Lilith Handbook

A Guide for Lilith Users and Programmers

Leo Geissmann

Jiri Hoppe
Christian Jacobi
Svend Erik Knudsen
Werner Winiger
Niklaas Wirth

August 1982

c Institut fiir Informatik ETH Ziirich



Table of Contents

21.5.82

Introduction
1.1. Handbook Organization
1.1.1. Overview of the Chapters
1.1.2. Page Numbers
1.2. Overview of Lilith
12.1. Software
1.2.2. Hardware
1.3. References

Running Lilith

21.  Getting Started

2.2.  Exchange of the Disk Cartridge
2.3. Termination of a Session

Running Programs
3.1. The Command Interpreter
3.1.1. Program Call
3.1.2. Typing Aids
3.1.3. Loading and Execution Errors
3.2. Command Files
3.3. Program Loading

Things to Know

4.1. Special Keys

4.2, File Names
42.1. File Names Accepted by the Module FileSystem
4.2.2. File Name Extensions
42.3. File Name Input from Keyboard

4.3. Program Options

44. The Mouse




The Editor
5.1. Introduction
5.2.  Starting the Editor and Entry of New Text
5.3. Positioning the Document
5.3.1. Scrolling
5.3.2. Flipping
5.4. Insert Characters at Different Locations
5.5. Activating the Menu and Making a Selection
5.6. Delete, Move, or Copy Text
5.7. Termination of an Editing Session
5.8. Rescue from Abnormal Termination and Other Errors
59. Searching
5.10. Working with Windows
5.10.1. Open a Window
5.10.2. Open a Document
5.10.3. Change the Size of a Window
5.10.4. Close a Window or a Document
5.11. Accelerators
5.12. User Profile and User Guidance
- 5.13. Special Characters

Utility Programs

6.1. directory

6.2. delete, protect, and unprotect
6.3. copy and rename

6.4. list
6.5. inspect
6.6. xref
6.7. link
6.8. decode
6.9. layout
6.10. hermes
6.11. hpcopy

6.12. backup and restore

£ 12 temmd amd olétema
6.15. DOOt and altboot

The Compiler

7.1.  Glossary and Examples

7.2. Compilation of a Program Module
7.3. Compilation of a Definition Module
7.4. Symbol Files Needed for Compilation
7.5. Compiler Output Files

7.6. Program Options for the Compiler
7.7. Compilation Options in Compilation Units
7.8. Module Key

79. Program Execution

7.10. Value Ranges of the Standard Types
7.11. Differences and Restrictions

7.12. Compiler Error Messages




The Debugger

8.1. Starting the Debugger
8.2. General Debugging Dialog
8.3. The Debugger Windows and Their Commands

83.5.
8.3.6.
8.3.7.
8.3.8.
839

The Procedure Chain Window
The Program Window

The Data Window

The Dialog Window

The Memory Window

The Load Map Window

The Process Window

The Screen Window

The Background Commands

84. An lixample

84.1.
84.2.

Screen with Default Layout
Screen with Additional Opened Windows

The Medos-2 Interface
9.1. Module FileSystem

9.1.1.
9.1.2.
9.13.

9.14,

9.1.5.
9.1.6.

Introduction

Definition Module FileSystem

Simple Use of Files

9.1.3.1. Opening, Closing, and Renaming of Files

9.1.3.2. Reading and Writing of Files

9.1.3.3. Positioning of Files

9.1.34. Examples

Advanced Use of Files

9.14.1. The Procedures FilecCommand and DirectoryCommand
9.14.2. Internal File Identification and External File Name
9.1.4.3. Permanency of Files

9.14.4. Protection of Files

9.14.5. Reading, Writing, and Modifying Files

9.14.6. Examples

Implementation of Files

Files on Cartridges for Honeywell Bull D120/D140 Disk Drives
9.16.1. Main Characteristics and Restrictions

9.16.2. System Files

9.1.6.3. Error Handling

9.2. Module Program

9.2.1.
9.2.2.
9.2.3.
9.24.
9.2.5.
9.2.6.
9.3. Storage

Introduction

Definition Module Program
Execution of Programs
Heap

Error Handling

Object Code Format

94. Terminal



10. Screen Software
10.1. Summary
10.2. Screen
10.3. TextScreen
104. WindowHandler
10.5. CursorStuff
10.6. CursorRelations
10.7. WindowDialogue
10.8. ScreenResources0
10.9. BitmapVars

11. Library Modules
11.1. InOut
11.2. ReallnOut
11.3. Mouse
114. LineDrawing
11.5. MathLib0
11.6. OutTerminal
11.7. OutFile

- 11.8. OutWindow

11.9. BytelO
11.10. ByteBlockIO
11.11. FileNames
11.12. Options
11.13. Line
11.14. V24

12. Modula-2 on Lilith
12.1. Code Procedures
12.2. The Module SYSTEM
12.3. Data Representation and Parameter Transfer
12.3.1. Data Representation
12.3.2. Parameter Transfer

13. Hardware Problems and Maintenance
13.1. What to Do if You Assume some Hardware Problems
13.2. DiskCheck
13.3. DiskPatch



1001
1. Introduction

Leo Geissmann 155.82

The Liiith computer is intended to be used as a flexible workstation by individual users. This guide wiil
give an introduction to the use of the machine and the basic software environment running on it.

The readers of the handbook are invited to report detected errors to the authors. Any comments on content
and style are also welcome.

1.1. Handbook Organization

As the range of users spans from the non-programmer, who wants only to execute already existing
programs, to the active (system-) programmer, who designs and implements new programs and thereby
extends the computer’s capabilities, this guide is compiled such that general information is given at the
beginning and more specific information toward the end. This allows the non-programmer to stop reading
after chapter 6.

1.1.1. Overview of the Chapters
Chapter 1  gives introductional comments on the handbook and on Lilith.

Chapter 2  gives instructions on how Lilith is started.

Chapter 3  describes how programs are called with the command interpreter.
Chapter 4 provides information about the general behaviour of programs.
Chapter 5 describes the use of the text editor.

Chapter 6 is a collection of important utility programs, needed by all Lilith users.
Chapter 7  describes the use of the Modula-2 compiler.

Chapter 8 describes the use of the post-mortem debugger.

Chapter 9 is a collection of library modules constituting the Medos-2 interface.
Chapter 10 is a collection of library modules constituting the screen software interface.
Chapter 11 is a collection of further commonly used library modules.

Chapter 12 describes the Lilith-specific features of Modula-2.

Chapter 13 describes procedures to follow if Lilith is not working as expected.

1.1.2. Page Numbers

It is intended that the page numbers facilitate the use of the handbook. It should be possible to find a
chapter quickly, because the chapter number is encoded within the page number. The pages belonging to a
chapter are enumerated in the thousends digit of the chapter number, i.e. in the first chapter the page
numbers start with 1001, in the second chapter with 2001, etc. As a chapter has less than one hundred
pages, the chapter number is always separated from actual page number within the chapter by a zero.



1002
1.2. Overview of Lilith

1.2.1. Software

Lilith is programmed in the language Modula-2, which is defined in the Modula-2 manual [1). Some
specialities of Modula-2 on Lilith are mentioned in chapter 12 of this handbook.

The resident operating system on Lilith is called Medos-2. It is responsible for program execution and
general memory allocation. It also provides a general interface for input/output on files and to the
terminal.

One of the most frequently used program is the rexz editor. It is used for writing and modifying text and
programs. Programmers also need the Modula-2 compiler and, in the case that program execution should
fail, the post-mortem debugger. ‘

The handling of the screen display is provided by the screen software package. It enables writing and
drawing at any place on the screen. A window handler provides the subdivision of the screen into smaller
independent parts, called windows.

Further, there exists a large number of utility programs and library modules. The most commonly used
subset is described in this handbook; the handbook should never be considered to give a complete
overview of the Lilith software.

1.2.2. Hardware

The Lilith computer consists of a processing unit, which includes the main store, peripheral devices, and a
power supply. The store has a capacity of 128K (131°072) words of 16 bits each. The standard peripheral
devices are a display for visual output, a keyboard and a so-called mouse for manual input. Furthermore,
there is a secondary store consisting of a magnetic cartridge disk with a capacity of 10 MByte. It is used to
store and retain files. A description of Lilith is given in the Lilith report [2].

The display uses the raster scan technique with 592 lines and 768 dots per line. The total number of dots is
454’656, and each dot is represented in the main store by a bit. This representation is called the bitmap; if
the full screen is represented, it occupies 28'416 words. The display controller allows to reduce the
bitmap’s size and to use part of the screen only, or even to discard it altogether.

The direct representation of the screen as a bitmap gives the programmer a high degree of freedom for
manipulation of the displayed information. Diagrams and pictures can be shown as well as text. In fact,
each character of a text is a picture itself, represented by an array of bits computed by the program from
the character’s internal (ASCII) encoding. This offers the possibility to use different visual styles (i.e.
Jonts) for characters.

The keyboard uses the standard ASCII character set with 96 printing characters (plus a few extra keys for
control characters, which may be ignored for almost all uses). The mouse allows movements of the user’s
hand holding the mouse to be read by the processor. These movements can be translated by appropriate
programs into corresponding movements of a cursor displayed on the screen. The mouse also features
three pushbuttons (keys) used to indicate commands.

In addition, the computer also provides a standard serial line interface (V24, RS232). It can be used to
connect to printer terminals or other devices, including of course other computers.

1.3. References

[1] Programming in Modula-2
N. Wirth, Springer-Verlag, Heidelberg, NewYork, 1982.

[2] The personal computer Lilith
N. Wirth, in
- Sofware Development Environments, A.I. Wassermann, Ed., IEEE Computer Society Press, 1981.
- Proc. 5th International Conf. on Software Engineering, IEEE Computer Society Press, 1981.



2. Running Lilith

Leo Geissmann 15.5.82

2.1. Getting Started

The computer is switched on by pushing the red power switch on the cabinet. As soon as the white disk
switch lights up, the square, black disk cartridge may be inserted into the disk drive. Afterwards, push the
white disk switch on the cabinet (to start the disk) and the reset button at the rear of the keyboard (to set
the computer ready for a bootstrap). Finally, hit the space bar or CTRL-A on the keyboard.

As soon as you hear a short, clicking noise, the disk is ready for operation, and the bootstrap of the
computer is started. The resident operating system Medos-2 is loaded from the disk. After successful
loading, it first displays a version number in the top left corner of the screen.

v4

Sometimes a bootstrap is not successful the first time, ie. the version number does not appear. In this case retry the
bootstrap: Push the reset button again and hit the space bar or CTRL-A.

The operating system now makes some initializations. If everything is all right, a dor appears behind the
version number.

V4,

It is possible that there appears an error message instead of a dot. This indicates that something may be wrong with the
computer or with the disk cartridge. Chapter 13 describes what to do in this case.

The command interpreter now displays a version message. Afterwards, the command interpeter displays
the date of the last use of the disk cartridge and prompts for the current date.

old date = 25.8.81
new date >

The new date is expected in the same format as shown by old date, whereby only the changed numbers
must be specified. The input of the new date is terminated by hitting the RETURN key or the space bar.
Hitting only the RETURN key means that the old date is still valid. After the date is accepted, an asterisk
¢ is displayed. The command interpreter is now ready to accept the name of a program which should be

executed next. How programs are called is described in chapter 3.

For advanced users: The disk cartridge contains two so-called boof files. According to the key pressed
when a bootstrap is started, one of these files is loaded into the memory. File PC.BootFile is read when
the space bar is pressed, and file PC.BootFile.Back is read when CTRL-A is typed. This allows to
substitute, with utmost care, a different bootstrap program. Boot files are linked in an absolute format and
cannot be executed like other programs. They are generated by a special bootlinker program,

2.2. Exchange of the Disk Cartridge

If you want to work with another disk cartridge, you have to exchange it. First, be sure that an asterisk was
last displayed, i.e. the command interpreter is active to accept a program name. Afterwards, switch off the
disk (white disk switch) and wait until the disk has stopped. This is signalled by a light on the disk switch
and by a short clicking noise. Now, the disk cartridge in the disk drive may be replaced by another one.
Restart the disk by pushing the white disk switch again.




While the disk cartridge is exchanged, a waiting message is displayed on the screen.

SR ESEEEEELER
L | ]
s I'm waiting =
[ ] L ]
SECEEESESSEES SRS

As soon as the disk is ready again, the message disappears and the operating system is caused to make some
reinitializations. This “soft bootstrap” is important because the operating system stores some information
about the loaded disk cartridge in the memory. The reinitialization is indicated by the version number and
the dot on the top left corner of the screen. Finally, an asterisk e is displayed and a program name is

accepted again.,

WARNING

If the disk cartridge is exchan'ged during execution of a program, this exchange will not be detected by
the operating system and therefore no reinitialization takes place. In this case a real bootstrap of the
computer is mandatory (see 2.1.). Otherwise, there might be problems with the disk cartridge sooner
or later.

2.3. Termination of a Session

For termination of a Lilith sesson, exchange the disk cartridge with the grey dummy cartridge (do not
restart the disk). The dummy cartridge is very important to protect the disk drive from dust.

The computer may now be switched off with the red power switch. This, however, is not necessary if
somebody else wants to work with the machine. In this case leave it in the waiting state, or start the
program HardwareTest before switching off the disk. This program will use the idle time to run some
checks on the computer’s hardware.



3. Running Programs

Svend Erik Knudsen 15.5.82

This chapter describes, how programs are called with the command interpreter of the Medos-2 operating
system. An often used sequence of program calls may be controlled by a command file.

3.1. The Command Interpreter

The command interpreter is the main program of the Medos-2 operating system. After the initialization of
the operating system, the command interpreter repeatedly executes the following tasks

- Read and interprete a command, i.e. read a program name and activate the corresponding program.
- Report errors which occured during program execution.

In order to keep the resident system small, a part of the command interpreter is implemented as a
nonresident program. But, this fact is transparent to most users of Medos-2.

3.1.1. Program Call

The command interpreter indicates by an asterisk e that it is ready to accept the next command. Actually
there exists only one type of commands: program calls.

To call a program, type a program name on the keyboard and terminate the input by either hitting the
RETURN key or pressing the space bar.

sdirectory

The program with the typed name is activated, i.e. loaded and started for execution. If the program was
executed correctly, the command interpreter returns with an asterisk and waits for the next program call. If
some load or execution error occured, an error message is displayed, before the asterisk appears.

*direx
program not found
sdirectory
directory program is running

*

A program name is an identifier or a sequence of identifiers separated by periods. An identifier itself
begins with a letter (A .. Z, a .. z) followed by further letters or digits (0 .. 9). At most 16 characters are
allowed for a program name, and capital and lower case letters are treated as distinct.

ProgramName identifier { ." identifier } .
Identifier letter { letter | digit } .

Programs are loaded from files on the disk cartridge. In order to find the file from which the program
should be loaded, the Medos-2 loader converts the program name into a file name. It ingerts the medium
name DK at the beginning of the program name, appends an extension 0BJ, and searches for a file with this
name. If no such file exists, the loader inserts the prefix SYS into the file name and searches for a file with
this name.

Accepted program name  directory
First file name DK.directory.0BJ
Second file name DK.SYS.directory.0BJ

If neither of the searched files exists, the command interpreter displays the error message program not
found.

3.1.2. Typing Aids
The command interpreter provides some typing aids which make the calling of a program more convenient.



3002
Most typing errors are handled by simply ignoring unexpected characters. Further, there are the automatic
extension of a typed character sequence and some special keys.

Automatic Extension

The command interpreter automatically extends an initially typed character sequence to the name of an
existing program. This means that a long program name may be identified by a few characters. If several
programs exist whose names start with the typed character sequence, the sequence is only extended up to
the point where the names start to differ. In this case, further characters are needed for identification. The
input of a program name must be terminated by either hitting the RETURN key or pressing the space bar.

The command interpreter needs a few seconds to find all the names of available programs. Therefore,
automatic extension is only possible after that time. If a command is typed very fast (or probably before
the asterisk is displayed), the meaning of the termination character may be different. Termination with
RETURN means that the command should be accepted as it is, termination with the space bar means that
the command interpreter should try to extend the character sequence to a program name before accepting
it.
Special Keys
While typing a program name, the command interpreter also accepts some special keys which are executed
immediately.
?
HELP character. It causes the display of a list of all programs, whose names start with the same

character sequence as the typed one. At the end of the list, the already typed part of the
program name is displayed again, and the rest of the program name is accepted.

DEL
Delete the last typed character.

CTRL-X
Cancel. Delete the whole character sequence which has been typed
CTRL-L .
Form feed. Clear the screen and accept a new command at the upper left corner of the screen.
This key must be typed just behind an asterisk. It is not accepted within a character sequence.

ESC
Terminate the execution of the command interpreter.

CTRL-C
Kill character. This key may be typed at any time. The currently executed program will be
killed and a dump will be written on the disk cartridge. The dump may be inspected with
program debug. Obviously, the CTRL-C key is built into Medos-2 in order to help the
programmer during unavoidable debugging activities. But, CTRL-C is NOT THE NORMAL
WAY TO LEAVE A PROGRAM.

3.1.3. Loading and Execution Errors

Messages about loading and execution errors are displayed on the screen. They are reported either by the
command interpreter, the resident system, or the running program itself.

Loading Errors

It is possible that a called program cannot be loaded. It may be that the corresponding file is not found on
the disk cartridge, that some separate modules imported by the program are not found, or that the module
keys of the separate modules do not match.

The following types of loading errors may be reported




call error parameter error at program call

program not found

program already loaded a program must not be loaded twice

module not found

incompatible module a module found with a wrong module key

not enough space program needs too much memory space

too many modules maximal number of loaded modules exceeded

illegal type of code code of a module is not from the same generation

error in filestructure a file may be damaged

some file error

some load error maximal number of imported, not yet loaded modules exceeded
Execution Errors

If a program is successfully loaded, it is possible that the execution of the program is terminated
abnormally. There may occur a run time overflow, the program may call the standard procedure HALT, or
the user may even kill the program by typing CTRL-C on the keyboard. In all of these cases, the operating
system first causes the memory contents to be dumped on the dump files of the disk cartridge. The dump
files may be inspected with program debug.

The following types of execution errors may be reported

stopped program was killed by CTRL-C

stack overflow . available memory space exceeded

REAL overflow

CARDINAL overflow

INTEGER overflow

range error

address overflow illegal pointer access

function return error Junction not terminated by a RETURN statement
priority error call of a procedure on lower priority

HALT called standard procedure HALT was called

assertion error program terminated with an assertion error
instruction error illegal instruction, i.e. the code may be overwritien
warning program detected some unexpected errors -- no memory dump

Errors Reported by the Command Interpreter

The error messages displayed by the command interpreter are intended to be self-explaining. They are
written just before the asterisk which indicates that the next command will be accepted.

Errors Reported by the Resident System

The messages directly displayed by the resident system (and possibly other non-resident modules and
programs), appear according to following example

- Storage.ALLOCATE: heap overflow

This example indicates that procedure ALLOCATE in module Storage had detected that the requested
space could not be allocated in the heap.

Some modules (e.g. module Program) indicate on which execution level the error was detected by the
number of hyphens in front of the message.

Errors Reported by Other Programs

It is possible that other programs report loading and execution errors in their own manner. In this case, try
to understand the displayed error message. If the memory image has been dumped on the dump files, it is
also possible to find the reason for the failure with the debugger.



3004
3.2. Command Files

It is possible that a sequence of program executions must be repeated several times. Consider for example
the transfer of a set of files between two computers. Instead of typing all commands interactively, it is in
this case more appropriate to substitute these commands as a batch to the procedures which normally read
characters from the keyboard. For this purpose the operating system allows the substitution of command
Siles. :

A command file must contain exactly the same sequence of characters which originally would be typed on
the keyboard. This includes the commands to call programs and the answers given in the expected dialog
with the called programs. To initialize the command file input, the program commandfile must be started.
This program prompts for the name of a command file (default extension is COM) and substitutes the
accepted file to the input procedures.

scommandfile

Command file> transfer.COM

. input characters are read from the command file,
instead of from the keyboard

After all characters have been read from the substituted command file, the input is read again from the
keyboard. Reading from the command file is also stopped when a program does not load correctly or a
program terminates abnormally.

Except for one exception, command files must not be nested. If the call of program commandfile and the
subsequent file name are the last information on the current command file, it is possible to start a new
command file. In all other cases the execution of the current command file would fail.

3.3. Program Loading
This chapter is intended to be read by programmers only.

Programs are normally executed on the top of the resident operating system. After the program name is
accepted by the command interpreter, the loader of Medos-2 loads the program into the memory and, after
successful loading, starts its execution. Medos-2 also allows a program to call another program. This
chapter describes, how programs are loaded on the top of Medos-2. More details about program calls,
program loading, and program execution are given in the description of module Program (see chapter 9.2.).

Usually, a program consists of several separate modules. These are the main module, which constitutes the
main program, and all modules which are, directly or indirectly, imported by the main module.

Upon compilation of a separate module, the generated code is written on an object file (extension 0BJ).
This file can be accepted by the loader of Medos-2 directly. A program is ready for execution if it and all
imported modules are compiled. To execute the program, the main module must be called. The loader
will first load the main module from the substituted object file, and afterwards the imported modules from
their corresponding object files.

The names of the object files belonging to the imported modules are derived from (the first 16 characters
of) the module names. If a first search is not successful, a prefix LIB is inserted into the file name and the
loader tries again to find the object file.

Module name BufferPool
First file name DK.BufferPool.0BJ
Second file name DK.LIB.BufferPool.0BJ

A module cannot be loaded twice. If an imported module is already loaded with the resident system (e.g.
module FileSystem), the loader connects the program with this module.

If a module cannot be loaded because of a missing object file, a loading error is signalled. The loader also
signals an error if a module found on an object file is incompatible with the other modules. For correct
program execution, it is important that the references across the module boundaries refer to the same
interface descriptions, i.e. the same symbol file versions of the separate modules. The compiler generates




3005
for each separate module a module key (see chapter 7.7.) which is also known to the importing modules.
For successful loading, all module keys refering to the same module must match.

After termination of the program, the memory space occupied by the previously loaded modules is
released. This also happens with the resources used by the program (e.g. heap, files).

The loading speed may be improved if a program is linked before its execution. The linker collects the
imported modules in the same manner as the loader and writes them altogether on one file. It is also
possible, to substitute a user selected file name for an imported module to the linker. If a program is
linked, the loader can read all imported modules from the same object file, and therefore it is not necessary
to search for other object files. For a description of program link refer to chapter 6.7.



4. Things to Know

Leo Geissmann 15.5.82

This chapter provides you with information about different things which are worth knowing if you want to
get along with Lilith. There are some conventions which have been observed when utility programs or
library modules were designed. Knowing these should allow you to be more familiar with the behaviour of

the programs.

4.1. Special Keys

Consider the following situations: You want to stop the execution of your program, because something is
going wrong; or, you want to cancel your current keyboard input, because you typed a wrong key; or, you
want to get information about the active commands of a program, because you actually forgot them; and so
on. In all these situations it is very helpful to know a way out.

For these problems, several keys on the keyboard can have a special meaning, when they are typed in an
appropriate situation. Some of these special keys are always active, others have their special meaning only
if a program is ready to accept them. The following list should give you an idea of which keys are used for
what features in programs and to invite you to use the same meanings for the special keys in your own

programs.

DEL
Key to delete the last typed character in a keyboard input sequence. This key is active in most
programs when they expect input from keyboard.

CTRL-X
Key to cancel the current keyboard input line. This key is active in special situations, e.g. when a
file name is expected by a program.

ESC

Key to tell the running program that it should terminate more or less immediately in a soft
manner. This key is active in most programs when they expect inpuit from keyboard.

CTRL-C

.....

keyboard input is awaited. Typing CTRL-C is useful if the actions of a program are no longer
under control. Nevertheless it is considered bad taste to terminate a program in this way.

Key to ask a program for a list of all active commands.

CTRL-L
Key to clear the screen area on which a program is writing. This key is active in special
situations, ¢.g. when the command interpreter is waiting for a new program name.

4.2. File Names

4.2.1. File Names Accepted by the Module FileSystem

Most programs work with files. This means that they have to assign files on a device. For this purpose the
module FileSystem provides some procedures to identify files by their names. File names accepted by
these procedures have the following syntax:

FileName = MediumName [ "." Fileldent ] .
MediumName = ident.

Fileldent = ident{"." ident}.

ident = Letter { Letter | Digit } .



4002
Capital and lower case letters are treated as distinct.

MediumName means the device on which a file is allocated. This name must be an identifier with at most
7 characters. It is designed in view of a coming network. To assign a file on the HB disk cartridge of your
Lilith computer, the medium name DK must be used.

Fileldent means the name of a file under which it is registered in the name directory of the device. For
files on the HB disk cartridge the length of FileIdent is limited to 24 characters.

A file name consisting solely of a MediumName means a temporary file on the device, i.e. the file is not
registered in the name directory and will be deleted automatically when it is closed.
4.2.2. File Name Extensions

The syntax of a Fileldent, with identifiers separated by periods, allows structuring of the file names. On
Lilith, the following rule is respected by programs dealing with file names:

The last identifier in a Fileld;:nt is called the extension of the file name. If a FileIdent consists of just
one identifier, then this is the extension.

File name extensions allow to categorize files of specific types (e.g. 0BJ for object code files, SYM for
symbol files), and there are programs which automatically set the extension, when they generate new files
(c.g. the compiler).

4.2.3. File Name Input from Keyboard

Many programs prompt for the names of the files they work with. In this case you have to type a file name
from keyboard according to following syntax:

InputFileName = Fileldent| " # " MediumName [ "." Fileldent ] .

Normally you want to specify a file on the HB disk cartridge of your Lilith computer and therefore it is
more convenient, to type FileIldent only. MediumName DK is then added internally. If you want to specify
another MediumName, then you must start with a # character.

Harmony .MOD is accepted as file name DK.Harmony .MOD
#XY.Color TEXT is accepted as file name XY.Color.TEXT

Many programs offer a default file name or a default extension when they expect the specification of a file
name. So, it is possibie to soiely press the RETURN key to specify the whole default file name, Or to press
the RETURN key after a period to specify the default extension.

For programmers: Module FileNames supports the reading of file names.

4.3. Program Options

To run correctly, programs often need, apart from a file name, some additional information which must be
supplied by the user. For this purpose so-called program options are accepted by the programs. Program
options are an appendix which is typed after the file name. The following syntax is applied.

FileNameAndOptions = InputFileName { ProgramOption } .
ProgramOption = /" OptionValue.
OptionValue = {Letter | Digit }.

Every program has its own set of program options, and often a default set of OptionValues is valid. This
has the advantage that for frequently used choices no options must be specified explicitly.

Harmony.MOD/query/nolist

For programmers: Module Options supports the reading of program options.



4003
4.4. The Mouse
An important input device, along with the keyboard, is the mouse. It allows positioning and command

selection. The mouse is connected with the keyboard by a cable. It has three pushbuttons on its front and a
ball embedded in its bottom. The ball rotates when the mouse is moved around on the desktop.

To use the mouse, take it in your hand with the middle three fingers in position to press the three
pushbuttons and the thumb and little finger apply slight pressure from the sides.

For positioning, e.g. for tracking a cursor, the mouse is moved around on the desktop. The movements are
translated by the programs into movements on the screen:

mouse screen
forward up
backward down
left left
right right

The mouse indicates movements only if it is driven on the table. If it is lifted and set down at another place
on the table, no movement is indicated. This allows to reposition the mouse without changing the actual
position on the screen.

The pushbuttons on the front of the mouse are pressed for sending commands to programs. They are
t_xamed according to their position:

left middle right

button button button

Generally it may be assumed that a menu selection becomes active when the middle button is used. In
scroll bars usually the left button is used for scrolling a text up, the right button for scrolling a text down,
and the middle button for flipping on the text.

The actual meaning of the mouse buttons is given in the program descriptions. Some programs also display
it on the screen.

For programmers: The modules Mouse and CursorStyff support cursor tracking and the handling of the
mouse buttons.



5. The Editor

Werner Winiger 29.4.84 (Version L9)

5.1. Introduction

The Lilith text editor is started by typing its name "edit” followed by RETURN. It presents you the
screen image shown in figure 5.1.

INSERT
SAVE

MENU => I FIND
VINDOV
CLOSE

<{- SCROLL BAR

*

I
<-  TEXT AREA  =>

v

MESSAGE FILENAME
l I

v v
[Buttoni=set caret; B2=get the menu; B3=select] hand5.Figl TXT

The screen is divided into a text area (38 lines of 91 characters), a scroll bar at the left hand side, and a
communication bar at the bottom. The text area serves to show you parts of the document you are
working on. With the help of the scroll bar you may position this document such that you see the desired
sections. In the communication line you get messages from the editor, you have to enter file names and
scarch strings and you see the file name of the document being edited. Not always visible is a menu. It
appears as a box containing the keywords of the available commands.

The input devices which allow you to give your commands to the program,vare the keyboard and the
mouse. Typing on the keyboard usually means that you want to insert new characters into your text.
Exceptions are »

- when the editor asks for a file name,
- or for a search string,
- or prompts you for an assertion such as write the document? [Y/N].

The mouse is used to move a cursor around the screen (just by moving the mouse on the desk) and to
indicate



- where you want to insert text,
- which characters are to be deleted,
- which line should be scrolled to the top of the screen,

and so on. Furthermore, the three buttons of the mouse allow you to specify what action the editor should
perform at the position the mouse points to. In the editor’s prompts, the left button is referred to as B1,
the middle one as B2, and the right button as B3.

5.2. Starting the Editor and Entry of New Text

Let’s follow now the procedure of preparing a new document (updating an old one respectively):
If you start the editor it prompts you for a file name. Press RETURN to create a new document. You see
now as the first and only "character” of the first line an end-of-file mark in the form of a small (8 by 8 dot)
square. The blinking wedge shaped mark to its left is called the carer and denotes the location where newly
typed text is inserted. -
You may now type in your text using

- RETURN to start a new line,

- DEL to erase the character just keyed in,

- TAB to get two blanks,

- CAPS to capitalize the following alphabetic characters.

On the current Lilith keyboard you have to hit CTRL-I or the key labeled ON LINE to get a TAB. The CAPS function is called
by pressing CTRL-N or HOME, and HELP, which is mentioned later, is the name of CTRL-S, TAB or "7".

If you reach the bottom of the text-window your document is scrolled up automatically. And after a while
you will have a text, just as if you had entered a file name at the beginning of the session instead of
RETURN only. So now we can discuss the general case of dealing with an existing document.

When typing the file name you don’t have to enter the extension, if you want to edit a Modula program.
MOD is the default extension which is appended automatically, if you terminate the file name with a
period.

5.3. Positioning the Document

When you enter a text, it is scrolled up such that you always see the last 38 lines of the document; if you
get an old document from the disk you automatically see the first page of that text. But you may control
which portion of the document you want to be visible through the available text window. [Refer to 5.10. to
find out how to split the text-area into several windows.]

Positioning is done with the help of the mouse and the so called scroll bar: Move the mouse to the left
until the cursor changes its form from an arrow "pointing to north-west” to a double-arrow. Attention: if
you go too far the cursor wraps around, but you may use the same effect to come back again. The special
form of the cursor in the scroll bar indicates the special mode of the mouse: it can now be used for
positioning,

5.3.1. Scrolling

The cursor’s location in the scroll bar corresponds to the text line on the same hight. It is possible to make
this line the first (top) of the window (¢o scroll up) by pushing the left button, or to make it the bottom line
(scroll down) by pushing the right button. Note that you still may adjust the mouse position while the
button is pressed because scrolling is not performed until you release it.

As a consequence you may scroll up your document by one line by pressing the left button near the second
line from the top, or scroll it down by 37 lines (go to the previous page) by pressing the right button near
the top line.

5.3.2. Flipping
By means of scrolling you may reach only the next (or previous) few lines of your document easily from the



5003
current position. But it is also desirable to make longer jumps, like to go to the end of the text directly, or
to the beginning, and 30 on. The editor offers such a facility: flipping. If you push the middle button while
the cursor is in the scroll bar, the document is repositioned as follows: the number of lines of the text
window beside the cursor is considered to represent the whole document. The cursor position within these
lines indicates which relative position within the document you want to select. That means: the cursor on
the last line indicates a jump to the end of the document whereas the cursor on the 13th line of the 38
indicates a jump to the first third of the document. Again, the jump is executed only after you release the
key. [Refer to 5.9. to read how to position the document at a searched string.]

5.4. Insert Characters at Different Locations

Until now we have learned to inspect an old document or to enter s new one just by typing its text
sequentially. Now we also want to be able to change a document. First of all, we would like to insert new
text not only at the end of the document but at arbitrary locations. The blinking caret denotes the location
where typed characters are inserted. Use the mouse to position the caret. Move the arrow to the desired
place, press the left button and release it again. If you didn’t hit well just try again (and again). It is even
allowed to hold down the left button during the movement of the mouse. Then you will see the caret
tracking the arrow. And if you have led it to the correct position you release the left button. Now the
editor is ready to receive the characters to be inserted. If the caret sits in the middle of a word or a line and
you type new text, then the rest of the line is shifted to the right. There is no so-called “paint mode” since
deleting is easy enough, as you see from the next section. If a line becomes longer than 91 characters the
superfluous ones are wrapped around, and displayed on the following line. But they are viewed only as two
lines, they still form one single line with no end-of-line inbetween.

Fig.2:

This figure serves to show you some more editor display elements. At the
very bottom of this text you see the small square denoting the end of the
document .

This arrow -> ™\ is the cursor, which follows the movement of the mouse.

The blinking mark - called caret - denoting the position where text is in-

......

Furthermore you have to know, how a text selection is displayed. In the
following line the words * this is an example of salected text " {ncluding
the two blanks are selected: KEEEEENEEINENTENIEXEEREER .
* : t
left end .. right end ..
. of selected text

The message in the communication bar below says that I activated the CLOSE
command (see 5.7.) and have to enter now "y" or "n".

In the filename section you see that the name of this document is
"DK.hand5.Fig2.TXT".

End of the document -> D

write the document? [Y/N] OK .hand5.Fig2 . TXT




5004
5.5. Activating the Menu and Making a Selection

This editor doesn’t expect you to type commands but lets you point to them. Since you would like to see as
much text as possible the commands are not always vigible but only when you need them. Press the middle
button (having the cursor anywhere in the text area) and a list of commands will be displayed near the
location of the arrow overwriting temporarily your text. This so-called menu will disappear as soon as you
release the middle button. So if you want to think or make a choice keep the button depressed. One of the
commands is shown in reverse video. In order to control which command should be selected you have to
move the mouse. Invoking a command is achieved by releasing the middle button when the associated
menu item is inverted. If you wish to release the middle button without causing any action, just move the
cursor outside the menu. In any case the menu disappears and the (eventually) hidden information appears
again. In case of an activated command it is executed immediately.

For the operations described in the following section you need to point to a specific portion of your
document. In the editor’s terminology, you have to make a selection. Point with the cursor to the first
character which should be deleted and press the right button. This character is now shown in reverse
video. This visual feedback denotes the selected part of the document. You may select one character or
whole words or even several lines: Press the right button at the leftmost character to be selected, hold it
down, and move the cursor to the rightmost one. Now the reversed portion tracks the cursor until you
release the button. Making a selection is, like moving around the caret, an activity which you may use
anytime and as often as you like. The editor lets you edit the operands of its operations at your
convenience unless you are satisfied by the setup.

5.6. Delete, Move, or Copy Text

I explained how to erase accidentally typed characters, namely with the DEL key. But this is not
convenient for more than a few characters. If you wish to correct something longer you have to select this
item first with the mouse. Once the text is selected as desired, it may be deleted. This is achieved with the
help of the menu. Choose the DELETE command, the selected text gets deleted, and the rest of the text is
shifted (and scrolled if necessary) in order to fill the gap.

The string you have deleted is kept in a buffer (until you delete another one). It is possible to reinsert the
contents of that buffer anywhere in the document. This may be convenient in-the following cases:

- If you have deleted something erroneously.
You may patch the situation by inserting the buffer again at the same location from where you
have deleted it.

-If you like to move some part of your text to another place.
You just delete it at the source and insert it at the destination

- If you want to copy a string from one place to another.

How, exactly do you insert? INSERT is just another command of the menu. This means that you have to
use the middle button to get the menu and then move the mouse to select the insert command. When using
the menu, you notice that it is always shown with that command exhibited which you used last. So
executing the same command several times is done by simply pushing the middle button shortly - once the
desired command has been selected.

And where does the buffer get inserted? Remember the blinking caret denoting the location where typed
characters are placed. The same mark is also used here. After deletion of a string, the caret is located by
the editor at the position of the resulting gap. So, restoring the string at the same place is very simple. For
the purpose of moving text, however, you have to position the caret (as described in 5.4.) prior to activation
of the insert command. .

Let’s consider now copying a portion of a document. Having in mind only the delete and the insert facility
it would be necessary to delete a string and then to insert it twice: once at the origin and once at the
destination. To accomodate this, there is an abbreviating command in the menu: SAVE. It takes the
sclected text (which you defined using the right button) and stores it in the buffer as if it had been deleted.
But the text remains in the document and may now be copied with the help of the insert command. There
is an even easier way to copy a string which may be used if the destination is visible on the screen: set the



5005
caret to the destination and select the text to be copied; now activate INSERT. The string will implicitly
be saved into the buffer and also inserted.

5.7. Termination of an Editing Session

If you have entered a new document or updated an old one, you sometimes wish to stop your work. For
that purpose the editor provides the CLOSE command. It prompts you with the question: write the
document? [Y/N]. The No case is chosen if you want to exit the editor without saving the document on
the disk (e.g. if you used the editor to inspect a file only). To make sure that no work is lost this way the
program asks exit without writing the document? [Y/N]. And the editor stops only if you insist by
typing a "y",

If you have confirmed that you wish the document being saved, the editor displays the message what
filename? [RETURN=backup input file] and the file name of the document you worked with. (This
name is by default DK.Temp.MOD if you entered a new document.) You have now the choice to give the
document a new name (what you normally will do if it is a new one) or to store the current version with the
same name as the old one; in this case the old version is renamed: the extension of its file name is changed
to BAK. In any case you will not lose the inputfile (if there is any) of the edit process, 80 you may retrieve
your ‘edited’ data again! Note, however, that when renaming the old document to ... .BAK the file with
this name (the grandfather of your current document) is deleted.

According to the principle of not typing again what you have on your display already the editor uses the
selected text as file name if there is a selection when you terminate the session. Reading the file name from
the selection stops, however, when encountering a terminator such as you get control again before the file is
actually written: complete or correct the name from the keyboard and confirm with RETURN that you are
done.

5.8. Rescue from Abnormal Termination and Other Errors

From 5.7. it follows that our new, edited document is not written onto the disk while you work with it. The
document is indeed represented only by a data structure in main memory. This makes the case of a hard-
oor software error dangerous. Is all your work lost in such a case? Of course not. You may start the editor
again and watch what happens: It remembers all you did and repeats the whole editing process again. You
may stop this so-called replay by typing any key, continue by typing some key again, or terminate the
jnterrupted replay process and switch to normal editing with ESC. This feature is implemented by writing
all commands which you give either with the mouse or the keyboard to a file (Edit.I10.RPL) and deleting
this file if you terminate editing normally. Hint: it is wise to save the document onto the disk after a
successful replay.

Odds  Edit. T1L.RPL < ﬂ,%/,&yywé

5.9. Searching 7

The FIND command allows you to search for a string which you entered from the keyboard or which you
sclected on the screen with the mouse. When activating the command you have the following three
possibilities:
You may search for the same string as used before: Press the left button. This is convenient for
finding all occurrences of a string.

You want to search for another string of which you have a copy somewhere on the screen: Select this
string, by using the right button, before activating the find command. This way you don’t have to type
the searched string.

You enter the search string from the keyboard, terminating it with RETURN. The editor finds the
next occurrence of the string (not containing RETURN).

If you forgot what the previous search string was you may ask the editor by typing the HELP key instead of
a new search string. Searching is performed sequentially forward through the document starting from the
position of the caret. If the string can’t be found a message is displayed; else the document is positioned



5006
such as the line containing the string is visible in the middle of the text window. The caret is positioned
right after the found string. Therefore, it may be used as starting point to search for the next occurrence.

5.10. Working with Windows

In the previous chapters we have considered the whole text area as one window through which you may
inspect 38 adjacent lines of your document. The editor features, however, multiple windows for the same
document and multiple documents in parallel. Fig. 3 shows a screen with two documents of which the first
has three windows.

Fig.3:

This is the first window of the first document. ¥indows are separated by these
dashed bars:

............................................................................................

The documents may be positioned fully independently. Therefore it is possible
3 to see the same part of a document in several of its windows.

.............................................

to see the same part ol a document in severa) of 1ts windows, ~~~~"""Tccoreemeesee---d

This is now the last window of the first document. Documents are separated by
these solid lines:

v

%C
5.18.1. Open a window
&+

To open an additional window within an already existing document you first have to
activate the VINDOV command and then determine, using the mouse and the left button,
where the separating bar has to be drawn. Again, it is allowed to hold the left button
down and then move the mouse: the bar follows the cursor as long as you don't go out of °
bounds. The minimum number of lines for a window is five. If you have opened several
windows for a document you may position them independently and inspect different

parts of the document jointly despite the fact that there are hidden parts of text:
between them. You're also allowed to extend a selection over window bars. The invigible
gart inbetween is treated as being selected too. :

C

5.18.2. Open a document
&+

It is furthermore desirable and possible to have wirdows connected with other
documents: Use the right button instead of the left button when creating the

ready DK .hand5.Fig3. TXT

5.10.1. Open a Window

To open an additional window within an already existing document you first have to activate the
WINDOW command and then determine, using the mouse and the left button, where the separating bar
has to be drawn. Again, it is allowed to bold the left button down and then move the mouse: the bar
follows the cursor as long as you don’t go out of bounds. A window must contain at least five lines.. If you
have opened several windows for a document you may position them independently, and inspect dn'fferent
parts of the document jointly despite the fact that there are hidden parts of text between them. .You re also
allowed to extend a selection over window bars. The invisible part inbetween is treated as being selected
too.

5.10.2. Open a Document

It is furthermore desirable and possible to have windows connected with other documents: Use the right
button instead of the left button when creating the window. The bar, which is drawn then, is not dashed -



5007
like for a normal window but it is a solid line. And the program asks you for a file name, just like at the
beginning (where you implicitly created the first document). For the second and the subsequent documents
the default extension is no longer MOD but LST. And there is also a default name, namely the name of the
document opened before. The editor has the same conventions for entering file names as described in
section 4.2.3. Having a string selected when opening a new document causes these characters to be
interpreted as the file name.

5.10.3. Change the Size of 2 Window

In the window command, the left button has another meaning if it is pressed while the cursor is located
above the last line of a window. The cursor then picks up the associated bar and moves it up or down
following the mouse. This implies that you may change the size of an existing window.

5.10.4. Close a Window or 2 Document

If you want to remove a window you have to activate the CLOSE command. If there is more than one
window the editor prompts you close which window? [B1]. You have to denote the window by moving
the cursor inside it and pressing the left button.

Closing the uppermost window of a document, even if there are some more open, is associated with closing
the whole document. You have then to perform the necessary dialog as described in 5.7. in order to define
whether that document should be stored on the disk and, if so, which name it should have. If the document
to be closed is not the topmost one then the editor doesn’t doublecheck in case you indicate closing without
writing.

Care has to be taken if there are documents which have, besides the extension, the same file name (eg.
x.MOD and x.DEF). They cannot all be renamed to get the extension BAK. Therefore, the editor uses the
extension BAK for the first which you back up, BAL for the second, and 30 on.

Closing the topmost document, even if there are some more open, is associated with leaving the editor. If
you want to do this without writing the document you have to assert your intention. Writing is only
applicable to the document you close explicitly. So, if there are further documents when you close the
topmost one, they are implicitly closed too, but without writing.

After you have closed a document using the default backup scheme, which renamed the inputfile to ...
-BAK, you must not try to do a replay in case of a crash without renaming the files to the names they had at
the beginning of the interrupted editing session.

5.11. Accelerators

Editors are usually too simple and not handsome enough for experts or too complex for beginners or casual
users. The method to delete, copy, or move text as described in 5.6. is intended to be easily understandable
but it requires invoking the menu once or twice after the selection is made and the caret positioned. For
skilled users, the editor features a faster way to achieve the same results. While holding down the right
button to define a selection you may also associate a fype with the selection. There are delete-, copy-, and
move-selections. If you release the right button and the selection has such a type, the editor performs the
appropriate operation: with a delete-selection the selected text just disappears, with a copy-selection it is
copied to the location of the caret, and with a move-selection it is deleted at the source and inserted at the
destination (denoted by the caret again).

There are two ways to define the type of a selection: from the keyboard or with mouse buttons. If you
prefer to use your left hand and the keyboard proceed as follows: Hit "d" for delete, "c” for copy, or "s"
(because of its neighborhood to d and c) for move. You will receive a visual feedback. A delete-selection
has a dashed bottom edge, a copy-selection a dashed top, and a move-selection has both (because you
delete and copy). The selection type is a toggle, s0 typing "d” twice turns on and off again the
delcte-selection. Furthermore you are allowed to switch from one type to another. Hitting “d" followed
by "c" produces a copy-selection. Remember to keep depressing the right button all the time. If you
prefer to use the left and the middle button of the mouse instead you have to know the following encoding:
the left button corresponds to the delete-selection, the middle one to the copy-selection, and both together



5008
to the move-selection.

But before you can do some practising, your user profile must be edited in order to direct the editor to
support one way of getting selection types or the other. Read the following section on the function and
format of the user profile,

5.12. User Profile and User Guidance

A key word of today’s editors is user taylorability. The Lilith editor has a few functions which may be
turned on or off via the file User.Profile. This text file is mainly a list of options which should be active for
a given user. It may be edited as desired and when starting the editor the next time the options will be set
accordingly. If no profile is available the editor generates a default file containing:

“"Editor”

'Version' I.1¢
‘SelectionfeedBack' inverted
‘Caret’ after insertion
*Umtaut’ per default

The meaning of these entries is that you are using version 1.10 of the editor, that you want to see selected
text in reverse video, that you would like the caret to be moved behind an inserted (or copied or moved)
string, and that the editor should start in the umlaut mode. If you don’t like a particular option (e.g. those
bright rectangles for selection feedback) you may delete the associated entry from the user profile and the
editor will behave the way you specify. Note, however, that it is not possible to get version 1.8 of the
editor running by editing the version number! This entry merely serves to indicate to a newly released
editor that you just have started it the first time and that it should give you some advice on the differences
between this and the previous version. Section §.13. tells you more about umlauts. The other options will
be discussed here.

The alternative to selection feedback by inverse video is a triangular mark at the left end of the selection
and a similar mark at the right end thus avoiding large differences in the brightness level of your screen.
As a side effect it is no longer possible to have the selection types which are described in 5.11.

Not moving the caret behind inserted portions means leaving it where it is, in front of them. This location
is at least visible on the screen in all cases, whereas the caret would disappear in the other mode if you
insert more than n lines having the insertion point located less than n lines from the bottom of the window.
In such a case the editor moves the caret only to the end of the last line of the window!

Further user profile entries known by the editor are:

‘SelectionTypes' from keyboard
‘SelectionTypes' from buttons
‘HardCopy' enabled
‘Font' GACHA20

The function of the first two has already been explained in 5.11. You are allowed to have both options
enabled together.

The hardcopy entry enables the CTRL-P key. This command writes the current bitmap on the file
Editi.PICT, i = 0,1,... Such pictures may be processed by hardcopy programs. Pressing the middle and
then also the left button is equivalent to CTRL-P.

The font feature is mainly for demonstration purposes. The editor may be used with any fixed-pitch font.
Having a larger font but fewer lines and less characters is useful if you want to project the screen image and
still get readable information. As a side effect of changing the font, the editor assumes selection feedback
by reverse video and ignores selection types.

User guidance is tentatively achieved by the dialog with the user through the message window which is
done in a somewhat systematic manner: There are messages indicating the state of the system during long
lasting operations (like FIND). There are messages prompting the user for an action (like entering a
filename). The possible options for such a situation are enumerated in square brackets. There are error



5009
messages informing the user about an action the system cannot handle. And finally there are messages
indicating the last operation performed. This last type of messages appears only on request (to be given
with the HELP key).

The other general purpose key is ESC. ESC lets you escape from almost any situation. It cancels the
selection or the selection type, it cancels entering a file name or a search string, and it lets you also return
from opening or closing a document.

5.13. Special Characters

The editor supports six umlaut characters: A, O, U, &, 6, and {i. The following table shows their encoding
on a disk file and by which keys they may be generated:

A 200B SHIFT-"@"
0 201B SHIFT-"+"
U 202B SHIFT-"\"
i ) 2038 @

8 204B "

i 205B "\"

But as you see it is also possible, to generate the ASCII characters *, ~, |, @, ¢, and \. The three keys "@",
"+" and "\" may be switched to ASCII mode back and forth with CTRL-T or the key labeled FORMAT.
You may control the mode in which the editor should start by an entry in the user profile.

Fig.4: Representation of the Nonprintable ASCII Charscters in the Editor Font LN
6c CTRL @ il \
ic CTRL A start of heading &
2c CIRL B start of text )
3 CTRL C end of text (¥
4c CTRL D end of tansmission &
5c CTRL E enquiry Y
6c CTRL F acknowledge L
7c CTRL G bell [}
18c CTRL H backspacs &
11c CTRL I horizontal tabulation % A
12¢ CTRL J line feed %  (interpreted by the editor)
13c CTRL K vertical tabulation %
14c CTRL L form feed %
15¢ CTRL ¢ carriags return S
16c CTRL N shift out $
17¢ CTRL O shift in 4
28¢c CTRL P data link escape LY
21c CTRL Q device control | b
22¢ CTRL R device control 2 )
23c CTRL S device control 3 L)
24c CIRL T device control 4 &
25¢c CTRL U negative acknowledge %
26¢ CTRL V synchronous idle b
27c CTRL ¥ ond of transmission block &
36c CTRL X cancel line S
31c CTRL Y end of medium %
32¢ CTRL 2 substitute S
33c CTRL S escaps &
35¢ CTRL group ssparator L
36c CTRL M record ssparator (interpreted by the editor)
3% CTRL unit ssparator L]
177¢ DEL delete 1
34c CTRL ©\ file ssparator aQ
ready DK.hlndS.Figl.TXT




6. Utility Programs

155.82

This chapter gives an overview of some utility programs which provide the most important services on
Lilith. Utility programs are usually stored on the disk cartridge (medium name DK). The file name is
derived from the program name, beginning with the prefix SYS and ending with the extension OBJ.
Programs are called for execution by their name.

Program name directory
File name DK.SYS.directory.0BJ

List of the Programs
directory Give a list of file names 6.1.
delete Remove files from the disk ' 6.2.
protect Set protection on files 6.2.
unprotect Cancel protection on files 6.2.
copy Make copies of the file contents 6.3.
rename Change file names 6.3.
list List a text file on screen 6.4.
inspect Inspect the contents of a file 6.5.
xref Generate a reference list of a text file 6.6.
link Link separate modules to a program 6.7.
decode Disassembler of object files 6.8.
layout Tool for screen layout 6.9.
hermes Transfer files to another Lilith 6.10.
hpcopy Transfer files to a Hewlett Packard terminal 6.11.
backup Save files on an Apple diskette 6.12,
restore Restore files from an Apple diskette 6.12.
boot Bootstrap of the computer 6.13.
altboot Bootstrap the computer with the alternate boot file 6.13.

Most programs are operating on files, and they therefore will prompt for a file name and probably will also
accept program options. The syntax of file names and program options is given in chapter 4.

There are some programs which may operate on a group of files. For this purpose the accepted file name
may contain asterisk ¢ and percent % characters as wildcard symbols. An asterisk stands for any (including
the empty) sequence of legal characters (letters, digits, periods), a percent for just one legal character. This
allows to select all file names that match the pseudo file name.

Pseudo file name Ms2 TXT

Matching file names  M2.TXT
Modula2.TXT
Modula2.Version2.TXT

Pseudo file name M%.TXT
Matching file names  M1.7XT

M2.TXT
Pseudo file name Mouse.*
Matching file names  Mouse.Head

Mouse.Tail

Mouse.old.Head

An asterisk enclosed by two periods would match a single period and a leading or trailing asterisk with a
separating period would match the empty sequence. Therefore Mouse would also be a matching name in
the third example.



6.1. directory
Leo Geissmann 15.5.82

The program directory shows directory information of the selected files. It accepts a file name with
wildcard symbols. Hitting the RETURN key instead of specifying a name means that all files on the
cartridge should be selected. For all files with a name matching the specified name, the program displays
directory information in the following sequence:

- Protection symbol: A # if the file is protected
- File name

- Length in blocks (1 block = 1 K Word)

- Date of creation or last modification

Example
# Mouse.old.Head 6 22.Sep.80
Mouse .Head 7 12.Jan.81
Mouse.Tail 3 30.Sep.80
Mouse 1 17.fFeb.81

Before terminating, the program displays a summary

Number of listed files
Number of blocks used by the files
Number of free blocks on disk cartridge

If the information fills more than one screen page, the string . . . is displayed and the program is waiting
until any key is pressed on the keyboard (ESC would stop the program immediately).

With program option EXtra, supplementary information is displayed for each file. In this case the
information sequence is as follows

- Protection symbol: A # if the file is protected
- File name

- Length in blocks (1 block = 1 K Word)

- Exact length in Bytes

- Number of the directory entry

- Date of creation or last modification

- If modified: Modification version

- If modified: Date of creation

To get the directory information on a file instead on screen, the program option Outpur must be specified.
In this case the program asks for a file name and writes the information on a file with this name.

sdirectory
directory> Mouse.*/output
output file> Mouse.Directory

Program Options

Alpha
Information is listed in the alphabetic order of the file names.

NOAlpha
Information is listed in the order of the directory. Default.

Equal
Capital and lower case letters are treated as equal.



NOEqual
Capital and lower case letters are treated as distinct. Default.

Output
Information is listed on an output file.
Page
Information displayed on screen page by page. A key must be pressed after each page. Default.
Scroll .
Information displayed on screen continuously. After a key is pressed, output is stopped until a
second key is pressed.

SHort
Short information. Only file names are listed.

NORMal -
Normal information, as described above. Defaulr.

EXtra

With supplementary information, i.e. exact length in bytes, the file number and modification
information.

Capitals mark the abbreviations of the option values.



6.2. delete, protect, and unprotect
Leo Geissmann 15.5.82

The program delete allows to remove the selected files, protect and unprotect handle the protection of the
files. In the current implementation of the file system, protection means that a file cannot be changed.

The programs accept a file name with wildcard symbols. For all files with a matching name on the disk
cartridge the programs display the file name and prompt for an assertion (y for yes; n or RETURN for no)
before doing the desired operation.

Mouse.Head delete? yes
Mouse.Tail delete? no

Each program skips those files on which the operation cannot be applied, i.e. protected files are skipped by
delete and protect, and unprotected files are skipped by unprotect.

Program Options

Query

Operation on file must be asserted. Defaulr.

NOQuery
Operation on file without assertion.

Equal
Capital and lower case letters are treated as equal.

NOEqual )
Capital and lower case letters are treated as distinct. Defaull.

Capitals mark the abbreviations of the option values.



6.3. copy and rename
Leo Geissmann 15.5.82
The program copy handles the copying of files, rename the change of file names.

Two file names with wildcard symbols are accepted by the programs: a from-name and a to-name. The
from-name specifies the selected files, to-name the corresponding new names. In to-name only asterisks
are accepted as wildcard symbols, and these must be separated by periods from other identifiers.

The compatibility of from-name and to-name is checked and an error message is displayed, if a projection
is impossible. Be aware that the projection of the names is not always clear and that the programs might
come to an interpretation which differs from the intended one.

For all files with a name matching from-name, this name and the new generated name are displayed and
the programs prompt for an assertion (y for yes; n or RETURN for no) before copying or renaming the file.
If a file with the new generated name already exists, the replacement of the existing file must be asserted.

Mouse.Head to Mice.Head copy? yes replace? yes
Mouse.Tail to Mice.Tail copy? no

Program Options

Query
Operation on file must be asserted. Default.

NOQuery
Operation on file without assertion.

Equal
Capital and lower case letters are treated as equal.

NOEqual
Capital and lower case letters are treated as distinct. Defaulr.

Replace .
Existing files with new name are replaced without assertion. Default, if Query is specified.

NOReplace
Existing files with new name must not be replaced. Default, {f NOQuery is specified.

Capitals mark the abbreviations of the option values.



6.4. list
Werner Winiger 7.5.82
Utility to list a textfile on your system’s display.

The program asks for a filename. Default extension is LST. As options you may specify whether you want
to see the file page after page or scrolled up after each line. Furthermore you may choose a different font.

Example:

s1list
Tist> Example.MOD/P
MODULE Example;

In the scroll mode the program may be interrupted temporarily by typing any key. The ESC-key then will
terminate it, any other key resumes displaying of the file.

With the HELP-key ("?", CTRL-S, or TAB) instead of a filename you may ask the program for the
available options.

The following options are available:

Paging
The file is displayed pagewise. The program writes "..." on the bottom line of the display and
waits until you press a key. ESC in this situation terminates the program.

Font
The program asks you for the filename of a font (default extension: FONT). The file is
displayed using the specified character style.



6.5. inspect

Peter Lamb 15.5.82

The program inspect displays the contents of a file in several formats on the screen. It is normally used to
inspect files consisting of encoded information. The program repeatediy prompts for a file name and for
program options.

inspect> Salary.DATA/octal

If the file name is not specified, the previously accepted name is used. If no program options specifying
the output format are given, the previous format is used. The default output format at the beginning is set
according to the program options Octal and Word.

If more than one display format (Ascii, Octal or Hexadecimal) is given, each dumped item will be
displayed in each of the formats given. For example

inspect> /byte/ascii/hex
will display bytes as both ASCII characters and hexadecimal numbers.

ASCII codes from 0C to 40C are displayed as the corresponding control code (1C is displayed as +A).
ASCII codes >= 177C are displayed as octal numbers.

The leftmost column of the output is the address of the data and is in octal, unless program option
Hexadecimal has been used, and then it is in hexadecimal. Unless program option OUtput is used, the
dump will appear on the screen.

The output may be paused by typing any character except ESC or CTRL-C and restarted by typing another
character. Typing ESC will stop the printout and ask for another file to dump.

Program options

Byte
Information on file is displayed as a sequence of bytes.

Word
Information on file is displayed as a sequence of words. Defauls.

Ascii
Displayed values are represented as ASCII characters.

Octal
Displayed values are represented as octal numbers. Defauls.

Hexadecimal
Displayed values are represented as hexadecimal numbers.

Startaddress
Information is displayed from this file position. Will prompt for specification of the start
position. Default value is the beginning of the file.

Endaddress

Information is displayed until this file position. Will prompt for specification of the start
position. Default value is the end of the file.

OUtput
Information is written on an output. Will prompt for a file name.

HELP
Program will display information concerning its operation.

Capitals mark the abbreviations of the option values.



6.6. xref

Leo Geissmann 15.5.82

Program xref generates cross reference information tables of text files, especially of Modula-2 compilation
units,

The program reads a text file and generates a table with line number references to all identifiers occuring in
the text. It respects the Modula-2 syntax. This means that all word symbols of Modula-2 are omitted from
the table. The program also skips strings (enclosed by quote marks " or apostrophes ’) and comments (from
(= to the corresponding s)).

The program prompts for the name of the input file. Default extension is LST.

*xref
input file> BinaryTree.LST

The generated table is listed on a reference file in alphabetical order. In identical character sequences,
capitals are defined greater than lower case letters.

If the lines on the input file start with a number, these numbers are taken as referencing line numbers,
otherwise a listing file with line numbers is generated (see also program options L and N).

The names of the output files are derived from the input file name with the extension changed as follows

XRF for the reference file
LST for the listing file

Program Options

S

Display statistics on the terminal.
L

Generate a listing file with new line numbers.
N

Generate no listing file. The line numbers in the reference table will refer to the line numbers on
the input file. All lines on the input file without leading line numbers are skipped (e.g. error
message lines).



6.7. link
Svend Erik Knudsen 15.5.82

The program link collects the codes of separate modules of a program and writes them on one file. The
program link is called linker in this chapter.

Upon compilation of a separate module, the code generated by the Modula-2 compiler is written on an
object file. An object file may be loaded by the loader of Medos-2 directly.

As a program usually consists of several separate modules, the loader has to read the code of the modules
from several object files which are searched according to a default strategy. On the one hand, this is time
consuming because several files must be searched, on the other hand, it could be useful to subsitute a
module from a file with a non-default name. These are some reasons for having a linker program.

The linker simulates the loading process and collects the codes of all (nonresident) modules which are,
directly or indirectly, imported by the so-called main module, i.e. the module which constitutes the main
program. The linker applies the same default strategy as the loader to find an object file. A file name is
derived from (the first 16 characters of) the module name. If a first search is not successful, the prefix LIB
is inserted into the file name, and a file with this name is searched.

Module name Options
First default file name DK.Options.0BJ
Second default file name DK.LIB.Options.0BJ

The linker first prompts for the object file of the main module (default extension 0BJ). Next, it displays
the name of the main module. If the file already contains some linked modules, the names of these
modules are displayed next. Afterwards, a name of a not yet linked imported module is displayed,
followed by the file name of the corresponding object file. On the next lines the names of the modules
linked from this file are listed. This is repeated until all imported modules are linked.

*+1ink
Linker V3.1 for MED0S-2 V3
object file> delete.0BJ

Delete main module

NameSearch: DK.LIB.NameSearch.0BJ second default file name
NameSearch

Options: DK.Options.0BJ first default file name
Options
FileNames module was linked to Options

end of linkage
After successful linking, all linked modules are written on the object file of the main module!

The linker accepts the program option Q (query) when it prompts for the main module. If this option is set,
the linker also prompts for the file names of the imported modules. Type a file name (default extension
0BJ) or simply press the RETURN key to apply the default strategy. A prompt is repeated until an
adequate object file is found, or the ESC key is pressed. The latter means that this module should not be
linked.

With the query option the linker also asks whether or not a module on a object file should be linked. Type
y or RETURN to accept the module, otherwise type n. '

object file> delete.0BJ/q query option set
Delete
NameSearch> NameSearch.new.0BJ own file substituted
NameSearch 7?7 yes
Options> DK.Options.0BJ default file name
Options ? yes
FileNames ? no module not linked from this file

FileNames> FileNames.own.0BJ
FileNames 7 yes



6010
6.8. decode

Christian Jacobi 10.5.82

Program decode disassembles an object file.

The program reads an object code file and generates a textfile with mnemonics for the machine
instructions. It respects the structure of the object file as generated from the compiler.

The program prompts for the name of the input file. Default extension is OBJ.

sdecode
decode > program.0BJ

The name of the output file is derived from the input file name with the extension changed to DEC.

The intended usage of this program is to check the compiler after modifications of the code generation;
however this program may be used also to learn about the code generation. In production there is no need
to know the code generated by the compiler.



6011
6.9. layout

Christian Jacobi 20.2.82

Program layout is used to design the screen layout for programs which use windows.

The program allows creation of windows and to query interactively the coordinates of the windows. When
the program is started, a window LAYOUT is created. Other windows can be opened, the windows can be
moved and changed. At any time it is possible to write the coordinates of the windows.

The program is interactively driven with the mbuse. Pressing a mouse button calls either the window menu
or the (standard) background menu, depending on where the cursor points to. To exit the program use the
exit command of the background menu.

When you type on the keyboard, the text is written in the active window. That window is active, where a
mouse button was clicked most recently.
Window Menu Commands

alfa
Writes the alphabet into the window.

clear
Clears the window.

border
Writes the outside (border) coordinates of the window into the window.
inside
Writes the coordinates of the inside area of the window into the window.
layout
Asks for a filename, creates a file and writes the coordinates of all windows to the file.
open

Opens another window. Type the header line of the window, tcrininated by RETURN. Point
the diagonal of the new window with the mouse.

Background Menu Commands
This is the standard background menu. It allows to delete, to change, to move ... windows, to call the
command interpreter and to exit. This background menu is described with the module WindowDialogue.

Format of the Layout File

Every window gets a 3 line entry. The first line shows the title of the window. The second line shows the
outer coordinates of the window in decimal notation. The third line shows again the outer coordinates of
the window, but in octal notation.

Example

procedure call chain
5 255 537 147
5 377 1031 223



6012
6.10. hermes

Jirka Hoppe 14.5.82
The program hermes transfers files between two Lilith computers connected by a V24 (RS 232) cable.
To transfer a file do the following steps:

1/ Connect both computers with a cable. Be sure that the RS232 switch is in the "CPU-PORT’ position
(up) and that the speed switch on both computers is set to the same speed (recommended is 9600 baud).
This is the normal (default) situation, preset by the hardware technician.

2/ Start the hermes program on both computers.

3/ The both programs ask you: are you a master? Answer with y on the computer where you will give
the transfer commands (master), answer with n on the other computer (slave). It is recommended to start
first the slave computer and later the master. The master will respond with opening 1ine. ... When the
connection with the slave is established, a message 1ine opened will be displayed.

4/ The master now asks you for the names of the files that should be transferred. The syntax of a file name
is the standard syntax with a prefix allowing to distinguish between both computers. The prefix ME:
identifies the master, the prefix YOU: identifies the slave. Type M for ME:; type Y for YOU:.

If you try to write a file that already exists, the program asks you if you would like to replace the old file.
Answer with y to replace the file or with n to abandon this file transmission. This query may be turned off
by an option n (no query) following the from file.

When specifying the name of the to: file you may type a RETURN only. In that case the name of the from:
file will be taken as default.

Examples

from>ME :MyMoney.A11<cr>
to>Y0U:debt<cr>

This transfers a file "MyMoney.All’ from the master computer to the file *debt’ on the slave computer.
If the file already exists on the master computer, you will be asked if the file should be overwritten.

from>YOU:hundred.francs/n<cr>
todME <¢

0
>

[ }

r>

transfers a file "hundred.francs’ on the slave computer to the file *hundred.francs’ on the master
computer. If the file already exists on the master computer, it will be overwritten without any notice.

5/ At the end of the transmission you could exit from the master with typing ESC. The program asks you
in which way you like to exit. Type:

K or ESC - to exit and turn off the slave process
S - to exit but let the slave process active to reopen the session next time the master starts hermes.
R - to return back to the hermes program

If the slave process is turned off by the master, a message the transmission is finished, you may use
your machine again will be displayed on the his screen.

The slave must be killed by CRTL-C, if he is not turned off by the master.

Remarks

Since the program works without interrupts, there may arise a situation, where the protocol gets out of the
synchronization. If the program reports the 1ost 1ine or if the line could not be opened at the beginning,
please restart both programs. In the normal case checksum of each packet is computed and packets with
any kind of troubles are retransmitted. The transmission speed is about 1Kword in 2.6 seconds.



6013
6.11. hpcopy

Werner Winiger 6.5.82
Utility to transfer a textfile from/to the tape cartridge of a Hewlett Packard 26XY terminal.

The program checks whether a terminal is connected to your system’s V24 connector and whether it is
ready to transmit data.

If so, the program asks for a file name. Default extension is MOD. The source device of the file is
indicated (as for the program hermes) with a prefix to the file name. The prefix ME: stands for your Lilith
(i.e. the file is transferred from disk to tape), YOU: denotes the terminal (i.e. the file is copied from the
tape cartridge). You only have to type the first character of the prefix (lower case), the rest will be
supplied by the program.

Examples:

*hpcopy
copy from> ME:Example.MOD
to> YOU:

done
.

*hpcopy
copy from> YOU:
to> ME:Example.TXT

done
*®

The program doesn’t know about positioning the tape. This means that the cartridge has to be positioned
appropriately before transferring the file. After copying a file, however, hpcopy writes a file mark on the
tape.



6014
6.12. backup and restore

Richard Ohran 21.5.82
Programs for saving and restoring Lilith files on an Apple diskette.

The program backup allows you to backup your files on an Apple mini floppy diskette; the program
restore loads them from an Apple floppy back to your Lilith.

To back up your files you first have to prepare a floppy with the following files (you may once have
prepared a master copy):

SYSTEM.PASCAL
SYSTEM.APPLE
SYSTEM.MISCINFO
T.CODE

Maybe you would also like to include the file
SYSTEM.FILER

Now boot your Apple diskette, set the prefix to the name of your diskette and execute the Apple program
T. The Apple computer is now ready for both backup and restore.

Start either a backup if you want to save your file or restore if you want to reload your files. The programs
will ask you for two file names: a from-name and a to-name. In the program backup, the from-name
specifies the file on your Lilith computer that should be saved and the to-name specifies the name of the
copy on an Apple diskette. In the program restore, the from-name specifies the Apple file and the to-name
is the name of the reloaded file on your Lilith.

If you type just RETURN to specify the to-name, the from-name will be taken as the default for the
to-name.

To exit the program type a single RETURN when the program asks for the from-name.

Example

sbackup

from>MyImportantFile.TXT

to>MyImpFil
Saves the Lilith file MyImportantFile.TXT on the Apple diskette under the name MyImpFil.
srestore

from>MyImpFil
to> <RETURN>

Loads the Apple file MyImpFi1 to Lilith under the name MyImpFil.

Caution

The Apple program T requires correct interactive input. The program crashes if any error occurs. This
especially, if the file names on the Apple are too long (at least 11 characters are allowed for an identifier
within the file name), or if the Apple diskette gets full.

The Apple converts lower case letters in the file name to capitals.

File Format on the Apple

On the Apple diskette the files are stored as data files. The first 4 bytes on the files are used to encode the
length of the file. This header is followed by the saved information.



6015
6.13. boot and altboot

Svend Erik Knudsen 15.5.82
The programs boot and altboot initiate a soft boot of Medos-2 on Lilith,

The program boor initiates a bootstrap from the normal boot file (PC.BootFile), whereas the program
altboot initiates a bootstrap from the alternate boot file (PC.BootFile. Back). The programs need no input
from the keyboard.

Warning

The devices connected to Lilith are not reset by a soft booy, as this is not generally possible from software.
Whenever you have to boot and you are not sure, whether or not a device using direct memory access is
running, press the reset button on the rear of the keyboard and hit the space bar or type CTRL-A.



7001

7. The Compiler

Leo Geissmann 15.5.82

This chapter describes the use of the Modula-2 compiler. For the ianguage definition refer to the
Modula-2 manual [1]. Lilith specific language features are mentioned in chapter 12 of this handbook.

7.1. Glossary and Examples

Glossary

compilation unit

Unit accepted by compiler for compilation, i.e. definition module or program module (see
Modula-2 syntax in [1]).

definition module
Part of a separate module specifying the exported objects.

_ program module
Implementation part of a separate module (called implementation module) or main module.

source file
Input file of the compiler, i.e. a compilation unit. Default extension is MOD.

listing file
Compiler output file with list of the compiled unit. Assigned extension is LST.

symbol file

Compiler output file with symbol table information. This information is generated during
compilation of a definition module. Assigned extension is SYM.

reference file

Compiler output file with debugger information, generated during compilation of a program
module. Assigned extension is REF.

object file
Compiler output file with the generated M-code in loader format. Assigned extension is OBJ.
Examples
The examples given in this chapter to explain the compiler execution refer to following compilation units:

MODULE Progi;
END Prog1.
MODULE Prog2;
BEGIN

a:=2
END PROG2.

DEFINITION MODULE Prog3;
EXPORT QUALIFIED ...

END Prog3.

IMPLEMENTATION MODULE Prog3;
IMPORT Storage;



7002
END Prog3.

7.2. Compilation of a Program Module

The compiler is called by typing modula. After displaying the string source fiie> the compiler is ready
to accept the filename of the compilation unit to be compiled.

smodula
source file> Prog1.MOD name DK.Progl. MOD is accepted

p2 the succession of the activated
p3 compiler passes is indicated
p4

lister

end compilation
*

Default device is DK and default extension is MOD.

If syntactic errors are detected by the compiler, the compilation is stopped after the third pass and a listing
file with error messages is generated.

*modula
source file> Prog2.MOD
p1
---- error error detected by passl
p2
p3
---- error error detected by pass3
lister
end compilation
*

7.3. Compilation of a Definition Module

For definition modules the filename extension DEF is recommended. The definition part of a module must
be compiled prior to its implenientation part. A symbol file is generated for definition modules.

smodula

source file> Prog3.DEF definition module
p1

p2

symfile

lister

end compilation
*

7.4. Symbol Files Needed for Compilation

Upon compilation of a definition module, a symbol file containing symbol table information is generated.
This information is needed by the compiler in two cases:

At compilation of the implementation part of the module.
At compilation of another unit, importing objects from this separate module.

According to a program option, set when the compilation is started (see chapter 7.6.), the compiler either
explicitly prompts for the names of the needed symbol! files, or searches for a needed symbol file
(extension SYM) by a default name, which is constructed from (the first 16 characters of) the module



7003
name. In the former case the query for a symbol file is repeated until an adequate file is found or the ESC
key is typed. If in the latter case the search fails, the default name is combined with a prefix LIB and the
compiler tries again to find a corresponding file. A second failure would cause an error message.

Module name Storage
First file name DK.Storage.SYM
Second file name DK.LIB.Storage.SYM
If not all needed symbol files are available, the compilation process is stopped immediately.
*modula
source file> Prog3.MOD implementation module
p1

Prog3: DK.Prog3.SYM
Storage: DK.LIB.Storage.SYM
p2

p3

p4

lister

end compilation
*

7.5. Compiler Output Files

Several files are generated by the compiler. They get the same file name as the source file with an
extension changed as follows

LST listing file
SYM symbol file
REF reference file
0BJ object file

The reference file may be used by a debugger to obtain names of objects.

7.6. Program Options for the Compiler

When reading the source file name, the compiler also accepts some program options from the keyboard.
Program options are marked with a leading character / and must be typed sequentially after the file name
(see chapter 4.).

The compiler accepts the option values:

LISTing

A listing file must be generated. Default.
Nolisting

No listing file must be generated.
Query

the compiler explicitly promps for the names of the needed symbol files, belonging to modules
imported by the compiled unit.

NOQuery
No query for symbol file names. Files are searched corresponding to a default strategy. Default.

SMall
A small program is compiled. Work files of the compiler may be allocated in memory. Default.



7004
LArge
A large program is compiled. Work files of the compiler must be allocated on the disk.

Version

Compiler has to display information about the running version, e.g. processor and operating
system flags.

Capitals mark the abbreviations of the option values.

7.7. Compilation Options in Compilation Units
Comments in a Modula-2 compilation unit may be used to specify certain compilation options for tests.
The following syntax is accepted for compilation options:

CompOptions = CompOption { ", CompOption } .
CompOption = "$" Letter Switch.
Switch = "+ m=".

Compilation options must be the first information within a comment. They are not recognized by the
compiler, if other information precedes the options.

Letter

R Subrange and type conversion test.
T Index test (arrays, case).

Switch

+ Test code is generated.

- No test code is generated.

Previous switch becomes valid again.

All switches are set to + by default.
MODULE x; (= $T+ =)

o test code generated

(+ $T- %)

a[i] := a[i+1]; no test code is generated

(+ $T= o)

- test code is generated
END x

7.8. Module Key

With each compilation unit the compiler generates a so called module key. This key is unique and is
needed to distinguish different compiled versions of the same module. The module key is written on the
symbol file and on the object file.

For an implementation module the key of the associated definition module is adopted. The module keys of
imported modules are also recorded on the generated symbol files and the object files.

Any mismatch of module keys belonging to the same module will cause an €ITor message at compilation or
loading time.

WARNING

Recompilation of a definition module will produce a new symbol file with a new module key. In this
case the implementation module and all units importing this module must be recompiled as well.



7005
7.9. Program Execution

Programs are normally executed on the top of the resident operating system Medos-2. The command
interpreter accepts a program name and causes the /oader to load the module on the corresponding object
file into the memory and to start its execution.

If a program consists of several separate modules, no explicit linking is necessary. The object files
generated by the compiler are merely ready to be loaded. Besides of the main module, the module which is
called to be executed and therefore constitutes the main program, all modules which are directly or
indirectly imported are loaded. The loader establishes the links between the modules and organizes the
initialization of the loaded modules.

Usually some of the imported modules are part of the already loaded, resident Medos-2 system (e.g.
module FileSystem). In this case the loader sets up the links to these modules, but prohibits their
reinitialization. A module cannot be loaded twice.

After termination of the program, all separate modules which have been loaded together with the main
module are removed from the memory. More details concerning program execution are given in chapter 3.

Although it is not necessary to link programs explicitly, it is sometimes more appropriate to previously
collect all modules, which are to be loaded together, and to write them on the same file. This will
accelerate the loading. Linking is provided by the program link (see chapter 6.7.).

Medos-2 also supports some kind of a program stack. A program may call another program, which will be
executed on the top of the calling program. After termination of the called program, control will be
returned to the calling program. For more details refer to the library module Program (see chapter 9.2.).

7.10. Value Ranges of the Standard Types
The value ranges of the Modula-2 standard types on Lilith are defined according to the word size of 16 bit.

INTEGER
The value range of type INTEGER is [-32768..32767]. Sign inversion is an operation within
constant expressions. Therefore the compiler does not allow the direct definition of -32768.
This value must be computed indirectly, e.g. -32767-1.

CARDINAL
The value range of tvpe CARDINAL is [0. .65535].

REAL
Values of type REAL are represented in 2 words. The value range expands from -1.7014E38 to
1.7014E38.

CHAR

The character set of type CHAR is defined according to the ISO - ASCII standard with ordinal
values in the range [0..255]. The compiler processes character constants in the range
[ec..377C].

BITSET

The type BITSET is defined as SET OF [0..15]. Consider that sets are represented from the
high order bits to the low order bits, i.e. {15} corresponds to the ordinal value 1.

7.11. Differences and Restrictions
For the implementation of Modula-2 on Lilith some differences and restrictions must be considered.

Constants expressions with real numbers

Constants expressions with real numbers are not evaluated by the compiler (except sign
inversion). The compiler generates an error message.



7006
Character arrays
In arrays with element type CHAR two characters are packed into one word. This implies the
restriction that a variable parameter of type CHAR must not be substituted by an element of a
character array.

Sets
Maximal ordinal value for set elements is 15.

FOR statement

The values of both expressions of the for statement must not be greater than 32767 (777778).
The values are checked at run time, if the compilation option R + is specified. The step must be
within the range [-128. .127], except the value 0.

CASE statement
The labels of a case statement must not be greater than 32767 (777778B).

Value ARRAY OF WORD parameter

Constants (with the exception of constant strings) must not be substituted for a value dynamic
ARRAY OF WORD parameter.

Function procedures
The result type of a function procedure must neither be a record nor an array.



7.12. Compiler Error Messages

O~NOONEWN -0

2BTLITALY

71

: illegal character in source file

: constant out of range

: open comment at end of file

: string terminator not on this line

. too many errors

: string too long

: too many identifiers (identifier table full)
: too many identifiers (hash table full)

: identifier expected

. integer constant expected

: '] expected -

: '}’ expected

: block name at the END does not match
: error in block

: " ="' expected

: error in expression

: THEN expected

: error in LOOP statement

: constant must not be CARDINAL
. error in REPEAT statement

: UNTIL expected

: error in WHILE statement

: DO expected

: error in CASE statement

: OF expected

: '’ expected

: BEGIN expected

: error in WITH statement

: END expected

: ') expected

. error in constant

: '=" expected

: error in TYPE declaration

: '(’ expected

: MODULE expected

: QUALIFIED expected

: error in factor

. error in simple type

: ', expected

: error in formal type

: error in statement sequence

: " expected

: export at global level not allowed
: body in definition module not aliowed
: TO expected

: nested module in definition module not allowed
: '} expected

: .." expected

: error in FOR statement

: IMPORT expected

: identifier specified twice in importlist
: identifier not exported from qualifying module

7007



72
73
74
75
76

78
79

81
82
83

85

87

89

91
92
93
94
95

97

100
101
102
103
104
105

107

109
110
111
112

120
121
122
123
124
125
126
127
128
128
130
131
132

134

: identifier declared twice

: identifier not declared

: type not declared

: identifier already declared in module environment

: too many nesting levels

: value of absolute address must be of type CARDINAL

: scope table overflow in compiler

: illegal priority

: definition module belonging to implementation not found

: structure not allowed for implementation of hidden type

: procedure implementation different from definition

: not all defined procedures or hidden types implemented

: name contlict of exported object or enumeration constant in environment
: incompatible versions of symbolic modules

: function type is not scalar or basic type

: pointer-referenced type not declared

: tagfieldtype expected

: incompatible type of variant-constant

: constant used twice

. arithmetic error in evaluation of constant expression
: incorrect range

: range only with scalar types

: type-incompatible constructor element
: element value out of bounds

: set-type identifier expected

: structured type too large

: undeclared identifier in export list of the module
: range not belonging to base type

: wrong class of identifier

: no such module name found

: module name expected

106 :

: settoo large

108 :

: scalar or subrange type expected

: case label out of bounds

: illegal export from program module

: code block for modules not allowed

: incompatible types in conversion

: this type is not expected

: variable expected

: incorrect constant

: no procedure found for substitution

: unsatistying parameters of substituted procedure
: set constant out of range

. error in standard procedure parameters
: type incompatibility

: type identifier expected

: type impossible to index

: field not belonging to a record variable
: too many parameters

133 :

: reference not to a variable

7008



135
136
137
138
139
140
141
142
143
144
145
146
147
148
148
150
1561
152
153
154
155
156
167
158
159
160
161

200
201
202
203
204

205
206
207

220
221
222
223

. illegal parameter substitution

. constant expected

. expected parameters

: BOOLEAN type expected

: scalar types expected

. operation with incompatible type

: only global procedure or function allowed in expression
. incompatible element type

: type incompatible operands

: no selectors allowed for procedures

: only function call allowed in expression

. arrow not belonging to a pointer variable

: standard function or procedure must not be assigned
: constant not aliowed as variant

: SET type expected _

: illegal substitution to WORD parameter

: EXIT only in LOOP

: RETURN only in PROCEDURE

: expression expected

. expression not allowed

: type of function expected

: integer constant expected

. procedure call expected

: identifier not exported from qualifying module

: code buffer overflow

: illegal value for code

: call of procedure with lower priority not allowed

: compiler error

: implementation restriction

: implementation restriction: for step too large

: implementation restriction: boolean expression too long
: implementation restriction: expression stack overflow,

i.e. expression too complicated or too many parameters

: implementation restriction: procedure too long
: implementation restriction: packed element used for var parameter
: implementation restriction: illegal type conversion

: not further specified error

: division by zero

. index out of range or conversion error
. case label defined twice

7009



8001

8. The Debugger

Christian Jacobi 15.5.82

If an error occurs while executing a program, the operating system will make a complete dump of the main
memory to the disk. The debugger is an aid to inspect this dumpfile.

Even though the debugger seems to have a large number of commands, its use is mostly self-explaining.
The commands are well structured.

8.1. Starting the Debugger

Type in debug to start the debugger. The debugger asks for the dumpfile to analyze. Type RETURN to
take the default dump files, otherwise the filename. If the default filenames are not used, some debugger versions

also ask for the file where the upper mémory bank is dumped. The debugger asks if the default files for reference
and listing information should be taken. (RETURN or blank is interpreted as yes).

Next, the debugger constructs its internal data structures. If the default files are not taken, it may ask for
several filenames. To use the default files type RETURN. Now the debugger is ready to start the
interactive inspection of the saved dump.

8.2. General Debugging Dialog

The debugger shows several windows, having different active commands. The mouse is used to control the
debugger. Clicking the middle button of the mouse within a window will show the active commands inside
that window with a menu. To select a command, move the cursor to that command in the menu and release
the button. The left button is usually used to execute the most important of the active commands
immediately (i.e. without going through the menu).

Some windows have a scroll bar at the left. In the scroll bar the buttons have different meanings:

The left button scrolls the current line to the top; the right button scrolls the current line to the bottom and
the middle button is used for relative positioning. :

Most debugging interactions are done at the source level. Additionally, the debugger gives some
machine-level information. This information aliows debugging to be continued in cases where the source
level information is not (nowj complete. The debugger should be useful not only for debugging simple
programs, but also for system programs, where binary information, process descriptors and other low-level
data is used.

8.3. The Debugger Windows and Their Commands

8.3.1. The Procedure Chain Window
The procedure chain window shows the calling sequence of active procedures.

Commands

list:
Shows the listing of a program unit (a procedure or a module) in the program window. After
giving the list command, select a procedure by pointing at it with the mouse.

data:

Shows the data of a program unit in the data window. After giving the data command, select a
procedure by pointing at it with the mouse.

The left button combines the two commands for listing and data. The data and the listing of the selected
procedure are shown in their respective windows.



8002
Each procedure in the procedure chain is described by one line. The procedure name is followed by the
name of the module, the actual program counter value and the base address of the procedure frame. For
modules with a missing reference file, the procedure name is replaced by its internal number.

Some Procedures Have a Mark:
<== This is the most recent procedure. It is the top procedure in the window.

xxx This procedure is the main procedure of the process, usually the main module initialization code. It
is the bottom procedure in the window.

pv This procedure has been called as a procedure variable.
Length of procedure chain exceeds maximum length displayed by the debugger.

8.3.2. The Program Window

The program window is used for inspection of the text of the program to be debugged. The window shows
the program text prefixed with a line number and an octal location counter. Lines which do not fit into the
window are clipped.

Commands

pc:
Asks for an octal number and searches for this number as program counter in the program.

line:
Asks for a line number and searches for that line.

If default filenames are not used, the debugger asks for the listing file every time a new module is shown in
the program window. A RETURN input will use the default listing file whose name corresponds to the
module name. Press ESC if no listing file exists.

8.3.3. The Data Window
The data window shows the data of the inspected modules.

select:
This is the default command which is executed if the left mouse button is pressed inside the data
window. :
Applied 1o a data element: Shows its value (and address) in the memory window.
Applied to a local module: Shows the contents of that module in the data window.
Applied to the shown program unit itself: 1f the program unit is a module and is local to another
one, the embedding program unit is shown.

father:

This command is only active when a local module is shown. Executing it causes the embedding
program unit to be shown.

If default filenames are not used, the debugger asks for the reference file when ever a new module is
referenced for the first time in the data window. A RETURN input will use the default reference file,
whose name is equal to the module name. Press ESC if no reference file exists.

The first line in the window shows the name of the module or procedure currently inspected, together with
the name of the embedding program unit (filename for global modules). After this, the local modules and
variables are shown. Simple variables are shown with name, value, type and address. For structured
variables, the value is replaced by the size. The actual value can be inspected in the memory window. The
next version of the debugger will show the value of the structured variable in the "structured variables” window.



8003
8.3.4. The Dialog Window

The dialog window shows messages and prompts user input. During the initialization of the debugger, the
trap cause of the debugged program is written in the dialog window.

Commands
exit:
Exit the debugger.
map:
Install and show the load map window.

memory:
Install and show the memory window.

screen: -
Install and show the screen window. (Not always possible).

process:
Install and show the process window.

8.3.5. The Memory Window
The memory window is used for inspection of the main memory. This window is shown on demand only.

The first column contains the octal address. The rest of the line shows the contents of memory in any
selected mode.

Commands
ind:
Demands selection of a memory word and uses the contents as address of the memory area to be
displayed. This is the default command executed when the left mouse button is pressed.

addr:
Asks for an (octal) address from the keyboard and shows that memory portion.

process:

Demands selection of a memory word with the mouse and shows the interpretation of this and
the following words as a process descriptor in the process window.

mode:

Changes the representation of the displayed memory area. Another menu is shown, which lets
you select the data representation either as octal, cardinal, integer, byte, hexadecimal or
character.

8.3.6. The Load Map Window

The load map window shows the load map. This window is shown on demand only.

Commands

list:

Shows the listing of a program unit in the program window. After giving the list command,
select a module by pointing at it with the mouse.

data:

Shows the data of a program unit in the data window. After giving the data command, select a
procedure or a module by pointing at it with the mouse.



8004
The left button combines the two commands for listing and data. The data and the listing of the selected
module are shown in their respective windows.

The module names in the load map are shown with corresponding data and code frame pointer and internal
module number.

8.3.7. The Process Window

The process window allows inspection of process descriptors. The cause of the error trap is described in
this window.

This window is especially useful for debugging programs with coroutines (PROCESS). The displayed
values correspond to the machine registers saved in the process descriptor.

This window is shown on demand only.

Commands

debug: .
Debugs the process whose process descriptor is shown in the process window.

normal:

Switch the process window to show the normal process descriptor. This is the process descriptor
of the process which caused the termination.

caller:

Switch the process window to show the process descriptor of the calling process. This feature is
used mainly when a program which uses the loader (procedure Call of module Program) is
debugged.

8.3.8. The Screen Window

The screen window shows the screen of the debugged program. Not all debugger versions support this
window. This window is shown on demand only. .

This window has in addition to the standard vertical scroll bar also a horizontal scroll bar. The left button
shows the relative location of the shown parts of the screen. The middle button shows, as usual, a menu.

Restriction (for the current version of the debugger): The screen of a program can be shown only when that program
imports the module Screen.

8.3.9. The Background Commands

A group of commands can also be activated when the cursor is outside all windows, i.e. in the background.
These commands are used to modify the debugging environment, like the size and location of the windows
or the fonts used.

The commands of this menu are applied to the debugger itself; they have no connection to the debugged
program. After selecting a command a window has to be designated; the command is relative to that
window,

Commands

exit:
Exits the debugger like the exit command in the dialog window.

call:

Shows another menu. Selects a utility program and executes it. (Either directory, copy, delete,
rename, list or other important routines). If the utility-menu is discarded and the keyboard is
pressed, it starts a command interpreter, reads a program name and executes that program inside
the window. (Press ESC to quit the command interpreter). None of the called programs is part



8005
of the debugger; it is possible to run out of memory or to get other loader or execution error
messages. The call command allows creation of a new, temporary window if no window is
selected.

This command is dangerous. When the called program traps or is halted, it will produce a dump.
The new dump may overwrite the old dump, which currently is being inspected by the debugger,

causing the debugger to inspect inconsistent data. , , ,
Fress o nfl:gg RS 2T L to Shore ok Jca't e
remove: ¥

Removes the Window. The memory, process, screen and load map windows are the only ones
which can be removed.

move:
Moves the window, asking the user to select the new location.

change:
Changes the window size or location. Asks the user to point out the diagonal of the new window.
Size changes have different effects for the different windows. It may be useful to have a smaller
program window, but the lines will be clipped. Losing information of the procedure call chain
window is normally not tolerated. The memory window will always display contiguous areas of
memory, unless it is too small to display anything.

font:

Set font used for the window. When positioning is needed (memory window!) a
non-proportional (fixed width) font should be used.

order:
Shows another menu with names of windows. Select a window to be placed on top (made it
visible).

When no menu command is selected, but the mouse button is released while the cursor square points to a
window, this window is put on top (made visible).

Fine points:

The top line of the screen is considered to be background. This allows selection of the background commands when the
background is not visible at all.

To escape from a started command, press ESC .



8.4. An Example

8.4.1. Screen with Default Layout

65 000842 PROCEDURE GetMouse;
66 008842 VAR ch: CHAR; b: BOOLEAN;
67 0006042 pt: CardPointer;
68 800842 x, y: CARDINAL;
69 000042 BEGIN ch := "a"; pt :« NIL;
78 888053 MouseCoords .GetMouse(x, vy, buttons);
71 080861 xpos := x-x0ff;
72 @80d66 IF xpos>xMax THEN xpos := xMax END;
73 0080874 ypos := y-yOff;
- procedure cEIFeHain " e X L s L S

~ -

at B0gB64

GetMouse in CursorStuff ( 865347) (==
SimpleMove in CursorStuff at BBB453 ( B65341) pv
ReleaseCursor in CursorStuff at 008756 ( B865327)
MenuSelection in CursorStuff at 883848 ( 865261)
VindowEditor in ¥indowDialogue at 885812 ( B65255)
Dialogtoop in ¥indowDialogue at 888284 ( 865244)
initialization of layout at 881542 ( 833325) pv xxx

dbuilds the

procedure chain { | PROCEDURE GetMouse in CursorStuff

open DK.CursorStuff.REF done 1 | ch a CHAR at 0865353
fopen DK.¥indowDialogue.REF done 11b undef BOOLEAN at 865354
Jopen DK.layout.REF done pt NIL pointer at 865355
Jopen OK.CursorStuff.LST done IRE; . 89 CARDINAL at 865356
Jerror cause: 11y 431 CARDINAL at 065357
4 cardinal overflow g ‘

{start with mouse buttons

1 program window
2 procedure call chain window
3 dialog window
4 data window
5 background menu with move command selected
6 scroll bar
7 line number
8 approximate location; byte offset to module base. (displayed octal).
9 program text
10 procedure name
11 name of embedding module
12 program counter (like 8)
13 base address of data
14 execution stopped in this procedure
15 this procedure is called as procedure variable
16 error cause
17 memory address
18 message: file has been successfully opened
19 name of a variable
20 value of a variable
21 type description



22 name of embedding module or file

8007

In the dialog window the trap cause cardinal overflow, is displayed. The procedure call chain window
shows, that the process terminated at location 64B in the procedure GetMouse of the module
CursorStuff. This location is approximately found on line 71 in the program window. On that line the
cardinal expression x-xO0ff is found. In this program example xOff ig declared as a constant of value 90
(Not currently shown in the debugger). Inspection of the data window shows that x has the value 89, which

was the cause of the overflow.

(Note: The actual library module CursorStuff will NOT cause such cardinal overflows.)

8.4.2. Screen with Additional Opened Windows

“proaram - - < - - j R , T
1 8068822 MODULE layout; (* Ch. Jacobi 13.2.8
0800022
3 e8ge22
4 880022 FROM ¥indowHandler IMPORT
5 800822 Vindow, VindowDescriptor, BlockDe
6 080822 CloseYindow, Clear, ¥riteChar, Us
7 888822 Select¥indow, FullScreen, Default layout V1.8; 28.Feb.82
8 800022 YindowSignal, Ignore¥indowSignal,
9 0806022 FROM Terminal IMPORT Read, Write, ¥

18 808022 FROM CursorStuff IMPORT MenuSelect o

-‘procedure -call -chain * v -~ -
GetMouse in CursorStuff
SimpleMove in CursorStuff
ReleaseCursor in CursorStuff
MenuSelection in CursorStuff
VindowEditor in WindowDialogue
DialoglLoop in ¥indowDialogue
initialization of layout

at 808864 ( B65347) (==

1 P 865227
{ cardinal overflow

4 L 865347 PC 860864
1 G 854237 error 880687
at 8085812 ( 865255) | S 865362 mask 0088808
at 8080204 ( @865244) | H 177777  Tmask 882080
at 881542 ( 833325) pv xxx |-

at 888453 ( B65341) pv
at 808756 ( 865327)
at 9883848 ( 865261)

Trioad map A e 2k s -
12 DefaultFont 830444
13 layout 0833325
14 Screen 834522
15 VindowHandler 843287

| 833331 | 843425 843425 682081 888808

1 833335 | 866141 074557 @72564 ©68800
1 833341 | 863151 ©66145 837888 842113
1 833345 | 827856 ©52185 ©54124 800008

g -dtalog - It v
Jchange which window
:ichange window  screen
Jpoint the diagonal
“change which window
dchange window  screen
Jpoint the diagona)

Jopen DK.layout.LST done
Jchange which window

{1 | MODULE layout :

doneB . TRUE BOOLEAN et 833338
default 043425 pointer st 833331
cur 0843425 pointer at 833332
1 1 CARDINAL at 833333
3j B CARDINAL at 833334

In this figure, the additional windows have been opened. The module layout in the load map window has
been selected, causing the modules program and data to be shown.

30 load map window

31 process window

32 memory window

33 screen window

34 registers saved in processdescriptor
35 process pointer

36 error cause

37 module number

38 module name

39 module base address (data segment, in octal)



40 screen of debugged program (shows again a window)

41 horizontal scroll bar of the screen window

42 cursor

43 interactive dialog; the screen window had been changed
44 memory address (inside the memory scroll bar)

45 memory data; current mode is octal

8008



9. The Medos-2 Interface

Svend Erik Knudsen 15.5.82

This chapter describes the interface to the Medos-2 operating system. It contains the following modules:

FileSystem
Program
Storage
Terminal

Standard module for the use of files 9.1.
Facilities for the execution of programs upon Medos-2  9.2.
Standard module for storage allocation in the heap 9.3.

Standard module for sequential terminal input/output  9.4.



9.1. Module FileSystem

Svend Erik Knudsen 15.5.82

9.1.1. Introduction

A (Medos-2) file is a sequence of bytes stored on a certain medium. Module FileSystem is the interface the
normal programmer should know in order to use files. The definition module is listed in chapter 9.1.2.
The explanations needed for simple usage of sequential (text or binary) files are given in chapter 9.1.3.
More demanding users of files should also consult chapter 9.1.4. The file gystem supports several
implementations of files. At execution time a program may declare that it implements files on a certain
named medium. How this is achieved is mentioned in chapter 9.1.5. On Lilith the 10 Mbyte cartridge for
the Honeywell Bull D120/D140 disk drive is the standard medium for files. Some characteristics and
restrictions of the current implementation, as well as a list of possible error messages, are given in chapter
9.1.6.

9.1.2. Definition Module FileSystem
DEFINITION MODULE FileSystem;  (+ Medos-2 V3 S. E. Knudsen 1.6.81 s)

FROM SYSTEM IMPORT ADDRESS, WORD;

EXPORT QUALIFIED
File, Response,
Create, Close, Lookup, Rename,
ReadWord, WriteWord, ReadChar, WriteChar,
Reset, Again, SetPos, GetPos, Length,
Command, MediumType, FileCommand, DirectoryCommand,
Flag, FlagSet,
SetRead, SetWrite, SetModify, SetOpen, Doio,
FileProc, DirectoryProc, CreateMedium, RemoveMedium:

TYPE

MediumType = ARRAY [0..1] OF CHAR;

MediumHint;

Flag = (er, ef, rd, wr, ag, bytemode);

FlagSet = SET OF Flag;

Response = (done, notdone, notsupported, callerror,
unknownmedium, unknownfile, paramerror,
toomanyfiles, eom, deviceoff,
softparityerror, softprotected,
softerror, hardparityerror,
hardprotected, timeout, harderror);

Command = (create, open, close, lookup, rename,
setread, setwrite, setmodify, setopen,
doio, _
setpos, getpos, length,
setprotect, getprotect,
setpermanent, getpermanent,
getinternal);

File = RECORD

bufa: ADDRESS;



PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

TYPE
FileProc
Director

PROCEDURE

PROCEDURE

END FileSyst

ela: ADDRESS; elodd: BOOLEAN;
ina: ADDRESS; inodd: BOOLEAN:
topa: ADDRESS;
flags: FlagSet;
eof : BOOLEAN,
res: Response;
CASE com: Command OF
create, open, getinternal:
fileno, versionno: CARDINAL
| lookup: new: BOOLEAN
| setpos, getpos, length: highpos, lowpos: CARDINAL
| setprotect, getprotect: wrprotect: BOOLEAN
| setpermanent, getpermanent: on: BOOLEAN
END;
mt: MediumType; mediumno: CARDINAL;
mh: MediumHint;
submedium: ADDRESS;
END;

Create(VAR f: File; mediumname: ARRAY OF CHAR);
Close(VAR f: File);

Lookup(VAR f: File; filename: ARRAY OF CHAR; new: BOOLEAN) ;
Rename(VAR f: File; filename: ARRAY OF CHAR);

ReadWord(VAR f: File; VAR w: WORD);
WriteWord(VAR f: File; w: WORD);
ReadChar(VAR f: File; VAR ch: CHAR);
WriteChar(VAR f: File; ch: CHAR);

Reset(VAR f: File);

Again(VAR f: File); '
SetPos(VAR f: File; highpos, lowpos: CARDINAL);
GetPos(VAR f: File; VAR highpos, lowpos: CARDINAL);
Length(VAR f: File; VAR highpos, lowpos: CARDINAL);

FiteCommand(VAR f: File);
DirectoryCommand(VAR f: File; filename: ARRAY OF CHAR);

SetRead(VAR f: File);
SetWrite(VAR f: File);
SetModify(VAR f: File);
SetOpen(VAR f: File);
Doio(VAR f: File);

= PROCEDURE (VAR File);

yProc = PROCEDURE (VAR File, ARRAY OF CHAR);

CreateMedium(mt: MediumType; mediumno: CARDINAL;

fp: FileProc; dp: DirectoryProc; VAR done: BOOLEAN);

RemoveMedium(mt: MediumType; mediumno: CARDINAL;
VAR done: BOOLEAN);

em.



9.1.3. Simple Use of Files

9.1.3.1. Opening, Closing, and Renaming of Files

A file is either permanent or temporary. A permanent file remains stored on its medium after it is closed
and normally has an external (or symbolic) name. A temporary file is removed from the medium as soon as
it is no longer referenced by a program, and normally it is nameless. Within a program, a file is referenced
by a variable of type File. From the programmer’s point of view, the variable of type File simply is the
file. Several routines connect a file variable to an actual file (e.g. on a disk). The actual file either has to
be created on a named medium or looked up by its file name. The syntax of medium name and file name is

medium name = [ identifier ] .

identifier letter { letter | digit } .
file name = medium name [ "." local name ] .
local name = identifier { "." identifier } .

Capital and lower case letters are treated as being different. The medium name is the name of the medium,
upon which a file is (expected to be) stored. The local name is the name of the file on a specific medium.
The last (and maybe the only) identifier within a local file name is often called the file name extension or
simply extension. The file system does, however, not treat file name extensions in a special way. Many
programs and users use the extensions to classify files according to their content and treat extensions in a
special way (e.g. assume defaults, change them automatically, etc.).

DK.SYS.directory.OBJ
File name of file SYS.directory.OBJ on medium DK. Its extension is OBJ.

Create(f, mediumname)
Procedure Create creates a new temporary (and nameless) file on the given medium. After the call

f.res = done if file f is created,
fres = ... if some error occured.
Close(f)

Procedure Close terminates any actual input or output operation on file f and disconnects the variable

f from the actual file. If the actual file is temporary, Close also deletes the file.
Lookup(f, filename, new)

Procedure Lookup looks for the actual file with the given file name. If the file exists, it is connected
to f (opened). If the requested file is not found and new is TRUE, a permanent file is created with the
given name. After the call

f.res = done if file f is connected,
f.res = notdone if the named file does not exist,
fres = ... if some error occured.

If file f is connected, the field f.new indicates:

f.new = FALSE File f existed already
f.new = TRUE File f has been created by this call

Rename(f, filename)
Procedure Rename changes the name of file f to filename. If filename is empty or contains only the

medium name, f is changed to a temporary and nameless file. If filename contains a local name, the
actual file will be permanent after a successful call of Rename. After the call

f.res = done if file f is renamed,
f.res = notdone if a file with filename already exists,
fres = ... if some error occured.



9005
Related Module

Module FileNames makes it easier to read file names from the keyboard (i.e. from module Terminal, see
chapter 9.4.) and to handle defaults (see chapter 11.11.).

9.1.3.2. Reading and Writing of Files

At this level of programming, we consider a file to be either a sequence of characters (text file) or a
sequence of words (binary file), although this is not enforced by the file system. The first called routine
causing any input or output on a file (i.e. ReadChar, WriteChar, ReadWord, WriteWord) determines
whether the file is to be considered as a text or a binary file.

Characters read from and written to a text file are from the ASCII set. Lines are terminated by character
36C (= eol RS).

Reset(f) )

Procedure Reset terminates any actual input or output and sets the current position of file f to the
beginning of f.

WriteChar(f, ch), WriteWord(f, w)
Procedure WriteChar (WriteWord) appends character ch (word w) to file f.

ReadChar(f, ch), ReadWord(f, w)

Procedure ReadChar (ReadWord) reads the next character (word) from file f and assigns it to ch (w).
If ReadChar has been called without success, 0C is assigned to ch. feof implies ch = 0C. The
opposite, however, is not true: ch = 0C does not imply f.eof.. After the call

f.eof = FALSE ch (w) has been read
f.eof = TRUE Read operation was not successful
If f.eof is TRUE:
f.res = done End of file has been reached
fres = ... Some error occured
Again(f)

A call of procedure Again prevents a following call to procedure ReadChar (ReadWord) from reading
the next character (word) on file f. Instead, the character (word) read just before the call of Again
will be read again.

Implementation Note
The current versions of the routines ReadWord and WriteWord do not support reading and writing of
words at odd positions (for more information on current position, see 9.1.3.3).

Related Modules

Module BytelO provides routines for reading and writing of bytes on files. This is valuable for the packing
of information on files, if it is known that the ordinal values of the transferred elements are in the range 0 ..
258.

Module ByteBlockIO makes it easier (and more efficient) to transfer elements of any given type (size).
This module also transfers words correctly if the current position of the file is odd (see note above)!
9.1.3.3. Positioning of Files

All input and output routines operate at the current position of a file. After a call to Lookup, Create or
Reset, the current position of a file is at its beginning. Most of the routines operating upon a file change
the current position of the file as a normal part of their action. Positions are encoded into long cardinals,



9006
and a file is positioned at its beginning, if its current position is equal to zero. Each call to a procedure,
which reads or writes a character (a word) on a file, increments the current file position by 1 (2) for each
character (word) transferred. A character (word) is stored in 1 (2) byte(s) on a file, and the position of the
element is the number of the (first) byte(s) holding the element. By aid of the procedures GetPos, Length
and SerPos it is possible to get the current position of a file, the position just behind the last element in the
file, and to change explicitly the current position of a file.

SetPos(f, highpos, lowpos)
A call to procedure SetPos sets the current position of file f to highpos » 2ee16 + lowpos. The new
position must be less or equal the length of the file. If the last operation before the call of SetPos was
a write operation (i.e. if file f is in the writing state), the file is cut at its new current position, and the
elements from current position to the end of the file are lost.

GetPos(f, highpos, lowpos)
ProcedureGetPos returns the current file position. It is equal to highpos ¢ 2es16 + lowpos.

Length(f, highpos, lowpos)
Procedure Length gets the position just behind the last element of the file (i.e. the number of bytes
stored on the file). The position is equal to highpos ¢ 2eel6 + lowpos.

9.1.3.4. Examples
Writing a Text File

VAR
f: File;
ch: CHAR; endoftext: BOOLEAN;

Lookup(f, "DK.newfile", TRUE);
IF (f.res <> done) OR NOT f.new THEN
(*» f was not created by this call to "Lookup™ *)
IF f.res = done THEN Close(f) END
ELSE
LOOP
(* find next character to write --> endoftext, ch #)
IF endoftext THEN EXIT END;
WriteChar(f, ch)

END;
Close(f)
END
Reading a Text File
VAR
f: File;
ch: CHAR;

Lookup(f, "DK.oldfile", FALSE);
IF f.res <> done THEN

(* file not found #)
ELSE

Loop



ReadChar(f, ch);
IF f.eof THEN EXIT END;
(* use ch *)
END;
Close(f)
END



9.1.4. Advanced Use of Files

9.1.4.1. The Procedures FilecCommand and DirectoryCommand

In the previous sections, the file variable served, with few exceptions, simply as a reference to a file. The
exceptions were the fields eof, res and new within a file variable. Generally, however, all operations on a
file are implemented by either inspecting or changing fields within the file variable directly and/or by
encoding the needed operation (command) into the file variable followed by a call to either routine
FileCommand or DirectoryCommand. Commands requiring (part of) a filename as parameter are executed
by DirectoryCommand, all others by FileCommand. An implementation of SetPos and Lookup should
illustrate this:

PROCEDURE SetPos(VAR f: File; highpos, lowpos: CARDINAL);
BEGIN
f.com := setpos;
f.highpos := highpos; f.Tlowpos := Towpos;
FileCommand(f);
END SetPos;

PROCEDURE Lookup(VAR f: File; filename: ARRAY OF CHAR; new: BOOLEAN);
BEGIN

f.com := Tookup;

f.new := new;

DirectoryCommand(f, filename)
END Lookup;

The commands lookup and rename must be executed by DirectoryCommand, other commands may be
executed either by FileCommand or by DirectoryCommand, Unless the command is lookup or rename, a
call to DirectoryCommand will be converted by the file system to a call to FileCommand. This facility is
only useful for the commands create and open (see also 9.1.4.2).

Below is a list of all commands and a reference to the section where each is explained:

create create a new temporary (and nameless) file (9.1.3.1)
open open an existing file by IFJ 9.14.2)
close close a file 9.13.1)
lookup look up (or create) a file by file name (9.13.1)
rename rename a file (9.13.1)
setread set a file into state reading (9.14.5)
setwrite set a file into state writing (9.14.5)
setmodify set a file into state modifying (9.14.5)
setopen set a file into state opened (9.14.5)
doio get next buffer (9.14.5)
setpos change the current position of the file (9.1.3.3)
getpos get the current position of the file (9.1.3.3)
length get the length of the file 9.1.3.3)
setprotect change the protection of the file 9.144)
getprotect get the current protection of the file 9.144)
setpermanent change the permanency of the file (5.14.3)
getpermanent get the permanency of the file (9.14.3)
getinternal  get the LFI of the file 8.14.2)

After the execution of a command, field res of the file reflects the success of the operation. Other fields of
the file variable might, however, contain additional return values, depending on the executed command
and the state of the file (see 9.1.4.5). Here, the normal way of setting the fields before a return from
procedure FileCommand is given:

WITH f DO
(* set other fields )
res := "...";



flags := flags - FlagSet{er, ef, rd, wr};
IF "state = opened" (* see 9.1.4.5 =) THEN

bufa = NIL; (* no buffer assigned #)
ela = NIL; elodd := FALSE;
ina = NIL; inodd := FALSE;
topa = NIL;
eof = TRUE
ELSE
bufa := ADR("buffer"); (* buffer at current position of file =)
ela = ADR("word in buffer at current position”);
elodd := ODD("current position”);
ina = ADR("first not (completely) read word in buffer”);
inodd := "word at ina contains one byte";
topa := ADR("first word after buffer");
eof = "current position = length”;

IF "(state = reading) OR (state = modifying)" THEN INCL(flags, rd) END;
IF "(state = writing) OR (state = modifying)” THEN INCL(flags, wr) END;
IF elodd OR ODD("1length”) THEN INCL(flags, bytemode) END;
END;
IF res <> done THEN eof := TRUE; INCL(flags, er) END;
IF eof THEN INCL(flags, ef) END
END

The states of a file and the file buffering are explained in 9.1.4.5. The field flags enables a simple (and
therefore efficient) test of the state of the file, whenever it is accessed. The "flag” ag is set by routine
Again and cleared by read routines.

9.1.4.2. Internal File Identification and External File Name

All files supported by the file system have a unique identification, the so called internal file ident{fication
(IFI) and might also have an external (or symbolic) file name.

Both the internal file identification and the file name consist of two parts, namely a part identifying the
medium upon which a file is (expected to be) stored, and a part identifying the file on the selected medium.

The two parts of an internal file identification are called the internal medium identification (IMI) and the
local file identification (LFI). The two parts of a file name are called the medium name and the local file
name.

The IFI of a connected (opened) file may be obtained at any time: The IMI is always stored in the fields
mt and mediumno of the file variable. The LFI is stored in the fields fileno and versionno after the
execution of command create or getinternal.

A file f can be opened, if it exists and its IFI is known:

f.mt := ...; f.mediumno := ...;
f.fileno := ...; f.versionno := ...;
f.com := open;

FileCommand(f)

The identification of a file by a user selected or computed name (a string) is however both commonly
accepted and convenient. The syntax of a file name is given in 9.1.3.1. The routines Create, Lookup,
Rename and DirectoryCommand all have a parameter specifying the file name.

If the medium name is contained in the file name, it is "converted” into an IMI and stored into the file
variable, except when the rename command is used. In this case, the "converted” IMI is checked against
the IMI stored in the file variable. If the medium name is missing in the actual file name parameter, it is
assumed that the corresponding IMI is already stored in the file variable.

The local file name part of the file name will be handled by the routine implementing DirectoryCommand
for the medium given by the IMI (see also 9.1.5.).



9010
Implementation Notes

The current version of module FileSystem supports only medium names according to the following syntax:

-

medium name = ietter [ ietter J { digit } .

When a medium name is "converted” to an internal medium identification, the letter(s) is (are) copied to the
MediumType part (field mi), and the digits are considered as a decimal number whose value is assigned to
the medium number part (field mediumno). If the medium name contains no digits, medium number 65535
(=177777B) is assumed.

"DK" => ( "DK", 65535)
“DKO" =>  ( "DK", 0)
"DKOO7" => ( "DK", 7)

9.1.4.3. Permanency of Files

As explained in 9.1.3.1, a file is either temporary or permanent. The rule is that, when a file is closed
(explicitly, implicitly, or in a system crash), a temporary file is deleted and a permanent file will remain on
the medium for later use. Normally, a "nameless” file is temporary, and a "named" file is permanent. Itis,
however, possible to control the permanency of a file explicitly. This is useful, if for some reason, it is
better to reference a file by its IFI instead of its file name (e.g. in data base systems, other directory
systems).
Set File Permanent

f.on := TRUE; f.com := setpermanent;

FileCommand(f)
Set File Temporary

f.on := FALSE; f.com := setpermanent;

FileCommand(f)

Get File Permanency

f.com :- getpermanent;

=R A

FileCommand(f);

(* f.on = TRUE if and only if f is permanent *)

9.1.4.4. Protection of Files
A file can be protected against any changes only (length, information, name etc.). The only exception to
this rule is, of course, that the protection of a protected file may be changed.
Protect File
f.wrprotect := TRUE; f.com := setprotect;
FileCommand(f)
Unprotect File

f.wrprotect := FALSE; f.com := setprotect;
FileCommand(f)



9012
bufa <= ela <= topa
bufa <= ina <= topa

The fields bufa, ina, inodd, and topa are read-only, as they contain information which must never be
changed by any user of a file.

If the file is not in state opened, the byte at the current position will be in the buffer after procedure
FileCommand has been executed. The read information is stored in the buffer between byfa and (ing,
inodd). The pair (ela, elodd) always points to the byte at the current position of the file, i.e. to the byte (or
to the first byte of the element) to read, write, or modify next in the file. If (ela, elodd) points outside the
buffer, and no other command has to be executed, the byte at the current position can be brought into the
buffer by a call to Doio or by the execution of command doio respectively.

The following two assertions also hold after a call to FileCommand, if the state of the file is reading,
writing, or mod{fying.

(ela, elodd) <= (ina, inodd)
ela < topa’

The current position of a (connected) file can only be changed by either an (explicit or implicit) execution
of command setpos or by changing ela and/or elodd (implicitly or explicitly). In the latter case of course,
the file system “knows" the exact value of the current position only after an activation of the routine
FileCommand.

create

FileStates
r )
setmodity }—sf moditying
satwrita }—{ writing
setread )—{ reading
opened }— L;@topewpone

Command

State

This figure shows how the 1/0 state of a file is changed when different commands are executed.
Commands not shown in the figure do not affect the 1/0 state of a file. Whenever the command sefopen is
omitted, the system might execute sefopen before executing the following command.

SetOpen(f)
A call to SetOpen flushes all changed buffers assigned to file f, and the file is set into state opened. A
call to SetOpen is needed only if it is desirable for some reason to flush the buffers (e.g. within
database systems or for "replay” files), or if the file is in state writing, and it has to be positioned
backward without truncation. If an 170 error occured since the last time the file was in state opened,
this is indicated by field res.

f.res = done Previous 170 operations successful
fres = ... An error has occured since the last time the file was in state opened.



9013
SetRead(f)

A call to SetRead sets the file into state reading. This implies that a buffer is assigned to the file and
the byte at the current position is in the assigned buffer.

SetWrite(f)

A call to SetWrite sets the file into state writing. In this state, the length of a file is always (set) equal
to its current position, i.e. the file is always written at its end, and the file will be truncated, if its
current position is set to a value less than its length. A buffer is assigned to the file, and the
information between the beginning of the buffer and the current position (= length) is read into the
buffer. Information in the buffer up to the location denoted by (ela, elodd) is considered as belonging
to the file and will be written back onto the actual file.

SetModify(f)
A call to SerModify sets the file into state modifying. This implies that a buffer is assigned to the file
and the byte at the current position is read into the buffer. In this state, information in the buffer up
to MAX((ela elodd), (ina,inodd)) is considered as belonging to the file and will therefore be written
back onto the actual file. The length of the file might hereby be increased but never decreased!

Doio(f)
If the state of the file is reading writing or modifying, the buffer with the byte at current position is
assigned to the file after a call to Doio. A call to Doio is essentially needed, if (el elodd) points
outside the buffer and no other command has to be executed.

9.1.4.6. Examples
Procedure Reset(f)

PROCEDURE Reset(VAR f: File);
BEGIN

SetOpen(f);

SetPos(f, 0, 0);
END Reset;

Write File f

(* assume, that file f is positioned correctly *)
SetWrite(f);
WHILE "word to write” DO
IF ela = topa THEN Doio(f) END;
elat := "next word to write";
INC(ela);
END;
SetOpen(f);
IF f.res <> done THEN
(* some write error occured *)
END;

Read File f

(* assume, that file f is positioned correctly #)
SetRead(f);
WHILE NOT f.eof DO
WHILE ela < ina DO
"use elatr";



9014
INC(ela);

END;

Doio(f);
END;
SetQOpen(f);
IF f.res <> done THEN

(* Some read error occured *)
END;

Procedure WriteChar
PROCEDURE WriteChar(VAR f: File; ch: CHAR); (*+ SEK 15.5.82 *)

PROCEDURE SXB(a: ADDRESS; oddpos: BOOLEAN; ch: CHAR);
(= Store indeXed Byte =)
CODE 225B END SXB;

BEGIN
WITH f DO
LOOP
IF flags » FlagSet{wr, bytemode, er} <> FlagSet{wr, bytemode} THEN
IF er IN flags THEN RETURN END;
IF NOT (wr IN flags) THEN
IF rd IN flags THEN
(* Forbid to change directly from reading to writing! )
res := callerror; eof := TRUE;
flags :- flags + FlagSet{er, ef}
ELSE SetWrite(f)
END
END;
INCL(flags, bytemode)
ELSIF ela >= topa THEN Doio(f)
ELSIF elodd THEN
SXB(ela, TRUE, ch);
RETURN
ELSE
SXB(ela, FALSE, ch);
elodd := TRUE;
RETURN
END
END
END
END WriteChar;



9015
9.1.5. Implementation of Files

A program may implement files on a certain medium and make these files accessible through the file
system (that is, through module FileSystem). This is done with a call to procedure CreateMedium. The
medium which the calling module will support, is identified by its internal medium identification (IMI).
The two procedures given as parameters should essentially implement procedure FileCommand (fileproc)
and DirectoryCommand (directoryproc) for the corresponding medium. Whenever a command is executed
on a file, module FileSystem activates the procedure which handles the command for the medium upon
which the file is (expected to be) stored. The commands lookup and rename will cause procedure
directoryproc to be called; all other commands will cause procedure fileproc to be called. The string
supplied as parameter to procedure directoryproc contains only the local file name part of the original file
name. The corresponding IMI is stored in the file variable. The field submedium in the file variable may
be used freely by the module implementing files (e.g. as an index into a table of connected files).

After a call to procedure RemoveMedium, the indicated medium is no longer known by the file system.
This procedure can, however, be called only from the program which "created” the medium. A medium
will automatically be removed, if the program within which it was "created” is removed.

As connected files should have "lifetimes” like Modula-2 pointers (dynamically created variables), a
medium should only be declared from an unshared program (i.e. if SharedLevel() = CurrentLevel(), see
module Program, chapter 9.2.).

CreateMedium(mediumtype, mediumnumber, fileproc, directoryproc, done)

Procedure CreateMedium announces a new medium to the file system. done is TRUE if the new
medium was accepted.

RemoveMedium(mediumtype, mediumnumber, done)
After a call to RemoveMedium, the given medium is no longer known to the file system. done is

TRUE if the medium was removed.
Implementation Note

Eight is the highest number of media that the current version of module FileSystem can support at the
same time.



9016
9.1.6. Files on Cartridges for Honeywell Bull D120/D140 Disk Drives

9.1.6.1. Main Characteristics and Restrictions

Modules DiskSystem and D140Disk implement files on cartridges for the Honeywell Bull D120/D140 disk
drives. The main characteristics of the current implementation are listed below:

maximum number of files 768/cartridge
maximum file length 192 kbyte
cartridge capacity 9408 kbyte
typical transfer rates 3 - 30 kbyte/sec
minimum transfer rate < 10 byte/sec
maximum transfer rate > 50 kbyte/sec
local file name length 1 - 24 characters
maximum number of opened files 14 (16)

medium name - "DK"

internal medium identification ("DK", 65535)

Each actual file can be connected to only one file variable at the same time. As long as essentially only a
single program runs on the machine, this should be acceptable, as it is more an aid than a restriction.

The transfer rates depend mostly on the number of disk head movements needed for the actual transfer.
The positioning of a file for each transfer of one or a few bytes might decrease the transfer rate to some few
bytes per second. On the other hand, sequential transfers of larger elements (>= 16 byte/element) are
performed with the maximum transfer rate (50 - 60 kbyte/sec).

Actually 16 files can be connected at the same time. Module DiskSystem uses two of them internally for
access to the two directories on the cartridge. The remaining 14 files may be used freely by ordinary
programs.

The current version of module DiskSystem does not distinguish between cartridges. All cartridges are
simply given the same internal medium identification ("DK", 65535).

9.1.6.2. System Files

The space on a cartridge is allocated to actual files in pages of 2 kbyte each (or 8 sectors). The pages
belonging to a file as well as its length and other information is stored in a file descriptor, which itself is
stored in a file on the cartridge (file directory). The local file names of all files on a cartridge are stored in
another file on the cartridge (name directory). When a cartridge is initialized, nine (system-)files are
allocated on the cartridge. These preallocated files can not be truncated or removed. Except for the two
directory files and the file containing the cartridge’s bad sectors, all files can be read and written
(modified). The preallocated files are:

FS.FileDirectory Fite with file directory

FS.FileDirectory.Back Back up of file directory (not implemented)
FS.NameDirectory File with name directory

FS.NameDirectory.Back Back up of file with name directory (not implemented)
FS.BadPages File with unusable sectors

PC.BootFile Normal boot file

PC.BootFile.Back Alternate boot file

PC.DumpFile File onto which the main memory (0 .. 64k-1) is dumped
PC.Dump1iFile File onto which the main memory (64k .. 128k-1) is dumped

9.1.6.3. Error Handling

Normally all detected errors are handled by assigning a Response indicating the error to field resin the file
variable. Whenever a detected error cannot be related to a file or if a more serious error is detected, an
error message is written on the display. This is done according to the following format:

"- " module name [ "." procedure name ] ":" error indicating text



9017
module name and procedure name are the names of the module and the procedure within the module, where
the error was detected. In the explanations of the messages, the following terms are used for inserted
values:

page number octal number (0 .. 137B) Page in an affected file

page octal number (0..167340B) Disk address of page = page DIV 1338
file number octal number (0 .. 1377B) Number of the affected file

local file name string(1 .. 24) Local file name of affected file

response string Text describing the response

statusbits octal number (177400 .. 177777B)  Status from disk interface

disk address octal number (0 .. 111377B) "Logical” address of sector on disk

If some of the following error messages are displayed, please consult the description of program
DiskCheck!

- DiskSystem.PutBuf: bad page: pageno = page number fno = .ﬁlé number
Page indicates a disk address which is allocated to a "system file", but the file is not a "system file", or
the page indicates a disk address for normal files, but the file is a “system file".

- DiskSystem.GetBuf: bad buffering while reading ahead
The disk address of a certain allocated sector was not found.

- DiskSystem.FileCommand: bad directory entry: fno = file number read fno = file number
An inconsistency in the file directory was detected.

- DiskSystem.OpenVolume: bad page bointer:
fno = file number pageno = page number page = page
An inconsistency in the file directory was detected during the initialisation of Medos.

- DiskSystem.(ReadName, WriteName or SearchName): bad file number in name entry
file name = local file name
found fno = file number, expected fno = file number

An inconsistency in the name directory was detected.

- D140Disk: soft timeout in wait

A disk operation was timed out by software. This error occurs mainly, if the disk is switched off while
a disk operation is processed. Usually, this has no harmful consequences.

- D140@Disk.DiskRead: response
- diskadr = disk address, statusbits = statusbits

The driver detected an error, which did not disappear after three retries.

- D140Disk.DiskWrite: response
- diskadr = disk address, statusbits = statusbits

The disk driver detected an error, which did not disappear after three retries.

Warning

It must be mentioned here that among the best ways to get some of these error messages on the screen is this
one: Switch off the drive while a "harmless” program is running, exchange the cartridge in the drive, and
switch on the drive again. A cartridge exchange is simply not detected by module DiskSystem which does
not, therefore, initialize its local information about the mounted cartridge from the new cartridge.



9018

9.2. Module Program

Svend Erik Knudsen 15.5.82

9.2.1. Introduction

A Modula-2 program consists of a main module and of all separate modules imported directly or indirectly
by the main module. Module Program provides facilities needed for the execution of Modula-2 programs
upon Medos-2. The definition module is given in chapter 9.2.2. The program concept and explanations
needed for the activation of a program are given in chapter 9.2.3. The heap and two routines handling the
heap are explained in chapter 9.2.4. Possible error messages are listed in 9.2.5. The object file format may
be inspected in 9.2.6.

9.2.2 Definition Module Program
DEFINITION MODULE Program; (* Medos-2 V3 S. E. Knudsen 1.6.81 s)

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
Call, Terminate, Status,
MainProcess,
Currentlevel, SharedlLevel,
AllocateHeap, DeallocateHeap;

TYPE
Status = (normal,

instructionerr, priorityerr, spaceerr, rangeerr, addressoverflow
realoverflow, cardinaloverflow, integeroverflow, functionerr,
halted, asserted, warned, stopped,
callerr, )
programnotfound, programalreadyloaded, modulenotfound,
codekeyerr, incompatiblemodule, maxspaceerr, maxmoduleerr,
filestructureerr, fileerr,
loaderr);

PROCEDURE Call(programname: ARRAY OF CHAR; shared: BOOLEAN; VAR st: Status);
PROCEDURE Terminate(st: Status);

PROCEDURE MainProcess(): BOOLEAN;
PROCEDURE Currentlevel(): CARDINAL;
PROCEDURE SharedlLevel(): CARDINAL;

PROCEDURE AllocateHeap(quantum: CARDINAL): ADDRESS;
PROCEDURE DeallocateHeap(quantum: CARDINAL): ADDRESS;

END Program.



9019
9.2.3. Execution of Programs

A Modula program consists of a main module and all separate modules imported directly and/or indirectly
by the main module. Within Medos-2, any running program may activate another program just like a call
of a procedure. The calling program is suspended while the called program is running, and it is resumed,
when the called program terminates.

All active programs form a stack of activated programs. The first program in the stack is the resident part
of the operating system, i.e. the (resident part of the) command interpreter together with all imported
modules. The topmost program in the stack is the currently running program.

Typical Execution of Programs

_‘ Dynamic
Activation ~
4| Level
3
] Init [Pass 1] [Pass2 | [sym | [Coser
2
] Comint edit Comint modula  (compiler base)
1
] SEK (resident program)
0 time

>

The figure illustrates, how programs may be activated. At a certain moment, the dynamic activation level
or simply the level identifies an active program in the stack.

Some essential differences exist, however, between programs and procedure activations.
A program is identified by a computable program name.
The calling program is resumed, when a program terminates (exception handling).

Resources like memory and connected files are owned by programs and are retrieved again, when the
owning program terminates (resource management).

A program can only be active once at the same time (programs are not reentrant),

The code for a program is loaded, when the program is activated and is removed, when the program
terminates.

A program is activated by a call to procedure Call. Whenever a program is activated, its main module is
loaded from a file. All directly or indirectly imported modules are also loaded from files, if they are not
used by already active programs i.e. if they are not already loaded. In the latter case, the just called
program is bound to the already loaded modules. This is analog to nested procedures, where the scope
rules guarantee, that objects declared in an enclosing block may be accessed from an inner procedure.

After the execution of a program, all its resources are returned. The modules, which were loaded, when the
program was activated, are removed again.

The calling program may, by a parameter to Call, specify that the called program shares resources with the
calling program. This means, that all sharable resources allocated by the called program actually are
owned by the active program on the deepest activation level, which still shares resources with the currently
running program. The most common resources, namely dynamically allocated memory space (from the
heap) and (connected) files, are sharable. Any feature implemented by use of procedure variables can
essentially not be sharable, since the code for an assigned routine may be removed, when the program
containing it terminates.



9020
A program is identified by a program name, which consists of an identifier or a sequence of identifiers
separated by periods. At most 16 characters are allowed for program names. Capital and lower case letters
are treated as being different.

Program name
identifier

Identifier { "." Identifier } . / At most 16 characters/
ietter { tetter | Digit } .

non

In order to find the object code file, from which a program must be loaded, the program name is converted
into a file name as follows: The prefix DK. is inserted before the program name, and the extension .OB/ is
appended. If no such file exists, the prefix DK. is replaced by the prefix DK.SYS., and a second search is
carried out.

An object code file may contain the object code of several separate modules. Imported but not already
loaded modules are searched sequentially on the object code file, which the loader is just reading.

Missing object code to imported modules is searched for like programs. The (first 16 characters of the)
module name is converted to a file name by inserting DK, at the beginning of the module name and
appending the extension .OBJ to it. If the file is not found, a second search is made after the prefix DK,
has been replaced by the prefix DK.LIB.. If the object code file is not yet found, the object code file for
another missing module is searched. This is tried once for all imported and still not loaded modules.

Program name directory

First searched file DK.directory.OBJ
Second searched file DK.SYS.directory.OBJ
Module name Storage

First searched file DK.Storage.OBJ
Second searched file DK.LIB.Storage.OBJ

Call(programname, shared, status)
Procedure Call loads and starts the execution of program programname. 1If shared is TRUE, the called
program shares (sharable) resources with the calling program. The status indicates if a program was
executed successfully.

status = normal Program executed normally
status in {instructionerr .. stopped} Some execution error detected
status in {callerr .. loaderr} Some load error detected

Terminate(status)

The execution of a program may be terminated by a call to Terminate. The status given as parameter
to Terminate is returned as status to the calling program.

CurrentLevel(): CARDINAL
Function CurrentLevel returns the (dynamic activation) /evel of the running program.

SharedLevel(): CARDINAL

Function SharedLevel returns the level of the lowest program, which shares resources with the current
program,

MainProcess(): BOOLEAN
Function MainProcess returns TRUE if the currently executed coroutine (Modula-2 PROCESS) is the

one which executes the initialisation part of the main module in the running program.
Implementation Notes

The current implementation of procedure Call may only be called from the main coroutine, i.e. the
coroutine within which function MainProcess returns TRUE.

The module Storage may be loaded several times by module Program. This is the only exception to the




9021
rule, that a module may be loaded only once. Module Storage may be loaded once for each set of shared
programs (i.e. once for each heap).

Only up to 96 modules may be loaded at any time. The resident part of Medos-2 consists of 13 modules.
The loader can handle up to 40 already imported but not yet loaded modules.

The maximum number of active programs is 16.

Related Program

The program link collects the object code from several separate modules onto one single object code file.
link enables the user to substitute interactively an object code file with a non-default file name. “Linked"
object code files might also be loaded faster and be more robust against changes and errors in the
environment.

Example: Command Interpreter ~
MODULE Comint; (* SEK 15.5.82 =)

FROM Terminal IMPORT Write, WriteString, Writeln;
FROM Program IMPORT Call, Status;

CONST
programnamelength = 16;

VAR
programname: ARRAY [0..programnamelength-1] OF CHAR;
st: Status;

BEGIN
LooP
Write('*');
(* read programname #)
Call(programname, TRUE, st);
IF st <> normal THEN
Writeln;
WriteString(" - some error occured”); Writeln
END
END (* LOOP )
END Comint.

9.2.4. Heap

The main memory of Lilith is divided into two parts, a stack and a heap. The stack grows from address 0
towards the stack limit, and the heap area is allocated between the stack limit and the highest address of
the machine (64k-1). The stack and the heap are separated by the stack limit.

The area between the actual top of stack and the stack limit is free and may be allocated for both the stack
and the heap.

Module Program handles the heap simply as a "reverse” stack, which may be enlarged by decrementing the
stack limit address or reduced by incrementing it. This may be achieved by the routines AllocateHeap and
DeallocateHeap.

Whenever a program is called, an activation record for that program is pushed onto the stack. Currently
the activation record contains beside the "working stack" (main process) also the code and data for all
modules loaded for the called program. The activation record of the running program is limited at the high
end by top of stack.



9022
If the call is a shared call, i.e. if the parameter shared of procedure Call is set TRUE, nothing specially is
made with the heap: The heap may grow and shrink as if no new program had been activated. If the call is
not shared, however, (parameter shared set to FALSE) the current value of stack limit is saved, and a new
heap is created for the program on the top of the previous heap, i.e. at stack limit.

When a program terminates, its activation record is popped from the stack, and if the program is not
shared with its calling program, its heap is released as well.

AllocateHeap(quantum): ADDRESS

Function AllocateHeap allocates an area to the heap by decrementing stack limit by MIN(available
space, quantum). The resulting stack limit is returned.

DeallocateHeap(quantum): ADDRESS

Function DeallocateHeap deallocates an area in the heap by incrementing stack limit by MIN(size of
heap. quantum). The resulting stack limit is returned.

Implementation Note

The current implementation of the functions AllocateHeap and DeallocateHeap may only be called from
the main coroutine, i.e. the coroutine, within which function MainProcess returns TRUE.

Related Module

Module Storage is normally used for the allocation and deallocation of variables referenced by pointers. It
maintains a list of free areas in the heap.

Examples: Procedures ALLOCATE and DEALLOCATE

PROCEDURE ALLOCATE(VAR addr: ADDRESS; size: CARDINAL);
VAR top: ADDRESS;
BEGIN
top := AllocateHeap(0); (* current stack limit =)
addr := AllocateHeap(size);
IF top - addr < size THEN
top := DeallocateHeap(top - addr);
WriteString("- Heap overflow"); Writeln;
Terminate(spaceerr)
END
END ALLOCATE;

PROCEDURE DEALLOCATE(VAR addr: ADDRESS; size: CARDINAL);
BEGIN

addr := NIL
END DEALLOCATE;

9.2.5. Error Handling

All detected errors are normally handled by returning an error indicating Status to the caller of procedure
Call. Some errors detected by the loader are also displayed on the screen in order to give the user more
detailed information. This is done according to the following format:

- Program.Call: errorindicating text

The number of hyphens at the beginning of the message indicates the level of the called program.

- Program.Call: incompatible module
‘module name' on file 'file name’

Imported module module name found on file file name has an unexpected module key.



9023
- Program.Call: incompatible module
*modulel name' imported by 'module? name' on file 'file name'

Module modulel name imported by module2 name on file file name has another key as the already
loaded (or imported but not yet loaded) module with the same name,

- Program.Call:
modulel name
module2 name

module(s) not found:

The listed modules were not found.

9.2.6. Object Code Format
The format of the object code file generally has the following syntax:

LoadFile ={Frame }.

Frame =FrameType FrameSize { FrameWord }.
FrameType ="2008" | "201B"|.... | "377B".
FrameSize =Number. /number of FrameWords/
FrameWord =Number.

The load file is a word file. FrameType and Number are each represented in one word.

The object code file obeys a syntactic structure, called ObjectFile.

ObjectFile =Module { Module }.
Module =[ VersionFrame ] HeaderFrame [ ImportFrame ]
{ ModuleCode | DataFrame }.
VersionFrame =VERSION FrameSize VersionNumber.
FrameSize =Number.
VersionNumber =Number.
HeaderFrame =MODULE FrameSize ModuleName DataSize.
ModuleName =Moduleldent ModuleKey.
Moduleldent =Letter { Letter | Digit } { "0C" }. /exactly 16 characters/
ModuleKey =Number Number Number.
DataSize =Number. /in words/
importFrame =IMPORT FrameSize {ModuieName}.
ModuleCode =CodeFrame [ FixupFrame ].
CodeFrame = CODETEXT FrameSize WordOffset { CodeWord }.
WordOffset =Number. /in words from the beginning of the module/
CodeWord =Number.
FixupFrame =FIXUP FrameSize {ByteOffset}.
ByteOffset =Number. /in bytes from the beginning of the module/
DataFrame =DATATEXT FrameSize WordOffset { DataWord }.
DataWord =Number.
VERSION ="200B".
MODULE ="2018".
IMPORT ="2028B".
CODETEXT ="203B".
DATATEXT ="204B".
FiIXupP ="205B"

Currently the VersionNumber is equal to 3.

The ByteOffsets in FixupFrame point to bytes in the code containing local module numbers. The local
module numbers must be replaced by the actual numbers of the corresponding modules. Local module



9024
number 0 stands for the module itself, local module number i (i > 0) stands for the i’th module in the
ImportFrame.

A program is activated by a call to procedure 0 of its main module.



9025
9.3. Storage

Svend Erik Knudsen 15.5.82

Calls to the Modula-2 standard procedures NEW and DISPOSE are translated into calls to ALLOCATE
and DEALLOCATE, procedures which are either explicitly programmed or imported from a separate
module (see Modula-2 report in [1], chapter 10.2). The standard way of doing this is to import
ALLOCATE and/or DEALLOCATE from module Storage.

DEFINITION MODULE Storage; (* Medos-2 V3 1.6.81 S. E. Knudsen *)
FROM SYSTEM IMPORT ADDRESS;
EXPORT QUALIFIED ALLOCATE, DEALLOCATE, Available;
PROCEDURE ALLOCATE(VAR a: ADDRESS; size: CARDINAL);
PROCEDURE DEALLOCATE(VAR a: ADDRESS; size: CARDINAL);
PROCEDURE Available(size: CARDINAL): BOOLEAN;
END Storage.

Explanations

ALLOCATE(addr, size)
Procedure ALLOCATE allocates an area of the given size and assigns its address to addr. If no space
is available, the calling program is killed.

DEALLOCATE(addr, size)
Procedure DEALLOCATE frees the area with the given size at address addr.

Available(size): BOOLEAN A
Function Available returns TRUE if an area of the given size is available.

Example
MODULE StorageDemo; (* SEK 15.5.82 =)
FROM Storage IMPORT ALLOCATE;
TYPE
Pointer = POINTER TO Element:
Element = RECORD next: Pointer; value: INTEGER END;

VAR root: Pointer;

PROCEDURE NewInteger(i: INTEGER);
VAR p: Pointer;

BEGIN
NEW(p); (* implicit call to ALLOCATE )
pt.next := root; pt.value := i; ‘
root := p

END NewInteger;

BEGIN
root := NIL;

(+ ... %)



9026
END StorageDemo.

Restrictions

The behaviour of the given implementation is only defined, if its procedures are (directly or
indirectly) activated by the main program (and not from one of its coroutines).

DEALLOCATE checks only roughly the validity of the call.

Module Storage can only handle the heap for the running program. Other heaps created for programs
not sharing the heap with the running program can not be handled by module Storage (see module
Program, chapter 9.2.).

Loading of Module Storage

Module Storage may be loaded once for each heap it should handle. For more details see module
Program, chapter 9.2. -

Error Messages

- Storage.ALLOCATE: heap overflow
- Storage.DEALLOCATE: bad pointer

Imported Modules

SYSTEM
Program
Terminal

Algorithms

ProcedureStorage maintains a list of available areas sorted by addresses in the heap. When an
element has to be allocated, the list is searched from the highest towards lower addresses for a large
enough available area. If such an area is found, the needed memory space is allocated in that area
(first fit algorithm). Otherwise Storage tries to get more memory space allocated from module
Program (Program. AllocateHeap).

Procedure DEALLOCATE inserts the deallocated area into the sorted list of available areas.
Adjacent available areas are collapsed during the insertion.



9027
9.4. Terminal

Svend Erik Knudsen 15.5.82

Module Terminal provides the routines normally used for reading from the keyboard (or a commandfile)
and for the sequential writing of text on the screen.

DEFINITION MODULE Terminal; (* Medos-2 V2 S. E. Knudsen 1.6.81 *)

EXPORT QUALIFIED
Read, BusyRead, ReadAgain,
Write, WriteString, Writeln;

PROCEDURE Read(VAR ch: CHAR);
PROCEDURE BusyRead(VAR ch: CHAR);
PROCEDURE ReadAgain;

PROCEDURE Write(ch: CHAR);
PROCEDURE WriteString(string: ARRAY OF CHAR);
PROCEDURE Writeln;

END Terminal.

Explanations

Read(ch)

Procedure Read gets the next character from the keyboard (or the commandfile) and assigns it to ch.
Lines are terminated with character 36C (=eol, RS). The procedure Read does not "echoe” the read

character on the screen,

BusyRead(ch)

Procedure BusyRead assigns 0C to ch if no character has been typed. Otherwise procedure BusyRead
is identical to procedure Read.

ReadAgain
A call to ReadAgain prevants the next call to Read or BusyRead from getting the next typed character.
Instead, the last character read before the call to ReadAgain will be returned again.

Write(ch)
Procedure Write writes the given character on the screen at its current writing position. The screen
scrolls, if the writing position reaches its end. Besides the following lay-out characters, it is left
undefined what happens, if non printable ASCII characters and non ASCII characters are written out.

eol 36C Sets the writing position at the beginning of the next line

CR 15C Sets the writing position at the beginning of the current line

LF 12C Sets the writing position to the same column in the next line

FF 14C Clears the screen and sets the writing position into its upper left corner

BS 10C Sets the writing position one character backward

DEL 177C Sets the writing position one character backward and erases the character there

WriteString(string) :
Procedure WriteString writes out the given string. The string may be terminated with character 0C.

Writel n



10001
10. Screen Software

Chrisitan Jacobi 15.5.82
The screen software chapter describes the following modules:

Screen (10.2))
TextScreen (10.3)
WindowHandler  (10.4.)
CursorStuff (10.5.)

CursorRelations  (10.6.)
WindowDialogue (10.7.)
ScreenResources0  (10.8.)
BitmapVars (10.9.)

10.1. Summary

For default sequential output the use of module Terminal is recommended; the use of the higher level
modules should be reserved to the case, when the output is not strictly sequential. Terminal is described in
an operating system description (9.4.) and is not explained in the screen software chapter.

Formatting modules (e.g. OutTerminal, OutWindow) are found in the chapter 11.
The module TextScreen supports positioning (and output to) the display screen.

The module Screen is the base for all bit directed operations on the display terminal. It contains only a
minimum of features: the basic display operations, loading of fonts, creation of bitmaps and subbitmaps,
and the default settings.

The module WindowHandler allows the use of windows. A window is a visible rectangle on the screen
where text and binary operations are possible. Such a rectangle simulates a complete display. The
windows can be compared to pieces of paper lying on a table. They can be moved, an overlaid window
may be put on top, and of course, programs may write or paint into windows.

The module CursorStuff implements a cursor and allows selection of commands with a menu.

CursorRelations imports the cursor position of CursorStuff and computes the relative cursor position to
windows.

With the module WindowDialogue it is possible to build programs with independent modules. The module
WindowDialogue collects the interactive input commands and directs them to the specific windows and
activities. The module implements a so called window editor, which allows interactive modifications of the
windows.

ScreenResources0 is used to get access to resources used by the module Screen.

BitmapVars can be used by programs which completely ignore the screen software system around
"Screen”; BitmapVars delivers the addresses of the standard bitmap, standard bitmap descriptor and
standard font.



10002
10.2. Screen

The module Screen implements the basic operations with display instructions. It allocates the resources
and it implements a subbitmap feature. It exports the hardware functions in a controlled manner to the
user, i.e. provides additional validity checks for parameters.

The Lilith has a raster display as output medium. The value of each picture element is independently
stored as a bit in a two dimensional array, called ditmap. This bitmap is stored in the main memory. All
ordinary data manipulation instructions may therefore be used to build pictures on the display terminal.
This involves great flexibility; the normal instructions are however usually inadequate for handling images.
Four specially microcoded instructions are used for that purpose (DCH, REPL, BBLT, DDT). These
display instructions are represented by the display procedures DisplayChar, Replicate, BlockTransfer and
DisplayDot.

The procedure CreateBitmap allocates a bitmap, and allows use of these operations. Calling the procedure
ShowBitmap shows such a bitmap onto the display terminal. Most applications will use a bitmap which is
already allocated by the system, the procedure GetDefaultBitmap returns this bitmap in its parameter.
This default bitmap is usually shown on the terminal, there is no need to call ShowBitmap with this bitmap.

The display procedures work on rectangles within bitmaps. Variables of type BlockDescriptor are used to
describe such rectangles. A block-descriptor describes a rectangle by giving its coordinates of the lower
left corner, its width and its heights. It is possible to treat such a rectangle like a bitmap again. The
procedure CreateSubBitmap takes a rectangle inside a bitmap and generates an abstract bitmap, denoting
that rectangle. This abstract bitmap is called a subbitmap. All operations on bitmaps, except for
ShowBitmap, may also be applied to subbitmaps. ShowBitmap is, however, restricted from the hardware
and displays therefore it’s "father"bitmap.

To be more exact in the former, also the default bitmap could have been changed to be such a subbitmap.
When several windows are shown, one of these windows will be used as the default also. The procedure
GetSystemBitmap is used to get the real system bitmap. The system bitmap may differ from the default
bitmap, it is the actual bitmap which is allocated by the system, it cannot be changed and denotes the
whole screen. The default bitmap is the rectangle to which the default output will be directed. Usually, the
default bitmap is the whole or a part of the system bitmap.

To write a character, the procedure DisplayChar paints the picture of the character into a bitmap. The
procedure copies the character’s picture from a font table into the bitmap. The procedure LoadFont loads
a font into a memory area and prepares it for use by DisplayChar. A great number of such fonts exist.

Types Used for Screen Resources

TYPE
Bitmap;
Font;
BlockDescriptor =
RECORD
X, y, w, h: CARDINAL;
END;

Bitmap: A bitmap which can be displayed at the display terminal, or a rectangular part of such a bitmap.
To the programmer, there is no difference between such a rectangle (a subbitmap) and the real bitmap,
which is the one displayed by hardware; the hardware displays only complete bitmaps. The origin of the
coordinate system is at the lower left corner of the bitmap.

Fonr. Pictures of the characters in a character set.

BlockDescriptor. Describes a block which is a rectangle inside a bitmap. x,y are the coordinates of the
lower left corner of the block, whereas w is the width and h the height of the block.

The structure of the types Bitmap and Font are hidden to the user. It is good programming style, not to
assign variables of font or bitmap type.



10003
The Elementary Display Procedures
In general, the display procedures work on two rectangles, called the source and the destination.
destination := F(destination, source)
The function F(d, 5) depends on the procedure and on a mode parameter.

Mode: Mode of operation of the basic display instructions.

TYPE
Mode = (replace, (¢ d:=5s , S s)
paint, (¢+d:=dOR s , d+s *)
invert, (*+d:=dX0R s , d/s *)
erase); (* d := d AND NOT s, d=(-s) *)

replace: replaces the destination by the source.

paint: the source is overlaid (added) to the destination.

invert: the destination is inverted, where the source contains ones.
erase: the destination is cleared, where the source contains ones.

BlockTransfer. is the most general display procedure. It copies the source block into the destination block
according to the mode.

Replicate: Replicates the bitpattern (pattern) over a rectangle (the destination block) of the bitmap
according to the mode.

pattern: This is not a declared type; any variable may be used as pattern, but the first word of the
pattern must contain the number of words following. This number is the height of the pattern, its
width is 16.

DisplayDot: Writes a single dot at the coordinates x, y of the bitmap according to a mode.

DisplayChar. Paints the picture of a character from a font table into a block of a bitmap. The position is
given by the block (the block denotes the line). DisplayChar updates the block to exclude the just-painted
character. DisplayChar works with paint-mode only; the block is not previously erased.

PROCEDURE DisplayChar(VAR bm: Bitmap; VAR lineBlk: BlockDescriptor;
VAR f: Font; ch: CHAR);

PROCEDURE Replicate(VAR bm: Bitmap; VAR destBlk: BlockDescriptor;
m: Mode; VAR pattern: ARRAY OF WORD);

PROCEDURE BlockTransfer(VAR dbm: Bitmap; VAR destBlk: BlockDescriptor;
m: Mode; VAR sbm: Bitmap; VAR sourceBlk: BlockDescriptor);

PROCEDURE DisplayDot(VAR bm: Bitmap; x, y: CARDINAL; m: Mode);

Resource Handling
The following procedures allocate bitmaps or fonts:

PROCEDURE CreateBitmap(VAR bm: Bitmap; w, h: CARDINAL; VAR done: BOOLEAN};
PROCEDURE CreateSubBitmap(VAR bm: Bitmap; VAR father: Bitmap;

location: BlockDescriptor; VAR done: BOOLEAN);
PROCEDURE Loadfont(VAR f: Font; name: ARRAY OF CHAR; VAR done: BOOLEAN);

Creating bitmaps needs their size w and h in dots. w is augmented to a multiple of 16, since the lines of a
bitmap must start on a word boundary in the memory. The procedures have a return parameter done.
There are several reasons for malfunction: not enough memory, file for a font not found, too many
resources allocated, etc. The allocation procedures always return to the calling program, there are no halts.
Calling Loadfont for the same font a second time will return a different font value, however the actual font
table is loaded only once. To unload the font table, all font variables pointing to that table must be
returned. To use a subbitmap whose "father” bitmap is returned is considered an error.



10004
For the procedures to return resources, to set or to query the defaults, see the definition module. The
procedures SetDotPos and GetDotPos handle the insertion point, where the default output (from module
Terminal) appears on the screen.

Furtheron, the specific properties of fonts may be requested:

PROCEDURE Proportional(VAR f: Font): BOOLEAN;
PROCEDURE FontHeight(VAR f: Font): CARDINAL;
PROCEDURE FontWidth(VAR f: Font): CARDINAL;

PROCEDURE FontBaselLine(VAR f: Font): CARDINAL;
PROCEDURE CharWidth(VAR f: Font; ch: CHAR): CARDINAL;

A proportional font is a font with characters of different widths. FontWidth returns the maximum
character width for proportional fonts. The procedure FontBaseLine returns the interval from the bottom
of the line used in DisplayChar to the baseline of the text.

Size of the Screen

Programs should not use knowledge about the screen size, in order to work properly using different screen
formats. Further, if a windowhandler is used, a window could be denoted to simulate the default screen.
To get the actual size of the screen (compatible to WindowHandler, but without importing it), use the
following statements:

GetDefaultBitmap(bm);
GetMaxBlock(b, bm)
b .w may be used as screen width, b . h as height.

Two different hardware displays are used currently:
1) width 768; height 592 ("standard” horizontal display)
2) width 640; height 832 (new vertical display)

Clipping

Using blocks which do not fit completely into their bitmap is considered as an error, if the bitmap is a real
bitmap. This error will cause a trap. For subbitmaps the operation is done with clipped blocks and no
€ITOr OCCUrs.

T A ‘H . . . . *
To achieve clipping within a bitmap, e same size and to use the

subbitmap instead of the bitmap.

-

" rroatae

it ie nnceihle a
a4 UiV W Wivailv &

"
W PV

Restrictions

The procedure ShowBitmap requires that a bitmap fulfills some further hardware restrictions, which are
not necessarily granted by creating and using bitmaps without displaying them:
The width must be a multiple of 64 (dots). The height must be a multiple of 2.

In DisplayChar the firmware cannot recognize whether or not the character fits into the line block.
However, it traps if the character would be painted outside the bitmap.

The procedure SetDefaultBitmap is disabled when the WindowHandler is loaded; in such cases, the
WindowHandler takes care of the default bitmap.

The actual definition module exports some additional private stuff, needed to implement some system
programs. This stuff will change on the next version of the operative system. Therefore avoid using it,
even if you would know the declarations. The module ScreenResources0 gives you indirect access to that
private stuff, until its improved version will be included in the module Screen.

Definition Module

DEFINITION MODULE Screen; (= Ch. Jacobi 28.10.81s)
FROM SYSTEM IMPORT ADDRESS, WORD;
EXPORT QUALIFIED



Bitmap,

Font, Mode, BlockDescriptor,

DisplayChar, Replicate, BlockTransfer, DisplayDot,
Proportional, FontHeight, FontWidth, FontBaseline,
CharWidth,

GetSystemBitmap, GetSystemFont,

GetDefaultBitmap, GetDefaultFont, GetDotPos,
SetDefaultBitmap, SetDefaultFont, SetDotPos,
CreateBitmap, CreateSubBitmap, ReturnBitmap, ShowBitmap,
LoadFont, ReturnFont, GetFontName,

IsSubBitmap, GetRealfFather, GetRealBlock, GetMaxBlock;

TYPE
Bitmap;
Font;
Mode = (replace, (* d :=s , 8 s)
paint, (*d :=dORs , d+s *)
invert, (* d :=d XOR s , 8/s *)
erase); (* d := d AND NOT s , ds(-s) *)
BlockDescriptor =
RECORD
X, ¥, w, h: CARDINAL;
END;
PROCEDURE DisplayChar(VAR bm: Bitmap; VAR lineBlk: BlockDescriptor;
VAR f: Font; ch: CHAR);
PROCEDURE Replicate(VAR bm: Bitmap; VAR destBlk: BlockDescriptor;
m: Mode; VAR pattern: ARRAY OF WORD);
PROCEDURE BlockTransfer(VAR dbm: Bitmap; VAR destBlk: BlockDescriptor;
m: Mode;
: VAR sbm: Bitmap; VAR sourceBlk: BlockDescriptor);
PROCEDURE DisplayDot(VAR bm: Bitmap; x, y: CARDINAL; m: Mode);
PROCEDURE Proportional(VAR f: Font): BOOLEAN;
PROCEDURE FontHeight(VAR f: Font): CARDINAL;
PROCEDURE FontWidth(VAR f: Font): CARDINAL;
PROCEDURE FontBaseLine{VAR f: Font): CARDINAL;
PROCEDURE CharWidth(VAR f: Font; ch: CHAR): CARDINAL;
PROCEDURE GetSystemBitmap(VAR bm: Bitmap);
PROCEDURE GetSystemFont(VAR f: Font);
PROCEDURE GetDefaultBitmap(VAR bm: Bitmap);
PROCEDURE GetDefaultFont(VAR f: Font);
PROCEDURE GetDotPos(VAR x, y: CARDINAL);
PROCEDURE SetDefaultBitmap(VAR bm: Bitmap);
PROCEDURE SetDefaultFont(VAR f: Font);
PROCEDURE SetDotPos(x, y: CARDINAL);
PROCEDURE CreateBitmap(VAR bm: Bitmap; w,h: CARDINAL; VAR done: BOOLEAN);
PROCEDURE CreateSubBitmap(VAR bm: Bitmap; VAR father: Bitmap;
location: BlockDescriptor; VAR done: BOOLEAN);
PROCEDURE ReturnBitmap(VAR bm: Bitmap);
PROCEDURE ShowBitmap(VAR bm: Bitmap);
PROCEDURE LoadFont(VAR f: Font; name: ARRAY OF CHAR; VAR done: BOOLEAN);
PROCEDURE ReturnFont(VAR f: Font);
PROCEDURE GetFontName(VAR name: ARRAY OF CHAR; VAR f: Font);

10005



10006
PROCEDURE IsSubBitmap(VAR bm: Bitmap): BOOLEAN;
PROCEDURE GetRealFather(VAR fbm, bm: Bitmap);
PROCEDURE GetRealBlock(VAR blk: BlockDescriptor; VAR bm: Bitmap);
(* maximal block in coordinates of the real father bitmap of bms)
PROCEDURE GetMaxBlock(VAR blk: BlockDescriptor; VAR bm: Bitmap);
(* maximal block in coordinates of the bitmap bm itselfs)

END Screen.

Implementation Details

The modules Screen, Terminal, TextScreen, and WindowHandler use common resources. Your version of Medos uses either
module TextScreenDriver or module ScreenDriver to coordinate the access to these resources. Depending on which
communication module is used, the system does not remember the insertion point on the display terminal after a user program
which imports Screen terminates (That insertion point is stored in one of the communication modules).

A hidden (empty) module PrivatScreen is imported to force version conflicts when the semantics of some private feature
changes. Therefore, any system program using the private features also imports the module PrivatScreen to prevent unknown
runtime errors.

Imported Modules

The module is distributed in linked form only.



10007
10.3. TextScreen

The module TextScreen allows writing text at arbitrary positions on the display terminal. The definition is
made in such a way, that the use of the module is also possible when the default output is directed to a
window. For proper functionality a fixed width font has to be used. With proportional fonts, however, the
horizontal positioning (SetPos, GetPos) is done dotwise. FreeChars and ClearChars denote space for
maximum width characters if a proportional font is used.

The use of this module is recommended if positioning is necessary. In cases where only a scrolling terminal
is needed the module Terminal is preferred. The procedures of the module TextScreen may be used
intermixed with the procedures of module Terminal.

The coordinate system used for TextScreen is different to the system used in module Screen. TextScreen
uses character width and height as units. The origin (0, 0) is the first character of the top line. (Compared to
Screen: unit=dots, origin is bottom, left edge of the screen). The module TextScreen tries to be machine
independent, if fixed width (non proportional) fonts are used.

The font and the default rectangle used for output are modified with procedures either from module Screen
or from module WindowHandler.

Definition Module

DEFINITION MODULE TextScreen; (= Ch. Jacobi 30.10.80+¢)

EXPORT QUALIFIED Write, FreeChars, Freelines,

GetPos, SetPos, ClearChars, ClearlLines;

(* Text output and positioning relative to the default rectangle used
for output. The origin is at the upper left corner of the rectangle.
Units of the coordinates are characters and lines, starting with 0.
Uses fixed-width font. =)

PROCEDURE Write(ch: CHAR);

PROCEDURE FreeChars(): CARDINAL;

~ (* returns number of free characters in the current line *)
PROCEDURE FreelLines(): CARDINAL;
(*+ returns number of empty lines *)

PROCEDURE GetPos(VAR line, pos: CARDINAL);

PROCEDURE SetPos(line, pos: CARDINAL);

PROCEDURE ClearChars(n: CARDINAL);

(* clears n positions but at most the rest of the current line )

PROCEDURE ClearLines(n: CARDINAL);

(= clears n full lines but at least the rest of the current line =)
END TextScreen.

Imported Modules
The module is distributed in linked form only.



10008
10.4. WindowHandler

This module allows the use of windows. A window is a visible rectangle on the screen where text and
binary operations are possible. Such a rectangle simulates a complete display. The windows may be
considered as pieces of paper lying on a table. They may be moved; an overlaid window may be put on
top.

Typical text operations are writing and positioning; typical binary operations are replicate and
blocktransfer. In addition to the procedures for manipulations inside windows, the module supports
creation, deletion... of windows and it handles their overlapping.

Window Output Handling Procedures

The output procedures for binary output correspond exactly to the fullscreen output procedures of the
module Screen. The text handling procedures correspond to those of the module TextScreen. Further
some procedures allow combination of binary and text operations.

- for binary output:
Replicate, BlockTransfer,
DisplayDot, DisplayChar
- for text handling:
WriteChar,
FreeChars, FreelLines,
GetPos, SetPos,
ClearChars, ClearLines
- for combination:
Clear,
GetDotPos, SetDotPos

Window Management Procedures
Procedures to create, move, eliminate, ... windows and to handle fonts.

- window management:

CreateWindow, ChangeWindow,
OpenWindow, CloseWindow

- font handling:
LoadFont, SetFont

- visibility operations:
PutOnTop, SaveWindow,
NextDown

- dummy procedure used for creation:
IgnoreWindowSignal
Context Management Procedures

- handling of default output:
UseForDefault, DefaultWindow

- full screen operations:
SelectWindow, FullScreen

- use of (Screen) bitmaps as windows:
OpenBitmapWindow



10009
Remark

The windowhandler may be used without import of the module Screen. Using the same types for Font,
Bitmap, BlockDescriptor and Mode serves only for compatibility of intended common use of these two
modules. So does the procedure OpenBitmapWindow. If these type declarations would be replaced by
their actual definition and the procedure OpenBitmapWindow would be eliminated, the moduile
WindowHandler would be independent; it would not be necessary to explain references to other modules.

TYPE

Bitmap; (*used for compatibility with module Screens)
Font; ( *picture of the characterss)
BlockDescriptor = (srectangle inside a windows)

RECORD

x, y, W, h: CARDINAL;
END;
The Window Type

Windows are represented by an abstract data type. The type Window itself is a pointer to a descriptor.
This descriptor describes some public features of the window.

TYPE
Window = POINTER TO WindowDescriptor;
WindowDescriptor =
RECORD
wptr: WindowHint; (* do not access *)
bm: Bitmap;
font: Font;
overlaid: BOOLEAN; (* window not completely visible *)

outerblk: BlockDescriptor; (* in coordinates of the original bitmap #)
innerblk: BlockDescriptor; (* in coordinates of the original bitmap *)
header:  ARRAY [0..N-1] OF CHAR;
END;
All fields are read-only.
wptr: for use by the implementation module only. ‘
bm: allows combination of operations of module Screen with module WindowHandler. bm is the bitmap
which corresponds to the inner (writable) area of a window. bm is not valid while the window is overlaid.
font: this font will be used on "Write” operations for the window.
overlaid: flag, if some part of the window is overlaid. A window which is overlaid is put on top before it
is written, :
outerblk: coordinates of the window inclusive its border.
innerblk: coordinates of the inner area of the window. Only this area can be modified with write and
paint procedures. Note: The coordinates used are relative to the full screen. Windowhandler operations
use window-coordinates: 0,0 is at the lower left point inside the window.
header: title, written on top of the window.

It is important, that the type Window is a pointer. Window variables may be assigned, function procedures
may return windows. The descriptor is allocated by the windowhandler and must not be copied (since the
implementation may be position dependent). The fields are read-only and may change at any time.

Allocation of Windows
The simplest method to open (create) a new window is to call the procedure OpenWindow:

PROCEDURE OpenWindow(VAR w: Window; x, y, width, height: CARDINAL;
name: ARRAY OF CHAR; VAR done: BOOLEAN);

w: is the new window

x, y: coordinates of the (left, bottom) edge of the border

width, height: of the window (including the border)



10010
name: title of the window
done: returns success

It is necessary to check the done parameter, there exist several reasons for failures of the operation: not
enough memory, too many windows, bad coordinates, etc.

The more complete procedure CreateWindow has two additional parameters:

PROCEDURE CreateWindow(VAR w: Window;
X, y, width, height: CARDINAL;
name: ARRAY OF CHAR;
savecontents: BOOLEAN;
signal: WindowProc;
VAR done: BOOLEAN);

savecontents: selects the method of handling the window when it is overlaid.
signal: is a procedure which is called when some operations occur.

(OpenWindow corresponds to CreateWindow where the signal’s are ignored, and the windowhandler saves
the contents of the window).

WindowSignals

When windows are modified, the modification is notified to the "owner” program (the program which
called CreateWindow). Upon creation of the window a “signal” procedure (of type WindowProc) is
specified. The signal procedure is called when the window is modified. The signal procedure may inspect
its parameter to get information about which modification of which window occured.

TYPE
WindowSignal = (redraw, save,
moved, changed, fontchanged, opened, closed,
usedfordefault, enddefault, ...);
SignalSet = SET OF WindowSignal;
WindowProc = PROCEDURE(Window, WindowSignal);

Note: The "signal” procedure is not only called during the creation of the window; it is also called later,
when some action happens. Signal procedures may be compared to asynchronous interrupts.

Overlapping

Windows may freely overlap each other. It is, however, possible to put any window on the top at any time.
There are two methods to redraw a window when it is put on the top (savecontents parameter of
CreateWindow).

If the windowhandler saves the contents of the window itself, then it redraws the window itself. The
signal procedures may then be used to notify the action.

If the windowhandler does not saves the contents, then the owner of the window has to redraw it
whenever the windowhandler requests redrawing by a call of the corresponding signal procedure.

Handling WindowSignals

- redraw, save:

if restoring is done automatically (savecontents=TRUE)
the signal procedure is called after the window has been saved,
respectively redrawn;
(No signal of redraw when Clear puts the window on top)

if window is not restored automatically (savecontents=FALSE)
this is a request to the owner to save or to redraw the window;
save:  when called, the window is visible
redraw: when called, the window is visible but cleared



10011

moved, changed:
if restoring is done automatically
called after the action has been done
if not restored automatically
this call replaces a redraw signal; it is a request to draw the window
on its new position
fontchanged, opened:
called after the action has been done
closed:
called before the window disappears
usedfordefault, enddefault:
notifies the action
other values: should be ignored by user programs.

If a window should not signal its operation, it may use IgnoreWindowSignal as its signal procedure.

The Binary Display Procedures

In general, the display procedures work on two rectangles within windows, called the source and the
destination.

destination := F(destination, source)
The function F(d, s) depends on the procedure and on a mode parameter.

These blocks are described with the BlockDescriptor type. The coordinate system used for these blocks
has its origin at the lower left corner of the window.

Mode: Mode of operation of the basic display procedures.

TYPE
Mode = (replace, (#d:=s , S *)
paint, (*#d :=dORs , d+s *)
invert, (*d :=d X0R s , d/s *)
erase); (* d := d AND NOT s, ds(-s) *)

replace: replaces the destination by the source.
paint.  the source is overlaid (added) to the destination.

invert; the destination is inverted, where the source contains ones.
erase. the destination is cleared, where the source contains ones.

Clear. Clears the window.

Replicate: Replicates the bitpattern (pattern) over a rectangle (the destination block) of the window
according to the mode.

pattern: This is not a declared type; any variable may be used as pattern, but the first word of the
pattern must contain the number of words following. This number is the height of the pattern, its
width is 16.

BlockTransfer. is the most general display procedure. It copies the source block into the destination block
according to the mode.

DisplayDot: Writes a single dot at the coordinates x, y of the window according to a mode.

DisplayChar. Paints the picture of a character from a font table into a block of a window. This block
represents the position (line). DisplayChar updates the block to exclude the just-painted character.

PROCEDURE Clear(w: Window);

PROCEDURE Replicate(w: Window; VAR dest: BlockDescriptor;
m: Mode; VAR pattern: ARRAY OF WORD);

PROCEDURE BlockTransfer(dw: Window; VAR dest: BlockDescriptor;
m: Mode; sw: Window; VAR source: BlockDescriptor);



10012
PROCEDURE DisplayDot(w: Window; x, y: CARDINAL; m: Mode);
PROCEDURE DisplayChar(w: Window; VAR lineBlk: BlockDescriptor;
VAR f: Font; ch: CHAR);

Impiemeniation Restrictions

The current implementation does not guarantee correct blocktransfer, if the source and the destination
windows overlap each other.

The destination blocks will be clipped to the window’s size. The procedure DisplayChar does not
recognize whether or not the character fits into the line block.

Text Output

The text output procedures are defined in such a way that they could be used without any respect to the
binary procedures. These procedures have their own coordinate system for positioning: The origin (0, 0) is
the first character of the first line in the window. Units are the line height and the character width (if the
font is not proportional).

For the procedure declarations see the definition module; the procedures correspond to those of the
module TextScreen.

The output and the positioning is done with the default font associated to the window. The procedures
LoadFont and SetFont are used to exchange the default font of a window, the font which is used by the
procedure WriteChar. It is up to the user’s responsibility not to return the font explicitly (Procedure
ReturnFont of module Screen). The windowhandler’s implementation may (but need not) return fonts
which were loaded with the procedure LoadFont of the windowhandler.

If a proportional font is used the positioning is a bit clumsy. The procedure GetPos and SetPos will use dot
coordinates for the horizontal coordinate. The procedures ClearChars and FreeChars will use maximum
width characters.

The procedures GetDotPos and SetDotPos allow positioning text output with the binary (dot) coordinate
system,

Default Output

When the windowhandler is initialized, the first window which is created will be used as defauli window.
The procedure UseForDefault allows to exchange the default window. Library modules must not call this
procedure, since their callers may make assumptions where the default output will be written. The

procedure DefaultWindow returns the window where default output will be directed to.

Whether the windowhandler is used or not, need not be known by library modules. If it is used, the default
window is also used to display the default output written with module Terminal. Default output should not
use knowledge about screen size, because it may be directed to a window. It is possible to get the size of
the default window without importing the module WindowHandler (See description of module Screen).

Miscellaneous Procedures
The procedure SelectWindow is used in many applications.

PROCEDURE SelectWindow(VAR w: Window; x, y: CARDINAL; VAR found: BOOLEAN);
(* Returns the window (w) in which the point x,y is visible;
found: x, y points to a window *)

If a point is selected (e.g. with mouse actions) the procedure returns which window contains the point. If
an object in a partly overlaid window gets selected, this procedure allows detection whether or not the
object was visible: Since the actual Window type is a pointer, it is allowed to compare the returned
window with another window and to check if they are the same. (This was the real cause to design the type

Window to be a pointer).

The procedure FullScreen returns the dummy window which denotes the whole screen. This dummy



10013
window enables drawing outside the windows, it is, however, up to the user’s responsibility not to modify
other windows.

The procedure PutOnTop moves an overlaid window on the top, this window then may lie over other
windows. Do not assume a window to remain on top, any output of any module may cause a change of the
window order.

For further procedures see the definition module.

Reference

The Modula-2 manual [1] shows a subset of the windowhandler. This subset fulfills the need of most
applications. There is also an example of the use of the windowhandler.

Definition Module

DEFINITION MODULE WindowHandler; (* Ch. Jacobi 9.12.81s)
FROM SYSTEM IMPORT WORD, ADDRESS;
IMPORT Screen;

EXPORT QUALIFIED
Window,
Bitmap, Font, BlockDescriptor, Mode,
WindowDescriptor, WindowSignal, SignalSet, WindowProc,
CreateWindow, OpenWindow, CloseWindow, ChangeWindow,
Clear,
Replicate, BlockTransfer, DisplayDot, DisplayChar,
WriteChar,
FreeChars, Freelines, GetPos, SetPos, ClearChars, ClearlLines,
SetDotPos, GetDotPos,
Loadfont, Setfont,
UseForDefault, DefaultWindow,
PutOnTop, NextDown, SaveWindow,
SelectWindow, FullScreen,
OpenBitmapWindow, IgnoreWindowSignal;

CONST N = 24;
TYPE
Window = POINTER TO WindowDescriptor;
Bitmap = Screen.Bitmap; (* Bitmap; =)
Font = Screen.font; (* Font; =)
BlockDescriptor = Screen.BlockDescriptor; (* RECORD x,y,w,h: CARDINAL END; )
Mode = Screen.Mode; (* (replace, paint, invert, erase);
WindowHint;
WindowDescriptor =
RECORD
wptr: WindowHint; (* do not access s)
bm: Bitmap;
font: font;
overlaid: BOOLEAN; (* window not completely visible )

outerblk: BlockDescriptor; (* in coordinates of the original bitmap *)
innerblk: BlockDescriptor; (* in coordinates of the original bitmap *)
header: ARRAY [0..N-1] OF CHAR;
END;
(* do not make copies of windowdescriptors;
all fields are considered read-only,
the fields may dynamically change values *)
WindowSignal = (redraw, save,
moved, changed, fontchanged, opened, closed,



10014
usedfordefault, enddefault, ...);

redraw, save:
if not restored automatically
requests on the owner;
save: when called, the window is visible
redraw: when called, the window is visible but cleared
if restoring is done automatically
is called after the action has been done;
No call of redraw when Clear puts the window on top
moved, changed:
if restoring is done automatically
called after the action has been done;
if not restored automatically
this call replaces a redraw signal; it is a request
Jontchanged opened:
called after the action has been done
closed:
called before the window disappears
usedfordefault, enddefault:
notifies the action
- other values: should be ignored by user programs. =)
SignaiSet = SET OF WindowSignal;
WindowProc = PROCEDURE(Window, WindowSignal);

(t

PROCEDURE CreateWindow(VAR w: Window;
X, y, width, height: CARDINAL;
name: ARRAY OF CHAR;
savecontents: BOOLEAN;
signal: WindowProc;
VAR done: BOOLEAN);
(* w: new created window
x, y: coordinates of the (left, bottom) edge of the border
width, height: of the border
name: title of the window
savecontents: pointwise saved and restored on overlapping
signal: procedure called when an event to signal occurs
Warning: signal must not cause operations on other windows;
otherwise infinite loops may be programmed
done: returns success *)

PROCEDURE OpenWindow(VAR w: Window; x, y, width, height: CARDINAL;
name: ARRAY OF CHAR; VAR done: BOOLEAN);

(* w: new created window
X, y: coordinates of the (left, bottom) edge of the border
width, height: of the border
name: title of the window
done: returns success
[OpenWindow is short form of CreateWindow with

savecontents := TRUE; signal := IgnoreWindowSignal] =)

PROCEDURE CloseWindow(VAR w: Window);

PROCEDURE ChangeWindow(w: Window; x, y, width, height: CARDINAL;
VAR done: BOOLEAN);

(* operators =)
PROCEDURE Clear(w: Window);



PROCEDURE Replicate(w: Window; VAR dest: BlockDescriptor;
m: Mode; VAR pattern: ARRAY OF WORD);
(*+ a pattern contains the size of its image in the first word,
followed by the image *)
PROCEDURE BlockTransfer(dw: Window; VAR dest: BlockDescriptor;
m: Mode; sw: Window; VAR source: BlockDescriptor);
(* transferring between overlapping windows is not guaranteed
in the current implementations)
PROCEDURE DisplayDot(w: Window; x, y: CARDINAL; m: Mode);
PROCEDURE DisplayChar(w: Window; VAR TineBlk: BlockDescriptor;
VAR f: Font; ch: CHAR);

(* Text Windows; positioning only with non proportional fonts +)
PROCEDURE WriteChar(w: Window; ch: CHAR);
PROCEDURE FreeChars(w: Window): CARDINAL;

(* returns number of free characters in the current line #)
PROCEDURE FreeLines(w: Window): CARDINAL;

(* returns number of empty lines; the current line not counted )
PROCEDURE GetPos(w: Window; VAR line, pos: CARDINAL);
PROCEDURE SetPos(w: Window; line, pos: CARDINAL);
PROCEDURE ClearChars(w: Window; n: CARDINAL);

(* clears n positions but at most the rest of the current line )
PROCEDURE ClearLines{w: Window; n: CARDINAL);

(* clears n full lines but at least the rest of the current line )

(* positioning with dot coordinates *)
PROCEDURE GetDotPos(w: Window; VAR x, y: CARDINAL);
PROCEDURE SetDotPos(w: Window; x, y: CARDINAL);

. PROCEDURE LoadFont(w: Window; fontName: ARRAY OF CHAR; VAR ok: BOOLEAN);
PROCEDURE SetFont(w: Window; VAR f: Font);

(* defaults »)
PROCEDURE UseforDefault{w: Window);

(* denote the system to use this w as default Windows)
PROCEDURE DefaultWindow(): Window;

(* visibility *)
PROCEDURE PutOnTop(w: Window);
PROCEDURE NextDown(w: Window): Window;
(* w=NIL: gets the window on top
wONIL: gets the window below of w
if w is bottom window: returns NIL.
The window list is ordered according to visibility
(overlaying of windows); when the visibility changes while
following the list, windows may be overseen or seen twice ! *)
PROCEDURE SaveWindow(w: Window): BOOLEAN;
(* the window w will be saved,
this allows to overlay the visible look of the window on the
screen, on further WindowHandler operations the window will
first be redrawn. =)

(* special *)

PROCEDURE SelectWindow(VAR w: Window; x, y: CARDINAL; VAR found: BOOLEAN);
(* Returns the window in which the point x,y is visiblex)

PROCEDURE FullScreen(): Window;
(* the dummy window which denotes the whole screen; *)

10015



10016
PROCEDURE OpenBitmapWindow(VAR w: Window; VAR bm: Bitmap; VAR done: BOOLEAN) ;

(* enables WindowHandler operations onto bitmaps (of module Screen).
A bitmap window cannot be changed or moved;
it is not included in the window list available
by calling NextDown;
it is not tested against visibility nor overlapping #)
PROCEDURE IgnoreWindowSignal(w: Window; s: WindowSignal);

END WindowHandler.

Imported Modules

Screen

Terminal

FileSystem -

Others, which either are resident, or linked to the module WindowHandler.



10017
10.5. CursorStuff

Simple cursor handling and menu input technique. The module supports three different levels of
implementation.

The normal, high level use is provided by the procedures TrackCursor, ReleaseCursor, and MenuSelection.
The position of the mouse is saved in global variables.

The unsymmetry between these procedures is necessary! TrackCursor returns whenever a button is
pressed. Always one button is pressed first, this button is specified in the return value. ReleaseCursor
returns when no button is pressed, i.e. after a release of the buttons. This allows to return the set of all
buttons, which have been pressed after the procedure was called.

MenuSelection draws a menu and waits until the user selects one of the commands of the menu (by
releasing the mouse buttons when the cursor lies on the corresponding command), or does another
manipulation. Normally the mouse buttons are pressed before the procedure is called, and the command
are selected by releasing the buttons. But, if MenuSelection should first wait till a button is pressed and
only after that may exit, the commandstring should start with a “s",

The procedure GetMouse (lower level) simply gets the mouse coordinates into the variables xpos, ypos and
reads the state of the buttons. In fact, the procedure gives not only the hardware coordinates, it also maps
the hardware coordinates onto the screen size. The moving of the cursor is delayed at the border of the
screen (this allows exact positioning onto the border). However, moving the mouse further causes the
cursor to wrap around.

On a middle level, the procedures TrackCursor and ReleaseCursor are used again, but an own cursor
procedure is used. Calling InstallCursor tells the module to install the users cursor tracking procedure for
the next call of TrackCursor or ReleaseCursor. It is not recommended to use this middle level for simple
programs, it is, however, used to implement the menu selection procedure. Further, the module exports
the procedures Arrowlnvert and SimpleMove, which are installed, when no user installations are done.

Definition Module

DEFINITION MODULE CursorStuff; (* Ch. Jacobi 2.8.81s)
EXPORT QUALIFIED
MenuSelection, TrackCursor, ReleaseCursor, xpos, ypos,
InstallCursor, Arrowlnvert, SimpieMove,
buttons, GetMouse;

(* high level features *)
VAR xpos, ypos: CARDINAL;
PROCEDURE MenuSelection(s: ARRAY OF CHAR): CARDINAL;

(* The menu is painted near to the position (xpos, ypos).
s: max 9 commands

" title | comm-2 | comm-3 | ...| comm-n" OR

"s title | comm-2 | comm-3 | ...| comm-n" (waits first)
the "+" is used when no button was pressed previously.
returns:
0: not selected:

a key on the keyboard has been pressed. The key
pressed is put back into the input buffer and
can be read with Terminal.Read;

1: not selected:
tried to select title or outside the menu;

2..n: the corresponding command has been selected =)

PROCEDURE TrackCursor(): CARDINAL;
(*returns 0: keyboard 1: left button; 2: middle; 3: right;



does cursor tracking; returns when the first button (or key)
is pressed while cursor tracking )

PROCEDURE ReleaseCursor(wait: BOOLEAN; VAR but: BITSET);
(# {1}: left button; {2}: middle; {3}: right; {@}: keyboard;

if wait is set and no button is pressed at initialization time, then
ReleaseCursor does cursor tracking til11 any button
is pressed, then continues cursor tracking and returns when
all buttons are released.
(but returns as soon a key is pressed)

else
does cursor tracking; returns when all buttons are
released (or a key is pressed) #)

(* lower level features +)
VAR buttons: CARDINAL;

PROCEDURE GetMouse;
(* reads the mouse status; sets xpos, ypos, buttons #)
PROCEDURE InstallCursor(invertproc, moveproc: PROC);
(* the next call of TrackCursor or ReleaseCursor uses invertproc to draw
and to erase the cursor; moveproc to move the cursor *)
PROCEDURE Arrowlnvert;
PROCEDURE SimpleMove;
(* does the move through inverting twice *)

END CursorStuff.

Restrictions

10018

The global variables are read-only. (Assgning a value to them may destroy information used by other

utilities or by the user; the module CursorStuff is not affected.)

Te. 1o
nXampie

Loop
(* assume no button is pressed *)
CASE MenuSelection("+ MENU | comm-A | comm-B | EXIT") OF
0: Read(ch); Write(ch) |

1: WriteString("please select a command") |
2: ProcA |
3: ProcB |
4: EXIT
END;
END;
or:
1 := TrackCursor(); (= drawsand moves the cursor +)
(* a button is pressed down *)
IF i=1 THEN

(* the (left) button is probably still pressed down *)

CASE MenuSelection(" MENU | comm-A | comm-B") OF
0: BusyRead(ch)]
1: WriteString("no command selected")|
2: ProcA |
3: ProcB



Imported Modules

Terminal
Screen
Resident system modules

10019



10020
10.6. CursorRelations

Cursor-positions relative to windows

All procedures take the position where the mousebuttons have been pressed the last time and compute
offsets to the window used as parameter. For the characterwise relative positions the default font of the
window is used (The font which would be used by the procedure WriteChar). For the procedure
DownCharPos and RightCharpos, (0, 0) is the position of the first character of the top line. The procedure
UpDotPos and RightDotPos use the dot coordinate system of the window; (0, 0) denotes the position of the
leftmost point of the bottom line.

Definition Module

DEFINITION MODULE CursorRelations; (* Ch. Jacobi 10.6.81%)
FROM WindowHandler IMPORT Window;
(*IMPORT CursorStuffs)
EXPORT QUALIFIED
Inside,
DownCharPos, RightCharPos,
UpDotPos, RightDotPos;

(* all coordinates are relative to
CursorStuff.xpos, CursorStuff.ypos )

PROCEDURE Inside(w: Window): BOOLEAN;
PROCEDURE DownCharPos(w: Window): CARDINAL;
PROCEDURE RightCharPos(w: Window): CARDINAL;
PROCEDURE UpDotPos(w: Window): CARDINAL;
PROCEDURE RightDotPos(w: Window): CARDINAL;

END CursorRelations.

Restrictions

Relations are taken between the cursor position at cursor tracking time and the window position at current
time; Changes of the window in the mean time would cause wrong results,

The windows have to be properly initialized.

The results are unpredictable, if the cursorposition is not inside the inner area of the window (Not so for
the procedure Inside). )

Imported Modules

Screen
CursorStuff
WindowHandler



10021
10.7. WindowDialogue

Window Editor and Input Scheduler.

This module collects the interactive input commands and directs them to the specific windows and their
activities. The module implements a so-called window editor, which allows interactive modifications of the
windows.

The Window Editor

If a mouse button is clicked while the cursor shows to the background, a control menu is shown. The
commands shown allow to modify windows. After selecting a command, a window has to be pointed at;
the command is relative to that window. Note: Only those actions will happen to a window, which
explicitly were installed by a previous call of InstallWindow.

The call feature is dangerous, an interactively selected and executed erroneous program may cause the
calling program to abort. To avoid this, the call feature is discarded when the procedure DialogLoop was
called with its parameter comint=FALSE.

Interactive Commands of the Window Editor

exit:
Exits the most recent invocation of DialogLoop; usually programs then will terminate.

call:

Shows another menu. Selects a utility program and executes it. (Either directory, copy, delete,
rename, list or other important routines) If the utility-menu is discarded and the keyboard is
pressed, it starts a command interpreter, reads a program name and executes that program inside
the window. (Press ESC to quit the command interpreter). It is possible to run out of memory or
to get other loader or execution error messages. The call command allows creation of an own,
temporary window if no window is selected.

remove:
Removes the Window.

move:
Moves the window. Asks the user to point the new location.

change:
Changes the window size or location. Asks the user to point the new diagonal of the window.

font:
Set font used for the window.

order:

Shows another menu with names of windows. Select a window to be placed on top (made
visible).

If no menu command is selected, but the mouse button is released while the cursor square points to a
window, this window is placed on top (made visible).

To escape from a started command press ESC.

Warning

This module is a step forward to an integrated system. In spite of this, the use of such a module is not
freely recommended. Actions are executed on the top program level. All actions which return or require
some resources will do this on that top level. When the operating system will allow resource allocation on
another level and will support some kind of multiprogramming, then the operating system will take over
the job of distributing the input to the proper program. It will do it in a nicer way than with these
handler-procedures, eg. with processes.



10022
However, if use for combination of independent programs is not without problems, this module is very

useful for importing independent (library) modules.

Definition Module

DEFINITION MODULE WindowDialogue; (*= Ch. Jacobi 14.12.81%)

FROM WindowHandler IMPORT
Window, WindowSignal, SignalSet, WindowProc;
EXPORT QUALIFIED
DialogProc,
InstallWindow, CreateInstallWindow, RemoveWindow,
InstallKeyboard,
Dialogloop, EndLoop;
(* procedures to install "handlers” which are called on specific
actions done with or inside a window;
[the handlers are only called, if the action is caused from within this modul
all installations are active only while the procedure Dialogloop

DialogActions:
1 - left button pressed inside the window
2 - middle " " " " "
3 - r .i g h t ”" ” ” " ”
4 - commandinterpreter called inside the window

(executing programs elsewhere is not recorded)
5 - remove command interactively called
5 - enables dialog actions caused from higher, non shared levels *)

1

 TYPE DialogProc = PROCEDURE(Window, CARDINAL);
(* the window parameter describes with which window an action happened;
the CARDINAL describes the DialogAction which happened #)

PROCEDURE InstallWindow{w: Window;
dialogActions: BITSET; (sinteractive allowed dialog actions
dialogHandler: DialogProc; (*called on dialog actionss)
windowHandlerActions: SignalSet;(*interactive allowed WH actions#)
VAR done: BOOLEAN);

PROCEDURE CreateInstallWindow(VAR w: Window; name: ARRAY OF CHAR;

dialogActions: BITSET; (*interactive allowed dialog actions
dialogHandler: DialogProc; (*called on dialog actions*)
windowHandlerActions: SignalSet;(*interactive allowed WH actionss*)
savebitwise: BOOLEAN; (*WindowHandlers)

signal: WindowProc; (*WindowHandler; called on WH action

VAR done: BOOLEAN);
(* corresponds to :
interactive position query; CreateWindow; InstallWindow
dialogActions: interactive allowance by this module
windowHandlerActions: INTERACTIVE allowance by this module;
(if called explicitly all actions are allowed
, since the WindowHandler ignores this module)
dialogHandler: handler called on all dialog actions
signal: handler called on all WindowHandler actions;
(don't care about interaction or not)
for exact definition see WindowHandler
savebitwise: the WindowHandler saves the image on overlapping



10023
for exact definition see WindowHandlers)

PROCEDURE RemoveWindow(w: Window);
(* cancel the installation, does not close the windows)

PROCEDURE InstallKeyboard(p: PROC);
(* p will be called when a key (keyboard) is pressed *)

PROCEDURE DialogLoop(comint: BOOLEAN);
(* starts a main lToop which calls the installed handler procedures
according to the interactive actions of the user.
it may be stopped interactively or
programmed by calling EndlLoop;
comint: allows calling the command interpreter interactivelys)

PROCEDURE EndLoop;
(* stops the dialog loop *)

END WindowDialogue.

Fine point: The procedure DialogLoop considers the top line of the screen to be background. This allows selection of the
window-editor, if the background is not visible at all.

Imported Modules

Terminal

WindowHandler

FileNames

Program

ProgramMessage

CursorStuff

Screen

Some resident system modules



10024
10.8. ScreenResources(Q

Gives access to actual resources used by the module Screen.

The module will be replaced in the next version of the operating system. It allows to hide the private
exports of the module Screen. Because of this indirection, normal users of Screen will not suffer from the
intended changes, the module Screen stays stable (Upward compatible).

If the module Screen is not used at all, the module BitmapVars gives cheaper access to the resident
resources used for fonts and bitmaps.

Restrictions

This module will be changed on the next operating system release.

No checks.

Font name of font created with UseFont will not be remembered for a subsequent call of LoadFont.

Definition Module

DEFINITION MODULE ScreenResources®; (*Ch. Jacobi 10.10.81%)
FROM SYSTEM IMPORT ADDRESS;
FROM Screen IMPORT Bitmap, Font;
EXPORT QUALIFIED PToBMD, PTofontFramePointer, UseBitmap, Usefont;

(* this module is temporary and will freely be deleted *)

PROCEDURE PToBMD(b: Bitmap): ADDRESS;
(* returns pointer to (firmware) bitmapdescriptor;
however this bitmapdescriptor needs NOT be aligned.
Do not copy the bitmapdescriptor, a future version of module Screen
may move the actual bitmap. Parameter b must not be subbitmap *)

PROCEDURE PTofFontFramePointer(f: Font): ADDRESS;
(* returns pointer to font-framepointer (which ignores 4-word descriptor)
Do not copy the font-framepointer, a future version module Screen
may move the actual fonte)
PROCEDURE UseBitmap(VAR bm: Bitmap; w,h: CARDINAL;
at, size: CARDINAL; VAR done: BOOLEAN);
(* like CreateBitmap, but uses user specified memorys)
(* at: (hard)framepointer to bitmaps)

PROCEDURE UseFont(VAR f: Font; name: ARRAY OF CHAR;
at, size: CARDINAL; VAR done: BOOLEAN);
(* like LoadFont, but uses user specified memory; no checks*)
(* at: (hard)framepointer to 4-word soft font descriptors)

END ScreenResourcesd.

Imported Modules

Screen

Other modules, which are linked with module Screen already.
Font Format Conventions

The microcoded DCH instructions needs a framepointer to denote the font. This framepointer points to
the actual font table, which is a table of offsets (one for each character), followed by the pictures of the



10025
characters.

The following pseudo declaration should explain the format of the font table as assumed by the firmware.

TYPE ChPointer = SELF-RELATIVE OFFSET TO ChDesc.w;
TYPE ChDesc = RECORD
pat: ARRAY [1..height] OF BITSET;
w:  ONE'S-COMPLEMENT INTEGER;
(* w>=0: width;
w <@: -w is index to extend *)
skip, height: [0..255] (* packed;
skip means empty bottom lines )
END;
TYPE fonttable = RECORD
chtable: ARRAY [0..255] OF ChPointer;
extend: _ ARRAY [2566.. ] OF ChPointer;
characterInfo: ARRAY [..] OF WORD
END;

On the file and in memory a 4-word header is prefixed to the fonts, This is, however, a software convention
only.

This should explain why with PToFontFramePointer a frame pointer is returned, which points behind the
4-word header, but with UseFont, a frame pointer pointing TO the 4-word header must be given.

4-word header:

length (16-bit)

checksum (16-bit) over 4-word header and firm font
baseline ( 8-bit) | height ( 8-bits)

proportional ( 1-bit) | maxwidth (15-bits) two’s complement

The software allocates also some trailing information in the memory, residing afier the actual font table.

Bitmap Descriptor

The following declaration shows the format of bitmap descriptors, as is assumed by the firmware
instructions, and returned by the procedure PToBMD. This BitmapDescriptor type is not exported, it is for
documentation only. For the old display processor this type is used also to drive the hardware.

TYPE
BitmapDescriptor =

RECORD :
bitmapAddress: ADDRESS;
width: CARDINAL;
heigth: CARDINAL;
position: CARDINAL;

END;

bitmapAddress: is a rotated frame pointer to the memory area used for bitmap. (framepointer rotated 2
bits to left). Therefore, the two least significant bits of bitmapAddress denote the memory bank.

width: Width of the bitmap in words.

heigth: Heigth of the bitmap - 2. Unit is dots.

position: Used only in old fashioned display hardware: denotes location of the displayed bitmap on the
screen. One bit drives inverting the picture.

Avoid using knowledge of these hardware descriptions. Either the hardware level or the screen software
level may be used, but intermixing these levels needs too much knowledge of implementation details.



10026
10.9. BitmapVars

Module BitmapVars can be used by stand alone programs which completely ignore the screen software
system around “Screen”; it delivers the addresses of the bitmap, bitmap descriptor and standard font.

All variables fulfill the hardware constraints of the machine; e.g. the bitmapdescriptor is an aligned one, if
this is necessary to the machine. Consider the variables to be read-only. Do not make copies of the
variables.

Definition Module

DEFINITION MODULE BitmapVars; (* Ch. Jacobi 22.2.81s)
FROM SYSTEM IMPORT ADDRESS;
EXPORT QUALIFIED BMD, BMA, FA;
(* this module is freely changed if future implementations of
screen software would conflict with its definition =)
VAR
BMD: ADDRESS; (* address of the bitmapdescriptor seen by the
display hardware *)
BMA: ADDRESS; (* frame pointer to the (resident) bitmap =)
FA: ADDRESS; (* frame pointer to the standard font:
(points to the firm font; behind 4-word header) =)
(* read only; do not make copies *)
END BitmapVars.

Imported Modules

Resident system modules



11001

11. Library Modules

15.5.82

This chapter is a collection of some commonly used library modules on Lilith. For each library module a
symbol file and an object file is stored on the disk cartridge. The file names are derived from (the first 16
characters of) the module name, beginning with the prefix LIB and ending with the extension SYM for
symbol files and the extension 0BJ for object files. It is possible that some object files are pre-linked and
therefore also contain the code of the imported modules.

Module name FileNames
Symbol file name DK.LIB.FileNames.SYM
Object file name DK.LIB.FileNames.0BJ

List of the Library Modules i
InOut Simple handling of formatted input/output 11.1.
ReallnOut Formatted input/output of real numbers 11.2
Mouse Mouse handling and cursor tracking 11.3.
LineDrawing Line drawing on the screen 114.
MathLib0 Basic mathematical functions 11.5.
OutTerminal Formatted output to the terminal 11.6.
OutFile Formatted output to files 11.7.
OutWindow Formatted output to windows 11.8.
BytelO Input/output of bytes on files 11.9,
ByteBlockIO Input/output of byte blocks on files 11.10.
FileNames Input of file names from the terminal 11.11.
Options Input of program options and file names 11.12.
Line Driver for the RS-232 (V24) line interface 11.13.
V24 Driver for the RS-232 (V24) line interface 11.14,

The first four modules are considered to be used by small programs and for introductory exercises. They
provide access to the terminal and to files, to the mouse, and to the screen by a simple interface.



11002
11.1. InOut

Niklaus Wirth 15.5.82

Library module for formatted input/output on terminal or files. A description of this module is included
to the Modula-2 manual [1).

Imported Library Modules

Terminal
FileSystem

Definition Module

DEFINITION MODULE InQut; (*NW 11.10.81s)
FROM FileSystem IMPORT File;
EXPORT QUALIFIED
EOL, Done, in, out, termCH,
OpenInput, OpenOutput, CloseInput, CloseOutput,
Read, ReadString, ReadInt, ReadCard,
Write, Writeln, WriteString, WriteInt, WriteCard, WriteOct, WriteHex:

CONST EOL = 36C;
VAR Done: BOOLEAN;
termCH: CHAR;
in, out: File;

PROCEDURE OpenrlInput(defext: ARRAY OF CHAR);
(*request a file name and open input file "in".
Done := "file was successfully opened".
If open, subsequent input is read from this file.
If name ends with ".", append extension defexts)

PROCEDURE OpenOutput(defext: ARRAY OF CHAR);
(*request a file name and open output file "out"
Done := "file was successfully opened.
If open, subsequent output is written on this files)

PROCEDURE Closelnput;
(*closes input file; returns input to terminals)

PROCEDURE CloseOutput;
(*closes output file; returns output to terminals)

PROCEDURE Read(VAR ch: CHAR);
(*Done := NOT in.eofs)

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);

(*read string, i.e. sequence of characters not containing
blanks nor control characters; leading blanks are ignored.
Input is terminated by any character <= " "
this character is assigned to termCH.

DEL is used for backspacing when input from terminals)

PROCEDURE ReadInt(VAR x: INTEGER);
(*read string and convert to integer. Syntax:
integer = ["+"|"-"] digit {digit}.
Leading blanks are ignored.



11003
Done := "integer was read"s)

PROCEDURE ReadCard(VAR x: CARDINAL);
(*read string and convert to cardinal. Syntax:
cardinal = digit {digit}.
Leading blanks are ignored.
Done := “"cardinal was read"s)

PROCEDURE Write(ch: CHAR);
PROCEDURE Writeln; (sterminate lines)
PROCEDURE WriteString(s: ARRAY OF CHAR);

PROCEDURE WriteInt(x: INTEGER; n: CARDINAL);
(*write integer x with (at least) n characters on file "out".
If n is greater than the number of digits needed,
blanks are added preceding the numbers)

PROCEDURE WriteCard(x,n: CARDINAL);

PROCEDURE WriteOct(x,n: CARDINAL);

PROCEDURE WriteHex(x,n: CARDINAL);
END InQut.



11004
11.2. ReallnOut

Niklaus Wirth 15.5.82
Library module for formatted input/output of real numbers on terminal or files. It works together with the
module InOut. A description of this module is included to the Modula-2 manual {i].
Imported Library Module
InOut

Definition Module

DEFINITION MODULE ReallnOut; (sN.Wirth 16.8.81%)
EXPORT QUALIFIED ReadReal, WriteReal, WriteRealOct, Done:

VAR Done: BOOLEAN;

PROCEDURE ReadReal(VAR x: REAL);
(*Read REAL number x from keyboard according to syntax:

["+"|"-"] digit {digit} ["." digit {digit}] ["E"["+"|"-"] digit [digit]]

Done := "a number was read".

At most 7 digits are significant, leading zeros not
counting. Maximum exponent is 38. Input terminates
with a blank or any control character. DEL is used
for backspacings)

PROCEDURE WriteReal(x: REAL; n: CARDINAL);
(*Write x using n characters. If fewer than n characters
are needed, leading blanks are inserteds)

PROCEDURE WriteRealOct(x: REAL);
(*Write x in octal form with exponent and mantissas*)

END ReallInOi

In0ut.



11005
11.3. Mouse

Niklaus Wirth 15.5.82

Library module for handling the mouse and tracking a cursor on the screen. A description of this module is
included to the Modula-2 manual [1). This module does not work together with the screen software
package described in chapter 10, but it may be used with module LineDrawing. All exported variables
must be considered as read-only variables.

Imported Library Module
BitmapVars

Definition Module

DEFINITION MODULE Mouse; (*NW 2.1.82%)
EXPORT QUALIFIED keys, Mx, My, curOn,
TrackMouse, FlipCursor, ShowMenu;

VAR keys:  BITSET; (*Mouse keys*)
Mx, My: INTEGER; (*=Mouse and cursor coordinatess)
curOn: BOOLEAN;  (scursor toggle switch; initial value - FALSE#)

PROCEDURE TrackMouse;
(*read Mouse coordinates Mx, My, and keys;
move cursor accordinglys)

PROCEDURE FlipCursor;
(*toggle switch for cursors)

PROCEDURE ShowMenu(text: ARRAY OF CHAR; VAR selection: INTEGER);
(*show menu text at current cursor position, then follow the Mouse's
movements for command selection until menu key is released.
Selection = @ means that no command was selected. In the text, command
lines are separated by "|". Command word have at most 7 characters,
and there must be at most 8 commands *)

END Mouse.



11006
11.4. LineDrawing

Niklaus Wirth 15.5.82

Library module for drawing lines ans writing strings on the screen. A description of this module is
included to the Moduia-2 manual [1j. This module does not work together with the screen software
package described in chapter 10.

Imported Library Modules

FileSystem
BitmapVars
ByteBlockIO

Definition Module

DEFINITION MODULE LineDrawing; (*NW 15.1.82s)
FROM FileSystem IMPORT File;
EXPORT QUALIFIED
width, height, PaintMode,
Px, Py, mode, CharWidth, CharHeight,
dot, line, area, copyArea, clear, Write, WriteString, WriteBitmap;

TYPE PaintMode = (replace, paint, invert, erase);

VAR Px, Py: INTEGER; (*current coordinates of pens)
mode: PaintMode; (=*current mode for paint and copys)
width: INTEGER; (*width of picture area, read-onlys)
height: INTEGER; (*height of picture area, read-onlys)
CharWidth: INTEGER; (swidth of a character, read-onlys)
CharHeight: INTEGER; (*height of a character, read-onlys)

PROCEDURE dot(c: CARDINAL; x,y: INTEGER);
(*place dot at coordinate x,y#)

PROCEDURE line(d,n: CARDINAL);
(*draw a line of length n in direction d (angle = 45+¢d degrees) =)

PROCEDURE area(color: CARDINAL; x,y,w,h: INTEGER);
(*paint the rectangular area at x,y of width w and height h in color ¢

8 - white, 1 = light grey, 2 = dark grey, 3 = blacks)

PROCEDURE copyArea(sx,sy,dx,dy,dw,dh: INTEGER);
(*copy rectangular area at sx,sy into rectangle at dx,dy of

width dw and height dh =)
PROCEDURE clear; (*clear the screens)
PROCEDURE Write(ch: CHAR); (s*write ch at pen's positions)
PROCEDURE WriteString(s: ARRAY OF CHAR);
PROCEDURE WriteBitmap(VAR f: File);

END LineDrawing.



11007
11.5. MathLib0

Niklaus Wirth 15.5.82

Library module providing some basic mathematical functions. A description of this module is included to
the Modula-2 manual {1].

Imported Library Module

Terminal

Definition Module

DEFINITION MODULE MathLibe;
(*standard functions; J.Waldvogel/N.Wirth, 10.12.80%)

EXPORT QUALIFIED sqri. exp, In, sin, cos, arctan, real, entier;

PROCEDURE sqrt(x: REAL): REAL;
PROCEDURE exp(x: REAL): REAL;
PROCEDURE 1n(x: REAL): REAL;
PROCEDURE sin(x: REAL): REAL;
PROCEDURE cos(x: REAL): REAL;
PROCEDURE arctan(x: REAL): REAL;
PROCEDURE real(x: INTEGER): REAL;
PROCEDURE entier(x: REAL): INTEGER;
END MathlLib®.



11008
11.6. OutTerminal

Christian Jacobi 15.5.82

This module contains a small collection of output conversion routines for numbers and strings. The output
is written to the terminal.

Procedures:

Write writes a character
WriteLn writes an end of line
WriteT writes a string (T =text)
Writel writes an integer
WriteC writes a cardinal
WriteO writes octal

length 0: oneleading blank -
<>0: no leading blank, the output is right adjusted in a field of "length” characters;
if the field is too small its size is augmented.
WriteT does left adjustment and has no leading blanks

Definition Module

DEFINITION MODULE OutTerminal; (* Ch. Jacobi, S.E. Knudsen 18.8.80 +)
FROM SYSTEM IMPORT WORD;

EXPORT QUALIFIED

Write, Writeln, WriteT,

Writel, WriteC, Write0;
PROCEDURE Write(ch: CHAR);
PROCEDURE Writeln;

- PROCEDURE WriteT(s: ARRAY OF CHAR; length: CARDINAL);
PROCEDURE WriteI(value: INTEGER; length: CARDINAL);
PROCEDURE WriteC(value: CARDINAL; length: CARDINAL);
PROCEDURE WriteO(value: WORD; length: CARDINAL);

END QutTerminal.

Imported Module

Terminal



11009
11.7. OutFile

Christian Jacobi 15.5.82
This module contains a small collection of output conversion routines for numbers and strings to a file.

The procedures have different names than the corresponding procedures of the modules OutTerminal and
OutWindow. This simplifies combined imports of the module OutFile with one of the other formatting
modules.

Procedures for formatted output onto the files:

WriteChar  writes a character
WriteLine writes an end of line
WriteText  writes a string
Writelnt writes an integer
WriteCard  writes a cardinal
WriteOct writes octal

length 0: oneleading blank
<>0: no leading blank, the output is right adjusted in a field of "length” characters;
if the field is too small its size is augmented.
WriteText does left adjustment and has no leading blanks

Definition Module

DEFINITION MODULE OQutFile; (* Ch. Jacobi, S.E. Knudsen 18.8.80 *)
FROM SYSTEM IMPORT WORD;
FROM FileSystem IMPORT File;
EXPORT QUALIFIED
WriteChar, Writeline, WriteText,
Writelnt, WriteCard, WriteOct;
PROCEDURE WriteChar(VAR f: File; ch: CHAR);
PROCEDURE Writeline(VAR f: File); .
PROCEDURE WriteText(VAR f: File; s: ARRAY OF CHAR; length: CARDINAL);
PROCEDURE WriteInt(VAR f: File; value: INTEGER; length: CARDINAL);
PROCEDURE WriteCard{VAR f: File; value: CARDINAL; length: CARDINAL);
PROCEDURE WriteOct(VAR f: File; value: WORD; length: CARDINAL);
END OutFile.

Imported Module
FileSystem



11010

11.8. OutWindow
Christian Jacobi 15.5.82

This module contains a small collection of output conversion routines for numbers and strings into

windows.

Procedures for formatted output onto windows:

Write writes a character
WriteLn writes an end of line
WriteS writes a string
WriteT writes a string (T =text) with format
Writel writes an integer
WriteC writes a cardinal
WriteO writes octal
length 0: oneleading blank
<>0: no leading blank, the output is right adjusted in a field of "length” characters;
if the field is too small its size is augmented.
WriteT does left adjustment and has no leading blanks
Definition Module

DEFINITION MODULE QutWindow; (* Ch. Jacobi 11.1.81 =)
FROM SYSTEM IMPORT WORD;
FROM WindowHandler IMPORT Window;
EXPORT QUALIFIED
Write, Writeln, WriteS, WriteT,

Writel,
- PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

WriteC, WriteO;

Write(w: Window; ch: CHAR);

Writeln(w: Window);

WriteS(w: Window; s: ARRAY OF CHAR);

WriteT(w: Window; s: ARRAY OF CHAR; length: CARDINAL);
WriteI(w: Window; value: INTEGER; Tength: CARDINAL);
WriteC(w: Window: value: CARDINAL; length: CARDINAL};
WriteO(w: Window; value: WORD; length: CARDINAL);

END QutWindow.

Imported Module
WindowHandler



11011
11.9. BytelO

Svend Erik Knudsen 15.5.82

Module BytelO provides routines for reading and writing bytes on files. This is valuable for the packing of
information on files, if it is known that the ordinal values of the transferred elements are in the range

0..255.
DEFINITION MODULE BytelO; (* Medos-2 V3 S. E. Knudsen 1.6.81 +)

FROM FileSystem IMPORT File;
FROM SYSTEM IMPORT WORD;

EXPORT QUALIFIED ReadByte, WriteByte;

PROCEDURE ReadByte(VAR f: File; VAR w: WORD);
PROCEDURE WriteByte(VAR f: File; w: WORD);

END BytelO.

Explanations

ReadByte(f, w)
Procedure ReadByie reads a byte from file f and assigns its value to w, i.e. 0 <= ORD(w) <= 255.

WriteByte(f, )
Procedure WriteByte writes the low order byte of w (bits 8..15) on file f.

Example
MODULE ByteIODemo; (* SEK 15.5.82 =)

FROM FileSystem IMPORT File, Lookup, Close;
FROM ByteIO IMPORT ReadByte, WriteByte;

VAR
inf, outf: File;
byte: CARDINAL;

BEGIN
Lookup(inf, °'DK.Demo.from', FALSE);
Lookup(outf, 'DK.Demo.to', TRUE);
Loop
ReadByte(inf, byte);
IF inf.eof THEN EXIT END;
WriteByte(outf, byte);
END;
Close(outf);
Close(inf)
END ByteIODemo.

Imported Modules

SYSTEM
FileSystem



11012
11.10. ByteBlockIO

Svend Erik Knudsen 15.5.82

Module ByteBlockIO provides routines for efficient reading and writing of elements of any type on files.
Areas, given by their address and size in bytes, may be transferred efficiently as well.

DEFINITION MODULE ByteBlockIO; (* Medos-2 V3 S. E. Knudsen 1.6.81 %)

FROM FileSystem IMPORT File;
FROM SYSTEM IMPORT WORD, ADDRESS;

EXPORT QUALIFIED
ReadByteBlock, WriteByteBlock,
ReadBytes, WriteBytes; -

PROCEDURE ReadByteBlock(VAR f: File; VAR block: ARRAY OF WORD);
PROCEDURE WriteByteBlock(VAR f: File; VAR block: ARRAY OF WORD);

PROCEDURE ReadBytes(VAR f: File; addr: ADDRESS; count: CARDINAL;
VAR actualcount: CARDINAL);
PROCEDURE WriteBytes(VAR f: File; addr: ADDRESS; count: CARDINAL);

END ByteBlockIO.

Explanations

ReadByteBlock(f, block); WriteByteblock(f, block)
ReadByteBlock and WriteByteBlock transfer the given block (ARRAY OF WORD) to or from file f.
The bytes are transferred according to the description given for ReadBytes and WriteBytes.

ReadBytes(f, addr, count, actualcount); WriteBytes(f, addr, count)
ReadBytes and WriteBytes transfer the given area (beginning at address addr and with count bytes
(stored in (count+1) DIV 2 words) to or from the file f. The number of the actually read bytes is
assigned t0 actualcount. ReadBytes and WriteBytes transfer two bytes to or from each word; first the
high order byte (bits 0..7), afterwards the low order byte (bits 8..15). If (actual-)count is 0dd, only the
high order byte is transferred to or from the last word.

Example
MODULE ByteBlockIODemo; (= SEK 15.5.82 #)

FROM FileSystem IMPORT File, Response, Lookup, Close;
FROM ByteBlockIO IMPORT ReadByteBlock;

VAR r: RECORD (=...s) END;
f: File;

BEGIN
Lookup(f, 'DK.Demo’, FALSE);
If f.res = done THEN
LOOP
ReadByteBlock(f, r);
IF f.eof THEN EXIT END;
(* use r )
END;
Close(f)



11013
ELSE (= file not found *)
END
END ByteBlockIODemo.

Restriction
The longest block which can be transferred by a single call to ReadByteBlock or WriteByteBlock
contains 2¢+15 - 1 words.
Imported Modules
SYSTEM
FileSystem
Algorithm

The routines repeatedly determinates the longest segment of bytes, which can be moved to or from
the file buffer and move this segment by use of a CODE-procedures (MOV, LXB and
SXB-instructions).



11014
11.11. FileNames

Svend Erik Knudsen 15.5.82

Module FileNames makes it easier to read in file names from the keyboard (i.e. from module Terminal)
and to handle defaults for such file names.

DEFINITION MODULE FileNames; (* Medos-2 V3 S. E. Knudsen 1.6.81 =)

EXPORT QUALIFIED
ReadFileName, Identifiers, IdentifierPosition;

PROCEDURE ReadFileName(VAR fn: ARRAY OF CHAR; dfn: ARRAY OF CHAR);

PROCEDURE Identifiers(fn. ARRAY OF CHAR): CARDINAL;
PROCEDURE IdentifierPosition(fn: ARRAY OF CHAR; identno: CARDINAL): CARDINAL;

END FileNames.

Explanations

ReadFileName(fn, dfn)

Procedure ReadFileName reads the file name fn according to the given default file name dfn. If no
valid file name could be returned, fn[0] is set to 0C. The character typed in in order to terminate the
file name, may be read after the call to ReadFileName. One of the characters eol, ™ ", "/, CAN and
ESC terminates the input of a file name. If CAN or ESC has been typed, fn[0] is set OC too.

Identifiers(filename)
Function Identifiers returns the number of identifiers in the given file name.

IdentifierPosition(filename, identifierno)
Function IdentifierPosition returns the index of the first character of the identifier identifierno in the
given file name. The first identifier in the file name is given number 0. The length of a given file
name fn is returned by the following function call: IdentifierPosition{fn, Identifiers(fn)).

Syntax of the Different Names

FileName = MediumName [ "." LocalFileName ] [0C| " " ].
MediumName = Identifier.

LocalFileName = [ Qualldentifier ".” ] Extension .

Qualldentifier = Identifier { ".” Identifier } .

Extension = Identifier.

Identifier = WildcardLetter { WildcardLetter | Digit } .
WildcardLetter = Letter| "s" | "%" .

DefaultFileName = [ MediumName ] [ ".” [ DefaultLocalName ] ] [0C| " " ].
DefaultLocalName = [ [ Qualldentifier ] ".” ] Extension .

InputFileName = ["#" [ MediumName ] [ ".” InputLocalName ] | InputLocalName ] .
InputLocalName = [ Quallnput "." ] Extension .

Quallnput = [ Qualldentifier [ "." } ] [ "." Qualldentifier ] .

The scanning of the typed in InputFileName is terminated by the characters ESC and CAN or at a
syntatically correct position by the characters eol, " " and "/". The termination character may be read after
the call. For correction of typing errors, DEL is accepted at any place in the input. Typed in characters
not fitting into the syntax are simply ignored and not echoed on the screen.

Wildcard characters ("+", "%") are only accepted, if the default file name contains wildcard characters.



11015
For routine ReadFileName a file name consists of a medium name part and of an optional local file name
part. The local file name part consists of an extension and optionally of a sequence of identifiers delimited
by periods before the extension.

When typing in an InputFileName, an omitted part in the InputFileName is substituted by the
corresponding part in the given default file name whenever the part is needed for building a syntactically
correct FileName. If the corresponding part in the default file name is empty, the part must be typed.

Note: As all file names contain at least a medium name, don’t forget the default medium name in a call to
ReadFileName.

Examples
ReadfileName(fn, "DK") Default for medium name
ReadFileName(fn, "DK..MOD") Defaults for medium name and extension
ReadFileName(fn, "DK.Temp.MOD") Defaults for all three parts of a file name
ReadFileName(fn, "DK.s") Defaults for medium name and extension, wildcards accepte
Error Message

ReadFileName called with incorrect default

Imported Module

Terminal



11016
11.12. Options

Leo Geissmann 15.5.82
Library module for reading a file name followed by program options from the keyboard. File name and
options are accepted according to the syntax given in 4.2.3. and 4.3.
Imported Library Modules
Terminal
FileNames
Definition Module
DEFINITION MODULE Options; (* AKG 28.05.80; LG 10.10.80 *)

EXPORT QUALIFIED Terﬁination, FileNameAndOptions, GetOption;
TYPE Termination = (normal, empty, can, esc);

PROCEDURE FileNameAndOptions(default: ARRAY OF CHAR; VAR name: ARRAY OF CHAR
VAR term: Termination; acceptOption: BOOLEAN);

PROCEDURE GetOption(VAR optStr: ARRAY OF CHAR; VAR length: CARDINAL);

END Options.

Procedure FileNameAndOptions reads a file name and, if acceptOption is TRUE, options from the terminal.
It reads all characters from terminal until one of the keys RETURN, BLANK (space-bar), CTRL-X, or ESC
is typed. For the file name, a defau!! file name may be proposed. The accepted name is returned with
parameter name, and ferm indicates, how the input was terminated. The meaning of the values of type
Termination is

normal input normally terminated

empty input normally terminated, but name is empty

can CTRL-X was typed, input line is cancelled

esc ESC was typed, no file is specified.

Procedure GetOption may be called repeatedly after FileNameAndOptions to get the accepted options. It
returns the next option string in optStr and its length in length. The string is terminated with a 0C
character, if length <= HIGH(optStr). Length gets the value 0, if no option is returned.



11017
11.13. Line

Svend Erik Knudsen 15.5.82

Module Line is used for reading or writing characters over the RS-232 asynchronous line adapter.
Character 36C (= eol) is converted into CR LF if it is written to the line and vice versa.

DEFINITION MODULE Line; (* Medos-2 V3 S. E. Knudsen 1.6.81 )
EXPORT QUALIFIED Read, BusyRead, Write;

PROCEDURE Read(VAR ch: CHAR);
PROCEDURE BusyRead(VAR ch: CHAR);

PROCEDURE Write(ch: CHAR);

END Line.

Explanations

Read(ch)
Procedure Read gets the next character from the line and assigns it to ch. The character sequence CR
LF (15C 12C) is converted to eol.

BusyRead(ch)
Procedure BusyRead assigns OC to ch if no character is received on the line. Otherwise, the received
character is assigned to ch.

Write(ch)
 Procedure Write writes the given character on the line. Character eol is hereby converted to CR LF
(15C 12C).

Restrictions

Module Line must not be used together with module V24 (see chapter 11.14).

The received characters might be lost, if procedure Read or BusyRead are not called frequently
enough. Buffering cannot easily be provided because the line adapter generates no interrupts.



11018
11.14. V24

Svend Erik Knudsen 15.5.82

Module V24 is used for reading or writing characters over the RS-232 asynchronous line adapter. No
character conversions are implied in the routines.

DEFINITION MODULE V24; (* Medos-2 V3 S. E. Knudsen 1.6.81 *)
EXPORT QUALIFIED BusyRead, Read, Write;

PROCEDURE BusyRead(VAR ch: CHAR; VAR got: BOOLEAN);
PROCEDURE Read(VAR ch: CHAR);

PROCEDURE Write(ch: CHAR);
END V24,

Exp_lanations

Read(ch)
Procedure Read gets the next character from the line and assigns it to ch.

BusyRead(ch, got)
Procedure BusyRead assigns FALSE to got if no character is received on the line. Otherwise, the
received character is assigned to ch.

Write(ch)
Procedure Write writes the given character on the line.
Restrictions
Module V24 must not be used together with module Line (see chapter 11.13).

The received characters might be lost, if procedure Read or BusyRead are not called frequently
enough. Buffering cannot easily be provided because the line adapter generates no interrupts.



12001

12. Modula-2 on Lilith

Leo Geissmann 15.5.82
Differences between programming for various impiementations can be attributed to the following causes:
1. Extensions of the language proper, i.e. new syntactic constructs.

2. Differences in the sets of available standard procedures and data types, particularly those of the
standard module SYSTEM.

3. Differences in the internal representation of data.

4. Differences in the sets of available library modules, in particular those for handling files and
peripheral devices.

Whereas the first three causes affect "low-level” programming only, the fourth pervades all levels, because
it reflects directly an entire system’s available resources in software as well as hardware. This chapter gives
an overview of the Lilith specific low-level features.

WARNING

It must be considered that all these features should be applied with utmost care, and that their use
might be in opposition to the basic software, e.g. Medos-2, screen software, etc.

12.1. Code Procedures

The only extension of Modula-2 for Lilith is the addition of so-called code procedures. A code procedure is
a declaration in which the procedure body has been replaced by a (sequence of) code number(s),
representing machine instructions (see Lilith report [2]). Code procedures are a facility to make available
routines that are micro-coded at the level of Modula-2.

This facility is reflected by the following extension to the syntax of the procedure declaration (see
Modula-2 report in [1], chapter 10):

ProcedureHeading ";" (block | codeblock) ident.
r‘nn: r‘MnQMI 1anc~a EAIN

YU U W i .

code code}
[ConstExpression].

$ ProcedureDeclaration
Q ~ndahlnrk

LRSS0 L1 0410 (O N

$ CodeSequence
$ code

The following are typical examples of code procedure declarations:

PROCEDURE get(channel: CARDINAL; VAR info: WORD);
(* input info from channel #)

CODE 240B (* READ )

END get

PROCEDURE put(channel: CARDINAL; info: WORD);
(* output info to channel #)

CODE 241B (* WRITE =)

END put

Parameters of code procedures are written on the expression stack of the Lilith machine, where they must
be read by the code instructions. The compiler does not check that the parameters correspond to the
instructions. Responsibility is left to the programmer.

12.2. The Module SYSTEM

The module SYSTEM offers some further tools of Modula-2. Most of them are implementation
dependent and/or refer to the given processor. Such kind of tools are sometimes necessary for the so



12002
called low-level programming. SYSTEM contains also types and procedures which allow a very basic
coroutine handling.

The module SYSTEM is directly known to the compiler, because its exported objects obey special rules,
that must be checked by the compiler. If a compilation unit imports objects from module SYSTEM, then
no symbol file must be supplied for this module.

For more detailed information see Modula-2 report in [1], chapter 12.

Objects Exported from Module SYSTEM
Types

WORD

Representation of an individually accessible storage unit (one word). No operations are allowed
for variables of type WORD. A WORD parameter may be substituted by an actual parameter of any
type that uses one word in storage.

ADDRESS

Word address of any location in the storage. The type ADDRESS is compatible with all pointer
types and is itself defined as POINTER TO WORD. All integer arithmetic operators apply to this

type.
PROCESS
Type used for process handling.

Procedures

NEWPROCESS(p:PROC; a: ADDRESS; n: CARDINAL; VAR p1: PROCESS)

Procedure to instantiate a new process. At least S0 words are needed for the workspace of a
process.

TRANSFER(VAR p1, p2: PROCESS)
Transfer of control between two processes.

Functions

ADR(variable): ADDRESS
Storage address of the substituted variable.

SIZE(variable): CARDINAL

Number of words used by the substituted variable in the storage. If the variable is of a record
type with variants, then the variant with maximal size is assumed.

TSIZE(type): CARDINAL

TSIZE(type, tagiconst, tag2const, ... ): CARDINAL
Number of words used by a variable of the substituted type in the storage. If the type is a record
with variants, then tag constants of the last FieldList (see Modula-2 syntax in [1]) may be
substituted in their nesting order. If no or not all tag constants are specified, then the remaining
variant with maximal size is assumed.

12.3. Data Representation and Parameter Transfer

12.3.1. Data Representation

The basic memory unit for data is the word. One word contains 16 bit. Every word in data memory can be
accessed explicitly. In the following list for each data type the number of words needed in memory and the
representation of the values is indicated. The bits within a word are enumerated from left to right, i.e. the
ordinal value 1 is represented by bit 15.



12003
INTEGER

Represented in one memory word. Minint = -32768 (octal INTEGER(1000008B)); maxint =
32767 (octal 777778). Bit 0 is the sign bit; bit 1 the most significant bit.

CARDINAL

Represented in one memory word. Maxcard = 65535 (octal 177777B). Bit 0 is the most
significant bit.

BOOLEAN

Represented in one memory word. This type must be considered as an enumeration ( FALSE,
TRUE) with the values FALSE = 0 and TRUE = 1 (bit 15). Other values may cause errors.

CHAR

Represented in one memory word. In arrays two characters are packed into one word. The ISO
- ASCII character set is used with ordinal values in the range [0..255] (octal [0B..377B]).
The compiler accepts character constants in the range [8C..377C].

REAL

Represented in two memory words (32 bit). Bit 0 of the first word is the sign bit. Bits 1..8 of the
first word represent an 8-bir exponent in excess 128 notation. Bits 9..15 of the first word
represent the high part of the mantissa and the second word represents the low part of the
mantissa. The mantissa is assumed to be normalized (9.5 <= mantissa < 1.0). The most
significant bit of the mantissa is not stored (it is always 1).

Enumeration Types

Enumerations are represented in one memory word. The first value of the enumeration is
represented by the integer value 0; the subsequent enumeration values get the subsequent integer
values accordingly.

Subrange Types
Subranges are represented according to their base types.

Array Types
Arrays are usually accessed indirectly. A pointer to an array points to the first element of the
array. In character arrays two characters are packed into one word. The first character is stored
in the high order byte of the first word (bits 0..7), the second character in the low order byte
(bits 8..15), etc.

Record Types
Records are usually accessed indirectly. A pointer to a record points to the first field of the
record. Consecutive fields of a record get consecutive memory locations. Every field needs at
least one word.

Set Types

Sets are implemented in one word. The set element i is represented in bit i, i.e. {15}
corresponds to the ordinal value 1. INCL(s, i) means: bit i in s is set to the value 1.

Pointer Types

Pointers are represented in one memory word. They are implemented as absolute addresses.
The pointer constant NIL is represented by the ordinal value 1777778.

Procedure Types

Represented in one memory word. The high order byte (bits 0..7) represents the module
number, the low order byte (bits 8..15) the procedure number of the assigned procedure.

Warning Do not use this information.
Opaque Types
Represented in one memory word.



12004
WORD

Represented in one memory word.

ADDRESS
Represented in one memory word. The value is an absolute address.

PROCESS
Represented in one memory word. The value is an absolute address pointing to a process
descriptor.

12.3.2. Parameter Transfer

Variable Parameters

The address is transferred to the expression stack.
For dynamic arrays also the value HIGH is submitted to the expression stack. The push operation for
the address is executed first.

Value Parameters

Records and Arrays
The address is transferred to the expression stack (no matter of size). The procedure allocates
the memory space and copies the parameter.
For dynamic arrays also the value HIGH is submitted to the expression stack. The push operation
for the address is executed first.

REAL
The value itself is passed to the expression stack (two words). The procedure copies the value
into its proper location.

Other Types with One Word Size
The value itself is passed to the expression stack. The procedure copies the value into its proper
location.



13001
13. Hardware Problems and Maintenance

Jirka Hoppe 19.5.82

13.1. What to Do if You Assume some Hardware Problems

There is one significant difference between software and hardware. A piece of software keeps the same
quality, if left untouched, a piece of hardware will die sooner or later (the mean time between failure for
the HB D120 disk drives was estimated to be about 5000 hours). For this reason you must expect at any
time a hardware failure of your system. Any user can influence the reliability of Lilith by observing some
basic rules:

1/ The computer must be cooled properly so that the inner temperature never exceeds 40 degrees Celsius.
Keep therefore the bottom of the computer (entry of the air flow) uncovered. Place your computer so that
there will be a minimal distance between the 'fan side’ of the computer (exit of the air flow) and the next
wall of at least 15 cm. Adjust your air conditioning to a lower temperature.

2/ The disk cartridges are extremely sensitive to dust. Keep your cartridges always in a plastic bag, avoid
any dirt and wipe the bottom of your cartridge before inserting it into the drive. Leave your cartridge in
the drive, avoid unnecessary removing. Put always a dummy grey cartridge into the drive when you
remove the disk cartridge. The dummy cartridge protects your drive from dust.

The hardware problems may be classified into four groups:

a/ it is impossible to boot the computer

b/ one peripheral device (mouse, network,..) does not work

¢/ everything *works’ but unreliable

d/ computer works, but there are some problems with your disk

If you have some troubles of the class a/ or b/ please check that all connectors (power, keyboard, mouse,
display, network) are plugged in correctly and that all control lights on the computer cabinet (red for power
and white for a "not" active disk) and on the keyboard (keys ON LINE and FORMAT ) are on.

There is a possibility that the boot file on your disk is damaged. Put your disk into another Lilith and try a
bootstrap. If the bootstrap is still not successful, check your disk using the DiskCheck program (load
DiskCheck from another disk and exchange cartridges when the program is waiting for input) and get a
new boot file.

If everything seems to be all right but you have still problems => call the maintenance group. If you have
any problems where you believe it may be caused by an unreliable hardware, please check first your
software before you start any panic action.

Your system disk contains a hardware test program SYS.HardwareTest that tests thoroughly the processor
and the main memory. You should run this program not only if you assume some hardware problems but
always when you drink coffee or whisky on the rocks instead of working. The command file
SEK.Idle.COM will be executed if you leave the computer idle for more than 3 minutes. Put the command
SYS.HardwareTest on this file and the hardware will be tested regularly. If the test program runs for a
long time without giving a single error message, there is a great chance that the hardware is OK. If the test
program displays error messages, please note them and call the maintenance group.

If you assume that not the processor but any peripheral device is causing reliability problems, call the
maintenance group. They have a collection of test programs for all devices.

Generally: handle your computer like you handle your girl (or boy) friend. Don’t kick it, don’t use a
hammer, don’t spill your coffee into the processor, etc. Please talk to the computer tenderly and pet him.



13002
13.2. DiskCheck

If you have any problems with your disk cartridge, run program DiskCheck. It checks the directory and
possibly all sectors of your disk. The program asks you if you would like to try any fixes. Answer with Y if
you want. If you try any fixes, the program will ask you if you would like to confirm them. Answer always
with Y unless you have a large number of damaged sectors. There will be some errors that you cannot fix
using program DiskCheck. In this case find somebody who knows how to use the DiskPatch program,

There are the following possible error messages:

- disk error on sect = nnnnn xxXXX
file name = yyyyy
nnnnn is the sector number
xxxxx is a further description of the error( e.g. time out, parity err, ..)
Yyyyy is the name of the file that contains this sector

A hardware error occured during the read or write operation. The program asks you if you want
to fix it, answer with 'Y’ unless the sector belongs to the 'FS.Directory’ file; for the
’FS.Directory’ file =) call DiskPatch

- bad fno = nnnnn on sector mmmmm
=) call DiskPatch

- wrong page pointer, dir sector aanan, pointer mmmmm
file name = yyyyy
try to delete yyyyy and immediately bootstrap, if not successful => call DiskPatch

- double allocated page, page = nnnnn, dir entries mmmmm ooooo
file name = yyyyy file name = zzzz:z
delete yyyyy and zzzzz and immediately bootstrap

- bad pointer: name->block directory, sector = nnnnn
=) call DiskPatch

- name dir points to a free block, name dir sect = annnn,
block dir sect = mmmmm file name = yyyyy
try to delete yyyyy and immediately bootstrap, if not successful => call DiskPatch

- version # conflict, name dir sect = nnnan, version = mmmmm,
block dir sect = ooooo, version = ppppp
file name = yyyyy
=> call DiskPatch

After the program has checked the directory, it asks whether you would like to check all sectors on
hardware errors. Answer with Y if you want.

If you made any fixes on your disk, bootstrap the computer and run program DiskCheck again to be sure
that your disk is all right now.



13003
13.3. DiskPatch

Jirka Hoppe 14.5.82

Warning: The program DiskPatch should be used by professional users only. You can destroy by a few key
strokes the entire disk and there will be no possibility to recover this disaster. If you are not completely
sure how to use this program =) keep hands off.

13.3.1. Introduction

The program DiskPatch allows you to initiate disk cartridges for D120 and D140 Honeywell Bull drives
and to recover from some crashes of either the file system or the hardware. All actions to fix a disk are
done manually and the user must know the structure of the file system.

After DiskPatch is started, a greeting message is displayed on the screen and you are asked whether you
know how to use this program. Answer with Y if you are a professional user. (If you type anything else
than Y the program will stop!!!). Next, you are asked to exchange the current disk for the disk you would
like to fix. If the current disk should be fixed, switch the white disk-ready-button off and back on. Next,
the program asks you, whether you are definitly sure that it is the right disk. Check again the cartridge
number and answer with Y if everything is ok. Now a set of commands is available. You may get the menu
by typing 'T. Every command is activated by typing a key character from the menu. The octal
representation is used for all numbers .

13.3.2. Commands

B bad block link

This command is used to insert a damaged sector into a "FS.BadPages’ file. Type the sector number in
octal.

In case of problems there may be the following error messages:
problems...not done => hardware problems when reading or writing directory
toomany bad blocks => the BadPages file is already full
already linked => the sector is already inserted in the BadPages file

C character dump
The last read sector is displayed in ASCII characters. Nonprintable characters are displayed as *.’

D disk switch; removable/fixcd

This command may be used only for the D140 disk. It switches the cartridges used for next
commands. First the type of the current disk is displayed. Next you can change the disk. Type 'r’ if
the next operations should be performed on the Removable cartridge, type *f if the fixed disk should
be used.

G get file to sector

This command finds a name of a file containing a specified data sector. If the sector is not in use a
message not allocated is displayed.

F find name

This command finds an internal file number of specified file name. Type the full file name, ( you may
use DEL) and close the string by RETURN. If the file is found, the internal file number is displayed,
if the file does not exists, not found is displayed.

I inspect
The last read sector may be inspected and changed in a octal representation. Type the address and the
content of the specified word will be displayed. Now you may type *:’ to enter the change mode and
to specify the new value. By typing ’,’ the next address will be displayed, typing any other key will
terminate the inspect command.

K consistency check
The constistency of the directory is checked. For detailed information see the description of the



13004
DiskCheck program.

L illegal block build up

This command is used to write and to read the entire disk and to find damaged sectors and situations,
where more than one invalid sector is located on a single track. Such sectors will be inserted later into
the FS.BadPages file using the ’S’ command. (After you have run the °Z’ command: no problems, the
program will help you.) The execution of the 'L’ command takes about 15 minutes. At the end a
statistic about your disk is displayed. It contains the number of single bad sectors (they will be
handled by the disk driver so that you will not notice any difference), and their position if they are
located within the fixed files. The same information is displayed for double bad sectors (see above).
If there are some double bad sectors located in fixed files you may not use this disk cartridge at all!!!.
When in doubt consult some specialist.

WARNING: THIS COMMAND DESTROYS THE ENTIRE DISK INFORMATION!!!!

N name directory update
This command is used to inspect and change the name directory and has 5 subcommands. Type 'ESC’
to get back to the main menue:
display The current directory sector is displayed. Such a sector contains 8 file entries (0..7).
Each entry consists of:
name - 24 characters; left adjusted, right filled with BLANKSs,
kind - (0=> file is not in use, 1=> file is used),
Jfile number - acting as a pointer to the "block directory’,
version number - which must be the same as the version number in the block directory
The number in parentheses gives the address of the information, that may be used by the
inspect command.
read sector This procedure reads a name directory sector that will be used for next operations.
You may either type a sector number or '=" to get the same sector again or *,’ to get the next
sector.
inspect The same as Inspect from the main menu.
name change The name entry will be changed by this command. The procedure asks you for
the index of the name (0..7), displays the old name and asks for the new name. The name input
is closed by RETURN.

write sector The sector is written back onto the disk. You may either type a sector number or
=" to write to the same sector as read. The program asks you to confirm the sector number.
Type 'y’ if you agree that this sector should be written.

O octal dump
The current sector (opened by the R command) will be displayed in octal mode.

R read sector

This command reads a disk sector that will be used for next operations. You may either type a sector
number or *="to get the same sector again or °,” to get the next sector.

S set illegal blocks into directory
The information as computed by the "L’ command is inserted into the file FS.BadPages. If no double
illegal blocks were found by the 'L’ command, a message no double i11egal blocks is displayed.

T transfer
This procedure is used on D140 disk drives only to transfer a number of sectors between two disks.
You first have to specify the source disk. Type 'f" for fixed disk or 'r’ for removable disk. Now
specify in octal numbers the low and high limit of the region to be transferred.
WARNING: If you would like to transfer the entire disk and the target disk contains any bad blocks
(see 'L’ command) you will destroy the BadPages file and you may run into troubles!!

U update directory

This command is used to inspect and change the block directory and has 4 subcommands; Type *ESC’
to get back to the main menue:



13005
display The current block directory sector is displayed.

There is the following relevant information being displayed.

file# - is the internal index of the file; it must be the same as the relative sector number in
the directory

version Nr - version number of the file, it must be the same as the version number of the
same file in the name directory

kind - 0 => file is free; 1=) file is in use
length.block - how many page blocks are used
length.byte - number of bytes in the last used page

Ppage table - pointers to data sectors. Data sectors are assigned in blocks of 8 sectors. To
compute the physical address make the following computation

physical.address : = (page DIV13)¢8  decimal
physical.address : = (page DIV15) ¢+ 10  octal
A pointer to an unused page has a value 167340 (octal).

The number in parentheses of each identifier of the display command gives the address of
the information, that may be used by the inspect command.

read sector This command reads a directory sector that will be used for next operations. You
may either type a sector number or *=" to get the same sector again or ’,’ to get the next sector.

inspect The same as Inspect from the main menu

write sector The sector is written back on the disk. You may either type a sector number or ’ =’
to write to the same sector as read. The programs asks you to confirm the sector number. Type
'y’ if you agree that this sector should be written.

W write sector

The sector is written back on the disk. You may either type a sector number or *=" to write to the
same sector as read. The program asks you to confirm the sector number. Type 'y’ if you agree that
this sector should be written.

Z zero directory
The directory is initialized. '
WARNING: THIS COMMAND DESTROYS THE ENTIRE DISK INFORMATION!!!!

+ octal calculator
This is a simple calculator able to add, subtract, multiply and divide two octal numbers. Type ESC to

exit to the main menu.
13.3.3. How to Initialize a New Cartridge

Each cartridge must be initialized in order to find damaged sectors or situations where more than one
illegal block is encountered on a single track.

To initialize a cartridge perform the following steps:
Run the 'L’ command
Run the ’Z’ command
If the 'L’ command displays any double bad blocks run the *S’ command.

Record the dad block information in a log book in order to have an overview of your cartridges. If there
are some 'double bad sectors’ located in fixed files you may not use this disk cartridge at all!'!!. When in
doubt consult some specialists.

13.3.4. The most Frequent Problems with Your Disk

The following section gives you an overview of the most frequent problems with your disk and gives
proposals how to fix them. Some of these problems will be encountered during the bootstrap sequence,
where the file system refuses to complete the bootstrap, since the directory is out of order; some other




13006
problems will be detected either by the X consistency command or the DiskCheck program.

Most problems can be solved, when the damaged file is entirely removed by setting the kind field of the
damaged file in both directories (name and block) to 0. This is however a rather brutal, but simple
method.

It is Impossible to Boot the Machine

There is message on the screen

DiskSystem.FileCommand: bad directory entry: fno= nnan; read fno = mmmm

Solution: read the directory sector nnnn using the commands "U’ (update directory) and 'R’; correct the file
number (address 1) to the value nnnn and write the sector back using the "W’ command’. Find the name of
the corresponding file by entering the "N’ (name directory) command and reading the sector annn DIV 10
(octal). The file name will be found on the position nnnn MOD 10 (octal). This file may contain garbage.
Boot the system and check this file.

There is message on the screen

DiskSystem.OpenVolume:bad page pointer; fno = annan, pageno = mmmm, page = 0000

Solution: All page pointers must be dividable by 15 (octal). Enter *U’(update directory) command, read
the sector nnnn and check the pointer mmmm using the *+° (calculator). Replace the bad pointer by the
NIL value 167340 (octal). If too many pointers are damaged, read another directory sector, change the file
number, set length to zero, put all page pointers to NIL and write the sector on nnnn.

Find the name of the file as described above and check the file for garbage.

Problems Found by Program DiskCheck or Command Consistency:
double allocated page
A single page belongs to two files. Delete both files and immediately bootstrap!!!!

name dir points to free block, name dir sect=nnnn

Enter the "N’ (name directory) command; read the sector nnnn DIV 10 (octal), and set the kind of the file
on the position nnnn MOD 10 (octal) to zero. Write the sector back.

version# conflict

The version number of a file in the name and block directory must be the same. Change one version
number so that they match.



	00000
	00001
	00002
	00003
	00004
	01001
	01002
	02001
	02002
	03001
	03002
	03003
	03004
	03005
	04001
	04002
	04003
	05001
	05002
	05003
	05004
	05005
	05006
	05007
	05008
	05009
	06001
	06002
	06003
	06004
	06005
	06006
	06007
	06008
	06009
	06010
	06011
	06012
	06013
	06014
	06015
	07001
	07002
	07003
	07004
	07005
	07006
	07007
	07008
	07009
	08001
	08002
	08003
	08004
	08005
	08006
	08007
	08008
	09001
	09002
	09003
	09004
	09005
	09006
	09007
	09008
	09009
	09010
	09012
	09013
	09014
	09015
	09016
	09017
	09018
	09019
	09020
	09021
	09022
	09023
	09024
	09025
	09026
	09027
	10001
	10002
	10003
	10004
	10005
	10006
	10007
	10008
	10009
	10010
	10011
	10012
	10013
	10014
	10015
	10016
	10017
	10018
	10019
	10020
	10021
	10022
	10023
	10024
	10025
	10026
	11001
	11002
	11003
	11004
	11005
	11006
	11007
	11008
	11009
	11010
	11011
	11012
	11013
	11014
	11015
	11016
	11017
	11018
	12001
	12002
	12003
	12004
	13001
	13002
	13003
	13004
	13005
	13006

