ESV Workstation

Reference Manual

EVANS & SUTHERLAND COMPUTER CORPORATION
Salt Lake City, Utah

DOCUMENTATION WARRANTY: o
PURPOSE: This documentation is provided to assist an Evans & Sutherland trained BUYER in using a (
product purchased from Evans & Sutherland. It may contain errors or omissions that only a trained individual

may recognize. Changes may have occurred to the hardware/software, to which this documentation refers,
which are not included in this documentation or may be on a separate errata sheet. Use of this documentation
in such changed hardware/software could result in damage to hardware/software. User assumes full
responsibility of all such results of the use of this data.

WARRANTY: This document is provided, and Buyer accepts such documentation, “AS-IS” and with “ALL
FAULTS, ERRORS, AND OMISSIONS.” BUYER HEREBY WAIVES ALL IMPLIED AND OTHER
WARRANTIES, GUARANTIES, CONDITIONS OR LIABILITIES, EXPRESSED OR IMPLIED ARISING
BY LAW OR OTHERWISE, INCLUDING, WITHOUT LIMITATIONS, ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. BUYER FURTHER HOLDS SELLER HARMLESS OF ANY
DIRECT OR INDIRECT DAMAGES, INCLUDING CONSEQUENTIAL DAMAGES.

ESV, ESV Series, ESV Series Workstations, ES/os, ES/Dnet, ES/PEX, ES/PHIGS, ES/PSX,

Clean-Line, Fiber Link, Local Server, CDRS, and Shadowfax are trademarks of

Evans & Sutherland Computer Corporation,

LAT Host Services, DEPICT, and PCONFIG are trademarks of Ki Research.

AVS is a trademark of Stardent Computer, Inc.

VAX, VMS, and DECnet are trademarks of Digital Equipment Corporation.

UNIX is a registered trademark of AT&T.

Ethernet is a registered trademark of Xerox Corporation.

Motif is a trademark of the Open Software Foundation, Inc.

SunPHIGS is a registered trademark of Sun Microsystems, Inc.

CrystalEyes is a trademark of StereoGraphics Corporation. y
Spaceball is a trademark of Spatial Systems Pty Limited. (
Kodak is a trademark of Eastman Kodak Company.

Copyright © 1989 by the Massachusetts Institute of Technology.

Copyright © 1989 by Hewlett-Packard Company, Palo Alto, California, and the Massachusetts Institute of
Technology, Cambridge, Massachusetts.

Copyright © 1990, 1991 by Sun Microsystems, Inc. and the X Consortium.

Portions of the ESV Workstation Reference Manual are based on the X11 R4 Release, the X11 Input Extension
Release, and the PEX-SIRelease. Permission to use, copy, modify, and distribute this documentation (i.e., the
original X11, X11 Input, and PEX-SI material) for any purpose and without fee has been granted, provided that
the above copyright notices and this permission notice are retained, and that the names of the Massachuseets
Institute of Technology, Hewlett-Packard Company, Sun Microsystems, Inc., and the X Consortium not be
used in advertising or publicity pertaining to this documentation without specific, written prior permission.
This documentation is provided "as-is" without express or implied warranty.

HOWEVER, some of the original X11, X11 Input, and PEX-SI material has been modified by Evans & Suth-
erland. These modifications are copyrighted by Evans & Sutherland and are NOT available for use under the
above permission statement.

The mwm and uil manual pages have been reproduced by permission from the Open Software Foundation, Inc.
Copyright © 1989 by the Open Software Foundation, Inc.

Part Number: 517940-102 AA
April, 1991

Copyright © 1991 by Evans & Sutherland Computer Corporation.)
All rights reserved. ‘

Printed in the United States of America.

 1.ES/PEX

ES/PEX

Table of Contents
1. ES/PEX 1-1
INTTOQUCHION.....c..cteivenieectet ettt sttt ettt eb ettt es b ba st ebesaesaenanne 1-1
ES/PEX REIEASEScoueeermimeieninieeeninienenecerentesteseesrentsas e saenessesasnsenenee 1-2
Graphics Standardscceeeeeeerereeesioeenineneee e es 1-3
ESV Workstation Conformance to PHIGS Standards.........cccceeeeveevernenne 1-7
WHAL 18 PEX? ...cvoiiieiietreeneiereeentssesessrsesestssenessssssesesessesenessssenesesessssasenssssssnssssens 1-8
The X MOGEL......coieiriiiriientneienteeeeee sttt ee e seese e sassesasseseenasnes 1-8
The PHIGS MOGELcoumiiririiieieineeencnecene st secneseesessenesseseesenses 1-8
The PEX MOGELccoimiiniieiniceinctnentctrecsnci et saesee e seenens 1-8
FUnCtional OVETVIEW.........cccoueieeniiinenieninieneeinnestesesiesestesee e e ssesssessssesassesessasees 1-13
INEETIOT SEYIES ..cuveuiireieniteieeientrictere ettt et enes e e snesne e seene 1-13
Light Source Types and Table Indices.......ccooevevererrereininirvrvenerenereenens 1-13
Linetypes and EQZELYPESccevveveeiiereereenierinieriereeniesnsssnssssesssssensessens 1-14
Predefined Polyline Bundles..........ccccceevreniiennnnienineiieenrciienennens 1-14
Text Font and Precision Pairscccceccvveneeieneneninencnenennssenveseenens 1-14
Workstation Category and TYPEcccceveeerecriveneenierenineceesesreeeesesaene 1-14
PHIGS FUNCHONSviuitrentenieientetieintnteteeseeteessentsestssenteseseesessesesessessosasessenses 1-15
Compatibility with Prior REIEAsescceeeemeeerierereencnencnrcieeneseeessessssessesenne 1-27
OPEN XPHIGS ...ttt sestseesense s sesesesees s esae s s e sasasssnasesses 1-29
NAIMIC ..cuviiviieieiiieienteseenceeeseee st esessesnaesseessesseessesnsessessnanns teereeennenenaens 1-29
STNAX <eeoviireeerrenineiereneneseeseeaeressessessessessessesaessessessassesessssssssensessasses 1-29
Required PHIGS Operating States.........ccceevveeererernemeererereerencrusesneseneees 1-29
DESCTPLON ...c.cveiienteriieterete ettt eresee e seeses e st enesseessessasessene 1-29
INPut Parameterscovevceeiniinieieenincienenter e sreneeseseseenne s 1-29
Execution
OPEN PEX......ooiiiiiiitneeeetnteierietetsesteresesaseesest st esessssssesesesessesasessssnsessssnsasases
NAME «..viiireertrtest et esres e stes e sresseeree st esassesssssessessestassassansassensenss
SYNLAX woviririiviiiniirieeentnteretetrestststeseee e sesteseseneaesssesesesessesessnesesesenes
Required PHIGS Operating States........ccecueveereeverrueresreerersessessersesaessenee 1-33
DESCTPLION ...c.cviuiiertenieetertrct ittt ettt seeste e e ssesesse e saenessasnens 1-33
INput PArameterscoeveeurueeninerenniincniininieineee et saesessssesseseseens 1-33
PopenpeXxinfo Parameters..........coceeeerereeneeneieieciennenenseessesssesiaeons 1-34
EXECULIONueeeuiieirtenieietetenenrere et escsseseseenesestesensenesassansesesnssensansane 1-35
OPEN WORKSTATIONcootiiirireeerctieesreete e sresebesasssese e seesasaeseesesassessens 1-36
INAINE .ottt sttt sttt st st b e as e s st st b et s e s 1-36
SYNLAX cerriiriiieererteriesenrenie e s et e eresbesessesesse e ssesessesessensasesaesassasasaanses 1-36
Required PHIGS OpErating States.........ocvevererveeruenieneseseserseceesneenes 1-36
DESCTIPHONcoveuireirtenteiererieseereresesteeseesessesersessesessssessasaseseasessesassans 1-36
INPUL PATameLETscccoveerenreieenenieneeeneeiesestseeneeesteresseessesassesessensenes 1-36
EXECULION ..venvivinieenriieeereie e sreresaeseeressesestesessesassesssesassessssesssssnsessane 1-37
Available Workstation TYPEScccereverererererernieerenenenieesesessenenes 1-37

ESV Workstation Reference Manual [2.0] 1-i

ES/PEX

Workstation System INteractionccocecvvvencrneneinisencsneiecinnnnnns 1-38
GENERALIZED DRAWING PRIMITIVEcccocovinnnniininnncinenenens 1-39
NAME ..veiiineeeenenrece sttt ettt sbess e sassssassssaesas st snnensnan 1-39
SYNLAX covveirierccniinesent ettt ctsesese sttt ssesse st sasrae s srsa s st ss s assssnbene 1-39
Required PHIGS Operating Statesoeeveemvinienniiiniinoniienennnes 1-39
INput Paramerters.......cceeuiuiiiinniniiuiineiineiissiseseseseesesssensseesessesnns 1-39
DESCIIPHON ...ovvevitiriestereteressisie ettt stse e st sseasasaas 1-40
EXECUHOMN ...uvinetertetecietstetes sttt sttt s sttt s sssasens 1-40
EITOTS c.cuvteeenerenerereee et seenesesetssssessntenssestassssstssosssssesssssssssensnssssnes 1-40
GENERALIZED DRAWING PRIMITIVE 3..........cccocemininnniniicnieicnseinenns 1-41
NAITIE «.vevenricinnernenesneneest s s casesestseesassesteressssssssrsssssssnssasssessssessensens 1-41
SYNLAX c.veriniernirerinensiisteestesstssstessessssssesssssssesassssessesssssssssesssssrsssssssnsons 1-41
Required PHIGS Operating Statesc.cecceverecrnninenesnensenisessisnnins 1-41
Input Parameters.......coccoiviiiniiiiniiiiinii e 1-41
DESCIIPLIONcovviiiiiriniiriitiicnie e e
EXECULON.....covcueeinereeee et cree st satnesnsstse e sassas et ess s sssrassaenis
Individual GDPs
List of Spheres................... e e bbb s b s ek e
Simple List of SPheresc.ccceviivniiniininniiiniiccnines

List of Spheres With Radius
List of Spheres With Colour
List of Spheres With Radius and Colour
CYHNALTS ..ccvceveiriiiiinrcieentcteetcinct sttt sbse e aesan
Simple CYHNAETSccccoiininiiiiiiiniiiiii et e
Cylinders With Radiusccovvvininniiiiinieneninesiieiesses e
Cylinders With COLOUT ...t
Cylinders With Radius and Colourccocovmeivinrerieiinenneneecinnnes

Sphere Radius
SPhere DIVISIONS.......ccvieieeeniiriiviiisiisriiis st s as
Cylinder Radius........cccouevviveniiiiniiniininiiiiienerii e e
Cylinder DiVISIONS.......ooceviiinininiiiiniiintiien e s sasenes
Stereo View Indices......ccceevieicinvennnininncnininincicceeienninen
Polylines Over Fillarea Tolerance.........ococevvicivivuininncninenieniiinensinne
Fillarea Front/Back Face Distinguish............ccccceenininiieiiiinnninnns
Polyline QUality........ccceecevivieininineniiiiiniiiieee e

ESV Workstation Reference Manual [2.0]

ES/PEX

Line Pattern Maskccccceorrirenniinicncecceneneecie st seeeenes 1-59
Edge Pattern Maskcccocinvieriinieeeenceeiesensenenesseresesessessesesessanseses 1-59
Traversal Informationccceeeeeerinincnenneceninesineeere s seenene 1-60
TTANSPATEICY ...ccuvitrnierererenrenreenestetesteaestesessesesseenesaessessessssaesseseenees 1-60
EITOTS ittt sate st sase e sbe st e e st sses e sneosasuensesaesaes 1-60
SET HLHSRIID ...ttt erese e eseseesesasse e sesesassasesassnsssssesenes 1-61
INGINE ..ttt see e sttt es e st csas st es e sae et esaesaoneesassassassans 1-61
SYNTAX tvicrirrieesreeeeeereeaessessessessessessessessesssssessessessesessessessarssssesansassens 1-61
Required PHIGS Operating States........ccceverreererrurrrerrensesseseerassessesessans 1-61
DESCTIPLON c..c.vvetieirreritnreeeerete et erertesesseres e st esarsessssessesessesessssssessesees 1-61
INPUt Parameterccuevveueniirieneenereeienterent et sreeeseeeeseeneesaeessessens 1-62
EXCCULON «..oveerinieeeintnteieteteiece st seencseeeseesteseseneasesssessssnesesesenenssen 1-62
Special ESV HLHSR IDScccoceviiceerirncnenenenseereeneeransnenesseessessessenes 1-62
EAZES vttt et et er et e et e st s st seenen 1-64
SETHLHSR MODE.........ccoitinteicne ettt esecnte e st ese e et eacatae st enene 1-65
INAINE .ttt ettt b sr s et stasbesbee e saee e ss e se e smaestone 1-65
SYILAX couiiiriieitreteitrteieestesete e st estsse e seeste et es e et sse e sesessasssssassensenss 1-65
Required PHIGS Operating States........ccceveeeerveceererrersenseesesseresesenseene 1-65
DESCIIPHON ..cueeveteerenrinieerisresresesrenseseesseseenessessessessessassessassassesseseenees 1-65
INput Parameterscccvvereeenineneeneiinenicestinc st sacesessessesssuesnne 1-66
EXECULION «..cutvitinitrecere st eteceiie ettt creneetese et st eaentstste e e sestesssssencnens 1-71
PHIGS Input with ESV DEVICES.....cecveverirtireriienrcerenenrercenresesenesterencnesesesaenenes 1-72
Initializing the Knob BOX.......cccccvervencninniinnnncneninereeeee e 1-72
Initializing the Button BOX........ceceveeenneninenininreieeeseeieeseseesevenes 1-72
Initializing Spaceballc.cccoivceniereriinineerenireete e sreseseesaeseens 1-73
INPUL PrOCESSING....couereireiircrtniiieesteiet ettt s ere e ee 1-73
Knob Box EXamDIE.......cceremienrriincniinirciisetsesseseee e seseens 1-73
Button Box EXample.......c..cceeeieiieniniiiniiniiiecncnecse e sesesvensenes 1-74
Spaceball Example
Function NUMDETS........ccceiirintiiieinteteeest ettt ettt esete e st esa e e seanees
EITOT MESSAZEScovevvirieriirienrieeirieieenesesseessessessassessensessansessessessansessensesesnassanne
PHIGS TabIES ...ttt sttt sttt st en e et et sesb e s se st ebenaen
PHIGS Description Tablecccccceevieeenennncneinenieeseseneceesenaene 1-96
PHIGS PLUS Description Tablecoccevevvevirveerenrencenenienneresesiensenne 1-100
PHIGS Workstation Description Tablecccccoevivviinivcnininnnncnnens 1-102
PHIGS PLUS Workstation Description Table...........cccoeveeereerieennene. 1-107
C and FORTRAN BiNdingscccececereeniemerieneseeneneresieeneseeseseesesaesssseseseesensenes 1-114
ExXample PrOZrams.......cocecevieniininieniineieseerie sttt eree e sreeseeseesessessessensesaene 1-127
MAKETIIE ...ttt st e 1-128
EXAMPICT.C..neiiieeecectcerete et besraesaae st e e ensesane e 1-130
MOLITT.C.uiiiiiccc e 1-134
EXAMPIC2.C.....ooeiitiirie ettt sttt eetestaessassaesaa e sesraesaassasenen 1-138
MOBIF2.C...iiiiiic ettt 1-142
PHIGS2.C...viniiiiectteecee ettt et b e e er e et srena e e 1-146

ESV Workstation Reference Manual [2.0] 1 - i

ES/PEX

REAAEI2. M.ttt saresaa e s s esssesa e saa e saae b e nnen 1-154
EXAMPIEB.Coeirrrirerienecenrecrentesesrenesree e ste st asseessesasseesaessesesrassasees 1-155
MOBIEB.C ...t e tesaaesbe st sessaseraessaessaessersesssenses 1-163
PRIGS3.C ...ttt cresee st es s esasesaessaesreesaessassnsesassssaeseennesssansan 1-174
REAAEIB.N.......oeeoeeeeeeceteee et cbesr e esae s b ssaesaae e s sessbenns 1-183
EXAMPIEA.Cccoveerreerneeeneerrenrenenseraessessessaessessssnssssnsssssssssssesnsoseas 1-184
MOIFA.C ...ttt cere et eessesesressraesensasseasssaesnns 1-194
PRIGSA.C ...ttt see s eseeesas e e seseessesesassaseraesssassasesnsens 1-207
REAMEIA.N.........oooeeeeereecteectecrentessrese e caee s es e s sae e sraeesaessesssensens 1-216
Additional INfOrMAtION..........cevcevereerrieiireerinreniseesseessssesssssessassssssesssassssssssnesssness 1-217

1-iv ESV Workstation Reference Manual [2.0]

ES/PEX

1. ES/PEX

Introduction

This chapter contains the following sections:

L]

“Introduction” (this section) describes the ES/PEX releases and
graphics standards.

“What is PEX?” describes the X Model, the PHIGS Model, and the
PEX Model.

“Functional Overview” contains a general discussion of the ES/PEX
function types supported by the ESV Workstation.

“PHIGS Functions” contains a list of all of the PHIGS and PHIGS PLUS
functions and identifies those that are not currently supported.

“Compatibility with Prior Releases” describes the porting process for
running applications written prior to the 2.0 Release.

“OPEN XPHIGS” describes the OPEN XPHIGS function.
“OPEN PEX” describes the OPEN PEX function.

“OPEN WORKSTATION” describes the OPEN WORKSTATION
function.

“GENERALIZED DRAWING PRIMITIVE” describes the GDPs,
which are used to create 2D elements.

“GENERALIZED DRAWING PRIMITIVE 3” describes the GDP3s,
which are used to create 3D elements.

“GENERALIZED STRUCTURE ELEMENT” describes the GSEs,
which are used to create implementation-dependent structure
elements.

“SET HLHSR ID” describes the SET HLHSR ID function.
“SET HLHSR MODE” describes the SET HLHSR MODE function.

“PHIGS Input with ESV Devices” describes PHIGS input and
contains examples for the knob box, button box, and Spaceball.

“Function Numbers” contains a list of the function numbers with the
corresponding function name. Function numbers are returned with
erTor messages.

“Error Messages” contains a list of the error numbers with the corre-
sponding error description. Error numbers are returned with error
messages.

ESV Workstation Reference Manual [2.0] 1-1

ES/PEX

* “PHIGS Tables” contains the PHIGS Description Table, PHIGS PLUS
Description Table, PHIGS Workstation Description Table, and the
PHIGS PLUS Workstation Description Table.

e “C and FORTRAN Bindings” contains a list of the C and FORTRAN
bindings for the PHIGS and PHIGS PLUS functions.

« “Sample Programs” contains four programs implemented in two dif-
ferent ways: one way using the Xlib calls, and the other way using the
Motif Graphical User Interface.

e “Bibliography” contains a list of PEX references.

This chapter assumes that the reader has a working knowledge of the C
programming language, an understanding of the X programming environ-
ment, a general understanding of PHIGS, and knowledge of computer graph-
ics principles.

ES/PEX Releases

The ESV Workstation supports PEX (PHIGS Extension to X), which gives the
user access to the X Window System, the PHIGS (Programmer’s Hierarchical
Interactive Graphics System) standard interface, and the proposed

PHIGS PLUS (PHIGS Plus Lumiére und Surfaces) standard.

PEX has not yet been released by the X Consortium. Evans & Sutherland
is a sponsor of the X Consortium, and ES/PEX is based on the PEX-SI from
the X Consortium using the PEX protocol level 5.0P. Evans & Sutherland will
continue to follow the PEX development, and, upon release of the PEX exten-
sion to public domain, will provide a PEX-compatible server on the ESV
Workstation.

Since the Application Programmers Interface (API) for the C language to
PHIGS and PHIGS PLUS is not yet an official standard, the PEX development
work by the X Consortium was initially done using the Sun-defined C lan-
guage interface. This has been updated to include the current drafts and those
comments that are likely to be accepted. This is also the interface currently
used by ES/PEX.

It should be emphasized that PEX is still in the development period.
Therefore, programs that run under the current release of ES/PEX may have
to be recompiled or altered for future releases.

ESV Workstation Reference Manual [2.0]

ES/PEX

Graphics Standards

There are a number of different computer graphics products that are referred
to as “standards.” This section discusses several of these and explains how
they relate to the ESV Workstation software.

ISO Standards

International Organization for Standardization (ISO) standards are developed
by representatives of nations that are a part of ISO. This means that for a par-
ticular standard, the representatives attending from a country usually come

from the national standard organization with responsibility for that particular

area.

The United States is represented by ANSI. If a standard is being developed
for computer graphics, the group within ANSI that is responsible for computer
graphics will send representatives to ISO computer graphics standards
meetings.

Several steps are involved the development process of an ISO standard:

°

New Work Item (NWI)

A standard always starts as a NWI, which is a proposal for
development of a standard. If the NWI is accepted by the member
nations, the task of developing a standard is assigned to a Standing
Committee (SC) Working Group (WG).

Draft

The SC/WG produces a draft of the standard. Very often the draft will
exist before the NWI is approved, which was the case with both PHIGS
and PHIGS PLUS. The SCs and WGs have numbers assigned. For

example, the responsibilities for graphics standards is in SC24/WG2.

Committee Draft (CD)

After a draft is produced by the WG, it is submitted as a CD and is
voted on by the member nations. After the vote, comments are
processed by the WG and changes are made to the draft.

Draft International Standard (DIS)

If the vote is for approval and the changes are not substantial, the CD
is submitted as a DIS. If substantial changes are made as a result of the
comments, the document may go through a second CD ballot before
proceeding on to DIS. The DIS vote can only result in editorial
changes to the standard.

ESV Workstation Reference Manual [2.0] 1-3

ES/PEX

» International Standard (1S)

After the voting is complete, the editorial changes are made and the
document is submitted as an IS.

The PHIGS functional description is an ISO standard (ISO 9592-1:1988),
and the PHIGS PLUS functional description (ISO 9592-4:199x) is currently
under development in ISO as a standard. The PHIGS standard is a functional
description that is independent of any language and is composed of the
following parts:

» The PHIGS functional description (Part 1),

¢ The archive file format description (Part 2),

» The clear text encoding of the archive file (Part 3), and

» The proposed PHIGS PLUS functional description (Part 4).

Along with these four parts is another standard called the language
bindings for PHIGS. A language binding is a specific description of how the
PHIGS functional description is to be represented in a particular programming
language. Each of these bindings goes through the standardization process
just like PHIGS and PHIGS PLUS.

Figure 1-1 shows the position of PHIGS and related standards in the
development process of an ISO standard.

NWI draft co DIS IS
PHIGS PLUS C PHIGS PLUS PHIGS
PHIGS C PHIGS FORTRAN
PHIGS Ada

--------------------------- No public vote required to progress

Public vote required to progress

Figure 1-1. Approval steps for ISO standards

ANSI Standards

The approval steps for an American National Standards Institute (ANSI) stan-
dard are very similar to the ISO steps. There is also an ANSI procedure for par-
ticipation in the development of ISO standards. Like ISO, all ANSI standards
start with an NWI, followed by a draft, a draft proposed American National

Standard (dpANS), and finally an American National Standard (ANS).

ANSI forms committees in different areas called Accredited Standards
Committees (ASC) and assigns them a letter and number. These committees

ESV Workstation Reference Manual [2.0]

(

ES/PEX

have subgroups responsible for different areas of standards development. A
subgroup may be broken down into task groups for specific standards work.

PHIGS and PHIGS PLUS fall under task group 1 of the subgroup on
Computer Graphics Standards (H3) of the committee on Information
Processing Systems (X3). The full designation for the ASC on the
development and maintenance of PHIGS and PHIGS PLUS is X3H3.1.
However, since PHIGS PLUS is being developed in ISO, the work of the ASC
task group is to provide input and comment to X3 as to how the U.S. should
vote on PHIGS PLUS. The X3H3.1 group also provides representatives to the
ISO SC24/WG2 meetings.

Evans & Sutherland has representatives on ASC X3H3.1 PHIGS PLUS and
X3H3.2 Computer Graphics Reference Models, as well as representatives on
ISO SC24/WG2 PHIGS PLUS.

PHIGS was developed as an ANS but was recently replaced by the ISO
version, which is identical. This means that there is now only one standard
and that the responsibility for maintenance of PHIGS is in ISO.

Also of interest is the X Window System standard. This is not being
developed in ISO but rather in the ANSI ASC task group X3H3.6. This standard
is called the X Window Data Stream Definition and is divided into three parts:

» Functional Specification,
* Data Stream Encoding, and
* KEYSYM Encoding.

The X Window Data Stream Definition has just completed the dpANS
stage.

U.S. Government Standards

These are not standards that have been developed by the U.S. Government,
but rather standards that have been accepted for specification in government
contracts.

* Federal Information Processing Standard (FIPS)

A FIPS is a requirement for inclusion of a particular standard in U.S.
Government procurement contracts. PHIGS is not currently a FIPS.

» Military Specifications (Milspec)

A Milspec is a requirement for inclusion of a particular standard in a
military procurement specification. PHIGS is not yet a Milspec.

Industry Standards

The term “industry standard” applied to a product implies the wide-spread use
of that product in the industry. The term can lead to some confusion because

ESV Workstation Reference Manual [2.0] 1-5

ES/PEX

anyone can claim to have an “industry standard.” There are two industry stan-
dards of particular interest on the ESV Workstation.

X Window System

The X Window System consists of a protocol definition and an imple-
mentation of that protocol. The protocol is maintained by the X Con-
sortium, which consists of members from different areas of industry
and education, and the implementation is maintained by MIT. The
current level of the X Window System is X11R4, and this is the ver-
sion currently supported on the ESV Workstation.

PEX

The X Window System specification allows for extensions to be add-
ed. There are several extensions that come with the release from MIT.
Several years ago, a PEX Consortium was formed to define a protocol
for an extension to the X Window System that would work with
PHIGS and PHIGS PLUS applications. Sun Microsystems was selected
to implement the protocol, and the implementation is currently in re-
lease to the X Consortium members.

Evans & Sutherland is a member of the PEX Consortium. ES/PEX is
currently based on the preliminary release R1.

There are no current plans to process PEX as an ANSI or ISO standard.

ESV Workstation Reference Manual [2.0]

ES/PEX

ESYV Workstation Conformance to PHIGS Standards

The native graphics language of the ESV Series Workstations is
PHIGS/PHIGS PLUS. ES/PEX is Evans & Sutherland’s implementation of the
PEX-SI Release from the X Consortium. The PEX-SI is based on the PHIGS
functional description (ISO/IEC 9592-1:1989) and the PHIGS PLUS updated
draft functional description (ISO/IEC SC24-N454(20 March 90)).

The ES/PEX implementation provides the ISO Standard (ISO/IEC 9593-
4:1990) PHIGS FORTRAN (F77 subset) binding and the ISO (DP on ISO/IEC
9593-4:199x) PHIGS C binding. Future releases of the PHIGS C binding will
be modified, as needed, to match the ISO DIS when it becomes available.

Released standards do not yet exist for PHIGS PLUS, or PHIGS PLUS
bindings to FORTRAN and C. ES/PEX provides a PHIGS PLUS C binding
based on PEX-SI functionality as it matches the Working Draft amendments
to ISO/IEC 9593-4:199x. There is no current draft proposal for PHIGS PLUS
FORTRAN. ES/PEX provides a PHIGS PLUS FORTRAN binding based on
PEX-SI functionality as it matches the SunPHIGS/PHIGS PLUS extensions.

Standards Conformance Tests do not exist for PHIGS C, PHIGS PLUS C
or for PHIGS PLUS FORTRAN. The ES/PEX implementation of PHIGS
FORTRAN has not been submitted for Conformance Testing pending
completion of the following functionality: cell arrays, CIELUV color model,
incremental spatial search, modelling clip, metafiles, and stroke device.

ESV Workstation Reference Manual [2.0] 1-7

ES/PEX

What is PEX?

The X Model

The X Window System is a publicly available protocol that supports 2D
graphics. PEX is an extension to the X Window System which allows X to
support 3D graphics and gives a user application access to the PHIGS and
PHIGS PLUS functions. To understand PEX, we must first look at the X Model
and the PHIGS Model. Figure 1-2 shows a simplified schematic of the X Mod-
el, figure 1-3 shows a simplified schematic of the PHIGS Model, and figure
1-4 shows a simplified schematic of the PEX Model.

The X Model is divided into two parts: the client and the server. The server
controls the graphics display and is the interface between the client and the
graphics display. The client is a user application that may or may not be run-
ning on the same system as the graphics display.

The X Window System defines the device-independent protocol between
the client and the server. Xlib and the X server are sample implementations
of the X protocol on a specific system, such as the ESV Workstation, and are
device-dependent. A user application calls the Xlib functions, which, in turn,
generate data packets defined by the X protocol. The X server translates these
data packets into commands that control the graphics display.

The PHIGS Model

PHIGS is a functional specification defining the interface between a user
application and the graphics system that displays the application. PHIGS is
device-independent.

PHIGS creates application data structures that are stored in an area called
the central store structure (CSS), which is also created by PHIGS. The data
structures can be posted to one or more workstations, or devices, which are
also created by PHIGS. A workstation may or may not be equivalent to a hard-
ware system, such as the ESV Workstation.

The PEX Model

The X Window System permits the addition of extensions, which are also
protocols. PEX is one extension. Other extensions on the ESV Workstation
include the X Input extension, X Picking extension, X Overlay extension, and
the X Multiscreen extension. PEX is an addition to the X protocol which gives
a user application access to the X Window System through PHIGS and PHIGS
PLUS functions.

With the PEX, X Input, and X Picking extensions added to the X Window
System, a user application has access to the Xlib functions, the PHIGS and
PHIGS PLUS functions, and the X Input, X Picking, X Overlay, and
X Multiscreen functions. An application call to a PHIGS or PHIGS PLUS

ESV Workstation Reference Manual [2.0]

ES/PEX

function is translated into a PEX protocol data packet which is sent to the X
server. The X server recognizes the data packet as being from PEX and
transfers it to the PEX routines in the X server for processing. The X Input, X
Picking, X Overlay, X Multiscreen data packets are processed in a similar
manner.

If a PHIGS workstation is created on the ESV Workstation, the display
surface of the PHIGS workstation will be mapped to an X window that is
opened on the ESV Workstation. If the PHIGS workstation is closed, the X
window will remain open but will revert to a 2D window.

ESV Workstation Reference Manual [2.0] 1-9

ES/PEX

Client

Application

X Protocol

1 Device Control

Figure 1-2. The X model

ESV Workstation Reference Manual [2.0]

ES/PEX

1 Application

Workstation 3

Workstation 2

Workstation 1

Figure 1-3. The PHIGS model

ESV Workstation Reference Manual [2.0] 1-11

ES/PEX

Client

Application

X Picking|

X Protocol

Server

Device Control

Figure 1-4. The PEX model

1-12 ESV Workstation Reference Manual [2.0]

ES/PEX

Functional Overview

PHIGS and PHIGS PLUS capabilities are expressed by functions and the pa-
rameter ranges of those functions. It should be understood that not all imple-
mentations will be able to support all capabilities. The PHIGS standard
outlines a set of minimum support criteria; and, depending on the implemen-
tation, the parameter range provided by a specific implementation may ex-
ceed the minimum criteria.

The following list is a very generalized outline of the PHIGS and
PHIGS PLUS functions not currently supported by the ESV Workstation.

Interior Styles

B-spline curves and surfaces

Cell arrays

Curve and surface approximation by subdivision
Incremental spatial search

Input stroke device

Line width

Metafiles

Model space clip

Patterning and hatching of fill areas
Normal or dot product shading
Raster or polygon text

Text precision other than stroke

Trimming curves

The ESV Workstation supports interior styles Solid, Empty, and Hollow.

Light Source Types and Table Indices

The ESV Workstation supports the following light source types:

ambient (1)
directional (2)
positional (3)
spot (4)

ESV Workstation Reference Manual [2.0] 1-13

ES/PEX

Linetypes and Edgetypes

The ESV Workstation supports the following four required edgetypes and
linetypes:

« solid (1)

o dashed (2)

o dotted (3)

+ dashed-dotted (4)

Predefined Polyline Bundles

The ESV Workstation supports the following five linetypes: solid, dashed,
dotted, dot-dashed, and long-dashed. At present, the ESV Workstation
does not support the following three linetypes: dot-dashed-dot-dotted,
center, and phantom.

Text Font and Precision Pairs

The ESV Workstation supports two distinct text fonts. These two fonts sup-
port the Stroke precision only.

Workstation Category and Type
The ESV Workstation supports workstations of type OUTPUT and OUTIN.

1-14 ESV Workstation Reference Manual [2.0]

(

ES/PEX

PHIGS Functions

In the following list, functions shown in bold are currently supported by the
ESV Workstation, and functions shown in italics are not currently supported
by the ESV Workstation. PHIGS PLUS functions are indicated with a “+.”
The FILL AREA 3 WITH DATA function is not supported under the 2.0 server,
but it is supported if the thin layer is used.

ADD NAMES TO SET

ANNOTATION TEXT RELATIVE
ANNOTATION TEXT RELATIVE 3
APPLICATION DATA

ARCHIVE ALL STRUCTURES

ARCHIVE STRUCTURE NETWORKS
ARCHIVE STRUCTURES

AWAIT EVENT

BUILD TRANSFORMATION MATRIX

BUILD TRANSFORMATION MATRIX 3

CELL ARRAY

CELL ARRAY 3

CHANGE STRUCTURE IDENTIFIER

CHANGE STRUCTURE IDENTIFIER AND REFERENCES
CHANGE STRUCTURE REFERENCES
CLOSE ARCHIVE FILE

CLOSE PHIGS

CLOSE STRUCTURE

CLOSE WORKSTATION

COMPOSE MATRIX

COMPOSE MATRIX 3

COMPOSE TRANSFORMATION MATRIX
COMPOSE TRANSFORMATION MATRIX 3
COMPUTE FILL AREA SET GEOMETRIC NORMAL +
COPY ALL ELEMENTS FROM STRUCTURE
DELETE ALL STRUCTURES

DELETE ALL STRUCTURES FROM ARCHIVE
DELETE ELEMENT

DELETE ELEMENT RANGE

ESV Workstation Reference Manual [2.0] 1-15

ES/PEX

1-16

DELETE ELEMENTS BETWEEN LABELS
DELETE STRUCTURE

DELETE STRUCTURE NETWORK
DELETE STRUCTURE NETWORKS FROM ARCHIVE
DELETE STRUCTURES FROM ARCHIVE
ELEMENT SEARCH

EMERGENCY CLOSE PHIGS

EMPTY STRUCTURE

ERROR HANDLING

ERROR LOGGING

ESCAPE

EVALUATE VIEW MAPPING MATRIX
EVALUATE VIEW MAPPING MATRIX 3
EVALUATE VIEW ORIENTATION MATRIX
EVALUATE VIEW ORIENTATION MATRIX 3
EXECUTE STRUCTURE

EXTENDED CELL ARRAY 3 +

FILL AREA

FILL AREA 3

FILL AREA 3 WITH DATA +

FILL AREA SET

FILL AREA SET 3

FILL AREA SET 3 WITH DATA +

FLUSH DEVICE EVENTS

GENERALIZED DRAWING PRIMITIVE
GENERALIZED DRAWING PRIMITIVE 3
GENERALIZED STRUCTURE ELEMENT
GET CHOICE

GET ITEM TYPE FROM METAFILE

GET LOCATOR

GETLOCATOR 3

GET PICK

GET STRING

GET STROKE

ESV Workstation Reference Manual [2.0]

ES/PEX

GET STROKE 3

GET VALUATOR

INCREMENTAL SPATIAL SEARCH
INCREMENTAL SPATIAL SEARCH 3
INITIALIZE CHOICE

INITIALIZE CHOICE 3

INITIALIZE LOCATOR

INITIALIZE LOCATOR 3

INITIALIZE PICK

INITIALIZE PICK 3

INITIALIZE STRING

INITIALIZE STRING 3

INITIALIZE STROKE

INITIALIZE STROKE 3

INITIALIZE VALUATOR

INITIALIZE VALUATOR 3

INQUIRE ALL CONFLICTING STRUCTURES
INQUIRE ANNOTATION FACILITIES

INQUIRE ARCHIVE FILES

INQUIRE ARCHIVE STATE VALUE

INQUIRE CHOICE DEVICE STATE

INQUIRE CHOICE DEVICE STATE 3

INQUIRE COLOUR FACILITIES

INQUIRE COLOUR MAPPING FACILITIES +
INQUIRE COLOUR MAPPING METHOD FACILITIES +
INQUIRE COLOUR MAPPING REPRESENTATION +
INQUIRE COLOUR MAPPING STATE +
INQUIRE COLOUR MODEL

INQUIRE COLOUR MODEL FACILITIES
INQUIRE COLOUR REPRESENTATION
INQUIRE CONFLICT RESOLUTION

INQUIRE CONFLICTING STRUCTURES IN NETWORK
INQUIRE CURRENT ELEMENT CONTENT
INQUIRE CURRENT ELEMENT TYPE AND SIZE

ESV Workstation Reference Manual [2.0] 1-17

ES/PEX

1-18

INQUIRE CURVE AND SURFACE FACILITIES +
INQUIRE DEFAULT CHOICE DEVICE DATA

INQUIRE DEFAULT CHOICE DEVICE DATA 3
INQUIRE DEFAULT DISPLAY UPDATE STATE
INQUIRE DEFAULT LOCATOR DEVICE DATA
INQUIRE DEFAULT LOCATOR DEVICE DATA 3
INQUIRE DEFAULT PICK DEVICE DATA

INQUIRE DEFAULT PICK DEVICE DATA 3

INQUIRE DEFAULT STRING DEVICE DATA

INQUIRE DEFAULT STRING DEVICE DATA 3
INQUIRE DEFAULT STROKE DEVICE DATA

INQUIRE DEFAULT STROKE DEVICE DATA 3
INQUIRE DEFAULT VALUATOR DEVICE DATA
INQUIRE DEFAULT VALUATOR DEVICE DATA 3
INQUIRE DEPTH CUE FACILITIES +

INQUIRE DEPTH CUE REPRESENTATION +

INQUIRE DIRECT COLOUR MODEL FACILITIES +
INQUIRE DISPLAY SPACE SIZE

INQUIRE DISPLAY SPACE SIZE 3

INQUIRE DISPLAY UPDATE STATE

INQUIRE DYNAMICS OF STRUCTURES

INQUIRE DYNAMICS OF WORKSTATION ATTRIBUTES
INQUIRE EDGE FACILITIES

INQUIRE EDGE REPRESENTATION

INQUIRE EDIT MODE

INQUIRE ELEMENT CONTENT

INQUIRE ELEMENT POINTER

INQUIRE ELEMENT TYPE AND SIZE

INQUIRE ERROR HANDLING MODE

INQUIRE EXTENDED DYNAMICS OF WORKSTATION ATTRIBUTES +
INQUIRE EXTENDED EDGE REPRESENTATION +
INQUIRE EXTENDED INTERIOR FACILITIES +
INQUIRE EXTENDED INTERIOR REPRESENTATION +
INQUIRE EXTENDED PATTERN REPRESENTATION +

ESV Workstation Reference Manual [2.0]

ES/PEX

INQUIRE EXTENDED POLYLINE FACILITIES +

INQUIRE EXTENDED POLYLINE REPRESENTATION +

INQUIRE EXTENDED POLYMARKER REPRESENTATION +
INQUIRE EXTENDED TEXT REPRESENTATION +

INQUIRE EXTENDED WORKSTATION STATE TABLE LENGTHS +
INQUIRE GENERALIZED DRAWING PRIMITIVE

INQUIRE GENERALIZED DRAWING PRIMITIVE 3

INQUIRE GENERALIZED STRUCTURE ELEMENT FACILITIES
INQUIRE HIGHLIGHTING FILTER

INQUIRE HLHSR FACILITIES

INQUIRE HLHSR MODE

INQUIRE INPUT QUEUE OVERFLOW

INQUIRE INTERIOR FACILITIES

INQUIRE INTERIOR REPRESENTATION

INQUIRE INVISIBILITY FILTER

INQUIRE LIGHT SOURCE FACILITIES +

INQUIRE LIGHT SOURCE REPRESENTATION +

INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES 3
INQUIRE LIST OF AVAILABLE GENERALIZED STRUCTURE ELEMENTS
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

INQUIRE LIST OF COLOUR INDICES

INQUIRE LIST OF COLOUR MAPPING INDICES +

INQUIRE LIST OF DEPTH CUE INDICES +

INQUIRE LIST OF EDGE INDICES

INQUIRE LIST OF INTERIOR INDICES

INQUIRE LIST OF LIGHT SOURCE INDICES +

INQUIRE LIST OF PATTERN INDICES

INQUIRE LIST OF POLYLINE INDICES

INQUIRE LIST OF POLYMARKER INDICES

INQUIRE LIST OF TEXT INDICES

INQUIRE LIST OF VIEW INDICES

INQUIRE LOCATOR DEVICE STATE

INQUIRE LOCATOR DEVICE STATE 3

ESV Workstation Reference Manual [2.0] 1-19

ES/PEX

INQUIRE MODELLING CLIPPING FACILITIES

INQUIRE MORE SIMULTANEOUS EVENTS

INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES
INQUIRE NUMBER OF DISPLAY PRIORITIES SUPPORTED
INQUIRE OPEN STRUCTURE

INQUIRE PATHS TO ANCESTORS

INQUIRE PATHS TO DESCENDANTS

INQUIRE PATTERN FACILITIES

INQUIRE PATTERN REPRESENTATION

INQUIRE PHIGS FACILITIES

INQUIRE PICK DEVICE STATE

INQUIRE PICK DEVICE STATE 3

INQUIRE POLYLINE FACILITIES

INQUIRE POLYLINE REPRESENTATION

INQUIRE POLYMARKER FACILITIES

INQUIRE POLYMARKER REPRESENTATION

INQUIRE POSTED STRUCTURES

INQUIRE PREDEFINED COLOUR MAPPING REPRESENTATION +
INQUIRE PREDEFINED COLOUR REPRESENTATION

INQUIRE PREDEFINED DEPTH CUE REPRESENTATION +

INQUIRE PREDEFINED EDGE REPRESENTATION

INQUIRE PREDEFINED EXTENDED EDGE REPRESENTATION +
INQUIRE PREDEFINED EXTENDED INTERIOR REPRESENTATION +
INQUIRE PREDEFINED EXTENDED PATTERN REPRESENTATION +
INQUIRE PREDEFINED EXTENDED POLYLINE REPRESENTATION +
INQUIRE PREDEFINED EXTENDED POLYMARKER REPRESENTATION +
INQUIRE PREDEFINED EXTENDED TEXT REPRESENTATION +
INQUIRE PREDEFINED INTERIOR REPRESENTATION

INQUIRE PREDEFINED LIGHT SOURCE REPRESENTATION +
INQUIRE PREDEFINED PATTERN REPRESENTATION

INQUIRE PREDEFINED POLYLINE REPRESENTATION

INQUIRE PREDEFINED POLYMARKER REPRESENTATION
INQUIRE PREDEFINED TEXT REPRESENTATION

INQUIRE PREDEFINED VIEW REPRESENTATION

ESV Workstation Reference Manual [2.0]

ES/PEX

INQUIRE RENDERING COLOUR MODEL FACILITIES +
INQUIRE SET OF OPEN WORKSTATIONS

INQUIRE SET OF WORKSTATIONS TO WHICH POSTED
INQUIRE STRING DEVICE STATE

INQUIRE STRING DEVICE STATE 3

INQUIRE STROKE DEVICE STATE

INQUIRE STROKE DEVICE STATE 3

INQUIRE STRUCTURE IDENTIFIERS

INQUIRE STRUCTURE STATE VALUE

INQUIRE STRUCTURE STATUS

INQUIRE SYSTEM STATE VALUE

INQUIRE TEXT EXTENT

INQUIRE TEXT FACILITIES

INQUIRE TEXT REPRESENTATION

INQUIRE VALUATOR DEVICE STATE

INQUIRE VALUATOR DEVICE STATE 3

INQUIRE VIEW FACILITIES

INQUIRE VIEW REPRESENTATION

INQUIRE WORKSTATION CATEGORY

INQUIRE WORKSTATION CLASSIFICATION
INQUIRE WORKSTATION CONNECTION AND TYPE
INQUIRE WORKSTATION STATE TABLE LENGTHS
INQUIRE WORKSTATION STATE VALUE

INQUIRE WORKSTATION TRANSFORMATION
INQUIRE WORKSTATION TRANSFORMATION 3
INTERPRET ITEM

LABEL

MESSAGE

OFFSET ELEMENT POINTER

OPEN ARCHIVE FILE

OPEN PHIGS

OPEN STRUCTURE

OPEN WORKSTATION

NON-UNIFORM B-SPLINE CURVE +

ESV Workstation Reference Manual [2.0] 1-21

ES/PEX

NON-UNIFORM B-SPLINE SURFACE +
POLYLINE

POLYLINE 3

POLYLINE SET 3 WITH DATA +
POLYMARKER

POLYMARKER 3

POST STRUCTURE

QUADRILATERAL MESH 3 WITH DATA +
READ ITEM FROM METAFILE

REDRAW ALL STRUCTURES

REMOVE NAMES FROM SET

REQUEST CHOICE

REQUEST LOCATOR

REQUEST LOCATOR 3

REQUEST PICK

REQUEST STRING

REQUEST STROKE

REQUEST STROKE 3

REQUEST VALUATOR

RESTORE MODELLING CLIPPING VOLUME
RETRIEVE ALL STRUCTURES
RETRIEVE ANCESTORS OF STRUCTURE
RETRIEVE DESCENDANTS OF STRUCTURE
RETRIEVE STRUCTURE IDENTIFIERS
RETRIEVE STRUCTURE NETWORKS
RETRIEVE STRUCTURES

ROTATE

ROTATE X

ROTATE Y

ROTATE Z

SAMPLE CHOICE

SAMPLE LOCATOR

SAMPLE LOCATOR 3

SAMPLE PICK

1-22 ESV Workstation Reference Manual [2.0]

7~

ES/PEX

SAMPLE STRING

SAMPLE STROKE

SAMPLE STROKE 3

SAMPLE VALUATOR

SCALE

SCALE 3

SET ANNOTATION STYLE

SET ANNOTATION TEXT ALIGNMENT

SET ANNOTATION TEXT CHARACTER HEIGHT
SET ANNOTATION TEXT CHARACTER UP VECTOR
SET ANNOTATION TEXT PATH

SET AREA PROPERTIES +

SET BACK AREA PROPERTIES +

SET BACK INTERIOR COLOUR +

SET BACK INTERIOR REFLECTANCE EQUATION +
SET BACK INTERIOR SHADING METHOD +
SET BACK INTERIOR STYLE +

SET BACK INTERIOR STYLE INDEX +

SET BACK PARAMETRIC SURFACE CHARACTERISTICS +
SET CHARACTER EXPANSION FACTOR

SET CHARACTER HEIGHT

SET CHARACTER SPACING

SET CHARACTER UP VECTOR

SET CHOICE MODE

SET COLOUR MAPPING INDEX +

SET COLOUR MAPPING REPRESENTATION +
SET COLOUR MODEL

SET COLOUR REPRESENTATION

SET CONFLICT RESOLUTION

SET CURVE APPROXIMATION CRITERIA +

SET DEPTH CUE INDEX +

SET DEPTH CUE REPRESENTATION +

SET DISPLAY UPDATE STATE

SET EDGE COLOUR +

ESV Workstation Reference Manual [2.0] 1-28

ES/PEX

SET EDGE COLOUR INDEX

SET EDGE FLAG

SET EDGE INDEX

SET EDGE REPRESENTATION

SET EDGETYPE

SET EDGEWIDTH SCALE FACTOR

SET EDIT MODE

SET ELEMENT POINTER

SET ELEMENT POINTER AT LABEL

SET ERROR HANDLING MODE

SET EXTENDED EDGE REPRESENTATION +
SET EXTENDED INTERIOR REPRESENTATION +
SET EXTENDED PATTERN REPRESENTATION +
SET EXTENDED POLYLINE REPRESENTATION +
SET EXTENDED POLYMARKER REPRESENTATION +
SET EXTENDED TEXT REPRESENTATION +
SET FACE CULLING MODE +

SET FACE DISTINGUISHING MODE +

SET GLOBAL TRANSFORMATION

SET GLOBAL TRANSFORMATION 3

SET HIGHLIGHTING FILTER

SET HLHSR IDENTIFIER

SET HLHSR MODE

SET INDIVIDUAL ASF

SET INTERIOR COLOUR +

SET INTERIOR COLOUR INDEX

SET INTERIOR INDEX

SET INTERIOR REFLECTANCE EQUATION +
SET INTERIOR REPRESENTATION

SET INTERIOR SHADING METHOD +

SET INTERIOR STYLE

SET INTERIOR STYLE INDEX

SET INVISIBILITY FILTER

SET LIGHT SOURCE REPRESENTATION +

ESV Workstation Reference Manual [2.0]

ES/PEX

SET LIGHT SOURCE STATE +

SET LINETYPE

SET LINEWIDTH SCALE FACTOR

SET LOCAL TRANSFORMATION

SET LOCAL TRANSFORMATION 3

SET LOCATOR MODE

SET MARKER SIZE SCALE FACTOR
SET MARKER TYPE

SET MODELLING CLIPPING INDICATOR
SET MODELLING CLIPPING VOLUME
SET MODELLING CLIPPING VOLUME 3
SET OF FILL AREA SET 3 WITH DATA +
SET PARAMETRIC SURFACE CHARACTERISTICS +
SET PATTERN REFERENCE POINT
SET PATTERN REFERENCE POINT AND VECTORS
SET PATTERN REPRESENTATION

SET PATTERN SIZE

SET PICK FILTER

SET PICK IDENTIFIER

SET PICK MODE

SET POLYLINE COLOUR +

SET POLYLINE COLOUR INDEX

SET POLYLINE INDEX

SET POLYLINE REPRESENTATION
SET POLYLINE SHADING METHOD +
SET POLYMARKER COLOUR +

SET POLYMARKER COLOUR INDEX
SET POLYMARKER INDEX

SET POLYMARKER REPRESENTATION
SET RENDERING COLOUR MODEL +
SET STRING MODE

SET STROKE MODE

SET SURFACE APPROXIMATION CRITERIA +
SET TEXT ALIGNMENT

ESV Workstation Reference Manual [2.0] 1-25

ES/PEX

SET TEXT COLOUR +

SET TEXT COLOUR INDEX

SET TEXT FONT

SET TEXT INDEX

SET TEXT PATH

SET TEXT PRECISION

SET TEXT REPRESENTATION
SET TRIMMING CURVE APPROXIMATION CRITERIA +
SET VALUATOR MODE

SET VIEW INDEX

SET VIEW REPRESENTATION
SET VIEW REPRESENTATION 3
SET VIEW TRANSFORMATION INPUT PRIORITY
SET WORKSTATION VIEWPORT
SET WORKSTATION VIEWPORT 3
SET WORKSTATION WINDOW
SET WORKSTATION WINDOW 3
TEXT

TEXT 3

TRANSFORM POINT
TRANSFORM POINT 3
TRANSLATE

TRANSLATE 3

TRIANGLE STRIP 3 WITH DATA +
UNPOST ALL STRUCTURES
UNPOST STRUCTURE

UPDATE WORKSTATION

WRITE ITEM TO METAFILE

1-26 ESV Workstation Reference Manual [2.0]

ES/PEX

Compatibility with Prior Releases

The 2.0 Release is based on the PEX-SI release to the X Consortium and rep-
resents a major step towards the stability and interoperability of PEX. The 2.0
Release is based on the 5.0P protocol and the API binding that is the most cur-
rent and closest to the proposed bindings for PHIGS and PHIGS PLUS. This is
also the system that multiple major vendors will be using to demonstrate in-
teroperability during 1991.

The change to the 5.0P protocol means that programs which run on
releases prior to the 2.0 Release will not run on the 2.0 Release, and programs
which run on the 2.0 Release will not run on releases prior to the 2.0 Release.
The protocols are not compatible. For X-only programs there is no protocol
change, and they will work on any release.

The 2.0 Release maintains compatibility with the API binding (function
calls) to PHIGS and PHIGS PLUS. With the exception of pgse, pgdp and
pescape, no change is required. The 2.0 Release provides a thin layer
binding which translates the old C-binding calls (now referred to as the 1.3
binding) to the new C-binding calls. There has been no change in the
FORTRAN binding, and for these applications you need only to recompile and
link.

» The location of the include files changes slightly in the 2.0 Release.
This change was made by the X Consortium. The include files for the
new PHIGS binding are located in the following directory:

/usr/include/X11/phigs

» The include files for the old PHIGS binding are located in the follow-
ing directory:

/usr/include/X11/phigs1.3

* To compile your old code you must change the following in your ap-
plication:

#include <X11/extensions/phigs.h>
to
#include <X11/phigs1.3/phigs.h>

» If you use a compile line option to specify include paths, then add the
following to your compile line or Makefile:

-l/usr/include/X11/phigsi1.3

+ To compile for the new binding, put the following in your source
code:

#include <X11/phigs/phigs.h>

ESV Workstation Reference Manual [2.0] 1-27

ES/PEX

Alternately, you can put the following in your source code:

#include <phigs.h>

and add the following to your compile line:
-l/usr/include/X11/phigs

 Similar changes need to be made to paths to locate phigs77.h for
FORTRAN programs. phigs77.h has moved from
/usr/include/X11/extensions to /usr/include/X11/phigs.

The other change in the 2.0 Release is in the libraries which are available.
When using the 1.3 binding, you must link in libPEXapi1.3.a prior to
libPEXapl.a. The graphics libraries on the ESV Workstation are:

libMrm.a
libPEX77.a
libPEXapi.a
libPEXapi1.3.a
libPEXt.a
libUil.a
libX11.a
libXEandSext.a
libXau.a
libXaw.a
libXdmcp.a
libXext.a
libXinput.a
libXm.a
libXmu.a
libXpick.a
libXt.a
liboldX.a

Motif resource manager library
PHIGS FORTRAN library
PHIGS latest C library

PHIGS 1.3 binding C library
E&S PHIGS toolkit library
Motif UIL library

X graphics library

E&S X extension library

X authorization library

X Athena widget library

X display manager communications protocol
X extension library

X input extension library
Motif widget library

X widget utilities library

E&S X pick extension library
X Toolkit library

X old compatibility library

ESV Workstation Reference Manual [2.0]

ES/PEX

OPEN XPHIGS
Name
OPEN XPHIGS - open and initialize PHIGS in the X environment.
Syntax
void
popen_xphigs (error_file,memory,xinfo_mask,xinfo)
char *error_file;

Plong memory; Coyran SYN'('A.X
unsigned long xinfo_mask; N 2.0 Rewease N e,
Pxphigs_info *xinfo;
Required‘;’HfG; Operating States PoPxP(...)
POPP\ C ~-. 7
(PHCL,WSCL,STCL,ARCL)
Description

OPEN XPHIGS is similar to OPEN PHIGS but allows specification of addi-
tional run-time options. It initializes the API and enables access to the PHIGS
functions. OPEN PHIGS or OPEN XPHIGS must be called prior to calling
any other PHIGS functions.

Input Parameters

error_file A pointer to the error file in which to log PHIGS error messag-
es. The error file can be either a pointer to a valid UNIX file
name or a null pointer, for example (char*)0. A null pointer
implies that standard error is to be used as the error file. If a
file name is specified, PHIGS will attempt to access the file for
writing. If this attempt fails, OPEN XPHIGS will fail and the
appropriate error will be reported to standard error.

The error file argument passed to OPEN XPHIGS will be
passed to ERROR HANDLING. ERROR HANDLING will also
pass this argument to ERROR LOGGING. If for some reason,
ERROR LOGGING cannot access the specified file, the error
message will be written to standard error. ERROR LOGGING
appends messages to the error file; it does not truncate the file
when OPEN XPHIGS is called. If the specified file does not
exist, it will only be created if ERROR LOGGING is called.

ERROR LOGGING writes the abstract PHIGS function name,

the error number, and an error description to the error file. If

for some reason the text for the function name and/or error de-
scription can’t be determined, ERROR LOGGING will just

ESV Workstation Reference Manual [2.0] 1-29

ES/PEX

memory
xinfo_mask

write the function number and the error number.
Not used by the PEX-SI APIL

A bitmask indicating which of the options are being set. This
mask is a bitwise OR of one or more of the valid option mask
bits and indicates which fields of the Pxphigs_info structure

PXPHIGS_INFO_DISPLAY The display pointer: dispiay
PXPHIGS_INFO_RMDB The resource manager: rmdb
PXPHIGS_APPL_ID The application name and class: appl_id
PXPHIGS_INFO_ARGS The command line arguments: args
PXPHIGS_INFO_FLAGS_NO_MON

The No Monitor flag: flags.no_monitor

PSPHIGS_INFO_FLAGS_CLIENT_SS

xinfo

Display
XrmDatabase
struct {
char
char
} appl_id;
struct {
int
char
} args;
struct {
unsigned

unsigned

Mflags;

} Pxphigs_info;

The Force Client SS flag: flags.force client_SS

A pointer to a Pxphigs_info structure. This structure is used
to specify X-related options to PHIGS. xinfo is defined in
phigs.h as follows:

typedef struct {

display, / valid display pointer */
rmdb; /* a valid database */

*name;
*class;
/* for resolving database attributes */

*arge_p;
*k argv;
/* for merging args into specified database */

no_monitor: 1;

/* 1 ==> monitor will not be executed */
force_client_SS;

/* 1 ==> always use client-side CSS */

Only the fields indicated by xinfo_mask are examined.

ESV Workstation Reference Manual [2.0]

ES/PEX

display Specifies both the PHIGS default server and the connection
PHIGS is to use when communicating with it. The PHIGS de-
fault server holds the master copy of the central structure
store, and is where tool workstations are opened if their loca-
tion is not specified to the OPEN WORKSTATION function.
PHIGS uses the specified connection for all communication to
the default server, even if a different connection is specified
for a drawable workstation in a subsequent call to OPEN
WORKSTATION. PHIGS uses the specified connection for the
duration of the PHIGS session; it must not be closed before
calling CLOSE PHIGS. If display is not specified, the default
server will be the one returned by a call to XDisplay Name()
with an argument of NULL.

rmdb An X resource database handle. PHIGS uses this database to
build the default workstation description tables. Database
searches are on the resource names and classes listed below.
Each search is qualified by the name and class specified in
appl_id. If argaments are also specified, PHIGS will merge
them into the database prior to searching the database for
resources PHIGS recognizes. Any merged arguments will be
removed from the argument list. The resources PHIGS
recognizes are

Argument String Resource Name Resource Class Type Valid Values

-display dispiay Display String
-bufmode bufMode BufMode String single | double
= geometry Geometry String
-label label Label String
-iconlabel iconLabel IconLabel String

The display resource specifies the name of the default server. The
bufMode resource specifies the default buffering mode, “single” or
“double.” Single buffering is not available on the ESV. The geometry
resource specifies the default window location and size for
phigs_ws_type_x_tool workstation types. The geometry is specified
in the standard X geometry format:

<width>x<height>{+-}<xoffset>{+-}<yoffset>
The label resource specifies the window label for
phigs_ws_type_x_tool workstation types. The IconLabel resource
specifies the icon label for phigs_ws_type_x_tool workstation types.
appl_id.name and appl_id.class are the application name and class to use
when resolving resource database attributes. If not specified, the name phigs
and class Phigs are used.

ESV Workstation Reference Manual [2.0] 1-31

ES/PEX

args.argc p
A pointer to the argument count.

args.argvThe array of command line arguments. The arguments are
searched for attributes recognized by PHIGS and are merged
into the specified database, if any.

flags.no_monitor

Indicates whether the PHIGS Monitor (PM) is executed during
popen_phigs(). The PM is a separate program started by
PHIGS that handles window events and PHIGS input for
PHIGS workstations. PHIGS has complete control over this
program; no user action is required to deal with it other than to
indicate if it should be used or not. If the PM is not executed
(flags.no_monitor = 1), PHIGS will not monitor and respond
to X window events nor will it provide any PHIGS worksta-
tions that support PHIGS input devices. PHIGS workstations
that support PHIGS input devices. All the predefined worksta-
tion types will be of category OUTPUT (output only). If the
PM is executed (flags.no_monitor = 0), PHIGS will monitor
relevant window events and will provide predefined worksta-
tion types of category OUTIN (input and output).

flags.force_client SS

Indicates whether the API should use client side structure stor-
age even if server side structure storage is available in X serv-
ers with the PEX extension. flags.force client_SS = 1 indi-
cates that client side structure storage should always be used.
flags.force_client_SS = 0 indicates that server side structure
storage should be used if available. Client side structure stor-
age is not available on the ESV.

Execution

OPEN XPHIGS sets internal state information and then calls popen_phigs().

1-32 ESV Workstation Reference Manual [2.0]

ES/PEX

OPEN PEX
Name

OPEN PEX - open and initialize the PEX environment - 1.3 compatibility only

Syntax
void
popenpex(error_file,memory,xinfo)
Pchar *error_file;
size_t memory;
Popenpexinfo *xinfo;

Required PHIGS Operating States
(PHCL,WSCL,STCL,ARCL)

Description

OPEN PEX is similar to OPEN PHIGS. It initializes the API and enables ac-
cess to the PHIGS functions. It also allows specification of run-time options
and the merging of resource manager database (RMDB) attributes which
OPEN PHIGS does not allow. OPEN PHIGS or OPEN PEX must be called
prior to calling any other PHIGS functions.

Input Parameters

error_file A pointer to the error file where PEX crror messages are
logged. The error file can be either a pointer to a valid UNIX
file name or a null pointer (e.g., (Pchar*)0). A null pointer im-
plies that standard error is to be used as the error file. If a file
name is specified, PEX will attempt to access the file for writ-
ing. If this attempt fails, OPEN PEX will fail and the appropri-
ate error will be reported to standard error.

The error_file argument passed to OPEN PEX will be passed
to ERROR HANDLING. ERROR HANDLING will also pass
this argument to ERROR LOGGING. If for some reason
ERROR LOGGING cannot access the specified error file, the
error message will be written to standard error.

ERROR LOGGING appends messages to the error file, and it
does not truncate the file when OPEN PEX is called. If the
specified file does not exist, it will only be created if
ERROR LOGGING is called.

ERROR LOGGING writes the PHIGS or PHIGS PLUS function
name, the error number, and an error description to the error
file. If for some reason the text for the function name and/or
error description cannot be determined, ERROR LOGGING
will just write the function number and the error number.

ESV Workstation Reference Manual [2.0] 1-33

ES/PEX

1-34

memory Ignored by the API.
xinfo A pointer to a Popenpexinfo structure. This structure is used
to specify X-related options to PHIGS. xinfo is defined in
phigs.h as follows:
typedef struct {
Display *display,
DisXrmDatabase rdb;
char *name;
char *classname;
int *argc_p;
char *argv;
struct {
unsigned no_monitor: 1;
unsigned force_client_SS;
} flags;

} Popenpexinfo;

Popenpexinfo Parameters

Note: All
display

rdb

name

classname

argc_p
argv

fields must be set to a valid value or NULL.

The display pointer for the server connection to use, rather
than creating a connection to the default server. It must be ei-
ther NULL or a valid display pointer. If a valid display pointer
is specified, then the API will use it as the start-up server. If
displayis NULL, the API will attempt to connect to the default
server.

An X resource database handle. PHIGS uses this database to
build the default workstation description tables.

The application name to use when resolving resource database
attributes. If not specified, the name phigs is used.

The class to use when resolving resource database attributes.
If not specified, the class Phigs is used.

A pointer to the argument count.

The array of command line arguments. The argument is
searched for attributes recognized by PHIGS, and they are
merged into the specified database, if any.

flags.no_monitor

Should be set to 1 if X is going to be used for input, or to 0 if
PHIGS input is used.

flags.force_client_SS

Should be set to 0.

ESV Workstation Reference Manual [2.0]

ES/PEX

Execution

OPEN PEX fills in a 2.0 Pxphigs_info structure with values from the
Popenpexinfo structure. It then calls popen_xphigs. Previously the rdb,
name, classname, argc_p, argv, and flags.force_client_SS fields were
ignored. With the 2.0 release, these fields must be either used or initialized to

the default values below.

When popenphigs() is used to initialize the API it behaves as though the

following values were assigned to the fields of Popenpexinfo:

*display

rdb

*name
*classname
*arge p

*targv
flags.no_monitor

NULL
NULL
NULL
NULL
NULL
NULL
0

flags.force_client SS= 0

ESV Workstation Reference Manual [2.0]

1-35

ES/PEX

OPEN WORKSTATION (
Name ~
OPEN WORKSTATION - create a PHIGS workstation
Syntax
void
popen_ws(ws_Id,conn_id,ws_type) CORTRAN SYNTRNL (N
Pint :vs__ld; 1.0 Rererse Notee
‘;'I‘:t' "‘,’:_"t’;;f PoPwK(...)
Required PHIGS Operating States
(PHOP, * * *
Description

OPEN WORKSTATION opens a workstation of the specified workstation
type. The workstation state list is created and initialized to conform as nearly
as possible to the workstation description table associated with the specified
workstation type. If the workstation is successfully opened, the PHIGS work-
station state variable is set to WSOP.

PEX-SI supports two predefined workstation types, x_tool and
x_drawable. Their characteristics are described below. In addition, the
application can create and modify its own workstation types with the (
WORKSTATION TYPE CREATE and S-2 WORKSTATION TYPE SET
functions.

If the workstation is opened successfully, a specific workstation type is
created and associated with the open workstation. This specific workstation
type contains the workstation description table that describes the capabilities
of the opened workstation. The specific workstation type can be retrieved
with INQUIRE WORKSTATION CONNECTION AND TYPE.

Input Parameters

ws id The workstation identifier to be associated with this worksta-
tion. This value is used to identify the workstation in subse-
quent PHIGS function calls.

conn_id A pointer to the connection identifier of the workstation. The

type of value to use depends on the workstation type.

x_tool If the conn_idis NULL, a window is created on the
default server. If the conn_Idis not NULL, it is inter-
preted as a display name. A window for the worksta-
tion is created on the named server, provided that
server supports the X extension. An example of using
this would be (

1-36 ESV Workstation Reference Manual [2.0]

ES/PEX

Popen_ws (ws_id, (char*)"unix:0",phigs_ws_type x tool);
x_drawable
The connection identifier must be a pointer to a
Pconnid_x_drawable structure, cast to a char*.
Pconnid_x_drawable is defined in phigs.h.

ws_type The type of workstation to open. Recognized types are de-
scribed fully in the “Available Workstation Types” section be-
low. They are declared in phigs.h. A short summary is listed
here.

phigs_ws_type_x_tool
PHIGS creates an X window for the workstation on a specified
or default server.

phigs_ws_type x_drawable
PHIGS uses a specified X window for the workstation.

Execution

OPEN WORKSTATION opens a PHIGS workstation of the specified type and
associates it with the specified workstation identifier.

When a workstation is opened, PHIGS creates a copy of the workstation
type specified in the OPEN WORKSTATION call and binds it to the opened
workstation. This copy is called the specific workstation type. The
workstation description table (WDT) of this specific type is checked against
the capabilities of the server and window PHIGS is using for the workstation.
If the capabilities specified by the WDT cannot be realized with that server
and window, PHIGS modifies the WDT of the specificd workstation type to
reflect the available capabilities. The workstation type parameter to OPEN
WORKSTATION is not modified; only the specific workstation type is
(potentially) modified. The specific workstation type bound to a workstation
can be retrieved with the PHIGS function INQUIRE WORKSTATION
CONNECTION AND TYPE.

Some of a workstation type’s workstation description table values can be
changed by the application prior to opening a workstation of that type. See
WORKSTATION TYPE CREATE and WORKSTATION TYPE SET for more
information on this.

Available Workstation Types
phigs_ws_type_x_tool

PHIGS creates an X window on a specified or default server and uses it for the
PHIGS workstation’s display surface. If the PHIGS Monitor is running (see
OPEN PHIGS), the default category of this workstation type is OUTIN, which
indicates that both input and output are available; otherwise the default cate-
gory is OUTPUT

ESV Workstation Reference Manual [2.0] 1-37

ES/PEX

If the category is OUTIN, PHIGS creates an additional input-only window
that it uses to detect pointer events for input devices. This window is
transparent, overlies the output window completely, and duplicates any size
and position changes made to the output window.

Many of the characteristics of an x_tool workstation type, such as its size
and position, can be set prior to opening the workstation. See the
WORKSTATION TYPE CREATE and WORKSTATION TYPE SET manual
pages for a complete list of the modifiable characteristics and their default
settings.

phigs_ws_type_x_drawable

PHIGS uses an application-specified X window the for PHIGS
workstation’s display source. The window to use is specified in the
connection identifier parameter. The window must be open and associated
with a server that supports the PEX extension.

If the PHIGS Monitor is running (see OPEN PHIGS), the default category
of this workstation type is OUTIN, which indicates that both input and output
are available; otherwise, the default category is OUTPUT.

Some of the characteristics of an x_tool drawable workstation type, such
as its size and position, can be set prior to opening the workstation. See
WORKSTATION TYPE CREATE and WORKSTATION TYPE SET man
pages for a complete list of the modifiable characteristics and their default
settings.

Window System Interaction

Workstation DC limits correspond to the window size used by the PHIGS
workstation when it is opened. The units are drawable coordinates. When the
API responds to a window resize event, more or less of the window will be
exposed; the PHIGS output will not be scaled. Decreases in size cause portions
of the PHIGS output to be clipped away if the new size is less than the PHIGS
viewport limits. Size increase beyond the viewport limits will not reveal any
additional PHIGS output.

PHIGS automatically redraws the PHIGS workstation when portions of it
are exposed, such as when it is brought to the top of other windows or moved
from an iconic state to an open state. This redrawing may potentially change
portions of the workstation state list by making the state of visual
representation correct and making all requested entries current.

For both tool and drawable workstations, a DestroyNotify event on the
workstation’s window will likely cause PHIGS to exit. A DesiroyNotify
event is generated either by the application or more likely by the operator
when he destroys or “Quits” the window.

ESV Workstation Reference Manual [2.0]

ES/PEX

GENERALIZED DRAWING PRIMITIVE
Name

GENERALIZED DRAWING PRIMITIVE (GDP) - create 2D GDP elements
(none available on ESV Workstations)

Syntax
void
pgdp (point_list, gdp_id, gdp data)
Ppoint_list *point_list; array of points
Pint gdp_id, GDP function identifier
Pgdp_data *gdp_data; data record pointer

Required PHIGS Operating States
(PHOP, *, STOP, *)
Input Parameters

point_list A pointer to a structure containing a list of x and y values in
Modelling Coordinates (MC). Ppoint _list is defined in

phigs.h as:
typedef struct {
Pint num_points; /* number of Ppoints in the list */
Ppoint “*points; /* list of points */
} Ppoint_list;
Ppoint is defined in phigs.h as:
typedef struct {
Pfloat x; /* x coordinate */
Pfloat y; /* y coordinate */
} Ppoint;
point_list is ignored for ESV Series Workstations.
gdp id An integer specifying the GDP to be performed.

gdp daia A pointer to a Pgdp_data union containing the information
needed to perform the function specified by gdp_id.
Pgdp_data is defined in phigs.h as:

typedef union {
struct {
Pint unused,
}gdp_ri;
Pdata unsupp; /* unsupported GDP data record*/
/* implementation dependent */
} Pgdp_data;

ESV Workstation Reference Manual [2.0] 1-39

ES/PEX

The unsupp field in the Pgse_data structure is of type Pdata which is de-
fined in phigs.h:

typedef struct {

slze t size; /*size of data */

char *data; /* pointer to individual GDP data */
} Pdata;

Description

GDP creates an implementation-dependent drawing primitive. On the ESV
Series Workstations there are no 2D drawing primitives available.

Execution

If the current edit mode is insert, the structure element created by the GDP
function is inserted into the open structure after the element pointed to by the
element pointer. If the current edit mode is replace, the GDP element replaces
the element pointed to by the element pointer. In either case, the element
pointer is updated to point to the new structure element.

Support for GDPs is implementation- and workstation-dependent. On the
ESV Series Workstations there are no 2D drawing primitives available.

Errors

Ignoring function, function requires state (PHOP, *, STOP, *)

ESV Workstation Reference Manual [2.0]

(

ES/PEX

GENERALIZED DRAWING PRIMITIVE 3

Name

GENERALIZED DRAWING PRIMITIVE 3 (GDP3) - create 3D GDP elements
Syntax

void

pgdp3 (point_list, gdp3 id, gdp data)

Ppoint_list3 *point_list; array of points

Pint gdp3 _id; GDP function identifier

Pgdp_data3 *gdp data; data record pointer

Required PHIGS Operating States
(PHOP, *, STOP, *)
Input Parameters

point_list A pointer to a structure containing a list of x and y values in
Modelling Coordinates (MC).

Ppoint _list3 is defined in phigs.h as:

typedef struct {
Pint num_points; /* number of Ppoints in the list*/
Ppoint3 *points; /* list of points */
} Ppoint_list3;
where:
num_points Number of points passed in the points
parameter. This is ignored for ESV Series
Workstations.
points A pointer to a list num_points long of

Ppoint structures containing x and y values
in Modelling Coordinates (MC).This is
ignored for ESV Series Workstations.

Ppoint3 is defined in phigs.h as:

typedef struct {
Pfloat X; /* x coordinate*/
Pfloat Y; /* y coordinate */
Pfloat z; /* z coordinate */
} Ppoint3;

ESV Workstation Reference Manual [2.0] 1-41

ES/PEX

gdp3 id An integer specifying the GDP to be performed. The follow-
ing GDPs are defined for the ESV workstation:

PES_GDP_SPHERE
PES_GDP_SPHERE_RADIUS
PES_GDP_SPHERE_COLR
PES_GDP_SPHERE_RADIUS_COLR
PES_GDP_CYLINDER
PES_GDP_CYLINDER_RADIUS
PES_GDP_CYLINDER_COLR
PES_GDP_CYLINDER_RADIUS_COLR

gdp_data A pointer to a Pgdp_data union containing the information
needed to perform the function specified by gdp3 id.

Pgdp_data is defined in phigs.h as:
typedef union {

struct {

Pint unused,;

}gdp_r1;

Pdata unsupp; /* unsupported GDP data record */
/* implementation dependent */

} Pgdp_data;
The unsupp field in the Pgse_data structure is of type Pdata which is
defined in phigs.h:
typedef struct {
size_t size; /¥ size of data */

char *data; /* pointer to individual GDP data */
} Pdata;

1-42 ESV Workstation Reference Manual [2.0]

ES/PEX

Description

GDP creates an implementation-dependent drawing primitive. On the ESV
Series Workstations the following GDPs are available:

* Spheres with inherited colour and radius.
(PES_GDP_SPHERE)

e Spheres with specified radius and inherited colour.
(PES_GDP_SPHERE_RADIUS)

» Spheres with specified colour and inherited radius.
(PES_GDP_SPHERE_COLR)

» Spheres with specified radius and colour.
(PES_GDP_SPHERE_RADIUS_COLR)

» Cylinders with inherited colour and radius.
(PES_GDP_CYLINDER)

* Cylinders with specified radius and inherited colour.
(PES_GDP_CYLINDER_RADIUS)

* Cylinders with specified colour and inherited radius.
(PES_GDP_CYLINDER_COLR)

* Cylinders with specified colour and radius.
(PES_GDP_CYLINDER_RADIUS_COLR)

Execution

If the current edit mode is insert, the structure element created by the GDP
function is inserted into the open structure after the element pointed to by the
element pointer. If the current edit mode is replace, the GDP element replaces
the element pointed to by the element pointer. In either case, the element
pointer is updated to point to the new structure element.

Support for GDPs is implementation- and workstation-dependent.
Individual GDPs

For convenience, each individual GDP is provided its own defined structures
to hold data unique to it. These structures should be pointed at by the data
field in the Pdata structure described above. Following is a description of
each GDP and its associated data types and definitions. All of these structures
are defined in esgdp.h.

ESV Workstation Reference Manual [2.0] 1-43

ES/PEX

List of Spheres

Multiple spheres may be specified in a single gdp3 call. All sphere elements
are characterized by a list of 3D center points that define sphere centers.
Spheres have attributes of radius, colour, and precision. All spheres are
drawn as surfaces. Sphere precision is an attribute established by a GSE el-
ement that defines how accurately spheres are drawn. Spheres that are drawn
with lower precision values are drawn faster but look less like spheres than
spheres drawn with higher precision values.

There are four forms of the Spheres element. The most simple form holds
only a list of center points of spheres. A second form holds a center and a
radius for each sphere. A third form holds a center and a colour for each
sphere. The fourth form contains both a center, a colour and a radius for each
sphere. The four different forms of the sphere element all start with a common
header structure, defined as follows:

typedef struct {
Pint colr_model; /* colour model */
Pint count; /* number of sphere definitions */

/* List of sphere structures */
} Psphere_data;

ESV Workstation Reference Manual [2.0]

ES/PEX

Simple List of Spheres

The Simple List of Spheres element has only center point data. The sphere co-
lour comes from the current surface colour attribute. The sphere radius is tak-
en from the Sphere Radius Attribute that is establishcd by a GSE node (see

the function pgse). The structure supporting the Simple List of Spheres ele-

ment is:
/* Simple Spheres */
typedef struct _Psphere_simple_ {
Psphere_data head,
Psphere data[1]; /* Variable length array of centers */

} Psphere_simple;

Note that the data field in the above structure is defined with only 1 array
element, but it is actually used as a variable length array. (This is the only way
to name structure fields of variable length arrays in the C language.) The field
is provided for the convenience of application programmers who prefer to
access their data by array element name rather than by doing pointer
arithmetic on a pointer variable.

A macro is also provided to determine the amount of memory needed for
a Psphere_simple structure that holds n sphere center points:

/* Macro to calculate size of Simple Spheres structure */
/* nis the number of spheres defined in the list */

#define sz_Psphere_simple(n)
((n-1) * sizeof(Psphere) + sizeof(Psphere_simple));

ESV Workstation Reference Manual [2.0] 1-45

ES/PEX

List of Spheres With Radius

The List of Spheres With Radius element has center point data and sphere ra-
dii. The sphere colour comes from the current surface colour attribute. The
sphere precision is taken from the Sphere Precision Attribute that is estab-
lished by a GSE node (see the function pgse). The structure supporting the
List of Spheres With Radius element is:

/* Spheres with radii */

typedef struct {
Ppoint3 center; /* center of sphere */
Pfloat radius; /* radius of sphere */

} Psphere_radius;
typedef struct _Psphere_w_radius_ {
Psphere_data head;
Psphere_radius data[1]; /* Variable length array of centers and radii */
} Psphere_w_radius;
/* Macro to calculate size of Spheres With Radius structure */
/* nis the number of spheres defined in the list */

#define sz_Psphere_w_radius(n)
((n-1)*sizeof(Psphere_radius) + sizeof(Psphere_w_radius));

ESV Workstation Reference Manual [2.0]

(

ES/PEX

List of Spheres With Colour

The List of Spheres With Colour element has center point data and sphere co-
lours. The sphere radius comes from the current sphere radius attribute. The
sphere precision is taken from the Sphere Precision Attribute that is estab-
lished by a GSE node (see the function pgse). The structure supporting the
List of Spheres With Colour element is:

/* Spheres with colour */

typedef struct {
Ppoint3 center; /* center of sphere */
Pcoval coir /* colour of sphere */

} Psphere_colr;
typedef struct _Psphere_w_colr_ {
Psphere_data head,
Psphere_colr data[1]; /* Variable length array of centers and colour */
} Psphere_w_colr;
/* Macro to calculate size of Spheres With Colour structure */
/* nis the number of spheres defined in the list */
#define sz_Psphere_w_colr(n)
((n-1)*sizeof(Psphere_colr) + sizeof(Psphere_dala));

ESV Workstation Reference Manual [2.0] 1-47

ES/PEX

1-48

List of Spheres With Radius and Colour

The List of Spheres With Radius and Colour element has center point data,
sphere radii and sphere colours. Each sphere radius and sphere colour comes
from data within the element. The sphere precision is taken from the Sphere
Precision Attribute that is established by a GSE node (see the function pgse).
The structure supporting the List of Spheres With Radius and Colour element
is:

/* Spheres with radius and colour. */

typedef struct {
Ppoint3 center; /* center of sphere */
Pfloat radius; /* radius of sphere */
Pcoval colr; /* colour of sphere */

} Psphere_radius_colr;
typedef struct _Psphere_w_radius_colr_ {
Psphere_data head;
Psphere_radius_colr data[1]; /* Variable length array of centers,
radii, colr */
} Psphere_w_radius_coir;
/* Macro to calculate size of Spheres With Radius and Colour structure */
/* nis the number of spheres defined in the list */

#define sz_Psphere_w_radius_colr(n)
((n-1)*sizeof(Psphere_radius_colr) + sizeof(Psphere_w_radius_colr));

ESV Workstation Reference Manual [2.0]

(

ES/PEX

Cylinders

Multiple cylinders may be specified in a single gdp3 call. Cylinder GDPs are
defined as “list of cylinder” lists. A single list of cylinders is defined much
like a polyline. The cylinders in the list are connected end to end by a common
center point on their end caps. Each cylinder GSE element can have multiple
lists of cylinders within it.

Like spheres, cylinders can be defined very simply by specifying only the
centers of their capping circles, taking their radius and colouratiributes from
attribute elements previously defined in the structure. Or, they can include
within their definition their colour, or radius, or both. Cylinders have
attributes of radius, colour, and precision. All cylinders are drawn as
surfaces.

Cylinder precision is an attribute established by a GSE element that
defines how accurately cylinders are drawn. Cylinders that are drawn with
lower precision values are drawn faster but look less like cylinders than
cylinders drawn with higher precision values.

There are four forms of the Cylinders GDP element. The most simple
form holds only a list of center points of cylinder end or capping circles. A
second form holds a center and a radius for each cylinder end. A third form
holds a center and a colour for each cylinder. The fourth form contains both
a center, a colour and a radius for each cylinder. The data defining the
cylinder element must reside in contiguous memory. The four different forms
of the cylinder element all start with a common header structure, defined as
follows:

typedef struct {
Pint colr_model; [* colour model */
Pint num_lists; /* number of lists of cylinders */

/* List of cylinder lists */
} Peyl_list_data;

typedef struct {

Pint num_cyl_ends; /* number of cylinder end points */
/* List of cylinder structures */
} Peyl_list;

typedef struct {
Ppoint3 center, /* center of cylinder */
} Peylinder;

ESV Workstation Reference Manual [2.0] 1-49

ES/PEX

Simple Cylinders

The most simple Cylinder element contains only 3D end points. The cylinder
colour comes from the current surface colour attribute. The cylinder radius is
inherited from the Cylinder Radius Attribute that is established by a GSE
node (see the function pgse). Each list within the simple list of cylinder lists
has the following structure:

typedef struct _Pcyl_list_simple_ {
Pcyl_list head,
Pcylinder data[1]; /* list of endpoints */
} Peyl_list_simple;
The complete data necessary to create a simple Cylinder element consists

of the Cylinder header structure Peyl_list_data described above followed by
the desired number of Pcyl_list_simple structures.

The size of any given list with n cylinders within the list of lists of a
simple Cylinder element can be determined with the following macro where
nis the number of cylinders defined in the list:

#define sz_Pcyl_list_simple(n) (sizeof(Pcyl_list_simple) + (n-1) *
sizeof(Pcylinder))

ESV Workstation Reference Manual [2.0]

ES/PEX

Cylinders With Radius

The Cylinder With Radius element can contain a radius along with 3D end
points. The cylinder colour comes from the current surface colour attribute.
The cylinder precision is taken from the Cylinder Precision Attribute that is
established by a GSE node (see the function pgse). A pointer to a cylinder
list within the list of cylinder lists can be cast as the following type:

typedef struct _Pcyl_list_radius_ {

Pcyl_list head,

Pcylinder_radius data[1]; /* list of endpoints and radii */
} Peyl_list_radius;
where the structure Pcylinder_radius is defined as:

typedef struct {
Ppoint3 center; /* center of cylinder */
Pfloat radius; /* radius of cylinder */

} Peylinder_radius;

The complete data necessary to create a Cylinder With Radius element
consists of the Cylinder header structure Pcyl_list_data described above
followed by the desired number of Pcyl_list_radius structures.

The size of any given list within the list of lists of a Cylinder With Radius
element can be determined with the following macro:

#define sz_Pcyl_list_radius(n)
(sizeof(Pcyl_list_radius) + (n-1) * sizeof(Pcylinder_radius))

ESV Workstation Reference Manual [2.0] 1-51

ES/PEX

Cylinders With Colour

The Cylinder With Colour element can contain a Colour along with 3D end

points. The cylinder radius is inherited from the Cylinder Radius Attribute es-
tablished by a GSE element. The cylinder precision is taken from the Cylin-
der Precision Attribute that is established by a GSE element (see the function
pgse). A pointer to a cylinder list within the list of cylinder lists can be cast
as the following type:

typedef struct _Pcyl list_Colr_{
Pcyl_list head, [*# of points in the cylinder */
Pcylinder_colr data[1]; /* list of endpoints and colours */
} Peyl_list_colr;
where the structure Peylinder_colr is defined as:

typedef struct {
Ppoint3 center; /* center of cylinder */
Pcoval coir; /* colour of cylinder */

} Peylinder_colr;

The complete data necessary to create a Cylinder With Colour element
consists of the Cylinder header structure Pcyl_list_data described above
followed by the desired number of Peyl_list_colr structures.

The size of any given list within the list of lists of a Cylinder With Colour
element can be determined with the following macro, where n is the number
of cylinders defined in the list:

#define sz_Pcyl_list_colr(n)
(sizeof(Pcyl_list_colr) + (n-1) * sizeof(Pcylinder_colr))

ESV Workstation Reference Manual [2.0]

(

ES/PEX

Cylinders With Radius and Colour

The Cylinder With Radius and Colour element can contain a radius and co-
lour along with 3D end points. The cylinder precision is taken from the Cyl-
inder Precision Attribute that is established by a GSE element (see the
function pgse). A pointer to a cylinder list within the list of cylinder lists can
be cast as the following type:

typedef struct _Pcyl_list_radius_Colr_ {
Pcyl_list head, /* # of points in the cylinder */
Pcylinder_radius_colr dafa[1]; /* list of cyl data */

} Peyl_list_radius_colr;

where the structure Pcylinder_radius_colr is defined as:

typedef struct {
Ppoint3 center; /* center of cylinder */
Pfloat radius; /* radius of cylinder */
Pcoval colr; /* colour of cylinder */

} Pcylinder_radius_colr;

The complete data necessary to create a Cylinder With Radius and Colour
element consists of the Cylinder header structure Peyl_list_data described
above followed by the desired number of Peyl_list_radius_colr structures.

The size of any given list within the list of lists of a Cylinder With Radius
and Colour element can be determined with the following macro, where nis
the number of cylinders defined in the list:

#define sz_Pcyl _list_radius_colr(n)
(sizeof(Pcyl_list_radius_colr) + (n-1) * sizeof(Pcylinder_radius_colr))

Errors

Ignoring function, function requires state (PHOP, *, STOP, *)

ESV Workstation Reference Manual [2.0] 1-53

ES/PEX

GENERALIZED STRUCTURE ELEMENT

Name
GENERALIZED STRUCTURE ELEMENT (GSE) - create a GSE
Syntax
void
pgse (id, gse)
Pint id; GSE identifier
Pgse_data ‘gse; GSE data record
Required PHIGS Operating States
(PHOP, *, STOP, *)
Input Parameters

id The identifier of the generalized structure element to insert.

Recognized identifiers defined in esgdp.h are:
PES_GSE_SPHERE_RADIUS
PES_GSE_SPHERE_DIVISIONS
PES_GSE_CYLINDER_RADIUS
PES_GSE_CYLINDER_DIVISIONS
PES_GSE_STEREOQO_VIEW_INDICES
PES_GSE_FILLAREA_TOLERANCE
PES_GSE_FRONT_BACK_DISTINGUISH
PES_GSE_POLYLINE_QUALITY
PES_GSE_LINEPATTERN_MASK
PES_GSE_EDGEPATTERN_MASK
PES_GSE_INFORMATION
PES_GSE_TRANSPARENCY

gse A pointer to a Pgse_data union containing the information
needed to perform the function specified by id.
Pgse_data is defined in phigs.h as:

typedef union {
struct {

Pint unused,;

}gse_r1;

Pdata unsupp; /* Unsupported GSE data */
} Pgse_data;

1-54 ESV Workstation Reference Manual [2.0]

ES/PEX

The unsupp field in the Pgse_data structure is of type Pdata which is de-
fined in phigs.h.

typedef struct {
size_t size; /* size of data */
char *data; /* pointer to individual GSE data */
} Pdata;
Description

GSE creates an implementation-dependent structure element. On the ESV
Series Workstations a GSE element may be used to:

Set the radius of spheres.
(PES_GSE_SPHERE_RADIUS)

Set the precision used to render spheres.
(PES_GSE_SPHERE_DIVISIONS)

Set the radius of cylinders.
(PES_GSE_CYLINDER_RADIUS)

Set the precision used to render cylinders.
(PES_GSE_CYLINDER_DIVISIONS)

Set the left and right-eye view indices for stereo.
(PES_GSE_STEREO_VIEW_INDICES)

Set the offset distance that separates polylines and fillareas
that lie in the same plane.
(PES_GSE_FILLAREA_TOLERANCE)

Set the offset value that separates fillarea front and back faces.
(PES_GSE_FRONT_BACK_DISTINGUISH)

Set the polyline quality as jaggy or smooth.
(PES_GSE_POLYLINE_QUALITY)

Set the line pattern mask.
(PES_GSE_LINEPATTERN_MASK)

Set the edge pattern mask.
(PES_GSE_EDGEPATTERN_MASK)

Establish a traversal information ID elementor matrix information
element.
(PES_GSE_INFORMATION)

Set the surface transparency attribute.
(PES_GSE_TRANSPARENCY)

ESV Workstation Reference Manual [2.0] 1-55

ES/PEX

1-56

Execution

If the current edit mode is insert, then GSE is inserted into the currently open
structure after the element currently pointed to by the element pointer. If the
edit mode is replace, then GSE replaces the element pointed to by the element
pointer. In either case, the element pointer is updated to point to the new ele-
ment.

Individual GSEs

Each individual GSE is provided its own structure type to hold the data
unique to it. The structure should be pointed at by the data field in the Pdata
structure described above. Following is a description of each GSE and its as-

sociated data types and definitions. All of these are structures are defined in
esgdp.h. :

Sphere Radius

The Sphere Radius GSE establishes the radii of all spheres that do not have
radius data as part of the sphere GDP element. The radius should be placed in
the radius field of the following structure:
typedef struct {

Pfloat radius; /* default radius for spheres */
} Pgse_sphere_radius_data;

Sphere Divisions

The Sphere Divisions GSE establishes the precision with which spheres will
be drawn. Spheres will be drawn with div number of latitude lines and a cor-
responding number of longitude lines. The number of divisions should be
placed in the div field of the following structure:

typedef struct {

Pint div; /* number of lat. and long. divisions */
} Pgse_sphere_div_data;

Cylinder Radius

The Cylinder Radius GSE establishes the radii of all cylinders that do not
have radius data as part of the cylinder structure element. The radius should
be placed in the radius field of the following structure:
typedef struct {

Pfloat radius; /* default radius for cylinders */
} Pgse_cyl_radius_data;

ESV Workstation Reference Manual [2.0]

ES/PEX

Cylinder Divisions

The Cylinder Divisions GSE establishes the number of sides (2+div + 1) that
the cylinder will be broken into for rendering. A number less than 0 defaults
to a reasonable value. The number of divisions should be placed in the div
field of the following structure:

typedef struct {
Pint div; /* number of lat. and long. divisions */
} Pgse_cyl_div_data; ‘

Stereo View Indices

The Stereo View Indices GSE provides a more general version of the PHIGS
SET_VIEW_INDICES structure element, and can be used in place of the
SET_VIEW_INDICES structure element. This element stores three view table

~ indices: a mono view index that will be used by the structure walker if the
structure is being displayed on a regular monoscopic screen; and leff and
right view indices that are used by the structure walker if the structure is be-
ing displayed on a stereo screen.

typedef struct {
Pint mono,
Pint left;
Pint right;

} Pgse_stereo_view_indices;
Polylines Over Fillarea Tolerance

This GSE is used to make polylines appear in front of fillareas when they may
lie on the same plane as the fillarea. All polylines and fillarea edges are
moved slightly forward relative to the fillarea interior. This GSE defines how
far forward they are moved. By setting a tolerance of 0.0, applications forbid
polylines from being moved. The tolerance value should be a value between
-1.0 and 1.0. Lines are moved in NPC space in front of fillareas. The default
is .003.

typedef struct {
Pfloat tolerance;
} Pgse_fillarea_tolerance;

ESV Workstation Reference Manual [2.0] 1-57

ES/PEX

Fillarea Front/Back Face Distinguish

To avoid ambiguity where the front and back fillareas of a surface meet (that
is, along the silhouette), back fillareas are moved slightly backwards relative
to front fillareas. This GSE defines how far back to move back fillareas. The
distinguish field below is an integer that is subtracted to the back face z val-
ues before sending them to the z-buffer for testing. A value of 2 (the default)
is typically sufficient for all back faces. A value of 0 disables any distinguish-
ing between front and back fillareas.

typedef struct {
Pint distinguish;
} Pgse_front_back_distinguish;
~ The polyline over fillarea tolerance is a float while the front/back face
distinguish is an integer because tolerance needs to vary depending on the

model and may be quite large, while a small constant value is sufficient for
distinguish.

Polyline Quality

The Polyline Quality GSE provides a structure element that will enable or
disable the anti-aliasing of polylines. If the PSMOOTH identifier is used in
the flag field of the following structure, polylines will be anti-aliased. If the
PJAGGY identifier is used, polylines will not be anti-aliased.

typedef enum { (
PSMOOTH, . -
PJAGGY

} Pgse_polyline_quality_flag;

typedef struct {
Pgse_polyline_quality_flag flag;
} Pgse_polyline_quality;

1-58 ESV Workstation Reference Manual [2.0]

ES/PEX

Line Pattern Mask

This GSE sets the polyline type to a pattern other than the predefined polyline
types. If the polyline type set by a call to the SET_LINETYPE function is set
to PES_PLINE_MASK (defined in esgdp.h) the line pattern is taken as de-
fined by this GSE. The length field of the following structure is the number
of bits in the pattern, from 1 to 32. Each bit in the pattern represents one pixel:
if a bit is set to 1 it causes the corresponding pixel to be drawn, if the bit is 0
drawing is suppressed. The bits in the pattern begin with the least significant
bit.
typedef struct {

Pint length; /* must be from 1 to 32 */

Plong pattern;
} Pgse_linepattern_mask;

Edge Pattern Mask

This GSE sets the fillarea edge type to a pattern other than the predefined

edge types. If the edge type set by a call to the SET_EDGETYPE function is
set to PES_PLINE_MASK (defined in esgdp.h) the edge pattern is taken as
defined by this GSE.The length field of the following structure is the number
of bits in the pattern, from 1 to 32. Each bit in the pattern represents one pixel:
if a bit is set to 1 it causes the corresponding pixel to be drawn, if the bit is 0
drawing is suppressed. The bits in the pattern begin with the least significant

bit.

typedef struct {
Pint length; /* must be from 1 to 32 */
Plong pattern;

} Pgse_edgepattern_mask;

ESV Workstation Reference Manual [2.0] 1-59

ES/PEX

1-60

Traversal Information

The Traversal Information GSE provides a special structure element that will
only be looked at by the structure walker if a special information traversal has
been requested (see the X extension routine XGetTraversalinfo). When this
GSE is traversed, the structure walker buffers either a matrix which is the
composite local and global matrices, or a user defined ID. If the type field in
the following structure is set to PES_INFORMATION_MATRIX, then the
composite matrix is buffered and returned to the application. If the type field
is set to PES_INFORMATION_ID, then the integer placed in the /d field be-
low is buffered and returned to the application. This functionality has been
provided to aid molecular modeling applications in doing distance monitor-
ing and energy calculations. This functionality could also be used in a number
of other settings, such as collision detection.

typedef enum {
PES_INFORMATION_MATRIX,
PES_INFORMATION_ID

} Pes_information_type;

typedef struct {
Pes_information_type type;
union {
Pint unused,
Pint id;
} rec;
} Pgse_information_data;

Transparency

This GSE sets the transparent attribute for surfaces. The attribute is a float-
ing point number from 0.0 to 1.0. A value of 1.0 is the most transparent (al-

most clear). A value of 0.0 turns the transparency functionality off. The data
field of the Pdata structure should point to the following structure:

typedef struct _Pgse_transparency {
Pfloat iransparent; /* Ranges from 0.0 to 1.0 */
} Pgse_transparency;

Errors

Ignoring function, function requires state (PHOP, *, STOP, *)

ESV Workstation Reference Manual [2.0]

ES/PEX

SETHLHSRID
Name

SET HLHSR IDENTIFIER - create a structure element to set the current hid-
den line/hidden surface removal attribute.

Syntax
void pset_hlhsr_Id (id)
Pint id; HLHSR identifier

Required PHIGS Operating States
(PHOP, *, STOP, *)
Description

SET HLHSR IDENTIFIER creates a structure element containing a value for
the Hidden Line and Hidden Surface Removal (HLHSR) identifier attribute.
During traversal, this attribute replaces the current HLHSR identifier and is
applied to all output primitives that follow in the structure network in a work-
station-dependent way. On the ESV workstation, it can turn z-buffering on
and off if PHIGS_HLHSR_MODE_ZBUFF is being used. Also, it can be used
to give special rendering instructions to the graphics processor for drawing
surfaces that are transparent or lines that lie on polygons.

The HLHSR identifier in the structure network is used in conjunction with
the HLHSR mode on the workstation during traversal. Presently, both must be
on to enable z-buffering Hidden Surface Removal.

If the current edit mode is insert, then a SET HLHSR IDENTIFIER
element is inserted into the currently open structure after the element pointed
to by the current element pointer. If the edit mode is replace, then the new
SET HLHSR IDENTIFIER element replaces the element pointed to by the
element pointer. In either case, the element pointer is updated to point to the
new element.

ESV Workstation Reference Manual [2.0] 1-61

ES/PEX

Input Parameter ('
id The HLHSR identifier value. Presently supported values are:
PHIGS_HLHSR_ID_OFF Turn off z-buffering.
PHIGS_HLHSR_ID_ON Turn on z-buffering.

PES_HLHSR_ID_BEG_SURFACES Begin rendering surfaces.
PES_HLHSR_ID_BEG_SURF_EDGES Begin rendering surface

edges.
PES_HLHSR_ID_BEG_CTHRU Begin rendering

transparent objects.
PES_HLHSR_ID_BEG_LINES Begin rendering lines.

Execution

When the SET HLHSR IDENTIFIER element is traversed, the current HLHSR
identifier entry in the traversal state list is set to the HLHSR identifier that is

stored in this element. The current HLHSR identifier is applied to output prim-
itives that follow in the structure network.

On the ESV workstation, if the current HLHSR mode is
PHIGS_HLHSR_MODE_ZBUFF, then the HLHSR identifier will turn z-
buffering on or off.

The default state for the HLHSR identifier is PHIGS_HLHSR_ID_OFF. (
Special ESV HLHSR IDs

On the ESV workstation, some images that include the use of transparencies,
edges on surfaces such as fillareas, or polylines that pass through or are coin-
cident with surfaces, can exhibit rendering problems. These problems are a
natural result of trying to anti-alias or blend edges or transparent surfaces with
the objects that lie behind them in a scene. In order to be done correctly, anti-
aliasing or blending must be done after all underlying objects have been
drawn. Since the ESV does not pre-sort all objects on a pixel basis before
drawing, problems can appear. These rendering problems can be decreased
by traversing and rendering primitives in certain groups and in an order that
provides the best image. The groups are

* Opaque surfaces.

o Edges of opaque surfaces.

o Transparent surfaces and their edges.
o Polylines.

The above ordering may or may not be the best for a given image,
depending on which primitives are in front and which are in back.

1-62 ESV Workstation Reference Manual [2.0]

ES/PEX

Note: Transparent surfaces are created by using a
GSE element PES_GSE_TRANSPARENCY
in the structure. It specifies a transparency
value attribute between 0.0 and 1.0. If the
transparency value is 0.0, transparency is
turned off. If the transparency value is not 0.0,
then it is turned on and surface primitives that
follow in the structure are considered
transparent. See the documentation on
GENERALIZED_STRUCTURE_ELEMENT.

Two methods of grouping primitives are provided for rendering. Both
have some speed degradation over the normal rendering method. The first is
a “vanilla-PHIGS application” method, where we provide special HLHSR
modes (see the manual page on HLHSR modes, not to be confused with
HLHSR IDs!) that instruct the structure walker to do multiple traversals in
order to send primitives to the graphics pipeline in the right order. The second
is a “smart application” method, where the application intelligently orders
primitives so that they are traversed in the correct order.

In the “smart application” method, the application must order the
structures and the primitives in each structure so that all opaque fillareas,
triangle_strips, etc. are traversed together. Also, transparent surfaces should
be grouped together and polylines should be grouped together. The order of
traversal depends on how the different groups relate to each other in terms of
z (i.e., which is in front and which in back). No single order may solve all
problems. You will want to find an order that best fits your application.
Generally, objects that are further away should be traversed first.

In addition, in front of each of these groups of primitives the “smart
application” must place one of the following special HLHSR ID elements:

PES_HLHSR_ID_BEG_SURFACES Begin rendering surfaces.
PES_HLHSR_ID_BEG_SURF_EDGES Begin rendering edges of

surfaces.
PES_HLHSR_ID_BEG_CTHRU Begin rendering transpar-

ent surfaces.
PES_HLHSR_ID_BEG_LINES Begin rendering lines.

These HLHSR IDs tell the structure walker and the graphics pipeline what
kinds of primitives are coming next and how to deal with them. This “smart
application” method of doing better renderings gets better performance at run
time than the “vanilla-PHIGS” method alluded to above, but it requires
intelligent structure building by the application.

ESV Workstation Reference Manual [2.0] 1-63

ES/PEX

Edges

Notice that there are different HLHSR IDs for doing edges of surfaces. In or-
der to do surface edges with the “smart application” method, the application
must create the structure so that surface primitives are traversed twice, the
first time to draw the interior of the surface, the second time to draw the sur-
face edges.

Note: The HLHSR mode for a workstation is set with
the SET HLHSR MODE function.

1-64 ESV Workstation Reference Manual [2.0]

ES/PEX

SET HLHSR MODE
Name

SET HLHSR MODE - set the hidden line and hidden surface removal
algorithm for a workstation

Syntax
void pset_hlhsr_mode (ws, mode)
Pint ws; workstation identifier
Pint mode; HLHSR mode

Required PHIGS Operating States
(PHOP, WSOP, *, *
Description

The SET HLHSR MODE requests a certain Hidden Line and Hidden Surface
Removal (HLHSR) mode for a workstation. The workstation’s current
HLHSR mode either sets the HLHSR algorithm to be used or it disables all
HLHSR methods for a workstation. The current HLHSR identifier from the
structure network is used in conjunction with the HLHSR mode on the work-
station during traversal.

On the ESV workstation, the HLHSR mode enables the use of z-buffering,
or causes special structure traversals to be used to create higher quality
images:

CPK Renderings

This special mode turns on the high-quality, anti-aliased rendering of
spheres and cylinders. This mode was developed to support molecular
modeling applications. These renderings are done in software on the host and
are not real time.

Multi-Pass Traversals

On the ESV workstation, some images that include the use of
transparencies, anti-aliased edges on surfaces such as fillareas, or polylines
that pass through or are coincident with surfaces, can exhibit rendering
problems. These problems are a natural result of trying to blend edges or
transparent surfaces with the objects that lie behind them in a scene. In order
to be done correctly, anti-aliasing or blending must be done after all
underlying objects have been drawn. Since the ESV does not pre-sort all
objects on a pixel basis before drawing, problems can appear. These
rendering problems can be decreased by traversing and rendering primitives
in certain groups and in an order that provides the best image. The groups are

ESV Workstation Reference Manual [2.0] 1-65

ES/PEX

+ Opaque surfaces.

e Edges of opaque surfaces.

+ Transparent surfaces and their edges.
» Polylines.

The above ordering may or may not be the best for a given image,
depending on which primitives are in front and which are in back. We have
provided two methods of grouping primitives for rendering. Both have some
speed degradation over the normal z-buffering HLHSR mode. The first is a
“vanilla-PHIGS application” method, where we provide special HLHSR
modes (see below) that instruct the structure walker to do multiple traversals
in order to send primitives to the graphics pipeline in the desired order. The
second is a “smart application” method, where the application intelligently
orders primitives in structures so that they are traversed in the desired order.

Input Parameters
ws The identifier of the workstation whose HLHSR mode is being
set.
mode The HLHSR mode value. Presently defined values are

PHIGS_HLHSR_MODE_NONE

Disable z-buffering. All HLHSR rendering algorithms will be
disabled with this mode.

PHIGS_HLHSR_MODE_ZBUFF

Enable z-buffering. z-buffering is enabled and capable of be-
ing turned on by the correct HLHSR ID.

PES_HLHSR_MODE_HQ_CPK

High-Quality Sphere and Cylinder Rendering. This mode
turns on high-quality, anti-aliased rendering of spheres and
cylinders, and is important to the molecular modeling indus-
try. The speed of this type of rendering is much slower than the
regular HLHSR z-buffering mode. This mode has some restric-
tions. First, the only primitives that will be rendered under this
mode are spheres and cylinders (see GDP primitives). Second,

~ only orthographic viewing projections can be used, no per-
spective allowed! Third, the view table index can only be set
once, at the top of a structure, and cannot be changed. Fourth,
primitives rendered in this way cannot be picked.

1-66 ESV Workstation Reference Manual [2.0]

ES/PEX

PES_HLHSR_MODE_MULTIPASS_xxx

Rendering Correct Edges on Surfaces and Rendering Trans-
parencies. This is a group of modes that instruct the structure
walker to do multiple traversals in a particular order.There can
be up to three traversals requested, one for doing surfaces, one
for transparent surfaces, and one for polylines. The letters xxx
represent various combinations of the letters “S” (for travers-
ing surfaces), “T” (for traversing transparent surfaces), and
“L” (for traversing polylines). While none of these modes are
correct for all applications, the picture will be more correct if
objects that are further away in z are rendered first so that anti-
aliased primitives that are nearer in z can be anti-aliased to the
color of the primitives that are behind them. Also, transparent
objects should take part of their color from the objects that lie
behind them and are better rendered after the objects that are
further away. Because multiple traversals are done, this ren-
dering method takes longer than the normal z-buffering mode
(although hardware z-buffering is still turned on for these
modes). While all possible combinations of traversals do not
make sense and are not available, many are valid and are be
listed below.

Note: Transparent surfaces are created by using a
GSE element PES_GSE_TRANSPARENCY
in the structure. It specifies a transparency
value attribute between 0.0 and 1.0. If the
transparency value is 0.0, transparency is
turned off. If the transparency value is not 0.0,
then it is turned on and surface primitives that
follow in the structure are considered
transparent. See the documentation for
GENERALIZED STRUCTURE ELEMENT.

PES_HLHSR_MODE_MULTIPASS_ST

Rendering Surfaces and Transparent Objects Only. This mode
causes the structure walker in the X Server to make two tra-
versals, rendering opaque surfaces and their edges first, and
transparent surfaces last. A traversal pass to render polylines
is not done and they are left out of the picture.

ESV Workstation Reference Manual [2.0] 1-67

ES/PEX

PES_HLHSR_MODE_MULTIPASS_STL

Rendering Transparent Objects With Surfaces and Lines. This
mode causes the structure walker in the X Server to make three
traversals of the workstation, rendering opaque primitives
such as fillareas and their edges first, transparent objects sec-
ond, and polylines last.

PES_HLHSR_MODE_MULTIPASS_SL

Rendering Correct Edges On Fillareas And Polylines Over
Fillareas. This mode causes the structure walker in the X Serv-
er to make two traversals of the structures posted to the work-
station, rendering opaque surfaces first with their edges and
polylines last. This makes possible the correct rendering of
edges on fillareas and the best rendering of anti-aliased lines
over fillareas. In this mode, surfaces that are transparent are
not rendered.

PES_HLHSR_MODE_MULTIPASS_SLT

Rendering Transparent Objects With Surfaces and Lines. This
mode causes the structure walker in the X Server to make three
traversals of the workstation, rendering opaque surfaces and
their edges first, polylines second, and transparent objects last.
This mode should be used in preference to the STL mode
above if most polylines and opaque surfaces in the picture are
further away in z than transparent objects.

PES_HLHSR_MODE_MULTIPASS_T

Rendering Transparent Objects Only. This mode is very simi-
lar to the above modes, except that the traversal passes to ren-
der opaque surfaces and polylines are not done and they are

left out of the picture. Transparent surfaces only are rendered.

PES_HLHSR_MODE_MULTIPASS_TS

Rendering Surfaces and Transparent Objects Only. This mode
causes the structure walker to make two traversals, rendering
transparent surfaces first with their edges and opaque surfaces

- second with their edges. The traversal pass to render polylines
is not done and polylines are left out of the picture.

1-68 ESV Workstation Reference Manual [2.0]

ES/PEX

PES_HLHSR_MODE_MULTIPASS_TSL

Rendering Transparent Objects With Surfaces and Lines. This
mode causes the structure walker in the X Server to make three
traversals of the workstation, rendering transparent surfaces
first, opaque surfaces second, and polylines last. This mode
should be used in preference to the STL mode above if all
transparent surfaces in the picture are further away in z than
other objects.

PES_HLHSR_MODE_MULTIPASS_TL

Rendering Transparent Objects and Polylines Only. This
mode is very similar to the above modes, except that the tra-
versal pass to render non-transparent surfaces is not done and
they are left out of the picture. Transparent surfaces are ren-
dered first and opaque surfaces are rendered second.

PES_HLHSR_MODE_MULTIPASS_TLS

Rendering Transparent Objects With Surfaces and Lines. This
mode causes the structure walker in the X Server to make three
traversals of the workstation, rendering transparent surfaces
first, polylines second, and opaque surfaces such as fillareas
and their edges last. This mode should be used in preference
to the STL mode above if all transparent surfaces in the picture
are further away in z than polylines and other objects.

PES_HLHSR_MODE_MULTIPASS_LS

Rendering Opaque Objects and Polylines Only. This mode
causes the structure walker to make two traversals of the
workstation, rendering polylines first and opaque surfaces sec-
ond. The pass to render transparent surfaces is not done and
they are left out of the picture. This mode should be used in
preference to the TL mode above if all polylines in the picture
are further away in z than opaque objects.

PES_HLHSR_MODE_MULTIPASS_LST

Rendering Transparent Objects With Surfaces and Lines. This
mode causes the structure walker in the X Server to make three
traversals of the workstation, rendering polylines first, opaque
surfaces second, and transparent surfaces last. This mode
should be used in preference to other three-pass modes if
polylines are generally furthest away in z, followed by opaque
surfaces, and then by transparent ones.

ESV Workstation Reference Manual [2.0] 1-69

ES/PEX

PES_HLHSR_MODE_MULTIPASS_LT

Rendering Transparent Objects and Polylines Only. This
mode causes polylines to be traversed first, followed by trans-
parent surfaces. The pass to render opaque surfaces is not done
and they are left out of the picture. This mode should be used
in preference to the TL mode above if all polylines in the pic-
ture are further away in z than transparent objects.

PES_HLHSR_MODE_MULTIPASS_LTS

Rendering Transparent Objects With Surfaces and Lines. This
mode causes the structure walker in the X Server to make three
traversals of the workstation, rendering polylines first, trans-
parent surfaces second, and opaque surfaces last. This mode
should be used in preference to other three-pass modes if
polylines are generally furthest away in z, followed by trans-
parent surfaces, and then by opaque surfaces.

Note

To avoid the cost of multiple traversals when drawing fillarea edges,
polylines over fillareas and transparent objects, the application can either use
the standard z-buffering mode (and expect an occasional anomaly in the im-
age), or it can use a “smart application” method where the structure is created
in such a way that filled surfaces are traversed together, as are transparent ob-
jects and polylines. The application must then insert special HLHSR ID ele-
ments in the structure that provide special instructions to the structure walker.

This will cause edges, transparent objects and lines to be rendered more
successfully in a single traversal under the usual
PHIGS_HLHSR_MODE_ZBUFF mode. See SET HLHSR IDENTIFIER for
details.

1-70 ESV Workstation Reference Manual [2.0]

(

ES/PEX

Execution

If the requested HLHSR mode value is supported on the specified workstation,
then SET HLHSR MODE immediately sets the requested HLHSR mode entry
in the PHIGS workstation state list to the specified mode. The effect of calling
SET HLHSR MODE is not visible until the requested HLHSR mode replaces
the current HLHSR mode. The time at which this occurs depends on the work-
station’s display update state.

This assignment is performed immediately and the HLHSR update state is
set to Not Pending if any one of the following is true:

1) The workstation display update state allows update.

2) The workstation modification mode is any value other than No Imme-
diate Visual Effect, and the dynamic modification accepted for HLHSR
mode entry in the workstation description table is set to Immediate.

3) The display space empty status in the workstation state list is EMPTY.

Otherwise, the HLHSR update state is set to Pending and the requested
HLHSR mode will not replace the current HLHSR mode until the next time the
workstation is updated. The HLHSR update state will be set to Not Pending at
that time.

ESV Workstation Reference Manual [2.0] 1-71

ES/PEX

PHIGS Input with ESV Devices

This section describes how to use PHIGS input to access the knob box (control
dials), button box and Spaceball devices on an ESV workstation. This is not
intended to be a PHIGS input tutorial.

Refer to the manual pages for INITIALIZE CHOICE (3),
INITIALIZE LOCATOR (3), INITIALIZE PICK (3), INITIALIZE STRING (3),
INITIALIZE STROKE (3), and INITIALIZE VALUATOR (3) for a complete
description of all the available PHIGS devices.

Initializing the Knob Box

The ESV knob box is a set of eight PHIGS valuator devices, numbers 11-18.
The knobs are numbered from left to right and top to bottom. The ESV knob
box implementation supports two PETs (Prompt and Echo Types):

PET 1 provides an echo of the current knob value on the label above
the knob when the device is active. This value is a floating point num-
ber in the range specified by the high and low values in the Pval_data
structure.

PET -1 allows the application to define the knob label in the
INITIALIZE VALUATOR and INITIALIZE VALUATOR 3 functions.
This label will be displayed when the device is active. The
pets.pet_u1.label field of the Pval_data structure is used to specify
the label. The other fields of the structure are ignored by this device.

Initializing the Button Box

The ESV button box is a single PHIGS choice device number 3. The values
returned range from 1-32. The buttons are numbered left to right and top to
bottom. The ESV button box implementation supports three PETSs:

PET 1 will echo the device by turning on the LED in the button when
the button is pressed and turning off the LED when the button is re-
leased.

PET 2 will echo the device by turning on the button LEDs correspond-
ing to the PPR_ON values specified in the prompts list in the
Pchoice_data structure when the device is active. The prompts list

can be from 1 to 32 in length. Values in the list beyond the 32nd will -

be ignored.

PET -1 will echo the device by turning on the button LED the first time
a button is pressed and turning of the LED the next time the same but-
ton is pressed when the device is active. There is no data record asso-
ciated with this PET.

ESV Workstation Reference Manual [2.0]

ES/PEX

Initializing Spaceball

The ESV Spaceball is a single PHIGS choice device number 2 for Spaceball
buttons and a single PHIGS string device number 2 for Spaceball motion. The
string is an encoded form of the six floating pgint numbers returned by Spa-
ceball. These values can be decoded with-a sscanf function call using the for-
mat "%d,%d,%d,%d,%d,%d" and six floating point variables to receive the
values. ’

The ESV Spaceball implementation supports only PET for both the choice
and string device:

» PET 1 has no echo on either the choice or string device.
Input Processing

There are no special considerations for processing input from ESV devices.
They all follow standard PHIGS input conventions with the exception that the
ESV Spaceball string device returns six floating point values encoded as a

string.

Knob Box Example

{
Plimit echo_area;
Pval_ data val_data;
float delay = 2.0;
Pint dev, ws;
Pin class class;
Pfloat val;
int done = 0;

/* init echo area. This is required even thought it is ignored */
echo_area.x min = 0.0;
echo_area.x max = 1.0;
echo_area.y min = 0.0;
echo_area.y max = 1.0;

/* initialize knobs 1,2 and 3 with PET -1 and labels */
val_data.low = -1.0;

val_data.high = 1.0;

val_data.pets.pet_ul.format = NULL;

val data.pets.pet_ul.low_label = NULL;

val data.pets.pet_ul.high label = NULL;
val_data.pets.pet_ul.label = "Rotate X";

pinit_wval(1, 11, 0.0, -1, &echo_area, &val _data);
val_data.pets.pet_ul.label = "Rotate y";

pinit_val(l, 12, 0.0, -1, &echo_area, &val data);

ESV Workstation Reference Manual [2.0] 1-73

ES/PEX

}

val_data.pets.pet_ul.label = "Rotate z";
pinit_wal(1, 13, 0.0, -1, &echo_area, &val_data);

/* set knobs 1, 2, and 3 in event mode */

pset_val mode(1, 11, POP_EVENT, PSWITCH_ECHO) ;
pset_val mode(1, 12, POP_EVENT, PSWITCH_ECHO) ;
pset_val_mode(1, 13, POP_EVENT, PSWITCH_ECHO) ;

while (!done)
{
pawait_event (delay, &ws, &class, &dev);
switch (class)
{
default:
case PIN _NONE:
break;
case PIN_VAL:
pget_val(&val);
/* process knob events */
break;

Button Box Example

{

Pchoice_data cho_data;

Plimit echo_area;
float delay = 2.0;
Pint dev, ws;

Pin class class;

Pint cho;

Pin status status;

int done = 0;

/* init echo area. This is required even thought it is

~echo_area.x min = 0.0;
echo_area.x max = 1.0;
echo_area.y min = 0.0;
echo_area.y max = 1.0;

ignored */

ESV Workstation Reference Manual [2.0]

ES/PEX

/* initialize PET 2 with LEDs 1-9 on and the rest off */

cho_data.pet_r2.num prompts = 32;

cho_data.pet_r2.prompts = (Ppr_switch *)calloc(32,

sizeof (Ppr_switch));
for (i = 0; i < 9; it++) {
cho_data.pet_r2.prompts[i] = PPR_ON;
}

pinit_choice(1, 3, PIN_STATUS_OK, 1, 2, &echo_area, &cho_data);

/* set buttons in event mode */

pset_choice_mode(1, 3, POP_EVENT, PSWITCH_ECHO);

while (!done)
{
pawait_event (delay, &ws, &class, &dev);
switch (class)
{
default:
case PIN NONE:
break;
case PIN CHOICE:
pget_choice(&status, &cho);
switch (status)
{
case PIN_STATUS_OK:
/* process button box events */

break;
}
break;
}
}
}
Spaceball Example
{
int done = 0;
float delay = 2.0;
Pint dev, ws;
Pin_class class;
char str[100];
Pint cho;

Pin_ status status;

ESV Workstation Reference Manual [2.0]

1-75

ES/PEX

/* set space ball in event mode. it is both a chaice and string

* device. There is no need to initialize

*/
pset_choice mode(1, 2, POP_EVENT, PSWITCH_ECHO);
pset_string mode(1, 2, POP_EVENT, PSWITCH_ECHO);

while (!done)
{
pawait_event (delay, &ws, &class, &dev);
switch (class)
{
default:
case PIN_NONE:
break;
case PIN_STRING:
{

int axis[6];

pget_string(str);
sscanf (str, "%d,%d, %d,%d, 34, 3d",
&axis[0],
&axis[1],
&axis[2],
&axis[3],
&axis[4],
&axis[5]
)
/* process spaceball motion event */
break;
}
case PIN CHOICE:
pget_choice(&status, &cho);
switch (status)
{
case PIN_STATUS_OK:
_ /* process spaceball button events */
break;
}
break;

1-76 ESV Workstation Reference Manual [2.0]

ES/PEX

Function Numbers

The function numbers listed in the left-hand column are returned by error
messages. The corresponding symbolic name is listed in the middle column,
and the corresponding function name is listed in the right-hand column.

In the following list, functions shown in bold are supported by the ESV

Workstation, and functions shown in jtalics are not currently supported by the
ESV Workstation.

No. Symbolic Name

-5

O 00 N N Lt A W N = O

N N N N b et pd et ek ek e ek ped e
gngHO\OOO\IO\UI-PMN‘—‘O

ESV Workstation Reference Manual [2.0]

Pfn_openpex
Pfn_openphigs
Pfn_closephigs
Pfn_openws
Pfn_closews
Pfn_redrawallstruct
Pfn_updatews
Pfn_setdisplayupdatest
Pfn_message
Pfn_polyline3
Pfn_polyline
Pfn_polymarker3
Pfn_polymarker
Pfn_text3

Pfn_text
Pfn_annotationtextrelative3
Pfn_annotationtextrelative
Pfn_fillarea3
Pfn_fillarea
Pfn_fillareaset3
Pfn_fillareaset
Pfn_cellarray3
Pfn_cellarray

Pfn_gdp3

Pfn_gdp
Pfn_setlineind
Pfn_setmarkerind

Function Name

OPEN PEX

OPEN PHIGS

CLOSE PHIGS

OPEN WORKSTATION

CLOSE WORKSTATION
REDRAW ALL STRUCTURES
UPDATE WORKSTATION

SET DISPLAY UPDATE STATE
MESSAGE

POLYLINE 3

POLYLINE

POLYMARKER 3

POLYMARKER

TEXT 3

TEXT

ANNOTATION TEXT RELATIVE 3
ANNOTATION TEXT RELATIVE
FILL AREA 3

FILL AREA

FILL AREA SET 3

FILL AREA SET

CELL ARRAY 3

CELL ARRAY

GENERALIZED DRAWING PRIMITIVE 3
GENERALIZED DRAWING PRIMITIVE
SET POLYLINE INDEX

SET POLYMARKER INDEX

ES/PEX

No.

26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44

45

46
47
48
49
50
51
51
53
54
55
56

Symbolic Name
Pfn_settextind
Pfn_setintind
Pfn_setedgeind
Pfn_setlinetype
Pfn_setlinewidth
Pfn_setlinecolourind
Pfn_setmarkertype
Pfn_setmarkersize
Pfn_setmarkercolourind
Pin_settextfont
Pfn_settextprec
Pfn_setcharexpan

Pfn_setcharspace
Pfn_settextcolourind
Pfn_setcharheight
Pfn_setcharup
Pfn_settextpath
Pin_settextalign
Pfn_setannotationcharheight

Pfn_setannotationcharup

Pfn_setannotationpath
Pfn_setannotationalign
Pfn_setannotationstyle
Pfn_setintstyle
Pfn_setintstyleind
Pfn_setintcolourind
Pfn_setedgeflag
Pfn_setedgetype
Pfn_setedgewidth
Pfn_setedgecolourind
Pfn_setpatsize

Function Name

SET TEXT INDEX

SET INTERIOR INDEX

SET EDGE INDEX

SET LINETYPE

SET LINEWIDTH SCALE FACTOR
SET POLYLINE COLOUR INDEX
SET MARKER TYPE

SET MARKER SIZE SCALE FACTOR
SET POLYMARKER COLOUR INDEX
SET TEXT FONT

SET TEXT PRECISION

SET CHARACTER EXPANSION
FACTOR

SET CHARACTER SPACING
SET TEXT COLOUR INDEX
SET CHARACTER HEIGHT
SET CHARACTER UP VECTOR
SET TEXT PATH

SET TEXT ALIGNMENT

SET ANNOTATION TEXT CHARACTER
HEIGHT

SET ANNOTATION TEXT CHARACTER
UP VECTOR

SET ANNOTATION TEXT PATH
SET ANNOTATION TEXT ALIGNMENT
SET ANNOTATION STYLE

SET INTERIOR STYLE

SET INTERIOR STYLE INDEX

SET INTERIOR COLOUR INDEX
SET EDGE FLAG

SET EDGETYPE

SET EDGEWIDTH SCALE FACTOR
SET EDGE COLOUR INDEX

SET PATTERN SIZE

ESV Workstation Reference Manual [2.0]

ES/PEX

No.

57

58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81

82
83
84
85

86
87

ESV Workstation Reference Manual [2.0]

Symbolic Name
Pfn_setpatrefptvectors

Pfn_setpatrefpt
Pfn_addnameset
Pfn_removenameset
Pfn_setindivasf
Pfn_setlinerep
Pfn_setmarkerrep

Pfn_settextrep
Pfn_setintrep
Pin_setedgerep
Pfn_setpatrep
Pfn_setcolourrep
Pfn_sethilightfilter
Pfn_setinvistfilter
Pfn_setcolourmodel
Pfn_sethlhsrid
Pfn_sethlhsrmode
Pfn_setlocaltran3
Pfn_setlocaltran
Pfn_setglobaltran3
Pfn_setglobaltran

Pfn_setmodelclipvolume3
Pfn_setmodelclipvolume
Pfn_setmodeiclipindicator
Pfn_restoremodelclipvolume

Pfn_setviewind
Pfn_setviewrep3
Pfn_setviewrep

Pfn_setviewtraninputpri

Pfn_setwswindow3
Pfn_setwswindow

Function Name

SET PATTERN REFERENCE POINT
AND VECTORS

SET PATTERN REFERENCE POINT
ADD NAMES TO SET

REMOVE NAMES FROM SET

SET INDIVIDUAL ASF

SET POLYLINE REPRESENTATION

SET POLYMARKER
REPRESENTATION

SET TEXT REPRESENTATION

SET INTERIOR REPRESENTATION
SET EDGE REPRESENTATION

SET PATTERN REPRESENTATION
SET COLOUR REPRESENTATION

SET HIGHLIGHTING FILTER

SET INVISIBILITY FILTER

SET COLOUR MODEL

SET HLHSR IDENTIFIER

SET HLHSR MODE

SET LOCAL TRANSFORMATION 3
SET LOCAL TRANSFORMATION

SET GLOBAL TRANSFORMATION 3
SET GLOBAL TRANSFORMATION
SET MODELLING CLIPPING VOLUME 3
SET MODELLING CLIPPING VOLUME
SET MODELLING CLIPPING INDICATOR

RESTORE MODELLING CLIPPING
VOLUME

SET VIEW INDEX
SET VIEW REPRESENTATION 3
SET VIEW REPRESENTATION

SET VIEW TRANSFORMATION INPUT
PRIORITY

SET WORKSTATION WINDOW 3
SET WORKSTATION WINDOW

ES/PEX

1-80

No. Symbolic Name

88
89
90
91
92
93
94
95
96
97

98
99
100
101
102
103

104
105
106
107
108
109
110

111
112
113
114
115
116
117
118

Pfn_setwsviewport3
Pfn_setwsviewport
Pfn_openstruct
Pfn_closestruct
Pfn_executestruct
Pfn_label
Pfn_applicationdata
Pfn_gse
Pfn_seteditmode
Pfn_copyallelemsstruct

Pfn_setelemptr
Pfn_ofisetelemptr
Pfn_setelemptriabel
Pfn_delelem
Pfn_delelemrange
Pin_delelemslabels

Pfn_emptystruct
Pfn_delstruct
Pfn_delstructnet
Pfn_delallstruct
Pfn_changestructid
Pfn_changestructref
Pifn_changestructidref

Pfn_poststruct
Pfn_unpoststruct
Pfn_unpostallstruct
Pfn_openarfile
Pfn_closearfile
Pfn_arstruct
Pfn_arstructnet
Pfn_aralistruct

Function Name

"SET WORKSTATION VIEWPORT 3

SET WORKSTATION VIEWPORT

OPEN STRUCTURE

CLOSE STRUCTURE

EXECUTE STRUCTURE

LABEL

APPLICATION DATA

GENERALIZED STRUCTURE ELEMENT
SET EDIT MODE

COoPY ALL ELEMENTS FROM
STRUCTURE

SET ELEMENT POINTER

OFFSET ELEMENT POINTER

SET ELEMENT POINTER AT LABEL
DELETE ELEMENT

DELETE ELEMENT RANGE

DELETE ELEMENTS BETWEEN
LABELS

EMPTY STRUCTURE

DELETE STRUCTURE

DELETE STRUCTURE NETWORK
DELETE ALL STRUCTURES
CHANGE STRUCTURE IDENTIFIER
CHANGE STRUCTURE REFERENCES

CHANGE STRUCTURE IDENTIFIER
AND REFERENCES

POST STRUCTURE

UNPOST STRUCTURE

UNPOST ALL STRUCTURES

OPEN ARCHIVE FILE

CLOSE ARCHIVE FILE

ARCHIVE STRUCTURES

ARCHIVE STRUCTURE NETWORKS
ARCHIVE ALL STRUCTURES

ESV Workstation Reference Manual [2.0]

ES/PEX

No.

119
120
121
122
123
124

125
126
127
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

ESV Workstation Reference Manual [2.0]

Symbolic Name
Pfn_setconfres
Pfn_retrievestructids
Pfn_retrievestruct
Pfn_retrievestructnet
Pfn_retrieveallstruct
Pfn_retrieveancesstruct

Pfn_retrievedescstruct
Pfn_delstructar
Pfn_delstructnetar
Pfn_delallstructar

Pfn_setpickid
Pfn_setpickfilter
Pfn_initloc3
Pfn_linitloc
Pfn_initstroke3
Pfn_initstroke
Pfn_initval3
Pfn_initval
Pfn_initchoice3
Pfn_initchoice
Pfn_initpick3
Pfn_initpick
Pfn_initstring3
Pfn_initstring
Pfn_setlocmode
Pfn_setstrokemode
Pfn_setvalmode
Pfn_setchoicemode
Pfn_setpickmode
Pfn_setstringmode

Function Name

SET CONFLICT RESOLUTION
RETRIEVE STRUCTURE IDENTIFIERS
RETRIEVE STRUCTURES

RETRIEVE STRUCTURE NETWORKS
RETRIEVE ALL STRUCTURES

RETRIEVE ANCESTORS OF
STRUCTURE

RETRIEVE DESCENDANTS OF
STRUCTURE

DELETE STRUCTURES FROM
ARCHIVE

DELETE STRUCTURE NETWORKS
FROM ARCHIVE

DELETE ALL STRUCTURES FROM
ARCHIVE

SET PICK IDENTIFIER
SET PICK FILTER
INITIALIZE LOCATOR 3
INITIALIZE LOCATOR
INITIALIZE STROKE 3
INITIALIZE STROKE
INITIALIZE VALUATOR 3
INITIALIZE VALUATOR
INITIALIZE CHOICE 3
INITIALIZE CHOICE
INITIALIZE PICK 3
INITIALIZE PICK
INITIALIZE STRING 3
INITIALIZE STRING
SET LOCATOR MODE
SET STROKE MODE
SET VALUATOR MODE
SET CHOICE MODE
SET PICK MODE

SET STRING MODE

ES/PEX

No.

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
201

Symbolic Name
Pfn_reqloc3
Pfn_reqloc
Pfn_reqstroke3
Pfn_reqstroke
Pfn_reqval
Pfn_reqchoice
Pin_reqpick
Pin_regstring
Pfn_sampleloc3
Pfn_sampleloc

Pfn_samplestroke3

Pfn_samplestroke
Pfn_sampleval

Pfn_samplechoice

Pfn_samplepick

Pfn_samplestring

Pfn_awaitevent
Pfn_flushevents
Pfn_getloc3
Pfn_getloc
Pfn_getstroke3
Pfn_getstroke
Pfn_getval
Pin_getchoice
Pin_getpick
Pfn_getstring
Pfn_writemf
Pfn_gettypemf
Pfn_readmf
Pfn_interpret

Pin_seterrorhandmode

Pfn_escape

Pfn_polylineset3data

Function Name

REQUEST LOCATOR 3
REQUEST LOCATOR
REQUEST STROKE 3
REQUEST STROKE
REQUEST VALUATOR
REQUEST CHOICE
REQUEST PICK

REQUEST STRING

SAMPLE LOCATOR 3
SAMPLE LOCATOR

SAMPLE STROKE 3

SAMPLE STROKE

SAMPLE VALUATOR
SAMPLE CHOICE

SAMPLE PICK

SAMPLE STRING

AWAIT EVENT

FLUSH DEVICE EVENTS
GET LOCATOR 3

GET LOCATOR

GET STROKE 3

GET STROKE

GET VALUATOR

GET CHOICE

GET PICK

GET STRING

WRITE ITEM TO METAFILE
GET ITEM TYPE FROM METAFILE
READ ITEM FROM METAFILE
INTERPRET ITEM

SET ERROR HANDLING MODE
ESCAPE

POLYLINE SET 3 WITH DATA

ESV Workstation Reference Manual [2.0]

ES/PEX

No.
202
203
205
206
207
208
210
211
212

213
216
217
218
220
221
222
223

224
225

226
227
228
229
230
231
232
233
234
235

ESV Workstation Reference Manual [2.0]

Symbolic Name
Pfn_fillarea3data
Pfn_fillareaset3data
Pfn_tri3data
Pfn_quad3data
Pfn_polyhedron3data
Pfn_nunibspcurv
Pfn_nunibspsurf
Pfn_extcellarray3
Pfn_compfillareasetgnorm

Pfn_setdcueind
Pfn_setareaprop
Pfn_setbackareaprop
Pfn_setlineshadmethod
Pfn_setbackintstyle
Pfn_setbackintstyleind
Pfn_setintshadmethod
Pfn_setbackintshadmethod

Pfn_setintreflecteq
Pfn_setbackintreflecteq

Pfn_setlightsrcstate
Pfn_setfacedistgmode
Pfn_setfaceculimode
Pfn_setlinecolour
Pfn_setmarkercolour
Pfn_settextcolour
Pin_setintcolour
Pfn_setbackintcolour
Pfn_setedgecolour
Pfn_setcurveapprox

Function Name

FILL AREA 3 WITH DATA

FILL AREA SET 3 WITH DATA
TRIANGLE STRIP 3 WITH DATA
QUADRILATERAL MESH 3 WITH DATA
POLYHEDRON 3 WITH DATA
NON-UNIFORM B-SPLINE CURVE
NON-UNIFORM B-SPLINE SURFACE
EXTENDED CELL ARRAY 3

COMPUTE FILL AREA SET
GEOMETRIC NORMAL

SET DEPTH CUE INDEX

SET AREA PROPERTIES

SET BACK AREA PROPERTIES
SET POLYLINE SHADING METHOD
SET BACK INTERIOR STYLE

SET BACK INTERIOR STYLE INDEX
SET INTERIOR SHADING METHOD

SET BACK INTERIOR SHADING
METHOD

SET INTERIOR REFLECTANCE
EQUATION

SET BACK INTERIOR REFLECTANCE
EQUATION

SET LIGHT SOURCE STATE

SET FACE DISTINGUISHING MODE
SET FACE CULLING MODE

SET POLYLINE COLOUR

SET POLYMARKER COLOUR

SET TEXT COLOUR

SET INTERIOR COLOUR

SET BACK INTERIOR COLOUR
SET EDGE COLOUR

SET CURVE APPROXIMATION
CRITERIA

1-83

ES/PEX

No.
236

237

239

240
241
242
243
245

246
247

1-84

Symbolic Name
Pfn_settrimcurvapprox

Pfn_setsurfapprox
Pfn_setextlinerep v
Pfn_setextmarkerrep
Pfn_setexttextrep
Pfn_setextedgerep
Pfn_setgenintrep |
Pfn_setextpatrep

Pfn_setdcuerep
Pfn_setlightsrcrep

Function Name °

SET TRIMMING CURVE
APPROXIMATION CRITERIA

SET SURFACE APPROXIMATION
CRITERIA

SET EXTENDED POLYLINE
REPRESENTATION

SET EXTENDED POLYMARKER
REPRESENTATION

SET EXTENDED TEXT
REPRESENTATION

SET EXTENDED EDGE
REPRESENTATION

SET EXTENDED INTERIOR
REPRESENTATION

SET EXTENDED PATTERN
REPRESENTATION

SET DEPTH CUE REPRESENTATION

SET LIGHT SOURCE
REPRESENTATION

ESV Workstation Reference Manual [2.0]

ES/PEX

Error Messages

The numbers listed in the left-hand column are returned by error messages.
The corresponding symbolic name is listed in the middle column, and the cor-
responding error description is listed in the right-hand column.

Error Symbolic Name Description

-317
-316
-315
-314
-313
-312
-311
-310
-309
-308
-307
-306
-305
-304
-303
-302
-301
-264
-263
-262
-261
-260
-259
-258
-257
-256
-255
-254
-253

PXBADIMPL X Bad Implementation Error.
PXBADLENGTH X Bad Length Error.
PXBADNAME X Bad Name Error.
PXBADIDCHOICE X Bad ID Choice Error.
PXBADGC X Bad GC Error.

PXBADCOLOR X Bad Colour Error.
PXBADALLOC X Bad Alloc Error.
PXBADACCESS X Bad Access Error.
PXBADDRAWABLE X Bad Drawable Error.
PXBADMATCH X Bad Match Error.

PXBADFONT X Bad Font Error.
PXBADCURSOR X Bad Cursor Error.
PXBADATOM X Bad Atom Error.

PXBADPIXMAP X Bad Pixmap Error.
PXBADWINDOW X Bad Window Error.
PXBADVALUE X Bad Value Error.
PXBADREQUEST X Bad Request Error.

PPEXOCE PEX output command error,
PPEXSE PEX structure error.
PPEXSCE PEX search context error.
PPEXRE PEX renderer error.
PPEXPCE PEX pipeline context error.
PPEXPME PEX pick measure error.
PPEXPWE PEX PHIGS workstation error.
PPEXFE PEX font error.

PPEXPE PEX path error.

PPEXNSE PEX name set error.
PPEXLTE PEX lookup table error.
PPEXLE PEX label error.

ESV Workstation Reference Manual [2.0] 1-85

ES/PEX

Error

Symbolic Name

Description

-252
-251
-250
-202

-201

-167

-165

-164
-163
-162
-161
-160
-159

-157

-156

-155
-153

1-86

PPEXFPFE
PPEXRSE
PPEXCTE
PPXALLOC

PPEXNOPEX

PPEXNOXSRVR

PEMAXCRWS

PEBADNEDGE

PEBADNVTX

PENOEFLAG

PENOVFLAG

PENOFFLAG

PENOFUNC

PERNOINFO

PENOGDP

PENOFONTCS

PEBADCHARSET
PELENGTHLZ

PEX floating point format error.

PEX rendering state error.

PEX colour type error.

Ignoring function. An X allocation error has
occurred.

Ignoring function. The specified X Server does
not support a compatible PEX extension.
Ignoring function. Cannot connect to the desig-
nated or default server.

Ignoring function. Opening this workstation
would exceed the maximum number of simul-
taneously open canvas region workstations on
a canvas.

Ignoring function. The length of specified edge
data lists is inconsistent with the length of
corresponding vertices lists.

Ignoring function. The specified number of
vertices or sets of vertices is less than 0.
Ignoring function. The specified edge flag is
invalid.

Ignoring function. The specified vertex flag is
invalid.

Ignoring function. The specified facet flag is
invalid.

Ignoring function. The specified function is not
available on the specified workstation.
Ignoring function. The requested information
is not available.

Warning. The specified GDP is not available
on one or more workstations in this implemen-
tation. The GDP will be processed by those
workstations on which it is available.

Ignoring function. Specified font is not avail-
able for character set.

Specified character set is invalid.
List length is less than 0. O will be used.

ESV Workstation Reference Manual [2.0]

ES/PEX

Error Symbolic Name

Description

-152
-151

-150

-100

PENOTIMPL
PEBADNAME

PEBADNPTS

PEWSTBOUND

PESHMEM

PENOFONT

PENOSPFILE

PEBADFPATH
PEPATHTOOLONG

PESRVRFILE

PECOMM
PENOTRAVMEM

PEEXEC

PECOMCREAT

PNO_ERROR
PENOTCL

PENOTPHOP

PENOTWSOP

PENOTPHOPCL

PENOTSTOP

Ignoring function. Not implemented.

Ignoring function. Nameset or filter contains
name outside supported range.

Ignoring function. The specified number of
points or sets of points is less than O,

Ignoring function. Workstation type is a de-
fault type or bound to a workstation and cannot
be modified.

Kernel not configured with shared-memory.
IPC facility needed for PEX-SI communication.

Ignoring function. Cannot open PHIGS. Cannot
open font files.

Ignoring function. Cannot locate SI support
file.

Ignoring function. SI support file path invalid.

Ignoring function. PEXAPIDIR path is too
long.

Ignoring function. Cannot open PHIGS. Cannot
locate SI file phigsmon.

Communication error.

Could not allocate additional dynamic memory
during structure traversal.

Ignoring function. Cannot open PHIGS. Cannot
create server.

Ignoring function. Cannot open PHIGS. Cannot
create communication channel.

No error.

Ignoring function. Function requires state
(PHCL,WSCL,STCL,ARCL).

Ignoring function. Function requires state
(PHOP,*,* *).

Ignoring function. Function requires state
(PHOP,WSOP *,*).

Ignoring function. Function requires state
(PHOP,WSCL,STCL,ARCL).

Ignoring function. Function requires state
(PHOP,*,STOP,*).

ESV Workstation Reference Manual [2.0] 1-87

ES/PEX

Error Symbolic Name

Description

6

50

51

52

53

54

55

56

57

58

59

61

62

PENOTSTCL
PENOTAROP
PECNIDINV

PENOTAVAIL

PEWSTYPEINV
PEWSIDINUSE
PEWSNOTOP

PENOWSOP

PEWSNOTMO
PEWSCATMI
PEWSNOTMI

PEWSNOTOUT

PEWSNOTIN

PEWSNOTIO

PEWSNOTOO

Ignoring function. Function requires state
(PHOP,*,STCL,").

Ignoring function. Function requires state
(PHOP,*,*,AROP).

Ignoring function. Connection identifier not
recognized by the implementation.

Ignoring function. This information is not yet
available for this generic workstation type.
Open a workstation of this type and use the
specific workstation type.

Ignoring function. Workstation type not recog-
nized by the implementation.

Ignoring function. Workstation identifier
already is in use.

Ignoring function. The specified workstation is
not open.

Ignoring function. Workstation cannot be
opened for an implementation dependent rea-
son.

Ignoring function. Specified workstation is not
of category MO.

Ignoring function. Specified workstation is of
category Mi.

Ignoring function. Specified workstation is not
of category MI.

Ignoring function. The specified workstation
does not have output capability (i.e., the work-
station category is neither OUTPUT, OUTIN,
nor MO).

Ignoring function. Specified workstation is not
of category OUTIN.

Ignoring function. Specified workstation is
neither of category INPUT nor of category
OUTIN.

Ignoring function. This information is not
available for this MO workstation type.

ESV Workstation Reference Manual [2.0]

ES/PEX

Error Symbolic Name

Description

63

100
101
102

103

104
105

106

107
108
109
110
111
112
113

114

ESV Workstation Reference Manual [2.0]

PEWSMAXOPN

PEWSNOGDP

PEBINXLT1

PENOREP

PENOPREDEF

PEWSMAXBNL

PENOLINTP

PENOMKRTP

PENOTXTFP

PENOEDGTP

PENOISTYL

PENOPAT

PEBADCMOD

PENOHLHSR

PEPINXLT1

PECINXLZ

PEBINDLZ

Ignoring function. Opening this workstation
would exceed the maximum number of simul-
taneously open workstations.

Ignoring function. The specified workstation
type is not able to generate the specified gener-
alized drawing primitive.

Ignoring function. The bundle index value is
less than 1.

The specified representation has not been
defined.

Ignoring function. The specified representation
has not be predefined on this workstation.

Ignoring function. Setting this bundle table
entry would exceed the maximum number of
entries allowed in the workstation bundle table.

Ignoring function. The specified linetype is not
available on the specified workstation.

Ignoring function. The specified marker type is
not available on the specified workstation.

Ignoring function. The specified font is not
available for the requested text precision on the
specified workstation.

Ignoring function. The specified edgetype is
not available on the specified workstation.

Ignoring function. The specified interior style
is not available on the workstation.

Ignoring function. Interior style PATTERN is
not supported on the workstation.

Ignoring function. The specified colour model
is not available on the workstation.

Ignoring function. The specified HLHSR mode
is not available on the specified workstation.

Ignoring function. The pattern index value is
less than 1.

Ignoring function. The colour index value is
less than 0.

Ignoring function. The view index value is less
than 0.

1-89

ES/PEX

Error

Symbolic Name

Description

115

116

117

118

119

120

122

123

124

129

130

131

132

133

135

150

PEBINDL1
PEBADPAT
PECADIM

PEBADCRNG

PEDCINDLZ
PEBADDCIND
PENOLINSHADE
PENOINTSHADE

PENOREFEQN

PEBADLTSSRCIND
PEINVREFPL

PENOLTSRCTYPE

"PEINVLTANG

PEINVALLSSIND

PEINVALLSS

PEMAXVIEW

Ignoring function. The view index value is less
than 1.

Ignoring function. One of the dimensions of
pattern colour array is less than 1.

Ignoring function. One of the dimensions of
the colour index array is less than 0.

Ignoring function. One of the components of
the colour specification is out of range. The
valid range is dependent upon the current
colour mode.

Ignoring function. Depth cue index is less than
0.

Ignoring function. Depth cue index is less than
1.

Ignoring function. The specified polyline shad-
ing method is not available on the workstation.

Ignoring function. The specified interior shad-
ing method is not available on the workstation.

Ignoring function. The specified interior
reflectance equation is not available on the
workstation.

Ignoring function. The light source index is
less than 1.

Ignoring function. Invalid reference planes.
DQMIN > DQMAX.

Ignoring function. The specified light source
type is not available on the workstation.

Ignoring function. The specified spot light
spread angle is out of range.

Ignoring function. One of the entries in the
activation list or the deactivation list is less
than 1.

Ignoring function. The same entry exists in
both the activation and the deactivation list.

Ignoring function. Setting this view table entry
would exceed the maximum number of entries
allowed in the workstation’s view table.

ESV Workstation Reference Manual [2.0]

ES/PEX

Error

Symbolic Name

Description

151

152

153

154

155

156

157

158

159

160

161

162

163

164

200
201

202

203

ESV Workstation Reference Manual [2.0]

PEBADWIN

PEBADVP

PEBADBOX

PEBADVLIM

PEBADPROVP

PEWINRNG

PEVPRNG

PEFREQBK

PEBADVPN

PEBADVUP

PEBADVIEW

PEBADPRP

PEPRPVP

PEBADBACK

PEIGNSTRUCT
PENOSTRUCT

PENOELEM

PEBADSPATH

Ignoring function. Invalid window. XMIN =
XMAX, YMIN > YMAX, or ZMIN > ZMAX.

Ignoring function. Invalid viewport. XMIN =
XMAX, YMIN > YMAX, or ZMIN > ZMAX.

Ignoring function. Invalid view clipping limits.
XMIN > XMAX, YMIN > YMAX, or ZMIN >
ZMAX.

Ignoring function. The view clipping limits are
not within NPC range.

Ignoring function. The projection viewport
limits are not within NPC range.

Ignoring function. The workstation window
limits are not within NPC range.

Ignoring function. The workstation viewport is
not within display space.

Ignoring function. Front plane and back plane
distances are equal when z-extent of the projec-
tion viewport is 0.

Ignoring function. The view plane normal
vector has length 0.

Ignoring function. The view up vector has
length 0.

Ignoring function. The view up and view plane
normal vectors are parallel thus the viewing
coordinate system cannot be established.

Ignoring function. The projection reference
point is between the front and back planes.

Ignoring function. The projection reference
point cannot be positioned on the view plane.

" Ignoring function. The back plane is in front of

the front plane.
Warning. Ignoring structures that do not exist.

Ignoring function. The specified structure does
not exist.

Ignoring function. The specified element does
not exist.

Ignoring function. Specified starting path not
found in CSS.

1-91

ES/PEX

Error

Symbolic Name

Description

204

205

206

207

208

250

251

252

253

254

255

256
257
258

259

260

261

1-92

PECEILRNG

PENOLABEL
PENOLABELS

PEPATHDEPNEG
PEDISPRIRNG
PENOINDEV
PENOTREQUEST
PENOTSAMPLE

PEBADPET
PEBADECHO
PENOPETWS

PEINQOVFL
PENOQOVFL
PEINQOVFLWSCL

PEBADCLASS

PEBADDATA

PEBADIVAL

Ignoring function. Specified search ceiling in-
dex out of range.

Ignoring function. The label does not exist in
the open structure between the element pointer
and the end of the structure.

Ignoring function. One or both of the labels
does not exist in the open structure between the
element pointer and the end of the structure.

Ignoring function. The specified path depth is
less than 0.

Ignoring function. The display priority is out of
range.

Ignoring function. The specified device is not
available on the specified workstation.

Ignoring function. The function requires the
input device to be in REQUEST mode.

Ignoring function. The function requires the
input device to be in SAMPLE mode.

Warning. The specified prompt/echo type is
not available on the specified workstation.
Prompt/echo type 1 will be used in its place.

Ignoring function. Invalid echo area/volume.
XMIN > XMAX, YMIN > YMAX, or ZMIN >
ZMAX.

Ignoring function. One of the echo area/
volume boundary points is outside the range of
the device.

Warning. One input queue has overflowed.
Ignoring function. Input queue has not over-
flowed.

Warning. Input queue has overflowed, but
associated workstation has been closed.

Ignoring function. The input device class of the
current input report does not match the class
being requested.

Ignoring function. One of the fields within the
input device data record is in error.

Ignoring function. Initial value is invalid.

ESV Workstation Reference Manual [2.0]

ES/PEX

Error

Symbolic Name

Description

262

263

300

301
302

303
304
305

306

307

350

351

400

401

402

403

404

405

ESV Workstation Reference Manual [2.0]

PEPTSGTBUF

PELENGTBUF

PERESERVE

PEBDLNGTH
PENOITEM

PEITMINV
PEBATITM
PEBADCNTS

PEBDMXDR

PEINTERPT

PEESCAPE

PEESCDAT

PENOAROPN

PEMAXAR

PEARIDINUSE

PEBADARFILE

PENOTOPNAR

PECONFLICT

Ignoring function. Number of points in the ini-
tial stroke is greater than the buffer size.

Ignoring function. Length of the initial string is
greater than the buffer size.

Ignoring function. Item type is not allowed for
user items.

Ignoring function. Item length is invalid.
Ignoring function. No item is left in Metafile
input.

Ignoring function. Metafile item is invalid.
Ignoring function. Item type is unknown.
Ignoring function. Content of item data record
is invalid for the specified item type.

Ignoring function. Maximum item data record
length is invalid.

Ignoring function. User item cannot be
interpreted.

Warning. The specified escape is not available
on one or more workstations in this implemen-
tation. The escape will be processed by those
workstations on which it is available.

Ignoring function. One of the fields within the
escape data record is in error.

Ignoring function. The archive file cannot be
opened.

Ignoring function. Opening this archive file
would exceed the maximum number of simul-
taneously open archive files.

Ignoring function. Archive file identifier
already in use.

Ignoring function. The archive file is not a
PHIGS archive file.

Ignoring function. The specified archive file is
not open.

Ignoring function. Name conflict occurred
while conflict resolution flag has value
ABANDON.

1-93

ES/PEX

Error Symbolic Name

Description

406
407

408

450
500
501

502

503
504

505
506

900
901
902
903
904

905
906
907

908

1-94

PEARFULL

PESTRUCTAR

PEARSTRUCT

PEBADERRFILE

PESMALLORDER

PECTLPOINTS

PEBADORDER

PEKNOTDECR

PEINVALVIND

PEDEGENFAS
PEPARAMRANGE

PEOVFLPH
PEOVFLCSS
PEIOREAD
PEIOWRITE
PESENDWS

PERECVWS

PELIBMAN

PERDWSDT

PEARITH

Warning. The archive file is full. Any struc-
tures that were archived were archived in total.

Warning. Some of the specified structures do
not exist on the archive file.

Warning. Some of the specified structures do
not exist on the archive file. PHIGS will create
empty structures in their places.

Ignoring function. The specified error file is
invalid.

Ignoring function. The specified order is less
than 1.

Ignoring function. Not enough control points
for specified order.

Ignoring function. The specified order is
inconsistent with number of knots and control

points.
Ignoring function. The knot sequence is not
non-decreasing.

Ignoring function. One or more of the vertex
indices is out of range.

Warning. The fill area is degenerate.

Ignoring function. Parameter range is inconsis-
tent with the knots.

Storage overflow has occurred in PHIGS.
Storage overflow has occurred in CSS.
Input/Output error has occurred while reading.
Input/Output error has occurred while writing.

Input/Output error has occurred while sending
data to a workstation.

Input/Output error has occurred while
receiving data from a workstation.

Input/Output error has occurred during
program library management.

Input/Output error has occurred while reading
workstation description table.

Arithmetic error has occurred.

ESV Workstation Reference Manual [2.0]

(

ES/PEX

Buffer overflow in input or inquiry function.
Start index out of range.
Ignoring function. Enumeration type out of

Ignoring function. Output parameter size
Ignoring function. List or set element not

Ignoring function. Invalid data record.
Ignoring function. Input parameter size out of

Ignoring function. Invalid list of point lists.

Error Symbolic Name Description
2200 PEBUFSPAC
2201 PEOUTRANG
2000 PEFTN2000
range.
2001 PEFTN2001
insufficient.
2002 PEFTN2002
available.
2003 PEFTN2003
2004 PEFTN2004
range.
2005 PEFTN2005
2006 PEFTN2006

Ignoring function. Invalid list of filters.

ESV Workstation Reference Manual [2.0] 1-95

ES/PEX

PHIGS Tables

PHIGS Description Table

Data Type Abbreviations

I Integer

E Enumeration Type

L(type) List of Values of a Given Type
MCV Modelling Clipping Volume
P3 3D Point

R Real ’

SET(NM) Set of Eligible Names
V2/V3 2D/3D Vector

w Workstation Type

n/s Not Supported

Description Table Entry

number of available workstation types
list of available workstation types

maximum number of simultaneously open
workstations

maximum number of simultaneously open archive
files

number of available names for name sets

number of available character sets
character set

maximum length of normal filter list for ISS

maximum length of inverted filter list for ISS

polyline index

linetype

linewidth scale factor

polyline colour index

linetype ASF

linewidth scale factor ASF

polyline colour index ASF

Default or

Initial Value

1
See table 1-1

1.0

1
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL

1-96 ESV Workstation Reference Manual [2.0]

ES/PEX

Description Table Entry

polymarker index

marker type

marker size scale factor
polymarker colour index
marker type ASF

marker size scale factor ASF
polymarker colour index ASF
text index

text font

text precision

character expansion factor
character spacing

text colour index

text font ASF

text precision ASF
character expansion factor ASF
character spacing ASF
text colour index ASF
character height

character up vector
character width

character base vector

text path

text alignment (horizontal & vertical)

annotation text character height

annotation text character up vector

annotation text character width

annotation text character base vector

ESV Workstation Reference Manual [2.0]

)
=
o
-

2ata }ype

=B oo I o> B v M > BN o> BRI~ - B oo

V2

V2

Default or
Initial Value

1

3

1.0

1
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
1

1 (Monospaced
Roman Simplex)

STROKE

1.0

0.0

1
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
0.01

(0.0,1.0)

n/s

n/s

RIGHT

(NORMAL,
NORMAL)

0.01
(0.0,1.0)
n/s

n/s

1-97

ES/PEX

Description Table Entry Data Type Defauit or
Initial Value

annotation text path E RIGHT

annotation text alignment (horizontal & vertical) 2xE (NORMAL,
NORMAL)

annotation style I 1 (unconnected)

interior index I 1

interior style E HOLLOW

interior style index I 1

interior colour index I 1

interior style ASF E INDIVIDUAL

interior style index ASF E INDIVIDUAL

interior colour index ASF E INDIVIDUAL

edge index I 1

edge flag E OFF

edgetype I 1

edgewidth scale factor R 1.0

edge colour index I 1

edge flag ASF E INDIVIDUAL

edgetype ASF E INDIVIDUAL

edgewidth scale factor ASF E INDIVIDUAL

edge colour index ASF E INDIVIDUAL

pattern size 2xR n/s

pattern reference point P3 n/s

pattern reference vectors 2xV3 n/s

pick identifier I 0

view index I 0

HLHSR identifier I 0

name set SET(NM) no classes
(empty set)

global modelling transformation 4x4xR Identity

local modelling transformation 4x4xR Identity

1-98 ESV Workstation Reference Manual [2.0]

ES/PEX

Description Table Entry

modelling clipping volume
modelling clipping indicator
number of available generalized structure elements

maximum number of distinct planes in modelling
clipping volumes

number of available modelling clipping operators

list of available modelling clipping operators

ESV Workstation Reference Manual [2.0]

Data Type

MCV

Default or

Initial Value

n/s
NOCLIP
0

empty

1-99

ES/PEX

PHIGS PLUS Description Table
Data Type Abbreviations

I Integer

E Enumeration Type

GCOLR General Colour

L(type) List of Values of a Given Type
MCV Modelling Clipping Volume
P3 3D Point

R Real

SET(NM) Set of Eligible Names
V2/V3 2D/3D Vector

w Workstation Type

n/s Not Supported

Description Table Entry

polyline colour ,
polyline shading method
polyline shading method ASF
polymarker colour

text colour

face distinguishing mode
face culling mode

interior colour

interior shading method
ambient reflection coefficient
diffuse reflection coefficient
specular reflection coefficient
specular colour

specular exponent
reflectance characteristics
interior shading method ASF
reflectance properties ASF

reflectance characteristics ASF

1-100

GCOLR

M m m -

Default or
Initial Value

(RGB,WHITE)
1(NONE)
INDIVIDUAL
(RGB,WHITE)
(RGB,WHITE)
NONE

NONE
(RGB,WHITE)
1(NONE)

1.0

1.0

1.0
(RGB,WHITE)
0.0

1(NONE)
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL

ESV Workstation Reference Manual [2.0]

ES/PEX

Description Table Entry

back interior style

back interior style index

back interior colour

back interior shading method

back ambient reflection coefficient
back diffuse reflection coefficient
back specular reflection coefficient
back specular colour

back specular exponent

back reflectance characteristics
back interior style ASF

back interior style index ASF

back interior colour ASF

back interior shading method ASF
back reflectance properties ASF
back reflectance characteristics ASF
light source state

edge colour

curve approximation criteria type
curve approximation criteria value
curve approximation criteria ASF
surface approximation criteria type
surface approximation criteria value
surface approximation criteria ASF
rendering colour model

depth cue index

colour mapping index

ESV Workstation Reference Manual [2.0]

GCOLR

oo B v v o B v o I o s B v o IR v

LD
GCOLR

2xR

— = =

Default or
Initial Value

HOLLOW

1
(RGB,WHITE)
1(NONE)

1.0

1.0

1.0
(RGB,WHITE)
0.0

1(NONE)
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
INDIVIDUAL
empty
(RGB,WHITE)
0 or n/s
Oorn/s
INDIVIDUAL

1-101

ES/PEX

PHIGS Workstation Description Table
Data Type Abbreviations

B Bounding Range

CC Chromaticity Coefficient

D Data Record

E Enumeration Type

FP Font/Precision Pair

I Integer

L(type) List of values of a given type

P3 3D Point

R Real

n/s Not Supported

Workstation Description Table Entry Data Type Initial Value
workstation type W See table 1-1
workstation category E See table 1-1
device coordinate units E OTHER

maximum display space size:

in device coordinates 3xR (1.0,1.0,1.0)
in device address units 3xI (1280,1024,
24 z-buffer planes)
number of available HLHSR identifiers I 2
list of available HLHSR identifiers LD NONE,ZBUFF
number of available HLHSR modes I 2
list of available HLHSR modes L() NONE,ZBUFF

number of predefined view indices
(representations) I 6

table of predefined view representations:

view orientation matrix 4x4xR Identity
view mapping matrix 4x4xR Identity
view clipping limits 3xB 0,1,0,1,0,1)
x-y clipping indicator E CLIP

back clipping indicator E CLIP

front clipping indicator E CLIP

1-102 ESV Workstation Reference Manual [2.0]

ES/PEX

Workstation Description Table Entry

workstation classification
dynamic modification accepted for:
view representation

polyline bundle representation

polymarker bundle representation

text bundle representation
interior bundle representation
edge bundle representation
pattern representation
colour representation
workstation transformation
highlighting filter
invisibility filter
HLHSR mode

default value for deferral state:
deferral mode
modification mode

number of available linetypes

number of available linewidths

nominal linewidth

minimum linewidth

maximum linewidth

number of predefined polyline indices (bundles)

table of predefined polyline bundles
number of available marker types
list of available marker types
number of available marker sizes
nominal marker size

minimum marker size

maximum marker size

ESV Workstation Reference Manual [2.0]

Data Type

oo B oo NN e > B wo B v s A oo B v > N s B v s N oo B v s I e

LD

- r B~

L)

~ ~ =

Initial Value
RASTER

IRG
IRG
IRG
IRG
IRG
IRG
IRG
IRG
IRG
IRG
IRG
IRG

ASAP

NIVE

See table 1-2
1

1.0 (pixel)
1.0

1.0

5

See table 1-3
8

See table 1-4
0 (continuous)
1.0 (9 pixels)
0

unlimited

1-103

ES/PEX

Workstation Description Table Entry

number of predefined polymarker indices
(bundles)

table of predefined polymarker bundles
number of text font and precision pairs

list of text font and precision pairs

number of available character expansion factors
minimum character expansion factor
maximum character expansion factor
number of available character heights
minimum character height

maximum character height

number of predefined text indices (bundles)
table of predefined text bundles

number of available annotation styles

list of available annotation styles

number of available interior styles

list of available interior styles

number of available hatch styles

list of available hatch styles

number of predefined interior indices (bundles)
table of predefined interior bundles

number of available edgetypes

list of available edgetypes

number of available edgewidths

nominal edgewidth

minimum edgewidth

maximum edgewidth

number of predefined edge indices (bundles)
table of predefined edge bundles

number of predefined pattern indices
(representations)

1-104

Data Type

L(FP)

- " = =" R "

L)

L(E)

LD

L)

-~ & %

Initial Value

5

See table 1-5
2

See table 1-6
0 (continuous)
0.0

unlimited

0 (continuous)
0.0

unlimited

6

See table 1-7
2

See table 1-12
3

See table 1-8
0

empty

5

See table 1-9
4

See table 1-2
1

1.0 (pixel)

1.0

1.0

5

See table 1-10

ESV Workstation Reference Manual [2.0]

ES/PEX

Workstation Description Table Entry
table of predefined pattern representations

number of available colour models
list of available colour models
default colour model

colour available

number of predefined colour indices
(representations)

table of predefined colour representations

number of available generalized drawing
primitives 3 (GDP3)

list of available generalized drawing primitives 3
(GDP3)

number of available generalized drawing
primitives (GDP)

list of available generalized drawing primitives
(GDP)

number of display priorities supported
maximum number of polyline bundle table entries

maximum number of polymarker bundle table
entries

maximum number of text bundle table entries
maximum number of interior bundle table entries
maximum number of edge bundle table entries
maximum number of pattern table entries
maximum number of colour indices
maximum number of view indices
dynamic modification accepted for:

structure content modification

post structure

unpost structure

delete structure

reference modification

ESV Workstation Reference Manual [2.0]

Data Type

Lq)

b

e e T e T e T |

fes I os I e M oo M o |

Initial Value
empty

2

1 (RGB)

1 (RGB)
COLOUR

8
See table 1-11

empty

empty
0 (unlimited)
20

20
20
20
20
0
256
20

IRG
IRG
IRG
IRG
IRG

1-105

ES/PEX

Workstation Description Table Entry Data Type Initial Value (‘
number of logical devices of class LOCATOR I 0 -
number of logical input devices of class STROKE 1 0

number of logical input devices of class
VALUATOR

number of logical devices of class CHOICE

number of logical input devices of class PICK

b bl et]
S © o O

number of logical input devices of class STRING

(

1-106 ESV Workstation Reference Manual [2.0]

ES/PEX

PHIGS PLUS Workstation Description Table

Data Type Abbreviations

B Bounding Range

CC Chromaticity Coefficient

D Data Record

E Enumeration Type

FP Font/Precision Pair

I Integer

L(type) List of values of a given type
P3 3D Point

R Real

n/s Not Supported

Workstation Description Table Entry Data Type

number of available directly specifiable
colour models

list of available directly specifiable color models

number of available rendering colour models

Lo I B B |

list of available rendering colour models

dynamic modification accepted for:
data mapping representation
reflectance representation
parametric surface representation
light source representation

depth cue representation

M m m momom

colour mapping representation)
table of predefined polyline bundles
table of predefined polymarker bundles
table of predefined text bundles
table of predefined interior bundles
table of predefined edge bundles

maximum number of data mapping bundle table
entries I

number of predefined data mapping bundles I

ESV Workstation Reference Manual [2.0]

Initial Value

1 (RGB)
1 (RGB)
1 (RGB)
1 (RGB)

IRG

IRG

IRG

IRG

IRG

IRG

See table 1-3
See table 1-5
See table 1-7
See table 1-9
See table 1-10

n/s
n/s

1-107

ES/PEX

Workstation Description Table Entry Data Type Initial Value
maximum number of reflectance bundle table
entries I 20
number of predefined reflectance bundles I 1
for every entry:
reflectance index I 1
reflectance characteristics I 1
ambient reflection coefficient R 1.0
diffuse reflection coefficient R 1.0
specular reflection coefficient R 1.0
specular colour GCOLR 1
specular exponent R 1.0
maximum number of parametric surface bundle
table entries I n/s
number of predefined parametric surface bundles 1 n/s
number of predefined pattern representations I 0
maximum number of light source table entries I 12
number of predefined light source table indices I 1
table of predefined light sources See table 1-18
maximum number of depth cue table entries I 6
number of predefined depth cue indices I 2
table of predefined depth cue representations See table 1-17
maximum number of colour mapping table entries 1 n/s
number of predefined colour mapping table
entries I 0 (n/s)
table of predefined colour mappings n/s
number of available polyline shading models | 2
list of available polyline shading methods See table 1-13
number of available interior styles See table 1-8
number of available data mapping methods I n/s
list of available data mapping methods L) n/s
number of available interior shading methods I 2

1-108 ESV Workstation Reference Manual [2.0]

ES/PEX

Workstation Description Table Entry
list of available interior shading methods

number of available reflectance characteristics
values

list of available reflectance characteristics
maximum non-uniform B-spline curve order
maximum trimming curve order

number of available curve approximation
criteria types

list of available curve approximation
criteria types

maximum non-uniform b-spline surface order

number of available surface approximation
criteria types

list of available surface approximation
criteria types

number of available trimming curve approximation

criteria types

list of available trimming curve approximation
criteria types

number of available parametric surface
characteristics types

list of available parametric surface
characteristics types

number of available light source types
list of available light source types

maximum number of simultaneously active
non-ambient light sources

number of available colour mapping methods
list of available colour mapping methods
number of available true colours

maximum number of pseudo colour entries

ESV Workstation Reference Manual [2.0]

Data Type
L)

L)

L{I)

L@

Initial Value
See table 1-14

4

See table 1-16
n/s

0 (n/s)

0

n/s

0 (n/s)

n/s

n/s

n/s

n/s
4
See table 1-15

12

n/s
n/s
224

n/s

1-109

ES/PEX

Table 1-1. Workstation type and category

Type C Name Category
X drawable phigs_ws_type_ x_drawable OUTPUT
X tool phigs_ws_type x_tool OUTIN

Table 1-2. Available line and/or edge types

Type C Name Meaning

1 PLINE_SOLID Solid

2 PLINE_DASH Dashed

3 PLINE_DOT Dotted

4 PLINE_DOT_DASH Dot-dashed

Table 1-3. Predefined extended} polyline bundle table

Bundle Linetype Line Width Colour Shading Approx. Approx.
Index Scale Factor Indext Methodt Typet Value¥
1 Solid 1.0 1 None N/A N/A
+TPHIGS PLUS extension.
} Predefined Extended Polymarker Bundle entries use colour model INDIRECT.
Table 1-4. Available marker types

Value C Name Meaning

1 PMARKER DOT Point

2 PMARKER_PLUS Plus

3 PMARKER_ASTERISK Asterisk

4 PMARKER_CIRCLE Circle

5 PMARKER_CROSS Cross

0 PES_MARKER_DEF_STAR Asterisk

-1 PES_MARKER_DIAMOND Diamond

-2 PES_MARKER_FAST_DOT Fast Dot

-3 PES_MARKER_TRIANGLE Triangle

-4 PES_MARKER_SQUARE Square

-5 PES_MARKER_INV_TRIANGLE Inverted Triangle

-6 PES_MARKER_OCTAGON Octagon

1-110

ESV Workstation Reference Manual [2.0]

ES/PEX

Table 1-5. Predefined polymarker bundle table

Bundle Marker Marker Size Colour
Index Type Scale Factor Indext
1 Asterisk 1.0 1

TAll Predefined Extended Polymarker Bundle entries (PHIGS PLUS extension) use colour
model INDIRECT.

Table 1-6. Available text fonts and precisions

Font Number C Name Precisions Supported
1 PFONT_MONO STROKE
2 PFONT_COMPLEX STROKE

Table 1-7. Predefined extended text bundle table

Bundle Font Text Expansion Character Colour
Index Number Precision Factor Spacing Indext
1 1 STROKE 1.0 0.0 1

TAll Predefined Extended Polymarker Bundle entries (PHIGS PLUS extension) use colour
model INDIRECT.

Table 1-8. Available interior styles
C Name Meaning

PSTYLE_HOLLOW Hollow
PSTYLE SOLID Solid-filled
PSTYLE_EMPTY Empty

Table 1-9. Predefined fill area interior bundle table

Bundle Interior Interior Colour Reflectance Shading
Index Style Style Index Index Equation} Method
1 Hollow 1 1 None None

tAll Predefined Extended Edge Bundle entries (PHIGS PLUS extension) use colour model

INDIRECT; have back attribute values identical to the front; and have the following arca
properties:

Ambient Diffuse Specular Specular Specular Transparency
Coefficient Coefficient Coefficient Colour Exponent Coefficient
1.0 1.0 1.0 (RGB,1.0,1.0,1.0) 0.0 0.0

ESV Workstation Reference Manual [2.0] 1-111

ES/PEX

Table 1-10. Predefined edge bundle table

Bundle Edge Edgetype Edgewidth Colour
Index Flag Scale Factor Indext
1 OFF Solid 1.0 1
+All Predefined Extended Edge Bundle entries (PHIGS PLUS extension) use colour model
INDIRECT.
Table 1-11. Predefined colour table
Colour Index Red Green Blue Description
0 0.0 0.0 0.0 Black
1 1.0 1.0 1.0 White
2 1.0 0.0 0.0 Red
3 0.0 1.0 0.0 Green
4 0.0 0.0 1.0 Blue
5 1.0 1.0 0.0 Yellow
6 0.0 1.0 1.0 Cyan
7 1.0 0.0 1.0 Magenta
Table 1-12. Available annotation styles
Value C Name Meaning
1 PANNO_STYLE_UNCONNECTED Unconnected
2 PANNO_STYLE_LEAD_LINE Lead Line
Table 1-13. Polyline shading methods
Value C Name Meanin
1 PSD_NONE No Shading
2 PSD_COLOUR Colour Shading
Table 1-14. Available interior shading methods
Value C Name Meaning
1 PSD_NONE No Shading
2 PSD_COLOUR Colour Shading
1-112 ESV Workstation Reference Manual [2.0]

ES/PEX

Table 1-15. Available light source types

Value C Name Meaning

1 PLIGHT_AMBIENT Ambient Light Source

2 PLIGHT_DIRECTIONAL Directional Light Source
3 PLIGHT_POSITIONAL Positional Light Source
4 PLIGHT_SPOT Spot Light Source

Table 1-16. Available reflectance characteristics

Value C Name Meaning

1 PREFL_NONE No Reflectance Calculation Performed

2 PREFL_AMBIENT Use Ambient Term

3 PREFL_AMB_DIFF Use Ambient and Diffuse Terms

4 PREFL_AMB_DIFF_SPEC Use Ambient, Diffuse, and Specular Terms

Table 1-17. Predefined depth cue table

Depth Cue Depth Cue Depth Cue Depth Cue Depth Cue
Index Mode Reference Planes Scale Factors Colour

0 SUPPRESSED (1.0,0.0) (1.0,1.0) (INDIRECT,0)
1 ALLOWED (1.0,0.0) (1.0,0.02) (INDIRECT,0)

Table 1-18. Predefined light sources
Index Type Data Record
1 DIRECTIONAL (RGB,1.0,1.0,1.0),0.0,0.0,1.0

ESV Workstation Reference Manual [2.0] 1-113

ES/PEX

C and FORTRAN Bindings

1-114

The following tables list the C and FORTRAN bindings for the PHIGS and
PHIGS PLUS/PEX functions.

In the PHIGS table, an asterisk (*) means the function is a C binding
function, and a dagger (}) means the function is a FORTRAN binding
function. The C and FORTRAN bindings both split the
INQUIRE HLHSR FACILITIES function into the following two functions:

INQUIRE HLHSR IDENTIFIER FACILITIES
INQUIRE HLHSR MODE FACILITIES

In the PHIGS PLUS table, the C binding names are from the ISO PHIGS
PLUS working draft. Since the FORTRAN bindings are not yet defined as a
standard, the names listed in this table are our attempt to anticipate what they
will be. The functions shown in bold typeface are defined correctly in
PEX-SI beta and will probably remain the same in the release to MIT. The
functions shown in italics are those whose function and/or C binding name
differ in the PEX-SI beta but are expected to be corrected in the release to
MIT. The functions shown in regular font indicate those implemented in
PEX-SI via an older function name that is not in the PHIGS PLUS Dp and will
probably remain in the release to MIT.

ESV Workstation Reference Manual [2.0]

(

ES/PEX

._N«wa . eersscncasnsanan h&lﬂuoaﬁl_Oa
._ﬂcma --NIW«OCI&OEEI_OUQ
:wa sClﬁaﬁl—Oun
1spd onns jepd
S/N ai0)s” japd
D=0g sessssessecsananns m_ODG_IWEQ_OI_Og
eljopd ofuels " waje jepd
1opd weoje jopd
Lﬂmﬂg ------------------------ h“lﬂ#nv:._ﬁ'— —ﬂ'—OUQ
WNS w«o:.—ﬁm'— —“'—og
S/N a10}s ojeasod
ﬁ-&g erresseassnenas wOEwmleO_ﬂl__ﬂl>n00n
ﬂE«OOﬁ ssssseensessene ﬂ%—.——ﬁEl—._w._ulaOQEOOn_
Esa sesesasassesensne N_._uNEIC&:IOmOQEOOQ
MEOOQ - . ﬂX-.—uﬂEIOwO&EOOQ
EOOQ esssssse X_uuﬂEIOWOEEOOQ
ymjad sm asojod
1s1od nis esojod
ydjod sBiyd esojod
yejod ol e~ asojod
-._-Mon [www._luop_uwlwm:&:on
mpsad = §ja4” pI yonays obueyod
U_-ma sasesens U—ISE#%I@GC&CO&
gead gAene jjaod
ead Aesse jjlood
ME-D& X «NEI:N.;lU__:nQ
Ew_nﬂ teenns X_.;NEIP_W:IU::DQ
yemd JueAd)emed
1sied sjonis ted
:m‘_g mawclao-,-._uwl._g
Ise. ‘_a s)on -ml:&l 1 &Q
ded eiep |dded
@.uﬂﬁ gle. ._wawulo_..:g

B - s R i 247 1x8) ouued
sped " 3198 saweu pped

JAIHOHVY WOHL S3HNLONYLS 3137130

SAIHOHVY WOHA SHHOMLIN 3HNLONYLS 3137130

AHOMLIN 3HNLONHLS 3137130

JHNLONHLS 3137134

» 3HOLS 313730

$7349Vv1 NI3IML34 SINIW3T3 31373d

JONVH LN3IW3T3 3137130

1N3IW3T3 3137130

JAIHOHVY WOHL S3HNLONYLS 11V 313730

S$3HNLONYLS 711V 3137130

» 3HOLS 3LVv3HO

JHNLONHLS WOHL SLN3IW3T3 711V AdOD

€ XIHLVIN NOILLVYWHOdSNVHL 3SOdWOD

XIHLVIN NOILLVYWHOJSNVHL 3SOdWO0D

€ XIH1VIN 3SOdWO0D

XIHLVIN 3SOdINOD

NOLLVLSMHOM 3S010

FHNLONYLS 3SOTO

SOIHd 3S010

374 JAIHOHY 2S00

S3ON3HI43H FJHNLONYLS IDONVHO
S3ON3HI43H ANV HIIHILNIAI IHNLONHLS IDONVHO

H3IHILNIAI 3HNLONYLS IONVHO

€ AVHHVY 17130

AVHHY 77130

€ XIH1VIN NOLLYWHO4SNYHL aiing

XIHLVIAN NOILVINHO4SNVYHL aTing

LIN3A3 LIVAMV

SIHNLIONYLS FAIHOHVY

SHHOMLIN FHNLONYHLS FAIHOHV

S3IHNLIONYLS TV JAIHOHV

V.1va NOILVOIlddV

€ JAILVI3YH 1X31 NOILVLONNY

........ JAILVIZH LX31 NOILVLONNY

138 O1 SIWVN aav

wcwﬁﬂﬂm AZ<M.H.M~ﬁVm mﬁmﬂvcﬂm O T T T L T X TT YT TN secesesZ.....ﬂounvﬂ—dm MOHEAH

1-115

ESV Workstation Reference Manual [2.0]

ES/PEX

-’

yduid yoid yuid MOld IZITVILINI
gojuid goo| yuid € HOL1vD01 3ZIVILINI
ojud oo yuid HOLVD01 IZITVILINI
syouid gaojoyo yuid € 3DI0HD JZITVLLINI
youid @ojoyo” yuid JOIOHD 3ZINVLLINI
P15 (¢ IR gyoless edssouid € HOHV3S 1VILVdS TVLNIW3IHONI
1] [+ IRt yoseas eds uouid HOHVY3S 1VILVdS TVINIWIHONI
mbd JeA 30bd HOLVNIVA 139
eys16d goyons 1obd € IMOHLS 13D
ys16d aons 1bd IMOHLS 139
1s16d Buins 196d DNIHLS 139
ydibd yoid 1e6d MOid 139
conbd ¢20j 106d € HOL1vd201 139
onbd 00| Jo6d HOLVvO01139
wyibd adAy we) 10b6d F14V.LIIN WOHL 3dAL W31l 13D
yobd 9ojoyd 1abd JOIOHD 139
osbd oshd INIW3T3 3HNLONYLS 3ZIMVHINIDO
gdpfd ¢dpbd € JALLINIHG DNIMYHA G3ZITYH3INTO
dpBd dp6d JALLINIHG DNIMVHA G3ZIMYH3INTDO
ysnyd sweAd ysnjd SIN3A3 ID0IA3A HSN1d
mwﬁﬁn ------ vescesssesnsnssssanssanune ﬂﬁlﬂ@hﬁl——:n e .—-mm <mm< JI__M_
19s ease jjpd 13S v3dv T4

gease niud € v3dv 114

ease |ipd v3dy 11id

1onJis ooxad IHNLONYLS 31NO3X3

“eXIBW |40 MIJA [eAad

€ XIHLVIW NOILVLNIIHO M3IA 3LVYNIVAT

== Xjew (10 MaJA |eaad

XIHLVIN NOLLVLNIIHO M3IA 3LVNIVAS

exijew dew mojA jeaad

€ XIHLVIN DNIddYIN M3IA 3LVNTVAS

XIHLVIN ONIddVIN M3IA 3LVNTIVAS

adeosad 3dvOS3

Boiued DNIDHOT HOHY3

puey_ued DNITANVH HO"4H3

ssassessasascess esssecnsnasnenas s:._ﬁm|>a—=a WID.FODE.Fw >.—.&Em
ydjoad = sByd esojo Aouabiowad SOIHd ISOTO AONIDHINWI
sjod yoseas wojed HOHV3S INIW313

Surpurg NVILIOA Surpurg O

- (penunuod) uonoun SOIHI

ESV Workstation Reference Manual [2.0]

1-116

ES/PEX.

Qwug ssescsssssesssasses @N_m|8GQm|Qm_U|U=_Q
”_ >ug mN~GU|._ﬂ >l|ﬁ0°|u-._ _ ﬂ
_>Ug-.......-.....-..-ﬂuﬂﬂl—ﬂ>|wﬁ°ld=_n
ejspbd - ‘gelep ojons jop bujd

sspbd “ejep oyous jop buid
gispbd -+ geyep_Bulns_jep buid
Hmvg ..-.-.-.--.-.......GEU|Q=—.—ﬂ“l&@ﬁlu:—a
”xnug ”ﬂﬁﬂl&nv—ﬂ.l&@ﬁld:_ﬂ
dpbd * ejep yo1d jop buid
£olpbd - - gejep 20| jop buid
olpbd - “ gyep 20| jop buyd
w:vuguhlun=|am—u|h0°|c=_n
syophd reerereeeeens - eeyep @9j0y2 jop buid
yopbd - = gjep 99j04d Jop buyd
s1eobd -+ ezjs"odAy weje ino bud
0%9dbd **jJusiuod wee und buid
uisobd - “** Jou”s1onAs Juod buyd
siudbd sl jJuod buid
Jobd des 1109 bud
*UEOE osenssnacsnnsasases 8“"—”8:——'&—00‘6—.——“
pwobd -+ cesessreensnssrnnne jopow 1102 buid
jobd soey 1109 buid
nm:og ----------------------------- mﬂm|°°—°=°'v=—n
w:og ------------------- cesssnssnsas ﬁlﬁO—O‘OIU:—a
siebd ¥s"1e buid
pebd so|j "2 buyd
%cug ------------- essscsssasssssans wONhIOF_:“‘U:—Q
ﬂmog sesssencsse -----mﬂoaﬁlﬁ—.—sl——mlv—h_n
giauid greA yuid
lauid e yuid
exsuid gavous yuyd
ysuid aons yuid
gisuid ¢bus yud
suid Buins yuid
exduid exord yuid

wgcam [RATR AR, (0 Rt L e wﬁﬁﬁﬂﬁm U.....:..:: sestennsesanne

3JZiS 30VdS AV1dSIa FHINONI

€ Y1vad 30IA30 HOLVNIVA 1TNV43a IHINONI

V1vad 30IA3A HOLVNIVA 1TNV43a IHINONI

€ Y.1va 3DIA3A IXMOHLS 17NVv43a IHINONI

V.iva 3DIA3A IMO0ULS L71NV43a IHINONI

€ Y1vad IDIA3A ONIHLS LTNV43a FHINONI

V.1vad 3DIA3A ONIHLS 171Nv43a 3HINONI

€ V.1va 30IA3A XMIid 17NV43a JHINONI

V.1va 30IA3A XIId LTNV43a IHINONI

€ V1vd 32iA3d HOLvI07 11Nv43a IHINONI

V.1vdad 301A3a H01vO01 LINVi3a SHINONI

31Vv1S 31vadn AV1dSid L17nv43d FHINONI

€ Y1va 3D1A3a 3DI0HI LINV43a JHINONI

Vv.1vad 3J1A3d 3DI0HD 171NVd43a IHINONI

3ZIS ANV 3dAL LN3W3T73 LN3HHND 3HINONI

LN3LNOOD LNIW3T3 LNIHHND FHINONI
MHOMLIN NI SZHNLONYLS DNILOITINOD JHINONI

NOILNT0S3H LJIT4NOD FHINONI

NOILV.LIN3S3Hd3H HNOT0D IHINONI

S3ALLNIOVL T3AOW HNOTOI IHINONI

T3AON HNOTOD JHINONI

S$31LIT10V4 HNOT0D FHINONI

€ 31V.1S 3DIA3d 3OI0HD IHINONI

31VL1S 3JIA3a0 3DI0OHO FHINONI

3NIVA 31V1S JAIHOHV JHINONI

$371d SAIHOHVY FHINONI

S3ALLITIOV NOILYLONNY JHINONI

S3HNLONYLS ONILIITINOD TV IHINONI

€ HOLVYNIVA JZITVILINI

HOLVNIVA 3ZITVILINI

€ IMO0YLS JZIMVILINI

INOHLS FZITVILINI

€ ONIHLS FZITVILINI

ONIHLS IZITVILINI

€ MOld IZINVILINI
esssseses D T TR T Y Aﬁvggﬂquov couoczm woﬂmm

1-117

ESV Workstation Reference Manual [2.0]

ES/PEX

emspbd
nspbd

m:vg s

edspbd

....................... spuj_majA 1S buid
** spuj_ix@1 181 buid
*spuj_Joxdew 1s)i buid
-------- wu:—lwc——lﬁ——lvc—n
= spujyed sy buid
..... spuj i sy buid
- spu|_eBpe S| buid
* spuj_ 4109 1s)| buid
sedAi"sm jjeae is) buid
---------- 3“‘— —“>“|’m=|u=—a
-gdpBjjeae sy bujd
~-dpB1jeae is)| buid
............................. h@g—&lm—>=—||0=—n
des i buid
soej | buid
HeA0 uj buid
------------------ mowﬁlogElhmc—c’g—a
--------------------------- °8E|-—m—=—_—|g—n
------------------ ssases asﬁ'u—lhwg—clg—a

"’/

S3DIANI M3IA 40 LSIT FHINONI

S3DIANI 1X31 40 1SIT JHINONI

S3OIANI HINHVINATOd 40 1SIT FHINONI

S3DIANI INITATO0d 40 1S17 IHINONI

S3OIANI NH3LLVd 4O 1SIT JHINONI

S3DIANI HOIHALNI 40 LSI7 JHINONI

S301aNI 39a3 4O 1Si7 FHINONI

S3DIANI HNOTOD 40 LSIT IHINONI

S3dAL NOILVLSHHOM I19VTIVAV 40 1SIT HINONI

** SLNIW3T3 JHNLONYLS A3ZITVHINID 316VIVAV 40 LSIT JHINONI
€ STALLINIYC DNIMVHA 3ZITVHINID 319V 1VAY JO LSIT JHINONI
....... SIALLINIHC DNIMVHA G3ZITVHINTD 379V1IVAV JO LSIT HINONI

H3ALTI4 ALITISISIANI FHINONI

NOILV.LNISIHdIH HOIHALNI JHINONI

S3ILITIOV HOIHILNI HINONI

MOT4HIAO ININD LNdNI FHINONI

S3ILNIOV 3AOW HSHTH JHINONI

3AOW HSHTH JHINONI

SALLIMNOVL HI3I4ILNIAI HSHTH 3HINONI

S/N

-------------------- “8E|°:2Ihh°lu= —n
--------------------- wN—mlﬂn alEO— lec— n
------------------- ssssssnsnssss .—uﬂlEO—QlU: —n

N juauod wee buid
..... apow ¥pa buid
+ des"eBpe buid
---------- woel.wwsé:—n
sine sm suhp bupd
...................... W@O—J.—ﬁmlm: >u|u_.-_ Q
--------- 8'““:'“”— UIU-h —n
CLLTTITTITIT LTI) g"—”'8ﬂﬁ“|ﬂ“—°luc—a

Surpurg NVILIOL

- Surpurg D

SAILMNIOV4 HSHTH JHINONI

H311i4 DONILLHOITHOIH JHINONI

SIILIMOVA LNIWI T3 JUNLONYLS A3ZITVHINID FHINONI

€ JALLINIHG DNIMYHA G3ZITVHINIO JHINONI

JALLINIH DNIMVHA A3ZIMYHINTD FHINONI

3AOW DNITANVH HOHH3 3HINONI

3ZIS ANV 3dAL LINIW3TI FHINONI

H3LNIOd LNIW3T3 FHINONI

INILNOD LNIW3T3 IHINONI

3AON 11a3 FHINONI

NOILV.LN3S3Hd3H 3903 FHINONI

S31LITI0V4 3903 FHINONI
S3LNGIHLLY NOILVLISHHOM 40 SOINVNAQG IHINONI

SIHNLONYHLS 40 SOINVNAQ FHINONI

31vV.S 31vadn Av1dsSia IHINONI

€ 32IS 30VdS AV1dSIa FHINONI

------------------------ AﬂvogﬁhMﬁ:oov ﬁOﬁoggm memm

ESV Workstation Reference Manual [2.0]

1-118

ES/PEX

w\-ﬂwcn uﬁl—.nv:\—ﬁlc:—n WDI—<> mn_.<|—xm mm:-_-o:mn_rm NE_DOZ_
pishd* = sp|_jonans buid SHII4ILNIAI 3HNLONYLS JHINONI
gsshd = = gis oons bud € ALV1S 3D01A3a IHOYLS FHINONI
Syshd roresmmrrmmneermnenanene s ojoais buid 3LV.LS FOIAIA INOHLS FHINONI
£81Shd e ig™Bus buid € ILV1S 3OIA3A DNIHLS JHINONI
sishd 1s~ Buins buyd JLVLS IDIAIA DONIHLS FHINONI
odymbd - ~pajsod ssm bujd e s (31S0d HOIHM OL SNOILYLSHHOM 40 L3S IHINONI
simdobd ~-ssm_uado j1es bud SNOILVLSHHOM N3IdO 40 13S FHINONI
BTTVT: | R * dos”maia pasd buyd NOILY.LN3IS3Hd3H M3IIA G3NIJI3a34d FHINONI
padbd e =das 1xo) pasd buid NOILV1N3S3Hd3d 1X31 a3NId3a3dd JHINONI
Jwddbd - *dos 1oaew pasd buyd eeeererereeerees NOILVLINISIHdIH HINHVIWATOd A3NI43a3Hd FHINONI
Jiddbd - *das"suy pasd buid NOILVLINISIHdIH INITATOd G3NId3a3dd FHINONI
teddbd des jed paid buid NOILLV.LN3IS3IHdIH NHILLVd G3INI43a3Hd IHINONI
Jidbd - *das | paid buid NOILVLNIS3IHdIH HOIYILNI 3NId3a34d JHINONI
Jpadbd - des"oBpa pasd buid NOILV.LN3S3Hd3H 3903 a3NI43a3aHd FHINONI
B | * des 2100 paad buid NOILV1N3S3Hd3IH HNOT0D A3NI43a3Hd IHINONI
150dbd seeeemrmrermenenenes sjonns paisod buid S3HNLONYLS A3LSOd FHINONI
Judbd - =des Joxsew bud NOILV.LN3SIHdIH HINHVINATO IHINONI
FUTTe | R s gOR) JoNJew buyd S3LLITIOVH HINHVIWATOd JHINONI
Jidbd das au) buid NOILV1N3S3Hd3H INITATOd JHINONI
ydbd soe) eul buid S3ILITOVH ANITATOd JHINONI
gsxydbd g1s yoid buid : € 3LVLS 3DIA3A MIId JHINONI
sydbd 1so1d buid 31V.1S 3J1A3A MOld FHINONI
Jydbd oseereessssmesenneg o s Biyd buyd S3ILINOVL SOIHd IHINONI
Jedbd dasTjed buid NOILV.LN3S3Hd3IH NH3LLVd JHINONI
jyedbd soej jed buyd S3ILMIOV4 NY3LLVd JHINONI
opdbd wrreereemseresmsnsnees sosop syjed buid SINVAN3OS3a OL SHLVd JHINONI
:ag ...-...-.-...............moo-.—ﬂl.m—_—a;—ﬂ Umo._-mmoz< o._. m—-—.—.<& mm_:oz_
1sdobd *=ereeree sessesnassene onis uado buid FHNLONHLS NIdO JHINDNI
dpbd - =siddsipwnu buyd e 3 1 HOdANS SIILIHIOH AV1dSIA 40 H3FGWNN SHINONI
1nbd - uj jjeae " wnu buid ** §321A3A LNdNI TVIIDO0T I19VTIIVAY 40 HIGWNN JHINONI
wishd - *SUdAd JInwis asow buid SIN3A3 SNOINV.LINWIS SHOW IHINONI
Jrowbd sweeeeee e s0g) dij9 jepow bujd S31LITIOV4 DNIddITO DNITTIAON IHINONI
€soibd €1s 20j buid € 3L1V1S 3DIA3A HOLVOIO1 FHINONI
solbd 1s720| buid 31V.1S IDIA3A HOLVYIOT SHINONI

wgﬁ—.ﬂm z¢~.NMLHMNMOH~ .. wﬁ%ﬁmm U sese . Aﬂv@ﬂ.ﬁmﬂﬂOOV ﬁOﬁOﬂzm mOHmm

1-119

ESV Workstation Reference Manual [2.0]

ES/PEX

N’ -’

yobud @910yo baud 3OIOHD 1S3N03Y
saud 19S_saweu aAowaid 13S WOH4 S3INVYN SAONIH
1S3 (o sjonis” || melpald SIHNLONYLS 1TV MvHa3H
wypad wia) peasd 3714VL3IN WOHL W3LI avay
1sodd yonusTisodd 3HNLONYLS 1SOd
gwdd giojsewdjodd € HaMHVINATOd
wdd Joxsewdjodd HIMHVINATIOd
gidd gauyjAjodd € IANITATOd
jdd aujjAjodd ANITATOd
seudd VIN 4 a40D34d v.1va Movd
symdod sm uadod NOILVLSHHOM N3dO
jsdod onns uadod 3JHNLONHLS N3IdO
yddod sBiyd uadod SHIHd N3dO
xddod sBiydx uedod X3d N3dO
yiedod ol Je uadod 3714 SAIHOHV N3dO
awma ‘:Q‘EQ—@lug:a Emhvz_o& .—-szWI—m -—-mwmmo
Bswd obessowd IOVYSSIN
aqd leqeid J3avi
E:-Q EQ#—I«Q&EQ:&—Q Em.—-— Pmmﬁmm._.z_

o0 b T oo R guesy sm buid € NOILVIWNHOZSNVHL NOILV.LSHHOM IHINONI
pimbd uesy sm buyd NOILVIWHO4SNVHL NOILVLSMHOM FHINONI
1symbd ¥s"sm buid 3ANIVA 3LVLS NOILV.LSHHOM JHINONI
(15, T +1 Rt o|qer I1s sm buyd SH1DNI1 319V.1 31V.LS NOILYLISHHOM FHINONI
oymbd adA} uuod sm buid 3dAL ANV NOILDINNOD NOILY.LSHHOM FHINONI
19%mbd ssejo” sm bud NOILYDIHISSVY 1D NOILYLSHHOM FHINONI
eaymbd 10 sSM buyd AHODIALYD NOILY.LISHHOM JHINONI
Imabd does"majA buid NOILV.LNISIHdIH M3IA IHINONI
JMAD srremeressreenessnssen soe} majA buid S3ILINIOVA M3IA FHINONI
gsiabd g1s jea buid € JLV.LS 321A3a HOLVNTVA JHINONI
s|Abd 1" 1eA buid 31V.1S 3D1A3A HOLVNTVA FHINONI
nabd dai ey buid NOILV.LNIS3Hd3H LX31 IHINONI
pabd soej ey bud S3ILIMIOVL LX3L JHINONI
XX sorereeneereanansansasnsese juaixa a1 buid IN3ILIX3 LX3L JHINONI
sAsbd 1s”sAs buid INTVA JLV.LS WILSAS SHINONI
*snieis” jonuis buid SNLVLS 3HNLONYLS FHINONI

mc%ﬂ:.”m Eﬁmo.nﬂ .. wﬂ%—hmm U

...... (panunuoo) uonoun SOIHd

ESV‘Workstation Reference Manual [2.0]

1-120

ES/PEX

yyosd W Jeyo jesd
ﬁx—._omn susescessassosseses :Nﬂ%ﬂl‘_ﬂcnvla@wﬂ
ﬁwﬂmﬂ [asssscssens CaNQIOCCNIuQm&
nojesd - *99A dn " Jeyd> ouue jesd
yoyesd - "W Jeys ouue jesd
jeyesd seeeennrennerennessaaeanaes uBjje ouue jesd
sugsd e | >w0|°::wlu0wn_
gosd gojeasd
osd ajeosd
jawsd |eA ojdwesd
ﬁXWEMQ sessnssscasnasnans, ﬂ@v—O&E‘Q—QEWﬂQ
yswsd - ~—aolis ojdwesd
—MEOQ [[QC_ ‘_-MIQ_QENMQ
ydwsd »ord ejdwesd
gojwsd ¢20| ejdwesd
ojwsd 20| odwesd
_._OEmQ 8_O:O|0_QENME
zoud z sjejoud
Koud K eej0id
xoud X oeroid
oud oejo04d
seud sjonuys jaud
:”ﬂhu secssassscsnssncessssussanens WvQ—__IﬁOEﬁ'a._Q
U_m.—n sesssasssesassescessssssnnnnnna MU_IwOEuMI-b._Q
020.-& essesansassassessansasanas WOwQUIwr_uﬂnlaQ._ﬂ
:Nﬁﬁ .—n esassssussnnsansns wQOCﬂlm:vﬂﬂluw .-Q
1se. ¥7e R I I sjon ..wMI__ﬂlwo ad
Aowidd e joA dijo” jepows esolsaad
jabad jeA baud
eysbud gaons baud
ssbud ajoss baud
1shud Bujns beaud
ydbad oid baud
eoibid £00| baud
olbud 20j baud

1HODI3H H31OVHVHO 13S

HOL10Vd NOISNVdX3 H31OVHVHO 13S

HLvd 1X31 NOILVLONNV 13S
HOL103A dn H31OVHVHO 1X31 NOILVLONNY L3S

1HDIFH H31OVHVHO 1LX3L NOILVLONNY 13S

INIFWNOITV 1X3L NOILVLONNY 13S

37ALS NOILVLONNY 13S

€37vOS

3IvOS

HOLVYNIVA 3TdNVS

€ IMOHLS ITdNVS

IXNOHLS IT1dNVS

ONIHLS IT1dNVS

MOld 3TdWVS

€ HO1vO01 ITdNVS

HOL1vO01 ITdWVS

JOIOHD ITdNVS

Z3lviod

A3lvliod

X 3lvioH

31v10d

S3HNLONYLS JAIIHLIH

SHHOML3N 3HNLONHLS 3ATIHLIH

SH3IIHILNIAI 3HNLONYHLS 3AIIHLIH

SINVAN30S3a Ol SH1Vd 3A3IH13Y

SHOLS3ONV Ol SH1Vd 3A3IH13YH

S3HNLONHLS TV 3A3IHLIYH

JWNTOA DNIddITO DNITTIAONW 3HOLS3H

HOL1VNIVA 1S3N03H

€ IMOHLS 1S3N03H

IXMOHLS 1S3N03H

ONIH1S 1S3N03H

MOId 1S3ND3H

€ HO1vO01 1s3ND3d

HO1vJ01 1S3Nn03H

mcmﬁﬂmm NVILLIO [N wﬂzﬁﬁﬂm U..:. teessesrasssesnsctannans sesnese cesssssrereerenes AﬁOZGﬁcoov uonounj SOIHd

1-121

ESV Workstation Reference Manual [2.0]

ES/PEX

N/

EQ—W& 8°E|oo_|~0wnm mao: M—o .—.<°°l_ ._.mm
F LT R guesy jedoj jesd € NOILLVWHO4SNVHL TvD0113S
11 R uely |eoo| 19sd NOILYWHO4SNVHL Tv001 13S
osmisd yipimeuy1esd HOLOV4d 3TvOS HLAIM3INIT L3S
ujsd odAjeuyi Josd 3dAL3INIT L3S
YAJSororeeresmrmrenssnnes 191 Siauf 1osd H3L14 ALITNGISIANI 13S
(17117 It puj—a1f1sT i 1osd X3ANI 3TALS HOIHILNI 13S
sisd a1A1s | 1esd 3TALS HOIHIALNI 13S
Jisd desuy 1esd NOILVIN3S3HdIH HOIH3LNI 13S
nsd puj jujjesd X3ANI HOIY3LNI L3S
JOIS rorerresarasasasasnsaeases puj 4109 juj jesd X3ANI HNOT0D HOIH3ALNI 13S
jseisd Jse”Ajpuj 1esd 4SV TVNAIAIGNI 13S
E.-—.—ﬂn OUOEl.—O—.—_r_luowm WQOE Em—._..—: .—.mm
puysd pi_asyiy 1esd H3IJILNIAI HSHH 138
:—:g ‘_Oﬂ_——|_=u__.—l.~.¢ﬂc. mm._.l——u_ wZ—.FT—mV—u——-—G—: .—.mm
cywbsd- - guel) jeqojb jesd € NOILVYWHOASNVHL Tva01o 13S
B o eenenes ues) [eqojfjesd NOILVIWHOL4SNVHL TvEa019 138
TV, R epow puey .9 josd A0 DNITANVH HOHHS 13S
S/N puey 9 josd » DNITANVH HOHH3 13S
qidesd e 1eqel_nd weje 1osd 739V 1V H3LINIOd LN3IW313 138
nd waje jesd H3INIOd INIW313 13S

apow ypo josd 300N 1ia3 138

yipimabpe Jesd HOL1OVd 31vOS HLAIM3DA3a 138

adA1eBpe josd 3dA13903 13S

des abpe jesd NOILV.LN3S3Hd3Y 3903 L3S

puj eBpe jesd X3AaNI 39303 138

Bejj-obpa josd Dv1d4 3903 13S

puj_ 1109 ebpe jesd X3ANI HNOT0D 3903 138

....... 15 pdnTdsjp 1osd 31v1iS 31vadn AV1dSIa 13S

sal juod josd NOILNTOS3Y LOIM4NOD 13S

dei 1109 10sd NOILV.LNIS3HdIH HNOT0D 13S

pwosd- serememsnsssnesea |epowJjod josd J3a0W HNO10J 13S
wyosd-- * 9pow 99j0yd 1esd 3AOW 3JIOHD 13S
dnyasd *299A dn ieys josd HO103A dN H3LOVHVHO 138
dsyosd----=- - goeds Jeyd jesd DNIOVdS HILOVHVYHO 13S

Surpurg NVIIL40d Surpurg 5

-------------------------- Agggﬁcoov GOMHOGH—m mOHmm

ESV Workstation Reference Manual [2.0]

1-122

ES/PEX

upm sm josd

MOGNIM NOILVLSHHOM 13S

gda"sm josd

€ LHOdM3IA NOILVLSHHOM L3S

dA"smjesd

1HOdM3IA NOILVLSHHOM 13S

sesasssncesanascesen —halc—lcsﬂlgm—>lswm

ALIHOIHd LNdNI NOILVINHOASNVYHL M3IA 13S

------------------------------- 20 hllgw_ >|~0mﬂh-

€ NOILVIN3S3Hd3H M3IA 13S

dol mo|A Josd

NOILVIN3IS3Hd3H M3IA 13S

puj mo|A Josd

X3ANI M3IA 13S

opow |eA 1asd

30O HOLVNIVA 13S

das xe) josd

NOILVLIN3S3Hd3YH 1X31 13S

oaid 1x9) josd

NOISIO3dd 1X3l 13S

yled 1xay josd

HLvd 1X31 13S

puj 1xey jasd

X3ANI 1X31 13S

Juoj xa) josd

1NOd 1X31 13S

-------------------------- u—h—l.—_oo';@ﬁlﬂomﬂm

X3ANI HNOT0J 1X31 13S

.............. u u— —ﬂlﬁx ¢ﬁ|~00 —lu.

LNIWNOITV 1X3l 13S

“-apowi 9)ouls Josd

JAON IMOUILS 13S

........................... osElu—.— — I} ﬁluomﬂ-.

3AON DNIYLS 13S

dei soxuew josd

NOILLVLIN3IS3HdIH HIaMHVNATOd 13S

puj_iexpew josd

X3ANI HINHVINATOd 13S

-------------------- U:—lh—ool.—“{ﬂ:—'ﬂﬂmc.

X3aNI HNOTO0D H3IMHVINATOC 13S

das"auj jesd

NOILVIN3S3Hd3d ININATOd 13S

Adudsd

tamﬁ:.
€ >0Ewn cane
Aowsd
jowsd-
xEmﬁ .

puj_eujj 1esd

X3AaNI INITAT0d 13S

puj 1|09 au|| jesd

X3ANI HNOT0J 3INITATO0d 13S

----------------------------- muo:.—l‘o—nlﬁowm mno: !0—& -—-mm
piyoid 1esd H3I4ILN3AI XOId 13S

------------------------------- h@g—&lxo—alsmm mmn—vl——m !0—& -—-mw
az|s jed jesd 3ZIS NH31lvd 13S

des yed jesd NOILVIN3IS3Hd3H NH3L1lvd 13S

SHOLO3A ANV LNIOd 3ON3H343H NH3LLvd 13S

.............. . w8>||ﬂ=—a| h@h'ﬁﬁlswm
erusenmssanasnnas wijod jes jed jesd

A1NIOd 3ON3H3434 NH3LLlvd 13S

gloA djjo lepow jasd

€ INNTOA DNIddITO DNITI3AO0ON 13S

oA djjo " |opow josd

FNNTOA DNIddITO ONITTIAON L3S

*pu”dijjo jepowjesd

HOLVOIIANI DNIddITO DNITT3A0N 13S

....... odA)y 1oxsew jasd

3dAl HINHVIN 13S

........................... QN—Wlhoxhﬂslswﬁ

.. WC%—&mm U .

HOL1OV4d 37vIS 3ZIS HaNHVW 13S

.......... (penunuod) uonoung SOIHJ

1-123

ESV Workstation Reference Manual [2.0]

ES/PEX

wey ondmd F74vVI3IN OL WALl 3LIHM

sm pdnd NOILV.LSHHOM 3Lvadn

............................... 62~0|ﬁ°ﬂ:-»=h mm:.—.o:m.—rm _.FWOn_z_J
= sjonis”|je” isodund SIHNLONHLS TV LSOdNN
V/N 1 40934 v1va MOvdNN

goejsuend € 3LVISNVHL

oejsuelid JLVISNVHL

gwjod uend € LNIOd NHO4SNVHL

wjod uend INIOd WHO4SNVHL

gixerd e.1x3lL

xayd 1X3L

gum—sm josd € MOANIM NOILVLSHHOM 13S

(penunuos) uonoung SOIHI

ESV Workstation Reference Manual [2.0]

1-124

ES/PEX

Uﬂwmun .o
usejod

deeod

Supurg Nv4.LYOd ™

dosd jos josd

S31143d0"d 3ONVLO3143H 13S

‘ejep gysew penbd

V.1Va HlIM € HS3W vd31v1idavno

-------------------------- “ﬂ“ﬂlmﬂglw—.—_—>—°ﬂmﬂm

V1va HLlIM € 13S aNITAT0d

jns~—dsq junud

..................... sn

JOV4HNS INITdS-8 WHOHINN-NON

AIN9 dsq 1unud
id eiqey 1s” sm bujd

............. $9ej jopow 4j09 pual buid

JAHNO INITdS-8 WHOHINN-NON

SNd SHION3T378Y.L FLV.LS NOILY.LSHHOM FHINONI

snid_des xa) bujd

SN1d NOILYINISIHdIH L1X3 L FHINONI

.................. snjd_des)xa) pasd buid
............ sniddas Jaxsew pasd bud

~-snjd dad Jaxtew bujd
=snid_des auj buid

----------------------------- W—J—QIIQOLIIﬁ“alU:—m
------------------- wu: —Io.-wllﬁc m——lﬂw——lv-h*m

rensentessassannsacne spuj_anop is)i buid
......................... QQ.-I.O.-%IE m__l—..v:_rh
-------------------- -l-woahIOleEm——lcc—m

..... snjd soej iy buyd
~snjd des ebpe bujd
---------------- m:—nlmglm=>°|v=—m
----------- womhl—ouoc.—lh —8‘80&— UIU-.— —b-

........ snjd—daJ euy pasd bujd-
~snjd_das yed paid buyd--
~das 21syby pord bujd-
....... snjd"dasj paid bujd
~sn|d_des eBpe pasd bujd
............ des"enop paid buid

S3LLITIOVd T3A0OW HNOTOD DNIHIANIH IHINONI

.......................... SN1d NOILYINISIHIY 1X31L A3INI43a34Hd FHINONI
.......... SN’ld NOILY.IN3ISIHd3IH HIXHVIWATOd AINII303Hd FHINONI

........ SNld NOILVIN3ISIHdIH INITATOd AINIH3A3Hd FHINONI
"*SN1d NOLLVINISIHdIH NHILLVd AINI43A34Hd FHINONI
""NOILVINISIH4IH FJOHNOS LHOIT d3INIH3aIHd FHINONI
""SN1d NOLLVINISIHdIH HOIHILNI 3INI43a3Hd FHINONI
"'SN’1d NOILVYINISIHJIH 3903 d3INII303Hd FHINONI
NOILYINIS3IHdIH 3N HLd3d A3INI43IA3Hd FHINONI

SN’ld NOILVINISIHdIH HIMHYWATOd FHINONI

SNd NOILVIN3ISIHdIH INITATOd FHINONI

snjd_soej aujj bud

SNld S3LLITIOVL INITATOd HINONI

SNld NOILYIN3ISIHdIH NHILLVd FHINONI

S3JOIANI 30HNOS LHOIT 40 LSIT IHINONI

S30IaNI 3NO H1d3d 40 1SIT 3HINONI

NOILYLIN3ISIHd3IH FJOHNOS LHOIT IHINONI

S3ILITIOV4 F0HNOS LHOIT FHINONI

~-snjd deai | buyd

SN’ld NOILVINISIHdIH HOIHTLNI SHINONI

SN1d S3ILITIOVL4 HOIHTLNI FHINONI

SN’ld NOILVYINISIHdIH 3903 FHINONI

SNd NOILY1LSHHOM H0O SOINVNAQ JHINONI

SAILITIOVL T3AOW HNOTOD 1034IA FHINONI

des " enop buid

NOILVINISIHdIH 3N H1d3d FHINONI

soe} enop buyd

S3ILITIOVH4 3N H1d3d FHINONI

soej UNs AINd buid

S3AILMIOV4 30V4HNS ANV IAHND FHINONI

ejep gi1es eate jijud

Vivad HLIM € 13S v3dv 114

~unoub 1os eale |1 dwoad

TYWHON J1413W03D L3S VIHY T4 LNdWOD

------------------------------ ms_nln>mhhﬁl=¢l=h-

‘Surpurg D

.................

SNld € AVHHY 1130

......... Surpurg X4d/SN'1d SOIHd

1-125

ESV Workstation Reference Manual [2.0]

ES/PEX

Surpurg NVILIOA

elep” edisT1d

V.iva H1IM € diH1S 3TONVIHL

---------------------------- m:-nlnohlﬂxwﬁlﬂwmﬂh

SNd NOILYINISIHdIH 1X3L L3S

109 1xa) josd

HNO102 1X3l 13S

------------------------------ XO0J nnmlt :wlﬂwmﬂm

VIHILIHO NOILVINIXOHddY 3OV4HNS 13S

* |]opowiJj09 pual jasd

73AOW HNOT0J DNIYIANIH 13S

-snid_des"1oxuew jesd

SNId NOILY.INISIHdIH HINHVIWATIOd L3S

.......... .__00| 1 OENElﬁmC.

HNOT0D HANHYVWATOC 13S

- ylow peys ouj 1osd

QOHL3IW DNIAYHS 3INITATOd L3S

---------------------------- m:—ﬁnwh|°=——lamﬂm

SNd NOILY.LNISIHdIH INITATOd L3S

109 auyj 19sd

HNOT090 ANIMATOd 13S

SN1d NOILY.IN3FSIHdIH NGILLYd L3S

............................. Wq-_Q.IQQ 1 jed 1osd
eeneenamseenaens sieyo Jns wesed josd

SOILSIHILOVHYHO JOV4HNS JIHLINVEY L3S

elep glos ease ||y Jo Josd

V1vad HLlIM € 13S V3V 1114 40 13S

------------ Owﬂﬂm.lo Y] wlﬂc Q——Iﬁomﬂm

'FLV.LS JOHNOS LHOIT L3S

..... das21s by 1esd

NOILY.INISIHdIH JOHNOS 1HOIT L3S

~yjow - peys uj 1osd

JOHL3IW DNIQYHS HOIHILNI 13S

...... snjd_dasjuj 1esd

SNd NOILY.LNISTHdIH HOIHILNI L3S

uba jes Josd

NOILVND3 3ONVLO3143H L3S

1109 19sd

HNOT0D HOIYIALNI L3S

epow Bupsip ede} josd

3AOW DNIHSINDNILSIA 30V 13S

....... spow ||nd odej Jasd

3AOW DNITTIND 30V 13S

-------------------------- ws_“lﬂﬂhlﬁuglﬁwmfh

SN1d NOILY.INISIH43H 3903 L3S

Jj09 abpa 1osd

HNO100 3903 13

dei enop 1esd

NOILV.INTSIHdIH 3N HLd3d L3S

puj enop lesd

X3ANI 3N0 H1d34d L3S

xoidde eAino josd

VIH3LIHO NOILYWIXOHddY JAHND 13S

................. ~puyl_o1A1s | ¥oeq tosd

X3ANI 37ALS HOIHILNI XOva 13S

............ ojl1s T oeq resd

JTALS HOIHALNI XOvE 13S

...... ylew peys uj oeq jesd

JOHLIW DNIAVHS HOIHILNI ¥ovd L3S

----------------- : gl—ﬁmhlxoglﬂwmﬂh

NOILVYND3 IONVLO3T43H HOIHILNI ¥OvE 13S

..... Jj09 i ¥oeq jesd

HNOT0D HOHALNI XOve 13S

------------------------- QO Y] nl_ hﬁ.—'¥§|ﬁ0ﬂﬁ
Surpurg D

S311H3d0OHd IONVLO3 1434 MOvE 13S

(panunuod) Surpurg X4d/SN1d SOIHd

ESV Workstation Reference Manual [2.0]

1-126

ES/PEX

Example Programs

The example programs are provided as working ES/PEX programs. The pro-
grams may be found in the following directory on the distribution tape:
/usr/people/fstest/demo/pexexamples.

The programs demonstrate the minimal amount of coding necessary to
perform the functions stated within each program. Care has been taken to
demonstrate a “proper” coding style to ensure that these programs may be
used with other, larger models. There are many methods used in the example
programs that are strictly a reflection of the authors’ style. There is no “one
way” to write ES/PEX programs; however, these example programs represent
one way to demonstrate the basic functionality.

There are four programs implemented in two different ways. One way
uses the Xlib calls and the other way uses the Motif Graphical User Interface.
example1.c through exampled.c use the Xlib calls for the user interface.
motifi.c through motif4.c use the Motif Graphical User Interface.

Both sets of programs link with the same PHIGS procedures (phigsi1.c
through phigs4.c). Therefore, the PHIGS functionality is identical; only the
user interface is different. This is done to demonstrate the different program-
ming environments between X1ib calls and Motif calls.

The PHIGS functionality in the example programs progresses from a very
simple program (1), which displays two objects and exits, to a fully interac-
tive program (4) which demonstrates the use of the dials device along with
picking on 3D objects.

Users should become familiar with what the example programs do before
“pasting” them into other applications. Many hours of frustration may be
avoided by taking time to understand the reasoning behind the implementa-
tion of these example programs.

ESV Workstation Reference Manual [2.0] 1-127

ES/PEX

Makefile
CCOPT = —-systype bsd43
CDEBUG = -g

DEFNS = -Wf,-XNp50000 -Wf,-XNd50000

CFLAGS = $(CDEBUG) $(CCOPT) $(DEFNS) -I/bsd43/usr/include/X11R3
LDFLAGS = $(CDEBUG) $(CCOPT)
FIN = =1m -lc /usr/lib/libc.a

#
Variables specific to clients created by this Makefile - edit as needed

OBJS1 = motifl.o

LIBS1 = —-1PEXapi -1Xm -1Xt -1X11

OBJS2 = phigs2.o0 motif2.o0

LIBS2 = —1PEXapi -1Xm -1Xt -1Xinput =-1Xext -1X11

OBJS3 = phigs3.o0 motif3.o

LIBS3 = -1PEXapi -1Xm -1Xt -1Xinput -1Xext -1X11

OBJS4 = phigs4.o motifd.o

LIBS4 = -1PEXapi -1Xm -1Xt -1Xinput -1lXpick -1Xext -1X11

XOBJS1 = examplel.o

XLIBS1 = -1PEXapi -1X11

XOBJS2 = phigs2.o0 example2.o

XLIBS2 = —-1PEXapi -1X11

XOBJS3 = phigs3.o example3.o

XLIBS3 = —-1PEXapi -1Xinput -lXext -1X11

XOBJS4 = phigs4.o example4d.o

XLIBS4 = -1PEXapi -1Xinput -1Xpick -1Xext -1X11

ALL = motifl motif2 motif3 motif4 examplel example2 examplel3 exampled

#
Commands specific to clients created by this Makefile - edit as needed

all: $(ALL)

clean:
rm -f *.o $(ALL)

motifl: $(OBJS1)
$(CC) $(LDFLAGS) -o motifl $(OBJS1) $(LIBS1l) $(FIN)

1-128 ESV Workstation Reference Manual [2.0]

ES/PEX

motif2: $(OBJS2)
$(CC) $(LDFLAGS) -o motif2 $(OBJS2) $(LIBS2) $(FIN)

motif3: $(OBJS3)
$(CC) $(LDFLAGS) -o motif3 $(OBJS3) $(LIBS3) $(FIN)

motifd: $(OBJS4)
$(CC) $(LDFLAGS) -o motif4 $(OBJS4) $(LIBS4) $(FIN)

examplel: $(XOBJS1)
$(CC) $(LDFLAGS)

1
o

examplel $(XOBJS1l) $(XLIBS1l) $(FIN)

example2: $(XOBJS2)
$(CC) $(LDFLAGS) -o example2 $(XOBJS2) $(XLIBS2) $(FIN)

example3: $(XOBJS3)
$(CC) $(LDFLAGS)

|
o

example3 $(XOBJS3) $(XLIBS3) $(FIN)

example4: $(XOBJS4)
$(CC) $(LDFLAGS)

|
[e]

example4 $(XOBJS4) $(XLIBS4) $(FIN)

ESV Workstation Reference Manual [2.0] 1-129

ES/PEX

examplel.c
/ *

examplel.c

This program defines and displays two squares on the open
PEX workstation. One square is a 2d polyline object and the

other is a 2d fillarea object.

This program shows the minimum PEX calls required to display
simple objects. System defaults are used and there is no

event handling.

Author: James Buckmiller May 1990.
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland

*/

#include <X11/Xlib.h> /*
#include <X11/Xatom.h>

#include <X11/phigs/phigs.h> /*
#define POLYSQUARE 1 /*
#define FILLSQUARE 2

#define DISPLAY STRUCT 3

#define WS 1 /*
#define WINPOSX 100

#define WINPOSY 100

#define WINWIDTH 600

#define WINHEIGHT 600

Window myWin;
Display *dpy:;

main ()
{
char *display = NULL;

if (! (dpy = XOpenDisplay(display)))
{
perror ("Cannot open display\n");
exit (-1);
}

Include X1lib definitions
Include Phigs/Phigs+ extensions

Define Structure name constants

Workstation ID number

*/

*/

*/

*/

/* Attempt to open the display */

1-130 ESV Workstation Reference Manual [2.0]

ES/PEX

*/
St
Di

Wi
{

/*

*/

Op
Di

/* Create a simple, unmapped input/output window */
myWin = XCreateSimpleWindow (dpy, RootWindow(dpy, DefaultScreen (dpy)),
WINPOSX, WINPOSY, WINWIDTH, WINHEIGHT, 0,NULL,NULL);
/* Change the window name property */
XChangeProperty (dpy, myWin, XA WM NAME, XA STRING, 8,
PropModeReplace, "Example 1: PHIGS Squares"™, 26);
/* Map the window for display */
XMapWindow (dpy, myWin) ;

/* Begin PHIGS calls */
StartPhigs (dpy, myWin);

StartPhigs

This routine is the top level routine that calls all supporting
routines in the logical order of a usual phigs routine i.e.
open PEX, setup the workstation parameters and define the phigs
structure.

artPhigs (dpy, win) /* Routine to start phigs calls */
splay *dpy:

ndow win;

OpenPex (dpy) ; /* Open PEX */
SetupWorkstation(dpy, win); /* Setup PHIGS Workstation parameters */

Make squares(); /* Create Phigs structures */
sleep(5):; /* Display structures for 5 seconds */
pclose_ws (WS) ; /* Close workstation */

pclose_phigs(); /* Close PHIGS */
OpenPex

This routine Opens PEX on the display that was passed
as an argument.

enPex (dpy)
splay *dpy;

ESV Workstation Reference Manual [2.0] 1-131

ES/PEX

Pxphigs_info xinfo;
unsigned long infomask;

xinfo.display dpy:

NULL;
xinfo.appl_id.name = NULL;
xinfo.appl_id.class = NULL;
NULL;
NULL;
xinfo.flags.no_monitor = 1;
xinfo.flags.force_client_SS = 0;

xinfo.rmdb

xinfo.args.argc_p

xinfo.args.argv

infomask = PXPHIGS_INFO_DISPLAY | PXPHIGS_INFO_FLAGS_NO_MON;

/* Open Pex */
popen_xphigs ((char*)NULL, PDEF_MEM SIZE, infomask, &xinfo);

/*
SetupWorkstation
This routine opens a PHIGS workstation and sets the structure edit mode
to insert elements. The update state is also set to PWAIT causing the
workstation display to be updated only upon request.

*/

SetupWorkstation (dpy, win)
Display *dpy:

Window win;

{

Pconnid x drawable conn;

conn.display = dpy:
conn.drawable_id = win;
popen_ws (WS, (Pconnid *) (&conn), phigs_ws_type x_drawable);/*Open WS*/

pset_edit_mode (PEDIT_INSERT); /* Set edit mode to insert elements */

/* Set update state to WAIT */
pset_disp upd st (WS, PDEFER_WAIT, PMODE_NIVE);

/*
Make_squares

1-132 ESV Workstation Reference Manual [2.0]

ES/PEX

Make squares defines a polyline square and a fillarea square in 2
dimensions. Structures POLYSQUARE and FILLSQUARE are defined to contain
these data elements along with color and style attributes to be applied
to the data elements. A higher level structure DISPLAY STRUCT is defined
to include both the POLYSQUARE and FILLSQUARE structures and is then
posted to the open workstation to be displayed.

*/

Make squares ()
{

static Ppoint line_points[]= /* Define points for line drawing */
{{ 0.5, 0.5y, { 0.9, 0.5} ,
{ 0.9, 0.9y , { 0.5, 0.9},
{ 0.5, 0.5} }:

static Ppoint fill points[]= /* Define points for filled drawing */
{¢ 0.1, 0.1} , { 0.5, 0.1},
{ 0.5, 0.5}, { 0.1, 0.5} };

Ppoint_list Line_list, Fill list;

popen_struct (POLYSQUARE) ; /* Open line drawing structure */
pset_line colr_ind(2); /* Assign default index color 2 to lines*/
Line_list.num points = 5; /* Fill in number of points in list */
Line_list.points = line points; /* Pointer to point array */
ppolyline (&Line list); /* Create a polyline element */
pclose_struct () ; /* Close line drawing structure *x/
popen_struct (FILLSQUARE) ; /* Open filled drawing structure *x/
pset_int_style(PSTYLE_SOLID);/* Set interior style to be solid */
pset_int_colr_ind(3); /* Assign default index color 3 to lines*/
Fill list.num points = 4; /* Fill in number of points in list x/
Fill list.points = fill points; /* Pointer to point array */
pfill area(&Fill_list); /* Create a fill area element */
pclose_struct () ; /* Close filled drawing structure */

popen_struct (DISPLAY STRUCT); /* Open the top level display structure */
pexec_struct (POLYSQUARE) ; /* Include the line drawn square */
pexec_struct (FILLSQUARE) ; /* Include the filled square */
pclose_struct();

ppost_struct (WS, DISPLAY STRUCT, 1.0); /* Post DISPLAY STRUCT, prio 1 */

pupd_ws (WS, PUPD_PERFORM) ; /* Update the workstation *x/
}

ESV Workstation Reference Manual [2.0] 1-133

ES/PEX

motifi.c
/*

motifl.c

This program creates a drawing surface via a top-level shell widget. Two
PEX objects are then drawn on this surface and the program displays the
image for 5 seconds before exiting.

Author: Rich Thomson

Date: Thursday, June 12th, 1990

Modified J. Buckmiller Mar 1991. Approved C binding
Copyright (C) 1990, Evans & Sutherland Computer Corporation

*/

#include <X11/X1lib.h> /* Include X1lib definitions */
#include <X11/phigs/phigs.h> /* Include Phigs/Phigs+ extensions */
#include <X11/Intrinsic.h> /* Toolkit intrinsics */
#include <Xm/Xm.h>/* resource names *x/

#define POLYSQUARE 1 /* Define Structure name constants */
#define FILLSQUARE 2

#define DISPLAY_ STRUCT 3

#define WS 1 /* Workstation ID number *x/
#define WINPOSX 100 '

#define WINPOSY 100

#define WINWIDTH 600

#define WINHEIGHT 600

/*

main

The main routine creates the widget hierarchy for the program, realizes the
hierarchy and then calls StartPhigs. The widget hierarchy used here is:
motifl (class topLevelShell)

The display connection (dpy) and window ID (drawWindow) of the top-level
shell widget are available after the widget hierarchy has been realized.

*/

main(argc, argv)
int argc;
char *argvl[]:

register int n;
Arg args([10];
Widget topLevel;
/* create topLevelShell widget */

1-134 ESV Workstation Reference Manual [2.0]

ES/PEX

topLevel = XtInitialize("motifl"™, "Example", NULL, 0, &argc, argv);

n=0;

XtSetArg(args[n], XmNheight, WINHEIGHT); n++;

XtSetArg(args[n], XmNwidth, WINWIDTH); n++;

XtSetArg(args([n], XmNx, WINPOSX); n++;

XtSetArg(args[n], XmNy, WINPOSY); n++;

XtSetArg(args[n], XmNtitle, “Example 1"); n++;

XtSetValues (topLevel, args, n);/* set position and size resources */

XtRealizeWidget (topLevel) ; /* realize (and map) topLevel widget */

StartPhigs (XtDisplay (topLevel), XtWindow (topLevel)) ;
/* Begin PHIGS calls */

/*
StartPhigs

This routine is the top level routine that calls all supporting routines
in the logical order of a usual phigs routine i.e., open PEX, setup the
workstation parameters and define the phigs structure.

*/

StartPhigs (dpy, win) /* Routine to start phigs calls */
Display *dpy;
Window win;

{

OpenPex (dpy) ; /* Open PEX */
SetupWorkstation(dpy, win); /* Setup PHIGS Workstation parameters */
Make_squares () ; /* Create Phigs structures */
sleep(5); /* Display structures for 5 seconds */
pclose_ws (WS) ; /* Close workstation */
pclose_phigs(); /* Close PHIGS */

}

/*

OpenPex

This routine Opens PEX on the display that was passed as an argument.
*/

OpenPex (dpy)

Display *dpy:

ESV Workstation Reference Manual [2.0] 1-135

ES/PEX

Pxphigs_info =xinfo;
unsigned long infomask;

xinfo.display dpy:

NULL;
xinfo.appl_id.name = NULL;
xinfo.appl_id.class = NULL;
xinfo.args.argc_p = NULL;

xinfo.args.argv = NULL;

xinfo.rmdb

xinfo.flags.no_monitor = 1;
xinfo.flags.force client_SS = 0;

infomask = PXPHIGS_INFO_DISPLAY | PXPHIGS_INFO_FLAGS_NO_MON;

/* Open Pex */
popen_xphigs ((char*)NULL, PDEF_MEM SIZE, infomask, &xinfo);

/%
SetupWorkstation

This routine opens a PHIGS workstation and sets the structure edit mode to
insert elements. The update state is also set to PWAIT causing the
workstation display to be updated only upon request.

*/

SetupWorkstation (dpy, win)
Display *dpy;
Window win;
{
Pconnid x drawable conn;

conn.display = dpy;
conn.drawable id = win;
/* Open WS */
popen_ws (WS, (Pconnid *) (&conn), phigs_ws_type x drawable) ;

pset_edit_mode (PEDIT_ INSERT); /* Set edit mode to insert elements */
pset_disp_upd_st (WS, PDEFER _WAIT, PMODE_NIVE);
/* Set update state to WAIT */
}
/*
Make_squares
Make_ squares defines a polyline square and a fillarea square in 2

1-136 ESV Workstation Reference Manual [2.0]

ES/PEX

dimensions. Structures POLYSQUARE and FILLSQUARE are defined to contain

these data elements along with color and style attributes to be applied to
the data elements. A higher level structure DISPLAY STRUCT is defined to
include both the POLYSQUARE and FILLSQUARE structures and is then posted
to the open workstation to be displayed.

*/
Make_squares ()
{

static Ppoint line_points[]= /* Define points for line drawing */
{{ 0.5, 0.5} , { 0.9, 0.5} ,

{ 0.9, 0.9} , { 0.5, 0.9} ,

{ 0.5, 0.5} };

static Ppoint fill points[l= /* Define points for filled drawing */
{{ 0.1, 0.2y , { 0.5, 0.1} ,
{ 0.5, 0.5y , { 0.1, 0.5} }:

Ppoint_list Line_list, Fill list;

popen_struct (POLYSQUARE) ; /* Open line drawing structure */
pset_line colr_ind(2): /* Assign default index color 2 to lines*/
Line_list.num points = 5; /* Fill in number of points in list */
Line_list.points = line_points;/* Pointer to point array */
ppolyline (&Line_list); /* Create a polyline element x/
pclose_struct(); /* Close line drawing structure *x/
popen_struct (FILLSQUARE) ; /* Open filled drawing structure */
pset_int_style(PSTYLE SOLID);/* Set interior style to be solid */
pset_int_colr_ind(3): /* Assign default index color 3 to lines*/
Fill list.num points = 4; /* Fill in number of points in list */
Fill list.points = fill points; /* Pointer to point array */
pfill_area(&Fill_list); /* Create a fill area element x/
pclose_struct(); /* Close filled drawing structure */

popen_struct (DISPLAY STRUCT); /* Open the top level display struct. */
pexec_struct (POLYSQUARE) ; /* Include the line drawn square */
pexec_struct (FILLSQUARE) ; /* Include the filled square */
pclose_struct();

ppost_struct (WS, DISPLAY STRUCT, 1.0); /* Post DISPLAY_STRUCT, prio 1 */

pupd_ws (WS, PUPD_PERFORM) ; /* Update the workstation */

ESV Workstation Reference Manual [2.0] 1-137

ES/PEX

example2.c (
/* -

example2.c

This program defines and displays two boxes on the open PEX workstation.
One box is a 3d polyline object and the other is a 3d fillarea object. This
program incorporates a PHIGS view representation. The view is set to
encompass -1.5 to 1.5 in model space coordinates with a parallel projection
matrix. This program shows command line arguments to handle Xlib
environment calls as well as an event loop. To exit this program press any
keyboard key.

Author: James Buckmiller May 1990.
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland

*/

#include <X11/Xlib.h>

#include <X11l/Xatom.h>

#include <X11/Xproto.h>

#include <X1ll/extensions/XInput.h>

#include <X11/phigs/phigs.h> /* PHIGS extensions to X */ (
#include <X11l/keysymdef.h>

#include "header2.h" /* local includes */

Window myWin;

Display *dpy:

char *ProgramName;

Pint PEX error; /* for PEX error number handling */

main(argc, argv)
int argc;
char *argvl[];
{
int i;
char *geom = NULL;
char *display = NULL;
int winposx, winposy, winwidth, winheight;

ProgramName = argv[0];

winposx = 100; /* default window geometry */ (i

1-138 ESV Workstation Reference Manual [2.0]

ES/PEX

winposy = 100;
winwidth = 600;
winheight = 600;

for (i=1; i < argc; i++) /* Parse the command line */
{

char *arg = argv[i];

if (arg[0] == "-')
{
switch (arg[1l])
{
case 'd’: /* -display host:dpy */
if (++i >= argc) usage ();
display = argv([i];
continue;
case 'g’: /* —geometry host:dpy */
if (++i >= argc) usage ();
geom = argv([i];
continue;
default:
usage ();

if (! (dpy = XOpenDisplay(display))) /* Attempt to open the display */
{
perror ("Cannot open display\n");
exit (-1);

}

if (geom)
{ /* Generate position and size from the geometry string */
(void) XParseGeometry(geom, &winposx, &winposy, &winwidth,
&winheight) ;

/* Create a simple, unmapped input/output window */
myWin = XCreateSimpleWindow (dpy, RootWindow(dpy, DefaultScreen (dpy)),
winposx, winposy, winwidth, winheight, 0,NULL,NULL);

/* Change the window name property */
XChangeProperty (dpy, myWin, XA WM NAME, XA STRING, 8,
PropModeReplace, "Example 2: Press any key to exit", 33);

ESV Workstation Reference Manual [2.0] 1-139

ES/PEX

/* Map the window for display */
XMapWindow (dpy, myWin) ;

/* Begin PHIGS calls *x/
StartPhigs (dpy, myWin) ;

/*

usage

This routine prints out command line argument information if the user
supplied arguments are incorrect.

*/

usage ()

{
fprintf (stderr, "usage: %s [-options ...]1\n\n", ProgramName) ;
fprintf (stderr, "where options include:\n");
fprintf (stderr, " -display host:dpy X server to use\n");
fprintf (stderr, " —-geometry geom geometry of window\n");
fprintf (stderr, "\n");
exit (1);

/*

Get_events

This routine is the event handler of X events that are generated
by the user. Only KeyPress and Expose events are handled at this time.

*/
Get_events (dpy)
Display *dpy:;
{
XEvent report;
int done = 0;

/* setup the event mask to return keyboard and expose events */

XSelectInput (dpy, myWin, KeyPressMask | ExposureMask);

1-140 ESV Workstation Reference Manual [2.0]

ES/PEX

while (!done) /* Loop to get events */
{
XNextEvent (dpy, &report); /* Get the Event */
switch (report.type)
{

case KeyPress: : /* Keypress on keyboard = exit */
done = 1;
break;

case Expose: /* Expose events = redraw */
predraw_all structs(l, PFLAG_ALWAYS);
break;

default:
break;

ESV Workstation Reference Manual [2.0] 1-141

ES/PEX

motif2.c
/*

motif2.c

This program expands on motifl by using a slightly more elaboraté widget
hierarchy to display the drawing area and a push button. The push button
allows the user to specify when the program should exit. Otherwise, it is
the same as motifl. -

Author:. Rich Thomson
Date: Thursday, June 12th, 1990 - 8
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland Computer Corporation
*/

#include <X11/Xlib.h>
#include <X11/phigs/phigs.h> /* PHIGS extensions to X */

#include <X11/Intrinsic.h>/* Toolkit intrinsics */

#include <Xm/Xm.h>/* Motif declarations */

#include <Xm/RowColumn.h>/* row column widget declarations */
#include <Xm/DrawingA.h>/* drawing area widget declarations */
#include <Xm/PushBG.h>/* push button gadget declarations */

#include "header2.h"

char *ProgramName;
Pint PEX error; /* for PEX error number handling */
Boolean done; /* end flag */

/%
quit_CB

The callback procedure for the quit pushbutton widget. It simply sets the
event processing exit flag to True, which will cause Get_events to stop
processing events.

*/

void quit_CB(quitButton, client_data, call_data)
Widget quitButton;
caddr_t client_data;
XmAnyCallbackStruct *call_data;

if (call_data->reason == XmCR ACTIVATE)

1-142 ESV Workstation Reference Manual [2.0]

ES/PEX

done = True;

/*

drawArea_CB

The callback procedure for the drawing area widget. It redraws all the
structures on the workstation.
*/
void drawArea_CB(drawArea, client_data, call_data)
Widget drawArea;
caddr_t client_data;
XmDrawingAreaCallbackStruct *call_data;

if (call_data->reason == XmCR_EXPOSE)
predraw_all structs (WS, PFLAG_ALWAYS) ;

The main routine creates the widget hierarchy for the program and then calls
StartPhigs. StartPhigs will then call Get_events to initiate event
processing.

The widget hierarchy used here is:

motif2 (class topLevelShell)
|

+-— rowcol (class RowColumn)

|
+-—— drawArea (class DrawingArea)

|
+-—— quit (class PushButtonGadget)

The row column widget is used for organizing its child widgets into a
columnar layout. The drawing area widget is used for PEX operations and the
PEX workstation is opened on its window. A push button is used to supply a
quit operation.

Any necessary resources for the widgets are specified here in the program,
which override any user defaults or command-line options. Note that this
is not very friendly to the user who may want to change the font of the
push buttons. A friendlier way is to provide an application defaults file
which the user may override with user defaults or command-line arguments.
For simplicity, I have set the arguments here directly.

ESV Workstation Reference Manual [2.0] 1-143

ES

/PEX

The
wid

B!

*x/
mai
int
cha
{

display connection (dpy) and window ID (drawWindow) of the drawing area
get are available after the widget hierarchy has been realized.

EWARE!! BEWARE!!

The drawing area widget in Motif 1.0 has a bug in that it ignores
height and width resources supplied at creation time. A workaround
I've found is to set the margins of the drawing area to be half the
desired height and width. Since the margins specify the boundary
between the drawing area widget’s border and any children of the
drawing area widget (we have none here), the drawing area widget will
be sized to contain its children plus twice the margins in each
direction. Hence to get a 600x600 drawing area widget, you can set the
margins to 300. Other workarounds suggested involve creating the
drawing area widget as a child of other widgets, but where there are
no children of the drawing area, I prefer setting the margins.

n(argc, argv)
argc;
r *argv([];

Arg args[10];

register int n;

Widget topLevel, rowColumn, quitButton, drawArea;
XFontStruct *buttonFont;

ProgramName = argv([0];
/* create topLevelShell */
topLevel = XtInitialize(ProgramName, "Example", NULL, 0, &argc, argv);

n=20; /* set the window title */
XtSetArg(args[n], XmNtitle, "Example 2"); n++;
XtSetValues (topLevel, args, n);

rowColumn = /* create row column for layout */
XtCreateManagedWidget ("rowcol”, xmRowColumnWidgetClass, topLevel,
NULL, 0);
n=0; /* create drawing area for PEX */

XtSetArg(args[n], XmNmarginWidth, 300); n++;
XtSetArg(args[n], XmNmarginHeight, 300); n++;
drawArea = XtCreateManagedWidget ("drawArea", xmDrawingAreaWidgetClass,
rowColumn, args, n); :
/* add an expose callback */
XtAddCallback (drawArea, XmNéxposeCallback, drawAreé_CB, NULL) ;
n = 0; /* . create a quit button */
XtSetArg(args([n], XmNlabelString,

144 ESV Workstation Reference Manual [2.0]

ES/PEX

/*

XmStringCreate ("Click here to quit the program.",
XmSTRING _DEFAULT CHARSET)); n++;

buttonFont = /* look for Helvetica Bold font */
XLoadQueryFont (XtDisplay (topLevel), "—-*-Helvetica-Bold-R-Normal--
14%m);
if (buttonFont) /* if we found it, set fontList */
{ /* resource on the button */

XtSetArg(args[n], XmNfontList,
XmFontListCreate (buttonFont, XmSTRING DEFAULT CHARSET));
n++;
}
quitButton =

XtCreateManagedWidget ("quit"™, xmPushButtonGadgetClass, rowColumn,

args, n);
/* add an activation callback */

XtAddCallback (quitButton, XmNactivateCallback, quit_CB, NULL);

XtRealizeWidget (topLevel) ; /* realize widget hierarchy */

/* Begin PHIGS calls */
StartPhigs (XtDisplay (drawArea), XtWindow(drawArea)):;

Get_events

This routine handles event processing. It simply obtains events from the
toolkit via XtNextEvent and dispatches them to the widgets via
XtDispatchEvent. This continues until the boolean done becomes True. This
happens when the quit button’s activation callback is invoked.

*/

Get_events (dpy)

Display *dpy:

{

XEvent event;

done = False;

do {
XtNextEvent (&event) ;
XtDispatchEvent (&event) ;
} while (!done);

ESV Workstation Reference Manual [2.0] 1-145

ES/PEX

phigs2.c

/*
phigs2.c

This file contains the PHIGS specific calls for example program 2.

Author: James Buckmiller May 1990.
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland

*/
#include <X11/X1lib.h>
#include <X11/phigs/phigs.h>

#include "header2.h" /* Local includes */

/*

Error_Check

This routine checks the global variable used to store error codes returned
from PEX. If the error code is non-zero, it prints out a diagnostic message
and dies.

*/

void Error_ Check(File, Line, Routine)
char *File, *Routine;
int Line;

if (PEX_error)
{
fprintf (stderr, "(file %s; line %d) :\n", File, Line);
fprintf (stderr, "\t?unexpected PEX error %d in routine %s\n",
PEX_error, Routine);
exit (1) ;

}
/*
StartPhigs

This routine is the top level routine that calls all supporting routines
in the logical order of a usual phigs routine i.e.,open PEX, setup the
workstation parameters, define the phigs structure and then go into the
event loop.

*/

1-146 ESV Workstation Reference Manual [2.0]

ES/PEX

StartPhigs (dpy, win) /* Routine to start phigs calls */
Display *dpy:
Window win;

{

OpenPex (dpy) ; /* Open PEX */
SetupWorkstation(dpy, win); /* Setup PHIGS workstation parameters */
Make boxes () ; /* Create Phigs structures */
Get_events (dpy) ; /* Event loop */
Cleanup() ; /* Cleanup phigs structures close workstation */

}

/*

OpenPex

This routine Opens PEX on the display that was passed as an argument.
*/

OpenPex (dpy)
Display *dpy:
{

Pxphigs _info xinfo;
unsigned long infomask;

xinfo.display = dpy;

xinfo.rmdb = NULL;
xinfo.appl_id.name = NULL;
xinfo.appl_id.class = NULL;
xinfo.args.argc_p = NULL;
xinfo.args.argv = NULL;
xinfo.flags.no_monitor = 1;
xinfo.flags.force_client_SS = 0;

infomask = PXPHIGS_INFO_DISPLAY | PXPHIGS_INFO_FLAGS_NO_MON;

/* Open Pex */
popen_xphigs ((char*)NULL, PDEF_MEM SIZE, infomask, &xinfo);

/*
SetupWorkstation

This routine opens a PHIGS workstation and sets up a PHIGS Viewport. The
structure edit mode is set to insert elements and the display update state

ESV Workstation Reference Manual [2.0] 1-147

ES/PEX

is set to PWAIT. The event mask for X input is set to select KeyPress and

Expose

*/

events.

SetupWorkstation (dpy, win) /*

Display *dpy:

Window

{

win;

Pconnid x drawable conn;

Pview_rep3

Pview_map3
Ppoint3
Pvec3

Pvec3

conn.display

vrep; /*
map;

vrp, cntr;

vup;

vpn;

= dpy:

conn.drawable_id = win;

popen_ws (WS, (P

map.
map.

map

map.

map.
map.

map.
map.
map.

map

map.

map.

proj_type =
vp.x_min =

.vp.y min =

vp.z_min =

win.x_min=
win.y_min=

back_plane
front_plane
view _plane

.proj_ref_ po

proj_ref po

proj_ref_ po

vrep.xy_clip

vrep.back_clip

vrep.front_clip

1-148

/*

connid *) (&conn),

/*

PTYPE_PARAL;

Open an Xwindow workstation */

Declare viewporting variables */

Open WS */
phigs_ws_type_x_drawable);

Setup viewport parameters */

/* Set projection type */

0.0; map.vp.x max = 1.0; /* Set viewport limits */
0.0; map.vp.y max = 1.0;
0.0; map.vp.z_max = 1.0;
-1.5; map.win.x max= 1.5; /* Set window limits */

-1.5; map.win.y max= 1.5;

= -2.0; /* Set
1.0;
0.0; /* Set

int.x = 1.0;

the front and back clipping planes */

the location of the view plane */

/* Set projection Reference point to be offset */

int.y = -1.5;

/* from the VRP (eye) in VRC space to give an */

int.z = 3.0;/* angle view of the objects.*/

PIND_NO_CLIP;
PIND_NO_CLIP;
PIND NO_CLIP;

ESV

/* Turn Viewport clipping off */
/* not to be confused with the */
/* clipping at the viewplanes!*/

Workstation Reference Manual [2.0]

ES/PEX

vrep.clip limit = map.vp; /* Set Viewport clipping volume = viewport */
/* Setup View Reference Coordinates */

vrp.x = 0.0; vrp.y = 0.0; vrp.z = 1.0; /* Set View ref point */
/* Set view up vector x/

vup.delta_x = 0.0; vup.delta_y = 1.0; vup.delta_z = 0.0;
/* Set view plane normal*/

vpn.delta_x = 0.0; vpn.delta_y = 0.0; vpn.delta_z = 1.0;

peval_view ori_matrix3(&vrp, &vpn, &vup, /* Evaluate orient matrix */
&PEX _error, vrep.ori matrix);

SAFE_PEX("peval view_ori_matrix3"); /* Check for error status */

peval view map matrix3(&map, &PEX error, /* Evaluate map matrix */
vrep.map matrix);

SAFE_PEX("peval view_map matrix3"); /* Check for error status */
pset_view_rep3(WS, VIEW, &vrep): /* Set the view representation */
pset_edit_mode (PEDIT INSERT) ; /* Set edit mode to insert elements */

pset_disp upd st (WS, PDEFER WAIT, PMODE NIVE);
/* Set update state to WAIT */
pset_hlhsr_mode (1, PHIGS_HLHSR MODE_ZBUFF); /* Enable WS Z buffering */

/*
Make boxes

Make boxes defines a polyline cube and a fillarea cube in 3

dimensions. Structures POLYBOX and FILLBOX are defined to contain

these data elements along with color and style attributes to be applied
to the data elements. A higher level structure DISPLAY STRUCT is defined
to include both the POLYBOX and FILLBOX structures and is then

posted to the open workstation to be displayed. The workstation is then
updated, causing the objects to be displayed.

*/

Make boxes ()
{

ESV Workstation Reference Manual [2.0] 1-149

ES/PEX

static Ppoint3

{{ 0.5, 0.5, 0.
{ 1.0, 1.0, O.
{ 0.5, 0.5, 0.

static Ppoint3
{{ 0.5, 0.5, 0
{ 1.0, 1.0, O
{ 0.5, 0.5, 0

static Ppoint3

{{ 0.5, 0.5, 0.

static Ppoint3

{t 1.0, 0.5, 0.

static Ppoint3

{{ 1.0, 1.0, O.

static Ppoint3
{{ 0.5, 1.0, 0

static Ppoint3
{{ -0.5, -0.5,
{ 0.0, 0.0,

static Ppoint3
{{ -0.5, -0.5,
{ 0.0, 0.0,

static Ppoint3
{{ 0.0, -0.5,

/* Define polyline cube vectors */

line pointsl[]= /* Define points for front face */
5y , { 1.0, 0.5, 0.5} ,
5y , { 0.5, 1.0, 0.5} ,
5}}:

line_points2([]= /* Define points for back face */

.0y , { 1.0, 0.5, 0.0} ,
.0y , { 0.5, 1.0, 0.0} ,
.0}};

line_points3[]= /* Define connecting line */
5y, { 0.5, 0.5, 0.0}};

line points4[]= /* Define connecting line */
5y , { 1.0, 0.5, 0.0}};

line_points5[]= /* Define connecting line */
5}, { 1.0, 1.0, 0.0}};

line points6[]= /* Define connecting line */

.5y , { 0.5, 1.0, 0.0}};

/* Define solid cube faces */

£ill pointsl[]= /* Define points for front face */
0.5y , { 0.0, -0.5, 0.5} ,
0.5y , { -0.5, 0.0, 0.5}};

fill points2[]= /* Define points for back face */
0.0y , { 0.0, -0.5, 0.0} ,
0.0y , { -0.5, 0.0, 0.0}};

fill points3[]= /* Define points for right face */

0.5y , { 0.0, -0.5, 0.0} ,

{ 0.0, 0.0, 0.0}, { 0.0, 0.0, 0.5}};

static Ppoint3
{{ -0.5, -0.5,
{ -0.5, 0.0,

static Ppoint3

f£ill points4[]= /* Define points for left face */
0.5y , { -0.5, -0.5, 0.0} ,
0.0y , { -0.5, 0.0, 0.5}};

fill points5[]= /* Define points for bottom face */

ESV Workstation Reference Manual [2.0]

ES/PEX

{{ -0.5, -0.5, 0.5} , { 0.0, -0.5, 0.5} ,
{ 0.0, -0.5, 0.0} , { -0.5, -0.5, 0.0}};

static Ppoint3 £fill points6[]l= /* Define points for top face */
{{ -0.5, 0.0, 0.5y , { 0.0, 0.0, 0.5} ,
{ 0.0, 0.0, 0.0} , { -0.5, 0.0, 0.0}}:
Ppoint_1list3 Line_list([5], Fill_list[5];
popen_struct (POLYBOX) ; /* Open line drawing structure */

pset_line colr_ ind(2); /* Assign default index color 2 to lines*/

Line_1list[0].num points = 5; /* Fill in number of points in list */

Line 1ist[0].points = line_pointsl; /* Pointer to point array */
ppolyline3(&Line_1list[0]); /* Create a polyline element */
pset_line colr_ind(3); /* Assign default index color 3 to lines*/

Line_list[1].num points = 5;
Line_list[1].points = line_points2;
ppolyline3(&Line_list([1]);

pset_line colr_ind(4); /* Assign default index color 4 to lines*/
Line_list[2].num points = 2;
Line_list[2].points = line_points3;
ppolyline3(&Line_1list[2]);

pset_line colr ind(5): /* Assign default index color 5 to lines*/
Line_list[3].num points = 2;
Line_list[3].points = line_points4;
ppolyline3 (&Line_list[3]);

pset_line_colr_ind(6): /* Assign default index color 6 to lines*/
Line list[4].num points = 2;
Line_list[4].points = line_points5;
ppolyline3 (&Line_ list[4]);

pset_line colr ind(7); /* Assign default index color 7 to lines*/
Line list[5].num points = 2;
Line list[5].points = line_pointsé;

ppolyline3(&Line_list[5]);

pclose_struct(); /* Close line drawing structure */

ESV Workstation Reference Manual [2.0] 1-151

ES/PEX

popen_struct (FILLBOX) ; /* Open filled drawing structure
pset_int_style(PSTYLE_SOLID); /* Set interior style to be solid
pset_int_colr ind(7); /* Assign default index color 7 to face
Fill 1ist[0].num points = 4; /* Fill in number of points in list
Fill 1ist[0].points = fill pointsl; /* Pointer to point array
pfill_area3(&Fill_1list([0]); /* Create a fill area element
pset_int_colr ind(3); /* Assign default index color 3 to face

Fill list([1].num points = 4;
Fill list[1].points = fill points2;
pfill_area3(&Fill_list[1]);

pset_int_colr_ind(2); /* Assign default index color 2 to face
Fill list[2].num _points = 4;
Fill_list([2].points = fill points3;
_pfill area3(&Fill_1list[2]);

pset_int_colr_ind(4); /* Assign default index color 4 to face
Fill list[3].num _points = 4;
Fill list[3].points = fill points4;
pfill area3(&Fill list[3]); .

pset_int_colr_ind(5):; /* Assign default index color 5 to face
Fill list([4].num points = 4;
Fill_list[4].points = fill points5;
pfill_area3(&Fill_ list([4]);

pset_int_colr_ind(6); /* Assign default index color 6 to face
Fill_list[5].num points = 4;
Fill list[5].points = fill pointsé6;

pfill_area3(&Fill list[5]);

pclose_struct(); /* Close filled drawing structure

popen_struct (DISPLAY STRUCT); /* Open the top level display structure

pset_view_ ind(VIEW); /* Set the view index to be used
pset_hlhsr_id(PHIGS_HLHSR_ID_ON); /* Turn on 2z buffering
pexec_struct (FILLBOX) ; /* Include the filled square
pexec_struct (POLYBOX) ; /* Include the line drawn square
pset_hlhsr id(PHIGS_HLHSR_ID_OFF); /* Turn off Z buffering
pclose_struct(); /* Close the structure

ppost_struct (WS, DISPLAY_STRUCT, 1.0); /* Post DISPLAY STRUCT, prio 1

*/
*/
*/

*/
*/
*/

*/

*/

*/

*/

*/

*/

*/
*/
*/
*/
*/
*/
*/

*/

1-152 ESV Workstation Reference Manual [2.0]

ES/PEX

pupd_ws (WS, PUPD_PERFORM) ; /* Update the workstation */
}
Cleanup() /* Cleanup routine when done x/
{
punpost_all_ structs(WS); /* Unpost all structures on ws */
pdel_all structs(); /* Delete all structures */
pclose_ws (WS) ; /* Close workstation */
pclose_phigs(); /* Close PHIGS x/

ESV Workstation Reference Manual [2.0]

1-153

ES/PEX

header2.h
/*
header2.h
This file contains header information for the example 2 programs.
Author: James Buckmiller May 1990.
Copyright (C) 1990, Evans & Sutherland
*/
#define WS 1
#define POLYBOX 1 /* define some constants to be used later */
#define FILLBOX 2
#define DISPLAY_ STRUCT 3
#define VIEW 4
#define SAFE_PEX(routine) Error_Check(_ FILE__, _ LINE_ , routine)
extern Window myWin;
extern Display *dpy;

extern char *ProgramName;

extern Pint PEX error;/* for PEX error number handling */

1-154 ESV Workstation Reference Manual [2.0]

ES/PEX

example3.c
/*

example3.c

This program defines and displays two boxes on the open PEX workstation.
One box is a 3d polyline object and the other is a 3d fillarea object. This
program incorperates a PHIGS view representation. The view is set to
encompass —-1.5 to 1.5 in model space coordinates with a parallel projection
matrix. This program incorporates dials input to update the transformation
matrices that are in the display structure. This program shows command line
arguments to handle Xlib environment calls as well as an event loop. To
reset the picture press the r key on the keyboard. To exit the client press
the e key on the keyboard.

Author: James Buckmiller May 1990.
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland

*/

#include <X11/Xlib.h>

#include <X1l/Xproto.h>

#include <X11l/Xatom.h>

#include <X1l1l/extensions/XInput.h>
#include <X11/phigs/phigs.h>
#include <X11l/keysymdef.h>

#include "header3.h" /* local includes */

Window myWin; /* drawing window */
Display *dpy:; /* X11 display connection */
char *ProgramName;

Pint PEX error; /* For PEX error numbers */

main(argc, argv)

int argc;

char *argv[];

{
int i;
char *geom = NULL;
char *display = NULL;

ESV Workstation Reference Manual [2.0] 1-155

ES/PEX

int winposx, winposy, winwidth, winheight;
ProgramName = argv[0];

winposx = 100; /* default window geometry */
winposy = 100;

winwidth = 600;

winheight = 600;

for (i=1; i < argc; i++) /* Parse the command line */
{

char *arg = argv[i];

if (arg[0] == '-")
{
switch (arg[l])
{
case 'd’: /* —display host:dpy */
if (++i >= argc) usage ();
display = argv[i];
continue;
case ‘g’: /* —geometry host:dpy */
if (++i >= argc) usage ();
geom = argv[i];
continue;
default:
usage ();

if (!(dpy = XOpenDisplay(display))) /* Attempt to open the display */
{

perror ("Cannot open display\n");

exit (-1);

if (geom)
{ /* Generate position and size from the geometry string */
(void) XParseGeometry(geom, &winposx, &winposy, &winwidth, &winheight);
}
/* Create a simple, unmapped input/output window */
myWin = XCreateSimpleWindow (dpy, RootWindow (dpy, DefaultScreen (dpy)),
winposx, winposy, winwidth, winheight, 0,NULL,NULL) ;

1-156 ESV Workstation Reference Manual [2.0]

ES/PEX

/* Change the window name property */
XChangeProperty (dpy, myWin, XA WM NAME, XA STRING, 8,
PropModeReplace, "Example 3: r Key = Reset e Key = Exit", 40);

/* Map.the window for display */
XMapWindow (dpy, myWin);

/* Begin PHIGS calls */
StartPhigs (dpy, myWin);

/*

usage

This routine prints out command line argument information if the user
supplied arguments are incorrect.

*/

usage ()

{
fprintf (stderr, "usage: %s [-options ...]\n\n", ProgramName) ;
fprintf (stderr, "where options include:\n");
fprintf (stderr, " —display host:dpy X server to use\n");
fprintf (stderr, " —geometry geom geometry of window\n");
fprintf (stderr, "\n");
exit (1);

}

/*

Get_events

This routine is the event handling routine. First the usual X
events are trapped. If an expose event occurs then a PHIGS
redrawallstructures is called. If a Keyboard event occurs

the keysym is reviewed to see if it is an "e" for exit or an
"r" for a reset of the display. If the event that is generated
is not a usual X event then it is check to be an extension
event for dials events. If dials event then the object is
transformed by rotates and translates in X,Y,Z and scale.

x/
Get_events (dpy)

Display *dpy;
{

ESV Workstation Reference Manual [2.0] 1-157

ES/PEX

XDeviceInfo *devices = NULL;
XDevice *dials = NULL;

XEventClass DeviceMotionClass[100];
XID dials_id;

XEvent report;

XKeyPressedEvent *pev;
KeySym key;
char buf[20];

unsigned long event_mask;

XButtonPressedEvent *bdown;

XButtonReleasedEvent *bup;

Atom dials_atom = 0;

int knob_totals[MAXDIALS];

XStringFeedbackControl strfc;

int done=0;

KeySym ledstring[MAXDIALS] [CHARS_PER DIAL], blankled[CHARS_PER DIAL];

Pmatrix3 composite;

static Pmatrix3 currmatrix[] =
{{1101010}1{orlrolo}r{olorer}r{ololorl)};

Pvec3 scale, trans;

int ndevices = 0, i, j, EventCount = 0, DeviceMotion = -1;
int rotx=0, roty=0, rotz=0;

Ppoint3 cntr;

/* Dial Labels */

static char textstring[MAXDIALS] [CHARS_PER DIAL] =
{"XROT ", "YROT ", " Z ROT ",
" SCALE ", " X TRAN ", " Y TRAN ",

" Z TRAN ", " ")
cntr.x = 0.0; /* Define center point of transformations */
cntr.y = 0.0;) '
cntr.z = 0.0;)
scale.delta_x = 1.0; /* Define initial scale to be 1 */
scale.delta_y = 1.0;
scale.delta z = 1.0;
trans.delta x = 0.0; /* Define initial translation to be 0 *x/
trans.delta y = 0.0;
trans.delta_z = 0.0;

1-158 ESV Workstation Reference Manual [2.0]

ES/PEX

/* Get the atom ID for the Knob box */

dials_atom = XInternAtom(dpy, "KNOB_BOX", True);
/* Get list of Input devices */

devices = XListInputDevices (dpy, &ndevices);
/* Find the dials device in the list and open the device */

for (i = 0; i < ndevices; i++, devices++)
if ((devices->type == dials_atom) &&
(devices—>use == IsXExtensionDevice))
{
dials_id = devices->id;
dials = XOpenDevice (dpy, dials_id); /* Get Xdevice structure */
break; /* for the dials */

}

if (!dials)

{
fprintf (stderr, "?dials box not found in X extension device list.\n");

exit (1) ;
}

/* Get event class values for dials */
DeviceMotionNotify(dials, DeviceMotion, DeviceMotionClass[EventCount]);

EventCount++;

/* Tell server to pass on Extension events */
XSelectExtensionEvent (dpy, myWin, DeviceMotionClass, EventCount);
/* Set the event mask for the window *x/
XSelectInput (dpy, myWin, EnterWindowMask | LeaveWindowMask
| KeyPressMask | ExposureMask);

for (i = 0; i < MAXDIALS; i++) /* Load the keysym arrays */
for (j = 0; j < CHARS_PER DIAL; j++)

{
ledstring[i] [j] = (KeySym) textstring[il[j]: /* Dial labels */
blankled[j] = SPACEKEYSYM; /* Blank labels */
}

strfc.class = StringFeedbackClass;

strfc.length = sizeof (XStringFeedbackControl) ;

strfc.num keysyms = CHARS_PER DIAL;

for (i=0; i<MAXDIALS; i++) /* Set the dial labels */

ESV Workstation Reference Manual [2.0] 1-159

ES/PEX

{

strfc.id = i;

strfc.syms_to display = ledstringl[i];
XChangeFeedbackControl (dpy, dials, DvString, &strfc);

}

while (!done)

{

XNextEvent (dpy, &report); /* Get next event from event queue */

if (report.type < LASTEvent) /* Check if extension event or not */

{

switch (report.type)

{

case EnterNotify: /* Turn on the dial labels */

for (i=0; i<MAXDIALS; i++) /* when the cursor enters */
{ /* the window. *x/
strfc.id = i;

strfc.syms_to_display = ledstring(i];
XChangeFeedbackControl (dpy, dials, DvString, &strfc);

}

break;
case KeyPress: /* Trap keyboard events */
/* and perform function. */
pev = (XKeyPressedEvent *) &report;
XLookupString(pev, buf, sizeof (buf), &key, NULL);
if (buf[0] == "x’) /* reset picture */

{

make identity(currmatrix); /* Currmatrix = identity matrix */
Make bozxes(); /* Rebuild the structures*/
/* Reset xformation parameters */

scale.delta_x = scale.delta_y = scale.delta_z = 1.0;

trans.delta_x = trans.delta_y = trans.delta_z = 0.0;
rotx = roty = rotz = 0;
}
if (buf[0] == 'e’) /* Exit application */
done = 1;
break;
case Expose: /* expose events = redraw */

case LeaveNotify:

1-160

predraw_all structs(WS, PFLAG_ALWAYS);
break;

ESV Workstation Reference Manual [2.0]

/* Blank LEDs when cursor leaves window */

ES/PEX

for (i=0; i<MAXDIALS; i++)
{
strfc.id = i;
strfc.syms_to_display = blankled;
XChangeFeedbackControl (dpy, dials, DvString, &strfc):;
}

break;

/* else it’s an extension event */
else if (report.type == DeviceMotion) /* Dials input */
{
XDeviceMotionEvent *dm = (XDeviceMotionEvent *) &report;
for (i=0; i<MAXDIALS; i++) /* Initialize knob values array */
knob_totals[i] = 0;

/*
The following piece of code goes out to the event queue and scoops
off all dial motion events that are found on the queue with the
XCheckTypedEvent call.These events are then accumulated for each
axis and then processed with the accumulated values.

The reason for doing this is to increase the performance of the
system. If an update of the workstation display is performed

for every dial event that occurs the display will get behind thus
causing a lag time between when the dials stop sending events and
the system finishes unpiling the event queue.

For this application grabbing all dial events off the queue works
well however, one must beware that if an application allows the
dials to be redefined with some other event (function key or pick
menu) this method may not be the way to get the dial events since
there may be keypress or pick events intermixed with the dials
events. To get around this problem one may wish to use the
XPeekEvent routine to look ahead one event to be sure that it is
the same event class as the ones being accumulated.

*/

do /* Collapse the events before processing */
for (i=0; i < dm->axes_count; i++)
knob_totals [dm->first_axis+i] += dm—>axis_datal[i];
/* Gather all dial events from the event queue */

while (XCheckTypedEvent (dpy, DeviceMotion, dm));

/* Process DeviceMotion events */

ESV Workstation Reference Manual [2.0] 1-161

ES/PEX

if (knob_totals([0]) /* dial 1 input check rot x */
rotx += knob_totals([0];

if (knob_totals[1]) /* Dial 2 input check rot y */
roty += knob totals[1];

if (knob_totals[2]) /* Dial 3 input check rot z */
rotz += knob_totals[2];

if (knob_totals[3]) /* Dial 4 input check uniform scale */
{
scale.delta_x += knob_totals[3] * DIALSCALE;
scale.delta_y += knob_totals[3] * DIALSCALE;
scale.delta_z += knob_totals[3] * DIALSCALE;

if (knob_totals[4]) /* Dial 5 input check trans x */
trans.delta_x += knob_totals[4] * DIALSCALE;

if (knob_totals[5]) /* Dial 6 input check trans y */
trans.delta_y += knob_totals[5] * DIALSCALE;

if (knob_totals[6]) /* Dial 7 input check trans z */
trans.delta_z += knob_totals[6] * DIALSCALE;

/* Build the transformation matrix */
pbuild_tran_matrix3(&cntr, &trans, DEG_TO RAD(rotx), DEG_TO_RAD (roty)
,DEG_TO_RAD(rotz), &scale, &PEX error
,currmatrix) ;
SAFE PEX("pbuild tran matrix3"); /* Check for error status */

popen_struct (DISPLAY_ STRUCT) ; /* Open structure for editing */

{
pset_elem ptr(0); /* Reset element pointer */
pset_elem ptr_label (TRANS) ; /* Find transformation label */
poffset_elem ptr(l): /* Point at matrix */

/* replace matrix */
pset_local_tran3(currmatrix, PTYPE PRECONCAT) ;
}
pclose_struct(); /* Close structure */
predraw_all structs(WS, PFLAG_ALWAYS); /* Redraw the structure */

1-162 ESV Workstation Reference Manual [2.0]

ES/PEX

motif3.c

/*
motif 3 .c

This program expands on motif2 to display true 3D objects and handling of
events from the dials box. The objects displayed are a 3D solid cube
created using FILL AREA 3 structure elements and a 3D wire-frame cube
created using POLYLINE 3 structure elements. This program incorporates a
3D PHIGS view representation to view the objects. The view implements a
parallel projection whose view volume extends from -1.0 to 1.5 on all
three axes of model space.

The dials box controls viewing of the objects via a transformation matrix
in the structure, allowing an arbitrary translation, rotation and scale
about the origin. Setting the labels on the dials box only when the

core pointer is inside the drawing window aids in feedback to the user

as to when dial events are processed.

In addition to the widgets in motif2, this program adds a reset button to
reset the viewing transformation matrix to its original state (useful
when you’ve lost the object due to translations and/or scaling).

Author: Rich Thomson
Date: Thursday, June 12th, 1990
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland Computer Corporation
*/

#include <X11/X1lib.h>

#include <X11/Xatom.h>

#include <X1l/extensions/XInput.h>
#include <X11/phigs/phigs.h>

#include <X11/Intrinsic.h>/* toolkit intrinsics */
#include <Xm/RowColumn.h>/* row column widget */
#include <Xm/DrawingA.h>/* drawing area widget */
#include <Xm/PushBG.h>/* push button gadget */

#include "header3.h"
Display *dpy;/* X11 display connection */
char *ProgramName;

int DeviceMotion;/* device motion event type */
Window drawWindow;/* drawing window */

ESV Workstation Reference Manual [2.0] 1-163

ES/PEX

Pint PEX error; /* For PEX error numbers */

static XDevice *dials = NULL; /* dials device */

static Pmatrix3 currmatrix = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
static Boolean done = False;

static Pvec3 scale = { 1.0, 1.0, 1.0 }; /* scale factors */

static Pvec3 trans = { 0.0, 0.0, 0.0 }; /* translation vector */
static Pint rotx = 0, roty = 0, rotz = 0; /* axis rotation amounts */

/%
quit_CB

The callback procedure for the quit pushbutton widget. It simply sets the
event processing exit flag to True, which will cause Get_events to
stop processing events.

*/

void quit_CB(quitButton, client_data, call_data)
Widget quitButton;
caddr_t client_data:;
XmAnyCallbackStruct *call data;

if (call_data->reason == XmCR_ACTIVATE)
done = True;

/*

reset_CB

The callback procedure for the reset button. It re-initializes the
parameters that define the transformation matrix corresponding to
translate, rotate and scale operations and recreates the initially posted
structures.

*/

void reset_CB(resetButton, client_data, call_data)
Widget resetButton;
caddr_t client_data;
XmAnyCallbackStruct *call data;

if (call _data->reason == XmCR_ACTIVATE)

{
Make_boxes () ; /* recreate initial structures */

1-164 ESV Workstation Reference Manual [2.0]

ES/PEX

/* reset xformation parameters */
scale.delta_x = scale.delta_y = scale.delta_z = 1.0;
trans.delta_x = trans.delta y = trans.delta_z = 0.0;
rotx = roty = rotz = 0;

/*

drawArea_ CB

The callback procedure for the drawing area widget. It redraws all
the structures on the workstation.

*/

void drawArea_CB(drawArea, client_data, call_data)
Widget drawArea;
caddr_t client_data;
XmDrawingAreaCallbackStruct *call_data;

if (call_data->reason == XmCR_EXPOSE)
predraw_all structs(WS, PFLAG_ALWAYS);

/*
knob_labels

This array holds the KeySym’s that contain the knob labels. It is used by
the enter and leave window handlers to blank out the labels when the
pointer is not in the drawing area window.

Dial labels are CHARS_PER DIAL KeySyms per dial. Ascii characters can be
converted to KeySyms by C type casting.

*/
static KeySym knob_labels[MAXDIALS] [CHARS_PER DIAL];

/*

enter handler

This event handler restores the knob labels to our labels when the
pointer moves into the drawing window. Conditionally labelling the dials
in this way gives extra feedback to the user that the dials are active
only when the mouse is inside the appropriate window.

*/

ESV Workstation Reference Manual [2.0] 1-165

ES/PEX

void enter_handler(widget, client_data, event, continue to_ dispatch)
Widget widget;
caddr_t client_data;
XEvent *event;
Boolean *continue_to_dispatch;

register int 1i;
XStringFeedbackControl strfc;

strfc.class = StringFeedbackClass;/* initialize the feedback struct */
strfc.length = sizeof (XStringFeedbackControl) ;
strfc.num_keysyms = CHARS_PER DIAL;

for (i = 0; i < MAXDIALS; i++)/* for each dial */
{
strfc.id = i;/* number of dial to set feedback on */
strfc.syms_to_display = knob_labels[i];
/* keysyms containing feedback */)
XChangeFeedbackControl (dpy, dials, DvString, &strfc);

/*

leave handler

This event handler blanks the knob labels when the pointer leaves the
drawing window.
*/
void leave_handler (widget, client_data, event, continue to_dispatch)
Widget widget;
caddr_t client_data;
XEvent *event;
Boolean *continue_to_dispatch;

static XStringFeedbackControl strfc;
static KeySym blanks[CHARS_PER DIAL];
static Boolean initialized = False;
register int i;

if (!initialized)/* initialize variables the first */
/* time we’re called */

for (i = 0; i < CHARS PER DIAL; i++)
blanks[i] (KeySym) ' ’; /* prepare a blank keysym array */

[l

1-166 ESV Workstation Reference Manual [2.0]

(

ES/PEX

strfc.class = StringFeedbackClass;
/* initialize the feedback struct */

strfc.length = sizeof (XStringFeedbackControl) ;
strfc.num keysyms = CHARS_PER DIAL;
strfc.syms_to_display = blanks;

initialized = True; /* remember we’ve been initialized */

for (i = 0; i < MAXDIALS; i++)/* for each dial */

strfc.id = i; /* indicate which dial to change */
/* change it */
XChangeFeedbackControl (dpy, dials, DvString, &strfc);

/*
open_knob

This routine opens the knob box on the given display and selects device
motion extension events on the given window. Extension events are
selected by first invoking the appropriate macro on an XEventClass
structure (in this case DeviceMotionNotify) and then calling
XSelectExtensionEvent.

*/

void open_knob ()
{
/* dial labels as ascii strings */
static char textstring [MAXDIALS] [CHARS_PER DIAL] = {
" XROT ", " Y ROT ", "™ Z ROT "," SCALE “,
" X TRAN ", " Y TRAN ", "™ Z TRAN ", " "o/ eighth label is blank */
}:
register int knob, 1i;
int ndevices;/* number of extension devices */
XDeviceInfo *devices = NULL;/* extension device info list */
Atom dials_atom = XInternAtom(dpy, "KNOB BOX", True);
/* intern device name into an atom */
XID dials_id; /* device ID for dials box */
XEventClass eventClass[1];

devices = XListInputDevices(dpy, &ndevices); /* get list of devices */

ESV Workstation Reference Manual [2.0] 1-167

ES/PEX

for (1 = 0; i < ndevices; i++, devices++)
if ((devices—>type == dials_atom) && (devices—>use ==
IsXExtensionDevice))
{ /* did we find the dial box? */
dials_id = devices->id;/* yes, remember its device ID */
dials = XOpenDevice (dpy, dials_id): /* and open it */
break; /* we only want the first one... */

}

if (!dials)/* couldn’t open or find dials */
{.
fprintf (stderr, “2couldn’t open dials box.\n");
exit(1);

/* select device motion events */
DeviceMotionNotify(dials, DeviceMotion, eventClass[0]);
XSelectExtensionEvent (dpy, drawWindow, eventClass, 1);

for (knob = 0; knob < MAXDIALS; knob++)
/* convert ascii labels to KeySyms */

for (1 = 0; i < CHARS_PER DIAL; i++)
knob_labels[knob] [1] = (KeySym) textstring[knob] [1];

/*

main

The main routine creates the widget hierarchy for the program, opens the
knob box and then calls StartPhigs. StartPhigs will then call Get_events
to initiate event processing.

The widget hierarchy used here is:

motif3 (class topLevelShell)

|
+-— rowcol (class RowColumn)

+--- drawArea (class DrawingArea)

|

+--— reset (class PushButtonGadget)
|

+-—- quit (class PushButtonGadget)

The row column widget is used for organizing its child widgets into a
columnar layout. The drawing area widget is used for PEX operations and
the PEX workstation is opened on its window. The two push buttons are
used to supply reset and quit operations.

1-168 ESV Workstation Reference Manual [2.0]

ES/PEX

Any necessary resources for the widgets are specified here in the
program, which override any user defaults or command-line options. Note
that this is not very friendly to the user who may want to change the
font of the push buttons. A friendlier way is to provide an application
defaults file which the user may override with user defaults or
command-line arguments. For simplicity, I have set the arguments here
directly.

The display connection (dpy) and window ID (drawWindow) of the drawing
area widget are available after the widget hierarchy has been realized.

BEWARE!! BEWARE!!

The drawing area widget in Motif 1.0 has a bug in that it ignores
height and width resources supplied at creation time. A workaround
I've found is to set the margins of the drawing area to be half the
desired height and width. Since the margins specify the boundary
between the drawing area widget’s border and any children of the
drawing area widget (we have none here), the drawing area widget will
be sized to contain its children plus twice the margins in each
direction. Hence to get a 600x600 drawing area widget, you can set the
margins to 300. Other workarounds suggested involve creating the
drawing area widget as a child of other widgets, but where there are no
children of the drawing area, I prefer setting the margins.

*/

main(argc, argv)

int argc;

char *argv([];

{
Arg args[10];/* arg. array for widget resources */
register int n;/* resource count */
Widget topLevel, rowColumn, quitButton, resetButton, drawArea;
XFontStruct *buttonFont;/* font obtained from XLoadQueryFont */
XmFontList fontList;/* for setting widget’s fontList */

ProgramName = argv[0];
/* create topLevelShell */
topLevel = XtInitialize(ProgramName, "Example"™, NULL, 0, &argc, argv);

n = 0;
XtSetArg(args([n], XmNtitle, "Example 3"); n++;
XtSetValues (topLevel, args, n);

buttonFont =/* find the font we want for buttons */

XLoadQueryFont (XtDisplay (topLevel), "-*-Helvetica-Bold-R-Normal--
14%") ;

ESV Workstation Reference Manual [2.0] 1-169

ES/PEX

if (buttonFont)
fontList = XmFontListCreate (buttonFont, XmSTRING_pEFAULT_CHARSET);

rowColumn =/* create the row column for layout */
XtCreateManagedWidget ("rowcol"™, xmRowColumnWidgetClass, topLevel,

NULL, 0);
n=0; /* create the drawing area for PEX */
XtSetArg(args[n], XmNmarginWidth, 300); n++; /* size appropriately */

XtSetArg(args[n], XmNmarginHeight, 300); n++;
drawArea = XtCreateManagedWidget ("drawArea", xmDrawingAreaWidgetClass,
rowColumn, args, n);
/* add an expose callback */
XtAddCallback (drawArea, XmNexposeCallback, drawArea_ CB, NULL);

/* add event handlers to handle */
/* blanking of knob labels */
XtAddEventHandler (drawArea, EnterWindowMask, False, enter_ handler,

NULL) ;

XtAddEventHandler (drawArea, LeaveWindowMask, False, leave_handler,
NULL) ;

n=0; /* create the reset button */

XtSetArg(args[n], XmNlabelString,
XmStringCreate ("Click here to reset the picture.”,
XmSTRING DEFAULT CHARSET)); n++;
if (buttonFont)
{
XtSetArg(args[n], XmNfontList, fontList); n++;
}
resetButton = XtCreateManagedWidget ("reset", xmPushButtonGadgetClass,
rowColumn, args, n);
/* add it's activation callback */
XtAddCallback (resetButton, XmNactivateCallback, reset CB, NULL);

n=0; /* create the quit button */
XtSetArg(args[n], XmNalignment, XmALIGNMENT CENTER) ;
XtSetArg(args[n], XmNlabelString,
XmStringCreate("Click here to quit the program.”,
XmSTRING DEFAULT CHARSET)); n++;
if (buttonFont)
{
XtSetArg(args[n], XmNfontList, fontList); n++;
}
quitButton =

1-170 ESV Workstation Reference Manual [2.0]

ES/PEX

XtCreateManagedWidget ("quit", xmPushButtonGadgetClass, rowColumn,
args, n);
/* add it’s activation callback */
XtAddCallback (quitButton, XmNactivateCallback, quit CB, NULL);

XtRealizeWidget (topLevel);/* realize widget hierarchy */

dpy = XtDisplay(drawArea);/* obtain the display connection */
drawWindow = XtWindow(drawArea); /* and the drawing area’s window ID */

open_knob (dpy) ; /* open the knob box */

StartPhigs (dpy, drawWindow);/* Begin PHIGS calls */

/* Get_events

This routine processes events requested by the program. XtNextEvent
obtains the next event from the input queue and places it in report. The
type of the event is then examined to determine if it is an extension
event or a regular X event. The constant LASTEvent (defined in X.h) is
bigger than the event type of any X event and can be used to
differentiate extension events from normal X events.

Regular events are handled by the toolkit dispatch mechanism via
XtDispatchEvent. Extension events (DeviceMotion) are handled on a
case-by-case basis.

When a DeviceMotion event is encountered, all device motion events are
removed from the event queue and accumulated into knob_totals, since the
dials box reports relative changes. Event explosion is a very real
possibility since every device motion event requires 2 XEvent structures
(only 6 axes’ worth of data fit in a single XEvent) and the sample rate
of the dials box is high. Since this program is only concerned with
cumulative changes in the dials values, it is safe to condense the device
motion events via XCheckTypedEvent. Since XCheckTypedEvent can remove
events that are not at the head of the event queue, it may not be
appropriate for situations where the semantics of a device motion event
can be changed by another event (for instance, a key or button press).

*/

Get_events (dpy)
Display *dpy;

XEvent report;

ESV Workstation Reference Manual [2.0] 1-171

ES/PEX

int i;
static Ppoint3 cntr = { 0.0, 0.0, 0.0 }; /* center at origin */

pset_edit_mode (PEDIT_REPLACE) ; /* Set edit mode to replace elements */

while (!done)
{
XtNextEvent (&report) ;

if (report.type < LASTEvent)
XtDispatchEvent (&report) ;
else if (report.type == DeviceMotion) /* must be device motion event */

XDeviceMotionEvent *dm = (XDeviceMotionEvent *) &report;
int knob_totals[8];

for (i = 0; i < MAXDIALS; i++)
/* Initialize knob values array */
knob_totals[i] = 0;

do /* Compress motion events */
for (i = 0; i< dm—>éxes_count; i++)
knob_totals [dm->first_axis+i] += dm—>axis datal[i];
while (XCheckTypedEvent (dpy, DeviceMotion, dm));

/* Process device motion events */
if (knob_totals[0]) /* dial 1 input check rot x */
rotx += knob_totals[0];

if (knob_totals[1]) /* Dial 2 input check rot y */
roty += knob_totals[1];

if (knob_totals[2]) /* Dial 3 input check rot z */
rotz += knob_totals[2];

if (knob_totals[3]) /* Dial 4 input check uniform scale */
{
scale.delta_x += knob_totals([3] * DIALSCALE;
scale.delta_y += knob_totals[3] * DIALSCALE;
scale.delta_z += knob_totals[3] * DIALSCALE;

if (knob_totals[4]) /* Dial 5 input check trans x */
trans.delta_x += knob_totals([4] * DIALSCALE;

1-172 ESV Workstation Reference Manual [2.0]

ES/PEX

if (knob_totals[5]) /* Dial 6 input check trans y */
trans.delta_y += knob_totals[5] * DIALSCALE;

if (knob_totals([6]) /* Dial 7 input check trans z */
trans.delta_z += knob_totals[6] * DIALSCALE;

/* Build the transformation matrix */
pbuild tran matrix3(&cntr, &trans, DEG_TO_RAD (rotx),
DEG_TO_RAD (roty)
DEG_TO_RAD (rotz), &scale, &PEX error
,currmatrix) ;
SAFE_PEX("pbuild tran matrix3"); /* Check for error status */

/* Combine old and new matrices */

popen_struct (DISPLAY_ STRUCT) ; /* Open structure for editing */

{
pset_elem ptr(0); /* Reset element pointer */
pset_elem ptr label (TRANS); /* Find transformation label */
poffset_elem ptr(l); /* Point at matrix */

/* replace matrix */
pset_local_tran3(currmatrix, PTYPE_PRECONCAT) ;

pclose_struct () ; /* Close structure */
predraw_all_ structs(WS, PFLAG_ALWAYS); /* Redraw the structure */

ESV Workstation Reference Manual [2.0] 1-173

ES/PEX

phigs3.c

/*
phigs3.c

This program contains the phigs specific setup for example program 3.

Author: James Buckmiller May 1990
Modified: J. Buckmiller Mar 1991 Approved C binding

Copyright (C) 1990, Evans & Sutherland
*/

#include <X11/Xlib.h>
#include <X11/phigs/phigs.h>

#include "header3.h" /* local includes */

/*

Error_ Check

This routine checks the global variable used to store error codes
returned from PEX. If the error code is non-zero, it prints out a
diagnostic message and dies.

*/

void Error_Check(File, Line, Routine)
char *File, *Routine;
int Line;

if (PEX error)
{
fprintf (stderr, "(file %s; line %d):\n", File, Line);
fprintf (stderr, "\t?unexpected PEX error %d in routine %s\n",
PEX_error, Routine);
exit (1) ;

1-174 ESV Workstation Reference Manual [2.0]

ES/PEX

/*
StartPhigs

This routine is the top level routine that calls all supporting
routines in the logical order of a usual phigs routine ie

open PEX, setup the workstation parameters, define the phigs
structure and then go into the event loop.

*/

StartPhigs (dpy, win) /* Routine to start phigs calls */
Display *dpy;
Window win;

{

OpenPex (dpy) ; /* Open PEX */
SetupWorkstation (dpy, win);/* Setup PHIGS workstation parameters */
Make_boxes () ; /* Create Phigs structures */
Get_events (dpy) ; /* Event loop */
Cleanup() ; /* Cleanup phigs structures close workstation */

}

/*

OpenPex

This routine Opens PEX on the display that was passed as an argument.
*/

OpenPex (dpy)

Display *dpy;

{
Pxphigs_info =xinfo;
unsigned long infomask;

1

xinfo.display dpy:;

xinfo.rmdb = NULL;
xinfo.appl id.name = NULL;
xinfo.appl_id.class = NULL;
xinfo.args.argc_p = NULL;
xinfo.args.argv = NULL;
xinfo.flags.no_monitor = 1;
xinfo.flags.force_client_SS = 0;

infomask = PXPHIGS_INFO_DISPLAY | PXPHIGS_INFO_FLAGS_NO_MON;

ESV Workstation Reference Manual [2.0] 1-175

ES/PE

X

/* Open Pex */
popen_xphigs ((char*)NULL, PDEF_MEM SIZE, infomask, &xinfo);

/*

SetupWorkstation

This routine opens a PHIGS workstation and sets up a Viewport.
Z buffering is enabled by calling psethlhsrmode. The structure
edit mode is set to insert elements and the display update state

is set
*/

to PWAIT.

SetupWorkstation (dpy, win)
Display *dpy:

Window
{

win;

Pconnid x_drawable

Pview_rep3

Pview map3

Ppoint3

Pvec3
Pvec3

conn.

conn.drawable_id

display

conn;
vrep;
map;

/* Declare vieporting variables */

vrp, cntr;

vup;

vpn;

= dpy;

win;

popen_ws (WS, (Pconnid *) (&conn), phigs_ws_type x drawable);/* Open WS */

/* Setup viewport parameters */

map.proj_type = PTYPE PARAL;

map.
map
map.

map
map.

map.
map.
map.

vp.x min = 0.0; map.vp.x max = 1.0;
.vp.y_min =

vp.z_min

.win.x min=

win.y min=

back_plane
front_plane
view plane

1-176

/* Set projection type */
/* Set viewport limits */

0.0; map.vp.y max = 1.0;

0.0; map.vp.z max = 1.0;

-1.5; map.win.x max= 1.5; /* Set window limits */
-1.5; map.win.y max= 1.5;

= =2.0; /* Set the front and back clipping planes */
= 1.0;

= 0.0; /* Set the location of the view plane */

ESV Workstation Reference Manual [2.0]

ES/PEX

map.proj_ref point.x = 0.0; /* Set projection Reference point
map.proj_ref point.y = 0.0; /* in VRC space

map.proj_ref point.z = 3.0;

vrep.xy_clip = PIND_NO CLIP; /* Turn Viewport clipping off

vrep.back_clip = PIND_NO _CLIP; /* not to be confused with the
PIND NO CLIP; /* clipping at the viewplanes!

vrep.front_clip
vrep.clip limit = map.vp; /* Set Viewport clipping volume = viewport

/* Setup View Reference Coordinates */

vrp.x = 0.0; vrp.y = 0.0; vrp.z 1.0; /* Set View ref point

/* Set view up vector */

I
o
o

vup.delta_x = 0.0; vup.delta_y 1.0; vup.delta_z

/* Set view plane normal*/

vpn.delta_x = 0.0; vpn.delta_y 0.0; vpn.delta_z = 1.0;

peval_view ori matrix3(&vrp, &vpn, &vup, /* Evaluate orient matrix
&PEX error, vrep.ori matrix);

SAFE_PEX ("peval view_ori_matrix3"); /* Check for error status

peval_view_map_matrix3(&map, &PEX error, /* Evaluate map matrix
vrep.map matrix);

SAFE_PEX("peval view map matrix3"); /* Check for error status
pset_view rep3(WS, VIEW, &vrep); /* Set the view representation
pset_edit_mode (PEDIT_INSERT) ; /* Set edit mode to insert elements

pset_disp_upd_ st (WS, PDEFER WAIT, PMODE NIVE) ;
/* Set update state to WAIT */
/* Enable WS z buffering */
pset_hlhsr_mode (WS, PHIGS_ HLHSR _MODE_ZBUFF) ;

/* Make_ boxes

Make boxes unposts and deletes any old structures that are in structure
memory (for reset purposes), sets edit mode to insert elements and then
defines a polyline cube and a fillarea cube in 3 dimensions. Structures

*/
*/

*/
*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

POLYBOX and FILLBOX are defined to contain these data elements along with

color and style attributes to be applied to the data elements. A higher

level structure DISPLAY STRUCT is defined to include both the POLYBOX and

ESV Workstation Reference Manual [2.0] 1-177

ES/PEX

FILLBOX structures and is then posted to the open workstation to be
displayed. The workstation is then updated to display the objects. The edit
mode is set to Replace elements in preparation of structure transfomation
updates caused by dial input.

*/

Make boxes ()
{

Pmatrix3 identity;

static Ppoint3

/* Define polyline cube vectors */

line_pointsl([]=

{{ 0.5, 0.5, 0.5} , { 1.0, 0.5,
{ 1.0, 1.0, 0.5} , { 0.5, 1.0,
{ 0.5, 0.5, 0.5}};

static Ppoint3

line points2([]=

{{ 0.5, 0.5, 0.0} , { 1.0, 0.5,
{ 1.0, 1.0, 0.0} , { 0.5, 1.0,
{ 0.5, 0.5, 0.0}};

static Ppoint3
{{ 0.5, 0.5,

static Ppoint3
{{ 1.0, 0.5,

static Ppoint3
{{ 1.0, 1.0,

static Ppoint3
{{ 0.5, 1.0,

static Ppoint3
{{ -0.5, -0.5,
{ 0.0, 0.0,

static Ppoint3

{{ -0.5, -0.5,
{ 0.0, 0.0,
1-178

0.5} ,

0.5} ,

0.5} ,

0.5} ,

line_points3[]=
{ 0.5, 0.5,

line_points4[]=
{ 1.0, 0.5,

line points5([]=
{ 1.0, 1.0,

line_pointsé6[]=:
{ 0.5, 1.0,

/* Define points for front face
0.5} ,
0.5} ,

/* Define points for back face
0.0} ,
0.0} ,

/* Define connecting line
0.0}};

/* Define connecting line
0.0}};

/* Define connecting line
0.0}}:

/* Define connecting line
0.0}}:

/* Define solid cube faces */

£ill pointsl[]=
0.5} , { 0.0,
0.5y , { -0.5,

£fill points2[]=
0.0} , { 0.0,
0.0}y , { -0.5,

-0.5,
0.0,

-0.5,
0.0,

/* Define points for front face
0.5} ,
0.5}};

/* Define points for back face
0.0} ,
0.0}};

*/

*/

*/

*/

*/

*/

*/

ESV Workstation Reference Manual [2.0]

(

ES/PEX

static Ppoint3 fill points3[]= /* Define points for right face */
{{ 0.0, -0.5, 0.5y , { 0.0, -0.5, 0.0} ,
{ 0.0, 0.0, 0.0}, { 0.0, 0.0, 0.5}};

static Ppoint3 fill points4[]l= /* Define points for left face */
{{ -0.5, -0.5, 0.5y , { -0.5, =-0.5, 0.0} ,
{ -0.5, 0.0, 0.0}y, { -0.5, 0.0, 0.5}};

static Ppoint3 fill pointsS5(]= /* Define points for bottom face */
{{ -0.5, -0.5, 0.5y , { 0.0, -0.5, 0.5} ,
{ 0.0, -0.5, 0.0}y , { -0.5, -0.5, 0.0}};

static Ppoint3 fill pointsé6[]= /* Define points for top face */
{{ -o0.5, 0.0, 0.5y , { 0.0, 0.0, 0.5} ,
{ 0.0, 0.0, 0.0} , { -0.5, 0.0, 0.0}};

Ppoint_1list3 Line_list([5], Fill list([5];:

pset_edit_mode (PEDIT_INSERT) ; /* Set edit mode to insert elements */
punpost_all structs(WS); /* Unpost to remove any old structures */
pdel_all_ structs(); /* Delete any old structures */
popen_struct (POLYBOX) ; /* Open line drawing structure */
pset_line_colr_ind(2): /* Assign default index color 2 to lines*/
Line list[0].num points = 5; /* Fill in number of points in list *x/
Line_list[0].points = line_pointsl; /* Pointer to point array x/
ppolyline3(&Line 1list[0]); /* Create a polyline element x/
pset_line_colr_ind(3); /* Assign default index color 3 to lines*/

Line list([1].num points = 5;
Line list[l].points = line points2;
ppolyline3(&Line_list[1]);

pset_line_colr_ ind(4); /* Assign default index color 4 to lines*/
Line_ list[2].num points = 2;
Line list[2].points = line points3;
ppolyline3(&Line list[2]);

pset_line colr_ind(5); /* Assign default index color 5 to lines*/
Line_list[3].num points = 2;
Line list[3].points = line points4;
ppolyline3(&Line_list[3]):

ESV Workstation Reference Manual [2.0] 1-179

ES/PEX

pset_line_colr_ind(6): /* BAssign default index color 6 to lines*/
Line_list[4].num points = 2;
Line_list[4].points = line_points5;
ppolyline3 (&Line_list[4]);

pset_line_colr_ind(7): /* Assign default index color 7 to lines*/
Line_list[5].num points = 2; i
Line_list[5].points = line pointsé6;
ppolyline3 (&Line_ list([5]);

pclose_struct(); /* Close line drawing structure */
popen_struct (FILLBOX) ; /* Open filled drawing structure */
pset_int_style(PSTYLE_SOLID); /* Set interior style to be solid */
pset_int_colr_ind(7); /* Assign default index color 7 to face */
Fill 1list[0].num points = 4; /* Fill in number of points in list */
Fill 1list[0].points = fill pointsl; /* Pointer to point array */
pfill_area3 (&Fill_1list[0]): /* Create a fill area element */
pset_int_colr_ind(3); /* Assign default index color 3 to face */

Fill list[1].num points = 4;
Fill list{1l].points = fill points2;
pfill area3 (&Fill_list([1]1):

pset_int_colr_ind(2); /* Assign default index color 2 to face */
Fill list[2].num points = 4;
Fill list[2].points = fill points3;
pfill area3(&Fill_1list([2]);

pset_int_colr_ind(4); /* Assign default index color 4 to face */
Fill_list[3].num points = 4;
Fill list[3].points = fill points4;
pfill area3 (&Fill_list[3]);

pset_int_colr_ind(5); /* Assign default index color 5 to face */
Fill list[4].num points = 4;
Fill list([4].points = fill points5;
pfill area3(&Fill_1list[4]);

pset_int_colr_ind(6); /* Assign default index color 6 to face */
Fill list[5]).num points = 4;
Fill list([5].points = fill pointsé6;
pfill_area3(&Fill_list[5]);

1-180 ESV Workstation Reference Manual [2.0]

ES/PEX

pclose_struct();

/* Close filled drawing structure

make identity(identity);

*/

popen_struct (DISPLAY STRUCT); /* Open the top level display structure */

pset_view_ind(VIEW); /* Set the view index to be used */
pset_hlhsr_ id(PHIGS_HLHSR_ID ON); /* Turn on Z buffering */
plabel (TRANS) ; /* Insert a label for future updates */
/* set transformation matrix*/
pset_local_ tran3(identity, PTYPE REPLACE);
pexec_struct (FILLBOX) ; /* Include the filled square */
pexec_struct (POLYBOX) ; /* Include the line drawn square */
pset_hlhsr_ id(PHIGS_HLHSR ID OFF); /* Turn off Z buffering */

pclose_struct();

ppost_struct (WS, DISPLAY_ STRUCT, 1.0); /* Post DISPLAY STRUCT, prio 1 %/

pupd_ws (WS, PUPD_PERFORM) ;
pset_edit_mode (PEDIT REPLACE) ;

make_identity

make_identity (matrix)

Pmatrix3 matrix;

matrix([0] [0]
matrix([0] [1]
matrix[0]([2]
matrix([0] [3]
matrix([1][0]
matrix[1][1]
matrix([1][2]
matrix[1][3]
matrix[2][0]
matrix([2] [1]
matrix[2][2]
matrix[2] [3]

~

~e

~.

~

o O
Ne e .

~

~

~

O O O B O O O O

This routine sets the passed matrix to be an identity matrix.

ESV Workstation Reference Manual [2.0]

/* Update the workstation *x/
/* Set edit mode to replace */

1-181

ES/PEX

matrix[3]({0] = 0;
matrix[3][1] = 0;
matrix[3][2] = 0;
matrix[3]1[3] = 1;

Cleanup ()

{

punpost_all structs(WS);
pdel_all structs();
pclose_ws (WS);
pclose_phigs () ;

}

1-182

/* Cleanup routine when done

/* Unpost all structures
/* Delete all structures
/* Close workstation

/* Close PHIGS

on ws
*/
*/
*/

*/

*/

ESV Workstation Reference Manual [2.0]

ES/PEX

header3.h

/*

head:

Contain

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

extern
extern
extern

extern
extern

er3.h
s global header information for example program 3.
Author: James Buckmiller May 1990.

Copyright (C) 1990, Evans & Sutherland

WS

POLYBOX
FILLBOX
DISPLAY STRUCT
VIEW

TRANS
SPACEKEYSYM 32

MAXDIALS 8

CHARS_PER DIAL 8

SAFE_PEX(routine) Error_Check(__ FILE__, _ LINE_ , routine)
DEG_TO_RAD (D) ((3.14159265358 / 180.0) * (D))

DIALSCALE .005 /* Dial Scale value */

/* define some constants to be used later */

B W N PR

Window myWin;
Display *dpy;
char *ProgramName;

Pmatrix3 identity;
Pint PEX error;/* For PEX error numbers */

ESV Workstation Reference Manual [2.0] 1-183

ES/PEX

example4.c
/*

exampled.c

This program incorporates program 3 functionality for model interaction
with dials as well as keyboard control for reset and exit functions. The
new functionality added for program 4 is the E&S picking extension to PEX.
As a model element is picked using mouse button 1 the element is deleted
from the structure. If an element is picked with either mouse button 2 or
3 a prepick highlight of the object is performed to visually show the user
what elements will be picked if a pick were to be performed. To reset the
picture press the r key on the keyboard. To exit the client press the e key
on the keyboard.

Author: James Buckmiller May 1990.
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland

*/

#include <X11/X1lib.h>

#include <X11/Xatom.h>

#include <X1l/extensions/XInput.h>
#include <X11/phigs/phigs.h>
#include <X11/keysymdef.h>
#include <X1l/extensions/XPick.h>

#include "header4.h"
Window myWin;

Display *dpy:
char *ProgramName;

Pint PEX error; /* For PEX error numbers */

int Major_op, First_ev, First_err; /* pick extension parameters */
Pint_list nset_names; /* pick list nameset */

Pint namesints([1]; /* nameset list arrays */
XPickFilter pick_incl, pick_excl; /* pick inclusion/exclusion filters */
PC pc; /* pick context */

main(argc, argv)
int argc;
char *argvl[];

{

1-184 ESV Workstation Reference Manual [2.0]

ES/PEX

int i;

char *geom = NULL;

char *display = NULL;

int winposx, winposy, winwidth, winheight;

ProgramName = argv([0];

winposx = 100; /* default window geometry */
winposy = 100;
winwidth = 600;

winheight = 600;

for (i=1; i < argc; i++) /* Parse the command line */
{

char *arg = argv[i];

if (arg[0] == r-')
{
switch (arg[1])
{
case 'd’': /* ~display host:dpy */
if (++i >= argc) usage ();
display = argv([i];
continue;
case ‘g’: /* —-geometry host:dpy */
if (++i >= argc) usage ();
geom = argv([i];
continue;
default:
usage ();

if (! (dpy = XOpenDisplay (display))) /* Attempt to open the display */
{
perror ("Cannot open display\n");
exit (-1);

}

if (geom)
{ /* Generate position and size from the geometry string */
(void) XParseGeometry(geom, &winposx, &winposy, &winwidth, &winheight);

ESV Workstation Reference Manual [2.0] 1-185

ES/PEX

/* Create a simple, unmapped input/output window */
myWin = XCreateSimpleWindow (dpy, RootWindow(dpy, DefaultScreen (dpy)).,
winposx, winposy, winwidth, winheight, 0,NULL,NULL);

/* Change the window name property */ ;
XChangeProperty (dpy, myWin, XA WM NAME, XA STRING, 8, PropModeReplace,
"Example 4: r Key = Reset e Key = Exit", 40);

/* Map the window for display */
XMapWindow (dpy, myWin);

/* Begin PHIGS calls *x/
StartPhigs (dpy, myWin);
}

/*

usage

This routine prints out command line argument information if the user
supplied arguments are incorrect.

*/

usage () /* Print usage message */

{
fprintf (stderr, "usage: %s [-options ...]\n\n", ProgramName) ;
fprintf (stderr, "where options include:\n");
fprintf (stderr, " —display host:dpy X server to use\n");
fprintf (stderr, " —-geometry geom geometry of window\n");
fprintf (stderr, "\n");
exit (1);

}

/*

Get_events

This routine is the event handeling routine. First the usual X events are
trapped. If an expose event occurs then a PHIGS redrawallstructures is
called. If a Keyboard event occurs the keysym is reviewed to see if it is
an "e" for exit or an "r" for a reset of the display. If the event that is
generated is not a usual X event then it is checked to be an extension event
for dials events or picking events. If dials event then the object is
transformed. If a picking event then the element picked is deleted from the
structure listed in the pick info.

*/

1-186 ESV Workstation Reference Manual [2.0]

(

ES/PEX

Get_events (dpy)
Display *dpy:
{

XDeviceInfo *devices = NULL;
XDevice *dials = NULL;

XEventClass DeviceMotionClass[100];
XID dials_id;

XEvent report;

XKeyPressedEvent *pev;
KeySym key;
char buf[20];

unsigned long event_mask;
XButtonPressedEvent *bdown;
XButtonReleasedEvent *bup;
XPickEvent *pick;

int knob_totals[MAXDIALS];

Atom dials_atom = 0;

XStringFeedbackControl strfc;

int done = 0,3;

KeySym ledstring[MAXDIALS] [CHARS PER DIAL], blankled[MAXDIALS];

Pmatrix3 composite;

static Pmatrix3 currmatrix[] =
{{,09,0,0},{0,2,0,0},{0,0,1,0},{0,0,0,1}};

Pvec3 scale, trans;
int ndevices = 0, i, EventCount = 0, DeviceMotion = -1;
int rotx=0, roty=0, rotz=0;
Ppoint3 cntr;
/* Dial labels */

static char textstring[MAXDIALS] [CHARS_PER DIAL] =

{"XROT ", "YROT ", " Z ROT ",

" SCALE ", " X TRAN ", " Y TRAN ",

w Z TRAN " ’ " L } '.
cntr.x = 0.0; /* Define center point of transformations */
cntr.y = 0.0;
cntr.z = 0.0;
scale.delta_x = 1.0; /* Define initial scale to be 1 */

scale.delta y = 1.0;

ESV Workstation Reference Manual [2.0] 1-187

ES/PEX

scale.delta_z = 1.0;
trans.delta_x = 0.0; /* Define initial translation to be 0 */
trans.delta y = 0.0;
trans.delta_z = 0.0;

/* Determine if picking extension is present */
/* Get the opcodes for the errors and events */
XQueryExtension (dpy, PICKNAME, &Major_op, &First_ev, &First_err);

/* Get the atom ID for the Knob box */
dials_atom = XInternAtom(dpy, "KNOB_BOX", True);

/* Get list of Input devices */
devices = XListInputDevices (dpy, &ndevices):

/* Find the dials device in the list and open the device */
for (i1 = 0; i < ndevices; it++, devices++)
if ((devices->type == dials_atom) &&
(devices->use == IsXExtensionDevice))

dials_id = devices->id;
dials = XOpenDevice (dpy, dials_id); /* Get Xdevice structure */
break; /* for the dials *x/

if (!dials)
{
fprintf (stderr, "?dials box not found in X extension device
list.\n");
exit (1),

/* Get event class values for dials *x/
DeviceMotionNotify(dials, DeviceMotion, DeviceMotionClass[EventCountl]) ;
EventCount++;
/* Tell server to pass on Extension events */
XSelectExtensionEvent (dpy, myWin, DeviceMotionClass, EventCount);

/* Set the event mask for the window */
XSelectInput (dpy, myWin, ButtonPressMask | ButtonReleaseMask|
EnterWindowMask | LeaveWindowMask | KeyPressMask |

ExposureMask) ;

/* Set the picking mode to return the item picked that is nearest in 2 *x/

1-188 ESV Workstation Reference Manual [2.0]

(

ES/PEX

XSetPickMode (dpy, pc, pick_near);

/* Set the pick box size to 5x5 pixels *x/
XSetPickBoxSize (dpy, pc, 5, 5);

/* Cause all of pickable items to be highlighted */
XSetPickHighlightingMode (dpy, pc, pick highlighting command) ;

/* Select pick events to be returned */
XSelectPickEvents (dpy, myWin, PickMask);

for (i = 0; i < MAXDIALS; i++) /* Load the keysym arrays */
for (j = 0; j < CHARS_PER DIAL; j++)
{
ledstring[i] [j] = (KeySym) textstring[i][j]; /* Dial labels */
blankled[j] = SPACEKEYSYM; /* Blank labels */

strfc.class = StringFeedbackClass;
strfc.length = sizeof (XStringFeedbackControl) ;
strfc.num_keysyms = CHARS_PER DIAL;

for (i=0; i<MAXDIALS; i++) /* Set the dial labels upon */
{ /* startup of client. */
strfc.id = i;
strfc.syms_to_display = ledstring[i];
XChangeFeedbackControl (dpy, dials, DvString, &strfc);

while (!done)
XNextEvent (dpy, &report); /* Get next event from event queue */
if (report.type < LASTEvent) /* Check if extension event or not */
{

switch (report.type)
{

case EnterNotify: /* Turn on the dial labels */
for (i=0; i1<MAXDIALS; i++) /* when the cursor enters */
{ /* the window. */

strfc.id = i;

strfc.syms_to_display = ledstring[i];
XChangeFeedbackControl (dpy, dials, DvString, &strfc);
}

ESV Workstation Reference Manual [2.0] 1-189

ES/PEX

break;
case KeyPress: /* Trap keyboard events */
/* and perform function. */
pev = (XKeyPressedEvent *) &report;
XLookupString (pev, buf, sizeof (buf), &key, NULL);
if (buf[0] == ’'r’) /* Reset picture */
{
make_identity(currmatrix); /* Currmatrix = identity matrix */
Make_boxes(); /* Rebuild the structures*/
/* Reset xformation parameters */
scale.delta _x = scale.delta y = scale.delta_z = 1.0;
trans.delta_x = trans.delta_y = trans.delta_z = 0.0;
rotx = roty = rotz = 0;

}

if (buf[0] == 'e') /* Exit Program */
done = 1;
break;
case ButtonPress: /* Trap button press */

bdown = (XButtonPressedEvent *) &report;
if (bdown->button == Buttonl)
{ /* Do pick traversal */
XPick(dpy, myWin, pc, bdown->x, bdown->y);

else
{ /* Do pick highlighting traversal */
XPrePick (dpy, myWin, pc, bdown->x, bdown->y);

break;
case ButtonRelease: /* Redraw to remove prepick highlight */

bup = (XButtonReleasedEvent *) &report;
predraw_all_ structs (WS, PFLAG_ALWAYS) ;

break;

case Expose: /* Expose events = redraw */
predraw_all_ structs (WS, PFLAG_ALWAYS);

break;

case LeaveNotify: /* Blank LEDs when cursor leaves window */

for (i=0; i<MAXDIALS; i++)

{
strfc.id = i;
strfc.syms_to_display = blankled;

1-190 ESV Workstation Reference Manual [2.0]

ES/PEX

XChangeFeedbackControl (dpy, dials, DvString, &strfc);
}

break;

/* else it’'s an extension event */

else if (report.type == DeviceMotion) /* Dials input */
{
XDeviceMotionEvent *dm = (XDeviceMotionEvent *) &report;

for (i=0; i<MAXDIALS; i++) /* Zero the knob accumulator array */
knob_totals[i] = 0;

/*
The following piece of code goes out to the event queue and scoops
off all dial motion events that are found on the queue with the
XCheckTypedEvent call.These events are then accumulated for each
axis and then processed with the acccumulated values.

The reason for doing this is to increase the performance of the system. If
an update of the workstation display is performed for every dial event that
occurs the display will get behind thus causing a lag time between when the
dials stop sending events and the system finishes unpiling the event queue.
For this application grabbing all dial events off the queue works well
however, one must beware that if an application allows the dials to be
redefined with some other event (function key or pick menu) this method may
not be the way to get the dial events since there may be keypress or pick
events intermixed with the dials events. To get around this problem one may
wish to use the XPeekEvent routine to look ahead one event to be sure that
it is the same event class as the ones being accumulated.

*/

do /* Collapse the events before processing */
for (i=0; i < dm->axes_count; i++)
knob_totals [dm—>first_axis+i] += dm->axis_datal[i];
/* Gather all dial events from the event queue */
while (XCheckTypedEvent (dpy, DeviceMotion, dm));

/* Process DeviceMotion events */

if (knob_totals[0]) /* dial 1 input check rot x */
rotx += knob_totals[0];

if (knob_totals[1]) /* Dial 2 input check rot y */
roty += knob_totals[1l];

ESV Workstation Reference Manual [2.0] 1-191

ES/PEX

if

if

/* Build the transformation matrix
pbuild tran matrix3(&cntr, &trans, DEG_TO_RAD(rotx), DEG_TO RAD (roty)
,DEG_TO_RAD (rotz), &scale, &PEX error
,currmatrix) ;
SAFE PEX("pbuild tran matrix3"): /* Check for error status
/* Combine old and new matrices
popen_struct (DISPLAY_STRUCT) ; /* Open structure for editing
{
pset_elem ptr(0); /* Reset element pointer
pset_elem ptr label (TRANS); /* Find transformation label
poffset_elem ptr(l); /* Point at matrix
/* replace matrix */
pset_local_tran3(currmatrix, PTYPE PRECONCAT) ;
}
pclose_struct(); /* Close structure */
predraw_all_ structs(WS, PFLAG_ALWAYS); /* Redraw the structure */
}
else if (report.type == First_ev + XPickEventOffset) /* Pick event */

{

/*

(knob_totals[2]) /* Dial 3 input check rot z */

rotz += knob_totals[2];

(knob_totals[31) /* Dial 4 input check uniform scale */
{
scale.delta_x += knob totals[3] * DIALSCALE;
scale.delta_y += knob_totals[3] * DIALSCALE;
scale.delta_z += knob_totals[3] * DIALSCALE;
}
(knob_totals[4]) /* Dial 5 input check trans x */

trans.delta_x += knob_totals[4] * DIALSCALE;

(knob_totals[5]) /* Dial 6 input check trans y */
trans.delta_y += knob_totals[5] * DIALSCALE;

(knob_totals[6]) /* Dial 7 input check trans z */
trans.delta_z += knob_totals[6] * DIALSCALE;

[**kk*k picking event kxkkxx/

The picking extension returns a structure that contains
information about what element and structure was picked,

where in screen space or model space the pick occured

and other usefull information. (see pg 3-4 X Picking Extension
document) . For this example we are only using the structure

1-192

*/

*/
*/
*/

*/
*/
*/

ESV Workstation Reference Manual [2.0]

ES/PEX

number and element number to position the element pointer

in preparation for a delete element PHIGS call.
*/
pick = (XPickEvent *) &report;
popen_struct (pick->structureid); /* Open structure returned */
pset_elem ptr(0); /* by pick */
poffset_elem ptr(pick->elementid); /* Go to picked element */
pdel_elem(); /* Delete the element x/
pclose_struct(); /* Close the structure */
pupd_ws (WS, PUPD_PERFORM) ; /* Cause an update of WS */

/* to show element removed*/

ESV Workstation Reference Manual [2.0]

1-193

ES/PEX

motif4.c

/*
motif 4. c

This program expands on motif3 to include picking of PEX structures.
Picking is accomplished via the Evans & Sutherland picking extension to X.
Structure elements can be picked via the mouse buttons. Button 1 will
delete the picked element, while buttons 2 or 3 will highlight the picked
element while the button is held down.

Reset and quit push buttons are provided as in motif3. When the reset
button is pushed, the structures are restored to their original pristine
state.

Author: Rich Thomson
Date: Thursday, June 12th, 1990
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland Computer Corporation
*/

#include <X11/Xlib.h>

#include <X1ll/extensions/XInput.h>
#include <X11l/extensions/XPick.h>
#include <X11/phigs/phigs.h>
#include <X11/Intrinsic.h>
#include <Xm/RowColumn.h>

#include <Xm/PushBG.h>

#include <Xm/DrawingA.h>

#include "header4.h"

Display *dpy: /* X11 display connection */
char *ProgramName;

int DeviceMotion;/* device motion event type */

Window drawWindow;/* drawing window */

Pint PEX error; /* For PEX error numbers */

int Major op, First_ev, First_err;/* pick extension parameters */

Pint_list nset_names; /* pick list nameset */

Pint namesints([1l]; /* nameset list arrays */
XPickFilter pick_incl, pick_excl;/* pick inclusion/exclusion filters */
PC pc; /* pick context */

static XDevice *dials = NULL; /* dials device */

1-194 ESV Workstation Reference Manual [2.0]

ES/PEX

static Pmatrix3 currmatrix = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
static Boolean done = False;

static Pvec3 scale = { 1.0, 1.0, 1.0 };

static Pvec3 trans = { 0.0, 0.0, 0.0 };

static int rotx = 0, roty = 0, rotz = 0;

/*
quit_CB

The callback procedure for the quit pushbutton widget. It simply sets the
event processing exit flag to True, which will cause Get_events to stop
processing events.

*/

void quit_CB(quitButton, client_data, call_data)
Widget quitButton;
caddr_t client_data;
XmAnyCallbackStruct *call_data;

if (call_data->reason == XmCR_ACTIVATE)
done = True;

/*
reset_CB

The callback procedure for the reset button. It re-initializes the
parameters that define the transformation matrix corresponding to
translate, rotate and scale operations. The posted structures are also
re-initialized since picking elements could have caused some elements to
be deleted. :

*/

void reset_CB(resetButton, client_data, call data)
Widget resetButton;
caddr_t client_ data;
XmAnyCallbackStruct *call data;

if (call_data->reason == XmCR_ACTIVATE)
{
Make boxes () ;
/* reset xformation parameters */
scale.delta_x = scale.delta_y = scale.delta_z = 1.0;
trans.delta _x = trans.delta y = trans.delta_z = 0.0;
rotx = roty = rotz = 0;

ESV Workstation Reference Manual [2.0] 1-195

ES/PEX

/*

drawArea_CB

The callback procedure for the drawing area widget. It redraws all
the structures on the workstation.

*/

void drawArea_CB(drawArea, client_data, call_data)
Widget drawArea;
caddr_t client_data;
XmDrawingAreaCallbackStruct *call_data;

if (call_data->reason == XmCR_EXPOSE)
predraw_all_structs (WS, PFLAG_ALWAYS);

/*
pick_CB

This routine performs the picking operation on the structures drawn in
the drawing area widget.

When a ButtonPress event is received, a pick operation is performed if
the user pressed Buttonl. The pick operation will cause picking events
to be generated for any objects selected. If the user pressed some
button other than Buttonl, a pre-pick operation is performed, which will
highlight the object selected. The pick operations are performed at the
device (pixel) coordinates where the button press took place.

When a ButtonRelease event is received, all structures posted to the
workstation are redrawn. This will cause deleted structure elements to
be visually reflected on the screen (for Buttonl) as well as remove
highlighting caused by other mouse buttons.

*/

void pick_CB(drawArea, client_data, call data)
Widget drawArea;
caddr_t client_data;
XmDrawingAreaCallbackStruct *call_data;

XButtonPressedEvent *bpress = (XButtonPressedEvent *) call_data->event;

if (call_data—->reason == XmCR_INPUT)
{
switch (call_data->event->type)
{

case ButtonPress:

1-196 ESV Workstation Reference Manual [2.0]

ES/PEX

if (bpress—->button == Buttonl)

XPick (dpy, call_data->window, pc, bpress—>x, bpress->y);
else

XPrePick (dpy, call_data->window, pc, bpress->x, bpress—>y);
break;

case ButtonRelease:
predraw_all structs (WS, PFLAG_ALWAYS);
break;

/*
knob_labels

This array holds the KeySym’s that contain the knob labels. It is used by
the enter and leave window handlers to blank out the labels when the
pointer is not in the drawing area window.

Dial labels are CHARS_PER DIAL KeySyms per dial. Ascii characters can be
converted to KeySyms by C type casting.

*/
static KeySym knob_labels[MAXDIALS] [CHARS PER _DIAL];

/*

enter handler

This event handler restores the knob labels to our labels when the
pointer moves into the drawing window. Conditionally labelling the dials
in this way gives extra feedback to the user that the dials are active
only when the mouse is inside the appropriate window.

*/
void enter_handler(widget, client_data, event, continue_to_dispatch)
Widget widget;
caddr_t client_data;
XEvent *event;
Boolean *continue_to_dispatch;

register int i;
XStringFeedbackControl strfc;

strfc.class = StringFeedbackClass;
/* initialize the feedback structure */

ESV Workstation Reference Manual [2.0] 1-197

ES/PEX

strfc.length = sizeof (XStringFeedbackControl) ;
strfc.num keysyms = CHARS_PER DIAL;

for (i = 0; i < MAXDIALS; i++)/* change each dial */
{
strfc.id = i; /* id is the knob to change */
strfc.syms_to_display = knob_labels[i];
XChangeFeedbackControl (dpy, dials, DvString, &strfc):;

/*
leave_handler

This event handler blanks the knob labels when the pointer leaves the
drawing window.
*/
void leave_handler(widget, client_data, event, continue_to_dispatch)
Widget widget;
caddr_t client_data;
XEvent *event;
Boolean *continue to_dispatch;

static XStringFeedbackControl strfc;
static KeySym blanks [CHARS_PER DIAL];
static Boolean initialized = False;
register int i;

if (!'initialized) /* initialize variables the first */
/* time we’re called */

for (i = 0; i < CHARS_PER DIAL; i++)
blanks[i] = (KeySym) ’ ’;/* prepare a blank keysym array */

strfc.class = StringFeedbackClass; /*initialize the feedback struct*/

strfc.length = sizeof (XStringFeedbackControl) ;
strfc.num keysyms = CHARS_PER DIAL;
strfc.syms_to_display = blanks;

initialized = True;/* remember we’ve been initialized */

for (i = 0; i < MAXDIALS; i++)/* for each dial */
{

1-198 ESV Workstation Reference Manual [2.0]

ES/PEX

strfc.id = i;/* indicate which dial to change */
/* change it */
XChangeFeedbackControl (dpy, dials, DvString, &strfc);
}

/*

open_knob

This routine opens the knob box on the given display and selects device
motion extension events on the given window. Extension events are
selected by first invoking the appropriate macro on an XEventClass
structure (in this case DeviceMotionNotify) and then calling
XSelectExtensionEvent.

*/

void open_knob ()
{
/* dial labels as ascii strings */
static char textstring [MAXDIALS] [CHARS_PER_DIAL] = {
" XROT ", "YROT ", " Z ROT "," SCALE ",
"X TRAN ", " Y TRAN ", " Z TRAN ", " " /* eighth label is blank */
}i
register int knob, i;
int ndevices; /* number of extension devices */
XDeviceInfo *devices = NULL;/* extension device info list */
Atom dials_atom = XInternAtom(dpy, "KNOB_BOX", True);
/* intern device name into an atom */
XID dials_id; /* device ID for dials box */
XEventClass eventClass[1];

devices = XListInputDevices (dpy, &ndevices); /* get list of devices */

for (i = 0; i < ndevices; i++, devices++)

if ((devices->type == dials_atom) && (devices->use ==
IsXExtensionDevice))
{ /* did we find the dial box? */

dials_id = devices->id;/* yes, remember its device ID */
dials = XOpenDevice (dpy, dials_id); /* and open it */
break; /* we only want the first one... */

}
if (!dials) /* couldn’t open or find dials */

{
fprintf (stderr, "?couldn’t open dials box.\n");

ESV Workstation Reference Manual [2.0] 1-199

ES/PEX -

exit (1) ;

/* select device motion events */
DeviceMotionNotify(dials, DeviceMotion, eventClass[0]);
XSelectExtensionEvent (dpy, drawWindow, eventClass, 1);

for (knob = 0; knob < MAXDIALS; knob++)
/* convert ascii labels to KeySyms */

for (i = 0; i < CHARS_PER DIAL; it++)
knob_labels[knob] [i] = (KeySym) textstringl[knob] [i];

/*

init_pick

This routine initializes the picking extension. It must be called after
the pick context is established (in routine SetupWorkstation, file
phigs4.c)and before event processing is begun.

Major op is the major opcode of the picking extension. First_ev is the
first event number dynamically allocated for the extension. First_err is
the first error number dynamically allocated for the extension.

*/

void init_pick ()
{ /* query picking extension */
/* for major opcode, first event */
XQueryExtension (dpy, PICKNAME, &Major_op, &First_ev, &First_err);

/* Set the picking mode to return */
/* the item picked that is nearest */
XSetPickMode (dpy, pc, pick_near);/* in 2 */

XSetPickBoxSize (dpy, pc, 5, 5):/* Set pick box size to 5x5 pixels x/
/* Cause all of picked item to be */
/* highlighted */
XSetPickHighlightingMode (dpy, pc, pick_highlighting command) ;
/* Select pick and pick path events */
/* to be returned */
XSelectPickEvents (dpy, drawWindow, PickMask):

/-k

main

1-200 ESV Workstation Reference Manual [2.0]

ES/PEX

The main routine creates the widget hierarchy for the program, opens the
knob box and then calls StartPhigs. StartPhigs will then call Get_events
to initiate event processing.

The widget hierarchy used here is:

motif4 (class topLevelShell)
|

+-- rowcol (class RowColumn)

+-—- drawArea (class DrawingArea)

|

+-—— reset (class PushButtonGadget)
|

+--— quit (class PushButtonGadget)

The row column widget is used for organizing its child widgets into a
columnar layout. The drawing area widget is used for PEX operations and
the PEX workstation is opened on its window. The two push buttons are
used to supply reset and quit operations.

Any necessary resources for the widgets are specified here in the
program, which override any user defaults or command-line options. Note
that this is not very friendly to the user who may want to change the
font of the push buttons. A friendlier way is to provide an application
defaults file which the user may override with user defaults or
command-line arguments. For simplicity, I have set the arguments here
directly.

The display connection (dpy) and window ID (drawWindow) of the drawing
area widget are available after the widget hierarchy has been realized.

BEWARE!! BEWARE!!

The drawing area widget in Motif 1.0 has a bug in that it ignores
height and width resources supplied at creation time. A workaround
I've found is to set the margins of the drawing area to be half the
desired height and width. Since the margins specify the boundary
between the drawing area widget’s border and any children of the
drawing area widget (we have none here), the drawing area widget will
be sized to contain its children plus twice the margins in each
direction. Hence to get a 600x600 drawing area widget, you can set the
margins to 300. Other workarounds suggested involve creating the
drawing area widget as a child of other widgets, but where there are no
children of the drawing area, I prefer setting the margins.

*/

main(argc, argv)

int argc;

ESV Workstation Reference Manual [2.0] 1-201

ES/PEX

char *argv[]; (
{

1

Arg args([10];

register int n;

Widget toplevel, rowColumn, quitButton, resetButton, drawArea;
XFontStruct *buttonFont;

XmFontList fontList;

ProgramName = argv[0];
/* create topLevelShell */
toplLevel = XtInitialize(ProgramName, "“Example", NULL, 0, &argc, argv);

n = 0; /* window title is a regular string */
XtSetArg(args[n], XmNtitle, "Example 4"); n++;
XtSetvalues (topLevel, args, n);

buttonFont = /* find the font we want for buttons */
XLoadQueryFont (XtDisplay (topLevel), "-*-Helvetica-Bold-R-Normal--
14%m");

if (buttonFont)
fontList = XmFontListCreate (buttonFont, XmSTRING DEFAULT_CHARSET) ;

rowColumn = /* create the row column for layout */ (
XtCreateManagedWidget ("rowcol", xmRowColumnWidgetClass, topLevel,
NULL, 0);
n = 0; /* create the drawing area for PEX */

XtSetArg(args[n], XmNmarginWidth, 300); n++; /* size appropriately */
XtSetArg(args[n], XmNmarginHeight, 300); n++;
drawArea = XtCreateManagedWidget ("drawArea", xmDrawingAreaWidgetClass,
rowColumn, args, n);
/* add exposure and input callbacks */
XtAddCallback (drawArea, XmNexposeCallback, drawArea CB, NULL);
XtAddCallback (drawArea, XmNinputCallback, pick_CB, NULL);

/* these event handlers take care */
/* of blanking and restoring the */
/* dial labels */
XtAddEventHandler (drawArea, EnterWindowMask, False, enter_ handler,

NULL) ;
XtAddEventHandler (drawArea, LeaveWindowMask, False, leave_handler,
NULL) ;
n = 0; /* create the reset button */
XtSetArg(args[n], XmNlabelString,
XmStringCreate ("Click here to reset the picture.", (:j

-202 ESV Workstation Reference Manual [2.0]

ES/PEX

XmSTRING_DEFAULT CHARSET)); n++;
if (buttonFont)
{
XtSetArg(args[n], XmNfontList, fontList); n++;
}
resetButton = XtCreateManagedWidget ("reset", xmPushButtonGadgetClass,
rowColumn, args, n);
/* add an activation callback */
XtAddCallback (resetButton, XmNactivateCallback, reset_CB, NULL);

n=0; /* create the quit button */
XtSetArg(args([n], XmNalignment, XmALIGNMENT CENTER) ;
XtSetArg(args[n], XmNlabelString,
XmStringCreate("Click here to quit the program.”,
XmSTRING DEFAULT_CHARSET)); n++;
if (buttonFont)
{
XtSetArg(args[n], XmNfontList, fontList); n++;
}
quitButton =
XtCreateManagedWidget ("quit", xmPushButtonGadgetClass, rowColumn,
args, n);
/* add an activation callback */
XtAddCallback (quitButton, XmNactivateCallback, quit_CB, NULL);

XtRealizeWidget (topLevel) ; /* realize widget hierarchy */

dpy = XtDisplay(drawArea);/* get the display connection */
drawWindow = XtWindow(drawArea);/* get the d.a. widget’s window ID */

open_knob () ; /* open the knob box */

StartPhigs (dpy, drawWindow);/* Begin PHIGS calls */

/*

Get_events

This routine processes events requested by the program. XtNextEvent
obtains the next event from the input queue and places it in report. The
type of the event is then examined to determine if it is an extension
event or a regular X event. The constant LASTEvent (defined in X.h) is
bigger than the event type of any X event and can be used to
differentiate extension events from normal X events.

ESV Workstation Reference Manual [2.0] 1-203

ES/PEX

Regular events are handled by the toolkit dispatch mechanism via
XtDispatchEvent. Extension events (DeviceMotion and picking events) are
hanlded on a case-by—case basis.

When a DeviceMotion event is encountered, all device motion events are
removed from the event queue and accumulated into knob_totals, since the
dials box reports relative changes. Event explosion is a very real
possibility since every device motion event requires 2 XEvent structures
(only 6 axes’ worth of data fit in a single XEvent) and the sample rate
of the dials box is high. Since this program is only concerned with
cumulative changes in the dials values, it is safe to condense the device
motion events via XCheckTypedEvent. Since XCheckTypedEvent can remove
events that are not at the head of the event queue, it may not be
appropriate for situations where the semantics of a device motion event
can be changed by another event (for instance, a key or button press).

When a pick event is encountered, the picked structure element is deleted
from the structure and the workstation is updated.

*/
Get_events (dpy)
Display *dpy:

XEvent report;
int i;
Ppoint3 cntr;

cntr.x = 0.0; /* center point of transformations */
cntr.y = 0.0; /* is the origin */

cntr.z = 0.0;

scale.delta_x = 1.0; /* initial scale is 1 */

scale.delta y = 1.0;
scale.delta _z = 1.0;

|

|
o o
~

trans.delta_x = /* initial translation is 0 */

trans.delta y = 0.0;

trans.delta_z 0.0;
pset_edit_mode (PEDIT_REPLACE); /* Set edit mode to replace elements */
init_pick(); /* initialize picking */
while (!done) /* until user wants to quit... */
{

XtNextEvent (&report) ; /* get the next event */

if (report.type < LASTEvent)
XtDispatchEvent (&report) ;

1-204 ESV Workstation Reference Manual [2.0]

ES/PEX

else if (report.type == DeviceMotion) /* handle device motion event */
{
XDeviceMotionEvent *dm = (XDeviceMotionEvent *) &report;
int knob_totals[8];
for (i = 0; i < MAXDIALS; i++
/* Initialize knob values array */
knob_totals[i] = 0;

do /* Compress motion events */
for (i = 0; i < dm->axes_count; i++)
knob_totals [dm->first_axis+i] += dm->axis_data[i];

while (XCheckTypedEvent (dpy, DeviceMotion, dm));

/* Process device motion events */
if (knob_totals([0]) /* dial 1 input check rot x */
rotx += knob_totals[0];

if (knob_totals[1]) /* Dial 2 input check rot y */
roty += knob_totals([1];

if (knob_totals[2]) /* Dial 3 input check rot z */
rotz += knob_totals[2];

if (knob_totals[3]) /* Dial 4 input check uniform scale */

scale.delta_x += knob_totals[3] * DIALSCALE;
scale.delta_y += knob_totals[3] * DIALSCALE;
scale.delta_z += knob_totals[3] * DIALSCALE;

if (knob_totals[4]) /* Dial 5 input check trans x */
trans.delta_x += knob_totals[4] * DIALSCALE;

if (knob_totals[5]) /* Dial 6 input check trans y */
trans.delta_y += knob_totals[5] * DIALSCALE;

if (knob_totals([6]) /* Dial 7 input check trans z */
trans.delta_z += knob_totals[6] * DIALSCALE;

/* Build the transformation matrix */
pbuild tran matrix3(&cntr, &trans, DEG_TO_RAD (rotx),
DEG_TO_RAD(roty), DEG_TO_RAD(rotz), &scale, &PEX error,
currmatrix) ;

SAFE_PEX("pbuild tran matrix3"); /* Check for error status */

ESV Workstation Reference Manual [2.0] 1-205

ES/PEX

/* Combine old and newmatrices */

popen_struct (DISPLAY_STRUCT) ; /* Open structure for editing */

{ ' '
pset_elem ptr(0); /* Reset element pointei */
pset_elem ptr_ label (TRANS) ; /* Find transformation label */
poffset_elem ptr(l); R /* Point at matrix */

/* replace matrix */
pset_local_tranB(currmatrix, PTYPE_PRECONCAT) ;

pclose_structk); /* Close structure */
predraw_all_ structs (WS, PFLAG_ALWAYS); /* Redraw the structure */

}
else if (report.type == First_ev + XPickEventOffset)
: /* picking event */

XPickEvent *pick = (XPickEvent *) &report;

popen_struct (pick->structureid); /* open picked structure */
. .
pset_elem ptr(0);/* reset the element points *x/
poffset_elem ptr(pick->elementid);
/* set the element pointer to */
/* the picked element */
pdel_elem{() ; ' /* delete the picked element */
} .
pclose_struct();

pupd_ws (WS, PUPD_PERFORM);/* cause an update x/

1-206 ESV Workstation Reference Manual [2.0]

ES/PEX

phigs4.c

/*
phigsé.c
This file contains the PHIGS specific routines for the example programi.

Author: James Buckmiller May 1990.
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland
*/

#include <X11/X1lib.h>
#include <X11/phigs/phigs.h>
#include <X1l1/extensions/XPick.h>

#include "header4.h"

/*
Error Check

This routine checks the global variable used to store error codes
returned from PEX. If the error code is non-zero, it prints out a
diagnostic message and dies.

*/

void Error Check(File, Line, Routine)
char *File, *Routine;
int Line;

if (PEX error)
{
fprintf (stderr, "(file %s; line %d) :\n", File, Line);
fprintf (stderr, "\t?unexpected PEX error %d in routine %s\n",
PEX error, Routine);
exit (1) ;

ESV Workstation Reference Manual [2.0] 1-207

ES/PEX

/*
StartPhigs

This routine is the top level routine that calls all supporting
routines in the logical order of a usual phigs routine ie

open PEX, setup the workstation parameters, define the phigs
structure and then go into the event loop.

*/

StartPhigs (dpy, win)
Display *dpy;
Window win;

{

/* Routine to start phigs calls */

OpenPex (dpy) : /* Open PEX */
SetupWorkstation (dpy, win); /* Setup PHIGS workstation parameters *x/
Make_boxes(): /* Create Phigs structures */
Get_events (dpy) /* Event loop */

Cleanup(); /* Cleanup phigs structures close workstation */

/*
OpenPex

This routine Opens PEX on the display that was passed as an argument.
*/

OpenPex (dpy)

Display *dpy;

{

xinfo;
infomask;

Pxphigs_info
unsigned long

xinfo.display = dpy:
xinfo.rmdb = NULL;
xinfo.appl_id.name = NULL;
xinfo.appl_id.class = NULL;
= NULL;
xinfo.args.argv = NULL;

xinfo.args.argc_p

xinfo.flags.no_monitor = 1;
xinfo.flags.force_client_SS = 0;

infomask = PXPHIGS_INFO DISPLAY | PXPHIGS_INFO_FLAGS_NO_MON;
/* Open Pex */

1-208 ESV Workstation Reference Manual [2.0]

ES/PEX

popen_xphigs ((char*)NULL, PDEF_MEM SIZE, infomask, &xinfo);

/*
SetupWorkstation

This routine opens a PHIGS workstation and sets up a Viewport.

The structure edit mode is set to insert elements and the display
update state is set to PWAIT.

Z buffering is enabled by calling psethlhsrmode

The nameset list is then filled with the name PICKABLE. This list is
used to set the picking inclusion filter. This same list will be used

in the addnameset call in Make_boxes to add the PICKABLE name to the
structure. The UNPICKABLE name is listed in the exclusion filter but

is not included in any display structures, thus nothing is excluded from
being picked in this example.

*/

SetupWorkstation (dpy, win)
Display *dpy;

Window win;

{

Pconnid_x drawable conn;

Pview_rep3 vrep; /* Declare viewporting variables */
Pview_map3 map;

Ppoint3 vrp, cntr;

Pvec3 vup;

Pvec3 vpn;

conn.display = dpy:

conn.drawable_id = win;

/* Open WS */
popen_ws (WS, (Pconnid *) (&conn), phigs_ws_type x drawable);
/* Setup viewport parameters */

map.proj_type = PTYPE PARAL; /* Set projection type */
map.vp.x min = 0.0; map.vp.x max = 1.0; /* Set viewport limits */
map.vp.y min = 0.0; map.vp.y max = 1.0;
map.vp.z_min = 0.0; map.vp.z_max = 1.0;

map.win.x min = -1.5; map.win.x max = 1.5; /* Set window limits */

[l

map.win.y min -1.5; map.win.y max = 1.5;

ESV Workstation Reference Manual [2.0] 1-209

ES/PEX

map.back_plane -2.0; /* Set the front and back clipping planes */
1.0;

.0; /* Set the location of the view plane */

map.front_plane

I
o

map.view_plane

map.proj_ref point.x = 0.0; /* Set projection Reference point */
map.proj_ref point.y 0.0; /* in VRC space */
map.proj_ref point.z = 3.0;

vrep.xy_clip = PIND_NO_CLIP; /* Turn Viewport clipping off */
vrep.back_clip = PIND_NO_CLIP; /* not to be confused with the */
vrep.front_clip = PIND_NO_CLIP;/* clipping at the viewplanes! */

I

vrep.clip_limit = map.vp; /* Set Viewport clipping volume = viewport */
/* Setup View Reference Coordinates */

vrp.x = 0.0; vrp.y = 0.0; vrp.z = 1.0; /* Set View ref point *x/
/* Set view up vector *x/
vup.delta_x = 0.0; vup.delta y = 1.0; vup.delta z = 0.0;
/* Set view plane normal*/
0.0; vpn.delta_ y = 0.0; vpn.delta_z = 1.0;

vpn.delta x

peval_view_ori_matrix3(&vrp, &vpn, &vup, /* Evaluate orient matrix */
&PEX_error, vrep.ori_matrix);

SAFE_PEX("peval_view_ori matrix3"); /* Check for error status */

peval_view _map_matrix3(&map, &PEX_error, /* Evaluate map matrix */
vrep.map_matrix);

SAFE_PEX("peval_view_map matrix3"); /* Check for'error status */
pset_view_rep3(WS, VIEW, &vrep); /* Set the view representation */
pset_edit_mode (PEDIT_ INSERT); /* Set edit mode to insert elements */

pset_disp upd st (WS, PDEFER_WAIT, PMODE_NIVE);
/* Set update state to WAIT */

pset_hlhsr_mode (1, PHIGS_HLHSR MODE_ZBUFF);/* Enable WS Z buffering */

nset_names.num_ints = 1; /* Name set list count */
nset_names.ints = namesints; /* Name set list of integers */
namesints[0] = PICKABLE; /* Put the PICKABLE name in */

1-210 ESV Workstation Reference Manual [2.0]

ES/PEX

/* the name set list. */
pick _incl.number = 1; /* Set Picking inclusion filter to 1 name */
pick_incl.integers = namesints;

/* Set the names list to be same as nameset*/

pick_excl.number = 0; /* Empty picking exclusion filter x/
pick_excl.integers = NULL;

XCreatePC(dpy, pick PEX, &pc); /* Create picking context */
XSetPickFilters(dpy, pc, &pick_incl, &pick_excl); /* Set pick filters */

/*

Make boxes

make_boxes defines a polyline cube and a fillarea cube in 3

dimensions. Structures POLYBOX and FILLBOX are defined to contain

these data elements along with color and style attributes to be applied
to the data elements. A higher level structure DISPLAY STRUCT is defined
to include both the POLYBOX and FILLBOX structures and is then

posted to the open workstation to be displayed.

*/

Make_boxes ()
{

Pmatrix3 identity;
/* Define polyline cube vectors */

static Ppoint3 line_pointsl(l= /* Define points for front face */
{{ 0.5, 0.5, 0.5y , { 1.0, 0.5, 0.5} ,

{ 1.0, 1.0, 0.5} , { 0.5, 1.0, 0.5} ,

{ 0.5, 0.5, 0.5}};

static Ppoint3 line_points2[]= /* Define points for back face */
{t{ 0.5, 0.5, 0.0} , { 1.0, 0.5, 0.0} ,

{ 1.0, 1.0, 0.0} , { 0.5, 1.0, 0.0} ,

{ 0.5, 0.5, 0.0}};

static Ppoint3 line_points3[]= /* Define connecting line */
{{ 0.5, 0.5, 0.5} , { 0.5, 0.5, 0.0}};

static Ppoint3 line points4[]= /* Define connecting line */
{{ 1.0, 0.5, 0.5} , { 1.0, 0.5, 0.0}};

ESV Workstation Reference Manual [2.0] 1-211

ES/PEX

static Ppoint3 line_points5([]= ‘ /* Define connecting line */

{{

1.0, 1.0, 0.5} , { 1.0, 1.0, 0.0}};

static Ppoint3 line points6[]= /* Define connecting line */

{{

0.5, 1.0, 0.5} , { 0.5, 1.0, 0.0}};

/* Define solid cube faces */

static Ppoint3 £ill pointsl(]l= /* Define points for front face */

{{
{

-0.5, -0.5, 0.5} , { 0.0, -0.5, 0.5} ,
0.0, 0.0, 0.5} , { -0.5, 0.0, 0.5}};

static Ppoint3 £ill points2[]= /* Define points for back face */

{1
{

-0.5, -0.5, 0.0} , { 0.0, -0.5, 0.0} ,
0.0, 0.0, 0.0} , { -0.5, 0.0, 0.0}};

static Ppoint3 fill_points3([]l= /* Define points for right face */

({
{

0.0, -0.5, 0.5} , { 0.0, -0.5, 0.0} ,
0.0, 0.0, 0.0} , { 0.0, 0.0, 0.5}};

static Ppoint3 fill points4[]= /* Define points for left face */

{{

-0.5, -0.5, 0.5} , { -0.5, -0.5, 0.0} ,

{ -0.5, 0.0, 0.0} , { -0.5, 0.0, 0.5}}:
static Ppoint3 £fill points5([]= /* Define points for bottom face */
{{ -0.5, -0.5, 0.5y , { 0.0, -0.5, 0.5} ,

{ 0.0, -0.5, 0.0} , { -0.5, -0.5, 0.0}};
static Ppoint3 £fill pointsé6([]l= /* Define points for top face */

{{
{

-0.5, 0.0, 0.5} , { 0.0, 0.0, 0.5} ,
0.0, 0.0, 0.0}y , { -0.5, 0.0, 0.0}};

Ppoint_list3 Line_list[5], Fill_list[51;

pset_edit_mode (PEDIT_INSERT); /* Set edit mode to insert elements */

punpost_all_ structs (WS); /* Unpost to remove any old structures */
pdel_all structs(): /* Delete any old structures *x/
popen_struct (POLYBOX) ; /* Open line drawing structure x/
pset_line colr_ ind(2); /* Assigndefault indexcolor2to lines*/
Line 1ist[0].num_points = 5; /* Fill in number of points in
list */

Line list[0].points = line_pointsl; /* Pointer to point array */

ppolyline3(&Line list[0]); /* Create a polyline element -ox/

1-212 ESV Workstation Reference Manual [2.0]

ES/PEX

pset_line_ colr_ind(3); /* Assign default index color 3 to lines */

Line_list[1].num _points = 5;
Line list(1l].points = line_points2;
ppolyline3(&Line list[1]);

pset_line_colr_ind(4); /* Assign default index color 4 to lines */
Line_list[2].num_points = 2;
Line_list([2].points = line points3;
ppolyline3 (&Line_list[2]);

pset_line_colr_ind(5); /* Assign default index color 5 to lines */
Line 1list[3].num points = 2;
Line list[3].points = line_points4;
ppolyline3(&Line_list[3]);

pset_line_colr_ind(6); /* Assign default index color 6 to lines */
Line_ list([4].num points = 2;
Line_list[4].points = line points5;
ppolyline3(&Line_list[4]);

pset_line colr_ ind(7); /* Assign default index color 7 to lines */
Line list[5].num points = 2;
Line_list[5].points = line pointsé;
ppolyline3 (&Line_list[5]);

pclose_struct(); /* Close line drawing structure */
popen_struct (FILLBOX) ; /* Open filled drawing structure */
pset_int_style(PSTYLE_SOLID); /* Set interior style to be solid */
pset_int_colr_ind(7); /* Assign default index color 7 to face */
Fill 1ist([0].num points = 4; /* Fill in number of points in list */
Fill 1ist[0].points = fill pointsl; /* Pointer to point array */
pfill_area3(&Fill 1ist[0]); /* Create a fill area element */
pset_int_colr_ind(3); /* Assign default index color 3 to face */

Fill 1ist[1].num points = 4;
Fill list([1l].points = fill points2;
pfill area3 (&Fill_list[1]);

pset_int_colr_ind(2); /* Assign default index color 2 to face */
Fill list[2].num points = 4;
Fill list[2].points = fill points3;
pfill area3(&Fill_list([2]);

ESV Workstation Reference Manual [2.0] 1-213

ES/PEX

pset_int_colr_ind(4); /* Assign default index color 4 to
Fill list[3].num points = 4;
Fill list[3].points = fill points4;
pfill area3(&Fill_list[3]):

pset_int_colr_ind(5); /* Assign default index color 5 to
Fill list([4].num points = 4;
Fill list[4].points = fill points5;
pfill area3(&Fill list([4]):

pset_int_colr_ind(6); /* Assign default index color 6 to
Fill list[5].num points = 4;
Fill list[5].points = fill pointsé6;
pfill_area3 (&Fill_list([5]);

pclose_struct(); /* Close filled drawing structure

make identity(identity);

popen_struct (DISPLAY_STRUCT); /* Open the top level display struc
pset_view_ind(VIEW) ; /* Set the view index to be used
pset_hlhsr_id(PHIGS_HLHSR_ID_ON); /* Turn on Z buffering

face

face

face

ture

padd_names_set (&nset_names) ; /* Add nameset for picking (PICKABLE)
plabel (TRANS) ; /* Insert a label for future updates

pset_local_tran3(identity, PTYPE_REPLACE) ;

/* set transformation matrix*/
pexec_struct (FILLBOX) ; /* Include the filled square
pexec_struct (POLYBOX) ; /* Include the line drawn square
pset_hlhsr id(PHIGS_HLHSR ID_OFF); /* Turn off Z buffering

pclose_struct();

ppost_struct (WS, DISPLAY_STRUCT; 1.0); /* Post DISPLAY STRUCT, prio 1

pupd_ws (WS, PUPD_PERFORM) ; /* Update the workstation

pset_edit_mode (PEDIT_REPLACE) ; /* Set edit mode to replace

/*

make_identity

This routine sets the passed matrix to be an identity matrix.

*/

*/

*/

*/

*/
*/
*/
*/
*/

*/
*/
*/

*/

*/
*/

1-214 ESV Workstation Reference Manual [2.0]

ES/PEX

make_identity(matrix)

Pmatrix3 matrix;

matrix[0][0]
matrix[0][1]
matrix[0][2]
matrix[0] [3]
matrix[1][0]
matrix[1][1]
matrix({1][2]
matrix[1][3]
matrix[2][0]
matrix[2][1]
matrix[2] [2]
matrix[2] [3]
matrix[3][0]
matrix([3][1]
matrix[3][2]
matrix[3][3]

Cleanup ()

{

}

1;

= 0;

0;
0;
0;

= 1;

0;

= 0;
= 0;

0;
1;
0;
0;
0;
0;
1;

punpost_all structs(WS);
pdel_all structs():
pclose_ws (WS) ;
pclose_phigs();

/*

/*
/*
/*
/*

Cleanup routine when done */

Unpost all structures
Delete all structures
Close workstation

Close PHIGS

ESV Workstation Reference Manual [2.0]

on ws */
x/
*/
*/

1-215

ES/PEX

header4.h

/*

header4.h
This file contains header information for example 4 programs.

Author: James Buckmiller May 1990.
Modified: J. Buckmiller Mar 1991. Approved C binding

Copyright (C) 1990, Evans & Sutherland
*/

#define WS 1

#define POLYBOX 1

#define FILLBOX 2

#define DISPLAY_STRUCT 3

#define VIEW 4

#define TRANS 5

#define SPACEKEYSYM 32

#define MAXDIALS 8 /* number of dials on dials box */
#define CHARS_PER DIAL 8 /* size of dials labels */
#define SAFE_PEX(routine) Error Check(_ FILE_, _ LINE , routine)
#define DEG_TO_RAD (D) ((3.14159265358 / 180.0) * (D))

#define DIALSCALE .005 /* Dial scale value */

#define PICKABLE 10 /* name for inclusion filter */

extern Window myWin;
extern Display *dpy;
extern char *ProgramName;

extern int Major_op; /* input extension values */
extern int First ev;
extern int First_err;

extern Pint_list nset_names; /* Pick list nameset declaration */
extern XPickFilter pick_incl, pick_excl; /* Pick filters declaration */
extern Pint namesints([1]; /* Name arrays for nameset *x/
extern PC pc;/* pick context */

extern Pint PEX_error; /* For PEX error numbers */

extern Pmatrix3 identity:

1-216 ESV Workstation Reference Manual [2.0]

ES/PEX

Additional Information

General Computer Graphics

Foley, James D., Andries van Dam, Stephen K. Feiner, and
John F. Hughes, Computer Graphics - Principles and Practice, Second
Edition, Reading, MA: Addison-Wesley Publishing Company, 1990.

Newman, William M. and Robert F. Sproull, Principles of Interactive Com-
puter Graphics, Second Edition, New York: McGraw-Hill Book Compa-
ny, 1979.

Computer Graphics Standards

Information processing systems - Computer graphics - Programmer’ s
Hierarchical Interactive Graphics System (PHIGS), Part 1 - functional
description, International Standard, ISO/IEC 9592-1:1988(E).

Information processing systems - Computer graphics - Programmer’s
Hierarchical Interactive Graphics System (PHIGS), Part 2 - archive file
format, International Standard, ISO/IEC 9592-2:1988(E).

Information processing systems - Computer graphics - Programmer’s
Hierarchical Interactive Graphics System (PHIGS), Part 3 - clear-text
encoding of archive file, International Standard, ISO/IEC 9592-3:1988(E).

Information processing systems - Computer graphics - Programmer’ s
Hierarchical Interactive Graphics System (PHIGS), Part 4 - Plus
Luminére und Surfaces (PHIGS PLUS), DIS PHIGS PLUS,

14 February 1991, ISO/IEC 9592-4:199x.

Standards in the Computer Graphics Industry, Fairfax, VA: National Com-
puter Graphics Association, 1989.

ESV Workstation Reference Manual [2.0] 1-217

2. X Extensions

X Extensions

Table of Contents
2. X Extensions 2-1

INETOQUCHION ...uvvieevieiniierieitieereereeesrteesaeeessseseseeessaessasesssasesneesssanssessnessssnessesssssossss 2-1

X INPUL EXIENSION ...veverererrrreneerenterensenensensesesscsesessessssesessesessessossssssessssssssssnssnssns 2-2
Implementation NOLESccveereerrrcrrsreririnieenenieresseseesessssssssisesessens 2-2
Functional DeSCriptionsccocevmminininininiiniiiieieseesssseens 2-7
MaCTO DESCIIPHONS ...cccveueeucneecnirrinirieinie sttt sssssesessasens 2-11
EVENt RECOTAS ...uuviiiecrriininriiecnneeerrreeecesnsreerssseesessssessssessssssassssesssnnenes 2-12
AddItioNal SITUCIUTES ..ovvviienireeirirrreersrneeessssseeessseseesssaesessnsassssesssnnsans 2-14

X Picking EXIENSION ...cuccceveeeererrererseseeseesescetsncstssssuesessesssssssessssessssesesssssssassnes 2-16
OVETVIEW .cvviiecirrieiireeisssereesssrsesssssssessssssenesssnssesssasssssssssesssasesssesssanases 2-16
X Picking Data SIIUCLUTESccccrvruirrescrinnrinuiiisseniieinisessseesssesens 2-17
PC (PICK CONEXE) ..ottt see e sesvesvesessesssssasssssssanens 2-18
XPickEvent
XPickFilter
XPICKPALNveeeereecrreceitreeccrreeesitee s neteeecssressnsesesssnassnnssessens
XPICKPAthEVENT ...t srec s cseasssaeseennes
XPICKPAENITEMcvoieieeereree et sr s r e saesteseessesassessesse
INtErface ROULINES ...cocovuvriviriiiiiirreeereieeceseeeeesssnesesassasessasesessnsesssnssnnns
XCreatePC
XFreePCccuueeun.
XFreePickFilter
XFreePickPath
XGEtPICKBOXSIZEoocoieeeieie et e saeessaas s sanee
XGetPickEventType
XGEPICKFIIELSc.ooevecvitereecreee et et eerae et e seae s erssseseennns
XGetPickHighlightingColorcccccoceveineennneneecnnescscssseesenees 2-36
XGetPickHighlightingModeccccoornienieniennnininninininieennee 2-37
XGEtPICKMOGEcooeveeeinecrinecrreeenteetete st ee s e sressestesessessesessennes 2-38
XGetPICKREtUINVAISccooiveeieeeeieeienneceeertesree e esressaessesessnenes 2-39
XGetSelectedPICKEVENLESccciiiieieiiieeenrre e ceseneessneensaneees 2-40
XPUCK ..oviieririerieniireerrictiestesseebeensesssessaesaesesssansesnsesnsessanssenssssasnannes 2-41
XPickPathEventToPRathccooiiriiiiinrieccnretenieeescreesssnessenenns 2-42
XPIEPICK ...ttt eeseaestn e seee e e eesseessnesssessssnssnsessassnses 2-43
XSeleCtPICKEVENEScceoeiieeeeciecite e creeneeeceesesessesssesaneennes 2-44
XSEIPICKBOXSIZEc.oovveniirieiereereteereeeeraeeeseesessassssssesessensessasees 2-45
XSEtPICKFIIIErSoovveeiierieciectectesrtereeet e e sressree e e sesnesseonne 2-46
XSetPickHighlightingColorcccoevrvinivincninnnneninienenes 2-47
XSetPickHighlightingModecccocevievirirnnienennneeeeeeiensnennes 2-48
XStPICKMOTEoocviiiiiiieereectre ettt e e e seae e e ba e srasssnesasesnnes 2-49
XSetPiCkRetUurnVals ... e ceveceeseecaeens 2-50

ESV Workstation Reference Manual [2.0] 2-i

X Extensions

2 -

X Overlay FUNCHONANILYcccecerrreeereereereresescnesenenensesseesessesessssesensssesessssessenene 2-51
XANOCOVEriayPlanesc.cccoeveeverceniencnrenenenseneeseseereesessessessenees 2-51
XFreeOverlayPIaneso.ooeeeeeereeeeeeeeeeneeeseseeeeneeste s seeesensens 2-52
XStoreOverlayColorcoieeeieivneneernenesneseessessessessesssessessens 2-52
XInstallOverlayColormapcoceireennnicciennsenenensensnessseenens 2-53
XSeIECILAYETcvocreeirecteteeceere et nre et e e ste s aesraeesae s aessaaenaes 2-53
RESITICHONS ...cueeuiiiniieenicirtneetrenteete et nreee e seees et eete e e sseesessesseseenes 2-53

X Multiscreen Functionalitycccoceeeceesceiencrrceenescenenenenreneeesseneesesseneseeneenes 2-54
Defining the Number of Available Screenscocovevvevrverenceneerenes 2-54
Defining StEre0 SCIEENScccevreeererrrerererereereneeseseseressesesaeseseeresassenenes 2-55
Moving from SCTEen t0 SCTEENcceerererererrenenresseesassesaeressessessones 2-55
Enabling and Disabling Moving Between Screens

Via the CUTISOTccivinririeentenenerenresnenerecraresassseessesseseseesases 2-56
Inquiring Information about SCIEenscccecveevenerirencneeeniccnescncnes 2-56
XFreeScreeninfo ...t secsessesens 2-57
XGetScreensInfo ...t stereseenes 2-58
XScreenWarpByYCUISOLc.cccccverereeneeeerecereneeneeeneseseseesesessesessens 2-61
XWarpTpScreen

X Video Timing Formats Functionalityccccceeveeveeseeneruenersenenieseensersennees 2-63
XVIdEOMOMEcooiiiiiiriniecinecectntent et sr st se et st enes e seene 2-63

X Miscellaneous Traversal Functionalityc.cccccceeeerceeneneseennnenecnescencenenc 2-65
XFreeTraversallinfo ... e eseneesenns 2-66
XGetTraversallnfoccerceneneneneneeeeeensseseercesssesessene 2-67
XRedrawDelay3Dcouoieiiiieeienieneeieeneeiaeeeessessessseesssessasssens 2-71

ESV Workstation Reference Manual [2.0]

(

X Extensions

2. X Extensions

Introduction

This chapter describes the following ESV Workstation extensions to the X
server:

¢ X Input Extension
» X Picking Extension
¢ E&S Extension
« X Overlay Functionality
o X Multiscreen Functionality
+ X Video Timing Formats Functionality

» X Miscellaneous Traversal Functionality

ESV Workstation Reference Manual [2.0] 2-1

X Extensions

X Input Extension

The X Consortium developed the X Input Extension for what are called “‘ex-
tended devices.” This section describes the X Input Extension functions and
their implementation in the ESV Workstation. It does not contain a complete
description of the X Input Extension. Additional information can be found in
the on-line man pages. This section discusses the following topics:

« “Implementation Notes” provides the basic information necessary for
using the X Input Extension on an ESV Workstation.

¢ “Function Descriptions” describes some of the key X Input Extension
functions.

e “Macro Descriptions” describes some of the X Input Extension
mAcros.

* “Event Records” describes some of the X Input Extension event
records that can be received in an XNextEvent call.

+ “Additional Structures” describes some of the structures used by the
X Input Extension.

Implementation Notes

Extended Device Event Handling

There are six classes of extended devices: KEY, BUTTON, VALUATOR,
PROXIMITY,FOCUS, and FEEDBACK. A physical device may provide more
than one class of information; e.g., a knob box may provide both VALUATOR
and FEEDBACK.

Event Selection

Input event selection for extended devices requires a little more work than
standard X events. There are four steps to selecting events for a set of devices.

1. Get the List of Available Devices

First, the application does an inquiry to determine the list of available devices.
This is done with XListinputDevices. This returns a list of XDevicelnfo
structures which contains information about the devices supported by an im-
plementation of the X Input Extension. This information includes the ID,
type, name, number of classes supported, and a list of class information. The
list of input devices always includes the X pointer and X keyboard.

Following is a list of extension devices supported in the ESV Workstation
implementation and their associated classes.

ESV Workstation Reference Manual [2.0]

X Extensions

Name Class
XI_BUTTONBOX BUTTON, FEEDBACK
XI_KNOB_BOX VALUATOR, FEEDBACK

XI_TABLET VALUATOR, BUTTON
XI_SPACEBALL VALUATOR, BUTTON
2. Open the Devices

Each device is opened for use by an application calling XOpenDevice with
the device ID returned in the XDevicelnfo list. This procedure returns a list
of XDevice structures containing specific class information.

The following example shows how to get a list of extended devices and
open them.

Display *display;

Window window;

XDeviceInfo *devicelist, *dl;

XDevice *dials = NULL;

XDevice *tablet = NULL;

XDevice *space = NULL:

XDevice *button = NULL;

XID dials_id, tablet_id, space_id, button_ id;
int ndev,i;

devicelist = XListInputDevices (display, ndev);
dl = devicelist;
for (i = 0; 1 < ndev; i++, dl++)
{
if (!strcmp(XI_KNOBBOX, dl->name))
{
dials_id = dl->id;
dials = XOpenDevice (display, dials_id):
}
if (!strcmp(XI_TABLET, dl->name))
{
tablet_id = dl->id;
tablet = XOpenDevice (display, tablet id);
}
if (!strcmp (XI_SPACEBALL, devices->name))
{
space_id = dl->id;
space = XOpenDevice (display, space_id);
}
if (!strcmp(XI_BUTTONBOX, dl->name))
button_id = dl1->id;
button = XOpenDevice (display, button_id);

ESV Workstation Reference Manual [2.0] 2-3

X Extensions

3. Find Event Types and Classes

X extension events are returned through a call to XNextEvent just like normal
X events. However the event type is determined by the extension based on an
internal event type that is offset by a server determined base. This means that
the application must determine the event types in order to compare them to
values returned by the call to XNextEvent. Also, in order to select events, the
event class of the event must be determined.

The information that has been returned at this point can be supplied to
macros to find the event types and event classes for each device. Some
examples of these are DeviceButtonPress, DeviceButtonRelease, and
DeviceMotionNotify. The macros available are listed on the XOpenDevice
man page.

4. Select Extension Events

The event class information is used by XSelectExtensionEvent to select
events from extension devices. The following example shows how to get the
event classes and use them to select events.

XEventClass *eventClass[2];
EventType *event_typel2];
int event_count = 0

int DeviceMotion = -1;

int DevicePress = -1;

if (button)
{
DeviceButtonPress (button, DevicePress,
eventClass[event_count]);
event_count++;
}
if (dials)
{
DeviceMotionNotify(dials, DeviceMotion,
eventClass[event_count]):
event_count++;
}
XSelectExtensionEvent (display, window, eventClass,
event_count);

2-4 ESV Workstation Reference Manual [2.0]

X Extensions

Event Handling

Below is a table that lists each device, and the associated structure definition
of events that are generated. The event type is not predefined as in standard
X events. The values for the event types are generated from the above macros.
The structures for each event type are described in “Event Records.”

Device Structure

BUTTONBOX XDeviceButtonEvent

KNOB_BOX XDeviceMotionEvent

TABLET XDeviceMotionEvent, XDeviceButtonEvent
SPACEBALL XDeviceMotionEvent, XDeviceButtonEvent

The following example shows how to process input extension events.

XEvent pe;
XDeviceMotionEvent *dm
XDeviceButtonEvent *db

(XDeviceMotionEvent *) & pe;
(XDeviceButtonEvent *) & pe;

XNextEvent (dpy, é&pe);
switch (pe.type)
{

/* process normal X events with case xxx: */

/* process extension events */
default:
if (pe.type == DeviceMotion)
{
if (dm->deviceid == tablet_id)
{
/* Process tablet motion */
}
else if (dm->deviceid == space_id)
{
/* Process space ball motion */
}
else if (dm->deviceid == dials_id)
{
/* Process knob box motion */
}
}
else if (pe.type == DevicePress)
{
if (db->deviceid == tablet_id)
{
/* Process tablet button press */

ESV Workstation Reference Manual [2.0] 2-5

X Extensions

}
else if (db->deviceid == space_id)
{
/* Process space ball button press */
}
else if (db->deviceid == button_id)
{
/* Process button box button press */
}
}
break;
}

Feedback Control

Feedback is used for sending to an extension device. The two devices on the
ESYV Workstation that support it are the knob box and button box. The knob
box has an 8 character display for each knob and the button box has an LED
for each button. These devices are sent to using the
XChangeFeedbackControl function.

The following example shows how this is done for the first knob label.
Display *display;
XDevice *dials;
XStringFeedbackControl feeder;
KeySym message[8];
char *label;

/* the characters to display must be encoded into KeySyms */

feeder.class = StringFeedbackClass;

feeder.length = sizeof (XStringFeedbackControl) +
(strlen(label) * sizeof (KeySym));

feeder.num keysyms = strlen(label);

feeder.syms_to_display = message;

feeder.id = 0; /* knob 0*/

XChangeFeedbackControl (display, dials, DvString, &feeder);

2-6 ESV Workstation Reference Manual [2.0]

X Extensions

Function Descriptions
XListinputDevices
Syntax

XDevicelnfo *
XListinputDevices (display, ndevices)

Display *display,
int *ndevices;
Arguments
display The connection to the X server.
ndevices The address of a variable into which the number of

available input devices can be returned.

Description

The XListinputDevices procedure is used to determine the number and types
of extension devices available for input. An array of XDevicelnfo structures
is returned, with one element in the array for each device. The number of
elements is returned in the ndevices argument.

XFreeDevicelL.ist
Syntax
XFreeDevicelList (list)

XDevicelnfo *Jist;

Argument
list The pointer to the XDevicelnfo array returned by

a previous call to XListinputDevices.
Description

The XFreeDeviceList procedure frees the list of input device information.

ESV Workstation Reference Manual [2.0] 2-7

X Extensions

XOpenDevice
Syntax
XDevice *
XOpenDevice (display, device_Iid)
Display *display;
XID device_Id,
Arguments
display The connection to the X server.
device id The ID that identifies the device to be opened. This
ID is obtained from the XListinputDevices re-
quest.
Description

This procedure opens the device for the application and returns an XDevice

structure if successful. The XDevice structure contains a pointer to an array

of XinputClassinfo structures. Each element in that array contains informa-
tion about events of a particular input class supported by the input device. A
program can determine the event type and event class for a given event by us-
ing macros defined by the input extension.

XCloseDevice

Syntax
int
XCloseDevice (display, device)
Display *display;
XDevice *device;

Arguments .
dispiay The connection to the X server.
device The device to be closed.

Description

This function closes the device and frees the XDevice structure.

2-8 ESV Workstation Reference Manual [2.0]

X Extensions

XSelectExtensionEvent

Syntax
XSelectExtensionEvent (display, w, event_list, event_count)
Display *display;
Window w;
XEventClass *event_list;
int event_count;
Arguments
display The connection to the X server.
‘W The window whose events you are interested in.
event_list A pointer to a list of XEventClasses that specify
which events are desired.
event_count The number of elements in the event_list.
Description

This procedure requests that events matching the events and devices de-
scribed by the event list are reported to the application. The elements of the
XEventClass array are the event_class values returned by the Input Exten-
sion macros to retrieve the event classes.

ESV Workstation Reference Manual [2.0] 2-9

X Extensions

XSelectExtensionEvent

Syntax
XChangeFeedbackControl(dispiay, device, mask, control)
Display *display;
XDevice *device;
Mask mask;
XFeedbackControl *control;
Arguments
display The connection to the X server.
device The device to be used for feedback.
mask The mask specific to each feedback that describes
s how the feedback is to be modified.
control The address of an XFeedbackControl structure
that contains the new values for the feedback.
Description

This function is provided to manipulate those input devices that support feed-
back. A BadMatch error will be generated if the requested device does not
support feedback. You can determine whether or not a given device supports
feedback by examining the information returned by the XOpenDevice re-
quest. For those devices that support feedback, XOpenDevice will return an
XinputClassinfo structure with the input_class field equal to the constant
FeedbackClass (defined in the file XI.h). The feedback classes that are cur-
rently defined are: KbdFeedbackClass, PtrFeedbackClass,
StringFeedbackClass, IntegerFeedbackClass, LedFeedbackClass, and
BellFeedbackClass.

An input device may support zero or more feedback classes, and may
support multiple feedbacks of the same class. Each feedback contains a class
identifier and an ID that is unique within that class for that input device. The
ID is used to identify the feedback when making an
XChangeFeedbackControl request.

The XChangeFeedbackControl function modifies the values of one
feedback on the specified device. The feedback is identified by the ID field of
the XFeedbackControl structure that is passed with the request. The fields of
the feedback that are to be modified are identified by the bits of the mask that
is passed with the request. XChangeFeedbackControl can generate a
BadDevice, BadMatch, or BadValue error.

ESV Workstation Reference Manual [2.0]

X Extensions

Macro Descriptions

You can determine the event type and event class for a given event by using
the macros defined below. The event type is used to check the type field of
an event generated by XNextEvent.

The name of the macro corresponds to the desired event, and the macro is
passed to the structure that describes the device from which input is desired.

DeviceButtonPress(d, type, class)

Returns the event type and class of button press events for the
BUTTON device class. The parameter dis a pointer to an XDevice
structure for a BUTTON class device.

DeviceButtonRelease(d, type, ciass)

Returns the event type and class of button release events for the
BUTTON device class. The parameter d'is a pointer to an XDevice
structure for a BUTTON class device.

DeviceMotionNotify(d, type, class)

Returns the event type and class of motion events for the VALUATOR
device class.The parameter dis a pointer to an XDevice structure for
a VALUATOR class device.

ESV Workstation Reference Manual [2.0] 2-11

X Extensions

Event Records

Device Button Events

DeviceButtonPressed/DeviceButtonReleased events are generated when
a key is pressed or released on a BUTTON extension device and that type of
event is selected. The structure associated with the DeviceButtonPressed/
DeviceButtonReleased event is defined as follows:

typedef struct {
Int
unsigned long
Bool
Display
Window
XD
Window
Window
Time
int
int
unsigned int
unsigned int
Bool
unsigned int
unsigned char
unsigned char
int

type;

serial,
send_event;
*display;
window;
deviceid,
root;
subwindow;
time;

X Y5

X_root, y_root;
state;

button;
same_screen,
device_siate;
axes_count;
first_axis;
axis_data[6];

} XDeviceButtonEvent;
typedef XDeviceButtonEvent XDeviceButionPressedEvent;
typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

ESV Workstation Reference Manual [2.0]

X Extensions

Device Motion Events

The DeviceMotion event is generated when there is motion on a VALUATOR
extension device. The structure associated with the DeviceMotion event is

defined as follows:

typedef struct {
int
unsigned long
Bool
Display
Window
XID
Window
Window
Time
int
int
unsigned int
char
Bool
unsigned int
unsigned char
unsigned char
int

type;

serial,
send_event;
*display;
window;
deviceid,
roof;
subwindow;
time;

X, Y,

x_root, y_roof;
state;

is_hint;
same_screen;
device_state;
axes_count;
first_axis;
axis_data[6];

} XDeviceMotionEvent;

ESV Workstation Reference Manual [2.0]

X Extensions

Additional Structures

These are some of the input structures referenced by the X input Extension.
typedef struct _XAnyClassinfo *XAnyClassPtr;

typedef struct _XAnyClassinfo {

XD class;
int length;
} XAnyClassinfo;

typedef struct _XDevicelnfo *XDevicelnfoPtr;

typedef struct _XDeviceinfo {

XID id;

Atom type;

char *name;

int num_classes;

int use;

XAnyClassPtr inputclassinfo;
} XDeviceinfo;

typedef struct _XButtonlnfo *XButtoninfoPtr;

typedef struct _XButtoninfo {

XID class;
int length;
short num_buttons;

} XButtoninfo;
typedef struct _XAxisinfo *XAxisinfoPtr;

typedef struct _XAxisInfo {

int resolution;

int min_value;

int max_value;
} XAxisInfo;

typedef struct _XValuatorinfo *XValuatorinfoPtr;

2-14 ESV Workstation Reference Manual [2.0]

X Extensions

typedef struct _XValuatorinfo {

XD

int

unsigned char
unsigned char
unsigned long
XAxisInfoPtr

} XValuatorinfo;

typedef struct {
unsigned char
unsigned char

} XinputClassinfo;

typedef struct {
XiD
int
XInputClassinfo

} XDevice;

class;

length;
num_axes;
mode;
motion_buffer;
axes;

input_class;
event_type base;

device_id;
num_classes;
*classes;

ESV Workstation Reference Manual [2.0] 2-15

X Extensions

X Picking Extension

Overview

2-16

PHIGS does not interact well with the X Window System. The PHIGS input
model is not compatible with the X input model. If you use an output-only
PEX workstation and find the workstation’s window ID, you can use X input
functions with PHIGS output functions. This allows your application to re-
ceive input events, but leaves you with no way to do picking on the displayed
PEX data structure. The picking extension described in this chapter is a solu-
tion to this problem.

This picking extension allows picking operations on PEX graphics
displayed in an X window to report their results as events back to your
application.

The data returned by the picking extension is more detailed than that de-
fined by PEX. The pick data returned by the picking extension can include the
following:

* A window space coordinate on the picked primitive, which is within
the pick box

* A model space coordinate on the picked primitive, which is within the
pick box

* An index for identifying which element of the picked primitive was
picked (e.g., the line item of a polyline primitive or the character with-
in a text string)

» The parameterized values which identify a point on a NURB curve or
NURB surface

Graphics applications often encounter the need for the user to identify some
graphics element from its position on the display device. The X Picking Ex-
tension addresses the need for identifying PEX graphics elements in PHIGS
workstation windows.

A graphics application initiates a pick operation by specifying the win-
dow of a PHIGS workstation, a picking context (PC), and the location about
which the pick box is to be centered. The graphics subsystem is then respon-
sible for determining the picked graphics primitive. It does this by traversing
all posted structures to the PHIGS workstation and determining which of them
fall (at least some portion) within the pick box, and whether they are pickable
according to the inclusion and exclusion filters of the PC. From this set of
graphics primitives, one is returned to the graphics application according to
the mode of the PC.

Information about that graphics primitive is returned to the application in
an X extension event form. The information that can be returned includes the

ESV Workstation Reference Manual [2.0]

(

(

X Extensions

screen and model coordinates of the primitive, the element number and struc-
ture ID of the primitive, the current pick ID at the moment the primitive was
traversed, and the complete path (element, struct, pickid) to the top of the
posted structure.

The X event mechanism is used to prevent delaying of the application
while the graphics subsystem is traversing the posted structures.

A prepick operation is also available through the X Picking Extension. It
can be used to highlight the set of graphics primitives which may be returned
as the result of a pick operation. No events are generated as the result of a
prepick operation.

A PC is used in the server to maintain state information that affects pick
operations. This is analogous to a graphics context (GC) used in X drawing
operations. The PC retains the settings of the following:

» pick mode - determines selection criteria

» pick box size - width and height of pick box

* pick highlighting color - pixel value for highlighting

* pick highlighting mode - amount of primitive to highlight

» pick inclusion filter - set of allowed names when picking
e pick exclusion filter - set of disallowed names when picking
pick return values - hints to avoid wasted computation

In a similar manner to the use of a GC, a PC must be created before it can
be used. Values of the PC may then be set to any of the legal values specified
by this document. An identifier for the PC is always specified for pick or
prepick operations. A PC should be destroyed by calling XFreePC when it is
no longer needed. An application may create as many PCs as it requires. More
than one pick or prepick operation may be concurrently pending on the same
PC.

X Picking Data Structures

The picking extension routines use the following data structures and types:
« PC (Pick Context)
« XPickEvent
» XPickFilter
* XPickPath
» XPickPathEvent
» XPickPathltem

ESV Workstation Reference Manual [2.0] 2-17

X Extensions

PC (Pick Context)
Syntax
typedef XID PC;
Description

The state of a pick operation is associated with a unique pick context identi-
fier. All state information needed by the server is associated with a pick con-
text. More than one pick request can be pending a pick context at any one
time.

2-18 ESV Workstation Reference Manual [2.0]

X Extensions

XPickEvent
Syntax
typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *dispiay;
PC pc;
Window window;
Time time;
int prim_type;
int valid_flags;
int itemid,
int elementid,
int structureid,
int pickid,
float modelx;
float modely;
float modelz;
float screenx;
float screeny,
float screenz;
float prim_spcift;
float prim_spci2;
} XPickEvent;
Arguments
type Equal to the value returned in the second argument of
XGetPickEventType.
serial The serial number of the event.
send event True if this event was generated by a XSendEvent call.
dispiay The display that generated the event.
pc The ID of the pick context which generated this event.
Multiple picks can be active at one time. Sending the pc
back lets you know which pick completed.
window The window in which the event was generated.

ESV Workstation Reference Manual [2.0]

X Extensions

time
prim_type

vaiid_fiags

The time stamp of the event (when it happened).

The type of the picked PEX primitive. It is set to
pick_nopick if nothing was picked. Otherwise, it is set to
one of

pick_marker

pick_marker2d

pick_text

pick_text2d

pick_annotationtext

pick_annotationtext2d

pick_polyline

pick_polyline2d

pick_polylinesetdata

pick_fillarea

pick_fillarea2d

pick_fillareaset

pick_fillareaset2d

pick_fillareadata

pick_fillareasetdata

pick_trianglestrip

pick_quadrilateralmesh

pick_setfillareasetdata

pick_cylinder

pick_sphere
Indicates which of the following fields in the XPickEvent
structure are valid. These flags may consist of any mixture
of

pick_screenpt_valid

pick_modelpt_valid

pick_primspcli_valid

pick_primspcl2_valid

If it is possible to determine the screen coordinates of the
point on the picked primitive which is within the pick box,
pick_screenpt_valid will be set.

If it is possible to determine the model coordinates of the
point on the picked primitive which is within the pick box,
pick_modelpt_valid will be set. If the current
transformation matrix is not invertible or if the model point
calculation has been turned off in the pick context by the
client, pick_modelpt_valid will not be set and the values in
modelx, modely, and modelz will not be usable.

ESV Workstation Reference Manual [2.0]

(\

X Extensions

If valid data exists in prim_spcl1 for the picked primitive,
pick_primspcl1_valid will be set. If valid data exists in
prim_spcl2 for the picked primitive,
pick_primspcl2_valid will be set.

itemid The item number of the picked structure. The interpretation

of the item number depends upon the primitive type. The
table below describes how to interpret the value for the
various types of primitives. The primitive’s index tells
which primitive in the PHIGS element was picked.

Primitive Type
pick_marker

pick_marker2d
pick_text

pick_text2d
pick_annotationtext
pick_annotationtext2d
pick_polyline
pick_polyline2d
pick_polylineset

pick_fillarea
pick_fillarea2d
pick_fillareaset
pick_fillareaset2d
pick_fillareadata
pick_fillareasetdata
pick_trianglestrip

ESV Workstation Reference Manual [2.0]

Description
index of the picked marker
index starts with 0

index of the picked marker
index starts with 0

index of the picked character
index starts with 0

index of the picked character
index starts with 0

index of the picked character
index starts with 0

index of the picked character
index starts with 0

index of the picked line segment
index starts with 1

index of the picked line segment
index starts with 1

index of the picked line segment
index starts with 1

always set to zero
always set to zero
always set to zero
always set to zero
always set to zero
always set to zero

index of the picked triangle
index starts with 0

X Extensions

pick_quadrilateralmesh index of the picked mesh (~,
index starts with O

pick_setfillareasetdata always set to zero

pick_cylinder index of the picked cylinder

index starts with 1

pick_sphere index of the picked sphere
index starts with O

elementid The element ID of the picked structure.
structureid The structure ID of the picked structure.

pickid The pick ID associated with the structure.

modeix The 3D coordinates of the pick point in model

modely space. If the picked primitive is 2-dimensional, the z-

modelz value will be set to zero.

screenx The pixel screen coordinates of the pick point

screeny relative to the window in which the pick was performed.

screenz The value of screenz is implementation dependent.

Note: The terms screenx and screeny are
misnomers because their values are relative to _
the window and not to absolute screen (
coordinates.

prim_spcl1 Reserved for future enhancements. Until then,
pick_primspcli_valid will never be set in valid_flags.

prim_spcl2 Reserved for future enhancements. Until then,
pick_primspcl2_valid will never be set in valid_flags.

Description

An XPickEvent is returned for each XPick() call made by a client application.
If no graphics primitives were in the pick box, or if no graphics primitives
within the pick box were pickable, the value of prim_type will be set to
pick_nopick. Otherwise, one item will be returned as the result of the pick
operation and the elements of the XPickEvent structure will be set as
indicated.

Note that the client application must have selected to receive
XPickEvents from the window in which the pick operation is to occur.

2-22 ESV Workstation Reference Manual [2.0]

X Extensions

XPickFilter
Syntax
typedef struct {
int number;
int *integers,
} XPickFiiter;
Description

Pick filters are used to specify which elements will be included or excluded
during a pick operation. The XPickFilter structure is the same as a PHIGS
Pintist. Only the names have been changed.

ESV Workstation Reference Manual [2.0] 2-23

X Extensions

XPickPath
Syntax
typedef struct {
Display *display;
Window window;
PC pc;
Window subwindow;
int prim_type;
int length;
int itemid,
XPickPathitem *path;
} XPickPath;
Arguments
pc The ID of the pick context which generated the
XPickPathEvents used to construct this pick path. Multiple
picks can be active at one time. Sending the pc back lets you
know which pick completed.
prim_type The same as in the XPickEvent description.
length The number of XPickPathltem records in the pick path. If
nothing was picked, the length will be zero.
itemid The item number within an element of a structure that was
actually picked. This is the same as in the XPickEvent
description. This is only meaningful for the last element in a
path so it is returned separately from the rest of the path.
path A pointer to a vector of XPickPathltem records. The last
item in the vector is the picked primitive.
Description
An XPickPath structure is returned by the XPickPathEventToPath routine
when it has assembled a complete pick path from a group of XPickEvent
records.
2-24 ESV Workstation Reference Manual [2.0]

X Extensions

XPickPathEvent
Syntax
typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
PC pc;
Window window;
Time time;
int prim_type;
int itemid,
int path_length;
int first_path;
XPickPathltem path{a];
} XPickPathEvent;
Arguments
type The type of the event. It is equal to the value returned in the
third argument to XGetPickEventType.
serial The serial number of the event.
send_event True if the event was generated by an XSendEvent call.
display The display that generated the event.
pc The ID of the pick context which generated this event.
Multiple picks can be active at one time. Sending the pe
back lets you know which pick completed.
window The window in which the event was generated.
time The time stamp of the event (when it happened).
prim_type The same as in the XPickEvent description.
itemid The item number within an element of a structure that was

path_length

ESV Workstation Reference Manual [2.0]

actually picked. This is the same as in the XPickEvent
description. This is only meaningful for the last element in a
path so it is returned separately from the rest of the path.

The total length of the path.; one greater than the highest
path item index. A path length of 0 indicates that nothing
was picked.

X Extensions

first_path The position in the pick path of the first item in the path. For
example, if path_length is 6 and first_path is 4 then this
event contains the 5th and 6th items in the path. Paths items
are numbered starting at 0.

path A vector of up to four path items. It contains a portion of the
actual path data.

Description
The complete pick path is reported to the client as one or more
XPickPathEvents. If the path length to the picked primitive is more than

four, multiple XPickPathEvents are sent to the client as needed to return the
complete path.

2-26 ESV Workstation Reference Manual [2.0]

X Extensions

XPickPathitem
Syntax
typedef struct {
int elementid,
Int structureid;
int pickid,
} XPickPathitem;
Arguments
elementid The element number of the item within the PHIGS structure.

structureid The ID of the PHIGS structure.

pickid An ID associated with the picked structure. It is the current
pick ID for the element in the XPickPathltem.

Description

An XPickPathltem structure identifies a structure in the pick path.

ESV Workstation Reference Manual [2.0] 2-27

X Extensions

Interface Routines

All interface routines return an integer value to indicate success or failure of
the call. They return a success if the call worked or an error code indicating

the type of failure.

The interface routines include the following:

°

XCreatePC

XFreePC

XFreePickFilter
XFreePickPath
XGetPickBoxSize
XGetPickEventType
XGetPickFilters
XGetPickHighlightingColor
XGetPickHighlightingMode
XGetPickMode
XGetPickReturnVals
XGetSelectedPickEvents
XPick
XPickPathEventToPath
XPrePick
XSelectPickEvents
XSetPickBoxSize
XSetPickFilters
XSetPickHighlightingColor
XSetPickHighlightingMode
XSetPickMode
XSetPickReturnVals

ESV Workstation Reference Manual [2.0]

(

X Extensions

XCreatePC
Syntax
int
XCreatePC(dpy, type, pc);
Display *dpy;
int type;
PC *pc;
Arguments
dpy The display on which you are going to perform a pick.
type The type of graphics structure on which you are going to
perform pick. One of the following defined constants.
pick_PEX
Currently only PHIGS structures can be picked. We expect
that other graphics interfaces will also need a way to report
picking information in an X compatible way.
pc Where you want the new pick context identifier stored.
Description

An XCreatePC call returns a new PC that you can use in an XPick or
XPrePick call. The new PC has the following default values which can be
changed and retrieved:

» pick mode = pick_first
+ return values = pick_compute_modelpt | pick_compute_special
» pick box size =9 x 9 pixels
» highlighting color = white
» highlighting mode = pick_highlighting_off
» inclusion filter = none
» exclusion filter = none
Errors
BadAlloc
BadValue (returned if type is not pick_PEX)

ESV Workstation Reference Manual [2.0] 2-29

X Extensions

XFreePC
Syntax
int
XFreePC(dpy, pc);
Display *dpy;
PC *pc;
Arguments
dpy The display on which the PC was created.
pc The PC to be freed.
Description
An XFreePC call removes a PC from the server and frees all related
resources.
Errors

BadPC

2-30 ESV Workstation Reference Manual [2.0]

X Extensioné

XFreePickFilter
Syntax

int
XFreePickFilter(filter)
XPickFilter *filter;

Argument
filter A pointer to an XPickFilter structure.
Description

An XFreePickFilter call releases the storage used by a pick filter. It is a safe
way to free the storage.

ESV Workstation Reference Manual [2.0] 2-31

X Extensions

XFreePickPath
Syntax
int

XFreePickPath(path)
XPickPath *path;

Argument
path A pointer to an XPickPath structure.
Description

An XFreePickPath call releases the storage used by a pick path. It is a safe
way to free the storage.

2-32 ESV Workstation Reference Manual [2.0]

X Extensions

XGetPickBoxSize
Syntax
int
XGetPickBoxSize(dpy, pc, width, height)
Display *dpy;
PC pc;
int *width;
int *height;
Arguments
dpy The display on which the PC was created.
pc A pick context whose value you are querying.
width Where to put the width of the pick box.
height Where to store the height of the pick box.
Description

An XGetPickBoxSize call gets the pick box size from a PC. See
XSetPickBoxSize for more information.

Errors
BadPC

ESV Workstation Reference Manual [2.0] 2-33

X Extensions

XGetPickEventType

Syntax
int
XGetPickEventType(dpy, PickEventType, PickPathEveniType)
Display *dpy,
int *PickEventType;
int *PickPathEventType;
Arguments
dpy The display on which you are going to perform a
pick.
PickEventType Where you want the type of a PickEvent to be
stored.
PickPathEventType = Where you want the type of a PickPathEvent to be
stored.
Description

An XGetPickEventType call returns the type of an XPickEvent and an
XPickPathEvent. This information is needed so that the programmer can
identify these events when they are returned from XNextEvent.

2-34 ESV Workstation Reference Manual [2.0]

X Extensions

XGetPickFilters
Syntax
int
XGetPickFilters(dpy, pc, inclusion, exclusion)
Display *dpy;
PC pc;
XPickFilter **inclusion;
XPickFilter **exclusion;
Arguments
dpy The display on which the PC was created.
pc A pick context whose value you are querying.
inclusion A pointer to a pointer to an XPickFilter structure. It will be
set to point to the current value of the inclusion filter.
exclusion A pointer to a pointer to an XPickFilter structure. It will be
set to point to the current value of the exclusion filter.
Description

An XGetPickFilters call returns the picking filters of a picking context.
XFreePickFilter should be called to release the storage used for each of the
inclusion and exclusion filters

Errors
BadPC

ESV Workstation Reference Manual [2.0] 2-35

X Extensions

XGetPickHighlightingColor

Syntax
int
XGetPickHighlightingColor(dpy, pc, color)
Display *dpy;
PC pc;
unsigned long *color;
Arguments
dpy The display on which the PC was created.
pc A pick context whose value you are querying
color Where to store the pixel value.
Description

An XGetPickHighlightingColor call gets the highlighting color from a PC.
See XSetPickHighlightingColor for more information.

Errors
BadPC

2-36 ESV Workstation Reference Manual [2.0]

X Extensions

XGetPickHighlightingMode

Syntax
int
XGetPickHighlightingMode(dpy, pc, mode)
Display *dpy;
PC pc;
int *mode;
Arguments
dpy The display on which the PC was created.
pc A pick context whose value you are querying.
mode Where to store the returned mode value.
Description

An XGetPickHighlightingMode call gets the current highlighting mode
from a PC. See XSetPickHighlightingMode for more information.

Errors
BadPC

ESV Workstation Reference Manual [2.0] 2-37

X Extensions

XGetPickMode
Syntax
int
XGetPickMode(dpy, pc, mode)
Display *dpy;
PC pc;
int *mode;
Arguments
dpy The display on which the PC was created.
pc A pick context whose value you are querying.
mode Where to put the returned value.
Description

An XGetPickMode call gets the picking mode from a PC. See
XSetPickMode for more information.

Errors
BadPC

2-38 ESV Workstation Reference Manual [2.0]

X Extensions

XGetPickReturnVals
Syntax
XGetPickReturnVals(dpy, pc, mask)
Display *dpy;
PC pc;
unsigned long *mask;
Arguments
dpy The display on which you are going to perform a pick.
pc A pick context whose value you are changing.
mask A pointer to a long word in which to store the current values.
Description

An XGetPickReturnVals call gets the current value of the computation mask
for the specified picking context. A computation mask serves as a hint to the
server to avoid unnecessary additional computation when returning the
details of a completed picking operation. See XSetPickReturnVals for more
information.

Errors
BadPC

ESV Workstation Reference Manual [2.0] 2-39

X Extensions

XGetSelectedPickEvents

Syntax
int
XGetSelectedPickEvents(dpy, win, mask)
Display ~*dpy;
Window win;
unsigned Iong *mask;

Arguments - ;

dpy * The display on which you have selected picking events.
win " A window from which you have selected picking events.

mask Where to store the pick event mask. =

‘ Descrlptlon

An XGetSeIectedPickEvents call gets the plck events mask from a window.
The pick.events mask determines which type of picking events will be sent to
the window as the result of a pick operation. SN

1

Errors

BadWindow (returned if the window doesn’t exist or isn’t being used to dis-
play 3D graphics)

ESV Workstation Reference Manual [2.0]

X Extensions

XPick

Syntax
int .
XPick(dpy, win, pc, X, y) '
Display “*dpy;
Window win;
PC . pc;
int X;
int Y;
Arguments | ¢ ,
dpy The display on which you are going to perform a pick.
win ' The window in which you are going to pick.
pc The ID of the pick context for the pick operation. All the
parameters that control how a pick or prepick operation is
done are taken from the pick context.
x The x coordinate in pixels of the pick location relative to the
window where the pick operation is to occur.
y The y coordinate in pixels of the pick location relative to the
window where the pick operation is to occur.
Description

An XPick call picks at the specified location in the specified window using
the parameters associated with the specified pick context.

XPick initiates a pick operation for the specified window according to the
parameters set in the specified pc. A pick event and one or more pick path
events will always be generated at the completion of the pick operation. They
will be reported to the window on which the operation was performed if the
setting of the pick events mask for that window has selected that event type.

The pick operation causes a traversal of all posted structures on the PHIGS
workstation associated with that window. Each of the drawn primitives is
analyzed to determine if any portion of it falls within the pick box centered at
the specified x and y. If two or more primitives fall within the bounds of the
pick box, the mode of the pe determines which of the primitives to return as
the result of the pick operation. (Refer to SetPickMode.)

Errors

BadAlloc (returned if the server is out of memory)

BadPC

BadWindow (returned if the window doesn’t exist or isn’t being used to dis-
play 3D graphics)

ESV Workstation Reference Manual [2.0] 2 - 41

X Extensions

XPickPathEventToPath (|
Syntax R
XPickPath
*XPickPathEventToPath(event)
XPickPathEvent *event;
Argument
event A pointer to an XPickPathEvent.
Description

XPickPathEventToPath is a utility function that can be used to merge a
number of separate XPickPathEvent records into a single XPickPath
structure. Because there is no real limit to the length of a pick path, one or
more pick path events must be sent to transmit the entire path.

2-42 ESV Workstation Reference Manual [2.0]

X Extensions

XPrePick

Syntax
int
XPrePick(dpy, win, pc, x, y)
Display *dpy;
Window win;
PC pc;
int X;
int Y
Arguments
dpy The display on which you are going to perform a pick.
win The window in which you are going to pick.
pc The ID of the pick context for the pick operation. All the

parameters that control how a pick or prepick operation is
done are taken from the pick context.

x The x coordinate in pixels of the prepick location relative to
the window where the pick operation is to occur.

y The y coordinate in pixels of the prepick location relative to
the window where the pick operation is to occur.

Description

An XPrePick call prepicks at the specified location in the specified window
using the parameters associated with the specified pick context. No pick
events are generated. Pick highlighting will be performed according to the
pick highlighting mode and pick highlighting color of the specified pc.

XPrePick can be used by the graphics application as a visual aid to show
the user what primitives fall within the pick box boundaries. All graphical
output primitives that are 1) within the pick box, 2) visible, and 3) pickable,
according to the value of the current name set and the inclusion/exclusion
filters, will be drawn in the highlight color.

Errors
BadAlloc (returned if the server is out of memory)
BadPC

BadWindow (returned if the window doesn’t exist or isn’t being used to dis-
play 3D graphics)

ESV Workstation Reference Manual [2.0] 2-43

X Extensions

XSelectPickEvents

Syntax
int
XSelectPickEvents(dpy, win, mask)
Display *dpy;
Window win;
unsigned long mask;
Arguments
dpy The display on which you are going to perform a pick.
win The window in which you are going to pick.
mask The bitwise logical OR of zero or more of the following:
PickMask, PickPathMask.
A mask value of zero means send no events. Having the
PickMask bit set will cause picking events to be sent.
Having the PickPathMask bit set will cause pick path
events to be sent.
Description

An XSelectPickEvents call selects the events to be sent by the server when
a pick occurs. By default, no events will be sent unless they have been
selected before a pick is requested.

The pick events mask for a window is analogous to the events mask that
controls selection of X core events such as ButtonPress or Exposure. A
limitation of the current implementation is that pick events and pick path
events may not be propagated up the window hierarchy. Pick events and pick
path events may only be reported to the window assoc1ated with the PHIGS
‘workstation for the pick opcratlon

Errors

BadWindow (returned if the wmdow doesn’t ex1st or isn’t being used to dis-
play 3D graphics)

BadValue (returned if mask bits other than those specified by PickMask and
PickPathMask are set) .

2-44 ESV Workstation Reference Manual [2.0]

X Extensions

XSetPickBoxSize
Syntax
int
XSetPickBoxSize(dpy, pc, width, height)
Display *dpy,
PC pc;
int ‘width;
int height,;
Arguments
dpy The display on which you are going to perform a pick.
pc A pick context whose value you are changing.
width The width of the pick box in pixels. k
height The height of the pick box in pixels.
Description

An XSetPickBoxSize call sets the size of the picking box. The default pick
box size is 9 pixels by 9 pixels.

The pick box boundaries need not fall evenly on pixel boundaries. The
screenx and screeny values returned in an XPickEvent are calculated at the
precision of the floating point hardware in the graphics subsystem.

Errors
BadPC

BadValue (returned if the width or height of the pickbox is less than zero or
greater than the size of the screen)

ESV Workstation Reference Manual [2.0] 2-45

X Extensions

XSetPickFilters
Syntax
int
XSetPickFilters(dpy, pe, inclusion, exclusion)
Display *dpy;
PC pc;
XPickFilter *Inciusion;
XPickFilter *exclusion;
Arguments
dpy The display on which the PC was created.
pc A pick context whose value you are changing.
inclusion The new inclusion filter.
exclusion The new exclusion filter.
Description

An XSetPickFilters call is used to set a PHIGS-compatible picking filter in a
picking context. A drawing primitive will be pickable if the intersection of the
current name set with the inclusion filter is not empty and the intersection of
the current name set with the exclusion filter is empty. Refer to the ANSI
PHIGS specification for more information on name sets.

Errors
BadPC

BadValue (returned if the number of names in a pick filter is negative or
greater than an implementation specific limit)

2-46 ESV Workstation Reference Manual [2.0]

X Extensions

XSetPickHighlightingColor

Syntax
int
XSetPickHighlightingColor(dpy, pc, color)
Display *dpy;
PC pc;
unsigned long color;
Arguments
dpy The display on which you are going to perform a pick.
pc A pick context whose value you are changing.
color An X pixel value that will determine the highlighting color
used during a structure traversal (in the form Oxffffff).
Description

An XSetPickHighlightingColor call sets the pick highlighting color. If high-
lighting is turned on, pickable items will be highlighted in this color. The de-
fault highlighting color is white.

Errors
BadPC

ESV Workstation Reference Manual [2.0] 2-47

X Extensions

XSetPickHighlightingMode

Syntax
int
XSetPickHighlightingMode(dpy, pc, mode)
Display *dpy;
PC pc;
int mode;
Arguments
dpy The display on which you are going to perform a pick.
pc A pick context whose value you are changing.
mode One of the following defined constants:
pick_highlighting_off, pick_highlighting_item,
pick_highlighting_command.
pick_highlighting_off turns off all pick highlighting.
pick_highlighting_item causes the marker, line segment,
or polygon that was picked to be highlighted.
pick_highlighting_command causes all or part of a
structure element to be redrawn highlighted. How much is
redrawn is implementation dependent.
It is expected that other highlighting modes will be defined.
Description

An XSetPickHighlightingMode call sets the pick highlighting mode and
turns pick highlighting on or off. This pick highlighting mode controls the
highlighting mode for both pick and prepick operations. Note that a prepick
operation initiated when the highlighting mode is off is a rather expensive no-
op.

Errors
BadPC

BadValue (returned if mode is not one of the defined values)

2-48 ESV Workstation Reference Manual [2.0]

X Extensions

XSetPickMode
Syntax
int
XSetPickMode(dpy, pc, mode)
Display *dpy;
PC pc;
Int mode;
Arguments
dpy The display on which you are going to perform a pick.
pc A pick context whose value you are changing.
mode One of the following defined constants: pick_first,
pick_last, pick_near, or pick_far.
If the mode is pick_first, then the first pickable item
encountered in structure posting is picked. If the mode is
pick_last, then the last pickable item encountered is picked.
If the mode is pick_near, then the pickable item with the
largest z-value is picked. If the mode is pick_far, then the
pickable item with the smallest z-value is picked.
Description

An XSetPickMode call sets the picking mode. This controls which of the
pickable items are reported after a pick operation is initiated.

Errors
BadPC
BadValue (returned if mode is not one of the defined values)

ESV Workstation Reference Manual [2.0] 2-49

X Extensions

XSetPickReturnVals (;
Syntax
XSetPickReturnVals(dpy, pc, mask)
Display *dpy;
PC PC;
unsigned long mask;
Arguments

dpy The display on which you are going to perform a pick.
pc A pick context whose value you are changing.

mask The logical OR of zero or more the following bits:
pick_compute_modelpt, pick_compute_special.

If pick_compute_modelpt is set, the server will attempt to

calculate a model space point on the picked primitive which

is within the pick box. If the point cannot be calculated,
pick_modelpt_valid in the valid_flags of the XPickEvent

will not be set. If pick_compute_modelpt is not set, the

server may not do the extra work necessary to compute the

model space point, and pick_modelpt_valid in the

valid_flags of the XPickEvent will not be set. (

pick_compute_special is a value reserved for future
enhancement of the picking extension.

Description
An XSetPickReturnVals call sets the desired values to return in an
XPickEvent. Some of the calculations involved in the XPickEvent structure
are expensive to compute. Computation of the model space point can involve
inversion of the transformation matrix. If the client application does not need
this data, it need not pay the additional computational penalty. This call can

be used to inform the server that the model space point or the primitive special
data will not be needed and needn’t be calculated.

Errors
BadPC

BadValue (returned if the mask is not an allowable value)

2-50 ESV Workstation Reference Manual [2.0]

X Extensions

X Overlay Functionality

The X Overlay Functionality provides easy access to the ESV Workstation
overlay hardware. An example program demonstrating the use of overlay
planes on the ESV Workstation is found in
/usr/people/fstest/demo/overlay.c.

XAllocOverlayPlanes

Syntax
Status
XAllocOverlayPlanes(dpy, win, planes)
Display *dpy,
Window win;
unsigned int planes;
Description

XAllocOverlayPlanes allocates overlay planes for a specific window. On the
ESV Workstation, the total number of overlay planes that can be allocated is
four.

These planes are shared with planes that identify PHIGS workstations.
Each plane allocated for overlay reduces the total number of PHIGS
workstations by one-half. If all four are allocated for overlay, a maximum
number of 12 PHIGS workstations will be available. They can be allocated for
overlay from one to four.

If too many planes are requested or no planes can be allocated, a
BadValue or BadAlloc error is returned.

Valid overlay pixel values for the window will be 0 to (2"-1), where n is
the number of overlay planes.

ESV Workstation Reference Manual [2.0] 2 -51

X Extensions

XFreeOverlayPlanes

Syntax
Status
XFreeOverlayPlanes(dpy, win)
Display *dpy,
Window win;
Description

XFreeOverlayPlanes frees all of the overlay planes allocated for this win-
dow. This makes the resource available for other applications.

XStoreOverlayColor

Syntax
Status
XStoreOverlayColor(dpy, win, colorcell)
Display *dpy;
Window win;
XColor *colorcell;
Description

XStoreOverlayColor sets the color to be displayed by this pixel value in the
overlay colormap associated with a window. This routine will return
BadValue if the color of the pixel cannot be changed or the pixel is not a valid
pixel for this window. :

Storing the color does not change the color displayed on the screen. To
actually change the color, you have to install the overlay colormap.

Pixel value O (zero) is the transparent overlay color.

2-52 ‘ESV Workstation Reference Manual [2.0]

X Extensions

XinstallOverlayColormap

Syntax
Status
XinstallOverlayColormap(dpy, win)
Display *dpy;
Window win;
Description

XinstallOverlayColormap loads the overlay colormap for a window into the
hardware colormap.

XSelectLayer
Syntax
Status
XSelectLayer(dpy, win, layer)
Display *dpy;
Window win;
int layer;
Description

XSelectLayer selects the layer in which following graphics commands will
be done. Layer 0 is overlay, and layer 1 is the normal frame buffer.

Restrictions

g » ESV does not support ALU operation in the overlay planes. This
means that any X operation with an ALU mode other than GXcopy
cannot be done.

+ Any X operation that needs both a foreground and a background color
will not work correctly. The foreground color will be written, but the
background will not.) '

. XGetImége will return the pixels in the currently selected layer. The
overlay image will be returned in the low jorder bits of 32 bit pixels.

« © XPutimage will work when overlay layers are s¢lected. The image
must be stored in the low order bits of 32 bit pixels.

ESV Workstation Reference Manual [2.0] 2-53

X Extensions

X Multiscreen Functionality

Having multiple screens can provide a more efficient and organized working
environment than having a single screen. Multiple screens allow you to effec-
tively expand your working surface. The term “screen” here means a logical
screen not a physical one. When displayed, a logical screen takes up the entire
surface of a monitor. When not displayed, it is not seen. With multiple
screens, you can configure the windows you would like on each screen and
then not have to rearrange them (as you do now) if you need to look at a win-
dow that is buried in a stack or iconified. With the mouse you can switch
screens to an entirely new screen of different windows. This general interface
is for handling multiple logical screens (including normal screens, stereo
screens, erc.).

The concept of multiple screens has always existed in the X11 X Server.
It provides for having screens that have important different physical qualities,
such as pixel resolution, number of available bitplanes, or video modes such
as stereo, PAL, or NTSC. Each screen has an associated screen number. To
place windows on a given screen call XOpenDisplay with the display string
parameter containing the screen number. Thus screens are separate and
distinct from each other. This is analogous to having several physical
monitors on which to do work.

It is interesting to note that the screen handling software in the server also
provides for actually having multiple physical screens on which to do
graphics. In fact the software in the server at the screen control level does not
know the difference between a physical screen and a logical one.

This is an application/user interface which provides a way for you to
configure logical screens in a spatial order so that you can easily move from
one screen to the next. It gives the application the ability to warp (move)
between screens. It gives you the ability to define how the screens are
conceptually arrayed in a bank of screens.

Defining the Number of Available Screens

To specify that more than one screen is wanted, such as for stereo, the
-nscreens MxN option is used on the command line when the Server is start-
ed, where M and N are integers. These arguments should not be too large be-
cause screens do not come free. The default is 2x2. The screens are
conceptually laid out side by side in Mrows and N columns. For example, if
you use the option -nscreens 3x4 then the screens will be conceptually
thought of as:

ESV Workstation Reference Manual [2.0]

(

X Extensions

Screen 0 | Screen 1 Screen2 | Screen3
Screen 4 | Screen 5 Screen 6 Screen7
Screen 8 Screen 9 | Screen 10 | Screen 11

Defining Stereo Screens

To identify a screen as a stereo screen with square pixels, the option
-stereoscr num is used. Screens are numbered beginning at 0, and screen 0
is the first one displayed when the server comes up. There can be more than
one stereo screen. Screen 0 can be a regular screen or a stereo screen.

Moving from Screen to Screen

To identify a screen as a stereo screen with tall, skinny pixels, the option
-stereotallscr numis used.

There are different ways provided to move between screens.

1) You can use the mwm menu or the csm X client. See the man pages for
these in the “X Clients” chapter of the ESV Workstation Reference

2)

Manual.

You can use the cursor, assuming XScreenWarpByCursor has been en-
abled (see below).

Logical screens are conceptually laid out as pictured above. You can
switch between logical screens by moving the cursor off the side of the
physical screen in the direction of the new logical screen. For example, in
the configuration above, if you want to go from Screen 0 to Screen 4, you
move the cursor off the bottom of Screen 0 and Screen 4 will be displayed.

ESV Workstation Reference Manual [2.0]

X Extensions

Also, the cursor will wrap in moving between screens so that if you are
on Screen 3 you can go to Screen 0 by moving the cursor off the right edge
of Screen 3.

3) To change screens through program control, call the extension function

XWarpToScreen (display, screen num);
where screen_num is an integer that defines which screen to display.

Enabling and Disabling Moving Between Screens Via the Cursor

There may be times when you want to disable changing screens using the
cursor. This can be done by the extension call

XScreenWarpByCursor (display, enable flag);
where enable_flag can be

True - Enable screen switch by cursor.
False - Disable screen switch by cursor.

The default condition of this parameter is false, which means that the
server will not switch screens via cursor movement unless the capability is
turned on using this call.

Inquiring Information about Screens

X clients may want to know specific items about available screens such as the
MxN configuration and screen types. This information can be obtained using
the following extension

XGetScreensInfo (display, screen_info);
Display *display;
ScreenInfo **screen_info;

where the routine returns a Screenlnfo structure that looks like this.

typedef struct _ScreenInfo_ {
int numofscreens; /* num of screens in the server */
int config M; /* num of rows of screens */
int config N; /* num of columns of screens */
struct { /* An array of structures of screen info */
int screennum; /* num of screen */
int screentype; /* screen type */
int rootvisual; /* visual type of root window */
int screen_subtypel; /* reserved, not used */
int monitor; /* which physical monitor screen is on */
} screens[numofscreens];
} ScreenInfo;

Once the application is finished looking at this information, it should
deallocate the structure by calling

XFreeScreenInfo(screen_info);

2-56 ESV Workstation Reference Manual [2.0]

(

X Extensions

XFreeScreensinfo
Name

XFreeScreensinfo — X extension function to deallocate the xScreensinfo
structure

Syntax
#include <XMultiScreen.h>

int XFreeScreensinfo(screen_info)
xScreensinfo *screen_info;

where the xScreensinfo structure has been created by and returned from a
call to XGetScreensinfo.

Description

This X extension routine is part of the ESV Multiscreen extension for han-
dling multiple screens in the X Server. XFreeScreenslinfo is a function de-
signed to free the information buffer that is returned from the function
XGetScreenslinfo. The client is responsible to call this routine to deallocate
the memory used.

Related Files

XWarpToScreen

XScreenWarpByCursor

XGetScreensinfo

Xesv (-nscreens option)

csm (a screen manager client for warping between screens)
Copyright

Copyright 1990, Evans and Sutherland Computer Corporation.

ESV Workstation Reference Manual [2.0] 2-57

X Extensions

XGetScreensinfo
Name

XGetScreensinfo — X extension reply to return information to the client
about the number and type of available screens.

Syntax
#include <XMultiScreen.h>

int XGetScreensinfo(dpy, screen_info)

Display *dpy,;

xScreensinfo **screen_info;

where the Screensinfo structure is defined by the following types:

typedef struct _xOneScreen_ {

int screennums; /* Screen number */

int screentype; /* Screen Type: xDefaultScreen, etc. */
int rootvisual; /* visual type of root window */

int screen_subtypef, /* reserved, not used */

int monitor; /* which monitor screen is assigned to */

} xOneScreen;

typedef struct _xScreensinfo_ {

int numofscreens; /* Number of available screens */
int rowsofscreens; /* Number of “Rows” of screens */
int colsofscreens; /* Number of “Columns” of screens */

xOneScreen screens[1]; /* Variable length array of screens. */
} xScreensinfo;

Description

This X extension routine is part of the ESV Multiscreen extension for han-
dling multiple screens in the X Server. XGetScreenslInfo is a function de-
signed to give clients information about the number and type of screens
available in a given server.

Screen Types

The screen type is returned in the screentype field of the return argument.
The possible screen types are defined by the following constants:

» xDefaultScreen
The standard screen, 1280 x 1024 pixels.

2-58 ESV Workstation Reference Manual [2.0]

X Extensions

» xStereoScreen Stereo
Video format, 640 x 512 pixels.
» xStereoTallScreen Stereo
Video format, 1280 x 512 pixels.
Visual Types

The visual type of the screen’s root window is returned in the rootvisualfield
of the return argument. The possible visual types of root windows of screens
are defined by standard X constants:

* TrueColor

The root window is a 24 bit True Color window (the default).
» DirectColor

The root window is a 24 bit Direct Color window.
* PseudoColor

The root window is an 8 bit Pseudo Color window.

Note: The default Direct Color and Pseudo Color
types are not gamma corrected. This causes
their colors to be slightly different from the
True Color type.

Screen Rows and Columns

In the ESV X Server, the available screens are conceptually arranged in a
rectangular grid. This routine also returns the number of rows and columns in
the grid in the rowsofscreens and the colsofscreens fields of the return ar-
gument. When moving between screens by moving the cursor off-screen, the
screen moved to is the next one in the row or column that adjoins the side of
the screen that the cursor moved off of.

The Screen Number

Each screen is identified by a non-negative integer. The screen’s number is
returned in the screennum field of the return argument. Screens are num-
bered consecutively from left to right beginning with the first row. The first
screen in the first row is Screen 0.

Free the Return Buffer

The returned information is stored in a buffer pointed to by the screen_info
argument. This buffer is allocated by the routine at runtime and should be
deallocated by the application calling XFreeScreensinfo.

ESV Workstation Reference Manual [2.0] 2-59

X Extensions

Return Value (|

If there is an error during the processing of this request, XGetScreensinfo
will return a 0; if successful it will return 1.

Related Files
XWarpToScreen
XScreenWarpByCursor
XFreeScreensinfo

Xesv (-nscreens option)

csm (a screen manager client for warping between screens)
Copyright

Copyright 1990, Evans and Sutherland Computer Corporation.

(.

2-60 ESV Workstation Reference Manual [2.0]

X Extensions

XScreenWarpByCursor
Name

XScreenWarpByCursor - X extension request to enable or disable switching
screens by moving the cursor off-screen. on the
monitor.

Syntax
#include <XMultiScreen.h>

int XScreenWarpByCursor(dpy, enable)
register Display *dpy;
unsigned Bool enable;

Description

This X extension routine is part of the ESV Multiscreen extension for
handling multiple screens in the X Server. XScreenWarpByCursor is a
function designed to allow clients to enable or disable the ability to change
screens by moving the cursor off-screen. If the argument enable is passed as
true, the ability is enabled, if false, the ability is disabled. When warping
between screens by the cursor has been disabled, the displayed screen can
only be switched by an active client calling XWarpToScreen.

Return Value

If there is an error during the processing of this request,
XScreenWarpByCursor will return a 0; if successful it will return 1.

Errors

If an invalid value for enable is passed to this function, the server will return
a BadScreenWarpByCursor error and will ignore the request.

Related Files

XWarpToScreen

XGetScreensinfo

XFreeScreensinfo

Xesv (-nscreens option)

csm (a screen manager client for warping between screens)
Copyright

Copyright 1990, Evans and Sutherland Computer Corporation.

ESV Workstation Reference Manual [2.0] 2-61

X Extensions

XWarpToScreen
Name

XWarpToScreen - X extension request to display a different “screen” on the
monitor.

Syntax
#include <XMultiScreen.h>

int XWarpToScreen(dpy, screennum, x, y)
register Display *dpy;

unsigned long screennum;

int X;

int y;
Description

This X extension routine is part of the ESV Multiscreen extension for han-
dling multiple screens in the X Server. XWarpToScreen is a function de-
signed to allow clients to switch the display from the currently displayed
screen to a new screen identified by screennum. In addition, the cursor po-
sition on the new screen is identified by the x and y arguments.

Return Value

If there is an error during the processing of this request, XWarpToScreen
will return a 0; if successful it will return 1.

Errors

If an invalid screen number is passed to this function, the server will return a
BadWarpToScreen error and will ignore the request.

Related Files
XScreenWarpByCursor
XGetScreensinfo
XFreeScreensinfo
Xesv (-nscreens option)
csm (a screen manager client for warping between screens)
Copyright
Copyright 1990, Evans and Sutherland Computer Corporation.
Copyright (c) 1990 by Sun Microsystems, Inc. and the X Consortium.
All Rights Reserved

2-62 ESV Workstation Reference Manual [2.0]

X Extensions

X Video Timing Formats Functionality

XVideoMode
Name

XVideoMode - X extension to change the ESV video format of the monitor
and video hardware.

Syntax
#include <XVideoMode.h>

int XVideoMode(display, videoMode)
register Display *display;
unsigned long videoMode;
Arguments
display The connection to the server.
videoMode One of the following constants:
Monoscopic (default video mode, pixels 1280x1024)
RS_343_A_1280x1024
RS_343_A_1260x946
PAL_SECAM_768x574
RS_170_A_640x480
Stereo60KHzIntStor1280x1024
Stereo60KHzSplitStor1280x1024
Stereo60KHzIntStor640x1024
Stereo60KHzSplitStor640x1024
Description

This X extension routine is designed to allow clients to switch the ESV work-
station to various possible video formats. Many of the formats have pixel res-
olutions that are different from the default monoscopic resolution of

1280 x 1024. As a result, they do not work well with the ESV X Server. Not
all of the formats make sense in terms of using the ESV monitor for display.
The stereo formats are generally not accessed via this interface but can be bet-
ter used by setting up stereo screens when the X Server is started (see the man
page on Xesv).

ESV Workstation Reference Manual [2.0] 2-63

X Extensions

Return Value

If there is an error during the processing of this request, XVideoFormat will
return a 0; if successful it will return 1.

Errors

If an invalid video format is requested, the server will return a
BadVideoMode error and ignore the request.

Related Files
Xesv
Copyright
Copyright 1990, Evans and Sutherland Computer Corporation.

2-64 ESV Workstation Reference Manual [2.0]

X Extensions

X Miscellaneous Traversal Functionality

There are two different types of X extensions that are in the miscellaneous tra-
versal category. One extension is used to inquire traversal data from the PEX
server. The other redraws a 3D PHIGS image and keeps it displayed for a
specified amount of time.

XGetTraversallnfo allows you toretrieve information about user-defined
IDs in GSE Information nodes and the current state of the transformation
matrices at points in the PHIGS structure. This information is valuable for
molecular modeling applications.

XFreeTraversallnfo frees the memory allocated by XGetTraversalinfo
and should be called by the application after each XGetTraversalinfo call.

XRedrawDelay3D gives you increased control over the timing of the
PHIGS/PEX 3D updates. This is used primarily in animation applications.

ESV Workstation Reference Manual [2.0] 2-65

X Extensions

XFreeTraversallnfo
Name

XFreeTraversalinfo — Free the memory allocated by XGetTraversallnfo for
its return buffers.

Syntax
#include <XTrav3D.h>

XfreeTraversalinfo(trav_data)

PEXTravData *trav_daia;
where the PEXTravData structure is defined as:
typedef struct _PEXTravData {

int num_entries; /* Number of data records in the return. */
char *entries; /* Pointer to the return data */
} PEXTravData;
Description

This routine frees the memory that is allocated by the X extension
XGetTraversalinfo. See the manual page for XGetTraversalinfo for com-
plete information on the extension and its purpose.

Copyright
Copyright 1990, Evans and Sutherland Computer Corporation.

2-66 ESV Workstation Reference Manual [2.0]

X Extensions

XGetTraversalinfo
Name

XGetTraversalinfo - X extension to inquire traversal data from the
PEX server.

Syntax
#include <XTrav3D.h>

int XGetTraversalinfo(dpy, win, trav_info)

register Display *dpy;
Window win;
PEXTravinfo **trav_info;
Arguments
display The connection to the server.
window The window ID associated with the 3D PHIGS work-
station.
trav_info The returned traversal data of type PEXTravData,

where the PEXTravData structure is defined as:
typedef struct _PEXTravData {

int num_entries; /* Number of data records in the return */
char *entries; /* Pointer to the return data */
} PEXTravData;
Description

This X extension reply routine is part of a special functionality that allows ap-
plications to retrieve certain types of traversal state information from the PEX
server’s structure walker. Essentially, the returned information consists of (1)
user-defined IDs placed in GSE Information nodes in the application’s PHIGS
structure, and (2) the current state of the composite local and global PHIGS
transformation matrices at points in the PHIGS structure designated, again, by
an Information GSE. The IDs allow the application to develop a relationship
between a given matrix and primitives of interest. This provides a way for
molecular modeling applications to do distance monitoring and energy calcu-
lations by supplying them access to transformation matrices which can then
be used to calculate point positions. Also, this functionality could conceiv-
ably be used to do collision detection.

New PHIGS GSE Node: Information Node

To retrieve traversal-time state information from the Server, the application
must add Information GSE nodes at points of interest within the PHIGS struc-

ESV Workstation Reference Manual [2.0] 2-67

X Extensions

ture. Upon traversal of an Information GSE node during a special information
traversal (invoked by XGetTraversalinfo), the information requested will be
buffered and returned to the application. These special nodes are ignored dur-
ing regular traversals.

The Information GSE has a node type of PES_GSE_INFORMATION.
(The value of this constant depends on the current implementation and may
change. The PHIGS application developer should only use the above name
and not its value when writing source code.) The data structures supporting
this GSE are defined by:

typedef enum {
PES_INFORMATION MATRIX,
PES_INFORMATION ID

} Pes_information_type;

typedef struct {

Pes_information_type type;
union {

int unused;
int id;

} rec:

} Pinformation_data;

The Pinformation_data structure is pointed to by the data field of a
Pdata structure and the size field is set to the sizeof(Pinformation_data).
These definitions are found in esgdp.h.

The definition of the Pdata structure is in phigs.h:

typedef struct {
size t size; /* size of data */
char *data; /* pointer to data */
} Pdata;
An example of coding a PHIGS application to include the Information
GSE would be:

#include <phigs.h>
#include <esgdp.h>
#include <XTrav3D.h>

Pdata gse_data;
Pinformation_data *info;

°

.

°

gse_data.size
gse_data.data

(size_t)sizeof (Pinformation_data);
malloc((int)gse data.size);

ESV Workstation Reference Manual [2.0]

X Extensions

info = (Pinformation_data *)gse data.data;
info->type = PES_INFORMATION_ MATRIX;
pgse (PES_GSE_INFORMATION, &gse_data);

o

°

o

Requesting the Special Informational Traversal

After the PHIGS structure has been built, the application can request a special
information traversal by calling XGetTraversalinfo. (See the syntax above
for its arguments.) The special information traversal invoked by
XGetTraversallnfo does not produce any graphical output. The Server will
traverse the structure, maintain the matrix stack and generate the information
return buffers as dictated by the special GSE nodes in the structure.

The data being returned is pointed to by the entries field in the
PEXTravData structure that is returned by XGetTraversallnfo. The data is of
the following format:

matrix or ID type:

lst data type PES_INFORMATION MATRIX or
PES_INFORMATION_ID
1st data matrix data or ID

matrix or ID type:
nth data type PES_INFORMATION MATRIX or
PES_INFORMATION ID

nth data matrix data or ID

For convenience we will define the following structure types to aid in
processing individual records within the data:

typedef struct _PEXTraverseMatrix {
unsigned long type;
Pmatrix3 matrix;

} PEXTraverseMatrix;

typedef struct _PEXTraverseld {
unsigned long type:;
unsigned long id;

} PEXTraverseId;

ESV Workstation Reference Manual [2.0] 2-69

X Extensions

Return Value

If there is an error during the processing of this request, XGetTraversalinfo
will return a 0; if successful it will return 1.

Freeing the Return Buffer

Once the return data has been processed, the client is responsible to deallocate
the return buffer memory by calling:

XfreeTraversalInfo(trav_data)
PEXTravData *trav_data;

Related Files
XFreeTraversalinfo(3X)
Copyright
Copyright 1990, Evans and Sutherland Computer Corporation.

2-70 ESV Workstation Reference Manual [2.0]

(

X Extensions

XRedrawDelay3D

Name

XRedrawDelay3D - X extension to redraw a 3D PHIGS image and keep it dis-
played for at least a given amount of time.

Syntax
#include <XTrav3D.h>

int XRedrawDelay3D(dpy, win, delay)
register Display *dpy;

Window win;
int delay;
Arguments
display The connection to the server.
win The window ID associated with the 3D PHIGS workstation.
delay The number of vertical retraces (1/60Lh of a second) to delay

before allowing another buffer swap to occur in a given 3D
window after the redraw caused by this request takes place.
After the delay period has passed, another redraw in the win-
dow will be allowed if one has been requested. If this argu-
ment is set to XDelayCancel, and if there is a previously
processed RedrawDelay3D request whose delay time has
not yet expired, then the delay time is immediately set to
zero, and a new redraw is requested.

Description

This X extension is part of a special functionality that supports animation ap-
plications. It gives the application an increased amount of control over the
timing of PHIGS/PEX 3D redraws or updates.

This function first causes a PHIGS UPDATE_WORKSTATION to occur.
Then, if the delay argument is greater than or equal to zero, this function
causes a REDRAW_ALL_STRUCTURES to occur, and the newly updated
buffer is displayed on the screen and will remain until at least the delay
number of monitor refreshes (1/60 s) has occurred, after which another image
update and buffer swap will be allowed.

If the delay argument is equal to DelayCancel, and if a redraw delay time
is still in effect for this window from a previous RedrawDelay3D request, the
delay time is reset to 0 and a REDRAW_ALL_STRUCTURES is requested.

ESV Workstation Reference Manual [2.0] 2-71

X Extensions

The application programmer should consider the following facts in using

this capability:

1)

2)

3)

4

Applications doing animations that do not require precise frame rates
can perform adequately by using available UNIX timing capabilities. To
simultaneously handle user interactions that effect the animation image,
the application can use the XSyne function to wait until a
REDRAW_ALL_STRUCTURES or an UPDATE_WORKSTATION
request is complete. This allows the application to avoid queueing up
large numbers of redraw requests or update workstation requests. A
large queue of pending updates or redraws would prohibit immediate
picture changes to reflect peripheral interaction, such as dial turns,
because the previously requested redraws would have to be processed
first. After calling XSyne, the application is blocked until traversal is
complete. This assures that the application will never queue more than
one update request in addition to the two frames that already are in the
frame buffer.

Applications that require precise frame rates can use the
RedrawDelay3D request to precisely control the animation frame rate,
as long as the frame complexity does not exceed the ESV hardware
capabilities, that is, as long as the next frame to be displayed can be
generated in less time than the redraw delay time.

Even when using RedrawDelay3D requests, the application will prob-
ably want to be able to handle user interactions that change the 3D im-
age while the animation is running. Once again, if multiple
RedrawDelay3D requests have been queued up, they will have to be
processed first by the server and graphics hardware before affects from
any user interaction can be displayed, thus destroying the feel of inter-
activity. To avoid queueing up multiple RedrawDelay3D requests the
application can wait on a call to XSync, or it can use XSync combined
with UNIX timers to determine the approximate traversal time of a
workstation and then avoid issuing RedrawDelay3D requests more of-
ten than the ESV can keep up with. It is a burden on the application to
ensure that the RedrawDelay3D requests come in at an appropriate rate.

To aid in handling user interactions, a single previously requested
RedrawDelay3D request can be caused to terminate prematurely by
passing the constant XDelayCancel in the delay argument. This sets
the delay timer to zero and allows other redraw requests to be processed
by the graphics hardware. However if several Redraw or RedrawDelay
requests have been queued up, then the Redraw that is requested by this
invocation of RedrawRequest3D will not be processed until the other
requests have first been processed.

ESV Workstation Reference Manual [2.0]

X Extensions

5) Only one PHIGS workstation may do a RedrawDelay3D request at a
time. If multiple workstations do it, there is no guarantee as to the re-
sponse of the system. Neither one will animate at the correct rate.

Return Value

If there is an error during the processing of this request, XRedrawDelay3D
will return a 0; if successful it will return 1.

Copyright
Copyright 1990, Evans and Sutherland Computer Corporation.

ESV Workstation Reference Manual [2.0] 2-73

3. X Clients

X Clients

Table of Contents

3. X Clients 3-1
INTOAUCHION c..eveeieteeeiecteeeetteeertesestaeeesareessssaeessssaseesssaseessseesnssseesssesssssssssssesssnnns 3-1
K ettt e ettt ee e atte et t s e e b bsse e bt tesbaaas serb bt se s b s e s b b e easRasae e b baae s rnne e nbae e sbasrsbasasrane 3-3
KBSV ...ttt et tesbae bt es s sesbaeesbe s s ae b ae s st e e bae et ta st ae et se e bt e ssasanenstaenaes 3-19
O cooinnerecteieeteeesaeeesseessseesseesssessaecessaestaesssessnsanssassssesaseseansassnssesssesstessssestesanesnsn 3-23
CSIM oetiiiiiecteteeeteeeestaeeessateessstaesssssssesssssessssseessssssesssasessesssssersassernsesssseessasassnne 3-24
INMWITE oot eeeteeseeesreesssesstesernrensesssessssasasssasssessseansesasseessanssssersessneessens 3-27

ESV Workstation Reference Manual [2.0] 3-i

X Clients

3. X Clients

Introduction

Following is a list of the X Clients supported on the ESV Workstation. The
documentation for most of these clients can be found in the X Window System
User’s Guide, published by O’Reilly & Associates. On-line manpage docu-
mentation is available for those not found in the O’Reilly & Associates book.

appres
bitmap
editres
listres
muncher
pexscope
resize
showrgb
startx
xbiff
xclock
xdm
xedit

xfd

Xinit
xlock
xIsclients
xmag
xmodmap
xrefresh
xsetroot
xwd
xwud

atobm
bmtoa
esvipc
maze
mwm
plaid
screen
showsnf
uil

xcalc
xcm
xdmshell
xev
xfontsel
xkill
xlogo
xisfonts
xman
xprop
xset
xstdcmap
xwdrle

ESV Workstation Reference Manual [2.0]

bdftosnf
csm

Ico
mkfontdir
oclock
puzzle
sessreg
startesvx
xauth
xclipboard
xcutsel
xdpyinfo
xeyes
xhost
xload
xlsatoms
xlswins
xmh

xrdb
xsetpointer
xterm
xwininfo

3-1

X Clients

This chapter documents the following which are specific to the ESV
Workstation:

* X - aportable, network-transparent window system

» Xesv - X Version 11 server for ESV Series Workstations

* xcm - an X client manager provides access via menus

* csm - Multiscreen manager for X servers supporting‘ multiple screens

* mwm - Motif window manager

3-2 ESV Workstation Reference Manual [2.0]

X Clients

Name
X - a portable, network-transparent window system
Syntax

The X Window System is a network-transparent window system developed
at the Massachusetts Institute of Technology (MIT) which runs on the ESV
Workstation, The X Consortium requests that the following names be used
when referring to this software:

e X

e X Window System

e X Version 11

» X Window System, Version 11
o Xl1

X Window System is a trademark of MIT.
Description

X Window System servers run on computers with bitmap displays. The server
distributes user input to and accepts output requests from various client
programs through a variety of different interprocess communication
channels. Although the most common case is for the client programs to be
running on the same machine as the server, clients can be run transparently
from other machines (including machines with different architectures and
operating systems) as well.

X supports overlapping hierarchical subwindows and text and graphics
operations, on both monochrome and color displays. For a full explanation of
the functions that are available, see the XIib - C Language X Interface manual,
the X Window System Protocol specification, the X Toolkit Intrinsics - C
Language Interface manual, and various toolkit documents.

The number of programs that use X is growing rapidly. Of particular
interest are: a terminal emulator (xterm), a window manager (mwm), a
display manager (xdm), a mail managing utility (xbiff), a manual page
browser (xman), a bitmap editor (bitmap), access control programs (xauth
and xhost), user preference setting programs (xmodmap, xrdb, xset, and
xsetroot), a clock (xclock), a font displayer (xfd), utilities for listing

. information about fonts, windows, and displays (xdpyinfo, xfontsel,
xlIsfonts, xIswins, xwininfo, xiIsclients, and xprop), and screen image
manipulation utilities (xmag, xpr, xwd, and xwud).

See your site administrator for other utilities, window managers, games,
toolkits, etc., available from user-contributed software.

ESV Workstation Reference Manual [2.0] 3-3

X Clients

Starting Up

There are two main ways of getting the X server and an initial set of client
applications started. The particular method used depends on what operating
system you are running and on whether or not you use other window systems
in addition to X.

®

xdm (the X Display Manager)

If you want to always have X running on your display, your site
administrator can set your machine up to use the X Display Manager
xdm. This program is typically started by the system at boot time and
takes care of keeping the server running and getting users logged in.
If you are running xdm, you will see a window on the screen
welcoming you to the system and asking for your username and
password. Simply type them in as you would at a normal terminal,
pressing the RETURN key after each. If you make a mistake, xdm will
display an error message and ask you to try again. After you have
successfully logged in, xdm will start up your X environment. By

~ default, if you have an executable file named .xsession in your home
" directory, xdm will treat it as a program (or shell script) to run to start

up your initial clients (such as terminal emulators, clocks, a window
manager, user settings for things like the background, the speed of the
pointer, etc.). Your site administrator can provide details.

xinit (run manually from the shell)

Sites that support more than one window system might choose to use
the xinit program for starting X manually. If this is true for your
machine, your site administrator will probably have provided a
program named x11, startx, or xstart that will do site-specific
initialization (such as loading convenient default resources, running a
window manager, displaying a clock, and starting several terminal
emulators) in a nice way. If not, you can build such a script using the
xinit program. This utility simply runs one user-specified program to
start the server, runs another to start up any desired clients, and then
waits for either to finish. Since either or both of the user-specified
programs may be a shell script, this gives substantial flexibility at the
expense of a nice interface. For this reason, xinit is not intended for
end users.

Display Names

From the user’s prospective, every. X server has a display name of the form:

hostname:displaynumber.screennumber

This information is used by the application to determine how it should
connect to the server and which screen it should use by default (on displays
with multiple monitors):

ESV Workstation Reference Manual [2.0]

X Clients

+ hostname

The hostname specifies the name of the machine to which the display
is physically connected. If the hostname is not given, the most
efficient way of communicating to a server on the same machine will
be used.

e displaynumber

The word “display” is usually used to refer to collection of monitors
that share a common keyboard and pointer (mouse, tablet, etc.). Most
workstations tend to only have one keyboard, and therefore, only one
display. Larger, multi-user systems, however, will frequently have
several displays so that more than one person can be doing graphics
work at once. To avoid confusion, each display on a machine is
assigned a displaynumber (beginning at 0) when the X server for that
display is started. The displaynumber must always be given in a
display name.

* screennumber

Some displays share a single keyboard and pointer among two or
more monitors. Since each monitor has its own set of windows, each
screen is assigned a screennumber (beginning at 0) when the X
server for that display is started. If the screennumber is not given,
then screen 0 will be used.

On POSIX systems, the default display name is stored in your DISPLAY
environment variable. This variable is set automatically by the xterm
terminal emulator. However, when you log into another machine on a
network, you’ll need to set DISPLAY by hand to point to your display. For
example,

% setenv DISPLAY myws:0
$ DISPLAY=myws:0; export DISPLAY

Finally, most X programs accept a command line option of -display
displayname to temporarily override the contents of DISPLAY. This is most
commonly used to pop windows on another person’s screen or as part of a
remote shell command to start an xterm pointing back to your display. For
example,

% xeyes -display joesws:0 —geometry 1000x1000+0+0
$ rsh big xterm -display myws:0 -1ls </dev/null &

X servers listen for connections on a variety of different communications
channels (network byte streams, shared memory, etc.). Since there can be
more than one way of contacting a given server, the hostname part of the dis-
play name is used to determine the type of channel (also called a transport
layer) to be used. The sample servers from MIT support the following types
of connections:

ESV Workstation Reference Manual [2.0] 3-5

X Clients

¢ local

The hostname part of the display name should be the empty string.
Forexample, :0, :1, and :0.1. The most efficient local
transport will be chosen.

° TCP/IP

The hostname part of the display name should be the server
machine’s IP address name. Full Internet names, abbreviated names,
and IP addresses are all allowed. For example:

expo.lcs.mit.edu:0, expo:0, 18.30.0.212:0, bigmachine:1,
and
hydra:0.1.
e DECnet
The hostname part of the display name should be the server

machine’s nodename followed by two colons instead of one. For
example,

myws::0, big::1, and hydra::0.1.

Access Control

The sample server provides two types of access control: an authorization pro-
tocol which provides a list of magic cookies clients can send to request access,
and a list of hosts from which connections are always accepted. xdm initial-
izes magic cookies in the server, and also places them in a file accessible to
the user. Normally, the list of hosts from which connections are always ac-
cepted should be empty, so that only clients which are explicitly authorized
can connect to the display. When you add entries to the host list (with xhost),
the server no longer performs any authorization on connections from those
machines. Be careful with this.

The file for authorization used by both xdm and Xlib can be specified with
the environment variable XAUTHORITY, and defaults to the file .Xauthority
in the home directory. xdm uses $HOME/.Xauthority and will create it or
merge in authorization records if it already exists when a user logs in.

To manage a collection of authorization files containing a collection of
authorization records use xauth. This program allows you to extract records
and insert them into other files. Using this, you can send authorization to
remote machines when you log in. As the files are machine-independent, you
can also simply copy the files or use NFS to share them. If you use several
machines, and share a common home directory with NFS, then you never
really have to worry about authorization files, the system should work
correctly by default.

'ESV Workstation Reference Manual [2.0]

X Clients

Note: Magic cookies transmitted “in the clear” over NFS or
using ftp or rep can be “stolen” by a network
eavesdropper, and as such may enable unauthorized
access. In many environments this level of security is
not a concern, but if it is, you need to know the exact
semantics of the particular magic cookie to know if this
is actually a problem.

One of the advantages of using window systems instead of hardwired
terminals is that applications don’t have to be restricted to a particular size or
location on the screen. Although the layout of windows on a display is
controlled by the window manager that the user is running (described below),
most X programs accept a command line argument of the form

-geometry WIDTHxHEIGHT+XOFF+YOFF

(where WIDTH, HEIGHT, XOFF, and YOFF are numbers) for specifying a
preferred size and location for this application’s main window.

The WIDTH and HEIGHT parts of the geometry specification are usually
measured in either pixels or characters, depending on the application. The
XOFF and YOFF parts are measured in pixels and are used to specify the
distance of the window from the left or right and top and bottom edges of the
screen, respectively. Both types of offsets are measured from the indicated
edge of the screen to the corresponding edge of the window.

The x-offset may be specified in the following ways:

« +XOFF

The left edge of the window is to be placed XOFF pixels in from the
left edge of the screen (i.e., the x-coordinate of the window’s origin

will be XOFF). XOFF may be negative, in which case the window’s
left edge will be off the screen.

. -XOFF

The right edge of the window is to be placed XOFF pixels in from the
right edge of the screen. XOFF may be negative, in which case the
window’s right edge will be off the screen.

The y-offset has similar meanings:

. +YOFF

The top edge of the window is to be YOFF pixels below the top edge
of the screen (i.e., the y-coordinate of the window’s origin will be
YOFF). YOFF may be negative, in which case the window’s top edge
will be off the screen.

ESV Workstation Reference Manual [2.0] 3-7

X Clients

« -YOFF

The bottom edge of the window is to be YOFF pixels above the
bottom edge of the screen. YOFF may be negative, in which case the
window’s bottom edge will be off the screen.

Offsets must be given as pairs; in other words, in order to specify either
XOFF or YOFF both must be present. Windows can be placed in the four
corners of the screen using the following specifications:

* +0+0 upper left hand corner.

* —0+0 upper right hand corner.

* -0-0 lowerright hand corner.

* +0-0 lower left hand corner.

In the following examples, a terminal emulator will be placed in roughly

the center of the screen and a load average monitor, mailbox, and clock will
be placed in the upper right-hand corner:

xterm —-fn 6x10 -geometry 80x24+30+200 &
xclock -geometry 48x48-040 &
xload -geometry 48x48-96+0 &
xbiff -geometry 48x48-48+0 &

Window Managers

The layout of windows on the screen is controlled by special programs called
window managers. Although many window managers will honor geometry
specifications as given, others may choose to ignore them (requiring the user
to explicitly draw the window’s region on the screen with the pointer, for ex-
ample).

Since window managers are regular (albeit complex) client programs, a
variety of different user interfaces can be built. The core distribution comes
with a window manager named twm which supports overlapping windows,
popup menus, point-and-click or click-to-type input models, title bars, nice
icons, and an icon manager for those who don’t like separate icon windows.

Several other window managers are available in the user-contributed
software: gwm, m_swm, olwm, and tekwm.

Collections of characters for displaying text and symbols in X are known
as fonts. A font typically contains images that share a common appearance
and look nice together (for example, a single size, boldness, slant, and
character set). Similarly, collections of fonts that are based on a common type
face (the variations are usually called roman, bold, italic, bold italic, oblique,
and bold oblique) are called families.

Sets of font families of the same resolution (usually measured in dots per
inch) are further grouped into directories (so named because they were

ESV Workstation Reference Manual [2.0]

X Clients

initially stored in file system directories). Each directory contains a database
which lists the name of the font and information on how to find the font. The
server uses these databases to translate font names (which have nothing to do
with file names) into font data.

The list of font directories in which the server looks when trying to find a
font is controlled by the font path. Although most installations will choose to
have the server start up with all of the commonly used font directories, the
font path can be changed at any time with the xset program. However, it is
important to remember that the directory names are on the server’s machine,
not on the application’s.

The default font path for the sample server contains three directories:
* /usr/lib/X11/onts/misc

This directory contains many miscellaneous fonts that are useful on
all systems. It contains a small family of fixed-width fonts in pixel
heights 5 through 10, a family of fixed-width fonts from Dale
Schumacher in similar pixel heights, several Kana fonts from Sony
Corporation, a Kanji font, the standard cursor font, two cursor fonts
from Digital Equipment Corporation, and OPEN LOOK™ cursor
and glyph fonts from Sun Microsystems. It also has font name aliases
for the font names fixed and variable.

* Jusr/lib/X11/fonts/75dpi

This directory contains fonts contributed by Adobe Systems, Inc.,
Digital Equipment Corporation, Bitstream, Inc., Bigelow and
Holmes, and Sun Microsystems, Inc. for 75 dots per inch displays. An
integrated selection of sizes, styles, and weights are provided for each
family.

» /usr/lib/X11/fonts/100dpi

This directory contains 100 dots per inch versions of some of the fonts
in the 75dpi directory.

Font databases are created by running the mkfontdir program in the
directory containing the source or compiled versions of the fonts (in both
compressed and uncompressed formats). Whenever fonts are added to a
directory, mkfontdir should be rerun so that the server can find the new fonts.
To make the server reread the font database, reset the font path with the xset
program. For example, to add a font to a private directory, the following
commands could be used:

oe

cp newfont.snf ~/myfonts
mkfontdir ~/myfonts
xset fp rehash

o

o°

ESV Workstation Reference Manual [2.0] 3-9

X Clients

The xIsfonts program can be used to list all of the fonts that are found in (
font databases in the current font path. Font names tend to be fairly long as

they contain all of the information needed to uniquely identify individual

fonts. However, the sample server supports wildcarding of font names, so the

full specification

-adobe-courier-medium-r-normal--10-100-75-75-m-60-1i508859~1
could be abbreviated as:
-*-courier-medium-r-normal--*=-100-*—*—k—k_%_x

or, more tersely (but less accurately):
-courier-medium-r-normal---100-%

Because the shell also has special meanings for * and ?, wildcarded font
names should be quoted:

)

% xlsfonts —-fn ’*-courier-medium-r-normal--*-100-*"'

If more than one font in a given directory in the font path matches a
wildcarded font name, the choice of which particular font to return is left to
the server. However, if fonts from more than one directory match a name, the
returned font will always be from the first such directory in the font path. The
example given above will match fonts in both the 75dpl and 100dpi
directories; if the 75dpl directory is ahead of the 100dpli directory in the font
path, the smaller version of the font will be used. (

Color Names

3-10

Most applications provide ways of tailoring (usually through resources or
command line arguments) the colors of various elements in the text and
graphics they display. Although black-and-white displays don’t provide
much of a choice, color displays frequently allow anywhere between 16 and
16 million different colors.

Colors are usually specified by their commonly-used names (for example,
red, white, or medium slate blue). The server translates these names into
appropriate screen colors using a color database that can usually be found in
/usr/lib/X11/rgb.txt. Color names are case-insensitive, meaning that red,
Red, and RED all refer to the same color.

Many applications also accept color specifications of the following form:
#rgb
#rrggbb
#rrrgggbbb
#rrrrggggbbbb

where r, g, and b are hexadecimal numbers indicating how much red, green,
and blue should be displayed (zero being none and f £ £ £ being on full). Each
field in the specification must have the same number of digits (e.g., #rrgb

ESV Workstation Reference Manual [2.0]

X Clients

or #gbb are not allowed). Fields that have fewer than four digits (e.g., #rgb)
are padded out with zero’s following each digit (e.g., #7000g000b000).
The eight primary colors can be represented as:

L]

black #000000000000 (no color at all)

red $££££00000000
green #0000££££0000
blue #00000000f££ff

yellow #Ef££fFE£££0000 (full red and green, no blue)
magenta #Ef£f0000ffff

cyan #0000ffffffff

white #fEEEEEEFFEEE (full red, green, and blue)

Unfortunately, RGB color specifications are highly unportable since
different monitors produce different shades when given the same inputs.
Similarly, color names aren’t portable because there is no standard naming
scheme and because the color database needs to be tuned for each monitor.
Application developers should take care to make their colors tailorable.

Keys

The X keyboard model is broken into two layers: server-specific codes (called
keycodes) which represent the physical keys, and server-independent sym-

bols (called keysyms) which represent the letters or words that appear on the
keys. Two tables are kept in the server for converting keycodes to keysyms:

modifier list

Some keys (such as SHIFT, CONTROL, and CAPSLOCK) are known
as modifiers and are used to select different symbols that are attached
to a single key (such as SHIFT-a generates a capital A, and CONTROL-
1 generates a formfeed character AL). The server keeps a list of
keycodes corresponding to the various modifier keys. Whenever a key
is pressed or released, the server generates an event that contains the
keycode of the indicated key as well as a mask that specifies which of
the modifier keys are currently pressed. Most servers set up this list to
initially contain the various shift, control, and shift lock keys on the
keyboard.

keysym table

Applications translate event keycodes and modifier masks into
keysyms using a keysym table which contains one row for each
keycode and one column for various modifier states. This table is
initialized by the server to correspond to normal typewriter
conventions, but is only used by client programs.

ESV Workstation Reference Manual [2.0] 3-11

X Clients

Although most programs deal with keysyms directly (such as those (
written with the X Toolkit Intrinsics), most programming libraries provide

routines for converting keysyms into the appropriate type of string (such as

ISO Latin-1).

Options

Most X programs attempt to use the same names for command line options
and arguments. All applications written with the X Toolkit Intrinsics auto-
matically accept the following options:

~display display The name of the X server to use.
—geometry geometry The initial size and location of the window.

-bg color, -background color Either option specifies the color to use for
the window background.

-bd color, -bordercolor color Either option specifies the color to use for
the window border.

—bw number, -borderwidth number

Either option specifies the width in pixels
of the window border.

—fg color, -foreground color Either option specifies the color to use for

text or graphics. (
—fn font, -font font Either option specifies the font to use for

displaying text.
—lconic Indicates that the user would prefer the ap-

plication’s windows initially not be visible
(as if the windows had be immediately ico-
nified). Window managers may choose not
to honor the application’s request.

-hame The name under which resources for the ap-
plication should be found. This option is
useful in shell aliases to distinguish be-
tween invocations of an application, with-
out resorting to creating links to alter the
executable file name.

—Iv, -reverse Either option indicates that the program
should simulate reverse video if possible,
often by swapping the foreground and
background colors. Not all programs honor
this or implement it correctly. It is usually
only used on monochrome displays.

3-12 ESV Workstation Reference Manual [2.0]

X Clients

+rv Indicates that the program should not
simulate reverse video. This is used to
override any defaults since reverse video
doesn’t always work properly.

—selectionTimeout The timeout in milliseconds within which
two communicating applications must re-
spond to one another for a selection re-
quest.

—synchronous Indicates that requests to the X server
should be sent synchronously, instead of
asynchronously. Since Xlib normally
buffers requests to the server, errors do not
necessarily get reported immediately after
they occur. This option turns off the
buffering so that the application can be
debugged. It should never be used with a
working program.

~title string The title to be used for this window. This
information is sometimes used by a win-
dow manager to provide some sort of head-
er identifying the window.

—xnllanguage language[territory][.codeset]

The language, territory, and codeset for use
in resolving resource and other filenames.

-Xrm A resource name and value to override any
defaults. It is also very useful for setting
resources that don’t have explicit
command line arguments.

To make the tailoring of applications to personal preferences easier, X
supports several mechanisms for storing default values for program resources
(e.g., background color, window title, etc.). Resources are specified as strings
of the form

appname*subname*subsubname...: value

that are read in from various places when an application is run. By conven-
tion, the application name is the same as the program name, but with the first
letter capitalized (e.g., Bitmap or Emacs) although some programs that be-
gin with the letter “x” also capitalize the second letter for historical reasons.
The precise syntax for resources is

ESV Workstation Reference Manual [2.0] 3-13

X Clients

Resourceline = Comment | ResourceSpec
Comment = "!"™ string | <empty line>
A ResourceSpec = WhiteSpace ResourceName WhiteSpace ":"
WhiteSpace value
ResourceName = [Binding] ComponentName {Binding Component-
Name}
Binding = w.w | wxv
WhiteSpace = {" " | "\t"}
ComponentName = ({"a"-"z" | "A"-"2" | "Q"-"9" | "_" | "-"}
value = string
string = {<any character not including "\n">}

Note that elements enclosed in curly braces ({...}) indicate zero or more
occurrences of the enclosed elements

To allow values to contain arbitrary octets, the 4-character sequence
\nnn (where n is a digit in the range of 0-7) is recognized and replaced with
a single byte that contains this sequence interpreted as an octal number. For
example, a value containing a NULL byte can be stored by specifying \000.

The Xlib routine XGetDefault(3X) and the resource utilities within Xlib
and the X Toolkit Intrinsics obtain resources from the following sources:

RESOURCE_MANAGER root window property
Any global resources that should be available to clients on all ma-
chines should be stored in the RESOURCE_MANAGER property on
the root window using the xrdb program. This is frequently taken care
of when the user starts up X through the display manager or xinit.

application-specific files
Programs that use the X Toolkit Intrinsics will also look in the
directories named by the environment variable
XUSERFILESEARCHPATH or the environment variable
XAPPLRESDIR, plus directories in a standard place (usually under
/usr/lib/X11/, but this can be overridden with the
XFILESEARCHPATH environment variable) for application-specific
resources. See the X Toolkit Intrinsics - C Language Interface manual
for details.

XENVIRONMENT

Any user- and machine-specific resources may be indicated by set-
ting the XENVIRONMENT environment variable to the name of a re-
source file to be loaded by all applications. If this variable is not de-
fined, a file named $HOME/.Xdefaults-hostname is looked for in-
stead, where hostname is the name of the host where the application
is executing. ‘

ESV Workstation Reference Manual [2.0]

X Clients

—xrm resourcestring

Applications that use the X Toolkit Intrinsics can have resources spec-
ified from the command line. The resourcestring is a single resource
name and value as shown above. Note that if the string contains char-
acters interpreted by the shell (e.g., asterisk), they must be quoted.

Any number of —-xrm arguments may be given on the command line.

Program resources are organized into groups called classes so that
collections of individual resources (each of which are called instances) can be
set all at once. By convention, the instance name of a resource begins with a
lowercase letter and class name with an upper case letter. Multiple word
resources are concatenated with the first letter of the succeeding words
capitalized. Applications written with the X Toolkit Intrinsics will have at
least the following resources:

background (class Background)

This resource specifies the color to use for the window background.
borderWidth (class BorderWidth)

This resource specifies the width in pixels of the window border.
borderColor (class BorderColor)

This resource specifies the color to use for the window border.

Most applications using the X Toolkit Intrinsics also have the resource
foreground (class Foreground), specifying the color to use for text and
graphics within the window.

By combining class and instance specifications, application preferences
can be set quickly and easily. Users of color displays will frequently want to
set Background and Foreground classes to particular defaults. Specific
color instances such as text cursors can then be overridden without having to
define all of the related resources. For example,

bitmap*Dashed: off
XTerm*cursorColor: gold
XTerm*multiScroll: on

XTerm* jumpScroll: on
XTerm*reverseWrap: on
XTerm*curses: on

XTerm*Font: 6x10
XTerm*scrollBar: on
XTerm*scrollbar*thickness: 5
XTerm*multiClickTime: 500
XTerm*charClass: 33:48,37:48,45-47:48,64:48
XTerm*cutNewline: off
XTerm*cutToBeginningOfLine: off
XTerm*titeInhibit: on

ESV Workstation Reference Manual [2.0] 3-15

X Clients

3-16

XTerm*ttyModes: intr “c erase "~? kill “u

XLoad*Background: gold

XLoad*Foreground: re

XLoad*highlight: black

XLoad*borderWidth: 0

emacs*Geometry: 80x65-0-0

emacs*Background: #5b7686

emacs*Foreground: white

emacs*Cursor: white

emacs*BorderColor: white

emacs*Font: 6x10

xmag*geometry: -0-0

xmag*borderColor: white

If these resources were stored in a file called .Xresources in your home
directory, they could be added to any existing resources in the server with the
following command:

% xrdb -merge $HOME/.Xresources

This is frequently how user-friendly startup scripts merge user-specific
defaults into any site-wide defaults. All sites are encouraged to set up
convenient ways of automatically loading resources. See the Xlib Manual,
section “Using the Resource Manager,” for more information.

Examples

The following is a collection of sample command lines for some of the more
frequently used commands. For more information on a particular command,
please refer to that command’s manual page.

xrdb -load $HOME/.Xresources

oe

% xmodmap -e "keysym BackSpace = Delete"
% mkfontdir /usr/local/lib/X11/otherfonts
% =xset fp+ /usr/local/lib/X1l/otherfonts
% xmodmap S$HOME/.keymap.km

% xsetroot -solid ’#888’

% =xset b 100 400 c 50 s 1800 r on

% xset q

% twm

% xmag

% xclock —-geometry 48x48-0+0 -bg blue -fg white
% xeyes —-geometry 48x48-48+0

% xbiff -update 20

% xlsfonts ’*helvetica*’

% xlswins -1

% xwininfo -root

% xdpyinfo -display joesworkstation:0

% xhost -joesworkstation

% xrefresh

% =xwd | xwud

% .bitmap companylogo.bm 32x32

oe

xcalc -bg blue -fg magenta
xterm -geometry 80x66-0-0 -name myxterm $*

o°

ESV Workstation Reference Manual [2.0]

(

X Clients

Diagnostics

A wide variety of error messages are generated from various programs.
Various toolkits are encouraged to provide a common mechanism for locating
error text so that applications can be tailored easily. Programs written to
interface directly to the Xlib C language library are expected to do their own
error checking.

The default error handler in Xlib (also used by many toolkits) uses
standard resources to construct diagnostic messages when errors occur. The
defaults for these messages are usually stored in /usr/lib/X11/XErrorDB. If
this file is not present, error messages will be rather terse and cryptic.

When the X Toolkit Intrinsics encounter errors converting resource
strings to the appropriate internal format, no error messages are usually
printed. This is convenient when it is desirable to have one set of resources
across a variety of displays (e.g., color vs. monochrome, many fonts vs. very
few, etc.), although it can pose problems for trying to determine why an
application might be failing. This behavior can be overridden by the setting
the StringConversionsWarning resource.

To force the X Toolkit Intrinsics to always print string conversion error
messages, the following resource should be placed at the top of the file that
gets loaded onto the RESOURCE_MANAGER property using the xrdb
program (frequently called .Xresources or .Xres in your home directory):

*StringConversionWarnings: on
To have conversion messages printed for just a particular application, the
appropriate instance name can be placed before the asterisk:

xterm*StringConversionWarnings: on
Bugs
If you encounter a repeatable bug, please contact your site administrator for
instructions on how to submit an X Bug Report.
See Also

Xlib — C Language X Interface, X Toolkit Intrinsics - C Language Interface,
and Using and Specifying X Resources
Copyright

The following copyright and permission notice outlines the rights and restric-
tions covering most parts of the core distribution of the X Window System
from MIT. Other parts have additional or different copyrights and permis-
sions; see the individual source files.

Copyright 1984, 1985, 1986, 1987, 1988, and 1989, by the Massachusetts
Institute of Technology.

ESV Workstation Reference Manual [2.0] 3-17

X Clients

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and
that the name of MIT not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. MIT
makes no representations about the suitability of this software for any
purpose. It is provided “as is” without express or implied warranty.

This software is not subject to any license of the American Telephone and
Telegraph Company or of the Regents of the University of California.

UNIX and OPEN LOOK are trademarks of AT&T. X Window System is a
trademark of MIT.

Authors

The X distribution is brought to you by the MIT X Consortium. The staff
members at MIT responsible for this release are: Donna Converse (MIT X
Consortium), Jim Fulton (MIT X Consortium), Michelle Leger (MIT X Con-
sortium), Keith Packard (MIT X Consortium), Chris Peterson (MIT X Con-
sortium), Bob Scheifler (MIT X Consortium), and Ralph Swick (Digital/MIT
Project Athena).

ESV Workstation Reference Manual [2.0]

X Clients

Xesv
Name

Xesv — X Version 11 server for Evans and Sutherland ESV Workstation
Syntax

Xesv[-keyboard kbd-dev][-mouse mouse-dev]
[-dials dials-dev][-tablet tablet-dev]
[-mouseptr mouse-dev][-tabletptr fablet-dev]
[-nscreens NxM] [-stereoscr screen-number)
[-stereotallscr screen-number]
[-tc32scr screen-numben]
[-dc32scr screen-number]
[-pc8scr screen-number]

Description

Xesv is the server for Version 11 of the X Window System on an Evans &
Sutherland ESV Workstation. It is normally started using startesvx, xdm(1),
or xinit(1).

In addition to the standard X Version 11 Revision 4 protocol, Xesv also
supports the following extensions:

« PEX (PHIGS Extension to X),

¢ X Input Extension,

» X Picking Extension, and

» Non-Rectangular Window Shape Extension.

The ESV Workstation has a double-buffered 24-plane RGB frame buffer
with z-buffered hidden line and hidden surface removal (HLHSR).

Options

-keyboard kbd-dev The device to be used as the X core keyboard. De-
fault is /dev/kbd.

-mouse mouse-dev The input extension device to be used as a mouse.

-dials dials-dev Specifies an alternative input extension device to
be used as an 8-dial knob box. Default is
/dev/dials.

-tablet tablet-dev The input extension device to be used as a data tab-

let. Default is /dev/tablet.

-mouseptr mouse-dev The input extension device to be used as mouse
and use it as the X core pointer. Default is /dev/
mouse.

ESV Workstation Reference Manual [2.0] 3-19

X Clients

-tabletptr fablet-dev The input extension device to be used as a data tab-
let and use it as the X core pointer.

-nscreens MxN Creates multiple screens conceptually arrayed in M
rows and N columns.

-stereoscr screen-number
Makes the screen specified by screen-number a
screen with stereo video format. It will be 640x512
pixels, half the resolution of the standard screen.

-stereotallscr screen-number
Makes the screen specified by screen-number a
screen with “tall” stereo video format. It will be
1280x512 pixels, half the resolution of the stan-
dard screen in the vertical direction, and full reso-
lution in the horizontal direction.

-tc32scr screen-number
Causes the root window on the screen specified by
screen-number to have a visual of class
TrueColor and a depth of 32. This is the default.
Note that some clients which assume the root
window is of class PseudoColor or DirectColor
will probably not work on a TrueColor root
window.

-dc32scr screen-number
Causes the root window on the screen specified by
Screen-number to have a visual class of Direct-
Color and depth of 32.

-pc8scr screen-number
Causes the root window on the screen specified by
screen-number to have a visual class of
PseudoColor and a depth of 8.

Environment

X_IPC If this environment variable is set, Xesv will use its
value to specify the program which is called to cre-
ate the shared memory segment for graphics struc-
ture memory and to create the interprocess
communication semaphores. Defaults to
/usr/bin/X11/esvipc.

ESV Workstation Reference Manual [2.0]

X Clients

x_uc

PEX_CONFIG

GM_CONFIG

GM_TMPDIR

ISO_PHIGS

Files
pex_config.dat

gm_config.dat

If this environment variable is set, Xesv will use its
value to specify the program to load the graphics
subsystem microcode. Defaults to
/usr/bin/X11/dspstart.

If this environment variable is set, Xesv will use its
value to specify the PEX configuration file. This
file determines the maximum number of entries in
the various workstation tables among other things.
Defaults to /usr/lib/X11/pex_config.dat.

If this environment variable is set, Xesv will use its
value to specify the graphics manager configura-
tion file. This file determines the maximum size of
the shared memory segment for graphics structure
memory among other things. Defaults to
/usr/lib/X11/gm_config.dat.

If this environment variable is set, Xesv will use its
value to specify the directory in which to create the
graphics manager error log file in the unfortunate
event that graphics manager errors occur. Defaults
to /tmp.

If this environment variable is set, visual priority is
guaranteed for posted structures. However, you
may experience performance degradation if multi-
ple structures are posted to a single workstation.

This file is used to specify the maximum size and
the number of predefined entries in PHIGS work-
station tables. If the environment variable
PEX_CONFIGs set, its value will be used to spec-
ify the full pathname of the file to be used for the
PEX configuration file. Normally, pex_config.dat
is found in the /usr/lib/X11 directory.

This file is used to specify sizes of graphics man-
ager internal objects as well as the default RGB
color lookup table. If the environment variable
GM_CONFIG is set, its value will be used to spec-
ify the full pathname of the file to be used for the
graphics manager configuration file. Normally,
dm_config.dat is found in the /usr/lib/X11direc-

tory.

ESV Workstation Reference Manual [2.0] 3-21

X Clients

X_gmerriog This file is generated by Xesv if the graphics man-
ager encounters errors. The error description will
be left in this file. If the environment variable
GM_TMPDIR is set, its-value will be used to spec-
ify the directory in which to place X_gmerrlog.

/tmpsminfo This file is used to communicate the identification
information of the shared memory segment for
structure memory and the interprocess communi-
cation semaphores.

Examples

The -tc32scr, -de32scr, and -pe8scr options assist with binary compatibility
of existing X applications. Since many X servers to date have only supported
visuals of depth 8 and class PseudoColor, numerous applications were written
assuming this as a default visual type for all servers. Such applications will
not work with a server whose depth is 32 and class is TrueColor. If an existing
application fails, try restarting the server with the -pc8scr option and run the
application again.

With the multiple screen option, many screens can be started each with a
different depth. You could, for example, start the server with the following
options

-nscreens 3 -dc32scr 1 -pc8scr 2

This results in three screens: screen 0 is TrueColor, screenl is DirectColor,
and screen 2 is PseudoColor.

See Also

Xserver(1), X(1), xdm(1), xinit(1), esvipc(1), gm_config(5),
pex_config(5), ESV Workstation User’s Manual

Diagnostics

Too numerous to list, but all self-explanatory.

ESV Workstation Reference Manual [2.0]

X Clients

Xxcm
Name
xcm - X Client Manager for easy access to X and PEX Clients on the ESV.
Syntax
xcm
Description

The xcm client provides users with the ability to access X clients via a menu
system.

The xcm menu system is configurable by making changes to the .xcmre
file in the users home directory. If this file doesn’t exist then the file
Jusr/lib/X11/system.xcmrc is accessed for menu configuration information.
The format of the .xemre file is:

Menu

{menu number}

{client program path and name}
{client program path and name}

There are 4 menu bar selections that can be specified, XGames (Menul),
XClients (Menu2), PexClients (Menu3) and ESVDemos (Menu4). Most any
executable program may be entered as menu items. Command line arguments
can be included in the .xcmre file as they would appear if typed at the shell
prompt.

These clients are run in the background and should be managed as such.
Options

xcm is written using the Motif Widget Set and it accepts the typical command
line options parsed by toolkit clients.

Usage
xcm
Bugs
None known at this time.
Copyright
Copyright 1991, Evans & Sutherland Computer Corporation.

ESV Workstation Reference Manual [2.0] 3-23

X Clients

csm
Name
€sm — Multiscreen manager for X servers supporting multiple screens
Syntax
csm
Description

The csm client allows users to switch between screens on an ESV
workstation. csm displays a matrix of buttons and small text areas, each
button corresponding to an available screen in the running X Server. The
button that corresponds to the screen being displayed is highlighted in a
different color. Clicking on a button causes the associated screen to be
displayed on the monitor.

In addition, small text “note pads” are found to the right of each numbered
button. The note pads can be used to type labels or reminders indicating the
use of each screen.

When csm first starts, it displays special messages in the note pad areas
to identify screens that have special characteristics. Stereo screens are marked
“-Stereo.” Screens whose root windows have a pseudo-color visual type are
marked “-Pseudo.” Screens whose root windows have a direct-color visual
type are marked “-Direct.” Screens whose root windows have a true-color vi-
sual type are not marked (true-color is the default).

Options

csm is written using the Motif toolkit and it accepts the typical command line
options parsed by toolkit clients.

Keyboard Support

When the cursor is within the borders of csm, the tab key may be used to
move focus from one button or text note pad to the next. If focus is on one of
the numbered buttons, the ENTER key may be used to warp (switch) to the
screen associated with the button.

Resources

The csm client pays attention to the standard resources used by Motif and the
mwm window manager. ¢sm also pays attention to the following specific
resources:

fontList The font to use in creating csm’s buttons
and text. Applies only to non-stereo
screens. Use stereoFontListfor setting the
font for stereo screens.

3-24 ESV Workstation Reference Manual [2.0]

(

X Clients

hiButtonColor

marginWidth

marginHeight

notePadWidth

spacing

stereoFontList

stereoNotePadWidth

stereoMarginWidth

stereoMarginHeight

The numbered button that corresponds to
the screen being displayed is highlighted by
csm. This resource allows the user to cus-
tomize the color of the button.

The size of the horizontal margin between
csm’s border and csm’s button and text
widgets. Applies to non-stereo screens. Use
stereoMarginWidih for setting the margin
width on stereo screens.

The size of the vertical margin between
csm’s border and c¢sm’s button and text
widgets. Applies to non-stereo screens. Use
stereoMarginHeightfor setting the margin
height on stereo screens.

Next to each numbered button there is a
small text widget that allows users to type
anything that they wish as a note to
themselves about what is on each screen.
This resource sets the size of the text widget
in the number of characters. It only applies
to non-stereo screens. Use
stereoNotePadWidth for setting the note
pad size on stereo screens.

The horizontal and vertical spacing be-
tween buttons and text used by csm in pix-
els. Applies only to non-stereo screens. Use
stereoSpacing for setting csm button
spacing on stereo screens.

The same as the fontListresource except it
applies to stereo and tall stereo screens
only.

The same as the notePadWidth resource
except it applies to stereo and tall stereo
screens only.

The same as the marginWidth resource
except it applies to stereo and tall stereo
screens only.

The same as the marginHeight resource
except it applies to stereo and tall stereo
screens only.

ESV Workstation Reference Manual [2.0] 3-25

X Clients

stereoSpacing The same as the spacing resource except it

applies to stereo and tall stereo screens
only.

Example .Xdefaults

In particular, here is an example of customizing resources for csm in your
.Xdefaults file:

csm*fontList: —adobe-new century schoolbook-*-*—*—*—]4—%—k—k—k_k_k—%*

csm*marginWidth:
csm*marginHeight:
csm*spacing:
csm.notePadWidth:
csm*stereoFontList:
csm*stereoMarginWidth:

csm*stereoMarginHeight:

csm*stereoSpacing:

csm.stereoNotePadWidth:

csm.geometry:
csm.hiButtonColor:

Bugs

3

3

3

15
=k—k-hold-r=* =* =]] -k k—kmkk %
0

0

0

8

+5+5
deeppink

None known at this writing.

Copyright

Copyright 1990, Evans and Sutherland Computer Corporation.

ESV Workstation Reference Manual [2.0]

,

X Clients

mwm

Name

mwm - A Window Manager

Syntax
mwm [options]

Description

mwm is an X11 client that provides window management functionality and
some session management functionality. It provides functions that facilitate
control (by the user and the programmer) of elements of window states such
as placement, size, icon/normal display, input focus ownership, etc. It also
provides session management functions such as stopping a client.

Options
—display display The display to use; see X(1).
Xrm resourcestring A resource string to use.
Appearance

The following sections describe the basic default behaviors of windows,
icons, the icon box, input focus, and window stacking. The appearance and
behavior of the window manager can be altered by changing the configuration
of specific resources. Resources are defined under the heading “X Defaults.”

Windows

Default mwm window frames have distinct components with associated
functions:

Title Area In addition to displaying the client’s title, the title
area is used to move the window. To move the
window, place the pointer over the title area, press
button 1 and drag the window to a new location. A
wire frame is moved during the drag to indicate the
new location. When the button is released, the
window is moved to the new location.

Title Bar This includes the title area, the minimize button, the
maximize button and the window menu button.

Minimize Button To turn the window back into its icon, do a button 1
click on the minimize button (the frame box with a
small square in it).

Maximize Button To make the window fill the screen (or enlarge to the
largest size allowed by the configuration files), do a

ESV Workstation Reference Manual [2.0] 3-27

X Clients

Window Menu Button

button 1 click on the maximize button (the frame box
with a large square in it).

The window menu button is the frame box with a
horizontal bar in it. To pop up the window menu,
press button 1. While pressing, drag the pointer on
the menu to your selection, then release the button
when your selection is highlighted. Alternately, you
can click button 1 to pop up the menu and keep it
posted; then position the pointer and select.

Resize Border Handles

Matte

Icons

To change the size of a window, move the pointer
over a resize border handle (the cursor will change),
press button 1, and drag the window to a new size.
When the button is released, the window is resized.
While dragging is being done, a rubber-band outline
is displayed to indicate the new window size.

An optional matte decoration can be added between
the client area and the window frame. A matte is not
actually part of the window frame. There is no func-
tionality associated with a matte.

Icons are small graphic representations of windows. A window can be mini-
mized (iconified) using the minimize button on the window frame. Icons pro-

vide a way to reduce ¢

Pressing mouse bu

lutter on the screen.

tton 1 when the pointer is over an icon will cause the

icon’s window menu to pop up. Releasing the button (press + release without
moving mouse = click) will cause the menu to stay posted. The menu contains
the following selections:

Icon Window Menu

Selection Accelerator Description

Restore
Move
Size
Minimize
Maximize

Lower
Close

ALT+F5 Opens the associated window.

ALT+F7 Allows the icon to be moved with keys.
ALT+F8 . Inactive (not an option for icons).
ALT+F9 Inactive (not an option for icons).

ALT+F10 Opens the associated window and makes
it fill the screen.

ALT+F11 Moves icon to bottom of icon stack.
ALT+F4 Removes client from mwm management.

ESV Workstation Reference Manual [2.0]

X Clients

Double-clicking button 1 on an icon normalizes the icon into its
associated window. Double-clicking button 1 on the icon box’s icon opens
the icon box and allow access to the contained icons. (In general, double-
clicking a mouse button offers a quick way to have a function performed.
Another example is double-clicking button 1 with the pointer on the window
menu button. This closes the window.)

Icon Box

When icons begin to clutter the screen, they can be packed into an icon box.
(To use an icon box, mwm must be started with the icon box configuration
already set.) The icon box is a window manager window that holds client
icons. Icons in the icon box can be manipulated with the mouse. The follow-
ing table summarizes the behavior of this interface. Button actions apply
whenever the pointer is on any part of the icon.

Button Action Description

Button 1 click Selects the icon.

Button 1 double click Normalizes (opens) the associated win-
dow.

Button 1 double click Raises an already open window to the top
of the stack.
Button 1 drag Moves the icon.

The window menu of the icon box differs from the window menu of a
client window. The “Close” selection is replaced with the “PackIcons
ALT+F12” selection. When selected, PackIcons packs the icons in the box to
achieve neat rows with no empty slots.

Input Focus

mwm supports (by default) a keyboard input focus policy of explicit selec-
tion. This means when a window is selected to get keyboard input, it contin-
ues to get keyboard input until the window is withdrawn from window man-
agement, another window is explicitly selected to get keyboard input, or the
window is iconified. There are numerous resources that control the input fo-
cus. The client window with the keyboard input focus has the active window
appearance with a visually distinctive window frame.

These tables summarize the keyboard input focus selection behavior:

Button Action Obiject Function Description
Button 1 press Window/window frame Keyboard focus selection
Button 1 press Icon Keyboard focus selection
Key Action Function Description

[ALT][TAB] Move input focus to next window in window stack.

[ALT][SHIFT][TAB] Move input focus to previous window in stack.

ESV Workstation Reference Manual [2.0] 3-29

X Clients

Window Stacking

The stacking order of windows may be changed as a result of setting the key-
board input focus, iconifying a window, or by doing a window manager win-
dow stacking function. When a window is iconified, the window’s icon is
placed on the bottom of the stack.

The following table summarizes the default window stacking behavior of
the window manager:

Key Action Function Description
[ALT][ESC] Put bottom window on top of stack.

[ALT][SHIFT][ESC] Put top window on bottom of stack.

A window can also be raised to the top when it gets the keyboard input
focus (e.g., by doing a button 1 press on the window or by using [ALT][TAB])
if this auto-raise feature is enabled with the focusAutoRaise resource.

X Defaults

mwm is configured from its resource database. This database is built from the
following sources. They are listed in order of precedence, low to high:

e app-defaulis/Mwm

* RESOURCE_MANAGER root window property or
$HOME/.Xdefaults

* XENVIRONMENT variable or $HOME/.Xdefaults-host
¢ mwm command line options

Entries in the resource database may refer to other resource files for
specific types of resources. These include files that contain bitmaps, fonts,
and mwm specific resources such as menus and behavior specifications (i.e.,
button and key bindings).

Mwm is the resource class name of mwm, and mwm is the resource name
used by mwm to look up resources. In the following discussion of resource
specification Mwm and mwm can be used interchangeably.

mwm uses the following types of resources:

Component Appearance Resources: These resources specify
appearance attributes of window manager user interface components. They
can be applied to the appearance of window manager menus, feedback
windows (e.g., the window reconfiguration feedback window), client window
frames, and icons.

Appearance and Behavior Resources: These resources specify mwm
appearance and behavior (e.g., window management policies). They are not
set separately for different mwm user interface components.

ESV Workstation Reference Manual [2.0]

(

X Clients

Client Specific Resources: These mwm resources can be set for a
particular client window or class of client windows. They specify client-
specific icon and client window frame appearance and behavior.

Resource identifiers can be either a resource name (e.g., foreground) or
a resource class (e.g., Foreground). If the value of a resource is a filename
and if the filename is prefixed by ~/, then it is relative to the path contained
in the $HOME environment variable (generally the user’s home directory).
This is the only environment variable mwm uses directly
($XENVIRONMENT is used by the resource manager).

« Specifying Component Appearance Resources

The syntax for specifying component appearance resources that apply to
window manager icons, menus, and client window frames is

Mwm*resource_id

For example, Mwm*foreground is used to specify the foreground color
for mwm menus, icons, and client window frames.

The syntax for specifying component appearance resources that apply to

a particular mwm component is
Mwm*[menulicon|client|feedback]*resource_id

If menu is specified, the resource is applied only to mwm menus; if icon
is specified, the resource is applied to icons; and if client is specified, the
resource is applied to client window frames. For example,
Mwm*icon*foreground is used to specify the foreground color for mwm
icons, Mwm*menu*foreground specifies the foreground color for mwm
menus, and Mwm*client*foreground is used to specify the foreground color
for mwm client window frames.

The appearance of the title area of a client window frame (including
window management buttons) can be separately configured. The syntax for
configuring the title area of a client window frame is:

Mwm*client*titie*resource id

For example, Mwm*client*title*foreground specifies the foreground
color for the title area. Defaults for title area resources are based on the values
of the corresponding client window frame resources.

The appearance of menus can be configured based on the name of the
menu. The syntax for specifying menu appearance by name is:

Mwm*menu*menu_name*resource_id

For example, Mwm*menu*my_menu*foreground specifies the
foreground color for the menu named my_menu.

The following component appearance resources that apply to all window
manager parts can be specified:

ESV Workstation Reference Manual [2.0] 3-31

X Clients

Component Appearance Resources - All Window Manager Parts

Name Class Value Type Default
background Background color varies*
backgroundPixmap BackgroundPixmap string** varies*
bottomShadowColor Foreground color varies*
bottomShadowPixmap BottomShadowPixmap string** varies*
fontList FontiList string*** fixed
foreground Foreground color varies*
saveUnder SaveUnder T/F F
topShadowColor Background color varies*
topShadowPixmap TopShadowPixmap string** varies*

*The default is chosen based on the visual type of the screen.
**Pixmap image name. See Xminstallimage(3X).
***X 11 R3 Font description.

background (class Background)

This resource specifies the background color. Any legal X color may be
specified. The default value is chosen based on the visual type of the screen.

backgroundPixmap (class BackgroundPixmap)

This resource specifies the background Pixmap of the mwm decoration
when the window is inactive (does not have the keyboard focus). The default
value is chosen based on the visual type of the screen.

bottomShadowColor (class Foreground)

This resource specifies the bottom shadow color. This color is used for the
lower and right bevels of the window manager decoration. Any legal X color
may be specified. The default value is chosen based on the visual type of the
screen.

bottomShadowPixmap (class BottomShadowPixmap)

This resource specifies the bottom shadow Pixmap. This Pixmap is used
for the lower and right bevels of the window manager decoration. The default
is chosen based on the visual type of the screen.

fontList (class Font)

This resource specifies the font used in the window manager decoration.
The character encoding of the font should match the character encoding of the
strings that are used. The default is “fixed.”

foreground (class Foreground)

This resource specifies the foreground color. The default is chosen based
on the visual type of the screen.

ESV Workstation Reference Manual [2.0]

X Clients

saveUnder (class SaveUnder)

This is used to indicate whether “save unders” are used for mwm
components. For this to have any effect, save unders must be implemented by
the X server. If save unders are implemented, the X server will save the
contents of windows obscured by windows that have the save under attribute
set. If the saveUnder resource is true, mwm will set the save under attribute
on the window manager frame of any client that has it set. If saveUnder is
false, save unders will not be used on any window manager frames. The
default value is false.

topShadowColor (class Background)

This resource specifies the top shadow color. This color is used for the
upper and left bevels of the window manager decoration. The default is
chosen based on the visual type of the screen.

topShadowPixmap (class TopShadowPixmap)

This resource specifies the top shadow Pixmap. This Pixmap is used for
the upper and left bevels of the window manager decoration. The default is
chosen based on the visual type of the screen.

The following component appearance resources that apply to frame and
icons can be specified:

Frame and Icon Components

Name Class Value Type Default
activeBackground Background color varies*
activeBackgroundPixmap BackgroundPixmap string** varies*
activeBottomShadowColor Foreground color varies*
activeBottomShadowPixmap BottomShadowPixmap string** varies*
activeForeground Foreground color varies*
activeTopShadowColor Background color varies*
activeTopShadowPixmap TopShadowPixmap string** varies*

*The default is chosen based on the visual type of the screen.
**See Xminstalllmage(3X).

activeBackground (class Background)

This resource specifies the background color of the mwm decoration
when the window is active (has the keyboard focus). The default is chosen
based on the visual type of the screen.

activeBackgroundPixmap (class ActiveBackgroundPixmap)

This resource specifies the background Pixmap of the mwm decoration
when the window is active (has the keyboard focus). The default is chosen
based on the visual type of the screen.

ESV Workstation Reference Manual [2.0] 3-33

X Clients

activeBottomShadowColor (class Foreground)

This resource specifies the bottom shadow color of the mwm decoration
when the window is active (has the keyboard focus). The default is chosen
based on the visual type of the screen.

activeBottomShadowPixmap (class BottomShadowPixmap)

This resource specifies the bottom shadow Pixmap of the mwm
decoration when the window is active (has the keyboard focus). The default
is chosen based on the visual type of the screen.

activeForeground (class Foreground)

This resource specifies the foreground color of the mwm decoration when
the window is active (has the keyboard focus). The default is chosen based on
the visual type of the screen.

activeTopShadowColor (class Background)

This resource specifies the top shadow color of the mwm decoration
when the window is active (has the keyboard focus). The default is chosen
based on the visual type of the screen.

activeTopShadowPixmap (class TopShadowPixmap)

This resource specifies the top shadow Pixmap of the mwm decoration
when the window is active (has the keyboard focus). The default is chosen
based on the visual type of the screen.

» Specifying Appearance and Behavior Resources
The syntax for specifying appearance and behavior resources is

Mwm*resource_id
For example, Mwm*keyboardFocusPolicy specifies the window
manager policy for setting the keyboard focus to a particular client window.
The following appearance and behavior resources can be specified:

ESV Workstation Reference Manual [2.0]

X Clients

Specific Appearance and Behavior Resources

Name

autoKeyFocus
autoRaiseDelay
bitmapDirectory
buttonBindings
cleanText
clientAutoPlace
colormapFocusPolicy
configFile
deiconifyKeyFocus
doubleClickTime
enforceKeyFocus
fadeNormaiicon
frameBorderWidth
iconAutoPlace
iconBoxGeometry
iconBoxName
iconBoxTitle
iconClick
iconDecoration
iconimageMaximum
IconimageMinimum
iconPlacement
iconPlacementMargin
interactivePlacement
keyBindings
keyboardFocusPolicy
limitResize
lowerOniconify
maximumMaximumSize
moveThreshold
passButtons
passSelectButton
positionisFrame
positionOnScreen
quitTimeout
resizeBorderWidth
resizeCursors
showFeedback
startupKeyFocus
transientDecoration
transientFunctions
useiconBox
wiMenuButtonClick
wMenuButtonClick2

Class Value Type Default
AutoKeyFocus T/F T
AutoRaiseDelay millisec 500
BitmapDirectory directory /usrfinclude/X11/bitmaps
ButtonBindings string NULL
CleanText T/F T
ClientAutoPlace T/F T
ColormapFocusPolicy string keyboard
ConfigFile file .mwmrc
DeiconifyKeyFocus T/F T
DoubleClickTime millisec. 500
EnforceKeyFocus T/F T
FadeNormalicon T/F F
FrameBorderWidth pixels 5
IconAutoPlace T/F T
lconBoxGeometry string 6x1+0-0
IconBoxName string iconbox
lconBoxTitle string Icons
IconClick T/F T
lconDecoration string varies
lconimageMaximum wxh 50x50
lconimageMinimum wxh 32x32
IconPiacement string left bottom
IconPlacementMargin pixels varies
InteractivePlacement T/F F
KeyBindings string system
KeyboardFocusPolicy string explicit
LimitResize T/F T
LowerOniconify T/F T
MaximumMaximumSize wxh(pixels) 2Xscreen wé&h
MoveThreshold pixels 4
PassButtons T/F F
PassSelectButton T/F T
PositionlsFrame T/F T
PositionOnScreen T/F T
QuitTimeout millisec. 1000
ResizeBorderWidth pixels 10
ResizeCursors T/F T
ShowFeedback string all
StartupKeyFocus T/F T
TransientDecoration string system title
TransientFunctions string -minimize -maximize
UselconBox T/F F
WMenuButtonClick T/F T
WMenuButtonClick2 T/F T

ESV Workstation Reference Manual [2.0]

X Clients

autoKeyFocus (class AutoKeyFocus)

This resource is only available when the keyboard input focus policy is
explicit. If autoKeyFocus is given a value of true, then when a window with
the keyboard input focus is withdrawn from window management or is
iconified, the focus is set to the previous window that had the focus. If the
value given is false, there is no automatic setting of the keyboard input focus.
The default value is true.

autoRaiseDelay (class AutoRaiseDelay)

This resource is only available when the focusAutoRaiseresource is true
and the keyboard focus policy is pointer. The autoRaiseDelay resource
specifies the amount of time (in milliseconds) that mwm will wait before
raising a window after it gets the keyboard focus. The default value of this
resource is 500 ms.

bitmapDirectory (class BitmapDirectory)

This resource identifies a directory to be searched for bitmaps referenced
by mwm resources. This directory is searched if a bitmap is specified without
an absolute pathname. The default value for this resource is

/usr/include/X11/bitmaps.

buttonBindings (class ButtonBindings)

This resource identifies the set of button bindings for window
management functions. The named set of button bindings is specified in the
mwm resource description file. These button bindings are merged with the
built-in default bindings. The default value for this resource is NULL (i.e., no
button bindings are added to the built-in button bindings).

cleanText (class CleanText)

This resource controls the display of window manager text in the client
title and feedback windows. If the default value of true is used, the text is
drawn with a clear (no stipple) background. This makes text easier to read on
monochrome systems where a background Pixmap is specified. Only the
stippling in the area immediately around the text is cleared. If false, the text
is drawn directly on top of the existing background.

clientAutoPlace (class ClientAutoPlace)

This resource determines the position of a window when the window has
not been given a user specified position. With a value of true, windows are
positioned with the top left corners of the frames offset horizontally and
vertically. A value of false causes the currently configured position of the
window to be used. In either case, mwm will attempt to place the windows
totally on-screen. The default value is true.

ESV Workstation Reference Manual [2.0]

(

X Clients

colermapFocusPolicy (class ColormapFocusPolicy)

This resource indicates the colormap focus policy that is to be used. If the
resource value is explicit then a colormap selection action is done on a client
window to set the colormap focus to that window. If the value is pointer then
the client window containing the pointer has the colormap focus. If the value
is keyboard then the client window that has the keyboard input focus will
have the colormap focus. The default value for this resource is keyboard.

configFile (class ConfigFile)

The resource value is the pathname for an mwm resource description file.
The default is .mwmrc in the user’s home directory (based on the SHOME
environment variable) if this file exists, otherwise it is
/usr/lib/X11/system.mwmrc.

deiconifyKeyFocus (class DeiconifyKeyFocus)

This resource only applies when the keyboard input focus policy is
explicit. If a value of true is used, a window will receive the keyboard input
focus when it is normalized (not iconified). True is the default value.

doubleClickTime (class DoubleClickTime)

This resource is used to set the maximum time (in ms) between the clicks
(button presses) that make up a double-click. The default value of this
resource is 500 ms.

enforceKeyFocus (class EnforceKeyFocus)

If this resource is given a value of true, then the keyboard input focus is
always explicitly set to selected windows even if there is an indication that
they are “globally active” input windows. (An example of a globally active
window is a scroll bar that can be operated without setting the focus to that
client.) If the resource is false, the keyboard input focus is not explicitly set
to globally active windows. The default value is true.

fadeNormalicon (class FadeNormalicon)

If this resource is given a value of true, an icon is grayed out whenever it
has been normalized (its window has been opened). The default value is false.

frameBorderWidth (class FrameBorderWidth)

This resource specifies the width (in pixels) of a client window frame
border without resize handles. The border width includes the 3-D shadows.
The default value is 5 pixels.

iconAutoPiace (class IconAutoPlace)

This resource indicates whether icons are automatically placed on the
screen by mwm, or are placed by the user. Users may specify an initial icon
position and may move icons after initial placement; however, mwm will

ESV Workstation Reference Manual [2.0] 3-37

X Clients

adjust the user-specified position to fit into an invisible grid. When icons are
automatically placed, mwm places them into the grid using a scheme set with
the IconPlacement resource. If the iconAutoPlace resource has a value of
true, then mwm does automatic icon placement. A value of false allows user
placement. The default value of this resource is true.

iconBoxGeometry (class lconBoxGeometry)

This resource indicates the initial position and size of the icon box. The
value of the resource is a standard window geometry string with the following
syntax:

[=] [widthxheight] [{+-}xoffset{+-}yoffset]

If the offsets are not provided, the iconPlacement policy is used to
determine the initial placement. The units for width and height are columns
and rows.

The actual screen size of the icon box window will depend on the
iconlmageMaximum (size) and iconDecoration resources. The default
value for size is (6 * iconWidth + padding) wide by (1 * iconHeight +
padding) high. The default value of the location is +0 -0.

iconBoxName (class IconBoxName)

This resource specifies the name that is used to look up icon box
resources. The default name is “iconbox.”

iconBoxTitle (class IconBoxTitle)

This resource specifies the name that is used in the title area of the icon
box frame. The default value is “Icons.”

iconClick (class IconClick)

When this resource is given the value of true, the system menu is posted
and left posted when an icon is clicked. The default value is true.

iconDecoration (class IconDecoration)

This resource specifies the general icon decoration. The resource value is
label (only the label part is displayed) or image (only the image part is
displayed) or label Image (both the label and image parts are displayed). A
value of activelabel can also be specified to get a label (not truncated to the
width of the icon) when the icon is selected. The default decoration for icon
box icons is each one has a label part and an image part (label image). The
default icon decoration for stand-alone icons is each one has an active label
part, a label part and an image part (activelabel label image).

iconimageMaximum (class lconimageMaximum)

This resource specifies the maximum size of the icon image. The resource
value is widthxhelght (e.g., 64x64). The maximum supported size is
128x128. The default value of this resource is 50x50.

ESV Workstation Reference Manual [2.0]

X Clients

iconimageMinimum (class IconimageMinimum)

This resource specifies the minimum size of the icon image. The resource
value is widthxheight (e.g., 32x50). The minimum supported size is 16x16.
The default value of this resource is 32x32.

IconPlacement (class IconPlacement)

This resource specifies the icon placement scheme to be used. The
resource value has the following syntax:
primary_layout secondary_layout
The layout values are one of the following:

top Lay the icons out top to bottom.
bottom Lay the icons out bottom to top.
left Lay the icons out left to right.
right Lay the icons out right to left.

A horizontal (or vertical) layout value should not be used for both the
primary_layout and the secondary_layout (e.g., don’t use top for the
primary_layout and bottom for the secondary_layout). The
primary_layoutindicates whether, when an icon placement is done, the icon
is placed in a row or a column and the direction of placement. The
secondary_layout indicates where to place new rows or columns. For
example, top right indicates that icons should be placed top to bottom on the
screen and that columns should be added from right to left on the screen. The
default placement is left bottom (icons are placed left to right on the screen,
with the first row on the bottom of the screen, and new rows added from the
bottom of the screen to the top of the screen).

IconPlacementMargin (class IconPlacementMargin)

This resource sets the distance between the edge of the screen and the
icons that are placed along the edge of the screen. The value should be greater
than or equal to 0. A default value (see below) is used if the value specified
is invalid. The default value for this resource is equal to the space between
icons as they are placed on the screen. (This space is based on maximizing the
number of icons in each row and column.)

interactivePlacement (class InteractivePlacement)

This resource controls the initial placement of new windows on the
screen. If the value is true, then the pointer shape changes before a new
window is placed on the screen to indicate to the user that a position should
be selected for the upper-left hand corner of the window. If the value is false,
then windows are placed according to the initial window configuration
attributes. The default value of this resource is false.

ESV Workstation Reference Manual [2.0] 3-39

X Clients

keyBindings (class KeyBindings)

This resource identifies the set of key bindings for window management
functions. If specified these key bindings replace the built-in default bindings.
The named set of key bindings is specified in mwm resource description file.
The default value is the set of system-compatible key bindings.

keyboardFocusPolicy (class KeyboardFocusPolicy)

If set to pointer, the keyboard focus policy is to have the keyboard focus
set to the client window that contains the pointer (the pointer could also be in
the client window decoration that mwm adds). If set to explicit, the policy is
to have the keyboard focus set to a client window when the user presses
button 1 with the pointer on the client window or any part of the associated
mwm decoration. The default value for this resource is explicit.

limitResize (class LimitResize)

If this resource is true, the user is not allowed to resize a window to greater
than the maximum size. The default value for this resource is true.

lowerOnlconify (class LowerOnliconify)

If this resource is given the default value of true, a window’s icon appears
on the bottom of the window stack when the window is minimized
(iconified). A value of false places the icon in the stacking order at the same
place as its associated window.

maximumMaximumSize (class MaximumMaximumSize)

This resource is used to limit the maximum size of a client window as set
by the user or client. The resource value is widthxheight (e.g., 1024x1024)
where the width and height are in pixels. The default value of this resource is
twice the screen width and height.

moveThreshold (class MoveThreshold)

This resource is used to control the sensitivity of dragging operations that
move windows and icons. The value of this resource is the number of pixels
that the locator will be moved with a button down before the move operation
is initiated. This is used to prevent window/icon movement when a click or
double-click is done and there is unintentional pointer movement with the
button down. The default value of this resource is 4 pixels.

passBuitons (class PassButtons)

This resource indicates whether or not button press events are passed to
clients after they are used to do a window manager function in the client
context. If the resource value is false, then the button press will not be passed
to the client. If the value is true, the button press is passed to the client
window. The window manager function is done in either case. The default
value for this resource is false.

ESV Workstation Reference Manual [2.0]

X Clients

passSelectButton (class PassSelectButton)

This resource indicates whether or not the keyboard input focus selection
button press (if keyboardFocusPolicy is explicit) is passed on to the client
window or used to do a window management action associated with the
window decorations. If the resource value is false then the button press will
not be used for any operation other than selecting the window to be the
keyboard input focus; if the value is true, the button press is passed to the
client window or used to do a window management operation, if appropriate.
The keyboard input focus selection is done in either case. The default value
for this resource is true.

positionisFrame (class PositionisFrame)

This resource indicates how client window position information (from the
WM_NORMAL_HINTS property and from configuration requests) is to be
interpreted. If the resource value is true then the information is interpreted as
the position of the mwm client window frame. If the value is false then it is
interpreted as being the position of the client area of the window. The default
value of this resource is true.

positionOnScreen (class PositionOnScreen)

This resource is used to indicate that windows should initially be placed
(if possible) so that they are not clipped by the edge of the screen (if the
resource value is true). If a window is larger then the size of the screen then
at least the upper left corner of the window will be on-screen. If the resource
value is false, then windows are placed in the requested position even if
totally off-screen. The default value of this resource is true.

quitTimeout (class QuitTimeouf)

This resource specifies the amount of time (in milliseconds) that mwm will
wait for a client to update the WM_COMMAND property after mwm has sent
the WM_SAVE_YOURSELF message. This protocol will only be used for
those clients that have a WM_SAVE_YOURSELF atom and no
WM_DELETE_WINDOW atom in the WM_PROTOCOLS client window
property. The default value of this resource is 1000 ms. (Refer to the f.kill
function for additional information.)

resizeBorderWidth (class ResizeBorderWidth)

This resource specifies the width (in pixels) of a client window frame
border with resize handles. The specified border width includes the 3-D
shadows. The default is 10 pixels.

resizeCursors (class ResizeCursors)

This is used to indicate whether the resize cursors are always displayed
when the pointer is in the window size border. If true, the cursors are shown,
otherwise the window manager cursor is shown. The default value is true.

ESV Workstation Reference Manual [2.0] 3-41

X Clients

showFeedback (class ShowFeedback)

This resource controls when feedback information is displayed. It
controls both window position and size feedback during move or resize
operations and initial client placement. It also controls window manager
message and dialog boxes. The value for this resource is a list of names of the
feedback options to be enabled; the names must be separated by a space. The
names of the feedback options are shown below:

Name Description

all Show all feedback. (Default value.)

behavior Confirm behavior switch.

move Show position during move.

none Show no feedback.

placement Show position and size during initial placement.
resize Show size during resize.

restart Confirm mwm restart.

The following command line illustrates the syntax for showFeedback:
Mwm*showFeedback: placement resize behavior restart

This resource specification provides feedback for initial client placement
and resize, and enables the dialog boxes to confirm the restart and set
behavior functions. It disables feedback for the move function.

startupKeyFociis (class StartupKeyFocus)

This resource is only available when the keyboard input focus policy is
explicit. When given the default value of true, a window gets the keyboard
input focus when the window is mapped (i.e., initially managed by the
window manager).

transientDecoration (class TransientDecoration)

This controls the amount of decoration that Mwm puts on transient
windows. The decoration specification is exactly the same as for the
clientDecoration (client specific) resource. Transient windows are identified
by the WM_TRANSIENT_FOR property which is added by the client to
indicate a relatively temporary window. The default value for this resource is
menu title (i.e., transient windows will have resize borders and a titlebar with
a window menu button).

transientFunctions (class TransientFunctions)

This resource is used to indicate which window management functions
are applicable (or not applicable) to transient windows. The function
specification is exactly the same as for the clientFunctions (client specific)
resource. The default value for this resource is -minimize -maximize.

ESV Workstation Reference Manual [2.0]

X Clients

uselconBox (class UselconBox)

If this resource is given a value of true, icons are placed in an icon box.
When an icon box is not used, the icons are placed on the root window
(default value).

wMenuButtonClick (class WMenuButtonClick)

This resource indicates whether a click of the mouse when the pointer is
over the window menu button will post and leave posted the system menu. If
the value given this resource is true, then the menu will remain posted. True
is the default value for this resource.

wMenuButtonClick2 (class WMenuButtonClick2)

When this resource is given the default value of true, a double-click action
on the window menu button will do an f.kill function.

+ Specifying Client Specific Resources

The syntax for specifying client specific resources is
Mwm*client_name_or_class*resource_id
For example, Mwm* mierm* windowMenu is used to specify the window
menu to be used with mterm clients. The syntax for specifying client specific
resources for all classes of clients is
Mwm*resource_id
Specific client specifications take precedence over the specifications for
all clients. For example, Mwm*windowMenu is used to specify the window
menu to be used for all classes of clients that don’t have a window menu
specified. The syntax for specifying resource values for windows that have an
unknown name and class (i.e. the window does not have a WM_CLASS
property associated with it) is
Mwm*defaults*resource_id
For example, Mwm*defaults*iconimage is used to specify the icon
image to be used for windows that have an unknown name and class. The
following client specific resources can be used.

ESV Workstation Reference Manual [2.0] 3-43

X Clients

Client Specific Resources

Name Class Value Type Default
clientDecoration ClientDecoration string all
clientFunctions ClientFunctions string all
focusAutoRalse FocusAutoRaise T/F T
iconimage Iconimage pathname(image)
iconimageBackground Background color icon background
iconimageBottomShadowColor Foreground color icon bottom shadow
iconimageBottomShadowPixmap BottomShadowPixmap color icon bottom shadow
pixmap
iconimageForeground Foreground color icon foreground
iconimageTopShadowColor Background color icon top shadow color
iconlmageTopShadowPixmap TopShadowPixmap color icon top shadow
pixmap
matteBackground Background color background
matteBottomShadowColor Foreground color bottom shadow color
matteBottomShadowPixmap BottomShadowPixmap color bottom shadow
pixmap
matteForeground Foreground color foreground
matteTopShadowColor Background color top shadow color
matteTopShadowPixmap TopShadowPixmap color top shadow pixmap
matteWidth MatteWidth pixels 0
maximumcClientSize MaximumClientSize wxh fill the screen
useClienticon UseClienticon T/F F
windowMenu WindowMenu string string

clientDecoration (class ClientDecoration)

This resource controls the amount of window frame decoration. The
resource is specified as a list of decorations which can be included in the
frame. If a decoration is preceded by a minus sign, then that decoration is
excluded from the frame. The sign of the first item in the list determines the
initial amount of decoration. If the sign of the first decoration is minus, then
mwm assumes all decorations are present and starts subtracting from that set.
If the sign of the first decoration is plus (or not specified), then mwm starts
with no decoration and builds up a list from the resource.

Name

all
border
maximize
minimize
none
resizeh
menu
title

Examples:

Description

Include all decorations (default value)

Window border

Maximize button (includes title bar)
Minimize button (includes title bar)

No decorations

Border resize handles (includes border)
Window menu button (includes title bar)

Title bar (includes border)

Mwm*XClock.clientDecoration: -resizeh -maximize

ESV Workstation Reference Manual [2.0]

X Clients

This removes the resize handles and maximize button from XClock
windows.

Mwm*XClock.clientDecoration: menu minimize border

This does the same thing as above. Note that either menu or minimize
implies title.

clientFunctions (class ClientFunctions)

This resource is used to indicate which mwm functions are applicable (or
not applicable) to the client window. The value for the resource is a list of
functions. If the first function in the list has a minus sign in front of it, then
mwnm starts with all functions and subtracts from that set. If the first function
in the list has a plus sign in front of it, then mwm starts with no functions and
builds up a list. Each function in the list must be preceded by the appropriate
plus or minus sign and be separated from the next function by a space. The
table below lists the functions available for this resource.

Name Description

all Include all functions (default value)
none No functions

resize f.resize

move f.move

minimize f.minimize

maximize f.maximize

close £.kill

focusAutoRaise (class FocusAutoRaise)

When the value of this resource is true, clients are made completely
unobscured when they get the keyboard input focus. If the value is false, the
stacking of windows on the display is not changed when a window gets the
keyboard input focus. The default value is true.

iconlimage (class Ilconimage)

This resource can be used to specify an icon image for a client (e.g.,
Mwm*myclock*iconimage). The resource value is a pathname for a bitmap
file. The value of the (client specific) useClienticon resource is used to
determine whether or not user supplied icon images are used instead of client
supplied icon images. The default value is to display a built-in window
manager icon image.

iconimageBackground (class Background)

This resource specifies the background color of the icon image that is
displayed in the image part of an icon. The default value of this resource is
the icon background color (i.e., specified by Mwm*background or
Mwm*icon*background).

ESV Workstation Reference Manual [2.0] 3-45

X Clients

IconimageBottomShadowColor (class Foreground)

This resource specifies the bottom shadow color of the icon image that is
displayed in the image part of an icon. The default value of this resource is
the icon bottom shadow color (i.e., specified by
Mwm*icon*bottomShadowColor).

iconimageBottomShadowPixmap (class BottomShadowPixmap)

This resource specifies the bottom shadow Pixmap of the icon image that
is displayed in the image part of an icon. The default value of this resource is
the icon bottom shadow Pixmap.

iconimageForeground (class Foreground)

This resource specifies the foreground color of the icon image that is
displayed in the image part of an icon. The default value of this resource is
the icon foreground color (i.e., specified by Mwm*foreground or
Mwm*icon*foreground).

iconimageTopShadowColor (class Background)

This resource specifies the top shadow color of the icon image that is
displayed in the image part of an icon. The default value of this resource is
the icon top shadow color.

iconlmage TopShadowPixmap (class TopShadowPixmap)

This resource specifies the top shadow Pixmap of the icon image that is dis-
played in the image part of an icon. The default value of this resource is the
icon top shadow Pixmap (i.e., specified by Mwm*icon*topShadowPixmap).

matteBackground (class Background)

This resource specifies the background color of the matte, when
matteWidth is positive. The default value of this resource is the client
background color (i.e., specified by Mwm*background or
Mwm*client*background).

“matteBottomShadowColor (class Foreground)

This resource specifies the bottom shadow color of the matte, when
matteWidth is positive. The default value of this resource is the client bottom
shadow color (i.e., specified by Mwm*bottomShadowColor or
Mwm*client*bottomShadowColor).

matteBottomShadowPixmap (class BottomShadowPixmap)

This resource specifies the bottom shadow Pixmap of the matte, when
matteWidth is positive. The default value of this resource is the client bottom
shadow Pixmap.

ESV Workstation Reference Manual [2.0]

(

X Clients

matteForeground (class Foreground)

This resource specifies the foreground color of the matte, when
matteWidth is positive. The default value of this resource is the client
foreground color (i.e., specified by Mwm*foreground or
Mwm*client*foreground).

matteTopShadowColor (class Background)

This resource specifies the top shadow color of the matte, when
matteWidth is positive. The default value of this resource is the client top
shadow color (i.e., specified by Mwm*topShadowColor or
Mwm*client*topShadowColor).

matteTopShadowPixmap (class TopShadowPixmap)

This resource specifies the top shadow Pixmap of the matte, when
matteWidth is positive. The default value of this resource is the client top
shadow Pixmap.

matteWidth (class MatteWidth)

This resource specifies the width of the optional matte. The default value
is 0, which effectively disables the matte.

maximumClientSize (class MaximumClientSize)

This is a size specification indicating the client size to be used when an
application is maximized. The resource value is specified as widthxheight.
The width and height are interpreted in the units that the client uses (e.g., for
terminal emulators this is generally characters). If this resource is not
specified then the maximum size from the WM_NORMAL_HINTS property is
used, if it has been set. Otherwise the default value is the size where the client
window with window management borders fills the screen. When the
maximum client size is not determined by the maximumcCIientSizeresource,
the MaximumSize resource value is used as a constraint on the maximum
size.

useClientlcon (class UseClienticon)

If the value given for this resource is true, a client supplied icon image
will take precedence over a user supplied icon image. The default value is
false, making the user supplied icon image have higher precedence than the
client supplied icon image.

windowMenu (class WindowMenu)

This resource indicates the name of the menu pane that is posted when the
window menu is popped up (usually by pressing button 1 on the window
menu button on the client window frame). Menu panes are specified in the
mwm resource description file. Window menus can be customized on a client

ESV Workstation Reference Manual [2.0] 3-47

X Clients

class basis by specifying resources of the form
Mwm*client_name_or_class*windowMenu (see “mwm Resource
Description File Syntax” below). The default value of this resource is the
name of the built-in window menu specification.

Resource Description File

The mwm resource description file is a supplementary resource file that con-
tains resource descriptions referred to by entries in the defaults files (.Xde-
faults, app-defaults/Mwm). It contains descriptions of resources that are to
be used by mwm, and that cannot be easily encoded in the defaults files (a
bitmap file is an analogous type of resource description file). A particular
mwm resource description file can be selected using the configFile resource.
The following types of resources can be described in the mwm resource de-
scription file:

* Buttons

Window manager functions can be bound (associated) with button
events.

¢ Keys
Window manager functions can be bound (associated) with key press
events.

Menus

Menu panes can be used for the window menu and other menus posted
with key bindings and button bindings.

mwm Resource Description File Syntax

The mwm resource description file is a standard text file that contains items
of information separated by blanks, tabs, and new lines characters. Blank
lines are ignored. Items or characters can be quoted to avoid special interpre-
tation (e.g., the comment character can be quoted to prevent it from being in-
terpreted as the comment character). A quoted item can be contained in dou-
ble quotes (). Single characters can be quoted by preceding them by the
back-slash character (\). All text from an unquoted pound sign (#) to the end
of the line is regarded as a comment and is not interpreted as part of a resource
description. If an exclamation point (!) is the first character in a line, the line
is regarded as a comment. Window manager functions can be accessed with
button and key bindings, and with window manager menus. Functions are in-
dicated as part of the specifications for button and key binding sets, and menu
panes. The function specification has the following syntax:

function = function name [function_ args]

function_name = window manager function
function_args ={quoted item | unquoted_item}

ESV Workstation Reference Manual [2.0]

X Clients

The following functions are supported. If a function is specified thatisn’t
one of the supported functions then it is interpreted by mwm as f.nop.

f.beep
This function causes a beep.
f.circle_down [icon | window]

This function causes the window or icon that is on the top of the window
stack to be put on the bottom of the window stack (so that it is no longer
obscuring any other window or icon). This function affects only those
windows and icons that are obscuring other windows and icons, or that are
obscured by other windows and icons. Secondary windows (i.e. transient
windows) are restacked with their associated primary window. Secondary
windows always stay on top of the associated primary window and there can
be no other primary windows between the secondary windows and their
primary window. If an icon function argument is specified, then the function
applies only to icons. If a window function argument is specified then the
function applies only to windows.

f.circle_up [icon [window]

This function raises the window or icon on the bottom of the window
stack (so that it is not obscured by any other windows). This function affects
only those windows and icons that are obscuring other windows and icons, or
that are obscured by other windows and icons. Secondary windows (i.e.
transient windows) are restacked with their associated primary window. If an
icon function argument is specified then the function applies only to icons. If
a window function argument is specified then the function applies only to
windows.

f.execor !

This function causes command to be executed (using the value of the
$SHELL environment variable if it is set, otherwise /bln/sh) The ! notation
can be used in place of the f.exec function name.

f.focus_color

This function sets the colormap focus to a client window. If this function
is done in a root context, then the default colormap (setup by the X Window
System for the screen where mwm is running) is installed and there is no
specific client window colormap focus. This function is treated as f.nop if
colormapFocusPolicy is not explicit.

f.focus_key

This function sets the keyboard input focus to a client window or icon.
This function is treated as f.nop if keyboardFocusPolicy is not explicit or
the function is executed in a root context.

ESV Workstation Reference Manual [2.0] 3-49

X Clients

f.kill

If the WM_DELETE_WINDOW protocol is set up, the client is sent a
client message event indicating that the client window should be deleted. If
the WM_SAVE_YOURSELF protocol is set up and the
WM_DELETE_WINDOW protocol is not set up, the client is sent a client
message event indicating that the client needs to prepare to be terminated. If
the client does not have the WM_DELETE_WINDOW or
WM_SAVE_YOURSELF protocol set up, this function causes a client’s X
connection to be terminated (usually resulting in termination of the client).
Refer to the description of the quitTimeout resource and the
WM_PROTOCOLS property.

f.lower [-client]

This function lowers a client window to the bottom of the window stack
(where it obscures no other window). Secondary windows (i.e. transient
windows) are restacked with their associated primary window. The client
argument indicates the name or class of a client to lower. If the client
argument is not specified then the context in which the function was invoked
indicates the window or icon to lower.

f.maximize
This function causes a client window to be displayed at its maximum size.
f.menu

This function associates a cascading (pull-right) menu with a menu pane
entry or a menu with a button or key binding. The menu_name function
argument identifies the menu to be used.

f.minimize

This function causes a client window to be minimized (iconified). When
a window is minimized and no icon box is used, its icon is placed on the
bottom of the window stack (such that it obscures no other window). If an
icon box is used, then the client’s icon changes to its iconified form inside the
icon box. Secondary windows (i.e. transient windows) aré minimized with
their associated primary window. There is only one icon for a primary
window and all its secondary windows.

f.move
This function allows a client window to be interactively moved.
f.next_cmap

This function installs the next colormap in the list of colormaps for the
window with the colormap focus.

ESV Workstation Reference Manual [2.0]

X Clients

f.next_key [icon | window | transient]

This function sets the keyboard input focus to the next window/icon in the
set of windows/icons managed by the window manager (the ordering of this
setis based on the stacking of windows on the screen). This function is treated
as f.nop if keyboardFocusPolicy is not explicit. The keyboard input focus
is only moved to windows which do not have an associated secondary
window that is application modal. If the transient argument is specified, then
transient (secondary) windows are traversed (otherwise, if only window is
specified, traversal is done only to the last focused window in a transient
group). If an Jcon function argument is specified, then the function applies
only to icons. If a window function argument is specified, then the function
applies only to windows.

f.nop
This function does nothing.
f.normalize

This function causes a client window to be displayed with its normal size.
Secondary windows (i.e. transient windows) are placed in their normal state
along with their associated primary window.

f.pack_icons

This function is used to adjust the icon layout (based on the layout policy
being used) on the root window or in the icon box. In general, this causes
icons to be “packed” into the icon grid.

f.pass_keys

This function is used to enable/disable (toggle) processing of key
bindings for window manager functions. When it disables key binding
processing all keys are passed on to the window with the keyboard input focus
and no window manager functions are invoked. If the f.pass_keys function
is invoked with a key binding to disable key binding processing, the same key
binding can be used to enable key binding processing.

f.post_wmenu

This function is used to post the window menu. If a key is used to post the
window menu and a window menu button is present, the window menu is
automatically placed with its top-left corner at the bottom-left comer of the
window menu button for the client window. If no window menu button is
present, the window menu is placed at the top-left corner of the client
window.

f.prev_cmap

This function installs the previous colormap in the list of colormaps for
the window with the colormap focus.

ESV Workstation Reference Manual [2.0] 3-51

X Clients

f.prev_key [icon | window [transient]

This function sets the keyboard input focus to the previous window/icon
in the set of windows/icons managed by the window manager (the ordering
of this set is based on the stacking of windows on the screen). This function
is treated as f.nop if keyboardFocusPolicy is not explicit. The keyboard
input focus is only moved to windows which do not have an associated
secondary window that is application modal. If the transient argument is
specified, then transient (secondary) windows are traversed (otherwise, if
only window is specified, only the last focused window in a transient group
is traversed). If an /con function argument is specified, the function applies
only to icons. If a window function argument is specified, the function
applies only to windows.

f.quit_mwm
This function terminates mwm (but not the X window system).
f.raise [-client]

This function raises a client window to the top of the window stack (where
it is obscured by no other window). Secondary windows (i.e. transient
windows) are restacked with their associated primary window. The client
argument indicates the name or class of a client to raise. If the client argument
is not specified, the context in which the function was invoked indicates the
window or icon to raise.

f.raise_lower

This function raises a client window to the top of the window stack if it is
partially obscured by another window, otherwise it lowers the window to the
bottom of the window stack. Secondary windows (i.e. transient windows) are
restacked with their associated primary window.

f.refresh

This function causes all windows to be redrawn.
f.refresh_win

This function causes a client window to be redrawn,

f.resize

This function allows a client window to be interactively resized.
f.restart

This function causes mwm to be restarted (effectively terminated and re-
executed).

ESV Workstation Reference Manual [2.0]

X Clients

f.send_msg message number

This function sends a client message of the type
_MOTIF_WM_MESSAGES with the message_type indicated by the
message_number function argument. The client message will only be sent
if message_number is included in the client’s _MOTIF_WM_MESSAGES
property. A menu item label is grayed out if it is used to do an f.send_msg
of a message that is not included in the client’s _MOTIF_WM_MESSAGES

property.
f.separator

This function causes a menu separator to be put in the menu pane at the
specified location (the label is ignored).

f.set_behavior

This function causes the window manager to restart with the default OSF
behavior (if a custom behavior is configured) or a custom behavior (if an OSF
default behavior is configured).

f.title

This function inserts a title in the menu pane at the specified location.
Each function may be constrained as to which resource types can specify
the function (e.g., menu pane) and also the context in which the function can
be used (e.g., the function is done to the selected client window). Function
contexts are

+ root
No client window or icon has been selected as an object for the
function.

« window

A client window has been selected as an object for the function. This
includes the window’s title bar and frame. Some functions are applied
only when the window is in its normalized state (e.g., f.maximize) or
its maximized state (e.g., f.normalize).

« con
An icon has been selected as an object for the function.

If a function is specified in a type of resource where it is not supported or
is invoked in a context that does not apply then the function is treated as
f.nop. The following table indicates the resource types and function contexts
in which window manager functions apply.

ESV Workstation Reference Manual [2.0] 3-53

X Clients

Function Contexts Resources

f.beep root,icon,window button,key,menu
f.circle_down root,icon,window button,key,menu
f.circle_up root,icon,window button,key,menu
f.exec root,icon,window button key,menu
f.focus_color root,icon,window button,key,menu
f.focus_key root,icon,window button,key,menu
f.kill icon,window button,key,menu
f.lower root,icon,window button key,menu
f.maximize icon,window(normal) button,key,menu
f.menu root,icon,window button,key,menu
f.minimize window button,key,menu
f.move icon,window button,key,menu
f.next_cmap rootjicon,window button,key,menu
f.next_key root,icon,window buttonkey,menu
f.nop root,ijcon,window button,key,menu
f.normalize icon,window(max) button,key,menu
f.pack_icons root,icon,window button,key,menu
f.pass_keys root,icon,window button,key,menu

f.post_wmenu
f.prev_cmap

root,icon,window
root,icon,window

button,key
button,key, menu

f.prev_key root,icon,window button,key,menu
f.quit_mwm root button,key,menu
f.raise root,icon,window button,key,menu
f.raise_lower icon,window button,key,menu
f.refresh root,icon,window button,key,menu
f.refresh_win window button,key,menu
f.resize window button,key,menu
f.restart root button,key,menu
f.send_msg icon,window button,key,menu
f.separator root,icon,window menu

f.set_behavior
f.title

root,icon,window
root,icon,window

button,key,menu
menu

Window Manager Event Specification

Events are indicated as part of the specifications for button and key binding
sets, and menu panes.

Button events have the following syntax:
button =[modifier list]<button_event_name>
modifier list = modifier name {modifier_ name}
All modifiers specified are interpreted as being exclusive (this means that
only the specified modifiers can be present when the button event occurs).
The following table indicates the values that can be used for modifier_name.

(

ESV Workstation Reference Manual [2.0]

X Clients

The ALT key is frequently labeled EXTEND or META. ALT and META can be
used interchangeably in event specification.

Modifier Description
CTRL Control Key
SHIFT Shift Key
ALT Alt/Meta Key
META Meta/Alt Key
LOCK Lock Key
Mod1 Modifierl
Mod2 Modifier2
Mod3 Modifier3
Mod4 Modifier4
Mod5 Modifier5

The following table indicates the values that can be used for
button_event_name.

Modifier Description

Btn1Down Button 1 Press

Btn1Up Button 1 Release
Btn1Click Button 1 Press and Release
Btn1Click2 Button 1 Double Click
Btn2Down Button 2 Press

Btn2Up Button 2 Release
Btn2Click Button 2 Press and Release
Btn2Click2 Button 2 Double Click
Btn3Down Button 3 Press

Btn3Up Button 3 Release
Btn3Click Button 3 Press and Release
Btn3Click2 Button 3 Double Click
Btn4dDown Button 4 Press

Btn4Up Button 4 Release
Btn4Click Button 4 Press and Release
Btn4Click2 Button 4 Double Click
Btn5Down Button 5 Press

Btn5Up Button 5 Release
Btn5Click Button 5 Press and Release
Btn5Click2 Button 5 Double Click

Key events that are used by the window manager for menu mnemonics
and for binding to window manager functions are single key presses; key
releases are ignored. Key events have the following syntax:

key = [modifier_ list]<Key>key_ name
modifier list = modifier name {modifier name}

ESV Workstation Reference Manual [2.0] 3-55

X Clients

All modifiers specified are interpreted as being exclusive (this means that
only the specified modifiers can be present when the key event occurs).
Modifiers for keys are the same as those that apply to buttons. The key_name
is an X11 keysym name. Keysym names can be found in the keysymdef.h
file (remove the XK_ prefix).

Button Bindings

The buttonBindings resource value is the name of a set of button bindings
that are used to configure window manager behavior. A window manager
function can be done when a button press occurs with the pointer over a
framed client window, an icon or the root window. The context for indicatin g
where the button press applies is also the context for invoking the window
manager function when the button press is done (significant for functions that
are context sensitive).

The button binding syntax is

Buttons bindings_set_name
{

button context function
button context function
button context function

}
The syntax for the context specification is

context =object[|context]
object =root | icon | window | title | frame | border | app

The context specification indicates where the pointer must be for the
button binding to be effective. For example, a context of window indicates
that the pointer must be over a client window or window management frame
for the button binding to be effective. The frame context is for the window
management frame around a client window (including the border and
titlebar), the border context is for the border part of the window management
frame (not including the titlebar), the title context is for the title area of the
window management frame, and the app context is for the application
window (not including the window management frame).

If an f.nop function is specified for a button binding, the button binding
will not be done.
Key Bindings

The keyBindings resource value is the name of a set of key bindings that are
used to configure window manager behavior. A window manager function
can be done when a particular key is pressed. The context in which the key
binding applies is indicated in the key binding specification. The valid con-

ESV Workstation Reference Manual [2.0]

X Clients

texts are the same as those that apply to button bindings. The key binding syn-
tax is

Keys bindings_set_name
{

key context function
key context function
key context function

}

If an f.nop function is specified for a key binding, the key binding will not
be done. If an f.post_wmenu or f.menu function is bound to a key, mwm
will automatically use the same key for removing the menu from the screen
after it has been popped up.

The context specification syntax is the same as for button bindings. For
key bindings, the frame, title, border, and app contexts are equivalent to the
window context. The context for a key event is the window or icon that has
the keyboard input focus (root if no window or icon has the keyboard input
focus).

Menu Panes

Menus can be popped up using the f.post_wmenu and f.menu window man-
ager functions. The context for window manager functions that are done from
a menu is root, icon, or window depending on how the menu was popped up.
In the case of the window menu or menus popped up with a key binding, the
location of the keyboard input focus indicates the context. For menus popped
up using a button binding, the context of the button binding is the context of
the menu. The menu pane specification syntax is

Menu menu_name

{

label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function

}

Each line in the Menu specification identifies the label for a menu item
and the function to be done if the menu item is selected. Optionally a menu
button mnemonic and a menu button keyboard accelerator may be specified.
Mnemonics are functional only when the menu is posted and keyboard
traversal applies.

The label may be a string or a bitmap file. The label specification has the
following syntax:

ESV Workstation Reference Manual [2.0] 3-57

X Clients

label = text | bitmap file
bitmap file = @file name
text = quoted item | unquoted item

The string encoding for labels must be compatible with the menu font that
is used. Labels are greyed out for menu items that do the f.nop function, an
invalid function, or a function that doesn’t apply in the current context.

A mnemonic specification has the following syntax

mnemonic = _character

The first matching character in the label is underlined. If there is no
matching character in the label, no mnemonic is registered with the window
manager for that label. Although the character must exactly match a character
in the label, the mnemonic will not execute if any modifier (such as SHIFT)
is pressed with the character key.

The accelerator specification is a key event specification with the same
syntax as is used for key bindings to window manager functions.

Environment

mwm uses the environment variable $HOME specifying the user’s home
directory.

Files
/usr/lib/X11/system.mwmrc
/usr/lib/X11/app-defaults/Mwm
$HOME/.Xdefaults $HOME/.mwmrc
Copyright
(c) Copyright 1989 by Open Software Foundation, Inc.
(c) Copyright 1987, 1988, 1989 by Hewlett-Packard Company
All rights reserved.
Origin
HP
Related Information
X(1)
VendorShell(3X)
Xminstalllmage(3X)

3-58 ESV Workstation Reference Manual [2.0]

