SYS68K/PDOS

Product Overview

First Edition
April 1985

FORCE COMPUTERS Inc./GmbH
All Rights Reserved

This document shall not be duplicated, nor its contents used

for any purpose, unless express permission has been granted.

Copyright by FORCE Computers®

PART NO. 800030

e T R I =

NOTE

The information in this document has been carefully checked and
is Dbelieved to be entirely reliable. FORCE COMPUTERS makes no
warranty of any kind with regard to the material in this
document, and assumes no responsibility for any errors that may
appear in this document. FORCE COMPUTERS reserves the right to
make changes without notice to this, or any of its products, to
improve reliability, performance or design.

FORCE COMPUTERS assumes no responsibility for the use of any
circuitry other than circuitry which is part of a product of
FORCE COMPUTERS GmbH/Inc.

FORCE COMPUTERS does not convey to the purchaser of the product
described herein any license under the patent rights of FORCE
COMPUTERS GmbH/Inc. nor the rights of others.

FORCE Computers Inc.
727 University Avenue
Los Gatos, CA 95039

U.S DA.

Phone : (4908) 354 34 19
Telex : 172465

FAX : (408) 395 77 18

FORCE COMPUTERS GmbH
Daimlerstrasse 9

D-8@12 Ottobrunn/Munich
West-Germany

Phone : (989)6 @9 20 33
Telex : 5 24 190 forc-d4d
FAX : (0 89)6 @9 77 93

FORCE COMPUTERS FRANCE Sarl
11, rue Casteja
92109 Boulogne

France

Phone : (1) 620 37 37
Telex : 206 304 forc-f
FAX ¢ 1 621 35 19

B4 e 4 Eed B4

} .- - I - [) -

PDOS DISK OPERATING SYSTEM

INDEX OF CONTENTS

Features

Functional Description

~Language Support

PDOS Kernel

PDOS Task
Multi-tasking
Character I/0
Events

Task Cammunication
Task Suspension
Interrupts

File Management

File Storage

File Names
Directory Levels
Disk Numbers

File Attributes
Floating Point Module
Monitor Commands
Utilities

Assenbly Primitives
PDOS Parallel Pascal

PDOS Basic

PRODUCT OVERVIEW

Page

11
13
15
16
16
16
17
18
19
19
20
22
22
23
24
27

31

-REAL~-TIME, MULTI-USER, MULTI-TASKING

=PRIORITIZED, ROUND-ROBIN SCHEDULING

—INTERTASK COMMUNICATION AND SYNCHRONIZATION

-TASK MEMORY MAP CONTROL FOR PROGRAM SECURITY

-FULL EXCEPTION PROCESSING

—-SEQUENTIAL, RANDOM, AND SHARED FILE MANAGEMENT
-~HARDWARE INDEPENDANCE

-6800¢ LAYERED DESIGN OF KERNEL, FILE MANAGER, MONITOR
-COMPLETE FLOATING POINT SUPPORT

~CONFIGURABLE, MODULAR, ROMABLE STANDAIONE SUPPORT

-NO MEMORY RESTRICTIONS

1.DESCRIPTION:

PDOS* is a powerful multi-user, multi-tasking operating system
developed for the 32-bit Motorola 68000 processor family. This
development software is designed for scientific, educational,
industrial, and business applications.

PDOS* consists of a small, real-time, multi-tasking kernel
layered by file management, floating point, and user monitor
modules. The 2k byte kernel provides synchronization and control
of events occurring in a real-time environment using semaphores,
events, messages, mailboxes, and suspension primitives. All user
console I/0 as well as other useful conversion and housekeeping
routines are included in the PDOS* kernel.

The file management module supports named files with sequential,
randam, and shared access. Mass storage device independance is
achieved through read and write logical sector primitives. The
designer is relieved of real-time and task management problems as
well as user console interaction and file manipulation so that
efforts can be concentrated on the application.

Assembly language floating point applications are no longer a
problem. Conversion modules, assembler directives, and operating
system calls allow easy integration of floating point operations
into user application programs.

2.FUNCTIONAL DESCRIPTION:

PDOS* KERNEL. PDOS* is written in 68000 assembly language for
fast, efficient execution. The small kernel provides multi-
tasking, real-time clock, event processing, and memory management
functions. Ready tasks are scheduled using a prioritized, round-
robin method. Three XOP vectors are used to interface over 75
system primitives to a user task.

MULTI-TASKING EXECUTTION ENVIRONMENT. Tasks are the components
comprising a real-time application. Each task is an independant
program that shares the processor with other tasks in the system.
Tasks provide a mechanism that allows a complicated application
to be subdivided into several independant, understandable, and
manageable modules. Real-time, concurrent tasks are allocated
in 2k Dbyte increments. Task system overhead is less than 1k
bytes.

Bood b eend

Y

¥

i Bod Bd b

INTERTASK COMMUNICATION & SYNCHRONIZATION. Semaphores and events
provide a low overhead facility for one task to signal another.
Events can be used to indicate availability of a shared resource,
timing pulses, or hardware interrupt occurrences. Messages and
mailboxes are used in conjunction with system lock, unlock,
suspend, and event primitives. PDOS* provides timing events that
can be used in conjunction with desired events to prevent system
lockouts. Other special system events signal character inputs
and outputs.

MEMORY REQUIREMENTS. PDOS* is very memory efficient. The PDOS*
kernel, floating point module, file manager, and user monitor
utilities require only 8k bytes of memory plus an additional 4k
bytes for system buffers and stacks. Most applications can be
developed and implemented on the target system. Further memory
reduction can be achieved by linking the user application to a 2k
byte PDOS* kernel for a small, ROMable, standalone, multi-tasking
module. A fast, 6k byte scientific orientated BASIC interpreter
with real-time primitives provides interactive high level
language support as well. For large system configurations, PDOS*
effectively addresses up to a 32 bit address space.

FILE MANAGEMENT. The PDOS* file management module provides
sequential, random, read only, and shared access to named files
on a secondary storage device. These low overhead file
primitives use a linked, random access file structure and a
logical sector bit map for allocation of secondary storage. No
file oompaction is ever required. Files are time stamped with
date of creation and last update. Up to 32 files can be
simultaneously opened. Camplete device independence is achieved
through read and write logical sector primitives.

COMMAND LINE INTERPRETER. A resident command line interpreter
allows multiple commands to be enterred on a single line.

Command utilities such as append, define, delete, copy, rename,
and show file are also resident and can be executed without
destroving current memory programs. Other functions resident in

the monitor include setting the baud rate of a port, checksumming
memory, Ccreating tasks, listing tasks, files and open file
status, asking for help, setting file level, file attributes,
interrupt mask, and system disk, and directing console output.

INTERRUPT MANAGEMENT. The PDOS* kernel handles user console,
system clock, and other designated hardware interrupts. User
consoles have interrupt driven character I/O with type ahead. A
task can be suspended pending a hardware or software event.
PDOS* will switch control to a task suspended on an external
event within 10¢ microseconds after the occurrence of the event
(provided the system mask 1is high enough.) Otherwise, a
prioritized, round-robin scheduling of ready tasks occurs at 10
millisecond intervals.

PORTABILITY. PDOS* gives software portability through hardware
independance of read/write logical sector primitives. All other
hardware functions such as clocks, mappers, and UARTS are
conveniently isolated for minimal customization to new 68000
based systems. '

CUSTOMER SUPPORT. Numerous support utilities including virtual
screen editors, assembler , linker, macroprocessor, disk
diagnostics, 1link, and recovery, disk cataloging are standard.
Single stepping, multiple break points, memory snap shots, save
and restore task commands, and error trapping primitives are
provided in all languages to aid in program debugging.

3.IANGUAGE SUPPORT':

-Basic Standard Dartmouth Basic with enhancements, such as
program debugging, inter-task commnication and real-
time support.

~Pascal multi-pass, optimizing compiler that generates
assembler text for the 68007 microprocessor. The
PDOS* Pascal compiler implements a superset of the
Pascal language defined by Jensen and Wirth.

-Fortran 77 compiler, supporting the full ANS Fortran 77 standard

-C campiler for the ¢ language

v

oA

4

e

B w4

Pl fd 84

PDOS KERNEL

The PDOS kernel is the multi-tasking, real-time nucleus of the
PDOS operating system. Tasks are the camponents comprising a
real-time application. It is the main responsibility of the
kernel to see that each task is provided with the support it
requires in order to perform its designated function.

The main responsibilities of the PDOS kernel are the allocation
of memory and the scheduling of tasks. Each task must share the
system processor with other tasks. The operating system saves
the task's context when it is not executing and restores it again
when it is scheduled. Other responsibilities of the PDOS kernel
are maintenance of a 24 hour system clock, task suspension and
rescheduling, event processing (including hardware interrupts),
character buffering, and other support utilities.

PDOS TASK

A PDOS task is defined as a program entity which can execute
independently of any other program if desired. It is the most
basic unit of software within an operating system. A user task
consists of an entry in the execution task list, a task oontrol
block, and a user program space.

The task list is used by the PDOS kernel to schedule tasks. A
task list entry consists of a priority, task time, task number,
task control block pointer, task map constant, and two suspended
event registers.

The first 508 hex bytes of a task is the task ocontrol block.
This Dblock of memory consists of three buffers and parameters
peculiar to the task. The 68009 address register A6 points to
the status Dblock when the user program space 1s entered.

The user program space begins immediately following the task
control block. Position independent 680@% dbject programs or
BASIC tokens are loaded into this area for execution. Task
memory is allocated in 2K byte increments. The total task
overhead is $500 or 128% bytes. This leaves $300 ar 768 Dbytes
available for a user program in a minimal 2K byte task.

THE PDOS TASK CYCLE

Undefined Ready Suspended

A

From the time a task is coded by a programmer until the task is
destroyed, it is in one of four task states. Tasks move among
these states as they are created, Dbegin execution, are
interrupted, wait for events, and finally complete their
functions. These states are defined as follows: ’

1. Undefined—A task is in this state before it is locaded
into the task list. It can be a block of code in a disk
file or stored in memory.

2. Ready— When a task is loaded in memory and entered in
the task list but not executing, it is said to be ready.

3. Running—— A task is executed when scheduled by the PDOS
kernel fram the task list.

4. Suspended-— When a task is stopped pending an event
external to the task, it is suspended. A suspended task
moves to the ready or running state when the event occurs.

A task remains undefined until it is made known to the operating
system by making an entry in the task list. Once entered, a task
immediately moves to the ready state which indicates that it is
ready for execution. When the task is selected for execution by
the scheduler, it moves to the run state. It remains in the run
state until the scheduler selects another task or the task
requires external information and suspends itself until the
information is available. The suspended state greatly enhances
overall system performance.

— 4 oA e

¥

[

-

MULTI-TASKING

Up to 32 independent tasks can reside in memory and share CPU
cycles. Each task contains its own task control block and thus
executes independantly of any other task. A task control block
consists of buffers, pointers, and a PDOS scratch area.

Four parameters are required for any new task generation. These
are the following:

1. A task priority. The range is fram 255 (highest
priority) to 1 (lowest priority).

2. The task memory requirement in 2K byte increments.
3. An input/output port for task console communication.
4. A task command.

Each of the above requirements defaults to a system parameter.
Task priority defaults to the parent task's priority. Default
memory allocation is 32K bytes and default console port is the
phantom port.

If a task command is not specified, the new task reverts to the
PDOS monitor. However, if no input is possible (ie. port @ ar
input already assigned), then the new task immediately Xkills
itself. This 1is very useful since tasks automatically kill
themselves as they complete their assigmments (remove themselves
fran the task list and return memory to the available memory

pool) .

A task entry in the task list queue consists of a task nurber
designation, parent task number, time interval memory page
constant, task ocontrol block pointer, and two event registers.
Swapping from one task to the next is done when the task interval
time decrements to zero or during an I/0 call to PDOS. The task
interval timer decrements by one every ten milliseconds.

Task #4 | @

Task #3
)— ™

Tesk#2 |—— _[a2.p2

/ - Task #1

Any task may spawn another task. Meamory for the new task is
allocated in 2K byte blocks from a pool of available memory. If
no memory is free, the spawning task's own memory is used and the
parent task's memory is reduced in size by the amout of memory
allocated to the new task.

PDOS maintains a memory bit map to indicate which segments of
memory are currently in use. Allocation and deallocation are in
2K byte increments. When a task is terminated, the task's memory
is autaomatically deallocated in the memory bit map and made
available for use by the other tasks.

"Multi-user" refers to spawning new tasks for additional
operators. Each new task executes programs oOr even spawns
additional tasks. Such tasks are generated or terminated as
needed. Task @ is referred to as the system task and cannot be
terminated.

10

FNIE R S S

PDOS CHARACTER I/0

The flow of character data through PDOS is the most visible
function of the operating system. Character buffering or type-
ahead assures the user that each keyboard entry is logged, even
when the application is not looking for cdharacters. Character
output is normally through program control (polled 1I/0).
However, an interrupt driven output primitive allows maximum data
transfer even though the task itself may be in a ready or
suspended state.

Inputs and outputs are through logical port numbers. A logical
port is bound to a physical UART (Universal Asynchronous
Receiver/Transmitter) by the baud port cammands. Only one task
can be assigned to an input port at any one time while many tasks
may share the same output port. It is then the responsibility of
each task to coordinate all outputs. ,

PDOS CHARACTER INPUTS

PDOS character inputs oome fram four sources: 1) user memory;
2) a PDOS file; 3) a polled I/O driver; or 4) a system input port
buffer. The source is dictated by input variables within the
task oontrol block. Input variables are the Input Message
Pointer (IMP$(A6)), Assigned Console Input (ACI$(A6)), and input
port number (PRTS(A6)). .

When a request is made by a task for a character and IMP$(A6) is
nonzero, then a character is retrieved from the memory location
pointed to by IMP$(A6). IMP$(A6) is incremented after each
character. This continues until a null byte is encountered, at
which time IMPS(A6) is set to zero.

If IMPS(A6) is zero and ACI$(A6) is nonzero, then a request is
made to the file manager to read one character fram the file
assigned to ACI$(A6). The character then comes from a disk file
or an I/O device driver. This continues until an error occurs
(such as an END-OF-FILE) at which time the file is closed and
ACIS$S(A6) is cleared.

If both IMPS(A6) and ACI$(A6) are zero, then the logical input
port buffer selected by PRTS$(A6), is checked for a character. If
the buffer is empty, then the task is autamatically suspended
until a character interrupt occurs.

11

PDOS CHARACTER OUTPUTS

PDOS character outputs are directed to various destinations
according to output variables in the task control block. Output
variables are the output unit (UNT$(A6)), spooling unit
(SPUS (A6)) ,spooling file ID (SFIS(A6)), and output port variables
UlP$ and U2PS. The output unit selects the different
destinations. (This 'is NOT to be confused with disk unit
nurbers) .

When an output primitive is called, the task output unit is ANDed
with the task spooling output unit. If the result is nonzero,
then the character is directed to the file manager and written to
the file specified by SFIS(A6). The output unit is then masked
with the complement of the spooling unit and passed to the unit 1
and unit 2 processors.

Units 1 and 2 are special output numbers. Unit 1 is the console
output port assigned when the task was created. Unit 2 is an
optional output port that is assigned by the user task in
addition to unit 1. Unit 2 is set by the baud port commands.

If the 1. bit (LSB) is set in the masked output unit, then the
character is directed to port UlP$(A6). Likewise, if the 2. bit
is set in the masked output unit, then the character is output to
the U2P$(A6) port.

In summary, the bit positions of the output unit are used to
direct output to various destinations. More than one destination
can be specified. Bits 1 and 2 are predefined ‘according to
UlP$(A6) and U2PS$S(A6) variables within the task ocontrol block.
Other unit bits are used for outputs to files and device drivers.
Thus, if SPUS$(A6)=4 and WNT$(A6)=7, then output would be directed
to the file manager via SFI$(A6) and to two UARTS as specified in
UlP$(A6) and U2PS$(6).

SPUS (26)

0000 0000 2033 2108

UNTS (A6) = 0000 0000 2900 O

1
I
l
I

1
|
|
|

File SFIS(A6)=———————n !

1
l
|
|
|

Port U2P$(A6)————————— }

Port UlP$(A6)=———————————

12

e B

e ol

E— -] | S—

- [o—— —— —

e

-

EVENTS

Tasks communicate by exchanging data through mailboxes. Tasks
synchronize with each other through events. Events are single
bit flags that are global to all tasks.

There are five types of event flags in PDOS including hardware,
software, software resetting, system, and local. System events
are further divided into input, timing, driver, and system
resource events. System events are predefined software resetting
events that are set during PDOS initialization. Event 128 is
local to each task ard is used as a delay event.

1. Events 1 through 7 are hardware events. They correspond
to interrupt levels 1 through 7 of the MC68@@@ CPU. When a
task suspends itself pending a hardware event, the system
mask should be enabled allowing the interrupt to occur.
When the interrupt does occur, the corresponding event bit
is set, the system mask is raised to block further
interrupts by that level, and a task swap is initialized.
If the current task has not locked itself in the execution
state, then the highest priority ready task is awakened,
swapped in, and begins executing. It is the responsibility
of the awakened task to acknowledge the interrupt (puts its
hand down) and then lower the system mask.

2. Events 8 through 63 are software events. They are set
and reset by tasks and not changed by any PDOS system
function. A task can suspend itself pending a software
event and then be rescheduled when the event is set. One
task must take the responsibility of resetting the event for
the sequence to occur again.

3. Events 64 through 95 are like the normal software events
except that PDOS resets the event whenever a task suspended
on that event 1is rescheduled. Thus, only one task is
rescheduled when the event occurs.

4. Events 96 through 111 correspond to input ports @ through
15. A task suspends itself on an input event if a request
is made for a character and the buffer is empty. Whenever a
character comes into an interrupt driven input port buffer,
the corresponding event is set.

5. Events 112 through 115 are timing events and are set
autamatically by the PDOS clock module according to
intervals defined in the PDOS Basic I/O module (BIOS). They
are altered at run time by the BFIX utility. Event 112 is
measured in tics, while events 113, 114, and 115 are in
seconds. The maximum time interval for event 112 is 497
days. Events 113, 114, and 115 have a maximum interval of
4, 297, 967, 300 seconds or approximately 136 years. A task
suspended on one of these events is regularly scheduled on a
tic or second boundary.

13

6. Events 116 through 127 are for system resource
allocation. Drivers and other utilities requiring ownership
of a system resource synchronize on these events. - These
events are initially set by PDOS, indicating the resource is
available. One and only one task at a time is allowed
access to the resource. When the task is finished with the
resource, it must reset the event thus allowing other tasks
to gain access.

7. Event 128 is local to each task. Unlike other events, it
can only be set by a delay primitive (XDEV or DELAY). It is
automatically reset by the scheduling of a task suspended on
event 128.

Task #4

Posttion
Monitoring \

Task #3

Stepper Motor
Movements

ROBOTICS

Task #5
Line Control

Task #2
Transiation &
Angie
Calcuistions

Task #1
interface

a2=Cosb+Cosc +2ab

14

TASK COMMUNICATION

Many different methods are available for intertask commumnication
in PDOS. Most involve a mailbox technique where semaphores are
used to control message traffic. Specially designed memory areas
such as MAIL, COM, and event flags allow high 1level program
communications. PDOS currently maintains 32 message buffers for
queued message cammunications between tasks or console terminals.
More sophisticated methods require program arbitrators and
message buffers. A few methods are defined below.

MATL array

The MAIL array is a permanent 254 byte memory buffer
accessible by assenbly language programs and PDOS BASIC as
the singly dimensioned array MAIL [@] through MAIL [3@].
This array is never cleared even during PDOS initialization.

COM array

The OOM array (OOMmon array) is a singly dimensioned array
which is wused by PDOS BASIC to preserve data during RUN,
NEW, and program chaining. In addition, OOM is used to pass
and return parameters to assembly language subroutines. The
OM array is defined within each task and is neither
permanent nor resident at a fixed memory address.

Absolute data movement

Absolute memory locations are referenced by using the MEM
functions. The MEM function moves byte data; MEMW moves
words; MEML moves long words; and MEMP moves 8 byte BASIC
variables. MEMP passes data between different memory pages
in a mapped environment or to a page external to the current
task.

Event flags

Event flags are global system memory bits, common to all
tasks. They are used in connection with task suspension or
other mailbox functions. Events are discussed in detail in
the previous section.

Message buffers

PDOS maintains 32 64-byte message buffers for intertask
caommunication. A message consists of up to 64 bytes plus a
destination task number. More than one message may be sent
to any task. The messages are retrieved and displayed on
the console terminal whenever the destination task issues a
PDOS praompt or by executing a Get Task Message primitive
(XGMM). The displayed message indicates the source task
number. The BASIC verbs SENDM and GEIM may also be used to
pass data between tasks.

15

Memory Mailbox

The utilities AIOAD and FREE are used tO permanently
allocate system memory for non-tasking data or program
storage. Memory allocated in this way can be used for
mailbox buffers as well as handshaking semaphores or
assenbly programs.

TASK SUSPENSION

Any task can be suspended pending one or two hardware or software
events. A suspended task does not receive any CPU cycles until
one of the desired events occurs. A task is suspended from BASIC

by using the WAIT command, or from an assembly language program

by the XSUI primitive. A suspended task is indicated in the LIST
TASK (LT) command by the event nmrber(s) being listed under the
'EVENT' heading.

When one of the events occurs, the task is rescheduled and
resumes execution. If the event is a hardware interrupt (events
1 through 7), then the corresponding event is set and an
immediate swap occurs. If a high priority task is waiting for
the event, it is immediately rescheduled, overriding any current
task (unless 1locked). If the event is a software event (8
through 128), then the task begins execution during the normal
swapping function of PDOS.

INTERRUPTS
PDOS supports user interrupt routines for levels 1, 2, and 3 or

as defined by the Basic I/O (BIOS) module.

PDOS FILE MANAGEMENT

The PDOS file management module supports sequential, random, read
only, and shared access to named files on a secondary storage
~device. These low overhead file primitives use a linked, random
access structure and a logical sector bit map for allocation of
secondary storage. No file campaction is ever required. Files
are time stamped with date of creation and last update. Up to 32
files can be simultanecusly opened. Camplete device independence
is achieved through read and write logical sector primitives.

16

S R R SR e

—

5

Pl il Pt Phonedl Pemel B e

PDOS FILE STORAGE

A file is a named string of characters on a secondary storage-
device. A group of file names is associated together in a file
directory. File directories are referenced by a disk number.
This nunber is logically associated with a physical secondary
storage device by the read/write sector primitives. All data
transfers to and from a disk number are blocked into 256 byte
records called sectors.

A file directory entry contains the file name, directory level,
the number of sectors allocated, the number of bytes used , a
start sector number and dates of creation and last update. A
file is opened for sequential, random, shared random, or read
only access. A file type such as 'DR' designates the file to be
a system I/0 driver. A driver consists of up to 252 bytes of
position independent binary code. It is loaded into the channel
buffer whenever opened. The buffer then becames an assembly
program that is executed when referenced by 1/0 calls.

A sector bit map is maintained on each disk number. Associated
with each sector on the disk is a bit which indicates if the
sector 1is allocated or free. Using this bit map, the file
manager allocates (sets to 1) and deallocates (sets to @) sectors
when creating, expanding, and deleting files. Bad sectors are
permanently allocated. When a file is first defined, one sector
is initially allocated to that file and hence, the minimum file
size is one sector.

A PDOS file is accessed through an I/0 channel called a file
slot. Each file slot consists of a 32 byte status area and an
associated 256 byte sector buffer. Data movement is always to
and from the sector buffer according to a file pointer maintained
in the status area. Any reference to data putside the sector
buffer requires the buffer to be written to the disk (if it was
altered) and the new sector to be read into the buffer. The file
manager maintains current file information in the file slot
status area such as the file pointer, current sector in memory,
END-OF-FILE sector number, buffer in memory flag, and other
critical disk parameters required for program-file interaction.

Up to 32 files may be open at a time. Keeping all sector buffers
resident would require prchibitive amounts of system memory.
Therefore, only six sector buffers are actually memory resident
at a time. The file manager allocates these buffers to the most
recently accessed file slots. Every time a file slot accesses
data within its sector buffer, PDOS checks to see if the sector
is currently in memory. If it is, the file slot number is
bubbled to the top of the most recently accessed queue. If the
buffer has been previously rolled out to disk, then the most
recently accessed dqueue is rolled down and the new file slot
nurber is placed on top. The file slot number rolled out the
bottam references the fourth last accessed buffer which is then
written out to the disk. The resulting free buffer is then
allocated to the calling file slot and the former data restored.

17

Files fequiring frequent access generally have faster access
times than those files which are seldom accessed. However, all
file slots have regular access to buffer data.

PDOS allocates disk storage to files in sector increments. All
sectors are both forward and backward linked. This facilitates
the allocation and deallocation of sectors as well as random or
sequential movement through the file.

PDOS files are accessed in either sequential or random access
mode. Essentially, the only difference between the two modes is
how the END-OF-FILE pointers are handled when the file is closed.
If a file has been altered, sequential mode updates the EOF
pointer in the disk file directory according to the current file
byte pointer, whereas the random mode only updates the EOF
pointer if the file has been extended.

Two additional variations of the random access mode allow for
shared file and read only file access. A file which has been
opened for shared access can be referenced by two or more
different tasks at the same time. Only one file slot and one
file pointer are used no matter how many tasks open the file.
Hence it is the responsibility of each user task to ensure data
integrity by using the lock file or lock process commands. The
file must be closed by all tasks when the processing is
completed.

A read only random access to a file is independent of any other
access to that file. A new file slot is always allocated when
the file 1is read only opened and a write to the file is not
permitted.

FILE NAMES

PDOS file names consist of an alpha character (A-Z or a-z)
followed by up to seven additional characters. An optional one
to three character extension is seperated fram the file name by a
colon (:). Other optional parameters include a semi-colon (;)
followed by a file directory level and a slash (/) followed by a
disk number. The file directory level is a number ranging from @
to 255. The disk number ranges fram @ to 255.

A file type is a system I/O device driver that has entry points
directly into the chamnel buffer for OPEN, CLOSE, READ, WRITE,
and POSITION commands.

If the file name is proceded by a '#', the file is created (if
undefined) on all open commands except for read only open. When
passing a file name to a system primitive, the character string
begins on a byte boundary and is terminated with a null.

Special characters such as a periocd or a space may be used in
file names. However, such characters may restrict their access.
The command line interpreter uses spaces and periods for passing
a command line. :

18

- S L S

DIRECTORY LEVELS

Each PDOS disk directory is partitioned into 256 directory
levels. Each file resides on a specific level, which facilitates
selected directory listings. You might put system cammands on
level @, procedure files on level 1, object files on level 14,
listing files on level 11, and source files on level 20.

PDOS operates in a soft or hard partition mode. In soft
partition mode, all files are global with respect to a disk
directory and can be accessed without referencing the file level.
File names are not unique to a level, hence the same file name
cannot be used twice in any one disk directory.

In hard partition mode, each directory level is unique with the
exception of level @ which remains global. Duplicate file names
can exist on the same disk on different levels.

A current directory level is maintained and used as the default

level in defining a file or listing the directory when no
directory level is specified.

DISK NUMBERS

A disk number is used to reference a physical secondary storage
device and facilitates hardware independence. All data transfers
to and from a disk are blocked onto 256 byte records called

~ sectors.

The range of disk numbers is from @ to 255. Several disk numbers
may share the same secondary storage device. Each disk can have
a maximum of 65282 sectors or 16,711,680 bytes.

A default disk number is assigned to each executing task and
stored in the task control block. This disk number is referred
to as the system disk and any file name which does not
specifically reference a disk number, defaults to this parameter.

Same utility programs make use of the system disk for temporary
file storage. By not specifying the disk parameter, the program
becomes device independent and defaults to the current system
disk.

When a task is created, the parent task's disk number and
directory level are copied into the task control block of the new
task.

19

FILE ATTRIBUTES

Associated with each file is a file attribute. File attributes
consist of a file type, storage method, and protection flags.
These parameters are maintained in the file directory and used by
the PDOS monitor and file manager.

The file type is used by the PDOS monitor in processing the file.
For instance, a file typed as 'EX' (a PDOS BASIC file), inwokes
the BASIC interpreter, loads the file, and begins execution with
the first 1line number. A file typed as 'OB' (a 68000 object
module), is passed to a relocating loader and loaded into memory.
If a start address tag is included at the end of the file, the
module is immediately executed.

The following are legal PDOS file types:

AC — Assign console. A file typed 'AC' specifies to the
PDOS monitor that all subsequent requests for oonsole
character inputs are intercepted and the character obtained
form the assigned file.

BN — Binary file. A 'BN' file type has no significance to
PDOS but aids in file classification.

OB — 68000 tag object file. ALl asseambly commands are
typed as odbject files. This directs the PDOS monitor to
load the file into memory and execute the program.

SY — System file. A 'SY' file is generated fram an 'OB'
file. MC68000 dbject is condensed into a smaller and faster
loading format by the 'SYFILE' utility.

BX — PDOS BASIC binary file. A BASIC program stored using
the 'SAVEB' command is written to a file in pseudo-source
token format. Such a file requires less memory than the
ASCII LIST format and loads much faster. Subsequent
reference to the file name via the PDOS monitor
autamatically restores the tokens for the BS4ASIC
interpreter and begins execution.

EX — PDOS BASIC file. A BASIC program stored using the
'SAVE' command is written to a file in ASCII or LIST format.
Subsequent file reference via the PDOS monitor automatically
causes the BASIC interpreter to load the file and begin
execution.

TX =—~ ASCII text file. A 'TX' type classifies a file as
containing ASCII character text. Reference to the file name
via the PDOS monitor causes the file to be listed to your
console.

DR — I/O driver. A 'DR' file type indicates that the file

data is an I/O driver program and is executed when
referenced.

20

- I i i i _ . i i

A PDOS file is physically stored in contiguous or non-contiguous
sectors depending upon how it was initially created. Contiguous
files have random access times far superior to non-contiguous
files. A oontiguous file is indicated in the directory listing
by the letter 'C' following the file type.

File protection flags determine which commands are legal when
accessing the file. A file can be deleted and/or write
protected.

File storage method and protection flags are summarized as
follows:

C — Contigwous file. A contiguous file is organized on the
disk with all sectors logically sequential and ordered.
Random access in a contiguous file is much faster than in a
non-contiguous file since the forward/backward links are not
required for positioning.

* — Delete protect. A file which has one asterisk as an
attribute cannot be deleted fram the disk until the
attribute has been changed.

** - Delete and write protect. A file which has two
asterisks as an attribute cannot be deleted nor written to.
Hence READ, POSITION, REWIND, and CLOSE are the only legal
file operations.

21

FIOATING POINT MODULE

The PDOS floating point module is a single accumulator, IBM

excess 64 format, multi-user floating point processor. It .

includes all the necessary routines to write assembly language
floating point software and supports the PDOS BASIC interpreter.

Floating point commands are referenced using the F-line (SF00@)
exception instructions of the 680@9. Parameters are passed in
address register Ag.

Commands include the following:

Symbol Value Description

FLDD. SFO0¥ = Load FPA

FSRD. SFoP2 = Store FPA

FADD. SFOP4 = Add to FPA

FSUB. SFOP6 = Subtract fram FPA
FMUL. $Fo@8 = Multiply FPA

FDIV. SFOPA = Divide into FPA

FSCL. SFOIC = Scale FPA

FCLR. SFOOE = Clear FPA

FF1LT. SFPlg = Float FPA

FNRM. $Fgl2 = Normalize FPA

FNEG. SF@l4 = Negate FPA

FABS. SFgle = Absolute value of FPA
FPST. SFP18 = Read FPA status

FTIC. SFZ1A = Load clock TICS.
FINV. SFPIC = Invert FPA

FELD. SFOIE = Ioad error register address

PDOS RESIDENT MONITOR COMMANDS

AF—Append file GO—Execute RD—RAM disk
AM-—Available memory HE—Help RN—Rename file
BP—Baud port ID—Init date and time RS—Reset
CF—Copy file IF—Conditional SA—Set file attributes
Cr—Create task IM—Interrupt mask SF—Show file
DF—Define file KM——Kill message SM—Send task message
DL—Delete file KT—Kill task SP—Disk usage
DM—Delete multiple I1O—Load file SU—Spool unit
Dr—Display time LS—List directory SY—System disk
EV--Events LT—List tasks TM—Transparent mode
EX~-Basic LV—Directory level TP—Task priority
PM——Free memory MF—Make file UN—Output unit
FS—File sliots PB—Debugger ZM—Zero memory
@M—Get memory RC—Reset console

22

; S il B i e Do S

S——— — —

—

MONITOR COMMAND FORMATS

AF <filel>,<file2> 10 <file>

AM IS {<list>}

BP <prtt>,<rat>{, <typ>,<bas>} LT

CF <filel>,<file2> LV {<level>}

CT <amd>,<sze>,<prity>,<prt> MF {<file>}

DF <file>{,<size>} PB

DL <file> RC

DM <filelist> RD{<unt>, <sze>, <adr>}
or RN <filel>,<file2>
EV {<event>} RS {«disk>}

EX SA <file>{,<attribute>}
M <kbytes> SF {-}<file>

FS sM{<task#>, <message> }
GM {<kbytes>} SP {<disk>}

GO {<address>} SU <unit>{,<file>}
HE {<list>} Sy {<disk>}

ID ™ {<port>}{, <break>}
IF <strl>{=<str2>} TP {<task#>, }<proirity>
IM <mask> UN <unit>

KM <task#> ™

KT {-}<task#>

PDOS UTILITIES
A PDOS utility is an auxiliary program that resides on the disk.
Written in either assembly language or BASIC, PDOS utilities are
run by simply entering the name of the desired utility. Of
course, the utility must be a file on the disk with the
appropriate attributes. Following is a 1list and a brief
description of each utility.

PDOS* UTILITIES

MASM 68000 assenbler.
MBACK Disk backup.

BXREF Basic cross reference.
coMP Campare ASCII files.

MCHATLE Changes attributes and levels of selected files.
MDDMAP Disk diagnostic. Reads files by links.

MICDUMP Disk sector dump and alter.

MDISCAT Catologues cambined directories of multiple disks.
MINAME Renames PDOS disks.

MFDUMP Output logical dump of PDOS files.

FFRMT Format logical unit
MFSAVE Restore files from links.
MINIT Initialize PDOS disk.
MIDIR Wild card list directory.
MLEVEL Short listing by level.
LIBGEN Create user mcdule library.
QLINK Link relocatable object.
MORDIR Alphabetizes and compresses disk directory.
SYFILE Generate SY file fram OB.
MTERM Set terminal cursor functions for task only.
MTRANS Selective file transfers.
RENUMBER Renumbers BASIC programs.
UPTIME System uptime
23

PDOS ASSEMBLY PRIMITIVES

PDOS assembly primitives are assembly language system calls to
PDOS. They oonsist of one word A-line instructions (words with
the first nibble equal to hexadecimal 'A'). PDOS calls return
results in the 68000 status register as well as regular user

registers.

PDOS calls are divided into three categories; namely, 1) system,

2) console I/0, 3) files.

SYSTEM CALLS

XBUG—Debug call
XCBD—Convert binary to decimal
XCBH—Convert binary to hex

XLER—Load error register
XLKT—Lock task
XLSR—Load status register

XCBM—Convert to decimal with message XRDM—Dump registers

XCBX——Convert to decimal in buffer

XCDB~—Convert decimal to binary

XRDT—Read date
XRIM—Read time

XCHX—Convert binary to hex in decimalXRTS—Read task status

XCTB—Create task block
XDEV—Delay set/reset event
XDTV—Define trap vectors
XERR—Return error to do monitor
XEXC—Execute PDOS call D7.W
XEXT—Exit to monitor
XFTD—Fiw time and date
XFUM—TFree user memory
XGNP—Get next parameter
XGIM—Get task message
XGUM—Get user mamory
XKTB—Kill task

XKIM—Kill task message

CONSOLE I/O PRIMITIVES

XBCP—Baud console port
XCBC~—Check for break character
XCBP—Check for break or pause

XCLS—Clear screen

XGCC—Get character conditional
XGCR—Get character

XGLB—Get line in buffer

XGIM—Get line in monitor buffer

XGLU—Get line in user buffer
XGML—Get memory limits
XPRC—Put buffer to ccnsole

XSEF—Set event flag
XSTM—Send task message
XSTP—Set/read task priority
XSUI—Suspend until interrupt
XSUP—Enter supervisor mcde
XSWP—Swap to next task
XTEF—Test event flag
XUDT—Unpack date
XULT—Unlock task
XUTM—Unpack time
XWDT—Write date

XWIM—Write time

XPCL—Put CRLF

XPDC—Put data to console

XPEM—Put encoded message to
console

XPIC——~Put line to console

XPMC—Put message to console

XPSC—Position cursor

XPSP—Put space to console

XRCP—Read port cursor
position

XRPS—Read port status

XSPF—Set port flag

XTAB—Tab to column

XPCC—Put character(s) to console

24

| .

o

-

FILE PRIMITIVES

XAPF—Append file
XBFL—Build file directory list

XCFA—Close file with attribute
XCHF—Chain command
XCLF—Close file

XCPY—Copy file

XDFL—Define file

XDLF—Delete file

XFBF—F1lush buffers

XFFN—Fix file name
XISE—Initialize sector
XILDF—Iload file

XLFN—Look for name in file slots

XLKF—Lock file

XLST—List file directory
XNOP—Open non-exclusive random
XPSF—Position file

XRBF—Read bytes from file
XRCN—Reset console inputs

XRDE—Read next directory entry
XRDN—Read directory entry
by name
XRFA—Read file attributes
XRLF—Read line fram file
XRNF—Rename file
XROO—Open random read only
XROP—Open random
XRSE—Read sector
XRST—Reset disk
XRSZ—Read sector zero
XRWF—Rewind file
XSOP—Open sequential
XSZF—Get disk file
XULF—Unlock file
XWBF—Write bytes fram file
XWFA—Write file attributes
XWLF—Write line from file
XWSE—Write sector
XZFl~—Zero file

Program Example for the PDOS 68000 Assembler:

START MOVEQ.L #@,Dl ; GET DEFAULT
XPMC MES1 ; OUTPUT HEADER
XGLU : GET REPLY
BLS.L STRT@2 ; USE DEFAULT
XCDB : CONVERT, O.K. ?
BGT.S STRT@2 ; YES
XPMC ERM1 : NO, REPORT ERROR
BRA.S START : TRY AGAIN
*
*
STRT@1 MOVE.L D1,D5 ; SAVE VALUE
MES1 DC.B $0D, $PA, 'ANSWER = ',0
ERM1 DC.B $@D, $¢A, 'INVALID !',0
EVEN :
25

el e eeun] e g p— W— p— 2 L M ey e e e e 2 3 rR Py e B

PDOS PARALLEL PASCAL

The following are same of the major features of PDOS Pascal:
PDOS Pascal runs on all 68000 PDOS systems.
The PDOS Pascal campiler generates assembler text (not p-code)
PDOS Pascal applications are designed for process control,
instrumentation, automation, robotics, CAD/CAM, and real-time

operations.

PDOS Pascal performs both single and double precision

operations for real numbers. Single precision is accurate
to 6.5 decimal places and double precision is accurate to
15.5

PDOS Pascal allows integer length to be declared to one,
two, or four bytes. This aids in faster calculation.

PDOS Pascal is inherently modular and aids the programmer in
designing block-structured code.

PDOS Pascal has the capacity for wvirtually unlimited
concurrent tasks.

PDOS Pascal procedures can be designated as EXTERNAL and
caompiled seperately. This 1is especially important for
camplex software development.

PDOS Pascal 1is geared towards experienced Pascal
programmers. Type checking is relaxed to allow for systems

programming.

DESCRIPTION:

PDOS PASCAL is a modern, multiple-pass, optimizing compiler that
gererates assembler text for the MC68000 microprocessor
instruction set. The PDOS PASCAL compiler implements a superset
of the Pascal language defined by Jensen and Wirth that includes
extentions for writing multiple task programs for concurrent
programming. This capability makes PDOS PASCAL ideal for process
control, instrumentation, automation, robotics, CAD/CAM, and
numerous other appllcatlons requiring real-time response and
interrupt handling.

27

PDOS PASCAL is designed to erhance the PDOS operating system as a
resident development tool for real-time applications. The source
code text output by the compiler can be either edited or
assembled into object code for linking or running under PDOS.
All compiler output is ROMable for stand-alone applications. The
system includes the compiler, code generator, run-~time library in
object form, wutilities, and sources to selected run-time library
modules.

PDOS PASCAL was specifically designed to handle your real-time
processing needs. The extensions make PDOS PASCAL much more than
just an ordinary general-purpose software product, by providing
you with additional language constructs that are useful for
writing multiple-task programs and handling system interrupts.

The PDOS PASCAL language structure lets you seperately define
each process or task and interrupt service to be handled. The
language structure also provides inter-process cocommunication
through the use of an additional data type called SIGNAL. With
SIGNAL, task synchronization is possible via user-written

semaphores .

PDOS PASCAL was designed to be modular, so that applications can
be developed one piece at a time. System libraries can be built
as modules are created. Interface to the library modules can be
via PDOS PASCAL EXTERNAL calls. Library modules are then loaded
at system 1link time. In addition, READ and WRITE have been
extended to work with procedures.

FUNCTIONAL DESCRIPTION:

PASCAL DATA TYPES. PDOS PASCAL supports Integer, Real, Boolean,
and Char data types. Additionally, a data type can be defined as
a subrange of an ordinary type (integer, boolean, char, or
enumeration type) in which the least and largest values of the
subrange are identified. An Array type is a structure consisting
of a fixed number of components all of the same type, called the
component type, in which the elements of the array are designated
in indicies. The array-type definition specifies the component
type and the index type. Camponent type may be any type
including another standard type.

The record data type consists of a fixed number of camponents
that can be of different types. For each component, called a
field, the record definition specifies its type and identifier.
Set type defines the range of values that is the powerset of a
base type, which can be integer, boolean, char, or subrange or
any enumeration type. File type defines a structure consisting
of a sequence of camponents all of the same type. The number of
components (length) of the file is not fixed by the file
definition.

28

A;

e N B]

PASCAL EXTENTIONS. The parallel-processing features of MODULAR
have been included in PDOS PASCAL. They include PROCESS, SEND,
and WAIT, and the data type SIGNAL. READ and WRITE procedures
can accept as their first parameter the name of a user-written
procedure. Input or output is directed through this procedure
instead of to a file.

Procedures can be designated EXTERNAL, campiled by themselves and
added to the program at link time. The word-symbol ORIGIN is
used to locate a variable at a fixed memcry location for
interrogating hardware-device registers. XOR, exclusive OR, is
present and the NOT,OR,AND,and XOR operators have been extended
to operate on integers as well as booleans.

The CASE statement has an OTHERWISE clause, the CLOSE procedure
closes a file, and a SEEK procedure exists, allowing random
access to file elements. The FLOAT function (converting integer
to real) is available explicitly. RESET and REWRITE procedures
have optional second, third and fourth arguments to specify the
name and size of a file.

Declaration of a procedure or function parameter must include a
dumny parameter list. This feature, from the ISO draft for
PASCAL, allows the compiler to check the types of the parameters
when the formal procedure is called.

Underscore " " may be used within an identifier for clarity.
However, it is not coonsidered part of the identifier. For
example, FIRST ONE is recognized as the same as FIRSTONE.
Underscore may not appear in a word-symbol, e.g., A ND is not
recognized as AND.

The declaration sections for labels, oonstants, types, and
variables may occur in any order. They must precede procedure
declarations. Every name or label must be declared before it is
used.

PASCAL, RESTRICTIONS. The PACK, UNPACK, and PAGE procedures are
not implemented. The transcedental math functions SIN, COS,
ARCTAN, IN, and EXP and SQRT are not recognized by the compiler.
Pascal source-code versions of these functions are provided and
can be included in the user's program. The NEW and DISPOSE
procedures do not use variant tag fields. Standard functions and
procedures cannot be used as function or procedure parameters.
INPUT and OUTPUT are not predefined as the default input and
output files, but rather to and from the system terminal.
Single-pass scope rules are followed. Type checking of subranges
is relaxed. Conformant array parameters are not implemented.

29

IMPLEMENTATION LIMITS. Identifiers are recognized by their first
19 characters; the rest are scanned but ignored. Labels consist
of up to 4 digits. Lower-case letters and the oorresponding
upper-case letters are recognized as the same characters. Lower-
case letters in strings and comments are untouched. User-defined
enumeration types may not have more than 256 members. Lines of
source text must be less than 132 characters long. Strings are
limited to 8@ characters and Sets can contain a maximum of 96
elements. WITH statements can be nested up to 12 deep.

PDOS PASCAL Example Program:

program RAINFALL(input,output) ;
{ taken from PASCAL PROGRAMMING STRUCTURES }

{ FOR MOTOROLA MICROPROCESSORS }
{ GEORGE W. CHERRY }
type
RainfallType = array[l..12] of real;
var
Month 1..12;

Rainfall : RainfallType;
Sum,Average : real;
procedure SortRainfall;

begin
writeln('SortRainfall')
end;
begin
Sum :=0;
writeln; { new line 1}
writeln;
for Month :=1 to 12 d
begin
write('Enter rainfall for month',Month: 3 ,°' :');
read (Rainfall[Month]);
write(CHR(16#9D)) ;
write ('
write(CHR(16#0D)) ;
Sum := Sum + Rainfall[month]
end;
writeln;
writeln;

Average := Sum/12;
writeln('The monthly average is ',Average);
writeln;
writeln('The deviation from the average for');
for Month :=1 to 12 do
writeln(' month ',Month: 3,
Rainfall[Month] - Average);

SortRainfall
end.

30

');

e I e I e

_a

-

-

68009 PDOS BASIC

FEATURES
Meaningful, unlimited length variable names
Multiple line, recursive functions
Local function variables
Multi-dimensioned arrays
Extensive line editing commands
Fast 64-bit floating point arithmetic
Context oriented string commands
Full disk file interface commands
Transfers and subroutine calls to labels
Standalone run module support
No 64K byte boundary restrictions
Assenbly language loader and linkage
Variable, transfer, and execution trace

Program chaining

-Formatted print commands

Intertask commmnication arrays
Iogical and Boolean operators
Time and date commands

Set and test event commands

Suspend task command

31

DESCRIPTION:

Microcomputer interpreters are generally slow and not competetive
in performance with similar campilers. Despite this
disadvantage, BASIC interpreters have been implemented on almost
every microcomputer and are widely used for business, scientific,
and personal computer applications. This wide acceptance is due
mainly to the interactive nature of interpreters.

The PDOS BASIC interpreter cambines compiler performance with the
convenience of an interpreter in a unique approach to program
developement. BASIC commands are parsed into executable tokens
during program entry and not at execution time. Hence, program
lines do not require needless, time consuming recursive parsing
every time they are executed. The BASIC interpreter executes as
fast as any threaded code campiler.

Program development time is greatly reduced due to the
interactive nature of PDOS BASIC. A program can be interrupted,
variables examined and changed, program lines altered and added,
trace parameters set, and then execution oontinued. Most
commands can be executed directly fram the keyboard.

Program labels and multi-lined functions enhance the structured
design and readability of a user program. Transfers can be made
to meaningful labels rather than just to line numbers. Variable
names can be of any length rather than the regular one or two
character names found in other BASICs. Local variables within
functions improve program integrity.

FUNCTIONAL DESCRIPTION:

STANDARD DARTMOUTH BASIC COMMANDS. PDOS BASIC supports most
commands commonly found in BASIC interpreters. LET variable
assignment, FOR/NEXT loops, IF/THEN statements, GOTO/GOSUB/RETURN
transfers, and READ/DATA program statements are standard. All
standard operators (+, -, *, /, etc.) and system functions (LOAD,
SAVE, RUN, NEW, etc.) are included.

BASIC ENHAMCEMENTS. In addition to standard BASIC commands, PDOS
BASIC allows multi-dimensioned arrays. Array sizes are not
limited to 64K bytes. Variable names can be of any length. The
ELSE statement complements THEN. Subroutine calls can be by name
as well as by line number. A program can be listed according to
token storage so that exact execution order can be verified. Bit
and address functions give user programs control over variable
storage and formats.

BASTC FUNCTIONS. PDOS BASIC functions are recursive and can be
either single or multi-lined. Up to seven local arguments can be
passed to the function and other variables can also be declared
as local. '

32

.

i i b)

T A

STRING OPERATIONS. For speed and convenience, strings are
context orientated. Variable data can be interpreted as an
integer, a floating point number, or a string of ASCII
characters. Only the ocontext in which a variable is used
dictates how the data is to be treated. Command functions of
string assignment, ooncatenation, deletion, insertion, length,
search, replacement, extraction, and numeric oonversion are
included.

ASSEMBLY IANGUAGE SUPPORT. Assenbly language support is an
important feature found in PDOS BASIC. Assenbly routines, either
loaded from disk or generated from DATA statements, are executed
fran within BASIC variables. The subroutine linkage is well
defined and parameter passing, using integers, is simple. The
EXTERNAL, command further simplifies the linkage process. New
meaningful verbs can be added to the BASIC cammand list and
external routines are called by BASIC whenever the verb is used.

PROGRAM DEBUGGING. A single step feature in PDOS BASIC allows a
user program to be executed a single line at a time. All
assignments can be displayed and all program transfers indicated.
Additionally, selected variables can be tagged to display
whenever altered. A program can be interrupted and continued
after examining and even altering program lines and variables. A
program 1line can be displayed for editing without having to
either retype the line or enter a special edit mcde.

INTER-TASK COMMUNICATION. BASIC program tasks can communicate
with other tasks using events or mailboxes. A special MAIL array
is global to all tasks and can be used for sending and recieving
messages . Event commands allow BASIC programs to synchronize
with other tasks. A GLOBAL command allows many BASIC programs to
share the same variables.

REAL~TIME SUPPORT. Special BASIC commands have been added to
suspend a program while waiting for a software or hardware event.
Time and date parameters are available as well as delta time
functions. Timeout events may be included to prevent system
lockouts.

FILE MANAGEMENT. A full camplement of file commands is supported
by PDOS BASIC. These include open, read-only open, random open,
and shared random open, define, delete, reset, rename, read,

_write, position, lock, unlock, load, and save. Also, a BASIC

program can be saved in token form for extremely fast loading.

STANDAIONE RUN-TIME SUPPORT. To generate a ROMable, standalone
execution module, a debugged BASIC program can be linked to the
PDOS run-time kernel, along with other tasks and support
routines. A 32-bit floating point version of the BASIC module
can be selected for a further reduction in execution time and
mamory size.

33

SYSTEM FUNCTIONS AND OPERATORS. Logical, arithmetic, and boolean
operators are all available in PDOS BASIC. System functions
allow various execution parameters to be examined and changed
including input and output ports, memory limits, stack sizes,
etc.

Example Program for PDOS BASIC

LIST
19¢ PRINT : INPUT "DISTANCE=";X

119 INPUT "MUZZLE VELOCITY=";V

12¢ T=FNS[,ATN 1]

13¢ IF T<@: GOTO 100

140 PRINT "ELEVATION IS";T*180/3.141592654;
15¢ PRINT " DEGREES"

16@ PRINT X/(COS[T]*V);" SECONDS OF FLIGHT"

179 GOTO 199
500 DEFN FNA[A]=-9.8*X/(V*CQOS[A])+2*V*SIN[A]

600 FOR I=1 TO 20

620 II=(E1+E2)/2: FNS=II

630 IF FNA[II]*FNA[E1]<=g: E2=II: GOTO 670
649 IF FNA[IIJ*FNA[E2]>0

650 THEN PRINT "NO SOLUTION": FNS=-1: FNEND
660 ELSE E1=II

670 NEXT I

680 FNEND

34

e B B I

_

Dear Customer,

While FORCE Computers has achieved a very high
standard of quality in our products and
documentation, we continually seek suggestions
for new improvements. We would appreciate any

feedback you care to offer.

Please use the attached "PRODUCT ERROR REPORT"
form for your comments and return it to one of

our FORCE Computers offices.

Sincerely,

FORCE Computers.

e e e B e D e | e ey —

)

PRODUCT E RROR REPORT —_ =®
LE

This box to be
completed by FORCE

HARDWARE / SOFTWARE/SYSTEMS

a
O

PRODUCT :

SERIAL NO. :

DATE OF PURCHASE :

| |
| |
| |
| DATE : |
ORIGINATOR : I }
COMPANY : | PR# : {
|
ADDRESS : | |
| ACTION BY : i
|
| Engineering () |
| Marketing () |
| Production () |
DATE : I |
TELEPHONE : () EXT
CONTACT :
AFFECTED PRODUCT: () SOFTWARE () HARDWARE () SYSTEM

AFFECTED DOCUMENTATION: () SOFTWARE () HARDWARE () SYSTEM

ERROR DESCRIPTION :

SEND TO :

FORCE Computers Inc. FORCE Computers GmbH FORCE Computers FRANCE
Marketing Marketing Marketing

727 University Avenue Daimlerstrasse 9 11, rue Casteja

Los Gatos, CA 95030 8012 Ottobrunn/Munich 9218@ Boulogne

U.S.A. West Germany France

ol e peweg e Eet e s e e =

— — — %

' W P pe——e e e

