
(

("

(~'

C'

PDOS Developer's
Reference

Copyright 1988 by Eyring Research Institute, Inc., 1450 West 820 North, Provo, Utah 84601 USA.
All rights reserved

The infonnation in this document has been carefully checked and is believed to be reliable.
However, Eyring assumes no responsibility for inaccuracies. Furthennore, Eyring reserves the
right to make changes to any products to improve reliability, function, or design and does not as
sume any liability arising out of the application or use of this document.

PDOS Developer's Reference

Printed in the United States of America.
Product number 2520-2T (for POOS revision 3.3)
lanuary,1988

POOS is a registered trademark of Eyring Research Institute, Inc.

o
o

o

o

o
o

('

(

(//

Table of Contents

Introduction 1

Manual Organization•........•.................. .' 1

Conventions•.................... : .. 2

. PDOS Structure 3

PDOS Kernel .. .3

The File Manager•...•... 4

BIQS .. 4

Supported Devices••...•............................... ;4

Memory Requirements•...................................•........................... 4

PDOSKemel 5

The PDOS Task•..............•..•.. .5

Multi-Tasking•...•.....••...................•...................... 7

The Task Control Block (TCB) ... 8

SYRAM .. 28

Fixed Offset BIOS Initialized .. 28

Fixed Offset PDOS Initialized .. .30

Variable Offset .. .41

MSYRAM Switches ... 41

Dispatch Table .. .43

System Services•.........•.........•....................................... .48

Support Utilities•...•... .48

PDOS Character I/O•.....•....... ·49

PDOS Character Input•......•..•..........•................. " 49

PDOS Character Output•...............................•................... .51

Events '•... 53

Task Communication54

Task Suspension55

lIigh Priority Tasks . :•... 56

PDOS Exception :Handling .. 56

PDOS DEVELOPER'S REFERENCE 3.3 - 1/88

Table of Contents (cont.)

File Management 60

File Storage•... 60

File Names .. 62

Directory Levels•.....•.............................. .- 63

Disk Numbers•...........•.•..•..•.••.............•................... 63

File Attributes ...•............................. 64

Time Stamping•... ·65

Ports, Units, and Disks•.......•..•................................. 66

Ports•.. 66

Units ...•............................... 66

Disks ... 66

PDOSBIOS 67

ii

xxBIOS:SR - User BIOS Module•..........•..................................... 68

Task Startup Table•................................... 68

Cold Startup Subroutines•.. 68

Kernel Subroutines•.............................. 69

Exception Vector Table .. 71

BIOS Example ... 72

MBIOS:SR - Common BIOS Module ... 77

BIOS Table•... 77

MBIOS Switches ... 79

xxBIOSU - UARTs•................................ 83

Interrupt Inputs ... 86

Parallel Port Interrupts•... 86

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

()

,r;1fi''t."

'V

c

(Table of Contents (cont.)

xxBIOSW - Read/Write Disk DSRs .. 86

Disk Read/Write .. 88

Cold Startup Initialize .. 89

Kernel Subroutine ... 89

Error Message Table ... 90

Interrupts ... 90

PDOS Winchester Standard ... 91

System Independent Drive Parameters ... 91

Disk Partitions on Drive Header .. 92

Bad Track Mapping .. 92

Drive Data Blocks (DDBs) .. 92

PDOS Disk Numbering ... 93

PDOS Disk Layout•.. 94

PDOS I/O Drivers ...•........................ 97

Driver Entry Points .. 97

Using Driver Registers ... 98

Driver Generation ... 99

PDOS Output Driver Example .. 100

(PDOS Input Driver Example .. 104

Insta1lable Device Routines and Utilities ... 106

Programming Conventions ... 106

UART Service Routines•.. 106

I/O Drivers .. 108

Disk Service Routines ... 108

Shared Utility .. 109

(
Interrupts .. 110

PDOS Error Definitions 111

PDOS Error Summary .. 111

PDOS Error Ranges .. 112

PDOS Error Numbers .. 112

(

PDOS DEVELOPER'S REFERENCE 3.3 -1188 iii

iv 3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o

,41t
I,~

c
c

Introduction

Manual Organization

(",'

/

c
PDOS DEVELOPER'S REFERENCE

This manual is designed to help the PDOS developer understand the inner work
ings of the POOS operating system. It describes the kernel, file manager and
BIOS modules ofPOOS in detail. This is not a beginner's manual. To learn how
to use POOS. consult the PDOS User's Manual" Volume 1 and other PDOS
reference manuals.

Before you consult this manual, you should be familiar with POOS-related com
puter hardware and software, specifically the MC68000 microprocessor. If you
need more information on the MC68000, consult one of the following books:

Motorola. 1984. MC68000 -16132-BIT MICROPROCESSOR
PROGRAMMER'S REFERENCE MANUAL. Fourth Edition. Englewood Cliffs,
NJ.: Prentice-Hall Inc ..

Zarella, John. 1981. MICROPROCESSOR OPERATING SYSTEMS. Suisun
City. California: Microcomputer applications.

The f1I'St section of this manual describes the structure of POOS. It is a good
idea to read through this overview before you begin your development.

The next section deals with the kernel. The POOS kernel handles tasking, so
there you will fmd information on multi-tasking, the task control block, task
communication. SYRAM, etc.

The file manager section follows and describes how POOS handles file storage,
file names, disk: numbers. and directory levels.

The next section descn'bes the BIOS or Basic I/O Subsystem ofPDOS.1f you
are porting POOS to new hardware, you will consult this section often. It goes
into much detail about the user and common BIOS modules. disk: read/write and
layout, and the POOS Winchester disk: standard You will also learn how to
write POOS 110 drivers from examples.

The final section lists POOS errors with a description of each one.

3.3-1/88

Introduction (cont.)

Conventions

2

The following notations are used throughout this manual:

$ Hexadecimal number. (e.g. $IFFF = decimal 8191).
% Binary number. (e.g. %1001101 = decimal 77).
< > Parameter used with a POOS command or primitive. (e.g. DL <filename>

indicates that the DL command requires a filename as a parameter).
{ } Optional. (e.g. SA <filename> {,<attributes>) indicates that the parameter

<attributes> is optional).
(Ax) . Indirect assembly addressing. (e.g. (A2) = Buffer refers to register A2

pointing to a buffer).
Keys Key names are denoted by bold. (e.g. Cr or .J means to press the carriage

return key; Esc is the escape key; Ctrl is the control key (usually followed
by a letter which also appears bold); and J, indicates a line feed).

3.3 -1188 PDOS DEVELOPER'S REFERENCE

o
o

o
o

(PDOS Structure

(

The PDOS Kernel

(

('

PDOS DEVELOPER'S REFERENCE

PDOS is written in Motorola 68000 assembly language for fast, efficient execu
tion. The small kernel handles multi-tasking, realtime clock. event processing.
and memory management functions. Ready tasks are scheduled using a
prioritized, round-robin method. The highest priority task: in the ready state is al
ways scheduled. Tasks with the same priority are scheduled in a round-robin
fashion. A suspended task: allows lower priority tasks to execute. The A-line
($AOOO) instruction interfaces over 100 system primitives to a user task.

Tasks are the components comprising a realtime application. Each task is an in
dependent program that shares the processor with other tasks in the system.
Tasks provide a mechanism that allows a complicated application to be sub
divided into several independent. understandable. and manageable modules.
Realtime. concurrent tasks are allocated in 2K byte increments. There are no
64K byte boundary restrictions since the full 32-bit address space is available.

Semaphores and events provide a low overhead facility for one task to signal
another. Events indicate availability of a shared resource, timing pulses, or the
occurrence of a hardware or software interrupt Messages and mailboxes are
used in conjunction with system lock, unlock, suspend. and event primitives.
PDOS provides timing events that can be used in conjunction with desired
events to prevent system lockouts. Other special system events signal character
inputs and outputs.

3.3 - 1/88 3

POOS Structure (cont.)

The File Manager

BIOS

Supported Devices

Memory Requirements

4

POOS handles all exception processing including interrupts, address errors, bus
errors, illegal and unimplemented instructions, and privilege violations. Each
task also has the option to process any or all 16 trap vectors, divide by zero,
overflow check (TRAPV), and register out of bounds (CHK). System interrupts
set the corresponding event and then can initiate a context switch. A high
priority task waiting on that event is then immediately scheduled and begins ex
ecuting.

The POOS kernel handles user console, system cloCk, and other designated
hardware interrupts. User consoles are interrupt-driven with character type
ahead. A task can be suspended pending a hardware or software event. Other
wise, a prioritized, round-robin scheduling of ready tasks occurs. Time slices are
BIOS-dependent and adjustable on a task-by-taslc basis.

The POOS fIle management module provides sequential, random, read only, and
shared access to named fIles on a secondary storage device. These low overhead
fIle primitives use a linked, random access fIle structure and a logical sector bit
map for allocation of secondary storage. No file compaction is ever required.
Files are time stamped with date of creation and last update. Up to 127 files can
be open simultaneously. Complete device independence is achieved through
read and write logical sector primitives.

POOS gives software portability systems through hardware independence of the
system Basic Input/Output System (BIOS) module. All hardware functions such
as read/write logical sector, clocks, mappers, and UARTs are conveniently iso
lated in this module for minimal customization to new 68000-based systems.

POOS is easily configured for any combination of large or small floppy disks,
bubble memory devices, or Winchester mass storage devices. A wide variety of
target system configurations are supported for fast development of memory-effi
cient, cost-effective end products.

POOS is very memory efficient. The POOS kernel, file manager, debugger,
BIOS, and user monitor utilities require less than 26K bytes of memory plus an
additional8k bytes for system buffers and stacks. Most applications can be both
developed and implemented on the target system. Further memory reduction is
achieved by linking the user application to a 8K byte POOS kernel for a small,
ROMable, stand-alone, multi-tasking module. For large system configurations,
POOS effectively addresses up to the 32-bit address space of the 68000 proces
sor.

3.3 -1188 PDOS DEVELOPER'S REFERENCE

o
o

0/' •. i

e" , I

("

(PDOS Kernel

(" ThePDOSTask

C'"
.'.'

PDOS DEVELOPER'S REFERENCE

The POOS kernel performs the following functions:

• Multi-tasking, multi-user scheduling
• System clock
• Memory allocation
• Task synchronization
• Task suspension
• Event processing
• Character I/O including buffering
• Support primitives

The POOS kernel is the multi-tasking, realtime nucleus of the PDOS operating
system. Tasks are the components comprising a realtime application. It is the
main responsibility of the kernel to see that each task is provided with the sup
port it requires in order to perfonn its designated function.

The POOS kernel handles the allocation of memory and the scheduling of tasks.
Each task must share the system processor with other tasks. The operating sys
tem saves the task's context when it is not executing and restores it again when
it is scheduled. Other responsibilities of the POOS kernel are maintenance of a
24-hour system clock, task suspension and rescheduling, event processing,
character buffering, and other support functions.

A POOS task is the most basic unit of software within an application. A user
task consists of an entry in the POOS task queue, task list, and a task control
block with user program space.

The task queue and list are used by the POOS kernel to schedule tasks. A task
queue entry consists of a task priority and a task number. The list is ordered with
the highest priority entry frrsL A task list entry consists of a parent task number,
task time slice, task control block pointer, task map constant, two suspended
event descriptors, along with other reserved information. The task number is as
signed according to its entry position.

3.3-1/88 5

The Kernel- Tasks (cont.)

Priority Task #

Ta sk Queue 100 0
50 2
. . .
30 1

0 0

. Parent' Time TCa Pointer Map Ev 1 Ev 2 Reserved

Task List

I I I I I I I I
Task 0

Task ·1
...

6

Task 1 RAM
$0 $500

TCa Pointer Task ProgramlRAM Task User
Task Variables Stack

Low Memory High Memory

The first $500 (hex) bytes of a task are the task control block. This block of
memory consists of buffers and parameters peculiar to the task:. The 68000 ad
dress register A6 points to the status block when the user program is first
entered. The task parameters may be referenced by a user program but you must
be careful not to crash POOSI

Task: overhead = $500 (hex) bytes + user slaCk

The user program space begins immediately following the task control block.
Position independent 68000 object programs or BASIC tokens are loaded into
this area for execution. Task: memory is allocated in 2k byte increments. The
total task overhead is $500 or 1280 bytes. This leaves $300 or 768 bytes avail
able for a user program and user slack in a minimal2k byte task.

From the time a task is coded by a programmer until the task is destroyed, it is
in one of four task: states. Tasks move between these slateS as they are created,
begin execution, are interrupted, wait for events, and finally complete their func
tions. These Slates are defmed as follows:

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o
o

o
c

Multi-Tasking

c
PDOS DEVELOPER'S REFERENCE

The Kernel- Tasks (cont.)

Undermed. A task is in this state before it is loaded into the task list It can be a
block of executable code in a disk ftle or stored in memory.

Ready. When a task is loaded in memory and entered in the task queue and list
but not executing or suspended, it is ready.

Running. A task is running when scheduled by the POOS kernel from the task
list.

Suspended. When a task is stopped pending an event external to the task, it is
said to be suspended. A suspended task moves to the ready state when the event
occurs.

I Undefined ~ • Ready L
r

1 I
Running Suspended

A task remains undefmed until it is made known to the operating system by
making an entry in the task queue. Once entered, a task immediately moves to
the ready state which indicates that it is ready for execution. When the task is
selected for execution by the scheduler, it moves to the run state. It remains in
the run state until the scheduler selects another task or the task requires external
information and suspends itself until the information is available. The suspended
state greatly enhances overall system performance.

POOS defaults to allow 32 independent tasks to reside in memory and share
CPU cycles. Each task contains its own task control block and thus executes in
dependently of any other task. A task control block consists of buffers, pointers,
and a POOS scratch area. By changing the "NT" parameter in MSYRAM and
other parameters, POOS can be configured to handle up to 127 tasks.

Four parameters are required for any new task generation. These are:

•

•

•

•

A task priority. The range is from 255 (highest priority) to 1 (lowest
priority).
Tasking memory. Memory is allocated to a task in 2k byte increments. The
fust $500 bytes are assigned to the task TCB.
An I/O port. Input ports are unique while many tasks may share the same
output port for task console communication.
A task command. This may be in the form of several monitor commands or
a memory address to begin executing.

3.3 - 1/88 7

The Kernel- Tasks (cont.)

Each of the previous requirements defaults to a system parameter. Task priority
defaults to the parent task's priority. Default memory allocation is 32k bytes and
default console port is the phantom port.

If a task command is not specified, the new task reverts to the PDOS monitor.
However, if no input is possible (i.e. port 0 or input already assigned), then the
new task immediately kills itself. This is very useful since tasks automatically
kill themselves as they complete their assignments (remove themselves from the
task list and return memory to the available memory pool).

A task entry in the task list consists of a task number designation, parent task
number, time interval, task priority, memory map constant, task control block
pointer, and two event descriptors. Swapping from one task to the next is done
when the task interval timer decrements to zero, during an I/O call to PDOS, or
when an external event causes a context switch. The task interval timer decre
ments by one every ten milliseconds (or as dermed in the system BIOS module).

Any task may spawn another task. Memory for the new task is allocated in 2k
byte blocks from a pool of available memory. If no memory is free, the spawn
[ing task's own memory is used and the parent task's memory is reduced in size
by the amount of memory allocated to the new task. It is important to note that
some assembly coded programs and all high level language programs use both
the low and high addresses of the task memory. To prevent memory loss from a
task and program failure, it is necessary to allocate enough memory to the free
memory pool before creating a new task under program control. Otherwise, the
task may give up its variable space or stack to the spawned task.

PDOS maintains a memory bit map to indicate which segments of memory are
currently in use. Allocation and deallocation are in 2k byte increments. When a
task is terminated, the task's memory is automatically deallocated in the
memory bit map and made available for use by other tasks.

The Task Control Block (reB)

~

8

Although the locations of the task control block are made available to the user,
you must be cautious when using these locations. Many PDOS primitives use
these locations to perform their functions and any location may change at any
time as a result of these PDOS calls. The TCB may be modified significantly at
anytime.

The Task Control Block contains most of the system variables that are specific
to a task, including various buffers, I/O parameters, and vectors. When a
program begins execution under PDOS the system automatically initializes
register A6 to point to the TCB.1f the register is overwritten by the user, a
program can later recover it by executing the XGML (get memory limits) primi
tive.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

C\ '., :1

o

TASK

T

C

B

Task Control
Block

««<

PDOS DEVELOPER'S REFERENCE

The Kemel-TeB (cont.)

Task Status Control Definitions

$000 (A6)
$100 (A6)
$150 (A6)
$170 (A6)
$3BO (A6)
$3B4 (A6)
$3B8 (A6)
$3BC (A6)
$3BE (A6)
$3FE (A6)
$402 (A6)
$406 (A6)
$40A (A6)
$40E (A6)
$416 (A6)
$41A(A6)
$41E (A6)
$422 (A6)
$426 (A6)
$42A (A6)
$42E (A6)
$432 (A6)
$434 (A6)
$436 (A6)
$437 (A6)
$438 (A6)
$43A (A6)
$43C (A6)
$43E (A6)
$441 (A6)
$442 (A6)
$446(A6)
$44A (A6)
$44B (A6)
$44C (A6)
$44D (A6)
$44E (A6)
$44F (A6)
$450 (A6)
$451 (A6)
$452 (A6)
$453 (A6)
$454 (A6)
$455 (A6)
$456 (A6)
$458 (A6)
$45A (A6)
$45C (A6)
$45E (A6)
$470 (A6)
$500 (A6)

256 byte user buffer
CLB$ - 82 byte monitor command line buf

= MWB$ - 32 byte monitor work buffer
= MPB$ - monitor parameter buffer
= TSP$.L - task stack pointer
= KIL$.L - kill self address

- reserved
SVF$.B - save 68881 registers flag
TRP$ - user TRAP vectors
ZDV$.L - zero divide trap

= CHK$.L - CHCK instruction trap
TRV$.L - TRAPV instruction trap
TRC$.L - trace vector

= FPA$.8 - floating point accumulator
FPE$.L - fp error processor address

= CLP$.L - command line pointer
= BUM$.L - beginning user memory
= EUM$.L - end user memory
= EAD$.L - entry address
= 1MP$.L - assigned input message pointer
= AC1$.W - assigned input file 1D

LEN$.W - last error number
SFI$.W - spooling unit file 1D
FLG$.W - task flags
SLV$.B - directory level
FEC$.B - reserved
CSC$.W - clear screen character(s)
PSC$.W - position cursor characters
SDS$.B - alternate system disk(s)
SDK$.B - system disk
EXT$.L - XEXT address

= ERR$.L - XERR address
= CMD$.B - command line delimiter

T1D$.B - task ID
= ECF$.B - echo flag
= CNT$.B - output column counter
= MMF$.B - memory modified flag

PRT$.B - input port i
SPU$.B - spooling unit mask
UNT$.B - output unit mask
U1P$.B - unit 1 port i
U2P$.B - unit 2 port i
U4P$.B - unit 4 port i
U8P$.B - unit 8 port i

- reserved
TWO$.W - monitor word temps
TW1$.W - TWO-TW2 used by level
TW2$.W - 2 primitives

- reserved
- debugger parameters

«««< USER PROGRAM

3.3 -1188 9

The Kernel ~ TeB (cont.)

10

Assembly

Assembly language programs normally access the individual fields of the TCB
as offsets from A6. The definitions are shown in the previous table. The naming
convention is a three-Ietter name followed by a dollar sign (e.g. the "units" field
is defined as "UNT$(A6)''). The POOS assembler, MASM, recognizes and
defines these offsets if you declare the option ''POOS'' at the beginning of your
program.

The startup module for C programs "CSTART:ASM" automatically saves the
TCB pointer in a variable called "_tcbptr" (note the leading underscore). To
gain access to this variable, C programs need the include file ''TCB:H. "

The startup module for Pascal programs ''PMAIN:SR" saves the TCB pointer in
a variable defined as PTCB. Pascal programs need to include both
"SYV AR:INC" and "TCB:INC" to use this variable.

FORmAN programs accessing the TCB must use the XGML function to pick
up the pointer. Here, as in BASIC, it is necessary to correctly specify the offset
of the desired field FOR1RAN programs use the functions BYTE, WORD, and
LONG to read or write the TCB variables.

BASIC props have access to the TCB pointer through the variable SYS[9].
To access any of the fields in the TCB, however, a BASIC program must add
the specific offset of that field and be careful to use the correct width for the
variable (byte, word, long, etc.) BASIC programs use the primitives MEM,
MEMW, and MEML to read or write the TCB variables.

The following examples show how a program can modify its own unit
parameter to direct console output to the port dermed as unit 2. The specific
offset of the UNT field is $451 or 1105 (decimal). When you run any of these
programs, all console output will be directed to the unit 2 port. Type UN 1..1 to
restore console output to normal (nothing will echo as you type).

START
OPT poos
MOVE.B .2,UNT$(A61
XEXT

;LET ASSEMBLER RESOLVE TCB FIELD NAMES
;FORCE A 2 INTO THE UNIT FIELD
;BACK TO THE MONITOR

END

c I
'include 'TCB:H'
main()
{

START

/* define tcb offsets and tcbptr */

/* set the unit to 2 */

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o
o

c

o
c

(

(

(

The Kernel-TCB (cont.)

Pascal I
TYPE {define these field types }

PTR = "INTEGER;
BYTE = -127 .• 127;
WORD = -32767 .. 32767;

{$F=SYVAR:INC}
($F=TCB:INCj
VAR

{define the Pascal system variables}
{define the TCB fields}

TCB : TCBPTR; {copy of the pointer to the TCB}
PROCEDURE GETSYV(VAR SYVAR:SYVARPTR);EXTERNAL;
BEGIN

GETSYV(SYVAR); {point to the Pascal system variables}
TCB := TYPEOF(SYVAR".PTCB,TCBPTR); {init my pointer to TCB}

TCB".UNT := 2; {set the unit to 2}
END.

FORTRAN I

BASIC

PROGRAM TEST
INTEGER TCB,DUMMY
PARAMETER (UNT=1105)
CALL XGML(DUMMY,DUMMY,DUMMY,DUMMY,TCB)
BYTE (TCB+UNT) = 2
END

I

!DECLARE THE FIELD
!ONLY WANT THE TCB
!SET THE UNT TO 2

10 UNT=0451H
20 UNIT 2

!DECLARE THE FIELD OFFSET
!THIS DOES IT AS A BASIC INTRINSIC
OR 30 REM

40 MEM[SYS[9]+UNT]=2 !THIS DOES IT DIRECTLY

PDOS DEVELOPER'S REFERENCE

There are a number of fields in the TCB that may be of use to the advanced
programmer. Be aware, however, that the definition of the TCB has changed in
the past as POOS has evolved, and changes are likely to take place in the future.
If you can accomplish your purpose through more straight-forward techniques,
it would be a good idea to do so. But there are times when modification of TCB
variables is the only way to do what you need to do.

The TCB appears to the program as a record in memory. For those languages
that support records (C, Pascal), you merely define a pointer to a record and then
modify the field by name. The alternative is to look at the TCB as a collection of
bytes/words!long-words and modify the TCB by reading and writing those
bytes. The technique in assembly is to move data to and from various offsets of
A6. In FORTRAN, the BY1E/WORD/LONG intrinsics do the job, and in
BASIC, the MEM/MEMW/MEML intrinsics will work.

The following TCB defmitions use C for the examples. You must use an ap
proach consistent with your programming language.

3.3 - 1/88 11

The Kernel - TCB (cont.)

12

1/*000* 1 char ubuf[256]; 1* 256 byte user buffer *1

The fIrst 256 bytes of the TCB are a general purpose buffer called the "user buff
er." This buffer is used by many of the system primitives that do fIle access;
generally the disk directory is read into this buffer and scanned for your fIle
name whenever you open a fIle. You may use this buffer for anything that you
want to do, but be aware that PDOS primitives use it too. It can be destroyed
very easily. .

1*100*1 char c1b[80]; 1* 80 byte monitor command line buffer*1

At offset $100 is the monitor's command line buffer (CLB). The CLB is used by
the monitor every time it gets a new command or retrieves a task message. The
PDOS primitive XEXZ copies a text string into the CLB and exits. The XGLM
primitive uses the CLB as its buffer automatically. The RUN primitive in
BASIC uses the CLB to hold the message. Thus, the TCB fIelds CMD and CLP
usually reference the CLB. You might want to parse data in the CLB if the
XGNP primitive does not do the job you want Another use for the CLB might
be to inspect various tasks and see what task each one is running; the informa
tion is usually in the task's CLB.

1*150*1 char mwb[32]; 1* 32 byte monitor work buffer *1

The monitor work buffer is at offset $150. This is the buffer used by the monitor
to build temporary strings or fIle name records. The primitive to parse a file
name into its constituent parts, XFFN, leaves the name in the MWB. XFFN is
usually followed in system calls by XRDN -- read directory name -- and XRDN
expects input in the MWB. Most application programs do not use either XFFN
or XRDN directly, but they call them indirectly by using the open fIle primitives
(XNOP,XSOP,XROP, XROO), or the close fIle with attribute (XCFA) primi
tive, read fIle attribute (XRFA), write fIle attribute (XWFA), delete fIle (XDLF),
rename fIle (XRNF), derme fIle (XDFL), zero fIle (XZFL), fIle altered check
(XFAC), or write fIle parameters (XWFP). The XCFA primitive is used by copy
fIle (XCPY) and the XRFA primitive is used by load fIle (XLDF). The append
fIle and copy fIle both use the open primitives. The MWB is also used by the
PDOS conversion routines that need to return a string. Thus, the date/time con
versions and the binary to ASCII conversions usually modify the MWB. These
include the following:

XRDT - Read Date
XUAD - Unpack ASCII Date
XRTM - Read Time
XUTM - Unpack Time
XCBH - Convert Binary to Hex
XCBD - Convert Binary to Decimal
XCBM - Convert Binary to Decimal with Message

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

0 ,' , t/

C

("·-''''1
'~

C""
,,/

c

('

(

PDOS DEVELOPER'S REFERENCE

The Kernel- TCB (cont.)

Access to the MWB is important to you if you use any of these functions, be
cause you must be careful that they do not interact -- if you need both XRTM
and XRDT, use the information provided by the frrst call before you perform the
second or it will be overwritten. There are also a few occasions when you might
want to access the MWB directly -- for instance, you might want to construct an
output file name by parsing the input file name while substituting a different ex
tension. Use the XFFN call to break the name up; then change the extension in
the MWB and put the name back ~ogether.

/*170*/ char mpb[60]; /* monitor parameter buffer */

The MPB is used to store procedure file parameters or for command line recall -
but not both. If you are inside a procedure file, the MPB contains the strings
used to expand the symbols &1-&9. These symbols are stored as nine null-ter
minated strings. Outside a procedure file, this buffer contains as many of the pre
vious command lines as is possible to save in 60 bytes. The two uses of the
MPB are the reason that you cannot recall a command line if a procedure file is
involved Also, since only one buffer is used, the procedure file parameters are
not local to nested procedure files but global. If one procedure file calls another
procedure file (with arguments), the expansion of the & 1-&9 symbols will
change for both.

The line input calls reference the contents of the MPB if they are executed from
within a procedure file. The monitor alters the MPB with every command ex
ecuted (when not in a procedure file). A Ctrl A from the monitor rolls the MPB
to get the last command entered. A program may push commands into the MPB
(so that the Ctrl A can retrieve them) with the XPCB call. Typing L T 2 at the
monitor displays the contents of the MPB buffer for all tasks. The line on the top
of the list is generally the last command line typed. You might want to access
the MPB if you want to write procedure file primitives that modifies the
parameters. For instance, you could write a program called "TSTFIL" that
would take the name of a file on the command line. This program could then
look up the file on the disk, return a status in &0 if the file did not exist, parse
the name into name, extension, level, disk, type, size, etc. and place those values
into specific procedure file parameters for successive procedure file commands
to use. Or, you could write a GETSTR program that pauses the procedure file
while it reads a string from the keyboard. It then would put the string into a pro
cedure file parameter to determine the next step of the procedure.

As an example, try the following program, named "TEST:"

START LEA.L A(PC) ,A1
XPCB

A
B
C

D

3.3 -1/88

LEA.L
XPCB
LEA.L
XPCB
LEA.L
XPCB
XEXT

DC.B
DC.B
DC.B
DC.B
EVEN

END

B(PC),A1

C (PC) ,A1

D (PC) ,A1

'This',O
'is',O

' a' , 0
'test' ,0

S'I'ART

13

The Kernel ~ TeB (cont.)

14

This program is executed from the following procedure fIle "X:"

*&1 &2 &3 &4 &5 &6 &7 &8 &9
TEST
*&1 &2 &3 &4 &5 &6 &7 &8 &9

The following example shows an invocation of "X" with parameters:

3>X 1,2,3,4,5,6,7,8,'
3>*1 2 3 4 5 6 7 8 9
3>TEST
3>*test a is This 1 2 3 4 5
3>

1*1AC*1 char cob[8]; 1* character out buffer *1

This is a special buffer used by different POOS primitives for temporary charac
ter strings. For instance, the XPSC primitive builds the output string for the posi
tion cursor sequence in this buffer.

1*1B4*1 char swb[508];I* system work buffer/task stack *1

Every task in POOS has its own set of stacks -- the user stack is typically lo
cated at the end of user memory, and grows backwards towards the beginning of
memory. The supervisor stack is located here in the TCB -- at the end of the
SWB and growing back to the beginning. Whenever an interrupt or trap occurs

0"·:·' \ ~" I

.£'tc.
V

(pOOS calls included) that puts the CPU into privileged mode, this stack is:!~)
used There are a couple of internal POOS calls that also use the other end of ",-,
the system stack for a temporary workspace.

1*3BO*1 char * tsp; . 1* task stack pointer *1

This is the top of the supervisor stack, SWB (see previous note).

1*3B4*1 void * kil; 1* kill self pointer *1

The kill self pointer is a hook that allows a task to specify a special exit when it ,<'"
runs out of input. If a task is created in background mode (i.e., no input port) it'l,·
will kill itself when it runs out of things to do. If this is not the desired action,
you can have the task jump to another set of instructions by putting the proper
address in the KIL vector. POOS checks for procedure fIle input, unexecuted
"FE" commands, data from the IMP pointer, and a valid PRT. If there is no
input from any of those, it executes an XCTB -- unless the KIL field is non-zero.
In that case, it jumps to the address given in KIL.

1*3B8*1 long sfp; 1* system frame pointer *1

The system frame pointer is used by the "FE" monitor command. The FE com
mand creates a list of expanded commands and puts them out at the end of
memory. It then moves the end of memory down (BUM) so that other programs
executing will not overwrite these commands. The SFP is used as part of the
process of retrieving the commands.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

n ... ,.,·, ...
V

c

(-

c·
c

PDOS DEVELOPER'S REFERENCE

The Kemel- TeB (cont.)

1/*3BC*1 char svf; 1* save flag--6888l support (x88l)*1

Some programs may require special hardware registers to be saved when a con
text switch occurs. H this is the case, the program must execute an X881 PDOS
call (which sets the SVF flag to -1). On a task swap, if the SVF flag is set,
PDOS calls the BIOS routine B_SAV. By default this is used to save the float
ing point state of the 68881 hardware co-processor, but it could be altered by the
user to save any important context When a task is swapped in, the same flag is
checked, and the BIOS routine B_RES is called to restore the context.
Whenever a task exits to the monitOr, the flag is cleared.

1/*3BD* 1 char iff; 1* RESERVED FOR INTERNAL PDOS USE *1 I
This flag is reserved for POOS use only.

1*3BE*1 void * trp[l6]; 1* user TRAP vectors *1

The sixteen TRAP instructions cause a software interrupt through a special set
of vectors in low memory. PDOS tests the current task, and if the 1RP vector
corresponding to the trap number has a non-zero value, PDOS jumps to that ad
dress. The subroutine perfonns as if it had been called by a simple JSR instruc
tion -- just exit by means of an RTS. The return address on the stack is the
address of the instruction immediately after the TRAP instruction, so you may
pass parameters to the trap handler by putting pointers in-line. Since a TRAP in
struction is only 16 bits, it may act as a short subroutine call. Several instruc
tions must be executed by PDOS in order to get it to the subroutine. so it is not a
fast subroutine call.

1*3FE*1 long zdv; 1* zero divide trap *1

The hardware zero divide trap works similarly to the TRAP vectors above. The
user subroutine is called in user mode, as if a JSR had been issued.

1*402*1 long chk; 1* CHCK instruction trap *1

Trap vector for the ClICK instruction -- see above.

1*406*1 long trv; 1* TRAPV;instruction trap *1

Trap vector for the TRAPV instruction -- see above.

1/*40A* 1 long trc; 1* trace vector *1 I
H the trace trap bit is set in the status word, the system makes a call through this
vector. The debugger uses this vector when tracing. In addition, SMARTBUG
relies on this vector for the PB, XBUG, and breakpoint entries.

1*40E*1 long fpa[2]; 1* BASIC floating point accumulator*1

This flag is reserved for use in BASIC only.

3.3 - 1/88 15

The Kemel- TCB (cont.)

16

1*416*1 void * fpe; 1* fp error processor address *1

Reserved for use in BASIC only.

1*41A*1 char * clp; 1* command line pointer *1

This pointer keeps track of how much of the command line has been seen by
XGNP. Normally, the pointer indicates a location in'the CLB, but it may be
reset to point to any string in memory. The use of this pointer also depends on
the value of the CMD variable. If CMD contains a null or a period, XGNP will
parse no further. If CMD contains a space or a comma, XGNP will parse to the
next delimiter, insert the delimiter in CMD, replace the delimiter in the string
with a null, advance the CLP to point after the null, and retmnto the beginning

o
o

of the parsed string. If the monitor finds a null in the CMD field, it reads a new ~
line into the command line buffer (CLB) and resets the CLP to point to the CLB. 1'4. __ ,)

1*41E*1 char * bum; 1* beginning of user memory *1

The beginning of user memory is defined as the flI'St available memory that does
not have information already loaded into it. When you load a program into
memory, the BUM is set to the address after the last location loaded. It is thus
the fll'St memory available for variable allocation.

• XLDF - resets the BUM to note the last address loaded.
• XOMI.. -- returns the current value of the BUM as one of the parameters. G
• xern --initializes the BUM for the new task.
• ''ZM'' -- resets the BUM to the start of task memory for the task.
• "SV" -- defaults to saving the memory from the start of task memory to the

BUM.
• ''1.. T I" -- reports the current value of the BUM (second value after

''TCB=").

1*422*1 char * eum; 1* end user memory *1

The end of user memory defines the end of the stack. Whenever a task enters the
monitor state, POOS resets the user stack pointer to the current value of the
BUM minus 2. XOMI.. returns a value called the "upper memory limit" equal to
the BUM minus 128. xern initializes the BUM for the new task. "FE"loads its
commands out at the end of memory and adjusts the BUM down to protect
them. ''ZM'' uses the BUM to mark where to stop clearing memory. ''1.. T" dis
plays the current value of the BUM under the column ''EM''. The "FM" com
mand without parameters looks for system available memory that is adjacent to
the BUM. The "OM" command adjusts the BUM to incorporate the new
memory. The ''FM'' command with a parameter lowers the BUM after the
memory has been given to the system.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

c

(

PDOS DEVELOPER'S REFERENCE

The Kernel- TCB (cont.)

1/*426*/ char * ead;
=

/* entry address

Normally, a POOS task will start execution at the beginning of the task. One ex
ception to this is a BASIC program that executes in the BASIC interpreter. Ob
ject flIes may have an embedded starting address that is different from the
beginning of file, but SY flIes must begin execution at the task beginning. Most
of the time the entry address is the same as the start of the task -- it is set up by
the XCTB (create task) primitive and can be reset by the ZM (zero memory)
monitor command. The XLDF (load flIe) primitive will set the EAD to whatever
value is appropriate for the flIe loaded. The GO monitor command uses the cur
rent value of the EAD as the default address to start executing. The current
value of the BAD is listed by typing L T 1 at the monitor -- it is the fourth num
ber after the "TCB=".

/*42A*/ char * imp; /* internal memory pointer */

POOS SUpports I/O redirection through internal pointers in the Task Control
Block. The XGCR (get char) primitive scans three sources of input for data. If
the pointer IMP is non-zero, a byte is retrieved from where it points and the
pointer is incremented. If the byte thus retrieved is a null, the pointer is cleared
and POOS continues looking for data. The IMP pointer is the highest level of
the input hierarchy that also includes the ACI fIle IDs and the PRT input port.
Data from this source thus will supersede data waiting from the other sources.
One good use for the IMP is to provide default responses for line-oriented in
puts. If a program is'going to gather data via one of the get line calls, it may put
a pointer to the default string in the IMP. The get line call will then read from
the pointer (echoing to the screen) and at the end of the string (the string must be
terminated with a null not a carriage return), PDOS will wait for a terminating
carriage return from the keyboard. The user then has the option of editing the
default response to provide useful changes, or entering a carriage return to take
the default.

/*42E*/
/*430*/

int _aci;
int aci2;

/* assigned input file ID */
/* second assigned input file ID */

The second level in the input hierarchy is the AC flIe ID -- when console input
is supplied from a disk fIle. The normal way to re-direct input to come from a
ftle is to execute a procedure ftle (type AC) from the monitor. However, a
program can also modify the ACI field of the TCB to get the same effect. The
file must be opened using one of the standard PDOS open calls and the ftle ID is
saved in the ACI field. When an error occurs on input from the fIle (usually end
of file), POOS closes the file and clears the ACI field. The monitor will close
the flIe early in response to an "RC" command, or a break character (Esc Ctrl
C) from the keyboard. The second ACI field is to allow for one level of nesting -
- one procedure file can call a second, but that file cannot call a third. When
input terminates from ACI, the ACI2 field is checked and popped into ACI if
non-zero. When a procedure ftle calls another, the ACI is pushed into ACI2 (if
the latter is non-zero).

3.3 - 1/88 17

The Kernel- TeB (cent.)

18

1/*432*/ int len; /* last error number

The function XLER loads an integer value into the LEN field of the TCB. The
XERR function loads an error value into the LEN and exits. In the latter case,
POOS displays an error message to the screen. Programs may communicate by
way of the LEN status -- generally a zero value indicates successful completion,
while a non-zero value indicates some kind of error. In a procedure fIle, the spe
cial token" &0" is expanded to hold the current vallie of the LEN field. It is pos
sible to write special programs that augment procedure fIle control by reading or
modifying the LEN field.

1/*434*/ int sfi; /* spool file id

PDOS OUtput can be re-directed to a fIle with the SU command from the
monitor. This command has two parameters -- a unit number and a file or port.
If the second parameter is a port, the unit number is used to select which one of
the fields UIP, U2P, U4P, or U8P should receive the specific port value. If the
second parameter is a fIle, that fIle is opened and the fIle is placed in the SF!
field In that case, the unit number is placed in the SPU field. For any character
output. the current value of the UNT variable is checked against the SPU field.
If there are corresponding bits, the character is written to the fIle open on the
SF!.

/*436*/ char flg; /* task flags (bit 8=cmnd line echo) *

The FLG field contains several "mode" bits that can be set or cleared to affect
various POOS functions. The bottom two bits are used by the debugger to vary
the way memory inspect/change is done. If the least significant (bit 0) is set, the
debugger will modify memory a byte at a time rather than a word at a time. If
the next bit (bit 1) is set, the debugger will treat memory as "write-only" -- it
will not read the locations but will write to them. This may be useful in working
with some types of memory mapped I/O registers. The next three bits (2-4) are
currently reserved for future expansion. Following that is a bit that is set upon
entry to the XGLM function and cleared on exit of the function. The next bit (bit
6) if set. tells POOS to convert lower case to upper case whenever one of the get
line calls are performed. Since the monitor uses one of these functions, this is
one way to obtain case folding on the command line. The most significant bit
(bit 7) signals the POOS monitor not to echo command lines to the monitor. The
following diagram is extracted from MPDTCB:SR.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

C
0·.········\

"'I

. , c·····"
c

c
PDOS DEVELOPER'S REFERENCE

The Kemel- TCB (cont.)

FLG$.B = PAM _LEB

~~ = Byte I&C (DEBUG)
........ :~............... = No echo (DEBUG)

= Long/Byte skip I&C (DEBUG)
= XGLM
= XGLx CHANGE LOWER TO UPPER
= NO COMMAND LINE ECHO

The FLG field is copied from the parent task to the child task when a task is
created.

/*437*/ char slv; /* directory level */

The ''LV'' command sets a mask byte that indicates which files will be listed by
the ''LS'' command when the level is not explicitly specified. It also dictates the
default level when new fIles are created. The level specifier does not restrict ac
cess to fIles on levels. but it does allow you to order your disk files into logical
groupings. The default level when PDOS comes up is levell. Level 255 is a spe
cial case. If your task is.set to level 255. files at all levels are visible to you.
Files may be created at level 255. but it is not possible to list them by
themselves -- listing the fIles at level 255 lists fIles at all levels.

The SL V field is copied from the parent task to the child task when a task is
created.

/*438*/ char fec; /* reserved for PDOS internal use */

This field is reserved for POOS use only.

/*439*/ char sparel; /* reserved for future use */

This field is reserved for future use by POOS.

3.3 -1/88 19

, The Kernel- Tee (cont.) .

20

1*43A*1 char csc[2]; 1* clear screen characters *1

The CSC field and the PSC field are designed to give some tenninal inde
pendence to PDOS. If these two fields are properly initialized, the full-screen
editor can run, and most other utilities that use tenninal functions Will work as
well. The CSC field allows the user to specify up to four characters (two escapes
and two other characters) to output when a program requires a clear screen se
quence. The encoding is fairly simple -- load the two bytes with the characters
to print IT the high bit is set on either byte, that byte is preceded by an Esc.
Some tenninals, then, require the sequence Esc H Esc J to clear the screen. The
character "H" has a decimal value of 72 and a hexadecimal value of 4S in
ASCll. Adding the escape bit makes it a CS. The "J" character is a 4A, which be
comes a CA with the escape bit set The entire sequence is CSCA. If the second
byte is not necessary, leave it zero.

Some tenninals are still so complex in their tenninal sequences that this scheme
is not enough. An example of this complexity is the ANSI standard tenninal se
quence. PDOS provides for this type of tenninal by leaving a special call-out in
the BIOS for tenninal functions. IT the CSC is zero, or if the first byte of the
CSC is FF, POOS calls the routine B$CLS in the BIOS to clear the screen. The
default code in MBIOS for B$CLS performs the clear screen function for the
ANSI tenninal, but you may modify it to suit your own purposes. The B_CLS
function needs to load the character sequence into memory using MOVE.B
xx,(A3)+ instructions. A null character tenninates the string. IT B$CLS returns
with a status ofNE, POOS simply outputs the string. Otherwise, the system ex
pects register DO. W to contain a pair of bytes in the usual CSC format. It is pos
sible to have code for several types of tenninals in the B$CLS function by
setting the frrst byte of the CSC to FF and using the second byte as a tenninal
type code.

There is a problem in associating the clear screen variable with a task rather than
with the port. With virtual ports, where a task may move from one tenninal to
another -- it should retain the ability to clear the screen regardless of where it
runs, however it does not Also, a task may have more than one output unit ac
tive -- printing simultaneously on two or more tenninals. In such a case, the task
oUght to be able to clear both screens with a single XCLS function, but it can't.

Refer to your Installation and Systems Management guide for more details
about the clear screen call.

The CSC field is copied from the parent task to the child task when a task is
created.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o
o

cD

o
c

(

(

(

PDOS DEVELOPER'S REFERENCE

The Kernel- TCB(cont.)

/*43C*/ char psc[2]; /* position cursor characters */

The PSC or position cursor sequence works with the CSC field to provide ter
minal independence. The characters stored here determine the lead-in sequence
for the position cursor command; whether or not the row/column values are
biased by a space; and whether the row or the column comes first. The two bytes
of the PSC are normally output as lead-in characters for the function. If the high
bit of the first character is set, the tow and column values are biased by $20.
('Ibis means that position zero, zero -- the upper left comer of the screen -- will
be addressed by outputting the lead-in characters followed by two spaces). If the
high bit of the second character is set, the column is output first, followed by the
row, otherwise, the row comes first.

As is the case with the CSC field, if the entire field is zero, or if the first byte is
FF, POOS calls the routine B_PSC in the BIOS to perform the cursor position
sequence. B_PSC receives the row value in register D1.B and the column value
in D2.B. Register A3 points to the buffer where the sequence should be
deposited. Again, one might set the first byte of the sequence to FF and use the
second byte as a function code. When B_PSC returns, if the status is NE then
the string at (A3) is null terminated and sent to the terminal. Otherwise, POOS
fmishes making the position cursor sequence, using DO as the bias for the row
and column, swapping them if the high bit is set on the second character of the
PSC field, and storing the row and column two bytes beyond A3. The code is as
follows:

ADD.B Dl,DO
ROR.W j18, DO

ADD.B D2,DO
TST. B l+PSC$ (A6)

BPL. S @0006
ROR.W j18,DO

*
@0006 ADDQ.W n,A3

;ADD ROW

;ADD COLUMN
; SWAP?

;N
;Y

MOVE.W DO, (A3) + ;STORE POSITION CHARACTERS

One problem is that the output routine terminates on a null character. If your ter
minal requires that the row/column not be biased, but that the values go out
directly, there may be a problem with addressing on row or column zero. In
some cases, it might be possible to add $80 as a bias, since many terminals ig
nore the high bit. This would allow POOS to distinguish between a terminating
null and the 80 used to indicate a row or column zero. Another technique that
might work would be to output the cursor positioning string within the B _PSC
function, using the XPDC function. This function does not rely on a terminating
null, but uses a count in register D7 to tell when to stop. In this case, the B]SC
would need to return a null string in the COB buffer (where A3 points) and a
status of NE.

The PSC field is copied from the parent task to the child task when a task is
created.

3.3 -1188 21

The Kernel - TCB (cont.)

22

1*43E*1
1*441*1

char _sds(3); 1* alternate system disks
char sdk; 1* system disk

*1
*1

These four bytes indicate the "path" searched whenever any file name is
specified for an open without an explicit disk designator. The search order is
reversed from the storage order -- SDK is the first disk, followed by SDS[2],
SDS[1], and SDS[O). SDK is the "current" disk; the one used for files created
without a disk designation, and the disk searched whenever an "LS" monitor
command is given without a disk designation. The POOS monitor outputs the
contents of the SDS/SDK fields as the monitor prompt, using the B$MPT
routine in MBIOS. This is entered via offset BYDM in the BIOS. The prompt
routine uses the convention that 255 is an illegal disk, and does not display that
value. Thus, if only one or two numbers are given to the "SY" command, the
remaining values in the SDS field are filled with FF or decimal 255. One odd
consequence of this is that if you specify SY 255, the POOS prompt is reduced
to a single right angle bracket and there is NO default disk.

The SDS and SDK fields are copied from the parent task to the child task when
a task is created.

1/*442* 1 void * ext; 1* XEXT address *1 I
Programs normally exit using the XEXT primitive. When POOS performs this
function, it checks the TCB variable EXT. By default, this field contains a zero,
but if it contains a non-zero address, PDOS jumps to that address instead of
taking a normal exit. It is thus possible for a program to specify special action to
be taken on exit -- closing files and other termination sequences, for instance. It
is very important that the termination routine specified by the EXT field clear
the EXT field before it attempts termination, or the task will be held in a loop,
continually executing the termination routine.

In the C standard library, the XEQ function loads another program image into a
buffer and calls it as if it were a subroutine. XEQ alters the EXT vector to force
the program to return to the caller instead of exiting. You may use the EXT vec
tor to control the return of a task spawned with the XCTB call-- but only if you
give XCTB the starting address. If you give XCTB a monitor command to ex
ecute in the form of a command string, POOS loads the command into the com
mand line buffer (CLB) and then does an XEXT, depending on the monitor, to
parse the CLB for the next command. This means that your exit routine gets
called BEFORE the task starts.

The EXT field is copied from the parent task to the child task when a task is
created.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o
O'·",,!

"

,,<IF"""
'""y

r",

'~'

o
c

(

(

c

(

PDOS DEVELOPER'S REFERENCE

The Kernel - TeB (cont.)

1/*446*1 void * err; 1* XERR address *1 I
Most of the same things that apply to the EXT vector also apply to the ERR vec
tor. This pointer determines where the program goes when it executes an XERR
system call. If the ERR vector is zero. PDOS handles the error by displaying a
message and exiting to the monitor. If the ERR field contains a non-zero ad
dress. PDOS jumps to that address instead. Although the XERR function is ex
ecuted with the error number in register DO. PDOS passes it to your error trap in
register D1. Since most programs can exit by either the XEXT instruction or the
XERR instruction. you are generally advised to set both vectors to properly con
trol program termination.

The ERR field is copied from the parent task to the child task when a task is
created.

1/*44A*1 char cmd; 1* command line delimiter *1

The CMD field works with the CLP pointer to control the action of the XGNP
(get next parameter) function. Since the monitor uses XGNP to parse the name
of the next program to run. and since all programs use the XGNP function to col
lect command line arguments. this field can be useful to any system programs
that affect program execution or parameter passing. The XGNP call can be used
as a parser if its functions fit your needs.

Basically. the XGNP first examines CMD. If it contains a period or a null.
XGNP does nothing. indicating no parameter available. If it contains a space or
a comma. XGNP parses the string indicated by the CLP until it encounters a
space. comma. period. or null. This delimiter is saved in the CMD field and a
null placed in the string where it was found. Leading spaces on a parameter are
ignored. An opening parenthesis disables the usual parsing for spaces. commas,
or periods until a matching closing parenthesis is found PDOS keeps a count of
unclosed opening parentheses. so that they may be nested. It is thus possible to
pass a group of parameters as a single parameter through XGNP.

1/*44B*1 char tid; 1* task ID *1 I
The task number is also available in SYRAM and most PDOS functions use that
value when they need it This field is used primarily by application programs
that need to know the current task number. PDOS does use the TID field in the
following functions: the XCTB function uses the TID for the parent task field in
the task list; the get line calls reference it for the &# symbol expansion in proce
dure ftles; and the monitor function "L 1'" determines which line gets the asterisk
(indicating the current task) from the TID field.

3.3 - 1/88 23

The Kernel - TeB (cont.)

24

1/*44C* 1 char ecf; 1* echo flag *1

The ECF flag is used by POOS to disable all output without modifying the cur
rent value of the UNT variable. The ECF flag is nonnally set/cleared by the
''BE" command from the monitor. The XERR primitive also clearS the ECF flag
so that output will be restored whenever an error occurs. Finally, when the
monitor gets a command line that is not from a procedure file or an ''FE'' (For
Every) frame, it clears the ECF flag. The output character routine in POOS only
looks at the high bit of the ECF to determine whether to allow output or not.
This bit is set by the "BE" command whenever ANY non-zero value is loaded
into the ECF.

The "GT" monitor command also sets the high bit to disable output while scan
ning for the label, but it restores the previous value of the ECF afterwards. The
''LS'' command tests the 1 bit of the ECF (set by EE 2). If that particular bit is
set, the "LS" command appends the disk: number to every file name and
CLEARS the high bit for each line of output that has a file name. This makes
possible a more condensed file listing -- one that does not have the usual header
and footer that the "LS" command prints. Thus, EE 2.LS ;@.EE 0 will not dis
play the disk: name, the directory size, or the summary information. It is possible
to do a multiple disk listing by using the "FE", "LS", and ''BE'' commands
together. For instance, to display all procedure files on disks 3-28 you might use
the following command:

x>FE (3-28) BE 2[LS ;@/AC/&F]BE 0

The remaining bits of the ECF are undefmed and reserved for future use.

1*44D*1 char cnt; 1* output column counter *1

The CNT field in the TCB is used to keep track of the current print column on
output It is set directly by the XPSC primitive, cleared by printing a carriage
return, decremented by printing a backspace, and incremented by printing a non
control character. Whenever POOS expands tab characters to spaces, itreferen
ces the current value of the CNT field. Similarly, the XT AB function uses the
CNT field to determine how many spaces to print.

If a task: bas more than one output port (UNT not 1) then the CNT field will not
be able to simultaneously maintain the correct value for all ports. This means
that tabs may not expand correctly on both (or either!) ports, and the XTAB
function may not perform correctly for both. There is a table in SYRAM that
contains the current row and column position for every port -- this table is
referenced by the XRCP function and is more likely to be accurate than the
CNTfield.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

c
o

n
V)

o
c

(

PDOS DEVELOPER'S REFERENCE

The Kernel - TeB (cont.)

1*44E*1 char mmf; 1* memory modified flag */

The memory modified flag is used to tell what type of program executed pre
viously, and if it is safe to re-enter it This determines the proper action of the
''GO" command from the monitor, and allows some programs to perform a dif
ferent action on re-entry than on initial entry. The "GO" command checks the
sign bit of the MMF. If it is set, and no starting address was given, the "GO"
command simply exits. If the MMF has a zero or positive value, the "GO" com
mand uses the EAD (entry address) as the default starting address. This gives
the user the capability of leaving a program, executing a few monitor com
mands, and re-entering the program with memory intact A few monitor com
mands, however, will alter the contents of task memory. Re-entering a program
after one of these commands might cause a crash.

These commands (specifically "ZM," "FM," "TM" with a negative port, ''FE,''
"OM," "1F," and "LL j use a potentially large amount of task memory for buff
er space. Therefore they set the MMF flag to minus 1. The XCTB and XCHF
calls both clear the MMF flag. XCHF is used by the monitor to start any new
program, so with any program execution the MMF always starts off zero.
BASIC, QLINK, and MEDIT all set special values in the MMF to let them dis
tinguish between initial entry (when the MMF is zero) and are-entry. The
values used by these three programs are given in the me MPOTCB:SR and are
as follows:

MMF$= 1 = BASIC
2=QLINK
3=MEDIT

Other values for the MMF are reserved for future POOS expansion.

1/*44F*1 char prt; 1* input port if

The PRT field is used by the get character primitives (XGCR, XGCC, XCBC,
XGCP, and XGCB) to select which input buffer to use for data. If the PRT has a
value of zero, the task is a background task. By definition, background tasks
may receive input from a procedure file or the IMP vector. If the task attempts
monitor input with no input port, the task simply exits and gives up its memory
to the system. If a program attempts character input with no input port, it
receives an error 86 -- "Suspend on Port 0."

To avoid having multiple tasks trying to grab input from the same keyboard,
XCTB keeps track of which ports have been allocated to tasks and which
haven't. This record is kept in the SYRAM field, PATB. XCTB refuses to create
a task with the same PRT value as another task. When a task exits with a non
zero value in the PRT, the corresponding PATB entry is cleared. If a task should
clear its own PRT and then abort, the P A TB entry for that task is still allocated,
and POOS will not allow you to create a task on that port.

3.3 - 1/88 25

The Kernel ~ TeB (cont.)

26

Several additional uses are derived from the PRT field by PDOS functions.
XSTM tests it to tell if a task is a background task. If so, and the task sends a
task message with a negative destination, the message will be sent to the parent
task. In this way, a task can create a background task for a particular function
and that task can send a message to the parent on completion or other state
change. If the task is not a background task and sends a task message to a nega
tive destination, the message will come back to the originating task. This probab
ly will be found and displayed by the monitor after ~e program exits.

Some PDOS primitives use the PRT as the default port if none is explicitly
given. These are XSPF -- set port flag, XRPS -- read port status, and XRCP -
read cursor position. There is opportunity for error in this last case. A program
may use the XRCP function to save the current cursor position, then position to
a new location to write a message, and then re-position to the old position. You

o
o

might, for instance, write a program to keep the current time displayed in one I~\
comer of the screen. If this program runs as a regular task it will have no ~
problem, but if it runs as a background task (and does not explicitly specify the
port to XRCP), it will not correctly read the cursor position. This is because
XRCP uses the PRT value to index into the proper table, and the PRT value is
zero for background tasks. Such a program should probably pick up the port
number from the UIP field and use that in the specification of the port for
XRCP.

One last PDOS function that makes extensive use of the PRT field is the "TM"
command from the monitor. This function maps the current port to an alternate 0", ' ..
port, copying input from the current port to the output of the alternate port and
vice-versa. It does this by storing one port number in the PRT and the other port
number in the UIP and then reversing them. It is sometimes possible for a task
to crash while in transparent mode, leaving the unfortunate user with the PRT
driven by a modem port or some other inaccessible device. The MABORT
program now searches for this situation and restores the PRT$ field for the task
that last received the port.

1*450*1 char spu; 1* spooling unit mask *1

The SPU field is used to direct output to an output spool file. During charaCter
output, the UNT is compared against the SPU. If any bits correspond, the charac
ter is sent to the file ID in the SF! field. The SPU value supersedes the mapping
to the UIP, U2P, U4P and U8P. So, if the SPU value is set to 2, unit 2 data will
go to the spool file instead of to the U2P port. If the SPU is set to 16, however, it
will not overlay any of the output ports. In that case, with valid port numbers in
all four UXP fields, and a UNT value of 31 it is possible to direct character out
put to five different destinations I

The "SU" command from the monitor will set the SPU field if the second argu
ment is a file name. If the second argument is a port number, it sets one or more
of the UXP fields. SU 0 clears the SPU field and closes the file ID in the SF!
field

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

ff'\\ ,..,;

o

PDOS DEVELOPER'S REFERENCE

The Kemel- TeB (cont.)

1*451*1 char unt; 1* output unit mask */

The UNT field of the TCB directs character output to all, some, or none of the
output sinks of the task. The output routine checks the SPU for correspondence
with a copy of the UNT field. If any bits match, the byte is sent to the spool file
and those bits are cleared from the copy of the UNT field. The first four bits of
the copy of the UNT field are then checked one at a time. If the bit is set and the
corresponding UxP field has a noil-zero value the character is sent to that port.
XCfB initializes the UNT field to 1.

1*452*1
1*453*1
1*454*1 .
1*455*1

char _ulp;
char _u2p;
char _u4p;
char u8p;

1* unit 1 port i
1* unit 2 port i
1* unit 4 port t
1* unit 8 port i

*/
*1
*/
*/

These four fields determine the output port(s) connected to a task. If none of the
fields contain a valid port number, the task does not perform terminal output -
at least not through PDOS. The UIP contains the primary output port number.
When the task is created the UNT field is set to I, making the UIP the only out
put port enabled. Generally, the UIP is the same as the PRT port, since most
tasks use one port for both input and output. (Such does not have to be the case,
however).

The U2P port is traditionally the port for printing listings. Many POOS systems
have a command in the start-up ftle to direct the U2P to the port occupied by the
system printer. Earlier versions ofPDOS did not allow the U2P values to be set
by the "SU" command; rather a variation of the "BP" command (negating the
port number) sets the port characteristics and assigns the port as the U2P port at
the same time. This technique is disparaged now as being obscure, but it still
works. The accepted technique is to type SU 2,<port>.

The TI A and TIS I/O drivers and the ON monitor comand all get their output
unit from this field.

1*456*1 char spare2[170); 1* reserved for system use *1

This block of memory contains special registers used by the debugger and a few
temporary variables used by various PDOS primitives. Their assignment is sub
ject to change without notice.

1*500*1 char tbe[O); 1* task beginning *1

This "field" is actually not a field at all, but rather the beginning of the program
space.

Further information may be found by studying the comments in the file
MPOTCB:SR -- and by experimentation.

3.3-1/88 27

The Kernel (cont.)

SYRAM

28

There are a number of fields in the TCB that may be of use to the advanced
programmer. However, be warned that in the same way that the TCB determines
the functioning of an individual task, so does the SYRAM block determine the
functioning of an entire PDOS system. SYRAM is the variable space for the
PDOS kernel. Within SYRAM are contained all the system parameters that
must vary -- i.e., those that can't be coded into EPROM. The PDOS system it
self is coded in position-independent assembly language. There is only one ab
solute value assumed in the entire system and that is the pointer to SYRAM (a
value labeled B$SRAM and usually set by the xxDOS:GEN procedure fIle).
Once an interrupt routine has found SYRAM it can find anything else in the
PDOS system.

An application program generally has no need to modify variables in SYRAM.
Programs changing SYRAM variables may crash the system and will probably
not be portable to other PDOS systems. Future versions of PDOS may alter the
structure of SYRAM, making things difficult for programs that depend on its
present structure. The current structure of SYRAM is always defmed in the as
sembly language module MSYRAM:SR. You should check the MSYRAM:SR
fIle or the Installation and Systems Management guide for your system for any
differences from the description given below.

SYRAM consists of three main parts. The first part contains fixed variables and
tables of standard size which are pre-initialized by the BIOS. The second part of
SYRAM also contains fIXed variables and tables of standard size, but are pre-ini
tialized by PDOS. These SYRAM offsets do not change and are included as as
sembler reserved words. The third part of SYRAM has the SYSGEN
value-dependent tables, where the offset location of each table depends on a
variable.

Many of the values in SYRAM are determined by conditional assembly symbols
in the fIles MBIOS:SR and MSYRAM:SR. These may be set by modifying the
actual source code of these fIles. or by defining the symbol when performing a
sysgen. In the following discussion, if a variable table depends on such a sym
bol, the name of the symbol and the defining fIle are given.

Fixed Offset BIOS Initialized

1*000*1 char * bios; 1* address of BIOS ROM */

The first pointer in SYRAM indicates the start of the BIOS table. Since the
BIOS code has (at least at the start) a fixed structure, this enables programs to
get at the routines for the different types of I/O. For example, the driver fIle
IT A picks up the BIOS pointer to get the BIOS UART table. After indexing to
the appropriate table (based on the port type), it retrieves a pointer to the
specific BIOS "putc" entry point. There are a number of fields in the BIOS that
can be useful to a systems program. The MBIOS:SR file defmes the BIOS struc
ture.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

C··'·'·'· , .

G

,,-~

V

4·"·

'\..;.,

c

(-

("
PDOS DEVELOPER'S REFERENCE

The Kernel - SYRAM (cont.)

1*004*1 char * mail; 1* mail array address *1

In order for BASIC programs in different tasks to communicate, there needs to
be a special memory area set aside outside of tasking memory. BASIC dermes
this area as an array, and initializes the first long word as an array descriptor.
Programs in other languages may use the mail array to pass information back
and forth, but if BASIC is in the system it would be safest to avoid the ftrst long
word. .

The size of the mail array is determined by the MBIOS symbol "MSZ" The
default size is 256 bytes. The mail array is allocated at the end of tasking
memory.

1/*008* 1 int rdkn; 1* RAM disk iI *1

This variable holds the current number of the RAM disk. The RAM disk can be
dynamically mapped to any number by way of the "RD" monitor command. The
initial value of the RDKN fteld is set by the MBIOS symbol "RU". The default
value is 8.

I/*oOA*1 int rdks; 1* RAM disk size *1

The size of the RAM disk is given in multiples of 256 bytes. This is the size of a
disk block under POOS. The default size of the RAM disk is 255 blocks. The
MBIOS symbol "RZ" sets the initial value of this parameter. Later, the second
parameter of the "RD" monitor command can set it to any size desired.

I*OOC*I char * rdka; 1* RAM disk address *1

The starting address of the RAM disk deftnes where in memory the RAM disk
begins. The initial value of RDKA is set by the MBIOS symbol "RA".1f the ini
tial address is zero and the initial size is non-zero, POOS allocates the RAM
disk from the end of tasking memory and calculates the starting address after
sizing RAM. You might want to set the RAM disk address if you have a
separate memory card that you want to dedicated to your RAM disk. The RAM
disk address may also be set by the third parameter of the "RD" monitor com
mand.

1*010*1 char bflg; 1* BASIC present flag *1

This flag is set during startup to the value of the FBA symbol (in MBIOS). It in
dicates whether or not BASIC was linked into the system. If there is no BASIC
interpreter present, the "EX" command from the monitor returns an error 77 , as
does any attempt to run a ftle of type "EX" or "BX". The default depends on
whether or not you have linked with a version of POOS containing BASIC.

3.3 -1/88 29

The Kernel - SYRAM (cont.)

30

/*011*/ char dflg; /* directory flag */

This flag is set during startup to the value of the FOR symbol (in MBIOS). Its
value is zero unless the user has chosen to make file names local to the current
directory level. Normally. any program can access any file on the Specified disk
without regard to the level number of the file. If the directory flag byte is set
minus ($80). you can only access a file on a level different from your own by
Specifically Specifying the level. Two files may have the same name on the same
disk if the directory flag is set and they are on different levels.

int f681; /* 68000/68010 flag */

The 68000 and 68008 differ from the other processors in the information saved
on the stack during an exception. The same version of PDOS runs on both the
68000 and the 68010. but to account for the difference in the exception han
dling. PDOS tests the processor during initialization to determine the processor
type. The ''F68I'' flag is then set to 0 to indicate a 68000 or to 2 to indicate a
68010. Any modifications to this flag will probably cause a crash.

/*014*/ char * sram; /* run module B$SRAM */

o
o

The linker defmes the symbol B$SRAM to be the pointer to the start of
SYRAM. This is so that exception processors can load the pointer without refer
ring to registers. In a ROM environment, it may be most convenient to put the
pointer itself in SYRAM, since there may not be another place available. RUN- Ie)
GEN uses this value to produce run modules. In a RAM environment, the loca-
tion of SYRAM itself may change from time to time, and putting B$SRAM
inside SYRAM would be like locking the key inside the safe. Therefore, a flxed
location is used in the xxDOS:GEN file to provide a pointer to SYRAM.

/*018*/ int spare1; /* reserved for expansion

This location is reserved for future use by PDOS.

Fixed Offset PDOS Initialized

/*OlA*/
/*OlC*/

int _fcnt;
long tics;

/* fine counter
/* 32 bit counter

*/

*/
*/

There are two counters in the PDOS system. Both are incremented once per
clock tic (generally every hundredth of a second, but it may be different). The
fme counter counts up to 1 second of time and is cleared. The tics counter runs
endlessly and rolls over at the maximum 32-bit number.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

c
c

c

PDOS DEVELOPER'S REFERENCE

The Kernel- SYRAM (cont.)

1*020*1 char smon; 1* month *1
1*021*1 char _sday; 1* day *1
1*022*1 char _syrs[2); 1* year *1
1*024*1 char shrs; 1* hours *1 -1*025*1 char smin; 1* minutes *1 -
1*026*1 char ssec[2); 1* ·seconds *1

The POOS system clock keeps track of the current day, month, and year, as well
as the hour, minute, and second. They are stored as 8-bit integers and incre- .
mented as is appropriate.

POOS does not account for leap-year in its roll-over. This may mean that it is
necessary to manually reset the clock every four years. POOS also does not try
to keep track of Daylight Savings Time. The SYRS and SSEC fields have an
extra byte at the end in order to put the time and date onto 16-bit boundaries.
These unused bytes are reserved for POOS use.

1*028*1 char patb[16); 1* input port allocation table*1

POOS attempts to enforce a limitation that only one task can own the keyboard
on any given port. The port allocation table serves this purpose by keeping track
of what tasks have allocated what ports for input The XCTB (create task) may
request an input port for the new task. Before creating the task, PDOS checks
thePATB to see if that port is already allocated. If the port is already allocated
to another task, POOS sets the new task's PRT value to zero. The task number is
always saved as the binary complement of the actual task number. Thus, task 0
is saved as FF, task I as FE, etc.

1/*038*1 char brkf[16); 1* input break flags *1

Two characters in POOS are considered "break characters". These are Ctrl C
and Esc (decimal values 3 and 27). Whenever the character input routine detects
that one of these characters has been pressed, the BRKF table entry correspond
ing to that port is setto a-I (for an Esc) or +1 (fora Ctrl C). The XCBC (check
for break character) primitive tests this table and returns a status indicating its
value.

1/*048* 1 char f8bt [16); 1* port flag bits *1

POOS allows some control of characteristics of an I/O port through the "BP"
monitor command and the XBCP primitive. In addition to setting the data rate
on the port these calls allow the user to configure the port with various options.
The FSBT table assigns an 8-bit status to each of the PDOS ports. Each status
byte has the following structure:

3.3 - 1/88 31

The Kernel- SYRAM (cont.)

32

FHPI 8DCS

~
~ 0= Ctrl SCtrl Qenable

1 = Ignore control character
2 .. DTR enable .

. 3 .. 8 bit character enable
4 = Receiver interrupts disable
5 = Even parity enable
6 - HigMow water flags (RESERVED)
7 = Ctrl S Ctrl Q flag bit (RESERVED)

Bit zero, if set, tells POOS to use XON/XOFF handshaking on the port. If a Ctrl
S is detected on input, POOS stops oUlput to that port until a Ctrl Q is seen. If
POOS gets behind on processing input and this bit is set, a Ctrl S will be trans
mitted to stop the other device from transmitting.

Bit one, if set, tells POOS that the port is not to perform special input processing·
on the data stream. This means that Esc and Ctrl C characters are treated as
regular data and do not set the break flag. The buffer clear character, Ctrl X, is
also disabled by this bit.

The virtual port (window) switching character is also not disabled by this bit;
you should not have this port enabled for virtual ports either, if you plan to
send/receive binary data.

Bit two tells POOS to perform hardware handshaking. If the hardware supports
it, POOS looks for a ready status on the DTR line before outputting, and will
drop its own DTR signal when it needs to signal another computer to stop send
ing data. Check the xxBIOSU:SR ftle on your system to see what this bit does.

Bit three tells POOS to send and receive eight bits of data at a time on the port,
rather than seven. Some terminals may send or receive the eighth bit under spe
cial circumstances. Similarly, eight bit data transmission may be required for
some communications protoCols.

o
o

,£~.

\',,-.J

Bit four, if set, disables receiver interrupts on the port. POOS allows non-inter- t£-'"
rupt received characters and the XGCR primitive "polls" the UART directly if \~

. the buffer is empty and this flag bit is set.

o
c

3.3 -1/88 PDas DEVELOPER'S REFERENCE

(,

(~

PDOS DEVELOPER'S REFERENCE

The Kernel- SYRAM (cant.)

Bit five tells PDOS to enable parity on the port and to use even parity. PDOS
does not support odd parity, although you might set the appropriate bits in your
xxBIOSU:SR file and send odd when even is requested. The rest of PDOS does
not use parity and provides no error handling; this is only a signal to the BIOS
modules.

Bit six is reserved for internal use by PDOS. It signals that the internal buffer for
this port is almost full. This is known as crossing the high water mark. If Ctrl S
Ctrl Q handshaking is enabled, a ttrl S is sent when this bit is set.

Bit seven indicates that a Ctrl S has been received and is waiting for a Ctrl Q. A
problem almost certainly exists if both bits six and seven are set, since this indi
cates that the other device sent PDOS a Ctrl S to signal us to stop sending and
then sent us too much data to hold.

1/*058*1 char utyp[16]; 1* portuart type *1

Although PDOS documentation refers to all types of character ports as UARTs
(Universal Asynchronous Receiver! Transmitters), a PDOS port may be one of a
much larger group of devices. On some implementations of PDOS, a "port" is a
memory-mapped graphic screen with associated keyboard. On another, the
''UART'' may actually be implemented with some sort of parallel printer port
device. Each one of these different types of hardware requires a different hand
ler subroutine on a given PDOS implementation. PDOS allows up to eight types
of character ports, each with its own device service routine. These are named in
MBIOS:SR as U$IDSR, U$2DSR, U$3DSR, and U$4DSR. Most PDOS im
plementations only have 1 or 2 device types. The UTYP table tells what set of
device service routines each port should use.

1*068*1 char urat [16] ; /* port rate table *1

The transmission speed in bits per second of a port (usually called ''baud rate")
is set with the BP command from the monitor or the XBCP primitive. The cur
rent speed is saved in the UART table (range = 0 to 8).

/*078*1
1*082*/
1*084*/
1*086*1

char _evtb [10];
char _evto[2];
char _evti[21;
char evts[21;

1* 0-79 event table *1
1* 80-95 output events *1
/* 96-111 input events *1
1* 112-127 system events *1

Logical events on PDOS are stored in SYRAM in a table of bits. If the bit is set,
the corresponding event is set, and vice versa. The bits for events 0-127 are
stored in these tables.

1*088*1 char ev128[16]; 1* task 128 events */

Event 128 is a special event, and local to each individual task. This means that
there is a unique bit allocated for every task in PDOS. The EV128 table contains
these bits. Normally, the local events are set by the local task, or are set in
response to a delay event initiated by the XDEV primitive. It is possible,
however, for a program to set the local event of another task by directly modify
ing the corresponding bit in the EV 128 field. The code below shows an ex
ample:

3.3 - 1/88 33

The Kernel- SYRAM (cont.)

34

* SET THE LOCAL EVENT OF TASK N
OPT PDOS

START XGML ;MAKE SURE AS PROPERLY POINTS TO SYRAM
XPMC PROMPT
XGLU ;READ IT
XCDB ;CONVERT TO BINARY-->D1

MOVE.W 01,00 ;COPY NUMBER
LSR #3,01
ADDI . W #EVTS. +2,01
NOT.B DO

;TASK NUMBER / 8 (BYTE INDEX)
;BIAS BY BEGINNING OF EVENT TABLE
;COMPLEMENT TO REVERSE BIT INDEX
;SET THE BIT BSET 00,0 (AS, Dl.W)

XEXT

PROMPT DC.B 13,10,'Enter task number:',O
EVEN
END START

/*098*/ long evtm[4); /* events 112-115 timers */

Events 112-115 are special because they are automatically set every so many
clock tics. Event 112 occurs every 1/5 of a second; event 113 marks the second
interval; event 114 happens on the ten second mark and event 115 every 20
seconds. The EVTM array contains the individual counters for these four timers,
as they count up the required number of clock tics for the specified interval.

/*OA8*/ long bclk; /* clock adjust constant */

The standard PDOS clock allows for timing in terms of 100 tics per second, 128
tics per second, or some other fairly small number that is convenient. Some
times, however, adjusting the number of tics per second still results in a system
clock that runs too fast or too slow, due to a crystal that has an odd oscillation
period or some other hardware peculiarity. In that case, PDOS allows a small ad
justment to be made to the clock every second, when the B$LED routine is
called. This code is part of the BIOS routines that the user may customize. A
typical set of code appears below:

B$LED MOVE.L B CLK(AO) ,DO ;ADJUST CLOCK?
BEQ.S @0002 - ;N

ADD.L DO,BCLK. (AS) ;Y, ADJUST COUNT, CARRY?
BCC.S @0002 ;N

ADDQ. W #1, FCNT. (AS) ; Y, UP COUNTER

In this code, the BIOS field B_CLK is added every second to the SYRAM
counter BCLK. until the result overflows the 32-bit field. Then, the fine counter
is incremented. This allows for a fairly small adjustment to be made to the fine
counter to keep the PDOS system clock current.

/*OAC*/ char * tltp; 1* task list pointer *1

This points to the entry in the task list that corresponds to the current task.

I/*oBo*1 char * utcb; 1* user tcb ptr *1

This points to the TCB (task control block) of the current task. The information
also exists in the task list entry for this task, but it is copied out here for con
venience in access.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

o
(}

~~,

''''''

o

(

PDOS DEVELOPER'S REFERENCE

The Kernel- SYRAM (cont.)

1*084*1 int suim; 1* reserved for POOS use *1

This freld is reserved for POOS use only.

1*086*1 int usim; 1* "reserved for P"DOS use *1

This field is reserved for POOS ~ only.

1*088*1 char sptn; 1* reserved for POOS use *1

This field is reserved for POOS use only.

1/*089*1 char utim; 1* user task time *1

This field is initialized from the entry in the task list. Every clock tic, it is decre
mented until it goes to zero, indicating that the task's time slice is up and it
needs to swap.

I/*OBA*I char tpry; 1* task priority *1

This field is initialized from the entry in the task list. This field is also used in
the monitor, where the current task priority is used as the default priority for the
''CI'" command, and one less than the current priority is used as the task priority
for the "@" command.

1*088*1 char tskn; 1* current task number *1

This is the task number of the currently executing task. POOS uses it heavily. It
is also available in the TCB as the 110$ field.

1/*08C*1 char spare1; 1* reserved *1

This byte is reserved for future use by POOS.

1/*080*1 char tqux I*task queue offset flag *1

For fastest interrupt response, the time critical task suspends on either a logical
or physical event. the associated interrupt service routine should acknowledge
the hardware, set the event bit directly, and then load the task number (0-127)
into the TQUX byte of SYRAM. The ISR then exits with an XRTE primitive.
The POOS task scheduler will immediately schedule the designated task.

1/*08E*1 char tIck; 1* task lock flag *1

This flag is set by the lock task primitive (XLKT) and unlocked by the unlock
task primitive (XUL n. It also may be set by using the TAS.B 1LCK.(A5) in
struction. When it is set, POOS will not schedule any other task. In other words,
scheduling is disabled. Several critical functions in POOS are protected by lock
ing the task until they are finished.

3.3-1/88 35

The Kernel- SYRAM (cont.)

36

I*OBF*I char rflg; 1* task reschedule flag *1

This field is set internally whenever scheduling is attempted when the task is
locked. It indicates that PDOS should immediately re-schedule when the task un
locks. Nonnally, this field is set to FF, with 0 indicating re-schedule.

I/*oco* I char e122; 1* batch task it *1

Normally, the POOS monitor creates a separate task whenever you precede a
command line with "@". This task is by default 32K and executes at a priority 1
lower than the current task. If the E122 field is contains the number of a POOS
task, however, (task 0 doesn't count), the monitor will send the command line in
a task message to that task and set event 122. The indicated task serves as a
batch processor, waiting on event 122, and when it wakes up, getting a task mes
sage with XG1M. The batch processor may then execute the monitor command
in a ''background'' type of mode. You may write your own batch processor to
take advantage of this feature.

I/*OCl*1 char e123; 1* spooler task it *1

The monitor command "CF' normally just executes an XCPY (copy ftles) com
mand from the ftle named as the frrst argument to the me named as the second.
If the E123 field of SYRAM is non-zero (has a valid task number), the monitor
sends the command line to that task via XS1M and sets event 123. A back
ground spooler task may then put its own task ID in the E123 field and suspend
on event 123. When it wakes up, the command line is obtained by executing the
get message primitive, XG1M. The proper disposition of the command line
depends on the spooler task. You may write your own spooler to take advantage
of this feature.

I*OC2*1
I*OC3*1

char _e124;
char e125;

1* reserved for PDOS use *1

These two fields are reserved for future use by PDOS.

I*OC4*1 long cksm; 1* reserved for PDOS use *1

This field is reserved for future use by POOS.

I/*oca* I int pnod; 1* pnet node it *1

The byte at SYRAM offset $OC9 is initialized by POOS start-up to the node
character passed from the BIOS in the upper byte of D7.L This defaults to a nul
($00) which means that it is not a multi-processor system. If this byte is non
zero, the monitor prompt outputs the byte as a character followed by a blank. It
can be set at OOSGEN time with INODE=$xx. See the MBIOS:SR ftle.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o

'C,"', "

,

o
c

("

(

PDOS DEVELOPER'S REFERENCE

I*OCA*I char _bser[6];
I*ODO*I char iler[61;

The Kernel- SYRAM (cont.)

1* reserved for PDOS use *1
1* reserved for PDOS use *1

These two fields are reserved for POOS use only.

I*OD6*1 char ccnt[16]; 1* control C count *1

Starting with POOS version 3.0 there has been a system utility called
MABORT. This utility runs in the background at a high priority, but only ex
ecutes a few instructions before swapping. It reschedules every second, and
when it runs, it tests the Ctrl C count for every port. If any port has received
multiple Ctrl C characters in excess of the limit (default limit is 2, but it can be
set to any number when the MABORT task is created), the task mapped to that
port for input is aborted. The functioning of the MABORT task is described in
the PDOS Monitor, Editor, Utilities manual. POOS takes care of incrementing
the Ctrl C count every time one is received. The CCNT field has one byte avail
able for every port -- POOS input routines take care of incrementing the count.
Some utilities, such as MEDITCON and MEDIT, disable the Ctrl C count abort
function temporarily by loading the port's byte with $80. This minus count will
not abort the task. Of course, if the control character disable bit is set on the
port, the Ctrl C is ignored and the CCNT remains the same.

I/*OE6* 1 char * wind; 1* window IDs *1

Starting with POOS 3.2, the system utility called WINDI works with PDOS to
give you multiple logical ports to a physical port. The WIND 1 program is
described in the PDOS Monitor, Editor, Utilities manual. When the WIND 1
program begins, it allocates a buffer within its own task space and saves a
pointer to that buffer in the WIND field of SYRAM. A non-zero value in the
WIND field, then serves as an indicator that windowing is enabled. When this is
the case, every character input or output through a port undergoes additional
processing. When data comes in to or goes out from a port, that port is checked
to see if it is mapped to a logical port. If so, the characters are routed ap
propriately into the logical port or out the physical port. In addition, a memory
image of mapped logical ports is kept within a buffer in the WINDI task. When
the user maps his physical port to a different logical port, the WIND 1 task
refreshes the screen to show the cl,llTent display of that logical port.

The WIND field points to an array of 15 words (one for each physical port) each
with the following format:

3.3 - 1/88 37

The Kernel - SYRAM (cont.)

38

(WIND.).W = FRPM_D-p pppp

~~. 0-4=PORT#
~ ~ ~ 5 = Reserved

6=Reserved
7 = WINDOWING DISABLE
o = Reserved
1 = Reserved
2=ReServed
3 = Reserved
4 = ALREADY DEFINED
5 = PRINT FLAG
6 = REFRESH FLAG
7 = LEAD FLAG

The low order 4 bits indicate the logical port that is mapped onto the physical
port. The following code segment illustrates (in C) how a program might cause
its own screen to be refreshed.

refresh (port)
int port;
{

#include <SYRAM:H>
int *ptr = syram-> wind; /* pick up the pointer to window table.*/
while «*ptr & Oxf)-!= port) /* scan the list to find the */

ptr++; /* current port. */
ptr 1= Ox4000; / set refresh bit */
xsef(127); /* Wake WINDl to refresh */

/*OEA*/ char * wadr; /* window addresses */

The W ADR pointer in SYRAM points to the buffer in the WIND 1 task where
the screen images are saved. This pointer is initialized by the WIND 1 program
and used by POOS whenever characters are output to a port with windows
enabled.

/*OEE*/
/*OF2*/

char *_chin;
char * chot;

/* input stream
/* output stream

*/
*/

A hook in POOS 3.2 is the character input/output traps. Whenever PDOS
receives a character or sends a character to a port, it tests the CHIN or CHOT
vector. If the field is non-zero, it makes a subroutine call to the address saved
there. The following code shows how data for a particular port might be saved
away in a buffer for a monitoring program to test. One use for these traps is a
communications analyzer program that watches all data through a modem port
and displays it on a PDOS terminal.

To use the following code segment, the CHIN trap and CHOT traps must be ini
tialized with the addresses of the .CHIN and .CHOT routines. The data goes into
the .CHINBUF queue, the first three words of which tell the input, output, and
size of the queue.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

C··~.·········';
"

~'''''
V

/~.

''-;!

c
c

(

(.

(~

c
c

The Kernel- SYRAM (cont.)

SECTION 2
EXTN .PORT,.CHINBUF,.CHOTBUF,.CHIN,.CHOT

BSIZE EQU 256
.PORT OS.L 1
.CHINBUF OS.W 3

OS.B BSIZE
.CHOTBUF OS.W 3

OS.B BSIZE
SECTION 0

* INTERCEPT INPUT STREAM
* OO.B = CHAR
* 02.B = PORT
*

.CHIN
CMP.B .PORT+3,01
BNE.S @0099
MOVE.L AO,-(A7)
MOVEA. L 1I. CHINBUF, AO
BSR.S PUTBYTE
MOVEA.L (A7) +,AO

@0099 RTS

* INTERCEPT OUTPUT STREAM
* OO.B CHAR
* 01.B = PORT

*
.CHOT

CMP.B .PORT+3,01
BNE.S @0099

MOVE.L AO,-(A7)
MOVEA. L 1I . CHOTBUF , AO
BSR • S PUTBYTE
MOVEA.L (A7) +,AO

@0099 RTS

*
*
*
*
*
*

SAVE AWAY A BYTE
OO.B = CHAR
AO-> 0: PUT INOEX.W

2: GET INOEX.W
4 : COUNT.W
6: BUFFER(0 .• BSIZE-1)

PUTBYTE
MOVE.L 01,-(A7)
MOVE.W (AD) ,01
MOVE.B 00, 6 (AO,01.W)

ADOQ.B U,01
ANO.W #BSIZE-1,01
MOVE.W 01, (AO)
ADOQ.W n,4 (AO)
MOVE.L (A7) +,01
RTS

ENO

PDOS DEVELOPER'S REFERENCE 3.3-1/88

1* must be power of 2· *1
1* declare the PORT variable*1
1* PUT, GET, COUNT *1
1* BUFFER *1

1* FOR US? *1

1* FREE UP REGISTER *1
1* POINT TO STRUCTURE *1
1* SAVE A BYTE AWAY *1
1* RESTORE REGISTER AO *1

1* FREE UP REGISTER *1
1* POINT TO STRUCTURE *1
1* SAVE A BYTE AWAY *1
1* RESTORE REGISTER AO *1

1* FREE UP A REGISTER *1
1* PUT INDEX *1
1* STORE THE BYTE *1
1* INCREMENT THE POINTER*I
1* WRAP IF NECESSARY *1
1* SAVE IT *1
1* INCREMENT COUNT *1
1* RESTORE REGISTER *1

39

The Kernel- SYRAM (cont.)

40

I/*oF6* I char * iord; 1* I/O redirect *1

The lORD table is initially loaded with a pointer to a field later in the SYRAM
table called the RDTB. The RDTB table contains one byte for every port on the
system. Before data is output to a port, the corresponding byte in the re-direct
table is checked. If a non-negative byte is there, the data is placed in the INPUT
buffer of the indicated port - thus output to one port is re-directed to become
input data to another port. .

I*OFA*I char fect; 1* file expand count *1

This byte is the [number of sectors-I] added to the end of a file when it is ex
panded. The default is $01, which means that files are extended by two sectors.
This value is also used as the initial number of sectors for defining non-con
tiguous files. It can be altered at DOSGEN by setting B.FEC to the value [count-
1] when assembling xxBIOS:SR.

I*OFB*I char pidn; I*processor ident byte*1

PDOS 3.3a and newer sets this byte to a value so programs can tell which 68000
family processor is currently running. The values possible for this byte are as fol
lows:

=0
=1
=2
=3
=4

not POOS 3.3a or newer
68000 or 68008
68010 or 68012
68020 without 68881
68020 with 68881

This byte alters the message output by the ID monitor command.

I*OFC*I char * begn; 1* abs address of kernel entries *1

This long word points to the absolute entry table of the PDOS kernel or the label
Kl$BEGN. The dispatch table contains various entry points into PDOS which
are described in the section following.

1/*100* I int rwcl [13]; 1* port row/col 1 .. 15 *1

Whenever PDOS performs a position cursor (xpSC) or moves the cursor by
printing a character, a line-feed, a carriage return, or a backspace, it records the
current position of the cursor in the RWCL table. One entry is saved for each
logical port. When WINDI refreshes the screen, it places the cursor where the
RWCL entry for the port indicates. The XRCP read cursor position primitive
refers to this table.

l*llC*1 char * opip(15); 1* reserved for PDOS use *1

This field is reserved for PDOS use only.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

()

o

i(""'"
\l.p'

rr\
~'

c

('

(

(

c

NT

NM

PDOS DEVELOPER'S REFERENCE

The Kernel- SYRAM (cont.)

/*158*/ char * uart[171: /* UART base addresses 1 .. 15 */

On a 68000 system, all I/O is handled through memory-mapped addresses. This
table tells the base address for every port on the system. It contains the fourth
parameter for the "BP" command.

/*198*/ long mapb; /* memory map bias */

This pointer indicates the start of the memory map used by PDOS to allocate
and deallocate task memory.

Variable Offset

There are more tables and buffers in MSYRAM, but their location and size
change from one installation to another, according to DOSGEN parameters.
They are noted in the MSYRAM:SR flle, but user programs do not generally ac
cess them. If an application needs to access one of these tables, the offsets and
sizes are available in the B$BIOS table at fixed offsets. The address of this table
is the first location in SYRAM and the current offsets are as follows:

MSYRAM Switches

The system RAM is defined by the source module MSYRAM:SR. This section
of random access memory contains tasking, flle, message, memory, timing, and
scheduling information.

SYRAM conrIguration:

• NT {Task table size }
• NM {# Task messages}
• 1Z {Task message size}
• ND {# Delayed events}
• NC {# Channel buffers}
• NF { # File slots}
• NU {# Input buffers}
• IZ {Input buffer size}
• MSZ {Maximum memory size}

The SYRAM configuration section describes the POOS system variable defini
tions. Various queues and stacks are defined such as the maximum number of
tasks, buffers, slots, delay lists, and bit map. All parameters have default values.

TASK TABLE SIZE. The size of the task table in SYRAM determines how
many tasks PDOS supports. Default NT = 32.

TASK MESSAGES. The task messge buffers are queued, intertask com
munication buffers whose size can vary from 4 to 127 bytes. Default NM=32.

3.3 -1/88 41

Kernel - SYRAM (cont.)

TZ

NO

NC

NF

NU

IZ

MZ

42

TASK MESSAGE SIZE. The task message size can vary from 4 to 127 bytes.
Default TZ--64.

DELAYED EVENTS. The maximum number of events being delayed is set
by this value. Default ND=32.

CHANNEL BUFFERS. Disk sector access is cached through the channel buf
fers. If more fIles are opened than there are available channel buffers, then the
least used buffers are written out to disk until accesSed again. Default NC=8.

Fll..E SLOTS. The NF parameter specifies the maximum number of fIles that
can be opened concurrently. Default NF=32.

INPUT BUFFERS. The number of ports specifies how many type-ahead buf
fers to allocate. Default NU=IS.

INPUT BUFFER SIZE. The IZ variable detennines the input buffer size (how
many characters can be stored in the type-ahead buffers). IZ ranges from 1 to 7
and is used as the power of 2 of the buffer size. Thus, t:he buffer size ranges
from 2 to 128 as IZ goes from 1 to 7. Default 1Z=6.

IZ= 1--->2
IZ= 2--->4
IZ= 3 ---> 8
IZ=4 ---> 16

IZ= 5 --->32
IZ= 6 ---> 64
IZ = 7 ---> 128 (maximum>

MAXIMUM MEMORY SIZE. The memory bit map specifies how much
memory is available to POOS. Each bit represents 2k bytes of memory. Ifbit
map size is less than 2048, then it is the number of k bytes. Otherwise, it is the
actual number of bytes known to POOS.

3.3 -1/88 POOS DEVELOPER'S REFERENCE

o
o

o
o

Dispatch Table

(

c
PDOS DEVELOPER'S REFERENCE

The Kernel (cont.)

A location-independent dispatch table is the fIrst location of the kernel as is
referenced by label Kl$BEGN. From application programs, Kl$BEGN may be
referenced through the SYRAM offset BEGN.(A5). This table provides an
easier interface for cross development routines. The entry points to this table are
defmed below:

* DISPATCH TABLE FOR CROSS DEVELOPMENT

*
DC.L $FFFFFFFF ;CROSS DEV SP
DC.L $FFFFFFFF ;CROSS DEV PC
DC.L '3.3a' ;REVISION IDNT

*
K1$BEGN BRA.L K1$STRT ;$00 = KERNEL COLD START

BRA.L K1$CLKI ;$04 = CLOCK INTERRUPT
BRA.L K1$XSWP ;$08 = TASK SWAP
BRA.L K1$SERR ;$OC = SYSTEM ERROR ENTRY
BRA.L K2$PINT ;$10 = PORT LOOKER
BRA.L K2$CHRI ;$14 = PORT CHAR IN ENTRY
BRA.L K2$CHAR ;$18 = INSERT CHAR TO BUFFER
BRA.L K2$AOEV ;$1C = ACK OUTPUT EVENT
BRA.L K1$SVEC ;$20 = SET EXCPT VECTOR
BRA.L D$INT ;$24 = DEBUGGER INIT
BRA.L K1$ISWP ;$28 = INTERRUPT SWAPPER
BRA.L M$AERM ;$2C = XLATE ERR MSG, NO OUT

The long word preceding the Kl$BEGN table is the kernel revision number,
which could be used by applications to determine with which version of POOS
it is running. The next two preceding long words of $FFFFFFFF are to allow the
POOS object to be located at the beginning of the ROMs on the target system.
To make calls to the routines or subroutines, the program should frrst save any
working registers and initialize any required inputs. Then get a pointer to
SYRAM, in AS for example, and get the address of the Kl$BEGN table from
SYRAM into another address register, such as A4. Then go to the routine with
either a JMP or JSR instruction to an offset of A4, as below:

MOVEA.L B$SRAM,AS
MOVEA. L BEGN. (AS) , A4
JSR $18 (A4) ; insert character into buffer

A detailed description follows:

3.3 -1/88 43

The Kernel- Dispatch Table (cont.)

c
o

K1$STRT

K1$CLKI

K1$XSWP

44

Kernel Cold Start
Entry point

JMP $00 (A4)

Inputs D4L = B.BAS Memory bit map base address
DS.W = Overriding BAUD rate (-1 = use R$T ASK table value)
D6L= B.VECException vector base address
D7.L = Node.B / Auto.B / $OO.B / SDKS.'B
(A3) = BINTB Vector table
(A4) = BSBIOS table
(A6) = Start of tasking memory
(A 7) = End of tasking memory
First SYRAM locations must also be set
Interrupts must be off

Outputs <None>
Called Once from MBIOS cold start up.

Clock Interrupt
Entry Point

JMP $04 (M)

Inputs (A7»> Status register word. old PC (& exception word)
Supervisor mode, just as if the timer has interrupted

Outputs <None>
Called Directly send system timer interrupt to this entry with an entry in BINTB

table ofMBIOS, B$ACK will acknowledge the interrupt.

Task Swap
Entry point

JMP $08 (M)

Inputs (A7»> DO-A6, SRW, PC.L,,,,
(AS)=SYRAM ~'
TQUX.(AS) = # of task: to wake up (optional)
Supervisor mode
If called from interrupt routine, need to re-enable interrupt mask to pre-int level

Outputs <None>
Called When XSWP primitive is executed or as exit from user interrupt routine

for fast task wake up.

3.3 -1188 PDOS DEVELOPER'S REFERENCE

o
c

K1$SERR

K2$PINT

K2$CHRI

c

PDOS DEVELOPER'S REFERENCE

The Kernel- Dispatch Table (cont.)

User System Error Entry
Entry point

JMP $OC(A4)

Inputs (A7) = DCL (MESSAGE
DC.WLADR,RIW,J/N,CODE
DCL ACCESS ADDRESS
DC.W INS1RUCTION REGISTER
DC.W STATUS REGISTER.
DCL PROGRAM COUNTER

Supervisor mode
Outputs <None>
Called By user added error trap, acts just like POOS exception.

AII·Port Looker
Entry point

JMP $10 (A4)

I;,puts (A7»> Status register word, old PC (& exception word)
Supervisor mode, just as if the UART has interrupted

Ouputs <None>
Called Directly send UART receiver interrupt to this entry with an entry in

BINTB table of MBIOS; causes a general port look on all UART
types, calls get character for each type SO BIOSU code will
acknowledge interrupt and get character.

External Port Character Input
Entry point

JMP $14 (A4)

Inputs (A7»> DO-A6,SR.W, PC.L
DO.B = CHARACTER
(AO) = UART BASE ADDRESS
(AS) = B$SRAM

Outputs <None>
Called From K2$PINT general looker after character is found or directly from

UART receiver interrupt using BINTB entry.

3.3 -1188 45

The Kernel- Dispatch Table (cont.)

o
o

K2$CHAR

K2$AOEV

K1$SVEC

D$INT

46

Insert Character to Buffer
Subroutine

IJSR $l8(M)

Inputs DO.B = CHARACTER
(AO) = UART BASE ADDRESS
(A5)= SYRAM

Outputs D2.W = LOGICAL PORT #
(AO) = PHYSICAL UART BASE ADDRESS
(AI) = PHYSICAL FLAGS ADDRESS
(A2) = PHYSICAL DSR ADDRESS
.EQ. = HIGH WATER «AI)=D1.W=FLAGS)
.VS. = Type-ahead buffer OVERFLOW

Called By K2$CHRI to store chracter into buffer; may be used by keyboard
interrupts to load multiple characters into the buffer with just
one keystroke (e.g. function keys).

Ack Output Event
Subroutine

IJSR $lC (A4)

Inputs (AO) = UART BASE ADDRESS
Outputs <None>
Called From user printer interrupt to set output event associated with the port,

regardless of BAUD PORT binding.

Set/Read Exception Vector
Subroutine

IJSR $20 (M)

Inputs (A5) = SYRAM

,>f1\',

vJ

F681. (A5) = 0/2 for processor type ,«""
DO.B = VECTOR # (2-255)",#
(AO) = NEW ROUTINE OR $()()()() (for read only)

Outputs (AO) = OLD ROUTINE address
Called During K2$STRT kernel cold start and by XVEC primitive. May be

called by BIOS for processor independent BIOS implemen
tations or used in applications as substitute for XVEC primitive.

Debugger Initialize
Subroutine

IJSR $24(M)

Inputs <None>
Outputs Alters debug area of TCB
Called By XCTB when new tasks are created, or whenever task size is altered

with PM or GM monitor commands. The INSTALL utility also
uses this subroutine.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o
c

K1$ISWP

M$AERM

(

PDOS DEVELOPER'S REFERENCE

The Kernel - Dispatch Table (cont.)

Interrupt Swapper
Entry Point

IJMP $28 (A4)

Inputs (A6) » ASL
SRW
PCL

Supervisor mode
TQUX.(AS) = # or task to wake up (optional)

Outputs <None>
Called As an exit from user interrupt service routines for a fast "swap to task."

AS is assumed to be pushed on the stack and the interrupt
device has been acknowledged. This routine pops A5, pushes
all registers in the stack, re-enables interrupts and enters
KI$XSWP, just like XRTE, but without double register
pushing/rolling.

Translate Error Message, No Out
Subroutine

IJSR $2C(A4)

Inputs D1.W = Error number
(AI) = Buffer to receive error message

Outputs (AI) = Error message
Called By ER monitor command or by user utility to get translation of PDOS

error message for the system on which it is running.

3.3 -1188 47

The Kernel (cont.)

System Services

Support Utilities

48

System services are those functions that a task requires of the operating system
while entered in the task list. These requirements range from timing and inter
rupt handling to task coordination and resource allocation.

POOS provides many time-oriented functions which key off of the system
hardware interval timer. The current time of day and date are maintained with
fme adjustment parameters. A 32-bit counter is used for various delta timefunc
tions such as task scheduling and event delays.

Hardware interrupts are processed by the kernel BIOS or passed to user tasks.
Tasks can be suspended pending the occurrence of an interrupt and then be res
cheduled when the interrupt occurs. Interrupts such as the interval timer and
character input or output are handled by the kernel itself.

Task coordination is an integral part of realtime applications since many func
tions are too large or complex for any single task. The POOS kernel uses com
mon or shared data areas, called mailboxes, along with a table of pre-assigned
bit variables, called events, to synchronize tasks. A task can place a message in
a mailbox and suspend itself on an event waiting for a reply. The destination
task is signaled by the event, looks in the mailbox, responds through the mail
box, and resets the event signaling the reply.

o
o

System resources include the processor itself, system memory, and support1~
peripherals. The POOS kernel provides assembly primitives to create and delete 01
tasks from the task list. Memory is allocated and deallocated as required.
Peripherals are generally a function of the me manager but are assigned and
released via system events. Device drivers coordinate related I/O functions, in-
terrupts, and error conditions. All of these functions are available to user tasks
and thus tasks may spawn tasks and dynamically control their operating environ-
ment

Other support utilities contained within the POOS kernel include number conver
sion, command line decoding, date and time conversions, and message process
ing routines. Facilities are also provided for locking a task in the run state during
critical code execution.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

ftr"
V

o
c

PDOS Character I/O

(

c
PDOS DEVELOPER'S REFERENCE

The Kernel (cont.)

The flow of character data through POOS is the most visible function of the
operating system. Character buffering or type-ahead assures the user that each
keyboard entry is logged, even when the application is not looking for charac
ters. Character output is normally performed through program control (polled
I/O).

Input and output occurs through logical port numbers. A logical port is bound to
a physical UART (Universal Asynchronous Receiver !Transmitter) by the baud
port commands. Only one task is assigned to an input port at anyone time while
many tasks may share the same output port. It is then the responsibility of each
task to coordinate all outputs.

PDOS Character Input

POOS character inputs come from four sources: 1) user memory; 2) a PDOS
f:t1e; 3) a polled I/O driver, or 4) a system input port buffer. The source is dic
tated by input variables within the task control block. Input variables are the
Input Message Pointer (IMP$(A6», Assigned Console Input (ACI$(A6», and
input port number (pRT$(A6».

OPT PDOS ;GET TCB VARIABLES
LEA.L CMMD(PC),Al ;POINT TO COMMAND
MOVE.L Al, IMP$ (A6) ;SET INPUT POINTER

CMMD DC.B 'MESSAGE',O
EVEN

When a request is made by a task for a character and IMP$(A6) is nonzero, then
a character is retrieved from the memory location pointed to by IMP$(A6).
IMP$(A6) is incremented after each character. This continues until a null byte is
encountered, at which time IMP$(A6) is set to zero.

OPT PDOS ; GET TCB VARIABLES
LEA.L FILEN(PC),Al ;POINT TO FILE NAME
XSOP

BNE.S ERROR
MOVE.W Dl,ACI$(A6) ;SET CONSOLE INPUTS

FILEN DC.B 'INDATA',O
EVEN

If IMP$(A6) is zero and ACI$(A6) is nonzero, then a request is made to the file
manager to read one character from the file assigned to ACI$(A6). The charac
ter then comes from a disk file or an I/O device driver. This continues until an
error occurs (such as an end-of-f:t1e) at which time the file is closed and
ACI$(A6) is cleared.

OPT PDOS
MOVEQ.L #3,Dl
MOVE.B Dl,PRT$(A6)

3.3 - 1/88

;GET TCB VARIABLES
;READ CHARACTERS FROM
; PORT #3

49

The Kernel - Character 1/0 (cont.)

50

If both IMP$(A6) and ACI$(A6) are zero, then the logical input port buffer
selected by PRT$(A6), is checked for a character. If the buffer is empty, then
the task is automatically suspended until a character interrupt occurs.

PDOS character input flow is summarized below:

1. MEMORY MESSAGE TASK CONTROL BLOCK

MSG DC.B 'HELLO',O ------... (MSP) IMP$ (A6)

2. PDOS FILE W/TYPE=AC

DO:AC --_. [CHANNEL BUFFER]

r----3. PDOS 1/0 DRIVER

FILID

TTI ---.... [POLLED I/O DRIVER]

4. SYSTEM INPUT PORT BUFFER

KEYBOARD INPUT PORT

I UART.base BUFFERS

adr 1 BUF U
UART __ adr 2 -- BUF i2 - 2 PRT$ (A6)

adr 3 BUF iI3
adr 4 BUF #4

adr 15 BUF #F

UART.base binds a physical UART to a logical port number.

UART baud rate, address, and type are defmed by the "BP" and "baud" com
mands (XBCP primitive).

XGCC gets characters from input port buffers only.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

INPUT

o
o

"~''''', i:i ,I

'''''"'

c

('

('

(

(

(

PDOS DEVELOPER'S REFERENCE

The Kernel - Character 1/0 (cont.)

PDOS Character Output

PDOS character outputs are directed to various destinations according to output
variables in the task control block. Output variables are the output unit
(UNT$(A6», spooling unit (SPU$(A6», spooling fIle ID (SFI$(A6», and output
port variables UIP$(A6), U2P$(A6), U4P$(A6), and U8P$(A6). The output unit
selects the different destinations. (Do not confuse output units with disk unit
numbers).

*
LOOP

FILEN
MESal

UNIT 1 =

UNIT 2 =

OFILE =

OPT
LEA.L
XSOP

PDOS ;GET TCB VARIABLES
FILEN(PC),A1 ;GET FILE NAME

;OPEN FILE
BNE.S ERROR

MOVE.W D1,SFI$(A6)
MOVEQ.L /to,D1
MOVE.B /t4,SPU$(A6)

;SET SPOOL FILE ID
;CLEAR COUNTER
;SET SPOOL UNIT TO 4

MOVE.B D1,UNT$(A6) ;SELECT UNIT
;CONVERT NUMBER
;OUTPUT MESSAGE
; INCREMENT D1

XCBM MESal
XPLC
ADDQ.W U,D1
CMPLW #B,D1

BLT.S LOOP
; B TIMES?
;N

DC.B
DC.B
EVEN

;Y

'OFILE',O ;OUTPUT FILE NAME
'OUTPUT MESSAGE #'.0

OUTPUT MESSAGE #1
OUTPUT MESSAGE #3
OUTPUT MESSAGE #5
OUTPUT MESSAGE 1t7

OUTPUT MESSAGE #2
OUTPUT MESSAGE #3
OUTPUT MESSAGE #6
OUTPUT MESSAGE #7

OUTPUT MESSAGE #4
OUTPUT MESSAGE ItS
OUTPUT MESSAGE #6
OUTPUT MESSAGE #7

When an output primitive is called, the task output unit is ANDed with the task
spooling output unit. If the result is nonzero, then the character is directed to the
fIle manager and written to the file specified by SFI$(A6). The output unit is
then masked with the complement of the spooling unit and passed to the UART
character output processor.

Units 1,2,4, and 8 are special output numbers. Unit 1 is the console output port
assigned when the task was created. Units 2, 4, and 8 are an optional output
ports that correspond to TCB variables U2P$, U4P$, and U8P$. They are as
signed by the spool unit command (SU) or baud port (BP) command.

If the I bit (LSB) is set in the masked output unit (UNT$(A6», then the charac
ter is directed to port UIP$(A6). Likewise, if bits 2, 3, or 4 are is set in the
masked output unit, then the character is output to the U2P$(A6), U4P$(A6), or
U8P$(A6) ports.

3.3 -1/88 51

The Kemel- Character 1/0 (cont.)

52

o
A
T
A

F
L
o
W

I

XPMC
XPLC
XPBC

In summary, the bit positions of the output unit are used to direct output to
various destinations. More than one destination can be specified. Bits 1 through
4 are predefined according to UIP$, U2PS, U4P$ and U2P$ variables within the
task control block. Other unit bits are used for outputs to files and device
drivers. Thus, if SPU$(A6)=4 and UNT$(A6)=7, then output would be directed
to the file manager via SFI$(A6) and to two UARTs as specified iIi UiP$(A6)
and U2P$(A6).

SPU$(A6) = 0000 0000 0000 0100
UNT$(A6) = 0000000000000111 _____

~
~ _____ FileSFI$(A6)

______ ____ Port U2P$(A6)
Port U1P$(A6)

7 UNT$(A6)

4 SPU$(A6)

1. SPOOling UNIT
SF.I$(A6)

1------ (IF (UNT$"SPU$) J
~ ~

SFI$ z= [POOS FILE]
or

[1/0 DRIVER]

I unt=-SPU$"UNT$I

2. 0u1put UNIT 1 I
1------- (IF (unt$"1)) -- 1

U1P$(A6)

L [Port #1 UART]

3. Output UNIT 2 1
1------- (IF (unt$"2) J -- 3

U2P$(A6)

L [Port #3 UART]

4. Output UNIT 4 I.
1------- (IF (unt$"4)) -- 2

U4P$(A6)

L [Port #2 UART]

5. Output UNIT 8 1
U8P$(A6)

~----..... (IF (unt$"8)) -- 0 L [Phantom port]
L...-~

UNIT 1 = (-SPU$ I\UNT$) " 1
UNIT 2 = (-SPU$ " UNT$) " 2
UNIT 4 = (-SPU$ " UNT$) "4
UNIT 8 = (-SPU$ " UNT$) " 8
POOS Fll...E = (SPU$ " UNT$)

3.3 - 1/88 PDes DEVELOPER'S REFERENCE

c
o

o
c

(
Events

1-63

64-80

81-95

96-111

112-115

PDOS DEVELOPER'S REFERENCE

The Kernel (cont.)

Tasks synchronize with each other through events which are single bit flags that
may be set or cleared. Events are classified as either logical or physical. Physi
cal events refer to a special byte and bit in memory. Logical events are trans
lated to physical events with the X1LP primitive.

Logical events are not address dependent and referred to by 1-128. There are
four types oflogical events in POOS: software, software resetting, system, and
local. System events are further divided into output, input, timing, driver, and
system resource events. System events are predefined software resetting events
that are set during POOS initialization. Event 128 is local to each task and is
used as a delay event.

Logical events 1 through 63 are software events. They are set and reset by tasks
and not changed by PDOS task scheduling. A task can suspend itself pending a
software event and then be rescheduled when the event is set. One task must
take the responsibility of resetting the event for the sequence to occur again.

Software resetting events. Logical events 64 through 80 are like the normal
software events except that POOS resets the event whenever a task suspended
on that event is rescheduled. Thus, one and only one task is rescheduled when
the event occurs.

These events are set and reset by the Send Message Pointer (XSMP) and Get
Message Pointer (XGMP) primitives.

Logical events 81 through 95 correspond to output ports 1 through 15. A task
suspends itself on an output event after transmitting a character through a
UART. When the transmit character complete interrupt occurs, the event is set
and the corresponding suspended task continues execution.

Output port events are only supported though the xxBIOSU routines. See your
Installation and Systems Management guide for implementation details.

Logical events 96 through 111 correspond to input ports 0 through 15. A task
suspends itself on an input event if a request is made for a character and the buff
er is empty. Whenever a character comes into an interrupt driven input port buff
er, the corresponding event is set.

Logical events 112 through 115 are timing events and are set automatically by
the POOS clock module according to intervals defined in the POOS Basic I/O
module (BIOS). Event 112 is measured in tics, while events 113, 114, and 115
are in seconds. The maximum time interval for event 112 is 497 days. Events
113, 114, and 115 have a maximum interval of 4,294,967,300 seconds or ap
proximately 136 years. A task suspended on one of these events is regularly
scheduled on a tic or second boundary.

112 = 1/5 second event
113 = 1 second event
114 = 10 second event
115 = 20 second event

3.3 - 1/88 53

The Kemel- Events (com.)

116-127

128

Task Communication

54

Logical events 116 through 127 are for system resource allocation. Drivers and
other utilities requiring ownership of a system resource synchronize on these
events. These events are initially set by POOS, indicating the resource is avail
able. One and only one task at a time is allowed access to the resource. When
the task: is fInished with . the resource, it must reset the event thus allowing other
tasks to gain access.

116 = Reserved
117 = Reserved
118 = Reserved
119 = Reserved
120 = Level 2 lock
121 = Level 3 lock
122 = Batch event
123 = Spooler event
124 = Abort task event
125 = Reserved
126 = Reserved
127 = Virtual ports (windows)

Logical event 128 is local to each task. Unlike other events, it can only be set by
a delay primitive (XDEV). It is automatically reset by the scheduling of a task
suspended on event 128.

Many different methods are available for intertask: communication in ~DOS.
Most involve a mailbox technique where semaphores are used to control mes
sage traffic. Specially designed memory areas such as MAll.., COM, and event
flags allow high level program communications. POOS currently maintains 32
message buffers for queued message communications between tasks or console
terminals. More sophisticated methods require program arbitrators and message
buffers.

Logical event flags are system memory bits, common to all tasks. They are used
in connection with task suspension or other mailbox functions. Events 1 through
63 are for software communication flags. Events 64 through 127 automatically
reset when a suspended task is rescheduled. Events 81 through 95 are output
events; 96 through III are input events; 112 through 115 are timing events; and
116 through 127 are system events. Event 128 is local to each task: and cimnot
be used to communicate between tasks.

EVENT 30

IF EVF[301

Physical event flags are user-defIned, arbitrary memory bits, which may be com
mon among multiple processors. These may also be DONE bits in the status
register of a disk controller. Use the primitive XDPE to delay the event, XSOE
to suspend on the event, and assembly instructions to test, set or clear physical
events.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o
o

o

o
c

c-

('

PDas DEVELOPER'S REFERENCE

The Kernel- Task Communication (cont.)

POOS maintains 32 64-byte message buffers for intertask communication. A
message consists of up to 64 bytes plus a destination task number. More than
one message may be sent to any task. The messages are retrieved and displayed
on the console terminal whenever the destination task issues a POOS prompt or
by executing a Get Task Message primitive (XGTM). The displayed message in
dicates the source task number. The BASIC verbs SENDM and GETM may also
be used to pass data between tasks.

POOS supports shorter message POinter transfers between tasks with the Send
Message Pointer (XSMP) and Get Message Pointer (XGMP) primitives. When a
pointer is sent, event [destination message slot # + 64] is set. When a message
pointer is retrieved. the corresponding event is cleared. These messages are not
queued, but are much faster for intertask message passing than the queued 64-
byte messages.

The PM monitor command is used to permanently allocate system memory for
non-tasking data or program storage. Memory allocated in this way can be used
for mailbox buffers as well as handshaking semaphores or assembly programs.
(See the PDOS Monitor. Editor. Utilities manual and the PM monitor com
mand.)

Task Suspension

Any task can be suspended pending one or two events. Logical events (1-127)
are system memory bits common to all tasks. Event 128 is local to each task. A
suspended task does not receive any CPU cycles until one of the desired events
occurs. A task is suspended from BASIC by using the WAIT command, or from
an assembly language. C, FORmAN, or Pascal program by the XSUI primi
tive. A suspended task is indicated in the List Task (L1') command by the event
number(s) being listed under the "Event" heading.

x>LT
Task Prt Tm Event Map Size PC
*0/0 64 2 0 384 00001008
1/0 64 2 99 0 20 00001B42

x>

When one of the events occurs, the task is rescheduled and resumes execution.
If the event is set by the XSEF primitive, then an immediate context switch oc
curs. If a high priority task is waiting for the event, it is immediately res
cheduled. overriding any current task (unless locked). If the event is set with a
XSEV primitive, then the task begins execution during the normal swapping
function ofPOOS.

In the case of physical events, XSOE is used to suspend the task. Tasks
suspended on physical events will have the status 1/-1 under the event header
when the LT command is typed at the monitor.

3.3-1188 55

The Kernel - Task Communication (cont.)

High Priority Tasks

Ahigh priority task is defined as a task in the execution list which is exempt
from round robin scheduling. This means the task will continue to execute until
it suspends itself (due to I/O or if an XSUI command is executed), or a higher
priority task becomes ready. Task priority is listed by the LT (List Task) com
mand under the "PRT" heading. A task priority can be altered with the "1P"
command.

High priority tasks are useful in writing user interrupt handlers where immediate
and fast response is required.

PDOS Exception Handling

56

Example

When an exception occurs, the processor saves the exception registers, PC and
SR, in the debug area of the TCB so that the debugger can be used after an ex
ception. The task last error number LEN(A6) is loaded with 87. The exception
processor also exits with an XERR on error 87.

The level 2 and 3 me manager locks are cleared when a task encounters an ex
ception that returns the task back to the PDOS monitor.

The following describes how error exception processing can be interpreted:

BUS ERR @00005C50 54492004 08000000 0165
DO: 00000000 08000000 00000000 00000000 00000000 00000000 00000000 00000002
AO: 00005C8C 00007381 0000754C 08000000 00004438 OOOOBOOO 00340800 004477FE

Definition I
ERROR TYPE @PROG_CNTR INST_REG/STAT_REG ACCESS ADR SPEC STAT
DATA REGISTERS 00-07
ADDRESS REGISTERS AO-A7

Summary

This message indicates the type of exception that occurred. The types of excep
tions that may occur are summarized later.

PROG CNTR:

This is the value of the Program Counter at the time of the exception. For all ex
ceptions other than bus and address errors, this value represents the address of
the next instructions. For bus and address errors, this value does not necessarily
point to the instruction that was executing when the error occurred, but may be
advanced up to five words, due to the instruction prefetch mechanism.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o

if~'t,\

' .• J>!

(t'"
\\...-

c·····'·· .",1

(~

(,

('

c

Error Types

PDOS DEVELOPER'S REFERENCE

The Kernel- Exception Handling (cont.)

INST REG/STAT REG: - -
The high order word is the Instruction Register. It is valid only for bus and ad
dress errors and will be zero for any other type of exception. This is an internal
register that contains the current instruction being processed. Due to the prefetch
mechanism, this is not the instruction that caused the error, but from one up to
five words away.

The low order word is the Status Register. This represents the current value of
the status register.

This is the Access Address. It is valid only for bus and address errors and will be
zero for any other type of exception. It represents the address that the processor
was attempting to access when the error occurred.

SPEC_STAT:

This is the Special Status word. For bus and address error exceptions, it indi
cates the current processor cycle (i.e. read/write, CPU function codes, instruc
tion/note). For other exception types, the SPEC_STAT field shows the
exception frame type and vector offset that is pushed to the stack (for 68010 and
68020 ~Us only).

BUS ERR:

A Bus Error occurs when the BERR line on the VMEbus is asserted by a card or
the on-board bus timer expires (indicating this memory location does not exist).

ADRERR:

An Address Error occurs when an attempt is made to access a word or long
word at an odd address (on memory that does not support unaligned transfers).

ILLG:

An Illegal Instruction occurs when an unknown instruction is encountered.

ZDIV:

A Zero Divide occurs when the divide instruction encounters a divisor of zero.

CHCK:

A Check occurs in conjunction with the CHK (check register against bounds) in
struction.

OVFL:

An Overflow occurs with either a 1RAPV (trap on overflow), a 1RAPcc (trap
on condition), or a cp'IRAPcc (trap on coprocessor condition).

3.3 - 1/88 57

The Kernel ~ Exception Handling (cont.)

o
o

58

PRIV:

A Privilege Violation OCCW'S when an attempt is made to execute a privileged in
struction in user mode.

TReE:

A Trace exception OCCW'S when a trace vector has not been defmed in the TCB
(task control block) and trace mode is entered by the user program. This does
not include the use of trace in the debugger.

FLIN:

A Line-P Emulator exception OCCW'S when an opcode beginning with "P" is ex
ecuted. POOS does not use any Line-P codes. All POOS primitives are imple
mented with Line-A codes.

SPUR:

A Spurious exception OCCW'S with either a bad interrupt cycle or a reserved inter-
rupt vector (i.e. vectors 12 and IS). .

cpER:

A Coprocessor Protocol Violation OCCW'S when an invalid coprocessor response 0'
is generated. i' ...

FRMT:

A Ponnat Error occw's in conjunction with an invalid cpRESTORE instruction
or a bad exception stack frame.

STATUS REGISTER

SYSTEM BYTE
15 14 13 12 11 10 9 8

Trace
Enable

Supervisor/
User State

Interrupt
Priority Mask

USER BYTE
7654321 0

Negative
Zero

Overflow
Carry

Master/Interrupt
State

. 68020 only

3.3 -1/88 PDas DEVELOPER'S REFERENCE

o
c

(

('

(

The Kernel - Exception Handling (cont.)

SPECIAL STATUS WORD FOR THE 68010

15 14 13 12 11 10 9 8 7 6 54321 0

I RR I 0 IIF I DF IRM I HB I BY IRW I ,--I 0 -,--I °----J.-I 0 -,--I 0----J.-I 0 -,-1_FC_2-F_Co---,1

RR = Rerun flag (0 = rerun instruction)
IF = Instruction fetch cycle
DF = Data fetch cycle
RM = Read-modify-write cycle
HB = High byte transfer
BY = Byte transfer (0 = word transfer)
RW = Read/write cycle (0 = write)
FCx= Function code during faulted access

SPECIAL STATUS WORD FOR THE 68020

FCI User data
Fc2 User program
FC5 Supervisor data
Fc6 Supervisor program
FC7 Interrupt acknowledge
All other FCs are undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IFC I FS IRC IRS 10 10 10 I DF I rM rw !SIZ r! FC2-FCO !
FC = Fault on Stage C of instruction pipe
FB = Fault on Stage B of instruction pipe
RC = Rerun flag for stage C *
RB = Rerun flag for stage B *
DF = Fault/rerun flag for data cycle *
RM = Read-modify-write data cycle
RW = Read/write data cycle (0 = write)
SIZ= Size code for data cycle
FCx=Function code during faulted access
* 0 = do not rerun bus cycle

PDOS DEVELOPER'S REFERENCE 3.3 -1/88

FCl User data
FC2 User program
FC5 Supervisor data
FC6 Supervisor program
FC7 CPU space
All other FCs are undefined

59

, File Management C",c,
'I

File Storage

60

The PDOS file management module supports sequential, random, read only, and
shared access to named files on a secondary storage device. These low overhead
file primitives use a linked, random access file structure and a logical sector bit
map for allocation of secondary storage. No file compaction is ever required.
Files are time stamped with date of creation and last update. Default PDOS con
figurations allow up to 32 files to be open simultaneously; however, PDOS may
be configured for up to 127 files. Complete device independence is achieved
through read and write logical sector primitives.

A file is a named string of characters on a secondary storage device. A group of
file names is associated together in a file directory. File directories are~,~
referenced by a disk number. This number is logically associated with a physical
secondary storage device by the read/write sector primitives. All data transfers
to and from a disk number are blocked into 256-byte records called sectors.

A file directory entry contains the file name, directory level, the number of sec
tors allocated, the number of bytes used, a start sector number, and dates of crea
tion and last update.

(each char represents a byte)

IF F F F F F F FEE EI LIA Tlssl--Iaaliilbblcccclllll I

o

F = File Name
E = File Extension
L = Directory Level
A = File Attribute

T = File Type

11 12

s = Start Sector Number
a = Sectors Allocated to File
i = Sector Index of EOF
b = Bytes in EOF Sector
c = Date/Time Created
1 = Date File Last Changed

3.3-1/88

14 16 18 20 22 24 28

8 characters
3 characters
0-255
$80 = AC - Procedure file
$40 = BN - Binary file
$20 = OB - 68000 object module
$10 = SY - System module
$08 = BX - BASIC Token file
$04 = EX - BASIC ASCII File
$02 TX - ASCII text file
$01 DR - Driver
$80 + - File altered
$04 /C - Contiguous file
$02 /* - Delete protect
$01 /** - Write protect
Logical start sector
Sectors allocated
Sectors used
0-252
hr*256+sc, (yr*16+mn) *32+dy

n

PDOS DEVELOPER'S REFERENCE

,rf''''
V

o

(~

PDOS DEVELOPER·S REFERENCE

File Management - Storage (cont.)

A file is opened for sequential. random. shared random. or read only access. A
file type of ''DR" designates the file to be a system I/O driver. A driver consists
of up to 252 bytes of position independent binary code. It is loaded into the chan
nel buffer whenever opened. The buffer then becomes an assembly program that
is executed when referenced by I/O calls.

A sector bit map is maintained for each disk number. Associated with each sec
tor on the logical disk is a bit which indicates if the sector is allocated or free.
Using this bit map. the file manager allocates (sets to 1) and deallocates (sets to
0) sectors when creating. expanding. and deleting files. Bad sectors are per
manently allocated. When a file is first defined. two sectors are initially allo
cated to that file and hence. the minimum file size is two sectors.

A POOS file is accessed through an I/O channel called a file slot. Each file slot
consists of a 38-byte status area and an associated 256-byte sector buffer. Data
movement is always to and from the sector buffer according to a file pointer
maintained in the status area. Any reference to data outside the sector buffer re
quires the buffer to be written to the disk (if it was altered) and the new sector to
be read into the buffer. The file manager maintains current file information in
the file slot status area such as the file pointer. current sector in memory. end-of
file sector number, buffer in memory flag. and other critical disk parameters re
quired for program-file interaction.

PDOS defaults to 32 files that may be open at a time though it may be con
figured to allow for up to 127. Keeping all sector buffers resident would require
prohibitive amounts of system memory. Therefore. only eight sector buffers are.
actually memory resident at a time. The file manager allocates these buffers to
the most recently accessed file slots. Every time a file slot accesses data within
its sector buffer. POOS checks to see if the sector is currently in memory. If it is.
the file slot number is rolled to the top of the most recently accessed queue. If
the buffer bas been previously rolled out to disk. then the most recently accessed
queue is rolled down and the new file slot number is placed on top. The file slot
number rolled out the bottom references the fourth last accessed buffer which is
then written out to the disk. The resulting free buffer is .then allocated to the call
ing file slot and the former data restored.

Files requiring frequent access generally have faster access times than those
files which are seldom accessed. However. all file slots have regular access to
buffer data.

POOS allocates disk storage to files in sector increments. All sectors are both
forward and backward linked. This facilitates the allocation and deallocation of
sectors as well as random or sequential movement through the file.

POOS files are accessed in either sequential or random access mode. Essential
ly. the only difference between the two modes is bow the end-of-file pointers are
handled when the file is closed. If a file bas been altered, sequential mode up
dates the EOF pointer in the disk file directory according to the current file byte
pointer. whereas the random mode only updates the EOF pointer if the file has
been extended.

3.3 -1/88 61

File Management - Storage (cont.)

o
o

File Names

62

Two additional variations of the random access mode allow for shared file and
read only file access. A file which has been opened for shared access can be
referenced by two or more different tasks at the same time. Only one file slot
and one file pointer are used no matter how many tasks open the file. Hence, it
is the responsibility of each user task to ensure data integrity by using the lock
me or lock process commands. The file must be closed by all tasks when the
processing is completed.

A read only random access toa file is independent of any other access to that
file. A new me slot is always allocated when the me is read only opened and a
write to the me is not permitted. .

POOS me names consist of an alphabetic character (A-Z or a-z) followed by up tr'"
to seven additional characters. An optional one to three character extension is ~)
separated from the file name by a colon (:). Other optional parameters include a
semi-oolon (;) followed by a file directory level and a slash (j) followed by a
disk number. The me directory level is a number ranging from 0 to 255. The
disk number ranges from 0 to 255.

Legal file names:

FILE
A1234567:890;255/127
PROGRAM/3
FILE2;10

A file typed as a system I/O device driver (DR) has entry points directly into the
channel buffer for OPEN, nOSE, READ, WRI'IE, and rosmoN commands.

If the file name is preceded by a "Itt, the file is created (if undefined) on all open
commands except for read only open. When passing a me name to a system
primitive, the character string begins on a byte boundary and is terminated with
a null.

Ix>cr TZMP,'TZMP2/5

IFILEN DC.B 'FILE1/4',O

Special characters such as a period or a space may be used in me names.
However, such characters may restrict their access. The command line inter
preter uses spaces and periods for parsing a command line.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

o
c

(~

(~.

c

Directory Levels

Disk Numbers

PDOS DEVELOPER'S REFERENCE

File Management (cont.)

Each PDOS disk directory is partitioned into 256 directory levels. Each file
resides on a specific level, which facilitates selected directory listings. You
might put system commands on level 0, procedure files on levell, object files
on level 10, listing files on level 11, and source files on level 20. Level 255 is
global and references all levels.

x>LV
Level=l
x>LV 10
Was 1

A current directory level is maintained and used as the default level in defming a
file or listing the directory when no directory level is specified.

A disk number is used to reference a physical secondary storage device and
facilitates hardware independence. All data transfers to and from a disk are
blocked into 256-byte records called sectors.

The range of disk numbers is from 0 to 255. Several disk numbers may share the
same secondary storage device. Each disk can have a maximum of 65280 sec
tors or 16,711,680 bytes.

A default disk number is assigned to each executing task and stored in the task
control block. This disk number is referred to as the system disk and any file
name which does not specifically reference a disk number defaults to this
parameter.

O>SY 1,0
Was 0
1,0>SY
Disk=l,O
1,0>

PDOS Supports multiple disk directory searches. Up to four disk devices can be
associated with each task. When a file is referenced, each directory is searched
(in order) until the file is found.

l>SY 1,2,3,4
Was 1
1,2,3,4>

Some utility programs make use of the system disk for temporary file storage.
By not specifying the disk parameter, the program becomes device independent
and defaults to the current system disk.

When a task is created, the parent task's disk number(s) and directory level are
copied into the task control block of the new task.

3.3 -1188 63

File Management (cont.)

File Attributes

AC

BN

OB

Sy

BX

EX

TX

DR

64

Associated with each fde is a fde attribute. File attributes consist of a fde type,
stomge method, and protection flags. These parameters are maintained in the
fde directory and used by the POOS monitor and fde manager.

The fde type is used by the POOS monitor in processing the the fde. For in
stance, a fde typed ~ "EX" (a POOS BASIC fde), calls the BASIC interpreter
which loads the file and begins execution with the fll'St line number. A fde typed
as ''OB" (a 68000 object module), calls the relocating loader to load the object
into memory. If a start address tag is included at the end of the fde, the module
is immediately executed at that address. Otherwise, POOS enters the progmm at
the fll'St loaded address.

The following are legal PDOS file types:

Assign console. A fde typed "AC" specifies to the POOS monitor that all sub
sequent requests for console character inputs are intercepted and the character
obtained from the assigned fde.

Binary file. A "BN" fde type has no significance to POOS but aids in fde clas
sification.

68000 tag object fde. Output from the MASM 68000 assembler is in tagged ob
ject form. The tag directs the POOS monitor to load the fde into memory (if
there was a starting address tag) and execute the program.

System file. An "SY" fde is genemted from an "OB" fde. MC68000 object is
condensed into a memory image by the "SYFILE" utility. The fll'St location of a
system file is the program entry address.

POOS BASIC binary fde. A BASIC program stored using the "SA VEB" com
mand is written to a file in pseudo-source token format. Such a ftle requires less
memory than the ASCII LIST format and loads much faster. Subsequent
reference to the fde name via the POOS monitor automatically restores the
tokens for the BASIC interpreter and begins execution.

POOS BASIC fde. A BASIC program stored using the "SAVE" command is
written to a fde in ASCII or LIST format. Subsequent file reference via the
POOS monitor automatically causes the BASIC interpreter to load the fde and
begin execution.

ASCII text fde. A ''TX" type classifies a file as one containing ASCII character
text.

1/0 driver. A "DR" fde type indicates that the fde data is an 1/0 driver program
and is executed when referenced. An 1/0 driver must be copied with the TF
monitor command or MTRANS utility instead of the CF monitor command.

3.3 -1188 PDOS DEVELOPER'S REFERENCE

o
o

o

c

o
o

c

*

**

+

Time Stamping

PDOS DEVELOPER'S REFERENCE

File Management - Attributes (cont.)

A POOS fIle is physically stored in contiguous sectors whenever possible. A
non-contiguous structure results from fIle expansions where no contiguous sec
tors are available. Contiguous files have random access times far superior to non
contiguous fIles. A contiguous fIle is indicated in the directory listing by the
letter "C" following the file type.

File protection flags determine which commands are legal when accessing the
fIle. A fIle can be delete and/or wr:ite protected.

File storage method and protection flags are summarized as follows:

Contiguous fIle. A contiguous fIle is organized on the disk with all sectors logi
cally sequential and ordered. Random access in a contiguous fIle is much faster
than in a non-contiguous fIle since the forward/backward links are not required
for positioning.

Delete protect A fIle which has one asterisk as an attribute cannot be deleted
from the disk until the attribute is changed.

Delete and write protect. A fIle which has two asterisks as an attribute cannot be
deleted nor written to. Hence, READ, POSITION, REWIND, OPEN, and
CLOSE are the only legal fIle operations.

File altered. A fIle which has a plus sign as an attribute has been altered. It is
cleared whenever the IA monitor command is executed on the fIle.

When PDOS is first initialized, the system prompts for a date and time. These
values are then maintained by the system clock and are used for time stamping
fIle updates, assembly listings, and other user defmed functions.

PDOS/68000 R3.3
ERII, Copyright 1983-88
xxxxx BIOS xx:68000
DATE=OO-???-OO 10-DEe-87
TlME=OO:OO:OO 10:30

When a fIle is first created or defined, the current date and time is stored with
the disk directory entry. This time stamping appears in the "DATE CREATED"
section of a directory listing. From then on, the creation date and time are not
changed.

When a fIle has been opened, altered, and then closed, the current date and time
are written to the "LAST UPDATE" section of the disk directory entry. The
time stamp indicates when the fIle was last altered by any user.

3.3 - 1/88 65

File Management (cont.)

Ports, Units, and Disks

66

The terms ports, units, and disks are often confused and as such are explained
here:

Ports

Ports are logical input channels and are referenced by numbers 0 through 15. As
sociated with each port is an interrupt driven input buffer. The BAUD PORT
(BP) command binds a physical UART to a buffer.

Units

C'"
"

0 ,',
".,'

A unit is an output gating variable. Each bit of the variable directs character out-"'"
put to a different source. Bit I (LSB) is associated with UIP$(A6) output port.,<-]
Likewise, bit 2 is associated with U2P$(A6) output port. The "SU" and
"SPOOL" commands bind the other bits to the POOS file structure.

Disks

A disk is a logical reference to a secondary storage device. Disk numbers range
from 0 to 255. Several disk numbers may reference the same physical device.
The system BIOS deciphers what the disk number means.

3.3 -1188 PDOS DEVELOPER'S REFERENCE

,~~

\",,jI/

, i C","\

c

(0

(" PDOS BIOS

(

PDOS DEVELOPER'S REFERENCE

The POOS Basic I/O Subsystem (BIOS) configures the POOS environment for
different types of hardware peripherals. This includes UARTs, mappers, system
LEDs, read/write sector primitives, and disk motor control. Other functions of
the BIOS include startup parameters such as auto-start, POOS prompts, default
disk, RAM disk size and location, interrupt vector generation and processing,
and MAll.. array size. .

For a list of the current configurable parameters along with their defaults for
your system, refer to the MBIOS:SR ftle or your Installation and Systems
Management guide.

The BIOS is linked with the POOS kernel and UART module to form an execu
tion module. The monitor and ftle manager are added to complete a POOS sys
tem.

All POOS hardware dependence is confined to the following three modules:

xxBIOS, which contains CPU-related parameters such as cold startup code, ex
ception vector table, exception vector setup, DIP switches, memory mapper,
clock acknowledgment, etc.

xxBIOSU, which has all terminalI/O routines interfacing to various UARTs.

xxBIOSW, which has the read and write logical sector routines. Another ftle,
xxPARM:SR, is closely associated with the BIOS, is included when assembling
the three BIOS modules, and defines various hardware addresses, offsets, and
low parameter RAM locations used by the BIOS.

To make a POOS port to new hardware, you need to write the above four
ftles (xxBIOS:SR, xxBIOSU:SR, xxBIOSW:SR, and xxPARM:SR). You
replace the ''xx'' characters with a mnemonic for the CPU card. The xxBIOS:SR
ftle contains the fU'St location executed (entry point) after a cold start. As it is as
sembled, it includes the xxPARM:SR ftle and the general MBIOS:SR file.
xxBIOS:SR contains CPU-related parameters such as exception vector setup,
DIP switch settings, memory mapper, and clock initialization and interrupt ac
knowledge routines.

xxBIOSU:SR contains all terminalI/O routines interfacing to various UARTs in
the system, including input, output, port configuration, and XON/XOFF hand
shaking. xxBIOSW:SR has the read and write logical sector routines, along with
controller initialize and Winchester partition routines. xxPARM:SR is an "in
clude" ftle that defines some low parameter RAM locations that the BIOS uses
as well as the board, chip, and register addresses peculiar to the hardware.

The POOS BIOS module is composed of the user BIOS module (xxBIOS:SR)
and a common POOS BIOS module (MBIOS:SR). The user BIOS module is
composed of the task startup table (R$T ASK) and various routines called by the
POOS common BIOS module and the POOS kernel. These routines are optional
and are only included when needed.

3.3 - 1/88 67

The BIOS (cont.)

xxBIOS:SR - User BIOS Module

68

The user BIOS module (xxBIOS:SR) consists of tables and routines specific to
the system hardware. It contains the cold startup initialization subroutines, the
BINTB exception vector table, the task startup table (R$TASK), the kernel sub
routines, and the BIOS table. The BIOS table B$BIOS and certain kernel sub
routines, along with some generic cold startup code, are contained in the
MBIOS:SR file. The remaining routines, which are located in xxBIOS:SR, will
have to be written by you if you are porting to new hardware.

The user BIOS module is organized as follows:

B$STRT - Cold start entry address & constants
B$TASK - Task startup table (ports & tasks)
B$CPU - Set CPU dependent parameters (subroutine)
B$RAM - Fix top of RAM (subroutine)
B$RSW - Read system switches (subroutine)

The following optional subroutines:
B$ACK - Acknowledge clock interrupt
B$LED - Blink LED & adjust clock
B$MAP - Load system map constant
B$SA V - Save hardware registers
B$RES - Restore hardware registers

etc.

BINTB - Interrupt vector table

Text from the generic BIOS file MBIOS:SR is then INCLUDEd at the end of
this user BIOS module.

Task Startup Table

R$T ASK is the task startup table, and consists of two parts. First, the ports to be
bauded into the system are listed and then the tasks to be started are included.

Cold Startup Subroutines

Three optional subroutines are called from MBIOS:SR during cold startup:
BCPU, BRAM and B$RSW. B$CPU is called right after MBIOS sets up a
stack and decides if it is a 68000 or a 68010 chip. B$CPU performs various func
tions, depending on the hardware, including any of the following:

• Pause to allow the hardware to settle
• Initialize the module control registers
• Count the cards in the system using bus errors
• Perform any "one time only" initialization of any cards or chips that need it
• Write zeroes to RAM to initialize parity
• Set up mapper MMU
• Initialize the timer chip

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o

r', 1 u'·······
C;." ,!,,:.,:

o
c'

('

(

(

c

B$ACK

B$CTB

B$KTB

B$LED

PODS DEVELOPER'S REFERENCE

The BIOS - User BIOS (cont.)

After MBIOS sizes RAM in a non-destructive way, it calls B$RAM to allow
you to reserve some RAM for disk buffers or whatever. A6 and A? point to the
beginning and end of tasking RAM and you can take some off either end, usual
ly the TOP end.

Just before MBIOS enters the PDOS kernel startup, it calls B$RSW to allow
you to alter the default baud rate, system disk, and autostart flag.

Kernel Subroutines

The B$BIOS table in MBIOS has some optional subroutines, which are called
by the PDOS kernel at times to perform a BIOS-related function. If a particular
routine is not included, i.e. the label is undefmed in the BIOS, then the sub
routine simply returns to the kernel with RTS. Except as noted, preserve all
registers used within these routines.

B$ACK System clock interrupt acknowledge
B$CTB System create task
B$KTB System kill task
B$LED System blink LED
B$MAP System schedule task (load map)
B$PRT System protect
B$PSC Position cursor
B$CLS Clear screen
B$IRD Init RAM Disk
B$SAV Save on stack (68881 FPC)
B$RES Restore from stack (68881 FPC)
B$CMD Pre-process monitor commands
B$CLO Close fIle, flush sector cache

The following paragraphs describe the environment and purpose of the MBIOS
subroutines:

System clock interrupt acknowledge routine is called from MPDOSKI during
each timer interrupt and is therefore in supervisor mode. B$ACK should "turn
off' the timer interrupt line to the CPU by performing an acknowledge. Input
registers are (AO)=B$BIOStable and (AS)=SYRAM

System create task routine is called from MPDOSKI in user mode just before
each task goes to execute its program. The task number is in DO.B,
(Al)=B$BIOS table, (AO)=routine address, and AS-A? have the standard
values. This routine, used with B$KTB below, could be used to keep track of ac
tive/inactive tasks, restrict access to disks, etc.

System kill task routine is called from MPDOSKI in user mode after the task's
fIles have been closed and before frames are popped of or the memory is freed
back to the pool. The task number is in DO.B, (AO)=B$BIOS table, and
(AS)=SYRAM.

Blink LED routine is called from MPDOSKI once each second to toggle a
heartbeat LED. The other main function of B$LED, even used on systems with
no LED, is to adust the PDOS clock. Input registers are OO.B=seconds (0-59),
(AO)=B$BIOS table, and (AS)=SYRAM

3.3 -1188 69

T~e BIOS - User BIOS (cont.)

B$MAP

B$PRT

B$PSC

B$CLS

B$IRD

B$SAV

B$RES

70

System load map register routine is called from MPDOSKI in supervisor mode
whenever a new task is rescheduled. It was originally intended to perform a map
per load, but can now be used as a task monitor to see which tasks are getting
rescheduled most often, etc. The MAP word associated with the task is in DO.W,
(AO)=B$BIOS table, (A5)=SYRAM, and (A6)=TCB.

System protect routine is not called by POOS, but used to be called by a pair of
utilities to write-protect and un-protect the memory area where POOS resides.

Position cursor routine is called by MPOOSK2 in supervisor mode to output the
expanded screen addressing string required by ANSI terminals. B$PSC is called
only if the word at PSC$(A6)=O or if the byte PSC$(A6)=SFF, DI.B=row (y
position),D2.B=column (x-position), (AO)=B$BIOS table, (AS)=SYRAM, and
(A3)=character buffer for output Two possible functions are performed by
B$PSC:

•

•

Build the expanded address string in (A3)+, returning (A3) pointing after
the last byte of string, the RTS with SR=.NE., or
Set word (A3) to an encoded simple position and RTS with SR=.EQ .

Clear screen routine is called by MPOOSK2 in supervisor mode to output the ex
panded screen clear string requiirred by ANSI terminals. B$CLS is called only
if the word at CLS$(A6)=O or if the byte CLS$(A6)=$FF, (AO)=B$BIOS table,
(AS)=SYRAM, and (A3)=character buffer for output. Two possible functions
are performed by B$CLS:

• Build the expanded clear string in (A3)+, returning (A3) pointing after last
byte of string, the RTS with SR=.NE., or

• Set word (A3) to an encoded simple position and RTS with SR=.EQ.

Initialize RAM disk routine is called by MPDOSM in user mode to initialize the
RAM disk whenever the RD monitor command is executed with the initialize
option. D6.W=# of directory entries, D7.W=# ofPOOS sectors, (AO)=base ad
dress of disk, and (A4)=B$BIOS table.

Save on stack routine is called by the POOS kernel before every task context
switch if the task save flag (SVF$) is set. Address register Al contains the user
stack pointer (USP) which is saved on the supervisor stack immediately on
return. Address register AS points to SYRAM, and register AO points to the
BIOS table.

Restore from stack routine is called by the POOS kernel after every task context
switch if the task save flag (SVF$) is set Address register Al contains the user
stack pointer (USP) which is restored to the 68000 USP register immediately on
return. Address register AS points to SYRAM, and register AO points to the
BIOS table.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

o
o

o
o

('

(

(-

(

c

B$CMD

B$CLO

PDOS DEVELOPER'S REFERENCE

The BIOS - User BIOS (cont.)

Command line routine is called by MPDOSM in user mode just before a com
mand line is processed. It can be used to pre-process or translate user command
names into two-letter POOS commands. For example, FllES or DIR could be
translated into LS. (Al)=input command line and (A2)=B$BIOS table. The al
tered command line should be pointed to as well by (AI). Another possible func
tion of B$CMD is to expand the resident monitor commands. Here B$CMD
parses the command line for the new commands and then, instead of returning to
the regular parser (RTS), simply execute the new command code, and exit with
an XEXT or XERR primitive. .

Close me routine is called by MPOOSF me manager in user mode whenever a
me has been closed, right after the directory entry has been updated on the disk.
B$CLO can be utilized by a user-supplied BIOS-resident sector caching scheme
to flush the buffers to disk. DO.B is the disk number of the file, D 1. W is the last
sector written, (AO)=B$BIOS, and A5-A 7 the usual values.

The only ones that the xxBIOS:SR mes usually define are B$ACK and B$LED.
B$ACK just acknowledges or resets the timer chip interrupt logic. B$LED may
blink an LED if the hardware provides one and perform a general clock fme ad
justment. The others are for custom use by those who may wish to keep track of
tasks, protect the operating system, or use a complicated terminal type (e.g.
ANSI).

Exception Vector Table

BINTB is the exception vector table whose entries defme the hardware depend
ent vectors that are to be loaded into the 68000' s exception table from $000 -
$3FF. Entries in this table consist of a word exception offset followed by a long
word routine offset address. The timer interrupt vector address must be set to
call Kl$CLKI entry into MPOOS:OBJ. UARTs can be set to call either
K2$PINT, a general port looker, or K2$CHRI, a character found entry. The
table is terminated with a zero word.

BINTB DC.W
DC.L

$100
LABEL-B$BIOS

DC.W 0

The actual exception vector table is fixed at address $0000 on 68000 systems,
but it can be located anywhere in memory on systems that use the 68010 or
68020 processor. The 68010/2.0 Vector Base Register, or VBR, can be accessed
with the MOVEC instruction and is added to all exception table accesses. PDOS
allows 68010/2.0 systems to have a non-zero VBR by setting the constant
B.VEC to the required VBR address when assembling xxBIOS:SR. The BINTB
table still contains the $000 to $3FC offsets from the VBR, and not the actual ad
dress of the exceptions.

Other possible uses for the BINTB entries might be pre-processors for the bus
error or line-A exceptions. The bus error pre-processor may want to re-try the in
struction that caused the bus error (68010/20) at fixed number of times before
calling the PDOS Kl$BERR entry. Or bus error could bring in a new page
under a user-implemented page-fault memory managed system.

3.3 -1/88 71

The SIOS - User SIOS (cont.)

72

The line-A pre-processor could add new user-defined line-A instructions to the
fixed list of PDOS primitives. To do this, add a BINTB table entry and an
xxBIOS:SR routine which decodes the line-A, and goes either to PDOS or to the
new processor.

BIOS Example

The following is an example of a user BIOS module.

TTL xxBIOS:SR - 68K xxBIOS
* xxBIOS:SR 11/17/86
**

* *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* xxxx xxxx xxxx xxxx xxxx xxxx *
* xx xx xx xx xx xx *
* xxxx xxxx xxxx xxxx xxxx xxxx *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* xx xx xx xx xx xx xx xx xx xx xx xx *
* *
* BBBBBBBB II II II 0000000 SSSSSS *
* BB BB II 00 00 SS *
* BB BB II 00 00 SS *
* BBBBBBBB II 00 00 SSSSSS *
* BB BB II 00 00 SS *
* BB BB II 00 00 SS *
* BBBBBBBB IIIIII 0000000 SSSSSSS *
* *
*=**
*= REVISION SCHEDULE MODULE: xxBIOS
*=
xxBIOS IDNT 3.2 BIOS IDNT label appears in QLINK map
*=
*=**

*

*

IFUDF RF :RF EQU 0 ;RUN MODULE FLAG
; TICS/SECOND
;CLOCK ADJUST

IFUDF TPS : TPS EQU 100
IFUDF CLKADJ :CLKADJ EQU 0

•
•
•

•
•

RF = Run module flag
lPS = System tics per second
CLKADJ = Clock adjustment factor

OPT ARS, CRE
SECTION 14
PAGE

MASM options for short absolute references and cross reference.
BIOSes are SECTION 14 code.

Define task startup table external for run module assembly. Also add EPROM
68000 startup vector.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

c······':·
"

i"--""
:~)i

c
c

c
c

PDOS DEVELOPER'S REFERENCE

The BIOS - User BIOS (cont.)

* RUN MODULE SECTION

*
IFNE
XREF
DC.L
DC.L
ENDC

RF
R$TASK, S$PROM
SYZ.+S$SRAM
BSTRT

;SUPERVISOR STACK POINTER
;STARTUP VECTOR

*

* PDOS ENTRY POINT

*

*

XDEF
XREF
XREF

B$STRT
B$SRAM
S$SRAM

;B10S STARTUP ENTRY POINT
;ADDRESS OF SYRAM .POINTER
;SYSTEM RAM

• BSSTRT = POOS cold start entry address
• BSSRAM = System RAM variable
• SSSRAM = System RAM (defined at link time)
• PDrn = 'POOS'
• SYID = System identification

B$STRT BRA.L
DC.L
DC.W

B.SRAM DC.L
XREF

BSTRT ;BOOT EPROM START
PDID ·.;PDOS BOOT IDENTIFICATION
SYID ; SYSTEM ID
S$SRAM ;SYRAM ADDRESS
U.lADR,U.lTYP

XREF U.2ADR,U.2TYP

*

* TASK STARTUP TABLE (NON-RUN MODULE)

*
IFEQ RF
XDEF R$TASK

*
R$TASK DC.B 1,U.ITYP,BIBR,%OOOO ; PORT U

DC.L U.IADR
DC.B 2,U.2TYP,BIBR,%OOOO ; PORT i2
DC.L U.2ADR
DC.W 0 ;END-OF-TABLE

*

• U.xADR = UART base address
• U.xTYP = UART type
• R$TASK = Task Startup Table

3.3 - 1/88 73

The BIOS - User BIOS (cont.)

74

•
•
•
•
•
•
•
•

*

* TASK 110
*

DC.B
DC.B
DC.L
DC.W
DC.L
DC.W

64
TT
0
0
-
1

; PRIORITY
;TASK TIME
;DSEG SIZE
; MAP
;PSEG START (O=MBEGN)
;PORT II

Insert other startup tasks here

DC.W
ENDC

o ;END OF TABLE

BMESOl DC.B
EVEN

$OA,$OD,'xxBIOS ',$DATE,O

* CPU DEPENDENT PARAMETERS

*
B.PTMSK
SYID EQU

*

EQU
, xx,

64 = Task priority (1-255)
IT = Task time slice
0= RAM size (O=use all)
o = Mapper constant

$2500

- = Task entry address (=Monitor)
1 = Task port number
BMESOI = BIOS startup message
B.PTMSK = Disable all port interrupts

;PORT DISABLE INT MASK
;SYSTEM ID WORD

* CPU DEPENDENT SETUP ROUTINES

*
B$CPU EQU * ;CPU SETUP
RTS

*

The B$CPU routine initializes the system. This may include the system clock,
memory mapper, interrupts, controllers or any other CPU dependent parameters.

* FIX TOP OF RAM

*
B$RAM EQU
B$RAM In: (A2)

RTS

*

* ;RAM FIX
Top of RAM

(A4) BIOS table
(AS) SYRAM
(A7) (Top of RAM)-4 (RTS)

The B$RAM routine is called after memory has been sized. It is here that the top
of memory (A 7) can be adjusted.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

c
o

o

(

(

c·.··
.,

c
PDOS DEVELOPER'S REFERENCE

The BIOS - User BIOS (cont.)

* READ SWITCHES

*
B$RSW EOU * ;READ SWITCHES
B$RSW In: D4.L = SYRAM (B. BAS) bit map base (=0)

DS.W = Baud rate (-l=none)

RTS

D6.L = B.VEC=vector base register (=0)
D7.L NODE.B/ASF.B/FLG$.B/SDK$.B
(A3) Int~rrupt vector table (BINTB)
(A4) BIOS table (B$BIOS)
(A6) Start of tasking memory
(A7) End of tasking memory

The B$RSW routine is called just before entering the POOS kernel. It is here
that system switches can be read and the initial baud rate (OS.W), auto-start flag
(ASF.B), or system disk (SOK$.B) adjusted.

•

•

* ACKNOWLEDGE CLOCK INTERRUPT

*
B$ACK EOU
RTS

* ;ACKNOWLEDGE CLOCK

*

B$ACK = Acknowledge clock interrupt

* BLINK LED & ADJUST CLOCK

*
B$LED EQU * ; BLINK LED

MOVE.L B_CLK(AO),DO ;ADJUST CLOCK?
BEO.S @0002 ;N

ADD.L DO, BCLK. (AS) :Y, ADJUST COUNT,
BCC.S @0002 ;N

ADDO.W. /Il,FCNT. (AS) ;Y, UP COUNTER

*
@0002 RTS ; RETURN

*

B$LEO = Blink LEO & adjust clock

* LOAD SYSTEM MAP CONSTANT

*
B$MAP EQU
RTS

*

* ;LOAD MAP CONSTANT

CARRY?

• B$MAP = Load system map constant

3.3 - 1/88 75

The BIOS - User BIOS (cont.)

76

* SAVE 68881 REGISTERS ON USER STACK

*
OPT P=68020,P=68881,OLD

*
B$SAV

*

FSAVE -(A1)
FMOVEM.X FPO-FP7,-(A1)
FMOVE.L FPCR/FPSR,-(A1)
RTS

• B$SA V - Save on stack

;SAVE 68881 REGS FPO-FP1
;SAVE STATUS REGISTER
;RETURN .

**
* RESTORE FROM STACK
*
B$RES FMOVE.L (A1)+,FPCR/FPSR

FMOVEM.X (A1)+,FPO-FP7
FRESTORE (A1)+
RTS ; RETURN
PAGE

• B$RES - Restore from stack

All system-dependent exception vectors are built from three-word entries of the
following format:

* xxBIOS INTERRUPT STRUCTURE
*
BINTB EQU * ; INTERRUPT TABLE

DC.W $OO7C ;INT LEVEL 7 PROCESSOR
DC.L BINT7-B$BIOS
DC.W <address>
DC.L <routine>-B$BIOS ;ADDITIONAL VECTORS

DC.W 0 ;END-OF-TABLE
*

Finally. the common MBIOS:SR module is included to complete the BIOS
module.

INCLUDE MBIOS:SR
END

3.3-1/88

;INCLUDE COMMON BIOS MODULE

PDOS DEVELOPER'S REFERENCE

0··'
",

o

o
c

(~

(

(

c

The BIOS (cont.)

MBIOS:SR - Common BIOS Module

PDOS DEVELOPER'S REFERENCE

The common BIOS module (MBIOS:SR) is included at the end of the user
BIOS module. It has many default equates that also can be adjusted at assembly
time. The BIOS configuration table (B$BIOS) drives the PDOS system and is
pointed to by the first long word of SYRAM.

The MBIOS:SR me contains the user-changeable BIOS table, through which
the PDOS kernel communicates with the UARTs, disks and hardware. The table
includes pointers to the UART BRA.S tables, the disk read and write routines,
the task startup table, along with various constants for timed events and default
clear screen codes.

BIOS Table

At the end of the B$BIOS table of the BIOS, there are some system configura
tion-dependent parameters at specific offsets in the table. These values, which
vary from system to system, may be needed by applications that access variable
SYRAM tables, perform battery clock or bootstrap functions, service multi
processor systems, or install drivers. The following table defmes the PDOS sys
tem parameters which are available here. First is listed the variable's label name,
the B$BIOS table offset, and the size of the value (word or long - W /L).Then
the me where the variable comes from is listed, along with whether the value is
a number or a SYRAM offset (V/O); followed by a definition of the variable:

3.3 -1/88 77

0\
The BIOS - Common BIOS (cont.} 0 ' ,',I.,'

~ama Offsat WlL. 5au[ca V/O pmjnHjan

TBE$ $AO Word MPDOS Value Task control block size in bytes (must always = $500)
MAPB. $A2 Word SYRAM Offset System memory bit map base address SYRAM offset. The

actual table, MAPS., follows this entry.
NMB. $A4 Word SYRAM Value Map size, or # of bytes in MAPS. table
PORT. $A6 Word SYRAM Offset Input character buffers
NPS. $A8 Word SYRAM Value Number of I/O ports
NCP $AA Word SYRAM Value Number of characters/port
lOUT $AC Word SYRAM Offset Output character buffers
TOUE $AE Word SYRAM Offset Task queue
TLST $80 Word SYRAM Offset Task list
NTB. $B2 Word SYRAM Value Maximum number of tasks
TBZ. $84 Word SYRAM Value Task list entry size
TMTF. $86 Word SYRAM Offset To/fromlindex table
TMBF. $B8 Word SYRAM Offset Task message buffers
NTM. $BA Word SYRAM Value Number task messages
IMZ. $BC Word SYRAM Value Task message size
TMSP. $BE Word SYRAM Offset Task message pointers
NTP. $CO Word SYRAM Value Number of task message pointers
DEVT. $C2 Word SYRAM Offset Delay event list
NEV. $C4 Word SYRAM Value Number of delay events
XCHB. $C6 Word SYRAM Offset Channel buffers
NCB. $C8 Word SYRAM Value Number of buffers
XFSL. $CA Word SYRAM Offset File slots
NFS. $CC Word SYRAM Value Number of file slots
TSEV. $CE Word SYRAM Offset Task schedule event code table .,f~
RDKL. $00 Word SYRAM Offset RAM disk list V NRD. $02 Word SYRAM Value Number of RAM disks in list
DRVL. $04 Word SYRAM Offset Installed driver list
UTLL. $06 Word SYRAM Offset Installed utility list
B.NUT $08 Word BIOS Value Number of UART types

$DA Word <Spare>
$DC Word <Spare>
$DE Word <Spare

The following are used by the multi-processing library:

VME $EO Long BIOS Value Base of VMEbus
~ ... ",

RVA $E4 Long BIOS Value RAM address from VMEbus '~".,/
GRA $E8 Long BIOS Value Global RAM address

The following may be used by the MMKBT POOS utility:

PLA $EC Long BIOS Value Default PDOS load address
BTS $FO Word BIOS Value Bootstrap sct (-1=none)

The following may be used by the MTIME POOS utility:

CKT $F2 Word BIOS Value Battery clock type
CKA $FA Long BIOS Value Battery clock address

c
c

78 3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

("'

(,'

c

AS

BR

HR

ANS

PDOS DEVELOPER'S REFERENCE

The BIOS - Common BIOS (cont.)

MBIOS Switches

MBIOS:SR contains some user-alterable, cold start-up code which initializes the
hardware, sizes memory, sets up the RAM disk, and loads registers, then
branches to the generic POOS kernel startup entry point

AS=Auto Start
BR=O

Execute SY$STRT on boot up (::0, no autostart)
Initial baud rate

HR undefined
ANS=1
FDR=O
TPS=I00
SD=O

Highest memory address (else size using bus errors)
ANSI 3.64 PSC/CSC

LV=1
CPSP Long=$AAOO

$9B3D
EVl12=TPS/5
EV 11 3= 1
EV114=10
EV 11 5=20
MSZ=256
RU=8
RZ=255
RE=16
RA::O
IRD=1

Directory flag
Tics/second (system dependent)
Default disk number
Default me directory level
Clear screen and position

cursor code
Event 112
Event 113
Event 114
Event 115
Mail array size
RAM disk unit
RAM disk size
Number of directory entries
RAM disk address
RAM disk initialization

The switches are described in detail following. Most of them have default values.

AUTO START. This switch determines whether or not the SY$STRT (auto
start) me is to be executed on startup. If AS=O, then the SY$STRT file is not ex
ecuted. If it is non-zero, it is executed. Default:: 1.

INITIAL BAUD RATE. This is a number from 0 to 8 which represents the ini
tial baud rate for the character I/O ports. The default is O.

0=19200
1=9600
2=4800
3=2400
4=1200

5=600
6=300
7=110
8=38400

lllGHEST MEMORY ADDRESS. The high memory address variable deter
mines whether memory is sized (HR undefined) or fixed (HR=top address).
Default is undefmed.

ANSI 3.64 PSC/CSC. If this switch is equal to I, then the BIOS subroutine for
clear screen and position cursor for ANSI 3.64 terminal support is included.
Default=l.

3.3-1/88 79

The BIOS - Common BIOS (cont.)

80

FOR

TPS

SO

LV

CPSC

EV112

EV113

EV114

EV115

MSZ

RU

RZ

RE

RA

IRO

DIRECTORY FLAG. The directory flag determines the mode of access for the
fIle manager. When the flag is zero (plus byte), all levels are global: When the
flag is set to $80 (minus byte), then files are unique to each directory level. The
only exception is level 0 which is global to all. Default is 0 for soft level par
titioning.

/FOR=O
/FOR=$80

global levels
unique levels

TICS/SECOND. The tics/second variable sets the number of clock interrupts
that are equivalent to one second. Default is system dependent You cannot vary
this switch without altering B$CPU clock chip initialization ..

DEFAULT DISK #. The default disk number determines which disk number is
selected when no disk is specified by a filename. Default=O and may be altered
by the B$RSW routine.

DEFAULT LEVEL #. The default level number determines which level in a
disk directory is selected when no level is specified. Default= I.

LONG CLEAR SCREEN AND POSmON CURSOR CODE. The clear screen
codes are used by the XCLS primitive. Default=$AAOO. The position cursor
codes are used by the XPSC primitive. Default=$093D. Set CPSC=$AA00093D.

EVENT 112. The event 112 variable is decremented every clock interrupt.
Default=TPS/20.

EVENT 113. The event 113 variable is decremented every second. Default= 1.

EVENT 114. The event 114 variable is decremented every second. Default=10.

EVENT 115. The event 115 variable is decremented every second. Default=20.

MAIL ARRAY SIZE. The mail array size is in bytes. Default=256 and is best as
a multiple of 256.

RAM DISK UNIT. The RAM disk is selected by ''RU= ". Default=8.

RAM DISK SIZE. The size of the RAM disk determines how much memory to
allocate. ITRZ=O, then no RAM disk is selected. Default=255.

OF DIRECTORY EN'IRIES. The number of directory entries in the RAM
disk is selected by ''RE=''. Default=32.

RAM DISK ADDRESS. The address variable determines where the RAM disk
is located. IT RA=O, then the RAM disk is allocated off the top of memory.
Otherwise, the parameter indicates the memory address of a RAM disk.
Default=O.

RAM DISK INITIALIZATION. The RAM disk is initialized by the POOS
BIOS by setting IRD=1 (default).

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

0 ,
:..',;' ,

.~~.

'0)

(}

C·'\
!

(

TT=1

c
PDOS DEVELOPER'S REFERENCE

The BIOS - Common BIOS (cont.)

The following switches are also found in the MBIOS module:

Default task time for tasks created with the cr monitor command.

Command line control keys and symbols:

Changing the following default switch settings will alter the way the PDOS
utilities and other commands work.

3.3 - 1188 81

o
The BIOS - Common BIOS (cont.) o

82

PLA=$800

BTS=-1

CKT=-1

CKA=-1

VME=O

RVA=-1

GRA=-1

NODE=O

The following switches contain clock and bootstrap values:

POOS load address.

Bootstrap sector.

Battery clock type. (-l=none).

Battery clock address.

The following switches contain multi-processor values:

Base ofVMEbus.

RAM address from the VMEbus.

Global RAM address.

Node letter.

MBIOS:SR also has the monitor prompt routine B$MPT. The default subroutine
just outputs the disk numbers and an angle bracket (0)). The following two
OOSGEN flags can be defined to alter the prompt

."'~
\ i
.~.

• LF is the Level Flag. If set non-zero, it outputs a semi-colon and the current in
level before the angle bracket. Vi

• WF is the Window Flag. If set non-zero, it outputs the windowing port num
ber and a colon before the disk numbers.

3.3 -1/88 PDOS DEVELOPER·S REFERENCE

~.',
~

o
()

(:~

(,"

('

c

xxBIOSU - UARTs

U$xDSR BRA.S
BRA.S
BRA.S
BRA.S
BRA.S
BRA.S
BRA.S
DC.B
BRA.S
DC.B
EVEN

PDOS DEVELOPER'S REFERENCE

The BIOS - UARTs(cont.)

POOS UARTs are grouped into types. UARTs of the same type are differen
tiated by separate base addresses. The baud port function of POOS binds a port
to a particular type and base address. UARTs of the same type may be either
chips of the same kind (i.e. having the same register offsets from the base ad
dress), or chips of various kinds which are on the same card (e.g. UARTs and
parallel printer port all on a CPU card). Each UART type has a Device Service
Routine (DSR) associated with it Whenever POOS interacts with a UART, all
communication is accomplished through the DSR of the UART's type. The ad
dress of the DSR for a particular UART type is found in the B$BIOS table. The
DSR address points to a structured table of entries, which perform the various
functions needed. Pointers to DSRs for up to 8 (default=4) different UART
types are maintained in the B$BIOS table.

In addition to type and address, a UART also has a flag byte associated with it.
This byte is maintained in the SYRAM table FSBT. and the bits are dermed as
follows:

FHPI 80_S

IIII ~ Bit 0 - Ct~ S Ct~ Q enable
Bit 1 = Riter disable (Esc,Ctrl C,Ctrl X)
Bit 2 = OTR enable
Bit 3 = 8 bit character enable
Bit 4 = Receiver interrupts disable

L-____ __+ Bit 5 = Even parity enable
Bit 6 = Highllow water (reserved),

'---------+ Bit 7 = Ctrl S Ctrl Q flag bit (reserved)

The DSR address points to a table of branch short (BRA.S) instructions, which
are called from MPOOSK2 with a JSR. This means that they all exit with an
RTS. To preserve the table structure, all branches MUST be short. Eliminate
range errors with additional BRA.L links and not by altering BRA.S to BRAL.

UxDG ; GET A CHARACTER
UxDP ;PUT A CHARACTER
UxDB ;BAUD THE PORT
UxDR ;RESET THE PORT
UxDS ;READ PORT STATUS
UxHW ;HIGH WATER
UxLW ;LOW WATER
' uO' ; (optional) INSTALLABLE KEYWORD
UxDI ; (optional) INSTALL CARD
'Type x UART',O ; (optional) CARD IDENTIFIER

3.3 - 1/88 83

The BIOS - UARTs (cont.)

UxDG

UxDP

84

The first seven routines are required for all DSRs. but only DSRs which are
meant to be instaUable require the keyword, install card code. and card identifier
message. The UART Device Service Routines can come from three different
places.

• Included in the standard system xxBIOS:SR file.
• Linked instaUable DSR at OOSGEN time.
• Installed from a disk file after POOS is running. by setting the DSR addresS

into the B$BIOS table.

Each DSR subroutine should preserve all registers. except as noted in the follow
ing detailed description:

Get Character

Inputs Supervisor mode (interrupts disabled)
Outputs DO.B = Character

AOL = UART base addresS
SR = .EQ. » character found

.NE. » no character found

.CS. » character found but ignore
Called By MPOOSK2 during K2$PINT interrupt service. must check all UARTs

Put Character

of this type for a received character. Can destroy AO and DO. You
must load up both DO and AO if a character is found. Also may be
called from xxBOOT program. or from XGCR if receiver interrupts
are disabled.

Inputs DO.B = Character
DIL = OulputEVENf.W I PORT FLAGS.W
AOL = UART base addresS
Supervisor mode (interrupts enabled)

Outputs SR = .EQ. » Character was output

o
o

.NE. » Character was not output ~
Called By MPOOSK2 to oulput a single character. returning in status whether or ~

not the character was senL After 10 .NE. returns as a single
character. MPOOSK2 executes an XSWP. Oulputevent ranges
from 80-95. and the port flags are deftned above. May also be
called from xxBOOT program or ITA drivers.

o
o

3.3-1/88 POOS DEVELOPER'S REFERENCE

UxOB

UxOR

UxOS

UxHW

UxHW

c
PDOS DEVELOPER'S REFERENCE

The BIOS - UARTs (cont.)

Baud Port

Inputs DO.W = Baud rate (0-8)
OIL = Output EVENT.W I PORT FLAGS.W
AOL = UART base address
Supervisor mode (interrupts disabled or enabled)

Outputs SR = .EQ. » UART successfully bauded
.NE. » Baud was unsuccessful

Called By MPOOSKI and K2 to configure a POOS port. It must detennine if the
base address is legal for this type. and then set the data bits. stop
bits. baud rate. parity. and enable receiver interrupts. if requested.
It then returns in status whether or not the port was bauded.
Output event ranges from 80-95. and the port flags are defined
above. May also be called from xxBOOT program.

Reset Port

Inputs AOL = UART base address
Supervisor mode (interrupts enabled)

Outputs SR = .EQ. » UART successfully reset
.NE. » Reset was unsuccessful

Called By MPOOSK2 when you baud a port that has already been defmed (in
case the port is being bauded to a different UART).

Read Port Status

Inputs AOL = UART base address
Supervisor mode (interrupts enabled)

Outputs DO.W = UART status
Called By MPOOSK2 when executing XRPS read port status primitive.

Signal High Water

Inputs 01.W = Port flags
AOL = UART base address
Supervisor mode (interrupts disabled)

Outputs <Done>
Called By MPOOSK2 when a received character passed the 2/3 full mark.

Based upon the flag byte. it should stop the external device
from sending characters either by setting a hardware bit or by
sending a Ctrl S (XOFF).

Signal Low Water

Inputs 01.W = Port flags
AOL = UART base address

Outputs <Done>
Called By MPOOSK2 when a character is taken from a type-ahead buffer and

Passes the 1/3 full mark. Based upon the flag byte. it should
re-enable the external device to sending characters either by
resetting a hardware bit or by sending a Ctrl Q (XON).

3.3 -1/88 85

The BIOS - UARTs (cont.)

UxDI Install Card (optioDal)

Inputs (AI) = KI$BEGN kernel routine table
A2L = 0 or new card base address
(A5)=SYRAM
Supervisor mode

Outputs Dl.W = # of cards found
Called By MPDOSKI (with intemJptS disabled) before bauding the R$T ASK

table ports and by the INSTALL utility (with interrupts
enabled). Preserve DI and A4 for KI call. See examples for
setting interrupt vector. counting cards. etc.

Interrupt Inputs

All UART receivers should produce interrupts for input You can have the port
type-ahead buffers filled with polling by disabling receiver interrupts in the flag ,
byte. UART interrupts can be pointed to the internal POOS ISR. called
K2$PINT. This routine calls all the UART types' "get character" entries until
one returns .EQ. with the character. If the UARTs can generate individual inter
rupt vectors, individual routines can be written for each port to get the character,
store some registers and enter the POOS ISR at K2$CHRI right after the
.EQ. return from the "get character" polliog of K2$PINT. This provides much
faster response.

Parallel Port Interrupts

POOS is designed for polled character output (in other words; it is not designed
for efficient interrupt driven output). However, try to implement interrupts on
parallel ports whenever possible.

0" ...

o

rr">,
{' .
\~~

o

xxBIOSW - ReadlWrlte Disk DSRs

86

The read/write sector routines are supplied in the xxBIOSW:SR module. Four
entries are supplied for read, write. initialize, and check for floppy motor off. An r i

additional entry is for an error message list used by the PDOS monitor module "'"
to report disk errors.

The entry points are as follows:

W$XWSE - Write sector
W$XRSE - Read sector
W$XDIT - Initialize disks
W$XDOF - Check for disk off
W$ERM - Error message list

An annotated example follows for the xxBIOSW module.

3.3-1/88 PDOS DEVELOPER'S REFERENCE

o
c

The BIOS - Disk R/W (cant.)

TTL
*

xxBIOSW:SR - 68K R/W SECTOR BIOS
xxBIOSW:SR 05/07/84

**
*
* DDDDDDD II II SSSSSS KK KK RRRRRRRR \\ ww ww
* DD DD II SS KK KK RR RR\\ ww ww
* DD DD II SS KK KK RR RR \\ ww ww
* DD DD II SSSSSS KKKKK RRRRRRRR \\ ww www ww
* DD DD II SS KK KK RR RR \\ ww ww ww ww
* DD DD II SS KK KK RR RR \\ wwww wwww
* DDDDDDD II II SSSSSSS KK KK RR RR \\ ww ww
*
*=**
*= REVISION SCHEDULE MODULE: SBIOSW
*=
*=
xxBIOSW IDNT 3.0 M68000 PDOS
*=
*=**
* PDOS R/W SECTOR MODULE
*

XDEF
XDEF
XDEF

W$XWSE,W$XRSE
W$XDIT,W$XDOF
W$ERM

* INITIALIZE DISKS

*
W$XDIT EQU

RTS

*

* ;INITIALIZE DISKS

The disk controllers are initialized. Any memory tables or communication vari
ables are also set to a known state.

* DISK OFF ROUTINE
*
W$XDOF EQU

RTS

*

* ;DISK OFF

This routine is called once every second from the POOS kernel It is intended
for controllers of 5 1/4" floppies where the motor is turned off after a certain
length of time with no access.

* WRITE SECTOR
*
* IN: DO.W
* D1.W
* (A2)
* OUT: SR
*
*
W$XWSE EQU *

MOVEQ.L ltO,DO
RTS

PDOS DEVELOPER'S REFERENCE

DISK It
LOGICAL SECTOR It
BUFFER ADDRESS
EQ .•. WRITE COMPLETE
NE .•. DO.L = ERROR

;WRITE SECTOR
;SET STATUS .EQ.

3.3 -1/88 87

The BIOS - Disk RIW (cont.)

The write sector routine outputs the logical 256-byte sector pointed to by ad
dress register A2 to the disk. Data register DO.W selects the disk number and
register D 1.W is the logical sector number. The status is returned EQUAL if the
operation completed with no error. Otherwise. a NOT EQUAL status is returned
with DOL containing the error number.

* READ SECTOR
*
* IN: DO.W = DISK UNIT I
* D1.L = LOGICAL SECTOR I
* (A2) = BUFFER ADDRESS
* OUT: SR = EQ ••• WRITE COMPLETE
* NE ••• DO.L = ERROR

*
W$XRSE EQU * ;REAO SECTOR

;SET STATUS .EQ. MOVEQ.L 10,00
RTS

*

The read sector routine reads the logical2S6-byte sector from a disk into the
memory buffer pointed to by address register A2. Data register DO.W selects the
disk number and register D 1.W is the logical sector number. The status is
returned EQUAL if the operation completed with no error. Otherwise. a NOT
EQUAL status is returned with DOL containing the error number.

*
*

COMMON ERROR NUMBERS

ERR100 MOVEQ.L 1100,00
RTS

*
ERR101 MOVEQ.L 1101,00

RTS

*

;ILLEGAL DISK I
;RETURN .NE.

;SECTOR TOO LARGE
;RETURN .NE.

* ERROR MESSAGE LIST

*
W$ERM DC.W

DC.B
OC.B

DC.B

100 ;Error list bias
'Illega',-'l','drive',O ;100 Common errors
'Secto',-'r','to',-'o','big',O ;101

-1 ;End

Disk ReadlWrite

The inputs to the disk read and write routines. W$XRSE and W$XWSE. are as
follows:

DO.B = logical disk number
D1.W = logical sector number
(A2) = data destination (read) or source (write) address

c
G

r~
IV

The output from the routines are status .EQ. if the operation was successful. If it
was not. an .NE. status is returned and DO.L is the error number. Disk error num-
bers range from 100 to 199. with corresponding messages in the W$ERM table. 0

c
88 3.3-1/88 PDas DEVELOPER'S REFERENCE

(-

The BIOS - Disk RIW (cont.)

Cold Startup Initialize

The kernel startup calls the disk initialize routine, W$XDIT, before interrupts
are enabled. This routine should preserve all registers and perfonn all controller
initialization. When implementing the POOS disk standard, the XDIT routine
should call each disk controller's routine, if that controller is in the system (as in
dicated by the flags set by B$CPU). The registers A4, A5, and A6 are set up as
parameter RAM pointers for storing the disk partition infonnation, as follows:

**
GENERAL DISK INITIALIZE: *

*
*
*

Based upon P$V320 & P$RWIN flags,
init the installed controller(s) and load
up the parameter RAM as you find drives.

**

*
RL REG DO-A6

*
W$XDIT MOVEM.L RL,-(A7)

LEA.L P$PARM,A4
MOVEA.L A4,A6
CLR.L (A4)+
CLR.L (A4)+
MOVEA.L M,AS
CLR.L (A4)+
CLR.L (A4)+
CLR.L (M)+
CLR.L (A4)+
TST.B P$V320

*
@OlO

*
@020

*
@030

BEQ.S @OlO
BSR.L W$XDITV

TST.B P$RWIN
BEQ.S @020

BSR.L W$XDITR

MOVE.L P$PARM+4,DO
BEQ.S @030

MOVEA.L DO,AO
ADDQ.W il,PART$(AO)

MOVEM.L (A7)+,RL
RTS

;SAVE P$FPARM
;NO FLOPPY FOR NOW

;SAVE P$WPARM

; (A4) POINTS TO DRIVE 0 PARM AREA
;IS V320 IN SYSTEM?
;N
;Y, DO V320 INIT

;N, RWINl IN?
;N
;Y, DO RWINl INIT

;IS FLOPPY 1 DEFINED?
;N
; Y, GET POINTER
;SET AS DISK U

;AND RETURN

Kernel Subroutine

The POOS system clock interrupt calls the disk off routine, W$XOOF, once a
second so that the BIOSW module can perfonn custom functions for the floppy
select and motors, Winchester, or buffer timers.

POOS OEVELOPER'SHEFERENCE 3.3 -1/88 89

c
The SIOS - Disk RIW (Cont.) o

90

Error Message Table

The error message table, W$ERM, is used by the POOS monitor to help the user
interpret disk error numbers. This table begins with a word indicating the error
number that corresponds to the fIrst message in the table that follows. Then the
messages continue, separated by nulls, and terminated by an $FF byte. Any
error numbers that have no message must have a zero in the table to keep mes
sages that follow in sync. The BIOSW module must end on an even address.

* ERROR MESSAGE LIST
*
W$ERM DC.W 100

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

DC.B
DC.B
EVEN

'Illegal drive',O
'Sector too big',O
'FDC Not ready',O
'FDC No ID AM detect',O
'FDC Write protect',O
'FDC Wrong sector',O
'FDC Wrong cylinder',O

'HDC Wrong track',O
-1

Interrupts

;100 Common errors
;101
;102 No retry (Floppy errors)
;103 Retry
;104 No retry
;105 Retry
;106 Recal, retry

; 121

. .(.~

Disk controllers implement various interrupt methods. Some are usable while iV
others are useless. From a multi-tasking perspective, it is best to have a task wait-
ing for a disk controller suspend itself until the disk is done. Of course, the task
should also suspend on a delayed local event as a timeout precaution. If inter-
rupts are used, then a flag should be provided to turn the use of interrupts on and
off. Code should be written either to use disk interrupts or just to poll the control-
ler registers. Both must usually be provided since the disk initialize code doesn't
have interrupts enabled and boot ROMs (which share the same disk code) do not

. have the POOS "suspend" primitives available.

If you decide not to use interrupts, you should at least "XSWP" swap your task ',,-,
out during long loops that wait for the disk.

As a convention, event 119 is reserved for disk suspension. For increased speed,
it is reset and set direcdy in SYRAM, not using the POOS event primitives. The
disk controller interrupt service routines usually just set event 119 and get the
controller to stop interrupting, leaving other error checking to the main routine.
These interrupt routine labels are XDEFed out to the xxBIOS:SR module, which
includes them as entries in the BINTB exception vector table.

3.3-1/88 PDOS DEVELOPER'S REFERENCE

0,' '~ 1

(

c
C:

PDOS DEVELOPER'S REFERENCE

The BIOS - Disk RIW (cont.)

PDOS Winchester Standard

The POOS Winchester standard keeps all the information about the Winchester
drive on the Winchester drive. This allows you to do the following:

• Use a drive with any number of heads and cylinders
• Divide up the drive into any combination of large and small partitions
• Automatically skip all tracks with manufacturing defects

The POOS Winchester standard information is.contained in a block of data that
resides in one or two sectors (usually sector 0) of physical track 0 on each
Winchester drive in the system. The Drive Data Block (DDB) consists of three
parts:

• The drive parameters
• A variable length partition defmition table
• A variable length bad track list

These tables are built and written to the drive by the xxFRMT utility. They are
. then read into the parameter RAM area by the xxBIOSW disk initialize sub
routine, W$XDIT, and subsequently used by the read/write sector code,
W$XRSE and W$XWSE, in the xxBIOSW disk module.

The following discussion of the POOS Winchester standard uses a strict defini
tion of terms. These definitions are found in the glossary.

System Independent Drive Parameters

To allow the use of any size Winchester drive in the POOS system, the drive
parameters are read in from the drive itself. These include the number of heads
and cylinders. During disk initialization, if a SCSI (SASI) controller is used in
the system, either a "Set Drive Parameters" or an "Initialize Drive Characteris
tics" command is sent to the SCSI controller using the number of heads and
cylinders specified in the disk's header sector. Thus, any drive in any PDOS sys
tem could actually have any number of heads or cylinders, limited only by the
controller or hardware.

3.3 -1/88 91

The BIOS - Disk RIW (cont.)

92

Disk Partitions on Drive Header

Each POOS Winchester standard drive has all the necessary disk partition infor
mation in the header data. There is a three-word entry for each partition of the
drive, consisting of a POOS disk number, a logical base track, and a logical top
track number. The PDOS read/write sector routines in xxBIOSW try to match
the requested logical disk number to the disk number associated with a disk par
tition on an installed Winchester drive. The partition's associated base and top
tracks are used to bias the requested POOS sector number to an actual physical
or SCSI logical block number. The number of partitions possible on anyone
drive or system may be limited by any of the following:

•
•
•

The amount of data read in by W$XDIT
The data written out by xxFRMT
The amount of room in low parameter RAM

See the source code or the Installation and Systems Management guide for effec
tive limits.

Bad Track Mapping

Following the partition information in the drive's header is an optional bad track
list. This table consists of word entries in increasing order of physical track num
bers that should not be accessed (skip them). The logical track number is incre-

C.',' ,~,)

o

mented one for each bad track that is numbered lower than or equal to the ;('J'
requested track. The result is a mapped physical track that corresponds to the re- 'l;>
quested logical track number, where the physical track number is greater than or
equal to the logical track number.

Drive Data Blocks (DDBs)

Each POOS system allocates, in its system parameter RAM, a table of six Drive
Data Block addresses -- two for floppy drives and four for Winchester drives.
The addresses of the Drive Data Blocks are stored by the xxBIOSW disk initial- I~"
ize routine, W$XDIT, when POOS fmt starts up. The actual DDBs are usually \, '
stored in the system's parameter RAM area by W$XDIT immediately following
the six addresses of the P$P ARM table.

If more than one type of disk controller is possible in a particular system, then
the general W$XDIT routine calls the individual XDIT routines for each control
ler installed. These routines usually initialize the controller, and then loop
through all possible drive select codes, looking for drives (floppy or Winchester)
that may be attached.

As a floppy disk drive is found, its DDB is stored in one of the frrst two addres
ses. Each floppy Drive Data Block is built without accessing the drive, using
default parameters, since the floppy drives are common to each system, have
only one partition, and don't have bad tracks. If there is only one floppy control
ler in a system, the only difference between the FO and Fl tables is usually the
drive select byte and the disk number, which are set to 0 and I, respectively.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

fl,:',
V'

c

(

(

(

c
PDOS DEVELOPER'S REFERENCE

The BIOS - Disk RIW (cont.)

As Winchesters are found installed (no read error), then W$XDIT determines if
the header data is actually PDOS Winchester standard information. The test for
this is that the fIrst four bytes of the header information are "ME4U" and the
next word, signifying the number of heads on the drive, is from one through 16.
If it is okay, then the data is moved into a DDB in system parameter RAM and
the address is saved in the next available P$PARM table location. If the drive is
installed but the header data is not PDOS Winchester standard information, then
W$XDIT moves down some default drive data into the DDB in P$P ARM.

The four Winchester Drive Data Blocks are filled as W$XDIT finds them in the
system, altering the controller number and drive select bytes to match where the
drive is found. The first Winchester's Drive Data Block is usually read into the
system's parameter RAM area by W$XDIT immediately following the two flop
py DDBs. It is referred to as drive "WO", but it may be attached to any control
ler with any drive select jumper. The Drive Data Block for drive "WI" would
follow the "WO" bad track table, and so on. You must be sure that the parameter
RAM defmition file, xx$P ARM:SR, and the system memory map allocate
enough room for all the drives that may be installed in the system.

PDOS Disk Numbering

PDOS disk numbers 0 and 1 are reserved for floppy drives; disk numbers 2 and
above are for Winchester partitions. These Winchester partitions, numbered 2-
99, are biased by one track worth of sectors (e.g. 32,33,34,38, or 64). To ac
cess sectors in the fIrst track, or base track, of the partition, you use the PDOS
disk number plus 100. For example, reading from disk 102 accesses the un
biased disk 2 sectors. If there are 32 sectors per track, then disk 2, sector 0 acces
ses the same sector as disk 102, sector 32. All of the disk accesses for disks 2-99
and 102-199 use the bad track table of the corresponding drive to offset re
quested tracks.

The PDOS Winchester standard also defines a way to access all the sectors on a
drive, ignoring the bad track table remapping feature. This is needed by the
"verify" process in the xxFRMT utility -- to check all the sectors on a track to
fmd new bad tracks. PDOS disk numbers 200-209 are mapped to the physical
sectors of drive WO, numbers 210-219 are mapped to drive WI, and so on. Disk
200, sectors 0 through 65535 (0 to $FFFF) access Winchester drive WO physical
sectors 0 through 65535. Disk 201, sectors 0 through 65535 access Winchester
drive WO physical sectors 65536 through 131071 ($10000 to $1FFFF). This pat
tern continues until disk 209 maps to sectors $90000 to $9FFFF. This will ac
commodate drives up to 168 Mbytes, formatted. If larger disks must be
accessed, then you must alter the xxBIOSW:SR code so that the xxFRMT utility
can verify the entire drive. This could be done by consolidating drives: 200-219
are drive WO, 220-239 are drive WI.

Currently disk numbers and partitions for each drive are defined by the format
utility, xxFRMT. The partitions on each drive get consecutive disk numbers,
starting at a specified number, and skipping the standard RAM disk number, 8.
Normally the fIrSt partition on drive WO is assigned PDOS disk number 2. The
fIrSt partition on drive S 1 would normally be assigned the next PDOS disk num
ber higher than the last disk number on drive WO, etc.

3.3 - 1/88 93

The BIOS -Disk R/W (cont.)

94

PDOS Disk Layout

The following disk sector listings define the POOS disk fonnats including the
header sector, directory entries, and data storage.

x>MDDUMP
68K PDOS Disk Dump/Alter Utility

Disk # = 0
To alter sector, enter "A"; to exit, enter "z"
Start Sector 0
End Sector = 2

Sector 0 contains the directory header and fIrSt sector bit map.

• 0940 = Boot sector
• 006D = # of fIles
• 88 = # of boot sectors
• 00800 = Boot address
• 0940 = # of PDOS sectors
• A55A = POOS ID
• FFFF = Sides/density
• 1 = Allocated
• O=Free

Sector/Disk=$OOOO (0) /0
OOO-OOF 53 41 47 45 20 50 44 4F 53 20 32 2E 36 64 00 00 FORCE PDOS 3.3 ..

Disk name
OlO-OlF 09 40 00 6D 88 00 08 00 00 80 09 40 AS SA FF FF .@.m ••••••• @%Z ••
020-02F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
030-03F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
040-04F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
050-05F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
060-06F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
070-07F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
080-08F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
090-09F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OAO-OAF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF --"
OBO-OBF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
OCO-OCF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
ODO-ODF FF FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .po .. 0 0 •• 0.0 •• o.
OEO-OEF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OFO-OFF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

.......................... ..

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

,.,-"

/f{~

'V

c
c

('
The BIOS - Disk RIW (cont.)

Sector 2 is the frrst directory sector.

• 41.. .. 00 = File name
• 00 00 00 = File extension
• 05 = Directory level
• 0800 = Type
• 0012 = Start sector
• 0000 = Free
• 0012 = Sectors allocated
• 0012 = EOF sector index
• 009A = # of bytes in last sector
• 101FA8A2 = Date created
• 101FA8A2 = Date last updated

Sector/Disk=$0002 (2) 10
OOO-OOF 41 4D 41 5A 49 4E 47 00 00 00 00 05 08 00 00 12 AMAZING
010-01F 00 00 00 12 00 12 00 9A 10 IF A8 A2 10 IF A8 A2 •••••••••• (" •• (n

020-02F 41 53 4D 00 00 00 00 00 00 00 00 00 80 00 00 25 ASM %
030-03F 00 00 00 00 00 00 00 2E 10 IF A8 A2 10 IF A8 A2 (" ("

040-04F 42 30 31 00 00 00 00 00 00 00 00 OA 20 00 00 26 BDl • • &

050-05F 00 00 00 01 00 01 00 58 10 IF AS A2 10 IF A8 A2 x .. (" .. (n

060-06F 42 30 31 00 00 00 00 00 53 52 00 OA 02 00 00 28 BOL SR (
070-07F 00 00 00 04 00 04 00 55 10 IF A8 A2 10 IF A8 A2 U .. (" .. (n

080-08F 42 30 32 00 00 00 00 00 00 00 00 OA 20 00 00 2D B02 · . -
090-09F 00 00 00 01 00 01 00 5B 10 IF A8 A2 10 IF A8 A2 [.. (" .. ("

DA~-OAF 42 30 32 00 00 00 00 00 53 52 00 OA 02 00 00 2F B02 SR I
OBO-OBF 00 00 00 04 00 04 00 3D 10 IF A8 A2 10 IF A8 A2 = .. (" .. (n

OCO-OCF 42 30 33 00 00 00 00 00 00 00 00 OA 20 00 00 34 B03 · .4
ODO-ODF 00 00 00 01 00 01 00 5B 10 IF AS A2 10 IF A8 A2 [.... (" ... {I/

OEO-OEF 42 30 33 00 00 00 00 00 53 52 00 OA 02 00 00 36 B03 SR 6
OFO-OFF 00 00 00 04 00 04 00 3F 10 IF A8 A2 10 IF A8 A2 ? (" ("

• 0013 = Forward link
• 0000 = Backward link: (null)

To alter sector, enter "A"; to exit, enter "Z"
Start Sector = $12
End Sector = $13

Sector/Disk=$0012 (18)/0
OOO-OOF 00 13 00 00 FF FF FF FF 00 00 OD DE 00 00 04 DC · \
010-01F 00 00 00 54 00 00 00 68 23 14 41 4D 41 5A 49 4E ... T ... h#.AMAZIN
020-02F 47 20 50 52 4F 47 52 41 4D 00 00 00 lC 14 53 45 G PROGRAM SE
030-03F 45 44 3D 00 DB 63 07 lA 63 5c 00 2E 07 08 5c OD ED= .. c .. c\ \.
040-04F 17 4E 06 63 00 00 08 63 06 5c OD 17 4E 00 lc 14 .N.c ... c. \ .. N ...
050-05F 57 48 41 54 20 41 52 45 20 59 4F 55 52 20 57 49 WHAT ARE YOUR WI
060-06F 44 54 48 20 41 4E 44 20 4C 45 4E 47 54 48 00 OA DTH AND LENGTH ..
070-07F 64 OA 65 00 23 14 50 4C 45 41 53 45 20 57 41 49 d.e.#.PLEASE WAI
080-08F 54 2E 2E 2E 2E 00 DB 00 10 64 5C 01 30 65 5c 01 T d\.Oe\.
090-09F 30 18 66 OA 64 5C 01 30 65 5C 01 30 18 67 OA 64 O.f.d\.Oe\.O.g.d
OAO-OAF 65 32 17 68 00 00 08 69 06 5c 00 07 08 6A 06 5C e2.h ... i. \ ... j. \
OBO-OBF 00 07 08 6B 06 60 64 32 5C 01 30 17 40 00 08 6C · .. k. 'd2 \.0. @ •• 1
OCO-OCF 06 5C 01 07 08 6B 5C 01 18 67 06 6C 07 08 6c 06 .\ ... k\ .. g.l..l.
ODO-ODF 6C 5c 01 30 07 08 6D 06 6B 07 08 6E 06 5C 01 00 1\.0 .. m.k. .n. \ ..
OEO-OEF 06 6F 06 5C 01 01 64 07 06 70 06 5C 01 01 65 00 .0. \ •• d .. p. \ .. e.
OFO-OFF 08 6F 70 18 66 06 5C 01 00 00 IF 70 07 IF 6F 00 · op. f. \ p .. 0 •

("

c PDOS DEVELOPER'S REFERENCE 3,3 - 1/88 95

The BIOS - Disk RIW (cont.)

• 0014 = Forward link
• 0012 = Backward link (null)

Sector/Disk=$0013 (19) /0
OOO-OOF 00 14 00 12 01 5D 00 00 01 04 00 00 1D
010-01F 1A 6D 64 2E 07 08 6D 06 6D 5c 01 30 07
020-02F 00 00 FA 00 08 6D 06 5C 01 07 08 6E 06
030-03F 30 07 1A 6E 65 2C 07 08 6E 06 5C 01 00
040-04F 6E 18 67 5C 00 29 07 01 5D 00 00 00 C8
050-05F 5C 01 31 5C 00 29 07 01 5D 00 00 02 12
060-06F 5C 01 31 6E 18 67 5C 00 2E 07 01 5D 00
070-07F 00 00 1A 6E 5c 01 31 5C 00 29 07 01 5D
080-08F 86 00 1A 6D 6E 5C 01 31 18 67 5C 00 2E
090-09F 00 00 01 86 00 00 1A 6D 64 29 07 01 5D
DA~-OAF 4A 00 1A 6D 5C 01 30 6E 18 67 5C 00 2E
OBO-OBF 00 00 01 4A 00 00 21 60 5C 03 32 5C 01
OCO-OCF 5D 00 00 03 16 OA 5D 00 00 03 34 OA 5D
ODO-ODF 5C 00 1A 6E 65 2E 07 01 5D 00 00 01 54
OEO-OEF 5C 01 29 07 01 5D 00 00 01 72 00 00 08
OFO-OFF 01 07 01 5D 00 00 01 68 00 00 1A 6D 6E

To alter sector. enter "A"; to exit. enter "z"
Start Sector =

96 3.3 -1/88

71 00 00
01 5D 00
6E 5C 01
00 1A 6D
00 1A 6D
00 1A 6D
00 02 12
00 00 01
07 01 5D
00 00 01
07 01 5D
30 07 01
00 00 03
00 1A 6A
69 06 5c
5C 01 30

..... J q ..

.md ... m.m\.O .. J.

.. z .. m. \ ... n.n\.
O .. ne •.. n.\ m
n.g\.) .. J ... H .. m
\.l\.) .. J m
\.In.g\ J
... n\.l \.) .. J ...
... mn\.1.g\ J
....... md) ..] ...
J .. m\.On.g\ J
... J .. ! '\.2\.0 ..
J J ... 4.J ...
\ .. ne ..• J ... T .. j
\.) .. J .•. r ... i.\
..• J ... h ... mn\.O

PDOS DEVELOPER'S REFERENCE

c

1 >

V

C'i\
," I

c

PDOS 1/0 Drivers

(

(

c PDOS DEVELOPER'S REFERENCE

The BIOS (cont.)

PDOS I/O drivers are an extension of the PDOS file system. If a file's attribute
is "DR", then the PDOS file manager expects the file to be an I/O driver
program instead of data.

Driver Entry Points

PDOS I/O drivers are an extension of the PDOS file system. An I/O driver is
designated by the "DR" file type. I/O driver files contain position independent
(self-relocating) code rather than data.

When an I/O driver is opened, closed, read from, written to, or positioned, the
PDOS file manager branches into the channel buffer at specific entry points.
This requires that the first twelve bytes of the file be reserved for branch instruc
tions and that the driver code and variables be no more than 240 bytes in length
to be dynamically loaded. Otherwise, the driver must first be installed into the
system via the INSTALL utility. The following driver entry points must be at
the beginning of each driver module:

SECTION 0
DC.W $ASSB ;DRIVER ID

DROP BRA.S OPEN 2 OPEN
DRCL BRA.S CLOS ; 4 CLOSE
DRRD BRA.S READ ; 6 READ
DRWR BRA.S WRIT ; 8 WRITE
DRPS BRS.S POST ;10 POSITION

The driver must be written in position independent or self-relocating 68000 as
sembly code. This simply means that while the code is relocatable, there can be
no relocatable tags within the object file.

DTTX

VAR

CNT

SECTION 0
DC.W $ASSB ;BEGINNING OF DRIVER

ADDQ.W #1,CNT(A2) ;INCREMENT COUNT
LEA.L BUF (A2) ,AD ;POINT TO BUFFER
MOVE.L AO,VAR(A2)

EQU *-DTTX+4
DC.L 0

OFFSET *-DTTX+4
DC.W 0

BUF DS.B 10

A common way to make the code self-relocating is to generate a base address
and then reference each constant within the program as a displacement beyond
the base address. PDOS passes the base address of the driver buffer in address
register A2. This can be conveniently used as the base register for variables
defined as the label minus the start address plus foUf. The former makes the
label absolute (relocatable-relocatable=absolute) and the latter skips the file
links.

3.3 - 1/88 97

The BIOS - Drivers (cont.)

98

Using Driver Registers

The POOS fIle manager passes all parameters in registers to I/O drivers. All
registers are available for use by the driver except address registers A4 through
A7.

The driver executes in supervisor mode. The return address is already on the sys
tem stack. The status register passes the error conditions back to the POOS fIle
manager. An "EQ" status indicates that no error occurred. A ''NE'' status
specifies an error with the error number returned in data register DO.

The data and address registers of the fIle manager call are located on the stack
immediately following the return address, where DO is 4(A 7), D 1 is 8(A 7), and
so on. This is useful for passing the number of bytes on the end of fIle to the
D3L of the fIle manager call. See the input driver example.

If the driver alters constants within the buffer, then the file altered bit must be
set in the fIle slot so that the buffer is correctly restored when rolled to the disk.
This is done by executing the instruction "ORI.W #$8000,12(A4)" or ''T AS.B
12 (A4)".

The following table describes the register usage for each driver entry point:

OPEN: D7.W = Channel status
(A2) = Driver base + 4
(A4) = File slot
(AS) = SYSRAM
(A6) = Task TCB
(A7) = Return address

CLOSE:D7.W = Channel status
(A2) = Driver base + 4
(A4) = File slot
(A5) = SYSRAM
(A6) = Task TCB
(A7) = Return address

READ: D5L = Character count (-1 = Line operation)
D7.W = Channel status
(A2) = Driver base + 4
(A3) = Memory buffer
(A4) = File slot
(AS) = SYSRAM
(A6) = Task TCB
(A 7) = Return address

3*4+4 (A 7) = Return EOF bytes to D3.L

3.3-1/88 PDOS DEVELOPER'S REFERENCE

c
o

()

o
c

(

(

Example:

POOS OEVELOPER·S REFERENCE

The BIOS - Drivers (cont.)

WRITE: DS.L = Character count (-1 = Line operation)
D7.W = Channel status
(A2) = Driver base + 4
(A3) = Memory buffer
(A4) = File slot
(AS) = SYSRAM
(A6) = Task TCB
(A 7) = Return address

POSITION: DSL = Character position
D7.W = Channel status
(A2) = Driver base + 4
(A4) = File slot
(AS) = SYSRAM
(A6) = Task TCB
(A 7) = Return address

Driver Generation

A PDOS driver is generated using conventional PDOS utilities. The procedure is
as follows:

•
•
•

•

Assemble the source file using MASM assembler.
Change the old driver file type to "SY" (if defined).
Use the MSYFL utility to create a binary image. If the section 0 length (E
tag) exceeds $OOFC, the driver must be installed before it may be used.
Set the new driver file type as "DR".

>MASM TTO:SR,#TTO:RB
68K PDOS Assembler R3.3
ERII, Copyright 1987
SRC=TTO:SR
OBJ=TTO:RB
LST=
ERR=
XRF=
END OF PASS 1
END OF PASS 2
>SA TTO,SY
>MSYFL TTO:RB, TTO
68K PDOS SY File Maker Utility

Source file = TTO:RB
Destination File = TTO

SECTION LENGTH = EOOOOOOOCA
Entry Address = 00000000

>SA TTO,DR
>CF LIST,TTO

3.3 -1/88 99

The BIOS - Drivers (cont.)

Restrictions

100

Note the following restrictions when adding an I/O driver to PDOS:

• Drivers must be written in self-relocating, address independent 68000 as
sembly language.

• The driver identification constant $A55B must be the first word of the
driver.

• Driver entry points must immediately follow the driver identification word.
• A driver MUST NOT make any console or me I/O system calls.
• A driver is exited via an "RTS" instruction. A "NE" status condition indi-

cates a driver error with data register DO passing the error number.
• Drivers execute in supervisor mode.
• Address registers A4, AS, A6, and A7 must be preserved.
• Drivers longer than 252 bytes must be installed before they may be used.
• Drivers to be ROMed must not use destructive code modification techni

ques. In addition, ROMable program sections should reside in section 0 or
14. RAM data should use section 1.

PDOS Output Driver Example

The following program is an example of a PDOS I/O driver. The output is to the
logical port number found in the TCB variable VIP$. This driver may be option
ally installed, but not ROMed.

3.3 - 1/88 PDOS DEVELOPER'S REFERENCE

o
o

If"'"
~vj

o
c

c

TTO:SR - 68K PDOS TTO DRIVER
PAGE: 1 14:44 17-Dec-86

2
3

*

68020 PDOS Assembler 10-Dec-86
FILE: TTO:SR,WINI #2

TTO:SR 10/02/87

The BIOS - Drivers (cont.)

**
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

66
6

6
6666
6 6
6 6

666

TTTTT TTTTT
T T
T T
T T
T T
T T
T T

888 K K
8 8 K K
8 8 K K

888 KK
8 8 K K
8 8 K K

888 K K

000 DDDD
o
o
o
o
o

o
o
o
o
o

D
D
D
D
D

000 DDDD

PPPP
P P
P P
PPPP
P
P
P

RRRR
D R R
D R R
D RRRR

DDDD
D D 0
D D 0
D D 0
D D 0
D D 0

DDDD

000

000

o s
o S

o
o
o S

SSS

sss

SSS

s

s
S

*
*
*
*
*
*
*
*
*

III V V EEEEE RRRR *
I V V E
I V V E
I V V EEEE
I
I

V V E

R R *
R R *
RRRR *
R R * D R R

D R R
R R III

v
V

ERR *
EEEEE R R *

*

*=**
22
23
24
25
26
27
28
29
30
31
32
33
34

0/00000000:

*
*
*=
*=
*=
*=
*=
*=
*=
*=
TTO
*=

Eyring Research Inst. Copyright 1983,1987.
ALL RIGHTS RESERVED.

Module Name: TTO
Author: Paul Roper

Revision History:

02/11/86 2.0
06/20/86 3.0
10/01/86 3.3
IDNT 3.0

Fixed XON/XOFF look before calling put
Fixed for upper Dl.L=output event#-printers
PDOS 3.3

68K PDOS TTO DRIVER

*=***
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 0/00000000:

* * This driver will output files to the terminal. It outputs
* the file data to the Unit 1 Port (UIP$) of the task that

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

opened it. It filters the output stream by ignoring LF,
converting Cr characters to Cr LF pairs, keeping an inde
pendent column counter and expanding Tab to column positions
(multiples of 8), using blanks. BS backspace characters
decrement the counter. Output events, XON/XOFF, and DTR
line checks are all supported.

D5.L Character count (-1 = Line)
D7.W Channel status
(A2) Driver base + 4
(A3) Memory buffer
(A4) File slot
(AS) SYSRAM
(A6) Task TCB
(A7) Return address

00001400 OPT
0000007C BURT EQU

PDOS,CRE
$007C ;BIOS UART TBL

*
0/00000000 SECTION 0

PDOS DEVELOPER'S REFERENCE 3.3 - 1/88 101

The BIOS - Drivers (cont.)

TTO:SR - 68K PDOS TTO DRIVER
PAGE: 2 14:44 17-Dec-86

1 0/00000000:A55B
2 0/00000002:600E
3 0/00000004:6050
4 0/00000006:6006
5 0/00000008:6050
6 0/0000000A:7046
7 010000000C:4E75
8
9 0/0000000E:7050

10 0/00000010:4E75
11
12 0/00000012:006C8000000C
13 0/00000018:422AOOEA
14 0/0000001C:4241
15 0/0000001E:122E0452
16 0/00000022:7650
17 0/00000024:D601
18 0/00000026:354300E8
19 0/0000002A:16351058
20 0/0000002E:154300EB
21 0/00000032:D643
22 0/00000034:2055
23 0/00000036:DOF0301E
24 0/0000003A:5448
25 0/0000003C:254800DO
26 0/00000040:E549
27 0100000042:41ED0158
28 0/00000046:2570100000EO
29 0/0000004C:E449
30 010000004E:48751048
31 0/00000052:255FOOE4
32
33 0/00000056:4240
34 0/00000058:4E75
35

36
37
38
39 0/0000005A:006C8000000C
40
41 0100000060:7000
42 0100000062:101B
43 0100000064:6604
44 0100000066:4A85
45 0/00000068:6BEC
46
47 010000006A:OCOOOO08
48 0/0000006E:6604
49 0100000070:532AOOEA
50
51 0/00000074:0COOOO09
52 0100000078:6614
53 010000007A:7020
54 010000007C:7207
55 0/0000007E:C22AOOEA
56 0100000082:5F01

102

68020 PDOS Assembler 10-Dec-86
FILE: TTO:SR,WINI #2

DTTO DC.W $A55B
DROP BRA. S OPEN
DRCL BRA. S CLOS
DRRD BRA.S READ
DRWR BRA.S WRIT
DRPS MOVEQ.L nO,DO

;DRIVER ID
2 OPEN
4 CLOSE
6 READ
8 WRITE

;10 POSITION ERROR
RTS

*
READ MOVEQ.L #80,DO

RTS
;ERROR 80, DRIVER ERROR

*
OPEN ORLW #$8000,12 (M)

CLR. B CCNT (A2)
CLR.W Dl

;FILE ALTERED
;CLEAR COUNTER
;D1=PORT #
;D1=PORT #

*
CLOS

*

MOVE.B U1P$(A6),D1
MOVEQ.L #80,D3

ADD.B D1,D3
MOVE.W D3,OUTE(A2) ;D3=OUTPUT EVENT II

MOVE. B UTYP. (A5, D1. W) , D3 ; D3=UART TYPE
MOVE.B D3,TYPE(A2) ;SAVE FOR FUTURE
ADD. w' D3, D3 ; POINT TO DSR
MOVEA.L (A5) ,AD
ADDA.W
AODQ.W
MOVE.L
LSL.W
LEA.L
MOVE.L

LSR.W
PEA.l
MOVE.L

CLR.W
RTS

BURT (AO, D3. W) ,AO
#2,AO ;AO=PUTC ENTRY
AO,PUTC(A2) ;SAVE PUTC ADR

#2,D1 ;SAVE BASE ADR
UART. (A5) ,AD
0(AO,D1.W),PADR(A2)

#2,D1 ;SAVE FLAGS
FeBT. (A5,D1.W) ;PUSH POINTER TO FLAGS
(A7) +, FADR (A2) ;SAVE PTR

DO ;RETURN .EQ.

* WRITE CHARACTERS

o
0'·,

'''i

.£"
1

\'----..,-

* 4<>
WRIT ORLW

*
#$8000,12(A4) ;N, ALTERED

WRIT02 MOVEQ.L #O,DO ;GET CHARACTER
MOVE.B (A3)+,DO ;DONE?

BNE.S WRIT04 ;N
TST.L D5 ;Y, WRITE LINE?

BMI.S CLOS ;Y, DONE

*
WRIT04 CMPLB #$08,DO ; BACKSPACE?

BNE.S WRIT06 ;N
SUBQ.B U,CCNT(A2) ;Y

*
WRIT06 CMPLB #$09,00 ;OK, TAB?

BNE.S WRIT08 ;N
MOVEQ.L#' ',00
MOVEQ. L #7, D1
AND.B CCNT (A2) , D1
SUBQ.B n, D1

3.3 - 1/88

;Y
;GET MASK
;GET COUNTER
;TAB BOUNDARY?

PDOS DEVELOPER'S REFERENCE

o
c

(-

The BIOS - Drivers (cont.)

TTO:SR - 68K poos TTO ORIVER 68020 POOS Assembler 10-0ec-86
FILE: TTO:SR,WINI #2 PAGE: 3 14:44 17-0ec-86

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

0/00000084:6708
0/00000086:534B
0/00000088:4A85
0/0000008A:6B02
0/0000008C:5285

0/0000008E:OCOOOOOA
0/00000092:6742
0/00000094:0COOOOOO
0/00000098:6608
0/0000009A:422AOOEA
0/0000009E:303COAOO

0/000000A2:0COOO020
0/000000A6:6004
0/000000A8:522AOOEA

0/000000AC:4A2AOOEB
0/000000BO:67A4
0/000000B2:222AOOE8
0/000000B6:206AOOE4
0/000000BA:1210
0/0000OOBC:08010000
0/000000CO:6704
0/000000C2:4AOI
0/000000C4:6BE6

0/000000C6:206AOOEO
0/000000CA:4EB900000000

00000000
0/00000000:660A
0/00000002:E048
0/00000004:6606

0/00000006:5385
0/00000008:6686

0/0000000A:4E75

*

BEQ.S WRIT08
SUBQ.W #1,A3
TST.L 05

BMI. S WRIT08
AODQ.L #1,05

;Y
;N, 00 AGAIN
;WRITE LINE?
;Y
;N, BACKUP

WRIT08 CMPI.B #$OA,OO ; LF?

*

BEQ.SWRITI6 ;Y, IGNORE
CMPI. B #$00, DO ; N, CR?

BNE.SWRITI0 ;N
CLR. B CCNT (A2)
MOVE.W #$OADO,OO

;Y, CLEAR CCNT
;CHANGE TO CRLF

WRITI0 CMPI.B #' ',00 ; CONTROL?
BLT. S WRIT12 ; Y

AOOQ.B n,CCNT(A2) ;N, UP COUNT

*
WRIT12 TST.B TYPE (A2) ;DEFINED TYPE?

*

BEQ. S CLOS
MOVE. L OUTE (A2) ,01

MOVEA. L FAOR (A2) ,AD
MOVE.B (AO) ,01

BTST.L #0,01
BEQ.S WRIT14

TST.B 01
BMI. S WRIT12

;N, SKIP IT
;GET OUT EFVENT TO D1
;GET PTR TO FLGS
;TEST FLAG EACH TIME
;ASAQ CHECK?
;N
;Y, AS STOP SET?
; Y, WAIT HERE

WRIT 14 MOVEA.L PADR(A2) ,AO ;UART BASE ADR
OC.W $4EB9,0,0 ;JSR PUTC.L

PUTC EQU *-DTTO ; RETRY?

*

BNE.S WRIT12 ;Y
LSR.W #8,00

BNE.S WRIT12
;N, 2 CHARS?
;Y

WRIT16 SUBQ.L #1,D5 ;DONE?
BNE.S WRIT02 ;N

*

*

BRA
RTS

CLOS2 ;Y
;Y, RETURN .EQ.

* DRIVER VARIABLES

*
O/OOOOOOOC: OOOOOOEO OFFSET *-OTTO+4

o OOOOOOEO:OOOOOOOO PAOR OC.L
000000E4:00000000 FADR OC.L o
000000E8:0000 OUTE OC.W
OOOOOOEA:OO CCNT OC.B o
OOOOOOEB:OO TYPE OC.B o
OOOOOOEC: EVEN

o

;BASE ADR
;UART FLAGS AODRESS
;OUTPUT EVENT #
;COLUMN COUNT
;PORT TYPE

*
*********************~*******************

* DRIVER LENGTH CHECK

*
OOOOOOEC: IFLT 256- (TYPE+l)

FAIL ** DRIVER LENGTH ERROR! **
ENDC

OOOOOOEC: 0/00000000 END OTTO

PDOS DEVELOPER'S REFERENCE 3.3 - 1/88 103

The BIOS - Drivers ~conq

I PDOS Input Driver Example

TTI:SR - 68K PDOS TTl DRIVER 68020 PDOS Assembler 10-Dec-86
PAGE: 1 14 :45 17-Dec-86 FILE: TTI:SR,WINI iI2

2 * TTI:SR 10/02/87
3

4 * *
5 * 66 888 K K PPPP DDDD 000 SSS *
6 * 6 8 8 K K P P D D 0 0 S S *
7 * 6 8 8 K K P P D D 0 0 S *
8 * 6666 888 KK PPPP D D 0 0 SSS *
9 * 6 6 8 8 K K P D D 0 0 S *

10 * 6 6 8 8 K K P D D 0 0 S S *
11 * 666 888 K K P DDDD 000 SSS *
12 * *
13 * TTTTT TTTTT III DDDD RRRR III V V EEEEE RRRR *
14 * T T I D D R R I V V E R R *
15 * T T I D D R R I V V E R R *
16 * T T I D D RRRR I V V EEEE RRRR *
17 * T T I D D R R I V V E R R *
18 * T T I D D R R I V E R R *
19 * T T III DDDD R R III V EEEEE R R *
20 * *
21
*=***
22
23
24
25
26
27
28
29
30
31 0/00000000:
32
33

* Eyring Research Inst. Copyright 1983,1987.
* ALL RIGHTS RESERVED.
*=
*=
*=
*=
*=
*=
*=
TTl
*=

Module Name: TTl
Author: Richard Adams

Revision History:

10/03/86 3.0
10/02/87 3.3
IDNT 3.3

Initial release
PDOS 3.3
68K PDOS TTl DRIVER

*=***
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

104

0/00000000:
0/00000000:A55B
0/00000002:600E

*
* This driver will input files from the terminal. It gets
* characters from the input port (PRT$) of the task that opened it,
* stores them in the buffer (A3), and echoes them to active ouput
* port(s). It supports both XRLF read line and XRBF read block
* primitives. OPEN call simply makes sure that there is an input
* port assigned to the task. Close does nothing. EOF errors are
* returned, along with the byte count, if an escape is entered.

*
* D5.L
* D7.w
* (A2)
* (A3)
* (M)
* (A5)
* (A6)
* (A7)

Character count (-1 = Line)
Channel status
Driver base + 4
Memory buffer
File slot
SYSRAM
Task TCB
Return address

*
00001000 OPT PDOS

*
0/00000000 SECTION o

DTTI DC. W $A55B
DROP BRA. S OPEN

3.3 - 1/88

;DRIVER ID
; 2 OPEN

PDOS DEVELOPER'S REFERENCE

G

C

;r"""
~,,;;.'.

c
c

("

(

(

TTI:SR - 68K PDOS TTl DRIVER
PAGE: 2 14:45 17-Dec-86

1 0/00000004:6012
2 0/00000006:6014
3 0/00000008:6004
4 0/0000000A:7046
5 0/0000000C:4E75
6
7 0/0000000E:7050
8 0/00000010:4E75
9

10 0/00000012:4A2E044F
11 0/00000016:67F6
12
13 0/00000018:4240
14 0/0000001A:4E75
15
16
17
18
19 0/0000001C:7200
20
21
22
23 0/000000lE:A07A
24 0/00000020:6D1E
25 0/00000022:4A85
26 0/00000024:6AOA
27 0/00000026:0COOOOOD
28 0/0000002A:6604
29 O/0000002C:4213
30 0/0000002E:60E8
31
32 0/00000030:A086
33 0/00000032:16CO
34 0/00000034:5281
35 0/00000036:4A85
36 0/00000038:6BE4
37 0/0000003A:B285
38 0/0000003C:6DEO
39 0/0000003E:60D8
40
41 0/00000040:2F410010
42 0/00000044:7038
43 0/00000046:4E75
44
45
46
47
48 0/00000048:
49
50
51
52 0/00000048: 0/00000000

POOS [)EVElOPER'SREFERENCE

The BIOS - Drivers (cont.)

68020 PDOS Assembler 10-Dec-86
FILE: TTI:SR,WINI #2

DRCL BRA. S CLOS
DRRD BRA. S READ
DRWR BRA. S WRIT
DRPS MOVEQ. L #70, DO

RTS
*
WRIT MOVEQ. L #80, DO

RTS
*
OPEN TST.B PRT$ (A6)

BEQ. S WRIT
*
CLOS CLR.W DO

RTS
*

4 CLOSE
6 READ
8 WRITE

;10 POSITION ERROR

;ERROR 80, DRIVER ERROR

;IS THERE INPUT PORT?
;N, SEND ERROR 80

;RETURN .EQ.

*
*

READ CHARACTERS, BLOCK OR LINE

READ MOVEQ.L

*
#0,D1

* DO LINE/BLOCK READ

*
LINE XGCR

*

BLT.S ESC
TST.L D5

BPL.S @010
CMPI. B #13, DO

BNE. S @010
CLR.B (A3)
BRA CLOS

@010 XPCC

*

MOVE.B DO, (A3) +
ADDQ.L #1,D1
TST.L D5

BMI.S LINE
CMP.L D5,D1

BLT.S LINE
BRA.S CLOS

;GET COUNT, EOF FOR ESCAPE

;GET A CHARACTER
;ESCAPE OUT
;LINE?
;N, SKIP Cr CHECK
;Y, CR?
;N, ECHO AND STORE
;Y, TERMINATE LINE
;GET BAT OUT

;ECHO TO SCREEN
;SAVE IN BUFFER
;UP COUNT
;LINE?
;Y, SKIP COUNT CHECK
;N, DONE BLOCK COUNT?
;N, GET ANOTHER
;Y, RETURN .EQ.

ESC MOVE.L D1,3*4+4 (A7) ;RETURN COUNT IN OLD D3
MOVEQ.L #56,DO ;EOF ERROR RETURN

RTS

*

* DRIVER LENGTH CHECK

*

*

IFLT
FAIL
ENDC

END

256- (*-DTTI+4)
** DRIVER LENGTH ERROR! **

DTTI

3.3 - 1/88 105

o
The BIOS - Drivers (cont.)

Installable Device Routines and Utilities
o

106

Installable device routines and utilities include UART service routines, disk ser
vice routines, file I/O drivers and utilities. These four service routine types may
all be installed into the operating system via the POOS INSTALL utility which
is fully described in the Monitor, Editor, Utilities manual. You should also
reference LINKIN, a system facility which combines installable routines with
the PDOS operating system or for ROM.

Programming Conventions

Installable code should use the following conventions:

• Use proper sections.
Section 0 UtilitylIO driver ROMable application code
Section 1 RAM data
Sections 2-13 User defmed (may be ROM, or RAM)
Section 14 DisklUARTROMablecode
Section 15 Reserved for PDOS

All data areas should be located in Section 1. A common programming prac
tice under early POOS versions was to locate the data area after the
program space via an OFFSET assembler directive. This should not be
done on installed routines.

• Make the code shareable.
Utilities should be re-entrant and shareable. if'"

• Use the PDOS kernel dispatch table. V
The kernel dispatch table should be used by disk and UART service
routines to set up interrupt vectors and other kernel services on the BIOS
level.

UART Service Routines

PDOS can handle up to eight UART types. Each type has a table of short
branches to the various subroutines for get, put, baud, etc. A pointer to the
BRA.S tables for each UART type is located in the BIOS table. If a certain
UART type is not used in a system, then its pointer addresses a NULL UART
table of routines located in MBIOS:SR, whichretum .NE. status for all calls. To
add another UART type, the INSTALL facility frrst loads the object code into
memory, preserves that memory, calls the initialization routine for the card,
reports the number of cards found, and then alters the BIOS table pointer to ad
dress the new DSR table.

The UART type code can be written in either assembly or C, and must contain a
special structure and initialization code. The objectmust contain an entry tag
that points to the DSR table, or if the fIle is an "SY" type, the DSR table must be
at the very beginning of the code. The DSR table has the same entries as the
standard POOS UART type, with the following additions. The data word just
after the DSR table must contain the characters ''UO'' (U zero), the word just
after that must have a BRA.S INIT branch to the card initialize routine. Also, IN
STALL assumes that just after the initialize call there is a string, null terminated,
which describes the UART type:

3.3 - 1188 PDOS DEVELOPER'S REFERENCE

o
c

(.

PDOS DEVELOPER'S REFERENCE

The BIOS - Drivers (cont.)

**
* MAIN DISPATCH TABLE:

*
ACMESIO BRA.S UnDG ;GET A CHARACTER

BRA.S UnDP ;PUT A CHARACTER
BRA.S UnDB ;BAUD THE PORT
BRA.S UnDR ;RESET THE PORT
BRA.S UnDS ;READ PORT STATUS
BRA.S UnHW ;HIGH WATER
BRA.S UnLW ;LOW WATER
DC.W ' UO' ;INSTALL ID
BRA.S UnDI ;INIT
DC.B 'ACME SIO',O ;IDENT MESSAGE
EVEN

*
END ACMESIO

The INIT call is made by INSTALL in supervisor mode. It should count the
number of cards using bus errors, perform anyone-time initialization of the
cards or chips, setup UART interrupt vectors, and return the number of cards
found in the system. INIT has the following inputs and outputs:

**
* INSTALL DRIVER:
* IN: (AI) = KI$BEGN > KERNEL DISPATCH TABLE
* (A2) 0 or NEW BASE ADDR
* OUT: DO.B # of cards found

*
* PRESERVE DI/A4

Address register Al points to the PDOS kernel dispatch table. This facilitates
calling the KI$SVEC subroutine to either set the bus error vector when counting
the number of cards, or to set the interrupt service routines of the UARTs. The
method of calling KI$SVEC is as follows:

MOVEQ.L #2,DO
LEA.L @020(PC),AO
JSR $20 (AI)
MOVE.L A7,D2

;SET A NEW BUS ERROR ROUTINE
;CONTINUE ADDR
;SET NEW BUS ERROR (AO= OLD BSER)
;SAVE OLD STACK

The UART code should contain no PDOS primitives so that it can be linked in
at xxDOS:GEN time, if necessary. If you need to write a new installable UART
file, carefully examine one of the sample files. Once installed, new UART types
cannot be deleted, but you must reboot the system.

3.3 - 1/88 107

The BIOS - Drivers (cont.)

108

1/0 Drivers

POOS maintains a linked list of installed I/O drivers, with the pointer to the frrst
entry in the SYRAM variable DRVL.(AS). Each entry in the list consists of a
long word address to the next entry, a 16-bit word containing the size of the
driver in number ofkbytes, the 32-byte directory entry of the original driver file,
followed by the code portion of the driver, without the sector links at the begin
ning. A zero long word in the pointer to the next list entry indicates the end of
the list. A zero in the size word tells INST AU. that the driver was linked at
OOSGEN time and cannot be removed.

I/O drivers have been described previously.

Disk Service Routines

POOS communicates with mass storage drives through four routines:

• Initialize (W$XDIT) which is only called at cold startup,
• Disk Off (W$XDOF) which is called once a second while POOS is running,
• Read Sector (W$XRSE) and
• Write Sector (W$XWSE).

The routines are accessed by POOS through four pointers in the BIOS table.

o
o

To add another disk controller, the INST AU. facility first loads the object code
into memory, preserves that memory, calls the initialization routine for the disk 0
controller, reports the number of cards found, and then alters the BIOS table
pointers for W$XDIT, W$XRSE, and W$XWSE to address the new routines
contained in the added code. These installable disk files have a specific structure
that helps INST AU. to manage them. The disk off routine frrst performs the
timer functions associated with its card, and then jumps to the former BIOS
routine address. The read and write sector routines frrst check to see whether or
not the disk number of the call corresponds to one of theirs. If so, then the opera-
tion is performed on the new card followed by an RTS. If not, then the new
routine simply jumps to the address of the former BIOS routine. The following rC"",
excerpt from the sample disk me WSAMPLE:SR shows the required caIl StruC- IV
ture:

o
3.3 -1/88 PDes DEVELOPER'S REFERENCE o

I'i'

c'
c PDOS DEVELOPER'S REFERENCE

The BIOS - Drivers (cont.)

ENTRY DC.W 'WO' ; IDENTIFIER
BRA.S WINIT ;INIT DISK
BSR.L XDOF ;DISK OFF
JMP $O.L ;OLD DISK OFF ROUTINE
BSR.L XREAD ;READ SECTOR
JMP $O.L
BSR.L XWRIT ;WRITE SECTOR
JMP $O.L
DC.B 'w Sample',O ;ID MESSAGE
EVEN

*

*
*
*
*
*
*

INIT DISK
IN: (All = K$lBEGN

(A21 optional card base address
D7 = optional disk #

OUT: DO = # of cards installed

* This code is executed once at installation time.

*
WINIT XPMC MESl ;OUTPUT INIT MESSAGE

END ENTRY

See the description of BIOSW for further infonnation about device service
routines.

Shared Utility

PDOS maintains a linked list of installed utilities, with the pointer to the first
entry in the SYRAM variable UTLL.(AS). Each entry in the list consists of a
long word address to the next entry, a 16-bit word containing the size of the
utility in number ofkbytes, the 32-byte directory entry of the original file, fol
lowed by the code portion of the utility. A zero long word in the pointer to the
next list entry indicates the end of the list. A zero in the size word infonns IN
STALL that the utility was linked at DOSGEN time and cannot be removed.

To install a shareable utility, set the first parameter to "X" and the second
parameter <filename> to the name of the "SY" or "OB" type file that contains
the utility. Any size file can be used. Utilities which have been altered so that
they are installable have the characters "XO" (zero) as their second word:

START BRA.S
DC.W
DC.B
EVEN

@010

@010
, xO'
'<message>',O

If the utility doesn't have the "XO" , INSTALL prints a warning message, but
still installs the file into the list. This list is searched by the PDOS Monitor just
before it chains to the command with XCHF. Disk numbers on the file are ig
nored so that any reference to the file name invokes the installed version of the
utility. Utilities must be re-entrant.

3.3 -1/88 109

The BIOS (cont.)

Interrupts

XREF

*
ISR MOVE.L

MOVE.L
BSET
MOVEA.L
XRTE

110

EVTB.

Interrupt service routines for new cards in a POOS system are usually added to
the xxBIOS:SR me, with a new entry in the BINTB table. Some general rules
are:

•

•

•
•
•

•
•
•

Be sure that the interrupt acknowledge daisy-chain is complete across the
back plane (for VMEbus only).
If response time is critical, select an interrupt level that is higher than the
system clock interrupt. If it is really critical, select a level higher than the
UARTs (you may drop characters).
Save all registers that you use upon entry, and restore them before exiting.
Do not assume any registers are set (e.g. AS, A6) or passed from a task.
The system stack is not infinite. You may be interrupting during another
task or during the SWAP routine.
Avoid wait loops in ISRs.
Avoid using POOS primitives in ISRs.
Preferably just set an event and get out with either an RTE instruction or an
XRTE primitive.

The best way to handle device interrupts from a task is to set the device to #lter
rupt and then suspend the task on both a timeout local event and the event
(EVNT) associated with the ISR. Be sure the EVNT is reset before suspending
on it or you will come right back, before the interrupt. The ISR should set
EVNT directly in SYRAM with code similar to the following:

AS,-(A7) ;SAVE REG
B$SRAM,AS ;GET SYRAM POINTER

#-EVNT,EVNT/8+EVTB. (AS) ;SET EVENT IN SYRAM TABLE
(A7) +,AS

;RETURN AND SWAP TO TASK

The tilde (-) on EVNT simply converts POOS event numbers (where 0 is most
significant) into 68000 bit numbers (where 7 is most significant). Dividing
EVNT by 8 yields the byte index of event EVNT in the event bit table of
SYRAM. The XRTE primitive executes an RTE instrucion, after setting a flag
for the POOS swap routine to execute a swap as soon as possible.

If faster interrupt response is needed or if some immediate calculation of data is
required, then you need to insert more code at the ISR itself. Remember not to
block interrupts for too long, unless you must.

3.3 -1188 PDOS DEVELOPER'S REFERENCE

o
o

,~
I I
~'

o

o
o

(:

(~

C

C

Ci .'

C

PDOS Error Definitions

PDOS Error Summary

PDOS DEVELOPER'S REFERENCE

Only PDOS system errors (50-99) are discussed here. Assembler errors (300-
399) and linker errors (500-599) are discussed in their respective manuals. The
BIOS errors can be found in the Installation and Systems Management guide for
your hardware system. Language errors are discussed in the reference manual
for each specific language. Errors are returned through data register DO on all as
sembly primitives.

50 Bad File Name
51 File Already Defined
52 File Not Open
53 File Not Defined
54 Bad File Attribute
55 Too Few Contiguous
56 End of File
57 File Directory Full
58 File Writ/Del Prot
59 Bad File Slot
60 File Space Full
61 File Already Open
62 Bad Message Ptr Call
63 Bad Object Tag
64
65 Not Executable
66 Bad Port/Baud Rate
67 Bad Parameter
68 Not PDOS Disk
69 Out of File Slots
70 Position> EOF
71 AC File Nesting> 2
72 Too Many Tasks
73 Not Enough Memory
74 Non-existent Task
75 File Locked
76
77 Not Memory Resident
78 Msg Buffer Full
79 Bad Memory Address
80 Bad Driver Call
81
82
83 Delay Queue Full
84
85 Task Abort
86 Suspend on Port 0
87 Exception
88
89

3.3 -1188 111

Errors (cont.)

PDOS Error Ranges

PDOS Error Numbers

ERROR 50

ERROR 51

ERROR 52

ERROR 53

112

90
91
92
93
94
95
96
97
98
99

illegal K2 module primitive
illegal K3 module primitive
illegal F module primitive
illegal W module primitive
illegal N module primitive
illegal D module primitive
illegal M module primitive
ill~gal B module primitive

1- 49 BASIC error numbers
50- 99 PDOS system error numbers

100-200 BIOS errol' numbers (disk:)
300-399MASM error numkrs :

400-499 C error numbers ;,.
5OO-599QLINK error numbers
600-699 Pascal error numbers .

Bad File Name. Valid me names consist of an alphabetic character followed by
up to 7 alpha-numeric characters. An optional extension and disk: number may
follow. An extension consists of a colon followed by 1 to 3 characters. A disk:
number is delineated by a slash and a number ranging from 0 to 127.

x>DKDKDKDKF
PDOS ERR 50 Bad File Name
x>

File Already Defmed. Each me name is unique to a disk: me directory. There is
one directory per disk: number.

x>DF FILEl
x>DF FILE1
PDOS ERR 51 File Already Defined
x>

File Not Open. An attempt to access a me which has not been opened, results in
error 52.

x>EX
FILE 1,1;3,I
*ERROR 52 File Not Open

File Not Defmed. If the me name does not exist in the disk: directory, an error 53
occurs.

x>SF FILE2
PDOS ERR 53 File Not Defined
x>

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o
o

o

o
c

ERROR 54

ERROR 55

ERROR 56

(

ERROR 57

(

ERROR 58

ERROR 59

ERROR 60

c
c PDOS DEVELOPER'S REFERENCE

Errors (cont.)

Bad File Attribute. Valid fIle types are AC, BN, OB, SY, BX, EX, TX, DR, *,
and **. All others result in error.

x>SA FILE1,TR
PDOS ERR 54 Bad File Attribute
x>

Too Few Contiguous. Error 55 results from attempting to define a contiguous
fIle on a disk unit which does not have enough room or is fragmented so that
there is not a big enough contiguous block of sectors.

x>DF FILE2,10000
PDOS ERR 55 Too Few Contiguous
x>

End of File. Error 56 results from an attempt to read past the end of file index of
a fIle.

x>EX
*READY
OPEN "#PAUL",F
FILE 1,F;3,I
*ERROR 56 End of File

File Directory Full. The file directory size is set when the file is initialized. Any
attempt to define another fIle after the directory has been filled results in error
57.

x>DF FILE3
PDOS ERR 57 File Directory Full
x>

File Write!Delete Protected. An attempt to delete a file with a delete or write
protect flag results in error 58.

x>SA TEMP, *
x>DL TEMP
PDOS ERR 58 File Writ/Del Prot
x>

Bad File Slot. A valid fIle slot number is returned from PDOS on all open com
mands. A file slot consists of the the disk number in the left byte and the slot
index in the right byte.

x>EX
*READY
FILE 1,F;3,I
*ERROR 59 Bad File Slot

File Space Full. An attempt to extend a file or define a file after the disk space is
fIlled results in error 60.

x>CF TEMP,LIST
PDOS ERR 60 File Space Full
x>

3.3 - 1/88 113

Errors (cont.)

ERROR 61

ERROR 62

ERROR 63

ERROR 64

ERROR 65

ERROR 66

ERROR 67

ERROR 68

114

File Already Open. A fIle can be opened only once in sequential (XSOP) and
random (XROP) modes. Read only open (XRoo) and shared random open
(XNOP) can be executed more than once on the same fIle.

x>EX
*REAOY
OPEN "LIST",F
OPEN "LIST",F
*ERROR 61 File Already Open

Bad Message Pointer Call.

x>ER 62
PDOS ERR 62 Bad Message Ptr Call
x>

Bad Object Tag. Only hex object tag characters are legal.

x>SA TEST:SR,OB
x>TEST:SR
POOS ERR 63 Obj err
x>

Not Executable. Only section 0 is executable under PDOS.

IX>TEMP
POOS ERR 65 Not Executable

Bad Port/Baud Rate. Only numbers 1 through 15 are legal ports. Valid baud
rates are 110,300,600, 1200,2400,4800,9600, and 19200. The baud rate of
38400 is also available on some systems.

x>BP 2,1250
POOS ERR 66 Bad Port/Baud Rate
x>BP 20,9600
POOS ERR 66 Bad Port/Baud Rate
x>

Bad Parameter. Most monitor commands check parameters for valid ranges and
types.

x>LS 1
PDOS ERR 67 Bad Parameter
x>

Not a POOS Disk. An initialized POOS disk has the constant >A55A at location
>0028 of the header sector (sector 0). If the constant is not found on a disk read,
error 68 results.

x>LS /2
POOS ERR 68 Not POOS Oisk
x>

3.3 -1188 PDOS DEVELOPER'S REFERENCE

o
o

,,,,-,,,
V

c
c

(
ERROR 69

ERROR 70

ERROR 71

ERROR 72

ERROR 73

(

ERROR 74

ERROR 75

ERROR 76

ERROR 77

('~.'
/ PDOS DEVELOPER'S REFERENCE

Errors (cont.)

Out of File Slots. A maximum of 32 files can be open at a time. These cor
respond to the 32 file slots.

x>CF TEMP, TEMP 1
POOS ERR 69 Out of File Slots
x>

Position » Error. Error 70 results from a position command beyond the end of
file index.

x>EX
*REAOY
OPEN "#PAUL",F
FILE 1,F;4,0
*ERROR 70 Position » EOF

AC File Nesting » 2. Error 71 results for nesting procedure files too deep.

Too Many Tasks. The task list is defined when the PDOS system is generated.

x>@CF LIST,$TTA
POOS ERR 72 Too Many Tasks
x>

Not Enough Memory. An attempt to create a task with more memory than the
current task or available memory in the system memory bit maps results in error
73.

CT ,40,,1
POOS ERR 73 Not Enough Memory
>

Non-existent Task. Error 74 occurs when referencing either a task not in the task
list or task O.

x>KT 5
POOS ERR 74 Non-existent Task
x>

File Locked. Once a file has been locked (XLKF), it cannot be accessed until un
locked (XULF).

x>CF FOATA,TEMP
POOS ERR 75 File Locked
x>

Not Memory Resident IfPDOS BASIC is not resident in the system, all "BX"
and "EX" files will not execute. Also, the interpreter cannot be entered with the
"EX" command.

~OOS ERR 77 Not Memory Resident
IX>EX

3.3 -1/88 115

Errors (cont.)

116

ERROR 78

ERROR 79

ERROR 80

ERROR 81

ERROR 82

ERROR 83

ERROR 84

ERROR 85

ERROR 86

ERROR 87

ERROR 88

ERROR 89

ERROR 90

ERROR 91

ERROR 92

ERROR 93

ERROR 94

ERROR 95

Message Buffer Full. There are 32 message buffers in the POOS system. Too
many messages results in error 78.

x>SM 4,ANOTHER MESSAGE
PDOS ERR 78 Msg Buffer Full
x>

Bad Memory Address. This error results from a XFUM primitive with invalid ar
guments.

Bad Driver. Driver dependent.

Delay Queue Full. Too many delayed events have been requested.

Task Abort. If a task is aborted by the scheduler, error 85 results.

Suspend on Port O. A task has made a call to get character without any pos
sibility of getting a character.

Exception.

Illegal K2 Module Primitive. Run module error where a kernel #2 primitive has
been executed and the module was not generated in the POOS system.

Illegal K3 Module Primitive. Run module error where a kernel #3 primitive has
been executed and the module was not generated in the POOS system.

Illegal F Module Primitive. Run module error where a file manager primitive
has been executed and the module was not generated in the POOS system.

Illegal W Module Primitive. Run module error where a R/W module primitive
has been executed and the module was not generated in the POOS system.

Illegal N Module Primitive. Run module error where a floating point module
primitive has been executed and the module was not generated in the POOS sys
tem.

Illegal D Module Primitive. Run module error where a debugger module primi
tive has been executed and the module was not generated in the POOS system.

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

Ij

o
o

o

c

o
o

"''11

ERROR 96

ERROR 97

c

c' PDas DEVELOPER'S REFERENCE

Errors (cont.)

Illegal M Module Primitive. Run module error where a monitor module primi
tive has been executed and the module was not generated in the PDOS system.

Illegal B Module Primitive. Run module error where a BASIC module primitive
has been executed and the module was not generated in the PDOS system.

3.3 -1/88 117

o
o

o

o
118 3.3 -1188 PDOS DEVELOPER'S REFERENCE o

Index (cont.)

Buffer

BX

c

C

character out B. in TCB, 14
command line B. in TCB, 12
in TCB,12
input B. size, 42
insert character to B., 46
monitor parameter B. in TCB, 13
monitor work B. in TCB, 12
number of channel B., 42
number of input B., 42
system work B. in TCB, 14
user B. in TCB, 12

file type, 64

accessing TCB with C, 10
Card

install C., 86
Channel

number of C. buffers, 42
Character

break C., 31
external port C. input, 45
I/O, 49
input, 49
insert C. to buffer, 46
output, 51

CHCK
instruction trap, 15

Checksum

Clear

Clock

system C., 36

buffer, 81
screen, 80
screen characters, 20
screen routine, 70

adjust constant, 34
battery C. address, 82
battery C. type, 82
interrupt, 44
system C., 31
system C. interrupt acknowledge, 69

Close
file routine, 71

Cold
startup subroutines, 68

Column
output C. counter, 24

Index-2

Command
line control keys, 81
line delimiter, 23
line pointer, 16
line routine, 71

Common
BIOS module, 77

Communication
task,54

Contiguous
file type, 65

Control
C count, 37
character configure, 31
keys used in command line, 81

Controller
initialize disk C., 87

Counter
32-bitC., 30
fme C., 30
output column C., 24

Create
task routine, 69

Cursor

D

Data

position, 40, 80
position C. characters in TCB, 21
position C. routine, 70

drive D. block, 91-92
stomge,94

DDB,91-92
Debugger

initialize,46
trace vector, 15

Delay
number D. events, 42

Delete
character under cursor, 81
left,81
protect flags, 65

Delimiter
command line D., 81

Device

3.3 - 1/88

install D. routines, 106
read/write D. service routines, 86
service routines, 83, 106
service routines for UARTs, 33
support,4

PDOS DEVELOPER'S REFERENCE

o
o

o

o
c

,"" t
(, Index (cant.)

Directory Error
flag, 80 address in TCB, 23
flag in SYRAM, 30 definitions, 112
level in TCB, 19 exception handling, 56
levels, 63 floating point E. processor address, 16
number ofD. entries, 80 last E. number in TCB, 18
on disk, 94 message table, 90

Disk PDOS E.listing, 111
default disk number switch, 80 translate E. message, 47
definition, 66 types, 57
file D. symbol, 81 user system E. entry, 45
layout, 94 Event, 53
numbering, 93 ack output E., 46
partitions, 92 - 93 E. 128 Oocal), 33
RAM D. address, 29 for task handling, 3 (. RAM D. number, 29 number of delayed E., 42
RAM D. size, 29 storage in SYRAM, 33
read/write, 88 toggle E. number, 81
service routines, 108 variables, 80
system D. path in TCB, 22 EX

Dispatch file type, 64
table, 43 Exception
table with drivers, 107 handling, 56

DR processing, 4

(- file type, 64 set/read E. vector, 46
Drive vector table, 71

data block, 91-92 Exit
parameters, 91 set in TCB, 22

Driver Expansion
entry points, 97 file E. count in TCB, 19
filet ype, 64 Extension
generating a D., 99 file E., 81
I/O, 97,108 External
input D. example, 104 port character input, 45

(- output D. example, 100
registers, 98 F
restrictions, 100

DSR,83,86 File
DTR attributes, 64

enable, 31 close F. routine, 71
expand count, 40

E expansion count, 19
management, 60

Echo manager, 4
flag in TCB, 24 name conventions, 62

End number ofF. slots, 42
user memory in TCB, 16 spool F. !D, 18

Entry storage, 60
address in TCB, 17 Fixed

offset PDOS initialized, 30
offset BIOSinitialized, 28

C' " .. y

C' PDOS DEVELOPER'S REFERENCE 3.3 - 1/88 Index-3

Index (cont.)

Flag
echo, 24
memory modified F., 25
task F. in TCB, 18

Floating
point accumulator, 15
point error processor address, 16
point save flag, 15

Format
utility, 93

FORTRAN
accessing TCB with F., 10

G

Get
character, 1-84

H

Handshaking
enable, 31
hardware, 32

Header

High

I/O

ID

sector on disk, 94

signal H. water, 85

character, 49
drivers, 97, 108
redirect, 40
stream, 38

assigned file I. in TCB, 17
Initialization

subroutines, 68
Initialize

Input

cold startup. 89
debugger, 46
disk controllers. 87
RAM disk, 70. 80

assigned I. in TCB, 17
buffer size, 42
character, 49
number of I. buffers, 42
port allocation, 31
port number in TCB, 25

Insert
character to buffer. 46

Index-4

Install
device routines, 106

Internal
memory pointer, 17

Interrupt
clock I., 44
device I., 11 0
disk controllers, 90
handling, 4
inputs from UARTs, 86
mask,35
parallel port I., 86
swapper,47
system clock I. acknowledge, 69

Intertask
communication, 54

K

Kernel,5

Key

Kill

l

Last

LED

Level

List

cold start, 44
description ofPDOS K., 3
subroutine, 89
subroutines, 69

notation, 2

self pointer, 14
task routine, 69

error number in TCB, 18

blink L. routine, 69

default level switch, 80
directory L., 63
directory L. in TCB, 19
fIle L.. 81

taskL.,5
Load

PDOS L. address, 82
Lock

task flag, 35
Low

signal L. water, 85

3.3 - 1188 PDOS DEVELOPER'S REFERENCE

o
o

,('~~

V

,f"'"

\~

o
c

(

(~~ Index (cont.)

M Notations
used in manual, 2

MABORT
inSYRAM,37

Mail
array address, 29 0
array size, 80

Manual OB
conventions, 2 flle type, 64
organization, 1 Object

Map flletype, 64
system load M. register, 70 Offset

Mapping fixed 0., 28, 30
bad track, 92 task queue O. flag, 35

(~"
MBIOS, 67,77 variable 0., 41

switches, 79 Output
MC68000 acknowledge O. event, 46

reference books for M., 1 character, 51
MC68000/10 directing O. to unit 2, 10

flag in SYRAM, 30 ports,27
Memory spool 0., 26

allocation, 5 unit mask, 27
allocation in tasks, 8
bit map base address, 81 P

() end of user M. in TCB, 16
highest M. address switch, 79 Parameter
internal M. pointer in TCB, 17 notation, 2
map bias,41 system independent drive P., 91
maximum M. size, 42 Parity
modified flag in TCB, 25 enable even P., 31
requirements for PDOS, 4 Partition

Message define disk P., 93
communication, 54 disk P. on drive header, 92
error M. table, 90 Pascal

C
number of task M., 41 accessing TCB with P., 10
task M. size, 42 Pointer

Monitor commandlineP.,16
prompt symbol, 82 internal memory P. in TCB, 17

Move kill selfP., 14
left, 81 system frame P., 14
right, 81 task list P. in SYRAM, 34

MSYRAM task stack P., 14
switches, 41 user TCB P. in SYRAM, 34

Multi-tasking, 7
Multi-user, 8

N

Network
support, 36

Node

C letter, 82

C PDOS DEVELOPER'S REFERENCE 3.3 -1188 Index-5

Index (cont.)

Port
all P.looker, 45
baudP.,85
configure, 31
definition, 66
external P. character input, 45
input P. allocation, 31
outputP. numbers, 27
parallel P. interrupt, 86
rate table, 33
read P. status, 85
resetP.,85
select input P., 25
virtual P. IDs, 37Position
cursor, 80
cursor characters, 21
cursor P., 40
cursor routine, 70

Priority
high P. tasks, 56
task, 35

Processor
identification, 40
type flag in SYRAM, 30

Program
counter, 56

Prompt
monitor P. routine, 82

Protect
system P. routine, 70

Put
character, 84

Q

Queue
taskQ., 5

R

R$TASK,68
RAM

disk address, 29
disk address select, 80
disk initialization, 80
disk number, 29
disk size, 29
global R address, 82
initialize R disk, 70
select R disk, 80
select R disk size, 80
sizing, 69

Index-6

Random
fIle access, 61

Rate
baud R table, 33

Re-schedule
task,36

Read
exception vector, 46
sector routine, -88

Read/write
disk DSRs, 86
disk routines, 88

Recall
last line, 81

Record
using R in TCB, 11

Redirect
1/0,40

Register
instruction, 57
status, 57
using driver R, 98

Reset
port, 85

Restore
from stack routine, 70

Run Module
start of SYRAM, 30

s

Save
flag for 68881 support, 15
on stack routine, 70

Screen
clearS., 80
clear S. routine, 70

Sector
allocation, 61
header S., 94

Semaphore
for task handling, 3

Sequential
fIle access, 61

Service
system, 48

Set
exception vector, 46

Slot
number of fIle S., 42

Spawn
task number in SYRAM, 35

3.3 -1/88 PDOS DEVELOPER'S REFERENCE

o

o

o
o

{

C Index (cont.)

Spool Task (cont.)
fJleID,18 description of PDOS T., 5
task number, 36 flags in TCB, 18
unit mask, 26 generation, 7

Stack handling in PDOS, 3
restore from S. routine, 70 high priority, 56
save on S. routine, 70 IDinTCB,23
taskPOOS S., 14 kill T. routine, 69
task S. pointer, 14 list, 5

Start list pointer, 34
auto S. switch, 79 lock flag, 35
kernel cold S., 44Startup message size, 42
cold S. initialize, 89 multiple T., 7
module for C, 10 number, 35

C· module for Pascal, 10 number of T. messages, 41
subroutines, 68 PDOS stack, 14
task S. table, 68 priority, 35

Status queue, 5
of processor at exception, 57 queue offset flag, 35

Storage re-schedule flag, 36
fJleS.,60 scheduling, 4 - 5

Stream spawning new T., 8
I/O, 38 spooler T. number, 36

Suspend stack pointer, 14

C~
task, 55 startup table, 68

_/
Swap states, 6

interrupts, 47 suspension, 55
task S.,44 swap, 44

Switch table size, 41
MBIOS S., 79 userT. time, 35
MSYRAM S., 41 TCB,8

SY user T. pointer in SYRAM, 34
fJle type, 64 Terminal

SYRAM,28 ANSI T. support, 79

---- configuration, 41 descriptors, 21

L' System sequence handling in TCB, 20
disk path in TCB, 22 Text
fJle type, 64 fJle,64
parameters (SYRAM), 28 Tics
services, 48 per second variable, 80
user S. error entry, 45 Time ~

stamping on fJles, 65
T taskT.,35

Timer
Task events, 34

auto-create T. size, 81 Trace
batch T. number, 36 vector, 15
beginning of T. in TCB, 27 Track
communication, 54 bad T. mapping, 92
control block, 8 Translate
create T. routine, 69 error message, 47

0 CT T. size, 81
default T. time, 81

PDOS DEVELOPER'S REFERENCE 3.3 -1/88 Inclex-7

.~
~

0'
Index (cont.) 0
Trap

CHCK instruction, 15
user T. vectors in TCB, 15 Vector
vector TRAPV, 15 base register, 81
zero divide T., 15 bus error V., 37

TRAPV exception v. table, 71
instruction trap, 15 illegal V., 37

TX set/read exception V., 46
file type, 64 trace V., 15

Type userTRAPV. in TCB, 15
legal file T., 64 Virtual

port address, 38
U port IDs, 37

VMEbus
UART base of V., 82

0 base addresses, 41 RAM address from V., 82 ~ ..

DSRs,83
install U. service routines, 106 W
number ofU. types, 81
port type, 33 Wildcard
service routines, 106 symbols, 81

Unit Winchester
change output U., 27 drive implementation, 91
definition, 66 install, 93
output ports, 27 standard, 91 Cl spool U.,26 Window

User address, 38
beginning ofU. memory in TCB, 16 control character, 81
BIOS module, 67 IDs, 37
BIOS module example, 72 Write
end ofU. memory in TCB, 16 protect flags, 65

Utilities sector routine, 88
shared, 109
support, 48 X

UxDB,85 I:J UxDG,84 XDIT,89
UxDI,86 Xon/xoff
UxDP,84 handshaking enable, 31
UxDR,85
UxDS,85 Z
UxHW,85

Zero
V divide trap, 15

Variable
BASIC V. to access TCB, 10
modifyingV. in TCB, 11
offset, 41
system parameter V., 28

0

Index-8 3.3 -1188 PDOS DEVELOPER'S REFERENCE

