CP/M
C Softvvare Manual

Section:

Table Of Contents

CP/M 2.2

CP/M 2 User's Guide

1‘
2.
30
4.
5.
6.
7.
8.
9.
10.

Section:
An
T.
2.

3.
4.

5.
6.

7.
8.

An Overview of CP/M 2.0 FacilitieSceesceossl
User Interfacl.ccesescscssccocsscsscscscssel
Console Command Processor (CCP) Interface..4
STAT Enhancemntsit‘..‘......'.‘.....Q...'COS
PIP EnhancementsS.coeccecescssescesvccsanccasssd
ED EnhancementsS.escececsccsssesscscscasscnsall
The XSUB FunCtiON.eececsocscesscoscesscssnsll
BDOS Interface ConventionSesceececsccescessll
CP/M 2.0 Mmeory OrganizatioNeescecsaccsseel?
BIOS DifferencesSceecscsscecsccoscesssscsnoeell

introduction To CP/M Features and Facilities

IntroductioONececcceascecccscssnscccscsossan3d
Functional Description Of CP/Mececssceeeses3’
2.1 General Command Structur€ececesccocese3’
2.2 File ReferenceSeevescccoscscssssoccsesld?
Switching DiskSeseesoeessrecssscsscsncsnsesasdl
The FOl‘m Of Built"'n COﬂl‘ﬂandS......».......41
1 ERA afn cr...l.000000000000‘00000000041
2 DIR 8fN Claecesooccsssccossosncncsssscd
3 REN ufn1=ufn2 Creecesceccccscsccnsccsecd?
4 SAVE n UfN Cleceeecssecaccasscssnsesedl
5 TYPE UfD Clecececcocscccascoscnnnsssedl
Line Editing And Output Control.cccecocesad5
Transient CommandsS.cecsescacccscoscncscsssncescdb
6.1 STAT Cleceecccsassocecsscssscccsnsnsseeecd?
602 ASM Ufn Cr-..........................50
6.3 LOAD ufn Clfeceeserscscscsncsccescsasesedl
6e4 PIP Cleceesecosocscsncsscsssscscsscssnsasesd2
6.5 ED uUfn Creceessceascacccessssansosnseeed?
6.6 SYSGEN Crececssocevcccccsscsoscscncesebdl
6.7 SUBMIT ufn parm#1 parmin Clecseeeecsab2
6.8 DUMP UfN Clececesoncsossccscsnnsccnsssdcbd
6.9 MOVCPM Crlececccccccoscscsssencsscsncssabd,
BDOS Error MessageSceeocevoccssosesscvoseseb/
Operation Of CP/M On The MDS..ceeeecreesscb9

Section:
CP/M Assembler (ASM): User's Guide

e
£

s’

1. Introductioneieecccecsccccssscoscscanscsscnss/]
2., Program FOrmateececescscsosccnscassacsssossnsse/2
3. Forming The Operandicvecescescccccsccscecs/4d
3.1 LabelsSeeseeveseenncnsnnsencnsascasaseld
Numeric ConstantsSeeesssscoscsscscscsscsel/d
Reserved Words.ceeeceocesosanccscensns?5
String CoONStantSeeecsscesssccssscscseslb
Arithmetic and Logical Operators.....76
Precedence Of Operators.cececcscscess??
mbler DirectiveSeeeescssesesscsccssssas/B
The ORG Directivesceesssesssassasssaas/B
The END Directiveesosssssessseescesssse?9
The EQU Directiveeseseseecsoscsseseee?9
The SET Directiveeecescceossssssssassdd0
The IF And ENDIF DirectiveSeeeesceesas80
The DB Directiveseeeesssasssccsossesaldl
The DW DirectiVeeeeseceescecosesssaessB2
ation CodeSeeveesnscsnscsconssssasancssaB2
Jumps, Calls And ReturnseeceesscessseB3
Immediate Operand Instructionsesee...84
Increment and Decrement
INStruCtioNSeesesessscescsccscesssensdsBd
5.4 Data Movement InstructionSecesescssess.84
5.5 Arithmetic Logic Unit Operations.....85
5.6
r

o o
oo

w e

4. A

0 . .
WINw=a OV WNDOW

5. O

L]

DT bbb bbddbnwwwww
.

Control INstrucCtionNSecescececcesccoceasdb
6. E rof Messages.lO.......Q.O..O.‘.....0.0.086
7. A Sam’e Session......'....0’.....0‘......87

Section:
ED: A Content Editor For The CP/M Disk System:
User's Manual

1o ED Tutorialesecceeeecessscansosssnsosccsnssesd3

1.1 Introduction to EDeecevocsscnccnsaesasd3
1.2 ED OperatioONececescccscsssssssnsosssesedl
1.3 Text Transfer FunctionSeeseecsceceeeaadld
1.4 Memory Buffer Organizationeeeseseesse97
1.5 Memory Buffer Operation.eeeccecesseeed?
1.6 Command SrrinNgSeeecesccesscscsscnseedd9
1.7 Text Search and Alterationeeeceseses.100
1.8 Source Librariescesseceesccesccceees103

1.9 Repetitive Command Execution........104
2. ED Error ConditionSesececscnssosssssvsossssl0S
3. Control Characters And CoomandS.cessscee.106

Section:

CP/M Debugging Too! (DDT): User's Guide

e
it.

'ntroduction..O.............00.0"....0..111
wT Cmands..o..;o‘-...-o.o......b'l000000113

1. The A (Assemble) Command.cceescccceeell3
2, The D (Display) Coomande.cececeoess..114
3. The F (Fill) Commandeceeccecscessecaasaclld
4. The G (Go) Commandeececesscessossnssalld
5. The | (input) Command.sceccoecssscssslls
6. The L (List) Comandecececosscccsscosecsllb
7. The M (Move) Cmndeco‘-oo'oooooo0oo116
8. The R (Read) Corm\and-......-.........‘lilﬁ
9. The S (set) Cmmand...".'...........117
10.The T (Trace)'Cand...‘.."..'.....117
11.The U (Untrace) Command. .ccocecsocess118

12. The X (Examine) Command...cecse0eses.118

ll'olmplemntation NOteSeeeesecoesscsosssessselll

1v.

Section:

An Examle..........OO’.I....O...‘.......‘120

CP/M 2.2 Interface Guide

1.
2.
3.
4.
5.
6.

Section:

INtroduCtioNeceeessesacsssocaacansosscesst3l
Operating System Call Conventions.cces...133
A Sample File-To~-File Copy Program.......159
A Sample File Dump Utility.coceeeseeeees.164
A Sample Random Access Programeeeeceessss167
System Function Summaryeceececsscsccesscsesal?b

CP/M Alteration Guide

1.
2.
3.
40
5.
6.
7.
8.
9.
10.
11.
12.

IntroductioNeececeecececcsccancscccsonnenncsel??
First Level System Regenerative..eeceee..178
Second Level System Generationecececcoese182
Sample Getsys And Putsys Programs........186
Diskette OrganizatioNeececescecsscsencances188
The BIOS Entry PointScececcescscsnccsesessl90
A Sample BIOS..ccieeeecccencrnscsnacanseald?
A Sample Cold Start Loadefr.cccecececacees198
Reserved Locations In Page Zeroeeeceesesea199
Disk Parameter TableSecceoecececeronnnsas20l
The DISKDEF Macro Libraryeeeseeceseeessss206
Sector Blocking And Deblockinge.ceveessea210
AppendiX Acecesssesccssssconssossessaseana2l
AppendiX Besceooessoccscoosonescccsaseaalls
AppendiX Cevervvecoessccnccsoscnssossnsesallb
AppendiX Deceeeerescasnscsacosssroncssneeall2
AppendiX Eeveeevecrenvencsosossonsasssnsnesl3S
AppendiX Fuoceeeonsosossescsacseccoannnanlld?
Appendix Geceveoeovesonecssossssscnnscsconss2d?

Section:)
Exidy Systems' CBIOS User's Guide:
Version 1.0 For CP/M 2.2

1 INtroductioNeeceeccescesssesncsscascssenseld9
2. Configuration and System Ceneration......251
A. Hardware for the DDS and the FDS.....251
B. System GeneratioNeececescessscocsensasl52
Co OptioNS.eeessseneessascssscasasssnees253
D. IncompatibilitiesSeeesccescosscccecsea2bd
E. Sector Skew PatterNececcessossscccess2’d
F. Special Video Display Interface......255
3. FeaturesSceicscsccecsscsesssersssesscessnseecesl’b
A Error ReCOvVeryYesesesossssessesssoseecsesal56
B. CP/M Programmingeececsecsccescssssseseal’?
4, Error MesSSageSeeesoscsocssessssssnassssses2d9

Section:
Exidy Systems' Excopy User's Guide: Version 2.0

1. IntroductioONeceeesssecsessssccssssssccacslbb2
2. US@eeoeetsssssvsssosassssssrssessescnsessesl2B3
3. Samplie RuUN:cccssersonscssssosssscscscseasaslbd
A. Excopy With Two Multiple Drives......264
B. Excopy With One Driveeseeseeesnesssses2bd
C. Format Only.ceceenrseesosscocacssseaasslbh
4, Error MesSageSeessscncssssscsssssscsssseslBdb
A. Can Not Format, Try AgaiNecsececvsseces2bb
B. Destination Is Write Protected.......266
C. Write Error On Track #XXeveeoeoooseee2b7
D. Read Back Error On Track #XXeveeeoees267
E. Additional MessageSeeesesssoocsesseselb?
5. RECOVEIYeceesosecnssssescnsssocsecscoscscseslb8

AT

e,
. 5

CP/M 2 USER'S GUIDE

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94@86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.,

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content herecf without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

»"FWMK

CP/M 2 USER'S GUIDE

PRI

COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample

programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

(

VR

CP/M 2 TUSER'S GUIDE

Cooyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

An Overview of CP/M 2.0 rFacilities . .

User Interface « ¢ ¢ ¢ ¢ ¢ o o &
Console Command Processor (CCP) Interface
STAT Enhancements . . . ¢« ¢ ¢« o o o o
PIP Enhancements « ¢ o« « o« o &
ED Enhancements
The X508 Function « « ¢ o« o &
3D0S Interface Conventions . , . .

CP/M 2.6 Memory Organization ., . , . .

3I0S Differences . . ¢ ¢ « o &

(2l » NN ¥ B - S P R

12
27

28

—

1, AN OVERVIEW OF CP/M 2.0 FACILITIES.

CP/# 2.8 is a high-performance single-console operating system
which uses table driven technigues *o0 allow field reconfiguration to
match a wide variety of disk capacities, All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1., Features of CP/M 2.6 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reach the full drive size
with the capaonility to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.8 are physically
separated by user numbers, with facilities for file copy operations
from one user area to another. prowerful relative-record random access
functions are present in CP/M 2.8 which provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
BIOS~-resident "disk parameter block" which is either hand coded or
produced automatically using the disk definition macro 1library
provided with CP/M 2.8. The end user need only specify the maximum
numper of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the 1logical disk,
directory size information, and reserved track values. The macros use
this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided which aids in assembly or disassembly of sector sizes
which are multiples of the fundamental 128 byte data unit, and the
system alteration manual includes general-purpose subroutines which
use the tnis deblocking information to take advantage of larger sector
sizes., Use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.9 truly a universal data management
system,

File expansion is achieved by providing up to 512 1logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2.8 is structured, however, so that as much as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), thus maintaining compatibility with orevious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.8 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M's unigue data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward compatible from earlier
versions to the full .eight megaoytes, while random access
compatibility stops at 512K byte files. Due to CP/M 2.8's simpler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.6 facilities,

Several CP/M 2.8 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP provides a "login” -

(All Information Contained Herein is Proprietary to Digital Research.)

1

function to change from one user area to anotner. The CCpP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-copy device in its enhanced 1line editing
functions. :

The sections below point out the individual differences between
CP/M 1.4 and CP/M 2.8, witn the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals,
Additional information dealing with CP/M 2.8 I/0 system alteration is
presented in the Digital Research manual "CP/M 2.8 Alteration Guide."

(All Information Contained Hderein is Proprietary to Digital Research.)

2

e
{
A

2. USER INTERFACE,

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the symbol "ctl" below indicates that the control key is
simultaneously depressed):

rub/del removes and ecnoes last character
ctl-C reboot when at beginning of line

ctl-E physical end of line

ctl-H Dpackspace one cnaracter position¥*

ctl=J (line feed) terminates current input*
ctl-M (carriage return) terminates input
ctl-R retype current line after new line
ctl=U remove current line after new line
ctl-X Dbackspace to beginning of current line¥*

In particular, note that ctl-fl produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
editor keeps track of the current prompt column position so that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) INTERFACE.

There are four functional differences between CP/M 1.4 and CP/M -
2.0 at the console command processor (CCP) level, The CCP now !
displays directory information across the screen (four elements vper
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *_.*" and
“SAVE* commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 9 to 15. Upon c¢old start,
the operator is automatically "logged” into user area number ¥, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory, Drives which are 1logged-in while
addressing one user number are automatically active when the operator
moves to another user numper since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active user number 1is maintained until changed by a
subsequent USER command, or until a cold start operation when user @
is again assumed.

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect, 1In version 1.4,
this command can be used to erase a directory whicn has “garbage"
information, verhams resulting from use of a diskette under another
operating system (heaven forbia!). In 2.6, however, the ERA *.,*
command affects only the current user numoer., Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory 1image due to
directory operations following extent boundary changes., Version 2.3,
nowever, does not perform directory operations 1in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

"

/V‘A

4. STAT ENHANCEMENTS,

The STAT program has a number of additional functions which

allow disk parameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

produces a summary of the available status commands, resulting in the
output:

Temo R/O Disk: d:=R/0

Set Indicator: d:filename.typ $R/O $R/w $SYS $DIR
Disk Status : DSK: d:DSK:

User Status : USR:

Iobyte Assign:

(list of possible assignments)

*

whicn gives an instant summary of the possible STAT commands. The
command form:

STAT d:filename.typ $S

wnere "d:" is an optional drive name, and "filename.typ“" 1is an

unampiguous or ambiguous file name, produces the output display
format:

Size Recs B8ytes Ext Acc

43 48 6k 1 R/O A:ED.COM
55 55 12k 1 R/O (A:PIP.COM)
65536 128 2k 2 R/W A:X.DAT

where tne $S parameter causes the “Size"” field to be displayed
(without the §$S, the Size field is skipped, but the remaining fields
are displayed). The Size field 1lists the virtual file size in
records, while the "Recs” field sums the numpber of virtual records in
each extent, For files constructed seguentially, the §Size and Recs
fields are identical. The “Bytes" field lists the actual number of
bytes allocated to the corresponding file, The minimum allocation
unit is determined at configuration time, and thus the number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation fiqure. 1In the case of random access, the
Size field gives the logical end-of-file record position and the Recs
field counts the 1logical records of each extent (each of these
extents, however, may contain unallocated "holes” even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K pytes (8
logical extents) directly addressed by a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

‘he "Acc" field gives the R/0O or R/W access mode, which is
changed using the commands shown below, Similarly, the parentheses
(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the “system"”
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename,typ $R/0
STAT d:filename.typ $R/W
STAT d:filename.typ $SY¥S
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/0 indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/0 status is recorded in the
directory .with tne file so that it remains R/0 through intervening
cold start operations, The R/W indicator places the file in a
permanent read/write status, The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The “filename.typ" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denoted by "d:" |is
optional.

When a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

Bdos Err on d: File R/O

The B00OS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range ¢, B:, ..., P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
8: Checked Directory Entries
1824: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks

where “d:” is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilobytes, The directory size is 1listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start, For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start, The number of records per extent determines the
addressing capacity of each directory entry (1924 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research,)

6

]]
Niguisi”

N

o

F

VAN

128K in the example above). The number of records per block shows the
pasic allocation size (in the example, 128 records/plock times 128
bytes per record, or 16K bpytes per block). The listing is then
followed by the number of physical sectors per track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to other
logical disks. The command form

STAT DSK:

oroduces a drive characteristics tapble for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is: .

Active User : @
Active Files: 4 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a 1list of user numbers
scanned from the current directory. In the above case, the active
user number is § (default at cold start), with three user numbers
which have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging=-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of cCcp/M 2.0, All three functions take the form of file parameters
which are enclosed in square brackets follow1ng the appropriate file
names., The commands are:

Gn Get File from User number n
(n in the range 4 - 15)

W Write over R/O files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.

Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4, The
command

PIP A:=A:*_*[G2]

copies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially covied to a
user area (so that subsequent files can be copied) using the SAVE
command., The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 3 login user 9

DDT pPIP.COM load PIP to memory
(note PIP size s)

G8 return to CCP

USER 3 login user 3

SAVE s PIP.COM

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under ODT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1D98, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subseguent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers,

Under normal operation, PIP will not overwrite a file which |is

set to a permanent R/0 status. If attempt is made to overwrite a R/O
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

oo,

2

%KWW

TN
I

NPFSTINATION FILE IS R/O, DELETE (Y/N)?

is issued. If the operator responds with the character "y* then the
file is overwritten. Otherwise, the response

** NOT DELETED *¥*

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence, 1In order to avoid the prompt and response
in the case of R/O file overwrite, the command line can include the W
parameter, as shown below

. PIP A:=B:*_ COM[W]
which copies all non-system files to.the A drive from the B drive, and
overwrites any R/O files in the process. If the operation involves
several concatenated files, the W parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B.,DAT,F:NEW.DAT,G:OLD.DAT([W]

Files.with the system attribute can be included in PIP transfers

" if the R parameter is included, otherwise system files are not

recognized. The command line

pIP ED,COM

B:ED,COM[R]

for example, reads the ED.COM file from the B drive, even if it has
been marked as a R/O and system file, The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M 1is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
8. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it wmay be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the "CP/M 2.0 Alteration Guide,"” and refer to Section 18 which
describes BIOS differences). '

(All Information Contained Herein is Proprietary to Digital Research,)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities

in the 2.0 release. Experience has shown that most operators use the

relative line numbering feature of ED, and thus the editor has the “v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v* command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the £D user’s guide, where the "v" command is
described.

ED also takes file attributes into account,. If the operator
attempts to edit a read/only file, the message

** FILE IS READ/ONLY **
appears at the console., The file can be 1loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the “system®” attribute set, the message
“SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted, Again,
the STAT program can be used to change the system attribute, if
desired.

Finally, the insert mode ("i") command allows CRT 1line editing
functions, as described in Section 2, above,.

(All Information Contained Herein is Proprietary to Digital Research.)

19

i
§ 3
{ |

& i
S
s

£

{ i
S

o

7. THE XSUB FUNCTION.,

An additional utility program is supplied with version 2.8 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor., The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 18) receive
their input directly from the submit file, For example, the file
SAVER,.SUB could contain the submit lines:

XsuB

DDT

IS1.HEX

R

G8

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT SAVER X Y
which substitutes X for $1 and Y for $2 in the command stream, The
XSUB program loads, followed by DDT which is sent the command lines
“IX.HEX®" *R" and “G@" thus returning to the CCP. The final command
“SAVE 1 Y.COM" is processed by the CCP.
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate its presence. Subseguent
submit command streams do not require the XSUB, unless an intervening

cold start has occurred., Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously,

(All Information Contained Herein is Proprietary to Digital Research.)
11

8. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 68085H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0, Note that a zero value 1is returned for
out-of range function numbers,

g System Reset 19* Delete File

1 Console Input 20 Read Segquential

2 Console Qutput 21 Write Seguential

3 Reader Input 22* Make File

4 Punch Output 23* Rename File

5 List Qutput 24* Return Login Vector

6* Direct Console 1I/0 25 Return Current Disk

7 Get I/O Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

Y9 Print String 28* wWrite Protect Disk
10* Read Console Buffer 29* Get Addr(R/0 Vector)
11 Get Console Status 38* Set File Attributes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Open File 34* Write Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set Random Record

18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console 1/0.

Direct Console I/O 1is supported under Cp/M 2.8 for those
applications where it 1is necessary to avoid the BDOS console I/0
operations., Programs whicn currently perform direct I/0 through the
BIOS should be changed to use direct I/0 under BDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FP, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = 3§
if no character is ready, otherwise A contains the next console input
character.

If the input value in £ is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

12

{

. |
K«x«%wy

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console 1line editing 1is supported, as described in Section 2., Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left

margin). This new convention makes operator data input and line
correction more legible,

Function 12: Return Version Number.

Function 12 has been redefined to vorovide information which
allows version-independent programming (this was previously the "lift
head" function which returned HL=00668 in version 1.4, but performed no
operation)., The value returned by function 12 is a two-byte value,
with H = 80 for the CP/M release (H = 61 for MP/M), and L = 089 for all
releases previous to 2.0, Cp/M 2.0 returns a hexadecimal 20 in
register L, with subseguent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file overations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is regquired.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file 1is accessed randomly. The default file control block
normally located at 995CH can be used for random access files, since
bytes ©@87DH, 9B7EH, and @07FH are available for this purpose. For
notational purposes, the FCB format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research,)

13

0 AU W IR GAD 4D W VD G AN HAP G P G G D D N WD YHS AN GNP SND G SER TND W RS GNP S CHD G S D GED G G S P S D WUD AUD D AN GER S T D N A WD W N W W W

00 01 02 ... 686 69 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr

fl...£8

tl,t2,t3

ex

sl

s2

rc

dad...dn

cr

réd,rl,r2

drive code (0 - 16)

=> use default drive for file
1 => auto disk select drive a,
2 => auto disk select drive B,

LI

16=> auto disk select drive P,

in ASCII
bit = 0

contain the file name
upper case, with high

contain the file type in ASCII
upper case, with high bit = @
£l’, t2', and t3' denote the

bit of these positions,

tl’ 1 => Read/Only file,

£2* 1 => SYS file, no DIR list

contains
normally
in range

the current extent number,
set to 98 by the user, but
@ - 31 during file I/0

reserved for internal system use

reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

record count for extent "ex,"
takes on values from 8 - 128

filled-in by CP/M, reserved for
system use

current record to read or write in
a seguential file operation, normally
set to zero by user

optional random record number in the
range #-65535, with overflow to r2,
rf,rl constitute a 16-bit value with
low byte rd, and high byte rl

Function 15: Open File,

Tne Open File operation is identical to previous

with the
previous versions of CP/M defined this

byte

as

exception that byte s2 is automatically zeroed.

zero,

definitions,

but made

Note that

no

(All Information Contained Herein is Proprietary to Digital Research.)

14

%

checks to assure compliance, Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: Search for First,

Search First scans the directory for a match with the file given
by the FCB addressed by DE, The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to #,
1, 2, or 3 is returned indicating the file is present, In the case
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from £1 through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This 1latter function is not normally used by
application programs, put does allow complete flexibility to scan all
current directory values., If the dr field is not a question mark, the
s2 byte is automatically zeroed.

function 18: Search for Next.

The Search Next function 1is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions, ‘

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range @ to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File.

The Make File operation is identical to previous versions of

CP/M, except that byte s2 is zeroed upon entry to the BDOS.

Function 23: Rename File,

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range ¥ to 3 is returned.

Function 24: Return Login Vector,

The login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The disk write protect function provides temvorary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector,

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bpit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Fﬁnction 38: Set File Attributes,

The Set. . File Attributes function allows programmatic
manipulation of permanent indicators attached to files, In
particular, the R/0 and System attributes (tl' and t2' above) can be
set or reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

~

D)
\%w?’/

| ;
S’

match, and changes the matched directory entry to contain the selected
inaicators., 1Indicators fl1' through f4' are not voresently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.

Indicators £5' tnrough f£8' and t3' are reserved for future system
exoansion,

Function 31: Get Disk Parameter Block Address.

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display ana space .computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, apolication
programs will not require this facility.

Function 32: Set or Get User Code,

An application program can change or interrogate the currently
active user number by calling function 32, If register E = FF
nexadecimal, then the value of the current user number is returned 1in
register A, where the value is in the range 8 to 31. 1If register E is
not FF, then the current user number is changed to the value of E
{(modulo 32),

Function 33: Read Random.

The Read Random function is similar to the sequential file read
operation of vprevious releases, except that the read overation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r® at 33, rl at 34, and r2 at 35). Note that the seguence
of 24 bpits 1is stored with least significant pyte first (rd), middle
byte next (rl), and high byte last (r2). CP/M release 2.8 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file,

Thus, in version 2.6, the r#,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from @ to 65535, providing access to any particular
record of the 8 megabyte file., In order to process a file using
random access, the base extent (extent #) must first be opened.
Although the base extent may or may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests, The selected record number is then stored
into the random record field (rd,rl), and the BDOS is called to read
the record., Uvpon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17

error code, as listed below, or the value 40 indicating the operation
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record,

Upon each random read operation, the logical extent and current.

record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that 1in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a seguential write operation. You can, of course, simply advance
the random record vosition following each random read or write to
obtain the effect of a sequential I/0 overation.

Error codes returned in register A following a random read are
listed below.

8l reading unwritten data

g2 (not returned in random mode)
#3 cannot close current extent

94 seek to unwritten extent

85 (not returned in read mode)

06 seek past physical end of disk

grror code 61 and 44 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected., Error code 86 occurs whenever byte r2
is non-zero under the current 2,0 release, Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete,

Function 34: Write Randonm.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address, Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspvond to the random record which is
being written, Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

J“‘mw”k\x
{ !

§
N’

N

switch as it does 1in seguential mode under either CP/M 1.4 or CP/M
2.”.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 45, which
indicates that a new extent cannot be created due to directory
overflow.

function 35: Compute File Size,

when computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r6, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is d1, then the file contains the
maximum record count 65536 in version 2.8. Otherwise, bytes rd and rl
constitute a 16-bit value (r® 1is the 1least significant byte, as
before) which is the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written seqguentially, If, instead, the file was created
in random mode and "holes” exist in the allocation, then the file may
in fact contain fewer records than the size indicates. I1f, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BD0OS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As

"each key is encountered, function 36 is called to compute the random

record position for the data corresponding to this key., If the data
unit size is 128 bytes, the resulting record vosition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time,.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM,.COM, the CCpP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this varticular case) and, if found, proceeds to prompt the
console for input., If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nw nR Q

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, resvectively, If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n, If the R command is issued, RANDOM reads
record number n and displays the string value at the console, If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again
The orogram begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label “"ready" where the individual commands are interpreted. The

default file control block at 885CH and the default buffer at 9080H
are used in all disk operations., The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

)
,,»\4/\’”?

which contain the principal inout 1line processor, called *“readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development,

;*t***

« % . ®x
;* sample random access program for cp/m 2.8 *
ok *
. ;***************************t***********************
2100 org l28h :base of tpa
80480 = reboot equ | @0006h ssystem reboot
8ags5 = bdos egu 8865h :bdos entry point
H
v001 = coninp equ 1 ;console input function
gB2 = conout equ 2 ;console output function
8669 = pstring equ 9 sprint string until *'$°
g6pa = rstring equ 19 sread console buffer
gdpvc = version egu 12 ;return version number
20Bf = openf equ 15 :file open function
0410 = closef equ 16 :close function
8816 = makef equ 22 ;make file function
d¥2l1 = readr equ 33 ;read random
4922 = writer eaqu 34 ;write random
4d5¢c = %cb equ #35ch ;default file control block
097é = ranrec egu fcb+33 ;random record position
b87f = ranovi equ fcb+35 ;high order (overflow) byte
088 = buff equ " 9886h sbuffer address
;
ggvd = cr egu gdh ;carriage return
gopa = 1f eqgu dah :line feed
;***
X %*
:* load SP, set-up file for random access *
% *
;*********t****************tt***********************
21906 31bco 1xi sp,stack
: version 2,0?
0163 debc mvi c,version
8185 cduvsey call bdos
8108 fe2d cpi 23h ;version 2,0 or better?
¥lda 42166 jnc versok
: bad version, message and go back
gl19d 111bd 1xi d,badver
8118 cdda@ call print
8113 c3040 jmo reboot
; :
versok:
H correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

8l16
118
8llb
Blle
d11f

8122
9124
4127
g1l2a
2120

312e
8131
9134

8137
#l3a
913d
0140
9142
0144

8147
8149
8l4c
91l4af
2150
p153

8156
158

#15b
d1l5e

(All Information Contained Herein is Proprietary to Digital Research,)

fedf
115cH
cdgse
3¢
c2378

deld
115cd
cdéssd
3c
c2379

113ad
cddagd
c3039

cdeb5d
22740
217£0
3600
fe51
c2568

geld
115cd
cdeso
3c
cab9d
c3d089

fes57
c2898

11449
cddad

mvi c,openf ;open default fcb

1xi d,fcb

call bdos

inr a ;err 255 becomes zero

jnz reaay
;
: cannot open file, so create it

mvi c,makef

1xi d,fcb

call bdos

inr a ;err 255 becomes zero

jnz ready
H
: cannot create file, directory full

1xi d,nospace

call orint

jmp reboot ;back to ccp
H
;*t**************t**********************t***********
;* *
:* loop back to “ready" after each command *
o X *
;***t***t**tkt****t**t*******************#**********
: .
ready:
: file is ready for processing
:

call readcom ;read next command

shld ranrec ;store input record#

1xi h,ranovf

mvi m,d ;clear high byte if set

cpi 'Q* ;quit?

jnz notg
H .
; quit processing, close file

mvi c,closef

1xi d,fcb

call bdos

inr a ;err 255 becomes #

jz error ;error message, retry

jmp reboot ;back to ccp
;***********************************t****t**********
;* *
;* end of quit command, orocess write *
'S *
’
;*t******************t*******************ttt**tk****
notqg:
; not the guit command, random write?

cpi ‘W'

jnz notw
i ,
; this is a random write, f£ill buffer until cr

1xi d,datmsg

call print ;data prompt

22

o
N

2161 Pe7f mvi c,127 ;up to 127 characters

8163 21800 1xi h,buff ;destination
rloop: ;read next character to buff
#l166 c5 push b ; Save counter
8167 e5 push h snext destination
v168 cdc2d call getchr j;character to a
416b el pop h srestore counter
vl6c cl POD b jrestore next to fill
0l6ed fedd - cpi cr send of line?
p16f ca780 jz erloop
: not end, store character
8172 77 mov m,a
8173 23 inx h snext to £fill
¥174 04 dcr c ;counter goes down
8175 c2669 jnz rloop :end of pbuffer?
erloop:
: end of read loop, store g8
8178 3600 mvi m,o
’
: write the record to selected record number
Bl7a Ve22 mvi c,writer
#l7c 115c8 1xi d,fchb
817f cdese call bdos
8182 b7 ora a ;error code zero?
9183 c2b9%¥d jnz error ;message if not
2186 c3372 jmp ready ;: for another record
;*********tt**
« %k *
[
;* end of write command, process read *
' x
;***
notw:
: not a write command, read record?
8189 fe52 cpi 'R’
#18b c2b9g jnz error :skip if not
’
: read random record
d18e fe2l mvi c,readr
8190 115cH 1xi d,fchb
#1933 cdaese call bdos
2196 b7 ora a sreturn code 96?
8197 c2b9%d jnz error
’
: read was successful, write to console
#19a cdcfte call crlf :new line
8194 de8d mvi c,128 smax 128 characters
619f 21800 1xi h,buff ;next to get
wloop:
Bla2 7e mov a,m ;next character
8la3 23 ‘ inx h ;next to get
g1lad e67f ani 7fh imask parity
8la6 ca37@ jz ready s for another command if @0
flad c5 push b ; save counter
Blaa e5 push h ;save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

dlab
dlaa
d1bd
d1bl
d1b2
d1b3
d1b6

A1lby

@1lbc
91bf

glc2
d1c4
81c?

glc8
Plca
d1lcb
Blce

B1lcf
914l
d1d4
9146
#2149

81lda
81db
d1lde
dlaf
flel
gled

(All Information Contained Herein is Proprietary to Digital Research.)

fe2d
d4c84d
el

cl

9d
c2a29
c3378

11598
cddaéd
c3379

dedl
cdg50
c9

gedd2

cddsgd
cY

3edd
cdc8g
Jefla
cdc8g
c9

as
cdcfd
dl
6ed9
cagseg
c9

cpi sgraphic?

cnc putchr ;skip output if not

pop h

pop b

dcr c ;count=count-1

jnz wloop

jmp ready
2222222222222 222t Rt s 2222 a2 A Riti 2222 k2222 s X

*

end of read command, all errors end-uo here *

*
222 AREE R R R RRRRRRERRRLR R 22 R 2 £ 2]

® %8 we we we Ne we
* % % * %

]
error:

1xi d,errmsqg

call print

jmp ready
;****t**********t*****************t*****************
;* *
;* utility subroutines for console i/o *
'S *
;************************************t**tt*********t
getchr:

sread next console character to a

mvi c,coninp

call pdos

ret
i
putchr:

;write character from a to console

mvi c,conout

mov e,a ;character to send

call bdos ;send character

ret
;
crlf:

;send carriage return line feed

mvi a,cr ;carriage return

call putchr

mvi a,lf :line feed

call putchr

ret
;
print:

;print the buffer addressed by de until §

push d

call crlf

pop d ;new line

mvi c,pstring

call bdos ;print the string

ret ‘
H
readcom:

24

e
& ﬁ
7 i

(.

sjread the next command line to the conbuf

8le5 116bd 1xi d,prompt
. fle8 cdda#d call print ;command?
""" @leb Befa mvi c,rstring
fled 117a¢ 1xi d,conbuf :
.91£f8 cdss56 call bdos sread command line
: command line is present, scan it
01£3 21000 1xi h,? ;start with 0000
B1£f6 117cH 1xi d,conlin;command line
61£f9 1la readc: ldax d shext command character
d41fa 13 inx d ;to next command position
8lfb b7 ' ora a ;cannot be end of command -
glfc c8 rz
: not zero, numeric?
- Blfd 4639 sui ‘9’
P1ff fela cpi 10 scarry if numeric
82681 42139 jnc endrd
: add-in next digit
8204 29 dad h e %2
9285 44 mov c,l
0206 44 mov b,h tbc = value * 2
8287 29 dad h 1 %4
0268 29 dad h : %8 .
8289 09 dad b 1%2 + *8 = *1¢
92da 85 adad 1l ;+digit
¥290 6L mov l,a
B26c G2f98 jnc readc ;for another char
d20f 24 inr h soverflow
#2109 c3£99 jmp readc ; for another char
' endrd:
: end of read, restore value in a
8213 c639 adi 'He s command
9215 febl cpi ‘a’ ;translate case?
3217 as rc
: lower case, mask lower case bits
0218 e65f ani 101$1111b
g2la c9 ret
;*************************************k*************
s R *
’
:+* string data area for console messages *
o *
;********************#***********************t******
, - badver:
¥21b 536£79 db 'sorry, you need cp/m version 2§°
nospace:
023a 4e6£29 db ‘no directory spaces$’
datmsg: ,
8244 5479780 db ‘type data: $°
errmsg:
2259 457272 db ‘error, try again.$'
prompt:
826b 4e6570 db ‘next commandg? $°

’

(A1l Information Contained Herein is Proprietary to Digital Research.)

25

;******t*********t******t*****t****t*****t**********

oW ®
;* fixed and variable data area *
«® *
;*t*************************t******t**t*t***********
827a 21 conbuf: db conlen ;length of console buffer
827b consiz: ds 1 sresulting size after read
g27c conlin: ds 32 ;length 32 buffer
9821 = conlen equ $-consiz
;
329¢c ds 32 ;16 level stack
stack:
d2bc ' end

.
&

(All Information Contained Herein is Proprietary to Digital Research.)..

26

o,
)

9, Cp/M 2.0 MEMORY ORGANIZATION,

Similar to earlier versions, CP/M 2.8 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration, Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24k 32k 48k 64k
cep 34091 44000 6400H A400H E400H
BDOS 3CodH 4CO0H 6Co0oH ACOdH EC@0H
BIOS 4A00H 5A002H 7A004 BAGOH FAQB2H

Top of Ram 4FFFH SFFFH TFFFi BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-888 with standard IBM 8" floppy disk drives. The disk
layout is shown below:

Sector Track 960 Module Track #41 .Module
1 (Bootstrap Loader) 4080H BDOS + 480H
2 34928 CCp + 000H 4160H BDOS + 500H
3 34308 CCp + 0809H 4186H BDOS + 580H
4 35208 CCP + 100H 42604 BDOS + 608H
5 3580H CCp + 18dH 4238YH BDOS + 689H
6 3606H CCp + 200H 43808 BDOS + 786H
7 36808 CCp + 288PH 438¢H BDOS + 788H
8 370vH CCp + 3004 44088 BDOS + 886H
9 37804 CCP + 3808H 44808 BDOS + 88#8H

19 38p8H CCp + 40906H 450pH BDOS + 906H
11 3886H CCP + 430H 4580H BDOS + 989H
12 39008 CCP + 500H 46494 BDOS + A@GH
13 3980H CCP + 588H 4680H BDOS + A80H
14 3A00H CCP + 600H 47080H BDOS + B@OH
15 3A80H CCP + 688H _4780H BDOS + B8@H
16 3B@gH CCp + 7086H 48060H BDOS + CO8H
17 3B80H CCP + 780H 4880H BDOS + C8#H
18 3C80H BDOS + 000H 49008 BDOS + DB@H
19 . 3C80H BDOS + 080H 4980H BDOS + D8@H
20 3DpgBH BDOS + 100H 4A06H BIOS + 0PBH
21 3pgPH BDOS + 180H 4A80H BIOS + 086H
22 3EB8H BDOS + 208H 4B86H BIOS + 100H
23 3E80H BDOS + 280H 4B80H BIOS + 18#H
24 3Fd6H BDOS + 396H 4C@0PH BIOS + 200H
25 3F88H BDOS + 380H 4C86H BIOS + 28#H
26 4000 BDOS + 446H 4D60OH BIOS + 38#0H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4, The BDOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track #1. Thus, the CCP is 8UPH (2048
decimal) bytes in length, the BDOS is E80H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. 1In
version 2.0, the BIOS portion contains the standard subroutines of

1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

1d. BIOS DIFFERENCES.

The CP/M 2.0 Basic I/0 System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined, The skeletal form of these
changes are found in the program shown below,

1: org 4000h

2: maclip diskdef

3: jmp boot

4: ; PN

5: = jmp listst ;list status

: jmp sectran ;sector translate

7: disks 4

8: ; large capacity drive

9: bpb equ 16*1824 ;bytes per block

18: rpb equ bpb/128 ;records per block

11: maxb equ 65535/rpb ;max block number
12: diskdef 4,1,58,3,bpb,maxb+1,128,8,2
13: diskdef 1,1,58, ,bpb,maxb+1,128,0,2
14: diskdef 2,0
15: diskdef 3,1
16: ;
17: boot: ret ;nop
13: ;

19: listst: xra a ; nop
29: ret

21: ;

22: seldsk:

23: ;drive number in c

24: 1xi h,d ;0089 in hl produces select error
25: mov a,c :a is disk number 84 ... ndisks-l
26: cpi ndisks ;less than ndisks?

27: rnc ;return with HL = 0038 if not
28: ; proper disk number, return dpb element address
29: mov l,c

39: dad h 1*2

31: dad h 1 %4

32: dad h :*8

33: dad h :*16

34: 1xi d,dpbase

35: dad d ;HL=.dpb

36: ret

37:

38: selsec:

39: ;sector number in ¢

49: 1xi h,sector

4]1: nov m,c

42: ret

43: ;

44: sectran:

45: stranslate sector BC using table at DE
46: xchg sHL = .tran

47: dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

Y
*««‘\\ws/é

/

48: ; ~ @ad b again if double precision tran

49: mov l,m sonly low byte necessary here
50: ; fill both H and L if double vrecision tran
51: ret sHL = ?7?8s

52: ;

53: sector: ds 1

54: endef

55: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jump
vector elements), The 1last two elements provide access to the
“"LISTST" (List Status) entry point for DESPOOL, The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1,4 release, It should be noted that
the 1.4 DESPOOL ovrogram will not operate under version 2.8, but an
update version will be available from Digital Research in the near
future,

The “SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
subroutine, This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below.

A macro library is shown in the 1listing, called DISKDEF,
included on 1line 2, and referenced 1in 12-15., Although it is not
necessary to use the macro lipbrary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all Cp/M 2.8 distribution disks., (See the CP/M 2.0
Alteration Guide for formulas which vyou can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following segquence of
macro statements:

MACLIB DISKDEF
6iéKS n
DISKDEF 0,...
DISKDEF 1,...

e 8 &0 06

DISKDEF n-1

* & & 60

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, @ through n-1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

. (A1l Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable portion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion of your B8I0S 1is defined following the

DISKDEF macros, with the ENDEF macro call immediately preceding the

END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, # to n-1
fsc is the first physical sector number (8 or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 924
(0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 8 or 1. The “lsc* 1is the last
numbered sector on a track. When present, the "“skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created 1if the

skf parameter is omitted (or equal to 8). The "bls" parameter.

specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16334, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The “"dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024, The wvalue of “dir* 1is the total number of
directory entries which may exceed 255, if desired. The *“cks”
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening c¢old or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data 1is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
‘is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically #, since the probability
of changing disks without a restart is quite low. The "ofs" value
determines the number of tracks to skip when this particular drive |is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

5
S

N

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [8] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions, Normally, this parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,J

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS 4
DISKDEF 8,
DISKDEF 1,
DISKDEF 2,
DISKDEF 3,

.26,6,1024,243,64,64,2

e e

ENDEF

with all disks having the same parameter values of 26 sectors vper
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M.
2.0. All disks have identical parameters, except that drives @ and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks,"” starting at
address DPBASE which 1is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU §

DPE@: DW XLTO ,0000H,0000H,0000H,DIRBUF,DPBS,CSVE ,ALVH
DPEl: DW XLT@,0000H,0000H,08000H,DIRBUF,DPB@,CSV]1,ALV1
DPE2: DW XLT®,0000H,0000H,06000H,DIRBUF,DPBE,CSV2,ALV2
DPE3: DW XLTO ,0000H,0000H,08000H,DIRBUF,DPBS,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive #
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.8 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT#O,
which is the translation vector for drive 8 in the above example),

(A1l Information Contained Herein is Proprietary to Digital Research,)

31

followed - by three 16-bit “scratch* addresses, followed by the
directory buffer address, disk parameter block address, check vector

address, and allocation vector address, The check and allocation

vector addresses are dgenerated by the ENDEF macro in the ram area

following the BIOS code and tables. ™
The SELDSK function is extended somewhat in version 2.8. In

particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.4,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE@, DPEl, DPE2, or DPE3, in the
above example) in register HL, If SELDSK returns the value HL =
@08PH, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal., Program lines 22 through 36 give
a sample CP/M 2.8 SELDSK subroutine, showing only the disk parameter
header address calculation,

The subroutine SECTRAN is also included in version 2.8 which
performs the actual 1logical to physical sector translation. 1In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read, Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.8, Thus, the BDOS sends
- sequential sector numbers to SECTRAN, starting at sector number 4,
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the 8DOS. The B8DOS
subseguently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" parameter
‘is omitted in the macro call, and SECTRAN simply returns the same
value which it receives, The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified 1n the
DISKDEF macro call:

XLT@: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = @8 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT@ in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate tapnle, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L, Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL,

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research,)

32

(N

which is loaded upon cold start, but must be available between the
BIOS and the end of memory, The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro., For a
standard four-drive system, the ENDEF macro might produce

4C72 = BEGDAT EQU $
(data areas)
4DBD = ENDDAT EQU $
813C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB¥UH-1, and occupies 913CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.4 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes, Information is provided by the BDOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing plocking and deblocking to take place at the
BIOS level.

See the "CP/M 2.8 Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

AN INTRODUCTION TO CpP/M FEATIRES AND FACILITIES

.
.

e
4 EY

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the ©prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94#86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

-
// kY

£

COPYRIGHT

Copyright (c) 1986 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94g#86.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's

programs.
DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any

implied warranties of merchantibility or €fitness for any"

particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

1.
2.

3.

5.
" 6.

/£

7.
8.

N

Table Of Contents

An Introduction To CP/M Features and Facilities

INtroductioONeceescscecasscsssccoscacacocansld
Functional Description Of CP/Meeicscaceseal?
2.1 General Command Structur€ceececcsceese3d?
2.2 File ReferencesSeeesesecscseacsccccscceald?
Switching DiskSeeeeeocessesvocscssecsceseedl
The Form Of Built-in Commands.eececececacecedl
4.1 ERA afn Clecececoscsncsnssessssssssccsseidl
4‘2 D‘R afn cr..............Q......O..“.42
4-3 REN ufn1=ufn2 Cr....ooooooo00000.000042
4.4 SAVE D UfN Cleseecccscsncscscscascscsd3
4.5 TYPE UfN Cleceecosesesssccaccsscscscasasd3
Line Editing And Output Controlececsccecssed5

Transient CommandsSeeccescescocscssscccsesesdb

6.1 STAT cr‘.OC.l....000000000000000‘000047
ZASM ufn cr..OQ.......O.........I..O.QSO
3 LOAD ufn Crecececocescccncsscsscassseedl
4 P‘P cr...............‘....0..........52
5 ED Ufn Cr......O..........'..'.......59
6 SYSGEN Clocesocscsecssscancssscsssanssscsschl
7 SUBMIT ufn parm#1 parm#n Crececeseea62
8 DUMP UfN Clececscasesssesscscccosccassbd

6.9 MOVCPM cr..'.....l...'.......‘...'...64
BDOS Error MessageSeccesescoscseccsscssonesab?
Operation Of CP/M On The MDScccesecscscess69

S

1. INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM-campatible flexible disks for backup storage, Using a computer
mainframe based upon Intel’s 8088 microcomputer, CP/M provides a general
envirorment for program construction, storage, and editing, along with
assembly and program check-out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilog Z-808) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives, A
detailed discussion of the modifications regquired for any particular hardware
enviromment is given in the Digital Research document entitled "CP/M System
Alteration Guide."” Although the standard Digital Research version operates on
a single-density Intel MIS 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a
camprehensive file management package, The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access, Using this file system, a large number of
distinct programs can be stored in both source and machine executable form,

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystems, Optional software includes a powerful
Intel-campatible macro assembler, symbolic debugger, along with wvarious
high-level languages, When coupled with CP/M’s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)
BDOS Basic Disk Operating System

cCp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRT, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware enviromment by "patching® this portion of
CP/M, The BDOS provides disk management by controlling one or more disk
drives containing independent file directories, The BDOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizing head movement across the disk during access, Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files, The

35

BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations,

"CLOSE Close a file after processing.

RENAME Change the name of a particular file,

READ Read a record from a particular file,

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further
operations,

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers, The standard commands which are available
in the CCP are listed in a following section,

The last segment of CP/M is the area called the Transient Program Area
(TPA), The TPA holds programs which are loaded from the disk under command of
the CCP, During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas, Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA,

It should be mentioned that any or all of the CP/M component subsystems
can be “"overlayed" by an executing program, That is, once a user’s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area, A “"bootstrap" loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the coamplete CP/M
monitor is reloaded fram disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
enviromment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard enviromment by changing the peripheral
drivers to handle the custom system,

36

Seggu®

o~

2, FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console, In general, the CCP

_addresses one of several disks which are online (the standard system addresses

up to four different disk drives)., These disk drives are labelled A, B, C,
and D, A disk is "logged in" if the CCP is currently addressing the disk, In
order to clearly indicate which disk is the currently logged disk, the CCP
always prampts the operator with the disk name followed by the symbol *>"
indicating that the CCP is ready for another cammand, Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version rnumber, All CP/M systems are initially set to operate
in a 16K .memory space, but can be easily reconfigured to fit any memory size
on the host system (see the MOVCPM transient command), Following system
signon, CP/M automatically logs in disk A, prampts the user with the symbol
"A>" (indicating that CP/M is currently addressing disk “A"), and waits for a
command, The caonmands are implemented at two levels: built-in cammands and
transient cammands,

2.1, GENERAL COMMAND STRUCTURE,
Built-in cammands are a part of the CCP program itself, while transient

commands are loaded into the TPA fram disk and executed. The built-in
commands are

ERA Erase specified files,

DIR List file names in the directory,

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the logged disk.

Nearly all of the canmands reference a particular file or group of files, The
form of a file reference is specified below,

2.2, FILE REFERENCES,

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M, These file references can be either
“unambigwus” (ufn) or ‘“ambiguwous” (afn). An unambigwus file reference
uniguely identifies a single file, while an ambiguwous file reference may be

37

satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, Although the secondary name is optional, it usually is generic; that
is, the secondary name "AM," for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a “." as shown below:

PPPPPPPP. SSS
where ppprppppp represents the primary name of eight characters or less, and

sss is the secondary name of no more than three characters, As mentioned
above, the name

DPPPPPPP
is also allowed and is eguivalent to a secondary name consisting of three
blanks, The characters used in specifying an unambiguwus file reference
cannot contain any of the special characters

<> = 2% []
while all alphanumerics and remaining special characters are allowed,

An ambiguwus file reference is used for directory search and pattern
matching, The form of an ambiguous file reference is similar to an
unambiguwus reference, except the symbol "?" may be interspersed throughout
the rimary and secondary names, In various cammands throughout CP/M, the “?*
symbol matches any character of a file name in the "?" position, Thus, the
ambiguwous reference

X?Z2.,C2M

is satisfied by the unambiguwous file names
XYz .QOM

and
X3z ,CAM

Note that the ambiguwous reference

* %

is equivalent to the ambiguous file reference
22222222,22?
while

38

S

' PPPPPPPP. *
and :
* 588
are abbreviations for

PPPPPPPP. 77?2
?7?2?22772.888

and

respectively, As an exahple,
DIR * *

is interpreted by the CCP as a command to list the names of all\ disk files in
the directory, while

DIR X,Y

searches only for a file by the name X.Y Similarly, the command
DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk vhich satisfy
this ambiguwous reference,

The following file names are valid unambiguwous file references:
X XY2 GAMMA
X.Y XYz ,0OM GAMMA,1
As an added coawenience, the programmer can generally specify the disk
drive nave along with the file name, In this case, the drive name is given as
a letter A through Z followed by a colon (:)., The specified drive is then
*logged in" before the file operation occurs, Thus, the following are valid
file names with disk name prefixes:
AX.Y B:XYZ C:GAMMA
2 :XYZ ,QOM B:X.,A?M C:* ,ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are processed by
the CCp, :

39

3. SWITCHING DISKS,

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console imput, Thus, the sequence of prompts and cammands shown below might
occur after the CP/M system is loaded fram disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A,

SAMPLE ASM

SAMPLE PRN

A>B: Switch to disk B,

B>DIR *,ASM List all "AsM" files on B.

DUMP ASM

FILES ASM

B>A: Switch back to A, O

40

N
£

4. THE FORM (F BUILT-IN COMMANDS,

The file and device reference forms described above can now be used to
fully specify the structure of the built-in caommands, In the description
below, assume the following abbreviations:

ufn - mambiguwus file reference
afn - ambiguous file reference
cr - carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally, Thus, lower case alphabetics are treated as if
they are upper case in canmand names and file references,

4,1 ERA afn cor

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the *>*), The files
which are erased are those which satisfy the ambiguous file reference afn,
The following examples illustrate the use of ERA: A

ERA X.Y The file named X.Y on the currently logged disk
is removed fram the disk directory, and the space
is returned,

ERA X,* All files with primary name X are removed fram
the current disk,

ERA * ASM All files with secondary name ASM are removed
fram the current disk,

ERA X?Y,C?M All files on the current disk which satisfy the
ambiguwous reference X?Y,C?M are deleted,

ERA * * Erase all files on the current disk (in this case
the CCP prampts the console with the message
*ALL FILES (Y/N)?"
which requires a Y response before files are
actually removed),

ERA B:* ,PRN All files on drive B which satisfy the ambiguous

reference 2?2?7227 .PRN are deleted, independently
of the currently logged disk,

41

4.2, DIR afn cr

The DIR (directory) cammand causes the names of all files which satisfy
the ambigwus file name afn to be listed at the console device, As a special
case, the cammand

DIR

lists the files on the currently logged disk (the cammand “DIR* is equivalent
to the canmand "DIR *,**), Valid DIR cammands are shown below,

DIR X.Y

DIR X?Z.C?M

DIR ?2.Y

Similar to other CCP cammands, the afn can be rreceded by a drive name,

The following DIR cammands cause the selected drive to be addressed before the
directory search takes place,

DIR B:

DIR B:X.Y

DIR B:*,A?M

If no files can be found on the selected diskette which satisfy the
directory request, then the message "NOT FOUND” is typed at the console,

4,3, REN ufnl=ufn2 cr

The REN (rename) cammand allows the user to charnge the names of files on
disk. The file satisfying ufn2 is changed to ufnl, The currently logged disk
is assumed to contain the file to rename (ufnl), The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user’s console
supports this graphic character, Examples of the REN command are

REN X,Y=Q.R The file Q.R is changed to X.Y.
REN X¥Z ,Q0M=XYZ , XXX The file XYZ .XXX is changed to XYZ.COM,
The operator can precede either ufnl or ufn2 (or both) by an optional
drive address, Given that ufnl is preceded by a drive name, then ufn2 is
assuped to exist on the same drive as ufnl, Similarly, if ufn2 is preceded by

a drive name, then ufnl is assumed to reside on that drive as well, If both
ufnl ard ufn2 are preceded by drive names, then the same drive must be

42

I

»«,\

e

specified in both cases, The following REN cammands illustrate this format,

REN A:X,ASM = Y ASM The file Y.ASM is changed to X.ASM on
drive A,

REN B:ZAP,BAS=Z0T.RAS The file ZOT,BAS is changed to ZAP,BAS
on drive B,

REN B:A,ASM = B:A,BAK The file A.BAK is renamed to A.ASM on
drive B,

If the file ufnl is already present, the REN command will respond with
the error “FILE EXISTS" and not perform the change, If ufn2 does not exist on
the specified diskette, then the message “NOT FOUND* is printed at the
console,

4,4, SAVE n ufn cr
The SAVE canmand places n pages (256-byte blocks) onto disk fram the TPA
and names this file ufn, In the CP/M distribution system, the TPA starts at
160H (hexadecimal), which is the second page of memory. Thus, if the user’s
program occupies the area fram 1@PH through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed, Examples are:
SAVE 3 X,00M Copies 160H through 3FFH to X,00M,
SAVE 460 O Copies 10@H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal),
SAVE 4 X,Y Copies 160H through 4FFH to X,Y.

The SAVE command can also specify a disk drive in the afn portion of the
cammand, as shown below.

SAVE 10 B:Z0OT,0OM Copies 10 pages (166H through @AFFH) to
the file 20T.OOM on drive B,

4.5. TYPE ufn cr
The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device, Valid TYPE commands are

TYPE X.Y

43

TYPE X.PIM

sew«wn %\

TYPE XXX
The TYPE cammand expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum, The ufn can also reference a drive name as
shown below,

TYPE B:X,PRN The file X.PRN fram drive B is displayed.

44

5. LINE EDITING AND OUIPUT CONTROL.

‘
- The CCP allows certain line editing functions while typing command lines.
rubout Delete and echo the last character typed at the
console,
ctl-U Delete the entire line typed at the console,
ctl-X (Same as ctl-U)
ctl-R Retype current cammand line: types a “clean line* fol-
lowing character deletion with rubouts,
ctl-E Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.,
ctl-C CP/M system reboot (warm start)
ctl-2 End input from the console (used in PIP and ED),
The control functions ctl-P and ctl-S affect console output as shown below,
ctl-p Copy all subsequent console output to the currently
assigned list device (see the STAT cammand), Output
is sent to both the list device and the console device
(H until the next ctl-P is typed,

ctl-S Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S), This feature is
used to stop ocutput on high speed consoles, such as
CRI''s, in order to view a segment of output before con-
tinuing,

Note that the ctl-key seguences shown above are obtained by depressing the
control and letter keys simultaneously, Further, CCP cammand lines can

generally be up to 255 characters in length; they are not acted upon until the
carriage return key is typed.

45

6. TRANSIENT COMMANDS,

Transient cammands are loaded fram the currently logged disk and executed
in the TPA, The transient camands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD cammand definition) .

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment,

ASM Load the CP/M assembler and assemble the specified
program from disk,

LQAD Load the file in Intel “hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new canmand under the CCPp),

pDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations,

ED Load and execute the CP/M text editor program,

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of cammands for batch processing,

DUMP Dump the contents of a file in hex,

MOVCPM quenetate the CP/M system for a particular memory
size,

Transient cammands are specified in the same manner as built-in commands, and
additional cammands can be easily defined by the user, As an added
convenience, the transient canmmand can be preceded by a drive name, which
causes the transient to be loaded fram the specified drive into the TPA for
execution, Thus, the cammand

B:STAT

causes CP/M to temporarily "log in®" drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing,

46

N

The basic transient commands are listed in detail below,
6.1, STAT cr

The STAT command provides general statistical information about file

storage and device assignment, It is initiated by typing one of the following
forms:

STAT cr
STAT “cammand line* cr

Special forms of the "conmand line” allow the current device assignment to be
examined and altered as well, The various command lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty cammand line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

X: R/W, SPACE: nnnk
or o
x: R/O, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start), The space
remaining on the diskette in drive x' is ngen
in kilobytes by nnn,

STAT x: cr If a drive name is given, then the drive is
selected before the storage is computed, Thus,
the command "STAT B:* could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK
STAT afn cr The command line can also specify a set of files
to be scanned by STAT, The files which satisfy
afn are listed in alphabetical order, with stor-
age requirements for each file under the heading

RECS BYTS EX D:FILENAME,TYP
rrrr bbbK ee d:pppppprp.sss

where rrrr is the mmber of 128-byté records

47

allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1924),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...Z),
preppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name, After listing the individual
files, the storage usage is summarized.

STAT x:afn cr As a convenience, the drive name can be given
ahead of the afn, In this case, the specified
drive is first selected, and the form “STAT afn*
is executed,

STAT x:=R/0 cr This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place, When a disk is read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT cammand also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals “CP/M Interface
Guide* and "CP/M System Alteration Guide"), In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices, The four logical devices are
named:

QON: The system console device (used by CCP

for cammunication with the operator)
| RDR: The paper tape reader device
PUN: The paper tape punch device
LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M, Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape, In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

43

e
0

TV Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:,
output goes to current LST: device)

UCl: o User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: : User-defined reader $2

PTP: Paper tape punch (high speed punch)

UP1: User—defined punch #1

UP2: User-defined punch #2

LPT: Line printer

ULl: User-defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply., That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes,
The exact correspordence and driving subroutine is defined in the BIOS portion
of CP/M, In the standard distribution wversion of CP/M, these devices
correspord to their names on the MDS 808 development system,

The possible logical to physical device assignments can be displayed by
typing '
STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

QON. = : CRT: BAT: UCl:
RDR: = TIY: PIrR: URl: UR2:
PIN: = s PI'P: UPl: UP2:
IST: = TTY: CRT: LPT: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line, The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

49

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the 1list might
appear as follows:

1388

The current logical to physical device assignment can be changed by typing a
STAT canmand of the form

- STAT 1d1 = pdl, 1d2 = pd2 , ... , 1dn = pdn cr
where 1dl through ldn are logical device names, and pdl through pdn are
campatible physical device names (i.e., 1di and pdi appear on the same line in

the "VAL:" cammand shown above), The following are valid STAT commands which
change the current logical to physical device assignments:

6.2, AM ufn cr
The ASM command loads and executes the CP/M 8880 assembler, The ufn
specifies a source file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM cammands are valid:
ASM X
ASM GAMMA

The two-pass assembler is automatically executed, If assembly errors occur
during the second pass, the errors are printed at the console,

The assembler produces a file
X PRN
where x is the primary name specified in the ASM command, The PRN file
contains a listing of the source trogram (with imbedded tab characters if

present in the source program), along with the machine code generated for each
statement and diagnostic error messages, if any, The PRN file can be listed

50

7

at the console using the TYPE conmand, or sent to a peripheral device using
PIP (see the PIP cammand structure below), Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 colums (program addresses and hexadecimal
machine code, for example), Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator’s guide) by renovmg the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro” cammand). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly, The file

x.HEX

is also produced which contains 8888 machine language in Intel “hex” format
suitable for subseguent loading and execution (see the LOAD command), For
camplete details of CP/M’s assembly language program, see the “CP/M Assembler
Language (ASM) User ‘s Guide,”

Similar to other transient commands, the source file for assembly can be
taken fram an a.ternate disk by prefixing the assembly language file name by a
disk drive name, Thus, the camnand

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the
source program ALPHA,ASM on drive B, The HEX and PRN files are also placed on
drive B in this case.

6.3, LAAD ufn cr

The LOAD cammand reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed, The file name ufn is assumed to be of the form

x .HEX |

and thus only the name x need be specified in the command, The LOAD command
creates a file named

x,COM
vhich marks it as containing machine executable code, The file is actually
loaded into memory and executed when the user types the file name X
immediately after the prampting character ">* printed by the CCP,
In general, the CCP reads the name x following the prampting character

and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

51

x . OOM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can "invent® new cammands in the CCP, (Initialized disks contain the
transient commands as (OM files, which can be deleted at the user’s option,)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name, Thus,

LOAD B:BETA

brings the LOAD program into the TPA fram the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA,HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 100H, the beginning of the TPA, Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read, Thus,
LOAD must be used only for creating CP/M standard "OOM" files which operate in
the TPA., Programs which occupy regions of memory other than the TPA can be
loaded under DDT,

6.4. PIP cr

PIP is the CP/M Peripheral Intercharge Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and cambine
disk files, The PIP program is initiated by typing one of the following forms

{1) PIP cr
(2) PIP “command line* cr

In both cases, PIP is loaded into the TPA and executed, In case (1), PIP
reads cammand lines directly from the console, prompted with the ®**
character, wntil an empty cammand line is typed (i.,e., a single carriage
return is issuved by the operator), Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP cammand is equivalent to the first, except that the single command
line given with the PIP cammand is automatically executed, and PIP terminates
immediately with no further prampting of the console for input command lines,
The form of each cammand line is

destination = source#l, source#2, ... , source#n cr

where “"destination* is the file or peripheral device to receive the data, and

52

o

o

2N
L
\‘%‘Mo/

P

*source#l, ..., sourcefn” represents a series of one or more files or devices
which are copied fram left to right to the destination, '

When multiple files are given in the command line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption), The egual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability, Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the total cammand line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width),

The destination and source elements can be unambiguous references to CP/M
source files, with or without a preceding disk drive name, That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored, Wwhen
the drive name is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is complete, If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condition arises). The following cammand lines (with explanations to the
right) are valid as input to PIP:

X=Yecr Copy to file X from file Y,
where X and Y are wmambiguous
file names; Y remains uncharnged,

X=Y,2 cr Concatenate files Y and Z and
copy to file X, with Y and 2
unchanged,

X ASM=Y ASM,Z . ASM,FIN.ASM cr Create the file X.ASM from the

concatenation of the Y, Z, and
FIN files with type ASM,

NEW,.20T = B:OLD,ZAP cr Move a copy of OLD,Z2AP fram drive
B to the currently logged disk;
name the file NEW,ZOT,

B:A,U = B:B.V,A:C.W,D.X cr Concatenate file B,V fram drive B
) with C.W from drive A and D.X.
fram the logged disk; create
the file A.U on drive B,

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives, The abbreviated forms are

53

PIP x:=afn cr
PIP x:=y:afn cr
PIP ufn = y: cr
PIP x:ufn = y: cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive x (x = A...Z). The second form is
equivalent to the first, where the souyrce for the copy is drive y (y = A...
Z). The third form is eguivalent to the cammand "PIP ufn=y:ufn cr" which
copies the file given by ufn fram drive y to the file ufn on drive x, The
fourth form is equivalent to the third, where the source disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases, If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied, If a file exists by the same name as the
destination file, it is removed upon successful campletion of the copy, and
replaced by the copied file,

The following PIP cammands give examples of wvalid disk-to-disk copy
operations:

B:=*,0OM cr Copy all files which have the
secondary name "COM" to drive B
from the current drive,

A:=B:ZAP.* cr Copy all files which have the
primary name “ZAP" to drive A
fram drive B,

ZAP ,ASM=B: cr Equivalent to ZAP,ASM=B:ZAP,ASM
B:ZOT,(OM=A: cr Equivalent to B:Z0T,COM=A:Z0T,COM
B:=GAMMA,BAS cr Same as B:GAMYA,BAS=GAMMA,BAS
B:=A:GAMMA _BAS cr Same as B:GAMMA _BAS=A:GAMMA BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system., The device names are the same as given under the
STAT cammand, along with a number of specially named devices, The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

54

5

| —

£

TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PIR: (reader), URl: (reader), UR2: (reader)
(pnch) , UPl: (punch), UP2:" (punch)

(list), ULl: (list)

(Note that the "BAT:" physical device is not included, since this assigrnment
is used only to indicate that the RDR: and LST: devices are to be used for
console imput/output,)

The RDR, IST, PUN, and OON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular 1/0 system,
(The current physical device mapping is defined by IOBYTE; see the "“CP/M
Interface Guide” for a discussion of this function), The destination device
must be capable of receiving data (i.e,, data cannot be sent to the punch),

-and the source devices must be capable of generating data (i.e,, the LST:
~device cannot be read). .

The additional device names which can be used in PIP cammands are

NUL: Send 48 "nulls” (ASCII 8°s) to the device
(this can be issued at the end of punched output).
ECF: Send a CP/M end~of-file (ASCII ctl-Z) to the .

destination device (sent automatically at the
end of all ASCII data transfers through PIP),

INP: Special PIP input source which can be *"patched®
into the PIP program itself: PIP gets the input
data character-by~character by CALLing location
163H, with data returned in location 109H (parity
bit must be zero).

OUr: Special PIP output destination which can be
patched into the PIP program: PIP CALLs location
1068 with data in register C for each character
to transmit, ‘Note that locations 169H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DIT operator s manual),

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP cammands, In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files), Data from each device or
file is concatenated fram left to right until the last data source has been

55

read, The destination device or file is written using the data fram the
source files, and an end-of-file character (ctl-2) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is changed to the actual file name
only upon successful campletion of the copy. Files with the extension *“COM*
are always assumed to be non-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices), PIP will respond with the message "ABORTED"
to indicate that the coperation was not campleted, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT commard,

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader, In this case, the PIP program checks to ensure that the.rsource
file contains a properly formed hex file, with legal hexadecimal values and
checksum records, When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches), Wwhen the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read, If the
tape position cannot be properly read, simply continue the read (by typing a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed, For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device, In this case, the PIP program reads the device and monitors the
keyboard, If ctl-Z is typed at the keyboard, then the read operation is
terminated normally,

valid PIP cammands are shown below,

PIP IST: = X,PRN cr Copy X.PRN to the LST device and
terminate the PIP program,.

PIP cr Start PIP for a sequence of
cammands (PIP prampts with "**),

*(ON:=X,ASM,Y,ASM,2 ,ASM cr Concatenate three ASM files and
copy to the CON device,

*X . HEX=CON: ,Y . HEX,PTR: cr Create a HEX file by reading the
CON (until a ctl-Z is typed), fol-
lowed by data from Y,HEX, followed
by data from PTR until a ctl-2 is
encountered,

*cr Single carriage return stops PIP,

56

{ i

o,

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 46 nulls to the punch device;
then copy the X.,ASM file to the
punch, followed by an end-of-file
(ct1-Z) and 48 more mull charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right sgquare brackets, separated by zero or more blanks, Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device., Generally, each parameter can
be followed by an optional decimal integer value (the S and Q parameters are
exceptions), The valid PIP parameters are listed below,

B Block mode transfer: data is buffered by PIP until an ASCII
x~-off character (ctl-S) is received from the source device,
This allows transfer of data to a disk file fram a continuous
reading device, such as a cassette reader, Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
imput data, The amount of data which can be buffered is de~
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device,

E Echo all transfer operations to the console as they are being
performed,
F Filter form feeds from the file, All imbedded form feeds are

removed, The P parameter can be used smultaneously to
insert new form feeds,

H Hex data transfer: all data is checked for proper Intel hex
file format, Non-essential characters between hex records
are removed during the copy operation., The console will be
prampted for corrective action in case errors occur,

I Ignore “:88" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case,

N - Add line numbers to each line transferred to the destination

starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon, If N2

is specified, then leading zeroes are included, and a tab is
inserted following the number, The tab is expanded if T is

57

Set.

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored,

Pn Include page ejects at every n lines (with an initial page
eject), If n=1 or is excluded altogetber, page ejects
occur every 68 lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

0sfz Quit copying fram the source device or file when the
string s (terminated by ctl-Z) is encountered,

Ss?z Start copying fram the source device when the string s is
encountered (terminated by ctl-Z), The S and Q parameters
can be used to “abstract” a particular section of a file
(such as a subroutine), The start and quit strings are al-
ways ‘included in the copy operation,

NOTE - the strings following the s and g parameters are

translated to upper case by the CCP if form (2) of the

PIP canmand is used., Form (1) of the PIP invocation, how-

ever, does not perform the automatic upper case translation, P
(1) PIP cr \
(2) PIP "cammand line® cr

Tn Expand tabs (ctl-I characters) to every nth colum during the
transfer of characters to the destination fram the source,

U Translate lower case alphabetics to upper case during the
the copy operation,

v Verify that data has been ¢opied correctly by rereading
after the write operation (the destination must be a disk
file),

z Zero the parity bit on irmpat for each ASCII character.

The following are vaHd PIP commands which specify parameters in the file
transfer:

PIP X, ASM=B:[v] cr Copy X.ASM fram drive B to the current drive
and verify that the data was properly copied,

PIP LPT:=X,AM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth colum, and
translate lower case alphabetics to upper

58

‘Z‘,MM»»\;

s

p—
£ s
{ b

PIP PWN:=X,HEX[i],Y.20T[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.20T, which contains hex records, including
any ":008" records which it contains,

PIP X.LIB = Y.ASM [sSUBRl:Tz qJMP 137z] cr Copy from the file Y.ASM
into the file X,LIB, Start the copy when the
string "SUBR1:" has been found, and quit copy-
ing after the string “JMP L3" is encountered,

PIP PRN:=X,ASM([p50] Send X.ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 56th line, Note that
nt8p6d is the assumed parameter list for a PRN
file; p50 overrides the default value,.

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M enviromment, Complete details of
operation are given the ED user’s manual, "ED: a Context Editor for the CP/M
Disk System,” In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence), There is no
practical restriction on line length (no single line can exceed the size of
the working memory), wvhich is instead defined by the number of characters
typed between cr’s, The ED program has a mumber of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M., Although the CP/M has a
limited memory work space area (approximately 50088 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area,

Upon initiation, ED creates the sgpecified source file, if it does not
exist, and opens the file for access, The programmer then “appends" data from
the source file into the work area, if the source file already exists (see the
A cammand), for editing, The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command),
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED X.AM cr

59

the ED program creates an intermediate work file with the name

X.$$9

to hold the edited data during the ED run, Upon campletion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM, Thus, the X,BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent wversion, and
renaming the previous wversion, Suppose, for example, that the current X,ASM
file was improperly edited; the seguence of CCP cammand shown below would
reclaim the backup file,

DIR X.* Check to see that BAK file
is available,

ERA X.ASM Erase most recent version,

REN X.ASM=X,BAK Rename the BAK file to ASM,

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q cammand) without destroying the original file, 1In this case, the
BAK file is not created, and the original file is always intact,

The ED program also allows the user to “ping-pong“ the source and create
backup files between two disks, The form of the ED cammand in this case is

ED ufn d:

where ufn is the nare of a file to edit on the currently logged disk, and 4 is
the nare of an alternate drive, The ED program reads and processes the source
file, and writes the new file to drive 4, using the name ufn. Upon campletion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following cemmand is valid:

ED X.AM B:

which edits the file X.ASM on drive A, creating the new file X.$$S on drive
B. Upon campletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM, For user convenience, the currently logged
disk becomes drive B at the end of the edit., Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS
is printed at the console as a precaution against accidently destroying a

source file., In this case, the operator must first ERAse the existing file
and then restart the edit operation,

60

PN

P

Similar to other transient cammands, editing can take place on a drive
different fram the currently logged disk by preceding the source file name by
a drive name, Examples of valid edit requests are shown below

ED A:X.ASM Edit the file X.,ASM on drive A, with
new file and backup on drive A,

ED B:X.,ASM A: Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X.ASM
on drive B to X,BAK, and change X.$$$
on drive A to X, ASM,

6.6. SYSGEN cr

The SYSGEN transient cammand allows generation of an initialized diskette

containing the CP/M operating system, The SYSGEN program prompts the console
for canmands, with interaction as shown below,

SYSGEN cr ' Initiate the SYSGEN program.
SYSGEN VERSION m,m SYSGEN sign-on message,

SOURCE IRIVE NAME (OR RETURN TO SKIP)
Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys-
tem; usually A, If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only., Typing a drive name
x will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
x (x isone of A, B, C, or D),
Answer with cr when ready,

FUNCTION COMPLETE System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
If a diskette is being ini-
tialized, place the new disk
into a drive and answer with
the drive name, Otherwise, type
a cr and the system will reboot
from drive A, Typing drive name
x will cause SYSGEN to prampt

61

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION (OMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon campletion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM-campatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate OOM files
from an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files fram an existing diskette by typing the PIP
command

PIP B: = A: * *[v] cr

which copies all files fram disk drive A to disk drive B, and verifies that
each file has been copied correctly. The name of each file is displayed at
the console as the copy operation proceeds, :

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M,

6.7. SUBMIT ufn parm#l ,.. parmin cr

The SUBMIT cammand allows CP/M caommands to be batched together for
automatic processing, The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB.* The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype cammands, and, if no errors occur, the file of
substituted canmands are processed sequentially by CP/M,

62

g

-
P

The prototype cammand file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corresponding to the mumber of actual parameters which will be included when
the file is submitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ... parmin are paired with the formal parameters
$1 ... $n in the prototype cammands, If the mumber of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted cammands with the name '

$$5.SUB

on the logged disk, When the system reboots (at the termination of the
SUBMIT), this command file is read by the CCP as a source of input, rather
than the console, If the SUBMIT function is performed on any disk other than
drive A, the conmands are not processed until the disk is inserted into drive
A and the system reboots, Further, the user can abort command processing at
any time by typing a rubout when the canmand is read and echoed, 1In this
case, the $$$.SUB file is removed, and the subsequent commands come from the
console, Command processing is also aborted if the CCP detects an error in
any of the cammands, Programs which execute under CP/M can abort processing of
canmand files when error conditions occur by simply erasing any existing
8.SUB file,

In order to introduce dollar signs into a SUBMIT file, the user may type

a "$$" which reduces to a single "$" within the command file, Further, an

up-arrow symbol *** may precede an alphabetic character x, which ;xoduces a
single ctl-x character within the file,

The last command in a SUB file can initiate another SUB file, thus
allowing chained batch cammands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype
commands
AM $1
DIR $1.*
ERA * BAK
PIP $2:=$1,PRN
ERA $1.PRN

and the cammand
SJBM;TAS&BLXPRNcr

is issued by the operator, The SUBMIT program reads the ASMBL.SUB file,

‘smbstituting "X" for all occurrences of $1 and “PRN" for all occurrences of

$2, resulting in a $$$.SUB file containing the commands

63

AM X

DIR X.*

ERA * BAK

PIP PRN:=X,PRN
ERA X.PRN

which are executed in sequence by the CCp,

The SUBMIT function can access a SUB file which is on an alternate drive
by mreceding the file name by a drive name, Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A,

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form, The file contents are listed sixteen bytes at a time,
with the absolute byte address 1listed to the left of each 1line in
hexadecimal, Long typeouts can be aborted by pushing the rubout key during
printout, (The source listing of the DUMP program is given in the "CP/M
Interface Guide” as an example of a program written for the CP/M envirorment,)

6.9. MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size, Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is amitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguwous RAM in the host system (starting aat 0#009H), If
the second parameter is amitted, the system is executed, but not permanently
recorded; if “** is given, the system is left in memory, ready for a SYSGEN
operation, The MOVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation, The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contigu-
ous RAM, starting at 189H), Upon com-
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette, The system
which is constructed contains a BIOS
for the Intel MDS 804,

64

MOVCPM n cr Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above,

MOVCPM * * cr Construct a relocated memory image for
, the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The cammand
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation, The message

READY FOR "SYSGEN" OR
“SAVE 32 CPMxx,COM"

is printed at the console upon campletion, where xx is the current memory size
in kilobytes, The operator can then type

SYSGEN cr Start the system generation,

SOURCE [RIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION IRIVE NAME (OR RETURN T@ REBOOT)
Respond with B t0 write new system
to the diskette in drive B, SYSGEN
will prampt with:

DESTINATION ON B, THEN TYPE RETURN

Ready the fresh diskette on drive
B and type a return when ready,

Note that if you respond with "A* rather than "B" above, the system will be
written to drive A rather than B, SYSGEN will continue to type the prampt:

DESTINATION [RIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a single carriage return, which stops the

65

N
§ %

SYSGEN program with a system reboot,

The user can then go through the reboot process with the old or new
diskette, 1Instead of performing the SYSGEN operation, the user could have

typed
~ SAVE 32 CPMxx,COM

at the campletion of the MOVCPM function, which would place the CP/M memory
" image on the currently logged disk in a form which can be “patched.” This is
necessary when operating in a non~-standard environmment where the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide,”

Valid MOVCPM cammands are given below:

MOVCPM 48 cr Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recording; response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48,C00M"

PO
7

MOVCPM * * cr Construct a maximum memory version of CP/M
and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement,

66

o
H 3

7. BDOS ERROR MESSAGES,

There are three error situations which the Basic Disk Operating System

intercepts during- file processsing, Wwhen one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error
where x is the drive name, and "error” is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The “BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette, This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media, You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats, The MDS-808 controller, for example,
requires two bytes of one’s following the data CRC byte, which is not reguired
in the IBM format, As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s equipment will produce the "BAD SECTOR" message when read
by the MIS, In any case, recovery fram this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation, Note, however, that typing a
return may destroy your diskette inteqgrity if the operation is a directory
write, so make sure you have adequate backups in this case,

The "SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range, In this case, the value of x in the error
message gives the selected drive, The system reboots following any input from
the console,

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS, 1In general, the operator should reboot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are chamged., If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold-
start, but internally marks the drive as read-only. The status of the drive
is subsequently changed to read/write if a warm or cold start occurs, Upon
issuing this message, CP/M waits for imput from the console, An automatic
warm start takes place following any imput,

67

8. OPERATION OF CP/M ON THE MIS,

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed,

CP/M is initiated in essentially the same manner as Intel’s ISIS
operating system, The disk drives are labelled 4 through 3 on the MIS,
corresponding to CP/M drives A through D, respectively, The CP/M system
diskette is inserted into drive @, and the BOOT and RESET switches are
depressed in sequence, The interrupt 2 light should go on at this point, The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates)., The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the "A>"
system prampt, The user can then issue the various resident and transient
canmands

The CP/M system can be restarted (warm start) at any time by pushing the
INT 8 switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT', in which case the DDT program gets control instead,

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity. Note,
however, that the user must not remove a diskette and replace it with another
without rebooting the system (cold or warm start), unless the inserted
diskette is "read only,*

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error, This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure, The user can
optionally elect to ignore the error by typing a single return at the
console, The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation aain,

) Termination of a CP/M session requires no special action, except that it
1s necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics.,

It should be noted that factory-fresh IBM-campatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS "FORMAT* operation produces non-standard
sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

68

than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written under CP/M which causes the MDS 808 controller to reformat with
sequential sector numbering (1-26) on each track,

-——_—

Note: "MIS 88" and "ISIS" are registered trademarks of Intel Corporation.'

69

g,
A,

o
& 4

£

CP/M ASSEMBLER (ASM): USER'S GUIDE

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the ©purposes of inclusion within the reader's
programs.,

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

CP/M ASSEMBLER (ASM): USER'S GUIDE

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

2.
3.

6.
7.

Table Of Contents

CP/M Assembler (ASM): User's Guide

‘ntroduct‘on.l“l..l..l.000000.00000000'0071
Program Format‘..l'....‘."...............72
Forming The Operand.iccececscsccccccscasaaeZd

3.1

N b W

A

o ¢ o o Ve e s o
o

Hbh bbby WWWWW
WN G OU WK -

O

U TY S~
e s O o

L d

v
o e
L% -8

5.6

Labels...D.O.'.....C..00000000‘10000074
Numeric ConstantSeeecseceecccscossscesse?d
Reserved Words............‘.‘.....-.-..75
String ConstantSeeecescestassscsccnses/b
Arithmetic and Logical Operators.....76
Precedence Of OperatorSeecscesccccscee??

mb'er Directives.....0...0......‘.'.0.78

The ORG Directiveeeceesceerasscecncseaas?B
The END Directiveeesosesescssossacoccese??
The EQU Directivecececceeoocnvescecss’9
The SET Directiveeeeccecssocecscencees80
The |F And ENDIF DirectiveSceceesseee80
The DB DirectiveeiecesecasesecencsnacasBl
The DW Directiveeiceeaeescssssseccsseal

ation Codesoouooo...0....00-'00-00000082

Jumps, Calls And Returns.cecseseasceeB3
Immediate Operand Instructions.c.....84
Increment and Decrement

INStruUCtiONSceseesscscessensncscnnsecBd
Data Movement INstruCtionSeecesscesssB84
Arithmetic Logic Unit Operations.....85
Control InstructioONSessscecccsccsceces86

Error MesSageSeceocsesccsssscscscancesncesccdb
Asam‘e Session..‘.O...O..'...........'.087

CP/M Assembler User s Guide

1. INTRODUCTION.

The CP/M assembler reads assembly language source files fram the diskette,
and produces 8888 machine language in Intel hex format. The CP/M assembler is

initiated by typing

AM filename
or
AM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name
filename .ASM

which contains an 8080 assembly language source file., The first and second
forms shown above differ only in that the second form allows parameters to be
passed to the assembler to control source file access and hex and mrint file
destinations,

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.,n is the current wersion munber. In the case of the first cammard,
the assembler reads the source file with assumed file type “ASM* and creates
two output files

filename .HEX
and
filename .,PRN

the "HEX" file contains the machine code corresponding to the original program
in Intel hex format, and the “PRN"” file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second command form can be used to redirect input and output files
fram their defaults. 1In this case, the "parms® portion of the command is a
three 1letter group which specifies the origin of the source file, the
glestination of the hex file, and the destination of the print file. The form
is

filename.plp2p3
where pl, p2, and p3 are single letters

pl: A,B, ..., Y designates the disk name which contains

71

the source file

p2: A,B, ..., ¥ designates the disk name which will re-
ceive the hex file

2 skips the generation of the hex file
p3: A,B, ..., Y designates the disk name which will re-
ceive the print file
X places the listing at the console
2 skips generation of the print file
Thus, the command
ASM X,AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A,
This form of the command is implied if the assembler is run from disk A. That
is, given that the operator is currently addressing disk A, the above command

is equivalent to
AM X
The command
AM X,ABX
indicates that the source file is to be taken from disk A, the hex file is

placed on disk B, and the listing file is to be sent to the console. The
command

AM X,.BZ2Z

takes the source file from disk B, and skips the generation of the hex and
print files (this command is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 assembler. That is, the CP/M
assenbler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. These
extensions are described below.

2. PROGRAM FORMAT,

An assembly lanquage program acceptable as input to the assembler consists
of a sequence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each

72

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the assembler (thus,

multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line4 is an optional decimal integer value representing the source
program 1line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
nunbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name., Further, all lower case
alphabetics become are treated as if they were upper case., Note that the “:"
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X Xy long$name
X yxl: longer $named$data:
X1y2 X1x2 x234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8880 machine operation code. The pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical

operations on these elements. Again, the complete details of properly formed
expressions are given below.

The camment field contains arbitrary characters following the *;" symbol
until the next real or logical end-of-line. These characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a "*" in column one as comment statements,

which are listed and ignored in the assembly process. Note that the Processor

73

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. . This causes an ambiguous
situation when attempting to be compatible with Intel’s language, since
arbitrary expressions are allowed in this case. Hence, programs which use
this side effect to introduce comments, must be edited to place a ;" before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement., All statements
following the END are ignored by the assembler,

3. FORMING THE CPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements, Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 1l6-bit value during the assembly., Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be 2zero, The

restrictions on the expression significance is given with the individual
instructions. :

3.1. Lamls.

As discussed above, a label is an identifier which occurs on a particular
statement. 1In general, the label is given a value determined by the type of
statement which it precedes. If the 1label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.,

When a label appears in the operand field, its value is substituted by the
assembler. This value can then be combined with other operands and operators
to form the operand field for a particular instruction,

3.2, Numeric Constants.

A numeric constant is a 16-bit value in one of several bases, The base,

called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
0 octal constant (base 8)

74

y
Sagg?

Q octal constant (base 8)
D decimal constant (base 18)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O is
easily confused with the digit 6. Any mumeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a seqguence of digits, followed by an
optional radix indicator, where the digits are in the appropriate range for
the radix. That is binary constants must be composed of § and 1 digits, octal
constants can contain digits in the range # - 7, while decimal constants
contain decimal digits., Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (1¢p), B (11p), C (12p), D (13D), E (14D), and F
(15D) . Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading @ will always suffice). A constant composed in this
manner must evaluate to a binary number which can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234 1234D 11008 11115000051111$0000B
1234 OFFEH 33770 33778220
33770 #fe3h 12348 offffh

3.3. Reserved Words.

There are several reserved character sequences which have predefined
meanings in the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
Sp 6
PSW 6

(again, lower case names have the same values as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal codes. 1In the case of instructions which require
operands, vwhere the specific operand becomes a part of the binary bit pattern

75

oF +he instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H).

when the symbol "$* occurs in the operand field (not inbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contamed withing the
current logical line.

3.4. String Constants,

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (7). All
strings must be fully contained within the current physical 1line (thus
allowing “!" symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes “’), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be .represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are
‘A ‘AB
‘Walla Walla Wash.’

‘She said "‘Hello”~ to me.’
‘I said "Hello" to her,’

4 -

3.5. Arithmetic and Logical Operators.

The operands described above can be combined in normal algebraic notation
using any cambination of ©properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+hb unsigned arithmetic sum of a and b

a-b unsigned arithmetic difference between a and b
+b unary plus (produces b)

b unary minus (identical to @ - b)

b unsigned magnitude multiplication of a and b

b unsigned magnitude division of a by b

MOD b remainder after a / b

NOT b logical inverse of b (all 8°s become 1°s, 1's

become @°s), where b is considered a 16-bit value

76

"aBANDb bit-by-bit logical and of a and b
aORDb bit-by-bit logical or of a and b
a XORb bit-by-bit logicl exclusive or of a and b
a SHL b the value which results from shifting a to the
left by an amount b, with zero fill
a SHR b the value which results from shifting a to the
- right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as

10+20 16h+37Q 11 /3 (L2+4) SHR 3
(a” and 5£h) + “@° ("B°4+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+l))

Note that all camputations are performed at assembly time as 16-bit unsigned
operations, Thus, -1 is camputed as @1 which results in the value @ffffh
(i.e., all 1°s). The resulting expression must fit the operation code in
which it is used. 1If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation "ADI =1" produces an error message (-1
becomes Bffffh which cannot be represented as an 8 bit value), while "ADI (-1)
AND @FFH" is accepted by the assembler since the "AND" operation 2zeroes the
high order bits of the expression.

3.6. Precedence of Operators,

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a*b+c (@a*b) +c
aMDb * cSHL 4 ((a MODb) * ¢) SHL 4

77

aORDbAND NOT ¢ +d SHL e aOR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to overr_ide the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(aORDb) AND (NOT c) +d SHL e
resulting in the assumed parentheses
{a ORb) AND ((NOT ¢) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed.

4. ASSEMBLER DIRECTIVES.

Assembler directives are used to set labels to specific values during the
assmbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
“pseudo operation” which appears in the operation field of the line. The
acceptable pseudo operations are

ORG set the program or data origin

END end program, optional start address
BQU numeric “equate”

SET numeric “set"

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

s define data storage area

The individual pseudo operations are detailed below
4.1. The ORG directive.
The ORG statement takes the form
label ORG expression

where “"label” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression., There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas, Note that most programs written for
the CP/M system begin with an ORG statement of the form

ORG 100H

78

which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2, The END directive.

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subseguent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000, Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the assenbly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 10@0H (beginning of the transient
program area).

4.3, The EQU directive.

The EQU (eguate) statement is used to set up synonyms for particular
numeric values. the form is

lJabel BEQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a more human-oriented manner. Further, this name is used
throughout the program to “parameterize® certain functions, Suppose for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output port in
sequence, The series of eguate statements could be used to define these ports
for a particular hardware environment

TIYBASE BQU 1@H ;BASE FORT NUMBER FOR TTY
TTYIN BQU TTYBASE ;TTY DATA IN
TIYOUT EQU TTYBASE+l;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

79

IN TTYIN ;READ TTY DATA TO REG-A

our TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute i/o ports had been
used. Further, if the hardware enviromment is redefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only be
changed to

TIYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY
and the program can be reassembled without changing any other statements.
4,4, The SET Directive,
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program.
The expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the point where the label occurs on the next SET statement, The use of the
SET is similar to the EQU statement, but is used most often in controlling
conditional assembly.

4,5, The IF and ENDIF directives.

The IF and ENDIF statements define a range of assembly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement$2
statementién
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement)., If the expression evaluates to a non-zero value, then
statement#l through statement#n are assembled; if the expression evaluates to
Zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single "generic" program which includes a number of
possible run-time environments, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be part of a program which communicates with either a
Teletype or a CRT console (but not both) by selecting a particular value for
TTY before the assembly begins

80

O

S

.
N

s"wﬂm\%

TRUE EQU @FFFFH ;:DEFINE VALUE OF TRUE
FALSE BQU NOT TRUE ;DEFINE VALUE CF FALSE
Y BEQU TRUE ;TRUE IF TTY, FALSE IF CRT
'i'IYBASE BQU 1@H ;BASE OF TTY I/0 FORTS
CRTBASE EQU 20H ;BASE OF CRT 1/0 FORTS

IF TTY ;ASSEMBLE RELATIVE TO TTYBASE
(ONIN EQU TIYBASE sOONSOLE INPUT
CONOUT EQU TTYBASE+l ;OONSOLE OUTPUT

ENDIF

IF NOT TTY ;ASSEMBLE RELATIVE TO CRTBASE
CONIN BEQU CRIBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+1 ;OONSOLE OUTPUT

ENDIF

IN QONIN ;READ CONSOLE DATA

our oonNouT ;WRITE CONSOLE DATA

. In this case, the program would assemble for an environment where a Teletype

is connected, based at port 1#H. The statement defining TTY could be changed
to

TY BQU FALSE
and, in this case, the program would assemble for a CRT based at port 20@H.
4.6. The DB Directive,

The DB directive allows the programmer to define initialize storage areas
in single precision (byte) format. The statement form is

F

label DB e#l, e$2, ..., ein

vhere e#l through e#n are either expressions which evaluate to 8-bit wvalues
(the high order eight bits must be 2zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the number
of expressions included on a single source line, The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the cammas), Note that ASCII characters are always placed in memory
with the parity bit reset (@). Further, recall that there is no translation
fram lower to upper case within strings, The optional label can be used to
reference the data area throughout the remainder of the program. Examples of

81

valid DB statements are

dataz: DB 6,1,2,3,4,5
DB data and 0ffh,5,377Q,1+2+3+4
signon: DB ‘please type your name’,cr,lf,0
DB °‘AB° SHR 8, 'C°, 'DE” AND 7FH

4.7. The DW Directive.

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ..., €in

where e#l through e#n are expressions which evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are allowed, but strmgs
longer than two characters disallowed. In all cases, the data storage is
consistent with the 8888 processor: the least significant byte of the
expression is stored forst in memory, followed by the most significant byte,
Examples are

doub: DW @ffefh,doub+4,signon-$,255+255
DN ‘a’, 5, ‘ab”, ‘CD°, 6 shl 8 or 1lb

4.8, The DS Directive,

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subseqguent code generation
after the area reserved by the DS. Thus, the DS statement given above has
exactly the same effect as the statement ,

label: EQU § ;;LABEL VALUE IS CURRENT CODE LOCATION
ORG §$+expression ;MOVE PAST RESERVED AREA

5. OPERATION QODES.

Assenbly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction, In
general, ASM accepts all the standard mnemonics for the Intel 8084
microcomputer, which are given in detail in the Intel manual "8086 Assembly
Lanquage Programming Manual.” Labels are optional on each input line and, if
included, take the value of the instruction address immediately before the
instruction is issued. The individual operators are listed breifly in the

82

.
I,M 9,

S,

g

£y

following sections for campleteness, although it is understood that the Intel
manuals should be referenced for exact operator details., In each case,

e3 represents a 3-bit value in the range -7
which can be one of the predefined registers
A' B, C' D’ E' H' L' M' SP' Or PSW.

e8 represents an 8-bit value in the range @-255
elé represents a 16-bit valve in the range #-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction. These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its most
general form, along with a specific example, with a short explanation and
special restrictions.

5.1, Jumps, Calls, and Returns.
The Jump, Call, and Return instructions allow several different forms

which test the condition flags set in the 8080 microcomputer CPU. The forms
are

JMP el6 JMP L1 Jump unconditionally to label
JNZ el6 JMP L2 Jump on non zero condition to label
JZ elé6 JMP 100H Jump on zero condition to label
JNC el6 INC L1+4 Jump no carry to label

JC elé JC L3 Jump on carry to label

JFO el6 JPO $+8 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

JP el6 JP GAMMA Jump on positive result to label
JM el6 JM al Jump on minus to label

CALL el6 CALL S1 Call swbroutine unconditionally
NZ el6 MNZ s2 Call subroutine if non zero flag

Cz el6 CZ 106H Call subroutine on zero flag
NC el6 NC S1+4 Call subroutine if no carry set

CC el6 CC s3 Call subroutine if carry set
CRO el6 CPO $+48 Call subroutine if parity odd
CPE el6 CPE 54 Call swroutine if parity even

CP elé6 ce GAMA Call subroutine if positive result
CM el6 CM blsc2 Call subroutine if minus flag

RST e3 RST @ Programmed “restart”, eguivalent to
CALL 8*e3, except one byte call

83

RET Return from subroutine

RNZ Return if non zero flag set
RZ Return if zero flag set
RNC Return if no carry

RC Return if carry flag set
RPO Return if parity is odd
RPE Return if parity is even
RP Return if positive result
M Return if minus flag is set

5.2. Immediate Operand Instructions,

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on the
accumulator (register A).

MVI e3,e8 MVI B,255 Move immediate data to register A, B,
C, D, E, H, L, or M (memory)
ADI e8 ADI 1 Add immediate operand to A without carry
ACI e8 ACI @FFH 'Add immediate operand to A with carry
SUTI e8 SUI L+ 3 Subtract from A without borrow (carry) ™
SBI e8 SBI L AND 11B Subtract from A with borrow (carry)
ANI e8 ANI $ AND 7FH Logical "and” A with immediate data
XRI e8 XRI 1111509000B “Exclusive or" A with immediate data
ORI e8 ORI L AND 1+1 Logical “or" A with immediate data
CPI e8 CPI ‘a’ Compare A with immediate data (same

as SUI except register A not changed)
IXI e3,el6 IXI B,100H Load extended immediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions,

Instructions are provided in the 8080 répetoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3 INR E Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
ICR e3 ICR A Single precision decrement register (e3
moduces one of A, B, C, D, E, H, L, M)
INX e3 INX spP Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
DCX e3 ICX B Double precision decrement register pair

(e3 must be equivalent to B,D,H, or SP)

g

5.4, Data Movement Instructions.

84

Instructions which move data from memory to the CPU and fram CPU to
memory are given below

MOV e3,e3 MOV A,B Move data to leftmost element from right-
most element (e3 produces one of A,B,C
D,E,H,L, or M), MOV M,M is disallowed
LDAX e3 LDAX B Load register A from camputed address
(e3 must produce either B or D)
STAX e3 STAX D Store register A to computed address
(e3 must produce either B or D)
LHLD el6 LHLD L1 Load HL direct from location el6 (double
precision load to H and L)
SHLD el6 SHLD L5+x Store HL direct to location el6 (double
precision store from H and L to memory)
LDA el6 LDA Gamma Load register A from address el6
STA el6 STA X3-5 Store register A into memory at elé
POP e3 FOP PSW Load register pair from stack, set SP
{e3 must produce one of B, D, H, or PSW)
PUSH e3 PUSH B Store register pair into stack, set SP
: (e3 must produce one of B, D, H, or PSW)
IN e8 IN @ Load register A with data from port e8
(OUTr e8 our 255 Send data from register A to port e8
o XTHL Exchange data from top of stack with HL
PCHL Fill program counter with data from HL
SPHL Fill stack pointer with data from HL
XCHG

Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations,

Instructions which act upon the single precision accumulator to perform
arithmetic and logic operations are

ADD e3 ADD B Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or L)

ADC e3 ADC L Add register to A with carry, e3 as above

SUB e3 SUB H Subtract reg e3 from A without carry,
e3 is defined as above

SBB e3 SBB 2 Subtract register e3 from A with carry,
e3 defined as above

ANA e3 ANA 1+1 Logical "and" reg with A, e3 as above

XRA e3 XRA A *Exclusive or” with A, e3 as above

ORA e3 ORA B Logical "or" with A, e3 defined as above

CMP e3 CMP H Compare register with A, e3 as above

DAA Decimal adjust register A based upon last

L arithmetic logic unit operation
cMa Complement the bits in register A
STC ‘Set the carry flag to 1

85

MW

cMe Complement the carry flag

RILC RFotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)

RRC Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)

RAL Rotate carry/A register to left (carry is

~ involved in the rotate)
RAR Rotate carry/A register to right (carry

is involved in the rotate)
DAD e3 DAD B Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)
S5.6. Control Instructions,

The four remaining instructions are categorized as control instructions,
and are listed below

HLT Halt the 8088 processor

DI Disable the interrupt system
EI Enable the interrupt system
NCP No operation

6. ERROR MESSAGES.

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The
line in error is also echoed at the console so that the source listing need
not be examined to determine if errors are present, The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be computed at assembly time

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

0 Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

P Phase error: label does not havé the same value on
two subsequent passes through the program

86

£,

o,
)

R Register error: the value specified as a register
is not compatible with the operation code

v Value error: operand encountered in expression is
improperly formed
Several error message are printed which are due to terminal error
corditions

NO SOURCE FILE PRESENT The file specified in the ASM command does
not exist on disk

NO DIRECTORY SPACE The disk directory is full, erase files
which are not needed, and retry

SOURCE FILE NAME ERROR Improperly formed ASM file name (e.g., it
; is specified with *?" fields)
SOURCE FILE READ ERROR Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

OUTPUT FILE WRITE ERROR Output files cannot be written properly, most
likely cause is a full disk, erase and retry

CANNOT CLOSE FILE Output file cannot be closed, check to see
if disk is write protected

7. A SAMPLE SESSION.

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program.

87

ASH SORT,

CP/N ASSEMBLER - VER

pi5c et frez addvess
BO3H USE FACTOR 94 of
END OF ASSEMBLY

1.0

assexble SopT.ASM

—tzlle used 00 o FF C&mdem;d)

DIR SORT. %,
SORT ASH Soue 'Rlz(it
SORT BAK lonckup ask odt
SORT PRN Vut-{jlrc CCM‘ﬂMS'H- chasachers)
SORTY HEX wackuwe code
A>TYPE SORT.PKN,
Souni& (w..
vt cole. Vocahn SORT PROGRAN IN CP/M ASSEMBLY LANGUAGE
wachuwe 0 ; START AT THE BEGINNING OF THE TRANSIENT PROGRAN AR
0100 ORG 188H
wachng Code
0108 214681470 SOKRT. LKI H, W ;ADDRESS SWITCH TOGGLE
2103 3681 MY I M, 1 ;SET TO 1 FOR FIRST ITERATION
8105 214781 LK1 H, 1 ;ADDRESS INDEX
0108 3600 MY 1 M, 0 i1 =@
F]
; COMPARE I WITH ARRAY SIZE
@107 ?7E COMP. MOV A, M ;A REGISTER = 1
@188 FER9 cPl N-1 ;CY SET IF 1 < (N-1)
@16D D21981 JNC CONT ;CONTINUE IF 1 (= (N-2)
H
; END OF ONE PASS THROUGH DATA
@110 214681 LX1 H, SU ;CHECK FOR ZERO SWITCHES
9113 7EB7C20081 MOV A,M! DRA A! JNZ SORT FEND OF SORT IF SW=@
H
8118 FF RST 7 ;60 TO THE DEBUGGER INSTEAD 0F REF
; “‘“k“courluus THIS PASS
H ADDRESSING 1, SO LOAD AYC(1) INTD REGISTERS
0119 SF16882148BCONT.: MOV E,A! MYI D,08t LXYI H,AVY! DADd D! DAD D
8121 4E?92346 . MOV C.H! MOV A, Ct INX H! MOV B.M
; LOWY DRDER BYTE IN A AND C, HIGH ORDER BYTE IN B
; MOY H AND L TQ RDURESS AV(I+1)
8125 23 18X H
H
; COMPARE VALUE WITH REGS CONTAINING AV(D)
8126 965778239E SUB M! MOV D, Al MOV A, B! INX H! SBB # ;SUBTRACT
; BORROW SET IF AV(I+1) > AVCI)
@128 DA3FB1 JC INCI ;SKIP IF IN PROPER ORDER
; CHECK FOR ERUAL VALUES
P12E B2CA3FOL ORA DI JZ THCI SKIP 1F AV(l) = AVY{(]1+1)D

88

8132 56702BSE MOV D.M! MOV M, B! DCX H! MOV E.M

8136 712B722873 MOV M.C! DCK H! MOV M, D! DCX H! MOV M, E
i
i INCREMENT SWITCH COUNY

8138 21460134 LX1 H.SU! INR N

;
i INCREMENT 1
B13F 21478134C3INCI; LK1 H, 1! INR M! JMP COMP

’

. ; DATA DEFINITION SECTION

2146 00 Sy. DB @ s RESERYE SPACE FOR SWITCH COUNT
8147 I: S 1 ;SPACE FOR 1NDEX

8148 0SBOG40BIEAY: 7 5, 180,36, 50, 20,7, 1800, 360, 108, -32767

80BA = EQU ($-aY)/2 ;COMPUTE N INSTEAD OF PRE
815¢ i—-q«mle walue END

AYTYPE SORT.HEX,

.10018008214601360121478136007EFEBS9D2190140

1 1061186821468617EB7C20PB1FFSF16002148011988 . .
. 10812808194 E79234623965778239EDA3FB1B2CAA7 | “w‘%““‘“d““
. 180138083F0156702B5E712B7226732146813421C7 | HEX Tawat
.07014000470134C36AB10B0O6E

1 10614800050064R01E0B3200140007P0ESR32C018B

. 0481580064000 180BE

. 02600 EEB0E

A>DDT SORT.HEXy strt dduq vun

16K DDT VER 1.0

25?:‘: o:ga defankt address (no addvess on B’Ds-&{wwwﬂ')
—XP‘)
P=00@0 180 c\.a..y?c-!v(oo
2 4
vac bort wodhr
-—UFFFFJ wdme'ﬁw £5%3S Sleps »

COZeMBEQI® A=PO B=6000 D=0008 H=0AMO® S=0100 P=0100 LX] H,0146+81060

Coz6MBEGI® A=BL B2800O D=8000 H=0146 S=01006 P=0188 LXI H.8146
CoZeMBEGI® A=P! B=80BG D=BOBB H=0146 S=08180 P=6183 MVI N,B81
CoZoMBEG]® A=B] B=0000 D=BOOO H=0146 S=0100 P=B165 LXI H,8147
COZ6MBEQI® A=l B=8000 D=B0OD H=0147 S=01060 P=01868 MYl M,80
CoZBMBEG]IO® A=D1 B=00DO® D=B00B H=0147 S=0100 P=018A MOV A.M
CoZeMDERI® A=00 B=0008 D=0008 H=0147 S=0100 P=016B CPI1 89
C1Z8MiEQI® A=P0 B=60P0 D=P00B H=0147 S=0160 P=016D JNC 8119
C1ZBNIEG]I® A=006 B=00B0 D=0608 H=0147 S=0100 P=0116 LX] H,6146
C1ZBMIEQGI® A=00 B=B0BO D=B0OOB H=8146 S=0100 P=@113 MOV a,M
C1Z6MIEBI® A=B) B=80B08 D=BOGE H=0146 S5S=0100@ P=0114 ODRA A
COZOMPERI® A=0] P=B000 D=B00B H=0146 S=0100 P=9115 UNZ 0100
COZOMREGI® A=B) B=00BO D=POOB H=0146 S=0100 P=B180 LXI H,0146
COZBMBEQI® A=D1 B=00BD D=B0OOB H=0146 S=0100 P=8183 MVI M,01
COZBMBEO]® A=B1 B=PBOO D=POOD H=0146 S=0100 P=0105 LXI H,08147
C62ONPERIO A=B)1 B=B0BDO D=BBOG H=0147 S=0100 P=0188 MYl M,00

CO20MBEGIO A=D1 B=2Q00 D=BOOB H=0147 S=0180 P=B10A MOV A,N+B10B
~AléD

3”3)Jc 19, cwﬁrfo “J“‘i’"""""{‘j) sbp;::(-.)
89

-XP,

P=0108B 100 Y!S&‘(’ ’?voyaw. Counlr b&‘L‘b Bdﬁmmnj cf?fﬂjmm

I
-Tte, *trace executon

‘J

cezensceole
CeZoMnBESIG
cezeMBEQIO
CezZonecele
CezZonBEBI S
CoZoMBEOGI®
CiZeNniEelo
Cl1ZeM1EG]IO
Cizenitcoleo
CizeniEele
Ci1Zenieoele
‘fOZBN1EQ] O

eZeMnitceled
cezZenieole
CezeMiE®l®
CezeniEole®

A=00
A=80
A=0880
A=00
A=08
A=09
A=08a
A=60
A=80
A=88
A=00O
A=08
A=0e
A=88
A=8S5
A=89

8=9600
B=080800
B=06080
B=6oobe
B=noBo
B=06060
B=6080
B=@go080
B=g@B0
B=geB@
8=0089
B=06008
g=g80@
B=8@8S
B=8085
B=8@8s

£or (04 skps

D=80060
D=B806@8
D=BBQA6
D=08800
D=8068
D=8008
D=8600
D=8600
D=8608
D=8008
D=pg0oo
D=80o8
h=8aes
D=g8da0
D=8000
D=B8008

H=0147
H=8146
H=8146
H=0147
H=0147
H=0147
H=0147
H=08147
H=0147
H=0147
H=0148

H=4148

H=@148
H=9148
H=8148
H=0149

$=010@
$=0100
S=01080
$=61a8
$=06100
5=0i080
§5=01890
$=08100
$=08i068
¢=0100
$=08100
$=0109
S=efae
$=09180
S$=0100
$=0100

P=81680
P=8183
P=81635
P=8188
P=818A
P=@1868B
P=818D
P=8119
P=@liA
P=811C
P=811F
P=08129
P=at2t
P=2122
P=@123
P=08124

LX1I
Myl
LX1
MVI
MOV
crl
JC
Moy
nvl
LX1
DAbd
DAD
Hov
nov
INX
Mov

-LIOOR

LXI
MVI
LXI

8100
01083
81085
p1e8

NYI _
810 MOV {\5{- sowme <ode
8108

a.H
CPI 89 ?
8100 JC 8119 frou 100K
8118 LXI H, 8146
8113 MOV A, M

8114 ORA A
8115 JNZ @t1ee J

-L;
8its
8119

H,.8146
M, 01
H. 8147
N.80

Automahic
brmkyon&f

RST @7

MOV E.A
8ilA MYI D,e0
OllC LX1 H.8148

- Ghovt (6t Lt rubact
-C. 118, &hrt?nvuuu4amw

list more

H,08146
M.,81

H,8147
M.80 g“t

A. N
)
9119
E.R
D.bo
H,B148
b

D

.o
H, L
H
B

s HeB 123

curvek P (0250) avd Ywe 1 veal +me o 118H

i
&

€0127 s-lowed wth aw exdevnal w:kwup‘(‘ 7 -Fm-f Ml?uel (Pr%muuxs
"”‘2 look ot (m?m‘., Program w voce mode } \WF"'g !
Co20MPED]I® A=38 B=0064 D=BB06 H=8156 S=01080 P=0127 MOV D.A
COZ8MAED]I® A=38 B=p064 D=23806 H=0156 S=0100 P=9128 MOV A,B
CoZoMOEOIO A=00 B=0064 D=3806 H=8156 S=010808 P=0129 INX H
Co6ZoMOEBI® AR=00 B=0064 D=3806 H=0157 S=0100 P=B12A SEB M=*6128B
-D148

k)" data & Sorted, but Program doesat 54»:?
8148 85 00 07 69 14 00 IE 00
81506 32 B0 64 08 64 BO 2C 81 EB @3 31 80 99 09 06 88 2.D.D.,..
81606 0 60 00 00 00 PO 0O 0@ 00 Ly PO PG PO 68 9B BO

90

-&f, return o CP/M

| DDT SORT.HEX , reload the menwy 1m¢ﬁg

16K DDT VER 1.0

NEXT PC
815C P006
-XP

P=0000 100 set PC o 5%‘."“‘.‘3 "W’"ﬁm
-t103, ot bed opcode

218D JNC 0119/
8118 LX1 H,08146

= abort it wtn rubout

-a10D) assewlle new peode

e1ep JC 119‘).

011%2

..ngg; Lot slwhna sechon of ‘{Nﬂm

8166 LX1 H,8146
81863 MVl n.,061

. 8185 LXI H,8147

' 9188 MVl M, @0

AbM (\ﬁ{‘ wt‘H‘ Nl’ﬂd'
-A103) chowe SWr"dA weheltatom o gy

8183 MVI M, 0)

Ul@ﬁ)
e yebwap /M witn efl-C (6 woks as well)

SAVE 1 SORT.COM, save 1 poge (256 logtes, frown 100H-DAFFH) on disk v case

we have Vv veleoad |oder
A>BDT SORT.COM, rehnrt OOT mu«
Saved memovy umoqc
16K DDT VER 1.9

NEXT PC
206 8108 COM" file always sterts wetls address 100K

=G, runthe proyawm Lrom PC=100K
v 2
«8118 froqrowwmed skop (2sT7) enesuntered

~D148
8148 05 0@ 07 08 14 BO 1E 0O

8156 32 60 64 0B 64 BB 2C @1 EB 03 81 80 00 00 @6 88 2.D.D...... ...
9160 PO 00 GO 0B 00 B8 B0 00 0P OO b6 oo 0O OB 66 2B

0170 B0 B0 680 ¢ 0P BO OO 9O 02 6O BO GO 00 68 00 88

‘Gl; return 4o 0P/IM
91

ED.SORT.ASH, moke clanags o myé»l progawe

C‘“'z . \ Pt
N o Jorry fud ned ")
MVl M, 8 i1 = @
.- (...'; .' dext
g one e H, 1 ;ADDRESS INDEX
- mu&ulut
i Myl 1 ;SET TD 1 FOR FIKST ITERATION
KT, Kl Lae and fype next tine-
Xl H, 1 JADDRESS INDEX
t&}\hﬂﬂ ww hm,
nv1 N, 0 ;ZERD SW
L
LXI H, 1 ;ADDRESS INDEX
enuncCer
INCeT
CONT® CONTINUE IF 1 <= (N-2)
«-201cCpLT,
Je CONT ;CONTINUE IF I <= (N-2)
sk) [wcjnm d(!l A

ASM SORT.AAZ sk-gmm

CP/M ASSEMBLER - VER 1.8

g15c wak addmes b assandde
Ba3H USE FACTOR gﬁ%
END OF ASSEMBLY .

ODT SORT.HEX, tst projuasw cliarges

16K DDY VER 1.0
NEXT PC

8150 booo
-Gl@%;

9118

~D148
s /\Jahs«u
9148 85 9O 97 08 14 B0 IE 00

8158 32 88 64 88 64 #0 2C 091 EB 03.01 8o 08 88 8 88.2.D.D..,....
816e Do 60 80 0 06 PG @O 0O OB 00 bG BO @Y 6B 60 Bo

- obovt weth rubad

-ce, redrato Pl - proyaun Cleds o.

92

M

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM: USER'S MANUAL

COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any 1language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs,

DISCLAIMER

Exidy Systems, Inc. makes no representations or warrani .« . th
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

~
L/

Ay

P

G

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM: USER'S MANUAL

COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94886.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

£

g

Table Of Contents

ED: A Content Editor For The CP/M Disk System:
User's Manual

D Tutorialeceseeececoesscsesnsessccsssnsnssedl
1.1 Introduction t0 EDiceccesscrocscnsesedl
1.2 ED Operationesceccoscccccsccosssccccescsdl
1.3 Text Transfer FunctionSeeeceecseccaseasd3l
1.4 Memory Buffer OrganizationNeceeeeecsese97
1.5 Memory Buffer Operationeeccscccecccees9d7
1.6 Command SrringSeeeeecccscscsssccossesedd
1.7 Text Search and Alteration.ecceeceesecss100
1.8 Source Libraries.ccececeerscsscnceceecssl03

1.9 Repetitive Command ExecutioNeessees.104
2. ED Error ConditionSeeesceccscacacsaseecsesel0S
3. Control Characters And CommandS.cceacees106

{

-

e
&

P

ED USER'S MANUAL

1. ED TUTORIAL
l.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

<filename>
ED
<filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> . <filetype> into central memory,
where the file is manipulated by the operator, and subse-
quently written back to disk after alterations. 1If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

"ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

1.3. Text Transfer Functions
Given that n is an integer value in the range 0 through
65535, the following ED commands transfer lines of text

from the source file through the memory buffer to the tem-
porary (and evengually final) file:

93

Figure 1. Overall ED Operation

O

Source
Libraries

O
U

. et
Source Append (R) Write Temporary

File (A)\ / (W) File

X.Y x.$$8$ /

(

Memory Buffer

€

After
Edit

After T
gait | (B) O
Insert

Type X
(1) (T)
Backup New
File Source
File

X.BAK

)

(
@

Note: the ED program accepts both lower and upper case ASCII
characters as input from the consocle. Single letter commands
can be typed in either case. The U command can be issued to

cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.

Characters are echoed as typed without translation, however.
The -U command causes ED to revert to "no translation” mode.

ED starts with an assumed -U in effect.

Figure 2.

Source File

1| First Line.

2| \"Appended |

2| * Buffered)|

Memory Buffer

. First Line®

PO ¥ -\‘ NN \
3| . Lines -~ - Text -
—:- \Qs\\- N N ‘\\
SP [T NTTN N —_—
| | mpefs s s N
l.\\~____.
: Unprocessed' NexE : Free : NexT
‘ Source | Append | Memory | Write
' Lines : | Space '
U ' R ..!
Figure 3.

Memory Buffer

TP

Memory Buffer Organization

Temporary File

\ First Line\

\ Processed \\

TN Text NN\
— \

« VN

NN NN

N
.

Free File

]

1

I Space :
i

Logical Organization of Memory Buffer

first

line <er><1f>
-------- <cr><1lf>

current

line CL ----<cr><1f>

last

line <cr><1f>

95

nA<cr>'

append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

nW<cr> - write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

E<cr> ~ end the edit. Copy all buffered text
to temporary file, and copy all un-
processed source lines to the temporary
file. Rename files as described
previously.

H<cr> - move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

& 4

O<cr> - return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the source file. The
effects of the previous editing commands
are thus nullified.

Q<cr> - quit edit with no file alterations,
return to CP/M.

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then 1 is assumed. Thus, the commands A and W append
one line and write 1 line, respectively. 1In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage~return key

96

commands are provided as a convenience. The command 0A fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require-
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

l.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carriage-
return (<cr>) and line-feed (<1£f>) characters, and
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
ATETT———. :
line which contains the CP.

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the Eines directly from the console
with the insert command ’

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <1f> is supplied automatically),
until a control-z (denoted by 4z is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>

NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

97

NOW IS THE<cr><1lf>
TIME FOR<cr><1lf>

ALL GOOD MEN<cr><lf> .2

Various commands can then be issued which manipulate the CP

or display source text in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by

+, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, but not supplied,

then n=1 is assumed. Finally, if a plus sign is optional,

but none is specified, then + is assumed.

$B<cr> - move CP to beginning of memory buffer
if +, and to bottom if -.

tnC<cr> - move CP by *n characters (toward front
of buffer if +), counting the <cr><1lf>
as two distinct characters

tnD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

tnK<cr> - kill (ie remove) tn lines of source text
: using CP as the current reference. If
CP is not at the beginning of the current
line when K is issued, then the charac-
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

tnL<cr> - if n=0 then move CP to the beginning of
the current line (if it is not already
there) if n#0 then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if +) or up
(if -). The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified. !

98

[,wmw\)

+nT<cr> - If n=0 then type the contents of the
current line up to CP. If n=1 then
type the contents of the current line
from CP to the end of the line. If
n>1 then type the current line along
with n-1 lines which follow, if +
is specified. Similarly, if n>l1 and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

tn<cr> - equivalent to *nLT, which moves up or
down and types a single line

l.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command :

Rubout remove the last character
Control-U delete the entire line
Control-C re-initialize the CP/M System
Control-E return carriage for long lines

without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String Effect Resulting Memory Buffer
1. B2T<cr> move to beginning NOW IS THE<cr><lf>
of buffer and type
2 lines: TIME FOR<cr><1lf>
"NOW IS THE ALL GOOD MEN<cr><lf>
TIME FOR"
2. ScCOT<cr> move CP 5 charac- NOW I s THE<cr><1f>
ters and type the
beginning of the
line
"NOW 1"

99

3. 2L-T<cr> move two lines down NOW IS THE<cr><lf> §:?
and type previous TIME FOR<cr><1lf>

line
"TIME FOR" | ALL GOOD MEN<cr><lf>
4. -L#K<cr> move up one line, NOW IS THE<cr><lf>
delte 65535 lines
which follow
5. 1I<ecrx> insert two lines NOW IS THE<cr><lf>
TIME TO<cr> of text
INSERT<cr> TIME TO<cr><l1lf>
tz INSERT<cr><lf>
6. =-2L#T<cr> move up two lines, NOW IS THE<cr><lf>
and type 65535 :
lines ahead of CP TIME TO<cr><1f>
"NOW IS THE" " INSERT<cr><1£>
7. <cr> move down one line NOW IS THE<cr><lf>
and type one line
" INSERT" TIME T0<cr><lf>[§§3 .
INSERT<cr><1£> ("

1.7. Text Search and Alteration

ED also has a command which locates strings within the
memory buffer. The command takes the form

<cr
nF cl 2...ck }

where c; through cx represent ghe characters to match followed
by either a <cr> or control -z . ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is

moved directly after the character c If the n matches are
not successful, the CP is not moved rom its initial position.
Search strings can include™ +1 (control-l), which is replaced
by the pair of symbols <cr><1f>.

*The control-z is used if additional commands will be typed
following the +z.

100

{m
Y
¢ i

The following commands illustrate the use of the F
command :

Command String Effect Regsulting Memory Buffer
1. B#T<cr> move to beginning NOW IS THE<cr><1lf>
and type entire

ALL GOOD MEN<cr><lf>

2. FS T<cr> find the end of NOW IS T HE<cr><1f>
the string "S T"

3. FIitz0TT find the next "1" NOW IS THE<cr><lf>
and type to the
CP then type the TI ME FOR<cr><1£>
remainder of the ALL GOOD MEN<cr><lf>
current line:
"TIME FOR"

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

I cicz... cn+z or

I clcz... cn<cr>

where c; through c, are characters to insert. If the inser-
tion string is terminated by a *+z, the characters c; through
Cp are inserted directly following the CP, and the CP is
moved directly after character c,. The action is the same.
if the command is followed by a <cr> except that a <cr><1£>
is automatically inserted into the text following character
cn. Consider the following command sequences as examples
o? the F'and I commands:

Command String Effect Resulting Memory Buffer
BITHIS IS +tz<cr> 1Insert "THIS IS " THIS IS NOW THE <cr><1f>
at the beginning
of the text

TIME FOR<cr><1lf>
ALL GOOD MEN<cr><1f>

101

PN

FTIME+z-4DIPLACE+z<cr> THIS IS NOW THE<cr><l£> (|

find "TIME" and delete FLACE f3) FOR<er><lf>
it; then insert "PLACE" ALL GOOD MEN<cr><1lf£>

3FO0+2-3DSDICHANGES t<cr> THIS IS NOW THE <cr><1lf>

find third occurrence PLACE FOR<cr><lf>

of "0" (ie the second ALL CHANGES‘s§<cr><1f>
*O0" in GOOD), delete

previous 3 characters;

then insert "CHANGES"

-8CISOURCE<cr> move back 8 characters THIS IS NOW THE<cr><l1lf>
and insert the line PLACE FOR<cr><lf>

"SOURCE<cr><1l£f>"
ALL SOURCE<cr><lf>

CHANGES<cr><lf>

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

<er>
n s clcz...ckfz dldz"'dm{ iz
and has exactly the same effect as applying the command string

cr>

<
F clcz...cku—kDIdldz...dm '{ ‘z

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub-
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

cr
n AN clcz...ck {"}

which searches the entire source file for the nth occurrence
of the string cjcjy...cx (recall that F fails if the string e
cannot be found in the current buffer). The operation of the J

102

M
P

il command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

<¢cr>
ndJ clcz...ck‘rz dldz...dm+z elez...eq {u}

with the following action applied n times to the memory buffer:

search from the current CP for the next occurrence of the
string cjcg...c . If found, insert the string dydj...,dn,,

and move C to follow dy. Then delete all characters following

CP up to (but not including) the string e;,e, ,...e , leaving
CP directly after dyp. If ej;,ep,...e cannot Snd, then
no deletion is made. If the current line is

NOW IS THE TIME<cr><1lf>

Then the command
JW 4+zZWHAT+4z4l<cr>
Results in

NOW WHA'I‘ <cr><lf>

(Recall that 41 represents the pair <cr><1lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.8. Source Libraries
ED also allows the inclusion of source libraries during

the editing process with the R command. The form of this
command is

103

R flfz..fn#z or

R flfz..fn<cr>

where f;£;..£f, is the name of a source file on the disk with
as assume fiYetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac-
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com-
mands together for repeated evaluation. The M command takes

the form:
<er>
nM °1°2"‘ck {1‘2}

where cjcj...Cx represent a string of ED commands, not inclu-
ding another M command. ED executes the command string n
times if n>1l. If n=0 or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).
As an example, the following macro changes all occur-
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMA+z-5DIDELTA+z0TT<cr>

or equivalently

MSGAMMA+zDELTA+2z0QTT<cr>

104

o,

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or 8
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

o cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on

subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where 4 is the currently selected drive (A,B,...). The oper-
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con-
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>
and renaﬁe the BAK file:

REN X.y=Xx.BAK<cr>

The file can then be re-edited, starting with the previous
version.

105

3. CONTROL CHARACTERS AND COMMANDS

The following table summarizes the control characters
and commands available in ED:

Control Character Function
‘e system reboot
te physical <cr><1£> (not
actually entered in
command)
+1 ' logical tab (cols 1,8,
15,...)
+1 logical <cr><1lf> in
search and substitute
strings
4u line delete
4z string terminator .
(L
rubout character delete e
break discontinue command

(e.g., stop typing)

106

P

tnP

ns
inT
ty
nwW
nZ

tn<cr>

Function
append lines
begin bottom of buffer
move character positions
delete characters

end edit and close files
{normal end)

find string

end edit, clcse and reopen
files

insert characters

place strings in juxtapositidn
kill lines

move down/up lines

macro definition

find next occurrence with
autoscan

return to original file
move and print pages

quit with no file changes
read library file
substitute strings

type lines

translate lower to upper case if U,
no translation if -U

write lines
sleep

move and type (:nLT)

107

£

Appendix A: ED 1.4 Enhancements

The ED context editor contains a8 number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command :

408T

is interpreted as "type from the current line number through the line whose absolute
number is 468." Combining the two line reference forms, the command

345::400T
for example, is interpreted as "move to absolute line 345, then type through absolute
line 4M6." Note that absolute line references of this sort can precede any of the
standard ED commands.

¢ A special case of the V command, "8V", prints the memory buffer statistics in
the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimal), and "total”
is the size of the memory buffer.

108

ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer)

command. The form
nX
transfers the next n lines from the current line to a temporary file called
X$$$3$$58.L1B

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

).4
is provided, however, to empty the transferred line file,

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas-
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT ¢

where X is the error character, and ¢ is the command where the error occurred.

109

CP/M DYNAMIC DEBUGGING TOOL (DDT): USER'S GUIDE

COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the ’'purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research,

{/«m%

gl

P

CP/M DYNAMIC DEBUGGING TOOL (DDT): USER'S GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted

to reproduce or abstract the example procedures and sample.

programs for the 'purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

.

P
{

CP/M Debugging Tool

Table Of Contents

l. IntrodUCtionoooooo.00.lo..oo...'.o.i.....111
ll. wT Comnds.‘..“.'.0.......'.'..'.‘....113

1. The
2. The
3. The
4, The
5. The
6. The
7. The
8. The
9. ‘The
10.The
11.The

C-WMABZTr-=00mM0 >

(Assemble) Command.ceseeveceessallld
(Display) Command..csceeseccecell4
(Fill) Comand.eececcesescenseslld
(Go) Command.scecscscesscsessealld
(Input) Commandecsceescesccccassalls
(List) Coomand.scceceoeassscsceesllb
(Move) Command..ccesecseccecsaellb
(Read) Command..cvscecssccaccesallb
(Set) Command.cceecescsesrsecscall?
(Trace) Commandeccsecssasonsesell?
(Untrace) Commandecescsccscecaecssll8

12. The X (Examine) Command.ccscoscesess118B
Ill.implementation NOteSeceoscocorenosensaessll9
lVQ An Exam‘e'IQ....'...‘.‘.‘.‘..'..‘.....O.120

(DDT): User's Guide

St
J

P
£

CP/M Dynamic Debugging Tool (DDT)
User “s Guide

I. Introduction.

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment., The debugger is initiated by
typing one of the following cammands at the CP/M Console Command level

DoTr
DDr filename HEX
DOT filename,OOM

where “"filename" is the name of the program to be loaded and tested. 1In both
cases, the DDT program is brought into main memory in the place of the Console
Command Processor (refer to the CP/M Interface Guide for standard memory
organization), and thus resides directly below the Basic Disk Operating System
portion of .CP/M. The BDOS starting address, which is located in the address
field of the JMP instruction at location 5H, is altered to reflect the reduced
Transient Program Area size.

The second and third forms of the DDT command shown above perform the same
actions as the first, except there is a subsequent automatic load of the
specified HEX or (OM file, The action is identical to the seqguence of
commands

por
Ifilename HEX or ifilename.COM
R

where the I and R commands set up and read the specified program to test (see
the explanation of the I and R commands below for exact details).

Upon initiation, DDT prints a sign-on message in the format
nnkK DDI-s VER m.m

where nn is the memory size (which must match the CP/M system being used), s
is the hardware system which is assumed, corresponding to the codes

Digital Research standard version
MDS version .

IMSAI standard wversion

Omron systems

Digital Systems standard version

nNno-HRL
11

and m.m is the revision number.

11

Following the sign on message, DDT prompts the operator with the character
*-» and waits for input commands from the console. The operator can type any
of several single character commands, terminated by a carriage return to
execute the cammand. Each line of input can be line-edited using the standard
CP/M controls

rubout remove the last character typed
ctl-U remove the entire line, ready for re-typing
ctl-C system reboot

Any cammand can be up to 32 characters in length (an automatic carriage return
is inserted as the 33rd character), where the first character determines the
command type

enter assembly language mnemonics with operands
display memory in hexadecimal and ASCII

fill memory with constant data

begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

examine and optionally alter the CPU state

XOCHLYIE~OMO P

- The cammand character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by cammas or single blank characters.
All DOT numeric output is in hexadecimal form. 1In all cases, the commands are
not executed until the carriage return is typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT
using either a ctl-C or G# (jmp to location @@0PH), and save the current
memory image using a SAVE command of the form

SAVE n filename,COM

where n is the number of pages (256 byte blocks) to be saved on disk. The
nunber of blocks can be determined by taking the high order byte of the top
load address and converting this mumber to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal, Thus the operator could type a ctl-C durmg
the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory i.rqaqe is saved as X.COM on the diskette, and can be directly
executec} by simply typing the name X. If further testing is required, the
memory image can be recalled by typing

112

W\,»
PN

DDT X.COM

which reloads previously saved program from loaction 180H through page 18
(12FFH) . The machine state is not a part of the OOM file, and thus the
program must be restarted from the beginning in order to properly test it.

11, DDT COMMANDS.

The irdividual commands are given below in some detail. In each case, the
operator must wait for the prompt character (~) before entering the command.
If control is passed to a program under test, and the program has not reached
a breakpoint, control can be returned to DDT by executing a RST 7 from the
front panel (note that the rubout key should be used instead if the program is
executing a T or U command). In the explanation of each command, the command
letter is shown in some cases with mmbers separated by cammas, where the
numbers are represented by lower case letters. These numbers are always
assumed to be in a hexadecimal radix, and from one to four digits in length
(longer numbers will be automatically truncated on the right). ‘

Many of the cammands operate upon a “CPU state” which corresponds to the
program under test. The CPU state holds the registers of the program being
debugged, and initially contains zeroes for all registers and flags except for
the program counter (P) and stack pointer (S), which default to 100H., The
program counter is subsequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and R
commands) .

1. The A (Assemble) Command. DIT allows inline assembly language to be
inserted into the current memory image using the A command which takes the
form

As

where s is the hexadecimal starting address for the inline assembly. DDT
prampts the console with the address of the next instruction to fill, and
reads the console, looking for assembly language mnemonics (see the Intel 8080
Assembly Ianguage Reference Card for a list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each sucessive
load address is printed before reading the console. The A command terminates
when the first empty line is input from the console.

Upon campletion of assembly language input, the operator can review the
memory segment using the DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be overlayed by
the transient program being tested, in which case the DDT program responds
with an error condition when the A and L commands are used (refer to Section
Iv).

113

2, The D (Display) Command. The D command allows the operator to view
the contents of memory in hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the current display address
(initially 106H), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cceccececcecceccee

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa are
given to the right (represented by the sequence of c¢’'s), where non-graphic
characters are printed as a period (.) symbol., Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on
a console device that supports only upper case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that the next line begins at an address which is a multiple of 16.

The second form of the D canmand shown above is similar to the first,
except that the display address is first set to address s. The third form
causes the display to continue from address s through address f. In all
cases, the display address is set to the first address not displayed in this
command, so that a continuing display can be accomplished by issuing
successive D canmands with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) Command, The F command takes the form
Fs,f,c

where s is the starting address, f is the final address, and ¢ is a
hexadecimal byte constant. The effect is as follows: DIT stores the constant
¢ at xddress s, increments the value of s and tests against f. If s exceeds f
then the operation terminates, otherwise the operation is repeated., Thus, the
£fill cammand can be used to set a memory block to a specific constant value.

4, The G (Go) Command. Program execution is started using the G comand,
with up to two optional breakpoint addresses. The G command takes one ot the
forms :

G

Gs
Gs,b

114

%, F
e

P

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the program counter in the current machine state, with no breakpoints set
(the only way to regain control in DDT is through a RST 7 execution). The
current program counter can be viewed by typing an X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at 1location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c. BEncountering either
breakpoint causes execution to stop, and both breakpoints are subsequently
cleared. The last two forms take the program counter fraom the current machine
state, and set one and two breakpoints, respectively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not reach
a breakpoint, control cannot return to DDT without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and types

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must specify breakpoints which
differ from the program counter address at the beginning of the G command,
Thus, if the current program counter is 1234H, then the commands

G,1234
and
G400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

5 The 1 (Input) Command. The I command allows the operator to insert a
file name into the default file control block at 5CH (the file control block
created by CP/M for transient programs is placed at this location; see the
CP/M Interface Guide). The default FCB can be used by the program under test
as if it had been passed by the CP/M Console Processor, Note that this file
name is also used by DDT for reading additional HEX and COM files. The form
of the I camand is

Ifilename
or

115

Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

6. The L (List) Command. The L command is used to list assembly language
mnemonics in a particular program region. The forms are

L
Ls
Is,f

The first cammand lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then
lists twelve lines of code. The last form lists disassembled code from s
through address f. 1In all three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon
encountering an execution breakpoint, the list address is set to the current
value of the program counter (see the G and T cammands)., Again, long typeouts
can be aborted using the rubout key during the list process.

7. The M (Move) Command, The M command allows block movement of program
or data areas fram one location to another in memory. The form is

Ms'f'd

where s is the start address of the move, £ is the final address of the move,
and 4 is the destination address. Data is first moved fram s to 4, and both
addresses are incremented. If s exceeds f then the move operation stops,
otherwise the move operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I
command to read COM and HEX files fraom the diskette into the transient program
area in mreparation for the debug run. The forms are

R
2 o]

where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters fram #00H through OFFH (i.e., the first page of memory). If
b is amitted, then b=000@8 is assumed. The R command requires a previous I
command, specifying the name of a HEX or COM file. The load address for each
record is obtained from each individual HEX record, while an assumed load
address of 100H is taken for COM files. Note that any number of R commands
can be issued following the I command to re-read the program under test,

116

S

assuming the tested program does not destroy the default area at S5CH.
Further, any file specified with the filetype "OOM" is assumed to contain
machine code in pure binary form (created with the LOAD or SAVE command), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the command
DOT filename.filetype
which initiates the DDT program is equivalent to the commands

3)3)
~Ifilename.filetype
-R "

Whenever the R command is issued, DDT responds with either the error indicator
2 (file cannot be opened, or a checksum error occurred in a HEX file), or
with a load message taking the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (18PH for COM files, or taken fram the last record if
a HEX file is specified).

9. The S (Set) Command. The S command allows memory locations to be
examined and optionally altered. The form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of
memory. DDI responds with a mumeric prompt, giving the memory location, along
with the data currently held in the memory location. If the operator types a
carriage return, then the data is not altered. If a byte value is typed, then
the value is stored at the prompted address. In either case, DDT continues to
prampt with successive addresses and values until either a period (.) is typed
by the operator, or an invalid input value is detected.

1. The T (Trace) Command. The T command allows selective tracing of
program execution for 1 to 65535 program steps. The forms are

T
™

In the first case, the CPU state is displayed, and the next program step is
executed, The program terminates immediately, with the termination address

117

displayed as
*hhhh

where hhhh is the next address to execute. The display address (used in the D
command) is set to the value of H and L, and the list address (used in the L
command) is set to hhhh. The CPU state at program termination can then be
examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a program
breakpoint is occurs. A breakpoint can be forced in the trace mode by typing
a rubout character. The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in
the X cammand,

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test, Thus, CP/M
functions which access I/0 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing problems. Programs running in trace mode
execute approximately 500 times slower than real time since DDI' gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that commands which use the breakpoint facility
(G, T, and U) accamplish the break using a RST 7 instruction, which means that
the tested program cannot use this interrupt location. Further, the trace
mode always runs the tested program with interrupts enabled, which may cause
problems if asynchronous interrupts are received during tracing.

Note also that the operator should use the rubout key to get control back
to DDT during trace, rather than executing a RST 7, in order to ensure that
the trace for the current instruction is completed before interruption.

11. The U (Untrace) Command. The U command is identical to the T command
except that intermediate program steps are not displayed. The untrace mode
allows fram 1 to 65535 (OFFFFH) steps to be executed in monitored mode, and is
used mincipally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U
commanrd,

12. The X (Examine) Command. The X command allows selective display and
alteration of the current CPU state for the program under test, The forms are

X
Xr

where r is one of the 8088 CPU registers

C Carry Flag (8/1)
2 Zero Flag (8/1)

118

Minus Flag (8/1)
Even Parity Flag (8/1)
Interdigit Carry (0/1)
Accumulator (0-FF)
BC register pair (@-FFFF)
DE register pair (@-FFFF)
HL register pair (B~FFFF)
Stack Pointer (@~-FFFF)
Program Counter (@-FFFF)

YN O WP HmE

-In the first case, the CPU register state is displayed in the format
CE£ZEMFEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where £ is a @ or 1 flag value, bb is a byte value, and 43dd is a double byte
quantity corresponding to the register pair. The "inst* field contains the
disassembled instruction which occurs at the location addressed by the CPU
state’s program counter.

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C, %2, M, E, I, A, B, D, H, S, or
P)e In each case, the flag or register valve is first displayed at the
console., The DOT program then accepts input from the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the proper range is typed, then the flag or register valve is altered.
Note that BC, IE, and HL are displayed as register pairs. Thus, the operator
types the entire register pair when B, C, or the BC pair is altered.

ITII. IMPLEMENTATION NOTES.

The organization of DDT allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs., The DDT program consists of two parts: the DDT nucleus and the
assembler/disassembler module. The DDT nucleus is loaded over the Console
Cammand Processor, and, although 1loaded with the DDT nucleus, the
assembler/disasserbler is overlayable unless used to assemble or disassemble.

In particular, the BDOS address at location 6H (address field of the JMP
instruction at location SH) is modified by DDT to address the base location of
- the DDT nucleus which, in turn, contains a JMP instruction to the BDOS., Thus,
programs which use this address field to size memory see the logical end of
memory at the base of the DDT nucleus rather than the base of the BDOS.

The assenbler/disassembler module resides directly below the DDT' nucleus
in the transient program area. If the A, L, T, or X commands are used during
the debugging process then the DDT program again alters the address field at
6H to include this module, thus further reducing the logical end of memory.
If a program loads beyond the beginning of the assembler/disassenbler module,
the A and L cammands are lost (their use produces a “"?" in response), and the

119

trace and display (T and X) cammands list the “inst* field of the display in
hexadecimal, rather than as a decoded instruction,

IV. AN EXAMPLE,

‘ I3 * le
The followi example shows an edit, asseuble_, and debug for a simpl
program which regs a set of data values and determines the 1arge§t va“lue 1?
the set. The largest value is taken from the vector, and stored into "LARGE
at the termination of the program

ED SCANM. ﬁSﬂ.)
J’H M 'M l(k‘
A

;START OF TRANSIENT AQRESQ

(XX B.LEH LENGTH OF YECTOR 10 SCAN, 4
VI C.8 LARGER-RST VALUE S0 FAR,
LQQP_.P_0_0.L LXI W VECT ;BASE OF VECTOR,
L.Q.Q._.P=S Hoy a4 iGET VALUE,
o L LARGER VALUE IN G2,
%*ﬂ%, NG NFOUHD ;JUMP IF LARGER VALUE NOT FOUND
i NEW LARGEST VALUE, STORE IT 10 ¢,
. KoY c.a;
HFOUND. TNX H ;TO NEXT ELEMENT
icR B [AORE 10 SCAN? ° Crede Source
) I LooP FOR ANOTHER, Pregrom. - uder el
n END OF SCAN, STORE C, Chatacers {yped
MOV A C LCET LARGEST VALUE
STA LARGE , 3 ky g :
JN I (REBOOT,)" vewesads Coffiage
;
il TEST DaTA feurw..
VECT. DB 2,0,4,3,56,1,5 '
CEN EQu §VECT iLENGTHS
CARGE; 1S 1 LARGEST YALUE ON
£B9P,
ORG 108H iSTART OF TRANSIENT AREA
VI B.LEN LENGTH OF VECTOR TO SCAM
MVl c.8 JLARGEST VALUE SO FAR
LX1 H.VECT BASE OF VECTOR
LOOP. MOV AN iGET VALUE
Sus c JLARGER VALUE IN C?
JNC NFOUND ;JUMP IF LARGER VALUE NOT FOUND .
; MEW LARGEST VALUE, STORE IT T0 C
MOV C.A
NFOUND. INX H iTO NEKT ELEMENT
BCR 8 JNORE TO SCAN?
JNZ LOOP FOR ANGTHER

120

e

s

END OF SCAN. STORE C

noy R, C iGET LARGEST VALUE
STA LARGE
JHP 8 ;iREBOOT
TEST DATA
VECT: B 2,0,4,3,5,6,1,5
LEN EQu $-VECT LENGTH
LARGE: DS 1 sLARGEST VALUE ON EXIT
END

€, o Enddf Gt

N Gt Aseubler

CP/M ASSEMBLER - VER 1.0

p122 ~
882H USE FACTOR

'END OF ASSEMBLY Assewldy Complele - Lok ot Rﬁm“ L&”ﬂ

" TYPE SCQH.PRNJ

(}delébﬁi) Soutee Pegram
e160” Machne (tde ORG 180H i START OF TRANSIENT AREAR

2180 0668 MY 1 B,LEN LENGTH OF VECTOR TO SCAN
81862 BEBO NYI c.e ;LARGEST VALUE 50 FAR
8104 2119081 LX1 H, VECT BASE OF VECTOR

@187 7E LOOP. MOV A, M i GET WALUE

8188 91 suB c ; LARGER VALUE IN C?

8189 D26DB1 JNC NFOUND ;JUMP I1F LARGER VALUE NOT FOUND

; NEW LARGEST VALUE, STORE IT T0 C

810C 4F MDY C: A

818D 23 NFOUHD. IRX H ;TO NEXT ELEMENT

818E 85 DCR B ;MORE TO SCAN?

818F C208701 V JNZ LOOP ;FOR ANOTHER

. 3 END OF SCAN. STORE C

8112 79 MOY A, C ;GET LARGEST VALUE

0113 322181 STh LARGE

8116 csjzzf) JHp) ; REBOOT

Cede /e \Chﬂj j
“runated i TEST DATA

8119 8280040385YECT. DB 2,0,4,3,5,6,1,5

8968 = . LEN EQU $-VECT L LENGTH.

0121 Voluedt LARGE: DS 1 ;LARGEST VALUE ON EXIT
0122 Equale END
o>

121

DDT SCAN. HEX

4 Slort Deb“ﬂ‘l" vy hex fomad wmachme tade
16K DDT VER 1.0 ~

NEXT PC

9121, 0@

-8 N latt lood addess +1 heeh iskuchon

CoZBMBER]I® A=00 B=p0BO D=RO0GG H=000® S5=010@ P=8068 OUT 7F PCs0

=, N ramue vegors lorfoe debug vun.

P=0B0B 180
=2 Clunge Pco (00

X, Lok ot vesslrs aaun rPC clanged -
COZBMBEGI@ A=BO B=00AO D=B0AE H=8008 S=0180 P=0168 MYI e,as')
-L188 , <

4 Nﬂc\’ mshmchan
8186 MVI B.88 3 =
102 MYI C,080 o eccte at Pe=100
1864 LXI H.8119
2107 MOV A M k
188 SUB C .
1069 JNC 018D D&&MU(.J MOLLW.
B16C MOV C.A
816D INX H (ode ot lOOH&_ .
Fi18E DCR B (See Saurce hu)lg e
B10F JNZ @187 o COmPOT (50
B112 MOV A.C J
-L
-4
8113 STA @121 \

8i16 JMP o0Q00Q
8119 S7TAX B
Bi1A NOP

8118 INR r A ldte wove
B11C INX machive Gde

B

B
ol NeR 8 (nste Hoal Progmam
Eié? ggiz %:: | ewds gt locafion 116

X N 88 ‘
’ J with a JuP fo 0e00) : :
Taite. v mine acemdly mode o clonse Je TMP b o0 o o BST 7, it
¢ will Cause Hie proamm under st 4o vetam do ODT f 1l

—2 & Vel exeadd.
8117, (smyle Camag velun shps assomble mode) -

1113, Ld e ot 13K Yo check Had 2517 Wos propedy
8113 STA mzymp(w&tfw

8116 RST @7

B116 RST 7

122

e

8117 NOP

8118 HOP
8119 STAX B
eita NOP

@118 INR B

B11C INX B

"%, Logk &l vearskes
COZOMDEQI® A=002 B=00BB D=REEH H=60068 S5=0160 P=8168 MVI B.88

-l? Eﬁﬂa&ﬂ‘HNBﬂMM“QV’Oﬂlﬂsk?' Miﬁd (ﬁ%lﬁhi:;b8Qwe J ks dﬁuikd

CéZeMBEO]I® A=00 B=80AE D=8B00 H=0603 S=6G100 P=81@@ MYyl B.288+%0162

"2 e ot %b aszm (o OfM in B) acowati brekpont S

C@26MBE@I® A=00 B=6S8BD D=B0OE H=000B S=010@ P=B1G2 MV] C.06+0164

—T — . ¢ .
? Tiace agan (Reiske € « cleared)
COZBHMOBE@I® A=B0 B=#800 D=RB00 H=PHOD S=0100 P=8104 LXI H.8119%08187

"2, Trace Havee skeps

CoZeMBE®GI® A=00 B=08B@ D=B00Q H=0119 S=8100 P=0187 MOV A,M
CeZOMPEG1® A=B2 B=08P0 D=PBBO H=0119 S=8186 P=6108 SUB C
CezZenMBE®l]1 A=B2 B=0808 D=P0GOR H=0119 S=0100 P=@109 JUNC B10D+818D

"%, Oy wonoy drhey ot 118, aurowat. breakpont o 10pH—"

8119/82 B0 84 63 85 B6 O W@.‘"‘.”?‘A’.‘k .
e128\85/71 06 22 21 B0 @2 7E EB 77 13 23 EB ST @
8130 C2 27 81 C3 @3 29 80 90 00 8P P& 40 Q@ ' S S

2148 80 96 00 0P Q0 20 PG B0 00 0 PG 8O 8O e
B156 88 8@ 00 9B 90 PP PG BQ 0B 0B BE PO PG Db K dishliged

8160 60 8@ 00 0P 00 BP 00 OO0 0B 0P BO 00 DO 8B 0@ 8E . .. AT Y
2170 0@ 00 80 00 0P 80 GO DO 0B 96 DO 00 PO 08 80 A .'..“.As.d;f‘“*}'.?'...
0180 86 B0 60 0P 0D Pe 6O PO 0B G0 20 @GO 09 68 08 PO L‘*’M?W{“Mf
81902 86 80 00 0P 00 PO PO 90 GB 08 PO ©E 0Q 68 08 Pe .vwn.'gmpbst..
21A8 B8 80 80 00 ©0 BO 00 86 0B 6P be oe 20 68 08 86 Cluraddys........
21B@ DO 00 80 0P €0 PP BP DO 0P 06 PO G0 BO 6@ @0 88

81C6 B@ 00 08 08 0P 8P 00 DO 0 98 0P PO 08 G8 88 BG . .

2, Curact COU Shate

COZBMBEQII A=02 B=RE8BG D=R0GBB H=0119 S$=0106 P=016D INX H

", T § <kes fom Curcndt 07U Shic

COZBMBER]1 A=@2 B=88B® D=BOGD H=@119 $=810@8 P=618D INX H
C8ZOMBE®I1 A=@2 B=8B00 D=BR08 H=611n S=0188 P=A18E DCR B Adwode
COZBMBEGI1 A=B2 B=B7P0 D=BB@B H=011A S=6108 P=016F JNZ 0107 BreakPoict
COZBMBE®I! A=B2 B=0788 D=B0@E H=011A S=818@ P=61867 MOV A, M
COZeMBE®I| A=80 B=B700 D=BOOB H=011A 5=610@ P=0168 SUB C*8189

-us . » - -
=7 Trace wihat \ishng wlerwediak. stades
COZIMBE1I1 A=80 B=0700% D=BOO® H=011f S=0100 P=0189 JNC ©010D+0188

=2 o Stote ot end o US)

COZBMBEL11l A=04 B=06DEG D=B0OB H=0811B S=0100 P=8188 SUB C

1791

"5y Qun Program Fom curact PC kil Combletion (e real-time)
teus \reakeooit at (6K cased by execshng RST 7 W acne Code
) Ctushle ot od & Pream

COZiIMBEII]l A=00 B=8000 D=0008 H=8121 S=0100 P=0116 RST 87

%Py svamme and cm:,c ?gym Countec

P=0116 188
—

~-X
=
CoZi1MBEL1Il A=00 B=00BC D=8608 H=0121 S=061880 P=8180 HVI

T8 Tuee 10 (headecmal) cleps qc(ﬁtdﬁhdwi ,m%l“fﬁ

CGZIHBE!I! R=80 B=00006 D=8 8 183 NVI
COZIMBELIII A=89 =8188 P=8102 Myl
COZIMBELIIl A=80 $=0108 P=0164 LXI
COZIMBELIIl A=00 =9188 P=8187 MOV
COZINMBELII1 A«p2 =@1906 P=@8188 3SUB
COZOMBEQIL A=92 B=03800 D=0P80 H=8119 S=0180 P=0183 UN
COZOMBEOII A=82 B=88AB D=0288 H=0119 S5=08100 P=210D IN
CoZaMRE@I1 A=02 B=A880@ D=PpB00® H=011Q4 S=0108 P=B10E DCR
COZOMAEDGI] A=02 B=8700 D=0006 H=811A S=81068 P=@018F JNZ
COZBMBERI1 A=02 B=8700 D=P00B H=011A S=08100 P=0187 MOV
CoZeMBE®I1 A=00 B=0700 D=p00GB H=011A S=8100 P=8188 SUB
COZIMPEII1 A=80 B=08780 D=A0800 H=@11A S$S=8188 P=2189 JUNC
-COZIMAEII] A=006 B=0780 D=8888 H=@11A S=0108 P=018D INX
COZiMBEII1 A=00 B=8799 D=8088 H=011B $=8108 P=018E DCR
COZOMBEII1 A=00 B=06B9 D=ABAB H=@11B S$=0100 P=018F JUNZ
CeZBMAELI1 A=00 B=06B0 D=PBOA H=@11B S=0109 P=8187 MOV

-A189
— Tuat ot ok (o
8199 JC 18D %thm e ﬁm%«(i have Wved Hae
' d 40 cluawy e value fom Audo C swmce Ade.
e10c; Jue fo Te iw Has -&ﬁ -ms ndt exeedd,
-G9 l aﬂMHt JNC“dMuu
’ 5@&5%?:;’: (:nuams:id hawe beew 0 TC 1vstruchon

SAVE 1 SCAN.COM) Romem vesdes on fist Guge, <o sae 4 poge .

A>DDT SCAN. conx ?zehr{‘ T u;ﬂ, . savd Memeyg lw@‘b(anflndz ‘kvhm
16K DDT VER 1.0

NEXT PC
8200 01ee@

"Libo, List some Code

Bl1oa MYI B.88
8182 MYl C.o0

184 LXI H. 0119 Revious Patcdh i Presedt o XM

187 MOV A.M
8198 SsuB ¢
8189 JC 810

A, N=xples

124

&

Py

8i1eC nov C.n
818D INX H
818E DCR B

810F JNZ 0187
8112 Moy a.C
-%P

-7
PROIOQ,

-Lie, Tre o see how Prcdclued versum opeates Dk i mowd fom Ab C

CoZoMBEO]I® A=00 B=00BP D=R0G00 H=0008P S=8190
CeZenpE®l® A=006 B=88BP D=00060 H=08088
CBZeNPEGI® AR=80 B=8886 [=P866 H=0600 P=@164 LX]I H,08119
CeZeMPEOIO® ~=PP B=BSAG D=R68B H=@119 8100 P=0187 MOY A.N
COZBMBEGI® AEB2 B=0880 D=8809 H=@ $=08100 P=8188 SUB C
CozeMmBEolIl A=82 R8ee D=ge 119 S=9100 P=8189 JC e1ed
CeZoMAERGI1 A=082 B=G% 8 H=8119 $=01806 P=618C MOV C.,A
CezeMpEOGIl A=02 B=9E D=p088 H=0119 S=01080 P=816D INX H
CeZeMBERGI1 A=62 B= D=80688 H=011A S=0180 P=8186E DCR B
CezenMBE®I1 A=82 B= 8782 D=86086 H=011A S=01606 P=018F JUNZ 0187
COZBNBE®I! A=B82 B=0782 D=8088 H=011Aa S=0100 P=@01867 MOV A.M
CozenBE®I1 A=80 B=06782 D=8808 H=011A S=0180 P=0188 SUB C
Ci1Z8M1E@G]I@ A=FE B=86782 D=p008 H=011A S=0106 P=8189 JC 818D
C1Z6M1EBI@ A=FE B=0782 D=8008 H=011A S=0160 P=@818D INX H
C1Z6M1EBI@ A=FE B=0782 D=8000 H=011B S=6106@ P=918E DCR B
C1Z6NMBE111 A=FE B=8682 D=B6GO® H=611B S=0100 P=018F JUNZ ©187+08107

%, leabouct dfir 16 skps—'

C1Z8MBE1I1 A=FE D=8682 D=BBOE H=611B $=8108 P=0187 MOV A, N
G188, Ruadom Curveit PC and breakpoint ot |0ZH

*3i68

=@169 MYl B.88
P=8162 MYl C.,ee@

C1ZoMBELII1 A=04 B=B682 D=00608 H=0118B S=0186 P=8188 SUB ¢
-T .

i or
= €ugh5kp+ G Jzw cudes

C1Z8MBELI! A=84 B=B602 D=B088 H=811B S=0100 P=8188 SUB C+8189
o |
-

C@ZOMBE@I1 A=82 B=B6B2 D=8000 H=@11B S$=6188 P=8109 JC ©18De018C
-%
=

C8ZOMBEOI1 A=B2 B=8682 D=B0OB H= 0118 $=0100 P=818C MOV C.,A

—E-; K '\O ComPHun

*0116

-X

=

CeZIMBE1ll R=83 B=00B3 D=BB0Ge H=@121 S=0108 P=0116 RST 07

"2121, ook at the wlue of "Laese’
8121 03, Wyons Value !

125

8122 Bq)
8123 2%
8124 214,

812s ee,

8126 02, . ‘)/E”‘CM"MS Command,

127 7€
-L180
—_—
3108 MYI B,88
8182 MYI C.,@8
164 LXI H.B8119
8187 MOV A, M
8198 SUB C
189 JC 818D
210C MOV C.a
8180 INX H
816E DCR B
B18F JNZ 81087

?,1_12 MOV A, C kﬁ“@.{&c&

-

8113 STaA @121
8116 RST 87?7
8117 HNOP

8118 NOP

8119 STaX B
Bi1A NOP

B11B INR B
B11C INX B
811D DCR B
B1lE MVYI B,8t
8128 DCR B J
-ﬁzj

P=8116 1oe, Qeset Ae 72
"I, Swule Skpsand woteh daa values

COZIMBELl1l A=83 B=90B3 D=0089 H=9121 S=08180 P=3188 MVI]
-T

-

C8ZINBEL]l! A=93 B=02803 D=8008 H=0121 S5=0100 P=8182 MY]
-1 Court set

2 . 2 leqet st

CeZIMBELII1 A=83 B=@380 D=R080 H=0121 S=0100 P=9104 LXI
-1

i, b addoess & dot set

CoZIMBELII1 A=83 B=6830 D=8008 H=0119 S$=0108 P=B187 MOV

126

B.88+0182
C.88%0104
H.B8119%8187

A.M+xB188

a

£,

<-T . ’ . ’

-7 r“m& Aak dem LvougH'bA
COZINMBEIIl A=02 B=08B0 D=PB0D H=0119 S$=0iod P=08168 SUB C+B1i29
—l)

COZOMBE@I1 A=B2 B=8880 D=B8OO H=0119 $=01060 P=8189 JC 018D*018C
-1

—J .
COZBMBE@I) A=82 B=86BO D=8808 H=0119 $=0108 P=816C HOV C,A*B10D
-7 . :

= {’&ﬁf&d‘JﬂNVNMH+'C aorvectly

COZOMBE@I] A=62 B=0882 D=8008 H=0119 $=0100 P=818D INX H@1BE
-1

-

COZEMBEGI1 A=B2 B=8882 D=P0BO H=011n $=8106 P=@16E DCR B*B10F
-1

s

CeZ0MBEGI1 A=02 B=0782 D=0000 H=011A4 S=01080@ Px=010F JUNZ @0187+«8107
|

)
tezemMBEGll A=a2 B=a782 D=8000 H=811n $=-818@ P=8187 MOV A, H+BlGE
-.I-J rsaand dodm. cerm brouglet 4o A
CeZBMBERGI1 A=p0 B=0782 D=0000 H=011A S=0100 P=0188 SUB C=»=0109
5 £ Surtrad deetveps Aot Value wlich was loaded !/

C128M1E®I@ A=FE B=8782 D=8000 H=011A $-0106 P=8189 JC ©18D+218D
-1

=3

C1Z@MIEQI® A=FE B=0782 D=8008 H=0114 S=0186 P=@18D INX H»81BE
-LIOOJ

01886 NVl B.08
pi1ez2 nvl C,ee
8104 LXI H,0119
8187 MOV

0100 sup ¢ «—Thi shruld bt bews o CMP ot regeke A

8109 JC 018D wiuld
818C MOV C.A M\'bcdubogd-

818D INX H
818E DCR B
810F JNZ @187
o112 nMoV A.C

-A188

—

108 CHP ,C) L\ll' Pﬁ‘(‘d\ at 1ot CW_’G 5116'{‘0 MY
919%'

-8, she T or SKE

SAVE { SCAN.COM : | ™
P Saw memory wiage O

A>DDT S‘)(IMI.C‘OMa Castect OOT
16K DDT VER (.0

NEXT PC

9200 8106

-&J

P=0100)

L,

B116 RST 87 _

8117 NOP ‘

o118 KoP 1 lok ot code tosee '€ i wuts Ducplrly Londed
B11A NOP (lomg tupesut abooried Wil Yudoout)
= (ndost)

6116, Qun fom 0oty completm

“0116

Ey \ekat Cory Comudedtl fypo) |
Ey Lok at Cpu Slode

C1ZIMBE1Il A=86 B=B0B6 D=BDOB H=0121 5=08180 P=8116 RST 87
-8121 “ . :
—=2 \losk at Laqc’ - l{-awq(s-l-b k&md‘

8121 86

2 .
p122 08,
0123 22 ,)
"58 sbe DOT
ED scnu.nsn) Re-edit He soure pavam: and wake bootls c(mva(s |
«N3UB
*M) 2 /c. A
SUB. ¢ ;LARGER VALUE IN C?
¥330 M LT,
TH ¢ ;LARGER VALUE IN C?
*
P

NC NFOUND JUMP IF LARGER VALUE NOT FQUND
* SN LT) g”

JC NFOUND ;JUMP IF LARGER VALUE NOT FQUND
x£a

128

asn scaM. a0z Qp-acentde, selectim sowce +rom dik 4
CP/N ASSEMBLER - YER 1.0 W o disk A
Prut +v Z (Selecks wo 7

Blze
B82H USE FACTOR
END OF ASSEMBLY

LDI SCAM. HEX , Ue-vun debupﬂer 4o clied Clmgas

16K IDT YER 1.0
HEXT PC
n1z1 Bees

-L116
—

o116 onp eese Checkdo evsuwe end s ohill ab [IGN

6119 STAX B

“i1A NOP
811 INR B
= (vuosut)

-6160. 116 Go $rom bqi“v{mj m-\'\; Weakpont &t end
vo116 lveakpontt veaclel

"Di21, Look at LACEE" - ryeck value Cowucked
3121 7E EB 77 13 23 ER ©B 78 B1 ..

138 C2 27 81 C3 ©3 29 00 G @8 00 PO 0¢ BB 83 96 36 .

i)

a BV I U
D) .

3146 96 80 86 00 0B 06 0O 88 08 68 B¢ 68 86 0B 00 #O

- (rulordt) M ‘“5 -bmd—
252 b DOT) debuwa Sessim Compcke

129

CP/M 2.2 INTERFACE GUIDE

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the ©prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample

programs for the ©purposes of 1inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

CP/M 22 INTERFACE GUIDE

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

o,

1.
2.
3.
4.
5.
6.

Table Of Contents

CP/M 2.2 lnterface Guide

INtroducCtioN.ceescocecsesscacssccancssessl3dl
Operating System Call ConventionS.eeecesa133
A Sample File-To-File Copy Program.....+.159
A Sample File Dump Utilityeeeeeosscacesselbd
A Sample Random Access Program..ceecesssec167
System Function SummMarye.ecsececscccsscseecssl?b

L
/ b

S
o’

1. INTRODUCTION,

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic 1/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device 1/0, Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide"),
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e,, the portion which is not
used by the FDOS and CCP) where various non~-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections,
Memory organization of the CP/M system in shown below:

high | |

memory | |
| FDOS (BDOS+BIOS) |

FBASE: | |
| |

| ccp |

CBASE: | |
| |

] |

| |

| TPA |

| |

TBASE: | |
| system parameters |

BOOT: | |

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“CP/M Alteration Guide," All standard CP/M versions, however, assume
BOOT = @@P@H, which is the base of random access memory. The machine
code found at location BOOT performs a system “warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research,)
131 "

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+8100H which is normally location 0100H.
The principal entry point to the FDOS is at 1location BOOT+86@5H
(normally @8005H) where a jump to FBASE is found. The address field at
BOOT+@@06H (normally 0686H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt, Each command 1line takes one of the
forms:

command
command filel
command filel file2

where “command” is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command,COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory., The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE,

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area. These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section, :

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FDOS. The
transient program is “called” from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. 1In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE~1 is free, :

The transient program may use the CP/M I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem, The I/O system is accessed by passing a
"function number" and an "information address®™ to CP/M through the
FDOS entry point at BOOT+0005H, In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(All Information Contained Herein is Proprietary to Digital Research.)

132

g/
S

}
J

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs., Many
of the functions 1listed below, however, are more simply accessed
through the 1/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/0. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

"File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+8685H, 1In general, the function
number is passed in register C with the information address in the
double byte pair DE, Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of 1Intel's

PL/M systems programming language, The list of CP/M function numbers
is given below,

(All Information Contained Herein is Proprietary to Digital Research,)

133

@ System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console OQutput 21 Write Sequential

3 Reader Input 22 Make File

4 Punch Output 23 Rename File

S List Output 24 Return Login Vector
6 Direct Console I/0 25 Return Current Disk
7 Get I/0 Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
18 Read Console Buffer 29 Get R/0 Vector
11 Get Console Status 39 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random

16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs,
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location #980H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a 1local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = @3@08H):

BDOS EQU 00954 ;STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
’
ORG 91006H :BASE OF TPA
NEXTC: MVI C,CONIN s READ NEXT CHARACTER
CALL BDOS s RETURN CHARACTER IN <A>
CcPI ‘u ;s END OF PRQCESSING?
JNZ NEXTC ;LOOP. IF NOT
RET sRETURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

;//\«»Wm%"

{(4« ",

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source

BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
“line" of the source file is followed by a carriage-return line-feed
sequence (O#DH followed by BAH). Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file |is
denoted by a control-Z character (1lAH) or a real end of file, returned
by the CP/M read operation, Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations,

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from # through 65535, thus
allowing a maximum of 8 megabytes per file, Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area, Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decamposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB)., Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+8@5CH (normally #85CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk 1/0 is provided by CP/M
at location BOOT+#@P80H (normally @88PH) which is the initial default
DMA address (see function 26), All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file 1is accessed randomly., The default file control block
normally located at @05CH can be used for random access files, since
the three bytes starting at BOOT+887DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research,)
135

D T R I T IR W S P TP G T W W G G T G SEE AU WD U LD G S SED SRR WD R NS T IR AU N b S AN D WS e

Bﬁ ll 82 ... 9809 16 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (8 - 16)
B => use default drive for file
1l => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P,

fl...f8 contain the file name in ASCII
upper case, with high bit = @

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 2
tl*, t2°', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2®' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to @4 by the user, but
in range 8 - 31 during file I/0

sl reserved for internal system use

82 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re :record count for extent “ex,"
takes on values from 8 - 128

d8,..dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range 8-65535, with overflow to r2,
rd,rl constitute a 16-bit value with
low byte r8, and high byte rl

Bach file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it 1is the
programmer's responsibility to £ill the lower sixteen bytes of the FCB
and initialize the "cr* field., Normally, bytes 1 through 11 are set

to the ASCII character values for the file name and file type, while
all other fields are zero.

{All Information Contained Herein is Proprietary to Digital Research,)
136

i 7};"

S

s,
¢ y

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations

- (see the OPEN and MAKE functions). The memory copy of the FCB is

updated as file operations take place and later recorded permanently

on disk at the termination of the file operation (see the CLOSE

command) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel® and "file2" in the prototype
command line described above, with unspecified fields set to ASCII
blanks, The first FCB is constructed at location BOOT+8865CH, and can
be used as-is for subsequent file operations, The second FCB occupies

- the d# ... dn portion of the first FCB, and must be moved to another

area of memory before use, I1f, for example, the operator types

PROGNAME B:X,Z20T Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+605CH is initialized to drive code 2, file name “X" and file type
“Z0T". The second drive code takes the default value 8, which is
placed at BOOT+8@6CH, with the file name "Y" placed into 1location
BOOT+PP6DH and file type “"ZAP“ located 8 bytes later at BOOT+8875H.
All remaining fields through “cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before

opening the file which begins at BOOT+@85CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+865DH and BOOT+@86DH contain blanks, In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions,

As an added convenience, the default buffer area at 1location
BOOT+PP80H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+068#H is initialized as follows:

BOOT+P0@8PH:

+06 +01 +62 +03 +94 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14 » » nBu “:“ uxﬂ u.» nzu uou uTn ® n loyﬁ n.n uzn MAM uPtn

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is

“the responsibility of the programmer to extract the information from

this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(A1l Information Contained Herein is Proprietary to Digital Research,)
4379

I XXX 22222222222 RERX2RE22E]

* *
* FUNCTION #: System Reset :
*

IE XX 222222222222 X222 222222222 2 222222 2 2
* Entry Parameters: *
* Register C: @0H *

I X2 2222222222222 222 X222 RR222 2 Ratyt R

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A, This function has exactly the
same effect as a jump to location BOOT,

khkkkhkhkhkhkkhkhkhhhkhhdhkhihkhhkhkhkhkkkkkhikhi

* *
* FUNCTION 1: CONSOLE INPUT *
* *
I EE RS2SR X222 X2 2R 2222222 2R R 2 0 & &)
* Entry Parameters: *
* Register C: 0618 *
%* *
* Returned Value: *
* Register A: ASCII Character *
IR EZZES SRR R RS2SR 22222 2 R2 22 2 4

The console input function reads the next console character to
register A, Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console., Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

hkkhkkhhhkhkhhhhhhhkkkhkhhhhhkhhhhkhhkkkhk

* . *
* FUNCTION 2: CONSOLE OUTPUT *
* *
kRhhkhhkhhkkhkkhhhhkhkkkkhkhkkkhkhkhkhkhkhhhhkhkhik
* Entry Parameters: *
* Register C: @2H *
* Register E: ASCII Character *
* *

dedededoded ko oo dede de ok dk ko dede de ke A ke d e de do ok de ke dede ke ke ke ok k kK

The ASCII character from register E 1is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research,)
138

LA AR AR 2222232222222 222222232

* *
* FUNCTION 3: READER INPUT *
. * *
i J I 2322222222222 2222222233222 32X 24
* Entry Parameters: *
* Register C: @3H »
* *
* Returned Value: *
* Register A: ASCII Character *
[Z 222222822222 X222 282 X222 X22 R 22 22X 2]

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"), Control does not return until the character has
been read, :

KARARRAA KA A AR R A AR AR A AR A Ak Rk hhhhkhkhhkdk

* *
* FUNCTION 4: PUNCH OUTPUT *
*

khkkkkhkkhkhhhhkkhhhkhkhhhhdhkhhhkhkkhohdkkdkd
* Entry Parameters: *
* Register C: @4H *
* Register E: ASCII Character *
* *

Rhkhkhkhhhhhkhhhkhhkhkdhhkhdkhhdhdhhhkhhdidkihkikihkkik

Py

The Punch Output function sends the character from register E to
the logical punch device,

AKX RRIRR AR ANk hkhkhhkhhhhhhdhhhhkhkkhhkd

* *
* FUNCTION 5: LIST OUTPUT *
* *
IR 222X X222 X222 SRRES2 2R 2 4
* Entry Parameters: *
* Register C: @5H *
* Register E: ASCII Character :
*

LA AR EL RS2 2222222232222 X222 2 22 X2 2 £

The List Output function sends the ASCII character in register E
to the logical listing device,

(All Information Contained Herein is Proprietary to Digital Research.)
139

I RXE222 222232322222 22222222222 2222222222
» *

* FUNCTION 6: DIRECT CONSOLE I/0 :
*

A2 222222 22222222222 22222222222 222222]

Entry Parameters:
Register C: 0@6H
Register E: OFFH (input) or
char (output)

L 3

Returned Value:

Register A: char or status
(no value)
KhkkRhkhkkhkhhhhkhkhhhkhkhhkhkkhkhhhkkkkkkkkk

* % % % X ¥
% % % ¥ X X *

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output 1is required,
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-pP), Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct

I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = 00

if no character is ready, otherwise A contains the next console input
character,

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

- A 2w

e

KRR RARR AR R R AR R R AR AR AR AR AR R R R AR AR R AR

* *
* FUNCTION 7: GET 1/0 BYTE *
* *

I E X EXIE X222 2222222222222 2R 2R SRRl

* Entry Parameters: *
Register C: @7H

Register A: I/0 Byte Value

* *
* *
* Returned Value: *
* *
I EEEITS S22 22222222222t R2 R R R L)

The Get I/0 Byte function returns

the current value of IOBYTE in

register A, See the "CP/M Alteration Guide" for IOBYTE definition.

LA RSl s A I T Y R Y TR TR L TR L

* *
* FUNCTION 8: SET I/0 BYTE :
*

*********************#*****************
* Entry Parameters: *
* Register C: #@8H T
* Register E: I/0 Byte Value *
* *

***********i***************************

The Set I/0 Byte function changes
that given in register E,

2222222222222 RRR2 SRR 2R 2 t XX X

* *
* FUNCTION 9: PRINT STRING *
* *
ﬁ**********************************
* Entry Parameters: *
* Register C: 069H *
* Registers DE: String Address *
* *

LA AR S22 2222222322222 2222 2 2 2 L2

the system IOBYTE value to

The Print String function sends the character string -stored in
memory at the location given by DE to the console device, until a “$"
is encountered in the string, Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo,

(All Information Contained Herein is Proprietary to Digital Research.)

141

(2222222222222 2222222222222 2 ReR 222yt

* *
* FUNCTION 10: READ CONSOLE BUFFER :
*

kAR hkhhhhhhhhhkhhkhkhkhkhhkhhhhidhkk
* Entry Parameters:

Register C: @AH

Registers DE: Buffer Address

Returned Value:

Console Characters in Buffer

*
*
*
*
*
IR A EESEEEEERRE R R 2SR R R R R Y 2T LR

*
*
*
*
*
*
*

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE., Console input is terminated

when either the input buffer overflows. The Read Buffer takes the
form:

DE: +8 +1 +2 +3 +4 +5 +6 +7 +8 . . e +n

where “mx* is the maximum number of characters which the buffer will
hold (1 to 255), “nc* is the number of characters read (set by FDOS
upon return), followed by the characters read from the console, 1if nc
< mx, then uninitialized positions follow the last character, denoted
by "??" in the above figure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the <carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme left margin). This convention makes operator data input
and line correction more legible,

(All Information Contained Herein is Proprietary to Digital Research,)

142

A

T
,A,Mv'/f

I AR 222222 2222222222822 2222222222221

® *
* FUNCTION 11: GET CONSOLE STATUS *
* *
I Z2 X3S 2222223222222 2222222222222 2]
* Entry Parameters: *
* Register C: 0BH *
* *
* Returned Value: *
* Register A: Console Status *
IS 2222 X222 X222 282222222 22222222t

The Console Status function checks to see if a character has
been typed at the console, If a character is ready, the value @FFH is
returned in register A, Otherwise a 86H value is returned.

I E 2 XL 222222222 2222222323222 2222322332
* *

* PFUNCTION 12: RETURN VERSION NUMBER *
* *

khhkhhhkkhkhkhhhkkhkhkhkhhkhhhkhkhkhhrxhhhkhkhkkhkkhkk

* Entry Parameters: *
* Register C: @CH *
*) *
* Returned Value: *
* Registers HL: Version Number *
I 2222222232222 2 2222282222222 82 R 2 2t X &
Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 08

designating the CP/M release (H = 01 for MP/M), and L = 68 for all
releases previous to 2.0, CP/M 2.8 returns a hexadecimal 26 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)
143

IR 2222222222222 222222 222 2R 2R R R 2R

* *
* FUNCTION 13: RESET DISK SYSTEM *
:****************************t***t****:
* Entry Parameters: *
* Register C: ODH *
* *

KRk dkkkkodkdkdkkdkddksodkdkhdkkkkkkkkkkkiikkkikkk

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A 1is selected, and the
default DMA address is reset to BOOT+808@H. This function can be
used, for example, by an application program which requires a disk
change without a system reboot,

I E 2222 X222 22222222222 R R RRRRERE2 2

* *
* FUNCTION 14: SELECT DISK *
* *
222 RS 222222222222 R 222 RRRRRRRRRZR2RES D]
* Entry Parameters: *
* Register C: #@EH *
* Register E: Selected Disk *
» *

IR 2222232222222 2222222222222 R 2 2 2 22

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= § for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
“on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation., 1If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M enviromment (see
function 28). FCB's which specify drive code =zero (dr A0oH)
autamatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

144

N

27
{ H

************************************t*t

* *
: FUNCTION 15: OPEN FILE :

KRR AR AR AR IR AR R R RN R AR R NN AR AN RN AR AR AR

Entry Parameters:
Register C: @FH
Registers DE: FCB Address

Returned Value:

Register A: Directory Code

*
*
*
*
*
*
KRR AR AR IR RN R IRRR AR AR AR AR ARk k*

*
*
*
*,
*
*
*

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number, The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII guestion mark (3FH) matches any
directory character in any of these positions, Normally, no question

marks are included and, further, bytes “ex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes dp through dn of the FCB, thus
allowing access to the files through subseguent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a “directory code" with the value A# through 3 if the open was
successful, or @FFH (255 decimal) if the file cannot be found, 1If
guestion marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("“cr") must be zeroed by the

program if the file is to be accessed sequentially from the first
record.

(A1l Information Contained Herein is Proprietary to Digital Research.)

145

RhkhhhkhkhhkkRRhkhhhhrrRhARkxhkhhhhhkhkhkkkrd

* *
* PFUNCTION 16: CLOSE FILE :
*

IR 2222222222222 2222222222222t 22 g S
* Entry Parameters: *
* Register C: 1¢0H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
khkkkhkkhkhkrhkkkkhkhkhhkhkhkhkhkkkhhkhhkkhkkhkkhkhkik

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close 1is 1identical
to the open function. The directory code returned for a successful
close operation is 9, 1, 2, or 3, while a @FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place., If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information,

(A1l Information Contained Herein is Proprietary to Digital Research.)

146

g

I A2 S X222 RS2 32 22222222222 X2 22223 2}
* *®

* FUNCTION 17: SEARCH FOR FIRST :
®

RERRRRA AR AR ANRRRRNRRRRRANRRA KRR R RN R AR A AN
* Entry Parameters:

Register C: 1l1lH
Registers DE: FCB Address

Returned Value:

Register A: Directory Code
KRR RKRRARR RN KRR RARRAARRRRR A ARk Ak kkhd

* % % ¥ B ¥

*
*
*
*
*
*

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 6, 1, 2, or 3 is returned
indicating the file is present. 1In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally reqguired for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from “f1" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
“dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values., 1If the “dr* field is not a gquestion mark,
the "s2" byte is automatically zeroed.

KARRKRRRARRRRARKRKN AR R ARKRR AR R AR Ah kT hhkhhd

* *
* FUNCTION 18: SEARCH FOR NEXT :
*

X3 XX222 3222332223223 33 2333222222222 222 X
* Entry Parameters: *

¥ Register C: 12nH
* Returned Value:
*
*

» ¥ ¥

Register A: Directory Code
RARRRRRKRN KRR AR AR AR R AR N KRR AR Ak kRN Rkd

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last

matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

(A1l Information Contained Herein is Proprietary to Digital Research.)

147

RRRRRERRRANARARRRRRRRARRRNARRRAR AR AR

*
* FUNCTION 19: DELETE FILE *
* ' *
I E 2222222222222 22222 222222222 R R 2 2 2 24
* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
* *
* Returned Value: . *
* Register A: Directory Code *
IR 2SR 22222 2222222222 2222t 2 R R 22 2]

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may <contain ambiguous
references (i.e., guestion marks in various positions), but the drive

select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or
files cannot be found, otherwise a value 1in the range § to 3 is
returned,

RERRRAAIR KRR KAKRRRRRARAARRRRRRAKRARRARRS

* *
* FUNCTION 2#: READ SEQUENTIAL :
*

LA RS2 222222223 222222222 222222 X2 222 22
* Entry Parameters:

Register C: 14H
Registers DE: FCB Address

Returned Value:

Register A: Directory Code
Rk gk K sk de ded dodededodekk ok ok kg ok vk dek ke k vk okodkkkhk ki

% % % * ¥ %

*
*
*
*
*
*

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address., the record is read from position "cr" of the
extent, and the "“cr* field is automatically incremented to the next
record position, If the “cr* field overflows then the next logical
extent is automatically opened and the “cr* field is reset to zero in
preparation for the next read operation. The value 00@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

148

g,
e

”§

£
g

oo
o N

A

FUNCTION 21: WRITE SEQUENTIAL ':

*

*

AR AR R RN R R R R AR AR A RRANRRRARNANRNRNRRRR AN
* Entry Parameters: *
* Register C: 15H

: Registers DE: FCB Address
*
*
*

Returned Value:

Register A: Directory Code
I 32X 2222222222222 2222222222232 222

*
*
*
*
*
*

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position *"cr* of
the file, and the *“cr* field is automatically incremented to the next
record position, If the “cr* field overflows then the next logical
extent is automatically opened and the “cr" field is reset to zero in
preparation for the next write operation, Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = @0H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

RERRRR AR AR RN R AR AR IR AR KRR R AR AR A kAR

*® *
* PFUNCTION 22: MAKE FILE *
* %*

RERRRRARARRRRRARARRAR AR AR AR R AR AR TR Ak hhkk
* Entry Parameters:

Register C: 16H
Registers DE: FCB Address

»

Returned value:

Register A: Directory Code
AER RN R R R R R RN R R R AR AR R IR KRR AR RN

* % ¥ ¥ %

*
*
*
*
*®
*

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero “dr* code, or the default disk if *"dr® is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file, The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = 8,
1, 2, or 3 if the operation was successful and @FFH (255 decimal) if
no more directory space is available, The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)
149

L2222 222222222222 22222 X222 2222 2]

* *
* FUNCTION 23: RENAME FILE *
* *

khkhkkkkhkhhkhhhkhkkhhhhhkrhkhkhkhhkhkhkkhhkhkkhhk

* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address :
*

* Returned Value: *
* *
* *

Register A: Directory Code
khkkkkkhhkhhkkkkhkhkkhkkhhAkhkhkhkkkkkkkkhk

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes., The drive code “dr" at position @ is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between # and 3 if the rename was successful, and
9FFH (255 decimal) if the first file name could not be found in the
directory scan.

LSRR E SRR 2RSSR RS RY RS2 2 X

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *
RAhkhkkkhkhkhkhkhkhkhkhkkkAkhkkRhkAhhkhkhkhhkhkkkkkk
* Entry Parameters: *
* Register C: 18H *
* *
* Returned Value: *
* Registers HL: Login Vector *
Ahkhkkhkdhkhkkrkhkkkkkhhkhkhhkhkhkkxhhhkhkixhhkkki

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds. to the sixteenth drive,
labelled P. A "8" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero *dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return,

(All Information Contained Herein is Proprietary to Digital Research,)

150

AR RN R AR RN ARRR N R RR AR RRRANA RN AN R R AR A RRANRR

* *
* FUNCTION 25: RETURN CURRENT DISK *
* L
LA A R s X N Y Y P X2 S 2 2222 X2 X}
* Entry Parameters: *

Register C: 194

* * %%

Register A: Current Disk

*
*®
* Returned Value:
*
KRR BRRRKRERRRAREIRRERR AR AR AR AR AR AR R AR AR

Function 25 returns the currently selected default disk number

in register A, The disk numbers range from 6 through 15 corresponding
to drives A through P.

'YX 22223223 2233322222222 2222222222 2%t

*® *
* FUNCTION 26: SET DMA ADDRESS :
*

KRRRRRKRRA AR IR R AR Rk kAR A hkhhhkk
* Entry Parameters: *
* Register C: 1AH *
* Registers DE: DMA Address *
* *

I 2 E A X222 22222222 2R 2222222222222

“DMA* is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem, Although many computer systems use non-DMA access (i.e.,
the data is transfered through programmed I/0 operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+@@86H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset,

(All Information Contained Herein is Proprietary to Digital Research,)
151

'S2 322223283223 222 R 22222222 2 2 2 R Q2 2

* *
* PFUNCTION 27: GET ADDR(ALLOC) *
* *

I X2 222222222222 2 2Rt R ogR S RESZEEEZ

* Entry Parameters:
Register C: 1BH

* % % % %

Registers HL: ALLOC Address

*

* £l

* Returned Value:
»*
REERREERRERRERRERRRERRARRRRAARRRRR AR R AR AL

An "allocation vector" is maintained in main memory for each
on-line disk drive, Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive, The
allocation information may, however, be invalid if the selected disk

has been marked read/only. Although this function is not normally

used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

khkhkhhkhkkkhkkhhkhhkhkhkkhhkhkkhkhkkhkrhkrhkhkhkhkhhkkrk

* *
* FUNCTION 28: WRITE PROTECT DISK :
*

KRR RAARRRARKAk ARk R Rk AXX ARk AX AR K
* Entry Parameters: *
* Register C: 1CH *
* *

RRRkhkhkkkkRhkh kXK hkkhhkhhkhhkhkkhkkhkhkhhkkkk

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)
152

o~
¢ H

AR R AN KRR AR AR AR R RN R RN ARRARRR AR AN RN R RN
" *
* FUNCTION 29: GET READ/ONLY VECTOR ¥
* *
AR AR AR R AR AR AR R AR AR R KRR AR RARARRRRRNRK

* Entry Parameters: *
* Register C: 1DH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
*

KRR RRRARKRA R ARk Rk ARk hhkkkkXkk

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive a,

- while the most significant bit corresponds to drive P. The R/O bit is

set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks,

KRR KRR KRR AR KRR AR AR SRR R AR AR AR R AR AR Kk k*

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *
LR R RS R X X E X s EE RS SRS R R R E S LY
* Entry Parameters: *
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
(A XSS X222 RS2SR 222222222222 222 X R

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files, In
particular, the R/0O and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 38 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators f1' through f4' are not presently used, but

may be useful for applications programs, since they are not involved
in the matching process during file open and close operations,

Indicators £5' through £8' and t3' are reserved for future system
expansion,

(A1l Information Contained Herein is Proprietary to Digital Research.)

153

LA AR R RS2SRRSR 222 R 2 2 2)

* *
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *

KhkhkhhhhhkRkhkRhkhkhrhkRkhkkhehkhhhkhhhkhihin

* Entry Parameters: *
* Register C: 1FH *
* *
* Returned Value: *
* *
* *

Registers HL: DPB Address
LR E 222 2E2 222222 R2 X222 R 222 X

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes, First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk enviromment changes, if required. Normally, application
programs will not require this facility.

LA AR SRR 2222222222222 2222 22222

* *
* FUNCTION 32: SET/GET USER CODE *
* *

KERRRRRRRRAXARRRAKRARARARRXARARRARAR AR AR AR
* Entry Parameters:
Register C: 20H

Register E: OFFH (get) or
User Code (set)

»

Register A: Current Code or

{no value)

*
*
*
*
*
*
*
khhhknkhkhhkkhkkhhkkhhhhhkhrhhhhhhhhkkhhihk

*
*
*
*
Returned Value: *
*
*
*

An application program can change or interrogate the currently

active user number by calling function 32, If register E = @FFH, then
the value of the current user number is returned in register A, where

the value is in the range @ to 31. 1If register E is not @FFH, then
the current user number is changed to the value of E (modulo 32),

(All Information Contained Herein is Proprietary to Digital Research.)

154

%

I X 22222 222222222222 32222 2 22

* *
* FUNCTION 33: READ RANDOM :
-
,3*********t************************t****
* Entry Parameters: *
* Register C: 21H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *
******t****************Q*********t*****

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r@# at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r#f), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2

must be zero, however, since a non-~zero value indicates overflow past
the end of file,

Thus, the r@,rl byte pair is treated as a double~byte, or "word"
value, which contains the record to read. This value ranges from # to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may

' not contain any allocated data, this ensures that the file is properly

recorded in the directory, and is visible in DIR regquests. The
selected record number is then stored into the random record field
(rf,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 88 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the segquential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the 1last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation., You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a segquential 1I/0 operation,

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)
155

81 reading unwritten data

#2 (not returned in random modd)
#3 cannot close current extent

84 seek to unwritten extent

S (not returned in read mode)

96 seek past physical end of disk

Error code A1 and 84 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected, Error code 86 occurs whenever byte r2
is non-zero under the current 2.8 release, Normally, non-zero return
codes can be treated as missing data, with =zero return codes
indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research,)
156 '

BERRABARARRANEENARRRARN A AR ARANANARRRARS

* *
* FUNCTION 34: WRITE RANDOM :
*

ARRRNARARRANRR AN R ARAS AR ARNANSEAROREN
* Entry Parameters: *
* Register C: 22H *
* Registers DE: FCB Address :
*

* Returned Value: *
* Register A: Return Code *
ARRABRARRRRRARREA AR DARARRAANAENARNRARRER

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the randam record number is not changed as a result of the
write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a seguential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode,

The error codes returned by a random write are identical to the
randam read operation with the addition of error code 85, which

indicates that a new extent cannot be created due to directory
overflow,

(All Information Contained Herein is Proprietary toADigital Research.)

157

LA AR 22222222222 222222 2 22 XYL Y

* *
* FUNCTION 35: COMPUTE FILE SIZE *

* * .
ARERRRKRRRRRRRRRRRRRRRRRR R AR AR RRNN AR j

(«M%\

* Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:

Random Record Field Set

]
®
*
*
*
*
I XEEZEEEEETERSSESSE AR SRR R R 22222 E

*
*
*
*
*
*

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes rd, rl, and r2 are
present), The FCB contains an unambiguous file name which is used in
the directory scan, Upon return, the random record bytes contain the
“virtual" file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is 91, then the file contains the
maximum record count 65536. Otherwise, bytes r# and rl constitute a
l16-bit wvalue (r@ 1is the least significant byte, as before) which is
the file size.

. Data can.be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size wheniwﬁ-
the file is written sequentially., If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates, I1f, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the wvirtual size is
65536 records, although only one block of data is actually allocated,

-
S

(All Information Contained Herein is Proprietary to Digital Research.)

158

AN RARRARRRAR AR R AR AR R AR SRR ARARARAN RS
] *

* PUNCTION 36: SET RANDOM RECORD :
.

RRRBARERREARRARNRARENARRANNAARRNARRRAAES

* Entry Parameters: *
Register C: 24RH »
Registers DE: FCB Address *

*

Returned Value:

*
Random Record Field Set *
[2 X 2228232223232 %23 3822223231222 22%22

*
*
»
®
*
*

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or

written sequentially to a particular point, The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various “key" fields, As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval, After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record 1lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to £find the
exact starting position of the keyed data at a later time,

A second use of function 36 occurs when switching from a
sequential read or write over ¢to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called which sets theé record number, and subsequent random read and
write operations continue from the selected point in the file,

(All Information Contained Herein is Proprietary to Digital Research,)
159

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in W,
a "HEX" file, The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP., The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at #86CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field, At this point, the source and
destination FCB's are ready for processing since the SFCB at 085CH is
properly set-up by the CCP upon entry to the COPY program, That is,
the £first name is placed into the default fcb, with the proper fields

zeroed, including the current record field at #@67CH. The program
contlnues by opening the source file, deleting any exising destination
file, and then creating the destination file, If all this is

gsuccessful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file 1is <c¢losed

and the program returns to the CCP command level by jumping to BOOT,

sample file-to-file copy program

at the ccp level, the command

copy a:X.,y b:u.v

copies the file named x.y from drive
a to a file named u.v on drive b,

S WE WO WS N WS N e e

: ‘
0009 = boot equ g980h ; system reboot
9885 = bdos equ #005h ; bdos entry point
g@5¢c = fcbl equ 885ch ; first file name
#85¢c = sfcb equ fcbl ;s source fcb
Boe6c = fcb2 equ gaéch ; second file name
0088 = dbuff equ g886h ; default buffer
010 = tpa equ 9160h ; beginning of tpa

H 1 ’
p0d9 = printf equ 9 ; print buffer funcé
B00f = openf equ 15 ; open file func#
0818 = closef equ 16 ; close file func#
2013 = deletef equ 19 ; delete file func}
P014 = readf equ 20 ; sequential read
p015 = writef equ - 21 ; sequential write
0016 = makef equ 22 ; make file func#

14
Plog org tpa ; beginning of tpa
8100 311b#2 1xi sp,stack; local stack

H move second file name to dfcb
0193 feld mvi c,16 ; half an fcb

(A1l Information Contained Herein is Proprietary to Digital Research.)

1680

/ Y
i 3

0165
gles
816b
816c
gled
81l0e
glef
8110

#l13
pl14

8117
glla
glld
0120
6121

pl24
p127

g1l2a
pl2d
0130
9133
8134

8137
f13a

p1l3d
g13e

8141
Pl44
8147
0l4a
814b

?1l4e

6151
8154
0157
#l5a
815b

(All Information Contained Herein is Proprietary to Digital Research.)

116cP0
21da01
la
13
77
23

c20bp1l

af
32fafl

115c00
cdé69gl
118701
3c

cc6lol

l1ldagl
cd7361

11da01
cdszol
119601
3c

cCc6101

.115c08

cd78p1

b7
c25101

l11da@l
cd7d401
1l1a961
b7

c461061
c33761

11da01l
cdeefl
21bb81l
3c

cc6lol

mfchb:

- we

«® %9 W

-8 we

-e

() w0 “o ~e we

»e we

’
eofile:

“~e we

1xi d,fcb2 ; source of move
1xi h,dfcb ; destination fcb
ldax d s+ source fcb

inx d ; ready next

mov m,a ; dest fcb

inx h : ready next

der c ;s count 16...0
jnz mfch ; loop 16 times

name has been moved, zero cr
Xra a ; a = @bh
sta dfcbcr ; current rec = @

source and destination fcb's ready

1xi d,sfcb ; source file
call open ; error if 255
1xi d,nofile; ready message
inr a : 255 becomes 0
cz finis ; done if no file

source file open
1xi d,dfcb
call delete

prep destination
destination
remove if present

- we

1xi d,dfcb ; destination

call make ; create the file

1xi d,nodir ; ready message

inr a : 255 becomes 8

cz finis ; done if no dir space

source file open, dest file open
copy until end of file on source

1xi d,sfcb ; source

call read : read next record
ora a : end of file?

jnz eofile ; skip write if so

not end of file, write the record

1xi d,dfcb ; destination
call write :+ write record
1xi d,space ; ready message
ora a : B0 if write ok
cnz finis : end if so

jmp copy ; loop until eof
: end of file, close destination
1xi d,dfcb ; destination
call close ; 255 if error
1xi h,wrprot; ready message
inr a : 255 becomes 00
cz finis : shouldn't happen

copy operation complete, end

161

Bl5 llcchl 1xi d,normal; ready message

finis: ; write message given by de, reboot

9161 0eb9 mvi c,printf
9163 cdas509 call bdos ; write message
6166 c30000 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

QO we wo o we

8169 Pebf pen: mvi c,openf
pléb c305090 jmp bdos
0l6e deld élose: mvi c,closef
170 c30500 jmp bdos
0173 del3 éelete: mvi c,deletef
9175 c308508 jmp bdos
p178 Bel4 éead: mvi c,readf
pl7a c38500 jmp bdos
8174 Gel5 write: mvi c,writef
p17f c30580 jamp bdos
0182 del6 ﬁake: mvi c,makef
P184 c38500 jmp bdos
: console messages
0187 6e6f28fnofile: db ‘no source file$'
8196 6e6£289nodir: @b ‘no directory spaces§’
0la9 6f7574fspace: db ‘out of data space$’
glbb 7772695wrprot: db ‘write protected?$’
dlcc 636f7@88normal: db ‘copy complete$’
H data areas
g1da dfcb: ds 33 ; destination fcb
glfa = dfcbcr equ dfcb+32 ; current record
@1fb ds 32 ; 16 level stack
stack:
921b end

Note that there are several simplifications in this particular
program, First, there are no checks for invalid file names which
could, for example, contain ambiguous references, This situation

could be detected by scanning the 32 byte default area starting at
location 895CH for ASCII gquestion marks, A check should also be made

to ensure that the file names have, in fact, been included (check

locations @@5DH and #@6DH for non-blank ASCII characters), Finally, a
check should be made to ensure that the source and destination file

names are different. A speed improvement could be made by buffering
more data on each read operation, One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

162

=

£

Ty

the size of memory by fetching FBASE from location #886H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file,

(All Information Contained Herein is Proprietary to Digital Research,)

163

4. A SAMPLE FILE DUMP UTILITY,

The file dump program shown below is Sllghtly more complex than
the simple copy program given in the previous section, The dump'.
program reads an input file, specified in the CCP command 1line, and
displays the content of each record in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing,

DUMP program reads input file and displays hex data

e &

0199 org 186h
9985 = bdos equ 8645h ;dos entry point
66801 = cons equ 1 ;read console
pge2 = typef egu 2 ~type function
BB@a9 = printf equ 9 sbuffer print entry
#ogb = brk £ equ 11 sbreak key function (true if char
paof = openf egu 15 -flle open
0814 = readf equ 29 ;read function
885¢c = fcb equ 5ch ;file control block address
0088 = buff equ 86h ;input disk buffer address
; non graphic characters
pged = cr eqgu @8dh ;carriage return
poga = 1f equ #ah ;line feed
’
; file control block definitions
B05¢c = fcbdn equ fcb+d ;disk name
9654 = fcbfn egu fcb+l -flle name
8665 = fcbft equ fcb+9 -dlsk file type (3 characters)
0068 = fcbrl equ fcb+1l2 ;file's current reel number
pa6b = fcbrec equ fcb+l15 ;file's record count (8 to 128)
807¢c = fcber equ fcb+32 j;current (next) record number (9
#p74 = fcbln equ fcb+33 ;fcb length
s
; set up stack
8100 210000 1xi h,d
8183 39 dad sp
: entry stack p01nter in hl from the ccp
8184 221562 shld oldsp
H set sp to local stack area (restored at finis)
81987 315782 1xi sp,stktop
: read and print successive buffers
810a cdcldl call setup sset up input file
8104 feff cpi 255 ;255 if file not present
0190f c21bdl jnz openok ;skip if open is ok
’
H file not there, give error message and return
9112 11£301 1xi d,opnmsg
8115 cdochl call err
118 c35181 jmp finis :to return

-e

(All Information Contained Herein is Proprietary to Digital Research.)

- £ A

O

£
%)
s

) P

m
A
/

openok: jopen operation ok, set buffer index to end

011b 3e80 mvi a,86h

8114 321382 sta ibp ;set buffer pointer to 86h
, ! hl contains next address to print

9120 2100080 1xi h,? ;start with 6000

' H

gloop:

6123 e5 push h ;save line position

8124 cda2pl call gnb

8127 el pop h srecall line position

8128 da5101 jc finis ;carry set by gnb if end file

812b 47 mov b,a

print hex values
check for line fold

- we

8l2c 74 mov a,l
$124 e60f ani Bfh scheck low 4 bits
812f c24401 jnz nonum
H print line number
8132 cd7281 call crlf
V 3 check for break key
8135 cd5901 call - break .
: accum lsb = 1 if character ready
0138 @0f rrc sinto carry
8139 das5101 jc finis sdon't print any more
8l3c 7c ' mov a,h
#1344 cdsfel call phex
81496 74 mov a,l
8141 cdsfpl call phex
nonum:
8144 23 inx h ;to next line number
6145 3e20 mvi a,' '’
$147 cde501 call pchar
Pl4a 78 mov a,b
614b casfel call phex
Bl4e c32301 jmp gloop
finls: :
; end of dump, return to ccp
: (note that a jmp to 0868h reboots)
9151 cd7201 call crlf
8154 2al5062 l1hld oldsp
8157 £9 sphl)
: stack pointer contains ccp's stack location
#8158 c9 ret ;to the ccp
subroutines

T we we ne e

reak: ;check break key (actually any key will do)

8159 e5d5c¢5 push h! push d! push b; enviromment saved
815c Pebb mvi c,brkf

@1l5e cdes5ee call bdos

9161 cldlel pop b! pop d! pop h; enviromment restored

(A1l Information Contained Herein is Proprietary to Digital Research,)

165

6164 c9 ret

H
pchar: ;print a character

8165 e5d5cS push h! push 4! push b; saved g“
0168 Oed2 mvi c,typef -
pléa Sf mov e,a
016b cdes549 call bdos
Bl6e cldlel pop b! pop 4! pop h; restored
9171 c9 ret
érlf:
9172 3ebBd mvi a,cr
P174 cdes6l call pchar
8177 leda mvi a,lf
8179 cd6e501 ‘ call pchar
@l7c c9 ret

D we we
=]

[N

o

.

;print nibble in reg a

0174 e6df ani 6fh :low 4 bits
617f fefa cpi 19
9181 428941 jnc plad

; less than or egual to 9
9184 c630 adi ‘g
9186 c38bdl jmp prn

greater or equal to 10
a: adi ‘a' - 10
n:

8189 c637 Pl
pPr call pchar

#18b cd6501

P

Ky

#18e c9 ret
’
phex: ;print hex char in reg a
g18f £5 push psw
9190 6f rrc
8191 of rrc
8192 9f rec
9193 4f rrc
8194 cd7d401 call pnib ;print nibble
8197 £1 pop psw
9198 cd7461 call pnib
919b c9 ret
err: ;print error message
: d,e addresses message ending with "$" .
919c Bed9 mvi c,printf ;print buffer function
#19e cdesaed call bdos
glal c9 ' ret
gnb: ;get next byte
#la2 3al302 lda ibp
fla5S fe80 cpi 86h
Pla7 c2b301 jnz g

read another buffer

e we

(All Information Contained Herein is Proprietary to Digital Research.)

166

—
AT

flaa
plad
g lae

g1bl
#1b2

#1b3
81b4

#1b6
81b7

#1ba
8 1bd

flbe

g1bf
8lco

flcl
@lc2

#1cs
81c8
Blca

B1lcd

Blce
141
0144
g1de6
2149
gldc

fldd
p1£3

9213
8215

9217

0257

(All Information Contained Herein is Proprietary to Digital Research,)

H
cdcefl
b7
cab3gl

37
c9

[Te B9
=

5f
1600
3c
321382

-t we

218000
19

Te

b7
c9

af
327cB0

“-e

115c00
Bedf
cdags5e0

c9

-e

diskr:
e5d5¢5
115c69
Beld
cdesoe
cldlel
c9

“e e

46494c@signon:
#dda4elopnmsg:

-e we .O_‘ ;-.
8
'

stktop:

call diskr
ora a ;jzero value if read ok
jz g sfor another byte

end of data, return with carry set for eof
stc

ret

;read the byte at buff+reg a

mov e,a ;18 byte of buffer index

mvi 4,0 sdouble precision index to de
inr a s index=index+l

sta ibp sback to memory

pointer is incremented
save the current file address

1xi h,buff

dad d

absolute character address is in hl
mov a,m

byte is in the accumulator

ora a s;reset carry bit
ret

"3set up file

open the file for input

Xra a ;zero to accum

sta fcber sclear current record
1xi d,fcb

mvi c,openf

call bdos
255 in accum if open error
ret

sread disk file record
push h! push 4! push b
1xi d,fcb

mvi c,readf

call bdos

pop b! pop 4! pop h

ret

fixed message area

db ‘file dump version 2,.6$°

db cr,1f,'no input file present on disks'
variable area :

ds’ 2 ;input buffer pointer

ds 2 sentry sp value from ccp
stack area

ds 64 s;reserve 32 level stack

end

167

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation, The program listed below performs -
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program, The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file 1is created before the

prompt is given, Each prompt takes the form
next command?

and is followed by operator input, terminated by a carriage return.,
The input commands take the form

nw nR Q

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data: ’ éiéi

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns

to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label “"ready"“ where the individual commands are interpreted. The
default file control block at 865CH and the default buffer at 96808H
are used in all disk operations, The utility subroutines then follow,
which contain the principal input line processor, called "readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

P

o
Vs W

p1e0

poeo
0085

00801

pen2

go09
gopa
gadc
000f
0010
goele
00621
8022

@85c
ge7d
007f
po8o

goed
gpoa

ple0

8103
8165
0108
gloa

pled
pl1o
8113

plleé
8118
g11b
glle
011f

(All Information Contained Herein is Proprietary to Digital Research.)

31lbco

Bebc
cdese
fe2d
d216o

111b@
cddad
c3000

Pebf
115c0

canse

3c
c2370

FER RN R A AR AR A AR R R R AR AR AR AR N KRR AR R R A A AR AR R R AR RNRRR
* *

;* sample random access program for cp/m 2.0 *

’* %*

3***
org 186h s1base of tpa

i

reboot equ 88006h ;system reboot

bdos equ 8865h ;bdos entry point

éoninp egu 1l ;cdhsole input function

conout egu 2 ;console output function

pstring equ 9 ;print string until °*'$°

rstring equ 10 sread console buffer

version equ 12 ;return version number

openf eqgu 15 ;file open function

closef equ 16 ;close function

makef equ 22 ;make file function

readr egu 33 sread random

writer equ 34 ;write random

fcb egu g85ch ;default file control block

ranrec equ fcb+33 ;random record position

ranovf equ fcb+35 ;high order (overflow) byte

buff egu 80806h sbuffer address

;

cr equ gdh ;carriage return

1f equ fah ;line feed

’
;***
;* *

:* load SP, set-up file for random access *

o« % *

;***
Ixi sp,stack

-e we

version 2,87

mvi c,version
call bdos
cpi 20h ;version 2.8 or better?
jnc versok
: bad version, message and go back
1xi d,badver
call print
jmp reboot
[
versok:
; ' correct version for random access
mvi c,openf ;open default fcb
1xi d,fcb
call bdos
inr a serr 255 becomes zero
jnz ready
’
: cannot open file, so create it

169

p122
p124
8127
g1l2a
212b

gl2e
g131
8134

9137
gl3a
p13d
p140
9142
6144

8147
0149
gl4c
014f
8150
8153

8156
158

#15b
g15e
p161
8163

0166
0167
0168
81l6b

(All Information Contained Herein is Proprietary to Digital Research.)

fgels
115cHh
cdgso

c23790

113a0
cddag
c30089

cde50
22749
217£9
36090
fes1
c2560

deld
115cH
cdpso
3c
cabgg
c30808

feS57
c2894

114449
cddad
ge7f

2184d9

c5
es
cdc2gd
el

otqg:

mvi c,makef

1xi d,fcb

call bdos

inr a serr 255 becomes zero

jnz ready
*
’
; cannot create file, directory full

1xi d,nospace

call print

jmp reboot ;back to ccp
;**************************************t************
e ® *
’
;* loop back to “ready" after each command *
+ % *
’
;t**
]
ready:
: file is ready for processing
H

call readcom ;read next command

shld ranrec ;j;store input record#

1xi h,ranovf

mvi m,d ;clear high byte if set

cpi 'Q’ ;quit?

jnz notg
H
; guit processing, close file

mvi c,closef

1xi d,fcb

call bdos -

inr a ;err 255 becomes #

jz error ;error message, retry

jmp reboot ;back to ccp
;
:***
;* *
:* end of quit command, process write *
'R *
;***
n
H

not the quit command, random write?

cpi ‘W'
jnz notw
f 4
H this is a random write, £ill buffer until cr
1xi d,datmsg
call . print ;data prompt
mvi c,127 sup to 127 characters
1xi h,buff ;destination
rloop: ;read next character to buff
push b ;Save counter
push h ;next destination
call getchr ;character to a
pop h srestore counter

170

e

P

{ Ey

: /
J

gléc cl pop b srestore next to f£ill

0164 febd cpi cr send of line?
Pl6f ca788 jz erloop
. ; not end, store character
(0 8172 77 mov m,a
o 173 23 inx h :next to f£ill
2174 04 dcr c ;jcounter goes down
8175 c26680 ' jnz rloop ;end of buffer?
erloop:;
: end of read loop, store 60
8178 3600 mvi m,8
;
: write the record to selected record number
8l7a Pe22 mvi c,writer
017c 115c@ I1xi d,fchb
017f cdese call bdos
2182 b7 ora a ;error code zero?
2183 c2b9@ jnz error imessage if not
2186 c3379 jmp ready ; for another record

e %4 wy

LA R R R 2L L Y Y Y X2 33323 2223322223221
* *

;* end of write command, process read *
* *
;***
notw: .
: not a write command, read record?
8189 feb52 cpi 'R’
818b c2b9g jnz error :skip if not

- “g

read random record

0l8e Ge2l mvi c,readr
8190 115c@ 1xi d,fcb
8193 cdeseg call bdos
8196 b7 ora a sreturn code 68?2
9197 c2b98 - jnz error

; read was successful, write to console
819%a cdcfe call crlf snew line
0194 Pe8P ©omvi c,128 :smax 128 characters
B19f 21808 1xi h,buff ;next to get

wloop:
Bla2 7e mov a,m ;next character
#la3 23 inx h ;next to get
flad e67f ani 7fh ;mask parity
8laé ca37@ jz ready s for another command if 08
gla9 c5 push b s save counter
8laa e5 push ‘h ;save next to get
6lab fe2p cpi ' sgraphic?
@lad d4cse cnce putchr ;skip output if not
21b8 el : pop h
81bl cl pop b
#1b2 @4 dcr c scount=count-1
#1b3 c2a2¢ jnz wloop
81b6 c3378 jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

171

#1b9 11598

g 1bc cddad
81bf c33790

glc2 Qefl
@1cd cdeso
81lc7 c9

g1c8 QeB2
flca S5f
glcb cdpse
@lce c9

flct 3edd
#1dl cdc8d
#1d4 3eda
#1d6 cdc8e
8149 c9

fglda 45
#1db cdcfd
#1lde 41
B1df BGed9
Blel cdes5a
Bled c9

#le5 116bo
81le8 cddad
g leb defBa
Pled 117ad
g1£8 cdese

(A1l Information Contained Herein is Proprietary to Digital Research.)

REkRhkhkhhkhhkhkhhhhkhkhhkhhkhhhhkhhhhkhkhkhhkhkhhkhkkkhkhkhkhhkhkhkk
*

end of read command, all errors end-up here *
*

khkRXkhhdhhkhkkhhhhhhhhhhkhkhhhhhhkdhhhhhhkhkhihdhhhidkkikkkk

D “¢ %o ws ws w0 we “e
* % % % %

rror:

1xi d,errmsg

call print

jmp ready
;
;**************************t************************
;* *
:* utility subroutines for console i/o *
o« % *
I
;************t*t************************************

getchr:
sread next console character to a

mvi c,coninp
call bdos
ret
;
putchr:
;write character from a to console
mvi c,conout
mov e,a ;character to send
call bdos :send character
ret
;
crlf:
;send carriage return line feed
mvi a,cr ;carriage return
call putchr
mvi a,lf sline feed
call putchr
ret
H
print:
;print the buffer addressed by de until §
push d
call crlf
pop d ;new line
mvi c,pstring
call bdos ;print the string
ret
H
readcom:
s;read the next command line to the conbuf
1xi d,prompt
call print ; command?
mvi c,rstring
1xi d,conbuf
call bdos ;read command line
H command line is present, scan it

- wy N

fﬂm‘m}?

o
AT
{ '

P
-

01£3 21000 1xi h,? sstart with 60060

P1£6 117cP 1xi d,conlin;command line

01f9 la readc: 1ldax 4 ;next command character

8lfa 13 inx d ;to next command position

'81fb b7 ora a jcannot be end of command

Blfc c8 rz
: not zero, numeric?

g1fd 4630 sui ‘g

p1lff fepa cpi 10 scarry if numeric

9201 42139 jnc endrd
; add-in next digit

0204 29 dad h $%2

8205 44 mov c,l

0206 44 mov b,h ;bc = value * 2

92087 29 dad h ;%4

p208 29 dad h ;*8

8209 69 dad b %2 + *8 = *10

p2pa 85 add 1 ;+digit

@20b 6f mov l,a

#26c 42£960 jnc readc ; for ‘another char

B20f 24 inr h ;overflow

0210 c3£f90 jmp readc ; for another char
~endrd:
;o end of read, restore value in a

3213 c630 adi ‘g’ ; command

8215 febl cpi ‘a’ ;translate case?

6217 48 rc
; lower case, mask lower case bits

0218 e65f ani 181$1111b

P2la c9 ret
;***
.* *
;* string data area for console messages :
Q*
;***********t**********t****************************
badver:

621b 536£79 db ‘sorry, you need cp/m version 2§'
nospace:

023a 4e6f29 db 'no directory spaces$'
datmsg:

8244 5479790 db ‘type data: §°
errmsg:

8259 457272 db '‘error, try again.,$*
prompt:

826b 4e6570 db 'next command? $°

’

- (All Information Contained Herein is Proprietary to Digital Research,)

173

;****************t*********************t************

« ¥ *
s
:* fixed and variable data area *
«® *
;**************************************t************
g27a 21 conbuf: db conlen ;length of console buffer
827b consiz: ds 1 sresulting size after read
827c conlin: ds 32 s;length 32 buffer
8021 = conlen equ $-consiz
829c ' ds 32 ;16 level stack
- stack:
@ 2bc ' end

Again, major improvements could be made to this particular
program to enhance its operation, In fact, with some work, this
program could evolve into a simple data base management system, One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 18 and

ending at character 28, GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file, The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers,
(This list is called an "inverted 1index" in information retrieval

parlance,)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command 1line might
appear as:

QUERY NAMES,.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base,
Since the LASTNAME,.KEY list is sorted, you can find a particular entry
quite rapidly by performing a “binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number, Fetch and display
this record at the console, just as we have done in the program shown
above,

(All Information Contained Herein is Proprietary to Digital Research.)
174

P
Y

N
4

o

At this point you're just getting started. With a 1little more
work, you <can allow a fixed grouping size which differs from the 128
byte record shown above., This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted,

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description,
Finally, if your 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well, One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manuall

(All Information Contained Herein is Proprietary to Digital Research.)
175

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS
') System Reset none none

1 Console Input none A = char

2 Console Qutput E = char none

3 Reader Input none A = char

4 Punch OQutput E = char none

5 List Output E = char none

6 Direct Console 1/0 see def see def

7 Get I1/0 Byte none A = IOBYTE

8 Set 1/0 Byte E = IOBYTE none

9 Print String DE = .,Buffer none

10 Read Console Buffer DE = ,Buffer see def

11 Get Console Status none A = g8/FF

12 Return Version Number none HL= Version¥*
13 Reset Disk System none see def

14 Select Disk E = Disk Number see def

15 Open File DE = .FCB A = Dir Code
16 Close File DE = ,FCB A = Dir Code
17 Search for First DE = ,FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = ,FCB A = Dir Code
28 Read Segquential DE = .FCB A = Err Code
21 Write Sequential DE = .FCB A = Err Code
22 Make File DE = ,FCB A = Dir Code
23 Rename File DE = ,FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none , . A = Cur Disk¢$
26 Set DMA Address DE = ,DMA none

27 Get Addr(Alloc) none HL= .Alloc

28 Write Protect Disk none see def

29 Get R/0O Vector none HL= R/0 Vect*
30 Set File Attributes DE = ,FCB see def

31 Get Addr(disk parms) none HL= ,DPB

32 Set/Get User Code see def . see def
33 Read Random DE = ,FCB A = Err Code
34 Write Random DE = ,FCB A = Err Code
35 Compute File Size DE = ,FCB réd, rl, r2

36 Set Randam Record DE = ,FCB ' réd, rl, r2

* Note that A = L, and B = H upon return

(All Information Contained Herein is Proprietary to Digital Research.)

176

;},@«w%}

S

A

w«w\

‘N

CP/M 2.2 ALTERATION GUIDE

COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94@86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample

programs for the purposes of 1inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content hereof without obligation of Exidy
Systems, Inc..to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

s

CP/M 2.2 ALTERATION GUIDE

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 940¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc..to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

-

1.
2.
3.
4.
5.
6.
7.
8.
9.

Table Of Contents

CP/M Alteration Guide

'nthductiOﬂocoo-ooo-ocooococo--000000000177
First Level System Regenerativecccseeesssl78
Second Level System GeneratioNecececasese182
Sample Getsys And Putsys Programscccces..186
DiSkette Organization....................188
The BIOS Entry PointSeececescsccsnssccssessl90

A Sm'e Blos.......000000000000000000000197

A Sample Cold Start Loaderccecececscccceseal98
Reserved Locations In Page ZerOceescesce199

10. Disk Parameter TableSceceecseoccscsscseceea20l
11. The DISKDEF Macro Libfafy-o00000000000000206
12. Sector Blocking And Deblockingeeccoceecess210

Appendix Avesvsssoncsssosssscsscsasssscnesl2l
Appendix Beveooesoscooossnnssanccsscesees2ll
Appendix O 1
Appendix Dicecosscscssoscscncsnansssnsea2d
Appendix P - 1
Appendix Foceetoootossaosnnssscssssscnsnselld?
Appendix 0y I ¥ 4

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS-360
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment, In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices,

Altnough standard CP/M 2.0 is confiqured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
“hard disk" systems, In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. 1In this latter case, you
may wish to briefly review the system generation process, and skip to

later sections which discuss system alteration for non-standard disk
systems,

In order to achieve device independence, CP/M is separated into
three distinct modules:

BIOS - pasic I/0 system which is environment dependent

BDOS - basic disk operating system which is not dependent
upon the hardware configuration

CCP -~ the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can “patch® the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system,
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M,

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing., The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patcn the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette., PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D, 1In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

177

2. FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patch the CP/M system is given below in
several steps. Address references in each step are shown with a
following "H" which denotes the hexadecimal radix, and are given for a
20K CP/M system, For larger CP/M systems, add a "bias" to each
address which is shown with a "+b" following it, where b is equal to
tnhe memory size - 28K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 103608
32K: o = 32K - 20K = 12K = 39694
49K b = 49K - 20K = 20K = 5000H
48K: b = 48K - 28K = 28K = 7000H
S6K: b = 56K - 20K = 36K = 90004
6 2K: b = 62K - 20K = 42K = A80064
64K: b = 64K - 20K = 44K = B000dH

Note: The standard distribution version of CP/M 1is set for
operation within a 20K memory system. Therefore, you must first bring
up the 28K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 338¢H, Code GETSYS so that it starts at
location 1¢449H (pase of the TPA), as shown in the first part of
Appendix d.

(2) Test the GETSYS program by reading a blank diskette into
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program,

(3) Run the GETSYS program using an initialized CP/M diskette to
see 1if GETSYS 1loads CP/M starting at 3388H (the operating system
actually starts 128 bytes later at 3464H).

(4) Review Section 4 and write the PUI'SYS program which writes
memory starting at 3384d back onto the first two tracks of the
diskette. The PUTSYS program should be locatea at 20PH, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized. diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk,

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment, Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase,

(All Information Contained Herein is Proprietary to Digital Researcn.)

178

h v

P

/%‘“’W«\C
{ |

(7) Test CBIOS completely to ensure that it oproperly performs
console character I/0 and disk reads and writes., Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes, Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched. ‘

(3) Referring to Figure 1 in Section 5, note that the B8I0S is
placed between locations 4A0OGH and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the machine, and will be placed on the diskette in the next step. '

(9) Use PUTSYS to pvlace the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing,

(18) Use GETSYS to bring the copied memory image from the test
diskette back into memory at'338VH, and check to ensure that it has
loaded back properly (clear memory, if possible, before the 1load),
Upon successful load, brancn to the cold start code at location 4Ad¢H.
The cold start routine will initialize page zero, then jumo to the CCP
at location 34pPVH which will call the BDOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type “A>", the system prompt.

when you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (18), CP/M has promoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, debug your disk write functions and retry.
(12) Then test the directory command by tjping
DIR
CP/M should respond with
A: X COM
(13) Test the erase command by typing
ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

179

CP/M should respond with the A prompt. When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) wWrite a bootstrap loader which is similar to GETSYS, and
place it on track O, sector 1 using PUTSYS (again using the test
diskette, not the distribution diskette). See Sections 5 and 3 for
nore information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start® which reboots the systen,
and types the A prompt,

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette, Use GETSYS to load CP/H
from vyour test diskette, Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not - make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing
DIR

ce/4 should'respond with a list of files which are provided on the
initialized diskette, One such file should be the memory image for
the debugger, called DDT.COM.

NOTE: from now on, it is important that you always reboot the CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by another diskette, unless the new diskette is to be read only.

(18) Load and test the debugger by typing
DDT

(see the document “CP/M Dynamic Debugging Tool (DDT)" for operating
procedures, You should take the time to become familiar with DDT, it
will be your pest friend in later steps.

(19) 8efore making further CBIOS modifications, practice using
the editor: (see the ED user's guide), and assembler (see the ASM
user’s guide). Then recode and test the GETSYS, PUT3SYS, and CBIOS
programs. using ED, ASHM, and DDT. Code and test a COPY program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your 1legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proorietary to Digital Research.)

180

™

£
ki

PN

on each copy which is made with your COPY program,

(28) Modify your CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which vyou have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have develoved belongs to
you, the modified version of CP/M which you have created can be copied
for vyour use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)
181

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. 1In general, you will first get a
memory image of CP/M with the “MOVCPM" program (system relocator) and
vlace tnis memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the “Guide to CpP/M Features and Facilities"
manual.

oy

Your CBIOS and B800T can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and 300T.HEX, which contain the
machine code for CBIOS and 800T in Intel hex format,

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will pe:

CONSTRUCTING xxK CP/M VERS 2.9
READY FOR "SYSGEN" OR
“SAVE 34 CPMxx,COM*

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location #98¢H through
227Fd. (i.e., The BOOT is at 0999d, the CCP is at 980H, the BDOS
starts at 11864, and the BIOS is at 1F80H.) Note that the memory
image has the standard MDS-888 BIOS and BOOT on it, It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

The memory image created by the “MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed 1in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx,COM Load DDT, then read the CPM
image

DDT should respond with

NEXT PC
2300 01908
- (The DDT prompt)

You can then use the display and disassembly commands to examine §;§

(All Information Contained Herein is Proprietary to Digital Research.)

182

A

portions of the memory image between Y980H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the ‘actual
address, Track 90, sector 61 is loaded to location 906H (you should
find the cold start loader at 9806H to 97FH), track 08, sector 92 is
loaded into 986H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3488H, but is placed into memory at 980H
by the SYSGEN program, Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3480H

Assuming two's complement arithmetic, n = D580H, which can be checked
by

34008 + D58PH = 10980H = @G98OH (ignoring high~-order
overflow).

Note that for larger systems, n satisfies
(3400H+b) + n = Y86H, or
n = 980H - (34060H + b), or
n = D580H - b,

The value of n for common CP/M systems is given below

memory size bias b negative offset n
20K - J000H D580#H - 90098 = D580H
24K 190084 D586H - 10800H = C584¥H
32K 30008H D580H - 30600H = A58@H
40K 500808 D58¥H - 580PH = 8580H

48K 7000H D580H - 7800H = 6580H
56K 9000H D5868H - 9006H = 4580H
62K ABOOH D580H - A800UH = 2D8OH
64K BOOGOH D588H - BAGOH = 2588H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system., First type

Hx,n Hexadecimal sum and'difference
and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found., The input

H3400,0580

for example, will produce 9806H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the BIOS located at
(4A060H+D) ~n which, when vyou use the H command, produces an actual
address of 1F80H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

183

L1F89

It is now necessary to vatch in your CBOOT and CBIOS routines., The
800T resides at location #90UH in the memory image. If the actual
load address is “n*, then to calculate the bias (m) use the command:

H980,n Subtract load address from
target address.

The second number tyved in response to the command is the desired bias
(m)., For example, if your BOOT executes at ¥d3uH, the command:

H964,860
will reply
9989 0880 Sum and difference in hex,.

Therefore, the bias "“m" would be 888¥H. To read-in the BQOOT, give the
command:

ICBOOT.HEX Input file CBOOT.HEX
Then:
Rm Read CBOOT with a bias of
m (=984H-n)

You may now examine your CBOOT with:
L9909

Wwe are now ready to replace the CBIOS. Examine the area at 1F80H
where the original version of the CBIOS resides., Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 28K CP/M system, and
thus is origined at location 4A090d. 1In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file., This is accomplished by
typing '

RD588 Read the file with bias D586H

Upon completion of the read, re—examine the area where the CCBIOS has
been loaded (use an “L1F88* command), to ensure that is was loaded
properly., When you are satisfied that the change has been made,
return from DDT using a control-C or “G@“ command.

Now use SYSGEN to replace thé patched memory image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is Proprietary to Digital Research,)

184

y I
g

L
£ kY
‘ 3

T

" o

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.0 Sign-on message from SYSGEN
SOURCE DRIVE NAME (OR RETURN TO SKIP)
Resoond with a carriage return
to skip the CP/M read operation
since the system is already in
memory., ‘
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with “B* to write the
new system to the diskette in
drive B.
DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
drive B, then type return.,
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

- Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

185

4, SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2., The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the
specific sectors,

GETSYS PROGRAM - READ TRACKS 8 AND 1 TO MEMORY AT 3380H

’
; REGISTER USE
; A (SCRATCH REGISTER)
; B TRACK COUNT (8, 1)
; C SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
; SP SET TO STACK ADDRESS
[4
START: LXI SP,3380d ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3380H ;SET BASE LOAD ADDRESS
MVI B, @ ;START WITH TRACK #
RDTRK : ;READ NEXT TRACK (INITIALLY 9)
MVl C,1 ; READ STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR
CALL READSEC ; USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;HL = HL + 128
INR C ;SECTOR = SECTOR + 1
MOV A,C ;CHECK FOR END OF TRACK
cPI 27
Jc RDSEC ;CARRY GENERATED IF SECTOR < 27
’
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
CPI 2
Jc RDTRK ;CARRY GENERATED IF TRACK < 2

- we

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

USER-SUPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

~e we wp WO w~o -

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

L B B I N B IR R R BN BE IR B N BE B RN BN R B BN N BN NN IR BN NN N NN BN RN B NN N N N R N NN)

perform disk read at this point, branch to

label START if an error occurs

LR AN B TN B N BE BN BN B BE N BN BN BN BN BN 2N IR BN BN IR BE NN BN BN N B BE BE BN N BE BN Y RN NN NN

POP H ;s RECOVER HL
POP B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research,)

.

£

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 106H. The hexadecimal
operation codes which are listed on the left may be wuseful if the
program has to be entered through your machine's front panel switches,

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program, The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C, It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research,)

187

5., DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M 1is given here for reference purposes, The first sector (see
table on the following page) contains an optional software boot
section, Disk controllers are often set uo to bring track 9, sector 1
into memory at a specific location (often location 9006H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
3408d+b., If your controller does not have a built-in sector load, you
can ignore the program in track 9, sector 1, and begin the 1load from
track 9 sector 2 to location 3490H+b.

As an example, the Intel MDS-808 hardware cold start loader brings
track #, sector 1 into absolute address 39@6H. Upon 1loading this
sector, control transfers to location 300dH, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 1into memory, starting at 349¥H+b. The user should note that
tnis pbootstrap loader is of 1little wuse in a non-MDS environment,
although it 1is wuseful to examine it since some of the boot actions
will have to be duplicated in your cold start loader,

(All Information Contained Herein is Proprietary to Digital Research.)

18R

& h @Wwhy LA A & A & 5 J LA A 3 AeivVa Y AL DOo wE /P FIVUWAT QUG

Y 81 (boot address) Cold Statt Loader

90 82 ¥ 3400H+b " cc
- 03 . 3480H+b "
- 94 01 3500H+b “
" @5 - ' 3589H+D "
. 26 82 3600H+D .
" 87 » 3680H+b "
- 38 83 3700H+D .
- 89 . 3780H+b .
" 19 04 " 3800H+b .
. 11 “ 3880H+b .
- 12 a5 39006H+b -
- 13 . 3980H+b .
- 14 86 3A00H+b .
. 15 " 3AB0H+b .
- 16 37 3800H+b .

80 17 . 3B80H+b ccp

29 18 88 3CO0H+b ~ BDOS
. 19 " 3C80H+b -
" 20 99 3DBPH+b .
- 21 . 3D8@H+b .
- 22 10 3EG0H+b -
- 23 . 3E80H+b .
- 24 11 3FBOH+b "
. 25 " 3F80H+b .
. 26 12 4808H+D .

81 81 . 48806H+b .
- 92 13 4100H+b .
. 83 . 4180H+b “
- 84 14 4206H+b -
- 85 - _ 4288H+Db -
. 26 15 4300H+b .
- 87 - 4380H+b -
- 98 16 44060H+b .
. 89 - 4486H+b "
“ 19 17 4500H+b -
- 11 " 4580H+b -
. 12 18 46008+b -
- 13 - 4680H+b .
- 14 19 4780H+b -
- 15 - 4780H+b -
. 16 20 4800H+b .
- 17 . 4880H+b .
- 18 21 4980H+b .
81 19 . 4980H+b BDOS
21 20 22 4AG@H+D BIOS
. 21 . AABOH+D .
. 23 23 4BO@H+D .
. 24 . 4B8GH+D .
. 25 24 4COBH+b .
91 26 . 4C80H+D BIOS

#2-76 01-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and B8DOS
are detailed below, Entry to the BIOS 1is through a "jump vector*®
located at 4Ad@H+b, as shown below (see Appendices B and C, as well).
The jump vector is a sequence of 17 3Jump instructions which send
program control to the individual BIOS subroutines, The BIOS
subroutines may be emnty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector,

The jump vector at 4AUOH+b takes the form shown below, where the
individual jump addresses are given to the left: ‘

4A0PH+D JMp BOOT
4A93d+0 JMP WBOOT
4A46H+b JMP CONST
4A09H+b JMP CONIN
4AQCH+D. JMP CONOUT
4ADFH+D " JMP LIST
4Al2H+b JMP PUNCH
4A15H+Db JMP READER
4A18H+b JMP HOME
4A1Bd+b JMP SELDSK
4A1Ed+0 JMP SETTRK
4A21H+0 JMP SETSEC
4A24H+D JMP SETDMA
4A27H+b JMP READ
4AZAH+D JMP WRITE
4A2DH+Db JMP LISTST
4A32H+b JMP SECTRAN

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START

CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER OUT
WRITE LISTING CHARACTER OUT
WRITE CHARACTER TO PUNCH DEVICE
READ READER DEVICE

MOVE TO TRACK 98 ON SELECTED DISK
SELECT DISK DRIVE

SET TRACK NUMBER

SET SECTOR NUMBER

SET DMA ADDRESS

READ SELECTED SECTOR

WRITE SELECTED SECTOR

RETURN LIST STATUS

SECTOR TRANSLATE SUBROUTINE

WE MO MG WP NS MO NG W WD NS M WO W N NP N we

Bach jump address corresponds to a particular subroutine which
performs the specific function, as outlined below, There are three
major divisions in the jump table: the system (re)initialization
whicn results from calls on BOOT and WBOOT, simple character I/0
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/0 verformed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN,

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero,
An end-of-file condition for an input device is given by an ASCII
control-z (1AH). Peripheral devices are seen by CP/M as “logical"”
devices, and are assigned to physical devices within the BIOS,

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIST, PUNCH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices,

(All Information Contained Herein is Proprietary to Digital Research,)

¢ /
LT
g

e
£,

m,
Ny

S8ie WIIMAVBWLEETL LN BTAWNW Vi BWHWIE MR TaWE e

CONSOLE

LIST

PUNCH

READER

IOBYTE AT

The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device: if it exists, which
is normally a high-speed paper tape punch or Teletype,

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single péripheral can be assigned -as
the LIST, PUNCH, and READER device simultaneously, If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not *hang® if the device is accessed by PIP or some
other user ©program, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1AH (ctl-2Z) in reg A to indicate
immediate end-of-file,

For added flexibility, the user -can ootionally
implement the “IOBYTE" function which allows
reassignment of physical and logical devices. The
I0BYTE function creates a mapping of 1logical to
physical devices which can be altered during CP/M
processing (see the STAT commancd). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently

"location ¥003H) is maintaineda, called IOBYTE, which

defines the logical to physical device mapping which is
in effect at a particular time, The mapping is
performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

6066831 | LIST | PUNCH | READER | CONSOLE |

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device, The values which can be assigned to
each field are given below :

(All Information Contained Herein is Proprietary to Digital Research.)

191

CONSOLE field (bits 0,1)
8 =~ console is assigned to the console printer device (TTY:)
1l - console is assigned to the CRT device (CRT:)
2 -~ batch mode: use the READER as the CONSOLE input,
and the LIST device as the CONSOLE output (BAT:) , e
3 - user defined console device (UCl:) {,E

READER field (bits 2,3)
@ - READER is the Teletype device (TTY:)
1l - READER is the high-speed reader device (RDR:)
2 - user defined reader # 1 (URl:)

user defined reader ¥ 2 (UR2:)

w
!

PUNCH field (bits 4,5)
@ - PUNCH is the Teletyve device (TTY:)
l - PUNCH is the high speed punch device (PUN:)
2 - user defined puncn # 1 (UPl:)
3 = user defined ouncn # 2 (UP2:)

LIST field (bits 6,7)
@ - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 -~ LIST is the line printer device (LPT:)
3 - user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of vyour
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at 1location
d683H), except for PIP which allows access to the

physical devices, and STAT which allows
logical=-physical assignments to be made - and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"),. In any case, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities,

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
varameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation,
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
Wwrite operations to the selected disk before selecting
another drive for subsequent operations, Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address pefore the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

192

oy

BOOT

WBOOT

CONST

CONIN

Note that the READ and WRITE routines should
perform several retries (16 1is standard) before
reporting the error condition to the BDOS., 1If the
error condition is returned to the BDOS, it will report
the error to the user., The HOME subroutine may or may
not actually perform the track 80 seek, depending upon
your controller characteristics; the important voint is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 48,

The exact responsibilites of each entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point., The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing., Note that reg C must be set to zero ¢to
select drive A,

The WBOOT entry point gets control when a warm start
occurs, A warm start is performed whenever a user
program branches to location #@888H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini-
tialized as shown below:

location £,1,2 set to JMP WBOOT for warm starts
(0@BBH: JMP 4AG3H+D)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs, (9865H: JMP
3CB6H+D)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3480H+b to (re)start
the system, Upon entry to the CCP, register C is set
to the drive to select after system initialization,

Sample the status of the currently assigned console

_ device and return 8FFH in register A if a character is
ready to read, and @PH in register A if no console
characters are ready. '

. Read the next console character into register A, and

(All Information Contained Herein is Proprigtaty to Digital Research,)

193

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

set the parity pit (high order bit) to zero., If no
console character is ready, wait until a character is
typed pefore returning.

Send the character from register C to the <console
output device, The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, 1if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for examole).

Send the character from register C to the currently
assigned 1listing device, The character is in ASCII
with zero parity,

Send the character from register C to the currently
assigned punch device, The character is in ASCII with
zZero parity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk head of the «currently selected disk
(initially disk A) to the track 66 position, If your
controller allows access to the track 6 flag from the
drive, step the head until the ¢track 98 flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SETTRK with a parameter of 4,

Select the disk drive given by register C for further
operations, where register C contains 8 for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 14, For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically, If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0000H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will wunload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research,)

194

e
£

“. &
e

before selectiniwi%i%héw drive. This would cause an
excessive amount of noise and disk wear,

SETTRK Register BC contains the track number for subsequent

' disk accesses on the currently selected drive, You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
¥-76 corresponding to valid track numbers for standard
floppy disk drives, and 8-65535 for non-standard disk
subsystems.

"~ SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive, You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs,

SETDMA Register 3C contains the DMA (disk memory access)
~address for subseguent read or write operations, For
-example, if B = p#H and C = 80H when SETDMA is called,
then all subsequent read operations read their data
into 8#H through @FFH, and all subsequent write
operations get their data from 86H through #FFH, until
the next call to SETDMA occurs. The initial DMA

address is assumed to be 8dH. Note that the
controller need not actually supbport direct memory
access, If, for example, all data is received and

sent through I/0 ports, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations,

READ Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

9 no errors occurred
1l non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as the return code, That is, if the value in
register A is @ then CP/M assumes that the disk
operation completed properly., If an error occurs,
however, the CBIOS should attempt at least 16 retries
to see if the error is recoverable. When an error is
reported the BDOS will print the message "BDOS ERR ON
X3 BAD SECTOR", The operator then has the option of
‘typing <cr> to ignore the error, or ctl-C to abort,

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector.
The data should be marked as "non deleted data” to

(All Information Contained Herein is Proprietary to Digital Research.)

195

maintain compatibility with other CP/M systems, The
error codes given in the READ command are returned in
register A, with error recovery attemots as described
above,

LISTST Return the ready status of the list device, Used by
the DESPOOL program to improve console response during
its operation. The value 94 is returned in A if the
list device is not ready to accept a character, nd
OFFH 1if a character can be sent to the printer. Note
that a 68 value always suffices,

SECTRAN Performs sector logical to physical sector translation

: in order to improve the overall response of CP/M,

Standard CP/M systems are shipved with a “skew factor”

of 6, where six physical sectors are skipped between

each logical reaa operation, This skew factor allows

enough time between sectors for most programs to load

their buffers witnout missing the next sector, In

particular computer systems which use fast processors,

memory, and disk subsystems, the skew factor may be

changed to improve overall response, Note, however,

that you should maintain a single density I8M

compatible version of CpP/M for information transfer

into and out of your computer system, using a skew

factor of 6. In general, SECTRAN receives a logical

sector number in BC, and a translate table address in

DE, The sector number is used as an index into the

translate table, with the resulting physical sector

number 1in HL, For standard systems, the tables and

indexing code is orovided in the CBIOS and need not be
changed, '

(All Information Contained Herein is Proprietary to Digital Research.)

196

e

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for your
first BIOS., The simplest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines, Storage is
reserved for user-supplied code in these regions, The scratch area
reserved in page zero (see Section 9) for the BIOS 1is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The

subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

197

8. A SAMPLE COLD START LOADER

The program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location 60400,
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes, Eventually,
you will probably want to get this loader onto the first disk sector
(track B, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system, In this case, it will be necessary to originate the program
at a higher address, and key=-in a jump instruction at system start-up
which brancnes to the loader, Subsequent warm starts will not require
this key=-in operation, since the entry point ‘WBOOT’ gets control,
thus pbringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
pe enhanced on later versions,

(All Information Contained Herein is Proprietary to Digital Research.)

198

Y
&]

g

N
i

P

9. RESERVED LOCATIONS IN PAGE ZERO

Main memory page zero, between locations 66H and #FFH, contains

several

processing.

purposes,

segments

code and data which are used during CP/M

The code and data areas are given below for reference

Locations

from

to

00004 - 0B02H

P003H - 00@3H

p¥04H - 0VBO4H

#0658 - 0067H

g908H
09308

pp38H

00 3BH
po4on

0050H

PO5CH

807DH

90274
pa378

00 3AH

v@3FH

0@ 4FH

YUSBH

087CH

PB7FH

Contents-

Contains a jump instruction to the warm start
entry point at location 4A@3H+b. This allows a
simple programmed restart (JMP #68JH) or manual
restart from the front panel,.

Contains the Intel standard IOBYTE, which 1is
optionally included in the user's CBIOS, as
described in Section 6.

Current default drive number (#=a,....,15=P).

Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0865H provides the
primary entry point to the BDOS, as described in
the manual “CP/M 1Interface Guide,* and LHLD
0006H brings the address field of the
instruction to the HL register pair. This value
is the 1lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size in
debug mode,

(interrupt locations 1 through 5 not used)

(interrupt location 6, not currently used -
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

default file control .block produced for a
transient program by the Console Command
Processor,

Optional default random record oosition

(All Information Contained Herein is Proprietary to Digital Research.)

199

99898 - GOFFH default 123 byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP),

Note that this intormation is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not reguired by the transient,

~ If, for example, a particular program performs only simple I/O and
must begin execution at location @, it can be first 1loaded into the
TPA, using normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from location @140H, which is the assumed beginning of all
transient programs), The move prodram can then proceed to move the
entire memory image down to 1location @, ana pass control to the
starting address of the memory loaa. Note that if the BIOS |is
overwritten, or if location @ (containing the warm start entry ooint)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start seguence,

(All Information Contained Herein is Proprietary to Digital Research.)

* -

&
&"%w)/

o

e

o

19, DISK PARAMETER TABLES.,

Tables are included in the BIOS which describe the particular
characteristice of the disk subsystem used with CP/M, These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations, The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
{ XLT | 0000 | 6000 | 60060 |IDIRBUFI OPB | CSV | ALV |
16b 16b 16b 16b 16b 16b l6b 16b

where each element is a word (16-bit) value. The meaning of each Disk .
Parameter Header (DPH) element is

XLT - Address of the logical to physical translation vector,
if used for this particular drive, or the value 8688H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same), Disk drives

with identical sector skew factors share the same
translate tables,

6600 Scratchpad values for use within the BDOS (initial
value is unimportant),

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area,

DPB , Address of a disk parameter block for this drive,

Drives with identical disk characteristics address the
same disk parameter block.

csv Address of a scratchpad area used for software check
~ for changed disks., This address is different for each

DPH,
ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information, This address is
different for each DPH,

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive 6, with the last row corresponding to
drive n-1., The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research,)

201

DPBASE:

g1 |XLT 61) 0008 | 0000 | 0008 |DIRBUF|DBP allcsv d1]ALV 411

D S YD D W T D D T VD S T WD LD WD SED GNP D T W W A T WD G S W WD S GUD S W G S W D T W D W T GV WA D Y W D W T D W S

n-1|XLTn-1{ 8008 | 60063 | 0008 |DIRBUF|DBPn-1{CSVn-1l]|ALVn~1]

where the label DPBASE defines the base address of the DPH table,

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a @000H returned if the
selected drive does not exist,

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,80660H ;ERROR CODE

MOV A,C ;DRIVE OK?
CPI NDISKS ;:CY IF SO
RNC sRET IF ERROR
:NO ERROR, CONTINUE

MOV L,C s LOW(DISK)
MOV H,B sHIGH(DISK)
DAD H s %2

DAD H 1 %4

DAD H ; %8

DAD H :+*16

LXI D,DPBASE ;FIRST DPH
DAD D :DPH (DISK)
RET

The translation vectors (XLT @8 through XLTn-1l) are 1located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-l, The Disk
Parameter Block (DPB) for each drive is more complex, A particular
DPB, which is addressed by one or more DPH's; takes the general form

| sPT |[BSHIBLM|EXM| DSM | DRM |ALGIALll CKS | OFF |

léb 8b 8b 8b 16b l6b 8b 8b 1l6b 16b

where each is a byte or word value, as shown by the "“8b" or “16b"
indicator below the field.

SPT is the total number of sectors per track

BSH is the-data allocation block shift factor, determined

by the data block allocation size,

(All Information Contained Herein is Proprietary to Digital Research,)

202

L,

o
4, 4

AT

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks,

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive ALS,AL]1 determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block, Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal, The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,896 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units., The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of AL® and ALl,
however, are determined by DRM, The two values AL# and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research,)
203

| AL® | ALl |
R R A D R D D A D R e

PP 01 62 03 94 A5 66 087 08 89 14 11 12 13 14 15

where position 8@ corresponds to the high order bit of the byte
labelled AL@, and 15 corresponds to the low order bit of the byte
labelled AL1., Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 88 and
filled to. the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,824 32 times # Dbits
2,848 64 times $# bits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks, In
this case, the 4 high order bits of AL#A are set, resulting in the
values ALG = @FOH and ALl = @0@H,

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the 1last directory

entry number, If the media is fixed, then set CKS = 6 (no directory

records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections,

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK Yunction is
invoked,

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain, Both addresses reference an
area of uninitialized memory following the BIOS, The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB,

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive, If CKS = (DRM+1)/4, then you must reserve (DRM+l)/4 byteg for
directory check use, If CKS = #, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research,)

204

7y

&
i

L

Pt

The size of the area addressed by ALV is determined by the

maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8) +1.

The CBIOS shown in Appendix C demonstrates an instance of these

tables for standard 8" single density drives, It may be useful to

examine this program, and compare the tabular values with the
definitions given above,

(All Information Contained Herein is Proprietary to Digital Research.)

205

11, THE DISKDEF MACRO LIBRARY,

A macro library is shown in Appendix P, called DISKDEF, which
greatly simplifies the table construction process, You must have
access to the MAC macro assembler, of course, to use the DISKDEP
facility, while the macro library is included with all CP/M 2.8
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF B,...
DISKDEF 1,...

DISKDEF n-1

® o8 e

ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on - the same
disk as your BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16, A series of
DISKDEF macro calls then follow which define the characteristics of
each 1logical disk, 6 through n-l1 (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS,

The form of the DISKDEF macro call is

DISKDEPA dn,fsc,1sc,[skf},bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, 8 to n-l
fsc is the first physical sector number (8 or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of “checked" directory entries
ofs is the track offset to logical track 924

(8] is an optional 1.4 compatibility flag

The value "dn® is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research,)

206

2
£,
i |
Ssand’

macro invocation., The "fsc” parameter accounts for differing sector
numbering systems, and is usually @ or 1. The “lsc" is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf parameter is omitted (or equal to @). The “"bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1624, 20648, 4096, 8192, or 16384, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk., Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units, That is, if the bls =
2048 and dks = 18668, then the total disk capacity is 2,048,080 bytes,
If dks is greater than 255, then the block size parameter bls must be
greater than 10624, The value of “dir* is the total number of
directory entries which may exceed 255, if desired. The “cks"
parameter determines .the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem, If
the disk is permanently mounted, then the value of cks is typically @,
since the probability of changing disks without a restart is quite
low, The "“ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [8]
parameter is included when file compatibility is regquired with
versions of 1.4 which have been modified for higher density disks,
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions, Normally, this
parameter is not included,

For convenience and economy of table space, the special form
DISKDEF i,3
gives disk i the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1,4, is defined using the following macro invocations:

(A11 Information Contained Herein is Proprietary to Digital Research.)

207

DISKS 4 :
DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1,9
DISKDEF 2,0
DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks,

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives, In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $

DPE®: DW XLT9,0000H,0000H,0000H,DIRBUF,DPBA,CSVE,ALVE
DPEl: DW XLTO,0000H,0000H,0000H,DIRBUF,DPBG,CSV1,ALV]
DPE2: DW XLT9,0000H,00080H,0000H,DIRBUF,DPBA,CSV2,ALV2
DPE3: DW XLTO,0000H,0000H,0080H,DIRBUF,DPBG,CSV3,ALV3

where the DPH labels are included for reference purposes to show the.
beginning table addresses for each drive 8 through 3, The values

contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS code
and tables,

Note that if the “skf" (skew factor) parameter is omitted (or
equal to @), the translation table is omitted, and a 8088H value is
inserted in the XLT position of the disk parameter header for the

disk, In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =

#8808, and simply returns the original logical sector from BC in the

HL register pair. A translate table is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's, The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT#: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,18,16,22

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory., The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro, For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

208

o,

4C72 = BEGDAT EQU $
(data areas)
4DBO = ENDDAT EQU $
813C = DATS1Z EQU $~BEGDAT

which indicates that uninitialized RAM begins at location 4C72B, ends
at 4DB@H-1, and occupies 013CH bytes., You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can vuse the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information., The STAT command form

STAT 4d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and displays
the values shown below:

r: 128 Byte Record Capacity

k: Kilobyte Drive Capacity

d: 32 Byte Directory Entries

c: Checked Directory Entries

e: Records/ Extent

b: Records/ Block

g: Sectors/ Track

t: Reserved Tracks

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte systenm),

DISKDEF #,1,58,,20848,256,128,128,2
r=4696, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,10824,300,0,2
r=16384, k=2048, 4=308, c=f, e=128, b=16, s=58, t=2

DISKDEF 6,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research,)

209

12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit., The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following
information in register C:

2 = normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data block

Condition @ occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area, Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written, In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records,

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk), Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which 1is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved,

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk'at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point., SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
118 and 125, respectively. These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research,)

210

P

st

f,ww%

{‘/M\ 3

disk nuaber, hsttrk is the host track number, and hstsec is the host
sector nimber (which may require translation to a physical sector
number) . You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of

é length hstsiz, All other mapping functions are performed by the

algorithms,

This particular algorithm was tested using an 8¢ megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 4606% improvement in overall response,
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Informatioh Contained Herein is Proprietary to Digital Research.)

211

APPENDIX A: THE MDS COLD START LOADER

e

MDS-888 Cold Start Loader for CP/M 2.8

9 W8 W "

Version 2.8 August, 1979

§ {

§ J
%
Hisaga

’
0009 = false equ 8
ffff = true equ not false
peog = testing equ false
’
if testing
bias equ 9340806h
endif
if not testing
0008 = bias equ A9d8h
endif
2009 = cpmb equ bias sbase of dos load
p8d6 = bdos equ 886h+bias ;entry to dos for calls
1880 = bdose equ 1888h+bias ;end of dos load
1688 = boot equ l1680h+bias ;cold start entry point
1683 = rboot equ boot+3 ;warm start entry point
3000 org 3800h ;loaded here by hardware
1880 = bdosl equ bdose-cpmb
0002 = ntrks egu 2 stracks to read B
8031 = bdoss equ bdosl/128 ;# sectors in bdos ("
8819 = bdos@ egu 25 :;# on track 9 -
p018 = bdosl egu bdoss-bdos# ;# on track 1
£8080 = mon8#9 equ p£f844h ;intel monitor base
ffof = rmon88 equ 0ffefh ;restart location for mon8@
P78 = base equ #78h ; 'base’ used by controller
90879 = rtype egu base+l ;result type
g87b = rbyte equ base+3 ;result byte
go7f = reset equ base+7 ;reset controller
0878 = dstat equ base ;disk status port
9879 = ilow eqgu base+l ;low iopb address
ga7a = ihigh equ base+2 ;high iopb address
BOEf = bsw equ Pffh ;boot switch
p003 = recal equ 3h ;jrecalibrate selected drive
8004 = readf equ 4h ;disk read function
0100 = stack equ 146h ;use end of boot for stack
rstart:
3008 3166001 1xi sp,stack;in case of call to mon88
; clear disk status
3883 db79 in rtype
3885 db7b in rbyte .
; check if boot switch is off
coldstart: {
3007 4bff in bsw
3982 258310 RE 2BRascarisviteh on?

212

o,
H 1

306e

3010
3812

3815
3816
3618
3819
361b

301¢

3022
30824
3026

30828

382b

3gad
382e
3831
3832

3834

3837
363a
383b
383c

383f

437t

p602
214230

74
d379
1c
d37a
db78

889410

ab79

e603
fef2

azep3e

db7b

17
dcofff
1f
eble

c20030

110700
19

95
c21538°

c3p016

tart:

ws wo) e

waitf:

-t we

-8

-

-y

-

we we /' Wme We Wy

clear the controller

out

mvi
1xi

reset slogic cleared

b,ntrks ;number of tracks to read
h,iopb#

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

%21 3aitﬂ

check disk status

in rtype

ani 11b

cpi 2

if testing

cnc rmon86 ;go to monitor if 11 or 10
endif :

if not testing

jnc rstart ;retry the load
endif

in rbyte :i/0 complete, check status
if not ready, then go to mon8g

ral
T cc rmon86 ;not ready bit set
rar jrestore

ani 11116b ;overrun/addr err/seek/crc
if testing

cnz rmon88 ;go to monitor

endif

if not testing

jnz rstart ;retry the load
endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp boot, print message, set-up jmps

jmp

boot

parameter blocks

213

3042
3043
3044
3045
3046
3047
2087

3049
304a
304b
304c
3044
304e
3058

iopb@:

iopbl
iopbl:

88h siocw, no update

readf ;read function

bdos# :1# sectors to read trk 9
g strack @

2 ;start with sector 2, trk @
cpmb ;start at base of bdos
$-iopbd

86h

readf

bdosl ;Sectors to read on track 1
1 strack 1
1 ;sector 1
cpmb+bdos#*128 ;base of second rd

214

pR14

4a060
3400
3c86
1600
go2c
6002
6004
go8e
poga

4200
4a@3
4afé6
4209
4abc

c3b34a
c3c34a
c3614b
¢c3644b
c36adb

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

. Ne m we e W G e we We e WS
(1]
[a
n

3
=]
o

bdos
cpml
nsects
offset
cdisk
buff

L]
(1]
(o
2

O NG NG NG WE WG NS WS WS WO Wh N NS s wE W WS - WmE WE WE WME WO WS N W W

wboote:

mds-886 i/o drivers for cp/m 2.0
(four drive single density version)

version 2.0 august, 1979
equ 20 ;version 2.0
copyright (c) 1979

digital research

box 579, pacific grove
california, 93950

org 4a@éh ;base of bios in 26k system

egu 3466h ;base of cpm ccp

equ 3c@86h ;base of bdos in 20k system

equ $-cpmb ;length (in bytes) of cpm system

equ cpml/128;number of sectors to load

equ 2 snumber of disk tracks used by cp
equ 26804h ;address of last logged disk

equ 80886h ;default buffer address

equ 10 ;max retries on disk i/o before e

perform following functions
boot cold start
wboot warm start (save i/o byte)
(boot and wboot are the same for mds)
const console status
reg-a = @0 if no character ready

: reg-a = ff if character ready
conin console character in (result in reg-a)
conout console character out (char in reg-c)
list list out (char in reg-c)
punch punch out (char in reg-c)
reader paper tape reader in (result to reg-a)
home move to track 89 '

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an
seldsk select disk given by reg-c (6,1,2...)
settrk set track address (8,...76) for sub r/w
setsec set sector address (1,....,26)

setdma set subsequent dma address (initially 86h
read/write assume previous calls to set i/o parms
read read track/sector to preset dma address

write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

jmp wboot
jmp const
jmp conin
jmp conout

215

4af0f c36d4b jmp list
4al2 c3724b jmp punch
4al5 c3754b jmp reader
4al8 c3784b jmp home
4alb ¢37d4b jmp seldsk
4ale c3a74b jmp settrk
4a2l c3acédb jmp setsec
4a24 c3bb4b jmp setdma
4a27 c3cléb jmp read
4a2a c3cadb jmp write
4a2d c3704b jmp listst ;list status
4a38 c3blé4b jmp sectran
[4
maclib diskdef ;load the disk definition library
disks 4 ; four disks
4a33+= dpbase equ $;base of disk parameter blocks
4a33+824a00 dped: dw x1t8,0000h ;translate table
4a37+0000090 dw p0066h,00980h ;scratch area
4a3b+6e4c73 dw dirbuf,dpb#d ;dir buff,parm block
4a3f+@8d4dee dw csvd,alvé ;check, alloc vectors
4a43+824a80 dpel: dw x1ltl,8006h ;translate table
4a47+000000 dw p966h,80080h ;scratch area
4a4b+6edc73 dw dirbuf,dpbl ;dir buff,parm block
4a4f+3c4dld dw csvl,alvl ;check, alloc vectors
4a53+824a00 dpe2: dw x1t2,080886h ;translate table
4a57+060000 dw 9800h,00880h ;scratch area
4a5b+6e4c73 dw dirbuf,dpb2 ;dir buff,parm block
4a5f+6b4dd4ac dw csv2,alv2 ;check, alloc vectors
4a63+824a008 dpe3: dw x1t3,00006h stranslate table
4a67+000000 dw p9006h,0008h ;scratch area
4a6b+6e4c73 dw dirbuf,dpb3 ;dir buff,parm block
4a6£+9a4d7b dw csv3,alvl ;check, alloc vectors
diskdef 6,1,26,6,1024,243,64,64,0ffset
4a73+= dpbd equ $;disk parm block
4a73+1ado dw 26 ;sec per track
4a75+83 db 3 ;block shift
4a76+87 db 7 ;block mask
4a77+80 db 8 sextnt mask
4a78+£208 dw 242 ;disk size-l
4a7a+3£f80 dw 63 ;directory max
4a7c+cé db 192 sallocd
4a74+09 db 0 sallocl
4a7e+1008 dw 16 scheck size
4a80+0200 dw 2 ;offset
4a82+= x1td egu $;translate table
4a82+61 db 1
4a83+87 db 7
4a84+04d db 13
4a85+13 db 19
4a86+19 db 25
4a87+85 db 5
4a88+6b db 11
4a89+11 db 17
4a8a+l7 db 23
4a8b+83 db 3

216

4a8c+09
4aB84+08f
4a8e+l5
4a8f+92
4a90+08
4a9l1+0e
4a92+14
4a93+1a
4a94+06
4a95+8c
4396+12
4297+18
4298464
4299+0a
4a9%a+16
4a9b+16

4a73+=
PO1f+=
P010+=
4a82+=

4a73+=
go1f+=
g8lo+=
4a82+=

4a73+=
PBLE+=
6010+=
4a82+=

gafd
goéfc
gof3
ga7e

£800
ffof
£803
£806
£f809
fg8dc
f8ef
£812

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xit2

dpb3
als3
css3

>

[
or
w

e WO N WME NP WS WE N N W

revrt
intc
icon
inte

’
mon8#@
rmon89
ci

ri

co

© Do

lo
csts

db
diskdef
equ

egu

egu

equ
diskdef
egu

egu

equ
equ
diskdef
equ

equ

equ

equ

endef occurs at

;equivalent parameters

;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters

;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters

;same allocation vector size
;same checksum vector size
;jsame translate table

end of assembly

end of controller - independent code, the remaini
are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also assume the mds system has four disk drive

equ
equ
equ
equ

gfdh
@fch
g£3h

;interrupt revert port
;interrupt mask port

" sinterrupt control port

#111$11106b;enable rst @ (warm boot) ,rst 7

mds monitor equates

egu
equ
equ
equ
equ
equ
equ
equ

p£800h

- Bfféfh

g£8063h
p£806h
0£8069hn
p£88ch
p£80£fh
pf8l2h

217

:mds monitor

srestart mon88 (boot error)
;console character to reg-a
;reader in to reg-a

;console char from ¢ to console o
;punch char from c to punch devic
s1list from ¢ to list device
;console status @8/ff to register

9978
po78
0879
po7b

go79
gd7a

p004
pogoe6
p003
0004
go8d
000a

4a9c
4a9f
4aal
4aad
4abl

4ab3
4abé6
4ab9
4abc
4abd
4acd

4ac3

4acé
4ac8

4ac9
4acc
4acf
4adl
4ad4
4adé
4ad9
4adb

4ade
4adf

dddada
3239
6b2843f
322e38
pdPado

3190081
219c4a
cdd34b
af

320400
c38f4b

318800

feda
c5

8108634
cdbbdb
Bedo
cd7d44b
fedd
cda74b
fged2
cdacdb

cl
862c

e we

tH
base
dstat
rtype
rbyte

ilow
ihigh

’

readf
writf
recal
iordy
cr

1f

H
signon:

O~

oot:

~e we we t ~e we
o
(o]
(o]
or
oo
-

~-e

wbootf:

“-e we

disk ports and commands

equ 78h :base of disk command io ports { j
equ base ;sdisk status (input) B
egu base+l ;result type (input)

equ base+3 ;result byte (input)

egu base+l ;iopb low address (output)

egu base+2 ;iopb high address (output)

equ 4h ;read function

equ 6h ;write function

equ 3h ;recalibrate drive

equ 4h si/o finished mask

equ #dh ;carriage return

equ fah :line feed

;signon message: xxk cp/m vers y.y

db cr,1£,1£f

db ‘29 ;sample memory size

db 'k cp/m vers ' :

db vers/19+'6','.',vers mod 16+'9"’

dab cr,1f,0

:print signon message and go to ccp
(note: mds boot initialized iobyte at 00@3h)
1xi sp,buff+86h

1xi h,signon O
call prmsg ;print message : -
Xxra a ;clear accumulator

sta cdisk ;set initially to disk a

jmp gocpm ;go to cp/m

loader on track #, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start,

1xi sp,buff ;using dma - thus 80 thru ff ok £

mvi c,retry ;max retries

push b

s;enter here on error retries

1xi b,cpmb ;set dma address to start of disk

call setdma

mvi c,9 :boot from drive @

call seldsk

mvi c,d

call settrk ;start with track @

mvi c,2 ;start reading sector 2

call setsec .

read sectors, count nsects to zero ()
pop b ;10-error count o
mvi b,nsects

218

P

4ael
4ae?
4aeb
4ae8
4aeb
daee
daef
4afd
4afl
4af4
4af7
4af9

4afc
4aff
4b0 8
4b@1
4bd4
4bB5
4bB6
4b@7
4bda
4bdb
4bfc

4b0f
4bl8
4bl2
4bl4
4bl5
4bl7
4bl9
4blb
4blc

4ble
4b21

4b24
4b26
4b29
4b2c
4b2f
4b32
4b35
4b38
4b3b
4ble

c5
cdcléb
c2494b
2a6cé4c
118000
19

44

44
cdbbdb
3aébdc
fela
da#54b

3a6adc
3¢
4f
cda74b
af
3c
4f
cdacidb
cl
85
c2elda

£f3
3el2
d3fd
af
d3fc
3eTe
d3fc
af
d3f£3

018000
cdbbdb

3ec3

320000
21634a
2201080
320500
21063c
2206080
323800
2100f8
223900

rdsec:

-8

rdl:

we] wo we
o
g
2

-y we

-e we

-e

sread next sector

:5ave sector count

;retry if errors occur
jincrement dma address

;1sector size

;incremented dma address in hl

;ready for call to set dma

;sector number just read
sread last sector?

must be sector 26, zero and go to next track

push b
call read
jnz booterr
l1hlad iod
Ixi 4,128
dad d

mov b,h
mov c,1l
call setdma
lda ios
cpi 26

je rdl
lda iot
inr a

mov c,a
call settrk
Xra a

inr a

mov c,a
call setsec
pop b

dcr b

jnz rdsec

sget track to register a
sready for call

;clear sector number

;1 £to next sector

sready for call

srecall sector count
:done?

done with the load, reset default buffer address
: (enter here from cold start boot)

enable rstf and
di

mvi a,l2h
out revrt
Xra a

out intc
mvi a,inte
out intc
Xra a

out icon

rst7

sinitialize command

;cleared
:rstf and rst7 bits on

;interrupt control

set default buffer address to 88h

1xi b,buff
call setdma

reset monitor entry points

nvi a,jmp
sta g

1xi h,wboote
shld 1

sta 5

1xi h,bdos
shld 6

sta 7*8

1xi h,mon8@

shld 7*8+1

leave iobyte set

219

;1 jmp wboot at location 90

;jmp bdos at location 5
;jmp to mon8@ (may have been chan

4b41l
4b44
4b45
4b46

4b49
4bda
4b4b

4bde
4b4f

4b52
4b55
4b58

4b5b

4b61

4b64
4b67
4b69

4b6a

4b6d

4b70
4b71

Ja0 4080

cl
pd
ca524b

c5
c3c94a

215b4b
cdd34b
cIOfff

3£626£4

c312£8

cdfg3fs
e67f
c9

c309f£8

c30££8

af
c9

4b72 c306cf8

4b75

c306£8

e we

ooterr:

-8

'
booterd:

.
1

1
bootmsg:

onst:

wo () wo we

conin:

14
conout:

H
list:
H

’
listst:

punch:

.
’

s
reader:

.
' ~

’
home:

previously selected disk was b, send parameter to

lda cdisk slast logged disk number
mov c,a ;send to ccp to log it in
ei

jmp cpmb

error condition occurred, print message and retry

pop b ;jrecall counts
dcr c

jz booterd

try again

push b

jmp wboot@

otherwise too many retries

1xi h,bootmsg

call prmsg

jmp rmon88% ;mds hardware monitor
db '?boot’,d

;console status to reg=-a
(exactly the same as mds call)
jmp csts

;console character to reg-a

call ci
ani 7f£h ;remove parity bit
ret

sconsole character from ¢ to console out
jmp co

;list device out
(exactly the same as mds call)
jmp lo

sreturn list status
xra a
ret ;always not ready

;punch device out

(exactly the same as mds call)
jmp po

s;reader character in to reg-a
(exactly the same as mds call)
jmp ri

;move to home position

220

™

P,

s

§

4b78
4b7a

4b7d
4b80
4b81

4b83

4b84
4b86
4b89
4b8a
4b8c
4b8ad
4b90

4b92
4b93
4b96
4b97
4b99
4b%a

4B3R

4b9%e
4b9f
4bad
4bal
4ba2
4bab
4bab

4ba’7
4baa
4bab

4bac
4baf
4bb@

4bbl
4bb3
4bb4
4bb5
4bb6

4BB2

fel @
c3a74b

210000
749
feb4d
4ag

e602
32664c

216a4c
71
c9

216b4c
71
c9

p6oo
eb

g9

Te
326b4c

&5

-8

mvi
jmp

i
seldsk: ;select

1xi
mov
cpi
rnc

-e

ani
sta
mov
ani
ora
jz

nvi

setdrive:

mov
1xi
mov
ani
ora
mov

RoY
dad
dad
dad
dad
1xi
dad
ret

. we

treat as track £0 seek

c,0
settrk

disk given by register c
h,0008h ;return 9000 if error

a,c
ndisks ;too large?
;leave hl = 0000
10b ;00 60 for drive 9,1 and 10 18 fo
dbank 1to select drive bank
a,c ;06, 81, 19, 11
1b ;mds has 6,1 at 78, 2,3 at 88
a sresult 26?2
setdrive
a,0061106600b :selects drive 1 in bank
b,a ;save the function
h,iof ;1o function
a,m
11661111b ;mask out disk number
b ;mask in new disk number
m,a ;save it in iopb
%:ﬁ t1hl=disk number
h 1%2
h 1 %4
h 2 %8
h :*16
d,dpbase
a ;+hl=disk header table address

7
settrk: ;set track address given by ¢

1xi
mov
ret

.
[4

h,iot
m,C

setsec: ;set sector number given by ¢

1xi

mov

ret
sectran:

mvi
xchg
dad
mov
sta
mo
re

h,ios
m,c

;translate sector bc using table at de

b,08 ;double precision sector number i
;translate table address to hl

b ;translate(sector) address

a,m :translated sector number to a

ios

1l,a s:return sector number in 1

!
setdma: ;set dma address given by regs b,c

221

4bbb
4bbc
4bbd
4bch

4bcl
4bc3
4bcé
4bc9

4bca
4bcc
4bcf
4bd2

4bd3
4bd4
4bd5s

4bdé
4bdai
4bds
4bdb
4bdc
4bdd

4bef
4be3
4bed
4beb
4be7

4be8
4bea
4bed
4bee
4bef

4bfo

4bf2

4bf>5
4bf8

69
60
226¢c4c
c9

ded 4
cdef4b
cdf@4b
c9

Bedb
cdeddb
cdfgdb
c9

c3d434b

21684c
Te
e6£8
bl

77

e620
216b4c
bé

77

c9

deda

cd3f4c

cd4c4c
3a664c

222

‘mov l,c
mov h,b AR
shld iod A
ret
[4
read: sread next disk record (assuming disk/trk/sec/dma
mvi c,readf ;set to read function
call setfunc
call waitio ;perform read function
ret ;may have error set in reg-a
14
[
write: ;disk write function
mvi c,writf
call setfunc ;set to write function
call waitio
ret ;may have error set
14
’
; utility subroutines
prmsg: ;print message at h,l to @
mov a,m
ora a ;zero?
rz
; more to print
push h
mov c,a oy
call conout é;f
pop h
inx h
jmp prmsg
?
setfunc:
; set function for next i/o (command in reg-c)
1xi h,iof ;io function address
mov a,m ;get it to accumulator for maskin
ani 1111100606b ; remove previous command
ora c ;set to new command
mov m,a ;replaced in iopb
F the mds-800 controller reg's disk bank bit in sec
H mask the bit from the current i/o function
ani 001680008b :mask the disk select bit
1xi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret
H
waitio:
mvi c,retry ;max retries before perm error
rewait:
; start the i/o function and wait for completion
call intype ;in rtype
call inbyte ;clears the controller
(4
lda dbank :set bank flags

4bfb
4bfc
4bfe
4c00
4cB3
4c@5
4co6
4co8

4c@b
4cpd
4cle

4cle
4cl3
4cls

4cl8

4clb
4cld

4c28
4c21

4c24
4c27
4c28
4c2b
4c2c
4c2e

4c31

4c32
4c35

b7
3eb67
g64c
c28bdc
a379
78
d37a
c3164c

d389
78
d38a
cd594c

e604
cal®dc

cd3f4c

fef2
ca324c

b7
c2384c

cddci4c

ebfe
c2384c

c9

cddcdc
c3384c

iod:l:

I
wait@:

- we -y we

- we

-s we

- e

wready:

error:

e mE W we NS s we we we ws E e

ora a szero if drive ¢,1 and nz
mvi a,iopb and B8ffh ;low address for iopb

mvi b,iopb shr 8 t+high address for iopb
jnz iodrl ;drive bank 17

out ilow slow address to controlle
mov a,b

out ihigh 1high address

jmp wait@ sto wait for complete
;drive bank 1 '

out ilow+l@h ;88 for drive bank 10

mov a,b

out ihigh+1gh

call instat ;wait for completion

ani iordy ;ready?

jz waité

check io completion ok
call intype smust be io complete (04)
80 unlinked i/o complete, A1 linked i/o comple

190 disk status changed 11 (not used)
cpi 16b ;ready status change?
jz wr eady ,

must be 880 in the accumulator
ora a

jnz werror ;some other condition, re
check i/o error bits

call inbyte

ral

jc wr eady ;unit not ready
rar

ani 11111116b sany other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now

call inbyte ;clear result byte
jmp trycount

sreturn hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
- deleted data (accepted as ok above)

crc error

seek error

address error (hardware malfunction)
data over/under flow (hardware malfunct
write protect (treated as not ready)
write error (hardware malfunction)

not ready

~NouUs WS

223

4c38
4c39

4c3c
4cle

4c3f
4c42
4c43
4c46
4c48
4c49
4céb

4céc
4c4f
4c50
4¢53
4c¢55
4¢56
4¢c58

4c59
4cS5c¢
4c5d
4c60
4c62
4c63
4¢65

4c66

4c67
4c68
4c69
4céa
4ce6b
4cée

gd
c2f24b

3edl
c9

3a664c
b7
c2494c
db79
c9
db89
c9

3a664c
b7
c2564c
db7b
c9
db8b
c9

3a664c
b7
c2634c
db78
c9
db88
cY

1)

80
04

B2
g1
8009

we [™o %5 W %t W e

- we

e wme =

intype:

intypl:

H
inbyte:

inbytl:

instat:

instal:

.
14
[
’
.
’
.
’

d

bank:
iopb:

iof:
ion:
iot:
ios:
iod:

-e w8 we

(accumulator bits are numbered 7 6 5 4 3 2 1 6)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable, in any case, the not ready conditio
treated as a separate condition for later improve

rycount:

register c contains retry count, decrement 'til z
dcr c

jnz rewait ;for another try
cannot recover from error

mvi a,l serror code

ret

intype, inbyte, instat read drive bank 08 or 180
lda dbank

ora a

jnz intypl ;skip to bank 18
in rtype

ret

in rtype+ldh ;78 for 8,1 88 for 2,3
ret

lda dbank

ora a

jnz inbytl

in rbyte

ret

in rbyte+l@h

ret

lda dbank

ora a

jnz instal

in dstat

ret

in dstat+l8h

ret

data areas (must be in ram)

db g -dxsk bank 88 if drive 6,1
18 if drive 2,3

;io parameter block

db 86h ;normal i/o operation

db readf ;i0 function, initial read
db 1l :number of sectors to read
db offset ;track number

db 1l :sector number

dw buff +i0 address

define ram areas for bdos operation

224

% ;
St

s,

i

) P

e

4cbe+=
4cée+
4cee+
4404+
44148+
4d3c+
4d4c+
4d6b+
4d47b+
4d49%a+
4daa+=
Bl3c+=
4daa

begdat
dirbuf:
alvg:
csvi:
alvl:
csvl:
alv2:
csv2:
alv3:
csv3:
enddat
datsiz

endef
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
egu
end

$-begdat

225

;directory access buffer

0014

8000
3408
3cB6
4200
poa4
p093

4200

pd2c =

4200
4a03
4206
4a@09
4adc
4apf
4al2
4als
4al8
4alb
4ale
4a2l
4a24
4a2’
4a2a
4a2d
4a39

4a33
4a37
4a3b
4a3f

4a43
4a47
4a4b
4a4f

4a53
4a57
4a5b
4as5f

c39cda
cla6da
c3ll4b
c3244b
c3374b
c3494b
c34d4b
c34£4Db
c3544b
c35a4b
c37d4b
c3924b
¢3adé4b
c3c34b
c3d64b
c34bdb
c3a74b

734289
goooda
£fB4c8d
ecd4dig

734a09
000000
fB4c8d
fc4dsf

734a09
000089
fd4c8d
8cdeae

size

wo we wo w0 I we we

bias
ccp
bdos
bios
cdisk
iobyte

nsects

-

wboote:

1) we wo we e

pbase:

-e

~e

APPENDIX C: A SKELETAL CBIOS

émé
skeletal cbios for first level of cp/m 2.0 altera o
equ 20 ;cp/m version memory size in kilo

“bias* is address offset from 3488h for memory sy

than 16k (referred to as “b" throughout the text)

equ (msize-20) *1024

equ 34406h+bias ;base of ccp

equ ccp+886h :base of bdos

equ ccp+1686h :1base of bios

eqgu 8904h scurrent disk number #=a,...,15=p

equ gao83nh ;intel i/o byte

org bios ;origin of this program

equ ($-ccp) /128 ;warm start sector count

jump vector for individual subroutines

jmp boot ;scold start

jmp wboot ;warm start

jmp const sconsole status

jmp conin ;:console character in

jmp conout ;console character out

jmp list ;list character out N
jmp punch spunch character out {WE
jmp reader ;reader character out -
jmp home ;move head to home positi

jmp seldsk ;select disk

jmp settrk ;set track number

jmp setsec ;set sector number

jmp setdma :1set dma address

jmp read ;read disk

jmp write ;write disk

jmp listst ;return list status

jmp sectran ;Ssector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 90

dw trans,0860h

dw #000h,0800806h

dw dirbf,dpblk

dw chk@égd,allds

disk parameter header for disk 81

dw trans,90006h

dw @0060h,B088h0

dw dirbf,dpblk

dw chk#l,allgl ~

disk parameter header for disk 82 -
dw trans,0000h (

dw 8006h,0000h o
dw dirbf,dpblk

dw chk@2,allg2

Lo Bs ¥ 4

Y

4263
4a67
4aéb
4a6f

1373

.4alb

4a7f
4283
4a87
4a8b

4a8d
4a8f
4a90
4a9l
4392
4294
4a96
4a97
4a98
4a9%a

4a9%c
4a9d
4daaf
4aa3

‘4aab

4aa9
4aab
4aae

4abl
4ab3
4ab5s

4ab?

4aba
4abb
4abc
4abd
4abe
4acl

734289
0o0000
f84c8d
lcdecd

256208

170369
150208
141a06
121804
1616

lago
g3
87
)
£200
3£00
co
0o
1006
g200

af

320300
320400
c3efda

3180080
Bep@

cds5a4db
cd544b

g62c
Bebd
1662

2106034

c5
as
e5
4a
cd924b
cl

-y

-8 “eo

trans:

dpblk:

O we we wo we

éboot:

-e

e wue

loadl:

disk parameter header for disk 03
trans,80606h
P006h,80800h0
dirbf,dpblk

dw
dw
dw
aw

chk@3,al

103

sector translate vector

37513119, jBESESEs 1:2:3:4

4B
db

23,3,9,15 :sectors 9,16,11,12
db 21,2,8,14 ;sectors 13,14,15,16
db 20,26,6,12 ;sectors 17,18,19,28
db 18,24,4,190 :1sectors 21,22,23,24
db 16,22 " ssectors 25,26
sdisk parameter block, common to all disks
aw 26 ;sectors per track
db 3 sblock shift factor
db 7 sblock mask
db ") :null mask
dw 242 ;disk size-~-l
aw 63 ;directory max
db 192 talloc @
déb /] salloc 1
dw 16 scheck size
aw 2 strack offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi

;zero in the accum
;clear the iobyte
1select disk zero
;initialize and go to cp/

;simplest case is to read the disk until all sect

Xra a

sta iobyte
sta cdisk
jmp gocpm
Ixi sp,86h
mvi c,p
call seldsk
call home
mvi b,nsects
mvi c,d
mvi 4,2

;use space below buffer £
;select disk #

;go to track 089
:1b counts # of sectors to

:¢ has the current track
;@ has the next sector to

note that we begin by reading track @, sector 2 s
contains the cold start loader, which is skipped

1xi

h,ccp

;base of cp/m (initial lo

1load one more sector

push
push
push
mov
call
pop

b

a

h

c,d
setsec
b

227

s save sector count, current track
:save next sector to read

s;8ave dma address

;get sector address to register c
;set sector address from register
;recall dma address to b,c

4ac2
4ac3

4ach
4ac9
4acb

4ace
4act
4ad2
4ad3
4ad4
4ads
4adé6

4ad9
4ada
4adb
4add

4aed
4ae2

4ael
4aed
4aeb
4aeb
4aeld
4aea
4aeb
4aec

4aef
4afl
4af4
4af7

4afa
4afd
4b6 9

4b0a3
4b@6

4b09
4bfa
4bad
4bde

c5
cdad4b

cdc34b
fedd
c2abda

el
118009
19
dl
cl
g5
caefda

14

7a
felb
dabada

le6dl
gc

cl
c3bada

Jec3

326000
21834a
2281900

328500
21463c
220600

018000
cdad4db

fb
3ad400
Af
c30034

-e

e W

- W

«s %

-y we

ALY we we
(o]
8
=]
.

“e

e

-e

push b ;replace on stack for later recal
call setdma ;set dma address from b,c

drive set to B8, track set, secior set, dma addres
call read

cpi #adh ;any errors?
jnz wboot ;retry the entire boot if an erro

no error, move to next sector

pop s;recall dma address
1xi d,128 ;dma=dma+128

o

dad d ;new dma address is in h,l

pop d ;recall sector address

pop b ;recall number of sectors remaini
dcr b ; sectors=sectors-1

jz gocpm stransfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr 4

mov a,d ;sector=27?, if so, change tracks
cpi 27

jc loadl scarry generated if sector<27

end of current track, go to next track

mvi d,1 s1begin with first sector of next
inr c strack=track+l

save register state, and change tracks
push b

push d

push h

call settrk ;track address set from register
pop h

pop d

pop b

jmp loadl ;for another sector

end of load operation, set parameters and go to ¢

mvi a,8c3h ;c3 is a jmp instruction
sta ;for jmp to wboot

1xi h,wboote ;wboot entry point

shld 1 ;set address field for jmp at @
sta 5 ;for jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
1xi b, 88h ;default dma address is 88h

call setdma

ei ' ;enable the interrupt system

lda cdisk ;get current disk number

mov c,a ;send to the ccp

jmp ccp ;9o to cp/m for further processin

228

A

4bll
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b49
4bda

4b4b
4bic

4b4ad
4bde

4b4f
4b51
4b53

4b54
4b56
4b59

4b5a
4b54
4b5e

- 4b61

3eB®

€) v° w0 wo W wo we

onst:

’
- conin:

e67f
c9

79
c9

79
c9

af
c9

79
c9

3ela
e67f
c9

fedd
cd7d44b
c9

210000
79
32eféc
febd

eader:

-y :J"m«uso~c-n

H
seldsk:

simple i/0 handlers (must be filled in by user)

in each case, the entry point is provided, with s
to insert your own code

;console status, return 8ffh if character ready,

ds lgh ;space for status subroutine
mvi a,doh
ret

;console character into register a

ds 16h ;space for input routiné
ani 7fh ;strip parity bit
ret

sconsole character output from register c

mov a,c s;get to accumulator
ds 16h sspace for output routine
ret

:11list character from register ¢

mov a,c ;character to register a

ret snull subroutine

;return list status (@ if not ready, 1 if ready)
Xra a ;0 is always ok to return

ret

;punch character from register c
mov a,c ;character to register a
ret snull subroutine

;read character into register a from reader devic

mvi a,lah senter end of file for now (repla
ani 7£h ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 08 position of current drive
translate this call into a settrk call with param

mvi c,? ;1select track 9

call settrk

ret ;we will move to 68 on first read
;select disk given by register c

1xi h,0800h ;error return code

mov a,c

sta diskno

cpi 4 ;must be between # and 3

229

4b63
4b64

4bé6e
4b71
4b72
4b74
4b75
4b76
4b77
4b78
4b7b
4b7c

4b7d
4b7e
4b81l
4b91

4b92
4b93
4b96
4bab

4ba’
4ba8
4bad
4baa
4bac

4bad
4bae
4baf
4bb2
4bc2

4bc3
4bd3

4bdeé

ae

79
32e94c

c9
79
32eb4c
c9

eb

6e
2600
c9

69
22ed4c

c9

c3e64b

rnc ;no carry if 4,5,...
disk number is in the proper range

«»e

ds 18 ;space for disk select
; compute proper disk parameter header address
lda diskno
mov 1l,a s1=disk number 6,1,2,3
mvi h,d s:high order zero
dad h $*2
dad h 1 *4
dad h ;%8
dad h :1*16 (size of each header)
1xi d,dpbase
dad d s+hl=,dpbase(diskno*16)

ret

;
settrk: ;set track given by register ¢

mov a,c

sta track

ds 16h ;space for track select
ret

1
setsec: ;set sector given by register c

mov a,c

sta sector

ds 18h ;space for sector select
ret)

-

[

sectran:
stranslate the sector given by bc using the
;translate table given by de

xchg shl=,trans
dad b s;hl=_trans(sector)
mov l,m :1 = trans(sector)
mvi h,9 shl= trans(sector)
ret ;with value in hl
’
setdma: ;set dma address given by registers b and c
mov 1l,c ;low order address
mov h,b shigh order address
shld dmaad ;save the address ,
ds 16h ;space for setting the dma addres
ret

" we
o
o
e 7

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)

ds 106h ;set up read command

jmp waitio ;to perform the actual i/o

we wo

.
’

write: ;perform a write operation
ds 16h ;set up write commanu

i

aitio: ;enter here from read and write to perform the ac
operation, return a #8h in register a if the ope
properly, and 8lh if an error occurs during the r

we we E v

230

P

4beb
4ceb
4ceB

4ced
4ceb
4ced
4cef

4cfo
4cfo
4470
448f
4dae
4dcd
4dec
4dfc
4efc
4elc

4e2c
@l3c
de2c

3efl
c9

.-t WS We W w9

- W We WE we wg

track:
sector
dmaad:
diskno

.
’

(1]

begdat
dirbf:
all@god:
allfl:
all@g2:
alld3:
chk@d:
chk@gl:
chk@2:
chk@3:

#
enddat
datsiz

in this case, we’have saved the disk number in 'd

ds
mvi
ret

the track number in 'track®’ (8-76

the sector number in ‘sector' (1~

the dma address in 'dmaad’ (#-655
256 ;space reserved for i/o drivers
a,l serror condition

:replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between *"begdat" and "enddat").

ds
ds
ds
ds

scratch
egu
ds
ds
ds
ds
ds
ds
ds
ds
ds

equ
equ
end

2 :two bytes for expansion
2 ;two bytes for expansion
2 ;direct memory address

1l :disk number 8-15

ram area for bdos use

$;beginning of data area
128 ;scratch directory area
31 tallocation vector #

31 sallocation vector 1

31 sallocation vector 2

31 sallocation vector 3

16 ;check vector 0

16 ;check vector 1

16 ;check vector 2

16 ;check vector 3

$;end of data area

$-begdat;size of data area

231

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

combined getsys and putsys programs from Sec 4,

H Start the programs at the base of the TPA éwé
9100 org 9108h
#0014 = msize equ 20 ; size of cp/m in Kbytes

*bias” is the amount to add to addresses for > 20k
(referred to as "“b* throughout the text)

- N

20908 = bias equ (msize=-20) *1024
3440 = ccp equ 3400h+bias
3ch0 = bdos equ ccp+88806h
4afod = bios equ ccp+1680h

: getsys programs tracks # and 1 to memory at

; 3886h + bias

; register usage

: a (scratch register)

: b track count (8,...76)

: c sector count (1l,..,.26)

: d,e (scratch register pair)

H h,1 load address

: sp set to stack address

gstart: ; start of getsys (
9100 318833 1xi sp,ccp-0886h ; convenient plac
8103 218033 1xi h,ccp-00680h ; set initial loa
0106 9600 mvi b,@ ; start with trac

rdstrk: s read next track
2108 dedl mvi c,1 ;s each track star

rd$sec:
8lfa cdgde3 call read$sec ; get the next se
8104 118000 1xi 4,128 ; offset by one s
9116 19 dad d H (hl=h1+128)
8111 éc : inr c ; next sector
6112 79 mov a,c ; fetch sector nu
8113 felb cpi 27 : and see if la
8115 dadadl jec rdsec ;s <, do one more

; arrive here at end of track, move to next track
0118 04 inrc b s track = track+l
8119 78 mov a,b ; check for last
flla fed2 cpi 2 ; track = 2 ?
8llc da@s8el jc rd$trk ;s <, do another

; arrive here at end of load, halt for lack of anything b
#11f £fb el .
2128 76) hlt ()

232

e
i :

0208

200
0203
206

0208

820a
9204
0210
9211
8212
8213
8215

6218
2219
g2la
B21c

p21f
0220

8300

0300
8361
0382

8342
0343

318033
218033
p600

fedl

cdeeg4
118000
19

8c

79
felb
daBag2

g4

78
fed2
daBgn2

fb
76

c5
e5

el
cl

-y %G W

org

puts$sys:
1xi
1xi
mvi

wrStrk:
nvi

wr$sec:
call
1xi
dad
inr
mov
cpi
jc

-

inr
mov
cpi
jc

~e

ei
hlt

-t

: move to next page boundary
org ($+61606h) and Offé6h
read$sec:
; read the next sector
; track in ,
: sector in <c>
: dmaaddr in <hl>
push b
push h
; user defined read opetatibn goes here
ds 64
pop h
pop b

sp,ccp~-0086h
h,ccp-00686h
b,8

c,1

writeSsec
d,128

d

c

a,c

27
wr$sec

arrive here at end of track, move to

b

a,b

2
wrstrk

done with putsys, halt for lack

233

-l We =

-e

e WO WE WS WO wp e

putsys program, places memory image starting at
3882h + bias back to tracks # and 1
start this program at the next page boundary

($+8166h) and PE££00h

convenient plac
start of dump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<c> =<¢c> + 1
see if

past end of t
no, do another

next track

e WNE W e

track = track+l
see if

last track
no, do another

of anything bette

user supplied subroutines for sector read and write

0344
0408

0400
8401
8402
p442

0443
p444

8445

c9

c5
e5

cl
c9

ret
org

writeSsec:

($+061088h) and B££08h

; Same parameters as read$sec

push b
push h
; user defined write operation goes here
ds 64
pop h
pop b
ret

; end of getsys/putsys program

end

234

.
4

another page bo

pooo
0pl4

0000
3400
4apg
0300
4a00
1900
032

m
£

0po0
peo3
0865

010200
1632
2100634

WO WO WS WA MO WP NS ME WNE NP NS NG NG WS WE N0 W WO

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 08, sector 81 (the first sector on the
diskette)., we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running), the cold start loader brings the cp/m system
into memory at "loadp" (3466h + “"bias™). in a 20k
memory system, the value of “"bias* is @066h, with large
values for increased memory sizes (see section 2), afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
“bios" + "bias.” the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten, the origin is assumed at 60006h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

org) ; base of ram in cp/m
msize equ 20 ; min mem size in kbytes
bias egu (msize-20)*1024 ; offset from 20k system
ccp egu 3460h+bias ; base of the ccp
bios egu ccp+l606h : base of the bios
biosl equ 6360h ; length of the bios
boot equ bios
size egu bios+biosl-ccp ; size of cp/m system
sects equ size/128 ; # of sectors to load

begin the load operation

cold:
1xi b,2 ;s b=8, c=sector 2
mvi d,sects ; d=# sectors to load
Ixi h,ccp ; base transfer address

lsect: ; load the next sector

-p We W WE WE We "

insert inline code at this pecint to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

branch to location “cold" if a read error occurs

235

gass
#86b

g86b
gaéc

a06f
8072

0873
0874
8875
00877

g87a
g07¢c
g@7d
0080

c36bdd

15
cagddda

318000
39

gc
79

felb
dap8ed

fedl
c30800

222232222222 2222222222 2220222322222 222222222 223

H
’ *
? * user supplied read operation goes here.,,.. (M
* w
; X X222 2222222222222 2222 2 2 Y Y Y S 2222222222}
jmp past$patch ; remove this when patche
ds 66h
past$patch:
3 go to next sector if load is incomplete
dcr d ; sects=sects~1
jz boot ; head for the bios

more sectors to load

we aren't using a stack, so use <sp§’as scratch registe
to hold the load address increment

- We W we

1xi sp,128 ; 128 bytes per sector
dad sp ; <hl> = <hl> + 128
inr c ; sector = sector + 1
mov a,c
cpi 27 : last sector of track?
je lsect ; no, go read another

;s end of track, increment to next track g”g
mvi c,1 ; sector =1
inr b ; track = track + 1
jmp lsect ;s for another group
end ; of boot loader

236

APPENDIX F: (P/M DISK DEFINITION LIBRARY

%: 3 CP/M 2.0 disk re-definition library
L |

3: ; Copyright (c) 1979

4: ;. Digital Rasearch

5: ; Box 579

6: ; Pacific Grove, CaA

Z: : 93950

. f 2 e
9: ; CP/M logicel disk drives are defined using the
ig: ; ?acros given below, where the sequence of calls
s 3 s:

12: ;
13: ; disks n
14: ; diskdef oarameter-list-#
15: ; diskdef pvarameter-list-l
16: ; cee

17: ; diskdef parameter-list-n
18: ; " endef
19: ;

29: ; where n is the number of logical disk drives attached
21: ; to the CP/M system, and parameter-list-i defines the
22: 3 characteristics of the ith drive (i=d,1l,....n-1)
23: ; ,
24: ; each parameter~list-i takes the form
25: ; dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, (8]
26: ; where
27: ; én is the disk number #6,1,...,n-1
28: ; fsc is tae first sector number (usually 0 or 1)
29: ; 1sc is the last sector number on a track
38: ; skf is optional “skew factor" for sector translate
31: ; bls is tne data block size (1024,2048,....,16384)
32: ; dks is tne disk size in bls increments (word)
33: ; dir is tne number of directory elements (word)
34: ; cks is the number of dir elements to checksum
35: ; ofs is the number of tracks to skip (word)
36: ; (8] is an optional @ which forces 16K/directory en
37: ;
38: ; for convenience, the form
39: ; dn,dm

40: ; defines disk dn as having the same characteristics as
41: ; a previously defined disk dm,

42: ;

43: ; a standard four drive CP/M system is defined by

44: ; disks 4

45: ; diskdef 0,1,26,6,1024,243,64,64,2

46: ; dsk = set e

47: ; rept 3

48: ; dsk gset - dsk+l

49: ; diskdef tdsk,0

50: ; endm

51: ; < endef

52: ;

53: ; the value of "begdat” at the end of assembly defines t

237

55
56:
57:
58:
59:
68:
61l:
62:

64:
66:

e WNe WO N0 e We wmg N

dskhdr

disks
ir
ndisks
dpbase
ir

dsknxt

dsknxt

dpbhdr
dpb&dn

db

-
’

- O‘QD

-e

U~
- 2,

o]

. s W () ~o

ws ws %)

beginning of the uninitialize ram area above the bios, W
while the valve of "enddat" defines the next location { "
following the end of the data area, the size of this -
area is given by the value of “datsiz" at the end of t
assembly. note that the allocation vector will be qui

large if a large disk size is defined with a small blo

size,

macro dn
define a single disk header list

dw xltsdn,6460h ;translate table

dw 8006h,40800h ;scratch area

dw dirbuf,dpb&dn ;dir buff,parm plock
dwd csv&dn,alvédn ;check, alloc vectors
endm

macro nd

. define nd disks

set nd ;s for later reference

equ $;base of disk parameter blocks
generate the nd elements

set)

rept nd

dskhdr s$dsknxt

set dsknxc+l

endm

endm g“@
macro dn

equ $;disk parm block

endm ‘

macro data,comment

define a db statement

ab data comment

endnm

macro data,comment

define a dw statement

dw data comment

endm

macroe m,n

greatest common divisor of m,n

produces value gcdn as result

(used in sector translate table generation)
set m ssvariable for m

set n ;svariable for n

set '] ;;variable for r

rept 65535

set gcdm/gcdn

set gcdm - gcdx*gcdn £
if gcdr = @ S
exitm

endif

238

™y

27

ﬁ@«mw%

189:
116:
111:
112:
113:
114:

~115:

116:
117:

gcdm
gcdn

~ 0

iskdef

i’

dpb&dn
als&dn
css&dn
xlt&dn

secmax
sectors

¢+ als&dn
¢ als&dn

: css&dn

Bikval
blkshf
blkmsk

[
5

: blkshf
s blkmsk
: blkval

i
plkval
extmsk

extmsk
blkval

-e
-

: extmsk

-y
e

: extmsk

.
’

: dirrem

set gcdn
set gecdr
endm
endm

macro dn,fsc,1sc,skf,bls,dks,dir,cks,bfs,kl6

generate the set statements for later tables
if nul 1lsc

current disk dn same as previous fsc

equ dpb&fsc ;eauivalent parameters

equ alsafsc ;same allocation vector size
equ css&fsc ;same checksum vector size
equ xlt&fsc ;same translate table

else

set lsc-(£fsc) ; ;sectors 6...secmax
set secmax+l; ;number of sectors

set (dks) /8 ;;size of allocation vector
if ((dks) mod ©) ne #

set als&dn+l

endif

set (cks)/4 ;;number of checksum elements
generate the block shift value

set bls/128 ;;number of sectors/block
set g ;scounts right 6's in blkval
set "] . 33£ills with 1°'s from right
rept 16 ;3once for each bit position
if blkval=1

exitm

endif

otherwise, high order 1 not found vet

set blkshf+1

set (blkmsk shl 1) or 1

set blkval/2

endm

generate the extent mask byte

set bls/1024 ; snumber of kilobytes/block
set 7 ;:fiil from right with 1's
rept 16

if blkval=1l

exitm

endif

otherwise more to shift

set (extmsk shl 1) or 1

set blkval/2

endm

may be double byte allocation

if (dks) > 256
_set (extmsk shr 1)

endif .

may be optional [@] in last position

if not nul k16

set klé

endif

now generate directory reservation bit vector
set dir ;:# remaining to process

239

umber of entries per block

164: dirbks set bls/32 ;;n
;;£ill with 1's on each loop

240

165: dirblk set 8 .
166: rept 16 N
167: if dirrem=0

168: exitm ’

169: endif

178: ;; not complete, iterate once again

171: ;; shift right and add 1 high order bit

172: dirblk set (dirblk shr 1) or §9@8h

173: if dirrem > dirbks

174: dirrem set dirrem-dirbks

175: else

176: dirrem set 2

177: endif

178: endm

179: dpbhdr dn ;3generate equ §

180: ddw $sectors,<;sec per track>

181: ddb $blkshf,<;blcck shift>

182: ddb $blkmsk,<;blcck mask>

183: ddb g$extmsk,<;extnt mask>

184: ddw $(dks)=1,<;aisk size-1>

185 ddw $(dir)-1,<;airectory max>

186: ‘ ddb $dirblk shr 8,<;allocH>

187: ddb $dirblk anda 8ffh,<;allocl>

183: ddw $(cks)/4,<;check size>

189: ddw 30fs,<;o0ffset>

198: ;; generate the translate table, if requested '
191: if nul skf S
192: x1lt&dn equ] ;ho xlate table
193: else ,

194: if Skf = ¢ :

195: xlt&dn equ) sno xlate table
- 196: else

197: ;; generate the translate table

198: nxtsec set) ; ;next sector to fill

199: nxtbas set 8 ; ;mcves by one on overflow
206 ‘ gcd $sectors,skf

281: ;3 gcdn = gcd(sectors,skew)

282: neltst set sectors/gcdn

283: ;; neltst is number of elements to generate
284: ;; ‘before we overlap orevious elements

285: nelts set neltst ;;counter

206: xltsdn equ $;translate table
287: rept sectors ;;once for each sector
208 if sectors < 256

209: ddb snxtsec+(£fsc)

218: else

211: ddw snxtsec+(£sc)

212: endif .

213: nxtsec set nxtsec+(skf)

214: if nxtsec >= sectors

215: nxtsec set nxtsec~-sectors
216: endif

217: nelts set nelts-1

218: if nelts = ¢

:!M“‘””‘\\

nxtbas set nxtbas+i
nxtsec set nxtbas
nelts set neltst
endif
endm
endif ;;end of nul fac test
endif :;end of nul bls test
endm
[4
defds macro lab, space
lab: ds space
endm
’
lds macro 1b,dn,val
defds lb&dn, svaledn
endm
’
endef macro
13 generate the necs2ssary ram data areas
begdat equ $
dirbuf: ds 128 ;directory access buffer
dsknxt set 8
rept ndisks ;;once for each disk
las alv,%dsknxt,als
lds csv,%dsknxt,css
dsknxt set dsknxt+l
endm
enddat equ $
datsiz equ $-begdat
: 3 db @ at this point forces hex record
endm

241

WKW OO WN -

48 50 48 06 00 °F ¢4 U0 35 B8 ¥ v s

s bt et et ot
-
L]

o
W~ W
0 88 00 8 e

20:

NN
W N -
os oo oo

24:

LI T}

..

NN
W~
(1]

ww
&
e e o8

32:

W W
(S, 0 - V8
e oo o0 s o

e

e 08 08 o8

B b b e W W W W
WS WM
..

o U b
v oo

-9
[
o

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

;******tt*****t*************5*************************

%] *
:
o * Sector Deblocking Algorithms for CP/M 2.0 :
« R
;***
’
: utility macro to compute sector mask
smask macro hblk
i compute log2(hblk), return €x as result
3 - (2 ** @x = hblk on return)
Qy set hblk
@x set)
i count right shifts of @y until =1
rept 8
if y = 1
exitm
endif
R @y is not 1, shift right one position
ey set @y shr 1
ex set éx + 1
endm
endm

Rhkkhkkkkkhkhkhkhhhkkkkkhkkkkhkkhkhhkkhkkhkkhkhkhkkhkhhhkkhkhkkhkkkkkkk
*

. we ws we
* % ¥

CP/M to host disk constants *

o % *
;***********t*********************************t*******f
blksiz equ 2048 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 20 shost disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask

smask hstblk ;compute sector mask
secshf equ éx ;log2 (hstblk)
;******************t**********************************
o % *
4 -
e BDOS constants on entry to write *
s % *
;**************t*t***************t********************
wrall equ g swrite to allocated
wrdir equ 1 ;write to directory
wrual equ 2 swrite to unallocated

-
’
R e T
i * *

i * The BDOS entry points given below show the *
' * code which is relevant to deblocking only. *
;* *

S X222 2222222222 22222222 2222222222222 2222222222222 2

-

242

54: ; DISKDEF macro, or hand coded tables go here
55: dpbase equ $ s;disk param block base
56: ;

57: Boot:

58: wboot:

59: ;enter here on system boot to initialize
60: Xra a 18 to accumulator
61: sta hstact shost buffer inactive
62: sta unacnt ;clear unalloc count
63: ret

64: ;

65: seldsk:

66: :1select disk

67: mov a,c ;1selected disk number
68: sta sekdsk :sseek disk number
69: ‘ mov l,a ;disk number to HL
70: mvi h,8

71: rept 4 smultiply by 16
72: dad h

73: endm

74: 1xi d,dpbase ;base of parm block
75: dad d ;hl=,dpb(curdsk)
76: ret

17: ;

78: settrk:

79: ;set track given by registers BC

80: mov h,b

81l: ' mov l,c

82: shld sektrk strack to seek

83: ret

84: ;

85: setsec:

86: ;set sector given by register ¢

87: mov a,c

88: sta seksec :sector to seek
89: ret

9¢: ;

9]1: setdma:

92: ;set dma address given by BC

93: mov h,b

94: mov l,c

95: shld dmaadr

96: ret

97: ;

98: sectran:

99: stranslate sector number BC

100: mov h,b

101: mov l,c

182: - ret

103: ;

243

104:
185:
106:
187:
108:
109:
110:
111:
112:
113:
114:

115: -

116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:

131:

132
133:
134:
135:
136:
137:
138:
139:
146:
141:
142:
143:
144:
145:
146:
147:
148:
149:
158:
151:
152:
153:
154:
155:
156:
157:
158:

;******t******************t*************************t*
;* *
3 * The READ entry point takes the place of *
Rl the previous BIOS defintion for READ, *
']
[4

;***

read:

;read the selected CP/M sector

mvi a,l

sta readop ;read operation

sta rsflag ;must read data

nvi a,wrual

sta wrtype ;treat as unalloc

jmp rwoper ;to perform the read
;t*********t********************************ttt*****t*
'R *
14
P * The WRITE entry point takes the place of *
i the previous BIOS defintion for WRITE. *
o« % *
;*********t**********************tt****tt*t**t********
write:

;write the selected CP/M sector

xra a ;10 to accumulator

sta readop snot a read operation

mov - a,c swrite type in ¢

sta wrtype

cpi wrual ;write unallocated?

jnz chkuna ;check for unalloc
;)
: write to unallocated, set parameters

mvi a,blksiz/128 snext unalloc recs

sta unacnt

lda sekdsk ;disk to seek

sta unadsk sunadsk = sekdsk

l1hlad sektrk

shld unatrk sunatrk = sectrk

lda seksec

sta unasec sunasec = seksec
7’
chkuna: .

scheck for write to unallocated sector

lda unacnt sany unalloc remain?

ora a

jz alloc iskip if not
?
: more unallocated records remain

dcr a sunacnt = unacnt-l

sta unacnt

1da sekdsk ;same disk?

1xi h,unadsk

cmp m ; sekdsk = unadsk?

jnz alloc ;skip if not

- w9

disks are the same

244

(P,
)

e

e,

- we

-y e

r
noovf:

’
allog:

N we we W W we

*
*
*
*
*

"
t 3
o
o)
(1)
~

-p “e

C1xi h,unatrk

call sektrkcmp ssektrk = unatrk?

jnz alloc s;skip if not
tracks are the same v

lda seksec s same sector?

Ixi h,unasec

cmp m ~ ;seksec = unasec?
jnz alloc :skip if not

match, move to next sector for future ref
inr m sunasec = unasec+l

mov a,m send of track?
gpi cpmspt ;jcount CP/M sectors
jec noovf :skip if no overflow

overflow to next track

mvi m,@ sunasec = @
lhld unatrk
inx h

shld unatrk sunatrk = unatrk+l

;smatch found, mark as unnecessary read

xra a 18 to accumulator
sta rsflag ;rsflag = @
jmp rwoper ;to perform the write

;not an unallocated record, requires pre-read

Xra a :18 to accum
sta unacnt sunacnt = @
inr a 11 to accum
sta rsflag ;rsflag = 1

hkkhkRhkhhkhkkhhhkkhkhkhhkhkhhhhdhdbhhhhhkhhhkhhkhkhhkhhhhkhhhhhhhhd

Common code for READ and WRITE follows

L2223 2322323332222 2222 2220 2222222222222 222282

;enter here to perform the read/write

xra a ;zero to accum

sta erflag ino errors (yet)
lda seksec ;compute host sector
rept secshf

ora a ;carry = @

rar :shift right

endm

sta sekhst.

shost sector to seek

active host sector?

1xi h,hstact shost active flag
mov a,m
mvi m,l salways becomes 1

245

- we

“e W

-e we

(4 -.
nomatch:

Py we

ilhst:

’
match:

-8

ora a ;was it already?
jz filhst :£ill host if not

host buffer active, same as seek buffer?
l1da sekdsk

1xi h,hstdsk ;same disk?
cmp m ;sekdsk = hstdsk?
jnz nomatch

same disk, same track?

1xi h,hsttrk
call sektrkcmp ;sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?
1da sekhst

1xi h,hstsec :sekhst = hstsec?
cmp m A
jz match ;skip if match

;sproper disk, but not correct sector

lda hstwrt shost written?
ora a
cnz writehst sclear host buff

;may have to fill the host buffer
lda sekdsk
sta hstdsk
lhld sektrk
shld - hsttrk

lda sekhst

sta hstsec

lda rsflag ;need to read?
ora a

cnz readhst ;yes, if 1

Xra a :8 to accum

sta hstwrt ;no pending write

;copy data to or from buffer

lda seksec ;mask buffer number
ani secmsk 1least signif bits
mov 1l,a sready to shift
mvi h,? ;double count

rept 7 ;shift left 7

dad h

endm

hl has relative host buffer address

1xi d,hstbuf

dad d :hl = host address
xchg snow in DE

1hld dmaadr ;get/put CP/M data
mvi c,128 :length of move

246

1da readop jwhich way?
ora a
jnz rwmove sskip if read

'

: write operation, mark and switch direction
mvi a,l
sta hstwrt shstwrt = 1
xchg ssource/dest swap

[

rwmove:

:C initially 128, DE is source, HL is dest
ldax d ;source character
inx d

mov m,a ;to dest

inx h

dcr c 1loop 128 times
jnz rwmove

?

: data has been moved to/from host buffer
lda wrtype ' swrite type _
cpi wrdir sto directory?
1da erflag :in case of errors
rnz ;no further processing

’

: clear host buffer for directory write
ora a ;errors?
rnz ;skip if so
Xra a ;18 to accum
sta hstwrt sbuffer written
call writehst
lda erflag
ret

; (X222 32222222 2228238882328 3232222323382 2%

.*

’

Rl Utility subroutine for 16-bit compare

.*

; REK KRR RR AR AR ARARRAN KRR R AN AR AR AR AN AR ARk hk kR

sektrkcmp:

;BL = ,unatrk or .hsttrk, compare with sektrk
xchg

1xi h,sektrk

ldax d slow byte compare
cmp m ;same?

rnz sreturn if not

: low bytes equal, test high 1s
inx d
inx h
ldax d
cmp m ;sets flags
ret

H

247

321:
322;
323:
324:
325:
326
327:
328:
329:
330:
331:

332:.

333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
358:
351:
352:
353:
354:
355:
356:
357:

358:-

359:
368:
361:
362:
363:
364:
365:
366:
367:
368:
369:
378:

;********t************t****t**********t**t************

ok - *
’

s * WRITEHST performs the physical write to *
il the host disk, READHST reads the physical *
3 * disk. *
;* *
;*****************t***********************************

writehst:
shstdsk = host disk #, hsttrk = host track #,

;hstsec = host sect #. write "hstsiz" bytes
;from hstbuf and return error flag in erflag,
sreturn erflag non-zero if error
ret

I 4

readhst:
shstdsk = host disk #, hsttrk = host track #,
:hstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
ret

kkkhhkkkhkhkkhhkhhhkkkkhhhhkhhrthhhhhkhhhkhkhhhhkhhkhhhkhkkikikk
’ *

Unitialized RAM data areas *

*
RRARKRRRRRRRRIRRRRRARRRRRRARARRRRRR ARk A xRk khkhkhhkhkki

* Ne w0 Ne wo we we
* % % ¥ %

éekdsk: ds

1 ;seek disk number
sektrk: ds 2 ;seek track number
seksec: ds 1 :seek sector number
:
hstdsk: ds 1 shost disk number
hsttrk: ds 2 s;host track number
hstsec: ds 1 shost sector number
’
sekhst: ds 1 ;seek shr secshf
hstact: ds 1 shost active flag
hstwrt: ds 1 shost written flag
unacnt: ds 1l ;unalloc rec cnt
unadsk: ds 1 slast unalloc disk
unatrk: ds 2 slast unalloc track
unasec: ds 1l ;last unalloc sector
[
erflag: ds 1 ;error reporting
rsflag: ds 1l s;read sector flag
readop: ds 1 ;1 if read operation
wrtype: ds 1 ;write operation type
dmaadr: ds 2 :last dma address
hstbuf: ds hstsiz shost buffer

14

248

Y
% - y

27

o,

EXIDY SYSTEMS' CBIOS USERS GUIDE

VERSION 1.9
FOR
Cp/M 2.2

COPYRIGHT (C) 1981

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright (c) 1980 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

g
%, 7
v

EXIDY SYSTEMS' CBIOS USERS GUIDE

VERSION 1.0
FOR
CP/M 2.2

COPYRIGHT (C) 1981

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright (c) 1988 by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, 1in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94¢86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

.

A

A,
i

2.

Table Of Contents

Exidy Systems' CBIOS User's Guide:
Version 1.0 For CP/M 2.2

’ntroduction..0......Q....I.'O..‘.I...000249
Configuration and System Generation......251
A. Hardware for the DDS and the FDS.....251
"B. System GeneratioOnececececsseccccceceeaeal52
C. Options.....'.....QQ....l......'.....253
D. Incompatibilitiesceeeccecscscscccceesa2bd
E. Sector Skew PatterNecececesccscccsessdl2bd
F. Special Video Display Interface..ec...255
FeatuUreS.icesocossscscsscsnscscsassscsssosssecldb
A. Error ReCOVeryYeseseoosscscccscccncsnesl256
B. CP/M Programmingecsecccocscocsscnccese2d?
Error MessageSeececcecceoscoccsccaccecnsee2’9

"

ey

1. INTRODUCTION

The CBIOS program provides the interface between CP/M
(TM) and the Sorcerer's hardware. The term BIOS was coined by
Digital Research, the creators of CP/M. Their term CBIOS stands
for Customized Basic Input/Qutput System, in which the BIOS is

customized to the user's hardware. The Exidy program is a CBIOS
in this sense.

Portability is the most valuable attribute of CP/M. The
clean separation of logical and physical 1/0 enables it.to run
on many 80688/Z80¢ based systems. Digital Research provides the
logical 1/0 in CP/M's Basic Disk Operating System (BDOS). This
routes all physical I/0 through a BIOS vector. See the "CP/M
System Alteration Guide" for a description of the BIOS vector
and its functions.

Each hardware system CP/M is used on requires a separate
BIOS program. The Exidy interface is tailored for the Sorcerer
and the hardware the Sorcerer supports. Because the disk drive
is the most complicated piece of hardware CP/M uses, this
document focuses on the CBIOS disk interface for the Display
Disk System (DDS) double sided drives for soft-sectored 77
track diskettes and the Floppy Disk System (FDS) single sided
drives for soft-sectored 77 track diskettes.

For clarification, a brief explanation of physical and
logical wunits may benefit the wuser in our discussion. A
physical wunit 1is the actual input/output device and its
hardware recording medium. A diskette, for example, physically
has 77 tracks, each of which has 16 sectors of 256-bytes.
However, an interface between the physical hardware and the

~user may translate or break up this size into any number of

combinations. This level, used by the programmer, is the
logical 1level. That 1is, the very same diskette may be dealt
with by the programmer as a different size from the physical
size (say, 77 tracks each of which has 32 sectors of 128-bytes)
The software interface makes all necessary adjustments for the
input to be understood on the differing physical diskette size.

The Digital Research interface of the BDOS to the BIOS
defines the logical CP/M diskette with a logical sector size of
128-bytes. The Exidy physical diskette systems, however, have
a 256-byte sector. To compensate for this difference, Exidy
splits each physical 256-byte sector in half to form two CP/M
logical 128-byte sectors. The CBIOS is responsible for mapping
128-byte logical CP/M sectors to the proper half of a 256-byte
physical sector. The physical sectors are skewed or inter-
leaved on the diskette to minimize rotational delay. This
skewing pattern is described in detail later.

249

250

s
3

HT

The disk buffer cache improves performance by buffering
reads and writes of the disk in a RAM cache storage area. When
CP/M requests a 128-byte sector read from a sector not within
the cache buffer, a 256-byte sector from disk must be read.
Thus, the cache returns the requested sector to the user,
keeping track of the other 128-byte sector half within the 256-

byte cache buffer. Should a read request be made for that

sector at this point, no disk 1/0 1is required because the
sector already exists in the memory cache. This same principle

- applies to cache buffer writing. That is, only one 256-byte

physical sector 1I/0 1is written for two CP/M 128-byte logical
1/0 requests on the same physical sector.

251

CONFIGURATION AND SYSTEM GENERATION

A. Hardware for the DDS and the FDS

The Exidy CBIOS runs on both the Display Disk System
(DDS) and the Floppy Disk Subsystem (FDS). A DDS
consists of a Sorcerer 1II Computer (with keyboard),
Display Disk Unit containing a video screen, and two soft
sectored Micropolis drives., The Exidy CBIOS may actually
support three disk drives connected to the soft sectored
disk controller. However, a controller and only two
drives are supplied with the DDS. The DDS may be
augmented by other peripherals such as a printer,
cassettes, etc.. The Exidy CBIOS assigns the logical
CP/M devices, Punch and Reader, to serial write and
serial read respectively. The List device is assigned to
the Sorcerer Centronics parallel printer interface.

On cold boot, CP/M on the DDS outputs one of the
following messages:

CP/M on the Exidy Sorcerer for 77 Track Disk
77 Track Single Sided Disks

32K CP/M VERS 2.2/1F

Copyright (C) 1981 Exidy Systems, Inc.

A>
or

CP/M on the Exidy System 80

77 Track Double Sided Disks

32K CP/M VERS 2.2/2F

Copyright (c) 1981 Exidy Systems, Inc.

A>

The Exidy CBIOS also runs on the Floppy Disk System
(FDS). An FDS consists of a Sorcerer II Computer (with
keyboard), and a Floppy Disk Subsystem containing an MPI
floppy disk drive and controller., The Exidy CBIOS may
actually support three disk drives connected to the soft
sectored disk controller. However, a controller and only
one drive are supplied with the standard Floppy Disk
Subsystem. The FDS may be augmented by other peripherals
such as printers, cassettes, etc.. The Exidy CBIOS
assigns the 1logical CP/M devices Punch and Reader, to
serial write and serial read respectively. The List
device is assigned to the Sorcerer Centronics parallel
printer interface. - '

Version 2.2/1F CBIOS operates on the FDS and Version
2.2/2F operates on the DDS.

252

N

; p\«mm\
i :

B. System Generation

Two programs, MOVCPM and SYSGEN, either create a new
CP/M system or change its location in RAM. The MOVCPM
program obtains a CP/M system image sized appropriately,
for example, 32K, 48K, etc. and performs system reloca-
tion. SYSGEN takes the system output from MOVCPM and
writes it to tracks ¢ and 1 of the target dlskette. The
simplest method of doing this is:

A> MOVCPM 32 * <carriage return>
MOVCPM PROGRAM VERSION 2.8
CONSTRUCTING 32K CP/M VERS 2.2
READY FOR "SYSGEN" OR

*SAVE 4¢ CPM32.COM"

A>

Notice that "MOVCPM 32 *" is the only user input. At
this point MOVCPM has created a 32K CP/M system image in
memory and the wuser may either proceed immediately to
SYSGEN or he may save the image on disk as a COM file by
typing SAVE 40 CPM32.C@PM <carriage return> in response to
the "A" prompt. The 1latter procedure provides the user

the option of modification with the DDT utility.

With a MOVCPM image in memory, as it is after the
last prompt, the user may do a memory image SYSGEN. 1In
the next example, the system is created on drive B. Note
the response to the source drive name prompt is a
carriage return. This indicates the source system
already exists in memory.

A>SYSGEN <carriage return>
SYSGEN VER 2.0

SOURCE DRIVE NAME (OR RETURN TO SKIP) <carriage return>
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)B
DESTINATION ON B, THEN TYPE RETURN <carriage return>

The actual disk writing occurs Aand when complete this
message signs on:

FUNCTION COMPLETE
DESTINATION DRIVE NAME (QR RETURN TO REBOOT)

At this point the system has been created on disk. The
user should do a cold boot (RESET) on the new diskette
(after placing it in drive A) to verify this. For
more details on MOVCPM and SYSGEN, see "An Introduction
to CP/M Features and Facilities."

253

MOVCPM may also be performed without the second "**"
parameter MOVCPM 29. In this case, MOVCPM attempts to
create and execute in memory a new system of the
specified size. However, the system may be destroyed if
the given memory size causes the new target system to use
memory in either the executing MOVCPM program or the
executing CP/M system. Exidy suggests always specifying
the second "*" parameter for MOVCPM and using SYSGEN to
create a new disk system.

C. oOptions

Two options come with the CBIOS: Diagnostic Error
Messages and Read After Write Data Verification. The
default settings are 1) no Diagnostic Error Messages and
2) Read After Write vVerification.

With the Diagnostic Error Message option turned off,
only fatal errors are reported to the user and recovered
soft errors are not. The user selects this option if he
wants all errors reported, A Diagnostic Error message
shows for any error encountered.

The Read After Write vVerification option allows all
data to be reread and compared to the write buffer and
CRC after the user has written to a physical disk sector.
The user may turn off this option, increasing the speed
of disk writes by 58 per cent. This may, however,
decrease data reliability. We suggest 1leaving this
option set to the default value to assure disk writes are
being done successfully.

Only someone familiar with CP/M programming should
attempt changing option values. To make these changes,
the user creates a disk file with his CP/M system on it,
That is, he does a MOVCPM, followed by a SAVE, as
described in Section 2.B of this manual. The user

then DDT's the CP/M system into memory, altering the
contents of absolute 1location 1F#2 hex to reflect the
options he wishes, as shown below:

bit @ Read After Write Option (hex #1)
bit 2 = Diagnostic Error Message Option (hex #4)

If the value of the bit is 1, then the option is
asserted. A bit of @ turns off the option. Thus the
default value is @1 hex for the Read After Write option
without Diagnostic Error Messages.

254

Y

o

b. Incompatibilities

Some CP/M disk formats, including Exidy's, are
incompatible with other CP/M formats. All disk formats,
are incompatible with the Micropolis Disk Operating
System (MDOS). This incompatiblility, especially evident
with MDOS, 1is a result of different sector skewing
arrangements. All Exidy disk-based software products
only run on Exidy's CP/M(TM).

The Exidy skewing pattern for the FDS version
follows for those interested in developing translation
programs., The DDS version has a one-for-one sector
correspondence and therefore no skewing.

E. Sector Skew Pattern

CP/M logical Exidy 256-byte Sector
128-byte sector (Physical Sector,
first/last half)
1 16, first
2 16, last
3 13, first
4 13, last
5 18, first
6 18, last
7 7, first
8 7, last
9 4, first
18 4, last
11 1, first
12 1, last
13 14, first
14 14, last
15 11, first
16 11, last
17 8, first
18 8, last
19 5, first
20 5, last
21 2, first
22 2, last
23 15, first
24 15, last
25 12, first
26 12, last
27 9, first
28 9, last
29 6, first
30 6, last

W

[
w
-

first
last

W

~

w
-

255

Note that Exidy physical sectors are numbered 1 to 16,
and are 256 physical bytes 1long. CP/M logical sectors
are numbered 1-32 and are 128-bytes long. Thus, two CP/M
sectors fit in one Exidy physical sector.

F. Special Vvideo Display Interface

The video display on the Sorcerer\ II is a memory mapped
device which 1is not standard with any other on the
market. CBIOS supports the following TTY interface for
standardized full screen operations.

: HEX RESULT

Form Feed (d¢C) Clear screen, home
. cursor

Clear Screen (1A) Same as above

Home Cursor (1E) Place cursor at row
g, col @ '

Direct Cursor Addressing:

ESC "=" Row Column
(1B) (3D) Row/1-29 + 31(1F) Col/1-64 + 31(1F)

Using the above cursor addressing information the
following sequence will position the cursor at row 1, col
2:

ESC "=" 32(208) 33(21)

256

VAN
{ !

EEATURES
A. Error Recovery

The CBIOS includes extensive automatic error
detection, recovery, and reporting facilities., The Read
After Write option, active by default, is the only error
detection function controlled by the user. When a disk

1/0 error occurs, recovery is fully automatic in the
following steps:

1. CBIOS retries operation up to 5 times until
successful.

2, If the error still exists, it steps one track
in/out alternately for a total of 6 times and
repeats step 1 again.

3. If error still exists, then it deselects/rese-
lects drive and then homes to track @4, up to 2
times, repeating 1 and 2. If error still
exists, the error 1is treated as "permanent"
and unrecoverable and the operation is aborted.

These error recovery steps are performed in nested
fashion. That 1is, a separate counter is maintained for
each error retry state, 1, 2, and 3. 1If step 1 fails,
(its counter reaching 5), then step 2 is performed and
its counter incremented. Meanwhile, the step 1 counter
is reset, and 1its process again performed. If successive
errors cause the step 2 counter to reach its maximum,
then step 3 is performed, and its counter incremented.
Both the first and second counters are reset, and step 1
is reinitiated. Thus a total of sixty (5x6x2) retry
steps are performed before the error 1is declared non-
recoverable. This retry process can take up to 75
seconds.

If the error is non-recoverable, the CBI0S issues an
error messsage stating:

n DRV: ERR CODE= D

n here identifies the drive A, B, or C. Further
identification of the error code follows the message.

The CBIOS then returns the error to its caller, the Cp/M
Basic Disk Operating System (BDOS). BDOS reports the
error to the user, 1in 1less descriptive terms than the
CBI1I0S in the following message:

BDOS ERR ON n: BAD SECTOR

257

The BDOS operation is suspended until the user hits

any key except control-C. When any other key is hit, the
BDOS retries the 1I/0. If the user wishes to end error
processing, he must hit control-C or reset to the
Sorcerer Monitor and perform either a warm boot (GO @) or
a cold boot.

If the user chooses the Diagnostic Error Message
option, each error issues an I/0 error message even if
recovered by the CBIOS. In the event of a nonrecoverable
error, the CBIOS prints 6@ diagnostic error messages
before declaring the error nonrecoverable and issuing the
above error message. This procedure slows down recovery
considerably. Only technicians diagnosing disk-related
hardware errors should use this option.

One peculiar "error"™ of CP/M systems is the write
protect error. The CBIOS shows this error message to the
user:

n DRV: ERR CODE=B

However, the CBIOS doesn't report the error to the BDOS.
Thus the BDOS thinks it is writing to a disk, but cannot
because it is a write protected disk. The BDOS discovers
the error only after it reads back the directory data and
it does not agree with what it remembered having
"written®". This wusually results in the following error
message:

BDOS ERR ON n: R/O

The write protect error occurs when CP/M performs “"token"
directory writes upon reading each new extent of a file.
Thus if a PIP (Peripheral Interchange Program) Iis
performed on a 1large (>16K) file from a write protected
diskette to a writable diskette, the token directory
writes cause write protect errors on the write protected
source diskette. If the CBIOS returned the write protect
error to the BDOS, the user could never copy files from a
write protected diskette (even though only reads are to
be done). These write protect errors on a diskette used
only for input can be ignored as a peculiarity in CpP/M.

B. CP/M Programming

Cache- BIOS does not immediately, upon user request,
execute disk writes. At any given moment there may be
"dirty" buffers in the cache, that 1is, buffers which
should be written to disk. Writing such buffers to disk
is called "flushing the «cache". The typical user who
interfaces to the CBIOS through the BDOS, that is, does

258

N

logical file 1/0, documented in the "Interface Guide",
does not need to be aware of the flushing mechanism. The
cache is automatically flushed upon BDOS file closing.
Only the user who performs direct CBIOS I/0 through the
vector needs to be aware of cache flushing. The cache is
flushed when:

1. Console output

2. A write to the directory track occurs
3. A CBIOS disk select occurs

4. Warm Boot

Programmers using the non-standard CBIOS I/0 functions
and not the standard BDOS ones should be careful and
account for caching processes.

- The best guide to CP/M programming is Digital

Research's "CP/M Interface Guide."™ Although the guide is
accurate and informative, additional information may
help the user overcome any problems he may encounter, as
listed below. ’

1. The BDOS search commands (function numbers 17
and 18) do not work as indicated in the "Cp/M
Interface Guide", The following provides accurate
information

a. The Search command (17) does not return
a byte pointer. 1Instead, it returns the index of
the found file (within the directory) to register A,
or to 255 if a match 'is not found. The index of the
file is within the range of @ to 127, since the
Exidy CP/M contains up to 128 directory entries.
Directory entries are 32 bytes per entry, thus there
are four entries per sector. The BDOS, searching
for the desired file, reads directory sectors into
its DMA buffer, 1located from 86 to FF hex. These
facts provide the basis for the following formula.
The File Control Block (FCB) for the found file is
located at: :

80H + MOD(index,4)*32

The BDOS returns "index"™ and MOD is the modulus
function which returns the remainder of "index"
¢iv1ded by 4.

b. Only after the initial search (17), may
search (18) occur. The Interface Guide incorrectly
states that an FCB parameter is required. Actually,
the FDB from the previous search call (17) is used.
The parameter returns in the A register and is a
directory index exactly as described above in 1la.

259

ERROR MESSAGES

The following is the error message format with an
explanation of the various error codes:

X DRV: ERR CODE=c

where x represents the drive on which the error occurred
(A, B, or C) and c represents one of the following:

A - Disk Select Error- The disk selected was not drive
!IAI' IB!' or “C..

B - Write Protect Error- The attempt to write to a write
protected diskette was not reported to the BDOS as an
error, See Section 3.B., CP/M Programming.

C - Disk Track Out of Range- A track number was detected

past the end of the disk, indicating that the CP/M is
very sick.

D - Non-Recoverable Disk I/0 Error- All retries have
failed to eliminate a read or write error. A more
complete description follows this section.

E - Insufficient Memory for Disk Cache Buffers- At
initialization, cache buffers are allocated. This error
occurs if there 1is not sufficient space for one cache
buffer.

F - Error on Cache Flush- An error occured while the
cache was flushed. The 1last CP/M job or command should
be redone.

A non-recoverable disk I/0 error (Code D) has a few
possible causes, which is one of the following:

(I/0 Type) :TRK=ttH, SCTR=ssH: STAT=bbH *

Where I/0 Type is of the following{ ‘

READ ERR - Error occured during read operation

WRITE ERR - Error occured during write operation

RDAFTWR ERR - The read after write option was selected,
and the verify did not agree. The write however, was

done successfully.

Note that track and sector values (tt and ss) are
expressed in hexadecimal.

260

N

. V,NWW»%

N
O

The status value (bb) is eight bits of status flags from
the disk controller, expressed in hexadecimal. Only the
status flags listed below are used for error indicators.

#4H (bit 2) - Lost data (data overrun/underrun)

g8H (bit 3) CRC error

18H (bit 4) -~ Record Not Found (RNF)

2¢H (bit 5) - Write Fault for Write command
40H (bit 6) - Write Protect Flag
8¢H (bit 7) - Not Ready Flag

These codes show up in messages like this:

A DRV: ERR CODE = D

READ ERR: TRK=#2, SIDE=#@, SCTR=#5: STAT=10H

This message would tell the user that he has a non-
recoverable disk 1I/0 error (ERR CODE = D) on the second

track of sector 5 on side #, and its status, 10H refers
to bit 4, Record Not Found.

261

P
3
:‘\ ,s’

P

EXIDY EXCOPY USER'S GUIDE
VERSION 2.0

COPYRIGHT (C) 1988

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc., All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, 1in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94086.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs.

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose. Further, Exidy Systems, Inc. reserves the
right to revise this publication and to make changes from time
to time 1in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKES

CP/M is a registered trademark of Digital Research.

A

EXIDY EXCOPY USER'S GUIDE
VERSION 2.0

COPYRIGHT (C) 1988

EXIDY SYSTEMS, INC.

AUGUST 1981

COPYRIGHT

Copyright (c) 198¢ by Exidy Systems, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored 1in a retrieval system, or translated into
any language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise,
without the prior written permission of Exidy Systems, Inc.,
1234 Elko Drive, Sunnyvale, California 94#86.

Since this manual is tutorial in nature, permission 1is granted
to reproduce or abstract the example procedures and sample
programs for the purposes of inclusion within the reader's
programs. «

DISCLAIMER

Exidy Systems, Inc. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantibility or fitness for any
particular purpose., Further, Exidy Systems, Inc., reserves the
right to revise this publication and to make changes from time
to time in the content hereof without obligation of Exidy
Systems, Inc. to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

_

Table Of Contents

Exidy Systems' Excopy User's Guide: Version 2.0

1e IntroduCtioNeeececccscccacascncsoscnosnseeslbb2

2. US@ecosecesccsessssssssssssscscsssscssassossslBh3

3. Sam'e Run.Q....Q...O“...l..............264

A. Excopy With Two Multiple Drives......264

B. Excopy With One Drivececececsescsscscnseea2bd

Ce Format Onlyeeceocccscccccosnccasnscseeslb5

4, Error MessagesSeceesscocosccscosccsesssceeelbb

A. Can Not Format, Try AgaiNecececceesees266

B. Destination Is Write Protectedesee...266

: C. Write Error On TraCk #XX.............267
- D. Read Back Error On Track #XXeceeeoeose267
‘a\ Eo Additional Messages.-o.ooooooooooooo.267
5. Recovery...........--.-..................268

£

A

1. INTRODUCTION

EXCOPY (TM) is a CP/M (TM) program which formats or copies
formatted, soft-sectored diskettes on the Exidy Floppy Disk
Subsystem (FDS) and Display Disk System (DDS). The copying
operation automatically formats the destination diskette on
either a single or a multiple drive configuration. The copy
program minimizes the number of read/write cycles performed by
determining the amount of RAM available as a copy buffer, using
as much of it as possible. Disk formatting without copying may
also be performed by the program. The user must not violate
any software licensing agreements when copying diskettes.

262

2. USE

The practical wuser will want to secure back-up copies of
all his important files, protecting against any possibility of
losing data and enabling the user to read and write to the
disk. Also, the user may wish to format only, that 1is, create
on a new disk proper tracks and sectors to read and write to.

EXCOPY is called from CP/M by simply entering "EXCOPY" on
the CP/M command line. The program signs on and requests an
indication of one of these responses: "C" (or carriage return)
for copy, "F" for format only, or "E" (or control-C) for exit
back to CP/M.

If copying is requested, the program asks if more than one
disk drive is configured and available for the copying opera-
tion. The reponse "Y" or "N" indicates yes or no. If more than
one drive 1is indicated, a message instructs you to place the
source diskette in drive A and the destination diskette in
drive B. Copying automatically occurs after striking any key.

If only one drive is indicated, a message instructs you to
first insert the destination diskette 1in the A drive for
formatting. Hitting any key triggers this process. Then,
alternately place source and destination diskettes 1in the A
drive as requested by the console messages.

WARNING: Copying and Formatting destroys any previous
information on the destination diskette. BE SURE THERE ARE NO
IMPORTANT FILES ON THE DESTINATION DISKETTE, AS THEY WILL BE
LOST. ALSO, PAY CAREFUL ATTENTION TO THE DRIVE YOU PLACE YOUR
SOURCE AND DESTINATION DISKETTE IN. Any mixup will 1lose all
information on your source diskette., Exidy suggests putting
write-protect tabs on your source diskette to guard against any
such mixup.

After copying, the console asks if more is desired. 1If
your response is "Y" (yes), the cycle is repeated. Otherwise,
the program directs the operator to place a system diskette in
the A drive, hitting any key to re-boot the system.

Formatting without copying may also be requested. 1In this
case, the program asks the wuser to specify which drive he
wishes to format, "A", "B", or "C". After <completion, the
program asks if more is desired, and repeats the cycle if "y"
is entered.

263

{M\

SAMPLE RUN:

A. EXCOPY With Multiple Drives

Here is a sample of the console 1I/0 when using EXCOPY.
For clarification, user input is underlined to
differentiate from program output:

A>EXCOPY (return)

Exidy Disk Copy and FormatiProgram
For 77 Track Single Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

or

Exidy Disk Copy and Format Program

For 77 Track Double Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc. o
Format only, Copy, or Exit (F/C/E)?...C

Do you have more than one drive i
configured in this system (Y/N)? Y Cemme?

Put source diskette in drive A iy
and destination diskette in drive B then
Hit any key when ready. (any key)

(copying commences) N

Good Copy. 3§;
More (Y/N)? N ",:ﬁ&
Place system diskette in drive A and HE
Hit any key when ready to reboot. any key

(CP/M reboots) ,gif

B. EXCOPY with One Drive

The following is the console 1/0 when invoking EXCOPY
with only one drive configured on the Sorcerer. An
asterisk (*) indicates the point where the program waits
until any key 1is hit., Track numbers indicated will vary
depending on size of RAM. 1In this example, RAM is 32K.
Once again, be sure to begin by placing the DESTINATION
diskette in the drive. Should you confuse it with the
source diskette, all information will be permanently lost.

264

ADEXCOPY (return)

Exidy Disk Copy and Format Program
For 77 Track Single Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

or

Exidy Disk Copy and Format Program
For 77 Track Double Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

Format only, Copy, or Exit (F/C/E)?...(return)

Do you have more than one drive
configured in this system (Y/N)? N

Place destination diskette in drive A
For initial formatting and
Hit any key when ready. (any key)

(formatting commences)

Tracks Tracks _

Source:* g-- 6 Destination:* g-- 6 ¢

Source:* 7--13 Destination:* 7--13 : -
Source:*14--2¢ Destination:*14--2¢
Source:*21--27 Destination:*21--27
25 o Source:*28--34 Destination:*28--34
Source:*35--41 Destination:*35--41
Source:*42--48 Destination:*42--48
Source:*49--55 Destination:*49--55
Source:*56--62 Destination:*56--62
¥ Source:*63--69 Destination:*63--69
2 Source:*7g--76 Destination:*7g--76

~" Good Copy.

More (Y/N)? [N]

Place system diskette in drive A and

Hit any key when ready to reboot. [any key]
(cold boots system diskette)

c. Format Only

The console I/0 for a Format Only operation would
appear as follows: ’ ‘

gg@&w\
: L
L

265

7 %3
I

]

Ve

AD>EXCOPY (return)

Exidy Disk Copy and Fotmdi,?togram -
For 77 Track Single Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

' or
Exidy Disk Copy and Forﬁiivprogram

For 77 Track Double .Sided diskettes. Ver 2.0
Copyright (C) 1981 Exidy Systems, Inc.

. PS40
Format only, Copy, or Exit (F/C/E)?...F
Select drive (A,B, or C)... B

Place diskette in drive B for formatting then
Hit any key when ready. any key

(formaéting commences)

More (Y/N)? N

(etc.)

ERROR MESSACES

N ¥

Several conditions may display error messagegi on the

console, as follows:

A. Cannot format, try again

This message appears when the disk controller fails
either to write a track with the formatting data, or
after writing, the controller cannot read back each sector
on the track in gquestion. An improper destination
diskette (such as a hard-sectored diskette) or a worn or
damaged one may cause this. Also, malfunctioning disk
drive hardware which prevents formatting may return this
message. Try fresh media and double-check the hardware.
The program automatically restarts after each error to
allow another attempt. :

B. Destination is wtitéfpfotected.
This message is given if the destination diskette has

a write protect tab covering its write protect notch.
Either remove the tab or use an unprotected diskette,

266

$ ol s

I S

(gx) is specified. e,

C. Write error on track § xx
»«‘This message is rethrﬁed during formatting if the
write operation cannot be performed. The track number

D. Read back error on track # xx

'This message is displayed if a track can be written
to but cannot be read back after repeatedly attempting to
do so. Again, the track number is specified as (xx).

E. Additional Message -

Ii:can't f£ind your boot address!l!!
Please enter it...[hhhh] -

This occurs if a non-Exidy boot-strap controller prom
is used and the copy program can't determine where the
cold bootprogram is addressed. In this event, simply
enter the hexidecimal address of your boot-strap prom.
This should not occur if Exidy hardware and software is
used.

267

£

b e 5 gt s
i i e

'E?;: 5;. ,Béégggry?

SiawW T

, o B R : . o Co
I1f the copy program has errors while reading the source,

o writing the destination, or verifying the destination-diskette,
the program repeatedly attempts the operation until successful.
1f, after many attempts, the operation still has erross, a

message is displayed and the error retry continues

indefinitely. .

‘ L IS S

These messages are:
: "o bevelgr iy

Recovering from read errvrs g 'track # xx E
2i Tedr :

Recovering from write errors, track # xx

If it appears that the réopy program cannot recoverylg,fji
from an error, reset the computer to end processing and
check ground and other -connections between computer and =

disk drive. Also check the diskette for wear. ses50lg

- v e) o 5. :
ST ~38n el
:od Filoz

ir tesi¥ns
~de eldT
.bedl

268

	Exidy CPM 1
	Exidy CPM 2

