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The Personal Computer Lilith
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The personal work station offers significant advantages over the
large~-scale, central computing faclility accessed via a terminal.
Among them are avalladbility, rveliability, simplicity of
opsration, and a blgh bandwidth to the user. Modern tachnology
allows to bulld systems for high-level language prograssing with
significant computing power for a reasonable price.

At the Institut fur Informatlk of ETH we have designed and built
such & personal computer tallored to the language Modula-2. This
paper is a report on this project which encompasses language
design, development of & compiler and » single-user opasrating
system, design of an architscture sultable for compiling and
ylelding 8 high density of code, and the development and
construction of the hardware. 28 Lilith computecrs are now in use
at ETH.

A  principal theme Iz that the requirsments of software
engineecing influence the design of the language, and that its
facilities are reflected by the architecture of the computer and
the structure of the hardware. That the hardware should be
designed according to the programming language, instead of vice-
versa, is particularly relevant In view of the current trend
towards VLS! technology.






1. Introduction
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Softwace Engineering builds upon two pillars: methods and tools.
Their interrelation is strong. In order to apply new methods
sffectively, we need the appropriate tools, In order to build
supporting tools, we must master powerful methods. Much effort
has been spent on improving our methods, particulacrly in
programming, and many discussions and conferences have been
devoted to the subject of furthering the state of the art by
applying more effactive methods. This includes » tendency
towards the highly mathematical treatment of programming, the
postulation of high-level languages for programming large
systems, the method of structured programming, and the
managerial aspects of organizing the work of programmers’ tesams.

All of these areas are important; they form the part of a whole,
But perhaps none Is as important as the adequate training of the
individual team number into a habit of systematfc thinking. No
team can be successful without all its membars baing trained to
reqard programming as & highly logical and mathematical
activity. And the success of a mathematical treatment rests
largely on the use of an adequate notation, 1.e. prograssing
*language®. The dasigner of algorithms might be content with the
adequate notation and vegard it as his only tool needed.
Howsver, our subject at large is not the design of algorithas or
progtams, but the design of machines. We must regard programsing
s designing wmachinery, f(for programss turn "raw hardwars®” Into
that machinery which fulfils the specified task.

Obviously a good notation must therefore be supported by an
sxcellent implementation, just as a good mathematical framework
for program design must be supported by an appropriate notation.
Moving one step further, the notation's implementation must be
suppotted by an appropriate computer system. The weasure of Its
guality not only includes aspects of computing power, cost-
sffectivensss, and software support (the so-called prograsaing
environment}, but alsc a simplicity and perspicuity of the
entire system, a convenience to use the system, a high degree of
avaitabilicy, and - on the more technical =side -~ a high
bandwidth of information transter ©betwesn computer and .
programmer. The latter aspects point in the direction of a
personal work station In contrast to ths remote, time-shared,
large-scals computing facidity.

Fortunately, modern semlconductor technology has made |t
possible to implement a modern programming language with
excellent support [acilities on ralatively smal) computers that
are very Inexpensive compared to conventional large computing
installations. The fact that the wechanises for sharing a
computer ~ and in particular that for protecting the users from
the mistakes of others - can be discarded, reduces a systea’s
complexity drastically, and thereby improves both {t=s




reliabilicy and pecrsplcuity. The possibllity o lmplement
modern, high-level languages on ryelatively ssall non-shared
computers was perhaps the most significant *discovery”™ during
the last five years. A personal computer, programmable in such a
language, constitutes, in my opinion, a necessary tool for the
creative softwace sngineser of the future,

2. Project history and overview
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The decision to design and build a personal computer as
motivated above was made in the fall of 1977, after the author
had learned to appreclats the advantages of working with am Alto
computsr [1}. The project inciuded the followling principal parts
{2]:

~ design of the pragramming language Modula-2,

~ implementation of & multipass compiler sultable for relatlvely
small computers.

- development of a basic, single-user operating system,
including a file system and a linking loader.

~ design and implementation of & modearn, £lexible text editor
taking full advantage of the computer's capabilities.

- implesentation of a set of basic autllity programs for (file
%:rcctory inspection, copying, ranaming, deleting, and listing

les.

-~ programming and implementing an appropriate set of library
modules for file handling, access to peripheral devices - in
particular the display ~ and storage management.

- designing a sultable machine architecture as Iideal Intecface
between compiler and hardware, and programming this
architecture in alcrocodas.

- design of the hardware capable of sfficiently interpreting the
microcode and supporting the deslrable peripheral davicas,

- building two  prototypes of the designed hardware, and
modifying them according to insight galned from the
concurrent development of hard- and softwarae.

- building a series of 28 computers, debugging and testing them,

- writing documentation and user manuals.

The language Modula-2 - the notation In which this systea
presents itself to the software engineer - was deslgned as a
general system programming language [3). The guiding principle
was that this lanquage would be the only lanquage available on
the computer. Especially, no assesbler would be available, and
hence, the language should be suitable for both bhigh-level
programming in a machine-independent manner and Jow-lavel
programming of machine~particular aspects, such as device
handling and storage allocation. In fact, the entire operating
system, the compliler, the utility programs, and the library
smodules are programwed exclusively in Modula-2.



The compliler is subdivided into four parts. Each part processes
the output of its predecessor iIn seguential fashion and is
theretore called a pass. The first pass pecforms lexical and
syntactic analysis, and it collects f(dentitiers, allocating them
in a table, The second pass processes declarations, generating
the so-called symbol tables that are accessed in the third pass
to perform the type consistency checking in expressions and
ttat;nnntn. The fourth pass generates codc. Its cutput §s called
N*Cﬁ ®.

The operating systea is conceived according to the concept of an
*open® system {[4]. It is divided into three principal parts,
pamely the linking loader, the file system, and routines for
keyboard input and text output on the display. The file system
maps abstract files (sequances of words or characters} onto disk
pages and provides the necessary basic routines for creating,
naming, writing, veading, positioning, and deleting files. Both,
loader and file system present themselves to the Modula-2
programmer as modules {packages) whose routines can be imported
inte any program, Whenever a program terminates, the basic
operating system activatea the command interpreter which
tequests the file name of the next program to be loaded and
inftiated.

The computer a3 “seen by the compiler® s implemented as a
microprogrammed interpreter of the M-code, The WNW-code |i»
designed with the principal goals of obtaining a high density of
code and of making the process of its generation relatively
systematic and straight-forward. Altheugh space s definitely
the scarcer cesource than time, a high density of code is
desirable not only in the interest of saving memory space, but
also for reducing the frequency of {instruction (fetches., A
comparison between two different, but strongly related compilers
revealed that M-code 1Iis shorter than code for the POP-11 by a
factor of almost &, This surprising figure is clear evidence of
rthe inappropriate srructure of "conventional” computer
instruction sets, including those of most modern microprocessors
that were still designed with the human assembly languagc coder
in mind,

The actual hardware consists of a central processing unit based
on an Am298) bit-slice unit, a multi-port memory with 128K words
of 16 bits, a micro-code memory of 2X |Instructions implemented
with PROMS, a controller each for the display, the disk, and a
local network, and interfaces for the Kkeyboard, a cursor
tracking device called the mouse, and & V-24 (RS-232) serial
line interface. The centrsl processor vperates at a baslc clock
cycla of 158 ns, the time required to interpret a micro-
instruction. The most fraquently occuring M-code Instructions
correspond to about $ micro-jinstructions on the average,

The display is based on rhe raster Scan technique using 594
lines of 768 dots each, Each of the 456°192 dots is represented
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in wmain memory by one bit. If the entire screen is fully used,
its bitap occuples 28°'512 words, f.e. 2208 of memory. The
representation of each dot (picture element) in program
accessible main memory makes the display equally sultable for
text, technical diagrams, and graphics In general. In the case
of text, each character i% generated by copying the character's
bitmap into the appropriate place of the entire screen’s bitmap.
This is done by software, supported by appropriate microcoded
routines, corresponding to special M-code ianstructions. This
solution, in contrast to hardware character generators, offers
the possibility to wvary the characters' slze, thickness
fboldface), Iinclination (italics) and even styls. In short,
difterent fonts can be displayed, This (feature, which |is
particularly attractive for text processing, reaquires a
substantial amount of computing power to be avallable iIn short
bursts. The writing of a full screen, 1i.s. conversion of
characters from ASCII code to correctly positioned bitmaps,
takes about 1/4 second. Using a small font, a full screen may
display up to 19'8@9 characters.

The disk used In this personal computer s a Honeywell-Bull
D-128 cartridge disk with a capacity of 18 MBytes and a
potential transfer rate of 728 kB/s, which results in an actual
rate of 68 kB/s for reading or writing of sequential files. Disk
sectors, each containing 256 Bytes, are allocated in multiples
of 8 on the same track. Allocation is sntirely dynamic, and
hence no storage contraction processes are neesded o retrisve
"holes®™. The use of exchangeable cartridge disks in contrast to
sealed (Winchester) disks has been conslidared as esssential ia
order that a work stabion may be used by diffacent pecple at
different times without reliance on the sxistence of a neatwork
and a central file store,

The mouse Is a device that transaits signals to the computsr
which represent the mouse's movements on the table. These
movements ate translated (again by solftware) Into » cursor
displayed on_ the screen. The accuracy of position is as high as
the resclution of the screen, because tha fasdback ftom cursor
to mouse travels via the user's sye and hand. The mouse also
contains three pushbuttons (keys) which are convenjent for
giving commands while positioning the mouse,

The various principal parts of the projects were undertaken more
or less concurrently. The team conslsted of & i(part time) people
in the average (not counting the production of 28 machines), and
was small enouwgh te require nelther management staff nox
methods. The hardware was designed and built by thtes enginears
{including the author), two computer sclentists built the
compiler, one the operating system, ons inplemented the
microcode and most of the editor. The sofcware effort was based
on the use of a PDP-11/48 computer {with a2 28K store) and was
initiated with the development of 3 compller for Modula-2
generating code for the PDP-11 ictself. This “preliminary®



compiler developwment constituted a significant part of the
eptire software effort, and resulted in a valuable suoftware tool
that had recently been released for distribution, It also made
the development of the Lilith software quite independent from
the progress of the hardware, Both the Modula-~2 compiler for M-
code, the operating system, and even the highly display-oriented
editor were developed on the PDP-}1, and the subseguent
transport to the Lilith computer proved to be quite
unproblematic duve to programming in . HModula-2, 1In fact, the
untested compiler was transported and debugged (at least to an
acceptable degree) in a few days only.,

Whereas the software development could profit from our previous
enperience in designing compilers and programming In general,
such was not the case in the hardware sector, as our institute
had nefther  hardware expertise nor facilities. To galn
experience and develop such facilities was, however, a prime
challenge, and this project offered a welcome opportunity,

From the start it was planned to base the Lilith computer on the
2991 bit-slice processor, because one-chip processors avallable
in 1977 did not offer the computing speed required for the
efficient handling of the planned bitmap cperations. This
decision proved to be a gqood one, After 15 months of
development, a first prototype was operational (without disk),
proved to be too unreliable for extensive use, but confirmed the
sensibility of the overall design. An additional year was needed
te produce two ldentical prototypes which served to test the
software that had been developed in the meantime. In the spring
of 1980, a team was formed at the Department of Electrical
Engineering of Brigham Young University in Provo, Utah, to build
a series of 28 Lilith computers. This goasl was achieved within 8
months by three graduating engineers and with the aid of student
employees during the summser months., The cost per unit, not
counting the development of the prototypes nor of organizing the
production effort, but including labor and parts, In particular
the 19MB disk, was about SFr 287388,

In the meantime, a few important application programsa were
written at ETH, including a text editor, an editor for drawing
circult diagrams, and a window handler module. Some sample
pictures illustrating their use are shown in Fig 1. They are
printed with the same resolution as seen on the scieen.

1. Modules and interfaces Iin Modula-2
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Perhaps the most important criterion of a language for
programming large systems [s how well 1t supports program
modularization., The sarliest facilities introduced for effective
program decomposition was the concept of locality, i.e. the
restriction of the validity of names ({identifiers) to well-



delineated parts of the program, such as a block or a procedure.
This concept was introduced by Algol 66 and adopted in Algol 68,
PL/I, and Pascal, among others. The range of valldity is called
A name's scope. Scopes can be nested, and the rule is that nasmes
valid in the scope's environment are also valld Iinside ¢,
whereas names declared within the scope are invisible outside,
This rule immediacely suggests a connection between the range of
visibllity (scope) of a name within the program text, and the
time of existence of the objact assoclated with the name: as
soon as control enters the scope (procedure, block), the object
must be created {(e.9g. Storage must be allocated to & variable},
and as soon as It leaves the scope, the object can bs deleted,
for it will no longer be visible. In spite of the tremendous
value of this locality concept, there are two reasons why it is
inadequate for large programs. '

~ there I8 a nead to hlde objects, i.e. to retain them whils
they are invisible. This calls for s separation of visibility
and existence: vislblity as a property of names, existence as
a property of objects,

- there is a need for closer control of wvisibility, L.s. for
selection of particular names to be visible or lnvisible, in
contrast to the *lnheritance” of the total savironment into a
Jocal scope.

In Modula-2, we have therefcre added the structure of a2 sodule
ta the structure of the procedura. Both structures appear
syntactically as almost identical, but are governed by different
rules about visibility of local npames and existence of the
assocliated objects:

Pl. An object declaced local to & procedure sxists only as long
a3 the procedure remains activated,

Hl. An object local to a module exists as long as the enclosning
procedure remains activated.

P2. A name local to a procedure is Invisible outside the text of
that procedura, one visible in the envictonmant s also
visible inside the procedure.

M2. A name local to a module is visible inside the module, and
outside” too, If it appears in the so-called export list in
the module heading. A name visible in a module's snvironment

is wvisible inside that module only }f it appears in its zo0-
called import list,

From these rules, we can draw the following conclusion: A module
itself has no "existence®, since its local objects inheriv their
lifetime from the module's environment (procedure). MHence, the
module is a purely syntactic structure acting like a wall
enclosing its local objects and controlling thelr visfbility by
means of export and import lists. Modules therafore need not ba
instantlated; there are no instances of a module. The wodule is
merely a textual unit,



A typical example of a module I3 the [ollowing:

MODULE wm;
IMPORT u,vg
EXPORT p.qs

VAR x: ...}
PROCEDURE p{...);
BEGIN ... % ... END p;
PROCEDURE gif{...):
BEGIN ... X ... END q;
BEGIN ... U ... X ...
END m»

This module owns three local objects: varlable x and procedures
p and q operating on x. It exports p and q and hides x by not
exporting it. The body of the module serves to Initialize x; |t
is activated when the environment of m is activated (created).
This example is typical, because it shows how an object x can be
hidden and haow access froe outside is restricted to occur via
specific procedures. This makes it possible to guarantee the
existence of Invaciant conditions on x, independent of possible
errors in the environment accessing x via p and g. Such is the
very purpose of modularization.

The typical purpose of a module is indeed to hide a set of
interrelated objects, and the wmodule is often {identified by
these objects, e.g. a table bandler hiding the table, a scanner
hiding the input stream, a terminal driver hiding the interface,
or & disk system bhiding the disk's structure and allocation
strategy.

The module concept as described above had been Introduced with
the langquage Modula (S5]. Modula-2 extends this concept in two
important ways, namely by

- qualified export mode, and
- subdivision of & module into two textual parts, the so-called
definition and implementation parts. )

Qualified export serves to aveold clashes between identical
fdentifiers exported from different modules into the same
enclosing scope. If an identifier x is exported In qualified
mode from a module m, then the object associated with x needs to
be depoted as m.x. The qualified wode is therefore appropriate,
1f the writer of m does not know the environment of m, This is
not the usual case for nested modules; individual members of a
programming team more typically design modules that lie on the
same level, namely the outermost, or global level (that way be
considered as being enclosed in a universal and empty scope). It
is this case that ig particularly important in the design of
large systems, where a better separation of the specification of
import and export lists from the description of the actual
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objects is desirable.

Consequently, we divide a global module into two parts. The
first is called a definition module; it containa the axport list
and specifications of the exported ohjects as £far as relevant
tor the user (client) of this mocdule to verify the adherence to
language rules (in particular type consistency). A definition
module also specifies the types of its exported variables and
the parameter lists of its exported procedures. The second part
is called the implementation module. It contains (usually)
fwport lists and all the details that neead not concern the
client, such as the bodies of procedures. The notlon of
textually separate definition and Implementation parts was
pioneered by the language Mesa (6] and i3 here smoothly
integrated with the module concept of Modula.

Example:

DEFINITION MODILE B;
EXPGRT QUALIFIED p.q;
PROCEDURE p{...);
PROCERURE q{...):

END B.

INPLENENTATION MODULE B;
FROM A JMPORT u,v;
VAR x: ...:;
PROCEDURE pl...);
BEGIN .., X ..., u ... END p;
PROCEDURE q{...};
BEGIN ... v .. 2 ... END q;
BEGIN ... % ...
END B,

4. Corcutines and processes
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With the design of the Lilith computer we did not follow the
fashionable trend to design a system consisting of several co-
operating concurrent processors, thereby avoliding one certain
source of difficulties, npamely their syachronization. The
consequence for the language Modula~2 was that the concept of
concurrent processes played a winor role only, whereas |in
Modula-1 it had been the major theme. The primary idea had besen
to distinguish the logical process from the physical processor,
allowing implementations " to choose their own mechanisas for
allocating processors to proceases, Logical processes are served
by time-sharing the processors, which may well have different
characteristics and capabilities. The processes are Implesented
a3 coroutines, and transfers of control between them are implied
in statements that send signals or wait to recsive signals,
whare the signal Is an abstract notion represented as a data
type. Each processor executes a sequence of coroutine segsents,



and the processor scheduling can well be hidden behind the
primitive operations on signals. The principal difference
between proceasses (as in Modula~1} asnd coroutines (as in Modula-
2) 1s that the latter are explicitly ldentified whenever a
transfer occurs, whereas processes are not, since transfers are
implied by sending a named signal to some process which remains
anonhymous.

It is well in accordance with the premiss of Modula-2 - namely
to make primitives directiy avallable to the programmer - to
include corputines inatead of processes, because the latter are
implemented by the former. As a consequence, Modula-2
implementations need no "run-time system®™ and no fixed, built-in
scheduling algorithm. There exists no data type Signal, but
instead transfer of control from a coroutine P to a coroutine {
is specified explicitly by the statement TRANSFER(P,Q). Here P
and Q are variables of the primitive type PROCESS, whose actual
values are pointers to the coroutines’® workspace and state
descriptors,

Furthermore, experience with Modula-1 showed the advisability of
separating intervupt-driven from "reqular® processes, because an
interrupt signals a transfer of service among processors within
the same process. A Pprogrammer way adopt this advice by
supplying his own scheduling program. Modula-2 provides the
appropriate mechanism for encapsulating such a user-defined
scheduler in the form of its wodule structure, Naturally, such
algorithms may also be provided in the form of library modules,

As an example we list a scheduler reflecting the simple round-
robin algorithm. The module exports the data type Signal and the
operators StartProcess, Send, and Wait, which correspond to the
language faclilities of Modula-1. The example excludes, howaver,
the treatment of interrupt-driven processes. (Note that the type
Signal Is exported in opaque mode such that its structures |s
invisible to the importer.) Both Send apd Walt imply a coroutine
transfer, The primitive operation TRANSFER (s, 1like the data
type PROCESS, Iimported from the module SYSTEM, which typically
contains low-level facllities, High-level programs  should
prefercably rely on the process concept as presented by such a
ProcessSchedular module, rather than on named corovutines and
explicit transfer of contrecl.

DEFINITION MODULE ProcessSceduler;
FROM SYSTEM IMPORT ADDRESS;
EXPORT QUALIFIED Signal, StartProcess, Send, Wait;

TYPE Signal;
PROCEDURE StartProcess{P: PROC; A: ADDRESS; n: CARDINAL}:
PROCEDURE Send{VAR s5: Signal);
PRAOCEDURE Walt{VAR s: Signal);
END ProcessScheduler,
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INPLEMENTATION MODULE PracessScheaduler;
FROM SYSTEM IMPORT PROCESS, ADDRESS, NEWPROCESS, TRAMBFER;

TYPE Signal = POINTER TO ProceaabDescriptor;
ProcessDescriptor =
RECORD ready: BOOLEAN;
pPr: PROCESS)
next: Signal; (* ring *)
queus: Signal; {* waiting queue %)
END ;

VAR cp: Signal; (* current process *)

PROCEDURE StartProcessi{P: PROC; A: ADDRESS; n:s CARDINAL};
(* start P with workspace A of length n *)
VAR t: Bignal;
BEGIN t := cp; NEM(CPp);
WITH cp” DO
next :» t”.nextj ready :» TRUE;
qusus ;= NIL; t" .nsxt = Cp
END ;
NEWPROCESS{P, A, n, cp”".pr); TRANSFER{t  .pr, cp”.pr)
END StartProcess;

PROCEDURE Send (VAR s: Signal);
(* resume first process walting for s ¢)
VAR t: Slgnal,;
BEGIN
IF s § MNIL THEN
i CP; Cp ™ 8
wWiTh cp”® DO
i= Queus; ready := TRUE; queus 1= NIL
END ;
TRANSPER(L" .pr, cp”.pr)
END
END Send;

PROCEDURE Wait(VAR s: Signal);
VAR td, ti: Signalj;
BEGIN (* jnsert current process in gusue & *)
IF 8 = NIL THEN s := Cp
ELSE t# ;= u; o
LOOP t) 1» t#".queus;
IF t} = NIL THEN
t8° .queve = cp; EXIT

END ;
td :» t)
END
END ;

cp”.ceady 3= FALSE; cp”.quaus 3= NIL)
t9® 1= cp; {(*now £ind next ready process®)

-
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REPEAT cp := cp”.next;
IF cp = t# THEN HALT {*deadlock®™) END
UNTIL cp”.ready;
TRANSFER(:#$ .pr, cp”.pr)
END Walit;

BEGIN NEW{cp):
WITH ¢p” DO
next := cp; ready := TRUE; queue := NIL
END
END ProcessScheduler.

Interrupts are transfers of control that occur at unpredictable
moments. We can regard an interrupt as equivalent to a statement

TRANSFER{interrupted, interrupting)

that is effectively inserted in the program wherever control
happens to be at the moment when the external interrupt request
is applied. The variable "interrupting" denotes the process that
Is destined to service the request, whereas the variable
*interrupted® will be agsigned the interrupted coroutine. The
typical interrupt handler is a device driver coroutine of the
following pattern; P and Q are variables of the primitive trype
PROCESS.

PROCEDURE driver;
BEGIN initialization;
LOOP ...
start device; TRANSFER{Q,P}; ..-
END
END driver

The driver process is created by the primitive statement
NEWPROCESS{driver ,wsp,n,Q)

which allocates the procedure “driver” and the workspace wsp of
slze n to this coroutine, now Iidentified by ¢. It is
subsequently activated by the statement

TRANSFER(P,Q)

which assigns the starting coroutine {e.g. the maln program) to
P, Afrer initiation of a device operation the statament
TRANSFER(Q, P}, which symbolically stands for that part of the
process which s executed by the device {i.e. another processor)
actually returns control to P and assigng (the current state of)
the dylver coroutine back to O, fTermination of the device
operation causes an interrupt signal which (iF enabled)
corresponds, as explained above, to an unwritten TRANSFER(P,Q).
This signal again switches control back from the interupted to



- 14 ~

the driver {(interrupting) routine.

Each interrupt signal -~ the Lilith computer offers 8 of them -
is assocjated with its own varfables P and g at fixed locations,
In order that further intecrupts resain disabled while the
processor executes the interrupt routine, drivers are typically
declared inside a module with specified ®priority®™ that causes
interrupt inhibitlon up to that specified "priority" level.

This elegant conceptual unification of coroutine transfers and
fnterrupt handling was made possible by an  appropriately
designed computer architecture and instruction set.

5. The operating system

———— - i e T A

The most noticeable aspect of the Lilith operating systam Hedos
is its orientation towards a single user. It is devoid of any
protection "mechanism against maliclous programs that could
hamper another user's program, Since MNedos Is programmed in
Modula, it benefits from the safety provided by Modula's type
consistency and various run-time checks. Its safety features ars
“defensive®, but certalnly not invulnarable, conslidering the
Modulats facllitles for low-level prograsming offered to the
brave prograsmer. In this regard, Medos follows the strateqy of
Pilot [9). In a first, supecficial look it can be regarded as a
collection of wmodules that are imported by the current program
{and its imported modules). Since a number of low-level modulss
{such as the file system) are used by virtually every program,

they form a resident section. This set of modules consists of
three maln partis;

“Program” - storage allocation, program loader
"Terminal” -~ drivers for keyboard and display
*"FileSystem® - disk driver and file administration

The module Program expocts the ptacldurcs-

Calliname,sharedHeap,status)
AllocateHeap(size)
DeallocaceHeap(size)

of which the first sffectively reprasents the loader. The module
administers the entire store as a stack and Joads called
programs sequentially. The remainder of the store is treated as
data store. In this part, the data stack grows from one end and
the heap from the other. The heap is used for variables that are
Allocated dynaaically by calls of AllocateHeap and
DeallacateHeap, which mersly move the pointer that denctes the
separation betwean data stack and heap. Nore sophisticated

allocators can be programmed which, however, will also refer to
these basic procedures.
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If a program P calls the loader, the code and data segments of
the loaded wmoduls Q fand of the modules imported by @ and not
already present) sre atacked on top of those of P. The set of
segeents thus Jloaded forms a new "level”, one higher than that
of P. The loader operates as a coroutine, and each new level of
program is represented as a coroutine too. This slight misuse of
the coroutine facility is justified by the convenlsnce in which
new sections of data and program {2 level) can bs administered,
If described as a coroutlne. Fig. 2. shows the storage layout and
the implied transfers of control when & programs Is loaded from a
caller at level 1.,

The set of resident modules forms level #. Its maln program |s
called the Sequential Executive Kernel., It invokes the loader
which loads the command fnterpreter. This iz merely a program
that outputs a proupt character, reads a file name, and
transmits the file identity to the kernel, which loads this file
after the command iInterpreter has tearminated and control is
returned to level #, Loading of the main program usuvally
requires the loading of further modules that are specified in
import lists, Linking or binding of modules is simplified by the
archlitecture of the Lilith computer such that It is performed
directly upon program loading. Fig. 3 shows a typical seguence
of programs, and how they occcupy the store.

Since a program 1is loaded only after remcval of the command
interpreter, and because the command interpreter typically has
ample time to process the slow Input from the keyboard, It can
be dexzigned with additional sophistication. It can search ths
file table for program files whose names match with the input so
far recelived and extend it as far as {1t is vunamblguous. Por
example, If file names ABCD and ABCE are present, and no others
starting with A, it may display both names after receiving “A?"
and then allow continuation after receiving elther D or B. This
is a small but typical example of providing a convenient user
interface without additional burden on the user's program,

The entire mechanism for loading and allocating 18 programmed
exclusively {n Modula-2; this i{ncludes the subtle point of
changing our view of a program as data before to code after its
loading. In Modula-2, this 1Is possible without resorting to
tricky programming and without the escape to small sections of
assembly code. -

The second principal part of the set of resident modules handles
fnput from the keyboard and ocutput to the display. This module
is called Terminal. The input stream fetched by the procedure
Read {contained in Terminal} flows through 2 switch that allows
reading frxom a file instead of the keyboard, Because the command
interpreter also calls Read, that f[ile can even be a command
Eile. The output stream, which i3 fed by calling the procedure
Write, is fed to the low-level module TextScreen that simulates
sequential writing and generates the bit pattern for each
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character according to a default font.

The module FileSystem constitutes the third major part of the
resident system, Flles are used for thrse main purposes:

-~ long-term storage of data on permanent, named files,
- communication among programs,
- secondary storage of data on temporary, unnamed fEiles.

¥e distinguish between the naming and abstract definition of
files as extendable arvrays of elewments (FileSystam) and the
physical implementation of files on the disk (DiskSystem). The
rogrammer tefers to files through the module FileSystem which
n turn calls procedures of the module DiskSystem hiding the
details of thelr physical representation.

FileSystem exports the type File and operations on this :rpc for
opening ({creating), naming, reading, writing, wmodifying,
positioning, and closing flles. Hotnail{ files are regarded as
streams of either words or characters; writing occurs at the and
of the strsam only, and if writing Is requestad at some position
other than the end, tha file's taf)l Is lost and deallocated.
Mthough 1t is also possible to modify files, i.e, overwrite
them, the abstraction of the stream is the prefecrved view of
files,

The module DiskSystem iaplements ¥Files on the Honeywell-Bull

D-120 disk. It is designed according to the follawing main
tequirements:

fast access, in parvicular If strictly sequential,
robustness against hard- and software fallures,
accommodation of a large number of (mostly short) files,
sconomical use of storage space.

The following scheme was chosen as a compromise betwesn the
various dasign objectives: Space Is alloczated in blocks of 2848
bytes. This results in 3 memory resident allocation table of 392
words {one per cylinder), each bit indicating whether or not its
corresponding block s allocated to soms file. Each block
corrasponds to B disk sectors, equally spacead on the same
cylinder. A separate file, allocated at & fixed place, is called
FlleDizectory and consiscts of file descriptors. Every file is
fdentitiad by the index . of its ({first) descriptor (= [file
nusber), and each descriptor contains a table of addresses of
the blocks which constitute the [file. Additionally, the
descriptor specifies various properties of the flile, such as {ts
length, creation date, last modification date, whather 1t is
permanent, protected, «tc. Upon startup, the system reads the
sntire FileDirectory and computes the allocatlon table.

Unnamed €iles are released either by closing them or whan the
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system 1ls started. They are used as temporary files during
execution of a program. For long term storage of data, a file
hag tc be named. To adwinister permanent files, the wodule
DiskSystem wmaintains another £lle ({also placed in a fixed
location) called the Name Directory. Each entry consists of a
file name and the number of the associated [ile. The procedure
Lookup(f , name,create) is used to search thea name In the Name
Directory and connects the file (If found} with the flle
variasble f. The parametsr "create" allows to ask for the
creation and naming of a new Etile, if the specitied name was not
found {(see Fig. 4},

A fourth, but sffectivliy hidden part of the resident system |is
called the Monitor. Tt contains two auxiliary processes that are
used to moenftor the third, namely the main process of the user.
The auxiliary processes avre called Clock and Trap (Fig. S5).
Clock i3 invoked 58 times per second., It wupdates a variable
called time, wmonitors the keyboard by polling, and buffers
keyboard fnput, allowing for typing ahead. ’

Trap is invoked by wvarious Instructions detecting abnormal
conditions, such as stack overflow, arithmetic overflow, index
out of range, asccess to picture elements outside the specified
bitmap, the standard procedure HALT, etc, The Trap process then
may Store the state of the main process {essentially a dump} on
the disk for possible later inspection by a debugger program,
and restarts the majn process at the kernel level,

Typing the control character <ctrl>C i3 detected by Clock and
causes an abortion of the main process in the same manner as a
trap. Evidently, abnormal situatlions are here handled by
coroutine transfers instead of an additional exception facility
provided in the programming language. The auxiliary coroutine
then regards the aborted coroutine as data {instead of as a
program} and is thereby able to reset it to a state where
continuation is sensible,.

Fig. 6 shows the principal modules of Medos with arrows denoting
calls of procedures. Usually, these arrows are identical to
those denoting the import/export dependences among wmodules.
Exceptions to this rule occur through the wuse of procedure
variables.

6. Separate compilation of modules

e ——— T s e — T o . -

For reasons of convenience and economy, large system proqgrams
need to be compiled in parts, It Is only natural that these
parts be the ones that from & loglcal point of view were
designed as relatively independent wunits, The wmodule {s the
obvlious choice for the wunit of compilation. bPefinition and
implementation modules are therefore called compilation unlts,
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The idea of compilation In parts Is as old as Portcan and even
assembler code, In bhigh-level languages with data types the
problem of partial complilation 1s of considerable complexity: we
wish that type consistence checking is fully maintained across
module boundaries. In fact, exparlance has shown that «this is
when it i5 most needed to avoid catastrophic errors. In order to
recognize inconsistencies such as type misaatches, incorrect
nusber or order of parameters, etc., a% early as possible, they
must be detectable by the compller. The compiler therefore must
have access to information about all fmported objects. This is
accompl ished as follows {7}):

Assume that a module B depends on, f.e. imports objects from a
module A. Therefore, module A has to be complled first. During
fts compilation, th compiler generates, apart from a code file
for A, a symbol file. Compilation of B subssquently accesses
that symbol file. More accurately, program B can - accerding to
the rules of the lanquage -~ refer to Information of A's
definition part only. Thus, the symbol file Is an extract only
of the information avajlabls during compilation of A. Since only
definiction modules are capable of exporting, the sysbol file i3
the result of compiling the definition module A, while code is
the result of compliling iwplementation {eor progras) modules
only.

This scheme -~ in particular the separation of definition and
implementation parts - has important consequences foc the mannar
in which systems are developed. A definition moduls constitutes
the interface between its implementation part and its clients.
Effectively the scheme forces the programmer o deflne
interfaces first, for, whenever a definition moduls is {(changed
and} recompiled, all its Iimporters {clients) have to be
recompiled too, However, it is possible to change and recompila
implementation modules without that far-rsaching and costly
CoRsSaquence.

It should be noted that the consequences of ¢this chionological
ordering of compilations are lass severs than might be
anticipated due ta the fact that the luporters ars usually
fmplementation modules. Hence a change in 3 low-level module - a
module that resides low in the bhilsrarchical chain of
dependencies - need not produce a chaln reaction of
recompilation up to all wultimate clients. The appropriate
decomposition of a planned system into modules {s neverthalass »
most important aspect of compatent programming. Often the
decomposition has to be declided at an sarly stage when insight
into many aspects of a system are still hazy. Its success
therefore largely depends on the engineer's previous experience
with sisilar tasks,

Learning how to deal effecrively with & new facility offered by
a programming language 3 & long-term process. The module
facility forces the programmer team to make those decisions
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first that must be made first {8}. One lesson learned s0o far is
that & module typically centers around a data structure, and
that it is this data structure rvather than .the e#xported
operations that characterize ft.

7. The architecture of the Lilith computer

One of the challenges in designing a computer lies in finding a
structure and an instruction set which yield a high density of
code and a relatively sieple alqgorithm for code generation. A
premise of this project was that the computer had to be designed
according to tha language in which It was to be programmed, This
resulted in a quite unconventional architecture. No attempt was
made to make the Instruction set suitable for “hand coding”; in
tact, programming in machine code would be quite cumbersone,
even if an assembler vwere available.

The Lilith computer is based on a stack architecture, Stack
computers are by no means novel as such. Thelr history dates
back to the early 68s with the English Electric KDPI and the
Burroughs B5988 as ploneers. The Lilith architecture adopts the
stack principle without compromise, and its instruction set is
chosen to obtain a high density of code requiring only straight-
forward algorithms for instruction selection. The code is a byte
stream. Bach Instruction consists of one or several bytes. The
high density is achieved not only by implicit addressing of
intermediste results in expressions, but mainly by the provision
of different address lengths and sultable addressing modes. In
order to explain these modes, we need to inspect the overall
storage organtzation at run-time. In contrast to earlier stack
computers, not only procedures play an important role, but also
wmodules. The wunderlying premise is that objects local to the
location of the present computation are accessed most fequently
- and therefore require fast access by short instructions -
whereas access to remote objects Is relatively rare and requires
less efficiency, Fast access is obtained by retaining
“intermediate results” of address computations in fast registers
{base address), Iin the expectation that they will be reused
frequently, and that thereby thelr recomputation can be avoided.
Several base address registers are used in the Lilith computer.

The origin of all address computations is a table with base
addresses of all currently loaded data frames (see Flg. 7). A
data frame IS5 a contiguous area of store allocated to the
{static) variables of a given module, By "module® we refer here
and subsequently to compilation units; this excludes inner
{nested) modules. Each loaded module has a number which iIs used
as index to that frame table. The table reslides at a fixed
Jocation and has a fixed length. The entry belonging to the
module of which code s executed currently, is retained in the
base address register G, It i3 the base address of "Global
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varfiables® in the sense of Algol or Pascal. G has to be reloaded
whenever control transfers from one wmodule to another. Data
frames are statlc in the same sense that they are “permanent”®
for the duration of a program exscution, with the (rare)
exception of overlays performed by calls of the loader.

bata local to procsdures are allocated [n a stack which grows
when a procedure is called and shrinks when it is terminated.
Each coroutine {process) is allocated an ared of Lthe store,
called a stack frame, when It i35 started, and which serves as
the coroutine's workspace. The base address of the stack frame
belonging to the coroutine currently under sxecution is stored
in the register P, that of the last location allocated in this
stack Ctrame In register S, and the end of the workspace is
designated by regisver H. P Is used when a transfer f£from one
coroutine to another coroutine occurs, S when & procedure I3
called or terminated. Each stack frame contains the hierarchy of
data gegments representing the variables local to the activated
procedures. They are linked by the so-called dynamic chain of
procedure activations, The base address of the last segment
created is rerained in register L (for Local data).

Local data are semi-dynamic in the sense that they are allocated
tor the duration of a procedure activation only. However, thair
addresses are determined by the compiler as offsets relativae to
the base address of thelr owner. Truly dynaaic data are those
allocated by axplicitly programmed statements in an area of the
store called heap, This storage area i3 managed by a utility
module called Storage; these variables are acceased via pointer
values. As In Pascal, pointers are bound to a given type,
providing additional securlty in pointer handling.

Each loaded module owns a data frame and alzso a code frame, a
contiguous area of store containing the code of al) Its
procedures. The base address of the code frame of the currently
a:acuting module s retalned in reglister F. Its valus is used
when calling a procedurs, which is 1dentifled by a2 nuaber wused
a5 index to a table containing the starting addrexses o0f all
procedures in a given module. This table resides in the headss
of the code frame. Using such an Index Instead of absolute
addresses contributes to higher code density, particulacly slincs
procedure calls are vary frequent instructions. The value of
register F is changed whensver contro}l transfers betweean
modules., Jump addresses are relative to the F-register value.

8. the Lilith instruction set

——— e e e A A A e e A T A e A

Instructions consist of one or several bytes, They can be
divided into four basic categories: Load and store Instructions,
operators, control Instructiona, and miscellancous insteuctlions:
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The load and store instructions transfer data between memory
{stack or heap) and the top of the stack, where they are
accessed by operators. The top of the stack, where data are
loaded as intermediate results (anonymous varlables) Is also
called the axpression stack. Load or store Instructions rcequire
4 single address only bacavse the stack address is implicit;
they are further subdivided according to the following criteria:

~ data size: the transferred data are a word {16 bits), a double
word, or a byte (halfword). -

- addressing mode: local, global, external, stack, indexed, and
immediate mode {the latter for load instructions only).

- address length: 4, 8, or 16 bit address (see Fig. 8).

The presence of different address lengths suggests that
variables with freguent access be allocated with small offsets,
Our present compiler does not perform any such optimization. The
gain to be made does not appear to be ovarwhelming. The set of
directly accessed (statically declared}) vartables {s wusuvally
quite small, because structured wvariables are addressed
indirsctly.

The various addressing modes are defined as follows (m and n
dencte instruction parameters, asnd a the resulting address):

- Local wmode: a = L+n, used for varliables local to procedures.

- Global mode: a = G+n, used for global variables in the current
sodule,

~ Stack mode: & = g¢n, where 3 is the value on top of the stack;
mode used for Indirect addressing and access via pointers.

~ External mode: a » T(m]4n, T i3 the table of data frame
addresses, m a module number; mode used for external variables
imported from other modules,

~ Indexed mode: a = sl + k*s52, 81 iIg the array's base address,
52 the computed index {s), s2 on stack), and k is a multiplier
dependling on the size of the accessed data type.

- Immediate mode: a = n. The 1loaded vaiuve 1Is the parameter
itself; mode used to qQenerate constants,

The above explanations are given In this detall in order to show -
that the constructs defined in the programming language are
strongly reflected by, i.e. have directly influenced, the design
of the Lilith architecture. The beneficial consequence Iis not
only ease of compilation, but simplicity of the linking loader.
Whereas our Modula-2 system for the PDP-11 computer for good
reasans tequires a linker, such i3 not necessary for the Lilith
implementation. A linker collects the code files of all required
modules and links them together into an absolute (or
telocatable) store image. This task can be performed directly by
the loader, hecause it only has to insert module numbers (table
indices) in instructions with external addressing mode.

The second category of instructions are the operators, They take
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operands from the top of the stack and replace them by the
result., The Lilith Instruction set iIncludes operators for
CARDINAL {unsignedy}, INTEGER {signed}, double-precision,
floating-point, BOGLEAN, and sot arlthmetic. It directly
rzflects the operations avallable in Modula-2.

The orientation towards a clean stack architecture also required
a full set of comparison instructions which generats a BOOLEAN
result. Distinct sets are provided for CARDINAL and INTEGER
comparison, The distinction between CARDINAL and INTEGER
arithmetic is partially due to the desire to be able to use all
bits of a word to represent unsigned numbets, such as addresses.
It wouwld be of a lesser importance, If the wordslize were larger.
However, our experience shows that it is desicable also from »
purely logical point of view to declare vacrliables to be non-
nz2yative, € In Fact a negative value does never occur. Most of
our programs require variables of the type CARDINAL, whersas the
type INTEGER occurs only rarely. Although using 2's complement
representation for negative values, addition and subtraction are
impiemented by the same hardware operations for both kinds of
arithmetic, they differ in thelr conditions indicating overflow.

Control instructions include procedure <calls and jumps.
Conditional jumps are generated for IF, WHILE, REPEAT, and LOOP
statementS. They fetch their BOOLEAN operand [rom the stack.
$pecial control instructions mirror the CASE and FOR staremants.

Different calls are used for procedures declared In the curcent
aadule and for those in other modules., For local procedures
there exist call insctructions with short 4-bhit addreases, as
they occur rather frequently. Calls foyr external procedures not
only include an address parameter, but also a2 module number to
be wupdated by the loader. Furthermore, an iInstruction |is
provided for so-called formal procedures, 1.e. procedures that

are either supplied as parameters or assligned to procedure
variables,

There alsa exists an instruction for the transfer of control
between coroutines. Varifous instructions wmay cause & <trap, |(f
the result cannot bhe computed. Such & trap ls considered llke an
interrupt requested by the processor itself, and corresponds to
a cojyoutine transfer with fixed parametors. The same mechanisa
is activated by the TRAP Instrucrion (which corresponds to a
HALT statement in Modula).

Arithmetic operators generate traps when unahle to compute the
cocrect rasult {e.g. overflow). Traps from CARDINAL and INTEGER
arithmetic can be suppressed (masked) upon reguest; the
programmer is then presumably aware that results are computed
modulo 2716. Also, load and store instructions generate a trap,
{f their address is NIL. Thia test resquires a single alcro
instruction only. The routines for bitmap handling genarate
traps, if  attempting to access data outside the speclified
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bitmap. All these test are gquite inexpensive (but not free),

A test for an array index lying within the specified bounds, or
for a value to be within the subrange admitted by a variable, s
more complicated. It requires two comparisons with arbitrary
values. Therefore, the M-code contains an instruction for an "in
range” test. The programmer may choose to omit these tests by
selecting a compiler option that suppresses the generation of
these test iInstructions.

These extensive checking facilities reflect our strong belief in
designing an iImplementation (including the hardware) which
preperly supports a language's abstractions. For example, 1f the
language provides the data type CARDINAL, its implementations
should signal an error, if a negative result appears, just as it
should signal an error, when a non-existing element of an array
is identified, Omissions in this regard are to be considered as
inadequacy in implementation. Nevertheless, the argument whether
or not the experienced and conscientious programmer should be
burdened with these "redundant” checks remalns open. Our cholce
is to give the programmer the option o suppress at least the
more expensive checks, at his own peril.

The category of wmiscellaneous instructions contains operators
for reading and writing data on the input/output channels, and
four instructlons wused for operating on bitmaps: The DDT
fnstruction (display dot) writes & single dot at a specified
coordinate, REPL replicates a bit pattern over a rectangle - a
so-called block - in a glven bitmap, The coordinates of this
block are relative to the specified bitmap and are given in
terms of dot coordinates rather than word addresses, The BBLYT
instruction ¢{bit block transfer) coples a source block into a
destination block. The DCH instruction (display character)
coples the bitmap of a character {given its ASCII code) from a
font table into a specified place of a bitmap.

The function of these bitmap instructions could well be coded in
Modula-2 programs. Instead, they are included as single
instructions represented by micro~coded soutines. The prisary
reason is efficleancy. The routines 1include checks against
inconsistent parameters, such as blocks that do not fully lle
within the bltmap. An essentlal detail is that they use the same
convention about parameters as do reqular procedures and
operators: parameters are always passed via the stack. Modula-2
for Lilith offers a facility to use these Instructions as ({f
they were gprogrammed as regqular procedures. This uniformity of
parameter passing has proved to be an Iinvaluable asaet,

Some analysis of vrepresentative programs reveals that M-code
yields a significantly higher density of compiled code than do
conventional insteuction Sets. Compared with the code compiled
for the ubliqulitous PDP-1), we obtatined an improvement factor of
3.9. This implies that code for the same program occupies about
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one quarter of the memory space in the Lilith computer than in a
PDP-11. This factor Is gnoteworthy even in times of rapidly
decreasing memory pricest

The principal contribution to this result stems from the short
address flelds., Oominant are the counts of Joad and store
instructions; they address the stack implicitly and hence need
only one address field. Access to local wvariables Is most
frequent; global variables are addressed about half as often,
and external variables occur rarely. Jumps account for about
188 of all instructions, and procedure calls are about equally
frequent. The following table displays percentage figures
obtained from four programs {of different authors) for the most
frequent instruction classes.

1-byte instr. 8.2 .7 62.8 72.%
2-byte instr. 16.6 17.3  12.6 12.9
l-byte instr. 13.1 1.8 24.5 i5.4
Load immediate 5.3 14.2 17.3 15.2
Load local 16.3 21.6 16.3 19.1
Load global 8.2 5.2 .7 7.9
Load indirect 5.2 6.4 5.5 5.8
Store local 5.8 6.5 5.8 6.0
Store global 2.6 1.1 1.0 3.3
Store indizect 4.2 3.9 ¥ 4.9
Operators 5.6 5.7 4.0 5.9
Comparators 3.9 4.4 5.6 3.7
Jumps 7.3 7.7 9.3 6.2
Calls 6.4 8.1 14.5 6.9
Total counts {14@%) 11852 23719 7936 2814

Instructions are executed by a micro-coded program called the
Interpreter, which may well be expressed in Modula; this
algorithmic definition of the Lilith instruction set has proved
to be extremaly valuable as intecrface betwesn the wsicro-
programmer and the compller designer.

9. the Lilith hardware structure

T o S ot T A Ak

The following requictements determined the design of the hardware

most significantly:

-~ fast implementation of the M-code interpreter, in particular
of ‘its stack architecture,

- the need tor efficient inmplementation of the bitmap
instructions which involve a large amount of bit pushing and
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partiasl word accesses (bit addressing].
~ high bandwidth between memory and display for contlnuous
refreshing.
~ the desire for & simple structure with a relatively large,
homogenous store,
- ease of serviceability. M
The computing power required by the bitmap (instructions
eliminated the cholce of a one-chip processor. An even stronger
reason against such a cholice was the project’s purpose to find a
hardware architecture truly suitable for use with code compiled
from a high-level language. The bit-slice processor Am290]
offered an ideal solution between a one~chip processor and the
complete design of a unit butlt with S5I and MSI components. It
allows for a basic instruction cycle that is about a fourth of a
memory cycle (158 ns). This is a good relation considering the
average amount of processing required between memory accesses,

The processor i3 built around a 16-bit wide bus connecting the
arithmetic-logic unit {ALU) with the memory for transfer of data
and addresses. Also connected are the instruction fetch unit
{(1ry}, the disk and display contrellers, and the interfaces to
the standard low-speed 1/0 devices keyboard, Mouse, and serial
V24 (RS232) line. Bus sources and destinations are specified in
each micro~instruction by 4-bit flelds which are directly
decoded. The bus uses tri-state logic.

The refreshing of the full screen requires a signal with a
bandwidth of 13 MHz, If interlacing and 8 rate of S8 half
pictures per second is assumed. This lmplles that on the average
one 16-bit word has to be fetched every 1.1 us, which implies
that memory would be avallable to the processor about 50% of the
time. This unacceptably low rate calls for a memory with an
access path wider than 16 bits. It was decided to Iimplement a
64-bit wide memory.

A thivd candidate for direct memory access 1is the Instruction
stream. Like the display, this port requires sequential reading
only and therefore can benefit from a wide access path feeding
an internal buffer. This organization reduces the averaqge time
that the memory is devoted to display and instruction fetching,
f.e. where it {3 Inaccessible to the data port of the main
protessor, to about 188, The overall structure of the Lilith
hardware iz shown in Fig. 9, Its heart is the microcontrol unit |
{MCU} which contains the «clock and controls the Iinstruction
stream,

9.} The micro-control unit

v - A T e gy e T ———

The micro-control unft (MCU) consists primarily of a memory for
the wmicrocode, a micro- instruction register (MIR}, an address
incrementer, and some decoding 1logic., A micro- {nstructlion
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consists of 48 bits; its formats are shown in Fig. 8. The
micro-instruction address i3 a 12 bit integer, hence the memory
may have at most 4K locations, Actually, only 2K are wused and
Implemented as a read-only store (ROM)}. An addicional 2K RAM may
be supplied. Approximately 1K is used by initfialization routines
(bootstrap leader) and the M-code Interprster, and 1K is needed
for the biwmap routines and the floating~point instructlons.

Fig. 11 shows the structure of the sicro~control unit. The naxt
instruction's address I3 taken from one of sevaral sources:

the incrementer (normal case)

an address stack (subroutine return)

the current instruction {(microcode jump)

a table of addresses of routines which correspond to M-codas
according to a pending Interrupt request.

I T S A |

The addresses are generated by Am2971) bit-slice controllers
which contalin an incrementer and a shart stack for subroutine
return addresses. Ffor jumps, the next address is supplied from
sources external to the 2911, Conventional jumps take the
address directly from the Instcuction register (MIR). Exceptions
are the jumps to the start of the microcode routine represanting
tha next M-code instruction, Here the address is taken froms a
ROM which maps the B-blt M-code into a 12-bit address. This
exception i8 sigunalled by a micro~instruction whose source fleld
value causes the address to be selected from the map ROM. An
exception to this exception occurs if an {(uvnmasked) Interrupt
request is pending, in which case the next addraess is the flixed
number assigned to the requesting line. Thereby the M-code
sequence can be interrupted without requiring any additional
micro~instructions, and the ctransition to tha next micro-
instruction routine is initiated by a single instruction at the
end of each routine,

A tag bit of each micro-instruction determines whether it is to
be interpreted as a regular or as a jump Iinstruction. During
execution of the latter the main processor is disabled. Jumps
are conditional upon the state of the maln processor’s condition

code reglister determined by the ALU'S result computed during the
previous cycle.

9.2 The arithmetic logic unit

A T T gy M

The ALU'S heart is a 2981 bit-slice processor. It contains the
legic for integer arithmetic (addlition} and foc Dbit-paraliel
logical operations, and a set of 16 fast regiscers. Half of them
are used for global state variables of the N-code interpreter,
the others as work registers local to each microcode routine,
The 2921 core is augmented by two {facllities dictated by the
requirements of the stack architecture and by the bitmap
toutines: a fast stack memoty and & barrel shifver (Fig. 12).
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The fast stack is a store of 16 locations (16 bit wide} and an
address incrementer/decrementer., This MEMOTY holds the
intermediate results during evaluation of expressions and
statements, and must be regarded as logically being part of the
{main) stack, but physically separate., Load Iinstructions fetch
data from the (maln} stack in memory and push them onto the fast
expression stack. Store instructions pop the expression stack
and deposit data in wmain memory. As a consequence, each such
instruction takes a single wmain wmemory cycle only. More
precisely, data loaded from and Stored into the main stack are
transferred to and from a register In the 2981 processor itself,
while during the same cycle this T-register {is saved {or
restored) into (from) the expression stack:

Load: push T ontoe stack; Bus -> T
Stere: T -> Bus; pop stack into ¥

Operations such as addition, comparison, AND, OR, etc., can also
be performed in a single cycle, because both operands are
immediately accessible:

Add: T + top stack -> T; pop stack

The hardware represents a genuine stack in so far as the cufrent
stack top is the only accessible element, and that jts address
is finaccessible to the programmer. This address is generated by
a 4-bit up/down counter and directly fed te a 16x16 high-speed
RAM. A slight complication arises because address incrementation
for a pop wmust occur before the data fetch, whereas the
decrementing for a push must occur after the store. However,
both address counting and data access must be performed durling
the same clock cycle. The solution is found in using an extra
adder and to operate according to the following scheme:

push: DECix}; Six+1] :» data
pop: INCi{x); data := S{x|

The circulit of the entire stack mechanism is shown in Fig. 13,
it may be surprising that the fast stack has a depth of only 16,
In practice, thls proved to be ample. It should be noted that
the compiler can keep track of the number of stack locations
loaded, and hence no runtime stack overflow c¢an occur, nor need
it be monitored., The stack is empty after execution of each
statement. In the case of function procedures, the expression
stack has to be saved into the main stack before, and restored
after the <call. Speclal M-code Instructions are provided for
this purpose,

The barrel shifrer is prefixed to the input lines of the 298]
processor. It allows the rotatlion of data by any number of bit
positions between 8 and V15. Together w¥th the logical
instructions (AND, OR) it provides the necessary speed for
partial word handling extensively used in all bitmap operations,
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It s designed such that it can also generate masks of # to 15
bits In one cycle. The shift count (mask length) can elther be
taken from a field in the micro-instruction itself, or from a
special 4-bit shift count register, also contained in the ALY,

9.3. The memory

A - — D -

The memory is built with 16K dynamic RAM chips distributed on
four boards, each being organized as a 16K*32 block. For
reading, 32 bits are accessed simultaneously (rom two of the
four boards. Multiplexors select 8 of the 32 blts for output to
the processor bus via the so-called CPU port. Por writing, the
same connection {3 used, and the data are fed to four chips in
parallel, of which only one is enabled through the chip select
signal. Fig. 14 shows the scheme for two boards; taogether they
represent a 64K*16 bit memory for writing, or a 16K*64 bit
memory for reading..

The cholice of a 64-bit wide access path guarantees the necessary
memory signal bandwidth, but it also poses significant
electrical problems that should not be underesstimated. Their
mastery I8 an order of magnitude more difficult than the
handling of conventional 8-bit microcomputer systems.

Processor and display operate asynchronously. Hence, an arbiter
mechaniss is needed for controlling memory access. It can easlly
be extended to accommodate several instead of only two ports.
Each port is assigned a fixed priority, and the requast froa the
source with highest rank among those pending is honoured. Fig.
15 shows the clrcuit used; It contains cascaded priority latches
that retaln posted requests. Also shown s the clrcuit used for
the synchronization of a requestor (the CPU port as an example)
and the memory, which operate on separate clocks. The priority
latch is common to all ports, the other parts are Individually
replicated for each port. Fig. 16 shows the signal timing: 1If
the port requests a memory cycle, the bus data, representing an
address, are latched in the memory address register MAR, the
port is marked busy, and the request is passed on to the
arbiter. Unless a request with higher priority is present, the
signal CPU,.SEL goes high, indicating that the memory cycle now
started belongs to the CPU port and MAR is gated to the address
lines. When terminated, the signal CLR resets the busy laich,
indicating to the polling CPU that lts request has been served.

9.4. The Instruction fetch unit

A A —— vy ——

Instructions are fetched via a separate memory port cantrolled
by the instruction fetch unit (IFU). This unit contains its own
address registers (PC,F) and an 8-byte buffar. The buffer can be
reqarded as a small cache memory and is particularly effective
because access [s mostly sequential. Reloading occurs when
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either the buffer is empty, or when a new address {s fed to the
PC by a control instruction. The IFU contains its own address
incrementer {the PC register s a counter} and an adder forming
the sum of the PC and F values. This adder is 18 bits wide. A
byte is fetched from the buffer and the address is {incremented

whenever the micro-controllier executes & jump enabling the map .

ROM. Fig. 17 is a block diagram of the IFU.

9.5. The Mouse

AR

The Mouse is a device to desi?nate positions on the display
screen. It operates on the principle that wmpovemants of the
operator's hand on his desk are sensaed, rather than on the
recording of precise, absolute coordinates, A cursor is
displayed (by appropriate programming) on the screen, changing
fts position according te the signals recelved from the Mouse.
Hence, positioning of the cursor can be as accurate as the
display's resclution allows, without requicring a high-precision
digitizer device, The Mouse Is also equipped with three
pushbuttons {eyes) ar.! is connected to the keyboard by a thin
tall; hence Its name.

The movements are transmitted via a ball to two perpendicular
wheels, whose “spokes® are seen by a light sensor. The direction
of their turning is percelved by sampling two signals received
from spokes which are offset. If we combine the two binary
signals and represent them as numbers to the base &, the wheels®
turning results in sample value sequences 9,2,3,1,8, ... or
#,1,3,2,0, ... depending on the sense ¢f thelr rotation (seas
Fig. 18).

The interface for the Mouse contains two countecrs for the x- and
y-coordinates, They are incremented or decremented whenever a
transition of the input signals occurs as indicated by the two
above sequences, A state machine reqisters the signal values
sampled at two consecutive clock ticks; a ROM Is used to map
them Into the necessary counting pulses, :

9.6. The Monitor

T T e i T g

The Monitor is an additional unlt which {8 not present in the
computer under nosmal circumstances, but for which nevertheless
a permanent slot ls reserved, such that it can be Inserted any
time. It represents a small computer of its own, and it has the
capability to take full control over the Lillith processor. It is
therefore used for servicing when the Lilith hardware fatlis, and
it played a most crucial role during the entire development and
debugging phases of the Lilith computer.

The MHonitor's heart is a2 Motorola 6882 one-chip microprocessor,
augmented by a 2K byte ROM and a 4X byte RAM, Iinterface
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registers to the Lilith hardware, and a serial line interface to

a terminal (UART). Its block diagram §is given In Fig. 19. The
Monitor can

~ read the microinstruction register (MIR)

- supply the next microinstruction (disabling MIR)

- read the micro-program counter {2911)

- supply the next instruction address {disabling 2911)
read the processor bus

feed dacta to the processor bus

- disable the processer clock (halt}

- send clock pulses (single or sultiple step)

| I |

For debugging and servicing, an elaborate set of programs was
developed. In addition to a standard "operating system” residing
in the ROMS, test programs can be loaded into the RAM from &
terminal . We eaxtensively vsed an HP 2645A4 terminal with tape
cassettes as our program library store, Whan & new Lilith
machine is to be tested, the Monitor is used to first test the
MCU board, then to test the ALU board, therealfter the memory (in
conjunction with MCU and ALU), then the IFU, and £finally the
interface boards. The Moniter not only made a front panel
‘superflucus, but allowed the construction of the entire computer

with the aid of only an oscilloscope and, very rarely, a small
legic state analyzer,

9.7. The physical layout

B

The Lilith computer 1s designed to tit beside or underneath a
table on which the 15"-display, the keyboard, and the mouse are
placed. The cabinet has a height of 74 cm; it is 43 cm wide and
55 cm deep. The disk cartridge is accessible from the front.

The electronic components are placed on 1@ boards housed in a
rack with dimensions $2*35¢39 cm. One board each contains the
microcontrol unit, the arithmetic~logic unit, the procassor part
and interfaces tao hkeyboard, mouse, and serial data line, the
instruction fetch unit, the display interface and the disk
interface. Four boards contaln the main memory. Ancther board
s$lot i3 reserved for a 2K*49 microcode RAM, one [or the Monitor,
and 5 slots are free for future sxperiments with other units or
interfaces. This makes the computer sultable as an object for
experimentation on the hardware as well as the software level.

The remaining space in the cabinet i3 taken by the disk drive
and the power supply. Conventional linear power suppllies were
built after several disappointing experiments with wmodern
switching power supplies that aoffer a much improved efficiency.

They turned out to be unable to cope with the European 228
Volts,
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1#2. Conclusions
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The personal computer leads to an entirely new computing
environment. Due to the high bandwidth of Information between
its user and his tool, a close interaction is possible that
cannot be provided by a central, remotely accessed Facility. The
personal computer i3 much more than an “intelligent terminal®,
because It puts the computing power near the user, A
particularly attractive Eeature s 1ts constant availability,
and consequently the owner's independence of a computing
center’s service hours,

Interactive vsage is of particularly high wvalue in the
development of software, where text editing, compiling, and
testing are the prime activities. In our experience, a perscnal
computer increases the effectiveness of a competent software
engineer by an order of magnitude., I stress the attribute
*competent”, for he needs the wisdom to Jleave his tool and
retreat to quiet deliberations when deeper problems of
algorithmic degign appear. For the less competent engineer, the
personal computer ampl ifies the danger of seduction to
programming by trial and error (“hacking™), a method that is
unacceptable In professional software engineering.

It has now become a widely accepted view that the software
engineer's notational too} wmust be a high-level programming
lanquage. When large, complex systems are the objective, the
tool must support modularization - and the specification of
interfaces. We have designed the language Modula-2, a more
modern version of Pascal, with the principal addition of a
module structure. Our implementation connects this feature with
the facility of separate compilation. Separate compilation,
however, I8 not Iindependent compllation. On the contrary, the
compiler must fully check the consistency of the separately
compiled modules as {f they wece written as a single plece of
text. The separation of global modules into definition and
implementation parts makes 1t possible to define those aspects
of a module that are significant Ffor ita clients apart from
those that are private to lts implementation, It reinforces the
strategy of first breaking down & planned system {nto modules,
then to define their interfaces with the goal to keep them
“thin*, and finally to let the members of the programming team
implement the modules with relative independence.

The exclusive use of a high-level language makes it possible to
design a computer architecture without regard of its
suitability to assembler coding. The resulting architecture is
organized around a stack. The instruction set 1s. designed to
provide a high density of code, largely due to the use of
variable address length.

i1t is particularly attractive to design such an architecture and




- 32 -

instruction set, [f no conventional compuier must be used for
its interpretation. We have therefore also undertaken the design
of a hardware system with the purposes to Interpret this code
etficiently and to accommodate the use of a high-resolution
display. The latier requires a high memory bandwidth and bursts
of fast computation. The implemantation of a microcoded
interpreter and the inclusion of a few spaclal instructions for
bitmap  handling appears to be an jdeal solution., These
instructions corraspond to microcoded routines that perform the
necessary bit-pushing with greatest efficiency.

As an experiment to integrate the design of a programming
language ~ the scftware engineer's notational tosl - the
development of its compller and environment, the dasign of a
computer architecture and instruction sst, and the construction
of the hardware - the software enginser’s physical tool - the
project has been successful and exciting. The resulting system
" is, of course, not without fts deficiencies. Cur consolation is
that, LE we did nor know of ftams that shounld have been dane
differently, we would not have learned through our research.
Also, the project had to be conducted with severe yestrictions
on manpower. This had the benefit that no significant management
problems were encounterad.

As far as the hardware is concerned, an additional constraint
was the limited availablility of modern technology. It was
therefore decided to rely on commercially available TTL c¢hips
only, apact from MOS technology for the memory. The Integratsd,
top-down desiqn from software to hardware outlinsd by this
project, 1s especially relevant in view of the future role of
VLS1 technology. Its unlimlted possibilivies require that the
designer obtain new criteria guiding his objectives. The top-
down approach crossing the soft/hardware boundary tells the
hardware designer what is needed rather ithan the hardware
customer what is avalilable. An aspect of this project that we

were wunable to tackle was the design of LSI chips representing
the essential units of the Lilith computer, Incorporating the
unconventional aspects of fcs architecture. The chip count (as
well as power supply problems) could thereby have been reduced
quite drastically. We hope that someons better equipped for the
task will pursue this challenge,
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Appendix 1
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The M-code intaerpreter

A i W Y . i W WA S e S e

The following Madula-2 program Interprets H-code Instructions
and serves as a high-leval definition of the Lilith computer's
Instruction set and architecture, A few Comments ars necassacy
to cover detalls that are not fully described by the program.

. The array varlables stk and code stand for the data and
program stores respectively. We assume that on an actual
computar they represent the SAME physical assmory,. The array
indices then denote memory addresses., Access to the code
involves the use of the base address ¥ {and an 18-bix wide
addition)., -

2. A}l checks against arithmetic overflow, storage overflow, and
access with value NIL are omixted from the program in tha
interest of clarity and in order not to obscure the essentials
of the interpretation algoritha.

3. Certain instructions are explained in loose English instead
of precise Modula statements. Among them are the bitmap handling
instructions, which actually <constitute fairly complex
algarithms, and also operations 1like shifcs, packing, and
unpacking, which are considered as primictives, and hence not to
be defined contortiously in terms of even lower primitives.

4. The functions low{d}, high(d}, and pair{a,b) are Introducsd
to denote selection of & part of a double word and construction
of a douyble word., The functions Dtcunc and DEfloat dsnate
conversion of floating-point wvalues into double word integers
and vice~-versa. All theses functions are NOT avallabls in Modula~
2. Also, sets of the form {m..n} are used, although proper
Modula-2 does not allow expressiocns to be used within set
COnStIucLocrs.,

5. The detalled specification of 1/0 instructions is suppressed.
It is considered not o be part of ths genssal K-code
definition, but should be allowed to vary among differant
implementations according to the available hardware. This |is
particularly true for the instructions DSKR, DSKW, SETRK used
for accessing the disk,

6. The Interrupt mechaniss ls described in a rather loose manner
and requires additional explanation: At thes start of sach
interpretation cycle, the Boolean varjable REQ determines
whether or not an Interrupt request should be honoured. REQ
means “at least one of the unmasked Intercupt 1lines {(numbered
B...15) is low". If we dencte the request lines by ths set
variable Reqlines and the presence -of a request on line 1 by
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*NOT (i IN ReglLines)", then REQ can be expressed as
REQ = {Reqlines + Mask § {8 .. 15))

The value Mask ls the wunion of the mask reqister M and a
varlable called DevMask {Mask = M + DevMask). This global
variable allows a program (typically the operating system} to
shut out any {or all) devices from Interrupting. In the Lilith
computer, DevMask 1s allocated in main memory at location 3. The
value RegNo detegmines the interrupt line whose request is being
accepted. It determines the transfer vector used by the TRANSFER
operation. The value ReqNo is defined as the maximum | such that
"NOT {i IN ReglLines + Mask).

Table of instructions

. S WA W L i -

9 48 jge 140 209 248 399 348
@ Lie Liw LGW LSwWe LSwW READ FOR1 _ MOV
1 LI} LLD 1.GD LSwWl LSD WRITE FOR2 CHp
2 LI2 LEW LGW2 LSW2 LSD# DEKR ENTC por
] L13 LED LGW 3 LSwW) LXFW DS KW EXC REPL
4 L14 Liwg LGWA LSwW4 LSTA SETRK TRAP. BBLT
5 LIS LEWS LGWS L5W5 LXB UCHK CHR bCH
6 LI LLWG LGH6 LSW6 LXW CHKZ UNPK
7 L17 LLwW? LGW? LSW? LXD sY8 CHKS PACK
10 LIB LLWg LGWS L5Sw8 DADD ENTP EQL GB
| B L19 LLW9 LCWY L5W9 bsus EXP REQ . GB)
12 LIt9 LiWig LGH12 LSW1d bMUL ULSS LSS ALOC
13 LIt} LiWil LGW1) LSWi) poDIvV ULEQ LEQ ENTR
14 LIt2 Liwi2 LGW 2 LSW12 UGTR GTR RTN
15 LI} LEW1] LGWE] LSW1I ) UGEQ GEQ X
V6 LI4 LIW14 LGW1 4 LSW14 DSHE TRA . ABS CI
V? LIS LLWIS LGWES L5W15 DSHR RD5 NEG CF
29 LI SiwW SGH S5wi 55W LODFW OR CL
21 SLD 5GD 55wl 585D LODFD XOR Ctl
22 Liw SEW S5GW2 55W2 8509 STORE AND CL2
23 LID SED 8GW1 55wl SXFW STOFV coMm CL)
24 LLA SLW4 SCHW 4 S5W4 TS S5TOT IN CcL4
25 LGA SLWS SCw5s SSWS SXB COPT LIN CL5
26 LSA SLW6 SGH6 55W6 SXW DECS MSK CL6
27 LEA BLAN7? SGW7 SsW7? 5XD pcop NOT CL?
1o JPC Siwg 5GWS sswe FADD UADD ADD CL8
n JP SiW9 SGW9 55W9 FSus usuB sus CL9
32 JPFC SiWta SGW1d S5Wig FHUL UHUL MUL CL1Y
33y Jrer SiM1 el QR Sswit FDIV uDIv 124 cLe
34 JEBC SLW12 SGH12 S54W12 FCMP uMoD cL12

35 Jep SiM13 SGW13  S5W13 FABRS ROR BIF CL13



36
37

ORJP

ANDJP SiMW5

Sivwi 4 SGW14

S5GW1i5

w 82 -

SSwWid
S5W15

FMEG
FFCT

SdL
SHR

ROP
MOVF

CcLI4
CL1S

Reserved locations:

9 (F~-register of module 9}

) {init?allzatlon flag of module §)

2 {string pointer of module #)

) device mask

4 P-reqgistaer

S saved P-register

[ baot £lag

16,147 trap vector
8,21 interrupt vector foar line 8 (clock)
22,2} interrupt vector for line 9 (disk)
36,37 intarrupt vector for line 15
4#..177 data frame table

MODULE Interpreter;
COMST tilc = 168;
aft = 40B;
VAR (*global state variables*)
ol PC: CARDINAL;
IR: CARDINAL;
F: CARDINALj
G: CARDINAL;
H: CARDINAL;
L: CARDINAL;
5: CARDINAL;
P: CARDINAL;
M: BITSET;
REQJ: BOOLEAN;

ReqNo: CARDINAL;

{(*N.Wirth, Ch.Jacobi; Feb.8)*)

{fcrap location adr¥)
{*dacta fcame table adr¥)

{*program counter®)
{*instruction registert)
{*code frame bass addruss*®)
{*data frame base address?)
{*stack Limit addresss)
{*local segment addreast)
{*stack paintar®)

{*process base address*)
{*procsss intecrupt mask®)
f*interrupt requestc®)
{*request number, 8..15*)

{*auxiliary variables used over singla instructions only*)

I, 3, ki CARDINAL;

$2, adr, low, hi: CARDINAL; (*used in FOR, ENTP, PCOP*)

sb, db, sbmd, dbnd fo: CARDIRAL;

X, y: REAL;

stk:

MODULE InstructionPetch;

FMPORT F,PC;
EXPORT next, next?;

ARRAY [ﬂ..i?????ﬁ] OF CARDGINAL,

{*display handling*)

{*data store*)

VAR code: ARRAY [@..777778) OF [9..255);
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PROCEDURE next(): CAHDINAL;
BEGIN

INC(PC}; RETURN code[4*F+PC-1])
END next;

PROCEDURE nextZ(): CARDIMNAL; {*get next two code bytest*}

BEGIN .

INC{PC, 2); RETURN codeld*F+PC-2]*40B08B + code[dAtF+pPC-1}
END nextl;

END InstructionFetch;

MODULE ExpressionStack; .
EXPORT push, pop. Ppush, Dpop, empty;

VAR sp: CARDINAL;
a: ARBRAY [B..15]) OF CARDINAL; {*expression stack*)

PROCEDURE push{x: CARDINAL);
BEGIN a{sp] := x; INC{sp)
END push;

PROCEDURE pop{): CARDINAL;
BEGIN DEC{sp); RETURN(a[sp])
END pop;

PROCEDURE Dpushid: REAL)}; ’
BEGIN a{sp]l := high{d); IRC(sp); alsp] := low{d); INC{sp)
END Dpush;

PROCEDURE Dpopil): REAL;
BEGIN DEC{sp,2); RETURN pair(alsp]l, alsp+i})
END Dpop;

PROCEDURE empty({) :BOOLEAN;
BEGIN RETURN sp = @
END emply:

BEGIN sp := #;
END ExpressionStack;

PROCEDURE mark{x: CARDINAL; external: BOOLEAN};
VAR {: CARDINAL;
BEGIN i := 5;
stk[S] := x; INC{(S); {*static link*)
stk[S} 1= L; INC{S); ({(*dynamic )ink®*}
IF external THEN
stkfS) := PC+100309B ELSE stk[S) := PC
END ;
INC{S,2); L =
END mark;

PROCEDURE saveExpStack;
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VAR c: CARDINAL;
BEGIN ¢ := @; (*expression atack counter*}
WHILE NOT empty{() DO
stk{S] := popl(); INC(S); INCic);
ERD ; '
Stk[S5] := c; INC{S)
END saveExpStack;

PROCEDURE restoreExpStack;
VAR c: CARDINAL;
BEGIN DEC{S); c 1= stk{S};
WHILE c>® DO
PEC{(c); DEC(S}; push{stk(s])
END
END restoreExpStack;

PROCEDURE saveRags;
BEGIN saveExpStack;
StkiP J 3= G; stk{Pe}] :=-L;
stk(P+2) :» PC; stk{P+3] ;= CARDINAL({M);
stkiP+4) := 8; stkip+S] 1= H+24;
(* stk{P+6} is reserved for srror code *)
(* stkiP+7) 15 veserved for ercror trap mask *)
ERD saveRegs;

PROCEDURE restoreRegs(changeMask: BOOLEAN);
BEGIN

G := sekfP); F 1= stkiG};
L o:= stk[P+Y]; PC := stkipP+2);
IF changeMask THEN M :» BITSET(stk{P+1}) END ;
S = sck{P+4); B :» stk{Pe5}-24;
restorefxpsScack

END restoreRags;

PROCEDURE Transfer (changeMask: BOULEAN; to, from: CARDINAL);
VAR jt CARDINAL;

BEGIN _
j :» stk(to); saveRegs; stk{from] := P;
P := j; restoreRegs({changeMask)

END Transfer;

PROCEDURE Trapi{n: CARDINAL);
BEGIN

IF NMOT (n IN BITSET(Stk[P+7]1)) THEMN
StkiP+6) := n;
Transfer {TRUE, Ltlc, tlcel)
END
END Trap;

BEGIN (" readBootPile ¥}

P := stk(4); restoreReqgs(TRUE);
Loop

If REQ THEN Transfer {TRUE, 2%ReqNo, "*Reqdot+l) END ;
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IR := nexti);
CASE IR OF
P8 .. 17B: (*LI8 - LI15 load immediate*) push{IR MOD 16} |
208: (*LIB load lwmmediate bytet) push{next{)}) |
228: (*LIW load immediate word*) pushinext2{)) |

238: ("LID 1load immediate double word*)
pushinext2{) )y pushinext2¢()} |

24B: {(*LLA load local address?*) push{L+next{)} |
258: (*LGA load global address®*) pushiG+next{}) |
26B: (*LBA load stack address*) pushipopi)+next{}) |

27B: {*LEA 1load external addresst)
push{stkldft+next{})}+nexci)) |

39B: (*JPC jump conditional¥)
IF pop{) = & THEN PC t= PC + next2()}
ELSE INC({PC,2}
END |}

3B: (*JP  Jump®) PC := PC + next2() |

32B: {*JPFC Jump forward conditional®)
I¥ pop() = @ THEN PC := PC + next() ELSE INC(PC) END |

3iB: (*JPF  jump forward®) PC = PC + next(} |

J4B: (*JPBC jump backward conditionalt)
IF popl) = 8 THEN PC := PC - next(} ELSE INC{PC) END |

I58: (*JPB jump backward*} PC :« PC - next{} |

368: {*ORJP short circult OR *)
IF popl{} = 8 THEN INC(PC)
ELSE push{l); PC := PCénext()
END |

37B: (*ANDIP short circult AND *)
IF popl} = @ THEN push{@); PC := PCinext{)
ELSE INC{PC)
END |
468B; (*LLW load local word*) pushistkL+nextc()]) |

41B: {*LLD 1load local double word?*)
1 :» Leénext{}; push({stk{i)); pushistkfi+i}l) |

42B: (*LEW 1load external word?*)
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pushi{stk([stkfdftenext{}}tnext{)}) |
438; (*LED load extsrnal double word )

i := stk[dftenext{))+next();

pushiscx{i}}; push(stk(i+1}) |
448 .. 57B: {*LIWA-LILWIS®) pushistkf{t + (IR MOD 16)1} |
68B: (*SIW store local word?) stkfLnexcf()] 3= pop{) |

618B: {*SLD store local double word?®)
I i» Lenext(); stk{i+)].1= pop(); stkili] = pop{) |

62B;: (*SEW store esxisrnal word*®) _
stikistkfdfrsnext())rnext()] = pop{) |

" 63B; (*SED store external double word %)

= stkfdétenexti)jrnext{);
stk{i+1]) := pop{); stkli) := pop() |

64B .. 77B; {*SLW4-S5LMI5 store local words)
stk[L+ (IR MOD 16)) := popl() |

198B: (*LGW Jload global word®) push{stk[G+next{)})} |

1818;: (*LGD 1locad global double ward*)
I :» pext{)+G; push{stkf{i]}); push{stkfiel]}) |

1828 .. 1178: (*LGW2 - LGWIS load global word#®)
push({stk[G + (IR HMOD 16))) |

128B: (*SGW store global word*) stk[Gtnext{)] = pop{) 1}

1218: (*SGD store global double word*)
i o= Genext(); stk{i#i] := pop(); stk{l) = popl} |

1228 .. 1378: (*5GW2 - SGWI5 store global word?®)
stk{G + (IR MOD 16)} := popl) |

1488 .. 157B: (*LSWIl ~ LSWIS load stack addressed word*j
pushi{stk{pop{)+{IR MOD 16}}) |

1688 .. 1771B: {*SSWP - SSWIS5 store stack-addressed word*)
k := pop(); I = popl{}+ (IR MOD 16); stk{i) := k |

29988; (*L.SW lcad stack word®)
I s= pop{) + next{); pushi{stkii}) |

281B: {*LSD load stack double wordwv)
I s« popl) + next{); push{stkii}}; posh{stkii+t])} }

203B: [*LIPW load indexed frama word®)
k := pop(} + pop{)*4; push(scki{k]) |
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282B: (*LSD® load stack double word*)
I t popt); pushistki{i)); push(stk{i+1]) |

204B: (*LSTA load string address *) push{stk[G+Z)inext{)}) |

2058: {*LXB 1oad indexed byte?)

i = popt}z J := popi{); k := stk[] + (I DIV 2));
IF 1 HOD 2 = 8 THEN pushik DIV je88)

ELSE push{k MOD 484}
END |

206B: (*LXM load indexed word#®)
i := pop()+popi}; pushistk([il}l) |

2878: {*LXD 190ad indexed double word *)
I := 2*popi{)+popi);: push(stk{i]); pushistk{isl}) |

2189R: (*DADD dcouble add, Subsequent operators for double
words denote unsigned fixed-polnt arithmetic,
although the program shows REAL operands®)
y := Dpopi{); x :« Dpop(): Dpush{xty} |

211B: (*DSUB double subtract*)
y t= Dpop{); x := Dpopi(); Dpushi{x-y} |

212B: (*DMUL double multiply*) .
) := popl); & 3= popl); (* x 1= 1*] *) Dpush(x} | .

2138: (*DDIV double divide*)
j = pop{); x := Dpop(); o
{* k := x DIV j; 1 :» x MOD § *) push{i); pushik) |

216B: (*DSHL. double shift left*)
x :=» Dpopil)s (*shift x left ) bit*) Dpush{x) |

2178: {*DSHR double shift rightt)
x := Dpop{}; {*shift x right t bit*) Dpush{x} |}

228B: {*SSW store stack waord®)
k := popt); 1 1= pop()+next(}; stkii] = k |

22iB: (*55D store stack double wordt)

k 1= popl()s § := pop{)s | := pop{)+next{);
stkfi] 2= J; stk([i+}]) := k |

2228: {*5SS09 store stack double word*)

k = pop{); § = pop{); 1 := pop{);
sthit] := j; stk[i+l]) := Kk |

223B: (*SXFW store Indexed frame word*)
t 1~ pop{); Kk 1= pop(} + pop{)*4; stkik} := § {



2248;

225B:

226D:

2278:

2388;

231B;

2328,

2338;

2348,

2358:
236B:
2318

2488,

2418:

{*718
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test and sait)

i :» popt); push(sckiil); stk([i] :1» ) }

(*5XB store indxed byte®)
k = pop(}y 1 = pop{); J := pop{) + (1 DIV 2);
IF § MOD 2 » & THEN
srk(3) :» k*408D ¢ {stk{}) MOD 499B)
ELSE stk{§} := (atk(j] DIV 4398) * 4908 + Kk

END |

{*SXW store indexed word*)
k := pop{); I = popt)+popl); stkfi} :« k }

{*SXD store indexed double word*)

k :» po

stkfi]

(*FADD

pl)s J = popl); 1 1= 2%pop{)+pop();
3= 3 stkfi+¢l] 12 Kk } -

Eloating add»)

Yy = Dpop(); % = Dpopi); Dpushixty) |

{*trsus

floating subtract?)

Y := Dpopil); x i« Dpop{); Dpushix-y) |

(*FMUL

floating multiply*)

y = Dpoplls x s=» Dpop(); Dpush(xty) |

{*FDIV [loating divide*)
:» Dpop(); % := Dpop{); Dpush{x/y) |

(*FCHP

floating compara*)

:= Dpop{); y-:= Dpop{),

IF x > y THEN push{B); pushil}
ELSIF x < y THEN push{1}; push($}
ELSE push{#); push(d)

END |
(*FABS
(*FNEG

{*FFCT

floating absolute value*) Dpush{ABS (Dpopi(})} |
floating nesgative*) Dpush(-Dpop()) |

floating functlions*) | ;e pnexti);

IF i=80 THEN Dpush(FLOAT(pop())}
ELSIP i=} THEN Dpush{DFloat{(Dpop{))}
ELSIF 1=2 THEN push (TRUNC(Dpop(})}
ELSIF =3 THEN Dpush{Dtrunc{bpopi}, popl}))

END |

{*READ*)

I 1= popl(); k e pap();
{* stk{i) := input from channel k *} |

(*WRITE*} § = popl}; k 1= popl};

(* output 1 to channel k *) |



24281
241D
244B:
245B:

247B:

25088

2518;
2528

253B:

2548;

2558

2568B:

2578

2688

2618:

4628:

263B:

264B:

2658
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{("DSER disk read*) |
{*DEXW diak weite®) |

{*SETRK set disk track®*) |

{*UCHE*) k := pop(); § = pop(); § := pop(); pushii};
IF (3 < §) OR (i > k) THEN Trap{4) END |

{*SYS rarely used system functions*) |

(*ENTP entry priority*}
stkiL+3} :t« CARDINAL{M); M :t» [B..next{)-~1} |

(*EXP exit priovity*) M := BITSET(Stk[L+3]) |

{(*ULSS*} § := pop()s | := popl);
IF | ¢ j THEN push({}) ELSE push(®} END |

{*ULEQ*) J := pop(); | := popl);
IF § <= 4 THEN push{l) ELSE push(#) END |

{*UGTR*) J := pop{); | := popl);
IF I > § THEN push{))} ELSE push{@) END } .

(*UGEQ*) § := pop(); 1 := pop(}; .
IF 1 >= § THEN push(1) ELSE push{@) END }

{*TRA coroutine transfer®*)
Transfer (BOOLEAN{next(}), popl(), pop()) |

{*ADS read string*) k := popi{}s § 1= next{};
REPEAT

stkfk] t= next2(}; INC(k); DEC(1)
UNTIL f < @

{*LODEW reload stack after function return*)
i := pop{); restoreExpStack; push{i} |

(*LODFD reload stack after function return¥)
i s=pop{); § = pop(}); restoreExpStack;
push{j); push(i) |

(*STORE*) saveExpStack |

(*STOFV store stack with Eormal procedure on top*)
i :» pop{); saveExpStack; stk(S] := i; INC(S) |

{(*STOT copy from stack to procedure stack*)
stk{S] 1= pop(}); INC(S} |

(*COPT copy element on top of expression stack*)
i :» popt}; push({i}; pushi{i}) |
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2668: (*DECS5 decrement stackpointer*) DEC(S) |

2678: {(*PCOP allocation and copy of valus parameter *)
stkiLenext{}] := §;
52 = pop{); k := S5+s2; adr := pop{);
WHILE sz>0 DO
5tk{S) :» stkladr}; INC{S5); INC({adr); DEC(sz}
END |

2708;: {(*UADD*) } := popi); i :» popl); push(i+}) |
271B: (*USUB*)} J = pop(); i := popl)s push(i-}) |
2728: {*UMUL?®) := pop(); & := pop{); push{i*}} |

2738 (*UDIVY) 1= pop(}; 1 := pop{}; pushi{l DIV §) }

LV R =

274B: (*UMOD") t= pop{d; § := pop(); push{i NHOD j) |
275B: (*ROR®) J :» pop(); 1 := pop{) mMOD 16;
(* k ;= j rightrotated by i places *) push(k) |

2768: (*SHLY) 1= popl{); | = popl{) MOD )6;
{* k 1= j lefe shltted by | places *) push(k) |

277B: (*SHR*) 3§ ;= pop()s; | = popl) MOD 16;
i* k := j righ hifted by | places*) push(k) |

Jasp: (*FOR1! enter FOR statement *}
I := next(}; (» =8: up; >@: down ¢}
hi := pop(); low := pap(); adr := pop{);
k = PC + paxt2(};
IF ({1 = 9) AND (low <= hi)) OR
({1 8 9) AND {low >= hi)} THEN
stkfadr] 1= low;
Stk(S) := ade; INC(S); stkfS) 1= hi; INC{(S)
ELSE (* don’t execute the FOR loop *)
PC := Kk
END |

I8IB: (*FOR2 exit FOR statement *)
hi = stk{S-1}; adr := stk{5-2);
82 = INTEGER{nexL{)); (* step vange -128,.4127 *)
k := PC ¢ pext2(); | 1= setk{adr)esz;
IF {{sz2 >= 83 AND ({ > hi}))
OR {(sz <= @) AND (i < hi)})
THEN {* cerminate *) DEC{S,2)
ELSE {* continue *) stkiadr] := §; PC := k
EKRD |

392B: ("ENTC enter CASE statement®)
PC :» PC + next2{}; k ;= pop();
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low := next2(); hi :» next2{);
stk{S} := PC + 2%(hi-low) + 4; INC(S):;
IF (x >= low) AND {k <= hi) THEN
PC = PC + 2%{k-lowtl)
END;
PC 1= PC + next2{) |

IB3IB: (*EXC exit CASE statement®) DEC(S}; PC := stk[S) |
JE4B: {*TRAP*) | := pop{}; Trap(i) |

Ig5B: {*CHK®) k 3= pop(); j := pop(); i = pop{}; push{i);
IF (INTEGER(i) < INTEGER{j}} oOR

(INTEGER{i) > INTEGER(k}) THEN Trap(4) END |

3B6B: (PCHKZ¥)

k 1= popi{); | := pop{); push(i);
IF 1>k THEN Trap(4) END |

3878: (*CHKS5 check sign bit?*)

k = pop(); push(k);
IF INTEGER{k) < @ THEN Trap(4) END }

JVEB: (*EQL*) ) := pop(); | := pop{);
IF 1 = j THEN push{l) ELSE push{@} END |

31iB: (*NEQ*) § 1= pop(); i 1= pop{);
IF i } J THEN push{l) ELSE push{@) END |

312B: (*LSS*} J := pop(); | :» pop();
IF INTEGER(I) < INTEGER{j] Taz
push(1} ELSE push(9)
END |

3138: (*LEQ*) 3 := pop(); i := popl);
IF INTEGER(I) <= INTEGER{j) THEN.
push(1) ELSE push{®)
END |

314B: (*GTR*) 3 := pop(l; 1 := popi};
IF INTEGER(1) > INTEGER({3j) THEN
push(l) ELSE pushi{@)
END |

NSB: (*GEQ*) J := pop(); | := pop();
IF INTEGER{i) >= IN?EGER[j] THEN
push{1) ELSE pushi@}
END |

3168: (*ABS*) push{ABS(INTEGER(pop()})) |
317B: (*NEG*) push{-INTEGER(pop()}) |



1298;

3218:

3228;

- 3218

3248:

3258:

326B;
3278;
kx! ¥

31318
3328
3338:
33&9:

3ise:
3168

337B;

Jj408:
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(*OR*) j s= poptl; § = papl);
push (CARDINAL (BITSET (1) +BITSET())})) |

{*XOR*) ] := pop(); { = popl);
push (CARDINAL (BITSET (1) /BITSET(}))) |

(*AND*} § := pop{); | := popi):
PuUsh(CARDINAL (BITSET{L) *BITSET({}))) |

(*COM*)} push{CARDINAL{(9..15}/BITSET(popi))}} |
(*IN*}  § :» pop(); & := popl);
IF § > 15 THEN push(@)
ELSIF § IN BITSET()j) THEN push{l)
ELSE pushi@)
END |
{*LIN load immediate NIL®) push{17727278) |
(*MSK*} j = pop{) MOD 16; push{CARDINAL{[&..k-1}})} |
(*NOT*) | := pop(); push{CARDINALL{ISIZ{])})) |

(*ADD*)} ] = pop{); |1 1= popi(};
Push{CARDINAL(INTEGER{1} + INTEGER(3))) |

(*SUB*} 3§ := popl); = popl);
push{CARDINAL{INTEGER(1) ~ INTEGER(})))

(*MUL*}  J 1= pop(); 1 := pop()
{

i
PUsh({CARDINAL{INTEGER({1) * INTEGER(})}) 1}

(*DIV*)  § 1= pop{}; I := popl);
pushecannzuattxurecz (1) DIV INTEGER{}})) |
(*MOD*} § := popl); | :» pop{);

{
pushzcaanrxanxurzsaaglk MOD INTEGER(3)})) |
(*BIT*) j := pop() MOD 16; {* k := [(}) *) pushi{k) )
(*NOP*) |

{*MOVF move frame *) | := pop{);
3 = popi)+popl)*4; (*18 bitss)

k ;= POPi)+P°Pi)*4: {*18 bits»)
HﬁILE i>8 D

stkfk] = stkljlz INC{k}; INC(}); DEC{})
END |

(*MOV move block*}

k := pop(); j = popl); 2
WHILE k>3 DO d poplds

stk{i] := stk[3]; INC(I); INC(}}; DEC{K)
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3428B:

3438;

3448:

3458,

la68:

3478:

350B:

1518:
i528:
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END |

(*CMP compare blocksv)
= pop{}; § := popl); & :» popl);
IF k=8 TRHEN push{@); push(d)
ELSE
WHILE{stk{i} § stk[j}) AND (k > B) DO
INC(iY; INC{(1); DBC(k)
END;
pushistk(il}; pushistk{jl)
END |

{(*DDT display dot*)

k := pop{}; 3 := popl); dbmd := pop(); { := popl)

(* display point at <j,k> in mode i inside
bitmap dbmd *) |

(*REPL replicate pattern %) :

db := pop()y sb := pop{); dbmd := pop{j; | := popi)

{* replicate pattern sb over block db inside
bitmap dbmd in mode § *) |

{*BBLT bit block transfert)

sbmd := pop(); db := popl): sb := popl); X

dbmd := pop{); 1 := pop{) '

{* transfer block sb in bitmap sbud to block db
inside bitmap dbmd in mocde | *) |

FRFS I

(*DCH display character®)
3 := pop(); 8b := pop{); fo :~ pop(); dbmd := pop()
{* copy bit pattern for character j from font fo
to bilock db inside bitmap dbmd *) |
(*UNPK  unpack*) k := pop(); J 1= pop{); § 2= pop{);
{*extract bits {i..31 from k, then right adjust*)
push{kx} | .
{*PACK pack*)
k 1= pop(); J := popl)s 1 := pop(); adr := pop();
{*pack the rightmost j-i+} bits of k into positions
f..3 of word stkfadr} *) |
(*GB get base adr n levels downt®)
i :=1L; 3} 1= nexti);
REPEAT
i = stkii}; DEC{H)
UNTIL j=0;
pushii}) |
(*GB) get base adr 1 level down*) push{stk{L}) }
(*ALLOC allocate block®)

f := pop(); push{(5); S = § + {;
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I€ 5 > # THEN 8 := pop()s Trap(d) END |

- 3538: {*ENTR entaer procedusra*)
J :» pext{); S5 1= S+¢i;
IF 8 > H THEN S :» 5-1; Trapid) END |

354B: {*RTN return from procedure®)
§ :» Ly L s sthk[S+1]); i :w sth{S+2);,
IF I ¢ 1049088 THEN PC = |
ELSE G := stk[S]); ¥ := atk{G); PC = | ~ 180d9aB
END |

3558; {*CX call extesrnal procsdurev)
J i~ next{); I := next{);
marki{G, TRUE}; G :» stk]dfe+});
F 1= stk[G}; PC = 2%§; PC 1= nexti{} |

3568: (*Cl call procadurs at intermediate level*)
i :» next{); mark{pop(), FALSE);
PC = 2%i; PC := pnext2t) |

3578: (*CF call formal procedure®)
1 := stk(S-1}; mark{G, TRUE):
J = ) DIV 430B; G := stkfdfur+il;
~ F o= gtk[G}; BPC :» 2%{]1 NOD 4008B}; PC 1= nexti{) i

. Jo@e: {*CL call local proceduret)
1 :» next{); mark{L, FALSE);
PC 3= 2%1; PC := pext2() |

818 .. 3778: (*CL) - CL1S call local procedure®)
mark{L, FALSE); PC := 2*[IR MOD 16); PC :» next2{)
END
END {*LOOP»)
END Interpretecr.
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Appendix 2
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I order to provide a basis for measuring and comparing the
efficiency of implamentations of the language Modula-2, a
benchmark program is proposed. It measures selectively various
specific language (eatures, Instead of relying on a2 built-in
timing mechanise (which depends on an underlylng operating
system and quite likely impedes the program’s portability), the
program merely counts the number of times certain statements are
executed. Computation is monitored and interrupted by the human
operatar equipped with a stop watch. Each test I3 selected by
typing its identifying character (3 - o); the end of the test is
signalled by typing any character. Further detalls are to be
derived from the program listing. ;

The following [figqures have been measured for the Lilieh, the
PDP-11/48, and the Xerox Alto 2 computers. {(On the Alto, the
program was translated into Mesa). The timing. period is 1
minute for each test. Implementors of Modula-2 are encouraged to
apply this test fully or partially to their system and to let us
know thelr results.

facility Lilith PDP-11/48 Alto 2

a empty REPEAT loop i 184

b empty WHILE loop 34 185 118
¢ empty FOR loop 422 238 172
d CARDINAL arfthmetic 187 84 54
e REAL arithmetic 139

£ sin, exp, 1n, sqgrt 87

g array access 109 54 32
h same with bounds tests 89 11 26
i matrix access 197 33 44
j same with bounds tests 164 21 36
k call of empty procedure 144 37 48
1 with 4 parameters 94 29 32
m copying arrays 61 11 56
n access via pointers 125 66 54
o reading a disk stream 287 16
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MODULE Benchmark;
‘15‘!‘—

AL
b:
c:
d:
e:
1 3
93
h:
iz
j:
k:
1:
¥
ni
03

FROM

FROM

FROM

FROM

FROM

TYPE

empty REPEAT loop

empty WHILE loop

empty FOR loop

CARDINAL arithmetic

REAL arithmetic

standard functions

array of single dimension

g but with index tests

matcix access

same as
call of
call of
copying
pointer
reading

Storage

i but with index tests

empty, parameterless procedure
empty procedure with 4 parameters
arrays {block moves)

chaining

of f[ile *)

IMPORT ALLOCATE;

Terminal IMPORT Read, BusyRead, Write, Writeln;
InOut IMPORT WriteCard;

PileSystem IMPORT

Flle, Lookup, ReadWord, Reset, Response;
MathLib® IMPORT sin, exp, In, sSqri;

MNodePty

= POINTER TO Node;

Node = RECORD x,y: CARDINAL; next: NodePLr END ;

VAR A,B,C: ARRAY {8..255]) OF CARDINMAL;

M: ARRAY [§..99],{(0..99] OF CARDIMNAL;
m: CARDINAL; head: NodePrr;

PROCEDURE Test(ch: CHAR);
VAR 1,j,k: CARDINAL;

ré, ri,

r2: REAL; p: NodePtr;

PROCEDURE P;
BEGIN
" END P;

PROCEDURE Q{x,y.2,w: CARDINAL);
BEGIN
END Q;

BEGIN
CASE ch OF
a': k ;= 280008;
REPEAT

K

= k-1

UNTIL k » @ |}

*bt: i = 20008;

WHILE § > § DO
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P 1= §-1
END |
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FOR | := } 1T0 20880 DO

END |

j t= M; k := 10960;

REPEAT
X o= k=13
UNTIL ¥ = @ |

k := S@00; 1 :» 7.28; r2

REPEAT

§ == J4t; 4 = {(k*3) DIV (j*5)

= 34.8;

k := k-1; €8 = (r1*r2) / (ri+r2)-

UNTIL k = @

k ¢= 580;

REPEAT r# := 8ini9.7); r1 := exp{2.8);

rd := In(18.0); rt

UNTIL kX = 8 |

k = 2p098; 1
REPEAT

AlE) := B[1}; BIi)

UNTIL k = 2 |

(*ST+*) k := 20008; i :» 8; BIB]) := 713;

REPEAT

Ali] := B[i}; B{i}
{*$T-%)

UNTIL k=8

t= #; B[S} := 11;

FOR § 3= 8 TO 99 DO

FOR § := @ TO 99 DO
Mi1,3) = M[3.,i}

END
END }

{*ST+*)

FOR § := # TO 99 DO

FOR j := 8 TO 99 DO
M{i,j] = M(j.1)
END

END {*$T-%) |

k = 20008;
REPEAT

P; k = k-)
UNTIL k = #

kK 1= 20889;
REPEAT

:= Al1);: k

1= Alf}; k

Q‘iljlk‘.): k = k-1

UNTIL &k = 8

!

1= sqrt{V18.¥); k

k=1

H

k-1

t=m K-}



“n": k = 588;
REPEAT
K := k-3 A 12 B; B sm Q3 C 3= A
UNTIL k = 8 |

"n": k = 588;
REPEAT p := head;
:ﬁ?ﬁ&: ? t» p°.aext UNTIL p = NIL;
UNTIL k = 8 )

o": k 1= 5888,
REPEAT
k 3= k-1; ReadWord{f,i)
UNTIL k = &;
Raset{f)
END
END Tesat;

VAR ch,chl: CHAR;
nt CARDINAL;
£f: File;

q: NodebPir;

BEGIN Lookup(f,"anyFile”, FALSE);
head 1= NIL; n 1= 188;
REPEAT q := head;
NEW(head); head” .next = g; n 1= pn-}
UNTIL n = §;
Welte(®>®) )y Read{ch);
WHILE ("a® <= ch} & {ch < "p®"} DO
Write(ch); Writeln; n 1= #;
REPEAT n 1= n+l; Testichl;
IF {(n MOD 58) =« § THEM Writsln END
Write{®".%); BusyRead(chl)
UNTIL chl § 8C;
WriteCard{n,8); Writein; Writa(">"); Raad{ch)
END
Write({}4C)
END Benchmark,





