
I
I
:1

I
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
:1

I
I
I
I

SYS68K/PDOS

Product Overview

First Edition
April 1985

FORCE COMPUTERS Inc.lGmbH
All Rights Reserved

This document shall not be duplicated, nor its contents used
for any purpose, unless express permission has been granted,

Copyright by FORCE Computers~

+~

I
l

1
1
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NOTE

The information in this document has been carefully checked and
is believed to be entirely reliable. FORCE COMPUTERS makes no
warranty of any kind with regard to the material in this
document, and assumes no responsibility for any errors that may
appear in this document. FORCE COMPUTERS reserves the right to
make changes without notice to this, or any of its products, to
improve reliability, performance or design.

FORCE COMPUTERS assumes no responsibility for the use of any
circuitry other than circuitry which is part of a product of
FORCE COMPUTERS GmbH/Inc.

FORCE COMPUTERS does not convey to the purchaser of the product
described herein any license under the patent rights of FORCE
COMPUTERS GmbH/Inc. nor the rights of others.

FORCE Computers Inc.
727 University Avenue
Los Gatos, CA 95030
U.S.A.

Phone
Telex
FAX

: (408) 354 34 10
: 172465
: (408) 395 77 18

FORCE COMPUTERS GmbH
Daimlerstrasse 9
D-8012 Ottobrunn/Munich
west-Germany

Phone
Telex
FAX

: (089)6 09 20 33
: 5 24 190 forc-d
: (0 89)6 09 77 93

FORCE COMPUTERS FRANCE SarI
11, rue Casteja
92100 Boulogne
France

Phone
Telex
FAX

: (1) 620 37 37
: 206 304 forc-f

1 621 35 19

,
1

..

I ,
1

1
1
1
1
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

POOS DISK OPERATING SYSTEM

INDEX OF CONTENTS

Features

Functional Description

. language Support

POOS Kernel

POOS Task

Multi-tasking

Character I/O

Events

Task Communication

Task Suspension

Interrupts

File Managenent

File Storage

File Names

Directory Levels

Disk Nunibers

File Attributes

Floating Point Module

Monitor Commands

Ut.ilities

Assembly Primitives

PDOS Parallel Pascal

Pros Basic

PRODUCT OVERVIEW

1

Page

3

4

6

7

7

9

11

13

15

16

16

16

17

18

19

19

20

22

22

23

24

27

31

,I.,

"

]

I
1
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FEATURES:

-REAL-TIME, MULTI -USER, MULTI -TASKING

-PRIORITIZED, ROUND-ROBIN SCHEDULING

- INTERTASK ca1MllNICATIOO AND SYNCHRONIZATIOO

-TASK MEMORY MAP CCNI'ROL FOR PROGRAM SECURITY

-FULL EXCEPTION PROCESSING

-SEQUENTIAL, RANIX.M, AND SHARED FILE MANAGEMENT

-HARIXtJARE INDEPENDANCE

-68000 lAYERED DESIGN OF KERNEL, FILE MANAGER, r-mrroR

-ccMPLETE FLOATING POINT SUPPORl'

-COOFIGURABIE, MJDUI..AR, fO.1ABIE STANDrUDNE SUPPORl'

-NO MEMORY RESTRIcrICNS

3

I.DESCRIPl'ION:

poos* is a p0\'Jerful multi-user, multi-tasking operating system
developed for the 32-bit Motorola 68000 processor family. This
developnent software is designed for scientific, aiucational,
industrial, and business applications.

POOS* consists of a snaIl, real-time, multi-tasking kernel
layered by file management, floating point, and user rroni tor
m:::dules. The 2k byte kernel provides synchronization and control
of events occurring in a real-time envirornnent using semaphores,
events, messages, ma.ilboxes, and suspension primitives. All user
console I/O as well as other useful conversion and houseke"eping
routines are included in the POOS* kernel.

The file management m:::dule supports namai files with sequential,
randan, and shared access. Mass -storage device independance is
achievai through read and write logical sector primitives. The
designer is relievai of real-time and task ma.nagement problems as
well as user console interaction and file ma.nipulation S9 that
efforts can be concentrated on the application.

Assembly language floating point applications are no longer a
problem. Conversion m:::dules, assembler directives, and operating
system calls allow easy integration of floating point operations
into user application programs.

2.FUNCI'ICNAL DESCRIPl'ICN:

POOS* KERNEL. POOS* is written in 68000 assembly language for
fast, efficient execution. The sma.ll kernel provides multi
tasking, real-time clock, event processing, and rnerrory ma.nagement
functions. Ready tasks are scheduled using a prioritized, round
robin method. Three XDP vectors are used to interface over 75
system primitives to a user task.

MULTI -TASKING EXECUI'ICN ENVIRCNMENT. Tasks are the catlfX'nents
comprising a real-time application. Each task is an independant
program that shares the processor with other tasks in the system.
Tasks provide a mechanism that allows a complicated application
to be subdivided into several independant, understandable, and
manageable m:::dules. Real-time, concurrent tasks are allocated
in 2k byte increments. Task system overhead is less than lk
bytes.

4

I

.,
l

1
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INTERI'ASK CCM1UNICATION & SYNCHRONIZATION. Senaphores and events
provide a low overhead facility for one task to signal another.
Events can be used to indicate availability of a shared resource,
timing pulses, or hardware interrupt occurrences. Messages and
mailboxes are used in conjunction with system lock, unlock,
suspend, and event primitives. POOS* provides timing events that
can be used in conjunction with desired events to prevent system
lockouts. Other special system events signal character inputs
and outputs.

~1EMORY REQUIREMENTS. POOS* is very manory efficient. The FDQS*
kernel, floating point rocx:1ule, file manager, and user nonitor
utilities require only 8k bytes of manory plus an additional 4k
bytes for system buffers and stacks. Most applications can be
developed and implemented on the target system. Further rnarory
reduction can be achieved by linking the user application to a 2k
byte POOS* kernel for a small, RCl-1able, standalone, multi-tasking
rocx:1ule. A fast, 6k byte scientific orientated BASIC interpreter
with real-time primitives provides interactive high level
language support as well. For large system configurations, PIX>S*
effectively addresses up to a 32 bit address space.

FILE MANAGEMENT. The POOS* file management rocx:1ule provides
sequential, random, read only, and shared access to named files
on a secondary storage device. These low overhead file
primitives use a linked, random access file structure and a
logical sector bit map for allocation of secondary storage. No
file compaction is ever required. Files are time stamped with
date of creation and last update. Up to 32 files can be
simultaneously opened. Complete device independence is achieved
through read and write logical sector primitives.

COMMAND LINE INTERPRETER. A resident command line interpreter
allows illLutiple commands to be enterred on a single line.
CCmnand utilities such as append, define, delete, copy, rename,
and show file are also resident and can be executed wi thout
destroying current manory progr~~. other functions resident in
the rronitor include setting the baud rate of a port, checksurrrning
manory, creating tasks, listing tasks, files and open file
status, asking for help, setting file level, file attributes,
inter~L~t nusk, and system disk, and directing console output.

INTERRUPT' MANAGE1-1ElIT. The POOS* kernel handles user console,
system clock, and otller designated hardware interrupts. User
consoles have int_en-upt driven character I/O with type ahead. A
task can be suspended pending a hardware or software event.
POOS* will switch control to a task suspended on an external
event within 100 microseconds after the occurrence of the event
(provided the system mask is high enough.) otherwise, a
prioritizec~, round-robin scheduling of ready tasks occurs at 10
mi.llisecond intervals.

5

PORI'ABILITY. POOS* gives software portability through hard'olllaIe
independance of read/write logical sector primitives. All ather
hard'olllaIe functions such as clocks, rrappers, and. UARI'S are
conveniently isolated for minimal custanization to new 68000
based systems.

CUSTCMER SUPPORI'. Numerous support utilities incltrling virtual
screen editors, assembler , linker, rracroprocessor, disk
diagnostics, link, and recovery, disk cataloging are standard.
Single stepping, multiple break points, rnem::>ry snap shots, save
and restore task carmands, and. error trapping primitives are
provided in all languages to aid in program derugging.

3.IANGUAGE SUPPORl':

-Basic

-Pascal

Standard Dart:.Irouth Basic with enhancements, such as
program debugging, inter-task ccmnunication and real
time support.

mul ti -pass, optimizing compiler that generates
assembler text for the 68000 microprocessor. The
PDOS* Pascal compiler ~plements a superset of the
Pascal language defined by Jensen and Wirth.

-Fortran 77 compiler, supporting the full ANS Fortran 77 standard

compiler for the c language

6

'l , ..
",'

'1

.J._

-.

]

1
'.
l

~

j

1
,

'I

'" ..
1

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

pros KERNEL

'Ihe Pros kernel is the multi-tasking, real-time nucleus of the
Pros operating system. Tasks are the components oamprising a
real-time application. It is tl.e main responsibility of the
kernel to see that each task is provided with the support it
requires in order to perform its designated function.

'Ihe main responsibilities of the pros kernel are the allocation
of memory and the scheduling of tasks. Each task must share the
system processor with other tasks. The operating system saves
the task's context When it is not executing and restores it again
When it is scheduled. Other responsibilities of the pros kernel
are maintenance of a 24 hour system clock, task suspension and
rescheduling, event processing (including hardware interrupts),
character buffering, and other support utilities.

Pros TASK

A pros task is defined as a program entity Which can execute
independently of any other program if desired. It is the nest
basic unit of software within an operating system. A user task
consists of an entry in the execution task list, a task control
block, and a user program space.

'Ihe task list is used by the ProS kernel to schedule tasks. A
task list entry consists of apriority, task time, task nurrber,
task control block pointer, task map constant, and two suspended
event registers.

'Ihe first 500 hex bytes of a task is the task control block.
'Ihis block of memory consists of three buffers and parameters
peculiar to the task. The 68000 address register A6 points to
the status block When the user program space is entered .

'Ihe user program space begins immediately following the task
control block. position independent 68000 Object programs or
BASIC tokens are loaded into ~~is area for execution. Task
memory is allocated in 2K byte increments. The total task
overhead is $500 ~ 1280 bytes. This leaves $300 ~ 768 bytes
available for a user program in a minimal 2K byte task.

7

'!HE PIX)S TASK CYCLE

Undefined Ready Suspended

Running

Fran the time a task is coded by a prograrnner until the task is
destroyed, it is in one of four task states. Tasks nove arrong
these states as they are createq., begin execution, are
interrupted, wait for events, and finally canplete their
functions. 'nlese states are defined as follows:

1. Undefined-A task is in this state before it is loaded
into the task list. It can be a block of code in a disk
file or stored in manory.

2. Ready- ~en a task is loaded in memory and entered in
the task list but rDt executing, it is said to be ready.

3. Running- A task is executed When scheduled by the POOS
kernel fran the task list.

4. Suspended- Wlen a task is stopped pending an event
external to the task, it is suspended. A suspended task
noves to the ready or running state When the event occurs.

A task r(~mai.ns undefined until it is made known to the operating
system by rnaking an entry in the task list. Once entered, a task
immediately moves to the ready state Which indicates that it is
ready for execution. When the task is selected for execution by
the scheduler I it Iroves to the run state. It remains in the run
state until the scheduler selects another task or the task
requires external infonnation and suspends itself until the
infonnation is available. The suspended state greatly enhances
overall system perfonnance.

8

I
,
oil

1

.l

,I
]

J

1
I

J
.,
1
'III

1
]

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MULTI-TASKING

Up to 32 independent tasks can reside in marory and share CPU
cycles. Each task contains its own task control block and thus
executes indeperrlantly of any other task. A task control block
consists of buffers, pointers, and a POOS scratch area.

Four parameters are required for any new task generation.
are the following:

'!hese

1. A task priority. The range is fran 255 (highest
priority) to 1 (lowest priority).

2. The task memory requirement in 2K byte increments.

. 3. An input/output port for task console cxmnunication.

4. A task comnand.

Each of the aOOve requirements defaults to a system parameter •
Task priority defaults to the parent task's priority. Default
rnarpry allocation is 32K bytes and default console port is the
p!1.antan port.

If a task comnand is not specified, the new task reverts to the
POOS rconitor. However, if no input is possible (ie. port '" or
input already assigned), then the new task inrnediately kills
itself. This is very useful since tasks automatically kill
themselves as they complete their assignments (rerrove themselves
fran the task list and return "lTlE!TOry to the available memory
pool) •

A task entry in the task list queue consists of a task n1..llTber
designation, parent task nurrber, time interval rnanory page
constant, task control block pointer, and two event registers.
swapping fran one task to the next is done When the task interval
time decrements to zero or during an I/O call to PrXJS. The task
interval timer decrements by one every ten milliseconds.

9

~

~ £ Tak#4

&,
~ Tak#3

Tak#2 -J A2+b2

T8. #1

!my task may spawn another task. Memory for the new task is
all~ted in 2K byte blocks fran a pJOl of available manory. If
no marory is free, the spawning task I s own rnarory is used and the
parent task IS manory is reduced in size by the arrout of manory
all~ted to the new task.

PtoS maintains a marory bit map to indicate Which segments of
mercory are currently in use. Allocation and deall~tion are in
2K byte increments. \lmena task is tenninated, the task IS rnarory
is autanatically deallocated in the rnarory bit map and made
available for use by the other tasks.

"M.llti-user" refers to spawning new tasks for additional
operators. Each new task executes programs or even spawns
additional tasks. Such tasks are generated or tenninated as
needed. Task 0 is referred to as the system task and cannot be
tenninated.

10

T ..
1
1
I
,t ,
1

j

1

1

J

1
]

1
1
I
1
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

POOS CHARACTER I/O

The flow of character data through PJX)S is the rrost visible
function of the operating system. Character buffering or type
ahead assures the user that each keyboard entry is logge1., even
\\hen the application is not looking for characters. Character
output is nonnally through program control (fOlle1. I/O).
HoINever, an interrupt driven output primitive allows maximum data
transfer even though the task itself may be in a ready or
suspende1. state.

Inputs and outputs are through logical fOrt nurri::>ers. A logical
fOrt is bound. to a Ii'1ysical ~ (Universal Asynchronous
Receiver/Transmitter) by the baud fOrt ca:man1s. Onlyone task
can be assigne1. to an input fOrt at anyone time \\hile many tasks
may share the same output port. It is then the responsibility of
each task to coordinate all outputs.

POOS dlaracter inputs cane fran four sources: 1) user netOry;
2) a PJX)S file; 3) a polle1. I/O driver; or 4) a system input port
buffer. The source is dictate1. by input variables wi thin the
task rontrol block. Input variables are the Input Message
Pointer (IMP$ (A6)) , Assigne1. Console Input (ACI$ (A6)), and input
port nurri::>er (PRI'$(A6».

When a request is made by a task for a character and IMP$ (A6) is
nonzero, then a character is retrieve1. fran the mem::>ry location
pointe1. to by IMP$ (A6) • IMP$ (A6) is incremente1. after each
character. This rontinues until a null byte is encountere1., at
\\hich time IMP$ (A6) is set to zero.

If IMP$(A6) is zero and ACI$(A6) is nonzero, then a request is
made to the file manager to read one character fran the file
assigne1. to ACI$ (A6) • The dlaracter then canes fran a disk file
or an I/O device driver. This continues until an error occurs
(such as an END-QE'-FILE) at \\hich time the file is close1. and
ACI$ (A6) is cleare1..
If both IMP$(A6) and ACI$(A6) are zero, then the logical input
port buffer selecte1. by PRI'$ (A6), is checke1. for a character. If
the buffer is enpty, then the task is autanatically suspende1.
until a character interrupt occurs.

11

PDOS CHARACI'ER OUTPUTS

PDOS character outputs are directed to various destinations
according to output variables in the task control block. Output
variables are the output unit (UNT$(A6», spooling unit
(SPU$(A6» ,spooling file ID (SFI$(A6», and output port variables
UIP$ and U2P$. '!he output mit selects the different
destinations. ('!his -is WI' to be confused with disk unit
nunbers) •

When an output primitive is called, the task output unit is ANDed
with the task spooling output unit. If the result is nonzero,
then the character is directed to the file manager and written to
the file specified by SFI$(A6). '!he output unit is then masked
with the canplernent of the spooling unit and passed to the unit 1
and unit 2 processors.

Units 1 and 2 are special output mmbers. Unit 1 is the console
output port assigned \then the task was created. Unit 2 is an
optional output port that is assigned by the user task in
addition to unit L Unit 2 is set by the baud port ccmnands.

If the 1. bit (LSB) is set in the masked output unit, then the
character is directed to port UlP$(A6). Likewise, if the 2. bit
is set in the masked output unit, then the character is output to
the U2P$ (A6) port.

In surrmary, the bit positions of the output unit are used to
direct output to various destinations. t-bre than one destination
can be specified. Bits 1 and 2 are predefined 'according to
UIP$(A6) and U2P$(AG) variables within the task control block.
Other unit bits are used for outputs to files and device drivers.
'!hus, if SPU$(A6)=4 and t.Nr$(AG)=7, then output would be directed
to the file manager via SFI$(A6) and to two ti\RI'S as specified in
UIP$(AG) and U2P$(6).

SPU$ (A6) = 0000 0000 0000 0100

UNT$ (AG) = 0000 0000 0000 0111
III
III

File SFI${AG)
III

,----111
II

Port U2P${A6)---' I
I

Port UIP${A6)----, ,

12

I
J

J

J

J

:1

]

.1

" 1

1
]

I

I

I
I
I
I
I
I
I
I' , I ,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EVENTS

Tasks ccmmmicate by exchanging data through mailboxes.
synchronize with each other through events. Events are
bit flags that are global to all tasks.

Tasks
single

'!here are five types of event flags in PIX>S incllrling hard\\'are,
software, software resetting, system, and local. System events
are further divided into input, timing , driver, and system
resource events. System events are predefined software resetting
events that are set during Pros initialization. Event 128 is
local to each task and is used as a delay event.

1. Events 1 through 7 are hardware events. '!hey correspond
to interrupt levels 1 through 7 of the M::68000 CPU. When a
task suspends itself pending a hardware event, the system
mask should be enabled allowing the interrupt to occur •
Vben the interrupt. does occur, the corresponding event bit
is set, the system mask is raised to block further
interrupts by that level, and a task swap is initialized.
If the current task has not locked itself in the execution
state, then the highest priority ready task is awakened,
swapped in, and begins executing. It is the responsibility
of the awakened task to acknowledge the interrupt (p.lts its
hand down) and then lower the system mask.

2. Events 8 through 63 are software events. '!hey are set
and reset by tasks and not changed by any Pros system
function. A task can suspend itself pending a software
event and then be rescheduled When the event is set. One
task nrust take the responsibility of resetting the event for
the sequence to occur again.

3. Events 64 through 95 are like the nonnal software events
except that PIX>S resets the event Whenever a task suspended
on that event is rescheduled. '!hus, only one task is
rescheduled When the event occurs.

4. Events 96 through 111 correspond to input ports 0 through
15. A task suspends itself on an input event if a request
is made for a character and the buffer is empty. Vbenever a
character o:::mes into an interrupt driven input port buffer,
the corresponding event is set.

5. Events 112 through 115 are tim.i.ng events and are set
autanatically by the PDOS clock m::x:lule according to
intervals defined in the POOS Basic I/O m::x:lule (BIOS). '!hey
are altered at run time by the BFIX utility. Event 112 is
measured in tics, While events 113, 114, and 115 are in
seconds. '!he maximum time interval for event 112 is 497
days. Events 113, 114, and 115 have a maximum interval of
4, 297, 967, 300 seconds or approximately 136 years. A task
suspended on one of these events is regularly scheduled on a
tic or second boundary.

13

6. Events 116 through 127 are for system resource
allocation. Drivers and other utilities requiring ownership
of a system resource synchronize on these events.· These
events are initially set by POOS, indicating the resource is
available. One and only one task at a time is allowed
access to the resource. When the task is finished with the
resource, it must reset the event thus allowing other tasks
to gain access.

7. Event 128 is local to each task. Unlike other events, it
can only be set by a delay primitive (XDEV or DEIAY). It is
automatically reset by the scheduling of a task suspended on
event 128.

Ta. #4
PC)dlon
Monitoring

T_#3
Stepper Motor ~-__
Moy nts

TaR #5
Ulle Controt

Ta. #2
Trllnalrttlon ..
Angle
calcubrtlona

T_#1
u....
Inturtac.

14

ROBOTICS

a2-Coeb+CoeC+2B

'~

"",

I

I
I
]

1
1
I
I

I
'I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'mSK CXMoKNICATION

Many different methods are available for intertask ccmrrunication
in PDOS. ~t involve a mailbox technique Where semaphores are
used to control message traffic. Specially designed marory areas
such as MAn., CCM, and event flags allow high level program
ccmrrunications. PIX>S currently maintains 32 message buffers for
queued message ccmnunications between tasks or console tenninals.
~e sophisticated methods require program arbitrators and
message buffers. A few methods are defined below.

MAIL array

'lhe MAn.. array is a permanent 254 byte I"CIE!IIOry buffer
accessible by assenibly language programs and PIX>S BASIC as
the singly dimensioned array MAn.. [0] through MAn.. [30].
'lhis array is never cleared even during Pros initialization.

CCM array

'lhe CCM array (C!MIon array) is a singly dimensioned array
Which is used by PIX>S BASIC to preserve data during RUN,
NEW, and program dlaining. In addition, CCM is used to pass
and return parameters to assenibly language subroutines. 'lhe
CCM array is defined wi thin each task and is neither
pennanent nor resident at a fixed rnsrory address.

Absolute data novenent

Absolute mem::>ry locations are referenced by using the MEM
functions. 'n1e MEM function noves byte data: MEM-1 noves
\\lOrds: MEML noves long ~rds: and HEMP noves . 8 byte BASIC
variables. HEMP passes data between different memory pages
in a mapped environment or to a page external to the current
task.

Event flags

Event flags are global system mem:>ry bits, oc:::mron to all
tasks. 'n1ey are used in connection with task suspension or
other mailbox functions. Events are discussed in detail in
the previous section.

Message b.lffers

P1X>S maintains 32 64-byte message buffers for intertask
cxmnunication. A message consists of up to 64 bytes plus a
destina.tion task nurrber. More than one message may be sent
to any task. 'n1e messages are retrieved and displayed on
the console tenninal Whenever the destination task issues a
P1X>S prompt. or by executing a Get Task Message primitive
(XGTM). The displayed message indicates the source task
ll\JIri::)er. 'n1e BASIC verbs SENI'M and GE'lM may also be used to
pass data between tasks.

15

Merory Mailbox

'!he utilities AI.OAD and FREE are used to permanently
allocate system rnarory for non-tasking data or program
storage. Merory allocated in this way can be used for
mailbox buffers as well as handshaking semaphores or
assenibly programs.

'J:2.\SK SUSPENSICN

Arr:l task can be suspended pending one or t'NO hardware or software
events. A suspended task does not receive any CPU cycles until
one of the desired events occurs. A task is suspended fran BASIC
by using the WAIT cornnand, or fran an assenibly language program
by the XSUI primitive. A suspended task is indicated in the LIST
TASK (LT) ccmnand by the event rnmber (s) being listed under the
I EVENT I heading.

When one of the events occurs, the task is resCheduled and
resumes execution. If the event is a hardware interrupt (events
1 through 7) , then the corresponding event is set and an
i.mnediate swap occurs. If a high priority task is waiting for
the event, it is .imnediatelY rescheduled, overriding any current
task (unless locked). If the event is a software event (8
through 128) , then the task begins execution during the nonnal
swapping function of PJX>S.

PJX>S supports user interrupt routines for levels 1, 2, and 3 or
as defined by the Basic I/O (BIOS) rnXlule.

'!he PIX)S file management rnXlule supports sequential, randan, read
only, and shared access to named files on a secondary storage
device. '!hese low overhead file primitives use a linked, randcm
access structure and a logical sector bit map for allocation of
secondary storage. No file canpaction is ever required. Files
are time stamped with date of creation and last update. Up to 32
files can be si.mul.taneously opened. Canplete device independence
is achieved through read and write logical sector primitives.

16

I
I
1
!I

1
I
I
11

J
1
1
I
I
1
1

I
I
I
I
I
J
J

I
I
I
'I
I
I
I
I : '

I
I'
I
I
I
I
I
I
I
I
II
, J

,I
I
I
I

POOS FILE Sl'ORAGE

A file is a name:i string of characters on a secondary storage
device. A group of file names is associated together in a file
directory. File directories are referenced by a disk mmber.
'!his nurriber is logically associated with a :P:1ysical seconjary
storage device by the read/write sector primitives. All data
transfers to and fran a disk nurriber are blocked into 256 byte
records called sectors.

A file directory entry contains the file name, directory level,
the nurriber of sectors allocated, the nurriber of bytes used , a
start sector nurriber and dates of creation and last update. A
file is opened for sequential, randan, shared randan, or read
only access. A file type such as 'DR' designates the file to be
a system I/O driver. A driver cons:lsts of up to 252 bytes of
position independent binary code. It is loaded into the channel
buffer \'benever opened. '!he buffer then becanes an assanbly
program that is executed \'ben referenced by I/O calls.

A sector bit map is maintained on each disk nurriber. Associated
with each sector on the disk is a bit Which indicates if the
sector is allocated or free. Using this bit map, the file
manager allocates (sets to 1) and deallocates (sets to 0) sectors
\'ben creating, expar:ding, and deleting files. Bad sectors are
pernanently allocated. W:1en a file is first defined, one sector
is initially allocated to that file and hence, the minimum file
size is one sector.

A PDOS file is accessed through an I/O channel called a file
slot. Each file slot consists of a 32 byte status area and an
associated 256 byte sector buffer. Data novement is always to
and fran the sector buffer according to a file pointer maintained
in the status area. Any reference to data puts ide the sector
buffer requires the buffer to be written to the disk (if it was
altered) and the new sector to be read into the buffer. '!he file
manager maintains current file information in the file slot
status area such as the file pointer, current sector in marory,
END-OF-FILE sector nuniber, buffer in marory flag, and other
critical disk parameters required for program-file interaction.

Up to 32 files may be open at a time. Keeping all sector buffers
resident would require prd1ibiti ve arrounts of system narory.
'!herefore, only six sector buffers are actually marory resident
at a time. '!he file manager allocates these buffers to the nost
recently accessed file slots. Every time a file slot accesses
data within its sector buffer, PDOS checks to see if the sector
is currently in narory. - If it is, the file slot nurrber is
bubbled to the top of the nost recently accessed queue. If the
buffer has been previously rolled out to disk, then the nost
recently accessed queue is rolled down and the new file slot
nurriber is placed on top. The file slot nurriber rolled out the
bottan references the fourth last accessed buffer Which is then
written out to the disk. The resulting free buffer is then
allocated to the calling file slot and the fonner data restored.

17

Files requiring frequent access generally have
times than those files whiCh are seldom accessed.
file slots have regular access to buffer data.

faster access
However, all

PDOS allocates disk storage to files in sector increments. All
sectors are roth forward and backward linked. This facilitates
the allocation and deal location of sectors as well as randan or
sequential rrovement through the file.

PDOS files are accessed in either sequential or random access
mode. Essentially, the only difference between the two modes is
how the END-OF-FILE fX)inters are handled When the file is closed.
If a file has been altered, sequential mode updates the EDF
fX)inter in the disk file directory according to the current file
byte fX)inter, Whereas the randam mode only updates the EDF
fX)inter if the file has been extended.

'&0 additional variations of the random access mode allow for
shared file and read only file access. A file whiCh has been
opened for shared access can be referenced by two or rrore
different tasks at the same time. Only one file slot and one
file fX)inter are used no matter how many tasks open the file.
Hence it is the resfX)nsibility of eaCh user task to ensure data
integrity by using the lock file or lock process cc:mnands. The
file must be closed by all tasks When the processing is
completed.

A read only random access to a file is independent of any other
access to that file. A new file slot is always allocated When
the file is read only opened and a write to the file is not
permitted.

FILE NAMES

PDOS file names consist of an alpha Character (A-Z or a-z)
follO\\ed by up to seven additional Characters. An optional one
to three Character extension is seperated fran the file name by a
colon (:). other optional parameters include a semi-colon (;)
follO\\ed by a file directory level and a slash U) followed by a
disk mnnber. The file directory level is a nunber ranging from 0
to 255. The disk nuniber ranges from 0 to 255.

A file type is a system I/O device driver that has entry fX)ints
directly into the Channel buffer for OPEN, CLO.SE, READ, WRITE,
and POSITION cc:mnands.

If the file name is proceded by a I # I, the file is created (if
undefined) on all open com:nands except for read only open. When
passing a fi.le name to a system primitive, the Character string
begins on a byte roundary and is terminated with a null.

Special Characters such as a period or a space may be used in
file 11alnes. However I suCh Characters may restrict their access.
'nle com:nand line interpreter uses spaces and periods for passing
a conrnand line.

18

I

1
J

1
]

1
I
1

1
1
1
1
I
I
J

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DIREX:TORY LEVELS

Each PDC\S disk directory is partitioned mto 256 directory
levels. Each file resides on a specific level, Which facilitates
selected directory listings. You might put system cc:mnands an
level 0, procedure files on levell, object files on level 10,
listing files on level 11, arrl source files on level 20.

PIX>S operates in a soft or hard partition node. In soft
partition node, all files are global with respect to a disk
directory and can be accessed without referencing the file level.
File names are rX>t lU'lique to a level, hence the same file name
cannot be used twice in anyone disk directory.

In hard partition node, each directory level is unique with the
exception of level 0 Which remains global. Duplicate file names
can exist on the same disk on different levels.

A current directory level is maintained and used as the default
level in defining a file or listing the directory When no
directory level is specified.

DISK NUMBERS

A disk nurcber is used to reference a Physical secondary storage
device arrl facilitates hardware indepen::lence. All data transfers
to and fran a disk are blocked onto 256 byte records called
sectors.

'!he range of disk n\.lI'lbers is fran 0 to 255. Several disk nunbers
may share the same secondary storage device. Each disk can have
a maximum of 65282 sectors or 16,711,680 ~s.

A default disk mmber is assigned to each executing task and
stored in the task control block. '!his disk nunt>er is referred
to as the system disk arrl any file name Which does rX>t
specifically reference a disk nunber, defaults to this parameter.

Sane utility programs make use of the system disk for temp:>rary
file storage. By not specifying the disk parameter, the program
becx:mes device independent and defaults to the current system
disk.

W"ien a task is created, the parent task's disk nurcber and
directory level are copied into the task control block of the new
task.

19

Associated with each file is a file attribute. File attributes
consist of a file type, storage method, and protection flags.
'!hese parameters are maintained in the file directory and used by
the 1?IX>S nonitor and file manager.

'!he file type is used by the PJX)S nonitor in processing the file.
For instance, a file typed as 'EX' (a POOS BASIC file), invokes
the BASIC interpreter, loads the file, and begins execution with
the first line mmber. A file typed as I DB I (a 68000 object
ncdule), is passed to a relocating loader and loaded into marory.
If a start address tag is incltded at the end of the file, the
ncdule is imnediatelyexecuted.

'!he following are legal POOS file types:

AC - Assign console. A file typed I AC I specifies to the
POOS nonitor that all subsequent requests for console
Character inputs are intercepted and the character obtained
fonn the assigned file.

BN - Binary file. A I BN I file type has no significance to
POOS but aids in file classification.

OB - 68000 tag object file. All assembly cx:mnands are
typed as cbject files. 'Ibis directs the PJX)S Il'OIlitor to
load the file into marory and execute the program.

SY - System file. A ISY I file is generated fran an lOBI
file. M:!68000 d:>ject is condensed into a smaller and faster
loading fonnat by the I SYFILE I utility.

BX - Pros BASIC binary file. A BASIC program stored using
the I SAVES I cx:mnand is written to a file in pseudo-source
token fonnat. Such a file requires less l11E!tDry than the
ASCII LIST fonnat and loads much faster. Subsequent
reference to the file name· via the POOS Il'OIlitor
autanatically restores the tokens for the BS4ASIC
interpreter and begins execution.

EX - POOS BASIC file. A BASIC program stored using the
I SAVE I comna.nd is written to a file in ASCII or LIST fonnat.
SUbsequent file reference via the PJ:X)S nonitor autcma.tically
causes the BASIC interpreter to load the file and begin
execution.

TX - ASCII text file. A 'TX I type classifies a file as
containing ASCII character text. Reference to the file name
via the 1?IX>S nonitor causes the file to be listed to your
console.

DR - I/O driver. A 'DR' file type indicates that the file
data is an I/O driver program and is executed \\hen
referenced •

20

I
I
1
1
'1

I
]

'1

1
]

]

]

]

I
1
I
],

J:

I
I
I
I
I
I
I
'I
I
I
I
I
I
I
I
I
I
I
I
1,'
I ,

'I·· ' .

. I

I
I

A POOS file is physically stored in contiglDus or non-cx:mtigmus
sectors deperrling upon how it was initially created. ContiglDUS
files have randan access times far superior to non-contiglDus
files. A contiglDus file is indicated in the directory listing
by the letter I C I following the file type.

File protection flags detennine Which oc::mnands are legal \<\hen
accessing the file. A file can be deleted and/or write
protected.

File storage method and protection flags are summarized as
follCYWS:

C - ContiglDus file. A contigmus file is organized on the
disk with all sectors logica~ly sequential and ordered.
Random access in a contiglDus file is much faster than in a
non-cx:mtiglDus file since the forward/backward links are not
required for positioning.

* - Delete protect. A file Which has one asterisk as an
attribute cannot be deleted frcm the disk until the
attribute has been changed.

** - Delete and write protect. A file \<\hich has two
asterisks as an attribute cannot be deleted nor written to.
Hence READ, roSITICN, REWIND, and crDSE are the only legal
file operations.

21

FlOATIN3 PCIN!' MJDULE

'!he Pros floating point rro::iule is a single accumulator, IBM
excess 64 fonnat, multi-user floating point processor. It
includes all the necessary routines to write assercd:>ly language
floating point software and supports the PJX>S BASIC interpreter.

Floating point carmands are referenced using the F-line ($FOO0)
exception instructions of the 68000. Parameters are passed in
address register A0.

Ccmnands include the following:

Synibol Value Description

FWD. $FOO0 = wad FPA
FSRD. $FOO2 = Store FPA
FADD. $FOO4 = Add to FPA
FSUB. $F006 = SUbtract fran FPA
FMI.1L. $F000 = MIl tiply FPA
FDIV. $FOOA = Divide into FPA
FSCL. $FOOC = Scale FPA
FCLR. $FOOE = Clear FPA
FFLT. $F010 = Float FPA
FNRM. $F012 = Normalize FPA
mEG. $F014 = Negate FPA
FABS. $F016 = Absolute value of FPA
FPST. $F018 = Read FPA status
ETIC. $F0lA = Load clock TICS.
FINV. $F01C = Invert FPA
FELD. $F01E = wad error register address

PDOS RESIDENT M:NITOR a:Mt1ANDS

AF-Append file GO-Execute RD-RAM disk
AM-Available mem::>ry HE-Help RN-Rename file
BP-Baud port ID-Init date and time RS-Reset
CF-Copy file IF--canditional SA-Set file attributes
cr-create task IM-Interrupt mask SF-Show file
DF-Define file KM-Kill message SM-Serxi task message
DL-Delete file Icr'-Kill task SP-Disk usage
IM-Delete multiple ID-wad file SU-Spool unit
Dr-Display time IS-List directory SY-System disk
EV-Events LT-List tasks 'IM-Transparent rro::ie
EX-Basic LV-Directory level TP-Task priority
EM-Free me:rory MF-Make file UN-output unit
FS-File slots PB-Debugger ZM-Zero mem::>ry
GM--Get mem:>ry RC-Reset console

22

I
1
I
I
1
I
]

I

j

]

I

1
1
]

I
1
I;
1
I

I
I
I: , ,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

AF <filel>,<file2>
AM

ill <file>
IS {<list>}
LT BP <prtt>,<rat>{,<typ>,<bas>}

CF <filel>,<file2> LV {<level>}
MF {<file>}
PB

CT <cmd>,<sze>,<prity>,<prt>
OF <file>{,<size>}
DL <file> RC
Il1 <filelist>
or

RD{<unt>, <sze>, <adr>}
RN <filel>,<file2>

EV {<event>}
EX

RS {<disk>}
S1\ <file> { , <attribute> }
SF £-} <file>
SM{<task#:>,<message>}
SP {<disk>}

FM <kbyt.es>
FS
G1 {<kbytes>}
00 {<a::1dress>}
HE {<list>}

SU <unit>{,<file>}
SY {<disk>}

ID
IF <strl>{=<str2>}
IM <mask>

'IM {<p::>rt>} { , <break> }
TP {<task#:>,} <proirity>
UN <unit>

KM <task#:> ZM
Icr' {-}<task#:>

PIX)S urILITIES
A PInS utility is an auxiliary program that resides on the disk.
Written in either assembly language or BASIC, PInS utilities are
run by simply entering the name of the desired utility. Of
oourse, the utility must be a file on the disk with the
appropriate attributes. Following is a list and a brief
description of eaCh utility.

PIX)S* urILITIES

MASM
MBACK
BXREF
<XMP
~TLE

MlDMAP
MIDUMP
MDISCAT
MINAME
MFIUMP
FFRMT
MFS1\VE
MINIT
MIDIR
MIEVEL
LIBGEN
QLINK
M)RDIR
SYFILE
MI'ERM
Ml'RANS
RENUMBER
UPI'IME

68000 assembler.
Disk backup.
Basic cross reference.
Compare ASCII files.
Changes attributes and levels of selected files.
Disk diagnostic. Reads files by links.
Disk sector dump and alter.
catologues canbined directories of multiple disks.
Renames pros disks.
Output logical dump of pros files.
Fonnat logical unit
Restore files fran links.
Initialize PIX)S disk.
Wild card list directory.
Short listing by level.
create user rro:iule library.
Link relocatable object.
Alphabetizes and canpresses disk directory.
Generate SY file fram aB.
Set terminal cursor functions for task only.
Selective file transfers.
Renmribers BASIC programs.
System uptime

23

PJX)S ASSEMBLY PRIMITIVES

PDOS assembly primitives are assembly language system calls to
POOS. They consist of one word A-line instructions (words with
the first nibble equal to hexadecimal I A I). POOS calls return
results in the 68000 status register as well as regular user
registers.

POOS calls are divided into three categories; namely, 1) system,
2) console I/O, 3) files.

SYSTEM CALLS

XBUG-Debug call XLER-IDad error register
XCBD-Convert binary to decimal XI.Jcr'-IDck task
XCBH--Convert binary to hex XLSR-IDad status register
XCBM-COnvert to decimal with message XRLM-Dump registers
XCBX--Convert to decimal in buffer XRDI'-Read date
XCDB--Convert decimal to binary XRIM-Read time
XCHX-COnvert binary to hex in dec.imalXRI'S-Read task status
XCI'B--Create task block XSEF-Set event flag
XDEV-Delay set/reset event XSIM-Send task message
XDTV-Define trap vectors XSTP-Set/read task priority
XERR-Return error to do nonitor XSUI-Suspend until interrupt
XEXC-Execute PDOS call D7. W XSUP-Enter supervisor rrcrle
XEXT-Exit to nonitor XSWP-9Nap to next task
XFTD-Fiw time and date iITEF-Test event flag
XFUM-Free user merrory xuur-Unpack date
XGNP-Get next parameter XULT-Unlock task
XG'IM-Get task message XU'lM-Unpack time
XGUM-Get user rne:nory XWDI'-Write date
XEcr'B-Kill task XWlM-Write time
XKTM-Kill task message

())NSOLE I/O PRIMITIVES

XBCP-Baud console port
XCBC--check for break. character
XCBP--check for break. or pause

Xcrs--Clear screen
XGCC--Get character conditional
XGCR-Get character
XGLB-Get line in buffer
XGIM-Get line in nonitor buffer

XGLU-Get line in user buffer
XGML-Get IT.errory limits
XPBC-Put buffer to console
XPCC-Put character(s) to console

24

XPCL-Put CRLF
XPDC-Put data to console
XPEM-Put encoded message to

console
XPLC-Put line to console
XP~-Put message to console
XPSC-Position cursor
XPSP-Put space to console
XRCP-Read port cursor

position
XRPS-Read port status
XSPF-Set port flag
XTAB-Tab to column

I

/

I I,

I
I
I
I
]

I
:J

dI-

1
I
I
1
I
I
]

I
1
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FILE PRIMITIVES

XAPF-Append file XRDE-Read next directory entry
XBFL-Build file directory list XRIN-Read directory entry

by name
XCFA--close file with attribute XRFA-Read file attributes
XOiF--chain cx:mnand XRI.F-Read line fran file
XCLF--close file XRNF-Renarne file
XCpy--copy file ~en randan read only
XDFL-Define file XROP--open randan
XDLF-Delete file XRSE-Read sector
XFBF-Flush buffers XRST-Reset disk
XFFN-Fix file name XRSZ-Read sector zero
XISE-Initialize sector XRWF-Rewind file
XLDF-Load file XSOP--OPen sequential
XLFN-Look for name in file slots XSZF-Get disk file
XLKF-I.Dck file XULF-Unlock file
XI.Sr-List file directory XWBF-Write bytes fran file
XNOP--open non-exclusive randan XWFA-Write file attributes
XPSF-Position file XWIF-Write line fran file
XRBF-Read bytes fran file XWSE-Write sector
XRCN-Reset console inputs :xz:FIr-Zero file

Program Example for the PIX>S 68000 Asserribler:

srART MJVOO.L #0,DI GET DEFAULT
XPM: MESI · CXJTPl1I' HEADER I

XGllJ · GET REPLY I

BLS. L STRl'02 USE DEFAULT
XCDB OONVERI', O. K. ?

BGI'.S STRl'02 YES
XPM: ERMI NO, REPORI' ERROR
BRA.S srART TRYA~

*
*
STRl'01 M)VE.L DI,D5 · SAVE VALUE I
MESI IX:.B $00, $0A, 'AN5WER = 1,0
ERMl IX:.B $00, $0A, I INVALID ! I ,0

EVEN

25

I
1
1
I
I
1
:1

]

.b

1
:1

I
1
1

]

1
I
I
I
I

I
I
I'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PIXlS PARALLEL PASCAL

'!he following are sane of the ma.jor features of p:oo.s Pascal:

Pros Pascal runs on all 68000 Pros systems.

'!he PJX)S Pascal carpiler generates assembler text (n::>t p-exxie)

Pros Pascal applications are designed for process control,
instrumentation, autanation, ro1::x:>tics, CAD/CN!J., am real-time
operations.

PDOS Pascal performs both single and double precision
operations for real numbers. Single precision is accurate
to 6.5 decimal places and double precision is accurate to
15.5

PDOS Pascal allows integer length to be declared to one,
t\VO, or four bytes. '!his aids in faster calculation.

PDOS Pascal is inherently m::rlular and aids the programner in
designing block-structured code.

PDOS Pascal has the capacity for virtually unlimited
concurrent tasks.

pros Pascal procedures can be designated as EXTERNAL and
compiled seperately. This is especially important for
carplex software development.

PDOS Pascal
programmers.
prograrrming.

is geared towards experienced Pascal
Type checking is relaxed to allow for systems

DESCRIPTlOO :

p:oo.s PASCAL is a m::rlern, multiple-pass, optimizing compiler that
gererates assembler text for the MC68000 microprocessor
instruction set. The PJX)S PASCAL compiler implements a superset
of the Pascal language defined by Jensen and Wirth that incltrles
extentions for writing multiple task programs for concurrent
programning. This capability makes p:oo.s PASCAL ideal for process
control, instrumentation, automation, ro1::x:>tics, CAD / CN!J., and
numerous other applications requiring real-time response and
interrupt handling.

27

POOS PASCAL is designed to enhance the PDOS operating system as a
resident developnent tool for real-time applications. 'nle source
code text output by the compiler can be either edited or
assembled into object code for linking or rurming under PDOS.
All compiler output is R01able for stand-alone applications. 'nle
system inclwes the compiler, code generator, run-time library in
object fonn, utilities, ani sources to selected run-time library
rrodules.

PDOS PASCAL was specifically designed to handle your real-time
processing needs. 'nle extensions make POOS PASCAL much nore than
just an ordinary general-p.JrpOSe software product, by providing
you with additional language constructs that are useful for
writing multiple-task programs and handling system interrupts.

'nle POOS PASCAL language structure lets you seperately define
each process or task and interrupt service to be handled. 'nle
language structure also provides inter-process c:xmnun.ication
through the use of an additional data type called SIGNAL. With
SIGNAL, task synchronization is possible via user-written
semaphores.

POOS PASCAL was designed to be rrodular, so that applications can
be developed one piece at a time. System libraries can be built
as rrodules are created. Interface to the library rrodules can be
via PDOS PASCAL IDcr'ERNAL calls. Library rrodules are then loaded
at system link time. In addition, READ and WRITE have been
extended to wurk with . procedures •

FtlNCl'ICEAL DESCRIPl'ION:

PASCAL DATA TYPES. POOS PASCAL supports Integer, Real, Boolean,
and Char data types. Additionally, a data type can be defined as
a subrange of an ordinary type (integer, 1:xx>lean, char, or
enumeration type) in \</hich the least and largest values of the
subrange are identified. An Array type is a structure consisting
of a fixed number of ccmponents all of the same type, called the
ccmponent type, in \</hich the elements of the array are designated
in inCUcies. The array-type definition specifies the component
type and the index type. Conp::>nent type may be any type
incltrling another standard type.

'nle record data type consists of a fixed number of ccmp:>nents
that can be of different types. For each ccmponent, called a
field, the record definition specifies its type and identifier.
Set type defines the range of values that is the p::>'.Nerset of a
base type, W1ich can be integer, 1:xx>lean, char, or subrange or
any enumeration type. File type defines a structure consisting
of a sequence of ccmponents all of the same type. 'nle nurri::>er of
ccmponents (length) of the file is not fixed by the file
definition.

28

I
I
1
I
]

1
]

i
1
1

J

1
I
:1

1
]

1
1
1
1
I
1
I

I
I· I I '

I
I
.1, '. I ,

I
I
I
I
I
I
I
I
I
I:
I
I
I
I
I
I
I
I

PASCAL EXTENTICNS. The parallel-processing features of IDIXJI.AR
have been incllrled in PJX>S PASCAL. They incltrle PROCESS, SEND,
and WAIT, and the data type SIGNAL. READ and WRITE procedures
can accept as their first parameter the name of a user-written
procedure. Input or output is directed through this procedure
instead of to a file.

Procedures can be designated E>cr'ERNAL, canpiled by themselves and
added to the program at link time. The 'WOrd-syrribol ORIGIN is
used to locate a variable at a fixed merrory location for
interrogating hardware-device registers. XOR, exclusive OR, is
present and the WI', OR, AND, and XDR operators have been extended
to operate on integers as well as baoleans.

'!he CASE statement has an OI'HERWISE clause, the CLOSE procedure
closes a file, and a SEEK procedure exists, allowing randan
access to file elements. The FlDAT function (converting integer
to real) is available explicitly. RESEr and REWRITE procedures
have optional second, third and fourth arguments to specify the
name and size of a file.

Declaration of a procedure or function parameter must incltrle a
durrmy parameter list. This feature, from the ISO draft for
PASCAL, allows the compiler to check the types of the parameters
When the fonnal procedure is called.

Underscore II II may be used within an identifier for clarity.
However, it -is not considered part of the identifier. For
example, FIRST CNE is recognized as the same as FIRSTONE.
Underscore may not appear in a 'WOrd-syrribol, e.g. , A NO is not
recognized as AND.

'!he declaration sections for labels, constants, types, and
variables may occur in any order. They must precede procedure
declarations. Every name or label must be declared before it is
used.

PASCAL RESTRICrIONS. The PACK, UNPACK, and PAGE procedures are
not implemented. The transcedental math functions SIN, CDS,
ARCI'AN, IN, and EXP and SQRI' are not recognized by the compiler.
Pascal source-code versions of these functions are provided and
can be included in the user I s pr03Tam. The NEW and DISPOSE
procedures do not use variant tag fields. Standard functions and
procedures cannot be \.lsed as function or procedure parameters.
INPUT and OOTPUT are not predefined as the default input and
output files, but rather to and from the system tenninal.
Single-pass scope rules are followed. Type checking of subranges
is relaxed. Confonnant array parameters are not implemented.

29

IMPLEMENI'ATICN LIMITS. Identifiers are recognized by their first
10 characters; the rest are scanned but ignored. Labels consist
of up to 4 digits. lower-case letters and the corresponding
upper-case letters are recognized as the same characters. I.o.Ner
case letters in strings and conments are untouched. User-defined
entmteration types may not have rrore than 256 members. Lines of
source text rrrust be less than 132 characters long. Strings are
limited to 00 characters and Sets can contain a maxllrn.m\ of 96
elanents. WITH statanents can be nested up to 12 deep.

Pros PASCAL Example Program:

program RAmFAIL (input, output) ;
{ taken fran PASCAL PROGRAMMING STROCTURES }
{ FOR MJIOROlA MICROPROCESSORS }
{ GEORGE W. CHERRY }

type
RainfallTY.Pe = array[1 •• 12] of real;

var
Month : 1 •• 12;
Rainfall : Rainfall Type;
Sum,Average : real;

procedure SortRainfall;
begin

begin

writeln ('SortRainfall')
end;

Sum :=0;
writeln: {new line }
writelni
for Month :=1 to 12 Cb

begin
write('Enter rainfall for rronth' ,Month: 3 I

read(Rainfall[Month]);
write(CHR(16#0D»;
write ('
write(CHR(16#0D)};
Sum := Sum + Rainfall[rronth]

end;
write1n;
write1n;
Average := Sum/12;
write1n(''!he rronthly average is ',Average);
writeln;
wri teln (I The deviation fran the average for') i

for Month :=1 to 12 do

. ') . . ,

wri teln (, llOl1th ',Month: 3, I

Rainfall[Month] - Average);
SortRainfall

end.

30

I
,I
I
I
'1
1
J
]

1
'1

1 ,
1

1

1
I
]

'h
]

1
]

I
1
]'

1
JI

;1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

68000 PIX>S BASIC

FFATURES

- Meaningful, unlimited length variable names

- Mll tiple line , recursive functions

- Local function variables

- M.llti-dimensioned arrays

- Extensive line editing ccmnands

- Fast 64-bit floating point arithmetic

- Context oriented string ccmnands

- Full disk file interface ccmnands

- Transfers and subroutine calls to labels

- Standalone run m:::rlule support

- No 64K byte1::oundary restrictions

- Asserribly language loader and linkage

- Variable, transfer, and execution trace

- Program chaining

-Formatted print commands

- Intertask carmunication arrays

- Logical and Bcolean operators

- Time and date corrmands

- Set and test event carrnands

- SUspend task carmand

31

DESCRIPrICN :

Microcatplter interpreters are generally slow and not canpeteti ve
in perfonnance with similar canpilers. Despite this
disadvantage, BASIC interpreters have been implemented on alrrost
every rnicrocanp..1ter and are widely used for business, scientific,
and personal canp.lter applications. '!his wide acceptance is due
mainly to the interactive nature of interpreters.

'lhe PDOS BASIC interpreter canbines canpiler perfonnance with the
convenience of an interpreter in a unique approach to program
developement. BASIC canmands are parsed into executable tokens
during program entry and not at execution time. Hence, program
lines do not require needless, time consuming recursive parsing
every time they are executed. 'lhe BASIC interpreter executes as
fast as any threaded code canpiler.

Program develOIXIlE!Ilt time is greatly reduced due to the
interactive nature of PIX>S BASIC. A program can be interrupted,
variables examined and Changed, program lines altered and added,
trace parameters set, and then execution continued. r.t::>st
canmands can be executed directly fran the keyboard.

Program labels and multi-lined functions enhance the structured
design and readability of a user program. Transfers can be made
to meaningful labels rather than just to line nunbers. Variable
names can be of any length rather than the regular one or t'NO
Character names found in other BASICs. Local variables within
functions improve program integrity.

FUNCTI<EAL DESCRIPl'ICN:

sr.AND.l\RD mRIMOUTH BASIC <X'MMANDS. POOS BASIC supports ltDSt
canmands conm:mly found in BASIC interpreters. IE!' variable
assigmnent, roR/NIDcr' loops, IF /'IHEN statements, GOTO/GOSUB/RETURN
transfers, and RFAD/Di\TA program statements are standard. All
standard operators (+, -, *, /, etc.) and system functions (WAD,
SAVE, RUN, NEW, etc.) are incltrled.

BASIC ENHANCEMENI'S. In addition to standard BASIC canmands, PIX>S
BASIC allows multi-dirnensioned arrays. Array sizes are not
limited to 64K bytes. Variable names can be of any length. 'lhe
ELSE statement canplements THEN. SUbroutine calls can be by name
as well as by line n.tJl'li)er. A program can be listed according to
token storage so that exact execution order can be verified. Bit
and address functions give user programs control over variable
storage and fonnats.

BASIC FUNCTICNS. POOS BASIC functions are recursive and can be
either single or multi-lined. Up to seven local arguments can be
passed to the function and other variables can also be declared
as local.

32

I
1
I
1
]

1
1
]

J
I

.J

]

1
I
I
I
]

~

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
I

STRING OPERATIONS. For speed and oonvenience, strings are
oontext orientated. Variable data can be interpreted as an
integer, a floating point nurci::>er, or a string of ASCII
characters. Only the oontext in Which a variable is used
dictates how the data is to be treated. Ccmnand functions of
string assignment, ooncatenation, deletion, insertion, length,
search, replacement, extraction, and numeric oonversion are
incl1.rled.

ASSEMBLY IANGUAGE SUPPORT. Assanbly language support is an
inp:>rtant feature found in PJX>S MSIC. Assembly routines, either
loaded fran disk or generated fran mTA statements, are executed
fran within MSIC variables. 'nle subroutine linkage is well
defined and parameter passing, using integers, is simple. 'nle
EXTERNAL comnand further simplifies the linkage process. New
meaningful verbs can be added to the MSIC ccmnand list and
external routines are called by BASIC Whenever the verb is used.

PROGRAM DEBU3GING. A single step feature in PJX>S BASIC allows a
user program to be executed a single line at a time. All
assignments can be displayed and all program transfers indicated.
Additionally, selected variables can be tagged to display
Whenever altered. A program can be interrupted and oontinued
after examining and even altering program lines and variables. A
program line can be displayed for editing without having to
either retype the line or enter a special edit mode.

INTER-TASK CXM1WICATICN. BASIC program tasks can cxmmunicate
with other tasks using events or mailboxes. A special MAIL array
is global to all tasks and can be used for sending and recieving
messages. Event ccmnands allow BASIC _ programs to synchronize
with other tasks. A GIDBAL comnand allows many BASIC programs to
share the same variables.

REAL-TIME SUPPORT. Special BASIC ccmnands have been added to
suspend a program While waiting for a software or hardware event.
Time and date parameters are available as well as delta time
functions. Timeout events may be incl1.rled to prevent system
lockouts.

FILE MANAGEMENI'. A full canplement of file ccmnands is supported
by PDOS BASIC. 'nlese incl1.rle open, read-cnly open, randcm open,
and shared random open, define, delete, reset, rename, read,

_ write, position, lock, unlock, load, and save. Also, a BASIC
program can be saved in token fonn for extremely fast loading.

srANDhlDNE RUN-TIME SUPPORT. To generate a RCMable, standalone
execution module, a debugged BASIC program can be linked to the
PIX)S run-time kernel, along with other tasks and support
routines. A 32-bi t floating point version of the BASIC module
can be selected for a further reduction in execution time and
rne:rory size.

33

SYSTEM FUNCI'IONS AND OPERATORS. logical, arithmetic, and boolean
operators are all available in PDOS BASIC. System functions
allow various execution parameters to be examined and changed
including input and output ports, merrcry limits, stack sizes,
etc.

Example Program for PDOS BASIC

LIST

100 PRINT : INPUT "DISTANCE=":X

110 INPUT "MUZZLE VELOCITY=" iV

120 T=FNS[0,~ 1J

130 IF T<0: GOTO 100

140 PRINT "ELEVATICN IS":T*180/3.141592654:

150 PRINT " DEGREES"

160 PRINT xl (CDS[TJ*V) :" SEC<E>S OF FLIGHI'''

170 ooro 100

500 DEFN FNA[AJ=-9.8*X/(V*COS[AJ)+2*V*SIN[AJ

600 FOR I=l 'ID 20

620 II=(El+E2)/2: FNS=II

630 IF FNA[IIJ*FNA[E1J<=0: E2=II: ooro 670

640 IF FNA[IIJ*FNA[E2J>0

650 THEN PRINT "N) SOIDrION": FNS=-1: FNEND

660 ELSE El=II

670 NIDcr' I

680 FNEND

34

1
1
fI,
I

1
]

I
1
1
I
I'
I

II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Dear Customer,

While FORCE Computers has achieved a very high

standard of quality in our products and

documentation, we continually seek suggestions

for new improvements. We would appreciate any

feedback you care to offer.

Please use the attached "PRODUCT ERROR REPORT"

form for your comments and return it to one of

our FORCE Computers offices.

Sincerely,

FORCE Computers.

)
I
1
]
1
I

1
J

1
I
I
I
I
J

I
I
1
I
I

'I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PRO D U C T ERR 0 R REP 0 R T

HARDWARE/SOFTWARE/SYSTEMS

PRODUCT

SERIAL NO.

DATE OF PURCHASE

ORIGINATOR

COMPANY

ADDRESS

DATE

TELEPHONE (

CONTACT

AFFECTED PRODUCT:

AFFECTED DOCUMENTATION:

ERROR DESCRIPTION :

SEND TO :

FORCE Computers Inc.
Marketing
727 University Avenue
Los Gatos, CA 95030
U.S.A.

EXT

SOFTWARE

SOFTWARE

FORCE Computers GmbH
Marketing
Daimlerstrasse 9
8012 Ottobrunn/Munich
West Germany

This box to be
completed by FORCE

DATE :

PR#

ACTION BY :

Engineering
Marketing
Production

HARDWARE

HARDWARE

SYSTEM

SYSTEM

FORCE Computers FRANCE
r-~arketing
11, rue Casteja
92100 Boulogne
France

I
I
I
I
]

1

1
I
]

I

J

I
1
]

]

1
I
1
I
I

, I

