
-, Eidg, TechniBche Hochschule ZOrich
Fachgruppe Computer-Wissenschaftan

Clausiusstrasso 55
CH-8006 ZUrich

The 10. January letter of Mr. Ammann promised a description
of the simple stack computer and its assembly language, as
well as a Pascal-written interpreter. The following note is
directed to this point.

The computer consists of a program, tables of constants, the
store (for variables),_ and registers. The registers are the
P...!:.Q.9.ram counter (PC), the instruction ~eqister (OP1 P, Q),
and three adtiress registers (SP, MP, NP). The store is
divided into a stack, growing from one end, and an area of
dynamically allocated variables growing from the other end.
SP points to the top of the stack, NP points to the top (or
bottom) of the area.

stack
t---r----f 'If-- 5 P

.l, t
~------~--~ ~ NP

area

store
The stack consists of a series of data seqm~. Each segment
is a block of information headed by a four-word unit called
a ~. The first word is used to store the result, for the
case where the segment belongs to a function. The instruction

SL
DL
RA

local
variables

"active
stack"

,~

~ MP

cE- SP

"mark stack" (MST) reserves these
words by incrementing the stack pointer
while recording the static and dynami£
links. A ncall user procedure" (CUP)
immediately follows. This instruction
sets MP , the base address, to the
beginning of the block and records the
return addres_~. MP therefore is always
the base address of the youngest data

- 2 -

segment. "Enter" (ENT) then increments the stack pointer,
thereby reserving stack.space representing the local variables
and initializing them to the value "undefined". Every procedure
or function, including the main program, is entered in this
manner. ItReturn" (RET) resets the pointers thus "poppinglt
the segment.

To provide dynamic allocation for variables generated by the
standard procedure ~§~, the interpreter allocates storage at
the location designated by NP and yields NP as the address
of the new variable. In the case where the new variable is a
record specifying a tag field, new (p,t), an assignment is
made to the -tag field. The standard procedure reset then
allows a release of th~s area.

The compiler generated instructions have no label field.
Instead, a simple counter is used which is incremented by one
with each new generation. The jump instructions then use this
count as the referenced address.

An instruction, beginning in collumn one and ending with an
eol, is a thxee-Ietter mnemonic followed by one or two
parameters. The first parameter of the compare instructions
(EQU, NEQ,GEQ, GRT, LEQ, lES), load constant (LDC), and
return (RET) is a "type k ey 1t and appears in position four.
Compare instructions use the code:

A
. I

R
B
5
M

for address comparison
integer
real
Boolean
set
multiple (e.g. an array)

A multiple comparison is followed by a second parameter which
indicates the number of elements to be compared. The key of
LDC signals the type of the constant appearing as the next
parameter:

I
R
C
(
N
B

implies integer
real
character
set
the nil pointer
Boolean (0,1)

Where the-constant is of type set, the immediately following
character is e~ther an I or a C to distinguish an integer from
a character set. The set is then terminated by at)'.

- 3 -

RET is followed by a F or P to differenciate between a
function or procedure return.

following CSP (call standard procedure) is'a three-letter
mnemonic, beginning in position five and referencing a
Pascal standard procedure. A LDA (load constant address) is
fallowed by a string constant. In position five is an
apostrophe marking the beginning of a string which is then
terminated by a second apostrophe. The other instructions
have either integer parameters which can be written in free
format, or no parameters.

The assembler reads the symbolic code and translates it into
an internal representation. (The packing of two instructions
into one component of the array CODE is due to the large
wordsize of our CDC computer, and is of no further importance.)
It was necessary to generate a "load constant indirect" for
those values that do nat fit into the Q-field.

For bootstrapping purposes, it is necessary to translate the
given assembler-interpreter into any available language. One
then has a means, admittedly slow, of executing a program of
Pascal symbolic code. In particular, one can then execute
the symbolic ~ode of the new Pascal compiler which, in turn~
is capable of compiling a Pascal program, namely that of a
new Pascal compiler modified to generate the target computer's
machine-code.,

We include a listing of the Assembler-Interpreter.Input to
this program was the hand generated symbolic code for the
following program:

~. a,b: integer;
be 9 in a : = 0; b: = 1;

w ri t e (a + b) ;

end.

repeat a := sqr(b) + b;
b := a div b

until a > 20;
write{a,b,a+b,eol)

All test output is ffiown. We hasten to add that this is an
early result and offer no claim of its total correctness.
However, we do invite your comments and questions.

Yours sincerely, , J r/ ~
'\ (d}l~ ty'-<1t~
1 \ .

Kathleen Jensen, Assistant

\ Symbolic Instructions of PASCAL-CODE KJ 22.1.73

Each instruction is packed into a 3D-bit field. The op-code occupies.

a 6-bit field, parameter P "a 4-bit field, and parameter Q a 20-bit

(address) field.

Alphabetic List of Instructions:

code mnemonic parameters description

40 ABI absolute value of integer
41 ABR absolute value of real number
28 ADI integer. addition

29 'ADR real addi tion,
43 AND Boolean "and"
26 CHK Q check against upper and lower bounds
1 5 CSP Q call standard procedure
12 CUP P Q call user procedure
57 DEC Q decrement address
45 DIF set difference
53 DVI integer division
54 DVR real division
13 ENT Q enter block

27 EOF test on end of file
1 7 EQU p (Q) compare on equal
24 fJP Q false jump
34 ' fLO float next to the t~p
33 fLT float top of the stack
19 GEQ P (Q) greater or equal
20 GRT P (Q) greater than
10 INC Q increment address

9 IND Q indexed fetch
48 INN test set membership (in)
46 INT set intersection
44 lOR Boolean tlinclusive or lt

16 IXA Q compute indexed address

code mnemonic parameters'

5

56

4

7

1

21

22

o
49

55

51

52

1 1

1 8

36

37

4~

50

14

30

31

32

38

39

3

6

58

2

35

23

47

25

8

LAO

LeA

LDA

LDC

LDO

LEQ

LE5

LOD

MOD

MOV

MPI

MPR

MST

NEQ

NGI

NGR

NOT

ODD

RET

SBI

SBR

SGS

.SQI

SQR

SRO

STO

5TP

5TR

TRe

Q

Q

P Q

P Q

Q

P (Q)

P (Q)

P Q

Q

P

P (Q)

p

Q

P Q

UJP Q

UNI

XJP Q

P Q

- 2 -

description

load base-level address

load address of constant

load address

load constant

load contents of base-level address

less than or equal

less than

load contents of address

modulus

move

integer mUltiplication

real mUltiplication

mark stack

not equal

integer sign inversion

real sign inversion

Boolean "not"

test on odd

return from block

integer subtraction

real subtraction

generate singleton set

square integer

square real

store

store at base-level'address

stop

store at address

truncation

unconditional jump

set union

indexed jump

load constant indirect, an assembler­
generated instruction

