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Abstract

The personal work station offers
significant advantages over the large-
scale, central computing facility accessed

terminal. Among them are
reliability, simplicity of
operation, and a high bandwidth to the
user. Modern technology allows to build

systems for high-level language programming

via a
availability,

with significant computing power for a
reasonable price.
At the Institut fur Informatik of ETH we

have designed and built such a personal
computer tailored to the language Modula-2.
This paper 1is a report on this project
which 2ncompasses language design,
development of a compiler and a-single-user
operating system, design of an architecture
suitable for compiling and yielding a high
density of code, and the development and
construction of the hardware. 20 Lilith
computers are now in use at ETH.

A principail theme is that the requirements

of software engineering influence the
design of the language, and that its
facilities are reflected by the
architecture of the computer and the
structure of the hardware. That the
hardware should be designed according to

the programming language, instead of vice-
versa, is particularly relevant in view of
the current trend towards VLSI technology.
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1. Introduction
Software Engineering builds upon two
pillars: methods and tools. Their
interrelation 1is strong. In order to apply
new - methods effectively, we nee the
appropriate toois. In order to build
supporting tools, we must master powerful
methods. Much effort has been spent on
improving our methods, particularly in
programming, and many discussions and
conferences have been .devoted to the
subject of furthering the state of the art
by applying more effective methods. This
includes a tendency towards the highly
mathematical treatment of programming, the
postulation of high-level languages for
programming large systems, the method of

structured programming, and the managerial

aspects of organizing the WOIK of
programmers' teams.

A1l of these areas are important; they form
the part of a whole. But perhaps none is 2s
important as the adeguate trainina of the
individual team number into a nabit of
systematic thinking. No team can oo
successful without all its members haing

trained to regard programming as a hignly
logical and mathematical activity. And the
success of a mathematical treatment rests
largely on the use of an adequate rctation,
i.e. programming "language". The designer-
of algorithms might be content with the
adequate notation and regard it as his only
tool needed. However, our subject at large
is not the design of algorithms -or
programs, but the .design of machines. We



must regard programming as . designing
machinery, for programs turn "raw hardware"
into that machinery which fulfils the

specified task.

Obviously a good notation must therefore be
supported by an excellent implementation,
just as a good mathematical framework for
program design must be supported by an
appropriate notation. Moving one step
further, the notation's implementation must
be supported by an appropriate computer
system. The measure of its quality not only
includes aspects of computing power, cost-
-effectiveness, and software support (the

so-called programming environment), but
also a simplicity and perspicuity of the
entire system, 2 convenience to use the
system, a high degree of availability, and
-~ on the more technical side - a high
bandwidth of information transfer between

computer and programmer. The latter aspects
point in the direction of a personal work
station in contrast to the remote, time-
shared, large-scale computing facility.

semiconductor
made it possible to
programming language
with excellent support facilities on
relatively small computers that are very
inexpensive compared to conventional large
computing installations. The fact that the
mechanisms for sharing a computer - and in
particular that for  protecting the users
from the mistakes of others - can be
discarded, reduces a system's complexity
drastically, and thereby improves both its
reliability and perspicuity. The
possibility to implement modern, high-level
languages on relatively small non-shared
‘computers was perhaps the most significant
"discovery” during the last five years. A
personal computer, programmable in such a
language, constitutes, in my opinion, a
necessary tool for the creative software
engineer of the future.

Fortunately, modern
technology has

implement a modern

2. Project history and overview

The decision to design and build a personal
computer as motivated above was made in the

fall of 1977, after the author had learned
to appreciate the advantages of working
with an Alto computer [1]. The project

included the following principal parts [2]:

- design of the programming language
Modula-2.
- implementation of a multipass compiler

suitable for relatively small computers.
- development of a basic, single-user
operating system, including a file system
and a linking loader.
- CGesign and implementation of a modern,
flexible text editor taking full
advantage of the computer's capabilities.

414

- implementation of a set of basic utility
programs for file directory inspection,
copying, renaming, deleting, and listing
files. )

- programming and implementing an
appropriate set of library modules for
file handling, access to peripheral
devices - in particular the display - and
storage management.

- designing a suitable machine architecture
as ideal interface between compiler and
hardware, and programming this
architecture in microcode.

- design of the hardware capable of
efficiently interpreting the microcode
and supporting the desirable peripheral
devices.

- building two prototypes of the designed
hardware, and modifying them according to
insight gained from the concurrent
development of hard- and software.

- building a series of 20 computers,
debugging and testing them.

- writing documentation and user manuals.

The language Modula-2 - the notation in
which this system presents itself to the
software engineer - was designed as a
general system programming language {31.
The guiding principle was that - this
language would be the only language

available on the computer. Especially, no
assembler would be available, and hence,
the language should be suitable for both
high-level programming in a machine-
independent manner and low-level
programming of machine-particular aspects,
such as device handling and storage
allocation. In fact, the entire operating
system, the compiler, the utility programs,
and the library modules are programmed
exclusively in Modula-2.

The compiler is subdivided into four parts.
Each part processes the output of its
predecessor in sequential fashion and is
therefore called a pass. The first pass
performs lexical and syntactic analysis,
and it collects identifiers, allocating
them in a table. The second pass processes
declarations, generating the so-called
symbol tables that are accessed in the
third pass to perform the type consistency
checking in expressions and statements. The
fourth pass generates code. Its output is
called M-code.

The operating system is conceived according
to the concept of an "open®" system {4]. It
is divided into three principal parts,
namely the linking loader, the file system,
and routines for keyboard input and text
output on the display. The file system maps
abstract files (sequences of words or
characters). onto disk pages and provides
the necessary basic routines for creating,

naming, writing, reading, positioning, and
deleting files. Both, loader and file
system present themselves to the Modula-2



programmer as modules (packages) whose
routines can be imported into any program.
whenever a program terminates, the basic
operating system activates the command
interpreter which requests the file name of
" the next program to Dbe loaded and

initiated.

The computer as "seen by the compiler" |is
implemented as a microprogrammed
interpreter of the M-code. The M-code is
designed with the principal
obtaining a high density of code and of
making the process of 1its generation
relatively systematic and straight-forward.
Although space is definitely the scarcer
resource than time, a high density of code
is desirable not only in the interest of
saving memory space, but also for reducing
the frequency of instruction fetches. A
comparison between two different, but
strongly related compilers revealed that M-
code is shorter than code for the PDP-11 by

a factor of almost 4. This surprising
figure is clear evidence of the
inappropriate structure of "conventional”

computer instruction sets, including those
of most modern microprocessors that were
still designed with the human assembly
language coder in mind.

The actual hardware consists of a central
processing unit based on an Am2901 bit-
slice wunit, a multi-port memory with 128K
words of 16 bits. a micro-code memory of 2K

instructions implemented with PROMs, a
controller each for the display, the disk,
and a local network, and interfaces for the
keyboard, a cursor tracking device called
the mouse, and a V-24 (RS-232) serial 1line
interface. The central processor operates
at a basic clock cycle of 158 ns, the time

required to interpret a micro-instruction.
The most frequently occuring M-code
instructions correspond to about 5 micro-

instructions on the average.

The display is based on the raster scan
technique using 594 lines of 768 dots each.
Each of the 456'192 dots is represented in

main memory by one bit. I1f the entire
screen is fully used, its bitmap occupies
28512 words, i.e. 22% of memory. The
representation of each dot (picture

element) in program accessible main memory
makes the display equally suitable for
text, technical diagrams, and graphics in
general. In the case of text, each
character is generated by copying the
character's bitmap 1into the appropriate
place of the entire screen's bitmap. This
is done by software, supported by
appropriate microcoded routines,
corresponding to special M-code
instructions. This solution, in contrast to
hardware character generators, offers the
possibility to wvary the characters' size,
thickness (boldface), inclination (italics)
and even style. In short, different fonts

goals of

can be displayed. This feature, which |is
particularly attractive for text
processing, requires a substantial amount

of computing power to be available in short
bursts. The writing of a full screen, i.e.
conversion of characters from ASCII code to
correctly positioned bitmaps, takes about:
1/4 second. Using a small font, a full
screen may display up to 18'080 characters.

The disk used in this personal computer is
a Honeywell-Bull D-129 cartridge disk with
a capacity of 18 MBytes and a potential
transfer rate of 728 'kB/s, which results in
an actual rate of 68 kB/s for reading or
writing of sequential files. Disk sectors,
each containing 256 Bytes, are allocated in
multiples of 8 on the same track.
Allocation is entirely dynamic, and hence
no storage contraction processes are needed
to retrieve "holes". The use of
exchangeable cartridge disks in contrast to

sealed (Winchester) disks has been
considered as essential in order ‘that a
work station may be used by different

people at different times without reliance
on the existence of a network and a central
file store.

The mouse is a device that transmits
signals to the computer which represent the
mouse's movements on the table. These
movements are translated (again by
software) into a cursor displayed on the
screen. The accuracy of position is as high
as the resolution of the screen, because
the feedback from cursor to mouse travels
via the user's eye and hand. The mouse also
contains three pushbuttons (keys) which are
ccnvenient for giving commands while
positioning the mouse.
.

The various principal parts of the projects
were undertaken more or less concurrently.
The team consisted of 8 (part time) people
in the average (not counting the production
of 28 machines), and was small enough to

require neither . management staff nor
‘methods. The hardware was designed and
built by three engineers (including the
author), two computer scientists built the
compiler, one the operating system, one
implemented the microcode and most of the
editor. The software effort was based on
the use of a PDP-11/48 computer (with a 28K
store) and was initiated with the
development of a compiler for Modula-2
generating code for the PDP-11 itself. This
"preliminary" compiler development
constituted a significant part of the
entire software effort, and resulted in a
valuable software tool that had recently
been released for distribution. It also

made the development of the Lilith software
quite independent from the progress of the
hardware. Both the Modula-2 compiler for M-
code, the operating system, and even the
highly display-oriented editor were
developed on the PDP-11, and the subsequent
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transport to the Lilith computer proved to
be quite unproblematic due to programming
in Modula-2. In fact, the untested compiler
was transported and debugged (at least to
an acceptable degree) in a few days only.

development could
experience in

Whereas the software
profit from our previous
designing compilers and programming in
general, such was not the case in the
hardware sector, as our institute had
neither hardware expertise nor facilities.
To gain experience and develop such
facilities was, however, a prime challenge,

and this project offered a welcome
opportunity.
From the start it was planned to base the

Lilith computer on the 2981 bit-slice
processor, because one-chip processors
available in 1977 did not offer the

computing speed required for the efficient
handling of the planned bitmap operations.
This decision proved to be a good one.
After 15 months of development, a first
prototype was operational (without disk),
proved to be too unreliable for extensive
use, but confirmed the sensibility of the
overall design. An additional year was
needed to produce two identical prototypes
which served to test the software that had
been developed in the meantime. In the
spring of 1988, a team was formed at the
Department of Electrical Engineering of
Brigham Young University in Provo, Utah, to
build a series of 20 Lilith computers. This
goal was achieved within 8 months by three
graduating engineers and with the aid of
student employees during the summer months.
The cost per unit, not counting the
development of the prototypes nor of
organizing the production effort, but
including 1labor and parts, in particular
the 18MB disk, was about SFr 28'0d0.

In the meantime, a few important
application programs were written at ETH,
including a text editor, an editor for
drawing circuit diagrams, and a window
handler module. Some sample pictures
jllustrating their use are shown in Fig 1.
They are printed with the same resolution

as seen on the screen.

3. Modules and interfaces in Modula-2

——— — - —— - -

Perhaps the
language for programming large

most important criterion of a
systems is

how well it supports program
modularization. The earliest facilities
introduced for effective program
decomposition was the concept of 1locality,

i.e. the restriction of the validity of
names (identifiers) to well-delineated
parts of the program, such as a block or a
procedure. This concept was introduced by
Algol 68 and adopted in Algol A8, PL/I, and
Pascal, among others. The range of validity
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is called a name's scope. Scopes can be
nested, and the rule is that names valid in
the scope's environment are also valid
inside it, whereas names declared within
the scope are invisible outside. This rule
immediately suggests a connection between
the range of visibility (scope) of a name
within the program text, and the time of
existence of the object associated with the
name: as soon as control enters the scope
(procedure, block),. the object must be
created (e.g. storage must be allocated to
a wvariable), and as soon as it leaves the
scope, the object can be deleted, for it
will no longer be visible. In spite of the
tremendous value of this locality concept,
there are two reasons why it is inadequate
for large programs.

- there is a need to hide objects, i.e. to
retain them while &they are invisible.
This calls for a separation of,visibility
and existence: visiblity as a property of

names, existence as a property of
objects.

- there is a need for closer control of
visibility, i.e. for selection of

names to be visible or
contrast to the
total environment

particular
invisible, in
"inheritance" of the
into a local scope.

have therefore added the
structure of a module to the structure of
the procedure. Both structures appear
syntactically as almost identical, but are
governed by different rules about
visibility of local names and .existence of
the associated objects:

In Modula-2, we

P1. An object declared local to a procedure
exists only as long as the procedure
remains activated.

M1. An object 1local to a module exists as
long as the enclosing procedure remains
activated.

P2. A name local to a procedure is
invisible outside the text of that
procedure, one visible in the
environment is also visible inside the

procedure.

M2. A name local to a module is visible
inside the module, and outside too, if
it appears in the so-called export list
in the module heading. A name visible
in a module's environment is visible
inside that module only if it appears
in its so-called import list.

From these rules, we can draw the following
conclusion: A module itself has no
"existence", since its local objects
inherit their lifetime  from the module’s
environment (procedure). Hence, the module
is a purely syntactic structure acting like
a wall enclosing its 1local objects and
controlling their visibility by means of
export and import lists. Modules therefore
need not be instantiated; there are no



1 000044 IMPLEMENTATION MODULE SilDisplay;

2 000044
3 000044
4 000044
5 000044
6 000044
7 006044
8 000044
9 000044
10 000044
11 000044
12 000044
13 000044
14 000044
15 000044
16 000044
17 000044

(*t :

FROM SYSTEM IMPORT WORD, ADDRESS e

FROM Program IMPORT AllocateHeap; 045615

FROM BitmapVars IMPORT BMD; nge error

FROM FileSystem IMPORT File, Lookup, Re |045642 PC
033073 error

45653 mask

CONST Height = 800;

167466 Tmask
TYPE
DispMode = (replace, paint, invert, erase
BlockDescriptor =
RECORD x,y,w,h: INTEGER
END ;
Pattem = ‘

RECORD length: CARDINAL;
w: ARRAY [0..15] OF BITSET;
END;

833117

841742

042042 042342
POEC0A  £26208
000008 802008

p80C6E 00008 000008 ©80BCO ~ BOANCO BBoCe.
$00098 PRCOBB BODCOD BODCR0 BBB0CO B00BB8
000000 ©OGCBB 000000 000000 0000BQ BOLBE8

Hnew fontd

Juhich window

{TIMESROMAN16 .FONT  done
_Hchange which window
Jchange window
Jpoint the diagonal
‘which window

4 write picture >Figl.PICT

o e 'jﬁﬁursor J RECORU IV YITI3T
* ol | Imap 4 RECORD at 833137
1k 4 RECORD at 833143
ursorPatB 17 RECORD at 833147
ursorPatl 17 RECORD at 933178
ickPat 17 RECORD at 833211
program at e 68 ARRAY at 833232
aveBlk » 4 RECORD at 833336
aveBMD 65388 CARDINAL

Fig.

1 Sample output from WindowHandler
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instances of a module. The module is merely
a textual unit.

A typical examplé of a module 1is the
following:
MODULE m;
IMPORT u,v;

EXPORT p,q;

VAR X: ...}
PROCEDURE p(...);
BEGIN ... X ..
PROCEDURE g(...);
BEGIN ... x ... END qg;
BEGIN .60 U cee X oo
END m

. END p;

This module owns three 1local _objects:
variable x and procedures p and q operating
on x. It exports p and q and hides x by not
exporting it. The body of the module serves
to initialize x; it is activated when the
environment of m 1is activated (created).
This example is typical, because it shows
how an object x can be hidden and how
access from outside is restricted to occur
via specific procedures. This makes it
possible to guarantee the existence of
invariant conditions on x, independent of
possiblie errors in the environment
accessing x via p and g. Such is the very
purpose of modularization.

The typical purpose of a module 1is indeed
to hide a set of interrelated objects, and
the module is often identified by - these
cbjects, e.g. a table handler hiding the
table, a scanner hiding the input stream, a
terminal driver hiding the interface, or a
disk system hiding the disk's structure and
allocation strategy.

The module concept as described above had
been introduced with the 1language Modula
{5]. Modula-2 extends this concept in two
important ways, namely by

- qualified export mode, and

- subdivision of a module into two textual
parts, the so-called definition and
implementation parts.

Qualified export serves to avoid clashes
between identical identifiers exported from
different modules 1into the same enclosing
scope. If an identifier x 1is exported in
qualified mode from a module m, then the
object associated with x needs to be
denoted as m.x. The qualified mode |is
therefore appropriate, if the writer of m
does not know the environment of m. This is
not the wusual case for nested modules;
individual members of a programming team
more typically design modules that 1lie on
the same 1level, namely the outermost, or
global level (that may be considered as
being enclosed in a wuniversal and empty
scope) . It is this case that . is
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particularly important in the design of
large systems, where a better separation of

the specification of import and export
lists from the description of the actual
objects is desirable.

Consequently, we divide a global module
into two parts. The first 1is called a
definition module; it contains the export

list and specifications of the exported
objects as far as relevant for the user
{client) of this module to verify the
adherence to language rules (in particular
type consistency). A definition module also
specifies the types of its exported
variables and the parameter lists of its
exported procedures. The second part is
called the implementation module. It
contains (usually) import lists and all the
details that need not concern the client,
such as the bodies of procedures. The
notion of textually separate definition and
implementation parts was pioneered by the

language Mesa [6]) and is here smoothly
integrated " with the module concept of
Modula.
Example:

DEFINITION MODULE B;
EXPORT QUALIFIED p,q;
PROCEDURE p(...);
PROCEDURE q(...);

END B.

IMPLEMENTATION MODULE B;
FROM A IMPORT u,v;
VAR X: ...;
PROCEDURE p(...);
BEGIN ... X ... U ... END p;
PROCEDURE q(...);
BEGIN ... V ... X ... END q;
BEGIN ... X ...
END B.

4. Coroutines and processes

e e -t . 7 o

With the design of the Lilith computer we
did not follow the fashionable trend to
design a system consisting of several co-
operating concurrent processors, thereby
avoiding one certain source of

difficulties, namely their synchronization.
The consequence for the language Modula-2
was that the concept of concurrent
processes played a minor role only, whereas
in Modula-1 it had been the major theme.
The primary idea had been to distinguish
the 1logical process from the physical
processor, allowing implementations to
choose their own mechanisms for allocating

processors to processes. Logical processes
are served by time-sharing the processors,
which may well have different

characteristics and capabilities. The
processes are implemented as coroutines,
and transfers of control between them are
implied in statements that send signals or



wait to receive signals, where the signal
is an abstract notion represented as a data
type. Each processor executes a sequence of

coroutine segments, and the processor
scheduling can well be hidden behind the
primitive operations on signals. The
principal difference between processes (as

in Modula-1) and coroutines (as in Modula-
2) 1is that the 1latter are explicitly
jdentified whenever a transfer occurs,
whereas processes are not, since transfers

are implied by sending a named signal to
some process which remains anonymous. '

It is well in accordance with the premise
of Modula-2 - namely to make primitives

directly available to the programmer to
include <coroutines instead of processes,
because the latter are implemented by the
former. As a consequence, Modula-2
implementations need no "run-time system"
and no fixed, built-in scheduling
algorithm. There exists no data type
Signal, but instead transfer of control
from a coroutine P to a coroutine Q is
specified explicitly by the statement
TRANSFER(P,Q). Here P and Q are variables
of the primitive type PROCESS, whose actual
values are pointers to the coroutines'
workspace and state descriptors.
Furthermore, experience with Modula-1
showed the advisability of separating
interrupt-driven from “regular" processes,
because an interrupt signals a transfer of
service among processors within the same
process. A programmer may adopt this advice
by supplying his own scheduling program.
Modula-2 provides the appropriate mechanism

for encapsulating such a user—-defined
scheduler in the form of 1its module
structure. Naturally, such algorithms may
also be provided in the form of library
modules.

As an example we list a scheduler
reflecting the simple round-robin

algorithm. The module exports the data type

Signal and the operators StartProcess,
send, and Wait, which correspond to the
language facilities of Modula-1. The

example excludes, however, the treatment of
interrupt-driven processes. (Note that the
type Signal is exported in opague mode such
that its structures is invisible to the
importer.) Both Send and Wait imply a
coroutine transfer. The primitive operation

TRANSFER is, like the data type PROCESS,
imported from the module SYSTEM, which
typically contains low-level facilities.

High-level programs shculd preferrably rely
on the process concept as presented by such

a ProcessScheduler module, rather than on
named coroutines and explicit transfer of
control.
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DEFINITION MODULE ProcessSceduler;
FROM SYSTEM IMPORT ADDRESS;
EXPORT QUALIFIED
Signal, StartProcess, Send, Wait;

TYPE Signal;
PROCEDURE StartProcess(P: PROC;
A: ADDRESS; n: CARDINAL);
PROCEDURE Send(VAR s: Signal);
PROCEDURE Wait (VAR s: Signal);
END ProcessScheduler.

IMPLEMENTATION MODULE ProcessScheduler;
FROM SYSTEM IMPORT PROCESS, ADDRESS,
NEWPROCESS, TRANSFER;

TYPE Signal POINTER TO
ProcessDescriptor;
ProcessDescriptor

RECORD ready: BOOLEAN;

pr: PROCESS;

next: Signal; (* ring *)

queue: Signal; (* waiting Jueue *)
END ;

VAR cp: Signal; (* current process *)
PROCEDURE StartProcess(P: PROC;
A: ADDRESS; n: CARDINAL);
(*start P with workspace A of length n¥*)
VAR t: Signal;

BEGIN t := cp; NEW(cp);
WITH cp” DO
next := t”~ .next; ready := TRUE;
queue := NIL; t".next := cp
END ; .

NEWPROCESS (P, A, n, cp™.pr);
TRANSFER(t” .pr, cp”.pr)
END StartProcess;

PROCEDURE Send(VAR s: Signal);
(*resume first process waiting for s¥)
VAR t: Signal; -
BEGIN o
IF s #
t

NIL THEN
cp;. Cp :=
WITH cp™ DO

S := queue;
queue := NIL
END ; )
TRANSFER(t".pr, cp”.pr)
END
END Send;

=
.

S;

ready := TRUE;

PROCEDURE Wait (VAR s: Signal);
VAR t@, tl1: Signal; oo
BEGIN ‘
(*insert current .process in queue s*)
IF s = NIL THEN s := cp ‘
ELSE t@ := s; i e o
LOOP t1 := t@”".queue; i
IF t1 NIL THEN
t@#” .queue := Cp;
END
tg :
END
END ;
cp”.ready

EXIT

o~

; cp”.queue := NIL;



to cp; .
(*now find next ready process¥)
REPEAT cp cp” .next;
IF cp t¢ THEN HALT (*deadlock*) END
UNTIL cp”.ready;
TRANSFER(t@".pr, cp”.pr)
END Wait;

BEGIN NEW(cp);
WITH cp” DO

next := cp; ready := TRUE; queue := NIL
END
END ProcessScheduler.
Interrupts are transfers of control that
occur at unpredictable moments. We can
regard an interrupt as equivalent to a
statement :

TRANSFER (interrupted, interrupting)
that is effectively inserted in the program
wherever control happens to be at the
moment when the external interrupt request
is applied. The variable “interrupting"
denotes the process that 1is destined to
service the request, whereas the variable
"interrupted" will be assigned the
interrupted coroutine. The typical
interrupt handler is a device driver
coroutine of the following pattern; P and Q
are variables of the primitive type
PROCESS.

PROCEDURE driver;
BEGIN initialization;
LOOP ...
start device; TRANSFER(Q,P);
END
END driver

The driver process is created by the

primitive statement
NEWPROCESS (driver,wsp,n,Q)
and

this
is

which allocates the procedure "driver"”
the workspace wsp of size n to
coroutine, now identified by Q. It
subsequently activated by the statement

TRANSFER (P, Q)

which assigns the starting coroutine (e.g.
the main program) to P. After initiation of
a device operation the statement
TRANSFER(Q,P), which symbolically stands
for that part of the process which |is
executed by the device (i.e. another
processor) actually returns control to P
and assigns (the «current state of) the
driver coroutine back to Q. Termination of
the device operation causes an interrupt
signal which (if enabled) <corresponds, as
explained above, to an’ unwritten
TRANSFER(P,0). This signal again switches
control back from the interupted to the
driver (interrupting) routine.
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Each interrupt signal - the Lilith computer

offers 8 of them - is associated with its
own variables P and @ at fixed 1locations.
In order that further interrupts remain

executes the
are typically
with specified

disabled while the processor
interrupt routine, drivers
declared inside a module

"priority” that causes interrupt inhibition
up to that specified "priority” level.

This elegant conceptual wunification of
coroutine transfers and interrupt handling
was made possible by an appropriately
designed computer architecture and
instruction set.

5. The operating system

The most noticeable aspect of the Lilith

Medos is its orientation
towards a single user. It is devoid of any
protection mechanism against fMalicious
programs that-could hamper another wuser's
program. Since Medos is ©programmed in
Modula, it ©benefits from the safety
provided by Modula's type consistency and
various run—-time checks. Its safety
features are "defensive", but certainly not

operating system

invulnerable, considering the Modula's
facilities for low-level programming
offered to the brave programmer. In this

regard, Medos follows the strategy of Pilot
[9]. In a first, superficial look it can be

regarded as a collection of modules that
are imported by the current program (and
its imported modules). Since a number of

low-level modules (such- as the file system)
are used by virtually every program, they
form a resident section. This set of
modules consists of three main parts:

"Program" - storége allocation, loader
"Terminal" - keyboard and display drivers
"FileSystem" - disk driver and file system

The module Program exports the procedures

Call(name,sharedHeap,status)
AllocateHeap(size)
DeallocateHeap(size)

of which the first effectively represents
the 1loader. The module administers the
entire store as a stack and loads called

programs sequentially. The remainder of the
store is treated as data store. In this
part, the data stack grows from one end and

the heap from the other. The heap is used
for variables that are allocated
dynamically by calls of AllocateHeap and
DeallocateHeap, which merely move the
pointer that denotes the separation between
data stack and heap. More sophisticated
allocators can be programmed which,
however, will also refer to these basic
procedures.



If a program P calls the loader, the code
and data segments of the loaded module Q
(and of the modules imported by Q and not
already present) . are stacked on top of
those of P. The set of segments thus loaded
forms a new "level", one higher than that
of P. The loader operates as a coroutine,
and each new level of program is
represented as a coroutine too. This slight
nisuse of the coroutine facility is
justified by the convenience in which new
sections of data and program (a level) can
be administered, if described as a
coroutine. Fig. 2 shows the storage layout
and the implied transfers of control when a
program is loaded from a caller at level 1.

The set of resident modules forms level 0.
Its main program is called the Sequential
Executive Kernel. It invokes the loader
which loads the command interpreter. This
is merely a program that outputs a prompt
character, reads a file name, and transmits
the file identity to the kernel, which
loads this file after the command
interpreter has terminated and control is

returned to level @. Loading of the main
program usually requires the 1loading of
further modules that are specified in

import lists. Linking or binding of modules
is simplified by the architecture of the
Lilith computer such that it is performed
directly upon program loading. Fig. 3 shows
a typical sequence of programs, and how
they occupy the store. .

since a program is loaded only after
removal of the command interpreter, and
because the command interpreter typically
has ample time to process the slow input
from the keyboard, it can be designed with
additional sophistication. It <can search
the file table for program files whose
names match with the input so far received
and extend it as far as it is unambiguous.
For example, if file names ABCD and ABCE
are present, and no others starting with A,
it may display both names after receiving
“a?* and then allow continuatioh after
receiving either D or E. This is a small
but typical example of providing a
convenient user interface without
additional burden on the user's program.

The entire mechanism for loading and
allocating is programmed exclusively in
Modula-2; this includes the subtle point of
changing our view of a program as data
before to code after its loading. In
Modula-2, this ' is possible without
resorting to tricky programming and without
the escape to small sections of assembly

code.

The second principal part of the set of
resident modules handles input from the
keyboard and output to the display. This

module is called Terminal. The input stream
fetched by the procedure Read (contained in

" designed according to the

through a switch that
allows reading from a file instead of the
keyboard. Because the command interpreter
also calls Read, that file can even be a
command file. The output stream, which |is
fed by calling the procedure Write, is fed

Terminal) flows

to the low-level module TextScreen that
simulates sequential writing and generates
the bit pattern for each character

according to a default font.

The module FileSystem constitutes the third
major part of the resident system. Files
are used for three main purposes:

- long-term storage of data on permanent,
named files,

- communication among programs,

- secondary storage of data on temporary,
unnamed files.

We distinguish between the naming and

abstract definition of files as extendable
arrays of elements (FileSystem) and the
physical implementation of files on the

disk (DiskSystem). The programmer refers to
files through the module FileSystem which
in turn calls procedures of the module
DiskSystem hiding the details of their
physical representation.

FileSystem exports the
operations on this type for opening
(creating) , naming, reading, writing,
modifying, pesitioning, and closing files.
Normally files are regarded as streams of
either words or characters; writing occurs
at the end of the stream only, and if
writing is requested at some position other
than the end, the file's tail is lost and
deallocated. Although it is also possible
to modify files, i.e. overwrite them, the
abstraction of the stream is the preferred
view of files.

type File and

The module DiskSystem implements Files on
the Honeywell-Bull p-128 disk. It is
following main
requirements:

- fast access, in particular if strictly
sequential,

- robustness against hard- and software
failures,

- accommodation of a large number of
(mostly short) files,

- economical use of storage space.

The following scheme was chosen as a
compromise between the various design
objectives: Space is allocated in blocks of
2048 bytes. This results in a memory
resident allocation table of 392 words (one
per cylinder), each bit indicating whether
or not its corresponding block is allocated
to some file. Each block corresponds to 8
disk sectors, equally spaced on the same
cylinder. A separate file, allocated at a
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fixed place, is called FileDirectory and
consists of file descriptors. Every file is
identified by the index of its (first)
descriptor (= file number), and each
descriptor contains a table of addresses of
the blocks which constitute the file.
Additionally, the descriptor specifies
various properties of the file, such as its
length, creation date, last modification

date, whether it is permanent, protected,
etc. Upon startup, the system reads the
entire FileDirectory and computes the

allocation table.

Unnamed files are released either by
closing them or when the system is started.
They are used as temporary files during
execution of a program. For 1long term
storage of data, a file has to be named. To
administer permanent files, the module
DiskSystem maintains another file (also
placed in a fixed location) called the Name
Directory. Each entry consists of a file
name and the number of the associated file.
The procedure Lookup(f,name,create) is used
to search the name in the Name Directory
and connects the file (if found) with the
file wvariable f. The parameter "create"
allows to ask for the creation and naming
of a new file, if the specified name was
not found (see Fig. 4).

A fourth, but effectivly hidden part of the
resident system is called the Monitor. It
contains two auxiliary processes that are
used to monitor the third, namely the main
process of the user. The auxiliary
processes are called Clock and Trap (Fig.
5). Clock
It updates a variable called time, monitors
the keyboard by polling, and buffers
keyboard input, allowing for typing ahead.

invoked by various instructions
abnormal conditions, such as
arithmetic overflow, index
out of range, access to picture elements
outside the specified bitmap, the standard
procedure HALT, etc. The Trap process then
may store the state of the main process
(essentially a dump) on the disk for
possible later inspection by a debugger
program, and restarts the main process at
the kernel level.

Trap is
detecting
stack overflow,

Typing the control -character <ctrl>C s
detected by Clock and causes an abortion of
the main process in the same manner as a
trap. Evidently, abnormal situations are
here handled by coroutine transfers instead

of an additional exception
provided in the programming language. The
auxiliary coroutine then regards the

aborted coroutine as data (instead of as a
procram) and is thereby able to reset it to
a state where continuation is sensible.

Fig. 6 shows the principal modules of Medos
with arrows denoting calls of procedures.

is invoked 50 times per second.

facility
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Assume

Usually, these arrows ave identical to
those denoting the import/export
dependences among modules, Exceptions to
this rule occur

through the use of
procedure variables. .

6. Separate compilation of moddles

. - T~ -

For reasons of convenience
large system programs need to be compiled
in parts. It is only natural that these
parts be the ones that from a logical point
of view were designed as relatively
independent units. The module is the
obvious choice for the unit of cempilation.
Definition and implementation modules are
therefore called compilation units.

and economy,

The
as Fortran
high-level

idea of compilation In parts is as
and __even. assembler code.
languages with data types the
problem of partiai—eompilation is of
considerable complexity: we wish that type
consistence checking “is tully maintained
across module ~boundaries. In fact,
experience has shown _that this is when it
is most needed- to avoid catastrophic
errors. In order to recognize
inconsistencies such as type mismatches,
incorrect number dr—order of parameters,
etc., as early as possible, they must be
detectable by the compiler. The compiler
therefore must have access to information
about all imported objects. This is
accomplished as follows [71:

old
In

that a module B depends on, i.e.
imports objects from a moduleé A, Therefore,

module A has to be compiled first. During
its compilation, th compiler generates,
apart from a code file for A, a symbol
file. Compilation of B- - subsequently

accesses that symbol—file. More accurately,
program B can - according to the rules of
the language - refer to information of A's
definition part only. Thus, the symbol file

is an extract only of the 1information
available during compilation of A. Since
only definition modules_. are capable of

exporting, the symbol file is the result of
compiling the definition module A, while
code is the result.. of compiling
implementation (or program) modules only.

This scheme - in particular the separation
of definition and implementation parts
has important conseguences for the manner
in which systems are developed. A

~ definition modul&Tonstitures the “interface

between its implementation part and its
clients. Effectively the scheme forces the
programmer to define interfaces first, for,
whenever a definition module 1is (changed
and) recompiled, all its importers
(clients) have to be recompiled too.
However, 1t 1is possible to change and
recompile implementation modules without
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that far-reaching and costly consequence.

It should be noted that the consequences of
this chronological ordering of compilations
are less severe than might be anticipated
due to the fact that the Iimporters are
usually implementation modules. Hence a
change in a low-level module a module
that resides low in the hierarchical chain
of dependencies -~ need not produce a chain
reaction of recompilation up to all
ultimate clients. The appropriate
decomposition of a planned system into
modules is nevertheless a most important
aspect of competent programming. Often the
decomposition has to be decided at an early
stage when insight into many aspects of a
system are still hazy. Its success
therefore largely depends on the engineer's
previous experience with similar tasks.

Learning how to deal effectively with a new
. facility offered by a programming language
is a long-term process. The module facility

forces the programmer team to make those
decisions first that must be made first
[8]. One 1lesson learned so far is that a
module typically centers around a data
structure, and that it 1is this data
structure rather than the exported

operaticns that characterize it.

7. The architecture of the Lilith computer

One of the challenges 1in designing a
computer lies in finding a structure and an
instruction set which yield a high density
of code and a relatively simple algorithm
for code generation. A premise
project was that the computer had to be
designed according to the language in which
it was to be programmed. This resulted in a
quite unconventional architecture. No
attempt was made to make the instruction
set suitable for "hand coding®"; in fact,
programming in machine code would be ‘quite
cumbersone, even if an assembler were
available.

computer 1is based on a stack
Stack computers are by no
as such. Their history dates
early 60s with the English
Electric KDF9 and the Burroughs B5800 as
pioneers. The Lilith architecture adopts
the stack principle without compromise, and
its instruction set is chosen to obtain a
high density of code requiring only
straight-forward algorithms for instruction
selection. The code is a byte stream. Each
instruction consists of one ‘or
bytes. The high .density is achieved not
only by implicit addressing of intermediate

The Lilith
architecture.
means novel
back to the

results in expressions, but mainly by the
provision of different address lengths and
suitable addressing modes. In order to

explain these modes, we need to inspect the

several”

of this
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.the  so-called dynamic
“activations. The base address of
‘segment

overall storage organization at run-time,
In contrast to earlier stack computers, not
only procedures play an important role, but
also modules. The underlying premise 1is
that objects 1local to the location of the
present computation are accessed most
fequently and therefore require fast
access by short instructions whereas
access to remote objects is relatively rare

and requires less efficiency. PFast access
is obtained by retaining "intermediate
results" of address computations in fast
registers (base address), in the
expectation that they will be reused
frequently, and that thereby their
recomputation can be avoided. Several base

address used in the Lilith

computer.

registers are

The origin of all address computations is a
table with base addresses of all currently
loaded data frames (see Fig. 7). A data
frame is a contiguous area of store
allocated to the (static) variables of a
given module. By "module" we refer here and

subsequently to compilation wunits; this
excludes inner (nested) modules. Each
loaded module has a number which is used as
index to that frame table. The table

resides at a fixed location and has a. fixed
length. The entry belonging to the module
of which code 1is executed currently, is
retained in the base address register G. It
is the base address of "Global variables"
in the sense of Algol or Pascal. G has to
be reloaded whenever control transfers from

one module to another. Data frames are
static in the same sense that they are
"permanent” for the duration of a program
execution, with.  the (rare) exception of

overlays performed by calls of the loader.

Data local to procedures are allocated in a
stack which grows when a procedure is
called and shrinks when it is terminated.
Each coroutine (process) 1is allocated an
area of the store, called a stack frame,
when it is started, and which serves as the
coroutine's workspace. The ,base address of
the stack frame belonging to the coroutine
currently under execution is stored in the
register P, that of the 1last 1location
allocated in this stack frame in register
s, and the end of the workspace |is
designated by register H. P is used when. a
transfer from one coroutine to another
coroutine occurs, S when a procedure is
called or terminated. Each stack frame
contains the hierarchy of data segments
representing the variables 1local to the
activated procedures. They are 1linked by
chain of procedure
the last
created is retdined in register L
{for Local data).

Local data are semi-dynamic in the sense
that they are allocated for the duration of
‘a procedure activation only. However, their
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adiresses are determined by the compiler as
offsets relative to the base address of
their owner. Truly dynamic data are those
allocated by explicitly programmed
statements in an area of the store called
heap. This storage area is managed by a
utility module called Storage; these
variables are accessed via pointer wvalues.
As in Pascal, pointers are bound to a given

type, providing additional security in
pointer handling.
Each loaded module owns a data frame and

a contiguous area of
store containing the code of all its
procedures. The base address of the code
frame of the currently executing module is
retzined in register F. Its value is used
when calling a procedure, which is
identified by a number used as index to a
table containing the starting addresses of
2ll procedures in a given module, This
table resides in the header of the code
frame. Using such an index instead of
absolute addresses contributes to higher
code density, particularly since procedure
calls are very frequent instructions. The
value of register F 1is changed whenever

alsec a code frame,

control transfers between modules. Jump
addresses are relative to the F-register
value.

8. The Lilith instruction set

Instructions consist of one or several
bytes. They can be divided into four basic
categories: Load and store instructions,
operators, control instructions, and
miscellaneous instructions:

The load and store instructions transfer
data between memory (stack or heap) and the
top of the stack, where they are accessed
by operators. The top of the stack, where
data are loaded as intermediate results
(anonymous variables) 1is also called the
expression stack. Load or store
instructions require a single address only
bacause the stack address is implicit; they
are further subdivided according to the
following criteria:

- data size: the transferred data are a
word (16 bits), a double word, or a byte

. (halfword) .

- addressing mode: local, global, external,

stack, indexed, and immediate mode (the
latter for load instructions only).
- address length: 4, 8, or 16 bit address

(see Fig. 8).

The presence of different address lengths
suggests that variables with freguent
access be allocated with small offsets. Our
present compiler does not perform any such
optimization. The gain to be made does not
appear to be overwhelming. The set of
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directly accessed (statically declared)
variables is usually quite small, because
structured variables are addressed

indirectly.

The various addressing modes are defined as
follows (m and n denote instruction
parameters, and a the resulting address):

- Local mode: a = L+n, used for variables
local to procedures.

- Global mode: a = G+n, used for global
variables in the current module.

- Stack mode: a = s+n, where s is the value
on top of the stack; mode used for
indirect addressing and access via
pointers.

- External mode: a = T[ml+n, T is the table
of data frame addresses, m a module
number; mode used for external variables
imported from other modules.

- Indexed mode: a = sl + k*s2, sl is the
array's base address, s2 the computed
index (sl1, s2 on stack), &nd k is a

multiplier- depending on the size of the
accessed data type.

- Immediate mode: a = n. The
is the ©parameter itself;
generate constants.

loaded value
mode used to

The above explanations are given 1in this
detail in order to show that the constructs
defined in the programming language are
strongly reflected by, i.e. have directly
influenced, the design of the Lilith
architecture. The beneficial consequence is
not only ease of compilation, but
simplicity  of the linking loader. Whereas
our Modula-2 system for the PDP-11 computer
for good reasons requires a linker, such is
not necessary for the Lilith
implementation. A linker collects the code

files of all required modules and links
them together into an absolute (or
relocatable) store image. This task can be

performed directly by the loader, because
it only has to insert module numbers (table
indices) in instructions with external
addressing mode.

The second category of instructions are the
operators. They take operands from the top
of the stack and replace them by the
result. The Lilith instruction set includes
operators for CARDINAL (unsigned), INTEGER
(signed) , double-precision, floating-point,
BOOLEAN, and set arithmetic. It directly
reflects the operations available in
Modula-2.

towards a clean stack
architecture also required a full set of
comparison instructions which generate a
BOOLEAN result. Distinct sets are provided
for CARDINAL and INTEGER comparison. The
distinction between CARDINAL and INTEGER
arithmetic is partially due to the desire
to be able to use all bits of a word to
represent unsigned numbers, such .as

The orientation



would be of lesser

wordsize were larger.
However, our experience shows that it is
desirable also from a purely logical point
of view to declare variables to be non-
negative, if in fact a negative value does
never occur. Most of our programs require
variables of the type CARDINAL, whereas the
type INTEGER occurs only rarely. Although
using 2's complement representation for
negative values, addition and subtraction
are implemented by the same hardware
operations for both kinds of arithmetic,
they differ in their conditions indicating
overflow.

addresses. It a

importance, if the

procedure
jumps are

instructions include
jumps. Conditional
for IF, WHILE, REPEAT, and LOOP
They  fetch their BOOLEAN
the stack. Special control
mirror the CASE and FOR

Control
calls and
generated
statements.
operand from
instructions
statements. -

for procedures
current module and for
those in other modules. For local
procedures there exist call instructions
with short 4-bit addresses, as they occur
rather frequently. Calls for external
procedures not only include an address
parameter, but also a module number to be
updated by the loader. Furthermore, an
instruction 1is provided for so-called
formal procedures, i.e. procedures that are
either supplied as parameters or assigned
to procedure variables.

pifferent calls are wused’

declared in the

There alsd exists an instruction for the
transfer of control between coroutines.
various instructions may cause a trap, if
the result cannot be computed. Such a trap
is considered like an interrupt requested
by the processor itself, and corresponds to
a coroutine transfer with fixed parameters.
The same mechanism is activated by the TRAP
instruction (which corresponds to a HALT
statement in Modula).

Arithmetic operators generate traps when
unable to compute the correct result (e.g.
overflow). Traps from CARDINAL and INTEGER
arithmetic can be suppressed (masked) upon
request; the programmer is then presumably
aware that results are computed modulo
2716. Also, 1load and store instructions
generate a trap, if their address is NIL.
This test requires a single micro
instruction only. The routines for bitmap
handling generate traps, if attempting to
access data outside the specified bitmap.
All these test are quite inexpensive (but
not free).

A test for an array index lying within the
specified bounds, or for a value to be
within the subrange admitted by a variable,
is more complicated. It requires two
comparisons with arbitrary values.

. Some analysis
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M-code

Therefore, the contains an
instruction for an "in range" test. The
programmer may choose to omit these tests
by selecting a compiler option that
suppresses the generation of these test
instructions.

These extensive checking facilities reflect
our strong belief in designing an
implementation (including the hardware)
which properly supports a language's
abstractions. For example, if the 1language
provides the data type CARDINAL, its
implementations should signal an error, if
a negative result appears, Jjust as it
should signal an error, when a non-existing
element of an array is identified.
Omissions in this regard are to be
considered as inadequacy in implementation.

Nevertheless, the argument whether or not
the experienced and conscientious
programmer should be burdened with these

"redundant" checks remains open. Our choice
is to give the programmer the option to
suppress at least the more expensive
checks, at his own peril.

The category of miscellaneous instructions
contains operators for reading and writing
data on the input/output channels, and four
instructions used for operating on bitmaps:
The DDT instruction (display dot) writes a
single dot at a specified coordinate, REPL
replicates a bit pattern over a rectangle -
a so-called block - in a given bitmap. The
coordinates of this block are relative to
the specified bitmap and are given in terms
of dot coordinates rather than word
addresses. The BBLT instruction (bit block
transfer) copies a source block into a
destination ‘block. The DCH instruction
(display character) copies the bitmap of a
character (given its ASCII code) from a
font table into a specified place of a
bitmap.

The function of these bitmap instructions
could well be coded in Modula-2 programs.
Instead, they are included as single
instructions represented by micro-coded
routines. The primary reason is efficiency.
The routines include checks against
inconsistent parameters, such as blocks
that do not fully lie within the bitmap. An
essential detail is that they use the same
convention about parameters as do regular
procedures and operators: parameters are
always passed via the stack. Modula-2 for
Lilith offers a facility to wuse these
instructions as if they were programmed as
regular procedures. This wuniformity of
parameter passing has proved to be an
invaluable asset.

of representative programs
reveals that M-code yields a significantly
higher density of compiled code than do
conventional instruction sets. Compared
with the code compiled for the ubiquitous



PDP-11, we obtained an improvement factor
of 3.9. This implies that code for the same
program occupies about one quarter of the
memory space in the Lilith computer than in
a PDP-11., This factor is noteworthy even in
times of rapidly decreasing memory prices!

principal contribution to this result
stems from the short address fields.
Dominant are the counts of load and store
instructions; they address the stack
implicitly and hence need only one address
field. Access to local variables 1is most
frequent; global variables are addressed
about half as often, and external variables

The

occur rarely. Jumps account for about
19% of all instructions, and procedure
calls are about equally frequent.. The

following table displays percentage figures

obtained from four programs (of different
authors) for the most frequent instruction
classes. ’
1-byte instr. 70.2 71.7 62.8 72.5
2-byte instr. 16.6 17.3 12.6 12.0
3-byte instr. 13.1 11.9 24.5 15.4
Load immediate 15.1 14.2 17.3 15.2
Load local 16.3 21.6 16,3 19.1
Lcad global 8.2 5.2 3.7 7.9
Load indirect 5.2 6.4 5.5 5.8
Store local 5.8 6.5 5.8 6.0
Store global 2.6 1.1 1.0 3.3
Store indirect 4,2 3.9 1.1 4.0
Operators 5.6 5.7 4.8 5.9
Comparators 3.9 4.4 5.6 3.7
Jumps 7.3 7.7 9.3 .2
Calls 6.4 8.1 14.5 6.9
Total counts (100%)
11852 7370 7936 2814

Instructions are executed by a micro-coded
program called the Interpreter, which may
well be expressed in Modula; this
algorithmic definition of the Lilith
instruction set has proved to be extremely
valuable as interface between the micro-
programmer and the compiler designer.

9. The Lilith hardware structure

The following requirements determined the

design of the hardware most significantly:

- fast implementation of the M~-code
interpreter, in particular of 1its stack
architecture,

~ the need for efficient implementation of
the bitmap instructions which involve a
large amount of bit pushing and  partial
word accesses (bit addressing).

- high bandwidth between memory and display
for continuous refreshing.

- the desire for a simple structure with a
relatively large, homogenous store.
- ease of serviceability.

The computing power required by the bitmap
instructions eliminated the choice of a
one-chip processor. An even stronger reason

against such a choice was the project's
purpose to find a hardware architecture
truly suitable for use with code compiled

from a high-level language. The bit-slice
processor Am29081 offered an ideal solution
between a one-chip processor and the
complete design of a unit built with SSI
and MSI components. It allows for a basic
instruction cycle that is about a fourth of
a memory cycle (156 ns). This 1is a good

relation considering the average amount of
processing required between memory
accesses.

The processor is built around a 16-bit wide
bus connecting the arithmetic:ﬁogic unit
(ALU) with the memory for transfer of data
and addresses. Also connected are the
instruction fetch unit (IFU), the disk and
display controllers, and the interfaces to
the standard low-speed 1/0 devices
keyboard, Mouse, and serial V24 (RS232)
line. Bus sources and destinations are
specified in each micro-instruction by 4-
bit fields which are directly decoded. The
bus uses tri-state logic.

The refreshing of the full screen requires
a signal with a bandwidth of 13 MHz, if
interlacing and a rate of 58 half pictures
per second is assumed. This implies that on
the average one 16-bit word has to be
fetched every 1.1 us, which implies that
memory would be available to the processor
about 58% of the .time. This unacceptably
low rate calls for a memory with an access
path wider than 15 bits. It was decided to
implement a 64-bit wide memory.

A third candidate for direct memory access

is the instruction Stream. Like the
display, this port requires sequential
reading only and therefore can benefit from
a wide access path feeding an internal
buffer. This organization reduces the
average time that the memory is devoted to
display and instruction fetching, i.e.
where it 1is inaccessible to the data port
of the main processor, to about 18%. The

overall structure of the Lilith hardware is
shown in Fig. 9. 1Its heart is the
microcontrol unit (MCU) which contains the
clock and controls the instruction stream.

9.1 The micro-control unit

- . e G o o —— -~ -~

The micro-control unit (MCU) consists
primarily of a memory for the microcode, a
micro- instruction register (MIR), an
address incrementer, and some decoding
logic. A micro~- instruction consists of 48
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bits; its formats are shown in Fig. 18. The
micro-instruction address is. a 12 bit
integer, hence the memory may have at most

4K locations. Actually, only 2K are used
and implemented as a read-only store (ROM).
An additional 2K RAM may be supplied.
Approximately 1K is used by initialization

routines .(bootstrap loader) and the M-code
interpreter, and 1K is needed for the
bitmap routines and the floating-point
instructions. )

Fig. 11 shows the structure of the micro-
control unit. The . next instruction's
address is taken from one of several
sources:

the incrementer (normal case)

an address stack (subroutine return)

the current instruction (microcode jump)
a table of addresses of routines which
correspond to M-codes )
according to a pending interrupt request.

The addresses are generated by Am2911 bit-
slice controllers which contain an
incrementer and a short stack for
subroutine return addresses. For jumps, the
next address 1is supplied from sources
external to the 2911. Conventional jumps
take the address directly from the
instruction register (MIR). Exceptions are
the jumps to the start of the microcode
routine representing the next M-code
instruction. Here the address is taken from
a ROM which maps the 8-bit M-code into a
12-bit address. This exception is signalled
by a micro-instruction whose source field
value cayses the address to be selected
from the map ROM. An exception to this
exception occurs if an (unmasked) interrupt

request 1is pending, in which case the next
address is the fixed number assigned to the
requesting line. Thereby the M-code
sequence can be interrupted without
requiring any additional micro-
instructions, and the transition to the

next micro-instruction routine is initiated
by a single instruction at the end of each
routine.

A tag bit of each micro-instruction
determines whether it is to be interpreted
as a regular or as a jump instruction.
During execution of the 1latter the main
processor is disabled. Jumps are
conditional upon the state the main
processor's condition register
determined by the ALU's computed
during the previous cycle,

of
code
result

9.2 The arithmetic logic unit

The ALU's heart 1is a 2901 bit-slice
processor. It contains the 1logic for
integer arithmetic (addition) and for bit-

operations, and a set of
them are wused

parallel logical
16 fast registers. Half of
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variables of the M-code
work registers

for global state
interpreter, the others as

local to each microcode routine. The 2941
core is augmented by two facilities
dictated by .the requirements of the stack

architecture and by the bitmap routines: a
fast stack memory and a barrel shifter
(Fig. 12).

The fast stack .is’ a store-of 16 locations
(6 bit - wide) . . &nd’ an address
incrementer/decrementer. This memory holds
the intermediate-:results during evaluation
of expressions and statements, and must be
regarded as 1logically being part of the
(main) stack, but physically separate. Load
instructions fetch data from the (main)
stack in memory and push them onto the fast-
expression stack. Store instructions pop
the" expression stack and deposit date in
main memory. As a consequence, each such
instruction takes a single main memory
cycle only. More precisely, data loaded
from and stored into the main stack are
transferred to and from a register in the
2991 processor 1itself, while during the
same cycle this T-register 1is saved (or
restored) into (from) the expression stack:

Load:
Store:

push T onto stack; Bus -> T
T -> Bus; pop stack into T

addition, comparison,
be performed in a
both operands are

Operations such as
AND, OR, etc., can also
single cycle, because
immediately accessible:
Add: T + top stack -> T; pop stack

The hardware represents a genuine stack in
so far as the current stack top is the only
accessible element, and that its address is
inaccessible to the programmer. This
address is generated by a 4-bit up/down
counter and directly fed to a 1Ax1A high-
speed RAM. A slight complication arises
because address incrementation for 2 pop
must occur before the data fetch, whereas
the decrementing for a push must occur
after the store. However, both address
counting and data access must be performed
during the same clock cycle. The solution
is found in wusing an extra adder and to
operate according to the following scheme:

push: DEC(x); S[x+1] := data
pop: INC(x); data := S[x]
The circuit of the entire stack mechanism

is shown in Fig. 13. It may be surprising
that the fast stack has a depth of only 156.
In practice, this proved to be ample. It

should be noted that the compiler can keep
track of the number of stack locations
loaded, and hence no runtime stack overflow
can occur, nor need it be monitored. The
stack is empty atfter -execution of each
statement. In the case of function

be

procedures, the expression stack has to
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Fig. 10. The micro-instruction formats
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saved 1into the main stack befdre, and
restored after the call. Special M-code
instructions are provided for this purpose.

The barrel shifter is prefixed to the input
lines of the 2901 processor. It allows the
rotation of data by any number of bit
positions between @ and 15. Together with
the logical instructions (AND, OR) it
provides the necessary speed for partial
word handling extensively wused in all
bitmap operations. It is designed such that
it can also generate masks of @ to 15 bits
in one cycle. The shift count (mask length)
can either be taken from a field in the
micro-instruction itself, or from a special
4-bit shift count register, also contained
in the ALU.

9.3. The memory

The memory 1is built with 16K dynamic RAM
chips distributed on four boards, each
being organized as a 16K*32 block. For
reading, - 32 bits are accessed
simultaneously from two of the four boards.
Multiplexors select 8 of the 32 bits for
output .to the processor bus via the so-
called CPU port. For writing, the same

connection is used, and the data are fed to
four chips in parallel, of which only one
is enabled through the chip select signal.
Fig. 14 shows the scheme for two boards;
together they represent a 64K*16 bit memory
for writing, or a 16K*64 bit memory for
reading..

The . choice of a 64-bit wide access path
guarantees the necessary memory signal
bandwidth, but it also poses significant
electrical problems that should not be
underestimated. Their mastery is an order
of magnitude more difficult than the
handling of conventional 8-bit
microcomputer systems.

Processor and display operate

asynchronously. Hence, an arbiter mechanism
is needed for controlling memory access. It
can easily be extended to accommodate
several instead of only two ports. Each
port is assigned a fixed priority, and the
request from the source with highest rank
among those pending is honoured. Fig. 15
shows the circuit used; it contains
cascaded priority latches that retain
posted requests. Also shown is the circuit

used for the synchronization of a requestor’

as an example) and the
memory, which operate on separate clocks.
The.priority latch is common to all ports,
the other parts are individually replicated
for each port. Fig. 16 shows the signal
timing: If the port requests a memory
cycle, the bus data, representing an
address, are latched in the memory address
register MAR, the port is marked busy, and
the request is passed on to the arbiter.

(the CPU port
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Unless a request with higher priority is
present, the signal CPU.SEL goes high,
indicating that the memory cycle now
started belongs to the CPU port and MAR is
gated to the address lines. When
terminated, the signal CLR resets the busy
jatch, indicating to the polling CPU that
its request has been served.

9.4. The instruction fetch.unit

Instructions are fetched via a separate
memory port controlled by the instruction
fetch unit (IFU). This unit contains its
own address registers (PC,F) and an 8-byte
buffer. The buffer can be regarded as a
small cache memory and is particularly
effective because access is mostly
sequential. Reloading occurs when either
the buffer is empty, or when a new address

is fed to the PC by a control instruction.
The IFU contains its own address
incrementer (the PC register is a counter)

and an adder forming the sum of the PC and
F values. This adder 1is 18 bits wide. A
byte is fetched from the buffer and the
address is incremented whenever the micro-

‘controller executes a jump enabling the map

ROM. Fig. 17 is a block diagram=of the IFU.

9.5. The Mouse
The Mouse is a device to designate
positions on the display screen. It

operates on the principle that movements of
the operator's hand on his desk are sensed,
rather than on the recording of precise,
absolute coordinates. A cursor is displayed
(by appropriate programming) on the screen,
changing 1its position according to the
signals received from the Mouse. Hence,
positioning of the cursor can be as
accurate as the display's resolution
allows, without requiring a high-precision
digitizer device. - The Mouse is also
equipped with three pushbuttons (eyes) and
is connected to the keyboard by a thin
tail; hence its name.

The movements are transmitted via a ball to
two perpendicular wheels, whose "spokes”
are seen by a light sensor. The direction
of their turning is perceived by sampling
two signals received from spokes which are
offset. If we combine the two binary
signals and represent them as numbers to
the base 4, the wheels' turning results in

sample value sequences 0,2,3,1,%, or

,1,3,2,8, ... depending on the sense of
their rotation (see Fig. 18).
The interface for the Mouse contains two

counters for the x- and y-coordinates. They
are incremented or decremented whenever a
transition of the input signals occurs as
indicated by the two above sequences. A
state machine registers the signal values



MemAdr (18)

dec |— = ’ dec

8x _
{4118

Din

L Dout

UMUX . gate Lo o oMUX. . gate

32 8 32

" ‘MemData (16)

~ MembData (64)
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sampled at two consecutive clock ticks; a
ROM 1is used to map them into the necessary
counting pulses.

9.6. The Monitor

The Monitor is an additional unit which is
not present in the computer under normal
circumstances, but for which nevertheless a
permanent slot is reserved, such that it
can be inserted any time. It represents a
small computer of its own, and it has the
capability to take full control over the
Lilith processor. It is therefore used for
servicing when the Lilith hardware fails,
and it played a most crucial role during
the entire development and debugging phases
of the Lilith computer.

The Monitor's heart is a Motorola 6802 one-
chip microprocessor, augmented by a 2K byte
ROM and a 4K byte RAM, interface registers
to the Lilith hardware, and a serial 1line
interface to a terminal (UART). Its block
diagram is given in Fig. 19. The Monitor
can

read the microinstruction register (MIR)
supply the next microinstruction
(disabling MIR)

read the micro-program counter (2911)
supply the next instruction address
(disabling 2911)

read the processor bus

feed data to the processor bus
disable the processor clock (halt)
send clock pulses (single or multiple
step)

For debugging and servicing, an elaborate
set of programs was developed. In addition
to a standard "operating system" residing

ROMs, test programs can be loaded
RAM from a terminal. We
extensively wused an HP 24A45A terminal with
tape cassettes as our program library
store. When a new Lilith machine is to be
tested, the Monitor is used to first test
the MCU board, then to test the ALU board,
thereafter the memory (in conjunction with
MCU and ALU), then the IFU, and finally the
interface boards. The Monitor not only made
a front panel superfluous, but allowed the
construction of the entire computer with
the aid of only an oscilloscope and, very
rarely, a small logic state analyzer.

in the
into the

9.7. The physical layout

The Lilith computer 1is designed to fit
beside or underneath a table on which the
15"-display, the keybgard, and the mouse
are placed. The cabinet has a height of 74
cm; it is 43 cm wide and 55 cm deep. The
disk <cartridge 1is accessible from the
front.
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The electronic components are placed on 10
boards housed in a rack with dimensions
42*35*30 cm. One board each contains the
microcontrol unit, the arithmetic-logic
unit, the processor part and interfaces to
keyboard, mouse, and serial data line, the
instruction fetch unit, the display
interface and the disk interface. Four
boards contain the main memory. Another
board slot is reserved for 2K*49
microcode RAM, one for the Monitor, and 5

a

slots are free for future experiments with
other units or interfaces. This makes the
computer suitable as an object for
experimentation on the hardware as well as

the software level.

The remaining space in the cabinet is taken
by the disk drive and the power supply.
Conventional linear power supplies were
built  after several disappointing
experiments with modern switching power
supplies that offer a much improved
efficiency. They turned out to be unable to
cope with the European 220 Volts.

18. Conclusions

—— - > o o

The personal computer leads to an entirely
new computing environment. Due to the high
bandwidth of information between 1its user
and his tool, a close interaction |is
possible that cannot be provided by a
central, remotely accessed facility. The
personal computer is much more than an
"intelligent terminal®, because it puts the
computing power near the user., A
particularly attractive feature 1is its
constant availability, and consequently the
owner's independence of a computing
center's service hours. ao

Interactive usage is of particularly high
value in the development of software, where
text editing, compiling, and testing are
the prime activities. In our experience, a
personal computer increases " the
effectiveness of a competent software
engineer by an order of magnitude. I stress
the attribute "competent", for he needs the
wisdom to 1leave his tool and retreat to
quiet deliberations when deeper problems of
algorithmic design appear. For the less
competent engineer, the personal computer
amplifies the danger of seduction to
programming by trial and error (“"hacking"),
a method that is unacceptable in
professional software engineering.

accepted view

engineer's notational
high-level programming
large, complex systems are

It has now become a
that the software
tool must be a
language. When

widely

the objective, the tool must support
modularization and the specification of
interfaces. We have designed the language

Modula-2, a more modern version of Pascal,
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with the principal addition of
structure. Our implementation connects this
feature with the facility of separate
compilation. Separate compilation, however,
is not independent compilation. On the
contrary, the compiler must fully check the
consistency of the separately compiled
modules as if they were written as a single
piece of text. The separation of global
modules into definition and impleméntation
parts makes it possible to define those
aspects of a module that are significant
for its clients apart from those that are
private to its implementation. It
reinforces the strategy of first breaking
down a planned system into modules, then to
define their interfaces with the goal to
keep them "thin", and finally to let the
members of the programming team implement
the modules with relative independence.

The exclusive use of a high-level language

makes it possible to design a computer
architecture without regard of its
suitability to assembler coding. The

resulting architecture is organized around
a stack. The instruction set is designed to
provide a high density of code, largely due
to the use of variable address length.

1t is attractive to design
" such an
if no conventional computer must be used
for its interpretation. We have therefore
also undertaken the design of a hardware

system with the purposes to interpret this

particularly

code efficiently and to accommodate the use-

of a high-resolution display. The latter
requires a high memory bandwidth and bursts
of fast computation. The implementation of
a microcoded interpreter and the inclusion
of a few special instructions for bitmap
handling appears to be an ideal solution.
These instructions correspond to microcoded
routines that perform the necessary bit-
pushing with greatest efficiency.

As an experiment to integrate the design of

a programming language - the software
engineer's notational tool - ‘the
development of its compiler and
environment, the design of a computer

architecture and instruction set, and the
construction of the hardware - the software
engineer's physical tool - the project has
been successful and exciting. The resulting
system 1is, of course, not without its
deficiencies. Our consolation is that, |if
we did not know of items that should have
been done differently, we would not have
learned through our research. Also, the
project had to be conducted with severe
restrictions on manpower. This had the
benefit that no signtficant management
problems were encountered.

As far as the hardware is concerned, an
additional constraint was the limited
availability of modern technology. It was

a -modulesmezthepefore decided to rely o«

architecture and instruction set,
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available TTL chips only. ‘\“Iitmﬁﬁgiaﬁég

technology for the memory. ™o ¢

top-down design from softway integrated,
outlined by this project, ., to har@ware
relevant in view of the futuy: . | especially
technology. 1Its wunlimited Algi?bgfizgig

require that the desig:.y btai .
criteria guiding his object:\ . ° T:In new
down approach crossing th. _leg he top-
boundary tells the hardware . ; /hardware
is needed rather than the hJ;g“flgne‘ what
what 1is available. An afﬁA“?re gustomgr
project that we were unabl. | o this
the design of LSI chips r.. ., tackle was
essential units of the :t:;;gntlng the
incorporating the unconvent:..,, computer,
its architecture. The chin V““niSpeCts gf
as power supply problems) | 4 (aﬁ webl
have been reduced quite o . (i. §1erewy
hope that someone better egﬂi;pedafog'thz

task will pursue this challeny,
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Appendix 1

The following Modula-2 program interprets

M-code instructions and serves as a high-
level definition of the Lilith computer's
instruction set and architecture. A few.
comments are necessary to cover details
that are not fully described by the
program. )

1. The array variables stk and code stand
for the data and program stores
respectively. We assume that on an actual

computer they represent the SAME physical
memory. The array 1indices then denote
memory addresses. Access to the code

involves the use of the base address F (and
an 18-bit wide addition).

2. All checks against arithmetic overflow,
storage overflow, and access with value NIL
are omitted from the program 1in the
interest of clarity and in order not to
obscure the essentials of the
interpretation algorithm.
3. Certain instructions explained in
loose English instead
statements. Among them
handling instructions, which actually
constitute fairly complex algorithms, and
also operations 1like shifts, packing, and
unpacking, which are considered as
primitives, and hence not to be defined
contortiously in terms of even lower
primitives.

are

are the bitmap

functions 1low(d), high(d), and
pair(a,b) are introduced to denote
select'ion of part of a double word and
construction of -+ a double word. The
functions Dtrunc and Dfloat denote
conversion of floating-point values into
double word integers and vice-versa. All
these functions are NOT available in

4. The

a

variable
of precise Modula.

Ch.M.Geschke, J.H.Morris,
E.H.Satterthwaite. Early experience with

Mesa. Comm. ACM, 20, 8, 548-553, Aug.
1977.
7. L.Geissmann. Modulkonzept wund separate

Compilation

Modula-2. In
(see Ref.2)

H.C.Lauer, E.H.Satterthwaite. The impact
of Mesa on system design. Proc. Int'l
Conf. on Software Engineering, Munich,
174-182, IEEE (1979).

D.D.Redell et al. Pilot: An operating
system for a personal computer. Comm.ACM
23, 2, 81-92 (Feb. 1980)

in der Programmiersprache
"Microcomputing®™, 98-114,

Modula-2. Also, sets of the form {m..n} are

used, although proper Modula-2 does not

allow expressions to be used within set
- constructers. :

5. The detailed specification of I/0

instructions is suppressed. It is

considered not to be part of the general M-
code definition, but should be allowed to
vary among different implementations
according to the available hardware. This
is particularly true for the instructions
DSKR, DSKW, SETRK used for accessing the
disk. ’

6. The interrupt mechanism is described in
a rather loose manner and requires
additional explanation: At the start of
each interpretation cycle, the Boolean
variable REQ determines whether or not an
interrupt request should be honoured. REQ
means "at 1least one of the unmasked
interrupt 1lines (numbered 8...15) is low".
I1f we denote the request lines by the set
RegLines and the presence of a
request on line i by "NOT (i IN ReqLines)",

:then REQ can be expressed as
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REQ = (ReqLines + Mask # {8 .. 15})

The value Mask is the union of the mask
register M and a variable called DevMask
(Mask M-¥.-pevMaskY. This global variable
allows a program (typically the operating
system) to shut out any (or all) devices
from interrupting. In the Lilith computer,
DevMask is allocated in main memory at
location 3. The value ReqNo determines the
interrupt 1line whose request is being
accepted. It determines the transfer vector
used by the TRANSFER operation. The value
RegNo is defined as the maximum i such that
"NOT (i IN ReqLines + Mask). .



Table of instructions

- s o s o e s i

"] 490 180
LI LLW LGW -
LIV LLD LGD

- LI2 LEW _ LGW2
LI3 ~ LED LGW3
LI4 LLW4 LGW4
LI5S ~ LLW5 - LGWS
LI6 LLW6 LGW6
LI7 LLW7 LGW7
LI8 LLW8 LGWS8
LI9 LLW9 LGW9
LI1Q LLW19 LGW10
LI} LIW11 LGW11
LI12 LLW12 LGW12
LI13 LLW13 LGW13
LI14 LLW14 LGW14
LITS ~ LLW15 'LGW15
LIB SLW SGW

‘ SLD SGD
LIW SEW SGW2
LID SED SGW3
LLA SLW4 SGW4
LGA SLW5 " BGWS
LSA =~ SLW6 . SGWA
LEA . SLW7 SGW7
JpC SLW8 SGWS8
JP - SLWO iwxSGWI
JPFC  SLW10 . SGW1@
JPF . SLW1l: SGWI1!
-JPBC: SLW12 SGW12
JPB SLW13 SGW13
ORJP SLW14 SGW14
ANDJP SLWI15 SGW15

Reserved locations:

ANBWN ~ S

16,
2a,
22,

149

LSW@
LSW1
LSW2
LSW3
LSW4 -
LSW5
LSWs
LSW?7

LSW8

LSW9

LSW1@
LSW11
LSW12
LSW13
LSW14
LSW15

SSWa
SSW1
SSW2
SSW3
Ssw4
SSW5
SSW6
SSW7

SSW8

SSW9

SSW19
SSW11
SSW12
SSW13
SSW14
SSW15

(F-register of module #)
(initialization flag of module 9)

(string pointer of module @)

device mas
P-register

k

. saved P-register

boot flag

17  trap vector

21 interrupt vector for line 8
23 interrupt vector for line 9

L

37 interrupt vector for line 15

36,

44..177 data frame table

CON

VAR

ST tlc
dft

16B;
40B;

(*global state variables¥*)
PC: CARDINAL;
IR: CARDINAL;
F: CARDINAL;
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(disk)

200 240
LSW READ
LSD WRITE
LSD@ DSKR
LXFW DSKW
LSTA SETRK
LXB UCHK
LXW
LXD SYS
DADD ENTP
DSUB EXP
DMUL ULSS
DDIV ULEQ
UGTR
UGEQ
DSHL TRA
DSHR RDS
SSW LODFW
SSD LODFD
SSD@ STORE
SXFW STOFV
TS STOT
SXB COPT
SXW DECS
SXD PCOP
FADD UADD
FSUB UsuB
FMUL UMUL
FDIV UDIV
FCMP UMOD
. FABS ROR
FNEG SHL
FFCT SHR
(clock)

. MODULE Interpreter; (*N.Wirth, Ch.Jacobi; Feb.81%)

309

FOR1
FOR2
ENTC
EXC

TRAP
CHK

CHK2Z
CHKS

EQL
NEQ
LSS
LEQ
GTR
GEQ
ABS
NEG

OR

XOR
AND
COM
IN

LIN
MSK
NOT

ADD
suB
MUL
DIV
BIT

NOP
MOVF

(*trap location adr¥*)

(*data frame table adr*)

(*program counter*)

(*instruction register*)

340

MOV
CMP
DDT
REPL
BBLT
DCH
UNPK
PACK

CL8

CL1@
CL12
CL13
CL14
CL15

(*code frame base address¥*)



G: CARDINAL; ' (*data frame base address*)

H: CARDINAL; (*stack limit address*)

L: CARDINAL; (*local segment address*)
S: CARDINAL; (*stack pointer?*)

P: CARDINAL; (*process base address*)
M: BITSET; (*process interrupt mask¥*)
REQ: BOOLEAN; (*interrupt request¥)
ReqNo: CARDINAL; ’ (*request number, 8..15%)

(*auxiliary variables used over single instructions only*)
i, j, k: CARDINAL;
sz, adr, low, hi: CARDINAL; (*used in FOR, ENTP, PCOPY¥*)
sb, db, sbmd, dbmd, fo: CARDINAL; (*display handling*)
X, y: REAL; :

stk: ARRAY [@..177777B] OF CARDINAL; (*data store¥*)

MODULE InstructionFetch;
IMPORT F,PC;
EXPORT next, next2;

«

VAR code: ARRAY [8..77777B] OF [@8..255];

PROCEDURE next(): CARDINAL;
BEGIN

INC(PC); RETURN code{[4*F+PC-1]
END next;

PROCEDURE next2(): CARDINAL; (*get next two code bytes¥*)
BEGIN
INC(PC, 2); RETURN code[4*F+PC-2]*400B + code[4*F+PC-1]
END next2;
END InstructionFetch;

MODULE ExpressionStack;
EXPORT push, pop, Dpush, Dpop, empty;

VAR sp: CARDINAL;
a: ARRAY [06..15] OF CARDINAL; (*expression stack¥)

PROCEDURE push(x: CARDINAL):;
BEGIN a[sp] := x; INC(sp)
END push;

PROCEDURE pop(): CARDINAL;
BEGIN DEC(sp); RETURN(a([sp])
END pop;

PROCEDURE Dpush(d: REAL);
BEGIN a[sp] := high(d); INC(sp); alsp] := low(d); INC(sp)
END Dpush;

PROCEDURE Dpop(): REAL;
BEGIN DEC(sp,2); RETURN pair(alspl, alsp+1])
END Dpop;

PROCEDURE empty() : BOOLEAN;
BEGIN RETURN sp = 0
END empty;

BEGIN sp := 0;
END ExpressionStack;

PROCEDURE mark(x: CARDINAL; external: BOOLEAN);
VAR i: CARDINAL;

BEGIN i := S;
stk{S] :
stk[S] :

0ou

; INC(S); (*static link¥*)
; INC(S); (*dynamic link*)
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IF external THEN
stk{S] := PC+1000600¢B ELSE stk[S] := PC
END ;
INC(S,2); L
END mark;

=i

.

PROCEDURE saveExpStack;
VAR c: CARDINAL;
BEGIN ¢ := @; (*expression stack counter*)
WHILE NOT empty{() DO .
stk[S] := pop(); INC(S); INC(c);
END ;
stk[S] := c; INC(S)
END saveExpStack;

PROCEDURE restoreExpStack;
VAR c: CARDINAL;
BEGIN DEC(S); c := stk[S];
WHILE c¢>@ DO
DEC{c); DEC(S); push(stk([sS])
END
END restoreExpStack;

PROCEDURE saveRegs;
BEGIN saveExpStack;

stk[P ] := G; stk(P+1] := L;

stk[P+2] := PC; stk([P+3] := CARDINAL(M);
stk[P+4] := S; stk[P+5] := H+24;

(* stk[P+6] is reserved for error code *)

(* stk[P+7] is reserved for error trap mask *)
END saveRegs;

PROCEDURE restoreRegs{changeMask: BOOLEAN);
BEGIN
G := stk([P]; F := stk[G];
L := stk[P+1}; PC := stk[P+2];
IF changeMask THEN M := BITSET(stk{P+3]) END ;
S := stk[P+41; H := stk[P+5]-24;
restoreExpStack
END restoreRegs;

PROCEDURE Transfer(changeMask: BOOLEAN; to, from: CARDINAL);
VAR j: CARDINAL;

BEGIN :
j := stk([to]l; saveRegs; stk[from] := P;
P := j; restoreRegs(changeMask)

END Transfer; ’

PROCEDURE Trap(n: CARDINAL);
BEGIN
IF NOT (n IN BITSET(stk[P+7])) THEN
stk[P+6] := n;
Transfer (TRUE, tlc, tlc+l)
END
END Trap;

BEGIN (* readBootFile *)
P := stk([4]; restoreRegs(TRUE);
LOOP
IF REQ THEN Transfer(TRUE, 2*RegNo, 2*ReqgqNo+1) END ;
IR := next(); :
CASE IR OF
9B .. 17B: (*LI@ - LIS load immediate*) push(IR MOD 16) |

20B: (*LIB load immediate byte*) push(next()) |

22B: (*LIW load immediate word*) push(next2()) |
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23B: (*LID 1load immediate double word*)
push(next2()); push(next2()) |

24B: (*LLA load local address*)  push(L+next()) |
25B: (*LGA 1load global address*) push(G+next()) |
26B: (*LSA 1load stack addresst*) push(pop()+next()) |

27B: (*LEA load external address*)
push(stk{dft+next()]+next()) |

3pB: (*JPC Jjump conditional¥*)
IF pop() = @ THEN PC := PC + next2()
ELSE INC(PC,2)
END |

31B: (*JpP jump*) PC := PC + next2() |

32B: (*JPFC Jjump forward conditional#?*)
IF pop() = @ THEN PC := PC + next() ELSE INC(PC) END |

33B: (*JPF jump forward¥*) PC := PC + next() |

34B: (*JPBC Jjump backward conditional#*)
IF pop() = @ THEN PC := PC - next() ELSE INC(PC) END |

35B: (*JPB Jjump backward*) PC := PC - next() |

36B: (*ORJP short circuit OR ¥*)
IF pop() = @ THEN INC(PC)
ELSE push(1); PC := PC+next()
END |

37B: (*ANDJP short circuit AND *)
IF pop() = @ THEN push(@8); PC := PC+next()
ELSE INC(PC)
END |
49B: (*LLW 1load local word¥*) push(stk[L+next()]) |

41B: (*LLD 1load local double word*)
i := L+next(); push(stk([il); push(stk[i+1}) |

42B: (*LEW 1load external word*)
push(stk[stk[dft+next()]+next()]) |

43B: (*LED 1load external double word *)

i := stk[dft+next()]+next();

push(stk[i]); push(stk[i+1]) |
44B ., 57B: (*LLW4-LLW15%) push(stk[L + (IR MOD 16)1) |
60B: (*SLW store local word*) stk[L+next()] := pop() |

61B: (*SLD store local double word¥)
i := L+next(); stk(i+1] :=_pop(); stk[i]l := pop() |

62B: (*SEW store external wordt*)
stk[stk(dft+next())+next()] := pop() |

63B: (*SED store external double word *)
i := stk[dft+next()]l+next(); )
stk{i+1] := pop(); stk[i] := pop() |
64B .. 77B: (*SLW4-SLW15 store local word*)
stk{L+ (IR MOD 16)] := pop() |
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198B: (*LGW load global word*) push(stk{G+next()]) |

1918: (*LGD 1load global double word*)
i := next()+G; push(stk[i]); push(stk[i+1]) |

182B .. 117B: (*LGW2 - LGW15 1load global word*)
push(stk{G + (IR MOD 16)]1) |

120B: (*SGW store global word*) stk[G+next()] := pop() |

121B: (*SGD store global double word*)
i := G+next(); stkl[i+1] := pop(); stkl[i] := pop() |

122B .. 137B: (*SGW2 - SGW15 store global word*)
stk[G + (IR MOD 16)] := pop() |

14¢B .. 157B: (*LSW@ - LSW15 1load stack addressed word¥*)
push(stk[pop()+ (IR MOD 16}1) |

168B .. 177B: (*SSW@ - SSW15 store stack-addressed word*)
k := pop(); i := pop()+(IR MOD 16); stkl[i] := k |

280B: (*LSW 1load stack word*)
i := pop() + next(); push(stk[il) |

281B: (*LSD 1load stack double word*)
i := pop() + next(); push(stk[i]); push(stk[i+1]) |

203B: (*LXFW 1load indexed frame word¥*)
k := pop() + pop()*4; push(stklk]) |

202B: (*LSD@ 1load stack double word¥)
i := pop(); push(stk{i]); push(stk[i+1]) |

2P4B: (*LSTA load string address *) push(stk[G+2]+next()) |

205B: (*LXB 1load indexed byte*)
i := pop(); j := pop(); k := stk[j + (i DIV 2)];
IF i MOD 2 = @ THEN push(k DIV 440B)
ELSE push(k MOD 4080B)
END |

286B: (*LXW 1load indexed word*)
i := pop()+pop(); push(stk[i]) |

2¢7B: (*LXD 1load indexed double word ¥*)
i := 2*pop()+pop(); push(stk[il); push(stk[i+1]) |

219B: (*DADD double add. Subsequent operators for double
words denote unsigned fixed-point arithmetic,
although the program shows REAL operands¥)
y := Dpop(); x := Dpop(); Dpush(x+y) |

211B: (*DSUB double subtract*)
y := Dpop(); x := Dpop(); Dpush(x-y) |

212B: (*DMUL double multiply*)

j := pop(); i := pop{); (* x := i*j *) Dpush(x) |
213B: (*DDIV double divide*)

j == pop(); x := Dpop();

(* k := x DIV j; i := x MOD j *) push(i); push(k) |

216B: (*DSHL double shift left*) ’
X = Dpop(); (*shift x left 1 bit*) Dpush(x) |

217B: (*DSHR double shift right*)
x := Dpop(); (*shift x right 1 bit*) Dpush(x) |
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220B:

221B:

222B:

223B:

224B:

225B:

226B:

227B:

2308B:

231B:

232B:

233B:

234B:

235B:
236B:

237B:

240B:

241B:

242B:

(*SSW store stack word¥*)
k := pop(); i := pop()+next(); stk({i] := k |

(*SSD store stack double word*)
k := pop(); J := pop(); i := pop()+next();
stkl[il := Jj; stk[i+1) := k |

(*SSD@ store stack double word*)
k := pop(); j := pop(); i := pop();
stkli] := j; stk[i+1] := k |

(*SXFW store indexed frame word*)
i := pop(); k := pop() + pop()*4; stk[k] := i |

(*TS test and set;)
i := pop(); push(stk[i]); stk[i] := 1 |

(*SXB store indxed byte*)

k 2= pop(); i := pop(); j := pop() + (i DIV 2);
IF i MOD 2 = @ THEN

. stk[j] := k*400B + (stk([j] MOD 46¢B)

ELSE stk{j] := (stk[j] DIV 400B) * 4¢0B + k
END |

(*SXW store indexed word¥*)
k := pop(); i := pop()+pop(); stk[i] := k |

(*SXD store indexed double wofd*)
k := pop(); J := pop(); i := 2*pop()+pop();
stk[i] := 3j; stk[i+1] := k |

(*FADD floating add*)
y := Dpop(); x := Dpop(); Dpush(x+y) |

(*FSUB floating subtract*)
y := Dpop(); x := Dpop(); Dpush(x-y) |

(*FMUL floating multiply¥*)
Y := Dpop(); x := Dpop(); Dpush(x*y) |

(*FDIV floating divide*)
y := Dpop(); x := Dpop(); Dpush(x/y) |

(*FCMP floating compare*)

X := Dpop(); y := Dpop();

IF x > y THEN push(8); push(1)
ELSIF x < y THEN push(1); push(9)
ELSE push(8); push(9)

END |

(*FABS floating absolute value*) Dpush(ABS(Dpop())) |
(*FNEG floating negative*) Dpush(-Dpop()) |

(*FFCT floating functions*) i := next();
IF i=¢ THEN Dpush(FLOAT (pop()))

ELSIF i=1 THEN Dpush(DFloat(Dpop()})

ELSIF i=2 THEN push(TRUNC(Dpop()))

ELSIF i=3 THEN Dpush(Dtrunc(Dpop(), pop()))
END |

(*READ*) i := pop()
(* stk[i]

k := pop(); .
= input from channel k *) |

oo we

(*WRITE*) i := pop(); k := pop();
(* output i to channel k *) |

(*DSKR disk read*) |
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243B:
244B:
245B:

2478B:

2508B:

251B:

252B:
253B:
2548;
255B:
256B:

257B:

260B:

261B:

262B:

263B:

264B:

265B:

266B:

267B:

' 270B:
271B:
272B:

273B:

(*DSKW disk write*) |
(*SETRK set disk track*) |

(*UCHK*) k := pop(); j := pop(); i := pop(); push(i);
IF (i < j) OR (i > k) THEN Trap(4) END |

(*SYS rarely used system functions#*) |

(*ENTP entry priority¥)
stk[L+3] := CARDINAL(M); M := {@..next()-1} |

(*EXP exit priority*) M := BITSET(stk[L+3]) |

(*ULSS*) j := pop(); i == pop();
IF i < j THEN push(1) ELSE push(g) END |

(*ULEQ*) j := pop(); i := pop();
IF i <= j THEN push(1) ELSE push(@) END |

(*UGTR*) j := pop(); i := pop();
IF i > j THEN push(1) ELSE push(@8) END |

(*UGEQ*) j := pop(): i := pop();
IF i >= j THEN push(1) ELSE push(@) END |

(*TRA coroutine transfer¥*)
Transfer (BOOLEAN (next()), pop(), pop()) |

(*RDS read string*) k := pop(); i := next();
REPEAT
stklk] :

= next2(); INC(k); DEC(i)
UNTIL i < 8 |

(*LODFW reload stack after function returnt*)
i := pop():; restoreExpStack; push(i) |

(*LODFD reload stack after function return%*)
i := pop(); j := pop(); restoreExpStack;
push(j); push(i) |

(*STORE*) saveExpStack |

(*STOFV store stack with formal procedure on top*)
i := pop(); saveExpStack; stk{S] := 1; INC(S) |

(*STOT copy from stack to procedure stack¥)
stk[S] := pop(); INC(S) |

(*COPT copy element on top of expression stack¥*)
i := pop(); push(i); push(i) |

(*DECS decrement stackpointer*) DEC(S) |

(*PCOP allocation and copy of value parameter *)
stk{L+next()] := S;
sz := pop(); k := S+sz; adr := pop();
WHILE s2z>@ DO

stk({S] := stk{adr]; INC(S); INC(adr); DEC(sz)
END |

(*UADD*) j := pop(); i := pop(); push(i+3) |

)

(*USUB*) j := pop(); i := pop(); push(i-j) |

pop(); push(i*j) |

(*UMUL*) j := pop(); i :

[}

(*UDIV*) J := pop(); i := pop(); push(i DIV j) |
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274B: (*UMOD*) j := pop(); i := pop(); push(i MOD j) |

275B: (*RORY) j := pop(); i := pop() MOD 16;

(* k := j rightrotated by i places *) push(k) |
276B: (*SHL¥*) j := pop(); i := pop() MOD 16;

(* k := j left shifted by i places *) push(k) |
277B: (*SHR¥) j := pop(); i := pop() MOD 15;

(* k := j right shifted by i places*) push(k) |

3¢006B: (*FOR1 enter FOR statement *)
i := next(); (* =@: up; >@: down ¥*)
hi := pop(); low := pop(); adr := pop();
= PC + next2();
F ((i = 8) AND (low <= hi)) OR
((i # ) AND (low >= hi)) THEN
stk{adr] := low;
stk([S] := adr; INC(S); stk{S] := hi; INC(S)
ELSE (* don't execute the FOR loop *)
PC := k
END |

301B: (*FOR2 exit FOR statement *)
hi := stk[S-1]; adr := stk[S-2];
sz := INTEGER(next()); (* step range -128..+127 *¥*)
kK := PC + next2(); i := stk(adr]+sz;
IF ((sz >= @) AND (i > hi))
OR ((sz <= @) AND (i < hi))
THEN (* terminate *) DEC(S,2)
ELSE (* continue *) stk[adr] := i; PC := k
END | :

382B: (*ENTC enter CASE statement*)
PC := PC + next2(); k := pop();
low := next2(); hi := next2();
stk[S] := PC + 2* (hi-low) + 4; INC(S);
IF (k >= low) AND (k <= hi) THEN
PC := PC + 2*(k-low+1)
END;
PC := PC + next2() |

3@3B: (*EXC exit CASE statement*) DEC(S); PC := stk[S] |
384B: (*TRAP*) i := pop(); Trap(i) |

305B: (*CHK*) k := pop(); j := pop(); i := pop(); push(i);
IF (INTEGER(i) < INTEGER(J)) OR
(INT;GER(i)\) INTEGER(k)) THEN Trap(4) END |

306B: (*CHRZ*) °
k 3= pop(); i := pop(); push(i);
IF i>k THEN Trap(4) END |

307B: (*CHKS check sign bit¥)
k := pop(); push(k);
IF INTEGER(k) < 8 THEN Trap(4) END |

316B: (*EQL*) j := pop(); i := pop();
IF i = j THEN push(1) ELSE push(@) END |

311B: (*NEQ¥*) J = pop(); i := pop();
IF i # j THEN push(1) ELSE push(@) END |

312B: (*LSS*) j := pop(); i := pop();
IF INTEGER(i) < INTEGER(j) THEN
push(1) ELSE push(@)
END | ;
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313B: (*LEQ*) j := pop(); i := pop();
IF INTEGER(i) <= INTEGER(J) THEN
push(1) ELSE push(8)
END |

314B: (*GTR*) j = pop(); i := pop();
IF INTEGER(i) > INTEGER(j) THEN
push(1) ELSE push(g)
END |

315B: (*GEQ*) j := pop(); 1 := pop();
IF INTEGER(l) >= INTEGER(J]) THEN
push (1) BLSE push(ﬁ)
END | =:-2

- 3168 “(*ABS*) =push(ABS(INTEGER(pop()))) I
317B: (*NEG*) push(-INTEGER(pop())) |

326B: -¢*GR*). - j s:z-pop(); 1 pop() ;
ush(CARDINAL(BITSET(l)+BITSET(]))) I

321B: (*XOR*) j := pop(); i := pop();
. push(CARDINAL(BITSET(l)/BITSET(J))) |

322B: (*AND*) -j.:= po p(); i := pop();
push(CARDINAL(BITSBT(l)*BITSET(J))) |

323B: (*COM¥*) push(CARDINAL({ﬂ..15}/BITSET(pop()))) |

324B: (*IN¥*) j := pop(); i := pop();
. = Z:IIF i=> 15 THEN push(3)
ELSIF i IN BITSET(j) THEN push(1)
ELSE push(ﬂ)
END I

3258 {*LIN 1oad 1mmed1ate NIL*) push(177777B) |
326B: (*MSK*) § := bop() MOD 16; push(CARDINAL({8..k-1})) |
327B: (*NOT*) i := pop(); push(CARDINAL({15}/{i})) |

330¢B: (*ADD*) =joa=_pop{); 1 := pop():
LEIDAI —?~pash(CARDINAL(INTEGER(l) + INTEGER(J))) |

331B: (*SUB*) jkaﬁ_POpi), := pop();

push(CARDINAL(INTEGER(l) - INTEGER(j))) |
-{saﬂ’ =i 2C%
3323~ (*MUL¥*)  j.:= pop(); i := pop();
push (CARDINAL (INTEGER(i) * INTEGER(3))) |

333B: (*Div*) 2= pop(); 1 := pop();
- Push(CARDINAL (INTEGER(i) DIV INTEGER(3))) |

334B:. (XMOD*) ., == pop(); 1 := pop();
.. -push(CARDINAL(INTEGER(i) MOD INTEGER(]))) |
335B:, .(XBIT*) }_,—-pop() MOD 16; (* k := {j} *) push(k) |

336B: (*Nop*)“r”
337B: (*MOVF move frame *) { := popl);
j := pop()+pop()*4; (*18 bits*)
k := pop()+pop()*4; (*18 bits*)
WHILE i>@ DO ,
stk[k] .:= stk[jl; INC(k); INC(Jj); DEC(i)
END | 7
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349B:

341B:

342B:

343B:

344B:

345B:

346B:

3478B:

350B:

351B:
352B:

«~3538:

'354B:

(*MOV  move blockt)
k := pop(); j := pop(); i := pop();
WHILE k>@ DO
stk[ij := stk[j]; INC(i); INC(j); DEC(k)
END |

(*CMP compare blocks*)
k := pop(); J := pop(); i := pop();
IF k=0 THEN push(@); push(@)
ELSE
WHILE (stk[i] # stk{jl) AND (k > @) DO
INC(i); INC(3j); DEC(k)
END;
push(stk([i]); push(stk(j])
END |

(*DDT display dot*)

k := pop(); j := pop(); dbmd := pop(); i := pop()

(* display point at <j,k> in mode i inside
bitmap dbmd *) |

(*REPL replicate pattern *)

db := pop(); sb :=.pop(); dbmd := pop(); i := pop()

{* replicate pattern sb over block db inside
bitmap dbmd in mode i *) |

(*BBLT bit block transfer*)

sbmd := pop(); db := pop(); sb := pop();

dbmd := pop(); i := pop()

(* transfer block sb in bitmap sbmd to block db
inside bitmap dbmd in mode i *) |

(*DCH display character¥*)

j := pop(); db := pop(); fo := pop(); dbmd := pop()

(* copy bit pattern for character j from font fo
to block db inside bitmap dbmd *) |

(*UNPK unpack*) k := pop(); j := Pop(); i := pop();
(*extract bits i..j from k, then right adjust*)
push(k) | . - :

(*PACK pagke) ’

k := pop(} 2= Pop(); 1 := pop(); adr := pop();

(*pack th ghtmost j-i+1 bits of k into positions
i..j5 :stk[adr] *) |

(*GB getibase adr n levels down*)

i :=1L; 3{;9 next();

REPEAT « =%
i := stk[i]; DEC(J)

UNTIL j=8; S

push(i) | R

(*GB1  get base adr 1 level down*) push(stk(L]) |

(*ALLOC ailocate block*)
i := pop(); push(S); § := s + i;
IF S >H THEN § := Pop(); Trap(3) END |

(*ENTR enter procedure*)
1 := next(); S := S+i;
IF S > H THEN § := S-i; Trap(3) END |

(*RTN  return from pProcedure*)
S = L; L z:= stk{S+1]); i := stk[S+2];
IF. i < 100080B THEN PC := i
ELSE G := stk([S]; F := stk[G]; PC := i - 1pp@gpeB
END | Ll
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355B: (*CX call external procedure*)
j := next(); i := next(); .
mark(G, TRUE); G := stk[dft+3];
F := stk[G]; PC := 2*i; PC := next2() |

3565: (*CI call procedure at intermediate level¥)
i := next(); mark(pop(), FALSE);
PC := 2*i; PC := next2() |

357B: (*CF call formal proceduret*)
i := stk[S-1]; mark(G, TRUE);
j := i DIV 488B; G := stk[dft+]];
F := stk([G]; PC := 2*(i MOD 4@0¢B); PC := next2() |

368B: (*CL call local procedure?*)
i := next(); mark(L, FALSE);
PC := 2*i; PC := next2() ]

361B .. 377B: (*CL1 - CL15 <call local procedure¥*)
mark (L, FALSE); PC := 2* (IR MOD 1A); PC := next2()
END
END (*LOOP¥*)
END Interpreter.

Appendix 2

——— o o

A benchmark test for Modula-2 implementations

In order to provide a basis for measuring and comparing the
efficiency of implementations of the language Modula-2, a
benchmark program is proposed. It measures selectively various
specific language features. Instead of relying on a built-in
timing mechanism (which depends on an underlying operating
system and quite likely impedes the program's portability), the
program merely counts the number of times certain statements are
executed. Computation is monitored and interrupted by the human
operator equipped with a stop watch. Each test is selected by
typing its identifying character (a - o); the end of the test is
signalled by typing any character. Further details , are to be
derived from the program listing.

The following ~figures have been measured for the Lilith, the
PDP-11/48, and the Xerox Alto 2 computers. (On the Alto, the
program was .translated into Mesa). The timing period is 1
minute for each 'tést, Implementors of Modula-2 are encouraged to
apply this teigfuylly or partially to their system and to let us
know their results. ’

facility: | Lilith PDP-11/48 Alto 2
a empty REPEAT loop 321 184
b empty WHILE loop 334 185 116
c empty FOR loop 422 230 172
d CARDINAL arithmetic 187 84 54
e REAL arithmetic 130
f sin, exp, 1ln, sqrt 87
g array access 1909 54 32
h same with bounds tests 89 11 26
i matrix access 197 93 44
j same with bounds tests . 164 21 36
k call of empty procedure 144 37 a9
1 with 4 parameters 94 29 32
m copying arrays 63 "M 56
n access via pointers 125 66 54
"o reading a disk stream 207 kI
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MODULE

FROM
FROM
FROM
FROM

FROM

TYPE

Benchmark;

Storage IMPORT ALLOCATE;

Terminal IMPORT Read, BusyRead, Write, Writeln;
InOut IMPORT WriteCard;

FileSystem IMPORT

File, Lookup, ReadWord, Reset, Response;
MathLib@# IMPORT sin, exp, ln, sqgrt;

NodePtr = POINTER TO Node;
Node

= RECORD x,y: CARDINAL; next: NodePtr END ;

VAR A,B,C: ARRAY ([@..255] OF CARDINAL;
M: ARRAY [0..99),[06..99] OF CARDINAL;

m:

CARDINAL; head: NodePtr;

PROCEDURE Test(ch: CHAR);
VAR i,j,k: CARDINAL;

rg,

r1, r2: REAL; p: NodePtr;

PROCEDURE P;
BEGIN

EN

D P;

PROCEDURE Q(x,y,z,w: CARDINAL);
BEGIN.
END Q;

BEGIN
CASE ch OF

"a":

Ibn:

.f.:

.h. s

k := 208800;
REPEAT

k = k=1
UNTIL k = @8 |

i := 20000;

WHILE i > @8 DO
i ¢= i-1

END |

FOR %\{5 1 TO 26200 DO

(k*3) DIV (j*5)

“&-1, rd := (rl*rZ) / (r1+r2)
uuTxL k=0 |

k = 508;

REPEAT r8 := sin(8.7); rl :
« @ := 1In(10.08); rl1 :

UNTIL k = @ |

n o
ta
el
L
[V
[
=
-

k := 20008; 1 := @; B[B] := 73;
REPEAT

A[i) := B[i}; B[i} := A[i]l; k := k=1
UNTIL k = @ |

(*$T+*) k := 20000; i := 0; B[P
REPEAT ‘

A[i] := B[i); B[i] := A(i]; k
UNTIL k=6 ~ (*$T-*) |
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"i*: FOR i §=

g TO 99 DO
FOR j := @6 TO 99 DO
Mii,3) = M[3,1i]
END
END |
"j%: (*ST+*)
FOR i := @ TO 99 DO
FOR j := @ TO 99 DO
M{i,3j) == M3, i1
END
END (*$T-*) |
wkw. k := 20000;
REPEAT
P; k := k-1
UNTIL k = ¢ |

wi®. k := 20000;
REPEAT N
Q(i,j,k,m; k := k-1
UNTIL k = 8 |

"m": k := 508;

REPEAT
k := k=1; A := B; B :(=C; C :=A
UNTIL k = @ | -

*n": k := 508;
REPEAT p := hea :
REPEAT p := p~.next UNTIL p = NIL;
-k 2= k-1
UNTIL &&; [

"o": k := 5000;

REPEAT Tl
k := k-1; ReadWord(f,1)

UNTIL k = @;

Reset (f)

END :

END TestL;

VAR chiptl iEF
n: CA
ﬂ;ﬁlfllﬁﬁk

PALSE) ;
1= n-1

:=.q; n

Writes®">" ),,Re&d(c?} : :
WHILE ("a" <=-ch) (ch < vp"),Do
Write(&h)s3 riteligg n := 8;
REPEAT n := n+l;L§st(ch); - :
IF (n_MOD 50) = THEN WriteLn END ;.
Write("."); Busmﬁead(chl) -
UNTIL chl % 0C;*
WriteCard(n,6); WriteLn; Write(">"); ReadtchY -
END ;
Write(14C)
END Benchmark.
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