EVANS & SUTHERLAND COMPUTER CORP.
LINE DRAWING SYSTEM MODEL 1
SYSTEM REFERENCE MANUAL

January 1, 1970

Evans & Sutherland Computer Corporation
Three Research Road
Salt Lake City, Utah 84112

Copyright 1970

Evans & Sutherland Computer Corp.

EVANS & SUTHERLAND

LINE DRAWING SYSTEM MODEL 1

SYSTEM REFERENCE MANUAL

Table of Contents

Foreword

Chapter I The Display System

Chapter 1II Display Processor Register Configuration
Chapter IIL Display Processor Instruction Repertoire
Chapter IV Control Status

Chapter V Programming Examples

Appendex 1 Processing Time

FOREWORD

The design of the Evans & Sutherland Line Drawing System's
display processor was developed in the autumn of 1968 by Charles
L. Seitz, who was then at the Massachusetts Institute of Technology.
The design is based on philosophies and concepts developed from
programmer and user experience on large interactive display systems
over the last several years. This manual describes the total
system, but careful reading makes it fully applicable to reduced
systems,

The associates of Evans & Sutherland express their gratitude
to Dr. Seitz for his elegant design and careful preparation on the
original manual on which the following description is based.

Significant contributions to the design of the LDS-1 display
processor were made by the computer research group of Bolt, Beranek
and Newman, Inc., Cambridge, Massachusetts, on whose computer the
first LDS-1 system was installed in August 1969. The Bolt, Beranek
and Newman group's foresight and tenacious inquiry into the subtle
aspects of the system were a substantial help during critical early
phases of the design., We owe a particular debt of gratitude to
Servero Ornstein of BB&N for his critical reading of the original
manual,

I. THE DISPLAY SYSTEM

CAPABILITIES

The DISPLAY PROCESSOR described here is part of a new, high-
performance display system applicable to a variety of tasks of current
importance in advanced research amd engineering. The complete system
not only provides for high-speed display of lines so that it can present
more complex pictures than usual, but also provides high-speed graphic
arithmetic processing. The available graphic arithmetic units are
separately timed computational elements that are driven from the display
processor. One arithmetic unit, the CLIPPING DIVIDER, enables the
system to choose dynamically the portions of the material for presen-
tation, choose the scale of presentation, and choose the position of
presentation. The second arithmetic unit, the MATRIX MULTIPLIER, enables
the system to translate, rotate, and scale two and three-dimensional ob-
jects dynamically as well as to plot three-dimensional curved surfaces

automatically.

The pictorial information processed by the CLIPPING DIVIDER and
the MATRIX MULTIPLIER may be plotted automatically on a LINE DRAWING
SCOPE, or may be written back into main memory for output onto plotters,
film writers, or remote displays. The display processor also includes
provision for a hardware CHARACTER GENERATOR.

There are several classes of applications for which this display
system provides unique capability. The display system can generate
perspective (including isometric and orthographic) views of three-
dimensional wire frame objects. The system can be used for displaying
perspective views of three-dimensional material such as a landscape
sketch for an airplane simulation, or a perspective view of a three-
dimensional mathematical curve. The display not only computes the
perspective view, but also automatically omits any lines or parts of
lines behind the observer or outside the field of view defined by the
scope. The system can be used for displaying complex two-dimensional
pictures such as circuit diagrams, representations of list structures,
printed circuit layouts, symbolic mathematical expressions, and so on.
The display's capability to expand such pictures, and the inherently
high digital resolution provided, make the system uniquely capable of
presenting complex pictures. The user can define and display pictures
in which the effective drawing area is over an acre, and still 'zoom'
in to examine a ten-inch square area without loss of resolution.

DATA FORMATS

The display is refreshed dynamically from information stored:in the

memory of the associated general purpose computer. The display processor
interfaces to the memory of the parent computer and operates as an autono-
mous processor which can be started and stopped by main processor I/0
control. The coordinate information in memory is purely numerical, and
thus may be manipulated easily by the central processor. The information
in memory describes the picture in terms of:

Q)]

(2)

(3)

end point coordinates for line segments, or coordinates for ‘dots’.
Coordinate information may be either absolute, or relative to a
remembered point called the CURRENT POINT. For drawing lines the
current point is used to define one end of the line segment. Several
formats for displaying tables of coordinate data are provided.

pairs of address pointers in the right and left halves of ‘full’ words,
pointing to coordinate information as in (1). In this format the two
pointers may be used to point to the two end points of a line, and an

end point may be used for as many line segments as desired. If the
coordinate value is changed by the central processor, all the lines
‘attached’ to the coordinate will move. Thus it is possible to represent
the ‘topology’ of the picture separate from its ‘geometry’.

multiple references to separate definitions of substructures. An object
appearing in several places in a picture need be defined only once and
can be ‘called as a subroutine’, even if it appears in different sizes.

All coordinates are described as ‘half word’ two’s complement

numbers, stored in either the right or left half of a full word. This des-
cription will concentrate on 18 bit half words, and 36 bit full words in
order to explicitly describe the various word formats. Two dimensional
information is stored with the X coordinate in the left half and the Y
coordinate in the right half:

0 17 18 35

Three dimensional information is stored in two consecutive full words
with X and Y in the first word and two Z values in the second word.

0 17 18 35

X Y
Zx Zy
Usually Z, and will be the same; making them different provides for

a different perspective divisor in X and Y, a capability which is useful
in the display of curves. Using a, full two words for three dimensional
point information simplifies both the hardware and programming of the
display. Since many control processors have a half word instruction rep-
ertoire, the use of the half word makes it fairly easy to manipulate data
in this format.

Coordinates for this display system are stored as half word numbers,
rather than the customary 10 or 12 bits, for the following reason. Be-
cause the display itself can magnify two dimensional pictures, use of the
full half word provides good resolution even at high magnifications,
e.g. up to 256 for 18 bit half words. In three dimensional perspective views
the high resolution is necessary for viewing objects that are close to the
observer.

THE CLIPPING DIVIDER AND SCOPE

Clipping in two and three dimensions

We call the space in which a DRAWING can bhe defined the PAGE, and
coordinates in it PAGE COORDINATES. The page coordinate system is centered
about zero so that for two dimensions (0,0) is the middle of the page, for an
18 bit 2’s complement space expressed in octal (400000, 400000) is the lower
left corner, and (377777, 377777) is the upper right corner. In two dimensions,
the portion of the drawing which is to appear is selected by specifving a
WINDOW. The window is a rectangular portion of the page aligned with the X and
Y axes. The window is defined by the X coordinates of its left and right edges,
and the Y coordinates of its bottom and top, all in page coordinates. These
values are held in the WINDOW registers of the clipping divider. The clipping
divider has the ability to filter material for display through this window,
transmitting only that part of the material which lies within the window.

Whatever appears through the window is mapped onto a rectangular region
of the scope, called the VIEWPORT. The VIEWPORT is defined for both two and
three dimensional pictures by its left, right, bottom, and top edges in SCOPE
COORDINATES. These values are stored in the VIEWPORT registers of the
clipping divider. Coordinates for the scope are a full half word length,
identical to page coordinates, but because only the 12 least significant
bits are used to drive the scope, coordinates for the scope must lie between
774000 and 003777. (Larger viewports may be used to create wraparound, if
desired, and smaller viewports to paint the picture on less than the full
area of the scope.) Thus if the WINDOW is specified to be as large as possible

I-3

V-1

‘;\YINDOW VIEWPORT

[E——

PAGE SCOPE

Figure 1-1 Two-dimensional operation of the Clipping Divider

and the VIEWPORT is specified to run from 774000 and 003777, the entire PAGE
will be plotted exactly to fit the SCOPE. The clipping divider performs a
linear mapping of everything within the window onto the viewport. If the
window is geometrically similar to the viewport, the picture produced on the
scope is geometrically similar to the drawing on the page (i.e. angles are
preserved). If the window and viewport are not geometrically similar, the
drawing is magnified by a different amount in X and Y. 1If the ‘right’ edge
of the viewport is placed to the left of the ‘left’ edge, the picture is
reflected about a vertical axis. Similar reflection about a horizontal

axis or about both axes is possible. If the right and left or top and
bottom edges of the window are ‘backward’, nothing appears through the
window. The two dimensional“operation of the clipping divider is illus-
trated in figure I.1.

Operation of the clipping divider in three dimensions is similar to its
operation in two dimensions. The page coordinate system uses four half-
word numbers {X, Z,, Y,] to specify a point. The contents of the window
registers is not used in three dimensions. The ‘window’ is a pyramid
whose vertex is at [0,0,0,0] and which extends along the positive Z axis
including all the volume where |X| |7 |and IYI + All dots and lines within
or passing through this volume are projected througx the ‘origin onto a
plane normal to the Z axis by means of the perspective divisions:
Xscope = X/Zyx> Yscope = Y/£y, and are scaled so as to map onto the viewport..
The resulting picture is a perspective view as seen from the orlpin looking
in the posibive Z direction. Because the field of view is 90° , the resulting
perspective looks strange unless viewed from very close to the scope (5
inches for a 10 inch square viewport). 1In order to produce more reasonable
looking perspectives, the Z values given to the clipping divider should be
multiplied by the tangent of half the desired viewing angle.* This
scaling can be accomplished easily by scaling the appropriate terms in the
rotation and translation matrix which defines the point of view. This rota-
tion and translation may be accomplished either by central processor multipli-
cations or by using the matrix multiplier.

Frequently a drawing will include repetitions of a single object in
several places on the drawing. When this occurs it is desireable to define
this object or symbol only once, and in effect to call it as a subroutine.

One mechanism for doing this kind of subroutining is built into the processor.
So that the symbol may be positioned anywhere on the page, it must be des-
cribed by relative drawing specifications, and it may appear in only one size.

A more general mechanism for multiple references to a symbol is provided
in the clipping divider. This mechanism permits everything within a MASTER
rectangle on one page to be mapped onto an INSTANCE rectangle defined on
another page, in a way similar to the window-to-viewport mapping. Because
this second page may be mapped similarly onto another page, or onto the
scope by the window-to-viewport mapping, it is necessary to concatenate

*The perspective transformation is X = (x/z)cot (a/2), where a is the
viewing angle. Thus the x and y values could be scaled by the cotangent,
or the z values by the tangent.

I-5

two of these transformations. This concatenation operation, called BOXing,
is a computational function of the clipping divider, and does not itself
result in the generation of any output to the scope or to memory. Figure I.2
illustrates the BOX operation, and the figure is helpful for following the
text which follows. ’

The symbol or object to be mapped onto the PACE is delineated by a
MASTER rectangle on DEFINITION space. The left, right, bottom, and top
of the MASTER are specified as the data for the BOX operation exactly
as if one were drawing a line across a diagonal of the MASTER. There is
nothing particularly special about the DEFINITION space; it is simply a
page and even may be the same page onto which the object is to be mapped.
Everything appearing within the MASTER is to be mapped onto a rectangular
area called the INSTANCE. The INSTANCE is specified by loading the page
coordinates of its left, right, bottom and top into the ‘instance’ registers
of the clipping divider. The master-to-instance mapping has the same nature
as the window-to-viewport mapping in that it is linear. The INSTANCE may be
specified ‘backward’ to create mirror images, and a ‘backward’ MASTER
results in none of the lines in the symbol being visible. Once the symbol
is mapped onto the page, it must be mapped by the existing window-to-viewport
mapping onto the scope. The BOX operation forms the composite transformation
of these two linear transformations and leaves the results in the clipping
divider window and viewport registers. The new window is a window on the
DEFINITION space, and the new viewport is a viewport on the scope. The
composite transformation behaves just as if the symbol were first mapped
according to the master-to-instance mapping onto the page, and then mapped
according to the existing window-to-viewport mapping onto the scope.

The clipping divider computes the composite transformation by operating
on the area in common between the instance and the window. This common area
is projected onto the scope by the window-to-viewport mapping and onto the
definition space by the inverse master-to-instance mapping. It is possible
that the instance and window had no area in common. The clipping divider
‘AIC’ (Area In Common) bit may be tested by the display processor conditional
instruction after loading the clipping divider instance register. BOXing
may be used in subroutines to any level, and its use is illustrated in the
programming examples.

Two other operations are planned for the clipping divider. On a ‘best
effort’ basis we are attempting to include these capabilities. They do
not, however, form a part of the acceptance testing of the system.

(1) Curve mode. In this mode the persp ctﬁve view computed is that portion
of the picture where|X|§_|2x|and |Y <lz l;i.e., material with negative

Z values (in the negative Z pyramid) will be visible. This facility is
believed to be useful for displaying certain kinds of curves.

(2) Minimum Effort. 1In this mode the clipper merely computes the X, Y,
and Z coordinates for some point which is visible on the specified
line. Since the clipper endeavors to do the least work possible while
still accomplishing this end, we call this mode ‘minimum effort’> (MEF).
The clipping divider may also accumulate angle information about lines
which may assist in discovering whether or not a ‘polygon’ surrounds the

I-6

MASTER OLD WINDOW

ﬁANCE Y \OLD VIEWPORT

|
r |
! |
L- |
|
DEFINITION PAGE SCOPE
\

\\ NEW WINDOW \NEW VIEWPORT

Figure 1-2 The BOX operation

current field of view. The clipping divider has ‘hit count’ and
‘angle count’ registers for this purpose (see Appendix). This
capability is believed to be useful in the Warnock hidden line
algorithm. Evans and Sutherland assumes no responsibility for
the correct operation of the angle detection circuits nor for the
central processor software required for hidden. line computation.

The speed of the clipping divider is compatible with that of a fast
line drawing scope, and is sufficient for providing considerable detail in
the pictures presented. The specific display rate depends on the nature of
the material being displayed, but-the rate approaches two thousand lines
flicker-free (i.e. a two thousand line picture can be processed by the dis-
play system--and the processed results displayed--thirty times a second).
Because lines outside the window are rejected very quickly, the display rate
does not suffer as badly as might be expected when the window covers only a
small part of a drawing. The time required for processing data is explained

in Appendix II.

Lines and Dots

The display system permits a drawing to be composed of dots (more con-
ventionally called points) and lines. Such drawings are always defined in
page coordinates. Any portion of the drawing may be plotted on any part of
the scope by specifying a window and viewport (page to scope mapping). Alter-
natively any portion of the drawing may be superimposed on another drawing
by specifying a definition and instance (page to page mapping), and then,
performing the BOX operation. This flexibility allows the user to define
all drawings in page coordinates.

A line segment is represented by its end points, and a dot simply by its
position on the page. The clipping divider remembers one point on the page,
the CURRENT POINT, in the clipper ‘save’ registers. The current point exists
in either two or three dimensions. The line segments processed by the clipping
divider generally consist of the current point as one end and a NEW POINT as
the other end. The clipping divider retains one end of each line that is
drawn as the current point to be used in drawing the next line. For some
lines which are drawn the clipping divider retains the new point as the cur-
rent point for later use. Such lines can be thought of as being DRAWn TO the
new point. For other lines the value of the current point is not changed.
Such lines can be thought of as being DRAWn FROM the new point to the current
point. The first alternative (DRAW TO) permits efficient specification of
chain connected line segments while the second alternative (DRAW FROM) is
useful for specifying star-like figures. The current point may be changed
without displaying by a SET POINT operation. Displaying a dot causes the
current point to change to the position of the dot. An illustration of
these operations is shown in Figure I.3.

The current point also serves the function of permitting relative

coordinate specifications. The new point may be specified absolutely in
page coordinates, or as a page coordinate displacement RELATIVE to the

I-8

(PAGE)

Figure 1.3: SET, DRAW TO, DRAW FROM, and DOT operations

I-9

current point. All of the basic drawing operations: SET POIJT, DRAV TO,
DRAW FROM, and DOT, may be specified relative to the current point. The
current point may also be used to specify the midpoint of the line to be
specified. In the SIZE RELATIVE specification, the clipping divider uses
the new data to specify the half-length of a line segment in X and Y, and
uses the current point as the midpoint of the line. The current point is
not changed by a SIZE RELATIVE draw. SIZE ABSOLUTE operates in an analogous

manner, however taking (0,0) to be the current point.

The clipping divider has a special operating mode which is useful
for plotting simple graphs. For these graph modes the clipping divider
ignores either the X or Y part of the drawing data sent to it, and uses
instead a relative displacement held in the instance registers.

Loading the Clipper Registers.

There are four numerical registers in the clipping divider, called
SAVE, VIEWPORT, WINDOW, and INSTANCLE, each of which stores a four-
component vector. Each component of the vector is a 20-bit signed two’s
complement number. The two half words map into the least significant of
the 20 bits with leftward sign extension. There are in addition several
registers for storing some miscellaneous items: HIT COUNT, ANGLE COUNT,
SCOPE SELECT, INTENSITY, and NAME. These registers are in a configuration
as shown in Figure I.4, and may be addressed as indicated.

In the VIEWPORT, WINDOW, and INSTANCE registers the four components
may refer to the left, right, bottom, and top of a rectangular area,
[XL, XR, Yy, YT]. The SAVE register specifies a single point in either
two or three dimensions. In two dimensions the SAVE register contains
duplicate information: (X, X, Y, Y]. 1In three dimensions the SAVE
register contains the 3D current point: (X, Zx, Y, 2,]. We are interested
here only in the two dimensional use. The SAVE, VIEWPORT, WINDOW, and
INSTANCE registers can be addressed in two ways:

(1) As two component halves (addresses 0-7)
(2) As full four component vectors (addresses 14-17)

Furthermore, the same four mechanisms for specifying lines (Absolute,
Relative, Size Absolute, Size Relative) are available as modes for loading

the registers.

The two component halves of the SAVE, VIEWPORT, WINDOW, and INSTANCE
are called SAVELB, SAVERT, VIEWLB, VIEWRT, WINDLB, WINDRT, INSTLB, INSTRT,
where the LB suffix indicates ‘left and bottom” and the RT suffix indicates
‘right and top’. Thus a specification of LOCLA WINDLB, [Xy, Y{] (1) (i.e. a
2-component load) will put X and Y{ into the left and bottom components
of the WINDOW register. (See chapter IV for mnemonic meanings.) A two-
component relative load, e.g. LOCLR WINDLB, [dXq, dY;] (1) will load the left
and bottom components of the WINDOW register with in}ormation derived by adding
dXy, dY; to the left and bottom components of the SAVE register (not the WINDOW
register).

If the full register is addressed (i.e. addresses 14-17) then a four-
component load is indicated. A full four-component load of a register

I-10

(even the SAVE register) specifies that the new data and the data in the
SAVE register are combined just as they would be to draw a line. The two
ends of this virtual (invisible) line supply the four components required.
Let us suppose, for example, that the SAVE register contains {X1, Xq. Yy,
Y,] due to a SETPT [X1, Y1]. A LOCLR WIND. [dX. dY] would generate a new end-
point Xy + dX, Y, + dY just as would be generated to draw a line. The
numbers placed in the WINDOW register then would be: [X1, X1 + dX, Y1,

Yy + dY]. Thus a full window load can be thought of as drawing a virtual
(invisible) line from the lower left to the upper right of the rectangle
desired. Similarly a LOCLSR WIND, [dX, dY] would place vector :Xq - dX,
Xy +dX, Yq - dY, Y1 + dY] into the WINDOW.

I-1

3D: X Zx Y Zy
2D: X X Y Y
Rectangle Left Right Bottom Top
Save 0 1 0 1
Viewpoint 2 3 2 3
Window 4 5 4 5
Instance 6 7 6 7
Name 10 11 Name 10 11
HIT CNT 12 SELECT 13 ANG CNT 12 INTENSITY 13
\ 1 T 7/
\ [! /
\ l /
\ I I /
\ | RT LB/
| /
LB AN |/ RT
\ : |/
/
\ I
X Y computer word
0 17 18 35
Addressing:
Two component: 0 SAVELB SAVE left and bottom
1 SAVERT SAVE right and top
2 VIEWLB VIEWPORT left and bottom
3 VIEWRT VIEWPORT right and top
4 WINDLB WINDOW left and bottom
5 WINDRT WINDOW right and top
6 INSTLB INSTANCE left and bottom
7 INSTRT INSTANCE right and top
12 HITANG HIT COUNT and ANGLE COUNT
13 SELINT SELECT and INTENSITY
10 NAME NAME register
Four component: 14 SAVE
15 VIEW Figure I.4
16 WIND The Clipper Registers
17 INST

I-12

14

16

17

THE DISPLAY PROCESSOR

The display processor is the interface between the main memory
and the rest of the display system. Because this interface executes
programs from memory, because it has an instruction repertoire, and
because it is entirely reasonable for people to write programs for the
display processor, it can be thought of as a computer. It is a peculiar
kind of computer whose capabilities are oriented toward making pictures,
rather than performing computational tasks. Many of its instructions
are descriptive of drawing operations rather than computational operations.
Because the display processor operates in conjunction with a general purpose
computer. we have not endeavored to give it ‘general’ computing capability.
For example it is not clear whether (even with the greatest ingenuity) it
could be made to compile its own code. The function of the display processor
is to interpret descriptions of pictures stored in the main memory and cause
the intrepretations to be displayed or returned to memory. The instruction
set of the display processor is described in detail in the following chapters.
This section outlines its capabilities and introduces some of the ideas basic
to its operation.

Display Programs

The display processor makes a picture by executing a program stored
in main memory. The display processor PROGRAM COUNTER (PC) usually determines
the location in memory from which the next instruction is to be taken, and
the PC is incremented each time it is used to fetch an instruction. There
are several instructions which can change the flow of control of the
program; JUMP, CONDITIONAL JUMP, and PUSHJUMP are examples. The PUSHJUMP
instruction gives the display processor subroutine capability. The sub-
routine return (the old contents of the PC) is stored in a marked stack,
whose location in memory is kept by the STACK POINTER (SP). We call the
stack ‘marked’ because what is written into memory is not only the program
counter (in the right half word), but also a JUMP instruction (in the 1left
half). The contents of any of the display processor’s 12 other half word
registers may be saved on the stack with the appropriate PUSH instruction.
What is pushed onto the stack is a LOAD IMMEDIATE instruction of the par-
ticular register which is pushed. The marked stack is kept backwards from
usual stack conventions, i.e. the SP is decremented before writing, so that
what appears on the marked stack can be read just like a program. When a
subroutine is called, it may push any of the display processor registers
which it will destroy. The subroutine may call other subroutines, or even
itself, to produce pictures of pictures. A subroutine return is accomplished
by executing an instruction which causes the display processor to enter
PEEL mode. In PEEL mode the display processor fetches instructions from the
location specified by the SP while in PROG mode it fetches instructions
from the location specified by the PC. Thus in PEEL mode the SP acts exactly
like a program counter. The subroutine return causes the stack to be

I-13

executed as a program, up to and including an instruction which changes

the mode back to PROG (usually it is the JUMP instruction). The

JUMP instruction planted by the PUSHJUMP will terminate the PEEL if it

is marked with mode change information which causes the display processor
to enter PROG mode. The display processor is always in either PEEL mode

or PROG mode, and this information determines whether the PC or the SP

will be used for the next instruction reference. Mode change information
may be appended to most display processor instructionms, so it is frequently
possible to cause a subroutine exit (PEEL) without a separate

instruction fetch.

The display processor has a group of instructions which permit the
transfer of information between memory and the registers of the arithmetic
units, such as the window and the viewpoint registers of the clipping divider.
These instructions are multiple register transfers, and information can be
transferred in units of from one to sixteen ful words. For example, it is
possible with a single instruction to load the double word window register of
the clipping divider, or both the window and viewpoint, or all the registers
of the clipping divider. The external register transmission instructions fall
into two groups. The first group, LOAD and STORE, use the READ ADDRESS REG-
ISTER (RAR) as a pointer to data locations in memory. The address specified
with a LOAD or STORE instruction may give the first address in a block to be
transferred. The first part of a LOAD or STORE command may put that address
into the RAR’> From 1 to sixteen registers may be loaded or stored. The second
group, SINK and RETRIEVE instructions, use the DATA SINK POINTER (DSP) to
maintain an unmarked ‘data’ stack. The SINK and RETRIEVE instructions may
optionally specify an initial value for the DSP, then from one to sixteen reg-
isters may be ‘pushed’ (SINK) or ‘popped’ (RETRIEVE).

Drawing Definition

The display processor has a large set of drawing definition instructions.
These instructions pass drawing information to the external devices and
initiate computational activity which typically results in a picture being
postiad on the scope. The basic instructions in this group are SET, DRAW
TO, DRAW FROM, DOT, and BOX. In their simplest form these instructions
address a single item of coordinate data in memory, one word if the display
processor is in ‘2D’ mode and two consecutive words if it is in ‘3D’ mode.

The data may be interpreted as either ABSOLUTE, RELATIVE, SIZE ABSOLUTE,
or SIZE RELATIVE.

A specilal feature of the display processor is that a single drawing
instruction may address a table of coordinate information. For this purpose
the drawing instruction is marked with a mode change which causes the display
processor to enter repeat (REPT) mode. The length of the table is specified
by loading the processor’s READ COUNT REGISTER (RCR) with (the 2°’s complement
of) the length of the table. The location of the table is specified by the
READ ADDRESS REGISTER (RAR), which increments through the table as the instruc-
tion proceeds.

Since the coordinate items in the table are not addressed individually

I-14

by instructions which specify how each word is to be interpreted, the

items in the table must be in some homogeneous format. An inhomogeneous
specification is an arbitary sequence of drawing operations, SET, DRAW TO,
DRAW FROM, and DOT and their associated coordinates. The drawing operations
are not in any regular order or sequence, but simply represent a convenient
way to draw a picture. Drawings can be specified in this inhomogeneous

way by writing a program with SET, DRAW TO, DRAW FROM, and DOT instructions
in which each instruction addresses a coordinate from memory. (Of course
several instructions in the sequence may refer to the same address.) An
homogeneous representation uses a table of coordinates in memory, and
because the sequence is orderly the position of a given point in the

table determines how it is to be interpreted. Because the interpretation
changes in a regular, periodic way as one steps through the table, we

think of the drawing as being defined by the coordinates and an associated
repeat sequence. For example a reasonable format for specifying a collection
of disconnected line segments is one in which the first coordinate item is
interpreted as a SET ABSOLUTE, the second by a DRAW TO RELATIVE, the third
by a SET ABSOLUTE, and so on. To specify a collection of chain connected
line segments the first item in the table would be a SET followed by DRAW
TO’s. All of the simplest and most common repeat sequences are built into
the hardware of the display processor, so that simple tables can be in-
terpreted by executing a single instruction. The drawing instructions provide
options for any of the following sequences:

SET, DRAW TO, DRAW TO, ---
SET, DRAW FROM, DRAW FROM, =--
DRAW TO, DRAW TO, =--

DRAW FROM, DRAW FROM, ---
SET, DRAW TO, SET, DRAW TO,
DRAW TO, SET, DRAW TO, SET,
DOT, DOT, DOT, =--

BOX, BOX, BOX, --- (obscure usefulness)

The interpretation of the data may be in any of these sequences:

ABSOLUTE, ABSOLUTE, ABSOLUTE, ABSOLUTE ---
RELATIVE, RELATIVE, RELATIVE, RELATIVE -=--
ABSOLUTE, RELATIVE, RELATIVE, RELATIVE ---
RELATIVE, ABSOLUTE, ABSOLUTE, ABSOLUTE -=--
ABSOLUTE, RELATIVE, ABSOLUTE, RELATIVE ---
RELATIVE, ABSOLUTE, RELATIVE, ABSOLUTE ---
SIZE RELATIVE, SIZE RELATIVE, SIZE RELATIVE ---
SIZE ABSOLUTE, SIZE ABSOLUTE, SIZE ABSOLUTE ---

In repeat mode the processor repeatedly executes the instruction
originally fetched, modifying it upon each repetition as required in
order to produce the sequences listed above. For this purpose the
instruction to be repeated is kept in a special instruction register,
called the REPEAT STATUS REGISTER (RSR). This register also preserves
the repeat status should the processor be interrupted by the CPU in
the midst of a table. When the count in the RCR runs out, the processor

I-15

leaves repeat mode and fetches the next instruction. While the display
processor is in repeat mode it is behaving very much like a ‘display
channel’, and requires no instruction references to memory. As long as
a table of coordinate information is in one of the standard repeat:se-
quences, it may be displayed with a single instruction.

More elaborate repeat sequences can be defined in programs which use
SET, DRAW TO, DRAW FROM, and DOT instructions which use the table address-
ing mechanisms of the processor rather than direct addressing. If the
programmer has a table of data which is in a homogeneous format, but
not in one of the repeat sequence formats provided in the hardware, a
program loop is indicated. Let us suppose for example that a CPU program
has generated a table of data which is to be interpreted using a repeat

sequence:

SET, DRAW FROM, DRAW FROM, SET, DRAW FROM, DRAW FROM, SET, ---
ABS, REL , REL , ABS, REL REL , ABS, ---

Such a format defines a collection of points on the page, each one of

which has two lines drawn to it. This might be a convenient way to draw

a collection of timepieces, each with an hour and a minute hand. Because
this format is not one of the standard ones available in the hardware,

it is necessary to write a program to interpret the table. First the

RAR is loaded with the address of the table and the RCR is loaded with

(the 2’s complement of) the number of timepieces. Next the program has

a 4 instruction loop: SET ABSOLUTE; DRAW FROM RELATIVE; DRAW FROM RELATIVE;
INCREMENT RCR and JUMP IF RCR NEGATIVE. The drawing definition instructions
use the RAR to specify an address, and the program accordingly will step
through the table of data.

There are three addressing mechanisms for drawing definition instructions.
(1) The first mechanism simply obtains the data and treats it as coordinate
information. If repeat mode is specified, the number of complete data items
(X, Yor X, Y, Z, Z) read from memory is determined by the RCR. If repeat
mode is not specified, a complete data item, one word in two dimensions or
two words in three dimensions, is read from memory. (2) A second mechanism
interprets the word addressed as a pair of pointers. The display processor
uses first the left half and then the right half to obtain two pieces of
coordinate information. If repeat mode is specified, the RCR should specify
the number of pointer pairs. If repeat mode is not specified, one pointer
pair is used to obtain two complete pieces of coordinate information. The
way in which these two items are interpreted must be specified in exactly
the same way as the repeat sequence. Thus if the pointers are used to point
to the end points of a line segment, both specified absolute, the instruction
should specify ‘SET, DRAW TO, SET, DRAW TO,...’ and ‘ABSOLUTE, ABSOLUTE, ...’
as the repeat sequence. (3) The third mechanism is for dataless operations
for which the external device uses data stored internally to perform the indi-
cated operations. In repeat mode the operation will be done a number of times
specified by the RCR but no data will be read from memory. If repeat mode is
not specified, then the operation will be performed but once, again with no
data references to memory.

Operating Modes

What we have described thus far are some of the ways in which a
drawing may be represented in memory. The display processor reduces
this potentially intricate representation to a simple sequence of *
coordinates and drawing commands, which are passed to the external
devices such as the matrix multiplier, clipping divider, and scope.
The way in which a drawing is processed by the external devices is
determined by the contents of the DIRECTIVE REGISTER (DIR). The DIR
contains all the modal type information which is not able to change
instruction by instruction. Begause this display system is an entirely
digital device up to the point at which a picture is produced on the scope,
and because it has arithmetic capabilities that are useful for many display-
related tasks, the display system may be used to do more than produce an
image on the scope. For example a drawing may be rotated, scaled, clipped,
and placed in perspective and then returned to memory for output on a
plotter or remote display. One may determine which lines in a picture pass
through a given rectangular region, a facility which is useful for ‘pointing’
with a tablet or a ‘mouse’.

Usually our goal is to paint a picture on the scope. If the
drawing is two dimensional and need not be rotated, we specify a
directive which establishes a computation path in which data from memory
is sent to the clipping divider, and the scaled and clipped results are
painted on the scope. Because the processor, clipping divider, and scope
are independently timed, the processor may be fetching the next line from
memory while the clipping divider is processing its current line, and
the scope is painting the previous line. The orderly streaming of data is
insured by a set of initiation and.acknowledge signals appropriate to the
path specified by the directive. Processing by the matrix multiplier may
be included in this ‘pipeline’ so that two or three dimensional drawings
may be rotated and scaled preliminary to being sent to the clipping divider.

The outputs of either the matrix multiplier or clipping divider may
be returned to memory, possibly in addition to being passed to the next
unit on the pipeline. For example the clipping divider may send its
processed results to the scope, to memory, to both, or to neither. While
memory-to-memory operation of each unit in the system is independent,
confusion may result if more than one unit is directed to send output to
memory. Information is written into memory at the location specified by
the WRITE ADDRESS REGISTER (WAR), and the WAR is incremented after each
word is written. An upper limit on the number of words written may be
specified by the WRITE COUNT REGISTER (WCR). If the count in the WCR runs
out, the processor fetches no new instructions or data but continues
writing in memory until the pipeline processing units finish any tasks in
process. The processor then stops.

The memory-to-memory operation of the display system makes its special

computational power available to the programmer. We anticipate at least
two uses for memory to memory operation.

I-17

The first is to facilitate using secondary, and generally slow, output
devices such as plotters or storage tube displays. For this purpose the
clipping divider’s ‘scope output’ is sent to memory, and a viewport may
be used which is convenient for the coordinate system and resolution of
the secondary graphic device. A second application for memory-to-memory
operation is as a filtering technique to obtain a smaller basic display
file in cases where a very small part of a large and complex drawing is

to be viewed. For this purpose the clipping divider’s ‘page output’

(its output after clipping but before the perspective division and window-
to-viewport mapping) is sent to memory.

In zddition to specifying the form of the pipeline computation, the
directive may specify several special operating modes. For example the
directive may cause all lines plotted on the scope to be dashed, or may
cause the clipping divider to operate in minimum effort, curve, or graph
mode. The automatic stop mode is useful for performing tests which deter=-
mine what is being ‘pointed’ at by a tablet, light pen, or comparator.

The uses of the various directives are outlined in a following chapter
and illustrated in the programming examples.

Communication with the CPU

Considerable care has been exercised to insure that the display
system will operate gracefully in a multiple-user or time shared environ-
ment. The display may be interrupted by the CPU at the end of any
instruction, and during the execution of a repeat mode sequence or multiple
LOAD, STORE, SINK, or RETREIVE. The longest uninterruptable instruction,
the INDIRECT DATA INTERPRETATION INSTRUCTION requires a maximum of 6 memory
cycles to complete. The process can be terminated and later resumed, since
the state of the instruction execution is saved in the repeat status register.
The. CPU may inject a ‘pause’ request by means of a ‘conditions out’ (CONO)
instruction, and may then give commands to the display processor with ‘data
out’ (DATAO) instructions. The full I/O word transferred by a ‘data out’
(DATAO) is interpreted as a standard display processor instruction. PUSH
and STORE instructions issued in this way can be used to save the entire
state of the display system in memory so that after processing another
user’s material it is possible to resume the interrupted process. A pro-
gram to interrupt and restore a user is shown in the programming examples<

The display processor includes provision in its memory and I/0 bus
interfaces for the addition of mapping hardware. The mapping hardware may
use the display processor’s memory buffer register to make references to
a page table in main memory, and may use bits in the ‘conditions in’ (CONI)
word to indicate and cause interrupts on protection violations.

II. DISPLAY PROCESSOR REGISTER CONFICURATION

The display processor has 13 internal registers which are of
interest to the programmer. These registers are each 18 bits wide;, and
are arranged as a 16 X 18 fast register memory. Each of these processor
registers is assigned a special function, either as an address pointer,

a word count, or a control word. They are in a register memorv confieur-
ation largely for convenience in addressing them individually, and should
not be thought of as ‘interchangeable’.

The display processor also“has a memory buffer register (BR), a read
buffer register (RBR), and a write buffer register (WBR). All information
passing to and from memory goes through the MBR. The MBR includes a parity
net for generating and checking parity of words written to and read from
memory. The RBR is used to hold information that is to be sent to the ex-
ternal units, and is normally loaded by the display processor in anticipation
of an external device being able to accept the information (data prefetching).
The WBR is used in memory-to-memory operation of the display system to buffer
information waiting to be written into memory. The RBR and WBR are used
concurrently, and write cycles are given a simple priority over read cycles.
A diagram of the display processor’s registers and data paths is shown in
Figure II.1.

It is important to realize that this register configuration imposes a
strong separation of control information, such as addresses, word counts,
and directives, from the coordinate information. The internal registers of
the display processor never hold coordinate data, and conversely the registers
of the external devices never hold address information. Because processor
registers can be stored in memory only by pushing them onto the marked stack
(using the stack pointer SP) and loaded only by ‘load immediate’ instructions,
there is no direct mechanism for transferring the contents of one processor
register into another processor register, or into a register of one of the
external devices. Because information is transferred to and from registers
in the external devices using addressable load and store instructions, or
onto their own ‘stack’ (using the data sink pointer DSP), there is considerably
more flexibility in, for example, placing window information in a viewport
register. There is however no direct way to get information from an external
device register into a processor register.

Outlined on the following page is a summary of these internal registers
of the display processor which are accessible by the programmer, together
with the particular function of each register.

II-1

Processor Registers

PROGRAM COUNTER (PC) In PROG mode the PC indicates where the next instruc-
tion is to be found in memory. The PC is incremented immediately
after it is used to fetch an instruction from memory. The PC
may be loaded immediate to effect a JUMP instruction, and its
previous value can be pushed to effect a PUSHJUMP instruction.

STACK POINTER (SP) The SP points to the last filled location in a marked
stack where ‘last’ is toward a lower numbered memory address.
In order to push an instruction onto the stack, the SP is decre-
mented and the instruction is written at this location. In PEEL

mode the stack pointer operates exactly like the program counter,
incrementing after it is used to fetch an instruction from memory.

This stack is the basic mechanism for accomplishing subroutining.
The SP may be loaded immediate in order to go to a different
stack, and its old value may be pushed onto the new stack.

DATA SINK POINTER (DSP) The DSP points to the first unused location in an
unmarked ‘data’ stack where ‘first’ is toward a higher numbered
memory address. -To push a 36 bit data word from an external de-
vice, the word is written in the location specified by the DSP,
and then the DSP is incremented. To ‘retreive’ a word from the
data stack, the DSP is decremented before a read. ([Note: While
the SP loads the marked stack towards lower addresses so that
the code written be in the usual reading-toward-larger-addresses
way, the DSP loads the data stack towards higher addresses.] The
DSP may be loaded immediate or pushed onto the marked stack, or

both.

READ ADDRESS REGISTER (RAR) RAR points to the location in memory from which
the next word of data is to be read in addressable load or display
instructions. It is incremented each time it is used so that it
can point through tables. It is also used to hold the location of
an instruction to be executed by an EXECUTE instruction. RAR can
be loaded immediate or pushed onto the marked stack, or both.

WRITE ADDRESS REGISTER (WAR) WAR points to the location in memory into which
the next word of data is to be written in memory-to-memory operations.
It is incremented each time it is used so that it can write tables
of data. WAR can be loaded immediate or pushed onto the marked
stack, or both. :

P1, P2 These are address pointers used as temporaries in the indirect data

fetch; P2 is also used as a temporary in push operations. They

may be loaded immediate or pushed onto the marked stack, or both;
however they need not be saved and restored as part of the usual
sequence of starting or stopping a user. The contents of P1 and

P2 are in general not preserved during an instruction. Load im-
mediate and push P2 results in pushing the new (rather than the
old) data onto the stack.

READ COUNTER REGISTER (RCR) The RCR is used to specify the (2’s complement
of the) number of complete data items fetched in repeat mode for

II-2

a given data-processing instruction. It is analogous to the block
counter of a channel. When RCR becomes positive the processor
leaves repeat mode. If the repeat mode operation is stopped in
mid-process by the CPU, the contents of RCR specifies the number
of data items remaining to complete the processing originally
requested. RCR may be loaded immediate or pushed onto the marked
stack, or both. At the programmer’s discretion it may also be
used to count iterations of particular programming processes.

WRITE COUNTER REGISTER (WCR) WCR counts the number of words (not neces-
sarily complete data items) written into memory through WAR. WCR
is normally used to limit the size of tables written in memory-
to-memory mode. In memory-to-memory operation WCR is incremented
whenever WAR is incremented, and when WCR becomes positive it
causes the processor to discontinue data and instruction fetching.
Since data may be in process when WCR reaches zero, it is possible
that additional words will be written into memory so that WCR
will end up containing +8 or so. At most, 9 words will be written
beyond runout of WCR. WCR may be loaded immediate or pushed onto
the marked stack or both. With proper care it may be used, like
RCR, to count iterations.

UNASSIGNED REGISTER (UR) The unassigned register is available for programmer
use as desired e.g. for storing pointers to data structures.

DIRECTIVE REGISTER (DIR) The DIR contains mode information for the display
system. The use of the individual bits of the DIR are discussed
in a later section, but in general they control the operating
modes of the various devices in the system, including to some
extent the processor itself. DIR may be loaded immediate or
pushed onto the marked stack, or both.

REPEAT STATUS REGISTER (RSR) The RSR is a special instruction register,
certain bits of which are loaded from bits in the instruction
word of the drawing definition instructions. It may be loaded
immediate or pushed onto the marked stack, or both.

STATUS REGISTER (SR) The SR stores conditions, such as program flags, for
the conditional instruction. The SR exists mainly so that such
conditions can be saved by pushing them and restored by a subse-
quent PEEL.

MEMORY ADDRESS REGISTER (MAR) The MAR specifies the location in memory
for all reads and writes. It may not be loaded, but it may be
pushed to assist in recovery from unusual memory situations
such as parity, non-existent memory, or illegal address mapping
stops.

II-3

Address (Octal) Register

0 RAR Read Address Register

1 WAR Write Address Register
2 PC Program Counter

3 SP Stack Pointer

4 P1 Temporary

5 P2 Temporary

6 DSP Data Sink Pointer

7 UR Unassigned (Name) Register
10 RCR Read Counter Register
11 WCR Write Counter Register
12 DIR Directive Register
13 RSR Repeat Status Register
14 SR Status Register
15 MAR Memory Address Register

Table II.1: Processor Register Addresses

II-4

Io8

G sé
wiré 4% Y 1 56— R 125 7o Grtemet
fore ne & —1 4 L Devices
!vu:-:l “‘ —q wer p———94+1)
' Devices Edd P4] onm A
—me—eee e Gofber |
| WeR Goffer | harvivibie |
L Conteo) \ . phi Al AP}

|)
' :
I
i
! .
34 2
}n i N
! !
[Czwsreveron ua\m——-';—/,.,y | —{ 0 RAR H :
]
| —{s wAR = !
]
T e re _ H
TS TTT T T TTTT T T A [=)
! maIn CoNTROL ! | —e{3 = |
- ' ' ! +—ofv P 1—» =
! |
- o";' : Rowt & mcrocovE PRocESSOR |) +—ofs P2 e '
- c i) .)
& o | ! : ¢ o3P }—! '
') | ——»{7 vmassiGver |— !
)) , '
: A —— ! |
~ ! E
! .

J—- Mpwuna

2’ -‘ RODER ‘ Rdaress

! wek = Addecrses
B
g
=

MAPPER

:f.'\
+—i2 DIR

+—{13 RSR

L—af 4 SR

EVANS & SUTHERLAND COmPUTER CORE,
PpP-10 DISPLAY PROCESSOR

BLock O\AGRAM

2-6-69
101102-900

SHEET | OF 14

III. DISPLAY PROCESSOR INSTRUCTION REPERTOIRE

INSTRUCTION FORMAT

The instruction format of all the display processor instructions is

the same. This format is:

M

(2)

(3)

(4)

0 89 12 13 14 17 18 35

Operation Code A~ |I X Immediate Data

Display Processor Instruction Format

instruction fields are used as follows:

The operation code specifies the instruction to be performed. The
first 3 bits (0-2] of this field determines which group the instruction
is in, and the remaining 6 bits 13 - 8] specify variants within the
group. In most cases bits 3 - 8 have a particular interpretation taken
in 1, 2, or 3 bit clumps, so that many instructions may be viewed as a
concatenation of the group and several independent variants.

The 4-bit A field specifies the address of a register which is involved
in the execution of the instruction. Except for the multiple external
register transfer instruction group, the A field refers to the address
of a register of the display processor which is involved in the exe-
cution of the instruction.

The I bit controls a phase of the instruction execution which is common
to all display processor instructions. Instructions normally commence
by loading the immediate data [bits 18 - 35 of the instruction word] into
a register of the display processor. The register to be effected is
usually specified by the A field of the instruction, except for the
multiple external register transfer group in which the variant specifies
the register to be effected. The use of the I bit is to inhibit this
initial load immediate, or in the conditional load immediate instruction
group to invert the sense of the condition tested.

The 4-bit X field is used in the multiple external register transfer

group to indicate a count of the number of registers to be loaded or
stored. In the conditional load immediate group the X field specifies

a condition number. In the remaining instruction groups the X field
specifies a change in mode. In PROGRAM mode instructions are fetched from
the location specified by the program counter (PC), and the PC is
incremented immediately following each fetch. In PEEL mode instructions
are fetched from the location specified by the stack pointer (SP), and

the SP is incremented following each fetch. In REPEAT mode the processor

III-1

makes no instruction references, but only data references, and exits
from repeat mode when the count in the read count register (RCR) runs
out. In EXECUTE mode, the processor fetches an instruction from the
location specified by the read address register (RAR) and the RAR is
incremented following its usage. The processor will exit from EXECUTE
mode unless the instruction executed is marked with a change to
EXECUTE mode (multi-level chain). These mode changes are coded into
the X field as follows: ‘

S 14-17 RESULTS

0 Do nothing

1 Go to PROG mode, clear EXFF and REPT

0 Go to PEEL mode, clear EXFF and REPT

1 Clear EXFF and REPT

X Go to REPT mode, clear EXFF (XX indicates
PROG and PEEL modes as above)

X Go to EXEQ mode, clear REPT

X Go to EXEQ and REPT

HOOOO

-t emd
- O

Table of How to Change Mode

(5) The right half word of every instruction is immediate data. This
data may be loaded into some register of the display processor, but
may never be loaded into the registers of the external devices. The
immediate data may be an address, a count, or a control word. The
immediate data supplied with a given instruction is generally used
in the later execution phases of the instruction. In particular,
when the immediate data is an address it is convenient to think of
the right half of the instruction word as the ‘address field’ of a
memory reference instruction. However to emphasize the fact that
addresses must be put somewhere before they are used, we persist
in calling this information immediate data, even if it is an address.

We have found it convenient to write display processor instructions
using the following:

LABEL: MNEM 3,@F00(12) s COMMENT

It is expected that this will be assembled so that the opcode corresponding
to the mnemonic MNEM appears in bits 0 - 8, the ‘3’ appears in the A field,
the value corresponding to ‘FOO’ appears in the.right half, the €12” appears
in the X field; and the @ sign causes bit 13 to be 1. (This format is de-
rived from that of the DEC PDP-10.) One should also be able to specify the
A and X fields symbolically. An example of a display processor instruction
is:

II1-2

LABEL: LIFCL DIR,100371(PF@) ; COMMENT

which is a “load immediate if’ (conditional load immediate) of the directive
register (DIR) with the immediate data 100371 if program flag O (PF@) is a
one and clear program flag O. When writing display processor programs one
must bear in mind that the interpretation of the fields following. the instruc-
tion mnemonic will depend on the mnemonic.

In the descriptions of the display processor instructions which follow,
we have attempted to define a set of mnemonics for the various operation codes,
and a chart of how the mnemonics are obtained by concatenation is shown on
the following page.

We have defined numerous ‘extended’ instruction statements in cases
where a particular display processor instruction together with other infor-
mation in the A and I fields has a special meaning. For example an instruction:

LI PC,ADDRESS = JMP ADDRESS

is a load immediate of the program counter, and is better thought of as a
jump instruction.

III-3

CONSTRUCTION OF MNEMONICS FOR E & S DISPLAY CODES

GROUP ¢ —Mark

Load Immediate PuSH old value

——PuSH marked return address r—_lgark

JuMP —— NeW STacK

NOP , STOP , XQTA , XQT , RPT , PEEL , PROG

GROUP 2
——CLear

Load immediate -IF condition holds
——SeT

Jump ALways

— CoMplement

Positive ——RCR
Increment and Jump if[]——

Negative

L WCR

GROUP 3

LOad Matrix Multiplier

ReTrieve - CLipper d:lvider-—-l —— Size _—E Absolute

Relative

STore Matrix Multiplier

SinK—— CLipper divider

GROUBS 4, 5, 6, 7
SET PoinT

To —
]

From —

BOX —Absolute

——Fize—I

LINe direct
—Relative

POLygon Indirect — -Absolute

STAR

Relative

DOTS
Table 3.1
111-4

THE INSTRUCTION SET

Instruction Group O - LOAD IMMEDIATE, PUSH OLD VALUE, AND CHANGE MODE

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16. 17 18 35
0 A I X Immediate data
N
Push

Mark Pushed X Field

Processor Register Address

Do not load

Mode Change

The sequence of operation is:

n

(2)

(3)

(4)

The contents of the processor register specified by the A field is

placed into the temporary P2.

If the I bit is zero, the immediate data is placed into the processor

register specified by the A field.

If the push bit

t3] is one, the contents of P2 are pushed onto the

marked stack in the right half word, together with the A field of

the instruction in the left half.
(4] is one, the

X field of the pushed word.

with the processor’s mode.

If the ‘mark pushed X field®’ bit
current mode of the processor is also written in the
Thus the word written onto the top of the
stack is a load immediate of the register being pushed, possibly marked

The mode of the next instruction fetch is determined from the X
field of the instruction.

This group provides the following instructions:

LI

LIPSH

. 000 n, WHAT] A load immediate of the register specified in

the A field.

t 040 n,WHAT] A load immediate of the register specified in
- the A field, followed by pushing the old contents of that reg-
ister onto the marked stack.

III-5

LIPSHM { 060 n,WHAT] Same as LIPSH, except that the pushed word is
marked with the mode the processor was in when the LIPSHM was

executed.

PSH [LIPSH n,@] The register specified in the A field is pushed
onto the marked stack.

PSHM [LIPSHM n,@] Same as PSH, except that the pushed word is
marked with the mode the processor was in when the PSHM was
executed.

NOP ([LI ,@ 1 A no-operation.

XQT [LI O,WHAT (XQTM)] An execute instruction.

Because the program counter and stack pointer may be addressed by the A
field of the instruction, the following instructions result:

JMP { LI PC,] A ‘jump’ instruction.

JMPPSH [LIPSHM PC,] A ‘pushjump’ instruction. Notice that JMPPSH
marks the X field of the pushed JMP instruction.

NWSTKM [LIPSHM SP,] The ‘new stack’ instruction first loads the SP
thus creating a new stack, and then saves the old SP in the new
stack together with the current mode of the display processor.
When executed from the main processor via a ‘data out’, this
instruction preserves the most volatile information about the
state of the display processor in such a way that the remaining
registers can be pushed onto this new stack.

Any of the above instructions may be appended with mode change infor-
mation, which is specified in the X field. For example:

LIPSH RCR,-100(PEELM) s LOAD RCR WITH -100 AND PEEL

causes the display processor to enter peel mode after executing the LIPSH
instruction. A simple PROG, PEEL, REPT, or XQT is implemented by a mode
change appended to a NOP. For example:

XQT [NOP ,(XQTM)] Load over and execute.

[NOTE: Because the processor register P2 is used as a temporary for push
operations, the instruction:

LIPSH P2,DATA
pushes not the old value of P2 onto the stack, but instead the new contents,

‘DATA’. PSH and LI operate as expected. This peculiarity may be used to
push a name onto the stack with a single instruction.]

III-6

Instruction Group 2 - CONDITIONAL LOAD IMMEDIATE

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 35

2 NN X

Immediate data

|] [}
Always

¢‘J? Condition

‘K* Condition

Processor Register

Invert Sense

Condition Number

The condition specified in the X field is tested, and if it is ¢1°
while the I bit is ¢0’, or ‘0’ while the I bit is ¢1’, then the immediate
data are placed into the processor register specified by the A field.

After the condition is tested it is modified according to the J and

K bits:

J K Result

0 0 no change
0 1 cleared

1 0 set

1 1 complemented

The following conditions are supplied:

Condition number Condition
0-3 Program flags 0 - 3
10 RCR Negative and # -1
1 WCR i i 3

III-7

12 ‘HIT’> [Clipper window hit by line]

13 ‘AIC? [Area in common between INSTANCE
and WINDOW.]

17 PROG STOP FLAG.
Unassigned conditions are available for addition of conditions by the customer.

Conditions 0'17(8) appear in the status register, bits 18-33, so that
a user’s program flags, etc. will be preserved if he 1s interrupted. Pushing
the status register (SR) saves the conditions and loading the status register
loads the conditions. However the sign bits of RCR and WCR cannot be loaded
either by loading the SR or by JKing conditions 10 or 11. So that the RCR
and WCR may be used to write simple iteration loops, they are incremented
after being tested if the J bit is one. The HIT bit is set whenever a set-
point, line or dot falls within the WINDOW. The AIC bit is cleared preliminary
to a BOX operation, and set if there is any area in common between the WINDOW
and INSTANCE.

We use the following mnemonics for group 2 instructions:

LIF { 200 n,WHAT(condition)] Load if condition is one.

LIFCL [210 n,WHAT(condition)] Load if -- and clear condition.

LIFST | 220 n,WHAT(condition)] Load if -- and set condition.

LIFCM [230 n,WHAT(condition)] Load if -- and complement condition.

LAL [240 n,WHAT(condition)] Load always.

LALCL [250 n,WHAT(condition)] Load always =-- and clear condition.
LALST [260 n,WHAT(condition)] Load always -- and set condition.

LALCM [270 n,WHAT(condition)] Load always -- and complement condition.

If the program counter is the register addressed, the instruction is
a conditional jump, i.e.:

JIF [LIFPC,] Jump if condition is one.
JIFCL [LIFCL PC,] Jump if -- and clear conditon.
etc. through
JALCM [LALCM PC,] Jump always =-- and complement condition.
The sense of any conditional may be inverted by the indirect bit, so

that:

III-8

JALST @(PF@) never jumps, but sets PF@.

JIFST @A(PFQ®) jumps to A if PF@ = O, and sets PF@.
Incrementing and testing RCR or WCR is a simple iteration loop termination:
IJNRCR [JIFST (RCRN)] Increment RCR and jump if (result) negative.

IJNWCR [JIFST (WRRN)] Increment WCR and jump if (result) negative.

III-9

Instruction Group 3 - EXTERNAL REGISTER TRAKNSMISSION

0 1 2 3 4 5 6 7 8 910 1112 13 14 15 16 17 18 35

3 A 1 X Immediate data

‘ ‘ . ‘ (Always an address)

00=LOAD
01=STORE
10=RETREIVE.
11=SINK

Device and manner

Device Register Address

Do not load

Count

These instructions are provided to load and store the parameter
registers of the external devices. Group 3 instructions begin with a load
immediate to RAR (LOAD and STORF). or to DSP (SINK and RETREIVE), unless
the I bit is one. The immediate data will always be an address. The I bit
is usually one for SINK and RCTREIVE instructions so that the DSP is not
loaded preliminary to the data transfers. The X field indicates how many
data items are to be transferred to or from the specified device, and the A
field specifies the first device register to be effected. After each transfer
the X field is decremented and tested for zero, and A is incremented (LOAD,
STORE, or SINK) or decremented (RETREIVE). Thus the X field specifies how
many transfers are to be accomplished. An initial value of X = 0 specifies
that 16 data items are to be transferred. The LOAD and STORE variants use
the RAR to specify the address in memory, and the RAR is incremented after
it is used. The SINK variant uses DSP to specify the memory address to be
written, and the DSP is incremented after it is used, pointing to the next
(vacant) location towards higher memory addresses. The RETREIVE variant is
a special case, using DSP to specify the memory address to be read, however
the DSP is decremented before it is used. Thus SINK and RETREIVE are con-
sistent with the direction of the DSP stack. SINK and RETREIVE work correctly
for data items even though they may occupy more than one word in memory.

Bits 5-8 in group 3 instructions specify both the external device and
other information as required regarding the manner in which the data is
interpreted. The assignments currently made are:

56 78 Device and Manner Abbreviation
0000 Clipper - absolute CLA
0001 Clipper - relative CLR

III-10

0010 Clipper - center size absolute CLSA
0011 Clipper - center size relative CLSR
01 XX Matrix Multiplier - absolute N

The abbreviations indicated above are appended to the 4 basic instructions:
LOAD, STORE, RETR. and SINK, in order to specify completely the operation to
be performed. Of course one may STORE or SINK only absolute. In two
dimensions a typical instruction in this groun is:

LOCLR WINDLB, VALUE (2)

which adds the contents of memery location ‘VALUE’ and ‘VALUL + 1° to the
SAVELB and SAVERT respectively, and leaves the results in the window register
WINLB and WINRT respectively. The instruction:

SKCLA SAVELB,4@ (14)

saves all the registers of the clipping divider in the data sink. Please
note that if for example the viewport and window (VIEWLB, VIFEURT, WINDLR,
WINDRT) are pushed into the data sink with an instruction:

SKCLA VIEWLB,@ (4)

they must be retreived in the opposite order:
RTCLA WINDRT,.@ (4).

For convenience this may be written:
RTCLA VIEWLB+3,8 (4)

The clipping divider select register, which is used to determine which
scope(s) the picture is to appear on, provides protection against a user
painting a picture on another user®s scope(s). When an instruction which
loads the select register originates from the main processor, both the select
register and a select mask register are loaded with the select information
provided. The select mask is otherwise entirely inaccessible to the processor
user. An alarm is provided in the -‘conditions in° (CONI) word in case a user
attempts to select a scope which is masked off to him and the processor is
stopped.

The high eight bits of the SELECT reecister contain select information

for scopes 0-7. .The next eight bits contain the select mask (PEPMIT) for
scopes 0-7. Scope O should stand up as the real scope.

0 1t 2 3 4 5 6 7 8 9101112 13 14 15 16 17

O1112131415]1617101112]3|4]5]61|7

\ Al J
Y Y

scope select scope permit

fTHE OPERATION oF THiS FEATURE
'S QUESTIOWARLE. (B1T Pos\TioNsS mMavYBE
DIFFERENT)

Figure 3.2

ITI-11

Instruction Groups 4, 5, 6, 7 - DRAWING DEFINITION INSTRUCTIONS

0O 1 2 3 4 5 6 l 8 9 10 11 12 13 14 15 16 17 18 35
1 % % A I X Immediate data
) | |
Group
SET/TO/FROM/DOT /BOX

ABSOLUTE/RELATIVE/CTR SIZE

Processor Register

Do not load

Mode change

Instructions in these groups start by placing the immediate data into
the processor register specified by the A field, unless the I bit is one.
Second, the X field is used to determine any mode change, and the contents
of the instruction register, bits 1-8, are copied into the corresponding
positions in the repeat status register (RSR).

If the instruction is not marked to cause the processor to enter repeat
mode, the contents of RAR is used to specify an address in memory from which
to obtain either:

(1) A single word of coordinate information in 2D mode, or two consecutive
words of coordinate information in 3D mode.

(2) A pointer word whose. left half is placed in P1 and whose right half is
placed in P2. First P1 and then P2 are used to obtain two complete
coordinate items from memory. Each coordinate item consists of one
word in 2D mode or two words in 3D mode.

(3) No information from memory.

The addressing mechanism used is determined by the instruction group. Group
4 corresponds to item (1) above, and is called DRAW DIRECT. Group 5 cor-
responds to item (2) and is called DRAW INDIRECT. Group 6 corresponds to
item (3), is called DRAW INTERNAL, and is used in cases where the data is
not required for the indicated operation. Group 7 is reserved for non-
coordinate information such as characters and video data. After all of the
data have been obtained and have been passed to the external devices, the
processor takes the next instruction in sequence.

I11-12

If the instruction has been marked to cause the processor to enter repeat
mode, the instruction held in the repeat status register is executed re-
peatedly, exactly as described in the previous paragraph. Because the RAR
is incremented each time it is used to obtain a data item from memory, suc-
cessive executions will point through a table of data. This table may consist
of 2D or 3D coordinate information, pointer words, or may be non-existent in
the DRAW INTERNAL case. In order to count out the len~th of the table, the
read count register (RCR) for each repetition of the instruction is incremented
(1f the processor is in repeat mode). The RCR should contain initially (the
two’s complement of) the number of DATA items to be processed. In DRAW DIRECT
. that is the number of points (each point is 2 words in 3D); in DRAW INDIRECT
it is the number of pointer pairs (one word each); and in DRAW INTERNAL it is
the number of DRAW INTERNAL operations. Each time an execution is completed,
the sign of the RCR is tested to determine whether the processor should exit
from repeat mode, and the pause request bit is tested to determine whether
CPU has requested to interrupt the instruction.

As described in Chapter I, the DATA processes in repeat mode are inter-
preted in one of several simple sequences. The particular sequence to be
used is specified by bits 3-8 of instructions of these groups. Each time a
coordinate item is read from memory, it is tagged with the next interpretation
in the specified sequence. This information comes from the RSR bits 21-26
which are initialized from the corresponding bits (3-8) in the instruction
word. A table of all possible sequences was listed in Chapter I. Largely to
facilitate the formation of mmemonics, we have ascribed to each sequence a
name which is characteristic of what the sequence might be used to draw; for
example SET, DRAW TO, DRAW TO, --- is reminiscent of a POLYGON (POL), SET,
DRAW FROM, ORAW FROM, =--- is useful for STAR (STAR)-like figures, and SET,
DRAW TO, SET, DRAW TO, --- is used for disconnected LINES (LIN).

In an entirely similar way one may specify a sequence of loading methods:
ABSOLUTE, RELATIVE, SIZE ABSOLUTE, SIZE RELATIVE, in bits 6-8 of the instruc-
tion word, according to the coding illustrated in fisure 3.1. A table of
all possible sequences may be found in Chapter IV. We have assigned to each
sequence a two-letter abbreviation.

For the addressing mode we use the two-letter abbreviations:

DD for DRAW DIRECT
DI for DRAW INDIRECT
DN for DRAW INTERNAL

To specify a line drawn by indirection through a pointer word, in which the
left half points to an absolute coordinate and the right half points to a
displacement relative to the first coordinate, we concatenate DRAW INDIRECT
(DI), LINES (LS), ABS-REL (AX) and obtain:

DILSAX RAR,PNTR

These mnemonics include 192 distinct instructions and it is fairly easy
to get used to them. In order to simplify life a little, we have defined a

III-13

set of extended instruction mnemonics, all of which place the immediate data
in RAR so that they appear to be memory reference instructions. The complete
table of such mnemonics can be found in Chapter IV. A few examples are listed
below:

SETPTA {DDLSAB 0,] Set absolute
SETPTR {DDLSRE 0,] Set relative
DRAWTA [DDTOAB 0.] Draw to absolute
DRAWTR {DDTORE 0,] Draw to relative
DRAWFA [DDFRAB 0,] Draw from absolute
DRAWFR {DDFRRE O,] Draw from relative
DOTSA {hDDTAB 0,] Dot absolute

DOTSR {DDDTRE 0,] Dot relative

BOXA {DDBXAB 0.] Box absolute

BOXR {DDBXRE 0,] Box relative

BOXSL [DDBXSL 0,] Box size relative

II1-14

110

SET

111
DRAW

LINe

01

SET

POLygon

SET

STAR

001

DOTS

[}
o

Line To first

010

DRAW
TO

)

To

101

)

DRAW
FROM

From

000

’

BOX

Figure III.2: Specification of Set/Draw and Dot and Box

RELATIVE ARSOLUTE

110 111
011

010
101 100
R]
SL SA

Figure III.3: Specification of Absolute/Relative sequences

III-16

IV. CONTROL STATUS

INTRODUCTION

This chapter lists the detailed mnemonics, control bits, internal
register addresses, and 1/0 control bits for the E & S Line Drawing System
Model 1. This information is presented in several tables for ease of
reference. Individual instruction classes and sample instructions have
been discussed in Chapter III; agtual programs using this information
are presented in Chapter V.

MNEMONICS

Table 4.1 lists the format for the basic LDS-1 instructions. The
mnemonics for the instructions listed can be specialized by appending
various sub-mnemonics. Particular mnemonics are constructed as diagrammed
in Table 4.2. As an example, the first instruction of Table 4.1, LI*%%%,
can be specialized to LIPSHM, LIPSH, or just LI. These three instructions
are developed by starting at Load Immediate at the upper left of Table
4.2 and following the diagram to the right. At each move, the capital
letters for the branch chosen are appended to the previously existing
letters. A branch with no letters denotes an ending (or a starting) point.
Thus, PSH and PSHM are also legitimate instruction mnemonics.

Table 4.1 also shows the correct form of the string of arguments for
each instruction. Normally, the setting of the indirect bit (bit 13) will
be denoted by the "@" symbol placed in front of the Data or Memory Address
field of the instruction. This is the convention followed in Chapter III
and which will be followed in Chapter V.

Table 4.3 lists the mnemonics for the operand arguments that denote
the Display Processor Registers, the Next Mode, the Conditions, and the
Clipper Divider Registers. With each mnemonic is listed the octal number
of the register, mode or condition. 1In the case of the registers, this
number denotes the '"address'" of the register in the E & S equipment. In
the case of the next mode, it denotes the octal equivalent of the binary
bits that set the Next Mode register.

Table 4.4 lists the actual octal numbers that correspond to each
operator mnemonic. In each case, right and left half words are separated
by a comma. The convention has been chosen that a space after a desig-
nation denotes left justification within the half word. No space, or a
space before a designation denotes right justification within the half

word.

CONTROL BITS

Table 4.5 lists the bits in the Channel Control directive register.
The function of each bit is briefly discussed in the notes that follow

the table.

Table 4.6 lists the instruction register bits. Table 4.7 lists the
bits in the command register. Tables 4.8 and 4.9 list the contents of
the repeat status and status register bits.

I1/0 CONTROL

The LDS-1 system uses the DATAO instruction to force processor instruc-
tions and the CONO and CONI instructions of the PDP-10 for control. How-
ever, the DATAI instruction is not used.

Table 4.10 lists and briefly discusses the CONO instructions, while
table 4.11 does the same for the CONI bits.

The DATAO instruction causes the processor to execute the instruction
in the I/0 bus if the processor is in the PAUSED state. The instruction
is executed in the priviledged mode. The only affect this has is that the
PERMIT bits of the clipper may be loaded in the priviledged mode. At the
end of the instruction, the processor will go back to the paused state.

NB: If a count is specified, or repeat mode is entered, only one iter-
ation will be performed before going back to the PAUSED state.

Iv-2

THE INSTRUCTIONS:

MNEMONIC

GROUP ¢
LI*%%%
PSH*
IMP % %%
NWSTK*
XQTA

NOP
XQT
RPT
PROG
PEEL
STOP

GROUP 2
LIF**
LAL#**
JIF**
JAL**

CL
ST
CM
IJ**CR

GROUP 3
LO*%*%

STH**
RT***%
SK**

GROUPS 4, 5, 6, 7
SETPT*
DRAW#**

LIN**
LINI**
POL**
POLI**
DOTS**
STAR**
BOX**

ARGUMENTS

DP-REGISTER,DATA(NEXT MODE)
DP-REGISTER, (NEXT MODE)
ADDRESS (NEXT MODE)

'ADDRESS (NEXT MODE)

ADDRESS

THE ADDRESS PART IS IGNORED

DP-REGISTER,DATA(CONDITION)
DP-REGISTER,DATA (CONDITION)
ADDRESS (CONDITION)
ADDRESS (CONDITION)

(CONDITION)
(CONDITION)
(CONDITION)
ADDRESS

CD-REGISTER,ADDRESS (N)
CD-REGISTER,ADDRESS (N)
CD-REGISTER, (N)
CD-REGISTER, (N)

ADDRESS-OF-DATA (NEXT MODE)
ADDRESS-OF-DATA (NEXT MODE)

ADDRESS-OF-DATA (RPTM)
ADDRESS-OF-POINTER(RPTM)
ADDRESS-OF~-DATA (RPTM)
ADDRESS-OF-POINTER(RPTM)
ADDRESS-OF-DATA (RPTM)
ADDRESS~-OF-DATA (RPTM)
ADDRESS-0F-DATA

**If the indirect bit is set, the information in
instruction is not loaded into the processor.
used will be incremented after use in the normal manner.

Table 4.1

Iv-3

INDIRECT BIT SET

*%k
*%
NO JUMP

NO SP-CHANGE
*%k

*%
*%x
%%
k%
*%
*%

REVERSE DECISION
**

REVERSE DECISION

NO JUMP

*%
*%
*%

REVERSE DECISION

*%
*%k
*%x
REVERSE DECISION

*%
%k

*%k
*%k
*%
%%
*%
*%
*%

the address field of this
Memory address registers

CONSTRUCTION OF MNEMONICS FOR E & S DISPLAY CODES

GROUP ¢ —Mark

Load Immediate PuSH old value

—— PuSH marked return address —Mark

JuMP —— NeW STack

NOP , STOP , XQTA , XQT , RPT , PEEL , PROG

GROUP 2

CLear

Load immediate IF condition holds

SeT

Jump ALways

—— CoMplement

—RCR

Positive
Increment and Jump if[]—

Negatived ——WCR

GROUP 3

LOad Matrix Multiplier

ReTrieve CLipper divider-—l —— Size —{ Absolute
—— Relative

———— Matrix Multiplier

STore

SinK CLipper divider

GROUPS 4, 5, 6, 7
SET PoinT

To—

DRAW
_l‘;r om —

= | I

LINe direct

Absolute

—Relative

POLygon Indirect — Absolute

STAR

___Relative ——

DOTS

Table 4.2
V-4

THE DISPLAY

DEFINITION OF ARG

UMENTS FOR

THE E & S DISPLAY SYSTEM INSTRUCTIONS

PROCESSOR (DP-REGISTER):

Hit Count + Angle Count
Select + Intensity

RAR = @
WAR = 1
PC 2
SP 3
Pl 4
P2 = 5
DSP = 6
UR = 7
RCR = 10
WCR 11
DIR 12
RSR 13
SR = 14

THE MODE (NEXT-MODE):
XQIM = 1¢
RPTM = 4
PEELM = 2
PROGM = 1

CONDITIONS WHICH MAY BE CHECKED (CONDITION):
PF@ = @ Program Flag #0
PF1 = 1 Program Flag #1
PF2 = 2 Program Flag #2
PF3 = 3 Program Flag #3
RCRN = 1¢ RCR Less Than -1
WCRN =11 WCR Less Than -1
HITF = 12 Hit Flag
AICF = 13 Area In Common Flag
STOPF = 17 Stop Flag

THE CLIPPER DIVIDER REGISTERS (CD-REGISTER):
SAVELB = @ Two Components
SAVERT = 1 Two Components
VIEWLB = 2 Two Components
VIEWRT = 3 Two Components
WINDLB = 4 Two Components
WINDRT = 5 Two Components
INSTLB = 6 Two Components
INSTRT = 7 Two Components
NAMELB = 1¢ Two Components
NAMERT = 11 Two Components
HITANG = 12 Two Components
SELINT = 13 Two Components
SAVE = 14 Four Components
VIEW =15 Four Components
WIND = 16 Four Components
INST = 17 Four Components

Table 4.3

IvV-5

THE COMPLETE LIST OF INSTRUCTIONS

GROUP ¢ - LOAD IMMEDIATE INSTRUCTIONS

LI = [¢00 ,0] Load Immediate

LIPSH = (040 ,0] Load Imm. Push-0ld-Value

LIPSHM = [060 ,0] Load Imm. Push-01d-Value Marked

PSH = [LIPSH ,@@] Push-01d-Value, Without Load

PSHM = [LIPSHM ,@@] Push-01d-Value Marked, Without Loading
NOP = (LI ,@Q]

JMP = [LI PC,0] Note: JMP For Display, JUMP for 10
JMPPSH = [LIPSHM PC,@] A Marked [JMP @] Is Saved In Stack
NWSTK = [LIPSH SP,p] Unmarked [LI SP,@] Is Saved In Stack
NWSTKM = [LIPSHM SP,P] A Marked [LI SP,@] Is Saved In Stack
XQTA = [LI RAR, (XQTM)] Execute the Instruction in E

XQT = [NOP ,XQTM)] Enter Execute Mode

RPT = [NOP , (RPTM)] Enter Repeat Mode

PEEL [NOP , (PEELM)] Enter Peel Mode

PROG [NOP , (PROGM)] Enter Program Mode

GROUP 2 - CONDITIONAL LOAD IMMEDIATE

LIF = [200 ,0] Load Immediate if Condition Holds
LIFCL = [219 ,0] LIF And Clear
LIFST = [22¢ ,0] LIF And Set
LIFCM = [23¢ ,0] LIF And Complement
LAL = [240 .0] Load Always, LAL Is Slower Than LI
LALCL = [250 ,0] LAL And Clear
LALST = [260 ,0] LAL And Set
LALCM = [27¢ ,0] LAL And Complement
JIF = [LIF PC,] Jump If Condition Holds
JIFCL = [LIFCL PC,] JIF And Clear
JIFST = [LIFST PC,] JIF And Set
JIFCM = [LIFCM PC,] Jif And Complement
JAL = [LAL PC,] Jump Always, JAL Is Slower Than JMP
JALCL = [LALCL PC,] JAL And Clear
JALST = [LALST PC,] JAL And Set
JALCM = [LALCM PC,] JAL And Complement
JIFDED = [JIF , (STOPF)] JMP If Stopped
IJNRCR = [JIFST , (RCRN)] Increment RCR, JMP If Negative
IJNWCR = [JIFST , (WCRN)] Increment WCR, JMP If Negative
IJPRCR = [IJNRCR ,@0] Increment RCR, JMP If Positive
IJPWCR = [IJNWCR ,@0] Increment WCR, JMP If Positive
CL = [LALCL ,@@] Clear Condition
ST = [LALST ,@@] Set Condition
cM = [LALCM ,@@] Complement Condition
STOP = [ST (STOPF)] Stop The Processor
Table 4.4

IV-6

GROUP 3 -

LOCLA
LOCLR
LOCLSA
LOCLSR
LOMM

STCL
STMM

RTCLA
RTCLR
RTCLSA
RTCLSR
RTMM

SKCL
SKMM

NOTE:

GROUP 4-7

DD
DI
DN

THE COMPLETE LIST OF INSTRUCTIONS (cont'd)

EXTERNAL REGISTERS TRANSMISSIONS

= [3¢00 ,0] Load Clipper Absolute

= [3¢1 ,0] Load Clipper Relative

= [3¢2 ,0] Load Clipper Size Absolute

= [364 ,0] Load Clipper Size Relative

= [304 ,0] Load Matrix Multiplier

= [32¢0 ,0] Store Clipper Absolute

= [324 ,0] Store Matrix Multiplier

= [340 ,0] Retrieve Clipper Absolute

= [341 ,0] Retrieve Clipper Relative

= [342 ,@0] Retrieve Clipper Size Absolute
= [343 ,@0] Retrieve Clipper Size Relative
= [344 ,@0] Retrieve Matrix Multiplier

= [360 ,@@] Sink Clipper Absolute

= [364 ,@0] Sink Matrix Multiplier

'Load SAVELB' , 'Store SAVELB' , 'Sink SAVELB' ,
But 'Retrieve NAMERT'

- DISPLAY INSTRUCTIONS

= 4¢¢ .0 Do Direct
= 50¢ ,0 Do Indirect
= 60¢ ,0 Do Internal

THE WHAT-TO-DO MACHINE:

LS
LT
PO
TO
SS
FR
DT
BX

THE ABS/REL-MODES MACHINE:

BEEEERER

SL

= @60 ,0 Lines = (SET-DRAWTO)**
= @¢7¢ ,0 272?77 = (DRAWTO-SET)*%*
= ¢3¢ ,¢ POLYG = SET-(DRAWTO)**
= 020 ,0 TO = (DRAWTO)**
@40 ,0 STAR = SET-(DRAWFROM)**
= @50 ,0 FROM = (DRAWFROM)**
= @19 ,0 DOTS = (DOT)**
= 009 ,0 BOXES = (BOX)**
= ¢g6 ,0 (REL-ABS) **
= 0§97 ,0 (ABS-REL) **
= (@3 ,0 REL- (ABS) **
¢992 ,0 (ABS)**
= @4 ,0 ABS-(REL) **
= @5 ,0¢ (REL) **
= ¢¢1 ,0 (SIZE REL)**
= 000 ,0 (SIZE ABS)#**

Table 4.4 (cont'd)

Iv-7

THE COMPLETE LIST OF INSTRUCTIONS (cont'd)

THE ABS/REL-MODES MACHINE (cont'd):

SETPTA
SETPTR
DRAWTA
DRAWTR
DRAWFA
DRAWFR
LINAA
LINAR
LINRA
LINRR
LINIAA
LINIAR
LINIRA
LINIRR
POLAA
POLAR
POLRR
POLRA
POLTAA
POLIAR
POLIRR
POLIRA
STARAA
STARAR
STARRR
STARRA
DOTSAA
DOTSAR
DOTSRR
DOTSRA
BOXA
BOXR
BOXSA
BOXSR

[DD+LS+AB]
[DD+LS+RE]
[DD+TO+AB]
[DD+TO+RE]
[DD+FR+AB]
[DD+FR+RE]
[DD+LS+AB]
[DD+LS+AX]
[DD+LS+RX]
[DD+LS+RE]
[DI+LS+AB]
[DI+LS+AX]
[DI+LS+RX]
[DI+LS+RE]
[DD+PO+AB]
[DD+PO+AR]
[DD+PO+RE]
[DD+PO+RA]
[DI+PO+AB]
[DI+PO+AX]
[DI+PO+RE]
[DI4+PO+RX]
[DD+SS+AB]
[DD+SS+AR]
[DD+ SSHRE]
[DD+SS+RA]
[DD+SS+AB]
[DD+DT+AR]
[DD+DT+RE]
[DD+DT+RA]
[DD+BX+AB]
[DD+BX+RE]
[DD+BX+SA]
[DD+BX+SL]

Set-Point-Absolute
Set-Point-Relative
Draw—=To-Absolute
Draw-To~Relative
Draw-From-Absolute
Draw-From-Relative
Line-(Absolute-Absolute)
Line-(Absolute-Relative)
Line-(Relative-Absolute)
Line-(Relative-Relative)
Line-Indirect-(Absolute-Absolute)
Line-Indirect-(Absolute-Relative)
Line-Indirect-(Relative—-Absolute)
Line-Indirect-(Relative-Relative)
Polygon-Absolute's
Polygon-Absolute-Relative's
Polygon-Relative's
Polygon-Relative-Absolute's (???)
Polygon-Indirect-(Absolute's)
Polygon—Indirect—(Absolute-Relative's)
Polygon-Indirect-(Relative's)
Polygon-Indirect-(Relative-Absolute's)
Star-Absolute's
Star-Absolute~Relative's
Star-Relative's
Star-Relative-Absolute's (???)
Dots-Absolute's
Dots-Absolute-Relative's
Dots-Relative's
Dots-Relative-Absolute's (??7?)
Box-Absolute

Box-Relative

Box-Size-Absolute
Box-Size-Relative

Table 4.4 (cont'd)

V-8

DIRECTIVE REGISTER BITS

18 Matrix Multiplier active (To do multiplication, etc.)
19 STOS (Clipper scaled output to scope)

20 STOM (Clipper scaled output to memory)

21 ZTOS (Clipper Z intensity to scope)

22 PTOM (Clipper clipped output to memory)

23 ATOM (Clipper name to memory)

24 3D (If not set, 2D is implied)

25 CURVE mode (Clipper and Matrix Multiplier)
26 Surface mode (Matrix Multiplier only)

27 MEF (Minimum Effort Mode)

28 SELFX (Clipper)

29 SELFY (Clipper)

30 DOTTED LINE

31 Matrix output to memory

32 Matrix output to Clipper

33 DO TWICE

34 Stop on WCR +

35 Stop on HIT

NOTES ON DIRECTIVE BITS

STOS indicates that the scaled output is to be sent to the scope.
This bit should be set anytime that the scope is to be used.

STOM indicates that the scaled output is to be sent to memory.

ZTOS indicates that the depth queing is to be used and, after clipping
the Z coordinate, is to be passed to the scope. This bit should be set
when 3D information is being clipped for presentation to the scope.

PTOM indicates that the clipped page coordinates are to be sent back
to memory. This bit does not prohibit the use of the scope. This is con-
sidered to be intermediate output from the Clipper.

ATOM indicates that the NAME REGISTER is to be shipped to the memory
after the clipping has been done and a hit has been encountered.

3D directs the clipper and the processor to make two memory references
for data in the form X,Y for the first word,and Z,,Z for the second word.
The elipper then uses the three-dimensional algorlth% for clipping.

CURVE puts the clipper into a mode such that lines within the nega-
tive Z extension of the cone of viewing will be displayed. This mode is
useful for displaying complex curves.

MEF is the bit to direct the clipper to terminate its operation as soon
as it finds a point of the line within the viewing area (window or cone of

viewing).

Table 4.5

V-9

SELFX and SELFY are used for plotting mode. If SELFX is set, data
is taken from memory as a normal operation, but only the Y data is con-
sidered to be valid. The X data is retrieved from the INSTANCE register,
left and right (X) sections. SELFY has the same effect as SELFX except
that the incoming data is valid in X only and the Y portions of the IN-
STANCE register are used for the Y data. The SELF bits imply a TO RELATIVE
operation. See the description of DO TWICE for further explanation of
plotting mode.

DOTTED LINE causes the display to go into a mode where all lines are
dashed. This is performed by hardware in the scope itself and is not a
function of the processor or the clipper.

DO TWICE causes the processor to enter a mode which raises the clipper's
input flag twice for each memory data access. The second flag causes the
SWAP directive bit to be raised for the clipper. This means that the X
and Y data to the clipper has been swapped. DO TWICE operations allow
packing of data for the plotting mode since only half the data is normally
used. If SELFY and DO TWICE are set, the data is to be prepared as follows:

1> 72
X, X

3 4

etc.

If SELFX and DO TWICE are set, the data must appear as:
YZ’ Y1
Y,, Y3
etc.

The reason for this is that data is always taken normally the first
time and reversed the second time.

The two low-order bits of the directive register are used as "mask" bits and,
if set to one, will cause the processor to go into a stop state if the WCR goes
positive or if the HIT bit gets set by the clipper. The two bits are mutually

independent.

All other bits have no effect on a system without a matrix multiplier.

Table 4.5 (cont'd)

IV-10

INSTRUCTION REGISTER BITS

0-2 Instruction group
0 Load immediate (May push, mark, change mode)
1 Unused
2 Conditional load immediate
3 Multiple register load, store, sink, retrieve
4 Load immediate and direct display data
5 Load immediate and indirect display data
6 Internal data
7 Unused
IN O 3 Push
4 Mark
IN 2 3 Always
4 "J" after test
5 "K'" after test
IN 3 3-4 Load (00), store (01), retrieve (10), sink (11)
5-8 Device and manner

IN 4-6 3-8 Finite state machine
9-12 Which processor register

13 "Indirect" (Inhibit load immediate, reverse testing)
14-17 Next mode or condition number
14 XCT
15 RPT
16 PEEL
17 PROG
Table 4.6

COMMAND REGISTER BITS

Fetch/load matrix multiplier
Fetch/load clipper
-3 Line,setpoint,box,dot
5 Retrieve (00), load (01), sink(10), store (11)
Size
Relative
From
9-12 Register address
13 Priviledged
14-17 Missing
18-33 Copies of the directive register

Table 4.7

Iv-11

18-20
21-23
24-26
27-30
31

32-35

18-21
22-25
26
27

28
29
30-32
33
34-35

REPEAT STATUS REGISTER BITS

Instruction type (copy of IR 0-2)

FSM for setpoint/endpoint (copy of IR 3-5)

FSM for absolute/relative (copy of IR 6-8)

Which device register counter (copy of IR 9-12)
(missing) (copy of IR 13)

Short count for multiple load/store (copy of IR 14-17)

Table 4.8

STATUS REGISTER BITS

Program flags (test 0 - test 3)
(missing) (test 4 - test 7)
Read count register sign (test 10)
Write count register sign (test 11)
Read and write counter signs cannot be loaded
"J" condition increments the counter
Hit bit (test 12)
AIC bit (area in common) (test 13)
(missing) (test 14 - test 16)
Program stop flag (test 17)
(missing) (not testable)

Table 4.9

IV-12

CONO BITS

fis - System clear. This has the same effect as the console I/0 reset

' switch and the clear switches on the Clipping Divider and Channel
Control. The clipper and processor are cleared and the processor

: is sent to the STOP state while the clipper is sent to the INPUT

; WAIT state. Two successive clears are necessary if the clipper

i has been operating in the 3D mode. The clipper will not finish

S the line it is working on, nor will the processor complete its

; instruction. No information is lost in the processor.

19 - Allow Memory Alarm Ihterrupt. This allows non-existent memory and
parity errors to cause the host computer to interrupt on the selec-
ted channel.

20 - Disallow Memory Alarm Interrupt.
21 - Hmused, ST e s

| 22 - Allow Map/Protect Interrupt. This bit is used in connection with
! memory protection,

(ProTRCTION / 'RE\.M.AT&QN\

e T —

{ 23 - Disallow Map/Protect Interrupt.
{24 - set 1/0 stop.

525 - Allow Stop Interrupt.

i26 - Disallow Stop Interrupt.

(27 - Clear I/0 Stop. -

28 - Cleaf Program Stop.

29 - Clear Hit,

30 - Step.

31 - Unused.

V132 - Allow Priority Interrupt Assignment.

’{33, 34, 35 - Priority Interrupt Assignment,
Table 4,10

Iv-13

0 - Program Flag O

1 - Program Flag 1

2 - Program Flag 2

3 - Program Flag 3

4-17 - Unused

18 - Parity Alarm

19 - NXM Alarm -(non-existent memory) '
20 - Alarm Interrupt On

21 - Map/Protect Violation:

22 - Map/Protect Interrupt On

23 - Unused

24 -~ Stopped and Ready

25 - Stop Interrupt On

26 - Memory To Memory Stop

27 - 1I/0 Stop

28 -~ Program Stop

29 - Hit Stop

30 - Scope Select Violation Stop
31 - Unused

32 -

33, 34, 35 - Priority Interrupt Assignment

CONI BITS

Tab

LDS-1 Caused Interrupt (i.e. Interrupt has actually occurred)

le 4,11

IV-14

V. PROGRAMMING EXAMPLES

INTRODUCTION

This chapter is devoted entirely to examples of code for the LDS-1
system. A prior knowledge of the PDP-10 assembly language is assumed.
The code shown in these examples is not guaranteed to be the optimal
code for accomplishing a task, but is presented to illustrate the use
of certain features of LDS-1.

START UP

The first example is a subroutine which initializes the system and
starts the processor at a specified location. This subroutine is em-
ployed in nearly all the examples, so it behooves the reader to become
familiar with the functions performed even if he doesn't care to under-
stand it in detail. This subroutine is included in the MACRO-10 file
which defines the operation codes for LDS-1.

+TITLE STARTU

/START UP SUBROUTINE TO INITIALIZE PROCESSOR
DP=L3%
DPPI=4
SINKes BLOCK 177
STACK: BLOCK 1!
OPDEF CONODP <CONO DP,DPPI>
INDISP: 4}

CONODP 515308

MOVE 8,<JSR DPINTR>

_MOVEM @,408+2%DPPI

CONSO DP, 4080

JRST -1

DATAO DP,<LI DIR, 200@0@(P?CM)>

CONSO DP, 4000

JRST -l

DATAO DP,<LI'SR,O>

CONSO DF,A000

JRST -l

DATAO DP,<LOCLA SELINT,<XWD 430400,77008808>(1)>

HRRZ Bg,C16) v

ADD ﬂ,<JMP 2>

MOVEM 8,DSTQQRQ+4

CONSO DP, 4800

JRST -1

DATAO D/,<JMP DSTQRQQ>

CONODP 408

JRA 16,1C16))
'DSTQQA: - LI SP, STACK

LI DSP, SINK

LOCLSA VIEW,<XWD 3777,3777>(1) ,
LOCLSA WIND,<XWD 1800,1082>C1)
STOP ,

V-1

The LDS-1 system is set up as unit 130 on the PDP-10 and is assigned
priority interrupt level 4 by the assignment DPPI = 4. A combination
stack and sink are supplied. Remember that the stack is loaded toward
lower addresses and the sink toward higher addresses. A new .OPDEF is
given for the CONO instruction. CONODP is a CONO directed toward the
LDS-1 with the priority interrupt level always supplied.

The first instruction to the system is via the CONO. The system
is master cleared, all interrupts turned off, and pause request issued.
A JSR DPINTR is planted in the interrupt location. (DPINTR is a minimal
interrupt routine which is supplied with INDISP, but not explained here).
The CONSO loop causes the PDP-10 to wait until the LDS-1 system has re-
turned to the PAUSE state. Then all conditions which might cause the
system to stop are cleared. These conditions must be cleared via the
DATAO instruction because the system will return to the STOP (or PAUSE)
state if all stop conditions have not been cleared. Therefore, a se-
quence of instructions from memory would not necessarily clear all stop
conditions. One must wait for the system to return to the PAUSE state
before issuing another DATAO instruction. (NB, The DATAO instruction has
no effect on the system if the LDS-1 is not in a PAUSE state.)

The stop conditions and means of clearing each are listed below:

STOP on WCR + Clear directive bit mask
STOP on HIT Clear directive bit mask
PROGRAM STOP Clear status register bit
Scope Selection Violation Load proper permit and select bits

(this can be done only by a DATAO)

After clearing all stop conditions, a JMP POOH is placed at the end
of the setup code located at DSTQQQ and the system is given the command
to load the PC with DSTQQQ. Then the resume pulse is issued via a CONO.
This causes the pause and stop flip flop to be cleared. (NB, The Stop
flip flop may be cleared for the execution of one instruction, but if a
stop condition still exists, it will be set again, Therefore, issuing
RESUME does not clear the condition, only the Stop flip flop.) The system
then starts executing the code located at DSTQQQ. The first two instruc-
tions load the stack and sink pointers. The viewport is loaded to give
full screen deflection and the window is loaded with the arbitrary numbers
-1000, +1000 for both X and Y. Note the use of size absolute in conjunc-
tion with a 72-bit load. The plated JMP .instruction is then executed which
starts the user program.

Included with the INDISP subroutine is the following macro definition:
DEFINE DSTART (POOH)
<JSA 16,INDISP
JUMP POOH>

This macro will be used throughout the examples.

2D PICTURE

This will display a star whose center is conrolled via the switches
and load the hit and angle counters in the console lights. The counts
are cleared each time through the loop before any drawing instructions
are issued. The setpoint data is controlled by the console switches.
The RCR is used to control the number of THRURR type instructions exe-
cuted in repeat mode. The RAR is loaded with the address of CNTR2D via
the SETPTA instruction and will be incremented by SETPTA. Therefore,
it is not necessary to load RAR in the THRURR instruction since the
data is located immediately after CNTR2D.

TEST 2D
OPDEF THRURR<DD+ TO+5L>
TEST2 D2 DSTART(SHOW2D)
RSW CNTRZD

DATAO PI,STACK
JRST TEST2 D+2

SHOW2 D: LI RCR,-4
LOCLA HITANG,<2>(1)
SETPTA CNTR2D
THRURR @CRPTM)
STCL HITANG, STACKC1)

JMP SHOW2D
CONTR2D: 2

X WD 603,600

XWD 600, 0

XD 607,600
> XWD 3,-600

TEST3S:
RSW
AND
MOVN
HRRM
RSW

TEST 35S (SQUARES IN 3D SPACE)D

DSTART(SHOW3S)
2

By<T7>

3,0

@,CNT3S

INPT3S

BITSMCINPT3S, <@>,<16>,X35)
BITSM(INPT3S,<17>,<35>,Y3S)

COMBIN(X3S,Y35,XY3S)
JRST TEST3S5+2
9
X3S 2
Y3S:)
INPT3S: 2
14
SHOW3S: LI DIR,2440200
SETPTA PNT3S
CNT3S: LI RCR, =2
LIPSHM RCR,-4
DRAWTR TAB3S(RPTM)
SETPTR @(PEELM)
IJNRCR CNT3S+1
JMP SHOW3S+1
’
PNT3S: XWD 490,400
XWD 400,402
TAB3S XWD -1292,0
XWD 2,9
XWD 3,-1200
XWD g,0
X WD 1022,0
XWD 3,0
XWD By 1000
XWD 2,0
XY3S: XWD @,
X WD 40,40

/B1TSM AND BITS SI'BROUTINES
DEFINE BITSMCALl,A2,A3, Ad)

<JSA 16,BITS

LI Al
LI A2
LI A3
MOVEM @, A4>
1
ENTRY BITS s BITS(X,M,N) GETS BITS M-N OF X
i
BITS: O
MOVEM 1,BITS-1
MOVE P,03C16) s X TO ACO
MOVE 1,@1C186) s LSH ACO M BITS
LSH B,2C1)
MOVE 1,@2C16) sACI N
5UB 1,@1C16) s$ACl N-M
SuBI 1,1tD35 sAC! N-M=35
ASH B,0C1) $ RIGHT LSH (35-M+N)> BITS
MOVE 1,BITS-1
JRA 16,3C16)

3D PICTURE

This will display a set of parallel squares equally spaced along
the Z axis. The X and Y starting point for the first square and the
number of squares are controlled by the switches. Note that the directive
must be loaded for 3D operation, and ZTOS must be selected in addition
to OUTPUT TO SCOPE. The RCR is used for two purposes-in this example.
First, it is loaded with the negative of the number of squares requested.
The RCR is then Pushed Marked and loaded with -4 to control repeat mode.
Note that in 3D it is necessary to access two words for each data point,
but the RCR refers to data points, not PDP-10 words. After the square
is drawn with the DRAWTR instruction, a SETPTR is issued (without reloading
the RAR) which moves Z out 40 units and goes into PEEL mode. PEEL mode
causes the stacked value of the RCR to be unstacked and, since the PUSH
instruction was marked, the mode is changed back to PROGRAM. The IJNRCR
causes the RCR to be incremented and the PC to be loaded with CNT3S+1
until the RCR goes to -1. (The RCR is tested before it is incremented.)

CHESSB (SHOWS CHESS BOARD)

CHESS: DSTART(SCHESS)

HALT
SCHESS:
ST
SETPTA
LI
CHESSI ¢
CHESSZ:
SETPTR
IJNRCR
SETPTR
cM
PEEL
IJNRCR
JMP

’

SQUARE:
POLRR
SETPTR
JIFCHM
PEEL
LI
LINRR
PEEL

’
DCHESS:
XWD

b4

TABCHS:
XWD
XWD
XWD
XWD
XWD

-e

XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
X4WD
XWD

LOCLA
(PF3)

WINDLB,DCHESS(2)

<XWD 2,0>

RCR,~-10
LIPSHM

<XWD 2,1
CHESS2

<XWD 190,-1000>

(PF2)

CHESSI
SCHESS+1

LIPSH

@
«.+2(PFD)

RCR,-13
@CRPTM)

XWD

RCR,-18
JMPPSH SQUARE

20>

RCR, =5
TABCHS(RPTM)

2,0

1023, 1000

XWD
60,0
9,60
-60,0
2,-60
-13,-18

19,50
23,20
-20,-40
40,40
-40,-62
68,60
-43,-60
40,40
-20,=40
20,20
-70,-30

END OF FILE REACHED BY:

p 69

>

10,10

sLOAD WINDOW
$SET PROGRAM FLAG @)

s SET COLUMNS COUNT
s SET ROWS COUNT

$ ADVANCE TO NEXT LINE

$sMORE LINES?

$ ADVANCE TO NEXT COLUMN

s CHANGE CROSS-HATCHING PARITY
s RETRIEVE COLUMN COUNT

s MORE COLUMNS

s START ALL OVER AGAIN

s DRAW A SQUARE

s CHECK CROSS-HATCHING PARITY
s CROSS-HATCHING
sWINDOW SIZE

sDATA FOR SQUARES

s DATA FOR CROSS-HATCHING

CHESS BOARD

This displays a chess board on the screen. Cross hatching of the
squares is controlled by program flag 0. Note the use of a processor
subroutine (SQUARE). When exit from the subroutine is effected by the
PEEL instruction, the RCR is also peeled since it was pushed, unmarked,
when the subroutine was entered. Cross hatching is carried out in the
SQUARE subroutine by testing PFO. :

The RCR is used to control the column count, the row count, and
the count for two repeat mode instructions. This multiple use of the
RCR is made possible by correct use of the stack.

:

DOTSLF: DSTART(SHOWSF)
HALT

H

SHOWSF: LI DIR, 200000
L,0CLA VIEWLB,VIEW1(6)
SETPTA [XWD 100,4028)
1I DIR,220200 $SELF X
1. I RCR,~140
DOTSRR [XWD 2,121
IJNRCR ,~1
I RCR,~300
DOTSRR [XWD Z,-10]
IJNRCR ,-1
LI RCR,=-140
NDOTSRR [XWD 4,121
IJNRCR ,«1
LI DIR, 200000
LOCLA VIEWLB,VIEW2(6)
SETPTA [XWD u@092,10000)
.I DIR,200104 JSELF Y + SWAP
tI RCR,~20

DOTSRR [XWD 20,601

IJNRCR ,-1
LI RCR,-4o
DOTSRR [XWD -20,-60]
IJNRCR ,-1
LI RCR, -20
DOTSRR [XWD 2@,60)
IJNRCR. ,-1
JMP SHOWSF
;
H
VIEW1: XWD =-3777,9
XWD P,3777
XWD 0,0
XWD 10000,10000
XWD 18,0
XWD 10,0
VIEW2: XWD By-3777
XWD 3777,0
XWD B0
XWD 18000, 10000
XWD Bo-4n
XWD Be-Ug

SELF MODE

This demonstrates the plotting (SELF) mode. Two graphs are plotted;
one in the upper left of the screen, and one in the lower right.

The upper left display uses SELFX; the lower right display uses
SELFY and SWAP. SELFX is not given until after the viewport, window, and
instance have been loaded and the starting point has been set. Then
the DOTSRR instruction is used within three loops controlled by the RCR.
After drawing the graph, SELFX is cleared. When SELFX is being used,
the X data is always 10, since 10 is loaded into the X portion of the
instance register.

The lower right graph uses SELFY and SWAP. The instance is loaded
with -40 in the Y portion for the SELFY data. This time both an X and Y
are given in the DOTSRR instruction. Normally, the Y would be ignored,
but since SWAP is set, the normal X data (20 or -20) is used for X, then
the normal Y data (60 or -60) is used for X.

 BOX2D?
BXLOOP:

YM:

DSTART({SUB2D)

RSY
MOVET
JsSA
HRRZ
1LSH
HRRM
XOR
HRRM
HLRZ
LSH
HRLM
XOR
HRLM
LSH
MOVET
JSA
1.SH
MOVET
JSA
L.SH
MOVET
JSA
MOVEIX
SOJGE
JRST

2
TRNN
JRST
HRLZI
ADDM
TRNN
JRST
HRLZI
ADDM
TRNN
JRST
HRRZZI
ADD
AND
HRRM
TRNN
JRA
HRRZT
ADD
AND
HRRM
JRA

14
10,Ws
16,FTX
15,Ws
15,1
15,Ws+3
15,[X¥WD 2,13
15,Ws+1
15,Ws
15,1
15,Ws+i
15,[XWD @,~1)
15,Ws+2
1U,m6
18,Wc
16,FXX
1K, =6
18,L8%
16,FIX
14,~6
18,Lc
16,FIX
15,100
15,,
BXLOOP

14,1

M

15,1
15,0(12)
14,2

YP

15,~1
15,0(10)
14,4

M

15,1
15,08(18)
15, [XWD @,=1]
15,0(12)
14,10
16,0(16)
15, =1
15,0(12)
15,[XWD 7,~1)
15,0(10)
16,0(16)

V-10

H

OPDEF LISR[DD+TO+SL)

’
SUB2D:

NOBOX?

MASTER:

VIEW11:

VIEW21:

Wwe:
WS:

LC:
LSZ:

LOCLA
SETPTA
LI
POLRR
SETPTA
LISR
SETPTA
L.OCLSR
LOCLA
SETPTA
1L.OCLSR
JIF
SKCL
BOXSA
SETPTA
LI
LINRR
RTCLA
SETPTA
LISR
JMP

XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
BLOCK
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD

VIEWLB,VIEW11(4)
we

RCR, =5
@(RPTM)

LC

@p

we

@WIND, (1)
VIEWLB,VIEW21(2)
1C

@INST, (1)
ANOBOX(AICF)
VIEWLB, (4)
MASTER

@

RCR,~272
@(RPTHM)
WINDRT, (u)
1C

Y

SUB2D

2000,20800
-2000,9
2,0
2000,0
@,1000
0,-2000
B, 1up?
1000,400
2,0
2,100
D,-LO0OD
2,1000
2,0

- =-1000,400

2,0

100,09

-10@2,9

78,-79

20

-3777,0
#3777
LARRYs,unRRRR
377777,3777171
B,=-3777
3777,4

@.0
uPeRI,uEnaA
B,-100000
-108p00,0
B,100000
1000809, 0

2,0

upoa,uopn

vV-11

BOXING

This produces two pictures, the first is in the upper left which
displays a window and a line representing the diagonal of the instance.
The other is in the lower right and displays that part of the instance
(a transistor) within the window plus the diagonal line. The PDP-10
portion of the program changes the size and position of the window and
instance. -

After the code for the upper left picture has been executed, the
window and viewport are changed and the instance loaded with a 72-bit
load (this is necessary to test Area In Common). AIC is tested with a
group 2 instruction and if the instance has no area in common with the
window, control is passed to NOBOX which displays the diagonal of the
instance.

If there is AIC, the window and viewport are ''sinked.'" The BOXSA
command is given with the RAR set to point to MASTER. Since the box
command is given as size absolute and MASTER contains 2000, 2000, the master
definition space is -2000 to 2000 in X and Y. The box command causes the
viewport and window to be changed to reflect the mapping directly from
master space to scope coordinates. The commands are then issued to draw
the transistor. .The old viewport and window are then retrieved from the
data stack.

V-12

TESTSW: DSTART(USER1)

JSA 16, WAIT
JSA 16, SAVV
LI SRVVU1
DSTART(USER2)
LOOPSW: DATAO PI,[2]
JSA 16 ,WAIT
JSA 16, SAVV
1.I SAVVU2
JSA 16, RESTOR
LI SAVVU1
DATAO PI,[1]
JSA 16,WAIT
JSA 16, SAVV
LI SAVYVU1
JSA 16, RESTOR
LI SAVVU2
JRST LOOPSW
WAIT: 2
RSW
AND 2,07777)

WAIT1: CONO APR, 1000
CONSO APR, 1009

JRST =1
SOSLE
JRST WAIT1
JRA 16, (16)
USFR1: LOCLA VIEWLB,VWU1(4)
LI RCR, -5
POLAR TABSW(RPTHN)
JMP USER1+1
USER2: LOCLA VIEWLB,VvwWU2(u4)
LI RCR,-5
POLAR TABSW(RPTM)
JMP USER2+1
TABSW: XWD 100,190
XWD -200,0
XWD Bo-200
XWD 2gg'ﬂ
XWD Ds200
VWU1: XWD -3777,0
XWD 3777,3777
XWD -200,-200
XWD 200,200
VWU2: XWD -3777,-3777
XWD 3777,9
XWD -1008,-100
XWD 100,100
BLOCK 14
SAVVU1: BLOCK 14
BLOCK 14

SAVVU2: BLOCK 14

V-13

o we

e o SO e e e

VO T e WO We %0 %o e

]

DEFINE IOMBR(A1)

-1“
-13
-12
-11
~10

-7

-6
-5
-lU
-3
-2
-1

USERSV

<DATAQ DP,A1

SAVYV:

SAVV1:
SAVY2:
SAVV31?
SAVvVL?

LI
LI
LI
LI
LI
LI

A SAVED~-USER~TABLE ('USERSYV')

DSP, (PROGM) J AFTER SINKING THE Cb
RSR,
DIR,
WCR,
RCR,
UR,

RAR,
WAR,

DSP, (PROGM)
PC, (PROGHM)
SR, (PROGM)
SP, (PROGHM)

BLOCK 14 J FOR THE €D

CONSO DP,L4pP0OQ

JRST J=12

0

MOVE 2,®3(16)

HRRM PsSAVYVA1

HRRM @,SAVYVY

coNo DP,Lp0O0

CONSO DP,uLpPP

JRST o1

TOMBR(SAVV1)

TOMBR(SAYV2)

TOMBR(SAVV3)

coNo DP,4p082 3 RESUME
CONSO DP,upgoep

JRST o=

JRA 16,(16)

NWSTKM @ 3§ '"USERSY! PLANTED KERE
LIPSHM SR,D

JMPPSH SAVVY

LIPSHM DSP,g 3 'USERSV! PLANTED HERE
PSH WAR,

PSH RAR,

PSH UR,

pSH RCR,

pSH WCR,

PSH DIR,

PSH RSR,

skCL SAYELB, (14)

PSHM pSP,

STOP

V-14

RESTOR:

RESTR1:

RESTRZ2:
H

o)

MOVE 0,®0(16)
SUBI Zol

HRRM B,RESTR1
coNO DP,L0ODPD
CcONSsO DP,Lp00
JRST ™
TOMBR(RESTR2)
TOMBR([FJMP RESTR1])
coNO DP,4pR00Q
CONSO DP,LQROQ
JRST o=

coNo DP, 400
CONSO DP,4nepo
JRST o
TOMBR([PEEL])
TOMBR([PEEL])
TOMBR([PEEL])

coNo DP, 400200
YRA 16, (16)

1T SP,P(PEELM)
RTCLA SELINT, (14)
PEEL

STOP

1.T SR,0

V-15

4

'USERSV'~14 PLANTED HERE

TIMESHARING

This program swaps two users on the same scope. The switches con-
trol the time that each user has the scope. The console lights show
which user has the scope by displaying one or two.

Subroutine WAIT is the timeout subroutine.

SAVV is the subroutine to save a user in an area specified in the
calling sequence. First a pause request is issued, then,via a DATAO, a
new stack is formed and the status register and PC are both pushed marked.
Then the processor is given control to execute the code at SAVV4 which
saves all other registers plus the registers of the clipper. Note that
the data stack pointer is pushed marked and then pushed marked again after
saving the clipper registers.

RESTOR is the routine to restore a user from a saved area. First
the status register is cleared to clear program stop which was set at the
end of the SAVV routine. Then the stack pointer is set to the top of the
stack for the saved user and PEEL mode entered which causes the data
stack pointer to be unstacked (the DSP was the last thing pushed in SAVV
and it was pushed marked). Then all registers of the clipper are retrieved
via the restored DSP. PEEL mode is entered again which restores all
registers but the PC, SR and SP. These three registers get restored via
DATAO instruction and the resume is issued.

The examples were taken from the acceptance tests. These examples
were chosen for inclusion with comments here because they demonstrated
many of the features of the LDS-1 system. Certainly not all features are
included here. For further examples (without the benefit of complete
comments), see the acceptance tests.

V-16

Appendix I: CLIPPING DIVIDER PROCESSING TIME.

The clipping divider is a partly synchronous and partly asynchronous
device. While it is in an input or output waiting state, or while it is
engaged in passing data, it behaves as an asynchronous device and its internal
clock is not running. Thus initiating a computation and passing the data
relevant to the computation takes very little time. When a computation starts,
the clock is set running and the computation steps coincide with clock times.
The period of the clock is 0.5 usec. On a ‘best effort’ basis we are attempting
to operate the clock considerably faster than this, probably in the 0.25 usec
region.

Clipping divider processing of dots and lines starts with 5 clock times
of ‘setup’. Center size specification and processing dots requires one
additional clock time during the ‘setup’ phase. Processing then proceeds to
the ‘clipping’ step, in which any portion of the picture outside the window is
eliminated. Dots require only a single clock time in this phase of the compu-
tation. The time required for a line depends on its position relative to the
window. If both ends of a line are within the window, the ¢‘clipping’ phase
is completed in 1 clock time. Otherwise the processing time is from 1 to 20
clock periods, tending toward smaller times if the line is entirely outside
the window. The maximum clipping time is [log, L] clock periods where L is
the larger of the X and Y line lengths. If the dot or any segment of the
line was within the window, the processing then proceeds to the perspective
division and the window-to-viewport mapping. The processing time here, fol-
lowing 1 ‘setup’ step, is from 1 to 20 clock times depending upon the size
of the window and the viewport. The maximum processing time will be [log2 W]
clock periods where ‘W’ is the larger of the dimensions of the viewport or
the larger of the dimensions of the window, whichever is smaller. The worst
case for processing lines is 46 clock times (for 20 bit numbers) or 42 clock
times (for 18 bit numbers) and the best time for rejecting a line is 6 clock
times. Sending to memory requires several clock times, sending to the scope
requires from 1 to 2 clock times, and sending depth cueing information to the
scope requires several clock times.

After the usual °‘setup’ operations, boxing requires 2 clock times for
determining that the window and instance have no area in common, or from
12 to 31 steps to compute a new window and viewport. Loading and unloading
parameters requires from 4 to 6 clock times.

Al-1

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	A1-01

