-~

s lle

PDOS Developer’s
Reference

Copyright 1988 by Eyring Research Institute, Inc., 1450 West 820 North, Provo, Utah 84601 USA.
All rights reserved

The information in this document has been carefully checked and is believed to be reliable.
However, Eyring assumes no responsibility for inaccuracies. Furthermore, Eyring reserves the
right to make changes to any products to improve reliability, function, or design and does not as-
sume any liability arising out of the application or use of this document.

PDOS Developer’s Reference

Printed in the United States of America.
Product number 2520-2T (for PDOS revision 3.3)
January, 1988

PDOS is a registered trademark of Eyring Research Institute, Inc.

© O

Table of Contents

Introduction 1
Manual Organizationoviviennnnnrnnnnnsneeeeeeeeeaens etieesestataisatttenenns 1
Conventionsccceiiiinitiinnceiiiinaceenns ettt eiei e [2

- PDOS Structure ' 3
PDOS KMl ...ttt iiteteenneeneanensoeososaneeeeeanensnsnsnnnsssnsnnsennes 3
The FIle Manager . ..ottt ittt itieiennnennneneeoessosooesesesassssasesssnsseasosasoasns 4
23 (0 RN 4
SUPPOTLEAd DEVICES ..t v v vt teeeaesteesneseeessnneeasoscnsessassnassasionsannnneseannsanss 4
Memory ReqUITEMENES . . . oo v v teiiieeeetitettseseanesenoensoosssoseeasossasosessssasnanas 4

PDOS Kernel 5
BT 00 R T < 5
MUt TSI . oottt ittt eeenennenennanoneeeesesesesssesaeeseassesassasanaeeesenons 7
The Task Control BIOCK (TCB) . .0 vt vtiiiienereneeieroeesasseseoaesaeeseaansasaaseeesennns 8
R € 2 L 28

Fixed Offset BIOS Initializedc.cetiiieeiiniiieerenennnneneneeeeennnnnenns 28
Fixed Offset PDOS Initializedcvivnininiunneneernenenenenenenensoaenannnnns 30
Variable Offsetoiviiiiiiiiiiinniiieiieeeeeeeeeeeenenenensnsonnnnsannaneneas 41
MSYRAM SWItChes ..o viitiiiiiiiiieniieteitieeeeeeeeeenenennnnnnnnnsnnnnnnnnas 41
DiSPatCh Tablettt ittt it iiieetieteneeenneeeeesoannnnaneeeseeesnnnaeaennns 43
15 11 BN 4 (XY 48
SUPPOTt UtIHESo vviitieteententeeeeenareeeaeeeeaenaneeeeeanonnnneoseesnnnnesennnns 48
PDOS CharacterI/Ociiiiiiinennnnnnnn. et et eeeee et ee et e 49
PDOS Character INPULo o vt tinnit et etennnneeeeseesnnnnneosessnnnneens 49
PDOS Character OUtPUL vueitinnenerenseeesonneaneeeseesonnnnneseeaenaseenns 51
Events i ettt ettt ee et ee e eee et eaeeeaeans 53
Task COMMUIECAtION . .. ciuuieeteeine et etnnneeessaeoseeannaaeeeeeseaennneneeeeansaeeenas 54
Task SUSPENSIONitii i e i i 55
High PriOrty Tasksouuenneeneeeseneeneneeneenneenseaneeeseaneeaneeneeneennes 56
PDOS Exception Handlingiviiiiiiniinnneneeteeeeenoneeoeneneeeneannennnnnennnnns 56

A .

PDOS DEVELOPER'S REFERENCE 3.3-1/88 i

Table of Contents (cont.)

File Management 60
File StOTage . ..o\ttt ittt reeeneeeeennneeeeonneeseannonssessnnnessssannnnsesannanns 60
FIleNamMeS . ..ottt it ittt ittt ittt ittt eiaeinnennennes v 62
DAIECOTY LVELS .+ .ttt et eeieneeeeeeneneeeeeneaneeaaeneeeanennsessoannnasseasosnsoesses 63
DiSKINUMDEIS . .vvtiiinntitiiinneetteenneeeensnneeesnnsaseennanaeosonanneneesannsnseses 63
File AUDULES .. 2. veueeseseneesene et eneneeneneenenenennenaneanes e 64
TIMe StAMPING ... iiinttiiiii et ennneeeenneneeeenneeeesnnnsseeennnnnnnns PP 65
Ports, Units, aNd DISKS .+ .. vvtviiuneereeensioresenseesennaoesennnnseeesasnneeeeeenanesens 66

o0 3 SRRt 66
UM .ttt iiieteeteneeneeesonaeesennnseeanasesonennnnssessonneesseonnnoess 66
T <SSR 66
PDOS BIOS 67
XXBIOS:SR - User BIOS MOGUIeovitiiitiiiiiiinieiaeeeneeeeeeneeeeaneerenesanaannns 68
Task StartuP Tableoetniiiriiiitttiiiiereeneeeeeeonnneneeseacnnnsonaaannan 68
Cold Startup SUBIOULINESuuiueeeeeeeeeereeeeeeanenensasnnesnsennnsosnnnnnas 68
Kemel SUDTOULINES . .. v ot veeneneeeeeeeeeenennnensanenenansasanaansasasceasasans 69
Exception Vector Tablec.c.iuiueeiteininenineneeieneennsenennnsnnnnenenss 71
D23 (O N5 ¢ 1 1] o) (- 72
MBIOS:SR - Common BIOS MOQUIEcviiieutinnnneenninenererennnaneeeenaneeeennnns 77
23 (01 1) (AP 77
MBIOS SWitCheS .. vttt ittt ieteeeeennenanaeaeeeeeeeeeeseaeeaeeeeasasesonnananas 79
XXBIOSU - UART S it tiitieeeenensnenseeeeeeeeesennsnnnnsessnsnesensesnsseneeesesens 83
IntermUDL INPULS .+ o i i ettt it ettt ieieneeeeeeeeeeeeeeennnennnnanennnnssnnnssnsnnas 86
Parallel POrt INtEITUPLS .+ o vvveeteeeneenenneeeeenaneeennnnneoeeeennnneeeannnnneens 86

33-1/88

PDOS DEVELOPER'S REFERENCE

A

A

e
L

e

Table of Contents (cont.)

XXBIOSW - Read/Write Disk DS RS ... iiiiiiiiiieeererereeeeaeerereseeeeceneneneeeseons 86
DiSK REAA WG ..ottt ittt iiniee e teeeeeaeeennanaeeesonnonneneseseenneeenns 88

Cold Startup Intializeccveeteeieinnternniiienreenerenerernseereeeeeeennnnns 89
KemelSubroutingccoviieeiiiiiiiinniiinenenns e 89
ErrorMessage Tablecvvuiiiiiiiiiiiiiiiniiaiiiiiaaieinnannns T 90
111 v (11 2] £ 90

PDOS Winchester Standardiiiiiiiiiiiiieiiiiiiieiiiinaeerereeerennnneas 91

System Independent Drive Parameterscovvinneetineiniiiiterrenenininneeenne 91

Disk Partitionson Drive Headercouiiiiiniinniinnetininneroeonnearoenanens 92

Bad Track MapDing . ..o v viiieeteiienet et eneeeninaatoeeeananneneeesseennneneonnns 92

Drive Data BIoCKS (DD BS) . .vivittiietnnereenneeoneeeneesnnoasasssncacoseonoenns 92

PDOS Disk Numberingcvvvvenenenneenonennannencaoeoconannnnns P 93

PDOS DiSKLaYOULuuuureeereeeeosesennnenseesoneasasanonsnsnnossasannnnnsans 94

PDOS IO DIIVEIS . .vveiteteeeeeereenennnnsnsaeseaeeeaeosassesesososessseeannnnaseess 97
Driver ENtry POINES ... vuueeeeetteesononnnnnonnnennenssnioeanssneneesaoesennnnnns 97

USING DIVET REZISIEIS . .« v v e vve e veeee e ee e eeeeseneneene e eeneeeannns 98

Driver Generationuveeeeeeneennneneruenensasonnsnoeeneoaneosososssanensas 99

PDOS Output Driver EXampleoiiiuuiitiiiiiiiin ittt enenienenns 100

PDOS Input Driver EXampleovnitttinii it iieeneieiainiaaeeeeannaeeanns 104
Installable Device Routines and UtHHES ... o.veeeinnneeeennnnneereennenneoreeoernaanneanans 106
Programming CONVENtONSvuvtttneeeennennnennnnennnnnsnsnsnoneooassonnnnnns 106

UART ServiCe ROULINESuueetereneeteeneneeeseeeneseeseenanaseeeeaneasenans 106

JO DIIVerS - oot ittt it i ittt et i et e 108

Disk ServicE ROULNES . .. civutttttinnnnneenreeeennnneeeanennsseeeennaasoennnnnns 108

Shared Utility . ..o ottt ittt e tieneeeereeeeeeeneesceencnosnannnnnensnnans 109

I eI DS & vttt ittt ittt ettt e i ieieeeaeeeeeoeaseaasenaseasesaaeaasanaaaseeasaansnnns 110
PDOS Error Definitions 111
PDOS EITOr SUMMATY . .o vi ittt et eeaeeennneesenasoeeeeennaneeesresnnaaeeeesronnaeeanns 111
PDOS BITOr RaNZeS . ot oiii ittt itttntnneneneeeeeeeeoaeaeeneeenaneseeenenaeesenennnnnns 112
PDOS ErTOr NUIMDELS .« . vttveieveeeeeneeeeeeensreneaeannseeasessoneeenenesaneasensenns 112
PDOS DEVELOPER'S REFERENCE 33-1/88 i

3.3-1/88

PDOS DEVELOPER'S REFERENCE

AT

N

P

N

Introduction

Manual Organization

This manual is designed to help the PDOS developer understand the inner work-
ings of the PDOS operating system. It describes the kernel, file manager and
BIOS modules of PDOS in detail. This is not a beginner’s manual. To learn how
to use PDOS, consult the PDOS User' s Manual -Volume 1 and other PDOS
reference manuals.

Before you consult this manual, you should be familiar with PDOS-related com-
puter hardware and software, specifically the MC68000 microprocessor. If you
need more information on the MC68000, consult one of the following books:

Motorola. 1984. MC68000 - 16/32-BIT MICROPROCESSOR
PROGRAMMER’S REFERENCE MANUAL. Fourth Edition. Englewood Cliffs,
N.J.: Prentice-Hall Inc..

Zarella, John. 1981. MICROPROCESSOR OPERATING SYSTEMS. Suisun
City, California: Microcomputer applications.

The first section of this manual describes the structure of PDOS. It is a good
idea to read through this overview before you begin your development.

The next section deals with the kernel. The PDOS kernel handles tasking, so
there you will find information on multi-tasking, the task control block, task
communication, SYRAM, etc.

The file manager section follows and describes how PDOS handles file storage,
file names, disk numbers, and directory levels.

The next section describes the BIOS or Basic I/O Subsystem of PDOS. If you
are porting PDOS to new hardware, you will consult this section often. It goes
into much detail about the user and common BIOS modules, disk read/write and
layout, and the PDOS Winchester disk standard. You will also learn how to
write PDOS I/O drivers from examples.

The final section lists PDOS errors with a description of each one.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 1

Introduction (cont.)

Conventions

The following notations are used throughout this manual:

$
%
<>

()
(Ax)

Keys

Hexadecimal number. (e.g. $1FFF = decimal 8191).

Binary number. (e.g. %1001101 = decimal 77).

Parameter used with a PDOS command or primitive. (e.g. DL <filename>

indicates that the DL command requires a filename as a parameter).
Optional. (e.g. SA <filename>{,<attributes>} indicates that the parameter

<attributes> is optional).

‘Indirect assembly addressing. (e.g. (A2) = Buffer refers to register A2

pointing to a buffer).

Key names are denoted by bold. (e.g. Cr or . means to press the carriage
return key; Esc is the escape key; Ctrl is the control key (usually followed
by a letter which also appears bold); and { indicates a line feed).

3.3-1/88 PDOS DEVELOPER'S REFERENCE

(g

C
C

PDOS Structure

The PDOS Kernel

Languages

Assembler

File Manager

Smartbug

PDOS is written in Motorola 68000 assembly language for fast, efficient execu-
tion. The small kernel handles multi-tasking, realtime clock, event processing,
and memory management functions. Ready tasks are scheduled using a
prioritized, round-robin method. The highest priority task in the ready state is al-
ways scheduled. Tasks with the same priority are scheduled in a round-robin
fashion. A suspended task allows lower priority tasks to execute. The A-line
($A000) instruction interfaces over 100 system primitives to a user task.

Tasks are the components comprising a realtime application. Each task is an in-
dependent program that shares the processor with other tasks in the system.
Tasks provide a mechanism that allows a complicated application to be sub-
divided into several independent, understandable, and manageable modules.
Realtime, concurrent tasks are allocated in 2K byte increments. There are no
64K byte boundary restrictions since the full 32-bit address space is available.

Semaphores and events provide a low overhead facility for one task to signal
another. Events indicate availability of a shared resource, timing pulses, or the
occurrence of a hardware or software interrupt. Messages and mailboxes are
used in conjunction with system lock, unlock, suspend, and event primitives.
PDOS provides timing events that can be used in conjunction with desired
events to prevent system lockouts. Other special system events signal character
inputs and outputs.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 3

PDOS Structure (cont.)

The File Manager

BIOS

Supported Devices

Memory Requirements

PDOS handles all exception processing including interrupts, address errors, bus
errors, illegal and unimplemented instructions, and privilege violations. Each
task also has the option to process any or all 16 trap vectors, divide by zero,
overflow check (TRAPV), and register out of bounds (CHK). System interrupts
set the corresponding event and then can initiate a context switch. A high
priority task waiting on that event is then immediately scheduled and begins ex-
ecuting.

The PDOS kernel handles user console, system clock, and other designated
hardware interrupts. User consoles are interrupt-driven with character type-
ahead. A task can be suspended pending a hardware or software event. Other-
wise, a prioritized, round-robin scheduling of ready tasks occurs. Time slices are
BIOS-dependent and adjustable on a task-by-task basis.

The PDOS file management module provides sequential, random, read only, and
shared access to named files on a secondary storage device. These low overhead
file primitives use a linked, random access file structure and a logical sector bit
map for allocation of secondary storage. No file compaction is ever required.
Files are time stamped with date of creation and last update. Up to 127 files can
be open simultaneously. Complete device independence is achieved through
read and write logical sector primitives.

PDOS gives software portability systems through hardware independence of the
system Basic Input/Output System (BIOS) module. All hardware functions such
as read/write logical sector, clocks, mappers, and UARTS are conveniently iso-
lated in this module for minimal customization to new 68000-based systems.

PDOS is easily configured for any combination of large or small floppy disks,
bubble memory devices, or Winchester mass storage devices. A wide variety of
target system configurations are supported for fast development of memory-effi-
cient, cost-effective end products.

PDOS is very memory efficient. The PDOS kemel, file manager, debugger,
BIOS, and user monitor utilities require less than 26K bytes of memory plus an
additional 8k bytes for system buffers and stacks. Most applications can be both
developed and implemented on the target system. Further memory reduction is
achieved by linking the user application to a 8K byte PDOS kernel for a small,
ROMable, stand-alone, multi-tasking module. For large system configurations,
PDOS effectively addresses up to the 32-bit address space of the 68000 proces-
SOr.

3.3-1/88 PDOS DEVELOPER'S REFERENCE

AT

s

PDOS Kernel

The PDOS Task

The PDOS kernel performs the following functions:

Multi-tasking, multi-user scheduling
System clock

Memory allocation

Task synchronization

Task suspension

Event processing

Character I/O including buffering
Support primitives

e © 6 & ¢ ¢ o o

The PDOS kernel is the multi-tasking, realtime nucleus of the PDOS operating
system. Tasks are the components comprising a realtime application. It is the
main responsibility of the kernel to see that each task is provided with the sup-
port it requires in order to perform its designated function.

The PDOS kernel handles the allocation of memory and the scheduling of tasks.
Each task must share the system processor with other tasks. The operating sys-
tem saves the task’s context when it is not executing and restores it again when
it is scheduled. Other responsibilities of the PDOS kernel are maintenance of a
24-hour system clock, task suspension and rescheduling, event processing,
character buffering, and other support functions.

A PDOS task is the most basic unit of software within an application. A user
task consists of an entry in the PDOS task queue, task list, and a task control
block with user program space.

The task queue and list are used by the PDOS kernel to schedule tasks. A task
queue entry consists of a task priority and a task number. The list is ordered with
the highest priority entry first. A task list entry consists of a parent task number,
task time slice, task control block pointer, task map constant, two suspended
event descriptors, along with other reserved information. The task number is as-
signed according to its entry position.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 5

The Kernel - Tasks (cont.)

Task Queue

Priority Task #
100 0
50 2
30 1
0 0

" Parent # Time TCB Pointer Map Ev 1 Ev 2 Reserved

Task List

Task 0
Task -1
Task 1 RAM
$0 $500
TCB Pointer Task Program/RAM Task User
Task Variables Stack
Low Memory High Memory

The first $500 (hex) bytes of a task are the task control block. This block of
memory consists of buffers and parameters peculiar to the task. The 68000 ad-
dress register A6 points to the status block when the user program is first
entered. The task parameters may be referenced by a user program but you must
be careful not to crash PDOS!

Task overhead = $500 (hex) bytes + user stack

The user program space begins immediately following the task control block.
Position independent 68000 object programs or BASIC tokens are loaded into
this area for execution. Task memory is allocated in 2k byte increments. The
total task overhead is $500 or 1280 bytes. This leaves $300 or 768 bytes avail-
able for a user program and user stack in a minimal 2k byte task.

From the time a task is coded by a programmer until the task is destroyed, it is
in one of four task states. Tasks move between these states as they are created,
begin execution, are interrupted, wait for events, and finally complete their func-
tions. These states are defined as follows:

3.3-1/88 PDOS DEVELOPER'S REFERENCE

&

A

{
N

(o

The Kernel - Tasks {(cont.)

Multi-Tasking

PDOS DEVELOPER'S REFERENCE

Undefined. A task is in this state before it is loaded into the task list. It can be a
block of executable code in a disk file or stored in memory.

Ready. When a task is loaded in memory and entered in the task queue and list
but not executing or suspended, it is ready.

Running. A task is running when scheduled by the PDOS kernel from the task
list.

Suspended. When a task is stopped pending an event external to the task, it is
said to be suspended. A suspended task moves to the ready state when the event
occurs.

Undefined | Ready

Running | Suspended

A task remains undefined until it is made known to the operating system by
making an entry in the task queue. Once entered, a task immediately moves to
the ready state which indicates that it is ready for execution. When the task is
selected for execution by the scheduler, it moves to the run state. It remains in
the run state until the scheduler selects another task or the task requires external
information and suspends itself until the information is available. The suspended
state greatly enhances overall system performance.

PDOS defaults to allow 32 independent tasks to reside in memory and share
CPU cycles. Each task contains its own task control block and thus executes in-
dependently of any other task. A task control block consists of buffers, pointers,
and a PDOS scratch area. By changing the “NT” parameter in MSYRAM and
other parameters, PDOS can be configured to handle up to 127 tasks.

Four parameters are required for any new task generation. These are:

® A task priority. The range is from 255 (highest priority) to 1 (lowest
priority).

® Tasking memory. Memory is allocated to a task in 2k byte increments. The
first $500 bytes are assigned to the task TCB.

¢ An I/O port. Input ports are unique while many tasks may share the same
output port for task console communication.

* A task command. This may be in the form of several monitor commands or
a memory address to begin executing.

33-1/88 7

The Kernel - Tasks (cont.)

Each of the previous requirements defaults to a system parameter. Task priority
defaults to the parent task’s priority. Default memory allocation is 32k bytes and
default console port is the phantom port.

If a task command is not specified, the new task reverts to the PDOS monitor.
However, if no input is possible (i.e. port 0 or input already assigned), then the
new task immediately kills itself. This is very useful since tasks automatically
kill themselves as they complete their assignments (remove themselves from the
task list and return memory to the available memory pool).

A task entry in the task list consists of a task number designation, parent task
number, time interval, task priority, memory map constant, task control block
pointer, and two event descriptors. Swapping from one task to the next is done
when the task interval timer decrements to zero, during an I/O call to PDOS, or
when an external event causes a context switch. The task interval timer decre-

ments by one every ten milliseconds (or as defined in the system BIOS module).

Any task may spawn another task. Memory for the new task is allocated in 2k
byte blocks from a pool of available memory. If no memory is free, the spawn-

'ing task’s own memory is used and the parent task’s memory is reduced in size

by the amount of memory allocated to the new task. It is important to note that
some assembly coded programs and all high level language programs use both
the low and high addresses of the task memory. To prevent memory loss from a
task and program failure, it is necessary to allocate enough memory to the free
memory pool before creating a new task under program control. Otherwise, the
task may give up its variable space or stack to the spawned task.

PDOS maintains a memory bit map to indicate which segments of memory are
currently in use. Allocation and deallocation are in 2k byte increments. When a
task is terminated, the task’s memory is automatically deallocated in the
memory bit map and made available for use by other tasks.

The Task Control Block (TCB)

=

Although the locations of the task control block are made available to the user,
you must be cautious when using these locations. Many PDOS primitives use
these locations to perform their functions and any location may change at any
time as a result of these PDOS calls. The TCB may be modified significantly at
any time.

The Task Control Block contains most of the system variables that are specific
to a task, including various buffers, I/O parameters, and vectors. When a
program begins execution under PDOS the system automatically initializes
register A6 to point to the TCB. If the register is overwritten by the user, a
program can later recover it by executing the XGML (get memory limits) primi-
tive.

3.3-1/88 PDOS DEVELOPER'S REFERENCE

¢

A

(' The Kernel -TCB (cont.)
TASK Task Status Control Definitions
T $000(A6) = 256 byte user buffer
$100(A6) = CLB$ - 82 byte monitor command line buf
(o} $150(A6) = MWBS$ - 32 byte monitor work buffer
$170(A6) = MPB$ - monitor parameter buffer)
B $3B0(A6) = TSP$.L - task stack pointer
$3B4 (A6) = KIL$.L - kill self address
$3B8 (A6) = - reserved
$3BC(A6) = SVF$.B - save 68881 registers flag
$3BE(A6) = TRP$ - user TRAP vectors
$3FE (A6) = ZDV$.L - zero divide trap
$402(A6) = CHK$.L - CHCK instruction trap
$406(A6) = TRVS$.L - TRAPV instruction trap

. .. $40A(A6) = TRC$.L - trace vector
$40E(A6) = FPA$.8 - floating point accumulator
$416(A6) = FPE$.L - fp error processor address
. $41A(A6) = CLP$.L - command line pointer
($41E(A6) = BUM$.L - beginning user memory
$422(A6) = EUM$.L - end user memory
$426(A6) = EAD$.L - entry address

- $42A(A6) = IMP$.L - assigned input message pointer
Task Control $42E(A6) = ACI$.W - assigned input file ID
Block $432(A6) = LEN$.W - last error number

_— $434(A6) = SFI$.W - spooling unit file ID
$436 (A6) = FLG$.W - task flags
$437(A6) = SLVS$.B -~ directory level
$438 (A6) = FEC$.B - reserved
. $43A(A6) = CSCS$.W - clear screen character(s)
($43C(A6) = PSC$.W - position cursor characters
. $43E (A6) = SDS$.B - alternate system disk(s)
$441(A6) = SDK$.B - system disk
$442(A6) = EXT$.L - XEXT address
$446(A6) = ERR$.L - XERR address
$44A(A6) = CMD$.B - command line delimiter
$44B(A6) = TIDS$.B - task ID
$44C(A6) = ECF$.B - echo flag
$44D(A6) = CNT$.B - output column counter
$44E (A6) = MMF$.B - memory modified flag
$44F (A6) = PRT$.B - input port #
- $450(A6) = SPU$.B - spooling unit mask
($451(A6) = UNT$.B - output unit mask
$452(A6) = UIP$.B - unit 1 port #
$453(A6) = U2P$.B - unit 2 port #
$454(A6) = U4P$.B - unit 4 port #
ceees $455(A6) = UBPS$.B - unit 8 port #
$456 (A6) = - reserved
$458(A6) = TWO$.W - monitor word temps
$45A (A6) = TW1$.W - TWO-TW2 used by level

$45C (A6) = TW2S.W - 2 primitives
$45E (A6) = - reserved
$470(a6) = - debugger parameters

<<<<< 5500 (A6) <<<<<<< USER PROGRAM

C

C PDOS DEVELOPER'S REFERENCE 3.3-1/88 9

The Kernel - TCB (cont.)

Assembly

Assembly language programs normally access the individual fields of the TCB
as offsets from A6. The definitions are shown in the previous table. The naming
convention is a three-letter name followed by a dollar sign (e.g. the “units” field
is defined as “UNT$(A6)”). The PDOS assembler, MASM, recognizes and
defines these offsets if you declare the option “PDOS” at the beginning of your

program.

The startup module for C programs “CSTART:ASM” automatically saves the
TCB pointer in a variable called “_tcbptr” (note the leading underscore). To
gain access to this variable, C programs need the include file “TCB:H.”

The startup module for Pascal programs ‘“PMAIN:SR” saves the TCB pointer in
a variable defined as PTCB. Pascal programs need to include both
“SYVAR:INC” and “TCB:INC” to use this variable.

FORTRAN programs accessing the TCB must use the XGML function to pick
up the pointer. Here, as in BASIC, it is necessary to correctly specify the offset
of the desired field. FORTRAN programs use the functions BYTE, WORD, and
LONG to read or write the TCB variables.

BASIC programs have access to the TCB pointer through the variable SYS[9].
To access any of the fields in the TCB, however, a BASIC program must add
the specific offset of that field and be careful to use the correct width for the
variable (byte, word, long, etc.) BASIC programs use the primitives MEM,
MEMW, and MEML to read or write the TCB variables.

The following examples show how a program can modify its own unit
parameter to direct console output to the port defined as unit 2. The specific
offset of the UNT field is $451 or 1105 (decimal). When you run any of these
programs, all console output will be directed to the unit 2 port. Type UN 1. to
restore console output to normal (nothing will echo as you type).

OPT

PDOS

START MOVE.B #2,UNT$(A6) ;FORCE A 2 INTO THE UNIT FIELD

;LET ASSEMBLER RESOLVE TCB FIELD NAMES

XEXT sBACK TO THE MONITOR

END START
C
#include ’TCB:H' /* define tcb offsets and tcbptr */
main ()
{

tcbptr-> unt = 2; /* set the unit to 2 */

}

10

33-1/88 PDOS DEVELOPER'S REFERENCE

A7
s’

(The Kemel -TCB (cont.)
Pascal
TYPE {define these field types }
PTR = ~INTEGER;
BYTE = -127..127;
WORD = -32767..32767;
{$F=SYVAR:INC} {define the Pascal system variables}
{$F=TCB:INC} {define the TCB fields}
VAR .
TCB : TCBPTR; {copy of the pointer to the TCB}
PROCEDURE GETSYV (VAR SYVAR:SYVARPTR) ; EXTERNAL;
BEGIN
GETSYV (SYVAR) ; {point to the Pascal system variables}
TCB := TYPEOF (SYVAR”.PTCB, TCBPTR) ; {init my pointer to TCB}
TCB”.UNT := 2; {set the unit to 2}
END.
(FORTRAN
PROGRAM TEST
INTEGER TCB, DUMMY
PARAMETER (UNT=1105) !DECLARE THE FIELD
CALL XGML (DUMMY, DUMMY, DUMMY, DUMMY, TCB) {ONLY WANT THE TCB
BYTE (TCB+UNT) = 2 !SET THE UNT TO 2
END
BASIC
(10 UNT=0451H7 !DECLARE THE FIELD OFFSET
20 UNIT 2 !THIS DOES IT AS A BASIC INTRINSIC
30 REM OR
40 MEM[SYS[9]+UNT]=2 !THIS DOES IT DIRECTLY

There are a number of fields in the TCB that may be of use to the advanced
programmer. Be aware, however, that the definition of the TCB has changed in
the past as PDOS has evolved, and changes are likely to take place in the future.
If you can accomplish your purpose through more straight-forward techniques,
it would be a good idea to do so. But there are times when modification of TCB
(variables is the only way to do what you need to do.

The TCB appears to the program as a record in memory. For those languages
that support records (C, Pascal), you merely define a pointer to a record and then
modify the field by name. The alternative is to look at the TCB as a collection of
bytes/words/long-words and modify the TCB by reading and writing those
bytes. The technique in assembly is to move data to and from various offsets of
A6. In FORTRAN, the BYTE/WORD/LONG intrinsics do the job, and in
BASIC, the MEM/MEMW/MEML intrinsics will work.

The following TCB definitions use C for the examples. You must use an ap-
proach consistent with your programming language.

C
C

PDOS DEVELOPER'S REFERENCE 3.3-1/88 11

The Kernel - TCB (cont.)

|/*000%/ char ubuf[256]; " /* 256 byte user buffer */ |

The first 256 bytes of the TCB are a general purpose buffer called the “user buff-
er.” This buffer is used by many of the system primitives that do file access;
generally the disk directory is read into this buffer and scanned for your file
name whenever you open a file. You may use this buffer for anything that you
want to do, but be aware that PDOS primitives use it too. It can be destroyed
very easily. '

I/*lOO*/ char c¢lb[80]; /* 80 byte monitor command line bufferx*/ I

At offset $100 is the monitor’s command line buffer (CLB). The CLB is used by
the monitor every time it gets a new command or retrieves a task message. The
PDOS primitive XEXZ copies a text string into the CLB and exits. The XGLM
primitive uses the CLB as its buffer automatically. The RUN primitive in
BASIC uses the CLB to hold the message. Thus, the TCB fields CMD and CLP
usually reference the CLB. You might want to parse data in the CLB if the
XGNP primitive does not do the job you want. Another use for the CLB might
be to inspect various tasks and see what task each one is running; the informa-
tion is usually in the task’s CLB.

|/*150%/ char mwb(32]; /* 32 byte monitor work buffer x/ |

The monitor work buffer is at offset $150. This is the buffer used by the monitor
to build temporary strings or file name records. The primitive to parse a file
name into its constituent parts, XFFN, leaves the name in the MWB. XFFN is
usually followed in system calls by XRDN -- read directory name -- and XRDN
expects input in the MWB. Most application programs do not use either XFFN
or XRDN directly, but they call them indirectly by using the open file primitives
(XNOP,XSOP,XROP, XR0OO), or the close file with attribute (XCFA) primi-
tive, read file attribute (XRFA), write file attribute (XWFA), delete file (XDLF),
rename file (XRNF), define file (XDFL), zero file (XZFL), file altered check
(XFAC), or write file parameters (XWFP). The XCFA primitive is used by copy
file (XCPY) and the XRFA primitive is used by load file (XLDF). The append
file and copy file both use the open primitives. The MWB is also used by the
PDOS conversion routines that need to return a string. Thus, the date/time con-
versions and the binary to ASCII conversions usually modify the MWB. These
include the following:

XRDT - Read Date

XUAD - Unpack ASCII Date

XRTM - Read Time

XUTM - Unpack Time

XCBH - Convert Binary to Hex

XCBD - Convert Binary to Decimal

XCBM - Convert Binary to Decimal with Message

12

3.3-1/88 PDOS DEVELOPER'S REFERENCE

C

C

The Kernel - TCB (cont.)

Access to the MWB is important to you if you use any of these functions, be-
cause you must be careful that they do not interact -- if you need both XRTM
and XRDT, use the information provided by the first call before you perform the
second or it will be overwritten. There are also a few occasions when you might
want to access the MWB directly -- for instance, you might want to construct an
output file name by parsing the input file name while substituting a different ex-
tension. Use the XFFN call to break the name up; then change the extension in
the MWB and put the name back together.

I/*170*/ char mpb(60]; /* monitor parameter buffer */I

The MPB is used to store procedure file parameters or for command line recall --
but not both. If you are inside a procedure file, the MPB contains the strings
used to expand the symbols &1-&9. These symbols are stored as nine null-ter-
minated strings. Outside a procedure file, this buffer contains as many of the pre-
vious command lines as is possible to save in 60 bytes. The two uses of the

MPB are the reason that you cannot recall a command line if a procedure file is
involved. Also, since only one buffer is used, the procedure file parameters are
not local to nested procedure files but global. If one procedure file calls another
procedure file (with arguments), the expansion of the &1-&9 symbols will
change for both.

The line input calls reference the contents of the MPB if they are executed from
within a procedure file. The monitor alters the MPB with every command ex-
ecuted (when not in a procedure file). A Ctrl A from the monitor rolls the MPB
to get the last command entered. A program may push commands into the MPB
(so that the Ctrl A can retrieve them) with the XPCB call. Typing LT 2 at the
monitor displays the contents of the MPB buffer for all tasks. The line on the top
of the list is generally the last command line typed. You might want to access
the MPB if you want to write procedure file primitives that modifies the
parameters. For instance, you could write a program called “TSTFIL” that
would take the name of a file on the command line. This program could then
look up the file on the disk, return a status in &O if the file did not exist, parse
the name into name, extension, level, disk, type, size, etc. and place those values
into specific procedure file parameters for successive procedure file commands
to use. Or, you could write a GETSTR program that pauses the procedure file
while it reads a string from the keyboard. It then would put the string into a pro-
cedure file parameter to determine the next step of the procedure.

As an example, try the following program, named “TEST:”

START LEA.L A(PC),Al
XPCB

LEA.L B(PC),Al
XPCB
LEA.L C(PC),Al
XPCB
LEA.L D(PC),Al
XPCB
XEXT

DC.B *This’, 0
DC.B '*is’,0
DC.B ra’,0
DC.B ‘test’,0
EVEN

END START

oaQwy

PDOS DEVELOPER'S REFERENCE

3.3-1/88 13

The Kernel - TCB (cont.)

This program is executed from the following procedure file “X:”

*8l &2 &3 &4 &5 &6 &7 &8 &9
TEST

*s&]l &2 &3 &4 &5 &6 &7 &8 &9

The following example shows an invocation of “X” with parameters:

3>X 1,2,3,4,5,6,7,8,9

3>*1 23456789
3>TEST

3>*test a is This 1 2 3 4 5
3>

|/*1AC*/ char cob[8]; /* character out buffer */ I

This is a special buffer used by different PDOS primitives for temporary charac- -
ter strings. For instance, the XPSC primitive builds the output string for the posi-

tion cursor sequence in this buffer.

I/*1B4*/ char swb[508];/* system work buffer/task stack */ l

Every task in PDOS has its own set of stacks -- the user stack is typically lo-
cated at the end of user memory, and grows backwards towards the beginning of
memory. The supervisor stack is located here in the TCB -- at the end of the
SWB and growing back to the beginning. Whenever an interrupt or trap occurs
(PDOS calls included) that puts the CPU into privileged mode, this stack is
used. There are a couple of internal PDOS calls that also use the other end of

the system stack for a temporary workspace.

I/*3B0*/ char * tsp; - /* task stack pointer */I

This is the top of the supervisor stack, SWB (see previous note).

|/*3ax/ ~ void * kil; /* kill self pointer /|

The kill self pointer is a hook that allows a task to specify a special exit when it
runs out of input. If a task is created in background mode (i.e., no input port) it
will kill itself when it runs out of things to do. If this is not the desired action,
you can have the task jump to another set of instructions by putting the proper
address in the KIL vector. PDOS checks for procedure file input, unexecuted
“FE” commands, data from the IMP pointer, and a valid PRT. If thereisno
input from any of those, it executes an XCTB -- unless the KIL field is non-zero.
In that case, it jumps to the address given in KIL.

I/*3B8*/ long sfp; /* system frame pointer */]

The system frame pointer is used by the “FE” monitor command. The FE com-
mand creates a list of expanded commands and puts them out at the end of
memory. It then moves the end of memory down (EUM) so that other programs
executing will not overwrite these commands. The SFP is used as part of the

process of retrieving the commands.

14

33-1/88

PDOS DEVELOPER'S REFERENCE

™

C

The Kernel - TCB (cont.)

I/*3BC*/ char svf; /* save flag--68881 support (x881)*/ J

Some programs may require special hardware registers to be saved when a con-
text switch occurs. If this is the case, the program must execute an X881 PDOS
call (which sets the SVF flag to -1). On a task swap, if the SVF flag is set,
PDOS calls the BIOS routine B_SAV. By default this is used to save the float-
ing point state of the 68881 hardware co-processor, but it could be altered by the
user to save any important context. When a task is swapped in, the same flag is
checked, and the BIOS routine B_RES is called to restore the context.
Whenever a task exits to the monitor, the flag is cleared.

|/*3mD*/ char iff; /* RESERVED FOR INTERNAL PDOS USE */ |

This flag is reserved for PDOS use only.

|/*3BE*/ void * trp[l16]; /* user TRAP vectors *x/ I

The sixteen TRAP instructions cause a software interrupt through a special set
of vectors in low memory. PDOS tests the current task, and if the TRP vector
corresponding to the trap number has a non-zero value, PDOS jumps to that ad-
dress. The subroutine performs as if it had been called by a simple JSR instruc-
tion -- just exit by means of an RTS. The return address on the stack is the
address of the instruction immediately after the TRAP instruction, so you may
pass parameters to the trap handler by putting pointers in-line. Since a TRAP in-
struction is only 16 bits, it may act as a short subroutine call. Several instruc-
tions must be executed by PDOS in order to get it to the subroutine, so it is not a
fast subroutine call.

l/*3FE*/ long _zdv; /* zero divide trap */ |

The hardware zero divide trap works similarly to the TRAP vectors above. The
user subroutine is called in user mode, as if a JSR had been issued.

I/*402*/ long chk; /* CHCK instruction trap */ '

Trap vector for the CHCK instruction -- see above.

I/*406*I long trv; /* TRAPV;instruction trap */ l

Trap vector for the TRAPV instruction -- see above.

I/*40A*/ long trc; /* trace vector */|

If the trace trap bit is set in the status word, the system makes a call through this
vector. The debugger uses this vector when tracing. In addition, SMARTBUG
relies on this vector for the PB, XBUG, and breakpoint entries.

I/*QOE*/ long fpa[2); /* BASIC floating point accumulator*/l

This flag is reserved for use in BASIC only.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 15

The Kemel - TCB (cont.) | 0

I/*416*/ void * fpe; /* fp error processor address */ I
Reserved for use in BASIC only.
I/*41A*/ char * clp; /* command line pointer */] :

This pointer keeps track of how much of the command line has been seen by
XGNP. Normally, the pointer indicates a location in'the CLB, but it may be
reset to point to any string in memory. The use of this pointer also depends on
the value of the CMD variable. If CMD contains a null or a period, XGNP will
parse no further. If CMD contains a space or a comma, XGNP will parse to the
next delimiter, insert the delimiter in CMD, replace the delimiter in the string
with a null, advance the CLP to point after the null, and return to the beginning
of the parsed string. If the monitor finds a null in the CMD field, it reads a new P
line into the command line buffer (CLB) and resets the CLP to point to the CLB. W

e

I/*41E*/ char * bum; /* beginning of user memory */ l

The beginning of user memory is defined as the first available memory that does
not have information already loaded into it. When you load a program into
memory, the BUM is set to the address after the last location loaded. It is thus
the first memory available for variable allocation.

XLDF -- resets the BUM to note the last address loaded.

XGML -- returns the current value of the BUM as one of the parameters.
XCTB --initializes the BUM for the new task.

“ZM” -- resets the BUM to the start of task memory for the task.

“SV” -- defaults to saving the memory from the start of task memory to the
BUM.

® “LT1” --reports the current value of the BUM (second value after
“TCB="). '

¢

I/*422*/ char *_eum; /* end user memory */ I

The end of user memory defines the end of the stack. Whenever a task enters the G
monitor state, PDOS resets the user stack pointer to the current value of the
EUM minus 2. XGML returns a value called the “upper memory limit” equal to
the EUM minus 128. XCTB initializes the EUM for the new task. “FE” loads its
commands out at the end of memory and adjusts the EUM down to protect
them. “ZM” uses the EUM to mark where to stop clearing memory. “LT” dis-
plays the current value of the EUM under the column “EM”. The “FM” com-
mand without parameters looks for system available memory that is adjacent to
the EUM. The “GM” command adjusts the EUM to incorporate the new
memory. The “FM” command with a parameter lowers the EUM after the
memory has been given to the system.

16 i 3.3-1/88 PDOS DEVELOPER'S REFERENCE

PDOS DEVELOPER'S REFERENCE

The Kernel - TCB (cont.)

l/*426*/ char * ead; /* entry address */I

Normally, a PDOS task will start execution at the beginning of the task. One ex-
ception to this is a BASIC program that executes in the BASIC interpreter. Ob-
ject files may have an embedded starting address that is different from the
beginning of file, but SY files must begin execution at the task beginning. Most
of the time the entry address is the same as the start of the task -- it is set up by
the XCTB (create task) primitive and can be reset by the ZM (zero memory)
monitor command. The XLDF (load file) primitive will set the EAD to whatever
value is appropriate for the file loaded. The GO monitor command uses the cur-
rent value of the EAD as the default address to start executing. The current
value of the EAD is listed by typing LT 1 at the monitor -- it is the fourth num-
ber after the “TCB=".

I/*42A*/ char *_imp; /* internal memory pointer */l

PDOS supports I/O redirection through internal pointers in the Task Control
Block. The XGCR (get char) primitive scans three sources of input for data. If
the pointer IMP is non-zero, a byte is retrieved from where it points and the
pointer is incremented. If the byte thus retrieved is a null, the pointer is cleared
and PDOS continues looking for data. The IMP pointer is the highest level of
the input hierarchy that also includes the ACI file IDs and the PRT input port.
Data from this source thus will supersede data waiting from the other sources.
One good use for the IMP is to provide default responses for line-oriented in-
puts. If a program is*going to gather data via one of the get line calls, it may put
a pointer to the default string in the IMP. The get line call will then read from
the pointer (echoing to the screen) and at the end of the string (the string must be
terminated with a null not a carriage return), PDOS will wait for a terminating
carriage return from the keyboard. The user then has the option of editing the
default response to provide useful changes, or entering a carriage return to take
the default.

/*42E*/ int _aci; /* assigned input file ID *x/
/*430%*/ int aci2; /* second assigned input file ID */

The second level in the input hierarchy is the AC file ID -- when console input
is supplied from a disk file. The normal way to re-direct input to come from a
file is to execute a procedure file (type AC) from the monitor. However, a
program can also modify the ACI field of the TCB to get the same effect. The
file must be opened using one of the standard PDOS open calls and the file ID is
saved in the ACI field. When an error occurs on input from the file (usually end
of file), PDOS closes the file and clears the ACI field. The monitor will close
the file early in response to an “RC” command, or a break character (Esc Ctrl
C) from the keyboard. The second ACI field is to allow for one level of nesting -
- one procedure file can call a second, but that file cannot call a third. When
input terminates from ACI, the ACI2 field is checked and popped into ACT if
non-zero. When a procedure file calls another, the ACI is pushed into ACI2 (if

 the latter is non-zero).

3.3-1/88 17

The Kernel - TCB (cont.)

l/*432*/ int _len; /* last error number */ I

The function XLER loads an integer value into the LEN field of the TCB. The
XERR function loads an error value into the LEN and exits. In the latter case,
PDOS displays an error message to the screen. Programs may communicate by
way of the LEN status -- generally a zero value indicates successful completion,
while a non-zero value indicates some kind of error. In a procedure file, the spe-
cial token “&0” is expanded to hold the current value of the LEN field. It is pos-
sible to write special programs that augment procedure file control by reading or
modifying the LEN field. '

|/*434%/ int sfi; /* spool file id *x/ |

PDOS output can be re-directed to a file with the SU command from the
monitor. This command has two parameters -- a unit number and a file or port. -
If the second parameter is a port, the unit number is used to select which one of
the fields U1P, U2P, U4P, or USP should receive the specific port value. If the
second parameter is a file, that file is opened and the file is placed in the SFI
field. In that case, the unit number is placed in the SPU field. For any character
output, the current value of the UNT variable is checked against the SPU field.
If there are corresponding bits, the character is written to the file open on the
SFL

|7*436%/ char flg; /* task flags (bit 8=cmnd line echo) */|

The FLG field contains several “mode” bits that can be set or cleared to affect
various PDOS functions. The bottom two bits are used by the debugger to vary
the way memory inspect/change is done. If the least significant (bit 0) is set, the
debugger will modify memory a byte at a time rather than a word at a time. If
the next bit (bit 1) is set, the debugger will treat memory as “write-only” -- it
will not read the locations but will write to them. This may be useful in working
with some types of memory mapped I/O registers. The next three bits (2-4) are
currently reserved for future expansion. Following that is a bit that is set upon
entry to the XGLM function and cleared on exit of the function, The next bit (bit
6) if set, tells PDOS to convert lower case to upper case whenever one of the get
line calls are performed. Since the monitor uses one of these functions, this is
one way to obtain case folding on the command line. The most significant bit
(bit 7) signals the PDOS monitor not to echo command lines to the monitor. The
following diagram is extracted from MPDTCB:SR.

18

33-1/88 PDOS DEVELOPER'S REFERENCE

K

()

The Kemnel - TCB (cont.)

FLG$.B=PAM__LEB
§ = Byte 1&C (DEBUG)
= No echo (DEBUG)
= Long/Byte skip I&C (DEBUG)
= XGLM
= XGLx CHANGE LOWER TO UPPER

=NO COMMAND LINE ECHO

The FLG field is copied from the parent task to the child task when a task is
created.

l/*437*/ char slv; /* directory level */I

The “LV” command sets a mask byte that indicates which files will be listed by
the “LS” command when the level is not explicitly specified. It also dictates the
default level when new files are created. The level specifier does not restrict ac-
cess to files on levels, but it does allow you to order your disk files into logical
groupings. The default level when PDOS comes up is level 1. Level 255 is a spe-
cial case. If your task is set to level 255, files at all levels are visible to you.
Files may be created at level 255, but it is not possible to list them by
themselves -- listing the files at level 255 lists files at all levels.

The SLV field is copied from the parent task to the child task when a task is
created.

I/*438*/ char fec; /* reserved for PDOS internal use */l

This field is reserved for PDOS use only.

l/*439*/ char sparel; /* reserved for future use */I

This field is reserved for future use by PDOS.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 19

- The Kernel - TCB (cont.) -

l/*43A*/ char c¢sc[2]; /* clear screen characters */ I

The CSC field and the PSC field are designed to give some terminal inde-
pendence to PDOS. If these two fields are properly initialized, the full-screen
editor can run, and most other utilities that use terminal functions will work as
well. The CSC field allows the user to specify up to four characters (two escapes
and two other characters) to output when a program requires a clear screen se-
quence. The encoding is fairly simple -- load the two bytes with the characters
to print. If the high bit is set on either byte, that byte is preceded by an Esc.
Some terminals, then, require the sequence Esc H Esc J to clear the screen. The
character “H” has a decimal value of 72 and a hexadecimal value of 48 in

ASCII. Adding the escape bit makes it a C8. The “J” character is a 4A, which be-

comes a CA with the escape bit set. The entire sequence is C8CA. If the second
byte is not necessary, leave it zero.

Some terminals are still so complex in their terminal sequences that this scheme
is not enough. An example of this complexity is the ANSI standard terminal se-
quence. PDOS provides for this type of terminal by leaving a special call-out in
the BIOS for terminal functions. If the CSC is zero, or if the first byte of the
CSC is FF, PDOS calls the routine BSCLS in the BIOS to clear the screen. The
default code in MBIOS for B$CLS performs the clear screen function for the
ANSI terminal, but you may modify it to suit your own purposes. The B_CLS
function needs to load the character sequence into memory using MOVE.B
xx,(A3)+ instructions. A null character terminates the string. If BSCLS returns
with a status of NE, PDOS simply outputs the string. Otherwise, the system ex-
pects register DO.W to contain a pair of bytes in the usual CSC format. It is pos-
sible to have code for several types of terminals in the BSCLS function by
setting the first byte of the CSC to FF and using the second byte as a terminal
type code.

There is a problem in associating the clear screen variable with a task rather than
with the port. With virtual ports, where a task may move from one terminal to
another -- it should retain the ability to clear the screen regardless of where it
runs, however it does not. Also, a task may have more than one output unit ac-
tive -- printing simultaneously on two or more terminals. In such a case, the task
ought to be able to clear both screens with a single XCLS function, but it can’t.

Refer to your Installation and Systems Management guide for more details
about the clear screen call.

The CSC field is copied from the parent task to the child task when a task is
created.

20

3.3-1/88 ~PDOS DEVELOPER'S REFERENCE

oo

&

C

~

The Kernel - TCB(cont.)

l/*43C*/ char psc(2]; /* position cursor characters *x/ I

The PSC or position cursor sequence works with the CSC field to provide ter-
minal independence. The characters stored here determine the lead-in sequence
for the position cursor command; whether or not the row/column values are
biased by a space; and whether the row or the column comes first. The two bytes
of the PSC are normally output as lead-in characters for the function. If the high
bit of the first character is set, the tow and column values are biased by $20.
(This means that position zero, zero -- the upper left corner of the screen -- will
be addressed by outputting the lead-in characters followed by two spaces). If the
high bit of the second character is set, the column is output first, followed by the
row, otherwise, the row comes first.

As is the case with the CSC field, if the entire field is zero, or if the first byte is
FF, PDOS calls the routine B_PSC in the BIOS to perform the cursor position
sequence. B_PSC receives the row value in register D1.B and the column value
in D2.B. Register A3 points to the buffer where the sequence should be
deposited. Again, one might set the first byte of the sequence to FF and use the
second byte as a function code. When B_PSC returns, if the status is NE then
the string at (A3) is null terminated and sent to the terminal. Otherwise, PDOS
finishes making the position cursor sequence, using D0 as the bias for the row
and column, swapping them if the high bit is set on the second character of the
PSC field, and storing the row and column two bytes beyond A3. The code is as
follows:

ADD.B D1,DO
ROR.W #8,D0
ADD.B D2,DO

;ADD ROW

;ADD COLUMN

TST.B 1+PSC$ (A6) 7 SWAP?
BPL.S @0006 ;N
ROR.W #8,D0 Y

*

@0006 ADDQ.W #2,A3

MOVE.W DO, (A3)+ ;STORE POSITION CHARACTERS

One problem is that the output routine terminates on a null character. If your ter-
minal requires that the row/column not be biased, but that the values go out
directly, there may be a problem with addressing on row or column zero. In
some cases, it might be possible to add $80 as a bias, since many terminals ig-
nore the high bit. This would allow PDOS to distinguish between a terminating
null and the 80 used to indicate a row or column zero. Another technique that
might work would be to output the cursor positioning string within the B_PSC
function, using the XPDC function. This function does not rely on a terminating
null, but uses a count in register D7 to tell when to stop. In this case, the B_PSC
would need to return a null string in the COB buffer (where A3 points) and a
status of NE.

The PSC field is copied from the parent task to the child task when a task is
created.

PDOS DEVELOPER'S REFERENCE

33-1/88 21

The Kernel - TCB (cont.)

/*43E*/ char _sds([3]; /* alternate system disks *x/

/*441%/ char sdk; /* system disk *x/

These four bytes indicate the “path” searched whenever any file name is
specified for an open without an explicit disk designator. The search order is
reversed from the storage order -- SDK s the first disk, followed by SDS[2],
SDS[1], and SDS[0]. SDK is the “current” disk; the one used for files created
without a disk designation, and the disk searched whenever an “LS” monitor
command is given without a disk designation. The PDOS monitor outputs the
contents of the SDS/SDK fields as the monitor prompt, using the BEMPT
routine in MBIOS. This is entered via offset B_PDM in the BIOS. The prompt
routine uses the convention that 255 is an illegal disk, and does not display that
value. Thus, if only one or two numbers are given to the “SY” command, the
remaining values in the SDS field are filled with FF or decimal 255. One odd
consequence of this is that if you specify SY 255, the PDOS prompt is reduced
to a single right angle bracket and there is NO default disk.

The SDS and SDK fields are copied from the parent task to the child task when
a task is created.

l/*442*/ void * ext; /* XEXT address */l

Programs normally exit using the XEXT primitive. When PDOS performs this
function, it checks the TCB variable EXT. By default, this field contains a zero,
but if it contains a non-zero address, PDOS jumps to that address instead of
taking a normal exit. It is thus possible for a program to specify special action to
be taken on exit -- closing files and other termination sequences, for instance. It
is very important that the termination routine specified by the EXT field clear
the EXT field before it attempts termination, or the task will be held in a loop,
continually executing the termination routine.

In the C standard library, the XEQ function loads another program image into a
buffer and calls it as if it were a subroutine. XEQ alters the EXT vector to force
the program to return to the caller instead of exiting. You may use the EXT vec-
tor to control the return of a task spawned with the XCTB call -- but only if you
give XCTB the starting address. If you give XCTB a monitor command to ex-
ecute in the form of a command string, PDOS loads the command into the com-
mand line buffer (CLB) and then does an XEXT, depending on the monitor, to
parse the CLB for the next command. This means that your exit routine gets
called BEFORE the task starts.

The EXT field is copied from the parent task to the child task when a task is
created.

22

3.3-1/88 PDOS DEVELOPER'S REFERENCE

‘\tg_y'

€

¢

(: ' The Kernel - TCB (cont.)

I/*446*/ void * err; /* XERR address */ I

Most of the same things that apply to the EXT vector also apply to the ERR vec-
tor. This pointer determines where the program goes when it executes an XERR
system call. If the ERR vector is zero, PDOS handles the error by displaying a
message and exiting to the monitor. If the ERR field contains a non-zero ad-
dress, PDOS jumps to that address instead. Although the XERR function is ex-
ecuted with the error number in register DO, PDOS passes it to your error trap in
register D1. Since most programs can exit by either the XEXT instruction or the
XERR instruction, you are generally advised to set both vectors to properly con-

trol program termination.
The ERR field is copied from the parent task to the child task when a task is
(created.
l/*MA*/ char cmd; /* command line delimiter */ |

The CMD field works with the CLP pointer to control the action of the XGNP
(get next parameter) function. Since the monitor uses XGNP to parse the name
of the next program to run, and since all programs use the XGNP function to col-
lect command line arguments, this field can be useful to any system programs
that affect program execution or parameter passing. The XGNP call can be used
as a parser if its functions fit your needs.

(Basically, the XGNP first examines CMD. If it contains a period or a null,

. : XGNP does nothing, indicating no parameter available. If it contains a space or
acomma, XGNP parses the string indicated by the CLP until it encounters a
space, comma, period, or null, This delimiter is saved in the CMD field and a
null placed in the string where it was found. Leading spaces on a parameter are
ignored. An opening parenthesis disables the usual parsing for spaces, commas,
or periods until a matching closing parenthesis is found. PDOS keeps a count of
unclosed opening parentheses, so that they may be nested. It is thus possible to
pass a group of parameters as a single parameter through XGNP,

(7 l/*44B*/ char tid; /* task ID */ l

The task number is also available in SYRAM and most PDOS functions use that
value when they need it. This field is used primarily by application programs
that need to know the current task number. PDOS does use the TID field in the
following functions: the XCTB function uses the TID for the parent task field in
the task list; the get line calls reference it for the &# symbol expansion in proce-
dure files; and the monitor function “LT” determines which line gets the asterisk
(indicating the current task) from the TID field.

C

PDOS DEVELOPER'S REFERENCE ' 3.3-1/88 23

The Kemel - TCB (cont.)

|/*44c*/

char ecf;

/* echo flag */ I

The ECF flag is used by PDOS to disable all output without modifying the cur-
rent value of the UNT variable. The ECF flag is normally set/cleared by the
“EE” command from the monitor. The XERR primitive also clears the ECF flag
so that output will be restored whenever an error occurs. Finally, when the
monitor gets a command line that is not from a procedure file or an “FE” (For
Every) frame, it clears the ECF flag. The output character routine in PDOS only
looks at the high bit of the ECF to determine whether to allow output or not.
This bit is set by the “EE” command whenever ANY non-zero value is loaded

into the ECF.

The “GT” monitor command also sets the high bit to disable output while scan-
ning for the label, but it restores the previous value of the ECF afterwards. The
“LS” command tests the 1 bit of the ECF (set by EE 2). If that particular bit is
set, the “LS” command appends the disk number to every file name and
CLEARS the high bit for each line of output that has a file name. This makes
possible a more condensed file listing -- one that does not have the usual header
and footer that the “LS” command prints. Thus, EE 2.LS ;@.EE 0 will not dis-
play the disk name, the directory size, or the summary information. It is possible
to do a multiple disk listing by using the “FE”, “LS”, and “EE” commands
together. For instance, to display all procedure files on disks 3-28 you might use
the following command:

x>FE (3-28) EE 2[LS ;@/AC/&F]EE 0

The remaining bits of the ECF are undefined and reserved for future use.

|7 *a4p*/

char cnt;

/* output column counter */J

The CNT field in the TCB is used to keep track of the current print column on
output. It is set directly by the XPSC primitive, cleared by printing a carriage
return, decremented by printing a backspace, and incremented by printing a non-
control character. Whenever PDOS expands tab characters to spaces, it referen-
ces the current value of the CNT field. Similarly, the XTAB function uses the
CNT field to determine how many spaces to print.

If a task has more than one output port (UNT not 1) then the CNT field will not
be able to simultaneously maintain the correct value for all ports. This means
that tabs may not expand correctly on both (or either!) ports, and the XTAB
function may not perform correctly for both. There is a table in SYRAM that
contains the current row and column position for every port -- this table is
referenced by the XRCP function and is more likely to be accurate than the

CNT field.

24

33-1/88

PDOS DEVELOPER'S REFERENCE

£

N

€

L W

The Kernel - TCB (cont.)

I/*44E*/ char mmf; /* memory modified flag */I

The memory modified flag is used to tell what type of program executed pre-
viously, and if it is safe to re-enter it. This determines the proper action of the
“GO” command from the monitor, and allows some programs to perform a dif-
ferent action on re-entry than on initial entry. The “GO” command checks the
sign bit of the MMF. If it is set, and no starting address was given, the “GO”
command simply exits. If the MMF has a zero or positive value, the “GO” com-
mand uses the EAD (entry address) as the default starting address. This gives
the user the capability of leaving a program, executing a few monitor com-
mands, and re-entering the program with memory intact. A few monitor com-
mands, however, will alter the contents of task memory. Re-entering a program
after one of these commands might cause a crash.

These commands (specifically “ZM,” “FM,” “TM” with a negative port, “FE,”
“DM,” “TF,” and “LL") use a potentially large amount of task memory for buff-
er space. Therefore they set the MMF flag to minus 1. The XCTB and XCHF
calls both clear the MMF flag. XCHF is used by the monitor to start any new
program, so with any program execution the MMF always starts off zero.
BASIC, QLINK, and MEDIT all set special values in the MMF to let them dis-
tinguish between initial entry (when the MMF is zero) and a re-entry. The
values used by these three programs are given in the file MPDTCB:SR and are
as follows:

MMFS$ = 1=BASIC
2=QLINK
3 =MEDIT

Other values for the MMF are reserved for future PDOS expansion.

I/*44F*/ char prt; /* input port # */I

The PRT field is used by the get character primitives (XGCR, XGCC, XCBC,
XGCP, and XGCB) to select which input buffer to use for data. If the PRT has a
value of zero, the task is a background task. By definition, background tasks
may receive input from a procedure file or the IMP vector. If the task attempts
monitor input with no input port, the task simply exits and gives up its memory
to the system. If a program attempts character input with no input port, it
receives an error 86 -- “Suspend on Port 0.”

To avoid having multiple tasks trying to grab input from the same keyboard,
XCTB keeps track of which ports have been allocated to tasks and which
haven’t. This record is kept in the SYRAM field, PATB. XCTB refuses to create
a task with the same PRT value as another task. When a task exits with a non-
zero value in the PRT, the corresponding PATB entry is cleared. If a task should
clear its own PRT and then abort, the PATB entry for that task is still allocated,
and PDOS will not allow you to create a task on that port.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 25

The Kernel - TCB (cont.)

Several additional uses are derived from the PRT field by PDOS functions.
XSTM tests it to tell if a task is a background task. If so, and the task sends a
task message with a negative destination, the message will be sent to the parent
task. In this way, a task can create a background task for a particular function
and that task can send a message to the parent on completion or other state
change. If the task is not a background task and sends a task message to a nega-
tive destination, the message will come back to the originating task. This probab-
ly will be found and displayed by the monitor after the program exits.

Some PDOS primitives use the PRT as the default port if none is explicitly
given. These are XSPF -- set port flag, XRPS -- read port status, and XRCP --
read cursor position. There is opportunity for error in this last case. A program
may use the XRCP function to save the current cursor position, then position to
a new location to write a message, and then re-position to the old position. You
might, for instance, write a program to keep the current time displayed in one
corner of the screen. If this program runs as a regular task it will have no
problem, but if it runs as a background task (and does not explicitly specify the
port to XRCP), it will not correctly read the cursor position. This is because
XRCP uses the PRT value to index into the proper table, and the PRT value is
zero for background tasks. Such a program should probably pick up the port
number from the U1P field and use that in the specification of the port for
XRCP.

One last PDOS function that makes extensive use of the PRT field is the “TM”
command from the monitor. This function maps the current port to an alternate
port, copying input from the current port to the output of the alternate port and
vice-versa. It does this by storing one port number in the PRT and the other port
number in the U1P and then reversing them. It is sometimes possible for a task
to crash while in transparent mode, leaving the unfortunate user with the PRT
driven by a modem port or some other inaccessible device. The MABORT
program now searches for this situation and restores the PRTS$ field for the task
that last received the port.

[/*450*/ char _spu; /* spooling unit mask */ I

The SPU field is used to direct output to an output spool file. During character
output, the UNT is compared against the SPU. If any bits correspond, the charac-
ter is sent to the file ID in the SFI field. The SPU value supersedes the mapping
to the U1P, U2P, U4P and USP. So, if the SPU value is set to 2, unit 2 data will
go to the spool file instead of to the U2P port. If the SPU is set to 16, however, it
will not overlay any of the output ports. In that case, with valid port numbers in
all four UxP fields, and a UNT value of 31 it is possible to direct character out-
put to five different destinations!

The “SU” command from the monitor will set the SPU field if the second argu-
ment is a file name. If the second argument is a port number, it sets one or more
of the UxP fields. SU 0 clears the SPU field and closes the file ID in the SFI
field.

26

3.3-1/88 ' PDOS DEVELOPER'S REFERENCE

P

The Kernel - TCB (cont.)

I/*451*/ char _unt; /* output unit mask */]

The UNT field of the TCB directs character output to all, some, or none of the
output sinks of the task. The output routine checks the SPU for correspondence
with a copy of the UNT field. If any bits match, the byte is sent to the spool file
and those bits are cleared from the copy of the UNT field. The first four bits of
the copy of the UNT field are then checked one at a time. If the bit is set and the
corresponding UxP field has a non-zero value the character is sent to that port.
XCTB initializes the UNT field to 1.

/*452%/ char _ulp; /* unit 1 port # */
/*453%/ char _u2p; /* unit 2 port # */
/%*454%/ char _udp; /* unit 4 port # */
/*455%/ char u8p; /* unit 8 port # */

These four fields determine the output port(s) connected to a task. If none of the
fields contain a valid port number, the task does not perform terminal output --
at least not through PDOS. The U1P contains the primary output port number.
When the task is created the UNT field is set to 1, making the U1P the only out-
put port enabled. Generally, the U1P is the same as the PRT port, since most
tasks use one port for both input and output. (Such does not have to be the case,
however).

The U2P port is traditionally the port for printing listings. Many PDOS systems
have a command in the start-up file to direct the U2P to the port occupied by the
system printer. Earlier versions of PDOS did not allow the U2P values to be set
by the “SU” command; rather a variation of the “BP” command (negating the
port number) sets the port characteristics and assigns the port as the U2P port at
the same time. This technique is disparaged now as being obscure, but it still
works. The accepted technique is to type SU 2,<port>.

The TTA and TTS I/O drivers and the DN monitor comand all get their output
unit from this field.

I/*456*/ char spare2[170]; /* reserved for system use */ I

This block of memory contains special registers used by the debugger and a few
temporary variables used by various PDOS primitives. Their assignment is sub-
ject to change without notice.

'/*500*/ char _tbe[0]; /* task beginning */I

This “field” is actually not a field at all, but rather the beginning of the program
space.

Further information may be found by studying the comments in the file
MPDTCB:SR -- and by experimentation.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 27

The Kernel (cont.) 0

SYRAM

There are a number of fields in the TCB that may be of use to the advanced
programmer. However, be warned that in the same way that the TCB determines
the functioning of an individual task, so does the SYRAM block determine the
functioning of an entire PDOS system. SYRAM is the variable space for the
PDOS kemel. Within SYRAM are contained all the system parameters that
must vary -- i.e., those that can’t be coded into EPROM. The PDOS system it-
self is coded in position-independent assembly language. There is only one ab-
solute value assumed in the entire system and that is the pointer to SYRAM (a
value labeled BSSRAM and usually set by the xxDOS:GEN procedure file).
Once an interrupt routine has found SYRAM it can find anything else in the

PDOS system.
An application program generally has no need to modify variables in SYRAM. . A
Programs changing SYRAM variables may crash the system and will probably R

not be portable to other PDOS systems. Future versions of PDOS may alter the
structure of SYRAM, making things difficult for programs that depend on its
present structure. The current structure of SYRAM is always defined in the as-
sembly language module MSYRAM:SR. You should check the MSYRAM:SR
file or the Installation and Systems Management guide for your system for any
differences from the description given below.

SYRAM consists of three main parts. The first part contains fixed variables and

tables of standard size which are pre-initialized by the BIOS. The second part of amn
SYRAM also contains fixed variables and tables of standard size, but are pre-ini- L V%
tialized by PDOS. These SYRAM offsets do not change and are included as as-

sembler reserved words. The third part of SYRAM has the SYSGEN

value-dependent tables, where the offset location of each table depends on a

variable.

Many of the values in SYRAM are determined by conditional assembly symbols

in the files MBIOS:SR and MSYRAM:SR. These may be set by modifying the

actual source code of these files, or by defining the symbol when performing a

sysgen. In the following discussion, if a variable table depends on such a sym- L
bol, the name of the symbol and the defining file are given. A

Fixed Offset BIOS Initialized

|7*000%/ char * bios; /* address of BIOS RoM */ |

The first pointer in SYRAM indicates the start of the BIOS table. Since the
BIOS code has (at least at the start) a fixed structure, this enables programs to
get at the routines for the different types of I/0. For example, the driver file
TTA picks up the BIOS pointer to get the BIOS UART table. After indexing to
the appropriate table (based on the port type), it retrieves a pointer to the
specific BIOS “putc” entry point. There are a number of fields in the BIOS that
can be useful to a systems program. The MBIOS:SR file defines the BIOS struc-
ture.

(oo

28 ' 3.3-1/88 PDOS DEVELOPER'S REFERENCE

The Kernel - SYRAM (cont.

)

I/*004*/ char * mail; /* mail array address */

In order for BASIC programs in different tasks to communicate, there needs to
be a special memory area set aside outside of tasking memory. BASIC defines
this area as an array, and initializes the first long word as an array descriptor.
Programs in other languages may use the mail array to pass information back
and forth, but if BASIC is in the system it would be safest to avoid the first long
word. '

The size of the mail array is determined by the MBIOS symbol “MSZ” The
default size is 256 bytes. The mail array is allocated at the end of tasking
memory.

J/*008%/ int _rdkn; /* RAM disk # */

|

This variable holds the current number of the RAM disk. The RAM disk can be
dynamically mapped to any number by way of the “RD” monitor command. The
initial value of the RDKN field is set by the MBIOS symbol “RU”. The default
value is 8.

|/ *00nx*/ int _rdks; /* RAM disk size */

]

The size of the RAM disk is given in multiples of 256 bytes. This is the size of a
disk block under PDOS. The default size of the RAM disk is 255 blocks. The
MBIOS symbol “RZ” sets the initial value of this parameter. Later, the second
parameter of the “RD” monitor command can set it to any size desired.

I/*OOC*/ char * rdka; /* RAM disk address */

]

The starting address of the RAM disk defines where in memory the RAM disk
begins. The initial value of RDKA is set by the MBIOS symbol “RA”. If the ini-
tial address is zero and the initial size is non-zero, PDOS allocates the RAM
disk from the end of tasking memory and calculates the starting address after
sizing RAM. You might want to set the RAM disk address if you have a
separate memory card that you want to dedicated to your RAM disk. The RAM
disk address may also be set by the third parameter of the “RD” monitor com-
mand.

I/*OlO*/ char bflg; /* BASIC present flag */

]

This flag is set during startup to the value of the FBA symbol (in MBIOS). It in-
dicates whether or not BASIC was linked into the system. If there is no BASIC
interpreter present, the “EX” command from the monitor returns an error 77, as
does any attempt to run a file of type “EX” or “BX”. The default depends on
whether or not you have linked with a version of PDOS containing BASIC.

PDOS DEVELOPER'S REFERENCE

3.3-1/88 29

The Kernel - SYRAM (cont.)

I/*Oll*/ char dflg; /* directory flag */

This flag is set during startup to the value of the FDR symbol (in MBIOS). Its
value is zero unless the user has chosen to make file names local to the current
directory level. Normally, any program can access any file on the specified disk
without regard to the level number of the file. If the directory flag byte is set
minus ($80), you can only access a file on a level different from your own by
specifically specifying the level. Two files may havé the same name on the same
disk if the directory flag is set and they are on different levels.

|7*012%/ int £681; /* 68000/68010 flag */

The 68000 and 68008 differ from the other processors in the information saved
on the stack during an exception. The same version of PDOS runs on both the
68000 and the 68010, but to account for the difference in the exception han-
dling, PDOS tests the processor during initialization to determine the processor
type. The “F681” flag is then set to O to indicate a 68000 or to 2 to indicate a
68010. Any modifications to this flag will probably cause a crash.

I/*014*/ char * sram; /* run module B$SRAM */

The linker defines the symbol BSSRAM to be the pointer to the start of
SYRAM. This is so that exception processors can load the pointer without refer-
ring to registers. In a ROM environment, it may be most convenient to put the
pointer itself in SYRAM, since there may not be another place available. RUN-
GEN uses this value to produce run modules. In a RAM environment, the loca-
tion of SYRAM itself may change from time to time, and putting BSSRAM
inside SYRAM would be like locking the key inside the safe. Therefore, a fixed
location is used in the xxDOS:GEN file to provide a pointer to SYRAM.

I/*018*/ int sparel; /* reserved for expansion */

This location is reserved for future use by PDOS.

Fixed Offset PDOS Initialized

/*01A*/ int _fent; /* fine counter */
/*01Cc*/ long tics; /* 32 bit counter */

There are two counters in the PDOS system. Both are incremented once per
clock tic (generally every hundredth of a second, but it may be different). The
fine counter counts up to 1 second of time and is cleared. The tics counter runs
endlessly and rolls over at the maximum 32-bit number.

30 - 3.3-1/88 PDOS DEVELOPER'S REFERENCE

AW

ey

The Kernel - SYRAM (cont.)

/*020%*/ char _smon; /* month */
/*021%/ char _sday; /* day */
/*022%*/ char _syrs([2]; /* year *x/
/%024%*/ char _shrs; /* hours *x/
/*025%/ char _smin; /* minutes */
/*026%/ char ssec[2]; /* seconds */

The PDOS system clock keeps track of the current day, month, and year, as well
as the hour, minute, and second. They are stored as 8-bit integers and incre- .
mented as is appropriate.

PDOS does not account for leap-year in its roll-over. This may mean that it is
necessary to manually reset the clock every four years. PDOS also does not try
to keep track of Daylight Savings Time. The SYRS and SSEC fields have an
extra byte at the end in order to put the time and date onto 16-bit boundaries.
These unused bytes are reserved for PDOS use.

l/*028*/ char patb[16]; /* input port allocation table*/l

PDOS attempts to enforce a limitation that only one task can own the keyboard
on any given port. The port allocation table serves this purpose by keeping track
of what tasks have allocated what ports for input. The XCTB (create task) may
request an input port for the new task. Before creating the task, PDOS checks
the PATB to see if that port is already allocated. If the port is already allocated
to another task, PDOS sets the new task’s PRT value to zero. The task number is
always saved as the binary complement of the actual task number. Thus, task 0
is saved as FF, task 1 as FE, etc.

I/*038*/ char brkf[1l6]; /* input break flags */ I

Two characters in PDOS are considered “break characters”. These are Ctrl C
and Esc (decimal values 3 and 27). Whenever the character input routine detects
that one of these characters has been pressed, the BRKF table entry correspond-
ing to that port is set to a -1 (for an Esc) or +1 (for a Ctrl C). The XCBC (check
for break character) primitive tests this table and returns a status indicating its
value.

[/*048*/ char f8bt[16]; /* port flag bits */ I

PDOS allows some control of characteristics of an I/O port through the “BP”
monitor command and the XBCP primitive. In addition to setting the data rate
on the port these calls allow the user to configure the port with various options.
The F8BT table assigns an 8-bit status to each of the PDOS ports. Each status
byte has the following structure:

PDOS DEVELOPER'S REFERENCE

3.3-1/88 31

The Kernel - SYRAM (cont.)

FHPI 8DCS

0 = Ctrl S Ctrl Q enable

1 = Ignore control character

2=DTR enable '

3 = 8 bit character enable

4 = Receiver interrupts disable

5 = Even parity enable

6 = High/low water flags (RESERVED)
7 = Ctrl S Ctrl Q flag bit (RESERVED)

y

Bit zero, if set, tells PDOS to use XON/XOFF handshaking on the port. If a Ctrl
S is detected on input, PDOS stops output to that port until a Ctrl Q is seen. If
PDOS gets behind on processing input and this bit is set, a Ctrl S will be trans-
mitted to stop the other device from transmitting.

Bit one, if set, tells PDOS that the port is not to perform special input processing

on the data stream. This means that Esc and Ctrl C characters are treated as
regular data and do not set the break flag. The buffer clear character, Ctrl X, is
also disabled by this bit.

The virtual port (window) switching character is also not disabled by this bit;
you should not have this port enabled for virtual ports either, if you plan to
send/receive binary data.

Bit two tells PDOS to perform hardware handshaking. If the hardware supports
it, PDOS looks for a ready status on the DTR line before outputting, and will
drop its own DTR signal when it needs to signal another computer to stop send-
ing data. Check the xxBIOSU:SR file on your system to see what this bit does.

Bit three tells PDOS to send and receive eight bits of data at a time on the port,
rather than seven. Some terminals may send or receive the eighth bit under spe-
cial circumstances. Similarly, eight bit data transmission may be required for
some communications protocols.

Bit four, if set, disables receiver interrupts on the port. PDOS allows non-inter-
rupt received characters and the XGCR primitive “polls” the UART directly if

- the buffer is empty and this flag bit is set.

32

33-1/88 PDOS DEVELOPER'S REFERENCE

e
s

o

C

The Kernel - SYRAM (cont.)

PDOS DEVELOPER'S REFERENCE

Bit five tells PDOS to enable parity on the port and to use even parity. PDOS
does not support odd parity, although you might set the appropriate bits in your
xxBIOSU:SR file and send odd when even is requested. The rest of PDOS does
not use parity and provides no error handling; this is only a signal to the BIOS
modules.

Bit six is reserved for internal use by PDOS. It signals that the internal buffer for
this port is almost full. This is known as crossing the high water mark. If Ctrl S
Ctrl Q handshaking is enabled, a Ctrl S is sent when this bit is set.

Bit seven indicates that a Ctrl S has been received and is waiting for a Ctrl Q. A
problem almost certainly exists if both bits six and seven are set, since this indi-
cates that the other device sent PDOS a Ctrl S to signal us to stop sending and
then sent us too much data to hold.

I/*058*/ char utypll6]; /* port uart type */ l

Although PDOS documentation refers to all types of character ports as UARTSs
(Universal Asynchronous Receiver/ Transmitters), a PDOS port may be one of a
much larger group of devices. On some implementations of PDOS, a “port” is a
memory-mapped graphic screen with associated keyboard. On another, the
“UART” may actually be implemented with some sort of parallel printer port
device. Each one of these different types of hardware requires a different hand-
ler subroutine on a given PDOS implementation. PDOS allows up to eight types
of character ports, each with its own device service routine. These are named in
MBIOS:SR as U$1DSR, U$2DSR, U$3DSR, and U$4DSR. Most PDOS im-
plementations only have 1 or 2 device types. The UTYP table tells what set of
device service routines each port should use.

|/*068*/ char urat(16]; /* port rate table */ |

The transmission speed in bits per second of a port (usually called “baud rate™)
is set with the BP command from the monitor or the XBCP primitive. The cur-
rent speed is saved in the UART table (range = 0 to 8).

/*078%/ char _evtb[10]; /* 0-79 event table */

/*082%/ char _evto[2]; /* 80-95 output events */
/*084%/ char _evti[2]; /* 96-111 input events */
/*086%/ char evts([2]; /* 112-127 system events */

Logical events on PDOS are stored in SYRAM in a table of bits. If the bit is set,
the corresponding event is set, and vice versa. The bits for events 0-127 are
stored in these tables.

|/x088%/ char ev128[16]; /* task 128 events */ |

Event 128 is a special event, and local to each individual task. This means that
there is a unique bit allocated for every task in PDOS. The EV128 table contains
these bits. Normally, the local events are set by the local task, or are set in
response to a delay event initiated by the XDEV primitive. It is possible,
however, for a program to set the local event of another task by directly modify-
ing the corresponding bit in the EV128 field. The code below shows an ex-
ample:

3.3-1/88 33

The Kernel - SYRAM (cont.)

*

START

PROMPT

"NOT.B DO ;COMPLEMENT TO REVERSE BIT INDEX

SET THE LOCAL EVENT OF TASK N

OPT PDOS

XGML ;MAKE SURE A5 PROPERLY POINTS TO SYRAM
XPMC PROMPT

XGLU ;READ IT

XCDB ;CONVERT TO BINARY-->D1

MOVE.WD1,D0 ;COPY NUMBER

LSR #3,D1 ;TASK NUMBER / 8 (BYTE INDEX)

ADDI.W #EVTS.+2,D1 ;BIAS BY BEGINNING OF EVENT TABLE

BSET DO, 0(A5,D1.W) ;SET THE BIT
XEXT

DC.B ' 13,10, ’Enter task number:’,0
EVEN
END START

I/*098*/ long evtm[4]; /* events 112-115 timers */]

Events 112-115 are special because they are automatically set every so many
clock tics. Event 112 occurs every 1/5 of a second; event 113 marks the second
interval; event 114 happens on the ten second mark and event 115 every 20
seconds. The EVTM array contains the individual counters for these four timers,
as they count up the required number of clock tics for the specified interval.

I/*0A8*/ long _bclk; /* clock adjust constant */ l

The standard PDOS clock allows for timing in terms of 100 tics per second, 128
tics per second, or some other fairly small number that is convenient. Some-
times, however, adjusting the number of tics per second still results in a system
clock that runs too fast or too slow, due to a crystal that has an odd oscillation
period or some other hardware peculiarity. In that case, PDOS allows a small ad-
justment to be made to the clock every second, when the BSLED routine is
called. This code is part of the BIOS routines that the user may customize. A

typical set of code appears below:
B$LED MOVE.L B_CLK(AO0),DO sADJUST CLOCK?
BEQ.S €0002 N
ADD.L DO,BCLK. (A5) ;Y, ADJUST COUNT, CARRY?
BCC.S @0002 ;N
ADDQ.W #1,FCNT. (AS5) ;Y, UP COUNTER

In this code, the BIOS field B_CLK is added every second to the SYRAM
counter BCLK. until the result overflows the 32-bit field. Then, the fine counter
is incremented. This allows for a fairly small adjustment to be made to the fine
counter to keep the PDOS system clock current.

|/*0AC*/ char * tltp; /* task list pointer */ I

This points to the entry in the task list that corresponds to the current task.

[/*OBO*/ char * utcb; /* user tcb ptr */ J

This points to the TCB (task control block) of the current task. The information
also exists in the task list entry for this task, but it is copied out here for con-
venience in access.

34

33-1/88 PDOS DEVELOPER'S REFERENCE

ey
s

“s

C

-,

The Kernel - SYRAM (cont.)

PDOS DEVELOPER'S REFERENCE

r/*0B4*/ int _suim; /* reserved for PDOS use */ I

This field is reserved for PDOS use only.

|7*OBG*/ int usim; /* reserved for PDOS use */ I

This field is reserved for PDOS use only.

I/*OBS*/ char sptn; /* reserved for PDOS use */ l

This field is reserved for PDOS use only.

I/*OBB*/ char utim; /* user task time */ I

This field is initialized from the entry in the task list. Every clock tic, it is decre-
mented until it goes to zero, indicating that the task’s time slice is up and it
needs to swap.

[/*OBA*/ char _tpry; /* task priority */ I

This field is initialized from the entry in the task list. This field is also used in
the monitor, where the current task priority is used as the default priority for the
“CT” command, and one less than the current priority is used as the task priority
for the “@” command.

I/*OBB*/ char tskn; /* current task number */ l

This is the task number of the currently executing task. PDOS uses it heavily. It
is also available in the TCB as the TIDS$ field.

I/*OBC*/ char sparel; /* reserved */]

This byte is reserved for future use by PDOS.

I/*OBD*/ char tqux /*task queue offset flag */ I

For fastest interrupt response, the time critical task suspends on either a logical
or physical event. the associated interrupt service routine should acknowledge
the hardware, set the event bit directly, and then load the task number (0-127)
into the TQUX byte of SYRAM. The ISR then exits with an XRTE primitive.
The PDOS task scheduler will immediately schedule the designated task.

|/*oBE*/ char tlck; /* task lock flag - */ |

This flag is set by the lock task primitive (XLLKT) and unlocked by the unlock
task primitive (XULT). It also may be set by using the TAS.B TLCK.(AS) in-
struction. When it is set, PDOS will not schedule any other task. In other words,
scheduling is disabled. Several critical functions in PDOS are protected by lock-
ing the task until they are finished.

3.3-1/88 35

The Kernel - SYRAM (cont.) O

I/*OBF*/ char rflg; /* task reschedule flag */ J

This field is set internally whenever scheduling is attempted when the task is
locked. It indicates that PDOS should immediately re-schedule when the task un-
locks. Normally, this field is set to FF, with 0 indicating re-schedule.

|7*ocox/ char el22; /* batch task # */ |

Normally, the PDOS monitor creates a separate task whenever you precede a

command line with “@"”. This task is by default 32K and executes at a priority 1

lower than the current task. If the E122 field is contains the number of a PDOS

task, however, (task 0 doesn’t count), the monitor will send the command line in

a task message to that task and set event 122. The indicated task serves as a

batch processor, waiting on event 122, and when it wakes up, getting a task mes- Py
sage with XGTM. The batch processor may then execute the monitor command W
in a “background” type of mode. You may write your own batch processor to

take advantage of this feature.

P;0C1*/ char el23; /* spooler task # */ J

The monitor command “CF” normally just executes an XCPY (copy files) com-
mand from the file named as the first argument to the file named as the second.
If the E123 field of SYRAM is non-zero (has a valid task number), the monitor
sends the command line to that task via XSTM and sets event 123. A back-
ground spooler task may then put its own task ID in the E123 field and suspend
on event 123. When it wakes up, the command line is obtained by executing the
get message primitive, XGTM. The proper disposition of the command line
depends on the spooler task. You may write your own spooler to take advantage
of this feature.

¢

/*0C2*/ char _el24; /* reserved for PDOS use */
/*0C3*/ char el25;

These two fields are reserved for future use by PDOS.

¢

I/*0C4*/ long _cksm; /* reserved for PDOS use */ J

This field is reserved for future use by PDOS.

. [7*0C8*/ int pnod; /* pnet node # *x/ I

The byte at SYRAM offset $0C9 is initialized by PDOS start-up to the node
character passed from the BIOS in the upper byte of D7.L This defaults to a nul
($00) which means that it is not a multi-processor system. If this byte is non-
zero, the monitor prompt outputs the byte as a character followed by a blank. It
can be set at DOSGEN time with /NODE=$xx. See the MBIOS:SR file.

36 : ' 3.3-1/88 PDOS DEVELOPER'S REFERENCE

The Kernel - SYRAM (cont.)

/*0CA*/ char _bser[6]; /* reserved for PDOS use */
/*0D0*/ char iler([6]; /* reserved for PDOS use */

These two fields are reserved for PDOS use only.

|/*0p6%/ char ccnt(16); /* control C count */

Starting with PDOS version 3.0 there has been a system utility called
MABORT. This utility runs in the background at a high priority, but only ex-
ecutes a few instructions before swapping. It reschedules every second, and
when it runs, it tests the Ctrl C count for every port. If any port has received
multiple Ctrl C characters in excess of the limit (default limit is 2, but it can be
set to any number when the MABORT task is created), the task mapped to that
port for input is aborted. The functioning of the MABORT task is described in
(’ the PDOS Monitor, Editor, Utilities manual. PDOS takes care of incrementing

: the Ctrl C count every time one is received. The CCNT field has one byte avail-
able for every port -- PDOS input routines take care of incrementing the count.
Some utilities, such as MEDITCON and MEDIT, disable the Ctrl C count abort
function temporarily by loading the port’s byte with $80. This minus count will
not abort the task. Of course, if the control character disable bit is set on the
port, the Ctrl C is ignored and the CCNT remains the same.

I/*OEG*/ char * wind; /* window IDs *x/

(' Starting with PDOS 3.2, the system utility called WIND1 works with PDOS to
give you multiple logical ports to a physical port. The WIND1 program is

described in the PDOS Monitor, Editor, Utilities manual. When the WIND1
program begins, it allocates a buffer within its own task space and saves a
pointer to that buffer in the WIND field of SYRAM. A non-zero value in the
WIND field, then serves as an indicator that windowing is enabled. When this is
the case, every character input or output through a port undergoes additional
processing. When data comes in to or goes out from a port, that port is checked
to see if it is mapped to a logical port. If so, the characters are routed ap-
propriately into the logical port or out the physical port. In addition, a memory
() image of mapped logical ports is kept within a buffer in the WIND]1 task. When

the user maps his physical port to a different logical port, the WIND1 task
refreshes the screen to show the current display of that logical port.

The WIND field points to an array of 15 words (one for each physical port) each
with the following format:

C
C ‘ _

PDOS DEVELOPER'S REFERENCE 3.3-1/88 37

The Kernel - SYRAM (cont.)

(WIND.).W = FRPM D_ ppppp

5 : 0-4=PORT #
5 =Reserved
6 = Reserved

7= WINDOWING DISABLE
0 =Reserved

1 =Reserved

2 =Reserved

3 =Reserved

4 = ALREADY DEFINED

5 =PRINT FLAG

6 =REFRESH FLAG
7=LEAD FLAG

The low order 4 bits indicate the logical port that is mapped onto the physical
port. The following code segment illustrates (in C) how a program might cause
its own screen to be refreshed.

refresh (port)
int port;
{

int *ptr

#include <SYRAM:H>

syram->_wind; /* pick up the pointer to window table.*/

while ((*pt; & Oxf) != port) /* scan the list to find the */
ptrt+;) /* current port. */

ptr |= 0x4000; / set refresh bit */

xsef (127); /* Wake WIND1l to refresh */

char * wadr; /* window addresses */

|7x0Eax/

The WADR pointer in SYRAM points to the buffer in the WINDI1 task where
the screen images are saved. This pointer is initialized by the WIND1 program
and used by PDOS whenever characters are output to a port with windows
enabled.

/* input stream */
/* output stream */

/*0EE*/
/*0F2%*/

char *_chin;
char * chot;

A hook in PDOS 3.2 is the character input/output traps. Whenever PDOS
receives a character or sends a character to a port, it tests the CHIN or CHOT
vector. If the field is non-zero, it makes a subroutine call to the address saved
there. The following code shows how data for a particular port might be saved
away in a buffer for a monitoring program to test. One use for these traps is a
communications analyzer program that watches all data through a modem port
and displays it.on a PDOS terminal.

To use the following code segment, the CHIN trap and CHOT traps must be ini-
tialized with the addresses of the .CHIN and .CHOT routines. The data goes into
the .CHINBUF queue, the first three words of which tell the input, output, and
size of the queue. ‘

38

3.3-1/88

PDOS DEVELOPER'S REFERENCE

e

The Kernel - SYRAM (cont.)

SECTION 2
EXTN .PORT, .CHINBUF, .CHOTBUF, .CHIN, .CHOT
BSIZE EQU 256 /* must be power of 2 */
.PORT DS.L 1 /* declare the PORT variable*/
.CHINBUF DS.W 3 /* PUT, GET, COUNT */
. DS.B BSIZE /* BUFFER */ :
.CHOTBUF DS.W 3
DS.B BSIZE
SECTION 0
% % e % ok k% A Kk Kk ok ok kK Kk ke ok k% %k ok ok ke ke kK ok ok ok
* INTERCEPT INPUT STREAM
* DO.B = CHAR
* D2.B = PORT
*
.CHIN
CMP.B .PORT+3,D1 /* FOR US? */
" BNE.S @0099
(MOVE.L A0, - (A7) /* FREE UP REGISTER */
MOVEA.L #.CHINBUF, AO /* POINT TO STRUCTURE */
BSR.S PUTBYTE /* SAVE A BYTE AWAY */

MOVEA.L (A7) +,A0
0099 RTS

/*

% Kk g de Kk Kk ok K Kk ok ok ok ke ks k ok k ok Kk ok ok ok ko ke kR ok ke ok

* INTERCEPT OUTPUT STREAM
* D0.B = CHAR
* D1.B = PORT
*
} .CHOT
(CMP.B .PORT+3,D1
L BNE.S @0099

MOVE.L A0, - (A7)

MOVEA.L #.CHOTBUF, AQ

BSR.S PUTBYTE

MOVEA.L (A7) +,A0
@0099 RTS

SAVE AWAY A BYTE

D0.B = CHAR

A0-> 0: PUT INDEX.W
2: GET INDEX.W
4: COUNT.W

* %k X % ¥ K

PUTBYTE
MOVE.L D1,-(A7)
MOVE.W (A0),D1
MOVE.B DO, 6(A0,D1.W)
ADDQ.B #1,D1
AND.W #BSIZE-1,D1

/*
/*
/*
/*

% % % J %k % % %k %k K K Kk %k K k% Kk 5k %k %k Kk K Kk ok ok kK Kk ok ok Kk k ok ok

6: BUFFER(0..BSIZE-1)

/*
/*
/*
/*
/*

RESTORE REGISTER A0 */

FREE UP REGISTER */
POINT TO STRUCTURE */
SAVE A BYTE AWAY */
RESTORE REGISTER A0 */

FREE UP A REGISTER */
PUT INDEX */

STORE THE BYTE */
INCREMENT THE POINTER*/
WRAP IF NECESSARY */

MOVE.W D1, (AO) /* SAVE IT */
ADDQ.W #1,4(A0) /* INCREMENT COUNT */
MOVE.L (A7)+,D1 /* RESTORE REGISTER */
RTS
END
] PDOS DEVELOPER'S REFERENCE 3.3-1/88 39

The Kernel - SYRAM (cont.)

|7 *orex/

char * iord;

/* I/0 redirect */

The IORD table is initially loaded with a pointer to a field later in the SYRAM
table called the RDTB. The RDTB table contains one byte for every port on the
system. Before data is output to a port, the corresponding byte in the re-direct
table is checked. If a non-negative byte is there, the data is placed in the INPUT
buffer of the indicated port -- thus output to one port is re-directed to become
input data to another port.

|/ xorax/

char fect; /* file expand count */

This byte is the [number of sectors-1] added to the end of a file when it is ex-
panded. The default is $01, which means that files are extended by two sectors.
This value is also used as the initial number of sectors for d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>