176
179
181
182

187
190
190
191
194
194
195
197

12

13

11.3

11.4
11.5

Contents xv

Procedure types

11.3.1 The procedure type and procedure variables
11.3.2 Expressions and assignments

11.3.3 Call of procedure variables

11.3.4 Formal parameters of procedure type

11.3.5 Up-calls

Summary

Exercises

Object-orientation

12.1
12.2
12.3
12.4

12.5

12.6

12.7

Generic modules

Heterogeneous data structures

Objects, dynamic binding of procedures

Objects and modules

12.4.1 Module Graphics

12.4.2 Shape-specific modules

12.43 Creation of a new figure

1244 Redefining a dynamically bound procedure
1245 Summary

Message and handlers

12.5.1 Message and handler

12.5.2 Message broadcast

12.5.3. Generality of handlers

1254 Summary

Conclusions and outlook

12.6.1 Two categories of Oberon objects —a comparison
12.6.2 On the object-oriented programming paradigm
Exercises

A simulation example

13.1

13.2

13.3

134
13.5

Generic module Qs

13.1.1 Definition

13.1.2 Implementation

An object-oriented simulation calendar
1321 Data type Actor and basic module structure
13.22 Module Sim: an abstract simulation
A simulation based on module Sim

13.3.1 Data types and module structure
13.3.2 Definition of module Stations

13.3.3 Implementation of module Stations
13.3.4 Implementation of module Model
Summary

Exercises

199
199
200
201
202
203
204
205

208
210
212
215
220
221
223
224
227
229
230
231
233
234
235
236
236
238
239

245
245
246
247
250
250
251
254
256
257
258
260
262
263

Xvi

Contents

14 Oberon-2

14.1

14.2
14.3
14.4

Type-bound procedures

14.1.1 Syntax and general semantics
14.1.2 Example: graphics editor

For statement

The open array variable

The Oberon-2 with statement

14.5 Read-only export

14.6 Summary and discussion

14.7 Exercises

Appendix A The programming language Oberon
A.1 Introduction

A2 Syntax

A3 Vocabulary and representation
A4 Declarations and scope rules
A5 Constant declarations

A.6 Type declarations

A7 Variable declarations

A.8 Expressions

A9 Statements

A.10 Procedure declarations

A.11 Modules

A.12 The Module SYSTEM

Appendix B ASCII Character set and extremal values

Appendix C Modules In, Out and XYplane

Index

265
265
267
270
273
274
275
276
277
278

281
281
281
282
284
285
285
289
290
294
299
303
304

306
308

315

Algol 60

1

1.1

Why Oberon?

This is a book about programming, and in particular about program-
ming in the language Oberon. Why should the reader be interested in
learning to program in Oberon instead of one of the widely known
languages? The answer is because it is a language that is defined in
terms of relatively few, fundamental programming concepts, because it
is rigorously structured, and because it is efficiently implemented on
modern computers. These are essentially the same reasons that 20 years
ago spoke for the language Pascal. These properties encourage a
systematic approach to the design of programs, and are the
prerequisites for using the essential technique of modular design based
on abstractions. Oberon is a ‘small’ language, which makes it
particularly suited as notation for an introduction to programming. Yet
its concepts are general and powerful, making it equally appropriate
for the construction of large software systems. These claims have been
substantiated by the use of Oberon both in teaching and in the design of
the Oberon system itself.

The Algol family

Oberon is both new and old. It is new, because it is not merely an
extension of another language. And it is old in the sense that most of its
concepts have been taken over from existing languages. Oberon is the
latest descendant in the family of languages whose root is Algol 60
(1960), and whose other members are Pascal (1970), Modula-2 (1979)
and Oberon (1988). It is therefore appropriate to comment on these
members and thereby to explain the family’s evolution and the
‘philosophy’ behind it.

Algol 60 was designed by a a committee of 13 experts from many coun-
tries (Naur, 1963). The goal was to establish a common notation for the
formulation of algorithms (programs), for the purpose of having them

2- Why Oberon ?

Pascal -
structured
programming

not only interpreted by computers, but also studied and understood by
programmers. A necessary condition for approaching this latter goal
was that the language be rigorously defined without reference to any
specific computer or abstract mechanism. The goal was splendidly
reached with regard to syntax. Algol 60 was the first language where it
was easily decidable whether or not a sequence of symbols formed a
(syntactically) correct program. The influence of this rigor had a
tremendous impact on defining, explaining and implementing lan-
guages. With regard to defining the semantics of various language
constructs, the goal of a mechanism-independent static definition still
remains elusive. Nevertheless, much progress has been made - all
based on the prerequisite that a language’s syntax be clearly structured.

However, Algol 60 was a mixture of elegant, fundamental constructs
and of strangely baroque features. Not surprisingly, the latter turned
out to be largely unsuccessful and quite superfluous. We mention the
overly general for statement, the own variables, and the name
parameters. At the same time, facilities that emerged as indispensable
for certain applications, such as record and pointer variables were
entirely missing. Algol 60 had been designed by mathematicians for the
formulation of their numerical algorithms, and its designers had little
background in other areas.

Many descendants of Algol 60 were proposed and even implemented.
The most successful was Pascal (Wirth, 1971; Hoare and Wirth, 1973),
which is still in wide use at the present time. It followed the Algol
tradition of being a structured language well suited for practicing
structured programming. Algol’s oddities had been left out, and a few
facilities for widening its range of applications had been added. The
single most important innovation was to apply the same approach to
the definition of data as was introduced by Algol for executable
statements: recursive structuring.

Algol 60 featured the basic data types of integers, real numbers, and
Boolean truth values, and it allowed the programmer to define arrays of
variables of these types. Pascal provides, in addition to further basic
types, the array, record, set and file structures. User-defined structures
can be given names and can be used as types of components of other
structures. Hence it is possible to define nested structures, such as
arrays of records and records with arrays as components. Records, in
particular, extended the range of applications beyond that of numerical
computation.

Of special importance was the introduction of pointers and dynamic
allocation. This facility opened the door to all sorts of applications
requiring dynamic data structures; that is, structures that grow and
shrink during the computation. In contrast to address manipulation as

Modula-2 -
modular
programming

1.1 The Algol family 3

it is used in assembler coding, pointer manipulation provides much
greater safety against mistakes, because every pointer variable is, by
virtue of its declaration, bound to point to an object of a given type.
Therefore a compiler is capable of guarding against violations, and the
error can be detected while the program is still being developed and in
its designer’s hands. To extend the notion of static type checking to
dynamic variables was indeed a significant achievement.

But Pascal too suffered from deficiencies. They are perhaps not sig-
nificant in the context of exercises in an introductory course, but cer-
tainly are relevant in the realm of programming larger systems.
Whereas Pascal encouraged structured design, in the meantime modular
design had become important in software engineering. This notion has
at least two aspects. The first became known as information hiding. Any
large system is composed of modules that are to be designed in relative
isolation. This implies that definitions of interfaces exist that specify all
properties accessible to partner modules and that hide all others. The
second aspect is of a technical nature: separate compilation of modules.
It implies that in every module all modules to which references occur
(so-called imports) be explicitly specified and that a compilation
proceed under the availability of the interface definitions of those
imports.

The principal innovation of the language Modula-2 (Wirth, 1982) with
respect to Pascal was indeed the module concept, incorporating
information hiding and separate compilation. In contrast to
independent compilation known from assemblers and other language’s
compilers, separate compilation enables a compiler to perform the same
type-consistency checks across module boundaries as within a module.
The explicit definition of interfaces and the retention of full type safety
turned out to be a tremendous benefit.

Modules exporting one or several data types, typically record or
pointer to record types, together with a set of procedures operating on
variables of these types, represented the notion of abstract data type. In
these cases, only the names of the types appear in the module’s
interface, whereas the structure of the records remains hidden in the
module’s implementation. This guarantees that access to the record’s
fields is possible via exported procedures only, which can therefore rely
on the validity of certain invariants governing the abstract types.

Furthermore, Modula-2 removed one of the most aggravating
handicaps introduced by strong typing: it introduced dynamic arrays as
parameters of procedures. Also noteworthy were the introduction of
procedure types for variables, and facilities for concurrent processes
and for low-level programming. The latter allow a programmer to refer
directly to specific machine facilities, such as interface registers for con-

4 Why Oberon ?

Oberon -
extensible
programming

trolling input/output operations. Once again, these features con-
tributed to the widening of the language’s range of applications, par-
ticularly into the areas of system design and process control. And last
but not least, certain unfortunate syntactic properties of Pascal were
remedied, notably the open-ended if, while and for statements. These
were precisely the structures that were adopted from Algol 60 and left
unchanged in order to maintain tradition and to avoid alienating the
Algol community — a mistake in hindsight.

Several years of experience of practicing modular design with
Modula-2 and other system programming languages revealed that the
ultimate goal was extensible design and that structured programming
and modular programming were merely intermediate steps towards
that goal. The introduction of abstractions represented by modules and
the use of procedures calling procedures declared at lower levels of the

‘abstraction hierarchy embodies extensibility in the procedural domain.

Equally important for a successful design, however, is extensibility in
the domain of data definition. In this respect, Modula-2 is inadequate,
because types cannot be extended and at the same time remain
compatible.

In this respect, so-called object-oriented languages provided a viable
solution, and became the wave of the 1980s. They offer a facility to
define subtypes T1, called subclasses, of a given type (class) T0 with the
property that all operations applicable to instances of TO are also
applicable to instances of T1. We recognize at this point that the ulti-
mate innovation was data type extensibility, which unfortunately re-
mained obscured behind the much less expressive term ‘object-ori-
ented.” Rather unfortunately, this term was accompanied by a whole
new nomenclature for many already familiar concepts with the aim of
perpetrating a new view or metaphor of programming at large. Thus
types became classes, variables instances, procedures methods and
procedure activations messages.

The primary merit of the language Oberon (Wirth, 1988a, b), defined in
1986, lies in the provision of data type extensibility on the basis of the
established, well-understood notions of data type and procedure. The
consequence is that no break with traditional programming technique
is necessary and no familiarization with a whole new class of concepts
and notions is required. The only new facility is that for extending a
record type. Oberon thereby unifies the traditional concepts of
procedural programming with the techniques required to obtain data
extensibility.

This single new facility might well have been added to Modula-2.
Why was yet another new language to be created? The reason was the
desire to have a language available that upholds the principle of pro-

1.2

1.1 The Algol family 5

gramming at a truly machine-independent level, in contrast to creating
programs that appeared to be machine-independent, yet where too
many interspersed uses of system-dependent low-level facilities in fact
rendered programs highly implementation-dependent. Indeed,
Modula-2’s low-level facilities had become far too frequently misused
in order to overcome the lack of extensible types. Modula-2 also had
become rather too large: it contains features that can be ignored without
loss of generality and expressive power. Oberon thus became not only a
modest extension, but also a strongly streamlined descendant of
Modula-2. The result is manifest in the form of its defining report of
only 16 pages. This figure compares well with the Modula report’s 45
pages.

Simplification and wunification mark genuine progress and are
particularly appreciated in teaching the fundamentals of a scientific
subject. Oberon’s design truly follows the spirit of Algol 60.

The Oberon system

The development of the language Oberon was only a part of a more
comprehensive project. In 1985, while visiting the Xerox Palo Alto
Research Center, J. Gutknecht and N. Wirth decided to design and
implement a new operating system (Wirth and Gutknecht, 1989, 1992).
In order not to be hindered by imposed constraints, they decided to
design the Oberon system from scratch. The ultimate goal was to create
a system for personal workstations that was not only powerful and
convenient for practical use, but also describable and explicable in a
convincing way. Since there exists relatively little published literature
explaining how a system was designed - in contrast to how it could be
designed — this was felt to be not only a formidable challenge but also a
worthwhile endeavor.

A driving force behind the project was a deep dissatisfaction with
widespread practices in software development. It appears that systems
are — with few exceptions — unnecessarily bulky and their design
contorted. One reason for this is the lack of extensibility of existing
software, invariably leading to innumerable additions that usually
include and duplicate functions that are already there but deeply
embedded in some part of the existing system. These parts, however,
can seldom be re-used - either because they need to be slightly
modified or simply because they are inaccessible in their original place
due to fixed linking and packaging strategies. It is now quite common
that operating systems on workstations require several megabytes of
memory and hundreds of megabytes of secondary store in order to be

6 Why Oberon ?

functional. Even though there is no intrinsic necessity for such
bulkiness, the situation is unfortunately tolerated by users, because the
tremendous advances of semiconductor technology have made large
memories affordable at reasonably modest expense — modest at least by
the standards of a decade ago.

The much deeper problem, however, is not the need for large stores,
but the unreliability and unadaptability (called unmaintainability) of
large software systems. Certainly, the size of a program alone is only a
crude measure for the number of mistakes it contains. But it is an
established fact that the number of errors grows rapidly with a system’s
increasing size. It should be recognized that the single most important
contribution towards a design’s reliability is the elimination of
superfluous features and facilities, and the containment of its complexity. One
is left with the nagging impression that many systems have grown into
gigantic monsters not because their complexity is inherent in the
desired functionality, but rather because of inadequate design and
because of chosen structures that later could not be corrected. And even
more disconcerting is the circumstance that many customers are
impressed by complex designs more than by economical engineering.
After all, impenetrable software may still hide some promises and
surprises. We call this psychological phenomenon - which is
surprisingly common in the world of computing — ‘gigalomania.’

It is of course much easier to design a large system than an economical
one. The latter requires experience, much careful planning and minute
attention to details - in short, more time from its designers. Project
Oberon has driven this knowledge home with indubitable clarity. The
object-code size of the so-called outer core of the Oberon system is less
than 200 kBytes, and comprises

* akernel;
¢ adynamic loader and a garbage collector;
¢ afile system;

e drivers for disk, diskette, mouse, keyboard, asynchronous and
synchronous communication, printer and a bitmapped display;

e local area network services;
¢ support for texts and fonts;
¢ a window subsystem;

e atext editor;

¢ the Oberon compiler.

Even allowing for the fact that the National Semiconductor 32000 series
processor produces denser code than many other popular micro-

1.2 The Oberon system 7

processors, Oberon is easily an order of magnitude smaller than system
of comparable (or even lesser) functionality.

The Oberon system is a hierarchy of modules, most of which export
one or a few abstract data types. Each user is encouraged to extend the
system — extensions are created by simply adding new modules. There
is no boundary between ‘the system’ and ‘the application program.’
Figure 1.1 shows the modules that comprise the so-called outer core of
Oberon. Except for modules Kernel and Display, the entire Oberon
system is expressed in the programming language Oberon (for a system
reference see Reiser, 1991).

Much emphasis is nowadays placed on the use of sophisticated tools.
We warn the reader against putting too much hope and trust in the
potential of tools. None can produce miracles, and none has ever
replaced careful and competent designers. But good tools certainly
increase the designer’s productivity. In fact, the better the designer, the
higher is the gain of using appropriate tools.

Text subsystem

Display subsystem

Inner core

Figure 1.1 Module hierarchy of the outer core of the Oberon system. Arrows
depict import relations; for example, module Oberon imports module Input.
Note that only the major import relations are shown, and several driver and
command modules are omitted for clarity.

Among all possible tools, we find that the programming language
plays by far the most important role. In Project Oberon, it was initially
planned to use Modula-2 because of its support of structured and
modular program construction. But it was soon realized that the same
principle of economy in design that was declared fundamental for the

8 Why Oberon ?

system should also be applied to the language. The design of the:
Oberon language evolved in parallel with a large software project.
Modula-2 was stripped of features that did not genuinely contribute to
its power of expression. The principal concept that was added - type
extension — was, on the other hand, the sorely needed missing part in
the otherwise most important asset of Modula-2: in its strict, static
typing of variables and functions. Thus Oberon is not another design
conducted in the abstract with the attitude ‘let’s invent another nice
feature.” It is purposefully tuned to be an efficient, convenient and safe
instrument to express programs in the large.

The result, the language Oberon, is presented in this book. A detailed
account of Project Oberon is found in Wirth and Gutknecht (1992). Not
surprisingly, an economically designed language is particularly suitable
as a basis for teaching the subject of programming. After all, program-
ming is inherently difficult, and hence a student must be protected from
having to carry the additional burden of a complex language.

References

Hoare C.A.R. and Wirth N. (1973). An axiomatic definition of the programming
language Pascal. Acta Informatica, 2, 335-55.

Naur P., ed. (1963). Revised report on the algorithmic language Algol 60.
Communications of the ACM, 6, 1-7; Computer Journal, 5, 349-67; Numerical
Mathematics, 4, 420-53.

Reiser, M. (1991). The Oberon System: User Guide and Programmer’s Manual.
Wokingham: Addison-Wesley.

Wirth N. (1971). The programming language Pascal. Acta Infomatica, 1, 35-63.

Wirth N. (1982). Programming in Modula-2. Berlin: Springer-Verlag.

Wirth N. (1988a). From Modula to Oberon. Software—Practice and Experience, 18,
662-70.

Wirth N. (1988b). The programming language Oberon. Software—Practice and
Experience, 18, 671-90.

Wirth N. and Gutknecht J. (1989). The Oberon system. Software-Practice and
Experience, 19, 857-93.

Wirth N. and Gutknecht J. (1992). Project Oberon: The Design of an Operating
System and Compiler. Wokingham: Addison-Wesley.

2 A first Oberon program

In this chapter we will follow the steps of writing a simple program,
technically speaking a module, and thereby explain some of the
fundamental concepts of programming and of the facilities of Oberon.
The task is to provide a random number generator — a program that
‘throws dice’ and produces successive unpredictable numbers. Such
random number generators are an important utility in a computer. We
will frequently use it ourselves in subsequent examples.

The concepts of randomness and algorithm - a recipe for compu-
tation — are of course irreconcilable. All one could hope for is an al-
gorithm capable of producing a very long sequence of numbers in such
a way that no pattern becomes discernible.

The non-specijalist might expect that the more ingeniously random
such a program would be, the better its results. Knuth (1971) gives an
example of such a ‘super random numbers generator’ that produced
periodic sequences of very short length (a few thousands). Says Knuth:
‘The moral to this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used.” A method
proposed by D. H. Lehmer some 40 years ago — the multiplicative linear
congruential algorithm — withstood the test of time (see Box 2.1).

The basic recipe — the so-called algorithm - is contained in Equations
(1) - (2) of Box 2.1. We have to put this prescription into terms of
Oberon. A first attempt leads to

z := (a*z) MOD my;
“Return the real value z/m as result ”

This piece of text is yet far from being a program. However, an attempt
to make one on its premise would be doomed. It is not difficult to see
that the product a*z may easily exceed the range of integers that can be
represented with 32 bits. There is a clever trick due to Schrage that

10 A first Oberon program

Box 2.1 The mathematical foundation is a beautiful example of the elegance of
Linear simplicity. All that is needed is a judicious choice of two integer
congruential parameters — the modulus m and the multiplier 2 — in the simple
random number recurrence formula
generator

Zy41 = az, mod m 1

The sequence must be started with an initial value z; called the seed. It
turns out that the choice of m and a is critical. With m = 231 - 1
=2147 483 647 and a = 75 = 16 807, all numbers between 1 and m appear
exactly once in the sequence defined by Equation (1) — there will be over 2
billion random numbers that passed stringent statistical tests. For a
discussion of random number generators, see the survey paper by Park
and Miller (1988).

In practice, one seldom needs random integers as large as
2147 483 647. We therefore normalize:

r=2z,/m @

The real random numbers r,, are now from the interval 0 <r, <1.

circumvents this difficulty. Select new constants g =m/a] = 127 7731
and r = m mod a = 2 836 and compute '

gamma := a*(z MOD q) - r+(z DIV q);
IF gamma >0 THEN
z := gamma
ELSE
Z 1= gamma + m
END;
“Return the real value z/m as result”

The meaning of these Oberon statements should be quite obvious. Less
obvious is that the modified computation is the same as (1). For our
example, the mathematical detail is not essential. We refer the
interested reader to Park and Miller (1988).

Declaration The quantities z and gamma are variables; m, a, g and r are constants.
Many programming languages require that the variables and constants

T x| denotes the largest integer not greater than x.

Procedure

Module

A first Oberon program 11

be explicitly defined and their type (such as integer or real) specified.
Also, we need to express formally the fact that our program is a
function that returns real values.

Groups of statements that have a name and may be invoked from other
locations in a program are called procedures. Constant, variable and
procedure declarations read as follows:

PROCEDURE Uniform(): REAL;
CONST a =16807; m = 2147483647, q =m DIV a; r = m MOD a;
VAR gamma: LONGINT;
BEGIN
gamma := a*(z MOD q) - r*(z DIV q);
IF gamma >0 THEN
Z := gamma
ELSE
z = gamma + m
END;
RETURN 2z#(1.0/m)
END Uniform;

The first line expresses the fact that the procedure Uniform! is a function
procedure (without arguments) which returns a real value when
invoked. The procedure statement is followed by the declarations of the
constants and the variable gamma. Note that g and r are declared in the
form of constant expressions that can be evaluated without the need to
actually run the program. The operator DIV denotes the integer
division and MOD the modulus. Constants and variables thus declared
are local to the procedure. Therefore the variable z, which needs to
retain its value from execution to execution, must be declared in a
larger context.

This larger context is the module. A module is a text unit that is accepted
by the Oberon compiler and translated into machine executable code.
But a module is more than that. It provides mechanisms for:

(1) structuring of a program into independent units;

(2) the declaration of variables that keep their value for the duration
the module is active (that is, in memory) — these variables are
called global to the module;

(3) export of variables and procedures to be used in other modules.

1 The name Uniform suggests that the random numbers all have the same
probability — they are uniformly distributed.

12 A first Oberon program

Export

Body

The module therefore provides the facilities for abstractions — abstract
data types — which we will explore in detail in Chapter 10 and Part IIl. A
module, RandomNumbers, encapsulating our procedure Uniform reads

MODULE RandomNumbers;
VAR z: LONGINT; (x global variable *)

PROCEDURE Uniform#*(): REAL;
CONST a =16807; m =2147483647; q=m DIV a; r =m MOD a;
VAR gamma: LONGINT;
BEGIN
gamma := a*(z MOD q) - r+(z DIV q);
IF gamma >0 THEN
Z 1= gamma
ELSE
Z = gamma + m
END;
RETURN z#(1.0/m) (* value of the function *)
END Uniform;

PROCEDURE InitSeed*(seed: LONGINT);
BEGIN

z :=seed
END InitSeed;

BEGIN
z := 314159 (* initial value of seed *)
END RandomNumbers.

The asterisk following the procedure name marks that procedure for export. In
other words, it may be used in other modules that import module
RandomNumbers. Similarly, a module may export variables.

The statements between BEGIN and END at the trailing of the program
text are called the module’s body. They are executed when the module is
loaded into the computer’s primary memory. In our example, the body
consists of a single statement that is initializing the global variable z.
Initialization of variables is a typical task for the statements comprising
a module’s body.

A random number generator is a utility to be used in other programs.
Module RandomNumbers, independently compiled and available in
object form in the system’s program library, makes the utility available
to procedures contained in other modules. These modules are clients of

Import, qualified
name

Client module

A first Oberon program 13

module RandomNumbers. Let us illustrate the concept with a further
example. Module ListRN prints a table of 100 random numbers. We
realize that we need to specify an action that makes results visible. For
this purpose, we should actually know the computer’s facilities to
communicate with its user. Since we do not wish to refer to a specific
system running Oberon programs, we introduce abstractions that we
postulate to be available. We stress, however, that they are not part of
the language.

MODULE ListRN;
IMPORT Out, RandomNumbers;

PROCEDURE List* ;
VAR i, max: INTEGER; rn: REAL;

BEGIN
max :=100; i:=0;
WHILE i < max DO

m := RandomNumbers.Uniform();
Out.Real(rn, 14); (* print random number *)
Out.Ln; (* skip line *)
i=i+1
END
END List;

END ListRN.

The procedure Out.Real(x, n) writes a real variable x to a suitable output
medium, for example a display window (n measures the total number
of characters). Similarly, Out.Ln appends a line break. The import
statement specifies which modules should become accessible within the
scope of ListRN, namely module Out and module RandomNumbers.

Procedures and variables from those imported modules appear with
qualified identifiers. For example Out.Real (x) means call the procedure
Real (x) from module Out. Similarly, RandomNumbers.Uniform() invokes
the function Uniform() exported by module RandomNumbers.

We say that module ListRN is a client of modules Out and
RandomNumbers. Thus the module is also a package of data and functions
to be reused by other modules. To ListRN, both module Out and module
RandomNumbers are utilities. They can be used without recompilation or
access to the source texts.

We trust that even though the Oberon statements used so far were
not defined rigorously, the reader — even if he or she has little prior

14 A first Oberon program

Command

Oberon system

exposure to programming — could easily grasp their meaning. One
thing, however, remains mysterious: where is the main program? Module
ListRN has no body and comprises a procedure declaration only. How

then can ListRN be run

The answer is that Oberon departs from the notion of a main program
that can be run and procedures that are constituents of such a main

?

program. An exported Oberon procedure is called a command.

The system that runs Oberon must provide facilities to start
commands. Procedure List in module ListRN is such a command that
can be executed from the computer’s controls and as a result, lists 100

random numbers.

betweon

pr o i
Edilors, Desk Top Publishing and Draw or Paint

programs.

s o
control and typically projects a userintertace onto the screen.

in tom seizos

in the fevel of common

isplay and IO .

The si

ion 3, Apple Finder)

residont in

memory. Usi

ince loading and

i pr
between them (e.g. Apple Mul Finder, IBM OS72. UNIX). Hoy

somains tha the.

applications which restore their ow interface upon activaton.

Interactive user

System.Time 13.12.89 122614

Edit.Open
Edit.Show
Edit, Search
Edit.Store
Edit. Recall

Compiler.Compile
Compiler.Compie ~

System.Recall

Edit Tool Leda.Tool Draw.Tool Paint.Tool
SySem Clcse Sysem Copy Sysiem Grom

EditRecall
EditSearch
Edit.Locate
EditStore
Edit Print %
EgitPrint ~

Eit.CopyFont

Edit SetFont Syntax1O.Scn.Fnt
Edit.SetFont SyntaxiOi.Sen.Fnt
EditSetFont Symax10b.Scn.Fat
EditSetFont Syntaxiox.Son.Fnt

Figure 2.1 Display screen of an Oberon system.

Let us provide an example of a system running commands written in
the Oberon programming language: the Oberon operating system

1 Tobe precise, a procedure without formal parameters.

€t Saarch EailStoce

A first Oberon program 15

(Reiser, 1991). The display of a workstation running Oberon is
portrayed in Figure 2.1.

The screen is exhaustively tiled into non-overlapping rectangles
called viewers, which display documents such as texts, graphics and
pictures. If the name of a command appears anywhere in a text viewer,
it can be activated by pointing at it with the mouse cursor and clicking
the (middle) mouse key.

Figure 2.2 shows a close-up view of two text viewers with titles
System.Log and ListRN.Tool. System.Log is the name of a special viewer
where commands display progress or error messages. The procedure
Out.Real exported by module Out is assumed to write into that viewer.
The viewer ListRN.Tool shows the command name ListRN.List. It was
typed into this viewer using a text editor. The command can be
executed by pointing at it with the mouse cursor. Thus the viewer
ListRN.Tool operates like the menus of a conventional system. In our
example, the command was executed and 100 random numbers are
written into the viewer with name System.Log. '

| 1.745911E-01
8.745628E-03
5.725493E-01
4.745386E-09
7.649856E~01
3.674534E-01
1.114252E-01
8.725292E-01
2.221318E-05
6.305649E-02

| ListRN.List

Figure 2.2 Output produced by the command ListRN.List.

A few more comments to our example are in order. The command
List produces an editable text as output that is displayed in the viewer
System.Log. From the 100 items, we see only 10. The others are accessible

16 A first Oberon program

Summary

by scrolling, which is done in the usual manner using the scroll bar
located at left. :

This concludes the discussion of our example. We remind the reader
that the short excursion into the Oberon operating system was meant to
illustrate one of many environments that could support commands
written in the Oberon language.

In summary, we have learned

¢ Oberon 'programs’ are texts composed of procedural statements
that specify an algorithm.

o The procedure is the executable unit. The texts that specify proce-
dures are contained in modules, which are accepted by the com-
piler for translation.

¢ All variables used in procedures are defined in declaration state-
ments. Variables may be local to a procedure or global to a
module.

* Besides data declarations and procedure texts, modules have a list
of statements that is executed when the module is loaded into the
computer’s memory.

® The module selectively exports procedures and variables. It
serves as a utility for other modules that import that module.
Hiding the implementation details of data structures in a module
and providing access through procedures only is an important
tool to structure large systems.!

* The notion of a main program, a mainstay of traditional lan-
guages, is absent in Oberon. Oberon ‘programs’ are families of
commands. The system running Oberon code provides facilities to
execute commands, which are procedures exported by modules.

Lastly, the example of random number generation has taught im-
portant lessons about program design. Let us conclude with another
quote from Knuth: “...look at the subroutine library of each computer
installation in your organization, and replace the random number
generators by good ones. Try to avoid being too shocked at what you
find.” Our advice to readers is to use another generator only if you have
positive evidence that it is better than the standard generator discussed
in this section. Many in current use are worse!

1 Called abstract data structure or abstract data type — see Chapter 10 and Part IIl.

2.1 A notation to describe the syntax of Oberon 17

2.1 A notation to describe the syntax of Oberon

Formal language

Syntactic factors

Syntactic terms

The discussion of the last section was kept quite informal. This was
permissible for an introductory example. However, programming is
creating new programs. For this purpose, only a precise formal de-
scription is adequate.

A formal language is a set of sequences of symbols. Elements of this set are
called sentences. The term ‘sentence’ is more reminiscent of the
applications of formal languages in linguistics. In the case of a pro-
gramming language, these sentences are programs — in Oberon techni-
cally termed modules.

The symbols originate from a finite set called the vocabulary. The set
of programs (which is infinite) is defined by rules of their composition.
Sequences of symbols that are composed by these rules are said to be
syntactically correct or well formed. The set of rules is the syntax of the
language. The program (or sentence of the formal language) consists of
parts called syntactic entities, such as declarations, statements or
expressions.

If a construct A consists of B followed by C - that is, the concatenation

BC — then we call B and C syntactic factors and describe A by the
syntactic formula

A=BC.

If, on the other hand, A is composed of a factor B or, alternatively a C
we call B and C syntactic terms and express A by

A=BI|C.

In addition to concatenation and choice, it is convenient to have a
notation for option and repetition. If a construct A may be either B or
nothing, this is expressed as

A=[Bl

If A consists of the concatenation of any number of Bs, including none,
this is denoted by

A ={B}.

18 A first Oberon program

2.2

21
22

2.3

Parentheses may be used to group factors or terms. One should note
that A, B and C denote syntactic entities whereas |,=,[,1{,}, (,) and
the period are symbols of the meta-notation describing our syntax.
Obviously, they are termed meta-symbols, and the notation introduced
here is known as Extended Backus-Naur Formalism (EBNF).

A few examples show how sets of sentences are defined by EBNF
formulas:

(AIBXCID) AC AD BC BD

A[BIC ABC AC
A{BA} A ABA ABABA ABABABA ...
{AIB}C C AC BC AAC ABC BAC BBC...

Besides syntactic entities denoted by identifiers, we have a need to
substitute elements — also called tokens — taken from the formal lan-
guage’s vocabulary. We will adopt the widely used conventions for
programming languages, namely: an identifier consists of a sequence of
letters and digits, where the first character must be a letter; a string consists of
any sequence of characters enclosed by quote marks.

Exercises

Provide an EBNF definition of identifiers and strings as defined above.

The production A =T {“+” T} defines the sentences T, T+T, T+T+T and so on.
The braces are only a convenient abbreviation. List two production rules, not
involving braces or brackets, that define the same language.

Consider the EBNF syntax

E=[“+" | “"]1T{ao T}.
ao=“+" | *,
T=F{moF}.
mo=“¥"1"/".
F=nulid | “("E*)".
nu = digit {digit}.

id = letter {letter | digit}.

The entities letter and digit have their usual meaning. Construct sentences E of
this language. What are these sentences? Reformulate the grammar using more
suggestive names for the nonterminal symbols.

2.2 Exercises 19

2.4 Clearly EBNF is itself a formal language. If it suits its purpose, it should at least
be able to describe itself. Construct such a description. Use the following names

for entities:

syntax: a sequence of statements

statement: a syntactic equation

expression: a list of alternative terms

term: a concatenation of factors

factor: an identifier, a string or a parenthesized

expression

The terminal symbols are identifiers, strings and the following symbols: | =[].
{10
References

Knuth D. E. (1971). The Art of Computer Programming, 2nd edn. Reading, MA:
Addison-Wesley.

Park S. K. and Miller K. W. (1988). Random number generators, good ones are
hard to find. Communications of the ACM, 31, 1192-1201.

Reiser M. (1991). The Oberon System: User Guide and Programmer’s Manual.
Wokingham: Addison-Wesley.

Tokens

asic types
Assignment
Control structures
Procedures
Modules

Synopsis

Part I introduces the fundamental concepts of programming: the
basic types, the assignment statement, control structures and
procedures and modules.

An extended Backus-Naur formalism is used to describe the
syntax. The semantics of the control structures, namely the if
statement, the case statement, and the loop expressed by while,
repeat and loop statements are defined formally by means of
predicates and their transformations.

Input and output operations are introduced as service
modules, based on the notion of the stream. The part ends with a
complete module, drawing a fractal fern.

3

3.1

Tokens and basic types

The formal definition of a programming language must eventually be
given in terms of the characters available from the computer’s
keyboard. The creation of an intermediate level of representation by
symbol sequences, called tokens, provides a useful decoupling between
the language and its ultimate representation. Examples of tokens are

e 1024,3.1415 Numbers
* gamma, a, pi Identifiers
¢ 4, % Operators

e BEGIN, END, IF Keywords.

The introductory example taught us that Oberon programs — more
precisely Oberon modules and procedures — contain variables
(designated by identifiers) that are bound to a fype by means of a
declaration. This data type represents information about the variable
that is permanent, in contrast, for example, to its value. The type of a
variable determines its set of possible values together with the
operations that may be applied to it. Data types may be declared in the
program (see Section 8.1). Such constructed types are usually based on
composition of basic types. There exists a number of most frequently
used elementary types that are basic to the language and need not be
declared. In Oberon, these types are SHORTINT, INTEGER, LONGINT,
REAL, LONGREAL, BOOLEAN, SET and CHAR. Since Oberon
programs will execute on computers, the basic types have a close
association with facilities of contemporary hardware.

The vocabulary of Oberon

The tokens of the Oberon vocabulary are divided into the following
classes:

(1) identifiers
(2) numbers

23

24 Tokens and basic types

(3) character constants
(4) strings
(5) operators and delimiters.

The rules governing their representation in the standard character set
are as follows.

3.1.1 Identifiers

ident = letter {letter | digit}.
letter = “A” | “B” |...1 “Z” | “a” | “b” |...1 “2".
digit = IIOII I Illll l 11211 I .. I 11911.

Upper and lower case letters are considered distinct. Examples of well-
formed identifiers are:

List list al2 nextltem Viewers SR101

Examples of words that are not identifiers

List element blank space not allowed
List-element neither is a hyphen
List_element nor an underscore

2N first character must be a letter

3.1.2 Numbers

number = integer | real.

integer = digit {digit} | digit {hexDigit} “H".

hexDigit = digit | “A” | “B” | “C” | “D” | “E” | “F".
real = digit {digit} “.” {digit} [ScaleFactor].
ScaleFactor = (“E” | “D”) [“+” | “-"] digit {digit}.

Numbers are unsigned integers or unsigned real numbers. Decimal
integers are sequences of digits. Hexadecimal integers must start with a
digit followed by a sequence of hexadecimal digits and trailed by the
suffix “H”. Real numbers always contain a decimal point and a
fractional part. A scale factor may optionally be appended. It starts
with a “E” or a “D” which reads ‘times ten to the power of.” The prefix
“E” or “D” in the scale factor determines the type of the real number,
either REAL or LONGREAL.

3.1.3

3.14

3.1.5

3.1 The vocabulary of Oberon 25

Examples of well-formed numbers are

1024 an integer in decimal notation
1AFH an integer in hexadecimal notation (=431)
3.1416 2.99792458D8 real numbers

The following character strings are not recognized as well-formed
Oberon numbers:

FFFFH 3,14159 .665; 1.3543
Character constants

CharConstant = “"” character “"” | digit {hexDigit} “X".
character = digit | letter | “” | specialChar.

Special characters are all the printable characters on the computer’s
keyboard that are not digits, letters or a blank. The following special
characters are common to the ASCII characterset: ! "#$ % &’ () *+,-.
/i;<=>2@[\]1"N_" {1}~

A character constant may, instead of enclosing the character in quote
marks, be specified by its ordinal number! in hexadecimal notation,
followed by the Jetter X.

Examples of character constants are “a”, “b”, “1”, “@” and 61X. Both
“a” and 61X denote the same character, namely ‘lower case A’ (if the
ASCII code is assumed).

Strings

7y

| string = “* {character}

A string is a sequence of printable characters, including blanks and
special characters, enclosed in quote marks. In order that the closing
quote mark be recognized unambiguously, the string cannot contain
such a quote mark. Example: "This is a string".

Operators and delimiters

Delimiters and operators are either special characters (or pairs thereof)
or reserved words written in capital letters. They serve as terminal

1 A character’s ordinal number is defined by the encoding scheme. In most
contemporary personal computers and workstations, this is the standard ASCII
code.

26 Tokens and basic types

3.1.6

3.1.7

symbols in the Oberon syntax — their meaning will be explained
throughout subsequent chapters. A complete list is found in Appendix
A, Section A.3, page 283.

Examples include:

o 4+ —%/< <=>>= Operators
e O)I[1:;:= Delimiters
e BEGIN END PROCEDURE MODULE Reserved words

The term reserved word means that these letter sequences must not be
used as identifiers.

Predeclared identifiers

Besides the set of reserved words, which act as separators and are part
of the vocabulary of the Oberon definition, there is a list of predefined
or standard identifiers. Syntactically, they appear at places where user-
defined identifiers may also apply.

Predeclared identifiers are used as:

o truth values: TRUE, FALSE;
* type identifiers, for example INTEGER, REAL, SET, CHAR,;
e standard functions and procedures, for example ABS, LEN, INC.

The predeclared identifiers can be visualized as if declared in a context
that encompasses the module being created by the programmer.
Therefore they are also called pervasive since they are valid in all parts of
the module’s text. A completed list is found in Appendix A, Section A4,
page 284.

Rules for blanks and carriage returns

Oberon programs are sequences of the tokens defined above. The syn-
tactic rules governing these sequences will be the object of the following
chapters. There is one further rule, which will not be expressed
formally: blanks, tab and carriage return characters may be added or removed
from the program text, except where a token’s identity would be lost. An
example will make the point:

IF x = y THEN...

Comments

3.2

3.21

3.1 The vocabulary of Oberon 27

’

The space before x and after y is essential. If omitted, IFx and yTHEN
will be parsed as identifiers. On the other hand, the spaces enclosing the
equal sign ”=" are optional.

Blanks and tabs should be used liberally to make program texts more
readable. For example, the spaces enclosing the equal sign above
improve the appearance of a program text. Similarly, in the in-
troductory example, indentation was used to enhance the structure of
programs.

At any point in the program'’s text, comments may be interspersed. A -
comment is any sequence of characters enclosed in the brackets “(x”
and “*)”. Comments may also contain instructions for the compiler.

Basic types

There are eight basic types in Oberon. They are identified by the
predeclared identifiers SHORTINT, INTEGER, LONGINT, REAL,
LONGREAL, BOOLEAN, SET and CHAR (see also Appendix A,
Section A.6.1).

For the basic types, the set of admissible values is bounded by ex-
tremal values, which may be accessed in Oberon programs through the
(predeclared) functions

MIN(T): The minimum value of type T
MAX(T): The maximum value of type T

For example, if SHORTINT is represented by 8 bits, then
MAX(SHORTINT) = 127 and MIN(SHORTINT) = -128. Typical
extremal values are listed in Appendix B. For obvious reasons the first
five types are called the numeric types. They form a set hierarchy (see
Section 3.2.3). ‘

The types SHORTINT, INTEGER and LONGINT

The three types comprise the integer types. They represent the integer
numbers and differ by the cardinality of the set of numbers represented
by each type. The need for different types arises from the architectures
of machines, which — for reasons of efficiency — provide various word

28 Tokens and basic types

3.2.2

3.23

formats with corresponding machine instructions. It is the re-
sponsibility of the programmer to insure that the result of a computa-
tion again lies within the set of numbers represented by each type.
Otherwise, an overflow is said to have occurred, leading in general to a
termination of the program that caused the overflow.!

The types REAL and LONGREAL

The real types approximate the real numbers. Each element from the set
of REAL or LONGREAL is representative of an interval of genuine real
numbers. Variables of a real type are represented by pairs of integers, a
mantissa and an exponent. This is called floating-point representation. The
two types are distinguished by the number of digits of the mantissa (the
fractional part) and the exponent. As with the integer types, overflow
may occur and result in termination of the program.

Floating-point numbers are only an approximation to the real num-
bers of mathematics. As a consequence, computations involving float-
ing-point values are inexact because each operation may be subject to
truncation. The resulting problems have been investigated in detail, and
are treated in every text on numerical mathematics.

Hierarchy of the numeric types

The numeric types are comprised of the integer and real types and form a
set hierarchy.

LONGREAL 2 REAL 2 LONGINT 2 INTEGER 2 SHORTINT

The range of the larger type includes the ranges of the smaller types.
For example, REAL includes LONGINT...SHORTINT. The smaller type
is said to be compatible with the larger one in the sense that it can,
without danger of loss of leading digits, be converted. In most cases,
such a conversion is also exact.? In assignments and in expressions, the
conversion of internal representations is automatic.

! Some implementations allow trapping of overflow to be switched on and off.
2 The typical exception is REAL > LONGINT, where truncation may occur.

3.24

3.25

3.2.6

rdinal numbers

3.2 Basictypes 29

The type BOOLEAN

A Boolean value is one of the logical truth values, which are represented
in Oberon by the standard identifiers TRUE and FALSE.

The type SET

The values belonging to the type SET are elements of the power set of
{0,1, ..., N} where N = MAX(SET). N is a constant defined by the im-
plementation. It is typically the word length of the computer (or a small
multiple of it). In fact, sets are efficiently implemented as bit operations.
The notation for sets follows the mathematical convention:
set = “{” [element { “,” element}] “}".

"on

element = expression [“..” expression].

If expression is an integer constant (or a constant expression, see Section

4.1), we speak of a set constant. The double period is a shorthand

notation for a range of integers, for example {0, 2.4, 8} = {0, 2, 3, 4, 8}.
Examples of set constants are

{} {1,6,10} {0,2.4,8}

where { } denotes the empty set.

The type CHAR

A major portion of the input and output of computers is in the form of
strings of numerals, characters from the roman alphabet and a small set
of special symbols such as punctuation marks and symbols used
frequently in commerce and mathematics. This set consists the value
range of the type CHAR. For the computing machine, each symbol
must be represented by a binary value that encodes the symbol. Different
brands of computers may use different character sets. However, there is
a strong trend towards the so-called ASCII code (of ISO) which defines
a set of 128 characters, 33 of which are so-called control characters. The
remaining 95 are printable characters (see Appendix B).

The set representing the type CHAR is ordered, and each character has
a fixed position or ordinal number. This is reflected in the notation for
character constants, which may be written as "a" or 61X, the first form
denoting the value of a variable of type CHAR by the representation,

the second by the (hexadecimal) ordinal number.

30

4

4.1

Declarations, expressions
and assignments

Computers execute sequences of machine instructions, each one trans-
forming the machine’s state, which is defined as the contents of mem-
ory and registers. A programming language is an abstraction of such a
machine instruction sequence. The basic unit is the statement, which —
when interpreted or executed — specifies an action.

The most elementary action is the assignment of a value to a variable.
Let us introduce a few examples of assignment statements:

i:=1

i=i+1
x:=al*X+bl*Y+el
det:=b*b-a*c

rl := (ABS(b) + sqrt(det))/a

We observe that the assignment statement consists of a variable on the
left and an expression on the right of the assignment symbol “:=". The
expression is evaluated, and its result replaces the value that the vari-
able had prior to the assignment.

In this chapter, we will introduce form and semantics of expressions
and of the assignment statement. Since all variables have to be declared,
the topic of constant and variable declarations is considered first. The
declaration binds an identifier to properties of the object that it
represents. These properties are expressed by the object’s type. The type
defines the set of values and the operations that are applicable.

Declarations

In Oberon, every object of the language such as constants, variables,
procedures and even types must be declared. The declaration creates
the object and defines its type.

411

4.1.2

4.1 Declarations 31

Constant declarations

The constant declaration binds an identifier to a constant or a constant
expression. It observes the syntax:

ConstDeclaration = ident [“+”] “=" ConstExpression.
ConstExpression = expression.

The simplest expression is a number, a character, a truth value or a set
constant. More complex expressions are treated in the next section. The
evaluation of a constant expression must be possible by a mere textual
scan without actual execution of the program — the operands are
restricted to constants.

The asterisk is called the export mark. Identifiers thus marked will be
visible outside the module containing the declaration. We will say more
about this in Chapter 6. A sequence of constant declarations, separated
by semicolons, is preceded by the symbol “CONST”, for example

CONST a =16807; m =2147483647; q=m DIV a; r = m MOD a;

Constants with suggestive names help make a program readable. The
use of identifiers declared as constants rather than their value has the
additional benefit that if the constant value should change, there is only
one place where the program text need be updated. This avoids a common
mistake that one or a few instances of an explicit constant, spread
throughout the program, remain unrevised.

Variable declarations

The state of an Oberon computation is defined by a set of variables. Such
variables have two properties:

* atype that defines the set of values it may assume as well as the
operations applicable to it;

e avalue.

The variable declaration defines a variable and binds an identifier and a
type to it. The value of the variable however, remains undefined. We
say that the variable is an instance of its type and that the identifier
denotes (or represents) the variable. In the computer implementation, a
variable of the basic types is a byte, a word or a double word of:
memory; the identifier can be visualized as its address.

32 Declarations, expressions and assignments

Terms

4.2

4.2.1

The syntax of the variable declaration is

VarDeclaration = IdentList “:” type.
IdentList = ident [“*”] {#,” ident [“*"]}.

At this point, type stands for one of the predefined identifiers repre-
senting standard types, namely SHORTINT, INTEGER, LONGINT,
REAL, LONGREAL, BOOLEAN, CHAR and SET. Again the asterisk is
the export mark. More types will be introduced in Chapters 8 and 11.

Variables of the same type may be grouped in the same declaration; a
sequence of variable declarations, separated by semicolons, is preceded
by the symbol “VAR”; for example,

VAR
i, m, n: INTEGER; index: LONGINT;
a, b, time* : REAL;
ch: CHAR;

The identifier time is marked for export.

Expressions

Syntax and general semantics

An expression is, in general, composed of several operands and opera-
tors. Its evaluation consists in applying the operators to the operands in
a prescribed order, in general from left to right. Parentheses are used to
modify this left-to-right rule. The operands may be constants, variables
or functions.

An expression consists of consecutive terms:
TO®TI®...® Tn. M

The symbol @ stands for an add operator such as + or — from ordinary
arithmetic. Parentheses are used to indicate precedence, that is, the
order in which the expression is evaluated. Using parentheses, the left-
to-right order of evaluation in (1) is made explicit:

(..(TO® T @ T2)...) ® Tn. 2

Factors

4.2 Expressions 33

Each term of the expression similarly consists of factors:
FO®F1®...®Fn. 3)

where (3), like (1), is evaluated from left to right, that is, is parenthe-
sized like (2). The symbol ® stands for a multiplication operator. As is
usual in mathematics, multiplication operators take precedence over
add operators, a fact that we express symbolically as ® — @®.

In EBNF notation, an expression is defined by '

expression = SimpleExpr [relation SimpleExpr].
relation = “=" | “#” | “<” | “<=" | “>=" | “>” | “IN” | “IS".
SimpleExpr = [“+” | “~"] term {AddOperator term}.
AddOperator = “+” | “=”| “OR”".
term = factor {MulOperator factor}.
MulOperator = “*” | “/” | “DIV” | “MOD” | “&”.
factor = number | CharConstant | string | set | NIL?
| designator | FunctionCall
[“(” expression “)” | “~" factor.

II(II

FunctionCall = designator “(” [ActualParameters] “)”.

ActualParameters = expression {“,” expression}.

designator = ident.

As the term suggests, a designator designates a variable or a constant.
For the time being, it is simply an identifier. More complex designators
will be introduced later. For example, a designator may represent an
array element a[i] or a field f of a record r expressed as r.f.

A function call looks like the familiar mathematical function notation,
for example

sin(x) cos(omega*t) sqrt(b*b - 4*axc).
Function calls as factors act exactly as one would expect from ordinary

mathematics. They stand for a result that is obtained through a pre-
scribed operation on the arguments.

! Explained in Chapter 11.
2 See chapter 9.

34 Declarations, expressions and assignments

Examples

4.2.2

It is instructive to study a set of examples. In fact, we encourage the
reader to parse the following expressions into their syntactic con-
stituents:

a+b-c+d (@+b)~(c+d)

b#b — 4*axc -y + ABS(x)

a=b (NextString = "END") OR flag
(-b + sqrt(bs+b — 4xaxc))/(2+a) (i DIV j) —3.14159

~(a*a < b) & ~ (a = 4.0) OR C & d 61X = "

The meaning — or semantics — of the examples is straightforward. They
are either numerical expressions, yielding results that are simple
numeric types, or they are relations and Boolean expressions resulting
in TRUE or FALSE.

The following symbol strings are not Oberon expressions:

bb-4ac multiplication operator missing, should read
b*b — 4*a*c

a+-b adjacent operators, should read a + (-b)

a<b&c=5 parentheses missing, should read

(a<b) & (c=5)

Type rules
Let us look at a second set of syntactically well-formed expressions:

"a"+ 3.14159
(a =b) —sqrt("144")

It is not clear how these expressions should be evaluated. What sense
does it make to add a character constant to a number? Can a truth value
be used as a number? There are various schools of thought with respect
to these questions. Some languages (e.g. PL/I) define elaborate type
conversion rules or treat truth values as the numerical constants 0 and 1
(e.g. APL). We believe that what such languages teach us is the way not
to do it. In essence, Oberon requests the type of operands to be identical
and allows mixing of types in only a few well-understood cases, for
example when the type of one operand includes the type of the other
one. For a given operator, the types of operands that are expression
compatible are listed in Table 4.1. More details about the basic types
follow in subsequent sections; the types ARRAY, POINTER and
RECORD await later chapters.

4.2 Expressions 35

Table 4.1 Expression compatibility.

Operator Valid operand types Result type
(or operands)
+ - % numeric types largest numeric type of the
operands
/ numeric types smallest real type that in-
cludes both operands
+ - %/ SET SET
DIV MOD integer types largest integer type of the
operands
OR & ~ BOOLEAN BOOLEAN
=# < <= numeric types, CHAR, ARRAY | BOOLEAN
S 5= OF CHAR,
string constant
= # BOOLEAN, SET, POINTER, BOOLEAN
procedure variable
IN left: integer type BOOLEAN
right: SET
IS left: POINTER, RECORD! BOOLEAN
right: type identifier

4.2.3 Relations
Relations are expressions of syntax

expression = SimpleExpr relation SimpleExpr.
relation = II=I/ II#I’ | ll<ll | ll<=ll | II>=II ‘ Jl>!l I IIINI’ I IIISII

They yield a result of type BOOLEAN. The type compatibility rules are
stated in Table 4.1. The relational operators are

= equal > greater

notequal >= greater or equal
< less IN set membership
<= less or equal IS type test

1 Must be a variable parameter.

36 Declarations, expressions and assignments

Type rules

The meaning of comparison operators is straightforward. A relation
i IN S holds if integer i is member of set S. More on the type test will be
found in Section 11.2.2.

Examples of relations include

"a" <"b" TRUE ORD("a") = 97, ORD("b") = 98)
abc >="xyz" FALSE, collating sequence

e<pi TRUE

2IN{1,3.7,11} FALSE

"a" < "ab" illegal, argument types not compatible

For the precise definition of relations involving strings and character
arrays of different length, we refer to Section 8.2.6.

4.24 Arithmetic expressions

Arithmetic expressions are composed of numeric constants, variables of
numeric types, functions whose evaluation results in a number, and the
(dyadic) operators:

+ addition / real division
- subtraction DIV integer division
s multiplication MOD modulus

Integer division DIV and modulus MOD admit 1nteger arguments only
and are defined by the algebraic identity

x=(x DIV y)*y + (x MOD y) M
0<(xMODy)<y or y<(xMODy)<0 2

Thus the integer division yields the largest value not greater than the
quotient x/y and the modulus is the remainder of the integer division.
Parentheses are used to control the order of evaluation. The monadic
minus sign is used to express negative numbers and to negate terms, for
example -3 or —a.

The numeric types may be mixed in arithmetic expressions. At the ap-
plication of each operator, the smaller type, T1, is first converted to the
larger one, T2 say. The result of the operation is then also of type T2 (see
Table 4.1).

Type conversion

functions

4.2.5

4.2 Expressions 37

Let us illustrate the type rule with a few examples. Assume
s: SHORTINT; i: INTEGER; I: LONGINT; r: REAL; Ir: LONGREAL.
Then

IMODs LONGINT i*r REAL
1.0/s REAL rDIV i illegal
i-lIr LONGREAL 1/Ir LONGREAL

In arithmetic expressions, most type conversions are handled automat-
ically. There are, however, cases where explicit type conversions are
required. The example r DIV i is such a case. For this purpose, Oberon
affords the following type conversion functions:

Table 4.2 Type conversion functions.

Name Argument type Result type Function
ENTIER(s) | real type LONGINT Lal?
SHORT(x) | x: LONGINT INTEGER | identity (truncation is
x: INTEGER SHORTINT | possible)
x: LONGREAL REAL
LONG(x) x: SHORTINT INTEGER identity
x: INTEGER LONGINT
x: REAL LONGREAL

Using explicit type conversions, the erroneous expression r DIV i may
be corrected; that is, ENTIER(r) DIV i.

Boolean expressions

The constituents of a Boolean expression are the truth values denoted
by the standard identifiers TRUE and FALSE, variables of type
BOOLEAN, relational expressions and the operators

OR logical disjunction ~ ~ logical negation
& logical conjunction

The precedence relation is “~” — “&” — “OR”. Therefore

PORq&sORt = pOR(q&s) ORt

T Largest integer not greater thana .

38 Declarations, expressions and assignments

De Morgan’s law

Relation as factor

4.2.6

Oberon defines the Boolean connectives as conditional evaluations; that is,

pORq = if pthen TRUE else q
p&q = if p then q else FALSE
~p = if p then FALSE else TRUE

where p and q are variables or expressions of type BOOLEAN. This
definition is different from the mathematical one using truth tables. It
implies that the second argument is not evaluated if the result is already
known from the first argument. The notable property of this definition
is that the result may be well defined even if the second argument is
not. As a consequence, the order of the operands may be significant —
they are not commutative.

Boolean expressions may often be simplified using De Morgan’s law
stating the equivalences ‘

~p) & (~q)
(~p) OR (~q)

~(p OR q))
~(p & q) %)

Relations result in the type BOOLEAN and thus may appear as factors
in Boolean expressions. For example,

(i< N) & ~ eof

If relations appear in Boolean expressions, they must always be enclosed in
parentheses. Thus a construct such as i < N & ~eof is illegal because it
would be parsed as i < (N & ~eof), which violates type rules.

- Set expressions

Sets are factors defined syntactically as

set = “{” [element {“,” element}] “}".
element = expression [“..” expression].

The expressions must evaluate to numerical results of integer type. The
notation E1..E2 is a shorthand for E1, E1+1, E1+2, ... E2-1, E2.

4.2.7

4.3

4.2 Expressions 39

Examples include

{} the empty set
{1,4..8,20} the set {1, 4,5, 6,7, 8,20}
{1,n+1..2*%k} theset{l, n+1,n+2, ... 2k-1, 2k}

Set expressions comprise sets, set variables and the operators

+ set union / symmetric set difference
- set difference * set intersection

The monadic minus sign denotes the complement, that is U represents
the set of integers between 0 and MAX(SET) that are not elements of U.
The operators “+” and “/” are multiplicative operators and hence take
precedence over “+” and “-”.

As an exercise, let us express the definition of the set operators in
Oberon notation, using the membership relation IN:

iIN (-U) = (IN{0.MAX(SET)}) & ~G IN U)
iINU+V) = (G(INUORGINV)

iINU-V) = G(INU&~GINV)

iIN@U*V) = G(INU&GINV)

iIN (U/V) = (({INU#GINV)

where i is an integer and Uand V are sets.

Predeclared functions

Oberon provides a set of predeclared functions for

e some frequently occurring computations ;

¢ access type-specific information.
An example of the first kind is ABS(x) that computes the absolute value
of a variable x of integer type. The functions MAX(T) or MIN(T) that we
encountered earlier are typical for the second kind. A complete list of

the predeclared functions is given in Appendix A, Tables A.1 and A.2,
page 302.

The assignment statement

The assignment statement serves to evaluate an expression and assign
its value to a variable. Its syntax is:

40 Declarations, expressions and assignments

4.3.1

| assignment = designator “:=" expression.

The action of the assignment statement consists of three parts:

(1) evaluate the designator resulting in a variable;
(2) evaluate the expression yielding a value;

(3) replace the current value of the variable identified in 1 by the
value obtained in 2.

In the simple case that we consider here, evaluating a designator means
accessing the memory location that holds its value. When discussing the
array data structure, we will encounter designators such as ali + 1]
whose evaluation involves integer computations.

Type rules

The type of the designator must be compatible with the type of the expression.
In general, this means that the two types must be identical, or in the
case of numerical types the designator may be of a larger type that in-
cludes the type of the expression.

For reference purposes, Table 4.3 lists the full set of rules for assign-
ment compatibility of an expression with a given designator. Rows 3-7
relate to concepts that will be introduced in later chapters.

Table 4.3 Assignment compatibility of v :=e.

Type or value of expression e Type of designator v

Both types are equal (but not-an open array)
numeric type numeric type, includes type of expression
record type record type, type is a base type of expression’
pointer type pointer type, type is a base type of expression
value NIL pointer or procedure type
string of length [ARRAY n OF CHAR (n>1)
name of a procedure procedure type with matching parameter list

1 Condition is met if the type of the designator is equal to the type of the expression.

4.3 The assignment statement 41

4.3.2 Formal definition, pre-condition and post-condition

Pre-condition,
result condition

Axiom of
assignment

Examples

A formal way to reason about the effects of an assignment is to record
explicitly the states holding before and after its execution. We charac-
terize a set of states by a predicate over the involved variables (see
references at end of Chapter 5). Then all states satisfying the predicate
belong to the considered set.

Let R denote a predicate that defines the set of states after the execution
of the assignment statement. It is natural to view these states as the
result of the assignment, and hence R is referred to as the result condition
(the term post-condition is sometimes used synonymously). The
predicate P holding before execution is called the pre-condition. It is
often useful to add the pre-condition and the result condition as com-
ments to the left and to the right of our statement S:

(*P#) S (*R*) @
This formalism is useful since, given the goal R, it is possible to infer the

precondition P. We state the main result in the following axiom.

Consider the assignment
(x*xPx) vi=e (* R *)
where v is a variable and e an expression.

The weakest precondition P is derived from R by substituting every

(free) occurrence of v in R by e.

Let us proceed with the simplest example. The goal R isi =1 and the
assignment i:=1. We substitute 1 for i in the relation i =1 and obtain
the pre-condition 1= 1 or TRUE; in other words,

#TRUE*) i:=1 (xi=1%).

Thus, whatever the state prior to executing the assignment i:=1, the
assertion i=1 holds afterwards.

In a second example, we strive for the result condition i =N after the
assignment i:=i + 1. Substitution of i + 1 for i in the relation i =N
yields i+1=N or i= N-1; hence

(*i=N-1%)i:=i+1 (xi=N *).

42 Declarations, expressions and assignments

HALT

The following table lists a number of further examples:

P | S | R
c=a*b x:=ax*b X=c
X<y+2 Xi=Xx=-2 X<y
i<N i=i+1 i<N

4.3.3 Statement sequence

A computation is a sequence of actions that transforms an initial state
into a final one that, it is hoped, satisfies the stated result condition. In
Oberon, the statement is the basic unit of action. Thus the sequence of
actions is expressed in a statement sequence

S1; Sy, S3;... S ...

-y

Sn

The semicolon is a statement separator that indicates that the action
specified by a given statement, S; say, is to be succeeded by the one tex-
tually following the separator.

It is straightforward to express the syntax of the statement sequence
in EBNF notation:

7R

| StatementSequence = statement {“;” statement}.

The assignment discussed here is just one of a number of statements
that will be treated in later chapters:

statement = [assignment | ProcedureCall
| IfStatement | CaseStatement
| WhileStatement | RepeatStatement
| LoopStatement | WithStatement
| ExitStatement | ReturnStatement .

The syntax of statements implies that a statement may consist of no
symbols at all. In this case, the statement is said to be empty, and evi-
dently denotes the null action. This curiosity among statements has a
reason: it allows semicolons to be inserted at places where they are ac-
tually superfluous, such as at the end of a statement sequence.

A statement sequence is terminated, and the enclosing program
brought to an abnormal halt if the predeclared procedure

Return statement

Formal
definition

4.3 The assignment statement 43

HALT(e)

is called (call statement: see Section 6.1). The argument e is an integer
expression whose value identifies the termination. Typically, that value
is displayed by the operating system.

A statement sequence is also terminated if a return statement is exe-
cuted (see Section 6.4.2).

Given the result condition R, the pre-condition of the statement se-
quence may be computed by stepwise application of the substitution
rule, starting with S,, and ending with Sq;

(*P*) Sy; Sp; Sz;...55, ... 50 (*R#).
Consider the task of determining P in the following example:
(xPx*) i=i+1; j:=2% (xj=n=*).
We introduce intermediary predicates:
(*P*) = (*Pp %)
(*P1*) i=i+1; +Ry#)=(xPy#)

(xPp*) j:=2% (x Ry *)= (xR *)
(R #)

We know Rj, namely j = n, and S, the assignment j := 2*i. Using the
substitution rule, we find for P; the predicate n = 2*i. Now we equate
Ry =Py and derive Py = n =2+ + 1):

2%(+ 1) =n%) i:=i+1 j:=2% (xj=n=*).

Next we invert the order of evaluation; that is, our sample statement
sequence is j:=2%i; i:=1+ 1. Similar formal manipulations yield

(*2*xi=n*) j:=2%; i:=i+1;, (xj=n=*).

It is evident that the two pre-conditions specify different states. For
example, if n = 4 then the preconditions are i =1 for the first case and
i = 2 for the second one. From this simple example, we conclude that the
order in which the statements are executed matters.

44 Declarations, expressions and assignments

4.3.4 Special assignment statements as predeclared procedures

4.4

For some frequently occurring assignment statements, Oberon provides
an alternative notation. For example, to increment an integer variable i,
the assignment 7 := i + 1 may be replaced by INC(). Similarly, DEC() is
equivalent toi:=i-1.

Syntactically, INC(i) and DEC(i) are procedure calls (see Chapter 6).
All predeclared procedures that abbreviate assignments are listed in
Appendix A, Table A.3, page 303. The rationale behind these
procedures is the possibility of producing efficient code, using special
machine instructions. The programmer is thus advised to use the
procedures whenever applicable.

Summary

In Oberon, all identifiers must be declared. In this chapter, we have
introduced the constant and the wvariable declarations. A constant
declaration associates an identifier with a constant. As the name
implies, the variable declaration defines a variable that is represented
by an identifier. The variable declaration associates a type with the
variable. This association is constant and valid throughout the existence
of the variable. The type defines the set of values that the variable may
assume and the operations in which it can participate. »

A fundamental construct of procedural languages, such as Oberon, is
the assignment statement

vi=e

Expression e is evaluated and the result replaces the old value of the
variable v.

Expressions differ by the operator and the type of the operands. For
example, we introduced relations, arithmetic expressions, Boolean
expression and set expressions.

Of particular importance is the requirement that the factors entering
expressions and the constituents of the assignment must be type-com-
patible. Expression compatibility and assignment compatibility are
summarized in Tables 4.1 and 4.3. This compatibility requirement,
called strong typing, empowers the compiler to check whether
expressions and assignments are meaningful, thereby diagnosing a
large number of programming errors.

We have introduced a formal method for defining the semantics of
the assignment. The set of desired states after the assignment is

4.4 Summary 45

characterized with a predicate: the result condition or post-condition. The
axiom of assignment is used to transform that predicate into a pre-
condition defining the admissible set of states prior to the assignment.

A number of statements, separated by semicolons, is called a state-
ment sequence. It represents a sequential computation. The statements
are executed from left to right.

4.5

4.1

4.2

43

44

4.5

4.6

Exercises

Identify well-formed identifiers:
next_item nextltem 1stStreet FirstStreet LONGINT
WHILE OFFFH

Identify well-formed numbers:
a4.4.3 1513222110 2213 1.33333E354777 3FFX 3FFH
1.44E-88 7FFH E-18

Identify the predeclared identifiers:
ARRAY TRUE ABS DIV MOD COPY DEC
INTEGER OR RETURN Max MAX FFFFH

Identify legal declarations. Some are legal but nonsensical: why?
CONSTa=11; CONST a:=234;
CONST TRUE = FLSE; CONST DO = TRUE;
CONST i =ORD("a"); INF =MAX(real); inf = MAX(REAL);
CONST random = RandomNumbers.Uniform();
VAR REAL: INTEGER; VAR DO: REAL; VAR do: REAL;
VAR Real: INTEGER; VAR Real := INTEGER;
VAR a; b; ¢: REAL; VAR], j, k: INTEGER;

Determine the value and the type of the following constants (assuming

extremal values of Appendix B):
CONST

i=3; j=10000; k=300000; 1=7FFAH; s=1{1,2,3}; pi=3.14159;
inf = MAX(INTEGER); p = ENTIER(pi); 1=i*pi; ich = ORD(44X);

Assume the declaration
CONST z = 0;

VAR si: SHORTINT; i: INTEGER; li: LONGINT; ch: CHAR;
s: SET; r: REAL; Ir: LONGREAL; b: BOOLEAN;

Evaluate the following assignments. Some of them are illegal: which?
si := ORD(CHR(71)); i:= ORD("G"); 1i := ORD(CHR(72));
i:=1+ ENTIER(r); si:= SHORT(ENTIER(3.14));
b:=3 <MAX(REAL)OR1li>i+4; ch:=44X; b:=44X>"a"
ch :="this is true"; b := ("abc" > "this") & (MAX(REAL) > 1/z);
b := (CAP(6DX) = "M") & (li = 1/2);
i:=4+ CHR("a");

46 Declarations, expressions and assignments

4.7 Determine the pre-condition P of the following assignments, for which result
conditions R are known:

Assignments Result condition R
j=iDIV2 j=0

d := a*a —4xa*c d=0

r=r-Y;, q:=q+1 QY +r=X

X 1= X*n x =n!

4.8 Write a statement sequence that interchanges the values of two variables 2 and
b. Prove the result using the axiom of assignment.

5 Control structures

The prime characteristic of a computation is a sequence of actions to be
executed sequentially. If this sequence were a fixed one, the computer
would not have developed in its present form. Individual actions can be
selected, repeated or performed conditionally, depending on previ-
ously computed results. Hence the temporal sequence of actions is
normally not identical to the textual sequence of statements. It is this
dynamic sequencing of actions, also known as control structure, that is
the foundation of the phenomenal success of software.

The sequence of actions is determined by control statements indicating
conditional execution, selection, or repetition of statements or whole
statement sequences. Since a control statement governs other
statements, it is said to be a structured statement. Languages with struc-
tured statements are known as structured languages. Years of experience
prove that proper control structures go hand in hand with purpose
tuned development of a program text — thereby making it readable and
ultimately trustworthy. This goal, however, is only achieved if the
structure is made visible — the use of one line per statement (or
statement sequence) and proper indentation are indispensable tools.
For example, recall from the introduction

IF gamma >0 THEN
Z := gamma
ELSE
Z = gamma + m
END;

Syntactically, structured statements are expressed recursively, having
StatementSequence and hence statement as constituents. As in the case of
the assignment statement, we will formally define the control structures
by means of predicates and their transformation rules (Gries, 1981;
Cohen, 1990).

47

48 Control structures

5.1 Conditional statements

5.1.1 The if statement

Selecting a statement sequence among a set of sequences under the
control of Boolean expressions is one of the main constituents of pro-
grams. As an introductory example, consider the the signum function
y = sign(x) = (1 if x >0, 0if x =0, -1 otherwise) which in Oberon
notation is expressed as follows, with obvious meaning;:

IF x<0 THEN y:=-1
ELSIF x>0 THEN y:=1

ELSE y:=0
END;
The conditional statement, also called the if statement, observes the
syntax
IfStatement = “IF” expression “THEN” StatementSequence

{“ELSIF” expression “THEN” StatementSequence}
[“ELSE” StatementSequence]
IIENDII'

The expressions must be of type BOOLEAN, which means they yield,
after evaluation, one of the truth values TRUE or FALSE. Note that the
if statement is always terminated with an END, even in the simplest
form IF B THEN S END, where S is a single statement.

To explain the operation of the if statement, we express its general
form as follows:

IF B, THEN S,
ELSIF B, THEN S,

ELSIF B, THEN S,
ELSE S
END

Here Bj...B, denote Boolean expressions and S, S7...S;, denote state-
ment sequences (a single statement is also a statement sequence). The
else clause ELSE S is an abbreviation for ELSIF ~B; & ~By & ... & ~B,,
THEN S.

By is evaluated. If it yields FALSE then B is evaluated, and so forth,
until the first Boolean expression that is satisfied is encountered: Bj, say.

5.1.2

5.1 Conditional statements 49

The statement sequence S; associated with B; is executed and the if
statement terminated. Note that at most one of the statement sequences
executes; if the ELSE clause is present, exactly one is carried out.

The Boolean expression B; (i = 1, 2...n) is also termed the guard of its
statement sequence S;.

Formal definition of the if statement

As in the case of the assignment, we wish to be able to state
(x P*) If BTHEN S END (* R *).

What are the necessary and sufficient properties of the component
statements (or statement sequences) that let us make the above con-
clusion? They are specified in the axiom of alternatives, which serves as
a formal specification of the semantics of the if statement. It demon-
strates the essence of a structured language: it is possible to derive prop-
erties of a composite statement from those of its components and, vice-versa.

Before stating the axiom of alternatives, let us consider a simple ex-
ample: the computation of the absolute value of an expression; that is,
y := ABS(x). It can be expressed by an if statement:

IF x<0 THEN y:=—x
ELSE y:=x

END.

(*y = ABS(x) ¥)

As before, we have added the result condition R =y = ABS(x) as a
comment at the end of the if statement. The condition R can be
expressed as follows

R=(x<0) & (y=—x) OR (x 20) & (y = x).

If, prior to the if statement, precondition P is satisfied, then (x <0) & P
holds before the assignment y = —x. Similarly, the predicate (x 20) & P is
the precondition of the assignment y = x. Therefore

(*P=*

IF x<0 THEN (* (x<0) &P *) y:=-x (xR*)
ELSE (* (x20) & P#*) y:=x (xR %)

END;

50 Control structures

Axiom of
alternatives

Thus we seek a pre-condition P such that

(*(x<0)&P*) y:=-x (*R#*) and
(*x20&P*) y:=x (*xR%)

can be established. For our simple example, this is not a difficult task.
Direct application of the axiom of assignment yields for the first state-
ment y :=—x (* R %):

X< &(x=-xX)ORx20) & (-x=x)= x<0
Similarly, y := x (* R *) leads to
x<0)&x=-xX)ORx=20&x=x)= x>0

from which we conclude P = TRUE, establishing unconditional validity
of the computation of the absolute value.
These preliminaries motivate the following axiom:

C(xP#)
IF B; THEN S;
ELSIF B, THEN S,

ELSIF B, THEN S,
ELSE S
END

(*R#)

holds if there exist conditions P; such that

(*P; *) S; *R=*) foralli=1,2,...n §))
P&~Bl&~Bz&...&~Bi_1&Bi = Pi 2)
P& ~B; & ~By & ... & ~B;, = R (else clause is missing) (3a)

(*P&~B; & ~By & ... & ~B, *) S (* R *) (with else clause) (3b)

A = B means A implies B in the sense of predicate calculus (that is,
~A OR B).

The following example illustrates the use of the axiom of alternatives.
The task is to compute y := sign(x), which can be expressed by the if
statement S: ‘

5.1 Conditional statements 51

IF x<0 THEN y :=-1
ELSIF x>0 THEN y:=1
ELSE y:=0

END;

We have By =x < 0 and By =x > 0. Our goal is to establish
(* TRUE *) S (*y =sign(x) *).
The result condition R = y = sign(x) can be written as
R=(x<0) & (y=—1) OR (x> 0) & (y = 1) OR (x = 0) & (y = 0).

The axiom of assignment applied to y :=-1, y :=0 and y :=1 (in that
order) yields

x<0&F1=-1)OR(x>0) & (-1=1)OR(x=0) & (-1 =0)= x<0
x<0)&(1=-1)OR(x>0)&(1=1)OR(x=0) & (1=0) x>0
x<0)&0=-1)OR(x>0& 0=1)OR(x=0) & (0=0) x=0

Therefore

Pi=x<0: (*x<0%) x:==1 (*xR#%*)
Pr=x>0: (*x>0%) x:=1 (xR%)
(*x=0%) x:=0 (*R=x*)

The assertion (* TRUE #) S (* P*) can be established according to the
axiom of alternatives if

TRUE & B; = P; using (2)
TRUE & ~B1 & By = P> using (2)
(* TRUE & ~B1 & ~By*) S (*R#*) using (3a)

Substituting B = x < 0 and B, = x > 0 into the above predicates, we find

TRUE &B;= x<0
TRUE & ~B; & By= x>0
TRUE & ~B; & ~By= x =0

52 Control structures

In all three cases, the above conditions are satisfied, and the correct
computation of sign(x) is thus formally established.

5.1.3 The case statement

An if statement with a number of ELSIF clauses allows the selection of a
statement sequence under the control of several conditions — one for
each sequence. In practice, one often finds a series of comparisons of a
common expression with a set of constants.

~ Let us illustrate this situation. Assume that we have renamed a file.
The appropriate system routine yields a so-called result code, an integer
variable res that reports various termination conditions. An appropriate
message is generated by the if statement:

IF res = 0 THEN Out.String("renamed”)

ELSIF res =1 THEN Out.String("name existed already")
ELSIF res =2 THEN Out.String("name does not exist")
ELSIF res =3 THEN Out.String("system error")

END;

The following case statement is equivalent:

CASE res OF
0: Out.String("renamed")
| 1: Out.String("name existed already")
| 2: Out.String("name does not exist")
I 3: Out.String("system error")
END;

Besides notational convenience, the case statement allows the compiler
to generate very efficient code if the compared values are constants and
more or less contiguous.

The formal EBNF specification of the case statement reads

CaseStatement = “CASE” expression OF
case {“|” case}
[“ELSE” StatementSequence]
“END”.
case = [CaseLabelList “:” StatementSequencel].
CaseLabelList = CaseLabels {“,” CaseLabels}.
CaseLabels = ConstExpression [“..” ConstExpression].

5.1.4

5.2

5.1 Conditional statements 53

The expression and all the case labels must be of the same type, which
is either an integer type or CHAR. Case labels are constants or constant
expressions, and no value must appear more than once. The following rules
determine the execution of the case statement:

(1) The expression is evaluated.

(2) The first statement sequence whose case label list contains the
value obtained from step 1 is executed and the case statement
terminates.

(3) If no match exists, the statement sequence following ELSE is se-
lected. If it is omitted then lack of a match is considered an error.

As in set notation, E1..E2 is shorthand for the filled-in series E1, E1+1,
... E2-1,E2.

Formal definition of the case statement

Once again, we wish to find the assertions about the component
statements that must hold in order to establish (* P *) CASE k OF ki: S1
| kp: Sp | ... | ky: S END (* R *). These assertions follow easily from

the axiom of alternatives, and they are as follows:

(*P*) CASEkOF
klisl | kz:Sz [knl Sn
END (* R %)

holds, if there exist conditions P;such that foralli=1,2, ... n

(% Pi *) S (* R %)
P&(k=ki) = Pi

Repetitive statements

The repetition of a statement or a statement sequence under the control
of a condition is a frequent constituent of programs. Oberon features
three kinds of repetitive statements: the while statement, the repeat state-
ment and the loop statement. The three statements are, in essence,
equivalent but cater for different programming situations.

54 Control structures

5.2.1

5.2.2

The while statement

Assume that a statement, or a statement sequence, should execute ex-
actly n times; a requirement that we specify as follows:

j=0;

WHILE j<n DO
s =i+l

END;

Since variable j, the control variable, counts from 0 to n — 1, we call the
preceding repetition a counting loop.
The syntax of the while statement reads

WhileStatement = “WHILE” expression “DO”
StatementSequence
IIENDII .

The expression must be of type BOOLEAN. The action of the while
statement is described by the rules:

(1) Evaluate the expression, which results in a truth value.

(2) If the value is TRUE, execute the statement sequence and then
repeat with step 1; if the value is FALSE, terminate.

If the condition is not satisfied initially (that is, the expression yields
FALSE), then the statement is vacuous; that is, no action takes place.

The while statement introduces for the first time the danger of a
nonterminating program, a frustrating experience every programmer,
novice or expert, is familiar with. Evidently, loops must be considered
with care. Consider, for example,

WHILE j#0DO j:=j-2 END;
It is easy to realize that this loop terminates only under the pre-condi-

tion (j >=0) & (j DIV 2 = 0). The program must enforce that pre-condi-
tion, otherwise it will be in error about half of the time it is run.

Formal definition of the while statement

Verification of the claim that a repeated statement establishes a
specified result characterized by the condition R rests on the notion of a
condition Q that holds invariably, no matter how many times a

Axiom of
repetition

Loop variant

5.2 Repetitive statements 55

statement (or statement sequence) has already been executed. Q is
therefore called a loop invariant, or simply invariant.

Let us explain this concept with a simple example. We wish to com-
pute z:= X*Y (for x 2 0) using repeated addition. The obvious solution
is

x=X; z:=0;
WHILEx>0DO z:=z+Y; x:=x-1END;
(*z = XY %)

The relevant invariant (that is, the condition holding before each execu-
tion of the repeated statement sequence) is

Q=(z+xY =XY) & x=0).

It holds at the beginning, because 0 + XY = XY. It remains unchanged
during the repetition because each time 1 is subtracted from x, Y is
added to z, leaving the sum intact. Most importantly, this invariant
yields the desired result, if the condition x >0 no longer holds and
repetition terminates:

~x>00&Z+xY=XY)& x20)=
x=0&Z+x¥Y=XY)=@Z=XY)=R

The verification condition of the while statement is summarized in the
axiom of repetition:

(* P*) WHILEBDO S END (¥R #)

holds if an invariant Q exists such that

P=Q

Q&B=) S (* Q%)
Q&~B=R

If a while statement satisfies the axiom of repetition, it is said to be par-
tially correct. It establishes the result condition R whenever it manages to
falsify B. However, it may never do that, and repetition never termi-
nates.

In order to demonstrate full correctness, we also have to show that the
repetition terminates. In order to do so, we have to establish that at each

56 Control structures

iteration, the loop makes some progress towards a goal. This is the case
if we can find an expression involving variables participating in the
condition B, that is strictly decreasing at each turn, and whose falling
below a fixed threshold, for example 0, implies ~B — that is, termination
of the loop. Such a function is termed a loop variant, or again simply a
variant.

In our example of multiplication, x is that variant. It is decremented
by the repeated statement sequence, and x <0 implies ~(x > 0), and
hence termination.

In order to exemplify these ideas, we present a more sophisticated
version of a multiplication algorithm, which happens also to be much
more efficient:

x=X;y:=Y; 2:=0; (xx>=0%)
WHILE x > 0 DO
IFODD(x) THEN z:=z +y; x:=x-1 END;
y = 2%y; x:=xDIV 2
END;

The invariant Q remains the same, and so does the variant x. We must
demonstrate that the statement sequence leaves Q invariant and de-
creases x. We leave this exercise to the reader, but point out an impor-
tant detail.

In order that Q not be invalidated by the statement sequence

y =2xy; x:=xDIV2

x must be even; otherwise the DIV operation loses the remainder 1.
However, this condition is established - if it does not already hold - by
the preceding x :=x -1, which is executed (or guarded) by the condi-
tion ODD(x).

A second example concerns the division of positive integers
g := X DIV Y. The algorithm proceeds by repeatedly subtracting the
divisor Y from the dividend X; that is,

r=X; q:=0;
WHILEr >=Y DO

r=r-Y;q:=q+1
END;

The invariant is

Q=(qY+r=X) & (x20).

5.2.3

5.2 Repetitive statements 57

Q is established by the initial statements. It is maintained by the state-
ment pair 7 :=r - Y; g := g + 1, because it leaves the sum gY + r un-
changed. The condition (guard) r > 0 guarantees that r does not become
negative. And finally; Q & ~B or Q & (r < Y) yields the desired result

R=(qY+r=X)&(0<r<Y)
which, as we recall, is the definition of the division
XDIVY=q, XMODY =r.

The expression r - Y is a variant function. At each repetition of the loop,
Y is subtracted from r; hence r — Y is strictly decreasing. In addition,
r-Y <0 implies r <Y and hence ~B, the terminating condition of the
loop. Thus correctness of the integer division is guaranteed.

The repeat statement
The second repetitive statement is syntactically defined as

RepeatStatement = “REPEAT”
StatementSequence
“UNTIL” expression.

Again, the expression is of type BOOLEAN. The essential difference
from the while statement is that the termination condition is checked
each time after (instead of before) execution of the statement sequence.
As a consequence, the sequence is executed at least once. The advantage
is that the condition may involve variables that are undefined when the
repetition is started.

For example, a counting loop may also be expressed as

j=0;
REPEAT

s j=jrl
UNTIL j=n;

In this version of the counting loop, it must be guaranteed that j =0 isa
valid pre-condition for the statement sequence.

The ‘danger’ of using the repeat statement lies in the fact, that the
statement sequence is not guarded by an explicit condition. As a

58 Control structures

5.24

5.2.5

consequence, it is easier to overlook the proper termination condition.
For example, the calculation of the harmonic series:

i=0; s:=0;
REPEAT s:=s+1/i;INC(G) UNTILi=n;

does not terminate for n < 0. In general it is wise to use the while statement
whenever repeat does not offer a clear advantage.

Formal definition of the repeat statement

The loop invariant and variant play the same role as in the case of the
while statement. We will be brief and state the appropriate axiom
without further examples:

(* P *) REPEAT S UNTIL B (* R %)
holds, if there exists an invariant Q such that

(*P=*) S (xQ=*)
Q&~B) S (xQ%)

Q&B=R

The loop statement

The third repetitive statement is the loop statement, which specifies the
unconditional repeated execution of a statement sequence. It is termi-
nated by the execution of an exit statement within the statement se-
quence. Syntactically, the loop statement looks as follows:

LoopStatement = “LOOP” StatementSequence “END”.
ExitStatement = “EXIT”.

The execution of an exit statement in the statement sequence causes
termination of the loop. Program execution will continue with the
statement immediately following the END of the loop. Thus exit
statements are contextually — although not syntactically — bound to their
loop statement.

Evidently, the loop statement is more general than either the while
statement or repeat statements. The latter two can easily be expressed in
terms of a loop statement with a single exit. However, we recommend
the use of the loop statement only for cases with more than one exit

5.3

5.2 Repetitive statements 59

point (or with an exit point that must lie in the middle of the statement
sequence).
The composition of a loop statement typically looks like

LOOP
B, THEN EXIT;
IF B, THEN EXIT;

where By and B, denote expressions of type BOOLEAN.

Summary

Control statements allow conditional execution of a statement sequence
under the control of a Boolean expression. They are structured
statements; that is, their definition is recursive.

The most basic control statement is the if statement that puts a
statement sequence under a guard — which means the statement
sequence is only executed if a Boolean expression holds. The case
statement specifies the selection of a statement sequence - a case —
according to the value of an integer expression or character variable.

Two repetitive statements control the iterated execution of a state-
ment sequence under the control of a Boolean expression: the while
statement and the repeat statement. A third repetitive statement, the loop
statement, allows several exit points within the statement sequence
indicated by exit statements.

Like the assignment, the control statements are defined formally by
axioms that state how a post-condition is transformed into a pre-con-
dition that must hold in order that the specified result be obtained. The
axiom of alternatives covers the if statement. In the case of repetition,
we have introduced the important concept of a loop invariant, a condi-
tion that holds prior to every execution of the loop’s statement se-
quence. In addition, a variant function is used to assure termination of
the repetition.

We have given several simple examples, and have used the axioms to
prove their correctness. A more ambitious example is given in Section
8.2.5, where we prove the binary search algorithm.

60 Control structures

5.4

5.1

Exercises

Which of the following control statements are well-formed?
CONST c = 3; VAR, j, k: INTEGER;
(@) REPEATj:=j-1UNTILj=0;
(b) WHILE j#0DO INC()); IF ODD(j) THEN EXIT END;
(¢} IFj>10 THEN j := 10;
(d) CASEiOF1:j:=i | k:j:=k END;
(e) CASEiOF1:j:=il c:j:=k END;
(f) LOOP j:=j+c UNTILj>k;
(g) REPEAT j:=j+c UNTILj>k;

5.2 Which of the following loop statements terminate?

5.3

5.4

5.5

VAR, j, k: INTEGER; VAR y: REAL;
(@) j:=5; REPEATj:=j-1UNTILj=0;
(b) j:=5; REPEATj:=j-2UNTILj=0;
(¢) j:=5 REPEATj:=j-2UNTILj<0;
(d) j:=-5; REPEATj:=jDIV2UNTILj=0;
(e i:=1j:=1;, WHILEi#100 DOk :=1i;i:=j+i;j:= k END;
() i:=1j:=1; WHILEi<100 DOk :=i;i:=j+i;j:= k END;
(g) i:=1j:=1; WHILEi<100DOj:=j+iEND;
(h) j:=5; LOOPj:=j-1END;
[Min] Write an if statement that assigns the minimum of three integers x, y and

z to min. Prove correctness, using the axiom of alternatives and the axiom of
assignment.

[Fast multiplication] The following statement sequence computes the product
X+Y slightly faster than the sophisticated version of the multiplication given in
Section 5.2.2:

x=X,y:=Y; 2:=0;

WHILE x > 0 DO
IFODD(x) THEN z:=z +y END;
y 1= 2xy; x:=xDIV2

END;

Why is it permissible to omit the statement x := x — 1 that followed z := z + y in
the original version?

[Power] Use repeated multiplication to compute the power x”, where x is a real
and 7 a positive integer. Formulate invariant and variant functions.

5.6

5.7

5.8

5.9

5.10

5.4 Exercises 61

[Logarithm base 2] The following statement sequence computes the logarithm
to the base 2 for real values 1 <x < 2:

VAR x, a, b, s: REAL;
a:=x; bi=1;, 5s:=0;
WHILE b > 0 DO
a:=a*a; b:=b/2;
IFa>=2THEN s:=s+b; a:=a/2 END
END;

Establish the invariant logy(x) = s + bxlogy(a). Can you find a variant? Why does
the loop terminate? How many iterations are needed to complete?

[Greatest common divisor] Write a program fragment that computes the
greatest common divisor of two integers x and y, denoted by gcd(x, y), by
repeated subtraction. Formulate an invariant.

Hint: use the identities (1) ged(x, x) =x, (2) ged(x, y) = ged(y, x) and (3) if
x >y then ged(x, y) = ged(x -y, y).

[Euclid’s algorithm] The following method to compute ged(x, y) is known as
Euclid’s algorithm:

WHILE y >0DO
r:=xMODy; x:=y; y=r
END;

State pre-condition, invariant and variant functions. How can the computation
be generalized to include negative integers x and y?

Work out a few examples of gcd computation using both methods. Which is
faster? (See Knuth, 1971).

[Bisection] Let f(x) denote an expression
that computes a real value for a given

argument x (how to actually specify user- f(x) Step1:
programmed functions in Oberon is the x2:=(x1+x2)/2
subject of Chapter 6).

We are interested in finding the root

bisection. The procedure starts with an
interval (x1, x2) such that f(x1) >0 and
f(x2) < 0 (or vice versa). The intervals are
then successively halved and either x1 or
x2 is set to the midpoint, depending on
the sign of f(x) there.

The method of bisection is expressed
by the following while loop (assume that f(x) stands for an expression of type
REAL):

of f(x). A simple and robust method is ‘ x

62 Control structures

VAR x1, x2, y: REAL;

(x (f(x1) > 0) & (f(x2) < 0) & (x1 < x2) %)

x:=(x1+x2)/2;

WHILE (x1 < x) & (x < x2) DO vy := f(x);
[Fy>0THEN x1:=x ELSE x2:=x END;
x:=(x1+x2)/2

END;

Questions:

(@)
()]
©)
@

(e)

Work out an example by hand.
Determine the invariant of the loop.
Determine a variant function .

Does the loop terminate for all x1 < x < x2? If yes, how accurate is the
computation of the root? ‘

Is the following statement sequence equivalent?

WHILE x1 < x2 DO

x:=(x1+x2)/2;

y = £(x); ,

IFy > 0 THEN x1 := x ELSE x2 := x END
END;

References

Cohen E. (1990). Programming in the 1990s: An Introduction to the Calculus of

Programs. New York: Springer-Verlag.

Gries D. (1981). The Science of Programming. New York: Springer-Verlag.
Knuth D.E. (1971). The Art of Computer Programming Vol IL: Seminumerical

Algorithms, pp. 293-338. Reading, MA: Addison-Wesley.

Procedures and modules

Thus far, we have introduced two broad notions:

(1) declarations that bind an identifier to a type or a value;

(2) statement sequences including control statements that express algo-
rithms.

This chapter connects the two concepts by establishing textual scopes,
namely procedures and modules.

In its simplest form, the procedure can be visualized as a named
statement sequence. In essence, a module is a textual scope comprising
constant and variable declarations and a number of procedures.! The
module is the unit that is accepted by the compiler. Translated modules, -
termed object modules, can be stored in the computer’s library, and are
units that are loaded into the memory for execution.

Operating systems afford controls that allow the user to execute code
stored in the computer’s object library. In Oberon, the unit that can be
executed is the procedure. This contrasts with the traditional notion of a
main program being the basic executable unit.?

A procedure, however, goes far beyond the simple notion of a named
statement sequence. In particular, it encompasses:

¢ the concept of local variables;

¢ the concept of a result: a procedure with a result can be used as a
factor in expressions, like the predeclared functions such as
ABS(x);

¢ the concept of parameters that are passed to the procedure like the
arguments of a mathematical function.

In the way that a procedure is more than a named statement
sequence, a module goes beyond a mere compilation unit. It may have

1 Later we will also introduce type declarations.
2 For example, in PL/1 it is the procedure with the option main, in Modula-2 the
main module.

63

64 Procedures and modules

an optional statement sequence and — more importantly — controls the
visibility of declared identifiers beyond its scope. For example, if a
procedure is intended to be invoked by the computer operator, it must
be marked for visibility outside the module.

Box 6.1
A fractal fern

Fractals are fascinating objects of mathematics.
The observation by Mandelbrot of the
existence of a ‘fractal geometry of nature’ has
led to a new way of thinking about many
natural phenomena such as the length of
coastlines or the edges of clouds (Mandelbrot,
1977).

A simple algorithm — known as the iterated
function system (IFS) — produces the fractal fern
shown on the left (Barnsley, 1988). The fern is
drawn by a pen that moves over the drawing
area and paints a dot at a computed sequence
of consecutive points. If the pen is at a point
(x, y) then the next point is computed by

. applying a simple transformation of its
coordinates:

Xnew =X + by +e 0}
Ynew =CX +dy +f V)

Equations (1) and (2) are called an affine transformation. The art of
producing an interesting picture such as a natural scene is to find a se-
quence of such transformations that are applied at random to determine the
position of the moving pen. The fern is produced by the following four

transformations:
a b c d f p Action
0 0 0 0.16 0 001 Stem

0.85 004 -0.04 085
0.2 -026 023 022
-0.15 028 026 0.24

1.6 0.85 Turn of leave
16 0.07 Rightsub-leaves
044 0.07 Leftsub-leaves

OO OO |

The column labelled p contains the probability with which the respective
transformation is applied. The table contains all the information about the
fern. While storing the pixels of the fern’s image may require hundreds of
thousands or even millions of bits, the table can be stored in about 1000
bits - a tremendous compression. However, finding the set of
transformations characterizing an arbitrary scene remains a difficult task.

Both procedures and modules play important roles in the structuring
of complex programs. An explanation of these roles, however, has to wait

Procedures and modules 65

until Chapter 10. In this chapter, we will deal with the syntax and
semantics of procedures and modules. We will do this by means of an
example - drawing a fractal fern, see Boxes 6.1 and 6.2.

Box 6.2 The algorithm for drawing a fractal fern relies on a random selection of a
Iterated function particular transformation. Assuming that rn is a uniform random variable
system: Oberon between 0 and 1, a random selection with given probabilities p1, p2, p3
formulation and p4 is achieved as follows:

IFr < pl THEN ... (* first selection *)

ELSIF rn < (p1 + p2) THEN ... (* second selection *)

ELSIF rn < (p1 + p2 + p3) THEN ...(* third selection %)

ELSE... (* fourth selection *)

END;

It is now easy to write the statement sequence of an algorithm to draw the
fractal fern:

“open a viewer representing a drawing plane”;
X:=0; Y:=0; (+initial position of pen *)
REPEAT
“Generate a real random number rn (0 < rn <=1)";
IF rn < pl THEN
x:=al*X + blxY +el; y:=cl*X+dlxY +{1
ELSIF rn < (p1 + p2) THEN
x:=a2*X + b2*xY + e2; y:=c2%X +d2*Y + 2
ELSIF rn < (pl + p2 + p3) THEN
x:=a3*X + b3*Y +e3; y:=c3*xX+d3*Y +f3

ELSE

x:=a4*X + b4*Y + e4; y:=c4dsX +d4xY + 4
END;
X=x;Y:=y;

“Paint dot at position (X, Y)”
UNTIL “User terminates loop ”;

This sequence of statements is merely a fragment of an Oberon program.
The actions to open a viewer, compute a random number, paint a dot,
and provide a user-enacted termination stimulus are not yet formally
specified. We also know that all variables must be declared. We will fill in
the missing part in the remainder of this chapter and in Chapter 7.

66 Procedures and modules

6.1

Procedure call

The procedure: a statement sequence with a name

Like all objects of the Oberon language, a procedure needs to be de-
clared. The procedure declaration consists of a procedure heading and a
procedure body. The heading specifies the procedure identifier and
possibly parameters and a result type. The body is composed of a
declaration sequence and a statement sequence. The procedure decla-
ration is terminated with the symbol “END” followed by a repetition of
the identifier. Formally, the syntax is given by

ProcedureDeclaration =
ProcedureHeading “;” ProcedureBody ident.
ProcedureHeading =
“PROCEDURE” ident [“*”] [FormalParameters].
ProcedureBody = DeclarationSequence
[“BEGIN” StatementSequence]

" ENDI/ .

The declaration sequence, the export mark (asterisk “*+”) and the formal
parameters will be described in subsequent sections. :

In its simplest form, the procedure is composed of a heading with a
mere identifier and a body that consists of a statement sequence only.
This is the named statement sequence mentioned before. We are now
able to complete the example of Box 6.2 by casting the statement se-
quence that draws a fractal fern into a procedure called Draw:

PROCEDURE Draw;
BEGIN

... (* Statement sequence of Box 6.2 *)
END Draw;

Note that it is assumed that all variables that occur in the statement
sequence are declared in a larger context (the module) in which the
procedure is embedded.

To exercise the statement sequence of a procedure, it has to be called or
invoked. Such a call can originate from another procedure or from a hu-
man operator of the computing system.

For the simple (parameter-less) procedure, the call statement consists
simply of the procedure identifier, for example

... Draw; ...

6.2

6.1 The procedure: a statement sequence with a name 67

When the call statement is executed, control passes to the first
statement in the statement sequence of the procedure. After the proce-
dure is finished, processing resumes with the statement that follows the
call.

Processing of a procedure terminates with the execution of the last
statement in its statement sequence or explicitly with a return statement
(see Section 6.4.2).

The procedure concept would be useful, even if restricted to the
simple form discussed so far. Two additional features, however, forge it
into an essential programming tool: the locality of identifiers and the
notion of parameters.

The concept of locality

Procedure Draw operates on two groups of variables:

(1) X,Y,x,yand rn;
(2) al...a4,b1...b4,cl...c4,d1...d4,el...e4,f1...f4 and pl...p4.

The first group comprises variables defining pen position and random
numbers. They are strictly local to the procedure; hence they are termed
local variables. In contrast, the variables of the second group have global
significance.

All objects — in particular, variables — must be declared. The declaration
sequence in the procedure body is used to define local objects such as the
variables of the first group. The syntax of the declaration sequence is
given by the EBNF production

DeclarationSequence =
{ “CONST” {ConstDeclaration “;”}
| “TYPE” {TypeDeclaration “;"}1
| “VAR” {VarDeclaration “;”}}

"o

| {ProcedureDeclaration “;

The declaration sequence lists constant declarations, variable declara-
tions and type declarations in any order, followed by the procedure
declarations. Since the declarations in the body of a procedure are
strictly local to that procedure, export marks are not meaningful.

To give an example, we refine procedure Draw by making the first
group of variables local:

1 Type declarations are the subject of Section 8.1.

68 Procedures and modules

6.2.1

6.2.2

PROCEDURE Draw;

VAR
X, Y: REAL; (* local variables for pen position *)
x, y: REAL; (* local variables for new position *)
rm: REAL; (* local variable for random number *)

BEGIN
... (* Statement sequence of Box 6.2 *)
END Draw;

Scope

The section of program text in which an identifier is defined is called its
scope. The object represented by such an identifier can only be used
within its scope. The scope of declarations appearing in the body of a
procedure is the remainder of that body. Applied to variables, the lo-
cality concept asserts that they exist only within their scope. Therefore
the value of a local variable is not defined when the procedure is called,
and, similarly, its value is lost upon termination. Hence, if a variable
should retain its value between successive calls of a procedure, it must
be declared outside of the procedure. As a consequence, local variables
consume memory resources only during the execution of the statement
sequence of their procedure. As soon as control reverts to the statement
following the call, the memory of the local variables is released.

In our example, the scope of the variables X, Y, x, y and rn is the
procedure Draw - specifically the text from their declaration to the
terminating symbol “END”. Suppose that the identifier rn also desig-
nates an object outside of Draw, a procedure, say. The local declaration
of rn excludes this procedure from the scope of the text representing the
procedure Draw. The programmer is thus free to reuse identifiers. In fact,
local identifiers can be used without the need to know all globally
defined objects. This decoupling of knowledge about different program
parts is particularly useful — even vital — in the design of large programs
created by a team of programmers.

Nesting of scopes

What is noteworthy about the syntax of the declaration sequence is that
the procedure declaration is recursive. In other words, the declaration
sequence of a procedure may contain nested procedure declarations. In

Scope rules

6.2.3

6.3

6.2 The concept of locality 69

analogy to local variables, the procedures thus defined are local objects
within the scope of their enclosing procedure.

Since procedure declarations can be nested, their scopes follow this
nesting pattern. The scope rules are best remembered by the method
used to search the declaration of an identifier, i say. First, search the
declarations of the procedure P in which 7 is used. If the declaration of i
is not among them, continue the search in the procedure or module (see
Section 6.3) surrounding P; then repeat this rule until the declaration is
encountered. If an identifier is not declared, the text is not a valid
Oberon program unless it is one of the predeclared identifiers. These
standard identifiers are considered to be declared in an imaginary global
scope enveloping all modules.

Advantage of locality

It is good programming practice to declare objects locally. This confines
their existence to the procedure in which they have meaning. In
summary, the use of local variables has the following significant ad-
vantages:

¢ The declaration is textually close to the use of the object, aiding
in the readability of the program text.

* The inadvertent use of a global object locally is eliminated. There
is no need to know all global objects.

* Memory requirements can be minimized because local variables
are released upon termination of the procedure to which they be-
long.

Modules

The module is another construct that defines a scope. In the previous
section, we have referred to a ‘larger context’ in which variables were
assumed to be declared. For procedures that are not local to other
procedures, such as Draw, this context is the module. Oberon modules
observe the syntax

70 Procedures and modules

Declaratlon
sequence

Statement
sequence

6.3.1

module = “MODULE” ident “;”

[ImportList]

DeclarationSequence

[“BEGIN” StatementSequence]

“END” ident “.”.

The two identifiers must match. The impoft list and the statement se-

quence are optional.

Let us cast the IFS example into a module:

MODULE IFS;
VAR

al,bl, cl,dl,el, f1, p1: REAL;
a2,b2,c2,d2, e2, {2, p2: REAL;
a3, b3, ¢3, d3, e3, f3, p3: REAL;
a4, b4, c4, d4, e4, f4, p4: REAL;

PROCEDURE Draws;
. (* Procedure body *)
END Draw;

BEGIN

al :=0.0; a2:=0.85; a3:=
bl :=0.0; b2:=0.04;, b3:=
cl1:=0.0; c2:=-004; 3:=
d1:=0.16; d2:=0.85, d3:=
el :=0.0; e2:=0.0; e3:=

(* 1st affine transformation #*)

(* 2nd affine transformation *)
(* 3rd affine transformation *)
(* 4th affine transformation *)

0.2; a4 :=-0.15;
-0.26; b4:=0.28;
0.23; c4:=0.26;
0.22;, d4:=0.24;
0.0; e4:=0.0;

f1:=0.0; f3:=1.6; f3:=1.6; f4:=0.44;

pl:=001; = p3:=007, p3:=

- ENDIFS.

0.07; p4:=0.07

Our sample module contains a declaration sequence specifying the
variables al ... p4, the procedure Draw and a statement sequence that

assigns values to the global variables.

The scope defined by a module; declaration of global variables

Like the procedure, the module defines a scope for the identifier de-
clared in its declaration sequence. The scope extends from the point
where the identifier is declared to the final "END” of the module.
Procedures declared within the module open a hested scope, and the

rules for nested scopes apply.

Static scope,

Global variables

The module as
compilation unit

Export mark

6.3.2

6.3.3

6.3 Modules 71

Each time the procedure is executed, its scope is newly opened - the
local variables are newly defined. In contrast, the scope of the module is
static. The module is in existence for the whole computation or the
whole user session. This means that variables declared in a module also
exist - and consume storage — throughout the duration of the module’s |
activation. We call these variables global variables. In contrast to
procedures, modules cannot be nested.

In order for Oberon texts to be executable on a machine, they require a
translation into machine code by a compiler. In Oberon, the syntactical
unit accepted by the compiler is the module. Translated modules are
called object modules. They are part of libraries residing on disk storage,
and may be loaded into the machine’s memory for execution.

The statement sequence of a module

The statement sequence of a module is executed when the module is
first activated and thus loaded into memory. The statement sequence in
our example is quite typical - it is used to initialize global variables. Thus,
when module IFS is first loaded into memory, the assignments are
carried out and the global variables receive their initial values.

Export and import of declarations

Declared objects such as variables and procedures are visible only
within their scope that is opaque if viewed from the outside. This scope
rule also applies to the module - its only external property is the
module name. Clearly, a mechanism is needed to make objects of the
module accessible from the outside. The procedure Draw from module
IFS is an example: it should be made known to the operating system, to
be invoked from the computer’s controls. Procedure Uniform from
module RandomNumbers, which we encountered in Chapter 2, is
another example. We would like to be able to call it in procedures
declared in other modules - for example in IFS, where randem numbers
are needed. The export mark and the import list are the constructs that
Oberon provides to make the module scopes partially transparent.

Any identifier being declared in a module may be marked for export.
Exported variables or procedures are visible outside the scope of the
module. The export mark is an asterisk following the identifier being declared.
For example, in the declaration sequence

72 Procedures and modules

VAR height*, width#, i, j: INTEGER;
PROCEDURE Draw#;

... (* declaration and statement sequence *)
END Proc;

the variables height and width and the procedure Draw are marked for
export.

Import list The library of a given computer may contain a large number of mod-
ules. Clearly, it is not beneficial if all objects exported by them are si-
multaneously visible within each module. One of the important benefits
of the module concept is that programs may be written by different
programmers, who do not need to know the declarations and
conventions made in other modules except, of course, those that they
intend to use. The import list and the qualified identifier provide the
mechanism to avoid naming conflicts.

Those modules whose exported declarations should become visible in
a given module have to be imported explicitly. The imported modules
appear in the import list, which immediately follows the module
heading and has syntax

importList = “IMPORT” import {“,” import} “;".
import = ident [“:=" ident].

For example,

MODULE IFS;

IMPORT RN := RandomNumbers, XYplane;
... (* declaration and statement sequence *)
END IFS.

Within the scope of module IFS, the declarations of the exported objects
of modules RandomNumbers and XYplane are visible. In the form
. M1 := M, the imported module is known under the alias M1 in the scope
of the importing module. Thus, in the example, RandomNumbers is

known as RN.
Qualified Imported objects are always referred to by a qualified identifier consisting
identifier of a prefix - the exporting module’s name or alias - followed by the

name of the object. For example, assume that V is an exported variable
of a module M. Then it is referred to in a module that imports M as

MV

Commands

6.4

6.3 Modules 73

A qualified identifier is used as a designator in expressions and as-
signments in the same way as a simple identifier. In EBNF notation,

qualident = lident “.”] ident.
designator = qualident.!

A qualified identifier is composed of two juxtaposed identifiers sepa-
rated by a period. Oberon considers the qualified identifier M.V to be
different from the simple identifier V. Therefore V may be simultane-
ously declared in module M as well as in the client of M.

In the previous example of module IFS, the procedure Uniform from
module RandomNumbers is called as RN.Uniform. Assuming that module
XYplane exports a variable W, that variable is referenced by XYplane.W.

In an Oberon system, the main computations are performed by the
statement sequences of procedures that are exported by modules.?Such
procedures are also called commands. Draw in sample module IFS is
such a command.

The system running Oberon provides facilities allowing the operator
to activate commands from the system controls. An example of such a
system was provided in Chapter 2.

Function procedures and parameters

The function is an important concept in mathematics. The formula
r=f(x,y) 1)

states that r is the result of the computation f applied to the arguments x
and y. While the notation (1) makes the value of the arguments explicit,
mathematicians often use another notation — that of the mapping. If we
assume that f is integer-valued and operates on integer arguments x
and y, the mapping f is expressed formally as

fi3x3 >3 @

1 More general designators will be introduced later.
2 To be precise, parameter-less procedures (parameters will be discussed in
subsequent sections).

74 Procedures and modules

6.4.1

In (2), 3 denotes the set of integer numbers and 3 x 3 their Cartesian
product. Equation (2) reads ‘f maps each pair of integers into an inte-
ger.” In contrast to (1), the rangg of values admissible as arguments and
produced by the mapping are clearly indicated.

Oberon supports the notion of the mathematical function. In Chapter
4 we have already come across a number of predeclared functions such
as ABS(x), ASH(i, n) and ODD(i) that perform a computation on their
arguments and return a result. Such functions may be factors in
expressions, for example

x =y + ABS(z).

The function introduces two new concepts:

(1) The function identifier stands for a statement sequence (a
computation) as well as for a result.

(2) The function has arguments, called parameters, which pass input
values to the computation.

Oberon allows programmers to define their own functions by declaring
function procedures. Let us start with a simple illustration:

PROCEDURE Min(x, y: INTEGER): INTEGER;
BEGIN

IF x <=y THEN RETURN x ELSE RETURN y END
END Min;

The procedure heading defines the identifier Min to be a function pro-
cedure. It specifies formal parameters (x and y) and their type as well as a
result type (after the colon). The return statement terminates the state-
ment sequence and returns the result to the point of invocation.

The function procedure heading

The function procedure heading miist have formal parameters. The formal
parameter list is enclosed in parentheses and follows the function
identifier. It consists of formal parameter sections, which look like
variable declarations. The formal parameter sections define name and
type of the parameters that serve as arguments of the function. The type
of the result is shown following the right parenthesis, from which it is
separated by a colon. The EBNF definition of the function procedure is

6.4.2

6.4 Function procedures and parameters 75

ProcedureHeading =

“PROCEDURE” ident [“#”] FormalParameters.
FormalParameters =

“(” [FPSection {“;” FPSection}] “)” “:”qualident.
FPSection = [“VAR”] ident {“,” ident} “:” FormalType.

FormalType = qualident.!

The qualident that terminates Formal Parameters denotes the type of the
result. It must be a simple type; that is, array and record structures can-
not be the result of function procedures (see Chapter 8). The option
VAR preceding the identifier list will be explained in Section 6.5.2.

A few examples of function procedure headings may be instructive:

PROCEDURE gced(x, y: INTEGER): INTEGER;

PROCEDURE power(x: REAL; i: INTEGER): REAL;
PROCEDURE XYinRect(x, y, X, Y, W, H: REAL): BOOLEAN;
PROCEDURE News (text: Texts.Text; pos: LONGINT): Frame;?
PROCEDURE InitText*(f: Files.File; p: LONGINT): Texts.Text;
PROCEDURE Uniform(): REAL;

The last example is a procedure heading without parameters, such as
our random number generator of the introduction. The empty paren-
theses are mandatory.

In a sense, the Oberon procedure heading combines the characteris-
tics of the two mathematical notations: it introduces names for the pa-
rameters as in (1) and defines the ranges of parameter and function
values as in (2).

Formal parameters and the return statement

Within the statement sequence of the procedure, the formal parameters
may be used exactly like local variables. The fact that they are declared in
the procedure heading rather than in the body’s declaration sequence
ensures that they have a defined initial value, namely the one specified by
their corresponding actual parameters at the time of the call (see Section
6.4.3). As is the case with local variables, memory for formal parameters
is only tied up when the function’s scope is active.

1 A more general FormalType will be introduced in Chapter 8.
2 This is an example involving declared types. The type Frame is declared in the
same module whereas Text is a type exported by module Texts. See Chapter 8.

76 Procedures and modules

6.4.3

The function declaration is characterized by the indication of the re-
sult’s type behind the parenthesized list of formal parameters. In the
function’s body, the return statement ends the computation and passes
the result to the point of invocation. It consists of the symbol
“RETURN” followed by an expression yielding a result:

I ReturnStatement = RETURN [expression].

The expression must be assignment-compatible with the result type
specified in the procedure heading (Table 4.3); at least one return
statement is mandatory.

Actual parameters, the function call
The function call is a factor in an expression. We recapitulate its syntax:

FunctionCall = designator “(” [ActualParameters] “)”.

“

ActualParameters = expression {“,” expression}.

For the time being, a designator is simply a qualident that denotes a
function procedure. We will encounter more complex designators later.

Each expression is an actual parameter that is used to initialize a
corresponding formal parameter. Evidently, the number of expressions
must match the number of formal parameters. Actual parameters are
paired with formal parameters according to their respective position in
the list. At the time of the function call, the expression is evaluated and
its value assigned to the formal parameter. Therefore the expression must
be assignment-compatible with the type of the formal parameter (see
Table 4.3).

For example, consider the procedure Min listed earlier. A possible
function call to Min is

Min(3si + j, 17)

At the time of the call, the expression 3xi + j is evaluated and assigned
to formal parameter x. Subsequently, the constant 17, syntactically also
an expression, is assigned to y. Then control passes to the first statement
of procedure Min. The result is returned to the point of call after the
first return statement executed.

6.5

6.5.1

Return statement

6.5 Proper procedures 77

Proper procedures

Earlier, we portrayed the procedure as a named statement sequence
that can be called from another point in a program text or that can be
executed as a command. To distinguish it from the function procedure,
we also speak of a proper procedure.

Parameters can also be associated with proper procedures. The ben-
efits are twofold:

(1) When the procedure represents a general computation, such as
determining the roots of a polynomial, it can be applied to vari-
ous sets of variables without changing its text.

(2) Identifiers used within the procedure are decoupled from the
names adopted elsewhere in the program.

Such a decoupling is essential if a large programming task should be
attempted by a team of programmers. For this purpose, however, the
parameter mechanism needs to be generalized to encompass the concept
of substitution. Before we will turn to this generalization, we state the
syntax of the proper procedure and of the call statement.

Syntax, the call statement

The proper procedure is identified through its heading with EBNF
syntax:

ProcedureHeading = “PROCEDURE” ident [“+”] [FormalParameters].
FormalParameters = “(” [FPSection {“;” FPSection}] “)”.

FPSection = [“VAR”] ident {“,” ident} “:” FormalType.

FormalType = qualident.!

Proper procedure headings are, for example,

PROCEDURE Draw#;
PROCEDURE ComputeRoots(a, b, c: REAL; VAR r1, 12, i1, i2: REAL);

The return statement may also appear in a proper procedure. In this

case, it is optional and consists of the solitary keyword “RETURN".
When executing a return statement, processing of the procedure’s

T A more general FormalType will be introduced in Chapter 8.

78 Procedures and modules

Call statement

6.5.2

Value parameters

Variable
parameters

statement sequence is terminated and control returns to the statement
immediately following the call.

The call of a proper procedure is a statement with syntax:

ll(ll

ProcedureCall = designator [“(” ActualParameters “)”].

ActualParameters = expression {“,” expression}.

As in the case of the function procedure, the actual parameters are
paired with the formal ones.

Value and variable parameters

From previous examples, we are familiar with the fact that a (proper)
procedure may interact with the state of the computation through global
variables. The benefit that one expects from the concept of parameters is
a decoupling of the procedure text from global variables.

The formal parameters introduced so far are like local variables. In
order to refer to this type of parameter, we speak of a value parameter —
the value of the expression that represents the actual parameter is as-
signed to the formal parameter prior to execution of the procedure’s
statement sequence.

Evidently, value parameters serve only to pass information to the pro-
cedure. We seek a parameter scheme that empowers the proper proce-
dure to change the global state of the computation. This is possible
through the notion of substitution.

Such a scheme passes an actual variable and not merely its value to
the procedure. We therefore speak of a variable parameter. Variable pa-
rameters are specified with the keyword “VAR” in front of the formal
parameter section. For example,

PROCEDURE ComputeRoots(a, b, c: REAL; VAR r], r2, i1, i2: REAL);

has two sets of parameters: 4, b and ¢ are value parameters, and r1, 72, il
and i2 are variable parameters, used to return results.

As the name implies, the actual parameter corresponding to a vari-
able parameter must be a variable. If the formal variable parameter
changes its value within the procedure, for example by means of an
assignment, the corresponding actual parameter is changed accord-
ingly. Thus the formal variable parameter substitutes a different local name
for the corresponding actual parameter. This achieves the desired decou-

Type rule

6.5 Proper procedures 79

pling from the global environment and represents a flexible substitu-
tion mechanism of variable names.

Syntactically, actual parameters are expressions. An actual parameter
corresponding to a formal variable parameter must be an expression
composed of a single designator. At this point, the only such expression is a
solitary qualident. Designators corresponding to structured types may
be a little more complex, such as an array element (a[i+]) or the field of
a record (r.f). Structured types are introduced in Chapter 8. No memory
is consumed in the procedure to account for variable parameters and no
assignment takes place.

The substitution mechanism of the variable parameter requires that the
types of the actual parameter and the corresponding formal parameter
must be identical.!

Let us proceed with an example — the evaluation of the roots of the
quadratic equation

ax2+bx+c=0.

There are two solutions, which may be complex numbers. Their re-
spective real and imaginary parts are denoted by r1, 12, i1 and i2. The
multitude of output variables precludes the use of a function procedure,
which would be natural for such computations as the square root.

We therefore opt for a proper procedure that returns the result by
means of variable parameters:

PROCEDURE ComputeRoots(a, b, c: REAL; VAR 11, 12, i1, i2: REAL);
VAR det: REAL;
BEGIN
b:=b/2; det:=b*b —a*c;
IF det >= 0 THEN (* real roots *)
rl := (ABS(b) + sqrt(det))/a;
IFb>=0THEN rl := —r1 END;
r2:=c/(a*rl1);?2 i1:=0; i2:=0

1 This is somewhat generalized in the case of record types and their extension; see
Chapter 11.

2 The second real root is computed using the theorem of Vieta to avoid possible
loss of accuracy when one of the roots is close to zero.

80 Procedures and modules

6.6

6.6.1

ELSE (* complex roots *)
rl :=-b/a; r2:=rl; il :=sqrt(-det); i2 := il
END
END ComputeRoots;

The first three formal parameters are value parameters and pass the
coefficients a, b and ¢ to the procedure.

The remaining four parameters are variable parameters used to re-
port the real and imaginary parts of the roots. A possible call of the
procedure ComputeRoots is

ComputeRoots(2.0, x*y, q, r1, 12, i1, i2);

More on function procedures

Side-effects

Pursuing a tutorial development, we have introduced the concepts of
the function procedure and value parameters together. However,
function procedures are by no means restricted to that mechanism - in
addition to the result returned to the point of call, they may change the
state of the computation through global variables and through variable
parameters. Such a change is termed a side-effect of the function.

Our very first example, the procedure Uniform, is a function proce-
dure with a side-effect. We recapitulate:

PROCEDURE Uniform(): REAL;
CONST a =16807; m = 2147483647; q=m DIV a; r =m MOD a;
VAR g: LONGINT;
BEGIN
g = a*(z MOD q) — r#(z DIV q);
IF g>0 THEN z:=g ELSE z:=g+m END;
RETURN z#1.0 / m
END Uniform;

The side-effect of a call to Uniform is the change of the global variable z.
This is, of course, the essence of the intended recurrence relation that
produces our random numbers. However, consider the following two
statement sequences:

z:=1; x := z + Uniform();

6.6.2

6.6 More on function procedures 81

and
z :=1; x:= Uniform() + z;

In the first case, the value of x is 1.0000080E+00; in the second case, we
find 1.6807000E+04 - seemingly defying the commutative law of addi-
tion. The programmer should always be fully aware of the capability of
side-effects to produce unexpected results when the function is used
inappropriately.

We emphasize that changes of global variables through side-effects of
functions is considered neither desirable practice nor good pro-
gramming style. Nevertheless, it is sometimes justified, as in the case of
Uniform. In any case, side-effects should be restricted to variables that do not
occur in the call’s parameter list.

Recursion

Of course, the statement sequence of a procedure may contain calls to
other procedures. Since any procedure that is visible can be called, a
procedure may call itself. This self-reactivation is called recursion. Its use
is natural when either the algorithm or the data structure is defined
recursively.

One of the simplest examples is furnished by the factorial, which is
defined by:

fact(0) =1 ¢))
factn) =nfactn-1) forn=1,2,... 2)

which translates into

PROCEDURE fact(n: INTEGER): LONGINT;
BEGIN

IF n=0THEN RETURN 1

ELSE RETURN n#*fact(n—1)
END fact;

It is important that the recursion terminate. The test for n = 0 ensures
termination in the case of fact. Besides loop statements, recursive pro-
cedures are another source of nonterminating programs.

Of course, we recognize that the factorial can be almost as easily
computed using iteration:

82 Procedures and modules

6.7

PROCEDURE fact(n: INTEGER): LONGINT;
VAR fact: LONGINT;

BEGIN fact:=1;
WHILE n > 0 DO fact := fact*n; DEC(n) END; RETURN fact
END fact;

Since every procedure call causes some overhead for bookkeeping, the
second version should be expected to run more efficiently. A repetitive
formulation is always possible, in principle, but it may obscure the al-
gorithm to such a degree that the gain in execution time is not worth the
effort.

We will introduce more interesting examples of recursive procedures
in Section 9.3 when discussing trees.

Compiler hints

The goals of the designer of a language and the implementer of its
compiler are sometimes at odds — the former wishing to adopt con-
structs of maximal convenience to the user, the latter advocating com-
promises in the syntax leading to a simple compiler. One such com-
promise is the one-pass compiler that promises to be especially fast. Since
such a compiler cannot look ahead, it requires a forward declaration
when a procedure call occurs textually before the respective procedure
declaration. The forward declaration has syntax:

DeclarationSequence =

{ “CONST” {ConstDeclaration “;”

| “TYPE” {TypeDeclaration “;”

| “VAR” {VarDeclaration “ "}}

| {ProcedureDeclaration “;” | ForwardDeclaration “;” }.
ForwardDeclaration = “PROCEDURE” “1"”1

ident [“*”] [FormalParameters].

The actual declaration following the forward declaration — which
specifies the body of the procedure — must have exactly the same name
and formal parameter list. The symbol “1” decrees the forward decla-
ration.

1 fn the standard ASCII character set “1”is represented by the caret “A” with
ORD(“A") = 94

6.8

6.7 Compiler hints 83

Some Oberon compilers require that procedures intended to be
assigned to procedure variables or used as parameters are marked with
an asterisk following “PROCEDURE”, viz.

ProcedureHeading =

"PROCEDURE” [”*“] indent [”*“] [FormalParameters].

Note that only one of the asterisks is required, in other words, the
export mark (after indent) implies the first mark.

Summary

In this chapter, we have introduced a wealth of concepts and constructs
that can be summarized in a cursory fashion only.

ey

()

3

@

Modules and procedures define a scope — that is, a stretch of pro-
gram text in which declarations are valid. The concept of locality
states that declarations are local to their scope.

The module establishes a global scope — its declarations define
global objects, constants, types (see Chapter 8), variables, and pro-
cedures that are valid throughout the computation. The module
is also the compilation unit. Declarations may be made visible
outside of the module’s scope by means of export marks, and ex-
ported identifiers of other modules can be imported.

The module may have an optional statement sequence that exe-
cutes at the time the module is loaded into memory. This state-
ment sequence is typically used to initialize global variables.

The procedure is a named statement sequence and a parameter
mechanism. Procedures are either function procedures or proper
procedures. The statement sequence of the procedure can be exe-
cuted from any point in the program through a call statement or
a function call. Procedures can be recursive.

Parameters are used to pass values to and from the procedure.
The formal parameters appear in the procedure heading, actual pa-
rameters in the call statement. Parameters come in two varieties:
value parameters and variable parameters.

A value parameter acts like a local variable that is initialized by
the results of evaluating their corresponding actual parameters.
An assignment takes place. Memory is allocated for the formal
parameter during the time the procedure is active.

84 Procedures and modules

5)

(6)

A variable parameter ("VAR”) implements the notion of
substitution. The actual parameter is substituted for the formal
one. Assignments made to the formal parameter are assignments
to the actual parameter. Variable parameters are used to return
results.

The return statement terminates the execution of a procedure. In
the case of a function procedure, it returns the result to the point
of call.

If a function procedure changes the state of the computation
through assignments made to global variables or variable
parameters, a side-effect is said to have occurred.

We have used a common example to derive the main concepts:
drawing a fractal fern. This chapter is about the basics: how to apply
procedures and modules properly will remain a major theme
throughout the rest of the book. The example of the fractal fern will be
completed in Chapter 7, after the introduction of appropriate input and
output operations.

6.9 Exercises

6.1 Which of the following procedure headings are legal?

(@)
(b)
(c)
d
(e)
)

PROCEDURE f(x: REAL): ARRAY OF CHAR;
PROCEDURE f(x: REAL): REAL;

PROCEDURE g(i: INTEGER): VAR x: REAL;
PROCEDURE P(x: REAL, y: CHAR);

PROCEDURE P(x: REAL), (y: CHAR);

PROCEDURE Qf(a, b, c: REAL; VAR r1, 12, i1, i2: REAL);

6.2 Assume

CONST x1 =1;x2=2;x3 =3; x4 = 4; x = 3.14159;
VAR a, b, ¢ aR, bR, al, bl: REAL; i: INTEGER;
xR, yR, xI, yI: LONGREAL; -
PROCEDURE Root(a, b, c: REAL; VAR x1, x2, y1, y2: REAL);
PROCEDURE Sin(x: REAL): REAL;
PROCEDURE Min(x, y: INTEGER): INTEGER;

Which of the following statements containing procedure calls are correct?

Root(a, b, ¢, aR, bR, al, bl); Root(1, 3, 4, x1, x2, x3, x4); ‘
Sin(3.14159); a:=Sin(x1); i:=Min(x,x1); 1i:=Min(xl,x2);
Root(a, b, ¢, 3,4, 5,6); Root(a, 3*b, c + 1, xR, yR, xI, yI);

6.9 Exercises 85

6.3 Is the following an Oberon module? If not, which are the errors?

MODULE M;

CONST a = 10; IMPORT Math;

PROCEDURE P(x: INTEGER): INTEGER;
RETURN x#x

END P;

VAR y: REAL;

BEGIN vy :=P(a)

END M;

6.4 [Scope rules] Identify the scopes of all identifiers in the following module. Find
one error. What is the value of the global variables after module M is loaded
into memory (given that the error is corrected)?

MODULE M;

VAR, j: INTEGER;

PROCEDURE A%;

VAR i: INTEGER;

PROCEDURE B*(VAR i, j: INTEGER);
VAR k: INTEGER;

BEGIN k:=i; i:=j; j:==k ENDB;
BEGIN i :=2; B(, j)

END A;

PROCEDURE C;

BEGIN A;i:=2% ENDC;
BEGIN C

END M.

6.5 What is wrong with the following procedure?

PROCEDURE Square(x: REAL): REAL;
VAR y: REAL;

BEGIN y := x#*x

END Square;

6.6 [Fibonacci numbers] The Fibonacci numbers are defined by the recurrence
relation

f0=1, f1= 1, fn=fn_1+fn_2 forn=2,3,...

Using recursion and iteration, write two versions of a procedure with heading
PROCEDURE Fibonacci(n: INTEGER): INTEGER;

that computes f,,.

How many recursive invocations of Fibonacci result from a call to
Fibonacci(n)? Similarly, how many iterative steps are needed? Why is the
iterative solution so much faster (independent of the bookkeeping of recursive

86 Procedures and modules

6.7

6.8

6.9

function calls)? Hint: consider whether the work to compute f,,_; is independent
of f n-2:

Determine the number of function calls of the recursive version of Fibonacci
empirically. Hint: use a side-effect. Is this a legitimate use of a side-effect?

What mathematical function does F compute?

PROCEDURE F(n: INTEGER): INTEGER;
VARj, j: INTEGER;
BEGIN i:=1; j:==1;
WHILEn>1DOi:=i+j; j:=i-j; DEC(n) END
ENDF;

[Exponential random numbers] An exponential random number TMexp can be
obtained from a uniform random number r7,,,; (see Box 10.1). Augment module
RandomNumbers from Chapter 2 with

PROCEDURE Exptmu: REAL): REAL

which produces exponentially distributed random numbers. Assume that a
module Math is available that exports the logarithm In(x: REAL): REAL.

References

Barnsley M. (1988). Fractals Everywhere. New York: Academic Press.
Mandelbrot B. B. (1977). The Fractal Geometry of Nature. San Francisco: W. H.
Freeman.

7 Input and output

One of the foundations of the success of high-level programming lan-
guages is the principle of abstraction. The essence of abstraction is the
hiding of details pertaining to the specific computer that is used to ex-
ecute a program. Different languages and systems differ in the abstrac-
tions that are advocated. Since abstraction means hiding of details, it
invariably also precludes the use of some facilities — presumably
existing to perform a certain task directly and efficiently. Simplification
and generalization by suppression of details is then in direct conflict
with the desire for transparency for efficient use.

While a consensus seems to emerge as far as basic types and control
structures are concerned, a great diversity is observed in the area of
input and output operations, especially when considering the graphics
subsystems of modern workstations.

Recognizing this intrinsic dilemma, Oberon does not incorporate
input and output abstractions in its language definition. This approach
is made possible by two facts:

(1) Abstractions are not only delivered through the language, but also
through the module concept. The module allows hiding of details -
only those data and procedures consciously marked for export
will be visible in client modules. We will say more about this role
of the module in Chapter 10 and Part III.

(2) It is assumed that the system that runs Oberon offers input and
output operations packaged in Oberon modules. Such modules, al-
ready compiled and ready for use, comprise part of the
computer’s library. Suitable modules can be imported by the
user’s program, and yield access to the input and output devices.
Typically, there is not only one such module, but a whole
hierarchy, where each layer advances the level of abstraction -
that is, hides more details.

87

88 Input and output

Module In

7.1

Sequential input and output, modules In and Out

One of the most successful abstractions in the domain of input and
output is that of the stream. A stream is a sequence of data elements.
The number of data elements is not known a priori - the stream is
therefore a simple case of a dynamic data structure. The number of
elements is called the stream’s length. Only one element is visible at a
given time, namely the element at the stream’s current position. That
element can be read - the read operation implicitly increments the po-
sition. Writing (normally) occurs at the end of the stream.

Historically, the vast majority of input and output devices have been
sequential: paper tape, punched cards and then magnetic tapes. For
these devices, the abstraction of the stream is quite close to the actual
device operation. Today, the importance of sequential devices is waning
— they are supplanted by disk storage capable of random access and by
graphical output devices that are inherently non-sequential. The stream
abstraction, however, has not lost its usefulness, since many operations
are still sequential on the logical level.

In the examples of this book, we assume the existence of two mod-
ules, In and Out, that implement an input stream and an output stream,
respectively.! To document a module, we list its exported constants,
varigbles and procedure headings.

For module In, such a definition reads as follows:

DEFINITION In;
VAR Done: BOOLEAN;
PROCEDURE Open;
PROCEDURE Char(VAR ch: CHAR);
PROCEDURE Int(VAR i: INTEGER);
PROCEDURE LongInt(VAR 1: LONGINT);
PROCEDURE Real(VAR x: REAL);
PROCEDURE Name(VAR nme: ARRAY OF CHAR);!
PROCEDURE String(VAR str: ARRAY OF CHAR);
END In.

The meaning, or semantics of the variable and the procedures exported
by module In are as follows:

1 The source text of a particular implementation is listed in Appendix C.
2 A variable of type ARRAY OF CHAR may have a string as value, see Section
8.2.6.

Module Out

7.1 Sequential input and output, modules In and Out 89

¢ The variable Done holds as long as read operations terminate
properly. The first abnormal termination falsifies Done, which
will remain FALSE until the next call to Open. This variable
should be tested before using the variable parameter that returns
the result of the input operation.

* Open initializes the input stream. The position is set to the origin
and Done = TRUE.

e Char: If Done holds, returns the character found at the position of
the input stream and increments that position. If an attempt is
made to read beyond the end of the stream, Done is falsified.

* Int, LongInt, Real, Name: If Done holds, these procedures scan the
input stream for a token of appropriate type, starting at the
current position. The syntax is that of the basic Oberon tokens (a
name is a sequence of identifiers, juxtaposed with periods).
Leading blanks, tabs or carriage return characters are skipped. If
a token is found, it is translated into internal representation and
returned in the variable parameter. The position is advanced to
the character immediately following the token. If no token of
appropriate type is encountered, Done = FALSE.

* String: If Done holds, the input stream is scanned for the first
non-blank character. All consecutive characters whose value is at
least a blank are returned in s. Done is falsified if the end of the
stream was encountered.

If a sequence of input operations is performed, Done = TRUE after the
last call indicates that all operations were successful.

In the same style, the exported procedures of module Out are sum-
marized in the definition

DEFINITION Out;
PROCEDURE Open;
PROCEDURE Char(ch: CHAR);
PROCEDURE Ln;
PROCEDURE Int(i, n: LONGINT);
PROCEDURE Real(x: REAL; n: INTEGER);
PROCEDURE String(s: ARRAY OF CHAR);
END Out.

The meanings of the procedures of module Out are as follows:

* Open initializes the output stream.
o Char writes character ch at the end of the stream.

90 Input and output

Browser

7.2

* Ln appends a carriage return control character to the end of the
stream. On a printer or on a display device, a new line will be
started.

‘e Int and Real: translates the internal representation of the actual
parameter to a textual representation composed of n characters,
and appends it to the end of the stream.

e String appends the characters of the string passed as parameter
to the end of the stream. ‘

The noteworthy fact is that neither the input nor the output data stream
appears explicitly in the definition of module In or Out. Their data
structure, which is quite complex is completely hidden. This hiding is
the essence of the abstraction termed stream.

In Modula-2 the text between “DEFINITION” and the keyword “"END*
is termed a definition module. It lists all exported declarations — hence it
is also known as the public view of the module. Such a definition module
is accepted by the compiler. Its function is the identification of exported
objects — it substitutes for Oberon’s export marks. ‘

The advantage of the definition module is its textual compactness.
Oberon systems therefore typically offer a tool called the browser that
accepts the module text and constructs the public view in the form of

‘ the definition module.

Graphics output

As we have indicated, finding generally agreed upon abstractions for
programming the display of a graphics-based workstation is still a chal-
lenge. Here we merely wish to introduce a high-level module providing
graphics output for animated simulations, such as drawing the fractal
fern.

The model is that of a Cartesian plane with origin in the lower left
corner of the screen. Graphics output devices provide a raster of points,
called pixels. The pixel is the smallest unit that can be turned black or
white — or be assigned a color. It is therefore sensible to choose the pixel
size as unit and measure the coordinates in multiples of that unit; that
is, to use integers to represent x and y (Figure 7.1).

The visible area of the Cartesian plane (window provided by
viewer) has its lower left corner at coordinates (X, Y), is of width W and
height H.

7.2 Graphics output 91

—

screen

Figure 7.1 Raster display.

Catering to the special task of animation is a provision to read the
keyboard while the simulation is running. This allows the definition of
‘command keys’ useful to interrupt the action and control the course of
events.

We introduce the definition of module XYplane! in the same style
adopted for modules In or Out:

DEFINITION XYplane;
CONST erase = 0; draw =1;
VAR X, Y, W, H: INTEGER;
PROCEDURE Open;
PROCEDURE Dot(x, y, mode: INTEGER);
PROCEDURE IsDot(x, y: INTEGER): BOOLEAN;
PROCEDURE ReadKey(): CHAR;
PROCEDURE Clear;
END XYplane.

The actions of the procedures can be easily guessed; the following is a
short description:

¢ Constants erase and draw are the values for the formal parameter
mode in procedures Dot and Line.

e Variables X, Y, W and H report location and size of the visible
drawing area. They are defined after a call of procedure Open.

* Open initializes a drawing area.

1 The source text of a particular implementation of module XYplane is found in
Appendix C.

92

Input and output

7.3

¢ Dot draws (erases) a dot at coordinates x, y controlled by mode.
¢ IsDot tests whether a dot is drawn at coordinates x, y.

® ReadKey reads the keyboard. If a key was pressed prior to invoca-
tion, it is returned; else 0X results.

* Clear erases all dots in the drawing area.

The fractal fern, completion of the example

We have now all the required knowledge to complete the initial ex-
ample of drawing fractals. Procedure Draw is capable of painting an
infinite variety of fractals. The fern is just one of them. We are therefore
interested in reading the parameters of the iterated function system
from the input stream. This has the distinct advantage that the user
does not have to change the program text and recompile module IFS for
each change in the parameters. We assume that the modules
RandomNumbers, XYplane, In and Out are in the computer’s library.

The coordinates in module IFS are reals, whereas the display coor-
dinates of XYplane are integers. The two sets of coordinates are related
by the transformation

E=xy+ENTIER(X *¢), 7 =yo+ENTIER(Y*e)

where xp and yg are the pixel coordinates of the origin of the plane and e
measures the unit interval (in pixels).
With these preliminaries, we can restate our module IFS:

MODULE IFS;
IMPORT RandomNumbers, In, Out, XYplane;

VAR
al, bl,cl,dl,el, fl, p1: REAL; (* IFS parameters *)
a2,b2,c2,d2, e2, f2, p2: REAL; (* IFS parameters *)
a3, b3, 3, d3, 3, {3, p3: REAL; (* IFS parameters *)
a4, b4, c4, d4, e4, 4, p4: REAL; (* IFS parameters *)
X, Y:REAL; (*the position of the pen *)
x0: INTEGER; (* Distance of origin from left edge[pixels] *)
y0: INTEGER; (* Distance of origin from bottom edge[pixels] *)

@ -

2) -

3) -

7.3 The fractal fern, completion of the example

e: INTEGER; (* Size of unit interval [pixels] *)
initialized: BOOLEAN; (* Are parameters initialized? *)

PROCEDURE Draw*; (* command marked for export *)
VAR
x, y: REAL; (* new position *)
xi, eta: INTEGER; (* pixel coordinates of pen *)
rm: REAL; (* temp. variable for random number *)
BEGIN
IF initialized THEN
REPEAT
rn := RandomNumbers.Uniform();
IF rn < p1 THEN
x:=al*X +bl*Y +el; y:=cl«X+dlxY +fl1
ELSIF rn < (pl + p2) THEN
x:=a2*X + b2 *Y +e2; y:=c2xX +d2xY + 12
ELSIF rn < (p1 + p2 + p3) THEN
x:=a3*X + b3 ¥Y + e3; y:=c3+«X+d3*Y +(3
ELSE
x:=adxX +bd *Y + ed; y:=cd«X +d4*Y +f4
END;
X := x; xi:=x0+ SHORT(ENTIER(X*e));
Y :=y; eta:=y0+ SHORT(ENTIER(Y*e));
XYplane.Dot(xi, eta, XYplane.draw)
UNTIL "s" = XYplane Key()
END
END Draw;

PROCEDURE Init*; (* command marked for export *)
BEGIN
X:=0; Y:=0; (*Initial position of pen *)
initialized := FALSE; In.Open;
InInt(x0); Innt(y0); InInt(e);
In.Real(al); In.Real(a2); In.Real(a3d); In.Real(a4);
In.Real(b1l); In.Real(b2); In.Real(b3); In.Real(b4d);
In.Real(c1); In.Real(c2); In.Real(c3); In.Real(c4);
In.Real(d1); In.Real(d2); In.Real(d3); In.Real(d4);
In.Real(el); In.Real(e2); In.Real(e3); In.Real(ed);
In.Real(f1); In.Real(f2); In.Real(f3); In.Real(f4);
In.Real(p1); In.Real(p2); In.Real(p3); In.Real(p4);

93

94 Input and output

IF In.Done THEN XYplane.Open; initialized := TRUE
ELSE Out.String(”Parameter error”); Out.Ln
END

END Init;

(4) — BEGIN initialized := FALSE
END IFS.

Notes

(1) initialized is a Boolean variable that prevents execution of Draw
unless the parameters are properly initialized.

(2) Note the type transfer function SHORT.

(3) The keyboard is read and the computation ended if the “s” key is
hit.

(4) initialized is set to FALSE when the module is loaded.

The procedures Draw and Init are exported. They are commands,
since they have no formal parameters. Why are we dividing the work
into two procedures? The initialization performed by the statement se-
quence of Init could just as well be prefixed to the statement sequence
of Draw.

Figure 7.2 Four stages in the computation of the fractal fern.

The reason lies in the nature of the method for drawing a fractal.
After the parameters have been initialized, executing Draw will start
drawing a fern. First, there are only a.few points. The fern becomes
visible after a short while. Now press the “s” key — the computation

7.4

74.1

7.3 The fractal fern, completion of the example 95

stops. If a continuation is desired, one may invoke Draw again — the
drawing continues and the fern gets darker and darker. Four stages
towards convergence are shown in Figure 7.2, the last the result of
about 30 minutes of computation.!

The Oberon system: a short digression

As a language, Oberon does not impose any particular requirement on
the system on which programs will execute. However, it was conceived
as a tool for developing an extensible operating system for a graphics-
based workstation. As suggested earlier in this chapter, the Oberon
system is composed of a hierarchy of modules, each providing an
abstraction on a suitable level (see Figure 1.1).

The Oberon system departs from the ‘bandwagon trail’ in many
important ways. An adequate treatment is the object of several journal
papers and two other books (see Reiser, 1991; Wirth and Gutknecht,
1989, 1992). In this section, we will restrict the discussion to two key
concepts:

® Execution of commands — instead of programs.
* A new and unifying role played by the notion of a text.

Execution of commands

Running a program on a conventional computer system entails the fol-
lowing steps:

(1) All the parts of the program (for example its modules) are
translated, and in a separate step? coalesced into a single
executable unit? that is stored on disk.

(2) The operating system affords controls that enable the user to
start programs. The program is loaded into memory, and control
passed to the first instruction.

(3) Upon termination, memory and possibly other resources, such as
files, are released.

1 On a 15.6672 MHz Motorola MC68030 processor with MC68882 math co-
Processor.

2 Usually performed by a program called the linkage editor.

3 Also termed the object program.

96

Input and output

7.4.2

Program loading is known to be a slow process, and, since memory is
released upon termination, a sequence of programs can only commu-
nicate through files. It is therefore not attractive to compose an interac-
tive application as a set of programs that are called