THE PICTURE SYSTEM
USER'S MANUAL

Evans & Sutherland Computer Corporation
#3 Research Road
Salt Lake City, Utah 84112

o

Preliminary Edition : April 1974
Revised June 1974
First Edition ' December 1974

Copyright 1974

All reference to this document should be made to:
No. ES-PS-S0C1-003.

Evans & Suthetland Computer Corporation assumes no responsibility
for any errors that may appear in this manual. The information
in this document is subject to change without notice.

CHAPTER

CHAPTER

CHAPTER

CHAPTER

N R RN N
[]

- e wid P el wed
)

N}uhawiuhaw N

1.

2.

LI
EWN -

N
[
f~

q.

- pxcrunz PREPAR ICN,

TABLE OF CONTENTS

. Page
PREFACE

INTHODUCTION." ..’... ® T U H DO SO P S 09 S8 O e 90 GO “.....1-1
OVERVIEW OF INTERACTIVE COMPUTER GRAPHICS.¢.+eeeee2-1

PICTURE PRESENTATION::cvcccocvccsssosnsncssccncsessel™2
Graphical Output Medideececeesecccacssosocccnssncneal=2
ReffeSh'Rate@...r..--.ccf'--.-.'-.rm....-....--'.Z'z
Line Generation-;oon..--..co-'o--ooo.o-ooo.o.o'.-2-3
Update Rat@iccewsonessscncscsscscnsessassnsaansnesseld
Picture Bufferinq.....-c...‘-....-.--......1m....2°3
PICTURE DEFINITION

.0'.—."‘..0’...0.-.0.....’.!..2—5

....'.............."...;"Q.z 7

‘nsformatlonsonnn0‘...-:0......3.2 7

OVERVIEW OF THE'PitTURE SYSTEH.....,;;.....;.....3-1

THE PICIURE CONTROLLER..Q'... LR BN 2E BE 3% B AN} -.......'.‘.3-3 v
'IHE PICTURE PROCESSOR-........-oooo..-o.0-0000-003 u
Interface ChanNnel.cecececescssscesanncecnsenacesed=l’
Matrix ArithmeticC ProCEeSSOFecesssccssncnccscomesnes3d=lt
Terminal control‘......'.'...l... .O...l....‘...“.."'B-S

THE REFRESH BUFFER.'........". e o @S e ...-...'....3—6
CHARACTER GENERATOR--.....ooco.--o‘t-ooo.-o.ooo-.3-7
IHE PICTURE GENERATOR...... o8 ¥ 0 o0 o 9H3-7

IHE PICTU:RE DISPLAY........Q..."'....‘.--..'....3-7

INPUT--...-----o-paon-oq-o-o...-'.--.o--oo---000-3_8
Tablet-.g---......-.............-..-........-....3-8
CcntIOl Dials..-.--......--.o-o-o-.q-..'-o.-.oo-.3-8
Function Switches & LightS.eccecacccvcecsccsnccecsasld=8
dlphanumeric Keyboard.eceescaseceoecscosacacasceseli=9

THE PICTURE SYSTEM GRAPHICS SOFTWARE PACKAGE.....4-1

THE GRAPHICS SUBROUTINES.ececcccsesccceccsnccensvel~3

ii

ser Subroutlnes.................................u -4
PSINIT.....O....I....l....-.C....'-.'....O.u “
VWPORT--oo.o--o-oo---o-o.c-cg..o.ooo-.ooo-.a 9
WINDOW...--......--.....-.--.-...-..-......u‘10

ROT;.....C...‘.‘...‘....l.-.......Q..'.....Qq-11

TRAN.O.Q.C.Q'o...D.l.......o......;.‘....-.u-"z
SCALE.I‘.........l........‘.....l‘....-'-..“-13
PUSH-..‘.01.........‘.0.'00..-.1..'0.0......“‘1“

POP--.. ll...l.l..'.".l..l....l..-..O'.l...u-15

DRszD-.. Cl.li....".‘......-...I...'IQ...IL‘-16
DRAH3D.O.lo.:..-....'0.:....0..O..o.lt.'..-u-18

O 5 - - Y | £ L
TEXTeaeoocesovecsacacsncsscsaneccocncssnameneaesl=20
INST..'.l.'0.0......'....‘.l.....!.......'-u-zi
MASTERe cevssosnnnsscsccoccoocccacencscccnsaaali=22
DASH.: tevvuscnicscesacionscscncenesscasccssald=23
BLINKeeaoosossoasonsasescoacncnncessoccnnnseesl=20U
SCOPE<cececsesacsvaccsscacsssnnscnasnsaaseesid=25
T TABLET e e e ceacsecccnasosecesnsacnoncocsssasesld=26
S ISPDWNeseaeascecsacssncccnasncsnccccecnneead=27
\,cuasoa.....................................u 28

w‘ HITHIN...l.0-..-0.-.a..n.o..-.to.......1-0.“ 29
> E’HITEST.......'.‘l....'.'......'..“l.......u 30
wndir)

NUFRAH......-.......-....-00...0......-.0‘.4-31"
‘ MJ SETBUF..l';o;coo....l...o...000....---..'.0“ 32

e~
I T -

CHAPTER

mumooabhhunnounmoo,m

¢ o
WN -

NN
.

v wn

O] s 0

w W

.] . L]

- WWWWN D o w—-
L N] .
W -

w
»
w
.
N

BLDCON-.. a-;o..oqco...-...o‘..-o.a...--.....“ 3“
P$AVE.......---............-..o..-.;..;--..“ 35

P$DMA....‘....l..l...............0.-:.-00..-“ 35’
I$MATX..;..1...0......-0'......-01..-.0..'04 36

ERRORCIC'-...-..--..0..,..-'.-..l.......t..u 36
P$DIV.-...'.c_..on'q.c..c.-.v._-o....o.u-...o.u-_37

P$MUL.Q.. I‘.l“..".'.‘.......‘._.O‘..Q.-......u-37

PICTURE SYSTEM ‘ERROR»S......Q...‘.........'0......“‘38

EROGRAMMING THE PICTURE SYSTEMecevesosssnscassnnaed—]

GENERAL PROGRAH STRUCTURE....‘.l..l.‘..‘....’."..s-z

SCENE DEFINITION...Q.‘.....-l......Cc..‘..-n...oos-g

Coordinate SYStemMS.ccesscceccanccsncesoaansnncecnnesd=9

Lata Space COoOrdinateSececsssesccsccencscncncnnsssd—9

Hcmogeneous CoordinateS.cccccaccecnascscacsascansseesd=11
Screen CoOrdinateSeeecacevcececncecccncanssacesnsesd1l
Data DefinitiONececececcecsceacscccsnasacscnnsneaad—18
IranSfOrMatioNSeeceiceceecscacscssssncancscsancanssd=22
The Identity TransSformatioON.cecscececceccocceccceesd=22
Simple Linear TransformationS.e..cecsecesceaccacsad-23
Ccmpound TransSforMatioNSececececccscasevacacacesad=23

PROGRAM INITIALIZATION [PSINITlececsconcsancenead=35
Initialization of THE PICTURE SYSTEM Hardware

ANd SOftWACC.cceseacasosccccncancascoancesssssnsssaed=35
Initiating Automatic Operations [TABLET,CURSORJ}.5-45

iii

PSWAITI.-..Q..Q'..0..000.-0........00‘...oou 33
SYStem SUbroutlneS.-- ..o-.... ee cecenvcesn lQ......OIu-3u Vo

R$STORE.....‘I‘..‘......I.l....‘..O..'..‘..;..u 35 .

(S NV, N N
e & &
W tw W

. -
W N NN

o n
[
s EFEEE

[] L]
[L[] L[] [y [] [] [] [} o
W=

tnuonnoooomohnwn

T s 8 a8 e 0 8 b
.

NN EWN -

ywmtnunanU1mkn

@ .o .
S .

nmuvumum
e -8 [] »
,&v

. o & & & s ¢ 3 2 s 0 B o
[}

WOUVOWOVOWOOOWOULEOLWD

(RO RGEGELROREORGRE R RV RS, N

- ad b -
OSCOOC
¢ o 0

[SRC, NNV, N N (G NG, NV, NS,
s & 8 o s D 5 & 3 o

— nad b amd end b
- ad aud od amd w=d

EEEEWNNNN = mw—a

L[]
WK =

4
[B

W =

WNN N -

W N w WN -

WA =

N -

Automatic Tablet Updat@e.cesceccccssesccccacssenssd=ll .
Automatic CUCSOL DiSPlaVeececeocsccsscecsacccnaesssssd=l5
Use of Automatic Tablet and Cursor ModeS...cece..5-46
Initialization of User VariableS.cceececccecaceseses5-UB

VIEWPORTS [VWPORT Jeoeeceveccnccasenccsccscanssessd=50
Full Screen ViewpoLt..ceceececccesscsssesacncsnaeed=53
Multiple ViewpOrtSiccveccacsocsscacsosascsnasssenced—53
Depth-cueinqoo.-n-o.o--..--.o-o'.00.00'0-000000.05-57

WINDOHING rwINDOH].".'...-... ..‘.....-....‘..'..5-58
T'o-Dimensional Vie“S. 2 6 © 9 9 06 PO OO DU S S PO SN OGS OSSO e 5-61
Three-Dimensional Orthographic ViewS..ceeecenceeeea5-62

. Three~Dimensional Perspective VieWS..cecesnaceees3-63

Non-Square Windows and ViewpoItS.ccccesscesssncenssd~66
SeCtiONiNGe seccsecscesnassnesscssssascenasassancncss2—69
Depth°cueinq..-.........-..-.u--..-..............5'69'
Rear- facinq ViEHS....-..-.....-..--.---..-.....-.5 70t
Placement of the Hlther and Yon PlaneS..ecescecssed=72

ROTATION rRoT]..-. .I....'.‘.5-7.-

TRANSLATION rTRAN];.....;;...............;;;l;..5-7
SCALING [SCALE].-..‘..'...‘v;~‘.‘.‘.'...‘;-.....b
Data DiStOrtioNieeeveesesass :

errorlnq.‘.;..'.....Q.........’-.........'.
Scaling Using the Homoqeneous Coordlnate, Iﬂ_"

DATA DISPLAY.....................................5 8
Display Of Lines and DOtSeceeecesececceccaseanssssd=83
Crawing Two-Dimensional Dat@.eecsecescscsascaseeead-84"
Drawing Three-Dimensional Data...................S 89
Specific Drawing FUNCtIiONS.cececseasscnccsceonnewed=90
Display Of ChAaracterSesscecceneaceansancoscssncnsead=92
Character Size and Orientation [CHARJeeeee<seescs5=-92
Positioning for Text DiSplaVeececscccossscccncesseasd~96
Text OUtPUt [TEXT Jeencessecsccscnnscnnsnsoascsssnesd~98
Instancing [INST, MASTER]........................5 102
LCisplay MOAESeeeencnnscsncacasscasnscssnscensesnsed=111
Dashed Display Mode [LASH]eeceeesccesssacsancsssd=111
8link Display Mode fBLINK].......;;.............5 11
Scope Selection [SCOPE].........................5 113

INITIATING THE DISPLAY OF DATA [NUFRAM,SETBUF]..5-114
Lisplay of Data Without a Refresh Buffer....ee...5-114
Display of Data in Slnqle -Buffer MOdCecesacceeseaad-117
Display of Data in Double-Buffer Mod€eeeeeveceees5-123

INTERACTION USING THE TABLET . e cecoascanncnesenead=127
Tablet and Cursor Use [TABLET,CURSOR,ISPDWNl....5-127
POINtingicecetieeciececncscanccacanvsesossasassssansd~136
POinting at MENU IteMS.cccececescececsossasssaseesdm 136;
Pointing at Data Elements [HITWIN,HITESTleceeeso.5-139 g
POSltlonlnq........................-..-.-.-.---..5 14

iv

P

APPENDIX A

‘> |

I

- et b el) ek) wd
s 6 s 0

NOUME WN -

> 22> b

. ®
NN
.

— ok

+

- X b b
N
-
.
N

NN
. L]
-—) aed
¢
& w

Ll o

¢« &
EWN -

o 3 b B> b
s e e
NN NN
L]
NN DON

.

NN NN NNDNDNNNN NN
[]
FwwWwwiwwwwiwidhnihihodhpbp b

. e @
L]

.

—ed = DD SO N
N -

e 8 & 8 B

« 8 3 8

¢ o o o 8
VN UNEWN -

D 3> 3Dy b 3D o Db D 3D D> b

- -
.
wtw W W
s o o
w N e

SPECIFICATIONS OF THE PICTURE SYSTEMeceeeveccecessd=1

TEE PICTURE SYSTEM FUNCTIONAL SPECIFICATIONS.....A-2

Picture CONtrollerleeccssscecscasassecscascssascenessd=]

FictUre PrOCeSSOL eeweacecsnnocsnssscacsacassasscssesdA=D

Refresh BUfferececececcsncencacscsnsscsasasscccccnnsscd=T
Character GeneratOLecoevecscemccccsesccscscccrsansacsesA—8

Ficture Generator and Picture DisplaYeesceceoessesd™9
Tablet..-......'........-.'...........-..........A'11
PDP-11 UNIBUS Addresses Reserved Ly

THE PICTURE SYSTEMuaeeaseseasaseccnsssacncssassnscennsecdA~12

THE PICTURE PROCESSOR HARDWARE SPECIFICATIONS....A-13
PDP-11 Picture Processor Interface RegisterS.....A-14
Refresh Timing RegisSter.ciececcscccncscncseancecncesA=16
Real Time CLOCK (RTC)eececcvccccctacancessaA=16
Command ReJiSterSececsvaccccssscsscncnsnsscscssnesed=18
Status Register (SR) casccesoscsscscsacsscsasald=-18

Repeat Status Register (BSR)eeeeeeeeeeacsc.A=257

Ccmma.nd Executlonoocoott'...Cooconottoocooco.ooQ.A-3O

Data Transfer Req15ters...................;......A 3°«fa
Word Count Register (DRWC)eeeeeesasevceseesA-31

Bus Address RegisSter (DRBA) ceeessocecsceceeeh= 3135

DMA Status and Ccmmand Register (DRST).....A-32

: Data FormatS....;;‘.--------.-.-....;-..-..-A 35

Picture Processor Internal RGQISterS.....,..._..'A_u1ﬁ

Transformation Matrix (TRANMAT) eeveveeccenoasessA™ 417

Temporary Matrix- (TEMPMAT).......................A 41

Refresh Buffer (REFBUF) ceccevvocscscsesosccacassesl— u1
Viewport Left, Bottom, Hither (VIEWL,VIEWB,
VIEWH)...A-uj-
SAVe (SAVE) wicacsenceccancscsccasnncsnsnsaccansoassdA=i]
New Clip (NC) euaeecssncnncssssacceanacsascnssancoocnesA=-ld3
New VieWw (NV) icececncucscsocssccnccsnnsosnacancesesd=ll
Viewport, Right, Top, Yon (VIEWB,VIEWT,VIEWY)A-U43
Base (BASE)o.o;-o.iﬁoc-.o-o'o'cn.ooo-----c.--o-ocA-uu-
PreviousS Clip (PC)eeeeasccascccssecsacscnsncncscccessd-ll
Previous View (PV)eeececesssscocncovssnnnsssncocssssA~lld
MatriX StacCKe esceeevessasccccccnssccsacnsansaneseadA=lli
Command Execution Deta@ilS.eccseccecctcacsonncacneccA=Ub
2DDRAW and 3DDRANW, FSMI1=DRAWTOeuecovecsssancsscascsA=lb
2DDRAW and 3DDRAW, FSMI1=MOVETO OF DOT.c:ecseccosss-A—Ub
2DDRAW and 3DDRAW, FSM1=STATUS or CHARACTER.ee....A-48

PUSHo-......Oo....I-.....'-0'..o..-.o-.n....o.:..A-ue

POP..--.o.--..-.-.0.-.-.....0.......... ...-......A-ua

MATCON-.. 5 ® 28 B G 4G 2T TS TGOS SIS I PO RSO eE nc..-..o.-A-ue .

LOAD-.’--.......-no--o-------o-..--.-----..--.-..-A‘“B

STORE.-.....;QCDCt;oo.lo.-..-a.'..Q.-..........‘.A-ug

Character GEeNeratOlecseac<secsssnscanccssncsesnanessdA=D0

PROGRAMMING THE PICTURE SYSTEM.uecceeacsenaocnsessesA=53
Program DeSCLiptiONeceece cecesecsssnsaccssansscanssA=53
MACRO-11 Program EXampPle.ecceeccsacocscncvasasasseasA=57
FORTRAN Proqral EXampPlE.s.eccccecicecscsscanascocncsesad=58

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

B

' NCN BEENTRANT EXAHPLE........
ZREENIRANT EXAHPLE....;...

ffNULL ARGUHENTS. s b

SUMMARY OF THE GRAPHICS SUBROUTINES.e.ceecsaesessB=1
FORTRAN CALLING SEQUENCESece<ceccccccccsacnscacssassB=3

ASSEMBLY LANGUAGE CALLING SEQUENCES...sceececseceessB-l

PDP-11 FORTRAN CALLING SEQUENCE CONVENTION..ceseoC-1
INTRODUCTIONOOO.Q.o..;'o.ctoooo;tnﬂtuo-....o-....c-1
THE CALL SITE..'.Q...‘Ib‘...“...O-.';A.......'.'..’.C-1

RETURN-....‘.-Q.'..00...0.........'..'...l.......C-Z

RETURN vALUE TRANSMISSION....'.'.......C-Z

»CONTEXT SAVE AND RESTORE CONVENTION-.............C 3;;

'AUSE OF THE GRAPHICS SOETHARE HITH THE T

PAPER TAPE SOFTHARE SYSTEM......;......;;...;....D 4

DESIGN AND USE OF THE PAPER TAPE GRAPHICS

'SOFT“ARE......'......‘.Q...‘Q...........";.;..-'D-1

ERRORS USING THE PAPER TAPE GRAPHICS SOFTWARE.... D-3
PROGRAHHING THE - PICTURE SYSTEM USING THE

PAPER TAPE GRAPHICS SOFTHARE...............-.....D 7
USE OF THE GRAPHICS SOFTWARE WITH THE

DOS/BATCH DISK OPERATING SYSTEMeseeecesssacaesaseE~1
USE OF THE GRAPHICS SOFTWARE PACKAGE.ceecescevessE-1
USE OF PDP-11 FORTIRAN IV WITH THE PICTURE

SYSTEH‘-'.....o-OC...0.'_.......-.........‘. se eow p.E-z

USE OF THE GRAPHICS SOFTWARE WITH THE
RT-]1 OPERATING SYSTEM..-........'.'....'.‘....‘.'F-1

USE OF THE GRAPHICS SOFTWARE PACKAGE.eeesssscassaF-1

USE OF PDP-11 FORTRAN IV WITH THE PICTURE

SYSTEM...'.....I-.‘Qll..".‘ll.'.........."'.'...,‘.F-z

vi

Te

all the dynamlcf capabllltles

CHAPTER ONE

INTRODUCTION

THE PICTURE SYSTEM 1is a stand-alone, general purpose,
interactive computer graphics system which can display
smoothly moving pictures of two- or three-dimensional
objects. This system has all the capabilities which have
been found to be needed and wanted by users of computer
graphics systems. It has been designed as a problem-solving
tool, a hardvware/software system which satisfies real needs
and can be used to solve practical problems.

Evans & Sutherland line drawing systems traditionally have
been applied to applications where perspective and dynamic
motion, 1like rotation and zooming, are required. THE
PICTURE SYSTEM has the same dlqltal hardware capabilities as
the previous systems, but in addition, has digital picture
buffering for refreshing the display. The built-in Refresh
Buffer memory allows more lines and characters in a picture

- . and eases the time and data storage: burden on the~icomputer'”
-~ which controls THE PICTUBE SYSTEM. “ro” “7 ek

plcture proce551nq aref

standard in THE PICTURE SYSTEM. The" basic components of the

1_ system _are a DEC 'PDP- 11'“‘hardware procesxng unlts for
: performlng

:gsuch functlons as rotatlon, zoomlnq ~and
perSpectlve,sf an 8192- -point Refresh Buffer':' Plcture

- Generator; .a_ Character Generator-‘a 21"’P1cture Dlsplay.[ﬂa

Tablet to- fac111tate plcture 1nteract10n' and the software—
to support the system.

CHAPTER TWO

2. OVERVIEW OF INTERACTIVE COMPUTER GRAPHICS

Computer graphics is a relatively new and important
branch of computer technology in which computers prepare
and present pictorial output. Interactive computer
graphics qoes one step further in that it allows a user
to dictate changes to the picture and see the results
immediately. If a system's time lag is more than a few
seconds, it does not gualify as interactive; in some
systems, however, the -time lag is a very small fraction
of a second, in which case the user gets the feeling that
he is actually manipulating the picture itself.

Computer dgraphics 1is a very broad subject and even an

overview of it can diverge into a great many topics. The
purpose of this chapter is to present in general terms .
the concepts necessary for understanding and using THE
PICTURE ~ SYSTEM. = Consequently, it devotes little '*
dlSCUSSlon to some aspects of graphics vhich may be ofV”
interest and 1mportance to some readers but which are no
'prere u151tes to understandlnq the rest of this manuall

'study of - qraphlcs can be broken doun 1nto four ma1or“%
 thp1C areas-” presentlnq a prepared plcture,_representlang
structures © be - deplcted preparlnq a picture of such -
- structures and 1nteract1nq with the p1cture. ‘Each offwﬁ~
these areas 1s explored in the following sections. :

1pPrinciples of Interactive Computer Graghics, Newman and Sproull,
McGraw-Hill, 1973 is a reccmmended reference covering most
aspects of computer graphics.

PICTURE PRESENTATION

Computer users are familiar with output media such as

listings and magnetic tape, where computed results are
recorded 1in numerical form. Often the numerical form is
an artifial way of presenting pictorial data. Computer
graphics cifers a new output medium on which data can be
presented visually.

Graphical Output Media

At one end of the graphics spectrum lie plotters, where a
computer-driven pen creates a picture on a stroke-by-
stroke basis. Plotters are unmatched for résolution (a
measure of the density of individually distinquishable
output values), but are extremely slow compared to other
graphic output devices.

Next there are ;raster printers, where tbe' computer -

‘ selectively fills elements of a rectanqular mesh with
ink. - The pattern of . fllled and empty elements can be .
assembled 'by the eye lnto ‘an plcture when viewed from -a’ -

reasonable dlstance.¢ Raster printers have rather coarsetﬂi
resclutlon hut are much faster than plotters. s

'Output ’an _paper is. permanent, whlch can be an advantage

or dlsadvantaqe. To meet the .-need . for an impermanent
qraph;c output medlum,, the cathode - ray rube (CRT) is
used. Information is presented on a CRT by . directing a
beam of electrons about on its phosphor coated face. One
form of CRT, called. the storage tube, 'retains . pictures
semi-permanently by "capturlnq" the. electrons in tiny
cells on its face so that those cells gqlow wuntil the
electrons are "freed" by an erase pulse. The other fornm
is the refresh CRT, whose face emits light for an instant
when it 1is struck by the electron beam and then turns
picture to retain the image which 1is referred to as
refreshing. '

Like paper, the refresh CRT can be filled with a matrix
of dots or can be drawn upon with a set of strokes at any
position and any angle. An example of the former is the
home television; an example of the latter is THE PICTURE
SYSTEM's Picture Display.

Refresh Rate

Since the phosphor on the refresh CRT fades almost
immediately after it is struck by the electron beam, the
picture must be continually redrawn to be viewed. This
rate at which it is redravwn is called the refresh rate
usually measured in frames per second. If the picture is

2.1.3

2.1.5

is knoun as depth-cuelnq.

not redrawn frequently enough, the eye will notice it

_fading between refreshes, producing an unsiqhtly effect

known as flicker. The flicker threshold varies somewhat
from phosrhor to phosphor and from observer to observer,
but most observers of the common phosphor, P4, begin to .
se2 flicker at a refresh rate of about 30 times per
second. That is, pictures redrawn more than 30 times per
second appear flicker free; pictures drawn less than 30
times per second do flicker; and pictures drawn exactly
30 times per second are marginal.

Line Generation

A 1line 1is specified by two end-points. (x,v) and (x*'y"),
expressed in the coordinate system of the CRT, called
screen coordinates. The -actual movement of the electron-
beam between the two points is accomplished by a hardware
device <called a line generator or a vector generator. A
sophosticated line generator is also capable of drawing
lines with a program-specified intensity, or even varvlnq

the intensity of a line from one end to the other. In.
this BOSt general case,’ where line endpoints aregj,
specified by the three coordlnates (x,y,z), -the 1nten51ty%gf

or- brightness - of 1lines can.appear to trail: off in the
distance. producing an 111u51on of - depth.f This techni

Line generators can often be made to draw llnes in’ any offvj

a choice of modes such as’ SOlld dashed, bllnklnq, dashed;

-and--blinking, etc. " "Line qenerators ‘which can serv1ce}’
more than cne CRT are equlpped vith a. fac111ty for scope ' . .
selection. A display program ‘may select one or more

scopes and then any subsequent lines drawn appear on all
the selected scopes. :

Update Rate

The advantagqe of the refresh CRT is that it can show
smoothly changing pictures. Lines drawn on a CRT 4o not
really move, of course, but the illusion of motion is
imparted by continually redrawing the picture with 1lines
at slightly different positions each time, or each franme.
The eye blends this sequence of slightly different frames
together 1into a smoothly moving picture such as a motion
picture. The rate at which these different frames can be
displayed is called the update rate. In contrast to the
refresh rate which counts the number of pictures drawn
per second, whether or not they are changed, the update
rate counts only those frames that are different.

Picture Buffering

. be ‘split . 1nto

In THE PICTURE SYSTEM a refresh buffer provides storage
so that the refresh and update rates may be different.
Although refresh of 30-40 frames per second is required
to avoid flicker, update of 10-20 frames per second is
adeguate to provide smooth motion. 1In effect, each new
frame is shown two, three, or even four times while the
next frame is being computed.

Data resident 1in a refresh buffer is called a display
file. ' Full frames stored in this buffer may be read out
and used to refresh the CRT any number of times before a
new frame is created. Typically, new frames are created
20 times a second and the picture is refreshed 40 times a
second; i.e., each frame is shown twice. Thus, the
presence c¢£ a refresh buffer allows both refresh and
update to proceed at their respective optimal rates and
the system has a larger line capacity than it otherwise
uould. :

A potent1a1 problem area _exists whemn a picture is
refreshed. from a. memory uhlch is 51multaneouslv belnq
fllled Hlth a : :

another.\
un51qhtly.»

buffers and update and
‘refresh” can be 531tched between the two in .a -way . ‘whic
avoids - confllcts.b_ Thls is called &e&b&e-bufferlnq, and
its only dlsadvantaqe-ls tbat the’ amount of plctoriaﬁ‘
data which may be buffered- 1s halved In some cases this -
can place -an . ,unnecessarlly ~low celllnq _on the 1line
capacity. .The alternatlve, 51nqle-buffer1nq, can be used'}
to take advantage of the entire’ bufferlnq space when the -
effects are not too dlsturblnq, usually when the pictures
shown are not ~ highly dynamic. In systems without a |
refresh buffer +the update and refresh rates must be the .
same. This limits the amount of data that can be
displayed and the complexity of the picture that can be
pProcessed. ‘ »

2.2

PICTURE DEFINITION

Data wultimately deposited in a refresh buffer must
originate in the memory of the computer «controlling the
system. This computer-resident data is called a data
base and may be vastly different in form from the display
file which emanates from it.

" Data bases may be hiqhly structured, requiring a complex

program to weave through them, or they may be very
straightforvard. The data base contains the coordinates
of pcints in the structure to be displayed, alonq. with
instructions for interpreting those points. Along with
coordinate information there may = be pcinters,
substructure names, and other non-graphic information and
attributes.

Points are the tasic qéometric entities in the data base..
There are three basic instructions for treating a point:
move the beam to that point, draw a line to that point,

cr draw a dot at that point. Graphics systems are often .

desiqgqned to understand codes for several of the most: -

common sequences of the ba51c instructions '(such as;i*
"move,draw,move,draw,..."), ‘that large tables of:
points can be processed based on a single pre-specified -

code.

The most stralghtforward way to- =pec1fy the pos1t10n of a-

point is simply to state-its absolute coordinates. An - .

alternative that often introduces considerable

efficiencies, called ' relative 'coord;nates; entails ~
stating - the displacement required to get to a point from =
the previous point. Codes for common: sequences like

"absolute, relative, absolute, relatlve..." can be made
recoqnlzable to facilitate handllnq tables of points.

If a structure to be displayed lies in a plane, it is
simplest and most efficient to define it using two-
dimensional data. In this case it is typical to supply
an "x" and a "y" coordinate for each point in the
structure, and then perhaps a single %"z" coordinate which
applies to all the points.

If however, the structure is non-planar, it must be
defined as three-dimensional data where a coordinate
trirle of the form (x,Yv,2) is given for each point.

In general a full computer word is devoted to each
coordinate of each pcint and all coordinates are
expressed as 1integers. In a 16-bit computer, then, the
largest expressable positive number is 32767. This 1is
sufficient for many applications, but the need to express
larger numkers scometimes arises., This need can be nmet,

at the expense of some loss of resolution in data
definition, by employing an alternate means of expressing
data called homogeneous coordinates. Here a point
(X,¥,2) is defined by the four coordinates
(hx,hy,hz,he32767), where "h® is an arbitrary number
between zero and one.

If each of the numbers x, ¥, and z is less than or equal
to 32767 in magnitude, "h" would be made equal to one (in
order to preserve maximum precision) and the expression
becomes (x,Y.,z,32767). If one ct the Cartesian
coordinates, say x, is 50000, the value of homogeneous
coordinates beccmes apparent because "h" can be made L/2
to make x expressable; the point is then defined as
(12¢50000,1/2%y,1/202,1/2032767) _ or
(25000, 1/2ey,1/202,16384), all perfectly expressable
numbers. It is apparent though that resolution is lost;
when "h" is 1,2, it is impossible to exactly express odd
values for the_ original -coordinates. In the example
above, the- expreSSLOn -of an X of 50000 is identical: to
the expresszon of an x of 50007. Furthermore, resolutxom
is leost in. all: thnee coqrdlnates even if only one of them
is out of . bonnds. "' smaller- values of ~"h" lmpose a1
correspondrnqlv»qreaten loss of resolutlon.

It 1is. custom ry to.conserve core by supplylnq only the-g
first three co glnates (hx,hy,hz) ‘for three-dlmen51onal»’
points, or - 1ust tuo ‘ coordlnates (hx hy)for two-;*
"dimensional p01nts (Elth ‘a common-value for ‘hz), and o
pre-spec1fy a ~fourth’ coordlnate (usually referred.to as
Ty whlch applxes to several such po;nts.u

The user may be'-tempted' ‘to assume-_that relative

coordinates are another method of extending the bounds of

the data space heyond .the: normal limit of 32767 (e.q.

setpoint to (30000, 30000), draw ‘relative. - to

(20000.20000), . leaving the ‘beam- pos;tloned at
(50000,560000)). Such is not the case and .an. attempt to
accunulate relative positions beyond the nmaximum

representable values will cause wrap-around, i.e. a

number of opposite sign and erroneous magnitude will

result.

PICTURE PREPARATION

The data base is almost never identical to the display
file because the data base represents scome scene, or
collection of structures while the display file
represents some view of that scene. To create a display
file, transformation of the data base is required. 1In
order to prepare a structure for display, it may have to
be changed in size, position, or orientation; it may have
to be put in perspective as seen from a given vantage
pcint; parts of it may have to be removed to keep
everything within a given field of view; and its
coordinate system may have to be changed to conform with
the output device. All of these steps can be expressed
mathematically and implemented in software or hardware.

It is possible to implement the picture preparation steps
in software using a general-purpose computer, but this is
relatively slow. Hardware, while less flexible, is much
faster. Fortunately, many of -the steps involved in
picture . preparation are invariant from application to

application which'makes'it very worthwhile to implement’ '
~.~them with special purpose hardware, “Any calculations '/ ©
-.unique to a qlven appllcatlon can st111 be performed”,'
‘softuare.' ' ‘ - O

To meet’ the demand fér:“faSt”'trame ‘creation, - high-
performance graphf ‘systems. employ special purpose

hardware processors”to implement the picture preparatlon‘ﬁf'
-steps. These eteps are descrlbed in the ﬁ“”f‘sectlons.qf““

Simple Llnear Transformatlons

Linear transformations (rotations, translations,
scalings, etc.) can be described by parameters which
indicate the type and degqree of transformation. If the
transformation parameters are properly arranged into a
matrix, a vector 0f original <coordinates can be
nultiplied by this matrix to yield a vector of new
coordinates reflecting the desired transformation. :

A 4xi4 matrix can represent any rotation, translation or
change in scale and can be used to transform points
represented by homogeneous coordinates or as special
cases, two~ or three-dimensional coordinates.

This matrix expression of transformations is used because
of its simplicity and because system design can then take
advantage of the large body of knowledge about matrix
arithmetic.

Compound Linear Transformations

2.3.3

2.

3.4

All linear transformations can be expressed as a sequence
of simple translations, rotations and changes 1in scale.
A transformation expressable only by such a se2quence is
called a compound ¢transformation. When a - compound
transformation is to be applied to a set of points, it
would be possible, but extremely time-consuming, to apply
the first simple transformation to the original
coordinates, then apply the second transformation to the
resulting coordinates, and so forth, for each point in
the set. Enormous savings can be introduced, however, by
taking advantage of the fact that matrix multiplication
is associative: it is equivalent to first forming a
compcsite patrix by multipling ‘together matrices
representing all the simple transformations in - the
sequence, 1in the samre order in which the data would have
encountered the original tranformations and then applying
this composite matrix to all points to be transformed.
The process is known as transformation concatenation.:

Perspectlve

It - is":relatlvely " straightforward to. prepare. two- -
dimensional- data for display on a two-dimensional medium. -
Three- dlmenSLOnal ‘data may be converted to two dimensions
after ttansformat;on by 51mplv dropping the depth (or z)
dimension. ' “Th

has an “EUOtmous"effect .the—“appearance of . the .
horizontal and vertical dlmenSLORS. This effect,. known
as perspectlve, accounts for the converqence of parallel.
lines in the distance.

The perspective operation entails computing a point
projection of three- d1mensxonal points onto a plane
representative of the screen, as depicted in Fiqure 2.3-
1« FEerspective can be applied to three-dimensional data
by taking advantage of the fact that the perspective
transformation is expressable in matrix form: a
perspective transformation matrix can be included at the
end of the sequence of rotation, translation, and scale
matrices to transform three-dimensional data into a two-
dimensional perspective representation.

Windowing

In some graphics applications, the data base is to be
displayed in its entirety on the screen. O0Often, however,
a closeup of scme portion of the data base is desired and
the rest is preferably omitted. Determining what to omit
is not easy, and is particularly difficult if parts of
the data base have been transformed. In fact, this
determination is so time-consuming in software that it
jeopardizes the dynamic movement of the picture.

yfresultlnq ‘picture, however, would not ;i
look reallstlc ‘because in: real llfe the depth dimension

dimensional region. It may be a rectangular volume, or, '
if its contents are to be seen 'in perspective, a section .
of a pyramid called a frustrum of vision. Such Ta .
frustrum = is shown in Fiqure 2.3-3 alonq with the

Sophisticated graphics systems address this so-called
windowing problem by performing a visibility check in-
hardware after the transformation stage and drawing only
visible lines on the display. One implementation of
windowing is «called <clipping and entails comparing all
lines with the boundaries of a program-specified field of
view superimposed on the data base. Lines or portions of
lines outside the field of view are eliminated and only
visikle lines are passed on for display on the screen.

In two dimensions, the field of view is a rectangle
called a window, superimposed on the plane of the data
base. Clipping is easiest if the sides of the rectangle
are parallel with the <coordinate axes; however, this
presents no restriction since the effect of a rotated
window can be obtained by rotating the data in the
opposite direction. - '

4 window 1is specified by supplying values for its left,
right, bottom ‘and top boundaries using the same -
coordinate system used in the data base. Two-dimensional .

clipping is diagrammed imn Fiqure 2.3-2. - ' B

In three dimensions™ the field of view is a three- -

parameters necessary to completely specify.it,

In Fiqure 2.3-3 an eye positioned at point E along the 2 .

axis is to see the portion of the data base that 1lies
within the frustrum Wwhose hither (near) boundary is at
pcint H, yon (far) boundary is at point Y, and whose side
boundaries are determined, as in the two-dimensional
case, by the window 1left, right, bottonm and top
boundaries at the hither plane.

As in the twvo-dimensional case, lines are retained,
completely eliminated, or partially eliminated depending
on whether they are completely within, completely

outside, or partially outside the frustrum of vision.

Another agproach to windowing is called scissoring.
Scissoring entails making available a screen coordinate
drawing space which 1is somewhat larger than the screen
itself and then intensifying only the 1lines and 1line
segments actually cn the screen. Scissoring is easier to
implement than clipping and does not take up time in the
picture preparation stage. On the other hand, scissoring
permits an effective drawing area only slightly larger
than the screen as opposed to the vastly larger effective
drawing area permitted by clipping. Another disadvantagqe

of scissqziRQ“iS “that'.théﬁ;line generator spends time
tracing out all lines hoth visible and invisible, which
makes flicker occur more readily. :

Conversion to Screen Coordinates

Coordinate data that is not rejected by the clipping
process is within limits determined by the field of view
which may be of any size and at any position in the data
tase definition stace. rowever, it 1s qeneraliy
undesirable to display that data in a corresponding size
and position on.the ‘screen. Rather, the data should be
properly scaled (or mapped) that - it fills some
proqram—specxfled.teq1on an the screen called a v1ewport.
This can be accompllshed by performing a final processing
step which 11nearly maps all data from the window to the

v1euport.

Left Blank Intentionally.

2-11

POINT 2
_ON_SCREEN

LI POINT |
\ ON SCREEN

.,~/I/le, :
| £} ey

R Rt

Fiqure 2;3-1

Three-Dimensional Perspective Projection
cnto a Two-Dimensional Plane :

2-12

.,/

WINDOW
TOP

WiNgow
BOTTOM -

WINDOW
LEFT

1

WINDOW
RIGHT

P

LINE SEGMENT REMAINING
AFTER CLIPPING PROCESS

LINE LEFT INTACT BY THE
/— CLIPPING PROCESS

L e e LINE SEGMENTS REMOVED
- BYTHECLIPPING PROCESS -
\0 : ~ LINE ENTIRELY REMOVED
S\ 'v _ BY THE CLIPPING PROCESS

Fiqure 2.3-2
fwo-Dimensional Clipping

0
=<
N

Figqure 2.3-3

Frustrum of Vision showing the Eie Position in Relation to an
' Artitrary Coordinate Axis

2-14

If the viewport is a rectanqular region aligned with the’

screen axes, it can be specified by supplying the screen
coordinates for its 1left, riqght, bottcm and top edges.
If the system's Line Generator can draw lines of varying
intensity, a viewport may also specify the intensity
limits for the data displayed. These limits specify the
intensities of the data at the hither and yon boundaries
and are called the hither and yon intensities. When the
hither and vyon intensities are different, the intensity
of the displayed picture elements varies between these
limits, allowing an illusion of depth to be imparted to
the picture. Thus, a viewport is used to specify the
reqgion of screen and the intemnsity limits for the data to
which, in the most general case, the frustrum of vision
is mapped. Figqureés 2.3-4a and b show how data may be
displayed within a viewport which is the entire screen or
only a portiom of it. Viewports may also be utilized to
map data into the coordinates of devices other than a
display. For example, viewport boundaries could be
specified in the coordinate system of a rflotter or

similar dev1ce. to provide the capability of obtaining ...
hard copy cutput to the- preCISlOD of the plotting dev1ce.g]-

An advantaqe of proqram-spec1f1ed viewports is- thatﬁjgi
several - may be a351qned in the same program’ each{fjw

receiving dlfferent ‘data. - This technique proves -
convenient for many purposes in graphlcs, such as showing -

different views of' an object or views in different

directions from the same pclnt cn the same output - device
=1multaneously.' S v ST

Text Display

Almost all graphics ~applications «call for the_

presentation of alphanumerics on the screen at one time

or another. It is c¢f course possible to define character
shapes in the data base like other picture elements and .
in fact this is necessary if characters are to be treated

like other obijects, i.e., ‘rotated, clipped, etc. -

However, it 1is possible to derive efficiencies from the
foreknowledge of character properties when they do not
require such sophisticated treatment, by generating the
actual strokes of the characters just prior to drawing
them and dealing only with character codes up to that
Fcint.

A hardware device which accepts character codes and
produces the strckes comprising the character is called a
character generator. Character generators generally
provide flexibilities in the size, shape and orientation
0f the characters they produce.

2-15

Fiqure 2.3-8a .

1 screen Viewport

/— VIEWPORT

Figqure 2.3-4b

Full Screen Viewport

2=-16

To use such a device to draw a string of characters, a
display proqram -must first stipulate character size,
shape and orientation values; then position to where the
string is to beqin and insert a set of packed character
codes, called a text string, into the display file. The
character generator would then interpret the text string,
look wup the set of strckes associated with each code,
size and orient the strokes properly and draw the
characters on the output device. Codes are packed into
text strings as a memory conservation measure.

2+ 4

PICTURE INTERACTION ;
Sophisticated qraphics applications often require that
the form or ccntent of the picture be changeable by the
user. A number of input devices for this purpose are
generally made available and each has its strong points.

A ccmmon input device is the light pen which is a light
sensitive stylus connected t0 the computer. When the tip
of the stylus is held against the screen and over a line
segment, an interrupt is generated. The computer can
then determine what 1line in the display file was being
pointed at. ‘ : :

Function switches are frequently attached to the computer
in a graphics system. These:are toggle switches or push
buttons whose polarity can be read. Each switch can be
assiqned a meaning unique to the program,

Several amnaloq input devices are sometimes used for

interaction, ' including control dials, Jjoysticks and

trackballs. These devices. offer one or more degrees of
freedom over which a user can enter input values used to
control rotatlon, translatlon, scaling, etc. v

A versatile lnteractlve 1nput device is the tablet, uhlch g
is a flat rectanqular plate uhlch may be pos1tloned on a-
table im - -frcnt -of, ' or jnear, the display .screen.-

Associated with the tablet is a pen which may be moved

atout over the plate and whose position on the plate may -
be read with fimne resolution by the computer controlling '@
the system. The computer can also detect whether the pen

is actually touching the plate and may also indicate if
the pen 1is near the plate. To tie pen motion together
with a picture, a <cursor 1s generally drawn on the
SCreéia This cursor is a small symbol which continually
moves about in concert with the pen. It soon becones
natural tc¢ quide the cursor'to a desired position on the
screen by an approprlate motlon of the pen.
l

A tablet is considered the best input device for entry of
precise positional information. It can also be
programmed to perform the functions of function switches
or the analoq devices. In order to enable a tablet to
perform the ©pointing function of the 1light pen, the
system should be equipped with a hit test feature which
checks all data as it emerges from the traansformation
stage for proximity to the pen position.. The user
positions his cursor over the target structure and
initiates the hit test feature {perhaps by touching the
pen down). If a target structure is encountered a flag
is set which may be later tested or may be programmed to
cause an interrupt. This method of pointing has the

2-18

advantaqe that the ‘target structdy
base, not the display’® file. .

‘o S
impossible to backtrack from an entry in the display. file7“
to find its corresponding entry in the data base.

The tablet also has a human engineering advantage over a
light pen. The user of the tablet is allowed to sit in a
natural writing position and at any distance desired from
the qgraphic display. This reduces user fatique and
improves operating conditions.

CHAPTER THREE

OYERVIEW OF¥ THE PICTURE SYSTEM

This chapter provides an overview of the hardware
components vwvwhich comprise THE PICTURE SYSTEM. A
functional diagram of the Standard Configuration of THE
PICTURE SYSTEM is shown in Figure 3-1. The user of THE
PICTURE SYSTEM ~ will normally interface with these
components by means of the Graphics Software Package
described in Chapter 4 of this manual. The user should,
however, gain a functional understanding of the hardware
components to fully understand the use of the graphics
software provided with THE PICTURE SYSTEM.

REFRESH PICTURE
 BUFFER | GENERATOR

PICTURE |] PICTURE
CONTROLLER| | PROCESSOR,
pop-in |

Figure: 3-1

The Standard Configuration of THE PICTURE SYSTEM

PICTURE
DISPLAY

3.1

THE PICTURE CONTROLLER

The Picture Controller in THE PICTURE SYSTEM is a Digital

Equipment Corporation PDP-11 computer. The PDP-11 is a

powerful 16-bit general purpose computer which provides
the capability of interfacing a large number of -

peripheral devices for standard system support as well as
options for specialized da ta acquisition or
communications applications. In addition, extensive
software consisting of paper tape, DECtape and disk
systems is available for the PDP-11 family of computers.
Softvare available also includes a Text Editor, Macro
Assembler, ‘Linker, File Utility Packages, Debugging
Packages and higher level languages including BASIC and
FORTRAN. The avalilability of these software systems and
the Graphics Software Package provided with THE PICTURE
SYSTENM enables the PDP-11 to act as ' the Picture
Controller.

The Picture Controller is used to:

O'Contaln the data base which descrlbes
the object(s) to be viewed.
e Control the processxng of the object
',coordlnate data by the Picture Processor.
e Perform all 1nput and output required -
to- fac111tate qraph1cal 1nteract10n.,-
. Compute parameters for use in simulation ,
of object ‘movement, data representation, etc.
e Perform all standard operating functions .
required by the operating system under .which
the contrcl program executes. -

The Picturé Controller communicates with the Picture
Processor by an Interface Channel. By means of this

interface, all commands and data are communicated to the

Picture Processor, Refresh Buffer and Picture Generator.

3-3

3.2

3.2.2

THE PICTURE PROCESSOR

The Picture Processor is controlled by the Picture
Controller through the use of the graphics software
provided with THE PICTURE SYSTEM. The use of this
software provides control over the three basic units of
the Picture Processor:

l. 1Imnterface Channel
2. Matrix Arithmetic Processor
3. Terminal Control

Interface Channel

The Interface Channel contains registers which provide
status and commands to the Picture Processor. This
interface also handles all data transfers to and from the
Hatrix Arithmetic Processor.

f
Matrix Arlthmetlc Processor

The uatrlx'- Arlthmetlc'f Processor consists of a
Transformation Matrix, a: Transformatlon Matrix Stack, an
Arlthmetlc Un1t anﬂ a: Parameter Reglster File. :

‘The’ Iransformat;on Matrlx lS a qu element matrlx, where .
- each element is a 16-bit word. -~ This 4x4 matrix is used .
to transfors - object _coordinate data. It can also be
concatenated with other Hxy matrlces to obtain a comblned-?

transformation.

The "Transformation Matrix Sstack is a storage area . where
up to four 4x4 element matrlces may be "stacked" or saved
for future recall. -

The Arithmetic Unit performs all arithmetic Operations in
the Picture Processor. This includes subtraction,
addition, multiplication, division and normalization.

The Picture Processor contains an array of 16-bit
registers into which parameters specifying ‘viewport
boundaries, scale factors, etc. are stored and may be
retrieved. ’ .

The Picture Processor utilizes these units to perfora
digital operations on the data received from the Picture
controller.

These operations are:
s To process two~dimensional data.

® To process three~dimensional data.
e To push the Transformation Matrix onto

3.2.3

the Matrix Stack.

e To pop the top 4x4 matrix of the Matrix
Stack into the Transformation Matrix.

e To load the Transformation Matrix with
data from the Picture Controller's
memory.

e To store the contents of the Transforma-
tion Matrix into the Picture Controller's
memory.

o To concatenate the contents of the
Transformation Matrix with a 4x4 matrix in
the Picture Controllert's memory to obtain
a compound transformation.

e To load and store the reqisters of the
Picture Processor.

o To check transformed coordlnate data for
visibility by comparison with a two- or
three-dimensional viewing window. Lines
or portions of lines outside the window
are rermoved by a clipping process so that
only visible segments are processed further.
At this point three-dimensional data is
"converted to two dimensions by computlng

- perspective or orthographic views. -

e To perform a linear mapping of points from

" the object's coordinate system into that of
the Picture stplay.

'Ehéh data coordlnate that is transformed may be written

into the Refresh Memory by the Termlnal Control to becone
a portlon of the nev frame.

Terminal Control

The Terminal Control is the unit of the Picture Processor
that controls the refresh of pictures seen on the Picture
Display. The function of the Terminal Control is to
receive data from the Matrix Arithmetic Processor and
store it in the write portion of the Refresh Buffer. It
is wusually concurrently reading data from the read
portion of the Refresh Buffer and sending it to the
Picture Generator. .

3-5

- while: e
. construct1

THE REFRESH BUFFER

The Refresh Buffer is a memory (distinct from the Picture
Controller's) into which processed data is deposited
still in digital form. This data represents the picture
to be displayed on the Picture Display. For each frame
refresh, the Terminal Control reads the data in the
Refresh Buffer and passes the data to the Picture
Generator, where the data is converted to analog signals
to drive the Picture Display. Character strings from the
Picture Controller pass through the Picture Processor
unmodified and are deposited in the Refresh Buffer as
packed character codes.

The Refresh Buffer may be operated in single or double
buffer mode under program control. In single buffer
mode, the entire Refresh Buffer is used to store a single
diSplaY}fr;me. In this mode, display refresh may be
initiated ~ from’ - partially aupdated display frame. In

double” buffer mode, one half of the refresh buffer is '“

deSLgnated as’ "0ld frame and one half ‘a new frame.
Dlsplayfrefresh 1s then_1n1t1ated from the old franme,
L frame is being constructed. ‘When the
’_of the nev frame is conmplete, the' frame
buffers .are. Suapped ‘and the newly constructed frame is
dlsplayed ‘and -

3-6

.space occupied by. the old frame becomes:ff-
,"avazlable for new ‘frame construction. n '

' The“Plcturefw

CHARACTER GENERATOR

Character strings from the Picture Controller pass
through the Picture Processor unmodified and are
deposited in the Refresh Buffer as packed character
codes. When character words are read out of the Refresh
Buffer, the Terminal Control recognizes these codes and
calls upon the Character Generator to access a read-only
memory containing character stroking data. The strokes
are read out of the read-only memory one by one,
multiplied by a pre-~specified sizing parameter, and drawn
by the Picture Generator on the Picture Display.

THE PICTURE GENERATOR

The Picture Generator receives digital data consisting of
X,y coordinate and intensity information read from the
Refresh Memory by the Terminal Control Unit. This
digital data is converted by the Picture Generator into
analog signals and used to draw the picture on the

Plcture Dlsplay.,,

THE PICTURE DISPLAY

lsplay receives analoq 51qnals from the-'
Picture Generato ““which are used ~for —-electron bean
p051t10n1ng ‘and ”enSLty control. = The Picture Generator
controls bea ';onlnq and the drawlnq of all ‘vectors
and dots on" the 1cture Dlsplay. ’ - P

3-7

3.7

3.7

3.7.2

DATA INPUT

All data is input directly to the Picture Controller in =
THE PICTURE SYSTEM. Data may be input by any. of the
various standard peripherals available with the PDP-11 or
by any of the standard graphical input devices available
with THE PICTURE SYSTEM. There are four graphical input
devices supported by THE PICTURE SYSTEM:

1. Tablet

2. Control Dials

3. PFunction Switches & Lights
4., Alphanumeric Keyboard

The use of these standard graphical input devices
provides all the capabilities normally required for
graphical interaction with THE PICTURE SYSTEM. The
appropriate use of these interactive devices along with
the dynamic gqualities of THE PICTURE SYSTEM provide the
user with all of the tools required for a three-
dimensional, truly interactive graphics systen.

Tablet'

The Tablet servesf Aé the standard, genefai purpose

,qraphlc ‘input - dev1ce in THE PICTURE SYSTEHM. The Tablet -
can be -used -for p051t10n1nq or pointing to the picture

elements—by use of a pen whose x,y coordinates are read

by the Picture Controller. A "cursor" may be drawn on i

the Picture Display to indicate the position of the pen
on the Tablet., With these capabilities, the Tablet and
pen can perform the interactive functions usually
reserved for such graphic input devices as llght pens,
joy sticks and function switches. The Tablet is fully
software supported under the Graphics Softvare Packaqe
prov1ded with THE PICTURE SYSTEM. ‘

Control Dials

Control Dials are available with THE PICTURE SYSTEM which
permit the user to dymamically vary values which may be
used to control angles of rotation, scaling factors,
velocity rates, etc. '

Function Switches & Lights

Function Switches & Lights are available with THE PICTURE
SYSTEM to provide the capability for the user to utilize
switches to be used for functions assigned under program
control. Amn additional «capability available with the
switches is that the lights (one per switch) which may be
used to indicate function switch polarity or for
displaying programmed information.

Alphanumeric Keyboard

The Alphanumeric Keyboard available with THE PICTURE
SYSTEM is a standard 61 key, 128 character keyboard which
may be used for text or data input to the Pictute
Controller for graphical interaction or other functions

required by the user. ,

4.

?Ehe n

CHAPTER FOUR

THE EICTURE SYSTEM GRAPHICS SOFTWARE PACKAGE

The Graphics Software Package furnished with THE PICTURE
SYSTEM consists of a set of FORTRAN-callable subroutines
written for the Digital Egquipment Corporation PDP-11
computer using the MACRO-11 assembly langquage. These
subroutines are written with the intent of providing a
user with the full capabilities of THE PICTURE SYSTEM
without the necessity of the user to interface, on a
system level, with THE PICTURE SYSTEM hardware. These
subroutines provide the general user with the facilities
necessary for writing interactive computer graphics
programs without the need to comprehensively understand
the matrix arithmetic utilized within THE PICTURE SYSTEM
Processor. Instead, the user merely "calls" a subroutine
to perform a required graphical function; i.e. TRANslate,
ROTate, SCALE, read TABLET information, display CURSOR,
display TEXT, etc. : , N

The graphics subrouatines for THE PICTURE SYSTEM have been

written utilizing the PDP-11 FORTRAN calling sequence -

convention - 0of the PDP-11 FORTRAN compiler V06. This
calling sequence convention, supported under the DEC RT-
11, DOS/BATCH, RSX-11M and RSX-11D operating systeas,
provides the user the flexibility of wutilizing arqument
lists that are reentrant or non-reentrant_in form.

All FORTRAN-callable PICTURE SYSTEM subroutines use the
standard call by name (as opposed to call by value)
parameter passing technique and specify the non-reentrant .
inline form of calling sequencel, Those subroutines which
are not FORTRAN-callable specify no FORTRAN «calling
seguence. C :

THE PICTURE SYSTEM Graphics Software Package may be
separated into two sets of subroutines:

(1) user subroutines
(2) system subroutines

on~-reentrant in-line form of calling sequence need

not be used for the Graphics Software Subroutines. Reference
Appendix C for specific details of alternate forms of calling

sequences.

‘The user subroutines provide =11 the capabilities
- reguired for ‘the wgeneral graphical application
Pprogrammer. The system subroutines are autilized +o
implement the user subroutines and are available +to the
programmer who desires to interface with the system
software directly.

The user subroutines provided are:

PSINIT
VWPORT
WINDOW
ROT

TRAN
SCALE
PUSH

POP
DRAW2D
DRAW3D
CHAR

TEXT
INST
MASTER
CASH
BLINK =
SCOPE._ - .
TABLET
ISPDEN
CURSOR
HITWIN
HITEST
NUFRAN
SETBUF
PSWAIT

The system'subrodtines,proviﬂed are:

BLDCON
PSAVE
E$TORE
E$DMA
ISMATX
ERROR
P$DIV
PSNUL

A detailed description of each subroutine is contained in
the following sections. Chapter 5 should be vreferenced
for specific examples of the use of these subroutines.

4.1

descrlbed here.

' THE GRAPHICS SﬂBROﬂTINES

This section describes in detail the subroutines which
comprise THE PICTURE SYSTEM Graphics Software Package.
The calling sequence for each of the subroutines and the
valid parameter values for each of the arguments is
listed. The specification of optional arquments is
denoted by the inclusion of the arqument in brackets
[arg]. Arguments that mpay be omitted entirely are
designated by [,arqg]e In particular, the inclusion of a
scaling factor ([,IN] should always be considered to be
opticnal. In this manner the wuser familiar with the
homogeneous coordinate system of matrix manipulation has
the freedcm of utilizing the increased range of data
values provided by this technique, while the user who is
unfamiliar with the technique or who has no need to
utilize it may use the shorter calling sequence. For a
further description of the use of the homogeneous
coordinate [IW] refer to Section 5.2.

Appendix B contains a summary of all FORTRAN and MACRO-11
assembly calling sequences for ‘each ' of . the subroutines

4-3

4.1.1 User Subroutines
ESINIT

The PSINIT subroutine is called to initialize THE PICTURE
SYSTEM hardware and software. The initialization process
includes the following:

THE PICTURE SYSTEM Real Time Clock interrupt handler
is connected to the interrupt vector and set +to
provide automatic refresh of the old frame and timing
for frame update at the intervals specified by the
calling arqument list,

All variables are assigned their default values. All
registers used in the Picture Processor are
initialized for +two-dimensiomal drawing mode. The
Picture Processor is set to display data wunrotated,
untranslated, at full brightness, within a viewport
nhlch just fllls the dlsplay ‘sScCreen. B

<A wlndow is set to mnclude the entiféﬁﬂefinition'
--',;‘pace (13276']). e tetaie S | ,

,}1he Refresh Buffer is set to double buffer mode Wwith

~ an dnitial frame sconsisting of»a null «cursor. The .

‘ : ~ Picture ‘ Gemerator status is - 1n1t1a112ed to solid,
T - 0.28 inch character SLZe,, and hcrlzontal character_ﬁ___

mode. S L , .‘ . o S ‘
all ‘PiCturéﬂibispiajs 1scopeé 1-“).are selected for
cutput. . . _ ,

4-4

~ POBRTBAN cCalling Seguence:
[EXTERNAL ERRSUB]

CALL PSINIT (IFTIME,INRFSH,[ICLOCK],[ERRSUB],[ISTKCT],
[ISTKAD]l ,IFMCNT])

vhere:
IPTIME is an integer used to desiqgnate the number
of 1/120 second intervals per frame refresh.
The refresh rates that may be obtained are:

IFTIME=1 for 120 frames per second
IFTIME=2 for 60 frames per second
IFTIME=3 for 40 frames per second
IFTIME=4 for 30 frames per second

INRFSH is an integer which specifies the number of
frame refreshes which must be completed before
a frame update will be recoqnized. If INRFSH
contains a value <0, then frame update will be
allowed upon the next refresh-interval after
a new frame has been requested.

"ICLOCK is an 1nteger varlable whlch, 1f specified, is
incremented upon each frame refresh. This provides
the user with the ability to display ‘items for
given lenqths of tlme synchronlzed to the refresh

rate, »

ERRSUB is a subroutine supplied by the user which is called
using the standard FORTRAN calllng sequence upon the
occurrence of a PICTURE SYSTEM error. One arqument
is passed to the user's errcr subroutine specifying
the PICTURE SYSTEM subroutine in which the error
occurred and the particular error conditicn encounter-
ed. The arqgument is of the following form:

EYTE O: PICTURE SYSTEM Subroutlne Identifier
(0-22) .
EYTE 1: Error condition code.

The specification of the user error subroutine

is optional. The system subroutine PSERRS will be
called if the user error subroutine is omitted from
the marameter 1list.

ISTKCT 1is an integer which specifies the number of 16-word
continuous arrays allocated as software matrix stack
area. The amount of matrix stack area that need be
allccated by the user is dependent upon the level
of Picture Processor Matrix Transformations that are

ISTKAD

IFMCNT

pushed onto the matrix stack (using the PUSH sub-

routine) by the user. This argument need be speci-
tied only if the number of matrix transformations -
that need be stacked exceeds four, the number .
implemented with the Picture Processor.

is an integer array allocated as software matrix
stack area. This contiquous area need be 16*ISTKCT
words in length. If ISTKCT contains the value 0

or is not specified, then this arqument will not

be utilized.

is an integer variable which, is specified, will be
incremented upon each refresh interval by the number
of 1/120 seconds that have elapsed since the last
frame refresh. This provides the user with the
ability to determine the frame update rate for

 given disgplay ‘segments.

ASSEMBLY CALLING_SEQUENCE

PSINIT, as vell as all FORTRAN-callable subroutines, may
be called in assembly lanquage by following the FORTRAN
calling sequence convention, described in Appendix C. To
illustrate this, the assembly calling sequences for
PSINIT are shown here. The other graphics subroutines
described in this section may be called in a sinmilar
manner using assembly langquage.

EXAMPLE 1:_ _6-word_Parameter List

—— i S . S e s S T S P e S T Gh e e

MOV #ADR,R5 ;MOVE THE ADDRESS OF THE ARGUMENT
) :LIST TO R5
JSR PC,PSINIT ;JUMP TO THE SUBROUTINE
ADR: BR ~ .+14. ;SPECIFY NO. OF PARAMETERS AND
; BRANCH o
.WORD IFTIME ;ADDRESS OF REFRESH RATE
.WORD INRFSH :ADDRESS OF FRAME UPDATE BATE
.WORD ICLOCK ;ADDRESS OF CLOCK INCREMENTAL WORD
.WORD ERRSUB :ADDRESS OF ERROR SUBROUTINE
.WORD ISTKCT ;ADDRESS OF MATRIX STACK COUNT .
- WORD_. ISTKAD ;ADDRESS OF ARRAY RESERVED FOR STACK

Exggggg_g. - Hord Parggg;g;_glst
MOV ”'#ADR +B5 yMOVE THE ADDRESS OF THE ARGUHENT
‘ L S ;LIST TO R5

'JSR PC,PSINIT 3JUMP TO THE SUBROUTINE

ADR: BR . .+16. ;SPECIFY NO. OF PARAMETERS AND

S ;BRANCH . : R
_+WORD IFTIME ;ADDRESS OF REFRESH RATE . ..
.WORD INRFSH ;ADDRESS OF FRAME UPDATE RATE
.WORD ICLOCK ;ADDRESS OF CLOCK INCREMENTAL WORD
.WORD ERRSUB ;ADDRESS OF ERROR SUBROUTINE
- WORLD ISTKCT ;ADDRESS OF MATRIX STACK COUNT ,
-WORD ISTKAD ;ADDRESS OF ARRAY RESERVED FOR STACK
.RORD IFMCNT ;ADDRESS OF REFRESH INTERVAL

; INCREMENTAL WORD

IFTIME: .WORD 3 sREFRESH RATE OF 40 FRAMES/SEC

INRFSH: +HWORD 0 ; DYNAMIC UPDATE RATE

ICLOCK: -WORD 0 ; WORD TO BE INCREMENTED EACH

sREFRESH

ISTKCT: « WORD 1 sDEPTH OF USER MATRIX STACK

ISTKAD: «=e+32. ; RESERVE 16 WORDS FOR MATRIX STACK

IFMCNT: «-WORD 0 ;WORD TO BE UPDATED EVERY REFRESH
. +sINTERVAL

ERRSUB: ;USER'S ERROR SUBRCUTINE

4-7

The wuser should note that the address of the parameter
list is passed to the 'subroutine in R5 and that the
elements of the parameter list are the addresses of the
arquments. .

1,0: Invalid number of arquments in the parameter list.
1012 Invalid parameter values. This error may be
caused by:
IFTIME<O.
ISTKCTLO0.

ISTKAD omitted iin parameter list for ISTKCT>O.
1,23 Direct Memory aAccess Error. - This is a system
error indicating that an error occurted durind the
last DMA operation. '

YUPORT

The VWPORT

subroutine is called to set a viewport spec1f1ed by

the values supplied by the calling parameters.

FOQBRTRAN Calling Seguence: _
CALL VWPORT(IVL,IVR,IVB,IVT,IHI,IYI)

where:
IVL

IVR
IVB
IVT
fIHI

IYI

is an integer which specifies the viewport left
Fosition in display screen (or other output mediunm)
coordinates. Normal range for IVL is =-2048 to 2047.
is an integer which specifies the viewport right
position in display screen (or other output medium)
coordinates. Normal range for IVR is -2048 to 2047.
is an integer which specifies the viewport bottonm
Fosition in display screen f{or other output medium)
coordinates. Ncrmal range for IVB is =-2048 to 2047.
is an integer which specifies the viewport top
position in display screen (or other output medium)

- coordinates. Normal range for IVT is -2048 to 2047.

is an integer ‘which specifies the display intensity
at the hither clipping plane. The normal range for
IHI is 255 for full intensity to 0 for no intensity.

is an 1nteger ‘which' ‘'specifies the display intensity

.at the yon cllpplng plane. : The normal range for -

IYI is 255 for full lnten51ty to 0 for no 1nten51ty.

‘Invalid nuﬁhérgof‘érqumebt5~in the parameter list.-—

“”!!;!RQ!_

The WINDOW subroutine concatenates a two-dimensional or three-
dimensional windowing transformation to the Picture Processor
Transformation. Matrix. This subroutine can be used to perfornm
twvo-dimensional windowing, orthographic projection or a true
perspective transformation of data. The windowing transformation
is constructed from the arquments specified in the parameter
list.

FORTRAN Calling Seguence:
For two-dimensional windowing:
CALL WINDOW (IWL,IWR,IWB,INT[f,IN])

FPor three-dimensional windowing:
CALL WINDOW(IWNL,IWR,IWB,IWT,IWH,IWY[,IE[,IW]])

where: , ‘ v
IWL - is an integer which specifies the scaled window left
v toundary in definition space coordinates (+32767).
- IWR is an integer which specifies the scaled window right
- . boundary in definition space coordinates (+32767).
-IWB is an inteqer which specifies the scaled window bottom

.. boundary in definition space coordinates (+£32767). -
IWT | is an integer which specifies the scaled window top
’ btoundary in definition space coordinates (132767).

IHH is an integer which specifies the scaled window hlther

boundary in definition space coordinates (%32767).
For two-dimensional windowing, the window front, or
. hither boumdary is 0. . '
IdY is an integer which specifies the scaled window yon
boundary in definition space coordinates (+32767).
For two-dimensional windowing, the window rear, or
yon boundary is equal to IW. If this parameter=1IWH,

the yon boundary is positioned at infinity on the side

cf the hither clipping plane opposite the eye so that
_ no yon clipping will be performed.

IE is an integer which, if specified, is the scaled
Z position of the eye. If this parameter. is omitted
or equals IWH, the eye is p051t10ned at -o, whlch
produces an orthographic view of the data.

Iw is an integer used to scale the window boundaries
and eye position. If the scale factor is omitted,
¢r is given as zero, it is treated as 32767.

0: Invalid number of arguments in the parameter list.

ROT) ') -
rotation specified in the parameter list. The transformation is
then concatenated to the Picture Processor Transformatiom Matrix.

FORIRAN CALLING SEQUENCE:
CALL ROT (IANGLE,IAXIS)

vheres

IANGLE is an integer which specifies the angle of rotation.
The angle is given by dividing a circle into 216 egqual
parts, with zero being equal to zero deqrees and -215
equaling 180 degrees. TIwo's complement addition,
ignoring overflow, causes the angle to increase
counter-clockwise through 360 degrees, when viewed
along the specified axis in the positive direction.

IAXIS! is an inteqger which specifies the axis of rotation.
Valid values for IAXIS are:

1 for rotation about X axis.
- 2 for rotation about Y axis.
3 for rotation about Z axis.

"9,0: Invalid number of arquments in the parameter list. .
9,1: - Invalid arqument specified for the axis of rotation,

1THE PICTURE SYSTEM software is designed for a left-handed
coordinate systen.

4-11

IBAN

The TRAN subroutine is called io build a translation
transformation based on the X, Y and Z translational values v
specified in the parameter list. ‘The transformation is then

concatenated to the Picture Processor Transformation Matrix.

FPORTRAN Calling Seguence:
CALL TRAN(ITX,ITY,ITZ[,IW])

where:

ITX is an integer which specifies the scaled X trans-
lation value. - ’

ITY is an integer which specifies the scaled Y trans-
lation value.

ITZ is an integer which specifies the scaled Z trans-
lation value. o

Iw is an integer which specifies the factor used to
scale the translatxonal values. If the scale
factor ‘is omltted, or is qlven as zero, it is
treated as 32767. » : :

0z In&élid‘nnhbérjbf arqﬁﬁentsvin the parameter list.

4-12

SCALE

The SCALE subroutine is called to build a scaling transformation
based on the X, Y and Z scaling terms specified in the parameter
list. The traasformation is then concatenated to the Picture
Processor Transformation Matrix. '

FORTRAN Calling_Seguence:
CALL SCALE(ISX,ISY,ISZ[,IW])
where:
ISX is an inteqger which specifies the X scaling value.
IsY is an integer which specifies the Y scaling value.
ISZ is an integer which specifies the Z scaling value.
Iw is an integer which specifies the factor us24 to
scale the scaling definition values. If the scale
factor is omitted, or is given as zero, it is
treated as 32767.
EREORS 2

“17,0: 1Invalid number of arquments in the parameter list.

RUSH

The PUSH subroutine is called to push the current Picture
Processor Transformation Matrix onto the matrix stack (hardware
or memory stack, dependent on the current stack depth).

FORTRAN_Calling Segquence:
CALL PUSH

6,0: PUSH error (matrix stack overflow). This indicates
that the matrix stack requirement has exceeded the
amount allocated by the user during the call to
PSINIT.

4-14

RPOP

The POP subroutine is called to pop the top element of the matrix
stack (hardvare or memory stack, .dependent on the current stack
depth) into the Picture Processor Transformatxon Matrix.

EQRI_A!_QQL.;_§_§29_§ASQ;
CALL POP

ERRORS: :

7,0: POP error (matrix stack underflow). This indicates
" that the user has attempted to retrieve a matrix
which had not been previously saved (or pushed)
cnto the matrix stack.

DRANZD

The DRAW2D subroutine is called to draw two-dimensional data
coordinate points using the draving mode specified in ‘the
parameter 1list. The data to be drawn is arranged in X,y pairs
and is displayed at the intensity specified by the IZ parameter.

FORTRAN_Calling Seguence:
CALL DRAW2D (IDATA,INUM,IF1,IF2,I1Z[,IW])

where:

IDATA is an integer array (2*¥INUM words in length)
which contains the x,y coordinate points. to be
drawn. This data will be drawn in the drawing
mode specified by the arquments 1F1 and IF2 and
at the intemsity specified by arqument IZ.

INUM is an integer which specifies the number of
coordinate pairs to be drawvn.

IF1 is an integer which specifies the type of draw
' ' function to be performed. Valid values for IF1
.ares : . e
© 0 = disjoint lines from new position. o
-1 = disjoint lines from current position.
2 = connected lines from newv position.
3 = connected lines from current position.
4 = dot at each point. ' S

IF2 _ is an integer which specifies the mode in which
the coordinates are interpreted. valid values
for IF2 are: ' ’

absolute-relative-relative-relative-etc.

0 =
1 = relative always.
2 = absolutevaliays.
I1Z is an integer which specifies the Z position

of the x,y coordinate pairs drawn. This Z
position is used to compute the intensity of
the data to be drawn. A value of IZ=0
" will produce lines of maximum intensity when
drawn using a two-dimensional windowl.
IWw is an integer used to scale the coordinate
data. If the scale factor is omitted, or
given as zero, it is treated as 32767.

1The maximum intensity is specified using the VWPORT
subroutine.

EBEQRS 5
10,0

10,1

Invalid number of arquments in the parameter
list. R .
Invalid parameter value.’
This error may be caused by:
| INUM <0.
IF1<0 or >4.
IF2<0 or >2.
For IF2=0 or 1, IN does not equal that
cf the previous draw.

4-17

DRANID

The DRAW3D subroutine is called to drav three-dimensional data
coordinate [Froints using the drawing mode specified in <the
parameter list. The data to be drawn is arranged in x,Y,2
triplets and is displayed at the intensity dependent upon the 2
coordinates and the values specified for the hither and yon
planes.

FORTRAN_Calling_Seguence:
CALL DRAW3D{IDATA,INUM,IF1,IF2[,IN))

vhere:
IDATA is an integer array (3*INUM words in lenqgth)
which contains the x,Y,z coordinate points
to be drawn. This data will be drawn in the
drawing mode specified by the arguments IF1
‘ and IF2.
INUM is an integer which specifies the number of
. coordinate triples to be drawn.
IF1 ' is an integer which spec1f1es the type of draw
R _functlcn to be performed. Valld values for IF1

0 =’d15101nt 11nes from ‘new p051t10n. ‘
1 = disjoint lines from current position.
2 = connected lines from new position.
3 = connected lines from current position.
4 = dot at each point.
IF2 is an integer which specifies the mode in which
the coordinates are interpreted. Valid values for
IF2 are: : ‘
0 = absolute-relative-relative-relative-etc.
1 = relative always.
2 = absolute always.
IW' is an integer used to scale the coordinate data.

If the scale factor is omitted, or given as zero,
it is treated as 32767. ' '

11,0: Invalid number of arquments in the parameter list,
11,1: Invalid parameter value.
This error may be caused by:
INUM <0
IF1<0 or > 4.
1F2<0 or > 2.)
For 1F2=0 or 1, IN does not equal that of
the previous dravw.

4-18

CHAR

The CHAR subrout1ne is called to update the status used by the
Character Generator when characters are to be displayed ‘on the
display screen. '
FORTBAN Calling Seguence:

CALL CHAR{IXSIZE,IYSIZE,ITILT)

wheres:
IXSIZE is an integer which specifies the X character size.
IY¥SIZE is an integer which specifies the Y character size.

valid values for IXSIZE and IYSIZE are:

«07 inches
- 14 inches
.21 inches
»28 inches
«35 inches
= .42 inches
.49 inches
.56 lnches

NOMEWN D
R

The spec1f1cat10n of a value <O or >7 will cause the
value to be modlfle& (modulo 8) to a value in the ranqe
0 td 7. :

ITILT "is an 1nteger wﬁich spec1f1es the horlzontal/
vertical tilt status. ' Valid values for ITILT are:

ITILT = 0 for horitontal character status.

ITILT # 0 for 909 counter-clockwise character
status. -

EREORS :

18,0: Invalid number of arquments in the parameter list.

IEXT-

The TEXT subroutine. is called to display: the: text string:
specified in the parameter list.. The display of the- text: will: be:
from the current beanm position and at the intensity associated:
with the last information displayed. The character status will:
be that as initialized by PSINIT or. updated by the CHAR
subroutine if previously called by the user.

EOQRIBAN Calling sSeguence:
CALL TEXT(NCHARS,ITEXT)

where: . -
NCHARS is. an.inteqer which.specifies the number of char-
acters- to be displayed.
ITEXT is an integer array which contaims the text to be
displayed, racked two characters per word, with
the right. byte to be displayed first (as in a FOR-

TRAN: DATA® statement). =

INST

The INST subroutine concatenates a two- or three-dimensional
instancing transformation to the Picture Processor Transformation
Matrix. This subroutine is used, in conjunction with the MASTER
subroutine, to produce multiple instances of an object or symbol.
For each desired appearance of the object, the INST subroutine is _
called to specify the location (and implicitly the size) of that [
appearance; then the user-supplied routine describing the object

is called to display the object previously defined within a two-
dimensional or three dimensional enclosure. The INST subroutine
pushes the initial Transformation Matrix onto the Transformation
Stack before concatenating the instancing transformation, so that

it may be restored (POPped) by the user after the object has been
drawn. '

FORTRAN Calling Seguence:

For two-dimensional instancing:
-CALL INST{INL,INR,INB,INI[,INW])

For - three dlmen51onal 1nstanc1nq. o
CALL INST(INL INR,INB,INT, INH INY[IW])

where: , S _ L

INL is an integer which specifies the scaled instance left
koundary in definition space coordinates (+32767).

INR is an integer which spec1f1es the scaled instance right
boundary in deflnltlon space coordinates (+32767).

INB is an-integer which specifies the scaled instance
bottom boundary in definition space coordlnates (132767)

INT is an 1nteqer wvhich specifies the scaled instance top
toundary in definition space coordinates (+32767).

INH is an integer which specifies the scaled instance hither
boundary in definition space coordinates (+32767).
For two-dimensional instancing the window front or hlther
boundary is 0.

INY is an integer which specifies the scaled instance yon
boundary in definition space coordinates (+£32767).
For two-dimensional windowing the instance rear or
yon boundary is egqual to IW.

IW is an integer used to scale the instance boundaries.
If the scale factor is omitted, or given as zero,
it is treated as 32767.

EREOQRS :
5,0: Invalid number of arquments in the parameter list.

- BASIER

The

with the

MASTER
dimensional
Transformation
INST subrcutine for

subroutine

master the

transformation to
Matrix. This

instancing of data.

concatenates a two-dimensional or three-
Picture
subroutine is used in conjunction

Processor

The master

transformaticn is constructed from the arquments specified in the
parameter list.

For a two-dimensional master:
CALL MASTER (IML,IMR,IMNB,IMT[,IW])

For ‘a three-dimensional master:
CALL MASTER (IML,IMR,IMB,IMT,IMH,IMY[,IN])

where:
‘TML

IMR
- IMB

IMT

: uH

I MY

is an integer which specifies the scaled
boundary in definition space coordinates
is an 1nteqer which specrfles the scaled

boundary in definition space coordlnates'

is an 1nteqer vhich: spec1f1es the scaled
houndary in deflnltlon‘)
is an 1nteger which" spec1f1es the scaled

houndary in deflnltlon space” coordlnatesx

is an 1nteqer¥“h1ch spec1f1esfthe scaled

: boundary in . deflnltlon ‘space coordlnates“
. For ‘a two- dlmen51ona1 master,
"{boundary is' 04 i

is an 1nteqer thch spec1f1es the scaled
boundary in deflnltlon space coordinates

boundary is equal to IW.

pace coordlnates'

_the front,

master left
(£32767) .
master right
(£32767)«
master bottom
(t32767),
master top -
(£32767) .
master hither
(132767).'

window yon
(£32767) .

-For a two- dlmen51onal master, the rear, or yon,

is an integer used to scale the master boundaries.
If the scale factor is omltted, or 1s given as zero,

it is treated as 32767

Invalid number of arquments in parameter

list.

DASH

The DASH subroutine is called to set the Picture Generator status

such that all subsequent lines drawn will be dashed or non-dashed
dependent on the value of the arqument.

FORTRAN Calling Segquence:
CALL DASH{ISTAT)

where:s . _
ISTAT 4is an integer which specifies the line mode status.

ISTAT = 0 for sclid line mode.
ISTAT # 0 for dash line mode.

19,0z Invalld number of arquments specified in the
parameter llst.

BLINK

The BLINK subroutine is'7ca11ed to set the Picture Ganecato:

status such that all subsequent lines drawn will blink? or will
not blink, dependent on the value of the argument.

FOBTRAN Calling Seguence:

CALL BLINK (ISTAT)

where:
ISTAT 1is an
pode.
ISTAT
ISTAT

ERRORS

0,0: Invalia

integer

0 for
0 for

*

which specifies the blink/non-blink

noﬁfblink mode.
blink mode.

ynﬁmﬁérﬁbfiatgumepts_in'the parameter list.

iData drawn in Blink mode will blink at approximately
90 blinks per minute.

4-24

SCOPE

The SCOPE subroutine is called to select the Picture Display to which.
output will be directed.

FORTRAN Calling Sequence:
CALL SCOPE (INUM)

where:
INUM is an integer vhich specifies the scope unit to select.
This will cause the scope selected to be connected for

output as well as any previously selected scopes. Valid
values for INUM are:

INUM = 1,2,3,4 to select scope units 1,2,3, or 4.
INUM <1 or >4 to deselect all scope unit selections.

v21,0: Invalid number of arquments parameter list.

IABLET

The TABLET subroutine is called to read the current pen position
and status in relation to the tablet. The user may also .specify
initiation of automatic tablet mode. This will cause the current
pen position to be updated at each frame refresh. This ability,
used in conjunction with the automatic cursor mode, allows
completely dynamic cursor tracking irrespective of new frame
update rate. It should be noted that once the pen information is
updated with the pen down bit set (bit 1), the pen position will
not be updated until the user has cleared (zeroed) the pen value
word (IPEN) indicating that the pen down position has been read
or until the pen is set down again.

FORTRAN_Calling_Seguence:
CALL TABLET (ISTAT[,I1X,1Y,IPEN1])

where:
ISTAT " is an .integer which specxfles the automatic
tablet mode.ﬁ .
ISTAT 0 fo"automatlc tablet mode off.
j,ISTAT # 0, fo automatlc tablet mode on.
The four-arqument parameter list is :
",requlred fo ISTAT #0 and - opt10na1 if
ISTAT—O. o L . S

IX a‘1s an lnteger whlch Ls~updated wlth the current ;eg
"X pen pos1tlon. In automatlc tablet mode, thls_f'
"value will be updated upon each frame refresh.
The approximate limits of IX are $32700.
L IY is.an inteqer which is updated with the current -
: Y pen position. 1In automatic tablet mode, this
value will be updated upon each frame refresh.
The approximate limits of IY are +32700.
IPEN 1is an integer which is updated with the current
' pen information. Bit 1 will be set if the pen
is down and bit 0 will be set if the pen is
within proximity of the tablet surface. If bit 1
of IPEN is set then IX and IY will be updated only
if the pen is down.

3,0: . Invalid number of arquments in the parameter list._

LSPDEN

ISPDWN (Is Pen DoWN) 1is a FORTRAN-callable inteqger function
subroutine which may be used to determine whether the pen is down
(i.e. pressed against the surface of the tablet). This function
routine allows FORTRAN applications programs, which do not have
the ability to perform bit testing, to test the pen up/down
status.

Iypical FORTRAN Calling Seguences:

C SET PEN DCWN FLAG
© IDOWN = ISPDWN (IPEN)
or
c
C IF PEN IS DOWN GO TO 100
¢ IF (ISPDWN (IEEN).EQ.1) GO TO 100
iﬁé:e: | | B

- IPEN is an inteqer whiéh contains the’pen information.
R returned by the TABLET subroutine.

0 if the pen is not down.
1 if the pen is down.

. ISPLWN (IPEN)
ISPDWN (LPEN)

-

-CURSOR

The CURSOR subroutine is <called +to ‘display a cursor at~¢he[&.
position specified by the parameter 1list. The wuser may also

specify initiation of automatic cursor mod2. This will cause a
cursor to be displayed upon each frame refresh irrespective of
the new frame wupdate rate. The cursor displayed in automatic
cursor mode will be at the position specified by the x and vy
position values and within the viewport that had been specified
at the time of the initial CURSOR call. The cursor displayed
consists ¢f a cross whose center is at the x and y position
specified.

FORTRAN Calling_ Seguences:
CALL CURSOR(IX,IY,ISTAT[,IPENY))

where:

IX is an integer which specifies the x cursor position.
In autcmatic cursor mode, the cursor will be placed
at the position specified by the contents of this
word at the time of frame refresh. The value of IX
should be in the approxlmate range of +32767.

IY is an. 1nteger which specifies the y cursor p051t10n.

' In automatlc cursor mode, the cursor will be placed
at the p051t10n spec1f1ed by ‘the contents of this.
word at the’ time of . frame refresh. The value of 1Y
should be -in the approxlmate range of +32767.

—ew— ISTAT is an‘lnteqer which spec1f1es the automatlc cursor

mode:

ISTAT = 0 for automatic cursor mode off.
ISTAT # 0 for automatic cursor mode on.

IPEN is an integer which, if specified, should be the pen
information which is returned from the TABLET
subroutine. The specification of this parameter
allows the -cursor to be increased in intensity
whenever the pen is down providing visual feed-
back of the pen status. '

4,0: 1Invalid number of arquments in the parameter list.

NOTE: In automatic cursor mode, the cursor is displayed the
viewport that had been specified at the time of the
initial CORSOR call. This 1is done by saving the
addresses ¢f the viewport values in effect at that time.
When the cursor is displayed the viewport is set from the
values found in these addresses.

HITWIN

The HITWIN subroutine is called to specify a window through which
data will be passed to determine whether data is being drawn
within a given area. The user specifies an x and y coordinate at
which to center a window transformation of the specified size.
This window transformation 1is then pre-concatenated with the
transformation in the Picture Processor Transformation Matrix,
after first saving the original transformation so that it may be
restored after all hit testing has been completed. The Picture
Processor status is then set to prohibit all data drawn from
being output to the Refresh Buffer. The subroutine then returns
to allow the user to draw all data aqalnst which hit testing is
to be performed.

FORTRAN_Calling Seguence:
CALL HITWIN(IX,IY,ISIZE[,IW])

wvhere:

IX is an integer which specifies the hit window x
coordinate. The value of IX should be in the
approxlmate range cf +32700.

IY is an integer which specifies the hit window y
coordinate. The value of IY should be in the
approx1mate range of +32700.

ISIZE is an integer which SpGleleS the hit wlndow half

: size. This parameter is used to determine whether

. lines pass within a given dlstance (ISIZE) of the

_ spec1f1ed point (IX,IY).-

Iw is an integer used to scale the hit wlndow parameters.
If the scale factor is omitted, or is‘qiven as zero,
it is treated as 32767.

tzi
ko
3
(@]
(=]
197]

dI

U e
-

o

[X)

Invalid number of arquments in the parameter 1list.

HIIEST

"Pfhe HITEST subroutine is called to determine if any output data

has passed within a pre-specified hit window (see HITWIN). The
procedure for this test is of the form: '

1. CALL HITWIN to set up the desired hit windov.

2. Draw data (DBAW2D and/or DRAW3D) for compari-
son against that window.

3. CALL HITEST to determine if there was a "“hit",

4. BRepeat steps 2 and 3 as often as necessary, setting
HITEST arqument 2 to a non-zero value on the last
call to HITEST to restore the former user transformation.

FORTRAN Calling Segquence:
CALL HITEST (IHIT,ISTAT)

where:

IHIT is an-integer which is set to zero by the HITEST
subroutine if there has been no hit or set to qne
if there has been a hit.

ISTAT is an integer supplled by the user which 1nd1cates

o v’nhether the hit testlnq has been completed or

,not.,, Lo : :

4ISTAT 0 for Lntermedlate hit test.
’ISTAT # 0 for final hit test.: ‘

The Plcture Processor Transformatlon uatrlx Hlll be restored to
the transformatlon that existed before the <call. to the HITWIN

subroutine and the Picture Processor status reset so ‘that all
subsequent data dtawn Hlll be sent to the Refresh Buffer.:

—73,0: Invalid number of afguments in the parameter list.

4-30

NUERAM

The NUFRAM subroutine is called to initiate the switch from
displaying the old frame data to displaying the new frame data
(the actual frame switch does not occur until the appropriate
refresh interval).

CALL NUFEAHM

EREORS :
None

4-31

SEIBUE

The SETBUF subroutine is called to set the Refresh Buffer to
single~ or double-buffer mode. Once the Refresh Buffer has been
set to a mode, it may be reset at any time to the other mode.
The user need call this subroutine only if the Refresh Buffer is
used in single Luffer mode. PSINIT during the initialization

process sets the Refresh Buffer to the default double buffer
mode.

FORTIRAN Calling Seguence:
CALL SETEUF (ISTAT)

vhere:

ISTAT is an integer which specifies the mode the
Refresh Buffer is to be set to.
valid values for ISTAT are:

4=

'single buffer mode.
fdoublegbuﬁfgr:mode.

EREQRS:

This ‘error may be caused b a
U ISTAT <1'or >2. '

‘4-32

BSKWAIT

The PSWAIT subroutine is called whenever it is necessary to wait
until the Picture Processor and Direct Memory Access Unit have
completed their present operations before continuing. This is
used to insure that the data transfer to or from the Picture

Controller's memory is complete before the data is referenced or
modified. :

FORTRAN Calling Segquence:
CALL PSWAILT

ERBORS :
None

BLDCON

The BLDCON subroutine is called to perform all tranms-
formation operations and matrix manipulations.

System Subroutines

FORTRAN Calling Seguence:
CALL BLDCON(ITYPE,IARRAY)

where:

ITYPE

is an integer which specifies the type of call.
valid values for ITYPE and the operation performed
for each are:

0= 1Initialize matrix stack pointer and stack length.
1= Load the Transformation Matrix from the 16-word
- array specified as argument 2.
2= . Concatenate the Transformation Matrzx with the
16-word array specified as arqument 2.

" 3= Store the Transformation Matrix into the’

. 16-word array specified as argument 2.

_'4= Pop the top element of the matrix stack 1nto

' the Transformation Matrix. -
S= Push the Transformation Matrix onto the matrlx;
'stack.

IARBA! is an integer array (16 words in lenqth) whlch is

used as specified by arqument 1. This arqument
nust be a 16-word array for only those. operations:
which utilize this parameter (operations 1, 2 and 3).

Invalid numker of arquments in parameter list.
Invalid parameter value (ITYPE < 0 or > 5).

PUSH error (matrix stack overflow). This indicates
that the matrix stack requirements have exceeded
the amount allocated by the user during the call

cf PSINIT.

POP error (matrix stack underflou).v Thls indi-
cates that the user has attempted to retrieve a
patrix which had not been previously saved (i.e.
PUSHed) onto the matrix stack.

PEAVE

The P$AVE subroutine is called to save registers RO-R5 on the
program stack.

Assembly Calling Segqguence:
JSR PC,P3AVE

B$TORE

The R$STORE subroutine is called to restore reglsters RO R5 from .
the proqram stack. : .

Assemblx_Calll q S_g nce:
JSR . . BC,RSTORE |
BS$LUA

The P$DMA subroutine is called to initiape,a‘Direct Memor? Access
(DMA) transfer and check for the correct completion of the
operation. e v ' .

Assembly Calling Segquence:
R0 = Repeat Status Register (RSR) value
R1 = DMA word count value
R2 = DMA base address for transfer
JSR PC,P$DMA
EREORS : '
1,2: DMA error. This indicates that an error occurred in the

last Direct Memory Access operation.

4-35

L$H¥ATX

The I$MATX subroutine is called to initialize a 16-word array
in memory (P$MATX) to a 4x4 identity matrix.

Assembly Calling_Sequence:
JSR PC,I$MATX

ERBORS:
None

e
o
ry

I

The ERROR subroutlne 1s called by all PICTURE SYSTEM subroutines
that encounter ‘an error ‘condition during the course of execution.
This Subroutlne in turn calls the user error subroutlne spec1f1ed
1n the call to PSINIT or the default system error routine.

Assggblv Calllng Sggggnce:
JSR PC, ERROR
.BYTE ICODE,IERR

wheres :
ICODE 1is the error code used to indicate the oriqin
- - ¢f the error detected.!
IERR is the error type used to 1nd1cate the error
condition encountered.

ERRORS:
None

iReference Table 4-1 for the subroutine-error code correspondence
list.

4-36

The following two function subroutines are optimized for the
particular PDP-11 hardware configuration.: ,

B3DIV

The P$DIV function subroutine divides the signed divided in RO
and Rt by the signed divisor in R2, leaving the quotient in RO
and the remainder in R1, with R2 undisturbed. The quotient bears
the algebraic siqn of the division, while the remainder retains
the siqgqn c¢f the dividend.

Assembly Calling_Seguence:

RO,R1 = Dividend

R2 = [Civisor

JSR BC,P$DIV

EREORS : - _

v=1- . (overflow condition code set) if the magnitude

~of the dividend is not less than half that of the
divisor, or if the divisor is zero.

PEMUL

The P$MUL function subroutine mutliplies the signed multiplicand
in RO by the signed multiplier in R2, leaving a siqgned product in
R0 and R1, with R2 undisturbed. :

Assembly Calling Seguence:
RO = Multiplicand '

R2 = Multiplier

JSR PC,PEMUL

ERRORBS :
None

PICTURE SYSTEM ERRORS

Error detection by the Graphics Software Package is &
performed to ensure program integrity and to facilitate ‘
program debugging. A user may make four types of
programming errors that will be detected by the Graphics

Software Package. These are:

1. The call of a graphics subroutine with an invalid
number of parameters specified.

2. The call of a graphics subroutine with an invalid
parameter value.

3. The attempt by the user to PUSH the matrix
stack to a depth greater thanm that specified by
the user in the call to PSINIT.

4, The attempt by the user to POP a transformation
frcm the matrix stack which had not been
previously PUSHed.

" When an error is detected by a qgraphics subroutine, the
system subroutine ERROR is called with an arqument that
specifies the origin of the érror detected and the error
condition encountered. The system subroutine ERROR then
calls the user error subroutine, specified in the call to
PSINIT. When called, the user error subroutine will bDbe
passed a parameter uhlch spec1f1es the origin and type of -
‘@rror detected The error parameter is of the following
form: N ' S

. BYTE 1 " BYTE 0
ICODE, IERR: |IERR -] ICODE]
where: _ : :
ICODE is the error code used to indicate the origin
: of the error detected.
1ERR is the error type used to indicate the error

condition encountered.

A summary of the error codes and their meaning is
contained in Table 4-1. Return from +the wuser error
subroutine will result in the termination of the program.
If, in the call to PSINIT, the user does not specify an
error subroutine, the graphics error subroutine PSERRS
will be called. PSERRS, when <called, will output the
following messaqe to the console terminal:

ERROR X DETECTED IN GRAPHICS SUBROUTINE YY.

and terminate the execution of the program. X and YY
(YY,X) are the error codes listed in Table 4-1,

NOTE: Unless the users error subroutine is named PSERRS, .
the resultant core image created by the LINKER will
include the graphics error subroutine PSERRS.

6E-7

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.

14.
15.
16.
17.
8.
19.
20.
21.
22.
23.
24.

Subroutine

PSINIT

NUFRAM
VWPORT
WINDGH
MASTER
INST
pPUSH
POP
ROT

TRAN
SCALE
DRAW2D

DRAW3D

TEXT
TABLET
CURSOR
HITWIN
HITEST
PSWAIT
CHAR
DASH
BLINK
SCOPE
SETBUF

1The numbers in these cclumns within parenthesis (i.e., (1)

Lengthl
Bytes,,

1250

(1)
(1)
216
(4)
(#)
(M
(1)
386

150
138
260

(12)

188
188
440
276

(17)
(nm
258

(20)

(20)

(20)

88

‘Lengthl

TABLE 4-1

SUBROUTINE INFORMATION

_Registers
Bytes, Destroyed
T
2342 ' None
(1) None
(1) .- None
732 None-
4) None
(4) None
(1) - None
(1) None
602 None
226 None
212 . None
404 None
(12) None
274 None
274 - None
662 Ncne
422 .- None
(17) - None
(1. . Ncne
402 ¢ . None
(20) Ncne
(20) . Ncne
(20) None
72 None

1,0-Invalid No. of Parameters
1, 1-Invalid Parameter
1, 2-Direct Memory Access Error

None

3,0-Invalid No. of Parameters
4,0-Invalid No. of Parameters
4,1-Invalid No. of Parameters
5,0-Invalid No. of Parameters
6,0~-PUSH Error

7,0-POP Error
"9,0-Invalid No. of Parameters

9, i-Invalid Parameters
8,0~-Invalid No. of Parameters

17,0-Invalid

- 10,0-Invalid
"10,1-Invalid

11,0-Invalid
11, 1-Invalid
12,0-Invalid
13,0-Invalid
14,0-Invalid
15,0-Invalid
16 ,0-Invalid
None

18,0-Invalid
19,0~Invalid
20,0-Invalid
21,0-Invalid
22,0~-Invalid
22,1=-Invalid

No. of Parameters
No. of Parameters
Parameter

No. of Parameters
Parameter

No. of Parameters
No. of Parameters
No. of Parameters
No. of Parameters
No. of Parameters

No. of Parameters
No. of Parameters
No. of Parameters
No. of Parameters
No. of Parameters
Parameter

) indicate that the

subroutine is included as part of the subroutine whose number is in parenthesis.

:) TABLE 4-2
SYSTEM LEVEL SUBROUTINE INFORMATION

*Subroutine Lengthl Lengtgl Req1s;ers

Name ____ Bytes,, Bytes, Destroyed Error Codes and Meaning
25. BLDCON (1) (1) None' ~ 0,0-Invalid No. of Parameters
' o 0, 1-Invalid Parameter
26 R$TORE (1) (1 RO~ RP - None
27. P$SAVE (1 . (1) None| - . None
28. IS$MATX (1 (1) =~ RO RH,RZ,_ None .. -
29. PS$CHMA (1) (1) . None - 1,0- Dlrect Memory Access Error
30. ERROR (1) (1) None: . - Branch to user error routine or
- branch to qraphics error routine PSERRS
31. P$DIV (1) (1) RO,R1 Overflow set on error :
32. P$MUL (1) (1) RO,R1 None

1The numbers in these columns uithinéparénthésiS:(i.e., (1)).indicate that the
subroutine is included as part of the subroutine whose number is in parenthesis.

ov-v

Because a comprehensive set of system diagnostics is
provided with THE PICTURE SYSTEM, bhardware error
detection is performed to a minimal level. There are,
however, three error codes which may indicate a hardware
failure. These are:

1,23

6,0:

7,0:

Direct Memory Access Brror. This indicates that
an error occurred during the last Direct Memory
Access operation.

POP error. This error may be induced by a user

"software error or by a hardware failure in the

Transformation Matrix Stack. If this error occurs,
an exhaustive software verification should be made.
If no software error is apparent, the PUSH/POP diag-
nostic routine may be run to verify the integrity

of the hardware.

POP error. This error may be induced by user soft-

ware error or by a hardware failure in the Transfor-
~ mation Matrix Stack. If this error occurs, an ex-
"haustive software verification should be made. If

no software error is apparent, the PUSH/POP diag- -

‘nostic routine may be run to verify the integrity
of the hardware. '

5.

CHAPTER FIVE

PROGRAMMING THE PICTURE SYSTEM

This chapter demonstrates the use of THE PICTURE
SYSTEM Graphics Subroutines to perform general purpose
graphics functions. The intent of this chapter is not
tc provide instruction in programming technique, but
rather to illustrate the use of the Graphics Software
Package. Each of the user subroutines described in
Chapter 4 1is used, with typical parameter values, in
the programming examples contained in this chapter.

5.1

GENERAL PROGRAM STRUCTURE

Programs written for THE PICTURE SYSTEM generally
contain the following seqgments:

1. Data Definition
2. Program Initialization
3. Display Loop

The Data Definition segment typically contains no
executable code, but rather contains the data which is
displayed and with which the user interacts during the
course of program execution. The Program
Initialization segment usually is executed but once
during the course of the proqram, but may provide for
initialization of values thus allowing a programmed

restart capability. The Display Loop of typical

PICTURE SYSTEM applications programs is structured as
shown in Figqure 5.1-1. This program structure lends
itself to the interactive environment of THE PICTURE
SYSTEM by providing data input and update of dynanic
values for each new frame displayed. The frame update
rate, or the time required to complete the execution
of the display loop, has been made independent of the

frame refresh rate by the Refresh Buffer. This
feature allows programs to be time constrained only by
the frame update rate required for dynamlc motion. ot'”

the data displayed.

As quure 5.1-1 111us£rates the display loop cohsisfs
of: S : ’ _ - ’

1. Data input (i;e. status of'fﬂndtion éwitches,;étc.

2. Update of Dynamic Values
3. Picture Display
4. Frame Update

This functional program structure insures that:

a. all dynamic values are updated by the most
recent data imnput

b. the most recently updated values are used to
create the new frame to be displayed

C. frame update is completed and (for double-
buffer mode) the buffers set to be
switched allowing data input and the
update of dynamic values to proceed
while the buffers are Haltlnq to be
actually sultched

Item ¢, above 1is important in the design of the
software the processing power of THE PICTURE SYSTEM

PROGRAM
INITIALIZATION

.i

- DATA
INPUT

. DiseLay || UPDATEOF |
.. LooOP o DYNAMIC VALUES

Y

PICTURE
DISPLAY.

l

FRAME
UPDATE

Figure 5.1-1

General Interactive Proqram Structure

systen as it allows maximum wutilization of t
processing Controller and increases the frame updat
rate. The program structure of Figqure 5.1-1 may be
modified as shown in Fiqure 5.1-2 to increase the
frame update rate. A comparison of Figures 5.1-1 and
5.1-2 shows that the difference in proqram structure
is the inclusion of the test for "Data to Input¥,
This test, while not necessary, improves the frame
update rate by allowing the data input procedure to be
bypassed unless the user initiated some form of data
input since the previous frame update. This technigue
is particularly valuable when used in conjunction with
the tablet. In this case, menu selection testing or
hit testing need not be done unless the pen is "down",
ie.e. touching the surface of the tablet. The TABLET
subroutine may be used in automatic or non-automatic
mode to perform this function. The user need only
test the IPEN parameter to determine whether data
input is to be done from the tablet (see Section
5.11). : ‘

The program structure of Fiqure-5.1-1 may be further
modified to increase the response of the system to
data " input and provide that frame update be done only '
as required. This new program structure, shown in =~
Figure 5.1-3, is a modification of Fiqure 5.1-2 in . -
that a test for Values to Update"™ is made prior to the
"ygpdate of Dynamic Values™., This test allows a more . .
efficient use of the Picture Controller, since a new ’
frame is created only if a portion of the picture is -
changed. The inclusion of this test is a function of
the program design and the particular application of
the program. For example, if a picture contains an
object which changes with each frame update, the
inclusion of the test would be superfluous, but if a
picture 1is essentially static and changes only upqn
user interaction, the response to user input will be
improved by the inclusion of a test of this type. If
should be noted that the program structures of Figures
5«1-1 and 5.1-2 create a new frame with each execution

of the display loop, whether a new frame creation |is
necessary or not.

If THE PICTURE SYSTEM is operating in a stand-alone
environment in which graphics display and interaction
is the only function of the Picture Controller, frame
update rate is the only time comnstraint, and the user
program may remain in the display loop in Fiqures 5.1-
1, 5.1-2 or S.1-3 without concern for processing time.
However, if the graphics system shares a Picture

DISPLAY
LOOP .

PROGRAM
INITIALIZATION

DATA
INPUT

" UPDATE OF

‘ DYNAMIC- VALUES

.l

PICTURE
DISPLAY

l

FRAME
UPDATE

Figure 5.1-2

Program Structure to Increase Franme

Update Rate

5-5

. DISPLAY
- LOOP.

PROGRAM
INITIALIZATION

DATA
INPUT

VALUES
TO
\(UPDATE

UPDATE OF

| oYnamic vALUES

=

PICTURE
DISPLAY

FRAME
UPDATE

Figure 5.1-3

Program Structure to Incréase S?stem Résponse to User Action

— — - ————

Controller in a Foreground/Background mode! of
operation, the display 1loops in these progranm
structures would be disasterous unless the graphics
application executed in the Background mode. However,
a proqgram in <the Background mode may suffer in
response time to user interaction, depending upon the
Foreground program which is executing. To overcome
this difficulty, user programs may wish to utilize the
program structure shown in Figure 5.1-4, This
structure would allow a graphics program to execute in
Foreground mode, vith all the priorities and
privileges afforded a Foreground program, and yet
allow Background prograams to execute whenever
possible.’ '

1See RT-11 F/B Operating System Reference Manual, Digital
Equipment Corporation.

PROGRAM
INITIALIZATION

DATA
INPUT

| | WAIT FOR USER
DISPLAY la INPUT OR WAIT
oP | | FOR A FIXED
. | LENGTH OF TIME

VALUES
TO -
UPDATE

UPDATE OF
DYNAMIC VALUES

PICTURE
DISPLAY

FRAME
UPDATE

Figure 5.1-4

Program Structure for Foreground Execution =

5.2 SCENE DEFINITION

. All data that is displayed on THE PICTURE SYSTEM may
be considered to be a scene which 1is viewed by the
. user. The wvay in which a scene is constructed is
dependent upon the coordinate system the data was
defined 1in, the definition of ¢the data and the
transformations which may be applied to the data. The
following sections describe the coordinate systems
which are available for data definition and display,
the manner in which data is defined within these
coordinate systems and the transformations and the

order in which they should be applied to the data.

5.2.1 Coordinate Systems

The user of THE PICTURE SYSTEM need only be concerned
with the data space coordinate system in which the
data to be displayed is defined. However, the user
: may optionally choose to expand the range of the data
\ space available or to provide for convenient scaling
of defined data by use of the homogeneous coordinate
system. In either case, the image which is ultimately
displayed is viewed within the screen coordinate
system ' of the Picture Display. Following 1is a
description of each of these coordinate systenms. '

5.2.1.1 . Data Space Coordinates _
. | ~ The data space coordinate system is the region of
definition space in which all data which is to be

viewed is defined. The data space by convention is
treated as a left handed coordinate system. Thus,
positive X increases to the riqht and positive Y
increases upward, while positive Z increases away from
the X-Y plane when viewed as in Figure 5.2-1. Any
data point may be wuniquely represented within this
coordinate system by providing the x,y,z coordinates
which define the position of the data point in three-
space. Within this data space resides all of the
parameters which define the windowing boundaries, the
eye position for perspective views, the translational
values, the scaling values as well as all of the data
which is to be viewed. The bounds of the data space
are +215-1, but may be extended to an effective range
of +230 by using the homogeneous coordinate systen.

Fiqure 5.2-1

The- Data: Space Coordinate Systen

5-10

5.2.1.2

Homogeneous Coordinates

All data defined for use on THE PICTURE SYSTEM is

.treated by the hardvare as homogeneous coordinate

data; that is, each data point consists of x,y,2z,w
coordinates. This coordinate systenm was made
available to the user because the need to express
nunbers larger than 32767 (the 1larqgest expressable
integer value of the Picture Controller's 16-bit word
size) arises in some applications. The homogeneous
coordinate system allows the user the capability of
expressing numbers of +230 in magnitude, by
representing a point . in three dimensions whose
coordinates are x,y and 2z by the four coordinates
(hex,hey,hez he32767), where "h" is an arbitrary
number between zero and one. If each of +the numbers
X,Y,2 are 1less than or equal to 32767 in magnitude,
"h" yould be made equal to 1 and the expression
becomes (x,¥,2,32767). But if one of the coordinates
of the point is greater than 32767 in magnitude, ®h"
may be adjusted such that the number is expressable.
For example, if the data point (100000,60000,~-16000)
were to be expressed in homogeneous coordinates so
that each of the numbers could be represented by a 16-
bit integer, "h" could be chosen to be 1/4 resulting
in (1/4100000,1/4¢60000, 1/40-16000,1/432767) - or
(25000, 15000,4000,8192) . It should be noted that "h"
could not be chosen to.be 1/2 since this would result
in an x coordinate of 50000, again unexpressable as a
16-bit integer. This example illustrates how "™h" nmay
be chosen. However, it may be required in some
instances tc minimize the 1loss of resolution that
results in the conversion of unexpressable numbers to
homogeneous coordinates. In these instances, the
following formula may be used to compute an "h" which
minimizes the resolution loss:

| maximum x,y or z coordinate|
In the above example, this would result in:
32767
h = ~=cv=m- - = .32767
1100000}

or the homogeneous coordinates:

(32767,19660,-5243,10737)

5-11

Usually though, a convenient value (such as 1/2, 1/4,
1710, etc.) may be chosen for "h" which yields
homogeneous coordinates whose loss of resolution is
not significantly greater than if the resolution 1loss
had been minimized.

The previous discussion emphasizes the use of the
homogeneous coordinate system to extend the effective
range -of the data-space. Hovwever, the homogeneous
coordinate may also be used to define objects
according to their own coordinate system and scale.
For example, an object which may have been previously
defined with 2000 data units/inch as its scale may be
required to be displayed in relation to a similar

object which had been defined to the scale of 1000 -
data units/centimeter. One of the objects may be. =
connected’ to the scale of the other by merely .
supplying the appropriate homogeneous coordinate -(IW)"
when drawing the data .using the :DRAW2D or-DRAW3D
subroutine. To determine the appropriate homogeneous®
coocdinaté',for',this;fexanple,;theffollowinq equation - -

would ‘be used:

 1'ceﬁtimetér';_~,_,1' 1 inch -
or

1000 data units 2.54 centimeters 2000 data units

h = ~ceccecannnacaa e - - - - - —--- S eemecceccecvccccmoe-

1 centimgter -1 inch 1 inch

or

2540 data units 2000 data units
h = ~=—~—mcceccccce = cmcccccecec————

1 inch 1 inch

or

2000
h = ---- = .78740

2540

Therefore, the homogeneous coordinate, IW, would be:

5-12

IN = .7874032767 = 25800

The homogeneous coordinate would then be used fo
"scale" the data that was previously defined in inches

into the centimeter data space, as shown in Example
5-2'1- - :

5-13

S. 2. 1.3

DRAW THE CENTIMETER DEFINED DATA

Qoo

CALL DRAW3D (ICENT,500,0,2)

DRAW THE "SCALED™ INCH DEFINED DATA.

ann

CALL DRAW3D(INCHS,500,0,2,25800)
CALL NUFRAM

Example 5.2-1

As specified in Chapter 4, there are eight subroutines
in THE PICTURE SYSTEM Graphics Software in which the
user may utilize the homogeneous coordinate systenm.
They are: ‘ :
WINDOW } -
TRAN o '
SCALE
~ DRAW2D
DRANW3D
, MASTER :
e INST e I
: HITWIN

In each of these subroutines, the inclusion of the
homogeneous coordinate, IW, is optional so ‘that the
user who has no need to utilize the homogeneous
coordinate is not even required to specify the
arqument in the <calling sequence to the subroutine.
Those users who initially do not use homogenedlis
coordinates may easily modify their programs to
utilize their capabilities if required at a later
time. '

Screen Coordinates

All data within the data space (homogeneous or not)
that is defined for display is ultimately mapped into
the screen coordinate system for display by the
Picture Generator. This mapping from the dat a space
to the screen coordinate system is called the viewport
mapping and occurs after the data has been
transformed, clipped and the perspective projection
performed. This process, accomplished by the hardware
of the Picture Processor, is transparent to the user

.

who need be <concerned with ‘the screen coordinate
system only when specifying viewport boundaries.

The screen coordinate system for the Picture Display
of THE PICTURE SYSTEM is shown in Figqure 5.2-2. As
the fiqure illustrates the origin of this coordinate
system is at the center of the display screen and has
a range of -2048 to +2047 display units. This two-
dimensional screen coordinate system may be considered
a three-dimensional coordinate system whose third
dimension is the intensity range of the display. This
is shown in Fiqure 5.2-3. It is within this
coordinate system that all viewports are specified.
Since viewports may encompass a portion of the screen
and pictorial data is mapped within the viewport
boundaries (NOT TO THE SCREEN BOUNDARIES), the screen
may be used to define multiple viewports. This allows
the screen to be used to view a single object in many
orientations or many objects simultaneously. The user
should be <cautioned, however, that should a viewport
specification exceed the range of the screen

coordinate system, lines mapped to the edges of the
viewport will wrap-around to the opposite side of the
. screen. L '

5-15

g THE PICTURE SYSTEM
- 2047)

-2048

X 2047

Figqure 5.2-2

Screen Coordinate System of the
Picture Display

5-16

4096

DISPLAY
UNITS

INTENSITY

| SCREEN FACE

Figure 5.2-3

The Two-dimensional Screen Coordinate Systenm
considered as a Three-dimensional System whose
Third Dimension is the Intensity Range.

5-17

5.2.2

Data Definition

Graphic data that is to be displayed on THE PICTURE
SYSTEM is defined in the Picture Controller in the
form of what may be termed a data set. A data set is
an array of two- or three- dimensional coordinate
points that are to be drawn in a particular drawing
mode.

All data displayed on THE PICTURE SYSTEM is treated by
the hardvare as homogeneous ccordinate data; that 1is,
each data points comsists of x,y,z and w coordinates.
Thus two-dimensional data consists of x,y pairs with
constant z and w coordinates (two-dimensional data is
actually three-dimensional data that resides in a
constant 2z plane), and threedimensional data consists
of x,y,z triples with a constant w coordinate. The
notation used to represent a data set is illustrated

in quures 5.2-4a-and b. All data of a partlcular
data set ‘that is to be dlsplayed should be stored in
"the memory of the Picture Controller in a contigquous
flnteger array, to facilitate the accessing of the data
‘by the. 'Direct Hemory Access (DHA) interface of the
Pictare’ Processor. ‘To ensure that data is stored as
'.conthuous data elements in memory, the user should o
:;understand ‘the array storage convention of PDP-11
. FORTRAN IV, summarlzed as follows:

Arrays _are . stored in cohthuous storage

locations that are addressed in ascending order
with the first subscript varying most rapldly.
For. 1nstance, the two-dimensional array N(J,K)
is stored in the following order:?
N{1,), §(2,1), - - - , N{J,1)
N(1,2), N(2,2), . . . , N(J,2)

N(1:K); . .7. ¢+ N{J,K)

1See Reference 3, Part 7, Section 5.3.1 for further details.

5-18

rilyr : with constant jfly‘z v

XY, z and w X,Y,2 ¥

x3V3 coordinates = x3f§z W

x X zZ W

[*n¥n [Tn¥n2 ¥
(1) (2)

Figure 5.2-4a

Two-dimensional data showing: (1) the notation of the
data set as stored in the memory of the Picture
Controller (with implied constant z and w coordinates)
and (2) the equivalent homogeneous data set as
processed by the Picture Processor.

x,v,z;| . with constant =[x v,z
xzyzzz ?fi}_? ch;dinate' : = | XaYpzaV
X3¥3Z3| - | T X3¥323¥
XnY¥p Zp ' ‘ [Xn¥n2ZnV |

(N . | (2

Figure 5.2-4b

Three dimensional data showing: (1) the notation of
the data set as stored in the memory of the Picture
Controller (with implied constant w coordinate) and
(2) the equivalent homogeneous data set as processed
by the Picture Processor. :

This convention should be used in the following manner
to ensure that all two- and three-dimensional data is
accessed properly:
311 two-dimensional data should be stored in an
array specified as:

DIMENSION IDATA(2,n)?

All three-dimensional data should be stored in
an array specified as:

DIMENSION 1IDATA(3,n)!

In this manner the data will appear as:
IDATA(1,i) = xi
IDATA(2,i) = yi

and for the three-dimensional data:
IDATA(3,1i) = zi

A data set specified as described above may then be
displayed by calling the appropriate display
subroutine (DRAW2D or DRAW3D) and providing the
draving specifications. Fiqgures 5.2-5a and b show the
calling sequence ‘used to display two-' and three-
dimensional data. Although the z and w coordinates
are constant for a particular data set when used in a
DRAW2D call, .they may be varied from call to call. 1In

this manner, a two-dimensional data-set may reside in :
any z-plane and all data sets may be scaled (using the -

w coordinate) by any value. It should be noted by the

user that the intensity of a picture displayed is

dependent upon the z position of the data in relation
to the hither clipping plane (assuming that depth-
cueing is being used). Thus to decrease the intensity
of a data set, the user need only to increase the
distance of the data set from the hither clipping
plane {normally the hither clipping plame = 0 for two-
dimensional display).

Data that is ‘displayed on the Picture Display is
transformed, clipped and mapped to a portion of the
display screen (viewport mapped) by the Picture
Processor and stored into the Refresh Buffer for
display. Because of this, data within the Refresh
Buffer is referred to as transformed data and may bear
little resemblance to the original data.

lsimilgrly, a one-dimensional array may be used to contain two-
or three-dime2nsional coordinate data. :

5-20

" _lF

CALL DRAW2D (IDATA(1,1) ,N,IF1,IF2,IZ,IW)

Figure 5.2-5a

2-dimensional_
data set

nunber of
coordinate pair

type of draw
function

drawing mode
Z position

scaling factor
(optional)

‘Calling Sequence for Two-dimensional Display of Data

CALL DRAW3D (IDATA(1,1) ,N,IF1,IF2,IN)

Figure 5.2-5b

3-dimensional
data set

number of -
coordinate trip

'type'of draw
“function

draving mode

scaling factor
(optional)

Calling Sequence for Three-dimensional Display of Data

@ 521

5e 2.3 Transformations

All data that is displayed on the Picture Display is .
transformed by multiplying each coordinate point to be

drawn by a U4x4! matrix which represents the linear
transformation to be applied to the data. This
process is performed by the Picture Processor
hardvare, greatly increasing the speed at which the

data may be transformed and displayed. The use of

linear transformations in the programming of
interactive graphics programs is discussed in detail

in the following sections.

5.2.3. 1 The Identity Transformation
THE PICTURE SYSTEM initialization subroutine, PSINIT,

initializes the Picture Processort's Transformation
Matrix to a 4x4 identity matrix of the form:

100
010
00 1
000

THE PICTURE SYSTEM subroutines which alter . the
transformation matrix do so by matrix concatenation.
Initializing to +the identify matrix assures that the
first concatenatior is equivalent +to 1loading ‘the
desired matrix. It should be mnoted that any
homogeneous vector or matrix may have all its elements
multiplied by some mnon-zero scalar quantity without
changing its graphic effect at all. Thus, THE PICTOURE
SYSTEM automatically scales all concatenated matrices
to the greatest value short of overflow, in "~order to
preserve arithmetic .precision. The 1's in the above
matrix, therefore, are shown merely for mathematical
clarity, and in fact, subroutine PSINIT uses the
value, 16384, in their place.

iFor am in-depth discussion of the properties and theory of
matrices and linear transformations, see Reference 2.

5.2.3.2

' 5.2.3.3

‘Compound T:ansforhatith‘;

Simple Linear Transformation

All transformations performed by the graphics
subroutines (i.e. WINDOWing, ROTation, TRANslation
and SCAL(E)ing) are simple 1linear transformations;
each are expressable as a 4x4 matrix. When called,
the subroutines create a U4x4 matrix to perform the
required linear transformation (e.g. ROTate 900, etc.)
and concantenate it with the Picture Processor’'s
Transformation Matrix to form a compound matrix. If
the initial contents of the Transformation Matrix wvas
the identity matrix, the resultant compound matrix
would be the simple transformation created by the
graphics subroutine; otherwise, the compound matrix
would be a combination of the transformations
previously concatenated and the newly concantenated
matrlx. ’ .-

quure '5.2-6 illustrates the matrix multipiiéatioh

.1nvolved in transforming a data point [x y z w] by the
'transformatlon natrlx A to get the transformedvdata

point [x'y'z’w']. If data is to be displayed without
transformation in any manner, the Transformation
Matrix must contain the 1dent1fy matrix . as shown in

»F;qure 5 i 7.

A compbund: transformation ‘may be thought of as a
series of two or more 4x4 matrices multiplied together
as illustrated in Figure 5.2-8.

Typically, all transformations that are to be applied
to a given set of PICTURE SYSTEM data are concatenated
into one matrix as in Fiqure 5.2-8, so that the data
to be displayed may be transformed (i.e. multiplied)
by the compound transformation.

5-23

[xy 2z u][A } = [x'y'z'w']

(1) (2)

Figure 5.2-6123

Transformation of a data point by a single
transformation showing (1) the transformation notation
and (2) the transformed data.

1In this discussion all data will be represented by
the homogeneous coordinate point [x y z w] which may
by thought of as a representative data point (two- or
three-dimensional) of any data set.

2In this discussion, all 4x4 matrices will be represented
by the notation:

e e e e

I %2 €43 19 ,
©31e32€33€34
€41 842%43%44

where "NAME' identifies the linear transformation
represented by the 4x4 matrix. For a detailed
discussion of the contents (i.e. each of the 16
elements) of the 4x4 matrices used in THE PICTURE
SYSTEM graphics softvare see Reference 1, Chapter 12.

3The transformed data [x'y'z'w'] is usuélly clipped,
viewport mapped and stored into the Refresh Buffer
to be displayed on the Picture Display.

5-24

[xy zvw)] I = [x'y'2'w] =[xy 2 w]

‘ (1 (2) (3

Figure 5.2-71

Transformation of a data point by the identity matrix
I showing (1) the transformation notation, (2) the
transformed data, and (3) the equivalence of the
transformed data and the original data.

Figure 5. 2-8
Three Slmple Ttansformatlons and an Equivalent Compound
Transformatlon.; ;

1In this discussion, the indentity matrix will be represented
by the notation:

1000
I =10100
0010
0001

@ 5-25

The associative property of matrices and the use df7
this property in compound transformations are

illustrated in Figure 5.2-9. In this fiqure, matrix X
is post-multiplied by matrix B resulting in the
(compound) matrix AB which is them used to transform
data points.

e[|} [a] cravew [A [B

(1) ' (2)
[x ¥y z w) [AB] = [x'y'2'w']
R &) R

 Figure 5.2-9

‘Transformation. . of a ‘data - point by . compound
' transformations ;| showing = (1) the tramsformation
notation, ' (2) - the use of the associative property of-

matrices, (3) the compound matrix and - (4) the

-trans formed data.

Figure 5.2-9 1is indicative of the technigque used to
specify the transformations used in PICTURE SYSEEM
application ° programs. The transformations to be
performed upon a given set of data are determined and
diagrammed, IN THE ORDER THAT THE DATA IS TO ENCOUNTER
THE TRANSFORMATIONS TO BE PERFORMED.?Y A suggested
order in which transformations may be performed is:

1The order in which matrices are multiplied is very important
as matrix multiplication, in general, is not commutative; i.e.

IR

5-26

,—, — B ,._vl. . _-_,;,_;.;,— g - 'I-_n., = I,.llﬂ om

SO

1. Scaling of the data (SCALE) ,

2. Rotation about the origin of the data (ROT)

3. Translation of the data (TRAN)

4. Windowing of the data and setting the angle
and point of view (WINDOW)

Figure 5.2-10 illustrates this order of transformation i
the matrix notation previously defined.

comp.

scaLE || Rorx | | RoTy | | RoTz | | TRAN | |WINDOW|| I | =
tran

v'rFigute 5.2-10

A Suggested Orde: in;uhich:ftansformations may be Performed.

It should 'be noted that inclusion. of all of the

transformations 'is not ‘Hecessary’ ‘and, in fact, is’
often undesirable. For example, in displaying two-"
dimensional data, a rotation about the X or Y axis

results in making a three-dimensional picture of two-

dimensional data. A sugqgested order of

transformations for two-dimensional data is shown in

Figure 5.2-11. :

5-27

[xvy

"[x .

e o] o] o [-

Figure 5.2-11

A Suggested order in which Two-dimensional
Transformation may be Performed.

A comparison of Fiqures 5.2-10 and 5.2-11 shows that
the display of two-dimensional data is a special case
of the more general three-dimensional - case.
Therefore,-all further discussions of transformations

and the"examples ‘'given will be for the three-

dlmen51onal case. Dlscu5510ns and exanples for . the

,tuo-dlmen51onal case ‘may be formed in a sxmllar

nanner.

Figure 5.2 12 shows the transformatlon of a data point
by the transformatlons of quure 5.2-10."

o4 1 A BB

(N

comp.
z w] =[x'y'z2*w']
tran. ‘
(2) (3)

Figure 5.2-12
Transformation of a data point showing (1) the use of

the associative property of matrices, (2) the compound
transformation and (3) the transformed data.

5-28

ity
2

Once the transformations to be performed on a set of
data have been diagrammed as in Fiqure 5.2-12 it is a
relatiavely simple task to implement them in a
graphics application program. Because the matrix
concatenation implemented in hardware pre-multiplies
the existing transformation matrix by the new
component matrix and retains the result as the new
transformation matrix, the order in which the
transformation matrix must be created using the systenm
software is: windowing, rotation, translation and
scaling. Note that this order is the reverse of the
order in which the transformations will be effectively
applied to the drawn data. The most recent
transformation applies first! This is illustrated in
Figure 5.3-13 along with the FORTRAN subroutine calls
required to implement this transformation sequence in
a user program. Usually, the transformation sequence
would be executed repeatedly by changing the
parameters in the transformations to produce a dynamic
picture. The PUSH and POP operation s facilitate
nultiple use of compound matrices. For example, the
identity matrix might be saved prior to the
concantenation of the transformations and restored
after all the data had been transformed and before the
"pnext"” series of transformations. This technique 'is

‘shown in Figure 5.2-14. It should be emphasized - that:

the saving (PUSHing) and restoring (POPping) of the
Transformation ~Matrix is performed in hardwvare,
therefore incurring very little overhead. The saving

" of transformations need not be limited to the identity

matrix. ‘Any transformation may be saved for future
recall by similarly PUSHing in onto the matrix stack.
For example, if the WINDOWing transformation of Fiqure -
5.2-14 were constant, an increase in frame update rate .
could be achieved by creating the NINDOW
transformation only once and saving and restoring that
transformation rather than the identiy matrix. This
is shown in Figure 5.2-15.

e

[I] CALL PSINIT (3,04s¢0)

EINDO% CALL WINDOW (IWL,IWR,IWB,IWT,XIH,IY,IE)
TRAN CALL TRAN (TX,ITY,ITZ)
ROTz : CALL ROT (IAZ,3)

. CALL BOT (IAY,2)

" CALL ROT (IAX,1)

" CALL SCALE (ISX,ISY,ISZ)

' CALL DRAW3D (IDATA,N,IF1,IF2)

CALL NUFRAM
.Fiqure 5.2-13

The Order in which Transformations are Concatenated
into the Corresponding FORTRAN Subroutine Calls

5-30

Save Identity
Matrix Here

creafo] o] [} o] fo et -

[xlylz!wl]

INITIALIZE THE PICTURE SYSTEM
CALL PSINIT(3,0,¢ss)
SAVE THE IDENTITY MATRIX AND BEGIN THE DISPLAY LOOP
00 CALL PUSH
MODIFY OR OBTAIN NEW TRANSFORHATiON PARAMETERS

QO ==000 OO0

CONCATENATE THE TRANSFORMATIONS

nan .

CALL WINDOH(IWL IWR,IHB IHT IH, IY «1E)
- CALL TRAN (ITX,ITY, ITZ)
© CALL ROT (IAY,3) -

- CALL ROT (IAX,2)"

CALL ROT (IAX,1)

- CALL SCALE(ISX,ISY,ISZ)

NOW TRANSFORM THE DATA BY THE COMPOUND TRANSFORMATION
CALL DRAW3D(IDATA,N,IF1,IF2)

RESTORE THE IDENTITY MATRIX AND DISPLAY TOTE DATA

Qan aoan

CALL POP
CALL NOUFRAM
GO TO 100

Fiqure 5.2-14

Diagrammed Saving of the Identity Matrix and the
Corresponding FORTRAN Code.

5-31

[x

[x

0N

(e X2 K2

s e Ng) OO0 N00
) (=]
o

an6

aan

Save the WINDOW
Transformation here

onfend o o] for] [o []

'ylz‘l“']

INITIALIZE THE PICTURE SYSTEM
CALL PSINIT(3,0,,,,)
SET THE WINDOWING TRANSFORMATION
CALL WINDOW (IWL,IWR,IWB,IWT,IH,IY,IE)
SAVE THE WINDOWING TRANSFORMATION AND BEGIN THE DISPLAY LOOP

CALL PUSH

MODIFY OR OBTKIN NEW TRANSFORMATION PARAMETERS

CONCATENATE THE TRANSFORMATIONS
CALL TRAN (ITX,ITY,ITZ)
CALL ROT (IAZ,3)
CALL ROT (IAY,2)
CALL ROT(IAX,1) |
CALL SCALE(ISX,ISY,ISZ)
NOW TRANSFORM THE DATA BY THE COMPOUND TRANSFORMATION
CALL DRAW3D (IDATA,N,IF1,IF2)
RESTORE THE ORIGINAL WINDOW THAT WAS SAVED

CALL POP
CALL NUFRAM
GO TO 100
Fiane 5.2-15

Diagrammed Saving of the Windowing Transformation
and the Corresponding FORTRAN Code.

5-32

The ability to save and restore transformations is a
powerful capability which can be used to effectively
increase the speed with which data can be transformed
and dynamically displayed. An example of this
capability is a modification of Figure 5.2-15. If the
data array IDATA were to be displayed twice, in the
same orientation but SCALEd differently to emphasize
different aspects of its geometry, the technique would
be used as illustrated in Figure 5.2-16. This ability
to nest or stack transformations is available to four
levels in hardware, and may be extended by the
software to any level required.

Tha capability of merely <call ing a subroutine to
perform a given transformation, the speed with which
matrices can be concatenated, the ability to stack
transformations and the speed with which data can be
transformed and displayed make the use of 4xd matrices
and the associated linear transformations a powerful
feature of THE PICTURE SYSTEM.

5-33

save the compound save the WINDOW
transfosmation here transformation here

et fnd o]] o] o] [] -

[xlylzlwl

C
C

2Kt Ne'

00

anannn

Qo

SCALE ‘

~

SCALE

1
INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,0,,,,)
SET THE WINDOWING TRANSFORMATION

CALL WINDOW (INL,IWR,INB,INT, JIH,IY,IE)
SAVE THE WINDOWING TRANSFORMATION

CALL PUSH

: HODIFY OR OBTAIN NEW TBANSFORHATION PARAHETERS

CONCATENATE THE TRANSFORHATIONS’ AND DISPI.AY THE('DATA TWICE ‘

CALL TBAN (ITX,ITY,ITZ)

CALL ROT (IAZ,3)

CALL ROT {1AY,2)

CALL ROT (IAX,1)

CALL PUSH

CALL SCALE (ISX1,ISY1, ,ISZ1)
CALL DRAW3D (IDATA,N, IF1,IF2)
CALL POP

CALL SCALE(ISX2,ISY2,ISZ2)
CALL DRAW3D (IDATA,N,IF1,IF2)

RESTORE THE ORiGINAL WINDOW THAT WAS SAVED
CALL POP
CALL NUFRAM
GO TO 100
Figure 5.2-16

Diagrammed Nestiné of Compound Trasnformations
and the Corresponding FORTRAN Code.

5.3

typical call to PSINIT is shown in Example 5.3-1.

'PROGRAM INITIALIZATION [PSINIT]

Program initialization for PICTURE SYSTEM graphics
applications programs consists of:

1. Calling the subroutine PSINIT to initialize
THE PICTURE SYSTEM hardware and software.

2. Initiating automatic operations

3. initializing all user variables to their
initial state.

Each of these steps in the program initialization
process is described and illustrated in the following
sections. -

Initialization of THE PICTURE SYSTEM Hardware and
Software .

Typically, the first statement in a user applications
program is the -call to PSINIT! to initialize . the
hardware and software of THE . PICTURE SYSTEM. A

refresh at 40 frames

-/ per second
¥ §—————dynanmic frame update
 CALL PSINIT(3,0,,,,)

Example 5.3-1

In this example, typical parameter values have been
chosen: a refresh rate of 40 frames per second and the
specification of a dynamic frame update rate. One
should note that the last ‘four parameters in the
subroutine call are specified as null parameters

"9-9-}1")- 3

1See Section 4.1 for a detailed specification of PSINIT.

- 5-35

When null parameters are specified, the default values

are assumned for these parameters. The following is
the PSINIT calling sequence specification of Section
4.1: '

[EXTERNAL ERRSUB]
CALL PSINIT (IFTIME,INRFSH,[ICLOCK],[ERRSUB],[ISTKCT]
,[ISTKAD J{ ,IFMCNT))

A discussion of the uses of each of the parameters
follows:

IFTIME is wused to - specify the rate with which the
Picture Display is to be refreshed. Typical values
for this are 2, 3 or 4% indicating refresh of 60, 40 or
30 frames per second, respectively, appropriate for
the P4 phosphor of the Picture Display. If the
current frame refresh has not been completed when the
refresh interval bas elapsed, then the frame refresh
will occur upon the next 1/120 second interval after

the frame refresh is completed. Table 5.3-1 contains.

all valid values and the corresponding refresh rates
of IFTIHE. ;

INRFSH " ‘used to desigpate the number of frame

refreshes whlch must be completed before a frame

update - (NUFRAH) ~ will be recognized. Typically;

s .

INRFSH=0 1nd1cates that dynamic frame update is

desired. However, certain applications require fixed: -
lenqths of time bhetween frame updates. In these
appllcatlons, this parameter provides this capablllty._

Example 5.3-2 demonstrates the calling sequence which

specifies that frame update be done no sooner than -

every 20th of a second.

CALL PSINIT(3,2,,¢¢)

Example 5.3-2

IFTIME

WONOTONEWND -

TABLE 5.3-1

BREFRESH _RAIE

120.0
60.0
40.0
30.0
24.0
20.0
17.1

frames
frames
frames
frames
frames
frames
frames
frames
frames
frames
frames
frames
frames
frames
frames
frames

per
per
per
per
per
per
per
per
per
per
per
per
per
per
per
per

second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second

The update :ate' in seconds may- be.computed froﬁ‘the
parameters of the PSINIT call in example 5.3-2 as
follows: -

IFTIME 3 1
update rate = -=---- *¥ INRFSH = --- * 2 = -- sgecond
120 120 20

If a longer interval of time is required to generate a
nev frame, the update rate will automatically -extend
in order for the system to complete the new frame. A
new frame will not be displayed more often than
specified by INFRSH but may take longer depending on
the time required to compute the new frame. Parameter
IFMCNT may be dsed to detetrmine the number of 1/120
second increments required to create a new franme.

ICLOCK is used to allow user synchronization with the
refresh of the display. When specified, this
: parameter ‘incremented. with each frame refresh and

. is typlcallv used to display an item for a fixedgijl

'lenqth of . time (or number of refreshes). For example,

if a: user error message is to be d1splayed for 10.e¢;”
7 seconds it wonld be programmed as shown in Example .
5.3-3. . It should be noted that in the example, the

-number QOO ‘used to terminate the display loop was

derlved fron a refresh rate of 40 frames/secondf 3

(IFTIHE 3) & 10 seconds__ 400 frames.' . —_ sﬁ.“_::?

CALL PSINIT(3,0,ICLOCK,,,,)

BEGIN ERROR DISPLAY LOOP

o
C .
C CALL USER SUBROUTINE TO DISPLAY THE ERROR MESSAGE
C .

CALL ERMSG

CALL NUFBAM
c
C RESET CLOCKING VALUE
C

ICLOCK=0 i

c
C DONE?
o
100 IF (ICLOCK.NE.400) GO TO 100
o
C FINISHED... CONTINUE WITH USER PROGRAM

Example 5£3;3‘ ,

5-39

ERRSUB is a user error subroutine, which if spéCifieﬁ7

may determine where the user error occurred. If no fv

user error subroutine is provided, the graphics error
subroutine PSERRS! is called to report the woccurrence
of the user error. Typically, the system error
subroutine is specified by default as shown in
Examples 5.3-2 and 5.3-3. The user requiring more
memory may consider a user error subroutine which is
shorter in 1lenqth than PSERRS. It is suggested in
this case however, that the user error subroutine be
named PSERRS or that a global symbol PSERBRS be
declared to avoid loading the system error subroutine

PSERRS. Exaample 5.3-4 demonstrates the use of a user

error subroutine which avoids the 1loading of the
system error subroutine, PSERRS.

EXTERNAL PSERRS
CALL PSINIT(3, 0,,PSERRS,,)

END

 SUBROUTINE PSERRS - :
STOP : g =
RETURN . B .
END

Exampie 5.3-4

ISTKCT is used to specify the number of 16 wotad
contiquous arrays allocated as matrix stack area.
This 1is required only if the stacking (PUSHes) of
transformations exceeds U4, the number implemented
within the Picture Processor. If this is required,
ISTKCT is the number of additiomal levels of matrix
stack space that are required.

1Por Paper Tape software users a halt will occur rather than
an e ror message beinqg printed out. See Appendix D for
specific Paper Tape details.

5-40

ISTKAD 1is an integer arrray allocated as matrix stack
area. This contiquous area need be 16*ISTKCT words in
length. If ISTKCT contains the value 0 or is not
specified, then this argument will not be utilized.
Example 5.3-5 illustrates the use of this feature.

IFMCNT is an optional parameter which, if specified,
will allow a user to determine the frame wupdate rate
at which his picture is being created. This parameter
is 1intended for information purposes only. For
exanple, if a frame update rate of 15 frames per
second is required, this parameter may be monitored to
determine if frame update is proceeding at this rate.
IFMCNT should be initialized (or zeroed) by the user
each time the frame update rate is to be determined.
IFMCNT is never initialized by the system softvare,
but rather 1is always incremented upon each refresh
interval by the number of 1/120 seconds that have
elapsed since the 1last frame refresh. Table 5.3-2
shows the values of IFMCNT for frame update rates down
to 10 frames per second. Example 5.3-6 illustrates
the use of IFMCNT.

5-41

nnan

DIMENSION ISTKAD(16,1)
CALL PSINIT(3,0,,,1,ISTKAD)

LEVEL 1

CALL PUSH
CALL PUSH

PUSH

O
|
ete
|

PUSH

G
|
«se bt
t*,

_POP

-0
PR
‘soe b

-

[+
| w8

PUSH

[

n . .
too b+ st @ ...7:(-_'_.‘_..‘.!_. K .l-i-r’l'.

PUSH.

L POP .

POP

O
o
g

0
]
e

POP

POP

g
-
vee
=

POP

Q

P
see
)

Example 5.3-5

5-42 .

IFMCNT

WONOUMEWN-=

10

TABLE 5.3-2

UPDATE_RATE
120.0 frames
60.0 frames
40.0 frames
30.0 frames
24.0 frames
20.0 frames
17 .1 frames
15.0 frames
13.3 frames
12.0 frames
10.9 frames
10.0 frames

5-43

per
per
per
per
per
per
per
per
per
per
per
per

second
second
second
second
second
second
second
second
second
second
second
second

CALL PSINIT(3,0,.,,,IFNMCNT)

BEGIN DISPLAY LOOP

a0

00 IFMCNT=0

CALL NUFRANM

C SLOW FRANE UP.

C ENSURE UPDATE RATE OF AT LEAST 15 FRAMES PER SECOND

IF(IFMCNT.LE.8) GO TO 100

PRINT A MESSAGE AND THEN CONTINUE

5-44

5.3.2

5.3.2. 1

5.3.2.2

Initiating Automatic Operations [TABLET, CURSOR)

The Graphics Software Package provides the facility td
have certain operations occur automatically. These
operations are:

1. The updating of the tablet p051t10n and
status of the pen.

2. The display of a cursor within an initial
viewport.

These automatic operations can be used independently
or together to provide dynamic pointing capabilities
without programming effort.

The automatic operations occur at the rate specified
as the refresh rate in the call to PSINIT. After each
frame refresh has been initiated the automatic
operations that have been "turned on" are performed.

Automatié Tablet Update

vThe aufdmatic tablet update is initiated by a call_ﬁo

the TABLET subroutine specifying that the tablet is to
be used in automatic mode as shown in Example 5.3-7.

CALL TABLET (1,IX,IY,IPEN)

~—— Example 5.3-7 —

In this example, the parameters IX,IY and IPEN are
variables which are to be automatically updated with
the x-pen position (IX), the y-pen position (IY) and
the pen status information (IPEN). This information
may be used to determine menu selections and in
conjunction with the CURSOR subroutine to display the
current pen position.

Automatic Cursor Display

Automatic cursor display is initiated by a call to the

CURSOR subroutine specifying that the cursor is to be

displayed in automatic mode as shown in Example 5.3-8,
CALL CURSOR(IX,IY,1)

Example 5.3-8

5-45

5.3.2.3

In ‘this -example, the .parameters 1IX and IY are the
wvariables which contain the X,y position at which ‘the
cursor 4is to ‘be <displayed. These parameters are
usually the values which indicate the x,y position of
the pen, but mneed not be the tablet values and may
indicate any information.

Use of Automatic Tablet and Cursor Modes

Initiation of automatic tablet and cursor modes should
proceed in the following order:

1. CALL PSINIT to initialize THE PICTURE SYSTEM.

2. CALL VWPORT to specify the viewport boundaries?

within which the cursor is to appear, if other
‘than the default boundaries are required.
3. CALL '“TABLET :to initiate automatic tablet
update.
4o CALL :CURSOR to lnltlate automatlc cursor
- display. . '

Bxamples 5.3 9 and ‘De 3 10 show the use of -automatic
tablet and cursor modes.

modlfled thereafter and the cursor will continue to appear
.within the dymamically changing viewport.

5-46

2NeNeNe! aonn

2XeKel

NnoOao

noan

aon

INITIALIZE THE PICTURE SYSTEM
CALL PSINIT(3,0,,,,)

USE DEFAULT VIEWPORT OF ENTIRE SCREEN INITIALIZED BY
PSINIT FOR CURSOR DISPLAY

CALL TABLET(1,IX,IY,IPEN)
CALL CURSOR(IX,IY,1)

BEGIN DISPLAY LOOP
Example 5.3-9

DATA IVL,IVR,IVB,IVI/-2047,0,0,2047/
INITIALIZE THE PICTURE SYSTEM
 CALL PSINIT(3,0,,,,)
SET UP THE VIEWPORT FOR CURSOR DISPLAY
CALL VWPORT (IVL,IVR,IVB,IVT,255,255)
CALL TABLET(1,IX,IY,IPEN)
CALL CURSOR(IX,IY,1)

BEGIN DISPLAY LOOP

Example 5.3-10

5-47

Se3e 3

Initialization of User vmriahles

variablkes are usuakly used in an applications program

to retain values which are passed to the graphics"

subroutines to indicate angles of rotation,
translation values, etc. Upon initial loading of the
program, these varfables will contain their initial
values. Howewer, if the program is re-started or has
a programmed re-start facility, these variables will
contain values which may not be the initial values
required. For this reason, it is suggested that all
user variables be initialized before the display Xoop
is: begun. Figere S5.3-1 illustrates a suggested
placement of the user variable initialization process.

5-48

DISPLAY | j'
LOOP |

-r——— —_—— . —

PROGRAM INITIALIZATION

{

I

l

| USER
VARIABLE

| INITIALIZATION

|

|

|

|

.

PICTURE

SYSTEM
INITIALIZATION

L]

 DISPLAY
— "}~ PROCESSING _

I

NUFRAM

Fiqure 5.3-1

Suggested Program Initialization Structure

5-49

5.“

VIEWPORTS [VWPORT)

A viewport is a program-specified rectanqular region
of an output device within which the windowed data is
mapped for display. Typically, the output device is
the Picture Display of THE PICTURE SYSTEM.

Figures 5.4-1a and b illustrate the two- and three-
dimensional display of data which is mapped into the
viewport. A viewport is specified for THE PICTURE
SYSTEM by calling the VWPORT subroutine. The
following is the VWPORT calllng sequence specification
of Sectlon 4.1:

CALL VWPORT (IVL,IVR,IVB,IVT,IHI,IYI).

The parameters passed ,to the subroutine specify the

boundaries of the viewport in the coordinate system of
the output deyice; .viewport left boundary (IVL),
viewport right boumndary (IVR), viewport bottom

- boundary - (IVB) and viewport top boundary (IVT). The
subroutine also prov1des the ability to specify the

intensity = at’ whxch data will be displayed at the

_h1ther and yon: Cllpplnq planes. hlther 1nten51tv (IHI)

and yon Lnten51ty (IYI).

1S-6

RWINDOW e :VIEWPORT

e

. _-i>\-

r R
=l
il L
~
N

1!

~ 11

L

|
|
() ~ | i
| T~ ——__1ll
N

~

DATA SPACE : : : SCREEN
(1) - (2)

Figure 5.4-1a
Two-dimensional clipping and viewport mapping showving

(1) the two-dimensional window and data and (2) the
picture as it would appear on the Picture Display. ___

{2)

Figure 5.4-1)

Three-Dimensional clipping and viewport mapping showing
(1) the three-dimensional 'perspective window and data and
(2) the picture as it would appear on the Picture Display.

5-52

5.4.1

T —

Full Screen Viewport

The entire Picture Display may be selected as a
viewport by specifying the maximum coordinate range
for the viewport boundaries as shown in Example 5.4-1.

CALL VWPORT (-2048,2047,-2048,2047,255,255)

Example 5.4-1

A call with these parameters specified would result in
all data subsequently drawn being displayed within a
viewport the size of the entire Picture Display.
Viewports may be specified to be non-square, but this
causes distortion of the data to be displayed as

"illustrated in Figure 5.4-2. This distortion, caused

by the linear mapping of the data space into viewport
coordinates,. may be compensated by an appropriate
windowing transformation as described in Section 5.5,
Multiple Viewports—

The Picture Display may be used for simultaneous
display of different ' pictures. For example, the
screen could be used to show the entire street map of
Figure 5.4-1a and the magnified portion of the map
simultaneously as illustrated in Fiqure 5.4-3. The
statements used to accomplish this are shown in
Example 5.4-2, The use of multiple viewports on one
display is a powerful feature of THE PICTURE SYSTENM.
The ability of THE PICTURE SYSTEM to display data on
up to four displays allows programs written using
multiple vievports on one display to be upgraded at a
later date using several displays to produce pictures
of full screen size.

5-53

INTEGER IP1(2)

«IP2(2)
DATA IP1,/1000,16384/

DATA IP2/8192,0/

n0an

CALL PSINIT(3,0,,¢¢)

CALL PUSH

OO0 0A0
o
o

CALL VWPORT (-2048,2047,-2040,2047,255, 255)
CALL DRAW2D(IP1,1,2,2,0)

CALL TEXT(17,'ENTIRE STREET MAP')

CALL DRAW2D(IP2,1,2,2,0)

CALL TEXT (13,*MAGNIFICATION?)

anao

CALL MAP
. CALL POP
'CALL PUSH

NON-SQUARE HINDOW

ano0oon

CALL VWPORT (-2048,2047,-2048, 0'255 ¢255)
CALL WINDOW (2000, 10192 12288, 16384)

CALL MAP

CALL POP
CALL NUFRAM
GO TOo 100

END

Example 5.4-2

INITIALIZE THE PICTURE SYSTEHM
SAVE THE INITIAL TRANSFORMATION

SET THE VIEWPORT FOR THE TEXT

DISPLAY THE ENTIRE MAP

CALL VWPORT (-2048,0,0,2047,255,255)
CALL . WINDOW (-32767,32767,-32767,32767)

DISPLKY THE "MAGNIFIED PORTION OF THE MAP

NOTE THE NON SQUARE VIEHPORT AND COHPENSATINGF

AND ANOTATE THE DISPLAY

ég THE PICTURE S8YSTEM

-)

O o

ENTIRE STREET MAP

L1 111] macniFicaion. .

. i |

| i*_|

T — |

o g
9)

Figure 5.4-3

Simultaneous Use of the Screen to Display an Entire Street Map,
a Portion of the Map Magnified and Text Anotation using Three
Viewports to Specify the Portion of the Screen to be Used.

96-§

:WINDOW

YVIEWPORT

DATA SPACE ol

Figure 5.4-2

A non-square viewport which illustrates the data
distortion wvhich can occur if a corresponding non-square

vindow is not specified.

‘ .

 SCREEN

5.4.3

Depth-cueing

A heightened sense of perspective may be imparted to
three-dimensional objects by specifying that depth
cueing be performed. This feature ©provides the
ability to vary the intensity of lines as' the lines
become "further away" by specifying differing hither
and yon intensities when calling the VWPORT
subroutine. The maximum depth-cueing effect is
obtained by specifying a maximum hither intensity

{255)
shows

and a minimum yon intensity (0). Example 5.4-3
the use of the VWPORT subroutine to specify

depth-cueing.

CALL VWPORT (-2048,2047,-2048,2047,255,0)

Example 5.4-3

'Thé'specification of viewport boundaries larger tha:
~the capability of the output device will cause lines
to wrap-around the device., The maximum viewport

boundaries for the Picture Display are: '

© IVL, IVR, IVB, IVT: -2048 to +2047

IHI, IYI: 255 to 0.

5.5

SINDOWING [WINDOW]

A window 1is a two- or three-dimensional framework or
enclosure in the data space. All 1lines which fall
within the window boundaries appear on the Picture
Display while those portions of the 1lines falling
outside the boundaries are not displayed. Should a
line extend from within this region to someplace
outside it, only that portion of the line falling
inside the boundaries will be displayed (lines are
clipped to the window boundaries). This process of
windowing includes the definition of both an enclosure
and a point-of-view, that is, the position of the
observer as shown in Figure 5.5-1a, b and c. This is
in contrast to the positioning (i.e. rotating,
translating, etc.) and displaying of the data (i.e.
line and text output) which may be considered to set a
scene to be viewed.

The following @ are the WINDOW calllnq sequence
spec1f1catxons of Section u 1:

' CALL gznnow_(IHL,IHB,IHB,Iﬁw[,IH]),

_CALL WINDOW. (IHL*Iﬁn Iwa,fﬁr'an wa[LIE[,IW]])

.These calllng sequences allow the user to view a scene_'§_y
from ,any number of dlfferent p051t10ns;“and in several i

different vays.' For example, a scene may be viewed in-
perspective as an orthoqraphlc projection or even as a
two-dimensional picture @ with no implication of
apparent depth. The following sections describe how
the WINDOW subroutine may be used to view a scene in
these different ways..

5-58

[— 2D DATA SPACE

IWT

WL
IWR

[T 2D WINDOW
‘A/ss// Iws

Figure 5.5-1a

Two-dimensional windowing showing (1) the eye whose
X,Y p051t10n is at the center of the window and whose
position is at neqatlve infinity and (2) the window whose
X,y position is determined by the left, right, bottonm,
top parameters (IRL IWR,IWNB,INT) and whose z° p051t10n
“1s at 0. .

3D DATA SPACE

Fiqure 5.5-1Db

Three-dimensional orthographic windowing showing

(1) the eye whose x, y position is at the center of the
window and whose z position is at neqgative infinity and
{(2) the 3D orthographic window whose x,y position

is determined by the left, right, bottom, top
parameters (IWNL,IWR,IWB,IWT) and whose z position is
determined by the hither and yon parameters (IH,IY).

5-59

3D DATA SPACE

|
|
|
|
IWR Te—
T
’.,f"

Figure 5.5-1c

Three-dimensional perspective windowing showing (1) the
eye whose x,y position is at the center of the window

and whose z position is determined by the eye position
parameter (IE) and (2) the 3D perspective window whose
position at the hither clipping plane (IH) is determined
by the left,right,bottom,top parameters (IWL,IWR,IWB,INT)
and whose yon position is determined by the yon parameter
¢INY) .

5. 5.1

Two-Dimensional Views

A two-dimensional view is established by allowing the
X-Y boundaries of the window to be specified, thus
permitting the side of the WINDOW facing the viewer to
be shaped into any sort of rectangle and placed at the
viewer's convenience anywvhere on the X-Y plane. This
is done by a two-dimensional (four-or five-parameter)
call to the WINDOW subroutine, specifying the
parameters IWNL, IWR, IWB , IWT, and the optional
scaling parameter IW. The first four define,
respectively, the 1left, right, botton and top
boundaries of the WINDOW. The hither and yon
boundaries remain fixed; that is, the hither boundary
is set at zero, vwhile the yon is set equal to the
homogeneous coordinate IWN if specified and 32767
othervise.

This transformation 1is generally used in connection
with the display of two-dimensional data, since the z-
coordinate has no effect on the placement of the lines
in the picture, except to control their intensity.

Example,5.541fshows a call to the WINDOW subroutine to
set a tao-dimensional windowing transformation.

C - 3 ,
C SET THE 2D WINDOWING TRANSFORMATION
e , _

CALL WINDOW (-20000,-5000,-20000,-5000)

Example 5.5-1

5-61

5¢5.2 Three-Dimensional Orthographic Views

An extension of the two-dimensional WINDOW call to six
parameters provides for the definition of a
rectanqular parallelepiped (i.e. box-shaped) enclosure
for the WINDOW, the six boundaries of which are
directly specifiable, thus allowing the user visual
access to any portion of the data definition space.
This is done by adding parameters which specify the
position of the hither and yon boundaries (IWH,IWY) to
the WINDOW 1left, right, bottom and top parameters.
When called in this manner, a WINDOW is defined which
is then viewed as if from an infinite distance away.
The pictures which result are analogous to photogqraphs
of objects taken at great distances through a
telescopic lens of extremely higqh magnification; the
picture may appear clear and sharp, but evidence of
perspective is lost. By setting the eye position at
negative infinity, this same effect 1is obtaineqd,
wherein only the x and y coordinates of the displayed
lines and ‘dots affect the picture, with the =z
coordinate having no effect except perhaps in~ ' the
.intensity of the data displayed. This type of view,
known as orthographic projection, is specified by a
call to the WINDOW subroutine as illustrated by
Example 5.5-2. o - o |

C SET THE ORTHOGRAPHIC WINDOWING TRANSFORMATION
C _
'CALL WINDOW (-2000,-1000,-2000,-1000,-5000,-5000)

Example 5.5-2

l_/

If the scaling parameter, IW, is required, the IE and
IW parameters must both be specified to distinquish
this calling sequence from the standard perspective
view specification. The IE parameter should then be
specified as equal to the IWH value, the convention
chosen to specify that ¢the eye be positioned at
negative infinity as shown in Example 5.5-3.

SET SCALED ORTHOGRAPHIC WINDOWING TRANSFORMATION
THIS IS EQUIVALENT TO:
CALL WINDOW(-40000,-20000,-40000,-20000,-10000,10000;

(NOTE: TIE=IWH)

aacaoqanonan

~ CALL WINDOW (-20000,-10000,-10000,-10000,-5000,
1 5000,-5000, 16384) R -

{Exaﬁﬁle15.5-3_ 7

5.5.3 Eerspective'views

When three~dimensional objects are viewed, the viewer
infers depth from the fact that distant objects appear
smaller and that parallel lines extending away from
the viewer appear to come together in the distance.
This effect may be invoked for three-dimensional data
(and even for two-dimensional data where the 2z-
coordinate is specified as a constant) by calling the
WINDOW subroutine with the IE parameter not equal to
IVH. The effect of this subroutine call is to modify
the shape and position of the six-sided, three-
dimensional orthographic window so as to produce a
nfrustrum of vision"; that is, a right rectanqular
pyramid, with the top sliced off by a cut parallel to
the base. If the eye is placed at the position
previously occupied by the apex of the pyramid, then
the edges of the rectanqular cut will define the
hither boundaries of the four side walls of the
frustrum. Anything lying within the frustrum will

5-63

appear to be framed in the rectangle, and will thus be
viewed when dlsplayed on the Picture Display.

Seven parameters are supplied in a perspective call to
the WINDOW subroutine. These parameters completely
specify the shape and position of the enclosure, with
the one restriction that the direction of view be
always along a line parallel ¢to the Z axis. The
effect of rotational changes to the direction of view

‘must be explicitly accomplished by calls to the ROT

subroutine to perform opposite rotations to the
coordinate data. The position and size of the
rectanqular side of the frustrum closest to the eye
(known as the hither <clipping plane) is uniquely
determined by the five parameters IWL,IR,IWB,IWT and
IWH. These specify its left, right, bottomr and top
boundaries, as well as the Z-position of the plane of .
the rectangle. The position of the back plane of the
frustrum (called the yon clipping plane) is specified
by the parameter IWNY, while the Z-position of the eye .
(centered in front of the hither plane) is specified
by I1E, as shown 1n Figure 5.5-2. An optional eighth
parameter, IH, may also be supplied when one or more
of the other parameters 'is too large to be expressed

dlrectly.f These ‘parameters not only specify the shape

and. p051t10n of .the window enclosure, but also
1mp11c1tly deflne the angle of 71ew (9) as follows:!

The angle of view may be varied by adjusting the
YINDOW parameters to provide an effect similar to a
telephoto camera lens (viewing angle < 200) or a fish
eye camera lens (viewing angle > 400),

1This defines the X-viewing angle only. The Y viewing angle is
inferred automatically by the aspect ratio as described in the
next section.

5-64

>
S

\ ' / YON CLIPPING PLANE
\ | / |

4
\ /
\ //— SCOPE FACE

/ .
. VIEW PORT
1\£T

N 1
HITHER CLIPPING PLANE

EYE Y '
POSITION ‘ ?

/ .

Figure 5.5-2

Y

The Frustram of Vision as defined by the WINDOW subroutine

Non-Square Windows and Viewports

In specifying a WINDOW (square or non-square) the user
should display the data within a viewport of a
corresponding shape to ensure that the data is
displayed without distortion. This may be stated more
explicitly by defining the term "aspect ratio". The
"aspect ratio" of the window is simply the ratio of
the horizontal width of the window to its vertical
height, or:

INR-IRL
Window Aspect Ratio = ~=---==--
IWT-IWB

In order for data to be displayed without distortion,
the aspect ratio of the window must be egqual to the
aspect ratio of the viewport. This may be expressed
in terms of the parameters as: '

IWR-IWL IVR-IVL
INT-IWB IVT-IVB -

The wuser should maintain this equality for all types
of windowing; two-dimensional, three-dimensional
orthographic and three-dimensional perspective views.
The-user “who desires to— view a three-dimensional
picture in ©proper perspective has the additional
constraint that the angular width of the frustrum of
vision be approximately equal to the angle through
vhich the viewport is observed by the user. This
means that the user should specify the WINDOW
parameters such that the frustrum of vision assumes a
shape which is proportional to that which exists when
the user actually views the Picture Display as shown
in Fiqure 5.5-3. In this figure the user is shown
viewing the Picture Display from a distance of
approximately 20 inches with a viewport width
specified as the entire Picture Display (10 inches).
From this it may be seen that the user should specify
a window which has a responding ratio:

IWR-IWL actual viewport width

IWH~-IE distance of viewer from Picture Display

z
\ \ / /
\ \ / SCOPE FACE
\ \ i/////’—
\ AV) ,’l/
VIEWPORT
' 1WL = -1000
g t IWR = 1000
IWB = - 1000
IWT = 1000
to" |~ IwH= sooo
IWY = ® {5000)
IE = 1000
¥
HITHER CLIPPING wT
_ PLANE :
|
IWB
20" .
WH
EYE
POSITION ?
IE
/ l |

Figqure 5.5-3

Window Specification which creates a "proper"
perspective for the actual position of the viewer

INR-1IWL INT-IWB 10"

1
IRH-IE IWH-IE 2

20m

5-67

The statements used to specify such a window are showun
in Example 5.5-4.

_nnnnnnnnnnn

oo

ASSUME A VIEWPORT OF 10 INCHES IN WIDTH AND

HEIGHT, WITH THE USER EYE POSITION AT APPROXIMATELY
20 INCHES FROM THE DISPLAY. THIS PRODUCES A VIEWING
ANGLE OF ABOUT 28 DEGREES, AN ANGLE COMPARABLE TO
THAT OF A CAMERA. SPECIFY THE WINDOW SO THAT:

IWR-INL . IWT-IWB 1

INH-IE IWH-IE 2

CALL VWPORT (-2048,2047,-2048,2047,255,0)
'CALL WINDOW (-1000,1000,-1000,1000,5000,5000,1000)

NOW

PERFORM THE TRANSFORMATIONS

" CALL PUSH o
CALL TBAN (ITX,ITY,ITZ)

',ﬁianple 5;5;4.

5-68

- S5« 5«5 Sectioning

For most applications it is desirable not to have a
rear limit to the enclosure (i.e. it is desirable to
have the yon <clipping plane at infinity). Since

. infinity is not an expressable value, a convention has
been adopted which entails setting IWY equal to IWH,
as in Example 5.5-4, to achieve the effect of a vyon
clipping plane at infinity.

However, 1in some applications it is desirable to
present the data to the viewer in a thin slice seen
face-on. This is known as sectioning and is achieved
simply by setting IWY to a value sliqhtly beyond IWH.
The section thickness may be gradually increased or
decreased by advancing IWY steadily away from or
toward IWH from frame to frame. It should be noted,
however, that when IWY actually reaches IWH, the
condition nmentioned above will have occurred and
because IWH = IWY, the yon clipping plane will be at
infinity. This visually annoying situation may be
easily avoided by choosing an increment for IWY which
is not an even divisor of the section width (e.g. IWY-
IWH=250, but IWY=-20). Then the section width, as it
decreases, will pass in steps through zero without
actually landing on it, and the above difficulty is
thus avoided. :

. 5.5.6

Depth4cuéing‘ '
- To complete the illusion of perspective, the intensity
of the lines drawn may be diminished with distance

from the eye. This feature is known as depth-cueing.
This may be accomplished by setting the viewport
hither and yon intensities at high and low values,
respectively. The maximum depth-cue values are shown
in the viewport specification of Example 5.5-5, as
full intensity for IHI and no intensity (or black) for
IYI. ’ ’ ‘

c .
C SPECIFY MAXIMUM DEPTH-CUEING
C

CALL VH?ORT (-2000,2000,-2000,2000,255,0)

Example 5.5-5

®

) 5. 5-7

For some viewers, however, these values tend to be a
little harsh and a small but non-zero value for IY,
permitting objects at apparently great distances to
remain sliqghtly visable, may be used.

Both sectioning an d depth~cueing are permissible in
orthographic as well as perspective views. However,
when using sectioning and depth-cueing together in an
orthographic view, it should be noted that 1line
intensity decreases linearly through the section;
whereas, in a perspective view intensity 1is adjusted
such that the total 1light emitted by a given line
varies with apparent distance according to the
inverse-square law of optics. This PICTURE SYSTEM
feature allows data to be displayed as it wculd appear
when illuminated by a light sourceg; thereby allowinq
data to decrease rapidly in 1nten51ty with increase in
apparent dlstance.

Rea;-facznq_V1eusj

For the sake of 51mp11c1ty, .all perspective and
orthographlc vieus produced by the WINDOW subroutine
are oriented so that the viewer looks in the direction

—w-—of positive Z-values. —To -alter this .view, the user

merely has to provide the appropriate rotation and
translation <transformations by making appropriate
calls to the ROT and TRAN subroutines. Assuminq that
north lies along the Z-axis with the Y-axis pointing
up o, a perspective view of the world looking northeast
from a point 100 wunits east alonq the X-~axis is
generated by the statements shown in Example 5.5-6.

However, due to +the fact that values of IE may be
specified which are greater than corresponding values
of IWH, perspective views may be produced, without the
aid of transformations, which look "south®". In these
views, the parameters IWL and IWR are automatically
interchanged, so that the view appears as though the
viewer had actually turned around and looked "south",
rather than having obtained a "southern™ view by
looking "northward® through a mirror, as shown in
Example 5.5-7. Thus, the effect obtained is exactly
the same as 1if a northern view had been rotated 180
degrees by a call to the ROT subroutine shown in
Example 5.5-8. '

5=70

anoaonooaoann

anoaa

VIEW LOOKING NORTHEAST FROM A POINT 100 ONITS
EAST OF THE ORIGIN. HITHER CLIPPING PLANE IS
400 UNITS AWAY, YON PLANE IS 5000 UNITS AWAY.
(THE VIEWPORT IS MODIFIED BY ROTATING AND
TRANSLATING THE DATA IN THE OPPOSITE DIRECTION.)

CALL WINDOW(-100,100,-100,100,400,5000,0)
IROT45=-8192

IYAXIS=2

CALL ROT (IROTU45,IYAXIS)

CALL TRAN(-100,0,0)

-

Exampie 5.5-6

 VIEW wimH"SOUTHERN,EXPOSURE, WITHOUT TRANSFORMATIONS

CALL WINDOW (-100,100,-100,100,-400,-5000,0)

_Example 5.5-7

VIEW WITH "SOUTHERN" EXPOSURE, BY A ROTATION
TRANSFORMATION

CALL WINDOW(-100,100,-100,100,400,5000,0)
IR180=-32767

IYAXIS=2

CALL ROT(IBR180,IYAXIS)

Examble 5.5-8

5-71

Placement of the Hither and Yon Planes

For two-dimensional windowing, the hither plane is
placed at z=0 and the yon plane at IW (normally
32767). Thus transformed data with a neqgative z
coordinate will be <clipped at the hither «clipping
Plane. For three-dimensional windowing (orthographic
or perspective), the placement of the hither and yon
planes is explicitly specified by the arguments in the
window call. By convention if IWH=IWY, then the vyon
plane will be placed at infinity on the side of hither
plane opposite the eye position. If IWH#IWY then the
hither and yon planes will be placed at the positions
specified. However, to maintain utmost precision of
transformed data, the hither and yon planes should not
be given unnecessarily extreme positions; e.g., the
hither plan e .should ordinarily not be placed
immediately in front of the eye. Maximal precision is
maintained 'if the distance between the hither and yon
plapes is in the same order of magnitude as the width
and height of ‘the hither plane. -

e

5.6 ROTATION [ROT]

A rotation transformation is applied to coordinate
data using the ROT subroutine to cause a rotation of
subsequent data drawn about an axis through the origin
of the data space. Thus, if an object 1is described
about the origin of the data space, a rotation
transformation will rotate the object about its
origin. However, if an object is not described about
the origin of 1its data space, then a rotation
transformation will rotate the object about the origin
of the data space. The effect would be that of
swinging the object on a string rather than tumbling
it. In order to rotate such as object about its own
origin, it would first need to be translated to the
origin of the data space then rotated and finally
translated back to the position it occupied in the
data space.

The following is the ROT calling sequence
specification of Section 4.1:

CALL ROT (IANGLE,IRAXIS) -

The parameters passed to this subroutine specify the

‘angle of rotation (IANGLE) to be applied and the axis

(IAXIS) about which the rotation will be performed.

The angle of rotation is given by dividing a circle

into 216 ‘equal parts, with zero being equal to zero
"7 deqree and -215 equaling 180 degrees. This method
allows a greater amount of precisiomr for rotational
values since: ' :

182.04 = 182 increments/degree
3.03 = 3 increments/minute

32767/180
182.04/60

This allows rotations to be performed to a greater
precision without the need for special floating-point
hardware or increased execution time due to software
floating-point calculations.

Table 5.6-1 shows some cormon angles and their
corresponding IANGLE values. Example 5.6-1
illustrates the continuous rotation of an object about
all three axes. It should be noted that a new
rotation transformation for each axis is computed for
each frame update and these new rotation
transformations represent the entire rotation about
each axis rather than an incremental rotation for each
axis. This technique prevents rotational roundoff
error due to sequential matrix concatenations.

5-73

Rotation of data through a positive angls
counter-clockwise when viewed along the
axis in the positive direction in the left-hande
coordinate systen.

5-74

Table 5.6-1

Angle

300

450

600

900

1800
2700 (-900)
3150 (-450)
3600{ 00)

5-75

LANGLE

5461

819

10922

2

16384
32767

-1638
-819

4
2
0

or =32767

ONE DEGREE
DATA I/182/

INITIALIZE THE PICTURE SYSTEM

aaoa 0

CALL PSINIT(3,0,,.,)
'CALL SETERR(3,-1)
IANGLX = 0
IANGLY
IANGLZ

0
0

o

PERFORM THE PERSPECTIVE TRANSFORMATION

aan

CALL WINDOW(-10000,10000,-10000,-10000,-10000,-10000)

BEGIN THE DISPLAY LOOP BY UPDATING THE "ANGLES"™

=000

IANGLX + I
JANGLY + 1
IANGLZ + I

00 IANGLX
IANGLY
IANGLZ

SAVE THE ORIGINAL TRANSFORMATION

aan

CALL PUSH -

aan

'ROTATE ABOUT THE Z AXIS
- CALL ROT (IANGLZ,3) — ° —

ROTATE ABOUT Y AXIS

aan

CALL ROT (IANGLY,2)

ROTATE ABOUT THE X IXIS

aaon

CALL ROT (IANGLX, 1)

(oMol

CALL A SUBROUTINE TO DISPLAY THE OBJECT
CALL OBJECT '

RESTORE THE ORIGINAL TRANSFORMATION

aaa

CALL POP

CALL NUFRAM

GO TO 100
END

Example 5.6-1
Note: The SETERR subroutine is used to avoid FORTRAN error
detection of the integer overflow caused by this example.
The call of the example is for DOS/BATCH FORTRAN.

5.7

s NeNe}

TRANSLATION [TRAN) ‘

A4 translation transformation is applied to coordinate
data, wusing the TRAN subroutine, to cause a
translation of all subsequent data drawn in the X, Y
and 7z directions of the data space. The folloving is
the TRAN calling sequence specification of Section
4.1

CALL TRAN(ITX,ITY,ITZ[{,IVW])

The parameters passed to this subroutine specify the X
(ITX), ¥ (XTY) and 2 (ITZ) translational values.

Translation 1is often performed after an object has
been rotated about its origin. However, in terms of
coding an applications program, this means that the
TRAN subroutine should be called before the ROT
subroutinel, This order is 3illustrated by Example
5.7-1

NOW PERFORM THE TRANSFORMATIONS
CALL TRAN(ITX,ITY,ITZ)
CALL ROT (IANGLZ, 3)
CALL ROT(IANGLY,?2)
CALL ROT (IANGLX, 1)
C
C AND DISPLAY THE OBJECT
C

CALL DRAW3D, (IDATA, INUM,IF1,IF2)

Example S5.7-1.

1See Section 5.2.3 for a further discussion of the placement

of CALLs.

/

aannnonn

If it is necessary to translate an objeact to a

position in the data space which is outside the range
of values which can be expressed by a 16-bit number
(+225-1), the optional argument [IW] may be used.
This arqument may be used to increase the effective
range of the translational values to $230,

Example 5.7-2 illustrates the calling sequence
required to translate an object by 100000 in the X, Y
and 2 dlrectlons.

; TRANSLlTE THE OBJELT BY 100000 IN X,¥Y AND Z

f}EBFECTIVELy-- CALL TBAN(100000 ,100000, 100000)

25000 ff100000/u o
8192 = 3276774

CALL TRKN(ZSOOO 25000 25000 8192)

Example 5.7-2

5-78

5.8

5.8.1

SCALING [SCALE]

A scaling transformation is applied to coordinate
data, using the SCALE subroutine, to cause an increase
or decrease in the size of subsequent data drawn. The
following is the SCALE calling sequence specification
of Section 4.1:

CALL SCALE(ISX,ISY,ISZ[,IW])

The parameters passed to the subroutine specify the X
(ISX), ¥ (ISY) and 2 (ISZ) scaling values. The
scaling values are integers which specify the number
of 1/32767 by which coordinate data is to scaled. For
example if an object were to be decreased in size by
172 in the X, Y and 2 axes then the appropriate
scaling values would be: :
ISX = ISY = ISZ = 1/232767 = 16384

and the following calling sequence would be used:
CALL SCALE (16384,16384,16384)

If ISX = ISY = ISZ = 32767 then the coordinate data‘
uould~remain unscaled. : T :

If an object 1is to be increased in size larger than
its definition in the data space, the homogeneous

-.coordinate IW is used as described in Section 5.8-3.

Data Distortion

If the scaling values ISX, ISY and ISZ are not equal,

- they have the effect of distorting pictures by

elongating or shrinking them along the directions
parallel to the coordinate axes. This may be used to
emphasize certain structural characteristics of the
data displayed. It should be noted that if the
scaling 1is to be always parallel to the X, Y and Z
axes of the object, the scaling should be performed
before the object has been rotated about its origin.
This means that the SCALE subroutine should be called
after the ROT subroutinel, This order is illustrated
by Example 5.8-1.

1See Section 5.2.3 for a further discussion of the placement of

CALLls.

5-79

5.8.2

NOW PERFORM THE TRANSFORMATIONS

anon

CALL TRAN(ITX,ITY,ITZ)
CALL ROT(IANGLZ,3)

CALL ROT(IANGLY,2)

CALL ROT (IANGLX,1)

CALL SCALE (ISX,ISY,ISZ)

c v
Cc NOW DISPLAY THE OBJECTS
c | o |
CALL DRLW3D(IDATA,INUH,IF1,IF2)
o Ekample‘5.8?1
Mirroring

The mirror image of an object may be generated by
using negative values for ISX, ISY or ISZ. With this
ability, an object which is symetrical along an axis
or axes may be described as a half or quarter image
and mirrored to produce a full image for display.
Typical mirroring calling sequences are shown in
Example 5.8-2. _ .

5.8.3

(s NeNe]

c

C MIRROR DATA ABOUT THE X-AXIS

C
CALL PUSH
CALL SCALE(-32767,32767,32767)
CALL POP

C

C MIRROR DATA ABOUT THE Y-AXIS

C
CALL PUSH
CALL SCALE(32767,-32767,32767)
CALL POP

MIRROR DATA ABOUT THE Z-AXIS

- CALL PUSH
CALL SCALE(32767 32767 -32767)

CALL pOP - | e

-

Example 5.8-2

Scaling Using the Homogeneous Coordinate, Iw

Coordinate data may be decreased in size by specifying
scaling values for ISX, ISY and ISZ less than 32767 as
described in Section 5.8. However, a corresponding
increase in size may not be done if ISX=ISY=IS5%Z=32767
unless the homogeneous coordinate, IW is utilized. As
IW is decreased from the value 32767, the effective
range of the scaling values ISX, ISY and ISZ is
increased to :230,

5-81

Example 5.8-4 illustrates the calling sequence
required to scale data to twice its size. :

C

C NOW SCALE THE DATA TO TWICE ITS SIZE

C EFFECTIVELY: CALL SCALE(65534,65534,65534)
C 32767 = 65534/2

C 16384 = 32767/2

C .

CALL SCALE(32767,32767,32767, 16384)

Example 5.8-4

5-82

DATA DISPLAY

Data that 1is displayed on THE PICTURE SYSTEM may
consist of three data types:

1. Lines and dots
2. Characters
3. Ianstances

O0f these three data types, the first two may be
considered the primitives from which the third 1is
constructed. The user is free to utilize each of the
data types available without regard for the mixing of
the data types and constrained only by the length of
the Refresh Buffer and the frame update rate required
to provide the dynamic motion of the data displayed.
The following sections describe the use of the
subroutines contained in the Graphics Software Package
which allow the display of each of these data types.

Display of Lines and Dots [DRAW2D,DRAW3D]

The display of two-_or three-dimensional data sets as
lines or dots is accomplished by calling the DRAW2D or
DRAW3D subroutines. The following are the DRAW2D and
DRAW3D calling sequence specifications of Section 4.1:

CALL DRAW2D(IDATA,NUM,IF1,IF2,I2[,IW))
— ' CALL DRAW3D (IDATA,NUM,IF1,IF2[,IW])

These subroutines are very general; the user specifies
using the IF1 parameter, the type of draw function to
be performed (i.e. disjoint lines, connected lines,
dots) and using IF2 parameter, the mode in which the
X,Y or Xx,Y,z coordinates are to be interpreted (i.e.
absolute, relative, absolute-relative). The valid
values for IF1 are: '

0 = Disjoint lines from new position.
1 = Disjoint lines from current position.
2 = Connected lines from new position.
3 = Connected lines from current p051t10n.
4 = pot at each point.
The valid values for IF2 are:
0 = absolute-relative- relatlve -relative-etc.
1 = relative always.
2 =

absolute always.

5-83

5.9.1. 1

The DRAW2D and DRAW3D subroutines may display the s
set in a variety of ways dependent upon the values ‘o

the IF1 and 1IF2 parameters at the time of the call.,,

To illustrate this, Figure 5.9-1 shows the simplistic
data set: ml

X1,Y1 = 1,0

X2,52 = -1,-2
X3,Y3 = 1,-2
X4,Y4 = 1,0
X5,i5 = 3,2

as it would be displayed for each of the valid values
of IF1 and IF2 on a grid which ranges from — 4 to 4.

It is assumed for each of these drawings that the
current position before the draw beqins is at the x,y
= 0,1 position. The user is free to utilize these
drawing functions in whatever manner is required by
his particular application. The decision to use a
two-dimensional or three-dimensional data set is
dependent upon the data, but the ability to display a
two-dimensional data set ~within a three-dimensional
environment is available to the user.

Drawing_Tuo-bimensional‘Data

Two-dimensional data is defined within a data set as a.
series of x,y coordinates with constant =z and w _
coordinates for the entire data set. Thus, two- -
dimensional data is really three-dimensional data
which resides in a constant plane and may therefore be
ROTated, TRANslated, etc. as a three-dimensional data
set. Example 5.9-1 shows a typical call to the DRAW2D
subroutine to draw the data set IDATA, which contains
five data points, as connected lines from the first
data point with all coordinate data interpreted as
atsolute coordinates. The entire data set will be
drawn as if it resides in the Z = 16384 plane.

5-84

aQaOon

INTEGER IDATA (2,5)

DATA IDATA/10000,10000,-10000,10000,~-10000,-1000¢
1 10000,-10000,10000,10000/

L)
L]

NOW DRAW THE 2D DATA

CALL DRAW2D(IDATA,S5,2,2,16384)

Example 5.9-1

i g

DIYJOINT LINED) ROM MEW POSITION
IF2ep

APSOLUT E-RELATIVE ~-RELATIVE -ECT.

l_l '

1F1=1

DISJOéMT LINES FROM CUEZENT POSITION
1F2-=

ABSOLUTE -RELATIVE~RELATIVE - ELT.

N

IFi=2

(,OMN¢ELTF_D LINES FROM NEW POSITION
IF2=

ABDSOLUTE - FZELATIVE.-EELATIVE E(.T.

TN

>

00,

1/ e

IFI -

CONNECTED LINES FFZOM CURRENT POSITION
IF2=0

ABPSOLUTE - RELATWE. I'ZE.LATIVE eCT.

1F1=4
pPOTS AT SPLLIFIED Pomrs
IF2=z0
ABSOLUTE ~RELATIVE-RELATIVE-ECT.

T
-

t
-+
1)

‘gL

\
1
i

-

|
L4
i

IFl=:@

DICJOINT LIMNEY FROM NEW POSITION
g2

RELATIVE ALWAYS

I

IFi=1

DISJOINT LINES FROM CURRENT POSITION
IF2=1\

RELATIVE ALWAYS

: o

A |
1
IFi=

2
CONNECTED LINES FROM NEW POSITION
IF2=1\
RELATIVE ALWAYS

1F1=3
CONNE(,TED LINE.‘J FROM CURRENT PaﬁlTION

[FZ=1
EELAT WE ALWAV5

P

{29

A7

l
I
[1

I

IF1=4

1001'5 AT SPECIFILD Ponn's
FZ2 =1

RELATIVE ALWAYS

-t —

FIGURE %.9-1

IFi=g

DISJOINT LINED FROM NEW POSITION
IF2=2

ABSOLUTE ALWAYS

—t—f——

o
1
1
IFi =1
DISJOINT LINES FROM CURRENT POSITION
IF2:2

ABSOLUTE ALWAYS

0,0

T
1 . e,

IF1=2

CONNELTEP LINES FROM NEW POSITION
1F2s 2

ABSOLUTE ALWAYS

! ! i
i [iJ_
IF1=3
coNMEc,TED Lmas FROM CURRENT POSITION
12«2
AaﬁoLure ALWAYS

) i
! ' 4N
YA
N L .
N B B
oo .
|- vy
IF1=4
DOTS AT SPECIFIE.D POINTS
1F2=2

ABSOLUTE ALWAYS
T -

e =

THE DRAWING FUNCTIONS OF TUE DRAWZD AND DRAW3D SUBROUTINES
NOTE: A SETPOINT 19 INDICATED BY THE O SYMBOL..

5-86

When the DRAW2D subroutine is used to draw two-
dimensional data, the constant z coordinate (IZ) is
used to specify the intensity at which the image is to
be displayedi. When viewed through a two-dimensional
window, 1IZ = 0 will cause the data to be displayed at
the maximum intensity2 as specified in the call to the
VWPORT subroutine. To decrease the intensity of the
data displayed through such a window, the user need
only adjust the value of IZ to be more positive. 1In
two-dimensional windowing, the intensity of the data
displayed decreases linearly as IZ = 0-—%32767 with 256
distinct levels of intensity available for user
specification. Once the intensity 1level vwhich is
required by the user is determined, the value of 1IZ
may be directly computed by the ratio:

I - IY 32767

IH is the hither intensity in the viewport specif-

cation.
1Y is the yon intensity in the viewport spec1f1ca-
~ tion.
IL is the intensity level required by the user.
(IH2IL2TIY)

.From this ratio, it can be seen that to dlsplay two-
‘"dimensional-data at an intensity level which . is -one
‘half the maximum (128), a call such as that shown in
Example 5.9-2 would be required.

iThis assumes that a vievport was specified which allows inten-
sity variation (i.e. depth-cueing).

2Phis is because the data is dravwn in the same Z plane as the
hither clipping plane, which is positioned at 2 = 0 for two-
dimensional windowing.

Tao0n

oo

SET FOR DEPTH-CUEING AND 2D WINDOWING

CALL VWPORT (-2047,2047,-2047,2047,255,0)
CALL WINDOW (-10000,10000,-10000,10000)

NOW DRAW THE DATA AT HALF INTENSITY (LEVEL 128)
255 - 128 127 1 1z

= ----- THEREFORE IZ = 16384
255 - 0 255 2 32767

CALL DRAW2D (IDATA,N,2,2,16384)

| Example 5.9-2

5-88

5.9.1.2 Drawing Three-Dimensional Data

Three-dimensional data is defined within a data set as
a series of x,y coordinates with a constant (or
default) w coordinate. Example 5.9-3 shows a typical
call to the DRAW3D subroutine to draw the data set
IDATA, which contains five data points, as connected
lines from the first data point with all coordinate
data interpreted as absolute coordinates.

INTEGER IDATA (3,5)
DATA IDATA/10000,10000, 16384,-10000,10000,16384,
-1 -10000,-10000,16384,10000,-10000, 16384,10000,10000,
1 16384/

CALL DRAW3D(IDATA,5,2,2)

Example 5.9-31

iThis example is equivalent to the two-dimensional case of Example 5.9-
and would produce the same image if displayed.

5-89

-5'- 9.1. 3

When the DRAW3D subroutine is wused to draw three-

dimensional data, the z-position of +the <transformed

data in relation to the hither and yon clipping planes

determines +the intensity at which the .data is

displayed.? When viewed orthographically, the

intensity at which the data is displayed varies:
linearly from the hither to yon clipping planes. When

viewed in perspective, however, the intensity at which

the data is displayed varies reciprocally from the

hither to yon clipping planes.

Specific Drawing Functions

The ©DRAW2D and DRAW3D subroutines allow the user to
draw data in many modes. often 'however, the user
needs only a specific drawing mode (i.e. needs to draw
only one line .or may only need to position to a given
point). In cases such as these, the four, five or six

'panmmeters of +these subroutines calls seem overly

- —————— g —

complicated. © Im - these wcases the wser may create
subroutines of his own, which in turn call the DRAW2D
and DRAW3D subrontlnes, ‘to perform a specific type of
ﬂrav function. Examples 5.9-4 and 5.9-5 show¥ how this
may .be ﬁone'to provide the two-dimensional "move to“
(absolnte) pr mnove“ (relative) functlons.

1This assumes that a viewport was specified which allows intensity

-'variation

(i.e. depth-cueing).

5-90

oot

|
i

SUBROUTINE MOVETO (IX,IY)

THIS SUBROUTINE PROVIDES THE ABILITY TO "MOVE TO" A GIVEN X,Y
POSITION BY SPECIFYING ONLY THE X,Y COORDINATES.

CALLING SEQUENCE:

CALL MOVETO(IX,IY)

WHERE:
IX IS AN INTEGER WHICH SPECIFIES THE X COORDINATE
IY IS AN INTEGER WHICH SPECIFIES THE Y COORDINATE

INTEGER IDATA(2)
IDATA (1) =IX
IDATA (2)=1IY :
CALL DRAW2D(IDATA,1,2,2,0)
RETURN
END

' ‘Example 5.9-4

'SUBROUTINE MOVE (IX,IY)
THIS SUBROUTINE PROVIDES THE ABILITY TO "MOVE" A GIVEN DELTA :

AND DELTA Y BY SPECIFYING ONLY THE X AND Y RELATIVE VALUES.

CALLING SEQUENCE:

noonNnAanNnmMOocaQanno

CALL MOVE (IDX,IDY)

WHERE: ' i
IDX IS AN INTEGER WHICH SPECIFIES THE DELTA X VALUE.
IDY IS AN INTEGER WHICH SPECIFIES THE DELTA Y VALUE.

INTEGER IDATA (2)
IDATA (1) =IDX

IDATA (2)=IDY

CALL DRAW2D (IDATA,1,2,1,0)
RETURN

END -

Example 5.9-5

This technique, of course, may be used in conjunction
with any of the general purpose subroutines of the
Graphics Software Package to provide for PICTURE
SYSTEM compatibility with existing graphics
applications or to facilitate the development of a
device-independent graphics "language".

5.9%.2 Display of Characters

The display of characters, represented within the
Picture Controller as an ASCII text string, is
accomplished by:

1. Calling the CHAR subroutine to specify the
size and orientation in which the characters
are to appear.

2. Calling the DRAW2D and DRAW3D subroutine to
move to the position to where the text is to
be dlsplayed.

3. Calling the- TEXT subroutine to output the char-
acters to be dlsplayed.

The folloulng are the CHAR and TEXT calllnq sequence spec-
1flcat10ns of Sectlon 4.1:2

CALL CBAR(IXSIZE,IYSIZE,ITILT)

CALL TEXT (NCHARS, ITEXT) . ‘
5¢9.2.1 Character Size'and Orientation [CHAR]

The CHAR subroutine may specify a total of 64
character sizes and 2 orientations for text display.
Pypically though, the X and Y character sizes are
equal (or nearly equal; +1 or 2) so that the
characters do not appear extremely flat or thin. The
character sizes available are shown in Figure 5.9-2.
As this figqure illustrates, the sizes may range from
0.07 inches to 0.56 inches. The characters which are
displayed may be oriented either horizontally or
vertically depending on the value of the ITILT
parameter as shown in Figqure 5.9-3a and b. The CHAR
subroutine may be called at any time during the
execution of the user?s program and the character size
and orientation will remain in effect throughout the
duration of the program or until a subsequent call to
the CHAR subroutine. Therefore, if the default
character specification (horizontal 0.28 characters)
is sufficient for the user's application, the CHAR
subroutine need not be called at all. It should be
noted, however, that character size and orientation

changes applied halfway through a given frame will
still be in effect at the beginning of the next frame,
and thus the default values may no longer be relied
on, but must be explicitly specified.

5-93

Figure 5.9-2

standard Character Sizes in Inches.

HORIZONTAL
Figure 5.9-3a

Horizontal Charécter orientation (ITILT=0)

VERTICAL

Figure 5.9-3b

Vertical Character Orientation (ITILT#0)

5-95

5.9.2.2

Positioning for Text Display

Text is positioned for display within a two- or three-
dimensional environment by <calling the DRAW2D or
DRAW3D subroutime to perform a wmove to an x,y (or
XeY,2) position or to draw a data set whose last point
is the position from which the text string is to be
displayed. This position will be at +the 1lower 1left
corner of the first character drawn. The intensity of
the move (or of the last line drawn) determines the
intensity at which all of the subsequent characters

.drawn are displayegd. Hence, characters may be

displayed at any of the 256 levels of intensity.
Typically though, characters are displayed at the
maximum intensity available and a two-dimensional
window is used to make positioning and intensity

specification simple. A natural two-dimensional
window to use is the one which is initialized when

PSINIT is ~called. This window! is one whose
boundaries are: : v

uindoﬁiieffwbouﬁdary: -32767
- window ‘right boundary: 32767
- window bottom boundary: =-32767

window top boundary: 32767
hither boundary: : 0
yon boundary: o 32767

The user then, is free to position anywhere within
this window and to define the intensity at which the
text string will be displayed (I2=0 for maximum
intensity). To ensure that this window 1is always
available to be used for text positioning, the user
should PUSH it before any transformations are
pecformed and POP back to it before the next frame is
to be created. Example 5.9-6 shows how this may be
done.

The user should note that the viewport in effect at
the time the text is positioned for display will
determine the position on the screen where the text
will be displayed. For example, if the viewport in

1This two-dimensional window is merely an identity matrix.

aan

noaoa oo Qo0 QO=2000

aan

s NNy

INTEGER IDATA (2)
DATA IDATA/-32767,0/

INITIALIZE THE PICTURE SYSTEM
CALL PSINIT(3,0,,,)
BEGIN THE DISPLAY LOOP BY SAVING THE IDENTITY MATRIX
CALL PUSH
CALL VWPORT (-2048,2047,-2048,2047,255,255)
CALL DRAW2D (IDATA,1,2,2,0)
CALL TEXT(18,'THE PICTUE SYSTEMN')
SET THE VIEWPORT AND POINT OF VIEW

CALL VWPORT (0,2047,-2048,0,255,50) '
CALL WINDOW(-1000,1000,-1000,1000,-1000,5000,-5000)

AND SAVE THE POINT OF VIEW

CALL PUSH | -

NOW THE TRANSFORMATIONS

CALL ROT (16384,1)

CLLL PoP
DISPLAY THE NEW FRAME
CALL NUFRAM
RESTORE THE IDENTITY AND CONTINUE
CALL POP
GO TO 100

Examnple 5.9-6

5.-9;'2.- 3 .

effect at the time the text is positioned is the lower:
right quadrant of the screen, then po x,y coordinate
pair could position text for display in any of the
other quadrants of the screen. For this reason, text.
is typically displayed within a viewport whose’
boundaries are the maximum boundaries of the screen.
The user should also note that since the characters
are stored in the Refresh Buffer as packed ASCII codes
and generated relative to the 1last character
displayed, they are not passed through the clipping
process of the Picture Processor and hence, are not
clipped at viewport or screen boundaries. If the user
attempts to display more character s than may fit
within a viewport, the string will extend out into the
neighboring area and if the text string extends out to
(and past) the screen boundary, the characters will
"yrap-arounpd” to the opposite side of the screen where
thay will continuz to be displayed. A similar warning
should be issued for the positioning of the text. If
the point or line which positions the text is clipped
by the Picture Processor, the text string will be
displayed positioned from the last x,y coordinates
which were placed into the Refresh Buffer. This may
lead to confusion for users wvho are unaware of the
cause. ' '

__ Text Output [TEXT]

Text 1is output for display on THE PICTURE SYSTEM by
calling the TEXT subroutine specifying the number of
characters to be displayed and an ASCII text string
which contains the characters to be displayed, as
shown in Example 5.9-7. -

CALL TEXT (18,'THE PICTURE SYSTEM')

Example 5.9-7 ,

This will cause the ASCII <character string ©"THE
PICTURE SYSTEM" to be displayed at the position and
intensity 1last specified by a call to the DRAW2D or
DRAW3D subroutine (or positioned by previous text
display) and at the size last specified in a call to
the CHAR subroutine or initialized by PSINIT.

All text 1is output to the Refresh Buffer as ASCII
character codes. The 96 characters which may be

~

displayed are shown, along their ASCII codes, in Table
5.9-1. “hen these codes are encountered in the
Refresh Buffer during the refresh cycle, the
Character Generator is called to stroke the <character
encountered relative to the current position of the
beam on the scope. :

A character is always stroked (in horizontal or
vertical mode) relative to the lower left position of
the are a in which any given character is defined.
Figures 5.9-4a and b show the area in which a
character is displayed by the Character Generator.

ASCII

CODE
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056

057 -
060
061
062

063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117

CHABACTER

space

!

> e s PR "

OZIXHRLUNITOMBOOmPVWVI Adi o mcniJmtnt:wre;aois'

ASCII
CODE

120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142

143
144

145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

5-100

0
Ix
>
o
7
jtx
it

fpur T NKNKE<SCHUIOD

Eed Y N XAt HADODPB AU POAMODAO DR,

=

|

I

|

|

|

|

I
——
!

J

Fiqure 5.9-4a
Horizontal Character Stroking Relative to the Current
-Position of the Beam.

Figure 5.9-~4b
Vertical Character Stroking Relative to the Current
Position of the Bean.

5-101

5. 9.3

v

Instancing [INST,MASTER]

As was pointed out previously, the data which
comprises a scene is made up of a series of
primitives, i.e. lines, dots and strings of text.
These primitives are used, either singly or
repeatedly, to generate objects which comprise a scene

to be viewed. The ability to create dJéasily position
more complex primitives greatly simplifies
construction of a scene. For example, suppose a

transistor symbol is defined as a primitive. Then, in
order to construct a complicated schematic diagram
containing several transistors, the user need only
specify the position, size and orientation of every
occurrence of the transistor symbol and display of the
syabol is then automatic for each occurrcence. The
technique of constructing and positioning complex
primitives such as these, and generating repeated
copies thereof, is called instancing. It constitutes
one of the more powerful toools of computer graphics.

An instance of a given primitive is invoked using the
graphics software by:

1. Calling the INST subroutine to define the
‘boundaries within which the instance is to be
placed.” These boundaries define the position
of the instance within the data space and,
typically, also within the WINDOW. If the
instance boundaries are outside of the window
boundaries, the instance will be totally clipped;
if the instance boundaries are partially inside
the window boundaries, only that portion of the
instance which lies within the window will be
displayed; if the instance boundaries are within
the window, the eqz;re instance will be displayed.

2. Calling the ROT subroutine one or more times
if the instance is to appear in an orientation
which is different from that in which the original
primitive was defined (i.e. if a symbol is to
appear rotated 900 from its original position,
etc.). This call maybe omitted otherwise.

3. Calling the subroutine which defines and outputs
the given primitive.

5-102

The following is the INST calling sequence'sbécifica-
tion of Section 4.1:

‘ CALL INST (INL,INR,INB,INT[,INW])
j or
CALL INST (INL,INR,INB,INT,INH, INY[Iw)

As described above, the INST parameters define the
boundaries within which the instance is to be placed.
If the instance 1is two-dimensional, INST is called
with a four! argument parameter 1list such as that
shown in Example 5.9-8.

Cc
C SET A TWO-DIMENSIONAL WINDOW
C
CALLiWINDOW(O,I6000,0,16000) '
c :
C DISPLAY A THO—DIHENSIONAL INSTANCE OF A HOUSE
C

. CcALL msm(uooo eooo uooo 8000)
© CALL" HOUSEZ

Example 5.9-8

If the instance is three-dimensional, INST is called
with a Six2 argument parameter list such as that shown
in Example 5.9-9.

1The four arqument parameter list may be extended to
five arguments with the inclusiop of the scale factor,

IW.
2The six arqument parameter list may be extended to

seven arquments with the inclusion of the scale factor,
I4.

. : 5-103

a0

sNeKe!

SET A THREE-DIMENSIONAL WINDOW

CALL WINDOW (0,16000,0,16000,0,0,32000)

-
L]

DISPLAY A THREE-DIHEHSIONAL INSTANCE OF A HOUSE

CALL INST(4000,8000,4000,8000,2000,6000)
CALL HOUSE3

w,‘Example 5.9-9

5-104

R, =y ——

In the two previous examples, HOUSE2 and HOUSE3 are
subroutines which define a graphic primitive . or
"master copy"“. A "master copy" defines an object or
- symbol which is to be instanced and takes the form of.
a FORTRAN subroutine. A subroutine of this type
always contains four parts which must be executed in

the following order:

a. A call to the graphics subroutine MASTER
to set the boundaries of the data space
within which the master copy will be
defined.

b. Calls to the various transformation and
data output subroutines (ROT,TRAN,
DRAW2D, etc.) which define the primitive.

C. A call to the graphics subroutine POP.

d. A FORTRAN BRETURN statement.

Example 5.9-10 shows the FORTRAN subroutine, HOUSE2

referenced previously in Example 5.9-8, which contains
these four parts.

5-105

s NeKe!

a0 anoaq anan (9!

2 X2 K2

SUBROUTINE HOUSEZ2 i
INTEGER HOUSE (2,6), DOOR (2,5)

DEFINE THE TWO-DIMENSIONAL HOUSE‘DATA

DATA HOUSE/0,32000,32000,16000,32000,-32000,-32000,-32000,
1 -32000,16000,0,32000/

AND A DOOR

DATA DOOR/4000,46000,4000,-32000,-4000,-32000,
-1 -4000,-16000,4000,-16000/

BEGIN THE TWO-DIMENSIONAL MASTER COPY
CALL MASTER(-32767,32767,-32767,32767)
DRAW THE HOUSE

CALL DRAW2D (HOUSE, 6,22,0)

‘AND THE DOOR

CALL DRAW2D{DOOR,5,2,2,0) =

NOW RESTORE THE TRANSFORMATION WATRIX AND RETURN

‘CALL POP - —

RETORN . . |

Example 5.9-10

5-106

‘The following discussion describes each of the parts,
illustrated by Example 5.9-10 in more detail:

a. A call to the MASTER subroutine generates a
six-sided, box-shaped enclosure, similar to
that produced by an orthographic call to the
WINDOW subroutine (in fact the transformations
produced by the two routines are exactly identi-
cal). This enclosure is used as the definition
space for the primitive. As each instance
of the primitive is invoked, the "master copy"
is mapped (subiject to rotation) onto the
instance enclosure (defined hereafter). Since
all four (or six) boundaries of both enclosures
are individually specifiable, the instance may
therefore differ in size, shape and location
from the master; however, the basic primitives
comprising the instance bear the same spatial
relationship to each other as do those of the :
master--in other words, a transistor still
looks like a transistor, although its size
and shape may be modified. The following are
the MASTER subroutine calling sequence spec1f1-
catlons of Section 4.1:

CALL MASTER (IML,IMR,IMB,IMT[,IW])
or '
CALL MASTER (IHL,IMR,IHB,IHT,IHH,IHY[,IW])V

The parameters define the left, right,-bottonm,
top, hither and yon boundaries of the master
enclosure in data space coordinates. For two-
dimensional calls, the IMH and IMY parameters
are omitted. The origin (and thus the center
of rotation) of the master copy is at center
of the front boundary of the master enclosure.
NOTE: Each instance invoked produces two
transformations, the master and the instance
which are concatenated. Because instances
tend to be small compared to the window

in which they are viewed, this concatenated
transformation may suffer a loss of pre-
cision if the MASTER enclosure is not defined
as large as possible. Therefore, a MASTER
enclosure should not be defined more than an
grder of magnitude smaller than the scaling
parameter, IW (normally 32767). The data should
also be defined so that it extends the full
range of the master enclosure.

b. The output comprising the primitive may consist
of any executable FORTRAN statements and

5-107

qraphics subroutine calls, normally calls to
the subroutines DRAW2D, DRAW3D, TEXT and the
transformation subroutines ROT, TRAN and SCALE;
as well as calls to other instancing subroutxnes.
Thus, nested instances and even recursive calls
to the same primitive definition subroutine are
permitted, so long as a conditional exit is
provided to prevent infinite recursion, and
that sufficient Matrix Stack space is alloca-
ted when calling the PSINIT Subroutine, since
each instance call results in an implied PUSH.
However, the loss of precision prev1ouslv
mentioned is compounded wlth each level of
nesting.

. cal to that of a WINDOW call, data is not
t clipped at the master boundaries as it is at
the boundarles of a normal window; there-
eyond the master

i’}hile the MASTER call transformation is identi-

C. Each call to a master copy subroutine is
preceeded- by a call to the INST subroutine
vhich contains an implicit PUSH. In order to
restore the original transformation for use
following the instance, a call to the POP
subroutine to restore that transformation must
be performed.

-de The subroutine RETURN statement should
immediately follow the POP call. Note that
the master copy subroutine may just as easily
be coded in assembly langquaqge, provided that
it meets the above specifications and that it
is FORTRAN-callable (see Appendix C).

Using this technique, two- and three-dimensional
primitives may be defined and 1libraries of these
"master copies"™ maintained. Example 5.9-11 shows a
simple program which uses the primitive defined by
Example 5.9-10. Figure 5.9-5 shows the mapping
performed by THE PICTURE SYSTEM during instancing.

5-108

aon0a a0 aoah

sNeNeNg!

0ooon

INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(340,sss)
SET THE TWO-DIMENSIONAL WINDOW

CALL WINDOW (0,16000,0,16000)
DISPLAY THE FIRST INSTANCE OF THE HOUSE

CALL INST(4000,8000,4000,8000)
CALL HOUSE2

DISPLAY THE SECOﬁD INSTANCE OF THE HOUSE
(ROTATED -900) '

CALL INST(14000,18000,10000,14000)
CALL ROT (-16384,3)
CALL HOUSE2

DISPLAY THE DATA

CALL NUFRAM
-~ PAUSE |

'STOP
_END

Example 5.9-4

5-109

otL-S

DATA SPACE

MASTER DEFINITION SPACE WINDOW
MASTER COPY “’JN§TANCES ' VIEWPORT
PICTURE
/ DISPLAY
~~ &5 tHe PICTURE SYSTEM
e Y s
—— T
|
|
l |
’ I l
P | |
| T —~—
—— - - [~ — - — — ::J\.I
- P
P ‘/ -
(1) (2) (3)

Fiqure 5.9-5
Illustration of the Mapping of the Instances to the Window and
the Window to the viewport of Example 5.9-11 Showing (1) the master
copy definition of Example 5.9-10, (2) the mapping of the master
copy into two instance regions of the data space and (3) the Mapping of the
¥indow to the Viewport.

5. 9.4

5.9.4.1

5.9.4.2

Display Modes

All 1lines, dots, characters and instances may be
displayed in dashed and/or blinking display mode . on
one to four Picture Displays (or any combination
thereof) simultaneously. The following sections
describe how each of the display modes are initiated
and the manner in which Picture Displays may be
selected for output. It should be noted that once
set, these display modes remain in effect uantil the
mode is reset with a corresponding subroutine call.

- Thus, a display may remain in effect for subsequent

frames overriding the default setting and even
affecting the cursor (which, if used, is output to the
begqinning of the Refresh Buffer). Therefore, if a
user was employing blink mode, it should be reset
before calling NUFRAM unless the cursor is intended to
blink.

Dashed Display Mode [DASH]

When PSINIT is called to initialize THE PICTURE
SYSTEM, the display mode is set so that all subsequent
data output will be drawn in solid line mode. This
mode will remain in effect until the user <calls the
DASH subroutine to initiate dashed line mode, The
following is the DASH calllnq sequence specification
of Section 4 1 — = o

'CALL DASH(ISTAT)

The parameter passed to this subroutine specifies the
mode which all subsequent 1lines will be drawn 1in,
until PSINIT is called to re-initialize the system or
DASH is called to reset the line status. If DASH is
called with ISTAT#0, all subsequent data output will
be drawn in dashed line mode. Characters may also be
displayed in dash modes but may appear
indistinguishable because of the dashed lines. A call
to DASH with ISTAT=0 resets so0lid line mode. Dots
which are drawn in dashed display mode appear as dots.

Blink Display Mode [BLINK]

When PSINIT is called to initialize THE PICTURE SYSTEM
the display mode is set so that all subsequent data
output will be drawn in non-blink mode. This mode
will remain in effect until the user calls the BLINK
subroutine to initiate blink display mode. The

5-111

following is the BLINK calling sequence specification o

of Section 4.1:
CALL BLINK (ISTAT)

The parameter passed to this subroutine specifies the
mode which all subsequent lines will be drawn in,
until PSINIT is called to re-initialize the system or
BLINK is called to reset the display mode. If BLINK
is called with ISTAT=0, all subsequent data output
will be displayed non-blinking. If BLINK is called
with ISTAT#0, all subsequent data output will be
displayed blinking at the approximate rate of 90
blinks per minute. - Example 5.9-~10 shows how blink
mode may be used to cause a blinking cursor to be
displayed.

C |
- C _ INITIALIZE THE PICTURE SYSTEM
4 |
| CALL PSINIT (3,0,) ,
_. CALL TABLET(1,IX,IY,IPEN)
- ~ CALL cunsoa(xx IY, 1 +IPEN)

BEGIN THE DISPLAY Loop, . RESET THE: BLINK MODE LEFT

C
-C
- C FROH THE END OF THE DISPLAY LOOP.
2 € o
1

i,bofi":ﬂchL BLINK (0)

c o R
c SET THE BLINK MODE FOR THE CURSOR
c

’ CAll BLINK (1)
c
C NEW FRAME
C

CALL NUFRAM
GO TO 100

Example 5.9-10

5-112

5.9.4.3

Scopa Selection [SCOPE]

When PSINIT is <called to initialize THE PICTURE
SYSTEM, all Picture Displays (Scopes 1-4) are selected
for output. This selection will remain in effect
until the SCOPE subroutine is called to de-select the
Picture Displays to which output is directed. The
following is the SCOPE calling sequence specification
of Section 4.1: :

CALL SCOPE (INUM)

The parameter passed to this subroutine specifies the
Picture Display to be selected (1-4). If INUM is less
than 1 or dgreater ¢than 4, all scopes will be de-
selected and all subsequent data output will not be
displayed wuntil the SCOPE subroutine is called again
to select a Picture Display.

If the user's particular PICTURE SYSTEM configuration
has less than four Picture Displays, the selection of
all scopes for output incurs no additional overhead,
but insures that output will be directed to the
Picture Display(s),. regardless of the actual
confiquration of the components of the Picture

Generator. -

5-113

5. 10

5. 10.1

INITIATING THE DISPLAY OF DATA [NUFRAM,SETBUF]

The manner in which frames are displayed on THE
PICTURE SYSTEM is dependent upon the environment in
wvhich the control program executes. The environments
that are available are:

1. The Refresh Buffer absent from the systenm

configuration.

2. The Refresh Buffer used in single-buffer
mode.

3. The Refresh Buffer used in double-buffer
mode.

In each of these environments, the basic progtanm
structure is the same, and the only difference is the
way in which the display of data is initiated. The
following sections describe the display of data within
each of these env;ronments._

Display of Data Without a Refresh Buffer

THE PICTURE SYSTEM may be conflqured in what is known

.as -a,; Starter @ Configuration. This minimal

configquration, - shovn in Figure 5.10-1, has all of the
hardvare processing features of the standard PICTURE
SYSTEM, but. does _ not 1nc1ude a Refresh Buffer. The -
absence of. the Refresh Buffe:_requlres that as data is
transformed, clipped and viewport mapped it be sent
directly to the Picture Generator rather than being
deposited in the Refresh Buffer for display on the
screen. This means that a new frame must be generated
by the control program. for each refresh cycle. To
avoid flicker, the <control program is therefore
constrained to update the display at least 30 times
per second. This limits, to a certain extent, the
applications in which THE PICTURE SYSTEM can be used,
but provides for programs and applications written for
this minimal configuration to be easily upgraded to
the more flexible’ standard PICTURE SYSTEM
configuration.

5-114

The Graphics Software Package - is used as in the
standard PICTURE SYSTEM configuration with the
exception of the NUFRAM subroutine. This subroutine,
usually called to initiate the display of a new frame,
is not required in programming a non-Refresh Buffer
confiquration. This is because all data is displayed
as 1t is transformed. For this reason, the user
simply restarts the display 1loop rather than call
NUFRAM2, The user variables ICLOCK and IFMCNT are
available to the user for display synchronization with
the line frequencye. '

1The NUFRAM call may be included but will function as a
no-operation call.

5-115

PICTURE.

CONTROLLER| °| PROCESSOR

PICTURE

PICTURE | PICTURE
' . DISPLAY

1 | GENERATOR

i

Figure 5.10~-1

THE PICTURE SYSTEM Starter Configuration

5-116

5.10.2

Display of Data in Single Buffer Mode

THE PICTURE SYSTEM may be used in sinqgle-buffer mode
when the user's display requirements exceed the
capacity of half of the Refresh Buffer. This
condition may be diagnosed by the absence of most of
the expected data from the picture. (The Refresh

- Buffer Address Register wraps around, leaving only the

last data drawn available for display.) The user
selects the single~buffer mode of the Refresh Buffer
by calling the SETBUF subroutine as illustrated in
Example 5.10-1.

C INITIALIZE THE PICTURE SYSTEM

© CALL PSINIT(3,0,,,,)

c AND SET THE REFRESH BUFFER TO SINGLE BUFFER MODE
. " CALL SETBUF(1)

c BEGIN THE DISPLAY LOOP

c ' ;

Example 5.10-1

The user may select single- or double-buffer modes at
any time during the execution of any given progran.
The user should, however, be aware ‘:0f the subtle
difference between the use of the Refresh Buffer in
single- and double-buffer modes., As Figure 5.10-2
illustrates, in single buffer mode, the data displayed
on the Picture Display is the same data which is being
updated by the user pragram. This may result in a
refresh cycle vwhich displays a portion of the user's
old data (old frame). In cases where the data may not
change drastically from frame to frame or where there
are many refresh cycles between frame updates, this

5-117

 FRAME

\

NEW FRAME

DATA
POSITION OF NEW
FRAME UPDATE THE REFRESH CYCLE
POINTER WHEN > DISPLAYS ALL OF
THE REFRESH POINTER THIS DATA
PASSES IT ,

OLD FRAME

DATA .
LAST DATA ’ ;
OF THE OLD | —/

Figure 5.10-2

A Single Buffered Refresh Buffer

5-118

s

be of little consequence. The structure of a program
which uses single-buffer mode 'is, nonetheless, the
same as if the Refresh Buffer vwere double-buffered.

In either case the user draws! all of the data that is

to be displayed and then calls the NUFRAM subroutine
so that the next data drawn will be stored at the
beginning of the Refresh Buffer. This is shown in
Example 5.10~-2. If no subsequent data is drawn, the
picture will appear static on the screen.
Alternately, the single-buffered Refresh Buffer may be
used in a manner similar to a storage tube display.
In this manner, the user fills the Refresh Buffer with
the data which is to be viewed. This data will
continue to be refresed until an "erase™ of the
Refresh Buffer is initiated by the |user. The
equivalent of an "erase" is provided by calling the
NUFRAM subroutine twice in succession. Therefore, a
user could write an ERASE subroutine. Example 5.10-3,
which <could then be called to “"erase" the Picture
Display.

1The term draws here means that the data will be
transformed, clipped, viewport mapped and stored into the
Refresh Buffer where it will be displayed (or drawn) upon
the next refresh cycle.

5-119

aoa 00

(s NeK8g!

a0 nnn;nnn
: (=]

ann anan

INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,0,,,,)

SET THE REFRESH BUFFER TO SINGLE BUFFER MODE
CALL SETBUF (1)
SET THE WINDOWING TRANSFORMATION
CALL WINDOW(-4000,4000,-4000,4000,-4000,4000,8000)
SAVE WINDOWING TRANSFORMATION AND BEGIN THE DISPLAY LOOP
CALL PUSH

MODIFY OR OBTAIN NEW TRANSFORMATION PARAMETERS

CONCATENATE . THE TRANSFORMATIONS

CALL TRAN(ITX,ITY,ETZ)
. CALL ROT (IANGLZ,3) ’
- CALL ROT (IANGLY,2) . =~ - o : :
CALL ROT (IANGLX,1) = - ‘ S o ’
CALL SCALE(ISX, ISY, ISZ) ‘

NOH:TRANSFORM THE DATA BY THE COHPOUND TRANSFOBHATION
CALL DBAW3D(IDATA N IFi,IFZ)
AND DISPLAY THE DATL AND LOOP AGAIN

CALL NUFRAN
CALL POP
GO TO 100

Example 5.10-2

5-120

SUBROUTINE ERASE

THIS WILL ESSENTIKLLY ERASE THE CONTENTS OF THE
REFRESH BUFFER ALLOWING THE PICTURE SYSTEM TO BE
USED AS IF IT WERE A STORAGE TUBE DISPLAY.

NOTE: THE "ERASURE™ WILL TAKE ONE REFRESH CYCLE
AS DEFINED IN THE CALL TO PSINIT.

noononoaonn

CALL NUFRAM
CALL NUFRAM
RETURN

END

Example 5.10-3
The user is free to use the single buffered Refresh
Buffer in either of the previous ways described, or in
some combination thereof. Example 5.10-4 illustrates

this with the use of the ERASE subroutine of Example
5.10-3 only between major frame changes.

5-121

SUBROUTINE . HPRAHZ

c
C THIS SUBROUTINE DISPLAYS THE 2ND MAJOR FRAME OF
C THIS PROGRAM. IT IS ASSUMED THAT AN ERASE WAS .
C PERFORMED IMMEDIATELY BEFORE THIS MODULE WAS _
C CALLED (WITH THE REFRESH BUFFER SET TO SINGLE
C BUFFER MODE).
c
C BEGIN DISPLAY LOOP
c
C o
C EXIT FROM THIS MODULE YET ? GO TO 1000 IF SO
c
IF (IDONE.NE.O) GO TO 1000
C c

CALL NUFRAH
GO TO 100

C
C POP THE ORIGINALiﬂATRIX, EBASE THE DISPLAY AND EXIT
C : e B . : :
1

ffﬁfCALL ERASE~
BEFORN

"Exahplé‘5;1o-u

5-122

5. 10-3

Display of Data in Double-Buffer Mode

The Refresh Buffer is typically used in what is termed
double-buffer mode where the Refresh Buffer is divided
into tvwo separate buffers. For this reason, the
default usage of the Refresh Buffer 1is double-
buffered, initialized to that state by PSINIT when
called by user program. In this mode, the user fills
a buffer with data to be displayed, calls the NUFRANM

" subroutine to initiate its display and then may

proceed to fill the other buffer with new frame data. .
This is illustrated by Figure 5.10-3. This method of
frame display frees the user to create a new frame at
his 1leisure without worry of degradation of his
picture. Example 5.10-5 shows the structure of the
display loop of a typical applications program which
utilizes the double-buffer mode. If the user's
application requires that the Refresh Buffer be used
in single-buffer mode for a given set of frames and
then returned to double-buffer mode, it would be done
as shown in Example 5.10-6.

5-123

NNOh=000 OO0 OO0

SO0

ann

aanaa

INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,0,s9s¢)

SET THE WINDOWING TRANSFORMATION : ‘
CALL WINDOW (-4000,4000,-4000,4000,-4000,4000,8000)
SAVE THE WINDOWING TRANSPORMATION
CALL PUSH

MODIFY OR OBTAIN NEW TRANSFORMATION PARAMETERS

CONCATENATE THE TRANSFORHATIONS AND DISPLAY THE DATA
TRICE

CALL TRAN(ITX,ITY,ITZ)

CALL ROT{IANGLZ,3)

CALL BROT(IANGLY,2)

CALLinoT(IANGLx,1)

CALL PUSH

CALL SCALE (ISX1, IS!1 Isz1)

CALL DRAW3D(IDATA,N,IF1,IF2) =
CALL POP

CALL SCALE(ISX2,1SY2,ISX2)

CALL DRAW3D(IDATA,N,IF2,IF2)

RESTORE THE ORIGINAL WINDOW THAT WAS SAVED
CALL POP

AND DISPLAY THE DATA AND LOOP AGAIN
CALL NUFRAMNM
GO TO 100

Example 5.10-5

5-124

o0 o0

ann0a aan

ENTER THE DISPLAY SEGMENT WHICH MUST USE SINGLE BUFFER
CALL SETBUF (1)

BEGIN DISPLAY OF THE SINGLE BUFFERED DATA

EXIT SINGLE BUFFER MODE? (LOQP IF NOT)

IF (IDONE.EQ.0) GO TO 500

| RESET BUFFER MODE TO DOUBLE BUFFERED

CALL SETBUF(2)

'Example 5.10-6 -

5-125

> DISPLAYS ALL OF
THIS DATA

BUFFER | ——T1—> NEW FRAME
DATA
CURRENT POSITION
'OF NEW :
FRAME UPDATE
POINTER
BUFFER 2 ——1—>
 OLD FRAME
DATA
LAST DATA ‘ ,
OF THEOLD ~—>
FRAME

Figure 5.10-3

A Double-Buffered Refresh Buffer.

5-126

THE REFRESH CYCLE

5.1

5. 11.1

INTERACTION USING THE TABLET

Data may be input to THE PICTURE SYSTEM by any of the
various standard DEC peripherals available for the
PDP-11, or by any of the standard Evans & Sutherland
graphical input devices. The Tablet, however, serves
as the standard, general purpose graphic input device
for THE PICTURE SYSTEM, performing those interactive
functions usually reserved for such graphic input
devices as light pens, joy sticks and function
switches. This section discusses in detail how the
Tablet may be used to perform pointing, positioning,
and other miscellaneous functions required for
flexible interactive data input.

Tablet and Cursor Use [TABLET,CURSOR,ISPDWN]

Data is input from the Tablet within a user

application program by calling the TABLET subroutine.

The following is the TABLET calling sequence
specification of Sectiomn 4.1:

CALL TABLET (ISTAT[,IX,IY,IPEN])

This subroutine is <called with ISTAT=0 to read the
current pen x,y coordinates and status. The pen x,y
coordinates which are returned in the IX and IY
parameters - are scaledt integer values whose
approximate range is 1+32700. The Tablet is considered
to be a two-dimensional input device whose -coordinate
system origin is at the center of the tablet, as shown
in Fiqure 5.11-1. ‘

This .coordinate system was chosen for the tablet so
that the values returned to the user could be used
directly for pointing, positioning and tracking. The
pen status is returned to the user in the parameter
IPEN, so that the pen information may be determined by
the user. The status that is returned is the
information as read directly from the tablet. The
status information returned is shown in Fiqure 5.11-2.

ithe x,y coordinate values are scaled from the actual tablet
coordinate range ({0-1777,) to the approximate data space
range +32700 (£777004) .

 5-127

As Pigure 5.11-2 shows, the user may determine when
the pen is down (i.e. pressed against the surface of .
the tablet) by testing bit 1 of the pen status word.
Since bit testing capabilities are not provided
directly by FORTBAN, the inteqger function subroutine
ISPDWNN is available to the FORTRAN proqrammer ¢to
determine whether or not the pen 1is down. This
function subroutine returns the value 0 if the pen is
not down or 1 if the pen is down. This is illustrated
by Example 5.11-1.

-

c READ THE TABLET VALUES AND PEN STATUS
¢ CALL TABLET (0,IX,IY,IPEN)
| c 1r THE PEH Is. nouu, GO TO 100
'.C j IP(ISPDHN(IPEN).NE 0) 60 TO 100
E“ THE PEN IS NOT DOWN, SO CONTINUE

Example 5.11-1

The user may choose to utilize the tablet in what is
termed automatic mode by setting the "ISTAT parameter
to a non-zero value. In this mode, the user "turns
on" the TABLET subroutine and the pen x,y coordinate
and status are then updated automatically upon each
refresh interrupt. In this way, the user constantly
has avilable the most recent tablet values without
explicitly calling the TABLET subroutine. Example
5.11-2 shows how the tablet may be used in automatic
mode.

5-128

——TToo—~—_ o9

gﬁw 0 32700
0

(g
DATA TABLET]

ORIGIN {0,0)

v f'Figu:e75-11f1

The Two4dimeq§§0nal»Coo:dinate System of the Tablet

51413 12 1110 98 7 6 5 4 3 2| O

" PEN UP/DOWN
0=PENUP
| =PEN DOWN
PEN PROXIMITY’
0= NOT IN PROXIMITY

| =IN PROXIMITY

Figure 5.11-2

The Pen Status as Returned by the TABLET Subroutine

5-129

INTEGER IX,IY,IPEN

INITIALIZE THE PICTURE SYSTEM
CALL PSINIT(3,0,,,,)

AND TURN ON THE TABLET FOR AUTOMATIC MODE

a6 aoan

CALL TABLET (1,IX,IY,IPEN)

BEGIN THE DISPLAY LOOP BY SEEING IF THE PEN IS DOWN
IF (ISPDWN (IPEN) .EQ.0)GO TO 200

THE PEN WAS DOWN...

QOG- 000
o
o

Example 5.11-2

When used in either automatic or non-automatic mode,
the TABLET subroutine requires the user to acknovledge
that the pen information has been read by clearing the
IPEN parameter. If this parameter is not zero when
the tablet values are to be updated, themn the x, y and
pen status will not be updated unless the pen is down.
This requirement ensures that the user will not "piss"
.an occasion when the pen has been set down and always
has the most recent position (x,y) where the pen was
set down. Example 5.11-3 illustrates the clearing of
the IPEN parameter after the pen position has been
determined.

5-130

C
C IF THE PEN IS NOT DOWN, BRANCH TO 200 -
C .
100 IF (ISPDWN(IPEN).EQ.0) GO TO 200
C
C THE PEN IS DOWN...DETERMINE THE MENU SELECTION
C
C
C MENU SELECTION DETERMINED...INDICATE PEN POSITION
C READ : : . !
¢ READ
: IPEN=0
c CONTINUE\DISPLAY LOoopP
200 ‘CONTINUE

Example 5.11-3

It is often convenient to provide a visual feed back
of the current pen position in relation to the tablet.
For this purpose, a “cursor®™ may be drawn on the
Picture Display at a position which corresponds to the
X,y position of the pen on the tablet by calling the
CURSOR subroutine. The following is the CURSOR
calling sequence specification of Section 4.1:

CALL CURSOR(IX,IY,ISTAT[,IPEN])
This calling sequence allows a cursor symbol to be
displayed at the position specified by the IX and IY

parameters. The cursor which is displayed is a simple
cross which 1is centered at the X,y coordinate

5-131

aOan

specified. The pen status (IPEN) 1is an optional
arquaent which, if specified, provides visual feedback
of the pen status by displaying the cursor brighter
whenever the pen is down, and also provides the
information so that the cursor will not be displayed
when the pen is not in the proximity of the tablet.
If the arqument is not specified, the cursor will
always be displayed at maximum intensity. Example
5.11-4 shouws the use of the CURSOBR subroutine with the
optional arqument.

As with the TABLET subroutine, the user may optionally
choose to display a cursor im what is termed automatic
mode, by setting the ISTAT parameter to a non-zero
value. In this mode, the user "turns oh" the CURSOR
subroutine and a cursor vill then be displayed
automatically upon each refresh interrupt. In this
way, the user constantly has displayed the current pen
position without explicitly calling the CURSOR
subroutine. When used in automatic mode 1in
conjunction with the TABLET subroutine, the user will
always have the current position of.the pen displayed
regardless of the frame update rate of a particular
applications progranm. Example 5.11-5 shows how the
automatic mode of the TABLET and CURSOR subroutine may

be spec1f1ed.

INTEGER IX,IY,IPEN

c .

C INITIALIZE THE PICTURE SYSTEM

C ,
CALL PSINIT(3,0,.,.,)

 WPYRN ON" AUTOMATIC MODE FOR THE TABLET AND CURSOR

CALL TABLET (1,IX,IY,IPEN)
CALL CURSOR (IX,IY,1,IPEN)

C

C NOW BEGIN THE DISPLAY LOOP WITHOUT WORRYING

C ABOUT TABLET UPDATE AND CURSOR DISPLAY.

C

EXample 5.11-5

5-132

a0 aon

It should be noted that the tablet x,y coordinates
need not be used to position the cursor. If the
cursor is to be positioned by other means (i.e.
control dials, arithmetic computations, etc.), the
variable which will contain the x or y positioning
information should be specified rather than the pen
coordinate variables. The CURSOR subroutine, however,
expects an x,y position value in the range of
approximately 132700 to be specified. There is, of
course, no restriction on the use of values to specify
that the cursor always be displayed at a given x or y
position, as shown by Example 5.11-6.

INTEGER IX,IY,IPEN,ZERO
DATA ZERO/0/

INITIALIZE THE PICTURE SYSTEM
CALL PSINIT(3,0,,s.)

. SET TABLET, CURSOR AUTOMATIC MODE(CURSOR ALWAYS AT
. Y=0) .

CALL TABLET (1,IX,IY,IPEN)

CALL CURSOR (IX,ZERO,1)

Example 5.11-6

5-133

The cursor is defined in a window running from -32767
to #32767 in x and vy, which coincides appoximately
with the range of tablet values.

The cursor will alwvays be displayed within a viewport
which is specified by the variables which defined the
viewport in effect vwhen <the CURSOR subroutine was
called. In Examples 5.11-5 and 5.11-6, this means
that the cursor will always be displayed in a viewport
which is the entire screen (since PSINIT last
specified a viewporty). However, as Example 5.11-7
shows, a cursor can be displayed within a dynamically
changing = viewport merely by calling the VWPORT
subroutine bhefore initiating automatic TABLET and
CURSOR modes and then modifying the variables which
defined the viewport. This feature proves useful in
menu and data pointing functions. :

5-134

aoan an aaaan

000

O.ﬁ nn

NOOO

210

INTEGER IVL,IVR,IVB,IVT,IH,IY

DATIA IVL, IVR IVB /-2048,2047 —2048/

DATA IVT,IVH,IVY/2047,255,0/
INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,0,,.,)

SET THE INITIAL VIEWPORT
CALL VWPORT(IVL,IVR,IVB,IVT,IH,IY)

SET TABLET, CURSOR AUTOMATIC MODE
CALL TABLET (1,IX,IY,IPEN)

CALL CURSOR (IX,IY,1,IPEN)
IPOINT=0

 BEGIN THE DISPLAY LOOP...

ijF IPOINT=0 THEN RESET THE MAX VIEWPORT FOR
"TCURSOR DISPLAY, OTHERWISE SET ANOTHER VIEHPORT

IF(IPOINT EQ_O) GO TO 200

IVL=-1024
IVR= 1024
IVB=-1024
IVT= 1024
GO TO 210

RESET THE VIEHPORT VARIABLES FOR MAX SIZE VIEHPORT

IVL—-2048
IVBR= 2047
IVB=-2048
IVT= 2047
CONTINUE

Example 5.11-7

5-135

5. 11.1

- 5. 11.2.1

Pointing

The user may input data interactively with the tablet
by:

1. selecting a menu item which specifies a
command to be performed.

2. identifying a data element with which the
user wishes to interact.

Both of these functions may be considered to be
pointing functions; i.e. the user points to a menu
item or points to a particular data element. However,
the implementations of the two pointing functions are
typically different. The following two sections
describe the use of the Tablet to perform these two
pointing functions.

Pointing at Menu Items

A menu item is a symbol, usually text, which when
selected by the user issues a command to the user?s

progran. Figure 5.11-3 shows a menu which includes.

both text and other symbols as menu itenms. In this

program, the user would position the pen on the tablet.

to the location which would correspond to the menu
itam to be selected, and press the pen down indicating

to the program-that the particular menu item, whose

boundaries contain that x,y position, 1is being
selected. The program would then initiate the action
required for the particular menu item selected. The

‘user may proqgrammably determine which (if any) menu

iten is being selected by comparing the x,y
coordinates of the pen with the boundaries definéd for
each of the menu items. However this comparison need
be performed only if the pen is down. Example 5.11-8
illustrates how this may be done.

5-136

MENU ITEMS

N

-

’
PLACE ROTATE MOVE
DELETE HIGHER LOWER MGHT'I UP_ ouT
SPIN LONGER SHORTER
TILT WIDER NARROWER LEFT___ [DowN IN

A Menu wvhich Includes both Text and other Symbols

Fiqure 5.11-3

5-137

C .
o IF THE PEN IS DOWN, ENTER THE MENU SELECTION CODE,
o OTHERWISE, BRANCH TO 300
C
IF (ISPDWN(IPEN).EQ.) GO TO 300
C
C MENU SELECTION...COMPARE THE MENU AREAS WITH
C THE TABLET X,Y COORDINATES
IF(IY.LE.O0) GO TO 250
Cc
Cc UPPER PORTION OF MENU AREA, LEFT OR RIGHT SIDE?
C
IF(IX.LE.24576) GO TO 230
Cc
o UPPER RIGHT SIDE...UPPER OR LOWER MENU ITEM?
C
IP(IY.LE.16384) GO TO 210
C
C UPPER,UPPER RIGHT MENU ITEM...PERFORM SELECTED
C FUNCTION ' o '
c . :
c . ‘ . I — —_ L — - =
C MENU ITEM SELECTION COMPLETED, INDICATE PEN
C POSITION READ
C . S
IPEN=0
300 CONTINUE

Exémple 5.11-8

A feature of the tablet is that the menu may be only a
paper overlay which is placed on the tablet, or a menu
may be displayed on the screen which corresponds to
the menu areas on the tablet, enabling the user to
point with the cursor to the menu area on the screen
to select a menu item. An additional feature is that
a viewport may be defined within which the non-menu
data may be mapped and displayed without extending
into the menu areas, as shown in Figqure 5. 11-4.

5-138

5.11.2.2 Pointing at Data Elements [HITWIN,HLTEST]

A data element is typically pointed at by the user to
indicate that a particular function is to be performed
upon, or in relation to, the data element pointed at.
Such functions might be the deletion of the data
element, the stress computation on the element in
relation to its neighboring elements, or any other
function which may be programmed as a particular
application. This pointing function, often
erroneously considered to be strictly a light pen
operation, is performed with THE PICTURE SYSTEM by
what 1is known as "hit testing". This function,
performed by the Picture Processor's clipping process,
allows a "hit window" to be defined through which all
data in question may be processed to determine whether
any of the data was "hit"; i.e. whether any point
(visible or not), or any part of any line, fell within
the "hit window".

This process is superlor to the analogous functlon of
the light pen in several ways:

1. The hit testing feature, when coupled with the
TABLET and CURSOR subroutines, allows the
user the ability to point at and identify data
elements, with the added flexibility that the
size of the %hit window" or reqion of interest
described about the pen position may be varied

.dynamically to allow a wide range of p01nt1nq
resolution upon user demand.

2. The "hit window", while usually p051t10ned by
the x,y coordinates of the pen on the tablet,
may be specified arithmetically, allowing data
which is not even displayed to be “hit",

3. The "hit testing" technique requires no trace
back within the display file to determine which
data element was “hit" since the user programmatl
controls the level to which "hit testing® is
performed.

5-139

=
- _

NOTE:
CLIPPED
DATA MAPPED
TO VIEWPORT
BOUNDARIES

“]‘\\

1l

PLACE ROTATE MO\(E

DELETE HIGHER LOWER RIGHT)= ouT

SPIN LONGER SHORTER

TILT >< WIDER NARROWER LEFT DOWN IN
Figure 5.11-4

A Displayed Menu Illustrating Pointing

at Menu Item with the Cursor and Data which

had been Clipped, Mapped to the Viewport

Bound

aries,

5-140

The "hit testing" capability is provided within the
Graphics Software Package by the HITWIN and HITEST
subroutines. The following are the HITWIN and HITEST
calling sequence specifications of Section 4. 1:

CALL HITWIN(IX,IY,LSIZE[,IW])
CALL HITEST (IHIT,ISTAT)

The HITWIN subroutine is called to specify a "“hit
window" <through which data may be processed - to
determine whether any of the data was "hit", HITWIN
also suspends output +to the Refresh Buffer, since
"hit" testing uses the transformation and clipping
facilities of the Picture Processor in a wvay which
would result in misplaced picture elements if they
were allowed to be displayed. The "Yhit window" is
centered at the x,y coordinates specified by the IX
and IY parameters and whose half-width and half-height
is specified by the ISIZE parameter, A1l three
parameters will " be scaled by the homogeneous
coordinate, IW, if it is specified. Such a "hit
window" is considered to have finite boundaries in x
and 'y directions (determined by the ISIZE parameter)
and to extend from 0 to IW in the Z direction as shown
in Fiqure 5.11-5. Thé size of the "hit window" may be
varied by modifyinqg the value of the ISIZE parameter.
The actual size of the hit window (in inches) may be
determined by the following ratjo:

ISIZE ~ actual "hit window"™ width
IW actual "hit testing"™ viewport width

With a "hit testing"” viewport which is the entire
screen (10 inches_and IW its typical default value
(IW=32767), this ratio would reduce to:

ISIZE actual "hit window"™ width

In +this case, to achieve a "hit window" which is 1
inch in width:

5-141

v

RN

N

-~

HIT WINDOW

SCREEN

IX,IY

Fiqure 5.11-5

The "Hit Window" as Specified by the HITWIN Subroutine Illustrating
its Boundary = IW.

5-142

Left Blank Intentionally.

5-143

ISIZE 1
e-=== = == or ISIZE = 3276
32767 10

These subroutines allow the tablet to be used in a
manner similar to a light pen, i.e. any data element
which appears behind the "hit window" will be "hit" if
tested during the "hit testing" process. Hit testing
is performed at a stage in the Picture Processor's
operation where pictorial data has been completely
transformed, put in perspective and mapped onto a
region running from -32767 to +32767 in both x and vy,
which is identical to the region in which the cursor
is defined. Hence, if the picture's viewport |is
identical to that of the cursor (namely, the viewport
in effect when the CURSOR - subroutine was called -
usually the full screen), then a picture element which
appears near the cursor will be hit. If the picture

occupies a viewport other than the full scope, the

.cursor should also be confined to that viewport if hit
testing is to be performed.

Hit testing may be performed on lines, dots, or the
origin of a character string, but not the characters
themselves, since they are generated by the Character
Generator after the clipping processe. L
The HITEST subroutine is called (normally with
ISTAT=0) to determine whether any data has been "hit"
since the ?hit window" has been specified or since the
last call to the HITEST subroutine. This allows the
user ccntrol over the level to which hit testing is
performed; i.e. groups of data sets may be tested at
once, or a single data element can be individually
tested merely by the placement of the call to the
HITEST subroutine. This subroutine is also called at
the completion of the '"hit testing" process with
ISTAT#0 to restore the transformation which was in
effect at the initiation of "hit testing" and to reset
the Picture Processor so that all subsequent data
drawn will be output to the Refresh Buffer.

The HITWIN and HITEST subroutines should be called in
the following manner:

1. CALL the HITWIN subroutine to set the
desired "hit window". This window
will be centered at the x,y coordinate
and of the size specified by the user.
Typically, the x,y coordinates are

5-144

those returned by the TABLET sub-
routine but may correspond to any
values, dynamic or otherwise.

2. Draw each data element, or data set,
for which "hit testing" is to be performed
(the data is not actually drawn but is
processed for hit testing purposes
only).

3. Determine whether a "hit" has been made
upon the data element or data set by
calling the HITEST subroutine and
testing the IHIT parameter whose
value will be returned:

=0 if no hit occurred.

=1 1f a hit has occurred since the
initial call to HITWIN or the
last call to HITEST.

4, Steps 2 and 3 may be repeated as required
to determine the data element or data
set which was "hit", The final call to
HITEST should have the second arqument, .
ISTAT, set to a non-zero value to restore
the transformation in effect when the
HITWIN subroutine was called and to allow
subsequent data drawn to be written into
the Refresh Buffer.

The previous steps (1-4) specify the manner in which
hit testing should be performed using the HITWIN and
HITEST subroutines. The wuser should note that the
transformations performed upon the data when it 1is
displayed must also be performed upon the data when
“hit testing". ‘"These © transformations include
WINDOWing, ROTation, TRANslation, SCAL(E)ing and
INSTancing. This simplifies the "hit testing" process
since it may - be done within the logical flow of the
program, while (or as if) a new frame is being
created. Example 5.11-9 illustrates how "hit testing®
may be used to determine if an object, in this case a
WHOUSEY" has been hit.

5-145

anoan

aan

=0000

OO OO N aonao ann

(S NeNpNp]

INITIALIZE THE PICTURE SYSTEH AND TURN ON
AUTOMATIC TABLET AND CURSOR

CALL PSINIT(3,0,,,.,)
CALL TABLET (1,IX,IY,IPEN)
CALL CURSOR (IX,IY,1,IPEN)

SET THE PERSPECTIVE WINDOW

CALL WINDOW(-5000,5000,0,10000,0, 10000,-20000)

BEGIN THE DISPLAY LOOP BY PERFORMING THE
TRANSFORMATIONS

CALL PUSH

CALL TRAN (ITX,ITY,ITZ)
CALL ROT (IANGLZ,3)
CALL ROT (IANGLY,2)
CALL ROT (IANGLX,1)

IS THE PEN DOWN? IF-SO BEGIN HIT TESTING

I= ISPDHN(IPEN) o
IF (I.NE.0) CALL HITHIN (IX,IY, 1000)

" CALL THE SUBROUTINE WHICH DRAWS 'THE OBJECT

‘“CALI"HOUSE

IF NOT HIT TESTING PROCEED WITH THE DISPLAY

LOOP OTHERVISE...
IF(I.EQ.0) GO TO 200
HIT TESIING... WAS BEGIN PERFORMED

CALL HITEST (J,1)
IF(J.EQ.0) GO TO 200

IT WAS HIT, UPDATE THE VALUES ACCORDINGLY

IPER=0
CONTINUE THE DISPLAY LOOP
CONTINUE

Example 5.11-9

5-146

5.11.3

Positioning

The Tablet is a natural positioning device, since the
current x,y coordinates of the pen may be read at any
time, and when the TABLET subroutine is used in
automatic mode the most recently read pen coordinates
are available at all times without specifically
calling the TABLET subroutine. The X,y coordinates of
the pen which are returned by the TABLET subroutine
are in the range +32700, a direct relation with the
range of the data space values. This allovws the user
to directly use the pen coordinates to position data
elements within the data space performing such
functions as; line endpoint positioning, draqging,
inking and rubber-band lines, with a minimal amount of
software effort.

5-147

REFERENCES
"Principles of Interactive Computer Graphics"
Newman and Sproull, McGraw-Hill, 1973

"Matrices"
F. Ayers, McGraw-Hill, 1967

"The DOS/Batch Handbook", DEC-11-0bBHA-A-D
Digital Equipment Corporation, 1974

“BT-11 FORTRAN Compiler and Object Tinme Systenm

User's Manual", DEC-11-LRFPA-A-D-
Digital Equipment Corporation, 1974

#"RT-11 Systen Reference3uanua1", DEC~-11-0RUGA-A-D
Digital Equipment Corporation, 1973

APPENDIX A

SPECIFICATIONS OF THE PICTURE SYSTEM

This appendix includes the Functional Specifications for

THE PICTURE SYSTEM as well as the detailed Hardware Specifi-
cations for the Picture Processor. The Functional Specifica-
tions provide the periormance statistics describing the
capabilities of THE PICTURE SYSTEM as a general purpose
graphics system. The Picture Processor Hardware Specifica-
tions provide the interfacing, command and data details
required to utilize the hardware at a systems level.

THE PICTURE S¥STEMN PUNCTIONAE SPECEPLCARTLIONS

The following describes the functicnal specifications of
THE PICTURE SYSTEN. These specifications detail the capa-
Bilities of each of the compements of the system: the
Picture Contreoller, Picture Processor, Refresh Buffer,
Character Generator, Picture Generator, Picture Display
and Tablet.

A.1.1 Picture Controller
General Functions - Contains the data base.
- Executes the display progranms.
- Performs input/output operations.

Computer!? - Any DEC PDP-11 Family Computer.
Word Size - 16 Bit.
Dimension Modes - THE PICTURE SYSTEM displays two-

and three-dimensional objects.

- IWo-limensional data requires two
words of Picture Controller memory
to store the x and y coordinate
values of a point.

- Three-dimensional data requires
three words of Picture Controller
memory to store the x, y, and z
coordinate values of a point.

- Homogeneous coordinate data repre-
sentation can be used with THE .
PICTURE SYSTEM in order to provide
a much larqger effective dynamic
range by scaling the normal two-
and three-dimensional data.

cOordlnate Spec1flca- - Absolute coordipates (A) used to
~tion Hodes _ o define points which are a given
‘ - : displacement from the origin of
the -data space. I

- Relative coordinates (R) used to
define points which are a given
displacement from the previous: set
of coordinates.

- Picture elements may be specified
in any of the following sequences
of coordinate point definitions:

e ALA,AL,A, .-
e A,BR,R,Ryew"
e R,R,R,R,ewun"

Drawing Modes - The Move mode (M) moves the beam
: position to a specified location
with the beam intensity off.

1 THE PICTURE SYSTEM may be interfaced to any PDP-11 Family Computer.
PICTURE SYSTEMS have been interfaced to PDP-11/05, PDP-11/35 and
PDP-11/45 computers with various standard DEC peripherals includ-
ing disks, DECtapes, magtapes, printers, etc.

- The Draw To mode (DT) draws a
straight line from the current
beam position to a new specified RENT
location and leaves the bean) ‘

position at a new location.
- The Dot mode (D) moves the bean
position to a specified location
with the beam intensity off and
then intensifies the beam at that
specified location. The beam
position remains at the dot location.
- The Character mode (C) draws the
specified character beginning at
the current beam position and then
moves the beam position with in-
tensity off, to the position where
the next character in a string begins.
- Picture elements may be drawn using
any of the above modes one by one or
they may be drawn using any of the
following sequences of the above
modes: -
e M,DT,M,DT,eee (unconnected
_ lines)
e M,DT,DT,DT,... (lines connected
' end-to-end)
. o = DT,M,DT,M,... (another mode
s : _ e C sequence for
, unconnected lines
s DT,DT,DT,DT,... (another mode ‘
'sequence for
lines connected
end-to-end)

e D,D,D,D,eue (a2 series of
_ : - dots)
e C,C,CuChuwue (a string of char-
. acters)
Instancing - A method of defining in the data

base a two- or three-dimensional

structure once and replicating it
several times in a picture in 4if-
ferent positions, sizes and orien-

tations.
- Instancing may be performed to any
level.
Parameter Load/Store - The Picture Controller can load and

store all control reqgisters, status
registers and matrix registers that
reside in the other components of
THE PICTURE SYSTEM.

A.1.2 Picture Processor

General .

Transformations

Compound Transforma-
tions

Clipping

Perspective

The Picture Processor operations
are implemented in digital hardware.

Translates objects in any direction
in three space.

Rotates objects about any axis in
three space.

Scales objects with respect to any

of the dimensions in three

space.

Perspective transformations can be
performed on data passed to the
Picture Processor. '
The Transformation Matrix is expressed
in homogeneous coordinates which
allows much larger translational
values than would otherwise be
possible.

Creates mirror images of objects

about a plane.

together while maintaining full-word
acgCuracye. -

The Transformation Matrix may be
loaded from the data base or stored
into the data base residing in the
Picture Controller memory. o
There is a push-down stack for stor-
ing four full transformation matrices
with provision for continuing the
stack in the Picture Coatroller memory.

Multiplies transformation matrices l)

Extracts the portions of the objects,
defined in the data base, that are
within a program-specified field of
view.

In two dimensions, the field of view
is a program-specified rectanqular
region of the data space.

In three dimensions, the field of
view is a pyramid or frustrum (trun-
cated pyramid) in the data space
vhose apex is at the eye.

Clipping is performed with respect
to the program-controlled six sur-
faces of the frustrum.

Displays realistic line representa-
tions of three-dimensional objects
as they appear to the eye with
reference to relative distance or
depth.

Viewport - The viewport specification is under
program control and defines a six
surface region of tke Picture Display
vhere the picture is to appear. Data
which has been transformed, clipped,
and put in perspective is linearly
mapped into the viewport which allows
complete separation of the coordinate
systems of the drawing space and the
Picture Display.

- The resolution of the data mapped
into the viewport is 16 bits, which
allows this data to be used for
precision plots.

- Multiple viewports may be defined
for a given frame to give simultan-
eous use of several areas of the
sScreen.

- Specification of viewport froant amd

_ back provides the intensity bounds
- S for depth-cueing.

zZooming S - The Picture Processor allows for

’ T ' moving smoothly and quickly into
(or out of) a complex data structure
in order to obtain a more detailed
(or wide angle) view of a chosen
reqgion in. the drawing space.

Hit Test - THE PICTURE SYSTEM can detect whether

’ K any part of a given picture element
is within a program-specified region
in the data space or on the Picture
‘Display. Hit Test is used for imple-
menting the pointing function with a
data tablet, eliminating the need for
a light pen.

Memory Write Back - Under program control, transformed
» digital data can be written back inmto
the Picture Controller's memory to
drive a hard copy plotter, for example,
or as data for further computation.

A.1.3 Refresh Buffer
General Function ~ The Refresh Buffer is for storing
processed diqgital frame data allow-
inqg complete separation of Picture
Display refresh requirements from
the dynamic picture update require-
ments.

Data Content -~ Dots and line endpoint data for use
' by the Picture Generator (one com-
plete dot or line endpoint defimnation
per buffer entry containing 12 bits
for each of the x and y coordinate
values and 8 bits for the intensity
value).

- Packed character codes for use by
the Character Generator {(up to three
codes per buffer entry).

- Status information used to control
the displaying of the data.

Buffering . ' - Program-selectable single or double
' " buffering is standard.

Ctrsor B j o o - A dynamic cursor can be maintained
' ‘ R reqardless of the frame update rate.

Sizer . -+ . =In single buffer mode, up to 8188 dots,
o o " line endpoints, or character code

“"entries can be stored in the buffer
in any combination.

- In double buffer mode, up to 4092
dots, line endpoints, or character
code entries can be stored in the
buffer in any combination.:

1The Standard Refresh Buffer is 8K, 36 bit words. An additional
8K of Refresh Memory may be obtained to provide a 16K Refresh
Buffer.

A.1.4 Character Generator
General Function

Character Set

Sizes

Character Orientation

Aécepts character codes and produces
properly sized digital character
stroking data for the Picture Genera-
tor.

Ninety-six character extended ASCII
character set.

There are 8 character sizes avail-
able under program control ranging
from 0.07 inches high in increments

of 0.07 inches to 0.56 inches high

on the Picture Display. The charac-
ter width is also under program
control with 8 different widths
selectable for each size.

,Horlzontal 900 counter- clockwlse

orlentatlon.

A maximum of 1725 characters canm be
displayed at a refresh rate of 30

. frames per second.

A.1.5 Picture Generator and Plcture Display

General Functioan

Line Modes

Intensity Modes

Inten51ty and’
Contrast Controls

Refresh Control

Display Rates

Display Type

Converts digital coordinate and
intensity information to analog
voltages to drive an electron bean
across a phosphor-coated surface.

Solid.

Blink mode allows selected picture
elements to blink on and off.

Dash mode allows selected lines

of a picture to be dashed.

Constant intensity of program-selected
picture elements may be chosen from

256 levels. Lines are drawn at a
constant rate which assures uniform
brightness for the chosen intensity
level.

Depth-cueing allows the lnten51ty of
lines to vary continuously with depth
(i.e., the z coordinate of the display).

In order to present a uniform varia- .
tion in briqhtness, the intensity -
control of the Picture Display treats
the z coordinate data as the logarithm
of the intensity to be shown on the
display.

The contrast control of the Picture
Display is completely 1ndependent of—
the intensity control.

The refresh cycle is controlled by -
synchronization with the power line.

Move time (for an n" move)

< .48 x n + 2.0 usec for n 2 2%

< 3.0 usec for n < 1/2"
Draw Time (for an n" line) '

€ 1.85 x n + 2.0 usec for n 2 1/2"

< 3.0 usec for n < 1/2"
Dot Time (for dots spaced n" apart)

€ .6 x n + 4.85 usec for n 2 1/2n

< 5.15 usec for < 1/2"
Appoximate display capacities at
30 frames per second refresh rate:

211500 connected 1/2" lines

e 1625 connected 10" lines
6650 dots 1/4" apart
1725 characters . 14" high (average)
1500 characters .56" high (average)

Calligraphic.

Deflection Type

Spot Size

Addressable Locationé
"Endpoint Matching

CRT Size

Phosphor

x-10

~ Electromagnetic

0.020 inch.
4096 x 4096.
0.020 inch.

21" rectangular, lo"
viewing area.

P4.

x 10" quality

A.1.6 Tablet
General

Output
Resolution
Sampling Rate

Size

Cursor

General purpose interactive input
device. '

11 bits of x, 11 bits of y, and pen
up/down status. '

Digital: 11 bits for both x and y.
Graphic: 100 lines per inch.

Variable up to 200 samples per
second. '

11" x 11" useful area.

The cursor location on the Picture
Display may be made to correspond to

" the stylus pen position on the

tablet.

A.1.7 PDP-11 UNIBUS Addresses Reserved for the Picture Systenm

The Standard PICTURE SYSTEM reserves the PDP-11 UNIBUS
addresses summarized by Table A-1, for interfacing to
the Picture Processor and the various PICTURE SYSTEM
peripherals available.

Table A-1

Reserved Interrupt
Device Unibus_Addresses, --Yector,
Pictqre Processor 767770 - 767776 300.304
Lorgnette " | 767760 - 767766 310
Keyboard :'1'f*<.' 767750 - 767756 324
Switches & Lights #1 767740 - 767746 none
switches & Lights #2 767730 - 767736 noné

_ SgitdheéisbLiqhts 3 767720 - 767726 . none '

Tablet 777730 - 777736 330
Programmable 767700 - 767706 none
Maintenance Panel ‘
DR11-B 772410 - 772416 124

(Picture Processor)

A.2 THE PICTURE PROCESSOR HARDWARE SPECIFICATIONS

The following describes the PDP-11/Picture Processor inter-
face reqisters used to communicate the commands and data to

and from the Picture Processor and the internal register struc-
ture and functions performed by the Picture Processor.

A.2.1 PDP-11 Picture Processor Interface Registers

This section describes the PDP-11 UNIBUS addressable reg-
isters that comprise the command and data interface paths
between the PDP-11 and the Picture Processor. They are
functionally divided into three classifications:

1. Refresh Timing Register
2. Command Registers
3. Data Transfer Registers

Table A-2 lists these registers and the interrupt vectors
which are associated with them. The sections that follow
give detailed descriptions of the functions of the regis-
ters and the bits within then.

TABLE A-2

» UNIBUS INTERRUPT
NAME SYMBOL ADDRESS, —-VECTOR,
Real Time Clcck ' RTC 767770 300
Status Register SR 767772 none
Repeat Status Register RSR 767774 none
Word Count Register DRHC 772410 none
Bus Address Register DRBA 772412 none
DMA Status Register DRST 772414 124

A.2.1.1 Refresh Timing Register (RTC) : 7677704

‘The RTC provides a mechanism for interrupting the PDP-11
at intervals which are programmable multiples of 1/120

second.
1/60th second).

BIT NARME .
8 1 Master Clear
' © (MC)
. 7 Una'SSiqned
6 Request
interrupt
(REQ)

(The PDP-T11 Line Frequency Clock interrupts at

EUNCTION

When set causes a pulse
that resets the Picture
Processor and Picture
Generator to their
initial state. This
provides a mechanism:
for initializing the-
Picture Processor
without executing a
RESET command. This
bit always reads as
Zero.

Set every n/120 seconds
where n is the two's
complement of the Count
field (see bits 3-0),

if bit 4 is set. This
bit must be cleared by
the interrupt routine

to acknowledqe interrupt
service.

Interrupt
Enable
(IEA)

Run (BRUN)

Count 3,2,1,0

Set to allow REQ (bit 6)

to cause an interrupt.

Set to allow REQ t
be set. '

Four bit field loaded
with two's complement
of the number (n) of
1/120 second intervals
that are desired to
elapse before REQ is
set. Bit 3 is the
MSB. Clearing all
bits results in n=16.

A.2.1.2 Command Registers

a. Status Register (SR):

5 14 13 12

10

9

767772,

7

RBSTOPPED —9
RBDONE
RBSS

SINGLE

ND

R

‘NC

DC

SPTR -

CURSOR

" ENO

louT -

S ERU

"PPDONE -

The Status Redister is used to provide global operating

mode information,

such as single or double buffer,

to the

Picture Processor, and also to initiate the display‘re-
fresh process in the Refresh Buffer.

BIT NAME
15 RBSTOPPED
14 RBDONE

EUNCTION

Set by the Refresh Buffer
Control when the refresh
process stops. Clearing
this bit causes the re-
fresh process to start.
Set by INIT.

If this bit is set when
RBSTOPPED is sa2t it indi-
cates that the refresh
process has stopped be-
cause the end of the
current refresh data has

been reached. If it is
not set it means the
refresh process has stop-
ped because a ®"Status Halt"
(see Section A.2.1.4) was
encountered by the Refresh
Buffer control, or that

bit 13, RBSS, is set.

Set by INIT. (Read only

bit.)
13 RB Single When this bit is set the
Step Refresh Buffer control will
(RBSS) stop the refresh process

after each read access
(RBSTOPPED will be set).
This is a diagnostic mode
that enables the data
accessed by the refresh
process to be read back
to the PDP-11 using a
STORE command. Cleared
by INIT. o

12 SINGLE Buffer If this bit is set, the

- L Refresh Buffer is configured
as a single buffer with a
four word cursor area and
an 8188 word data area. If
it is clear, the Refresh
Buffer functions as a
double buffer with two four-
word cursor areas and two
4092 vord data areas.
Cleared by INIT. See
Figure A-1.

RE Unassigned
12,9,8 ' New Data (ND), These bits are used to
New Cursor (NC), indicate special actions
Display Cursor to be taken by the Refresh
(DC) Buffer control when it

begins a refresh operation.
These bits are only sampled
by the Picture Processor at
the beqginning of the re-
fresh cycle (i.e. whenever
RBSTOPPED is cleared).
Their functions are as
follows:

0Z-V

‘8191

REFRESH MEMORY
AVAILABLE

O [CURSOR ¢ [Cursor
g REA 3 LAREA##|
. .
. AREA#£L |
DATA :8::: f' —=
AREA - fCURSOR .
4o§9‘A AFfE2
5000 [~
DATA
AREA #:2
8191 8191

| STRUCTURED AS
“DOUBLE BUFFER

STRUCTURED AS
SINGLE BUFFER

Figure A-1

Refresh Memory Structure

NOTE: THE REFRESH BUFFER MAY
OPTIONALLY BE EXPANDED
TO TWICE ITS STANDARD
SIZE TO PROVIDE FOR A
REFRESH BUFFER OF 16384
WORDS.

Ipn_Double Buffer Mode:
ND - Causes the area of the
Refresh Buffer currently
assigned as the "writen
data area to become the
"read" data area, and as-
signs the current "read"
data area as the new
"write" area. This pre-,
pares for the display of
the data which was just
written into the Refresh
Buffer.

NC - Causes the area of
the Refresh Buffer cur-
rently assigned as the
“write!" cursor area to
become the "read" cursor
area, and assigns the
current “read" cursor
area to be the new "write"
cursor area. Subsequent,
refresh cycles that dis-
play a cursor will re-
fresh from the new "read®
cursor area._ The re-
fresh Buffer "write"
cursor area addressing
mechanism is initialized
to point to the begin-
ning of the assigned area.
¢
DC - If this bit is set
vhen a refresh cycle is
started, the current
"read" cursor area con- .
tents will be displayed |,
in addition to the con-
tents of the current
"read" data area.

In_Single Buffer:

ND - Causes the Refresh
Buffer "yrite" data
addressing mechanism to
reset to the beginning

of the data area, and
causes the subsequent
refresh cycle to start
reading from the beginning
of the data area.

14645

Stack Pointer
{(SPTR)

CORSDR

“Enabile ‘No
Overlap
(ENO)

A=22

NC - Causes the Refresh
Buffer "write" .cursor

area addressing mechanisn

to be initialized to :point.
to the beginning of the

CuUrsor areae.

DC - (same as double buffer).

ND, NC, and DC are cleared

by INIT.

These bits are used to
address the currently avail-
able matrix area on the
Matrix Stack (see Section
A.2.2). This field is auto-
matically incremented after
a PUSH operation and decre-
mented before a POP opera~
4+ion. - IJf the stack is
{SPTR=4) and a PUSH is

dttenpted, or empty (SPTR=0)

and a POP is attempted the
STACK ERROR bit of the DMA

Status Register (see Section

Ae2.1.4) will be set and
the operation will not be
performed. .Cleared by INIT.

When this bit is set, any
data that is normally
written in the Refresh
Buffer will. be written in
the currently assigned
*yrite" cursor area. If
‘more ‘than four draw com-
mands which result in data
being written into the
CULSOr area are executed,

. then the previous contents

of the cursor area will be
overwritten.

If this bit is set, the
ATTENTION bit of the DMA
Status Register (see
Section A.2.1.4) will be
set each time a DRAKW2D
or DRAW3D command is

.executed by the Picture

Processor and if the RSR
Coordinate Count (see

Inhibit
Output
(1I0UT)

Enable RSR

.Update

(ERU)

Picture

Processor
Done
(PPDONE)

A-23

Section A.2.2b) is such

that the command would
normally be repeated, the
subsequent command execution
will be inhibited until bit
0 of the DMA Status Register
is cleared. This bit is
useful in '"hit testing" to
determine which draw com-
mand resulted in the "hit",
Cleared by INIT.

When this bit is set, it
will prevent any data from
being written into the
Refresh Buffer. This bit
is also useful in "hit
testing®” where data passing
through a hit window would
appear misplaced if dis-
played. Cleared by INIT.

If this bit is set, the
Coordinate Count field of the
Repeat Status Register (see
Section b below) equals neg-
ative-one (all 1's), the
Picture Processor will auto-
matically fetch new con-
tents for the RSR via the
DMA data path at the end of
the current command execu-
tion. Once the new RSR has
been fetched, it will then
be treated as a new command
and a new command execution
will automatically take
place. Cleared by INIT.

When this bit is set it
means that the Picture Pro-
cessor is waiting for input
and has no processing pend-
ing (it is not an indica-
tion of the state of the
Refresh Buffer). The con-
tents of the SR and RSR
registers should not be
modified until this bit is
set. The "hit" bits of

the DRST (see Section
A.2.1.4) should not be
examined until this bit is
set, nor should data being

A-24

written into the memory of
the PDP-11 by a STORE
conmand. Set by INIT.
{Read only.)

b. Repeat Status Register (RSR): 76777ug

5 14 13 12 0 10 9 8 7 & 5 4 3 2 ! o

FSMI

FSM2
CNT

The Repeat Status Register is used to supply commands
to the Picture Processor. It is called a "Repeat"
Status Register because portions of its contents may be
automatically modified in a predetermined manner after
the specified command has been-executed, and in certain

'~ cases the command is repeated after the modification,

without required progranm intervention.

‘The bits of the RSR are divided into 3 fields:

1. Command - specifies what command type is to be
executed. This field is never automatically
modified. '

2. Finite State_Machine - these bits give further
specification of the command to be executed.
This field is automatically updated after each
execution. ' ‘

many times the command should be executed before
program intervention is required. If the field
contains a negative number, it is automatically
incremented after each command,execution.

BIT NAME- FONCTION
15,14,13 Command Bits These bits define the
{CaNM) command type to be

executed. The bit conmbin-
atiions and interpreta-
tion are as follows:

000-2DDRAVW Two words are accessed
: from the PDP-11 via the
data transfer mechanisn,

and are then processed

A-25

001-3DDRAVW

010-PUSH

r011snarcon

A=26

by the Picture Processor,
as specified by the
Finite State Machine = |
bits. Note that if the .
Finite State Machine)
bits specify CHARBRACTER

or STATUS, then threes

words are accessed from

the PDP-11.

Three words are accessed
from the PDP-11 via the
data transfer mechanisnm,
and are then processed
by the Picture Processor
as specified by the
Finite State Machine
bits.

The current contents

of the Transformation
Matrix (see Section
A.2.2.1) are placed

into the currently
available element of .
the Matrix Stack and the
SPTR is incremented. If
the SPTR is 4, the .
execution does not take
place and the STKRR bit
of the DMA Status Register
is set.

Matrix Concatenation -
Four words are accessed
from the PDP-11 via

the data transfer path.
These four words are
treated as a row (0-3)
of a matrix that is .
being post multiplied
by the Transformation
Matrix in the Picture
Processor. - The rov is
specified by the Finite
State Machine (FSHN)
bits. The resulting
rovw is placed in the
Temporary Matrix (see
Section A.2.2) of the
Picture Processor. If
the row specified is row
3 then at the end of the
post multiplication

12,11,10

9,8

100-POP

‘101-LOAD

 110-STORE

111-NO OP

Finite State
Machine 1
(PSM 1)
Finite State
Machine 2
(FSM2)

process the matrix
stored in the Temporary
Matrix is normalized
and placed in the
Transformation Matrix,
destroying the old
contents of the Trans-
formation Matrix.

The last matrix PUSHed
is returned to the
Transformation Matrix
and the SPTR is decre-
mented. If the SPTR

is 0 the execution does
not take place and the
STKRR bit of the DMA
Status Register is set.

Four words are

accessed from the

PDP-11 via the data
transfer path and placed
in the Picture Processor
Register (see Section
A.2.2) spec1f1ed by the
"FsSH blts.

Theffour words which
represent the contents
of the Picture
Processor Register
specified by the FSH
bits are sent to PDP-11
via the data transfer
path.

This command is treated
by the Picture Processor
as a NO OP. It requires
that FSM1=7.

These five bits comprise
the fields known as the
Finite State Machines.
The way they are inter-
preted is a function of
the Command bit.

PUSH,POP

No effect on operation.
LOAD,STORE: the given
bits are interpreted
as a single field

containing an octal

address (0-27) speci-~

fying which Picture
Processor Register is ‘
to be manipulated. . ‘
The address is incre-

mented at the comple-

tion of the command.

MATCON: The three
FSM1 bits must be zeros.
The FSM2 bits represent
an address (0-3) that’
specifies which row of
the matrix to be)
concatenated with the
Transformation Matrix

is currently being sent.
The address is incre- ’
mented at the completlon
of the command.

2DDRAW, 3DDRAW: The

FSM1 bits are used to.
describe the type DRAW

that is desired. At
. _ the end of the command
Yl : the bits are -updated.

' The type, update defimi-
tions and the FSH1
sequences initiated are
listed below:

- Fsmi VALUE

OCTAL AFTER

VALUE IYPE UPDATE SEQUENCES
0 MOVETO (M) 1 ({M,D,M,D,...)
1 DRAWTO (D) 0 (D,M,D,Mgeas)
2 MOVETO (M) 3 (4,D,D,Dr00.)
3 DRAWTO (D) 3 (D,D,D,D,¢.s)
4 DOT (DOT) 4 (DOT,DOT, e «s)
5 STATUS (S) 5 (S5/545,Sye0s)
6 not used 7
7 CHARACTER(C) 7 (C,CuCuCphans)

The interpretations of the
various types of FSM1 are as
follows:

MOVETO: specifies a point in
the coordinate system, normal-
ly used as the beginning point

of a line.

DRANTO: indicates that a line
is to be drawn from the last
specified point to the point
being specified.

DOT: Specifies that a dot is to
be drawn at the point specified.

STATUS: causes a word to be
written into the Refresh Buffer
that consists of parts of the
three PDP-11 words that must
accompany the command (see

Section A.2.1.4d4d). These words
are used to change the status

of the Picture Generator, the
Character Generator or Color
within the definition of a picture.

CHARACTER: causes a word to be
written into the Refresh Buffer
that céntains the three ASCII
codes specified by the three
PDP-11 words that must accompany
the command (one ASCII code, .
right justified, per word) .

When the refresh process encount-
ers the word in the Refresh Buffer,
it accesses tha2 Character
Generator and draws the speci-
fied characters before making any
subsequent accesses from the Re-
fresh Buffer.

NOTE: See Section A.2.1.44 which
follows, for the data formats
of the DRAW Commands.

The FSM2 bits are used to specify
whether the data accompanying
DRAW commands is to be inter-
preted as absolute or relative
coordinate data (added to prev1ous
data). Note that STATUS and
CHARACTER commands always imply
absolute data. At the completion
of a command execution the bits
are updated. The interpretation,
update definitions and the FSM2

sequences initiated are listed below:

PSM2 VALUE

OCTAL AFTER
VALUE INTERPRETATION UPDATE SEQUENCES
0 ABSOLUTE (A) 1 (A, R, R,....
1 RELATIVE (R) 1 (R,R,R,yece)
2 ABSOLUTE (A) 2 (A,A,A,...)
3 not used 3
7-0 Coordinate This 8-bit field is used to
Count specify how many times the
(CNT) - command specified by the

COM bits is to be repeatedly
executed (with additional
data each time). The field
’Lv is treated as a_two's
,cirw;jwvg \ complement number, with bit
M 7 being the siqn bit.
_ : ‘ : If the value of the number
’ is positive (bit7=0) the
conmand is executed once and
the 8-bit number is not
incremented at the completion
of the execution. If the
value of the number is nega-
S C tive then the command is
D e : ’ L executed repeatedly, with the
number incremented at the end
of each command execution, ‘
until it goes positive (all 1's
Y to all 0's). . o .
: If, at the time the coordinate
count increments from =1 to
0, the Enable RSR Update bit
{bit 2) of the Status Register

is set,_then a word will auto-

PDP-11 vi
. s path and placed in theRSR.
GMZIVW' The new contents of the RSR

will then be interpreted and a
command execution initiated
automatically.

Ae2.1.3 Command Execution

The registers described above merely serve to specify the
command to be executed. To initiate execution a bit in one
of the data transfer reqgisters must be manipulated. This
bit is bit 0 of the DRST reqgister, as described in the
following section.

A.2.1.4 Data Transfer Registers

A-30

The preceding section dealt with the UNIBUS registers of
the Picture Processor that are used to pass command infor-
mation. This section deals with the mechanism that is used
to pass data between the PDP-11 and Picture Processor.

Note that data can be transferred in either direction.

The data transfer path is a DEC DR11-B, Direct Memory Access
Interface unit. To pass data to or from the Picture Proces-
sor, a block of PDP-11 memory which contains the data, or
which will receive the data, is specified by loading regis-
ters in the DR11-B. The Picture Processor, then, in its
normal course of executing commands specified by the RSR
requests the DR11-B to access the memory locations specified.

de Word Count Register (DRWC): 772410g

The DRWNC is a 16-bit Read/Write register. It is ini-
tially loaded with the two's complement of the number
of words to be transferred and increments up towards
zero after each bus cycle. ¥When overflow occurs (all
1's to all 0's), the READY bit of the DRST is set ~
and bus cycles stop. DRWC is a word register, byte

A

instructions should not be used when loading this \

register. This register is cleared by the UNIBUS \
INIT signal.» : '

b. Bus Address Register (DRBA): 772412

"The DRBA is a 15-bit R/W register. Bit 0 is always —
a zero, and is a read-only bit. Along with bits

5 and 4 of the DRST (XBA17 and XBA16), the DRBA is
used to specify the address used when the DR11-B
accesses the UNIBUS. The register is incremented

(by 2) after each bus access, advancing the address

to the next sequential word location on the bus.

If DRBA overflows (177776 to 0) the ERROR bit

in the DRST is set. This error condition is’

cleared by loading DRBA or by INIT. DRBA is a /
word reqgister; byte instructions should not be

used when loading this register. Cleared by INIT.

Ce DMA Status and Command Register (DRST): 7724144

5 14

13

12

ERROR—-—}

NEX

ATTN
MAINT

STKERR

HB

CYCLE

READY

IE

XBA -

FNCT 3,2

CFNCT 1

60

This register is useéd to provide status indicators

~.of the DR11-B, status indicators of the Picture
Processor, and to provide a means for initiating execu-
tion of Pictute Processor commands specified by the SR

and RSR.
BIT BAME
15 ERBOR

A-32

FUNCTION

Set to indicate an error
condition: either NEX

(BIT 14), ATTN (BIT 13),
interlock error (test

board is neither in slots

AB0O2 nor CDO4), or bus

adiress overflow (BAOF: DRBA
incremented from 177776 to 0).
Sets READY (BIT7) and causes
interrupt if IE (BIT 6) is set.
ERROR is cleared by removing
all four possible error condi-
tions; interlock error is
removed by imnserting test

board in CDOU for diagnostic
tests or in ABO2 for normal opera-

tion; bus address overflow is
cleared by loading DRBA; NEX =
is cleared by loadinq bit 14
with a zero; ATTN is cleared

by the method descrlbed below.
' Read only.
14 Nonexistent Set to indicate that an UNIBUS
Memory master, the DR11-B did not
(NEX) receive a SSYN! response 20

usec after asserting MSYN2,
Cleared by INIT or loading with
a 0; cannot be loaded with a 1.
Sets ERROR.

13 Attention This bit is set by the picture
(ATTN) Processor whenever PUSH or
: POP operation is executed or
when a 2DDRAW or 3DDRAW command
is executed and the ENO bit of
the SR is set. (See Section
A.2.1.2, bit 3.) The bit is
read only, in the. sense that it
cannot be set or cleared by
MOVing to DRST. It is cleared
whenever GO (DRST bit 0) is

set.
12 : Hainténé§¢e : Maintenance bit used by diagnos-
T (MAINT) '~ tic programs. Cleared by INIT,

‘ - . Read/Write.

15ee PDP- ll_gggggkg;glg_gggggggk, for further UNIBUS signal details.
21bid.

A-33

1

10-9

Stack

-Error

- (STKRR)

Hit Bits

(HB)

CYCLE

00

If this bit is set when ATTN
is set, it indicates that a
Matrix Stack overflow or
underflow has occurred. This ‘
read only bit is cleared by

the same method used to clear
ATTN.

These bits are used to
determine whether data that has
just been processed during
2DDRAW or 3DDRAW command execu-
tion (except STATUS and CHAR-~
ACTER) has been clipped. Once
the bits have been set they can
only be cleared by having FNCT1
set when GO is set. The values
of the bits indicate something
of the geometry of the data.
The fiqurés below show the geome-~
tries that result in the four
possible combinations of these
bits, where "N" is the most
recent coordinate processed,
and "P" is the one directly
preceding it. The rectangle
represents the clipping

" boundaries.

o
s AN

P Y \ \\N

P N N

o} 10 i

For the bits to be meaningful
they must be clear immediately
before execution of the

2DDRAW or 3DDRAW command in
question.

Cycle is used to prime bus
cycles; if set when GO is
issued, an immediate bus cycle
occurs. Cleared when bus
cycle begins; cleared by INIT.

7 READY

6 Interrupt
Enable
(IE)

5-4 Extended Bus
Address
(XBA)

3-2 FNCT 3,2
1. FNCT1
0 GO

d. Data Formats

,,,,,

,

Read/Write,

Set to indicate that the DR11-B
is able to accept a new command.
Set by INIT or ERROR; cleared

by GO; set on word count over-
flow. Causes interrupt if

bit 6 is set. Forces DR11-B to
release control of the UNIBUS
and prevents further DMA cycles.
Read only.

Set to allow ERROR or READY=1
to cause an interrupt. Clear-
ed by INIT. Read/Write.

Extended bus address bit 17
and 16 that in conjunction
with DRBA specify an 18 bit
address to be used for
direct memory transfers.
Cleared by INIT. XBA17 and
XBA16 do not increment when
DRBA overflows; instead
ERROR is set. Read/Write.

UnasSiqned, may be used as
general Read/Write bits.

"This bit is used to allow the

clearing of DRST bits 10

and 9 (HB). The method for
clearing these bits is to

set this bit prior to setting

~bit 0 of the DRST. Read/

Write.

This bit is set to initiate the
execution of a command by the
Picture Processor. Setting
this bit clears ATTN, if set,
and if PFNCT1 is set it also
clears the HB bits. Note that
the setting of this bit always
causes a command execution by
the Picture Processor.

The preceding sections detailed the registers used in
transferring data. This section details the formats
of the data that accompany the various commands that
can be specified by the RSR. For each case, the

data required for one execution cycle is given.

additional data is required for each execution as
specified by the CNT field of the RSRH.

PUSH,POP: No data necessary.
LOAD,.STORE,. 4 PDP-11 words.

MATCON:

2DDRAW: For all except STATUS AND

CHARACTER, 2 PDP-1% words
representing x and y coordin-
ate values. For STATUS and
CHARACTER: 3 PDP-11 words,.
See the data format for STATUS
and CHARACTER in 3DDRAW.

DDRAN: For all except STATUS and
CHARACTER: 3 PDP-11
words representing x, vy
and z coordinate values.

STATUS: 3 words representing: -
1. Picture Generator Status. @

2. Character Generator Status,
3. Not used. -

‘,

CHARACTER: 3 Hordslfeagh-cone
taining the right justified

7-bit ASCII code of the char- ‘
actar-de31red

PBicture Generator Status Word:

5 14 13 12 1 10 9 8 7 6 5.4 3 2 | Q

[N NN

TAKE

HALT

COLOR
DASH

BLINK

$3
s2
St

so

A-36

This word accessed by a 2DDRAW or 3DDRAW command and

a STATUS FSM1, is used to specify global information to
the Picture Generator. the information specifies that
color is to be displayed (for color monitor use only),
whether to draw DASHed lines, put the Picture

Generator in BLINK mode, what scopes should be
selected, or whether to stop the Refresh process
("Status Halt").

o
I~
3

NAHE FUNCTION

-
(8]
)
-
N

Unused

11 TAKE ' This bit signals the Refresh
Buffer control that bits 8-0
are valid and should be loaded
in the Picture Generator Status
Register. If it is not set,
bits 8-0 are not interpreted. .

10 HALT If this bit is set the Refresh
- ' Buffer control will stop the
refresh process (Status Halt).

8-6 COLOR These bits specify the color
' status for the scopes selected

by bits 3-0. The octal value
of these bits specifies the
color of all subsegquent data
drawn. A value of 0, 1 or 2
must be used when a black and
white display is selected.
Values 3-7 are used when a
beam penetration monitor is
selected.

0 (Black and White Display)
1 (Black and White Display)
2 (Black and White Display)
3 Red

) Red/Orange

5 Oorange

6 Yellow

7 Green

5 CASH Indicates that all succeeding

4 BLINK

3 Scope 3
Select
(s3)

2 Scope 2
Select
(s2)

1 "~ Scope 1
Select
(s1) .

0 Scope 0
- Select
(s0)

lines and characters are to
be drawn dashed.

Indicates that

all succeeding

dots, lines, and characters
are to blink on the display.

Indicates that

the Picture

Display whose scope driver
card is in Picture Generator

backpanel slot

24 will

display all data subsequently

dravne.

"Same as bit 3,
22.

Same as bit-3,
20.

Same as bit 3,
18. -

Character Generator Status Word:

but for slot
but for sloté

but for slot

This word, accessed by a 2DDRAW or 3DDRAW command and
a STATUS FSM1 is used to specify rotation and scaling
information to the Character Generator.

BIT NAME
15-12 Unused
11 TAKE

This bit signals the Refresh

Buffer control

that bits 6-0

are valid and are to be loaded
in the Character Generator

Status Register.
set bits 6-0 are not interpreted.

If it is not

10~7 Unused

6 ROTATE
5-3 XSCALE
SCALE
0
1
2
3
4
5
_. 6
7
oif” !SCALE"

If this bit is set, all sub-
sequent characters drawn by
the Character Generator will
be rotated 900 in the counter-
clockwise direction.

This octal (0-7) number speci-
fies the X size of all subsequent
characters; 0 is the smallest,

7 the largest.

APPROXIMATE SIZE
{of _Capital Letters)

0.07v
0. 14"
0.21n
0.28"
0.35"
0.42"
0. 49" -
0.56"

Same as XSCALE, except spec1-
fying the Y size.

j quure A 2 illustrates the data formats for the 2DDRAW

"and 3DDRAH commands.

ALL FSM VALUES EXCEPT CHARACTER AND STATUS

ADDRESS
n X
2DDRAW
n+2 Y
ADDRESS
n X
3DDRAW n+2 Y
n+4 Z

CHARACTER FSM_VALUE

APD?ESS | /// ///‘_CHARil\'C-TER. -
ne2 V4 / / / CHARACTER
RIS A i

STATUS FSM VALUE

ADDRESS
B STA
R

—
<
Ui

n+2 |CHARACTER GENERATOR
STATUS
n+4d NOT USED

Figqure -2

Data Formats for 2DDRAW and
3DDRAW Commands

A-40

A.2.2

A.2.2.1

A.2.2.2

A.2.2.

i

A.2.2.4

A.2.2.5

Picture Processor Internal Registers

The proceding sections describe the reqgisters of the
Picture Processor that may be accessed directly with

PDP-11 instructions. This section d2scribes the registers
that are internal to the Picture Processor and used to
contain parameters for various functions or as working
storage during ccamand execution. Piqure A-3 shows these
registers and the addresses assigned to them. These
addresses are specified using the FSM fields for LOAD and
STORE commands. Each register consists of four 16-bit ele-
ments. LOAD and STORE commands always refer to four-element
registers.

Transformation Matrix (TRANMAT), Register 0-34

These four registers are used to contain the 4x4 Trans-

formation Matrix. This matrix is post-multiplied by the
data processed during the execution of 2DDRAW or 3DDRAW

commands ({(except STATUS and CHARACTER).

Temporary Matrix (TEMPMAT), Register 4-13,4

These eiqht reqisters are used to store the temporary
results during a MATCON operation. They are working
reqisters of the Picture Processor and have addresses

for diagnostic purposes only. They cannot be loaded with
a LOAD command. '

Refresh Buffer (REFBUF), Register 14,

ThlS read only reqlster (cannot be LOADed) always con-
tains the data last read from the Refresh Buffer. It is
addressable for dlagnostlc purposes only. ' '

Viewport Left, Bottom, Hither (VIEWL,VIEWB,VIEWH),
Register 20 :

This register (in conjunction with register 24) is used
to specify the boundaries to which data that lies within
the clipping boundaries will be mapped by the viewport
mapping process.

VIEWL is the left boundary

VIEWB is the bottcm boundary

VIEWH is the hither boundary
The fourth component is not used and is undefined.

Save (SAVE), Register 218
This is a working register. At the completion of a

2DDRAW or 3DDRAW command execution (except STATUS and
CHARACTER) this register contains the data as it

ADDRESS g

Addressable Picture Processor Registers

<
REFBUFX|REFBUFY |REFBUFZ|REFBUFS
VIEWL|VIEWB |VIEWH
SAVE X |SAVE Y |SAVE Z | SAVE W
‘NCX NCY NCZ - NCW
NVX NVY NVZ
VIEWR |VIEWT | VIEWY .
BASE X | BASE Y| BASE Z | BASEW
PCX PCY PCZ PCW
PVX PVY PVZ
Figure A-3

TRANSFORMATION

MATRIX

1| TEMPORARY
>MATRIX

REFRESH BUFFER
NOT USED

VIEWPORT LEFT BOTTOM, HITHER
" SAVE

NEWCLIP
NEWVIEW

VIEWPORT RIGHT, TOP, YON

BASE -

 PREVIOUS CLIP
PREVIOUS VIEW

A.2.2.6

1.2.2.7

A.2.2.8

exists after it has been multiplied by the Trans-
formation Matrix, but prior to any clipping that may
have taken fplace.

New Clip (NC), Register 22,

This is a working register. The contents are omnly of in-
terest at the completion of a 2DDRA¥ or 3DDRAW command
execution, (except STATUS and CHARACTER) and then only if
the data that accompanied the command resulted in data

-that would normally be passed to the Refresh Buffer and

then the Picture Generator (i.e. a DOT or MOVETO that
was within the clipping boundaries, or a DRAWTO that
resulted in a line with some portion within the clipping
boundaries). For all other cases the contents of this
register are not defined. (Note that the status of the
"hit bits"™ of the DRST are an indication of whether the
data was within the clipping boundaries.) If the contents
are valid, they represent the coordinate values of the
data within the clipping boundaries. If clipping has
occurred, they represent -the results of the clipping
computational process, either the original endpoint or
the coordinates where the line intersected the Cllpplnq
boundary.,. : .

New View (NV), Register 238

This is a working register. The contents are only of in-
terest when the NC register has valid information stored - _
in it. The contents represéent the results of the view-

port mapping process that performs the linear mapping and
perspective division of the data in the NC, from the clipping
boundaries to the viewport boundaries (spec1f1ed by the
viewport registers, 20 and 24).

Only three of the four elements contain valid information:
NVX, NVY, NVZ. The fourth element is used strictly as a
working register, and its contents are not defined.

It is the 12 least significant bits of NVX and NVY, and
the 8 least significant bits of NVZ that are written in
the Refresh Buffer and subsequently passed to the Picture
Generator during the refreshing process.

Viewport Right, Top, Yon (VIEWR,VIEWT,VIEWY), Register 24,

This register (in conijunction with register 20) is used
to specify the boundaries to which data, that lies within
the clipping boundaries, will be mapped by the viewport
mapping process.

VIEWR is the right boundary

VIERT is the top boundary

VIEWY is the yon boundary

The fourth component is not used and is undefined.
A.2.2.9 Base Register (BASE), Register 25,

All 2DDRAW and 3DDRAW commands (except STATUS and CHARACTER) ‘
result in the Picture Processor performing computations

on 4 data elements representing the drawing coordinates.

The BASE register provides two functions. It supplies the
fourth element, w, for 3DDRAW commands, and the third and
fourth, z and w respectively, for 2DDRAW commands. The base
register is also used as the absolute coordinates to which

all relative details added to compute absolute coordin-

ates when FSM2 specifies RELATIVE. The base register shoald
always be LOADED with the necesssary values prior to executing
2DDRAVW and 3DDRAW commands.

A.2.2.10 Previous Clip (PC), Register 26,

This is a working register. 1Its contents are valid only

at the completion of a 2DDRAW or 3DDRAW command whose FSM1
- specified a DRAWTO, and whose execution resulted in a portion
" of the 'line being within the clipping boundaries, but the
beginning of the line being outside the clipping boundaries
(i.e. the most recent 2DDRAW or 3DDRAW whose FSM1 was MOVETO
or DRAWTO was accompanied by data that was not within the
clipping boundaries). For all other cases the contents of
this register is not defined. (Note that the "hit bits"
of the DRST are an indication of whether the above conditions
are satisfied.) If the contents are valid, they represent
a point computed by the clipping process that is interpreted ‘
as a MOVETO which specifies the beqinning point of the por-
tion of the line that lies within the clipping boundaries.

A.2.2.11 Previous View (PV), Register 27,

This is a working register. The contents are only of
interest when the PC register has valid information
stored in it. The contents represent the results of the.

" viewport mapping process that performs a linear mapping and
perspective division of the PC from the clipping boundaries
to the viewpcrt boundaries (specified by the viewport reg-
isters, 20 and 24).

Only three of the four elements contain valid information:
PVX,PVY,PVZ. The fourth element is used strictly as a
working register, and its contents are not defined.

When the beginning point of a line has been clipped, it is
the 12 least significant bits of PVX and PVY and the 8 least
significant bits of PVZ that are written in the Refresh
Buffer and subsequently passed to the Picture Generator
durinqg the refreshing process.

A.2.2.12 Matrix Stack

The Matrix Stack is a non-addressable (by LOAD or STORE com-~
mands) collection of registers that are used to temporarily
store transformation matrices. It is a four level matrix
stack and is accessed whenever a PUSH or POP command is
exacuted. : '

A.2.3 Command Execution Details

This section details the flow of data within the Picture
Processor internal register structure for each of the
commands that can be specified by the RSR. In the case of
2DDRAW and 3DDRAW the operations that take place are
treated step by step.

Notes on nomenclature:

1. 1IN represents the incoming data that accompanies
the command.

2. A ">t refers to a four component (4 16-bit words)
set of data.

3. Subscripts such as x, y, z and w refer to the
individual 16-bit elements of the incoming data (IN)
or internal registers.

4. The subscript i is used to specify an 1nterna1
register address (i.e. REGi).

5. BB refers to the Refresh Buffer.

6. 1In the description of 2DDRAW and 3DDRAW, "new

. 'p01nt" refers to the data accompanylng the com- .

- mand, and "previous point" refers to the data

. that accompanled the most recent 2DDRAW or 3DDRAW.
The term "line" refers to the vector that begins
.at the previous point and ends at the new p01nt.

A.2.3.1 2DDRAW and 3DDRAH FSM1 = DRAWTO
a. Input Data to Internal Registers.

1. If 2DDRAW and FSM2 = ABSOLUTE :
INXx —® PCx, BASEX
INY — PCy, BASEy
BASEz —® PCz, BASEZ
BASEw —® PCw, BASEw

2. If 2DDRAW and FSM2 = RELATIVE
INx + BASEx —e» PCx, BASEx
INy + BASEy —es PCy, BASEy

BASEz —»PCz, BASEz
BASEW —®» PCw, BASEW

3. If 3DDRAW and FSM2 = ABSOLUTE
INX —» PCx, BASEx
INyY — PCy, BASEy
INz —ePC2z, BASEz

BASEw —® PCw, BASEW

4. If 3DDRAW and FSM2 = RELATIVE
INx + BASEx—e»PCx, BASEx
INy + BASEy —e=PCy, BASEy
INz + BASEz —8»PCz, BASEZ

A-46

BASEYW —» PC

Transform Data.

w, BASEw

— — s

(PC) x (TRANMAT)-e» SAVE, NC

Clip

The clipping process determines whether the data lies within
es., In order for a point to be within
these boundaries, it must satisfy the following requirements:

the clipping boundari

-SAVEw < SAVEx
~-SAVEwWw £ SAVEyY
0 < SAVEz

1. If a portion of t
boundaries:

new point cli

2. If a portion of t
. boundaries, and t
clipping boundari

previous poin

SAVEw
SAVEw
SAVEz

IA INIA

he line is inside the clipping

—
pped-s» NC

he line is inside the clipping
he previous point is outside the
es: ,

. . ‘ Lo > .

t clipped-e PC-

~ d. Perspective/Viewport Trahsformation

1. If a portionﬂgf t

boundaries, and -t
clipping boundari

he line is inside the clipping _
he previous point is outside the
es:

PCx (perspective and viewport transformed)—i»PVx,

PCy (perspect
PCz (perspect

2. If a portion of t
pboundaries:

NCx (perspect
NCy (perspect
NCz (perspect

A.2.3.2 2LCDRANWN and 3DDRAW, FSM1 =

. de

Input Data to Interna

1. If 2DDRAW and FSHM
INx —a» PCx,
INy —® pPCy,
BASEz —& PCz,
BASEw —& PCw,

ive and viewport transformed)-—ePVy,
ive and viewport transformed) —esPVz,

he line is inside the clipping

ive and viewport transformed)-—sNVX,
ive and viewport transformed)—sNVy,
ive and viewport transform24)-eNVzZ,

MOVETO or DOT.
1l Registers.

2 = ABSOLUTE
BASEx
BASEY
BASEz
BASEwW

RBx
R By
RBz

RBx
R By
RBz

A.2.3.3

A.2.3.4

A.2.3.5

A.2.3.6

A.2.3.7

2. I1If 2DDRAW and FSM2 = RELATIVE
INX + BASEx —e» PCx, BASEx
INy + BASEy - PCy, BASEy

BASEz —8» PC2z, BASEZz
BASEw . —8» PCw, BASEw

3. If 3DDRAW and FSM2 = ABSOLUTE
INx — PCx, BASEx
INy —» PCy, BASEyYy
INZ —8 PCz, BASEz

BASEw —& PCw, BASEw

4. If 3DDRAW and FSM2 = RELATIVE
INx + BASEx —e» PCx, BASExX
INy + BASEy —®» PCy, BASEY
INz + BASEz —e»PCz, BASEZz
BASEwW - PCw, BASEw

b. Transform Data. »
(PC) x (TRANMAT)-s»SAVE, NC

c. Perspective/Viewport Transformation.
If the transformed dété'(SAvE) is within
the clipping boundaries: -

2DDRAW and 3DDRAW, FSM1 = STATUS or CHARACTER.
INX—e» PCx, RBX .

INy — PCy, RBYy
INz—» PC2, RBZ

PUSH

TRANMAT-e»Top of Matrix Stack

(TRANMAT 1is not_destroyed).
POP

Top of Stack—e»TRANMAT.
MATCON Matrix Concatenation

— S h N

(IN) x (TRANMATi)—ewTEMPMATi where i is the row specified
by FSM2. If FSM2 = 3, then at the completion of the multi-
plication the TEMPMAT is normalized and the 16 most signi-

ficant bits of each element placed in TRANMAT.

LOAD

— —_— ’

IN—ewREGLI where i is specified by the FSM fields of the RSR.

A-48

NC (per’spective‘_’/‘v”iewpok_rt transformed)»NV, RB__

A.2.3.8 STORE
—

REGi-®PDP-11 Memory via DMA, where i is specified by the
FSM fields of the RSR.

K.2.4

Character Generator

The Character Generator portion of the Picture System
supplies x and y displacement data directly to the Picture
Generator. The characters to be displayed are specified
by ASCII codes that are passed unmodified through the
Picture Processor and stored in the Refresh Buffer.

The x and y data provided by the Character Generator is
treated by the Picture Generator as relative vector draw-
ing information. Therefore, the position at which a
character string is to be displayed should be specified
in the normal manner (i.e. 2DDRAW or 3DDRAW; MOVETO or
DRAWTO) before the characters are output.

The Scale Register in the Character Generator is used

to specify the size of the characters to be drawn. ' This
register is loaded using 2DDRAW or 3DDRAW STATUS commands.
This section provides information relating the size of the
characters to the screen coordinate systen. {(Note: the
screen coordinates range is ~2048 to 2047 as described

in Section 5.2.1.3).

The Character Generator contains character descriptions
defined in screen coordinates. If the Scale x and Scale y
portions of the Scale Register are both equal to 0 the
smallest size is specified. This size character occupies
an x space in the screem coordinate system that is 30
screen units wide. It occupies a y space that ranges from
+30 to -12 screen units, depending on the. character
specified (lower case characters are the only ones that
may occupy space in the negative direction; all upper case
characters occupy the full +30 range). Figure A-4 shovws
the relative proportlon of the upper and lower case
smallest characters.

It is important to mote that the character definition in-
cludes a MOVETO to the right boundary of the space it occu-
pies in x to provide uniform spacing of characters.

The Scale Register contains a bit that provides for the
rotation of the character counter-clockwise 900, When this
bit is set the range in scope units that the characters oc-
cupy (at the smallest size) is -30 to +12 in x and +30 in y.
The final MOVETO in the character defintion goes to the

top boundary in this case.

30 30
SCREEN SCREEN
UNITS _. UNITS

12 , _ : 12

SCREEN | - SCREEN
UNiTs » _ : UN‘TS ,
o 30 - ' - 30 :
et ———— SCREEN ————= : a———— SCREEN ———— =
UNITS | | . , UNITS
) . (2)
Fiqure A-4

Relative Character Sizes in Screen Units
showing: (1) the Range of Upper Case Characters
and (2) the Range of Lower Case Characters
for the Smallest Size Characters.

The Scale Register x and Y scale fields provide for inde-
- -pendent scaling of the height and width of the characters.

Table 1 shows the range in screen units

the various sizes:

Range in
Screen_Units
Scale
Yalue X X
0 30 +30,-12
1 60 +60,-24
2 90 +90,-36
3 120 +120,~48
4 150 +150,-60
5 180 +180,-72
6 210 +210,-84
7

. 2“0 .

»*240' ,’96

and inches for

Range in

Inches

X) 4
+.07 +.07,-.03
+. 14 +.14,-.06
+.21 +.21,-.09
+.28 +.28,-.12
+4 35 +.35,-.15
+.42 +.42,-.18
+.49 +.49,-.21
+a 56 "’-56'-. 24

A.3

A.3.1

"PROGRAMMING THE PICTURE SYSTEM

Sections A.2.1 and A.2.2 described the PDP-11 and Picture
Processor registers which are used in programming THE PIC-
TURE SYSTEM. The purpose of this section is to describe how
these registers may be used to produce a program which inter-
faces with the hardware at an assembly langquage level.

Program Description

To illustrate how to interface with THE PICTURE SYSTEM
hardware, a simple program will be described which displays
a cube and allows the cube to be translated in x,y and z
according to console switch settings, while displaying the
characters "CUBE™ which blink continually. However, in addi-~
tion to the details which this program will illustrate, the
following points should be emphasized:

1. The RSR Coordinate count (CNT) and the DMA word count
(DRWC) must have corresponding values to ensure that
the operation specified continues to completion. Exact-
ly what the relationship is depends upon the command
(CoM) specified. The following shows the CNT/DRWE re-
lation for each of the commands: (It should be noted
that the CNT field of the RSR will contain the
two's conplement of the number of executions to be
performed and the DRWC will contain the twvwo's complement
of the number of PDP-11 words to be transferred.)

\

COM o
000-2DDRAW If FSM1 = MOVETO, DRAWTO or DOT:
CNT <& - (number of 16 bit word pairs)
DRWNC -w— 2%CNT ’ '
If FSM1 = STATUS OR CHARACTER .
CNT =%—-(number of 16 bit word triples)
DRNC=m— 3%CNT

00 1-3DDRAW CNT =w— -(number of 16 bit word triples)
DRWC-®— 3%CNT

010-POSH CNT --—-1
DRWC=— 0

011-MATCON CNT «=w—-(numrber of rows to concatenate)
DRWCww— L4*CNT

100-POP CNT -=--—-1
DRNC-w— {

10 1-LOAD CNT -w—- (number of sequential registers

: to load)

DRWC-w— U4*CNT

110-STORE CNT -w—- (number of sequential reqgisters
to store)

DRWC <@ U4*CNT ‘

111-NO OP CNT = 0
DRWC = 0

It should be noted that when the Enable RSR Update
function is used, the DRWC must be adjusted to account

for each of the commands which will be executed and

the BRSRs which are embedded within the data. The NO OP
comnand should be used as the last RSR within the RSR/data
list. :

2. Data which has been processed by the Picture Processor
may be read back into the memory of the PDP-11 by using
the STORE command and addressing those registers where
the data results are stored. These registers of inter-
est are: '

a. SAVE Register: This will contain the transformed
data coordinates before clipping was performed.

b. New Clip (NC) Register: This will contain the
transformed and clipped data coordinates if the
most recent data resulted in an element which
wvould normally be displayed.

—Ce --New View (NV) Register: This will contain the
transformed, clipped, and viewport mapped data
coordinates if the most recent data resulted in : ‘
an element which would normally be displayed.

d. Previous Clip (PC) Register: This will contain
the transformed and clipped data coordinates of
the computed beginning point of a line whose actual
beginning point coordinates were clipped.- ,

‘€. Previous View (PV) Register: This will contain
the transformed, clipped and viewport mapped
data coordinates computed of the beginning point
of a line whose actual beginning point coordinates
were clipped.

The "hit bits" may be interrogated as described in
Section A.2.1.4 to determine when the NC, NV, PC and PV
registers contain meaningful information.

3. Before a 2DDRAW or 3DDRAW command is performed (except
STATUS and CHARACTER) the BASE Register (25) should
be loaded with the constant z and ¥ coordinates if
2DDRAW or the constant w coordinate if 3DDRAW. This is
done because the BASE register supplies the z and w
coordinates for 2DDRAW commands and the w coordinate.
for 3DDRAW commands. When the 2DDRAW command is used in
conjunction with the STATUS or CHARACTER specification,
three words will be accessed from the PDP-11, rather than‘

A-54

the two normally accessed for 2DDRAW commands.

It should be noted that the STATUS words are deposited
directly into the Refresh Buffer, and once a STATUS is
encountered by the Picture Generator, the STATUS speci-
fied will remain in effect (through subsequent frames

when no STATUS is encountered) until an overriding STATUS
is encountered. A STATUS command which does not have the
TAKE bit (bit 11) set is considered to be a Refresh Buffer

NO OP command, and hence does not affect the status of
the Picture Generator or Character Generator.

The structure of this sample program is consistent with the
general structure of a PICTURE SYSTEM program as described
in Chapter 5 of THE PICTURE SYSTEM User's Manual and shown
in Figure A~-5. The following section contains the MACRO-11
assembly language listing of this program. A careful study
of this program should clarify many of the topics covered
within this appendix. The same program, but written in
FORTRAN using the Graphics Software Package, is also shown.

s

| < REFRESH
AL IZAT INTERRUPT j
INITIALIZATION
L

CLEAR NEW FRAME

BIT

INPUT - SET NEW
DATA FRAME BIT _
"33315.3"- | CLEAR NEW - -
PICTURE RESTART

DISPLAY s

i RETURN FROM)
(INTERRUPT

FRAME N U

DISPLAY

Figure A-5

Sample Proqram Structure

A.3.2 MACRO-11 Program Example

PENDIX A: SAMPLE PROGRAM MACRO VO6-03 91-SEP-74 ©3:30

3.2 07 CONTENTS _ x

2~ 1 DEFINITION OF REGISTERS AND COMMANDS

- 1 DIFINITION OF CONSTANTS AND DAT

-t 2ROGIM INITIALIZATICN

- 1 RTC INTERSUST SEZVICT ROUTINE

E] TaTA ™0 INBUT?

- - FICTURT DISFLAY :

- - DVA CUTPLT ROUTINE) . o

ACRENDIX A:

DI ERNIRUS IR DA RN 1 a0

[Y

Y

Uy ST g D)

)

RO EE RN RN RN RN AN
LY S

[N
)

SAM=_E PR

Q

L A A A A I I A N A A A A I A B A A I I I A A A N A N AR AP B I B BV I B B R B B RV R AP R A A B

’

.TITLE APPENDIX A:

EVANS & SUTHERLAND COMPUTER CORPORATION

THIS SaMPLE
:HmLUOMI WHICH IS s=
CODZ WHICH INTER=ACE.
BE TRANSLATED
Tz ﬁuzmorm c»a&

oy

ram
T3R8 TERS

rl _1|. {Ur\

e T2 2

i
—~
-

CSWTICH 15:
SWITCH
SWITCH
SWITCH
SWITCAH
SWITCH
SAITCH

PROGRAM D

SKITC

MACRO VO5-93 01-SEP-74 @8:30 PAGE 1

T
Pt
—rro
zCIiF
ngd T
3 DI
v
1

i

R

N X
1T m

WRITH

Cd STTTINGS

Caaead

FROGRAM RESTART

TRENSLATE
A.Ax,r RSy

L B S S el
TRANS_ATE
TRENSLATE +
TRENSL_ETE

AN
LN U.“nl_ﬂ. .

SEYPLE PROGRAM

ALL RIGHTS RESERVED

2LAYS A CUBRZ ORTHOGRAPHICALLY WITHIN A
4rq m/a.un SCREZN US zu MACRO-1
HE PICTURE

Th AS
ZCTLY _
DEPENTENT
:aH,mt vc

BRI VS

wmn ELHFH

x A: SAMPLE PROGRAM MACRC V@5-03 @1-SEP-24 om"us PAGE 2 _
oy QF REGISTERS AND COMMANDS L _ : .

i .SBTTL DEFINITION CF REGISTERS AND COMMANDS
> ;
2 202e22
=4 TS
= 2eD2r2
m CITTELE
e SCAPTA
2 TCOTCT
= SOEO S
13 232237
L2 ;RTC INTZRRUPT VECTOR
w3 ;RTC PROCZZESOR STATUS (FOR INTERRUST)
= LER7R ;RTC REGISTZR
1z LRP7FE ;SR RTGHISTIR
7 RSV RET .. .WJ..N_M
e L7241z . 370 TOUNT REGISTER
- L7284 m ST AIDRESS REGZISTER
22 7 LF24 _ T UE SZGISTER
21 LFIET X ~T ZWITCH REGISTER
2z o
23 QTOCED % £51C COMMEND
Z= 2TeB3D 315 S COMMAND
2= 200377 KU
zZ U837 =D
27 QDG - ibﬂOOL HﬂMNth L RCWHS AT & TIMIZ) COMMAND
=7 A STATUS =233377 CIDDERM,STATUS. ARG Y CO¥veND
2z IR FOD@%A SHITTIRVATION MATRLY COYMARD
N LoADYL TUETRT L, BL o R CTU
Iz lODJ#M w,nuﬂl Fo ﬂ. i
e Jmﬁumm Iz RIGISTER ¢

APTENDIX a: SAMPLE PROGRAM
DEFINITION OF CONSTANTS axD DATA

4

2

2 220220

e

=

7 220202 DLQ020 0OOeQZ R0
220025 200922

T 252212 202220
oeeie

- =Dy FARDDN

?GST@T=

MACRO VO5-03 01-SEP-74 98:30 PAGE 3

CSETTL DEFINITION OF CONSTANTS AND DATA

BEGIN:
f IDENTITY MATRIX (DIAGONA_=40R02 TO AVOID NORMALIZATIOND
IDENT:

LWORD 40029,9,2,9

2,42822,8.Q

R Sr

; TRANSLATION MATRIX

TRNNMAT: LICRD T 4092€.8.9.0

; 4C002 ., OO0, 2022, BROCY

.WORD

0.42923,2,

0

;OV0VT, OV, 220, 22022

AMWORD 2.8,38708.9 ; @2EIR, YECED, 420, 202D
TR: MWORD . @ ; ™ T, T, &880
Y LORD @
4 JWORE - ©,4002¢

INITIAL PICTURE GENTRATOR STAHTUS

MWORE. 2027 ;SELECT ALL SCORES, NO RLINK, NO DASH
bOLMCRD eerr SESELECT RORIZONTSL, LeRGIST CHARACTERS
SRR 2 SEESIRVET FOR COLCR ST

; BLINK STRTUS

BLNKON: WORD 4037.2.0 SSELECT ZLING AND ALL SCOPES
BUNLCF: WORDZ «gi?,2.0 JSELECT ONLY el SCURES

; VIEWPORT SPECIFICATION (FULL SCREZEN, Mo DIPTH CUSING)

VWLEH: WORD -2947.,-2047.,255..0@

VHIRTY: WORD 2gdr .2247.,2,0

-

COS

oD

N

PVIAONT

g

- —

(=

£
Q
il
18

- B

el
IC

(P

o

‘8voc—’ oy

¢

ry
Y

‘&v

"aree-’ "898

133}

1

N
1

O RTINS

S
e

W

G800

iy

*8pag-8rez’

"Ebee’ Bvel-

TBPOZE-

L

1
b

BB

s oL

rol N0 I3

L ANMOD =

3

S0 HLlm X

[N

o~ s
-

I 399

-

GO
G2

‘QvReT—"

JLT QNY SITadlden

OY
)
~y

¢
o

QB2 25

i

©

a0

‘@=z*

N
==

L8

(LNNOD W NOG A B X)

LILCERRD .

03 1 ¢
109 ~d

r

LSIO3Y 39

=
]

SILTPA o

BT OGNS SINULSNDGD a0 KOOI

NIZ3q ©

3

1
—~—

80 PL-&35-18 £G-SA (D

p
(3
2
e

Wo290xd 3T1danWds

E:

1-£ 3ndd @

&PDCINDIX A SAMELE PROGSAM MACRO VOE~23 @1-55P-74 02:30 PAGE 4

...... : w

1 .SBTTL PROGRAM INITIALIZATION

2 _

Z 922325 STERT: MOV $BIGIN, 5P SSET THE STACK POINTER FOR RESTART
S 200ez 167771 BISB #1,R7CT+L MASTER CLEAR THE PICTURE SYSTEY

z iTHIS DOZS THE FOLLCWING:

7 ;SR <= 149001

3 s DRUC <=2

E ; ;o DX3A <= 2

+ ; DIST <= 200

2 iORTD =l

nw . . LOoRD THE 4mmzmﬂrMKDAHO£ IDHm_x WITH THT IDENTITY

LI 29eRse @1zl MOV HFODwdxsmw : ;SET THZ L0AZ COMMAND

ITOTE25ss 21277 MOV - #-ig. .31 535 WORIS T ZE LOATID

e Ci27eR YOV FIDENT, Rz JEET T=Z BesSz ADDRESE

iz CRLFE7 VSR ;END ove T OSUT ’
B ;

z L06D TEZ VIEWPORT 2\D PAST REGISTERS

o

o

- .

=32 QL2702 1ZeZC7 MV FOATYL, 32 © SEIT TFZ LOAD COWNMAND (REGISTER Z0)
3 JUZPL LPTUVA mCV -1, .50 ;d WORTE 7O ZE LOADED

< DI20TE MoV BVALIALRE ;8T THT 248 ADDRESS

e 204757 JER PC.DMERUT JEND Dyt IT SUT

ZT i v ! :

=7 DLEP(D HEsAY) FOADGE, 22 JSET TEZOLTAD COMMAND (REGISTER 24)
=T DLEFTL MV -5, 70 ;4 WORTT TC 3T LORIET

o BLETED WV FVSRTYLR2 ;8ET TRT O ZR5Z SIDREZISS

I g vy JER PLILECLT SEND Tz T OWT

E ;

Iz T 212782 heaihs SSET TVI LTel COmMAND (RIGISTIR 25
I% GE 27eL MOV 4 RCRTT TD T OLOADED

e 20 12702 - MOV SBET T-2 24TZ ADDREZZS

o= ’ e 155 SANT T 1T T

- e bl ==’ T, PRl PR B Pl I

i
I

z7 ; NOTE: REGISTER 2E (VLD HAVE BZ=H L2HDTD L-EIN REGISTER 2¢ i]Jas
o ; LCADED 2Y LICITMENTING THE RSX CNT BY 4 OND SETTING -E
T . ERWC TO TRENITIR 4 MCRE WCORLS

48 ; '

4t . . . 5 SET THE INITIAL PICTURS GENZRATOR STATUS -

[;

LI 202058 212700 932377 MoV FETOTUR, R JEET THE STATUS COMMAND
bﬁ@@@vmnmewwuwﬂwwm . KO< #lm.ua haomumﬂomeCﬁﬂgﬂ

©

ANGNI Bi¥G SHL ONAGEY HONoRE! ASTiesa ga

| Thvid LS¥IS AL 1SOET UM LNCLN0 NG
(E- = Z.oH ZSTSTA) DU THL INQLST SIE'SsE O gAOR
SNLELS ©05ST008d LdMANTIND THL LT8¢ 240EA0IY SCDiNE Ak

LaNSH3LNT 3HL 40 SS=aClY ZHL U387 D3A0Le uniDuds HOW

GNOOSS 53ApdS OP LY HSIss3= Cu T4y 3HL NO Nefld

zi ¥R
il e
Hi g

A SN

"N s

&0
~ STTESINPA 3ZITWILINI

100 L1 A0 aNG*
$S3AQY TSYE IHi L3S

LN0TnT 7 0d

S ueLSodF

ST
NOA

i oy

&S LN

QLESY

T-P 359d @c: 80 PL~d25-T8 £C-90N O¥OBIN

FEZLLS
SRS
LETLLT
SEBLLT
=522

0e123¢

WoBd0Nd 31dWES

;=
.
[y
T
T "
=Tt) SN
[W e [T
DAL A T
-.M{\f.mqk.r. PO it BTN
TN, o
Pt 4 Aol R0 TR
1Al n Sants A
L0502 olVoas

L3I
22270

NOLLRZITBILING

2

LIS SR
AT AT A J K]

MRS

LOY b Iy e

LY

NPROC

‘6 XiGNZads

wo EE3LNT H0HES NENLSE CNF . 1.3 A "z
(ANODIS #3=ZAkxd @by LY 381 =glssEss Tim3LE £4CH (s T
SSIoo¥d HSZHATE ZHL EmiisIx’ O lras o2y qga:¢ s <
. 'z
DTS NZ8N Al 2EETOC W3=zlN R JTE ey
Lif 3w Mon ZH4L LET3T L IEs e HS1I& LUERILOZT
(@=) ZaEds MEN ON =7 ADhuNg: - m E2ZTL 03& % LTI T
9974 SRS M3EN SAL »OSRD : Ao =ON LSL PEELLT LBLE8Y ZITODS

LR |

NOTLUOIANT Z4Z8d M3N ¥ 8035 4isS3L

AT ES

5.:9 30 GNU On Qn ==L de=Tor sy €218 LTdEvT wLEL D IT
I~ el . LITTLE 0=z PrLTan TIZILD TN
o3 Liem! T Y it~ d.if 1 IZP0 e CSLEDT TITLDLS

AOE3EM LN =@ 2007 - G852 o 838 PLLRES ZIEI LIz

AJE3= TRl MOH.FH¢3WJ LSaG ge2E dLlid :@370.E L9427 wEEZLLL T

. . : : zZ

ddNBHZINT ACH=s NEOLEZS GhNES T.x SESLEE ZRIELZ T I
POIL T dO4 2L 3Hi Le¥as 3STT0 S8 LlE 2A0W $DLLLZ T LLABSS £TLETT PRELc o3
G3cd0LS i 21 HONGeg ! - ATl 3NE VeSTAC 2vzzie v

d3ddOisS it 804 HIEHD! PRa-icagcare:y GLi8 UINIDLE (TdLLST QBIUOT LSLETT PESIC

N

3NILNOY 3DIARNESS LanMMSINI Did LLES

: . SNILTOs SOIAN3S Ldhea=. Nl Ca=
S 390d 0E:8C PL-d3S-10 £@-S0N CuduW WFLO0Nd 3TaWBS 0 XITNSocd

- BN -

Z+ S.MOSNYEL 2L AT c

et
L2085

: ds PYILLY BEELLT LT Lz
LON =1 FoNoNg! ATTIZSE . 93 C2vER 3
Li35 6 M3 Gx BIETH Lig G AN LIGTE8 ©alat3 =y
. ‘ o
6 HOLIFS 203-2 2
M -
q34 SZTLLY ZETSSL JBCSEY 22 iz
; 0=g . LEPIRS B A
=5 & M3 o SeRCE .18 1OTINS QLI B PR
@% HOLIME XO03HD ! T
K+ Do : R "IN 4 SPTLLLT vl e T T
LON =2 AONSRET AN 0=3 Ll T
ST Gy eSeoR Lig IS PO PLLGns 1T
SV HOLIMS XM3=AD N
Z= D ETENTELT B31en 23wl &1 5oL
LON =27 RHINSECY T wEL
di=s 2y IMSf 2WME GIBEQ A R O
_ M50 €7
. i ’ .-
. . i [
. eyt P i L e ALt ~ - o~ o g -
cAh= ZLGTENGHLS! AL CTIGATND ans 2L5£485% BEvEL 2%
TOANMR DT MmN e - P c-
LON =0 .ld.l.._./¢r.a. . N Omm po
du=8 &7 MSr A A e L3 (ETMS - GORRED z=
7 B3LIME Xo=nD I
K= Z.enENZRLS! Mo TRl ans PoSLLT 2ERLLT LIS e3TlL TR
WON =@ Aihg=gr s 32 BEZZIS 7Y
- dizS PT MS! Gy 2IBIVF Lig QRGO LEEesl =
. -
! >4

+7 HOLIMS AI3RD

i3S ST EIMS 51 L¥isRd! -
135S 81 ONIFLCN 41 aGl™ GRF! ol
3NTPA HOLIMS L1397 2y "HOLING AOW eS0TI

AAfaNI OL BARd TiLiss’

gl Ou wuwl
9 I99d RE:80 PL~d35-T0 EO-S0N JxDuw WEED0Md TgdS (8 XICNSeces

TE-#

RN RLAICE

-
rz

,:.,U-rﬂlo I.r. r\.l
GNTAINGS SNLILS =

SCaOM £

e WSS

| S=G 3A0M MNITE 458 !

ter
oW

.
. ‘
TAa O w283 5d =50
-l LE80 S LKELE Rt
(QaOF *¥z= 1) S §523M S TeTE-% MDA
Zu0TC5E ||MFUQ(¢1V SL INCGTES
Q:d>>uL MPEd 8 Di8dE Snl W3S7 QU944 LINEEGE AT
SAILIPYwRD 1103 THh LS00 MON G
:
wNS LD 54G G w0 AT e Bz
Mmmmmmq ol 3=l LZ3S Z& " LmlISE oA
ARG TE O Souse o

P Rt R Tz

Caz- (lRﬂntIOPu>n} ILH: LNTTBT
GNoWADD MSHG G2 JIsel = 3¢

SISt Z-4 .=3

Ry LLEZHUEVTRTS

NG LT BNS QNS L1 o

SSINGGY ISYE I4i LISt 25 '330aTy

G239CT 3 G £1:0M v ez

(S2 A5LSIDIE GNOWAHOD GEG™ Sl LIS! O ST

=2 e
HZLBI0EE

WO LT BAd 77 T Zeeld MENT LOERT T
SIONde g !

ilosie

LON =i

i
i34 €=

279c23
A~
okl

Lodlns Fds5=38 - CEee o OL 9975 Saies

I6Yd YHITZ T-L 38!
o nFDO =5 0L & !

5560 €
GNHWNAOD SNILYLS THL L13S¢ o

Dﬁ.iaxfjﬁw
:ﬂ nnl....

| ‘ NO

ASTGSIG 3NLOId

».makcpm#_

PG

A

INIOG—-LZS IHL O3

Hom
HOH
Al

3899 3HL 4=8=Zs

’
&850
3NE
LSe @750
53N 3HL 504 wioi
\. '
AT
ACK
IGO0 xiNITIE USS
v
\f ..l,l..

TLLEST

.

£ 33d QE 8B PL-d35-1@ £3-50A OuOUW

f

= —- e ——
=Ll ZLl ! :
e T8 T AT oET- T B T e
[e ot X ool WD - s
v

LRI IS
Yo h

—zm-- -
e SR L L

SDSTE 2ETE Sl =
(.F..lﬁ_lﬂ.. NN fhuﬂ.r IO e L L
= e —— - -

- N B -

FORREA. A fop - E-

VLl v D v - 2

LLTSEG Bel=Zte ITaTrr T
— e P i A e B N
=

T
S ama -
’ % - a

Jot ;"ll llu_: it e

——m m 7 = e —mm e -
ol SDIVES Sees oo -
- - -
I.lr\ [G e
_—— - = -~
Zonds JELE08 Ll L
»
SATSNS DA i B - e - -
& T IS Lol vl FELApaR PR
(=3 e ST - :
LI viode v A -
foyre Il ~ = -
Nhn\mﬁt@ @:.w:HN ﬁ ® ’h..\ﬂf\n..\(o
n-
Co G,
ol Ocmd o
[
-

P
Pie'D0nd 3cAWS '8 KilN3cae

37 LNOD ONY! =0Cd e ST PLLT

ASTESIA 3HL LEWLSEY !

LAG Ll ©AQ ONYT LO0ERGE 2d ase . PO LILPED 20D 3
ONBWIKOS 35375 00 WU° k2= =W 129562 CV2782 23
ONIWWOD &0 ZHL L3S! 24 dbd¥ ACH i LLEEDT 0oLETe PE2ies oX

|
»O5E XIULOAW ZOHPQ HOZSNFEL TONIDING =+l 40d ¢

"3
=
ATEAON - INI- . . BETLLY £22508 0 SueNaD L
v . o
O9T2 Iwdds MaN =L 4283 ¢E¢Q Ulk] >¢Jmmmm 3HL ZLIFILINT S

4 b 4 !
LS L. TAD ONg! w oA " Od RGP T
SSzHlTd 3¢ dbﬁr == Lqu , UW.HLVNU$ ¢SEE25ZD =L
LOSINC T2 04 STaim m ' LR ST i - ol
Du 0L e T-CLNTRT-0LZAOK i ONOTY) . [
CNeAn0C Mo AT OISEL Z-a Hw, ®m~NRFr+QW2 aCh NOA - i PSR SN Z-

LN0 11 $HC BT O " Od s z S3LP02 $ELTIO
$5Z8qTe ISU] TLYC I L3S 2 TV ACH z T2V @ETIOR
INGLNO 3@ O STLW OE! o ACA 2 134270 PRITEO

"OLI-0OLYwe C-CLMREC-0L3ACK. BLiN INOTHS

(0 G0 2 CN (0 63 00 U

) Yop & <t U) w8 g DTy

GhNonsdD fMdled CE J3I8vE Zra Fum~ &m.owournmﬁowu#_ HoM SEISEE el OPTTEC
\Wt N TIOLSNI € 3 Z4AND FHL MTEd MoN f

AN0 LI SWC QZ&m : LNTeAd Od =er . _ Mmumwm £o4P62 RITT
S85uade =59 XIxlew THL LES! 2 LBANYLE HLOw . 3@ S ZTL2%e JETVED =
' ANednND 39 TIr scaom T TEOET-% ADA cnnnhw ThOZ2Ue vRRidT ZE
ANTINRQOD zotb¢y SHL W38 Bz 'NIZibAR ATHA DLEGTC QBLESTE QLTIEE L=
RIBLPA NOILETSNgaL ZHL 3LENZAUONCO =2
LT LT 5T ONe! LNGTAG 24 ast SOTISEG LSBT PILLES B2
SNIHLANG 28 hNFD 2! , . o<
GNSHHNC D nanclcﬂ v T & TEOSGE ITITED LS
ANINIKCD RSNe 3AL 4387 R R e NC CLLEETL SdLEVe ZRlTew 2
XiygLloW onPGEQCL:. el LSO SAL RS04 ! o2
. . ! £z
LrC LT OiNC ONY! LOCENT ' Od asr : DLISES L3708 ZeVEI Z
Sy

SS3HGAY 3svwdE 440 JihiTia SHL i3S? 2 S0ANTIER AOW P02 collle 9Leiee

oL AFTIESIC FHNLSI:
thwwc&om“movnlammlﬂem&lm®>Jmucg }dokowuwnfcvnaxﬂmiwarﬁ

ACPENDIX A: SAMPLE PROGRAM MACRO VO6-03 91-SEP-/4 ©8:30 PAGE 8
vy ZUTRUT ROUTINT .

LSETTL DMa OUTPUT ROUTINE

TN

£ ; THIS ROUTINE DOES ALLL OF THE DMA OUTPUT FOR THIS PROGRAM.
= ; EXFECTEZ PARAMITIRS ARE:

- s RI=RER COVMMAND »

; R1=Dv2A WOSD COUNT FOR DRUC REGISTER

< ; Rz=2v2 2AEC ADDRESS FOR LRIWBA REGISTER
1T ePI22Z Q22757 Q0200 1724147 DMAQUT: RIT $E9@.?R5Tﬁ/wﬂ" ;IS-THT YA “ISADY"?
S TRIRET 221774 2EQ SN SHLOCR: IF QT

Z; DIRI57 172412’ MOV R1,D=RC ; JSET THI TG WORD COUNT

e 212237 L7261z’ oV R2.Z33A } J8ET THZ Lin® BASE REGISTER,
i ; P . :

LI OhLTAZ ARP757 220001 167772' PPDONE: ZITB £1,5R - JWAIT FOR THE PICTURZ PROCESSOR
LTOITLEED RGLPF4 TEQ FODONT JTO FINISH
R 2 CLTDRP 1Er7v4 O N3, REER JAND THZN SET THE RSR

A Y

o
il

)
it
o)
Ji
\1
N
[})
“d
<
)
?
[
]
' A

172408’ 3ic LLDRET - 38TART THE IHA TRANSTER

'
)
2

¥
)
2
)
P

)
3]
Al
-3
75!
U
O

JAND RETURN

RrE) fafg

[T

T

=t

/LRG0 3

LSOTORO NOMNT;

SIGAES) ST /K L
SGACH

2T

2

. \.-
ATeTT 2
et ¥ s L
EE2TII

eSSl

&P 02D

, : 3T02UL TTERAS
8 300d BE:80 PL-d5S-Td £0-S8N 00w WEuO0Sd 3TcWYS (9 XiGNaced

A.3.3 FORTRAN Program Exampl

A-58

ot 0L €9 1799

SWdas 3NG Lsodn i AYTeSIG6 OB

rere)

(" '@ESLINISS RO 23¢9

B=nLl 20T 220
-
. '._
_ W3LSAS ZEALDIS 3AL Ghe SETIESINGA ZZiTWILINI O
: , 5
ACTESIGAINT LT 5000
3T~/ Ldl38 BLEd 2022

- <) D’:l
. (;J

-~) 9

&
[N
o
<

_. II~ I. \
BPOEEVO2 BEE

TEPEZ- T BTEe- T EVRE B3 -
: : "EPOS-BPES SPOZ- &P

«
f-
T
L3
.}
¢
[.
<L
£
gl
X
(W8]

5
R T N R I R P B A VR BN ot S) A4 o
WRAONL TEU Tl CALD TR ez lElMNMe 2202
e o) St e - o
(SILelZE (S E2E0L " (2T "2 TARCD =Z0=iMI 1002
. o

PRESAUNE S RRNIBEE AT ES LRSS VIRES IS SIS HORESEIRE S TSN S T e 5

P N P
ERILENICIS-F O S P

).=13
F3LIWG
s ~
=201
LI MG
Eat e O S B
e NI

T e &1 bt

0~ 01 i et & 0
vt vt et —t

FOLINE

T

= S
Hi R N L S

TATTRONIANG : wodi v,

BHL ENIAEISSIE 2TIEM 3HG W CSENILLITS <2irT 51sd 3T

NOSN LNBONZ=30 SNCILOZNIC 2 INE A . LT ENET:
TW3LSAS NG ZHE DL STYgEZANI L 2=

; ZHL BNISN NEZAZS Zxlis3 3L 2o J31Z07325 =2E

NIRLIM ATTE0IHAYSORLE0 330D SABTIZSI0 ASBenliad KNeelnCd FgwssS SiHL

1
CHrad vt ety a3 am Y ey ev ey €y iy iy

J

59030200530003300005 20300232000 30003 00000355 30000000 000500003T 15202
D GSAY3SIY SLHOIZ TW NOLLGNOCNID &3L5eW00 GNGTREALNS % SWAS O

. 1 IWd PL-d3S-10 ZE G0 R €7 9an NFELM0d

2L, felT21) UYL

CIN]

SIHOLIME TWRAIAIGNT 3HL

2 35994 PL-<5S-50

pod
(]
ut
J.
Q
k-
)
0,
\”_)
2]
f
28
£
s}
Lt
ut
!
J

m— -
Joz DAL L
[
=
.
- ey — == = - L
2HL 20 AT el I Zovlaln 2
o)
TNt T N =
it TN o FE ke
-

S0 -
- T
C 3.0
- ; S T
- . b o0
WADNI=ALI=ALT PRV
- - ==
AT sy Yerge 2o
IPADINI =X LI=K] P
L2020 ST

-

=

- e m— -

v - U.l P G o A S

-
v it i mm e e
0% RO G N T T -
S T e e -,
('St Tl 5 7o

. S o=l
La8allEe LET s

(ridCrLTy

€
&

CRSNARY

NG

"..:.Hrm.ﬁw

Pt

cc0d

o)

(A KAV YRR IAY AN BN Y Y

]-\
(=) vﬁqh.

-
2iee

€7 50N NJYLs0s

LI]
tar
4

LN B B RN

- e LN R e I N Y e S TR PV P

© LXEL TGN 2onid THOWNSES RIS L INIEz
s PR
SETTED oL T0e

g
<

3984 PL-d35-18 ET:52 80 277900 HBELN0S

L P | W

] 1 L I I R R I T IR TRNY I T 1 IRY Vg oo bty .r,("}r',-. i1 i
i DO TR T T T R TS A DY Y I R S Y] ol o 4}
(IS R N I A NS B TR AN Lot LR I) l),l,b.:/_,/‘C) [4
R | CKY 0y EREIA N B LR I T O XM s 1))
P s) o~ I [PEEE N] 1ol %) (AR SRS RS .4)]
St) 4 1 1 | v < Ry 9 AR
GY N e CILNLI PR XY BN FY N 1))]
K [| [U] 1]
b e s L g MU ELNUEN])
LTS BN RS IRER { B % Ty ey o)W |p
M .. e Ve omioak e dE Z
A
SECEI T K R A F RS OIS v N YUY RSN AN SN B SN L R TS A (Y U‘l NN NN N B
llllIIIIIIIIIIII_I,IIII_IIIllll,lllll-—l
RO) ul SR RRD L S T L AT 0 I L RPN S B SR S (IO SL R TURVER LA RN 5) B 3N o
Pl b 00 SO G0 170 000 €0 NE Y 42 U1 50 00 8 S0 s b (LI > v f N {s) l S i N 000 3
IR O N R @ @ !
m
LR ¥Ry U SR o '
Ve 0y G 1 tn ") 1 IR YRR ¢ " N 7))
PN g) 'T'Q o) et (11 N\ Lo N (N b » [[§
3 00D e & [} ith (H =
t:l _ o \'J » U1 0'7 7) \IJ hE B /
Co Iu [} f\] ™ [K)] Y !
13 ; (o) 0) v o Vi i)
o] T (E) ®
T R ? i1
[\ ORN NS Y N B
D] RGN e} 0y
D i ®
YEOYS ¥ P Y'Y
VLSRN NI N NS G) w3
I 00 0 W ALY [} IR))
v G @)M
Y YR VY ? 7Y
0 Q} 00 £ s B
g N\) (] ®
@6 @@ @ : H
ON N\ 0\ _ N
[f (P -))
[A 3 ™Y ()
(s (1 W0 1} 1) [RIEES
(G] a3 (@
¥OYe))
Ny £ 0] (0]
(41 W = (]
@B ® ®

[d=C-C 3 4 11 COH T Ly e W - 580 e g Tl g 1
> o5 ot P A}I'JS LI T I N U R I ¥ BN} BE LA Id
WAy T R TR IV RTIN B -4 :
- 1> -1y R I PR TVIN BRI A N I A{ 3
(S I SN L SRS
4 N
v T TR N T PO O SO YN LR TAR TP RV IRV IR I 1
| D D N [I S T T A A A T R R A N |
N (2100 IR 77 S T TR I [N TR PRI PO BEY I £Y] [[[FF)
(S EE T P T S) I . Por vk N e ot U
. ‘ P T A R P 1
N N Y N T R TR TR IR R TR LY NP
- | S D U I I | T T T A T T T B ot
va b b e a0 ey 0 (0 1 1) O
o e o D e e O R NG ETTEA R Vi
LG NP ¥ i [Y
~J MR
} 1
] RO
(] A R
N
(IS)) ~ 13} NP
[I 1 11
TN I P M N
e) (A YY)
BEGNIr]] [(T)
g1 ~ o
i I 1
- N
(R4} IS
] 0 (&
n 12} P
L4
N e
'\ N
5 (Y]

g
4

8%~

QE—L

[—'."

30Nz

Ui

(LS

-

APPENDIX B

SUMMARY OF THE GRAPHICS SUBROUTINES

This appendix contains a summary of the FORTRAN AND MACRO-11
assembly langquage calling sequence specifications for THE PICTURE
SYSTEM Graphics Subroutines. Also included is Table B-1, which
summarizes the Graphics Subroutines Error Codes. This code is
used to indicate the subroutine which detected a user error
should one occur.

TABLE B-1
SUBROUTINE ERROR CODE CORRESPONDENCE

SUBROUTINE NAME ERROR_CODE!

PSINIT 1
NUFRAM 2
VWPORT 3
WINDOW,MASTER 4
INST 5
PUSH 6
POP 7
TRAN 8)
ROT 9
DRAW2D 10
DRAW3D ‘ . 1 . .
TEXT - - . . " 12
TABLET 13 ' :
CURSOR - - 1 : S
HITWIN = . - ‘ 15 _ I
HITEST .. .~ 16 i
SCALE = = . ¥ o
CHAR -, o : 18
DASH © - 19

- BLINK . . 20

, SCOPE T 21 T

SETBUF ' 22
BLDCON = 0

1If an error occurs that is detected by cne of these sub-
routines, then the error code will indicate which subrou-
tine the error was detected in.

FORTRAN CALLING SEQUENCES:

[EXTERNAL ERRSUB] _

CALL PSINIT (IFTIME,INRFSH,[ICLOCK),[ERRSUB],[ISTKCT],
[ISTKAD} ,IFMCNTY)

CALL VWPORT (IVL,IVR,IVB,IVT,IHI,IYI)

CALL WINDOW(IWL,IWR,IWB,IWT[,IW])

CALL WINDOW (IWL,IWB,IWT,IWH,IWY[,XIE[,IW]])

CALL ROT(IANGLE,IAXIS)

CALL TRAN (ITX,ITY,ITZ[,IN])

CALL SCALE(ISX,ISY,ISZ[,IW])

CALL PUSH _

CALL POP

CALL DRAW2D (IDATA,INUM,IF1,IF2,IZ[,IN])

CALL DRAW3D(IDATA,INUM,IF1,IF2[,IN))

CALL CHAR(IXSIZE,IYSIZE,ITILT)

CALL TEXT (NCHARS,ITEXT)

CALL INST(INL,INR,INB,INT[,IW])

CALL INST (INL,INR,INB,INT,INH,INY[,IW])

CALL MASTER (IML,IMR,IMB,IMT[,IN])

CALL MASTER (IML,IMR,IMB,IMT,IMH,IMY[,IW])

CALL DASH(ISTAT)

CALL BLINK (ISTAT) - -

CALL SCOPE(INUM)

CALL TABLET (ISTAT[,IX,IY,IPEN))

CALL CURSOR (IX,IY,ISTAT[,IPEN))

CALL HITWIN(IX,IY,ISIZE[,IN))

CALL HITEST (IHIT,ISTAT)

CALL NUFRAM o

CALL SETBUF (ISTAT)

CALL PSWAIT :

CALL BLDCON (ITYPE,IARRAY)

B. 2

ASSEMBLY LANGUAGE CALLING SEQUENCES

All subroutines should be declared global (.GLOBL). All.
arguments are addresses of parameters.

PSINIT
MoV’
JSR
ADR: BR
. WORD
or
MOV
: JSR
ADR: BR
«WORD
YUPORT
MOV
‘JSR
ADR: BR
"« WORD
HINDOW
MGV
JSR
ADR: BR
-WORD
or
MOV
JSR
ADR: BR
-~ ' JWORD
or
MOV
JSR
ADBR: BR
- HORD
or
MoV
JSR
ADR: BR
. WORD
or
MOV
JSR
ADR: BR
. HORD

#ADR,RS

PC,PSINIT :

- +14. :
IFTIME,INRFSH,ICLOCK, ERRSUB,ISTKCT, ISTKA

#ADR,RS

PC,PSINIT

«+16.

IFTIME,INRFSH,ICLOCK, ERRSUB,ISTKCT,ISTKAD,IFMCNT

#ADR,RS5 =
PC, VWPORT .

et1U.

IVL,IVR,IVB,IVT,IHI,I¥I .

#ADR,R5 . L
PC,WINDOW. = = e =i
.+10. o '
IWL,IWR,IWB,INT

#ADR,RS

PC,WINDOW

-+12.
IWL,INR,IWB,IWNT,IW

#ADR,R5

PC, WINDOW

14,
IWL,IWR,IVWB,IWT,IWH,IWY

#ADR,R5

PC,WINDOW

«t16.
IWL,INR,IWB,IWT,IWH,INY,IE

#ADR,R5

PC,WINDOW

.+18. ,
IWL,IWR,IWB,IWT,IWH,IWY,IE,IW

Mov #ADR,RS5
JSR PC,ROT
ADR: BR «tb.
.« WORD IANGLE,IAXIS

MOV #ADR,R5

JSR PC,TRAN
ADR: BR . +8. -

« WORD ITX,ITY,ITZ

MOV #ADR,RS
JSR PC, TRAN
ADR: BR «+10.
«HORD ITX,ITY,ITZ,IW

MOV #ADR,RS
JSR PC,SCALE

ADR: BR -¥8. -
-WORD ISX,ISY,ISZ

- MOV . #ADR,RS -
_ JSR = PC,SCALE =
ADR: BR - .+10. . . .
.WOBRD ISX,ISY,ISZ,IW

JSR PC,PUSH

JSR PC,POP

MCY #ADR,RS
JSR PC,DRANW2D
ADR: BR -.+12,
«WORD IDATA,INUN,IF1,IF2,1I2

MOV #ADR,R5
JSR PC,DRAWZ2D
ADR: BR - +14.
. WORD ICATA,INUM,IF1,IF2,1IZ2,IW

ADR:

or

ADR:

or

ADR:

or

ADR:

MOV
J SR
BR
-« WORD

MOV
JSR
ER
« HORD

MOV
JSR
BR
« WORD

MOV
JSR
BR
. WORD

MOV
JSR
BR
« WORD

MOV
JSR-
ER

-« WORD

MOV
JSR
BR
« WORD

Mov
JSR
BR
- WORD

#ADR, RS

PC,DRAW3D

.+10.
IDATA,INUM,IF1,IF2

#ADR,RS

PC,DRAW3D

-+12.
IDATA,INUM,IF1,IF2,IW

#ADR,RS

PC,CHAR

- +8.
IXSIZE,IYSIZE,ITILT

#ADR,R5
PC,TEXT
etb.
NCHARS,ITEXT

#ADR, RS
PC,INST
-+10.

INL,INB,INB,INT

" $ADR, RS ,

PC,INST
«.+12. , »
INL,INR,INB,INT,IW

#ADR,R5S

PC,INST

«+t14.
INL,INR,INB,INT,INH,INY

#ADR,RS

PC,INST

«t+16.
INL,INR,INB,INT,INH,INY,IW

B-6

MASTER
MoV #ADR,RS
JSR PC,MASTER
ADR: BR «+10.
» WORD IML,IMR,IMB,INT
or
MQV #ADR,R5
JSR PC,MASTER
ADR: BR «*+12.
. ¥ORD IML,IMR,IMB,IMT,IW
or
: MOV #ADR,RS
JSR PC,MASTER
ADR: BR «t+1l.
«WORD IML,IMR,IMB,IMT,IMH,INMY

¥ov #ADR,R5
JSR PC,MASTER
ADR: BR ++16.
«HORD IML,IMR,IMB,IMT,IMH,IMY,IW

MOV #ADR,RS
JSR PC,DASH
ADR: BR 0_"'4.

: «HORD ISTAT ,

MOV #ADR,R5
- JSR PC,BLINK
ADR: BR - t4.
- WORD ISTAT

SCOPE
MOV' #ADR,R5
JSR PC,SCOPE
ADR: BR -+4.
.WORD INUM
TABLET

Mov #ADR, RS

J SR PC,TABLET
ADR: BR «t4.

« WORD ISTAT

JSR
ADR: ER
. WORD
CURSOR
MOV
JSR
ADR: BR
. WORD
or
MOV
~ JSR
ADR: BR
. WORD
HITWLN
MOV
JSR
ADR: BR
[e) o ’
MOV
- JSR
ADR: BR
. HORD
HITEST
MoV
JSR
ADR: BR
.WORD
NUERAM
JSR
SETIBUF
HOV
JSR
ADR: BER
. NORD
PSWAIT
JSR

#ADR,R5
PC,TABLET

«+10.

ISTAT ,IX,1Y,IPEN

#ADR,R5
PC,CURSOR
IX,IY,ISTAT

#ADR,R5
PC,CURSOR

-+10.
IX,IY,ISTAT,IPEN

_#ADR, RS

PC,HITHIN
0{80 !

IX,IY,ISIZE .

#ADR,RS
PC,HITWIN
«+10. ,
IX,IY,ISIZE,IW

#ADR,R5

PC,HITEST
<46, ’
IHIT,ISTAT

PC,NUFRAM

#ADR,RS
PC,SETBUF
-+,
ISTAT

PC,PSRAIT

o
[1S]
=

o
=
=

MOV #ADR,R5
JSR PC,BLDCON
BR .16,

« WORD ITYPE
-.WORD IARRAY

RO =
R1 = DMA Word Count
R2 = DMA Base Address

JSR PC,P$DMA

JSR PC,ISMATX

"JSB PC,ERROR = .
.BYTE ICODE,IERR

RO,R1 = Dividend
R2 ~ = Divisor
JSR PC,P$DIV.

RO Multiplicand
R2 Multiplier
JSR PC,P$MUL

Repeat Status Register (RSR) Value

C.1

APPENDIX C

PDP-11 FORTRAN CALLING SEQUENCE CONVENTION

INTRODUCTION

This calling sequence convention is compatible with all
PDP-11 processor options, (including use of distinct
Instruction and Data Space capabilities of the KT-11D
Memory Management Option), provides both reentrant and
non-reentrant forms, and is as fast and short as possible,
consistent with these requirements.

This description is oriented tovard the programmer who
vishes to write assembly lanquage routines which can be
called by or which call FORTRAN-compiled routines. This
calling convention is completely ccmpatible with the
Threaded Polish code of the FORTRAN Compiler V06, though
the assembly language progranmer need mot be concerned
with or use the Polish technique or service routines.

THE CALL SITE
The basic form of the non-reentrant out of lihe call is:

; INSTRUCTION SPACE |
Hov #LIST,R5 ; ADDRESS OF ARGUMENT LIST
N © ;TO REGISTER 5 ;

s IN DATA SPACE

LIST: ~-BYTE N,O ; NUMBER OF ARGUMENTS
-« WORD ADR1 ‘ ;s FIRST ARGUMENT ADDRESS
.%OR? ADRN ;N'TH ARGUMENT ADDRESS
ADR1: .%ORD j ; FIRST ARGUMENT
ADRN: .aORD % ;N'éH AEGUMENT

RETURN

Control is returned to the calling program by restoring
(if necessary) the stack pointer to its value on entry and
executing:

RTS PC

RETURN VALUE TRANSMISSION

FORTRAN FUNCTION subprograms will return the function
value in general reqgister RO through R3 as appropriate to
the type as follows:

BYTE (LOGICAL*1), RO
LOGICAL, INTEGER
 REAL RO, R1

DOUBLE PRECISION RO, R1, R2, R3
REAL COMPLEX '

The only difference between a SUBROUTINE subprogram and a
FUNCTION subprogram is that a FUNCTION returns a value in
the general registers.

CONTEXT SAVE AND RESTORE CONVENTION

A calling program must save any values in general purpose
registers RO through R4, which it requires after a return
from a subprogram. The arqument list pointer value "in
register R5 may not be assumed to be valid after raturn.

NON-REENTRANT EXAMPLE

In non-reentrant forms, the argqument list may either be

placed in line with the call or be placed out of line in

an impure data section. (The latter is recommended and
illustrated here.) Figure C-1 illustrates the assembly
lanquage code to implement a small FORTRAN FUNCTION subproqram
using the non-reentrant form of call. ,Note that the non-
reentrant form, i1s shorter and qenerally faster than the
reentrant form since addresses of simple variables can be
assembled into the argument list.

INTEGER FUNCTION FNC(I,J)
INTEGER FNC1

FNC=FNC (I+J,5) +I

RETURN
END
.CSECT
«GLOBL FNC,FNC1 ' S
FNC: MOV - " R5,-(SP) : SAVE ARG LIST POINTER
’ - MOV @2 (R5) ,- (SP) ;FORM I+J ON STACK
-ADD .- @4 (R5) ,@SP
MOV SP,LIST+2 ; ADDRESS OF I+J TO
e : ;ARG LIST
MOV - $LIST,R5
JSR 'PC, FNC1 T _ T
ADD $#2,5P _ ;DELETE TEMPORARY I+J
MOV (SP) +,R5 ;s RESTORE R5
ADD @2 (R5) ,RO " ;ADD I TO FNC1 RESULT
RTS , PC ;RETURN VALUE IN RO
; DATA AREA
LIST: .BYTE 2,0 . - ; TWO ARGUMENTS
. WORD 0 ; DYNAMICALLY FILLED IN
.WORD LITS ; ADDRESS OF CONSTANT 5
LITS: . WORD 5 ;s CONSTANT 5
< END '
Fiqure C-1

Example Call Sequence Convention Usage: Non-Reentrant

FNC:

CONS:

REENTRANT EXAMPLE

The PDP-11 FOBRTRAN calling convention also has a reentrant
form in which the arqument list is constructed at run-time -
on the execution stack. Note that the arqument addresses'.f
must be pushed on the stack backwards in order to be correctly
arranged in memory for the subroutine that references the

list. Basically it consists of:
MOV #ACRn,- (SP) s ADDRESS OF NTH ARGUMENT
MOV #ADR2- (SP)
MOV #ADR1- (SP) ;ADDRESS OF 1ST ARGUMENT
Mov #N,-(SP) s NUMBER OF ARGUMENTS
MOV SP,RS5
JSR PC,SUB sCALL SUBROUTINE
ADD #2%N+2,SP s DELETE ARGUMENT LIST

Figure C-2 illustrates assembly languaqe code using reentrant
call forms. for the same example shown in Fiqure C-1.

INTEGER FUNCTION FNC (I,Jd)
INTEGER FNC1

PNC=FNC1 (I+J,5)+I

RETURN
END
« SCECT
-GLOBL FNC,FNC1
MOV R5,- (SP)
MOV 22 (RS) ,-(SP) sSAVE ARG LIST POINTER
ADD o4 (R5) ,-@SP ;FORM I+J
MOV SP,R4 s REMEMBER WHERE
MOV #CONS5, - (SP) ; BUILD ARG LIST ON STACK
MOVY R4,- (SP) s ADDRESS OF TEMPORARY
MOV #2,-(SP) s ARGUMENT COUNT
MOV SP,RS ;s ADDRESS OF LIST TO RS
JSR PC, FNC1 s CALL FNCH1
ADD #10,sP s;DELETE ARG LIST AND TEMP I+J
MOVYV (SP) +,B5 ;s RESTORE ARG LIST POINTER
ADD @22 (RS) ,RO +ADD I ‘TO RESULT OF FNC1
RTS PC ;s RETURN RESULT IN RO
;s DATA AREA

-WORD 5
. END

Figure C-2

Example Call Sequence Convention Usage:

Reentrant Forn

Note that the list must reside in Data—space and that
except for label type arguments, all addresses in the
list must also refer to Data-space.

| A1lso note that the byte at address LIST+1 should be
considered undefined and not referenced. (Use of
this byte is reserved for use 2as defined by DEC.)

Tfhe basic form of the non-reentrant in line call is:?

. IN INSTRUCTION/DATA SPACE

MOY #LIST,R5 ; ADDRESS OF ARGUMENT LIST
;TO REGISTER 5
- JSR pPC,SUB ;s CALL SUBROUTINE
LIST: BR o 42%N+2 ; BRANCH AROUND
: ;s PARAMETER LIST
-« WORD ADR1 s PIRST ARGUMENT ADDRESS
« WORD ADRN ;N'TH ARGUMENT ADDRESS

, : 1IN DATA SPACE
ADR1: <« WORD 1 ; FIRST ARGUMENT

- -

. ADRN: - WORD N sN'TH ARGUMENT

Note that the byte at address LIST will contain the value
N and that the byte at address LIST+] will contain the
Value 1.

—— i —— ——

iThis form of call is not compatible with distinct use of
Instruction and Data Space Capabilities.

. 'NULL:ARGUMENTS

Null arguments are reptesented in an argument list by
usinq an address of--1 (177777 octal)." This address’
is chosen because it is easy to test for and also to
assure that the use of null arquments, in subroutlnes
that are not prepared to handle them, will result in
an error when the routine is called at execution time.
The errors most llkely to occur are illegal memory
reference and/or word reference to odd byte address.

‘Note that null arquments are included in the arqument

count as shown in Figure C-3.

EORIRAN Statement Besulting Argument List
CALL SUB .BYTE 0,0
CALL SUB () ‘ ‘ ~ JBYTE 1,0

: ‘ : . WORD -1
CALL SUB (A,) . ~ .BYTE 2,0
_ "<WORD A
.WORD -1.
CALL SUB (,B) T UUBYTE 2,0
. | .WORD -1
.WORD B
Figure C-3

Exq@ple Arqument Lists with Null Arquments

APPENDIX D

' USE OF THE GRAPHICS SOFTWARE WITH
‘ THE PAPER TAPE SOFTWARE SYSTEM

D.1 DESIGN AND USE OF THE PAPER TAPE GRAPHICS SOFTWARE
PACKAGE

The Paper Tape Graphics Software Package was desiqned to
execute in a minimal memory confiquration and yet provide
user flexibility in using only those subroutines necessary
for a particular application program, allowing a maximum
memory availability for the application program and data
base. This was done in the following manner:

THE PICTURE SYSTEM initialization subroutine (PSINIT)
is written as an absolute program to be loaded at a
fixed location in memory. This subroutine contains
all the system level software required to interface

to THE PICTURE SYSTEM, as well as all global constants
and variables that are used for intercommunication
between subroutines. Since PSINIT is written as an
absolute routine, all references to these global '
constants and variables may be made to an absolute
location. '

R All other subroutines are in position independent
. code! (i.e., may be loaded and executed anywhere in

memory). This allows a user to load only those
subroutines necessary for a particular application
by utilizing a feature of the PDP-11 Absolute Loader2.
This feature is the ability to load a routine from
the last location loaded previously by the loader.
Using this technique, the user may load those routines
necessary in any order, ensuring that the minimum core
required will be taken.

All PICTURE SYSTEM Subroutines must have a Transfer Vector
linkage of the form shown in Figure D-1. '

iReference PDP-11 Paper Tape Software Programming Handbook
DEC-11-XPTSA-A-D,Chapter 6.

2Ibid, Chapter 9.1.

1st word: 167754, (subroutine identifier) (="PI+"CS+"YS)

2nd word: Relative location of last word of routine
C : from 1lst word :

3rd wd;a;‘ , _,Subroufiné:identifier (=relative location to
- PSINIT in Transfer Vector)

4th word: f '-Reiative iﬁtatioﬁ-of subroutine entry point
' " from 1lst word @

nth word: = -1 (if 1ést entry point, otherwise same as
- words -3 and 4 above for subroutines with
multiple entry pointsl.)

- Figure D-1 .

PICTURE SYSTEM Graphics Software Package
Subroutine Heading Format

l1Reference listing of subroutine CHAR for example.

D.2 ERRORS USING THE BASIC TAPE SOFTWARE PACKAGE

Errors that occur during use of the Paper Tape PICTURE SYSTEM
Graphics Software Package may be of two types:

. a. User Software Errors
b. Equipment Failure (Hardware Errors)

The conditions that may cause these errors are as follows:

User Software Errors

A user may make five programming errors that will be detected
by the Graphics Software Package. These are:

1. The call of a routine which has not been loaded
(or loaded properly) into memory.
2. The call of a routine with an invalid number of
parameters specified.
3. The call of a routine with an invalid parameter value.
4. The attempt by a user to PUSH a transformation to a
depth greater than that specified by the user.
5. The attempt by a user to POP a matrix that
had not been previously PUSHed.

Error detection results in the following for errors 1-5 abo#e:

Upon the call of a routine which has not been loaded
into memory, a halt will occur at locatlon 276 (show-
. ing 300 in the console data lights). "The user then
, may determine the origin of the "invalid" call by
examining the last element on the stack as pointed to
by Register 6 (SP). '

Upon the call of a routine with an invalid number of
parameters, the user's error routine (as specified in

call to PSINIT) will be called using the standard FORTRAN
calling sequence and a parameter indicating the origin

of the error detected (see Figures D-2 and D-3) will

be passed. If the user's error routine has not yet been
established, then a halt will occur at location 2761 (showing
300 in the console data lights). The error code may then be
determined by examining the location pointed to by

the second from last element on the stack (SP-~4) as

pointed to by Register 6 (SP). Return from the

user's error routine will result in a halt occuring at
location 276.

11t should be noted that if the user's error routine has not yet been

established by PSINIT, then the programmer will be unable to discern
the difference between Error 1 and Errors 2,3,4,5 without a detailed
knovwledge of the position of the routines in memory.

.! D-3

PIGURE D-2

SUBROUTINE INFORMATION

. Stack?
Subroutine Vector Lengtht Length! Space. - - Registers -
Name__ Offset,, Bytes,, Bytes, = Regquired Desiroyed Error_ Codes & Meaning
1 PSINIT 0 1846 3466 30 ~-None 1,0-Invalid No. of Parameters
: 1, 1-Invalid Parameter
: ST : 1,2-Direct Memory Access Error
2. NU FRAN 4 (1) (n 2 - -None None
3. VWPORT 8 (1) (1 16 " ‘None - 3,0-Invalid No. of Parameters
4. WINDOW 12 498 762 38 _'None 4,0-Invalid No. of Parameters
5. INST 16 (4) (%) .36 None 5,0-Invalid No. of Parameters
6. POSH 20 (1) (1 20 None 6,0-PUSH Error
7. POP 24 (1) &) 2 20 "None 7,0-POP Error
8. TRAN 28 150 226 28 - None 8,0-Invalid No. of Parameters
9. ROT 32 386 602 - 30 . None- 9,0-Invalid No. of Parameters
g o 9,1-Invalid Parameter
10. SCALE 64 138 212 28 None 17,0-Invalid No. of Parameters
1t. DRAW2D 36 260 404 20 None 10,0-Invalid No. of Parameters
10,1-Invalid Parameter
12. DRAW3D 40 (11) (11) .20 None 11,0-Invalid No. of Parameters
! 11,1-Invalid Parameter
13. TEXT 4y 188 274 18 | None 12,0~Invalid No. of Parameters
14. TABLET 48 188 274 16 | . None 13,0-Invalid No. of Parameters
15. CURSOR 52 440 662 ~ - 76 None 14,0-Invalid No. of Parameters
6. HITWIN 56 276 422 <. 32 None 15,0-Invalid No. of Parameters
17. HITEST 60 (16) {(16) 20 None 16,0-Invalid No. of Parameters
18. PSWAIT 72 (1) (1 2 None None
19. CHAR 76 258 402 16 None 18,0~-Invalid No. of Parameters
20. DASH 80 (19) (19) 16 None 19,0~Invalid No. of Parameters
21. BLINK 84 (19) (19) - 16 None 20,0~-Invalid No. of Parameters
22. SCOPE 88 (19) {19) 16 None 21,0-Invalid No. of Parameters
23. SETBUF 68 ' 80 98 2 None 22,0-Invalid No. of Parameters

22-1-Invalid Parameter

1The numbers in these columns within parenthesis (i.e., (1)) indicate that the subroutine is
included as part of the subroutine whose number islin parenthesis.

2T7his column indicates the number of bytes of stack space that must be available when this
subroutine in called (includes the call). oo

ERROR
P$DIV

P$ MUL

Vector
Qffset,,

-4

-8
-12
-16
-20
-24
-28

-32

Lengthl

Bytes,,

nm
(1)
(1)
(1)
(1)
(n
(1)
(nH

FIGURE D-3

Length?
Bytes,

(1)
(1)
(1)
(1)

(1)
I3

m
(1

SYSTEM LEVEL SUBROUTINE INFORMATION

Stack?
Space;.
Required

18

2

14

Registers :
Destroyed Error_Codss & Meaning
None 0,0-Invalid No. of Parameters
0,1-Invalid Parameter
RO-R5 None
None None
RO,R1,R2 None
None Halt at Location 272
Direct Memory Access Error
None Branch to User Error Routine
or Halt at Locatiom 276
RO,R1 .Overflow set on Error
RO,R1 None

i1The numbers in these columns within parenthesis {i.e.,(1)) indicate that the subroutine is
includ=ad as part of the subroutine whose number is in parenthesis.
27his column indicates the numnber of bytes of stack space that must be available when this

subroutine is called (includes the call).

!

Ercor_3:
Same as Error 3 (Parameter error)

Error_4:

Same as Error 2 (Push error)

Error_5:

Same as Error 2 (Pop error)

detection of hardware errors is to a minimal level, within

the Graphics Software Package. The only error that may be
detected is a DMA error which will result in a halt occuring

at location 272 (showing 274 in the console data 1lights)

If this occurs, it indicates a failure in the Digital Equipment
Corporation DR-11B DMA unit. However, other errors may

occur as a result of a hardware malfunction or a general
programming problem. These errors will result in a halt
occuring at a location in memory. These halt locations are
summarized in Fiqure D-4.

L .
HALT LOCATION ERROR TXYPE

—-8 —— ——
000006 (000010)1? ' Time Out
000012 (000014)12 _ Illegal & Reserved Instructions
000016 (000020)1 : BPT
000022 (000024)1? I0T
000026 (000030)1t _ Power Fail/Auto Restart
000032 (000034)1 EMT
000036 (000040Q)12 TRAP
000272 (000274)1 DMAError
000276 (000300)1 Non-Existant Program Error
FIGURE D-4§

Paper Tape PICTURE SYSTEM Graphics Software Package
Halt lLocations g

—p o

1Location (xxxxxx) is the location shown in the console data
lights when the halt occurs.

D.3

PBOGRAMMING THE PICTURE SYSTEM USING THE PAPER TAPE
SOFTWARE PACKAGE

Programs written for use with the Paper Tape Software Pack-
age use the same general program structure and techniques
as described in Chapter 5. The user, however, has the
additional responsibility of:

1. Defining the linkage to the graphics subroutines.

2. Initializing the program stack pointer (register 6)
to the reserved stack area.

3. Ensuring that the program does occupy the sanme
area of memory as the graphics software.

The linkage to the graphics subroutines is provided by
equating the entry in the transfer vector to the subrou-
tine name as defined in Fiqure D-2. This method allowus

the subroutines to be referenced symbolically and also
make the program upward compatible with all DEC operating
systems by simply replacing the equate with a global symbol
definition (.GLOBL). Figure D-5 illustrates the manner

in which the transfer vector entries are equated with the
graphics subroutlnes.

An area of_memory is reserved for the program stack area.
beginning at 620s and extending through 400 in memory as
shown in Figure D-6. The stack pointer to this area must,
however, be initialized by the user's program before any
subroutines are called or any interrupts occur. Figure
D-5 shows a typical manner in which this may be done.

The user must ensure that his program's starting address
does not overlap an area of memory where a graphics sub-
routine resides. To do this the user must total the lengths
of all of the graphics subroutines used (Fiqure D-2) and
position his program above that area of memory by using

the ".= start address" notation of the DEC assemblars. Fig-
ure D-5 illustrates this.

Excapt for these three additional respomnsibilities, the
user is free to utilize all of the capabilities of the
graphics subroutines without constraint in the Paper Tape
environment.

1See

eference 3, Part 3, Chapter 2, Monitor Keyboard

Commands, for specific details.

T$VECT =1000.

PSINIT =T$VECT+0.
NUFRAM =T$VECT +4.
VWPORT =T$VECT+8.
HINDOW =T$VECT+12.
INST =T$VECT+16.
PUSH =T$VECT+20.
POP =T$VECT+24.
ROT =T$VECT+32.
TRAN =T$VECT+28.
SCALE =T$VECT+64.
DRAW2D =T$VECT+36.
DRAW3D =T$VECT+40.
TEXT =TSVECT+44.
TABLET =T$VECT+48.
CURSOR =T$VECT+52.
HITHIN =T$VECT+56.
HITEST =T$VECT+60.
PSWAIT =T$VECT+72. :
CHAR " =T$VECT+76. .
DASH =T$VECT+80.
BLINK =T$VECT+84.
SCOPE - =T$VECT+88.
SETBUF =T$VECT+68.
3 ,
'BLDCON =T3$VECT-4.
STACKP =620
-=7770 : SET THE PBOGRAM START ADDRESS
STOP: TST (R5) + ; A USER ERROR SUBROUTINE
MOV @ (R5) ,RO ; MOVE THE ERROR CODE TO RO
HALT s AND HALT : :
H
. : 1
START: MOV #STACKP,SP
]
; INITIALIZE THE PICTURE SYSTEM
MOV #.+8.,R5
JSR PC,PSINIT
BR 14,
« WORD THREE,ZERO,-1,STOP,-1,-1

Figure D-5
User Responsibilities in the Paper Tape Software Systen

000
R INTERRUPT VECTORS .4 128,, WORDS
'l.j 400
} 402
STACK
| 620
PICTURE SYSTEM
TRANSFER VECTOR
PSINIT
RTCINT
BLDCON
ETC.
OTHER PICTURE SYSTEM
SUBROUTINES AS REQUIRED
OTHER PICTURE SYSTEM
SUBROUTINES AS REQUIRED
OTHER PICTURE SYSTEM :
SUBROUTINES AS REQUIRED | (VARIABLE)
4K " USER SPACE
\
Lox |5|oo§ e
e 10 ORDS
(OPTIONAL) 17472
17474
ABSOLUTE LOADER |774z} 72,0 WORDS
BOOTSTRAP '7744}

Figure D-6

Typical PICTURE SYSTEM Paper
Tape Memory Configuration (UK)

)

 APPENDIX E

USE OF THE GRAPHICS SOFIWARE WITH THE
DOS/BATCH DISK OPERATING SYSTEM

E.1 USE OF THE GRAPHICS SOFTWARE PACKAGE

The Graphics Software Package is available to the
DOS/BATCH user as a library of catalogued object Modules
which may be linked with the user's FORTRAN! or MACRO-112
Program to form graphics application programs. The
PICTURE SYSTEM Graphics Library (PICLIB), which contains
all of the subroutines described in Chapter 4, is searched
by the linker (LINK)3 to load those subroutines called

by the user program. The resulting program forams a

load module (LDA format) which may be executed upon

user demand.

Part 7.
2D0OS/BATCH Assembler (MACRO), Reference 3, Part 6.
3D0S/BATCH Linker (LINK), Reference 3, Part 9.

E-1

USE OF PDP-11 FOBRTRAN IV WITH THE PICTURE SYSTEM

DOS/BATCH FORTBAN conforms to the specifications for
American National Standard FORTRAN and is also highly
compatable with IBM 1130 FORTRAN. DOS/BATCH FORTRAN
programs can be compiled and run on any PICTURE SYSTEM
configquration that support the DOS/BATCH Operating
System, and which has a minimum of 16K of memory.
DOS/BATCH FORTRAN supports all standard hardware options
supported by the operating systen.

Graphics applications programs written using FORTRAN
interface to THE PICTURE SYSTEM by means of the sub-
routines contained in the Graphics Library (PICLIB).

All FORTRAN statements and functions are available

to the user of THE PICTURE SYSTEM; however, the following

" should be stressed to the PICTURE SYSTEM FORTRAN user:

1. All parameters passed to the subroutines
of the Graphics Library are integers. Should
a REAL parameter be passed as a parameter to
a graphics subroutine, the sign, binary excess
128 exponent and high- -order mantissa will be
treated as . an lnteqer.

2. -The “one word 1ntegers".sv1tch {/0ON) should
be . spec1f1ed to the FORTRAN compiler to ensure
that the elements ‘of 1nteqe:_arravs are ‘
contiguous in memory as required by the
graphics software.

. Figure E-1 outlines the steps required to prepare

a FORTRAN source program for execution under the
DOS/BATCH monitor: (1) Compilation, (2) Linking
and (3) Execution. '

FORTRAN LIBRARY
(FTNLIB)
GRAPHICS LIBRARY
(PICLIB)

y

SOURCE
|_PROGRAM

OBJECT LOAD RUNNING
COMPILER '(MODULE) LINKER '(:MODULE) (PROGRAM

Figqure E-1

Steps in Compiling and Executing
a FORTRAN Graphics Program

Step ‘1 in Fiqure E-1 is initiated by a call to the
FORTRAN Compiler, accompanied by a command string
that describes input and output files, and switch
options to be used by the Compiler. Step 2 is-
“initiated by a call to the Linker, accompanied by
a similar_command string. Step 3 is initiated upon
user keyboard request or a user prograqmed request.

Step_11:

The DOS/BATCH FORTRAN compiler accepts a
standard DOS command string of the form:

#object module, listing < source/options
A typical FORTRAN command string is of the form:

#SY:PROG1.0BJ,SY:PROG1.LST < SY:PROG1.FTN/ON
or
#PROG1,PROG1 < PROG1/0N '

(device SY: assumed the default device, just
as the filename extentions .0BJ, .LST and .FTN
are the default filename extentions when not
specified.)

In the above example, the user should note the use
of the "one word integers"™ switch (/ON) in the
source file specification: < PROG1/0N.

1See Reference 3, Part 7, Chapter 9, Operating Procedures, for
specific details.

4

Step 21: The DOS/BATCH Linker accepts a standard DOS
command string of the form: .

#load module,load map,symbol table < object modules/E
A typical LINK command string is of the form:

#SY:PROG1.LDA,SY: PROG1.MAP,SY:PROG1.STB < SY:PROG1.0BJ
$SY:PICLIB.OBJ,SY:FTNLIB.OBJ/E

or
#PROG1, PROG1,PROG 1<PROG1,PICLIB, FTNLIB/E

(device SY:is assumed to default device, just as the
filename extentions .LDA, .MAP, .STB and .0BJ are the
default filename extensions when not specified.)

In the above example, the user should note the
specification of THE PICTURE SYSTEM Graphics -
Library (PICLIB) and the FORTRAN OTS Library (FTNLIB).
These libraries are seached to resolve all gqlobal
references for the load module. These libraries
(PICLIB) and (FINLIB) reside in the systems area
{1,1] and are therefore available to all users.
Note: The Linker searches the user's [UIC] area
for all object files specified. If an object file
is not found, the’ systen area [1,1] is searched
reqardless of the user UIC.

Step 32: To run a load module Hhich has been created by the
Linker, a user need only request the monitor to
run the program. This is accomplished by the
monitor command:

$RUN SY:PROG1.LDA
or)
$RUN PROG1

(device SY¥: is assumed the defauit davice, just as
the filename extention .LDA is the default
filename extention when not specified.)

The following is a typical listing which illustrates
the process described by quure E-1 and steps 1, 2 and
3 above.

1See Reference 3, Part 9, Chapter 3, Operating Procedures, for
specific details.
2See Reference 3, Part 3, Chapter 2, Monitor Keyboard Commands.

$LOG 182,112

DATE : -31-MAY~-74
TIME:-15:325:683

$RUN FORTRN

FORTRAN V@6, 13
#PROG1, KB : {PROG1/0ON

FORTRAN VBE. 13 15:%5:44 I1-MAY-74 PAGE 1
C FORTRAN DEMONSTRATION FROGRAM
aoor DIMENSION IHOUSEC14)
000z BRATA THOUSE/-1@666, 16008, ~10000, ~10000, 16080, ~10060, 16660
1, 10660, -10068, 10060, B, 2RB00, 10006, 1BOHE,
‘ INITIHLIZE'fHE_FICTURE SYSTEM
8203 © cﬁLL P51ﬁ1T<3,a,,,,>
¢ orew THE DATH
0004 CALL DRAWZD(CIHOUSE, 7,2, 2, @)
_ E_HND DISPLH? THE'"NEH-?RHHE“
- 8885 ? CALL NUFRAM
o086 PRUSE
a00? STOF
BBEE END

ROUTINES CALLED:
FSINIT, DRAMZLD. NUFRAM

GFTIONS =/0N, A 0F:Z2

ELOCK LENMGTH

MAIN. 67 CHBRZAE) *

kCOMPILER —---—- CORE #%
FHASE USED FREE

DECLARATIVES @B&ze 1022&
EXECUTRELES @878z 1vl4E
ASSEMBLY hApges 14ed@l

#~C
KILL

$RUN LINK -

LINK YB1-83
#PROG1, PROGL<PROG1, FICLIE, FTNLIE/E

SPACE USED @@8553@, SFACE FREE @6XZ@4
#°C .
. KILL

$RUN PROG1

F. 1

APPENDIX F

USE OF THE GRAPHICS SOFTWARE WITH THE
RT~11 OPERATING SYSTEM

USE OF THE GRAPHICS SOFTWARE PACKAGE

The Graphics Software Package is available to the RT-11
user as a library of catalogued object Modules which may
be linked with the user's FORTRAN1 or MACRO-112 program
to form graphics application programs. THE PICTURE
SYSTEM Graphics Library (PICLIB), which contains all of
the subroutines described in Chapter 4, is searched by
the Linker (LINK)23 to load those subroutines called by
the user program. The resulting program forms a load
module (SAV format) which may be executed upon user
demand. - ’

1Refer3§ce 4,
2Reference 5, Chapter 5.
3Reference S, Chapter 6.

Fo 2

USE OF PDP-11 FORTRAN IV WITH THE PICTURE SYSTEM

BT-11 FORTRAN conforms to the specifications for
American National Standard FORTRAN and is also highly
compatible with IBM 1130 FORTRAN. RT-11 FORTRAN pro-
grams can be compiled and run of any PICTURE SYSTEM
confiquration that supports the RT-11 Operating
System, and which has a minimum of 8K of memory.
RT-11 FORTRAN supports all standard hardware options
supported by the operating systen.

Graphics applications programs written using FORTRAN
interface to THE PICTURE SYSTEM by means of the sub-
routines contained in the Graphics Library (PICLIB).
A1l FORTRAN statements and functions are available to
the user of THE PICTURE SYSTEM: however, the following
should be stressed to THE PICTURE SYSTEM FORTRAN user:

All parameters passed to the subroutines

of the Graphics Library are integers.

Should a REAL parameter be passed as a
parameter to a. qraphxcs subroutlne, the
51gn,rb1nary excess 128 exponent and high-
order mantlssa uxll be treated as an 1nteqer.

quure F-1. outllnes the steps requlted to prepare a
FORTRAN source proqram for execution under the

"'RT-11 Monitor: (1) Compilatiom, (2) Linking, and

(3) Executiqn.

P-2

FORTRAN LIBRARY
(FORLIB)
GRAPHICS LIBRARY
(PI1CLIB)

v

SOURCE OBJECT LOAD RUNNING
PROGRAM COMPILER '(MODULE) | LINKER MODULE}'(PROGRAM

. J

Figqure F-1

‘Steps in Compiling and Executing
a FORTRAN Graphics Program

Step 1 .in Fiqure F-1 is initiated by a call to the
FORTRAN Compiler, accompanied by a command string that
describes input and output files, and switch options to
be used by the Compiler. Step 2 is initiated by a call
. to the Linker, accompanied by a similar command string.
tep 3 is initiated upon user keyboard request or a
user programmed request. :

Step 1': The RT-11 FORTRAN compiler accepts a
cormand string of the form:

*¥object module, listing = source/options

A typical FORTRAN command string is of the
form:

%xSY: PROG1.0BJ,SYzPROG1.LST=5SY :PROG 1. FOR
or
*PROG 1, PROG 1=PROG 1

(device SY: is assumed the default device,
just as the filename extensions .0BJ, .LST
and .FOR are the default filename extensions
when not specified.)

1See Beference 4, Chapter 1 for specific details.

Step 21: The RT-11 Linker accepts a command string of

the form:
*load module,load map=object modules/switches .
A typical LINK command string is of the form:

*SY:PROG1.5AV,SY: PROG1.MAP=SY:PROG1.0BJ,SY;PICLIB.OBJ/F
or
*PROG1,PROG1, PROG1=PROG1,PICLIB/F

(device S5Y: is assumed to be the default device,
just as the filename extensions .SAV, .MAP and
.0BJ are the default filename extensions when not
specified.)

In the above example, the user should note the
explicit specification of THE PICTURE SYSTEM
Graphics Library (PICLIB) and the FORTRAN

OTS Library (FORLIB) by the /F switch. These
librariés are searched to resolve all global
references for the load module.

Step 32: To run a load module vhlch has been created
' by the Llnker, a user need only reguest the
monltor to run the program. This is accompllsh-
ed .by .the monltor command: - - - C— -

-RUN SY:PROG1.SAV
or .
<RUN PROG1

(device'SY. is assumed the default dev1ce,
just as the filename extension .SAV is the
default filename extension when not specified).

The following is a typical listing which illustrates
the process described by quure F-1 and steps 1, 2
and 3 above.

1See Reference 5, Chapter 6 for specific details.
25ee Reference 5, Chapter 2 for specific details.

RT-11
. DATE
RN F
+FFDU1

RT-11

ot
[ex]
=
[N

[xx]
el
[x]
8]

2583

IHOUSE
FSINIT
DRAWZE
HUFRAHR
*

o

Ygi-131
25-HOW-V4

ORTEA

M
TT:=FEOG1

FORTRAN IV

Yol-11

FORTRAN CEMONSTRATION FREOGRAM

C

C .
DIMENSION IHOUSEC 142

C
DATA IHOUSE/-1RE8E. l dEa,

1 ,iQg68, -10088, 1A8345. 6, 288
INITIALIZE THE FICTURE SYISTEHM
CALL FXZ I”IT‘s_wﬁ s d

C
C DRAW THE DHTH
C _ : .
. CALL DRAWZDCIHOUSE, 7,2, 2,82
C .
C AND DISFLAY THE “"NEW FRRNME®
C .
_ CALL MHUJUFRAH —
FRUSE
C
STOF
END
FORTRAN IV STORAGE MAF
OFFSET ATTRIBUTES®
BeR3IES INTEGER+Z RERAY (L1453
pageor REEALx4 - PROCEDURE
p@gnaas REAL+d PROCELURE
aaoaen INTEGER+2 PROCEDLRE

SOURCE LISTING

. ~1i

i

()
b}

2]

o
4

[}

acx]

fux]

[ax]

e]

~C

CRUN LiNE

+PROGL, FROGI =FROGL, FICLIESF
*.-;C

. RUN PROG1

