ESV Workstation

Stereo User’s Manual

EVANS & SUTHERLAND COMPUTER CORPORATION
Salt Lake City, Utah

DOCUMENTATION WARRANTY:

PURPOSE: This documentation is provided to assist an Evans & Sutherland trained BUYER
in using a product purchased from Evans & Sutherland. It may contain errors or omissions
that only a trained individual may recognize. Changes may have occurred to the hardware/
software, to which this documentation refers, which are not included in this documentation
or may be on a separate errata sheet. Use of this documentation in such changed hardware/
software could result in damage to hardware/software. User assumes full responsibility of
all such results of the use of this data.

WARRANTY: This document is provided, and Buyer accepts such documentation, “AS-IS”
and with “ALL FAULTS, ERRORS, AND OMISSIONS.” BUYER HEREBY WAIVES ALL
IMPLIED AND OTHER WARRANTIES, GUARANTIES, CONDITIONS OR LIABILITIES,
EXPRESSED OR IMPLIED ARISING BY LAW OR OTHERWISE, INCLUDING, WITHOUT
LIMITATIONS, ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
BUYER FURTHER HOLDS SELLER HARMLESS OF ANY DIRECT OR INDIRECT
DAMAGES, INCLUDING CONSEQUENTIAL DAMAGES.

ESV,ESYV Series, ESV Series Workstations, ES/os, ES/Dnet, ES/PEX, ES/PHIGS,ES/PSX,
Clean-Line, Fiber Link, Local Server, CDRS, and Shadowfax are trademarks of
Evans & Sutherland Computer Corporation.

LAT Host Services, DEPICT, and PCONFIG are trademarks of Ki Research.
AVS is a trademark of Stardent Computer, Inc.

' VAX, VMS, and DECnet are trademarks of Digital Equipment Corporation.

X Window System is a trademark of the Massachusetts Institute of Technology.
UNIX is a registered trademark of AT&T.

Ethernet is a registered trademark of Xerox Corporation.

Motif is a trademark of the Open Software Foundation, Inc.

SunPHIGS is a registered trademark of Sun Microsystems, Inc.

CrystalEyes is a trademark of StereoGraphics Corporation.

Part Number: 517941-101 AA
April, 1991

Copyright © 1991 by Evans & Sutherland Computer Corporation.
All rights reserved.

Printed in the United States of America.

Table of Contents

Table of Contents
1. Overview 1-1
StETEOSCOPIC GIAPNICS. ..ccucvecrusencrreeserasssssassnsssserssassssessssassssssssssessesessessesesesasns 1-1
Stereo Viewing Optioncceceereeerenencnnes 1-2
Stereo on the ESV Workstationcccoeeeuereescrcnnane 1-2
StereoscopiC VIEWING DEVICEccccererrerenrrrnenserorerereensessassnssssssesessassnns 1-3
Stere0SCOPIC FHEIAScocerveererereenenenenrneiresereresesesesesessesssossasssseassens 1-3
2. PHIGS Stereo Implementation 2-1
Interface Overview .. 2-1
Using the PHIGS V1ew1ng Model for Stereo 2-1
Stereo Setup Procedure... et b bt s e st e sa o st sasenese st anassantan 2-3
3. ES/PSX Stereo Implementation 3-1
Selecting a Stereoscopic Model.........cecerereneeveneerencanee cetensencneeonne .31
The F:STEREO FUNCHON........cccevicrrrrrerenreenesesesesessssssesesssessesssssssssases .32
Developing a Stereoscopic Display SITUCIULEc.ccerererereccreremsessesessssesoesenes 3-4
Stereoscopic Viewports ettt st satns s snenenssaasnean 3-10
Picking Implementation ettt s bbb s sb s st s e seee s e sneresasatatenentnsaanens 3-12
Cursor IMPIEMENTAtIONcc.coeuerecrerererernarasessensresessesessesessesesessessssesssssessessessssene 3-13
Configuring the ESV Workstation for Stereoscopic Viewing......coeceererennenne 3-14
Alternative System COnfigUrationcoceeeueereressessnsnreessessessesessssssssssessessssens 3-15
Helpful Hints for ES/PSX Stereo Implementatlon 3-16
Toggling Between Monoscopic and Stereoscopic Viewing Modes ... 3-16
Update Rate CUTSOT.....ccveeenreeiiereenrnreereeeseesesessenesesessssesssssssssssesenns 3-16
Line Resolution in Stereo..........cceeeecrrereverencns ceeteassentntananennses 3-16
IMAgE DISTOTHONcovovreencerrrnrnrsssnesesenesssnsesssesssesessssssssssssssscssassossssssses 3-17
DEPth CUES....ccerirereinicaerercrsenereseneseseesesessesesesssssesssessosessacssssssssssaseses 3-18
AdJUStING PEISPECHVEceererererncnsrnneennereansraresesssessssesessssassesssssasasans 3-18
Perspective vs. Orthographic Pro_]ecnon rerenesrensesaenns 3-18
Ghosting “ ceeateseatststeae st st st esssastsenaenesteranteaataraatesasenensenen 3-18
ClPPINgG PIANEScceeeeenreeeetreserecnceeseesesesssaresssesensssesssossassssessssssace 3-19
Object Viewing REZION.......ccccureerurrenrsiersessssessssssesassssssessessesesaess 3-20
REGISITALONcucueuenerrrnerenceernnsssnsesesenssessssssssssssssesssesesesssessssssssssssoncas 3-21
Stereo in the X ENVITONMENL.........cccvvueveereerecsnsereseesesesnssesessssesesssssnes 3-21
Emergency Exit from Stereoscopic Viewing Modecoccurunnne.. 3-22
Helpful Hints for Viewing Stereoscopic IMagesc.ccevuevereuerererncnseensersenns 3-22
LAZRUNGoneiiciinsiiciecncnneseessesessssssssassesnsassesesessssssssessessases 3-22
VIEWING ANGIE c.uuiuiininininienenenenenssescsssseasreresnansnsassessssssssessssssssssssosass 3-22
A. Glossary A-1
B. PHIGS Stereo Example Program B-1

Stereo User’'s Manual [2.0] i

Overview

1. Overview

This manual is arranged as follows:

» Chapter 1 (this chapter) describes the Stereo Viewing Option
components, stereoscopic graphics, and contains a video overview.

» Chapter 2 describes stereo implementation using PHIGS.

» Chapter 3 describes stereo implementation using ES/PSX.
e Appendix A contains a glossary of stereoscopic terms.

+ Appendix B contains a PHIGS stereo example program.

Stereoscopic Graphics

When a monoscopic display of a 3D object is viewed on a graphics screen,
several cues suggest to the eye-brain system that the image represents a 3D
object:

» The edges of the object meet at angles which make sense only if the
brain assumes that the 2D picture is actually a projection of a 3D ob-
ject.

 The intensity of edges and other lines in the picture can be made to
vary, suggesting depth by the dimming of the lines with distance.

» The object can be drawn in perspective, where the portions of the ob-
ject which are closer to the viewer are drawn larger than those which
are farther from the viewer.

Adequate pictures can be produced with these cues which faithfully re-
produce an object as it would be viewed from a selected point. However, the
brain recognizes that only a picture is being viewed, and not the object itself,
because the most important depth cue, stereopsis, is missing.

Stereopsis gives viewers the ability to qualitatively and, to some degree,
quantitatively, judge the distance to an object by how different the object
looks to each of their two eyes. The difference in appearance between the two
views is caused by parallax, the apparent shifting of a nearby object with re-
spect to a far object as the viewer’s point of view shifts. The eye-brain system
is carefully trained to observe this change in appearance and uses it to accu-
rately judge the relative distance and size of an object.

To display true 3D, each eye must be made to see a different image, ad-
justed for the correct parallax. Since the placement of the two-eye system is
important, the view must be adjusted for the correct position of the viewer
with respect to the monitor screen. In this way, the screen can be made to ap-

Stereo User's Manual [2.0] 1-1

Overview

pear as a transparent window through which a real 3D object is seen, not as a
surface on which a picture is drawn.

Stereo Viewing Option

‘When viewing a 3D object, each eye views the object from a slightly different
perspective because of the interocular separation. 2D views of the object,
called stereoscopic fields, are projected onto the retinae of the eyes. The
stereoscopic fields are transmitted to the brain, and the brain fuses them by a
process known as stereopsis to form a 3D view of the object.

The Stereo Viewing Option provides the hardware and software tools
required to create the left-eye and right-eye stereoscopic fields of a 3D object
on the ESV Workstation; to alternately display the two stereoscopic fields on
a monitor; and to direct the left-eye stereoscopic field to the left eye and the
right-eye stereoscopic field to the right eye of the user.

Stereo on the ESV Workstation

The ESV Workstation monitor accommodates both monoscopic and stereo-
scopic viewing of an image. ESV Workstation stereoscopy is non-interlaced,
which means that each time the monitor screen is refreshed, either the right-
eye or left-eye stereoscopic field is drawn complete from top to bottom. Two
refresh cycles are required to draw the complete stereoscopic picture.

The ESV Workstation monitor has a default resolution of 1280 horizontal
pixels by 1024 vertical pixels. The pixels are stored in a special memory
called the frame buffer. In the stereoscopic viewing mode, the video hardware
divides the frame buffer into two equal parts. The first 512 scan lines (lines 0
through 511) are used for the first stereoscopic field (e.g., the left-eye view),
and the second 512 scan lines (lines 512 through 1023) are used for the sec-
ond stereoscopic field (e.g., the right eye).

The first 512 horizontal scanlines of frame buffer memory are used for the
left-eye view. These 512 scan lines are displayed across the entire surface of
the monitor, so that there is now a resolution of 512 vertical pixels, rather than
the original 1024. The image now has pixels that are twice as tall as they used
to be. While these 512 scanlines are being displayed, the stereoscopic viewing
device blanks the right lens so that only the left eye can see the left-eye view
on the monitor.

The second 512 horizontal scanlines of frame buffer memory are used for
the right-eye view. While the right-eye view is being displayed, the stereo-
scopic viewing device blanks the left lens so that only the right eye can see the

right-eye view on the monitor. Once again, the right-eye view’s 512 scanlines
are displayed across the entire surface of the monitor.

Stereo User's Manual [2.0]

Overview

Stereoscopic Viewing Device

The CrystalEyes stereoscopic viewing device is an electrochemical apparatus
which selects and transmits the stereoscopic field displayed on the monitor to
the intended eye while blocking the direct vision of the other eye. The device
synchronizes to an inter-field time interval signal and alters its state to pass
the subsequent field to the intended eye. The stereoscopic viewing device
consists of a liquid crystal shutter and a device controller.

The liquid crystal shutter is an alternate-state, electrochemical, optical
filter that encodes each stereoscopic field with a unique polarization which is
decoded by a like-polarized lens. The liquid crystal shutter consists of a sheet
polarizer, light modulator and polarization analyzer.

The light modulator consists of two liquid crystal cells mounted back-to-
back. When light passes through the modulator, the modulator changes the
phase of one of the components of light with respect to the other, depending
on the potential applied to its electrodes. When bonded to a sheet polarizer,
its two states produce circularly-polarized light which is either orthogonal or
parallel to the sense of each polarization analyzer.

The polarization analyzer is a circular polarizer which decodes the
circularly-polarized light passing through it in the following manner. The
polarization analyzer transmits light of like-handedness, but blocks light of
opposite-handedness. A set of polarization analyzers consists of a right-
circular analyzer and a left-circular analyzer, and they are mounted, together
with the light modulator, in the apparatus which is worn by the user.

The device controller synchronizes to the display signal, which indicates
the beginning of the inter-field time interval and changes the light modulator
state to transmit the next stereoscopic field to the intended eye. The device
controller is placed on the monitor and it transmits the display signal, by
means of infrared light, to the apparatus which is worn by the user.

The CrystalEyes device displays the pair of left-eye and right-eye views
60 times per second, which means that each eye view is on the screen for only
1/120th of a second.

Stereoscopic Fields

The stereoscopic fields are created by the software application running on the
ESV Workstation. Chapter 2 describes stereo implementation using PHIGS,
and chapter 3 describes stereo implementation using ES/PSX.

Stereo User's Manual [2.0] 1-3

PHIGS Stereo Implementation

2. PHIGS Stereo Implementation

The ESV Workstation provides a method for creating stereo images through
PHIGS. This method includes two separate “screens” in the X server, one for
monoscopic applications and one for stereoscopic applications. Stereo
screens are established with command line switches at the time the X server
is started (See the man pages for Xesv, XGetScreeninfo,
XScreenWarpByCursor, XWarpToScreen, and csm.)

The stereo application is responsible for setting up the stereoscopic fields
in the view table and for opening the X connection to the stereo screen.
Everything else is handled by the X server.

Note: If you are using the mwm window manager,
you must use the -multiscreen option on the
command line when you start mwm.

Interface Overview

The ESV Workstation contains a special screen in the X server to support ste-
reoscopic applications. The stereo application must open a window some-
where in the “stereo screen” (host:0.x) where x is the screen number of a
stereo screen. You toggle between screens by moving the cursor off the left
or right side of the screen.

The stereo screen is 512 pixels high. If PHIGS graphics are displayed in
this window, the system will traverse the graphics structure twice to display
both stereoscopic fields.

Using the PHIGS Viewing Model for Stereo

The stereo application must create the left-eye and right-eye stereoscopic
fields in the PHIGS view table. These views are used by the system during tra-
versal. To tell the system which stereoscopic field should be used for each
eye, a PHIGS GSE is provided, which is an extension of the
SET_VIEW_INDEX element. Rather than indicating a single index in the
GSE, the application indicates three indices: one for left-eye, one for right-
eye, and one for monoscopic viewing.

The left-eye and right-eye views are established in the View Reference
Coordinate (VRC) system in VRC coordinates, as shown in figure 2-1. Left
and right are established by shifting the Projection Reference Point (PRP) off
the VRC z-axis in the x-direction. Note that the viewing frustum is created by
passing planes through the PRP and the corners of the viewing window
(which is a rectangle on the viewing plane).

Stereo User's Manual [2.0] 2-1

PHIGS Stereo Implementation

The closer the PRP is to the viewing plane, the more severe the perspec-
tive angle. The view window rectangle is specified by the window field in the
Pview_map3 structure that is passed to peval_view_map_matrix3.

front clipping plane back clipping plane
Xx-axis

viewing plane
(screen)

........

..........
.....
...........
...........

.........
.....
—
..........

. Z-axis

....
....
..,
.....

e,
......
....
s,

..,
e,

.....

e,

Figure 2-1. View reference coordinate system

» The viewing plane coincides with the surface of the monitor screen,
and the viewing window corresponds to the X window on the screen
in which the graphics will be displayed. The following parameters
should be carefully selected to create the best stereo image:

* PRP z-value (the distance between eyes and the monitor screen),
* The size of the X window in which the 3D object is drawn,
* PRP x-value (the interocular separation).

In the beginning of the example program in “Appendix B,” you will see a
constant, INCHES_TO_VRC, which allows you to map physical inches to
VRC distances. It is critical that real inches are correctly converted to units of
VRC space, so that the stereoscopic fields are correctly calculated.

/* Stereo params in physical inches */

#define EYE_TO_SCREEN 36.0

#define WINDOW_SIZE 9.0

#define VIEW_RATIO (EYE_TO_SCREEN / WINDOW_SIZE)
/* Stereo params in VRC units */

Stereo User's Manual [2.0]

(

PHIGS Stereo Implementation

#define VRC_WINDOW_SIZE 4.0

#define INCHES_TO VRC (VRC_WINDOW_SIZE / WINDOW_SIZE)
#define VRC_PRP (EYE_TO_SCREEN * INCHES_TO_VRC)
#define HALF_OCCULAR (1.25 * INCHES_TO_VRC)

Stereo Setup Procedure

1. Create a stereo screen when starting the X server

First, create a stereo screen to hold stereo applications. This is done by using
special command line options when the X server is started. There are two op-
tions you need to use; the -nscreens MxN option that creates an array of size
Mby N available screens, and the -stereoscr n option that indicates which of
the screens are stereo screens. For example, if you start the X server directly,
you could use

% Xesv -nscreens 2xl1 -stereoscr 1

This creates two screens numbered 0 and 1. Screen number 1 is a stereo
screen.

Or, if you start the X server with a call to xinit, the command is

% xinit -- -nscreens 2x1 —-stereoscr 1

Many workstations use the xdm display manager. In this environment the
command line options for the server are setin the /usr/lib/X11/xdm/Xservers
file. There are many ways this can be done. (See the xdm man page for more
details.) For example,

unix:0.0 local /usr/bin/X11/Xesv -nscreens 2x1 -stereoscr 1
2. Start a window manager that supports multiple screens

If you are using the mwm window manager, start it using the -multiscreen
command line option.

% mwm -multiscreen &

This command should appear in your .xsesslon file if you are using xdm
or in your .xinltre file if you are using xinit. See the mwm man page for more
details.

3. Start a screen manager to allow you to switch screens

You will probably want to start up a multiscreen manager client that will al-
low you to switch between the regular screen and the stereo screen if your ap-
plication doesn’t make use of XScreenWarpByCursor. (See the
XScreenWarpByCursor man page for more details.). A simple screen man-
ager is provided with the ESV 2.0 software, called csm. (See the csm man
page for more details.) You may also want to put the following command in
your .xsesslon or .xinitre file:

% csm

Stereo User's Manual [2.0] 2-3

PHIGS Stereo Implementation

4. Open a connection to the stereo screen

The application must first open a connection to the stereo screen. This is done

by opening screen host:0.x., where x is the screen number of a stereo screen.

To find out which screens are stereo screens, make a call to the X extensions

function XGetScreensinfo. The display pointer that is returned with the con-
nection is then used when creating the window that will hold the PHIGS work-
station graphics.

/* Open the stereo screen for stereo windows. */
stereoDisplayString = XDisplayString (dpy);
strptr = rindex(stereoDisplayString, ':’);
XGetScreensInfo (dpy, &screen_info);
numscreens = screen_info->numofscreens;
for (i=0; i<numscreens; i++)
{

if (screen_info->screens[i].screentype == xStereoScreen)

{
sprintf((strptr + 1), "0.%d", i);

}

if (!(sdpy = XOpenDisplay(stereoDisplayString)))

{
perror ("Cannot open display for Stereo screen\n");
exit (-1);

}

5. Open a window on the stereo screen

Do this by creating the window with the stereo screen’s display pointer.

6. Open a PHIGS workstation for the stereo window

For example,

conn.drawable_id = stereo_win;
popen_ws (stereo_wks, (Pconnid *)
(&conn) ,phigs_ws_type_x_ drawable);

7. Set up the left-eye and right-eye views

Set up the PRPs (one for each eye) in conjunction with the viewing plane. The
position of the viewing plane corresponds to the monitor screen. The z value
of the PRP is the z-coordinate of the PRP in VRC space. This distance should
directly correspond to the physical distance of your eyes from the screen. The
application should translate physical distances into distances in VRC units.
Create the left-eye and right-eye viewing matrices and put one each in the
view tables of the left-eye and right-eye workstations.

Stereo User's Manual [2.0]

PHIGS Stereo Implementation

/* left eye view */
mapping.proj_ref point.x = -1.0 * half_occular_ dist;

peval_view_map matrix3(&mapping, é&err,
view_rep.map_matrix);

pset_view_rep3(stereo_wks, left_view_index, &view_rep):

/* right eye view */

mapping.proj_ref point.x = half_occular_dist;

peval_view_map matrix3(&mapping, &err,
view_rep.map_matrix);

pset_view_rep3(stereo_wks, right_view_index, &view_rep);

5. Put the GSE stereo view index element into the structure

Put the GSE stereo view index element into the 3D structure that points to the
stereo viewing matrices created in step 4.

popen_struct (structure) ;
pset_view_ind(stereo_view_index) ;

6. Post the structure to the stereo workstation
Post the structure to the stereo workstation to view the 3D object.

Stereo User's Manual [2.0]

ppost_struct (stereo_wks, structure, 0.0);

ES/PSX Stereo Implementation

3. ES/PSX Stereo Implementation

Selecting a Stereoscopic Model

A stereoscopic viewing model defines a set of 4x4 viewing matrices, one for
the left-eye view and one for the right-eye view. The graphics viewing trans-
formations required to produce the proper stereoscopic view for each eye de-
pend on the user’s requirements. Most users prefer a “natural” viewing
transformation model, where the image is computed as though it were etched
on the screen by light rays passing through the screen on the way from a real
object to the eye. This “natural” model is preferred because it takes full ad-
vantage of the following depth cues to enhance the perception of stereopsis:

» Perspective

» Oblique angle display
» Intensity cueing

e Parallax

The F:STEREO function implements the “natural” viewing transforma-
tion model described above to take full advantage of the depth cues, and its
use is strongly recommended. The F:STEREO function provides consider-
able control by allowing the user to amplify or suppress any of the depth cues.
For example, the F:STEREO function can produce an orthographic projec-
tion for users’ applications. Refer to the “Perspective vs. Orthographic Pro-
jection” helpful hint for more details.

The left-eye and right-eye 4x4 viewing matrices, generated by the
F:STEREO function, are computed by sending the desired object viewing pa-
rameters to the F:STEREO function in a way which includes the viewer and
the screen as objects in the scene. These parameters include:

* Viewport size, placement, and aspect ratio
» Location of the viewer with respect to the viewport
» Placement of the viewer’s eyes on his face

» Placement of the near and far clipping planes as though they were real
objects in the room

* A number to relate the size in data space to the size in room space

The 4x4 viewing matrices can be generated by one of the commands in
the following list. Only the F:STEREO function, or one of the other com-
mands shown in the list, can be used to create the 4x4 viewing matrices. They
must not be mixed in the display structure.

Stereo User's Manual [2.0] 3-1

ES/PSX Stereo Implementation

¢ F:STEREO function

- EYEBACK command

« FIELD_OF_VIEW command
o MATRIX_4x4 command

¢ WINDOW command

If the F:STEREO function is not used, the “Helpful Hints for Implement-
ing Stereoscopic Images” section contains guidelines for creating stereoscop-
ic images.

The F:STEREO Function
Type:

Intrinsic User Function — Miscellaneous

F:STEREO
(Face Position) 3D =—»| <1>C <1> f——> 4x4 (Left Eye)
(Viewport Size) 2D —>| <25 C <2> [4x4 (Right Eye)

(Near Clip Plane) R—> <3>C
(Far Clip Plane) R—* <4>C

(Interocular Space) R—*] <5>C

(Window Height) R——>{ <6>C
(Trigger) B——> <7>

Purpose:

This function produces the left-eye and right-eye matrices for stereoscopic
display.

Description:
Inputs

<1> — The(x,y,2z) position of the face of the viewer with respect
to the origin, which is at the screen in the center of the
viewport. z will be negative.

<2> — The (x,y) dimensions of the viewport as measured on the
screen.

<3> — The distance from the screen to the near clipping plane.
A negative number means the plane is positioned closer
to the viewer than the screen.

3-2 - Stereo User's Manual [2.0]

ES/PSX Stereo Implementation

Notes:

<4> — The distance from the screen to the far clipping plane.
This number can also be negative, but must always be
more positive than input <3>.

<5> — Theinterocular separation of the viewer. This number is
typically 2.5 in. (6.35 cm).
<6> — This numberrepresents the vertical height of the viewing

pyramid-of-vision, in data-space units, at the origin (i.e.,
window height bottom-to-top).
<7> — This input triggers the function. A Boolean true triggers

a perspective stereoscopic view, and a Boolean false
triggers an orthographic stereoscopic view.

Outputs
<1> — The 4x4 matrix describing the left-eye view.
<2> — The 4x4 matrix describing the right-eye view.
1) Inputs <1> through <5> are specified in room-space coordinates, such as

2)

3)

4)

inches or centimeters. Any measuring units are permitted, as long as con-
sistency is maintained. Input <6> uses the coordinate system of the data
base.

Inputs <1> through <6> are constant input. Messages placed on them are
remembered until replaced by new messages. After initial setup is com-
pleted, these inputs can be adjusted. The function is then triggered by ei-
ther a Boolean true for perspective view or a Boolean false for
orthographic view on input <7>.

Orthographic stereoscopic views (see input <7>) are not generally recom-
mended, since the images they produce are in conflict with the stereopsis
cues supplied in stereoscopic display. The natural perspective display for
the user’s viewpoint is computed automatically, based on the other inputs,
when input <7> is a Boolean true.

The outputs of this function typically connect to nodes of the
MATRIX_4x4 type, which are placed in the left and right branches of a
dual display structure. These branches also contain the viewport specifi-
cation for the left-eye and right-eye viewports. After the eye viewport and
viewing matrix are specified, the structure converges to draw the user’s
scene, being traversed once for each eye.

For a single view, output <2> can be disconnected, and the interocular
distance of input <5> set to zero.

Stereo User's Manual [2.0] 3-3

ES/PSX Stereo Implementation

Example:

The following code is an example of a stereo implementation using the
F:STEREO function. The STEREO_TRIGGER function is used to hold the
Boolean true for perspective viewing from one firing to the next.

STEREO_EYES := F:STEREO; STEREQ_TRIGGER := F:CONSTANT;

CONN STEREO_EYES <1> : <1> Left_eye_object .Mtx;
{ 4x4 left eye view matrix }

CONN STEREO_EYES <2> : <1> Right_eye_object .Mtx;

{ 4x4 right eye view matrix }
CONN STEREO_TRIGGER <1> : <7> STEREO_EYES;

{ sets perspective & triggers}
SEND V3D(0,0,-24) TO <1> STEREO_EYES;

{ initialize face position }
SEND V2D(11,11) TO <2> STEREO_EYES;

{ initialize vp screen size }
SEND -4.0 TO <3> STEREO_EYES; { near clipping plane }
SEND 4.0 TO <4> STEREO_EYES; { far clipping plane }
SEND 2.5 TO <5> STEREO_EYES; {recommended eye spacing }
SEND 2.0 TO <6> STEREO_EYES; { viewing pyramid height }
SEND TRUE TO <2> STEREO_TRIGGER;

{ arm the trigger function for TRUE perspective }

Developing a Stereoscopic Display Structure

The left-eye and right-eye viewing matrices generated by the F:STEREO
function or some other model must be incorporated into the stereoscopic dis-
play structure. To understand this procedure, a discussion of a monoscopic
display structure is presented first, followed by a discussion of the corre-
sponding stereoscopic display structure.

Most monoscopic display structures can easily be converted to stereo-
scopic display structures. Examination of the parts of a monoscopic display
structure will help in understanding the creation of a stereoscopic display
structure. Figure 3-1 shows the parts of a typical monoscopic image display
structure.

3-4 Stereo User's Manual [2.0]

ES/PSX Stereo Implementation

1. Begin Traversal

2. Define Monoscopic Viewport

3. Set Monoscopic Viewing Window

4. Scene Transformations

5. Draw the Object(s)

Figure 3-1. Monoscopic image display structure

The five parts of the display structure shown in figure 3-1 have the fol-
lowing purposes:
1) The root of the display structure
2) Define the part of the screen on which the picture will be drawn
3) Place the position of the viewer in the scene at the proper location
4) Move the object(s) around to set the scene
5) Define the shape of the object(s)

Items 4 and 5 can be part of a complex structure, but items 1, 2, and 3 are
usually a single node.

The following describes the building of a model to display a cube. The
parts of the display structure are outlined. The numbers correspond to
figure 3-1. They are in reverse order because the structure is typically defined
first at the leaves and finally down to the root.

5. Draw the Object(s)

Initially, the cube is defined at the origin. Two vector lists are created, each
defining a square, and translated from the origin by one data-space unit in
each direction. The corners are then connected. This is accomplished by the
following commands:

Stereo User's Manual [2.0] 3-5

ES/PSX Stereo Implementation

Cube :=begin_structure
Translate 0,0,1;
Vector_list block connected n=5
,11,-1 -1,-1 -1,1 1,1;
Translate 0,0,-2;
Vector_list block connected n=5
1,11,-1 -1,-1 -1,1 1,1;
Translate 0,0,1;
Vector_list block separate n=8
-,-1,-1 -1,-1,1
-1, 1,-1 -1, 1,1
i,-1,-1 1,-1,1
1, 1,-1 1, 1,1;

End_ structure;

4. Scene Transformations

The cube defined in the previous step is scaled to quarter-size and randomly
rotated. Also, near and far clipping are turned on. The names assigned to the
nodes are chosen at random. This is accomplished by the following com-
mands:

Rot_x := rotate in x 30 then cube;
Rot_y := rotate in y 10 then rot_x;

Scal := scale 0.25 then rot_y:

Klip := set depth clipping on then scal;
World := instance of klip;

3. Set Monoscopic Viewing Window

The FIELD_OF_VIEW command is used to position the viewer for a mono-
scopic view. This is accomplished by the following command:

Mtx := field of_view 30 front=-1 back=1 then world;
2. Define Monoscopic Viewport

For simplicity, a unity viewport is specified. This is accomplished by the fol-
lowing command:

Vp := viewport horizontal=-1:1 vertical=-1:1 intensity=0:1
then mtx;

1. Begin Traversal

Displaying the monoscopic image is accomplished by the following com-
mand:

Display Vp;

Stereo User's Manual [2.0]

ES/PSX Stereo Implementation

For the stereoscopic view, a separate view for each eye is required. Figure
3-2 shows the corresponding stereoscopic display structure. Steps 5 and 4 are
the same as in the monoscopic view, since the same scene is being viewed
with both eyes. The structure is a directed graph, meaning that two or more
branches are permitted to grow back together to arrive at the same leaf node.

Itis necessary to specify different y values for the left and right viewports.
The ESV Workstation stereoscopic timing format will cause the left and right
viewport images to appear in the same viewing region of the screen.

1. Begin Traversal

(Go Left, Then Right)

2a. Define Left 2a. Define Right
Stereoscopic Viewport Stereoscopic Viewport
3a. Set Left 3a. Set Right

Viewing Matrix Viewing Matrix

4. Scene Transformations

5. Draw the Object(s)

Figure 3-2. Stereoscopic image display structure

5. Draw the Object(s)

Initially, the cube is defined at the origin. Two vector lists are created, each
defining a square, and translated from the origin by one data-space unit in
each direction. The corners are then connected. This is accomplished by the
following commands:

Stereo User's Manual [2.0] 3-7

ES/PSX Stereo Implementation

Cube :=begin_structure
Translate 0,0,1;
Vector_list block connected n=5
,11,-1 -1,-1 -1,1 1,1;
Translate 0,0,-2;
Vector_list block connected n=5
,11,-1-1,-1-1,11,1;
Translate 0,0,1;
Vector_list block separate n=8
-1,-1,-1 -1,-1,1
-1, 1,-1 -1, 1,1
i,-1,-1 1,-1,1
i, 1,-1 1, 1,1;

End_structure;

4. Scene Transformations

The cube defined in the previous step is scaled to quarter-size and randomly
rotated. Also, near and far clipping are turned on. The names assigned to the
nodes are chosen at random. This is accomplished by the following com-
mands:

Rot_x := rotate in x 30 then cube;

Rot_y := rotate in y 10 then rot_x;

Scal := scale 0.25 then rot_y;

Klip := set depth _clipping on then scal;
World := instance of klip;

3a. Set Left Viewing Matrix

Since the left eye needs to be specified as being slightly off-axis from the
viewport center, none of the standard eye-position routines (such as
FIELD_OF_VIEW) can be used with accuracy. Instead, the F:STEREO func-
tion is used to generate the left-eye matrix. This matrix is supplied to the
structure by the following commands:

STER := F:STEREO;
CONN STER <1> : <1> Mtx left;

The following values are sent to the F:STEREO function, and the function
generates a matrix to set the left object viewing area:

¢ The face of the viewer is 24 inches back from the screen, centered in
front of the viewport.

* The viewport size is 14 inches wide by 11 inches high (full-screen).
» The clipping planes are set at 7 inches before and behind the screen.

e The left eye of the viewer is 1.25 inches to the left (i.e., the viewer’s
interocular separation is 2.5 inches).

Stereo User's Manual [2.0]

ES/PSX Stereo Implementation

* The viewing aperture is 2 data units high at the screen, which also
contains the origin at the center of the viewport

All of the above variables are input to the F:STEREO function and can be
changed, depending on the model. Setting an initial left viewing matrix is ac-
complished by the following commands:

Mtx left := matrix 4x4

.60829, O, 0, 0
0, .77419, O, 0

-.03168, 0, -.21544, W L17742

0, 0, .27419, .77419 then world;

3b. Set Right Viewing Matrix

The right-eye position matrix is the same as left-eye, except that the right eye
of the viewer is 1.25 inches to the right. Setting an initial right viewing matrix
is accomplished by the following commands:

Mtx right := matrix 4x4

.60829, o0, o, 0

0, .77419, o0, 0

.03168, O, -.21544, .17742

0, 0, .27419, .77419 then world;

The F:STEREO function is used to generate the right-eye matrix. This
matrix is supplied to the structure by the following command:

CONN STER <2> : <1> Mtx_right;
2a. and 2b. Define Left and Right Stereoscopic Viewports

Each master stereoscopic viewport provides optimal stereoscopic viewing on
the ESV Workstation. The master stereoscopic viewport determines the part
of the screen that is available for stereoscopic viewing and the eye that sees
it. These viewports are defined by the following commands:
left_vp := viewport horizontal=-1:1
vertical=.00390625:.99609375 intensity=1:1;
right_vp := viewport horizontal=-1:1
vertical=-.99609375:~.00390625 intensity=1:1;

These horizontal, vertical, and intensity values should be used exactly as
shown in any stereoscopic application program. Dividing the screen into
menu viewports and object display viewports can be done after the master
viewports are defined. The ESV Workstation stereoscopic timing format will
cause the left and right viewport images to appear in the same region of the
screen.

Stereo User’'s Manual [2.0] 3-9

ES/PSX Stereo Implementation

1. Begin Traversal

Displaying the data structure and dividing the trunk into two branches is ac-
complished by the following commands:

Trunk := instance of vp_left,vp right;
Display trunk;

Stereoscopic Viewports

The first element of the left branch of the stereoscopic data structure should
be the master stereoscopic viewport for the left-eye view, defined as follows:

left_vp := viewport horiz= -1:1
vert= .00390625 : .99609375 intens = 1:1;

Similarly, the first element of the right branch of the stereoscopic data
structure should be the master stereoscopic viewport for the right-eye view,
defined as follows:

right_vp := viewport horiz= -1:1
vert= -.99609375: -.00390625 intens= 1:1;

Once the master stereoscopic viewports for the left-eye and right-eye
branches are defined, the object and menu viewports can be defined below
them with any shape, size, or intensity. All subsequent viewports can be de-
fined as they would be in a monoscopic structure. Objects which are to be dis-
played for both eyes must be instanced under both the left-eye and right-eye
master viewports.

The following code shows the implementation of viewports for the object
display area. Note that the intensity is specified using the SET INTENSITY
command.

SEND ’'GO’ TO <1> STEREO_CONFIGS$;
{ trigger the system stereo config }

Left_stereo_view := begin_s
{ use this vp definition as is }
LEFT_VP := VIEWPORT HORIZ= -1:1
VERT= .00390625 : .99609375 INTENS = 1:1;

INST STEREO_PICK_CONFIG;
{ stereo pick location and cursor config}

inst Left_eye_object;
{ left eye object display structure }

end_s;

Right_stereo_view := begin_s
{ use this vp definition as is }

Stereo User’'s Manual [2.0]

ES/PSX Stereo Implementation

RIGHT VP := VIEWPORT HORIZ= -1:1

VERT= -.99609375 : -.00390625 INTENS= 1:1;
inst Right_eye_object;

{ right eye object display structure }

end_s;

Left_eye_object := begin_s

Clip := set depth_clipping off;

{ fkeys network input point }

viewport horiz = -.8 : .8 vert = -1:1;
{ use any desired values }

set intensity on 0:1;

border_color := set color 120,.4 then border;

{ F:STEREO function input point. Correct stereo values will
be supplied to the matrix when the STEREO_EYES function
is triggered }

Mtx := matrix 4x4 1,0,0,0

,1,0,0

,0,1,0

0,0,1;

4

o O O

r ’

L4

end_s;

Right_eye_object := begin_s

Clip := set depth_clipping off;
{ fkeys network input point }

viewport horiz = -.8 : .8 vert = -1:1;
set intensity on 0:1;
border color := set color 120,.4 then border;

{ F:STEREO function input point. Correct stereo values will
be supplied to the matrix when the STEREO_EYES function
is triggered }

Mtx := matrix 4x4 1,0,0,0

0,1,0,0

0,0,1,0

0,0,0,1;

X

end_s;

Items such as menu text and borders, which will not be displayed with ste-
reoscopic separation, can be defined in both the left-eye and right-eye branch-
es or, optionally, they can be defined in only one branch. If a menu is defined
only in the left branch, it will be visible only to the left eye. This can be a de-
sirable effect, depending on the viewer preference. Items which are to be dis-
played for both eyes with no stereoscopic separation should be instanced

Stereo User's Manual [2.0] 3-11

ES/PSX Stereo Implementation

below the master viewport LEFT_VP or RIGHT_VP but above the

F:STEREO matrix. The border in the previous code example is used in this
way.

Picking Implementation

3-12

Stereoscopic application programs which implement picking must reconfig-
ure the ESV Workstation system pick location and cursor definitions. This is
accomplished by issuing the following command when the program enters
the stereoscopic viewing mode:

send ‘go’ to <l>stereo_config$;

This command reconfigures the ESV Workstation to provide a tablet-
driven cursor which picks accurately on both menu items and 3D stereoscopic
objects. It also configures the correct system viewport and stereoscopic tim-
ing format.

An application program uses the new picking/cursor configuration by de-
claring a single instance of STEREQ_PICK_CONFIG immediately after the
LEFT_STEREO_VIEWPORT definition. Picking accuracy for 3D objects is
achieved by restricting the cursor and locations that can be picked to the left
branch of the stereoscopic structure. The PICK IDENTIFIERS and
SET PICKING ON nodes in the left branch are the only ones that will ever ac-
tually result in a pick. Those on the right branch will have no effect since the
cursor can never reach the locations in the right branch. The following exam-
ple shows picking implementation for the FKEY menus.

SEND GO’ TO <1> STEREO_CONFIGS:
{ trigger the system stereo config }

Left_stereo_view := begin_s
LEFT_VP := VIEWPORT HORIZ= -1:1
VERT= .00390625 : .99609375 INTENS = 1:1;
INST STEREO_PICK_CONFIG;
{ stereo pick location and cursor config}
inst Left_eye_object;
{ left eye object display structure - pickable}
inst fkey_menu; { left eye on screen menu - pickable }

end_s;
Right_stereo_view := begin_s
RIGHT_VP := VIEWPORT HORIZ= -1:1
VERT= —-.99609375 : —.00390625 INTENS= 1:1;
inst Right_eye object;
{ right eye object display structure - pickable}
inst fkey_menu; { right eye on screen menu - not pickable}

Stereo User's Manual [2.0]

C

ES/PSX Stereo Implementation

end_s;

fkey_menu := begin_s
menu_vp := view horiz= -1.0:-.85 vert= -1:1;

{ can use any values }
character scale .25,.05;
if bit 4 on; { don’t display if menus off }
inst menu_outline;
set pick identifier= menu labels;
set picking on; { picks on left branch only }
inst fkey_labels;
end_s;

Cursor Implementation

The stereoscopic system cursor defined by STEREO_CONFIGS$ is a white X
with an open green box at its center. Picking is accomplished by aligning the
point and the open box. This cursor makes picking easier for stereoscopic ob-
jects, particularly objects with a large z-translation. Picking on 3D stereo-
scopic objects will be accurate as long as the point being picked can be
visually distinguished from surrounding points.

The shape and color of the stereoscopic cursor can be modified by the ap-
plication program with some cautions and restrictions. Changes made to the
stereoscopic cursor definition will be permanent until the system is rebooted,
as long as the names in the system cursor structure are not redefined to in-
stance user’s structure names. If a system cursor name is redefined to instance
a structure with a user’s name, those parts of the cursor will be subject to ini-
tialization commands, which can result in some or all of the stereoscopic cur-
sor definition being lost. For example, the stereoscopic system cursor is
defined as follows:

configure a;

STCURSOR1 := set inten on 1l:1 then STCURSOR_PARTS1;

STCURSOR_PARTS1 := inst STCURSOR_CROSS1, STCURSOR_SQUARE1;

STCURSOR_CROSS1 := set color 0,0 then STC_CROSS_VECS1;

STCURSOR_SQUARE1 := set color 240, .8 then STC_SQUARE VECS1;

STC_SQUARE VECSl:=vec n=5 -.015,-.015 -.015,.015 .015,.015
.015,-.015 -.015,-.015;

STC_CROSS_VECSl:=vec sep n=5 -.035,-.035 -.015,-.015

.015,.015 .035,.035 .035,-.035 .015,-.015 -.015,.015 -
.035,.035;

SEND V2D (.015,.015) TO <2> STEREO_PICK LOCATION$1;
finish configuration;

Stereo User's Manual [2.0] 3-13

ES/PSX Stereo Implementation

An application can safely and permanently change the outline of the
square center box to full intensity red by entering the following command:

STCURSOR_SQUARE := SET COLOR 120,1 THEN STC_SQUARE_ VECS;

This change to the stereoscopic system cursor will be retained until it is
redefined, or the system is rebooted. This will be true even if the system is
switched in and out of the stereoscopic viewing mode.

If an application redefines the stereoscopic cursor color as follows:

STCURSOR_SQUARE := INST MY USER_COLOR;
MY_USER_COLOR := SET COLOR 120,1 THEN STC_SQUARE_VECS;

then any initialization command would destroy MY_USER_COLOR, leav-
ing:

ST_CURSOR_SQUARE := NIL;

A third party application that modifies the stereoscopic cursor should rec-
reate its original definition before terminating.

When an application program exits from the stereoscopic viewing mode,
the following command should be entered to restore the system to the normal
monoscopic cursor and picking:

send 'go’ to <l>restore_config$;

The Stereo Viewing Option supports only the update rate cursor.

Configuring the ESV Workstation for Stereoscopic Viewing

The default stereo network and display structure discussed here are contained
in the configuration file stefg.dat, which, if in the ES/PSX configuration di-
rectory, are read at start-up time.

The first step in viewing a stereoscopic image is to put the ESV Worksta-
tion into the stereoscopic viewing mode. This is accomplished by entering the
following command:

send ‘go’ to <l>stereo_config$;

This command causes the ESV Workstation system configuration to
change from the monoscopic viewing mode to the stereoscopic viewing
mode. The system reconfiguration includes the following steps:

» Enlarging the size of the system viewport VPF1$, so that the full
screen is available for stereoscopic viewing,

* Setting the correct stereoscopic timing format for the PS390ENV
function,

* Restructuring the system definitions of the pick location and cursor.

3-14 : Stereo User's Manual [2.0]

(

ES/PSX Stereo Implementation

In the stereoscopic viewing mode, the text on the terminal emulator will
become larger, and it will appear bright only to the right eye when the viewing
glasses are worn and the device controller is turned on. If the bright image is
in the left eye, the stereoscopic mode must be reversed by toggling the
STEREO/PSEUDO switch on the device controller.

To return to the monoscopic viewing mode, enter the following com-
mand:

send ‘go’ to <1>restore_config$;

Alternative System Configuration

Some applications do not require the stereoscopic cursor and picking. The
following set of commands can be used in place of the STEREO_CONFIG$
and RESTORE_CONFIGS$ functions to set up the system viewport and timing
format. To enter the stereoscopic viewing mode, enter the following com-
mands:

configure a;
send m2d(-.997,.997 -1,1) to <1>vpflS$;
finish configuration;

send fix(2) to <5>ps390env;
{ "£ix(3)" may be used for special low-precision stereo-
scopic mode. }

send true to <1>ps390env;

These commands must be executed as a single file. They set the ESV
Workstation system viewport so that the full screen is available for stereo-
scopic viewing, and they set the ESV Workstation timing format to merge the
left-eye and right-eye views into a single, full-screen stereoscopic image.
Note the alternative, low-precision format available. This format provides the
same resolution in both the x and y directions.

To return to the monoscopic viewing mode, enter the following com-
mands:

configure a;

send m2d(-1,1 -1,1) to <1>vpfl$;
finish configuration;

send fix(0) to <5>ps390env;

send true to <1>ps390env;

Stereo User's Manual [2.0] 3-15

ES/PSX Stereo Implementation

Helpful Hints for ES/PSX Stereo Implementation

Toggling Between Monoscopic and Stereoscopic Viewing Modes

Enter the following command to go from the stereoscopic viewing mode to
the monoscopic viewing mode:

send ‘go’ to <l>restore_config$;

Enter the following command to go from the monoscopic viewing mode
to the stereoscopic viewing mode:

send ‘go’ to <1>stereo_config$;

These commands insure that the proper timing format is sent to input <5>
of the PS390ENYV function, and they also activate the stereoscopic picking
and cursor configuration.

Update Rate Cursor

The stereoscopic system cursor is an update rate cursor. The monoscopic sys-
tem default cursor is also an update rate cursor. The stereoscopic viewing
configuration does not support refresh rate cursors, sometimes called hard-
ware Cursors.

If an application uses the refresh rate cursor, the system must be returned
to the update rate cursor before entering the stereoscopic viewing mode. Enter
the following commands to restore the update rate cursor:

send fix(0) to <4>ps390env;
send true to <1>ps390env;

Line Resolution in Stereo

Images on the ESV Workstation are normally displayed with a screen resolu-
tion of 1024 horizontal scanlines, each containing 1280 pixels. This provides
a picture with an aspect ratio of 5:4.

In stereoscopic mode, only half the scanlines are seen by the left eye, and
the other scanlines are seen by the right eye. This effectively halves the screen
resolution in the vertical axis, while maintaining the full resolution in the hor-
izontal axis. Since a pixel is now effectively twice as high as it is wide, lines
drawn with angles near the horizontal tend to appear thicker, while near-ver-
tical lines remain crisp.

While most users prefer to maintain the high resolution in the horizontal
axis wherever possible, some users require that lines at all angles be drawn
with constant thickness, even though this means giving up available horizon-
tal resolution. For these users, a special uniform-resolution stereoscopic for-
mat is provided, which consists of only 640 pixels along the horizontal axis.
It may be invoked as follows.

Stereo User's Manual [2.0]

ES/PSX Stereo Implementation

1) For stereo commands involving the STEREO_CONFIGS$ function, a vari-
able called STEREO_KINDS is provided. It contains a default value of 2,
which selects mixed-resolution stereo. It must be modified before invok-
ing the STEREO_CONFIG$ function, as follows.

* For uniform-resolution stereo, enter the following commands:
store fix(3) in stereo_kind$;
send ‘go’ to <1>stereo_config$;

¢ To return to mixed-resolution stereo, enter the following commands:
store fix(2) in stereo_kind$;
send "go’ to <l>stereo_config$;

* The user who wishes to change between the two stereo modes must

first return to monoscopic mode by entering the following command:

send ‘go’ to <l>restore_config$;

Since STEREO_KINDS$ is a variable, it will remember its value. Thus, the
above STORE commands need only be executed once.

2) For users controlling stereo operations by means of the PS380ENYV initial
function instance (see “Alternative System Configuration”), the follow-
ing changes apply.

» For uniform-resolution stereo, enter the following commands:

send fix(3) to <5>ps390env;
send true to <1>ps390env;

» For mixed-resolution stereo, enter the following commands:

send fix(2) to <5>ps390env;
send true to <1>ps390env;

* To switch between stereo resolutions, first return to the monoscopic
mode by entering the following commands:

send fix(0) to <5>ps390env;
send true to <1>ps390env;

Image Distortion

If an image is distorted in one direction, the incorrect viewport size measure-
ments, clipping plane values, or window height are being sent to the
F:STEREO function. Refer to the “Clipping Planes” and “Object Viewing
Region” helpful hints for information about converting data space coordi-
nates to the room space units needed for input to the F:STEREO function.

Stereo User's Manual [2.0] 3-17

ES/PSX Stereo Implementation

Depth Cues

Special applications may require adjusting or even deleting one or more of the
following depth cues:

¢ Perspective

¢ Oblique angle display

+ Intensity cueing

¢ Parallax

For example, in some modeling applications, measurements must be
made using the tablet and cursor. Because perspective will foreshorten di-
mensions with depth, making them invalid for these applications, an ortho-
graphic image must be selected while measurements are made, even though
the view will be distorted. Sending a Boolean false to input <7> of the
F:STEREO function will produce an orthographic view.

Adjusting Perspective

Since perspective is determined by the geometry of the screen and the user’s
eyes, the amount of perspective effect can be changed by multiplying both the
inter-eye spacing value of F:STEREO input <5> and the elements of the
viewer position vector on input <1> by a constant.

For example, doubling both the z-distance of the user from the screen and
the interocular spacing reduces the perspective of the image to half of its
former value.

Perspective vs. Orthographic Projection

Ghosting

Most applications which use orthographic projections for the monoscopic
viewing mode should use the F:STEREO function perspective view for the
stereoscopic viewing mode. Many monoscopic applications use an ortho-
graphic projection to prevent distortions in relative object size. The perspec-
tive view generated by the F:STEREO function does not produce distortions
in apparent object size as the object is moved toward the viewer. An ortho-
graphic view in the stereoscopic viewing mode can appear distorted to the
viewer, since the eye-brain system expects perspective depth cues when look-
ing at 3D objects.

Ghost lines are caused by the blending of the left-eye and right-eye images on
the liquid crystal shutter, and they can be a problem to users. The eye-brain

system can be trained to ignore ghost lines when they are near enough to the
real line that they are not confused with another, unrelated, line. However, in
a very dense picture this can be impossible.

Stereo User's Manual [2.0]

ES/PSX Stereo Implementation

To alleviate the problem, the parallax cue can be reduced, causing the
ghost lines to move toward their visible counterparts. This is done on input
<5> of the F:STEREO function by specifying a smaller number for the in-
terocular spacing. The effect is to reduce the stereopsis in the image, so that
its volume seems to decrease, while leaving perspective untouched. Although
artificial, it can be a good compromise between ghosting and no stereoscopic
effect.

Use darker backgrounds to increase the dynamic range. Since ghosting is
color dependent, use red whenever possible and avoid using white.

Clipping Planes

Placement of the clipping planes in room space can be made directly as inputs
to the F:STEREO function. To place these planes in data space, the user
should remember that there is a ratio between the viewport height in data
space, input <6> of the F:STEREO function, and the same measurement in
room space, the y-component of input <2>. Remembering this ratio permits
the conversion of any position value, including clipping planes, between
room space and data space.

For example, consider the following data:

* 20 cm = room space viewport height (y-component of input <2>)
* 2 units = data space window height (input <6>)

e 1.2 units = data space near plane z-position (input <3>)

2.5 units = data space far plane z-position (input <4>)

First, find the ratio of room space to data units:
20 ¢Myo0m space
ratio = = 10 cm of room space per data space unit

2 UnitS gotq space

Next compute the room space clipping plane values which correspond to
the -1.2 and 2.5 data space inputs to the F:STEREO function:

near clipping plane ., of room space =

_ . rrin o
1.2 units 4, space " ratio=-12cm,, ., space

Stereo User's Manual [2.0] 3-19

ES/PSX Stereo Implementation

far clipping plane ., ot room space =

. .ot
2.5 unitS ga1q space * 710 =25 My chace

When the room space clipping plane coordinates are known, rearrange the
equation to compute the correct data space coordinates for the input to the

F:STEREO function:
near clipping Pl‘meroom spézce
near clipping plane j,,; cqce =
ratio
far clipping plane ... cace
far clipping plane 05 space = ;
ratio

When using the F:STEREO viewing model, the near clipping plane
should not go beyond the eye point. If the eye point is set at 60 cm from the
screen, then the near clipping plane cannot be less than —60 cm (room space).

Object Viewing Region

The visible region of data space produced by the WINDOW command can be
positioned anywhere with relation to the object, while the visible region of
data space produced by the F:STEREO function viewing matrix is always
centered about the origin. The F:STEREO viewing region can be modified by
including a translation node in the display structure where it joins after the
left-eye and right-eye branches.

The x and y values at the point of the translation should be the average of
the left and right (for x) and the bottom and top (for y) boundaries of the cor-
responding WINDOW command.

The values for the translation (xT, y) can be computed from the average
of the boundaries for the corresponding WINDOW command as follows:

Wlefo) * *W(righ)
yT = >

3-20 ‘ Stereo User’s Manual [2.0]

ES/PSX Stereo Implementation

YW(bottom) T YW(top)
2

yT"

For example, assume that a square window is desired, ranging from 300
to 700 in x, and from 0 to 400 in y. Input <6> of F:STEREO (window height)
would be 400, input <2> of F:STEREO, the viewport size measured at the
screen, would be square, and the translation node at the joining of the left-eye
and right-eye branches of the structure would contain the vector
(-500,-200,0), where -500 is the negative x-average of 300 and 700, and -200
is the negative y-average of 0 and 400.

Registration

The left-eye and right-eye views in a stereoscopic model are registered when
they appear to be exactly superimposed on each other at the plane of the
screen. If the F:STEREO function is used with the correct left-eye and right-
eye viewports, the views will be registered.

In some stereoscopic models not using the F:STEREO function, registra-
tion can be a problem. In this case, the left-eye and right-eye views are hori-
zontally shifted with respect to each other. This usually occurs when one of
the viewports is moved in x with respect to the other, creating the problem of
misaligned horizontal clipping. The images involved are usually orthographic
rather than perspective.

Stereo in the X Environment

When stereo mode is entered, all other X windows are obscured by the stereo
window. ES/PSX will grab the X pointer device to prevent it from remaining
within some other window. If the keyboard and any other device focus is fol-
lowing the pointer, those devices will be focused on the stereo window.

If the keyboard and/or other devices have been explicitly focused in an-
other window by a window manager, it is advisable to request ES/PSX to grab
these other devices also so that they will not be inadvertently unavailable
when entering stereo mode. ES/PSX can be instructed to grab all devices
when entering stereo mode by specifying the following in an X defaults file:

...main.stereoGrab: on

You can also grab all devices by entering -stereoGrab on the command
line.

Stereo User's Manual [2.0] 3-21

ES/PSX Stereo Implementation

Note: The only way that keyboard focus may be
forced to remain in a window from which you
are typing commands to ES/PSX is to
explicitly focus the keyboard within the
window before going into stereo mode.
However, this will likely make the keyboard
unavailable for use within the stereo window.

Emergency Exit from Stereoscopic Viewing Mode

During program development, users may find themselves switching into the
stereoscopic viewing mode without providing a means to switch back to the
monoscopic viewing mode. This generally happens because the entire screen
is allocated for display of the stereoscopic image when switching to the ste-
reoscopic viewing mode, thus obscuring all other windows. The pointer is
grabbed by the stereo window rather than remaining in any other window it
may have previously been in.

ES/PSX may be forced out of the stereoscopic viewing mode in all cases
by the following escape sequence. While holding down the CONTROL and
SHIFT keys on the ESV Workstation keyboard, simultaneously press buttons
1, 2, and 3 on the mouse. ES/PSX will switch back to the monoscopic viewing
mode, and a value of fix(0) will be sent to input <5> of the function instance
PS390ENV, to prevent that function from inadvertently entering the stereo-
scopic viewing mode when activated for other purposes. If the stereoscopic
viewing mode was initially entered via the STEREO_CONFIGS function, the
cursor must still be restored to its proper form and range by the following
command:

send true to <l>restore_config$;

Helpful Hints for Viewing Stereoscopic Images

Lighting

The CrystalEyes stereoscopic viewing device is designed to work best in low
light conditions. Fluorescent light is detrimental to the quality of the picture.
The frequency of the fluorescent light can cause some flickering that will not
be seen when using incandescent light.

Viewing Angle

The stereoscopic effect can be lost if the viewing angle is too great. A large
viewing angle will also reduce the dynamic range.

Stereo User's Manual [2.0]

Glossary

A. Glossary

accommodation. The focusing of the image of an object on the retina by one
eye. This process is controlled by a different set of muscles than the process
of convergence. See also convergence.

convergence. The focusing of both eyes on the same point of an object. This
process is controlled by a different set of muscles than the process of
accommodation. See also accommodation

depth cue. An operation that imparts the illusion of depth to an image. Depth
cues allow a user to perceive 3D on a 2D screen.

disparity. The lateral displacement of an object’s image on the screen which
is produced because the eyes view the object from two different viewpoints.
When viewing an object at infinite distance, the disparity is equal to the
interocular separation. When viewing an object at the screen, the disparity is
equal to zero. See also parallax.

dynamic range. A measure of the relative luminance of an information
element when transmitted by the stereoscopic viewing device in its
transmissive state, and when blocked by the stereoscopic viewing device in
its occluding state. The formula and methodology employed to determine the
dynamic range is as follows:

intensity through open shutter

dynamic range =
intensity through closed shutter

ghosting. The blending of left-eye and right-eye images on the liquid crystal
shutter due to the transition time between the transmissive and occluding
states of the shutter.

interocular separation. The separation between the eyes. This distance is
approximately 2-1/2 inches, but varies between individuals.

parallax. The apparent change in the direction of an object when viewed from
two different viewpoints. When viewing an object at an infinite distance, the
parallax is equal to zero. See also disparity.

stereoscopic field. A view of a picture from the perspective of one eye.

stereopsis. The process which occurs in the brain where two 2D images are
combined to form one 3D image.

stereoscopy. The science of viewing in three dimensions.

viewing angle. The angle at the apex of the viewing pyramid (eye point of the
viewer) used to define a perspective viewing area.

Stereo User's Manual [2.0] A-1

PHIGS Stereo Example Program

B. PHIGS Stereo Example Program

This program can be found in /usr/people/fstest/demo/stereo_demo.c.
/**
*

* stereo_demo.c
*

* A Canonical Stereo Program to prototype stereo on ESV, release 2.0
*

**/

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <X11/Xlib.h>

#include <X11/Xatom.h>

#include <phigs/phigs.h>

#include <phigs/esgdp.h>

#include <extensions/XMultiScreen.h>
#include <extensions/XInput.h>

extern int errno;
char *ProgramName;

#define BLACK 0
#define WHITE 1
#define RED 2
#define GREEN 3
#define BLUE 4
#define YELLOW 5
#define CYAN 6
#define MAGENTA 7
/* Stereo params in physical inches */
#define EYE_TO_SCREEN 36.0
#define WINDOW_SIZE 9.0
#define VIEW_RATIO (EYE_TO_SCREEN / WINDOW_SIZE)
/* Stereo params in VRC units */
#define VRC_WINDOW_SIZE 4.0
#define INCHES_TO_VRC (VRC_WINDOW_SIZE / WINDOW_SIZE)
#define VRC_PRP (EYE_TO_SCREEN * INCHES_TO_VRC)
#define HALF OCCULAR (1.25 * INCHES_TO_VRC)

Stereo User's Manual [2.0] B-1

PHIGS Stereo Example Program

#define
#define
#define
#define
#define
#¥define
#¥define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define

#define

#define

#define

#define

#define

#define
#define
int

static
Pint
Pint

XROT_DIAL
YROT_DIAL
ZROT_DIAL
SCALE_DIAL
XTRAN DIAL
YTRAN DIAL
ZTRAN DIAL
DIALSCALE

MAXDIALS

/* Dial handling */

AU d W N B O

330.0

CHARS_PER DIAL 8

SPACEKEYSYM

FRONT_BOTTOM_LEFT
FRONT_BOTTOM_RIGHT
FRONT_TOP_LEFT
FRONT_TOP_RIGHT
BACK_BOTTOM_LEFT
BACK_BOTTOM_RIGHT
BACK_TOP_LEFT
BACK_TOP_RIGHT

FRONT {

BACK {

LEFT {

RIGHT {

TOP {

BOTTOM {

MONO 0
STEREO 1

32

{-0.5, -0.5, 0.5}
{ 0.5, -0.5, 0.5}
{-0.5, 0.5, 0.5}
{ 0.5, 0.5, 0.5}
{-0.5, -0.5, -0.5}
{ 0.5, -0.5, =0.5}
{-0.5, 0.5, -0.5}
{ 0.5, 0.5, =0.5}
FRONT_TOP_RIGHT, FRONT_TOP_LEFT, \
FRONT_BOTTOM_LEFT, FRONT BOTTOM RIGHT}
BACK_TOP_LEFT, BACK_TOP_RIGHT, \
BACK_BOTTOM RIGHT, BACK BOTTOM LEFT}
FRONT_TOP_LEFT, BACK_TOP_LEFT, \

BACK_BOTTOM_LEFT, FRONT_ BOTTOM LEFT}
FRONT_TOP_RIGHT, FRONT_BOTTOM_RIGHT, \
BACK_BOTTOM_RIGHT, BACK_TOP_RIGHT)}
FRONT_TOP_RIGHT, BACK_TOP_RIGHT, \
BACK_TOP_LEFT, FRONT_TOP_LEFT}
FRONT_BOTTOM_RIGHT, FRONT BOTTOM LEFT, \
BACK_BOTTOM_LEFT, BACK_BOTTOM RIGHT}

/* Flags for current video state */

mode_flag = MONO;

Ppoint3 cubel[6] [4]
mono_wks =
stereo_wks

{ FRONT, BACK, LEFT, RIGHT, TOP, BOTTOM };

1
2

Stereo User's Manual [2.0]

PHIGS Stereo Example Program

Pint
Pint
Pint
Pint
Pfloat
Pint
int

int
Window
Display
GContext
GC

int
float
Pfloat

XDevice
XID
XDevice
XID
XDeviceInfo
int

int

int

int

int
Pmatrix3

Pmatrix3
Pview_map3
Pview_rep3
int

structure =1;
mono_view_index = 1;
left_view_index = 1;
right_view index = 2;
priority = 1.0;

rotate_elem, translate_elem;

winx, winy, winw, winh;

mono_winx, mono_winy, mono_winw, mono_winh;
mono_win, mono_rootwin, stereo_win, stereo_rootwin;
*dpy, *sdpy;

gc;

gc_black;

text_x, text_y;

h_to_w_aspect;

half_ occular_dist = HALF_OCCULAR;

/* Globals for device input stuff */

*tablet = NULL;
tablet_id =0;
*dials = NULL;
dials_id =0;
*devices = NULL;
ndevices = 0;
DeviceMotion = -1;
DevicePress = -1;
DeviceRelease = -1;
change [10];

xrotmat, yrotmat, zrotmat, scalemat, concatl, concat2,
concat3;

currmatrix, tranmatrix;
mapping;

view_rep;

mono_fd, stereo_fd;

Window XCreateWindow() ;

/**

*

identity matrix

*
*
* Make an identity matrix.
*
*

**/

Stereo User's Manual [2.0] B-3

PHIGS Stereo Example Program

void identity matrix(matrixit)
Pmatrix3 matrixit;

if (i == 3)

matrixit [i]1([j] 1.0;
else

matrixit [i1[j] = 0.0;

} /* End of identity matrix */

/**
*
* usage
*
***/
usage ()
{
fprintf (stderr, "usage: %s [-options ...]\n\n", ProgramName) ;
fprintf (stderr, "where options include:\n");

fprintf (stderr, " -display host:dpy X server to use\n");
fprintf (stderr, " —geometry geom geometry of window\n");
fprintf (stderr, "- b use backing store\n");
fprintf (stderr, " -fg color set foreground color\n");
fprintf (stderr, " -bg color set background color\n");
fprintf (stderr, " -bd color set border color\n");
fprintf (stderr, " =bw width set border width\n");
fprintf (stderr, "\n");

exit (1);

/**

*

* doPhigsStuff

*

***/

doPhigsStuff (dpy, sdpy)

B-4 ' Stereo User's Manual [2.0]

PHIGS Stereo Example Program

Display *dpy;
Display *sdpy:
{

static Ppoint xyzpoints[] = {{0.1, 0.1}, {0.9, 0.9}};
Pxphigs_info xinfo;
Pconnid x drawable conn;
Ppoint text_pt;
Pint part = 1;
Ppoint3 rep;
int i, err;
float deg;
Ppoint3 tran, vrp;
Pvec3 vpn, vup;
Plimit wks_viewport, wks_window;
Pmatrix3 rotmat, comp_mat, tranl:;
Pgse_stereo_view_indices stereo_views;
Pgse_data gse_struct;
unsigned long xinfo_mask;
Ppoint_list3 point_list;
xinfo.display = dpy;
xinfo.rmdb = NULL;
xinfo.appl_id.name = NULL;
xinfo.appl_id.class = NULL;
xinfo.args.argc_p = NULL;
xinfo.args.argv = NULL;
xinfo.flags.no_monitor =1;

xinfo.flags.force_client_SS= 0;

xinfo_mask = PXPHIGS_INFO_DISPLAY | PXPHIGS_INFO_FLAGS_NO_MON;
popen_xphigs ((char*)NULL, PDEF_MEM SIZE, xinfo_mask, &xinfo);

conn.display = sdpy:

conn.drawable_id stereo_win;

popen_ws (stereo_wks, (Pconnid *) (&conn), phigs_ws_type_x_drawable) ;
SensitizeWindow(sdpy, stereo_win);

XSync (sdpy, 0):

pset_hlhsr mode (stereo_wks, PHIGS_ HLHSR MODE_ZBUFF) ;

conn.display = dpy:

conn.drawable_id = mono_win;

popen_ws (mono_wks, (Pconnid *) (&conn), phigs_ws_type_x_ drawable) ;
SensitizeWindow (dpy, mono_win);
XSync (dpy, 0);

Stereo User's Manual [2.0] B-5

PHIGS Stereo Example Program

pset_hlhsr_mode (mono_wks, PHIGS_HLHSR_MODE_ZBUFF) ;

wks_viewport.x min = 0.0;
wks_viewport.x max = winw;
wks_viewport.y min = 0.0;
wks_viewport.y max = winh;
pset_ws_vp(stereo_wks, &wks_viewport);

wks_viewport.x max = mono_winw;
wks_viewport.y_max = mono_winh;
pset_ws_vp (mono_wks, &wks_viewport):;

wks_window.x min = 0.
wks_window.x max = 1.

~o ~o

0
0
wks_window.y_min = 0.0;
wks_window.y max = 1.0;
pset_ws_win(stereo_wks, &wks_window);
pset_ws_win (mono_wks, &wks_window);

/* Set Background color; entry 0 of table. */
rep.x = 0.50;
rep.y = 0.50;
rep.z = 0.50;
pset_colr_ rep(stereo_wks, 0, &rep):
pset_colr_rep(mono_wks, 0, &rep);

rep.x = 1.0;
rep.y = 0.0;
rep.z = 0.0;-

pset_colr_rep(stereo_wks, RED, &rep):
pset_colr_rep(mono_wks, RED, &rep);

rep.x = 0.0;
rep.y = 1.0;
rep.z = 0.0;

pset_colr_rep(stereo_wks, GREEN, &rep);
pset_colr_rep(mono_wks, GREEN, &rep);

rep.x = 0.0;
rep.y = 0.0;
rep.z = 1.0;

pset_colr_rep(stereo_wks, BLUE, &rep);
pset_colr rep(mono_wks, BLUE, &rep);

B-6 Stereo User's Manual [2.0]

PHIGS Stereo Example Program

rep.x = 1.0;
rep.y = 1.0;
rep.z = 0.0;

pset_colr rep(stereo_wks, YELLOW, &rep);
pset_colr_rep(mono_wks, YELLOW, &rep);

rep.x = 0.0;
rep.y = 1.0;
rep.z = 1.0;

pset_colr_rep(stereo_wks, CYAN, &rep);
pset_colr_rep(mono_wks, CYAN, &rep);

rep.x = 1.0;
rep.y = 0.0;
rep.z = 1.0;

pset_colr_rep(stereo_wks, MAGENTA, &rep);
pset_colr_rep(mono_wks, MAGENTA, &rep);

/* Viewing Stuff Common to Stereo and Mono */
/* Set up the left and right eye views */

vrp.x = 0.0; vIp.y = 0.0; vrp.z = 0.0;
vpn.delta_x = 0.0; vpn.delta_y = 0.0; vpn.delta_z = 1.0;
vup.delta_x = 0.0; vup.delta y = 1.0; vup.delta_z = 0.0;

peval_view_ori_matrix3(&vrp, &vpn, &vup, &err,

view_rep.clip_limit.x min
view_rep.clip_limit.x max
view_rep.clip limit.y min
view_rep.clip limit.y max
view_rep.clip_limit.z min
view_rep.clip_limit.z_max
view_rep.xy clip
view_rep.back_clip
view_rep.front_clip

mapping.win.x min
mapping.win.x_max
mapping.win.y min
mapping.win.y max
mapping.vp.z_min
mapping.vp.z_max
mapping.proj_type
mapping.proj_ref_point.y
mapping.proj_ref_point.z

Stereo User's Manual [2.0]

view_rep.ori_matrix);

- o +H O K+ O

= PIND

~

~e v

~

o o oo o o

_CLIP;

PIND_NO_CLIP;
PIND_NO_CLIP;

-1.0 * VRC_WINDOW_SIZE/2.0;
VRC_WINDOW_SIZE/2.0;

-1.0 * VRC_WINDOW_SIZE/2.0;
VRC_WINDOW_SIZE/2.0;

0.0;

1.0;

PTYPE_PERSPECT;

=0.0;

VRC_PRP;

PHIGS Stereo Example Program

/*
/*

/*

mapping.view_plane =0.0; (
mapping.back_plane = =100.0;
mapping.front_plane = mapping.proj_ref point.z - 1.0;

/* Viewing Stuff for Mono eye view */
mapping.vp.x_min = 0.0;
mapping.vp.x_max =1.0;
mapping.vp.y min =0.0;
mapping.vp.y_max =1.0;
mapping.proj_ref_point.x 0.0
peval view _map matrix3(&mapping, &err,

view_rep.map matrix);
pset_view_rep3 (mono_wks, mono_view_index, &view_rep);

/* Viewing Stuff for Stereo views */
mapping.vp.x min 0.0;
mapping.vp.x _max = 1.0;
mapping.vp.y min = 0.0;
mapping.vp.y _max = 1.0;

[]

/* left eye view */ (
mapping.proj_ref_point.x = -1.0 * half_ occular_dist; .
peval_view_map_matrix3(&mapping, &err,

view_rep.map_matrix);
pset_view_rep3 (stereo_wks, left_view_index, &view_rep);

/* right eye view */
mapping.proj_ref point.x = half_occular_dist;
peval_view map matrix3(&mapping, &err,

view_rep.map_matrix) ;
pset_view_rep3 (stereo_wks, right_view_index, &view_rep);

Build the geometry structure */

*/

popen_struct (structure);

Replace the usual setviewind element with the STEREO_VIEW_INDICES GSE */
gse_struct.unsupp.size sizeof (stereo_views);
gse_struct.unsupp.data = (char *) &stereo_views;

stereo_views.mono left_view_index;

stereo_views.left left_view_index;
right_view_index;

stereo_views.right

B-8 ‘ Stereo User's Manual [2.0]

PHIGS Stereo Example Program

pgse (PES_GSE_STEREO_VIEW_INDICES, &gse_struct);
pset_hlhsr id(PHIGS_HLHSR_ID_ON);

/* Translate node for dials */

tran.x = 0.0;
tran.y = 0.0;
tran.z = 0.0;

translate_elem = 3;
ptranslate3(&tran, &err, tranl);
pset_local_tran3(tranl, PTYPE_PRECONCAT);

/* set initial degree of rotation to 0 */
deg = 0.0;
rotate_elem = 4;
protate_z(deg, &err, comp_mat);
pset_local_tran3(comp_mat, PTYPE_PRECONCAT):

/* Translate node to offset object a little */
tran.x = 0.50;
0.0;
0.0;
ptranslate3(&tran, &err, tranl);
pset_local_tran3(tranl, PTYPE PRECONCAT);

tran.y

tran.z

pset_int_style(PSTYLE SOLID);

pset_face_cull mode(PCULL_NONE) ;
pset_face_disting mode(PDISTING_NO):

pset_int_colr_ind(BLUE); /* blue */
point_list.num points = 4;
point_list.points = cube[0];
pfill_area3(&point_list);

pset_int_colr_ind(GREEN); /* green */
point_list.points = cube[l];
pfill area3(&point_list);

pset_int_colr_ind(RED); /* red */
point_list.points = cube[2];
pfill area3(&point_list);

Stereo User's Manual [2.0] B-9

PHIGS Stereo Example Program

pset_int_colr_ind(YELLOW); /* yellow */
point_list.points = cube[3]:;
pfill_area3 (&point_list);

pset_int_colr_ ind(CYAN); /* cyan */
point_list.points = cube[4];
pfill_area3 (&point_list);

pset_int_colr_ind(MAGENTA);/* magenta */
point_list.points = cube[5];
pfill_area3 (&point_list):

pclose_struct ()

/* set edit mode to replace */
pset_edit_mode (PEDIT_REPLACE) ;

/* set display updates to wait */
pset_disp_upd st (stereo_wks, PDEFER _WAIT, PMODE_NIVE);
pset_disp upd st (mono_wks, PDEFER_WAIT, PMODE_NIVE) ;

/* post the structure */
ppost_struct (stereo_wks, structure, 0.0);
ppost_struct (mono_wks, structure, 0.0);

/* Do the first display */
pupd_ws (mono_wks, PUPD_PERFORM) ;

/* Go look for dial events, etc. */
MyMainLoop() ;

pclose_ws (stereo_wks) ;
pclose_ws (mono_wks) ;

pclose_phigs();

/* End of doPhigsStuff */

/**

*

*
*
*
*
*
*

MyMainLoop

Custom loop so we can catch events
associated with the extensions to X Input and apply them to
PHIGS structures.

***/

B-10 ‘ Stereo User's Manual [2.0]

PHIGS Stereo Example Program

int MyMainLoop ()

int i, dials_values[10], error, events_waiting, nfds;
unsigned long readfds, writefds, exceptfds;

unsigned long monofdmask, stereofdmask;

static int rotate_dirty, tran dirty;

Pvec3 tranval, scaleval;

XEvent event, peek event;

XAnyEvent *any_ event;

XButtonEvent button_event;

XDeviceMotionEvent *dm;

Display *current_dpy:

/* Set up file descriptor masks */
1 << mono_f£d;
1 << stereo_fd;

monofdmask
stereofdmask

/* Initialize the current screen pointer. */
current_dpy = dpy;

/* Initialize the rotation-scale accumulation matrix */
identity_matrix(currmatrix);

/* Initialize the translation accumulation vector */
tranval.delta_x = 0.0; tranval.delta_y = 0.0; tranval.delta_z = 0.0;

/* Initialize the scale accumulation vector */
scaleval.delta_x = 1.0; scaleval.delta y = 1.0; scaleval.delta_z = 1.0;

/* Do forever */
for (:;

/* Use "select™ to sleep on input from the two screens */
readfds = monofdmask | stereofdmask;
writefds = 0; exceptfds = 0;
nfds = select (32, &readfds, &writefds, &exceptfds, NULL);
if (nfds == 0)
continue;

/* First get the event */
/* Check the Mono comm line */
if ((readfds & monofdmask) != 0)
{
if ((events_waiting = XPending(dpy)) != 0)

Stereo User's Manual [2.0] B-11

PHIGS Stereo Example Program

current_dpy = dpy;
XNextEvent (current_dpy, &event):;
any event = (XAnyEvent *) &event;
mode_flag = MONO;

/* Check the Stereo comm line */
else if ((readfds & stereofdmask) != 0)
{
if ((events_waiting = XPending(sdpy)) != 0)
{
current_dpy = sdpy;
XNextEvent (current_dpy, &event);
any_event = (XAnyEvent *) &event;
mode_flag = STEREO;

else

continue;

if ((event.type == MapNotify) Il
(event .type == Expose) Il
(event .type == ConfigureNotify))

if (any_event->window == mono_win)

{
predraw_all_structs(mono_wks, PFLAG_ALWAYS) ;

XSync (current_dpy, 0);
}

else if (any_event=>window == stereo_win)

{
predraw_all_structs(stereo_wks, PFLAG_ALWAYS);

XSync (current_dpy, 0):

}
else if (event.type == LeaveNotify)

{

if (any_event->window == stereo_rootwin)

{
current_dpy = dpy:;

B-12 ' Stereo User's Manual [2.0]

PHIGS Stereo Example Program

else if (any_event->window == mono_rootwin)
{
current_dpy = sdpy:

else if (event.type == DeviceMotion)
{
do
{
peek_event.type = 0;
/* If this is a tablet event */
dm = (XDeviceMotionEvent *) &event;
if (dm->deviceid == tablet_id)
{
printf ("Tablet Motion\n");

/* If this is a dial event */
else if (dm->deviceid == dials_id)
{
/* Now process the data for all dials. */
for (i = 0; i < dm—>axes_count; i++)
{
/* Copy the new dial value */
if (dm->axis_data[i] != 0)
{
dials_values[i + dm—>first_axis] =
dm->axis_datal[i];
/* Set the dirty flag */
change [i+dm->first_axis] = 1;
}
if (XPending(current_dpy) > 0)
{
XPeekEvent (current_dpy, &peek_event);

if (peek_event.type == DeviceMotion)
XNextEvent (current_dpy, &event);

} /* End of if this is a dial event */
} while (peek_event.type == DeviceMotion); /* End of do while */

/* Now Edit the PHIGS structure */

Stereo User's Manual [2.0] B-13

PHIGS Stereo Example Program

/* Do the rotation matrices */
rotate_dirty = FALSE;
if (change[XROT_DIAL])
{
protate_x((float)dials_values[XROT_DIAL)/DIALSCALE,
&error, xrotmat);
rotate_dirty = TRUE;
}
else
identity matrix(xrotmat);

if (change[YROT DIAL])
{
protate y((float)dials_values[YROT_DIAL]/DIALSCALE,
&error, yrotmat);
rotate_dirty = TRUE;
}
else
identity_matrix(yrotmat);

if (change[ZROT_DIAL])
{
protate_z((float)dials_values[ZROT_DIAL)/DIALSCALE,
&error, zrotmat);
rotate_dirty = TRUE;
}
else
identity matrix(zrotmat);

if (change[SCALE_DIAL])

{
scaleval.delta x = 1.0 +

(float)dials_values[SCALE_DIAL]/(10.0*DIALSCALE) ;

scaleval.delta_y = scaleval.delta_x;
scaleval.delta_z = scaleval.delta_x;
pscale3(&scaleval, &error, scalemat);
rotate_dirty = TRUE;

}

else
identity matrix(scalemat);

if (rotate_dirty == TRUE)

{

pcompose _matrix3(currmatrix, xrotmat, &error, concatl);

B-14 Stereo User's Manual [2.0]

PHIGS Stereo Example Program

pcompose_matrix3(concatl, yrotmat, &error, concat2);
pcompose_matrix3(concat2, zrotmat, &error, concat3);
pcompose _matrix3(concat3, scalemat, &error, currmatrix);
popen_struct (structure) ;

pset_edit_mode (PEDIT_REPLACE) ;

pset_elem ptr(rotate_elem);

pset_local_tran3(currmatrix,PTYPE PRECONCAT) ;
pclose_struct();

/* Change Translation Matrix */
tran_dirty = FALSE;
if (change [XTRAN DIAL])
{
tranval.delta_x += (float)dials_values[XTRAN DIAL]/DIALSCALE;
tran_dirty = TRUE;

if (change [YTRAN DIAL])
{
tranval.delta_y += (float)dials_values[YTRAN DIAL]/DIALSCALE;
tran_dirty = TRUE;
if (change[Z2TRAN DIAL])
tranval.delta_z += (float)dials_values[ZTRAN DIAL]/DIALSCALE;
tran_dirty = TRUE;
if (tran_dirty == TRUE)
{
ptranslate3(&tranval, &error, tranmatrix);
popen_struct (structure);
pset_edit_mode (PEDIT_ REPLACE) ;
pset_elem ptr(translate_elem);

pset_local_tran3(tranmatrix,PTYPE PRECONCAT);
pclose_struct();

if (mode_flag == STEREO)

pupd_ws (stereo_wks, PUPD_PERFORM) ;

Stereo User's Manual [2.0] B-15

PHIGS Stereo Example Program

}
else

{

pupd_ws (mono_wks, PUPD_PERFORM) ;

for (i=0; i<8; i++)

change[i] = 0;

/* End of if event is DeviceMotion */
/* End of do forever */

/* End of MyMainLoop */

/**

*

* main
*

***/

main(argc, argv)
int argc;
char *argv([]l;

int

char

register int
register int
register int
XSizeHints
XGCValues
XSetWindowAttributes
XWindowAttributes
Window

Colormap

int

int

int

Font
char
XFontStruct

B-16

amount, i, j

*geom = NULL;

xdir, ydir;

xoff, yoff;

centerX, centerY;

hints;

xgcv;

xswa;

winattr;

root;

map;

X, ¥, W, h;

mono_button_x, mono_button_y, mono_button_w,
mono_button_h;

mono_button_bw, mono_button_bc,
mono_button_bckgrnd;

font;

*fontname;

*font_info;

Stereo User's Manual [2.0]

(

PHIGS Stereo Example Program

XGCValues gcvals;
unsigned valmask;
unsigned int d;

unsigned int bw = 1;

char

*display = NULL;

char *stereoDisplayString;
Status status;

char *strptr;

char *fg = NULL;

char *bg = NULL;

char *bd = NULL;

int fg_pix, bg_pix, bd_pix;
XColor fg_def, fg_exact, bg_def, bg_exact, bd_def, bd exact;
int bs = NotUseful;

Visual visual;

int numscreens;
xScreensInfo *screen_info;

ProgramName = argv[0];

for (i=1; i < argc; i++)
{

char *arg = argv[i];

if (arg[0] == ’=r) {
switch (arg[l]) {
case ’'d’: /* -display host:dpy */
if (++i >= argc) usage ();
display = argv[i];
continue;
case 'g’: /* -geometry host:dpy */
if (++i >= argc) usage ();
geom = argv[i];
continue;
case 'b’': /* ~b or -bg or -bd */
if (!strcmp(argv([i], "=bg")) {
if (++i >= argc) usage ():
bg = argv[i];
} else if (!strcmp(argv[i], "-bd")) {
if (++i >= argc) usage ();
bd = argv[i]:;
} else if (!strcmp(argv[i], "-bw")) {
if (++i >= argc) usage ();
bw = atoi(argv[i]);

Stereo User's Manual [2.0] B-17

PHIGS Stereo Example Program

} else
bs = Always;
continue;
case 'f': /* assume -fg */
if (++i >= argc) usage ();
fg = argv([i];
continue;
default:
usage ();
}
} else if (argv [i] [0] == ’'=’) /* obsolete */
geom = argv([i];
else
usage ();

if (!(dpy = XOpenDisplay(display)))
{
perror ("Cannot open display\n"):
exit (-1);

mono_fd = XConnectionNumber (dpy) ;

/* Open the stereo screen for stereo windows.

stereoDisplayString = XDisplayString(dpy):
strptr = rindex(stereoDisplayString, ':'):
XGetScreensInfo (dpy, &screen_info);
numscreens = screen_info->numofscreens;
for (i=0; i<numscreens; i++)
{
if (screen_info->screens[i].screentype == xStereoScreen)
{
sprintf((strptr + 1), "0.%d", i);

if (! (sdpy = XOpenDisplay (stereoDisplayString)))

{
perror ("Cannot open display for Stereo screen\n");
exit (-1);

}

stereo_fd = XConnectionNumber (sdpy) ;

if (fg) {

*/

B-18 ' Stereo User's Manual [2.0]

PHIGS Stereo Example Program

status = XAllocNamedColor (dpy, map, fg, &fg_def, &fg_exact);

fg_pix = status ? fg_def.pixel : WhitePizxel (dpy, DefaultScreen (dpy)):
} else

fg_pix = WhitePixel (dpy, DefaultScreen (dpy)):

if (bg) {

status = XAllocNamedColor (dpy, map, bg, &bg_def, &bg_exact);

bg_pix = status ? bg_def.pixel : BlackPixel (dpy, DefaultScreen (dpy));
} else

bg_pix = BlackPixel (dpy, DefaultScreen (dpy)):

if (bd) {

status = XAllocNamedColor (dpy, map, bd, &bd _def, &bd exact):

bd_pix = status ? bd def.pixel : WhitePixel (dpy, DefaultScreen(dpy)):
} else

bd pix = WhitePixel (dpy, DefaultScreen(dpy))

if (geom)
{
(void) XParseGeometry(geom, &mono_winx, &mono_winy,
&mono_winw, &mono_winh);

xswa.backing store = bs;

xswa.event_mask = ExposureMask | StructureNotifyMask;
xswa.background pixel = bg_pix;

xswa.border_ pixel = bd_pix;

visual.visualid = CopyFromParent;

/* Select leave events on the mono root window */
mono_rootwin = RootWindow (dpy, DefaultScreen(dpy)):
XSelectInput (dpy, mono_rootwin, LeaveWindowMask);

/* Create Mono window */
if (mono_winh == 0)
mono_winh = 500;
if (mono_winw == 0)
mono_winw = 500;
mono_win = XCreateWindow (dpy,
RootWindow (dpy, DefaultScreen(dpy)),
mono_winx, mono_winy, mono_winw, mono_winh, bw,
DefaultDepth (dpy, DefaultScreen(dpy)), InputOutput,
&visual,

Stereo User's Manual [2.0] B-19

PHIGS Stereo Example Program

CWEventMask | CWBackingStore | CWBorderPixel | CWBackPixel,
&xswa) ;
XChangeProperty(dpy, mono_win, XA WM NAME, XA STRING, 8,
PropModeReplace, "Stereo Demo", sizeof ("Stereo Demo"));
XMapWindow (dpy, mono_win) ;

/* Select leave events on the stereo root window */
stereo_rootwin = RootWindow(sdpy, DefaultScreen (sdpy)):
XSelectInput (sdpy, stereo_rootwin, LeaveWindowMask);

/* Open the stereo window on the Stereo Screen */
winx = 0;
winy = 0;
winh (XDisplayHeight (sdpy, DefaultScreen(sdpy)))
- 100 /* Fudge factor for borders */;
winw = winh;
stereo_win = XCreateWindow (sdpy,
RootWindow (sdpy, DefaultScreen (sdpy)),

winx, winy, winw, winh, bw,
DefaultDepth (sdpy, DefaultScreen(sdpy)), InputOutput,
&visual,
CWEventMask | CWBackingStore | CWBorderPixel | CWBackPixel,
&xswa) ;

XSync (sdpy, 0);

XChangeProperty(sdpy, stereo_win, XA WM NAME, XA STRING, 8,
PropModeReplace, "Stereo Demo", sizeof ("Stereo Demo")):

hints.flags = USPosition | USSize ;

hints.x = winx;

hints.y = winy;

hints.width = winw;

hints.height= winh;

XSetNormalHints (sdpy, stereo_win, &hints);

XSetTransientForHint (sdpy, RootWindow (sdpy, DefaultScreen (sdpy)),

stereo_win);

XSync (sdpy, 0):

XMapWindow (sdpy, stereo_win);

XFlush (sdpy, 0);

doPhigsStuff (dpy, sdpy):

} /* End of main */

B-20 ' Stereo User's Manual [2.0]

PHIGS Stereo Example Program

/**

*

*
*
*
*
*

SensitizeWindow

Routine to select input events for PHIGS graphics windows.

**/

int SensitizeWindow(my_dpy, my_window)

Display *my_dpy;
Window my_window;
int i, 3:
int eventCount = 0;
XEventClass eventClass[100];
XStringFeedbackControl strfc;
KeySym ledstring[MAXDIALS] [CHARS_PER DIAL], blankled[CHARS_PER DIAL];
static char textstring [MAXDIALS] [CHARS_PER DIAL] =
{"XROT ", "YROT ", " 2ZROT ", " SCALE ",
"XTRAN ", "YTRAN ", " Z TRAN ", " "}

/* Get a list of the available devices */
devices = XListInputDevices(my_dpy, &ndevices);

/* Open the input devices */
for (1 = 0; i < ndevices; i++, devices++)
{
if (strcmp("TABLET", devices->name) == 0)
{
tablet_id = devices->id;
tablet = XOpenDevice (my_dpy, tablet_id);

if (strcmp ("KNOB_BOX", devices=>name) == 0)
{

dials_id = devices->id;

dials = XOpenDevice (my_dpy, dials_id):

Stereo User's Manual [2.0] B-21

PHIGS Stereo Example Program

eventCount = 0;

if (!tablet)

{
fprintf (stderr, "No TABLET\n");

}

else

{
DeviceMotionNotify(tablet, DeviceMotion, eventClass[eventCount]);
eventCount++;

DeviceButtonPress (tablet, DevicePress, eventClass[eventCount]):;
eventCount++;

DeviceButtonRelease (tablet, DeviceRelease, eventClass[eventCount]);
eventCount++;

}

if (!dials)

{
fprintf (stderr, "No DIALS\n");

}

else

{
DeviceMotionNotify(dials, DeviceMotion, eventClass[eventCount]);
eventCount++;

if (!dials && !tablet)
{
exit (0);

XFreeDevicelist (devices) ;
XSelectExtensionEvent (my_dpy, my window, eventClass, eventCount);

/* Set the dial labels */
/* Load the keysym arrays */
for (i = 0; i < MAXDIALS; i++)
for (j = 0; j < CHARS_PER DIAL; j++)
{
ledstring[i] [j] = (KeySym) textstring[i][j]; /* Dial labels */
blankled[j] = SPACEKEYSYM; /* Blank labels */

B-22 ‘ Stereo User's Manual [2.0]

PHIGS Stereo Example Program

strfc.class = StringFeedbackClass;
strfc.length = sizeof (XStringFeedbackControl) ;
strfc.num keysyms = CHARS_PER DIAL;

for (i=0; i<MAXDIALS; i++)

{
strfc.id = i;
strfc.syms_to_display = ledstringl[i];
XChangeFeedbackControl (my_dpy, dials, DvString, &strfc):

return;

} /* End of SensitizeWindow */

/* End of stereo_demo.c */

Stereo User's Manual [2.0] B-23

