ESV Workstation

Spaceball User's Manual

EVANS & SUTHERLAND COMPUTER CORPORATION
Salt Lake City, Utah

DOCUMENTATION WARRANTY:

PURPOSE: This documentation is provided to assist an Evans & Sutherland trained BUYER
in using a product purchased from Evans & Sutherland. It may contain errors or omissions
that only a trained individual may recognize. Changes may have occurred to the hardware/
software, to which this documentation refers, which are not included in this documentation
or may be on a separate errata sheet. Use of this documentation in such changed hardware/
software could result in damage to hardware/software. User assumes full responsibility of
all such results of the use of this data.

WARRANTY: This document is provided, and Buyer accepts such documentation, “AS-IS”
and with “ALL FAULTS, ERRORS, AND OMISSIONS.” BUYER HEREBY WAIVES ALL
IMPLIED AND OTHER WARRANTIES, GUARANTIES, CONDITIONS OR LIABILITIES,
EXPRESSED OR IMPLIED ARISING BY LAW OR OTHERWISE, INCLUDING, WITHOUT
LIMITATIONS, ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
BUYER FURTHER HOLDS SELLER HARMLESS OF ANY DIRECT OR INDIRECT
DAMAGES, INCLUDING CONSEQUENTIAL DAMAGES.

ESV,ESYV Series, ESV Series Workstations, ES/os, ES/Dnet, ES/PEX, ES/PHIGS, ES/PSX,
Clean-Line, Fiber Link, Local Server, CDRS, and Shadowfax are trademarks of
Evans & Sutherland Computer Corporation.

LAT Host Services, DEPICT, and PCONFIG are trademarks of Ki Research.
AVS is a trademark of Stardent Computer, Inc.

VAX, VMS, and DECnet are trademarks of Digital Equipment Corporation.

X Window System is a trademark of the Massachusetts Institute of Technology.
UNIX is a registered trademark of AT&T.

Ethernet is a registered trademark of Xerox Corporation.

Motif is a trademark of the Open Software Foundation, Inc.

SunPHIGS is a registered trademark of Sun Microsystems, Inc.

Spaceball is a trademark of Spatial Systems Pty Limited.

Part Number: 517941-201 AA
April, 1991

Copyright © 1991 by Evans & Sutherland Computer Corporation.
All rights reserved.

Printed in the United States of America.

Table of Contents

Table of Contents
1. Introduction 1-1
Overview 1-1
Installation 1-1
Software Considerations 1-2
2. X and PHIGS Implementation 2-1
X Input Extension . 2-1
PHIGS Implementation..........ccceceusesssssencnc 2-1
Utility Routines 2-1
SbUnpackMatrix 2-1
SbRotAxisEnable . . 22
SbRotSensitivityccveveneccecrnnenne 2-2
SbRotDominantMode.................cccccoeueneneee .22
SbDominant 2-3
Sbinitialize .2-3
3. ES/PSX Implementation 3-1
OVETVIEW....ucuiriiincninsnsesesoessasssssesssonssssssssssssssssessssnss 3-1
Principles of Operation 3-1
COmMMUNICAtON......cccereerererercererersesesessesesessesesenssnssonercene 3-1
Ball Functionality 32
Translation Data 32
Rotation Data .32
Vector Rotation Format . 3-2
Delta Rotation Matrix Format.................... 32
Absolute Rotation Matrix .32
Constraining the Data 3-2
Scaling the Data.......cccccecererrrerererennenes 3-3
Coordinate Systems .33
Zeroing 3-3
Sensitivity 3-3
Keypad Functionality 3-3
Beeper Functionality 3-4
Spaceball Functions 3-5
SBIN .35
SBOUT..... 3-8
SBENCODE 3-9
Spaceball Function Network 3-11

Spaceball User's Manual [2.0]

Table of Contents

Command and Message Codes 3-12
Space, Tab (null command/message) 3-14
% (echo) 3-15
? (Invalid packet) 3-16
@RESET (reset) 3-17
A (absolute rotation matrix) 3-18
B (beeper) 3-19
D (data) 3-20
E (error) 3-22
F (feel) 3-23
H (help) 3-24
K (keypad) 3-25
M (mode) 3-26
N (null radius) 3-28
O (orientation) 3-29
P (pulse) 3-30
R (rotation mode) .3-31
S (spin rate) .3-32
T (translation mode). 3-33
X (XYZ relative translation sensitivities) .3-34
Z (zero) 3-35
ES/PSX Example Program A-1
Installation Instructions A-1
Files LA-1
Function Network A-2
sbdemo.dat Program Listing .A-4

Spaceball User's Manual [2.0]

Introduction

1. Introduction

This document complements the Spaceball Model 1003 Product Reference
Manual, Document Number D1003, Spatial Systems Pty Limited, April
1988. The Product Reference Manual should be read first as a tutorial intro-
duction to the Spaceball Option. This guide is arranged as follows:

“Chapter 1” (this chapter) contains installation instructions for
Spaceball.

* “Chapter 2” describes X Spaceball implementation.
o “Chapter 3" describes ES/PSX Spaceball implementation.
* “Appendix A” contains an ES/PSX example program.

Overview

Spaceball is an interactive device consisting of a stationary ball mounted on

a base. It senses applied force and torque. Eight programmable buttons are lo-
cated on the upper face, which can be used as function keys, and another pro-
grammable button is located on the front of the ball, which can be used as a

pick button.

Spaceball has six degrees of freedom. By pushing and twisting the sta-
tionary ball, Spaceball simultaneously senses the forces along, and the
torques around, the x,y,z axes of its coordinate system. These six parameters
are processed by Spaceball and output as numeric vectors and matrices. They
can be used to control any function you specify.

Installation

1) Plug the 9 V power adapter into the backshell of the RS-232-C
connector.

2) Plug this end of the cable into the filter, and then into an unused port
(tty0 or tty3) of the ESV Workstation.

3) Plug the other end of the cable (9-pin connector) into Spaceball.

4) Apply power to Spaceball. Spaceball should generate two short beeps.
If Spaceball does not beep, check the cable connections.

5) If Spaceball beeps an SOS signal, the unit is malfunctioning.

Spaceball User's Manual [2.0] 1-1

Introduction

Software Considerations

°

1-2

The tty channel used must be set to be readable and writable. Login
as root and enter the following command:

chmod /dev/ttyn
where n is the appropriate number (0 or 3).
The third field in the /etc/inittab file for t0 or t3 must be set to off.

The default internal speed setting for Spaceball is 9600 baud. The
default speed for the tty ports set by the UNIX kernel is also 9600
baud. If the internal speed of Spaceball has been changed, the port
speed must also be changed. This can be done with the stty command
as follows:

/bin/stty 4800 </dev/tty0 (System V)
/bsd43/bin/stty 4800 >/dev/tty0 (BSD 4.3)

Spaceball User's Manual [2.0]

X and PHIGS Implementation

2. X and PHIGS Implementation

This chapter describes the operation of Spaceball when it is used in the
X environment and when it is used with PHIGS input.

X Input Extension

The X Input Extension is used to send data from Spaceball to the ESV Work-
station. Refer to chapter 2 in the ESV Workstation Reference Manual [2.0] for
more information about using the X Input Extension with Spaceball.

PHIGS Implementation

PHIGS input can be used to access Spaceball. For information on how to do
this, see the “PHIGS Input with ESV Devices” section in chapter 1 of the ESV
Workstation Reference Manual [2.0].

Utility Routines

The utility routines are used to process events from Spaceball whether it is
used in an X environment or with PHIGS input. Spaceball is a sophisticated
device, and it can be set to perform data processing before generating any
events. However, Spaceball cannot be in a different state in each different
window. Spaceball sends raw data, and the utility routines are used to provide
some of the Spaceball processing features in a non-window environment.
These routines are located in the /usr/lib/libXEandSext.a library.

SbUnpackMatrix

SbUnpackMatrix(data, matrix)

int dataf6},

SBmatrix3 matrix;
This routine expects a Spaceball motion data array. This array can be the axis
data array from an XDeviceMotion Event structure or the decoded axis infor-
mation from a PHIGS pget_string call. It returns, in the space pointed to by
matrix, a 4x4 homogenous rotation matrix. You must be careful to initialize
matrix to the identity matrix since not all matrix elements are touched.

The rotation matrix is formed using the compact rotation information in
the data array and the mode information set by the other utility routines. The
SBmatrix3 structure is identical to a PHIGS Pmatrix3 structure.

Spaceball User's Manual [2.0] 2-1

X and PHIGS Implementation

SbRotAxisEnable

SbRotAxisEnable(x_enable, y_enable, z_enable)
Int x_enable;
Int y_enable;
int Z_enable;

This routine enables/disables Spaceball rotation data for each axis. If the val-
ue for a flag is non-zero then that corresponding axis will affect the matrix re-
turned by SbUnpackMatrix. Likewise if the flag is zero then that axis will not
contribute to the rotation matrix.

Note: Spaceball is a very sensitive device, and it is
very difficult to twist it without somewhat
affecting all rotation parameters.

SbRotSensitivity

SbRotSensitivity(factor)

float factor;
factor can be used to scale the incoming rotation data. This allows you to
change the amount of rotation according to the amount of twist provided.

A factor value between 0.0 and 1.0 scales down the rotation. A factor
value of 0.0 has the effect of disabling all rotations. Values greater than 1.0
scale up the rotation. A negative factor value reverses the direction of
rotation.

SbRotDominantMode

SbRotDominantMode(flag)

Int flag;
This routine enables/disables dominant mode. In dominant mode Spaceball
uses the raw rotation data to find the axis that is being twisted the most (the
dominant axis). When the event is unpacked using SbUnpackMatrix, the
dominant axis is the only active axis. Of course SbUnpackMatrix will still
pay attention to the axis enable and sensitivity settings.

This might be used in an application requiring only y-axis rotations. Set
the axis enable using SbRotAxisEnable(false, true, false). However, when
you twist Spaceball on another axis it will still affect the y-axis somewhat. By
setting SbRotDomInantMode(true), when you twist another axis, it is
enabled by dominant mode but disabled with by the current axis enable mode.
This results in an identity matrix being returned by SbUnpackMatrix. So you
only get the y-axis rotation when you intend to twist around the y-axis.

Spaceball User's Manual [2.0]

X and PHIGS Implementation

SbDominant
SbDominant(vector)
SBvector3 vector;
SbDominant takes a structure of three floating point numbers and zeros out
the two smaller elements. The comparison for the largest element (the domi-
nant one) is done using the absolute magnitude of the entries.

This routine is used by SbUnpackMatrix to select the dominant rotation
element when dominant mode is enabled.
Sbinitialize

Sbinitialize()
This routine initializes internal variables and sets up the processing mode for
SbUnpackMatrix. The initial processing mode is all axis enabled, sensitivity
factors set to 1.0, and dominant mode disabled.

Sbinitialize can be called at any time, but to ensure consistent behavior,
it should be called in an application immediately after attaching Spaceball.

Spaceball User's Manual [2.0] 2-3

ES/PSX Implementation

3. ES/PSX Implementation

Overview

Spaceball is implemented as a tty device connected to the back panel of the
ESV Workstation. When connected in this manner, Spaceball is unavailable
for use as an X device and can only be used by one ES/PSX process at a time.
To inform ES/PSX of the port that is used by Spaceball, you should set the
environment variable PSX_SPACEBALL. For example,

setenv PSX SPACEBALL /dev/tty3

The vectors and matrices output from Spaceball are input to an ES/PSX
function network, which uses the data to control the functions you select. The
programmable buttons allow you to enable or disable any of the input data,
change the function of any of the input data, or pick any data.

Since Spaceball senses the three forces and three torques simultaneously,
it provides unlimited control over the positioning and orienting of an object
in space on ES/PSX. Spaceball output can also be used to control other func-
tions such as object scale and color. By connection to the appropriate func-
tion, Spaceball can emulate other interactive devices, such as a mouse,
control dials unit, function buttons unit, and data tablet.

Principles of Operation

Communication

Spaceball communicates with ES/PSX over a tty interface by sending mes-
sages to, or receiving commands from ES/PSX.

Messages and commands consist of Qpackets ending with a carriage
return. The first character of each Qpacket identifies the type of message or
command. The format of the data for each message or command type is
described in this chapter.

Data within each Qpacket can be in one of several protocols determined
by the communication mode set in Spaceball. ES/PSX always sets the
communication mode to be the binary mode. It removes any escape
sequences in data received from Spaceball and inserts escape sequences in
data sent to Spaceball.

Spaceball User's Manual [2.0] 3-1

ES/PSX Implementation

Ball Functionality

Spaceball senses force and torque, converts the information into a format that
you specify, and sends the data in a Qpacket. The presence and format of the
data is determined by the data mode. It is possible to specify that translation
and/or rotation data be sent from Spaceball. No data will be sent unless trans-
lation and/or rotation data is enabled.

Translation Data

If sranslation data is enabled, the relative force applied in each of the x,y,z di-
rections is sent, along with a multiplier related to the length of time the force
had been applied since the last data message. This information is converted
to a 3D vector by the function processing Spaceball data.

Rotation Data

If rotation data is enabled, the relative torque around each axis is sampled and
the data is sent in a format which you specify.

Vector Rotation Format

‘When this format is specified, the torque around each axis is sent, along with
a multiplier related to the period since the last data message. This format is
similar to the format of translation data and is converted by ES/PSX into a
3D vector. The vector is the change in rotation torque since the last data mes-
sage. Since the rotation data format and the translation data format are iden-
tical, they can be used interchangeably for similar purposes.

Delta Rotation Matrix Format

This data format causes a 3x3 rotation matrix to be sent, which is the rotation
change which would have been applied to an object by the torque sensed since
the last message sent.

Absolute Rotation Matrix

This data format causes a 3x3 rotation matrix to be sent, which is the accumu-
lated rotation effect which would have been applied to an object by the torque
sensed. A command can be sent to Spaceball to initialize the internal absolute
rotation matrix. Torque applied to Spaceball then causes updated accumulat-
ed rotation matrices to be sent. This implies that these 3x3 matrices can up-
date a rotation node directly without further computation in ES/PSX.

Constraining the Data

The data mode of Spaceball can be set such that only linear or planar freedom
is allowed. A translation or rotation freedom vector can then be sent which
defines the linear axis, or the normal to the plane for the freedom allowed.

3-2 : Spaceball User's Manual [2.0]

(

ES/PSX Implementation

Scaling the Data

The 3D vectors received as a result of translation data or the vector form of
rotation data, can be scaled easily by multiplying each component of the vec-
tor by a factor which provides the performance desired.

Matrix forms of rotation data are more difficult to manage. Spaceball can
be instructed to handle this problem itself by modifying the sensitivity of ro-
tation matrices. The spin rate factor can be adjusted to achieve the required
performance. The spin rate cannot be used to scale translation or rotation vec-
tors.)

Coordinate Systems

Zeroing

Sensitivity

The coordinate system of Spaceball should match that of the object. Spaceball
can be instructed that the coordinate system of the object is either left-handed
or right-handed, which defines the positive z-direction. In addition, the orien-
tation of Spaceball can be updated in a more general sense by sending a 3x3

orientation matrix. This can cause the orientation of Spaceball to correspond
to a top view or side view.

Itis also possible to specify whether the coordinate systems for Spaceball,
the freedom vectors, and Spaceball output are in object or world coordinate
systems, called local or parent, respectively. This information is sent in the
same command which sets the freedom vectors.

It is possible to reset the initial state of Spaceball. When this happens, all fur-
ther data will be relative to the torque and force applied when Spaceball was
zeroed. This can allow simple animation by zeroing Spaceball after applying
some torque. When the ball is released, data will be continuously sent in re-

verse of the torque applied.

Spaceball can be made more sensitive to the touch by updating the null radius
and feel. If the null radius value is made smaller, less effort will be required
to cause Spaceball to output data. This can have a negative effect, since un-
necessary data can be sent if the value is too small. Adjusting the feel causes
linear to cubic response when increased torque and force is applied.

Keypad Functionality

When a keypad button is pressed or released, a message is sent to the ESV
Workstation which causes an integer to be generated indicating the number
of the button pressed or released. Buttons one through eight generate integers
one through eight respectively. The pick button generates an integer nine.
Output <2> of the sbin function generates integers when a button is pressed,

Spaceball User's Manual [2.0] 3-3

ES/PSX Implementation

and output <3> of the sbin function generates integers when a button is re-
leased.

Beeper Functionality

The beeper interface has a 30-note queue. Each note contains a flag, indicat-
ing sound or silence, and a five-bit integer duration in 1/32™ of a second.

3-4 Spaceball User's Manual [2.0]

¢

ES/PSX Implementation

Spaceball Functions
SBIN

Type:

Intrinsic User Function - Miscellaneous

Qpacket ——p

SBIN
<> <1> ——— Qpacket
<2@> [—>|
<3> p——> |
<4> p—>» 3D
<5> F——>3D
<6> p——> 3x3
<7> |—> 3x3
<8> ——> Qpacket
<9> [Qpacket
<10> ——> 3D, 3x3

Purpose:

This function converts data from Spaceball into ES/PSX format and synchro-
nizes communication with Spaceball.

Description:
Input
<I> —

Outputs

connected from Spaceball and also from the sbout
function

connected to Spaceball

integer keypad button pressed
integer keypad button released
delta translation vector

delta rotation vector

delta rotation matrix

absolute rotation matrix
error/warning messages

other packets from Spaceball
decoded messages from Spaceball

Spaceball User's Manual [2.0] 3-5

ES/PSX Implementation

Notes:

I)

2)

3)

4)

5)

6)

®

Input <1> acts as the function trigger. It accepts Qpackets containing
commands and queries for Spaceball and messages from Spaceball. If
it receives a Boolean true, data messages are sent through outputs <9>
and <10>.

Input <1> is connected to output <1> of B4$, the input function for port
4. It is also connected to output <1> of the sbout function, so that it can
coordinate synchronization of commands to Spaceball with messages
from Spaceball. Never send any commands directly to this input. Com-
mands for Spaceball must first be processed by the sbout function to
identify the data as coming from ES/PSX rather than from Spaceball.

Output <1> is connected to input <1> of 04$, the output function for
port 4.

An integer corresponding to the button pressed or released is sent
through output <2> or output <3>, respectively. The pick button is but-
ton nine.

The presence of data on outputs <4> through <7> depends on the mode
setting:

If translation data is enabled, it is sent through output <4>.

If rotation data is enabled and is to be in delta vector format, it is sent
through output <5>.

If rotation data is enabled and is to be in delta matrix format, it is sent
through output <6>.

If rotation data is enabled and is to be in absolute matrix format, it is
sent through output <7>. Messages returned after updating or query-
ing the absolute matrix of Spaceball are also sent through output <7>.

Error messages from Spaceball are sent through output <8>. Errors dis-
covered by the function during processing of messages from Spaceball
or commands to Spaceball, are also sent through output <8>.

The following messages from Spaceball are sent through output <9>:
% (echo)
A (absolute rotation matrix)
B (beeper)
D (data - sent only if enabled)
F (feel)
H (help)
M (mode)
N (null radius)

Spaceball User's Manual [2.0]

ES/PSX Implementation

O (orientation)

R (rotation mode)

S (spin rate)

T (translation mode)

7) Absolute and orientation matrices, and translation and rotation freedom

vectors, are decoded and sent from output <10>. These messages are
also copied unchanged and sent from output <9>. Output <10> is a
Qpacket containing the input code type followed by decoded matrices
and vectors. The following table lists the code sent in the Qpacket and
the associated data type which will immediately follow.

Table 1. Output <10> message types

Message Type Qpacket Code Data Type
Absolute matrix A’ 3x3
Orientation matrix 0’ 3x3
Translation freedom vector T’ 3D
Rotation freedom vector 'R’ 3D
If enabled:
Translation data ‘DT’ 3D
Vector rotation data ‘DR’ 3D
Delta rotation data 'DR’ 3x3
Absolute rotation data 'DR’ 3x3

To use this output, connect it first to a print function and then to the
host_message function.

8) Since the sbin function has no way of knowing when an application
starts and finishes, the application must initialize Spaceball to the state
desired. When the application terminates, it should always disable
transmission of data by changing the data mode.

A program should not assume that the sbin function will be in any
known state. When it starts, it will typically set the data mode, and, if
using absolute rotation data, send an identity absolute matrix. The null
radlus, feel, spin rate, and relative transiation sensitivities can also
be set.

Spaceball User's Manual [2.0] 3-7

ES/PSX Implementation

SBOUT
Type:

Purpose:

Description:

Notes:

3-8

Initial Function Instance - Data Output

SBOUT

Qpacket ———— <i> <1> ——> Qpacket

This function identifies Qpackets to be sent to Spaceball as coming from
ES/PSX. Since the sbin function coordinates communication with Spaceball,
it processes both packets coming from Spaceball and going to Spaceball. It
must be able to tell which type of packet it is processing.

Input

<l> — commands for Spaceball
Output

<l> — connected to sbin function

1) Input <1> can receive commands directly from function networks or
can be connected from the sbencode function.

2) Output <1> is connected to input <1> of the sbin function.

Spaceball User's Manual [2.0]

ES/PSX Implementation

SBENCODE

Type:
Initial Function Instance - Data Output

SBENCODE

Qpacket ———— <1> <1> ———> Qpacket

Qpacket === <25

Purpose:
This function encodes ES/PSX format data into Spaceball format, and concat-
enates the encoded data to the Qpacket on input <1>. It outputs encoded
commands to be sent to Spaceball.

Description:
Inputs

<1> — command for Spaceball to be concatenated with encoded
data from <2>

<2> — data to be encoded from ES/PSX format into Spaceball
format

Output
<1> — connected to sbout function

Notes:

1) Input <1>is a Qpacket which is to be concatenated with the encoded
data from input <2>.

2) Input <2>is ES/PSX data which is to be encoded into Spaceball format.
Valid data types depend on the command code on input <1>. The fol-
lowing table lists the codes accepted on input <1> and the correspond-
ing data type expected on input <2>.

Spaceball User's Manual [2.0] 3-9

ES/PSX Implementation

Input <1>
,A,
’O’
’F’
9N!
’R’

,S!
’T’

,X’

Table 2. Codes accepted on input <1>

Input <2> Command Type Processing
3x3 Absolute matrix Converted to a compact rotation matrix
3x3 Orientation matrix Converted to a compact rotation matrix
IorR Feel Converted to printable ASCII character
IorR Null radius Converted to printable ASCII character
V3D Rotation freedom Converted to 16-bit vector
vector
V2D Spin rate Converted to 2 printable ASCII characters
(exponent,mantissa)
V3D Translation freedom Converted to 16-bit vector
vector
V3D Translation Converted to 16-bit vector

sensitivity vector

3) Itis good ES/PSX programming practice to put a sync function be-
tween the sbencode function and each of its inputs. For example, if a
single keypad button is to send an absolute matrix and a rotation free-
dom vector, there should be two sync functions. One sync function will
gate the command and matrix for the absolute matrix, and the other sync
function will gate the command and vector of the freedom vector. This
will prevent the matrix from arriving with the freedom command, and
vice versa. The sync functions will also prevent the sbencode function
from getting out of synchronization with the network, especially during
debugging of an application.

Spaceball User's Manual [2.0]

ES/PSX Implementation

Spaceball Function Network
Figure 1 shows the function network created in the ES/PSX runtime.

SBIN o7

<1> » <> <i> <i>

<10>

SBENCODE SBOUT
<1> <i> <1> <>
<2>

Figure 1. Spaceball function network

Spaceball User's Manual [2.0] 3-11

ES/PSX Implementation

Command and Message Codes

3-12

Spaceball communicates using single byte command or message codes with
appropriate data associated with each code. Messages from Spaceball are
Qpackets containing escape sequences, and are terminated by a carriage re-
turn. Commands and queries sent to Spaceball are Qpackets which must be
preprocessed by the sbout function to identify them as coming from function
networks.

Commands and queries to be sent to Spaceball are edited as much as pos-
sible, escape sequences are inserted where necessary, and a carriage return is
added to the end of the data before sending it to Spaceball as a Qpacket. Most
commands, and all queries cause a response to be returned from Spaceball.
When a message response is to be returned from Spaceball, a flag is set indi-
cating that all further commands and queries are to be queued until the re-
sponse is received. When the response message is received, the wait-for-
response flag is cleared, and the next queued command or query is sent. This
synchronization of commands and their responses avoids errors which can
occur due to transmitting and receiving at the same time.

Messages from Spaceball are processed by removing any escape
sequences, by saving any changes in state so that Spaceball can be initialized
to the current state when necessary, and by decoding data and routing it to the
appropriate output. If data messages are enabled (see mode command),
Spaceball is polled for the next data message.

¢ Commands to Spaceball are of the form:

"Upper Case Letter"<data><CR>
¢ Queries of Spaceball are of the form:

"Lower Case Letter"<CR>

(no data, return the corresponding Upper Case Message in response)
* Messages from Spaceball are of the form:

"Upper Case Letter"<data><CR>

Most commands and messages always contain data in a printable format.
‘When the data is in this format, the top two bits are ignored, and the lower six
bits form an unsigned binary value, called a printable ASCII character.

Only the binary communication mode is supported by Spaceball func-
tions. Error messages will be issued if attempts are made to change to another
mode.

Spaceball User's Manual [2.0]

ES/PSX Implementation

For most commands and all queries, the wait-for-response flag is set and
then reset only when the corresponding response message is returned. Cases
are explicitly mentioned below where the command does not set a wait-for-
response flag, or where the message always resets the wait-for-response flag.

For most messages, the processing involves saving the data so that it can
be used later to initialize Spaceball to the current state if Spaceball is reset.
The message is then copied and sent from output <9>. If the message contains
data in an internal Spaceball format, it is also decoded and sent from output
<10>. The message code type is sent in a Qpacket from output <10>, fol-
lowed by the decoded vector or matrix.

Data messages are handled differently. They are decoded and the data
sent from the output corresponding to the type and format of the data re-
ceived. If a Boolean true is sent to input <1> of Spaceball, data messages will
also be sent to outputs <9> and <10>.

Following is a summary of the command and message codes.

Spaceball User's Manual [2.0] 3-13

ES/PSX Implementation

Space, Tab (null command/message)
Description
These codes indicate a null command or message.

Command Processing

The sbin function always clears the wait-for-response flag, and sends the data
to Spaceball. A space is a good way to initialize the sbin function and wake
Spaceball up after it has been powered on. Spaceball counts receipt of these
messages and resets the count upon receiving h?.

Message Processing

The sbin function always clears the wait-for-response flag and copies the
message to output <8>. The messages are received in response to an echo

command.

3-14 Spaceball User's Manual [2.0]

ES/PSX Implementation

% (echo)
Description
This code indicates a return of the data from Spaceball.

Command Processing

The sbin function sends the command to Spaceball, and Spaceball returns the
data with a message starting with * * (space).

Spaceball User's Manual [2.0] 3-15

ES/PSX Implementation

? (Invalid packet)
Description
This code indicates an invalid packet.

Command Processing

The sbin function sends the illegal command message to output <8>. Space-
ball counts the receipt of these messages and resets the count upon receiving
h?.

Message Processing
The sbin function always clears the wait-for-response flag and copies the
message to output <8>.

3-16 Spaceball User's Manual [2.0]

ES/PSX Implementation

@RESET (reset)
Description

This code resets Spaceball to the initial power on state.
Command Processing

The sbin function sends the space command to wake up Spaceball, and then
sends the reset command. Spaceball resets itself to the initial values, and then
sends the following messages:

@1l Spaceball alive and well after a software reset.
@2 Firmware version x.yy created on dd-Mon-19yy.

Message Processing

The @1 message is ignored. The @2 message causes the sbin function to send
any messages it has saved in a private queue, setting Spaceball to the state pri-
or to reset. It also will resend any commands for which a message response
has not been received.

Notes

The sbin function attempts to update Spaceball to the last known state when-
ever Spaceball is reset. For this reason, it is best to initialize Spaceball with
the desired values instead of sending the reset command.

Spaceball User's Manual [2.0] 3-17

ES/PSX Implementation

A (absolute rotation matrix)
Description
This code indicates an absolute rotation matrix.
Query Processing
Spaceball returns the current value of the absolute rotation matrix.
Command Processing

The sbin function sends the command, and Spaceball updates the internal ab-
solute rotation matrix and returns the current value of the absolute rotation
matrix.

Message Processing

The sbin function saves the message in a private queue for reset and copies
the message to output <9>. A Qpacket with code 'A’ and the decoded matrix
is sent from output <10>. It also sends the decoded matrix from output <7>
as if it were an absolute data matrix.

Data Format
<Compact Rotation Matrix>
(Initialized to “$000000000000™)
Notes

absolute rotation matrix commands can be created by sending an A’ to
input <1> of the sbencode function, and a 3x3 matrix to input <2> of the
sbencode function.

3-18 ' Spaceball User's Manual [2.0]

ES/PSX Implementation

B (beeper)

Description
This code indicates a string of bytes, with each byte indicating the sound on/
off and duration.

Query Processing
Spaceball returns the remaining sound string.

Command Processing
The sbin function always clears wait-for-response flag, and then sends the
command. Spaceball starts the internal beeper using the data to determine the
length of the on/off sound.

Message Processing
The sbin function copies the message to output <9>.

Data Format

The data format contains multiple bytes, each with the following bit format:

xx <on/off> <5-bit duration in 1/32 sec>
where <on/off> is defined as

l1=o0on
0 = off

Spaceball User's Manual [2.0] 3-19

ES/PSX Implementation

D (data)

Description
If queried, the data is sent after the minimum pulse increment. If not queried,
the data is sent after the maximum pulse increment. Data is sent only if
changed and if translation and/or rotation modes are enabled. The length of
the pulse increment is specified by the pulse command. The presence of the
data and the format of the rotation data is specified by the mode command.

Query Processing

The sbin function always clears wait-for-response flag, and then sends the
query. Data queries can be reset by any other message. For this reason, if a
message of any other type is received, a data query is resent. Spaceball sends
the message when the minimum pulse increment has expired.

Command Processing

Invalid command.

Message Processing

The sbin function processes the message only if the wait-for-response flag is
reset. This implies that if any command has been issued which might change
the characteristics of the data message, the data messages will be ignored until
the response to the command has been received.

Data messages are polled by sending a 'd’ query whenever data messages
are enabled and any message is received from Spaceball. The query causes a
data message to be returned as soon as manipulation of Spaceball causes the
data to become available.

Spaceball User's Manual [2.0]

ES/PSX Implementation

Data Format

ode command (examples)
slation freedom (S-spatial freedom, N-no freedom)
ﬁgtation freedom

rotaﬁon data type

“MSSX”: see mode command
<period> <delta tran vector> <rot data>

“MSN™

<period> <delta tran vector>

“MNSV™:

<period> <rot vector>

“MNSD”:

<delta rot matrix>

“MNSA™:

<absolute rot matrix (premultiplied)>
“MNSa”:

<absolute rot matrix (postmultiplied)>
where:

<period> is a 16-bit unsigned scale factor in microseconds/62.5 for a maxi-
mum of 4.096 s. This value is present with translation and rotation vectors.

<tran vector> is three 16-bit signed values to be scaled by the period. It is
sent if translation is enabled. For message processing, a three-dimensional
vector message is sent to output <4>.

<rot vector> is three 16-bit signed values to be scaled by the period. The
values are the angles about the x, y, z axes. For message processing, a three-
dimensional vector message sent to output <5>.

<delta rot matrix> is a compact rotation matrix.

<absolute rot matrix> is a compact rotation matrix. For message process-
ing, a 3x3 delta matrix sent to output <7>. The data is saved in a private queue
for reset.

Spaceball User's Manual [2.0] 3-21

ES/PSX Implementation

E (error) (

Description
This code indicates that an internal error has occurred.

Command Processing
Invalid command.

Message Processing
The sbin function clears the wait-for-response flag, and then copies the mes-
sage to output <8>.

Data Format
<error code> [<error code> ...]
where:

<error code> is one or more ASCII characters. Use the help command to get
more information.

3-22 Spaceball User's Manual [2.0]

ES/PSX Implementation

F (feel)
Description
This code is a response multiplier to allow nonlinear output in response to in-
creasing force or torque on Spaceball.

Query Processing
Spaceball returns both translation and rotation feel messages.

Command Processing

The sbin function sends command. Spaceball updates the feel values and re-
turns both translation and rotation feel messages.

Message Processing

The sbin function saves the message in a private queue for reset, and then
copies the message to output <9>.

Data Format

<feel type- T-tran, R-rot><feel>
where:

<feel type> is a printable ASCII character. Values $00 through $3F cause a
linear through cubic response.

(Initialized by Spaceball to “T?”") ($3F), and “RL”) ($4C))
(Initialized by function to “T?”) ($3F), and “RL") ($4C))
Notes

feel commands can be created by sending an 'F’ and 'T" or 'R’, for translation
and rotation, to input <1> of the sbencode function, and an integer or real
value to input <2> of the sbencode function.

Spaceball User's Manual [2.0] 3-23

ES/PSX Implementation

H (help)

Description
This code returns a list of all the commands and the length and type of the as-
sociated data. It may also be used to return the text of a message describing
an error.

Query Processing
The sbin function always clears the wait-for-response flag, and then sends a
query. Spaceball returns the requested help messages.

Command Processing

Invalid command.

Message Processing
The sbin function clears the wait-for-response flag, and then copies the mes-
sage to output <9>.

Data Format

<error code> | "v" | "?" | nothing
where:

<error code> is an ASCII character sent with the “E” message.
"v"indicates that Spaceball responds with firmware version and date.

"?" indicates that Spaceball responds with number of invalid packets re-
ceived since the last "h?" query and resets the count of invalid packets.

"nothing" indicates that Spaceball responds with a list of all valid commands
and formats.

3-24 : Spaceball User's Manual [2.0]

ES/PSX Implementation

K (keypad)

Description
This code indicates that two bytes containing bits will indicate the pressed
and released state of each button.

Query Processing

Spaceball returns the current button status.
Command Processing

Invalid command.

Message Processing

The sbin function clears the wait-for-response flag, and then saves the mes-
sage in a private queue to determine when the button status changes. If a but-
ton is pressed, an integer corresponding to the button is sent to output <2>. If
a button is released, an integer is sent to output <3>.
Data Format (bits)
010<pick><b8><b7><b6><b5>0100<b4><b3><b2><bl>

Spaceball User's Manual [2.0] 3-25

ES/PSX Implementation

M (mode)

Description
This code specifies the form and type of data sent in the “D” data message.
When a program terminates, the transmission of data should be disabled by
changing the data mode. When a program starts, it will usually set the data
mode and send an identity absolute matrix if using absolute rotation data. The
null radius, feel, spin rate, and relative translation sensitivities can also be set
if these values differ from the defaulits.

Query Processing
Spaceball returns the current status with the associated message.

Command Processing

The sbin function sends the command. Spaceball updates the internal values
and returns the associated message.

Message Processing

The sbin function saves the message in a private queue for reset and for a test
to determine if data messages are enabled. The message is also copied to out-
put <9>.

Data Format

<tran mode> [<rot mode> [<rot form> [<handedness>
[<pre/post processing (2)>] 1 1]

where:
<tran mode> and <rot mode> are defined below.
N - no freedom
L - linear freedom
P - planar freedom
S - spatial freedom
X - do not change
<rot forms> is defined below.
V - vector
D - delta matrix
A - absolute matrix
X - do not change

3-26 : Spaceball User's Manual [2.0]

ES/PSX Implementation

Notes

<handednesss> is defined below.
L - left-handed coordinate system
R - right-handed coordinate system
X - do not change
<pre/post processing> is defined below.
A - post-multiplication
B - pre-multiplication
(Initialized by @RESET command to “MNNVLA”)
(Initialized by the function to “MNNALB”)

When an application program terminates, it should disable both translation
and rotation data so that Spaceball is not left sending data.

Spaceball User's Manual [2.0] 3-27

ES/PSX Implementation

N (null radius) (
Description

This code indicates the value in internal Spaceball units of the radius within
which no changes in Spaceball are to be reported.

Query Processing
Spaceball returns the current status with the associated message.

Command Processing

The sbin function sends the command, and Spaceball updates the internal
values and returns the associated message.

Message Processing
The sbin function saves the message in a private queue for reset.

Data Format
<null radius>
where:
<null radius> is a printable ASCII character.
(Initialized to - * ” (“$60™)) (|
Notes

The null radius can be used to make Spaceball respond to less force. How-
ever, decreasing the null radius makes it more likely that Spaceball will send
data when it is not being manipulated.

null radius commands can be created by sending an 'N’ to input <1> of
the sbencode function and an integer or real value to input <2> of the sben-
code function.

3-28 ' Spaceball User's Manual [2.0]

ES/PSX Implementation

O (orientation)
Description
This code changes the viewing position of Spaceball.
Query Processing
Spaceball returns the current status with the associated message.

Command Processing

The sbin function sends the command, and Spaceball updates the internal
values and returns the associated message.

Message Processing

The sbin function saves the message in a private queue for reset and copies
the message to output <9>. A Qpacket with code 'O’ and the decoded matrix
is sent to output <10>.

Data Format

<Compact Rotation Matrix>

(Initialized to “$000000000000”)
Notes

orlentation commands can be created by sending an 'O’ to input <1> of the
sbencode function and a 3x3 matrix to input <2> of the sbencode function.

Spaceball User's Manual [2.0] 3-29

ES/PSX Implementation

P (pulse)

Description
This code sets the minimum length of time to wait before sending a data mes-
sage after Spaceball is polled, or the maximum length of time to wait before
sending a message if Spaceball is not polled.

Query Processing
Spaceball returns the current status with the associated message.

Command Processing
The sbin function sends the command, and Spaceball updates the internal
values and returns the associated message.

Message Processing
The sbin function saves the message in a private queue for reset.

Data Format

<max period> [<min period>]
where:

<max period> and <min perlod> are two printable ASCII characters, the
lowest 6 bits of each combining to form a 12-bit unsigned integer period in
milliseconds, for a max of 4.095 seconds.

(Initialized by Spaceball to “PW\N@h” (“$575C4068”) Max- 1500, Min- 40)
(Initialized by Function to “P??@A” (“$3F3F4041”) Max- 4095, Min- 1)
Notes

The sbin function initializes the minimum value to be as small as possible, so
that Spaceball will return data as fast as possible when it is polled. Since Spa-
ceball is always polled by the sbin function, the maximum value is not really
used. However, to prevent extraneous data messages in the case where func-
tion networks are running slower than the maximum pulse increment, the
maximum increment is initialized to the highest value available.

This value is initialized by the sbin function and should not be updated
by the user.

3-30 Spaceball User's Manual [2.0]

ES/PSX Implementation

R (rotation mode)

Description

This code controls the local/parent (object/world) mode of the ball system,
the freedom vector system, and the output system.

Query Processing

Spaceball returns the current status with the associated message.

Command Processing

The sbin function sends the command, and Spaceball updates the internal
values, and returns the associated message.

Message Processing

Data Format

Notes

The sbin function saves the message in a private queue for reset and copies
the message to output <9>. A Qpacket with code 'R’ and the decoded vector
is sent to output <10>.

<ball sys> <freedom vector sys> <output sys>
[<rot freedom vector>]
where:

<ball sys>, <freedom vector sys>, and <output sys> are defined below.
L - local
P - parent
X - do not change

<rot freedom vector> is three 16-bit signed integers which form a vector
with a length of 2**14,

(Initialized to “PPP"*$400000000000")

rotation freedom vector commands can be created by sending an 'R’ and the
ball, freedom vector, and output system values to input <1> of the sbencode
function, and a three-dimensional vector to input <2> of the sbencode
function. The sbencode function converts the vector into a proportional unit
vector.

Spaceball User's Manual [2.0] 3-31

ES/PSX Implementation

S (spin rate)

Description
This code indicates the exponent and mantissa of the rotation matrix sensitiv-
ity multiplier.

Query Processing
Spaceball returns the current status with the associated message.

Command Processing

The sbin function sends the command, and Spaceball updates the internal
values and returns the associated message.

Message Processing

The sbin function saves the message in a private queue for reset and copies
the message to output <9>,

Data Format

<spin rate mantissa> <spin rate exponent>
where:

«spin rate exponent> and <spin rate mantissas are printable ASCII char-
acters.

(Initialized to “pK™“$704B")
Notes

spin rate commands can be created by sending an 'S’ to input <1> of the
sbencode function and a two-dimensional vector to input <2> of the
sbencode function. The values of the two-dimensional vector are
(mantissa,exponent). The sbencode function converts each of the
components of the vector into a single printable ASCII character.

The mantissa values are converted by Spaceball tobe (n MOD 32) +
32). For example,

If a’1” is sent, (1 MOD 32) + 32 =33
If a ’33’ is sent, (33 MOD 32) + 32 =33
The exponent values are converted by Spaceball tobe (n MOD 16) . For
example,

Ifa’l’issent, (1 MOD 16) = 1
Ifa’17’ is sent, (17 MOD 16) = 1
Ifa’33’ is sent, (33 MOD 16) =1
spin rate applies to delta and absolute matrix forms of rotation data, and
does not apply to translation or rotation vector data.

3-32 ‘ Spaceball User's Manual [2.0]

ES/PSX Implementation

T (translation mode)

Description

This code controls the local/parent (object/world) mode of the ball system,
the freedom vector system, and the output system.

Query Processing

Spaceball returns the current status with the associated message.

Command Processing

The sbin function sends the command, and Spaceball updates the internal
values and returns the associated message.

Message Processing

Data Format

Notes

The sbin function saves the message in a private queue for reset and copies
the message to output <9>. A Qpacket with code 'T’ and the decoded vector
is sent to output <10>.

<ball sys> <freedom vector sys> <output sys>
[<tran freedom vector>]
where:

<ball sys>, <freedom vector sys>, and <output sys> are defined below.
L - local
P - parent
X - do not change

<tran freedom vector> is three 16-bit signed integers which form a vector
with a length of 2**14,

(Initialized to “PPP"*‘$400000000000")

translation freedom vector commands can be created by sending a "T” and
the ball, freedom vector, and output system values to input <1> of the
sbencode function, and a three-dimensional vector to input <2> of the
sbencode function. The sbencode function converts the vector into a
proportional unit vector.

Spaceball User's Manual [2.0] 3-33

ES/PSX Implementation

X (XYZ relative translation sensitivities) (|
Description

This code sets the relative translation sensitivity of the x,y,z axes.
Query Processing

Spaceball returns the current status with the associated message.

Command Processing
The sbin function sends the command, and Spaceball updates the internal
values and returns the associated message. '
Message Processing

The sbin function saves the message in a private queue for reset and copies
the message to output <9>. A Qpacket with code "X’ and the decoded vector
is sent to output <10>.

Data Format
<X-sensitivity><Y-sensitivity><Z-sensitivity>
where:

<X-sensitivity>, <Y-sensitivity>, and <Z-sensitivity> are 16-bit integers (
which form a vector with a length of 2**14,

(Initialized to “$400020002000")
Notes

relative translation sensitivities commands can be created by sending an
"X’ to input <1> of the sbencode function, and a three-dimensional vector to
input <2> of the sbencode function. The sbencode function converts the
three-dimensional vector into a proportional unit vector.

3-34 : Spaceball User's Manual [2.0]

ES/PSX Implementation

Z (zero)

Description
This code causes the current state of Spaceball to be considered the initial
(zero) state.

Query Processing
Spaceball returns the current status with the associated message.
Command Processing

The sbin function always clears wait-for-response flag, and then sends the
command. Spaceball updates the internal values and returns the associated
message.

Message Processing
The sbin function copies the message to output <9>.
Data Format

Undefined. Spaceball can be queried for the current zero setting and the set-
ting can be sent as a command later to reset it to the previous value.

Notes

An application should zero Spaceball only when no objects are being dis-
played to reduce the likelihood of manipulating Spaceball when zeroing oc-
curs. The sending of data should be controlled by using the mode command,
and the zero function assigned to a keypad button.

Spaceball User's Manual [2.0] 3-35

ES/PSX Example Program

A. ES/PSX Example Program

Installation Instructions

1y

2)
3)

4)

5)

6)

7

Include the following path in the PSX_PATH environment variable:
{usr/lib/psx/demo.

Run ES/PSX.

Put the keyboard into command mode by pressing the left mouse button
when the cursor is in the “keyboard mode” portion of the psx menu.

At the @@ prompt, load the example program by entering the following:

send ’‘gencar.dat’ to <l1l>readascii;
send ’sbdemo.dat’ to <1>readascii;

After the example program has been loaded, information boxes, notes,
and a wire-frame car model will be displayed on the monitor.

Spaceball can now be used to control rotations, translations, color hue
and saturation, zeroing Spaceball, and resetting the monitor.

To end the example program, enter the following at the @@ prompt:

init;

Note: Spaceball can be left in a state where it is

Files

continuously sending data. Disable it by
disconnecting the RS-232-C cable or the
power cable.

The following two files are included as the example program:

gencar.dat

This binary file contains the vector list and display structure for the
wire-frame car model.

sbdemo.dat
This ASCII file contains the demonstration network.

Spaceball User's Manual [2.0] A-1

ES/PSX Example Program

Function Network

The demonstration network uses outputs <2>, <3>, <4>, and <7> of the sbin
function to control both the motion and color aspect of the orthographic, wire-
frame model.

Output <2> of the sbin function is connected to the tran_route, buttons
and color_reset functions. The output is an integer corresponding to the
Spaceball button pressed (1 through 8, and 9 for the pick button). The integer
selects the output through which to route the tran_route and buttons
function input. The integer also triggers the color_reset function to set all
menu selections to green.

Output <3> of the sbin function is connected to the button_rel function.
The output is an integer corresponding to the Spaceball button pressed (1
through 8, and 9 for the pick button). When the Spaceball button is released,
the corresponding menu selection is set to green.

Output <4> of the sbin function (delta translation vectors) is routed
through the tran_route function. If button 1, 2, 4, 5, 6, 8, or 9 is pressed, the
delta translation vectors are sent through the tranmult function and then to
the tran_acc and zcoord functions.

The zcoord function removes all but the z-axis translations and inputs
them to the negit, scalelt, and scalemat functions. These functions are used
to enhance the z-translation by scaling the model. The object appears smaller
as it recedes in the z-direction.

Output <3> of the tran_route function is used when button 3 is pressed
for the color mode. Delta translation vectors are split into their x and z
components through the color_parts function and then input to the hue_acc
and sat_acc functions. The numeric output of these functions controls the
hue and saturation of the model through the Picture.Col node. These functions
also set the minimum and maximum values for hue and saturation. The output
of the hue_acc and sat_acc functions is also input into the color_vec
function. The color_vec function output controls the dot in the color box
display at the top of the screen through the Color_Box.B.Trn node of the
display structure.

Output <7> of the tran_route function is used to control the intensity of
the model in a manner similar to the color mode. Only z-translations are used
from the Inten_parts function are input to the Inten_acc function. The
output of the Inten_acc function is input to the inten_vec function which
creates 2D vectors with a constant X of zero. These vectors are then input to
the Display Intensity Box node of the display structure (Color_Box.I.Trn) and
the Model node of the display structure (Picture.Int).

Spaceball User's Manual [2.0]

ES/PSX Example Program

The buttons function is used as a trigger for the following twelve
functions:

1-sbtrnon turn translations on
2-sbroton turn rotations on
3 - docolor g0 to color mode to control hue and saturation
4 - sbsix turn translations and rotations on, 6-axis mode
5-sbtrnoff turn translations off
6 - sbrotoff turn rotations off
7 - doint go to intensity mode to control intensity
8 - sbrezero rezero Spaceball _
9- hometrn reset the display to home position, activate sbsix
homerota
homerotb
homescl

When they are triggered, the first eight functions send an ASCII string
command to the sbout function to execute the desired operation. Button 9,
the pick button, causes home translation vectors to be sent to Picture and a
home identity absolute rotation matrix to be sent to Spaceball through the
sbencode function. The homesync function is used to coordinate the arrival
of the two required inputs to the sbencode function.

The button_rel function connects to the nine functions, chg_colora
through chg_colorl. The color_reset function is also connected to these nine
functions. When a button is pressed, a Boolean true is sent to all chg_color
functions, causing 120 (red) to be sent to all menu choice color nodes through
output <2> of the sbin function, color_reset, and chg_colora through
chg_colori. When a button is released, a Boolean false is sent from the
button_rel function to only one of the chg_color functions, causing 240
(green) to be sent to the appropriate menu selection color node.

Spaceball User's Manual [2.0] A-3

ES/PSX Example Program

sbdemo.dat Program Listing

{ sbdemo.dat : SPACEBALL DEMO NETWORK

{

{ Version 1.3

{

{ Copyright (c)

{

{ Create all of the functions required for the network

TRAN_ACC
ZCOORD
NEGIT
SCALEIT
SCALEMAT
TRANMULT
DOCOLOR
TRAN_ROUTE
COLOR_PARTS
HUE_ACC
SAT_ACC
COLOR_VEC
DOINT
INTEN_PARTS
INTEN_ACC
INTEN_VEC
BUTTON
SBTRNON
SBROTON
SBSIX
SBTRNOFF
SBROTOFF
SBREZERO
HOMETRN
HOMESCL
HOMEROTA
HOMEROTB
HOMESYNC
SCLTRIG
BUTTON_REL

COLOR_RESET :

CHG_COLORA
CHG_COLORB
CHG_COLORC
CHG_COLORD
CHG_COLORE

ox=

= f:routec(9)

February 1, 1991

Evans & Sutherland

f:accumulate;
f:parts;
f:csub;
f:accumulate;

= f:scale;

f:mulc;
f:constant;
f:croute(9);
f:parts;
f:accumulate;
f:accumulate;
f:vec:
f:constant;
f:parts;
f:accumulate;
f:cvec;
f:routec(9);
f:constant;
f:constant;
f:constant;
f:constant;
f:constant;
f:constant;
f:constant;
f:constant;
f:constant;
f:constant;
f:sync(2);
f:constant;

o

f:constant;

f:boolean_choose;
f:boolean_choose;
f:boolean_choose;
f:boolean_choose;
f:boolean_choose;

Spaceball User's Manual [2.0]

e e et o e

ES/PSX Example Program

CHG_COLORF := f:boolean_choose;

CHG_COLORG := f:boolean_choose;

CHG_COLORH := f:boolean_choose;

CHG_COLORI := f:boolean_choose;

{ Disconnect outputs so that any unused outputs do not
{ generate a warning message

disconnect TRAN ROUTE:all;

disconnect ZCOORD:all;

disconnect INTEN_PARTS:all;

disconnect COLOR_PARTS:all;

{

{ Create the display node for the wire frame model (gencar)
PICTURE := begin_structure

TRN := translate 0,0,0;

ROT := rotate x 0;

SCL := scale 1;

INT := set intensity on .01:.5;

COL := set color 180,1;

instance gencar;

end_structure; { end PICTURE }

{

{ Create the display node for the demo menu
COLOR_BOX := begin_structure

begin_ structure

set color 120,0.85;

character scale 0.05;

label -.86,.92 ’'SPACEBALL ORTHOGRAPHIC DEMONSTRATION' ;
end_structure;

B := begin_structure

set color 120,0.85;

viewport horizontal = =.9:-.6 vertical = .75:.89 ;
translate -1,-1;

scale .0055555555,1.999,1.999;

TRN := vector dots n=1 180,1.0;

set intensity on .2:.2;

vector item n=5 p 0,0 1 360,0 1 360,1 10,1 10
end_structure; { end COLOR BOX.B }

LABELA := begin_structure

COLORA := set color 120,1;

character scale 0.02;

label -.22,.85 ’Turn tran on’;

end_structure; { end COLOR_BOX.LABELA }

LABELB := begin_structure

Spaceball User's Manual [2.0]

/07

ES/PSX Example Program

COLORB := set color 120,1; ‘i-
character scale 0.02;

label .08,.85 'Turn rot on’;
end_structure; { end COLOR_BOX.LABELB }
LABELC := begin_structure

COLORC := set color 120,1;

character scale 0.02;

label -.78,.70 ’Hue’;

label -.96,.85 ’s’;

label -.96,.82 'a’;

label -.96,.79 ‘t’;

label .38,.85 'Color mode’;
end_structure; { end COLOR_BOX.LABELC }
LABELD := begin_structure

COLORD := set color 120,1;

character scale 0.02;

label .68,.85 ’6-axis mode’;
end_structure; { end COLOR_BOX.LABELD }
LABELE := begin_structure

COLORE := set color 120,1;

character scale 0.02; (

label -.22,.8 ’Turn tran off’;
end_structure; { end COLOR_BOX.LABELE }
LABELF := begin_structure

COLORF := set color 120,1;

character scale 0.02;

label .08, .8 ’Turn rot off’;
end_structure; { end COLOR BOX.LABELF }
LABELG := begin structure

COLORG := set color 120,1;

character scale 0.02;

label -.47,.7 ’Intensity’;

label .38,.8 ‘Intensity mode’;
end_structure; { end COLOR_BOX.LABELG }
LABELH := begin_structure

COLORH := set color 120,1;

character scale 0.02;

label .68,.8 ‘Rezero SPACEBALL';
end_structure; { end COLOR_BOX.LABELH }
LABELI := begin_structure

COLORI := set color 120,1;

character scale 0.02;

label -.1,.75 ‘Pick Button : Reset display, go to 6—axis mode’; (
end_structure; { end COLOR_BOX.LABELI }

A-6 ‘ Spaceball User's Manual [2.0]

ES/PSX Example Program

NUM_LABELS := begin_structure

set color 120,0.85;
character scale 0.02;
label -.905,.71 '0’;
label -.62,.71 "360';
label -.93,.75 '0’;
label -.93,.88 1’;

end_structure; { end COLOR BOX.NUMLABELS }

I := begin_structure
set color 120,0.85;

viewport horizontal = -.4:-.38 vertical = .75:.89;

translate 0,-1,0;

scale 0.999,1.999,0.999;
begin_structure

set intensity on .2:.2;
vector item n=5 p -1,0
end_structure;

TRN := translate 0,.5;
vector item n=2 p-1,0

11,1 1-1,1 1-1,0;

end_structure; { end COLOR_BOX.I }

end_structure; { end COLOR BOX }

{ }
{ Build the network connections and set all initial and }

{ constant values

{ Connections to the network from SPACEBALL }

connect SBIN<2>:<1>BUTTON;

connect SBIN<2>:<1>COLOR_RESET;
connect SBIN<3>:<1>BUTTON_REL;
connect SBIN<2>:<1>TRAN_ROUTE;
connect SBIN<4>:<2>TRAN ROUTE;

{ Absolute rotation matrices go directly to the model }

{ rotate node

connect SBIN<7>:<1>PICTURE.ROT;

{ Set up the constants necessary to change the color }
{ of the active menu choice from red to green }

send false to <2>BUTTON_REL;
send true to <2>COLOR_RESET;

send 120 to <2>CHG_COLORA;
send 240 to <3>CHG_COLORA;
send 120 to <2>CHG_COLORB;
send 240 to <3>CHG_COLORB:
send 120 to <2>CHG_COLORC;
send 240 to <3>CHG_COLORC;
send 120 to <2>CHG_COLORD;

Spaceball User's Manual [2.0]

ES/PSX Example Program

send 240 to <3>CHG_COLORD;
send 120 to <2>CHG_COLORE;
send 240 to <3>CHG_COLORE;
send 120 to <2>CHG_COLORF;
send 240 to <3>CHG_COLORF;
send 120 to <2>CHG_COLORG;
send 240 to <3>CHG_COLORG;
send 120 to <2>CHG_COLORH;
send 240 to <3>CHG_COLORH;
send 120 to <2>CHG_COLORI;
send 240 to <3>CHG_COLORI;

{ Connections to reset all menu choices to red when any button }

{ is pressed

connect COLOR_RESET<1>:<1>CHG_COLORA;
connect COLOR_RESET<1>:<1>CHG_COLORB;
connect COLOR_RESET<1>:<1>CHG_COLORC:
connect COLOR_RESET<1>:<1>CHG_COLORD;
connect COLOR RESET<1>:<1>CHG_COLORE;
connect COLOR_RESET<1>:<1>CHG_COLORF;
connect COLOR_RESET<1>:<1>CHG_COLORG;
connect COLOR_RESET<1>:<1>CHG_COLORH;
connect COLOR_RESET<1>:<1>CHG_COLORI;

{ Connections to set the menu choice selected to green when }

{ the button is released

connect BUTTON_REL<1>:<1>CHG_COLORA;

connect BUTTON_REL<2>:<1>CHG_COLORB;

connect BUTTON_REL<3>:<1>CHG_COLORC;

connect BUTTON_REL<4>:<1>CHG_COLORD;

connect BUTTON_REL<5>:<1>CHG_COLORE;

connect BUTTON_REL<6>:<1>CHG_COLORF;

connect BUTTON_REL<7>:<1>CHG_COLORG;

connect BUTTON_REL<8>:<1>CHG_COLORH;

connect BUTTON_REL<9>:<1>CHG_COLORI;

CONNECT CHG_COLORA<1>:<1>COLOR_BOX.LABELA.COLORA;
CONNECT CHG_COLORB<1>:<1>COLOR_BOX.LABELB.COLORB;
CONNECT CHG_COLORC<1>:<1>COLOR_BOX.LABELC.COLORC;
CONNECT CHG_COLORD<1>:<1>COLOR_BOX.LABELD.COLORD;
CONNECT CHG_COLORE<1>:<1>COLOR_BOX.LABELE.COLORE;
CONNECT CHG_COLORF<1>:<1>COLOR_BOX.LABELF .COLORF;
CONNECT CHG_COLORG<1>:<1>COLOR_BOX.LABELG.COLORG;
CONNECT CHG_COLORH<1>:<1>COLOR_BOX.LABELH.COLORH;
CONNECT CHG_COLORI<1>:<1>COLOR_BOX.LABELI.COLORI;

{ Route the delta translation vectors according to which

{ button is pressed

Spaceball User's Manual [2.0]

(

ES/PSX Example Program

connect TRAN ROUTE<1>:<1>TRANMULT;

connect TRAN_ROUTE<2>:<1>TRANMULT;

connect TRAN_ROUTE<3>:<1>COLOR_PARTS;

connect TRAN_ROUTE<4>:<1>TRANMULT;

connect TRAN_ ROUTE<5>:<1>TRANMULT;

connect TRAN_ROUTE<6>:<1>TRANMULT;

connect TRAN_ROUTE<7>:<1>INTEN_PARTS;

connect TRAN ROUTE<8>:<1>TRANMULT:

connect TRAN_ ROUTE<9>:<1>TRANMULT;

{ Connections to add a constant multiplier to translation |}
{ vectors and to send translation vectors to an accumulator }
{ for X, Y and to a parts function for Z so as to apply }
{ scaling to the Z translation }
connect TRANMULT<1>:<1>TRAN_ ACC;

connect TRANMULT<1>:<1>ZCOORD;

send 20 to <2>TRANMULT;

{ For initializing and controlling the menu and model }
connect TRAN_ACC<1>:<1>PICTURE.TRN;

send v(0,0,0) to <2>TRAN_ACC;

send 1 to <4>TRAN_ACC;

send v(1,1,0) to <5>TRAN_ACC;

send v(-1,-1,0) to <6>TRAN_ACC;

{ Connect and initialize Z translation and scale }
connect ZCOORD<3>:<2>NEGIT;

connect NEGIT<1>:<1>SCALEIT;

send 0 to <1>NEGIT;

connect SCALEIT<1>:<4>SCALEIT;

connect SCALEIT<1>:<1>SCALEMAT;

send 1 to <2>SCALEIT;

send 5 to <5>SCALEIT;

send 0.001 to <6>SCALEIT;

connect SCALEMAT<1>:<1>PICTURE.SCL;

{ Connect and initialize BUTTON to perform the various }
{ SPACEBALL control functions }
send true to <2>BUTTON;

connect BUTTON<1>:<1>SBTRNON;

connect SBTRNON<1>:<1>SBOUT;

send ‘MSX’ to <2>SBTRNON;

connect BUTTON<2>:<1>SBROTON;

connect SBROTON<1>:<1>SBOUT;

send 'MXS’ to <2>SBROTON;

connect BUTTON<3>:<1>DOCOLOR;

connect DOCOLOR<1>:<1>SBOUT;

send 'MSN’ to <2>DOCOLOR;

Spaceball User's Manual [2.0] A-9

ES/PSX Example Program

connect BUTTON<4>:<1>SBSIX;

connect SBSIX<1>:<1>SBOUT;

send ‘MSS’ to <2>SBSIX;

connect BUTTON<5>:<1>SBTRNOFF;
connect SBTRNOFF<1>:<1>SBOUT;

send 'MNX’ to <2>SBTRNOFF;

connect BUTTON<6>:<1>SBROTOFF;
connect SBROTOFF<1>:<1>SBOUT;

send ‘MXN’ to <2>SBROTOFF;

connect BUTTON<7>:<1>DOINT;

connect DOINT<1>:<1>SBOUT;

send ‘MSN’ to <2>DOINT;

connect BUTTON<8>:<1>SBREZERO;"
connect SBREZERO<1>:<1>SBOUT;

send 'Z’ to <2>SBREZERO;

connect BUTTON<9>:<1>HOMETRN;
connect BUTTON<9>:<1>HOMESCL;
connect BUTTON<9>:<1>HOMEROTA;
connect BUTTON<9>:<1>HOMEROTB;
connect BUTTON<9>:<1>SBSIX;

{ Connections for controlling hue, saturation and intensity of}
{ model and also to control the menu display }
connect COLOR_PARTS<1>:<1>HUE_ACC;
connect COLOR_PARTS<3>:<1>SAT_ACC;
connect HUE_ACC<1>:<1>COLOR_VEC;
connect HUE_ACC<1>:<1>PICTURE.COL;
connect SAT_ACC<1>:<2>COLOR_VEC;
connect SAT ACC<1>:<2>PICTURE.COL;
connect COLOR_VEC<1>:<1>COLOR_BOX.B.TRN;
send 200 to <4>HUE_ACC:

send 359 to <5>HUE_ACC;

send 1 to <6>HUE_ACC;

send 10 to <4>SAT_ACC;

send 1 to <5>SAT_ACC;

send 0 to <6>SAT_ACC;

send 180 to <2>HUE_ACC;

send 1 to <2>SAT_ACC;

connect INTEN_PARTS<3>:<1>INTEN_ACC;
connect INTEN_ACC<1>:<2>INTEN_VEC;
connect INTEN_VEC<1>:<1>COLOR_BOX.I.TRN;
connect INTEN_VEC<1>:<2>PICTURE.INT;
send 0.5 to <2>INTEN_ACC;

send 10 to <4>INTEN_ACC;

send 1.0 to <5>INTEN_ACC;

A-10 Spaceball User's Manual [2.0]

ES/PSX Example Program

send 0.0 to <6>INTEN_ACC;

send 0.0 to <1>INTEN_VEC;

{ Connections and constant values to reset the model to its }
{ initial screen location }
connect HOMETRN<1>:<1>TRAN_ACC;

connect HOMETRN<1>:<2>TRAN_ACC;

send v(0,0,0) to <2>HOMETRN;

connect HOMESCL<1>:<2>SCALEIT;

connect HOMESCL<1>:<1>SCLTRIG;

send 1 to <2>HOMESCL;

connect SCLTRIG<1>:<1>SCALEIT;

send 0 to <2>SCLTRIG;

connect HOMEROTA<1>:<1>HOMESYNC;

send ‘A’ to <2>HOMEROTA;

connect HOMEROTB<1>:<2>HOMESYNC;

send m3d(1,0,0 0,1,0 0,0,1) to <2>HOMEROTB;

connect HOMESYNC<1>:<1>SBENCODE;

connect HOMESYNC<2>:<2>SBENCODE;

{ decrease the null radius to improve response }

send ‘N?’ to <1>SBOUT;

{ change the spin rate to improve rotational performance }
send ’'SpF’ to <1>SBOUT;

{ make rotations car oriented rather than world oriented }
send 'RLXX’ to <1>SBOUT;

{ Give ES/PSX time to do all of the above before continuing }
give_up_cpu;

give_up_cpu;

give_up_cpu;

give_up_cpu;

give_up_cpu;

init display:

display COLOR_BOX;

display PICTURE;

{ Make sure Spaceball is zeroed and the model is reset to }
{ initial location }
send fix(8) to <1>BUTTON;

send fix(9) to <1>BUTTON;

send fix(8) to <1>BUTTON;

send fix(9) to <1>BUTTON;

Spaceball User's Manual [2.0] A-11

