Tips& | Januzgllr.:ii,Niésé
TechnicalNotes

INTRODUCTION

The PDOS Tips and Technical Notes newsletter is intended to give
you, the PDOS user, a new resource of valuable information.
Since we are continually trying to improve on our product and the
service to our customers, we will keep you up-to-date on the
status of our product line. Other items featured here include
warnings and cautions to avoid programming difficulties, fixes,
patches, or work-arounds to known problems with current software,
and special applications to make your programming job easier.

If you have items which would be of value to other users, we
would like to hear from you. Please provide sample listings or
disks containing the information you wish to convey.

Of course, the PDOS hotline remains a resource to help you in the

solution of immediate problems through which we try to respond
with answers to your difficulties as soon as possible.

CURRENT PRODUCT STATUS

Part # Product Name Current Next
Version Release

3510 PDOS 68000 3.0b

3510-3/M Force CPU-1,2,3 11/8/85 Rev. B
Installation Guide

3510-4/M VME-10 Installation Guide 11/15/85

3510-4C/M VMEsystem 1000 Installation Guide 1/31/86

3510/M PDOS Reference Manual 10/3/85 Rev. C

3510/M1 Getting Started with PDOS 10/15/85 Rev. A

3520 PDOS 68000 BASIC 3.0b

3520/M PDOS BASIC Reference Manual 10/1/85

3530 PDOS 68000 PASCAL 2.7A 1lst gtr. '86
3530/M PDOS PASCAL Reference Manual 11/21/84

PDOS Technical Notes 1

5 EYTring / 1450 West 820 North / Provo, Utah 84601 /&> (801) 375-2434 / [Tx] 882-000 / (801) 374-8339

i

s

\

Vol. 1 No. 1
January 31, 1986

INTRODUCTION

The PDOS Tips and Technical Notes newsletter is intended to give
you, the PDOS user, a new resource of valuable information.
Since we are continually trying to improve on our product and the
service to our customers, we will keep you up-to-date on the
status of our product line. Other items featured here include
warnings and cautions to avoid programming difficulties, fixes,
patches, or work-arounds to known problems with current software,
and special applications to make your programming job easier.

If you have items which would be of value to other users, we
would like to hear from you. Please provide sample listings or
disks containing the information you wish to convey.

Of course, the PDOS hotline remains a resource to help you in the

solution of immediate problems through which we try to respond
with answers to your difficulties as soon as possible.

CURRENT PRODUCT STATUS

Part # Product Name Current Next
Version Release

3510 PDOS 68000 3.0b

3510-3/M Force CPU-1,2,3 11/8/85 Rev. B
Installation Guide

3510-4/M VME-10 Installation Guide 11/15/85

3510-4C/M VMEsystem 1000 Installation Guide 1/31/86

3510/M PDOS Reference Manual 10/3/85 Rev. C

3510/M1 Getting Started with PDOS 10/15/85 Rev. A

3520 PDOS 68000 BASIC 3.0b

3520/M PDOS BASIC Reference Manual 10/1/85

3530 PDOS 68000 PASCAL 2.7A 1st gtr. '86
3530/M PDOS PASCAL Reference Manual 11/21/84

PDOS Technical Notes 1

Part # Product Name Current Next

Version = = Release
3550 PDOS 68000 C l.2c
3550/M PDOS C Reference Manual 10/1/85 Rev. A
3560 PDOS 68K Absoft FORTRAN 77 2.1
3560/M FORTRAN Reference Manuals 12/1/85 Rev. A
3511/M Run Module Manual 10/1/85
3410 PDOS 9900 2.44

3410/M PDOS Reference Manual (9900) 1982 Rev. D
3410/N Update Notice

3420 PDOS 9900 BASIC 2.44d
3420/N BASIC Installation Notes 2.44d
3430 PDOS PASCAL 2.7A 1st gtr. '86
3430/M PASCAL Reference Manual 1984

WARNINGS AND CAUTIONS

1. If you are using the VMEbus, you should be aware that daisy
chain jumpers must be installed, or all cards must be
installed sequentially on the bus. Failure to do so may
result in a system halt, or the device may not be located
and available to the user.

2. Users who are developing 68K run modules should be aware
that programs run slower in EPROM than in RAM. As a result,
you may experience some timing differences from RAM tested
and EPROM run programs.

3. . CAUTION: Before upgrading to a new PDOS BASIC version, be
sure to convert all BX files to the EX format and save a
backup. The BX format may not be compatible with the new
version.

4. With the 68K PDOS 3.0 release, it is necessary to use
MASM R3.0b 10/17/85 and QLINK 11/12/85 versions. If you use
2.6 versions of these utilities, you will encounter pro-
blens.

5. The C 1l.2c compiler produces self-relocating code, but not
position independent code.

PDOS Technical Notes 2

1lo0.

11.

12.

13.

Currently in C Rev. 1l.2c, only un-buffered I/O routines are
implemented. All of the entry points for the buffered I/O
routines (fopen, fclose, fputs, etc.) are set up and
function as expected, except that the I/O goes to the disk
immediately. "fflush" is not in the library =-- it would be
a no-op if it were. Buffered I/O will be implemented in a
future revision of C. The most efficient I/O is through use
of the routines in XLIB. XGLU reads an entire line from the
console, letting the operator to perform command line
editing before hitting return. XPLC dumps an entire
string to the console. XRBF and XWBF read and write large
blocks of data to the disk. XRLF reads a line from a disk
file (delimited by a carriage return). XWLF writes a
null-terminated string to the disk.

C external symbols must currently be unique in the first
seven characters.

C initialization of multi-dimensioned arrays of ‘structures
is wrong.

There are a few other problems with combinations of struc-
tures with array fields with C. The compiler will sometimes
generate bad code to address into such a data item.

When you want to open a device driver with the C FOPEN
command, do not use "w" mode, since that will attempt to set
the end of file mark to the beginning of the file (an
illegal operation on a driver.) Instead, open it in "r"
mode and write to it anyway.

The C Rev. 1l.2c 'lseek' routine uses the XRFP--Read File
Position primitive that is new in PDOS 3.0. If you use
'l1seek' the code will not run on versions of PDOS earlier
than 3.0. Also, 'fopen' with mode "a" or "a+" uses 'lseek!'
so the same warning applies.

If you try to assign a C constant 0x8000 to a long variable,
the number will be sign-extended and Oxffff8000 will
actually be assigned. This problem occurs because if a
numeric literal will fit in sixteen bits, it will be stored
as a sixteen bit constant and sign-extended on assignment.

Leading zeroes do not help -- 0x08000 is the same as 0x8000.
You must put a capital 'L' after the literal to force the
compiler to create a 32-bit 1literal. Thus, assigning

0x8000L will give you the value you need. This problem, of
course, extends to all numeric literals where the sixteenth
bit is set. Thus, 32768-65535 or 0x8000 - Oxffff are
affected.

Versions of C068 prior to 11/25/85 did not properly do a
sizeof on literal strings.

PDOS Technical Notes 3

14.

15.

16

17..

18.

20.

The Rev. l1l.2c C compiler requires about 85K to run. Cur-
rently it does not properly detect an attempt to run with
too little memory. Versions of CSTART:ASM prior to 11/26/85
did not properly handle an out of memory problem. All C
programs, therefore, suffered from the defect that they
could be loaded into memory and then have the variable space
run out of the task space. When this task space is cleared,
it may wipe out the task's own stack, or worse, the TCB of
the next task in memory. This also means that the compiler
itself could crash the system if it were run in too small of
a memory. Running the C compiler in too small of a memory
(such as 32K) can crash the whole system, requiring a
boot.

When creating C Rev. 1l.2c EPROM programs, you should
currently be aware of using functions that do dynamic memory
allocation. 1In an EPROM program, it is not necessarily the
case that the available memory lies between the __ _eomem and
the bottom of the stack -- indeed, the stack pointer may be
on the other side of the end of memory pointer. The
situation can be fixed by dynamically loading the __ eomem
pointer with a value known to be down in the stack and
assuring that the task is assigned sufficient stack space on
start-up. In the meantime, the following routines (which
all use dynamic memory allocation) should not be used in
EPROM or should at least be very suspect: GLOB, COPY,
FOPEN, TTYOPEN, XEQ, SYSTEM, SBRK, MORECOR, ALLOC, MALLOC,
REALLOC, CALLOC.

There must be sufficient disk space available for the C
compiler to create the intermediate files and output files.
If this is not the case, the compiler may abort with an
error 61 or some other peculiar error. In particular, the
distribution disk does not have enough disk space to compile
anything =-- it is too full of code.

With FORTRAN Rev. 2.la, a file error trapped with an "ERR="
on a read will show up again on the CLOSE if it does not
also have an "ERR=".

If you attempt to produce both an assembly 1listing (/A
switch) and a compiled source listing (/L switch) at the
same time, you will only get the assembly listing since it
includes the compiled source under FORTRAN Rev. 2.la.

There are a few cases where invalid syntax will cause the
FORTRAN compiler to crash. One of these cases is putting
FORM='UNFORMATTED' in an INQUIRE statement.

PDOS Technical Notes 4

*

21. Occasionally the FORTRAN run-time system will report errors
and it is not immediately obvious whether the error is a

PDOS error or a FORTRAN error. The program may report
"COMMON buffer not found" when the error is actually
"position error". Both are error #70 =-- one from F77, the

other from PDOS.

22. M"USE option b" FORTRAN error message will come out even when
you do use option b.

23. The FORTRAN rev 2.la debugger will occasionally have trouble
displaying the current value of a symbol, especially if you
use the S(EARCH option to move into a different module and
display common variables in that module.

24. If a FORTRAN subroutine calls another subroutine that was
passed to it as a parameter (see EXTERNAL statement) the
second subroutine is always loaded as an overlay, even if it
has been linked in. Thus, the following three program
segments execute just fine if allowed to link at run time,
but will give an error 'Subroutine not found' if linked with

" F77L and DUMMY:SUB discarded.

------------ FIRST FILE ========-
PROGRAM TEST
EXTERNAL DUMMY
CALL T1 (DUMMY)
END

------------ SECOND FILE ========-
SUBROUTINE T1 (SUBP)
CALL SUBP
RETURN
END

------------ THIRD FILE ---=——e=--
SUBROUTINE DUMMY
WRITE(9,*) 'ENTERED DUMMY'
RETURN
END

25. The FORTRAN Rev. 2.la compiler does not catch all syntax
errors. One user found that the compiler did not flag a
branch to a FORMAT statement label. Another error was when
a variable name in a subroutine was declared as both a
COMMON block variable and a passed parameter.

26. The FORTRAN Rev. 2.la compiler generates position-indepen-
dent code that runs at any address. However, there has
been trouble loading programs into arbitrary address spaces
and running them. This could mean problems when burning
programs in ROM.

PDOS Technical Notes 5

27. The Pascal compiler occasionally will report an 'OUT OF
ADDRESS REGISTERS' error. Only 3 address and 5 data
registers can be used by a program at a time. If the error
occurs, compile the text with the O switch and find the area

that must be rewritten. A typical program that will fail is
as follows:

procedure m;
type
t = record a : integer; end;
var
c : integer:;
procedure e (f : integer ; h : t) ;
function i : boolean ;

begin(i})
with h do {'with' statements may require an address reg.)
i:= = ¢ {c is a global variable; f is a parameter,)}
end; (i) {i is the function value; h is another }
begin (e} {parameter. To handle all these different)
end; (e} {addressing modes will cause the compiler }
begin {m) {to run out of addressing registers.}
end; {m}

PDOS Technical Notes 6

FIXES, PATCHES, AND WORK-AROUNDS

1. Some 68K users have experienced difficulties when inputting
messages longer than 64 bytes. You can fix this problem by
changing the input buffer size in SYRAM to allow for 128
character messages. Use the following change in xxDOS:GEN
and regenerate the system:

Change: MASM MSYRAM: SR, #MSYRAM:OBJ ; XXX
To: MASM SYRAM:SR/IZ2=7, #STRAN:OBJ ; XXX

2. >MTIME P,86 -- Some battery clocks do not keep track of the
current year. So that your year will be correct, enter a
second argument to the MTIME routine setting the PDOS year.
Change your startup file to assure proper year upon startup
of your system.

3. 68K MSYFL presently does not support the 'D' tag. You will
get errors when trying to convert files using the new DCB.B
data definition. These files can be converted by running
QLINK, loading the file, and saving it.

QLINK

INPUT <FILENAME:OBJ>
OUTPUT <FILENAME>
SYFILE

END

QUIT

4, 68K PDOS BASIC programs with excessively long lines may give
you problems when they are saved as BX files and later run.
The long line halts loading or causes overwrite which could
ruin the file. This is most likely to happen when transfer-
ring ASCII files from another system.

5. Some users have experienced difficulties following the use
of the SPOOL command in 9900 BASIC. The SPOOL command needs
to be reset and the SPOOL file closed. This can be accom-
plished with one of the following sequences:

This resets the spool and closes all files:
SPOOL O
RESET

This resets the spool and closes only the spool file:
SPOOL O
CLOSE MEMW[SYS(9) + 01E4H]

6. The following utility, MLIBGEN, was inadvertently not
documented in the 3.0 PDOS Reference Manual. You might find
it helpful to insert the page into your manual.

PDOS Technical Notes 7

PDOS Technical Notes

W/

C

MLIBGEN
Library Generator Utility

Name: MLIBGEN
Function: Combines object files into a single library file
Format: MLIBGEN

Restrictions: MLIBGEN only builds new libraries. Existing
libraries can be edited only by recreating them.

Description: MLIBGEN allows object files to be combined into a
single library file. The entry (XDEF) labels for each
library object are stored in the header of the library file
along with the originating object file name and pos1tlon of
the library object within the library file.

When you specify a library load with the LIBRARY command
during QLINK, PDOS will scan your files for any entry
symbols that match any unresolved external (XREF) symbols in
the 1link map. If a match occurs, then only the code
corresponding to the XDEF label of the single library object
is loaded. Thus, only those objects which resolve external
symbols will be loaded.

Every time a library object is loaded, the LIBRARY command
will start from the beginning of the library header and scan
for new entries. It continues until no additional matches
are found in the link map and library header.

Sample:
>MLIBGEN

68K LIBRARY GENERATOR 10/24/83
Copyright 1983, ERII

LIBRARY FILE=YOURLIB:LIB The name of your library file

INPUT FILE=SUB1:0BJ Origination object files to

INPUT FILE=SUB2:0BJ become library objects

INPUT FILE=[CR] Type [CR] to end input files

ANY MORE FILES (Y/N)?N Enter 'Y' to continue; 'N' to
quit.

PDOS Technical Notes °)

PDOS Technical Notes

10

-

C

lo.

With C Rev. 1l.2c, if you declare a global variable in two
separately compiled modules but do not declare that variable
in the main program, the linker will not know where to
allocate space for that variable and will give an un-defined
symbol message. A fix is anticipated for the linker, but
until then, declare all global variables in the main module
as well as in the other modules, or specify an initiali-
zation for variables defined only in subroutines. (Note:
initialize it only in one module, or the variable will be
doubly-defined!)

There are some bugs in the use of the "extern" keyword. 1In
general, it is difficult in C Rev. 1l.2c to distinguish
between defining and referencing external variables. For
now, this compiler takes all variables declared at the
outermost level (with or without the "extern" keyword) to be
definitions in the module where "main" is defined, and
references if "main" is not defined. This does not hold
true for static variables or for variables where an initia-
lization is specified.

The C Rev. 1l.2c 'printf' function may have problems printing
integers larger than nine digits. It has an internal buffer
of only 10 characters, and if a number (with the terminating
null) exceeds this size, it overwrites other data. If this
is a major problem, extract the 'printf' module from
STDLIB:SRC, change the size of the buffer 'tbuf' to 12
characters, and use that new copy of the printf module by
linking its object ahead of the STDLIB.

The following assignment creates bad code that causes a BUS
ERROR under C Rev. 1.2c.

testl()

{

float x[3],y[3]:

int i=0; :

asm("*y[i] = x[1i] =-- float");
}y[i] = x[1i];

The workaround is to assign x[i] to a temporary and. then
assign the temporary to y[i]. The problem only shows up
with floats; not with ints or longs, so you could cast the
source and destination operands to long. This will be fixed
in the next revision of C from Alcyon.

PDOS Technical Notes 11

11. The XGML subroutine in C 1.2c has an error -- it doesn't
report the proper value for the third parameter (last loaded
address). The error can be fixed by extracting file
XGML:ASM from the XLIB:SRC and making the following change:

Change MOVE.L A3,D2 to MOVE.L A2,D2

12. It would be helpful if ROMLINK provided with C Rev. 1l.2c
allowed you to specify sections for RAM and ROM. The
current program must be altered on line 96 (Sprintf state-
ment puts out 'E' and '2' tags) and in the subroutine

'inrom' (returns 0 for ROM, 1 for RAM). If your section is
greater than 9, you must also change the 'sprintf' statement
where the '9' tag is output =-- currently it goes out as a

decimal digit and it should be hexadecimal. The following
list shows the changes to make ROMLINK put the ROM code in
section 14:

CHANGE:

sprintf(&line[27],"E0%081xE1%081x21%081x2000000000",
TO:

sprintf(&line[27],"EE%081xE1%081x21%081x2E00000000",

CHANGE:
sprintf(&line[linelen],"9%1d%081x8",next->section,datal);

. TO:

sprintf(&line[linelen],"9%1x%081x8",next->section,datal):;
CHANGE:

return(0);

TO:

return(14):;

Future versions of ROMLINK may accept command line para-
meters to set the sections to whatever is required.

13. The C 1l.2c distribution version of LOCATE fails to create
the bit map for programs larger than 64K. The problem is in
the following statement:

mapsize = ((unsigned int) mapptr >> 6) + 1;

This should be:

mapsize = ((unsigned long) mapptr >> 6) + 1;

This correction can be made on your system by changing file
LOCATE:C and recompiling.

PDOS Technical Notes ’ 12

14. FORTRAN Rev 2.la documentation for CRT:SA is lacking but can
be found in the file.

15. The FORTRAN ENDFILE statement seems to be a no-op. Use the
PDOS interface library functions to change the end of file
mark.

16. The following code gives the FORTRAN Rev. 2.la compiler
problems. It reports a 'compiler synch error'.

CHARACTER *8 TEMPS
TYPE TEMPS(5:8),"' '

Since this is an extension to F77, its use is questionable
anyway, try:

TYPE (UNIT=9,FMT=%*) TEMP8(5:8),' '
or

WRITE (UNIT=9,FMT=*) TEMP8(5:8),' '
instead.

17. Pascal Rev. 2.7a processes require more space on heap than
is reasonable. This limits the total number of processes
that can be created. Also, destruction of a process does
not free up all of the space originally allocated. This is
fixed with the new Rev. 2.8a.

18. Pascal 2.7a crashes when performing range checking (/R or $R
switch) on a file where there is a case statement without
an otherwise clause. This is fixed in Rev. 2.8a.

19. The following code causes an error in the assembler under
Pascal 2.7a and has been fixed with 2.8a. The MASM error
occurs because .ENDLOC is never XREFed in the file.

{SE}
PROCESS A;
BEGIN

END;

PROCEDURE B;
BEGIN

Az

END;

PDOS Technical Notes A 13

20.

The following code generates an error in the assembler text
under Rev. 2.7a Pascal but has been fixed under Rev. 2.8a.

PROGRAM TEST;

VAR
J
A
R

BEG

o oo oo oo

END.

21.

22.

23.

24.

25.

PDOS

INTEGER;
INTEGER;
ARRAY [1l..5] OF INTEGER;
N
A := A + R[J]:
A := A - R[J];
Pascal 2.7a attempts to rewrite to file 'TTA' which causes

driver errors, or creates a new file called 'TTA' (not a
driver) on the disk. This has been fixed with Pascal 2.8a.

Errors in specification of a 'WITH' statement argument such
as WITH (A) DO cause the Pascal 2.7a compiler to crash.
The parentheses are not valid and Pascal 2.8a will report
this as an error.

Under Pascal 2.7a, using the EOF/EOLN functions cause
the compiler to generate bad code. This is fixed in Rev.
2.8a.

Passing a string variable as a 'non-VAR' parameter to a
routine that expected a larger string under Pascal 2.7a
makes the compiler generate code to pad the string to the
expected length. A bug in the compiler causes local
variables in the calling routine to be corrupted after the
call. This is fixed in Pascal 2.8a.

Various constructions involving large (greater than 32767

bytes) arrays causes the compiler to generate bad code under
Pascal 2.7a. This is fixed under 2.8a.

Technical Notes ' 14

c

-

APPLICATIONS AND HINTS

1. The following examples for converting decimal numbers
to hex and hex to decimal illustrate the power of the PDOS
operating system:

*DECIMAL TO HEX CONVERSION (RESPONDS SIMILAR TO MONITOR COMMAND)
*

This example shows the interactive nature of the PDOS primi-
tives. Notice that there are no assembly code mnemonics in this
program except as assembler directives to establish the text
strlng for the output.

* 9900 68000
* ====== Y T
DH XGNP XGNP sGET NEXT PARAMETER
XCDB XCDB 7 CONVERT TO BINARY
XCBH XCBH s CONVERT BINARY TO HEX
XPMC XPMC EQ sPRINT ' = !
DATA EQ
XPLC XPLC sPRINT CONVERTED STRING
XEXT XEXT sRETURN TO PDOS MONITOR
*
EQ TEXT +' = ! DC.B '=1,0
END DH END DH
*USAGE EXAMPLE:
>DH 256 = 0100 00000100
>DH 10 = 000A 0000000A

*HEX TO DECIMAL CONVERSION
*

*Uses only two assembly mnemonics and they are only used to
preclude the user from entering the hex descriptor in the input.
*

* 9900 - 68000

* === ===

HD XGNP XGNP ;GET NEXT PARAMETER
DEC R1 ADDA.L #-1,Al ;DECREMENT POINTER
MOVB @HI, *R1 MOVE.B #'$', (Al) ;INSERT HEX DESCRIPTOR
XCDB XCDB s CONVERT ASCII TO BIN
XCBD XCBD s CONVERT RESULT TO DEC
XPMC XPMC EQ sPRINT ' ="

DATA EQ .

XPLC XPLC s PRINT CONVERTED STRING
XEXT XEXT ;EXIT TO PDOS MONITOR

* .

EQ TEXT +' ="' DC.B ''=1,0

HI BYTE '>',0

PDOS Technical Notes 15

*USAGE EXAMPLE:
>HD 100 = 256 256
>HD A = 10 10

The previous examples can be entered and compiled to provide
you with a helpful utility. Since these are programs, they
will alter user memory. (PDOS monitor commands do not alter
user memory).

2. Sometimes, it may be necessary to send special control
characters to a printer from BASIC. The <null> and <tab>
characters are not printable in PDOS BASIC since the <null>
is a string terminator and the <tab> is replaced with spaces
to the next print column. The following example provides a
means for sending these and other character codes:

1 REM CODE TO PRING SPECIAL CHARACTERS FROM BASIC

2 REM NUMERIC VALUE OF CHARACTER IS PLACED IN COM(O0)

3 REM CHAR(0O) CONTAINS ASSEMBLY CODE - USES XPDC TO PRINT CHAR

4 REM CALL #ADR CHAR(0) PERFORMS PRINT

10 DIM CHAR([3]

20 SCHAR[O]=%'2E3C 0000 0001 224B D3FC 0000 0007 A096 4E75!

30 COM[0]=9 ISET FOR <tab>

40 CALL #ADR CHAR[O0] !PRINT IT

*kk

68K ASSEMBLY WHICH GENERATES ABOVE STRING

*
CHR

Similar

MOVE.L #1,D7 ;SET PRINT FOR 1 CHAR
MOVEA.L A3,Al GET ADDRESS OF COM(0)
ADDA.L #7,Al ; INCREMENT TO CHARACTER BYTE

XPDC ;PRINT IT TO CONSOLE
RTS sRETURN
END CHR

code in 9900 assembly can be created and entered on line

20.. Register R7 contains the address of COM[O0].

3. The C compiler reports its errors by line number. Prior to
May 1985, the PDOS editor did not easily allow you to find a
particular line number. The new editor, of course, has a
specific command to jump to a line number, but in the old
editor (MJEDY), go to the top of the file ([CTRL-T]), set
the jump count to one less than the desired line number
([ESC][CTRL-S]) and jump to that line from the top
([ESC][CTRL-J]). With the new editor, MEDIT, use the goto
line function.

PDOS Technical Notes 16

A

O/

..
. @
e 8

T i PS & | Malfgi' 1% ,Ngésg
TechnicalNotes

INTRODUCTION

Ve hope that last month’'s issue of PDOS Tips and Technical notes
was of benefit to many of you, and we hope to continue this
service on a regular basis. Any comments you may wish to make
are apprecilated.

NEW PRODUCTS
Several new programs are avallable for use under PDOS.

~OWORD 1s a text runoff system for use with 9800 PDOS. Source
code to OWORD is provided on the disk to assist the user in
customizing the software to his hardware requirements. Source to
OWORD is provided on the disk. This product is available "as is"
and NO SUPPORT is provided. .

Order Number: 3480-1 License Fee: $250.

STAT68 is an expanded statistical package available for use
with PDOS on 68000-based systems with 700kb memory. It has
graphics capability and handles the following statistical
procedures and more: simple 1linear regression, polynomial
regression, multiple regression, factorial analysis of variance,
randomized fixed block analysis, Latin squares analysis, any
factorial design with treatments being ‘“"crossed" and nested
designs. Terminal support is available for HP-150, HP-2623. A
preliminary manual is currently available. '

Order Number: 3580-54 License Fee: $750.

PDOS Technical Notes Vol. 1 No. 2 1

@ Eyring / 1450 west 820 North / Provo, Utah 84601 / ‘& (801) 375-2434 / [Tx] 882-000 / (801) 374-8339

WARNINGS AND CAUTIONS

The following errors and oversights in our first newsletter
have been brought to our attention. Our apologies for any
problems this may have caused:

Varnings and Cautions:
4. QLINK revision i1s dated 7/26/85. Also, hex QLINK
entries require a '$’' prefix.

Fixes, Patches and Work-Arounds:
1. was shown as : MASM SYRAM:SR/IZ=7,#STRAN:0BJ ;XXX
should be : MASM MSYRAM:SR/IZ=7,#MSYRAM:OBJ ;xXxX

Assembly programs ending on odd boundaries can cause errors
at link time with QLINK. This will show up on the file
following the file with the odd boundary. The odd boundary
should be corrected with the EVEN directive of the MASM
assembler.

Use caution with disk buffering on Stride, Mizar, VME/10,
Hamilton Standard (formerly Mostek). ¥hen you write a file
out (to a floppy as an example), while PDOS thinks it is
written out, it probably IS NOT! The buffer has been
altered, but the file has not been flushed to the disk yet.
That means that you are at a risk to lose the data that you
thought you saved. To be certain that you can safely remove
a floppy, or turn off power, do a list (>LS) command for the
Winchester before removing the floppy. You may see the
floppy activity light come on, even if you are just reading
the Winch. The best way to be sure that your information is
indeed saved is to do a space (>SP) command on disks two and
three. The following code could be included in a procedure
- file to flush the disk:

SP 2
.SP 3
RC

On PDOS 3.0 you may use the xxPARK utility to flush the disk
buffers before turning the computer off.

PDOS Technical Notes Vol. 1 No. 2

o

C

(WARNINGS AND CAUTIONS cont.)

4.

If you plan on creating tasks with high level language
routines in the PDOS operating environment, you should be
awvare that these higher level languages utilize high task
memory to locate variables, or stacks. Should vyou create a
new task and not have free memory available, you will be
giving away some of vyour present task including variables,
etc. . If vyou intend to create tasks from higher level
language tasks, be sure that you free sufficient memory
prior to running the routines which will create the new
tasks.

The 68000 RAM disk command allows you to specify the RAM
disk to reside at any memory location giving you a high
degree of flexiblity. However, PDOS makes no test to
determine if the specified memory is already in use by PDOS
or other tasks. Take care when setting up a new RAM disk.

In one situation, the user specifed the new RAM disk larger
than his free memory area. The PDOS mail array and Win-
chester disk buffers were changed. The result was a loss of
directory information on the Winchester disk. On most 68000
systems, the RAM disk can be allocated at boot time by re-
generating your system, specifying a larger RAM disk size,
and re-installing the boot.

For example, to generate a floppy sized RAM disk with 2560
sectors, you might use the following:

0>xxDOS:GEN /RZ=2560

The example above allocates the RAM disk from the TOP of
memory. Be careful not to specify more 256-byte sectors
than you have memory for.

Vhen using the >DM command on 68000 PDOS, be sure to use the
semi-colon and not the colon to delimit the 1level argument
when the ‘@' symbol is used as a wild card. If a colon is
used and the ‘A’ argument is used, all files on the disk may
be deleted. If the ':’ is used in the same manner in the
>TF command, all files may be transferred. :

this colon should be a semi-colon
\"2
>DM @:FOR:@ DELETES ALL FILES!
>TF @:FOR:@,0,A TRANSFERS ALL FILES ON DISK 0!

PDOS Technical Notes Vol. 1 No. 2 3

(WARNINGS AND CAUTIONS cont.)

8. ANSI terminal support under rev 3.0b PDOS is an optional
system parameter. If you wish to have ANSI terminal support,
you must re-run xxDOS:GEN including the ANS option. You may
wish to set switch CPSC to O so that ANSI will be your
default terminal type. This means that MTERM will not have
to be run. You will also need to reinstall your boot with
MMKBT.
>xxXDOS :GEN /ANS=1/CPSC=@,BASIC
Install ANSI! terminal and set ANSI/ to default type. Include
BASIC.
>MMKBT

68K PDOS Make Boot DIisk Utility 27/29/85
Select the (F)ile option to Install the boot from your
xxDOS flle.
If you want to wuse Wyse-75 terminals with PDOS, set it in
ATS mode and select the MTERM option letter "M", Data Media
Excel 12 and not letter "D", Decscope (VT52).

C REV. 1.2C

9. C Rev. 1.2C -- fscanf currently cannot read across lines --
it seems to mess up when it hits a newline. For the moment,
use fgets to put the data in a buffer and wuse sscanf to
parse it.

10. C Rev. 1.2C -- fprintf has some sort of problem with %u when
the F switch is set. The following program works (more or
less -- the largest number should be 4 billion, not -2

- billion) without the F switch, but not with it.

main()
{
unsigned long x=1;
int i;
for (i=1;1<33;1++)(
printf("\n%lu,%ld",x,x);
X += X;

PDOS Technical Notes Vol. 1 No. 2

e

C

(WARNINGS AND CAUTIONS cont.)

11.

12.

Vhen an external reference appears next to a global defini-
tion, a problem frequently occurs when someone includes
"stdio.h" and then defines a few global definitions below
it. As a temporary fix, rearrange the instructions (if
possible) so that the two don’t lie together. The bug shows
up as an assembler error telling vyou that you ’'XDEF’'ed
STDERR but you didn’'t define it.

Some of the internal subroutines of the run-time library
(1ike .ILMUL) are documented as if they were callable from
a user program. In fact, although the symbols for the call
are available (as .LMUL, for instance) those symbols are not
made external via an XDEF statement. For the present, those
subroutines cannot be called from a user program unless
steps are taken to extract the sources from the library,
insert the appropriate XDEF statement, and reassemble them.

PASCAL

13.

14.

68000 Pascal Rev. 2.7A —-- closing a file does not deallocate
the file buffer F~. As a result, a series of OPEN/CLOSE
statements will eventually run a system out of memory. This
problem will be corrected in Rev 2.8B.

For all Pascal users -- OPENing a file, or any other opera-
tion involving NEW from within a PROCESS (rather than
from a PROCEDURE/FUNCTION) will cause an out of memory
error, number 603. This 1s because when the process is.
created, its stack is allocated from the heap. Later, when
the code in the process requests memory from the heap, the
runtime system notes that the current stack pointer is lower
than the current heap pointer -- an indication that the heap
and stack have overrun each other. For now, consider it a
restriction that processes cannot perform operations in-
volving dynamic memory allocation. This restriction will be
lifted in the future.

PDOS Technical Notes Vol. 1 No. 2 5

*

FIXES, PATCHES AND WORK-AROUNDS

A correction should be noted for the PDOS debugger docu-
mentation on page 3-29 of the 3.0 PDOS Reference Manual. The
explanation of the use of the trace "T" command indicates
that "a return will execute it and display the next instruc-
tion to be executed." The "return" should be a "space."

On Stride systems, the S6LDGO program as supplied on the
boot disk causes the system to hang. To correct this
difficulty, assemble the S6LDGO:SR into S6LDGO using MASM
and MSYFL.

Vhen attempting to download S-records to target systems,
some users have had some difficulty. Motorola’'s description
of S-records indicate that each record may be terminated
with a CR/LF/NUL. Force systems seem to make this a require-
ment. The following patch to our MSREC:SR utility will
provide these line delimiters:

SREC12 ADDQ.W «4,A7 ;Y, POP OVER TERMINATER
MOVE.B #$0D, (A2)+ ; WAS $0A
MOVE.B #$0A, (A2)+ ; WAS $0D
MOVE.B #$802, (A2)+ ; ADDED NULL WITH HIGH BIT SET
CLR.B (A2)
LEA.L LBUF (PC) , A2 ;POINT AT S-RECORD
MOVE.L (A7)+,D5 ; RESTORE COUNT
RTS

Use MASM and MSYFL to rebuild your new MSREC syfile.

It 1is also important that the Force monitor RO register

- contain the offset to the desired 1load address; otherwise,

the code may not be loaded.

.The following utility, =xLDGO, is completely documented in

the Installation and Systems Management guide for your
system; however, the general information sheet on the next
page may be useful for you if you do not have access to the
guide. It has been prepared so that you might insert 1t
into your PDOS Reference Manual.

PDOS Technical Notes Vol. 1 No. 2

AN

S

C

xxLDGO
LOAD AND/OR GO TO A NEW SYSTEM

NOTE: xx should be replaced with the letters for your specific
system (S6 for Stride 460, Fl1 for Force CPU-1, V2 for VMEsystem
1000, etc.)

Name: xxLDGO

Function: Load into memory and/or execute new system.
Format: >xxLDGO {<load address>}{, <filename>}
Restrictions:

xxILDGO will replace vyour current PDOS operating system and
execute a new system terminating all tasks.

Description:
xxXLDGO is used to load and execute new PDOS systems.

The load address is the location in memory where the program 1is
to be located.

The filename is the name of your system file. If a filename is
not given, then xxLDGO will look for a PDOS system in your task
space. xxLDGO will only 1load a file in which the PDOS ID
characters are found. After =xxLDGO has loaded your new system,
it will Jjump to the load address and begin execution.
The following is an example:
>xXLDGO ,XxxDOS[CR]
You then see somethlng simllar to the foliowing:
DOS Flile Loaded: xxDOS
Found PDOS at address $020QBEB6
DOS size Is $00208BD4
Executlion of the startup flle on the new version.
>MTIME P[CR]
xxLDGO allows you to try a new version of PDOS without modifying

your disk boot image. To make this new system into a disk
boot you need run the MMKBT utility.

PDOS Technical Notes Vol. 1 No. 2 7

PDOS Technical Notes Vol.

1

No.

2

(FIXES, PATCHES, AND WORK-AROUNDS cont.)

5. A patch to include HP-150 terminal support is shown below.
It may be included in MBIOS:SR. You may have either ANSI
terminal support or HP-150 terminal support, but not BOTH.
After making this patch vyou will need to re-run xxDOS:GEN
and MMKBT to install your new system.

* MBIOS SUBROUTINE FLAGS
*
I FUDF HP15@: HP15@ EQU 1 ;DEFAULT INCLUDE HP15@
*
*
I FNE HP 150

2k Ak ok kA A K Kk Kk Ak K ok Kk Kk K K ok Ak 3Kk K 3k Kk 3k 3k Kk ak dk kK ok Kk 3k Xk ok A Kk kK ok Xk K ok Xk K K

MODE = <esc>&aYYyXXC

* HP 15@ POSITION CURSOR

*

* IN: D1.B = Y POSITION (ROW)
* D2.B = X POSITION (COL)
* (A3) = CBZS$(A6)

* ouT: SR = .NE.

*

*

*

B$PSC MOVE .W #$9B*256+%$80+'& ‘', (A3)+
MOVE.B #$80+'a’, (A3)+
CLR.L D2

MOVE.B D1,D@ ;GET Y OR Row POSITION

DIVU.W #10,D0 ;HIGH = REMAINDER, LOW = QUOTIENT
ADDI .B #3$80+'Q',D@

MOVE.B D@, (A3)+

SWAP Do

ADDI .B #%3$80+'Q°',DO@

MOVE.B D@, (A3)+

MOVE.B #$80+'y’,(A3)+

CLR.L D@

MOVE.B D2,D@ ;GET X OR Col POSITION

DIVU.W #12,D@ ;HIGH = REMAINDER, LOW = QUOTIENT
ADDI .B #$80+'0Q’',D@

MOVE.B D@, (A3)+

SWAP D@

ADDI .B #$80+°'9’,DOQ

MOVE.B D@, (A3)+

MOVE.B #$80+°'C’', (A3)+

CLR.B (A3)+

CLR.W -(A7) ;SET A .NE.

RTR

PDOS Technical Notes Vol. 1 No. 2 g

(FIXES, PATCHES, AND WORK-AROUNDS cont.)

3k ok oK 3K 3k ok Kk k3K Ak K kK ok 3K Ak Kk ok 3K 3 3K ok 3K 3K 3K 3 3K 3 3K 3k 3k ok 3K 3k ok 3k ok 3K o 3K oK 3K kK K %k K K

* HP-150 - CLEAR SCREEN
t 3
* HP-150 MODE = <esc>&a@y@C<esc>J
3
* IN:
* OuUT: SR = .NE.
*
B$CLS LEA.L HPCLR(PC),A2 ;POINT TO CLEAR SCREEN SEQUENCE
E 3
e@PIP2 MOVE.B (A2)+,(A3)+ ;OUTPUT, DONE?
BNE.S @@@@2 ;N
*
CLR.W -(A7) ;SET A .NE.

RTR

HPCLR DC.B $9B,$80+'& ' ,$80+'a’ ,$80+'Q0' ,$80+'y"’

10

DC.B $80+'0' ,$80+°'C’' ,$9B,%$80+'J',0

EVEN
ENDC
I FNE HP 150@
PRINT ‘>> HP 150 TERMINAL SUPPORT INCLUDED’
ENDC

A patch to assure that the battery clock vyear matches the
PDOS year is as follows:

Under |abel: TIMR
Change: LEA.L YEAR(PC), A1
To: ADDA.L #6,A1

and reassembl/e the source

‘This patch allows the PDOS year to be used for the battery

clock year rather than using the vyear of the last compile
for the MTIME routine.

Very 1large programs in 68000 BASIC Rev 3.0b will have
problems if more that 253 variables are used. ¥hen a line
defining the 253rd variable is entered with BASIC's line
editor, or when it is brought in from a file with the LOAD
command, it is garbled. As an example, see the file below:

PDOS Technical Notes Vol. 1 No. 2

(FIXES, PATCHES, AND WORK-AROUNDS cont.)

10
20
30
49
50
69
100
112
120
130
1490
200
210
220
230
240
250

PDOS

2000 Al1=@: A2=0: A3=0: A4=0: A5=0: A6=0: A7=0:
2010 A8=0:A9=0:A10=0:A11=0:A12=0

2470 A247=@: A248=0: A249=0: A25Q0=0: A251=0: A252=0
2500 REM

2512 REM NOTICE THE NEXT LINE

2520 REM

2530 A253=0

Vhen this file is LOADed, the assignment on line 2530 is
garbled.

The fix for this problem is a patch in the 68000 BASIC
interpreter itself. The following BASIC program searches
for the appropriate location in your system and applies the
patch.

REM BASIC PATCH FOR 253rd VARIABLE PROBLEM

REM

REM CHANGE: E18C 7203 E19C 4A04 6702 18C4 5341 6EF4 4E75
REM TO: 4844 6104 6102 6004 4AQ4 6702 18C4 E19C 4E75
REM

I=MEML[SYS[38]] ! SELECT START OF BIOS FOR SEARCH

FOR A=02000Q0H+| TO QCQ@@QH+ |

IF MEML[A]=0E18C7203H: IF MEML[A+4]=0E19C4AQ04H: GOSUB 1020
NEXT A

PRINT "***x PATCH NOT FOUND!! | **x*u

BYE

IF MEML[A+8]1=0670218C4H: |F MEML[A+12]1=053416EF4H: SKIP 1
RETURN

MEML[A]1=048446104H: MEML[A+4]1=061226004H
MEML[A+8]1=04A046702H: MEML[A+12]=018C4E19CH

PRINT "**x PATCH COMPLETE!!! #®%xu

BYE

After this patch has been applied, you may want to test it
out by LOADing a program like the one above. If everything
works okay, make the patch permanent by running MMKBT and
selecting the "M" option for the source of the boot. See
vour installation manual for details on the operation of
MMKBT on your particular system.

We recommend that you try out the boot by writing it on a

temporary floppy disk first. If that works, you can install
the boot on your hard disk by using similar procedures.

Technical Notes Vol. 1 No. 2 11

(FIXES, PATCHES, AND WORK-AROUNDS cont.)

7.

12

All PDOS 3.0b systems with 68010 processors will experience
a format exception error when the XKTB primitive is used on
tasks that have been created with XCTB upper/lower memory

bounds format. To fix this problem, take the address of the

exception, add six, and change the contents.

>

FRMT exception with XKTB

FRMT e@Q002C64
DO : 20000

AQ:
Enter

>PB

2C64
2C66
2C68
2C6A

Run MMKBT with the (M)emory option to

< address

debugger and change contents of execeptl/on address + 6

4E73
4FEE
@3AE

67@C 51D7

old value

< hew value

save the new boot.

This change will prevent the task abort feature (file MABORT)
which has been implemented on some systems from working.

PDOS Technical Notes Vol.

1l No. 2

B

«

APPLICATIONS AND HINTS

Some PDOS users have terminals which allow up to 132 charac-
ters on the screen and/or more than 24 1lines per screen.
MEDIT Rev 1.9 or later allows you to select row and column
size. The default is 80 columns and 24 lines per screen.
To utilize +this feature, you can use the two optional
row and column arguments:

MEDIT <filename>{<,col>,row>}

>MEDIT ,132 for 132 columns
>MEDIT FILENAME:SR, ,49 for 80 columns and 49 |[|ilnes

To create a task on a terminal without displaying the PDOS
prompt, you can use one of the following procedures:

a. Create the task on port zero and then reassign the port
for the terminal within the operating task.

or

b. Create a dummy task on port zero, reassign the port for
the terminal within this task, and chain to the desired
task.

It 1is often desirable to access certain PDOS variable
buffers such as the task control block or SYRAM from higher
language routines. In PDOS BASIC, the SYS 9 function
returns the address of the user task control block. SYS 39
returns the address of SYRAM. :

In FORTRAN, Pascal, or C, addreses to these buffers can be
obtained by using the XGML primitive. You should refer the
specific language manual for the use on this primitive.

To pass 1long integer values to the Pascal XPSF routine on
9900 systems as it is currently defined is not possible. As
defined, one can access up to 32 Kbytes. Several approaches
can be used to access further into the file. A routine
which reads the record number and the bytes per record can
be set up to index into files on an even number of records.
The long integer is set up via a multiplication within the
routine.

An alternate procedure which requires combined Pascal and
assembly procedures and will position to any byte within the
record is as follows:

PDOS Technical Notes Vol. 1 No. 2 13

(APPLICATIONS AND HINTS cont.)
{PASCAL PROCEDURE WHICH CALLS SPECIAL POSITION ROUTINE)
Procedure XPSF1(FILID,MUL,ADD: INTEGER); EXTERNAL;

Procedure XPSFC(FILID: INTEGER; BYTES: REAL);

VAR
MUL, ADD : INTEGER;
BEGIN
MUL := TRUNC(BYTES/30000.0) ;

ADD := TRUNC(BYTES-(MUL*30000.09)) ;
XPSF1(FILID,MUL,ADD);
END;

* TXPSF1:SR 13-FEB-86

AR R KRR R KRR AR E KRR KRR KRR KRR KRR R KRR R R R KRN
* PDOS SUPPORT ROUTINES FOR PASCAL TI1992@ (future))
* (C) 1984 ERII, PROVO UT

% 3 3k 3 o 2k A K Ak ok Kk Kk ok K K K K K 3k 3k ak ok ok ak K ok ok ak K ok 3k ok 3k ok ok 3 A 3k ok ok 3k K 3k ok ok 3k Kk k3 ok K K Xk K K K K K k%

* ROUTINE NAME: TXPSF1

FUNCT ION: Positions a file to a specified byte Index
REV: 2.8a
AUTHOR: David A. Grotegut

ASSEMBLY PROCEDURE TO POSITION TO BYTE IN FILE
USES MULTIPLIER * 30009 + ADDER PASSED BY PASCAL ROUTINE

X X X X X % %

COPY TPHEAD:SR

*

PSEG
IDT ‘2.7TXPSF1°
DEF XPSF1

REF .PERROR

*

*PROCEDURE XPSF1(FILID, MUL, ADD: INTEGER); EXTERNAL;

*x

SP EQU R1Q

*

TXPSF1 DECT SP
MOV *SP,R@ ;GET ADDER
DECT SP |
MOV *SP,R2 ;GET MULTIPLIER
DECT SP
MOVE *SP,R1 ;GET FILID
MUL @CONST,R2 ;EXTEND TO LONG INTEGER
ADD R@,R3 ;ADD EXTRA BYTES
XPSF ;POSITION TO BYTE

JMP TXERR

14 | PDOS Technical Notes Vol. 1 No. 2

&

C

(APPLICATIONS AND HINTS cont.)

(‘ TXERT RT

*

TXERR MOV R11,*SP+ ; SAVE RETURN
Al R@,ERHIGN+ERHLOC ; IGNORE THE ERROR BUT REPORT IT
BL @.PERROR
DECT SP
MOV =*SP,R11 ; RESTORE RETURN
JMP TXERT ;RETURN ANYWAY

CONST DATA 30000
END

5. PDOS BASIC will interpret hex strings and output the proper
character string when saved as a string variable i.e. $A=

‘<1B>*', String variables are still string variables and
cannot be compared with another string although they may
produce the same output. For example: $A = '<«41>', $B =

'A’. If $A and $B are printed, they will produce the charac-
ter A but they are not the same string. Use $A = %65%0 to
be equivalent with $A = ‘A’.

6. It is possible to have a 9900 BASIC program running and be
able to execute a monitor command from a keyboard as though
the BASIC program were not there. The following two lines

(j of code will perform the application:

100 BASE SYS 16: CRB 18=@: $INTR=%'0420 @010 @45B°': MEMW @342H=01F 15H
119 IF CRB 21: CALL #ADR INTR: MEMW @342H=01F1@H: BYE

By way of explanation, BASE SYS 16 gets vyour console CRU
base. CRB 18=0 disables interrupts on receive for that
port. The assembly language string is a BLWP to the inter-
rupt service routine followed by a RT return. The MEMW
modifies the interrupt service routine to check RBRL instead
of RINT.

Note: Enabling this feature can have some side effects for
other ports in the system which have their interrupts
disabled but are still receiving characters. This 1is the
case especially if they are higher in the task list than
your console.

¢ 15

PDOS Technical Notes Vol. 1 No. 2

(APPLICATIONS AND HINTS cont.)

The second 1line needs to be executed often in the appli-
cation. It will normally fall through unless a character is
received. A character in the receive buffer of the 9902
will cause the modified interrupt service routine to put the
character in the input buffer. Upon return from the inter-
rupt service routine, the modification is removed and
BASIC exits. The monitor then gets the received character
and any that follow. The address of the (1F10) instruction
may be different on your system but it should be near to the
0342H address.

7. 68000 SECTION labels in MASM and QLINK are used to group
sections of code together. Files of code containing section
lables will be grouped together as they are mnoted by the
assembler or 1linker even if they are from a separate include
file. For example:

SECTION @ Will compllie to SECTION @

the following
CODE A sequence: CODE A
CODE B CODE B
CODE C

SECTION 2 CODE E

CODE D SECTION 2

CODE F

CODE D

SECTION @ CODE F

CODE C SECTION 3

CODE E

CODE G

SECTION 3

CODE G

8. There have been questions about using the error trapping
feature in Pascal to catch various types of run-time errors.
The following program illustrates trapping the PDOS error
53, "File Not Found," to check whether or not a particular
file exists. This program could be used to validate user
input, search a directory for files, or to determine whether
to create a new file or append to an existing one. Similar
techniques could be used to trap the other Pascal run-time
errors.

16 PDOS Technical Notes Vol. 1 No. 2

(APPLICATIONS AND HINTS cont.)

PROGRAM TEST;

CONST
ERHIGN=0@; {" IGNORE" signal}
ERHABT=2; {"ABORT" signal}

VAR

EXISTS : BOOLEAN;
FILENAME : STRING[24];

MYFILE : TEXT;
PROCEDURE SETERR(PROCEDURE EH(VAR E,A:INTEGER));EXTERNAL;

PROCEDURE ERTRAP(VAR E,A: INTEGER);
BEGIN (ERTRAP)
IF E=53 THEN BEGIN
EXISTS := FALSE;
A := ERHIGN;
END
ELSE
A := ERHABT;
SETERR(ERTRAP) ;
END; {ERTRAP)

{Flle does not exist}

{Restore error trap}

BEGIN
SETERR(ERTRAP) ;

REPEAT
WRITE("ENTER FILE NAME ');

READLN(F I LENAME) ;
EXISTS := TRUE;
RESET(MYF ILE,F ILENAME) ;
IF NOT EXISTS THEN WRITELN('NOT THERE');
UNTIL EXISTS;
CLOSE(MYFILE;
END.

{Assume that It exists)

9. 9900 Pascal users who are writing or calling assembly code
routines which reference variables in the status block

should include the following code in their routines:

REF .PTCB ;EXTERNAL REFERENCE

MOV @.PTCB(15),RS ;GET STATUS BLOCK ADDRESS

PDOS Technical Notes Vol. 1 No. 2 17

(APPLICATIONS AND HINTS cont.)

10.

18

68000 Pascal users can also use the following to obtain
their task control block:

XREF .PTCB ; EXTERNAL REFERENCE

MOVEA.L .PTCB(A4),A6 ;GET STATUS BLOCK ADDRESS

If you fail to do this and the program uses R9 or A6 to
reference a status control block variable, you could be
referencing an undefined 1location which may cause other
tasks or your system to crash. Follow the guidelines for
register usage in section 5 of the PDOS Pascal Reference
Manual.

Accessing System Memory as Fortran Variable Space.

On occasion, it i1s necessary to write Fortran programs that

share some sort of data space. Vhat you need 1is some sort
of COMMON that extends across task boundaries, or some way
of sharing memory between tasks. The FORTRAN 77 language

specification does not offer any way of doing this; indeed,
it does not even allow for the concept of a "task," but with
PDOS Fortran and a little imagination, it can be done.

The trick 1is to take advantage of the Fortran feature that
passes all parameters by address. If you pass an array into
a subroutine, that subroutine really receives just a pointer
to the beginning of the array and makes all references to
the array 4indirectly through that pointer. What if that
pointer really pointed to the global variable space? Then
accesses to the elements of the array would really be

- reading and writing that memory out somewhere in system RAM!

You can get the address of a block of memory through various
techniques. Perhaps the easiest way is to free memory with
the PDOS »>FM command and note the address that it prints
out. This is the address of the system memory you will
use. You could write that address explicitly into your
programs, or have them read it from some sort of file. Or,
you could put the address away where everyone can easily get
it -- such as in the MAIL array.

The following program illustrates the use of the XGML call
to get the address of the MAIL array. Then, rather than
allocate memory from the system, dedicate a long word of
the mail array itself as the variable space and use another
word of the mail array to point to that space. That space
is set to a value of 100 in this example, so that it can be
exanined later to see if you got it properly.

PDOS Technical Notes Vol. 1 No. 2

C

(APPLICATIONS AND HINTS cont.)

Since the mall array 1is only 256 bytes long, you wouldn’'t
use it for large collections of data, but allocate them
elsewhere and just leave a pointer here.

It is normally safer to skip the very beginning of the mail
array (this example uses the starting address plus 8)
because BASIC tends to use that location for 1its own pur-
poses.

PROGRAM TEST2

IMPLICIT INTEGER (A-2Z)

EXTERNAL A,PASSER

CALL XGML (ENDTCB,UPPERMEM, LASTLOAD, SYRAM, TCB)

MAIL = LONG(SYRAM+4)

LONG(MAIL+8) = MAIL+16 | MAIL(@) OF BASIC MAIL ARRAY
LONG(MAIL+16) = 1020 ! MAIL(1) OF BASIC MAIL ARRAY
END

Now that you have set up the mail array, you need to call a
subroutine and pass the address of the global data to it.
You will have to use an assembly language routine. And
since the assembly language routine will need to know the
subroutine to ocall as well as the address to pass it, you
should pass both to it. That way, you can call Fortran
routines from assembly language.

PROGRAM TESTI1
IMPLICIT INTEGER (A-Z)
EXTERNAL A,PASSER

CALL XGML (ENDTCB,UPPERMEM, LASTLOAD, SYRAM, TCB) lget address of SYRAM
MAIL = LONG(SYRAM+4) Iget address of MAIL
GLOBAL = LONG(MAIL+8) ' lget address of global data
Cc

(o] Send address of global data to subroutine A via PASSER

C

CALL PASSER(GLOBAL,A)

END

SUBROUTINE A(1)

WRITE(9,*) ‘I = ', ! display value of global data

RETURN

END

PDOS Technical Notes Vol. 1 No. 2 19

(APPLICATIONS AND HINTS cont.)

PASSER MOVEA.L 4(SP),A2 ;GET ADDRESS OF ADDRESS OF

ROUTINE ‘A’

MOVEA.L (A2),A2 ;GET ADDRESS OF SUBROUTINE A

MOVEA.L 8(SP),At1 ;GET ADDR OF GLOBAL VAR

MOVE.L (A1),-(SP) ;GET VALUE OF GLOBAL VAR (WHICH
AN ADDRESS)

MOVEQ.L #1,D@ ;ONE ARGUMENT TO BE PASSED

JSR (A2) ;CALL THE SUBROUTINE

ADDQ.L #4,SP ;CLEAN UP STACK

RTS ; AND RETURN

END

20

This assembly language routine receives the pointer to the
global memory and the address of the subroutine to call. It
then calls the one with the address of the other.

The remaining difficulty 1is to make everything work to-
gether. This involves the use of the Fortran compiler, the
Fortran linker, and (to prepare the PASSER routine) the PDOS
assembler and SY file converter. The programs TEST1:FOR and
TEST2:FOR are compiled in a normal fashion. The command
lines might be:

x>F77 TEST1
x>F77 TEST2

The file PASSER:SR must be prepared by assembling it and
converting it to an SY file like this:

x>MASM PASSER:SR,#PASSER:0BJ
x>MSYFL PASSER:0OBJ,#PASSER:SUB

- The Fortran programs must now be linked with the different

support routines like this:

x>F77L TEST1,PASSER,XLIB/L,F77:RL/L
x>F77L TEST2,XLIB/L,F77:RL/L

You must run TEST2 first to set up the pointer in the MAIL
array. .

x>TEST2

Now, when vyou run TEST1, it will print the value that was
stored by TEST2.

x>TEST1
I =100

Good luck!

PDOS Technical Notes Vol. 1 No. 2

C

TIPS& | Vaey 5. 3080
TechnicalNotes

INTRODUCTION
New Release
Fortran 2.2 for the 68000 1is now available. There were some
changes since the 2.2 beta release. The release consists of a

new disk and release notice. The current manuals are unchanged.
If you desire an upgrade, please contact Karen Vanfleet at
Eyring.

Included in this issue are the following items:

¥arnings and Cautions

1. Caution - XSUI Under PDOS 3.0b
2. Caution - Using MFSAVE

Fixes., Patches., and Workarounds

Fix - Pascal Procedure Files

Fix - FxBIOSU Parity Enable

Fix -- Disk Access on VME 120

Patch - XDEV Under 3.0b and Later

Patch - MEDIT For Lines Longer Than 96

Workaround - NOT Operator in MASM

Workaround - MASM MOVEP Instruction Error

Workaround - SYRAM Location in Custom Configurations

Applications and Hints

ONOANNSWN -

1. Application - Pascal Task Data Passing
2. Hint - FORTRAN PDOS Primitive Utilization
3. Hint - Burning C Programs in ROM
4. Hint - PDOS Port Limitations
5. Hint - Force RTC Utilization and Change
6. Hint - Force PIT Alternate Uses
7. Hint - Zero RAM Disk Implementation -
8. Hint - Fine Tune Your PDOS Clock
PDOS Technical Notes Vol. 1 No. 3 1

/c »
=5 EYring / 1450 west 820 North / Provo, Utah 84601 / ‘& (801) 375-2434 / [Tx] 882-000 / (801) 374-8339

WARNINGS AND CAUTIONS

CAUTION -- 68000 PDOS 3.0b XSUI. The primitive when used to
suspend a task on event reset may not work as you expect.

The XSUI primitive suspends a task wuntil either one or two
events occur. In order to suspend on one event, the upper
byte of D1.W must be set to =zero with the 1lower byte
containing the desired event. The event number bytes are
positive if you want to suspend until the event is SET (=1).
The byte 1is negative to suspend until the event is RESET
(=0). In asembly, when you MOVE.W, MOVE.L, or MOVEQ.L a
negative number to a register, the low byte contains the
negative byte, and the other bytes are set to $FF.

For example, MOVE.W #-32,D1 yields D1 = $FFEO and MOVE.L or
MOVEQ.L #-32,D1 yields D1 = $FFFFFFEO. If these instruc-
tions are used wtih the XSUI call, there is an §FF byte for
the second event telling PDOS to suspend until either event
32 is RESET (=0) or until event 1 1is RESET (=0). Since
event 1 defaults to RESET, then the task calling XSUI never
suspends, regardless of event 32. To solve the problem in
assembly, just mask off the wupper byte with MOVE.W
#-32&$00FF,D1.

The problem is more subtle in Pascal. For example, the
statement

XSUI (Temp,-32)

only suspends wuntil either event 1 or 32 are RESET. Since
event 1 comes up RESET, the task never suspends. You can
work around this problem by setting event 1 when booting
your system (i.e. >EV 1) in the SY$STRT file.

To work around the problem in Pascal, always place a single
negative event number into the higher byte as follows:

XSUI(Temp,-32*256);

CAUTION -- Using MFSAVE. If you attempt to utilize the
MFSAVE utility to recover a file which you have inadverte-
ntly deleted, be sure to save it to an already existing file
on the same disk or create a new file on a separate disk.
If the file is created on the existing disk, it may utilize
the first sector of the file being saved. As a result, at
least one sector would be destroyed as the new file is
created.

PDOS Technical Notes Vol. 1 No. 3

&

C

FIXES, PATCHES AND WORKAROUNDS

1. FIX ——- Pascal Procedure Files. Some versions of 68000
PASCAL Rev. 2.6c may encounter an error when running the
procedure file "PASCAL". The following command line:

INPUT PTEMP&#W:POB
should be changed as follows:

INPUT PTEMP&#:POB

2. FIX —-- FxBIOSU Parity Enable. An error in the FxBIOSU files
for the FORCE CPU-1, CPU-2, and CPU-3 prevents the system
from using the SIO card with EVEN parity. The port "locks
up." Even though the UART is correctly initialized for
parity, the input interrupt is disabled and never enabled.

The following code in FxBIOSU:SR is the culprit:

BTST #5,D1 ; ENABLE?
BNE.S a006 iN
TAS.B RIER(AQ) ;Y, ENABLE INTS

Change the '5' in the first line to 'BRIN' so that it reads:

BTST #BRIN,D1 ; ENABLE?
BNE.S Q006 ;N
TAS.B RIER(AD) ;Y, ENABLE INTS

Then, "GEN" the system with FxDOS:GEN and check it again.
You should now be able to communicate through the port with
or without even parity.

3. FIX -- DISK ACCESS ON VME 120. The selected drive may not
be accessed when more than one floppy drive is installed in
VME 120 applications. To correct this problem, the follow-
ing fix should be implemented:
Under the label W$XDIT in V2BIOSW:SR

change CMPA.L DO,A2 to CMPA.L DB,A2
BEQ.S aB20 BEQ.S a030

Regenerate your system with this correction.

PDOS Technical Notes Vol. l No. 3 3

Fixes, Patches, and Workarounds (cont.)

4, PATCH —- XDEV Under 3.0b and Later. XDEV on 68000 PDOS 3.0b
or later may not set events when the system clock interrupts
and rolls the event delay queue.

The following patch should correct this problem:
A. Reboot and kill all tasks except task O.

B. Using the debugger, alter the following to disable
interrupts during the XDEV call:

01d Hex 01d Assembly New Hex New Assembly
4AED@OBE TAS.B TLCK. (AS) 807C0700 ORI.W #$08700,SR
SBC7 SMI.B D7 4207 CLR.B D7

4401 NEG.B D1 4401 (NO CHANGE)

To make the alteration, enter the PDOS debuggér and
find the address of the long word $5BC74401:

>PB
800,9000,5BC74401L
PO1FD4

Only one address should be listed. If there are more
than one, use the first one. With that address, open
the 1location with a carriage return. Use the minus
sign to step backwards two locations and enter the new
code:

C

1FD4[CR]: 5BC7-
1FD2 @OBE-

1FD@ 4AED BB7C[LF]
1FD2 P@BE B7@8[LF]
1FD4 5BC7 4287[CR]

Q return to PDOS
>

Interrupts are enabled when the XDEV primitive returns
to your task.

C. Once the patch is made, you should save the patch using
MMKBT with the M(emory) option.

This problem will be fixed in a future release and we
apologize for any difficulty it may have caused.

4 o PDOS Technical Notes Vol. 1 No. 3

Fixes, Patches, and Workarounds (cont.)

5. PATCH -- MEDIT For Lines Longer Than 96. As reported in the
previous issue of PDOS Tips and Technical Notes, a hidden
problem in MEDIT prevents the use of lines 1longer than 80
characters.

To patch the editor so that it will handle longer 1lines, do
the following:

>IM
>L0 MEDIT Load MEDIT program
>LT Note TB and BM addresses
Task Prt Tm Event Map Size PC SR T8 BM EM 11248
*0/0 64 1 0 638 0O1E94 2000 90CODDP OPEBCO DAB8OD 1 1 4 0 0
1/6 64 1 98 0 200 002686 2004 PBCDOOO PBEBCO OEEGPD 2 2 4 0 O
>PB Enter debugger
+0,FFFF,0C420050L Search for $0050
00D48 Note address
DD48[CR]BC42 BA46E[LF] Enter address from above and enter
[CR]
DD4A P050 1DDE[CR] Change next address to one

calculated above

Dump and di/sassemble to verify Instruction change to CHP.N $1DDE,D2

Q Qu/t the debugger
>SV #T7,$C500,$EBCA[CR] Save modifled MEDIT
>T FILE, 132 Try modified version

(***THE CODES IN THE ABOVE EXAMPLE MAY VARY FROM SYSTEM TO SYSTEM***)

Before the modified editor can be used you should set up the
system to handle a modified ANSI terminal to output the
proper cursor control sequence. The following example will
help you with the change:

PDOS Technical Notes Vol. 1 No. 3 5

Fixes, Patches, and Workarounds (cont.)

KAKKAEAKXARAA KA KR AR AR KRRk kkkkkkhkkhhkkhkkkkkkhkkkkkk

* (WY-50) — POSITION CURSOR
*
* IN: D1.B = ROW POSITION
* D2.B = COLUMN POSITION
* (A3) = CBO$(A6)
* OuUT: SR = .NE.
*
* MODE = <esc>arrRcccC
*
IFNE ANS
B$PSC MOVE.W #$9B00+$80+'a’, (A3)+
CLR.L DO ;CONVERT TO 32 BIT UNSIGNED
MOVE.B D1,D0 ;GET ROW POSITION
BSR.S a@ep2 ;ROUTINE TO COMPUTE OCTAL POSITIONING
MOVE.B #$808+'R', (A3)+ v
CLR.L DO ;CONVERT TO 32 BIT UNSIGNED
MOVE.B D2,D0 ;GET COLUMN POSITION
BSR.S ap@n2 ;ROUTINE TO COMPUTE OCTAL POSITIONING
MOVE.B #$80+'C', (A3)+
CLR.B (A3)+
CLR.W —(SP)
RTR sRETURN
*
aopge2 ADDQ.L #1,D0 ;BAISE ROW/COL BY 1
DIVU.W #100,D0 ;GET NUMBER OF 108S
TST.Ww DO
BEQ.S a0@n3 ;s NONE
ADDI.B #$80+'0',D0 ;OUTPUT NUMBER
MOVE.B D@, (A3)+
*
aoee3 SWAP Do ;GET 18§
: EXT.L D@
DIVU.W #10,D0
ADDI.B #$80+'0',D0 ;OUTPUT 10§
MOVE.B D@, (A3)+
SWAP Do
ADDI.B #$80+'0',D0D ;OUTPUT 1S
MOVE.B D@, (A3)+
RTS ;RETURN TO CALLER

Once the changes are made in MBIOS:SR the system must be
regenerated using the following sequence:

xxD0OS:GEN /ANS=1/CPSC=8,BASIC ,BASIC If Included

Test with xxLDGO and xxDOS.

6 | PDOS Technical Notes Vol. 1 No. 3

AN

Fixes, Patches, and Workarounds (cont.)

Set up MTERM to send the <clear screen sequence under the
user mode. Then, you will have the special cursor posi-
tioning plus the normal clear screen commands. If it 4is a
valid mode of operating, then finalize the system with the
MMKBT utility.

Note: Other terminals may now have to be set wup using the
MTERM utility since the default is ANSI. If ANSI is not the
default, drop the /CPSC=0 switch from the system generation
command. The terminal with the higher column count must
then be set using the MTERM utility for normal screen clear
and BIOS cursor position.

6. WORKAROUND -- NOT Operator in MASM. The NOT operator token
is not processed in QLINK. When doing arithmetic on XREFed
labels, the assembler produces operator tokens in the object
code output for the 1link to perform. The token produced by
the NOT symbol (~) was left out of the QLINK 1list producing
an error when INPUT to QLINK. So, don't wuse the NOT
operator (~) on expressions with XREFs in them, but simulate
it by adding and negating it. For example:

XREF LABEL
MOVE.L #~LABEL,DD

causes an error in the QLINKer, so change it to

MOVE.L #-(LABEL+1),D®

7. WORKAROUND -- MASM MOVEP Instruction Error. The 68000 PDOS
assembler MASM rev 3.0b or earlier generates an error on
the MOVEP instruction with a O offset when ALT mode is
enabled. To work around the problem, turn the ALT mode off
around MOVEP instructions. Example:

OPT NOALT
MOVEP.L @(A1),D0
OPT ALT

PDOS Technical Notes Vol. 1 No. 3 7

Fixes, Patches, and Workarounds_(cont.)

8.

WORKAROUND -- SYRAM Location in Custom Configurations. If
you make additions to the BIOS files, you must check the
link map when regenerating the operating system to make sure

that the end of operating system is less than the start of
SYRAM.

This means that you must define S$SRAM to be on a 2KB
address bound and to be greater than the highest section
address from the system generation. In the following
example, S$SRAM must be moved to address $6800 since the

link map indicates that the highest address is greater that
$6000.

From file xxDOS:MAP:

SECTION BASE LOWEST HIGHEST

E
F

Change 'DEFINE S$SRAM,$6800' to 'DEFINE S$SRAM,$6880' in file xxDOS:GEN

00000800 00000800 0POD6020
00000800 000P1720 00OR6020 <—— Greater than $6000

and rerun xxDOS:GEN to build a new system file.

PDOS Technical Notes Vol. 1 No. 3

APPLICATIONS AND HINTS

1. APPLICATION -- Pascal Task Data Passing. The following
PASCAL example illustrates how two PDOS tasks can coordinate
the passing of data. This example comprises three files:
HEADER:INC, SEND:PAS, and REC:PAS.

Flle HEADER:INC [s used to define all common var/ables and the global mall
box between the two tasks. This file Is included when SEND:PAS and REC:PAS
are complled.

FILE=HEADER: INC

AEKAKKRRRAAKRRAA AR AR A A AR AR ARk kkkkkkkkkkkhkkkhkkhkkkhkkhhkhkkki

PASCAL TASKING EXAMPLE OF GLOBAL MAIL BOX
AND PDOS EVENT FLAG SYNC.

THIS IS THE HEADER FILE FOR SHARED DATA DEFINITIONS

**}

CONST
EV_REC = 64; {PDOS EVENTS TO SYNC. ON}
EV_SEND = 65;
EV_STOP = 33; {STOP EVENT TO EXIT ALL TASKS}
TYPE
T_GLOBALS = RECORD {SHARED VARIABLES BETWEEN PDOS TASKS}
I : INTEGER;
R : REAL;
END;
VAR

GLOBAL ORIGIN 16#700080 : T_GLOBALS;{SET SHARED VARS AT SOME FREE ADDRESS.
WE WILL USE 78000 HEX. YOU MAY HAVE
TO USE SOME OTHER FREE ADDRESS}
{End of HEADER:INC} -

PDOS Technical Notes Vol. 1 No. 3 9

Applications and Hints (cont.)

¢

SEND places data iInto a mall box (common memory area) and sets an event flag
to allow the REC task to run. The program runs for 10 loops then sets an
event flag that allows the REC task to exit. This program then exlits.

FILE=SEND:PAS

ek ke kg Kk ok Kk Kk Kk Kk ok kK k ok &k k ok ok ok &k gk ok gk ik gk & %k & %k % %k & &k %k % %k 3 &k % % %k %k & % % % 5 %k %k %k %k %k d %k vk o g ok ok gk ok gk Kk ok ok k

PASCAL TASKING EXAMPLE OF GLOBAL MAIL BOX AND PDOS EVENT FLAG SYNCHRONI-
ZATION

THIS IS THE FIRST OF TWO PROGRAMS. THIS PROGRAM SENDS DATA TO THE
RECEIVER PROGRAM. EVENT EV_PROG IS USED TO SYNCHRONIZE THE TASKS.

******************************;***t*******t******************************}

PROGRAM SENDER;

{$F=HEADER: INC} {INCLUDE GLOBAL DEF FOR PROG}
VAR

TEMP : INTEGER; {TEMP VAR}

K : INTEGER; {FOR LOOP COUNTER}

{EXTERNAL PDOS PROCEDURES AND FUNCTIONS}

PROCEDURE XSEF(VAR T:INTEGER; EV:INTEGER);EXTERNAL;)
PROCEDURE XSUI(VAR T:INTEGER; EV:INTEGER);EXTERNAL; o

W/
BEGIN

XSEF(TEMP,EV_SEND); {SET SEND EVENT TO RUN PROGRAM}

XSEF (TEMP,-EV_REC); {RESET REC EVENT TO WAIT}

XSEF (TEMP,-EV_STOP); {RESET STOP EVENT REC TASK}

WITH GLOBAL DO
FOR K:=1 TO 10 DO

BEGIN
XSUI (TEMP,EV_SEND); {WAIT TILL OTHER PROGRAM IS READY}
1:=K; {SEND GLOBAL MESSAGE INTEGER}
R:=K/2; {SEND GLOBAL MESSAGE REAL}
XSEF (TEMP,EV_REC); {SET EVENT FLAG}
END; {FOR})
XSEF (TEMP,EV_STOP); {STOP OTHER TASKS}

END.

C

10 PDOS Technical Notes Vol. 1 No. 3

Applications and Hints (cont.)

REC Is used to recel/ve the data after waiting for an event flag. It then
prints the gliobal data onto the screen and tests for an exit event flag. If
the exit event flag Is set, REC exits.

FILE= REC:PAS

%ok ke Kk Kk kK Kk ok kK ok sk ok ke 3k ok ok gk %k ok 3k ok ok 3k ok ok sk ok vk gk ok ok gk ok gk ok ok ok ok Ik ok ok 3k ok ok 3k dk ok ok vk sk Ik I ok vk sk ok ok ok ok ok ok ok ok

PASCAL TASKING EXAMPLE OF GLOBAL MAIL BOX AND PDOS EVENT FLAG SYNCHRONI-
ZATION

THIS IS THE FIRST OF TWO PROGRAMS. THIS PROGRAM RECEIVES AND PRINTS DATA
FROM THE SENDER PROGRAM. EVENT EV_PROG IS USED TO SYNCHRONIZE THE TASKS.
THIS TASK RUNS UNTIL EV_STOP IS SET.

***************t***}

PROGRAM RECEIVER;

{$F=HEADER: INC} {INCLUDE GLOBAL DEF FOR PROG}
VAR

TEMP : INTEGER; {TEMP VAR}

K : INTEGER; {FOR LOOP COUNTER}

{EXTERNAL PDOS PROCEDURES AND FUNCTIONS}

PROCEDURE XSEF(VAR T:INTEGER; EV:INTEGER);EXTERNAL;
FUNCTION XTEF(EV:INTEGER):INTEGER; EXTERNAL;
PROCEDURE XSUI(VAR T:INTEGER; EV:INTEGER);EXTERNAL;

BEGIN
WRITELN;
REPEAT
WITH GLOBAL DO
BEGIN
XSUI(TEMP,EV_REC); {WAIT TILL SENDER HAS UPDATED MESSAGE}
WRITELN('REC TASK: I=',I:1,' R=',R:5:2);
XSEF (TEMP,EV_SEND); {SET SEND EVENT FLAG SO SENDER CAN RUN}
END;
UNTIL XTEF(EV_STOP)=1; {RUN THIS TASK UNTIL EV_STOP IS SET}
END

PDOS Technical Notes Vol. 1 No. 3 11

Applications and Hints (cont.)

12

First, compile and |ink SEND:PAS and REC:PAS:

>PASCAL SEND
>PASCAL REC

Next, run SEND as a background task and then execute REC. You should see
the values for | and R displayed on the screen:

>CT SEND

*Task #2

>REC

REC TASK: I=1 R= 0.50
REC TASK: I=2 R= 1.00
REC TASK: I=3 R= 1.50
REC TASK: I=4 R= 2.00
REC TASK: I=5 R= 2.50
REC TASK: I=6 R= 3.00
REC TASK: I=7 R= 3.50
REC TASK: I=8 R= 4.00
REC TASK: I=9 R= 4.50
REC TASK: I=10 R= 5.00
>

The coordination of tasks and pass/ng of data through a global memory area
can eas/ly be expanded to other variables and structures or converted to
other |anguages.

HINT -- ©FORTRAN PDOS Primitive Utilization. Below is an
example of the use of several integer function primitives
under FORTRAN. In the example, XDEV sets up a delay of
about 2 seconds on local event 128. XSUI suspends and waits
for event (97) from port 1 and the timeout of event 128.
XGCC receives characters from the port and resets the
timeout. If no characters are input, the delayed event 128
aborts the character input. Note that XDEV, XSUI, and XGCC
must be defined as INTEGER or they will not return the
desired value.

PDOS Technical Notes Vol. 1 No. 3

Applications and Hints (cont.)
PROGRAM TEST XDEV-XSUI-XGCC
INTEGER ERROR,KEY,XGCC,XDEV,XSUI,J

10 CONTINUE
ERROR = XDEV(200,128)

c TYPE 'XDEV="',ERROR
ERROR = XSUI(97*256+128)
c TYPE 'XSUI=', ERROR

IF (ERROR .EQ. 97) THEN
KEY = XGCC(9)
c TYPE 'KEY=',KEY
J=J+1
CALL XPCC(CHAR(KEY))
IF (KEY .EQ. 13) GOTO 20
ELSE IF (ERROR .EQ. -128) THEN
GOTO 110
ENDIF
GOTO 10
20 CONTINUE ;take action for [CR]
STOP 1
110 CONTINUE ;take action for timeout
STOP 2
END

3. HINT -- Burning C Programs in ROM. Variables initialized
during the compilation generate code which locate the value

in the ROM code. A variable may be modifiable

or pre-

initialized, but not both. If you desire both, declare two

variables, one i1nitialized and one not initialized.

Then

copy the initialized value to the uninitialized variable on

startup routines.

4, HINT -- PDOS Port Limitations. PDOS versions 2.6F

and 3.0

support up to 15 wuser console ports (SYRAM type ahead
buffers). The number cannot be increased since user tasks
cannot have unlimited input ports or events for input
control. Polled input could extend the number of ports as

desired but cannot be triggered by events under PDOS.

PDOS Technical Notes Vol. 1 No. 8

13

Applications and Hints (cont.)

5.

14

HINT -- Force RTC Utilization and Change. Force users can
adjust the TPS (tics per second) on the RTC, by entering the
FxBIOS:SR routine and changing the following code:

From MOVE.B #$0OF ,RAM(A2) ; INTRPT EACH 1/1@BTH SEC

MOVE.B #$F0,RAM(A2) ; INTRPT EACH 1/1000TH SEC

The system must then be regenerated using the following
command string:

>FxDOS:GEN /TPS=1088/RTCF=1

This will set the RTC clock to 1000 tiecs per second and
initialize it as the system clock.

HINT —-- PForce PIT Alternate Uses. To use the parallel
output of the PIT on your Force machine for other purposes
besides the Centronics interface, you need to change the
setup code in FxBIOSU:SR and eliminate the Centronics type
of UART.

HINT -- Zero RAM Disk Implementation. If you don't want a
RAM disk, setting the RZ=0 switch when assembling xxBIOS:SR
causes the 1nitialization code for the RAM disk to equal
zero. This switch can used during system generation to
define a =zero size RAM disk on startup. This switch can be
defined in MBIOS:SR or passed to the assembler on the
command line.

->MASM SSBIOS:SR/RZ=ﬂ/IRD=0.0BJFILE.LISTFILE

HINT —— Fine Tune Your PDOS Clock. Would you like to fine
tune your PDOS clock to be as accurate as your $5.00 watch?
Read on.

CPU crystals do not run exactly at the posted speed. Many
PDOS system TIC timers, from which the clock 1is derived,
come from the processor's crystal. As such, the PDOS clock
is notoriously wrong. It is not because we don't know how
to count, but because the numbers printed on crystals are
close together.

The following process takes a day or two, and can only
adjust time-and-date clocks that run SLOW. If yours runs
fast, you need to increase the TIMEC, timer counter load
constant, in your xxBIOS:SR file.

PDOS Technical Notes Vol. 1 No. 3

Applications and Hints (cont.)

Once you have your timer running SLOW, you need to determine
how many TICs per second (TPS) there are in your system.
This number can be found in the Installation and Systems
Management Guide for your system or in the xxBIOS:SR file.
Force CPU-1 is used in this example. All the following code
is found in the F1BIOS:SR file, and corresponding code for
your system should be in the appropriate xxBIOS:SR file.

IFUDF TPS :TPS EQU 100 ; TICS/SECOND

Now, suppose you set the PDOS clock to match your watch
exactly at NOON, and the next day at NOON the PDOS clock is
exactly 30 seconds slow, reading 11:59:30, then you have all
the information needed to set CLKADJ. The PDOS clock lost
30 secs 1in exactly 24 hrs = 1,440 mins = 86,400 secs. So
you need to add 1 TIC every 86400/3000, or 28.8, seconds.
Now every second the B$LED BIOS routine is called from PDOS,
in addition to blinking an LED, this routine does the clock
adjustment. It does this by adding the CLKADJ value to a
32-bit counter every second, until it rolls over to zero, at
which time it adds 1 to the TIC fine counter. The blink LED
routine has the following code:

L2 222222 22 2SS 2222222222222 22222222 2]

* BLINK LED & ADJUST CLOCK
*
BSLED MOVE.L B_CLK(A®),D@ ;ADJUST CLOCK?
BEQ.S apge2 N
ADD.L D@,BCLK.(A5) ;Y, ADJUST COUNT, CARRY?
BCC.S apo02 :N |
ADDQ.W #1,FCNT.(A5) ;Y, UP COUNTER
*
apep2 RTS ;RETURN

This code will add a TIC whenever the 32-bit sum rolls over
at 0, or ©put another way, when a number added to itself
reaches 2"32. To find the CLKADJ number that will add 1 TIC
every 28.8 seconds, use the following equation (thanks to
Ward Horner):

CLKADJ = 2432 * TPS * (secs lost) / (total measured secs)

In the example, CLKADJ = 2"32*%100%30/86400, which equals
149130808.9 decimal, or $08E38E38 hex. You can now go into
the debugger and alter the B_CLK value in the currently
running BIOS table to try it immediately.

PDOS Technical Notes Vol. 1 No. 3 15

Applications and Hints (cont.)

16

2>PB Enter debugger

B(5) ‘ SYram points to BI/0OS table
0000ACOD: 0000 Table Is at $OO000AAD
DDODABD2: DAAD

AAD: FFFF B_CLK Is offset 8

PPOODAA2: FDGE
PBOABAA4: 5637
PDODOBAAG: D064

D0POOAAS: 00OD PBE3[LF] Enter upper word & [LF]
DOPOOAAA: 0000 BE3B[CR] Enter Iower word & [CR]
Q You’'re done

2>

SYSGEN a new PDOS with the F1DOS:GEN file, temporarily
setting CLKADJ. To generate a new PDOS system, using our
value to predefine CLKADJ, type:

>F1D0S:GEN CLKADJ=149138809

Then, iterate on this value by setting the PDOS clock, now
coarsely adjusted, to match your watch, and then seeing the

12 or 24 hour delta error. Then, adjust the value of
149130809 up or down by the newly calculated value, until
the required accuracy 1is reached. Finally, to set this

value once and for all, for this one CPU card at least,
alter the F1BIOS:SR file 1ine that sets the default CLKADJ
value by replacing:

IFUDF CLKADJ :CLKADJ EQU @ ;CLOCK ADJUST
with
CLKADJ EQU 149130809

Make sure that you write your new PDOS out to your boot
disk. Now your PDOS clock will have improved accuracy.

PDOS Technical Notes Vol. 1 No. &

‘:

- o a JJ
L) .
9

(Tip

Vol. 1 No. 4
July 1, 1986

TechnicalNotes

INTRODUCTION

Current Product Status

1. New PDOS Revision for 68020 Microprocessors
2. New Pascal Revision for both 68000 and 9900 PDOS
3. Floating Point Routines for Assembly Code

Warnings and Cautions

1. Caution 102 Boot Responses
2. Caution C Array Declarations
3. Caution 68000 BASIC R3.0b - Negative Line Numbers
4. Warning FORTRAN 77 R2.2 (M81:RL)

\ 5. Warning FORTRAN 77 R2.2 (68020)

{) 6. Warning FORTRAN 77 R2.2 (68000)
' 7. Warning BASIC 3.0b - Calls to Assembly Programs

Fixes., Patches, and Workarounds

1. Workaround - BTST Instruction
2. Workaround - FORTRAN Byte and Word Constant Passing

Applications and Hints
1. Application - VME/10 Function Key Implementation
2. Application - Save Year in 58167 Battery Clocks
3. Application - Pack/Unpack Boolean Data in Pascal
4. Application - C Program Interrupt Trapping
5. Application - Protect BASIC Programs From Being Listed
‘;/ PDOS Technical Notes Vol. 1 No. 4 1

YE@ EYring / 1450 West 820 North / Provo, Utah 84601 / ‘T (801) 375-2434 / [Tx] 882-000 / [Fax] (801) 374-8339

CURRENT PRODUCT STATUS

A new release of PDOS (3.1) has been made for 68020 micro-
processors. The release supports additional primitives and
monitor commands as well as fully supporting the 68881
floating point chip.

PDOS Pascal has been upgraded to revision 3.0 for both 9900
and 68000 PDOS systems. Both the software and documentation
have been significantly upgraded. If you wish to receive
the Pascal revision upgrade, you must call or send a card to
Eyring Research Institute, Inc., PDOS Customer Service, 1450
West 820 North, Provo, UT 84601, (801) 375-2434, Telex
882000. The Pascal upgrade is free of charge to warranteed
Pascal customers but you must request it.

A special product disk has been made available which
includes routines for single precision and double precision
floating point calculations. Documentation assists the user
in making the various floating point calls. This replaces
the unsupported Fline commands from earlier versions of
PDOS. Implementation includes 32 and 64 bit floating point

routines. The floating point routines include the follow-
ing:

* FLOATING ADD/SUB

* FLOATING COMPARE

* FLOATING DIVIDE

* INTEGER TO FLOAT

* FLOATING MULTIPY

* LOCAL SUPPORT -- NORMALIZE NUMBER

* LOCAL SUPPORT -- FIX EXPONENTS FOR MUL/DIV /ETC

* ROUND/TRUNCATE

* TRANS FUNCTIONS ARCTAN

* TRANS FUNCTIONS ERROR CONTROL

* TRANS FUNCTIONS EXP

* TRANS FUNCTIONS LOG (LN)

* TRANS FUNCTIONS BREAK NUMBER INTO INTEGER AND FRACTION
* TRANS FUNCTIONS FIX THE FPAC AND STACK FOR TRANS CAL
* TRANS FUNCTIONS EVAL POLYNOMIAL (LOCAL FUNCTION)

* TRANS FUNCTIONS SIN/COS

* TRANS FUNCTIONS SQUARE ROOT

* LOCAL SUPPORT -- SHIFT RIGHT 1 HEX DIGIT

* LOCAL SUPPORT -- SCALE FLOATING POINT

PDOS Technical Notes Vol. 1 No. 4

A

e

C

WARNINGS AND CAUTIONS

1. CAUTION - 9900 wusers when responding to the boot device
selection options, you must wuse the wupper case 'Y' or the
device will not be installed.

2. CAUTION - C array declarations specify an array size. The
subscripts are 0 to size-1. For example,

int a[5]
will give the following array elements:
a[@], a[1], a[2], a[3], a[4]

C allows you to index outside the subscripts (i.e. a[5] or
al10]). You should note that other variables will be
modified if you write to variables outside the 1limits of
the declaration.

3. CAUTION - Documentation Change - 68000 BASIC 3.0b will not
accept negative line numbers as documented on page 1-43 of
the BASIC Reference Manual. The largest number accepted is
32767. Any higher number will be ignored.

4. WARNING - A bug has been noted in the ABSOFT FORTRAN (R2.2)
(; M81:FL runtime library. A patch has been made by ABSOFT and
will be made available when it 1is received. In the mean-
time, the wuser should use the F77:RL library. It will
perform satisfactorily with little loss in efficiency.

5. WARNING - The FORTRAN 77 R2.2 implementation of the
ATAN2(al,a2) and ANINT(al) give faulty results when run on
the 68020 microprocessor with the 88881 floating point
processor and the F77:RL floating point 1library. The
division which should occur in the ATAN2 function does not
occur and the result is the arctan of the first value. The
ANINT function seems to pass the value of a nearby variable.
These bugs have been reported to ABSOFT for their correc-
tion.

6. WARNING - The COS(0.0) function in FORTRAN 77 R2.2 on 68000
microprocessors gives a number slightly greater than 1.0
and, as a result, gives an error when you attempt to
execute the ACOS function on the result of the C0S(0.0)
function. This is also true of the SIN function when the
argument 1is PI. This problem seems to result from the
rounding option used in these functions.

(“ PDOS Technical Notes Vol. 1 No. 4 3

Warni

7.

BTSTX

* X ¥ N

ngs and Cautions (cont.)

WARNING - When chaining to an assembly program from BASIC
3.0b on the 68000 wusing the RUN command, register A5 does
not point to SYRAM as 1s -expected. Placing the XGML
primitive at the ©beginning of the assembly program will
initialize the registers to their proper values.

FIXES, PATCHES, AND WORKAROUNDS

WORKAROUND - 68000 MASM Rev. 3.0b rejects the immediate
desgination addressing mode for the BTST instruction. The
following macro will permit the instruction to be assembled
properly:

BTST.B D,#$06 ;TEST BIT IN REGISTER
MACRO

DC.W $013C+($&1-$D0)<<9,82

ENDM

The instruction is included in the code using the
following call:

BTSTX D1,$06

Proper assembly of the code will be implemented in a future
release of MASM.

WORKAROUND - Some wusers of FORTRAN 77 R2.2 and earlier
desire to pass constants as INTEGER*2 or INTEGER*1 format.
This can be accomplished by multiplying the constant by
256"2 for WORDS and 256"3 for BYTES. This conversion is
necessary because constants are defined as 32 bits and are
always passed in INTEGER#*4 format. Code that may work on
other systems does not work on the 68000 microprocessors
because of the hardware addressing mode.

Since variables have TYPE, they can be defined as INTEGER*1,
ete., and can be passed as such.

PDOS Technical Notes Vol. 1 No. 4

APPLICATIONS AND HINTS

1. APPLICATION - A number of PDOS VME/10 wusers would 1like to
use the function keys in the PDOS editor MEDIT. The VME/10
keyboard is not a standard ASCII keyboard, and as a result,
the keys must be interpreted by the BIOSU routines. A set
of tables permit the keys to be decoded and send the ASCII
code to the computer. You can customize your keyboard to
fit your needs. Just replace the hex code for the key to
the desired value in the VOBIOSU:SR file and then regenerate
the system using VODOS:GEN. To test the change wuse the
VOLDGO ,VODOS command. Once the keyboard is configured the
way you want it, make the change permanent with MMKBT.

CAUTION: Be sure not to change the relative location of the
hex values 1in the table since this could affect
more than the keys you are trying to change.

2. APPLICATION - On systems which contain the 58167 Real Time
Clock and do not use this clock for the system clock, there
is a patch which will permit the year to be saved in the RTC
RAM.

In MTIME:SR at the label CLCKTB, make the following change:

change: DC.W SYRS.,0,18,$18,99
to: DC.W SYRS.,19,18,$18,99

This change saves the PDOS year in the RAM Hundreths and
Tenths of Seconds area of the RTC when the MTIME B code is
executed. Once stored, the year can be read into the PDOS
system by the 'MTIME P' command.

On FORCE CPU-1 systems, a change in the F1BIOS is required
to prevent this RAM area from being overwritten during

initialization.
change: MOVEP.L DO,RAM(A2) :SET RAM COMPARE ALWAYS
to: MOVEP.W D@,RAM+4 (A2)

Generate a new system and test it using the 'xxLDGO ,xxDOS'
command. If it is what you want, make the boot permanent
using MMKBT.

To wupdate the year from the PDOS clock on unattended

systems, a task should periodically update the battery clock
by running the 'MTIME B' utility.

PDOS Technical Notes Vol. 1 No. 4 5

Applications and Hints (cont.)

3. APPLICATION - The following Pascal program shows two proce-
dures, "PACKIT" 'and "UNPACKIT," which can be used to pack
any boolean array into any other array type and to unpack
the array back into a boolean array. These procedures can
be modified so that various bit widths can be handled.

You should also notice how PACKIT and UNPACKIT parameters
are declared as pointers to an array. This allows the ADR
function to be used by the <calling procedure in passing
arrays of any sigze.

TYPE

{$A=1}
BYTE = -127..127; {A Byte}
WORD = -32767..32767; .
TBOOLARY = ARRAY [1..10] OF BOOLEAN; {Some Boolean array}
TPACK_ARY = ARRAY [1..2 {DUMMY}] OF BYTE; {Some dummy array}
TPTR_ PACK _ARY =ATPACK_ARY; {Pointer to dummy array}

VAR
BOOLARY,
BOOLARY2 : TBOOLARY;
I : INTEGER;

PACKWORD : INTEGER; (Y
g

PROCEDURE PACKIT(DEST,SRC : TPTR_PACK_ARY; ELEMENTS:WORD);
{Pack ELEMENTS number of the SRC Boolean array into the DEST bit array.}
VAR
SRC_INDEX : WORD;
BYTE_INDEX : WORD;
DEST_INDEX : WORD;
BYTE_PTR : ABYTE;
BEGIN
DEST_INDEX:=1;
SRC_INDEX:=1;
REPEAT
BYTE_PTR:=ADR(DESTA[DEST_INDEX]); {SET UP POINTER FOR FASTER CODE}
BYTE PTRA:=0;
BYTE_INDEX =1;
REPEAT
BYTE_PTRA:=BYTE_PTRA* 2;
BYTE_PTRA: =BYTE PTRA + (SRCA[SRC_ INDEX] AND 1);
SRC_INDEX:=SRC INDEX+1;
BYTE_INDEX: -BYTE_INDEX+1;
UNTIL (BYTE_INDEX>8);
DEST_INDEX:=DEST_INDEX+1;
UNTIL SRC_INDEX>ELEMENTS;
END; ﬂ;
)

6 ' PDOS Technical Notes Vol. 1 No. 4

Applications and Hints (cont.)

PROCEDURE UNPACKIT(DEST,SRC : TPTR_PACK_ARY; ELEMENTS:WORD);
{UNPack ELEMENTS number of the SRC bit array into the DEST Boolean array.}
VAR

SRC_INDEX : WORD;
DEST_INDEX : WORD;
BIT_MASK : WORD;
BEGIN
DEST_INDEX:=1;
SRC_INDEX:=1;
REPEAT
BIT_MASK:=16#80;
REPEAT
DESTA[DEST_INDEX]:=(SRCA[SRC_INDEX] AND BIT_MASK) DIV BIT_MASK;
BIT_MASK :=BIT _MASK DIV 2;
DEST_ INDEX-—DEST INDEX+1;
UNTIL™ (BIT_MASK= #) OR (DEST INDEX>ELEMENTS);
SRC INDEX:=SRC INDEX+1;
UNTILC DEST_ INDEX>ELEMENTS
END;

{Main program to test the pack/unpack}

BEGIN
BOOLARY[1]:=TRUE;
BOOLARY[2]:=FALSE;
BOOLARY[3]:=TRUE;
BOOLARY[4]:=TRUE;
BOOLARY[5]:=FALSE;
BOOLARY[6]:=FALSE;
BOOLARY[7]:=FALSE;
BOOLARY[8]:=TRUE;
BOOLARY[9]:=TRUE;
BOOLARY[10]:=TRUE;

PACKWORD:=-1;
PACKIT (ADR(PACKWORD),ADR(BOOLARY),18);
WRITELN;

WRITELN('PACKWORD="',PACKWORD:-1);
UNPACKIT(ADR(BOOLARY2),ADR(PACKWORD),10);
WRITELN('COMP UNPACK TO NEW');

FOR I:=1 TO 10 DO
BEGIN
WRITELN(BOOLARY[I]:10,BOOLARY2[I1]:10);
END;
END.

PDOS Technical Notes Vol. 1 No. 4 7

Applications and Hints (cont.)

4.

*

APPLICATION - Some of you have asked how to write a C
program that traps interrupts and reacts to them in some
fashion. Unfortunately, it 1is not possible to do the
job completely in C. When an interrupt arrives, you MUST
save all registers, or the thing that you interrupted is
probably going to be corrupted. When an interrupt occurs,
the 68000 processor saves the current status register,
switches to supervisor mode (and the supervisor stack), and
saves the o0ld status register and the old program counter on
the stack. It then jumps indirectly through the interrupt
vector. The routine called must exit via an RTE instruction
to restore the old program counter and status register.

These operations must be accomplished in assembly, since
there 1is no straight-forward way to do them in C. The
following code illustrates a stub that handles an interrupt
by saving the current environment and calls a C subroutine
to perform the majority of the function:

PINT:SR —— ASSEMBLY INTERFACE

XDEF .PINT
XREF .INTSUB

.PINT MOVE.W #8$2700,SR ;DISABLE INTS

*

MOVEM.L DB-A6,-(A7) ; SAVE REGS
JSR . INTSUB ;CALL C SUBROUTINE

PINT@4 MOVEM.L (A7)+,D0-A6 ;RESTORE REGS

RTE ;RETURN & HOPE
END

WARNING: In PDOS, the supervisor stack is not very big. If
you intend to perform a large amount of work from
the interrupt routine, you may need to save the
0ld supervisor stack pointer and set up a new one
that points to a larger stack area before calling
the C subroutine. Naturally, you would then
restore the 0ld supervisor stack pointer when the
C subroutine returns to the assembly code.

To set wup this stub so that it will be called on the
appropriate interrupt, force load the dinterrupt vector to
point to the stub. The interrupt vector here is at address
$10C, which is the interrupt for the third port on a FORCE
SI0 card. You must determine the interrupt vector for your
own interrupt.

PDOS Technical Notes Vol. 1 No. 4

(E

AN

C

Applications and Hints (cont.)

When the interrupt occurs, the assembly routine PINT saves
the registers on the stack, disables interrupts, and comes
here. In this sample program, we will read the data from
the interrupting port and output it to our own port. Only a
limited number of PDOS functions are allowable during an
interrupt. For instance, you may set or clear an event, set
some global flag, or put data in a block of memory common
to the interrupt code and some task. You may not do
anything that requires knowledge by PDOS of a particular TCB
because you do not know which TCB to use when you are in an
interrupt. Thus, you may not use XPCC, XSTM, or XSWP.

/* C SUBROUTINE CALLED FROM INTERRUPT */
intsub()
{
register char *input,*output;
register char ch;
input = @xb00100; /* BASE ADDRESS FOR PORT 5, SIO-1 */
output = Bxf40000; /* BASE ADDRESS FOR PORT 1, MPCC */

#define rcvstat 1
#define rcvdata 3
#define xmtstat 9
#define xmtdata 11

if (input[rcvstat] & 8x80)(/* check for data available*/
ch = input[rcvdata]; /* read char from port */
while (output[xmtstat] &B@x80 == @) /* hang until ready */
outpﬁt[xmtdata] = ch; /* write data to port */
flag = ~flag; /* toggle flag for main */

Once the interrupt vector i1is initialized, the C program can
continue with non-critical functioning, or simply go into a loop
executing an endless series of "XSWP" i1instructions. In this
example, we will put asterisks to the screen until we read a
character from the keyboard. At that point, we will restore the
interrupt vector to its previous value and exit.

We will demonstrate that the main-line code can communicate with
the interrupt routine by testing the variable 'flag' and printing
either dots or asterisks. The interrupt routine will then toggle
this flag each time it is called.

PDOS Technical Notes Vol. 1 No. 4 "9

Applications and Hints (cont.)

gxtern pint; /* assembly language interrupt service routine */
int flag; /* flag that communicates between main and intsub */
main()

{

/* INITIALIZATION CODE */
#define INTVEC *(long *) Ox10c

long intsave;

flag = 0; /* initialize flag to false */
intsave = INTVEC; /* preserve old interrupt vector */
INTVEC = &pint; /* set interrupt vector to point to PINT */

/* OUTPUT ASTERISKS OR PERIODS WHILE WAITING FOR A KEYBOARD CHAR */
while (xgcc() == -1) xpcc(flag ? '*' : '.");
/* TERMINATION */

INTVEC = intsave; /* restore vector */
printf("\n that's all, folks!");

5. APPLICATION - To make your BASIC software so it cannot be
listed, you should (1) use the NOESC command, (2) utilize an
error trap to prevent the program from being interrupted,
(3) purge all the code from memory on exit, and (4) save the
file with the SAVEB command.

The following example illustrates a method of protecting
your code:

5/

10 ' PDOS Technical Notes Vol. 1 No. 4

Applications and Hints (cont.)

2>SAVE

THIS PROGRAM IS PROTECTED AGAINST UNAUTHORIZED VIEWING
ENTER YOUR NAME: DAVID

HELLO DAVID

ENTER YOUR PASSWORD: PASSWORD

STOP
LIST
10
20
30
40
50
60
65
70
80
100
110
120
200
210
RUN
THIS

at line 75

NOESC
DIM NAME[3]

ERROR 200
PRINT '**THIS PROGRAM IS PROTECTED AGAINST UNAUTHORIZED VIEWING**'
INPUT 'ENTER YOUR NAME: ';$NAME[0]
PRINT 'HELLO ';$NAME[0]

INPUT 'ENTER YOUR PASSWORD: ';$NAME[2] ,

IF $NAME[@]='PASSWORD': ESCAPE : STOP !THE CODE CAN BE VIEWED
IF $NAME[@]<>'PASSWORD': GOTO 200

I=KEY[@] ! THIS REPRESENTS ANOTHER WAY TO PROVIDE AN ESCAPE
IF I=1: GOTO 218 !'AA PERMITS VIEWING ALSO

GOTO 100

PURGE 10 TO 120

BYE

PROGRAM IS PROTECTED AGAINST UNAUTHORIZED VIEWING

ENTER YOUR NAME: DAVID
HELLO DAVID
ENTER YOUR PASSWORD: TEST

2>EX

*READY

LIST
200
210

BYE

2>

PURGE 10 TO 120
BYE

PDOS Technical Notes Vol. 1 No. 4 11

TIPS& | Septezgéé i,Ngésg
TechnicalNotes

INTRODUCTION
Product Status
1. Updates and Current Revisions
Harnings and Cautions)
1. WARNING - Force WFC-1 Disk Init. Kills BINTB Vectors
2. CAUTION - Transferring Files Using MBACK or BACKUP
3. CAUTION - QLINK S-record Limits
4. CAUTION - Locating PDOS in Memory
5. NOTE - Assigning PASCAL String Length in STRNG(O0)
6. NOTE - MLIB (3.1 PDOS 68020) Default File Size
7. DOCUMENTATION NOTE - Number of PDOS Tasks

i

1. FIX - MFRMT Problem When Using Multiple Winchesters
2. WORKAROUND - atan2() in C
3. WORKAROUND - Multiple Variable Assignments Fail in C
4, WORKAROUND - Structures in C
5. WORKAROUND - SGN Function in 68020 BASIC 3.1
- Applications and Hints
1. HINT - Changing ASCII Output on 9900 Systems
2. HINT - Debug Tracing Window Usage
3. HINT - Customizing JEDY on 9900 Systems
4, HINT - QLINK Runmodule Data Separation
5. HINT - Using PDOS 3.0 Floating Point Routines from Assembly
6. HINT - Method for Extended I/0 Drivers: EXT:SR
7. HINT - Changing ASCII Output on Force CPU-1 Systems
8. HINT - Direct Memory Access From C
9. HINT - Performance Increases on PDOS
PDOS Technical Notes Vol. 1 No. § o 1

EYTing / 1450 west 820 North / Provo, Utah 84601 /& (801) 375-2434 / [Tx] 882-000 / [Fax] (801) 374-8339

PRODUCT STATUS

Following i1is a 1list of current revision 1levels of PDOS and
supported languages. Those products preceded with an asterisk
have just been updated. You may request an updated version of
the products by contacting PDOS customer service and giving them
your product serial number.

* 68000 Pascal Rev. 3.0a

* 9900 Pascal Rev. 3.0a
68000710 PDOS Rev. 3.0Db
68000710 BASIC Rev. 3.0b
68020 PDOS Rev. 3.1
68020 BASIC Rev. 3.1
68000 C Rev. 1.2c

* Absoft FORTRAN-77 2.2b

2 PDOS Technical Notes Vol. 1 No. §

‘\m;,/‘

WARNINGS AND CAUTIONS

1. WARNING - Force WFC-1 disk initialization kills BINTB
vectors. If you are wusing PDOS on any Force CPU with
a WFC-1 disk controller, you will run into trouble if you
try to add any interrupt vectors to the BINTB table. XDITW,
the disk initialize routine for the WFC-1, reads Winchester
drive header information into a temporary buffer. The 256-
byte ©buffer starts at location $2FC, according to the
FxBIOSW:SR code excerpted below:

" 'MOVE.B D6,D@

MOVEQ.L #$00,D1 ;SECTOR @

MOVEQ.L #$20,D2 ; READ COMMAND

LEA.L P$SASF-$104,A2 ;GET FAKE BUFFER ADDRESS

BSR WFCXX ;DO A READ SECTOR @)
BNE.S Q070 ;READ ERROR, DO NOT INSTALL DRIVE

LEA.L DEFALTW(PC),A1 ;GET DEFAULT WrC PARAMS
LEA.L P$SASF-$104,A2 ;GET HEADER DATA AREA

anse BSR.L DOIT ;MOVE DATA DOWN

Since P$SASF is at $0400, then A2 is set to $0400 - $0104 =
$02FC. Though this would seem to work fine, if you try to
add an interrupt routine to the BIOS and an entry in the
BINTB for wuser vector #200, the interrupt routine address
will be loaded by the kernel to vector 1location $0320, but
XDITW will read disk data over it, from address $2FC to
$§3FB. As such, user vectors #191 through #254 will be
destroyed.

The simplest solution is to use a 256 byte buffer somewhere
else, for example, at location $0700. Do this by changing
the following two instructions:

from ...
LEA.L P$SASF-$104 , A2 ;GET FAKE BUFFER ADDRESS
LEA.L P$SASF-$104,A2 ;GET HEADER DATA AREA

to ...
LEA.L $0700,A2 ;GET FAKE BUFFER ADDRESS
LEA.L $0700,A2 ;GET HEADER DATA AREA

This change solves the problem. All future PDOS releases on
the Force WFC-1 systems will incoporate the change.

PDOS Technical Notes Vol. 1 No. § 3

Warnings and Cautions (cont.)

2. CAUTION - The MBACK utility on 68000 systems and BACKUP on
9900 systems causes the destination disk to become like the
source disk. Don't make the mistake of trying to use this
utility to transfer files from your floppy disks to a larger
size PDOS disk. The 1results will be disastrous. Use
MTRANS, TF, or CF on 68000 systems and TRANS and CF on 9900
systems. The backup utilities (MBACK and BACKUP) can be
used to speed the transfer of files to floppy size disks on
the Winchester and otherwise ©backing up entire disks onto
blank disks. Move individual files or groups of files with
the other utilities or monitor commands.

3. CAUTION - QLINK SRecord limits. If you are burning EPROMs
using SRecords that are output from QLINK, BEWARE! The
SRECORD command of QLINK has three parameters, [sadr],
[eadr], [adr], for start address, end address, and SRecord
base address. The start and end addresses are interpreted
as absolute addresses, not buffer offsets or section
values. Be careful when you enter the end address para-
meter, [eadr]. The 1last byte that QLINK outputs is from
address [eadr] minus 1. Thus, to output 16k bytes (16384)
into SRecords from QLINK, you need to enter:

SRECORD $0000,%4000,0 correct N
SRECORD $0000,$3FFF,0 incorrect

The incorrect example only outputs 16383 bytes, leaving a
byte of $FF in your EPROMs for you to find 1later on, when
it doesn't work. So 1f you are breaking wup a large file
into SRecords to burn separately, use the following example
as a guide:

SRECORD $0000,$4000,0 correct
SRECORD $4000,$8000,0
SRECORD $8000,$C000,0

SRECORD $0000,$3FFF,0 Incorrect
SRECORD $4000,$7FFF,0
SRECORD $8000,$BFFF,0

The [eadr] parameter should actually be [eadr+1] and the
SRECORD format SRECORD [sadr],[eadr+1]{.,[adr]}.

4 | PDOS Technical Notes Vol. 1 No. 5

Warnings and Cautions (cont.)

4. CAUTION - Although PDOS may reside at any 1location in
memory, you may not relocate PDOS without adjusting the
location of SYRAM. The xxLDGO wutility will relocate SYRAM
for you but MMKBT does not. It is necessary to adjust the
SYRAM location (S$SRAM in xxDOS:GEN) and regenerate the
system to properly relocate PDOS in memory.

5. NOTE - It is possible to set the length of a PASCAL string
by assigning the value to the zero element as in:
STRNG[@] := CHR(5); {five character string}

Be cautious when doing this, as some string operations
manipulate the 1length as a 16-bit word. If any garbage is

left in the high byte, it could cause problems. A good
practice 1s to clear the upper byte of the length as
follows:

STRNG[-1] := CHR(@);

6. NOTE - Some 68020 users have experienced a problem with
large library files when using the MLIB utility. Unless you
include the [#sect] parameter, the size of MLIB:TMP is set
at 100 sectors. If that size is too small to hold your
library, the library setup will fail on PDOS error 56. See

page 7-29 of the 68020 3.1 PDOS Reference Manual for details
in using this utility.

7. DOCUMENTATION NOTE - The PDOS Reference Manual page 2-4
indicates that "Up to 32 independent tasks can reside in
memory and share CPU cycles." But, by changing the 'NT'
parameter in the MSYRAM module, PDOS can be configured to
handle up to 128 tasks. This change will be made to future
printings of the PDOS documentation.

PDOS Technical Notes Vol. 1 No. & 5

FIXES, PATCHES AND WORKAROUNDS

FIX - An error in MFRMT:SR causes problems when you attempt
to install multiple Winchester disks on a system. By making
the following changes to MFRMT:SR, you can correct this
problem:

Under label @@ZZ, change the following code:

MOVE.L A1, (A3) ;SET DRIVE DATA DEFINITION
BSR.L RDHED ;READ HEADER
BEQ.S a@BB ; 0K
to:
MOVE.L A1, (A3) ;SET DRIVE DATA DEFINITION
adRL REG A1/A2/A3 .
MOVEM.L aRL,-(A7) ; SAVE SOME CRUCIAL REGISTERS
BSR.L RDHED ;READ HEADER
MOVEM.L (A7)+,aRL ;RESTORE THEM
BEQ.S Qa@BB ; 0K

Reassemble the source code and then follow the disk setup
and format procedures in the installation guide.

WORKAROUND - The atan2() function in C does not work s
properly. To provide a fix which will permit the function
to work, edit the file 'math.h' using the following command:

SMEDIT (math.h)[CR]
Change the Iine containing the atan2 declaration as follows:

/*double atan2();*/
#define atan2(x,y) atan((x)/(y))

Save the modified file 'math.h'. The atan2() function can
then provide the correct result; i.e. atan2(l,1) gives
0.785398 radians. To convert this number to degrees,
multiply the result by 180/pi where pi can be computed by pi
= 4%atn(1).

C

PDOS Technical Notes Vol. 1 No. §

Fixes, Patches, and Workarounds (cont.)

3. WORKAROUND -~ The following example which deals with bit

fields will not work properly with the
(1.2c) of the C compiler. The bit field

current version
will not be

assigned the value 1. To resolve this problem, do
multiple variable expressions within the same assignment

statement. This problem will be corrected in
release of the C compiler.
struct ab {
unsigned a : 1;
unsigned b : 1;
b
main()
{
struct ab z;
z.a=2z.b=1;
}
4. WORKAROUND - A PDOS wuser has experienced a difficulty in
using structures in C Rev. 1.2c. The assembly
- was generated would not permit the program to run unless a
(change was made before compiling.

not use

the next

code which

The following example and workaround illustrates

problem.

typedef struct { unsigned int a[9]; } b;
struct { b c[8192];]} *d;

main()

int x;

int i,j;

d = (unsigned int *)Bx10;
i = 8191;

d =5;

x = d->c[i].a[j];

}

The above code compiles to the following:

(: Continued

PDOS Technical Notes Vol. 1 No. 5

Fixes, Patches, and Workarounds (cont.)

XDEF .MAIN
SECTION @
.MAIN EQU *
LINK A6,#-10
*LINE 9
MOVE.L #%$10,.D
*LINE 10
MOVE #8181,-4(A6)
*LINE 11
MOVE.L #5,.D
*LINE 13
MOVE -4(A6),D@
MULS #18,D®0
MOVE -6 (A6),D1
ASL #1,D1 < These two |/nes
EXT.L D1 < should be swapped
ADD.L D1,D0O
ADD.L .D,DO
MOVE.L D@,AD
MOVE (AD),-2(A6)
L1 EQU *
UNLK A6
RTS
SECTION 1 P
SECTION 2 W/
EVEN
SECTION 1
EVEN
END

A workaround for this problem is to typecast the integer
variable j to a long value.

x = d->c[i].a[(long)j];
The code will then be generated in the proper sequence.
5. WORKAROUND - The SGN function in 68020 BASIC 3.1 does not
work properly on floating point numbers. To use this

function at present, substitute SGN(INT(X)) for SGN(X).

This function will be fixed in a future release.

8 ' PDOS Technical Notes Vol. 1 No. 5 ‘j

APPLICATIONS AND HINTS

1. HINT - Changing ASCII output on 9900 systems can be accom-
plished by changing the 9902 control register constant in
PDOS and rebauding the port. On most systems, this value is
stored at 086H and contains the value 6200H. There 1is a
bias to O0A6H on PDOS 102 sytems. This sets the output of
the 9902 to 7 bits even parity and 2 stop Dbits. The
following table should allow you to select a configuration
for your ASCII output string.

CONSTANT CHARAGTER PARITY . STOP
LENGTH STATUS BITS
4200H/5200H 7 NONE 2
4300H/5300H 8 NONE 2
6200H 7 EVEN 2
6300H 8 EVEN 2
7200H 7 OLL 2
7300H 8 0DD 2
8200H 7 NONE 1
8300H 8 NONE 1
A200H 7 EVEN 1
A300H 8 EVEN 1
B200H 7 0DD 1
B300H 8 0DD 1

This value can be changed using the 9900 BASIC statement:
MEMW(86H)=<constant in hex>

The MIAC utility can be wused to view the 9902 control
register constant and change it if desired.

If you wish to retain the new I/0 conditions then save the
change using the BFIX utility.

2. HINT - The trace window in the PDOS debugger defaults to the
task dimensions when the task is created. If you should
desire to execute code in another task in the trace mode,
you need to expand the window to include the addresses to be
traced. Since code outside of the trace window is not
listed on the screen, a smaller trace window will permit you
to check a selected block of code without having to step
through code which 1is incidental to the ©problem being
debugged. This can save considerable time din checking code
which has many subroutine calls.

(W PDOS Technical Notes Vol. 1 No. 5 9

Applications and Hints (cont.)

HINT - 9900 users who wish to customize the JEDY screen
editor can do so by purchasing the source code. This
code is part of the special product OWORD, a text runoff
program, which is available for $250.

HINT - Following is a simplified discussion of using QLINK
to separate your RAM and ROM when making xrun modules. The
SECTIONs from the compilers and assembler give the key to
separation:

PDOS kernel = Section 15

PDOS BIOS = Section 14

User code = Section O

User RAM = Section 1

SYRAM RAM = (offsets from A5)

The goal in this example is to put the PDOS kernel, the PDOS
BIOS, and wuser code into ROM and then assign and group
SYRAM, the user RAM, and the tasking RAM areas. It is
assumed that you have 1run the first part of RUNGEN, which
built the task 0, task 1, and task 2 object files. Also,
MDUMMY:SR and MPDTST:SR files should have been assembled.
This discussion only involves the QLINK part of RUNGEN.

Assume that:
SYRAM size = $1000
Section 1 size = $2340 (get info from compilers, etc.)
EPROM base addr = $A0000

The ROM and RAM map then look like this:

ROM at $A0000 RAM at $0000
Task #2 TCB #2
Task #1 TCB #1
Task #0 $3800: TCB #0
R$TASK table $2800: SYRAM
Kernel Task #2 Sect 1
$§A0000 BIOS Task #1 Sect 1
$0400: Task #0 Sect 1

$0000: Vectors

PDOS Technical Notes Vol. 1 No. 5

.
G

Applications and Hints (cont.)

The QLINK commands needed are:

BASE $A0000

SECTION 14,$A0000
GROUP 14,15,0
SECTION 1,$400
IGNORE 1

DEFINE B$SRAM,$03FC
DEFINE S$SRAM,$2800
INPUT xxBIOS:0BJ

SRECORD $A0000,Q$HE,O
OUTPUT #FILE:MX

END

QUIT

The BASE command sets the QLINK ©butrfer to the address of
EPROM. The SECTION 14 sets the BIOS code to link at the ROM
address and the GROUP command combines the desired code
sections. Next, set the base of the Section 1 RAM area,
and ignore it, so that QLINK doesn't try to load this (RAM)
into the (ROM) buffer.

Next, define where to store the SYRAM pointer
(B$SRAM=$03FC), and define S$SRAM to be above the Section 1
stuff on an even $800 boundary. You are now ready to input
all of the :0BJ files the RUNGEN wutility tells you to
(xxBI0S:0BJ must be the first). Now that all references are
assigned the right location, you are ready to write the
SRECORDs to burn, using the last address (+1) of section 14,
Q$HE as the end address parameter.

Now all you have to do is send the FILE:MX file over to the

ROM programmer, burn the ROMS, install them, and watch them
work.

PDOS Technical Notes Vol. 1 No. § 11

Applications and Hints (cont.)

12

HINT - Using the PDOS 3.0 floating point routines from
assembly -- or what do I do with all this 2.6 F-Line code I
wrote?

Appendix F of the PDOS 3.0 manual describes the PDOS
floating point module (MPDOSN:0BJ), which is part of the
run module product but not a part of the standard PDOS
package. The routines, however, are included in the code
booted in for PDOS 1if you have PDOS BASIC (MPDOSBAS:0BJ).
Under PDOS 2.6, you could access these routines using F-Line
instructions (instruction words with the first nibble =
$Fxxx which are commonly called Line-F instructions outside
of the PDOS world). Thus, a user program only needed to
enter the correct F-Line codes, and PDOS, with BASIC
resident, would execute the requested floating point
operation.

To improve the speed performance of BASIC, PDOS version 3.0
eliminated the F-line access to the routines, in favor of a
direct BSR.L to a known location. This helped BASIC, but
left assembly user programs without an address to stand on.
One solution 1is to buy the run module package to get the
MPDOSN:0BJ file to 1link with your application. Another
solution was offered as a new product in Technical Notes,
Vol. 1, No. 4, called "Floating Point Routines for Assembly
Code". This product is essentially the PDOS Pascal Library
for use with assembly. It includes transcendental func-
tions, single and double precision, which were not included
in the floating point module, but are nice. It still lacks
decimal input and output conversion routines, and therefore
has limited usefulness.

A third solution discussed here is that, if you have PDOS
BASIC, you already have the Appendix F £floating point
routines in memory. VYou will 1learn how to find and use
them.

The floating point code from the source file that created
the MPDOSN:0BJ file is included at the very end of the
MPDOSBAS:0BJ file, or 1right below SYRAM. First, find
where the floating point routines are 1located within PDOS
(get their ©base address 1in an address register), and then
call them as offsets from the base address using the JSR
instruction.

The following initialization code finds the routine base

address and stores it in A4. Insert it into your assembly
program that calls the floating point package:

PDOS Technical Notes Vol. 1 No. §

@3;

Applications and Hints (cont.)

* . ;ENTER FROM PDOS OR INIT CODE
MOVEA.L A5,A4 ;POINT TO SYRAM ~
LEA.L -$4000(A4),AB ;GET STOP LOOKING ADDRESS
*
aLOOP SUBA.W #2,A4 ;START LOOKING BACKWARDS
CMPA.L AD,A4 ; DONE?
BHI.S aLOP2 ;N, KEEP LOOKING
MOVE.L #1999,D0 .Y, REPORT ERROR 1999
XERR ;AND EXIT
%*
aLOP2 CMPI.L #$262E0412, (A4) ;N, FLOAT FOUND?
BNE.S aLOOP ;N, KEEP LOOKING
CMPI.L #$2D50040E,-$2A6(A4) ;MAYBE, BEGINNING CORRECT?
BNE.S aLOOP ;N, KEEP LOOKING
LEA.L -$2A6(A4),A4 ;Y, POINT AT BEGINNING
* e ;REST OF INITIALIZE CODE

You now have the base address of the routines in A4. Next,
define the offsets of the various routine entry points:

N$FABS EQU $0028 ;ABSOLUTE VALUE
N$FADD EQU $0056 ;ADD

N$FCLR EQU $0018 ; CLEAR

N$FDIV EQU $0210 ;DIVIDE

N$FELD EQU $0022 ; LOAD ERROR ADDRESS
NS$FFLT EQU $00CE ; FLOAT

NSFINV EQU $029C ; INVERT

N$FLDD EQU $0000 ; LOAD FPAC
N$FMUL EQU $015A sMULTIPLY
NSFNEG EQU $0030 ;NEGATE

N$FNRM EQU $0108 ;NORMALIZE
NSFPST EQU $003E ;READ STATUS
N$FSCL EQU - $02BA ;SCALE

N$FSRD EQU $p0ocC ; STORE FPAC
N$FSUB EQU $0046 ; SUBTRACT

You are now ready to make an assembly language call to the
resident floating point package. The input and output
formats are the same as defined in Appendix F (3.0) and
Chapter 6 (2.6) of the PDOS Reference Manual, but instead of
calling the routines with 'BSR.L N$Fxxx' (PDOS 3.0) or
"Fxxx.' (PDOS 2.6), call them with 'JSR.L N$Fxxx(A4)'. For
example, to add the constant at LABEL to the FPAC, you would
write:

LEA.L LABEL(PC),AB ;GET ADDEND ADDRESS
JSR.L NS$FADD(A4) ;D0 OPERATION

PDOS Technical Notes Vol. 1 No. 5 13

Applications and Hints (cont.)

14

Looking back at the PDOS 2.6 Chapter 6, Floating Point
Package, you will find that the F-line exception instruction
for ADD was FADD., or $F004. Since the PDOS 3.0 assembler
no longer predefines the F-Line mnemonics for the routine
names, you could convert old PDOS 2.6 programs to use this
method under PDOS 3.0 by defining some macros, named after
the PDOS 2.6 F-Line calls. For example, for FADD. just
define:

FADD. MACRO
JSR.L N$FADD(A4)
ENDM

Then the o0ld reserved word, FADD., would assemble into the
desired jump instruction, and not the o0ld F-Line word. Of
course, you must be sure that A4 is not destroyed in your
program.

HINT - Method for extended I/0 drivers: EXT:SR. PDOS I/O
drivers must reside in the channel buffer, which is only 256
bytes 1long. The forward and backward file links take 4
bytes and the dedicated BRA.S table takes 6*2 more bytes,
leaving only 240 bytes (=256-4-12) to work with. Many users
have requested a method of expanding I/0 drivers beyond this
limit, by having code resident with PDOS.

The following working example shows a multiple expanded
driver file called EXT:SR. The idea is that you add as many
large drivers as you want to the xxBIOS:SR file for your
system, using the structure described below. Then to access
them, you create some new disk resident drivers from the
EXT:SR file, differentiating them by DNUM=0,1,2,...

For example, to create files to access extended drivers #0
and #1 you would do the following:

0>SA DRV®,SY

@>MASM EXT:SR/DNUM=0,#DRVD
O>MSYFL DRV@,DRV®O

@>SA DRV®,DR

8>SA DRV1,SY

P>MASM EXT:SR/DNUM=1,#DRV1
O>MSYFL DRV1,DRV1

0>SA DRV1,DR

8>

PDOS Technical Notes Vol. 1 No. §

AN

@Z>

Applications and Hints (cont.)

Now there are two drivers, DRVO and DRV1, to access each
extended driver #0 and #1. This EXT:SR driver is a fixed
length, which 1s important if you are going to store
variables within the driver channel.

The only interesting call to EXT is OPEN, when it 1looks for
the R$TASK table and a special EXT driver ID word ($5AA5).
If you don't have any expanded driver code in the BIOS you
booted, then EXT returns all calls with an error #99, but
will not crash your system. If EXT finds the ID word, then
it stores the address of the specified BRA.L instruction IN
THE DRIVER at $10(A2). All the other entries to EXT just
load up DO.L with the driver # (0,2,4,...) and an entry
offset (0O=open 4=close, 8=read,...) before branching (with
an RTS) into the BIOS extended code entry point (stored in
$10(A2)).

This keeps things all position independent, relocatable and
re-entrant. Let's look at the EXT code before diving into

the BIOS:

TTL EXT:SR - 68K PDOS 68K PDOS EXT DRIVER
* EXT:SR 06/27/86
22 2 22 2 2 22 22222222222 2222322222222 2222222232 £
*
* 66 888 K K PPPP DDDD 000
* 6 8 8K K P P D DO O0S
* 6 8 8KK P P D DO O0S
* 6666 888 KK PPPP D DO O
* 6 68 8KK P D DO O
* 6 68 8K K P D DO O0S
* 666 888 K K P DDDD 000
*
* EEEEE X X TTTTT DDDD RRRR III V
* E X X T D DR R I V VE
* E X X T D DR R I V VE
* EEEE X T D D RRRR I VV EE
* E X X T D DRR I VV E
ol E X X T D DR R I V E
* EEEEE X X T DDDD R R III V EE
*
*___***
* Eyring Research Inst. Copyright 1983,1986.
* ALL RIGHTS RESERVED.

* %

Module Name: EXT
Author: Richard Adams
Revision History:

* * %

*

06/27/86 3.0 Initial version of extended driver

PDOS Technical Notes Vol. 1 No. & 15

Applications and Hints (cont.)

*=

EXT IDNT 3.0 68K PDOS EXT DRIVER
K
% o % % 3k %k % %k % %k kg %k Kk ok ok ko k% % %k ok gk vk ok 3k sk kI 3k %k ok 3k 3k 3k %k %k %k %k %k ok % % vk vk 3k sk ok Kk Kk ok ok ok kK
%*
* This driver is a general extended I1/0 driver, that
* can be adapted for expanded driver code over the
* 252 byte limit.
*
* D5.L = Character count (-1 = Line)
* D7.W = Channel status
* (A2) = Driver base + 4
* (A3) = Memory buffer
* (A4) = File slot
* (A5) = SYSRAM
* (A6) = Task TCB
* (A7) = Return address
*
IFUDF DNUM :DNUM EQU)] ;DEFAULT TO DRIVER #0
PRINT ' ** Extended driver # ',DNUM
IFGT DNUM-5
PRINT ' ** ERROR, Driver numbers only @-5'
ENDC
PAGE
SECTION D
DEXT DC.W $A55A ;DRIVER ID
DROP BRA.S OPEN ; 2 OPEN
DRCL BRA.S CLOS ; 4 CLOSE
DRRD BRA.S READ ; 6 READ
DRWR BRA.S WRIT : 8 WRITE
DRPS BRA.S POSI ;10 POSITION
DC.L 0 ;Location of expanded code in BIOS
CODE EQU $10 ;CODE is channel offset of this saver
%*
OPEN ORI.W #38000,12(A4) ;FILE ALTERED
MOVEA.L (A5),A1 ;GET ADDR OF B$BIOS
ADDA.L (A1),A1 ;GET ADDRESS OF R$TASK TABLE
CMPI.W #$5AA5,-(A1) ;IS ID THERE?
BNE.S ERROR :N, DRIVER ERROR
SUBQ.W #4, A1 ;Y, POINT TO XTENDED CODE 'BRA.L'
MOVE.L A1,CODE(A2) : SAVE ENTRY
*
MOVEQ.L #0,D0 ;B=open

16 ' PDOS Technical Notes Vol. 1 No. 5

Applications and Hints (cont.)

CALL EXTENDED CODE WITH ENTRY OFFSET:
DB.L = <minor offset> | <major offset>

driver #0
driver #1
driver #2, etc.

Where <major offset>

nmnu
E S]

Where <minor offset> open
close
read
write

position

OO LM

1
1

¥ % % % X N X O X X X X ¥ %

CALL MOVE.L CODE(A2),-(A7) ;GET ADDRESS

BEQ.S EXTER ;NO CODE, RETURN .NE.
SWAP DO
MOVE.W #DNUM*2,D#d ;GET DRIveR NUMBER OFFSET
RTS ;GO TO CODE IN BIOS
*
CLOS MOVEQ.L #4,D0 ;4=close
BRA.S CALL
*
READ MOVEQ.L #8,D0 ;8=read
BRA.S CALL
*
WRIT MOVEQ.L #12,D0 ;12=write
BRA.S CALL
*
POSI MOVEQ.L #16,D0 ;16=position
BRA.S CALL
*
EXTER ADDQ.W #4 A7 ;POP CODE ADDRESS
*
ERROR MOVEQ.L #99,D0 ;if no extended driver code,
RTS
END DEXT

err 99

Note that from SYRAM (A5), you get the address of B$BIOS

table and then calculate the address of RSTASK table.
your $5AA5 EXT ID word right before R$TASK and the
XCODE' right before that.

Place

'"BRA.L

To 1look at the xxBIOS:SR changes that let you add code
there, let's get the example. The EXT example uses the TTA

driver, adding it to the MVME1ll1l7 V7BIOS:SR file.

Just

before the R$TASK table in the xxBIOS:SR file, you insert a

BRA.L XCODE and an $5AA5 data word, as follows:

PDOS Technical Notes Vol. 1 No. &

17

Applications and Hints (cont.)

18

B$STRT BRA.L BSTRT ;BOOT EPROM START
DC.L PDID ;PDOS BOOT IDENTIFICATION
DC.W SYID ;SYSTEM ID
B.SRAM DC.L S$SRAM ;SYRAM ADDRESS
*
BRA.L XCODE ;GO TO DRIVER CODE
DC.W $5AA5 ;EXTENDED DRIVER ID WORD
*
% % % %k % %k %k %k %k k dk & %k %k sk %k %k &k %k % % %k %k %k %k %k %k sk %k %k 5%k %k 3k %k %k %k %k %k % %k % % %k %k %k %k &k %k %k %k %k %k %k
* TASK STARTUP TABLE (NON-RUN MODULE)
*
IFEQ RF

XDEF R$TASK

*

R$TASK DC.B 1,U.1TYP,BR, %0000 ; PORT #1

Now following the BIOS interrupt routines, but preceding the
INCLUDE MBIOS:SR command, insert the driver code. This
could be done wusing an INCLUDE command, or even condi-
tionally on an assembly flag. Define NDRV equal to the
number of extended drivers in the xxBIOS (NDRV=1 in the
example). You then have your major switchboard routine,
XCODE, which checks the driver #, returning error 99 if it
is too big. If DO.W is in range, then XCODE jumps to the
particular driver code <called by DRVO,DRV1, etec., with a
JMP:

PDOS Technical Notes Vol. 1 No. &

Applicat

*
%*
*
*

N
*

X

* % % R % % % % QD *

In

ions and Hints (cont.)

Khkkhkkhkdkkdkhkhkhkhkkhkkhkkhkhkkhkhkkhkkkdkkhkkhkhkhkhkkhkkhkkkhkhkkhkkkkkkkkkk

EXTENDED DRIVER MAJOR ENTRY
IN: DB.L = MINOR (P,4,8,12,16) | MAJOR (B,2,4,...)

DRV EQU 1 ;NUMBER OF DRIVERS RESIDENT
CODE CMPI.W #NDRV*2,D0@ ;IS MAJOR BRA.L IN TABLE?
BLO.S ag10 :;Y, GO TO IT
MOVEQ.L #99,D0 ;N, THEN ILLEGAL
RTS
010 JMP MAJOR(PC,DB.W) ;GO TO DRIVER ENTRY
Main multiple driver switchboard table has each major
device entry is 4 bytes long, for a 'BRA.L DRVx' instruction.
The range is checked using NDRV, the number of drivers in BIOS.
AJOR BRA.L DRV@ ;DRIVER #0 (TTA)
BRA.L DRV1 ;DRIVER #1
BRA.L DRV2 ;DRIVER #2

the example, only the standard TTA driver code has been

added as DRVO. Since the driver entry points are now 0, 4,

8,
poi
is
rea

12, 16, you can have 1long jumps to the driver entry
nts, not 1imited to the 128 byte range. Another bonus
that for entries that are to return an error, such as
d and position, you can handle the error RIGHT IN THE

BRANCH TABLE! This is done by 1loading the error with a
MOVEQ.L and RTS.

Var
to
be

iables within the driver (offset from A2) are very easy
define in the BIOS. Since you know the size of EXT:SR to
$4C, then by taking links into account you just use an

OFFSET $50 directive, followed by DS.L, DS.W, and DS.B
commands to yield the proper (A2) driver offsets. Remember

to

exit the OFFSET mode with a SECTION 14 command, for the

linker:

PDOS Technical Notes Vol. 1 No. & 19

Applications and Hints (cont.)

20

KhAA KKK AR AR AR AR Ak hkkkkkhkkhkkkkkhkkkhkkhkkhkkkkkkkk

* Extended Driver #0: TTA

*

* Driver variables go here, starting at (A2) offset = $50

* Use OFFSET and then return to section 14.

*
OFFSET $50 ;end of EXT driver code in buffer

PADR DS.L 1 ;DC.L BASE ADR

FADR DS.L 1 ;DC.L UART FLAGS ADDRESS

OUTE DS.W 1 ;DC.W OUTPUT EVENT #

CCNT DS.B 1 ;DC.B COLUMN COUNT

TYPE DS.B 1 ;DC.B PORT TYPE

PUTC DS.L 1 ;DC.L PUT CHAR ADDRESS FOR JSR
SECTION 14 ;back to BIOS section

The next requirement is to reference in any external offsets
or addresses:

*

* Next define and XREF any needed offsets for SYRAM, etc.
*
BURT EQU $001E ;:BIOS UART TBL

XREF U2P$,UTYP. ,UART.,F8BT.

Now, go to the specific driver code, which swaps DO to get
the open, close, read, write, or position offset and
branches into the fixed entry table to perform the driver
function:

PDOS Technical Notes Vol. 1 No. §

Applications and Hints (cont.)

* Here is the minor entry switchboard, with JMP offset in
* upper word of DB.L. Minor entry offsets are 0,4,8,$C,$10
* for open, close, read, write and position. This allows
* errors in BRA.L table, with sequences like:
*
* MOVEQ.L #ERR,DD
* RTS
*
DRVO SWAP Do ;MINOR OFFSET IN DB.W LOWER
JMP DRVOTB(PC,DB.W) ;GO TO SPECIFIC MINOR ENTRY...
%*
* DRVOTB BRA.L OPEN
* BRA.L CLOS
* BRA.L READ
* BRA.L WRIT
* BRA.L POSIT
*
DRVATB BRA.L OPEN ; @=0PEN
*
BRA.L CLOS ;4=CLOSE
*
MOVEQ.L #80,D0 ;8=READ: ERROR 80, DRIVER ERROR
RTS
*
BRA.L WRIT ; 12=WRITE
*
MOVEQ.L #70,D0 ;16=POSITION: ERROR 70, POSITION ERR
RTS
%*
OPEN ORI.W #$8000,12(A4) ;FILE ALTERED
CLR.B CCNT(A2) ; CLEAR COUNTER
CLR.W D1 ;D1=PORT #
MOVE.B U2P$(A6),D1 ;D1=PORT #

MOVEQ.L #8@,D3
ADD.B D1,D3

MOVE.W D3,0UTE(A2) ;D3=0UTPUT EVENT #
MOVE.B UTYP.(A5,D1.W),D3 ;D3=UART TYPE
MOVE.B D3,TYPE(A2) ; SAVE FOR FUTURE
ADD.W D3,D3 ;POINT TO DSR

MOVEA.L (AS5),AD
ADDA.W BURT(AD®,D3.W),AD

ADDQ.W #2,A0 ;A@=PUTC ENTRY
MOVE.L AQ@,PUTC(A2) ; SAVE PUTC ADR
LSL.w #2,D1 ; SAVE BASE ADR

LEA.L UART. (A5),AD
MOVE.L @(AD,D1.W),PADR(A2)

LSR.W #2,D1 ; SAVE FLAGS

PEA F8BT.(A5,D1.W) ;PUSH POINTER TO FLAGS
MOVE.L (A7)+,FADR(A2) ;SAVE PTR

BRA.S CLOS2

PDOS Technical Notes Vol. 1 No. § 21

Applications and Hints (cont.)

22

*

CLOS

*

CLOS2

*

MOVEQ. L
MOVEQ. L
BRA.S

CLR.W
RTS

#$0C,DO
#1,D5
WRIT12

D@

;GET FF
;D0 1 CHAR
;OUT IT

;RETURN .EQ.

% % J %k %k Kk k Kk %k Kk Kk %k % % %k %k %k %k %k %k %k 5k %k %k % %k %k 5k %k %k %k %k %k % %k %k % %k %k % %k % %k %k %k % %k %k &k &k kk k%

WRITE CHARACTERS

*
*

WRIT
*

WRITO2

*

WRITO4

*

WRIT@6

*

WRITO8

*

WRIT10

ORI.W

MOVEQ.L

MOVE .B
BNE.S

TST.L
BMI.S

CMPI.B
BNE.S
SUBQ.B

CMPI.B
BNE.S
MOVEQ. L
MOVE.B
LSL.B
CMPI.B
BEQ.S
SUBQ.W
TST.L
BMI.S
ADDQ.L

CMPI.B
BEQ.S
CMPI.B
BNE.S
CLR.B
MOVE . W

CMPI.B
BLT.S
ADDQ.B

#$8000,12(A4)

#0,D0
(A3)+,D0
WRITO4
D5

CLOS2

#$08,D0
WRITO6
#1,CCNT(A2)

#$09,D0
WRITOS8
#' ',DO
CCNT(A2),D1
#5,D1
#7<<5,D1
WRITOS8
#1,A3

D5
WRITOS8
#1,D5

#$0A,D0
WRIT16
#$0D,D0
WRIT10
CCNT(A2)
#$0A0D,D0

#' ',D0
WRIT12
#1,CCNT(A2)

;N, ALTERED

;GET CHARACTER
;:DONE?

N

;Y, WRITE LINE?
;Y, DONE

;BACKSPACE?
;N
i Y

;0K, TAB?

;N

Y

;GET COUNTER
;$CCCO 0000
: TAB BOUNDARY?
Y

;N, DO AGAIN
WRITE LINE?
Y

;N, BACKUP

;LF?

;Y, IGNORE

:N, CR?

:N

:Y, CLEAR CCNT
;CHANGE TO CRLF

; CONTROL?

Y
;N, UP COUNT

PDOS Technical Notes Vol.

1

No.

5

‘ 7

Applications and Hints (cont.)

*

WRIT12 TST.B TYPE(A2) ;DEFINED TYPE?
BEQ.S CLOS2 ;N, SKIP IT
MOVE.L OUTE(A2),D1 ;GET OUT EFVENT TO UPPER WORD OF D1
MOVEA.L FADR(A2),AD ;GET PTR TO FLGS
MOVE.B (AB),D1 ; TEST FLAG EACH TIME
BTST.L #0,D1 ;ASAQ CHECK?
BEQ.S WRIT14 N
TST.B D1 ;Y, AS STOP SET?
BMI.S WRIT12 ;Y, WAIT HERE
*
WRIT14 MOVEA.L PADR(A2),AQ ; UART BASE ADR
MOVEA.L PUTC(A2),A1 ;POINT TO PUTC
JSR (A1) ;CALL PUT CHAR
BNE.S WRIT12 ;Y
LSR.W #8,D0 ;N, 2 CHARS?
BNE.S WRIT12 ;Y
*
WRIT16 SuBQ.L #1,D5 ; DONE?
BNE.S WRITO@2 ;N
RTS ;Y, RETURN .EQ.

You would add other drivers here, calling them DRV1l, DRV2,
and so on. If you need more RAM storage than $100-$50 (176
bytes), then you would have to handle it separately. Also,
you are limited to PDOS booting only up to 255 sectors, or
less than 66k bytes for the BIOS, driver code and PDOS.
This means that huge drivers must be accommodated differ-
ently. Now all that remains 1is to finish up by including
MBIOS:SR.

*

NOL
PAGE
INCLUDE MBIOS:SR
END

PDOS Technical Notes Vol. 1 No. & 23

Applications and Hints (cont.)

7.

24

HINT - To change the default word length, parity, and stop
bits on a Force CPU-1 you may patch your system using the
following method:

>PB
800,1000,7410W search for first occurrence of 7410
0F06 address of occurrence
DFO6 7410 7450 open this address and replace with 7450
Q exit the debugger
>BP $2002,9600 baud port with 7 bit, odd parity, 1 stop bit

Options for port communication without the patch are as follows:

>BP 2,9600 7 bits, even parity, 2 stop blts
>BP $2002,9600 7 bits, even parity, 1 stop bit
>BP $802,9600 8 bits, no parity, 2 stop bits
>BP $2802,9600 8 bits, eve<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>