

Programming in Oberon

ACMPRESS
Editor-in-Chief
International Editor
(Europe)

SELECTED TITLES

Peter Wegner
Dines Bjomer

Brown University
Technical University
of Denmark

Advances in Database Programming Languages Franc;ois Bancilhon and
Peter Buneman (Eds)

Algebraic Specification J.A. Bergstra, J. Heering and P. Klint (Eds)
Software Reusability (Volume 1: Concepts and Models) Ted Biggerstaff

and Alan Perlis (Eds)
Software Reusability (Volume 2: Applications and Experience)

Ted Biggerstaff and Alan Perlis (Eds)
Object-Oriented Concepts, Databases and Applications Won Kim and

Frederick H. Lochovsky (Eds)
Performance Instrumentation and Visualization Rebecca Koskela and

Margaret Simmons (Eds)
Distributed Systems Sape Mullender (Ed)
The Programmer's Apprentice Charles Rich and Richard C. Waters
Instrumentation for Future Parallel Computer Systems Margaret

Simmons, Ingrid Bucher and Rebecca Koskela (Eds)
User Interface Design Harold Thimbleby
The Oberon System: User Guide and Programmer's Manual

Martin Reiser

Preface

The most amazing fact about the computing industry is the dramatic
improvement in the performance of computing machinery - a trend
observed for three decades and projected to continue unabated. Not
only is this trend exponential - a doubling of the power every two to
four years - it also takes place at costs that are roughly constant for each
machine class, CPU, minicomputer, PC or workstation. In other words,
the price-performance drops the same way as performance increases.

In contrast to the hardware, the programs that make computers
useful do not show anything close to steady advancement - let alone
exponential progress. Historically, innovation took place in short
intensive spurts, interrupted by long plateaus during which armies of
programmers struggled to embody new concepts in useful software. In
the field of personal computing, such a surge took place during the
seventies, lead by the famous Palo Alto Research Center (PARC). The
eighties, in contrast, are a rather dull period characterized by a
predominant product orientation.

As the industry tries to implement the personal computing paradigm,
more and more difficulties emerge. The operation systems that became
standards fail even to capitalize on the 'software engineering principles'
available at the time. The premature rush into standards froze
innovation in that area and led to the phenomenon of grafting layer
upon layer of code onto a dated base system.

A critical eyewitness may conclude that software is well on its way to
neutralizing the phenomenal gains of the hardware. The reasons are
many, and there is no single patent answer. We observe, however, that
despite claims of doing 'software engineering,' the most basic of
engineering principles is rarely practiced: to strive for economy of
means and simplicity of solutions. 'Software engineers' are still beating
the lather, rather than using the razor of Occham!

It is precisely at this point that one of us started research: to build a
system from scratch - led by the quote by Albert Einstein: 'make it as
simple as possible, but not simpler.' The result of that research is Oberon: a
language and an operating system for a personal computer or
workstation.

v

vi Preface

This book is one of three. It describes the language Oberon (the others
being Reiser, 1991; Wirth and Gutknecht, 1992). Its concept follows
Programming in MODULA-2 (Wirth, 1982):

• It is a language reference.
• It is a programming tutorial, exhibiting modern programming

concepts.

• It implements these concepts in Oberon.

The book should therefore serve the professional programmer as well
as university professors and students. The text is composed of reference
sections and examples.

Writing a book on programming poses many challenges, in particular
how to choose the order in which concepts and constructs are
introduced and how to choose examples that are exciting and realistic,
yet rely solely on material explained earlier in the text. Our approach is
distinguished in two ways: the procedure and module are introduced
early, right after the control structures, and the examples share a
common theme: simulation. In the end, a complete and realistic
simulation package is obtained.

The Oberon language was purposefully designed to serve as an
implementation tool for the Oberon system, an efficient, concise
operating system founded on object-oriented programming. The
language, however, is not tied to the system - compilers can be
provided for any machine under most current operating systems.
Programming in Oberon therefore requires no knowledge of the Oberon
system, and digresses only minimally into a discussion of Oberon
system concepts.

The book is organized into three parts as follows.

Part I: Tokens, basic types, assignment, control
structures, procedures, modules

Part I is about basic programming constructs. At the end, all knowledge
is available to write complete Oberon modules that use scalar variables
only.

The syntax of Oberon is introduced rigorously using the well-known
EBNFI notation. The semantics of the assignment and the control
structures are formally defined using transformation rules of predicates
that define the state of the computation prior and after execution of a

1 Extended Backus Naur formalism.

Preface vii

statement: The formalism, due to Dijkstrai is introduced by means of
easy examples and presented in a notation close to that of Oberon.

The early introduction of the procedure and the module is made
possible by using a stimulating example: drawing a fractal fern. To
complete the example, the basic concepts of input and output are
introduced through the notion of the stream and a module providing
graphic output. Oberon takes the view that input and output are not
parts of the language, but are provided by modules that can be
considered extensions of the operating system.

Part II: Arrays, records, pointers, dynamic data,
stepwise refinement, data abstraction

Part II introduces classic programming. At the end, roughly the scope of
Modula-2 is covered.

The array and dynamic data structures are the turf of 'data structures
and algorithms' - a classical topic of computer science. This text is not
in competition with the many excellent textbooks in that area.
Nevertheless, searching in arrays (but not sorting), the list and the tree
are discussed. The list processing procedures lay the foundation for the
completed examples that will follow.

Part II ends with Chapter 10, which introduces the important
programming techniques of stepwise refinement, abstract data structures
and abstract data types. These programming concepts are introduced by
developing a simulation package composed of several modules.

Part III: Type extension, procedure types, object­
orientation

Here starts the new and exciting material that sets Oberon aside from
its predecessor Modula-2. The goal is a programming technique that
makes programs extensible and reusable. Type extension in combination
with procedure variables lay the foundation. Chapter 11 is a reference
for Oberon type extension and procedure types.

Object-orientation as a programming technique, together with object­
oriented programming languages, is a fashionable topic. Oberon is true
to its spirit: a minimal language extension - namely extension of record
types - suffices. This is in contrast to other approaches that introduce a
wealth of new concepts many simply renaming established notions.

viii Preface

Chapter 12 introduces object-orientation, the Oberon way. The example
of a graphics editor is used to avoid talking in abstract terms only.

Chapter 13 restates the simulation program of Chapter 10 using an
object-oriented approach. A fully functional package is presented that is
actually fit to serve in the practice of discrete event simulations.

Oberon objects differ from those defined by other languages (such as
C++) by the fact that procedures (methods) are bound to instances, not
to the type of objects. Chapter 14, finally, describes Oberon-2, a small
and fully upward compatible extension of Oberon proper (Mossenbock
and Wirth, 1991). The major addition of Oberon-2 is the type-bound
procedure that implements dynamic binding to the type.

Appendices

A revised version of the original report on the programming language
Oberon is found in Appendix A (Wirth, 1988). Appendix B gives an
ASCII table and lists common extremal values of the basic types.
Throughout the book, we make use of certain input/output abstraction
that are provided by three modules, In, Out and XY plane. The source
text of these modules is given in Appendix C.

On the examples and exercises

We conclude this preface with some remarks about the examples used
and the exercises suggested in this text. The selection of examples and
exercises is always important - but it is crucial in the area of pro­
gramming. Every teacher of programming also knows from experience
that this choice is also burdened by an inherent dilemma. Obviously,
this book cannot banish it. On the one hand, every extensive and com­
plex subject must be taught in steps, and in each step exercises should
be confined to the concepts presented. They have to be reasonably small
and concentrate on the essentials. On the other hand, true mastery of
programming requires experience in the construction of large, non­
trivial designs. Such experience, however, cannot be acquired only by
study, nor through solving small exercise problems. It requires active
involvement in projects, and is earned through years of deep
involvement. But it finally rests on certain basic rules of discipline, and
these rules may very well be taught - in fact should be taught - in in­
troductory courses. The irony lies in the fact that such rules are largely
considered as irrelevant in the solution of typical course exercises. They
are ridiculed by most students, if they are mentioned at all, as
idiosyncrasies and expressions of the pedantry of the teacher. Their ba­
sic value is recognized only when large projects are undertaken and fail

Preface ix

- which happens long after the introductory course has been completed
successfully. We must accept this dilemma and muster the courage to
stress the importance of details, even if pedantic insistence on discipline
is mistakenly interpreted as hindrance to creativity. Pedantry in
programming is not a luxury, but a necessity.

Students on most programming courses are given the impression that
the essence of programming is to concoct code that causes a computer
to operate in a specific fashion. While this may be true for typical
commercial endeavors, we maintain that ultimately a program is
worthless if it cannot be understood by other human beings. Its for­
mulation must be chosen with the goal of providing the conviction to
human beings that it satisfies its purpose. Every program should be a
publishable design. This is a far cry from the usual goal that the 'program
runs'!

We can at least assure the reader that a notation which encourages
the programmer to be precise and explicit is indispensable for
approaching this goal. Oberon is such a notation.

Oberon system implementations

It is self-evident that this book will be most useful if the reader has an
Oberon compiler at his or her disposal. Besides the original Oberon
version running on the Ceres workstation built at the Swiss Federal
Institute of Technology (Eberle, 1987), many implementations are
currently available as freeware, in particular for

• RS / 6000 (IBM)
• Sparcstation (SUN microsystems)

• Macintosh II (Apple)

• DECStation/3100 and 3500 (DEC).

How to get Oberon

Oberon can be obtained via anonymous internet file transfer ftp (at
no charge) or on floppy disks (for a fee of 50 Swiss Francs per
implementation, which is about 35 US Dollars). We accept payment
via Eurocard/Mastercard or VISA. To order by credit card, specify
your card number, expiry date and your name exactly as it appears
on the card. Please remember to specify your type of machine when
ordering.

x Preface

FTP Hostname:
Internet Address:
FTP Directory:

neptune.inf.ethz.ch
129.132.101.33
Oberon

For further information, please contact

The Secretary, Institut fiir Computersysteme ETH, 8092 Zurich,
Switzerland
Telephone (+41-1) 254 7311. Facsimile (+41-1) 261 5389.

Sample Programs from Programming in Oberon

Various sample programs from within this book are also available in
Source form from the ETH Server via anonymous internet file transfer
ftp (at no charge).

Acknowledgements

The authors thank Peter Mossenbock for many helpful suggestions and
a careful manuscript reading.

References

Eberle H. (1987). Development and analysis of a workstation computer. Ph. D.
Thesis, Swiss Federal Institute of Technology, ETH Nr. 8431.

Mossenbock H. and Wirth N. (1991). The programming language Oberon-2.
Structured Programming, 12, 179-95.

Reiser M. (1991). The Oberon System: User Guide and Programmer's Manual.
Wokingham: Addison-Wesley.

Wirth N. (1982). Programming in Modula-2. Berlin: Springer-Verlag.
Wirth N. (1988). The programming language Oberon. Software-Practice and

Experience,18,671-90.
Wirth N. and Gutknecht J. (1992). Project Oberon. Wokingham: Addison-Wesley.

Trademark notice
Apple™ and Macintosh™ are registered trademarks of Apple Computer, Inc.
DECstation™ is a trademark of Digital Equipment Corporation -
IBM RISC System/6000™ is a trademark of International Business Machines Corporation
Smalltalk™ and Smalltalk-80™ are trademarks of Xerox Corporation
MC 68030™ and MC 68882™ are trademarks of Motorola Corporation
Series 32000RTM is a trademark of National Semiconductor Corporation
SUN Sparcstation™ is a trademark of Sun Microsystems Incorporated

Contents

Preface v

1 Why Oberon? 1
1.1 The Algol family 1
1.2 The Oberon system 5

2 A first Oberon program 9
2.1 A notation to describe the syntax of Oberon 17
2.2 Exercises 18

Part I Tokens, Basic types, Assignment, Control structures,
Procedures, Modules

3 Tokens and basic types 23
3.1 The vocabulary of Oberon 23

3.1.1 Identifiers 24
3.1.2 Numbers 24
3.1.3 Character constants 25
3.1.4 Strings 25
3.1.5 Operators and delimiters 25
3.1.6 Predeclared identifiers 26
3.1.7 Rules for blanks and carriage-returns 26

3.2 Basic types 27
3.2.1 The types SHORTINT, INTEGER and ~ONGINT 27
3.2.2 The types REAL and LONG REAL 28
3.2.3 Hierarchy of the numeric types 28
3.2.4 The type BOOLEAN 28
3.2.5 The typeSET 29
3.2.6 The type CHAR 39

4 Declarations, expressions and assignments 30
4.1 Declarations 30

4.1.1 Constant declarations 31
4.1.2 Variable declarations 31

xi

xii Contents

4.2 Expressions 32
4.2.1 Syntax and general semantics 32
4.2.2 Type rules 34
4.2.3 Relations 35
4.2.4 Arithmetic expressions 36
4.2.5 Boolean expressions 37
4.2.6 Set expressions 38
4.2.7 Predeclared functions 39

4.3 The assignment statement 39
4.3.1 Type rules 40
4.3.2 Formal definition, pre-condition and post-condition 41
4.3.3 Statement sequence 42
4.3.4 Special assignment statements as predeclared

procedures 44
4.4 Summary 44
4.5 Exercises 45

5 CO,ntrol structures 47
5.1 Conditional statements 48

5.1.1 The if statement 48
5.1.2 Formal definition of the if statement 49
5.1.3 The case statement 52
5.1.4 Formal definition of the case statement 53

5.2 Repetitive statements 53
5.2.1 The while statement 54
5.2.2 Formal definition of the while statement 54
5.2.3 The repeat statement 57
5.2.4 Formal definition of the repeat statement 58
5.2.5 The loop statement 58

5.3 Summary 59
5.4 Exercises 60

6 Procedures and modules 63
6.1 The procedure: a statement sequence with a name 66
6.2 The concept of locality 67

6.2.1 Scope 68
6.2.2 Nesting of scopes 68
6.2.3 Advantage of locality 69

6.3 Modules 69
6.3.1 The scope defined by a module declaration

of global variables 70
6.3.2 The statement sequence of a module 71
6.3.3 Export and import of declarations 71

6.4 Function procedures and parameters
6.4.1 The function procedure heading
6.4.2 Formal parameters and the return statement
6.4.3 Actual parameters, the function call

6.5 Proper procedures
6.5.1 Syntax, the call statement
6.5.2 Value and variable parameters

6.6 More on function procedures
6.6.1 Side-effects
6.6.2 Recursion

6.7 Compiler hints
6.8 Summary
6.9 Exercises

7 Input and output
7.1 Sequential input and output, modules In and Out
7.2 Graphics output
7.3 The fractal fern, completion of the example
7.4 The Oberon system: a short digression

7.4.1 Execution of commands
7.4.2 The role of texts
7.4.3 Modules In and Out
7.4.4 Module XYplane

7.5 Summary
7.6 Exercises

Part II Arrays, Records, Pointers, Dynamic data, Stepwise
refinement, Data abstraction

Contents xiii

73
74
75
76
77
77
78
80
80
81
82
83
84

87
88
90
92
95
95
96
98

100
100
101

8 Type declarations, array and record types 109
8.1 Type declaration 110
8.2 Arrays 112

8.2.1 The array type and the array declaration 112
8.2.2 The array designator, assignment and expressions 113
8.2.3 Parameters of array type 115
8.2.4 The open array parameter 117
8.2.5 The array as a table 119
8.2.6 Strings and the type ARRAY n OF CHAR 122

8.3 Records 126
8.3.1 The record type and the record declaration 126
8.3.2 The record designator, assignments and expressions 128
8.3.3 Use of records 130

8.4 Summary 131
8.5 Exercises 132

xiv Contents

9 Dynamic data structures and pointer types
9.1 Pointers

9.1.1 The pointer type and pointer declarations
9.1.2 Creation of variables referenced by pointers
9.1.3 Dereferencing a pointer
9.1.4 Memory management

9.2 Lists
9.2.1
9.2.2

9.3 Trees

Simple or linear lists
FIFO lists

9.3.1 Inherently recursive procedures
9.3.2 Searching in trees

9.4 Other dynamic data structures
9.5 Summary
9.6 Exercises

134
136
136
137
137
139
140
140
144
146
148
151
153
154
155

10 Stepwise refinement and data abstraction 158
10.1 Discrete event simulation of a waiting line 158
10.2 Putting the operation of the queue into Oberon terms 161

10.2.1 Data representation of the system state 161
10.2.2 A first round of refinement of the'queueing algorithm 162

10.3 Hiding of details 164
10.3.1 Implementation of module Calendar 164
10.3.2 Computing statistics: module Paths 167

10.4 Completion of the simulation example 170
10.5 More on program structuring and abstraction 173

10.5.1 Decomposition into modules, data hiding 173
10.5.2 Module Out: an example of an abstract data structure 174
10.5.3 Module Files: an example of an abstract data type 176
10.5.4 Textual structure and naming 179

10.6 Summary 181
10.7 Exercises 182

Part III Type extension, Procedure types, Object orientation

11 Type extension and procedure types 187
11.1 Extension of record types 190

11.1.1 Declaration of an extended type 190
11.1.2 Record designators and assignments 191

11.2 Pointers, type guards and type tests 194
11.2.1 Extension of pointer types 194
11.2.2 Static and dynamic type, type guard, type test 195
11.2.3 With statement, regional type guard 197

Contents xv

11.3 Proced ure types 199
11.3.1 The procedure type and procedure variables 199
11.3.2 Expressions and assignments 200
11.3.3 Call of procedure variables 201
11.3.4 Formal parameters of procedure type 202
11.3.5 Up-calls 203

11.4 Summary 204
11.5 Exercises 205

12 Object-orientation 208
12.1 Generic modules 210
12.2 Heterogeneous data structures 212
12.3 Objects, dynamic binding of procedures 215
12.4 Objects and modules 220

12.4.1 Module Graphics 221
12.4.2 Shape-specific modules 223
12.4.3 Creation of a new figure 224
12.4.4 Redefining a dynamically bound procedure 227
12.4.5 Summary 229

12.5 Message and handlers 230
12.5.1 Message and handler 231
12.5.2 Message broadcast 233
12.5.3. Generality of handlers 234
12.5.4 Summary 235

12.6 Conclusions and outlook 236
12.6.1 Two categories of Oberon objects - a comparison 236
12.6.2 On the object-oriented programming paradigm 238

12.7 Exercises 239

13 A simulation example 245
13.1 Generic module Qs 245

13.1.1 Definition 246
13.1.2 Implementation 247

13.2 An object-oriented simulation calendar 250
13.2.1 Data type Actor and basic module structure 250
13.2.2 Module Sim: an abstract simulation 251

13.3 A simulation based on module Sim 254
13.3.1 Data types and module structure 256
13.3.2 Definition of module Stations 257
13.3.3 Implementation of module Stations 258
13.3.4 Implementation of module Model 260

13.4 Summary 262
13.5 Exercises 263

xvi Contents

14 Oberon-2
14.1 Type-bound procedures

14.1.1 Syntax and general semantics
14.1.2 Example: graphics editor

14.2 For statement
14.3 The open array variable
14.4 The Oberon-2 with statement
14.5 Read-only export
14.6 Summary and discussion
14.7 Exercises

265
265
267
270
273
274
275
276
277
278

Appendix A The programming language Oberon 281
A.l Introduction 281
A.2 Syntax 281
A.3 Vocabulary and representation 282
A.4 Declarations and scope rules 284
A.5 Constant declarations 285
A.6 Type declarations 285
A.7 Variable declarations 289
A.8 Expressions 290
A.9 Statements 294
A.I0 Procedure declarations 299
A.ll Modules 303
A.12 The Module SYSTEM 304

Appendix B ASCII Character set and extremal values 306

Appendix C Modules In, Out and XYplane 308

Index 315

Algol 60

1 Why Oberon?

This is a book about programming, and in particular about program­
ming in the language Oberon. Why should the reader be interested in
learning to program in Oberon instead of one of the widely known
languages? The answer is because it is a language that is defined in
terms of relatively few, fundamental programming concepts, because it
is rigorously structured, and because it is efficiently implemented on
modern computers. These are essentially the same reasons that 20 years
ago spoke for the language Pascal. These properties encourage a
systematic approach to the design of programs, and are the
prerequisites for using the essential technique of modular design based
on abstractions. Oberon is a 'small' language, which makes it
particularly suited as notation for an introduction to programming. Yet
its concepts are general and powerful, making it equally appropriate'
for the construction of large software systems. These claims have been
substantiated by the use of Oberon both in teaching and in the design of
the Oberon system itself.

1.1 The Algol family

Oberon is both new and old. It is new, because it is not merely an
extension of another language. And it is old in the sense that most of its
concepts have been taken over from existing languages. Oberon is the
latest descendant in the family of languages whose root is Algol 60
(1960), and whose other members are Pascal (1970), Modula-2 (1979)
and Oberon (1988). It is therefore appropriate to comment on these
members and thereby to explain the family's evolution and the
'philosophy' behind it.

Algol 60 was designed by a a committee of 13 experts from many coun­
tries (Naur, 1963). The goal was to establish a common notation for the
formulation of algorithms (programs), for the purpose of having them

2' Why Oberon ?

Pascal­
structured
programming

not only interpreted by computers, but also studied and understood by
programmers. A necessary condition for approaching this latter goal
was that the language be rigorously defined without reference to any
specific computer or abstract mechanism. The goal was splendidly
reached with regard to syntax. Algol 60 was the first language where it
was easily decidable whether or not a sequence of symbols formed a
(syntactically) correct program. The influence of this rigor had a
tremendous impact on defining, explaining and implementing lan­
guages. With regard to defining the semantics of various language
constructs, the goal of a mechanism-independent static definition still
remains elusive. Nevertheless, much progress has been made - all
based on the prerequisite that a language's syntax be clearly structured.

However, Algol 60 was a mixture of elegant, fundamental constructs
and of strangely baroque features. Not surprisingly, the latter turned
out to be largely unsuccessful and quite superfluous. We mention the
overly general for statement, the own variables, and the name
parameters. At the same time, facilities that emerged as indispensable
for certain applications, such as record and pointer variables were
entirely missing. Algol 60 had been designed by mathematicians for the
formulation of their numerical algorithms, and its designers had little
background in other areas.

Many descendants of Algol 60 were proposed and even implemented.
The most successful was Pascal (Wirth, 1971; Hoare and Wirth, 1973),
which is still in wide use at the present time. It followed the Algol
tradition of being a structured language well suited for practicing
structured programming. Algol's oddities had been left out, and a few
facilities for widening its range of applications had been added. The
single most important innovation was to apply the same approach to
the definition of data as was introduced by Algol for executable
statements: recursive structuring.

Algol 60 featured the basic data types of integers, real numbers, and
Boolean truth values, and it allowed the programmer to define arrays of
variables of these types. Pascal provides, in addition to further basic
types, the array, record, set and file structures. User-defined structures
can be given names and can be used as types of components of other
structures. Hence it is possible to define nested structures, such as
arrays of records and records with arrays as components. Records, in
particular, extended the range of applications beyond that of numerical
computation.

Of special importance was the introduction of pointers and dynamic
allocation. This facility opened the door to all sorts of applications
requiring dynamic data structures; that is, structures that grow and
shrink during the computation. In contrast to address manipulation as

Modula-2-
modular
programming

1. 1 The Algol family 3

it is used in assembler coding, pointer manipulation provides much
greater safety against mistakes, because every pointer variable is, by
virtue of its declaration, bound to point to an object of a given type.
Therefore a compiler is capable of guarding against violations, and the
error can be detected while the program is still being developed and in
its designer's hands. To extend the notion of static type checking to
dynamic variables was indeed a significant achievement.

But Pascal too suffered from deficiencies. They are perhaps not sig­
nificant in the context of exercises in an introductory course, but cer­
tainly are relevant in the realm of programming larger systems.
Whereas Pascal encouraged structured design, in the meantime modular
design had become important in software engineering. This notion has
at least two aspects. The first became known as information hiding. Any
large system is composed of modules that are to be designed in relative
isolation. This implies that definitions of interfaces exist that specify all
properties accessible to partner modules and that hide all others. The
second aspect is of a technical nature: separate compilation of modules.
It implies that in every module all modules to which references occur
(so-called imports) be explicitly specified and that a compilation
proceed under the availability of the interface definitions of those
imports.

The principal innovation of the language Modula-2 (Wirth, 1982) with
respect to Pascal was indeed the module concept, incorporating
information hiding and separate compilation. In contrast to
independent compilation known from assemblers and other language's
compilers, separate compilation enables a compiler to perform the same
type-consistency checks across module boundaries as within a module.
The explicit definition of interfaces and the retention of full type safety
turned out to be a tremendous benefit.

Modules exporting one or several data types, typically record or
pointer to record types, together with a set of procedures operating on
variables of these types, represented the notion of abstract data type. In
these cases, only the names of the types appear in the module's
interface, whereas the structure of the records remains hidden in the
module's implementation. This guarantees that access to the record's
fields is possible via exported procedures only, which can therefore rely
on the validity of certain invariants governing the abstract types.

Furthermore, Modula-2removed one of the most aggravating
handicaps introduced by strong typing: it introduced dynamic arrays as
parameters of procedures. Also noteworthy were the introduction of
procedure types for variables, and facilities for concurrent processes
and for low-level programming. The latter allow a programmer to refer
directly to specific machine facilities, such as interface registers for con-

4 Why Oberon ?

Oberon­
extensible
programming

trolling input/output operations. Once again, these features con­
tributed to the widening of the language's range of applications, par­
ticularly into the areas of system design and process control. And last
but not least, certain unfortunate syntactic properties of Pascal were
remedied, notably the open-ended if, while and for statements. These
were precisely the structures that were adopted from Algol 60 and left
unchanged in order to maintain tradition and to avoid alienating the
Algol community - a mistake in hindsight.

Several years of experience of practicing modular design with
Modula-2 and other system programming languages revealed that the
ultimate goal was extensible design and that structured programming
and modular programming were merely intermediate steps towards
that goal. The introduction of abstractions represented by modules and
the use of procedures calling procedures declared at lower levels of the
abstraction hierarchy embodies extensibility in the procedural domain.
Equally important for a successful design, however, is extensibility in
the domain of data definition. In this respect, Modula-2 is inadequate,
because types cannot be extended and at the same time remain
compatible.

In this respect, so-called object-oriented languages provided a viable
solution, and became the wave of the 1980s. They offer a facility to
define subtypes Tl, called subclasses, of a given type (class) TO with the
property that all operations applicable to instances of TO are also
applicable to instances of Tl. We recognize at this point that the ulti­
mate innovation was data type extensibility, which unfortunately re­
mained obscured behind the much less expressive term 'object-ori­
ented.' Rather unfortunately, this term was accompanied by a whole
new nomenclature for many already familiar concepts with the aim of
perpetrating a new view or metaphor of programming at large. Thus
types became classes, variables instances, procedures methods and
procedure activations messages.

The primary merit of the language Oberon (Wirth, 1988a, b), defined in
1986, lies in the provision of data type extensibility on the basis of the
established, well-understood notions of data type and procedure. The
consequence is that no break with traditional programming technique
is necessary and no familiarization with a whole new class of concepts
and notions is required. The only new facility is that for extending a
record type. Oberon thereby unifies the traditional concepts of
procedural programming with the techniques required to obtain data
extensibility.

This single new facility might well have been added to Modula-2.
Why was yet another new language to be created? The reason was the
desire to have a language available that upholds the principle of pro-

1. 1 The Algol family 5

gramming at a truly machine-independent level, in contrast to creating
programs that appeared to be machine-independent, yet where too
many interspersed uses of system-dependent low-level facilities in fact
rendered programs highly implementation-dependent. Indeed,
Modula-2's low-level facilities had become far too frequently misused
in order to overcome the lack of extensible types. Modula-2 also had
become rather too large: it contains features that can be ignored without
loss of generality and expressive power. Oberon thus became not only a
modest extension, but also a strongly streamlined descendant of
Modula-2. The result is manifest in the form of its defining report of
only 16 pages. This figure compares well with the Modula report's 45
pages.

Simplification and unific~ation mark genuine progress and are
particularly appreciated in teaching the fundamentals of a scientific
subject. Oberon's design truly follows the spirit of Algol 60.

1.2 The Oberon system

The development of the language Oberon was only a part of a more
comprehensive project. In 1985, while visiting the Xerox Palo Alto
Research Center, J. Gutknecht and N. Wirth decided to design and
implement a new operating system (Wirth and Gutknecht, 1989, 1992).
In order not to be hindered by imposed constraints, they decided to
design the Oberon system from scratch. The ultimate goal was to create
a system for personal works~tions that was not only powerful and
convenient for practical use, but also describable and explicable in a
convincing way. Since there exists relatively little published literature
explaining how a system was designed - in contrast to how it could be
designed - this was felt to be not only a formidable challenge but also a
worthwhile endeavor.

A driving force behind the project was a deep dissatisfaction with
widespread practices in software development. It appears that systems
are - with few exceptions - unnecessarily bulky and their design
contorted. One reason for this is the lack of extensibility of existing
software, invariably leading to innumerable additions that usually
include and duplicate functions that are already there but deeply
embedded in some part of the existing system. These parts, however,
can seldom be re-used - either because they need to be slightly
modified or simply because they are inaccessible in their original place
due to fixed linking and packaging strategies. It is now quite common
that operating systems on workstations require several megabytes of
memory and hundreds of megabytes of secondary store in order to be

6 Why Oberon ?

functional. Even though there is no intrinsic necessity for such
bulkiness, the situation is unfortunately tolerated by users, because the
tremendous advances of semiconductor technology have made large
memories affordable at reasonably modest expense - modest at least by
the standards of a decade ago.

The much deeper problem, however, is not the need for large stores,
but the unreliability and unadaptability (called unmaintainability) of
large software systems. Certainly, the size of a program alone is only a
crude measure for the number of mistakes it contains. But it is an
established fact that the number of errors grows rapidly with a system's
increasing size. It should be recognized that the single most important
contribution towards a design's reliability is the elimination of
superfluous features andtacilities, and the containment of its complexity. One
is left with the nagging impression that many systems have grown into
gigantic monsters not because their complexity is inherent in the
desired functionality, but rather because of inadequate design and
because of chosen structures that later could not be corrected. And even
more disconcerting is the circumstance that many customers are
impressed by complex designs more than by economical engineering.
After all, impenetrable software may still hide some promises and
surprises. We call this psychological phenomenon - which is
surprisingly common in the world of computing - 'gigalomania.'

It is of course much easier to design a large system than an economical
one. The latter requires experience, much careful planning and minute
attention to details - in short, more time from its designers. Project
Oberon has driven this knowledge home with indubitable clarity. The
object-code size of the so-called outer core of the Oberon system is less
than 200 kBytes, and comprises

• a kernel;

• a dynamic loader and a garbage collector;

• a file system;

• drivers for disk, diskette, mouse, keyboard, asynchronous and
synchronous communication, printer and a bitmapped display;

• local area network services;

• support for texts and fonts;

• a window subsystem;

• a text editor;

• the Oberon compiler.

Even allowing for the fact that the National Semiconductor 32000 series
processor produces denser code than many other popular micro-

1.2 The Oberon system 7

processors, Oberon is easily an order of magnitude smaller than system
of comparable (or even lesser) functionality.

The Oberon system is a hierarchy of modules, most of which export
one or a few abstract data types. Each user is encouraged to extend the
system - extensions are created by simply adding new modules. There
is no boundary between 'the system' and 'the application program.'
Figure 1.1 shows the modules that comprise the so-called outer core of
Oberon. Except for modules Kernel and Display, the entire Oberon
system is expressed in the programming language Oberon (for a system
reference see Reiser, 1991).

Much emphasis is nowadays placed on the use of sophisticated tools.
We warn the reader against putting too much hope and trust in the
potential of tools. None can produce miracles, and none has ever
replaced careful and competent designers. But good tools certainly
increase the designer's productivity. In fact, the better the designer, the
higher is the gain of using appropriate tools.

E

* >-en
.0
::J en
X
Q)
I-

E
Q)

en
>­en
.0
::J
en

~
a. en
(5

Figure 1.1 Module hierarchy of the outer core of the Oberon system. Arrows
depict import relations; for example, module Oberon imports module Input.
Note that only the major import relations are shown, and several driver and
command modules are omitted for clarity.

Among all possible tools, we find that the programming language
plays by far the most important role. In Project Oberon, it was initially
planned to use Modula-2 because of its support of structured and
modular program construction. But it was soon realized that the same
principle of economy in design that was declared fundamental for the

8 Why Oberon?

system should also be applied to the language. The design of the
Oberon language evolved in parallel with a large software project.
Modula-2 was stripped of features that did not genuinely contribute to
its power of expression. The principal concept that was added - type
extension - was, on the other hand, the sorely needed missing part in
the otherwise most important asset of Modula-2: in its strict, static
typing of variables and functions. Thus Oberon is not another design
conducted in the abstract with the attitude 'let's invent another nice
feature.' It is purposefully tuned to be an efficient, convenient and safe
instrument to express programs in the large.

The result, the language Oberon, is presented in this book. A detailed
account of Project Oberon is found in Wirth and Gutknecht (1992). Not
surprisingly, an economically designed language is particularly suitable
as a basis for teaching the subject of programming. After all, program­
ming is inherently difficult, and hence a student must be protected from
having to carry the additional burden of a complex language.

References

Hoare C.A.R. and Wirth N. (1973). An axiomatic definition of the programming
language Pascal. Acta Informatica, 2, 335-55.

Naur P., ed. (1963). Revised report on the algorithmic language Algol 60.
Communications of the ACM, 6, 1-7; Computer Journal,S, 349-67; Numerical
Mathematics, 4,420-53.

Reiser, M. (1991). The Oberon System: User Guide and Programmer's Manual.
Wokingham: Addison-Wesley.

Wirth N. (1971). The programming language Pascal. Acta Infomatica, 1, 35-63.
Wirth N. (1982). Programming in Modula-2. Berlin: Springer-Verlag.
Wirth N. (1988a). From Modula to Oberon. Software-Practice and Experience, 18,

662-70.
Wirth N. (1988b). The programming language Oberon. Software-Practice and

Experience, 18, 671-90.
Wirth N. and Gutknecht J. (1989). The Oberon system. Software-Practice and

Experience, 19, 857-93.
Wirth N. and Gutknecht J. (1992). Project Oberon: The Design of an Operating

System and Compiler. Wokingham: Addison-Wesley.

2 A first Oberon program

In this chapter we will follow the steps of writing a simple program,
technically speaking a module, and thereby explain some of the
fundamental concepts of programming and of the facilities of Oberon.
The task is to provide a random number generator - a program that
'throws dice' and produces successive unpredictable numbers. Such
random number generators are an important utility in a computer. We
will frequently use it ourselves in subsequent examples.

The concepts of randomness and algorithm - a recipe for compu­
tation - are of course irreconcilable. All one could hope for is an al­
gorithm capable of producing a very long sequence of numbers in such
a way that no pattern becomes discernible.

The non-specialist might expect that the more ingeniously random
such a program would be, the better its results. Knuth (1971) gives an
example of such a 'super random numbers generator' that produced
periodic sequences of very short length (a few thousands). Says Knuth:
'The moral to this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used.' A method
proposed by D. H. Lehmer some 40 years ago - the multiplicative linear
congruential algorithm - withstood the test of time (see Box 2.1).

The basic recipe - the so-called algorithm - is contained in Equations
(1) - (2) of Box 2.1. We have to put this prescription into terms of
Oberon. A first attempt leads to

z:= (a*z) MOD m;
"Return the real value zlm as result"

This piece of text is yet far from being a program. However, an attempt
to make one on its premise would be doomed. It is not difficult to see
that the product a*z may easily exceed the range of integers that can be
represented with 32 bits. There is a clever trick due to Schrage that

9

10 A first Oberon program

Box 2.1
Linear
congruential
random number
generator

Declaration

The mathematical foundation is a beautiful example of the elegance of
simplicity. All that is needed is a judicious choice of two integer
parameters - the modulus m and the multiplier a - in the simple
recurrence formula

Zn+1 = azn mod m (1)

The sequence must be started with an initial value Z1 called the seed. It
turns out that the choice of m and a is critical. With m = 23 1 - 1

= 2147483647 and a = 75 = 16 807, all numbers between 1 and m appear
exactly once in the sequence defined by Equation (1) - there will be over 2
billion random numbers that passed stringent statistical tests. For a
discussion of random number generators, see the survey paper by Park
and Miller (1988).

In practice, one seldom needs random integers as large as
2147483 647. We therefore normalize:

r = zn 1m (2)

The real random numbers rn are now from the interval 0 < rn ::;; 1.

circumvents this difficulty. Select new constants q = Lm/ aJ = 1277731

and r = m mod a = 2 836 and compute

gamma := a*(z MOD q) - r*(z DIV q);
IF gamma> 0 THEN

z :=gamma
ELSE

z:=gamma+m
END;
"Return the real value z / m as result "

The meaning of these Oberon statements should be quite obvious. Less
obvious is that the modified computation is the same as (1). For our
example, the mathematical detail is not essential. We refer the
interested reader to Park and Miller (1988).

The quantities z and gamma are variables; m, a, q and r are constants.
Many programming languages require that the variables and constants

1 LxJ denotes the largest integer not greater than x.

Procedure

Module

A first Oberon program 11

be explicitly defined and their type (such as integer or real) specified.
Also, we need to express formally the fact that our program is a
function that returns real values.

Groups of statements that have a name and may be invoked from other
locations in a program are called procedures. Constant, variable and
procedure declarations read as follows:

PROCEDURE UniformO: REAL;
CaNST a = 16807; m = 2147483647; q = m DIVa; r = m MOD a;
V AR gamma: LONGINT;
BEGIN

gamma := a*(z MOD q) - r*(z DIV q);
IF gamma> 0 THEN

z:=gamma
ELSE

z:= gamma + m
END;
RETURN z*(1.0/m)

END Uniform;

The first line expresses the fact that the procedure Uniform1 is a function
procedure (without arguments) which returns a real value when
invoked. The procedure statement is followed by the declarations of the
constants and the variable gamma. Note that q and r are declared in the
form of constant expressions that can be evaluated without the need to
actually run the program. The operator DIV denotes the integer
division and MOD the modulus. Constants and variables thus declared
are local to the procedure. Therefore the variable z, which needs to
retain its value from execution to execution, must be declared in a
larger context.

This larger context is the module. A module is a text unit that is accepted
by the Oberon compiler and translated into machine executable code.
But a module is more than that. It provides mechanisms for:

(1) structuring of a program into independent units;
(2) the declaration of variables that keep their value for the duration

the module is active (that is, in memory) - these variables are
called global to the module;

(3) export of variables and procedures to be used in other modules.

1 The name Uniform suggests that the random numbers all have the same
probability - they are uniformly distributed.

12 A first Oberon program

Export

Body

The module therefore provides the facilities for abstractions - abstract
data types - which we will explore in detail in Chapter 10 and Part III. A
module, RandomNumbers, encapsulating our procedure Uniform reads

MODULE RandomNumbers;
VAR z: LONGINT; (* global variable *)

PROCEDURE Uniform*O: REAL;
CONST a = 16807; m = 2147483647; q = m DIVa; r = m MOD a;
V AR gamma: LONGINT;
BEGIN

gamma := a*(z MOD q) - r*(z DIV q);
IF gamma> 0 THEN

z:= gamma
ELSE

z := gamma + m
END;
RETURN z*(1.0/m) (* value of the function *)

END Uniform;

PROCEDURE InitSeed*(seed: LONGINT);
BEGIN

z:= seed
END InitSeed;

BEGIN
z := 314159 (* initial value of seed *)

END RandornNumbers.

The asterisk following the procedure name marks that procedure for export. In
other words, it may be used in other modules that import module
RandomNumbers. Similarly, a module may export variables.

The statements between BEGIN and END at the trailing of the program
text are called the module's body. They are executed when the module is
loaded into the computer's primary memory. In our example, the body
consists of a single statement that is initializing the global variable z.
Initialization of variables is a typical task for the statements comprising
a module's body.

A random number generator is a utility to be used in other programs.
Module RandomNumbers, independently compiled and available in
object form in the system's program library, makes the utility available
to procedures contained in other modules. These modules are clients of

A first Oberon program 13

module RandomNumbers. Let us illustrate the concept with a further
example. Module ListRN prints a table of 100 tandom numbers. We
realize that we need to specify an action that makes results visible. For
this purpose, we should actually know the computer's facilities to
communicate with its user. Since we do not wish to refer to a specific
system running Oberon programs, we introduce abstractions that we
postulate to be available. We stress, however, that they are not part of
the language.

MODULE ListRN;
IMPORT Out, RandomNumbers;

PROCEDURE List*;
V AR i, max: INTEGER; rn: REAL;
BEGIN

max := 100; i:= 0;
WHILE i < max DO

rn := RandomNumbers.UniformO;
Out.Real(rn,14); (* print random number *)
Out.Ln; (* skip line *)
i:= i + 1

END
END List;

END ListRN.

Import, qualified The procedure Out.Real(x, n) writes a real variable x to a suitable output
name medium, for example a display window (n measures the total number

of characters). Similarly, Out .Ln appends a line break. The import
statement specifies which modules should become accessible within the
scope of ListRN, namely module Out and module RandomNumbers.

Procedures and variables from those imported modules appear with
qualified identifiers. For example Out.Real (x) means call the procedure
Real (x) from module Out. Similarly, RandomNumbers.UniformO invokes
the function UniformO exported by module RandomNumbers.

Client module We say that module ListRN is a client of modules Out and
RandomNumbers. Thus the module is also a package of data and functions
to be reused by other modules. To ListRN, both module Out and module
RandomNumbers are utilities. They can be used without recompilation or
access to the source texts.

We trust that even though the Oberon statements used so far were
not defined rigorously, the reader - even if he or she has little prior

14 A first Oberon program

Command

Oberon system

exposure to programming - could easily grasp their meaning. One
thing, however, remains mysterious: where is the main program? Module
ListRN has no body and comprises a procedure declaration only. How
then can ListRN be run?

The answer is that Oberon departs from the notion of a main program
that can be run and procedures that are constituents of such a main
program. An exported Oberon procedure is called a command.1

The system that runs Oberon must provide facilities to start
commands. Procedure List in module ListRN is such a command that
can be executed from the computer's controls and as a result, lists 100
random numbers.

Computers run programs. One can distinguish between system programs and applicallon programs or in short applications.
Well known applications running on workstations are Spreadsheets, Editors, Desk Top PuDlishing and Oraw or Paint
programs.
The operating system has facUities to load application programs and pass control to them. The application in tum seizes
control and typiCally projects a user interface onto the screen. The interface provides a command and input mecnanism
Operating sys-Iems differ in the level of common functions provided fOr display and 110 management
The Simpler operating systems (e.g. MSIOOS up to version 3, Apple Finder) allOw only one appliCation to be resident in
memory. USing Simultaneously more than one application is quile impractical since loading and saving typically lakes tens of
seconds up to minutes. More sophisticated systems therelOte provide for multiple open applications with fast switching
between them (e.g. Apple Multi Finder. IBM OSf2. UNIX). However. the faCT remains that the user alternates b8\W88n
appliCalionswhichresloretheirownintertaceuponaClivation
Interactive applications have 8 user interfaca which is typically structured into a set 01 menU8 whlc hare supported with a

System.TIme 13.12.89 12:26:14

~::::~;
Edit.Search
Edll.Store

Compiler.Compile*
Compiler.Compile-

System. Recall
System.Openlog
System.Open

Edi1.TooI lada.TooI Draw.Tool Palnt.Tool

Edil.Search
Edlt.Locale

Edil.Printlk
Eclit.Print-

Edil.CopyFont
Edit.SeIFontSyntaxtO.Scn.Fnt
Edit.SeIFonISyntaxl0i.Scn.Fnt
EdII.SeIFonISyntaxlOb.Scn.Fnl
Edil.SeIFonlSyntmcl0x.Scn,Fnl

Figure 2.1 Display screen of an Oberon system.

Let us provide an example of a system running commands written in
the Oberon programming language: the Oberon operating system

1 To be precise, a procedure without formal parameters.

A first Oberon program 15

(Reiser, 1991). The display of a workstation running Oberon is
portrayed in Figure 2.1.

The screen is exhaustively tiled into non-overlapping rectangles
called viewers, which display documents such as texts, graphics and
pictures. If the name of a command appears anywhere in a text viewer,
it can be activated by pointing at it with the mouse cursor and clicking
the (middle) mouse key.

Figure 2.2 shows a close-up view of two text viewers with titles
System.Log and ListRN. Tool. System.Log is the name of a special viewer
where commands display progress or error messages. The procedure
Out.Real exported by module Out is assumed to write into that viewer.
The viewer ListRN.Tool shows the command name ListRN.List. It was
typed into this viewer using a text editor. The command can be
executed by pointing at it with the mouse cursor. Thus the viewer
ListRN. Tool operates like the menus of a conventional system. In our
example, the command was executed and 100 random numbers are
written into the viewer with name System.Log. -

1.745911 E-01
8.745628E-03
5.725493E-01
4.745386E-09
7.649856E-01
3.674534E-01
1.114252E-01
8.725292E-01
2.221318E-05
6.305649E-02

ListRN.List

"
Figure 2.2 Output produced by the command ListRN.List.

A few more comments to our example are in order. The command
List produces an editable text as output that is displayed in the viewer
System.Log. From the 100 items, we see only 10. The others are accessible

16 A first Oberon program

Summary

by scrolling, which is done in the usual manner using the scroll bar
located at left.

This concludes the discussion of our example. We remind the reader
that the short excursion into the Oberon operating system was meant to
illustrate one of many environments that could support commands
written in the Oberon language.

In summary, we have learned

• Oberon' programs' are texts composed of procedural statements
that specify an algorithm.

• The procedure is the executable unit. The texts that specify proce­
dures are contained in modules, which are accepted by the com­
piler for translation.

• All variables used in procedures are defined in declaration state­
ments. Variables may be local to a procedure or global to a
module.

• Besides data declarations and procedure texts, modules have a list
of statements that is executed when the module is loaded into the
computer's memory.

• The module selectively exports procedures and variables. It
serves as a utility for other modules that import that module.
Hiding the implementation details of data structures in a module
and providing access through procedures only is an important
tool to structure large systems.1

• The notion of a main program, a mainstay of traditional lan­
guages, is absent in Oberon. Oberon 'programs' are families of
commands. The system running Oberon code provides facilities to
execute commands, which are procedures exported by modules.

Lastly, the example of random number generation has taught im­
portant lessons about program design. Let us conclude with another
quote from Knuth: ' .. .look at the subroutine library of each computer
installation in your organization, and replace the random number
generators by good ones. Try to avoid being too shocked at what you
find.' Our advice to readers is to use another generator only if you have
positive evidence that it is better than the standa:rd generator discussed
in this section. Many in current use are worse!

1 Called abstract data structure or abstract data type - see Chapter 10 and Part III.

2. 1 A notation to describe the syntax of Oberon 17

2.1 A notation to describe the syntax of Oberon

The discussion of the last section was kept quite informal. This was
permissible for an introductory example. However, programming is
creating new programs. For this purpose, only a precise formal de­
scription is adequate.

Formal language A formal language is a set of sequences of symbols. Elements of this set are
called sentences. The term 'sentence' is more reminiscent of the
applications of formal languages in linguistics. In the case of a pro­
gramming language, these sentences are programs - in Oberon techni­
cally termed modules.

The symbols originate from a finite set called the vocabulary. The set
of programs (which is infinite) is defined by rules of their composition.
Sequences of symbols that are composed by these rules are said to be
syntactically correct or well formed. The set of rules is the syntax of the
language. The program (or sentence of the formal language) consists of
parts called syntactic entities, such as declarations, statements or
expressions.

Syntactic factors If a construct A consists of B followed bye - that is, the concatenation
Be - then we call Band e syntactic factors and describe A by the
syntactic formula

Syntactic terms

A=BC.

If, on the other hand, A is composed of a factor B or, alternatively a e
we call Band e syntactic terms and express A by

A=BIC.

In addition to concatenation and choice, it is convenient to have a
notation for option and repetition. If a construct A may be either B or
nothing, this is expressed as

A = [B].

If A consists of the concatenation of any number of Bs, including none,
this is denoted by

A = {B}.

18 A first Oberon program

Parentheses may be used to group factors or terms. One should note
that A, Band C denote syntactic entities whereas I, =, [,] { , }, (,) and
the period are symbols of the meta-notation describing our syntax.
Obviously, they are termed meta-symbols, and the notation introduced
here is known as Extended Backus-Naur Formalism (EBNF).

A few examples show how sets of sentences are defined by EBNF
formulas:

(A IB)(C I D)
A[B]C
A{BA}
{AIB}C

AC AD BC BD
ABC AC
A ABA ABABA ABABABA ...
C AC BC AAC ABC BAC BBC ...

Besides syntactic entities denoted by identifiers, we have a need to
substitute elements - also called tokens - taken from the formal lan­
guage's vocabulary. We will adopt the widely used conventions for
programming languages, namely: an identifier consists of a sequence of
letters and digits, where the first character must be a letter; a string consists of
any sequence of characters enclosed by quote marks.

2.2 Exercises

2.1 Provide an EBNF definition of identifiers and strings as defined above.

2.2 The production A = T {I/+/I T} defines the sentences T, T+T, T+T+T and so on.
The braces are only a convenient abbreviation. List two production rules, not
involving braces or brackets, that define the same language.

2.3 Consider the EBNF syntax

E = [1/+/1 I 1/_/1] T tao T}.
ao = 1/+" I 1/_".

T =F {moF}.
rno= 1/*" I "I".
F=nu I id I "("EI/)".

nu = digit {digit}.
id = letter {letter I digit}.

The entities letter and digit have their usual meaning. Construct sentences E of
this language. What are these sentences? Reformulate the grammar using more
suggestive names for the nonterminal symbols.

2.2 Exercises 19

2.4 Clearly EBNF is itself a formal language. If it suits its purpose, it should at least
be able to describe itself. Construct such a description. Use the following names
for entities:

syntax:
statement:
expression:
term:
'factor:

a sequence of statements
a syntactic equation
a list of alternative terms
a concatenation of factors
an identifier, a string or a parenthesized
expression

The terminal symbols are identifiers, strings and the following symbols: I = [] .
{ } ().

References

Knuth D. E. (1971). The Art of Computer Programming, 2nd edn. Reading, MA:
Addison-Wesley.

Park S. K. and Miller K. W. (1988). Random number generators, good ones are
hard to find. Communications of the ACM, 31, 1192-1201.

Reiser M. (1991). The Oberon System: User Guide and Programmer's Manual.
Wokingham: Addison-Wesley.

Synopsis

Part I introduces the fundamental concepts of programming: the
basic types, the assignment statement, control structures and
procedures and modules.

An extended Backus-Naur formalism is used to describe the
syntax. The semantics of the control structures, namely the if
statement, the case statement, and the loop expressed by while,
repeat and loop statements are defined formally by means of
predicates and their transformations.

Input and output operations are introduced as service
modules, based on the notion of the stream. The part ends with a
complete module, drawing a fractal fern. .

3 Tokens and basic types

The formal definition of a programming language must eventually be
given in terms of the characters available from the computer's
keyboard. The creation of an intermediate level of representation by
symbol sequences, called tokens, provides a useful decoupling between
the language and its ultimate representation. Examples of tokens are

• 1024,3.1415

• gamma, a, pi
• +, -, *
• BEGIN, END, IF

Numbers

Identifiers

Operators
Keywords.

The introductory example taught us that Oberon programs - more
precisely Oberon modules and procedures - contain variables
(designated by identifiers) that are bound to a type by means of a
declaration. This data type represents information about the variable
that is permanent, in contrast, for example, to its value. The type of a
variable determines its set of possible values together with the
operations that may be applied to it. Data types may be declared in the
program (see Section 8.1). Such constructed types are usually based on
composition of basic types. There exists a number of most frequently
used elementary types that are basic to the language and need not be
declared. In Oberon, these types are SHORTINT, INTEGER, LONGINT,
REAL, LONGREAL, BOOLEAN, SET and CHAR. Since Oberon
programs will execute on computers, the basic types have a close
association with facilities of contemporary hardware.

3.1 The vocabulary of Oberon

The tokens of the Oberon vocabulary are divided into the following
classes:

(1) identifiers

(2) numbers

23

24 Tokens and basic types

(3) character constants

(4) strings

(5) operators and delimiters.

The rules governing their representation in the standard character set
are as follows.

3.1.1 Identifiers

I

ident = letter {letter I digit}.
letter = "A" I "B" I ... I "Z" I "a" I "b" I ... I "z".
digit = "0" I "1" I "2" I ... I "9".

Upper and lower case letters are considered distinct. Examples of well­
formed identifiers are:

List list a12 nextItem Viewers SRI01

Examples of words that are not identifiers

List element
List-element
List_element
2N

3.1.2 Numbers

number = integer I real.

blank space not allowed
neither is a hyphen
nor an underscore
first character must be a letter

integer = digit {digit} I digit {hexDigit} "H"~
hex Digit = digit I "A" I "B" I "e" I "D" I "E" I "F".
real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = ("E" I "D") ["+" I "-"] digit {digit}.

Numbers are unsigned integers or unsigned real numbers. Decimal
integers are sequences of digits. Hexadecimal integers must start with a
digit followed by a sequence of hexadecimal digits and trailed by the
suffix "H". Real numbers always contain a decimal point and a
fractional part. A scale factor may optionally be appended. It starts
with a "E" or a "D" which reads 'times ten to the power of.' The prefix
"E" or "D" in the scale factor determines the type of the real number,
either REAL or LONGREAL.

3. 1 The vocabulary of Oberon 25

Examples of well-formed numbers are

1024
1AFH
3.1416 2.99792458D8

an integer in decimal notation
an integer in hexadecimal notation (=431)
real numbers

The following character strings are not recognized as well-formed
Oberon numbers:

FFFFH 3,14159 .665; 1.35-43

3.1.3 Character constants

I CharConstant = """ character """ I digit {hexDigit} "X".
character = digit I letter I "" I specialChar.

Special characters are all the printable characters on the computer's
keyboard that are not digits, letters or a blank. The following special
characters are common to the ASCII character set: ! " # $ % & ' () * + , - .
/ : ; < = > ? @ [\] A _ '{ I } '""'.

A character constant may, instead of enclosing the character in quote
marks, be specified by its ordinal numberl in hexadecimal notation,
followed by the letter X.

Examples of character constants are "a", ''b'', 1/1", "@" and 61X. Both
"a" and 61X denote the same character, namely 'lower case A' (if the
ASCII code is assumed).

3.1.4 Strings

I string = """ {character} """.

A string is a sequence of printable characters, including blanks and
special characters, enclosed in quote marks. In order that the closing
quote mark be recognized unambiguously, the string cannot contain
such a quote mark. Example: "This is a string".

3.1.5 Operators and delimiters

Delimiters and operators are either special characters (or pairs thereof)
or reserved words written in capital letters. They serve as terminal

1 A character's ordinal number is defined by the encoding scheme. In most
contemporary personal computers and workstations, this is the standard ASCII
code.

26 Tokens and basic types

symbols in the Oberon syntax - their meaning will be explained
throughout subsequent chapters. A complete list is found in Appendix
A, Section A.3, page 283.

Examples include:

• + - * / < <= > >=
• () [] : ; :=

• BEGIN END PROCEDURE MODULE

Operators

Delimiters

Reserved words

The term reserved word means that these letter sequences must not be
used as identifiers.

3.1.6 Predeclared identifiers

Besides the set of reserved words, which act as separators and are part
of the vocabulary of the Oberon definition, there is a list of predefined
or standard identifiers. Syntactically, they appear at places where user­
defined identifiers may also apply.

Predeclared identifiers are used as:

• truth values: TRUE, FALSE;

• type identifiers, for example INTEGER, REAL, SET, CHAR;

• standard functions and procedures, for example ABS, LEN, INC.

The predeclared identifiers can be visualized as if declared in a context
that encompasses the module being created by the programmer.
Therefore they are also called pervasive since they are valid in all parts of
the module's text. A completed list is found in Appendix A, Section A4,
page 284.

3.1.7 Rules for blanks and carriage returns

Oberon programs are sequences of the tokens defined above. The syn­
tactic rules governing these sequences will be the object of the following
chapters. There is one further rule, which will not be expressed
formally: blanks, tab and carriage return characters may be added or removed
from the program text, except where a token's identity would be lost. An
example will make the point:

IFx=yTHEN ...

3. 1 The vocabulary of Oberon 27

The space before x and after y is essential. If omitted, IFx and yTHEN
will be parsed as identifiers. On the other hand, the spaces enclosing the
equal sign "= 1/ are optional.

Blanks and tabs should be used liberally to make program texts more
readable. For example, the spaces enclosing the equal sign above
improve the appearance of a program text. Similarly, in the in­
troductory example, indentation was used to enhance the structure of
programs.

Comments At any point in the program's text, comments may be interspersed. A
comment is any sequence of characters enclosed in the brackets 1/(*"
and 1/*)',. Comments may also contain instructions for the compiler.

3.2 Basic types

There are eight basic types in Oberon. They are identified by the
predeclared identifiers SHORTINT, INTEGER, LONGINT, REAL,
LONGREAL, BOOLEAN, SET and CHAR (see also Appendix A,
Section A.6.1).

For the basic types, the set of admissible values is bounded by ex­
tremal values, which may be accessed in Oberon programs through the
(predeclared) functions

MIN(T):
MAX(T):

The minimum value of type T
The maximum value of type T

For example, if SHORTINT is represented by 8 bits, then
MAX(SHORTINT) = 127 and MIN(SHORTINT) = -128. Typical
extremal values are listed in Appendix B. For obvious reasons the first
five types are called the numeric types. They form a set hierarchy (see
Section 3.2.3).

3.2.1 The types SHORTINT, INTEGER and LONGINT

The three types comprise the integer types. They represent the integer
numbers and differ by the cardinality of the set of numbers represented
by each type. The need for different types arises from the architectures
of machines, which - for reasons of efficiency - provide various word

28 Tokens and basic types

formats with corresponding machine instructions. It is the re­
sponsibility of the programmer to insure that the result of a computa­
tion a<gain lies within the set of numbers represented by each type.
Otherwise, an overflow is said to have occurred, leading in general to a
termination of the program that caused the overflow.1

3.2.2 The types REAL and LONGREAL

The real types approximate the real numbers. Each element from the set
of REAL or LONG REAL is representative of an interval of genuine real
numbers. Variables of a real type are represented by pairs of integers, a
mantissa and an exponent. This is called floating-point representation. The
two types are distinguished by the number of digits of the mantissa (the
fractional part) and the exponent. As with the integer types, overflow
may occur and result in termination of the program.

Floating-point numbers are only an approximation to the real num­
bers of mathematics. As a consequence, computations involving float­
ing-point values are inexact because each operation may be subject to
truncation. The resulting problems have been investigated in detail, and
are treated in every text on numerical mathematics.

3.2.3 Hierarchy of the numeric types

The numeric types are comprised of the integer and real types and form a
set hierarchy.

LONGREAL ~ REAL ~ LONGINT ~ INTEGER ~ SHORTINT

The range of the larger type includes the ranges of the smaller types.
For example, REAL includes LONGINT ... SHORTINT. The smaller type
is said to be compatible with the larger one in the sense that it can,
without danger of loss of leading digits, be converted. In most cases,
such a conversion is also exact.2 In assignments and in expressions, the
conversion of internal representations is automatic.

1 Some implementations allow trapping of overflow to be switched on and off.
2 The typical exception is REAL ~ LONGINT, where truncation may occur.

3.2 Basic types 29

3.2.4 The type BOOLEAN

A Boolean value is one of the logical truth values, which are represented
in Oberon by the standard identifiers TRUE and FALSE.

3.2.5 The type SET

The values belonging to the type SET are elements of the power set of
{O, I, ... , N} where N = MAX(SET). N is a constant defined by the im­
plementation. It is typically the word length of the computer (or a small
multiple of it). In fact, sets are efficiently implemented as bit operations.

The notation for sets follows the mathematical convention:

I set = "{" [element { "," element}] "}".
element = expression [" .. " expression].

If expression is an integer constant (or a constant expression, see Section
4.1), we speak of a set constant. The double period is a shorthand
notation for a range of integers, for example {O, 2 . .4, 8} = {O, 2, 3, 4, 8}.

Examples of set constants are

{ } {1, 6, 10} {O, 2 . .4, 8}

where { } denotes the empty set.

3.2.6 The type CHAR

A major portion of the input and output of computers is in the form of
strings of numerals, characters from the roman alphabet and a small set
of special symbols such as punctuation marks and symbols used
frequently in commerce and mathematics. This set consists the value
range of the type CHAR. For the computing machine, each symbol
must be represented by a binary value that encodes the symbol. Different
brands of computers may use different character sets. However, there is
a strong trend towards the so-called ASCII code (of ISO) which defines
a set of 128 characters, 33 of which are so-called control characters. The
remaining 95 are printable characters (see Appendix B).

rdinal numbers The set representing the type CHAR is ordered, and each character has
a fixed position or ordinal number. This is reflected in the notation for
character constants, which may be written as "a" or 61X, the first form
denoting the value of a variable of type CHAR by the representation,
the second by the (hexadecimal) ordinal number.

30

4 Declarations, expressions
and assignments

Computers execute sequences of machine instructions, each one trans­
forming the machine's state, which is defined as the contents of mem­
ory and registers. A programming language is an abstraction of such a
machine instruction sequence. The basic unit is the statement, which­
when interpreted or executed - specifies an action.

The most elementary action is the assignment of a value to a variable.
Let us introduce a few examples of assignment statements:

i:= 1
i:= i + 1
x := a1 * X + b1 * Y + e1
det := b * b - a * c
r1 := (ABS(b) + sqrt(det»/a

We observe that the assignment statement consists of a variable on the
left and an expression on the right of the assignment symbol 1/:=". The
expression is evaluated, and its result replaces the value that the vari­
able had prior to the assignment.

In this chapter, we will introduce form and semantics of expressions
and of the assignment statement. Since all variables have to be declared,
the topic of constant and variable declarations is considered first. The
declaration binds an identifier to properties of the object that it
represents. These properties are expressed by the object's type. The type
defines the set of values and the operations that are applicable.

4.1 Declarations

In Oberon, every object of the language such as constants, variables,
procedures and even types must be declared. The declaration creates
the object and defines its type.

4.1 Declarations 31

4.1.1 Constant declarations

The constant declaration binds an identifier to a constant or a constant
expression. It observes the syntax:

I ConstDeclaration = ident [1/*,,] 1/=" ConstExpression.
ConstExpression = expression.

The simplest expression is a number, a character, a truth value or a set
constant. More complex expressions are treated in the next section. The
evaluation of a constant expression must be possible by a mere textual
scan without actual execution of the program - the operands are
restricted to constants.

The asterisk is called the export mark. Identifiers thus marked will be
visible outside the module containing the declaration. We will say more
about this in Chapter 6. A sequence of constant declarations, separated
by semicolons, is preceded by the symbol "CaNST", for example

CaNST a = 16807; m = 2147483647; q = m DIVa; r = m MOD a;

Constants with suggestive names help make a program readable. The
use of identifiers declared as constants rather than their value has the
additional benefit that if the constant value should change, there is only
one place where the program text need be updated. This avoids a common
mistake that one or a few instances of an explicit constant, spread
throughout the program, remain unrevised.

4.1.2 Variable declarations

The state of an Oberon computation is defined by a set of variables. Such
variables have two properties:

• a type that defines the set of values it may assume as well as the
operations applicable to it;

• a value.

The variable declaration defines a variable and binds an identifier and a
type to it. The value of the variable however, remains undefined. We
say that the variable is an instance of its type and that the identifier
denotes (or represents) the variable. In the computer implementation, a
variable of the basic types is a byte, a word or a double word of
memory; the identifier can be visualized as its address.

32 Declarations, expressions and assignments

Terms

The syntax of the variable declaration is

VarDeclaration = IdentList u:" type.
IdentList = ident [u*"] {U," ident [u*"]}.

At this point, type stands for one of the predefined identifiers repre­
senting standard types, namely SHORTINT, INTEGER, LONGINT,
REAL, LONGREAL, BOOLEAN, CHAR and SET. Again the asterisk is
the export mark. More types will be introduced in Chapters 8 and 11.

Variables of the same type may be grouped in the same declaration; a
sequence of variable declarations, separated by semicolons, is preceded
by the symbol ''V AR"; for example,

VAR
i, m, n: INTEGER; index: LONGINT;
a, b, time* : REAL;
ch:CHAR;

The identifier time is marked for export.

4.2 Expressions

4.2.1 Syntax and general semantics

An expression is, in general, composed of several operands and opera­
tors. Its evaluation consists in applying the operators to the operands in
a prescribed order, in general from left to right. Parentheses are used to
modify this left-to-right rule. The operands may be constants, variables
or functions.

An expression consists of consecutive terms:

TO Et> TI Et> ••• Et> Tn. (1)

The symbol Et> stands for an add operator such as + or - from ordinary
arithmetic. Parentheses are used to indicate precedence, that is, the
order in which the expression is evaluated. Using parentheses, the left­
to-right order of evaluation in (1) is made explicit:

(... ((TO Et> Tl) Et> T2) ...) Et> Tn. (2)

Factors

4.2 Expressions 33

Each term of the expression similarly consists of factors:

FO ® F1 ® ... ® Fn. (3)

where (3), like (1), is evaluated from left to right, that is, is parenthe­
sized like (2). The symbol ® stands for a multiplication operator. As is
usual in mathematics, multiplication operators take precedence over
add operators, a fact that we express symbolically as @ ~ EB.

In EBNF notation, an expression is defined by

expression = SimpleExpr [relation SimpleExpr].
relation = "=" I "#" I "<" I "<=" I ">=" I ">" I "IN" I "IS"l.

SimpleExpr = ["+" I "-"] term {AddOperator term}.
AddOperator = "+" I "-" I "OR".
term = factor {MulOperator factor}.
MulOperator = "*" I "I" I "DIV" I "MOD" I "&".
factor = number I CharConstant I string I set I NIL2

I designator I FunctionCall
I "(" expression ")" I "-" factor.

FunctionCall = designator "(" [ActuaIParameters] ")".
ActualParameters = expression {" ," expression}.

designator = ident.

As the term suggests, a designator designates a variable or a constant.
For the time being, it is simply an identifier. More complex designators
will be introduced later. For example, a designator may represent an
array element ali] or a field f of a record r expressed as r.f.

A function call looks like the familiar mathematical function notation,
for example

sin(x) cos(omega*t) sqrt(b*b - 4*a*c).

Function calls as factors act exactly as one would expect from ordinary
mathematics. They stand for a result that is obtained through a pre­
scribed operation on the arguments.

1 Explained in Chapter 11.
2 See chapter 9.

34 Declarations, expressions and assignments

Examples It is instructive to study a set of examples. In fact, we encourage the
reader to parse the following expressions into their syntactic con­
stituents:

a+b-c+d
b*b-4*a*c
a=b

(a + b) - (c + d)
-y + ABS(x)

(-b + sqrt(b*b - 4*a*c»/(2*a)
(NextString = "END") OR flag
(i DIV j) - 3.14159

..... (a*a < b) & ~ (a = 4.0) OR c & d 61X= "a"

The meaning - or semantics - of the examples is straightforward. They
are either numerical expressions, yielding results that are simple
numeric types, or they are relations and Boolean expressions resulting
in TRUE or FALSE.

The following symbol strings are not Oberon expressions:

bb-4ac

a+-b
a<b&c=5

4.2.2 Type rules

multiplication operator missing, should read
b*b-4*a*c
adjacent operators, should read a + (-b)
parentheses missing, should read
(a < b) & (c = 5)

Let us look at a second set of syntactically well-formed expressions:

"a"+ 3.14159
(a = b) - sqrt("144")

It is not clear how these expressions should be evaluated. What sense
does it make to add a character constant to a number? Can a truth value
be used as a number? There are various schools of thought with respect
to these questions. Some languages (e.g. PL/I) define elaborate type
conversion rules or treat truth values as the numerical constants 0 and 1
(e.g. APL). We believe that what such languages teach us is the way not
to do it. In essence, Oberon requests the type of operands to be identical
and allows mixing of types in only a few well-understood cases, for
example when the type of one operand includes the type of the other
one. For a given operator, the types of operands that are expression
compatible are listed in Table 4.1. More details about the basic types
follow in subsequent sections; the types ARRAY, POINTER and
RECORD await later chapters.

4.2 Expressions 35

Table 4.1 Expression compatibility.

Operator Valid operand types Result type
(or operands)

+ - * numeric types largest numeric type of the
operands

/ numeric types smallest real type that in-
cludes both operands

+ - * / SET SET

DIV MOD integer types largest integer type of the
operands

OR &- BOOLEAN BOOLEAN

= # < <= numeric types, CHAR, ARRAY BOOLEAN

»= OF CHAR,
string constant

= # BOOLEAN, SET, POINTER, BOOLEAN
procedure variable

IN left: integer type BOOLEAN
right: SET

IS left: POINTER, RECORD1 BOOLEAN
right: type identifier

4.2.3 Relations

Relations are expressions of syntax

I expression = SimpleExpr relation SimpleExpr.
relation = "=" 1"#" 1"<" 1"<=" 1">=" I ">" I "IN" I "IS".

They yield a result of type BOOLEAN. The type compatibility rules are
stated in Table 4.1. The relational operators are

equal
not equal
< less
<= less or equal

1 Must be a variable parameter.

>
>=
IN
IS

greater
greater or equal
set membership
type test

36 Declarations, expressions and assignments

Type rules

The meaning of comparison operators is straightforward. A relation
i IN S holds if integer i is member of set S. More on the type test will be
found in Section 11.2.2.

Examples of relations include

"a" <"b"
"abc" >= "xyz"
e < pi
2 IN {I, 3 .. 7, II}
"a" < "ab"

TRUE ORD("a") = 97, ORD("b") = 98)
FALSE, collating sequence
TRUE
FALSE
illegal, argument types not compatible

For the precise definition of relations involving strings and character
arrays of different length, we refer to Section 8.2.6.

4.2.4 Arithmetic expressions

Arithmetic expressions are composed of numeric constants, variables of
numeric types, functions whose evaluation results in a number, and the
(dyadic) operators:

+

*

addition
subtraction
multiplication

/
DIV
MOD

real division
integer division
modulus

Integer division DIV and modulus MOD admit integer arguments only
and are defined by the algeb!aic identity

x == (x DIV y)*y + (x MOD y)
o ~ (x MOD y) < y or y < (x MOD y) ~ 0

(1)
(2)

Thus the integer division yields the largest value not greater than the
quotientx/y and the modulus is the remainder of the integer division.
Parentheses are used to control the order of evaluation. The monadic
minus sign is used to express negative numbers and to negate terms, for
example -3 or -a.

The numeric types may be mixed in arithmetic expressions. At the ap­
plication of each operator, the smaller type, Tl, is first converted to the
larger one, T2 say. The result of the operation is then also of type T2 (see
Table 4.1).

4.2 Expressions 37

Let us illustrate the type rule with a few examples. Assume
s: SHORTINT; i: INTEGER; 1: LONGINT; r: REAL; lr: LONGREAL.
Then

IMODs
1.0/s
i -lr

LONGINT
REAL
LONGREAL

i*r
rDIVi
l/lr

REAL
illegal
LONGREAL

Type conversion In arithmetic expressions, most type conversions are handled automat­
functions ically. There are, however, cases where explicit type conversions are

required. The example r DIV i is such a case. For this purpose, Oberon
affords the following type conversion functions:

Table 4.2 Type conversion functions.

Name Argument type Result type Function

ENTIER(a) real type LONGINT LaJ 1

SHORT(x) x: LONGINT INTEGER identity (truncation is
x: INTEGER SHORTINT possible)
x: LONG REAL REAL

LONG (x) x:SHORTINT INTEGER identity
x: INTEGER LONGINT
x: REAL LONGREAL

Using explicit type conversions, the erroneous expression r DIV i may
be corrected; that is, ENTIER(r) DIV i.

4.2.5 Boolean expressions

The constituents of a Boolean expression are the truth values denoted
by the standard identifiers TRUE and FALSE, variables of type
BOOLEAN, relational expressions and the operators

OR logical disjunction ...- logical negation
& logical conjunction

The precedence relation is "...-" ~ II &" ~ "OR". Therefore

P OR q & s OR t = P OR (q & s) OR t

1 Largest integer not greater than a .

38 Declarations, expressions and assignments

Oberon defines the Boolean connectives as conditional evaluations; that is,

pORq
p&q
---p

=> if P then TRUE else q
=> if P then q else FALSE
=> if P then FALSE else TRUE

where p and q are variables or expressions of type BOOLEAN. This
definition is different from the mathematical one using truth tables. It
implies that the second argument is not evaluated if the result is already
known from the first argument. The notable property of this definition
is that the result may be well defined even if the second argument is
not. As a consequence, the order of the operands may be significant -
they are not commutative.

De Morgan's law Boolean expressions may often be simplified using De Morgan's law
stating the equivalences

(---p) & (---q) == ---(p OR q)
(---p) OR (---q) == ---(p & q)

(1)
(2)

Relation as factor Relations result in the type BOOLEAN and thus may appear as factors
in Boolean expressions. For example,

(i < N) & --- eof

It relations appear in Boolean expressions, they must always be enclosed in
parentheses. Thus a construct such as i < N & ---eot is illegal because it
would be parsed as i < (N & ---eo!>, which violates type rules.

4.2.6 . Set expressions

Sets are factors defined syntactically as

I set = "{" [element {"," element}] "}".
element = expression [" .. " expression].

The expressions must evaluate to numerical results of integer type. The
notation E1..E2 is a shorthand for E1, E1 + I, E1 +2, ... E2-1, E2.

4.2 Expressions 39

Examples include

{} the empty set
{I, 4 .. 8, 20} the set {I, 4, 5, 6, 7, 8, 20}
{I, n+ 1 .. 2 * k} the set {I, n+I, n+2, ... 2k-I,2k}

Set expressions comprise sets, set variables and the operators

+ set union
set difference

/
*

symmetric set difference
set intersection

The monadic minus sign denotes the complement, that is -U represents
the set of integers between 0 and MAX (SET) that are not elements of U.
The operators 1/*" and 1//" are multiplicative operators and hence take
precedence over 1/+" and 1/_".

As an exercise, let us express the definition of the set operators in
Oberon notation, using the membership relation IN:

iIN (-U) =:}

iIN(U+V) =:}

iIN (U - V) =:}

iIN(U*V) =:}

iIN (U/V) =:}

(i IN {O .. MAX(SET)}) & -(i IN U)
(i IN U) OR (i IN V)
(i IN U) & -0 IN V)
(i IN U) & (i IN V)
«i IN U) # (i IN V»

where i is an integer and U and V are sets.

4.2.7 Predeclared functions

Oberon provides a set of predeclared functions for

• some frequently occurring computations;

• access type-specific information.

An example of the first kind is ABS(x) that computes the absolute value
of a variable x of integer type. The functions MAX(T) or MIN(T) that we
encountered earlier are typical for the second kind. A complete list of
the predeclared functions is given in Appendix A, Tables A.I and A.2,
page 302.

4.3 The assignment statement

The assignment statement serves to evaluate an expression and assign
its value to a variable. Its syntax is:

40 Declarations, expressions and assignments

I assignment = designator ":=" expression.

The action of the assignment statement consists of three parts:

(1) evaluate the designator resulting in a variable;

(2) evaluate the expression yielding a value;

(3) replace the current value of the variable identified in 1 by the
value obtained in 2.

In the simple case that we consider here, evaluating a designator means
accessing the memory location that holds its value. When discussing the
array data structure, we will encounter designators such as a[i + 1]
whose evaluation involves integer computations.

4.3.1 Type rules

The type of the designator must be compatible with the type of the expression.
In general, this means that the two types must be identical, or in the
case of numerical types the designator may be of a larger type that in­
cludes the type of the expression.

For reference purposes, Table 4.3 lists the full set of rules for assign­
ment compatibility of an expression with a given designator. Rows 3-7
relate to concepts that will be introduced in later chapters.

Table 4.3 Assignment compatibility of v:= e.

Type or value of expression e I Type of designator v
Both types are equal (but not an open array)

numeric type numeric type, includes type of expression

record type record type, type is a base type of expression1

pointer type pointer type, type is a base type of expression

value NIL pointer or procedure type

string of length 1 ARRAY n OF CHAR (n > 1)

name of a procedure procedure type with matching parameter list

1 Condition is met if the type of the designator is equal to the type of the expression.

4.3 The assignment statement 41

4.3.2 Formal definition, pre-condition and post-condition

Pre-condition,
result condition

Axiom of
assignment

Examples

A formal way to reason about the effects of an assignment is to record
explicitly the states holding before and after its execution. We charac­
terize a set of states by a predicate over the involved variables (see
references at end of Chapter 5). Then all states satisfying the predicate
belong to the considered set.

Let R denote a predicate that defines the set of states after the execution
of the assignment statement. It is natural to view these states as the
result of the assignment, and hence R is referred to as the result condition
(the term post-condition is sometimes used synonymously). The
predicate P holding before execution is called the pre-condition. It is
often useful to add the pre-condition and the result condition as com­
ments to the left and to the right of our statement S:

(4)

This formalism is useful since, given the goal R, it is possible to infer the
precondition P. We state the main result in the following axiom.

Consider the assignment
(* P *) v:= e (* R *)

where v is a variable and e an expression.

The weakest precondition P is derived from R by substituting every
(free) occurrence of v in R bye.

Let us proceed with the simplest example. The goal R is i = 1 and the
assignment i:= 1. We substitute 1 for i in the relation i = 1 and obtain
the pre-condition 1 = 1 or TRUE; in other words,

Thus, whatever the state prior to executing the assignment i:= 1, the
assertion i = 1 holds afterwards.

In a second example, we strive for the result condition i = N after the
assignment i:= i + 1. Substitution of i + 1 for i in the relation i = N
yields i + 1 = N or i = N -1; hence

42 Declarations, expressions and assignments

HALT

The following table lists a number of further examples:

P S R
c=a*b x:= a * b x=c
x<y+2 x:= x-2 x<y
i<N i:= i + 1 i $;N

4.3.3 Statement sequence

A computation is a sequence of actions that transforms an initial state
into a final one that, it is hoped, satisfies the stated result condition. In
Oberon, the statement is the basic unit of action. Thus the sequence of
actions is expressed in a statement sequence

The semicolon is a statement separator that indicates that the action
specified by a given statement, Sj say, is to be succeeded by the one tex-
tually following the separator.

It is straightforward to express the syntax of the statement sequence
in EBNF notation:

I StatementSequence = statement {";" statement}.

The assignment discussed here is just one of a number of statements
that will be treated in later chapters:

statement = [assignment I ProcedureCall
I If Statement I CaseStatement
I WhileStatement I RepeatStatement
I LoopStatement I WithStatement
I ExitStatementl ReturnStatement].

The syntax of statements implies that a statement may consist of no
symbols at all. In this case, the statement is said to be empty, and evi­
dently denotes the null action. This curiosity among statements has a
reason: it allows semicolons to be inserted at places where they are ac­
tually superfluous, such as at the end of a statement sequence.

A statement sequence is terminated, and the enclosing program
brought to an abnormal halt if the predeclared procedure

4.3 The assignment statement 43

HALT(e)

is called (call statement: see Section 6.1). The argument e is an integer
expression whose value identifies the termination. Typically, that value
is displayed by the operating system.

Return statement A statement sequence is also terminated if a return statement is exe­
cuted (see Section 6.4.2).

Formal Given the result condition R, the pre-condition of the statement se-
definition quence may be computed by stepwise application of the substitution

rule, starting with 5n and ending with 51:

Consider the task of determining P in the following example:

We introduce intermediary predicates:

(* P *) == (* PI *)
(* PI *) i:= i + 1; (* Rl *) == (* P2 *)

(* P2 *) j:= 2*i (* R2 *) == (* R *)
(* R *)

We know R2, namely j = n, and 52, the assignment j:= 2*i. Using the
substitution rule, we find for P2 the predicate n = 2*i. Now we equate
Rl = P2 and derive PI == n = 2*(i + 1):

Next we invert the order of evaluation; that is, our sample statement
sequence is j := 2*i; i:= i + 1. Similar formal manipulations yield

(* 2*i = n *) j:= 2*i; i:= i + 1; (* j = n *).

It is evident that the two pre-conditions specify different states. For
example, if n = 4 then the preconditions are i = 1 for the first case and
i = 2 for the second one. From this simple example, we conclude that the
order in which the statements are executed matters.

44 Declarations, expressions and assignments

4.3.4 Special assignment statements as predeclared procedures

For some frequently occurring assignment statements, Oberon provides
an alternative notation. For example, to increment an integer variable i,
the assignment i := i + 1 may be replaced by INC(i). Similarly, DEC(i) is
equivalent to i := i-I.

Syntactically, INC (i) and DEC(i) are procedure calls (see Chapter 6).
All predeclared procedures that abbreviate assignments are listed in
Appendix A, Table A.3, page 303. The rationale behind these
procedures is the possibility of producing efficient code, using special
machine instructions. The programmer is thus advised to use the
procedures whenever applicable.

4.4 Summary

In Oberon, all identifiers must be declared. In this chapter, we have
introduced the constant and the variable declarations. A constant
declaration associates an identifier with a constant. As the name
implies, the variable declaration defines a variable that is represented
by an identifier. The variable declaration associates a type with the
variable. This association is constant and valid throughout the existence
of the variable. The type defines the set of values that the variable may
assume and the operations in which it can participate.

A fundamental construct of procedural languages, such as Oberon, is
the assignment statement

v:=e

Expression e is evaluated and the result replaces the old value of the
variable v.

Expressions differ by the operator and the type of the operands. For
example, we introduced relations, arithmetic expressions, Boolean
expression and set expressions.

Of particular importance is the requirement that the factors entering
expressions and the constituents of the assignment must be type-com­
patible. Expression compatibility and assignment compatibility are
summarized in Tables 4.1 and 4.3. This compatibility requirement,
called strong typing, empowers the compiler to check whether
expressions and assignments are meaningful, thereby diagnosing a
large number of programming errors.

We have introduced a formal method for defining the semantics of
the assignment. The set of desired states after the assignment is

4.4 Summary 45

characterized with a predicate: the result condition or post-condition. The
axiom of assignment is used to transform that predicate into a pre­
condition defining the admissible set of states prior to the assignment.

A number of statements, separated by semicolons, is called a state­
ment sequence. It represents a sequential computation. The statements
are executed from left to right.

4.5 Exercises

4.1 Identify well-formed identifiers:
next_item nextItem IstStreet FirstStreet LONGINT
WHILE OFFFH

4.2 Identify well-formed numbers:
a4.4.3 15,13222t 10 .2213 1.33333E354777 3FFX 3FFH
1.44E-88 7FFH E-18

4.3 Identify the predeclared identifiers:
ARRAY TRUE ABS DIV MOD COPY DEC
INTEGER OR RETURN Max MAX FFFFH

4.4 Identify legal declarations. Some are legal but nonsensical: why?
CaNST a = 11; CONST a := 234;
CaNST TRUE = FLSE; CONST DO = TRUE;
caNST i = ORD("a"); INF = MAX(real); inf = MAX (REAL);
CONST random = RandomNumbers.UniformO;
VAR REAL: INTEGER; V AR DO: REAL; V AR do: REAL;
V AR Real: INTEGER; V AR Real := INTEGER;
V AR a; b; c: REAL; V AR i, j, k: INTEGER;

4.5 Determine the value and the type of the following constants (assuming
extremal values of Appendix B):

CONST
i = 3; j = 10000; k = 300000; 1= 7FFAH; s = {1,2,3}; pi = 3.14159;
inf = MAX (INTEGER); p = ENTIER(pi); 1 = i*pi; ich = ORD(44X);

4.6 Assume the declaration
CONSTz=O;
V AR si: SHORTINT; i: INTEGER; Ii: LONGINT; ch: CHAR;

s: SET; r: REAL; lr: LONGREAL; b: BOOLEAN;
Evaluate the following assignments. Some of them are illegal: which?

si := ORD(CHR(71»; i:= ORD("G"); Ii:= ORD(CHR(72»;
i:= 1 + ENTIER(r); si:= SHORT(ENTIER(3.14»;
b := 3 < MAX(REAL) OR Ii > i + 4; ch:= 44X; b:= 44X > "a";
ch := "this is true"; b:= ("abc" > "this") & (MAX(REAL) > 1/ z);
b := (CAP(6DX) = "M") & (Ii = 1 / z);
i := 4 + CHR("a");

46 Declarations, expressions and assignments

4.7 Determine the pre-condition P of the following assignments, for which result
conditions R are known:

Assignments

j:= i DIV 2

d := a*a - 4*a*c

r := r - Y; q:= q + 1

x:= x*n

Result condition R

j = 0

d~O

qY+r=X

x=n!

4.8 Write a statement sequence that interchanges the values of two variables a and
b. Prove the result using the axiom of assignment.

5 Control structures

The prime characteristic of a computation is a sequence of actions to be
executed sequentially. If this sequence were a fixed one, the computer
would not have developed in its present form. Individual actions can be
selected, repeated or performed conditionally, depending on previ­
ously computed results. Hence the temporal sequence of actions is
normally not identical to the textual sequence of statements. It is this
dynamic sequencing of actions, also known as control structure, that is
the foundation of the phenomenal success of software.

The sequence of actions is determined by control statements indicating
conditional execution, selection, or repetition of statements or whole
statement sequences. Since a control statement governs other
statements, it is said to be a structured statement. Languages with struc­
tured statements are known as structured languages. Years of experience
prove that proper control structures go hand in hand with purpose
tuned development of a program text - thereby making it readable and
ultimately trustworthy. This goal, however, is only achieved if the
structure is made visible - the use of one line per statement (or
statement sequence) and proper indentation are indispensable tools.
For example, recall from the introduction

IF gamma> 0 THEN
z:= gamma

ELSE
z:= gamma + m

END;

Syntactically, structured statements are expressed recursively, having
StatementSequence and hence statement as constituents. As in the case of
the assignment statement, we will formally define the control structures
by means of predicates and their transformation rules (Gries, 1981;
Cohen, 1990).

47

48 Control structures

5.1 Conditional statements

5.1.1 The if statement

Selecting a statement sequence among a set of sequences under the
control of Boolean expressions is one of the main constituents of pro­
grams. As an introductory example, consider the the signum function
y = sign(x) = (1 if x > 0, 0 if x = 0, -1 otherwise) which in Oberon
notation is expressed as follows, with obvious meaning:

IF x<O THEN y:=-l
ELSIF x > 0 THEN y:= 1
ELSE y:= 0
END;

The conditional statement, also called the if statement, observes the
syntax

If Statement = "IF" expression "THEN" StatementSequence
{"ELSIF" expression "THEN" StatementSequence}
["ELSE" StatementSequence1
"END".

The expressions must be of type BOOLEAN, which means they yield,
after evaluation, one of the truth values TRUE or FALSE. Note that the
if statement is always terminated with an END, even in the simplest
form IF B THEN 5 END, where 5 is a single statement.

To explain the operation of the if statement, we express its general
form as follows:

IF Bl THEN SI
ELSIF B2 THEN S2

ELSIF Bn THEN Sn
ELSE S
END

Here Bl ... Bn denote Boolean expressions and 5, 51 ... 5n denote state­
ment sequences (a single statement is also a statement sequence). The
else clause ELSE 5 is an abbreviation for ELSIF -Bl & -B2 & ... & -Bn
THEN 5.

Bl is evaluated. If it yields FALSE then B2 is evaluated, and so forth,
until the first Boolean expression that is satisfied is encountered: Bi, say.

5. 1 Conditional statements 49

The statement sequence Si associated with Bi is executed and the if
statement terminated. Note that at most one of the statement sequences
executes; if the ELSE clause is present, exactly one is carried out.

The Boolean expression Bi (i = 1, 2 ... n) is also termed the guard of its
statement sequence Si.

5.1.2 Formal definition of the if statement

As in the case of the assignment, we wish to be able to state

What are the necessary and sufficient properties of the component
statements (or statement sequences) that let us make the above con­
clusion? They are specified in the axiom of alternatives, which serves as
a formal specification of the semantics of the if statement. It demon­
strates the essence of a structured language: it is possible to derive prop­
erties of a composite statement from those of its components and, vice-versa.

Before stating the axiom of alternatives, let us consider a simple ex­
ample: the computation of the absolute value of an expression; that is,
y:= ABS(x).1t can be expressed by an if statement:

IF x < 0 THEN y:=-x
ELSE y:=x
END.
(.y = ABS(x) .)

As before, we have added the result condition R == Y = ABS(x) as a
comment at the end of the if statement. The condition R can be
expressed as follows

R == (x < 0) & (y = -x) OR (x ~ 0) & (y = x).

If, prior to the if statement, precondition P is satisfied, then (x < 0) & P
holds before the assignment y = -x. Similarly, the predicate (x ~ 0) & P is
the precondition of the assignment y = x. Therefore

(* p *)
IF x < 0 THEN (* (x < 0) & P *) y:= -x (* R *)
ELSE (* (x ~ 0) & P *) y:= x (* R *)

END;

50 Control structures

Axiom of
alternatives

Thus we seek a pre-condition P such that

(* (x < 0) & P *) y:= -x (* R *) and
(* (x ~ 0) & P *) y:= x (* R *)

can be established. For ~ur simple example, this is not a difficult task.
Direct application of the axiom of assignment yields for the first state­
ment y:= -x (* R *):

(x < 0) & (-x = -x) OR (x ~ 0) & (-x = x) == x:s; 0

Similarly, y:= x (* R *) leads to

(x < 0) & (x = -x) OR (x ~ 0) & (x = x) == x ~ 0

from which we conclude P == TRUE, establishing unconditional validity
of the computation of the absolute value.

These preliminaries motivate the following axiom:

(* P *)
IF Bl THEN 51
ELSIF B2 THEN S2

ELSIF Bn THEN Sn
ELSE S
END

(* R *)

holds if there exist conditions Pi such that

(* Pi *) Si (* R *) for all i = 1,2, ... n (1)
P & Bl & B2 & ... & Bi - 1 & Bi ==> Pi (2)
P & Bl & B2 & ... & Bn ==> R (else clause is missing) (3a)
(* P & -Bl & -B2 & ... & -Bn *) S (* R *) (with else clause) (3b)

A ==> B means A implies B in the sense of predicate calculus (that is,
.... A ORB).

The following example illustrates the use of the axiom of alternatives.
The task is to compute y := sign(x), which can be expressed by the if
statement s:

IF x < 0 THEN Y := -1
ELSIF x > 0 THEN y:= 1
ELSE y:=O
END;

5. 1 Conditional statements 51

We have Bl == x < 0 and B2 == x> O. Our goal is to establish

(* TRUE *) S (* y = sign(x) *).

The result condition R == Y = sign(x) can be written as

R == (x < 0) & (y = -1) OR (x > 0) & (y = 1) OR (x = 0) & (y = 0).

The axiom of assignment applied to y := -I, y := 0 and y := 1 (in that
order) yields

(x < 0) & (-1 = -1) OR (x > 0) & (-1 = 1) OR (x = 0) & (-1 = 0) == x < 0
(x < 0) & (1 = -1) OR (x > 0) & (1 = 1) OR (x = 0) & (1 = 0) == x > 0
(x < 0) & (0 = -1) OR (x > 0) & (0 = 1) OR (x = 0) & (0 = 0) == x = 0

Therefore

Pl==X<O: (*x<O*) x:=-1 (*R*)
P2 == x> 0: (* x> 0 *) x:= 1 (* R *)

(* x = 0 *) x:= 0 (* R *)

The assertion (* TRUE *) s (* p *) can be established according to the
axiom of alternatives if

TRUE & Bl => PI
TRUE & Bl & B2 => P2
(* TRUE & Bl & B2 *) S (* R *)

using (2)
using (2)
using (3a)

Substituting Bl == x < 0 and B2 == x > 0 into the above predicates, we find

TRUE & Bl == x < 0
TRUE& Bl &B2== x>O
TRUE & Bl & B2== x = 0

52 Control structures

In all three cases, the above conditions are satisfied, and the correct
computation of sign(x) is thus formally established.

5.1.3 The case statement

An if statement with a number of ELSIF clauses allows the selection of a
statement sequence under the control of several conditions - one for
each sequence. In practice, one often finds a series of comparisons of a
common expression with a set of constants.

Let us illustrate this situation. Assume that we have renamed a file.
The appropriate system routine yields a so-called result code, an integer
variable res that reports various termination conditions. An appropriate
message is generated by the if statement:

IF res = 0 THEN Out.String("renamed")
ELSIF res = 1 THEN Out.String(IIname existed already")
ELSIF res = 2 THEN Out.String("name does not exist")
ELSIF res = 3 THEN Out.String(IIsystem error")
END;

The following case statement is equivalent:

CASE res OF
0: Out.String("renamed")
1: Out.String("name existed already")
2: Out.String(IIname does not exist")

I 3: Out.String("system error")
END;

Besides notational convenience, the case statement allows the compiler
to generate very efficient code if the compared values are constants and
more or less contiguous.

The formal EBNF specification of the case statement reads

CaseStatement = "CASE" expression OF
case {I/ I " case}
["ELSE" StatementSequence1

"END".
case = [CaseLabelList 1/:" StatementSequence1.
CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [" .. " ConstExpression1.

5. 1 Conditional statements 53

The expression and all the case labels must be of the same type, which
is either an integer type or CHAR. Case labels are constants or constant
expressions, and no value must appear more than once. The following rules
determine the execution of the case statement:

(1) The expression is evaluated.

(2) The first statement sequence whose case label list contains the
value obtained from step 1 is executed and the case statement
terminates.

(3) If no match exists, the statement sequence following ELSE is se­
lected. If it is omitted then lack of a match is considered an error.

As in set notation, E1..E2 is shorthand for the filled-in series El, El+l,
... E2-1, E2.

5.1.4 Formal definition of the case statement

Once again, we wish to find the assertions about the component
statements that must hold in order to establish (* P *) CASE k OF k1: 51

I k2: 52 I ... I kn: 5n END (* R *). These assertions follow easily from
the axiom of alternatives, and they are as follows:

(* P *) CASE kOF
k1: S1 I k2: S2 I ... I kn: Sn

END (* R *)

holds, if there exist conditions Pi such that for all i = 1, 2, ... n

(* Pi *) Si (* R *)
P & (k = ki) ~ Pi

5.2 Repetitive statements

The repetition of a statement or a statement sequence under the control
of a condition is a frequent constituent of programs. Oberon features
three kinds of repetitive statements: the while statement, the repeat state­
ment and the loop statement. The three statements are, in essence,
equivalent but cater for different programming situations.

54 Control structures

5.2.1 The while statement

Assume that a statement, or a statement sequence, should execute ex­
actly n times; a requirement that we specify as follows:

j:= 0;
WHILE j<n DO

... ; j:= j + 1
END;

Since variable j, the control variable, counts from 0 to n - 1, we call the
preceding repetition a counting loop.

The syntax of the while statement reads

I WhileStatement = "WHILE" expression "DO"
StatementSequence

"END".

The expression must be of type BOOLEAN. The action of the while
statement is described by the rules:

(1) Evaluate the expression, which results in a truth value.

(2) If the value is TRUE, execute the statement sequence and then
repeat with step 1; if the value is FALSE, terminate.

If the condition is not satisfied initially (that is, the expression· yields
FALSE), then the statement is vacuous; that is, no action takes place.

The while statement introduces for the first time the danger of a
nonterminating program, a frustrating experience every programmer,
novice or expert, is familiar with. Evidently, loops must be considered
with care. Consider, for example,

WHILE j#O DO j:= j-2 END;

It is easy to realize that this loop terminates only under the pre-condi­
tion (j >= 0) & (j DIV 2 = 0). The program must enforce that pre-condi­
tion, otherwise it will be in error about half of the time it is run.

5.2.2 Formal definition of the while statement

Verification of the daim that a repeated statement establishes a
specified result characterized by the condition R rests on the notion of a
condition Q that holds invariably, no matter how many times a

Axiom of
repetition

Loop variant

5.2 Repetitive statements 55

statement (or statement sequence) has already been executed. Q is
therefore called a loop invariant, or simply invariant.

Let us explain this concept with a simple example. We wish to com­
pute z:= X*Y (for x ~ 0) using repeated addition. The obvious solution
is

x:= X; z:= 0;
WHILE x > 0 00 z:= z + Y; x:= x-I END;
(* z = XY *)

The relevant invariant (that is, the condition holding before each execu­
tion of the repeated statement sequence) is

Q == (z + x Y = XY) & (x ~ 0).

It holds at the beginning, because 0 + XY = XY. It remains unchanged
during the repetition because each time 1 is subtracted from x, Y is
added to z, leaving the sum intact. Most importantly, this invariant
yields the desired result, if the condition x > 0 no longer holds and
repetition terminates:

..... (x > 0) & (z + xY = XY) & (x ~ 0) ==
(x = 0) & (z + x Y = XY) == (z = XY) == R

The verification condition of the while statement is summarized in the
axiom of repetition:

holds if an invariant Q exists such that

P=>Q
(* Q & B *) S (* Q *)
Q& B=>R

If a while statement satisfies the axiom of repetition, it is said to be par­
tially correct. It establishes the result condition R whenever it manages to
falsify B. However, it may never do that, and repetition never termi­
nates.

In order to demonstrate full correctness, we also have to show that the
repetition terminates. In order to do so, we have to establish that at each

56 Control structures

iteration, the loop makes some progress towards a goal. This is the case
if we can find an expression involving variables participating in the
condition B, that is strictly decreasing at each turn, and whose falling
below a fixed threshold, for example 0, implies -B - that is, termination
of the loop. Such a function is termed a loop variant, or again simply a
variant.

In our example of multiplication, x is that variant. It is decremented
by the repeated statement sequence, and x ~ 0 implies -(x > 0), and
hence termination.

In order to exemplify these ideas, we present a more sophisticated
version of a multiplication algorithm, which happens also to be much
more efficient:

x := X; y:= Y; z:= 0; (* x >= 0 *)
WHILEx>ODO

IF ODD(x) THEN z:= z + y; x:= x - 1 END;
y:= 2*y; x :=x DIV 2

END;

The invariant Q remains the same, and so does the variant x. We must
demonstrate that the statement sequence leaves Q invariant and de­
creases x. We leave this exercise to the reader, but point out an impor­
tant detail.

In order that Q not be invalidated by the statement sequence

y := 2*y; x:= x DIV 2

x must be even; otherwise the DIV operation loses the remainder 1.
However, this condition is established - if it does not already hold - by
the preceding x:= x -1, which is executed (or guarded) by the condi­
tion ODD(x).

A second example concerns the division of positive integers
q:= X DIV Y. The algorithm proceeds by repeatedly subtracting the
divisor Y from the dividend X; that is,

r:= X; q:= 0;
WHILE r >= Y DO

r := r - Y; q := q + 1
END;

The invariant is

Q == (qY + r = X) & (r ~ 0).

5.2 Repetitive statements 57

Q is established by the initial statements. It is maintained by the state­
ment pair r := r - Y; q := q + 1, because it leaves the sum qY + r un­
changed. The condition (guard) r > 0 guarantees that r does not become
negative. And finally; Q & -B or Q & (r < Y) yields the desired result

R == (q Y + r = X) & (0 ::; r < Y)

which, as we recall, is the definition of the division

XDIVY=q, XMODY=r.

The expression r - Y is a variant function. At each repetition of the loop,
Y is subtracted from r; hence r - Y is strictly decreasing. In addition,
r - Y::; 0 implies r::; Y and hence -B, the terminating condition of the
loop. Thus correctness of the integer division is guaranteed.

5.2.3 The repeat statement

The second repetitive statement is syntactically defined as

I RepeatStatement = "REPEAT"
StatementSequence

"UNTIL" expression.

Again, the expression is of type BOOLEAN. The essential difference
from the while statement is that the termination condition is checked
each time after (instead of before) execution of the statement sequence.
As a consequence, the sequence is executed at least once. The advantage
is that the condition may involve variables that are undefined when the
repetition is started.

For example, a counting loop may also be expressed as

j := 0;
REPEAT

... ; j := j + 1
UNTILj = n;

In this version of the counting loop, it must be guaranteed that j = 0 is a
valid pre-condition for the statement sequence.

The 'danger' of using the repeat statement lies in the fact, that the
statement sequence is not guarded by an explicit condition. As a

58 Control structures

consequence, it is easier to overlook the proper termination condition.
For example, the calculation of the harmonic series:

i:= 0; s:= 0;
REPEAT s:= s + Iii; INC(i) UNTIL i = n;

does not terminate for n ~ O. In general it is wise to use the while statement
whenever repeat does not offer a clear advantage.

5.2.4 Formal definition of the repeat statement

The loop invariant and variant play the same role as in the case of the
while statement. We will be brief and state the appropriate axiom
without further examples:

holds, if there exists an invariant Q such that

(* P *) S (* Q *)
(* Q & B *) S (* Q *)
Q&B=>R

5.2.5 The loop statement

The third repetitive statement is the loop statement, which specifies the
unconditional repeated execution of a statement sequence. It is termi­
nated by the execution of an exit statement within the statement se­
quence. Syntactically, the loop statement looks as follows:

I LoopStatement = "LOOP" StatementSequence "END".
ExitStatement = "EXIT".

The execution of an exit statement in the statement sequence causes
termination of the loop. Program execution will continue with the
statement immediately following the END of the loop. Thus exit
statements are contextually - although not syntactically - bound to their
loop statement.

Evidently, the loop statement is more general than either the while
statement or repeat statements. The latter two can easily be expressed in
terms of a loop statement with a single exit. However, we recommend
the use of the loop statement only for cases with more than one exit

5.2 Repetitive statements 59

point (or with an exit point that must lie in the middle of the statement
sequence).

The composition of a loop statement typically looks like

LOOP
... ,
IF Bl THEN EXIT;

IF B2 THEN EXIT;

END;

where Bl and B2 denote expressions of type BOOLEAN.

5.3 Summary

Control statements allow conditional execution of a statement sequence
under the control of a Boolean expression. They are structured
statements; that is, their definition is recursive.

The most basic control statement is the if statement that puts a
statement sequence under a guard - which means the statement
sequence is only executed if a Boolean expression holds. The case
statement specifies the selection of a statement sequence - a case -
according to the value of an integer expression or character variable.

Two repetitive statements control the iterated execution of a state­
ment sequence under the control of a Boolean expression: the while
statement and the repeat statement. A third repetitive statement, the loop
statement, allows several exit points within the statement sequence
indicated by exit statements.

Like the assignment, the control statements are defined formally by
axioms that state how a post-condition is transformed into a pre-con­
dition that must hold in order that the specified result be obtained. The
axiom of alternatives covers the if statement. In the case of repetition,
we have introduced the important concept of a loop invariant, a condi­
tion that holds prior to every execution of the loop's statement se­
quence. In addition, a variant function is used to assure termination of
the repetition.

We have given several simple examples, and have used the axioms to
prove their correctness. A more ambitious example is given in Section
8.2.5, where we prove the binary search algorithm.

60 Control structures

5.4 Exercises

5.1 Which of the following control statements are well-formed?
CONST c = 3; V AR i, j, k: INTEGER;

(a) REPEAT j:= j -1 UNTIL j = 0;

(b) WHILE j # 0 DO INC(j); IF ODD(j) THEN EXIT END;

(c) IF j> 10 THEN j := 10;

(d) CASE i OF 1: j := ilk: j := k END;

(e) CASE i OF 1: j := i I c: j := k END;

(f) LOOP j:= j + c UNTIL j > k;

(g) REPEAT j:= j + c UNTIL j > k;

5.2 Which of the following loop statements terminate?
V AR i, j, k: INTEGER; V AR y: REAL;

(a) j:= 5; REPEAT j:= j -1 UNTIL j = 0;

(b) j:= 5; REPEAT j := j - 2 UNTIL j = 0;

(c) j:= 5; REPEAT j:= j - 2 UNTIL j < 0;

(d) j:= -5; REPEAT j:= j DIV 2 UNTIL j = 0;

(e) i:= 1 j := 1; WHILE i # 100 DO k := i; i := j + i; j := k END;

(f) i:= 1 j:= 1; WHILE i < 100 DO k:= i; i:= j + i; j:= k END;

(g) i:= 1 j:= 1; WHILE i < 100 DO j:= j + i END;

, (h) j := 5; LOOP j := j - 1 END;

5.3 [Min] Write an if statement that assigns the minimum of three integers x, y and
z to min. Prove correctness, using the axiom of alternatives and the axiom of
assignment.

5.4 [Fast multiplication] The following statement sequence computes the product
X* Y slightly faster than the sophisticated version of the multiplication given in
Section 5.2.2:

x:= X, y:= Y; z:= 0;
WHILEx>ODO

IF ODD(x) THEN z:= z + y END;
Y := 2*y; x:= x DIV 2

END;

Why is it permissible to omit the statement x := x-I that followed z := z + y in
the original version?

5.5 [Power] Use repeated multiplication to compute the power xn, where x is a real
and n a positive integer. Formulate invariant and variant functions.

5.4 Exercises 61

5.6 [Logarithm base 2] The following statement sequence computes the logarithm
to the base 2 for real values 1 ~ x < 2:

V AR x, a, b, s: REAL;
a:= x; b:= 1; s:= 0;
WHILEb>ODO

a:= a*a; b:= b/2;
IFa>=2THEN s:=s+b; a:=a/2 END

END;

Establish the invariant log2(X) = s + b*log2(a). Can you find a variant? Why does
the loop terminate? How many iterations are needed to complete?

5.7 [Greatest common divisor] Write a program fragment that computes the
greatest common divisor of two integers x and y, denoted by gcd(x, y), by
repeated subtraction. Formulate an invariant.

Hint: use the identities (1) gcd(x, x) = x, (2) gcd(x, y) = gcd(y, x) and (3) if
x> y then gcd(x, y) = gcd(x - y, y).

5.8 [Euclid's algorithm] The following method to compute gcd(x, y) is known as
Euclid's algorithm:

WHILEy>ODO
r := x MOD y; x:= y; y:= r

END;

State pre-condition, invariant and variant functions. How can the computation
be generalized to include negative integers x and y?

5.9 Work out a few examples of gcd computation using both methods. Which is
faster? (See Knuth, 1971).

5.10 [Bisection] Let I(x) denote an expression
that computes a real value for a given
argument x (how to actually specify user­
programmed functions in Oberon is the
subject of Chapter 6).

We are interested in finding the root
of I(x). A simple and robust method is
bisection. The procedure starts with an
interval (xl, x2) such that l(x1) > 0 and
l(x2) < 0 (or vice versa). The intervals are
then successively halved and either xl or
x2 is set to the midpoint, depending on
the sign of I(x) there.

The method of bisection is expressed

((x) Step 1:
x2 := (x1 + x2) / 2

x1

by the following while loop (assume that lex) stands for an expression of type
REAL):

62 Control structures

V AR xl, x2, y: REAL;

(* (f(xl) > 0) & (f(x2) < 0) & (xl < x2) *)
x := (xl + x2)/2;
WHILE (xl < x) & (x < x2) DO y:= f(x);

IF y > 0 THEN xl := x ELSE x2:= x END;
x := (xl + x2)/2

END;

Questions:

(a) Work out an example by hand.

(b) Determine the invariant of the loop.

(c) Determine a variant function.

(d) Does the loop terminate for all xl ~ x ~ x2? If yes, how accurate is the
computation of the root?

(e) Is the following statement sequence equivalent?

WHILE xl < x2 DO
x := (xl + x2) /2;
y := f(x);
IF y > 0 THEN xl := x ELSE x2 := x END

END;

References

Cohen E. (1990). Programming in the 19905: An Introduction to the Calculus of
Programs. New York: Springer-Verlag.

Gries D. (1981). The Science of Programming. New York: Springer-Verlag.
Knuth D.E. (1971). The Art of Computer Programming Vol II: Seminumerical

Algorithms, pp. 293-338. Reading, MA: Addison-Wesley.

6 Procedures and modules

Thus far, we have introduced two broad notions:

(1) declarations that bind an identifier to a type or a value;

(2) statement sequences including control statements that express algo­
rithms.

This chapter connects the two concepts by establishing textual scopes,
namely procedures and modules.

In its simplest form, the procedure can be visualized as a named
statement sequence. In essence, a module is a textual scope comprising
constant and variable declarations and a number of procedures. 1 The
module is the unit that is accepted by the compiler. Translated modules,
termed object modules, can be stored in the computer's library, and are
units that are loaded into the memory for execution.

Operating systems afford controls that allow the user to execute code
stored in the computer's object library. In Oberon, the unit that can be
executed is the procedure. This contrasts with the traditional notion of a
main program being the basic executable unit.2

A procedure, however, goes far beyond the simple notion of a named
statement sequence. In particular, it encompasses:

• the concept of local variables;
• the concept of a result: a procedure with a result can be used as a

factor in expressions, like the predeclared functions such as
ABS(x);

• the concept of parameters that are passed to the procedure like the
arguments of a mathematical function.

In the way that a procedure is more than a named statement
sequence, a module goes beyond a mere compilation unit. It may have

1 Later we will also introduce type declarations. .
2 For example, in PLfI it is the procedure with the option main, in Modula-2 the

main module.

63

64 Procedures and modules

an optional statement sequence and - more importantly - controls the
visibility of declared identifiers beyond its scope. For example, if a
procedure is intended to be invoked by the computer operator, it must
be marked for visibility outside the module.

Box 6.1 Fractals are fascinating objects of mathematics.
A fractal fern The observation by Mandelbrot of the

existence of a 'fractal geometry of nature' has
led to a new way of thinking about many
natural phenomena such as the length of
coastlines or the edges of clouds (Mandelbrot,
1977).

A simple algorithm - known as the iteratefl
function system (lFS) - produces the fractal fern
shown on the left (Barnsley, 1988). The fern is
drawn by a pen that moves over the drawing
area and paints a dot at a computed sequence
of consecutive points. If the pen is at a point
'(x, y) then the next point is computed by
applying a simple transformation of its
coordinates:

xnew = ax + by + e (1)
Ynew = ex + dy + f (2)

Equations (1) and (2) are called an affine transformation. The art of
producing an interesting picture such as a natural scene is to find a se­
quence of such transformations that are applied at random to determine the
position of the moving pen. The fern is produced by the following four
transformations:

a b e d e f p Action

0 0 0 0.16 0 0 0.01 Stem
0.85 0.04 -0.04 0.85 0 1.6 0.85 Turn of leave
0.2 -0.26 0.23 0.22 0 1.6 0.07 Right sub-leaves

-0.15 0.28 0.26 0.24 0 0.44 0.07 Left sub-leaves

The column labelled p contains the probability with which the respective
transformation is applied. The table contains all the information about the
fern. While storing the pixels of the fern's image may require hundreds of
thousands or even millions of bits, the table can be stored in about 1000
bits - a tremendous compression. However, finding the set of
transformations characterizing an arbitrary scene remains a difficult task.

Both procedures and modules play important roles in the structuring
of complex programs. An explanation of these roles, however, has to wait

Box 6.2
Itera ted function
system: Oberon
formulation

Procedures and modules 65

until Chapter 10. In this chapter, we will deal with the syntax and
semantics of procedures and modules. We will do this by means of an
example - drawing a fractal fern, see Boxes 6.1 and 6.2.

The algorithm for drawing a fractal fern relies on a random selection of a
particular transformation. Assuming that rn is a uniform random variable
between 0 and 1, a random selection with given probabilities p1, p2, p3
and p4 is achieved as follows:

IF rn < p1 THEN ." (* first selection *)
ELSIF rn < (p 1 + p2) THEN '" (* second selection *)
ELSIF rn < (p1 + p2 + p3) THEN ... (* third selection *)
ELSE ... (* fourth selection *)
END;

It is now easy to write the statement sequence of an algorithm to draw the
fractal fern:

"open a viewer representing a drawing plane";
X := 0; Y:= 0; (* initial position of pen *)
REPEAT

"Generate a real random number rn (0 < rn <=1)";
IF rn < p1 THEN

x:= a1*X + b1*Y + e1; y:= c1*X + d1*Y + f1
ELSIF rn < (p1 + p2) THEN

x := a2*X + b2*Y + e2; y := c2*X + d2*Y + f2
ELSIF rn < (p1 + p2 + p3) THEN

x := a3*X + b3*Y + e3; y := c3*X + d3*Y + f3
ELSE

x:= a4*X + b4*Y + e4; y:= c4*X + d4*Y + f4
END;
X:=x; Y:=y;
"Paint dot at position (X, Y)"

UNTIL "User terminates loop";

This sequence of statements is merely a fragment of an Oberon program.
The actions to open a viewer, compute a random number, paint a dot,
and provide a user-enacted termination stimulus are not yet formally
specified. We also know that all variables must be declared. We will fill in
the missing part in the remainder of this chapter and in Chapter 7.

66 Procedures and modules

6.1 The procedure: a statement sequence with a name

Procedure call

Like all objects of the Oberon language, a procedure needs to be de­
clared. The procedure declaration consists of a procedure heading and a
procedure body. The heading specifies the procedure identifier and
possibly parameters and a result type. The body is composed of a
declaration sequence and a statement sequence. The procedure decla­
ration is terminated with the symbol "END" followed by a repetition of
the identifier. Formally, the syntax is given by

ProcedureDeclaration =
ProcedureHeading ";" ProcedureBody ident.

ProcedureHeading =
"PROCEDURE" ident ["*"] [FormaIParameters].

ProcedureBody = DeclarationSequence
["BEGIN" StatementSequence]
"END".

The declaration sequence, the export mark (asterisk "*") and the formal
parameters will be described in subsequent sections.

In its simplest form, the procedure is composed of a heading with a
mere identifier and a body that consists of a statement sequence only.
This is the named statement sequence mentioned before. We are now
able to complete the example of Box 6.2 by casting the statement se­
quence that draws a fractal fern into a procedure called Draw:

PROCEDURE Draw;
BEGIN

... (* Statement sequence of Box 6.2 *)
END Draw;

Note that it is assumed that all variables that occur in the statement
sequence are declared in a larger context (the module) in which the
procedure is embedded.

To exercise the statement sequence of a procedure, it has to be called or
invoked. Such a call can originate from another procedure or from a hu­
man operator of the computing system.

For the simple (parameter-less) procedure, the call statement consists
simply of the procedure identifier, for example

... Draw; ...

6.1 The procedure: a statement sequence with a name 67

When the call statement is executed, control passes to the first
statement in the statement sequence of the procedure. After the proce­
dure is finished, processing resumes with the statement that follows the
call.

Processing of a procedure terminates with the execution of the last
stateinent in its statement sequence or explicitly with a return statement
(see Section 6.4.2).

The procedure concept would be useful, even if restricted to the
simple form discussed so far. Two additional features, however, forge it
into an essential programming tool: the locality of identifiers and the
notion of parameters.

6.2 The concept of locality

Procedure Draw operates on two groups of variables:

(1) X, Y, x, y and rn;
(2) al ... a4, bl ... b4, c1 .. . c4, dl ... d4, el ... e4, fl ... f4 and pl ... p4.

The first group comprises variables defining pen position and random
numbers. They are strictly local to the procedure; hence they are termed
local variables. In contrast, the variables of the second group have global
significance.

All objects - in particular, variables - must be declared. The declaration
sequence in the procedure body is used to define local objects such as the
variables of the first group. The syntax of the declaration sequence is
given by the EBNF production

DeclarationSequence =
{ "CONST" {ConstDeclaration ";"}
I "TYPE" {TypeDeclaration ";"}1
I "V AR" {V ar Declaration ";"}}
I {ProcedureDeclaration ";"}.

The declaration sequence lists constant declarations, variable declara­
tions and type declarations in any order, followed by the procedure
declarations. Since the declarations in the body of a procedure are
strictly local to that procedure, export marks are not meaningful.

To give an example, we refine procedure Draw by making the first
group of variables local:

1 Type declarations are the subject of Section 8.1.

68 Procedures and modules

PROCEDURE Draw;
VAR

X,Y: REAL; (* local variables for pen position *)
x, y: REAL; (* local variables for new position *)
rn: REAL; (* local variable for random number *)

BEGIN
... (* Statement sequence of Box 6.2 *)

END Draw;

6.2.1 Scope

The section of program text in which an identifier is defined is called its
scope. The object represented by such an identifier can only be used
within its scope. The scope of declarations appearing in the body of a
procedure is the remainder of that body. Applied to variables, the lo­
cality concept asserts that they exist only within their scope. Therefore
the value of a local variable is not defined when the procedure is called,
and, similarly, its value is lost upon termination. Hence, if a variable
should retain its value between successive calls of a procedure, it must
be declared outside of the procedure. As a consequence, local variables
consume memory resources only during the execution of the statement
sequence of their procedure. As soon as control reverts to the statement
following the call, the memory of the local variables is released.

In our example, the scope of the variables X, Y, x, y and rn is the
procedure Draw - specifically the text from their declaration to the
terminating symbol "END". Suppose that the identifier rn also desig­
nates an object outside of Draw, a procedure, say. The local declaration
of rn excludes this procedure from the scope of the text representing the
procedure Draw. The programmer is thus free to reuse identifiers. In fact,
local identifiers can be used without the need to know all globally
defined objects. This decoupling of knowledge about different program
parts is particularly useful- even vital- in the design of large programs
created by a team of programmers.

6.2.2 Nesting of scopes

What is noteworthy about the syntax of the declaration sequence is that
the procedure declaration is recursive. In other words, the declaration
sequence of a procedure may contain nested procedure declarations. In

Scope rules

6.2 The concept of locality 69

analogy to local variables, the procedures thus defined are local objects
within the scope of their enclosing procedure.

Since procedure declarations can be nested, their scopes follow this
nesting pattern. The scope rules are best remembered by the method
used to search the declaration of an identifier, i say. First, search the
declarations of the procedure P in which i is used. If the declaration of i
is not among them, continue the search in the procedure or module (see
Section 6.3) surrounding P; then repeat this rule until the declaration is
encountered. If an identifier is not declared, the text is not a valid
Oberon program unless it is one of the predeclared identifiers. These
standard identifiers are considered to be declared in an imaginary global
scope enveloping all modules.

6.2.3 Advantage of locality

It is good programming practice to declare objects locally. This confines
their existence to the procedure in which they have meaning. In
summary, the use of local variables has the following significant ad­
vantages:

• The declaration is textually close to the use of the object, aiding
in the readability of the program text.

• The inadvertent use of a global object locally is eliminated. There
is no need to know all global objects.

• Memory requirements can be minimized because local variables
are released upon termination of the procedure to which they be­
long.

6.3 Modules

The module is another construct that defines a scope. In the previous
section, we have referred to a 'larger context' in which variables were
assumed to be declared. For procedures that are not local to other
procedures, such as Draw, this context is the module. Oberon modules
observe the syntax

70 Procedures and modules

Declaration
sequence

Statement
sequence

module = "MODULE" ident ";"
[ImportList]
DeclarationSequence
["BEGIN" StatementSequence]
"END" ident".".

The two identifiers must match. The import list and the statement se­
quence are optional.

"Let us cast the IFS example into a module:

MODULE IFS;
VAR

aI, bl, cl, dl, e1, fl, pI: REAL; (* 1st affine transformation *)
a2, b2, c2, d2, e2, f2, p2: REAL; (* 2nd affine transformation *)
a3, b3, c3, d3, e3, f3, p3: REAL; (* 3rd affine transformation *)
a4, b4, c4, d4, e4, f4, p4: REAL; (* 4th affine transformation *)

PROCEDURE Draw*;
... (* Procedure body *)

END Draw;

BEGIN
al := 0.0;
b1 := 0.0;
cl:= 0.0;
dl := 0.16;
e1 := 0.0;
fl := 0.0;
pI := 0.01;

ENDIFS.

a2:= 0.85;
b2:= 0.04;
c2:= -0.04;
d2:= 0.85;
e2:= 0.0;
f3 := 1.6;
p3:= 0.07;

a3:= 0.2;
b3:= -0.26;
c3:= 0.23;
d3:= 0.22;
e3:= 0.0;
f3:= 1.6;
p3:= 0.07;

a4:= -0.15;
b4:= 0.28;
c4:= 0.26;
d4:= 0.24;
e4:= 0.0;
f4:= 0.44;
p4:= 0.07

Our sample module contains a declaration sequence specifying the
variables a1 ... p4, the procedure Draw and a statement sequence that
assigns values to the global variables.

6.3.1 The scope defined by a module; declaration of global variables

Like the procedure, the module defines a scope for the identifier de­
clared in its declaration sequence. The scope extends from the point
where the identifier is declared to the final "END" of the module.
Procedures declared within the module open a nested scope, and the
rules for nested scopes apply.

Static scope,
Global variables

The module as
compilation unit

6.3 Modules 71

Each time the procedure is executed, its scope is newly opened - the
local variables are newly defined. In contrast, the scope of the module is
static. The module is in existence for the whole computation or the
whole user session. This means that variables declared in a module also
exist - and consume storage - throughout the duration of the module's'
activation. We call these variables global variables. In contrast to
procedures, modules cannot be nested.

In order for Oberon texts to be executable on a machine, they require a
translation into machine code by a compiler. In Oberon, the syntactical
unit accepted by the compiler is the module. Translated modules are
called object modules. They are part of libraries residing on disk storage,
and may be loaded into the machine's memory for execution.

6.3.2 The statement sequence of a module

Export mark

The statement sequence of a module is executed when the module is
first activated and thus loaded into memory. The statement sequence in
our example is quite typical- it is used to initialize global variables. Thus,
when module IFS is first loaded into memory, the assignments are
carried out and the global variables receive their initial values.

6.3.3 Export and import of declarations

Declared objects such as variables and procedures are visible only
within their scope that is opaque if viewed from the outside. This scope
rule also applies to the module - its only external property is the
module name. Clearly, a mechanism is needed to make objects of the
module accessible from the outside. The procedure Draw from module
IFS is an example: it should be made known to the operating system, to
be invoked from the computer's controls. Procedure Uniform from
module RandomNumbers, which we encountered in Chapter 2, is
another example. We would like to be able to call it in procedures
declared in other modules - for example in IFS, where random numbers
are needed. The export mark and the import list are the constructs that
Oberon provides to make the module scopes partially transparent.

Any identifier being declared in a module may be marked for export.
Exported variables or procedures are visible outside the scope of the
module. The export mark is an asterisk following the identifier being declared.
For example, in the decJaration sequence

72 Procedures and modules

Import list

Qualified
identifier

VAR height*, width*, i, j: INTEGER;
PROCEDURE Draw*;

. .. (* declaration and statement sequence *)
ENDProc;

the variables height and width and the procedure Draw are marked for
export.

The library of a given computer may contain a large number of mod.;.
ules. Clearly, it is not beneficial if all objects exported by them are si­
multaneously visible within each module. One of the important benefits
of the module·concept is that programs may be written by different
programmers, who do not need to know the declarations and
conventions made in other modules except, of course, those that they
intend to use. The import list and the qualified identifier provide the
mechanism to avoid naming conflicts.

Those modules whose exported declarations should become visible in
a given module have to be imported explicitly. The imported modules
appear in the import list, which immediately follows the module
heading and has syntax

I importList = "IMPORT" import {"," import} ";".
import = ident [":=" identl.

For example,

MODULE IFS;
IMPORT RN:= RandomNumbers, XYplane;
. .. (* declaration and statement sequence *)
ENDIFS.

Within the scope of module IFS, the declarations of the exported objects
of modules RandomNumbers and XYplane are visible. In the form
Ml := M, the imported module is known under the alias Ml in the scope
of the importing module. Thus, in the example, RandomNumbers is
known as RN.

Imported objects are always referred to by a qualified identifier consisting
of a prefix - the exporting module's name or alias - followed by the
name of the object. For example, assume that V is an exported variable
of a module M. Then it is referred to in a module that imports M as

M.V

6.3 Modules 73

A qualified identifier is used as a designator in expressions and as­
signments in the same way as a simple identifier. In EBNF notation,

I qualident = [ident '/1.,,] ident.
designator = qualident.1

A qualified identifier is composed of two juxtaposed identifiers sepa­
rated by a period. Oberon considers the qualified identifier M. V to be
different from the simple identifier V. Therefore V may be simultane­
ously declared in module M as well as in the client of M.

In the previous example of module IFS, the procedure Uniform from
module RandomNumbers is called as RN. Uniform. Assuming that module
XYplane exports a variable W, that variable is referenced by XYplane.W.

Commands In an Oberon system, the main computations are performed by the
statement sequences of procedures that are exported by modules.2 Such
procedures are also called commands. Draw in sample module IFS is
such a command.

The system running Oberon provides facilities allowing the operator
to activate commands from the system controls. An example of such a
system was provided in Chapter 2.

6.4 Function procedures and parameters

The function is an important concept in mathematics. The formula

r = f(x, y) (1)

states that r is the result of the computation f applied to the arguments x
and y. While the notation (1) makes the value of the arguments explicit,
mathematicians often use another notation - that of the mapping. If we
assume that f is integer-valued and operates on integer arguments x
and y, the mappingfis expressed formally as

1 More general designators will be introduced later.
2 To be precise, parameter-less procedures (parameters will be discussed in

subsequent sections).

(2)

74 Procedures and modules

In (2), 3 denotes the set of integer numbers and .s x 3 their Cartesian
product. Equation (2) reads 'f maps each pair of integers into an inte­
ger.' In contrast to (1), the rangqof values admissible as arguments and
produced by the mapping are clearly indicated.

Oberon supports the notion of the mathematical function. In Chapter
4 we have already come across a number of predeclared functions such
as ABS(x), ASH(i, n) and ODD(i) that perform a computation on their
arguments and return a result. Such functions may be factors in
expressions, for example

x:= y + ABS(z).

The function introduces two new concepts:

(1) The function identifier stands for a statement sequence (a
computation) as well as for a result.

(2) The function has arguments, called parameters, which pass input
values to the computation.

Oberon allows programmers to define their own functions by declaring
function procedures. Let us start with a simple illustration:

PROCEDURE Min(x, y: INTEGER): INTEGER;
BEGIN

IF x <= Y THEN RETURN x ELSE RETURN Y END
END Min;

The procedure heading defines the identifier Mi~ to be a function pro­
cedure. It specifies formal parameters (x and y) and their type as well as a
result type (after the colon). The return statement terminates the state­
ment sequence and returns the result to the point of invocation.

6.4.1 The function procedure heading

The function procedure heading must have formal parameters. The formal
parameter list is enclosed in parentheses and follows the function
identifier. It consists of formal parameter sections, which look like
variable declarations. The formal parameter sections define name and
type of the parameters that serve as arguments of the function. The type
of the result is shown following the right parenthesis,from which it is
separated by a colon. The EBNF definition of the funmon procedure is

6.4 Function procedures and parameters 75

ProcedureHeading =
"PROCEDURE" ident [1/*,,] FormalParameters.

FormalParameters =
"(" [FPSection {";" FPSection}] ")" ":" qualident.

FPSection = ["VAR"] ident {"," ident} ":" FormalType.
FormalType = qualident.1

The qualident that terminates FormalParameters denotes the type of the
result. It must be a simple type; that is, array and record structures can­
not be the result of function procedures (see Chapter 8). The option
V AR preceding the identifier list will be explained in Section 6.5.2.

A few examples of function procedure headings may be instructive:

PROCEDURE gcd(x, y: INTEGER): INTEGER;
PROCEDURE power(x: REAL; i: INTEGER): REAL;
PROCEDURE XYinRect(x, y, X, Y, W, H: REAL): BOOLEAN;
PROCEDURE New* (text: Texts.Text; pos: LONGINT): Frame;2
PROCEDURE InitText*(f: Files.File; p: LONGINT): Texts.Text;
PROCEDURE UniformO: REAL;

The last example is a procedure heading without parameters, such as
our random number generator of the introduction. The empty paren­
theses are mandatory.

In a sense, the Oberon procedure heading combines the characteris­
tics of the two mathematical notations: it introduces names for the pa­
rameters as in (1) and defines the ranges of parameter and function
values as in (2).

6.4.2 Formal parameters and the return statement

Within the statement sequence of the procedure, the formal parameters
may be used exactly like local variables. The fact that they are declared in
the procedure heading rather than in the body's declaration sequence
ensures that they have a defined initial value, namely the one specified by
their corresponding actual parameters at the time of the call (see Section
6.4.3). As is the case with local variables, memory for formal parameters
is only tied up when the function's scope is active.

1 A more general FormalType will be introduced in Chapter 8.
2 This is an example involving declared types. The type Frame is declared in the

same module whereas Text is a type exported by module Texts. See Chapter 8.

76 Procedures and modules

The function declaration is characterized by the indication of the re­
sult's type behind the parenthesized list of formal parameters. In the
function's body, the return statement ends the computation and passes
the result to the point of invocation. It consists of the symbol
"RETURN" followed by an expression yielding a result:

I ReturnStatement = RETURN [expression].

The expression must be assignment-compatible with the result type
specified in the procedure heading (Table 4.3); at least one return
statement is mandatory.

6.4.3 Actual parameters, the function call

The function call is a factor in an expression. We recapitulate its syntax:

I FunctionCall = designator "(" [ActuaIParameters] ")".
ActualParameters = expression {"," expression}.

For the time being, a designator is simply a qualident that denotes a
function procedure. We will encounter more complex designators later.

Each expression is an actual parameter that is used to initialize a
corresponding formal parameter. Evidently, the number of expressions
must match the number of formal parameters. Actual parameters are
paired with formal parameters according to their respective position in
the list. At the time of the function call, the expression is evaluated and
its value assigned to the formal parameter. Therefore the expression must
be assignment-compatible with the type of the formal parameter (see
Table 4.3).

For example, consider the procedure Min listed earlier. A possible
function call to Min is

Min(3*i + j, 17)

At the time of the call, the expression 3*i + j is evaluated and assigned
to formal parameter x. Subsequently, the constant 17, syntactically also
an expression, is assigned to y. Then control passes to the first statement
of procedure Min. The result is returned to the point of call after the
first return statement executed.

6.5 Proper procedures 77

6.5 Proper procedures

Earlier, we portrayed the procedure as a named statement sequence
that can be called from another point in a program text or that can be
executed as a command. To distinguish it from the function procedure,
we also speak of a proper procedure.

Parameters can also be associated with proper procedures. The ben­
efits are twofold:

(1) When the procedure represents a general computation, such as
determining the roots of a polynomial, it can be applied to vari­
ous sets of variables without changing its text.

(2) Identifiers used within the procedure are decoupled from the
names adopted elsewhere in the program.

Such a decoupling is essential if a large programming task should be
attempted by a team of programmers. For this purpose, however, the
parameter mechanism needs to be generalized to encompass the concept
of substitution. Before we will turn to this generalization, we state the
syntax of the proper procedure and of the call statement.

6.5.1 Syntax, the call statement

The proper procedure is identified through its heading with EBNF
syntax:

ProcedureHeading::; "PROCEDURE" ident [1/*,,] [FormaIParameters].
FormalParameters = "(" [FPSection {I/;" FPSection}] n)".
FPSection = ["VAR"] ident {"," ident} ":" FormalType.
FormalType = quali<ilent.1

Proper procedure headings are, for example,

PROCEDURE Draw*;
PROCEDURE ComputeRoots(a, b, c: REAL; V AR rI, r2, il, i2: REAL);

Return statement The return statement may also appear in a proper procedure. In this
case, it is optional and consists of the solitary keyword "RETURN".
When executing a return statement, processing of the procedure's

1 A more general FormaZType will be introduced in Chapter 8.

78 Procedures and modules

Call statement

statement sequence is terminated and control returns to the statement
immediately following the call.

The call of a proper procedure is a statement with syntax:

I ProcedureCall = designator ["(" ActualParameters ")"].
ActualParameters = expression {" ," expression}.

As in the case of the function procedure, the actual parameters are
paired with the formal ones.

6.5.2 Value and variable parameters

From previous examples, we are familiar with the fact that a (proper)
procedure may interact with the state of the computation through global
variables. The benefit that one expects from the concept of parameters is
a decoupling of the procedure text from global variables.

Value parameters The formal parameters introduced so far are like local variables. In
order to refer to this type of parameter, we speak of a value parameter­
the value of the expression that represents the actual parameter is as­
signed to the formal parameter prior to execution of the procedure's
statement sequence.

Variable Evidently, value parameters serve only to pass information to the pro-
parameters cedure. We seek a parameter scheme that empowers the proper proce­

dure to change the global state of the computation. This is possible
through the notion of substitution.

Such a scheme passes an actual variable and not merely its value to
the procedure. We therefore speak of a variable parameter. Variable pa­
rameters are specified with the keyword "V AR" in front of the formal
parameter section. For example,

PROCEDURE ComputeRoots{a, b, c: REAL; VAR rl, r2, il, i2: REAL);

has two sets of parameters: a, band c are value parameters, and rl, r2, il
and i2 are variable parameters, used to return results.

As the name implies, the actual parameter corresponding to a vari­
able parameter must be a variable. If the formal variable parameter
changes its value within the procedure, for example by means of an
assignment, the corresponding actual parameter is changed accord­
ingly. Thus the formal variable parameter substitutes a different local name
for the corresponding a~tual parameter. This achieves the desired decou-

Type rule

6.5 Proper procedures 79

pling from the global environment and represents a flexible substitu­
tion mechanism of variable names.

Syntactically, actual parameters are expressions. An actual parameter
corresponding to a formal variable parameter must be an expression
composed of a single designator. At this point, the only such expression is a
solitary qualident. Designators corresponding to structured types may
be a little more complex, such as an array element (a[i+jD or the field of
a record (r./>. Structured types are introduced in Chapter 8. No memory
is consumed in the procedure to account for variable parameters and no
assignment takes place.

The substitution mechanism of the variable parameter requires that the
types of the actual parameter and the corresponding formal parameter
must be identical.1

Let us proceed with an example - the evaluation of the roots of the
quadratic equation

ax2 + bx + c = o.

There are two solutions, which may be complex numbers. Their re­
spective real and imaginary parts are denoted by rl, r2, il and i2. The
multitude of output variables precludes the use of a function procedure,
which would be natural for such computations as the square root.

We therefore opt for a proper procedure that returns the result by
means of variable parameters:

PROCEDURE ComputeRoots(a, b, c: REAL; V AR rl, r2, il, i2: REAL);
V AR det: REAL;
BEGIN

b := b/2; det:= b*b - a*c;
IF det >= 0 THEN (* real roots *)

rl := (ABS(b) + sqrt(det»/a;
IF b >= 0 THEN rl := -rl END;
r2 := c/(a*rl);2 il := 0; i2:= 0

1 This is somewhat generalized in the case of record types and their extension; see
Chapter It.

2 The second real root is computed using the theorem of Vieta to avoid possible
loss of accuracy when one of the roots is close to zero.

80 Procedures and modules

ELSE (* complex roots *)
r1 := -b/a; r2:= r1; i1 := sqrt(-det); i2:=-il

END
END ComputeRoots;

The first three formal parameters are value parameters and pass the
coefficients a, band c to the procedure.

The remaining four parameters are variable parameters used to re­
port the real and imaginary parts of the roots. A possible call of the
procedure ComputeRoots is

ComputeRoots(2.0, x*y, q, r1, r2, il, i2);

6.6 More on function procedures

6.6.1 Side-effects

Pursuing a tutorial development, we have introduced the concepts of
the function procedure and value parameters together. However,
function procedures are by no means restricted to that mechanism - in
addition to the result returned to the point of call, they may change the
state of the computation through global variables and through variable
parameters. Such a change is termed a side-effect of the function.

Our very first example, the procedure Uniform, is a function proce­
dure with a side-effect. We recapitulate:

PROCEDURE UniformO: REAL;
CaNST a = 16807; m = 2147483647; q = m DIV a; r = m MOD a;
V AR g: LONGINT;
BEGIN

g := a*(z MOD q) - r*(z DIV q);
IF g > 0 THEN z:= g ELSE z:= g + mEND;
RETURN z*1.0 / m

END Uniform;

The side-effect of a call to Uniform is the change of the global variable z.
This is, of course, the essence of the intended recurrence relation that
produces our random numbers. However, consider the following two
statement sequences:

z:= 1; x:= z + UniformO;

6.6 More on function procedures 81

and

z := 1; x:= UniformO + z;

In the first case, the value of x is 1.0000080E+OO; in the second case, we
find 1.6807000E+04 - seemingly defying the commutative law of addi­
tion. The programmer should always be fully aware of the capability of
side-effects to produce unexpected results when the function is used
inappropriately.

We emphasize that changes of global variables through side-effects of
functions is considered neither desirable practice nor good pro­
gramming style. Nevertheless, it is sometimes justified, as in the case of
Uniform. In any case, side-effects should be restricted to variables that do not
occur in the call's parameter list.

6.6.2 Recursion

Of course, the statement sequence of a procedure may contain calls to
other procedures. Since any procedure that is visible can be called, a
procedure may call itself. This self-reactivation is called recursion. Its use
is natural when either the algorithm or the data structure is defined
recursively.

One of the simplest examples is furnished by the factorial, which is
defined by:

fact(O) = 1
fact(n) = n fact(n - 1) for n = 1, 2, ...

which translates into

PROCEDURE fact(n: INTEGER): LONGINT;
BEGIN

IF n = 0 THEN RETURN 1
ELSE RETURN n *fact(n - 1)

END fact;

(1)
(2)

It is important that the recursion terminate. The test for n = 0 ensures
termination in the case of fact. Besides loop statements, recursive pro­
cedures are another source of nonterminating programs.

Of course, we recognize that the factorial can be almost as easily
computed using iteration:

82 Procedures and modules

PROCEDURE fact(n: INTEGER): LONGINT;
V AR fact: LONGINT;
BEGIN fact:= 1;

WHILE n > 0 DO fact:= fact*n; DEC(n) END; RETURN fact
END fact;

Since every procedure call causes some overhead for bookkeeping, the
second version should be expected to run more efficiently. A repetitive
formulation is always possible, in principle, but it may obscure the al­
gorithm to such a degree that the gain in execution time is not worth the
effort.

We will introduce more interesting examples of recursive procedures
in Section 9.3 when discussing trees.

6.7 Compiler hints

The goals of the designer of a language and the implementer of its
compiler are sometimes at odds - the former wishing to adopt con­
structs of maximal convenience to the user, the latter advocating com­
promises in the syntax leading to a simple compiler. One such com­
promise is the one-pass compiler that promises to be especially fast. Since
such a compiler cannot look ahead, it requires a forward declaration
when a procedure call occurs textually before the respective procedure
declaration. The forward declaration has syntax:

DeclarationSequence =
{ "CONST" {ConstDeclaration ";"}
I "TYPE" {TypeDeclaration ";"}
I ''V AR" {VarDeclaration ";"}}
I {ProcedureDeclaration ";" I ForwardDeclaration ";" }.

ForwardDeclaration = "PROCEDURE" "t"l
ident ["*"] [FormaIParameters].

The actual declaration following the forward declaration - which
specifies the body of the procedure - must have exactly the same name
and formal parameter list. The symbol "t" decrees the forward decla­
ration.

1 Inthe standard ASCII character set ut"is represented by the caret UA" with
ORD(UA ") = 94.

6.7 Compiler hints 83

Some Oberon compilers require that procedures intended to be
assigned to procedure variables or used as parameters are marked with
an asterisk following "PROCEDURE", viz.

I ProcedureHeading =
"PROCEDURE" ["*"] indent ["*"] [FormaIParameters].

Note that only one of the asterisks is required, in other words, the
export mark (after indent) implies the first mark.

6.8 Summary

In this chapter, we have introduced a wealth of concepts and constructs
that can be summarized in a cursory fashion only.

(1) Modules and procedures define a scope - that is, a stretch of pro­
gram text in which declarations are valid. The concept of locality
states that declarations are local to their scope.

(2) The module establishes a global scope - its declarations define
global objects, constants, types (see Chapter 8), variables,·and pro­
cedures that are valid throughout the computation. The module
is also the compilation unit. Declarations may be made visible
outside of the module's scope by means of export marks, and ex­
ported identifiers of other modules can be imported.

The module may have an optional statement sequence that exe­
cutes at the time the module is loaded into memory. This state­
ment sequence is typically used to initialize global variables.

(3) The procedure is a named statement sequence and a parameter
mechanism. Procedures are either function procedures or proper
procedures. The statement sequence of the procedure can be exe­
cuted from any point in the program through a call statement or
a function call. Procedures can be recursive.

(4) Parameters are used to pass values to and from the procedure.
The formal parameters appear in the procedure heading, actual pa­
rameters in the call statement. Parameters come in two varieties:
value parameters and variable parameters.

A value parameter acts like a local variable that is initialized by
the results of evaluating their corresponding actual parameters.
An assignment takes place. Memory is allocated for the formal
parameter during the time the procedure is active.

84 Procedures and modules

A variable parameter ("V AR") implements the notion of
substitution. The actual parameter is substituted for the formal
one. Assignments made to the formal parameter are assignments
to the actual parameter. Variable parameters are used to return
results.

(5) The return statement terminates the execution of a procedure. In
the case of a function procedure, it returns the result to the point
of call.

(6) If a function procedure changes the state of the computation
through assignments made to global variables or variable
parameters, a side-effect is said to have occurred.

We have used a common example to derive the main concepts:
drawing a fractal fern. This chapter is about the basics: how to apply
procedures and modules properly will remain a major theme
throughout the rest of the book. The example of the fractal fern will be
completed in Chapter 7, after the introduction of appropriate input and
output operations.

6.9 Exercises

6.1 Which of the following procedure headings are legal?

(a) PROCEDURE f(x: REAL): ARRAY OF CHAR;

(b) PROCEDURE f(x: REAL): REAL;

(c) PROCEDURE g(i: INTEGER): V AR x: REAL;

(d) PROCEDURE P(x: REAL, y: CHAR);

(e) PROCEDURE P(x: REAL), (y: CHAR);

(f) PROCEDURE Q(a, b, c: REAL; V AR rl, r2, il, i2: REAL);

6.2 Assume

CONST xl = 1; x2 = 2; x3 = 3; x4 = 4; x = 3.14159;
V AR a, b, c, aR, bR, aI, bI: REAL; i: INTEGER;

xR, yR, xl, yI: LONGREAL; .
PROCEDURE Root(a, b, c: REAL; VARxl, x2, yl, y2: REAL);
PROCEDURE Sin(x: REAL): REAL;
PROCEDURE Min(x, y: INTEGER): INTEGER;

Which of the following statements containing procedure calls are correct?

Root(a, b, c, aR, bR, aI, bl); Root(1, 3, 4, xl, x2, x3, x4);
Sin(3.14159); a:= Sin(xl); i:= Min(x, xl); i := Min(xl, x2);
Root(a, b, c, 3, 4, 5, 6); Root(a, 3*b, c + 1, xR, yR, xl, yl);

6.9 Exercises 85

6.3 Is the following an Oberon module? If not, which are the errors?

MODULEM;
CaNST a = 10; IMPORT Math;
PROCEDURE P(x: INTEGER): INTEGER;

RETURNx*x
ENDP;
VARy: REAL;
BEGIN y:= P(a)
ENDM;

6.4 [Scope rules] Identify the scopes of all identifiers in the following module. Find
one error. What is the value of the global variables after module M is loaded
into memory (given that the error is corrected)?

MODULEM;
V AR i, j: INTEGER;
PROCEDURE A*;
VAR i: INTEGER;
PROCEDURE B*(V AR i, j: INTEGER);
V AR k: INTEGER;
BEGIN k := i; i:= j; j := k END B;
BEGIN i:= 2; B(i, j)
END A;
PROCEDURE C;
BEGIN A; i := 2*j END C;
BEGIN C
ENDM.

6.5 What is wrong with the following procedure?

PROCEDURE Square(x: REAL): REAL;
VARy: REAL;
BEGIN y:= x*x
END Square;

6.6 [Fibonacci numbers] The Fibonacci numbers are defined by the recurrence
relation

fo=I, 1I=I, fn=fn-l +fn-2 forn=2,3,,,.

Using recursion and iteration, write two versions of a procedure with heading

PROCEDURE Fibonacci(n: INTEGER): INTEGER;

that computes fn-
How many recursive invocations of Fibonacci result from a call to

Fibonacci(n)? Similarly, how many iterative steps are needed? Why is the
iterative solution so much faster (independent of the bookkeeping of recursive

86 Procedures and modules

function calls)? Hint: consider whether the work to compute fn-l is independent
offn-2'

6.7 Determine the number of function calls of the recursive version of Fibonacci
empirically. Hint: use a side-effect. Is this a legitimate use of a side-effect?

6.8 What mathematical function does F compute?

PROCEDURE F(n: INTEGER): INTEGER;
V AR i, j: INTEGER;
BEGIN i:= 1; j := 1;

WHILE n > 1 DO i := i + j; j := i - j; DEC(n) END
ENDF;

6.9 [Exponential random numbers] An exponential random number rnexp can be
obtained from a uniform random number rnuni (see Box 10.1). Augment module
RandomNumbers from Chapter 2 with

PROCEDURE Expimu: REAL): REAL

which produces exponentially distributed random numbers. Assume that a
module Math is available that exports the logarithm In(x: REAL): REAL.

References

Bamsley M. (1988). Fractals Everywhere. New York: Academic Press.
Mandelbrot B. B. (1977). The Fractal Geometry of Nature. San Francisco: W. H.

Freeman.

7 Input and output

One of the foundations of the success of high-level programming lan­
guages is the principle of abstraction. The essence of abstraction is the
hiding of details pertaining to the specific computer that is used to ex­
ecute a program. Different languages and systems differ in the abstrac­
tions that are advocated. Since abstraction means hiding of details, it
invariably also precludes the use of some facilities - presumably
existing to perform a certain task directly and efficiently. Simplification
and generalization by suppression of details is then in direct conflict
with the desire for transparency for efficient use.

While a consensus seems to emerge as far as basic types and control
structures are concerned, a great diversity is observed in the area of
input and output operations, especially when considering the graphics
subsystems of modern workstations.

Recognizing this intrinsic dilemma, Oberon does not incorporate
input and output abstractions in its language definition. This approach
is made possible by two facts:

(1) Abstractions are not only delivered through the language, but also
through the module concept. The module allows hiding of details­
only those data and procedures consciously marked for export
will be visible in client modules. We will say more about this role
of the module in Chapter 10 and Part III.

(2) It is assumed that the system that runs Oberon offers input and
output operations packaged in Oberon modules. Such modules, al­
ready compiled and ready for use, comprise part of the
computer's library. Suitable modules can be imported by the
user's program, and yield access to the input and output devices.
Typically, there is not only one such module, but a whole
hierarchy, where each layer advances the level of abstraction -
that is, hides more details.

87

88 Input and output

Module In

7.1 Sequential input and output, modules In and Out

One of the most successful abstractions in the domain of input and
output is that of the stream. A stream is a sequence of data elements.
The number of data elements is not known a priori - the stream is
therefore a simple case of a dynamic data structure. The number of
elements is called the stream's length. Only one element is visible at a
given time, namely the element at the stream's current position. That
element can be read - the read operation implicitly increments the po­
sition. Writing (normally) occurs at the end of the stream.

Historically, the vast majority of input and output devices have been
sequential: paper tape, punched cards and then magnetic tapes. For
these devices, the abstraction of the stream is quite close to the actual
device operation. Today, the importance of sequential devices is waning
- they are supplanted by disk storage capable of random access and by
graphical output devices that are inherently non-sequential. The stream
abstraction, however, has not lost its usefulness, since many operations
are still sequential on the logical level.

In the examples of this book, we assume the existence of two mod­
ules, In and Out, that implement an input stream and an output stream,
respectively.1 To document a module, we list its exported constants,
variables and procedure headings.

For module In, such a definition reads as follows:

DEFINITION In;
V AR Done: BOOLEAN;
PROCEDURE Open;
PROCEDURE Char(VAR ch: CHAR);
PROCEDURE Int(V AR i: INTEGER);
PROCEDURE LongInt(V AR 1: LONGINT);
PROCEDURE Real(VAR x: REAL);
PROCEDURE Name(VAR nme: ARRAY OF CHAR);1
PROCEDURE String(V AR str: ARRAY OF CHAR);

END In.

The meaning, or semantics of the variable and the procedures exported
by module In are as follows:

1 The source text of a particular implementation is listed in Appendix C.
2 A variable of type ARRAY OF CHAR may have a string as value, see Section

8.2.6.

Module Out

7. 1 Sequential input and output, modules In and Out 89

• The variable Done holds as long as read operations terminate
properly. The first abnormal termination falsifies Done, which
will remain FALSE until the next call to Open. This variable
should be tested before using the variable parameter that returns
the result of the input operation.

• Open initializes the input stream. The position is set to the origin
and Done = TRUE.

• Char: If Done holds, returns the character found at the position of
the input stream and increments that position. If an attempt is
made to read beyond the end of the stream, Done is falsified.

• Int, Longlnt, Real, Name: If Done holds, these procedures scan the
input stream for a token of appropriate type, starting at the
current position. The syntax is that of the basic Oberon tokens (a
name is a sequence of identifiers, juxtaposed with periods).
Leading blanks, tabs or carriage return characters are skipped. If
a token is found, it is translated into internal representation and
returned in the variable parameter. The position is advanced to
the character immediately following the token. If no token of
appropriate type is encountered, Done = FALSE.

• String: If Done holds, the input stream is scanned for the first
non-blank character. All consecutive characters whose value is at
least a blank are returned in s. Done is falsified if the end of the
stream was encountered.

If a sequence of input operations is performed, Done = TRUE after the
last call indicates that all operations were successful.

In the same style, the exported procedures of module Out are sum­
marized in the definition

DEFINITION Out;
PROCEDURE Open;
PROCEDURE Char(ch: CHAR);
PROCEDURE Ln;
PROCEDURE Int(i, n: LONGINT);
PROCEDURE Real(x: REAL; n: INTEGER);
PROCEDURE String(s: ARRAY OF CHAR);

END Out.

The meanings of the procedures of module Out are as follows:

• Open initializes the output stream.

• Char writes character ch at the end of the stream.

90 Input and output

• Ln appends a carriage return control character to the end of the
stream. On a printer or on a display device, a new line will be
started.

• Int and Real: translates the internal representation of the actual
parameter to a textual representation composed of n characters,
and appends it to the end of the stream.

• String appends the characters of the string passed as parameter
to the end of the stream. '

The noteworthy fact is that neither the input nor the output data stream
appears explicitly in the definition of module In or Out. Their data
structure, which is quite complex is completely hidden. This . hiding is
the essence of the abstraction termed stream.

Browser In Modula-2 the text between "DEFINITION" and the keyword "END"
is termed a definition module. It lists all exported declarations - hence it
is also known as the public view of the module. Such a definition module
is accepted by the compiler. Its function is the identification of exported
objects - it substitutes for Oberon's export marks.

The advantage of the definition module is its textual compactness.
Oberon systems therefore typically offer a tool called the browser that
accepts the module text and constructs the public view in the form of
the definition module.

7.2 Graphics output

As we have indicated, finding generally agreed upon abstractions for
programming the display of a graphics-based workstation is still a chal­
lenge. Here we merely wish to introduce a high-level module providing
graphics output for animated simulations, such as drawing the fractal
fern.

The model is that of a Cartesian plane with origin in the lower left
corner of the screen. Graphics output devices provide a raster of points,
called pixels. The pixel is the smallest unit that can be turned black or
white - or be assigned a color. It is therefore sensible to choose the pixel
size as unit and measure the coordinates in multiples of that unit; that
is, to use integers to represent x and y (Figure 7.1).

The visible area of the Cartesian plane (window provided by
viewer) has its lower left corner at coordinates (X, Y), is of width Wand
heightH.

7.2 Graphics output 91

y -t-+-~--+-

(X,

x
(0, O)--~.L---------'---~ X

Figure 7.1 Raster display.

Catering to the special task of animation is a provision to read the
keyboard while the simulation is running. This allows the definition of
'command keys' useful to interrupt the action and control the course of
events.

We introduce the definition of module XYplane1 in the same style
adopted for modules In or Out:

DEFINITION XYplane;
CONST erase = 0; draw = 1;
V AR X, Y, W, H: INTEGER;
PROCEDURE Open;
PROCEDURE Dot(x, y, mode: INTEGER);
PROCEDURE IsDot(x, y: INTEGER): BOOLEAN;
PROCEDURE ReadKeyO: CHAR;
PROCEDURE Clear;

END XYplane.

The actions of the procedures can be easily guessed; the following is a
short description:

• Constants erase and draw are the values for the formal parameter
mode in procedures Dot and Line.

• Variables X, Y, Wand H report location and size of the visible
drawing area. They are defined after a call of procedure Open.

• Open initializes a drawing area.

1 The source text of a particular implementation of module XYplane is found in
AppendixC.

92 Input and output

• Dot draws (erases) a dot at coordinates x, y controlled by mode.

• IsDot tests whether a dot is drawn at coordinates x, y.
• ReadKey reads the keyboard. If a key was pressed prior to invoca­

tion, it is returned; else OX results.

• Clear erases all dots in the drawing area.

7.3 The fractal fern, completion of the example

We have now all the required knowledge to complete the initial ex­
ample of drawing fractals. Procedure Draw is capable of painting an
infinite variety of fractals. The fern is just one of them. We are therefore
interested in reading the parameters of the iterated function system
from the input stream. This has the distinct advantage that the user
does not have to change the program text and recompile module IFS for
each change in the parameters. We assume that the modules
RandomNumbers, XYplane, In and Out are in the computer's library.

The coordinates in module IFS are reals, whereas the display coor­
dinates of XYplane are integers. The two sets of coordinates are related
by the transformation

~ = Xo + ENTIER(X * e), 11 = Yo + ENTIER(Y* e)

where Xo and Yo are the pixel coordinates of the origin of the plane and e
measures the unit interval (in pixels).

With these preliminaries, we can restate our module IFS:

MODULE IFS;
IMPORT RandomNumbers, In, Out, XYplane;

VAR
aI, bl, cI, dl, eI, £1, pI: REAL; (* IFS parameters *)
a2, b2, c2, d2, e2, f2, p2: REAL; (* IFS parameters *)
a3, b3, c3, d3, e3, f3, p3: REAL; (* IFS parameters *)
a4, b4, c4, d4, e4, f4, p4: REAL; (* IFS parameters *)
X, Y: REAL; (* the position of the pen *)
xO: INTEGER; (* Distance of origin from left edge[pixelsl *)
yO: INTEGER; (* Distance of origin from bottom edge[pixelsl *)

7.3 The fractal fern, completion of the example 93

e: INTEGER; (* Size of unit interval [pixels] *)
initialized: BOOLEAN; (* Are parameters initialized? *)

PROCEDURE Draw*;
VAR

x, y: REAL;
xi, eta: INTEGER;
rn: REAL;

BEGIN
(1) ~ IF initialized THEN

REPEAT

(* command marked for export *)

(* new position *)
(* pixel coordinates of pen *)
(* temp. variable for random number *)

rn := RandomNumbers.UniformO;
IF rn < pI THEN

x:= al*X + bl *Y + el; y:= cl*X + dl*Y + f1
ELSIF rn < (pI + p2) THEN

x := a2*X + b2 *Y + e2; y := c2*X + d2*Y + f2
ELSIF rn < (pI + p2 + p3) THEN

x := a3*X + b3 *Y + e3; y := c3*X + d3*Y + f3
ELSE

x:= a4*X + b4 *Y + e4; y:= c4*X + d4*Y + f4
END;

(2) ~ X:= x; xi:= xO + SHORT(ENTIER(X*e»;
Y := y; eta:= yO + SHORT(ENTIER(Y *e»;
XYplane.Dot(xi, eta, XYplane.draw)

(3) ~ UNTIL "s" = XYplane.KeyO
END
END Draw;

PROCEDURE Init*; (* command marked for export *)
BEGIN

X := 0; Y:= 0; (* Initial position of pen *)
initialized := FALSE; In.Open;
In.Int(xO); In.Int(yO); In.Int(e);
In.Real(al); In.Real(a2); In.Real(a3);
In.Real(bl); In.Real(b2); In.Real(b3);
In.Real(cl); In.Real(c2); In.Real(c3);
In.Real(dl); In.Real(d2); In.Real(d3);
In.Real(el); In.Real(e2); In.Real(e3);
In.Real(fl); In.Real(f2); In.Real(f3);
In.Real(pl); In.Real(p2); In.Real(p3);

In.Real(a4);
In.Real(b4);
In.Real(c4);
In.Real(d4);
In.Real(e4);
In.Real(f4) ;
In.Real(p4);

94 Input and output

IF In. Done THEN XYplane.Open; initialized := TRUE
ELSE Out.String("Parameter error "); Out.Ln
END

END Init;

(4) -+ BEGIN initialized:= FALSE
ENDIFS.

Notes

(1) initialized is a Boolean variable that prevents execution of Draw
unless the parameters are properly initialized.

(2) Note the type transfer function SHORT.

(3) The keyboard is read and the computation ended if the "s" key is
hit.

(4) initialized is set to FALSE when the module is loaded.

The procedures Draw and Init are exported. They are commands,
since they have no formal parameters. Why are we dividing 'the work
into two procedures? The initialization performed by the statement se.;.
quence of Init could just as well be prefixed to the statement sequence
of Draw.

";.; .:" ..
I',;· .. ':',?"

!

Figure 7.2 Four stages in the computation of the fractal fern.

The reason lies in the nature of the method for drawing a fractal.
After the parameters have been initialized, executing Draw will start
drawing a fern. First, there are only a. few points. The fern becomes
visible after a short while. Now press the liS" key - the computation

7.3 The fractal fern, completion of the example 95

stops. If a continuation is desired, one may invoke Draw again - the
drawing continues and the fern gets darker and darker. Four stages
towards convergence are shown in Figure 7.2, the last the result of
about 30 minutes of computation.}

7.4 The Oberon system: a short digression

As a language, Oberon does not impose any particular requirement on
the system on which programs will execute. However, it was conceived
as a tool for developing an extensible operating system for a graphics­
based workstation. As suggested earlier in this chapter, the Oberon
system is composed of a hierarchy of modules, each providing an
abstraction on a suitable level (see Figure 1.1).

The Oberon system departs from the 'bandwagon trail' in many
important ways. An adequate treatment is the object of several journal
papers and two other books (see Reiser, 1991; Wirth and Gutknecht,
1989, 1992). In this section, we will restrict the discussion to two key
concepts:

• Execution of commands - instead of programs.

• A new and unifying role played by the notion of a text.

7.4.1 Execution of commands

Running a program on a conventional computer system entails the fol­
lowing steps:

(1) All the parts of the program (for example its modules) are
translated, and in a separate step2 coalesced into a single
executable unir that is stored on disk.

(2) The operating system affords controls that enable the user to
start programs. The program is loaded into memory, and control
passed to the first instruction.

(3) Upon termination, memory and possibly other resources, such as
files, are released.

} On a 15.6672 MHz Motorola MC68030 processor with MC68882 math co­
processor.

2 Usually performed by a program called the linkage editor.
3 Also termed the object program.

96 Input and output

Program loading is known to be a slow process, and, since memory is
released upon termination, a sequence of programs can only commu­
nicate through files. It is therefore not attractive to compose an interac­
tive application as a set of programs that are called from the operation
system's command interpreter.

The command activation mechanism of the Oberon system is meant
to support efficiently the design of extensible interactive programs. This
goal requires an architecture that has the following characteristics:

• The smallest unit of program text that can be executed from the
computer's controls is reduced: it is the exported procedure
without formal parameters - also termed the command in Oberon
terminology.

• To avoid the overhead of swapping programs in and out of
memory, the modules are loaded only once, when one of their
resources 1 is referenced first. After a module has been
dynamically loaded, it remains memory-resident for the rest of the
session (or until it is explicitly unloaded). At the time of the first
loading, the statement sequence of the module is executed.

• Oberon allows the user to execute commands using the
computer's controls, in particular the mouse. Once a command
gains control, it runs to completion. It does not require (or allow)
any further interactions with the user. 2

The result is that the Oberon command mechanism is highly efficient.
An important additional benefit of memory-resident modules is the fact
that commands may communicate through data structures in memory. This
makes the notion of abstract data types particularly relevant. They are
explored in Chapter 10 and Part III.

7.4.2 The role of texts

One of the first surprises of the novice gaining acquaintance with a
computer is the discovery that text displayed on the monitor is modal.
Some text is merely meant to be looked at. It is a volatile entity on the
screen, written by the system. Other text, written in a special place, will
be interpreted as commands, instructing the system what to do. The
special place is known as the command line. Still a third kind - close to

1 Procedures or global data.
2 With the exception of the CTRL-SHIFT-DEL key combination, which (on Ceres)

aborts the execution of a (long-running) command.

Command
activation

Tool texts

7.4 The Oberon system: a short digression 97

what a naive user would expect as normal- is text ready to be edited,
changed, stored or printed.

In Oberon, there is only one kind of text: it is editable, storable,
printable, and can be interpreted as commands. Texts exist in windows
called text viewers. In every text viewer, a simple editor is available. The
text modes are abolished.

The layout of a text viewer is depicted in Figure 7.3. The perimeter of
the viewer is marked with a thin line. On top is a title bar, rendered in
reverse video. A scroll bar with a position mark is placed at left. The
title bar contains the viewer name separated by a vertical bar" I" from
the commands System.Close, System.Copy, System.Grow, Edit.Locate and
Edit.Store. These commands can be executed with the mouse and
perform operations on tH.e viewer or on the text contained in the viewer.

Position mark Title bar

PROCEDURE Draw*; (* command marked for export *)
VAR

x, y: REAL; (* new position *)
xi, eta: INTEGER; (* pixel coordinates of pen *)
rn: REAL; (* temp. variable for random number *)

_+ _~5~I~n_~i~li~~~:rfl~Flf\l~_~~;_____ __

Scroll bar Editable text

Figure 7.3 Layout and elements of an Oberon text viewer.

Commands are identified through a qualified identifier of the form
Mod.Proc, where Proc is the name of the command and Mod denotes the
module in which Proc is declared. Oberon provides the facility to
execute any command by simply pointing at its name - typed anywhere
in a text - and pressing the execute key of the mouse.

The fact that commands are activated out of text viewers allows the
user to create a highly efficient working environment. One simply types
the group of commands that comprise the current work into a text
viewer and stores the text on disk. Such a text is appropriately termed a
tool. Figure 7.4 portrays such a tool, written to execute the commands
from our sample module IFS. Three commands are prepared: IFS.Init,

98 Input and output

Text output

IFS.Draw and Paint.Print, the last will print the file XYplane.Pict that can
be created from a XYplane viewer. The mouse pointer (arrow) is over
IFS.lnit, which appears underlined. That means the user is pressing the
execute key. Upon release of that key, IFS.lnit will execute.

Note that tool texts in text viewers are like menus of conventional user
interface designs - except that they offer a lot more flexibility.

IFS.Tool I System.Close System. Copy Syste

IFS.lnit *
IFS.~w

---- ----~-~!~~:-~~~~!--~~~~~-~~:-~~~~~-------------------------------!

Figure 7.4 A tool viewer; the command IFS.Init is about to be executed.

If commands produce output, a new text viewer is opened and the
output text displayed within its perimeter. Again, the text can be
modified, printed and stored. Module Out can be used to create such
text output.

7.4.3 Modules In and Out

The abstractions of modules In and Out are general enough to be im­
plementable on any computer. Such implementations differ in the way
the input and output streams are defined. The input stream may be the
keyboard or a file - the output stream a display device or again a file. In
the Oberon system both streams are texts that are displayed in viewers.

The output Invocation of Out.Open opens an empty text viewer with title Out.Text.
stream The text displayed in that viewer represents the output stream. Each

time a write procedure is called, the textual addition becomes visible in
the viewer. The important thing to remember is that, even though
viewer Out. Text is home of the output stream, it is also a normal text
viewer. That means that the displayed text can be edited, stored or
printed at any time the system admits input from mouse and keyboard.
Such modifications do not interfere with the fact that further calls of
write procedures add output at the end of the text.

The input stream The input stream is also embedded in a text displayed in a text viewer.
There are three possibilities, depending on the character that follows

7.4 The Oberon system: a short digression 99

the command name whose execution led to a call of In.Open:

(1) If that character is an asterisk, "*", then the text displayed in the
marked viewer represents the input stream that begins at the
first character of that text. A viewer may be marked by pointing
at it and pressing a special mark key. An asterisk identifies the
marked viewer.

he input stream starts here ...

nnnnnnnn~nnnnnnnnnnnnJ ~mm~
The marked viewer lJ ___ ~ ________________________________ j

Figure 7.5 The input stream is in the marked viewer.

(2) If that character is the upward-pointing arrow, "t",l then the text
that contains the most recent selection contains the input stream.
The first selected character is also the first character of the
stream.

InText I System_Close S stem_Co y

The selection

Figure 7.6 The input stream starts at the first selected character.

(3) If neither case 1 or case 2 applies, the text from which the com­
mand was executed contains the input stream. The stream starts
with the character that follows the blank after the command
name.

1 In the standard ASCII character set,"t" is represented by the caret "A", with
ORD("A") = 94.

100 Input and output

My.Tool I System.Close System.Copy System.(

~(The input stream starts here

Figure 7.7 The input stream starts after the command name.

7.4.4 Module XYplane

If a command results in the execution of XYplane.Open then a viewer
entitled XYplane opens in the user track. The viewer consumes the
whole track. However, it is created as an overlay; hence, when the
command System.Close is executed, the previous screen is restored.
After a plane is opened, draw procedures are used to create a graphic.
The graphic may be stored to disk using the command XYplane.Store
from the title bar.

Figure 7.8 shows an XYplane viewer that was opened as a
consequence of executing the command IFS.Init. A fractal fern is in the
process of being painted. The inset enlarges the tool from which the
command IFS.Draw was executed.

7.5 Summary

It is debatable whether a programming language should define input
and output operations. Our point of view is that appropriate abstrac­
tions should be provided through modules that extend the operating
system.

In this chapter, we have provided the definition of two modules, In
and Out, that are based on the abstraction of the input and output stream
and will be used in the examples in this book. We have introduced a
useful notation called the definition module for documentation purposes.

Abstractions for graphics output are even less established than tex­
tual input and output. A module XYplane is presented that allows
writing to individual pixels of the display and reading the keyboard.

Using those input and output modules, we have completed the
example of the fractal fern that was begun in Chapter 6. An important
notion is that of the command - a parameter-less procedure exported by
a module. The command is the unit accepted for execution by the
Oberon operating environment.

Viewer XYplane, overlay over
user track

Edo.Open
EdilShow
Edo,S .. n:h
EOIS.or.

7.5 Summary 101

IFS.TooI S stem.Clos

IFS.lnit
IFS.Dra

Command that
started simulation

Figure 7.8 An XYplane viewer, opened after execution of IFS.lnit.

We have concluded this chapter with a digression: a short
introduction to the basic user interface of the Oberon system based on
viewers and non-volatile texts. A particular implementation of modules
In, Out and XY plane is portrayed in this context.

7.6 Exercises

7.1 [Summation of infinite series] Write procedures to compute sin (x) for
x: REAL according to the series:

. x 3 x 5 x 7

sm(x) = x - - + - - - + ...
3! 5! 7!

Find an appropriate condition for terminating the addition. Count the number
of required terms to obtain the desired accuracy. Evaluate sin (x) for various
arguments and compare the results with a function table (or the result

102 Input and output

produced by a mathematical library). If you observe incorrect results, explain.
Does the use of double precision (type LONGREAL) help?

Note: Efficient and accurate computation of mathematical function requires
mathematical sophistication. We recommend the use of standard libraries.

7.2 [Harmonic function] Write a procedure to compute the harmonic function H(n)
for integer arguments n:

1 1 1
H(n) = 1 + - + - + ... + -

2 3 n

Compute this function in two ways: once by beginning the summation with the
first term (1), once by beginning with the last (lIn). Compare the results for
large n and explain any difference.

7.3 [Square root] Write a function procedure to compute the square root Y of a real
argument x according to Newton's method; that is, by computing a sequence of
Yi until two consecutive values differ by less than a specified small value:

Formulate an invariant first. Is Yi+l = Yi a correct stopping condition? How
accurate is the result?

7.4 [Input of integer] Using only procedure Char of module In implement the
procedure Int of the same module. Hint: ORD("O") = 48, ORD("l ") = 49, ...

7.5 [Calculator] Implement a calculator that uses RPN notation (reversed Polish
notation). The number format is that of reals. Four registers X, Y, Z and T form
a stack. Command Enter pushes new numbers onto the stack according to the
statement sequence T := Z; Z := Y; Y := X; X := newNumber. Commands Add
results in X := X + Y; Y := Z; Z := T. Commands Suht, Mult and Div are defined
analogously.

Provide visual feedback as shown on the right. Numbers > 3.14159
entered are prefixed with a ">" sign. The results show an > 2.71828
explanative sign such as a "+". + 5.85987

Insure that only syntactically correct numbers can be
entered. Display an error message in the case of a violation. When the module
is first loaded, the registers are initialized to o. Hint: study the operation of a
calculator from Hewlett-Packard Company.

7.6 [IFS] Implement module IFS. Prepare the text shown in Figure 7.9 in an Oberon
text viewer with title IFS.Text. The second parameter set will produce a fractal
that looks like a maple leaf.

7.6 Exercises 103

IFS.Text S stem.Close S stem.Co S stem.Grow Edit.Search

Fractal fern
320 0 64
0.0 0.85 0.2 -0.15 0.0 0.04 -0.26 0.28
0.0 -0.04 0.23 0.26 0.16 0.85 0.22 0.24
0.0 0.0 0.0 0.0 0.0 1.6 1.6 0.44
0.01 0.85 0.07 0.07
Fractal maple leaf
90 0 450
0.65 0.65 0.32 -0.32 -0.013 -0.026 -0.32 0.32
0.013 0.026 0.32 0.32 0.65 0.65 0.32 0.32
0.175 0.175 0.2 0.8 0.0 0.35 0.0 0.0

....... O ... 3. Q:~ Q:.~ 9.:~

Figure 7.9 Sample input viewer for module IFS.

7.7 [Module Shapes] Using procedure Dot from module XYplane, implement
module Shapes with definition

DEFINITION Shapes;
IMPORT XYplane;
PROCEDURE Hline(x, y, I, mode: INTEGER);
PROCEDURE Vline(x, y, I, mode: INTEGER);
PROCEDURE FilledRect(x, y, w, h, mode: INTEGER);
PROCEDURE Rect(x, y, w, h, mode: INTEGER);
END Shapes;

Formal parameter mode takes the values XYplane.erase and XYplane.draw. Rline
and Vline draw horizontal or vertical lines of length I starting at (x, y). FilledReet
draws a filled rectangle with a corner at coordinates x and y, width wand
height h. Reet produces a 'wire frame' rectangle. It is assumed that
XYplane.Open is issued prior to the use of the procedures exported by Shapes.

Remark: For real applications, module Display, which is part of the Oberon
system, affords a far more efficient solution to drawing a filled rectangle (see
next exercise).

7.8 The standard Oberon library has a module Display for basic output to the
screen. Among its export is

PROCEDURE ReplConst(col, x, y, w, h, mode: INTEGER)

which draws a rectangle, filled with color col, with lower left corner at position
x, y, width wand height h. Use Display.ReplConst to implement module Shapes.

Procedure ReplConst does not limit output to the drawing area of XYplane (as
XYplane.Dot does). Make sure that drawing is limited to the visible area of the

1 04 Input and output

viewer. Hint: use the variables XYplane.X, XYplane.Y, XYplane. Wand XYplane.H
for clipping.

Display.white and Display.black are the color values, Display.replace is used in
place of mode. Note that Display.white and Display.black are defined relative to a
black background.

Compare the speed of the two implementations of Shapes. If one is faster,
discuss the reason why.

7.9 [Drawing a line] Bresenham's algorithm for lines is used to draw a straight line
between the coordinate origin and the endpoints a, b
where a ~ b by marking dots in the discrete raster using
XYplane.Dot. In order to make the computation of the
dot coordinates fast, integer arithmetic is used
exclusively.

The principle of Bresenham's algorithm is the
following: proceed from x = 0 towards x = a, in each
step incrementing x by I and y by 0 or 1. Hint: use a
variable h = (bx - ay + b - a/2), and increment y if h > O.

7.10 Add a procedure with heading

PROCEDURE Line(xl, yl, x2, y2, mode: INTEGER)

a

to module Shapes that draws a line between the points with coordinates xl, yl
and x2, y2. Use appropriate coordinate transformations such that Bresenham's
algorithm becomes applicable for all xl, yl, x2 and y2 values. Hint: distinguish
between the eight octants of the plane.

7.11 [Turtle Graphics] Implement module Turtle with definition

DEFINITION Turtle;
IMPORT Shapes;
PROCEDURE SetPen(x, y: INTEGER);
PROCEDURE Move(l: INTEGER);
PROCEDURE TurnLeft;
PROCEDURE TurnRight;
END Turtle.

A pen draws curves composed of vertical and horizontal lines. Turtle has a
global state comprised of the pen position and a direction that is restricted to
north, west, south and east. SetPen sets the pen position to x and y. Move draws
a line segment of length I emanating at the current position. After Move, the pen
position is at the end of the new line segment. TurnLeft and TurnRight turn the
direction relative to the current direction by a right angle.

Discuss the implication of Turtle relative to the abstraction of the stream.

7.12 [Mandelbrot set] Write a module Mandelbrot that displays the Mandelbrot set
M. M is composed of those points c of the complex plane for which ziremains

7.6 Exercises 105

bounded as i tends to infinity, where the values Zjare computed according to

Zo = 0, Zi = ZT-1 + c, i = 1,2, ...

Select a square of N by N pixels in the XYplane viewer. Map the raster defined
by the pixels onto an area of the complex plane. Each complex point so defined
is one of the c values for which the sequence {Zj} is computed. Select a maximal
value, Imax say, for the index i. If for any i < Imax: I Zj I > 2, then color the pixel
white. If the maximal value is reached, color the pixel black-the corresponding
c value is in the Mandelbrot set (or close to it),

The number of pixels N, the maximum value of iteration Imax and the
location of the square in the complex plane are parameters to be read from the
input stream. A good first choice is

-2.1:5 Re(c) :5 0.7, -1.4 :5 Im(c) :5 1.4.

Zoom into various areas for example, try the values

-0.66
-0.5373
-1.8293
-0.793

~ Re(c) ~
~ Re(c) ~
~ Re(c) ~
~ Re(c) ~

-0.41,
-0.5195,
-1.7173,
-0.7,

0.49
0.6597
-0.056
0.0466

~ Im(c)::; 0.74
~ Im(c)::; 0.6775
~ Im(c)::; 0.056
~ Im(c)::; 0.14

7.13 If you have a color monitor, color the pixels according to the index i for which
I zi I ~ 2 for the first time. Experiment with various color assignments. If you
have a monochrome monitor, divide the range 0 ~ i ~ Imax into black and white
bands.

7.14 The points

Zl = C, Zi = ZT-l + c, i = 2,3, ...

are said to form an orbit. Add two commands StartOrbit and StepOrbit to the
module Mandelbrot. StartOrbit selects a c value, StepOrbit steps through the
orbit, point by point. Make the points of the orbit visible. If an orbit point is
inside the Mandelbrot set, show it in white; if it is outside, draw it black. Use a
mark that is bigger than just a pixel so that the orbit point clearly stands out.

7.15 [Deterministic IFS] Write a deterministic IFS module. Divide the drawing area
of XYplane into two square areas. In each area, a coordinate system with origin
at the lower left corner is assumed. In the first square, draw an initial shape, for
example a filled rectangle. Then apply each one of the four transformations to
every point that is black (use XYplane.IsDot). Draw the transformed points in
the second square. Erase the point that is thus processed. Once all points in the
first square are processed, switch the role of the two squares. Iterate until the
stop key is pressed. The first four iterations together with iteration 100 are
depicted in Figure 7.10.

106 Input and output

Figure 7.10 The 1st, 2nd, 3rd, 4th and 100th iterate of the deterministic IFS
algorithm.

References

Even more instructive is a version, where
four sweeps are made over the pixels of the
source area. In each sweep, one of the
transformations is applied. The pixel in the
source area is cleared in the fourth sweep.

A study of the evolution of the
deterministic algorithm should take away
the mystery - probably prevailing after first
observing the probabilistic drawing
algorithm.

Reiser M. (1991). The Oberon System: User Guide and Programmer's Manual.
Wokingham: Addison-Wesley.

Wirth N. and Gutknecht J. (1989). The Oberon system. Software-Practice and
Experience, 19, 857-93.

Wirth N. and Gutknecht J. (1992). Project Oberon: The Design of an Operating
System and Compiler. Wokingham: Addison-Wesley.

Synopsis

Part I contains all the necessary knowledge needed to write
complete Oberon programs. However, if the language were
restricted to that scope, a solution to most real problems would
be tedious at best - but more likely downright impractical.

The reason is that each variable is identified with a single
name. In Part II, we will introduce two structured types - the
array and the record - each comprising elements of basic types.

Records and arrays are static structures. There are situations
where the volume of data and the relationship of data elements
changes dynamically. The pointer, in conjunction with records,
allows the construction of such dynamical data structures as lists,
trees or graphs.

Using these tools, we will develop a realistic sample program:
simulation of a queue. We will write the program in a structured
way known as stepwise refinement. In this context, we will
discover the virtue of hiding details in modules - a technique
called data abstraction.

8 Type declarations, array and
record types

So far, we have given each variable an individual name. This may be te­
dious - if not downright impractical - in the case of a large number of
variables of the same type. In other situations, it is desirable to refer to a
collection of variables, possibly of different types, with a common
name. In this section, we will encounter two such structured types that
are familiar in programming languages: the array and the record.

The model for the array data structure is the indexed variable of
mathematics:

aU]
aU, j1

The array carries a name for the whole set of variables. Individual array
elements are selected with a computable index. Obviously, arrays play
a major role in numerical programs. But they also model tables and
sequences of characters.

Records have their origin in commercial data processing. They rep­
resent collections of variables that are typically of different types. A
personnel record with fields for name, address, date of birth and salary
furnishes an often used example. Records are also of great utility in
system programming, where they are known as control blocks. Finally -
in conjunction with the pointer type - records provide the basis to
construct dynamic data structures such as lists and trees.

A declaration is a specification of an identifier. Through the decla­
ration, the given identifier represents an object of the Oberon language
such as a variable or a procedure. Oberon treats the type also as an
object that may be declared. Such type declarations go beyond a mere
convenience - together with the module concept, they are the basis for
abstract data types - a topic that will be introduced in Chapter 10 and
expanded in Part III.

109

110 Type declarations, array and record types

8.1 Type declaration

Type
compatibility

The declaration binds an identifier to properties of the object that it
represents. In Oberon, the declared properties are constant and valid
within the scope of the identifier. While the value of a variable may
change, its declared properties remain the same throughout the time of
its existence.

The concept of type is important because it divides the variables into
disjoint classes. Each type defines the set of values that a variable may
assume. Inadvertent assignments among members of incompatible
classes can therefore be detected by mere inspection of a program's text
without executing the program. Similarly, factors in an expression and
the pairing of actual to formal parameters can be checked· for
compatibility.

In Chapter 3, we have encountered the primitive types that reflect
properties of the underlying computing machine. The primitive types
are SHORTINT, INTEGER, LONGINT, REAL, LONG REAL,
BOOLEAN, SET and CHAR. That the standard types are named with
predeclared identifiers rather than with reserved keywords suggests
that the user may declare identifiers to introduce additional types.

Such a type declaration in fact exists, for example

TYPE
Time* = REAL;
Vector = ARRAY 3 OF REAL;
Person = RECORD first, given: Name END;

The general syntax of a type declaration is expressed by:

I TypeDeclaration = ident [1/*"] 1/=" type.
type = qualident I ArrayType I RecordType I
. PointerType I ProcedureType.

The asterisk is the familiar export mark that renders the identifier vis­
ible in importing modules. The qualident represents a type - either one
of the predeclared types or one declared by the programmer. Array and
record types are covered in subsequent sections, pointer types are
covered in Chapter 9 and procedure types await Chapter 11.

Recall that the operands of operators must be expression-compatible (see
Table 4.1). Similarly, the type of the designator in an assignment Oeft­
hand side) must be assignment compatible with the type of the expression
of that assignment (Table 4.3).

Variable
declaration

8.1 Type declaration 111

Generally, for a type T2 to be (assignment-) compatible with another
type Tl, we require that

(1) T2 be included in Tl, that is,
LONG REAL ~ REAL ~ LONGINT ~ INTEGER ~ SHORTINT

(2) 12 be declared equal to Tl.

For example in the type definition,

TYPE Tl = REAL; T2 = Tl; T3 = INTEGER;

T2 is compatible with Tl (equal), and T3 is compatible with Tl and T2
(included).

However, in the type declaration

TYPE
Al = ARRAY 10 OF INTEGER;
A2 = ARRAY 10 OF INTEGER;
A3 = AI;

only A 1 and A3 are compatible. A 1 and A2 are incompatible, even
though the specifications on the right-hand side of the equal sign are
the same. Technically, rule (2) is known as a name equivalence - as op­
posed to the structural equivalence of A 1 with A2.

A variable, t say, may be declared to be of a certain type in either of two
ways:

TYPE T = someType; VAR t: T;

or simply

VAR t: someType;

In both cases, t is of the same type - only, in the second case, the type
remains anonymous (unless, of course, someType is an identifier). For
example, in the declaration

VAR a: AI; b: ARRAY 10 OF INTEGER;

the type of b is an anonymous array type. Furthermore, because of the
name equivalence rule, variable b is not type-compatible with a.

112 Type declarations, array and record types

8.2 Arrays

8.2.1 The array type and the array declaration

An array is a data type that represents a set of elements that are all of
the same type - the element type. The number of elements is fixed and is
called the array's length. The name of an array variable refers to all
elements. An individual member is identified with a number - the so­
called index. Indices are integers between 0 and the length minus one.

The array is said to be a structured data type. It is a homogeneous
structure, because all elements are of the same type. The structure is
defined mathematically by the mapping of the set of integers
{O ... length - I} onto the set of values defined by the element type (Figure
8.1).

a: ARRAY N OF elementType

a: I, ali] 1

o i
index

Figure 8.1 An array.

N-1
length = N

In the following example of an array declaration, the variable v con­
sists of 3 elements, each of type REAL:

V AR v: ARRAY 3 OF REAL;

If we wish to make the array type explicit, we may give it a name, for
example Vector:

TYPE .Vector = ARRAY 3 OF REAL; V AR v: Vector;

The array type declaration haa.the syntax

I ArrayType = "ARRA Y" length {" ," length} "OF" type.
length = ConstExpression.

We see that the array length may be expressed by a constant expression.
For example, we could declare type Vector as follows:

8.2 Arrays 113

CONST n = 3;
TYPE Vector = ARRAY n OF REAL;

Multidimensional The elements of an array are all of the same type. The element type,
array however, is not restricted to the basic or unstructured types. In partic­

ular, the array elements may themselves be arrays. An array of arrays is
called a multidimensional array, because each index may be considered as
spanning a dimension in a Cartesian space. For example a three-di­
mensional array type, ThreeD, with element type T is declared as fol­
lows:

Predeclared
function LEN

TYPE ThreeD = ARRAY kI OF
ARRAY k2 OF

ARRAY k3 OF T;

The total number of elements of type Tis klxk2xk3. For such a multi­
dimensional array declaration, Oberon admits the shorthand notation

TYPE ThreeD = ARRAY kI, k2, k3 OF T;

The outermost nesting level is said to be dimension zerb. In the example,
this is the index that ranges over {O ... kI - I}. The next nesting level
corresponds to dimension one, and so on.

The predeclared function

LEN(a, n)

produces the length of dimension n of an array a. For example, if a is of
the type ThreeD, then LEN(a, 0) = kI, LEN(a, 1) = k2 and LEN(a, 3) = k3.
LEN(a) is a shorthand notation for LEN(a, 0).

8.2.2 The array designator, assignment and expressions

An element in an array is a variable that is designated by the array's
identifier followed by a selecting index that is set in square brackets. For
the example, v: Vector has the elements v[O], v[1] and v[2].

Syntactically, v[i] is an array designator and [i] is the selector. Selectors
are integer expressions in square brackets. Thus, a selector may be
computed - a fact on which the prominent role of arrays in pro­
gramming is founded. The array designator has the syntax:

114 Type declarations, array and record types

Rules

Abbreviated
index notation

I designator = qualident { "[" ExpList "]" }.
ExpList = expression {"," expression}.

The expressions must be of integer type, and the number of entries in
the expression list must not exceed the dimension of the array declara­
tion.

The semantics of an array designator a[expr] observe the straightfor­
ward rules:

(1) The expression expr is evaluated and results in the integer j, say.

(2) [j] is the selector of the designated array element aU], which
results in a variable. This variable may enter as a factor in an
expression, serve as actual parameter or appear on the left-hand
side of an assignment statement.

(3) If the designator has two selectors, a[exprl][expr2], then exprl is
evaluated and applied to a. The resulting variable must again be
of array type. Next, expr2 is evaluated and applied to that vari­
able.

The generalization of rule (3) to more than 2 selectors is self-evident. It
is obvious that the value of expr must be within the range 0 ~ expr <
LEN (a). What happens if this condition is violated depends on the
computing system used. Normally, Oberon programs will come to an
abnormal halt.1

The syntax of designators allows for a similar abbreviation as used in
the corresponding declarations, namely A[i, j] is equivalent to A[i] [j]
etc. For example consider the declaration

TYPE
Vector = ARRAY n OF REAL;
Matrix = ARRAY m OF Vector;
Tensor = ARRAY k OF Matrix;

VAR x, y: Vector; A: Matrix; T: Tensor; i, j: INTEGER;

Then we have

xU]
AU]
AU][j] or AU, jl

ith element of array x (type REAL)
sub-array of A (type Vector)
jth element of ith sub-array (type REAL)

lSince checking array bounds consumes computing cycles, some compilers afford
options to switch range checking on and off.

Array
assignments and
expressions

8.2 Arrays 115

T[i] ith sub-array of T (type Matrix)
T[i][j] or T[i, j] jth sub-array of ith sub-array of T (Type Vector)
T[i][j][k] or T[i, j, k] element of type REAL

Of course, more complicated expressions, such as A[i*j + k] may substi­
tute for i, j and k.

An array variable may be the recipient of an assignment. The only array
expression, however, is a solitary array designator or a string. Array
variables cannot be compared with the exception of the type ARRAY n OF
CHAR (see Section 8.2.6).

For example, considering the above declarations, the following are
valid array assignments:

y := x; y := A[i + 1]; A[j]:= T[i, j];

After an assignment y := x, y is equal to x, element by element.

8.2.3 Parameters of array type

Arrays can be parameters of procedures. The array type appears ex­
plicitly in the formal parameter section. For example,

TYPE: Vect = ARRAY n OF REAL;

PROCEDURE Norm(v: Vect): REAL;
V AR s: REAL; j: INTEGER;
BEGIN

j:= 0; s:= 0;
WHILE j < LEN (v) DO s := s + v[j]*v[j]; INC(j) END;
RETURNs

END Norm;

A declaration of formal parameters that leaves the array type
anonymous, is illegal; an example is the heading

PROCEDURE Norm(v: ARRAY n OF REAL): REAL;

Oberon provides a relaxation of the need to give array parameters ex­
plicit types: the open array parameter, to be discused in the next section.

If the formal parameter is of array type, the actual parameter is al­
ways a solitary array designator or a string. We distinguish between value

116 Type declarations, array and record types

Array designator
as actual
parameter

and variable parameters - the same rules as in the scalar case apply.
Recall the following:

• A formal value parameter is a local variable of the procedure that
is initialized at the time of the call. When the procedure's scope is
activated, memory is allocated for the formal array parameter.
The corresponding actual parameter is assigned to the formal
parameter.

• A formal variable parameter (keyword "V AR") represents the
actual parameter, and assignments made to the formal parameter
within the scope of the procedure are reflected in the actual
parameter. No memory is tied up and no assignment takes place.

We emphasize that an array assignment can be an expensive opera­
tion. Value parameters for arrays should therefore be used only if truly justi­
fied. The lack of an array constant (an exception is a string; see Section
8.2.6) should make such justification a rare case. Observing this
recommendation, our previous example, procedure Norm, should really
have the heading

PROCEDURE Norm(VAR v: Vector}: REAL;

even though parameter v remains unchanged.

Of course, an array designator may serve as an actual parameter. If it is
paired with a value parameter, the designator is simply evaluated and
the result assigned to the formal parameter. What happens in the case
of a variable parameter is more interesting:

(1) In executing the call statement, the selector is evaluated and ap­
plied to the array, resulting in a variable.

(2) That variable is substituted for the formal parameter.

This substitution is sometimes referred to as call by reference. Note that
there exists a more general substitution mechanism where the
unevaluated designator is substituted for the formal parameter. This is
known as call by name, but is not present in Oberon.

Consider another example, procedure SetZero, which initializes an ar­
ray passed as parameter:

PROCEDURE SetZero(VAR v: Vector};
V AR j: INTEGER;
BEGIN

j := 0;
WHILE j < LEN(v} DO v[jl := 0; INC(j) END

END SetZero;

8.2 Arrays 117

Assuming the earlier declarations (that is, x: Vector; A: Matrix), we may
call SetZero as follows:

SetZero(x) ;
i := 2; SetZero(A[i + 1]);

The second call statement illustrates the rule governing array designa­
tors as actual parameters. The selector [i + 1] is evaluated, resulting in
[3]. Then variable A[3] is passed to the procedure. it is of compatible
type Vector. After completion of the call, all elements of the 3rd sub­
array of A are zero. The other elements of A remain unaffected.

Loops over arrays The two preceding examples, simple as they are, exhibit a typical
feature of array processing: the loop ranging over all elements. The
while loop is recommended for that purpose. The integer that is in­
cremented in the loop is called the control variable. The predeclared func­
tion LEN is convenient to refer to the array length. Upon termination,
the control variable has the definite value LEN(v).

8.2.4 The open array parameter

To appreciate the rationale for the introduction of the open array pa­
rameter, consider the following example. A module LinAlg is being
created by a group of numerical analysts. It should offer a collection of
matrix methods using one- and two-dimensional array types, for ex­
ample

DEFINITION LinAlg;
CONST n = 100;
TYPE

Vector = ARRAY n OF REAL;
Matrix = ARRAY n, n OF REAL;
... (* Further declarations, including procedures *)

END LinAlg.

But the designers face a dilemma: what array bound n should they
choose? If the bound is high, considerable storage is consumed and
quite likely wasted in most cases. If the bound is chosen low, important
users will probably be frustrated.

For the user, there is a dilemma too. Suppose an existing program
should be converted to be a client of LinAlg. This requires the owner to
convert all array types to LinAIg.Matrix and LinAIg.Vector, a task which

118 Type declarations, array and record types

Matrix
multiplication

is tedious and error prone. The solution is provided by the open array
parameter.

The open array parameter is a formal type that is compatible with any
actual array parameter with the same dimension and the same element type. Its
syntax is

I FormalType = {"ARRAY" "OF"} qualident.

The previous example SetZero can benefit from making its parameter an
open array:

PROCEDURE SetZero(V AR v: ARRAY OF REAL);
V AR j: INTEGER;
BEGIN

j:= 0;
WHILE j < LEN(v) DO v[jl := 0; INC(j) END

END SetZero;

Formal parameter v is an open array. Any actual (one dimensional)
array parameter with element type REAL is compatible with v. The
array bound of v is left open - hence the name open array parameter.

Open array parameters may be multidimensional too. For example,

ARRAY OF ARRAY OF REAL

is compatible with all two-dimensional arrays with element type REAL.

A general procedure for matrix multiplication is usually given as an
example for array processing. Let

A: left operand (m by I matrix)
B: right operand (l by n matrix)
C = A x B: product (m by n matrix).

The matrices are stored in two-dimensional arrays of appropriate
lengths. The procedure for multiplication reads

PROCEDURE Mult(V AR A, B, C: ARRAY OF ARRAY OF REAL;

V AR i, j, k: INTEGER; s: REAL;
BEGIN i:= 0;

WHILE i < m DO j:= 0;
WHILE j < n DO k:= 0; s:= 0;

m, n, 1: INTEGER);

B.2 Arrays 119

WHILE k < 100 s:= s + AU, k]*B[k, j]; INC(k) END;
CU, j] := s; INC(j)

END;
INC(i)

END
END Mult;

Formal parameter C yields the result and must be a V AR parameter. A
and B may be value parameters. However, as stated earlier, a V AR pa­
rameter is recommended for efficiency reasons.

8.2.5 The array as a table

The common characteristics of the examples we have given so far is the
fact that the loops always range over all elements of the arrays.

One of the typical applications of the array structure is a table that
may be updated, sorted and searched for entries. In this case, loops
often run only until an appropriate element is found.

To give a simple illustration, we wish to find the index j that corre­
sponds to a given entry x in a table t:

TYPE Table = ARRAY n OF INTEGER;
V AR t: Table; j, x: INTEGER;

j:= 0;
WHILE (j < n) & (t[j] # x) DO INC(j) END;

From the negation of the continuation condition, applying De Morgan's
law, we infer that upon termination of the while statement, the
condition (i = n) OR (t[j] = x) holds. If the first term is FALSE, the
desired element is found and j is its index; if j = n, no t[j] equals x.

The number of inspections needed to find x grows, on average, lin­
early with the size of the table. Hence this algorithm is also known as
linear search.

Let us briefly consider a slightly changed version of the above pro­
gram, namely

WHILE (t[j] # x) & (j < n) DO INC(j) END;

The interchange of the two Boolean factors appears quite legitimate at
first sight. But if we consider the case where all elements differ from x,
we find that at the very end the relation t[n] # x would be tested,

120 Type declarations, array and record types

Binary search

Loop invariant

implying access to an undeclared element. Hence this version is wrong.
We now recall that the Boolean connectives p & q and p OR q have
been defined in the form of a conditional evaluation of the second
operand. As a consequence, they are not commutative. This conditional
evaluation avoids, in the first and correct version, evaluation of t[j] # x
whenj=n.

A more challenging problem is the search for a desired element, x say,
in an array that is ordered; that is, t[i] ~ t[j] for all i and j: 0 ~ i < j < n
where n denotes the size of the table.

The best technique in this case is the so-called binary search: inspect
the middle element, then apply the same method to either the left or the
right half of the array:

PROCEDURE Search(VAR t: Table; x: INTEGER; VAR i: INTEGER);
V AR j, m: INTEGER;
BEGIN

i := -1; j:= LEN(t);
WHILE j # i + 1 DO (* t[i] <= x < t[j] *)

m := (i + j) DIV 2;
IF t[m] <= x THEN i:= m ELSE j:= mEND

END
(* (t[i] <= x < tUD & (j = i + 1) *)

END Search;

Formal parameter i reports the position of x; hence it has to be a vari­
able parameter. This is not the case for x, for which we choose a value
parameter. A value parameter is also admissible for t, the table.
However, for the stated reasons of efficiency, a variable parameter is
advisable. Another good possibility is to make t an open array para­
meter.

We take this opportunity to use the formalism introduced in
Chapters 4 and 5 to give a proof of this elegant piece of program. A
clever· trick avoids the need to consider special cases: the table t is
augmented with two virtual elements t[-1] = -00 and t[n] = 00. The vir­
tual elements enter only into the predicates - they are not accessed in
the statements.

The loop invariant is the assertion

t[i] ~ x < t[j].

8.2 Arrays 121

Formal parameter i and local variable j initially satisfy i = -1 and j = n.
Using the value of our virtual elements, the invariant is easily estab­
lished.

If the left branch of the if statement is taken, the value of i changes.
We know, however, from the guard that t[i] ~ x. Since j remains un­
changed, the invariant still holds.

If the right branch is activated, it follows that -(t[j] ~ x), which is
equivalent to x < t[j]. Again, since in this case i remains unchanged, the
invariant remains valid.

Variant function In order to prove the program correct, we have to find a variant func­
tion that decreases monotonically with each iteration. In our case,

j-i

is this function.
At the start of each iteration, i + 1 < j. It follows that i < m < j after the

assignment to m is executed. Hence both assignments, i:= m and j:= m,
decrease the value j - i.

The binary search is therefore guaranteed to stop and to yield two
indices i and j such that j = i + 1 and x is in the interval t[i] ~ x < t[j]. Test
element x is found if 0 ~ i < n 'and t[i] = x. If, on the other hand,

• i =-1

• i=n-1

then x < t[O];

then x > t[n -1].

before END of loop search x = 15

m

3 23 -1 3 23

/ ~
14 3

/ 14" /69""

2 15 2 3 10 15 31 70

L ~ L ~ L ~ L
t[i]: 110 14 15 23 31 69 70

i: -1 0 2 3 4 5 6

~
951

7

Figure 8.2 Analysis of the binary search algorithm.

8

122 Type declarations, array and record types

String
termination

Figure 8.2 portrays the binary search algorithm at work. The tree
displays of all possible sequences t[m] that may occur for any argument
x. The interpretation as a tree reveals that the number of inspections is
given by log2(n) - a substantial saving over the linear count.

8.2.6 Strings and the type ARRAY n OF CHAR

Besides matrices and tables, texts are a third major application of arrays.
A natural model of a text is an ordered sequence of characters. The
character array (that is, an instance of the type ARRAY n OF CHAR)
represents this notion in Oberon terms. Some sample declarations are

CONST n = 4048; m = 32;
TYPE

Text = ARRAY n OF CHAR;
Pattern = ARRAY m OF CHAR;
NameList = ARRAY n OF ARRAY m OF CHAR;

VAR
txt: Text; pat: Pattern; nl: NameList; str: ARRAY 5 OF CHAR;

Oberon affords facilities to assist in the manipulation of character ar­
rays:

(1) String constants may be assigned to a character array.

(2) Character arrays can be compared; that is, they may form rela­
tions <, <=, >, >=, = and #. Variables and string constants can be
mixed in such comparisons.

A string is represented as an ARRAY n OF CHAR with n greater than
the length of the string (in characters). The string is terminated with the
special character ox. Similarly, if s denotes a character array, its textual
value is represented by the array elements up to the first occurrence ox.
The length of a string s is the index of the terminator ox. It should not be
confused with LEN(s), the number of array elements ois.

The effect of the assignment s := "this" is depicted in Figure 8.3.

s: ARRAY 8 OF CHAR;

s := "this"
undefined .---.----,----.-----.--

o 234567

Figure 8.3 String termination and assignment.

COPY(s, x)

x := II string"

Relations

8.2 Arrays 123

To render the discussion of length more precise and to provide a first
example, consider the function Len:

PROCEDURE Len(x: ARRAY OF CHAR): INTEGER;
V AR j: INTEGER;
BEGIN (* there exists a k: a <= k < LEN(x): x[k] = ox *)

j := 0;
WHILE xlj] > ox DO INC(j) END;
RETURNj

END Len;

Note that the open array parameter is essential. Also, since x is a value
parameter, the function may be called with a string as actual parameter,
for example Len("abc") = 3. The type ARRAY OF CHAR is one of the
(few) good justifications for using a value parameter of array type.

At first sight, the predeclared function COpy seems identical to the ar­
ray assignment x := s. However, in COpy, only those elements of x
participate in the copy operation that have indices smaller or equal to
the length of s; that is, to that of the first OX character. It follows that a
precondition for COpy is LEN (x) > Len(s). COpy can be expressed as

PROCEDURE COPY(s: ARRAY OF CHAR; VAR x: ARRAY OF CHAR);
V AR j: INTEGER;
BEGIN (* Len(x) > Len(s) *)

j := 0;
WHILE s[j] # OX DO x[j]:= s[j]; INC(j) END;
x[j] := OX

END COPY;

Note that since s is a value parameter, COpy may be called with a
string as actual parameter. Such a call COPY("string", x) is identical to
the assignment x:= "string"'. Obviously, LEN (x) must be bigger than the
string length. In x, only those array elements with indices less than
Len("string") are affected.

Character arrays and strings may be compared. The type rules are re­
laxed, the operands may be strings, variables of type ARRAY n
OF CHAR or open array parameters. Using the declarations of our
earlier example, the following comparisons are legal:

txt = pat str = n1[3] pat <= "really?"

124 Type declarations, array and record types

Search for a
string in a table

Search for a
pattern in a text

Let Lx = Len(x) and Ly = Len(y). Then the definitions of the comparison
operations are

x = y == (Lx = Ly) & (\::I k: O:S k< Lx: x[k] = y[k]) (1)
x < y == (Lx < Ly) OR (3 k: 0 :S k < Lx: x[k] < y[k] &

(\::I j: 0 :S j < k: x[j] = y[j]) (2)

The inequality # follows from (1), and the comparisons <=, > and >= are
defined analogously to (2).

It may be easier to remember the definitions of string comparison by
the following rule: the shorter of the operands is padded with OX to
match the longer operand. The two are then compared using the ASCII
collating s~quence. Note, however, that this definition is algorithmic in
nature, whereas Equations (1) and (2) are not.

A few examples should elucidate these concepts. Let s: ARRAY 8 OF
CHAR and s := "this". Then the following hold:

s = "this" s # "this." s > "that" s < "Xenon".

With these definitions, we have laid the groundwork for a few pro­
gramming examples.

Let the first task be to search a table nl of type NameList for a given
character array x.

PROCEDURE Search(V AR nl: NameList; x: ARRAY OF CHAR;

BEGIN
j:= 0;

V AR j: INTEGER);

WHILE (j < LEN(nl) & (nUj] # x) DO INC(j) END
END Search; (* x found if j < LEN (nl) *)

We observe that, thanks to the convenience afforded by the Oberon
definition of comparing strings and character arrays, the search proce­
dure is almost identical to the simple search for an integer in an integer
array. If the name list nl is sorted, the efficient binary search can be
easily adopted.

A more exacting problem is the search for a pattern x in a text txt. Both
the text and the pattern are assumed to be character arrays, properly
closed with the string terminator OX.

Insertion of a
pattern into a text

8.2 Arrays 125

PROCEDURE Locate(V AR txt: ARRAY OF CHAR;
x: ARRAY OF CHAR; V AR pos: INTEGER);

V AR j, Lx, Lt: INTEGER;
BEGIN Lx := Len(x); Lt := Len(txt): pos:=-l

REPEAT j:= 0;
INC(pos);
WHILE (x[j] = txt[pos + jD & (j < Lx) DO INC(j) END

UNTIL (j = Lx) OR «pos + Lx) > Lt);
IF j < Lx THEN pos:= -1 (* pattern not found *) END

END Locate;

Text search is often paired with a deletion, a replacement or an insertion
of a pattern. We illustrate the insert operation of a pattern x into the text
txt after the character with index pos. We assume that 0 ~ pos < Len(t).

PROCEDURE Insert(V AR txt: ARRAY OF CHAR;

V AR j, Lt, Lx: INTEGER;
BEGIN

x: ARRAY OF CHAR; pas: INTEGER);

Lt:= Len(txt); Lx:= Len(x);
IF (Lx + Lt < LEN(txt» & (pos >= 0) & (pos <= Lt) THEN

(* make room *) j:= Lt;
WHILE j >= pos DO txt[j + Lx] := txt[j1; DEC(j) END;
(* copy pattern x after character txt[pos] *)
j:= 0;
WHILE j < Lx DO txt[pos + j] := x[j1; INC(j) END

END
END Insert;

This example illustrates two typical disadvantages of arrays if used as
data structures for tables or texts:

(1) We have to make sure that there is room for an insertion within
the size of the table or of the character array and deal properly
with the overflow exception.

(2) Prior to inserting an entry or string, we have to make room by
shifting part of the table or of the character array.

Both problems may be circumvented using dynamic data structures.
However, such an approach has also its price in either a more complex
program and/ or less efficient usage of storage resources.

126 Type declarations, array and record types

8.3 Records

8.3.1 The record type and the record declaration

In an array all elements are of the same type. Elements may be accessed
through a computed index. In contrast, the record structure offers the
possibility to declare a collection of elements as a unit, even if the
elements are of different types. The record is therefore called a
heterogeneous structure.

The origin of this data structure lies in commercial data processing.1

Records model rows in a table drawn on paper. If matrix multiplication
is inevitable in the introduction of arrays, the personnel record is a
similar requirement in the case of records. An excerpt from such a list of
employees appears in Figure 8.4.

Name Salary

Record

Figure 8.4 An excerpt of a personnel record in table form.

A row in the list is called a record. The description of an employee
consists of the person's name, given name, identification number, the
date of birth and salary. In Oberon, this is expressed in the following
type declaration:

TYPE
Name = ARRAY 32 OF CHAR;
Employee = RECORD

family, first: Name;
id, salary: INTEGER

END;

1 Programming language COBOL.

Scope of fields

8.3 Records 127

The record type declaration observes the following syntax:

RecordType = "RECORD" FieldListSequence "END".
FieldListSequence = FieldList { ";" FieldList }.
FieldList = [IdentList ":" type].
IdentList = ident ["*"] { ident ["*"] }.

The record structure makes it possible to refer either to the entire col­
lection of data or to individual elements. Elements of a record are also
called record fields, and their names are the field identifiers. Each identifier
of the IdentList defines a record field of the declared type.

The asterisk is the familiar export mark that applies selectively to the
fields. Only exported fields are visible in client modules. They are
called public fields. Unmarked fields are known as private fields: they are
only visible within the module containing the record declaration.
Selective export is an important programming tool - leading to the
notion of data abstraction. We will say more about this in Chapter 10.
Note that when fields in a record r are exported, r should be exported
too.

Recursive type declarations are prohibited. The following is an example
of such a recursive type declaration that is not ruled out by the formal
syntax but is still illegal:

R = RECORD x: REND;

The fields are local objects of their record. The scope of the field identi­
fier is the record definition itself (from keyword "RECORD" to
keyword "END"). Outside this scope, they are visible, but in the form of
field designators of the form r.f, where r is the record and f the field
identifier (see the next section). This implies that outside of the record
scope, the identifier f may be reused. For example, the following
declaration sequence is valid:

TYPE R = RECORD a: INTEGER; b: REAL END;
VARa: REAL;

A variable of type record is declared in the usual way, for example

V AR worker, manager: Employee;

As with arrays, a variable of record type may be declared with the type
left anonymous. Instances of records that are identically structured to
the type Employee are generated by the following declaration:

128 Type declarations, array and record types

Nested records

Mixed record
and array types .

VAR
person: RECORD

family, first: Name;
id, salary: INTEGER

END;

Applying the type compatibiliry- rules set forth in the first section of this
chapter, we conclude that the type of the variable person is not
compatible with the type of the variables worker and manager. Thus an
assignment person := worker is rejected by the compiler.

Similarly to arrays, where an array element could itself be of array type,
a record field may be of record type. We may augment the definition of
the type Employee with the date of birth:

TYPE
Date = RECORD mo, day, yr: INTEGER END;
Employee = RECORD

family, first: Name;
birth: Date;
id, salary: INTEGER

END;

In the preceding sections we have introduced the array and record
structures as separate entities. The alert reader may have noted,
however, that both declarations are recursive on type, not on ArrayType
or RecordType. Thus the elements of arrays may be records and the field
of records arrays - or arrays of arrays - in any desired order and depth
of nesting.

We saw that the array is the model of a table and the record of a row
in such a table. Hence only the combination of the two structured types
properly models a table such as the employee data sheet depicted in
Figure 8.4. A sample declaration may read as follows:

V AR DataSheet: ARRAY n OF Employee;

Fields of records may be arrays. For example, the type Name is likely a
character array; that is, name = ARRA Y n OF CHAR.

8.3.2 The record designator, assignments and expressions

We denote the field f of record r by

r.f

Record
assignments and
expressions

Parameters

8.3 Records 129

The field designator is thus composed of the record identifier followed
by the field's name, juxtaposed with a period in between. The general
syntax of a record designator is:

I designator = qualident {"." selector }.
selector = ident.

We note that the added generality of the record compared with the
array, namely its possible heterogeneity, is compensated by a
restriction: the identification of an element is limited to a fixed name, the
field's identifier. This is in contrast to the array, where elements may be
selected by a computable index.

In the case of nested record types (that is, records that contain sub­
records), selectors can be sequenced. Assume that worker is a variable of
type Employee declared at the end of the preceding section. Then:

worker.id
worker.birth
worker.birth.yr

field of type INTEGER
sub-record, type Date
field of type INTEGER

Assume now that the variable manager which is of type Employee is
imported from a module Personnel. Then we can construct the designa­
tors

Personnel. manager .id
Personnel. manager . birth
Personnel. manager . birth.mo

type INTEGER
type Date
type INTEGER

Looking at these designators, we observe that the first period belongs to
the qualident Personnel.manager and thus differs from the subsequent
use of the period to delineate field selectors.

A variable of record type may appear on the left-hand side of an as­
signment. The only expression is a mere solitary designator. Record
variables cannot be operands or be compared~

For example, the following are valid record assignments:

worker:= manager; person.birth:= manager.birth;

The rules for parameters of record type are analogous to simple vari­
ables or arrays. The type must be explicit. In the case of a value pa­
rameter, storage is reserved and a copy operation takes place at the time
of the call. This is avoided with V AR parameters, where the actual

130 Type declarations, array and record types

parameter substitutes as variable. No extra storage is required and no
copying takes place. Therefore, as with arrays, we recommend the use
of VAR parameters for efficiency reasons, even if they remain
unchanged by the procedure.

8.3.3 Use of records

The use of variables of record type in commercial programming has
been mentioned. Databases, from small to gigantic, are a main appli­
cation in this business, and the elements they contain are typically
records.

Another use also goes back to the earliest days of operating systems:
the control block, a record variable defining a collection of parameters
describing a resource or a request. Terms such as file control block or
task control block are familiar to most system programmers. Facilities to
create records were already part of the more sophisticated assemblers in
existence 30 years ago.

The record is always indicated if a set of parameters define a single
object. For example, take a rectangle to be drawn on a display device.
The rectangle is defined by the coordinates x and y of one of the
corners, a width wand a height h. To handle a number of such rectan­
gles, the programmer might declare four arrays:

V AR x, y, w, h ARRAY n OF INTEGER;

Experience shows, however, that the clarity of the program will often
benefit substantially if a record type is used:

TYPE Rect = RECORD
x, y, w, h: INTEGER

END;
VAR r ARRAY n OF Rect;

It is now possible to refer to rectangles as entities, for example in pro­
cedures such as

PROCEDURE XYinRect(x, y: INTEGER; r: Rect): BOOLEAN;

Finally the record is the building block of dynamic data structures - one
of the most powerful programming constructs. In such dynamic data
structures, a reeord is composed of data fields and pointer fields pro-

8.3 Records 131

viding links to other records. Pointers and dynamic data structures will
be the object of Chapter 9.

8.4 Summary

In this chapter, we have introduced the type declaration and two
important structured data types: the array and the record.

The type declaration allows user-defined types. An identifier is bound
to a type that may be a basic type such as INTEGER or REAL or - more
importantly - a structured type such as an array or a record. The type
declaration is an essential tool in the formulation of abstract data types,
a topic explored in Chapter 10 and Part III.

The array is a variable of array type. The array type defines a structure
composed of a number of elements of the same type. Elements are
selected by means of a computable index. The number of elements is
called the length of the array. An array designator is of the form a[i]. The
expression i is evaluated and selects the ith element of the array a. The
array type definition is recursive: it allows the declaration of arrays of
arrays or multidimensional arrays.

As with any variable, an array may serve as a parameter of a
procedure. Especially versatile is the open array parameter, which is
compatible with any array of the same dimension and element type.

Programming would hardly be what it is today without the array.
Examples have been presented from the fields of numerical procedures,
processing of tables and text handling.

Of special interest is the representation of textual data by the type
ARRA Y n OF CHAR. Oberon relaxes type rules to allow assignments of
strings to character arrays and comparisons of character arrays with
character arrays and strings.

While the array is a structured type of like elements, the record type
offers the possibility of declaring a collection of fields as a unit, even if
the fields are of different type. A field f of a record r is designated by r.f.
Records are used in commercial programming, and they are the
building blocks of dynamic data structures and represent abstract data
types, the topics of Chapters 9 and 10.

8.5 Exercises

S.l [Galton board] A Galton board is an apparatus named after the pioneering
Victorian statistician Sir Francis Galton (1822-1911).

132 Type declarations, array and record types

• • • •
• •

•

It is a triangular array of pegs in a slanted board.
Marbles are released at the top and proceed to the
bottom, where they are collected in an array of
channels. Of interest to the experimenter is the
resulting shape of the curve formed by the stacked
marbles. Implement a module that simulates a
Galton board.

Hi n t: there is no need to represent the
configuration of pegs - all that matters is the number
of left and right bounces.

Use an array to accumulate the balls in the
channels. Run the simulation for 1000 balls and
produce a print-out using procedures of module Out.

Repeat the experiment with 1000, 10 000 and 100 000 balls. Draw the graph of
the resulting curve.

8.2 [Histogram] Write a module Histogram that contains procedures and
commands to compute and display histograms (see Box 10.1). The number of
intervals, their width and the number of random samples are read from the
input stream. Using module XYplane, provide graphical output of the
histogram in the form of a bar chart like that in Box 10.1.

Experiment with uniform random numbers and with exponential random
numbers. In the latter case, choose a variety of parameter values mu.

8.3 [Backup file name] An Oberon file name is composed of identifiers juxtaposed
with periods, such as "Syntax.Scn.Fnt" or "IFSl.Mod". Write a procedure that
takes a file name and appends the suffix "Bak", yielding for example
"Syntax.Scn.Fnt.Bak" or "IFS1.Mod.Bak". Make sure that no index violation can
occur.

8.4 [Matrix output] Write a procedure that displays a matrix (filled with random
numbers) as a two-dimensional table of properly aligned rows and columns.

8.S [Extremal array elements] Write a procedure that computes indices min and
max such that a[min] and a[max] are the smallest and the largest elements of an
array a: ARRAY n OF REAL. Note: a solution with 3n/2 comparisons is possible.
Can you find it?

8.6 [Sorting] Given an array a of n numbers, write a procedure to sort them by
repeating the following process for i = I, 2, ... ,n -1:

(1) Find the least number among a[i] ... a[n].
(2) Interchange this number with ali], if appropriate.

Specify invariants for the repetition.

8.7 [Phone directory] Write a module PhoneDir that provides a phone directory
based on the type declaration

8.8

8.9

TYPE Dir = ARRAY n OF RECORD
name: ARRAY 32 OF CHAR;
phone: ARRAY 16 OF CHAR

END;

8.5 Exercises 133

Provide commands to open the directory and add, delete and query entries.
Guard against table overflow. Provide two versions: one based on a simple
linear search, and another using a binary search.

[Random walk] Let a particle move on a discrete square lattice. From the
current position, the next one is chosen at random from the four neighboring
points.

Write a module that displays a random walk in a N by N square on the
XYplane viewer. At any point in time, display the past k positions. Consider
different strategies when the particle hits the boundary: (1) compute the
position modulo N; (2) reflect the particle; (3) wait until the particle re-enters
the area; or (4) the particle is lost.

[Diffusion-limited growth] Particles originating in random direction move
according to a random walk. When a particle hits a growing aggregate, it sticks
there. Diffusion-limited growth occurs in nature, for example in the
accumulation of soot, the growth in electrolytic solutions and leaders in
electrical discharge. The resulting figure is a
fractal.

Work with a square lattice centered around
the origin. Inscribe two circles. Random walks
originate at an arbitrary position on the smaller
circle. If a particle passes the extinction circle, it
is lost and a new random walk is started. If a
particle meets the aggregate, it sticks and a new
random walks commences. When the process
starts, the aggregate consists of a single square
at the origin.

Working with XYplane, make the path of the
random walk visible and draw the growing
aggregate.

Extinction circle

Source circle

134

9 Dynamic data structures and
pointer types

So far, we have introduced the eight basic types SHORTINT, INTEGER,
LONGINT, REAL, LONGREAL, BOOLEAN, CHAR and SET. These
basic types have a strong kinship with the hardware facility of the un­
derlying computing machines.

The two structured types ARRAY and RECORD are built from ele­
ments of basic type. The array is an ordered assemblage of elements of
identical type that can be selected by a computable index. The record is
a named collection of fields, possibly of different types. Figure 9.1
depicts the array and record structures.

RECORD ARRAY

f1 f2 f3 o N-1

Figure 9.1 Mapping of a record and an array onto a linear address space.

Both the array type and the record type have the common trait that they
are static. This implies that variables of such type maintain the same
structure during the whole time of their existence. The array and the
record also share the property that they can be easily mapped onto a
linear address space - hence the compiler is able to generate efficient
code for assignments and expressions.

Many applications process data that not only change their value - but
also their relationship and bulk. Typical examples are lists (or chains) and
trees that grow and shrink iynamically. Rather than adding further
structured types to the language, Oberon offers the basic tool to
construct arbitrary structures: the pointer type.

Every complex structure ultimately consists of elements whose
structure is static. Pointers are used to establish relationships among

Dynamic data structures and pointer types 135

those static elements - often called nodes. We say that a pointer links
nodes or points to nodes.

What makes pointers such a powerful tool is the fact that they may
point to records that themselves contain pointers. Consider the follow­
ing declarations:

TYPE
ListNode = POINTER TO ListNodeDesc;
ListNodeDesc = RECORD

key: Key; next: Node
END;
V AR first: ListN ode;

The definition is obviously recursive. A schematic diagram of a list
composed of instances of the type ListNodeDesc is shown in Figure 9.2.

Type:
first: ListNode ListNodeDesc

key next

Figure 9.2 A linear list composed of records with pointer fields.

The variable first, which is a pointer of type ListNode, affords access to
the first element of the list. Each node contains a pointer field that
points to the next node in the list. Thus, from the first node, one can
gain access to the second one, and so forth.

Evidently, different pointer variables may point to the same node,
hence providing the possibility to construct arbitrarily complex struc­
tures. This apparent power of the pointer type is at the same time its
nemesis - opening boundless possibilities for programming mistakes
that are difficult to pinpoint. We end this introduction with a warning:
operating with pointers requires utmost care.

There is a substantial body of knowledge concerning dynamic data
structures and their algorithms. (Many textboks exist. Good
introductions are Wirth (1976), Smith (1987) and Sedgewick (1988).)
This chapter deals only with elementary examples of lists and trees.
However, the list processing procedures will resurface in many
subsequent examples and merit the reader's attention.

136 Dynamic data structures and pointer types

9.1 Pointers

9.1.1 The pointer type and pointer declarations

Assignment and
expressions

The value NIL

In Oberon, a pointer cannot point to arbitrary variables but only to an
instance of a given array or record type. The pointer type is said to be
bound to the referenced object's type, also termed the pointer's base type.
The syntax of a pointer type declaration is

I PointerType = "POINTER" "TO" baseType.
baseType = qualident I ArrayType I RecordType.

The qualident represents a type that is also either an array type or a
record type.

The following are a few examples of pointer and pointer type
declarations:

TYPE
TreeNode = POINTER TO TreeNodeDesc;
TreeNodeDesc = RECORD

key: Key;
left, right: TreeN ode

END;

FileCtlBlock = POINTER TO RECORD
length, date, pos, sectorTable: LONGINT;
name: ARRAY 32 OF CHAR

END;

Vect = POINTER TO ARRAY n OF REAL;

Pointers may be assigned to pointer variables of compatible type.
Pointers of compatible type can be compared for equality or inequality -
the only expressions in which pointers enter as operands. At this stage,
only pointer variables of equal type are compatible.

A special pointer value is provided that points to no object and is com­
patible with all pointer types. The predeclared identifier NIL represents
that constant. NIL may be assigned to or compared with every pointer. .
NIL is typically used to end referencing recursion.

9. 1 Pointers 137

9.1.2 Creation of variables referenced by pointers

Like the other variables that we have encountered so far, a pointer may
be created in a VAR declaration. We say that the declaration creates an
instance of the pointer type, P say. Storage for the pointer variable is
allocated when the scope containing its declaration becomes active. If
different from NIL, the value of such a pointer designates a variable. The
type of that variable is the base type of P.

However, the declaration of the pointer does not produce the variable
it points to. Such a variable must be explicitly generated invoking the
predeclared procedure

NEW(p)

where the actual parameter p is a pointer of type P. NEW(p) creates a
variable that is an instance of the base type of P. The pointer p is initialized
such that it points to that instance (Figure 9.3).

VAR p:P; p p1'

Anonymous instance
of the base type of P

Figure 9.3 Creation of an instance of type P.

For example, assume first: ListNode and root: TreeNode. Then

NEW (first) A variable of type ListNode is created, which is
designated by pointer first.

NEW (root) A variable of type TreeNode is created, which is
designated by pointer root.

9.1.3 Dereferencing a pointer

NEW(p) creates a variable that is an instance of the base type of P. This
variable is dynamically created. It is therefore not designated by an
identifier - we say the variable is anonymous. In order to reference an
anonymous variable, the dereferencing operator t is applied to the
pointer, written as pt.1 Thus the designator pt denotes the variable

1 In the standard ASCII character set "t" is represented by the caret IIIV' , with
ORD(""") = 94.

138 Dynamic data structures and pointer types

Implied
dereferencing

Nested
dereferencing

pointed at by p. A pointer cannot be dereferenced if its value is NIL.
Oversight of this rule results in abnormal program termination.

We are ready to generalize the syntax of the designator to include the
dereferencing operator:

I designator = qualident { ident I "[" ExpList "]" I lit"}.

In programs using pointers, dereferencing occurs quite frequently. As a
convenience for the programmer and to enhance the readability of pro­
gram texts, Oberon implies dereferencing in the case where a record field
or array element is accessed through a pointer variable. For example,
using our earlier sample declarations and the array pointer vector: Vect,
we find that

first. next
root.key
vector[i]

stands for
stands for
stands for

firstt .next
roott.key
vectortU]

Thus if a field or index selector is present we may use the pointer as if it
were a name of the variable pointed at. We stress, however, that this ab­
breviation holds only for fields and array elements. The designator first,
for example, denotes a pointer value, not an object of type ListNode.
Such an object is referenced by firstt. To refine this point, let
node: ListNode and consider the assignments:

node := first
node := firstt

illegal assignment, pointer to record
legal assignment, record to record.

Dereferencing may be nested. To illustrate this concept consider the list
shown in Figure 9.4, for which the following relations hold:

firstt.key = first.key = kl
firstt.nextt.key = first.next.key = k2
firstt nextt.nextt.key = first.next.next.key = k3
firstt.nextt.nextt.next = first.next.next.next = NIL

Stack

Heap

Garbage
collection

9. 1 Pointers 139

first: ListNode

~r-k-1 Ir-~--' k21 ~ k3 eX]

Figure 9.4 Sample list composed of three nodes.

9.1.4 Memory management

Memory resources for a module's statement sequence, the statement
sequences of its procedures, and for its global variables is allocated, at the
latest, when an exported identifier is used. These memory resources are
statically allocated. They exist as long as the module remains loaded.

At the time the statement sequence of a procedure is activated, memory
for the local variables (including parameters) is allocated. This memory is
tied up only during the time the procedure is active. The combined local
memory of the procedures active at a given time is known as stack -
owing to a standard method of implementation. It grows and shrinks
with the nesting of procedure calls. The memory allocation for the stack
is called dynamic.

The storage for pointer variables is managed like any other variable - it
is either allocated globally or on the stack. However, memory for the
objects pointed to by pointers is only reserved at the time of a call to
NEW. Since calls of NEW may occur at any time, it is advantageous to
allot a third kind of memory known as the heap.

Without special measures, the heap grows monotonically in time.
However - as the term implies - dynamic data structures may grow
and shrink. Computing systems differ in the way the heap is kept under
control. It is still customary to relegate this task to the programmer.
Such systems afford a predeclared function FREE(p) or
DEALLOCATE(p). The task to free unused nodes of dynamic data
structures is not only a burden on the programmer - it is also error
prone. Suppose a node is freed up, but pointers which referenced that
node are still in existence. Any attempt at dereferencing such a pointer
will result in a catastrophic error. Oberon advocates the use of auto­
matic cleanup of the heap, known as garbage collection, and thereby re­
lieves programmers from the burden of keeping track of allocation
problems while, at the same time, eliminating a source of errors that are
difficult to pinpoint.

140 Dynamic data structur-es and pointer types

Create node

9.2 Lists

9.2.1 Simple or linear lists

In the last section, we developed the tools necessary to deal with dy­
namic data structures. The list structure provides a suitable first ex­
ample. Lists appear in a variety of applications, spanning the breadth
from commercial programming over system simulations to operating
systems. A list is a chain of records, linked together through pointers.

We recapitulate the type declaration of a list node, for simplicity
named Node (rather than ListNode as before):

TYPE
Node = POINTER TO NodeDesc;
N odeDesc = RECORD

key: Key;
next: Node

END;

Note that the node type (NodeDesc) must be explicit to avoid an illegal
recursive type definition of the form

Node = POINTER TO RECORD key: Key; next: Node END;

Since we want to concentrate on the essentials, we do not carry data
fields in the list nodes - the field key stands for the data stored in the list
node. The name key suggests a special usage: the list is searched for a
record matching a given key. For that purpose, lists are frequently
sorted according to increasing or decreasing key values. In real appli­
cations, a node usually has a variety of data fields of different type. Key
denotes the type of the key. It may by any type that is compatible with
the relations 'less than', for example INTEGER, REAL or ARRAY n OF
CHAR.

Declaration of a pointer of type Node does not create a list. The list has to .
be built dynamically during program execution.

Let us start with the empty list x, which is represented by x = NIL. A
longer list is most conveniently constructed by inserting new nodes at
its front. An instance new of type Node with key k is created as follows:

NEW(new); new.key:= k; new.next:= NIL;

Insert

Remove first
node

9.2 Lists 141

These three statements produce a structure that may be viewed itself as
a small list composed of one single element (see Figure 9.5).

new NodeDesc

~klXI

Figure 9.5 A newly created list node.

The simplest operation is to insert a newly created node at the begin­
ning of a list. Let the variable new denote such a node and first be a
pointer that provides a link to the first node of the list. The pointer first
is also termed the anchor of the list. Two assignments suffice to add the
new node to the list as shown in Figure 9.6 and in the sample procedure
Insert:

PROCEDURE Insert(VAR first: Node; new: Node);
BEGIN (* new # NIL, no test for duplicate nodes *)

new.next:= first; first:= new
END Insert;.

new first

~klXI ~k11 ~k21XI
first

1. new.next 1= first

new

2.fi(st:;' neW

Figure 9.6 Insertion of a node at the head of the list.

Removal of the first node of a list is also an easy operation.

142 Dynamic data structures and pointer types

List traversal

Insert at tail

PROCEDURE FirstNode(V AR first: Node): Node;
YARn: Node;
BEGIN

n := first; IF n # NIL THEN first:= n.next END;
RETURNn

END FirstNode;

Note the guard n # NIL that is necessary to avoid potential dereferenc­
ing of a NIL pointer. As subsequent examples will reveal, it is quite
typical that the empty list needs to be treated as a special case. Also
observe that first is a VAR parameter through which procedure
FirstNode produces a side-effect.

A basic operation on dynamic data structures is their traversal. Each
node n is visited exactly once in a specified order, and a certain opera­
tion, P(n) say, is applied. For example, the node's key is listed or the
node itself is copied. The following example of procedure Enumerate
traverses a list and applies procedure P to every node:

PROCEDURE Enumerate(first: Node);
BEGIN

WHILE first # NIL DO P(first); first:= first.next END
END Enumerate;

The while statement expresses list traversal both naturally and effi­
ciently. Observe that the formal parameter first also serves as local
variable used in the while-loop. This is permitted, since first is a value
parameter. Hence the actual parameter passed to first remains un­
changed, as is required for a proper operation of Enumerate.

Adding a node at the head of the list is particularly simple, since the
anchor points directly to the first node. No such direct link exists to the
last element. Adding a node there requires first a traversal of the list - an
operation whose complexity is proportional to the number of list
elements

PROCEDURE InsertLast(VARfirst: Node; new: Node);
VARn:Node;
BEGIN (* new # NIL *)

IF first = NIL THEN new.next:= first; first:= new
ELSE

n:= first;
WHILE n.next # NIL DO n:= n.next END;

Insert ranked

Search a key

new. next := n.next; n.next:= new
END

END InsertLast;

9.2 Lists 143

In this example, first is a V AR parameter - hence an additional local
variable n is needed for list traversal.

Lists are sometimes sorted, for example in order of ascending key val­
ues. If a new node is inserted in such a ranked list, it should be done
such that the order is preserved. Procedure InsertRanked fulfills this re­
quirement:

PROCEDURE InsertRanked(VAR first: Node; new: Node);
VARn:Node;
BEGIN (* new # NIL *)

IF (first = NIL) OR (new.key < first. key) THEN
new.next := first; first:= new

ELSE
n := first;
WHILE (-n.next # NIL) & (new.key >= n.next.key) DO

n:= n.next
END;
new.next := n.next; n.next:= new

END
END InsertRanked;

If no node with the specified key exists, NIL is returned. Again, the list
is traversed until the appropriate element is found. It is essential that
the compound condition be written as (first # NIL) & (first . key # k) and
not the other way around, otherwise dereferencing of a NIL pointer
may take place and the computation will abort.

Another frequent operation is the extraction of an element with a given
key:

PROCEDURE Search(first: Node; k: Key): Node;
BEGIN

WHILE (first # NIL) & (first.key # k) DO first := first.next END;
RETURN first

ENDSearch;

If no node with the specified key exists, NIL is returned. The list is tra­
versed until the appropriate element is found.

144 Dynamic data structures and pointer types

Delete

Summary

As a final example, we will study how a given node is deleted from the
list: '

PROCEDURE Delete(VAR first: Node; node: Node);
YARn: Node;
BEGIN (* node # NIL *)

IF first # NIL THEN
IF first = node THEN first:= node.next
ELSE

n:= first;
WHILE (n.next # NIL) & (n.next # node) DO

n:= n.next
END;
IF n.next # NIL THEN n.next := n.next.next END

END
END

END Delete;

We could give many more examples of procedures operating on simple
lists. They all turn out to be variations on the themes that we en­
countered previously and that we summarize as follows:

(1) Operations at the head of the list are simple. Their execution is
fast and independent of the size of the list. In contrast, operations
at the end of the list require that the list be traversed. Their
execution time is therefore proportional to the size of the list.

(2) The programmer must always ensure that dereferencing pointers
whose value is NIL is excluded. Typically, the NIL case is a spe­
cial branch in an if statement.

9.2.2 FIFO lists

Lists are a natural representation of waiting lines or queues. Such lines
always form if a serially reusable resource is shared among many re­
quests that arrive at arbitrary points in time. If requests are served in
order of arrival the line is said to be operating under the first-in, first-out
discipline - in short, FIFO.

FIFO operation is achieved if procedures InsertLast and FirstNode are
used in combination. However, adding an element at the end of a linear
list is an expensive operation. In implementing a FIFO queue, therefore,
we strive for a special optimization of that operation. For this purpose,

Hint

9.2 Lists 145

we will introduce an additional record type that comprises two pointers
designating the last and the first node in the waiting line:

TYPE
FIFO = RECORD

first, last: Node
END

Figure 9.7 depicts the dynamic data structure of a FIFO queue.

first last

'---t--L--+--'
q: FIFO

Figure 9.7 Structure of a FIFO queue.

The information afforded by field last is redundant. It is already con­
tained in the pointer first. The extra field, should therefore be consid­
ered as a hint, to be used to improve the performance of the append
operation.

Enqueueing and dequeueing of entries is performed by the following
pair of procedures:

PROCEDURE Enqueue(V AR q: FIFO; n: Node);
BEGIN

n.next := NIL;
IF q.first # NIL THEN q.last.next:= n ELSE q.first:= n END;
q.last:= n

END Enqueue;

At first sight, the guard q.first # NIL seems perplexing - q.last # NIL
seems the logical choice. A study of DequeuedNode reveals that last is not
set to NIL when the queue empties out. This is permissible, since last is
only considered a hint. It is, of course, possible to make last more
precise - at the cost, however, of an additional if statement:

146 Dynamic data structures and pointer types

PROCEDURE DequeuedNode(VAR q: FIFO): Node;
VARn:Node;
BEGIN

n := q.first;
IF n # NIL THEN q.first := n.next END;
RETURNn

END DequeuedNode;

9.3 Trees

Binary search
tree

The use of an array to represent a table was introduced in Section 8.2.5.
It is easy to see that lists may serve the same purpose - the data at­
tached to each list node is an entry in the table.

The disadvantages of the array structure to represent tables are the
need to specify a maximum size and the fact that to insert an element at
a given position, one has to J;Il.ove entries to make room. Experienced
programmers know the dilemma of choosing a maximal table size:
every choice - however well reasoned - is wrong in some applications.
The list structure neither has an upper limit nor is there a need to shift
elements around. When it comes to sorted (static) tables, however, the
array structure scores well, because of the fast binary search algorithm.

Our goal, is to design therefore a dynamic data structure that admits
fast search and sort algorithms. The essence of the binary search is the
possibility of accessing the middle and deciding whether the test key is
in the left or right half. Obviously, if the nodes are arranged in an
ordered tree, the same procedure can be formulated. An example of
such a tree is given in Figure 9.8.

A search tree is an ordered binary tree. A binary tree is said to be
ordered if every node has two successors for which the key value of the
node at left is smaller than the key value of the node at right.

69

15 31

Figure 9.8 A binary search tree.

9.3 Trees 147

Other trees The tree structure also occurs naturally in many other contexts. One
does not have to be a programmer to know the pedigree (or family)
tree. Closer to computer science are parsing trees, which are at the heart
of compilers. Another example is furnished by game-playing programs,
which are typically based on a tree representation of the future moves
emanating from a given position.

Type definitions Let us recapitulate the type definitions of a binary tree:

TYPE
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

key: Key;
left, right: Node

END;

As in Section 9.2, we call a tree node simply Node, rather than TreeNode.
Similarly, the field key represents all the data stored in a tree node. A
diagram in the same style adopted for lists is presented in Figure 9.9.

The tree definition is again recursive. The pointer root serves as
anchor and provides a link to the first node which is also known as the
root node. The pointer fields left and right point themselves to tree
nodes which are the roots of sub-trees. The data recursion stops at NIL
pointers. Nodes without links to sub-trees are termed leaves.

root: Node

Figure 9.9 Data structure of a binary tree.

148 Dynamic data structures and pointer types

9.3.1 Inherently recursive procedures

Tree traversal

The fundamental type definitions of both the list and the tree are re­
cursive. Therefore one would expect that their processing also leads
naturally to recursive procedures. In the realm of trees, this is indeed
the case. A first example is furnished by the fundamental operation of
traversing an ordered (binary) tree.

To each node n of a given ordered tree, a specific procedure pen) is
applied. Often it is desirable to sequence the operations in order of in­
creasing key values.

If we look at the preceding diagram, we realize that tree traversal is
not simply expressible as a loop. We follow all the left branches to the
first leave. Then we have to backtrack to the first node with a right
branch, which we take, just to repeat the whole procedure. This infor­
mal description again points to the recursive nature of the problem.

Assume that root is a pointer providing a link to the· root node. If the
tree is empty (that is, if root = NIL) then no work has to be done. If not,
we know that all nodes in the sub-tree pointed at by root.left have key
values that are smaller than root.key. Hence we apply the whole pro­
cedure to root.left first. Once this is done, it is the root's turn. The action
is applied to the node pointed at by root. Subsequently, it is the turn of
all keys bigger than or equal to root.key - hence the whole procedure is
applied again to root.right. In Oberon notation, this recursive algorithm
is translated into the procedure:

PROCEDURE Enumerate(root: Node);
BEGIN

IF root # NIL THEN
Enumerate(root.left); P(root); Enumerate(root.right)

END
END Enumerate;

We observe that the recursive data definition leads naturally - one
might say effortlessly - to the recursive algorithm. The same, of course,
is also true for lists. Recursion is used in the following variant of list
traversal:

PROCEDURE Enumerate(first: ListNode);
BEGIN

IF first # NIL THEN
P(first); Enumerate(first.next)

END
END Enumerate;

Insert a
node

Deletion of a
node

9.3 Trees 149

In the case of lists, the recursive formulation is not really simpler than
the iterative one. Since each procedure call requires some overhead for
bookkeeping operations, the iterative formulation, using a while statement,
will execute faster, and hence is the method of choice.

No simple iterative formulation exists for traversing a tree. In fact, a
close examination reveals that non-recursive formulations closely
mimic the mentioned bookkeeping of recursive procedure calls
(method of local stacks). Therefore recursion is the appropriate method
for tree traversal.

Another inherently recursive operation is the insertion of a new node
into an ordered tree, such that the order is preserved. For the special
case of the empty tree (that is, root = NIL), the insert operation is easily
solved: the new node, new say, simply becomes the root. This is stated
as follows:

root:= new;

In the case of a non-empty tree, we have to find the appropriate place
to add the new node. Being at the root, all we know is whether the node
will go to the left or to the right sub-tree. Therefore, we simply apply
the whole procedure to the appropriate sub-tree until an empty tree is
found. Using the facilities of Oberon, this idea is expressed in the
following procedure:

PROCEDURE Insert(VAR root: Node; new: Node);
BEGIN (* new # NIL *)

IF root = NIL THEN (* stop recursion *)
root := new; root.left:= NIL; root.right:= NIL

ELSIF new.key < root.key THEN Insert(root.left, new)
ELSIF new.key > root.key THEN Insert(root.right, new)
ELSE (* duplicate key, add desired action *)
END-

END Insert;

Deletion of a given node - also a recursive operation - is somewhat
more complicated than insertion.

First, the node to be deleted has to be found. If it turns out to have
only one descendant, the task is easy. However, if two sub-trees are
present the situation is more involved - one pointer cannot point to two
objects! In this case, a node further down in the tree has to be promoted
to replace the node being deleted. It is the node with the maximum key

150 Dynamic data structures and pointer types

value in the left sub-tree of the node being deleted as clarified in Figure
9.10. Procedure RemoveMax locates this node.

Delete 69

Figure 9.10 Deletion of a node in a binary search tree.

PROCEDURE RemoveMax(VAR root, max: Node);
BEGIN

IF root.right # NIL THEN RemoveMax(root.right, max)
ELSE max := root; root:= max.left
END

END RemoveMax;

Using Remove Max, we formulate the program text of procedure Delete:

PROCEDURE Delete(V AR root: Node; key: Key);
VARnode: Node;
BEGIN

IF root # NIL THEN
IF key < root.key THEN Delete(root.left, key)
ELSIF key> root.key THEN Delete(root.right, key)
ELSE (* delete root *)

IF root.left = NIL THEN root := root.right
ELSIF root.right = NIL THEN root := root.left
ELSE (* root has two sub-trees *)

RemoveMax(root.left, node);
node.left := root.left; node.right:= root.right;
root:= node

END
END

END
END Delete;

9.3 Trees 151

9.3.2 Searching in trees

We introduced the tree with the motivation of a fast search algorithm in
a table represented by a dynamic data structure. Such an algorithm is
now simple to formulate:

PROCEDURE Search(root: Node; key: Key): Node;
BEGIN

WHILE (root # NIL) & (root.key # key) DO
IF key < root.key THEN root := root.left
ELSE root:= root.right
END

END;
RETURN root

END Search;

It is noteworthy that while the previous procedures are intrinsically
recursive, Search is presented as an iterative algorithm. The reason is
that to search a node, no backtracking takes place. The algorithm simply
chooses between the left and right branches of the binary tree. While a
recursive formulation is easily possible, it is not simpler but less effi­
cient.

Balancing search A crucial question is the speed of procedure Search. The answer de­
trees pends on the structure of the tree. A tree is said to be perfectly balanced if,

for each node, the number of nodes in its left and right sub-trees differ
by at most one. Ordered binary trees are not balanced a priori. Figure
9.11 shows two extreme cases.

If N denotes the number of nodes then it is easily verified that the
number of levels in a perfectly balanced binary tree is of order log2 (N).
On the other hand, an ordered binary tree may be extremely
unbalanced. The number of levels in such an unbalanced tree may be as
large as the order of N.

In a given tree, the worst-case performance of the search algorithm is
proportional to the number of levels. Hence the magnitude of the
number of iterations of procedure Search is between log2 (N) and N. To
ensure logarithmic search performance, the tree has to be balanced. Our
procedures Insert and Delete do not achieve balance. Fortunately, if the
keys are dra.wn randomly between minimum and maximum values, it
can be shown that the resulting tree has a very high probability of being
reasonably balanced.

152 Dynamic data structures and pointer types

Summary

level 2

level 3 1

Balanced:

root

level 1

Number of levels:::: log N

7

level 1

level 2 6

level 3 5

level 4 4

level 5 3

level 6 2
Unbalanced:

root

level 7 1 Number of levels:::: N

Figure 9.11 Balanced and unbalanced binary search trees.

In most appiications, we know little about actual key distribution. We
therefore have to take measures to rebalance the search tree. Balancing
an ordered tree perfectly is a complex operation - both with respect to
the length of the program text and the number of operations. The prac­
tical trade-off is therefore between the number of balancing steps and
the increased length of the search paths, arising from imbalance. How
often and how perfectly one balances the search tree depends on the
frequency of insert and delete operations compared with the frequency
of searches. If searches are highly predominant, it pays to balance the
tree quite well. On the other hand, if updates predominate, balancing is
hardly worthwhile.

To strike a practical balance, the perfect balance criterion can be re­
laxed - with the goal of reducing the balancing overhead. Several such
schemes have been published.

Detailed coverage is beyond the scope of this book and we refer to
the literature (Wirth, 1976; Smith, 1987; and Sedgewick, 1988).

Trees are among the most important dynamic data structures. Some of
their properties are summarized below:

(1) The tree data structure arises in many practical situations: tables
with efficient search algorithms, compilers, game playing pro­
grams, to mention just a few.

(2) Tree traversal is most appropriately formulated with a recursive
algorithm that takes care of backtracking.

(3) Ordered trees composed of N nodes admit search algorithms of
the complexity log(N) if they are balanced.

(4) Most tree algorithms are naturally expressed recursively. Those
procedures, however, that do not backtrack also have usually a

9.3 Trees 1 53

simple iterative solution using the while statement. An iterative
formulation of backtracking procedures is possible but
cumbersome and its speed advantage marginal.

(5) In search trees, the trade-off between the gain in search perfor­
mance and balancing cost leads to a variety of schemes that
allow a measured degree of imbalance in order to reduce the
number of balancing steps.

9.4 Other dynamic data structures

Alternative list
representations

Linear lists and binary trees are just two important examples of dy­
namic data structures. Many more exist - some with the aim of im­
proving the performance of certain operations, others reflecting gen­
uinely more complex models. Subsequently, we will give an example of
each category.

In the examples of Section 9.2, we used the simplest list representation.
The empty list is a NIL pointer and the list is accessed through an an­
chor. There exist a variety of other representations with the aim of
simplifying and optimizing certain procedures. One such representa­
tion always contains two (virtual) nodes as shown in Figure 9.12. These
nodes are sometimes dubbed sentinels. If the key of the sentinel is the
supremum of all possible keys, the condition of the search loop can be
abridged. The use of a tail that points to itself to terminate the list
simplifies the delete action.

head tail

1l~:itM~I;[f4'~~:lji))l)lf~ empty list

Figure 9.12 Simple list with two permanent virtual nodes.

It is also possible to organize the list node in a doubly linked ring, as
Figure 9.13 illustrates. In the doubly linked ring, removal of a node is
particularly easy - no traversal of the structure is required. Similarly,
FIFO (first-in, first-out) and LIFO (last-in, first-out) operation is
efficiently achieved.

154 Dynamic data structures and pointer types

n-waytree

Figure 9.13 A list represented as a doubly linked ring.

Graphs are a powerful mathematical abstraction for many problems.
The binary trees discussed in Section 9.3 are a special case of graphs. A
simple generalization of the binary tree is the tree of degree n. In such a
tree, each node has at most n successors. If n is fixed and reasonably
small then the following node declaration can be used (see Figure 9.14):

TYPE
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

key: INTEGER;
descendants: ARRAY n OF Node

END;

descendants

Figure 9.14 Node for a 4-way tree.

There are situations, however, where the number of descendants is
variable and may become large. In this case, using an array for the de­
scendants is wasteful and should be replaced again by a list.

9.5 Summary

In many programs, data change their relationship and bulk. Oberon
provides a basic tool to construct dynamic data structures: the pointer
type.

In this chapter, we have introduced the pointer type and the pointer:

9.5 Summary 155

a variable whose value is a reference to another object. The following
points should be remembered:

(1) A pointer cannot point to any object. The pointer type is bound
to a record or array type: the pointer base type.

(2) If P is a pointer then the variable to which it points is obtained
from the dereferencing operator applied to p; that is, pt. As a conve­
nience, Oberon implies dereferencing in the case of a record field or
array index.

(3) NIL is a value compatible with all pointer types. Dereferencing
of a NIL pointer leads to program termination.

(4) An (anonymous) variable pt of pointer base type is created with
the predeclared procedure NEW(p); at the same time, p is initial­
ized. The variable pt is allocated on the heap memory.

A dynamic data structure is composed of nodes that are of record
type and themselves contain pointer fields. The definition of the
dynamic data structure is thus recursive. One of the simplest (but most
versatile) dynamic structures is the list: a chain of nodes. We have given
a number of examples of inserting and deleting nodes in lists. A key
observation is that accessing the last element requires list traversal,
which is an expensive operation.

Since access to the last element occurs frequently in a first-in, first-out
list, a special hint has been introduced to deal with the insert operation
efficiently. The hint is a pointer providing a link to the last element.

Another useful dynamic structure is the binary tree. In contrast to the
list, the tree allows search of a given node in logarithmic time. We have
given examples of tree processing using recursion. Trees provide a good
example of how recursive data definition and recursive processing may
complement each other.

9.6 Exercises

9.1 Which of the following declarations are correct:

(a) V AR p: POINTER TO REAL;

(b) VAR q: POINTER TO RECORD END;

(c) VAR v: POINTER TO ARRAY OF REAL;

(d) VAR a: POINTER TO ARRAY N, N OF REAL;

(e) VAR b: ARRAY 100 OF REAL; p: POINTER TO b;

(0 TYPE A: ARRAY 100 OF REAL; a: POINTER TO A;

156 Dynamic data structures and pointer types

9.2 Find the errors in the following procedure:

PROCEDURE Search(V AR first: Node; k: Key): Node;
BEGIN

WHILE (first.key # k) & (first # NIL) 00 first := first.next END;
RETURN first

END Search;

9.3 [Lists] Implement a module Lists with definition

DEFINITION Lists;
IMPORT Out;
TYPE

Data, Key = INTEGER;
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

key: Key; data: Data; next: Node
END;

PROCEDURE Insert(V AR first: Node; new: Node);
PROCEDURE InsertLast(VAR first: Node; new: Node);
PROCEDURE InsertRanked(VAR first: Node; new: Node);
PROCEDURE FirstNode(V AR first: Node): Node;
PROCEDURE Search(first: Node; k: Key): Node;
PROCEDURE Delete(V AR first: Node; node: Node);
END Lists.

Using modules In and Out compose a module UseLists that is a client of module
Lists. The commands exported by UseLists are

• Make: creates an instance of a list.

• Add: reads key and data values from the input stream, creates an
instance of a node and adds it to the list.

• Query: reads a key value from the input stream and prints the
corresponding data value if the key is found, "not found" otherwise.

• Delete: reads a key value from the input stream and deletes the
corresponding list node.

9.4 Repeat Exercise 9.3 for the list representation with virtual head and tail
elements (Figure 9.12). In the procedures of 9.3, the formal VAR parameter first
is replaced by a value parameter head, for example

PROCEDURE Insert(head: Node; new: Node);

Provide

PROCEDURE NewO: Node;

9.6 Exercises 157

which creates an empty list. Why are no VAR parameters required? Why is
there a need for a procedure New now but not previously?

Hint: study the following implementation of Delete:

PROCEDURE Delete(head: Node; k: Key);
VARy: Node;
BEGIN

y:= head;
WHILE (y.next # tail) & (y.next.key # k) DO Y := y.next END;
y.next:= y.next.next

END Delete;

9.5 Repeat Exercise 9.3 for doubly linked rings (Figure 9.13).

9.6 [Trees] Write a module Trees that implements the procedures Insert, Search,
Delete of Section 9.3. Implement a module UseTrees analogously to UseLists.

9.7 [Tree enumeration] Expressions can be conveniently represented by trees
called parse trees .. Write procedures that traverse the parse tree of Figure 9.15 in
the following order:

(a) Preorder:

(b) Inorder:

(c) Postorder:

*+a/bc-d*e!

a+b/c*d-e*!

abc/+de!*-*

a

Figure 9.15 Tree representation of the expression (a + b / ch(d - e*f).

Hint: consider procedure Enumerate of Section 9.3.1 with modified order of the
statement sequence

Enumerate(root.left); P(root); Enumerate(root.right).

References

Sedgewick R. (1988). Algorithms, 2nd edn. Reading, MA: Addison-Wesley.
Smith H. F. (1987). Data Structures, Form and Function. New York: Academic

Press.
Wirth N. (1976). Algorithms + Data Structures = Programs. Englewood Cliffs, NJ:

Prentice-Hall.

158

10 Stepwise refinement and
data abstraction

When tackling a compleXi'I'0gramming task, it is easy to. get swamped
by the details of the data structures or the intricacies of the algorithms.
It is therefore advisable to proceed on carefully chosen levels of
abstractions, first drawing a broad outline of the task in terms of
subtasks, then specifying the actions of the subtask, possibly again
pushing details to a further round of refinements. In this process of
stepwise refinement, the procedure is an indispensable tool (Wirth, 1971,
1974; Dahl et al., 1972). If the subtasks are performed by appropriately
named procedures, the inherent structure of the program remains
visible, and the tasks may be performed by different groups of
programmers. The module adds a further level of structure through
carefully chosen interfaces and import relations.

In this chapter, we will discuss a realistic example: the simulation of a
waiting line. We will practice stepwise refinement and illuminate the
role of the procedure and more importantly of the module in creating
abstractions. The scenario is the simulation of a waiting line, an example·
from the class of discrete event simulation programs.

10.1 Discrete event simulation of a waiting line

The digital computer is a new and powerful analytical tool in the hands
of scientists and engineers. The graphical capability of modern work­
stations is a great help in visualizing complex results. The computation
of the fractal fern is a good example. Who would see the structure of the
limiting set by pondering over piles of 7-digit floating-point numbers?

Many systems elude a formulation as a set of deterministic equations.
Consider a waiting line in front of a ticket counter. The arrival of
customers and their departure is the collective result of the individual
decisions of a large number of persons.

Events and the
calendar

Operation of the
queue

10. 1 Discrete event simulation of a waiting line 159

The only model we may use in such a situation is a statistical one.
Random numbers are used to generate events such as customer arrivals
and departures. The state changes only at discrete time epochs such as
arrivals and departures. Nothing happens between events. Thus when
evolving the waiting line on the computer, time jumps from event to event.
We speak therefore of a discrete-time, discrete-event simulation.

To simulate the waiting line, we need two sequences of random
numbers: one to measure the times between arrival events and the other
to determine the time needed to serve a customer. The properties of
these sequences are described by their distribution. For simplicity, we
will work with the exponential distribution (see Box 10.1).

The operation of the waiting line is governed by two types of event: the
arrival and the departure of a customer. Each event has an associated
time - its due time. An algorithmic description of the operation of the
waiting line rests on the notion of a calendar of such events. The
calendar is defined by two actions: an event may be scheduled and the
most imminent event may be retrieved.

Using these concepts, the operation of the waiting line can be expressed
more rigorously in an algorithmic notation similar to Oberon:

REPEAT
"Retrieve event from the calendar";
IF event = arrival THEN

"Schedule a new arrival event";
"If the queue is empty, schedule a departure event,
else join queue"

ELSIF event = departure THEN
"Remove head of the queue. If the queue is not empty,
schedule a new departure event"

END
UNTIL "Simulation time exceeds given limit";

160 Stepwise refinement and data abstraction

Box 10.1 Assume that we have made a
The distribution of
random numbers

System state

-c:
:::J

8

x

large number of observations of a
random phenomenon. A good
way to characterize the set of
observations is to plot a
histogram. The abscissa is divided
into equal intervals, and the
number n(x) of observations
falling into the interval beginning
at x is graphed as a bar chart.

If we decrease the width of the intervals and simultaneously increase
the number of observations we call the normalized limiting function (if it
exists) the distribution of the random observations.1

-c:
:::J
o o

Sometimes such a chart looks like
the diagram on the left: the shape
approaches a negative
exponential curve - we speak of a
negative exponential distribution.
The time between arrivals of
phone calls is an example where
the exponential distribution is
found in practice.

An exponential random number rnexp can be obtained from a uniform
random number rnuni according to the simple formula:

where 1/ f.l is the mean value of the random numbers. If the random
variables are used to measure the time between events, the parameter f.l is
also the rate (in events/s).

The state of the queue is an integer n that measures the number of cus­
tomers in the waiting line and in service. The action

• 'join queue' means incrementing n;

• 'remove head of the queue' means decrementing n.

1 Technically distribution of random variable.

Events

10.2 Putting the operation of the queue into Oberon terms 161

10.2 Putting the operation of the queue into Oberon
terms

The last section provides a description of the queueing operation that is
quite rigorous. However, it is still far from an executable Oberon
program. The specification of such a program will require

(1) a data representation of the system state (queue, events and so
on);

(2) a precise definition of the calendar, in particular the actions
'schedule an event' and 'retrieve an event';

(3) translation of the algorithmic description of the queue's opera­
tion into an Oberon procedure;

(4) specification of further procedures that initialize the model,
gather statistical results and produce output;

(5) embedding all procedures in one (or several) modules.

The difficulty in attacking a complex programming task is to decide
where to start - and how to proceed in a methodological fashion. Many
problems of data design and procedural specification are interrelated­
it seems all has to be done at once.

Abstraction is the key technique that allows the programmer to break
the vicious cycle. To abstract means to leave out detail. The procedure is
a powerful concept in this respect: we can write down a procedure call
without need to specify the text of that procedure right away. Having this in
mind, our plan to attack the queueing simulation is to start with task
(1), defer (2) and proceed with (3), then return to (2) and 'complete (4)
and (5) subsequently. The methodology behind this approach is known
as structured programming or stepwise refinement.

10.2.1 Data representation of the system state

The entities of the queueing systems are the events, the calendar, the
queue and a random number generator. Also required to describe the
global state is the notion of the simulation time.

Mathematically, the events are labels on the time axis. In our example,
there are two kinds of events: arrivals and departures. It is expedient to
represent event types as integers. Therefore an event is a tuple (e, t),
where.e serves as event label (or identifier) and t is the event's due time.

162 Stepwise refinement and data abstraction

Calendar

Queue

In order to specify the queueing simulation, we also need the calendar.
One possibility is to now focus on that problem. This is not the course
we have chosen. However, we have to make an assumption about the
actions supported by the calendar. We postulate the following proce­
dures:

PROCEDURE GetNextEvent(VAR e: INTEGER; V AR t: REAL);
PROCEDURE Schedule(e: INTEGER; t: REAL);

At this point, the calendar remains abstract - a lot of detail is hidden
behind those two procedures. A data structure that is defined solely by
procedures acting on it is known as an abstract data structure - a concept
that we will refine in Section 10.3.

Recall that since customers have no identity, the state of the queue is
simply an integer. This compact state description greatly simplifies the
program.

Random Random numbers, finally, are already available through module
numbers RandomNumbers, which we assume to be part of the program library of

our workstation. We will use the procedure RandomNumbers.Exp. Two
parameters have to be specified: the arrival rate A (in customers/s) and
the mean service time 1//1.

Global variables With these preliminaries, we are ready to list the declarations of the
global variables needed in our simulation program:

CONSTarrival = 0; departure = 1;
VAR

event: INTEGER;
time: REAL;
n:INTEGER;
lambda: REAL;
mu:REAL;

(* The current event type*)
(* The current time *)
(* The number of customers in the queue *)
(* The arrival rate *)
(* The service rate *)

The named constants arrival and departure will render the resulting
program text readable. Their use should be considered essential and not
just a nicety.

10.2.2 A first round of refinement of the queueing algorithm

The preparations are now complete to make a first round of refinement
of the algorithm stated in Section 10.1:

10.2 Putting the operation of the queue into Oberon terms 163

REPEAT
GetNextEvent(event, time) (* retrieve event from calendar *)
IF event = arrival THEN ProcessArrival
ELSIF event = departure THEN ProcessDeparture
END

UNTIL time> tEnd;

Clearly, the description of the simulation task has been made in terms
of subtasks, emphasizing the dominant structure and suppressing de­
tails.

Of course, suitable data structures must be chosen, and the subtasks
ProcessArrival and Process Departure must now be further described with
all the necessary details. GetNextEvent is part of the calendar operation
and its specification awaits one more round of refinement.

Instead of replacing the descriptive English words with more or less
elaborate Oberon program texts, we may consider these words as
procedure identifiers, and we will proceed to write their program texts.

Let us first focus on the processing of an arrival event. With the pre­
ceding discussion, the 'pseudocode' of Section 10.1 translates easily into
a formal Oberon procedure:

PROCEDURE ProcessArrival;
BEGIN

Schedule(arrival, time + RandomNumbers.Exp(lamda»;
IFn = o THEN

Schedule(departure, time + RandomNumbers.Exp(mu»
END;
INC(n)

END ProcessArrival;

The actions taken upon a departure event are similarly simple:

PROCEDURE ProcessDeparture;
BEGIN

DEC(n)
IFn>OTHEN

Schedule(departure, time + RandomNumbers.Exp(mu»
END

END ProcessDeparture;

The actions corresponding to the subtasks are now specified except for
the calendar and the embedding into a final module, which we consider
in a second and a third round of refinements.

164 Stepwise refinement and data abstraction

10.3 Hiding of details

10.3.1 Implementation of module Calendar

The calendar is a central component of every discrete event simulation.
Therefore we will encapsulate it in its own module, which we name
Calendar. Such a module may support many particular simulation
models - it will serve as a service module in the computer's library.

In the preceding section, we described the calendar abstractly as a
repository of timed events, admitting the operations GetNextEvent and
Schedule. We are now at the stage where the abstract definition has to be
concretized; that is, a data representation for the calendar needs to be
chosen and the actions specified.

To store events, we need a table. Events in the calendar have a natural
order defined by their due time. It is therefore an obvious choice to
maintain a ranked list, with the head of the list being the most imminent
event.

For the purpose of module Calendar, the definition of the type Node of
Section 9.2 has to be modified. There we deliberately omitted ap­
plication specific fields. In our case, we need such 'data' fields for the
integer that serves as event identifier. The application-specific meaning of
the key is the due time. Therefore it is of type REAL.

To render the program text more readable, we also rename the type
Node as Event and key as time. The text of the procedures FirstNode and
InsertRanked can be easily adapted - the program text of module
Calendar should be quite self explanatory.

MODULE Calendar;
CaNST deadlock* = MAX(INTEGER);
TYPE

Event = POINTER TO EventDesc;
EventDesc = RECORD

id: INTEGER;
time: REAL;
next: Event

END;
(1) ~ V AR clndr: Event;

PROCEDURE GetNextEvent*(VAR id: INTEGER; VAR t: REAL);
BEGIN

IF clndr # NIL THEN
id := clndr.id; t:= clndr.time;
clndr := clndr .next

(2) -+

(3) -+

ELSE id := deadlock
END

END GetNextEvent;

10.3 Hiding of details 165

PROCEDURE Schedule* (id: INTEGER; t: REAL);
V AR x, y: Event;
BEGIN .

NEW(x); x.id:= id; x.time:= t;
IF (clndr = NIL) OR (t < clndr.time) THEN

x.next := clndr; clndr:= x
ELSE

y:= clndr;
WHILE (y.next # NIL) & (t >= y.time) DO y:= y.next END;
x.next:= y.next; y.next:= x

END
END Schedule;

PROCEDURE Reset*;
BEGIN clndr:= NIL
END Reset;

BEGIN
(4) -+ Reset

END Calendar.

Notes

(1) Global variable clndr is the anchor of the calendar list.

(2) If the calendar is empty, a deadlock is said to have occurred. A
special event identifier is returned, the time is undefined. The
client of module Calendar has to test for this event, if it is not
guaranteed that the simulation remains active.

(3) An instance of type Even t is created and initialized.
Subsequently, the event is inserted into the calendar list such that
it remains ranked with respect to time.

(4) In the body of module Calendar, the calendar list is initialized.

Besides the familiar procedures GetNextEvent and Schedule, a third
one is added, namely Reset. It empties an existing calendar and is useful
when a new simulation run is started.

There is little more to explain about module Calendar, except for the
choice of exports. Module Calendar performs no computations on its own.

166 Stepwise refinement and data abstraction

It is a service module that exports procedures to be used in a client
module.

Clearly, we have to export the procedures Reset, GetNextEvent and
Schedule. But do we also have to export the calendar - that is, the global
variable cindr? At first sight, this clearly seems necessary.

But we already know that the importing module is perfectly served if
it has access to the procedures Reset, GetNextEvent and Schedule.

We deliberately opt for export of those procedures only. The conse­
quence is that we hide the dynamic data structure that represents the cal­
endar. The client has no access to that data structure. The exported dec­
larations, seen from a module that imports Calendar, are in the style of a
definition module:

DEFINITION Calendar;
CONST deadlock = MAX(INTEGER);
PROCEDURE GetNextEvent(VAR id: INTEGER; VAR t: REAL);
PROCEDURE Schedule{id: INTEGER; t: REAL);
PROCEDURE Reset;

END Calendar.

Abstract data We call a data structure that is not visible outside of a module but that
structure can be created and changed by a set of exported procedures an abstract

data structure.
It is abstract in the sense that only its properties are known - not its

implementation. The properties of the data structure that are visible in a
client module are called the interface. In our example, the interface is
composed of the constants deadlock and the procedures Reset,
GetNextEvent and Schedule. .

What is hidden is the type Event as well as the anchor of the calendar
list (the global variable cindr). An importing module is thus unable to
traverse the list, to enter events on its own or to remove events.

Increased safety What purpose is served by data hiding? Could the client not do more if
it had full access to the dynamic data structure of the· calendar? Yes it
could - and this may be an advantage as well as a bane.

For example, an already scheduled event could be removed or a
group of almost simultaneous events could be inserted at once, thereby
saving execution time. But it is as easily possible to introduce errors, for
example to insert an event at the wrong place in the ranked list and - as
a consequence - completely annihilate the results of the simulation.

The notion is that a service module affords a set of carefully validated
functions. The data structure is protected, and thus its integrity is

. guaranteed - no tampering with it can invalidate the results of the pro­
cedures operating on it.

Simplification of
documentation

Freedom of
implementation

10.3 Hiding of details 167

We are all aware that the documentation of programs is a tedious and
hence often neglected duty of the programmer. Using data abstraction,
implementation details remain hidden, and their documentation (or
lack thereof) does not affect others whose work depends on availability
of our module. Only the interface needs documentation. If the names of
variables and parameters are well chosen, the interface almost
documents itself - a significant advantage of deliberately chosen thin
interfaces.

Data hiding - or data abstraction - has a third important benefit: the
implementer is free to change the data structure without affecting any of
the importing modules.

For example, instead of a linear list, an array could as well serve as
basis for the calendar, using the deClaration

V AR clndr: ARRAY max OF RECORD
id: INTEGER; time: REAL

END;

An implementation based on arrays admits the heap structure, which
allows insertion in log (n) operations (where n measures the number of
calendar entries); see Wirth (1976). The heap algorithms work similarly
to the binary search (Section 8.2.5). An implementation of the procedure
Schedule using such a binary search to pinpoint the insertion point may
hold a speed advantage over its cousin working on lists. Another
possibility is the use of a tree structure that also allows insertion in
log(n) time rather than in linear time. In any case, such improved
implementations will show a significant gain only for large simulation
models whose calendars grow really big. For small models, they may
even be counter-productive.

Using data abstraction, it is possible to substitute a new and im­
proved implementation of a service module in a program library. None
of the clients will have to be modified or even recompiled, as long as the
interface remains the same.

10.3.2 Computing statistics: module Paths

We have now all the elements in place to complete the simulation pro­
gram. However, running the algorithm as stated in Section 10.2 would
not be too exciting - its only result is a busy computer. Clearly, the

168 Stepwise refinement and data abstraction

Box 10.2
Mean and path
of a queue

simulation experiment has to be instrumented with the goal of
gathering statistics about the system's behavior.

It turns out that in practice, a great deal of the size of a simulation
program is devoted to instrumentation and data analysis. Therefore it is
a good idea to provide some tools to facilitate this task. Our goal, again,
is to provide a service module usable for many applications.

In order to compute the mean value of a queue, one has to analyze its
path (see Box 10.2). In a realistic simulation, there is not only one but
many different queues with their respective paths that the investigator
wants to analyze. We therefore need a mechanism that allows the user
of the service module to declare an open-ended number of paths and
gather data about them.

~
Q)

E
o .-
CJ)
::J
()

L= WIT

--~time

T

One of the simplest statistics that we can compute for our queue is the
mean number of customers found waiting or in service over a given
period of length T. This mean number, L say, is computed according to
the formula

L=WjT

where W denotes the cumulative waiting time defined as the area under the
graph 'customers in queue versus time' measured from time 0 to T. Such
a graph is also known as the path of the queueing process.

In Oberon, that mechanism is the type - our goal is to design a
module that exports a type called Path. Clients are then able to declare
multiple instances of that type in the customary manner.

Each time the path jumps one unit up or down, the accumulated
waiting time W is updated. In order to do this, we need a record of the
path value n at the time of the last change, as well as the epoch t of that
change. Thus a path is an instance of the following record type:

TYPE Path = RECORD
n:INTEGER;
W, t: REAL

END;

10.3 Hiding of details 169

It is now easy to write the program text of module Paths:

MODULE Paths;
TYPE Path* = RECORD

n*: INTEGER;
W, t: REAL

END;

PROCEDURE Init * (V AR p: Path);
BEGIN p.W:= 0; p.n:= 0; p.t:= 0
END Init;

PROCEDURE Up* (V AR p: Path; t: REAL);
BEGIN p.W:= p.W + p.n*(t - p.t); INC(p.n); p.t:= t
END Up;

PROCEDURE Down* (V AR p: Path; t: REAL);
BEGIN p.W:= p.W + p.n*(t - p.t); DEC(p.n); p.t:= t
END Down;

PROCEDURE Mean* (p: Path; tEnd: REAL): REAL;
BEGIN RETURN (p.W + p.n*(tEnd - p.t»/tEnd
END Mean;

END Paths.

The actions of the procedures are so simple that a few comments suf­
fice:

• Init: Initializes the fields of a path.

• Up: At time t, the path makes a jump of one unit in the up­
ward direction.

• Down: Like Up, but jump is downward.

• Mean: Returns the mean value of the path variable for the
time interval starting at 0 and ending at tEnd.

170 Stepwise refinement and data abstraction

Abstract data
type

As in the case of the calendar, the choice of exports justifies further
discussion.

The client of module Paths is not interested in the accumulated waiting
time W or in the time stamp t. It is the mean queue length that really
matters. With this in mind, module Paths only exports the record type
Path and field n measuring the instantaneous value of the path. Since
details remain hidden from the client, we speak of an abstract data type.
The visible declarations that provide the interface to module Paths are

DEFINITION Paths;
TYPE Path = RECORD

n:INTEGER
END;

PROCEDURE Init (VAR p: Path);
PROCEDURE Up (VAR p: Path; t: REAL);
PROCEDURE Down (VAR p: Path; t: REAL);
PROCEDURE Mean (p: Path; tEnd: REAL): REAL;
END Paths.

Instances of an abstract data type are initialized and manipulated exclu­
sively through procedures~ Each one of the procedures needs a formal par­
ameter that identifies the particular instance of the abstract data type, upon
which actions are performed. It is good practice to start the parameter
list with this identification parameter.

The data structure itself is hidden. The advantage of hiding details
are no different in the case of an abstract data type from the abstract
data structure: simplicity of the interface, security and freedom of im­
plementation. The disadvantage is also the same, namely a possible re­
striction of operations that the client may legitimately want to perform.

10.4 Completion of the simulation example

We have now all the elements in place to list the complete program text
of the simulation program. We know that this means to create a
module, which we call Model. We draw on the services of imported
modules, namely Calendar, RandomNumbers, Paths, In and Out.

The following program text should be self-explanatory:

(1) -+

10.4 Completion of the simulation example 171

MODULE Model;
IMPORT Paths, Calendar, RandomNumbers, In, Out;
CONST arrival = 0; departure = 1;
VAR

event: INTEGER;
time: REAL;
q: Paths. Path;
lamda: REAL;
mu: REAL;

(* current time *)
(* state of queue and statistics *)
(* arrival rate *)
(* inverse of mean service time *)

PROCEDURE ProcessArrival;
BEGIN

Calendar.Schedule(arrival, time + RandomNumbers.Exp(lamda»;
IF q.n = 0 THEN

Calendar.Schedule(departure, time + RandomNumbers.Exp(mu»
END;

(2) -+ Paths.Up(q, time)

(3) -+

END ProcessArrival;

PROCEDURE ProcessDeparture;
VARs:REAL;
BEGIN

Paths.Down(q, time);
IF q.n > 0 THEN

Calendar.Schedule(departure, time + RandomNumbers.Exp(mu»
END

END ProcessDeparture;

PROCEDURE Simulate(dt: REAL);
VAR tEnd: REAL;
BEGIN

tEnd := time + dt;
REPEAT

Calendar.GetNextEvent(event, time);
IF event = arrival THEN ProcessArrival
ELSIF event = departure THEN ProcessDeparture
END

UNTIL time> tEnd
END Simulate;

PROCEDURE Setup*;
BEGIN

In.Open; In.Real(lamda); In.Real(mu);

172 Stepwise refinement and data abstraction

Out. Open;
Out.String("lamda ="); Out.Real(lamda, 10);
Out.String(" mu ="); Out.Real(mu,10); Out.Ln;
Calendar.Reset; Paths.Init(q);
Calendar. Schedule (arrival, 0.0)

END Setup;

PROCEDURE Run*;
V AR dt: REAL;
BEGIN

In.Open; In.Real(dt);
Simulate(dt);
Out.String("mean ="); Out.Real(Paths.Mean(q, time), 11); Out.Ln

END Run;

END Model.

Notes

(1) Instead of employing a simple integer to describe the state, we
make use of the abstraction Path, which also reflects the number
of customers in q.n.

(2) The call Paths. Up replaces INC(n) in the preliminary version.

(3) The call Paths.Down replaces DEC(n) in the preliminary version.

To execute a simulation run, two commands need to be executed in
sequence: Setup and Run. The command Setup fixes the basic parame­
ters lamda and mu and initializes the data structure for a new simulation
run. Note that an initial arrival event must be entered into the calendar
- otherwise the simulation would never start.

Executing the command Run starts a particular simulation. The in­
cremental simulation time dt is a parameter. After completion, the
command Run displays the mean queue length. Run has the property
that it can be iterated. A second invocation will continue from where
the first one stopped.

The division between Setup and Run is deliberate. Typically, the re­
sults of a simulation converge to a stationary state. Whether a result is
close to that limit is not known beforehand. Issuing one Setup and exe­
cuting Run several times will help the investigator to evaluate the de­
gree to which steady state is reached.

Observe that module Model is mainly composed of declarations and calls
to procedures exported by service modules. This is demonstrated by the
predominance of qualified identifiers and is quite typical of a properly
modularized Oberon program.

Module
hierarchy

10.5 More on program structuring and abstraction 173

10.5 More on program structuring and abstraction

Structuring and abstracting are the main techniques leading to under­
standable and hence trustworthy programs. To abstract literally means
to pull out the essence from irrelevant details.

The quality of a program is an elusive property, and may mean dif­
ferent things to different groups of people. All would agree, however,
that program correctness is of fundamental importance. To demonstrate
a program's correctness is ultimately a matter of convincing a person
that the program is trustworthy. How can we approach this goal? While
great progress was made in proving program correctness through
assertions, the method is still far from being a panacea. Provable
programs are still a small- albeit growing - minority.

The only salvation for the rest lies in structure. A program must be
decomposed into partitions that can be considered one at a time
without too much regard for the remaining parts. At the lowest level,
the elements of the structure are statements; at the next level, proce­
dures; and at the highest level, modules. In parallel with program struc­
turing proceeds the structuring of data. The essence of programming is
finding the right - or at least an appropriate - structure.

10.5.1 Decomposition into modules, data hiding

The distinctive property of the module as the largest structuring unit is
its capability to hide details and thereby to establish a new level of ab­
straction. Decomposing a program into modules divides programmers
into providers and users. The provider of an abstraction writes a module
and carefully chooses which variables or procedures to export. As we
mentioned earlier, those exports are called the interface of the module.
The provider creates a service module. The user deals with the facilities of
a service module through the interface only. Since abstraction is a
hierarchical concept, every provider is usually also a user of abstrac­
tions at a lower level.

Partitioning of a program into modules establishes a hierarchy of ab­
stractions. The hierarchy is defined by the relation 'module C imports
module S.' C is called a client of S, which itself is a service module for C.

To reveal the structure of a hierarchy of abstractions, the graph con­
sisting of modules as nodes and import relations as edges is useful.
Properly structured abstractions avoid mutual dependency - which
means that their module graph is cycle-free. An example of a module
hierarchy is depicted in Figure 10.1.

174 Stepwise refinement and data abstraction

Even if there does not exist a recipe to determine the most favorable
decomposition, there have emerged some criteria separating the good
from the bad. A basic rule is that the connection between modules - the
interface - be simple or 'thin.' A crude measure is the number of items
participating in the interface. Naturally, it is difficult to find an opti­
mum, since this number would vanish if the entire program could be
collapsed into a single module - clearly an undesirable solution.

We can distinguish the following typical cases:

(1) The module contains no data of its own, but exports a· collection
of procedures. The typical example is a mathematical subroutine
library. Such modules are packages of procedures.

(2) The module's essence is a set of data. It hides the details of the
data representation by granting access to these data through calls
of its exported procedures only. We speak of an abstract data
structure.

(3) The module exports a data type together with associated proce­
dures. The data type may again represent a dynamic structure. In
contrast to (2), the client of such a module may declare multiple
instances of the type - now termed an abstract data type.

Hiding details has three benefits:

• The user or client of a service module is not bothered with
unnecessary characteristics of the implementation. Only the
interface must be described - a task that is much easier than a
complete documentation of the module.

• In the case of abstract data structures or abstract data types, the
user is not only not bothered with detail - but is effectively
prevented from tampering with the data structure. If the
functions of the service module are carefully tested, their validity
is not endangered by inappropriate use. Certain invariants can
be guaranteed. Data abstraction increases the safety of programs.

• The implementer is free to choose and even change. the data
representation without bothering or invalidating client modules.

However, data abstraction also prevents the client from performing
perfectly correct and sensible operations on the data. The trade-off is
not always easy, and has to be made judiciously.

10.5.2 Module Out: an example of an abstract data structure

Let us revisit module Out that we introduced in Chapter 7 for textual
output. It depends on operating system services dealing with files and

10.5 More on program structuring and abstraction 175

the viewer subsystem. Assuming a standard Oberon operating envi­
ronment, the provider of module Out uses the whole hierarchy of
Oberon system modules shown in Figure 10.1. Each module provides
an abstraction of its own.

E
<l>
(j)
>.. ...
CJ) <l>

~i
iL..Q

E
<l>
(j)

~
.0
~
CJ)

~ c..
CJ)

C5

Figure 10.1 Module Out embedded into the hierarchy of the Oberon system
(there are more import relations - only the major ones are depicted).

Modules TextFrames, Oberon, Texts and MenuViewers are directly
imported by module Out. However, since those modules themselves
depend on the lower modules in the hierarchy, almost the entire
Oberon operating system is at the service of Out.

The user of Out deals with all that complexity through six simple
procedures only: Open, Char, Ln, Int, Real and String. Behind the six
procedures is a single instance of a data structure - the stream - that we
know only through its properties: (1) it is composed of elements that have
a successor and possibly a last element and (2) a position.

The advantage of the abstraction provided by module Out is obvious.
A simple concept, the stream, and six procedures allow the user to deal
with output operations. Furthermore, the abstraction on a level high
enough that it can be implemented on any contemporary computer,
from PC to a large mainframe.

However, does module Out supplant the functions of the foundation
comprising the modules Kernel, FileDir, Modules, Display, Input, Files,
Fonts, Texts, Viewers, Oberon, MenuViewers and TextFrames? Of course

176 Stepwise refinement and data abstraction

not. Those other modules deliver a wealth of functions that are useful,
even essential, but abstracted from (or hidden) by Out. The price of ab­
straction is therefore a loss of functionality - traded for simplicity of concept,
correctness of the functions and freedom of implementation. Where to draw
the line in making this trade-off is always a matter of judgement and
debate.

10.5.3 Module Files, example of an abstract data type

We came across the abstract data type in Section 10.3.2, where we in­
troduced the type Path. Admittedly, module Paths is a simple example­
while the reason for hiding two record fields t and W is plausible, some
readers may find it somewhat less than compelling.

To illustrate a truly convincing example, we make a digression into
the Oberon file system, where the amount of hidden detail is massive and
the benefits of abstraction overwhelming. The interface definition reads
as follows:

DEFINITION Files;
TYPE

File = POINTER TO Handle;
Handle = RECORD END;

Rider = RECORD
res: LONGINT;
eof: BOOLEAN

END;

(* a result code *)
(* end of the file reached *)

(* Procedures operating on the type File *)
PROCEDURE New(name: ARRAY OF CHAR): File;
PROCEDURE Old(name: ARRAY OF CHAR): File;
PROCEDURE Register(f: File);
PROCEDURE Length(f: File): LONGINT;

(* Procedures operating on the type Rider *)
PROCEDURE Set(V AR r: Rider; f: File; pos: LONGINT);
PROCEDURE Read (V AR r: Rider; V AR ch: CHAR);
PROCEDURE Write (V AR r: Rider; ch CHAR);
PROCEDURE Pos(V AR r: Rider): LONGINT;
PROCEDURE Base(V AR r: Rider): File;

10.5 More on program structuring and abstraction 177

(* Procedures operating on the directory *)
PROCEDURE Rename(old, new: ARRAY OF CHAR;

V AR res: INTEGER);
PROCEDURE Delete(name: ARRAY OF CHAR;

V AR res: INTEGER);
END Files.

A file is a pointer to a record termed file handle. None of the fields of
that handle is visible to the client. Instead, the user needs to know only
the following properties of a file:

• A file is an sequence of characters (stored on a permanent
medium such as a hard disk).

• A file has, apart from the sequence of characters, a name, a length
and a creation date.

Module Files also implements the notion of a directory in which files are
registered by their name. Procedures Rename and Delete perform the
indicated operations on the directory; the integer parameter res is a
result code stating termination conditions. .

A file (pointer) can be obtained in one of two ways: procedure
New(name) yields a new file representing the empty sequence; and
procedure Old(name) yields the file registered under name in the file di­
rectory, or NIL if this name is not registered.

For the purpose of reading and writing files, the module provides a
further abstract data type called Rider. As its name suggests, it acts as a
rider through the sequence of characters, and advances by one position
after each read or write operation represented by procedure Read(R, ch)
and Write(R, ch). Thus,the properties of the rider are

• a position (hidden);

• an integer field res providing a termination (or result) code
indicating the success of a read/write operation;

• a Boolean field eot that indicates whether read/write operations
reach the end of the file.

Procedure Set(R, F, pos) places rider R onto file F at position pos.
Function procedure Base(R, F) yields the file F associated with rider R.
Procedure Read(R, ch) reads a character at rider R's position and returns
it in ch. Similarly, Write(R, ch) writes character ch at rider R's position. In
both cases, the position is incremented.

In the following program template, a registered file named "Laura" is
accessed and for each character a procedure Consume is invoked:

178 Stepwise refinement and data abstraction

V AR ch: CHAR; F: Files.File; R: Files.Rider;

F:= Files.Old(ILaura");
IF F # NIL THEN

Files.Set(R, F, 0); Files.Read(ch);
WHILE R.eofOO Consume(ch); Files.Read(R, ch) END

END;

The rider field eat indicates whether or not a read operation has reached
the end of the file. If it did, the value assigned to ch is not a character
from the file, it is OX.

In the next example, characters are produced and written sequentially
to a new file that is eventually registered in the directory. We use the
same declaration as in the previous example:

F:= Files.New(ILaura");
Files.Set(R, F, 0);
WHILE ""';done 00 Produce(ch); Files.Write(R, ch) END;
Files.Register(F) ;

Variable done is a Boolean set by procedure Produce to indicate the end
of sequential character generation. Procedure Register(F) closes the file
and registers its name in the directory. If it already exists, the previ­
ously registered file is unregistered.

As a last example, we append a character ch at the end of a file F:

Files.Set(R, F, Files.Length(F»; Files.Write(F, ch);

Length(F) yields the length of the file, hence the call statement
Files.Set(R, F, Files.Length(F» positions rider R at the end of file F.

We refrain from elaborating on further details of the file concept and
its realization in the Oberon system, except for the following remarks:

(1) Procedure· Set allows the user to place a rider at any position be­
tween 0 and the file's length. Access to file elements, therefore,
need not be sequential. However, for various reasons it is highly
recommended to access files in a sequential manner as shown
above. Files are practically always generated sequentially,
whereas for reading, the recommendation is somewhat less strin­
gent.

(2) To be exact, files are defined to be sequences of the data type
SYSTEM.BYTE (see Appendix A, Section A.12). Similarly, the for­
mal parameter ch of the procedures Read and Write is of type

10.5 More on program structuring and abstraction 179

SYSTEM. BYTE and not CHAR. However, SYSTEM.BYTE may be
replaced anywhere by CHAR, but not vice versa.

The purpose of this example of module Files is to demonstrate the ex­
tent to which abstraction is successful at reducing the complexity of
documenting an interface, and at reserving enough freedom for the
implementer to use appropriate techniques. We must be aware that this
succinctly described interface rests on a mechanism of substantial
complexity, comprising a disk driver, an allocation strategy, a buffering
mechanism and a directory management for fast searching, inserting
and deleting entries (see Figure 10.2).

file2

,,' length

date
name

buffers

disk sectors

Figure 10.2 Some of the data structures behind the abstract data type File.

10.5.4 Textual structure and naming

The textual structure of the program is of essence. This is easily ap­
preciated if we take away the structure of module Model - that is, print
it as a simple sequence of characters and words:

MODULE Model; IMPORT Paths, Calendar, RandomNumbers, In, Out;
CONST arrival = 0; departure = 1; V AR event: INTEGER; time: REAL;
(* current time *) q: Paths. Path; (* state of queue and statistics *)
lamda: REAL; (* arrival rate *) mu: REAL; (* inverse of mean service
time *) PROCEDURE ProcessArrival; BEGIN Calendar. Schedule

180 Stepwise refinement and data abstraction

arrival, time + RandomNumbers.Exp(lamda»; IF q.n = 0 THEN
Calendar.Schedule(departure, time + RandomNumbers.Exp(mu» END;
Paths.Up(q, time) END ProcessArrival; PROCEDURE
ProcessDeparture; V AR s: REAL; BEGIN Paths.Down(q, time); IF q.n >
o THEN Calendar.Schedule(departure, time+RandomNumbers.
Exp(mu» END END ProcessDeparture; PROCEDURE Simulate(dt:
REAL); VAR tEnd: REAL; BEGIN tEnd := time + dt; REPEAT
Calendar.GetNextEvent(event, time); IF event = arrival THEN
ProcessArrival ELSIF event = departure THEN ProcessDeparture END
UNTIL time > tEnd END Simulate; PROCEDURE Setup*; BEGIN
In.Open; In.Real(lamda); In.Real(mu); Out.String(ltlamda =It); Out.
Real(lamda, 10); Out.String(It mu ="); Out. Real(mu, 10); Out.Ln;
Calendar. Reset; Paths.Init(q); Calendar.Schedule(arrival, 0.0) END
Setup; PROCEDURE Run*; V AR dt: REAL; BEGIN In.Open;
In.Real(dt); Simulate(dt); Out.String(ltmean ="); Out.Real (Paths. Mean
(q, time), 11); Out.Ln END Run;BEGIN Out.Open END Model.

Although still perfectly well formed and hence accepted by the com­
piler, without textual structure, the program Model is next to unintel­
ligible. In all the examples presented so far, we have adopted a strongly
recommended style:

• Generally restrict the number of statements to one or a small
number per line.

• Use indentation to exhibit the recursive nature of structured
statements.

The appropriate choice of names is also of great importance, and either
elucidates or obscures the action of a program. From long practice, we
recommend the use of

• Verbs for proper procedures such as Insert, Delete, Search and
Schedule.

• Nouns for variables (except variables of type BOOLEAN), for ex­
ample time, queue, event.

• Adjectives for Boolean variables and function procedures, for
example, empty and full.

• Nouns for function procedures such as NewCustomer, Uniform
and Exponential.

• Nouns (singular) for modules that export an abstract data
structure, for example Calendar.

• Nouns (plural) for modules that export an abstract data type, for
example Paths, Texts and Lists. Note that the identifier for the

10.5 More on program structuring and abstraction 181

(main) type is normally the singular form of the module name
such as Paths.Path, Texts.Text and Lists.List.

It is advisable not to make names cryptic - in the case of doubt opt for a
longer name. This may not hold for local objects in short procedures,
however, where long names do not serve any purpose except promote
verbosity. Again, rigid rules cannot replace good judgement.

10.6 Summary

This chapter has introduced the proper use of data structures,
procedures and modules in programming; in particular, it has been
about

(1) the programming process at large;

(2) the role of the procedure and of the module to structure pro­
grams;

(3) data hiding and the notions of an abstract data structure and an
abstract data type.

The method that we adopt is stepwise refinement and data abstraction.
Formulation of the programming task starts at a high level, using a
pseudo-Oberon notation, and is subsequently refined in various
rounds. The procedure is a particularly useful structural tool: descrip­
tive English words are replaced by a procedure call. The corresponding
procedure definition is formulated later.

One of the most powerful tools is abstraction: hiding of details. When
the programmer uses a procedure call instead of writing an elaborate
stretch of program text, he or she practices abstraction. However, the
capability of the module to selectively export certain declarations while
hiding others provides even more powerful tools: the abstract data
structure and the abstract data type.

An abstract data structure is hidden in a module, and is accessible
only through procedure calls. In the case of the abstract data type, the
user can declare multiple instances, each one representing a hidden
(hence abstract) data structure.

The benefit derived from data abstraction is simplicity of the interface,
security and freedom of implementation. A potential drawback is a loss
of function, otherwise available (to good use) to the client.

The chapter has concluded with further examples of abstract data
structures and abstract data types and with a recommendation for
program structuring and naming.

182 Stepwise refinement and data abstraction

10.7 Exercises

10.1 [Stack] Implement a module Stacks that exports the abstract data type Stack:

DEFINITION Stacks;
TYPE

Data = INTEGER;
Stack = RECORD END;

PROCEDURE Push(s: Stack; i: Data);
PROCEDURE Pop(s: Stack): Data;
PROCEDURE Empty(s: Stack): BOOLEAN;
PROCEDURE Open(s: Stack);
END Stacks.

A stack is a repository for data element. A data element i is stored by means of
Push. The most recently stored data element is recovered using Pop. Empty
informs whether the stack is empty or not. A stack is initialized through a call to
Open.

What happens if Pop is called when the stack is empty? Two solutions come
to mind: (1) a special value undefined is returned (for example MIN(lNTEGER»
or (2) the program comes to an abnormal termination (HALT). Discuss
advantages and disadvantages of the two solutions.

Provide two implementations: one based on the list structure and one using
an array. In the latter case, how is index overflow dealt with?

Implement a module UseStack with commands New, Push and Pop. Push reads
an integer from the stream and pushes it onto a stack, Pop recovers an integer
from the stack and writes it to the output stream.

10.2 [Mean and variance] In simulation, one often encounters sequences of successive
observations, represented by real numbers {xi:i = 1,2,3, ... , n}. Of interest are the
sample mean and the sample variance, which are defined by

n

Xn = (lin) LXi' forn > 1 (1,2)
i=O

In a simulation, the observations xi occur one at a time as the run progresses. It
is quite fortuitous that the sample mean and the sample variance can be
calculated with a recurrence relation, without storing the whole sequence:

forn> 1 (3)

for n 2:: 1 (4)

Note that computation of the sample variance by means of (2) should be
avoided; the difference of possibly large, but nearly equal quantities may lead

10.7 Exercises 183

to loss of accuracy (cancellation). Besides the amenity of computation 'on the
go,' equations (3) and (4) are free from such numerical instabilities.

Write a module Sequences that exports an abstract data type named Sequence.
An instance of Sequence is used to compute the sample mean and the sample
variance of a given sequence of observations. Module Sequences has definition:

DEFINITION Sequences;
TYPE Sequence = RECORD END;
PROCEDURE Init(V AR s: Sequence);
PROCEDURE Add(V AR s: Sequence; x: REAL);
PROCEDURE Mean(s: Sequence): REAL;
MODULE Var(s: Sequence): REAL;
END Sequences.

Why are the fields X, S2 and n not exported? The procedures Mean and Var are
rather trivial. What is their purpose?

10.3 [Path distribution] Change module Paths such that the sample path distribution,
in addition to the mean is evaluated. The sample path distribution is the set of
probabilities

P(n) = Pr{path is in state n} = T(n)/T

where

T(n) = Cumulative time the path spends at value n
T = Length of simulation run

Use an array T to accumulate T(n). Is the index bounded? Make sure no index
exceptions occur.

Add a parameter max to procedure Open that specifies the maximal value of
n. Also augment Paths with a procedure Distr that provides ~(n).

10.4 [Simulation of tandem queues] Implement a module Tandem that simulates
two queues in tandem, using the services of modules Calendar and Paths. Tandem
queues operate as follows: an arriving customer joins the first queue. After
service completion at the first queue, a customer immediately joins the second
one - being satisfied there, it leaves the system. All random numbers have
exponential distribution. Use the following constants and global variables:

CONST
arrival = 0;
departure1 = 1;
departure2 = 2;

VAR

(* arrival event *)
(* departure event at queue 1 *)
(* departure event at queue 2 *)

event: Calendar. Event;
time: REAL; (* current time *)
q1, q2: Paths.Path; (* state of queue and statistics *)

184 Stepwise refinement and data abstraction

lamda: REAL;
sl: REAL;
s2: REAL;

(* arrival rate *)
(* mean service times at queue 1 *)
(* mean service times at queue 2 *)

Hint: the parameter of the exponential distribution is the inverse of the mean
service time.

10.5 [Files] Support the phone directory of Exercise 8.7 with a file. The command
Open takes a name as parameter. If a file of that name exists, initialize the
directory from that file, otherwise open an empty directory.

Add a command Store to write a (new or changed) directory to disk storage.
Retain the old file version as a backup. Hint: first rename the file with a backup
name (Exercise 8.3). Then create a new file with the original name, write the
directory to that file, and register the new file.

References

Dahl O. J., Dijkstra E.W. and Hoare C. A. R. (1972). Structured Programming.
New York: Academic Press.

Wirth N. (1971). Program development by stepwise refinement. Communications
of the ACM, 14, 221-7.

Wirth N. (1974). On the composition of well-structured programs. Computing
Surveys, 6, 247-9.

Wirth N. (1976) Algorithms + Data Structures = Programs. Englewood Chliffs, NJ:
Prentice Hall.

Synopsis

To date, programming remains a craft characterized by the fact
that the wheel is re-invented daily. Every, experienced
programmer has programmed algorithms operating on trees and
lists - not once but many times. Why is there this waste in a time
where standardization of parts and methods is so successful in
other areas such as hardware design?

The answer may not be clear-cut. But a major reason is
obviously that traditional languages are deficient in tools that
allow the user of an existing object library to bind data or
procedures to those afforded by a service module.

To provide the tools to encapsulate standard methods into
reusable modules is the object of much current research. In the
remaining chapters we will discuss Oberon's answer: type
extension. As user-definable dflta types distinguished Pascal from
its ancestor, Algol, and as modules and information hiding
separated Modula-2 from Pascal, type extension is the most
important feature differentiating Oberon from its predecessor.

11 Type extension and
procedure types

Extension of
record types

In Chapter 9 we learned how complex dynamic data structures can be
composed from nodes that contain pointers to other nodes of the struc­
ture. A node is an (anonymous) instance of a record type - as such, it is
the static constituent of the structure. While these dynamic structures
may be arbitrarily complex in the relation among the nodes, they are
homogeneous as far as the node type is concerned. This is a serious re­
striction that is overcome by type extension. The notion of type extension
is simple in concept: from any existing record type, new types can be
derived that have additional fields but remain compatible with the
existing type (Wirth, 1988).

We will subsequently introduce the concept of a procedure variable. In
Chapter 6, we defined the procedure as a named statement sequence. A
procedure declaration is in a sense like a constant declaration - a fixed
relationship between name and value is established. It is not difficult to
visualize the concept of a procedure variable whose value is a statement
sequence. Its type, the procedure type, is specified by the parameter list of
the procedure.

Both type extension and the procedure variable have one thing in
common: they allow the creation of service modules that lack certain
information that has to be provided if programming is conducted
according to Chapter 10. The missing part - that is, data fields or spe­
cific actions - is furnished by the client module later. Type extension
allows late addition of data fields, the procedure variable of actions.

For an introductory example of type extension, we revert to the decla­
ration of the list node as used in Section 9.2.1, namely

TYPE
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

key: Key;
next: Node

END;

187

188 Type extension and procedure types

A list composed of such nodes may serve as a directory, with the key
representing the name of persons. Rather than adding further data
fields such as a phone number to the node directly, we may extend the
type Node elsewhere. The declaration of such an extended type reads as
follows:

TYPE
Entry = POINTER TO EntryDesc;
EntryDesc = RECORD (NodeDesc)

phone: ARRAY 16 OF CHAR
END;

An instance of type Entry is comprised of three fields: key, next, and
phone. Field phone is declared directly, whereas the fields key and next
are inherited from NodeDesc. Type NodeDesc is called the base type of
EntryDesc that is said to be an extension of NodeDesc. Syntactically, the
base type is listed in parentheses after the reserved word RECORD.

MODULE PhoneBook;
IMPORT Directories;
TYPE

User interface part

Entry = POINTER TO EntryDesc;
EntryDesc = RECORD (Directories.NodeDesc)

phone: ARRAY 16 OF CHAR
END;

MODULE Directories;
TYPE

List processing algorithms

Key* = ARRAY 32 OF CHAR;

Node* = POINTER TO NodeDesc;
NodeDesc* = RECORD

key* = Key;
next: Node

END;

I key
next

Figure 11.1 Adding 'data' fields in a client module.

It is essential that the extended type remain compatible with the base type.
Suppose that base is a pointer of type Node and ext one of type Entry.

Procedure types

Objects

Type extension and procedure types 189

Compatibility means that an assignment base:= ext is possible.
Moreover, the concept of type is made dynamic. That means that after
the assignment, the pointer base 'remembers' the type of ext. We shall
say more about the use of this concept later.

Type extension is especially powerful if the declaration of the base
type and the extension are in different modules. For example, assume
that module Directories implements the function of searching and up­
dating a directory. PhoneBook is a client module that yields phone
numbers for given names. The task is split in two independent parts.
Module Directories works on a dynamic data structure whereas the
client, in our example module PhoneBook, implements the application­
specific parts, most notably the user interface. This frees the service
module from all application-specific details - it serves a potentially
large class of directory applications - we may truly speak of a generic
module (see Figure 11.1).

Like type extension, procedure types help to decouple a service module
from its client. A good example is furnished by numerical routines for
extracting roots of equations, integrating functions or solving
differential equations. Consider a procedure Bisection that finds the root
of an equation I(x) = O. Instead of passing the function through a global
identifier I, we may use a formal parameter of procedure type as shown
in the following heading:

TYPE RealFunct = PROCEDURE (x: Real): REAL;
PROCEDURE Bisection(f: RealFunct; xl, x2: REAL): REAL;

As in the previous example, the procedure Bisection may be part of a
service module. The particular function is provided in the client, where
its root needs to be calculated.

Our introductory examples show how type extension and procedure
variables are instrumental to realize the notion of a generic module.
Through their combination, however, an even more powerful concept
emerges - that of an object.1 This is a record with procedure fields that
can be regarded an instance of an abstract data type. More about this
follows in Chapters 12 and 13.

1 In the specific sense of object-oriented programming.

190 Type extension and procedure types

11.1 Extension of record types

11.1.1 Declaration of an extended type

In Oberon, record types are extensible. The syntax of Section 8.3.1 needs
generalization, the boldfaced terms are added:

RecordType = "RECORD" ["(" BaseType ")"]
FieldListSequence

"END".
BaseType = qualident.
FieldListSequence = FieldList { "i" FieldList }.
FieldList = [IdentList ":" type].
IdentList = ident ["*"] { "," ident ["*"] }.

If a record type definition extends another type, that type is called base
type and appears in parentheses after the keyword RECORD. The
qualident specifying'the base type must itself designate a record type.

The fields defined in the field list sequence are added to the fields of the
base type. Therefore an instance of the extended type comprises the
union of the fields of the base type and those defined in the field list
sequence. The fields of the base type are sometimes said to be inherited.

Type extensions may be cascaded. Consider the following example of
type declarations TO, Tl and T2. TO is the familiar list node, this time
without a key or data. Tl extends TOi the data field a is added. T2 fur­
ther extends Tl, adding yet another data field b. The diagrams on the
right-hand side are a schematic representation of the fields a and b.

PO = POINTER TO TOi
TO = RECORD

next: PO
END;

Tl = RECORD (TO)
a: Datal

END;

T2 = RECORD (Tl)
b: Data2

END;

next

~ inherited

~ added

~ inherited

b added

11. 1 Extension of record types 191

Both Tl and T2 are extensions of TO. Tl is said to be a direct extension.
Similarly, T2 is an direct extension of Tl. Analogously, Tl and TO are
base types of T2. Tl is termed a direct base type of T2, and TO is a direct
base type of Tl.

We may regard an extended type as a specialization of its base type. It
represents those instances to which additional attributes apply, namely
the attributes expressed by the added fields.

Typically, extensions are declared in a module different from the one
containing the declaration of the base type. In this case, the base type is
a qualified name. Only the public fields of the base type are visible in
the client module.

It is useful to define the relation 'Tl extends TO' to be transitive. In
other words, Tl extends TO if it is either equal to TO or it is a direct ex­
tension of an extension of TO.

11.1.2 Record designators and assignments

All the fields of a record variable of an extended type can be referenced
in the usual manner. Consider

V AR xO, yO: TO; xl, yl: Tl; x2, y2: T2;

Then

x2.next x2.a x2.b

are designators referencing the three fields of the record variable x2.
Similarly, xl.next and xl.a comprise the fields of xl. The variable xO has
only one field, xO.next.

What about assignments? The essence of a language featuring strong
typing is that the type of the expression on the right-hand side of U:="
must be assignment-compatible (see Table 4.3) with the type of the
designator on the left-hand side. The compiler enforces that com­
patibility, even across module boundaries.

Can a base type be compatible with its extension or vice versa?
Consider the assignment y2 := x2, where both participating variables
are of identical type (Figure 11.2). This assignment is equivalent to the
assignments of the three fields

y2.next := x2.next;
y2.a := x2.a;
y2.b := x2.b;

192 Type extension and procedure types

which are all necessary to establish pre-condition P in

as the predicate R in which all occurrences of y2 were replaced by x2.

y2 := x2

y2 x2
next ~ next I

a H a I
b b I

Figure 11.2 Assignment of records of equal type.

We now contemplate yl := x2, the case where the type T2 of x2 ex­
tends the type Tl of yl. Figure 11.3 depicts this assignment in a dia­
gram like the previous one.

y1 := x2

x2

next

a
b

Figure 11.3 Assignment of a record of extended type to its base type.

This assignment may be defined as being equivalent to

yl.next:= x2.next;
yl.a := x2.a;

Only those fields that comprise type Tl participate in the assignment. Tl is a
base type of T2; that is, x2 is not only an instance of T2, but has also all
properties of a Tl. Therefore it is assured that there always exists a one­
to-one correspondence.

Projection

Type
compatibility,
V AR parameter

11. 1 Extension of record types 193

This definition has an analogy in mathematics: the projection of a
higher-dimensional vector onto a lower-dimensional space; see Figure
11.4. Using this analogy, we say that the assignment is a projection of type
T2 onto type Tl.

projection of (x, y, z)
onto (x-y) plane

Figure 11.4 Projection.

Finally, visualize the reverse case y2 := xl. The type of the assigment
target extends the type of the variable being assigned. From Figure 11.5,
we infer that there is not enough information to unambiguously specify
y2. Such an assignment is illegal in Oberon. An attempt at an artificial
definition, such as 'field b remains unchanged' cannot be reconciled
with the axiom of assignment.

,"Y2 ~= x1

2

Figure 11.5 Illegal assignment of a record to an extended type.

We can now summarize the modified type compatibility rule. Type T2
is compatible with T1; that is, an assignment of an expression of type T2
to a designator of type T1 is possible if

. (1) T2 is an extension of T1

(2) T2 is included in T1 (such as INTEGER in REAL)

194 Type extension and procedure types

Recall that (1) includes the case where T2 is identical with Tl or de­
clared equal to Tl.

The type rule for V AR parameters is relaxed: the type of the actual
parameter can be an extension of the type of the formal V AR parameter.
For example, a procedure

PROCEDURE Proc(V AR to: TO);

can be called as Proc(x2), where x2: T2.

11.2 Pointers, type guards and type tests

11.2.1 Extension of pointer types

Record variables accessed through pointers are the basic ingredient of
dynamic data structures. In Section 9.1.2, we learned how a call of the
predeclared procedure NEW(p) allocates an anonymous instance of the
pointer base type on the heap and, at the same time, assigns a pointer to
the new instance to variable p. Exactly the same mechanism applies if
the pointer base type is an extension of another record type. Consider
the type declarations

PO = POINTER TO TO; PI = POINTER TO Tl; P2 = POINTER TO T2;
TO = RECORD Tl = RECORD (TO) T2 = RECORD (Tl)

next: PO a: Data 1 b: Data2
END; END; END;

Let p2: P2. The effect of NEW(p2) is depicted in Figure 11.6. As we
would expect, an instance of T2, including all the inherited fields is
created and allocated on the heap. The pointer p2 now points to the new
(anonymous) instance of T2.

VAR p2: T2; p2 p2 f

NEW(P2) ~ext Anonymous
a instance of T2

b

Figure 11.6 Creation of an instance of an extended type.

Extension of
pointer type,
definition

11.2 Pointers, type guards and type tests 195

A pointer is bound to its pointer base type. Programmers often
regard the pointer and the dereferenced record variable as synonyms, a
fact enhanced by the implied dereferencing afforded by Oberon. Recall
that implied dereferencing, for example, allows us to abbreviate p2t.b
by p2.b. It is therefore appropriate to generalize the concept of type ex­
tension to pointers. Consider again the previous declaration, in
particular

• PO is a pointer type with base type TO;

• PI is a pointer type with base type Tl;

• Tl extends TO.
In this case, we say that pointer type PI extends PO.

In general, a pointer type PI extends a pointer type PO if its base type Tl
extends the base type TO of PO. As in the case of records, PI is said to be
a (direct) extension of PO and PO is a (direct) base type l of Pl.

With our sample declaration, it follows that P2 is a direct extension of
PI and an extension of PO.

11.2.2 Static and dynamic type, type guard, type test

The rule governing the assignment of records is also governing the
assignment of pointers: a pointer of type PI can be assigned to a pointer
of type PO if PI extends PO.

p1 := p2

projection pointed
at by p1

Figure 11.7 Assignment of pointers referencing the same record variable.

Let pI: PI and p2: P2 according to the type declarations of the last
section. The effect of the assignment pI := p2 is depicted in Figure 11.7.
We assume that an instance of type 12 was created previously. After the
assignment, both pointers afford' access to the same anonymous

1 Note the difference between pointer base type and base type in the sense of type
extension.

196 Type extension and procedure types

Dynamic type

General
designator

Type test

variable p2t. Nevertheless, since pI is of type PI, it yields a projected
view of p2t; the field b cannot be referenced through pI.

However, if we know that pI points to an instance of T2, then field b
could be unambiguously accessed - if only the type rules could be
generalized from the static view to a dynamic one, accounting for the
actual state of the computation.

Oberon provides such a generalization. After the assignment pI := p2,
pI is said to be of dynamic type P2, and field b can be referenced. The
dynamic type is distinct from the declared or static type, which is still
PI. We must assert, however, that pI can be assumed to be of an ap­
propriate dynamic type through a type guard expressed as

pl(P2)

The dynamic type is indicated in parentheses immediately following
the pointer's identifier. Under the provisions of a type guard, the fol­
lowing assignments are legal:

y2 := pl(P2)t; d2 := pl(P2).b;

where y2: T2 and d2: Data2. The type guard asserts that currently pI t is
of type T2. If, during the execution of a program, the type guard is
violated, the program comes to an abnormal halt.

We are now ready to list the syntax of the designator in full generality:

I designator = qualident {"." ident I "[" ExpList "]"
I "(" qualident ")" I lit"}.

ExpList = expression {"," expression}.

The type guard is highlighted in boldface. A type guard of the form v(T)
is applicable only if

(1) T extends the declared (or static) type of the variable v; and

(2) variable v is a pointer or a formal V AR parameter of record type.

The use of extended pointer types can only come to full bloom if a test
can be applied that reveals the dynamic type of a pointer variable. The
relation operator "IS" performs such a type test:

v IS T

11.2 Pointers, type guards and type tests 197

which is satisfied if the actual (or dynamic) type of v is an extension of
T; that is equal to T or a proper extension of T. Variable v and type T
must satisfy the same two conditions listed above for the type guard
v(TI. If v = NIL the result of the type test remains undefined.

For example, consider

VAR pO; TO; pI: Tl; p2: T2;

NEW(pl); pO := pI;

where TO and 12 are those of Section 11.2.1. Then the following holds:

(pO IS PO) = TRUE (pO IS PI) = TRUE (pO IS P2) = FALSE.

Unless it is assured a priori that a type guard is satisfied, the
guarded designator must be within the protection of an IF statement.
For example, take the previous statement sequence y2 := pl(P2)t;
d2 := pl(P2).b. If it is not certain that pI is of the dynamic type P2, we
have to write

IF pI IS P2 THEN
y2 := pl(P2)t; d2 := pl(P2).b

END

11.2.3 With statement, regional type guard

It is quite typical that in a statement sequence, the same type guard
appears a number of times. Therefore a type guard with a bigger textual
scope is desirable to aid clarity and avoid unnecessary clerical work.
The with statement provides such a regional guard. Using a with
statement, the above example can be expressed as

IF pI IS P2 THEN
WITH pI: P2 DO

y2 := pI t; d2 := p1.b
END

END;

In formal syntax notation,

198 Type extension and procedure types

Records with
variant parts

I WithStatement = "WITH" guard "DO" StatementSequence
"END".

guard = qualident ":" qualident.

In a statement

v is a variable and T a type. The rules of type guards apply as described
in Section 11.2.2. Within the statement sequence, v is regarded as if it
had been declared of type T.

Programming languages such as Pascal and Modula-2 feature special
language constructs for records with variant parts. Oberon deals with
variant records through type extension. The timeworn personnel record
should serve a last time as an example:

TYPE
Person = RECORD

first,last: Name;
idno: INTEGER;
birth: Date

END;

Pilot = RECORD (Person)
hoursInFlight: INTEGER

END;

Clerk = RECORD (Person)
jobCode: INTEGER

END;

Two variants - that is, extensions or rather specializations of Person are
defined, namely pilots and clerks. In a procedure processing records of
type Person, we can distinguish the variants using a type test, for
example

PROCEDURE ProcessPerson(V AR p: Person);
BEGIN

... (* process common Person data name, idno and birth *)
IF P IS Pilot THEN

WITH p: Pilot DO
... (* process pilot specific data *)

END

11.2 Pointers, type guards and type tests 199

ELSIF P IS Clerk THEN
WITH p: Clerk DO

... (* process clerk specific data *)
END

END
END ProcessPerson;

Note that it is essential that the formal parameter of the procedure
ProcessPerson be a variable parameter, otherwise the type tests are not
legal.

11.3 Procedure types

11.3.1 The procedure type and procedure variables

So far, we have regarded procedures exclusively as named statement
sequences. They specify actions to be performed on variables. However,
we may take the view that procedures are themselves objects that can
be assigned to variables. In this light, a procedure declaration appears
as a special kind of a constant declaration, the value of the constant
being a statement sequence and a parameter mechanism, for example

CONST white = 0;

PROCEDURE Init;
NEW (list); list.next:= NIL

END Init;

The first declaration binds the identifier white' to the integer O. The sec­
ond declaration associates Init with the statement sequence NEW(list);
list. next := NIL.

If we allow procedure variables, in addition to procedure constants, it
must be possible to declare types whose instances are procedures.
These are called procedure types. A procedure type declaration specifies
the number and the types of the formal parameters and, in the case of a
function procedure, the type of the result.

Consider the examples

RealFunct = PROCEDURE (x: REAL): REAL;
Quadratic = PROCEDURE (a, b, c, x: REAL): REAL;
Handler = PROCEDURE (obj: Object; V AR msg: Message);

200 Type extension and procedure types

Matching
parameter lists

The identifiers that appear in the formal parameter list of the procedure
type declaration are dummy names - they serve only as a mnemonic
indicating the purpose of the parameter. It is merely their type that is
important.

The formal syntax of the procedure type "declaration is

I ProcedureType = PROCEDURE [FormalParameters].

Two procedure types are compatible with each other if their formal pa­
rameter lists match; that is, if the following three conditions are satisfied:

(1) they have the same number of parameters;

(2) they have the same function result type, or none;
(3) corresponding parameters have equal types and are either both

V AR parameters or both value parameters.

Variables of procedure type can be declared in the usual manner, for
example

VAR
f, g, trig: RealFunct;
combinatorial: PROCEDURE (x: INTEGER): INTEGER;
q: Quadratic;
handleFigure: Handler;

11.3.2 Expressions and assignments

NIL

Procedure variables can be compared for equality or inequality. They re­
ceive their values through normal assignment statements. Ultimately,
values assignable to procedure variables are defined through normal
procedure declarations. Oberon imposes the following restriction on an
assignment v := proc1d, where procId is a procedure identifier:

(1) procId must represent a procedure that is neither local to other
procedures nor predeclared;

(2) the parameter list of procId must match the one of the type of v.

A special value, NIL, specifies abortion, and is compatible with all pro­
cedure types; that is, NIL may be assigned to or compared with every
procedure variable. NIL is typically used to initialize a procedure vari­
able at a time when no definite action is yet determined.

11.3 Procedure types 201

Consider the procedure declarations:

PROCEDURE Square(x: REAL): REAL;
BEGIN RETURN x*x END Square;

PROCEDURE Quadratic(a, b, c, x: REAL): REAL;
BEGIN RETURN a*x*x + b*x + c END Quadratic;

The following assignments are possible (the declaration of the variables
is given above):

f := Square; g:= f; q:= Quadratic; handleText:= NIL;
trig := Math.sin;

The assignment f:= q, however, is illegal, since the types of the vari­
ables f and q are incompatible.

11.3.3 Call of procedure variables

A procedure variable may be called. If it is a proper procedure, the call is
a statement - in the case of a function procedure, a factor in an ex­
pression. If the type of the procedure variable specifies formal
parameters, actual parameters must be specified. Syntactically, the
actual parameters are specified in the same way as in the case of
procedure constants, namely

factor = designator [ActuaIParameters].
ProcedureCall = designator [ActuaIParameters].
ActualParameters = "(" ExpList ")".
ExpList = expression { "," expression}.

where the designator stands for the procedure variable. The call of a
procedure variable binds actual parameters to formal ones and evalu­
ates the statement sequence associated with the variable. The rules are
identical to the call of a procedure constant (see Chapter 6). Note that an
attempt to call a procedure variable whose value is NIL results in ab­
normal program termination.

The variables defined in the earlier examples can be called in the fol­
lowing ways:

y:= f(x); a := g(3.14); s := q(1, 2, c, y);

202 Type extension and procedure types

An evaluation of a function procedure is characterized by always
having a parameter list (possibly empty).

11.3.4 Formal parameters of procedure type

Variables and formal parameters of procedure type free the program­
mer from having to provide a procedure declaration prior to the call.

A good example is given by numerical routines for finding roots, in­
tegrating functions, or solving differential equations, for example

PROCEDURE Bisection(f: RealFunct; xl, x2: REAL): REAL;

If the only reason for a named procedure type, such as RealFunct, is to
specify a formal parameter, Oberon admits the short cut

PROCEDURE Bisection(f:PROCEDURE (x: REAL): REAL;
xl, x2: REAL): REAL;

The EBNF definition of FormalType is therefore augmented as follows:

I FormalType = { "ARRAY OF" } qualident I Procedure Type.

The important benefit from using a procedure parameter is the fact that
Bisection can be part of a service module, while the declaration of the
function, whose root we seek, is contained in the context of the client
module. The service module can be compiled once and put in the
computer's library of object modules.

Another good example of the use of a procedure parameter is the
traversal of dynamic data structures with the purpose of applying a
procedure, P say, to each node. For example, consider the procedure
Enumerate from Section 9.2.1. Passing the action P as a parameter makes
it general-purpose - the algorithm used for traversing the list structure
is decoupled from the action to be performed on each node:

PROCEDURE Enumerate(first: Node; P: PROCEDURE (n: Node»;
BEGIN

WHILE first # NIL DO P(first); first:= first.next END
END Enumerate;

11.3 Procedure types 203

11.3.5 Up-calls

Typically, a module provides an abstraction and a programming task is
divided into a hierarchy of such abstractions. A client module imports a
service module and makes use of the exported data structures and
procedures. For example, if a random number is needed, module
RandomNumbers is imported and RandomNumbers. Un iform 0 called.
Modules higher up in the hierarchy use objects of modules that are
further down.

Using procedure variables, we can invert the relationship of the
service module and its client: a module can call a procedure defined
higher up in the hierarchy. Such a call is known as an up-call. Up-calls
are instrumental in object-orientation, a methodology that we will intro­
duce in the remaining chapters.

Here we will introduce the notion of an up-call by means of an ex­
ample. An application is found in Section 12.4.3. The scenario is a ser­
vice module S that generates an object in a procedure Generate. In order
to create that object, a procedure variable new is called. The value of that
variable originates from an assignment made in the client module C.
Hence, the statement sequence of a procedure declared in a module that
is not imported by S is executed:

MODULEC;
IMPORTS;

(1) -+ PROCEDURE New; ... END New;

PROCEDURE Seh;
BEGIN

(2) -+ S.new:= New
END Set;

ENDC.

MODULES;
(3) -+ V AR new*: PROCEDURE;

PROCEDURE Generate*;
BEGIN

....

204 Type extension and procedure types

(4) ~ new;

END Generate;

ENDS.

Notes

(1) Procedure New is declared. We assume that it generates a certain
object.

(2) Within the statement sequence of the command Set, the proce­
dure New is assigned to procedure variable S.new. This is an
assignment to a global variable exported by S.

(3) Here new is declared as a global procedure variable exported by
module S.

(4) In procedure Generate, the procedure variable new is called. It is
assumed that prior to that call, new was initialized through exe­
cution of the command C.Set. The call of new is an up-call, since
the statement sequence that is executed is declared in module C
(namely that of procedure New).

11.4 Summary

This chapter has introduced three new concepts:

(1) From a given record type, an extended type may be derived that
adds new data fields to its base type. Variables of extended types
may be assigned to variables of their base types, but not vice
versa. Such an assignment is called a projection - only the record
fields of the base type participate in the assignment.

(2) A pointer to an extended type is said to extend the pointer to the
base type. The same assignment rule applies to pointers: ex­
tended pointers may be assigned to instances of their base types.
After such an assignment, the base pointer assumes a dynamic
type differing from the declared type. Under the auspices of a
type guard, the extended fields may be accessed. A type test al­
lows guarding of such references. The with statement affords a
type guard of extended textual scope: it is a regional type guard.

(3) The procedure type defines a parameter list and a result type. A
procedure may be assigned to such a variable if that procedure's

11.4 Summary 205

formal parameter types and result type match those declared in
the procedure type of the variable.

The aim of type extension and the procedure variable is to make pro­
grams extensible. A program is said to be extensible if addition of new
functions is textually localized - ideally by simply adding a new mod­
ule to an existing module hierarchy, without needing to change or re­
compile any of the existing parts.

Through type extension, record fields may be added to a given base
type later, usually in a different module. In this manner, generic
modules operating on lists and trees may be composed without de­
termining the 'data fields.' The procedure variable allows placement of
a call prior to specifying the actions of the procedure. For example, in a
scientific subroutine library, a function to be integrated may be called
that is provided later by the client.

But it is really the combination of type extension and procedure vari­
ables that advances extensibility in the most significant way. The
technique is known as object-orientation, a topic explored in depth in
Chapters 12 and 13.

11.5 Exercises
11.1 Consider the declarations

TYPE
LN = POINTER TO LND; LND = RECORD next: LN END;
TN = POINTER TO TND; TND = RECORD right, left TN END;
M = RECORD END;

Identify legal extensions:

(a) LNI = POINTER TO LNID; LNID = RECORD(LN) a: Data END;
(b) LN2 = POINTER TO LN2D; LN2D == RECORD(LND) a: Data END;
(c) LN3 = POINTER TO LN3D; LN3D = RECORD(M) a: Data END;
(d) LN4 = POINTER TO LN4D; LN4D = RECORD(LND); next: LN4 END;
(e) TNI = POINTER TO TNID; TNID = RECORD(LND) a: Data END;
(f) TN2 = POINTER TO TN2D; TN2D = RECORD(TND) a: Data END;
(g) Ml = RECORD: M; a: Data END;
(e) M2 = POINTER TO RECORD(M) c: Data END;

11.2 Assume the type declarations of Exercise 11.1 and

LNI = POINTER TO LNI D; LNI D = RECORD(LN) a: Data END;
TNI = POINTER TO TNID; TNID = RECORD(TN) b: Data END;

206 Type extension and procedure types

Ml = RECORD(M) x, y: Data END;
V AR a: LN; b: LNl; c: TN; d, t: TNl; e: M; f, m: Ml; g: Data;

Which of the following assignments and relations are legal?

a := b; b := a; a := c; at := bt; f := e; a(LNl).a := d.a;
c.a := f.x; d(TNl).a := g; WITH a: LNI DO g := a.a END;
a IS b a IS LNI a IS TNI e IS M e IS Ml

11.3 Given the declaration of Exercise 11.2 and

PROCEDURE H(t: TN; VAR m: M);
VARmsg:M;
BEGIN c:= t; msg := m; IF m IS Ml THEN g := m(Ml).x END
ENDH;

Assuming a call H(t, m), what is the dynmaic type of c and msg? Is the
assignmentg:= m (Ml).x executed?

11.4 [Directory based on lists] Implement a module Directories. A directory is a
repository of entries that can be entered, deleted and recovered according to a
key. Use a list (Section 9.2) to represent a directory.

DEFINITION Directories;
TYPE

Key = ARRAY 32 OF CHAR;
Entry = POINTER TO EntryDesc;
EntryDesc = RECORD key: Key END;
Directory = Node;
NodeProc = PROCEDURE(n: Node);

PROCEDURE Insert(V AR dir: Directory; new: Node);
PROCEDURE Search(dir: Directory; k: Key): Node;
PROCEDURE Delete(V AR dir: Directory; k: Key);
PROCEDURE Enumerate(dir: Directory; P: NodeProc);
PROCEDURE NewO: Directory;
END Directories.

11.5 [Phone directory] Write a module PhoneDir that is a client of module Directories.
Design a suitable user interface with commands Open, Add, Delete and Query.
Hint: use a type PhoneEntry that extends Directories.Entry, for example

TYPE
PhoneEntry = POINTER TO PhoneEntryDesc;
PhoneEntryDesc = RECORD (Directories.Entry)

phone: ARRAY 10 OF CHAR
END;

11.6 [File support] Support the phone directory with a file PhoneDir.Open opens the
directory from the file, if one exists. Otherwise a new directory is created.
PhoneDir.Store writes the directory back to the file.

11.5 Exercises 207

11.7 [Directories based on trees] Base module Directories on a tree data structure.
Leave the interface unchanged. Show that the new module can substitute for
the old one without affecting its client.

11.8 [Phone and address directory] Expand the functionality of the phone directory.
Some (but not all) of the entries list not only the phone number but also
addresses. Hint: use a type PhoneEntry that extends Directories.Entry and a type
AddrEntry that extends PhoneEntry.

11.9 [File support] Support the phone and address directory with a file. Hint: Define
a type flag, for example a character OX means 'Type is PhoneEntry' and IX
means 'type is AddrEntry.' Organize the file such that each entry is preceded by
a type flag. Reading the flag first enables you to create the appropriate variable.

Reference

Wirth N. (1988). Type extension. ACM Transactions on Programming Languages
and Systems, 10, 204-14.

12 Object-orientation

Localized
upgrade

208

Structuring and abstraction are major software design techniques.
Chapter 10 introduced these concepts using a realistic example. Proper
structure is essential to make a program text readable - and ultimately
trustworthy. Abstraction - in particular the notion of the abstract data
type - aids in the specification of clearly defined interfaces between
modules and helps in dividing a large programming task into different
areas of concern that may be tackled by different programmers or pro­
gramming teams.

Since its inception some twenty years ago, structured programming
has become a well-known programming technique. If programming is
practiced as described in Chapter 10, at the time a module is ready for
compilation, all variables are declared and all procedures fully speci­
fied. The declarations may reside in imported modules - in this case,
those modules must be compiled first. As we will see shortly, this im­
poses limitations on the extensibility of programs - limitations that a
programming technique, known as object-orientation, will remove or
diminish.

It is a common experience that programs need maintenance. If they are
useful, their capabilities will expand over time. Unfortunately, even
excellent structuring often fails to make the addition of a feature a mere
local change in the program text. Instead, the places that need change
are numerous and spread over many modules. Making a change in
such a program is not only tedious - it is also error-prone. All too easily,
one of the necessary changes is overlooked or one of the consequences
of a change is ignored. Clearly, a design technique that helps to make
feature upgrades a localized task is of utmost value. The ultimate goal is
a system that allows adding of features by simply adding modules to
the library - without even having to recompile the existing modules of a
system.

Object-orientation 209

Reusing modules The term module is also encountered in hardware design, where it is
used as a synonym for a common part - typically, a VLSI component.
Hardware modularization is highly successful through a proper choice
of the building blocks and standardization of their interfaces.

While in programming, the module concept is well over a decade old,
similar success is still quite elusive. The goal is a standard library of
service modules, provided by experts and available in object form. It is
essential for the success of this concept that the user of such service
modules have no need to modify their source code. Programmers have a
well-justified hesitation in opening somebody else's source code and
modifying it. It either solves their problem - then it can be used - or the
function will be re-created, even though only slightly different from
already existing code. Moreover, for practical or commercial reasons,
source code is often unavailable.

The earliest and still one of the most successful examples of reusable
procedure libraries is furnished by scientific subroutine packages.
Fortunately, those programmers who still insist on producing their own
sine or exponential functions are becoming quite rare. A second success
story is the use of abstract data structures and abstract data types in
operating systems. On the other hand, good list and tree processing
programs are still rare.

The primary reason for the difficulty in localizing functional
extensions and the lack of success of the concept of reusable libraries
stems primarily from the fact that in traditional programming
languages1

• data fields are bound statically to their record variable;

• procedures are associated statically with a module - hence the
procedures of an abstract data type are bound statically to the
type.

Substantial progress in the direction of reusable and extensible pro­
gramming systems is being made - the methodology is known as object­
orientation. In Oberon, object-orientation is achieved through use of type
extension and procedure variables.

This chapter is an introduction to the key notions of object-orienta-
tion, namely

• the generic module;
• the heterogeneous data structure;
• the object and its representation;
• the dynamic binding of procedures;
• the module structure of an object-oriented program.

1 Such as PL/I, Pascal or Modula-2.

210 Object-orientation

We will develop and motivate the object-oriented concepts with ex­
amples rather than ina deductive style. However, in order not to
drown in a sea of details, we refrain from presenting large programs,
and concentrate on the essential ideas of the design of data structures
and types.

One of those examples is a graphics editor. Editors in general are
good cases for programs that benefit from object-orientation. Other
applications are found in the area of system "Softwarel and simulation.
A complete simulation package based on object-oriented design prin­
ciples is presented in Chapter 13.

12.1 Generic modules

To amplify the concept of the generic module, we consider the example
of a FIFO queue that we encounted in Chapter 9. The definition of a
module FIFOs may read as follows:

DEFINITION FIFOs;
TYPE

FIFO = RECORD END;

Node = POINTER TO NodeDesc;
NodeDesc = RECORD END;

PROCEDURE Enqueue(V AR q: FIFO; n: Node);
PROCEDURE DequeuedNode(VAR q: FIFO): Node;
PROCEDURE Open(V AR q: FIFO);
ENDFIFOs.

In this interface, the data types FIFO and Node are abstract.
A possible implementation is that of Section 9.2.2. In this case the

initialization procedure Open is particularly simple:

PROCEDURE Open(V AR q: FIFO);
BEGIN q.first := NIL
END Open;

Prior to type extension, such an interface, while syntactically correct,

1 In particular, the window subsystem of graphic based workstations. An example
is the Oberon system itself (see Wirth and Gutknecht, 1992).

Object-orientation 211

would be pretty pointless. To make FIFOs useful, the type Node would
have to make application-specific fields visible. But this violates the
condition that a service module should not have to be modified and
recompiled by its user.

Type extension, however, makes a module FIFOs immediately useful
in many applications that need FIFO lists: the application-specific I data'
fields are added by the client. Paying tribute to its generality, we call FIFOs
a generic module.

Client of module An excerpt of a client of FIFOs follows. It is a simulation program where
FIFOs customers are queueing for a resource.

MODULESim;
IMPORT FIFOs, ... ;
TYPE

Customer = POINTER TO CustomerDesc;
CustomerDesc = RECORD (FIFOs.NodeDesc)

priority: INTEGER
END;

VAR c: Customer; q: FIFOs.FIFO; temp: FIFOs.Node;

A customer c is created and enqueued in FIFO queue q as follows:

NEW(c); c.priority = 0; FIFOs.Enqueue(q, c); ...

It is essential that c be a variable of the extended type Customer. This
type will be 'remembered' in the list, since the appropriate list pointer
will assume Customer as its dynamic type.

The following statement sequence retrieves a customer c from the
waiting line q:

temp := FIFOs.DequeuedNode(q);
IF (temp # NIL) & (temp IS Customer)

c := temp(Customer);
END;

We need an ancillary variable temp of type FIFOs.Node that matches the
result type of FIFOs.DequeuedNode. The reason is that a type guard
cannot be applied to function calls. A type guard is required because
FIFOs.DequeuedNode returns a result of type FIFOs.Node, not Customer.

212 Object-orientation

Summary A generic module is one to be used by many clients, typically involving
type extension. In the case of dynamic data structures, it is possible to
separate (into different modules) the algorithm operating on the
pointers from the processing of the 'data.'

(1) Often, the generic module encapsulates the algorithms operating
on a dynamic data structure such as list and tree processing.
Such data structures are hidden and represented as abstract data
types.

(2) The client module adds application-specific fields to the node
type of the generic module.

(3) It is the task of the client to generate instances of data items and
to add them to the data structure using its procedures.

(4) When items are retrieved, appropriate type guards are required.

(5) It is the task of the generic module to initialize instances of its
abstract types (typically, the procedure is termed Open or Init).

12.2 Heterogeneous data structures

The dynamic data structures that we know from Chapter 9 are com­
posed of static elements - or nodes - linked by pointers. Since the
pointers refer to the node type, the entire data structure is composed of
nodes of the same type. In many cases, this is an unacceptable re­
striction.

Type extension is the tool for building heterogeneous dynamic
structures; that is, structures composed of different (but related and
compatible) node types. The key idea is to declare a common base type
that incorporates the links and possibly data common to all node types
and add 'private data' by extending that base type.

Consider module FIFOs. Different customers may be declared as ex­
tensions of base type FIFOs.Node, for example

Customer 1 = POINTER TO CID;
CID=
RECORD (FIFOs.NodeDesc)

priority: INTEGER
END;

Customer2 = POINTER TO C2D;
C2D=
RECORD (FIFOs.NodeDesc)

timeStamp: REAL;
workDemand: REAL

END;

12.2 Heterogeneous data structures 213

Both types, Customerl and Customer2, are extensions of FIFOs.Node;
hence they can be enqueued in the same FIFO queue. It is important
that the dynamic type not be lost upon retrieval- a type test will reveal it
and allow type-specific processing of the customers.

To make the last point more transparent, we will study a list of
graphical objects or figures used by a graphics editor. The editor uses
such a list to keep track of the shapes displayed on the screen. Typical
items in that list are straight lines, rectangles, circles, ellipses, polygons,
spline curves and captions.

We base our figure descriptors on the type Figure that contains only
structure information: 1

TYPE
Figure = POINTER TO FigureDesc;
FigureDesc = RECORD

next: Figure
END;

Each specific figure is represented by an instance of a type that extends
the base type Figure. From the many possibilities, we give two exam­
ples, namely the types Line and Rect that define the corresponding
figures:

TYPE
Line = POINTER TO LineDesc;
LineDesc = RECORD (FigureDesc)

xl, y1, x2, y2: INTEGER
END;

Rect = POINTER TO RectDesc;
RectDesc = RECORD (FigureDesc)

x, y, w, h: INTEGER
END;

x2,y2

/
x1, y1

A heterogeneous list composed of two lines and two rectangles is de­
picted in Figure 12.1.

1 The type Figure assumes the role of Node in Section 9.2.

214 Object-orientation

type= type= type= type=
LineDesc RectDesc LineDesc RectDesc

Figure 12.1 A list of heterogeneous records. The dynamic type of the pointers is
shown.

We will discuss two typical actions: the creation of a new figure and
processing all the elements of a heterogeneous list of figures.

An instance of the type Line is created and inserted into the list of
figures as follows:

PROCEDURE NewLineOist: Figure; xl, yl, x2, y2: INTEGER);
VARI: Line;
BEGIN

NEW(l); (* Create instance of Line *)
l.xl := xl; l.yl := yl; l.x2 := x2; l.y2:= y2; (* Initialize fields *)
InsertLast(list, 1)

END NewLine;

Formal parameter list is the anchor of the list of figures that comprise
the graph. The text of procedure InsertLast is found in Section 9.2 (with
the difference that here it works on the base type Figure rather than
Node). Similar initialization procedures are required for each shape such
as NewRect and NewCircle.

Another action typically performed by graphics editors is to draw all
the figures contained in the list. A procedure DrawAll does this. It
traverses the list structure and acts according to the type of a particular
figure:

PROCEDURE DrawAll(list: Figure);
V AR f: Figure;
BEGIN

f:= list;

Summary

12.2 Heterogeneous data structures 215

WHILE f # NIL DO
IF f IS Line THEN DrawLine(f(Line»
ELSIF f IS Rect THEN DrawRect(f(Rect»
ELSIF ... (* Other shapes *)
END;
f:= f.next

END
END Draw All;

where DrawLine and DrawRect are procedures that produce the respec­
tive figures on the display. They have headings

PROCEDURE DrawLine(l: Line);
PROCEDURE DrawRect(r: Rect);

Typical for a procedure processing a heterogeneous list is the selection
based upon the dynamic type of the list node.

Heterogeneous dynamic data structures usually occur when object­
oriented program de~igns are pursued. The following points are typical
of the processing of heterogeneous data structures and should be noted:

(1) Operations involving pointers are performed on the base type, in
our example type Figure.

(2) Elements of the heterogeneous data structure are created as in­
stances of the extended type, Line or Rect.

(3) When an element is inserted into the list, the assignments insure
that the list pointers (variable list or field next) assume the dy­
namic type of the object.

(4) When processing the elements of the data structure, their type is
determined with a type test and appropriate actions are taken.
Typically, a type guard is required. The type test guarantees that
the type guard is never violated.

12.3 Objects, dynamic binding of procedures

Assume that a new figure, an ellipse say, is being added to the graphics
editor. What changes are necessary to the program text? First, a new

216 Object-orientation

type has to be defined. Like Line and Rect, the new type, called Ellipse,
extends the base type Figure:

TYPE
Ellipse = POINTER TO EllipseDesc;
EllipseDesc = RECORD (FigureDesc)

x, y: INTEGER; (* Coordinates of center *)
a, b: INTEGER (* Major and minor axes *)

END;

Next, a procedure NewEllipse has to be furnished that creates an in­
stance of the type Ellipse and inserts it into the list of figures. Similarly,
procedures such as DrawEllipse need to be specified. Finally, wherever
type-specific actions occur, such as in the procedure DrawAll, the fol­
lowing statements have to be added:

ELSIF f IS Ellipse THEN
WITH f: Ellipse DO

... (* handle ellipse *)
END

ELSIF ...

As we said in the introduction, such modifications can be expected to be
numerous and dispersed throughout the program text - defying the
stated goal to localize the modifications to a single place. Localization
can only be achieved if operations can be performed on the list of ob­
jects that are applicable to all figures irrespective of their dynamic type.

The key idea is to augment the state description of the figure with proce­
dure variables. Our example considered drawing of figures; we therefore
add a procedure field draw to the type Figure:

TYPE
Figure = POINTER TO FigureDesc;
FigureDesc = RECORD

draw: PROCEDURE (f: Figure);
next: Figure

END;

Additions over the previous version are shown in boldface. Using the
redefined type Figure, we can now provide a general type-independent
procedure that draws all the members of a list of figures:

Dynamic
binding

12.3 Objects, dynamic binding of procedures 217

PROCEDURE Draw All(list: Figure);
V AR f: Figure;
BEGIN

f := list;
WHILE f # NIL DO f.draw(f); f:= f.next END

END Draw All;

Note that the new procedure draws the figures abstractly. It is valid for all
possible figures handled by the editor - now and in the future. In fact,
the new figure is more than just an item in a list, it is an instance of an
abstract data type Figure. Its properties are a next figure (or none) and
the ability to draw itself. The data necessary to describe the figure, as
well as the detailed drawing action is hidden to DrawAll.

For this general scheme to work, the appropriate type-specific pro­
cedures must be assigned to the field draw when a figure is created.
Each figure type has its initialization procedure - that for the newly
added ellipse reads:

PROCEDURE NewEllipse(list: Figure; x, y, a, b: INTEGER);
V AR e: Ellipse;
BEGIN

NEW(e); e.x:= x; e.y:= y; e.a:= a; e.b:= b;
e.draw:= DrawEllipse;
InsertLast(list, e)

END N ewEllipse;

What is different from the initialization routines of the previous section
is only the assignment of DrawEllipse to e.draw (marked in bold face).
This assignment statement associates the type-specific procedure with
the graphical object; that is, to the instance e of type Ellipse. We also use
the term 'the procedure DrawEllipse is installed in the object.'

Suppose we revert to the previous way in which we handled the
heterogeneous list and write a guarded call to the procedure
DrawEllipse:

ELSIF f IS Ellipse THEN
WITH f: Ellipse DO

DrawEllipse(f)
END;

The compiler has all the necessary information to pass parameter and
control directly to the statement sequence of the procedure DrawEllipse.

218 Object-orientation

Object

Compare this with a call of the procedure variable draw in DrawAll:

f.draw(f)

The statement sequence to which control should be passed is not
available to the compiler. It is determined at run time and consists of the
action performed by the procedure assigned to the field draw in the
record variable ft. If f is an ellipse then this action is the statement se­
quence of DrawEllipse; iff is a rectangle, it is DrawRect and so on. The
binding of a specific action at run time is known as dynamic binding, as
opposed to static binding, which takes place at compile time.

So far, we have dealt with the term 'object' rather informally. For
example, we used to say that variables and types are objects of the
Oberon language. From now on, object will have a precise meaning: a
record with procedure fields, accessed through a pointer. The object may have
other fields that define its state. The procedure variable (or variables)
governs the object's behavior in the same way as procedures define the
abstract data type. The object is an instance of an abstract data type with
dynamic binding of the procedures (see also Section 12.4).

Finally, let us focus on the specific procedure that has to be
assignable to the field draw of a graphics object. The formal parameter
of the procedure type of draw is of base type Figure. The text of specific
procedures such as DrawLine, DrawRect or DrawEllipse therefore
requires a type guard over their entire scope, as shown schematically for
DrawEllipse:

PROCEDURE DrawEllipse(f: Figure);
BEGIN

WITH f: Ellipse DO

END
END DrawEllipse;

What have we gained by supplying the graphics objects with an
individual procedure? Primarily, we have a decoupling of the actions
performed with all objects in the list from the definition of individual
actions that apply to a specific type of object. The addition of a new
type of object therefore becomes a localized addition of program text,
declaring

• a type extension, for example Ellipse;
• type-specific procedures such as DrawEllipse;
• a procedure to create an instance of the new object.

Summary

12.3 Objects, dynamic binding of procedures 219

In the preceding discussion, the only action considered was to draw
a figure. Of course, this is a deliberate oversimplification. Other typical
operations performed by graphics editors on their figures are selecting
and deselecting, copying, moving, shading, changing size and so on. A
more realistic declaration of a figure therefore shows a number of
procedure variables, each one representing a specific operation. The
following object 'knows' how to draw, clear, mark and move itself:

TYPE
Figure = POINTER TO FigureDesc;
FigureDesc = RECORD

draw, clear, mark: PROCEDURE (f: Figure);
move: PROCEDURE (f: Figure; dX, dY: INTEGER);
next: Figure

END;

The following essential points are worth remembering:

(1) An object is represented by a pointer to a descriptor record that,
among other state information, contains fields of procedure type.
The values of these procedure variables define the operations
that can be applied to the object. The object is an instance of an
abstract data type.

(2) The type of an object is commonly extended in various ways
such as in our example, Figure is extended to Line, Rect and
Ellipse.

(3) The object pointer is a parameter of the action procedures. The
type of the formal parameter is the base type of the object. Within
the text of a specific action procedure, a regional type guard is
required to allow access to the state variables defined in the ex­
tension of the base type.

(4) Procedure variables enable the programmer to write general pro­
cedures that operate abstractly on all the objects contained in a
heterogeneous data structure without having to declare - or even
anticipate all the extensions.

(5) The benefit is that new extensions can be added without chang­
ing many procedures that comprise an application. The modifi­
cation is textually localized. The extension can even be within the
scope of another module - a most important structuring concept
explored in the next section.

220 Object-orientation

12.4 Objects and modules

Heterogeneous data structures and dynamic binding of procedures are
the technical essence of object-orientation. The concept, however, comes
to full bloom only if paired with proper modularization of a large
program or system. In Oberon, it is the module that controls visibility of
declarations and hence defines levels of abstraction.

Let us return to the graphics editor. If programmed in the traditional
style, such an editor may be broken down into modules as shown in
Figure 12.2. Each shape, such as a line, a rectangle, or a circle is handled
in its own module. Actions on all shapes such as a procedure DrawAll
are carried out in module Draw that is also responsible for the user
interface.

Step 2: modify and recompile

Step 1: add module

Figure 12.2 Normal module hierarchy.

If a new shape is added, a new shape module is provided, and the
main module Draw has to be modified and recompiled. As stated, it is
precisely this modification of module Draw that makes such a system
hard to maintain and even harder to extend in functionality.

simply add a module

Figure 12.3 An extensible module hierarchy.

Desirable is a module structure that puts Figure 12.2 upside down.
Such an extensible structure is depicted in Figure 12.3. Adding a new
shape, an ellipse for example, simply means adding a module Ellipses to

12.4 Objects and modules 221

the system's library. No changes to the other modules are needed, in
particular no recompilation. This implies that an extension is possible
without requiring availability of the source text of the base.

The overall work is divided as follows between the modules of
Figure 12.3:

• Module Graphics declares the fundamental data type Figure and
data structures comprising a graph. It deals with the ensemble of
figures abstractly (such as in DrawAll) and maintains the
heterogeneous list of figures.

• Module Lines, Rectangles, Ellipses etc. declare all data structures
and procedures that are shape-specific such as DrawLine and
generate an instance of the figure (such as in NewLine).

• Module Draw handles the user interface - especially mouse and
keyboard and their semantics.

An interesting framework of abstract data types and up-calls is behind
the extensible structure of Figure 12.3. Of special interest is the way
Draw creates new figures. We will explore the essential features of this
framework in the sequel.

12.4.1 Module Graphics

Module Graphics defines two basic abstract data types: Graph and
Figure. We are already familiar with Figure. Instances of type Figure are
objects in the sense of object-orientation.

graph
~ -,

DD
Figure 12.4 A graph composed of lines and rectangles, one being selected.

A graph represents a Cartesian plane as depicted in Figure 12.4.
Graphs are instances of the abstract data type Graph. In this simple

222 Object-orientation

version, the only property of Graph is a list of figures. In a realistic
implementation, there would be other properties such as a selection and
a scrolling position. The type declaration for Graph is therefore

TYPE
Graph = POINTER TO GraphDesc;
GraphDesc = RECORD list: Figure END;

The familiar procedure DrawAll is a typical action applicable to a graph.
Other procedures encompass Select, Deselect, DeleteSelection and
MoveSelection, with obvious meaning.

With these preliminaries in mind, we state an abbreviated version of
module Graphics:

MODULE Graphics;
TYPE

Figure* = POINTER TO FigureDesc;
FigureDesc* = RECORD

draw*, c1ear*, mark*: PROCEDURE (f: Figure);
move*: PROCEDURE (f: Figure; dX, dY: INTEGER);
next: Figure

END;

Graph* = POINTER TO GraphDesc;
GraphDesc* = RECORD list: Figure END;

... (* other type and variable declarations *)

PROCEDURE DrawAll*(g: Graph);
V AR f: Figure;
BEGIN

f:= g.list;
WHILE f # NIL DO f.draw(f); f:= f.next END

END Draw All;

... (* other procedure declarations *)

PROCEDURE Open*(V AR g: Graph);
BEGIN g.list := NIL
END Open;

END Graphics.

We note that Graph is an ordinary abstract data type as we know it from

12.4 Objects and modules 223

Chapter 10. In particular, its procedures are bound statically through
the context of module Graphics. That means that in a call
Graphics.DrawAll, for example, the compiler can generate the transfer of
control to the statement sequence of DrawAll directly. Each of the
procedures has a formal parameter of type Graph, identifying the par­
ticular instance on which to operate.

Most of the procedures of Graphics operate on the (heterogeneous)
list of figures. The data type Figure is also abstract - however, in a
different sense than we are used to. Normally, a data type is abstract in
the client but concrete in the service module. Here the reverse is the
case. Figure is abstract in Graphics: the actions draw, clear, mark and move
are not specified. They are concretized in shape-specific client modules
such as Rectangles or Lines. Thus, wherever a procedure of Figure is
called, for example f.draw(fJ in DrawAll, dynamic binding takes place
and an up-call is enacted~

12.4.2 Shape-specific modules

The task of the shape-specific modules, such as Rectangles, Lines, Ellipses
etc. is to implement the abstract type Figure - in particular, to

• extend type Figure with shape-specific data;

• declare procedures for drawing, clearing, marking and moving
figures;

• create an instance of a figure.

Each one of these modules implements a specialization of the abstract
data type Figure. For example, an excerpt of module Rectangles reads as
follows:

MODULE Rectangles;
IMPORT Graphics, ... ;
TYPE

Rectangle* = POINTER TO RectangleDesc;
(1) ~ RectangleDesc* = RECORD (Graphics.FigureDesc)

x*, y*, w*, h*: INTEGER
END;

PROCEDURE Draw*(rect: Graphics.Figure);
BEGIN

(2) ~ WITH rect: Rectangle DO

224 Object-orientation

... (* display rectangle on screen *)
END

END Draw;

... (* Declarations of Clear, Mark and Move *)

PROCEDURE New*O: Graphics.Figure;
V AR rect: Rectangle; x, y, w, h: INTEGER;
BEGIN

(3) -+ NEW(rect);

Notes

rect.draw := Draw; rect.clear:= Clear;
rect.mark := Mark; rect.move:= Move;
(* obtain values x, y, w, h typically using the mouse *);
rect.x :.= x; rect.y:= y; rect.w:= w; rect.h:= h;
RETURNrect

END New;

END Rectangles.

(1) Here the type Figure is extended with rectangle-specific data
fields x, y, wand h. Other shapes require other data structures, in
the case of a polygon, this may even be a list structure.

(2) Note the required type guard in Draw: the formal parameter
must be of base type Graphics.Figure.

(3) An instance of the extended type Rectangle is created and the pro-
cedure fields are initialized.

The only identifier that must be exported is New. The reason that
module Rectangles also makes the type Rectangle and the procedures
Draw, Clear, Mark and Move visible will be discussed in Section 12.4.4,
where the rectangle will be redefined. The majority of the procedures in
shape-specific modules deal with programming the display, an
intricacy that we shun at this point.

12.4.3 Creation of a new figure

The initiative to create a new figure originates in module Draw in re­
action to a mouse or keyboard command issued by the user. The in­
formation for creating an instance of the appropriate type, however, is
contained in the shape-specific modules Lines, Rectangles and so on. But

12.4 Objects and modules 225

Draw does not import those modules. How can this predicament be re­
solved?

An up-call mediated by Graphics is the answer. The method is an
application of the example given in Section 11.3.5 on up-calls. A pro­
cedure variable newFigure is declared in module Graphics, which also
exports a general procedure CreateFigure for the use by Draw.
CreateFigure makes the up-call, draws the newly created figure and in­
serts it into the list of figures.

MODULE Graphics;

(1) ~ V AR newFigure*: PROCEDURE 0: Figure;

PROCEDURE CreateFigure*(g: Graph);
V AR f: Figure;
BEGIN

(2) ~ f := newFigure();

Notes

f.draw(f); InsertLast(g.list, f)
END CreateFigure;

END Graphics.

(1) newFigure is a global procedure variable used to make an up-call
to the shape-specific module. Its value must be initialized by
those modules.

(2) Here procedure variable newFigure is called and the up-call takes
place.

We have now discussed all the essential features of module Graphics,
whose definition we list:

DEFINITION Graphics;
TYPE

Figure = POINTER TO FigureDesc;
FigureDesc = RECORD

draw, clear, mark: PROCEDURE (f: Figure);
move: PROCEDURE (f: Figure; dX, dY: INTEGER);

END;

Graph = POINTER TO GraphDesc;
GraphDesc = RECORD END;

226 Object-orientation

V AR newFigure: PROCEDURE 0: Figure;

PROCEDURE DrawAll(g: Graph);
PROCEDURE Select(g: Graph; x, y: INTEGER);
PROCEDURE Deselect(g: Graph);
PROCEDURE DeleteSelection(g: Graph);
PROCEDURE MoveSelection(g: Graph; dX, dY: INTEGER);
PROCEDURE CreateFigure(g: Graph);
PROCEDURE Open(g: Graph);
END Graphics.

With the initialization of the global procedure variable
Graphics.newFigure, the final piece of the puzzle falls into place. Clearly,
only one of the shape-specific modules can do that. This initialization
takes place in a command that we call Set. For the example of module
Rectangles, the implementation of Set reads as follows:

MODULE Rectangle;

PROCEDURE Set*
BEGIN Graphics.newFigure:= New;
END Set;

END Rectangles.

Each of the modules Lines, Rectangles, Ellipses etc. has its own Set
command. We have now also covered all the functions of the shape­
specific modules. Representative of all, let us list the definition of
Rectangles:

DEFINITION Rectangles;
IMPORT Graphics;
TYPE

Rectangle = POINTER TO RectangleDesc;
RectangleDesc = RECORD (Graphics.FigureDesc)

x, y, w, h: INTEGER
END;

PROCEDURE Draw(rect: Graphics.Figure);
PROCEDURE Clear(rect: Graphics.Figure);
PROCEDURE Mark(rect: Graphics.Figure);
PROCEDURE Move(rect: Graphics.FIgure; dX, dY: INTEGER);
PROCEDURE NewO: Graphics.Figure;
PROCEDURE Set;
END Rectangles.

Graphics modes

12.4 Objects and modules 227

Execution of a Set command puts the graphics editor into a mode: all
subsequently created figures are of the particular shape. In commercial
graphics editors, this mode is usually termed a 'tool.'} The user selects
the 'rectangle tool,' for example, and subsequently draws a number of
rectangles with the mouse. The selection of such a tool is typically done
by clicking at an icon.

The suitability of modes in user interfaces is controversial. While
modes are not deficient per se, there are many bad examples. The
graphics 'tool' modes are well tried in practice. An important condition,
however, that renders modes acceptable is their visibility. Graphics
editors usually use iconic buttons to make the selected 'tool' visible.

12.4.4 Redefining a dynamically bound procedure

Considerations of easy extensibility of the graphics editor led to the
remarkable structure of Figure 12.3. All actions having to do with the
user interface are completely isolated in module Draw. Adding a new
figure shape such as a spline, for example, simply requires the writing
of a module Splines, compiling it, and adding the object module to the
computer's library.

Here we want to demonstrate an even more striking feature of objects
with dynamically bound procedures: the ability to re-use a module only
partially - yet without modification of the source text. We are going to
add a new figure to the editor: a filled rectangle.

The filled rectangle consists of a solid line around its perimeter that is
filled in with a pattern. FilledRectangles is the name of the module that
exports the shape-specific procedures.

A filled rectangle The essential observation is that only the drawing of a filled rectangle
differs from an ordinary rectangle. All the other actions such as Mark,
Clear and Move are identical. But even drawing a filled rectangle is not
completely different from the base shape. The filled rectangle consists
of a 'wire frame' and a filled interior. The first part is already handled in
module Rectangles, and need not be re-created.

The key idea leading to an implementation that re-uses all the exist­
ing functions is to make the type FilledRect an extension of the type
Rectangles.Rect and to redefine only those type-bound procedures that
change. We now understand why module Rectangles exports its type
and procedures. Thus module FilledRectangle's text reads as follows:

1 Not to be confused with the use of the term 'tool' in Oberon.

228 Object-orientation

(1) -+

(2) -+

MODULE FilledReetangles;
IMPORT Graphics, Rectangles, ... ;

TYPE
FilledRech = POINTER TO FilledRectDesc;
FilledRectDesc* = RECORD (Rectangles.ReetDesc)

pah: Pattern
END;

PROCEDURE Draw*(rect: Graphics.Figure);
BEGIN

WITH rect: FilledReet DO
Rectangles.Draw(rect)i
... (* fill perimeter of reet with a pattern *)

END
END Draw;

PROCEDURE New*O: Graphics.Figure;
V AR fr: FilledRect; x, y, w, h: INTEGER; pat: Pattern;
BEGIN

(3) -+ NEW(fr);

Notes

fr.draw:= Draw; fr.clear:= Rectangles.Clear;
fr.mark:= Reetangles.Mark;fr.move:= Rectangles.Move;
(* obtain values x, y, w, h, and pat *);
fr.x := x; fr.y:= y; fr.w:= w; fr.h:= h; fr.pat:= pat;
RETURNfr

END New;

END FilledReetangles.

(1) FilledRect extends Rectangles.Rectangle. Field pat identifies a fill
pattern.

(2) Draw from module Rectangles is invoked to draw the 'wire
frame.' Subsequently, the pattern is filled in.

(3) An instance of FilledRect is created. The procedures fields draw,
clear, mark and move are initialized. Note that draw receives the
modified procedure Draw, whereas the other procedures are
from module Rectangles.

12.4 Objects and modules 229

12.4.5 Summary

In Oberon, object-orientation results in module hierarchies that are
'upside-down' (Figure 12.3) and rely heavily on up-calls. In particular,
we note

(1) The heterogeneous data structure plays a central role.
(2) This data structure is typically abstract, in particular an instance

of an abstract data type (Graph in our example). The module ex­
porting that type (for example Graphics) is at the basis of the
module hierarchy. The procedures of that type fall in three broad
classes: (1) actions dealing with the ensemble of objects (for
example DrawAll), (2) the procedure initializing the type (for
example Open) and (3) creation of new objects and insertion into
the heterogeneous structure (in our case, CreateFigure.)
Sometimes class (4) is reduced to merely insert objects into the
data structure.

(3) The elements of the heterogeneous structure are objects; that is,
instances of a record type with procedure fields, also termed
methods. The procedures of type (1) such as DrawAll make use of
the methods to deal with the ensemble of objects abstractly. In
the base module, the methods are often left unspecified, or ab­
stract. Alternatively, a common basic behavior of the objects
could be implemented.

(4) The implementation of the methods (or specialization if methods
are already implemented in the base) is provided in modules
higher up in the hierarchy, such as in Rectangles. These modules
import the base module. Different specializations of the object,
such as rectangles and lines, are implemented in different mod­
ules. An important task of such an implementation module is to
create an instance of the specialized object.

(S) Often the user interface can also be isolated in its own module.
The creation of objects, their initialization and insertion into the
heterogeneous data structure require careful design, possibly re­
lying on addi~ional up-calls.

(6) Sometimes, a new specialization of the object differs only slightly
from an existing implementation. In this case, that implementa­
tion can be re-used without recourse to its source text. Only the
method that differs has to be programmed and assigned when
the object is created.

The benefit of object-orientation is the isolation of different concerns in

230 Object-orientation

different modules. Most importantly, those modules can be added with­
out recompilation of any of the other parts of the system. Through re­
definition of some methods, further specializations of the object can
often be obtained by reusing existing code.

12.5 Message and handlers

An object is an instance of an abstract data type represented by a record
variable containing procedure fields. These procedure variables define
the actions admitted by the object - in the sense of the abstract data
type.

We recapitulate the declaration of the type Figure from Section 12.3:

TYPE
Figure = POINTER TO FigureDesc;
FigureDesc = RECORD

draw, clear, mark: PROCEDURE (f: Figure);
move: PROCEDURE (f: Figure; dX, dY: INTEGER);
next: Figure

END;

A figure has a next figure and four procedure fields draw, clear, mark
and move. The basic assumption is that the number of procedures and their
parameters is invariant.

There are programming tasks where neither number nor meaning of
all the actions of an object are known a priori. A good example is a
simulation event. We recall from Chapter 10 that such an event is
always paired with a specific action - that action may be the procedure
of an object. We will pursue this idea in Chapter 13.

We will now introduce a different way of representing the actions;
that is, we will unite them with only a single universal procedure field,
termed handle. The procedure assigned to this field is called the handler.
A simulation event, for example, can be visualized as an instance of

TYPE
Event = POINTER TO EventDesc;
EventDesc = RECORD

handle: Handler;
time: REAL;
next: Event

END;

12.5 Message and handlers 231

The simulation event has a due time, a pointer next that admits the
event to the calendar list and the procedure field handle of type Handler.

The problem that at first sight seems to render this idea impracticable
is the fact that an open-ended set of actions requires an open-ended
number of parameters of possibly different type - a facility that is not
part of the Oberon procedure definition. Type extension, however,
comes to our rescue and allows just such a parameter.

12.5.1 Message and handler

The key idea is simple and elegant: the formal parameter is a record that
contains the identification of the individual action to be performed and its par­
ameters. We dub such a record containing parameters a message.

How type extension and type tests work hand in hand to create
handlers that accept a variable number of messages is best explained by
continuing with the example of the graphics editor - now cast in terms
of objects with handlers. We start by introducing an empty record as
base type for messages:

TYPE Message = RECORD END;

Specific messages are defined as extensions of the type Message as need
arises. Each action performed on our graphics objects is characterized
by its own message type, for example

TYPE
DrawMsg
ClearMsg
MarkMsg
MoveMsg

END;

RECORD (Message) END;
= RECORD (Message) END;

RECORD (Message) END;
RECORD (Message) dX, dY: INTEGER

The example makes it clear how the formal parameter sections, which
appeared in the previous procedure headings, now emerge as record
fields in message types. Procedures without parameters lead to exten­
sions of the type Message still being empty. The procedure Move with
two formal parameters of integer type corresponds to a message type
MoveMsg with two integer fields.

The new figure i~ an instance of the following type:

TYPE
Figure = POINTER TO FigureDesc;

232 Object-orienratlon

FigureDesc = RECORD
handle: Handler;
next: Figure

END;

The type Handler can now be stated:

TYPE Handler = PROCEDURE (f: Figure; V AR msg: Message);

The handler procedure therefore has access to its object (here assumed
to be of type Figure) and to the message. Note that it is essential that msg
is a V AR parameter, since the handler will apply type tests and type
guards to it.

As before, specific shapes have types that extend Figure, for example

TYPE
Rectangle = POINTER TO RectangleDesc;
RectangleDesc = RECORD (FigureDesc);

x, y, w, h: INTEGER
END;

The structure of a handler for a rectangle is

PROCEDURE HandleRect(rect: Figure; V AR msg: Message);
BEGIN

WITH rect: Rectangle. DO
IF msg IS DrawMsg THEN

WITH msg: DrawMsg DO
· .. (* draw rectangle *)

END
ELSIF msg IS ClearMsg THEN

WITH msg: ClearMsg DO
· .. (* clear rectangle *)

END
ELSIF msg IS MarkMsg THEN

WITH msg: MarkMsg DO
... (* mark rectangle *)

END
ELSIF msg IS MoveMsg THEN

WITH msg: MoveMsg DO
· .. (* move rectangle by vector msg.dx, msg.dy *)

END
ELSE

. . . (* message not understood, typically no action *)

Sending a
message

END
END

END HandleRect;

12.5 Message and handlers 233

Which action is to be performed is deduced from the type of the mes­
sage. The parameters for the action, such as the displacement vector for
the move operation, are found in the message fields. Note the global
type guard asserting that the object is of dynamic type Rectangle and the
type guard on the message. For the message-based design to be of full
generality, it is essential that an else clause be present. Typically, it is
empty, but guarantees that the handler can be called with any message
that extends the base type Message.

A rectangle rect, which is an instance of type Rectangle, is created as
follows:

NEW(rect); rect.handle:= HandleRect;
rect.x:= x; rect.y:= y; rect.w:= w; rect.h:= h;

The assignment of the procedure HandleRect to the field handle is termed
installation of the handler.

Finally, let us show how to move a rectangle represented by the
variable recto First, the displacement (dX, dY) is determined. Then the
message fields are filled and the handler is called, viz.

V AR m: MoveMsg; rect: Rect;

... (* determine the displacement dX, dY *)
m.dX := dX; m.dY:= dY; rect.handle(rect, m);

The above operation is known as sending a message m to the object reet,
or sending a move message to the rectangle recto

12.5.2 Message broadcast

Objects are typically members of a dynamic data structure. For exam­
ple, figures are contained in a figure list and events in the simulation
calendar. Frequently, operations are performed on the whole ensemble
of objects. Procedures performing such operations have to traverse the
data structure. DrawAll is a good example.

In the case of objects with handlers, the list traversal can be isolated
in a procedure Broadcast that sends a given message to all objects. For
the list of graphics objects, such a broadcast is executed as follows:

234 Object-orientation

PROCEDURE Broadcast(g: Graph; V AR msg: Message);
V AR f: Figure;
BEGIN

f:= g.list;
WHILE f # NIL DO f.handle(f, msg) END

END Broadcast;

Using the broadcast, DrawAll is considerably simplified:

PROCEDURE Draw All;
V AR m: DrawMsg;
BEGIN Broadcast(m)
END DrawAll;

12.5.3 Generality of handlers

Objects with handlers can do exactly the same as our earlier objects
with procedure variables. However, handlers are more general. Assume
that, without changing the definition of type Figure of Section 12.4.1, a
call statement

f.rotate(f, angle)

would appear somewhere in the source text. The compiler would reject
such a module.

The analogous situation in the paradigm of handlers is the sending of
a rotate message to the object I, in Oberon notation,

TYPE RotateMsg = Record(Message) angle: INTEGER END;
VAR m: RotateMsg;

m.angle:= 45; f.handle(m);

Clearly, the compiler accepts such a program without need to redefine
the type Figure. Note that the type RotateMsg as well as the actual
sending of a message of that type can be added in later modules. The
message broadcast allows such modules to address all objects in the
heterogeneous structure. All objects therefore do not necessarily
'understand' all messages.

We summarize by stating that handlers will accept any message that
extends the common base type Message, but will 'understand' and
therefore react only to those message types that appear explicitly in the
IF ... ELSIF ... ELSIF ... ELSE ... END statement of their statement sequence.

12.5 Message and handlers 235

12.5.4 Summary

In this section, we have introduced a special class of objects: those with
a handler. The following points are worth recapitulating:

(1) The object is represented by a pointer to record. The record has
only one procedure field, typically termed handle. The procedure
assigned to handle is termed handler and has two formal
parameters. The first designates the object on which the handler
operates. The second, a VAR parameter, identifies the operation
to be performed. Its type is the base type Message, representing a
record (usually empty).

(2) The handler defines the semantics of the object. A handler is
typically called with an extended object type. A regional type
guard is therefore required (WITH f: Rectangle in our example).

(3) The actual parameter paired with the second formal parameter
of the handler is an extension of the (record) type Message. It is
known as message. Its type specifies the action, its fields contain
the parameters that pertain to that action. Their number is
variable.

(4) The handler, in essence, comprises a big IF ... ELSIF ...
ELSIF. .. ELSE ... END statement. Type tests discriminate between
messages of different types.

(5) Assigning the handler procedure to the field handle is called in­
. stallation of the handler.

(6) Assigning values to the fields of a particular message and calling
the handler of a given object is referred to as sending a message to
the object.

(7) Messages may be broadcast to all objects of a heterogeneous data
structure; that is, the message is sent to each object in turn. The
use of such broadcast often simplifies the procedures that act on
the ensemble of objects.

12.6 Conclusions and outlook

The concepts type extension, procedure variable and abstract data type
advance the state-of-the-art in program extensibility in a major way.
The programming methodology is called object-orientation. If successful,

236 Object-orientation

object-oriented designs allow augmenting functionality by a mere
addition of modules. The normal module hierarchy is thus turned
upside-down, as we saw in the example of a graphics editor. Figure 12.5
recapitulates the new module structure.

redefinition

... extension

Figure 12.5 Module hierarchy from object-orientation.

Extension may take place in two ways: through addition of entirely
new functions and through specialization of existing ones.

The technical foundation is the notion of the object, an instance of an
abstract data type with dynamically bound procedures. Objects
typically belong to a heterogeneous data structure that is managed in
the base module (for example Graphics in Figure 12.5).

Historically, the techniques of object-orientation were first introduced
in the area of discrete event simulation (Dahl and Nygaard, 1966).
Currently, it is permeating most problem domains: operating systems,
word and graphics processors, and last but not least data bases.

12.6.1 Two categories of Oberon objects - a comparison

Multitude of
procedure
variables

In this chapter we have introduced two categories of objects: those with
a number of procedure variables and those with a single handler. There
follows a brief comparison. In summary, we will conclude that both
types of objects have advantages and disadvantages, and should be
used where appropriate.

The operations that can be applied to the object are defined as proce­
dures in the same way as in the case of an ordinary abstract data type.
The difference is dynamic binding: in a call, the specific procedure is

Handlers

12.6 Conclusions and outlook 237

selected at run time rather than at compile time. The number of the
procedures and their type is fixed and specified at the place where the
object's type is declared. The storage demand grows with the number of
procedures; their call, however, is as efficient as any call of a procedure
variable. New functionality is confined to the scope provided by the set
of procedures. Extending that scope means a recompilation of the entire
module structure. For example, in our graphics editor, new functions
must be expressed in terms of draw, clear, mark and move. A function
copy, for example, would lead to a global change.

In all procedures that deal with the ensemble of objects, an individual
structure traversal needs to be programmed explicitly (see the while loop
in the example DrawAll).

The object has only one general procedure - hence is likely to consume
less memory. At the place of the type declaration, the actions that the
object may perform are not defined - neither in terms of number, name
nor parameters. That specification is only made in the implementation of
the handler. An object may be called with any message compatible with
the base message type. If the message is 'understood' the requested
action is performed; otherwise nothing happens. Message broadcasting
is an effective way of dealing with the ensemble of objects; sparing the
programmer the chore of coding many structure traversals.

Obviously, all objects need not understand the same basic set of
messages. Using the broadcast mechanism, it is possible to send any
message to all objects of the structure. In fact, such broadcasts may take
place from an arbitrary part of the system - they are not confined to the
base module. Similarly, new message types can be defined in any
module. This generality is sometimes quite useful. For example, the
Oberon operating system bases the viewer subsystem on objects with
handlers (Wirth and Gutknecht, 1992). The handler is the command
interpreter that operates behind the viewer.

The added generality has its price, however. At each call of the
handler, the action has first to be re-determined, executing the
IF ... ELSIF ... ELSIF ... ELSE ... END statement and performing type tests,
an overhead not incurred with the first kind of object.

The fact that the compiler cannot check whether a message is
'understood by the object' may be an advantage or a disadvantage,
depending on the type of the application.

12.6.2 On the object-oriented programming paradigm

The programmer practicing object-orientation needs appropriate lan­
guage tools. Object-orientation in its current sense was introduced as a

238 Object-orientation

paradigm by Smalltalk-80 (see for example Goldberg and Robson, 1983).
Similar to Oberon, Smalltalk is not merely a language but an entire
system. In other respects, however, Smalltalk is at the opposite end of
extremes - in particular it lacks strong typing and uses peculiar
terminology. In the wake of Smalltalk, a number of languages appeared
that emulate its terminology but reintroduce typing. Some are additions
to existing languages (Tesler, 1985; Stroustrup, 1986); some are new
creations, for example, the language Eiffel (see Meyer, 1988).

This is not a text on the history of object-orientation. For the reader
familiar with the subject, we establish briefly the correspondence be­
tween object-oriented programming terminology (OOP) and Oberon
concepts in Table 12.1.

Table 12.1 Standard object-oriented terminology.

OOP terminology Oberon terminology

Class Record typel with procedure variable(s),
defining an abstract data type

Object Variable of that type

Method One of the procedures of the record type

Message A call of a procedure, for example
reet .draw(rect)

Sub-class Extension of the base record type

Super-class The base type of such an extension

Inheritance Type extension

Overriding a method Changing the procedure assigned to a field in
an extension

Self The object passed as actual parameter to a
procedure, for example reet in rect.draw(reet)

Super call Call of a procedure in the module defining
the base of an extension

Dynamic binding Call of a procedure variable

In Table 12.1 we assumed languages that feature typing such as C++
or Eiffel. Smalltalk-80 is even more general. In a sense, it corresponds

1 More precisely, a pointer type bound to a record with one or several procedure
variables, defining an abstract data type.

12.6 Conclusions and outlook 239

more to the second kind of Oberon object, that with a handler. The term
'method' is not so well defined in the case of the handler. In a sense, the
method is embodied by the message type and the corresponding program
segment in the handler procedure. We should stress, however, that an
Oberon program employing handler objects is still substantially more
efficient than all Smalltalk implementations known to date.

12.7 Exercises
12.1 [Object-oriented calculator] Implement an extensible stack-based calculator.

The calculator comprises the four modules Calc, Integers and FPNs. Calc
contains the stack and exports the basic calculator commands. Integers and
FPNs (floating-point numbers) are supported number types.

The base module Calc has definition

DEFINITION Calc; (* Basic Calculator *)
IMPORT Out;
TYPE

Number = POINTER TO NumberDesc;
NumberDesc = RECORD

add, sub, mult, div: PROCEDURE(a, b: Number): Number;
display: PROCEDURE(n:Number)(* display a number *)

END;
PROCEDURE Add;
PROCEDURE Sub;
PROCEDURE Mult;
PROCEDURE Div;
PROCEDURE Clear;
END Calc.

The stack is not limited in size and not
defined, unless numbers are explicitly
entered (note that this stack definition differs
from Exercise 7.5). Numbers are implemented
as objects.

The commands Add, Sub, Mult and Div
operate on the two topmost stack elements,
which are replaced by the result. Make sure
that the program does not abort if the stack is
empty (display an error message in that case).

Module Integers implements integer
numbers based on the type INTEGER. It exports the command Enter that reads
an integer from the input stream and pushes it onto the stack. An error message
is displayed if the input is invalid.

240 Object-orientation

DEFINITION Integers;
IMPORT Calc, In, Out;
TYPE

Integer = POINTER TO IntegerDesc;
IntegerDesc = RECORD(Calc.NumberDesc) n: INTEGER END;

PROCEDURE Enter; (* Push an integer onto the stack *)
END Integers.

Similarly module FPNs handles floating-point numbers based on the type
REAL.

12.2 Extend the calculator with module Fractions defined by

DEFINITION Fractions; (* rational numbers *)
IMPORT Calc, Integers, In, Out;
TYPE

Fraction = POINTER TO FractionDesc;
FractionDesc = RECORD(Calc.NumberDesc)

num, denom: Integers.lnteger
END;

PROCEDURE Enter; (* Push a rational number onto the stack *)
END Fractions.

Rational numbers are pairs of integers. Use the syntax integer" /"integer to
display rational numbers.

A key design principle is the requirement that module Integers may be
exchanged without consequences for Fractions. This requires that n;lOdule
Fractions work exclusively with resources exported by module Integers, in
particular with the type Integers.Integer and the procedures Integer.Add and so
on. To eliminate common factors, Integers has to provide a procedure

PROCEDURE gcd(Calc.Number, Calc.Number): Calc.Number;

that computes the greatest common divisor. Also, reading an integer from the
input stream should be handled by Integers, not by Fractions, for example with a
function Integers.ReadO.

12.3 Extend the calculator with a module Complex operating on complex numbers.

12.4 [Object-oriented directory] The generality of the generic type Entry in Exercise
11.4 is limited by the fact that the type of the key must be specified. Use object­
orientation to make that type client-defined.

Hint: In module Directories the key is an empty record to be extended in the
client. The object Entry has two procedure variables called eq (equal) and It (less
than) that compare an entry with a key. Don't forget to make key a VAR
parameter to allow type tests, for example PROCEDURE Search(dir: Directory;
VARk: Key).

12.7 Exercises 241

12.5 [Very tiny graphics editor] Implement a very tiny graphics editor that draws
rectangles. The modules are Graphics, Rectangles and Draw, with definitions

DEFINITION Graphics;
TYPE

Figure = POINTER TO FigureDesc;
FigureDesc = RECORD draw: PROCEDURE (f: Figure) END;
Graph = POINTER TO GraphDesc;
GraphDesc = RECORD END;

VAR
newFigure: PROCEDURE (g: Graph): Figure;
span Vect: PROCEDURE (V AR xl, yl, x2, y2: INTEGER);

PROCEDURE DrawAll(g: Graph);
PROCEDURE CreateFigure(g: Graph);
PROCEDURE Open(g: Graph);
END Graphics.

DEFINITION Rectangles;
IMPORT Graphics, Display;
TYPE

Rectangle = POINTER TO RectangleDesc;
RectangleDesc = RECORD (Graphics.FigureDesc)

x, y, w, h: INTEGER;
END;

PROCEDURE Draw(rect: Graphics.Figure);
PROCEDURE NewO: Graphics.Figure;
PROCEDURE Set
END Rectangles.

DEFINITION Draw;
IMPORT Graphics, XYplane, In;
PROCEDURE Open;
PROCEDURE Draw All;
PROCEDURE New;
END Draw.

Procedure variable spanVect in module Graphics returns start and end point of a
vector. It is called in Rectangles.New to define the location and extent of a
rectangle. The procedure assigned to spanVect is declared in Draw. What is the
reason to introduce span Vect?

In a real graphics editor, spanVect would use the mouse to define the vector.
To avoid this complication, read the vector from the input stream, for example

PROCEDURE Span Vect(V AR xl, yl, x2, y2: INTEGER);
BEGIN In.Open; In.lnt(xl); In.lnt(yl); In.lnt(x2); In.lnt(y2)
END Span Vect;

242 Object-orientation

Use module XYplane to open a drawing area. For drawing horizontal and
vertical lines, consult Exercises 7.7 and 7.8. The commands exported by module
Draw are:

• Draw.Open opens an XYplane viewer

• Draw.DrawAll draws all figures. To test DrawAll, erase the XYplane
(XYplane.Clear) and restore the drawing.

• Draw.New creates a figure (depending on the most recently issued Set
command).

12.6 Write module Lines and add it to the very tiny graphics editor (see Exercises 7.9
and 7.10).

12.7 Write module FilledRectangles and add it to the very tiny graphics editor. Use
the technique of Section 12.4.4. Produce a grey pattern by drawing a
checkerboard pattern of black and white pixels. Hint: more efficient than a loop
invoking XYplane.Dot is the use of the procedures:

V AR pat: Display.Pattern;
pat:= Display1.Pattern(3); (* a grey pattern *)
Display.RepIPattern(Display.white, pat, x, y, w, h, Display.replace)

12.8 [Mouse-based control] Oberon system knowledge a prerequisite (Reiser, 1991).
Provide a version of module Draw that uses the mouse to create figures. Make a
graph (instance of Graphics.Graph) a proper Oberon viewer. Figures are created
under mouse control: dragging the mouse over the drawing area while the left
key is pressed defines the diagonal of a rectangle or the end-points of a line.
After the dragging operation ceases, the figure is drawn.

Hint: The type Graph extends type Display.Frame. Write a handler compatible
with a menu viewer. The command Draw;Open first creates a graph and installs
the handler. Then it opens a menu viewer and installs the graph in the new
menu viewer.

Module XYplane is no longer a suitable base for programming the display.
The library of many Oberon systems has a module GraphicOps that draws some
geometric shapes and performs clipping. Use module GraphicOps or, if not
available, module Displayl or Display. In the latter case, clipping has to be taken
care of explicitly.

12.9 [Tiny graphics editor] Add the following functions to the very tiny graphics
editor, making it a tiny graphics editor.

• One figure can be selected and thus singled out to be operated on by
subsequent commands. If a selection exists, a new selection neutralizes the
existing selection. The command Draw.Select x y selects the (oldest) figure
that is close to the point (x, y).

• The selection can be neutralized (command Draw.Neutralize)
• The selected figure can be deleted (command Draw.Delete)
• The selected figure can be moved (command Draw.Move dX, dY).

12.7 Exercises 243

Hint 1: Types FigureDesc and GraphDesc are augmented as follows:

TYPE
FigureDesc = RECORD

isClose(f: Figure; x, y: INTEGER): BOOLEAN;
draw, clear, mark: PROCEDURE(f: Figure);
move(f: Figure; dX, dY: INTEGER);
next: Figure

END
GraphDesc = RECORD

selection, list: Figure
END

Method is Close reports whether a point (x, y) is close to the figure. It is used
to determine which figure is selected. Method mark makes the selection visible
(see Figure 12.4) Method clear removes a figure or the selection markings from
the display.

Hint 2: If a figure or its markings is removed, a hole is left behind. The easiest
way to restore the graph is to invoke Graphics.DrawAli.

12.10 [Mouse control for tiny graphics editor] Oberon system knowledge a prerequisite
(Reiser, 1991). Provide mouse control for the tiny graphics editor. A click with
the right mouse key will select a close figure (isClose(f, x, y) = TRUE). An
interclick1 with the left mouse key while selecting will delete the selected figure.
A vector spanned on the middle mouse key will move the selected figure.

12.11 [Message-based tiny graphics editor] Rewrite the tiny graphics editor using
objects with handlers and messages. Discuss the two versions - which do you
prefer?

12.12 [File support for graphics editor] Oberon system knowledge a prerequisite (Reiser,
1991). Amend procedure Graphics.Open with the ability to read a graph from a
file. Provide a procedure Graphics.Store that externalizes a graph.

To store a graph, endow the figure object with an additional method store. To
read a graph from a file, the approriate shape-specific module may have to be
(dynamically) loaded first.

Hint: On the file, each figure section is preceded with a string that contains a
command name such as "Rectangles. Load" or "Lines.Load". This command
string is read by module Graphics. Then that command is executed via dynamic
loader using the call

Oberon.Call(cmd, Oberon. Par, FALSE, res)

where cmd: ARRAY 32 OF CHAR holds the command string and res:
INTEGER is a result code.

1 Clicking the left mouse key while dragging on the right key.

244 Object-orientation

References

Dahl O.-J. and Nygaard K. (1966). Simula - an Algol-based simulation
language. Communications of the ACM, 9,671-8.

Goldberg A. and Robson D. (1983). Smalltalk-BO: The Language and its
Implementation. Reading, MA: Addison-Wesley.

Meyer B. (1988). Object Oriented Software Construction. Englewood Cliffs, NJ:
Prentice-Hall.

Reiser M. (1991). The Oberon System: User Guide and Programmer's Manual.
Wokingham, England: Addison-Wesley.

Stroustrup B. (1986). The C++ Programming Language. Reading, MA: Addison­
Wesley.

Tesler L. (1985). Object Pascal report. Structured Language World, 9, 10-14.
Wirth N. and Gutknecht J. (1992). Project Oberon. Wokingham: Addison-Wesley.

13 A simulation example

Chapter 12 introduced the concepts of object-orientation, and their ex­
pression in terms of Oberon. The concepts are introduced using pro­
gram excerpts. In line with Chapter 10, we wish to conclude with the
development of a complete example - a framework of abstract data types
and modules serving as a simulation package.

We are familiar with the fundamentals of discrete event simulation
from Chapter 10. Simulation is indeed a classical area for the use of ab­
stract data types - in particular, objects. We wish to demonstrate the
usefulness of generic modules and of objects with handlers. Again we
aim at a structure that is extensible in the sense that adding function­
ality means simply adding modules to the library - without change or
recompilation of those parts of the package that were conceived earlier.

13.1 Generic module Qs

In Chapter 10, customers do not occur explicitly - nor does the waiting
line. This is possible in very simple situations only. In general, both
customers and queues must be represented by appropriate data struc­
tures- of the simulation program. The goal of this section is a generic
queue module to be used by the simulation package.

Module Qs implements the three basic queueing disciplines FIFO,
LIFO and ranked as abstract data types. The contents of queues, also
called items, have to be compatible with queues operating under all
three disciplines. That means, for example, that an item may be de­
queued from a FIFO queue and subsequently enqueued in a ranked
queue. We also require that the implementation make the queueing
discipline an invariant - the client is assured that the FIFO, LIFO or
ranked properties cannot be violated. The invariant is guaranteed
against incompetent and even malicious use by the client.

245

246 A simulation example

13.1.1 Definition

Fundamental to module Qs are two abstract data types: Queue and Item.
The property of a queue is its queueing discipline. Each item has a key
that is used by the ranked discipline. There are two basic operations:
enqueueing and dequeueing of items.

A queue - an instance of type Queue - belongs to one of the classes
FIFO, LIFO or ranked. In traditional programming, the finer character­
ization is often implemented with a type flag, typically an integer. Type
extension, however, affords a much more elegant solution: FIFO, LIFO
and Ranked are types that extend the base type Queue. Instances of the
extended types are compatible with the formal parameter of type Queue
in the procedures Enqueue and DequeuedItem. The action taken therein
can be discriminated using a type test. This type design is depicted in
Figure 13.1.

FIFO LIFO Ranked

~/
Queue

Figure 13.1 The queue types of module Qs.

With this design in mind, we state the definition of module Qs:

DEFINITION Qs;
TYPE

Key = REAL;
Item = POINTER TO ItemDesc;
ItemDesc = RECORD

key: Key
END;

Queue = POINTER TO QueueDesc;
QueueDesc = RECORD END;

FIFO = POINTER TO FIFODesc;
FIFODesc = RECORD (QueueDesc) END;

LIFO = POINTER TO LIFODesc;
LIFODesc = RECORD (QueueDesc) END;

13. 1 Generic modull1 as 247

Ranked = POINTER TO RankedDesc;
RankedDesc = RECORD(QueueDesc) END;

PROCEDURE Enqueue(q: Queue; i: Item);
PROCEDURE DequeuedItem(q: Queue): Item;
PROCEDURE Empty(q: Queue): BOOLEAN;
PROCEDURE Enumerate(q: Queue; P: PROCEDURE (i: Item»;
PROCEDURE Open(q: Queue);

ENDQs.

The names of the procedures are self-explanatory; in particular,

• Enqueue puts item i into queue q.
• DequeuedItem removes the head of queue q.
• Empty returns TRUE if the q is empty, FALSE otherwise.

• Enumerate traverses q and applies procedure P to every item.

• Open initializes instance q of type FIFO, LIFO or Ranked.

13.1.2 Implementation

To implement module Qs, we must first decide on a data representa­
tion. For simplicity, we revert to the linear list - the groundwork for
module Qs was laid in Section 9.2.

We wish to be able to infer the queueing discipline from the dynamic
type of the queue. We therefore represent each queue by a record (type
Queue) that contains the anchor in a field first.

The optimized method of Section 9.2.2 is employed for FIFO queues.
The pointer to the last element is in the extension FIFO of base type
Queue.

The text of module Qs is as follows:

MODULEQs;
TYPE

Key = REAL;
Item* = POINTER TO ItemDesc;
ItemDesc* = RECORD

key*: Key;
next: Item

END;

248 A simulation example

Queue* = POINTER TO QueueDesc;
QueueDesc* = RECORD

(1) ~ first: Item
END;

FIFO* = POINTER TO FIFODesc;
FIFODesc* = RECORD (QueueDesc)

(2) ~ last: Item
END;

LIFO* = POINTER TO LIFODesc;
LIFODesc* = RECORD (QueueDesc) END;

Ranked* = POINTER TO RankedDesc;
RankedDesc* = RECORD (QueueDesc) END;

PROCEDURE InsertFIFO(q: FIFO; i: Item);
BEGIN

i.next := NIL;
IF q.first # NIL THEN q.last.next:= i
ELSE q.first := i
END;
q.last:= i

END InsertFIFO;

PROCEDURE InsertLIFO(q: LIFO; i: Item);
BEGIN i.next:= q.first; q.first:= i
END InsertLIFO;

PROCEDURE InsertRanked(q: Ranked; i: Item);
VARx: Item;
BEGIN

IF (q.first = NIL) OR (i.key < q.first.key) THEN
i.next := q.first; q.first:= i

ELSE
x := q.first;
WHILE (x. next # NIL) & (i.key >= x.next.key) DO

x:= x.next
END;
i.next := x.next; x.next:= i

13. 1 Generic module as 249

END
END InsertRanked;
PROCEDURE Enqueue*(q; Queue; i; Item);
VARx; Item;
BEGIN

(3) ~ IF q IS FIFO THEN InsertFIFO(q(FIFO), i)
ELSIF q IS LIFO THEN InsertLIFO(q(LIFO), i)
ELSIF q IS Ranked THEN InsertRanked(q(Ranked), i)
END

END Enqueue;

PROCEDURE Dequeuedltem*(q; Queue): Item;
VARx: Item;
BEGIN x:= q.first;

IF x # NIL THEN q.first;= x.next END;
RETURN x

END DequeuedItem;

PROCEDURE Enumerate*(q; Queue; P: PROCEDURE (i: Item»;
VARx: Item;
BEGIN x;= q.first; WHILE x # NIL DO P(x); x ;= x.next END
END Enumerate;

PROCEDURE Empty*(q: Queue); BOOLEAN;
BEGIN RETURN q.first = NIL
END Empty;

PROCEDURE Open*(q: Queue);
BEGIN q.first:= NIL
END Open;

ENDQs.

Notes

(1) Field first is the (hidden) anchor for the list that represents the
queue.

(2) Field last is added to first in the extension FIFO of the type Queue.
It is used to optimize FIFO operations as described in Section
9.2.2.

(3) In this if statement, the type-specific queueing disciplines are in­
voked. Note the type guards in the call statements.

250 A simulation example

13.2 An object-oriented simulation calendar

13.2.1 Data type Actor and basic module structure

Data-centered
design

In Chapter 10, we advocated a programming approach that started with
a formulation of the action of the program on a high level of ab­
straction. Successive refinements are aimed at the final specification.

Here we start with the specification of the most fundamental data type.
This view is quite typical when adopting object-orientation. We call this
design approach data-centered. Stepwise refinement, however, is not
invalidated - its application is only delayed to the time when individual
module texts are composed.

The simulation program of Chapter 10 is built around the notion of a
calendar of events. An event can be visualized as a label on the time axis.
The main simulation program always pairs an action with an event.
This pairing of the event with its action immediately suggests the use of
an object that makes this association explicit. Since the nature of the
action is still open, an object with handler is the natural choice. We call
that object an actor. Actors can be put into the simulation calendar, and
when they are due, their procedure variable handle is called with an
appropriate message parameter.

In an actual simulation, entities such as customers, sources or servers
will be represented by instances of types that extend the base type
Actor. Therefore actors need to be furnished with the capability to be
members of different queues of types FIFO, LIFO or Ranked. From Section
13.1 we are familiar with a service module, Qs, that provides just that. If
Qs fulfills the promise of being a generic module, we should be able to
use it here.

We will try and declare our type Actor as an extension of Qs.Item:

TYPE
Actor = POINTER TO ActorDesc;
ActorDesc = RECORD (Qs.ltemDesc);

handle: Handler
END;

Let us now specify the basic module structure of our simulation pack­
age. From Chapter 10, we remember the service modules Paths and
Sequences (Exercise 10.2) that facilitate the computation of results. They
will be as useful here as they were there. The module that implements
the abstract data type Actor is termed Sim. Thus the foundation of the
simulation package is the module structure depicted in Figure 13.2.

13.2 An object-oriented simulation calendar 251

Figure 13.2 Basic module structure of the simulation package.

13.2.2 Module Sim: an abstract simulation

Like its cousin Calendar (see Section 10.3.1), module Sim embodies the
calendar as an abstrC;1ct data structure. Module Sim also exports the
definition of the abstract data type Actor.
In fact, one design option is to implement Sim very much like Calendar.
Procedures Schedule and GetNextActor would enter actors into the
calendar and retrieve the most imminent actor from there.

However, such an implementation ignores the fact that actors rep­
resent' active' events. In fact, any particular simulation can be expressed
in the following abstract form:

REPEAT
"Retrieve actor from calendar";
"Set simulation time to actor's time";
"send calendar message to actor"

UNTIL "simulation time exceeds given limit" OR "calendar empty"

Module Sim is not a specific simulation - hence the actual actions as­
signed to the procedure variables handle are not specified in its scope.
Still, all knowledge is present to implement the canonical simulation
loop. We may say that Sim performs an abstract simulation, the details
of which are furnished by its clients, that is modules higher up in the
hierarchy. These clients are specified long after Sim is completed,
compiled and put into the system's library.

Note that this abstract treatment of a simulation is analogous to the
way the graphics editor treated all objects abstractly, for example in the
procedure DrawAll.

252 A simulation example

After these preliminaries, we present the definition of module Sim:

DEFINITION Sim;
IMPORTQs;
TYPE

Message = RECORD END;
CalendarMessage = RECORD (Message) END;
Handler = PROCEDURE (a: Actor; V AR msg: Message);
Actor = POINTER TO ActorDesc;
ActorDesc = RECORD (Qs.ltem)

handle: Handler
END;

V AR time: REAL

PROCEDURE Schedule(a: Actor; t: REAL);
PROCEDURE Simulate(dt: REAL);
PROCEDURE Reset;
ENDSim.

The simulation calendar is based on the ranked queue exported by
module Qs:

• Message is the prototype of the messages understood by the
handlers of actors.

• CalendarMsg is the type of a specific message that is sent to the
current actor when it is due and removed from the calendar (we
say the actor enters its passive state).

• Actor is the type of the simulation object.
• Variable time reports the current global time of the simulation.

• Schedule enters actor a into the calendar and sets its due time to
time + t. The actor is said to enter the active state.

• Simulate performs the (abstract) simulation starting at the current
time and ending at time + dt. Sets actors into the passive state (Le.
removes them from the calendar) and sends calendar messages
to them.

• Reset clears the calendar and sets time to O.

All the elements are now in place to list module Sim:

MODULESim;
IMPORT Qs, Out;
TYPE

Actor* = POINTER TO ActorDesc;

13.2 An object oriented simulation calendar 253

Message* = RECORD END;
CalendarMsg* = RECORD (Message) END;
Handler* = PROCEDURE (a: Actor; V AR msg: Message);
ActorDesc* = RECORD (Qs.ltemDesc)

handle* : Handler
END;

VAR
time* : REAL; (* Global simulation time *)
clndr: Qs.Ranked; (* Abstract data structure *)

(1) ~ PROCEDURE Schedule* (a: Actor; t: REAL);
BEGIN a.key:= t; Qs.Enqueue(clndr, a)
END Schedule;

(2) ~

(3) ~

(4) ~
(5) ~

PROCEDURE Simulate* (dt: REAL);
VAR

cur: Qs.ltem;
msg: CalendarMsg;
tEnd: REAL;

BEGIN
tEnd := time + dt;
LOOP

IF ,...Qs.Empty(clndr) THEN
cur := Qs.DequeuedItem(clndr);
WITH cur: Actor DO

time := cur. key; cur.handle(cur, msg)
END

ELSE Out.String(lfempty calendarlf); Out.Ln; EXIT
END;
IF time> tEnd THEN EXIT END

END
END Simulate;

PROCEDURE Reseh;
BEGIN Qs.Open(clndr); time:= 0
END Reset;

(6) ~ BEGIN NEW(clndr); Reset
ENDSim.

254 A simulation example

Notes

(1) Whether the time should be a parameter of Schedule or simply a
property of the actor (its key) is worth some deliberation. Both
are valid solutions. We prefer the explicit parameter, since the
identifier key is not meaningful in the simulation context.

(2) Observe that the variable cur, the current actor, must be of base
type Qs .Item to be compatible with the procedure
Qs.DequeuedItem.

(3) The test for an empty queue is necessary. An empty simulation
calendar means deadlock in the simulated system. When dead­
lock occurs, Simulate terminates.

(4) Do not forget the type guard, cur is of base type Qs.ltem; here we
deal with actors. Since the calendar contains only entries of type
Actor or extensions thereof, no type test is required.

(5) The message msg of type CalendarMsg is sent to the actor. The
message informs the handler that it is current and enters the
passive state.

(6) Within the body of module Sim, the abstract data structure is cre­
ated and initialized.

13.3 A simulation based on module Sim

LJli~
t Station t t ro--.--- _______________________ ,

O:b>~
Source ~ _ '!'Y~i~~~Q _~i_~~ _____ ~_~~~~ _ j

Figure 13.3 A simple queue composed of a single station.

Let us now demonstrate how the new tools can be used to simulate a
queueing system. Chapter 10 introduced the basic concepts of the op­
eration of a queue. A broad class of queueing system can be decom­
posed into the entities customers, sources and queueing stations. Figure

Basic paradigm

13.3 A simulation based on module Sim 255

13.3 shows these elements for the case of a single queue. In actual sim­
ulation practice, a single waiting line is seldom the object of investiga­
tion. 1 Much more common are whole networks of stations through
which customers proceed (Figure 13.4).

Switching Node

Figure 13.4 A communication network modeled as a system of queues.

More precisely, we have the following:

• Customers proceed through the system of queueing stations. They
determine the sequence in which the stations are visited and the
service demands placed on them.

• Sources generate customers according to a given probabilistic
rule.

• Stations are entities composed of a server and a waiting line. The
station puts customers in the waiting line and schedules them to
receive service.

Note that in modeling practice, a number of station types occur that are
characterized by the size of the waiting room, the number of servers,
and the queueing discipline. In our example, we discuss the simplest
case: an unlimited waiting room and a single server that works on
customers in order of their arrival (FIFO).

The interaction of customers with stations can be defined in a variety of
ways. We take the following view:

1 The mathematical theory of single queues is well developed. Hence cases are
solved analytically instead of experimentally.

256 A simulation example

(1) The customer decides which station to visit and requests service
from that station.

(2) The station notifies the customer when the server is ready. It is the
customer (not the server) that determines the end of the service
period.

(3) At the end of the service period, the customer frees the server prior
to requesting service elsewhere or leaving.

The entities customer, source, and station appear in multiple instances.
But multiple instances of a given entity suggest the introduction of a
data type. The design and implementation of such data types is our
next task.

13.3.1 Data types and module structure

In Oberon, the design of data types and module structure go hand in
hand, since the module is the basis for abstraction. Our goal is to pro­
vide three types: Customer, Source and Station.

Generally, customers, sources and stations are implemented as actors
since they have time-dependent behavior. Their types extend the base
type Sim.Actor.

The types Customer and Source are intimately related to the details of
a specific simulation experiment - also called a model. They are
therefore naturally declared in the module that implements a particular
model, such as a communication network simulation. We call that
module simply Model.

Queueing stations, on the other hand, come in various well-under­
stood standard versions. The simplest station is one operating the FCFS
discipline and having unlimited waiting room. If such a station is
implemented as an abstract data type, it can be used by a potentially
large number of client modules. We will provide a module Stations that
exports the type Station.

The simple station that we implement has no time-dependent be­
havior. There is therefore no need to make it an actor. It is not difficult,
however, to think of station classes that would need the calendar, for
example a station that breaks down from time to time.

The module structure that we have in mind is depicted in Figure 13.5.
Our goal is an extensible simulation package where new station types can
be encapsulated into modules and added to the package without
changes or recompilations of existing parts, in particular module Sim. It
is the object-oriented design that makes this possible.

13.3 A simulation based on module Sim 257

... Further station types

Figure 13.5 Module hierarchy (only major import relations are shown).

13.3.2 Definition of module Stations

According to the basic paradigm, it is the station that manages the
waiting line. In particular, the station determines the customer to be
served and calls its handler with a begin service message.

We now witness the generality of the object with a handler. There is
no need to anticipate a 'begin service' method in module Sim. Module
Stations simply declares a BeginMsg type that extends Sim.Message and
sends a begin message to the objects that request service or are removed
from the queue.

Other station types may have a need for other messages, such as a
'breakdown message.' Again, the appropriate message type is declared
in the module that has the need - not in the base module.

We are now able to state the definition of module Stations:

DEFINITION Stations;
IMPORT Qs, Sim, Paths;
TYPE

Station = POINTER TO StationDesc;
StationDesc = RECORD

path: Paths.Path
END;

258 A simulation example

BeginMsg = RECORD (Sim.Message) s: Station END;

PROCEDURE Request(s: Station; customer: Sim.Actor);
PROCEDURE Free(s: Station);
PROCEDURE Open(s: Station);
END Stations.

The abstract data type Station has three properties:

• a path that is used to compute statistics about the queue
distribution observed at the station;

• a waiting line operating the FIFO queueing discipline (hidden);

• a server that is either busy or free (hidden).

The station sends a begin message (message of type BeginMsg) to the
customer upon start of service. The begin message identifies the station
in field s. The procedures defining the actions of the station are as
follows:

• Request: The customer customer requests service at station s. The
action depends on the state of the server at the time of call. If it is
busy, the customer is enqueued. If it is free, it changes state to
busy and starts serving customer.

• Free: Station s is told that the currently served customer is
finished. The server is freed. If the queue is not empty, the head
of the line is removed. The server changes to busy and starts
serving the head of the line.

• Open: Initializes an instance of s type Station.

It is important to remember that Open does not create a station. It is
the client that issues a call to NEW and passes the newly created station
to Open for initialization. That station may be of type Station or an
extension thereof.

13.3.3 Implementation of module Stations

After the preceding discussion the implementation of module Stations is
straightforward:

MODULE Stations;
IMPORT Qs, Sim, Paths;

TYPE
Station* = POINTER TO StationDesc;

13.3 A simulation based on module Sim 259

StationDesc* = RECORD
wI: Qs.FIFO; (* Waiting Line *)
path* : Paths.Path

END;

BeginMsg* = RECORD (Sim.Message) s*: Station END;

PROCEDURE Request* (s: Station; customer: Sim.Actor);
V AR msg: BeginMsg;
BEGIN

IF s.path.n = a THEN (* Server empty *)
(1) ~ msg.s := s; customer.handle(customer, msg)

ELSE Qs.Enqueue(s.wl, customer)
END;
Paths.Up(s.path, Sim.time)

END Request;

PROCEDURE Free* (s: Station);
VAR

(2) ~ customer: Qs.ltem;

(3) ~

Notes

msg: BeginMsg;
BEGIN

Paths.Down(s.path, Sim.time);
IF s.path.n > a THEN (* Customers are waiting *)

customer:= Qs.DequeuedItem(s.wl);
WITH customer: Sim.Actor DO

msg.s:= s; customer.handle(customer, msg)
END

END
END Free;

PROCEDURE Open* (s: Station);
BEGIN

Paths.lnit(s.path); NEW(s.wl); Qs.Open(s.wl)
END Open;

END Stations.

(1) The field s of the message (type BeginMsg) is initialized and the
customer's handler called (a begin message is sent to the cus­
tomer).

260 A simulation example

(2) Note that customer must be of base type Qs.Item to be compatible
with the procedure Qs.DequeuedItem.

(3) A begin message is sent to the customer. Note the type guard
that is necessary as a consequence of point (2).

13.3.4 Implementation of module Model

Module Model implements a simulation of the simple queue depicted in
Figure 13.3. The goal is to gather statistics about the waiting time of
customers. For that purpose, customers must be represented explicitly.
Each customer keeps a time stamp that records the time of arrival.
Module Sequences is used to gather the mean and variance of the
waiting times (see Exercise 10.2).

Programming the simulation is in essence providing the handlers for
customers and sources as shown in the following program text:

MODULE Model;
IMPORT Sim, Stations, Paths, Sequences, RandomNumbers, In, Out;
TYPE

(1) ~ Customer = POINTER TO CustomerDesc;
CustomerDesc = RECORD (Sim.ActorDesc)

ts: REAL (* Time stamp of arrival epoch *)
END;

V AR (* Global state variables *)
lambda, mu: REAL;
s: Stations. Station;

(2) ~ srce: Sim.Actor;
w: Sequences.Sequence;

(3) ~ PROCEDURE HandleCust(cust: Sim.Actor; VAR msg: Sim.Message);
BEGIN

(4) ~

(5) ~

(6) ~

WITH cust: Customer 00
IF msg IS Stations.BeginMsg THEN

Sim.Schedule(cust, Sim.time + RandomNumbers.Exp(mu»
ELSIF msg IS Sim.CalendarMsg THEN

Stations.Free(s); Sequences.Add(w, Sim.time - cust.ts)
END

13.3 A simulation based on module Sim 261

END
END HandleCust;

(7) -+ PROCEDURE HandleSrce(srce: Sim.Actor; V AR msg: Sim.Message);
V AR c: Customer;
BEGIN

(8) -+ NEW(c); c.handle:= HandleCust; C.ts:= Sim.time;
Stations.Request(s, c); .
Sim.Schedule(srce, Sim. time + RandomN umbers.Exp(lambda»

END HandleSrce;

(9) -+ PROCEDURE Setup*;
V AR c: Customer;
BEGIN

(10) -+

(11) -+
(12) -+

In.Open; Sim.Reset; Sequences.Open(w); Out.Open;
NEW(srce); srce.handle:= HandleSrce;
In.Real(lambda); Out.String("lambda ="); Out.Real(lambda, 10);
Sim.Schedule(srce, 0);
NEW(s); Stations.Open(s);
In.Real(mu); Out.String(II mu ="); Out.Real(mu, 10);

END Setup;

(13) ~ PROCEDURE Run*i
V AR dt: REAL; q: REAL;
BEGIN

In. Open; In.Real(dt);
(14) -+ Sim.Simulate(dt);

Out.String("Sim.time =It); Out.Real(Sim.time, 10);
Out. String (It E[W]=It); Out.Real(Sequences.Mean(w),10);
Out.String(It var[W]=It); Out.Real(Sequences.Var(w), 10);
Out.Ln

END Run;

END Model.

Notes

(1) The type Customer extends Sim.Actor. The added variable is the
time stamp ts that is used to gather waiting time statistics.

(2) Since the source has no special state variables, there is no need
to extend Sim.Actor.

(3) This is the handler for customers.

262 A simulation example

(4) A global type guard is required, since cust is of base type
Sim.Actor. Under the auspices of this type guard, the extended
fields of the customer (here ts) can be referenced in the
handler's text.

(5) The handler is called with a message of type Sources.BeginMsg.
This means that service may begin. The handler schedules its
customer (formal parameter cust) in the calendar at the time the
service period- expires. Note that here the handler does not
make use of the field s of the begin message. If s were used, a
type guard would be required (see Exercises).

(6) The handler is called with a message of type Sim.CalendarMsg.
This is a notification that the service period expired. The station
s is freed, the waiting time is determined and added to the se­
quence w.

(7) This is the handler for the source.

(8) The handler can only be called from module Sim (with a
calendar message). Therefore no type test is required. When
called, a new customer is generated. The customer immediately
requests service at station s. Then the source is re-scheduled to
generate the next customer.

(9) Setup is a command that initializes a simulation run.

(10) An instance srce of type Sim.Actor is created and HandleSource is
assigned to the field srce.handle.

(11) It is essential that the source be scheduled here for the first
time. This triggers the whole simulation. Without it, nothing
will ever happen.

(12) An instance s of type Stations.Station is created and initialized.

(13) This is a command that initiates an incremental simulation run
lasting dt time units and printing waiting time statistics.

(14) This starts the simulation loop that is encapsulated in module
Sim.

13.4 Summary

In this chapter, we have designed a complete simulation package using
generic modules and objects with handlers. The essence is a framework of
abstract data types that are interrelated.

We demonstrate the usefulness of the notion of the generic module.
Extension of abstract data types exported by module Qs are used for the
simulation calendar and for explicit representation of waiting lines. An

13.4 Summary 263

important property of an abstract data type - the guarantee of in­
variants - is demonstrated. In our case, these invariants are the prop­
erties of the queueing discipline.

The notion of the event, introduced in Chapter 10, is generalized. To
reflect that added generality, the type of the event is termed Actor.
Actors are objects with a handler. The calendar, encapsulated in module
Sim, calls the actors with a calendar message, prompting their handlers
to perform the action paired with the event.

The simulation package can be extended with modules implementing
various station types. The station defines a protocol such as one of the
Request / Free pair of procedures. Of particular interest is the way the
module Stations defines a message type BeginMsg and sends
appropriate begin messages to customers.

Other station modules (not given in this chapter) may similarly in­
troduce their own message types, for example, a breakdown message.
·The possibility of adding message types in those modules that need to send
the message, rather than in the base module, is a particular strength of
the object with a handler. Note that this flexibility is not part of the
standard paradigm using classes and methods.

13.5 Exercises
13.1 [Tandein queues] Repeat Exercise 10.4 with the new simulation package of this

chapter.

13.2 [Stations with limited waiting room] Module Stations of Section 13.3.2 allows
the waiting line to become arbitrarily long. In most practical situations,
however, the waiting room is limited. Add a module StationsN to the simulation
package that reflects this limitation.

Hint: Endow the type Station with two queues: a pending queue and the
waiting line proper. If a request is placed when the waiting line is full, the
requesting actor is put into the pending queue. Upon the next departure (a call
of procedure Free) the head of the pending queue is moved into the waiting
line. Use a new message type, AcceptMsg say, to notify the actor when it is
accepted to the waiting line.

Thus the definition of StationsN reads as follows:

DEFINITION Stations;
IMPORT Qs, Sim, Paths;
TYPE

Station = POINTER TO StationDesc;
StationDesc = RECORD

path: Paths. Path
END;
BeginMsg = RECORD (Sim.Message) s: Station END;

264 A simulation example

AcceptMsg = RECORD (Sim.Message) s: Station END;
PROCEDURE Request(s: Station; customer: Sim.Actor);
PROCEDURE Free(s: Station);
PROCEDURE Open(s: Station; n: INTEGER); (* n = max. size *)
END Stations.

13.3 Using module StationsN, simulate two queues with limited waiting room in
tandem. Gather statistics about the overall time a customer spends in the
system. Compare results with Exercise 13.1.

13.4 [Packet network] Simulate a packet network like the one depicted in Figure
13.4. Assume

• M switching nodes with unlimited buffer capacity and infinite
processing rate.

• N communication lines characterized by their transmission rate (in
bits/s).

• R routes connecting a source node with a destination node. A route is a
sequence of communication lines that are traversed sequentially. Each
route has a source that generates packets.

• The parameters of a source are: (1) its arrival rate (packets/s), (2) the
average size of the packet (bits). Use exponential random numbers for
interarrival time and packet size.

Choose appropriate data structures to represent the network. Provide
commands to initialize a configuration. Evaluate statistics of packet delay for
each route and for the whole network. Determine appropriate buffer sizes at the
nodes.

Provide commands to save the network configuration in a file and load it
from there.

13.5 Repeat Exercise 13.4 with switching nodes of finite capacity and processors of
finite speed.

14 Oberon-2

The Oberon language was designed to serve the implementation of a
novel operating system using object-orientation. The major goal was
conceptual elegance without sacrificing ease of programming. During
the implementation of that operating system, the language was tuned
towards that goal.

The latest reflection of that evolution is Oberon-2 (Mossenbock and
Wirth, 1991), a slight extension that is fully upward-compatible with
Oberon. There is one major and three minor additions. The principal one
is the type-bound procedure. Effectively, it allows the association of
procedure constants to record types. The remaining additions are

• the for statement, a construct expressing repetition with
guaranteed termination;

• the open array type which is applicable to variables instead of
parameters only;

• an extended form of the with statement simplifying conditional
execution;

• a mark specifying read-only export.

14.1 Type-bound procedures

Objects are instances of an abstract data type whose procedures are
bound dynamically. In Oberon, this dynamic binding is achieved
through procedure variables that appear as fields in a record.

If we reflect on the example of the graphics editor, however, we
realize, that assignments to the procedure variables are made only once
- at the time the object is created. This behavior is quite typical: proce­
dures are assigned when the object is created, and stay constant there­
after. The consequence is that dynamic binding could equally well be based
on the dynamic type of the object, rather than on its instance. The type-bound
procedure of Oberon-2 is such a language construct that associates

265

266 Oberon-2

procedures with record types, not with record instances. The advan­
tages are twofold:

• At the time of object creation, the assignment of procedure
names to procedure variables is avoided and cannot be omitted
by mistake.

• The memory consumed by the procedure variables in each object
is reduced.

Using type-bound procedures, the graphics object of Chapter 12 is
expressed as follows:

TYPE
Figure* = POINTER TO FigureDesc;
FigureDesc* = RECORD

next: Figure
END;

PROCEDURE (fig: Figure) Draw*;

END Draw;

... (* declarations of procedures Clear and Mark *)

PROCEDURE (fig: Figure) Move*(dX, dY: INTEGER);

END Move;

The procedure fields are omitted in the definition of type Figure. In the
declarations of the procedures Draw, Clear, Mark and Move, the formal
parameter fig, representing the object itself, is now specified in front of
the procedure name. This distinguished formal parameter is called re­
ceiver. Its type, Figure, indicates that these procedures are bound to
Figure; that is, they are operations applicable to Figure objects.
Compared with the Oberon implementation of the methods (Section
12.3), there is no need for a regional type guard enclosing the statement
sequence of type-bound procedure. This results in a textual
simplification as well as a slight run-time advantage.

Procedures Draw and Move are invoked through the call statements

fig. Draw; fig.Move(x, y);

In these call statements, the identifier fig serves two purposes: it denotes
an actual parameter paired with the receiver, and its dynamic type
determines which procedure is called.

14. 1 Type-bound procedures 267

Contrast this with a call of the procedure field move in our earlier
formulation of the Figure object:

fig.move(fig, x, y);

Here the two purposes are met by the two distinct appearances of the
identifier fig. The first occurrence selects the operation, the second
constitutes the actual parameter passing the object to the procedure.

Consider the call fig.Draw. If the dynamic type of fig is Line then the
procedure Draw that is bound to Line is called; if it is Rect then another
Draw bound to Rect is invoked, and so on. This mechanism is called
dynamic binding, since the requested operation (here Draw) is bound to a
specific procedure according to the dynamic type of the receiver.

14.1.1 Syntax and general semantics

Explicit and
implicit bindings

The syntax of the procedure heading, found in Section 6.1, is aug­
mented with a syntactic entity Receiver that acts as a formal parameter
to the procedure as well as an indicator that the procedure is type­
bound:

I ProcedureHeading =
"PROCEDURE" [Receiver] ident ["*"] [FormaIParameters].

Receiver = "(" [''V AR"] ident ":" ident ")".

Consider a procedure P bound to a type TO. The following declaration is
said to define an explicit binding:

PROCEDURE (p: TO) P(... further formal parameters ...);
BEGIN

... (* statement sequence *)
ENDP;

Procedure P is implicitly also bound to all extensions Tl, T2 ... Tn of TO. It
is possible to bind another procedure, Q say, to types that extend TO, for
example to Tl:

PROCEDURE (p: Tl) Q(... further formal parameters ...);
BEGIN

... (* statement sequence *)
ENDQ;

268 Oberon-2

Locality

Redefinition

In this case, Q is also bound to all types that extend Tl, that is T2 ... Tn,
but not to TO. This situation is depicted in Figure 14.1.

T2 -- P,Q

t
T1 -- P,Q

t
TO -- P

Figure ').4.1 Type hierarchy with type-bound procedures.

Type-bound procedures are local to their record type, comparable to
procedure fields. Highlighting this locality, a type with bound proce­
dures could be visualized as follows:1

DEFINITION Graphics;
TYPE

FigureDesc = RECORD
next: Figure;
PROCEDURE (fig: Figure) Draw;
PROCEDURE (fig: Figure) Move(dX, dY: INTEGER)

END;

Since it is a local entity, a type-bound procedure is uniquely defined
only with the pair name/receiver-type. We adopt the notation PT in
subsequent discussions, where T is the type and P the procedure name.

Adding new procedures to extended types, such as Q in Figure 14.1, is
not nearly as important as redefining the action performed by a type­
bound procedure.

Assume two distinct procedures with the same name bound explicitly
to two types TO and Tl respectively. If Tl extends TO then the pro­
cedure bound to Tl is said to redefine the one bound to TO. This rela- .
tionship is depicted in Figure 14.2. Procedure Pn may redefine PTO only
if its formal parameters match those of PTO.

1 This is the style adopted by the browser that compiles definition modules.

Dynamic binding

T1

t
TO

14.1 Type-bound procedures 269

If the dynamic type of v is T1
then v. P performs action of P T1

If the dynamic type of v is TO
then v.P performs action of P TO

Figure 14.2 Re-definition of procedure P.

For example, consider the type Rect, which is an extension of Figure:

Reet = POINTER TO ReetDesc;
RectDesc = RECORD (FigureDesc)

x, y, w, h: INTEGER
END;

The following procedures can be declared:

PROCEDURE (fig: Figure) Draw;
PROCEDURE (fig: Reet) Draw;

DraWRect redefines DraWFigure'

If v is a designator and P is a type-bound procedure then

v.P

denotes the procedure P that is bound to the dynamic type of v. Note that
this may be a different procedure from the one bound to the static type
of v. If P has a formal parameter list, actual parameters are provided in
the usual manner. The variable, designated by v, is passed to P
according to the parameter passing rules.

For example, assume rect: Figure. Then the following are valid calls:

reet.Draw; reet.Move(x, y);

Looking at Figure 14.2, the notion of dynamic binding may be clarified
with an example:

VAR vO: TO; vI: TI;

NEW(vO); (* Instance of vO is created *)

270 Oberon-2

Super call

NEW(vl);

vO.P;
vO := vI;
vO.P;

(* Instance of vI is created *)

(* Statement sequence of PTO is executed *)
(* The dynamic type of vO becomes Tl *)
(* Statement ,sequence of PTl is executed *)

Assume that Pn redefines Pro. It is often useful to be able to call the
redefined procedure Pro from within the scope of Pn. This is possible
using the formulation

r.Pt

where r is the receiver parameter of PT1. In object-oriented terminology,
this is known as a super call.

We are familiar with the notion of the super call from Section 12.4.4,
where we extended module Rectangles to create a rectangle filled with a
pattern. The type FilledRect is an extension of Rect. To draw such a filled
rectangle, it is useful to use the already existing procedure DraWRect to
produce the wire frame and add only those statements needed to fill its
interior. This leads to the following program excerpt:

TYPE
FilledRect = POINTER TO FilledRectDesc;
FilledRectDesc = RECORD (RectDesc) pat: Pattern END;

PROCEDURE (fig: FilledRect) Draw;
BEGIN

fig.Drawt; (* Call to DrawRect *)
... (* Fill area within wire frame with pattern fig.pat *)

END Draw;

14.1.2 Example: graphics editor

To illustrate the concepts of the type-bound procedure, we reformulate
the implementations of modules Graphics and Rectangles from the ex­
ample of Section 12.4:

MODULE Graphics;
TYPE

Figure* = POINTER TO FigureDesc;

(1) ~ FigureDesc* = RECORD
next: Figure

END;

14. 1 Type-bound procedures 271

Graph* = POINTER TO GraphDesc;
GraphDesc* = RECORD list: Figure END;

... (* other type and variable declarations *)

(* type-bound procedure declarations *)
(2) ~ PROCEDURE (f: Figure) Draw*; END Draw;

PROCEDURE (f: Figure) Clear*; END Clear;
PROCEDURE (f: Figure) Mark*; END Mark;
PROCEDURE (f: Figure) Move*(dX, dY: INTEGER); END Move;

(* procedures operating on all objects *)
PROCEDURE DrawAll*(g: Graph);
V AR f: Figure;
BEGIN

f := g.list;
(3) ~ WHILE f # NIL DO f.draw; {:= f.next END

END Draw All;

... (* other procedure declarations *)

END Graphics.

Notes

(1) No procedure variables are declared.

(2) Type-bound procedures must be declared, even if they do not
define any action. Such a declaration is said to define an abstract
procedure. It is a good idea to supply the abstract procedure with
a call of the predeclared procedure HALT. If the programmer
forgets to redefine one of these procedures - an obvious error -
program termination results.

(3) Note the call statement: no parameter appears, in contrast to the
earlier version.

Inspection of the text of module Graphics reveals an essential fact: the
object's procedures (methods) must already be defined in the base
module.

272 Oberon-2

In the shape-specific modules, the methods are redefined, as can be
seen in module Rectangles:

MODULE Rectangles;
IMPORT Graphics, ... ;
TYPE

Rectangle* = POINTER TO RectangleDesc;
RectangleDesc* = RECORD (Graphics.FigureDesc)

x*, y*, W*, h*: INTEGER
END;

(1) -+ PROCEDURE (rect: Rectangle) Draw*;
BEGIN

END Draw;

... (* Declarations of Clear, Mark and Move *)

(2) -+ PROCEDURE New*O: Graphics.Figure;
VAR rect: Rectangle; x, y, w, h: INTEGER;
BEGIN

(3) -+ NEW(rect);

Notes

(* obtain values x, y, w, h typically using the mouse *)
rect.x := x; rect.y:= y; rect.w:= w; rect.h:= h;
RETURNrect

END New;

END Rectangles.

(1) The receiver must be of type Rectangle, not, as in the previous
version, Graphics.Figure. Therefore, the regional type-guard
becomes superfluous.

(2) The result type of New, however, is still the base type
Graphics.Figure, since it will be inserted into the list of graphics
objects.

(3) The assignment statements initializing the procedure variables in
the previous version are not needed.

14.2 For statement 273

14.2 For statement

A counting loop expresses the repeated execution of a statement
sequence for a fixed number of times while a progression of values is
assigned to an integer variable called the control variable. Consider the
simplest case: control variable i is ranging over the integers m, m + 1, ... ,
n -1. In Oberon, such a loop is typically expressed with the following
while statement:

i:= m;
WHILE i < n DO ... (* some processing *) INC (i) END;

The for statement expresses this counting loops more succinctly,
namely:

FOR i = m TO n - 1 DO ... (* some processing *) END;

The for statement has the advantage of guaranteed termination. In par­
ticular, the common mistake to forget to increment the control variable i
is avoided. Its EBNF definition reads

statement = ForStatement.
ForStatement = "FOR" ident ":=" expression "TO" expression

["BY" ConstExpression] "DO"
StatementSequence

"END".

The control variable ident is of integer type, as are both expression and
Const Expression.

The semantics of the for statement

FOR i := m TO n BY k DO StatementSequence END;

is expressed by the Oberon statement sequence

i := m; temp:= n;
IFk>OTHEN

WHILE i <= temp DO StatementSequence; i := i + k END
ELSE

WHILE i >= temp DO StatementSequence; i := i + k END
END;

274 Oberon-2

The variable i, and the expressions m, nand k are of integer type. In
particular, m and n must be assignment-compatible with i, k must be
expression-compatible with i, and k must be nonzero. If k is not speci­
fied, it is assumed to be 1. The variable temp is a hidden anonymous
variable. After termination of the for statement, the control variable
always assumes a definite value defined by the above semantic
definition.

14.3 The open array variable

From Section 8.2.4, we recall the open array parameter. The length of
such an array is given by the length of the actual parameter. In
Oberon-2, open arrays may be declared not only as formal (parameter)
types but also as base types of pointers. In this case, the predeclared
function NEW is used to create an anonymous instance of the open ar­
rayon the heap. For example,

V AR pI: POINTER TO ARRA Y OF INTEGER;
... NEW (pI, 100); ...

will create an anonymous integer array of length 100 and initialize pI to
point to it.

The EBNF syntax of the array type is modified as follows:

I ArrayType = II ARRA Y" [length {." ," length}] "OF" type.
length = ConstExpression;

In Oberon-2, the length specification is optional. Open arrays are re­
stricted to formal parameter types and pointer base types.

If T is an n-dimensional open array and the variable p is declared as
POINTER TO T then the corresponding predeclared function NEW has
n + 1 arguments:

where T is allocated with length given by the expressions eo,
el, ... , en - 1 in the respective dimensions. A pointer to the anonymous
variable is assigned to p. The referenced variable pt is of type T, and the
i-th element of the O-th dimension is given by the designator p[i].

The open array frees the programmer to specify maximum array
bounds at compile time - often a difficult trade-off between generality
and memory economy.

14.4 The Oberon-2 with statement 275

14.4 The Oberon-2 with statement

The with statement of Oberon provides a regional type guard. In
Chapters 12 and 13, we encountered with statements in the processing
of heterogeneous data structures and in the formulation of handlers.

Typically, the with statement is used in conjunction with a type test,
serving as guard to avoid abnormal termination. For example, a
heterogeneous list of graphics objects is processed using

f := list;
WHILE f # NIL DO

IF f IS Line THEN
WITH f: Line DO

... (* process line *)
END

ELSIF f IS Rect THEN
WITH f: Rect DO

... (* process rectangle *)
END

ELSIF ...
END;
f:= f.next

END;

The Oberon-2 with statement makes the following shorthand notation
possible:

f := list;
WHILE f # NIL 00

WITH
f: Line DO ... (* process line *)

I f: Rect DO ... (* process rectangle *)
I f: ...
END;
f:= f.next

END;

The first statement sequence whose regional guard is fulfilled executes
under that guard.

The EBNF syntax of the Oberon-2 with statement is

276 Oberon-2

WithStatement = "WITH"
guard ''~O'' StatementSequence
{" I" guard "DO" StatementSequence}
["ELSE" StatementSequence]

"END".
guard = qualident ":" qualident.

In a guard v: T, variable v and type T satisfies two conditions:

(1) Tis an extension of the declared type of v,
(2) v is a pointer or a formal V AR parameter of record type.

The statement sequence of the first guard (in textual sequence) that is
fulfilled executes. The else clause executes if no guard is satisfied.
Absence of an else clause will result in abnormal program termination
in that case.

To give a further example, we express the handler HandleRect of
Section 12.5.1 using the Oberon-2 with statement:

PROCEDURE HandleRect(rect: Figure; V AR msg: Message);
BEGIN

WITH
msg: OrawMsg DO

... (* draw rectangle *)
msg: ClearMsg DO

. . . (* clear rectangle *)
msg: MarkMsg DO

. . . (* mark rectangle *)
msg: MoveMsg DO

... (* move rectangle by vector msg.dx, msg.dy *)
ELSE

. .. (* message not understood *)
END

END
END HandleRect;

14.5 Read-only export

In the design of an abstract data type, one sometimes faces the desire to
make a variable visible, but in a read-only way. The requirement not to
change that variable through an assignment stems from the need to
guarantee certain properties or invariants of the abstract type.

14.5 Read-onlyexport 277

An example is furnished by the type Sequences (see Exercises 10.2).
The record field X is used to accumulate mean values through recur­
rence relations. To protect X, it is not exported. The client gains access
to X through a function procedure Mean.

TYPE
Sequence* = RECORD

X: REAL; (* the sample mean *)
n: LONGINT (* the number of samples *)

END;

PROCEDURE Mean* (s: Sequence): REAL;
BEGIN RETURN s.X
END Mean;

The use of function procedures just to protect a record field seems
somewhat extravagant. Therefore Oberon-2 provides the read-only ex­
port mark, a minus sign "_/1 instead of the asterisk ,,*/1. Syntactically, the
read-only export mark may appear wherever an export mark is
allowed. Its proper use, however, is to protect variables and record
fields from receiving assignments in client modules.

Using read-only export, the type Sequence will be defined as

TYPE
Sequence* = RECORD

X-: REAL; n: LONGINT
END;

and the procedure Mean becomes superfluous.

14.6 Summary and discussion

Type-bound procedures are objects that are local to the scope of a
record type. The procedures can be redefined for each extension of an
object's type. The advantages claimed for type-bound procedures are
summarized as follows:

(1) At the time of object creation, there is no need to assign proce­
dures to variables, thereby eliminating the mistake of improper
initializa tion.

(2) The objects are not burdened with memory needed for the pro­
cedure variables.

278 Oberon-2

Compared with objects based on handlers, type-bound procedures are
similarly efficient as procedure variables.
A possible disadvantage is that all type-bound procedures must be

declared in the same module that defines the record type (abstract
procedures if no action is defined).

Assuming memory sizes common in contemporary PCs, not to speak
of workstations, the memory-saving argument is rarely vital.

In many practical situations, however, the two implementations can
be considered equivalent, and the choice is a matter of personal prefer­
ence. Since in Oberon proper the memory overhead can also be reduced
greatly by means of method suites (for details see Wirth and Gutknecht,
1992), the addition of type-bound procedures may be viewed as a
concession to the traditional object-orieRted paradigm.

The for statement, the open array variable, the extended with
statement and the read-only export are convenient features, reducing
textual bulk and making some operations more convenient.

14.7 Exercises
14.1 Write a matrix multiplication procedure using for loops.

14.2 Repeat Exercise 12.1 (object-oriented calculator) using, type-bound procedures.

14.3 Repeat Exercise 12.9 (tiny graphics editor) using type-bound procedures.

References

Mossenbock H. and Wirth N. (1991). The programming language Oberon-2.
Structured Programming, 12, 179-95.

Wirth N. and Gutknecht J. (1992). Project Oberon: The Design of an Operating
System and Compiler. Wokingham: Addison-Wesley.

Appendix A
The programming language
Oberonl

A.l Introduction

Make it as simple as possible, but not simpler
A. Einstein

Oberon is a general-purpose programming language that evolved from
Modula-2. Its principal new feature is the concept of type extension. It
permits the construction of new data types on the basis of existing ones
and provides relations between them.

This report is not intended as a programmer's tutorial. It is inten­
tionally kept concise. Its function is to serve as a reference for pro­
grammers, implementors and manual writers. What remains unsaid is
mostly left so intentionally, either because it is derivable from stated
rules of the language or because it would require one to commit the
definition when a general commitment appears as unwise.

A.2 Syntax

A language is an infinite set of sentences, namely the sentences well
formed according to its syntax. In Oberon, these sentences are called
compilation units. Each unit is a finite sequence of symbols from a finite
vocabulary. The vocabulary of Oberon consists of identifiers, numbers,
strings, operators, delimiters and comments. They are called lexical
symbols and are composed of sequences of characters. (Note the
distinction between symbols and characters).

To describe the syntax, an extended Backus-Naur Formalism called
EBNF is used. Brackets [and] denote optionality of the enclosed sen­
tential form, and braces { and} denote its repetition (possibly 0 times).
Syntactic entities (non-terminal symbols) are denoted by English words
expressing their intuitive meaning. Symbols of the language vocabulary
(terminal symbols) are denoted by strings enclosed in quote marks or

1 By Niklaus Wirth: this is a revised version of a paper "The programming
language Oberon." Software - Practice and Experience, 18, 671-90 (1988).

281

282 The programming language Oberon

words written in capital letters, so-called reserved words. Syntactic
rules (productions) are marked by a bar at the left margin of the line.

A.3 Vocabulary and representation

The representation of symbols in terms of characters is defined using
the ASCII set. Symbols are identifiers, numbers, strings, operators, de­
limiters, and comments. The following lexical rules must be observed.
Blanks and line breaks must not occur within symbols (except in
comments, and, in the case of blanks, in strings). They are ignored
unless they are essential to separate two consecutive symbols. Capital
and lower-case letters are considered as being distinct.

1. Identifiers are sequences of letters and digits. The first character
must be a letter.

I ident = letter {letter I digit}.

Examples include

x scan Oberon GetSymbol firstLetter

2. Numbers are (unsigned) integers or real numbers. Integers are se­
quences of digits and may be followed by a suffix letter. The type is the
minimal type to which the number belongs (see Section A.6.1). If no
suffix is specified, the representation is decimal. The suffix H indicates
hexadecimal representation.

A real number always contains a decimal point. Optionally, it may
also contain a decimal scale factor. The letter E (or D) is pronounced as
'times ten to the power of.' A real number is of type REAL, unless it has
a scale factor containing the letter D, in which case it is of type
LONG REAL.

number = integer I real.
integer = digit {digit} I digit {hexDigit} liB" .
real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = (liE" I liD") ["+" I "_"] digit {digit}.
hexDigit = digit I "A" I liB" I "c" I liD" I "E" I "F".
digit = "0" I "1" I "2" I "3" I II 4" I "5" I "6" I "7" I "8" I "9".

Examples include

A.3 Vocabulary and representation 283

1987
100H
12.3
4.567E8
0.57712566D-6

=256

= 456700000
= 0.00000057712566

3. Character constants are either denoted by a single character
enclosed in quote marks or by the ordinal number of the character in
hexadecimal notation followed by the letter X.

I CharConstant = """ character """ I digit {hexDigit} "X".

4. Strings are sequences of characters enclosed in quote marks ("). A
string cannot contain a quote mark. The number of characters in a string
is called the length of the string. Strings can be aSSigned to and
compared with arrays of characters (see Sections A.9.1 and A.8.2.4).

I string = "'''' {character} """.

Examples include

"OBERON" "Don't worry!"

5. Operators and delimiters are the special characters, character pairs,
or reserved words listed below. These reserved words consist
exclusively of capital letters and cannot be used in the role of identifiers.

+ .- ARRAY IS TO
/\ BEGIN LOOP TYPE

* CASE MOD UNTIL
/ # CONST MODULE VAR

< DIV NIL WHILE
& > DO OF WITH

<= ELSE OR
>= ELSIF POINTER

END PROCEDURE
I EXIT RECORD
(IF REPEAT
[IMPORT RETURN
{ IN THEN

6. Comments may be inserted between any two symbols in a
program. They are arbitrary character sequences opened by the bracket
(* and closed by *). Comments do not affect the meaning of a program.

284 The programming language Oberon

A.4 Declarations and scope rules

Every identifier occurring in a program must be introduced by a dec­
laration, unless it is a predefined identifier. Declarations also serve to
specify certain permanent properties of an object, such as whether it is a
constant, a type, a variable or a procedure.

The identifier is then used to refer to the associated object. This is
possible only in those parts of a program that are within the scope of
the declaration. No identifier may denote more than one object within a
given scope. The scope extends textually from the point of the decla­
ration to the end of the block (procedure or module) to which the dec­
laration belongs and hence to which the object is local. The scope rule
has the following amendments:

(1) If a type Tis defined as POINTER TO Tl (see Section A.6.4), then
the identifier Tl can be declared textually following the
declaration of T, but it must lie within the same scope.

(2) Field identifiers of a record declaration (see Section A.6.3) are
valid in field designators only.

In its declaration, an identifier in the global scope may be followed by
an export mark (*) to indicate that it be exported from its declaring
module. In this case, the identifier may be used in other modules, if
they import the declaring module. The identifier is then prefixed by the
identifier designating its module (see Section A.l1). The prefix and the
identifier are separated by a period and together are called a qualified
identifier.

I qualident = [ident 1/."] ident.
identdef = ident [1/*"].

The following identifiers are predefined; their meaning is defined in the
indicated sections:

ABS (A.I0.2) LEN (A.I0.2)
ASH (A.I0.2) LONG (A.I0.2)
BOOLEAN (A.6.1) LONGINT (A.6.1)
CAP (A.I0.2) LONG REAL (A.6.1)
CHAR (A.6.1) MAX (A.I0.2)
CHR (A.I0.2) MIN (A.I0.2)
COPY (A.I0.2) NEW (A.6.4)
DEC (A.I0.2) ODD (A.I0.2)
ENTlER (A.I0.2) ORD (A.I0.2)

AA Declarations and scope rules 285

EXCL
FALSE
HALT
INC
INCL
INTEGER

(A.lO.2)
(A.6.l)

(A.lO.2)
(A.lO.2)
(A.lO.2)
(A.6.1)

A.S Constant declarations

REAL
SET
SHORT
SHORTINT
SIZE
TRUE

(A.6.l)
(A.6.l)

(A.lO.2)
(A.6.l)

(A.lO.2)
(A.6.1)

A constant declaration associates an identifier with a constant value.

I ConstantDeclaration = identdef 1/=" ConstExpression.
ConstExpression = expression.

A constant expression can be evaluated by a mere textual scan without
actually executing the program. Its operands are constants (see Section
A. 8).Examples of constant declarations include

N 100
2*N -1 limit =

all = {O .. WordSize-l}

A.6 Type declarations

A data type determines the set of values that variables of that type may
assume, and the operators that are applicable. A type declaration is
used to associate an identifier with the type. Such association may be
with unstructured (basic) types, or it may be with structured types, in
which case it defines the structure of variables of this type and, by
implication, the operators that are applicable to the components. There
are two different structures, namely arrays and records, with different

. component selectors.

I

TypeOeclaration = identdef 1/=" type.
type = qualident I ArrayType I RecordType I PointerType I

ProcedureType.

286 The programming language Oberon

Examples include

Table
Tree
Node

= ARRAYNOFREAL
= POINTER TO Node
= RECORD key: INTEGER;

left, right: Tree
END

CenterNode = RECORD (Node)
name: ARRAY 32 OF CHAR;
subnode: Tree

END
Function* = PROCEDURE (x: INTEGER): INTEGER

A.6.1 Basic types

The following basic types are denoted by predeclared identifiers. The
associated operators are defined in Section A.8.2, and the predeclared
function procedures in Section A.10.2. The values of a given basic type
are as follows:

1. BOOLEAN the truth values TRUE and FALSE.
2. CHAR the characters of the extended ASCII set

(OX ... OFFX).
3. SHORTINT the integers between MIN(SHORTINT) and

MAX(SHORTINT).
4. INTEGER the integers between MIN (INTEGER) and

MAX(INTEGER).
5. LONGINT the integers between MIN(LONGINT) and

MAX(LONGINT).
6. REAL real numbers between MIN (REAL) and

MAX(REAL).
7. LONGREAL real numbers between MIN(LONGREAL) and

MAX(LONGREAL).
8. SET the sets of integers between 0 and MAX (SET) .

Types 3 to 5 are integer types, 6 and 7 are real types, and together they
are called numeric types. They form a hierarchy; the larger type includes
(the values of) the smaller type:

LONGREAL;;;2 REAL ;;;2 LONGINT ;;;2 INTEGER;;;2 SHORTINT

A.6 Type declarations 287

A.6.2 Array types

An array is a structure consisting of a fixed number of elements that are
all of the same type, called the element type. The number of elements of
an array is called its length. The elements of the array are designated by
indices, which are integers between 0 and the length minus 1.

I ArrayType = ARRAY length {"," length} OF type.
length = ConstExpression.

A declaration of the form

ARRAYNO,Nl, ... ,NkOFT

is understood as an abbreviation of the declaration

ARRAY NO OF
ARRAYNI0F

ARRAYNkOFT

Examples of array types include

ARRAY N OF INTEGER
ARRAY 10,20 OF REAL

A.6.3 Record types

A record type is a structure consisting of a fixed number of elements of
possibly different types. The record type declaration specifies for each
element, called a field, its type and an identifier that denotes the field.
The scope of these field identifiers is the record definition itself, but
they are also visible within field designators (see Section A.B.l)
referring to elements of record variables.

RecordType = RECORD [1/(" BaseType ")"] FieldListSequence
END~.

BaseType = qualident.
FieldListSequence = FieldList {I/;" FieldList}.
FieldList = [IdentList 1/:" type].
IdentList = identdef {I/," identdef}.

288 The programming language Oberon

If a record type is exported, field identifiers that are to be visible outside
the declaring module must be marked. They are called public fields;
unmarked fields are called private fields.

Record types are extensible; that is, a record type can be defined as an
extension of another record type. In the examples above, CenterNode
(directly) extends Node, which is the (direct) base type of CenterNode. More
specifically,CenterNode extends Node with the fields name and subnode.

Definition: A type TO extends a type T if it equals T or if it directly
extends an extension of T. Conversely, a type T is a base type of TO if it
equals TO or if it is the direct base type of a base type of TO.

Examples of record types include

RECORD day, month, year: INTEGER
END

RECORD
name, firstname: ARRAY 32 OF CHAR;
age: INTEGER;
salary: REAL

END

A.6.4 Pointer types

Variables of a pointer type P assume as values pointers to variables of
some type T. The pointer type P is said to be bound to T, and T is the
pointer base type of P. T must be a record or array type. Pointer types
inherit the extension relation of their base types. If a type TO is an ex­
tension of T and PO is a pointer type bound to TO then PO is also an ex­
tension of P.

I PointerType = POINTER TO type.

If P is a variable of type P = POINTER TO T then a call of the predefined
procedure NEW(p) has the following effect (see Section A.I0.2): A
variable of type T is allocated in free storage, and a pointer to it is
assigned to p. This pointer p is of type P; the referenced variable pt is of
type T. Failure of allocation results in p obtaining the value NIL. Any
pointer variable may be assigned the value NIL, which points to no
variable at all.

A.6 Type declarations 289

A.6.S Procedure types

Variables of a procedure type T have a procedure (or NIL) as value. If a
procedure P is assigned to a procedure variable of type T, the (types of
the) formal parameters of P must be the same as those indicated in the
formal parameters of T. The same holds for the result type in the case of
a function procedure (see Section A.lO.l). P must not be declared local
to another procedure, and neither can it be a predefined procedure.

I ProcedureType = PROCEDURE [FormaIParameters].

A.7 Variable declarations

Variable declarations serve to introduce variables and associate them
with identifiers that must be unique within the given scope. They also
serve to associate fixed data types with the variables.

I VariableDeclaration = IdentList ":" type.

Variables whose identifiers appear in the same list are all of the same
type. Examples of variable declarations (refer to the examples in Section
A. 6) include

i, j, k: INTEGER
x, y: REAL
p, q: BOOLEAN
s: SET
f: Function
a: ARRAY 100 OF REAL
w: ARRAY160F

RECORD ch: CHAR;
count: INTEGER

END
t: Tree

Variables of a pointer type TO and VAR-parameters of a record type TO
may assume values whose type Tl is an extension of their declared type
TO.

290 The programming language Oberon

A.8 Expressions

Expressions are constructs denoting rules of computation whereby
constants and current values of variables are combined to derive other
values by the application of operators and function procedures.
Expressions consist of operands and operators. Parentheses may be
used to express specific associations of operators and operands.

A.S.l Operands

With the exception of sets and literal constants, that is numbers and
character strings, operands are denoted by designators. A designator
consists of an identifier referring to the constant, variable, or procedure
to be designated. This identifier may possibly be qualified by module
identifiers (see Sections A.4 and A.I1), and it may be followed by
selectors, if the designated object is an element of a structure.

If A designates an array, then A[E] denotes that element of A whose
index is the current value of the expression E. Note that E must be of
integer type. A designator of the form A[EI, E2, ... , En] stands for
A[El][E2] ... [En]. If p designates a pointer variable, pt denotes the
variable that is referenced by p. If r designates a record then r.f denotes
the field f of r. If p designates a pointer, p.f denotes the field f of the
record pt(that is, the dot implies dereferencing and p.f stands for pt.!>
and prE] denotes the element of pt with index E.

The typeguard v(TO) asserts that v is of type TO; that is, it aborts
program execution if it is not of type TO. The guard is applicable if

(1) TO is an extension of the declared type T of v, and

(2) v is a formal variable parameter of record type or v is a pointer.

designator = qualident {"." ident I 1/[" ExpList 1/]" I
1/(" qualident 1/)" II/t" }.

ExpList = expression {I/," expression}.

If the designated object is a variable then the designator refers to the
variable's current value. If the object is a procedure, a designator with­
out parameter list refers to that procedure. If it is followed by a
(possibly empty) parameter list, the designator implies an activation of
the procedure and stands for the value resulting from its execution. The
(types of the) actual parameters must correspond to the formal par­
ameters as specified in the procedure's declaration (see Section A.IO).

Examples of designators (see the examples in Section A.7) include

i
aU]
w[3].ch
t.key
t.left.right
t(CenterNode).subnode

A.S.2 Operators

(INTEGER)
(REAL)
(CHAR)
(INTEGER)
(Tree)
(Tree)

A.8 Expressions 291

The syntax of expressions distinguishes between four classes of opera­
tors with different precedences (binding strengths). The operator - has
the highest precedence, followed by multiplication operators, addition
operators and relations. Operators of the same precedence associate
from left to right. For example, x - y - z stands for (x - y) - z.

expression = SimpleExpression [relation SimpleExpression].
relation = "=/1 I "#" I "</I I "<=/1 I ">/1 I ">=/1 I IN I IS.
SimpleExpression = ["+/1 I ,,_/I] term {AddOperator term}.
AddOperator = "+/1 I "_/I I OR.
term = factor {MulOperator factor}.
MulOperator = ,,*/1 I "//1 I DIV I MOD I "&/1 .
factor = number I CharConstant I string I NIL I set I

designator [ActuaIParameters] I "(/I expression ")/1
"_/I factor.

set = ~T' [element {",/I element}] "}/I.
element = expression [" .. /1 expression].
ActualParameters = "(/I [ExpList] ")/1 .

The available operators are listed in Sections A.8.2.1-A.8.2.4. In some
instances, several different operations are designated by the same
operator symbol. In these cases, the actual operation is identified by the

. type of the operands.

A.S.2.1 Logical operators

Symbol

OR
&

Result

logical disjunction
logical conjunction
negation

These operators apply to BOOLEAN operands and yield a BOOLEAN
result.

292 The programming language Oberon

pORq
p&q
-p

stands for
stands for
stands for

A.S.2.2 Arithmetic operators

Symbol

+

*

Result

sum
difference
product
quotient

"if P then TRUE, else q"
"if P then q, else FALSE"
"not p"

/
DIV
MOD

integer quotient
modulus

The operators +, -, *, and / apply to operands of numeric types. The
type of the result is that operand's type which includes the other
operand's type, except for division U), where the result is the real type
which includes both operand types. When used as operators with a
single operand, - denotes sign inversion and + denotes the identity
operation.

The operators DIV and MOD apply to integer operands only. They
are related by the following formulas defined for any dividend x and
positive divisors y:

x (x DIV y) * y + (x MOD y)
o <= (xMODy) < y

A.S.2.3 Set operators

Symbol Result

+ union
difference

* intersection
MOD modulus

Sets are values of type SET. Set operators apply to operands of this type.
The monadic minus sign denotes the complement of x; that is, -x de­
notes the set of integers between 0 and MAX (SET) that are not elements
ofx.

x- y = x * (- y)
x / y = (x - y) + (y - x)

A.B.2.4

A.8 Expressions 293

Relations

Symbol Relation

equal
unequal
< less

<= less or equal
> greater
>= greater or equal
IN set membership
IS type test

Relations are Boolean. The ordering relations <, <=, > and >= apply to
the numeric types, CHAR and character arrays (strings). The relations =
and # also apply to the type BOOLEAN and to set, pointer and pro­
cedure types. x IN s stands for IX is an' element of s.' x must be of an
integer type, and s of type SET. v IS T stands for IV is of type T' and is
called a type test. It is applicable if

(1) T is an extension of the declared type TO of v, and

(2) v is a variable parameter of record type or v is a pointer.

Assuming, for instance, that T is an extension of TO and that v is a
designator declared of type TO, then the test IV IS T' determines whether
the actually designated variable is (not only a TO, but also) a T. The
value of NIL IS T is undefined.

Examples of expressions (refer to the examples in Section A.7)
include

1987
iDIV3
---pORq
(i + j) * (i - j)
s - {8, 9, 13}
i + x
a[i + jl * aU - j]
(0 <= i) & (i < 100)
t.key = a
k IN {i.. j -I}
tIS CenterNode

(INTEGER)
(INTEGER)
(BOOLEAN)
(INTEGER)
(SET)
(REAL)
(REAL)
(BOOLEAN)
(BOOLEAN)
(BOOLEAN)
(BOOLEAN)

294 The programming language Oberon

A.9 Statements

Statements d-enote actions. There are elementary and structured state­
ments. Elementary statements are not composed of any parts that are
themselves statements. They are the assignment, the procedure call, and
the return and exit statements. Structured statements are composed of
parts that are themselves statements. They are used to express
sequencing and conditional, selective and repetitive execution. A
statement may also be empty, in which case it denotes no action. The
empty statement is included in order to relax punctuation rules in
statement sequences.

statement = [assignment I ProcedureCall I If Statement I
CaseStatement I WhileStatement I RepeatStatement I
LoopStatement I WithStatement I EXIT I
RETURN [expression]].

A.9.1 Assignments

The assignment serves to replace the current value of a variable by a
new value specified by an expression. The assignment operator is writ­
ten as ":=" and pronounced as, becomes.

I assignment = designator ":=" expression.

The type of the expression must be included by the type of the variable,
or it must extend the type of the variable. The following exceptions
hold:

(1) The constant NIL can be assigned to variables of any pointer or
procedure type.

(2) Strings can be assigned to any variable whose type is an array of
characters, provided the length of the string is less than that of
the array. If a string s of length n is assigned to an array a, the re­
sult is ali] = Si for i = 0, ... , n-l, and a[n] = OX.

Examples of assignments (see the examples in Section A.7) include

i:= 0
p:= i = j
x:= i + 1

k := log2(i + j)
F:=log2
s:= {2, 3,5, 7, 11, 13}
aU] := (x + y) * (x - y)
t.key:= i
wU + l].ch:= "A"

A.9.2 Procedure calls

A.9 Statements 295

A procedure call serves to activate a procedure. The procedure call may
contain a list of actual parameters that are substituted in place of their
corresponding formal parameters defined in the procedure declaration
(see Section A.10). The correspondence is established by the positions of
the parameters in the lists of actual and formal parameters respectively.
There exist two kinds of parameters: variable and value parameters.

In the case of variable parameters, the actual parameter must be a
designator denoting a variable. If it designates an element of a struc­
tured variable, the selector is evaluated when the formal! actual par­
ameter substitution takes place; that is, before the execution of the
procedure. If the parameter is a value parameter, the corresponding
actual parameter must be an expression. This expression is evaluated
prior to the procedure activation, and the resulting value is assigned to
the formal parameter, which now constitutes a local variable (see also
Section A.10.1).

IProcedureCall = designator [ActuaIParameters].

Examples of procedure calls include

ReadInt(i) (see Section A.10)
WriteInt(j*2 + 1, 6)
INC(w[k].count)

A.9.3 Statement sequences

Statement sequences denote the sequence of actions specified by the
component statements, which are separated by semicolons.

I StatementSequence = statement {";" statement}.

296 The programming language Oberon

A.9.4 If statements

If Statement = IF expression THEN StatementSequence
{ELSIF expression THEN StatementSequence}
[ELSE StatementSequencel
END.

If statements specify the conditional execution of guarded statements.
The Boolean expression preceding a statement is called its guard. The
guards are evaluated in sequence of occurrence, until one evaluates to
TRUE, whence its associated statement sequence is executed. If no
guard is satisfied, the statement sequence following the symbol ELSE is
executed, if there is one.

An example is

IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier
ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber
ELSIF ch = 22X THEN ReadString
END

A.9.S Case statements

Case statements specify the selection and execution of a statement se­
quence according to the value of an expression. First the case expres­
sion is evaluated; then the statement sequence is executed whose case
label list contains the obtained value. The case expression and all labels
must be of the same type, which must be an integer type or CHAR.
Case labels are constants, and no value must occur more than once. If
the value of the expression does not occur as a label of any case, the
statement sequence following the symbol ELSE is selected, if there is
one. Otherwise it is considered as an error.

CaseStatement = CASE expression OF case {I/I" case}
[ELSE StatementSequencel END.

case = [CaseLabelList 1/:" StatementSequencel.
CaseLabelList = CaseLabels {I/," CaseLabels}.
CaseLabels = ConstExpression [1/ .. " ConstExpressionl.

An example is

CASEchOF
"A" .. "Z": ReadIdentifier

I "0" .. "9": ReadNumber
I 22X: ReadString

ELSE SpecialCharacter
END

A.9.6 While statements

A.9 Statements 297

While statements specify repetition. If the Boolean expression (guard)
yields TRUE, the statement sequence is executed. The expression eval­
uation and the statement execution are repeated as long as the Boolean
expression yields TRUE.

I WhileStatement = WHILE expression DO StatementSequence END.

Examples include

WHILEj > 0 DO
j := j DIV 2; i:= i + 1

END

WHILE (t # NIL) & (t.key # i) DO
t := t.left

END

A.9.7 Repeat statements

A repeat statement specifies the repeated execution of a statement se­
quence until a condition is satisfied. The statement sequence is executed
at least once.

I RepeatStatement = REPEAT StatementSequence UNTIL expression.

A.9.S Loop statements

A loop statement specifies the repeated execution of a statement se­
quence. It is terminated by the execution of any exit statement within
that sequence (see Section A.9.9).

I LoopStatement = LOOP StatementSequence END.

298 The programming language Oberon

An example is

LOOP
IF t1 = NIL THEN EXIT END;
IF k < t1.key THEN t2:= tl.left; p:= TRUE
ELSIF k > t1.key THEN t2 := t1.right; p := FALSE
ELSE EXIT
END;
t1 := t2

END

Although while and repeat statements can be expressed by loop
statements containing a single exit statement, the use of while and re­
peat statements is recommended in the most frequently occurring sit­
uations, where termination depends on a single condition determined
either at the beginning or the end of the repeated statement sequence.
The loop statement is useful to express cases with several termination
conditions and points.

A.9.9 Return and exit statements

A return statement consists of the symbol RETURN, possibly followed
by an expression. It indicates the termination of a procedure, and the
expression specifies the result of a function procedure. Its type must be
identical to the result type specified in the procedure heading (see
Section A.I0).

Function procedures require the presence of a return statement
indicating the result value. There may be several, although only one
will be executed. In proper procedures, a return statement is implied by
the end of the procedure body. An explicit return statement therefore
appears as an additional (probably exceptional) termination point.

An exit statement consists of the symbol EXIT. It specifies termination
of the enclosing loop statement and continuation with the statement
following that loop statement. Exit statements are contextually,
although not syntactically, bound to the loop statement that contains
them.

A.9.10 With statements

If a pointer variable or a variable parameter with record structure is of a
type TO, it may be designated in the heading of a with clause together
with a type T that is an extension of TO. Then the variable is guarded

A.9 Statements 299

within the with statement as if it had been declared of type T. The with
statement assumes a role similar to the type guard, extending the guard
over an entire statement sequence. It may be regarded as a regional type
guard.

I WithStatement = WITH qualident ":" qualident DO
StatementSequence END.

An example is

WITH t: CenterNode DO name:= t.name; L := t.subnode· END

A.to Procedure declarations

Procedure declarations consist of a procedure heading and a procedure
body. The heading specifies the procedure identifier, the formal par­
ameters and the result type (if any). The body contains declarations and
statements. The procedure identifier is repeated at the end of the pro­
cedure declaration.

There are two kinds of procedures, namely proper procedures and
function procedures. The latter are activated by a function designator as a
constituent of an expression, and yield a result that is an operand in the
expression. Proper procedures are activated by a procedure call. The
function procedure is distinguished in the declaration by indication of
the type of its result following the parameter list. Its body must contain
a RETURN statement that defines the result of the function procedure.

All constants, variables, types and procedures declared within a
procedure body are local to the procedure. The values of local variables
are undefined upon entry to the procedure. Since procedures may be
declared as local objects too, procedure declarations may be nested.

In addition to its formal parameters and locally declared objects, the
objects declared in the environment of the procedure are also visible in
the procedure (with the exception of those objects that have the same
name as an object declared locally).

The use of the procedure identifier in a call within its declaration
implies recursive activation of the procedure.

300 The programming language Oberon

ProcedureDeclaration =
ProcedureHeading ";" ProcedureBody ident.

ProcedureHeading =
PROCEDURE ["*"] identdef [FormaIParameters].

ProcedureBody =
DeclarationSequence [BEGIN StatementSequence] END.

ForwardDeclaration =
PROCEDURE IIA" identdef [FormaIParameters].

DeclarationSequence =
{CONST {ConstantDeclaration ";"} I
TYPE {TypeDeclaration ";"} I
VAR {VariableDeclaration ";"}}
{ProcedureDeclaration 1/;" I ForwardDeclaration ";"}.

A forward declaration serves to allow forward references to a procedure
that appears later in the text in full. The actual declaration - which
specifies the body - must indicate the same parameters and result type
(if any) as the forward declaration, and it must be within the same
scope.

An asterisk following the symbol PROCEDURE is a hint to the
compiler, and specifies that the procedure is to be usable as a parameter
and assignable to variables. (Depending on the implementation, the
hint may be optional or required.)

A.lO.l Formal parameters

Formal parameters are identifiers that denote actual parameters
specified in the procedure call. The correspondence between formal and
actual parameters is established when the procedure is called. There are
two kinds of parameters, namely value and variable parameters. The kind
is indicated in the formal parameter list. Value parameters stand for
local variables to which the result of the evaluation of the
corresponding actual parameter is assigned as initial value. Variable
parameters correspond to actual parameters that are variables, and they
stand for these variables. Variable parameters are indicated by the
symbol V AR, value parameters by its absence. A function procedure
without parameters must have an empty parameter list. It must be
called by a function designator whose actual parameter list is empty
too.

Formal parameters are local to the procedure; that is, their scope is
the program text that constitutes the procedure declaration.

A. 10 Procedure declarations 301

FormalParameters = 1/(" [FPSection {I/;" FPSection}] 1/)"
[":" qualident].

FPSection = [VAR] ident {"," ident} ":" FormalType.
FormalType = {ARRAY OF} qualident I ProcedureType.

The type of each formal parameter is specified in the parameter list. For
variable parameters, it must be identical to the corresponding actual
parameter's type, except in the case of a record, where it must be a base
type of the corresponding actual parameter's type. For value par­
ameters, the rule of assignment holds (see Section A.9.1). If the formal
parameter's type is specified as

ARRAY OFT

the parameter is said to be an open array parameter, and the correspond­
ing actual parameter may be any array with element type T.

If a formal parameter specifies a procedure type then the corre­
sponding actual parameter must be either a procedure declared globally
or a variable (or parameter) of that procedure type. It cannot be a
predefined procedure. The result type of a procedure can be neither a
record nor an array.

Examples of procedure declarations include

PROCEDURE ReadInt(V AR x: INTEGER);
V AR i : INTEGER; ch: CHAR;

BEGIN i := 0; Read(ch);
WHILE ("0" <= ch) & (ch <= "9") DO

i := 10*i + (ORD(ch)-ORD(IO"»; Read(ch)
END;
x:= i

END ReadInt

PROCEDURE WriteInt(x: INTEGER); (* 0 <= x < 10.0E5 *)
VAR

i: INTEGER;
buf: ARRAY 5 OF INTEGER;

BEGIN i:= 0;
REPEAT buf[i] := x MOD 10; x:= x DIV 10; INC (i) UNTIL x = 0;
REPEAT DEC(i); Write(CHR(buf[i] + ORD("O"») UNTIL i = 0

END WriteInt

PROCEDURE log2(x: INTEGER): INTEGER;
V AR y: INTEGER; (* assume x > 0 *)

BEGIN y:= 0;

302 The programming language Oberon

WHILE x > 1 DO x := x DIV 2; INC(y) END;
RETURNy

ENDlog2

A.I0.2 Predefined procedures

Tables A.I-A.3 list the predefined procedures. Some are generic
procedures; that is, they apply to several types of operands. v stands for
a variable, x and n for expressions, and T for a type.

Table A.I Function procedures.

Name Argument type Result type Function

ABS(x) numeric type type of x absolute value

ODD (x) integer type BOOLEAN xMOD2 = 1

CAP(x) CHAR CHAR corresponding capital letter

ASH (x, n) x, n: integer type LONGINT x 2n, arithmetic shift

LEN(v, n) v: array LONGINT the length of v in dimension n
n: integer type

LEN(v) array type LONGINT LEN(v,O)

MAX(D T = basic type T maximum value of type T
T=SET INTEGER maximum element of sets

MIN(D T = basic type T minimum value of type T
T=SET INTEGER 0

SIZE(D T= any type integer type number of bytes reqUired by T

Table A.2 Type conversion procedures.

Name Argument type Result type Function

ORD(x) CHAR INTEGER ordinal number of x

CHR(x) integer type CHAR character with ordinal number x

SHORT(x) LONGINT INTEGER identity (truncation possible)
INTEGER SHORTINT
LONGREAL REAL

LONG (x) SHORTINT INTEGER identity
INTEGER LONGINT
REAL LONGREAL

ENTIER(x) real type LONGINT largest integer not greater than x

A. 10 Procedure declarations 303

Note that ENTIER(i/j) = i DIV j

~

Table A.3 Proper procedures.

Name Argument types Function

INC(v) integer type v:= v + I

INC(v, x) integer type v:= v+x

DEC (v) integer type v:= v-I

DEC (v, x) integer type v:= v-x

INCL(v, x) v: SET; x: integer type v:= v + {x}

EXCL(v, x) v: SET; x: integer type v:= v - {x}

COPY(x,v) x: character array, string v:=x
v: character array

NEW (v) pointer type allocate vt

HALT(x) integer constant terminate program execution

In HALT(x), x is a parameter whose interpretation is left to the
underlying system implementation.

A.tt Modules

A module is a collection of declarations of constants, types, variables,
and procedures, and a sequence of statements for the purpose of as­
signing initial values to the variables. A module typically constitutes a
text that is compilable as a unit.

module = MODULE ident 1/;" [ImportList1 DeclarationSequence
[BEGIN StatementSequence1 END ident 1/." .

ImportList = IMPORT import {I/," import} 1/;" .
import = ident [1/:=" ident1.

The import list specifies the modules of which the module is a client. If
an identifier x is exported from a module M, and if M is listed in a
module's import list, then x is referred to as M.x. If the form 'M := MI'
is used in the import list, that object declared within MI is referenced as
M.x.

Identifiers that are to be visible in client modules, that is outside the
declaring module, must be marked by an export mark in their decla­
ration.

304 The programming language Oberon

The statement sequence following the symbol BEGIN is executed
when the module is added to a system (loaded). Individual (parameter­
less) procedures can thereafter be activated from the system, and these
procedures serve as commands.

An example is

MODULE Out;
(* exported procedures: Write, WriteInt, WriteLn *)
IMPORT Texts, Oberon;
V AR W: Texts.Writer;

PROCEDURE Write*(ch: CHAR);
BEGIN Texts.Write(W, ch)
END Write;

PROCEDURE WriteInt*(x, n: LONGINT);
V AR i: INTEGER; a: ARRAY 16 OF CHAR;

BEGIN i:= 0;
IF x < 0 THEN Texts.Write(W, "_"); x := -x END;
REPEAT

a[i] := CHR(x MOD 10 + ORD("O"»; x:= x DIV 10; INC(i)
UNTIL x = 0;
REPEAT Texts.Write(W, II "); DEC(n) UNTIL n <= i;
REPEAT DEC (i); Texts.Write(W, a[i]) UNTIL i = 0

END WriteInt;

PROCEDURE WriteLn*;
BEGIN Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
END WriteLn;

BEGIN Texts.Open Writer(W)
END Out.

A.12 The Module SYSTEM

The module SYSTEM contains definitions that are necessary to program
low-level operations referring directly to resources particular to a given
computer and/or implementation. These include, for example, facilities
for accessing devices that are controlled by the computer, and facilities
to break the data type compatibility rules otherwise imposed by the
language definition. It is recommended that their use be restricted to
specific low-level modules. Such modules are inherently non-portable,
but are easily recognized due to the identifier SYSTEM appearing in

A. 12 The Module SYSTEM 305

their import lists. The subsequent definitions are those that hold for the
NS32000 implementation, but they are applicable to most modern
computers. Individual implementations may differ and include defini­
tions that are particular to the specific, underlying computer.

Module SYSTEM exports the data type BYTE. No representation of
values is specified. Instead, certain compatibility rules with other types
are given:

(1) The type BYTE is compatible with CHAR and SHORTINT.

(2) If a formal variable parameter is of type ARRAY OF BYTE then
the corresponding actual parameter may be of any type.

The procedures contained in module SYSTEM are listed in Tables A.4
and A.5. They correspond to single instructions compiled as in-line
code. For details, the reader is referred to the processor manual. v
stands for a variable, x, y, a, and n for expressions, and T for a type.

Table A.4 Function procedures.

Name Argument types Result type Function

ADR(v) any LONGINT address of variable v

BIT(a, n) a: LONGINT BOOLEAN bit n of Mem[a]
n: integer type

CC(n) integer constant BOOLEAN Condition n

LSH(x, n) x: integer type or SET type of x logical shift
n: integer type

ROT (x, n) x: integer type or SET type of x rotation
n: integer type

VAL(T, x) T, x: any type T x interpreted as of type T

Table A.S Proper procedures.

Name Argument types Function

GET(a, v) a: LONGINT v:=Mem[a]
v: any basic type

PUT(a, x) a: LONGINT Mem[a]:= x
x: any basic type

MOVE(s, d, n) s,d: LONGINT Mem[d] ... Mem[d+n-l] :=
n: integer type Mem[s] ... Mem[s+n-l]

NEW (v, n) v: any pointer type allocate storage block of n bytes,
n: integer type assign its address to v

Dec Hex Char
0 OX NUL
1 IX SOH
2 2X STX
3 3X ETX
4 4X EOT
5 5X ENQ
6 6X ACK
7 7X BEL
8 8X BS
9 9X HT
10 OAX LF
11 OBX VT
12 OCX FF
13 ODX CR
14 OEX SO
15 OFX 51
16 lOX DLE
17 llX DC1
18 12X DC2
19 13X DC3 ~

20 14X DC4
21 lSX NAK
22 16X SYN
23 17X ETB
24 18X CAN
25 19X EM
26 lAX SUB
27 1BX ESC
28 1CX FS
29 1DX GS
30 lEX RS
31 1FX US

306

Appendix B
ASCII Character set and
extremal values

Dec Hex Char Dec Hex Char Dec Hex
32 20X sp· 64 40X @ 96 60X
33 21X ! 65 41X A 97 61X
34 22X " 66 42X B 98 62X
35 23X # 67 43X C 99 63X
36 24X $ 68 44X D 100 64X
37 25X % 69 45X E 101 65X
38 26X & 70 46X F 102 66X
39 27X ,

71 47X G 103 67X
40 28X (72 48X H 104 68X
41 29X) 73 49X I 105 69X
42 2AX * 74 4AX J 106 6AX
43 2BX + 75 4BX K 107 6BX
44 2CX I 76 4CX L 108 6CX
45 2DX - 77 4DX M 109 6DX
46 2EX 78 4EX N 110 6EX
47 2FX / 79 4FX 0 111 6FX
48 30X 0 80 SOX P 112 70X
49 31X 1 81 SIX Q 113 71X
50 32X 2 82 52X R 114 72X
51 33X 3 83 S3X S 115 73X
52 34X 4 84 54X T 116 74X
53 35X S 85 55X U 117 75X
54 36X 6 86 56X V 118 76X
55 37X 7 87 57X W 119 77X
56 38X 8 88 58X X 120 78X
57 39X 9 89 59X Y 121 79X
58 3AX : 90 SAX Z 122 7AX
59 3BX ; 91 5BX [123 7BX
60 3CX < 92 SCX \ 124 7CX
61 3DX = 93 5DX] 125 7DX
62 3EX > 94 SEX /\1 126 7EX
63 3FX ? 95 5FX 127 7FX -

1 Oberon fonts print an upward arrow lit" instead of the caret "IV'.

Char
,

a
b
c
d
e
f
g
h
i
j
k
1
m
n
0

P
q
r
s
t
u
v
w
x
Y
z
{
I
}

-
DEL

ASCII Character set and extremal values 307

TypeT bits MIN(D MAX(D

SHORTINT 8 -128 127
INTEGER 16 -32768 32767
LONGINT 32 -2147483648 2147483647
REALI 32 -3.40282346E38 3.40282346E38
LONGREAL 64 -at a
CHAR 8 0 255
SET 32 0 31

t a = 1.7976931348623157E308

1 REAL and LONGREAL values are extended one full digit beyond their
represented accuracy to help in generating rounding and conversion algorithms.

Module In

308

AppendixC
Modules In, Out and
XYplane

Throughout this book we have relied on the input/ output abstractions
provided by modules In, Out and XYplane. A particular implementation
of these modules is given in this appendix. The modules have
been tested on the original Ceres implementation, as well as on the
Oberon system provided for IBM RS/6000, SUN Sparcstation, Apple
Macintosh II and DECStation (see the list in the preface).

MODULE In;
IMPORT Texts, Viewers, Oberon, TextFrames;
VAR

T: Texts.Text;
S: Texts.Scanner; W: Texts.Writer;
beg: LONGINT;
Done*: BOOLEAN;

PROCEDURE Put(txt: ARRAY OF CHAR);
BEGIN Texts.WriteString(W, txt); Texts.WriteLn(W);
Texts.Append(Oberon.Log, W.buf)
END Put;

PROCEDURE Open*;
VAR

end, time: LONGINT;
V: Viewers. Viewer;

BEGIN
Texts.OpenScanner(S, Oberon. Par . text, Oberon. Par . pos);
Texts.Scan(S);
IF (S.c1ass = Texts.Char) & (S.c = "t") THEN

(* Start input stream at beginning of selection *)
Oberon.GetSelection(T, beg, end, time);

Modules In, Out and XYplane 309

IF time >= 0 THEN
Texts.OpenScanner(S, T, beg); Done:= -S.eot

ELSE
Put("No selection"); Done:= FALSE

END
ELSIF (S.c1ass = Texts.Char) & (S.c = "*") THEN

(* Start input stream at beginning of text in marked viewer *)
V := Oberon.MarkedViewerO;
IF -Oberon. Pointer .on THEN

Put("Pointer not visible"); Done:= FALSE
ELSIF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN

T.:= V.dsc.next(TextFrames.Frame).text; beg:= 0;
Texts.OpenScanner(S, T, beg); Done:= -S.eot

ELSE
Put("Marked viewer not a text viewer"); Done:= FALSE

END
ELSE

(* Start input stream after command name *)
T := Oberon.Par.text; beg:= Oberon.Par.pos;
Texts.OpenScanner(S, T, beg); Done:= -S.eot

END
END Open;

PROCEDURE Char*(V AR ch: CHAR);
BEGIN

IF Done THEN
ch := S.nextCh; Done:= -S.eot; Texts.Read(S, S.nextCh)

END
END Char;

PROCEDURE Int*(VAR i: INTEGER);
BEGIN

IF Done THEN
Texts.Scan(S); i:= SHORT(S.i); Done:= (S.c1ass = Texts.lnt)

END
END Int;

PROCEDURE Longlnt*(VAR i: LONGINT);
BEGIN

IF Done THEN
Texts.Scan(S); i:= S.i; Done:= (S.c1ass = Texts.lnt)

END
END LongInt;

310 Modules In, Out and XYplane

Module Out

PROCEDURE Real*(V AR x: REAL);
BEGIN

IF Done THEN
Texts.Scan(S); x:= S.x; Done:= (S.c1ass = Texts.Real)

END
END Real;

PROCEDURE Name*(VAR nme: ARRAY OF CHAR);
BEGIN (* Read a ,name such as Syntax.Scn.Fnt from input stream *)

IF Done THEN
Texts.Scan(S); COPY(S.s, nme); Done:= (S.c1ass = Texts.Name)

END
END Name;

PROCEDURE String*(VAR str: ARRAY OF CHAR);
CONST CR = ODX; NUL = OX;
V AR ch: CHAR; j: LONGINT;
BEGIN (* Read blank delimited character sequence *)

IF Done THEN
REPEAT Char(ch) UNTIL «ch # II ") & (ch # CR» OR -Done;
j:= 0;
WHILE Done & (ch # II ") & (ch # CR) DO

IF j < LEN(str) - 1 THEN str[j1 := ch; INC(j) END;
Char(ch)

END;
str[j1 := NUL; Done := j # 0

END
END String;

BEGIN Texts.OpenWriter(W); Done:= FALSE
END In.

MODULE Out;
IMPORT Texts, Oberon, MenuViewers, TextFrames;
VAR

T: Texts.Text; S: Texts.Scanner; W: Texts.Writer;
beg: LONGINT;

PROCEDURE Open*;
VAR

x, y: INTEGER;
menuF, mainF: TextFrames.Frame;
V: MenuViewers.Viewer;

Modules In, Out andXYplane 311

BEGIN
T:= TextFrames.Text("Out.Text");
menuF := TextFrames.NewMenu("Out.Text",
"System. Close System.Copy System.Grow Edit.Search Edit.Store");
mainF:= TextFrames.NewText(T, T.len - 200);
Oberon.AllocateUserViewer(Oberon.Mouse.X, x, y);
V:= MenuViewers.New(menuF, mainF, TextFrames.menuH, x, y)

END Open;

PROCEDURE Char*(ch: CHAR);
BEGIN Texts.Write(W, ch); Texts.Append(T, W.buf)
END Char;

PROCEDURE String*(str: ARRAY OF CHAR);
BEGIN Texts.WriteString(W, str); Texts.Append(T, W.buO
END String;

PROCEDURE Real*(x: REAL; n: INTEGER);
BEGIN Texts.WriteReal(W, x, n); Texts.Append(T, W.buO
END Real;

PROCEDURE Int*(i, n: LONGINT);
BEGIN Texts.WriteInt(W, i, n); Texts.Append(T, W.buf)
END Int;

PROCEDURE Ln*;
BEGIN Texts.WriteLn(W); Texts.Append(T, W.buf)
ENDLn;

BEGIN Texts.OpenWriter(W); T:= Oberon.Log
END Out.

Module XYplane MODULE XYplane;
IMPORT Display, MenuViewers, Oberon, TextFrames, Input;
CONST

max = 32768; replace = Display.replace;
black = Display.black; white = Display.white;
erase* = 0; draw* = 1; (* values for parameter mode in Dot *)

TYPE
XYframe = POINTER TO XYframeDesc;
XYframeDesc = RECORD (Display.FrameDesc) END;

312 Modules In, Out andXYplane

VAR
F: XYframe;
bitmap: ARRAY max OF SET;
X*, Y*, W*, H*: INTEGER; (* location and extent of viewer *)

PROCEDURE Modify(F: XYframe; VAR M: MenuViewers.ModifyMsg);
BEGIN

IF (M.id = Menu Viewers. extend) & (M.dY > 0) THEN
Display.RepIConst(black, F.X, F.Y + F.H, F.W, M.dY, replace)

END;
IF M.Y < F.Y THEN

Display.RepIConst(black, F.X, M.Y, F.W, F.Y - M.Y, replace)
END;
X := F.X; Y:= M.Y; W:= F.W; H:= M.H

END Modify;

PROCEDURE Handle*(F: Display.Frame; VAR M: Display.FrameMsg);
BEGIN

WITH F: XYframe DO
IF MIS Oberon.lnputMsg THEN

WITH M: Oberon.lnputMsg DO
IF M.id = Oberon. track THEN

Oberon.DrawCursor(Oberon.Mouse, Oberon. Arrow,
M.X,M.Y);

END
END

ELSIF M IS Menu Viewers.ModifyMsg THEN
WITH M: Menu Viewers.ModifyMsg DO

Modify(F, M)
END

END
END

END Handle;

PROCEDURE Clear*;
V AR j: LONGINT;
BEGIN

Display.RepIConst(black, F.X, F.Y, F.X + F.W, F.Y + F.H, replace);
j:= 0; WHILE j < max DO bitmap[j] := 0; INC(j) END

END Clear;

PROCEDURE Open*;
VAR

menuF: TextFrames.Frame;

x, y: INTEGER;
V: MenuViewers.Viewer;

BEGIN
Oberon.OpenTrack(Display.Left, 0);

Modules In, Out andXYplane 313

menuF:= TextFrames.NewMenu("XY Plane", "System. Close");
NEW(F)~ F.handle:= Handle;
Oberon.AllocateUserViewer(Display.Left, x, y);
V := MenuViewers.New(menuF, F, TextFrames.menuH, x, y);
Clear

END Open;

PROCEDURE Dot*(x, y, mode: INTEGER);
V AR k, i, j: LONGINT;
BEGIN

IF (x >= F.X) & (x < F.X + F.W) & (y >= F.Y) & (y < F.Y + F.H) THEN
k:= LONG(y)*F.W + x; i:= k DIV MAX (SET);
j := k MOD MAX(SET);
CASE mode OF

0: Display.Dot(black, x, y, replace); EXCL(bitmap[i], j)
11: Display.Dot(white, x, y, replace); INCL(bitmap[i], j)

END
END

END Dot;

PROCEDURE IsDot*(x, y: INTEGER): BOOLEAN;
V AR k, i, j: LONGINT;
BEGIN

IF (x >= F.X) & (x < F.X + F.W) & (y >= F.Y) & (y < F.Y + F.H) THEN
k:= LONG(y)*F.W + x; i:= k DIV MAX(SET);
j := k MOD MAX(SET);
IF j IN bitmap[i] THEN RETURN TRUE
ELSE RETURN FALSE
END

ELSE RETURN FALSE
END

END IsDot;

PROCEDURE Key*O: CHAR;
V AR ch: CHAR;
BEGIN ch:= OX;

IF Input.AvailableO > a THEN Input.Read(ch) END;
RETURNch

END Key;

Index

ABS 39, 302
abstract data structure 166, 174, 251
abstract data type 170, 174, 176, 210,

218, 221, 230, 246, 251, 258
actual parameter 76
ADR 305
alias 72, 303
arithmetic expression 36
array 112

abbreviated index notation 114
assignment 115
character array 122
designator 113
index 112
length 112, 113
loop over all elements 117
multidimensional 113
open array parameter 118, 301
open array variable 274

ARRAY type 112, 287
ASCII 29, 306
ASH 302
assignment 39, 294

array 115
pointer 136
procedure variable 200
projection 193
record 129, 191, 195
string to character array 123, 294
type rules 40

axiom
of alternatives 50
of assignment 41
of repetition 55

base type 136, 190, 288
basic type 27, 286
binary search 120, 151
binding

dynamic 217, 238, 269
explicit 267
implicit 267

BIT 305

BOOLEAN 29, 286
Boolean expression 37
browser 90
BYTE 305

c++ 238
call

function procedure 76
procedure variable 201
proper procedure 66
up-call 203

call statement 78, 295
CAP 302
case statement 52, 296
CC 305
CHAR type 29, 286
character

array 122
ASCII table 306
constant 25, 283
ordinal number 29

CHR 302
class 238
command 14, 73
comment 27, 283
compiler hints 82
CaNST declaration 31, 285
constant

character 25
FALSE 29
NIL 136
number 24
set 29
string 25
TRUE 29

constant expression 31
control variable 54, 273
COPY 123, 303
counting loop 54, 57

data hiding 166, 174
data structure

abstract (or hidden) 166

315

316 Index

array 112
binary tree 147
dynamic 134
heterogeneous 212
linear list 140
record 126

data type (see Type)
De Morgan's law 38
DEC 44, 303
declaration 30, 284

CONST 31, 285
forward 82
PROCEDURE 66, 299
TYPE 110, 285
VAR 31, 289

declaration sequence 67
definition module 90
delimiter 25, 283
dereferencing 137

implied 138
nested 138

designator 33, 290
array 113
dereferenced pointer 138
field of a record 129
qualident 73
simple 33
with type guard 196

DIV 36
dynamic binding 217, 238, 265, 269
dynamic type 196

EBNF definition
ActualParameters 33, 76, 201, 291
AddOperator 33, 291
ArrayType 112, 274, 287
assignment 40, 294
baseType 136, 287
case 52, 296
CaseLabelList 52, 296
Case Labels 52, 296
CaseStatement 52, 296
character 25
CharConstant 25, 283
ConstantDeclaration 285
ConstDeclaration 31
ConstExpression 31, 285
DeclarationSequence 67, 82, 300
designator 33, 73, 114, 129, 138, 196,

290
digit 24, 282
element 29, 38, 291
ExitStatement 58
ExpList 114, 196, 201, 290
expression 33, 35, 291
factor 33, 201, 291
FieldList 127, 190, 287
FieldListSequence 127, 190, 287

FormalParameters 75, 77, 301
FormalType 75, 77, 118, 202, 301
ForStatement 273
ForwardDeclaration 82, 300
FPSection 75, 301
FunctionCall 33, 76
guard 198, 276
hexDigit 24, 282
ident 24, 282
identdef 284
IdentList 32, 127, 190, 287
If Statement 48, 296
·import 72, 303
importList 72, 303
integer 24, 282
length 112, 274, 287
letter 24
LoopStatement 58, 297
module 69, 303
MulOperator 33, 291
number 24,282
PointerType 136, 288
ProcedureBody 66,300
ProcedureCall 78, 201, 295
ProcedureDeclaration 66, 300
ProcedureHeading 66, 75, 77, 267, 300
ProcedureType 200, 289
qualident 73, 284
real 24, 282
Receiver 267
RecordType 127, 190,287
relation 33, 35,291
RepeatStatement 57, 297
RetumStatement 76
ScaleFactor 24, 282
selector 129
set 29, 38, 291
SimpleExpr 33
SimpleExpression 291
statement 42, 273, 294
StatementSequence 42, 295
string 25, 283
term 33, 291
type 110, 285
TypeDeclaration 110, 285
VarDeclaration 32
VariableDeclaration 289
WhileStatement 54,297
WithStatement 198, 276, 299

EBNF formalism 18
Eiffel238
ENTlER 37, 302
example

binary search in array 120
copy strings 123
factorial 81
FIFO list 144-146
length of a string 123

linear list 140-144
matrix multiplication 118
module Calendar 164
module FilledRectangles 228
module Graphics 222, 270
module IFS (fractal fern) 92
module In 308
module Model 171, 260
module Out 310
module Paths 169
module Qs 247
module RandomNumbers 12
module Rectangles 223, 272
module Sim 252
module Stations 258
module XYplane 311
quadratic equation 79
read a file 178
search of a string in a name-list 124
search tree 147-151
write a file 178

EXCL 303
exit statement 58, 298
exponential random number 160
export mark 31, 71, 284, 303

read-only 277
expression 32, 290

ari thmetic 36
Boolean 37
constant 31
factor 33
pointer 136
procedure variable 200
relation 35
set 38
string and character array 123
term 32
type compatibility rules 34
type test 196

extension
of pointer type 288
of record type 288

extension (of type) 194

factor
in expression 33
syntactic 17

FALSE 29
file

directory 177
module Files 176
rider 177

Files (module) 176
floating point number 28
for statement 273
formal definition

assignment 41
case statement 53

if statement 49
repeat statement 58
syntax 17
while statement 54

formal language 17

Index 317

formal parameter 74, 299, 300
forward declaration 82, 300
function

call 33, 76
predeclared 39
recursion 81
side-effect 80

function procedure 73, 299

garbage collection 139
GET 305
global variable 70
guard 49, 196, 290, 296

HALT 42,303
handler 230
heap 139
heterogeneous data structure 212

identifier 24, 282
predeclared 26, 284
qualified 72, 284

if statement 48, 296
import list 72, 303
IN 35
In (module) 88, 98, 308
INC 44, 303
INCL 303
index (array) 112
inheri tance 238
input 87

module Files 176
module In 88, 98

input stream 98
INTEGER 27, 286
integer types 27
invariant 55, 120
IS 35
iterated function system 64

LEN 113,302
linear search 119, 124, 143
list

FIFO 144-146
heterogeneous 213
linear 140-144

list representation 153
locality

parameter 75
record field 127
type-bound procedure 268
variable 67 .

LONG 37, 302

318 Index

LONGINT 27, 286
LONG REAL 28, 286
loop

counting loop 54, 57
invariant 55
variant function 55

loop statement 58, 297
LSH 305

MAX 27,302
mean value (of queue) 168
memory management 139
message 230, 238
method 238
MIN 27, 302
MOD 36
module 69, 303

definition module 90
Files 176
In 88, 98
Out 89, 98, 310
SYSTEM 304
XYplane 91, 100, 311

module hierarchy 173, 220, 256
MOVE 305

NEW 137, 274, 303, 305
NIL 136, 200
number 24, 282
numeric types 28

Oberon system 14, 95
Oberon-2 265

for statement 273
open array variable 274
procedure redefinition 268
read-only export 276
receiver 266
type-bound procedure 265
with statement 275

object 218, 230, 236, 238, 265
object-orientation

class 238
dynamic binding 217, 238
heterogeneous data structure 212
inheritance 238
message and handler 230
message broadcast 233
method 238
object 230, 236, 238, 265
procedure redefinition 227, 268
role of module 220
standard terminology 238

ODD 302
open array parameter 118, 301
open array variable 274
operand 32, 290
operator 25, 32, 283, 291

arithmetic 36, 292
logical 38, 291
relational (see Relation)
set 39, 292
t (dereferencing) 137

OR 38
ORO 302
ordinal number 29
Out (module) 89, 98, 310
output 87

module Files 176
module Out 89, 98
module XYplane 91, 100

output stream 98

parameter
actual 76
array 115
formal 74, 299, 300
matching formal parameter list 200
open array (ARRAY OF) 118, 301
procedure variable 202
receiver 266
record 129
substitution 78
value 78, 295, 300
variable (VAR) 78, 295, 300

pointer
assignment 136
base type 288
dereferencing 137
dynamic type 196
extension 194, 288
NEW 137, 288
NIL 136, 288
type guard 196, 290

POINTER type 136, 288
post-condition 41
pre-condition 41
predeclared function 302

ABS 39, 302
ASH 302
CAP 302
CHR 302
ENTlER 37, 302
LEN 113,302
LONG 37,302
MAX 27, 302
MIN 27, 302
ODD 302
ORO 302
SHORT 37, 302
SIZE 302

predeclared identifier 26, 284
predeclared procedure 303

COPY 123, 303
DEC 44, 303
EXCL 303

HALT 42,303
INC 44,303
INCL 303
NEW 137, 274, 303

procedure
actual parameter 76
call 66, 76, 295
call of procedure variable 201
command 73
dynamic binding 217, 265
formal parameter 74, 299, 300
forward declaration 82, 300
function 73, 299
local variable 67
NIL 200, 289
open array parameter 118, 301
predeclared 113, 123, 137, 302
proper 77, 299
re-definition 268
recursion 81, 148
return statement 67, 76, 77
type-bound 265
value parameter 78.
variable parameter (V AR) 78

PROCEDURE declaration 66, 299
PROCEDURE type 199, 289
projection 193
proper procedure 77, 299
PUT 305

qualified identifier 72, 284

random number 10, 160
read-only export 276
REAL 28, 286
real types 28
receiver 266
record 126, 129

assignment 129, 191
base type 190
designator 129
extension 190, 288
field 287
private field 288
projection 193
public field 288
variant 198

RECORD type 127, 287
recursion

data definition 140, 147
procedure 81
tree algorithms 148

regional type guard 197
relation 35, 293

=, # (not equal) 35
>, >=, <, <= 35
IN (set membership) 35
IS (type test) 35, 196

Index 319

pointer 136
procedure variable 200
string and character array 123

repeat statement 57, 297
reserved word 25, 283
result-condition 41
return statement 67, 76, 77, 298
ROT 305

scope 68, 284
global 70
local 68
nesting 68
record 127
type-bound procedure 268

scope rule 68, 284
search

binary 120, 151
linear 119, 124, 143

search tree 146
set

constant 29
expression 38

SET type 29, 286
SHORT 37, 302
SHORTINT 27, 286
side-effects 80
SIZE 302
Smalltalk-80 238
special character 25
stack 139
statement 294

assignment 39, 294
case 52, 296
exit 58, 298
for 273
if 48, 296
loop 58,297
procedure call 66, 295
repeat 57, 297
return 67, 76, 77, 298, 299
while 54, 297
with 197, 275, 298

statement sequence 42, 295
stepwise refinement 158, 250
stream 88
string 25. 283

as ARRAY n OF CHAR 122
terminator 122

structured programming 158
SYSTEM (module)

ADR 305
BIT 305
BYTE 305
CC 305
GET 305
LSH 305
MOVE 305

320 Index

NEW 305
PUT 305
ROT 305
VAL 305

term
in expression 32
syntactic 17

text (Oberon system) 96
token 18, 23

character constant 25
comment 27
identifier 24
number 24
string 25

tool (Oberon system) 97
tree

balancing 151
binary 147-151
n-way 154

TRUE 29
type

ARRAY 112, 287
ARRAY n OF CHAR 122
assignment compatibility 40, 111, 193
base (of extension) 190, 288
base (of pointer type) 288
basic 27, 286
BOOLEAN 29, 286
CHAR 29, 286
conversion function 37, 302
dynamic 196
expression compatibility 34
extension (of pointer type) 194, 288
extension (of record type) 190, 288

extremal value 27, 307
guard 196, 197, 275, 290
inclusion 28, 286
INTEGER 27, 286
LONGINT 27, 286
LONG REAL 28, 286
POINTER 136, 288
PROCEDURE 199,289
REAL 28, 286
RECORD 127, 287
SET 29, 286
SHORTINT 27, 286
test (relation IS) 196, 293

TYPE declaration 110, 285
type-bound procedure 265

up-call 203

VAL 305
value parameter 78, 300
VAR declaration 31
VAR parameter 78, 300
variable

control variable 54, 273
global 71
local 67
of a given type 111
open array 274

variant function 55
of binary search 121

viewer (Oberon system) 15

while statement 54, 297
with statement 197, 275, 298
XYplane (module) 91, 100, 311

9 780201 565430

ISBN 0-201-56543-9

