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Foreword to Lilith Owner Whose Machine Has Just Died

This will happen from time to time. The important thing is not to overreact to the situation and
possibly create greater damage in a misguided effort to repair the problem.

Most of the time, the cause of a non-functioning Lilith can be attributed to a transient inocuous problem,
i.e. a disconnected cable or an improper switch setting. Such problems are easily corrected if recognized.
It is therefore worthwhile to proceed cautiously to determine just how severe is the cause of the
malfunction. Exploratory surgery always has the potential of creating more problems than it cures.

So, before tearing a non-functioning Lilith apart, it would be well to first check the following six items:

1. Is the boot file "clobbered"? Verify this by attempting to boot with another disk
or by using the alternate boot file. If your boot file has neen clobbered by an
errant program, restore it by the following commands:

*copy
from> PC.BootFile.Back
to> PC.Bootfile

The program "memfilexfer” could also be used to restore the fiie.
2. Is the keyboard cable disconnected or damaged?
3. Are the display connectors, power and logic, either disconnected or damaged?
4. Is the power supply fuse blown? Is the display fuse blown?

5. Has a surge of the line voltagea triggered the power supply overvoltage circuitry?
To find out, turn power off for five minutes and try again.

6. Have the circuit cards been vibrated out of their connectors, possibly by moving the
equipment or from vibration? Reseat cards to find out.

If none of the above investigations rectify the problem of the malfunctioning Lilith, then the
maintenance engineer should begin diagnostic procedures according to Section 7 of this manual.




Foreword to Manual

This manual will attempt to cover the Lilith hardware at three levels:

1. At the highest level, it will cover the theoretical considerations involved in design of the Lilith for the
benefit of those wishing to incorporate ideas from the Lilith project in other computers. This information
will be contained for the most part in Section §.

2. At the second level, the functioning of the circuits in each subsystem will be detailed in order to aid
engineers and technicians in the debug of the logic of the computer. The circuit descriptions of Section 6,
together with the schematics and wirelists in the appendices, will be most useful for such problems.

3. At the lowest level, a set of diagnostic procedures will be enumerated to enable an apprentice
technician or even a software fype to determine whether or not the machine is functioning, and possibly
even which, if any, of the circuit boards are defective. The diagnostic procedures given in Section 7 should

be understandable even to the uninitiated,
Those wishing to connect other input/output devices to the system will find Appendix A of interest.

If the reader encounters any errors within this manual, he is invited to notify R. Ohran at Modula
Computer Systems, 950 N. University Ave, Provo, Utah 84604,
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1 Introduction

One of the tenor themes of the Lilith project was the idea that conventional computer systems have
been designed to be inefficient and inadequate because of the limited perspective used in their design
phase, especially because of the limited consideration given the importance of high level programming
languages in the final determination of the architecture of the machine. In the Lilith project, it was
intended that the requirements of the Modula-2 programming language would determine the structure of
the machine to be constructed. In fact, as it developed, the stack architecture dictated by the needs of the
language proved inappropriate for direct implementation with the available components. Because of this,
it was necessary to construct a computing engine of a more conventional nature and to microprogram it to
emulate a more desirable stack architecture. This stack machine will be referred to as the Lilith "virtual
machine.” The conventional register based computing engine which supports the virtual machine will be

referred to as the "real machine.”

The main intent of this manual is to describe the Lilith hardware. Part of this description will review
some of the basic aspects of the virtual machine. This will help the reader to have the proper perspective
from which to contemplate the design decisions which were made. We will leave an in depth discussion of
the relationship between Modula-2 and the virtual machine to the manual on software. In this manual we
will mainly present the characteristics of the virtual machine without reference to the software and attempt

to explain them as they relate to the actual hardware,

As the reader investigates this machine, he will discover that the Lilith computer system yields a
remarkable degree of performance and efficiency for the investment of resources. As the hardware is
described, an attempt will be made to explain the factors which caused this. Particular emphasis will be
given to the unusual features of the hardware that were designed into the machine to accommodate the
special nature of the virtual machine. However, a good deal of the success of the Lilith is based upon the
features normally included in other computers which were left out in the Lilith. The reader should
prepare himself to understand the success of this approach not by looking just for the features that were
added to increase the power of the machine, but rather to consider as well the features which were left out.
As an example, it is a worthwhile exercise to consider the many features of a machine such as the PDP-11
which are not found in the Lilith. Then, one should evaluate whether or not the Lilith has suffered from

their absence.




2 Overview of the Hardware

In this section, an overview of the major Lilith components will be given with the intention of providing
a perspective view of the entire system and the various interactions between its subsystems. Each
subsystem will be investigated in greater depth in subsequent sections.

The basic Lilith system consists of a processor, memory, high resolution graphics display, 15-Megabyte
Winchester disk with single-sided double-density floppy disk back-up, and miscellaneous I/0 devices
including: mouse pointing device, keyboard, real time clock, and serial line receiver/transmitter interface

(UART). A block diagram of the system is given in Figure 1.1.

2.1 Processor

The processor is a microprogrammed implementation of a stack machine architecture., The stack
architecture includes two stack memories, registers for global and local variable base addressing, and an
arithmetic logic unit featuring a full barrel shifter. One of the stack memories is only sixteen levels deep
but constructed from high speed bipolar memory circuitry. The other stack memory uses main storage
with an addressing scheme based on registers of the processor. The smaller stack is called the "evaluation
stack” to distinguish it from the typically larger stack in main memory which is simply called "the stack.”

The heart of the processor is a 16-bit arithmetic unit based on the 2901 bit slice integrated circuits. The
2901 based arithmetic unit has also been augmented with a barrel shifter and an external 16 level stack.
Information flows into and out of the arithmetic unit through a main processor bus (called simply BUS)

which is 16 bits wide and connected to most subsystems of the Lilith.

There are two registers, the code frame register and the program counter register, which provide the
mechanism for fetching instructions from memory. The program counter functions as an offset from the
code frame register value. The stack machine instructions are called M-codes and may be 8, 16 or 24 bits
long. M-code instructions are stored in memory in segments referred to as modules. The starting address
for each module is kept in memory in a table of pointers known as the module frame table. The module
frame table holds as many as 256 entries. Any reference to a procedure or a global data variable of a
module implies the use of its entry in the module frame table; however, references to the module frame
table are minimized by saving the entry points for a module in processor registers.

Execution of M-codes is handled interpretively by a microcontroller executing microinstructions from a
control store. Typically, three or four microinstructions are required to interpret each M-code. The basic
cycle time of the microinstructions is 150 nanoseconds. The microinstructions are 40 bits wide and a total
of 4096 micrecinstructions are addressable. Currently, only 2048 instructions are used and they are stored




in bipolar programmable ROMs.

The M-code instructions are fetched from main memory by a special instruction fetch unit, This unit
fetches the M-codes and updates the program counter values. The IFU has a cache memory capable of
holding 8 bytes of M-code instructions, allowing it to fetch M-code instructions in units of eight bytes at a

time.

2.2 Display

The display controller refreshes a high resolution 15 inch cathode ray tube from the main memory of
the Lilith. The display image is a so-called "bitmap display.” The refresh rate is 25 frames per second,
and the structure of the image is 768 bits across and 594 vertical lines high. The total memory used to
refresh the image is 28,816 sixteen-bit words. The size of the image on the display can be reduced both in
height and width. Horizontally, it can be reduced in increments of 64 bits from 768 to zero. Vertically, it
can be reduced to any number of lines. All images displayed on the screen are constructed from "bitmap”
images written into the display area of memory. The processor has several microprogrammed instructions

which perform image-creation operations with greater efficiency that normal programming,

2.3 Memory

The display, the processor, and the instruction fetch unit all compete for cycles from the multiport main
memory. The allocation of memory cycles is handled by an arbitration mechanism using a priority
arbitration circuit. The display has the highest priority. For reading, the memory is organized basically as
32768 addresses of 64-bit memory words. For writing it is organized into 131,072 sixteen-bit words. A
special multiplexing circuit allows the processor and 1/0 devices to read memory in 16-bit words, but the
instruction fetch unit and the display exploit the full 64-bit word length for their memory cycles. There is
an additional memory port allocated to a section of circuitry which periodically requests "dummy”
memory read cycles. The circuitry requests these cycles to satisfy the requirement of the dynamic memory

to refresh each of the 128 row addresses once each two milliseconds.

2.4 Secondary Storage

The secondary storage device of the Lilith is a 15-Megabyte Winchester disk with single-sided
double-density floppy disk back-up. The disk controller transfers a single sector of data to an on-board
buffer of 128 sixteen-bit words. Data transfers from secondary storage to main memory are not handled by
direct memory access but are handled by the processor, using special microcoded routines which operate at
full memory speed. Data transfers between the Winchester and FDU are handled serially via a UART.




2.5 Mouse Pointing Device and Keyboard

One of the significiant features of the Lilith is its well designed human interface facilitated by its high
resolution display (already described), its "mouse” pointing device, and its keyboard. The mouse rests on
the table and transmits relative surface movements to the processor. The processor uses this information
to position a pointer on the screen. Through pointing and depressing the three buttons on the mouse, the
user can give commands to the processor which are typically program control operations. The
effectiveness of this interface can hardly be described; it must be experienced.

2.6 RS-232c Interface

For communication with other standard peripheral devices and computers, a RS-232-compatible serial
interface is provided. The transmission rate is selectable from 75 to 9600 baud. The voltage levels for
mark and space are standard.

2.7 Extra 170 Slots

For expansion of the machine’s memory and connection of peripheral devices, the machine has
additional uncommitted circuit board slots. The devices which are connected may be designed for
programmed I/0 or for direct memory access techniques using one of the four uncommitted memory
ports.




3 The LILITH Virtual Machine

In the search for a suitable architecture to support programming in the high level Modula-2
programming language, some basic ideas were formulated as characteristics of the ideal computing engine.
Because limited possibilities existed for the purpose of creating such hardware, it was necessary to define
the nature of this ideal machine and then to emulate it as well as possible with the available components.
This ideal machine is therefore referred to as a "virtual machine.” The word "virtual” in Webster is given

the following definition:
virtual--in essence or in effect, but not in fact

This is exactly what we have: a machine whose essence and effect is real, but which in fact does not exist,

being an illusion created by the real hardware.

Some would argue that the use cof the word "virtual” in this sense is unwarranted because of the real
behaviour exhibited by the machine. One could simply say that the microprogram and the underlying
hardware are only a different form of construction. Perhaps this is so. We are not particularly fond of the
term "virtual,” but it does serve a function. It is a valid designation which allows us to distinguish between
two computing engines which are present in the Lilith: the logically described stack architecture machine,

and the actual register machine which emulates the stack architecture.




3.1 Salient Characteristics of the Lilith Virtual Machine

The Lilith virtual machine exhibits characteristics reflecting the dominating influence of the high-level
language software considerations. These characteristics cause the Lilith to have an appearance significantly
different from the conventional "von Neuman" computers. Some of these characteristics are presented
here for the purpose of giving the reader a perspective comparison between the Lilith and more

conventional computers.

3.1.1 Use of Stacks

The Lilith virtual machine is what one commonly refers to as a "stack machine.” It is so named because
a stack, otherwise known as last-in-first-out memory, is the the prominent structure used in the processing
of information. There are other elements of the machine equally important in the processing of
information such as registers, memories, and arithmetic units, but the machine derives its name from stack,

because this is the element which distinguishes it most from other computers.

The Use of a Stack for Data Operations

Conventional machines transfer data from memory locations to registers in the processor where they
may be operated upon by the arithmetic/logic unit of the machine. The Lilith has no registers for such a
purpose. Instead, a stack, 16 levels deep, is used to receive the contents of memory locations. Arithmetic
instructions in the Lilith have no address fields associated with them. The top two levels of the stack are
always implicitly referenced as operands in binary operations, and the top level alone is used for unary
operations. When a result is generated by the operation, it is returned to the top level of the stack. There
is no other mechanism in the machine to perform arithmetic and logic operations on variables stored in
memory. The stack is also used to pass parameters in procedure calls. And it may be used in address

calculations as may be necessary in operations such as array indexing.

Use of Main Memory as a Stack for Procedure Activations and Local Vgriables

Main memory is usable in the conventional manner of address register and data cycle. In the Lilith, it is
also possible to use main memory as a stack. There are registers in the processor that hold addresses which
are incremented and decremented as necessary to give the appearance of a stack. This feature of "stack
machines” has been incorporated into most of the new microprocessor designs. However, in the Lilith, the
usage of main memory as a stack is much more sophisticated. With each procedure call, an elaborate
activation record is created on the stack which does more than simply save the return address onto the
stack. It also saves the state of several registers used as base addresses for the variables of the previous
procedure, and builds a chain of pointers which allows the new procedure to access all variables at higher

levels according to the scope rules of Modula-2. Storage for the local variables and parameters of the




procedure are also allocated from the stack just above the procedure activation record.

3.1.2 Dynamically Allocated Storage in the Heap

The higher extremity of the unused memory space allocated to the stack in memory is available for
allocation as the heap. When the program wishes to allocate storage dynamically during execution and
assign this storage to a pointer variable, it obtains this storage from the top end of the stack. Naturally, the
stack has fewer memory locations available for procedure activation records when a portion of its space is
taken away and assigned to the heap. Management of the heap is a program function in the current Lilith
software. There is no system "garbage collector™ to retrieve used and no longer needed areas of the heap.

3.1.3 Variable Addressing via Base Registers

The Lilith architecture enables the compiler to produce smaller compiled programs by providing a
facility for addressing data variables using base address registers. Instructions capitalize on this feature by
using offset values requiring only four or eight bits which, together with a base register, give the complete
address of a variable. Since the offsets require fewer bits for their representation in the instruction, this
results in significant savings in memory space used for program storage. This feature is enhanced by the
fact that the base register contents are automatically updated when the processor moves into another

procedure, or another module, or another coroutine.

The technique of addressing by offsets is also applied using the top of the stack as a base address. This
provides invaluable compactness for referencing elements of structured variables which have been

dynamically allocated and which use a pointer variable as the means of addressing.

3.1.4 Coroutines

Another characteristic of the Lilith virtual machine is its support for the concept of a coroutine. This
concept is not supported in hardware by any machine of which the author is aware. Some machines
provide coroutine usage in their handling of interrupts, but only to a limited degree. They fail to provide
coroutine capablility for general use in a program. In the Lilith, a single instruction allows the processor to
completely suspend one coroutine and activate another. Since this operation is identical to the manner in
which interrupts are handled in the Lilith, the programmer finds an especially pleasing unification of the
concepts of processes and interrupt handlers. Familiarity with this feature of the Lilith will provide the

Lilith user with new dimensions to use in the solution of programming problems.




3.2 An Overview of the Structure of the Lilith Virtual Machine

Just as the Lilith virtual machine is considered to be a virtual construction, each of the elements which
are part of it should also be regarded as virtual since they may in fact be simulated by the
microprogrammed interpreter or may in reality be the composite effect from several sections of real

hardware.

BUS is a 16-bit data path which connects all elements of the machine together.

The main memory is a standard random access memory operated in read and write cycles for
addresses to 130,nnn sixteen-bit words.

The global register (G) and local register (L) provide the base addresses for address calculations
needed for access to program data variables from main memory.

The stack top register (S) and the heap register(H) provided the address values used for creating
stack behavior from sections of main memory.

The code frame register (F) and the program counter offset register (PC) are used to generate a byte
address for each virtual machine instruction. These registers are part of the instruction fetch unit
which utilizes the 64-bit read feature of the main memory to reduce memory cycle requirements for
instruction fetches.

The process register (P) holds the pointer to the process descriptor area for the process in execution.

The mask register (M) holds the interrupt mask which determines which interrupts may be
recognized.

The evaluation stack is a true last-in-first-out stack structure composed of sixteen levels of
sixteen-bit words. Data paths connect the evaluation stack to the arithmetic/logic unit and the BUS,
which leads to memory and peripheral devices.

The aritkmetic/logic unit operates on data values stored in the evaluation stack. It performs the
various arithmetic operations for various data types: cardinal, integer, and real. It also performs
relational operations comparing magnitudes for these same types but yielding boolean results. It can
perform the standard logic operations, and it can even perform directly a number of set operations.
For address calculations the arithmetic/logic unit may reference the global and local variable base
address register as well as BUS for access to constants and offsets.




A block diagram showing the interconnections of virtual components of the virtual machine is given in
Figure 3.1.

There are additional elements of the Lilith virtual machine which need to be introduced at this time.
These elements are "softer” in nature, being more a matter of program organization within memory than

of structure.

The module frame table is a table of pointers found in the memory of the Lilith, Each program
module has a base address entered for it into the module frame table so that it may be addressed by
other modules.

The data frame iz an area of memory assigned to a module holding its global variables and string
constants. The address of the data frame is the value entered into the module frame table.

The code frame is an area of memory assigned to a module for its compiled instructions. The address
of the code frame is the first word of the data frame.

The procedure table is a table of values giving the entry point address for each procedure of a
module. The entry point address is an offset amount from the start of the code frame.

A coroutine is a concept used to describe the situation when the execution of a program is divided
into more or less independent parts. A coroutine is like a procedure in the sense that it can be
activated as a procedure is activated and in the sense that it "owns” data variables which it may use.
But it is unlike a procedure in the sense that it does not necessarily own unique sections of compiled
instructions, nor is it entered at the same point each time it is activated. Coroutines do not execute
concurrently; only one coroutine at a time can be in execution; the others must all be suspended.

A process descriptor is a data structure in the memory which can hold the state of a coroutine during
the times when it is suspended.

The interrupt vectors are pointers to process descriptors which are assigned fixed memory locations.
When an interrupt occurs, the Lilith can create a coroutine transfer by going to the fixed addresses to
find process descriptors where it can save the state of the coroutine in execution and retrieve the
state of the coroutine which needs to be activated to handle the interrupt.

The overall relationship of the elements discussed in this section is shown in Figure 3.2. The
relationship of these elements will be discussed in greater detail in following sections.
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3.3 The Lilith Virtual Machine in Operation

As was briefly discussed in the previous section, a computing task performed by the Lilith virtual
machine is called a coroutine, and more than one coroutine can be operational in the machine at any given
time; although only one coroutine is actually in execution (called active) at any give time, while the others
are held in a suspended state. Changes which cause the active coroutine to be suspended and replaced by
another suspended coroutine are called coroutine transfers. Coroutine transfers may be caused either by

programmed instructions or by hardware interrupts.

Each coroutine “owns" a number of elements which make it unique and distinguish it from other
coroutines active within the system: First, each coroutine is assigned a workspace in main memory, which
it uses in part as a stack and in part as a heap. When the coroutine is created, the registers associated with
the stack and heap are initialized appropriately to use the workspace. Figure 3.2 illustrates the address
relationship of the S, L, and H registers to the workspace.

A second unique element of a coroutine is the process descriptor, which is a storage area capable of
holding the entire state of the processor relative to the execution of the coroutine. When a coroutine is
suspended, its state is saved into its process descriptor. Usually, the storage for the process descriptor is
placed at the beginning of the workspace by the procedure which initializes the coroutine and sets it into
operation. (Usually this is the procedure NEWPROCESS, except when the first coroutine is initialized by
the microprogram in performing the "booting” procedure.) The register P of the Lilith virtual machine

always contains a pointer to the process descriptor of the active coroutine.

A third unique element of each coroutine is the the program address value which determines
where--from among the selection of program modules loaded in memory--the coroutine is to take its next
instruction. It will be discussed later how this value is actually a combination of values from two of the
machine’s registers, F and PC. The program modules themselves are not of necessity uniquely assigned to
any coroutine. They are simply resident in the machine and available to perform tasks for any coroutine

which chooses to execute instructions from any of the procedures of a given module.

COMMENT: There may be some confusion about the coroutine aspect of the operation of the virtual
machine. Programmers have a tendency to identify a "process” or a "task" with a section of program code.
They speak of a "program running in a computer.” In the Lilith, the concept of "running a program"
should be understood to mean: "to cause the main coroutine in execution to begin executing instructions
from the desired program module ( or collection of modules) after it (they) has (have) been loaded into
memory.” The distinction may appear subtle, but it will help to clarify thinking when the processor is

involved in an especially complex situation of coroutines and modules,

A fourth element unique to each coroutine is the local storage allocated for each procedure as the




i1

procedure is entered. This storage belongs to the coroutine which was active when the procedure was
entered and is available for the use of that procedure only when that coroutine is active. If two coroutines
enter and execute instructions from the same procedure, each will have its own separate copy of the local
variable storage. This will not be the case for the global storage defined for each module and accessed by
the procedures of the module. When such global variables are used by two coroutines executing from the
same procedure, the storage referenced will be the same for both. This subject will be discussed further in

the section describing module organization.

It may help the reader to clarify the conceptual relationship between coroutines and program modules
as they exist in the Lilith if an analogy is presented: We may view each coroutine as a moving, dynamic
entity to be compared with an automobile. A program module in this analogy would be comparable to a
neighborhood of streets, buildings and passages. The collection of all program modules in the Lilith
memory would be represented by an entire city. Just as cars move through the city constrained by the
configuration of the streets and pass from one neighborhood to ancther, coroutines work their way through
the structures of program modules performing functions and moving on to other modules. Just as several
* cars may travel in similar paths or even travel down the same streets, several coroutines may operate within

the same program module sharing global data but each privately using its own local data.

NOTE: From the above analogy, I have come to the conclusion that the name “coroutine” is
inappropriate to describe the concept which has been assigned this name. The term "coroutine” tends to
connote a function similar to a subroutine, or in other words, a portion of a program--when, in fact, the
important part of what we call a coroutine is actually the execution state of the computing task as contained
in registers and stack workspace assigned to the task. A task does follow a pattern of execution established
for it by the procedures which have been programmed, but in the Lilith as in many computers, these
procedures are not uniquely owned by a single task. The confusion, I believe, comes from having
incorrectly regarded the simple case of sequential programs as the actual "work-doers” rather than as
patterns which channel the "execution state” into a desired performance. The problem with this
conceptualization is that it breaks down when the programmer attempts to visualize multi-programming as
an independent collection of programs performing separate functions when the programs themselves are
allowed to use parts of each other. The programmer then begins to wonder where the coroutine is. In this
manual, rather than fight the established pattern of nomenclature, I will continue to use the term
“coroutine” but mean thereby a task-performing entity whose essence is uniquely captured in its process
descriptor when it is in a suspended state or present in the registers of the machine when it is active,

together with its work space--R. Chran.
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3.3.1 Instruction Fetch and Execution

Once it has a valid coroutine in an active state (there is always at least the initial coroutine set up by the
microprogram when the "reset” button is pushed), the Lilith follows a repetitive pattern of fetching
instructions and executing them. The basic cycle begins by fetching an M-code instruction from main
memory. The address of an M-code is a so-called byte address because an instruction may consist of as
little as 8 bits taken from either the right or left half of a normal 16-bit word of memory. Hence, a byte
address requires one additional bit in the least significant position of the address to determine from which
half of the word the address is taken. This byte address is computed from the sum of the contents of the
code frame register (F register) and the program counter offset register (PC register). The F register value
is shifted left 2 bits and the PC register value added to it; therefore, the resulting address has 18 bits. An
18-bit byte address allows addressing of 265K bytes of memory or 131K words. The so-computed byze
address is passed to the memory address register over the BUS and the selected instruction byte is returned
through the memory data register over the BUS to the control unit for decoding.

After the instruction byte has been fetched, the program counter register is incremented by one. If
additional bytes are needed to complete the instruction, they will also be fetched in the above fashion with
the possible exception that if the decoding of the first byte specifies that the second byte is to be fetched as
a negative value, then the higher order eight bits of the 16-bit BUS are set to ones.

Once the instruction byte has been decoded, and additional instruction bytes have been fetched as need,
the processor enters the execution wherein the specified operation is carried out according to the order

code of the instruction.

3.3.2 The Lilith Virtual Machine Instruction Set

Eight bits constitute the basic atom from which instructions are composed. A complete Lilith
instruction may use one, two, or three such groups of eight bits (bytes). (Refer to Figure 3.3.) The
individual instructions are categorized by the value of their first byte. Subsequent bytes usually provide
addressing or constant data values for use by the instruction. The exception to this rule is the "escape”
code, which causes the second byte to be evaluated before the instruction type is determined. The
instructions fall into 6 main categories:

1. Instructions which transfer data between main memory and a work area called the evaluation
stack which is part of the arithmetic/logic unit

2. Instructions which manipulate data on the stack
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3. Instructions which test the contents of data on the stack and modify, in some instances, the next
selected instruction by storing new values in the F and PC registers

4. Instructions which implement transfer to procedures and in the process modify registers
associated with the management of the free storage area known as the stack.

5. The coroutine transfer which suspends the execution of a process and activates another

6. Instructions which transfer data between the evaluation stack or main storage and input/output
devices

Appendix B gives the complete instruction set listing. More will be said about some of the more

important instructions in later sections.
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3.4 The Organization of Programs in Memory

At any given instance, the Lilith will be found to have at least ten (or more likely 20) different modules
in memory, which may be visited by the coroutines operating within the system. There is a master table of
identifying addresses for each module which is known as the module frame table. The table begins at the
absolute address of 20 (in hexadecimal) and has room for 96 entries. The position of a module’s
identifying address relative to the start of the table is important, for it is the value by which the module is
selected within instructions which need to specify a module outside of the one they are in. This structure is
not a matter of arbitrary program selection; it is fixed in the microprogram of the Lilith. The module
Jrame table is shown in the upper left hand corner of Figure 3.2.

3.4.1 Modules

A module is a collection of procedures and data structures which typically have a commonality
associated with the accomplishment of a given task or related set of tasks. It also has a structure whichisa
matter of definition in the microprogram which defines the instruction set. This structure consists of a
global data frame and a code frame. Modules are loaded into memory in contiguous areas from a low
address above certain reserved addresses to high addresses. A pointer to the start of a module is entered
into the module frame table. All references to a module from external points use an index value into the
module frame table to fetch the pointer to the module. This pointer points to the global data area where, in
turn, the first word is another pointer which gives the F register value for the start of the code frame. At
the start of the code frame are as many pointers as are necessary for all the procedures of the module.

Figure 3.2 shows this relationship.

3.4.2 The Global Data Frame of a Module

As mentioned, the module frame table contains entries which point to the beginning of the memory
allocated to a module. This pointer value does not point directly to the program segments of the module
but to the memory area reserved to hold the variables declared globally with the module. The first three
locations of this area are not, however, assigned to global data variables but are used for special functions.
These functions are as follows:

Word 0: This word will contain a value which, when placed in the
F register, will be used by the instruction fetch unit to
fetch instructions for execution. This value will not be
the actual starting address for the code frame because the
F register has a 1-bit offset from the normal address
so it will contain the address divided by two.
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Word 1: This address will initially be zero and will be set to a
non-zero value with the first call of the main procedure
of the module. This word is used as a flag to inhibit
multiple execution of the main procedure.

Word 2: String constants needed by the program will be appended to
the memory assigned to global variables and referenced
indirectly and post-indexed through the pointer found in
this location.

After the first three words in the data frame, the next storage locations are allocated for use as global data

variables.

Besides being addressable from all procedures of a module, global data variables have three important
characteristics which affect their function in a program: First, unlike local variables, the storage allocation
and "life" of the global data variable is permanent, as long as the program module defining the global
variables is resident in memory. In Modula-2 global variables, this life of variables can even extend
beyond the completion of the program which invokes the loading of the module. Second, global variables
are the only variables which may be exported from one module to another. Third, global variables are
equally accessible by all coroutines which execute with the module which has defined them or imported
them. These features, universal scope and permanence beyond the time boundaries of procedure calls,

extend the use of global variables beyond the normal functions seen in PASCAL programs.

Because of these characteristics, global variables assume a special role in Modula-2 programs which
supercedes their use in PASCAL programs. This role is related to three different aspects of

communications between modules, programs, and coroutines:

First , because of their ability to be exported, global variables play an important role communicating
data between separately compiled modules which import and export them. This becomes an important
consideration in the management of complex programming problems as the selection of which global
variables to export and import affects significantly the efficacy of the design of the programs using them.

The second communication aspect relates to the lifetime of the global data variables which are
associated with the residency of program modules in memory. In the Lilith, it is not necessary to purge a
module from memory simply because the task which referenced this module and caused it to be loaded has
terminated. It is possible to reuse a loaded module together with all accumlated information in its global
variables by linking the module into a newly assembled selection of program modules to be used by a new
coroutine. The new coroutine thereby benefits from the accumulated information which the previous task

computed. In theory, it would be possible to even run the same program repeatedly with improved
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performance each time because of the accumulation of information stored in the global variables of a

reused module.

The last communication function of global variables is associated with the nature of modules which are
used by more than one coroutine within their overlapping lifetimes. Because global variables are linked
with a program and not with a coroutine (as is the case with local variables which are allocated privately
and separately to the stack of each coroutine), the global variables become a commonly shared resource to
the coroutines which reference the same program module. This can be an important means of
communication, but it can also become a source of failure if consideration is not given to the well known

problem of synchronization and deadlock.

3.4.3 The Code Frame

As a module is compiled, each procedure encountered in the process is assigned a number in sequence
by which it is referenced from other modules and from other procedures within the same module. An
address for the entry point of each procedure relative to the address held in the F register is placed in a
table at the start of the code frame. The sequence number assigned to the procedure is the index value
through which the offset value is found. Therefore, the starting address for the code frame is also the
location where the address for procedure 0 of the module is found. The main program section of a module
is always procedure 0. There will be as many words of procedure addresses as there are procedures within

the module.

The code frame is currently assigned by the operating system to the first even word address just above
the global data and the string constants. However, there is no reason it could not be assigned to another
memory area. If the amount of storage of the Lilith available for data variables becomes a limiting factor,

the code frames of each module can still be relocated out of the prime addressing space.

3.4.4 Procedure 0 of a Code Frame

Procedure 0 of the code frame is always the main program procedure of a module. If a given program
module references any external subordinate modules, their main procedures will be called for execution
before the execution control is given to the main procedure of this program module. In this instance, the
main program procedures of the subordinate modules may serve as initialization routines, This technique
applies to any level of nested module references. However, for the case where a module is referenced by
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more than one other module, the main procedure of that module will still only be executed a single time
because of special program instructions which detect this condition based on the state of a flag stored in

the second word of the data frame as described in a preceding section.

3.4.5 Addressing of Procedures

In contrast to conventional methods of making a procedure call according to the starting memory
address for the procedure code, a procedure call in the Lilith is referenced only by a simple number
representing the sequential ordering of procedures within the module, ie. 1, 2, 3..N. This number
provides an index value from the start of the code frame to a single memory location which then provides
the actual starting address of the procedure as an offset from the code frame. For internal procedure calls
within the same module, only the relative procedure number is required. For procedures external to the
module where the call is made, the procedure must be called through the use of its 8-bit module number

and its 8-bit procedure number.,

The addressing of procedures and modules by an index value into a table provides two advantages
which may not be readily apparent. First, since all procedure entry addresses are located by index value
rather than address, relocation of a code frame to another address is managed quite easily, requiring
nothing more than the change of the pointer in the data frame. Second, procedure variables are nothing
more than integer table indexes. This also simplifies relocation of code problems and renders the problem

of loading and execution of new modules relatively simple.
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3.5 The Stack, Procedure Activation Records, and Local Variables (Figure 3.4)

Initially, all available memory not in use for modules is assigneci to the stack of the first coroutine.
Three registers, S, L, and H, control the use of this memory. The S-register (S meaning “stack pointer”)
points to the lowest unused storage location or top of the stack. The H-register points to the highest free
storage location for purposes of overflow checking, and the L-register is used as a register holding the base
address of the procedure activation record and the local variables of the active procedure. From this
address, offsets are computed to memory locations within the stack. As the memory of the stack is
allocated for procedure activation records and local variable storage with each procedure call, a
comparison is made to determine whether or not the S-register has been incremented beyond the bounds
allocated for use by the stack. Each procedure call causes the S-register to be incremented by four plus the
number of local variables defined for that procedure. At any given instant, the top memory locations of
the stack will hold: a) the local variables used by the procedure currently in execution, and b) the
activation record necessary to return the execution control back to the program segment which called the

procedure currently in execution.

3.5.1 The Procedure Activation Record

Each time a procedure is called, it is necessary to place enough information on the stack so that the
execution of the program making the procedure call can be resumed correctly, and so that the activated
procedure may have access to information at lower nesting levels. Four words of information must be

stored for this purpose. These words have the following use:

Word 0: If cailing a procedure in an external module, then this word
will contain the pointer value from the module pointer table for
the module making the call.

If calling a procedure within the same module, then this word
will contain a pointer value establishing a "static link" to
variables on the stack which are considered at a lower nesting
level, or gliobal, to the called procedure.

Word 1: This word will contain a pointer to the start of the next lower
activation record. This is the so-called "dynamic Tink" which
is necessary to deallocate storage from the stack when the
current procedure is terminated.

Word 2: This word will contain the PC value for the next M-code instruction
following the instruction which called this procedure. If this
procedure was called from within the same module, then there will
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be a '0' in the most significant bit of this word. If the call

was made from an external module, then the most significant bit

of this word will be a '1', and the procedure return instruction
will know to restore the G-register from word 0 of this record,

as well as the F-register from the first word of the global

data area pointed to by the G-register.

Word 3: This word will be used to save the state of the interrupt mask
in the event that the module entered wishes to change it.

3.5.2 The L-register

Each time a procedure is called, the stack is expanded twice. First, as the procedure call is made, a
procedure activation record is constructed on the stack, occupying fdur words of the stack. Then as the
procedure is entered, more storage is allocated to accommodate local variables which are declared within
the procedures. Parameters of the procedure call are also allocated in this manner. The newly invoked
procedure will then begin to process information into and out of these memory locations. To facilitate this
more expediently, the L-register is assigned an address pointing to the base of the procedure activation
record. The invoked procedure may then address these memory locations efficiently as small offsets from
the L-register base. Instructions are available which use either four or eight bits for the offset information.

The efficiency of the program object code is improved greatly through this mechanism,

The use of the L-register in this manner implies an additional overhead for the operations of procedure
call and return from procedure. Each of these operations must alter the contents of the L-register so that
subsequent fetches of local variables will be correctly performed. In the case of the procedure call, it is
necessary to save the value of the L-register into the dynamic link (word 1) of the new activation record so
that it may be restoréd later. Then the base address for the new activation record must be loaded. It is
held in the S-register at the time of the procedure call. The return from procedure instruction must
restore that L-register value in uge by the program segment which made the procedure call. It does this by
loading the L-register from the dynamic link which was prepared by the procedure call instruction,
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3.6 Addressing of Data Variables

The storage addressing schemes of the Lilith virtual machine directly reflect the needs of the Modula-2
language. In Modula-2, variables may be allocated in a multitude of ways, but finally they will be
referenced through program instructions in one of four separate ways:

1. Offset from the G-register:

The G-register points to a data area reserved for use with the module which is currently being used
by the active coroutine. Data variables which are considered global to the entire module are
allocated from memory in this area. There are special instructions giving access to these variables
which minimize the number of bytes necessary to make the reference. (LG3..LG15, LGW,
SG3..5G15, SGW, etc.)

2. Offset from the L-register:

In a manner analogous to the use of the G-register, there are instructions which operate on data
variables which have been allocated locally by a procedure to the stack of the active coroutine.
This includes the variables which are declared as formal parameters of the procedure. The method
of use again involves the use of special instructions which reduce the number of bytes necessary to
make the reference. (LG4..LG15, LGW, SG4..8G15, SGW, etc.)

3. Offset from the G-register area of an External Module:

This method of addressing gives a module access to global variables in other modules. The
mechanism is similar to references to its own global variables but requires an additional memory
cycle to fetch the externai module’s data frame table entry.

4. Offset from a Calculated Address

Numerous references to data variables require either references to pointer values stored in other
variables or references made with the help of calculated addresses as is necessary for indexed
addressing into arrays. In such cases, the needed address will finally be found on top of the
expression evaluation stack as the result of other variable fetches and arithmetic operations. To
make references with such addresses there exists in the instruction set a number of instructions
which provide efficient memory addressing based upon the value found in the top of the stack.
(LSWO..LSW15, LSW, LSD, SSWO0..8SW15, SSW, SSD, LXB, LXW, LXD, SXB, SXW, SXD)

As a final comment on addressing, it seems worthwhile to point out once again that data operations on
local data variables affect only the local storage of the coroutine using the procedure. On the other hand,
data operations affecting globally allocated variables affect all coroutines which use that particular module.

3.7 The Evaluation Stack

The evaluation stack of the Lilith is only 16 levels deep and it does not automatically overflow in the
main memory stack as has been the case in other stack machines. There is also no possibility to check the
stack for overflow. This poses an interesting question as to how the Lilith avoids undetected errors caused
by accidentally overfilling the stack. The answer is contained in a simple rule: All programming in the
Lilith is done using the Modula-2 compiler, and the compiler never uses the stack for any kind of an
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operation where it cannot determine the level of usage of the evaluation stack--as in the case of building
arguments on the evaluation stack by recursive procedure calls.

This rule implies that each executed statement leaves the evaluation stack in an empty state at the end of
its interpretation. Because function calls may occur in the middle of a statement, function procedure calls
require that the evaluation stack be saved onto the main memory stack before calling the procedure. A

return from function must restore the evaluation stack.

Coroutine transfers, obviously, must also save the state of the evaluation stack.

3.8 Coroutine Transfers and Interrupts

An explicitly programmed coroutine transfer has the form:

TRANSFER(01d, new) ;

where the parameters old and new are pointers to process descriptors. The process of executing a
coroutine transfer begins with saving the contents of the evaluation stack onto the main memory stack of
the coroutine being suspended. Then, the entire state of the machine is saved into the process descriptor
whose address is found in the P register of the machine. When the entire state has been saved, the address
of this process descriptor is saved in the pointer variable "old". Then, the address of another process
descriptor is picked up from the variable new and the registers of the machine are restored to their last

values for the coroutine resuming execution.

NOTE: The machine takes the value from the variable "new" at the beginning of the operation and saves
it in an unused register internally during the saving of the coroutine state. Therefore, it is possible for

"old" and "new" to actually be the same pointer variable.

3.8.1 Interrupts

A hardware interrupt requires that the state of the machine be saved and that a special driver program
be activated to satisfy the source of the interrupt. When the need has been taken care of, the state of the
machine must be restored and the interrupted coroutine allowed to continue processing. In the Lilith, this
operation is identical in execution to the coroutine transfer which can be explicitly programmed. The
interrupt handler becomes just another coroutine. The only difference is that instead of allowing any
process descriptor pointer to be used as a parameter of the coroutine transfer instruction, an
interrupt-caused transfer must use assigned locations for the parameters of the transfer operation. It is the
responsibility of the programmer to see that the process descriptor pointer for an interrupt handler is

stored into the correct memory location which is assigned to that interrupt.

This characteristic of the Lilith has some interesting properties. For example, once a coroutine has been
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written to perform a given function, the programmer can allow that function to be initiated either by a real
interrupt or by an explicitly programmed coroutine transfer. The interrupt driver need not know the
difference and also does not need to respond differently. This feature of Modula-2 programming is
discussed more thoroughly in the Modula-2 reference report by N. Wirth,

3.9 Master Reset

When the master reset button of the system is pressed, the virtual machine must be initialized to a
known beginning state and begin operation. It was also designed to aid the debugging of errant programs
by saving the state of the machine before performing the initialization. The process consists of saving the
machine state, loading memory with a boot program, restoring the machine with a new state taken from
the freshly loaded boot program, and beginning execution. Although this operation takes place under
control of the microprogram interpreter of the virtual machine, the same procedures which perform the
interpretation of the coroutine transfer instructions are actually used.
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4 Decisions Made in the Design of the Lilith

The overall goal of the project was to achieve an increase in performance while maintaining simplicity
wherever possible. Efficiency was more the concern than brute computational power. From the start it
was clear that the machine had to be limited by a goal of keeping it compatible a with simple office
environment while providing substantial computational power. The limitations were in size, in complexity
affecting reliablility, in power consumption, and in noise creation. There were no firm measurable
guidelines to control the design decisions which had to be made. Only a generally intuitive feeling was
used as the basis for the decision. This is not to say that the benefits of each design alternative were not
thoroughly considered--only that the final decision as to whether or not an additional design feature would
be worth the added cost was left to the intuition. In the final analysis, time will verify the correctness of
these decisions. One thing is certain: the machine could have been either much bigger and more complex

or much smaller and less complex; both of these possibilites remain to be tested.

4.1 Selection of the Memory Organization

The first major decision that was considered was the size and organization of the memory. A straight
16-bit by 131k organization was considered, but it was concluded that too much processing power would
be lost in refreshing the display. A 64-bit organization for both read and write operations appeared 100
costly in terms of the extra overhead required for the ability to write individual 16-bit data words into each
64-bit memory cell. So, a compromise solution was chosen where the memory could be read in 64-bit
words but written only in 16-bit words. Then, for the benefit of the processor data access operations and
any eventual direct memory access devices, the memory was equipped with two read data buses--one
having the full 64 bits and the other giving the 16-bit word selected by the full address. For 64-bit read
cycles, the least significant two address bits were ignored.

A second major design decision regarding the memory was the decision to make the memory accessible
from more that one port, which required the use of a memory-cycle-request arbitration circuit. The
considered alternatives were either to synchronize the display and the processor or to provide the display
with its own frame buffer and to remove it from the address space of the processor, causing it to be
accessed as an input/output device. It was felt that the ability to efficiently use the processor power in the
manipulation of the images was a prime consideration, so this eventually led to the design decision to make

the memory an asynchronous device with respect to the processor, allowing multiple requests for service.

4.2 Memory Interaction with the Micro-Controller

The asynchronous memory system having been chosen, another design decision had to te made: how
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should the microcontrol unit handle the eventual possiblity that the memory interface might not be

finished with a previous operation when it is ready to begin another? Two alternatives were considered.

First, the MCU could be so constructed that it could test the status of a memory interface before
attempting to use it, Or second, it could blindly go ahead with any memory operation, In this case it would
be oblivious to the state of the memory interface and the memory interface could, if not ready, signal to
the master clock circuitry the need for a delay in the clock event until the interface was ready. In
considering this problem, it was felt that a significant loss of processing power could come from the first
approach. The reasoning was that if a memory interface were not ready, then no additional speed
advantage would come from either method as both would be required to wait until the operation was
completed. However, for the large number of times when the memory was available, then an additional
cycle would be wasted to verify this fact. It was also felt that if the microprogram called for a memory
operation and the memory were not ready, then it was not likely that anything useful could be done while

waiting.

So, the second alternative was selected. In retrospect, it is not certain that this was necessarily the best
choice. In measuring the performance of the system, it was observed that the minimum cycle time of the
microinstructions was lengthened by the signal propagation necessary to respond correctly to the "not
ready” signal from the memory interfaces. Initially, it was much greater that now, but substantial redesign
of the memory interfaces and the clock generation circuitry of the CPU was necessary to achieve the goal
of 150 nsec cycle time.

4.3 The Instruction Fetch Unit

The multiple port memory and 64-bit wide memory path having been chosen, the opportunity was
naturally quite apparent to exploit these design features in some manner for the processor. A standard
cache memory approach had been thought of, but it was considered to be too complex for the level of
machine being designed. Still,it was felt that advantage of the wide memory bandwidth should be taken.
Finally, the idea developed of building a separate instruction fetch unit which could fetch, through its own
memory port, eight bytes of instructions at a time, and hold them until needed by the processor. Initially,
it was thought that instructions could be fetched in 16-bit words, but this did not fit well with the 8-bit
opcode structure of the Lilith virtual machine.

A great deal of thought was given to the problem of addressing bytes while the main store was actually
addressed in words. A further complication was the fact that byte addressing would limit the size of code
memory to 65k bytes, or only 32k words, because of the need to store a procedure return address in a
16-bit word of memory. It was considered a great limitation that only 32k words could be use for code, so
thought was given to make all pointers and return addresses 32 bits long. This affected integer arithmetic,
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the size of passed parameters, and numerous other operations which made the machine into a much bigger

machine than we had desired.

Finally, the problem congealed into a very usable solution through the organization of an instruction fetch
unit having two registers, a base address register for the code frame, and an offset value which was called
the program counter. The base address register, called the F-register, is added to the offset (PC) in the
IFU through the use of MSI chips--an idea that was disliked at the beginning because of the thought of
including an entire 19-bit adder in the IFU. The F-register is only 16 bits but is offset by three bits from
the PC offset value--giving a total of 19 bits for the byte-wise addressing of the instructions in memory.
This solution provided many advantages: an expanded address space for instructions, efficient €4-bit
fetches of instruction bytes, transparent overlapped instruction fetches taking place automatically through
the port assigned to the IFU each time the last instruction byte of the current eight byte group was taken,
and no necessity to recompute addresses when loading a module into memory, thanks to the offset

addressing.

A final concern after this scheme had been conceived was the possibility that an error could occur if an
instruction code were updated in main memory after it had already been fetched for the current instruction
stream. A check with the compiler writers verified that anyone caught performing any kind of instruction
meodification, as used to be common practice in von Neumann machines and assembly language

programming, would be heartily flogged.

4.4 The Expression Evaluation Stack

The initial concept of the virtual machine for the language Modula-2 did not include the expression
evaluation stack as described previously. The idea of a small hardware stack for expression evaluation
purposes was considered in the sense that it had tradionally been implemented in Burroughs and HP
machines, namely that the stack would automatically overflow in to the main stack in memory. It was Urs
Ammann who first suggested that a small stack for use by the compiler need not be very large, yet would
never need be tested for overflow since the compiler would use it only for operations where it could
control the depth of use. His initial suggestion was that four levels would be more than sufficient, but at
that point his statement was not readily believed.

After a study of the the 2901 architecture had been made, a mechanism was conceived whereby sixteen
levels of stack were readily added to the ALU and in such a fashion that the PUSH, POP, and arithmetic
operations on the top two levels could be accomplished entirely in one microcycle! The addition required
6 additional chips and some control bits in the microinstruction word. The utilization of the stack does
require the ability to test when the stack is empty. This "stack empty"” test is required because each time a
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procedure is invoked, the stack must be emptied into the procedure activation record which is part of the
main stack . If this were not done, a recursive procedure could be the cause of increasing entries on the
stack, which the compiler could not control at compile time. Furthermore, the same stack-save operation
must be performed with each coroutine transfer, lest the evaluation stack become overfilled and confused
because of its inability to test for overflow.

4.5 The Short Operand Instructions
The shifter on the ALU was deemed necessary from the beginning to handle the complex shifting

operations associated with image manipulations on the display. The AMD 25811 chips were chosen from
the beginning by the project leader, N. Wirth, and no question was ever made of their appropriateness.
However, in studying the virtual machine instruction set, it became apparent that a large number of
instructions which would be very frequently used involved the separation of a 4-bit operand from the
single eight bit opcode. It was initially intended that the decoding would take place by creating map
entries to different locations of the control store where separate cycles would introduce these four bit
constants with the micro instruction format which places 8 bit constants onto the cpu BUS. It was entirely
coincidental that the already extant architecture lent itself so well to the separation of the 4 bit operand
into a holding register at the same time that the eight bit opcode was mapped by the map ROMs, in the
MCU, into the starting address of the microcode sequence for that M-code. Otherwise, an additional two
memory locations, as well as two addition micro-instruction executions, would have been necessary for the

interpretation of each of the short operand instructions.
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5 Theory of Operation

In the following sections, an attempt will be made to explain the theory of operation involved for each
major component of the Lilith processor. This will be done in a manner which we hope will relate the
function of the hardware to the process of emulating the Lilith virtual machine. There will not be an
attempt to exhaustively clarify the function of each integrated circuit in the system. This will be reserved
for a later chapter (Chapter 6) as it would involve introducing toco many details which would cloud the real
subject for this chapter.

5.0.1 An Overview of the Real Machine

Beneath the outer shell of the "virtual machine,” we find the inner machine which is responsible for
creating the illusion of virtual machine. The programmer of the Lilith sees this machine very rarely. He
uses the programming language Modula-2 which shields him from most encounters with the virtual
machine. Only when he creates code procedures or uses the debugger does the programmer catch a
glimpse of the virtual machine, The virtual machine, in turn, shields the programmer almost completely
from the real machine. The programmer only becomes aware of it when he desires to add an additional

instruction to the repetoire of the virtual machine.

The real machine consists of many subsystems tied together by a common data artery called the BUS.
The BUS is 16 bits "wide" and operates using three-state drivers. There are no logical operations
performed by simultaneously driving the bus from two or more sources as can be the case with buses
constructed using “open-collector” technology. At any given time, there is only a single bus source.
Alternatively, the BUS may not be in use and thus be in a high impedance state.

The BUS connects the following system components together:

MicroControl Unit:

This component, located on a single printed circuit board designated MCU, is the controlling entity
which contains the interpreter program for emulating the virtual machine. To this unit, the M-codes
of main memory are data which it must analyze and interpret through special microprogram
instruction sequences assigned to each M-code. One of its important functions is providing the
timing signal, CPUCIk, which synchronizes the operation of all components of the system. Another
important function is controlling the flow of information over BUS by emitting control signals
selecting the bus source and destinations.

Arithmetic/Logic Unit:

This component, located on a single printed circuit board designated ALU, is the residence of most
of the registers used for holding data and addresses. It also has the arithmetic circuitry which
operates on these registers. The evaluation stack and a special barrel shifter are also found on this
board.
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CPU Data Port:

This component occupies a portion of the circuit board designated the CDP. Its function is to
provide access to the memory subsystem for all memory operations other than the fetching of
M-code instructions for interpretation.

Instruction Fetch Unit:

Instruction in this case refers to M-code instructions. This system component, located on a single
printed circuit board designated IFU, handles the special function of fetch M-codes for
interpretation by the microprogram of the real machine.

Memory:

The memory subsystem is resident on four printed circuit boards with a portion of the access control
sharing the CDP board with the CPU Data Port. The memory has eight ports, of which four are
used in the standard configuration.

170 Address Decoder:

This subsystem is also resident on the CDP board. Its function is to decode the 170 address lines for
the selection of an I70 device and to generate the I/OClk timing signal.

Display Processor:

This subsystem, resident on a single printed circuit board designated DSP, displays a
memory-mapped bitmap on the raster of a CRT. The information for the display is taken from the
main memory through one of the ports of the memory subsystem.

Disk Controller:

This subsystem is resident on a single printed circuit board designated DSK. It handles the transfer
of sectors of data between the Winchester disk and the processor. It has an on-board sector buffer,
and the transfer of information between the sector buffer and the processor memory is handled by a
microprogrammed block transfer.

Miscellaneous 170:

A number of simple I70 interfaces are also located on the CDP printed circuit board along with the
CPU Data Port. They are: the keyboard interface, the mouse interface, the real time clock, and the
RS232¢ UART interface.

A block diagram showing the interconnected relationships between the elements of the Lilith is found in
Figure 1.1
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5.1 Micro-Control Unit (MCU)

When we think of a computer, we think of a device which has a characteristic behavior typlified by
several features. First, it accepis tasks to perform, as defined by a collection of instructions called a
program, which it places in memory. Second, in the performance of these tasks, it operates in cycles, first
fetching an instruction, then executing operations according to the content of the fetched instruction, and
then fetching another instruction, ad infinitum. Third, in the selection of its instructions, it may take them
either from a single sequence given numerically ascending addresses, or it may branch to a new sequence
based on the results of previously performed operations. We have described a computing entity such as
this in the previous sections and referred to it as the Lilith virtual machine. Now we wish to describe a
sub-component of the Lilith computer which also exemplifies characteristics that qualify it as a computing
element. Like a computer, it has instructions taken from a random access memory, it executes these
instructions according to an order code, and it also may choose its next instruction according to the resulis
of previously executed instructions. To avoid confusion with the main Lilith computer, we refer to this
sub-component as a microcontroller, and we refer to the instructions which it executes as
"microinstructions.” The microinstructions together are referred to as the microprogram, and they are
stored in the "micro-control store” to avoid confusion with the main storage or memory. This entire

subsystem is referred to as the Micro-Control Unit or MCU.

5.1.1 The Function of the MCU

The function of MCU is to emulate the Lilith virtual machine. It can do this because all other elements
in the system are under its control, more or less. Its method of accomplishing this task is to fetch one
virtual machine instruction (M-code) after another and, depending on the instruction, to command the
other elements of the system to perform the function defined by that M-code. To perform the function of
each M-code, the MCU uses a sequence of microinstructions in its control store which have been
programmed for that particular M-code. In the process of executing a sequence of microinstructions, the
MCU will at times emit control signals which cause the arithmetic/logic unit (ALU) to perform arithmetic
and logical manipulations of 16-bit data words stored in registers within the ALU. At other times, the
MCU will also coordinate the transfer of data from one subsystem, viz the ALU, over a 16-bit bus, called
BUS, to other subsystems, i.e. the memory, and it will synchronize the operations of these subsytems
through the use of a special timing signal krnown as the clock, designated CPUCIk.U. It will typically

require four or five microinstruction execution cycles to identify and interpretively perform the operation
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defined for a single M-code. The total collection of all microinstruction segments for the complete

repetoire of virtual machine instructions is called the virtual machine interpreter.

5.1.2 Components of the MCU

The MCU has the following components which are involved in its operation:

Microinstruction Register (MIR):
This is a 40-bit register holding the instruction being executed.

Control Store:

The control store consists of a fast bipolar PROM memory with a 40-bit word size and 4096 possible
words.

Next Address Logic:

The circuitry of the next address logic is based on the AMD 2911 parts which provide a choice of
possible addresses for the next instruction including subroutine calls and returns, and table jump
based upon a fetched M-code

Clock Generation Circuitry:

The clock generation circuitry is externally controllable circuitry that generates the clock timing
pulse which synchronize the system

Bus Source and Destination Control Signal Generation Logic:

This logic decodes bits from the microinstruction and thereby generates signals which control other
sub-systems and their use of the BUS for sending and receiving data.

Interrupt Priority 'Logic:

The interrupt priority logic interrupts the execution of microinstructions at the beginning of the
interpretation of a new M-code and causes a coroutine transfer to an interrupt handling routine

The interconnection of these components is shown in Figure 5.1.

5.1.3 An MCU Microcycle

The fetch and execution of a microinstruction requires two periods of time called cycles. Each cycle is
either 150 or 225 nanoseconds long. During the first cycle, the microinstruction is read from the control
store memory and loaded into the microinstruction register (MIR). The loading of the MIR takes place at
the point in time which is the end of the first cycle and the beginning of the second. During the second

cycle, the contents of microinstruction loaded in the MIR assert control over the machine and "execute”
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the microinstruction. During the second cycle in the execution of the microinstruction, the first period of
the next microinstruction (fetching the microinstruction from the control store) is simultaneously taking
place in "pipeline” fashion. Because of this overlap in the execution of one instruction and the fetch of the
next, the Lilith completes the execution of one microinstruction during every cycle.

We will begin our analysis of a microcycle at the point in time marked by the upward transition of the
MCUCIk signal, which is both the end and the start of a microinstruction cycle. Shortly after this point in
time, the microinstruction address bus will stabilize with the address of the next microinstruction to be
fetched from the control store. During the entire 150 nsec period until the next MCUCIk upward
transition, the control store will respond to this address, read out the microinstruction from its internal
storage, and present it to the inputs of the microinstruction register. When the next MCUCIk transition

occurs, the microinstruction register is loaded with the microinstruction fetched from the control store.

Once loaded into the microinstruction register, the bits of the instruction are transmitted to the various
processor components where they determine the transfer and manipulation of data during this cycle.
During the entire clock pericd of 150 nsecs, until the next MCUCIk transition occurs, the microinstruction
register propagates control signals throughout the machine. When the next MCUCIk pulse does occur, it
causes registers throughout the machine to sample and hold data created by the microinstruction. This
marks the end of a typical microinstruction cycle. It required 300 nsecs from beginning to end. However,
because of the pipeline construction of the MCU, two instructions are in process at any given time--one
being fetched from the control store, the other in the microinstruction register in execution. The net

throughput is one microinstruction each 150 nsecs.

5.1.4 The MCU Microinstruction Format (Figure 5.2)

A microinstruction is composed of groups of bits which typically select one of several possible
operations. The values of each bit in the microinstruction are connected to one or more components of the
Lilith which operate according to a definition assigned to the instruction bit values. Each microinstruction
is 40 bits wide. The bits of the instruction are used to control the following functions:

ALU Operation and Operand Specification:

Twenty bits of the microinstruction go directly to the ALU and provide a myriad of possible
instructions.

BUS Source and Destination Selection:

Eight bits of the microinstruction select the source and destination of data to be carried on the bus
during this cycle.
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Next Microinstruction Address Selection:

Based on condition code testing and 3 next address control bits, the next microinstruction address
can be selected from either an address specified in the current microinstruction or a M-code table
lookup address or an incremented previous value.

Microcycle Timing Control

A single bit can slow the timing of a microcycle by 50%. This is necessary for some instructions
which cannot operate correctly in the normal cycle period. Also, If the BUS source or destination
selection is a memory interface which is not ready, it can stop the cycle indefinitely (until the
memory is ready).

Constant Generation:

A single bit identifies the microinstruction to be of the format which causes the rightmost 8 bits to
be used as a constant placed on the BUS instead of as BUS source and destination selection bits.
The ALU is automatically selected as the destination in this case.

All of the above listed microinstruction options are not in each instruction. There are three
microinstruction formats to choose from, which select the various uses of the bits of the instruction:

Format I

The first format has ALU control, BUS source and destination selection, and next address selection by
incrementation or M-code table lookup.

Format II

The second format also has ALU control but the BUS source and destination selection bits are used as a
constant which is placed on the BUS; the BUS destination is automatically selected as the ALU.

Format III

The third instruction format has neither ALU control nor BUS source and destination control. It uses the
ALU control bits as a jump address and the condition code selection, This selection code determines
whether or not the jump address in the instruction is used for the next microinstruction or whether the
current microinstruction address is simply incremented.

Figure 5.3 shows these microinstruction formats.

5.1.5 Clock Generation Circuitry

There are two important clocks which are generated by the clock generation circuitry: the MCUCIk and
the CPUCIk. The MCUCIk is generated for every instruction cycle, while the CPUCIk is only generated
for the execution of the microinstructions which have valid control bits for the ALU, namely the first and
second microinstruction formats, These clock signals are generated regularly, for the most part, at 150 nsec

intervals, but there are a few special circumstances which can alter this:
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1. Slow Cycle

A special bit in the microinstruction word can be set to cause the interval to be extended to 225 nsec
to accomodate instructions which cannot complete in the 150 nsec interval. Currently, the only
instructions which requires additional time are those which look up a starting address in the M-code
map ROM for interpreting M-codes.

2. Memory Delayed Cycles

When a microinstruction selects as the "BUS source” or "BUS destination” one of the subsystems
interfaced to the memory (the IFU or the CPU Data Port) and this interface has not completed a
previous operation, then the clock generation must be delayed until the interface is free.

3. Diagnostic Clock Control

For diagnostic purposes, there are control signals accepted by the MCU which can halt the generation
of clock pulses or permit the generation of single clock pulses. The Diagnostic Processor (DPU) uses
these signals to statically execute test instructions and verify their correct results after one or more
clock pulses. For normal operation, these control signals are not used.

5.1.6 Microinstruction Address Generation

At the heart of the microinstruction address generation circuitry are three AMD 2911 sequencer chips,
which contain the logic and registers to hold the current address, increment it, save it in a stack after
incrementing it for subroutine returns, and replace it with an externally generated address. The selection
of these operations is controlled by three bits which are part of each microinstruction. These control bits
can also select other features of the 2911 which will not be discussed here because these features were not
used in the machine implementation. Schematic MCU2/5 shows the next microinstruction address
generation circuitry. Most often, of course, the facility to increment the current microinstruction address is
used so that instructions can be taken in sequence. There are other instances where an externally generated

address is required:

1. Subroutine Calls

For subroutine calls to a maximum depth of 4 levels, the old microinstruction address incremented
by one is pushed onto an internal stack while the next microinstruction address is taken from an
external source. At the end of a subroutine execution, the saved microinstruction address is popped
from the stack when appropriate.

2. Conditional Branches

For all conditional branch operations which test condition codes of the ALU, the selected
microinstruction address will be gated directly from the microinstruction register if the condition
code selects the branch. If a branch is not selected then special circuitry will change the control
signals of the 2911 to cause it to take the next microinstruction in sequence.

3. Table Lookup for M-code Interpretation
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For the table lookup operation required to interpret an M-code, a special "map” ROM uses the
M-code as its address to select a 12-bit microinstruction address where the instruction sequence to
interpret that M-code begins.

4, Interrupt Vectors

When an interrupt occurs, a special reserved microinstruction address will be substituted for the
M-code table lookup address. At the same time, the main storage program counter will not be
incremented so that the current state of the machine can properly be saved.

5.1.7 Processor Bus Control

The common means of communication between all subunits of the processor and all peripheral devices
is a 16-bit three-state bus called BUS. During any given instruction cycle, only one subsystem can be
allowed to assert data on the BUS, and for most cases only one subsystem samples the signal values of the
BUS. With 4 bits in the microinstruction word allocated to both the BUS source selection and the BUS
destination selection, there are 16 possible candidates for each role. In the MCU circuitry, these four bits
are decoded into 16 separate signals which control individually each subsystem. Each of these signals is in
its active state when it is asserted low. The device controlled by this signal is designed to respond to a low
level on this line by either gating information onto the BUS, or sampling it from the BUS into a register,
depending on whether the decoded signal is a source or destination control signal (Figure 5.5). There are
two anomalous conditions to this otherwise pure decoding function: First, for the third microinstruction
format, the BUS source and destination decoders are completely disabled and the BUS is not used during
this type of instruction. Second, in the second microinstruction format, the decoders are also disabled
because the control bits are being used for constant generation. But the BUS selection control signal,
Dst=ALU.L, is forced to a low or active level because it is always the recipient of the constant information
gated from the microinstruction during the Format II microinstructions. The implication of this is that if
you simply wanted to-store a constant into a memory location, you would have to first transfer the constant
from a microinstruction into the ALU, and then, with a Format I microinstruction, transfer the constant
value from the ALU to the memory data register of the CPU DATA PORT Interface.

5.1.8 Interrupt Handling (Figure 5.5)

Interrupts are allowed by the hardware to occur only at the beginning of an M-code microinstruction
sequence. This requires the interrupt logic to be tightly interconnected with the table lookup logic for
beginning microinstruction address selection for an M-code. There are eight levels of interrupts which
originate external to the MCU and which are asserted low when a request is active, The request is clocked
into a register every cycle but will be looked at only when a M-code fetch instruction occurs. For each of
the eight interrupt levels, there is a mask bit which can inhibit the processor’s response to the interrupt if
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set true. The source of masgk information sent to the mask register is the BUS. The loading of the mask
register is controlled by one of the decoded BUS destination selection signals. The mask register can also
be read onto the BUS when selected by a BUS source control signal., If an interrupt request is not masked,
then it will reach the interrupt priority encoding circuit which will generate a microinstruction address
vector according to the priority of the highest active unmasked interrupt. This address will be enabled
onto the microinstruction address bus at the start of the next "jump map” instruction. The vector includes
a base value of eight, which means interrupt seven causes a microinstruction address of 15 to be used for
the vector. Having the offset of eight (i.e. not beginning at zero) is necessary because location 0 is reserved

for the master reset function.

5.1.9 Master Reset Circuitry

When a master reset command is given, the virtual machine of the Lilith follows a sequence of
operations which first load a bootfile from disk, then establish a legal coroutine state, and begin execution
of a task found within the programs which are part of the boot file. Cnce the initial task is fully
operational, other tasks are usually initiated to handle keyboard 1/0, the real time clock, and execution
exceptions. The boot file has a special format, simpler than normal binary code files, which can be loaded
by a short microprogram segment. There are two boot files which may be loaded. The user selects which
of the two boot files to load with his first typed character. A control A cause the microprogram to load
from the file called PC.BootFile.Back on the disk. Any other key causes the standard boot file,
PC.BootFile, to be used. A special feature of the Lilith incorporated in the microprogram to permit
complete debug capability is its ability to first dump the state of the machine into a special disk file before
reinitialization of the system. This feature, which is initiated by the typing of a control D, allows

debugging of runaway programs that have escaped the normal means of halting and analyzing.
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5.2 Arithmetic/Logic Unit (ALU)

The arithmetic/logic unit is the basic mechanism for data manipulation in the Lilith. It is capable of
sophisticated shifting, arithmetic operations, and logical operations. It also has storage registers and
flip-flops which can capture the results of these operations. Most of the registers defined as part of the
virtual machine are kept in the registers of the ALU.

The description of the combinational operations of which the ALU is capable is very detailed.
Fortunately, the sequential or time dependent aspects of the ALU operation are very simple, especially in
comparison with the MCU circuitry.

5.2.1 Timing of ALU Operations

Operations in the ALU are divided into time periods synchronized with the execution of
microinstructions in the MCU. The basic timing signal, CPUCIk, which originates in the MCU is the mark
in time for both the start and end of a microinstruction. Immediately after the occurrence of a CPUCIk
transition from low to high, some of the control signals coming from the microinstruction register stabilize
to values which select registers and operations for the next microinstruction execution. Other control
signals sclect registers which are to receive the results of the computations. At the end of the
microcycle--at the time of the next upward transition of the CPUCIk--the new data created from the
contents of registers and modified by the combinational logic of the ALU is captured into the registers

selected by these control signals. This data can then be used as operands in subsequent microcycles.

5.2.2 Subsections of the ALU (Figure 5.7)

The major components of the ALU are the shifter, the stack, and the four 2901 bit slice arithmetic units.
Other components of the ALU are the shift control, the condition code register, condition code selector
and gating units which control the transfer of data to and from the stack and the CPU BUS. These
component sections of the ALU are composed of registers and combinational logic. They are controlled by
signals which originate in the MCU.

Obviously, the 2901 bit slice arithmetic units are the heart of the ALU. However, their performance has
necessarily been augmented by a specially constructed barrel shifter and an external bipolar stack in order

to provide all the computing features desirable to support the Lilith requirements.
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5.2.3 ALU Functions

The ALU is the main theatre for operations concerned with the execution of the Lilith M-code
instructions. To illustrate how the ALU would be involved in a sequence of M-code operations, we will
examine the execution of the hypothetical Modula 2 statement:

c:=b + at

where "b" is declared a local variable of type INTEGER, "c” is a global variable of the same type, and "a"
is a global variable of type POINTER TO INTEGER. The sequence of M-codes emitted by the compiler

for this statement would be:

LL4 (*1oad the fourth local variable which is b*)

LG3 (*1cad the third global variable which is a*)

LSW80  (*load word addressed by top of stack which is
pointer value from a*)

ADD (*add the two operands#)

SG5 (*store top of stack into fifth global variable

which is c*)

The sequence of ALU operations for the execution of the above instructions is as follows:

During the instruction fetch, the ALU receives the 4-bit constant "4" from the BUS, and stores it
into a temporary holding register. In the next cycle, the ALU adds the constant to the local variable
base address register (L-register) in the 2901 and transfers the resulting address to the data port for a
memory read cycle referencing variable "b".

The contents of the memory cell assigned to variable "b" are transferred from the memory lata port
over the CPU BUS to the top of the stack register in the 2901 portion of the ALU.

The 4-bit constant "3" is similarly used together with the global variable base register (G-register) to
fetch the contents of the variable "a". This time, as the value of "a" is loaded into the top of the
stack register, the old contents of the top of stack, which have the value of variable "b", are
simultaneously pushed onto the bipolar stack in the ALU.

The 4-bit constant 0" (zero) transferred from the IFU during the M-code fetch and the address in
the top of stack are added together and sent to the memory data port to fetch the data value
referenced by the pointer variable "a”. This fetched data is stored on the top-of-stack register into
2901.

The top-of-stack register in the 2901 and the second level of the stack (which is located outside the
2901 in the bipolar stack) are added together, and the result is stored in the top-of-stack register.
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The contents of the top-of-stack register are sent to the memory data port to be stored in a location.
The address for this memory write cycle is constructed from the 4-bit constant "5" and the global
variable base address register (G-register) added together.

In the execution of all the above instructions except the fourth, the ALU receives a 4-bit constant from
the CPU BUS at the same time that the IFU places the instruction opcode onto the CPU BUS for decoding
by the MCU. A special 4-bit masking operation strips this constant out of the opcode. The constant is
stored temporarily into the Q register of the 2901 until it is used in the next microcycle with one of the

other registers in the 2901, such as the local variable base address register (L-register).

5.2.4 2901 Chip Operations

The capabilities of the 2901 bit slice arithmetic units are thoroughly documented in the product manuals
from Advanced Memory Devices (AMD), the manufacturer of the chip. An attempt will not be made here
to exhaustively describe their capabilities. Instead, the intent here is to simply list the operations possible
and the operands to which they may be applied (Figure 5.8).

In the microinstruction register (formats I and II only), seventeen bits directly control the 2901 arithmetic
unit. They are MIR21.MIR28 and MIR31..MIR39. Bits MIR21 through MIR28 select the A and B
operand choices from the 16 register file, while MIR31 through MIR39 are the actual control signals which
select operations and operands. In the AMD documents, MIR31 through MIR39 correspond to signals
10..I8. The combinations of operations and operands in the 2901 far exceed that which can be encoded in 9
centrol signals, so the designers of the 2901 chips have provided a selection of 512 of the most usable
combinations which may be specified with 9 control bits. The control bits are broken into three fields:

source operand selection, operation, and destination operand selection.

The source operand selection bits are bits MIR31..MIR33. They select eight possible combinations of
operands to be used by the arithmetic unit inside the 2901. These eight combinations are taken from five

possible sources:

1. The register selected by the A field in the micreinstruction

2. The register selected by the B field in the microinstruction

3. The Q register in the 2901

4, The direct data inputs to the 2801, which may come either from the stack
or from the CPU BUS via the shifter

5. No register is selected, resulting in a werd of zeros used as the operand

The eight combinations of these source operands available for use are given in Figure 5.9.
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The operation selection field bits, MIR34, MIR3S5, and MIR37, select operations between the two source
operands selected by the field consisting of bits MIR31, MIR32, and MIR33. Since the operations are not
symmetric, it is necessary to specify which operand is the first. The symbols R and § are used and refer to
combinations of operands as given in Figure 5.9. The list of the eight possibie operations are given in
Figure 5.10.

The destination control bits are MIR37, MIR38, and MIR39. These bits control the transfer of the
arithmetic unit result to the register file, the Q register, and the gating to the output drivers of the 2901.
The possibilities here are also increased and complicated by the single bit shift operations which are
possible through the register file shifter logic and the Q register shifter logic, both of which are internal to
the 2901. The eight possible destination operations constitute a subset of possible operations chosen
according to the functions which are most commonly used. The total matrix of destination selections and
their effect on the register file, the Q register, and the gating to the output drivers is given if Figure 5.10
taken from the AMD 2901 specifications. Since this format seems to mask the fundamental simplicity of

the operations, the following explanation of each opcode may be more enlightening:

MIR37..MIR39 Operation

000 The computed function is transferred to the Q-register and

to the output buffer.

001 The computed function is gated to the output buffers only.

010 The computed function is transferred to the register addressed
by the B-field. The output buffers gets the contents of the
register addressed by the A-field.

011 The computed function is transferred to the register
addressed by the B-field and the same data is gated
to the output buffers.

100 The computed function is Toaded into the B-field-addressed
register, shifted one bit to the right, and the Q-register is
shifted one bit to the right. The unshifted computed result
is gated to the output buffers.




101

110

111
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The computed function is loaded into the B-field-addressed
register shifted to the right, and the Q-register is
unmodified. The unshifted result is gated to the

output buffers.

The computed function is loaded intoc the B-field-addressed
register shifted to the left, and the Q-register is shifted
left as well. The unshifted computed result is gated the

output buffers. This instruction is used in division.

The computed function is loaded into the B-field-addressed
register, shifted to the left, but the unshifted result is gate
to the output buffers.

5.2.5 Condition Testing in the ALU

Each microinstruction in Format I or Format II (see Fig. 5.2 for microinstruction formats) results in the

setting of condition codes which are then testable using a Format III jump instruction. Most of the

condition codes are generated in the 2901 bit slices as the result of an arithmetic operation, but some are

developed in other parts of the processor. The condition codes resulting from 2901 operations are:

z

ov

F15

The Z condition asserts high when the computed value
from the arithmetic

unit of the 2901 had a value of zero.

The OV condition asserts high when a two's complement
operation results in overflow
(logically the exclusive-OR of the carry bits of

the most significant two bit positions).

The F15 condition asserts high when the most

significant bit from the arithmetic unit.
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F8 The F8 condition asserts high when the most
significant bit from the lower half of the

arithmetic unit.

S The S condition asserts high when the XOR of

the overflow and the sign bit.

C The C condition asserts high when the carry bit

from position 15 of the arithmetic unit asserts high.

StE The StE condition asserts high when the Tlast pop

operation emptied the stack.

REQ The REQ condition asserts high when an interrupt request

is pending.

These condition codes allow testing of the arithmetic and logical operation results at the by the

microinstructions.

5.2.6. Multiply Operations

"Multiply” operations take place in the conventional add and shift fashion where the add operation is
optional, depending on whether or not the appropriate bit in the multiplier is a zero or one. At the
beginning of the operation, a register to be used as the accumulator is set to zero and the multiplier is
transferred to the Q-register. Then sixteen cycles of add and shift are performed with the Q-register
shifted as well receiving the least significant bit of the accumulator into its most significant position. The
optional addition of the multiplicand is accomplished by special logic which tests the least significant
position of the Q-register and appropriately alters MIR32 of the microinstruction so that the addition will
take place if that bit is a "1" but will be omitted if that bitis a "0.”

5.2.7. The Evaluation Stack

The evaluation stack of the Lilith is located on the ALU board and has the uppermost two levels of the
stack accessible as operands of a microinstruction. The organization of the stack is such that it is possible
to perform all normal stack instructions in a single microcycle, These stack instructions include push, pop,
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and arithmetic operations between the top two levels, with the result being replaced onto the top of the
stack. The stack may be tested to determine whether or not it is empty, but there is no possibility to test
whether or not the stack overflows. Consequently, it is vital to design the system so that the stack is used
only for operations where the depth of the evaluation stack usage can be controlled by the compiler.

The evaluation stack is 16 levels deep and is constructed from bipolar random access memory. Although it
is made from a conventional random access memory, a special addressing mechanism gives it the
appearance of being a stack. The top element of this stack is kept in a register of the register file in the
2901, with the lower entries kept in the bipolar random access memory. Because of this organization,
microinstructions utilizing the stack have the capability to simultaneously reference, in a single
microinstruction, both the top of the stack in the register file and the second level of the stack in the
external bipolar memory through the direct inputs of the 2601.

Although it is not certain that the designers of the 2901 actually planned it, a feature of the 2901 is
singularly useful in connecting an external stack. This feature is the bypass path from the A register to the
2901 buffer outputs. Because of this feature it is possible, as shown in Figure 5.11, to handle both push
and pop operations in a single cycle. In the push operation, for example, the top of stack is addressed as
the A-register in the 2901 and gated to the output buffers of the 2901 and to the input of the outboard
stack. Meanwhile and simultaneously, the incoming data is gated from the cpu BUS through the shifters
and into the direct inputs of the 2901. From this point, the new data for the stack passes through the
arithmetic unit and is written into the top of stack register addressed by the B register address. All this
takes place in a single cycle. A similar mechanism is used for a pop operation. If, in fact, the designers of
the 2901 intentionally included this mechanism, they obviously felt it was of little value, since they left it
out of their later improved versions,
Topics to be added:

divide operation description

operand masking during instruction fetch

shifter usage
mask generation
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5.3 CPU Data Port (Figure 5.12)

The CPU Data Port (CDP) is an exchange center for data transfers between main storage and the
processor. It is connected on cne side to the 16-bit processor BUS and on the other side to the memory
address and memory data bus. It has the capability to read data from a memory address in main storage
and to pass the data from that location onto the processor BUS. Conversely, it can receive a piece of
memory data (data to be stored in main memory) from the processor BUS and store it into main storage.
The CDP is used for all memory cycles where data values are read for use in program variables and for
transfers of disk data to and from buffer areas in main storage. The data port is not used for display

refresh or the fetching of instructions.

5.3.1 Processor Control of Memory Data Port

All memory transfers between the CDP and the memory subsystem are initiated by the processor. The
data port is connected to the processor data BUS and responds to commands from the MCU bus control
logic to take or give data to the BUS. There are four signals which come to the data port from the MCU
bus control logic: Src=MD.L, Dst=MD.L, Dst=HMAR.L, and Dst=MAR.L.BUS. The CDP responds
to the Src=MD.L signal by placing the contents of the read data register on the BUS. The other three
signals cause the data on the processor BUS to be loaded into one of the three other registers in the data
port interface. When the lower part of the memory address is loaded, the control logic of the data port is
also triggered to start a memory cyce. If the memory data register has been loaded since the last cycle, then

a write cycle will take place, otherwise a read cycle.

5.3.2 18-Bit Memory Address Register

Two transfers between the processor BUS and the data port are necessary to give a complete 18-bit
memory address (for access to high memory) to the memory address register of the data port, Two are
required because the processor only transfers 16 bits at a time. Consequently, when the high portion of the
memory address register is being loaded, it receives the least significant two address bits from the BUS, but
no memory cycle is initiated. (Actually four bits, but at this time only two are usable in the current Lilith
implementation.) After the high portion has been loaded, then a full sixteen bits are loaded into the low
portion, which also causes the memory cycle to begin. After the completion of the memory cycle, the high
portion of the register is automatically cleared. This means that memory cycles into the lower 64k words
of memory do not need to load or clear the high memory address register. The current Lilith virtual

machine interpreter uses this feature.




5.3.3 Memory Busy Condition

Since the memory operates asynchronously from the processor and can service memory cycle requests
from a number of sources, it is possible for the processor to attempt an operation with the data port before
the previously initated operation is complete. The most common such situation occurs when the processor
attempts to initiate a memory read cycle and then attempt to transfer the data from the memory data
register before memory has serviced the port. Similarly, this situation occurs when the processor attempts
to initiate a new read or write operation while a previously initiated write operation is still uncompleted.
For such events the data port has a control signal, DataPortRdy, which is asserted true whenever the data
port is available for use. If a microinstruction references the data port when this signal is unasserted, then
the cycle time of that instruction will be delayed until the data port is free and the microinstruction can

execute correctly.

5.3.4 Memory to Data Port Interface

When the low memory address register of the data port is loaded from the processor BUS, a flip-flop is
set, asserting the DataPortReq.L signal. This tells the memory cycle control that a memory cycle is needed.
After the cycle has been allocated, the ClrReq signal from the memory control logic will clear this
flip-flop. The complement side of the flip-flop generates the DataPortRdy signal, for the MCU inhibiting
use of the data port during the period between a requested cycle and the completion of the cycle. The
mechanism of data transfer between the port and the memory is described in the memory theory of

operation.
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5.4 The Instruction Fetch Unit

The only function of the Instruction Fetch Unit (IFU) is to fetch instructions bytes from main memory
and to transfer these instruction opcodes to the MCU and the ALU. The microprogram stored in the
control store of the MCU uses the instruction opcodes for interpretive execution of the M-code programs.
Since these opcodes are for the most part from adjacent locations of memory, the IFU takes advantage of
its 64-bit memory port to fetch 8 instruction bytes at a time, holding them in registers until the processor
requests them. Whenever the last of eight fetched bytes have been used, or a jump instruction is executed,
the IFU must fetch a new block of instructions.

5.4.1 Next Instruction Address Calculation by the IFU

The IFU fetches instructions from code portions (called code frames) of modules which are resident in
the main memory of the Lilith, and it delivers them upon demand to the MCU for interpretation. The
base address for the code frames of any module is to be found in the first word of the global data area for
that module. The address of the global data area, in turn, is taken from the module pointer table in the
lower part of memory. The beginning address of the global data area is referred to as the data frame
pointer; the beginning address for the code frames of the module is referred to as the code frame pointer. A
new code frame pointer is fetched from global data area in memory each time the processor begins
execution in a new module. For subsequent instruction fetches from within the same module, the address
found in the code frame pointer is kept available in a register of the IFU. It serves as the base for
computing addresses which are used in memory read cycles bringing instruction codes, eight at a time, to
the IFU. This register is denoted the "F register.”

Any time a procedure of a different module is entered, the F (frame) register of the IFU must be loaded
with the code frame pointer from the new global data area. The actual instruction address from within the
module which is used for fetching instruction codes is formed from the value in F register plus a value
loaded into a counter register called the offset register. The offset register most closely corresponds to what
would normally be referred to as the program counter because each time an instruction is fetched, the
value in the offset register is incremented to the next byte in memory. For this reason, the offset register is
often referred to as the program counter register (PC), although, in truth, the actual program counter value
is the sum of the F register and the offset register. The value of the offset register is limited to a maximum
value of 32,767. Because of this, the size of any module is fundamentally limited to a maximum length of
32,768 bytes. This limitation has not been a problem to this date, and it is not expected to be a significant
limitation at any time in the future.
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The structure which allows the IFU to perform the address calculation as described above is shown in
Figure 5.13. We note that a complete 20-bit adder is used to generate the proper memory address from the
F register value and the PC offset counter value. The address generated is 18 bits in length, although both
register values are only 16 bits in length, This results from adding the F register value, shifted left two
places, to the offset register (PC register) value. Because of this addition of the shifted F register value to
the PC register value, instruction addresses may be generated in areas beyond the first 65K of memory.
This is an important extension of the Lilith memory addressing capabilities.

5.4.2 Instruction Byte Delivery to the MCU

The IFU transfers information to the MCU and the ALU via the BUS under control of the BUS source
and destination control signals which are decoded from the microinstruction register in the MCU. There
are four source control signals to which the IFU responds. Three of them cauge the IFU to gate the next
instruction byte onto the BUS with a zero value in the high order byte. The fourth causes the IFU to get
the next instruction byte onto the BUS with a byte of "ones” in the high order position, thus creating a
negative value. Although similar in this respect, the four source control signals have other very different
effects.

Src=IR4.L:
This signal is used when the MCU is fetching the first byte of an instruction. The assertion of
this signal causes the "jump map” ROM in the MCU to be enabled to give the starting address
for the microcode program segment which interprets the M-code. This signal also causes the
ALU to extract the least significant four bits of the byte and to store it in a temporary register in
case the M-code happens to be one of the special format M-codes with imbedded 4-bit
constants.

Src=IR8+.L:
This is signal is used whenever a second or third byte is expected in the interpretation of an
M-code, typically as an operand or constant. The IFU gates the value "positively” by giving
zeros in the high order byte.

Src=IRS8-.L:
Whenever a second or third byte is needed with a negative value, this control signal is used
because it causes the value to be gated "negatively” with ones in the high order byte.
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Src=IR8#.L:
Whenever a branch condition is detected and the microprogram must fetch a another byte from
the IFU before loading a new address into the offset register, this control signal will be used in
fetching the last byte needed. This control signal performs exactly as does Src=IR8+.L, with
the exception that it will not cause the control circuitry of the IFU to automatically fetch a new
instruction block in the case that the byte fetched was the last of such a block. This prevents the
needless fetch of an additional block of instructions when a reload of the offset register is

impending anyway.

5.4.3 MCU Loading of the Frame and Offset Registers

As shown in Figure 5.13, the F and Offset registers are both readable and writable via the BUS. The
necessity to write them has already been explained as a part of the function of giving the IFU the necessary
address values for the correct computation of the program counter address (see Section 5.4.1). The BUS
destination signals which control the loading of these registers are Dst=F.L and Dst=PC.L.

5.4.4 F Register Values and Byte Selection in the IFU
As mentioned previously, the F register is shifted by 2 bits when added to the PC. This gives an 18-bit

address as the program counter when selecting the memory in byte increments. Since the word size of the
memory read operation used by the IFU is 64 bits or 8 bytes, the least significant 3 bits of the effective
instruction address are ignored by the memory. These three bits of the program counter are used by the
IFU to the select theh_correct instruction by from the block of eight fetched bytes which have been loaded
into registers from memory. A decoder circuit generates enabling signals for the output drivers of the
registers as shown in Figure 5.5. These signals enable one of the eight registers to gate their contents to an
internal IFU bus for instruction bytes. An additional three-state bus driver circuit gates the information
from this bus onto the main processor bus (called BUS) when the IFU is selected during a microinstruction

cycle.

As an effect of being shifted by two bits, the low order two bits of the F register are forced to be zero.
This requires that a code frame begin at a byte address evenly divisible by four. The program which loads
modules into memory is affected by this hardware quirk in that it must at times skip a word of memory in

the loading process to reach an even word address for the start of a module.
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5.4.5 MCU Interaction with the F and Offset Registers

As shown in figure 5.5, the F register and the offset register are both readable and writable from the BUS.
The necessity to load these registers from the BUS has already been discussed in the explanation of how
the IFU receives the values which it uses to calculate the program counter value for instruction fetches.
The necessity to be able to read information from these registers is based upon the necessity to be able to
completely save the state of a program in execution whenever a co-routine transfer takes place, as in the
case of an interrupt response. In such a circumstance, the processor gates informaticn from the F register
and the offset register onto the BUS, using the BUS source control signals, Src=F.L and Src=PC.L.
These signals are the complement signals to those used for loading the registers, namely: Dst=F.L and
Dst=PC.L.

5.4.6 Instruction Fetches in Tight Loops

The IFU control logic loads its 8 instruction byte registers whenever it is necessary because all the bytes
of the previous group of eight have been used, or whenever a program branch has taken place. It is
possible that a very tight locp or a conditional statement could create a condition where an instruction
sequence of a program might branch backward or forward but remain within the current block of
instructions. Thus, detection of such a condition could save an unnecessary memory reference. Qur design
of the IFU does not, however, detect such a condition although we gave consideration to the possibility. It
proved to be too difficult, or else we were not sufficiently clever, to discover a practicable mechanism to
detect this and thus save an unnecessary memory cycle. Consequently, the simple design of this IFU
initiates a new instruction fetch memory operation whenever the last byte is taken and whenever a program

branch occurs.

5.4.7 Expansion of the Usable Addressing Space for Program Storage

The current implementation of the IFU has the F register shifted only 2 bits with respect to the PC
offset. This gives only an 18-bit byte address. As a consequence, the current IFU can address no more
than 256 K bytes or 128 K words. This limitation could easily be extended, however, by increasing the
amount of shift in the relation at the adder of the F register and the offset (PC) register. This would have a
relatively minor effect on the software; it would only require an adjustment in the loader to generate a
proper value for the F register, based on a greater number of low order zeros in the code frame base value.
It would also demand that each module begin in memory on a quadruple or octal word boundary, rather
than merely a double word boundary as is now the case.

5.4.8 Calculation of the Actual Memory Address for an Instruction

When using the debugger program, a programmer may wish to inspect the actual M-codes as they are in
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memory for a given section of Modula-2 programming. In the compiler output listing for a module, the
programmer will find offset register values given next to each compiled line. In the process descriptor, or
else in the global data area, the programmer can find the base value to be loaded into the F register. How,
using these two values, can the programmer determine the actual 16-bit word address for the M-codes
compiled for a line of program? The answer is relatively simple. Since the F register value is shifted by
two bits, one should begin by multiplying the hexadecimal F register value by 4, which yields the byte
address for the start of the code frame. Then, this value can be added to the offset value given for a line of
program to determine the real byte address for the M-code program segment for that line of code. Finally,
the byte address must be divided by two to give the actual word address for the location of the M-codes in

memory.
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5.5 Memory Subsystem

The standard Lilith memory is organized as a 64-bit wide by 32k memory for read operations and as a
16-bit by 128k memory for write operations. Through additional multiplexing of the 64-bit read cycle
output, the memory can be made to appear as 16 bits wide for the CPU Data Port or external peripheral
devices. The addressing space of the memory will allow twice that amount of memory, but the current
hardware implementation does not have room for the additional memory cards.

The various units of the computer access the memory through interface ports, and they compete for
memory cycles according to a priority assigned each port. The highest priority is the display processor,
followed by the CPU Data Port, the IFU, and lastly, the port assigned to the memory refresh circuitry
which assures that read cycles are given as needed to addresses in order to assure that the dynamic

memories retain their data.

The memory operates from its own control logic continuously and independently from the processor
control. This includes the operation of the port priority arbitration circuitry which is enabled by the
memory control logic that also generates the timing signals for the dynamic memories. This memory cycle
control also handles the transfer of data between the port interfaces and the memory unit coordinated
according to a special data transfer protocol which all ports follow.

5.5.1 Memory Busses (Figure 5.15)

The memory has three busses which are used in the process of completing a memory cycle for a port.
The first bus is the 18-bit memory address bus, which is used solely for the transfer of the desired address
from the port to the memory. The second bus is the memory data bus, which is 16 bits wide and is used
for the data associated with a 16-bit read or write cycle. For read cycles, the data bus is driven by the
memory; for write cycles, the port drives the bus. The third bus is used for read cycles only. This bus is
64 bits wide and carries four words of memory data corresponding to the four words addressed when the

two least significant address lines are ignored.

5.5.2 Memory to Interface Transfer Protocol (Figure 5.16)

Data transfers between the memory and ports are synchronized by the use of seven control signals.
When a port initiates a memory cycle it asserts a low logic level on a request line. This line is separate for
each port, i.e. IFUReq.L. When the priority arbitration circuitry selects a port to receive the next cycle, it
does so by asserting high a selection line. There are separate selection lines for each port, i.e. IFUSel. The
high signal on the selection line causes the port to give the address for its memory cycle onto the memory
address bus, and it also gives two other control signals which are bussed in a tristate manner: R/W’ and




51

64/16’. R/W’ tells the memory cycle control whether a read operation or write operation is being
requested. 64/16’ tells the cycle control whether the operation is a 16-bit read or a 64-bit read. This signal
is meaningless for write cycles because the memory can write only in 16-bit words. If a write operation has
been selected, the memory cycle control also asserts at a high level the signal GateReg, which causes the
port to place its data for writing onto the memory data bus. If a read operation has been selected, then the
memory will send a signal DaraStrobe which will change to a low level at the moment when the port
should sample either from the 16-bit memory data bus or from the 64-bit memory data bus, depending on
which port is active. Sometime during the middle of the cycle, the memory cycle control will assert the
signal ClrReq at a high level in order to reset the request line for the port which has been allocated the
current cycle. This signal comes before the actual cycle is completed so that the request will be cleared
within the cycle request priority arbitration circuitry, allowing another request too be acknowledged as
soon as possible. The port selection signal will not be affected by the request line changing back to a high

level.

5.5.3 Memory Chips
The memory chips in the Lilith memory are 16k dynamic MOS memory chips. These integrated circuits

operate based on a simple scheme of receiving 14 address signals time multiplexed through seven pins and
strobed by two separate strobe lines: RAS (row address strobe) and CAS(column address strobe). RAS
occurs before CAS (Figure 5.15). At the time of CAS, the R/W’ signal is also sampled which determines
whether the single bit cell addressed within each chip either delivers its data for reading, or accepts new
data in a write operation. Because these are dynamic memory chips, special circuitry is included in the
memory to cause at least one read cycle to each of the possible row address combinations every two

milliseconds. This prevents the loss of data through charge leakage.




5.6 Input/Output Decoding Logic
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5.7 Display Processor

The display processor has the function of creating the necessary signals to drive a monochromatic
display in a raster scan mode. It displays an image constructed from black and white points whose values
are taken from a contiguous area of main memory with a direct correspondence between the bits of the
words in memory and the points on the face of the screen. The display processor block diagram is
presented in Figure 5.18. The display processor timing diagram is shown in Figures 5.19A and 5.19B.

5.7.1 Display Dimensions

The standard monitor used with a Lilith is 15 inches diagonally which, with the display controller of the
Lilith, can display as many as 768 points horizontally on 594 lines. The frequency of the horizontal and
vertical scan rates are the same as for the European CCITT standard for black and white television. The
image is scanned in an interlaced fashion, meaning the odd lines are painted on the screen during one
vertical scan and the even lines are painted in the next vertical scanned. The vertical scan rate is 50 times
per second with a total image scan rate of 25 times per second. The horizontal scan rate is 15,000 scans per

second. A relatively slow green phosphor is used for the display to prevent annoying flicker in the image.

5.7.2 Memory Refresh of Display

As many as twelve 64-bit memory words (48 sixteen-bit data words) per line can be used from memory
to paint as many as 594 lines in the display image. It is not, however, necessary to use that much memory
as the portion of the image containing memory data can be reduced from twelve 64-bit words per
horizontal scan to as few as one or even none. Likewise, the number of vertical lines on the screen actually
refreshed from memory can be reduced from 5§94 to any lower number including none, A total of 28,816
sixteen-bit words of memory can be used to refresh the display image at the maximum. Every 5 usecs
during a horizontal scan line the display processor fetches from the main storage a single 64-bit word
which is then painted on to the screen, allocating 70 nsecs to each of the 64 bits. Double buffering is used
so that a word can be fetched while another is being displayed. The 64 bits, representing four 16-bit

rocessor data words, are painted from left to right in the following sequence: word 0, bits 15,14,13....1,0;
word 1, bits 15,14.....etc. Each adjacent group of 64 bits has a memory address one location higher than
the one previously painted, to the left of it on the screen. The last 64-bit word painted on the right of a
screen line has a memory address one location lower than the first 64-bit word on the left (or beginning) of

the next screen line.

The final correspondence between bit values in the memory word and bright points on the screen is
subject to two optional levels of inversion; one of them controlled by a switch on the display processor
card, and the other is programmable and stored in a flip-flop. For the normal mode of viewing on the
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Lilith, which is dark text on light background, a "1" bit in the memory corresponds to a dark point on the

screen. Figure 5.20 shows the screen characteristics.

5.7.3 Bitmap Descriptor

When an image is to be displayed on the screen, the program must, of course, prepare the actual image
in an area of memory by creating patterns of ones and zeros which are not numbers or vectors, but rather
one-to-one mappings of the actual image which will be displayed. In order to instruct the display processor
how to display the image (meaning how large and from what area of memory), the program must prepare a
data structure know as a bitmap descriptor. The bitmap descriptor consists of four 16-bit words and has
the following format:

First word : starting memory address for the image
Second word: number of 16-bit words displayed per horizontal scan
Third word : number of vertical lines displayed in image
Fourth word: three items of information packed into this word:
a) image reversal bit
b) horizontal offset of image

c) vertical offset of image

Finally, to cause the actual display operation to begin, the program must pass the address of the bitmap
descriptor to the display processor. At the level of programming in Modula-2, this will be seen as a PUT
operation to the input/output device which has the address 0.

PUT(DisplayAddress,ADR(BitMapDescriptor);

At the microcede level, the address of the display processor, which is zero, will be loaded into the I/0
address register and the data (the address of the bitmap descriptor) will be placed on the BUS from the top
of the stack, and the BUS destination will be selected by the signal Dst=I0Data.L. This will allow the
display processor to sample the address from the bus into a register. Once the display processor has the
address of the bitmap descriptor, it will fetch the descriptor during every vertical retrace and use the
information to detertnine the image which is displayed.
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5.8 Disk Interface

A secondary storage device in the context of a workstation system such as the Lilith has several
functions to perform. Primarily, it provides the permanent residence for all programs, especially during
periods when the machine is not in use and power is turned off. It also provides an interim storage for a
program’s data when the data cannot be held in memory. In addition, it is used to create duplicate files of
both program and data for backup and sharing. Because of these capabilities, a disk quickly becomes a
very important part of the machine to a user. The Winchester has platters which are not removable, which
means that if the computer ceases to function, the user is paralyzed until his machine is once again
operational. Therefore a floppy disk back-up is provided in the Lilith work station to enable the user to
remove his floppy disk and continue his work at another staation

5.8.1 Performance Specifications of Winchester WD1001-05 Drive
To be added
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5.16 Diagnostic Processor Unit

The Lilith is delivered with a circuit board which is not installed in the machine during normal use.
This board is called the diagnostic processor unit (DPU), and its function is to isolate faults in the circuitry
or in the microprogram. It does this by asserting control over the machine and causing the controlled
execution of Lilith operations followed by immediate analysis of the operation to determine the

correctness of each microprogram step.

In earlier computers a panel of lights and switches was built into the machine for such a purpose, i.e. to
monitor the execution of instructions in the machine. As this unit has been used in the development of the
Lilith, we, the designers generally referred to this card as the "monitor” card. One segment of the internal
software was referred to as the "panel” software because our usage of this card to simulate the front panel
of older computers. The name Diagnostic Processor Unit is new and was adopted to more correctly
designate the function of the card. The DPU has no switches or lights, but rather consists of a Motorola
6802 microprocessor, associated circuitry, and a good deal of sophisticated test software which exercises
the machine. This microprocessor communicates with the maintenance engineer via a standard RS-232
serial interface. By means of the serial interface, the maintenance engineer can conduct a dialog with the
processor and pass binary files to be loaded into the microprocessor RAM memory. There is a selection of

programs which can be loaded depending on which part of the machine one would like to test.

In order for the DPU to adequately test the Lilith, it was necessary to build a good deal of circuitry onto
the DPU board for the porpose of sampling and controlling the key portions of the machine.
Furthermore, the Lilith design itself required the inclusion of special control signals to give the DPU the
capacity to disable certain Lilith functions and replace them with functions provided by the DPU,

The capabilities of the DPU are as follows:

It can read the microinstruction register of the Lilith processor and assert its own

microinstructions if it desires.
It can read data from the CPU bus and be selected to drive data onto the BUS.

It can read addresses and assert addresses on the microprogram address bus controlling the

microprogram memory.

It can control the generation of clock pulses in the CPU, i.e. it can stop them altogether; it can
allow a clock pulse to take place; it can allow a certain number of them to occur; or it can
release control, allowing full speed generation of clock pulses. A block diagram for the DPU is

given in Figure 5.22.

With a little imagination, one can envision how the foregoing list of capabilities enables the DPU to
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exercise and test the performance of the Lilith quite thoroughly. Most of the tests are considered to be ‘
"static”--meaning not at full speed. But it is even possible to test the dynamic as well as the static
characteristics of the machine by using the DPU’s capability to generate a specific number of clock pulses

at full speed. The full utility of the DPU will become apparent as examples of its uses are presented.




58

6 Circuit Description

6.1 MCU Circuit Descriptions

In Section 1 of Chapter 5, the nature of the microprogrammed computing engine, which is the heart of
the Lilith, was described. Details were given concerning execution of the microinstructions, selection of
the next microinstruction as determined during the execution of each instruction, and timing signal
generation for each microinstruction cycle. The decoding of the microinstruction bits which control the
transfer of data over the BUS was also discussed. Now each of these functions will be discussed again in
relation to the actual circuitry performing that function.

6.1.1 Clock Generation Circuitry (Schematic MCU 3/5)

Looking at the block diagram for the MCU (Fig. 5.1) we see that the sole function of the clock
generation circuitry is to generate two clock pulses: MCUCIk.U and CPUCIk.U, The MCUCIk.U is the
synchronizing timing pulse for every microcycle. The CPUCIk.U, which has the same timing relationship
as the MCUCIk.U, is the synchronizing timing pulse for each microcycle which controls ALU operations in
Format I and Format II microinstructions. The signal MIR14 from the microinstruction register is true
(asserted high) for such ALU instructions and is used to enable the CPUCIK.U signal through NAND gate
U54b (schematic MCU3/5). The MCUCIk.U and CPUCIk.U clock pulses originate from pin 8 of flip-flop
U55b. This flip-flop, together with the cther flip-flop (uS5a) in the same package, is part of a state
machine which operates at a master clock frequency of 13.33 Mhz. This is twice the fundamental frequency
of the MCU and CPUCIk.U signals. Most of the time, this state machine creates an MCUCIk and a
CPUCIKk pulse every 150 nsecs. Sometimes, however, the state machine must delay the clock pulses one or
more of the master clock cycles. There are several conditions which control these delays:

First, certain instructions found to be slower in execution are marked in the microinstruction word through

setting bit MIR1S for execution times of 225 nsecs or three master clock periods.

Second, microinstructions which reference either the CPU Data Port or the Instruction Fetch Unit may
find one of these two units unready to respond to the microinstruction, and the clock pulse must therefore

be delayed until the selected unit is ready.

In the third case, when the machine is running with the Diagnostic Processor Board (DPU), the DPU may
exert its control over the MCU to stop the clock altogether, or, by using the signal CPUCIkDis.L, the DPU
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may arbitrarily selectively disable the CFUCIk, regardless of the microinstruction in execution.

The state diagram for the clock generation state machine is given in Fig. 6.1. Chip U56a, a 745153 dual
4-bit multiplexer, is used to create the next state for the state machine. Normally, the state machine cycles
between states 00 (first half of clock) and 10 (second half of the clock), thereby giving the signals MCUCIk
and CPUCIk a period of two master clock cycles. When the signal MIR1S is true, the multiplexer, US6,
together with gates U16, pin 6 and pin 11, alters the state machine sequence to: 60 to 01 to 10. This
sequence expands the period of the MCUCIk and CPUCIk signals to three master clock cycles.

(Note: The complement outputs of the flip-flop, USS, are used as state variables. Therefore, the D inputs
to the flip-flops should be regarded as complement inputs.)

The signal MemRdy, which also controls gates U16, pin 6 and 11, was considered to be high for the
previous analysis. This signal is high whenever the microinstruction has not caused selection of cne of the
memory interfaces before it is ready to respond. This signal originates from the circuits U22 and U21 in
schematic MCU 3/5. These circuits logically create MemRdy from the two status signals, DataPortRdy
and IFURdy, (which are high or low according to the state of the respective memory interface) and from
the following microinstruction select signals: Src=IR8-.L, Src=IR8+.L, Src=IR4.L, Dst=PCL,
Dst=IR8+.L, Dst=F.L, Dst=MO.L, Dst=MAR.L, and Src=MD.L. One of the preceding signals will be
asserted low whenever the microinstruction selects either the CPU Data Port or the IFU. The combination

of any memory port selected when it is not ready causes MemRdy to be asserted low.

It is worthwhile to discuss the critical timing relationship of the MemRdy signal to the operation of the
clock generation circuitry. An especially long path of gate delays is involved in this circuitry, which affects
the maximum operational frequency of the computer. This path is critical when the executing
microinstruction selects a memory port which is unready. In this case, the proper value for the MemRdy
must propagate to the next-state generation circuitry for the clock generating state machine in time to alter

the normal clock sequence. The circuitry invelved in this chain is:

1. The master clock resets state flip-flop Q1 of the clock generating state
machine.

2. The output of this flip-flop transitions to a one after a normal flip-
flop propagation delay.

3. MCUCTk.U changes to a high after the delay of the 745140 power buffer
driver, Ub4c.

4. The microinstruction register clocked by the MCUCTk.U switches to the
configuration of the new instruction after a flip-flop delay.

5. The BUS source (or destination) decoder selects one of the memory
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perts after the time required by a 745138 decoder circuit to select
the correct output based on the MIR bus control Tlogic.
6. The clock delay circuitry propagates the signal after the delay of two
logic levels in the 74S64, U22, yielding a low asserted MemRdy signal.
7. The next state for the state variable flip-flop is selected low after
the delay of a gate from U16, pin 6 and 11, and after the delay of the
745153 multipliexer, U56.

If the total of these delays is longer than required to provide adequate setup time at the input to state
variable flip-flop Q1 before the next master clock, then the processor will proceed to send (or receive) new

data to (from) the memory port beforz it is ready to function.

The DPU asserts its control over the clock generation circuitry through the circuits Ul8e, Ul7b, and
Ul7c, as shown in the schematic MCU 3/5. Three signals, Run, SSCIk.U, and Reset.L, cause the output of
Ul3b, pin 6, to appropriately control the asynchronous preset and reset inputs of the state machine
flip-flops in US5. Reset.L is the strongest of these signals. If it is low, the clock will be stopped
immediately and held in the asserted low state, which is the state for the second half of the clock cycle.
When Reset.L goes high, the state machine also changes, giving a clock pulse in unison with the end of the

Reset.L low state. This clock pulse initializes the microinstruction address sequencer to a value of zero.

With the Reset.L signal in the high state, the signals Run and SSCIk.U control the functioning of the
clock circuitry. Of these two, Run is the superior. If it is in the high state, then the clock generator will
operate at full speed.- When it is in the low state, then SSCIk.U can operate, causing a single clock cycle
for each upward transition on SSCIk.U.

6.1.2 Microinstruction Register and Control Store ROMs (schematic MCU 1/5)

The MCU circuit board has positions for ten ROMs for the control store. So far, two varieties of ROMs
have been used in the Lilith. During the development phase, 2k by 8-bit MOS FPROMs--erasable
ROMs--were used to test the microprogram. In the production version, bipolar fusible link ROMs have
been used both in 1k by eight and 2k by eight sizes. All of the ROMs used for the control store have
similar pinouts, but some pins require different signals according to the ROM type. In order to
accormmodate the various types of ROMs, the MCU has selectable jumpers to route the correct signals to
these pins. The proper jumper configuration for the 1k by eight and 2k by eight type ROMs is provided in
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Appendix 1 of this manual.

The ten onboard control store ROMs are crganized as a 5 by 2 array, meaning that a bank of five of the
ten ROMs are enabled during any given microcycle, and a total of forty bits are read in parallel from the
control store to the microinstruction register (MIR). The enable signal for each of the groups of five
ROMs is one of the signals programmable by jumpers. When 1k ROMs are used, signal A10 from the
microinstruction address lines is used; for 2k ROMs, signal All is used. ROMs U6 through U10 are
selected if the enable signal is low. If the enable signal is high, then the inverter Ul8a, pin 2, generates a
low enable signal which selects ROMs U1 through US.

Each leading edge of the MCUCIk transfers the next microinstruction from the outputs of the ROMS to
the microinstruction register. The microinstruction register is composed of type 745374 octal flip-flops
having three-state outputs (U25..U31). The enabling of the three-state flip-flops is handled by a special
circuit consisting of flip-flop UlSb, pins 8 and 9, and NAND gate Ul4c, pin 8. The function of this circuit
is to disable the onboard MIR in two special situations. The first situation is for the use of writable control
store. The second situation occurs when the DPU is used to intervene in the operation of the processor by

disabling its MIR and substituting a microinstruction from a similar register in the DPU.

In the first situation, the value of the microinstruction address signal A1l is used to indicate whether or
not the onboard ROM and MIR will be used. Since this signal is valid one cycle before the
microinstruction will execute (during the period when the instruction is being fetched from the control
store ROM), it is necessary to capture and delay this signal by use of the flip-flop, U15b, pin 12, A similar
circuit is designed into the writable control store. The final result is that the microinstruction register
loaded from the control store unit selected by microinstruction address during the fetch portion of the
cycle will be the one enabled during the subsequent execution portion of the microcycle. The reader has
probably noticed that a complete microinstruction register is duplicated on the writable control store
board. He may have asked why the microinstruction address was not simply used to disable the control
store ROMSs ahead of the microinstruction register by connecting the offboard instruction to the inputs of
the onboard microinstruction register. The answer lies in the need to conserve the number of signals

running off the circuit board through the card edge connector.

The second situation in which the microinstruction register is disabled only occurs when the processor is
stopped and the Diagnostic Processor Unit has assumed control over the elements of the Lilith by
providing the microinstructions for execution from its own microinstruction register. In such a case, the
DPU asserts a low value onto the signal, DisMIR.L, which enters at the AND gate, Ul4c, and, via pin 8,
disables the onboard microinstruction register irrespective of the microinstruction address signals. This
signal has a pullup resistor to assure a noise free high value when the DPU is not inserted into the

machine.
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6.1.3 Microinstruction Address Generation (schematic MCU 2/5)

During the execution of every microinstruction, a background operation is taking place to read from
control store the microinstruction which will be executed during the following cycle. The selection of this
microinstruction is determined by the value of the microinstruction address bus (UAQ--UA11). This bus is
driven at all times by the outputs of three AMD 2911 circuits, U49 through US51, as shown in schematic
MCU 2/5, except when the Lilith is being controlled from the Diagnostic Processor. In this circumstance,
the signal Disable2911.L is asserted low by the DPU, which results in a disabling signal at pin 16 of all
2911s. The DPU then drives the microinstruction address bus arbitrarily from its own register for
diagnostic purposes.

In the normal mode of operation, the microinstruction address may be generated in many different ways
for a variety of purposes. A discussion of why the different ways are necessary was given in the MCU
theory of operation section (Section 1, Chapter §). Now we wish to describe how circuitry selects the

microinstruction address according to the various situations.
First situation: microinstruction address equals last address + 1

This is an internal 2911 function. In every cycle, the 2911 computes the value of
the microinstruction address incremented by one and stores it into an internal register.
This happens in every cycle irrespective of how the microinstruction address is
developed because even though the microinstruction address may originate externally,
it must pass through the 2911 circuits in order to reach the control store. An
instruction which will not change the sequence of microinstructions with a branch
épeciﬁes the use of an incremented address equal to the last address plus 1. It does
this by giving the appropriate code to the 2911 control field in the microinstruction.
The 2911 control field bits are MIR16, MIR17, and MIR18. They pass through
multiplexer U37. Pins 4, 7, 9, and 12 of multiplexer U37 reach the 2911 input control
ports at pins 20, 19, 10, and 11. The signal which orginates from MIR17 and passes
through pin 11 of multiplexer U37 is used for two input control signals of the 2911,
pins 10 and 20. According to the document for the 2911 from AMD, one may see that

this control configuration selects the incremented value of the previous address.

Second situation: microinstruction address taken from previous instruction

This is one of three situations in which an address originates in parallel from a
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source external to the 2911, In this case, the three-state octal buffers, U28 and U29,
gate a 12-bit address to the parallel input lines of the 2911s, pins 4, 5, 6, and 7 of chips
U49, US0, and US1. The address is gated from the most significant 12 bits of the
microinstruction register (MIR 28 .. 39). The control field of the microinstruction for
the 2911s, bits MIR 16 through MIR18, are given the value: 111. This value
propagates to the 2911 in the same manner described in situation one and results in a
command to the 2911 which gates the incoming parallel address directly to the 2911
outputs and to the control store. The microinstructions which use this mode operate
conditionally according to tested values of condition codes. The selection of condition
codes to control the jump are determined by bits in the microinstruction, MIR 16 ..
MIR18. When a tested condition does not select the jump, the 2911 control signals
are switched in the 745157 multiplexer, U37, to the alternate inputs, pins 3, 6, 10, and
13, which are hardwired to give the “continue” control code described in situation
one. As a final comment, please note that this situation is used by both jump and
jump subroutine intructions. The only difference between the two types of instruction
is that the JSR instruction specifies, in the 2911 coatrol field, both the jump operation
and the saving of the current “next microinstruction address” on the stack internal to

the 2911. Whereas the JUMP instruction merely specifies a jump operation,

Third situation: microinstruction address taken from the M-code map ROM

This is the second of the situations in which the address originates external to the
2911 and is gated through the 2911 to the control store. In this case, the desire is to
quickly determine which microinstruction address is corract for the starting point of
an M-code interpretation. The address originates with a Format II microinstruction
selecting an opcode from the IFU to be gated onto the BUS by the signal Src=IR4.L.
The BUS data in turn provide the 8-bit M-code to a 256 by 12 bitmap ROM
constructed from three 825129 circuits, U38, U39, and U40. A signal, MapEnable.L,
which references the IFU in this case (see schematic IFU1/3), is used to control the
gating of the map ROM outputs to the 2911 inputs in a similar fashion to that
described in the above situation for the normal branch microinstructions. From this

point everything is as described in situation two.

Fourth situation: microinstruction address taken from interrupt vector acdress

Each time the Lilith begins the execution of a new M-code, the interrupt logic has
an opportunity to subvert the table jump for the M-code and to substitute in its place
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a direct jump to an absolute address which is determined by the highest priority
unmasked interrupt. This only occurs on microinstructions which are attempting to
start the intzrpretation of a new M-code using the signal Src=IR4.L. In this
situation, the interrupt signal coming from the MCU board is gated into holding
register U45 (see schematic MCU 5/5) and passes through masking gates in either
U36 or U46. If the corresponding mask bit of the mask register, U35, has not been
set, the interrupt request will reach the priority encoder, U47, of the MCU, which
creates a binary address corresponding to the highest active interrupt. The signal
Req, from pin 15 of priority encoder U47, operates through gate U24a, pin 6
(schematic MCU 4/5), to abort the transfer of an opcode from the IFU by disabling
MapEnable.L. Three-state octal buffers U48 and U29 (schematic MCU 2/5) gate the
vector address from the priority encoder plus 8 (instead of a map address from the
map ROMs) to the inputs of the 2911 and, in the same manner as described before, to
the control store.

Fifth situation: microintruction address taken from the internal stack of the 2911

When a jump-to-subroutine microinstruction is executed, the address of the
following instruction is stored onto an internal stack of the 2911. Later, when it is
time to return from the subroutine, it is only necessary to give the 2911 control field of
the microinstruction the value "001,” which will cause the 2911 to select its next

address from the value stored on its internal stack.

6.1.4 BUS Control Decoded from MIR (schematic MCU 4/5)

Eight bits (MIR 0-7) of the Format I microinstruction word are used to specifiy how information will
be transferred over the 16 data lines known as the BUS. Four bits (MIR0-3) provide the possibility to
select one of 16 devices as the source of data on the BUS, and four bits (MIR4-7) select one of 16 devices
to receive the data from the BUS. Rather that have each unit look for its own address on four binary lines,
745138 decoder circuits U33, U43, U32, and U4l are used to decode the two 4-bit selection codes into a
total of 32 device selection signals. Each of these device selection signals has a value of zero when
selecting a device; otherwise, they remain high. Sixteen of these signals select BUS source devices and
sixteen select BUS destination devices. The source versions of these signals simply command the
addressed device to gate the contents of its register onto the BUS for as long as the period of a cycle. The

destination versions of these signals work cooperatively with the CPUCIk causing the data sampled from
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the BUS to be transferred to a register whose selection and strobing are created from a combination of the
BUS destination selection signal and the clock signal, CPUCIk.U.

The microinstruction bit which enables the functioning of the decoders is MIR12. When this signal has
a low value, it enables the four 745138 decoders of schematic MCU 4/5 through pin 4 of each of them.
Additional special circuitry in the form of Ul3c, output pin 8, is used to handle the special case of
Dst=ALU.L. This circuitry forces the Dst=ALU.L signal low so that the ALU is implicitly selected as
the destination for the BUS data when the microinstruction has Format II. As explained in Section 1.4 of
Chapter 5, Format II is the format used when constants are gated to the BUS from the microinstruction

register.

It should also be noted at this time that the microinstruction bits controlling the BUS source and
destination decoders can have completely arbitrary values when a microinstruction of Format III is
executed. This can lead to spurious outputs on these selection lines. However, since no CPUCIk signal is
given during the execution of a Format III instruction, this should not create any erroneous operation. Any
augmentation of the Lilith circuitry should take this fact into account and should be designed to be

insensitive to transitions on these signals except when CPUCIk is present.

6.1.5 Generation and Use of BUS Data by the MCU

There are several instances where circuitry of the MCU either gates data onto the BUS or transfers data
from the BUS into a register. One of these instances occurs when a constant from the MIR, bits
MIROQ..MIR7, is gated onto the BUS (see schematic MCU4/5). MIR12 is the signal which controls this
operation . Since the signal is needed in an inverted form, it first passes through U18f, whose output at pin
12 becomes MIR12.L. In this form, MIR12 directly controls the operation of the octal buffer, U44. This
buffer transfers the 8-bit constant, MIR0..MIR7, to the lower half of the BUS, thus providing the signals
BUSO0..BUS7.

When MIR12 forces constants to be gated onto the lower half of the BUS, the upper half of the BUS
must be forced to zero. Circuitry consisting of inverting octal buffer U42 and gates U24b and Ul7a
perform this function. There are four other conditions (see Section 4.2, Chapter 5) in which this circuitry
is used. In each of these conditions, which are associated with the operation of the IFU, eight bits are
provided for the lower half of the BUS.

In three of these conditions (indicated by IFU selection signals Src=IR4.L, Src= IR8+.L, Src=IRS8-.L
and SrcIR8+.L), chips U42, U24b and Ul7a provide zeros to the upper half of the BUS . Chips Ul7a and
U24b together function as a five input inverted logic OR operation, enabling the inverted buffer, U42, for
any of the three IFU selection signals or for MIR12.L. The fourth IFU selection signal, Src=IR8.L, reads
a negative value from the IFU ,and consequently ones must be gated to the upper half of the BUS. This i3
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accomplished by the connection of the Src=IR8.L signal to the buffer input pins of U42. This function
actually belongs to the operation of the IFU, but for reasons involving simplification, it was included in the
circuitry of the MCU.

Schematic MCU 5/5 shows how the interrupt mask register, U35, can be loaded and read from the
BUS, using the BUS source and destination signals taken from the decoders of schematic MCU4/5. The
BUS control signal, Dst=IRM.L, connected to pin 1 of U35 enables the loading of the register from the
BUS. The CPUCIk.U, which is connected to pin 11 of U3$, actually strobes the data into the register. The
outputs of U35 are gated to the BUS by octal buffer U34 under control of the signal, Src=IRM.L, entering
via pins 1 and 19.
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6.2 Arithmetic/Logic Unit

The complexity of the ALU circuitry probably exceeds that of any other board in the Lilith. It has an
enormous number of different operations and a large number of control signals coming from the MCU to
determine its operation. However, the sequential timing of the ALU follows a very simple cyclic pattern,
which eases the burden of describing the functioning of its circuitry. The cyclic pattern begins with the
stabilization of control signals from the MCU shortly after the beginning of a microcycle. During the
period of time allocated to the cycle, the control signals cause the manipulation and alteration of data from
the registers in the ALU and from the BUS to which it is connected. At the end of the cycle, data created
during the cycle is saved into registers within the ALU and on other boards for use in the next cycle.
Every section of circuitry in the ALU can therefore be described completely by considering only the

possibilities for a single microcycle.

The block diagram of the ALU is given in Fig. 5.7. The major components which compose the ALU are
the shifter, the stack, the 2901 bit slices, and the condition code logic. Each component will be discussed

in turn.

6.2.1 The Shifter (schematic ALU 1/4)

The first component we will discuss is the barrel shifter. The barrel shifter is connected on one side to
the BUS and on the other side to a second bus which is totally contained on the ALU circuit board. This
second bus, which is called the D-bus or Direct Operand BUS, connects to the direct inputs of the 2901
arithmetic/logic units. The outputs of the evaluation stack also connects to the D-bus.

The shifter has the prime responsibility to pass information from the BUS to the inputs of the 2501 bit
slices. Mormally, the shifter will pass the data directly to the 2901 ALU, but under special command from
the MCU, it can shift the data from the BUS in an "end-around” fashion so that the data can be rotated to
any of the 15 other positions within a word. The shift is actually a true rotate, so that zeros are not brought
into any portion of the word, and none of the bits are lost.  The shifter is constructed from special AMD
circuits (part number 25510) designed to perform shifting operations. Each of these circuits accepts seven
bits as input but outputs only four. The four selected bits are taken in a shifted fashion according to two
shift control signals entering pins 9 and 10. In the ALU, the direction of shift is towards the least
significant bit of the word, although the circuits could be used equally well in the opposite direction.
Because each circuit can select at most four shift possibilities, two levels of logic constructed from these
circuits are required to give the total of 16 shift possibilities. The organization is such that the first level,
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comprised of circuits U33, U34, U35, and U36, performs a shift of 0, 1, 2, or 3 bits. The second level is
connected such that shifts are always in groups of four, with this level offering the possibilities of 0, 4, 8, or
12 shifts. The circuits comprising the second level are U1S, U16, Ul7, and Ul8.

In operation, the control of the shifter is straightforward. A four-bit shift amount is presented by
multiplexer u38 to the shifter. The least significant two bits of this count are connected to pins S1 and SO
of the first level of shift circuits, and the most significant two bits are connected to pins S1 and SO of the
second level of shift circuits. For any shift operation, the portion handled by each level depends on the
value of the two-bit fields given to each level. For a shift of 9 bits, as an example, the first level shifts one

bit and the second level uses its second shift selection which is 8.

The source of the shift count can come in two ways. If the shift amount can be selected before
execution, then the amount is programmed into the microinstruction word, bits MIRS through MIR11, If
the shift amount is the result of a calculation, then the amount must be transferred from a register or from
a variable location into the shift count register, U37. This register is loaded by selecting it as the
destination for data on the BUS. The selection control for these two signals is a function of the value of
MIR20. If it is high, then the shift count will be taken from the Shift Count Register by a 74L.S157
multiplexer, U38. Ifit is low, the multiplexer selects the bits from the microinstruction register.

The shifter has a feature useful for the generation of masks. This feature is under the control of
microinstruction bit MIR19. If this bit is true, then, from the most significant end of the word, a number
of bits equal to the shift count will be set true. The OR gates of circuits U24, U25, U26, and U27 perform
this function. As an example, if a zero from the BUS passes through the shifter shifted 7 bits with the
mask feature enabled, then the mask generated will be 1111111000000000.

The shifter has one other feature useful for executing M-codes having four-bit operand fields right
justified in the instruction byte. When this byte is sent from the IFU to the MCU for execution, the shifter
responds to control signal Dst=ALU.L and selects these four bits alone for storage in a register (usually
the Q register) in the 2901 by forcing the top four bits of the opcode to a zero. Shifter circuit U35 has
special logic to disable its output when this signal is active. With the drive circuitry of U35 disabled, zeros
are gated to the outputs of this shifter by octal buffer U28. Note that only half the outputs of chip u28 are
used. For a better perspective of the value of this operation, the reader is directed to the section discussing

M-codes in the chapter on the Lilith virtual machine.

6.2.2 The Evaluation Stack (schematic ALU 3/4)

The evaluation stack is an alternate source of input to the 2901 arithmetic unit D-bus (see Fig.5.7).
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Selecting the stack as the input source to the 2901 requires disabling the shifter. The signal selecting
between the shifter and the stack is the BUS destination selector for the ALU, Dst=ALU.L. When the
ALU is selected as the destination of the BUS, the shifter is enablad and the stack is disabled as input to
the 2901. The stack czn, however, receive the output of the 2901. When the ALU is not selected as the
BUS destination, the stack is automatically selected as the source of data coming into the 2901 from the
D-bus.

The evaluation stack consists of four 16-word bipolar RAM circuits which are each 4 bits wide. This
gives a total of 16 registers of 16 bits for stack storage plus one register inside the 2901 which is used as the
top of the stack, giving a total of 17 levels. The circuits from which the evaluation stack is constructed are
745189 tristate output random access memories and are in positions Ul, U2, U3, and U4. These circuits
have separate inputs for write operations which are connected directly to the outputs of the 2901. The
outputs of these chips cannot be gated directly to the 2901 because they would conflict with the shifter.
Consequently, two inverting octal buffers, Ul3 and Ul4, are used to control when the RAM outputs are
gated to the D-bus.

In order to unburden the microprogram from selecting which of the registers in the evaluation stack is
to be used, a special addressing circuit has been constructed to address the locations of the stack RAM in
push/pop fashion. The push instruction requires the address to be decremented to the next unused
location before writing the memory. The pop instruction requires the address to remain unchanged until
after the data at the current location has been read, and then it must be incremented. (Note: the stack
grows downward in the address space of the small ram.) These operations cannot be achieved in a single
cycle using a counter alone. The design developed to meet these constraints uses a counter, US, and an
adder, US, as described below.

6.2.3 The Pop Operation

The pop operation of the evaluation stack is relatively simple. In a microinstruction performing a pop,
the first requirement is that the BUS destination does not select the ALU. If that were the case, it would
imply that the shifter is active, which precludes use of the stack since the shifter gates its data to the same
inputs of the 2901 as the stack. With the BUS contrel signal, DST=ALU.L in an inactive high state, the
stack buffers, Ul3 and Ul4, are enabled by this signal inverted by Ull, pin 12. The value of the stack
address counter, which points to the highest level of the stack in the bipolar memory, is gated to the
memory chips unaltered by the adder (US) E-inputs because the cutput of the NOR gate Ul2, pin 1, is
zero as caused by the signal DST=ALU.L. Microinstruction bit MIR13 is zero for this pop instruction,
which enables the counter to increment at the end of the cycle as controlled by the up/down control input
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at pin 5 of U6. At the end of the microcycle, the incrementing of the counter causes it to select the next
lower element of the stack.

6.2.4 The Push Operation

We will now consider the address generation for a push operation. In this operation, the address
generated needs to select the next unused location of the stack memory rather than the location currently
addressed by the counter. Since it would require an entire cycle to decrement the stack address counter,
U6, it is necessary to perform the decrement using the adder, US, to momentarily subract one from the
value of the counter. At the end of the cycle, the counter is decremented, so the counter ends up pointing
to the new top of stack in the RAM memory. The control signals for the counter and the adder are bit
MIR 13 and DST=ALU.L. Both of these signals must be low for a push operation. A NOR gate, Ul12,

pin 1, gives a high output in this situation which is used for three functions:

a. Passing through U11, pin 2, it enables U12, pin 10 to generate a write pulse for the

7451838 memories.

b. Added, as 1111, to the stack address counter by the adder U5, it effectively

decrements the stack address value to the next unused location.

c. Controlling the stack address counter, U8, through the up/down count countrol, it
causes the counter to decrement at the end of the microcycle. The counter after
this document will assume the same value that comes from the adder

outputs at the very beginning of the cycle.

In this fashion, the stack counter address logic accomplishes the required addressing for the push

operation.

6.2.5 Stack Empty Detection

As indicated in the theory of operation section, it is not necessary to test the stack for overflow, but it is
necessary to detect the empty condition so that the stack may be unloaded and saved for interrupts,
coroutine transfers, and procedure calls. The carry output from the adder serves this function. In every
circumstance except the push operation, the "E" inputs of the adder will be zero, hence with the incoming
carry wired true, the carry out can only have a true value when the count is “1111.” This signal can be
tested as one of the conditicn codes by the jump format of microinstruction. However, it will have valid

information only when it is tested in a microinstruction without stack operations.
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6.4 Instruction Fetch Unit

The circuitry of the IFU partitions nicely into three components: the instruction address generation
circuitry, the instruction holding registers and gating circuitry, and the memory cycle request timing

circuitry.

6.4.1 The Instruction Address Generation Circuitry (schematic IFU 2/4)

Two registers, the code frame register (F) and offset register (PC), are key participants in the generation
of the actual memory address for the fetching of a block of eight instruction bytes. These registers are
loaded from the BUS during a standard microinstruction cycle using the signals Dst=F.L and
Dst=0Offset.L. Two 74L.S377 octal registers,(U8, Ull), are used for the code frame register. Four
7418163 counter circuits (U16, U17, U18, and U19) are used for the offset register. Each of these registers
receives its data directly from the BUS at the end of the microinstruction cycle in which it is referenced.

It is possible to read the contents of both the code frame register and the offset register. This feature is
used by the processor in co-routine transfers and procedure calls. The 74L.5244 Octal buffer circuits, U7
with Ul0 and U9 with Ul2, are activated respectively by the BUS control signals: Src=F.L and
Src=Offset.L. These circuits gate the information directly to the BUS.

For instruction address generation, the contents of the code frame register and the offset register are
summed together by the adder circuitry composed from four 74L.S283s (U1, U2, U3, and U4). As
described in the section covering the IFU theory of operation, the code frame register is shifted left two
bits and added to the offset register for the purpose of extending the addressing range available to be use

for program storage.

The summed result generated by the adder just described is gated to the memory address bus whenever
the IFU requests a memory cycle. The 74LS244 octal buffers (US and U6, schematic 1/4), together with
two of a four-buffer package (U23, pin 3 and pin 6 from a 74LS125), are enabled by the output of inverter
U1Sf, pin 12 (schematic 1/4). This circuit gives a low enabling output only when its input, IFUSel, is
asserted high, which occurs only when a memory cycle for the IFU is taking place.

6.4.2 Instruction Byte Holding Registers (schematic IFU 3/4)

Eight 7415374 octal registers (U24, U26, U27, U28, U29, U30, U3l,and U32) capture eight instruction
bytes with each IFU memory cycle. The timing signal which loads these registers comes from pin 3 of
nand gate ul4a. This gate gives a low output when its inputs, IFUSel and DataStrobe, are asserted high.
The rising edge of this signal causes the data to be loaded into the registers from the 64-bit memory read
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data bus.

The outputs of these eight registers are bussed together to form the effect of a multiplexer, with the
active register selected by a decoder output from the decoder circuit, U20 (schematic 1/4). This decoder
circuit is always enabled and decodes continuously the least significant three bits of the program address
value, which is generated by the adder circuit discussed in the previous section. Consequently, the
next-to-be-selected instruction byte is always available on the internal IFU bus which terminates at the
741.5244 octal buffer, U25. When it is required to gate this instruction byte to the BUS for use by the
MCU or ALU, the signal GateIFUData.L is asserted low, thus enabling buffer U25. The logic controlling
the generation of GateIFUData.L is described in the next section.

6.4.3 The IFU Memory Cycle Request Circuitry (schematic IFU 1/4)

The source and destination control signals for BUS which reference the IFU are all involved in the
special timing circuitry which generates memory cycle requests and delays the MCU microinstruction
execution when necessary. Logically, the circuitry’s function is relatively simple; the actual implementation
obscures this somewhat in order to minimize hardware and timing delays. There are three important

signals generated:

GatelFUData.L:
This signal is asserted low any time the microinstruction register selects the IFU as the source to
BUS. The logic implemented by U21c and U21b is a negative logic OR.

IncPC:
This signal is the inversion of GateIFUDate.L. It increments the value in the offset register to
the next instruction byte address at the end of a microcycle. (The offset register is really a 16-bit

counter.)

IFUReq.L:

This signa! is generated whenever a new block of instructions is needed. There are two
conditions which create such a need: 1) whenever the lastof the eight instruction bytes is taken
(except when it is taken by the Src=IR8# signal), and 2) whenever the offset register is loaded
by a microinstruction asserting the Dst=Offset.L. Both conditions assert the IFUReq.L signal
(u22a ,pin 3) via the IFU memory cycle request flip-flop, because it is in these conditions that a
new block of instructions is needed. The signal Sel7.L, connected to u22d, pin 13, originates
from decoder u20. It indicates when the last byte of the block is being taken.

The three signals listed above initiate the necessary response of the IFU to the sequences of requests

which will come from the processor. One of these responses is the request for a memory cycle from the
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processor. The timing for this operation is according to the protocol established for memory interaction.
This subject has already been discussed in the section describing the operation of the CPU Data Port. The
reader is referred to Section 6.3.4 for an explanation of this protocol. He will find a parallel situation
described using signal names of uniform similarity, i.e. DataPortRdy, IFURdy, DataPortReq, IFUReq,
DataPortSel, IFUSel.
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6.5 Memory Subsystem

In the CPU Data Port theory of operation description, the protocol for interaction with the memory was
described including the mechanisms for initiating memory cycles for both 16 and 64-bit data operations.
In this section, we will first discuss the circuitry which must control the interaction with the memory
interface ports and the generation of the necessary timing signals for the array of 16k memory chips. Then,
we will discuss the organization of the memory array detailing the mechanism for expansion which allows

the control mechanism on the master memory board (64R) to control cycles on the slave boards.

6.5.1 Priority Allocation Circuitry

The priority allocation circuitry, consisting of chips u30-u33 in schematic CDP 1/5, handles the incoming
requests for memory cycles from the eight possible ports in the system. It also generates select signals, e.g.
DataPortSel, which tell the selected port that the current memory cycle is allocated to that port. The
control protocol for this circuitry is very simple. The memory cycle control asserts the GateReq signal
high and waits for the priority allocation circuitry to assert the AnyReq signal high. As soon as the cycle
control detects that the AnyReq signal is asserted high, it sets GateReq to a low value and initiates the
timing of a cycle. When the priority allocation circuitry receives the low value on GateReg, it locks out
any further requests and sets the selection signal for the highest priority port request.

The eight memory port request signals, such as DispReq.L, are asserted low when a cycle is being
requested. They pass initially through an octal inverting buffer circuit (U30, as shown in schematic CDP
1/5) and are asserted high at the 74278 priority allocation registers, U31 and U32. The signal GateReq
from the memory cycle control enters at pin 1 of the two priority allocation registers. The signal AnyReq
returns from pin § of‘ U31 and goes to the memory cycle control circuitry in schematic MEM 1/4 asserted

high when the registers have detected a cycle request.

The selection signals which allocate the cycle request to the highest priority port memory request come
from pins 10, 9, 8, and 6 respectively from the two pricrity registers as shown in schematic CDP 1/5.
Because of the connection from pin 5 of U32 to pin 4 of U31, the priority of the four selection signals from
U32 is higher than that of the four signals from U31. Four of the selection signals pass through AND gates
and are enabled only when the memory cycle is underway as determined by the inverted value of GateReq
passing through U21, pin 6. The purpose of these AND gates was initially to eliminate the possibility of
driver clash on the Memory Address Bus, which was thought to be causing unreliability problems. At this
time they are considered unnecessary, but are still in the printed circuit artwork.
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6.5.2 Memory Cycle Control (schematic MEM 1/4)

The timing and control signals for the memory subsystem are generated by a 4-bit 745195 shift register,
U44 on the master memory board, 64R. This shift register cycles through a complex sequence of patterns
utilizing both the serial shift mode of operation as well as the parallel entry mode of operation. The idle
state has Q3 Q2 Q1 QO = 0111 with the register operating in the parallel mode as controlled by Q3 in the
low state connected to the parallel entry control, pin 9. When AnyReq is true, indicating the presence of a
memory cycle request, Q3 {pin 12} loads to a high state, and the shift register mode switches to serial
operation. In subsequent clock pericds, zeros are successively shifted in through the serial input port until
Q3 becomes zero again and the mode reverts back to parallel entry. At this point the register has a value
of 0000, and in successive cycles passes through the state 0000 and 0010 to the inactive state of 0111. The
state machine diagram for this sequence is given in Fig. 6.2.

In the process of cycling through these seven states, the memory cycle control creates the two signals which
interact with the selected port: DataStrobe, which is taken from the inverted Q0, and ClrReq which comes
from Q2. The important aspect of DataStrobe is that the downward transition of this signal should be used
by the selected memory port to latch the output of the 16-bit Memory Data Bus {or the 64 bit Memory
Bus) into a holding register during read memory cycles. The ClearReq signal is set to a high state before
the completion of a cycle so the logic of the requesting port can reset the memory cycle request ahead of
the cycle completion. This is necessary so that it will not interfere with the operation of the priority
allocation circuitry in arbitrating the allocation of the next cycle.

The memory cycle control also generates three other signals which are used by the array of 16k memory
chips in the process of reading and writing memory into addressed locations. The signals are: RAS (Row
Address Strobe), CAS (Column Address Strobe), and AX (Address Exchange). Two of these signals are
synonymous with signals already mentioned: RAS and DataStrobe are the same, and CAS and ClrReq are

also the same. The function of these signals will be discussed in Section 6.5.3.

6.5.3 Memory Arrays (schematic MEM 3/4)

The physical organization of the Memory Subsystem consists normally of four circuit boards providing a
total of 128K, sixteen-bit words of memory. It may be optionally configured with as many as eight boards.
The boards operate in pairs, each providing half of a word. The circuit boards have identical artwork but
are configured differently in use by jumpers and the depopulation of certain sections of the board. Each
board has 32 dynamic MOS memory chips with 16,384 bits per chip (see Fig. 6.12). The driver circuitry
for the control signals necessary for these chips is included on each board, as are the multiplexer chip for
the address lines and the buffers for the data outputs. Each memory board is organized into 32-bit words
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for read operations, but only 8-bit words for write operations. Two such boards operate together, creating
a memory with 64-bit wide read operations and 16-bit wide write operations. The artwork of each board is
also complete with tristate buffer gates to give the appearance of a 16-bit word size for read operations.
This circuitry is only installed on one set of two boards and used for all boards to give the capability of
16-bit read operations.

6.5.4 Configuring the Memory Boards for Timing Signals

The Memory Array sections of all four memory boards are identical. The memory cycle control is
populated and connected by jumper only on the board designated 64R, meaning the right half-word of the
first 64k words of memory. The chips belonging to the cycle control are U44, U13, and Ul as shown in
Fig. 6.11. On this board, these chips are installed and their operation is connected to the Memory Array
section of the board by connecting jumpers J1, J2, J3, and J4.

6.5.5 Configuring Memory Boards for

16-Bit Read Multiplexcrs (schematic MEM 4/4)

The 64R board also has the read data multiplexer circuitry populated consisting of 7415244 octal buffers
U49, US0, US3, and US4 (fig. 6.13). The board designated 64L also has the read data multiplexer
circuitry populated; none of the other memory boards (normally two, but possible as many as six others)
have this circuitry installed. There are no jumpers to enable this circuitry. If the circuitry is installed, then

it will function.

6.5.6 Page Selection (schematic MEM 2/4)

The most significant address lines, MAD16 and MADI17, determine which pair of memory boards will
function. Each board has a 745138 decoder providing switch selection of a range of addresses depending
on the values of these two lines. The signal generated by the 745138, U46, is named BoardSelect.L, and it
is found on pin 9 through 16 of U47, a dual in-line switch package. There is also an overriding selection
line labeled RefSel which enables the signal RAS of all boards for the special read memory cycles used to
refresh the dynamic memory cells of the 16k memory chips. The special selection line for RAS generated
from BoardSel.L and RefSel comes from the output of a NAND gate, U25, pin 8.

6.5.7 Address Bus (schematic MEM 2/4)
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Address lines MAD2 through MAD15 are used in the selection of a single word from the memory array.
The chips used by this array require the address to be given over seven signal lines at two separate times.
A special purpose chip from Intel, the Intel 3242 in U35, performs this function. It selects values from
seven of the address lines and sends them to the address inputs of the chips in the memory array, A0..A6,
at the time when the RAS is asserted. The other seven address values are sent at the time when CAS is
asserted. The control signal selecting the first or second group of addresses is AM connected to pin 3 of
U35. This signal changes midway between the occurrance of the RAS and the CAS.

6.5.8 Word Selection by the least two significant address lines (schematic MEM 2

The least significant two address lines, MADQ and MAD], are not used in 64-bit read cycles as four words
are simultaneously read out. In the 16-bit write cycles and in the 16-bit read cycles, these two bits must be
used to select the correct word from the group of four addressed by the other address bits. A 745138
decoder circuit, U26, is used for both read and write functions. In the read mode. The "S4" input of the
decoder is connected toR/W’. In the read made it is asserted high and one of the upper half of the
decoder outputs, U26, pins 7, 9, 10, and 11, is used to control the octal buffer which gates the proper group
of eight bits to the Memory Data Bus for each of the pair of selected cards. The octal buffers controlled in
this manner are circuits U49, US0, US3, and US4 (schematic MEM 4/4). These selection signals,
originating at the decoder U26, are labeled GateData0.L through GateData3.L. In write mode, because
R/W’ has a low value, this decoder asserts one of the lower four selection lines, U26, pins 12 through 15,
which are connected directly to the signals enabling memory write operations in the 16k memory chips.
These signals are labeled R/W’0..R/W’3. Resistors are also used with these signals as pullups and

resistive loads to prevent ringing and overshoot.

6.5.9 Row Address Strobe Signal (schematic MEM 2/4)

The signal RAS from the Memory Cycle Control is described in the manufacturers documentation under
the name RAS. It is used to cause the memory chips to sample the address signals selected by the
multiplexor, U35. The reader is referred to this document for a better understanding of the function of
this signal. This signal eventually reaches the array of memory chips after passing through a buffering
circuit, (U15), and signal conditioning resistors (Fig. 6.14) which help suppress overshoot. Because of the
drive requirements for 32 chips, the signal is generated in parallel by four separate circuits under the
names: RASO.L, RAS1.L, RAS2.1, and RAS3.L.

6.5.10 Column Address Strobe (schematic MEM 2/4)

CAS is used to strobe the second group of seven address lines into the memory chip, and it is also the




78

signal selecting which of the four words of memory chips is to be used for write and sixteen bit read
operations. The logic gating this signal is generated by the decoder U2 and the NAND gate U24. U24 is
low when a 64 bit read operation is being performed. In this case, CAS is gated through all four circuits of
U3 and U4 giving a strobe to all words. For 16 bit operations, U24 is inactive, and the selected word of
memory chips is given the CAS through the 74LS138 decoder U2, and one of the four circuits in U3 and
U4,

6.5.11 Read Data Drivers (schematic MEM 4/4)

Two sets of data drivers are used for the output data of the read cycles. The first set consisting of 7415244
octal buffers are in positions U48, US51, US2, and US55 of all memory boards. The enabling of these
circuits is directly driven from the BoardSel.L signal. The second group of drivers are in reality operated
as a multiplexer selecting a word of data from the 64 bit wide Memory Read Bus. The circuits involved
are also 7415244 octal buffers and they are in positions U49, U50, U53, and U54 of the lowest addressed
pair of memory boards. Since these circuits function regardless of which pair of memory boards is
selected, they are depopulated on higher addressed memory boards.

6.5.12 Memory Clock Circuitry (schematic MEM 1/4)

The memory can operate from its own independent clock which is a 745124 oscillator in position U13, or it
can operate from an externally supplied clock signal entering the master board through pin DE1. The

nominal period for this clock is 80 nsecs, giving a cycle time of 560 nanoseconds.

6.5.13 Refresh Circuitry (schematic MEM 1/4)

The 16k memory chips of the Lilith memory are the dynamic MOS variety made by many different
manufacturers under many different part numbers. One of the many available chips is the MOSTEK
4116. All of these parts require an operation called "refreshing” which causes the information in a row of
the internal memory array to be renewed. A normal read cycle will perform this. In order to guarantee
that each of the 128 rows in the 16,384 bit chip is addressed at least once every 2 milliseconds for a read
cycle, the memory control logic includes a section of logic which acts as if it were a data port. This logic is
basically an oscillator, Ul3, pin 7, which sets a flip-flop, Ul, pin 5,to request a memory cycle once every
16 microseconds. When the request is granted by the memory port priority allocation unit, the memory
performs a read operation from an address conveniently supplied by a counter circuit internal to the
INTEL 3242 chip, U35, which also performs the address multiplexing for the memory chip array
(schematic MEM 2/4). The value of this counter is incremented after each refresh operation by a signal
from NAND circuit, U25, pin 11, which supplies a pulse during the refresh memeory cycle to pin 2 of the
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INTEL 3242. The signal RefSel is also connected to the INTEL 3242 at pin 1 in order to select the internal
counter value as the source for the address cutput during the refresh cycle.

6.5.14 Memory Parity

At the time of this writing, memory parity has not been used with the Lilith memory. The operation of the
machine has not visibly suffered because of this. However, some pressure in the form of expressed
opinions from outside observers has caused the designers to consider adding this feature if for no other
reason than to see if it possibly is needed.
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7 Diagnostic Procedures

7.1 Power On and Reset Diagnostic Interpretation

7.2 Modula-2 Test Programs

7.4 Test Programs Using the DPU

7.4.1 Terminal Connection to the DPU

In order to be able to use the DPU in diagnosing Lilith problems, it is necessary to have an additional
computer or terminal. The purpose of this extra equipment is to  provide terminal interaction between
the Motorola processor and the maintenance engineer and to provide the capability to load programs. The
DPU uses none of the Standard Lilith peripherals for this function as any of these parts could be

nonfunctional.

Originally, the DPU was developed with an HP terminal. As a consequence, all DPU software is
compatible with the operations of the HP terminal. At this time, we no longer use such terminals for DPU
operations, but the protocol is still the same. Now we use another Lilith as the terminal for the DPU
whenever possible. The functions needed by the DPU which were originally satisfied by the HP terminal

are as follows:

Display on a screen ASCII characters received from the DPU.
Send characters typed on a keyboard to the DPU.

Send upon request an entire file of characters constituting a binary
load file in the commonly known as Motorola’S’ format. The
DPU initiates this operation by sending an escape character followed by

the lower case 'e’.
Send on request the next line of a load file terminated by a carrage return.’
file. The request sequence from the DPU is constituted from am escape followed

by 5 characters: <esc>, 46C, 160G, 60C, 122G, 21C

Send on request the message 'HELLO’. The request sequence from the DPU




is <esc>, ¢, 21C.

The third and fourth items of the above list were originally used to transfer binary filzs in the Motorola
’S’ format stored on the HP cassette tape. The special control sequences are the defined HP protocols for
causing the transfer of either an entire file from the cassette or a single line of the file. Under such
operations the position of the cassette determined which file was to be read. When another Lilith or some
other computer is used. These files are kept in disk storage. Consequently, the program emulating the HP
terminal needs to interrogate the operator at this point for the name of the file to be transfered from the

computer disk.

The fifth item of the above list, the "THELLO’ response, allows the DPU to determine if in fact a
terminal is connected. It uses this when the reset button of the DPU is pressed. If there in no response
within five seconds, the DPU assumes that a standard Lilith "cold bocoi’ operation is needed, and it initiates
that.

7.4.2 Preparing a HP terminal for Use with the DPU.

If you have an HP terminal then the problem is relatively simple. You need conly make the proper
RS-232 connection to the Lilith and transfer the Motorola diagnostic programs to an HP cassette. You
may use the Lilith program "hpcopy’ for this function. When performing this transfer you will need to
connect the HP terminal to the Lilith I70 connector on the back of the machine. It is a standard

subminiature D female with following signal connections:

pin ,. signal

2 Incoming signal to the Lilith. (RS-232c¢c voltage levels)
3 Outgoing signal from the Lilith. (RS-232c voltage levels)
7 Ground.

The baud rate is switch selectable in a range of 9600 baud down to 75 baud. The switch for sclecting the
baud rate is at the back of the CPU Data Port card (CDP).

The files to be transferred are: ex.MOT, ifu MOT, aluMOT, hwtest. MOT, dsktst MOT. When you have
your files on the HP cassette, you can connect the HP terminal to the DPU connector on the Lilith. It is
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wired identically to the 170 connector.

7.4.3 Emulating the HP Terminal

If you have more than one Lilith then it is only necessary to connect the two Liliths using an RS-232
cable with a °2 to 3’ crossover and run the program *HPTerm’. The Lilith to be tested should have its end
of the cable installed in the DPU connector. At the other end, it chould go in the 170 connector of the
functioning Lilith which is emulating the HP terminal. Incidentally, at this time the DPU board should be
installed with the baud rate switch of the DPU board matching that of the other Lilith’s CDP board. 9660

baud allows transfer of binary files at maximum speed.

If you do not have an HP terminal or a second Lilith, then it is necessary to prepare an HP terminal
emulator using whatever computer system you have available. A program must be prepared for this
computer having the characteristics of the HP terminal. This program is best prepared using the program
"HPTerm’ of the Lilith as a model and definition. The ASCII files listed in the preceeding paragraph
should be transferred to your computer system. It would be best to do this when your Lilith is still
functioning. You will find it more difficult to type these binary files from their printed listings.

7.4.4 Operating with the DPU Resident Software

At this point you should have an HP terminal, a second Lilith, or some other computer system {which
can successfully operate in HP form) connected to the DPU port of the malfunctioning Lilith. You should
also have available the files ex. MOT, alu.MOT, ifu.MOT, hwtest. MOT, and dsktst MOT. Now press the
upper of the two switches on the DPU card. If everything is working, the Motorola will respond:

HELLO
LOAD MOTOROLA

If you do not get this response, try the lower button. You may get the response:

nn nn nnnn  (*nnnn represents hexadecimal numbers =)
MOTOROLA

If you get the second response, but not the first, then your HP terminal emulator has either a bad
connection on its input channel, or it is not responding properly to the Motorola s ID request.
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7.4.4.1 The Main Command Level

When you have the above response, you are at the main command level found in the ROM resident
software of the DPU. The software structure of the DPU diagnostic test programs is centered around the
concept of tree of command levels. At each level one has a menu of one letter commands available which
either invoke self-contained test routines or provide a descent to another command level.
Organizationally, each command level is considered to offer commands associated with the testing of a
section of the machine. At each sublevel, the control C may be typed to return to the main command level.
If a ’question mark’ is keyed, the menu of available commands at the active sub-level is printed. An escape
interrupts any test in progress and returns the program to the command interpreter for the last active

sub-level.

At the main command level, the following menu of commands are available at this level in the Motorola

software:

RAM LADEN  (* german for load rams)
BOOT & GO
LOAD MOTOROLA
MEM DUMP
INSPECT

GO

TYPE CTRL
MAIN STORE
EXEC

DEVICES

TEST

MICRO MEMORY

LA KU <D= mrOC

Each of these commands is invoked by typing the single character at the start of the menu line. It is
possible to enter a hexadecimal number before typing the command character. Execution of the
subprogram begins immediately after typing the command character. A carriage return is not necessary.
Some of the subprograms expect an additional constant to be typed after the command. This may give the
illusion of not having begun the execution of the subprogram as there will be not indication to prompt the
user, but this is not so. The second hexadecimal number will actually be requested by the subprogram.

7.4.4.2 Functions at the Main Command Level

The commands U,0,L,P,1,G,Y invoke functions found in the DPU ROM. The functions performed by
each of these commands are:

U RAM LADEN

The subprogram will issue commands over the serial interface to read a binary file from the
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terminal. It expects to receive a binary file in the special, modified Motorola S-format which is
used for microprograms. The file will be loaded into the writeable control store (if one is
installed).

O BOOT & GO

This command will cause the DPU to emit a master reset pulse to the Lilith system and start the
processor in execution at microinstruction address 000 which is the normal starting address for

a’boot’ from the disk.

L LOAD MOTOROLA

This subprogram will issue commands over the serial interface to read a binary file from the
terminal. It expects to receive a binary file in standard Motorola S-format which it will load into

the RAM storage of the DPU. The file should contain an executable Motorocla 6800 program.

P MEM DUMP format: startaddress 'P’

The subprogram will give a hexadecimal listing of the contents of the Motorola memory
beginning at the given address. This command is included in the resident software to help in

the debugging of Motorola test programs.

I INSPECT format: address ’T’
This command must be preceded by an address or the value zero is presumsd. The command
allows the inspection of the Motorola memory contents at the given address. The value will be
printed on the same line immediately after the command. If the user wishes to change the value
of this location, he must first type a '’ followed by a byte value in hexadecimal. if the user
wishes to terminate the inspection sequence, he ends the number with a carriage return or

space. If he wishes to inspect the next memory location, then he types a comma.

G GO format: startaddress ’G’ stopaddress
This command causes the Motorola to begin execution at the hexadecimal address typed prior
to the command. The program will set a breakpoint at the second address. If the start address
is omitted, then the last breakpoint address is taken as the start address. If no second address

is given, then a carriage return must be typed after the command to cause the transfer.

CAUTION: the start address and the stop address must always be different. It is impossible to
execute a loop n-times by omitting the start address and giving the same stop address each

time.

Note: This command is especially useful to stop a test program at a point in execution where
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the error condition can be checked with a probe or scope. The stopping point of a test program

after it has detected an error does not always occur at such a point. Sometimes, in the process

of detecting an error, the program must execute instructions beyond the actual error point.

Y TYPE CTRL

format: number’Y’

The number given before the command selects printing options for the execution of test

programs. The options are:

0:

The commands listed above all perform a function and return to the same command level for the next

command.

no messages

type error and end of test messages

type error messages only

type error and end of test message; stop on error messages

type error and end of test messages;

on error, give a pulse on pin nann

7.4.43 Sublevel Entry Commands at the Main Level

The commands: S,X,V,T,M are used to descend to lower command levels. These commands are intended

to invoke programs which will be found in RAM memory. Consequently, these commands will not

function until after the programs have been loaded. You may do this by typing 'L’ (for load). At this

point you will see the cassette drive begin to read if you have an HP terminal or the program HPTerm will

prompt: file>. You may type the name of a valid Motorola binary file. At the time of writing of this

manual, the files ex. MOT, alu.MOT, and ifu.MOT are the only ones which have been prepared for the

6802.

(rcomment: There are also two other programs which have been prepared for use with the DPU. These
two files, hwtest MOT and dsktest. MOT, are in Motorola S’ format, but the files are in Lilith native code.
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They can be loaded through the Motorola, but are executed directly by a functioning Lilith processor. The
current version of the program HPTerm on a Lilith will load all of these files into core automatically as the
program begins and thereafter they may be loaded from core each time rather than disk. To do this, use
the names: ex, alu, ifu, hw, or dsk. The HB disk may be turned off after the program HPTerm is
operating#)

When a test program is loaded, jump addresses are inserted to allow the use of the remaining five
commands at the main level command menu. These commands do not perform any testing functions
directly. They are the entry point to a new level of commands. These new levels of commands are called

sub-monitors.

S MAIN STORE
This command causes descension to a sub-monitor supporting a commands which can inspect
and load the main memory of the Lilith. This cotlecticn of programs is found in the file ’ex.MOT’

(ex’ in HPTerm).

X EXEC
This command causes descension to a sub-monitor which supports commands allowing
execution and observation of individual Lilith microinstructions found in the normal control
store. The use of these commands are most beneficial in the debugging of new micreprograms
as well as for use with the diagnostic programs written in Lilith microinstructions. This

command becomes active when the file ’ex.MOT is loaded {’ex’ in HPTerm).

V DEVICES
This command causes descension to a sub-monitor supporting test programs which exercise
the various 170 devices of the Lilith. The programs are only use for testing the devices for

proper functioning. These programs are loaded with the file ’ifu.MOT’ (’ifu’ in HPTerm).

T TEST
This command causes descension to one of two sub-monitors supporting test programs to
exercise and check the Lilith processor. The sub-monitor activated is that of the last file
loaded, either ’alu.MOT’ or ’ifu.MOT’ (alu’ or 'ifu’ in HPTerm). Because of memory size
limitations, it is not possible to have both sets of test programs in memory at the same time.
There are a set of commands common to both files. In general, the commands of 'alu.MOT’ are
associated with testing the MCU, ALU, and main memory. The file’ifu.MOT’ has the commands

to test the IFU, the writeable control store, and the {/0 devices.
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M MICRO MEMORY

This command at the main level causes descension to sub-monitor supporting commands to
load, examine, and error check the control store--ROM or writeable. This section of the test

software is ioaded with the file 'ex.MOT’ ('ex’ in HPTerm).

7.4.5 Library Primitives Resident in the DPU ROM

To enable test programs to be quickly written and to reduce debug time, a set of primitive operations
for DPU testing of the Lilith was selected and included as part of the ROM memory of the DPU. These
primitives provide the basic operations used in all the testing programs that have been written up until the
time this manual is being written, These primitives have proved so useful that the actual test programs
themselves are almost nothing more that a sequence of procedure calls and data definitions for the
arguments of these procedure calls. It will be of value to describe this set of primitives in this manual for
the benefit of the maintenance engineer who has found a fault in his machine. The error message from the
DPU test program will direct him to the procedure in the listing of the test program which is detecting the
error. There the maintenance engineer will find a commentary in the form of a Modula-2 program which
describes the function of the procedure, and he will find the 6802 assembly language program for that
procedure which will consist, for the large part, almost entirely of procedure calls to these primitives. As
an illustration, some of the more important primitives are:

STUPC EQU  ecCac2

ok ok STORE MICRO PROGRAM COUNTER

* PREPARES MICROCONTROLLER FOR EXECUTION AT ADDRESS IN X
* UPC: =X

EXX EQU eC117

*okk EXECUTES MICRO INSTRUCTION POINTED TO BY X

* “ X POINTS TO MOST SIGNIFICANT BYTE

* MOST SIGNIFICANT BYTE HAS LOWEST ADDRESS

* X IS INCREMENTED BY &

RCPU EQU  0OC1FO

*ok ok READ CPU DATA BUS

* B GETS TOP HALF

* A GETS BOTTOM HALF

WCPU EQU  @C1F7

EAk WRITE CPU DATA REGISTER

* CPU BUS REGISTER := B#256 + A

* DATA IS GATED TO BUS WHEN SOURCE 13 IS ADDRESSED
EPMIR EQU  0Ci15F

ok ko ENABLE PERSONAL COMPUTER MIR REGISTER

EDMIR EQU  0C158

EELLT DIAGNOSTIC PANEL MIR REGISTER IS ENABLED
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LDMIR EQU  @C11D

ook ok DIAGNOSTIC PANEL MIR REGISTER IS LOADED WITH

* DATA POINTED TO BY X

* MOST SIGNIFICANT BYTE HAS THE LOWEST ADDRESS

* X IS RETURNED INCREMENTED BY &

* RETURNS WITH DIAGNOSTIC MIR REGISTER ENABLED

* NO CPU CLOCK PULSE IS GIVEN

* USEFUL TO GATE DATE NON-DESTRUCTIVELY TO CPU BUS

MCLK EQU  0C1AC
ok ok x SEND ONE MICRO CLOCK PULSE (DISABLE CPU CLOCK)

The above is an exerpt from the definition listing placed at the start of each test program. The complete
repetoire of commands is contained in the first few pages of each test program. The complete listings for

these test programs are given in Appendix F at the end of this manual.

7.4.5.1 The Error Printout Procedure of the DPU Resident Software

A common error reporting procedure is available in the DPU ROM for the use by all test programs.
The procedure is programmed to be called by the software interrupt feature of the 6800 (SWI command).
The program prints out a message utilizing as error source identifiers the strings stored in the program
variable MAIN.ID and SUB.ID. It prints out as well the values in hexadecimal for the registers B,A, X,
and PC in that order. A typical error message would appear as follows:

ERROR IN ALU STACK 00 01 0003 2647
which is to be understood as
ERROR IN -MAIN.ID=ALU, SUB.ID=STACK, B-=00, A=01, X=0003, PC=2647

The interpretation is dependent on the error routine which discovers the error but the normal usage of the
routine has the expected value in the B and A registers with the actual value in the index register. The
program counter value will contain the address immediately following the SWI instruction in the program
used to invoke the error printing procedure. The diagnostic procedure to follow upon encountering such
and error is to study the listing and the operations being tested. Then, use either the stop-on-error typeout
control or the GO command with breakpoint to get the processor into a state where the error cause can be

determined with a logic probe or scope.

For greater convenience, an appendix will at some time be generated for this manual which will suggest
possible faulty chips or areas to test for each error message which can possibly be generated by the test

programs.
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7.4.6 Getting Started Quickly with the alu.MOT and ifu.MOT Test Programs

Before going into detail about the many capabilities of the test programs in the aluMOT and ifu MOT
files, an abbreviated version of the necessary commands will be presented which will allow the
maintenance engineer to quickly get the tests into operation without unnecessary and time-consuming

study of this manual.

Once the ALU or the IFU test program (alu.MOT or ifu.MOT) is loaded, the next step is to move to the
test program command level by typing a *T" (for hwtest) at the monitor command level. If all has worked
correctly, typing a *? will display an entirely different selection of commands from those available at the
main command level. (scomment:If you need to return to the main command level, you may type a
*control ¢’ at any time, except when using the program HPTerm. Since ’control ¢’ is used in the Lilith to
abort a program and dump the contents of memory, ’control z’ is used instead in the HPTerm

program.s)

The quickest way to determine if any errors exist in the machine (errors which can be detected by this
program) is to type the command °X’, which executes continuously a chain of the moest important test
subprograms in this program. If there are any detected errors you will encounter error messages.
Otherwise, you will see only the ’END OF TEST’ messages. After a while the messages will repeat
themselves indicating that an entire cycle has been completed. If there are any error messages then the
program listing must be consulted to determine further details about the nature of the error message.
Appendix 3 written by Jirka Hoppe gives information about the use of each test program and the

interpretation of the error messages. This appendix should be consulted when errors are encountered.

Using the DPU to Load Lilith Programs and Execute Them.

The executer program provides a number of commands for manual control of Lilith execution, i.e. single
step of micro and m-code instructions, as well as the capability to view the state of the Lilith registers in
between each operation. An example of the usefulness of this program is the loading and execution of
programs in the Lilith entirely through the Motorola and without the use of the operating system or the
disk.

As an example of how this may be used, we will discuss the use of the executer program in running the
program disktest, which is written in Modula-2. If the Lilith disk or disk interface is not functional, then
this program can provide greater diagnostic capability in determining the error. The reason for its greater
capability is, of course, to be attributed to the fact that the program could be written in Modula-2 rather
than 6802 assembly language. Also, it operates at the speed of the Lilith processor rather than the 6302.

To load a Lilith program, through the DPU, one must first load the executer file (ex.MOT or ex) which
includes the subprogram--’"STORE’, the subprogram STORE is reached by typing an ’S’ after loading the
file ’ex’. The menu for the STORE program (type °7’) also includes a "load’ command which will load a
file in Motorola ’S’ record format. This command loads programs into the Lilith memory, instead of into
the DPU memory. After loading the file; dsktest. MOT, the user returns to the main command level with a
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’control ¢’ Ccontrol z’ in HPTerm).

Now that a Lilith program has been loaded into the Lilith memory with the *store’ subprogram module,
the next step is to start the program properly using the *executer’. We reach the ’executer’ command level
from the main command level using an ’x’ command.

Now to start the program in main memory, the following sequence of instructions is used:

*R  to reset the entire Lilith system
*1P 10 set the microcode program counter to address 001

*G  fo start the Lilith processor at full speed (30)

At this point the Lilith processor should be operating and looking for instructions coming in through the
170 connector on the back of the machine. To operate this program, reconnect the terminal cable from the
DPU connector to the I70 connector and type a question mark. If everything is operating correctly, the
Lilith should respond with a menu of instructions which will be described in the description of the
program ’dsktst’. If there is no response, first repeat the load procedure to assure no mistake has been
made, then retest the processor with the DPU programs to see if some error exists in the Lilith processor
itself.

Debugging Microcode with the Executer

The executer program is also usable to control and analyze the execution of micro- instructions on a step
by step basis. An example which illustrates its use is that of adding a new special purpose M-code to the
system.

If the reader is not familiar with the mechanism for invoking special M-codes in Modula-2, he is
directed to the explanation of this topic in chapter 12 of the Lilith Software Manual. See, for example, the
method to use GET and PUT.

In order to provide a new microinstruction, the Lilith must have the entry point for the instruction
programmed into the map ROMs of the MCU and the necessary micro-program for the M-code included
in the microinstruction ROMs for the micro control unit. The MCU board is equipped with jumpers so
that EPROMs can be used for control store while new micro code is being debugged. However, the clock
of the machine must be set to a slower rate when EPROMs are used.

The following technique is suggested for testing a new M-code instruction:

1. Prepare test software in Modula-2 for the new instruction using the
facilities of the Lilith operating system, and compiler, and utilities.

2. Add a single micro instruction at the start of the micro instruction
sequence for the new M-code which causes the machine to loop with a
'jump to here' instruction.

3. Install the DPU and connect the external HP terminal or a computer
system with software.

4. Load the executer program and give the boot command, 'o', Toading the
disk operating system.

5. Run the prepared test program until the machine executes the new M-code
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and ends up in the infinite loop at the start of the new M-code instructi

Using the executer program in the DPU, halt the processor with a 'H' comm

Use the commands of the executer to advance the microprogram address coun
past the infinite lcop and single cycle through the microprogram of the n

instruction.

Use the features of the executer to verify the correct performance of eac
microinstruction as it is executed.

The full set of operations provided by the executer program is given in the following table:

R

0

nP

U

nh

T

nX

nS

nl

nY

RESET1

BOOT + GO

SET uPC

DISPLAY uADR+uINSTR
NEXT uINSTR

TRACE REG

SINGLE STEP

EXEC UNTIL STOP ADR
GO

HALT

INSPECT

BYTE INSPECT

give reset signal to entire Lilith processor

reset processor and start boot from disk

set 2911 microcontrol unit to 'n'

displays state of microcontrol unit

gives 'n' clock pulses, executes 'n' microinstructions
prints out 2901 register values

executes next 'n' M-codes (multiple microinstructions)
executes microinstructions until uADR = nnnn

places precessor in RUN mode

takes processor out of RUN mode

digsplaces contents of main store memory Tocation 'n’

displace contents of main store memory addressed by
byte address 'n'

The above commands constitute a very complete set of control steps for activating and examining the
operations of the microcontrol unit. For a more in-depth explanation of the functions controlled by the
executer commands, the reader is directed to the chapter which discusses the circuitry and theory of the

MCU.




Appendix A
Input/Output Interfacing Guide

The purpose of this section is to describe the input/output address decoding logic and provide the
LILITH computer owner adequate information for the design, construction, and debug of an interface
between the Lilith and an external piece of equipment. The function of such an interface is the reliable
transfer of data into and out of the LILITH.

A.1 Types of Interfaces

The LILITH architecture is designed to accomodate two types of interfaces: Programmed 170 (PIO)
and Direct Memory Access (DMA). PIO interfaces are in general less complicated to design and construct,
but offer less performance with respect to transfer rates. They do, however, offer more versatility in their
use and are generally the better cheoice for device interfaces which do not demand high rates of data
transfer. DMA interfaces are used for high speed devices as disks, networks, or laser printers.

A.2 Selection of Interface Type

PIO Interfaces are characterized by data transfers which occur whenever a program explicitly specifies
the transfer. In contrast, a DMA interface, once initialized, will transfer data whenever it can without
respect of the current state of program execution. Such a transfer represents a direct read or write cycle
request to the LILITH memory. The LILITH memory request arbitrator can initiate such requests every
500 nsecs. In the case of the display processor, a 64 bit transfer is requested at an average time interval of
A usecs which is equivalent to a transfer rate of 1,425,600 bytes/second. A PIQ interface could clearly not
be used for such a function because full processor dedication to data transfer would yield transfer rates in
the order of 200,000 bytes/second.

A.3 Software for Interface Control
For the support of PIO interfaces, the Lilith has two special M-code procedures, GET and PUT. In
order to include these procedures into a program, the programmer must define them as code procedures.
This topic is covered in chapter 12 of the Lilith Software Manual. Such a definition has the form:
PROCEDURE GET(channel:CARDINAL; VAR info:WORD);

CODE 240B;
END GET;

PROCEDURE PUT(channel:CARDINAL; info:WORD);

CODE 2418B;
END PUT;

When this definition has been included in a beginning of a module, the procedures GET and PUT will be




recognized within the body of that module.

Use of GET and PUT

To use these procedures, one must include within the body of the program a procedure call including
the necessary parameters. Two parameters are required for either procedure specifying the source (GET)
or destination (PUT) input/output device and the data variable to provide (PUT) or receive (PUT) the
transferred data. A instance of GET or PUT usage would have an appearance similar to the following:

GET(deviceaddress,destinationvariablie);

PUT(deviceaddress,sourcevariable);

Execution of GET

For the GET procedure, the symbelic parameter *deviceaddress’ (shown above) must be either a
constant or variable having a value equal to the assigned address of the 170 device. During execution of
the procedure, this value will be fetched from the parameter stack, and transmitted over the bus to the 170
selection register. The device agsigned this address will then respond with a word of data to be stored in

the destination variable.

Execution of PUT
For the PUT procedure, the device address is processed in the same manner as for GET. Then, the

selected device receives the contents of *sourcevariable’ given as a parameter in the procedure call.

A.3 Example 170 Program

The following example program module will illustrate the usage of GET and PUT within a program:

1 MODULE UARTDriver;

2 FROM SYSTEM IMPORT GET,PUT

3 EXPORT QUALIFIED GetUARTChar, SendUARTChar;
4 PROCEDURE GetUARTChar(var ch:CHAR);
5 CONST uartstatusaddr = 5

6 uvartdataaddr = 6;

7 uartreceiveready = 0;

8 VAR status:BITSET;

9 BEGIN
10 REPEAT
11 GET(uartstatusaddr,status)
12 UNTIL vartready in status;
13 GET(uvartdataaddr,ch);
14 END GetUARTChar;
15 PROCEDURE SendUARTChar(ch:CHAR);
16 CONST uartstatusaddr = 5;
17 uartdataaddr = 6;
18 uarttransmitready = 1;

19 VAR status:BITSET;




20 BEGIN

21 REPEAT

22 GET(uartstatusaddr,status)

23 UNTIL uvarttransmitready in status;
24 PUT(uartdataaddr,ch);

25 END SendUARTChar;

26 END UARTDriver.

Example Description

From a functional standpoint, the above example program module provides procedures which receive
and send a character through the UART (RS-232C) serial interface. For control of the UART, the UART
interface has two input/output addresses which respond to the procedures GET and PUT. One of the
addresses, which is referenced in program lines § and 16, returns status information of the receiver and
transmit portions of the UART. Notice the usage of the BITSET construct to determine the "ready” state
of each section of the UART. The second input/output address allocated to the UART interface reads the
data from the receiver if a GET operation is specified, or transfers a byte to the transmit portion of the
UART if a PUT operation is specified. By way of explanation, GET and PUT operations using the data
address also alter the state of the ready bits within the status of the UART. This is a characteristic of the
UART used in the interface. '

A.5 Implementation of GET in firmware

The microcontrol firmware implements the transfer of data specified in the GET procedure. The
mechanism is straightforward. First the address of a data variable is "popped’ from the stack. Then the
170 device selection code is taken from the next level of the stack and transmitted to an 170 selection
register. With the correct device selected and responding to a command for data to be placed on the CPU
bus, the controller directs the data to the memory data register of the memory port. In the next
microcycle, the controller sends the address of the data variable to the memory port initiating a write cycle

to store the device data into the data variable given as a parameter in the procedure call,

Implementation of PUT

The mechanism for the handling of the 170 Device Selection Code is identical to that for GET. Only
the transfer of data is different since it must go the opposite direction. The data variable (or possibly the
constant) given as second parameter then captures the correct data from the bus which received it from the

selected device.




A.6 Slow Data Transfers

The data transfer for GET and PUT takes place over the 16 bit BUS. Normally a 16 bit word is
transferred over this bus in a single 150 nanosecond cycle. For GET and PUT 170 transfers, the actual
transfer uses 4 microprogram cycles instead of just a single cycle. This provides a total time of
approximately 600 microseconds for the data transfer. The purpose in extending the time the data
occupies bus is to accommodate peripheral devices which cannot adequately respond in a single cycle.
Both the disk interface and the RS-232 UART interface require the longer period of time for a data

transfer.

Timing of the Slow Data Transfer for GET and PUT

The timing for a GET and a PUT data transfer relative to the CPUCIk.U cycle are given in figure A.1.
Five clock cycles are necessary to complete the transfer. In the first cycle, the 170 device selection code is
placed on the bus and transferred to the 170 address register on the CPU Data Port circuit board. Then
the actual data is transferred during the next four CPUCIk.U cycles. The 170 device selected by the
address given during the first cycle receives or provides the data of the transfer operation during the last 4

cycles.

Control Signals from the MCU

Three signals from the Microprogram Control Unit (MCU) control the source and destination selections
for the CPU data bus during an 170 operation. They are: Dst=I0A.L, Dst=IOData.l, and
Src=I0Data.L. Dst=I0A.L (unabreviated: Destination = Input/Output Address asserted low) cause the
bus data to be loaded into a register for use with the other signals. This signal is logically combined with
Dst=I0Data.L and Src=I10Data.L to create individual command signals for the each device separately.
In this manner, an I/0 device can be unambiguously directed to place or sample data on the CPU bus.

I0Clock

The timing signal, CPUCIk.U, has a period of 150 nsecs normally, and it occurs 4 times during a GET or
PUT M-code execution. An I/0 interface needs a clock signal, but it should be a single pulse and for
many devices it needs to be longer than 150 nsecs. For this reason, a circuit on the DATA PORT card
creates a signal called I0Cleck which can be uged by an I/0 interface to synchronize the transfer of data
between the interface and the computer. The timing relationship of IOClock.U to a GET or PUT
operation is shown in the figure A.1,

I0Cleck During GET
The signal, I0Clock.U, is generated during the GET operation as well as the PUT operation, but it is




not used to capture data from the BUS into one of the ALU registers (this function is handled by
CPUCIk.U as part of a normal microcycle). IOClock.U can be used, however, by the selected device
during a GET if a further action in the interface needs to be initiated by a data read operation. In the case
of the UART interface, the four cycle GET operation for the incoming data clears the "ready” status of the
interface as well as gathers the received character. I0Clock.U is used for this function because it a signal
without ambiguity in contrast to the use of Src=I10Data.L which is subject to transient fluctuationswith the

start of each microcycle.

170 Address Register

Selection of the 170 device to be used as the object of a GET or PUT operation can be handled in two
ways: by direct decoding of the selection address given with each PUT or GET operation, or by response
to decoded signals generated from the CPU Data Port card. In either case, the I/0 selection code begins
as a value passed as a parameter in either a GET or PUT procedure call. The value is located in the
evaluation stack and is transferred onto the BUS and into a holding register in a single and normal
microcyle. In this cycle, the bus destination is given by asserting the low level of Dst=I0QA.L. Devices
which are to be selected in this manner must constantly "monitor” for a transfer of this kind and thereby
capture in an 170 Address Register the newest selection code from the bus with the assertion of each
Dst=IOA.L signal. The normal CPUCIk.U provides the properly timed transition to load the data into a
register. With the selection code captured in a register, the device, if selected, can then respond to the four
cycle data transfers controlled by the signals: Src=I0Data.L and Dst=I0Data.L (figure A.2).

Decode of I70 Address

Capture of the 170 selection codes as described in the preceding paragraph is done precisely in this
fashion by circuitry located on the CPU Data Port card. Figure A.2 shows the logic for address decoding
on this card. These selection codes are further decoded into bank selection signals creating a single
selection signal for groups of eight I70 addresses. These signals together with the three least significant
bits of the address selection code are available on the backplane and may be utilized by 10 interfaces
thereby eliminating the need for extra decoding logic. The location of these signals is given in the

following table.
Signal Pin Signal Pin
Bnko.L BS2 10A0 BR1

Bnk1.L AD1 I0A1 BH2




Bnk2.L AE1 I0A2 BS1
Bnk3.L AE2 CPUCTk.U BH2
Bnk4.L AF1 10Clock .U AT2
Bnk5.L AF2 Dst=I0A.L BA1
Bnk6.L AH1 Dst=IGData.L BB1
Bnk7.L AH2 SrcmIGData.L  BC1

Table 1: Back Panel Pin Assignments of 170 Signals (CDP card)

Preassigned 170 Selection Addresses

Certain 1/0 selection addresses have already been assigned at the writing of this document. The
following table lists the allocation of these selection codes.

Address Input Device Output Device
@0 reserved for CDP Display
01 Keyboard Status reserved for CDP
02 Keyboard Data reserved for CDP
03 Mouse Buttons Real Time Clock
04 UART Xmit Data UART Receive Data
@5 UART Status reserved for CDP
06 Mouse X Coordinates Mouse Reset
07 Mouse Y Coordinates reserved for CDP
10 Disk Buffer Data Disk Buffer Data
11 Disk Status Disk Command
12 reserved for DSK Disk High Track
13 reserved for DSK Disk Low Track
14 reserved for DSK Disk Sector
15 reserved for DSK reserved for DSK
16 reserved for DSK reserved for DSK
17 reserved for DSK reserved for DSK

Table 2: Reserved I/0 Selection Codes

A.7 Direct Memory Access

Some 10 devices require data transfers at rates above those which can be managed by program usage of
the procedures GET and PUT. Or, at least, the rates are of such a magnitude that using GET and PUT for
such a purpose would absorb all of the available machine cycles and leave little extra for any sort of
computation. For such casgs, it is desireable to manage the device with the programmed mechanisms of
GET and PUT, but then give the device *direct access’ to the memory of the computer so that information
may flow through the interface to and from the main memory with as little computational overhead as
possible. In such cases, the philosophy behind the interface design is to allow the transfer of control




signals through the programmmed input/output procedures, and to allow the the transfer of data through
the “direct memory interface’ so that as little disturbance as possible is created by the passage of a data
word between an 10 device and the memory of the computer. In the case of the display processor, a PUT
operation is used to pass a memory address of the bitmap descriptor to the interface which subsequently
uses direct memory data transfers to fetch the data displayed on the screen.

An unusual feature of the LILITH is the optional choice of memory word size for data transfers from
the memory. For write operations to the memory one can transfer only 16 bits with each cycle, but with
"read"” operations it is possible to fetch in one cycle 64 bits if a greater transfer rate of data is desired. This
feature is in addition to the normal capability of transferring a single word of 16 bits per cycle. Obviously,
interfaces not requiring the greater bandwidth should be designed to use the single word data transfers so

that the number of data registers and back panel connections are minimized.

A DMA interface design is more complicated that a simple programmed input/output interface using
GET and PUT because of the complex timing relationships between the memory and the interface. There
are many timing and control signals which pass between the memory port and the interface. The manner in
which these signals must interact requires careful design to avoid malfunctions attributable to timing and
signal delays. The discussion of the CPU Data Port describes the design of such a memory port interface.
The timing circuitry found in schematic CDP 1/5 is a good example of a correctly designed interface which
should be studied and emulated wherever possible.

There are two choices for memory word size if a read DMA operation is being performed. The
interface may either receive 64 data bits, or only 16 bits. The selection of the mode is controlled by a
signal line which the interface must assert when it is selected for a memory cycle. The capability to read
either 64 bits wide 61' 16 bits is quite useful and versatile. For the display controller, it was naturally
selected to read 64 bits wide so that fewer display refresh accesses were necessary. For a disk interface,
one would choose the 16 bit read option and reduce the component count of the interface even though four
times as many memory cycles are necessary for a transfer. In this case, a value judgement determines that
the data rates are sufficiently slow that the reduced component count is of greater interest. On the other
hand, the laser printer interface was very complicated and could have benefited from a reduced component
count, but the extreme rate of data transfer demanded the use of the 64 bit data width merely to keep up
with the voracious appetite of the printer.




Appendix B
M-code Instructions

When this document is prepared, it will explain in tutorial fashion the M-code instructions of the Lilith
virtual machine. The reference document which defines the characteristics of each instruction is found in
Appendix C. This document is written in Modula-2 and is the basis for interface between the compiler
writer and the microprogrammer. The microprogram listing found in Appendix D is the implementation
of the interpreter defined in Modula-2. It is written in 40 bit microcoded instructions executable by the
Lilith hardware. Should there be any error in the performance of the Lilith (other than a hardware error),
it must be first proven whether or not the error is in the microprogram or in the M-code definition. If
there is an error in the M-code definition, then the compiler writers, Christian Jakobi and Leo Geissman,
must be consulted in the correction. Microprogram errors should be brought to the attention of Werner
Winegar.




