PDOS-C

C-COMPILER
PROGRAMMERS REFERENCE
MANUAL
Third Edition
November 1986

PART NO. 800041

¢ FORCE COMPUTERS Inc./GmbH
All Rights Reserved

P/N 99! -

This document shall not be duplicated, nor its contents used
for any purpose, unless express permission has been granfed.

Copyright by FORCE Computers®

e

January 9, 1987

PDOS C 5.0e
UPDATE

Please insert the attached corrected pages in your PDOS C
Reference Manual (3-110 and 3-111 -- the last two arguments

in the parameter list of xwfp were swapped).

MASM, QLINK and MLIB have been updated to be consistent with
the new PDOS 3.2a release.

The files XLIB:SRC and XLIB:LIB have been fixed to correct
the xwfp error on return as well as the xcbe and xcbp error
statuses as noted on page 8 of Vol. 2 No. 1 of the PDOS Tips
and Technical Notes.

The SYRAM:H and TCB:H files were removed from STDLIB:SRC
since they were already on the disk.

C:BUG has been updated to note current 4status for this
release.

‘\x/

N OTE

The information in this document has been carefully checked and
is believed to be entirely reliable. FORCE COMPUTERS makes no
warranty of any kind with regard to the material in this
document, and assumes no responsibility for any errors that may
appear in this document. FORCE COMPUTERS reserves the right to
make changes without notice to this, or any of its products, to
improve reliability, performance or design.

FORCE COMPUTERS assumes no responsibility for the use of any
circuitry other than circuitry which is part of a product of
FORCE COMPUTERS GmbH/Inc.

FORCE COMPUTERS does not convey to the purchaser of the product
described herein any license under the patent rights of FORCE
COMPUTERS GmbH/Inc. nor the rights of others.

FORCE Computers Inc.
727 University Avenue
Los Gatos, CA 95038
U.S.A.

Phone : (408) 354 34 10
Telex : 172465
FAX : (498) 395 77 18

FORCE COMPUTERS GmbH
Daimlerstrasse 9

D-8@12 Ottobrunn/Munich
West-Germany

Phone : (P89%)6 @99 20 33
Telex : 5 24 190 forc-d
FAX : (@ 89)6 @9 77 93

FORCE COMPUTERS FRANCE Sarl
11, rue Casteja

921¢@ Boulogne

France

Phone : (1) 620 37 37
Telex 206 304 forc-£f
FAX 1 621 35 19

o o0

O

C

Reference
Manual

Copyright (e¢) 1986 by Eyring Research Institute, Inc., 1450 West
820 North, Provo, Utah 84601 USA. All rights reserved.

Portions derived from the REGULUS (TM) PROGRAMMER'S REFERENCE
MANUAL Version 4.2, July 1984, Copyright (c) 1983 by Alcyon
Corporation and the C68 PROGRAMMER'S REFERENCE GUIDE, Copyright
(¢c) Alcyon Corporation.

The information in this document has been carefully checked and
is believed to be reliable. However, Eyring assumes no responsi-
bility for inaccuracies. Furthermore, Eyring reserves the right
to make changes to any products to improve reliability, function,
or design and does not assume any liability arising out of the
application or use of this document.

Printed in the United States of America.
Product Number ER3550/M (for PDOS revision 3.2 and C rev. 5.0)
October 15, 1986

PDOS is a registered trademark of Eyring Research Institute, Inc.
Unix is a trademark of Bell Laboratories. ,
REGULUS is a trademark of Alcyon Corporation.

PDOS C Version 5.0
Update Notice

The following functional changes have been made to the compiler:

1.

CC is the new control program for C. CC allows you to
optionally specify libraries and/or object modules to be
referenced at 1link time. If the first argument to CC is an

- object module, CC performs just the link step.

The C compiler now needs 100K of memory to run versus the
old 85K. It will, however, report an error rather than try
to execute (and crash the system) if there is insufficient
memory to run.

CLINK has been dropped. Its function is integrated into the
new CC program. To specify that additional modules must be
linked with the dinput file, specify their names on the
command line, following the options. If no file extension
is specified for these additional files, ':0' is assumed.
If the extension is specified as ':LIB' the files are
treated as 1libraries and brought 41in with e 'LI' command
in the linker; otherwise they are treated as object files
and brought in with the 'IN' command.

The first command line parameter is always the input source
file. The name of this file will be used to name any output

files. The second command line parameter is reserved for
any options. If none are specified, the second parameter
must be blank. If the first command 1line parameter is a

filename with an extension of ":0", the CC program skips the
compilation and only performs the 1link. Any remaining
command line parameters are taken to be additional objects
or libraries for the link. If no link is performed (S or C
option) these parameters are ignored.

LOCATE is no longer called by CC to perform a post-link
function. It depends on QLINK to do that function via the
BITMAP instruction. This version of CC pmust use the new
version of QLINK for this to work.

OPTIM has been eliminated. Its usefulness ceased.

TRANS68 has been dropped and as such, there is no longer a
separate translation phase (TRANS68). Conversion to PDOS
assembly syntax is performed in the code generator (C168).

Modifications to the assembly-language translation phase
have made some changes in the rules about defining/refer-
encing global variables. Prior to version 5.0, if a
global variable was referenced on the line previous to a

October 15, 1986 1

(PDOS C Version 5.0 Update Notice cont.)

static variable declaration, the compiler mistakenly defined
- the previous global variable. This usually showed up as an
error at assembly time, making it more difficult to under-
stand. Now, the compiler will correctly define/reference
global variables, but it will not report another error. If
the program defines a global variable twice, the compiler
will pass both definitions to the assembler, causing an

assembler error. (According to Aleyon, it is legal to
declare a variable twice, although the space will be only
allocated once -- to the largest of the sizes if there are

two sizes.)
7. The following options were changed in the compiler:

O option deleted - its use was ineffectual.

T option deleted - 68010 support is automatically provided.

M option changed to Q - it now corresponds with other PDOS
high level languages.

E option changed - it now allows double precision floating
point as well as single precision. Both are in
software and wuse the IEEE floating point format. The
'E' option defines the symbol 'IEEE' to the pre-
processor.

S option changed - it now outputs the source to a single
file named 'xxxxx:SR' where 'xxxxx' is the source file
name minus the extension.

H option added - it allows single and double precision
floating point arithmetic in hardware, using the 68881
co-processor and the 68020 processor. The format is

the same as the IEEE floating point format. This also
defines the symbol 'M68881°'.

D(ABC) option added - it defines symbols for the preproces-

» sor so it can be used in statements such as: #ifdef ABC

U(ABC) option added - it removes preprocessor definitions so
it can be used in statements such as: #ifndef ABC

B option added - it causes error messages to be saved in the
file 'xxxxxx:ERR' where 'xxxxx' 1is the name of the
source file without the extension. If the 'B' option is
not specified, the errors are left in the file
'CTEMPx:ERR' where 'x' is the task number.

The following changes have been made in the libraries:

1. The library programs have been renamed so that the object
modules have a ':LIB' extension:

STDLIB has become STDLIB:LIB
XLIB has become XLIB:LIB
IEEEFLIB has become IEEE:LIB
FFPLIB has become FFP:LIB

2 October 15, 1986

Yo

«

(PDOS C Version 5.0 Update Notice cont.)

2.

The following program has been added to the C disk to
provide M68881 floating point support:

M68881:LIB

The following functions have been added to the standard
library: ' -

FEOF -- Check for EOF in a stream
FFLUSH -- Flush output to file

FREAD -- Read from stream

FWRITE -- Write to stream

MEMCCPY -- Copy character with break
MEMCHR -- Locate character in memory
MEMCMP -- Compare memory

MEMCPY -- Copy memory

MEMSET -- Set memory to character
RAND -- Return random number

RENAME -- Rename file

REWIND -- Position to top of stream
SRAND -- Seed random number generator
TSTFILE -- Test for existence of a file

The PRINTF function in the STDLIB:LIB 1library has been
corrected to fix a bug that occurred when a decimal number
larger than 9 digits was printed. Also, octal conversion
functions ("%o0 and %lo") have been added to PRINTF.

The GETC function in the standard library has been changed
so that it no 1longer performs a sign-extend on data read
from a file, which made it difficult to distinguish between
a byte of 'FF' and the end of file.

Buffered I/0 has been added to the STDLIB:LIB 1library. It
affects functions FOPEN, FCLOSE, GETC, UNGETC, PUTC, FSEEK,
FTELL, and EXIT. The additional functions _FILLBUF and
FFLUSH have been added. I/0 to a port is still unbuffered,
but I/0 to disk files is buffered 252 bytes at a time. The
include file "stdio.h" has been modified to correspond with
these changes. Any programs including "stdio.h" should be
recompiled. Also, the file CSTART:ASM has been modified to
accommodate the change. The program WC:C on the new
diskette runs about four times faster with buffered I/0
than without.

The following functions in the PDOS cross library have been
enhanced:

XSZF -- Get disk parameters
XWFP -- Write file parameters

October 15, 1986 3

(PDOS C Version 5.0 Update Notice cont.)

8.

10.

11.

12.

The following functions have been added to XLIB:LIB:

XDMP -- Dump memory

XFAC -- File altered check
XGMP -- Get message pointer
XPAD -- Pack ASCII date

XPCR -- Put character raw
XRTP -- Read time parameters
XSMP -- Send message pointer
XUAD -- Unpack ASCII date

" The following functions have been added to XLIB:LIB as

available by in-line code:

X881 -- M(C68881 enable
XUSP -- Return to user mode

The following functions din XLIB:LIB were corrected to
operate correctly:

TESTXLIB:C
XBFL - Build file 1listing
XGML - Get memory limits

MC68881 floating point hardware support was added. Most of
the existing floating point functions are supported by this
library.

The following functions have been added to the floating
point libraries: :

ASIN - Arc sine

-ACOS - Arc cosine

The following changes were made in the PDOS C Reference Manual:

1.
2.
3.

The format has been changed for easy readability.
More examples have been added.

An appendix containing error messages and their explanations
has been added.

An index has been included with the manual for easy refer-
ence.

October 15, 1986

a,
J

»

(PDOS C Version 5.0 Update Notice cont.)

The following corrections have been made to the C compiler:

1.

10.

11.

12.

13.

14.

15.

C now handles system V style declarations of functions which
return pointers to functions.

Structure tag names no longer conflict with structure field
or variable names.

Occasional complaints regarding casting of expressions to
void are no longer a problem.

Complex expressions including function return values
generate correct code now (eg. var <<= func()).

Long and unsigned long bitfields supported.
Unsigned character as index into array works properly.

Structure field matching problems involving typedefed
structures and complicated matching problems involving
conditional statements have been fixed.

Modifications to the code generator have eliminated many of
the problems with complex expressions generating "expression
too complex" errors.

The compiler now allows an automatie which is a pointer to
an array to be stored dinto a register. For example:
register char *c[];

Bit field code generation has been fixed to correctly handle
multiple assignments involving a bit field. For example:
i = j = stre.bfield; or strc.bfield = i = j;

An error message is now generated if two structure fields in
the same structure are not unique within eight characters.

Problems involving floating point conversion function calls
overwriting temporary registers have been fixed.

sizeof() on an ditem which is greater than 32K will now
generate a warning message.

Unsigned character cast on compile time dinitializer works
properly now. :

An error message is now generated if the left hand side of
period operator is a pointer.

October 15, 1986 5

(PDOS C Version 5.0 Update Notice cont.)

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Structure prototypes can now have the same name as vari-
ables. For example:
struct proto { int a, b, e, d; } proto;.

Structure fields can have the same name as variables. For
example: ‘
typedef struct xyz { char abe; } abe;

Typedef structures can have the same prototype and typedef
names. For example:

typedef struet proto { int field; } proto;.

Function returns involved in shift-equal expression now work
properly. For example:
a >>= func();

The compiler now handles two constructions of functions
returning pointers to functions. For example:
(*01dway())(argl,arg2) {} and (*Newway(argl,arg2)) {}.

Re-declaration of function return now generates a warning
rather than an error message. For example:
int fune(); long func();.

The operator precedence of ?: operations involving embedded
assignments has been fixed to match the system V syntax.
For example:

a<0?a=>b:""; is equivalent to

a<07? (a=b) : ""

Multiple structure assignments are now allowed. For
example:
struca = strucb = struce;.

Structures exactly three words in length can now be assigned
to one another.

on 1left margin inside a multi-line string is no longer
interpreted by the pre-processor.

A long variable assigned to zero as an index into an array
now generates correct code. For example:
array[lng=0] = 30;

The bad error message "& operator illegal" has been changed
to "& operator ignored" for case of array passed as argu-
ment. For example:

func(&array);

October 15, 1986

7

o

(PDOS C Version 5.0 Update Notice cont.)

28. Complicated expressions which caused function returns to be
stored into the wrong register or be overwritten have been
fixed.

29. Correct code is now being generated when a register pointer
variable is assigned to a register char. For example:

regchar = regeptr;.

30. Sizeof on a string now generates the correct results. For
example:

sizeof ("string");.

31. Initializer alignment problems involving structures with
bit-fields have now been fixed.

32. Errors with structures involving long bit fields whose sizes
were incorrectly calculated have been fixed.

33. Since compilers which support prototypes are Dbecoming
popular, the compiler now dignores the contents of the
parentheses in an external declaration of a function. For
example:

extern int funec(char *,int,long,long);

34, The #elif preprocessor command is now implemented. This
acts like a combination of #else and #if. It 41is used
between #if and #endif in the same way as the #else command
but it takes an argument like the #if command.

35. Unnamed bit-fields are now implemented.

36. Enumerated data types (keyword "enum") are now implemented.

37. The 'e' in the floating-point constant is now protected from
macro expansion by the pre-processor.

38. Errors in structure/array initialization code have been
fixed.

39, Initialization of multi-dimensional arrays of structures now
works.

40. The expression handler has been changed to generate a
warning if a period or pointer operand is used on a non-
structure/union variable which is not being cast.

41. The compiler now correctly handles incrementing/decrementing
of the pointer to items larger than 32K in size.

October 15, 1986 ‘ 7

(PDOS C Version 5.0 Update Notice cont.)

42.

43.

44,

45.

46.

47.

48.

49.

The compiler now performs properly handling of greater than
32K of local variable declarations.

The compiler now correctly generates assembly code for
indexing into arrays of structures which are greater than
32K bytes 1in size and if the size of the structure is a
power of 2.

If a static function is passed as a parameter, the compiler
no longer generates a literal 1 instead of its address.

Auto-increment and auto-decrement operations on bit fields
are now allowed.

The results of the relation operations on unsigned long
items now yields a long result in all cases.

Unnamed bit fields now cause the following component to
start on a byte/word/longword boundary as appropriate.

Unsigned-int or unsigned-long conversions to float or double
were being assigned as 1f they were signed values. They
have been fixed.

Sixteen-bit literal constants in the range 0x8000 to OxFFFF
are not sign-extended when assigned to a long int. Pre-
viously, the assignment long int a = 0x8000; resulted in
containing Oxf£f££8000.

October 15, 1986

AN

PDOS C REFERENCE MANUAL
TABLE OF CONTENTS

CHAPTER ONE -- INTRODUCTION

1.
.2
1.3
1.4

1

[y

-
. L

1

.10
.11

DI

SKETTE INSTALLATION .

THE PDOS C COMPILER . .
CONTENTS OF THE C DISKETTE
RUNNING THE COMPILER

1.
1.
1.

R

HHHOHI—'D—‘D—"‘U

BU
PR
1
1.
1.
1.

4.1 CC . .

4.2 Compile Time Parameters
4.3 Errors
SES OF THE C COMPILER

A

.5.1 CPP -- C Pre-Processor

.5.2 (€068 -- C Parser . .

.5.3 (C168 == C Code Generator ..

.5.4 MASM -- PDOS Assembler For C . .

.5.5 QLINK -- PDOS Quick Linker For C . .

.5.6 ROMLINK -- Post-Link Object Module Creation for
RUNGEN

NKING SEPARATELY COMPILED MODULES

N TIME LIBRARIES . . .

.7.1 STDLIB:LIB -- Standard Library ..

.7.2 XLIB:LIB -- Interface to PDOS Primitives ..

.7.3 FFP:LIB, IEEE:LIB and M68881: LIB—-Floating P01nt
Libraries

OGRAM INITIALIZATION - CSTART . . .

.8.1 Command Line Parameters -- ARGC ARGV .

.8.2 Uninitialized Variable Space .

.8.3 Self-Relocation

.8.4 Task Global Variables AN

TO ASSEMBLY LANGUAGE INTERFACE

.9.1 In-Line Assembly Language . .

.9.2 Calling Assembly Language From C

.9.3 Calling C Functions From Assembly

RNING C PROGRAMS IN ROM .
OGRAMMING CONVENTIONS

.11.1 Line Termination

11.2 Register Variables .
11.3 Variable Specifications
11.4 Comments .

1.12 ACCESSING MEMORY DIRECTLY :

CHAPTER TWO -- STANDARD I/0 LIBRARY ROUTINES

CHAPTER THREE -- INTERFACE TO PDOS SYSTEM CALLS

CHAPTER FOUR -- FLOATING POINT LIBRARIES

ERROR MESSAGES

INDEX

PDOS C Reference Manual’

|
PLOODOOP~WH

| S R T G ST Y
|

|
Ll o I |

|

[P STy Y
|

SRR

NoO o

1-17

1-17
1-18
1-20
1-20
1-21

1-21

1-21

1-29
1-29

ii

PDOS C Reference Manual

CHAPTER ONE
INTRODUCTION

This manual consists of four chapters. This first chapter
provides an introduction to the compiler; the following three
chapters detail the subroutines in the standard 1library
(STDLIB:LIB), the PDOS interface 1library (XLIB:LIB) and the
floating point libraries (FFP:LIB, IEEE:LIB, and M68881:LIB).

Chapter 1 gives an overall description of the contents of the
PDOS C disk and tells how to use the compiler.

Chapter 2 describes the routines in the standard 1library. These
routines are generally functional equivalents of routines on
Unix.

Chapter 3 explains how to access the operating system interface
of PDOS and wuse the different operating system primitives
described in the PDOS Reference Manual.

Chapter 4 examines the floating-point routines that are available
to the C programmer and how to use them. Floating point support
consists of various I/0 routines, conversion <routines, transcen-
dental functions, and arithmetic operations.

This manual is intended for someone who already understands C
programming and wants to write C programs under PDOS. It is not
an introduction to the C language.

To clarify the text, all examples and listings in this manual are
printed in a smaller, sans-serif type, user input is bolded, and
comments are printed in italices. Elipses indicate that some text
(generally irrelevant or too 1large in quantity) that would
normally appear on your screen has been omitted from the manual.

1.1 DISKETTE INSTALLATION

The PDOS C diskette that you received contains everything you
need to create C programs (except an editor). A few sample
programs are included on the diskette to let you test out the
compiler.

Before you do anything with the compiler, back it up onto your
Winchester disk or another floppy (use MBACK or MTRANS) and store
the original diskette in a safe, dry place.

DON'T WRITE ON THE ORIGINAL DISK!

PDOS C Reference Manual 1-1

(1.1 DISKETTE INSTALLATION cont.)

x>MBACK 0,8, ,Y[CR]
PDOS Disk Backup Utility
Source Disk # = B[CR]
Destination Disk # = B[CR]
Number of sectors = 2528[CR]
Backup 'C 5.0..........
Insert source disk in drive B. Hit <CR>....[CR]

Reading sector 0..2527
Insert destination disk in drive 8. Hit <CR>....[CR]

Writing sector 0..2527
SUCCESS! Disk Name = C 5.0.......... !

When you have copied the disk onto your work area, you should try
out the compiler by testing it on a few of the sample programs.
The C compiler needs 100K of memory to run and and you will need
to allow sufficient disk space for the programs as well. If
HELLO:C, ECHO:C, and SIEVE:C compile and execute without errors,
you may continue. If you do encounter difficulties, contact your
PDOS distributor.

NOTE: The original C disk you received does mnot contain
sufficient free space to compile C programs. You MUST
copy the compiler to a work disk -- preferably one with
a few hundred extra sectors available for the temporary
files.

x>CC HELLO[CR]
x>HELLO[CR]

Hello, world!

x>CC ECHO[CR]

x>ECHO THIS IS A TEST[CR]
ECHO

THIS

IS

A

TEST

1-2 PDOS C Reference Manual

TN

SN

(1.1 DISKETTE INSTALLATION cont.)

Now install the appropriate help files in your HLPTX file. Edit
the file HLPTX on your system disk and merge in the file C:HLP.
If you already had help text 1in that £file from an earlier
revision of C, replace it with this file. That way, when you
type 'HE CC', you will see how to run the current version of the
C compiler.

x>MEDIT HLPTX[CR]

Use [CTRL-2Z] to position to the end of file, use [CTRL-YJC:HLP[CR] to bring
In the C help, and write the result back out with [CTRL-WJ[CTRL-WI[CR]V.
Exit the editor with [ESCJ[CTRL-V].

If you are short of space, the following files are not essential
for using the compiler but are provided for your information.
You may delete them from your working copy of the C disk, but
DON'T DELETE THEM FROM THE ORIGINAL DISK!

@:SRC;@ Sources of the different subroutine libraries
@:DpocC;@ Various help files explaining contents of the disk
@:C;@ Sample C programs and utilities

@:ASM;@ Sources of the initialization code -- only the

object files are necessary to compile and load
your programs

1.2 THE PDOS C COMPILER

This version of the C compiler for PDOS on the 68000 and 68010
processors or the 68020 processor with the 68881 co-processor is
a complete implementation of the language defined by Kernighan
and Ritchie 1in Ihe C Programming Language. You will find it
helpful to have a copy of Ihe C Programming Language or a similar
text available to reference. This manual is not a tutorial on
the language, but rather a description of the PDOS implementa-
tion. There are a large number of good texts on the language in
most bookstores.

The majority of the Unix portable C library functions have been
implemented 4in the compiler. If one of your favorites has
somehow been overlooked, contact Eyring for it to be included in
a future release.

Source to the 1library functions has been included for the
following reasons:

1. The source to a routine is the best documentation explaining
that routine. If the manual leaves you unclear on a
particular point, you might find the answer in the source
itself.

PDOS C Reference Manual 1-3

(1.2 THE PDOS C COMPILER cont.)

2. The library functions do a lot of things, but you may want
to write new functions. You can use these routines as
examples to learn how to build your own library.

3. If you are willing to accept the responsibility of main-
taining a variant 1library, you can modify the functions
in the PDOS C library to suit your own tastes.

This version of the compiler was ported from Alcyon C68 version
5.0. It was released by Alcyon at the beginning of 1986 and is a
mature product. It has ©been successfully ported to a large
number of operating systems besides PDOS.

1.3 CONTENTS OF THE C DISKETTE

Following is a directory listing of the PDOS C diskette. Files
that are found only on the 68020/68881 version of C are noted
with an asterisk.

Lev Name:ext Description
*%x%x%x HELP FILES
@ C:HLP Help file for compiler
P C:BUG Current bug list
**xxx COMPILER
1 MASM Latest version of the assembler for 68000/68610
*1 MASM20 Latest version of the assembler for 68020/68881
1 QLINK Latest version of the linker
1 MLIB Library manager utility
1 ccC Control program to compile C programs
1 CPP Pre-processor phase of the compiler
1 C068 Parser phase of the compiler
1 C168 Code generator phase of the compiler
1 ROML INK Object module creation phase for ROM programs

**%* | IBRARIES

3 STDLIB:LIB Standard C routines library
3 XLIB:LIB PDOS interface library
3 IEEE:LIB IEEE floating point library
3 FFP:LIB FFP floating point library
*3 M68881:LIB M68881 floating point library
3 CSTART:0 Starting module for C programs —— always linked in first
3 CEND:O Termination module -- always linked in last
1-4 PDOS C Reference Manual

(1.3 CONTENTS OF THE C DISKETTE cont.)

* %k %k %k

bbb bhbbbbhbbdbbhbSEDdDbn

% % %k %k

150
150
150

kdkkk

150
150

* %k k%

150
150
150
150

% % % %

151

% %k %k %k

152
152
152
152
152

INCLUDE FILES

stdio.h Standard 1/0 include file <stdio.h>

STDIO:H Same as <stdio.h> but with PDOS name

SYRAM:H Definition of PDOS system memory record —— current rev.
OLDSYRAM:H Definition of PDOS system memory record — previous rev.
TCB:H Definition of Task Control Block record

ctype.h Character conversion macro definitions

CTYPE:H Same as <ctype.h> but with PDOS name

memory.h Definition of memory functions

math.h Definition of floating point routine entry points
SETJUMP:H Definition of environment block for SETJMP/LONGJMP call
setjmp:h Same as SETJMP:H

FILESLOT:H Definition of file slot record in system

DIRENT:H Definition of a directory entry on disk

COMPILER UTILITY SOURCE CODE

ROMLINK:C Source to object module create phase of linker

cc:C Source to control program of compiler

TESTXLIB:C Source to suite of tests for XLIB-—examples of XLIB calls

TEST PROGRAMS

ECHO:C Sample C program —— echoes command arguments
HELLO:C Sample C program —— "Hello, world!"

SIEVE:C Sample C program — prime number sieve benchmark
START-UP/TERMINATION SOURCE

CSTART:ASM Source for initialization module

CEND:ASM Source for termination module

LIBRARY SOURCE

STDLIB:SRC Source of standard C Tibrary modules

FFP:SRC Source of floating point modules

XLIB:SRC Source of PDOS interface modules

FPERR:S Source of IEEE run-time error handler
PROCEDURE FILES

CC:AC Command file to compile C programs

PUBLIC DOMAIN C PROGRAMS (UNSUPPORTED)

FDIFF:C Source to text file comparison utility
GREP:C Source to pattern recognizer program
HANOI:C Game source

SORTC:C Source to sort utility

wC:C Word/Byte/Line count utility source

!; PDOS C Reference Manual 1-5

(1.3 CONTENTS OF THE C DISKETTE cont.)

Note: Some of the include files have a period embedded in the
name. Because the monitor stops parsing on a period (the period
normally acts as a command separator), it would seem as though
these "illegal" file names were impossible to access. They are
accessible from the monitor, however, if you enclose the name in
parentheses. ‘

x>SF stdio.h[CR]
PDOS ERROR 53 not defined

x>SF (stdio.h)[CR]
/* stdio.h —— standard defines for C under PDOS.

Eyring Research Institute, Inc. Copyright 1984-1986
x/

1.4 RUNNING THE COMPILER

The compiler is invoked wusing the control program CC. This
program has a number of options, described in the help file
"C:HLP". You can compile a program from source to executable
code, compile several modules to object code for later linking,
or compile a module to assembly language source. You may
optionally specify floating point in either FFP format (single
precision only) or IEEE format (double and single precision),
with optional 68881 support for the 68020 C. Finally, the

compiler can generate object code suitable for linking into a ROM
image.

Compile sieve:

x>CC SIEVE

x>SIEVE

100 iterations
1899 primes

1.4.1 CC

The CC program handles the scheduling of the compiler phases,
putting the detail of the phases of the compilation into the
background. CC also allows the compilation options to be
specified in any order, in upper or lower case, and allows the
user to specify disk units on input files or to override the
default file extensions. CC allows you to optionally specify
libraries and/or object modules to be referenced at 1link time.
If the first argument to CC is an object module, CC performs just
the link step.

1-6 PDOS C Reference Manual

g

O

(1.4 RUNNING THE COMPILER cont.)

The source to CC is on the original C diskette. You may custo-

mize it to suit your own requirements, but you are liable for the
consequences.

The CC program does not prompt interactively for 1ts parameters.
Instead, if you type 'CC' without arguments, it displays a help
message to describe the format of the argument(s) it requires.
You may also want to examine the file "C:HLP" for a further
description. All of the arguments to CC must be specified on the
command 1line.

x>CC[CR]
68K PDOS C Compiler R5.0 89/085/86
Eyring Copyright 1985-1986
Usage: CC <filename>,<options>,<object files and libraries>
filename extension defaults to :C, but others may be specified.
if extension is :0, only the link step is performed.
filenames after the options are treated as libraries (extension= LIB)
or as object files to be linked in with the first file
options follow the filename in any order with these definitions
v : display each step as it executes
D(abc) : define symbol 'abc' for preprocessor
U(abc) : undefine symbol 'abc' for preprocessor
F,E,H : floating point. F = Fast Floating Point (single prec1s1on)
E = IEEE floating point
H = 68881 floating point

: output error messages to 'xxxxx:ERR'
: don't assemble — leave in xxxxx:SR
: don't link —- leave in xxxxx:0

: create 'SFU' link map
(xyz) : create 'xyz' link map (options in parentheses)
: create ROMable object instead of SY file

TOoOoOOMND

x>

*0Option H is only available on C for the 68020.

PDOS C Reference Manual 1-7

(1.4 RUNNING THE COMPILER cont.)

1.4.2 Compile Time Parameters

The first

command line argument to CC must be the name of the

file to compile. If the -extension is not specified, it is
assumed to
source, with or without the extension.

x>CC HELLO
x>CC HELLO/2
x>CC HELLO:C

x>CC HELLO:C/2

x>CC hello:c
x>CC HELLO,CV

The

second

Options may
options are:

IV'

\)
D(abe)
U(abe)
F,E,H

B
S
C
Q
Q(xyz)
R

OPTION

":C". A disk volume may be specified for the

- compile HELLO:C

- compile HELLO:C/2

- compile HELLO:C

- compile HELLO:C/2

- compile hello:c (lower case!)

compile HELLO:C to HELLO:0, verbose mode

command line argument is reserved for options.
appear in any order, in upper or lower case. The

display each step as it executes
define symbol 'abe' for preprocessor
undefine symbol 'abe' for preprocessor
floating point. F = Fast Floating Point (single
precision)
E = IEEE floating point
H - 68881 floating point
output error messages to 'xxxxx:ERR'
don't assemble -- leave in xxxxx:SR
don't link -- leave in xxxxx:0
create 'SFU' 1link map ;
create 'xyz' link map (options in parentheses)
create ROMable object instead of SY file

The compiler may take a while to run through all of its steps.
If you are patient, you can sit and wait, but you may want to see
what it is doing. Specifying the 'V' option tells the compiler
to display each phase of the compilation as it executes.

x>CC HANOI,V

1-8

Compi/le the HANO! puzzle and display all steps of the
comp/lation

PDOS C Reference Manual

- .

C

(1.4 RUNNING THE COMPILER cont.)

The default option of the compiler assumes no floating point
code. Bringing in floating point when it i1is not needed results
in a large amount of unnecessary code in your program. Specify-
ing the 'F' switch tells the compiler to use Fast Floating Point
format when compiling floating point constants and to search
"FFP:LIB" during the 1ink phase. For more information, see
Chapter 4 of this manual on floating point.

x>CC TEST,F Compile TEST using Fast Floating Point format and |ink with
FFP:LIB

The default option of the compiler assumes no floating point
code. Bringing in floating point when it is not needed results
in a 1large amount of unnecessary code in your program. Specify-
ing the 'E' switch tells the compiler to use IEEE software format
when compiling floating point constants and to search "IEEE:LIB"
during the link phase. For more information, see Chapter & of
this manual on floating point.

x>CC TEST,E Comp/le TEST using IEEE floating point format and Iink with
IEEE:LIB

The default option of the compiler assumes no floating point
code. Bringing in floating point when it is not needed results
in a large amount of unnecessary code in your program. Specify-
ing the 'H' switch tells the compiler to use IEEE 68881 hardware
format when compiling floating point constants and to search
"M68881:LIB" during the link phase. For more information, see
Chapter 4 of this manual on floating point. This option is only
available for C for the 68020.

x>CC TEST,H Complle TEXT using |EEE hardware floating point format and
link with M68881:LIB

" PDOS C Reference Manual 1-9

(1.4 RUNNING THE COMPILER cont.)

Sometimes it is important to see the assembly language genera-
ted by the C compiler. Comparing the assembly language to

the .original source helps you to understand exactly what the
compiler is doing with your code. If you use the PDOS debugger
'PB' to debug your C program you need to see the assembly
language to trace through the program 1logic. If you have code
that needs more optimization than the C compiler can provide, you
can take the assembly language output of the compiler as a
starting point and optimize it by hand. The assembly language
source file created by the 'S' option has the same name as the
source, but with an extension of ":SR."

x>CC ECHO,S Compile ECHO:C to ECHO:SR

This option compiles your program to object code but skips the
link step. The resulting file has the same name as the original
source, but an extension of ":0". Thus you can compile several
modules and 1later 1link them together into one program. Or, you
can create your own library of commonly used C functions. For
more information, see section 1.6.

x>CC HELLO,C Compile HELLO:C to HELLO:0O

This option gives you access to the link map facility of QLINK.
You may simply specify 'Q' as an option, which will create the
default 'SFU' map (section, files, undefined), or you may request

any combination of map options in parentheses after the 'Q'. See
the PDOS Reference Manual under QLINK for more information.
x>CC HELLO,Q Create HELLO:MAP on Il/nking

x>CC HELLO,Q(S) Create HELLO:MAP (sections only)

1-10 PDOS C Reference Manual

(O

((\./
L

(1.4 RUNNING THE COMPILER cont.)

This option 1lets you create a completely linked, relocatable
object module version of your program suitable for 1linking with
RUNGEN and QLINK into an EPROM module. For more information, see
the section 1.10.

x>CC HANOI,R Compile the HANOI puzzie to burn In ROM

This option allows you to pre-define symbols for the prepro-
cessor. These symbols are then available for reference in your
code via the following preprocessor commands:

#ifdef xxxxxx
and
#ifndef xxxxxx

For instance, it is possible to put debugging statements in your
program that normally are treated as comments because they are
surrounded by the following lines:

#ifdef DEBUG

#end%f

Then, when you want the debugging statements to be part of the
program, you can recompile it with the following instruction:

x>CC MYPROG,D(DEBUG)[CR]

The opreprocessor will then include those statements in the
executable code.

This option allows you to remove preprocessor definitions. The
PDOS C compiler pre-defines the symbols "MC68000" and "PDOS".
These symbols can be used in your program through instructions
such as the following:

#ifdef PDOS

printf("\nThis was compiled under PDOS");
#endif

PDOS C Reference Manual 1-11

(1.4 RUNNING THE COMPILER cont.)

You may remove these definitions by including the symbol name in
parentheses after the 'U' option as follows:

x>CC MYFILE,U(PDOS)[CR]

Note: Both the 'U' and 'D' options may be specified multiple
times in a single command line, interspersed with other commands,
for example:

x>CC MYFILE,FD(DEBUG)U(PDOS)D(TESTING)U(MC688208)Q(DOU)R[CR]

This example will compile MYFILE using FFP format for the
floating point referencing FFP:LIB during the link; defining the
symbols "DEBUG" and "TESTING" for the preprocessor; removing the
definitions "PDOS" and "MC68000"; and instructing the linker to
create a link map "MYFILE:MAP" containing the symbol definitions,
any undefined symbol references, and any overflow references.
Finally, the program is passed through ROMLINK to produce an
EPROM object file suitable for input to RUNGEN.

If you select the 'B' option, the compiler will provide you with
a listing of errors saved to a file. If you would like error

messages to be saved (as would be the case if you were compiling
a large number of modules with a procedure file), specifying the
'B' option will send all error messages to a file with the same
name as the source file and an extension of "ERR".

If the 'V' switch is active, all messages are copied to the user
terminal as well. Otherwise, the compiler spools all messages to
a file called "CTEMPx:ERR" and if there 1is an error on the
compilation, displays that file to the screen.

The following command will capture any error messages in a file
named "MYPROG:ERR":

x>CC MYPROG,B[CR]

1-12 PDOS C Reference Manual

(1.4 RUNNING THE COMPILER cont.)
1.4.3 Errors

When any phase of the compiler detects an error in your program,
it reports it immediately. The error message has two parts:

1) the line in the file where the error occurred, and
2) a message describing the problem.

One error early in the file can cause a large number of errors to
"appear" later. Usually, you should correct the early errors and
see if the others go away by themselves.

The assembler may report an error if you make a mistake in an
"asm" directive or if there is an error while creating the object
file. For instance, the disk might be full, or there might not
be room in the file directory to create a new file. If a global
symbol is defined multiple times, that error may not be reported
until assembly time. This error can occur if two global vari-
ables or functions have the same name or if the names are not
unique in the first seven characters. See the PDOS Reference
Manual for more information on the assembler and its errors.

The following errors may be reported at run time when your
program is compiled with the 'E' option:

401 Double precision argument error

402 Single precision argument error

403 Double precision divide by zero

404 Single precision divide by zero

405 Integer divide by zero (not used from IEEE:LIB)
406 Double precision overflow

407 Single precision overflow

These errors may be trapped by substituting your own code for the
instructions in the module FPERR:S.

PDOS C Reference Manual 1-13

1.5 PHASES OF THE C COMPILER

The C compiler runs in several phases, making use of intermediate
files along the way. Currently a source file goes through a
pre-preprocessor (CPP), a parser (C068), a code-generator (C168),
the PDOS assembler (MASM/MASM20), and the PDOS linker (QLINK).

The temporary files used are CTEMPx:0, CTEMPx:L, CTEMPx:SR1, and
CTEMPx:SR where 'x' is your current task number. The compiler
will run faster if you pre-define these temporary files on your
fastest disk. The RAM disk (disk 8) is best if you have a large
enough one. For small to medium-sized programs, CTEMPx:0 and
CTEMPx:SR should be about 100 blocks long each. CTEMPx:SR1 and
CTEMPx:L should be about 10 blocks long each.

The rest of this section describes each phase of the compiler,
along with a few options that apply to each one. Normally, the
operation of each phase is hidden from the wuser, but if you
compile with the 'V' option (for view) then each phase is
displayed as it occurs.

It isn't necessary to understand the different phases of the
compiler in order to use it; you may skip through to section 1.6
on first reading.

x>CC HELLO,V[CR]

CPP HELLO:C CTEMP@:SR

C068 CTEMP@:SR CTEMP@:0 CTEMP@:L CTEMPD:SR1
C168 CTEMP@:0 CTEMP@:L CTEMPO@:SR HELLO
MASM CTEMP®:SR,CTEMPO:0

Assembler messages
QLINK

LInker messages

1-14 PDOS C Reference Manual

AN

e

(1.5 PHASES OF THE C COMPILER cont.)
1.5.1 CPP —- C Pre-Processor

CPP is a true pre-processor and performs two major tasks: 1)
macro processing and, 2) merging include files. It resolves
conditional assembly, removes comments, expands macros, and
produces one simple file that just contains C program code.

x>CPP HELLO:C CTEMP®:SR[CR]
x>CPP —DDEBUG ECHO:C CTEMP[CR]

CPP can optionally accept symbol definitions on the command line
in the form '-Dxyz' occurring before the name of the input file.
Alternately, pre-defined symbols can be "un-defined" on the
command line by specifying '-Uxyz' before the name of the input
file. Symbols may be defined or undefined on the CC command line
with the 'D' and 'U' switches. CPP pre-defines the following
symbols:

PDOS
MC68000

Symbols defined in CPP may be used to include or exclude sections
of code that are machine dependent. For example, the following
PRINTF statement will be included if the code is compiled by the
PDOS compiler but not if it is compiled by other compilers.

#ifdef PDOS
printf("compiled under PDOS");

#endif

Pre-defined Macros

CPP has four predefined macros that can be wused by the program-
mer. These are "__FILE", "__LINE", "__DATE", and "__TIME". Each
of these macros is expanded to the current value when it is
encountered. "__FILE" 1is replaced by the name of the current
source file, in double quotes. "__LINE" 1is ,replaced by the
current line number, as a numeric constant. "__DATE" is replaced
by the current date, in "MM/DD/YY" format. "__TIME" is replaced
by the current time, in "HH:MM:SS" format.

CPP CONVERTS THIS TO THIS

char *date = __DATE; char *date = "08/27/85";

char *time = __TIME; char *time = "10:44:04";

char *file = _ FILE; char *file = "TEST:C";

int line = __LINE; int line = 6;

PDOS C Reference Manual 1-15

(1.5 PHASES OF THE C COMPILER cont.)
Include Files

Under the PDOS C pre-processor, there 1s no difference between
the two forms of the include statement.

C compilers on other systems use the angle brackets to reference
files on a “"system" disk area, while the quotes are used for
files on the local disk area. There is no disk area on a PDOS

system specifically designated as a "system" disk. The following
two forms of the include statement are equivalent on PDOS:

#include <stdio.h>
#include "stdio.h"

1.5.2 C068 -- C Parser
The parsér converts the C source code to an intermediate tree
format. It actually produces three output files from the input
file, but the third file (containing quoted strings) is concate-
nated to the first output file.

x>CP68 CTEMP@:SR,CTEMP@:0,CTEMPB:L,CTEMP@:SR1[CR]
1.5.3 C168 -- C Code Generator

The code generator converts the intermediate files produced by
the parser into 68000 assembly language.

x>C168 CTEMP@:0,CTEMP@:L,CTEMPO:SR,HELLO[CR]

The fourth argument to C168 tells which symbol to wuse in the
IDENT statement. Normally, it is the name of the input module.

1-16 PDOS C Reference Manual

(1.5 PHASES OF THE C COMPILER cont.)
1.5.4 MASM -- PDOS Assembler For C

PDOS C is shipped with a compatible version of the PDOS compiler,
either MASM for 68000/68010 systems or MASM20 for 68020 systems.
Do not try to use PDOS C with earlier versions of the assembler.
However, versions of MASM later than those on the C disk should
work fine.

x>MASM CTEMP2:SR,CTEMP2:0[CR]
68K PDOS Assembler

1.5.5 QLINK -- PDOS Quick Linker For C

PDOS C is shipped with a compatible version of the PDOS linker.
Do not try to use PDOS C with earlier versions of QLINK than the
version that is on the C disk. Versions of QLINK later than
those on the C disk should work fine.

x>QLINK[CR]
PDOS 68K Quick Linker

1.5.6 ROMLINK -- Post-Link Object Module Creation for RUNGEN

The self-relocation and absolute addressing mode features of a C
program prevent the user from simply plugging C programs into the
RUNGEN package "as-is." The 'R' option of CC allows you to
create a C program file in "OB" format that can be supplied to
the link phase of the RUNGEN procedure. This object file has all
the absolute program references as relocatable references
relative to SECTION 0 (intended to be burned in ROM) and all the
absolute data references as relocatable references relative to
SECTION 1 (intended to be part of the RAM space). To create this
object file, the ROMlink program uses the SYfile created by
QLINK, along with the 1link map describing all the absolute
references. The name of the SYfile is the first parameter, the
link map is the second, and the output object file is the third.
See section 1.10 of this manual for more information.

x>CC HELLO,R[CR]

PDOS C Reference Manual 1-17

1.6 LINKING SEPARATELY COMPILED MODULES

Normally only the smallest programs can be conveniently handled
as one module. Larger projects need to be broken up into modules
which are compiled separately and combined at link time. The
CC control program allows you to compile a module and simply
create the object module, skipping the 1link phase by using the
'C' option after the file name. Or, you may want to write
modules in assembly language, compile them with MASM, and link
them together with your C program.

These object files can be linked into an executable program with

the CC control program. The number of modules to be linked
together is limited to the number of files you can put on a
single command 1line (78 characters). If you need to link more

files for an application, you should build your own command file
for that purpose, using the 'V' option output of the compiler as
an example. The file "CC:AC" is another simple example.

x>CC HELLO,V[CR]
CPP HELLO:C CTEMP@:SR
C@68 CTEMPO:SR CTEMPD:0 CTEMP@:L CTEMP®@:SR1
C168 CTEMP@:0 CTEMPO:L CTEMPD:SR HELLO
MASM20 CTEMPQ:SR,CTEMPO:0
68020 PDOS Assembler R3.1a 08/27/86
ERII, Copyright 1983-86
SRC=CTEMP®: SR
0BJ=CTEMPB:0
LST=
ERR=
XRF=
END OF PASS 1
END OF PASS 2
QLINK
PDOS -68k Quick Linker 08/11/86
ERII, Copyright 1983-86
*ZE
*SE 0,0
*GR 0,1
*IG 2
*BITMAP BEGIN
ENTRY ADDRESS=00000000
*IN CSTART:O
ENTRY ADDRESS=00000000
*DEFINE DOX881 $4E71
*DEFINE DOXGNP $FFFFABS5A
*IN CTEMPO:0
*| I STDLIB:LIB
INPUT EXIT:O
INPUT FFLUSH:0
INPUT XPRINTF:0

1-18 PDOS C Reference Manual

(1.6 LINKING SEPARATELY COMPILED MODULES cont.)

INPUT FPUTC:O
INPUT CLOSE:O
*LI XLIB:LIB
INPUT XCBC:0
INPUT XCBX:0
INPUT XCHX:0
INPUT XWBF:0
*IN CEND:O
*RELINK 2,Q$H0
Q$HP=$0008B77A
*BITMAP END
ENTRY ADDRESS=00000000
*QU #HELLO
*MA MUO,CTEMP@:ERR
*SY
Start address=$00000008
End address=$00800B7F6
*EN
SY FILE: BASE=$00000000 LENGTH=20@38
*QU
X>_

You may need to build your own library of modules wusing the PDOS
utility MLIBGEN or MLIB. Give this 1library file an exten-
sion of ":LIB" and you may specify it in the command line along
with the other modules to be linked; CC will tell QLINK to search
this library (as well as the standard 1libraries) to resolve
unresolved symbols. The full name of the library file, with the
extension, must be given for CC to recognize it as a library
file.

CC always uses the name of the first module in the command
string to name the output SY file.

x>CC A,C[CR] create three object filles
x>CC B,C[CR] named A:0,B:0, and C:0
x>CC C,C[CR]

x>MLIBGEN[CR]

68K LIBRARY GENERATOR 07/28/85

Copyright 1983, ERII

LIBRARY FILE=#MYSTUFF:LIB[CR]

INPUT FILE=A:0[CR] create Iibrary from
INPUT FILE=B:0[CR] object files

INPUT FILE=C:0[CR]

INPUT FILE=[CR]

ANY MORE FILES (Y/N)7N[CR]

PDOS C Reference Manual 1-19

(1.6 LINKING SEPARATELY COMPILED MODULES cont.)

In The C Programming Languagge it states "Only the first eight
characters of an internal name are significant...for external
names the number may be less" (p. 33). In PDOS C, external names
are only significant to seven characters, and lower case is
mapped onto upper case. Be careful to use variable names in
which the first seven letters are unique.

Only a few of the CC options affect the link process. These
options follow:

'v! Displays all steps of the linkage process on the
screen.

'E,F,H' Control which floating point library (if any) will
be referenced.

'R After the l1link process, ROMLINK will create an
object module suitable for input to RUNGEN.

'Q’ Direet QLINK to produce a Section/File/Undefined
map.

'Q(xyz)' Direct QLINK to produce an 'xyz' map, where 'xyz'
are valid map options (see the PDOS Reference
Manual.)

1.7 RUN TIME LIBRARIES

The run time 1library support consists of five 1libraries --
SIDLIB:LIB, XLIB:LIB, FFP:LIB, IEEE:LIB, and M68881:LIB. These
are the standard I/0 library, the PDOS interface library, and the
floating point libraries.

1.7.1 STDLIB:LIB -- Standard Library

Since C does not intrinsically contain input/output statements,
all I/0 must be handled through function calls. Most implemen-
tations of C have settled on a few standard I/0 routines with an
established calling sequence. Adherence to this standard makes
it easier to move C programs from one system to another.

The routines in STDLIB:LIB handle I/0, memory allocation, string
manipulation, and a few miscellaneous sytem functions. They are
functionally equivalent +to the most common <routines in other C
implementations. A few routines vary to some degree or another.
If you have problems, check the definition of the function in
the library.

1-20 PDOS C Reference Manual

PN

N

(1.7 RUN TIME LIBRARIES cont.)
1.7.2 XLIB:LIB —— Interface to PDOS Primitives

The second library is a collection of routines to support calls
into PDOS. They are, for the most part, straightforward imple-
mentations of the functions described in the PDOS primitives
chapter of the PDOS Reference Manual. Most, but not all of the
functions are supported -- some would be useless to most pro-
grams. Currently, more than 80 functions are supported by means
of function calls, while an additional twelve functions are
available through in-line assembly language calls. This library
will be updated to keep pace with the changes to PDOS.

1.7.3 FFP:LIB, IEEE:LIB and M68881:LIB--Floating Point Libraries

The remaining libraries consist of a collection of floating point
routines. Since the entry-points are the same for both sets of
libraries, they are treated the same, except for one discussion
of the difference in their formats. Floating point requires a
considerable amount of overhead and increases the size of a task,
so if you don't need floating point, don't use it.

x>CC FFPTEST,F[CR]
x>CC IEEETEST,E[CR]
x>CC HARDWTST,H[CR]

1.8 PROGRAM INITIALIZATION -- CSTART

At the head of every PDOS C program is the initialization module,
CSTART. This module performs certain tasks on start-up to
provide the proper environment for C programs. These tasks are
collecting command line arguments, initializing the uninitialized
data section, setting up task global variables, and self-relo-
cating the task. The source to CSTART is provided for your
reference in CSTART:ASM.

1.8.1 Command Line Parameters —- ARGC,ARGV

When a program is initialized, the parameters are gathered and
the traditional argc,argv arguments passed to the "main" rou-
tine. See the program "ECHO:C" for an example. Remember that
the parameters are gathered by XGNP, so you mnormally will not
need or use the XGNP call. Also remember that the parameters are
left in the monitor buffer, so either copy the arguments out of
the buffer or beware of using other PDOS calls that modify that
buffer. Specifically, the XGLM (get 1line in monitor buffer)
function will overwrite the parameter list.

PDOS C Reference Manual 1-21

(1.8 PROGRAM INITIALIZATION -- CSTART cont.)
main(argc,argv)

int argc;

char *argv[];

x>TEST This is a test[CR]

Execut/on of the above command Iine will result In the following variables
having these values:

arge = §5;

argv[@] = "TEST";
arcv[1] = "This";
argv[2] = "is";
argv[3] = "a";
argv[4] = "test";
argv[5] = NULL;

1.8.2 Uninitialized Variable Space

A second function of initialization is to zero the uninitialized
variable space. C requires that static or global variables with
no initialization given be set to zero. The compiler locates all
such variables in SECTION 2. (See the discussion on SECTION in
the PDOS assembler and linker manuals). The initialization code
then clears this space on start-up.

int a,b[10]; /* these are cleared */
main()
{

static ¢,d[10]; /* so are these */

int e,f[10]; /* but these are not */

1.8.3 Self-Relocation

In order for the program to run at any address space, the
initialization code compares the current address space to the
address space provided at link time. If they do not match, code
provided by QLINK allows the program to modify itself to adjust
to the actual address space. See the BITMAP command for QLINK in

the PDOS Reference Manual.

1-22 PDOS C Reference Manual

) /{ ™
L

(1.8 PROGRAM INITIALIZATION -- CSTART cont.)

1.8.4 Task Global Variables

The last function of the initialization module is to define the

following

~eomem

_fsptr

stdin,
stdout,
stderr

_strm0,
_strml

_tebptr,
_Syram

_alloep

task global variables:

A pointer to the beginning of un-allocated memory.
'sbrk' and the memory allocation/deallocation routines
use the space between the end of memory and the bottom
of the stack for dynamic memory.

File-slot pointer. This points to the file-slot
buffer. Some information on a file <can only be
obtained directly from the file slot. The format

of the file slot buffer is described in FILESLOT:H.
(Note: This pointer is no longer required and may not
be supported in future versions of PDOS C).

Standard I/0 stream pointers. Rather than have these
pointers be pre-initialized array references, PDOS C
lets them be pointers to streams. These are initi-
alized to all point to the stream _strm0.

Head and tail of stream list. PDOS has a different way
of handling open files than UNIX. The usual array of
streams is inefficient in PDOS. PDOS C links all open
streams together, with _strm0 at the head of the 1list,
and then as streams are closed, unlinks them from the
open list and links them to a 1list with _strml at
the head of the 1list.

Task Control Block and SYRAM table pointers. Two
system tables which can be very useful for system
programming are the Task Control Block and the SYRAM
table. The pointers are saved during initialization
and can be referenced by including their definition in
"TCB:H" and "SYRAM:H." (Note: the XGML function call
also returns the value of thse pointers.)

Memory allocation 1list head. The dynamic memory
allocation routines malloc(), mfree(), and so forth
maintain a linked list of blocks of memory so that they
may be allocated and deallocated over and over. The
head of this 1list d1is _allocp. User programs do not
normally need to make direct reference to this vari-
able.

PDOS C Reference Manual 1-23

1.9 C TO ASSEMBLY LANGUAGE INTERFACE

Although assembly 1language 1s sometimes considered a "dead
language," there are some occasions when it is the best tool for
the job. When the <code is very long, it is best to create an
assembly language subroutine and call it from C. Just be sure to
preserve the appropriate registers and observe the parameter
passing conventions detailed in the rest of this section. But,
if the code is short, PDOS provides you a method of including it
with in-line assembly.

1.9.1 In-Line Assembly Language

If you only have one or two dinstructions to perform, you can
include them as in-line code with the "asm" pseudo-function.
This statement looks like a function call with one literal string
argument but it is converted by the compiler to insert the quoted
string directly in-line with the rest of the C code.

Some of the calls into the PDOS interface are done more easily
via this method than by calling functions from XLIB:LIB. If XCLS
were implemented as a function, calling it would use a JSR
instruction, an XCLS instruction, and an RIS instruction. The
JSR would take 6 bytes of code for each call, plus the 4 bytes of
code at the function definition. But, invoking XCLS via in-1line

assembly language takes up only two bytes of code and runs faster
as well.

IN-LINE Vs FUNCTION CALL
asm("xcls"); ‘ xcls();

AB76: XCLS 4EBO***kkxx%, JSR .XCLS

AB76: .XCLS XCLS
4E75: RTS

Multiple lines can be specified in one call by embedding newlines
in the string.

asm("move di,d@\nxler");

The assembly language translator will convert lower-case text to
upper case and move code out of column 1 to distinguish it from
labels. If you need to put a 1label in your in-line assembly
code, terminate it with a colon (:) and the compiler will not
move it from column one.

1-24 PDOS C Reference Manual

N

C

(1.9 C TO ASSEMBLY LANGUAGE INTERFACE cont.)

asm("* comment"); * comment
asm(".xyz:"); .Xyz
asm("jmp .xyz"}; jmp .xyz

Remember that C always prefixes symbols with a period, so the
entry-point "main" will appear as ".MAIN" in assembly language,
and the variable "_tcbptr" will be "._TCBPTIR".

1.9.2 Calling Assembly Language From C

The calling sequence from a PDOS C program to assembly language
is as follows: 1) the C function arguments are pushed in
right-to-left order onto the stack, 2) a Jjsr 1is done to the
function name prefaced with a dot, and 3) upon return from the
jsr, the number of bytes pushed onto the stack is added back to
the stack pointer.

l[* C code */
main(i)
int i;
{
register char *j;
char k;
i=f(i,j.k);
}
*Assembly code generated by compller
.MAIN LINK A6,#-2 al locate for k
MOVEM.L D7-D7/A5-A5,-(SP) save j register plus extra
MOVE.B -2(A6),DD get k
EXT.w DO convert to int
MOVE D@, (SP) move k to stack
MOVE.L A5,-(SP) move | to stack
MOVE 8(A6),-(SP) move | to stack
JSR .F call function
ADDQ.L #6,SP clean up stack
MOVE D@,8(A8) move return value to [
L1 TST.L (SP)+ throw away extra
MOVEM.L (SP)+,A5-A5 restore J register
UNLK ASB deal locate local variables

RTS

PDOS C Reference Manual 1-25

(1.9 C TO ASSEMBLY LANGUAGE INTERFACE cont.)

Every C function reserves one 32-bit word on the stack. This
allows it to make one-argument function calls without cleaning up
the stack afterwards. Thus, the first argument passed to the
function, k, is merely moved onto the stack rather than pushed.

The variable i is offset by 8 from the current frame pointer, A6.
A6 points to the o0l1d frame pointer, which is followed by the
return address.

The local variable k is offset by -2 from the current frame
pointer. All local variables are referenced by negative offsets
from the frame pointer.

The compiler allocates register A5 for register variable j. The
0ld value of A5 1s saved on the stack upon entry and restored
upon exit.

]
SPACE

EXTRA l

| k | -2(A6)
Af=———=> OoLD (A6)
AB

RETURN| 4(A6)
ADDRESS

An assembly language routine should save and restore all of the
registers it wuses except for DO, D1, D2, A0, Al and A2. The C
compiler does not assume that these registers will be saved
across function calls. :

The function return value is always in DO for functions that
return an integer or a pointer. Functions that return a double-
precision floating point number (compiled with the 'E' option)
return a value in registers DO and D1. Functions using the 68881
(compiled with the 'H' option) return floating point values in
FPO. -

1-26 PDOS C Reference Manual

®

(1.9 C TO ASSEMBLY LANGUAGE INTERFACE cont.)
1.9.3 Calling C Functions From Assembly

Calling C functions from assembly language requires that the
assembly language routine push the arguments to the C function in
the previous paragraph. In additien, C functions assume that
registers DO, D1, D2, A0, Al and A2 are scratch registers. In
other words, C functions do not save and restore these regis-
ters. If an assembly language routine uses any of these regis-
ters, it should save and restore them over the C function call.
A C function returns integer and pointer function values in
register DO. See section 1.9.2 for floating point function
values.

The only possible problems with calling C functions from assembly
could occur if the C functions require access to the different
task global variables, or call library functions that do. You
may need to replicate some of the definition code in CSTART:ASM.

Also, while a C program is self-relocating, a C function linked
in with assembly functions may not be. In that case, you may
need to tell QLINK the specific address where your program will
run, or link using the BITMAP instructions of QLINK.

1.10 BOURNING C PROGRAMS IN ROM

The 'R' option of CC allows the creation of C programs to be
burned into EPROM.

>CC HELLO,R[CR]

The 'R' option calls a special program called ROMLINK that takes
the binary image produced by QLINK and produces a PDOS object
file with the necessary information for a subsequent QLINK to
locate the RAM and ROM sections of a C program at specific
addresses.

Because C generates code with absolute dinstructions, the result
is a program that will only run at one specific address. Normal-
1y, you can get around this limitation with the BITMAP option of
QLINK, which appends relocation information to a C task to enable
it to relocate itself to any address space during initialization.
This is not practical for a program burned into ROM, since self-
modification is not possible. In that case, the location phase
must be performed by the regular linker QLINK.

PDOS C Reference Manual 1-27

(1.10 BURNING C PROGRAMS IN ROM cont.)

Currently, burning PDOS programs in EPROM involves using the
program RUNGEN. This program asks you a number of questions
about your requirements for the target system, and creates a
procedure file that, when executed, will build a binary image of
the code to be burned into EPROM. .

It does this by using QLINK to 1link all the task images together
to make a "superprogram" that is then output in whatever format
is convenient. C programs have unique requirements because they
have specific section references to a RAM section as well as a
ROM section. RAM is defined 4in SECTION 1, while ROM is in
SECTION O.

This definition is done by the program ROMLINK, which converts
the SYfile normally produced by QLINK to an object file with
SECTION O and SECTION 1 references. This object f£file only
needs the 1linker to resolve the base of the two sections. There
are no REFs or DEFs in this object file. Thus, you need to
tell RUNGEN that you are supplying it with an "assembly language"
(or "language independent") module that needs SECTION 0 to be
located in the ROM area and SECTION 1 to be located in the RAM
area.

When you compile with the 'R' option, the end result is a file of
type "OB" with the same name as your program and the extension
"ROM." The following example produces an object file named
"SIEVE:ROM." You may calculate the RAM and ROM requirements by
inspecting the first line of the object file. The size of the
code (or ROM) section is given in eight hexadecimal digits,
prefixed by the code 'E0.' The size of the data (or RAM) section
is given in eight hexadecimal digits, prefixed by the code 'El.'

x>CC SIEVE,R
x>SF SIEVE:ROM ' code data

size size
BCCTEMPO:0 S5 00909861105E0P0PPR7CCE10000213a210000 ...

1-28 PDOS C Reference Manual

®

1.11 PROGRAMMING CONVENTIONS

Following are miscellaneous considerations to take note of when
programming in C under PDOS.

1.11.1 Line Termination

Under the general conventions established by UNIX and MSDOS, a
line terminator dis a 1line-feed character (Hex 0A). Under PDOS,
however, lines are terminated with a carriage return (Hex 0D).
Under both operating systems, a line terminator is converted to a
carriage return/line-feed combination when it is displayed to the
terminal. To be consistent wtih other programs under PDOS, C
programs use the carriage return character as a 1line terminator.
Therefore, the following conventions hold:

'\n' == Bx0D; /* carriage return is a new-line */

'\r' == Bx8D; /* return without line-feed —— set high bit */
"\1' == Dx0A; /* line feed character under PDOS */

'"\t' == Bx09; /* tab character */

‘\Nf' == 0x0C; /* form feed */

"\b' == Bx08; /* back space */

In addition, the following was added for programming conveni-
ence:

'\e' == Ox1B; /* escape character */
1.11.2 Register Variables

Three address registers and five data registers are available for
use as register variables. The address registers will be used
for pointer variables. Declaring more register variables than
are available does not cause an error; any register variables
specified beyond the limits given above are simply defined as
automatic variables (i.e. on the stack).

Access to register variables is much faster than access to
automatic, statiec, or global variables. It also requires less
code to specify a register variable than a non-register vari-
able. It is a good idea to define heavily wused variables as
register variables. Registers are 1limited because they do not
have an address. As such, the following is illegal:

register int x;
y=8&x;

PDOS C Reference Manual 1-29

(1.11 PROGRAMMING CONVENTIONS cont.)
1.11.3 Variable Specifications

The following shows sizes of variables:

long - 32 bits wide
pointer - 32 bits wide
enum - 16 bits wide
int - 16 bits wide
short - 16 bits wide
char - 8 bits wide
bit field - 1-32 bits wide

All non-pointer variables may be signed or unsigned.
1.11.4 Comments

The standard format for comments is to enclose them in "/*" and
"kx/". PDOS C also allows a one-line comment to be indicated by
text beginning with a double slash -- "//". Text following the
double slash to the end of the line is a comment.

1.12 ACCESSING MEMORY DIRECTLY

It is possible to do direct memory accessing from C, usually to
memory-mapped I/0 registers at a particular address. This type
of code 1s machine-dependent and should be isolated to a few
small modules if portability is desired.

Should you desire to read/write 16 bits at a time to memory
address 0xFF100200, you could define a pointer as follows:

int *p;
int 1,j;

p = OxFF100200;

i = *p; /* read 16 bits from the address */
p = j; / write 16 bits to the address */

If you will be making many references, you may want to declare

the pointer to be a register variable to give quicker access and
require less code.

1-30 PDOS C Reference Manual

- e

¢

(1.12 ACCESSING MEMORY DIRECTLY cont.)

For only one or two references to the address, you can simply
declare the code in-line as follows:

i = *(int *) OxFF100200; /* read */
*(int *) BxFF100200 = j; /* write */

If you need to read/write a single byte, or 32 bits, you would
declare the pointer above as follows:

char *p; /* one byte */
long *p; /* 32 bits */

or the in-line code:

*(char *) BxFF100200;
*(long *) BxFF100200;

c
c

PDOS C Reference Manual

1-32

PDOS C Reference Manual

6/

L

CHAPTER TWO
STANDARD I/O0 LIBRARY ROUTINES

This chapter 1lists and describes the functions in the standard
I/0 library (STDLIB:LIB). These functions are normally used with
the default link of the CC program file. Specifying 'F,' 'E,' or
'H' as an option to CC tells the linker to search the appropriate
floating point 1library before it searches STDLIB:LIB. In that
case, a different version of the formatted I/0 <routines (printf,
scanf, etc.) will be used.

In this chapter, each function call is described in terms of its
name, calling sequence and parameters, and function. A limited
example is given when practical. Under the heading "NOTES" any
known limitations and restrictions are 1listed along with some
practical advice and complaints.

PDOS C Reference Manual 2-1

ALLOCATE MEMORY ROUTINES

alloc -- allocate memory (another name for malloc)
malloc -- allocate memory

calloc —- allocate memory and clear it

realloc —- change size of block of memory

Format:

#include <stdio.h>
char *alloc(size)
unsigned int size;
char *malloc(size)
unsigned int size;
char *calloc(count,size)
unsigned int count,size;
char *realloc(ptr,size)
char *ptr;
unsigned int size;

Description:
These routines all provide dynamic storage allocation functions
to the user. 'malloc' returns a pointer to a block of memory of

size 'size'. 'alloc' is another name for 'malloec'. ‘'calloc'
returns a pointer to a block of memory 1large enough to hold an
array of ‘'count' elements, each of size 'size'. ‘'realloc' takes

a previously allocated block of memory and shrinks or enlarges
it to be 'size'.

The memory returned by 'malloc' and 'alloc' does not have any
particular initial value; it must be assumed to contain garbage.
‘calloc' clears the memory it returns, while 'realloc' copies the
contents of the o0ld memory into the new memory.

Typically, the caller casts the result pointer from these
routines to the appropriate pointer type. The size specification
can often be computed conveniently using the 'sizeof' operator.

If the routines cannot allocate the memory, they return a null
pointer (NULL).

-2 PDOS C Reference Manual

C

(ALLOCATE MEMORY ROUTINES cont.)

unsigned count;
long *longarray;
char *calloc(),*realloc(),*malloc();

count = 40;
longarray = (long *) calloc(count,sizeof(long));

count += 20; /* need to enlarge the array */
longarray = (long *) realloc(longarray,count*sizeof(long));

struct ABC {
char a[20];
int b;
long c;

}s

struct ABC *p;
p = (struct ABC *) malloc(sizeof(struct ABC));

free(p);

Notes:

A frequent error is to forget to declare that these routines
return pointers. If a routine is not declared, C assumes

that it returns an int (16 bits). The compiler hints that
something may be wrong by warning that you are assigning a

short to a pointer. Remember to declare the routine properly
before using it.

PDOS C Reference Manual 2-3

ASCII TO INTEGER CONVERSION ROUTINES

atoi —- ASCII to int conversion

atol -—- ASCII to long conversion
itoa —— int to ASCII conversion

Ttoa -— long to ASCII conversion
Format:

int atoi(string)
char *string;
long atol(string)
char *string;
itoa(num, string, width)
int num, width;
char *string;
ltoa(num, string, width)
long num;
char *string;
int width;

Description:

These routines perform various ASCII - integer conversions. It
is useful to use these routines when the overhead of the printf
function is not needed.

'atoi' converts 1its string argument to an int and returns the
value. Leading whitespace is ignored.

.

'atol' converts its string argument to a long and returns the
value. Leading whitespace is ignored.

'itoa' converts its numeric argument to an ASCII string of the
specified width. The number is right justified in the field and
padded on the left with blanks.

'ltoa' performs the same conversion as 'itoa', but the numeric
argument is a long.

See also the PDOS interface functions XCBD, XCBH, XCBX, XCHX, and
XCDB. .

_x=atoi("1234");
long int y,atol();

_y=atol1("123456");
char buf[20];

_ltoa(x,buf,6);
1toa(y,buf,10);

NOTES
The conversion routines stop on any non-numeric character
and do not report errors on input.

~

2-4 PDOS C Reference Manual (;\

CLOSE

Close a File

Format:
int close(fd);
int £4;

Description:

This routine closes a file opened by 'open', 'creat',k XSOP, etc.

It returns zero if there was no error; otherwise, 1t returns
-1.

if (close(fd))
printf("error closing file");

C PDOS C Reference Manual

COPY

Copy One File Into Another

Format:
int copy(source,dest)
char *source, *dest;

Description:

'copy' copies a file from the source file to the destination
file. If the destination file does not exist, it is created.
The destination file is set to the same attributes as the source
file. 'copy' works similarly to the PDOS primitive XCPY, but
since it uses all available memory as a buffer, it runs faster.

The function value is zero if the copy occurred without error.
An open error on the input file causes an error return of 1. An
open error on the output file causes an error return of 2. Any

error while writing to the output file causes an error return of
3.

if (err = copy("OLDFILE:DAT","OLDFILE:BAK"))
printf("\nError on copy file: %d",err);

Notes:
'copy' uses the memory between the end of memory and the bottom
of the stack. When it returns, that memory may be used for

anything else, but be aware that it may interact with non-
standard use of 'sbrk'.

2-6 PDOS C Reference Manual

©

C

CREAT

Define a File and Open It

Format:

int creat(filename,mode);
char *filename;

int mode;

Description:
If a file by the given name exists on the disk, this call opens
it for sequential output. Otherwise, it defines the file and

opens it. It returns a -1 on error or it returns the file id
(file slot).

if ((fd = creat(filename,0)) < 8)
printf("error opening file %s",filename);

Notes:
The 'mode' is currently only for UNIX compatibility, and is
ignored by 'creat'. See also XDFL in XLIB. It 41s an error

to open a driver file (like 'TTA') with this call, since ‘'creat'
will attempt to set the End of File (EOF) pointer to the begin-
ning of the file, resulting in a PDOS error 80, 'Driver Error.'

PDOS C Reference Manual 2-7

CTYPE

Character Class and Conversion Macros

Format:

#finclude <ctype.h>

isspace(c), isupper(c), islower(ec), isalpha(c), isdigit(e),
ishex(ec), isascii(e), isalnum(e), iscntrl(c), isprint(c)
ispunct(e), toupper(e), tolower(c) toascii(e)

These routines are all macro definitions which take a single
character argument and return an integer.

Description:
isspace(e): true if ¢ is a space, tab, carriage return, newline,
or a formfeed character.
isupper(e): true if is an upper case letter.
islower(ec): true if is a lower case letter.
isalpha(e): true if is an alphabetic character.
isdigit(e): true if is is a decimal character.
ishex(e): true if is a hexadecimal character.
isascii(ec): true if is in the ASCII character range.
isalnum(e): true if is an alphanumeric character.
iscentrl(e): true if is an ASCII control character.
isprint(e): true if is a printable character.
ispunct(e): true if is one of the following:
P "# 828" ()*+, - .7/ :
s <=>?2@ [N1~ _" {1}
toupper(ec): returns the specified character's upper case
equivalent.
tolower(e): returns the specified character's lower case
equivalent.
toaseii(ec): all non-ASCII bits will be masked and the resulting
character returned.

NOOODONNDNOODO

if (isalnum(c))
putchar(c);

else /* non-printable character */
printf("<%d>",c);

Notes:
Beware of side effects when using these macros; some of them may
reference their argument twice. If the argument is a function

call like 'gete' then the function may be called twice instead of
once per macro call.

2-8 PDOSAC Reference Manual

TN

C

_ERROR

Print Error Message and Exit

Format:
_error(format,argl,arg2,...,argn);
char *format;

arguments can be of various types.

Description:

'_error' is a version of 'printf' that displays a message through
'stderr' and exits to the monitor with an error code of 1. For
information on format items, see 'printf'.

main(argc,argv)
int argc;
char *argv[];

if (arge < 2)
_error("\n%s: must have an argument.",argv[B8]);

3

x>TEST[CR]

TEST: must have an argument.
Exit Status 1

X>_

PDOS C Reference Manual 2-9

EXIT

Close Streams and Exit to Monitor

Format:
int exit(status);

Description:

This routine closes all files opened with 'fopen', and calls
'_exit' with status. A program which executes a return at the
top level or which drops out the end of the main section will
also go through 'exit' but without the option of returning a
status. In that case, the status is assumed to be the Last Error
Number (LENS$) that was saved in the Task Control Bloeck. The LENS

is updated after most PDOS calls, and is set directly by the XLER
call.

exit(0);
exit(1);

Notes:

If you open files through any method other than '‘fopen', it is
worthwhile to define a function called ‘'exit' in your own task
that closes all files and performs any other necessary cleanup
before calling ‘'_exit'. The 'pute' routine calls ‘'exit' on
detecting a [CTRL-C] from the console. Defining your own 'exit'
allows you to trap the error and handle it appropriately.

2-10 PDOS C Reference Manual

.

C/‘

_EXIT

Exit to Monitor With Status

Format:
_exit(status);

Description:

Exit to the PDOS monitor, reporting any errors. If the status is
non-zero, a message "EXIT STATUS n" is printed on the console.
If the Last Error Number (LENS$) was also non-zero, the PDOS error
number and message is printed. This function dis called by
'exit' after the files are closed. It can be called by the user
if it is necessary to exit without closing files.

_exit(0);
Texit(1);

PDOS C Reference Manual 2-11

a
Close a Stream W
Format:
#include <stdio.h>
int fclose(stream);
FILE *stream;
Description:
'fclose' closes the stream opened by 'fopen' or 'ttyopen'.
Buffers are flushed to the disk and the file block is deallo-
cated. Returns EOF on error; otherwise it returns NULL.
FILE *f,*fopen();
f = fopen("temp","w");
fprintf(f,"testing\n");
fclose(f);
O

2-12

FCLOSE

PDOS C Reference Manual <(3

FEOF

Check for End of File in a Stream

Format:
#include <stdio.h>

int feof(stream)
FILE *stream;

Description:
‘feof' returns a non-zero value if the stream is at the end of
the file; otherwise, a zero value is returned.

while(!feof(f1)) /* copy a file */
putc(getc(f1),f2);

Notes:

'feof' 1s implemented as a macro. The current implementation
does not correspond with the ANSI standard because the EOF is
true when there is no longer any data to read, not when EOF has
been read.

PDOS C Reference Manual 2-13

FGETS

Get a Line From a Stream

Format:

#include <stdio.h>

char *fgets(buff, size, stream)
char *buff;

int size;

FILE *stream;

Description:
'fgets' reads characters from the stream into the buffer until it

sees a newline, reaches end-of-file, or reads size-1 characters. -

If the read terminates with a newline, the newline is stored in
the string. A null is placed after the last character read. If
no characters were read (because an input error or EOF occurred
immediately) the buffer is returned unmodified and the function
returns a null pointer (NULL). If data is read into the buffer,
the function returns a pointer to the buffer.

See also XRLF, XGLU, and XGLB for PDOS functions that perform
similarly.

#include <stdio.h>

FILE *fd,*fopen;

char *fgets(),buffer[132];

fd = fopen("MYFILE:TXT","r");

if (fgets(buffer,132,fd) == NULL){
printf("\nEnd of file");
fclose(fd);

}

else
printf("%s",buffer);

Notes:

'fgets' keeps the newline when it is read in, while 'gets' does
not. The inconsistency is confusing, but standard.

2-14 PDOS C Reference Manual

&

FFLUSH

Flush Output to File

Format:
#include <stdio.h>

fflush(fbuf)
FILE *fbuf;

Description:

'fflush' forces all pending I/0 on a stream to be sent out. It
is primarily intended as an internal-use call, called by
'fclose,' 'fseek,' 'fpute,' and 'exit.'

FILE *f1;

f1 = fopen("MYFILE:DAT","w");
fprintf(f1,"\nThis is a test");
fflush(f1);

Notes:

'fflush' is not normally called directly, since the buffers are
automatically flushed as necessary.

C

PDOS C Reference Manual 2-15

FOPEN

Open a Stream

Format:

#include <stdio.h>
FILE *fopen(fname,mode)
char *fname;

char *mode;

Description:
'‘fopen' opens the specified file according to the specified mode
and associates a stream with it. The file modes are:

"r" open for reading

"w" " create for writing (truncate if file already exists)

"a" open for writing at end of file, or if non-existent,
create

"r+" open for update

"w+" create for update

"at+" open for update, create if necessary, position to end
of file

In the last three cases, "update" means that the file 1is opened
for random access.

'fopen' allocates a stream buffer and returns a pointer to it on
success; if the file cannot be opened it returns NULL.

FILE *f,*fopen();

f = fopen("temp","w");
fprintf(f,"testing\n");
fclose(f);

Notes:
Mode "a" and mode "a+" are currently the same. To do otherwise
would involve an immense amount of overhead on mode "a."

Don't open driver files (like 'TTA') in mode "w." In this mode,
'fopen' attempts to reposition the end of file (EOF) pointer to
the beginning of the file and the driver returns a PDOS error 80
(driver error). Open driver files in mode "r+."

2-16 PDOS C Reference Manual

FORMATTED INPUT ROUTINES

fscanf —— formatted input from file
scanf —— formatted input from standard input
sscanf —-- formatted conversion from buffer
Format:
#include <stdio.h>
int scanf(format, ptrl, ptr2, ...)
char *format;
int fscanf(fid,format, ptrl, ptr2, ...)
FILE *fid;
char *format;
int sscanf(buffer,format, ptrl, ptr2, ...)

char *buffer;
char *format;

Description:
'scanf' reads from the standard input and returns data converted
according to the format description.

'fscanf' reads from the specified stream and returns data
converted according to the format description.

'sscanf' reads from the specified buffer and returns data
converted according to the format description.

A non-negative number as a return status for these routines
indicates the number of fields matched. A -1 indicates that no
fields matched; a -2 indicates the end of file; a -3 indicates an
input error. ’

The format string may contain spaces, tabs and newlines which are
ignored, percent signs '%', and conversion characters. The
conversion characters must be preceded by a percent sign. An
optional maximum field width may be inserted between the two, or
an asterisk '*' specifying that this item is ignored. No other
characters are allowed.

FORMAT STATEMENT FORMAT

'%' '1' <max size> 's'
Tt |c|

ldl

!x|

|°!
|f|
Oel

l[l

PDOS C Reference Manual 2-17

(FORMATTED INPUT ROUTINES cont.)

The conversion characters and their expected storage types are as
follows:

‘e’ The next character is stored through a character
pointer. It will accept blanks, tabs or carriage returns as
legitimate input. If you need the first character which is
not a blank, tab or carriage return specify a format of
"%1s" (percent,one,s) instead and pass a pointer to a
buffer.

's' The next i1input 1is a character string. It should be
stored through a pointer to a character buffer which
has been allocated sufficient space for the expected
string.

'd' The next input is a decimal number. It should be stored
through a pointer to an integer.

'o' The next input is an octal number. It should be stored
through a pointer to an integer.

'x'" The next dinput is a hexadecimal number. It should be
stored through a pointer to an integer.

Note: 'f' and 'e' formats are not implemented in STDLIB. Use

'E," 'F,' or 'H' switch when compiling or linking.

x>CC TEST,F[CR]

'f' The next dinput 1is a floating point number. It should
‘be stored through a pointer to a float. The dinput may
be in the format:

<leading digits>.<trailing digits>
or:
<digit>.<digits>e<exponent>

'e' Same as 'f'.

VALID ‘e’ or 'f’ INPUT:

123.456

1.234560e02
-123.456e-02

2-18 PDOS C Reference Manual

g

C

C

(FORMATTED INPUT ROUTINES cont.)

'['" The next input is a string not delimited by space charac-
ters. The left square ©bracket is followed by a set of
characters and a right square bracket. The set of charac-
ters in the ©brackets define the characters making .up
the string. If the first character after the left bracket
is the up-arrow (") the set of characters is all characters
NOT within the brackets. " Data is stored in the corres-
ponding argument (a string array) until a character not in
the set is found.

Format descriptions 'd', 'o', and 'x' must be preceded by an '1'
(el) character if the corresponding argument is a pointer to a
long (32-bit) integer rather than an int (16-bit).

Double precision floating point numbers (compiler option 'E' or
'H') also require that the format description be preceded by an
'l' (el) character.

int i;

float f;

char name[32];
char *inptr;

xglu(&inptr); /* read a line from the keyboard */
sscanf(inptr,"%d%f%s",&1,&f,name);

If the Input Is ‘123 45.678E-1 Kilroy’ then ‘[’ will get the value '123', 'f’

will recelve the value °45.678t-1°, and ‘name’ will recelve the string
‘Kilroy’.

Notes:

Since terminal I/0 in PDOS C is currently unbuffered, the first
rubout will terminate an input field, making it awkward to use
'scanf' on the keyboard. (You can't delete your mistakes). It
is better to use XGLB or XGLU to read a 1line from the keyboard
and then use 'sscanf' to parse that line.

A common programming error is to forget that 'scanf' requires the
address of the return parameters.

int i; -
scanf("%d",1i); /* this won't work */
scanf("%d",&i); /* this will work */

PDOS C Reference Manual 2-19

FORMATTED PRINT ROUTINES

fprintf —— formatted print to stream

printf —— formatted print to standard output
sprintf —— formatted print to buffer

Format:

#include <stdio.h>
fprintf(stream,format,argl,arg?2,...);
FILE *stream;

char *format;

Arguments can be of various types.

printf(format,argl,arg2,...);
char *format;
Arguments can be of various types.

sprintf(buffer,format,argl,arg2,...);
char *buffer;

char *format;

Arguments can be of various types.

Description:

The description below applies equally to all three function
calls, except that 'printf' directs i1its output to 'stdout',
'fprintf' directs its output to the indicated stream, and
'sprintf' outputs to the indicated buffer.

There are actually four sets of formatting routines -- one in
the standard library and one in each floating point library. The
one in the standard 1library does not handle floating point, so
the Z%Ze,%f formats are not allowed. A considerable size penalty
is exacted by bringing in the floating point routines, so if you
don't use floating point, it is a good idea to use the simpler
version of the 'printf' routines.

There are two types of items in the format string: 1) characters
which are copied literally and 2) format statements which work on

strings, characters and numerics. A format statement begins
with a percent sign '%Z' and ends with one of the conversion
characters. There may optionally be additional specification

characters between the percent sign and the conversion letters.
'printf' expects numbers ('d','x','u','o' format) to be sixteen-

bit words wunless the format statement includes the lower case
character el ('1').

2-20 PDOS C Reference Manual

(FORMATTED PRINT ROUTINES cont.)

FORMAT STATEMENT FORMAT
‘%' '1" '=' «<min size> ','<max size> 's'
!0' lcl
ldl

bed

c

|f'
lel

o

By default, a number or string only takes as much space as is
necessary to print it. If a minimum field width is specified,
the number or string is printed right-justified in that field,
padded with ©blanks if necessary. It is padded with zeroes if a
'0' precedes the minimum field width. If & minus sign '-'
precedes the minimum field width, the number is right justified.

A maximum field width may also be specified, with or without
a8 minimum field width. A period '.' must precede the maximum
field width. If a floating point number (conversion characters
'e' or 'f') is specified, the number following the period
specifies the number of digits after the decimal point to print,
rather than a maximum field width. v

The conversion characters are as follows:

'c' Print a single character. printf("%c",65); A

's' Print a string. printf("%s'","testing"); testing
'd' Print a decimal number. printf("%d",1234); 1234
'x' Print a hexadecimal number. printf("%x",Bxabcd); ABCD
'u' Print an unsigned decimal number. printf("%u",-1); 65535
‘o’ Print an octal number. printf("%o",64); 100

THE FOLLOWING FORMATS ARE ONLY VALID IN THE FLOATING POINT VERSIONS:

'f! Print a floating point number. printf("%f",123.456); 123.455989

The result is in floating point
notation.

<leading digits>.<trailing digits>
If no second width field has been

specified there will be six digits
to the right of the decimal point.

'e' Print a floating point number. printf("%e",123.456); 1.234560e02

The result is in scientific or
engineering notation.

<digit>.<digits>e<exponent>

PDOS C Reference Manua; 2-21

(FORMATTED PRINT ROUTINES cont.)

Format description characters 'd', 'o', 'x', and 'u' must be
preceded by an 'l' (el) character if the argument is a long
integer (32 bits) rather than a word (16 bits).

Double precision floating point numbers (compiler option 'E' or
'H') also require that the format description be preceded by an
'l' character.

Any other character following a percent sign is taken as a
literal and will itself be printed. 1In this way you can print a
percent sign. See also 'scanf'.

Notes:

Remember to search the floating point library before the standard
library 1if you need to wuse the floating point, or octal con-
versions.

Some versions of 'printf' allow '%ZX' to indicate hexadecimal
output with the letters A-F in upper case and '%x' to indicate
hexadecimal output with the 1letters a-f in Jlower ~case. This
convention applies to PDOS C if the 'F,' 'E,' or 'H' flag is
set. The version of 'printf' .from STDLIB recognizes only the
lower case 'Zx' and puts out upper case A-F.

2-22 PDOS C Reference Manual

FPUTS

OQutput String to Stream

Format:
f#include <stdio.h>

fputs(s, stream)
char *s;
FILE *stream;

Description:

"fputs' outputs the null-terminated string to the specified
stream. The null is not transferred.

FILE *fs,*fopen();
fs = fopen("MYFILE:TX","w");
fputs("hello, world!\n", fs);

Notes:

'fputs' is not implemented as a macro, but rather as a function.
This may change in the future.

(:/ PDOS C Reference Manual 2-23

FREAD

Read From Stream

Format:

int fread(iarray,isize,icount,stream)
char *iarray;

int isize,icount;

FILE *stream;

Description:
'‘fread' reads items into 'iarray' from the input stream. The
item's size 1is specified by ‘isize.' 'fread' reads until

'icount' items are read or until EOF is encountered.

See also 'fopen,' 'fclose,' 'fwrite,' 'gete,' and 'pute.'

#include <stdio.h>

FILE *f1;
long data_table[20];

f1 = fopen("datfile:dat","r");
fread(data_table,sizeof(long),20,f1);

Notes:

Attempting to read from a closed file may cause it to read from
the standard input rather than returning an error as expected.

2-24 . PDOS C Reference Manual

-

FREE, MFREE

Deallocate Previously Allocated Memory

Format:

free(ptr)
char *ptr;

mfree(ptr)
char *ptr;

Description:
'"free' or 'mfree' will deallocate a block of memory previously

allocated by the 'alloc/malloc/calloc/realloc' routines. The
block of memory goes into a pool of similarly available blocks of
memory where i1t may be allocated again as necessary. The
argument to 'free/mfree' must be a pointer previously returned by
‘alloc/malloc/calloc/realloc' and not already given to 'free/

mfree.'

See the example for 'alloc/malloc/calloc/realloc.'

PDOS C Reference Manual

FSEEK

Reposition a Stream

Format:
#include <stdio.h>

int fseek(stream,offset,origin)
FILE *stream;

long offset;

int origin;

Description: ‘

'fseek' repositions the location of the file pointer to the
location 'offset' ©bytes from the beginning, current location
or end of the file as specified by an origin of 0, 1, or 2
respectively.

Returns EOF if the seek is . unsuccessful or if the stream has
not been opened; otherwise it returns O.

See also 'lseek' and XRFP.

FILE *fs,*fopen{()

fs = fopen("MYFILE:SR","r+");

fseek(fs,10L,0);

fputs(fs,"this goes 10 bytes from the start");
fseek(fs,100L,2);

fputs(fs,"this goes 100 bytes from the end");
fseek(fs,-200L,1);

fputs(fs,"this goes 208 bytes before that");

Notes:
If the stream has been used last for output, 'fseek' flushes the
buffer before performing the seek.

'fseek' and 'lseek' are quite similar, with the exception of
the return values of the two functions. 'fseek' returns a
status flag indicating success or failure, while 'lseek' returns
the current byte position sought.

You cannot position beyond end of file. To extend a file,
position to end of file and write data.

2-26) PDOS C Reference Manual

&

FTELL

File Pointer Relative Offset
Format:
#include <stdio.h>

long ftell(stream)
FILE *stream;

Description:

'ftell' returns the file ©pointer's current byte offset from the

beginning of the stream.

It returns EOF on error, or if the specified stream has not been

opened for file I/O.

long here,ftell();

FILE *fs,*fopen();

fs = fopen("MYFILE:TXT","r+");
fputs(fs,"Remember where this goes");
here = ftell(fs);

fseek(fs,here,B); /* reposition to where we were */

PDOS C Reference Manual

2-27

FWRITE

Write to Stream

Format:

int fwrite(iarray,isize,icount,stream)

char *iarray;
int isize,icount;
FILE *stream;

Description:

'fwrite' writes 'icount' items from ‘'iarray' to
stream. The size of each item is specified by 'isize.'

See also 'fopen,' 'fclose,' 'fread,'

#include <stdio.h>

FILE *f1;
long data_table[20];

f1 = fopen ("datfile:dat","w");
fwrite(data_table,sizeof(long),20,f1);

2-28

the output

'gete,' and 'pute.'

PDOS C Reférence Manual

AT

GETC

Get a Character From a Stream

Format:

#include <stdio.h>
int gete(£fd);

FILE *fd;

Description:

'gete' gets a single character from a file. It returns a
character or EOF.

It echoes on input if *fd == _strm0 and fd->fslot == O.

To avoid echo, open your console with ‘'ttyopen' and perform
the input from that stream.

#include <stdio.h>

FILE *fd,*fopen(),*ttyopen();

int c;

fd = fopen("DATA:FIL","r");

while ((c = getc(fd)))
putchar(c);

FILE *p;

char ¢;

p = ttyopen(0); :

printf("\nEnter a character. It should echo:");

c = getc(stdin);

printf("\nYou typed %c. Now enter a character. It won't echo:",c);
¢ = getc(p):

printf("\nYou typed %c",c);

Notes:
Versions of PDOS C prior to 5.0 implemented 'getc' as a function
instead of a macro. 'gete,' now a macro, buffers file I/0.

Terminal I/0 is still unbuffered. The macro is defined in
"stdio.h."

PDOS C Reference Manual 2-29

GETCHAR

Get a Character From Standard Input

Format:
finclude <stdio.h>
int getchar();

Description:
'getchar' reads a character from the stdin stream and returns it.
This is implemented as a macro in stdio.h as follows:

#define getchar() getc(stdin)

¢ = getchar();

Notes:

Versions of PDOS C prior to 5.0 implemented 'getchar' as a
function instead of as a macro. ‘'getchar,' now a macro, buffers
file 1I/0. Terminal I/0 4is still wunbuffered. The macro is
defined in "stdio.h." You must dinclude "stdio.h" to use
'getchar’'.

2-30 PDOS C Reference Manual

C

C

C

GETS

Read Line From Standard Input

Format:
#include <stdio.h>

char *gets(s)
char *s;

Description:

'gets' reads a string of characters from the 'stdin' into the
buffer that is passed in. It returns a pointer to the data if it
succeeds; if &an end of file is found before data is read, then
NULL is returned. The newline at the end of the line is deleted
and replaced with a null.

char buffer[132],*gets();
if (gets(buffer) != NULL){

/* process the line of data */

Notes:

'gets' is not consistent with ‘'fgets' in the handling of the
newline at the end.

PDOS C Reference Manual 2-31

GLOB

Expand Ambiguous Filename to List of Filenames

Format:

glob(argeptr, argvptr, filespec)
int *argeptr;
char ***argvptr;
char *filespec;

Description:

This routine takes an ambiguous filename specification (one
which may have wild cards in it) and expands it to a list of
the files on the disk that mateh that specification. If no
disk unit dis given, the current SY unit is taken as a default.
If no level i1is specified, the current 1level is taken as a
default. It returns a count of the matching names in the first
parameter, and a pointer to the array of strings in the second
parameter.

int rarge;

char **rargv;

glob(&rargc,&rargv,"a:C;a/2");

for (i=0;i<rargc;i++)
printf("\n%s",rargv[i]);

Notes:

The storage for the filenames is allocated from the memory
between the end of memory (_eomem) and the Dbottom of the stack.
This memory is mnot deallocated, so that the strings are not
over-written. Repeated calls to 'glob' will eventually use up
all the available memory. Programs needing to make repeated
calls to 'glob' should preserve the value of '_eomem' before the
call and restore it after all the strings have been seen.

Don't perform any other dynamic memory allocation after saving
the value of '_eomem' or the restoration of '_eomem' could
disrupt that activity as well.

The description/execution of this function is somewhat awkward.
It conforms to no known standard.

2-32 - PDOS C Reference Manual

O

C

INDEX

Return Position of Character in String

Format:
int index(str,c)
char *str,c;

Description:

'index' searches for the character 'ec' in the string 'str'. 1If
the character is found, the position in the string is returned.
-1 is returned if the character is not in the string. Compare
with 'rindex'. See also 'strchr' in STRINGS.

printf('"char %c is at location %d in string %s",c,index(str,c),str);

Notes:

UNIX defines one version for System III and another for Version
7. This routine is compatible with Version 7.

PDOS C Reference Manual 2-33

LSEEK

Position File Slot

Format:

long lseek(fd,offset,flag)
int f4d;

long offset;

int flag;

Description:

The ‘'lseek' system call allows the user to position the file
pointer for an open file. The file pointer references the place
in the file where the next 'read' or 'write' is performed.

If the ‘'flag' is 0, the ‘'offset' is taken to be absolute, or
relative to the beginning of the file.

If the 'flag' is 1, the 'offset' is taken to be relative to the
current position in the file.

If the 'flag' 1s 2, the ‘'offset' is taken to be relative to
the end of file.

The value returned by the function is the current position within
the file, or -1 on error.

See also 'fseek' and XRFP.

int fs;

fs = open("MYFILE:SR",2);

1seek(fs,10L,0);

puts(fs,"this goes 10 bytes from the start");
1seek(fs,100L,2);

puts(fs,"this goes 188 bytes from the end");
I1seek(fs,-200L,1);

puts(fs,"this goes 280 bytes before that");

Notes:

You cannot position beyond end of file. To extend a file,
position to end of file and write data.

2-34 PDOS C Reference Manual

=
J

N’

LONG DIVISION ROUTINES

1div —— 1long division

1divr —— long remainder

ldivu -- unsigned long division
Format:

long 1ldiv(numl,num2)
long numl,num2;

extern long 1ldivr;

unsigned long ldivu(numl,num2)
unsigned long numl,num2;

Description:
'ldiv' computes the division of 'numl' by 'num2' and returns the
quotient. The remainder from the division is stored in the

global variable 'ldivr'.

'ldivu' performs an unsigned division on the two operands and
returns the quotient.

These 1routines are generally not explicitly called by the
programmer but are automatically generated by the compiler as
needed.

printf("%1d",1div(2147393664,17394L));

PDOS C Reference Manual 2-35

LONG MULTIPLICATION ROUTINES

‘e
Imul -- 1long multiplication G
Imulu -- unsigned long multiplication
Format:
long 1lmul(numl,num2)
long numl,num?2;
unsigned long 1lmulu(numl,num2)
unsigned long numl,num2;
Description:
'lmul' computes the long multiplication on 'numl' and 'num2' and
returns the product. ‘
'lmulu' computes the unsigned product of the two numbers.
These routines are generally not explicitly called by the
programmer but are automatically generated by the compiler as
needed.
printf("%1d", 1mul(17394L,123456));
Notes: -,

These routines don't check for 32-bit overflow.

2-36 PDOS C Reference Manual a:>

LONG REMAINDER ROUTINES

Trem —— long remainder
Tremu —— unsigned long remainder

Format:
long lrem(numl,num2)
long numl,num2;

unsigned long lremu(numl,num2)
unsigned long numl,num2;

Description:

'lrem' does long division on the 'numl','num2' pair and returns
the remainder from 'numl' divided by 'num2'.

'lremu’ does the operation using unsigned arithmetic.

These routines are generally not explicitly called by the
programmer but are automatically generated by the compiler as
needed.

See 'ldiv' and 'lmul’'.

printf("%1d",1rem(7654321,123456));

PDOS C Reference Manual 2-37

MEMORY HANDLING ROUTINES

memccpy —-- copy character with break
memchr -- locate character in memory
memcmp - compare memory

memcpy —--— copy memory

memset -- set memory to character
Format:

#include <memory.h>

char *memccpy(dst,src,be,cnt)
char *dst,src;
int be,cnt;

char *memchr(str,ch,cnt) .
char *str;
int ch,cnt;’

int mememp(ml,m2,ent)
char *m,*m2;
int ecnt;

char *memepy(dst,src,cnt)
char *dst,*src;
int cnt;

char *memset(m,ch,cnt)
char *m;
int ch,cnt;

Description:
'memcecpy' copies from 'sre' to 'dst' 'cnt' bytes or until the
break character ('be') is copied. A pointer to the character

~following 'be' din 'dst' 1s returned if 'be' is encountered. If
'be' is not encountered, a NULL is returned.

char buf[50]
memccpy(buf,"Hello world\n\@!", 1", 208);
printf(buf);
Hello world

'memchr' returns a pointer to the first occurrence of 'ch' 1in a

block of memory with size of 'ent.' 1If the character is not
found, a NULL is returned.

printf("The 9 is at addr $%1x\n",
memchr ("0123456789ABCDEF",'9"',16));
The 9 is at addr $E08D

2-38) PDOS C Reference Manual

®

C

(MEMORY HANDLING ROUTINES cont.)

'mememp' compares two blocks of memory for ‘'ent' ©bytes to
determine if they are equal. An integer value less than, equal
to, or greater than 0 is returned if block 1 is less than, equal
to, or greater than block 2.

if (!memcmp("Hello there world","Hello world",6))
printf("Match\n");

else
printf('"No match\n");

Match

'memepy' copies 'cnt' bytes from 'sre' to 'dst.' The address of
'dst' 1s returned.

char buf[50];

memcpy(buf,"Hello world\nHow are you?\n",12);
buf[12] = '\0"';

printf(buf);

Hello world

'memset' sets 'cnt' bytes in the memory block to a given charac-
ter. .

char buf[50];

memset (buf, '\@',50);

memset (buf,'\n',49);

memset (buf, 'x',48);

printf(buf);
XXXXXXXXXXXXXXXXXXXXXXKXXXXXXXX XXX XXX XXX XXX KX XXX X

Notes:
The include file 'memory.h' <contains the definitions of these
functions.

PDOS C Reference Manual 2-39

NON-LOCAL GOTO ROUTINES

setjmp —— save current environment for later restoration
longjmp -- restore previously saved environment (and jump)
Format:

#include <SETJMP:H>

int setjmp(env)
jmp_buf env;

longjmp(env,ret)
jmp_buf env;
int ret;

Description:

'setjmp' saves the current execution environment (all important
registers) in the jmp_buf passed as a parameter and returns with
a value of 0 to the calling routine. At a later point in the
program, another function can call ‘'longjmp' with the same
jmp_buf and restore the execution environment to the state it was
when 'setjmp' was first called. At this point, 'setjmp' will
return with a non-zero value. The return value is specified as

the second parameter of 'longjmp' with the condition that it may
not be zero.

The routine that called ‘'setjmp' must not have returned before
the 'longjmp' is executed.

These functions define an error trap that can be called when

lower-level routines detect some sort of error and need to
restore context to a known state.

2-40) PDOS C Reference Manual

)

(NON-LOCAL GOTO ROUTINES cont.)

This code /s taken from the ‘xeq’ function In the standard |!ibrary.

#include <TCB:H>
#include <SETJMP:H>
static jmp buf env;
char *oldext,*olderr;
int extrap(),errtrap();

retval = setjmp(env);

if (retval == 0){ /* first time through */
oldext = tcbptr—>_ext; /* save old tcb exit vectors */
olderr = tcbptr->_err; '
tcbptr->_ext = extrap; /* load new tcb exit vectors */

tcbptr—>_err = errtrap;

/* call x1df, which only returns on an error; otherwise, it exits through */
the exit vectors */

retval = x1df(1,lowptr,hiptr,filename, &lowload,&hiload);
xler(retval);

tecbptr—> ext oldext; /* restore task exit vectors */

tcbptr—>_err = olderr;
extrap() /* normal exit trap */

longjmp(env,1); /* return from setjmp with status of 1*/
}
errtrap() /* error exit trap */

asm("move.l d1,dB\nxler");

longjmp(env,2); /* return from setjmp with status of 2*/
} .
Notes:

These routines are complicated and awkward. Be sure you under-
stand them before using them.

PDOS C Reference Manual 2-41

OPEN

Open a File @

Format:
int open(filename,mode);
int mode;
char *filename;
Description:
'open' associates a file on the disk with a file id for further
access. The mode determines the kind of access:

0 = Read Only (XRO0OO)

1 = Sequential Access (XSOP)

2 = Read/Write Random (XROP)

3 = Shared Random (XNOP)
'open' returns a valid PDOS file slot or an EOF on error.
See also XR0OO, XSOP, XROP, and XNOP.

fd = open("MYFILE:SR",0);

Notes: . P
The mode might not be exactly compatible with UNIX programs. W/

Check carefully any programs using this call.

2-42 PDOS C Reference Manual @:D

PUTC

Output a Character to a Stream

Format:
ffinclude <stdio.h>

putc(c,stream)
char c;
FILE *stream;

Description:
'putc' outputs the specified character to the output stream.

The 'pute' routine checks for a break character from the keyboard
after outputting a newline. That way, you can abort runaway
programs. On detection of a [CTRL-C], the program will call
'exit' with a status of -1. You may define your own exit routine
to trap this call and close all your files before calling '_exit'
to return to the monitor.

'pute’' currently aborts on detection of a file error.

#include <stdio.h>

FILE *fs,*fopen();
fs = fopen("MYFILE:SR","w");
putc('\n',fs);

Notes:

The 'pute' macro simply calls the 'fpute' function. Versions of
C prior to 5.0 made an operating system call for each character.
The latest versions of 'pute' and 'fputc' buffer output to files
for greater efficiency.

PDOS C Reference Manual 2-43

PUTCHAR

OQutput a Character

Format:

#include <stdio.h>
putchar(e);

char c;

Description:
'putchar' performs a 'putc' on the 'stdout' file variable. This
function is defined as a macro in <stdio.h> as follows:

#define putchar(e) putec(e,stdout)

See 'pute'.
¢ = "\nHello, world!'";
while (*c)

putchar(*c++);

Notes:
You must include "stdio.h" to use 'putchar'.

2-44 PDOS C Reference Manual

AN

\
K‘J/

-

(i;

PUTS

Output a String to the Standard Output

Format:
#include <stdio.h>

puts(s)
char *s;

Description:
'puts' outputs the null terminated string 's' to the standard

output. A carriage return is appended to the string, and the
null is not output.

#include <stdio.h>
puts('"\nHello, world!");

Notes:
While this call is dimplemented as a function, it could probably
be implemented as a macro.

'puts' appends a newline to the string but 'fputs' does not.

PDOS C Reference Manual 2-45

RANDOM NUMBER GENERATION

/f\’\
s)
rand —- return random number o
srand -- seed random number generator
Format:
int rand()
int srand(seed)
int seed;
Description:
'rand' returns a random signed value of type int.
'srand' may be used to set the seed. If the‘seed is not set, 1
is used.
int old, rnum;
old = srand(33); /* seed generator and save old seed */
raum = rand(); /* get a new random number */
77N
w

2-46 PDOS C Reference Manual «:>~

»
|

READ

Read From a File

Format:

int read(fd,buffer,bytes);
int fd,bytes;

char *buffer;

Description:
'read' reads in data from a file or, if 'fd4' dis less than or
equal to 0, from a port. 'bytes' is the count of data to be

read. If the read is terminated by an end of file, the count of
bytes actually read is returned as the function value. A value
of -1 (EOF) is returned on an error. An end of file is detected
when the count read is less than the bytes requested -- usually
zero. When the input comes from a port, an [ESC] or [CTRL-C]
terminates the input.

If 'fd' equals 0, the data comes from the current input port for
the task. 1If 'fd' is less than 0, the number is negated and used
for the port number.

char buffer[100];

int fd,count;

fd = open("MYFILE",0);
count = read(fd,buffer,25);

PDOS C Reference Manual 2-47

RENAME

Rename File

Format:
int rename(old,new)
char *o0ld,*new:

Description:

'rename' changes the name of a file from old to new. If a file
with the new name already exists, it is deleted first. Both old
and new files must be on the same logical disk unit.

A return value of 0 indicates
code is returned.

See also XRNF.

rename("object:01d","object:new");

2-48

success;

otherwise, a PDOS error

PDOS C Reference Manual

)

C

i

REWIND

Position to Top of Stream

Format: .
int rewind(stream) -
FILE *stream;

of the file pointer to the

is implemented as a macro

Description:

'rewind' repositions the 1location
beginning of the file. 'rewingd'
calling 'fseek.' For diagnostics, see

#include <stdio.h>
FILE f1;

f1 = fopen("mydat","r");
¢ = getc(f1);

rewind(f1);

PDOS C Reference Manual

'fseek.'

2-49

RINDEX

String Position

Format:
int rindex(s,ch)
char *s,ch;

Description:

'rindex' searches for the character 'ch' in the string 's'. If
the character exists, the position of the last occurrence of the
%haricter in the string is returned. Otherwise, it returns a -1
EOF).

Compare with 'index'. Also see 'strrchr' in STRINGS.

printf("char %c is at location %d in string %s",c,rindex(str,c),str);

Notes:

UNIX defines one version for System III and another for Version
7. This function is compatible with Version 7.

2-50 PDOS C Reference Manual

O

C

SBRK

Add 'n' Bytes to Task Break

Format:
char *sbrk(size);
int size;

Description:

'sbrk' allocates memory from the task space between the end of
the variable space and the stack. The global variable '_eomem'
points to the current limit on the variable space; it is initial-
ized during start-up and then maintained by this routine. If an

allocation wrote over the stack area, 'sbrk' returns a null
pointer (NULL). The memory is cleared before the pointer
returns.

char *newbuf,*sbrk();
newbuf = sbrk(1024);

Notes:

You should probably try to get memory via XGUM if no space
remains in the task. You can also deallocate memory by passing a
negative value to 'sbrk', but there is no checking for valid
values. There currently is no routine called 'lsbrk' which would
allocate large amounts of memory (greater than 32767 bytes).

Be sure and define ‘'sbrk' as a function returning a pointer
before you use it.

PDOS C Reference Manual 2-51

STRING HANDLING ROUTINES

strcat, strncat, strchr,
strcpy, strncpy, strlen,

Format:
char *strcat(s,t)
char *s,*t;

char *strncat(s,t,n)
char *s,*t;
int n;

char *strchr(s,c)
char *s,c;

char *strrchr(s,c)
char *s,c;

int stremp(sl,s2)
char *sl, *s2;

int strncmp(sl,s2,n)
char *sl, *s2;
int n;

int strend(sl,s2)
char *sl, *s2;

char *strepy(sl,s2)
char *sl, *s2;

char *strnepy(sl,s2,n)
char *sl, *s2;
int n;

int strlen(s)
char *s;

char *strpbrk(sl,s2)
char *sl, *s2;

int strspn(str,pat)
char *str, *pat;

char *strtok(str,toksep)

char *str, *toksep;

/%

/%

/*

/%

/%

/%

/*

/%

/*

/*

VA

/*

strrchr, stremp, strncmp, strend,
strpbrk, strspn, strtok

string concatenation */

limited string concatenation */

find character in string from left */
find character in string from right */
compare strings */

compare strings within limit */

string end comparison */
copy string */

copy limited string */

string length */
find character set in string */
string segment pattern count */

/* string token manipulation */

PDOS C Reference Manual

@

(STRING HANDLING ROUTINES cont.)

Description:

'strcat' appends the second string to the end of the first string
and returns a pointer to the first string. ‘'strncat' does the
same thing, but makes sure that the result is no more than ‘n'
characters long. The following example defines a 10-byte array,
initializes it to the string "bob," then appends "cat" to it.
The resulting string is "bob cat."

char b[10];
strepy(b,"bob");
strcat(b," cat");

'strechr' searches for a character inm a string and returns either
a pointer to it (if found) or a NULL (if not found). 'strrchr’
does the same thing, but searches from the right instead of from
the left, thus searching for the 1last occurrence instead of the
first. Compare these functions to 'index' and 'rindex'.

char *p,*strchr();

if (p = strchr("abcde.fghij",'."))
printf("%s",p);
.fghij

'stremp' compares two strings and returns O for equality, a
positive number if the first 1s greater than the second, and
a negative number if the second is the greater. ‘'strncmp'
does the same thing, but compares at most 'n' characters.

if (strncmp("abc123","abexyz",3) == 0)
printf(“"same first three letters");

'strend' returns 1 if the end of the first string matches the
second string, 0 otherwise.

if (strend("abcdefghij","ghij"))
printf("same ending");

'strepy' copies the second string into the first string and
returns a pointer to the first string. = ‘'strncpy' does the
same thing, except that exactly 'n' characters are copied.
This means that if the source string is too long, it is trun-
cated, and if it is too short, it is padded with nulls.

char ¢[5];

strncpy(c,"testing",4);

c[4] = 0;

printf("<%s>",c);

<test>

PDOS C Reference Manual 2-53

(STRING HANDLING ROUTINES cont.)

'strlen' returns the length of the string it has passed. The
null at the end is not counted in the length of the string.

char *¢c = "TESTING";
printf("length = %d",strlen(¢));

length = 7

'strpbrk' examines the first string for any character occurring
in the second string and returns a pointer to the first such
character. NULL is returned if none are found.

char *p,*strpbrk();
if (p = strpbrk("abcde.fghij",",7!."))
printf("%s",p);

.fghij

'strspn' returns a count of the number of characters in the
first string which also occur in the second string, without
a break.

char *pat = '"cabbage";
char *str = "abcdefg";
printf("span = %d",strspn(str,pat));
span = 3 ('d' is not in 'cabbage')

'strtok' parses the first string passed for tokens separated
by the token specified i1in the second string. It returns a
pointer to the first such token, terminated by a null (the
token is over-written). 'strtok' retains a pointer to the
current position in the string in a static variable, so that
subsequent calls with NULL in the first parameter will continue
parsing the original string. NULL 4is returned when no more
tokens remain.

char *strtok();

char *tokens =", ;.";

char *c¢ = "THIS,IS A:TEST!";

printf("\nFirst token=%s",strtok(c,tokens));

while ((c¢c = strtok(NULL,tokens)) != NULL)
printf("\n<%s>",c);

First token=THIS
<IS>
<A:TEST!>

2-54 PDOS C Reference Manual

C

SYSTEM

Send a Command to the PDOS Monitor

Format:
int system(str)
char *str;

Description:
'system' creates a task 1in the memory between end of memory
(indicated by '_eomem') and the bottom of the stack. It gives

the command string to the PDOS monitor, modifies SYRAM so that
the new task gets the parent task's input as well as output port,
and puts the parent task to sleep while the new task executes.
The parent task waits for the sub-task to set an event to notify
it of the completion of the function. On termination of the sub-
task, the parent checks the Last Error Number (LEN$) of the sub-
task's Task Control Block (TCB) and returns the resultant status
as the status of the call.

system("LT"); /* print task list on screen */
system("SIEVE"); /* run sieve benchmark */

The parent task expects the sub-task to set event flag number
64+n where 'n' 1s the task number of the parent task. This
information is automatically added to the command line passed to
the sub-task, but it dis 1lost 1if the command line invokes a
command file. In the 1latter case, the command file should
contain an EV instruction to set the proper event to notify the
parent task of completion.

Notes:
A sub-task can abort without setting the event to signal the
parent task. In that case, you may find yourself at the monitor

level in the sub-task with no idea of how you got there. To
get back dinto the parent task, type something on the monitor to
cause a PDOS error such as ;1kj;1jk[CR]. The error will trap
back to the parent task, killing the sub-task.

system("ACFILE"); /* run a procedure file */

x>777

The use of global events 64..95 by the 'system' call may conflict
with their use by application programs. In that case, the user

may need to modify the 'system' routine to use a different set of
signals.

PDOS C Reference Manual 2-55

(SYSTEM cont.)

If someone on a different terminal kills the sub-task, havoc may
result. The parent task hangs until someone manually sets the
event; and if the task was killed without saving memory, the
system will allow other tasks to be created in the parent task's
memory space. To kill a sub-task created by the system call, set
the event for the parent task and it will kill the sub-task. '

system("KT"); /* hang up! */

x>LT

Task Prt Tm Event Map Size

*0/0 64 1) 78
1/0 64 1 65 0 622

x>EV 65

2-56

PDOS C Reference Manual

F 2N

C

TSTFILE

Test for Existence of a File

Format:

int tstfile(fname,fsize)
char *fname;

long int *fsize:

Description:

'tstfile' may be called from C programs to determine if a file
exists and, if it exists, its size. The filename is passed in as
a null-terminated string. The status returned is zero if the
file exists; otherwise, it is a PDOS error number. If the file
exists, the size of the file in bytes is returned as a long
integer through the address passed as the second parameter.

long size; .

if (tstfile("MYFILE:DAT",&size))
printf("File doesn't exist");

else
printf("File contains %1d bytes",size);

Notes:
'tstfile’' is not a standard function on other systems, but can be

very useful at times.

PDOS C Reference Manual 2-57

TTYOPEN

Connect a PDOS Port to a Stream for Input/OQutput

Format:

#include <stdio.h>

FILE *ttyopen(port)
int port;

Description:

'ttyopen' creates a stream for I/0 to a port. Then

'gete', 'pute', etec. can function on
receiving characters to that port.
stream but performs no I/0 to the port.

'fprintf’',
that stream, sending and
'fclose' deallocates the
'fseek' and 'ftell' are

not valid operations on a stream that connects to a port.

#include <stdio.h>
FILE *ttyopen(),*port;

port = ttyopen(3); /* open port 3 for 1/0 */
fprintf(port,"\n\1This goes out to port three");

;close(port);

Notes:
The newline is left as a

carriage return on output to a port,

instead of being converted to carriage return/line feed.

Input from the port does not echo.

2-58

Port I/0 is not buffered.

PDOS C Reference Manual

P

UNGETC

Put Back Character on a Stream

Format:
#include <stdio.h>

int ungete(ec,fs)

FILE *fs;

char c;

Description:

'ungete' puts back a character onto a stream so that it can be
read again by 'gete’'. It returns EOF on an error; otherwise,

it returns the value of the character passed.

FILE *fd;

char ¢;

if ((¢ = getc(fd)) == 'B')
ungetc('C’, fd);

Notes:

Only one character can be put back. EOF (-1) cannot be put
back.

PDOS C Reference Manual 2-59

Format:

UNLINK

Delete File

int unlink(filename);

char *filename;

Description:
'unlink' deletes

a file from the disk.

It returns 0 if the file

is successfully deleted. If it is unsuccessful, it returns -1.

This routine is
status returned.

unlink("JUNKFILE");

2-60

identical to the

XDLF call except for the

PDOS C Reference Manual

&

WRITE

Write to File ID

Format:

int write(fd,buffer,bytes);
int f£d,bytes;

char *buffer;

Description:

'write' transfers data to a file or, if 'fd4' is 1less than or
equal to 0, to a port. The file must have been opened previously
with the 'open' call, or XSOP, etc. The number of bytes actually
written 41is returned. If this number is not the same as the
number of bytes requested, an error occurred during the write.
The data may contain nulls and control characters.

It writes to a port if 'fd' = -(port number). If 'f4' = 0, it
writes to the task's current output port.

fd = open("DATA:DAT",1);

write(fd,"hello, world!",13); /* write to file */

write(@,"hello, world!",13); /* put message to terminal */

write(-3,"hello, world!",13); /* put message to port 3 */

PDOS C Reference Manual 2-61

XEQ

Run Another Program and Return Its Status

Format:
int xeq(program)
char *program;

Description:

'xeq' makes use of the XLDF primitive to 1load a program into
available memory and execute that program as if it were a
subroutine. The 'ext' and ‘'err' vectors in the Task Control
Block (TCB) are diverted to trap the normal and error exits of
the loaded program, so when it exits the calling routine regains
control.

The parameter that 1s passed must begin with a program name,
followed by optional parameters. These parameters are set
up as the command 1line for the <called program so that XGNP
will work, then the original command 1line is restored when
the program exits.

'Xxeq' returns as a value any errors encountered on the call,
or the Last Error Number (LEN$) in the TCB after the called
program exits.

if ((err = xeq("MASMC TEST:SR1,TEST:0")) != @)
printf("\nError on assembly = %d",err);

Notes:

Only files with attributes 'SY' or 'OB' can be executed, because
of the limitations of the XLDF call. Some PDOS system programs
won't run 1f they are not loaded immediately after their own
TCB. Such programs cannot make use of this function.

2-62 PDOS C Reference Manual

SECTION THREE
INTERFACE TO PDOS SYSTEM CALLS

The fundamental interface to the PDOS operating system is a
collection of approximately 100 system calls. Access to these
calls 1is provided to the C programmer through the XLIB:LIB
library. The following is a 1list of the PDOS primitives which
have been implemented in that library. Each of these primitives
is listed alphabetically and includes the format, description, an
example, and notes which may include bugs, restrictions, and
cautions. Many of the examples are taken directly from the test
program used to check out these primitives, TESTXLIB:C. 1In that
test program there are two functions, GETSTR and GETNUM, that
prompt the wuser for dinput and return that input to the calling
routine. These functions are in the test program if you would
like more dinformation. Although there is generally a sufficient
explanation for each function in this manual, a more detailed
description of the call can be found in the PDOS Reference
Manual. The functions and their descriptions are as complete as
possible. Please notify Eyring if you discover any problems
other than those listed under the "notes" section of the func-
tion.

UNIMPLEMENTED PDOS CALLS

XLIB does mnot have a function for every PDOS call in the opera-
ting system. There are some primitives which do not apply in C,
and others which are either difficult or hazardous to use as
functions. Some calls have not been implemented because they are
easily called with in-line code.

The compiler allows you to insert assembly language instructions
directly into your program by the pseudo-call ‘'asm("literal text
string");'. For example, if you want to cause an XBUG (debugger)
trap at a place in your ©program, insert the line 'asm("xbug"):;'
at that 1location. The compiler will pass the line directly to
the assembler and the XBUG trap will be called when the program
executes to that point.

Primitives called with In-line code
XBUG -- drop into debugging tool

XCLS -- clear console screen

XEXT -- exit to monitor without closing files

XPBC -- dump the user buffer to screen

XPCL -- output carriage return/line feed to screen

XPSP -- output one space character to screen

XRCN -- close AC command file

XRDM -- dump registers to screen

PDOS C Reference Manual 3-1

(UNIMPLEMENTED PDOS CALLS cont.)

XSUP -- enter supervisor mode
XSWP -- swap to next task
XULT -- unlock task

XUSP -- return to user mode

The remaining unimplemented PDOS primitives are listed below with
an explanation of why they are excluded. .

X881 -- Save 68881 enable. X881 automatically executed in
CSTART if code compiled/linked with 'H' option.
XCBM -- Convert to decimal with message. This procedure is

done better with a 'printf' call. XCBM requires that
the pointer to the message be in-line with the call.

XEXC -- Execute a PDOS call. This primitive could be imple-
mented, but there is no apparent reason to use it. If
there 1is a demand for it, it will be placed in the
library.

XISE -- Initialize sector. Not enough general application.

XLFN -- Look for name in slots. Not enough general appli-
cation.

XLSR -- Load status register. Not enough general application.

XPCB -- Push command to buffer. Normally, this is a function
only the operating system would need.

XPEM -- Put encoded message to console. Same problem as XCBM.

XPMC -- Put message to console. Same problem as XCBM.

XRDN -- Read directory entry by nanme. Not enough general
application.

XDTV -- Define trap vectors. This procedure can be performed
just as easily by modifying the vector table directly
in the TCB.

XRSZ -- Read sector zero. This routine is the same as the XRSE
call, with the two parameters pre-defined. Use XRSE
instead.

If there is sufficient user interest in having a specific call in
the library, it can be added to the list. In any case, since the
sources to the current 1list of PDOS 1library functions are
included in the distribution, most users should not have too much
trouble implementing any functions they need.

3-2 PDOS C Reference Manual

O

XAPF

Append File

Format: _
int xapf(fnamel,fname?2);
char *fnamel,*fname2;

Description:

XAPF appends filel to file2. It returns the error status or O
if no error. :

char fnamei1[28], fname2[20];

getstr("Name of file to append'", fnamet);
getstr("Name of file to append onto", fname2);
error = xapf(fname1, fname2);

PDOS C Reference Manual 3-3

XBCP

Baud Console Port

Format:

int xbep(port,baud,porttype,portbase);
int port,baud,porttype;

char *portbase;

Description:
XBCP initializes an I/0 port and binds a physical UART to a
character buffer. It sets handshaking protocol, receiver and

transmitter rates, and enables receiver interrupts.

'port' is the port number, 1-15. The 1right byte of 'port' is
used to store the port number. The left byte of 'port' is
composed of flags to control the protocol.

Receive and transmit rates are specified in the second parameter,
'baud."’ Valid entries are 0,1,2,3,4,5,6,7 or 19200,9600,4800,
2400,1200,600,300,110.

If the third parameter, 'porttype,' is nonzero, then the port
type is selected and the fourth parameter specifies the port
base address. These parameters are system-defined and correspond
to the UART module. The return value nonzero indicates an error
-- invalid baud rate or invalid port.

xbcp(2,300,0,8L); /* set port two to 380 baud */

PORT FLAGS
fwpi 8dcs
MAY A\N_ 0 = Enable ASAQ software handshake
MM\ AN\ 1 = Control character disable
\\\ _ 2 = Enable DTR hardware handshake
M\ _ 3 = 8-bit character enable
_ 4 = Receiver interrupt enable
M__ 5 = Even parity enable
__ 6 = *Reserved (High/low water)
__ 7 = **Reserved (ASAQ flag bit)
*Used to clear all bits
**sed to set U2P$
3-4 PDOS C Reference Manual

(XBCP cont.)

189280 baud
9600 baud
4800 baud
2400 baud
1200 baud
6060 baud
300 baud
118 baud

Speed table:

Notes:

While reading and writing the ©port flags i1is straightforward,
you must go to SYRAM to read the baud rate once it has been
written.

Since XBCP resets the physical I/0 port, any data waiting in
hardware buffers may be lost. For instance, on many of the Force
CPU boards, the I/0 port buffers up to eight characters on both
input and output. If you transmit data and immediately perform
an XBCP, several bytes of data may be lost. It is best in this
case to wait a few tics fter the last transmt before performing
an XBCP.

See Also:

XRPS - Read port status
XSPF - Set port flag

PDOS C Reference Manual 3-5

XBFL

Build File Listing

Format:
int xbfl(mask,buffer,endbuffer);
char *mask,*buffer,*endbuffer:

Description:

XBFL builds a directory 1listing in the buffer. The first
parameter is a pointer to a filename specification that may have
file name wildcards in it. The second parameter points to the

start of a buffer where the corresponding file names will be
written. The third parameter marks the end of the buffer. The
function returns a status of =zero, or an error number. The

possible errors are 73=Not enough memory, 67=Invalid parameter,
and various disk errors.

char filespec[20];

extern char *_eomem; /* pointer to end of memory */
int err;
register char *bufptr = eomem; /* use un-allocated RAM */

getstr("Enter filespec".?ilespec);

if (err = xbf1(filespec,bufptr,bufptr+2000)) /* assume 2080 max */
return err;

printf("\nfiles found:");

while(*bufptr){ /* loop until a double null */
asm("xpcl");
while(xpcc(*bufptr++)) /* print out a line */

3

Notes:

Earlier versions of this call (prior to PDOS 3.0) had one less
parameter.

See Also:

XFFN - Fix file name

XLST - List file directory

XRDE - Read next directory entry

3-6 PDOS C Reference Manual

£Tm

XBUG

Enter Debugger

Format:
asm("xbug");

Description:

XBUG enters the debugger in trace mode. You then can use the
regular debugging commands to check your program or data,
continue execution, set breakpoints, trace, single-step, and so
forth.

See the PDOS Reference Manual and associated documents for a
description of the debugger functions. Type [ESC] to drop into

command mode on the debugger. 'H' displays the legal debugger
commands. The 'G' command resumes program execution.

LEGAL DEBUGGER COMMANDS

A0-7 A-reg # Mem IAC
B{#,a} Lst/def break #,# Mem dump
D0-7 D-reg #,#+ Disassemble
{#}G Go & break #,#,#{WL} Find B/W/L
M Last dump #(0-7 d (Ax)

N# 0=W,1=B,+2=w/0 read #{+-1# Hex +/-

0 Offset

P PC

Q Exit - Open previous
R Reg dump LF Open next

S Status +# # + offset
T Trace

U Unit

W{s,e} Window *D Disassemble
X Set breaks & exit ‘

Z Reset

Irace Options:
F/R/M Dump

G Go

T Running

PDOS C Reference Manual 3-7

(XBUG cont.) PN

'
putstr("\nthis is before the debug call\n");
asm("xbug");
putstr("\nthis is after the debug call");
the following Is displayed...
this is before the debug call
T> 100608/0108: 2EBCOD100638 MOVE.L #$00100638, (A7) SR=..... p..... Z..[spacebar]
T> 10060E/P10E: 4EBI0O1BB6AA JSR $001006AA SR=..... B........ [spacebar]
T> 1D006AA/0B1AA: 226F0004 MOVE.L $08004(A7),A1 SR=..... 0........ G
this is after the debug call
Notes:
Prior to PDOS 3.0, you had to initialize the debugger by first
entering it from the monitor (PB) before executing an XBUG call.
This procedure is no longer necessary.
See Also:
XRDM - Dump registers
{*\;‘
N/

4
C

3-8) PDOS C Reference Manual

XCBC

(Check For Break Character

Format:
int xebe();

Description:

XCBC checks for a break character. The status returned indicates
what was found:

0O : No break character.
-2 : [ESC] detected.
-3 : [CTRL-C] detected.

int err;

switch(err = xcbe()){
case -2: printf("\nescape\n"); break;
case =3: printf("\nctrl c\n"); break;
case B: xpcc('.');break;

}

Notes:

If the control character disable flag is set on the port, XCBC

‘j~ does not detect break characters and always returns a status of
s 0.

See Also:
XCBP - Check for break or pause

(Z> PDOS C Reference Manual 3-9

XCBD

Convert Binary to Decimal String

Format:
char *xecbd(i);
long int 1i;

Description:

XCBD converts a 32-bit signed binary value to a decimal string.
The return value is the address of the string. The buffer used
is in the PDOS monitor.

char *xcbd();
xple(xcbd(1234L));

Notes:

The data from this call is overwritten by other calls that also
use the monitor work buffer, such as XRTM. If this is a problem,
use XCBX instead and provide your own buffer.

See Also:

XCBH - Convert binary to hex

XCBX - Convert to decimal in buffer
XCDB - Convert decimal to binary

XCHX - Convert binary to hex in buffer

3-10 PDOS C Reference Manual

\ﬂ
o

XCBH

Convert Binary to Hexadecimal String

Format:
char *xcbh(i);
long int i;

Description:

XCBH converts a 32-bit binary value to a hexadecimal string. The
return value is the address of the string. The buffer used is
the PDOS monitor work buffer in the TCB.

char *xcbh();
xplc(xcbh(@xabcd));

Notes:
The data from this call is overwritten by other calls that also

use the monitor work buffer, such as XRTM. If this is a problem,
use XCHX instead and provide your own buffer.

See Also:

XCBD - Convert binary to decimal

XCBX - Convert to decimal in buffer
XCDB - Convert decimal to binary

XCHX - Convert binary to hex in buffer

PDOS C Reference Manual 3-11

XCBP

Check for Break Character/Pause

Format:
int xcbp();

Description:

XCBP checks for a break character or pause. The status returned
is:

0 : The user pressed a key and paused the program.
-1 : The user has not pressed a key since last check.
-2 : The user pressed an [ESC].

-3 : The user pressed a [CTRL-C].

When this call is executed, the program checks the input buffer.
If the wuser has pressed a key, the program pauses until another
key is pressed. An [ESC] returns status immediately.

If the task is already paused and an [ESC] is entered, a -2 is
returned. If a [CTRL-C] is entered, a -3 value is returned. Any
other character results in a return of 0.

while(1)
switch(xcbp()){
case @: xplc('"Paused.."); break;
case -1: xpecc('.'); break;
case -2: xplc("Saw escape"); return 0;
case -3: xplc("Saw control C"); return 0;
}
Notes:

If the port is in control character disable mode, XCBP does not
treat the [ESC] and [CTRL-C] any differently than the other
characters. A status of -1 or 0 is returned from XCBP.

See Also:
XCBC - Check for break character

3-12 PDOS C Reference Manual

i

C

XCBX

Convert Binary to Decimal in Buffer

Format:

char *xcbx(buffer,i);
long int 1i;

char *buffer;

Description:
XCBX converts binary to a decimal string in buffer provided. The
return value is the address of the string.

char buffer[20];

char *xcbx();

putstr(xcbx(&buffer[18],123L)); /* convert the num at 1@8th and print */
putstr(buffer); /* print the entire string */

See Also:

XCBD - Convert binary to decimal

XCBH - Convert binary to hex

XCDB - Convert decimal to binary

XCHX - Convert binary to hex in buffer

PDOS C Reference Manual 3-13

XCDB

Convert Decimal String to Binary

Format:

char *xcdb(buffer,iptr);
long int *iptr;

char *buffer;

Description:

XCDB converts a numeric string to a 32-bit binary value. The
string that 'buffer' points to is converted to binary and stored
in '*iptr'. 1If no conversion is possible, a -1 value is returned
and '*iptr' is not altered. If a partial conversion is possible,
*iptr is altered and the function returns a pointer to the next
character after the bad terminator. If there are no errors, XCDB
returns a 0 (NULL) and *iptr is altered. The string should be
null terminated. No error is returned for overflow of a 32-bit
integer.

Hexadecimal numbers are preceded by a '$' and binary numbers by a
'2'. Otherwise, numbers are assumed decimal. A leading '-'
indicates a negative number. There can be no embedded blanks.

char buff[80];

char *c¢,*xcdb;

long 1i;

getstr("Enter a number"”,buff);

switch ((int)(c = xcdb(buff,&i))){
case —1: printf("no conversion possible ");break;
default: printf("partial conversion —— remaining is %s\n" --C);
case @: printf("xcdb returns %1d",i);

3

Notes:
No errors on 32 bit overflow.

See Also:

XCBD - Convert binary to decimal

XCBH - Convert binary to hex

XCBX - Convert to decimal in buffer
XCHX - Convert binary to hex in buffer

3-14 PDOS C Reference Manual

O

Format:

XCFA

Close File With Attributes

int xcfa(filid,attribute);
int filid,attribute;

Description:
XCFA closes
no error.
the open.
close.

a file. It returns an error number or 0 if there is

The first parameter given is the 'filid' obtained from

The second is the attribute to give the file after the

The file attributes are coded in the following way:

err =

0x80 AC - Procedure file

0x40 BN - Binary file

0x20 OB - Object file

0x10 SY - Memory Image of machine code
0x08 BX - BASIC token file

0x04 EX - BASIC ASCII file

0x02 TX - Text file

0x01 DR - System I/0 driver

0x00 Clear file attributes

xcfa(filid,@x208); /*close the file as object file */

Notes:
If the file has not been altered since it was opened, XCFA does
not alter the file attributes.

See Also:
XRFA - Read file attributes

XWFA
XCLF
XNOP
XSOP

XR0OO
XROP

PDOS

Writ

e file attributes

Close file

Open
Open
Open
Open

non-exclusive random
sequential

random read only
random

Reference Manual

3-15

Format:
int xchf(filename):
char *filename;

Description:
XCHF chains to another
another task to begin.

XCHF

Chain File

file. It allows your task to end and
The returned value (if it comes back) is

a PDOS error. The file named can be of type 'OB', 'SY', 'BX',

'EX', or 'AC'.

xchf ("SIEVE");

xplc("this shouldn't print");

See Also:
XEXT - Exit to monitor

XEXZ - Exit to monitor w/ command

XLDF - Load file

3-16

PDOS C Reference Manual

O

e

C

XCHX

Convert Binary to Hexadecimal String in Buffer

Format:

char *xchx(buffer,i);
long int 1i;

char *buffer;

Description:

XCHX converts a 32-bit binary value to a hexadecimal string.

returned value is the address of the string.

char buffer[] = '"the magic number is xxxxxxxxxxx";
char *xchx();

xchx(&buffer[20],123L);

xplc(buffer); /* now print the number */

See Also:

XCBD - Convert binary to decimal
XCBH - Convert binary to hex

XCBX - Convert to decimal in buffer
XCDB - Convert decimal to binary

PDOS C Reference Manual

The

3-17

Forma

t:

XCLF

Close File

int xelf(filid);

int £

Description:
closes

XCLF
error
open.

err =
See A
XCFA
XNOP
XSOP

XROO
XROP

3-18

i1id;

. The

a file. It returns

parameter given is

an error number or 0 if no
'filid' obtained from the

xclf(filid); /*close the file I opened earlier */

lso:

- Close file w/attribute

- Open
- Open
- Open
- Open

non-exclusive random
sequential

random read only
random

PDOS C Reference Manual

C

XCLS

Clear Screen

Format:
asm("xcls");

Description:

XCLS clears the screen. It returns no status. XCLS depends on
the CSC$ field in the Task Control Block (_tecbptr->_csc) to tell
what characters to print on a given terminal. These are initial-
ized by the MTERM utility, or can be set under program control.

Notes:

Some manufacturer's terminals cannot clear the screen at the
advertised baud rate. You may have to delay after giving this
command so that the terminal can finish. In that case, try the
following:

asm("xcls");
xpdc(5,"\B\B\@\B\@"); /* send some nulls to wait a bit */

See Also:

XPSC - Position cursor

XRCP - Read port cursor position
XTAB - Tab to column

PDOS C Reference Manual 3-19

XCPY

>
Copy File ' O

Format:

int xcpy(fnamel,fname2);

char *fnamel,*fname2;

Description:

XCPY copies filel to file2. It returns the error status or 0 if

no error.

char 1list1[20];

char list[28];

getstr("source file",list);

getstr("enter destination file",list1);

return (xcpy(list,list1));

Notes:

XCPY is very slow since it only copies 252 bytes at a time and

uses the wuser buffer in the TCB for the work space. The 'copy'

call in STDLIB uses the un-allocated memory in your program and

runs faster.
See Also: (;;

COPY (STDLIB)

3-20] PDOS C Reference Manual (;/

XCTB

Create Task Block

Format:

int xctb(mem,priority,port,low,high,comstring,sontasknoptr);
int mem,priority,port;

char *low,*high,*comstring;

int *sontasknoptr;

Description:

XCTB creates a task block and a new task for PDOS to run. The
task number of the new task d1is written in 1location 'sontask-
noptr'. The first parameter, 'mem', is the task size in 1K byte
increments. If 'mem' is a negative number, then 'low' and 'high'
input parameters specify the memory range and 'comstring' points
to the task's command line. If 'mem' is O, then 'low' and 'high’
specify bounds and 'comstring' points to the task entry address.
If 'mem' i1s positive, then 'low' and ‘'high' have no meaning.
Also, when ‘'mem' is nonzero, a 'comstring' value of 0 indicates
that the PDOS monitor is the default task to start.

“mem' 2low/high' ‘comstring'

neg memory command
limits pointer
0 memory starting
limits address

pos ignored command
(Kbytes) pointer

'Priority' is the priority of the new task and ranges from 1
to 255, with 1 as the 1low priority. 'Port' is the I/0 port
of the task. Any or all tasks on the system may share an output
port, but input ports are given to only one task at a time. If
the port value is negative, then the port is for output only. If
'‘port' is 0, then no port is assigned.

Any errors are returned. A zero is returned if there are no
errors. -

PDOS C Reference Manual 3-21

(XCTB cont.)

extern long *_eomem;
long unsigned lowmem, highmem;
int taskno;
/* round up to a 2K boundary */
lowmem = (eomem + 2048L) & 2047L;

highmem = Towmem + 4096; /* create a 4K task */
error = xctb(-1, /* execute monitor command line */
64, /* priority 64 */

- _tebptr—>_prt, /* use my port for output */
lowmem, highmem, /* use this memory for task */
"LT.EV 65.PB", /* execute these commands */

&taskno); /* tell me what task it is */
if (error)
return error;
Xxsui(695); /* wait on that event */
xktb(-taskno); /* kill the task without */

/* deallocating memory */
while (xrts(taskno))(

asm("xswp'"); /* wait for task to die */
return 0;
x>FM 2[CR] Hake sure there [/s system memory for tasks!
int err;

int sontask;
err = xctbh(2,64,0,0L,0L,"DF TSTFILE",&sontask):

/* 2k of memory, priority 64, no port, memory to come from system (hope-

fully!), a monitor task to define a new file */

Notes:

This call is easy to foul up! Be prepared to crash your system
with your experiments.

An dinvalid port assignment does not result in an error. The

command line has a maximum of 64 characters. If you don't
specify the 1low and high memory, the new task is created at the
end of your task, wiping out your stack and return address! Use

'sbrk' to allocate memory for the new task or put it at a known
available address. If the task dies or you kill it with a
positive task number, the memory is deallocated to the system and
available to other users. If you got the memory with XGUM there
should be no problem, but if you allocated it from your own
stack, it could be a disaster!

See Also:

XLDF - Load file
XKTB - Kill task
SYSTEM (STDLIB)
XEQ (STDLIB)

3-22 PDOS C Reference Manual

»

XDEV

Delay Set/Reset Event

Format:

int xdev(time,event);
long int time;

int event;

Description:

XDEV causes an event to be set/reset after a delay. A time
interval 1s specified, and the system counts down the time in
ties. When 0 is reached, the specified event is set. If the
'event' is negative, then it is reset.

If the 'time' is 0, then any pending timed event equal to the
second parameter is deleted from the system stack.

An error status is returned. 0 specifies no errors.

xplc("waiting 10 seconds...");
err = xdev(1000L,128);
if(err)
xerr(err);
Xsui(128); /* sleep until event 128 */
xplc("time is up");

See Also: ,
XSEF - Set event flag w/swap
XSEV - Set event flag

XSUI - Suspend until interrupt
XTEF - Test event flag

PDOS C Reference Manual 3-23

XDFL

Define File

Format:

int xdfl(filename,sectors_allocated);
char *filename;

int sectors_allocated;

Description:

XDFL defines a file. 'filename' is any valid PDOS filename.
'sectors_allocated' is the number of contiguous sectors allocated
to the file when it is defined. If this parameter is 0, then one
sector is allocated. The return value indicates an error if
nonzero.

int err;
err = xdf 1("NEWFILE",4);

See Also:

XDLF - Delete file
XRNF - Rename file
XZFL - Zero file

3-24 PDOS C Reference Manual

-

""{é)f\

C

Format:
int xdlf(filename);
char *filename;

Description:
XDLF deletes a file.
if nonzero.

int err;
err = xd1f("OLDFILE");

See Also:

XDFL - Define file
XRNF - Rename file
XZFL - Zero file

UNLINK - STDLIB entry point

PDOS C Reference Manual

Delete File

The

XDLF

return

value

indicates an error

3-25

XDMP

/!’m
Dump Memory LW,
Format:
xdmp(size,ptr);
int size;
char *ptr;
Description:
The XDMP function allows you to dump a block of memory to the
screen. This can be handy during development for debugging
purposes, to provide a quick 1look at system tables or other
program memory. The first parameter is how many bytes to dump;
the second is the starting address of the memory.
The following code dumps the first 256 bytes of SYRAW to the screen:
#include <SYRAM:H>
xdmp(éﬁﬁ._syram):
The following is displayed: .
PDDOA80G0: 0000 0B64 @007 FEOO 0008 1000 FC10 00RO ...d..~..... l... g
P00OAS10: 0000 00P0G2 8BD4 CD1E 2BD4 0017 00@8 4D7C M.+..... M3}
0000A820: BAG8 5600 102C 24@P @@FF QOFC FBFA 0000 ..v..,$....|{z..
DOBOAB30: 0000 0000 0000 OOF9 000D 0000 00OD 00RO) 2

0000A840: 0000 000D V0G0 00PD 0004 0000 0000 0000
P000AB50: 0000 000D 000D 0POO 0G01 D100 9000 00Q0
POD0AB60: 0000 0000 000D Q0000 P00 0100 G000 0OOO
P000DA8B70: 0000 0000 0000 G000 G000 COOD 000D 00GO
00DDAB80: D000 0000 2000 FEGD 0400 0000 0000 0000~.........
0000A890: 0000 0000 0000 0000 900 0GGS 0000 0@O1
00DOABAG: 0000 DDOA 0000 D014 0000 0000 0BOO B3EA 3j
PD00DABBO: 0004 F800 000D 00GQ 8GD2 4005 0060 0080 ..x....... a.....
000DASCO: 0000 0100 0D00 0000 000D 0000 0000 000D
000ODABDD: 000D 0000 9000 Q000D 00D 0GQO 0O0OQ 000D
DDODASED: 0000 0000 0000 0PO7 B460 0007 B480 000D 4 ..4...
PDDDASFD: 0000 0000 0000 0000 0000 0000 QOO0 000D

See Also:

XRDM -- Dump registers to console
XBUG -- Debug call

5-26 PDOS C Reference Manual C

8

XERR

Error Exit

Format:
int xerr(err);
int err;

Description:

XERR returns to the PDOS monitor and gives an error message "PDOS
ERR #."

This return can be trapped by setting the ERR$ vector in the

Task Control Bloeck (_tecbptr->_err -- see TCB:H) to point to
your own trap function. See the example for XLDF to see how this
might work. In such a case, the error code is passed in in

register DI1.

int err;
if (err = xd1f("OLDFILE")) xerr(err);

Notes:
The exit(n) call performs this function in a more portable way.

See Also:

XCHF - Chain to file

XEXT - Exit to monitor

XEXZ - Exit to monitor w/ command
XLER - Load error register

PDOS C Reference Manual 3-27

XEXT

Exit to

Format: _
. asm("xext");

Description:'
XEXT exits to the PDOS monitor.

Monitor

No status is returned.

This call may be trapped by setting the EXT$ vector in the Task

Control Block (_tebptr->_ext -- see TCB:H) to point

code. See the example for XLDF.

ésm("xext")'
printf("\n this shouldn't print");

See Also:

XCHF - Chain to file

XERR - Return error DO to monitor
XEXZ - Exit to monitor w/ command
XLER - Load error register

to your own

PDOS C Reference Manual

A

C

XEXZ

Exit to Monitor with Command

Format:
xexz(command) ;
char *command;

Description:

XEXZ exits to the PDOS monitor. The monitor then executes the
command line passed as a parameter. This may be exploited as a
form of the 'chain' command, only with command line parameters.
No status is returned.

This call may be trapped by setting the EXT$ vector in the Task
Control Block (_tcbptr->_ext -- see TCB:H) to point to your own
code. See the example for XLDF.

xexz("LT"); /* exit program and list tasks */

See Also:

XCHF - Chain to file

XERR - Return error DO to monitor
XEXT - Exit to monitor

XLER - Load error register

PDOS C Reference Manual 3-29

XFAC

File Altered Check

Format:
int xfac(filename);
char *filename; .

Description:

XFAC tests and clears the file altered bit in the file status of
a file. The function requires a pointer to the name of a file as
input.

It returns a 255 if the file altered bit was set and a 0 if the

bit was clear. The bit is cleared on the file status in either
case.

if (xfac("TEST:DAT"))
printf("File was altered since last check");

3-30 PDOS C Reference Manual

AN

‘_’y"

C

4

(

XFBF

Flush Buffer to Disk

Format:
int xfbf();

Description:

XFBF flushes buffers to disk. It effectively causes a checkpoint

on an open and altered file. The return value is an error #, or
0 if no error occurred.

Stream files that are open should first be flushed with 'fflush,'
after which XFBF will flush the file slot.

/* make sure the following is written to disk */
fprintf(myfile,"\nlogging message");

fflush (myfile);

xfbf();

PDOS C Reference Manual 3-31

XFFN

Fix File Name

Format:

char *xffn(filename,disknoptr);
char *filename;

int *disknoptr;

Description:

XFFN parses a filename into its components. It parses a charac-
ter string for filename, extension, directory 1level, and disk
number. The results are converted into a standard format in the
32-character monitor work buffer (MWB$(a6)). The address of this
buffer is returned, or 0 if an invalid filename.

The formatted character array has the following structure:

[0-7] filename
[8-10] extension
[11] 1level

The disk number is returned in *disknoptr.

System defaults are used for disk number and directory 1level
if they are not specified in the filename.

char *buffer,*xffn();
int diskno;
buffer = xffn("MYFILE:SR",&diskno);

Notes:

The record created is within the monitor work buffer, and
overwrites or i1s overwritten by other primitives wusing the
- monitor work buffer.

See Also:

XBFL - Build file directory 1list
XLST - List file directory

XRDE - Read next directory entry

3-32 PDOS C Reference Manual

C

XFTD

Fix Time/Date

Format:
xftd(timeptr,dateptr);
int *timeptr,*dateptr;

Description:
XFTD reads the time and date in the following packed binary
format:

time = hours*256 + minutes
date = (year * 16 + month) * 32 + day

The binary code can be used for sorting or comparisons and then
unpacked to ASCII for display. See XUDT and XUTM to unpack both
date and time.

int time,day;

xftd(&time,&day);

printf("\nHour=%d",time >> 8);

printf("\nMinutes=%d",time & Bxff);

printf("\nDate=%d/%d/%d", day & @x1eB, day & Ox1f, day >> 9);

See Also:

XPAD - Pack ASCII date
XRDT - Read date

XRTM - Read time

XUAD - Unpack ASCII date
XUDT - Unpack date

XUTM - Unpack time

XWDT - Write date

XWIM - Write time

PDOS C Reference Manual 3-33

XFUM

Free User Memory

Format:

int xfum(kbytes,begadr);
int kbytes;

char *begadr;

Description:

XFUM frees wuser memory for wuse by the operating system. It
allows a task to give 'kbytes' of memory back to the operating
system. The second parameter gives the starting address of the

memory. If the status return is nonzero, there is a memory
error.

char *begin;
status = xfum(32,begin);
if(status) xplc("Can't give back that much");

See Also:
XGML - Get memory limits
XGUM - Get user memory

3-34 PDOS C Reference Manual

XGCB

Get Conditional Character

Format:
int xgeb();

Description:
XGCB checks the current AC file, input message pointer, or input
port for input. The status returned is:

0...255 for character available

-1 if no character available

-2 if [ESC] entered

-3 if [CTRL-C] entered (buffer cleared)

Unlike XGCC, XGCB also checks the AC file and input message
pointer for input. And, unlike XGCR, it returns immediately if
no data is available.

int ¢;
asm("xpcl");
while ((c¢c = xgcb()) > -2)
switch(c){
case -1: putchar('?'); break; /* NO INPUT */
default: if (¢ > 31)
putchar(c);
else
printf("%d",c);

printf("exiting on %d",c);
Notes:
The name is confusing.

If the control character disable bit is set on the port, XGCB
will not return a status of -2 or -3.

See Also:

XGCC - Get character conditionally
XGCP - Get port character

XGCR - Get character

PDOS C Reference Manual 3-35

XGCC

Get Character Conditionally

Format:
int xgce();

Description:

XGCC gets one character from the console keyboard. It returns as
status:

0...255 for character pressed (ASCII value of character)
-1 if no character available
-2 if [ESC] entered
-3 if [CTRL-C] entered (buffer cleared)

Unlike XGCB, XGCC only samples the input port. And, unlike
XGCP, it returns immediately if no data is available.

int c;
asm("xpel");
while ((c = xgcc()) > =2)
switch(c){
case -1: putchar('?7'); break; /* NO INPUT */
default: if (¢ > 31)
putchar(c);
else
printf("%d",c);

printf("exiting on %d",c);

Notes:

If the control character disable bit is set on the port, XGCC
will not return a status of -2 or -3. Instead, it will return a
value of 27 or 3 -- the ASCII value of [ESC] and [CTRL-C].

See Also:

XGCB - Get conditional character
XGCP - Get port character

XGCR - Get character

3-36 PDOS C Reference Manual

XGCP
Get Character From Port

Format:
int xgep();

Description:
XGCP gets one character from the console port. It waits for the
character to come. The status returned is:

0...255 for character available
-2 if [ESC] entered
-3 if [CTRL-C] entered (buffer cleared)

Unlike XGCR, XGCP only reads from the input port. And, unlike
XGCC, it waits for a character if none is available.

main()
{
int ¢;
asm("xpcl");
while ((¢ = xgep()) > =2)
printf("%x",¢);
printf("exiting on %d",c);

Notes:

If the control character disable bit is set on the port, XGCP
will not return a status of -2 or -3. Instead, it will return a
value of 27 or 3 -- the ASCII value of [ESC] and [CTRL-C].

See Also:

XGCB - Get conditional character
XGCC - Get character conditional
XGCR - Get character

PDOS C Reference Manual 3-37

XGCR

Get Character

Format:
.int xger();

- Description:

XGCR gets one character from the input stream (AC file, Internal
Message Pointer, or input keyboard). It waits for the character
to come. The status returned is:

0...255 for character available
-2 if [ESC] entered
-3 1f [CTRL-C] entered (buffer cleared)

Unlike XGCP, XGCR samples the AC £filid and the Input Message
Pointer as well as the keyboard. And, unlike XGCB, it suspends
waiting for input if none is available.

main()

int c;

asm("xpecl");

while ((c¢ = xgcr()) > =2)
printf("%x",c);

printf("exiting on %d",c);

Notes:

If the control character disable bit is set on the port, XGCR
will not return a status of -2 or -3. Instead, it will return a
‘'value of 27 or 3 -- the ASCII value of [ESC] and [CTRL-C].

See Also:

XGCB - Get conditional character
XGCC - Get character conditional
XGCP - Get port character

3-38 PDOS C Reference Manual

XGLB

(“ Get Line in Buffer

Format:
int xglb(buffer);
char buffer([80];

Description:

XGLB gets a line from the keyboard and puts it into the user
buffer. PDOS editing characters may be used during input of the
line. The input buffer must be at least 80 characters long. The
function returns a status dindicating the type of terminating
character:

0 if the line ended with a carriage return
-2 if the line ended with an [ESC]
-3 if the 1line ended with a [CTRL-C] (buffer cleared)

main()
{
char buffer[100];
int terminator,i;
for(i=0;i<10;i++){
terminator = xglb(buffer);
‘ja printf("\nterminator was %d\n",terminator);
printf("%s\n",buffer);

Notes:

If the control character disable bit is set, XGLB will beep on
entry of [ESC] or [CTRL-C] and not allow it to be entered. The
function will only be able to return a value of zero.

See Also:

XGLM - Get line in monitor buffer
XGLU - Get line in user buffer

(i? PDOS C Reference Manual 3-39

XGLM

Get Line in Monitor Buffer

Format:
int xglm(bufptr):
char **bufptr;

Description:

XGLM gets a line into the monitor buffer. The monitor buffer is
a buffer in the TCB area where the current command 1line resides,
along with all the parameters (argv[0],argv[1l],...,
argv[arge-1]). A program could issue an XGLM call from within an

AC file to look at the next line, exit, and the line would still
be executed.

You must pass the address of a character pointer to XGLM. This
character pointer is then set to point to the monitor buffer.

The function returns a status indicating the type of terminating
character:

O if the line ended with a carriage return
-2 1f the line ended with an [ESC]
-3 if the line ended with a [CTRL-C] (buffer cleared)

During line entry, the PDOS editing characters may be used. The
PDOS Reference Manual explains these characters wunder the
description of XGLM. Also, the &0,&1,&2 parameter passing
convention is followed if the file i1is run as an AC file. For
example, in the line " hello there &1", parameter 1 of the
command line replaces the &l1.

char *¢;

int delim;

delim = xgim(&c);

printf("entered string %s with delimiter %d\n",c,delim);

Notes:
Executing an XGLM call overwrites the 'argc,argv' parameters. If

you need these parameters, you should copy them into a separate
location before calling XGLM.

If the control character disable bit is set, XGLM will beep on
entry of [ESC] or [CTRL-C] and not allow it to be entered. The
function will only be able to return a value of zero.

See Also:
XGLB - Get line in buffer
XGLU - Get line in user buffer

3-40 PDOS C Reference Manual

®

XGLU

Get Line in User Buffer

Format:
int xglu(bufptr);
char **bufptr;

Description:

XGLU reads a line into the wuser buffer. The user buffer is a
buffer in the TCB area. You must pass the address of a character
pointer to XGLU. This pointer is assigned the address of the
user buffer. The address pointed to by 'bufptr' has its contents
altered to become the address of the new string just entered as
shown in the example below.

The function returns a status indicating the type of terminating
character:

0 if the line ended with a carriage return
-2 if the line ended with an [ESC]
-3 if the line ended with a [CTRL-C] (buffer cleared)

During line entry, the PDOS editing characters may be used as
explained in the PDOS Reference Manual under the description of
XGLU. Also, the &0,&1,&2 parameter passing convention 1is
followed if the file is run as an AC file. For example, in the

line " hello there &l" parameter 1 of the command line replaces
the &l. '

char *c;

int delim;

delim = xglu(&c);
printf("entered string %s with delimiter %d\n",c,delim);

Notes:

If the control character disable bit is set, XGLU will ©beep on
entry of [ESC] or [CTIRL-C] and not allow it to be entered. The
function will only be able to return a value of zero.

See Also:

XGLB - Get line in buffer
XGLM - Get line in monitor buffer

PDOS C Reference Manual 3-41

XGML

Get Memory Limits

Format: .
xgml(endtcbptr,endmemptr,begmemptr,syramptr,tcbptr);
long *endtcbptr,*endmemptr,*begmemptr,*syramptr,*tebptr;

Description:
XGML gets the memory limits and locates task sections. The task
may use up to but not including the upper memory limit. No value
is returned.

The passed parameters must be the addresses of 1long words or
pointers that receive the following values:

endteb: end of the task control block
endmem: end of task memory

begmem: 1last loaded address

syram: address of SYRAM system RAM variable

teb: task control block address
The global variables '_syram' and '_tcbptr' are already loaded
with pointers to those two structures. See "TCB:H" and
"SYRAM:H".

long endtcb,uppermem,lastload,syram,tcb;
~xgm1(&endtcb,&uppermem,&lastioad,&syram,&tcb);
printf("\nendtcb %1x",endtch);
printf("\nuppermem = %1x",uppermem);
printf("\nlastload = %1x",lastload);
printf("\nsyram %1x",syram);
printf("\ntcb %»1x",teb);

See Also:
XGUM - Get user memory
XFUM - Free user memory

3-42 PDOS C Reference Manual

::‘;1’

(j‘

XGMP

Get Message Pointer

Format:

int xgmp(number,mptr);
int number;

char **mptr;

Description:

XGMP checks one of the sixteen message slots for a waiting
message. If it finds a message there, it returns a pointer to
it. The message number is indicated in the first parameter and
the pointer to the message is returned in the second parameter.
The function returns a value of 255 to indicate no message is
waiting, or the number of the task that sent the original
message.

This type of message 1is also 1linked to the PDOS system events
64-79. When a message is sent via XSMP, the corresponding event
(message number + 64) is set. When the message is received via
XGMP, the corresponding event is cleared. A task may suspend on
the message event and thus require no PDOS resources while it
waits for a message.

char *ptr;

int status;

if ((status=xgmp(5,&ptr))==255) /* check message 5*/
printf("\nNo message");

else

printf("\ntask = %d, message=%s",status,ptr);

See Also:

XSMP -- Send message pointer
XSTM -- Send task message
XGTM -- Get task message
XKTM -- Kill task message

PDOS C Reference Manual 3-43

XGNP

Get Next Parameter

Format:
int xgnp(paramptr);
char *paramptr[];

Description:
XGNP gets the next command line parameter. The address of the
next command line word is placed in the location 'paramptr'. The

status is returned 0 if the word is there; otherwise, it is
nonzero.

Normally, this call is used to parse the command line and gather
command line parameters. However, the command line i1is already
gathered during the initialization of a C program.

This call could be useful if the programmer supplied a different
version of the initialization code. You could also use the call
as a general-purpose parsing routine. XGNP uses the CMD$ and
CLP$ (_tcbptr->_cmd and _tebptr->_clp) fields of the TCB to get
the next parameter. If these are modified by the program, XGNP
parses an arbitrary string in the same way that it parses a
command line.

#include "TCB:H"

char *c;

_tebptr—>_cmd = ' '

- _tebptr->_clp "WHAT, ME WORRY?";

while (xgnp(&c))
printf("\n->%s<-",¢);

/* pfints out the message below */

>WHAT<
><

>ME<
>WORRY?7<

3-44 PDOS C Reference Manual

&

XGTM

Get Task Message

Format:
int xgtm(buffer);
char buffer[64];

Description:

XGTM gets a task message. The return value is the sender's task
ID. 1If there are any errors, they are given in the return
value. Task messages are created by tasks executing the XSTM
call, or by a user executing the 'SM' monitor command.

The message buffer is a fixed length, and can contain data in any
format. The length dis normally 64 bytes, but it may be altered
by customizing PDOS via a new SYSGEN.

char buffer[64];

int sender;

sender = xgtm(buffer);

if (sender >= 0){
printf("\nmessage=%s",buffer);
return 0;

}

else
return -1;

See Also:

XGMP - Get message pointer
XSMP - Send message pointer
XSTM - Send task message
XKTM - Kill task message

PDOS C Reference Manual 3-45

XGUM

Get User Memory

Format:

int xgum(kbytes,begadrptr,endadrptr);
int kbytes;

long *begadrptr,*endadrptr;

Description:

XGUM gets memory from the operating system. It allows a task to
request the operating system for 'kbytes' more memory. The begin
and end addresses are stored at the location pointed to by the
second and third parameters. If the status return is nonzero,
there was an error (no memory available).

char *dummy;
int i;

long j,dummy;
int error;
int freesize;
long freeptr;

error = 73;
printf("Find largest block of available memory\n");
for (i=1024;i>0 && error != 0;i -= 2){
printf("\rSearching for %4.4dK ",i);
error = xgum(i,&j,&dummy);

}

if (i==0)
return 73;

freesize = i;

freeptr = j;

return 0;

See Also:
XGML - Get memory limits
XFUM - Free user memory

3-46 PDOS C Reference Manual

N

XKTB

C Kill Task
Format:
int xktb(task);
int task;
Description:
XKTB kills the task with a given task number. If there are

any errors, they are given in the return value.

A task does not die immediately. The operating system first
closes all files open to that file and performs other clean up

chores. You can get an error (and potentially even crash the
system) by killing a task and immediately overlaying the memory
it occupies. If you need to reclaim a task's memory for some

other use, use XRTS interspersed with XSWP calls which are
waiting for the task status to go to zero. Then the memory may
be safely overlayed. If you are reclaiming the memory, be sure
to negate the task number passed to XKTB.

int err;
err = xktb(3); /* kill task #3 */

— xktb(-sontask); /* kill it without deallocating mem */

do{ : ’
asm("xswp"); /* twiddle fingers while it dies */
} while (xrts(sontask));

/* now, overlay the memory where that task was. */
See Also:
XCTB - Create task

XRTS - Read task status
XSWP - Swap task

O PDOS C Reference Manual 347

XKTM

Kill Task Message L

Format:

int xktm(task,buffer);

int task;

char *buffer;

Description:

XKTM reads and kills a task message. It intercepts the message

waiting for a task. The message is then returned in the buffer.

If there are any errors, they are given in the return value.

int err;

char buffer[64];

err = xktm(3,buffer); /* read task 3's message */

See Also:

XGMP - Get message pointer

XGIM - Get task message

XSMP - Send message pointer

XSTM - Send task message
0
N

LY 1
3-48 PDOS C Reference Manual (;a

XLDF

Load File

Format:

int x1df(eflag,memlow,memhigh,filename,lowptr,highptr);
int eflag;

char *memlow,*memhigh;

char *filename;

char **]lowpr,**highptr;

Description:

XLDF 1loads an object <code file into memory. If 'eflag' is
nonzero, the ©program i1s executed immediately. Otherwise,
control returns to your calling program. 'Memlow' and 'memhigh'
are memory bounds for the 1load. 'Lowptr' and ‘'highptr' are

locations where the 1lowest 1loaded address and highest loaded
address are returned. The value returned is an error if nonzero.

errtrap()

longjmp(env,3);
}

extrap()

asm("MOVE D1,D@8\nXLER");/* save error */
longjmp(env,4);

int dox1df() /*x1df--1oad file*/

long unsigned low,hi;

long unsigned lowlod,hilod;

char *oldext = _tcbptr—>_ext;

char *olderr = _tcbptr—>_err;

char *oldead = _tcbptr->_ead;

if (!setjmp(env)){
_tcbptr—>_ext = extrap;
_tcbptr—>_err = errtrap;

/* round up to a 2K boundary */
low = (long unsigned) _eomem + 2048L;
lTow &= 2047L;
hi = Tow + 16384; /* 16K task */
error = x1df(1,low,hi,"HELLO",&lowlod,&hilod);
xler(error);

_tebptr->_ext = oldext;
_tcbptr—->_err = olderr;
tcbptr-> ead = oldead;

Teturn _tcbptr—>_len;

}
PDOS C Reference Manual 3-49

(XLDF cont.)

Notes:

If you want to execute a program as 1if it were a function and
have it return values to the «calling program, there are a few
things to wateh for. First, you must trap all exits so that the
executed program will not dump you into the monitor when it
finishes. You must modify and restore the _ext and _err fields
of the TCB. Second, save and restore the _ead field, since XLDF
will modify it. If this disn't done, a "GO" command from the
monitor begins execution from the starting point of the executed
program -- which might not be correct. Third, some PDOS system
programs can not be executed via XLDF because they depend on
being loaded immediately after the TCB. The XEQ function in
STDLIB uses XLDF and can either serve as an example of its use,
or can be used in its stead.

See Also:

XCTB - Create task block

XCHF - Chain file

XEXZ - Exit to monitor with command

3-50 PDOS C Reference Manual

e

PR

-

XLER

Load Error Register

Format:
xler(err);
int err;

Description:

XLER loads up the error register. The error register is the Last

Error Number in the Task Control Block (LENS$(A6) or
_tcbptr->_1len).

A PDOS file of type AC can use passed parameters. The pseudo
variable &0 is reserved for executing programs to return errors

from the executing program. This primitive 1loads &0 with an
error number.

This example shows a program called “main” and a fragment of an AC flle.
The fragment executes the |ist command since 32 was returned.

main()

{
xler(32);

.MAIN
.IF &0=32 .LS

See Also:

XCHF - Chain to file

XERR - Return error DO to monitor
XEXT - Exit to monitor

XEXZ - Exit to monitor w/ command

PDOS C Reference Manual 3-51

XLKF

Lock File

Format:
int x1k£f(fii1id);
int £41i4d;

Description:

XLKF locks a file so that no other task can access it. 1In
order to wunlock the file, you must call XULF. The returned
value is an error code, or O if no error occurred. The lock
and unlock file commands are used when tasks open a file in
non-exclusive mode. In this mode, they share the file slot,
and both have read/write access to the file. To prevent con-
flicts, each task must 1lock the file, position to the desired
record number, read or write, and unlock the file.

int filtype,filid,err;

char fname[] = "MYFILE:SR";

if (err=xnop(fname,&filtype,&filid)) /* shared access open */
_error("\nerror %d on file %s",err,fname);

while ((err = x1kf(filid)) == 75)(
asm("xswp"); /* hang while locked */
3

if (err)
_error("\nerror %n locking file %s",err,fname);

/* position, read/write, etc. */

if(err = xulf(filid))
_error("\nerror %n unlocking file %s",err, fname);

See Also:

XNOP - Open non-exclusive random
XRFP - Read file position

XPSF - Position file

XULF - Unlock file

3-52 ’ PDOS C Reference Manual

E4

C

XLKT

Lock Task

Format:

int x1kt();

Description:

XLKT locks the current task. A 1locked task has the undivided
attention of the CPU for executing dinstructions. No other task
is given a time slice. The task must be unlocked with the XULT
call for normal multi-tasking to resume. The returned value is

the status of the swap lock variable before the call was made: 0
is unlocked, nonzero is locked.

int lockstate;
lockstate = x1kt();
printf("previous state was %d",lockstate);

/* in here do critical code */
asm("xult");

printf(" now normal task swapping resumes");

See Also:
XSWP - Swap to next task
XULT - Unlock task

PDOS C Reference Manual 3-53

XLST

List File Directory

Format:
int xlst(filespec);
char *filespec;

Description:
XLST displays a disk directory on the console. The directory
displayed is based on the file specification string.

It returns an error if there was a problem accessing the disk.

xIst("a:C;12"); /* display all C source files in level 12 */

See Also: :
XBFL - Build file directory list
XFFN - Fix file name
XRDE - Read next directory entry

3-54 ' PDOS C Reference Manual

cﬁz

XNOP

Non-exclusive Random Open File

Format:

int xnop(filename,filtype_ptr,filid_ptr);
char *filename;

int *filtype_ptr, *filid_ptr;

Description:

XNOP opens a file for non-exclusive random access. The first
parameter is the filename. If the file successfully opens, the
file attribute is stored at location 'type_ptr' and the 'filid’
is stored at location 'filid_ptr"'.

The returned value is zero or a PDOS error number.

When two tasks open a file in non-exclusive open mode, they both
share the same file slot. That means that ANY file operation by
one task on that file affects any file operation by the other
task. Each task must lock the file and position to the desired
record before reading or writing to avoid conflicts.

int filtype,filid,err;

char fname[] = "MYFILE:SR";

if(err=xnop(fname,&filtype,&filid)) /* shared access open */
_error("\nerror %d on file %s",err,fname);

while ((err = x1kf(filid)) == 75)
asm("xswp"); /* hang while locked */
if (err)
_error("\nerror %n locking file %s",err,fname);
/* position, read/write, etc. */

if(err=xulf(filid))
_error("\nerror %n unlocking file %s",err,fname);

PDOS C Reference Manual 3-55

(XNOP cont.)

Notes: ‘

PDOS sometimes gets confused about when
closed, especially when a task aborts
file.

See Also:

XSOP - Open sequential

XR00 - Open random read only
XROP - Open random

XLKF - Lock file

XULF - Unlock file

XRFP - Read file position
XPSF - Position file

XCFA - Close file w/attribute
XCLF - Close file

3-56

a shared file should be
without closing a shared

PDOS C Reference Manual

W/

C

XPAD

Pack ASCII Date

Format:
int xpad(datestr);
char *datestr;

Description:

XPAD converts an ASCII string in the form dd-mon-yy to the packed
format used internally by PDOS. Thus, dates such as "8-0CT-86"
and "7-JUL-76" are converted to binary encoded format. The date
string does not require special delimiters between the different
fields. The month may be lowercase, uppercase, or a combination
of both. If PDOS cannot figure out the date, it returns a value
of -1.

main()

{
showdate("7-jul-76");
showdate ("7-JUL-76");
showdate ("7JUL76");
showdate ("B7-JUL-76");
showdate("1kjlkjlkj");

}

showdate (datestr)
char *datestr;

if((date=xpad(datestr))==-1)
printf('"\nBad date");
else
printf("\n%u'",date);
}

The following Is displayed:

39143
39143
39143
39143
Bad date

See Also:

XRDT -- Read Date

XWDT -- Write Date

XFTD -- Fix Time and Date
XUDT -- Unpack Date

XUAD -- Unpack ASCII Date

PDOS C Reference Manual 3-57

XPBC

Put User Buffer to Console

Format:
asm("xpbe");

Description:

XPBC outputs the user buffer to the console. It outputs the TCB
user buffer to the console and/or spool unit. This buffer is a
scratch buffer that the user can use for whatever purpose is
necessary. The XGLU call fills the user buffer with data from
the keyboard. This call dumps the user buffer to the screen.

char *c;
xglu(&e);
asm("xpbc");

Notes:

Be aware that some primitives use the user buffer implicitly. It
is convenient to use the user buffer at times, but it can be
overwritten if you aren't careful.

See Also:
XGLU - Get line in user buffer

XPCC - Put character(s) to console

XPCL - Put CRLF to console
XPSP - Put space to console

3-58 PDOS C Reference Manual

XPCC

Put Console Character

Format:
int xpce(e);
char c;

Description:

XPCC outputs a character to the console or the spool unit.
It returns the value of the character sent. No error status.

while(xpcc(*str++)); /* output a string */

See Also:

XPBC - Put buffer to console
XPCL - Put CRLF to console
XPCR - Put character raw
XPDC - Put data to console
XPSP - Put space to console

PDOS C Reference Manual 3-59

XPCL

Put Carriage Return/Line Feed to Console @35

Format:
asm("xpcl");

Description:
XPCL outputs a carriage return/line
unit. No value is returned.

See Also:

XPBC - Put buffer to console

XPCC - Put character(s) to console
XPSP - Put space to console

3-60

feed to console or spool

PDOS C Reference Manual ‘35

XPCR

Put Character Raw

Format:
xper(e);
char c;

Description:

XPCR works much the same as XPCC because it outputs the indicated
character to the output port. However, XPCR does not expand
tabs. The current column counter is not updated in the TCB and
the port row/column is not updated in SYRAM. XPCR is useful when
a port i1s connected to another computer or to some other device
where the data must be output without modification.

char *c;
¢ = "There is a tab here->\t<—-";
while(*c)

Xper(*c++);
¢ = "There is a tab here->\t<-=-";
while(*c)

Xpcec(*Cc++);

The following Is displayed:

There is a tab here-><—— tab not expanded
There is a tab here-> <=- tab expanded
See Also:

XPCC -- Put console character

XPDC -- Put data to console

PDOS C Reference Manual 3-61

XPDC

Put Data to Console

Format:
xpdc(number_of_bytes,strptr);
int number_of_bytes;

char *strptr;

Description:

XPDC outputs data to console or spool wunit. This routine is
different from other routines because instead of a null delim-
iter, the number of bytes is specified. Hence, you can output a
buffer containing nulls or other binary characters.

xpdc(39,"there is a null here->\B<—-did it print?");

Notes:

XPDC goes outside any PDOS output formatting. Tabs are not
expanded to blanks, the port row/column is not wupdated in SYRAM,
and the output column counter is not updated in the TCB. This
primitive is primarily intended for use on a serial port con-
nected to another computer.

See Also:

XPCR - Put character raw

XPEL - Put encoded line to console
XPLC - Put line to console

3-62 PDOS C Reference Manual

C

XPEL

Put Encoded Line to Console

Format:
int xpel(buffer);
char *buffer;

Description:
XPEL outputs & line to the console or spool unit. It terminates
on a null. No newline is added. The value returned is the

address of the string.

An encoded 1line is 1like a regular ASCII string except that if a
byte is negated, a space is printed after that byte; a null with
the eighth bit set signals a carriage return/line feed; and up
to 31 blanks may be printed by outputting the negative of the
number of blanks. (i.e., -5 prints five blanks.) The intent is
to save space by reducing the storage necessary for text strings
containing lots of blanks.

/* \200 means carriage return/line feed, \373 means 5 spaces */
xpel("\288Testing\373Testing");

Notes: ,
Data compression probably does not make up for the loss of
comprehension. Encoded data is really cryptic.

See Also:

XPDC - Put data to console
XPLC - Put line to console

PDOS C Reference Manual 3-63

XPLC

Put Line to Console [{)

Format:
int xple(buffer);
char *buffer;

Description:
XPLC outputs a line to console or spool unit. It terminates on a

null. No newline is added. The value returned is the address of
the string.

#define putstr xplc
putstr("hello there");

See Also:
XPDC - Put data to console
XPEL - Put encoded line to console

3-64 ' PDOS C Reference Manual (})

XPSC

Position Cursor

Format:
xpsc(row,co0l);
int row,col;

Description:
XPSC positions the cursor. The first parameter is the row, the
second is the column. The 'row' and 'column' start at zero and

range to 23 and 79 respectively. XPSC relies on the PSC$ field
in the Task Control Block (_tebptr->_psc) to tell what character
sequence to output for the 1local terminal. This field is
normally initialized by the MTERM utility, or it may be set under
program control.

xpsc(@,0); xplc("This is the home position");
xpsc(12,48); xplc("hello from row 12,col 42");

See Also:

XCLS - Clear screen

XRCP - Read port cursor position
XTAB - Tab to column

PDOS C Reference Manual 3-65

XPSF

Position File

Format:

int xpsf(filid,position);
int £ilid;

long int position;

Description:

XPSF moves the file byte pointer to any byte position within a
file. The index is a long word, so it can be a very large file.
The file must have been opened via XR0O, XROP, XNOP or XSOP. An
error occurs 1if the 'position' points ©beyond the end of file.
Errors are returned, and a 0 value is returned if there are no
errors.

Positioning is much quicker in contiguous files. In non-conti-
guous files, the sector 1links must be followed to find the
desired data.

err = xpsf(filid,10L);

Notes:

In PDOS versions 3.0 and later, you can position within a file
regardless of the way that file was opened. In previous versions
it was not possible to position within a £file if it had been
opened with XSOP.

See Also:
XRWF - Rewind file
XRFP - Read file position

LSEEK (STDLIB)

3-66 PDOS C Reference Manual

C

C

XPSP

Put Space to Console
Format:
asm("xpsp");

Description:
XPSP prints out a space to the console or spool unit.

Notes: :

This function has limited utility in a high level language.

See Also:

XPBC - Put buffer to console

XPCC - Put character(s) to console
XPCL - Put CRLF

PDOS C Reference Manual

3-67

XRBF

Read Bytes From File

Format:

int xrbf(count,filid,buffer,bytesread);
long int count;

int £1i1id;

char *buffer;

long int *bytesread;

Description:

XRBF reads a block of 'count' bytes from the file. On a read
error, the number of bytes actually read is stored in the 1last
parameter. If there is no error, the number of bytes read
corresponds to the count given and the 1last parameter is not
changed. The block is read into the buffer from the file speci-
fied by the 'filid'. The function returns =zero or a PDOS error
number.

int filid
long len;
char buffer[14];

err = xrbf(14L,filid,buffer,&len);

See Also:
XRLF - Read line from file

XWBF - Write bytes to file
XWLF - Write line to file

3-68 PDOS C Reference Manual

XRCN

Reset Console Inputs
Format:

asm("xren");

Description:

XRCN resets console inputs. This routine is the same as the RC
monitor command. It ends processing of an AC file.

When the program below Is in an AC file, all the commands In the AC file that
follow are Ignored.
main()

xplc("begin test");

asm("xren");
xplc('"end test");

See Also:
XRST - Reset disk

PDOS C Reference Manual 3-69

XRCP

Read Port Cursor Position

Format:
xrep(port,rowptr,colptr);
int port, *rowptr,*colptr;

Description:
XRCP reads the cursor position of a given port. There is no
return value. The 1row value is stored at location specified by

the second parameter; the column value is stored at the location
specified by the third parameter. These values are maintained by
PDOS, and are valid 1if the PDOS primitives (not user defined)
have been used for console I/0. If the port is 0, the current
task port is used.

int row,col;
xrcp(0,&row,&co1);

Notes:
This call requires a port parameter but the output, input, and
position calls do not.

See Also:

XCLS - Clear screen
XPSC - Position cursor
XTAB - Tab to column

3-70 ' PDOS C Reference Manual

&

XRDE

Read Next Directory Entry

Format:

int xrde(diskno,readflg,lastentptr,sectorptr);
int diskno,readflg;

long *lastentptr;

int *sectorptr;

Description:

XRDE reads the next directory entry. This routine is called to
read consecutively through a disk directory. The first time it
is called, ‘'readflg' should be 0. All other times it should be
nonzero. 'Lastentptr' is the location where a pointer to the 32
byte directory entry is stored.

The include file "DIRENT:H" describes the different fields in a
directory entry.

An error status is returned -- 0 for no error, or the error
number.

Between calls do not alter 'lastentptr', the user I/0 buffer, or
TW1$,TW2$ of the TCB.

int i,err;

int diskno;

char *lastentry;

int sectornum;

diskno = getnum("Enter disk number ");

err = xrde(diskno,B,&lastentry,§ornum);

for (i=0;err==0;i++){
printf("\nEntry#%d: %s sector# %d",i,lastentry,sectornum);
err = xrde(diskno,1,&lastentry,§ornum);

if (err == 53)
err = 0;
return err;

See Also:

XBFL --Build file directory 1list
XFFN - Fix file name

XLST - List file directory

PDOS C Reference Manual 3-71

XRDM

Dump Registers to Console

Format:
asm("xrdm") ;

Description:

XRDM dumps the address, data and status registers as well as the
program counter to the <console. This routine can be useful for
debugging, especially for register variables.

register int 1i;

for (i=0;1<20;i++)
asm("xrdm");
printf("\n %d",i);

REGISTER DUMP: PC=00100606 SR=..... p....N..C
DO: DP1QDBSE G0POPOQO0 OGQQFFFF 00100500 0Q0QG0011 00P0GDN7 0RDR0A0A P0A0R00D
AD: 00100B9E 00004B97 00100100 @D19BFO0 0POA03C2 POP0I80A OP19BFE8 PO19BFED
REGISTER DUMP: PC=00100606 SR=..... B....N..C
DO: 901950000 000QP0000 DOOOFFFF 0P10D500 0000DO11 POP00P07 00000000 0P00A0D1

AD: 000P00CP ©0O@19BFBE 00102180 PP19BFP0 0P000B3C2 QP0P980P PO19BFES PP19BFED
1

RéGISTER DUMP: PC=P00100606 SR=..... @....N..C
DO: 00190000 000QP0A12 QOOOFFFF 00100500 00000011 GDP0P0D7 POPA0O00 00QPPO013

ADQ: D00O0OP12 PD19BFBE 0P100100 PO19BFP0 0POA03C2 POOD9I80D ©OB19BFES PO19BFED
19 -

See Also:
XBUG - Debug call
XDMP - Dump memory

3-72 PDOS C Reference Manual

_

XRDT

Read Date

Format:
char *xrdt();

Description:

XRDT 1reads the date from PDOS and returns an address to the

string in the format: MN/DY/YR(null)

char *xrdt();
printf('"\ntest xrdt: date=%s\n",xrdt());

Notes:
The string created is within the monitor work buffer,

and

overwrites or 1s overwritten by other primitives using the

monitor work buffer.

See Also:

XFID - Fix time & date
XPAD - Pack ASCII date
XRTM - Read time

XUAD - Unpack ASCII date
XUDT - Unpack date

XUTM - Unpack time

XWDT - Write date

XWTM - Write time

PDOS C Reference Manual

XRFA

Read File Attributes

Format:

int xrfa(filename,dirptr,diskptr,sizeptr,typptr):
char *filename;

long *dirptr;

int *diskptr;

long int *sizeptr,*typptr;

Description:

XRFA reads file attributes of a file. Input is the file name.
The other parameters are pointers for where to store the output.
The output is as follows, in order

address of 32 byte directory entry (see DIRENT:H)

disk number

file size (in bytes)

level/attributes (see PDQS Reference Manual under
XRFA for attribute description)

Errors are the return value. A zero returned indicates no
errors.

#include "DIRENT:H"

struct DIRENT *buffer;

int disk,error;

long size,type;

char 1ist[88];

getstr("Filename: ",1list);

error = xrfa(list,&buffer,8&disk,&size,&type);

if (lerror){
printf("\ndisk=%d",disk);
printf("\nsize=%1d",size);
printf("\ntype=0x%1x",type);
printf("\nname: %.8s, ext: %.3s, level: %d",

buffer-> fname, buffer-> fext buffer->_level);

printf("\nend of file sector %d",buffer—> _seof);
printf("\nend of file byte %d", buffer—> beof)
printf("\ncreation time %d", buffer-> ct1me)
printf("\ncreation date %d",buffer—> cdate)
printf("\nupdate time %d", buffer-> ut1me)
printf("\nupdate date %d",buffer—> _udate);

3-74 PDOS C Reference Manual

\ku/

(XRFA cont.)

Notes:

The directory entry created is within the monitor work buffer,
and overwrites or is overwritten by other primitives using the
monitor work buffer. : :

See Also:

XCFA - Close file w/attribute
XWFA - Write file attributes
XWFP - Write file parameters

PDOS C Reference Manuel 3-75

XRFP

Read File Position

Format:

#include "FILESLOT:H";

int xrfp(filid,fsptrptr,posptr,eofptr);

struct FILESLOT **fsptrptr: /* address of a pointer */

long int *posptr; /* address of a long int */
long int *eofptr; /* address of a long int */
int £4i1id;

Description:

Given the 'filid', XRFP returns the current file slot address,
the current byte position within the file, and the byte position
of the end of file mark. XRFP is analogous to the LSEEK call,
except that XRFP also returns a pointer to the file slot struc-
ture. The file slot retains various pieces of information,
including the name of the file and the disk it is on.

#include "FILESLOT:H";
struct FILESLOT *fsptr;
long position;

long eof;

int fid;

if(err=xrfp(fid,&fsptr,&position,&eof))
printf("xrfp err %d\n",err);
else ‘
printf("the file %s:%.3s is at byte %1d",
fsptr->name, fsptr->ext,position);

See Also:
XRWF - Rewind file
XPSF - Position file

3-76 PDOS C Reference Manual

AN

C

XRLF

Read Line From File

Format:

int xr1f(£filid,buffer,bytesread);
int £ilid,*bytesread;

char buffer[132];

Description:

XRLF reads a line from a file. It reads a line, delimited by a
carriage return, dinto the ©buffer from the file specified by
'filid'. If a carriage return is not encountered after 132
characters, then the line and primitive are terminated.

Line feeds are dropped from the data stream, and the terminating
carriage return is replaced by a null. On error return, the
buffer data is not null terminated.

Errors are the return value, or a 0 is returned if there is no
error. On an EOF error return, the third parameter specifies
where the number of bytes actually read is stored.

int filid,err,bytesread;
int lastlinecnt;
char buffer[132];

err = xr1f(filid,buffer,8bytesread):
if(err = 56) lastlinecnt = bytesread;

Notes:

Be sure to leave enough room for the longest buffer or memory may
be overwritten.

See Also:

XRBF - Read bytes from file
XWBF - Write bytes to file
XWLF - Write line to file

PDOS C Reference Manual 3-77

XRNF

2N
Rename File @

Format:

int xrnf(oldname,newname);

char *oldname,*newname;

Description:

XRNF renames a file from 'oldname' to 'newname'. It returns a 0

if no error, otherwise it returns the error (such as invalid
filename).

int err;
err = xrnf("OLDNAME",""NEWNAME");

See Also:

XDFL - Define file
XDLF - Delete file
XZFL - Zero file

RENAME - Rename file (STDLIB)

3-78 PDOS C Reference Manual (E>

XROO

Open File Read-Only Random Access

Format:

int xroo(filename,filtype_ptr,filid_ptr);
char *filename;

int *filtype_ptr, *filid_ptr;

Description:

XROO opens a file for random read-only access. The first para-
meter is the pointer to the file name. If the file successfully
opens, the file attribute is stored at ‘'*filtype_ptr'. The
filid is stored at '*filid_ptr'.

The returned value is an error #, or 0 if no errors.

int err,attribute,filid;
err = Xxroo("MYFILE:SR",&attribute,&filid);

See Also:

XSOP - Open sequential

XROP - Open random

XNOP - Open non-exclusive random

XCFA
XCLF

Close file w/attribute
Close file

PDOS C Reference Manual 3-79

XROP

Open File Random Access

Format:

int xrop(filename,filtype_ptr,filid_ptr);
char *filename;

int *filtype_ptr, *filid_ptr;

Description:
XROP opens a file for random access. The first parameter is the
pointer to the file name. If the file successfully opens, the

file attribute is stored at '*filtyp_ptr'. The filid is stored at
'*filid_ptr'.

The returned value is an error #, or 0 if no errors.

int err,attribute,filid;
err = xrop("MYFILE:SR",&attribute,&filid);

See Also:

XSOP - Open sequential

XRO0 - Open random read only
XNOP - Open non-exclusive random

XCFA - Close file w/attribute
XCLF Close file

3-80 PDOS C Reference Manual

XRPS

Read Port Status

Format:

int xrps(port,statusptr);
int port;

long int *statusptr;

Description:
XRPS reports the AC filid open to the current task (if any), the
port flags (fwpi 8dcs), and the UART status byte in a 32-bit
word. The upper sixteen bits are the AC filid. The next byte
contains the port flags, and the 1lower 8 bits contain the UART
status byte.

PORT FLAGS
fwpi 8dcs
MAN AN\ @ = Enable ASAQ software handshake
M AN _ 1 = Control character disable
M\ _ 2 = Enable DTR hardware handshake
\\\ _ 3 = 8-bit character enable
__ 4 = Receiver interrupt enable
M__ 5§ = Even parity enable
__ 6 = *Reserved (High/low water)
__ 7 = **Reserved (ASAQ flag bit)

*Used to clear all bits
**Used to set U2P$

The flag bits are the same set by the XBCP command. The port
status is stored at the location in the second parameter. Port
status has the format ACIF.W / Flag / Status.

The return value indicates the PDOS error, if nonzero.

long int portstatus;
int err;

err = xrps(1,8portstatus);

See Also:
XBCP - Baud console port
XSPF - Set port flag

PDOS C Reference Manual 3-81

Format:

XRSE

Read Sector From Disk

int xrse(disk,sector,buffer);

int disk,sector;
char buffer[256];

Description:

XRSE reads the sector number specified by the second parameter
sector is copied to the buffer.

from the disk specified.

This is a very low-level primitive,

PDOS files and their
error, or O.

char buffer[256];
err = xrse(8,2,buffer);

See Also:
XWSE - Write sector

The

linkage

system.

since most applications use

The return value is an

PDOS C Reference Manual

XRST

Reset File

Format:
xrst(disk);
int disk;

Description:

XRST resets files. It closes all files on the disk. If the disk
number is -1, then all files associated with the current task are
closed. No errors are allowed to happen.

xrst(-1); /* close the files of this task */
xrst(filid >> 8); /* close all files on the disk this file is on */

Notes:

Be careful closing all files on the disk, since it may have bad
effects on other tasks i1in the system. Similarly, if a program
resets all files for that task, it aborts any procedure file
currently in process, since the procedure file is closed.

See Also:
XRCN - Reset console inputs

PDOS C Reference Manual 3-83

XRTM

Read Time

Function:
char *xrtm();

Description:

XRTM reads the time from PDOS and returns an address to a string
in the format: HR:MN:SC(null). This string is always 10 bytes
long, counting the null. XRTM also returns the tics per second
(B.TPS) in the word following the string (bytes 11 and 12), and
the current value of the TICS counter (TICS.) in the long word
after that (bytes 13-16).

struct TIME {
char timestr[10];
int tps;
unsigned long tics;
} *xrtm();

printf("\ntest xrtm: time=%s\n",xrtm());

Notes:
The string created is within the monitor work buffer, and

overwrites or is overwritten by other primitives wusing the
monitor work buffer.

See Also:

XFTD - Fix time & date

XRDT -~ Read date

XRTP - Read time parameters
XUDT - Unpack date

XUTM - Unpack time

XWDT - Write date

XWTM - Write time

3-84 PDOS C Reference Manual

AN

{2}

XRTP

Read Time Parameters

Format:
long xrtp(dateptr,timeptr,tpsptr);
long *dateptr,*timeptr,*tpsptr;

Description:

XRTP returns the different elements of the current time/date in a
binary format. The call itself returns the current value of the
SYRAM TICS variable.

The first parameter returns the month, day, and year as a series
of bytes ©packed into a long word, with the month as the most
significant byte, the day as the second byte, the last two digits
of the year as the third, and a zero byte as the fourth.

The second parameter returns the hour, minute, and second as a
similar series of bytes. The hour is the most significant byte,

-the minute is the second, the second is the third, and a zero

byte is the fourth.

The third parameter returns the number of PDOS clock tics per
second. This number is wusually 100, but depending on the
specific hardware may be 128 or some other value. Accurate time
measurements based on the difference between two values of the
TICS counter need to take the ties/second into account.

long tics,mdy,hms,tps,xrtp();

tics=xrtp(&mdy,&hms,&tps);

printf("\nTics=%1d \nmonth/day/year = Bx%1x",tics,mdy);
printf("\nhour/minute/second = Bx%1x \n Tics/second = %1d",hms,tps);

The following Is d/splayed:

Tics=7007855

month/day/year = BxAB95600
hour/minute/second = BxA293500
Tics/second = 100

See Also:
XRTM -- Read time
XFTD -- Fix time and date

- XUTM -- Unpack time

XWIM -- Write time

PDOS C Reference Manual 3-85

XRTS

v A

Read Task Status A
Format:
int xrts(task);
int task;
Description:
XRTS reads the status of a task. The input is the task number.
The status is returned. Possible values are:

0 task not executing
+N running in time slice N
-N suspended pending event N
If the 4input parameter is -1, the returned value is the current
task number.
int i;
printf("\nmy task number is %d",xrts(-1));
for (i=0;i<16;1i++)(
printf("\ntask: %d; status: ",i,xrts(i))
} .
‘\Q__/;‘

See Also:

XSTP - Set/read task priority

3-86 PDOS C Reference Manual <(;

XRWF

Rewind File

Format:
int xrwf(filid);
int £i1lid;

Description:

XRWF rewinds a file. It returns an error number or O if no
error. The parameter given is the 'filid' obtained from the
open. Rewinding is defined as setting the file marker at the
beginning of the file. It is the same as positioning to O.

xsop("MYFILE:SR",&filtype, &filid);

for (i=0;i<4;i++){
xr1f(filid,buffer,&len);
printf("\ndata read =%s\n",buffer);

xrwf(filid); /* rewind that file */
xr1f(filid,buffer,&%en);
printf("\ndata read =%s\n",buffer);

Notes:
This call is shorthand for 'xpsf(filid,OL)'.
See Also:

XRFP - Read file position
XPSF - Position file

PDOS C Reference Manual 3-87

XSEF

Set/Clear Event Flag With Swap

Format:
int xsef(event);
int event;:

Description: '
XSEF sets an event flag and forces an immediate task swap. An
event bit flag is set or reset depending on whether the 'event'
is positive or negative. A swap is then executed.

The status of the event prior to the call is the returned value.

printf("event 42 was %d, it is now 1",xsef(42));
printf("event 41 was %d, now it is B",xsef(-42));

See Also:

XDEV - Delay set/reset event
XSEV - Set event flag

XSUI - Suspend until interrupt
XTEF - Test event flag

3-88 PDOS C Reference Manual

N
/ .

XSEV

Set Event Flag

Format:
int xsev(event);
int event;

Description:
XSEV sets an event flag. An event bit flag is set or reset
depending on whether the 'event' is positive or negative.

The status of the event prior to the call i1is the returned
value. ‘

printf("event 42 was %d, it is now 1",xsev(42))
)

printf("event 41 was %d, now it is B",xsev(-42));

See Also:
XDEV - Delay set/reset event
XSEF - Set event flag w/swap

XSUI - Suspend until interrupt
XTEF - Test event flag

PDOS C Reference Manual 3-89

XSMP

Send Message Pointer

Format:

int xsmp(msgno,ptr);
int msgno;

char *ptr;

Description:

XSMP loads an empty message slot with a pointer to a message. If
the slot is not empty, XSMP returns an error status of 83. The
message may then be retrieved by any other task, (including the
one originating it).

Only the address of the message 1is actually transmitted by this
primitive. The text must be in a static or global buffer -- if
it is in -an automatic variable (on the stack), the data may be
overwritten before the message is retrieved.

This type of message is also 1linked to the PDOS system events
64-79. When a message is sent via XSMP, the corresponding event
(message number + 64) i1s set. When the message is received via
XGMP, the corresponding event is cleared. A task may suspend on
the message event and thus require no PDOS resources while it
waits for a message.

static char list[]="This is a test message";
if (xsmp(5,1list))

printf("\nMessage not sent'");
else

printf('"\nMessage sent");

See Also:

XGMP -- Get message pointer
XSTM -- Send task message
XGTM -- Get task message
XKTM -- Kill task message

3-90 , PDOS C Reference Manual

AN

C

XSOP

Open File Sequentially

Format:

int xsop(filename,filtype_ptr,filid_ptr);
char *filename;

int *filtype_ptr, *filid_ptr;

Description:
XSOP opens a file for sequential access. The first parameter is
the pointer to the file name. If the file successfully opens,

the '*#filtype_ptr' dindicates where the file attribute is stored.
The 'filid' is stored at location '*filid_ptr'.

The returned value is an error number, or 0 if no errors.

int err,attribute,filid;
err = xsop("MYFILE:SR",8attribute,&filid);

See Also:

XROO - Open random read only
XROP - Open random

XNOP - Open non-exclusive random

XCFA
XCLF

Close file w/attribute
Close file

PDOS C Reference Manual 3-91

Format:

XSPF

Set Port Flag

int xspf(port,newflag,oldflgptr);

int port;

char newflag,*oldflgptr;

Description:

XSPF will set the flags for a port.
at the location 'oldflgptr'.

error, if nonzero.

fwpi 8dcs

ML AN

MAN AW

WA T

ML
WA

\\\

\\

\

char oldpor
int err;

PORT FLAGS

Enable ASAQ software handshake
Control character disable
Enable DTR hardware handshake
8-bit character enable
Receiver interrupt enable

Even parity enable

*Reserved (High/low water)
**Reserved (ASAQ flag bit)

~NOOEOWONAS
nwunnunnmn

*Used to clear all bits
**Jsed to set U2P$

tflag;

The o0ld port flag is stored
The return value indicates the PDOS

err = xspf(1,8x82,&01dportflag); /* don't recognize escape or [CTRL-C]
as break characters */

See Also:

XBCP - Baud console port
XRPS - Read port status

3-92

PDOS C Reference Manual

e

C

XSTM

Send Task Message

Format:

~int xstm(task,buffer);

int task;
char *buffer;

Description:

XSTM sends a message to a task. If there are any errors, they
are given in the return value. Normally, the buffer is 64 bytes
long, and independent of format. Thus, it can be used to send
binary data as well as ASCII. The 64 byte 1limitation can be
changed by re-building PDOS.

int err;
err = xstm(3,"ready");

See Also:

XGMP - Get message pointer
XGTM - Get task message
XKTM - Kill task message
XSMP - Send message pointer

PDOS C Reference Manual 3-93

XSTP

Set Task Priority

Format:

int xstp(task,priority,retpriorityptr);
int task,priority;

int *retpriorityptr;

Description:

XSTP sets/reads the task priority. The first argument is the
task. If it 4is -1, then the current task is specified. The
second argument is priority, and should be 1-255, with 1 being
lowest priority. If 'priority' is 0, then the current priority
is returned in the 1location specified by the second parameter.
If priority is nonzero, then the new priority is assigned to the
task.

The upper byte of the priority determines the number of tics per
time slice to be allocated to the task. Thus a task might run at
a low priority, but execute for a long time when it gets in.

The return value is an error number, or O if no error.

int priority;

xstp(-1,0,8priority);
printf("current task priority is %d",priority);

See Also:
XRTS - Read task status

3-94 PDOS C Reference Manual

XSUI

Suspend Until Interrupt or Event

Format:
int xsui(event);
int event;

Description:

XSUI suspends the current task until the specified event is set.
The task is swapped out until the specified event occurs. No
errors are possible, no value is returned. See the PDOS Refer-
ence Manugl for further dinformation on events and how they are
set/reset. The XSUI description in that manual is very exten-
sive.

xple{"waiting 10 seconds...");
err = xdev(1000L,128);
if(err)
xerr(err);
xsui(128); /* sleep until event 128 */
xplc("time is up");

Notes:

The event parameter is actually a pair of bytes in the sixteen-
bit field. To wait on two events, set one of the events in the
high byte. To wait on an event clearing, AND the negative event
with Oxff.

xsui(-508&0xff); /* suspend until 58 clears */

See Also:

XDEV - Delay set/reset event
XSEF - Set event flag w/swap
XSEV - Set event flag

XTEF -~ Test event flag

PDOS C Reference Manual 3-95

XSUP

Enter Supervisor Mode

Format:
asm("xsup");

Description: 3
Some equipment requires that a program be in supervisor mode
before direct access is allowed. If you have a program that must
manipulate registers on such a board, you must drop into super-
visor mode, move the data, and return to user mode. The only way
supported wunder C to accomplish this 1is through an in-line
assembly language system call to XSUP as shown.

Programs running in supervisor mode have a different A7 (stack
pointer) than programs in user mode. Most variable accesses in
C are made through the frame pointer (A6), so this shouldn't
affect short programs. However, you may have problems if you
enter supervisor mode and call other functions, since the
supervisor stack d1is generally smaller than the user stack. You
definitely will have problems if you enter supervisor mode
and return from the current function without first going back to
user mode -- the return address is not on the supervisor stack,
it is on the user stack. Generally, programs should spend as
little time in supervisor mode as possible.

/* modify a bit in an 1/0 register */
asm("xsup");

*(int *) OxFFB102 |= 8x010;
asm('"xusp");

See Also:
XUSP -- Return to user mode

3-96 PDOS C Reference Manual

|
]

XSWP

Swap To Next Task

Format:
asm("xswp");

Description:
XSWP relinquishes the time remaining in the current time slice to
the next task ready to run. There is no input and no output.

See Also:

XLKT - Lock task
XULT - Unlock task

PDOS C Reference Manual 3-97

XSZF

Get Disk Parameters

Format:

int xszf(diskno,directory,used,free);
int diskno;

int used[2],free[2],directory[2];

Description:

XSZF returns the size of the disk. It returns important para-
meters about disk space. Input is the disk number in the first
parameter. The second, third, and fourth parameters are addres-
ses of double words that return with information about the
directory, space used, and space free.

The first word of 'directory' returns with the total number of
directory entries; the second word is the number of directory
entries used (i.e., files on the disk). The first word of 'used'
returns the number of blocks allocated to files; the second word
returns the number of blocks used. The first word of 'free'
returns the size of the 1largest free ©block; the second word
returns the total amount of free space.

The return value is the error status (nonzero indicates the error
number) .

int diskno;

int used[2],free[2],directory[2];

diskno = getnum("enter disk number ");

error = xszf(diskno,directory,used,free);

printf("\nlargest free=%d, total free=%d",free[0], free[1])
printf("\nallocated=%d, in use=%d",used[@],used[1]);
printf("\ndirectory size=%d, files=%d",directory[0],directory[1]);

3-98 PDOS C Reference Manual

XTAB

Tab to Column on Screen

Format:
xtab(ecol);
int col;

Description:

XTAB tabs the cursor right to the column specified. If PDOS
thinks that the cursor is already past the indicated point,
it does nothing.

int 1;

printf("\nput tics from 1-79 at intervals of 5");
printf("\nB1234567890123456789012345678901234567890");
printf("12345678901234567890123456789012345678\n");
for (i=D;i<79;i+=5){

xtab(i);
xpee ('] ');
Notes:
{; Currently, only one tab column counter is maintained per task,
/ regardless of how many ports are used for I/0. As such, I/0 to

separate ports should be performed one 1line at a time, or the
output column counter (CNT$) in the TCB should be saved/restored
for the output to each port.

The tab cursor primitivé only tabs to the right. Giving a tab
column that 1is less than the current column has no effect. Use
XPSC if a more general application is needed.

See Also:

XCLS - Clear screen

XPSC - Position cursor

XRCP - Read port cursor position

C

PDOS C Reference Manual 3-99

XTEF

Test Event Flag (Q

Format:
int xtef(event);
int event;

Description:
XTEF tests an event flag. The return value is 0 if the event is
reset and 1 if it is set.

if(xtef(42)) xpcc("event 42 is set');
else xpcc('event 42 is reset");

See Also:

XDEV - Delay set/reset event
XSEF - Set event flag w/swap
XSEV - Set event flag

XSUI - Suspend until interrupt

&

3-100 PDOS C Reference Manual ‘3>

I—

XUAD

Unpack ASCII Date

Format:
char *xuad(date);
unsigned int date;

Description:
XUAD converts a binary encoded date to an ASCII string in the
format dd-mon-yy. Invalid dates are indicated by non-numeric

characters in the day and year fields, or by "?7?7" in the month
field.

char *xuad{);
printf("\n%s'",xuad(65535));
printf("\n%s",xuad(39143));

The following is dlsplayed:

31-777-<7
B7-Jul-76

See Also:

XRDT -- Read date

XWDT -- Write date

XFTD -- Fix time and date
XUDT -- Unpack date

XPAD -- Pack ASCII date

PDOS C Reference Manual 3-101

Format:

Unpack Date Into String

char *xudt(date);
int date;

Description:

XUDT converts a binary
null-delimited string in the form MN/DY/YR. The return value is
the string address.

char *xudt();
int time,date;
xftd(&time,&date);

printf("\nDate= %s",xudt(date));

Notes:

The string created is

encoded date

within the

into an eight character

monitor work buffer, and will

overwrite or be overwritten by other primitives using the monitor
work buffer.

See Also:

XFTD - Fix time & date
XPAD - Pack ASCII date
XRDT - Read date

XRTM - Read time

XUAD - Unpack ASCII date
XUTM - Unpack time

XWDT - Write date

XWIM - Write time

3-102

PDOS C Reference Manual

€

XULF

Unlock File

Format:
int xulf(filid);
int fi1id;

Description:

XULF unlocks a file 1locked by XLKF. The returned value is an
error code, or O if no error occurred. The lock and unlock file
commands are used when tasks open a file in non-exclusive mode.
In this mode, they share the file slot, and both have read/write
access to the file. To prevent conflicts, each task must lock

the file, position to the desired record number, read or write,
and unlock the file.

int filtype,filid,err;
char fname[] = "MYFILE:SR";
if(err=xnop(fname,&filtype,&filid)) /* shared access open */
_error("\nerror %d on file %s",err,fname);

while ((err = x1kf(filid)) == 75){
asm('"xswp"); /* hang while locked */

}
if (err)
_error("\nerror %n locking file %s'",err,fname);

/* position, read/write, etc. */

if(err = xulf(filid))
_error("\nerror %n unlocking file %s",err,fname);

See Also:

XLKF - Lock file

XNOP - Open non-exclusive random
XRFP - Read file position

XPSF - Position file

PDOS C Reference Manual 3-103

XULT

Unlock Task

Format:
asm("xult");

Description:

XULT unlocks the current task. A 1locked task has the undivided
attention of the CPU for executing instructions. No other task

is given a time slice. The task must be unlocked for normal
multi-tasking to resume. The returned value is the status of the
swap lock variable before the call was made: 0 is unlocked,

nonzero is locked.

int lockstate;
lockstate = x1kt();
printf("previous state was %d",lockstate);

/* in here do critical code */
asm("xult");

printf(" now normal task swapping resumes");

See Also:
XLKT - Lock task
XSWP - Swap to next task

3-104 PDOS C Reference Manual

-

XUSP

Return to User Mode

Format:
asm("xusp");

Description:

It 1is occasionally necessary to drop into supervisor mode in
order to access some types of hardware, or to execute privileged
instructions. To return to user mode it is possible to clear the
supervisor bit directly from the status register, but the XUSP
primitive offers a more convenient method.

/* modify a bit in an I/0 register */
asm("xsup");

*(int *) OxFFB102 |= OxD010;
asm('"xusp");

See Also:
XSUP -- Enter supervisor mode

PDOS C Refereﬁce Manual 3-105

XUT™

Unpack Time Into String

Format:
char *xutm(time);
int time;

Description:

XUTM converts a binary encoded time value into an eight charac-
ter, null-delimited string in the form HR:MN:SC. The returned
value is the string address.

char *xutm();

int time,date;
xftd(&time,&date);
printf("\ntime= %s",xutm(time));

Notes:
The string created i1is within the monitor work buffer, and

will overwrite or be overwritten by other primitives using
the monitor work buffer.

See Also:

XFTD - Fix time & date
XRDT - Read date

XRTM - Read time

XUDT - Unpack date
XWDT - Write date

XWIM - Write time

3-106 PDOS C Reference Manual

XWBF

Write Bytes to File

Format:

int xwbf(count,filid,buffer);
long int count;

int f4iligd;

char *buffer;

Description: ’

XWBF writes ‘'count' ©bytes to a file. ‘'count' specifies the
number of bytes to write. A 'count' of 0 results in no data
being written. If necessary, a contiguous file is extended and

converted to a non-contiguous file. Any errors are returned, and
a return value of 0 means no errors.

err = xwbhf(14L,fil1id,"hello, worlid!/n");

See Also:
XRBF - Read bytes from file
XRLF - Read line from file

XWLF - Write line to file

PDOS C Reference Manual 3-107

Format:

Write Date to System Clock

xwdt(mn,day,year);

int mn,

day,year;

Description:
XWDT resets the operating system clock with a new date.

char *xrdt();

printf("\nbefore date=%s\n",xrdt());

xwdt (2,14,53);

printf("\nafter

date=%s\n",xrdt());

The clock is reset for all users on the system.

XPAD -
XRDT
XRTM
XUAD
XUDT
XUTM
XWIM

3-108

Notes:
‘See Also:
XFID - Fix time & date

Pack ASCII date
Read date

Read time

Unpack ASCII date
Unpack date
Unpack time

Write time

PDOS C Reference Manual

RN

‘ XWFA

Write File Attributes

Format:
int xwfa(filename,attributes);
char *filename,*attributes;

Description:

XWFA sets the file étfributes on a file.

of file attributes is assigned to the file.

returned; 0 is returned if there are no errors.

AC - Procedure file
BN - Binary file
OB - Object file

SY - Memory Image of machine code

BX - BASIC token file
EX - BASIC ASCII file
TX - Text file

DR - System I/0 driver

* - Delete protect
% — Delete/write protect

int err;

The ASCII string
Any errors are

err = xwfa("MYFILE","BN**"); /* make file binary and protected */

Notes:

XCFA, XRFA, and XWFA do not use the same format.

See Also: ’
XCFA - Close file w/attribute
XRFA - Read file attributes

PDOS C Reference Manual

3-109

XWFP

Write File Parameters

Format:
int xwfp(eofsec,create,update,attr,filename);
long eofsec; /* sector / byte */

long create,update,attr; /* time / date */
char *filename;

Description:

XWFP is an operating system internal call used by the TF monitor
command to assign a copy of a file the same creation/update time
and date as the original of the file. It could also be used to
modify the end of file mark on a file.

The first three parameters are all pairs of data. 'eofsec' 1is a
long word with the end of file sector in the upper word and the
end of file byte in the lower word. ‘'create' is a long word with
the creation time in the upper word and the creation date in the
lower word. 'update' is in the same format as 'create'. 'file-
name' is a pointer to a string containing the file name. ‘'attr'
is a long word, but only the second half is used. This word has
the attributes in the upper byte and the delete-/write-protect
flags in the lower byte. The “"contiguous" flag and the "file
altered bit" are not overwritten by this call. 'xwfp' returns
zero or a PDOS error number. :

union{
long 1;
struct {
int time;
int date; -

} create,update;
union{
long 1;
struct({
int sector;
int byte;
};
} eof;

continued . .

3-110 PDOS C Reference Manual

(XWFP cont.)

char 1ine[80];

long attr;

getstr("enter file name",line); /* get new values */
eof.sector = getnum("end of file sector");

eof.byte = getnum("end of file byte");

create.time getnum("creation time");

create.date getnum('"creation date");

update.time getnum("update time");

update.date getnum("update date");

attr = getnum("attribute");
return(xwfp(eof.1,create.1,update.1,attr,line)); /* write it */

Notes:
This function has limited utility.

See Also:
XRFA - Read file attributes

PDOS C Reference Manual 3-111

XWLF

g™
Write Line to File L O
Format:
int xwlf(filid,buffer);
int £i1lid;
char *buffer;
Description:
XWLF writes a string to a file. It writes out wuntil a null
character is found. 1If necessary, a contiguous file is extended
and converted to a non-contiguous file. Any errors are
returned, and a return value of 0 means no errors.
err = xwlf(filid,"hello, world!/n");
See Also:
XRBF - Read bytes from file
XRLF - Read 1line from file
XWBF - Write bytes to file

3-112 PDOS C Reference Manual ‘:\

C

XWSE

Write Sector

Format: :

int xwse(disk,sector,buffer);
int £411i4d;

unsigned int sector;

char buffer[256];

Description:

XWSE writes a sector to a disk. This is a very low-level
primitive, since most applications wuse PDOS files and their
linkage system. The return value is an error, or else O.

char buffer[256];

unsigned int 1;

for(i=0;i<256;i++) buffer[i]=0B; /* zero the sector */
err = xwse(8,2,buffer);

Notes:
This call is potentially destructive. Be sure to have a scratch
disk in the drive during experimentation!

See Also:
XRSE - Read sector

PDOS C Reference Manual ' 3-113

Format:

XWTM

Write Time to PDOS

xwtm(hr ,min,sec);

int hr,

min,sec;

Description:
XWIM resets the operating system clock with a new time.

char *x

rtm();

printf("\nbefore time=%s\n",xrtm());

Xwtm(17

,30,081);

printf("\nafter time=%s\n",xrtm());

Notes:

The clock is reset for all users

See Also:

XFTD - Fix time & date
XRDT - Read date

XRTM - Read time

XUDT - Unpack date
XUTM - Unpack time
XWDT - Write date
3-114

on the system.

PDOS C Reference Manual

XZFL

Zero File

Format:
int xzfl(filename):
char *filename;

Description:

XZFL zeroes a file. It clears a file of any data. If the file
is already defined, the end of file marker is set to the begin-
ning. If the file is not defined, it is defined with no data.
The return value indicates an error if nonzero.

err = xzf1("NEWFILE");

See Also:

XDFL - Define file
XDLF - Delete file
XRNF - Rename file

C

PDOS C Reference Manual 3-115

¢)

3-116 : PDOS C Reference Manual C

CHAPTER FOUR
FLOATING POINT LIBRARIES

The overhead for handling floating point is significant, so C
programs which have no need of floating point should not wuse it.
Currently there 1is 1little compatibility between the floating
point formats supported under the different language systems in
PDOS. Future versions of all PDOS languages will offer compati-
bility through the IEEE floating point format.

There are three different floating point 1libraries supported
under PDOS C -- the Motorola Fast Floating Point (supported by
the FFP:LIB library), the IEEE floating point (supported by the
IEEE:LIB 1library), and the MC68881 hardware floating point
(supported by the M68881:LIB library). The following discussion
explains the differences between each library.

The supported functions for the three libraries are the same,
with the same interface, so only one discussion is given for each
function. The subroutines are 1listed alphabetically. For each
function, the calling sequence and parameters are given together
with a brief description of the function.

FAST FLOATING POINT LIBRARY —-- FFP:LIB

The library FFP:LIB is referenced by CC when the 'F' option is
used. It supplies those modules required by programs using
floating point, and maintains the numbers in Motorola Fast
Floating Point format.

IEEE FLOATING POINT FORMAT LIBRARY -- IEEE:LIB

The library IEEE:LIB is referenced by CC when the 'E' option is
used. It supplies those modules required by programs using
floating point, and maintains the numbers in IEEE 32-bit or 64-
bit floating point format.

MC68881 FLOATING POINT LIBRARY -- M68881:LIB

The library M68881:LIB is referenced by CC when the 'H' option
is used. It supplies those modules required by programs running
on a 68020 and using a 68881 math co-processor. The numbers are
maintained in IEEE format, the same used by the IEEE:LIB library.

PDOS C Reference Manual 4-1

FLOATING POINT FORMATS

PDOS C supports two formats of floating point numbers; the
Motorola Fast Floating Point (FFP) and the IEEE standard. They
are not compatible. -

The FFP format is generated by the compiler when the 'F' option
is specified. If the 'E' or 'H' option is specified, the IEEE
format is specified.

FFP floating point numbers are only available in single-preci-

sion. An FFP number is a 32-bit quantity in the following
format:
3322222 111111 ‘
1098876 543210-9876543210
CLLT == IR .
< Fraction >18|< Exp >

Here, the bottom byte is given to a seven-bit exponent and a
one-bit sign. The remaining 24 ©bits are the fraction. The
exponent is stored in two's complement form. There are no
implied bits -- an unnormalized number is possible.

IEEE floating point numbers are available in single-precision
(32-bit) and double-precision (64-bit) format.

The single precision format is as follows:
332
109
Is

The most significant bit is the sign, followed by an eight-bit
exponent and a 23-bit fraction.

2222222222111

8876543210987 6543210

IR RN A AR
>

<————— EXp > | < Fraction

The double precision format is as follows:

66 5555555555444

109876543210987 654321890

T T O el I O O O O O
Exp >|<

Fraction >

6 6
32
Is

The most significant bit dis the sign, followed by an eleven-bit
exponent and a 52-bit fraction.

P T

In both IEEE formats the exponent is biased (excess 128 in
single-precision and excess 1024 in double precision) and the
fraction is normalized, with an implied 1leading one bit. Thus,
the effective size of the fraction is 24 bits for single preci-
sion, and 53 bits for double precision.

4-2 . PDOS C Reference Manual

(Floating Point Formats cont.)

The three formats offer the following range of representable
numbers:

significant
digits max min

FFP single 19 -19
precision 7 10 10

IEEE single 38 -38
precision 7 10 10

IEEE double 308 -308
precision 15 10 10

Note: The FFP library may be slightly faster and smaller for

those programs that do not need double precision. The
M68881 library is preferable for both single and double
precision where there is a 68020 CPU with 68881 co-
processor. The IEEE 1library offers the advantage of
double precision and compatibility with a standard
format.

Programs can be written to run with more than one floating point
format by isolating format-sensitive code under the preprocessor
directives "#ifdef/#endif". The 'F' option defines the symbol
FFP; the 'E' option defines the symbol IEEE; and the 'H' option
defines the symbol M68881.

DECLARATIONS OF MATH ROUTINES

'math.h' contains the declarations necessary for the floating
point mathematical routines, as well as for the floating point
and long conversion routines.

/* math.h —— Declarations of Math Routines */

long atol();
char *1toa();

double atof(); -
char *ftoa(); /* float to %f format */ .
char *etoa(); /* float to scientific notation format */

double sin()
double cos()
double tan()
double atan(

):

PDOS C Reference Manual 4-3

(Declarations of Math Routines cont.)

double
double
double
double
double
double
double
double
double
double
double
double
double

#ifdef

fabs();
floor();
ceil();
fmod();
log10();
Tog();
pow();
sqrt();
exp();

FFP

#define asin(x)

#define acos(x)

#else

double
double
#endif

asin();
acos();

atan2((x),sqrt(1=(x)*(x))) .
(1.570796 — atan2((x),sqrt(1-(x)*(x))))

PDOS C Reference Manual

/ﬂ' A

(

ACOS

Arc Cosine

Format:
double acos(farg)
double farg;

Description:
'acos' returns the arc cosine of its argument.

The input

parameter is a double precision number of radians.

Notes:

'acos' is implemented as a macro in 'math.h' under the 'F'

option. It is a function in IEEE:LIB under the

'E' option and is

an in-line 68881 instruction under the 'H' option.

See Also:
ASIN -- arc sine

PDOS C Reference Manual

4-5

ASIN

Arc Sine

Format:
double asin(farg)
double farg;

Description:

'asin' returns the arc sine of its argument. The input parameter
is a double precision number of radiams.

Notes:
'asin' 1is implemented as a macro

in 'math.h' under the 'F'

option. It is a function in IEEE:LIB under the 'E' option and is

an in-line 68881 instruction under the

See Also:
ACOS -- arc cosine
4-6

'H' option.

PDOS C Reference Manual

C

ATAN

Floating Point Arc Tangent

Format:

double atan(farg)

double farg:

Description:

'atan' returns the arctangent of its argument. The input para-
meter is a double precision number of radianms.

#include <math.h>

main()

double d;

d = atan(2.2); /* returns 1.1442 */

See Also:
ATAN2 -- arc tangent of x/y

PDOS C Reference Manual 4-7

ATAN2

Arc Tangent of X/Y

Format:

double atan2(x,y)

double x, y;

Description:

'atan2' returns the arc tangent of x/y.
#include <math.h>

main()

double d;

d = atan2(1.7,2.9);

/* returns 0.5302 */
}

See Also:
ATAN -- floating point arc tangent

4-8

PDOS C Reference Manual

ATOF

(ASCII to Floating Point

Format:
double atof(buf)
char *buf;

Description:

'atof' converts an ASCII string into its floating point represen-
tation where the string is of the following format:

{sign}{digits}{'.'}{digits}{E}{sign}{digits]}

Both signs and the exponent string are optional. The decimal

point is optional, but may appear at any point 1in the digit
string.

#include <math.h>

main()
double d;
_; char *s;
‘u d = atof("-23.1E+4");
d = atof("+0.6245E-1");
d = atof("23456789");
d = atof("2.33");
s = "2.3145";
d = atof(s);
}
See Also:

ATOI -- ASCII to integer

« PDOS C Reference Manual 4-9

ATOI

ASCII to Integer

Format:
int atoi(s)
char *s;

Description:
'atoi' converts an ASCII string to a sixteen-bit signed integer.

See Also:
ATOF -- ASCII to floating point

4-10 PDOS C Reference Manual

¢)

Smallest Integer Not Less Than X

Format:
double ceil(x)
double x;

Description:

CEIL

'ceil' returns the smallest
floating point number) not less than x.

#include <math.h>

main()

double x;

x = ceil(4.2);

x = ceil(9.0);

Xx = ceil(3.9);

X = ceil(-2.9);

Xx = ceil(5.0001);
See Also:

FLOOR -- largest integer not greater than x
FABS -- floating point absolute value

returns
returns
returns
returns
returns

integer

A OO0
DL B

6.0

FPNEG -- floating point negation

PDOS C Reference Manual

(as

a

double precision

Format: :
double cos(farg)
double farg;

Description:

'cos' returns the cosine of the argument.

The argument 1is a double
interpreted as the angle in radians.

#include <math.h>
main()
double d;

d = cos(2.2);

See Also:
SIN -- sine function
TAN -- tangent function

4-12

precision

floating point number,

/* returns -p.5885 */

PDOS C Reference Manual

o

COSH

Hyperbolic Cosine

Format:
double cosh(farg)
double farg;

Description:
'cosh' returns the hyperbolic cosine of the argument.

The argument is a double-precision floating point number repre-
senting the angle in radians.

See Also:
SINH -- hyperbolic sine
TANH -- hyperbolic tangent

PDOS C Reference Manual 4-13

ETOA

Floating Point to Scientific Notétion
ASCII 'e' Format

Format:

char *etoa(f,buf,prec)
double f£f;

char *buf;

int prec;

Description:

'etoa' converts a float into its ASCII exponential representa-
tion. Where 'fp' is a double precision floating point number,
'buf' is the buffer in which to return the string, and 'prec'

is the precision of the decimal places. A pointer to the
beginning of 'buf' is returned.

If the precision is specified to be zero or negative, then the
default precision of six decimal places will be used.

#include <math.h>
main()

char buffer[25], *p;

p = etoa(4.23,buffer,1); /* "4.2e00" */

p = etoa(54.9,buffer,3); /* "5.490eB1" */

p = etoa(-.083,buffer,3); /* "-3.000e-03" */
See Also:

FTOA -- floating point to ASCII 'f' format

4-14 PDOS C Reference Manual

@

(

EXP

Exponent

Format:

double exp(x)

double x;

Description:

‘exp' returns : e * x (where e = 2.718...).
#include <math.h>

main()

doyble X;

X = exp(2.1245); /* returns 8.3687 */

See Also:

POW -- floating point power
LOG -- natural logarithm
LOG10 -- common logarithm
SQRT -- square root

PDOS C Reference Manual

4-15

FABS

Floating Point Absolute Value

Format:
double fabs(x)
double x;

Description:

'fabs' returns the absolute value (as a double precision floating

point number) of x.

#include <math.h>

main()
double x;
x = fabs(33.1); /* returns 33.1 */
x = fabs(-45.2); /* returns 45.2 */
}
See Also:
CEIL -- smallest integer not less than x

FLOOR -- largest integer not greater than
FPNEG -- floating point negation

4-16

X

PDOS C Reference Manual

FLOOR

Largest Integer Not Greater Than X

Format:
double floor(x)
double x;

Description:

'floor' returns the largest dinteger (as a double precision
floating point number) not greater than x.

#include <math.h>

main()
{
double x;
x = floor(32.3); /* returns 32.08 */
x = floor(23.99); /* returns 23.08 */
x = floor(15.01); /* returns 15.0 */
x = floor(-33.3); /* returns -34.0 */
}
See Also:
CEIL -- smallest integer not less than x
FABS -- floating point absolute value

FPNEG -- floating point negation

PDOS C Reference Manual . C4-17

FMOD

Floating Point Modulus

Format:
double fmod(x,y)
double x,y;

Description:
'fmod' returns the number f such that

(x =1y + £) and (0 <= f <=y).

#include <math.h>

main()
double x;
x = fmod(3.9,39.0); /* returns 3.0 */
3
See Also:
FPADD -- floating point add
FPCMP -- floating point compare
FPDIV -- floating point divide
FPMUL -- floating point multiply
FPSUB -- floating point subtraction
4-18 PDOS C Reference Manual

C

FPADD

Floating Point Add

Format:
double fpadd(addend,adder)
double addend, adder;

Description:

'fpadd' adds the two operands and returns the sum.

Notes:

This function is internal. The compiler normally generates

calls to it automatically when the code contains such operations
on floating-point variables. It is included here for reference.

See Also:

FPCMP -- floating point compare
FPDIV -- floating point divide

FMOD -- floating point modulus
FPMUL -- floating point multiply
FPSUB -- floating point subtraction

PDOS C Reference Manual . ' 4-19

FPCMP

Floating Point Compare

Format:
int fpemp(source,dest)
double source, dest;

Description:

'"fpemp' compares the two operands and returns zero if they are
equal. It returns a positive integer if the source is greater
than destination and a negative integer if the source is less
than the destination.

Notes:

This function 4is internal. The compiler normally generates
calls to it automatically when the code contains such operations
on floating-point variables. It is included here for reference.

See Also:

FPADD -- floating point add

FPDIV -- floating point divide

FMOD -- floating point modulus
FPMUL -- floating point multiply
FPSUB -- floating point subtraction

4-20 PDOS C Reference Manual

C

(i)

FPDIV

Floating Point Divide

Format:
double fpdiv(divisor,dividend)
double divisor, dividend;

Description:

'fpdiv' divides the dividend by the divisor and returns the
quotient.

Notes:

This function is internal. The compiler normally generates
calls to it automatically when the code contains such operations
on floating-point variables. It is included here for reference.

See Also:

FPADD -- floating point add

FPCMP -- floating point compare
FMOD -- floating point modulus
FPMUL -- floating point multiply
FPSUB -- floating point subtraction

PDOS C Reference Manual 4-21

FPFTOL

Floating Point Float to Long Q;;

Format:
long fpftol(fparg)
double fparg;

Description:

'fpftol' returns the long integer representation of a floating
point number. :

Notes:
This function is internal. It is normally used only by the

support routines of the floating-point library. It is available
for use at your discretion.

See Also:
FPLTOF -- long to floating point conversion

4-22 PDOS C Reference Manual @;?

FPLTOF

Long to Floating Point

Format:
double fpltof(larg)
long larg;

Description:
'fpltof' returns the floating point representation of a long
integer.

Notes:

This function 4is internal. It 4is normally used only by the
support routines of the floating-point library. It is available
for use at your discretion.

See Also:
FPFIOL -- floating point float to long

PDOS C Reference Manual 4-23

Format:

double fpmul(multiplier,multiplicand)

FPMUL

Floating Point Multiply

double multiplier, multiplicand;

Description:
'fpmul' returns the product of the two operands.

Notes:

This® function

is

internal.

The

compiler normally generates

calls to it automatically when the code contains such operations

on floating-point variables.

See Also:

FPADD --
FPCMP --
FPDIV --
FMOD --

FPSUB --

floating
floating
floating
floating
floating

point
point
point
point
point

add

compare
divide
modulus
subtraction

It is included here for reference.

PDOS C Reference Manual

FPNEG

Floating Point Negation

Format:
double fpneg(x)
double x;

Description:

'fpneg' <returns the mnegative (as a double precision floating
point number) of x.

Notes:

This function 4is internal. The compiler normally generates
calls to it automatically when the code contains such operations
on floating-point variables. It is included here for reference.

See Also:

CEIL -- smallest integer not less than x
FLOOR -- largest integer not greater than x
FABS -- floating point absolute value

PDOS C Reference Manuel 4-25

FPSUB

Floating Point Subtraction

Format:
double fpsub(subtrahend,minuend)
double subtrahend, minuend;

Description:

'fpsub' returns the difference of the two operands.

Notes:

This function 1is dinternal. The compiler normally generates

calls to it automatically when the code contains such operations
on floating-point variables. It is included here for reference.

See Also:

FPADD -- floating point add
FPCMP -- floating point compare
FPDIV -- floating point divide
FMOD -- floating point modulus
FPMUL -- floating point multiply

4-26 PDOS C Reference Manual

€

(:;

FREXP

Miscellaneous Exponential

Format:

double frexp(fp,ptr)
double fp

int *ptr;

Description:

'frexp' returns the signed value of 'fp' reduced to the range
'0.5 - 1.0' and stores the integral value which 2 raised to this
power times the returned value will result in the original value
(e.g. fp = return * (2 * *ptr)).

#include <math.h>

main()
{
. double d,d2;
int i;
d = modf(27.3421,8&d2); /* d <= 0.3421, d2 <= 27.0 */
d = ldexp(10.0,4); /* d <= 160.0 */
i =4;
d = frexp(160.8,81); . /* d <= B.625 */
3
Notes:
This function is internal. It 4is normally used only by the

support routines of the floating-point library. It dis available
for use at your discretion.

See Also:
LDEXP -- miscellaneous exponential function
MODF -- miscellaneous exponential function

PDOS C Reference Manual 4-27

FTOA

Floating Point to ASCII 'f' Format

Format:

char *ftoa(f,buf,prec)
double f£f;

char *buf;

int prec;

Description:

'ftoa' converts a float into its ASCII representation where 'fp'
is a double precision floating point number, 'buf' is the buffer
in which to return the string, and 'prec' is the precision of the
decimal places. If the specified precision 1is zero then no
decimal point is printed. If the precision is negative, then the
default precision (6) will be used. A pointer to the beginning
of 'buf' is returned.

#include <math.h>
main()

char *p, buf[25];

p = ftoa(3.2,buf,3); /* "3.200" */

p = ftoa(-1.54,buf,4); /* "=1.5400" */
}
See Also:

ETOA -- floating point to scientific notation ASCII 'e' format

4-28 PDOS C Reference Manual

AN

C

LDEXP

Miscellaneous Exponential

Format:

double 1ldexp(fp,exp)
double fp;

int exp;

Description:

'ldexp' returns the computation of (fp * (2 * exp)). If the
exponent is larger than 31 it is set to 31.

#include <math.h>

main()
double d,d2;
int i;
d = modf(27.3421,8d2); /* d <= 0.3421, d2 <= 27.0 */
d = ldexp(10.0,4); /* d <= 160.0 */
i=4;
d = frexp(160.0,8&1); /* d <= 0.625 */

{ }
Notes:

This function is internal. It 1is normally wused only by the
support routines of the floating-point library. It is available
for use at your discretion.

See Also: _
FREXP -- miscellaneous exponential functions
MODF -- miscellaneous exponential functions

(;‘ PDOS C Reference Manual 4-29

Format:

LOG

Natural Logarithm

double log(x)

double x

Description:

'log' returns the computed logarithm base 'e'

#include <math.h>

méin()

{
double x; v
x = 10g(25.0); /* returns 3.2188 */
See Also:
EXP -- exponent function
POW -- floating point power function
LOG10 -- common logarithm
SQRT -- square root function
4-30

of its argument.

PDOS C Reference Manual

LOG10

(; Common Logarithm

Format:
double loglO(d)
double 4;

Description:
'logl0' returns the computed logarithm base ten of its argument.
#include <math.h>

main()

double x;

X = log18(25.0); /* returns 1.3978 */

See Also:
EXP -- exponent function
POW -- floating point power function
{:* LOG -- natural logarithm
o SQRT -- square root function

C PDOS C Reference Manual 4-31

MODF

Miscellaneous Exponential

Format:
double modf(fp,ptr)
double fp, *ptr;

Description:

'modf' stores the fixed point portion of 'fp' in 'ptr' and
returns the mantissa portion.

#include <math.h> 4

main()

{
double d,d2;
int 1;
d = modf(27.3421,8d2); /* d <= 0.3421, d2 <= 27.0 */
d = ldexp(10.0,4); /* d <= 160.0 */
i =4;
d = frexp(160.0,&i); /* d <= 0.625 */

}

Notes:

This function is internal. It dis normally used only by the

support routines of the floating-point library. It is available
for use at your discretion.

See Also:

FREXP -- miscellaneous exponential function

LDEXP -- miscellaneous exponential function

4-32 PDOS C Reference Manual

>

C

Format:
double pow(x,y)
double x, y;

Description:

'pow' returns : x * y.

#include <math.h>
main()
double x;

X = pow(2.0,6.0);

POW

Floating Point Power

/* returns 64.0 */

See Also:

EXP -- exponent function
LOG -- natural logarithm
LOG10 -- common logarithm
SQRT -- square root function

PDOS C Reference Manual

SIN |
Sine @

Format:
double sin(farg)
double farg;

Description:
'sin' returns the sine of the argument.

The argument is a double precision floating point number,
interpreted as the angle in radians.

#include <math.h>
main()

double d;

d =sin(2.2); /* returns 0.8085 */

See Also:
COS -- cosine
TAN -- tangent function

4-34 PDOS C Reference Manual @j;

SINH

Hyperbolic Sine

Format:
double sinh(farg)
double farg;

Description:
"sinh' returns the hyperbolic sine of the argument.

The argument is a double-precision floating point number repre-
senting the angle in radians.

See Also:
COSH -- hyperbolic cosine
TANH -- hyperbolic tangent

PDOS C Reference Manual

SQRT

Square Root

Format:
double sqrt(farg)
double farg:;

Description:
'sqrt' returns the square root of its argument.

#include <math.h>

double d;
d = sqrt(39.0); /* returns 6.244 */
d = sqrt(25.8); /* returns 5.0 */
}
See Also:
EXP -- exponent function
POW -- floating point power function
LOT -- natural logarithm

LOG10 -- common logarithm

4-36 PDOS C Reference Manual

PN

(T Tangent
Format:
double tan(farg)
double farg;

DESCRIPTION
'tan' returns the tangent of the argument.

The argument is a double precision floating point number,
interpreted as the angle in radians.

#include <math.h>
main()
double d;

d = tan(2.2); /* returns -1.3738 */
}

{; See Also:
: CO0S -- cosine
SIN -- sine function

(gr PDOS C Reference Manual 4-37

TANH

Hyperbolic Tangent

Format:
double tanh(farg)
double farg;

Description:
'tanh' returns the hyperbolic tangent of the argument.

The argument is a double-precision floating point number repre-
senting the angle in radians.

See Also:

COSH -- hyperbolic cosine
SINH -- hyperbolic sine

4-38 PDOS C Reference Manual

-

¢

PDOS C
ERROR MESSAGES

Error messages are generated by all passes of the compiler. They
are preceded by a symbol distinguishing the pass of the compiler
in which the error exists and the line number on which the error
occurred. Pre-processor error messages are preceded by a pound

sign '#.° Parser error messages begin with a single asterisk
'*.!' Code generator error messages begin with a double asterisk
I**.t

Pre-Processor Error Messages

Argument Buffer Overflow
The total 1length of the arguments in a macro reference

exceeds the compiler's capacity to store the arguments prior
to substitution.

Bad Argument (NAME)
The name enclosed in parentheses is invalid.

Bad Character (CHARACTER) ,
The character enclosed in parentheses is not a valid token.

Bad Define Name (NAME)

The indicated control line is missing a required name or the
name is invalid.

Bad Include File (FILENAME)
The INCLUDE filename must be in double quotes ("").

Bad Include Filename (FILENAME)
The #include line is either missing a filename or specifies
one that is syntactically dinvalid. The line is ignored by
the compiler.

Can't Create File (FILENAME)
The compiler is unable to open the specified output file,
possibly because of directory protection attributes.

Can't Open Include File (FILENAME)
The INCLUDE filename is not present, or is already open.

Can't Open Source File (FILENAME)
The compiler cannot £find or open the source file. You
should check to see if the file exists or change the file
specifications in the program to that of an existing file.

Condition Stack Overflow
The nesting 1level in conditional compilation statements has
exceeded the maximum number.

PDOS C Reference Manual E-1

(Pre-Processor Error Messages cont.)

Define Recursion

Macro subsitution cannot be performed during the scan of a
macro reference.

Define Table Overflow

The number of DEFINE statements has exceeded the maximum
(1024) symbols. _

Expressions Operator Stack Overflow
Expressions Stack Overflow
The specified expressions is too complex.

Expression Syntax .
The specified expression is invalid.

Includes Nested Too Deeply
Include files may be nested to a maximum of ten levels.

Invalid #else

The specified +#else control 1line 1is invalid, possibly
because of a missing #if.

Invalid #endif

The compiler did not encounter an #if, #ifdef, or #ifndef to
match with the current #endif.

Invalid Pre-processor Command
The pre-processor control line contains a missing or invalid
keyword. The line is ignored by the compiler.

Line Overflow
Pre-processor control lines must not exceed a single 1line.

Macro Argument Too Long
Macro arguments must not exceed eight characters in length.

No %/ Before EOF
The compiler has encountered an -EOF before the end of a
comment. '

String Cannot Cross Line
Strings may not extend to multiple lines.

String Too Long
A character string exceeds the maximum of 1024 characters.

Symbol Table Overflow
The objects defined in this compilation have used wup all of
the address space allocated for the symbol table. You must
reduce the number of objects.

E-2 PDOS C Reference Manual

»

N

S

(Pre-Processor Error Messages cont.)

Too Many Arguments
The number of arguments in a C source 1line exceeds the
maximum of 64.

Too Many Files :
The number of files specified in #include control lines has
exceeded the maximum.

Unexpected EOF
An unexpected end-of-file is encountered in a pre-processor
control line. The control line is ignored.

Unmatched Conditional
No #endif or #else for an #ifdef or #ifndef.

Parser Error Messages

Operator Illegal
The & ("address of") operator is used with an invalid
operand. The operand must be an 1value, that is, an
expression that could appear as the 1left operand in an
assignment statement.

+ OP Assumed
An ambiguous assignment statement has been interpreted as a
+ op assignment.

Address of Register
Register variables cannot be used with the '&' operator.

Assignable Operand Required
The specified operand must be an lvalue.

Bad Character Constant
A character constant is limited to a single character. The
constant is truncated to this value.

Bad Indirection
The index operation ('[]') has been used with a non-pointer
variable.

Bad Symbol Table
The number of symbols in a module has exceeded the maximum.
The module should be divided into two modules.

Can't Open (FILENAME)
The compiler cannot find or open the specified file. You
should check to see if the file exists or change the file
specification in the program to that of an existing file.

PDOS C Reference Manual E-3

(Parser Error Messages cont.)

Case Not Inside Switch Block
A case label has been used outside the ©body of a switch
statement.

Dimension Table Overflow
An array contains more than five dimensions.

Duplicate Case Value
More than one case has been specified for the indicated
value in a switech statement. The case 1label should be
changed or the cases combined.

Expression Too Complex

The indicated expression is too complex to initialize and

should be simplified.

Field Overflows Byte
The specified field is larger than one byte.

Field Overflows Word
The specified field is larger than one word.

Illegal Function Declaration
The function has been improperly declared and the compiler
will ignore the function attribute.

Illegal Register Specification
The register storage class is restricted to function
parameters and automatie variables.

Illegal Structure Operation
The only operators that are valid with structures are simple
assignment (=), sizeof and passing as arguments or as return
values from functions.

Illegal Type Conversions .
The case operators may not force the conversion of any
expression to an array, function, structure or union.

Indirection of Function Invalid
The case operator has been used to pass arguments to
parameters of different types.

Initializer Alignment
The number of initialization values does not match the
dimensions of the declared variable.

Initializer List Too Long
The initializer 1list exceeds the size of the array to which
the variables are to be assigned.

E-4 PDOS C Reference Manual

(Parser Error Messages cont.)

Invalid ?: Operator Syntax
Use of the conditional operator has resulted in an invalid
expression.

Invalid Break Statement .
The break statement is valid only in 'for,' ‘while,'. 'do-
while,' and 'switch' statements.

Invalid Character (CHARACTER)
The character enclosed in parentheses is not a valid C
token.

Invalid Continue Statement
The continue statement is valid only in 'for,' 'while,' and
'do' statements.

Invalid Conversion ,
One of the operands in the indicated line cannot be con-
verted as specified.

Invalid Data Type
The data type keyword is specified in a declaration or
definition that already has one. All but the first data
type is ignored by the compiler.

Invalid Expression
The expression contains a syntax error.

Invalid Field Size
The indicated field declaration specifies a size greater
than 32 bits in length. ‘

Invalid Field Type Description‘
Fields must be declared as integers (signed or unsigned,
long or short).

Invalid Initializer
An object cannot be initialized as specified. The initial-
izer should be eliminated or corrected, or the storage class
of the target object should be changed.

Invalid Long Declaration
The initialization value is greater than_32 bits.

. Invalid Operand Type

The operand type is incompatible with the specified opera-
tor.

PDOS C Reference Manual E-&

(Parser Error Messages cont.)

Invalid Register Specification q;;

The register storage class 1is restricted to function
parameters and automatic variables.

Invalid Short Declaration
The initialization value is greater than 16 bits.

Invalid Storage Class
The indicated storage class keyword is specified in a
declaration that already has one. Only the first storage
class is used.

Invalid Structure Assignment
Structure asignments are valid only if the source and the
target are of equal value.

Invalid Structure Declaration (NAME)
The specified structure declaration has a syntax error.

Invalid Structure Member Name

The member name is not included in the declaration of the
structure.

Invalid Structure Prototype (NAME)
The specified structure has a syntax error.

¢

Invalid Type Declaration ' &
The type declaration has a syntax error.

Invalid TYPEDEF
The type definition has a syntax error.

Invalid Unsigned Declaration
The declaration has a syntax error.

Label Redeclaration (LABEL NAME)
The label has been declared more than once.

Missing Colon
Syntax error, 'while' expected.

Missing { In Initialization
Curly braces ({}) expected to surround initializers.

No Structure Name
A structure name is missing.

Not In Parameter List (NAME)
The variable or function name has been declared more than
once.

E-6 PDOS C Reference Manual 4{:

(Parser Error Messages cont.)

Short Assigned to Pointer
All pointers are 32 bits in length.

String Cannot Cross Line
Strings may not extend to multiple lines.

String Too Long
A character string may not exceed 1024 characters.

Structure Table Overflow
The number of structures exceeds the maximum.

Symbol Table Overflow
The number of symbols exceeds the maximum.

Temp -Creation Error
The compiler is unable to create a temporary file.

Too Many Cases In Switch
The number of cases in a SWITCH statement may not exceed
256.

Too Many Initializers
The d1initializer 1ist exceeds the size of the array or
structure to which the variables are to be assigned.

Undefined label (NAME)
The compiler has encountered a "goto label-name" for an
undefined label. The scope of a label is restricted to the
function in which it is. used as a label, and goto statements
cannot branch to labels inside other functions.

Undefine Symbol (NAME)
The compiler has encountered an undefined symbol.

Unexpected EOF
An unexpected end-of-file is encountered.

Code Generator Error Messages

Can't Create (FILENAME)
The compier is unable to create a temporary or output file.

Can't Open (FILENAME)
The compiler cannot find or open the specified file. You
should check to see if the file exists or change the file
specification in the program to that of an existing file.

CDSIZE: 1Invalid Type (NUMBER)
An invalid object is being passed as a function argument.

PDOS C Reference Manual E-7

(Code Generator Error Messages cont.)

Code Skeleton Error: (NUMBER)
Developer error message; should not occur.

Divide By Zero
An expression involving division by a constant zero has been
encountered. :

Expression Too Complex
The source statement must be simplified.

Intermediate Code Error (NUMBER,NUMBER)
Developer error message; should not occur. Try removing
temporary files and recompile.

Invalid Floating Point Op

The specified operation 1is not alloﬁed on floating point
variables.

Invalid Initialization
A syntax error or undefined variable has been encountered in
an initialization.

Invalid Operator (NUMBER)
Developer error message; should not occur.

Invalid Register Expression
The specified operation cannot be computed on a register
variable. In particular, the address of a register cannot
be taken.

Invalid Storage Class
Developer error message; should not occur.

Modulus By Zero
An expression involving modulo by a constant zero has been
encountered.

No Code Table For (NUMBER)
Developer error message; should not occur.

OPCALL Bad Op (NUMBER)
Developer error message; should not occur.

E-8 PDOS C Reference Manual

PDOS C REFERENCE MANUAL

Absolute
floating point A. value
4-16
ACOS 4-5
Add
bytes to task break 2-51
floating point A. 4-19
Address
A. space of program 1-22
ALLOC 2-2
_allocp 1-23
Allocate
memory 2-2
Altered
file A. check 3-30
Append
file 3-8
Arc
cosine 4-5
sine 4-6
tangent 4-7
tangent of x/y 4-8
ARGC, ARGV
command line parameters

1-21
ASCII

A. to integer conversion
2-4 ,

floating point to A. 'e'
format 4-14

floating point to A. 'f°'
format 4-28

to floating point 4-9
to integer 4-10
ASIN 4-6
asm
in-line assembly 1-24
Assembler
using A. 1-17
Assembly
C to A. interface 1-24
calling A. from C 1-25

calling C functions from A.

1-27

generated by compiler 1-10

in-line A. 1-24
in-line calls 3-1
ATAN 4-7

PDOS C Reference Manual

ATAN2 4-8
ATOF 4-9
ATOI 2-4, 4-10
ATOL 2-4
Attributes
read file A. 3-74

Backup
C diskette 1-1
Baud
console port 3-4
Binary
convert B. to decimal
3-10
convert B. to decimal in
buffer 3-13
convert B. to hex string
in buffer 3-17
convert B. to hexadecimal
3-11
convert decimal string to
B. 3-14
Break
check for B. character
3-9, 3-12
Buffer
flush B. to disk 3-31
Build
file listing 3-6

C:BUG 1-4
C:HLP 1-4
ce68 1-4
using CB68 1-16
Ci168 1-4
using C168 1-16
Call
system C. library 3-1
unimplemented PDOS C. 3-1
CALLOC 2-2
Carriage
put C. return/line feed to
console 3-60
cC
command line arguments for
cC 1-8
description of 1-4

source to CC 1-7
using CC 1-6
cC:C 1-5
CEIL 4-11
CEND:ASM 1-5
CEND:0 1-4
Chain
file 3-16
Character
C. class and conversion
macros 2-8
C. conversion 1-29
get C. 3-38
get C. conditionally 3-36
get C. from port 3-37
get C. from standard input
2-30
get C. from stream 2-29
get conditional C. 3-35
output 2-44
output C. to stream 2-43
put C. back on stream
2-59
put C. raw 3-61
put console C. 3-59
return position of C. in
string 2-33
significant C. 1-20
Check
file altered C. 3-30
for break character 3-9
for break character/pause

3-12
Clear
screen 3-19
Clock

write date to C. 3-108
CLOSE 2-5
a file 2-5
a stream 2-12
file 3-18
file with attributes 3-15
streams 2-10
Code Generator
using C.G. 1-16
Column
tab to C. 3-99
Command File
building new C.F. 1-18
Comments
format of C. 1-30

I-2

Compare
floating point C. 4-20
strings 2-52
Compiler
files on C. 1-4
invoking 1-6
phases of C. 1-14
Compiler Options
) 1-12
1-10, 1-18
1-11

< COIOXTTMTMOOW

Concatenate

string 2-52
Connect

port to stream 2-58
Conventions

in manual 1-1

Convert
binary to decimal in
buffer 3-13
binary to decimal string
3-10
binary to hex string in
buffer 3-17
binary to hexadecimal
3-11
decimal string to binary
3-14
COPY 2-6
file 3-20
one file to another 2-6
string 2-52
COS 4-12
COSH 4-13
Cosine 4-12
arc C. 4-5

hyperbolic C. 4-13
CPP 1-4, 1-15

CREAT 2-7
Create -

task block 3-21
CSTART

using C. 1-21
CSTART:ASM 1-5

PDOS C Reference Manual

N

CSTART:0 1-4

CTYPE 2-8
ctype.h 1-5
Cursor

position C. 3-65

Data

put D. to console 3-62
Date

fix D. 3-33

read D. 3-73

unpack ASCII D. 3-101

unpack D. into string

3-102

write D. to clock 3-188
__DATE 1-15
Deallocate

memory 2-25
Debugger

enter D. 3-7
Decimal

convert binary to d. 3-10
convert binary to D. in
buffer 3-13
convert D. string to
binary 3-14

Define

a file 2-7

file 3-24
Delay

set/reset event 3-23
Delete

file 2-68, 3-25
Directory

build D. listing 3-6

list file D. 3-54

listing of C diskette 1-4

read next D. entry 3-71
DIRENT:H 1-5
Disk

get D. parameters 3-98
Divide

floating point D. 4-21
Division

long D. routines 2-35

' Double-precision

floating point numbers 4-2
Dump

memory 3-26

registers to console 3-72

PDOS C Reference Manual

ECHO:C 1-5
End

of file in a stream 2-13
Enter

supervisor mode 3-96
eomem 1-23

EPROM
creating programs for E.
1-11
Error

assembler E. 1-13

description of E. messages
: 1-13, E-(1-8)

exit 3-27

load E. register 3-51

print E. message 2-9

save E. listing to file

1-12
_ERROR 2-9
ETOA 4-14

Event
delay set/reset E. 3-23
set E. flag 3-89
set E. flag with swap
3-88
suspend until E. 3-95
test E. flag 3-100
EXIT 2-10
error E. 3-27
to monitor 2-18, 3-28
to monitor with command
3-29
to monitor with status
2-11
_EXIT 2-11
EXP 4-15
Exponent 4-15
Exponential
FREXP 4-27
LDEXP 4-29
MODF 4-32

FABS 4-16
FCLOSE 2-12
FDIFF:C 1-5
FEOF 2-13
FFLUSH 2-15
FFP:LIB 1-4
library 4-1
routines found in F. 1-21
FFP:SRC 1-5
FGETS 2-14.

File
altered check 3-30
append F. 3-3
chain F. 3-16
close F. 2-5, 3-18
close F. with attributes

3-15

copy F. 2-6, 3-20
define F. 3-24
delete 2-60, 3-25
F. open 2-42
fix F. name 3-32
list F. directory 3-54
load F. 3-49

lock F. 3-52
non-exclusive random open
F. 3-55

open and define 2-7
open F. handling 1-23
open F. random access
3-80
open F. sequentially 3-91
pointer relative offset
2-27
position F. 3-66
position F. slot 2-34
read bytes from F. 3-68
read F. attributes 3-74
read F. position 3-76
rename F. 2-48, 3-78
reset F. 3-83
rewind F. 3-87
test for existence of F.
2-57
unlock F. 3-183
write F. attributes 3-109
write F. parameters 3-110
write to F. ID 2-61
zero F. 3-115
__FILE 1-15
Filename
expand ambiguous F. 2-32
FILESLOT:H 1-5
Find
character in string 2-52
Fix
file name 3-32
time/date 3-33
Float
to long 4-22

Floating
ASCII to F. point 4-9
F. point libraries 4-1
long to F. point 4-23
point absolute value 4-16
point add 4-19
point compare 4-20
point compiler options
1-9
point divide 4-21
point float to long 4-22
point math routines 4-3
point modulus 4-18
point multiply 4-24
point negation 4-25
point power 4-33
point subtraction 4-26
point to ASCII 'e' format
4-14
point to ASCII 'f' format
4-28
FLOOR 4-17
Flush
buffer to disk 3-31
output to file 2-15
FMOD 4-18
FOPEN 2-16
Format
of floating point numbers
4-2
FORMATTED
input routines 2-17
print routines 2-280
FPADD 4-19
FPCMP 4-20
FPDIV 4-21
FPFTOL 4-22
FPLTOF 4-23
FPMUL 4-24
FPNEG 4-25
FPRINTF 2-20
FPUTS 2-23
FPSUB 4-26
FREAD 2-24
FREE 2-25
user memory 3-34
FREXP 4-27
FSCANF 2-17
FSEEK 2-26
_fsptr 1-23
FTELL 2-27
FTOA 4-28

PDOS C Reference Manual

C

Functions
calling C F. from assembly
1-27
FWRITE 2-28

Get
a line from stream 2-14
character 3-38
character conditionally
3-36
character from port 3-37
character from standard
input 2-30
character from stream 2-29
conditional character 3-35
disk parameters 3-98
line in buffer 3-39
line in monitor buffer
3-40
line in user buffer 3-41
memory limits 3-42
message pointer 3-43
next parameter 3-44
task message 3-45
user memory 3-46
GETC 2-29
GETCHAR 2-30
GETS 2-31
GLOB 2-32
Global
G. variables 1-22
Goto
non-local G. routines
2-40
GREP:C 1-5

HANOI:C 1-5
HELLO:C 1-5
Help Files
description of 1-4
installing on disk 1-3
Hexadecimal
convert binary to H. 3-11
convert binary to H.
string in buffer
3-17
Hyperbolic
cosine 4-13
sine 4-35
tangent 4-38

PDOS C Reference Manual

IEEE:LIB
description of 1-4
library 4-1

routines found in I. 1-21

Include Files

listing of 1-5

using I.F. 1-16
INDEX 2-33
Initialization

I. module-CSTART 1-21
Input

formatted I. routines

2-17

Input/Output

connect port to stream for

1/0 2-58
Integer
ASCII to I. 4-10
I. to ASCII conversion

2-4
largest I. not greater
than x 4-17
smallest I. not less than
X 4-11
Interrupt

suspend until I. 3-95
ITOA 2-4

Jump

J. routines 2-40
Kill

task 3-47

task message 3-48

Label
in in-line assembly 1-24
LDEXP 4-29
LDIV 2-35
LDIVR 2-35
LDIVU 2-35
Length
string L. 2-52
Libraries ‘
floating point L. 1-21,
4-1
listing of 1-4
PDOS interface L. 1-21
run time L. 1-20
source files 1-5
standard L. 1-20

I-&

Line .
get L. from stream 2-14
get L. in buffer 3-39
get L. in monitor buffer
3-40
get L. in user buffer 3-41
L. termination 1-29
put carriage return/L. feed
to console 3-60
put encoded L. to console
3-63
put L. to console 3-64
read L. from file 3-77
read L. from standard input
2-31
write L. to file 3-112
__LINE 1-15
Link Map
create during compilation
1-10 '
Linker
using L. 1-17
Linking
separately compiled modules
1-18
List
file directory 3-54
Listing
build file L. 3-6
LMUL 2-36
LMULU 2-36
Load
error register 3-51
file 3-49
Lock
file 3-52
task 3-53
LOG 4-30
LOG1® 4-31
Logarithm
common L. 4-31
natural L. 4-30
Long
floating point float to L.
4-22
L. division routines 2-35
L. remainder routines
2-37
multiplication routines
2-36
to floating point 4-23
LONGJMP 2-40

I-6

LREM 2-37
LREMU 2-37
LSEEK 2-34
LTOA 2-4

M68881:LIB
description of 1-4
library 4-1
routines found in M. 1-21
Macros
pre-defined M. 1-15
MALLOC 2-2
MASM
description of 1-4
using M. 1-17
MASM20
using M.” 1-17
Math.h
description of 1-5
math routines 4-3
MC68881
hardware floating point
4-1
Memory
accessing M. 1-30
allocate M. 2-2
change size of M. 2-2
deallocate previously
allocated M. 2-25
dump M. 3-26
free user M. 3-34
get M. limits 3-42
get user M. 3-46
M. allocation list 1-23
to run compiler 1-2
Message
get M. pointer 3-43
get task M. 3-45
kill task M. 3-48
send M. pointer 3-90
send task M. 3-93
MFREE 2-25
MLIB
description of 1-4
using M. for linking
modules 1-19
MLIBGEN
using M. for linking
modules 1-19
MODF 4-32
Modulus
floating point M. 4-18

PDOS C Reference Manual

‘:j

Monitor
exit to M. 3-28
exit to M. with command
3-29

get line in M. buffer 3-40

send command to PDOS M.
2-55

Motorola

fast floating point 4-1
Multiplication

long M. routines 2-36
Multiply

floating point M. 4-24

Negation

floating point N. 4-25
Non-exclusive

random open file 3-55
Non-local

goto routines 2-4P

Object Code
compiling to 0. 1-10
Offset
file pointer relative 0.
2-27
OLDSYRAM:H 1-5
Open 2-42
a file 2-7, 2-42
a stream 2-16
file random access 3-80
file read-only random
access 3-79
file sequentially 3-91
non-exclusive random O.
file 3-55
Output
a character 2-44
character to stream 2-43
string to standard output
2-45
string to stream 2-23

Parameter
get next P. 3-44
get disk P. 3-98

Parser
using P. 1-16
Pattern
string segment P. count

2-52

PDOS C Reference Manual

Pause
check for P. 3-12
Pointer
file-slot p. 1-23
standard I/0 stream p.
1-23
SYRAM table P. 1-23
task control block P.
1-23
un-allocated memory p.
1-23
Position
file slot 2-34
return P. of character in
string 2-33
string P. 2-50
to top of stream 2-49
Port
read P. status 3-81
set P. flag 3-92

Position
cursor 3-65
file 3-66

read file P. 3-76
read port cursor P. 3-70
POW 4-33
Power
floating point P. 4-33
Pre-Processor
using CPP 1-15
Primitives
interface to P. 3-1
Print
error message 2-9
formatted p. routines
2-20
PRINTF 2-20
Priority
set task P. 3-94
Procedure File
listing of 1-5
Public Domain
files 1-5
Put
carriage return/line feed
3-68
character back on stream
2-59
character raw 3-61
console character 3-59
data to console 3-62

I-7

encoded line to console
3-63

line to console 3-64

space to console 3-67

user buffer to console

3-58
PUTC 2-43
PUTCHAR 2-44
PUTS 2-45

QLINK
description of 1-4
using Q. 1-17

Random
non-exclusive R. open file
3-55
R. number generation 2-46
return R. number 2-46
seed R. number 2-46

Read 2-47
bytes from file 3-68
date 3-73

file attributes 3-74

file position 3-76

froma file 2-47

from a stream 2-24

line from file 3-77

line from standard input
2-31

next directory entry 3-71

port cursor position 3-70

port status 3-81

R. only open file 3-79

sector from disk 3-82

task status 3-86

time 3-84

time parameters 3-85
REALLOC 2-2
Register

dump R. to console 3-72

load error R. 3-51

R. variables 1-28

scratch R. 1-26

using R. variables to access
memory 1-30

Remainder
long R. routines 2-37
RENAME 2-48

file 2-48, 3-78
Reposition
a stream 2-26

I-8

Reset
console inputs 3-69
file 3-83
REWIND 2-49
file 3-87
RINDEX 2-50
ROM
burning C programs in R.
1-27
ROMLINK
description of 1-4
using R. 1-17, 1-27
ROMLINK:C 1-5
Run
another program 2-62
Run Time Libraries 1-20

RUNGEN
creating C programs for R.
1-17
creating program to work
with R. 1-11
SBRK 2-51
Scanf 2-17

Scientific
floating point to S.
notation ASCII 'e'

format 4-14 C"
Screen e
clear S. 3-19
Section @

definition 1-28
references in object file
1-17
Section 1
definition 1-28
references in object file
1-17
Section 2
variables in §. 1-22
Sector
read S. from disk 3-82
write S. 3-113
Self-Relocation
S. of a program 1-22
Send
command to monitor 2-55
message pointer 3-90
task message 3-93

PDOS C Reference Manual @jﬁ

Set
event flag 3-89
event flag with swap 3-88
port flag 3-92
task priority 3-94
SETJMP:H 1-5, 2-40
SIEVE:C 1-5
Significant
characters for external
names 1-20
SIN 4-34
Sine 4-34
arc S. 4-6
hyperbolic S. 4-35
Single-precision
floating point number 4-2
SINH 4-35
Size
of RAM section 1-28
of ROM section 1-28
of variables 1-30
SORTC:C 1-5
Space
put S. to console 3-67
SPRINTF 2-28
SQRT 4-36
Square
root 4-36
SSCANF 2-17
Startup
source file 1-5
Static
"S. variables 1-22
Stderr 1-23
Stdin 1-23
stdio.h 1-5
STDLIB:LIB 1-4
routines found in S. 1-20
STDLIB:SRC 1-5
Stdout 1-23
Stream
check for EOF in S. 2-13
get character from S. 2-29
output string to S. 2-23
position to top of S. 2-49
put back character on S.
2-59
read from S. 2-24
reposition S. 2-26
S. list 1-238
write to S. 2-28

PDOS C Reference Manual

String
handling routines 2-52
output S. to standard
output 2-45
output S. to stream 2-23
position 2-50
_strm@ 1-23
_strmt 1-23
Subtraction
floating point S. 4-26
Supervisor
enter S. mode 3-96
Suspend
until interrupt or event
3-95
Swap
to next task 3-97
Symbo1
defining S. in pre-pro-
cessor 1-15
Symbo1ls
pre-define S. 1-11
prefixing S. 1-25
removing S. definitions
1-11
_syram 1-23
SYRAM:H 1-5
SYSTEM 2-55
calls 3-1

Tab
to column 3-99
TAN 4-37
Tangent 4-37
arc T. 4-7
arc T. of x/y 4-8
hyperbolic T. 4-38

TANH 4-38
Task
add bytes to T. break
2-51

create T. block 3-21
get T. message 3-45

kill T. 3-47
kill T. message 3-48
lock T. 3-53

read T. status 3-86

send T. message 3-93

set T. priority 3-94

swap to next T. 3-97

unlock T. 3-104
TCB:H 1-5 ~

I-9

_tcbptr 1-23
Temporary Files
using T.F. 1-14
Termination
source file 1-5
Test
event flag 3-180
for existence of file
2-57
listing of T. programs
1-5
program TESTXLIB:C 3-1
TESTXLIB:C 1-5

Time
fix T. 3-33
read T. 3-84

read T. parameters 3-85
unpack T. 3-106
write T. to PDOS 3-114
__TIME 1-15
Token
string T. manipulation
2-52
TSTFILE 2-57
TTYOPEN 2-58

UNGETC 2-59
UNLINK 2-60
Unlock
file 3-103
task 3-104
Unpack

ASCII date 3-101

date into string 3-102

time into string 3-106
User

get line in U. buffer 3-41

put U. buffer to console

3-58

return to U. mode 3-185
Utility

source code to U. 1-5

Value

function return V. 1-26
Variable

register V. 1-29

size of V. 1-30

sizes 1-30

task global V. 1-23

uninitialized V. space

1-22

I-10

unique characters of
V. names 1-20
Version
origin of compiler 1-4

WC:C 1-5

Write 2-61
bytes to file 3-107
date to clock 3-108
file attributes 3-109
file parameters 3-110
line to file 3-112
sector 3-113
time to PDOS 3-114
to file ID 2-61
to stream 2-28

XAPF 3-3

XBCP 3-4

XBFL 3-6

XBUG 3-7

XCBC 3-9

XCBD 3-10
XCBH 3-11
XCBP 38-12
XCBX 3-13
XChB 3-14
XCFA 3-15
XCHF 3-16
XCHX 3-17
XCLF 3-18
XCLS 3-19
XCPY 3-20
XCTB 3-21
XDEV 3-23
XDFL 3-24
XDLF 3-25
XDMP 3-26
XEQ 2-62

XERR 3-27
XEXT 3-28
XEXZ 3-29
XFAC 3-30
XFBF 3-31
XFFN 3-32
XFTD 3-33
XFUM 3-34
XGCB 3-35
XGCC 3-36
XGCP 3-37
XGCR 3-38
XGLB 3-39

PDOS C Reference Manual

¢)

XGLM 3-40 XSTM 3-93

XGLU 3-41 XSTP 3-94

XGML 3-42 XSUI 3-95

XGMP 3-43 XSUP 3-96

XGNP 3-44 XSWP 3-97

XGTM 3-45 XSZF 3-98

XGUM 3-46 XTAB 3-99

XKTB 3-47 XTEF 3-100

XKTM 3-48 XUAD 3-101

XLDF 3-49 XUDT 3-1@2

XLER 3-51 - XULF 3-183

XLIB:LIB 1-4 XULT 3-104
routines found in X. 1-21 XUSP 3-105

XLIB:SRC 1-5 XUTM 3-106

XLKF 3-52 XWBF 3-107

XLKT 3-53 XWDT 3-108

XLST 3-54 XWFA 3-109

XNOP . 3-55 XWFP 3-110

XPBC 3-58 XWLF 3-112

XPCC 3-59 XWSE 3-113

XPCL 3-60 XWTM 3-114

XPCR 3-61 XZFL 3-115

XPDC 3-62 Zero

XPEL 3-63 file 3-115

XPLC 3-64

XPSC 3-65

XPSF 3-66

XPSP 3-67

XRBF 3-68

XRCN 3-69

XRCP 3-78

XRDE 3-71

XRDM 3-72

XRDT 3-73

XRFA 3-74

XRFP 3-76

XRLF 3-77

XRNF 3-78

XR0O0 3-79

XROP 3-88

XRPS 3-81

XRSE 3-82

XRST 3-83

XRTM 3-84

XRTP 3-85

XRTS 3-86

XRWF 3-87

XSEF 3-88

XSEV 3-89

XSMP 3-90

XSOP 3-91

XSPF 3-92

PDOS C Reference Manual I-11

I-12

PDOS C Reference Manual

N

