
« ",

(

.~

Tips&
TechnicalNotes

Vol. 1 No. 1
January 31, 1986

INTRODUCTION

The PDOS Tips and Technical Notes newsletter is intended to give
you, the PDOS user, a new resource of valuable information.
since we are continually trying to improve on our product and the
service to our customers, we will keep you up-to-date on the
status of our product line. other items featured here include
warnings and cautions to avoid programming difficulties, fixes,
patches, or work-arounds to known problems with current software,
and special applications to make your programming job easier.

If you have items which would be of value to other users, we
would like to hear from you. Please provide sample listings or
disks containing the information you wish to convey.

Of course, the PDOS hotline remains a resource to help you in the
solution of immediate problems through which we try to respond
with answers to your difficulties as soon as possible.

Part #

3510

3510-3/M

3510-4/M
3510-4C/M

3510/M
3510/M1

3520
3520/M

3530
3530/M

CURRENT PRODUCT STATUS

Product Name

PDOS 68000

Force CPU-1,2,3
Installation Guide
VME-10 Installation Guide
VMEsystem 1000 Installation

PDOS Reference Manual
Getting started with PDOS

PDOS 68000 BASIC
PDOS BASIC Reference Manual

Current
Version

3.0b

11/8/85 Rev. B

11/15/85
Guide 1/31/86

Next
Release

10/3/85 Rev. C
10/15/85 Rev. A

3.0b
10/1/85

PDOS 68000 PASCAL 2.7A 1st qtr. '86
PDOS PASCAL Reference Manual 11/21/84

PDOS Technical Notes 1

6
"~ Eyring / 1450 \.lest 820. North / Provo, Utah 84601 /~ (801) 375-2434 / ~ 882-000 / IFaxl (801) 371.,-8339

c

(

c

(

INTRODUCTION

Vol. 1 No. 1
January 31, 1986

The POOS Tips and Technical Notes newsletter is intended to give
you, the POOS user, a new resource of valuable information.
since we are continually trying to improve on our product and the
service to our customers, we will keep you up-to-date on the
status of our product line. other items featured here include
warnings and cautions to avoid programming difficulties, fixes,
patches, or work-arounds to known problems with current software,
and special applications to make your programming job easier.

If you have items which would be of value to other users, we
would like to hear from you. Please provide sample listings or
disks containing the information you wish to convey.

Of course, the POOS hotline remains a resource to help you in the
solution of immediate problems through which we try to respond
with answers to your difficulties as soon as possible.

Part #

3510

3510-3/M

3510-4/M
3510-4C/M

3510/M
3510/Ml

3520
3520/M

3530
3530/M

CURRENT PRODUCT STATUS

Product Name

POOS 68000

Force CPU-l,2,3
Installation Guide
VME-I0 Installation Guide
VMEsystem 1000 Installation

POOS Reference Manual
Getting started with POOS

POOS 68000 BASIC
POOS BASIC Reference Manual

Current
Version

3.0b

11/8/85 Rev. B

11/15/85
Guide 1/31/86

Next
Release

10/3/85 Rev. C
10/15/85 Rev. A

3.0b
10/1/85

POOS 68000 PASCAL 2.7A 1st qtr. '86
POOS PASCAL Reference Manual 11/21/84

POOS Technical Notes 1

Part #

3550
3550/M

3560
3560/M

3511/M

3410
3410/M
3410/N

3420
3420/N

3430
3430/M

Product Name Current
Version

PDOS 68000 C 1.2c

Next
Release

PDOS C Reference Manual 10/1/85 Rev. A

PDOS 68K Absoft FORTRAN 77 2.1
FORTRAN Reference Manuals 12/1/85 Rev. A

Run Module Manual 10/1/85

PDOS 9900 2.4d
PDOS Reference Manual (9900) 1982 Rev. D
Update Notice

PDOS 9900 BASIC 2.4d
BASIC Installation Notes 2.4d

PDOS PASCAL
PASCAL Reference Manual

2.7A
1984

WARNINGS AND CAUTIONS

1st qtr. '86

1. If you are using the VMEbus, you should be aware that daisy
chain jumpers must be installed, or all cards must be
installed sequentially on the bus. Failure to do so may
result in a system halt, or the device may not be located
and available to the user.

2. Users who are developing 68K run modules should be aware
that programs run slower in EPROM than in RAM. As a result,
you may experience some timing differences from RAM tested
and EPROM run programs.

3 .. CAUTION: Before upgrading to a new PDOS BASIC version, be
sure to convert all BX files to the EX format and save a
backup. The BX format may not be compatible with the new
version.

4. with the 68K PDOS 3.0 release, it is necessary to use
MASM R3.0b 10/17/85 and QLINK 11/12/85 versions. If you use
2.6 versions of these utilities, you will encounter pro­
blems.

5. The C 1.2c compiler produces self-relocating code, but not
position independent code.

PDOS Technical Notes 2

if'"
'V

(

C"

6. currently in C Rev. 1.2c, only un-buffered I/O routines are
implemented. All of the entry points for the buffered I/O
routines (fopen, fclose, fputs, etc.) are set up and
function as expected, except that the I/O goes to the disk
immediately. "fflush" is not in the library -- it would be
a no-op if it were. Buffered I/O will be implemented in a
future revision of C. The most efficient I/O is through use
of the routines in'XLIB. XGLU reads an entire line from the
console, letting the operator to perform command line
editing before hitting return. XPLC dumps an entire
string to the console. XRBF and XWBF read and write large
blocks of data to the disk. XRLF reads a line from a disk
file (delimited by a carriage return). XWLF writes a
nUll-terminated string to the disk.

7. C external symbols must currently be unique in the first
seven characters.

8. C initialization of multi-dimensioned arrays of 'structures
is wrong.

9. There are a few other problems with combinations of struc­
tures with array fields with C. The compiler will sometimes
generate bad code to address into such a data item.

10. When you want to open a device driver with the C FOPEN
command, do not use "w" mode, since that will attempt to set
the end of file mark to the beginning of the file (an
illegal operation on a driver.) Instead, open it in "r"
mode and write to it anyway.

11. The C Rev. 1.2c I lseek I routine uses the XRFP--Read File
position primitive that is new in POOS 3.0. If you use
'lseekl the code will not run on versions of POOS earlier
than 3.0. Also, 'fopen' with mode "a" or "a+" uses Ilseek '
so the same warning applies.

12. If you try to assign a C constant Ox8000 to a long variable,
the number will be sign-extended and oxffff8000 will
actually be assigned. This problem occurs because if a
numeric literal will fit in sixteen bits, it will be stored
as a sixteen bit constant and sign-extended on assignment.
Leading zeroes do not help -- ox08000 is the same as Ox8000.
You must put a capital ILl after the literal to force the
compiler to create a 32-bit literal. Thus, assigning
Ox8000L will give you the value you need. This problem, of
course, extends to all numeric literals where the sixteenth
bit is set. Thus, 32768-65535 or Ox8000 - oxffff are
affected.

13. versions of C068 prior to 11/25/85 did not properly do a
sizeof on literal strings.

PDOS Technical Notes 3

14. The Rev. 1.2c C compiler requires about 85K to run. Cur- C
rently it does not properly detect an attempt to run with
too little memory. Versions of CSTART:ASM prior to 11/26/85
did not properly handle an out of memory problem. All C
programs, therefore, suffered from the defect that they
could be loaded into memory and then have the variable space
run out of the task space. When this task space is cleared,
it may wipe out the task's own stack, or worse, the TCB of
the next task in memory. This also means that the compiler
itself could crash the system if it were run in too small of
a memory. Running the C compiler in too small of a memory
(such as 32K) can crash the whole system, requiring a
boot.

15. When creating C Rev. 1.2c EPROM programs, you should
currently be aware of using functions that do dynamic memory
allocation. In an EPROM program, it is not necessari.1y the
case that the available memory lies between the __ eomem and
the bottom of the stack -- indeed, the stack pointer may be
on the other side of the end of memory pointer. The
situation can be fixed by dynamically loading the eomem
pointer with a value known to be down in the stack and
assuring that the task is assigned sufficient stack space on
start-up. In the meantime, the following routines (which
all use dynamic memory allocation) should not be used in
EPROM or should at least be very suspect: GLOB, COPY, r~
FOPEN, TTYOPEN, XEQ, SYSTEM, SBRK, MORE COR , ALLOC, MALLOC,
REALLOC, CALLOC.

16 There must be sufficient disk space available for the C
compiler to create the intermediate files and output files.
If this is not the case, the compiler may abort with an
error 61 or some other peculiar error. In particular, the
distribution disk does not have enough disk space to compile
anything -- it is too full of code.

17., with FORTRAN Rev. 2.la, a file error trapped with an "ERR="
on a read will show up again on the CLOSE if it does not
also have an "ERR=".

18. If you attempt to produce both an assembly listing (/A
switch) and a compiled source listing (/L switch) at the
same time, you will only get the assembly listing since it
includes the compiled source under FORTRAN Rev. 2.1a.

20. There are a few cases where invalid syntax will cause the
FORTRAN compiler to crash. One of these cases is putting
FORM='UNFORMATTED' in an INQUIRE statement.

PDOS Technical Notes 4
(r. '
I~/

(

(

(

21. Occasionally the FORTRAN run-time system will report errors
and it is not immediately obvious whether the error is a
PDOS error or a FORTRAN error. The program may report
"COMMON buffer not found" when the error is actually
"position error". Both are error #70 -- one from F77, the
other from PDOS.

22. "USE option b" FORTRAN error message will come out even when
you do use option b.

23. The FORTRAN rev 2.1a debugger will occasionally have trouble
displaying the current value of a symbol, especially if you
use the S(EARCH option to move into a different module and
display common variables in that module.

24. If a FORTRAN subroutine calls another subroutine that was
passed to it as a parameter (see EXTERNAL statement) the
second subroutine is always loaded as an overlay, even if it
has been linked in. Thus, the following three program
segments execute just fine if allowed to link at run time,
but will give an error 'Subroutine not found' if linked with
F77L and DUMMY:SUB discarded.

------------ FIRST FILE --------­
PROGRAM TEST
EXTERNAL DUMMY
CALL Tl(DUMMY)
END

------------ SECOND FILE --------­
SUBROUTINE Tl(SUBP)
CALL SUBP
RETURN
END

------------ THIRD FILE ---------­
SUBROUTINE DUMMY
WRITE(9,*) 'ENTERED DUMMY'
RETURN
END

25. The FORTRAN Rev. 2.1a compiler does not catch all syntax
errors. One user found that the compiler did not flag a
branch to a FORMAT statement label. Another error was when
a variable name in a subroutine was declared as both a
COMMON block variable and a passed parameter.

26. The FORTRAN Rev. 2.1a compiler generates position-indepen­
dent code that runs at any address. However, there has
been trouble loading programs into arbitrary address spaces
and running them. This could mean problems when burning
programs in ROM.

PDOS Technical Notes 5

27. The Pascal compiler occasionally will report an 'OUT OF 11(''Is., .. \\\,
ADDRESS REGISTERS' error. Only 3 address and 5 data ~
registers can be used by a program at a time. If the error
occurs, compile the text with the 0 switch and find the area
that must be rewritten. A typical program that will fail is
as follows:

procedure m;
type

t = record a
var

c : integer;

integer; end;

procedure e (f : integer ; h : t) ;
function i : boolean ;
begin{i}
with h do {'with' statements may require an address reg.}

i := f = c {c is a global variable; f is a parameter,}
end; {i} {i is the function value; h is anoth~r }

begin {e} {parameter. To handle all these different}
end; {e} {addressing modes will cause the compiler }

begin {m} {to run out of addressing registers.}
end; {m}

PDOS Technical Notes 6

(

(

FIXES, PATCHES, AND WORK-AROUNDS

1. Some 68K users have experienced difficulties when inputting
messages longer than 64 bytes. You can fix this problem by
changing the input buffer size in SYRAM to allow for 128
character messages. Use the following change in xxOOS:GEN
and regenerate the system:

2.

3.

4.

5.

Change: MASK KSYRAM:SR,#KSYRAM:OBJ;XXX
MASK SYRAM:SR/IZ=7,#STRAN:OBJ;XXX To:

>KTIKE P,86 -- Some battery clocks do not keep track of the
current year. So that your year will be correct, enter a
second argument to the MTlME routine setting the POOS year.
Change your startup file to assure proper year upon startup
of your system.

68K MSYFL presently does not support the '0' tag: You will
get errors when trying to convert files using the new OCB.B
data definition. These files can be converted by running
QLINK, loading the file, and saving it.

QLINK
INPUT <FILENAME:OBJ>
OUTPUT <FILENAME>
SYFILE
END
QUIT

68K POOS BASIC programs with excessively long lines may give
you problems when they are saved as BX files and later run.
The long line halts loading or causes overwrite which could
ruin the file. This is most likely to happen when transfer­
ring ASCII files from another system.

Some users have experienced difficulties following the use
of the SPOOL command in 9900 BASIC. The SPOOL command needs
to be reset and the SPOOL file closed. This can be accom­
plished with one of the following sequences:

This resets the spool and closes all files:
SPOOL 0
RESET

This resets the spool and closes only the spool file:
SPOOL 0
CLOSE MEMW[SYS(9) + OlE4H]

6. The following utility, MLIBGEN, was inadvertently not
documented in the 3.0 POOS Reference Manual. You might find
it helpful to insert the page into your manual.

PDOS Technical Notes 7

PDOS Technical Notes 8

c

c

c

MLIBGEN
Library Generator utility

Name: MLIBGEN

Function: Combines object files into a single library file

Format: MLIBGEN

Restrictions: MLIBGEN only builds new libraries. Existing
libraries can be edited only by recreating them.

Description: MLIBGEN allows object files to be combined into a
single library file. The entry (XDEF) labels for each
library object are stored in the header of the library file
along with the originating object file name and position of
the library object within the library file. .

When you specify a library load with the LIBRARY command
during QLINK, PDOS will scan your files for any entry
symbols that match any unresolved external (XREF) symbols in
the link map. If a match occurs, then only the code
corresponding to the XDEF label of the single library object
is loaded. Thus, only those objects which resolve external
symbols will be loaded.

Every time a library object is loaded, the LIBRARY commapd
will start from the beginning of the library header and scan
for new entries. It continues until no additional matches
are found in the link map and library header.

Sample:

>MLIBGEN
68K LIBRARY GENERATOR 10/24/83
Copyright 1983, ERII
LIBRARY FILE=YOURLIB:LIB
INPUT FILE=SUB1:0BJ
INPUT FILE=SUB2:0BJ
INPUT FILE=[CR]
ANY MORE FILES (Y/N)?N

PDOS Technical Notes

The name of your library file
Origination object files to

become library objects
Type [CRl to end input files
Enter 'Y' to continue; 'N' to

quit.

9

PDOS Technical Notes 10

(

7. with C Rev. 1.2c, if you declare a global variable in two
separately compiled modules but do not declare that variable
in the main program, the linker will not know where to
allocate space for that variable and will give an un-defined
symbol message. A fix is anticipated for the linker, but
until then, declare all global variables in the main module
as well as in the other modules, or specify an initiali­
zation for variables defined only in subroutines. (Note:
initialize it only in one module, or the variable will be
doubly-defined!)

8. There are some bugs in the use of the "extern" keyword. In
general, it is difficult in C Rev. 1.2c to distinguish
between defining and referencing external variables. For
now, this compiler takes all variables declared at the
outermost level (with or without the "extern" keyword) to be
definitions in the module where "main" is defined, and
references if "main" is not defined. This does not hold
true for static variables or for variables where an initia­
lization is specified.

9. The C Rev. 1.2c 'printf' function may have problems printing
integers larger than nine digits. It has an internal buffer
of only 10 characters, and if a number (with the terminating
nUll) exceeds this size, it overwrites other data. If this
is a major problem, extract the 'printf' module from
STDLIB:SRC, change the size of the buffer 'tbuf' to 12
characters, and use that new copy of the printf module by
linking its object ahead of the STDLIB.

10. The following assignment creates bad code that causes a BUS
ERROR under C Rev. 1.2c.

test1 ()
{

}

float x[3],y[3]:
int i=O;
asm("*y[i] = x[i] -- float");
y[i] = x[i];

The workaround is to assign x[i] to a temporary and,then
assign the temporary to y[i]. The problem only shows up
with floats; not with ints or longs, so you could cast the
source and destination operands to long. This will be fixed
in the next revision of C from A1cyon.

PDOS Technical Notes 11

11. The XGML subroutine in C 1.2c has an error -- it doesn't
report the proper value for the third parameter (last loaded it:
address) • The error can be fixed by extracting file
XGML:ASM from the XLIB:SRC and making the following change:

Change MOVE.L A3,02 to MOVE.L A2,02

12. It would be helpful if ROMLINK provided with C Rev. 1. 2c
allowed you to specify sections for RAM and ROM. The
current program must be altered on line 96 (Sprintf state­
ment puts out 'E' and '2' tags) and in the subroutine
'inrom' (returns 0 for ROM, 1 for RAM). If your section is
greater than 9, you must also change the 'sprintf' statement
where the '9' tag is output -- currently it goes out as a
decimal digit and it should be hexadecimal. The following
list shows the changes to make ROMLINK put the ROM code in
section 14:

CHANGE:
sprintf(&line[27],"EO%08lxE1%08lx21%08lx2000000000",
TO:
sprintf(&line[27],"EE%08lxE1%08lx21%08lx2EOOOOOOOO",

CHANGE:
sprintf(&line[linelen],"9%ld%08lx8",next->section,data1);
TO:
sprintf(&line[linelen],"9%lx%08lx8",next->section,data1);

CHANGE:
return(O);
TO:
return(14);

Future versions of ROMLINK may accept command line para­
meters to set the sections to whatever is required.

13. The C 1.2c distribution version of LOCATE fails to create
the bit map for programs larger than 64K. The problem is in
the following statement:

mapsize = «unsigned int) mapptr » 6) + 1;

This should be:

mapsize = «unsigned long) mapptr » 6) + 1;

This correction can be made on your system by changing file
LOCATE:C and recompiling.

POOS Technical Notes 12

('

14. FORTRAN Rev 2.la documentation for CRT:SA is lacking but can
be found in the file.

lS. The FORTRAN ENDFILE statement seems to be a no-ope Use the
PDOS interface library functions to change the end of file
mark.

16. The following code gives the FORTRAN Rev. 2.la compiler
problems. It reports a 'compiler synch error'.

CHARACTER *S TEMPS
TYPE TEMPS(S:S),' ,

since this is an extension to F77, its use is questionable
anyway, try:

TYPE (UNIT=9,FMT=*) TEMPS(S:S),' ,
or
WRITE (UNIT=9,FMT=*) TEMPS(S:S),' ,
instead.

17. Pascal Rev. 2.7a processes require more space on heap than
is reasonable. This limits the total number of processes
that can be created. Also, destruction of a process does
not free up all of the space originally allocated. This is
fixed with the new Rev. 2.Sa.

lS. Pascal 2.7a crashes when performing range checking (/R or $R
switch) on a file where there is a case statement witho~t
an otherwise clause. This is fixed in Rev. 2.Sa.

19. The following code causes an error in the assembler under
Pascal 2.7a and has been fixed with 2.Sa. The MASM error
occurs because .ENDLOC is never XREFed in the file.

{$E}
PROCESS A;
BEGIN
END;

PROCEDURE B;
BEGIN

A;
END;

PDOS Technical Notes 13

20. The following code generates an error in the assembler text
under Rev. 2.7a Pascal but has been fixed under Rev. 2.8a. ,"

PROGRAM TEST;
V~

J : INTEGER;
A : INTEGER;
R : ~y [1 .• 5] OF INTEGER;

BEGIN

END.

A := A + R[J];
A := A - R[J];

21. Pascal 2.7a attempts to rewrite to file 'TTA' which causes
driver errors, or creates a new file called 'TTA' (not a
driver) on the disk. This has been fixed with Pascal 2.8a.

22. Errors in specification of a 'WITH' statement argument such
as WITH (A) DO cause the Pascal 2.7a compiler to crash.
The parentheses are not valid and Pascal 2.8a will report
this as an error.

23. Under Pascal 2.7a, using the EOF/EOLN functions cause
the compiler to generate bad code. This is fixed in Rev.
2.8a.

24. Passing a string variable as a 'non-VAR' parameter to a ~_.
routine that expected a larger string under Pascal 2.7a ~
makes the compiler generate code to pad the string to tpe
expected length. A bug in the compiler causes local
variables in the calling routine to be corrupted after the
call. This is fixed in Pascal 2.8a.

25. Various constructions involving large (greater than 32767
bytes) arrays causes the compiler to generate bad code under
Pascal 2.7a. This is fixed under 2.8a.

PDOS Technical Notes 14 c

APPLICATIONS AND HINTS

1. The following examples for converting decimal numbers
to hex and hex to decimal illustrate the power of the PDOS
operating system:

*DECIMAL TO HEX CONVERSION (RESPONDS SIMILAR TO MONITOR COMMAND)
* This example shows the interactive nature of the PDOS primi-
tives. Notice that there are no assembly code mnemonics in this
program except as assembler directives to establish the text
string for the output.
* * 9900
* ======
DH

*

XGNP
XCDB
XCBH
XPMC

DATA EO
XPLC
XEXT

EO TEXT +' =
END DH

*USAGE EXAMPLE:
>DH 256 = 0100
>DH 10 = OOOA

68000
=======

XGNP
XC DB
XCBH
XPMC

XPLC
XEXT

DC.B
END

00000100
OOOOOOOA

*HEX TO DECIMAL CONVERSION
*

EO

, =
DH

, ,0

;GET NEXT PARAMETER
;CONVERT TO BI~ARY
;CONVERT BINARY TO HEX
;PRINT ' = ,

;PRINT CONVERTED STRING
;RETURN TO PDOS MONITOR

*Uses only two assembly mnemonics and they are only used to
preclude the user from entering the hex descriptor in the input.
*
*
* HD

*
EO
HI

9900
======

XGNP
DEC Rl
MOVB @HI, *Rl
XCOB
XCBO
XPMC

DATA EO
XPLC
XEXT

TEXT +' = ,
BYTE '>',0

POOS Technical Notes

68000
=======

XGNP
ADDA.L
MOVE.B
XC DB
XCBD
XPMC

XPLC
XEXT

DC.B

#-l,Al
'$' , (Al)

EO

= ',0

;GET NEXT PARAMETER
;DECREMENT POINTER
;INSERT HEX DESCRIPTOR
;CONVERT ASCII TO BIN
;CONVERT RESULT TO DEC
;PRINT ' = ,

;PRINT CONVERTED STRING
;EXIT TO PDOS MONITOR

15

*USAGE EXAMPLE:
>HD 100 = 256
>HD A = 10

256
10

The previous examples can be entered and compiled to provide
you with a helpful utility. since these are programs, they
will alter user memory. (PDOS monitor commands do not alter
user memory) •

2. Sometimes, it may be necessary to send special control
characters to a printer from BASIC. The <null> and <tab>
characters are not printable in PDOS BASIC since the <null>
is a string terminator and the <tab> is replaced with spaces
to the next print column. The following example provides a
means for sending these and other character codes:

CODE TO PRING SPECIAL CHARACTERS FROM BASIC
NUMERIC VALUE OF CHARACTER IS PLACED IN COM(O) .

1
2
3
4

REM
REM
REM
REM

CHAR(O) CONTAINS ASSEMBLY CODE - USES XPDC TO PRINT CHAR
CALL #ADR CHAR(O) PERFORMS PRINT

10 DIM CHAR[3]
20 $CHAR[0]=%'2E3C 0000 0001 224B D3FC 0000 0007 A096 4E75'
30 COM[0]=9 ISET FOR <tab>
40 CALL #ADR CHAR[O] IPRINT IT

68K ASSEMBLY WHICH GENERATES ABOVE STRING

* CHR MOVE.L #1,D7
MOVEA.L A3,A1
ADDA.L #7,A1
XPDC
RTS
END CHR

;SET PRINT FOR 1 CHAR
;GET ADDRESS OF COM(O)
;INCREMENT TO CHARACTER BYTE
;PRINT IT TO CONSOLE
; RETURN

Similar code in 9900 assembly can be created and entered on line
20 .. Register R7 contains the address of COM[O].

3. The C compiler reports its errors by line number. Prior to
May 1985, the PDOS editor did not easily allow you to find a
particular line number. The new editor, of course, has a
specific command to jump to a line number, but in the old
editor (MJEDY), go to the top of the file ([CTRL-T]), set
the jump count to one less than the desired line number
([ESC][CTRL-S]) and jump to that line from the top
([ESC][CTRL-J]). with the new editor, MEDIT, use the goto
line function.

PDOS Technical Notes 16

o

(

(

:.::.. .') " 1,-r~~R&JIlme • .) Opf'r iJCJIII}

-. -. SySCf.'f1l

Tips&
Technica I Notes

IJ1TRODUCTIOH

Vol. 1 No.2
March 15, 1986

We hope that last month's issue of PDOS Tips and Technical notes
was of benefit to many of you, and we hope to continue this
service on a regular basis. Any comments you may wish to make
are appreciated.

HEW PRODUCTS

Several new programs are available for use under PDOS.

OWORD is a text runoff system for use with 9900 PDOS. Source
. code to OWORD is provided on the disk to assist the user in
customizing the software to his hardware requirements. Source to
OWORD is provided on the disk. This product is available "as is"
and NO SUPPORT is provided.

Order Number: 3480-1 License Fee: $250.

STAT68 is an expanded statistical package available for use
with PDOS on 68000-based systems with 700kb memory. It has
graphics capability and handles the following statistical
procedures and more: simple linear regression, polynomial
regression, multiple regression, factorial analysis of variance,
randomized fixed block analysis, Latin squares analysis, any
factorial design with treatments being "crossed" and nested
designs. Terminal support is available for HP-150, HP-2623. A
preliminary manual is currently available.

Order Number: 3580-54 License Fee: $750.

PDOS Technioal Notes Vol. 1 No.2 1

'9 Eyring I 1450 West 820 North I Provo, Utah 84601 1m (801) 375-2434 I I!B] 882·000 I IFaxl (801) 374-8339

WARNINGS AND CAUTIOBS

1. The following errors and oversights in our first newsletter
have been brought to our attention. Our apologies for any
problems this may have oaused:

2.

Warnings and Cautions:
4. QLINK revision is dated 7/26/85.

entries require a '$' prefix.
Also, hex QLINK

Fixes, Patohes and Work-Arounds:
1. was shown as : MASM SYRAM:SR/IZ=7,+STRAN:OBJ;xxx

should be : MASM MSYRAM:SR/IZ-7,+MSYRAM:OBJ;xxx

Assembly programs ending
at link time with QLINK.
following the file with
should be oorreoted with
assembler.

on odd boundaries oan
This will show up

the odd boundary. The
the EVEN direotive

oause errors
on the file
odd bo:undary
of the MASM

3. Use oaution with disk buffering on Stride, Mizar, VME/10,
Hamilton Standard (formerly Mostek). When you write a file
out (to a floppy as an example), while PDOS thinks it is
written out, it probably IS NOT! The buffer has been
altered, but the file has not been flushed to the disk yet.

o

That means that you are at a risk to lose the data that you r\
thought you saved. To be oertain that you oan safely remove \~
a floppy, or turn off power, do a list (>LS) oommand for the
Winohester before removing the floppy. You may see the
floppy aotivity light oome on, even if you are just reading
the Winoh. The best way to be sure that your information is
indeed saved is to do a spaoe (>SP) oommand on disks two and
three. The following oode oould be inoluded in a prooedure
file to flush the disk:

SP 2
. SP 3

RC

On PDOS 3.0 you may use the xxPARK utility to flush the disk
buffers before turning the oomputer off.

PDOS Technical Notes Vol. 1 No.2
c

(

(WARNINGS AND CAUTIONS cont.)

4. If you plan on creating tasks with high level language
routines in the PDOS operating environment, you should be
aware that these higher level languages utilize high task
memory to locate variables, or stacks. Should you create a
new task and not have free memory available, you will be
giving away some of your present task including variables,
etc. If you intend to create tasks from higher level
language tasks, be sure that you free sufficient memory
prior to running the routines which will create the new
tasks.

5. The 68000 RAM disk command allows you to specify the RAM
disk to reside at any memory location giving you a high
degree of flexiblity. However, PDOS makes no test to
determine if the specified memory is already in use by PDOS
or other tasks. Take care when setting up a new ~ disk.

In one situation, the user specifed the new RAM disk larger
than his free memory area. The PDOS mail array and Win­
chester disk buffers were changed. The result was a loss of
directory information on the Winchester disk. On most 68000
systems, the RAM disk can be allocated at boot time by re­
generating your system, specifying a larger RAM disk size,
and re-installing the boot.

For example, to generate a floppy sized RAM disk with 2560
sectors, you might use the following:

O>%XDQS:GER IRZ-2560

The example above allocates
memory. Be careful not to
than you have memory for.

the RAM
specify

disk from the TOP of
more 256-byte sectors

6. When using the >DK command on 68000 PDOS, be sure to use the
semi-colon and not the colon to delimit the level argument
when the '@' symbol is used as a wild card. If a colon is
used and the 'A' argument is used, all files on the disk may
be deleted. If the ':' is used in the same manner in the
>TF command, all files may be transferred.

this colon should be a semi-colon
v

>DK @:FOR:@
>TF @:FOR:@,O,A

DELETES ALL FILES!
TRANSFERS ALL FILES ON DISK OJ

PDOS Technical Notes Vol. 1 No.2 3

(WARNINGS AND CAUTIONS cont.)

8. ANSI termina1 support under rev 3.0b PDOS is an optional
system parameter. If you wish to have ANSI terminal support.
you must re-run xxDOS:GEN including the ANS option. You may
wish to set switch CPSC to 0 so that ANSI will be your
default terminal type. This means that MTERM will not have
to be run. You will also need to reinstall your boot with
MMKBT.

>xxDOS:GEN IANS-1/CPSC=g.BASIC

Install ANSI termInal and set ANSI to default type. Include
BASIC.

>tJA1KBT
68K PDOS Make Boot Disk Uti I Ity ~7/29/85

Select the (F)lle optIon to Install the boot from your
xxDOS fIle.

If you want to use Wyse-75 terminals with PDOS. set it in
ATS mode and select the MTERM option letter "M". Data Media
Excel 12 and not letter "D". Decscope (VT52).

C REV. 1.2C
9. C Rev. 1.2C -- fscant currently cannot read

it seems to mess up when it hits a newline.
use fgets to put the data in a buffer and
parse it.

across lines -­
For the moment.
use sscanf to

10. C Rev. 1.2C -- tprintt has some sort of problem with %u when
the F switch is set. The following program works (more or
less the largest number should be 4 billion. not -2
billion) without the F switch. but not with it.

4

maln()
(

unsigned long x-1;
Int I;
for (I = 1 ; 1<33; 1++) (

prlntf("\n%lu.%ld".x.x);
x += X;

}
}

PDOS Technical Notes Vol. 1 No.2

o

o

c

(-
(WARNINGS AND CAUTIONS cont.)

11. When an external reference appears next to a global defini­
tion. a problem frequently occurs when someone includes
"stdio.h" and then defines a few global definitions below
it. As a temporary fix. rearrange the instructions (if
possible) so that the two don't lie together. The bug shows
up as an assembler error telling you that you 'XDEF'ed
STDERR but you didn't define it.

12. Some of the internal subroutines of the run-time library
(like .LMUL) are documented as if they were callable from
a user program. In fact. although the symbols for the call
are available (as .LMUL. for instance) those symbols are not
made external via an XDEF statement. For the present. those
subroutines cannot be called from a user program unless
steps are taken to extract the sources from the library.
insert the appropriate XDEF statement. and reassemble them.

PASCAL
13. 68000 Pascal Rev. 2.7A -- closing a file does not deallocate

the file buffer FA. As a result. a series of OPEN/CLOSE
statements will eventually run a system out of memory. This
problem will be corrected in Rev 2.8B.

14. For all Pascal users -- OPENing a file. or any other opera­
tion involving NEW from within a PROCESS (rather than
from a PROCEDURE/FUNCTION) will cause an out of memory
error. number 603. This is because when the process is,
created. its stack is allocated from the heap. Later. when
the code in the process requests memory from the heap. the
runtime system notes that the current stack pOinter is lower
than the current heap pOinter -- an indication that the heap
and stack have overrun each other. For now, consider it a
restriction that processes cannot perform operations in­
volving dynamic memory allocation. This restriction will be
lifted in the future.

PDOS Teohnioal Notes Vol. 1 No.2 5

FIXES. PATCHES AND WORK-ABOUNDS

1. A correction should be noted for the PDOS debugger docu­
mentation on page 3-29 of the 3.0 PDOS Referenoe Manual. The
explanation of the use of the trace "T" command indioates
that "a return will execute it and display the next instruc­
tion to be executed." The "return" should be a "space."

2. On Stride systems. the S6LDGO program as supplied on the
boot disk causes the system to hang. To correot this
difficulty. assemble the S6LDGO:SR into S6LDGO using MASM
and MSYFL.

3. When attempting to download S-records to target systems.
some users have had some difficulty. Motorola's description
of S-records indicate that each record may be terminated
with a CR/LF/NUL. Force systems seem to make this a reguire­
mente The following patch to our MSREC:SR utility will
provide these line delimiters:

*
SREC12 ADDQ.W

MOVE.B
MOVE.B
MOVE.B
CLR.B
LEA.L
MOVE.L
RTS

.4,A7

.$0'0, (A2) +

.$0'A.(A2)+

.$80', (A2)+
(A2)
LBUF(PC) ,A2
(A7)+.D5

;V, POP OVER TERMINATER
; WAS $0'A
; WAS $0'0
; ADDED NULL WITH HIGH BIT SET

;POINT AT S-RECORD
;RESTORE COUNT

Use MASM and MSYFL to rebuild your new MSREC syfile.

It is also important that the
contain the offset to the desired
the code may not be loaded.

Force monitor RO register
load address; otherwise,

4 .. The following utility. xxLDGO, is oompletely documented in
the Installation and Systems Mana~ement guide for your
system; however. the general information sheet on the next
page may be useful for you if you do not have aooess to the
guide. It has been prepared so that you might insert it
into your PDOS Referenoe Manual.

6 PDOS Teohnioal Notes Vol. 1 No.2

c

(
xxLDGO

LOAD AIm/OR GO TO A ImW SYSTBK

NOTE: xx should be replaced with the letters for your specific
system (S6 for Stride 460, Fl for Force CPU-I, V2 for VMEsystem
1000, etc.)

Name: xxLDGO
Function: Load into memory and/or execute new system.
Format: >xxLDGO {<load address>}{,<filename>}

Restrictions:
xxLDGO will replace your current PDOS operating system and
execute a new system terminating all tasks.

Description:
xxLDGO is used to load and execute new PDOS systems.

The load address is the location in memory where the program is
to be located.

The filename is the name of your system file. If a filename is
not given, then xxLDGO will look for a PDOS system in your task
space. xxLDGO will only load a file in which the PDOS ID
characters are found. After xxLDGO has loaded your new system,
it will jump to the load address and begin execution.

The following is an example:

>xxLDGO .xxDOS[CR]

You then see something similar to the following:

DOS FI Ie Loaded: xxOOS
Found POOS at address $~~~~BEB6

DOS size Is $~~~~8B04

Execution of the startup file on the new version.

>MTIME P[CR]

xxLDGO allows you to try a new version of PDOS without modifying
your disk boot image. To make this new system into a disk
boot you need run the MMKBT utility.

PDOS Teohnioal Notes Vol. 1 No.2 7

C'·' ",JV

8 PDOS Teohnioal Notes Vol. 1 No.2 c

(FIXES, PATCHES, AND WORK-AROUNDS oont.)

5.

*

A patoh to inolude BP-150 term~nal support ~s shown below.
It may be inoluded in MBIOS:SR. You may have either ANSI
terminal support or HP-150 terminal support, but not BOTH.
After making this patoh you will need to re-run xxDOS:GEN
and KMKBT to install your new system.

* MBIOS SUBROUTINE FLAGS
*

*
*

IFUDF HP 1513 : HP 1 513

IFNE HP1513

EQU 1 ;DEFAULT INCLUDE HP1513

* HP 1513 POSITION CURSOR
*
*
*
*
*
*
*
*
B$PSC

IN:

OUT:

D1.B = Y POSITION (ROW)
D2.B = X POSITION (COL)
(A3) -= CB13$(AS)

SR III: .NE.

MODE - <esc>&aYYyXXC

*$9B*25S+$813+'&',(A3)+
*$813+'8', (A3)+
013
01,013 ;GET Y OR Row POSITION

MOVE.W
MOVE.B
CLR.L
MOVE.B
DIVU.W
ADDI.B
MOVE.B
SWAP
ADDI.B
MOVE.B
MOVE.B
CLR.L
MOVE.B
DIVU.W
ADDI.B
MOVE.B
SWAP
ADDI.B
MOVE.B
MOVE.B
CLR.B
CLR.W
RTR

*113,013 ;HIGH - REMAINDER. LOW = QUOTIENT'

*

*$ 813 + ' 13' ,013
013, (A3) +
013
*$813+'13' ,013
013, (A3)+
*$813+'y'. (A3)+
013
02,013 ;GET X OR Col POSITION
*113,013 ;HIGH = REMAINDER, LOW = QUOTIENT
*$813+ '13' ,013
013, (A3) +
013
*$813+'13',013
013, (A3) +
*$813+' C' , (A3) +
(A3)+
-(A7) ;SET A .NE.

PDOS Teohnioal Notes Vol. I No.2 9

(FIXES, PATCHES, AND WORK-AROUNDS cont.)

*
*
*
*
*
*
*

HP-150 - CLEAR SCREEN

HP-150 MODE - <esc>&a0y0C<esc>J

IN:
OUT: SR - .NE.

SSCLS LEA.L HPCLR{PC),A2 ;POINT TO CLEAR SCREEN SEQUENCE
*

*

*

MOVE.B (A2)+,{A3)+
BNE.S @0002

CLR.W
RTR

-(A7)

;OUTPUT, DONE?
;N

;SET A .NE.

HPCLR DC.B
DC.B
EVEN
ENDC

S9B,S80+'&',S80+'a',S80+'0',S80+'y'
S80+'0',S80+'C',S9B,S80+'J',0

*
*

IFNE HP150
PRINT '» HP 150 TERMINAL SUPPORT INCLUDED'

ENDC

6. A patch to assure that the battery o1ook year matches the
PDOS year is as fo11ows:

Under I abe I : TIMR
Change:
To:

LEA.L YEAR{PC),A1
ADDA.L *S,A1

and reassemble the source

This patch a110ws the
clock year rather than
for the MTIME routine.

PDOS year
using the

to be used for the battery
year of the last compile

6. Very 1arge programs ~n 68000 BASIC Rev 3.0b will have
problems if more that 253 variables are used. When a line
defining the 253rd variable is entered with BASIC's line
editor, or when it is brought in from a file with the LOAD
command, it is garbled. As an example, see the file below:

10 PDOS Teohnioal Notes Vol. 1 No.2

o

o

(

(

(

(FIXES. PATCHES. AND WORK-AROUNDS cont.)

10
20
30
40
50
60
100
110
120
130
140
200
210
220
230
240
250

2000 A1=0: A2=0: A3-0: A4-0: A5=0: A6=0: A7=0:
2010 A8=0:A9=0:A10=0:A11-0:A12=0

2470 A247=0: A248=0: A249=0: A250=0: A251=0: A252=0
2500 REM
2510 REM NOTICE THE NEXT LINE
2520 REM
2530 A253=0

When this file is LOADed. the assignment on line 2530 is
garbled.

The fix for this problem is a patch in
interpreter itself. The following BASIC
for the appropriate location in your system
patch.

REM BASIC PATCH FOR 253rd VARIABLE PROBLEM
REM

the 68000 BASIC
program searches
and applies the

REM CHANGE: E18C 7203 E19C 4A04 6702 18C4 5341 6EF4 4E75
REM TO: 4844 6104 6102 6004 4A04 6702 18C4 E19C 4E75
REM
I=MEML[SYS[39]] 'SELECT START OF BIOS FOR SEARCH
FOR A=02000H+1 TO 0C000H+1
IF MEML[A]=0E18C7203H: IF MEML[A+4]=0E19C4A04H: GOSUB 100
NEXT A
PRINT "*** PATCH NOT FOUND'" ***"
BYE
IF MEML[A+8]=0670218C4H: IF MEML[A+12]=053416EF4H: SKIP 1
RETURN
MEML[A]=048446104H: MEML[A+4]-061026004H
MEML[A+8]=04A046702H: MEML[A+12]=018C4E19CH
PRINT "**~ PATCH COMPLETE" ,"***"
BYE

After this patch has been applied. you may want to test it
out by LOADing a program like the one above. If everything
works okay. make the patch permanent by running MMKBT and
selecting the "M" option for the source of the boot. See
your installation manual for details on the operation of
MMKBT on your particular system.

We recommend that you tryout the boot by writing it on a
temporary floppy disk first. If that works. you can install
the boot on your hard disk by using similar procedures.

PDOS Teohnioal Notes Vol. 1 No.2 11

(FIXES, PATCHES, AND WORK-AROUNDS cont.)

7. All PDOS 3.0b systems with 68010 processors will experience
a format exception error when the XKTB primitive is used on
tasks that have been created with XCTB upper/lower memory
bounds format. To fix this problem, take the address of the
exception, add six, and change the contents.

>
FRMT exception with XKTB

FRMT 8~~~~2C64 < address
O~: ~~~~~
A~: • • • •

Enter debugger and change contents of execeptlon address + 6

>PB
2C64 4E73
2C66 4FEE
2C68 ~3AE
2C6A 67~C 5107

old value

< new value

Run MMKBT with the (M)emory option to save the new boot.

o

This change will prevent the task abort feature (file MABORT) Cj
which has been implemented on some systems from working. ~

12 PDOS Teohnioal Notes Vol. 1 No.2
c

(

(

APPLICATIONS AND HINTS

1. Some PDOS users have terminals which allow up to 132 charac­
ters on the screen and/or more than 24 lines per screen.
MEDIT Rev 1.9 or later allows you to select row and column
size. The default is 80 columns and 24 lines per screen.
To utilize this feature, you can use the two optional
row and column arguments:

MEDIT <filename>{<,col><,row>}

>MEDIT .132 for 132 columns
>MEDIT FILENAME:SR.,49 for 80 columns and 49 lines

2. To create a task on a terminal without displaying the PDOS
prompt, you can use one of the following procedures:

3.

a. Create the task on port zero and then reassign the port
for the terminal within the operating task.

or
b. Create a dummy task on port zero, reassign the port for

the terminal within this task, and chain to the desired
task.

It is often desirable to access certain PDOS variable
buffers such as the task control block or SYRAM from higher
language routines. In PDOS BASIC, the SYS 9 function
returns the address of the user task control block. SYS 39
returns the address of SYRAM.

In FORTRAN, Pascal, or C, addreses to these buffers can be
obtained by using the XGML primitive. You should refer the
specific language manual for ,the use on this primitive.

4. To pass long integer values to the Pascal XPSF routine on
9900 systems as it is currently defined is not possible. As
defined, one can access up to 32 Kbytes. Several approaches
can be used to access further into the file. A routine
which reads the record number and the bytes per record can
be set up to index into files on an even number of records.
The long integer is set up via a multiplication within the
routine.

An alternate procedure which requires combined Pascal and
assembly procedures and will position to any byte within the
record is as follows:

PDOS Teohnioal Notes Vol. 1 No.2 13

(APPLICATIONS AND HINTS oont.)

{PASCAL PROCEDURE WHICH CALLS SPECIAL POSITION ROUTINE)

Procedure XPSF1(FILID,MUL,ADD: INTEGER); EXTERNAL;

Procedure XPSFC(FILID: INTEGER; BYTES: REAL);
VAR

MUL, ADD : INTEGER;
BEGIN

MUL := TRUNC(BYTES/3~~~~.~);
ADD := TRUNC(BYTES-(MUL*3~~~~.~»;
XPSF1(FILID,MUL,ADD);

END;

* TXPSF 1 : SR 13-FEB-86
**
* PDOS SUPPORT ROUTINES FOR PASCAL TI99~~ (future)
* (C) 1984 ERI I, PROVO UT
**

TXPSF1 * ROUTINE NAME:
* FUNCTION:
* REV:

Positions a fl Ie to a specified byte Index
2.8a

* AUTHOR: David A. Grotegut
*
* ASSEMBLY PROCEDURE TO POSITION TO BYTE IN FILE
* USES MULTIPLIER * 3~~~~ + ADDER PASSED BY PASCAL ROUTINE
*

*

*

COPY TPHEAD:SR

PSEG
IDT '2.7TXPSF1'
DEF XPSF1
REF .PERROR

*PROCEDURE XPSF1(FILID, MUL, ADD: INTEGER); EXTERNAL;
*
SP EQU R1~
*
TXPSF1 DECT SP

14

MOV *SP,R~
DECT SP
MOV *SP,R2
DECT SP
MOVE *SP,R1
MUL @CONST,R2
ADD R~,R3

XPSF
JMP TXERR

;GET ADDER

;GET MULTIPLIER

;GET FILID
;EXTEND TO LONG INTEGER
;ADD EXTRA BYTES
;POSITION TO BYTE

PDOS Teohnioal Notes Vol. 1 No.2

(

(

<

(APPLICATIONS AND HINTS cont.)

TXERT
*
TXERR

*

RT

MOV R11,*SP+
AI R0,ERHIGN+ERHLOC
BL @.PERROR
DECT SP
MOV *SP,R11
JMP TXERT

;SAVE RETURN
; IGNORE THE ERROR BUT REPORT IT

;RESTORE RETURN
;RETURN ANYWAY

CONST DATA 30000
END

5. PDOS BASIC will interpret hex strings and output the proper
character string when saved as a string variable i.e. SA=
'<IB>*'. String variables are still string var~ables and
cannot be compared with another string although they may
produce the same output. For example: SA - '<41>', SB -
'A'. If SA and SB are printed, they will produce the charac­
ter A but they are not the same string. Use SA - %65%0 to
be equivalent with SA - 'A'.

6. It is possible to have a 9900 BASIC program running and be
able to execute a monitor command from a keyboard as though
the BASIC program were not there. The following two lines
of code will perform the application:

100 BASE SYS 16: CRB 18=0: $INTR=%'0420 0010 045B': MEMW 0342H=01F15H
110 IF CRB 21: CALL .ADR INTR: MEMW 0342H=01F10H: BYE

By way of explanation, BASE SYS 16 gets your console CRU
base. CRE 18=0 disables interrupts on receive for that
port. The assembly language 'string is a BLWP to the inter­
rupt service routine followed by a RT return. The MEMW
modifies the interrupt service routine to check RBRL instead
of RINT.

Note: Enabling this feature can have some side effects for
other ports in the system which have their interrupts
disabled but are still receiving characters. This is the
case especially if they are higher in the task list than
your console.

PDOS Technical Notes Vol. 1 No.2 15

(APPLICATIONS AND HINTS oont.)

The seoond line needs to be exeouted often in the appli­
oation. It will normally fall through unless a oharacter is
reoeived. A charaoter in the receive buffer of the 9902
will oause the modified interrupt servioe routine to put the
oharaoter in the input buffer. Upon return from the inter­
rupt servioe routine, the modification is removed and
BASIC exits. The monitor then gets the received oharaoter
and any that follow. The address of the (IFIO) instruotion
may be different on your system but it should be near to the
0342H address.

7. 68000 SBCTION labels in HASH and QLINK are used to group
seotions of oode together. Files of oode oontaining seotion
lables will be grouped together as they are noted by the
assembler or linker even if they are from a separate inolude
file. For example:

SECTION " W I I I comp I I e to SECTION " the following
CODE A sequence: CODE A
CODE B CODE B

CODE C
SECTION 2 CODE E

CODE D SECTION 2
CODE F

CODE D
SECTION " CODE F

CODE C SECTION 3
CODE E

CODE G

SECTION 3

CODe: G

8. There have been questions about using the error trapping
feature in Pascal to oatch various types of run-time errors.

16

The following program illustrates trapping the PDOS error
53, "File Not Found," to oheok whether or not a particular
file exists. This program could be used to validate user
input, searoh a directory for files, or to determine whether
to oreate a new file or append to an existing one. Similar
teohniques could be used to trap the other Pasoal run-time
errors.

PDOS Teohnioal Notes Vol. 1 No.2

,1->
'l\j

(;

(

(APPLICATIONS AND HINTS oont.)

PROGRAM TEST;
CONST

ERHIGN-IlJ;
ERHABT-2;

{" IGNORE" signa I}
{"ABORT" signal}

VAR
EXISTS: BOOLEAN;
FILENAME: STRING[24];
MYFILE : TEXT;

PROCEDURE SETERR(PROCEDURE EH(VAR E,A: INTEGER»;EXTERNAL;

PROCEDURE ERTRAP(VAR E,A:INTEGER);
BEGIN {ERTRAP}

IF E-53 THEN BEGIN
EXISTS :- FALSE; {FI Ie does not exist}
A :- ERHIGN;

END
ELSE

A :- ERHABT;
SETERR(ERTRAP);

END; {ERTRAP }

BEGIN
SETERR(ERTRAP);
REPEAT

WRITE('ENTER FILE NAME ');
READLN(FILENAME);

{Restore error trap}

EXISTS :- TRUE; {Assume that It exists}
RESET(MYFILE,FILENAME);
IF NOT EXISTS THEN WRITELN('NOT THERE');

UNTIL EXISTS;
CLOSE(MYFILE);

END.

9. 9900 Pasoal users who are writing or oalling assembly oode
routines whioh referenoe variables in the status blook
should inolude the following oode in their routines:

REF .PTCB ;EXTERNAL REFERENCE

MOV @.PTCB(15),R9 ;GET STATUS BLOCK ADDRESS

PDOS Teohnioal Notes Vol. 1 No.2 17

(APPLICATIONS AND HINTS oont.)

68000 Pasca1 users can also use the following to obtain
their task contr01 block:

XREF .PTCB ;EXTERNAL REFERENCE

MOVEA.L .PTCB(A4),A6 ;GET STATUS BLOCK ADDRESS

If you fai1 to do this and the program uses R9 or A6 to
reference a status control blook variable, you could be
referencing an undefined location which may cause other
tasks or your system to orash. Follow the guidelines for
register usage in section 5 of the PDQS Pascal Referenoe
Manual.

10. Accessing System Kemory as Fortran Variab1e Space.

On occasion, it is necessary to write Fortran programs that
share some sort of data space. What you need is some sort
of COKMON that extends across task boundaries, or some way
of sharing memory between tasks. The FORTRAN 77 language
speoification does not offer any way of doing this; indeed,
it does not even allow for the ooncept of a "task," but with
PDOS Fortran and a little imagination, it can be done.

The triok is to take advantage of the Fortran feature that
passes all parameters by address. If you pass an array into
a subroutine, that subroutine really reoeives just a pOinter
to the beginning of the array and makes all references to
the array indireotly through that pOinter. What if that
pOinter really pOinted to the global variable space? Then
accesses to the elements of the array would really be
reading and writing that memory out somewhere in system RAMI

You can get the address of a blook of memory through various
techniques. Perhaps the easiest way is to free memory with
the PDOS)FM command and note the address that it prints
out. This is the address of the system memory you will
use. You could write that address explioitly into your
programs, or have them read it from some sort of file. Or,.
you could put the address away where everyone can easily get
it -- such as in the MAIL array.

The following program illustrates the use of the XGML call
to get the address of the MAIL array. Then, rather than
allocate memory trom the system, dedicate a long word of
the mail array itself as the variable spaoe and use another
word of the mail array to point to that space. That space
is set to a value of 100 in this example, so that it can be
examined later to see if you got it properly.

18 PDOS Teobnical Notes Vol. 1 No.2

c

(

(APPLICATIONS AND HINTS cont.)

Since the mail array is only 256 bytes long, you wouldn't
use it for large collections of data, but allocate them
elsewhere and just leave a pOinter here.

It is normally safer to skip the very beginning of
array (this example uses the starting address
because BASIC tends to use that location for its
poses.

PROGRAM TEST2
IMPLICIT INTEGER (A-Z)
EXTERNAL A,PASSER
CALL XGML(ENDTCB,UPPERMEM,LASTLOAD,SYRAM,TCB)
MAIL - LONG(SYRAM+4)
LONG(MAIL+8) - MAIL+16 I MAIL(~) OF BASIC MAIL ARRAY
LONG(MAIL+16) - 1~~ ! MAIL(1) OF BASIC MAIL ARRAY
END

the mail
plus 8)

own pur-

Now that you have set up the mail array, you need to call a
subroutine and pass the address of the global data to it.
You will have to use an assembly language routine. And
since the assembly language routine will need to know the
subroutine to call as well as the address to pass it, you
should pass both to it. That way, you can call Fortran
routines from assembly language.

PROGRAM TEST1
IMPLICIT INTEGER (A-Z)
EXTERNAL A,PASSER
CALL XGML(ENDTCB,UPPERMEM,LASTLOAD,SYRAM,TCB) Iget address of SYRAM

!get address of MAIL
Iget address of global data

MAIL - LONG(SYRAM+4)
GLOBAL - LONG(MAIL+8)

C
C Send address of global data to subroutine A via PASSER
C

CALL PASSER(GLOBAL,A)
END

SUBROUTINE A(I)
WRITE(9,*) , I - ',I
RETURN
END

display value of global data

PDOS Teohnioal Notes Val. 1 No.2 19

(APPLICATIONS AND HINTS oont.)

This assembly language routine reoeives the pOinter to the
global memory and the address of the subroutine to oall. It
then oalls the one with the address of the other.

PASSER MOVEA.L 4(SP),A2 ;GET ADDRESS OF ADDRESS OF SUB­
ROUTINE 'A'

20

MOVEA.L (A2),A2
MOVEA.L 8(SP),A1
MOVE.L (A1),-(SP)

MOVEQ.L .1,00
JSR (A2)
ADDQ.L .4,SP
RTS
END

;GET ADDRESS OF SUBROUTINE A
;GET ADDR OF GLOBAL VAR
;GET VALUE OF GLOBAL VAR (WHICH IS
AN ADDRESS)
;ONE ARGUMENT TO BE PASSED
;CALL THE SUBROUTINE
;CLEAN UP STACK
;AND RETURN

The remaining diffioulty is to make everything work to­
gether. This involves the use of the Fortran oompiler, the
Fortran linker, and (to prepare the PASSER routine) the PDOS
assembler and SY file oonverter. The programs TESTl:FOR and
TEST2:FOR are oompiled in a normal fashion. The oommand
lines might be:

x>F77 TESTl
x>F77 TEST2

The file PASSER:SR must be prepared by assembling
oonverting it to an SY file like this:

x>KASK PASSER:SR,tPASSER:OBJ
x>KSYFL PASSER:OBJ,tPASSER:SUB

it and

The Fortran programs must now be linked with the different
support routines like this:

x>F77.L TESTl,PASSBR,XLIB/L,F77:RL/L
x>F77L TEST2,XLIB/L,F77:RL/L

You must run TEST2 first to set up the pOinter in the MAIL
array.

x>TEST2

Now, when you run TESTl, it will print the value that was
stored by TEST2.

x>TESTl
I - 100

Good luokl

PDOS Teohnioal Notes Vol. 1 No.2

c

\.

:.~:. .) I-~ !,;-ilj '~RedIl/ffl('
• . 1 _, ()per dClnl}

-. - 5¥'ilt"ffi

Tips&
TechnicalNotes

INTRODUCTION

New Release

Vol. 1 No. 3
May 5. 1986

Fortran 2.2 for the 68000 is now available. There were some
changes since the 2.2 beta release. The release consists of a
new disk and release notice. The current manuals are unchanged.
If you desire an upgrade. please contact Karen Vanfleet at
Eyring.

Included in this issue are the following items:

Warninis and Cautions

1. Caution - ISUI Under PDOS 3.0b
2. Caution - Using MFSAVE

Fixes. Patches. and Horkarounds

1. Fix - Pascal Procedure Files
2. Fix - FxBIOSU Parity Enable
3. Fix -- Disk Access on VME 120
4. Patch - IDEV Under 3.0b and Later
5. Patch - MEDIT For Lines Longer Than 96
6. Horkaround - NOT Operator in MASM
7. Horkaround - MASM MOVEP Instruction Error
8. Workaround - SYRAM L~cation in Custom Configurations

Applications and Hints

1. Application - Pascal Task Data Passing
2. Hint - FORTRAN PDOS Primitive Utilization
3. Hint - Burning C Programs in ROM
4. Hint - PDOS Port Limitations
5. Hint - Force RTC Utilization and Change
6. Hint - Force PIT Alternate Uses
7. Hint - Zero RAM Disk Implementation
8. Hint - Fine Tune Your PDOS Clock

PDOS Teohnioal Notes Vol. 1 No. 3 1

Eyrinq I 1450 West 820 North I Provo, Utah 84601 I fit (801) 375-2434 11!EI882-000 liFaxi (801) 374-8339

WARNINGS AND CAUTIONS

1. CAUTION -- 68000 PDOS 3.0b XSUI. The primitive when used to
suspend a task on event reset may not work as you expect.

The XSUI primitive suspends a task until either one or two
events occur. In order to suspend on one event. the upper
byte of D1.W must be set to zero with the lower byte
containing the desired event. The event number bytes are
positive if you want to suspend until the event is SET (-1).
The byte is negative to suspend until the event is RESET
(-0). In asembly. when you MOVE.W. MOVE.L. or MOVEQ.L a
negative number to a register. the low byte contains the
negative byte. and the other bytes are set to $FF.

For example. MOVE.W #-32.D1 yields D1 - $FFEO and MOVE.L or
MOVEQ.L #-32.D1 yields D1 - $FFFFFFEO. If these in~truc­
tions are used wtih the XSUI call. there is an $FF byte for
the second event telling PDOS to suspend until either event
32 is RESET (-0) or until event 1 is RESET (-0). Since
event 1 defaults to RESET. then the task calling XSUI never
suspends. regardless of event 32. To solve the problem in
assembly. just mask off the upper byte with MOVE.W
#-32&$00FF.D1.

The problem is more subtle in Pascal.
statement

XSUI(Temp.-32)

only suspends until either
event 1 comes up RESET. the
work around this problem
your system (i.e. >EV 1) in

event 1 or
task never
by setting

the SY$STRT

For example. the

32 are RESET. Since
suspends. You can

event 1 when booting
file.

To work around the problem in Pascal. always place a single
negative event number into the higher byte as follows:

XSUI(Temp.-32*256);

2. CAUTION Using MFSAVE. If you attempt to utilize the
MFSAVE utility to recover a file which you have inadverte­
ntly deleted. be sure to save it to an already existing file
on the same disk or create a new file on a separate disk.
If the file is created on the existing disk. it may utilize
the first sector of the file being saved. As a result. at
least one sector would be destroyed as the new file is
created.

PDOS Technical Notes Vol. 1 No.3

(

(~

1.

FIXES, PATCHES AND WORKAROUNDS

FIX -- Pascal Procedure Files. Some versions of 68000
PASCAL Rev. 2.6c may encounter an error when running the
procedure file "PASCAL". The following command line:

INPUT PTEMP&#W:POB

should be changed as follows:

INPUT PTEMP&#:POB

2. FIX -- FxBIOSU Parity Bnable. An error in the FxBIOSU files
for the FORCE CPU-I. CPU-2. and CPU-3 prevents the system
from using the SIO card with EVEN parity. The port "locks
up." Even though the UART is correctly initialized for
parity. the input interrupt is disabled and never enabled.

The following code in FxBIOSU:SR is the culprit:

BTST #5,D1 ;ENABLE?
BNE.S i006 ;N

TAS.B RIER(A0) ;Y, ENABLE INTS

Change the ' 5' in the first line to 'BRIN' so that it reads:

BTST #BRIN,D1 ;ENABLE?
BNE.S i006 ;N

TAS.B RIER(A0) ;Y, ENABLE INTS

Then. "GEN" the system with FxDOS:GEN and check it again.
You should now be able to c~mmunicate through the port with
or without even parity.

3. FIX -- DISK ACCBSS ON VMB 120. The selected drive may not
be accessed when more than one floppy drive is installed in
VME 120 applications. To correct this problem. the follow­
ing fix should be implemented:

Under the label W$XDIT in V2BIOSW:SR

change CMPA.L D0,A2
BEQ.S i020

to CMPA.L D0,A2
BEQ.S i030

Regenerate your system with this correction.

PDOS Teohnioal Notes Vol. 1 No. 3 3

Fixes, Patches, and Workarounds (cont.)

4. PATCH -- XDEV Under 3.0b and Later. XDEV on 68000 PDOS 3.0b
or later may not ~et events when the system clock interrupts
and rolls the event delay queue.

The following patch should correct this problem:

A. Reboot and kill all tasks except task O.

B. Using the debugger, alter the following to disable
interrupts during the XDEV call:

Old Hex
4AE000BE
5BC7
4401

Old Assembly
TAS.B TLCK.(A5}
SMI.B 07
NEG.B 01

New Hex
007C0700
4207
4401

New Assembly
ORI.W #$0700.SR
CLR.B 07
(NO CHANGE)

To make the alteration, enter the PDOS debugger and
find the address of the long word $5BC74401:

>PB
800.9000,5BC74401L

001F04

Only one address should be listed. If there are more
than one, use the first one. With that address, open ~

4

the location with a carriage return. Use the minus ~
sign to step backwards two locations and enter the new
code:

1F04[CR]: 5BC7-
1F02 00BE-
1F00 4AEO 007C[LF]
1F02 00BE 0700[LF]
1F04 5BC7 4207[CR]
Q

>
return to PDOS

Interrupts are enabled when the XDEV primitive returns
to your task.

C. Once the patch is made, you should save the patch using
MMKBT with the M(emory) option.

This problem will be fixed in a future release and we
apologize for any difficulty it may have caused.

PDOS Technical Notes Val. 1 No.3 c

{ ..

(~

Fixes, Patches, and Workarounds (cont.)

5.

>ZM

PATCH -- HBDIT For Lines Longer Than 96. As
previous issue of PDOS Tips and Technical
problem in MEDIT prevents the use of lines
characters.

reported in the
Notes, a hidden

longer than 80

To patch the editor so that it will handle longer lines, do
the following:

>LO MEDIT
>LT

Load MEDIT program
Note TB and BM addresses

Task
*0/0
1/0

Prt Tm
64 1
64 1

Event

98
>PB
+0,FFFF,0C420050L

00048
DD48[CR]0C42 B46E[LF]

DD4A 0050 1DDE[CR]

Map Size
o 638
I 200

PC SR TB BM EM
001E94 2000 10C000 01EBC0 0AB800
002686 2004 0BC000 0BEBC0 0EE000

Enter debugger
Search for $0050
Note address

I 1 248
1 1 400
22400

Enter address from above and enter
fCR]

Change next address to one
calculated above

Dump and dIsassemble to verIfy InstructIon change to CMP.W $1DDE.D2

Q
>SV #T,$C500,$EBC0[CR]
>T FILE,132

QuIt the debugger
Save modIfIed MEDIT
Try modIfIed versIon

(***THE CODES IN THE ABOVE EXAMPLE MAY VARY FROM SYSTEM TO SYSTEM***)

Before the modified editor can be used you should set up the
system to handle a modified ANSI terminal to output the
proper cursor control sequence. The following example will
help you with the change:

PDOS Technical Notes Vol. 1 No.3 5

Fixes. Patches. and Workarounds (cont.)

*
*
*
*
*
*
*

(WY-50) - POSITION CURSOR

IN:

OUT:

01.B = ROW POSITION
02.B = COLUMN POSITION
(A3) = CB0$(A6)

SR = .NE.

* MOOE = <esc>arrRcccC
*

B$P5C

*

IFNE
MOVE .W
CLR.L
MOVE.B
BSR.S
MOVE.B
CLR.L
MOVE.B
BSR.S
MOVE.B
CLR.B
CLR.W
RTR

ANS
#$9B00+$80+'a', (A3)+
00 ;CONVERT TO 32 BIT UNSIGNEO
01,00 ;GET ROW POSITION
a0002 ;ROUTINE TO COMPUTE OCTAL POSITIONING
#$80+'R', (A3)+
00
02,00
a0002
#$80+'C', (A3)+
(A3)+
-(SP)

;CONVERT TO 32 BIT UNSIGNEO
;GET COLUMN POSITION
;ROUTINE TO COMPUTE OCTAL POSITIONING

;RETURN

a0002 AOOQ.L #1,00
OIVU.W #100,00
TST.W 00

;BAISE ROW/COL BY 1
;GET NUMBER OF 1005

*
aHIJ003

BEQ.S a0003
AOOI.B #$80+'0' ,00
MOVE.B 00,(A3)+

SWAP
EXT.L
OIVU.W
AOOI. B
MOVE.B
SWAP
AOOI.B
MOVE.B
RTS

00
00
#10,00
#$80+' 0 ' ,00
00, (A3)+
00
#$80+'0' ,00
00, (A3)+

;NONE
;OUTPUT NUMBER

;GET 10S

;OUTPUT 10S

;OUTPUT 1S

;RETURN TO CALLER

Once the changes are made in MBIOS:SR the system must be
regenerated using the following sequence:

xxOOS:GEN IANS=1/CPSC=0,BASIC ,BASIC If Included

Test with xxLDGO and xxDOS.

6 PDOS Teohnioal Notes Vol. 1 No. 3

(

(

(

Fixes. Patches. and Workarounds (cont.)

6 .

Set up MTERM to send the clear screen sequence under the
user mode. Then. you will have the special cursor posi­
tioning plus the normal clear screen commands. If it is a
valid mode of operating. then finalize the system with the
MMKBT utility.

Note: Other terminals may now have to be set up using the
MTERM utility since the default is ANSI. If ANSI is not the
default. drop the /CPSC-O switch from the system generation
command. The terminal with the higher column count must
then be set using the MTERM utility for normal screen clear
and BIOS cursor position.

WORKAROUND -- NOT Operator in HASH. The NOT operator token
is not processed in QLINK. When doing arithmetic on XREFed
labels. the assembler produces operator tokens in the object
code output for the link to perform. The token produced by
the NOT symbol (-) was left out of the QLINK list producing
an error when INPUT to QLINK. SO. don't use the NOT
operator (-) on expressions with XREFs in them. but simulate
it by adding and negating it. For example:

XREF LABEL
MOVE.L #NLABEL,00

causes an error in the QLINKer. so change it to

MOVE.L #-(LABEL+1) ,00

7. WORKAROUND -- HASH HOVEP Instruction Error. The 68000 PDOS
assembler MASM rev 3.0b or earlier generates an error on
the MOVEP instruction with a 0 offset when ALT mode is
enabled. To work around the problem. turn the ALT mode off
around MOVEP instructions. Example:

OPT NOALT
MOVEP.L 0(A1),00
OPT ALT

PDOS Teohnioal Notes Vol. 1 No.3 7

Fixes, Patches, and Workarounds (cont.)

8. WORKAROUND -- SYRAM Location in Custom Configurations. If
you make additions to the BIOS files, you must check the
link map when regenerating the operating system to make sure
that the end of operating system is less than the start of
SYRAM.

This means that you must define S$SRAM to be on a 2KB
address bound and to be greater than the highest section
address from the system generation. In the following
example, S$SRAM must be moved to address $6800 since the
link map indicates that the highest address is greater that
$6000.

From file xxDOS:MAP:

SECTION
E

BASE
00000800
00000800

LOWEST
00000800
00001720

HIGHEST
00006020

8

F 00006020 <-- Greater than $6000

Change 'DEFINE S$SRAM,$6000' to 'DEFINE S$SRAM,$6800' in file xxDOS:GEN
and rerun xxDOS:GEN to build a new system file.

PDOS Teohnioal Notes Vol. 1 No.3

(£',,:

""

~-,

o

(

(

(

APPLICATIONS AND HINTS

1. APPLICATION -- Pascal Task Data Passing. The following
PASCAL example illustrates how two PDOS tasks can coordinate
the passing of data. This example comprises three files:
HEADER:INC. SEND:PAS. and REC:PAS.

File HEADER: INC Is used to define all common varIables and the global mall
box between the two tasks. ThIs fIle Is Included when SEND:PAS and REC:PAS
are compIled.

FILE=HEADER:INC

{***
PASCAL TASKING EXAMPLE OF GLOBAL MAIL BOX
AND PDOS EVENT FLAG SYNC.

THIS IS THE HEADER FILE FOR SHARED DATA DEFINITIONS
**}

CONST
EV REC = 64;
EV-SEND = 65;
EV-STOP = 33;

TYPE
T GLOBALS = RECORD
-I : INTEGER;

R : REAL;
END;

VAR

{PDOS EVENTS TO SYNC. ON}

{STOP EVENT TO EXIT ALL TASKS}

{SHARED VARIABLES BETWEEN PDOS TASKS}

GLOBAL ORIGIN 16#70000 T GLOBALS;{SET SHARED VARS AT SOME FREE ADDRESS.
- WE WILL USE 70000 HEX. YOU MAY HAVE

TO USE SOME OTHER FREE ADDRESS}
{End of HEADER:INC}

PDOS Teohnioal Notes Vol. 1 No.3 9

Applications and Hints (cont.)

SEND places data Into a mall box (common memory area) and sets an event flag
to allow the REC task to run. The program runs for 1~ loops then sets an
event flag that allows the REC task to exIt. This program then exits.

FILE=SEND: PAS

{***
PASCAL TASKING EXAMPLE OF GLOBAL MAIL BOX AND PDOS EVENT FLAG SYNCHRONI­
ZATION

THIS IS THE FIRST OF TWO PROGRAMS. THIS PROGRAM SENDS DATA TO THE
RECEIVER PROGRAM. EVENT EV PROG IS USED TO SYNCHRONIZE THE TASKS.

***}

PROGRAM SENDER;

{$F=HEADER:INC}
VAR

TEMP : INTEGER;
K : INTEGER;

{INCLUDE GLOBAL DEF FOR PROG}

{TEMP VAR}
{FOR LOOP COUNTER}

{EXTERNAL PDOS PROCEDURES AND FUNCTIONS}

PROCEDURE XSEF(VAR T:INTEGER; EV:INTEGER);EXTERNAL;
PROCEDURE XSUI(VAR T:INTEGER; EV:INTEGER);EXTERNAL;

BEGIN
XSEF(TEMP,EV SEND);
XSEF(TEMP,-EV REC);
XSEF(TEMP,-EV-STOP);
WITH GLOBAL DC

FOR K:=1 TO 10 DO
BEGIN

XSUI(TEMP,EV SEND);
I :=K; -
R:=K/2;
XSEF(TEMP,EV REC);

END; {FOR} -
XSEF(TEMP,EV STOP);

END. -

10

{SET SEND EVENT TO RUN PROGRAM}
{RESET REC EVENT TO WAIT}
{RESET STOP EVENT REC TASK}

{WAIT TILL OTHER PROGRAM IS READY}
{SEND GLOBAL MESSAGE INTEGER}
{SEND GLOBAL MESSAGE REAL}
{SET EVENT FLAG}

{STOP OTHER TASKS}

PDOS Teohnioal Notes Vol. 1 No.3

C·.~' , ,
'I

c

c

Applications and Hints (cant.)

REC Is used to receIve the data after waItIng for an event flag. It then
prInts the global data onto the screen and tests for an exIt event flag. If
the exIt event flag Is set, REC exIts.

FIlE= REC: PAS

{***
PASCAL TASKING EXAMPLE OF GLOBAL MAIL BOX AND PDOS EVENT FLAG SYNCHRONI­
ZATION

THIS IS THE FIRST OF TWO PROGRAMS. THIS PROGRAM RECEIVES AND PRINTS DATA
FROM THE SENDER PROGRAM. EVENT EV PROG IS USED TO SYNCHRONIZE THE TASKS.
THIS TASK RUNS UNTIL EV STOP IS SET~

***}

PROGRAM RECEIVER:

{$F=HEADER:INC}
VAR

TEMP : INTEGER:
K : INTEGER:

{INCLUDE GLOBAL DEF FOR PROG}

{TEMP VAR}
{FOR LOOP COUNTER}

{EXTERNAL PDOS PROCEDURES AND FUNCTIONS}

PROCEDURE XSEF(VAR T:INTEGER: EV:INTEGER):EXTERNAL:
FUNCTION XTEF(EV:INTEGER):INTEGER:EXTERNAL:
PROCEDURE XSUI(VAR T:INTEGER: EV:INTEGER):EXTERNAL:

BEGIN
WRITELN:
REPEAT

WITH GLOBAL DO
BEGIN

XSUI(TEMP,EV REC); {WAIT TILL SENDER HAS UPDATED MESSAGE}
WRITELN('REC-TASK: 1=',1:1,' R=',R:5:2);
XSEF(TEMP,EV SEND); {SET SEND EVENT FLAG SO SENDER CAN RUN}

END; -
UNTIL XTEF(EV STOP)=1; {RUN THIS TASK UNTIL EV STOP IS SET}

END -

PDOS Teohnioal Notes Vol. 1 No.3 11

Applications and Hints (cont.)

First. compile and link SEND:PAS and REC:PAS:

>PASCAL SEND
>PASCAL REC

Next. run SEND as a background task and then execute REC. You should see
the values for I and R displayed on the screen:

>CT SEND
*Task #2
>REC
REC TASK: 1=1 R= 8.58
REC TASK: 1=2 R= 1.88
REC TASK: 1=3 R= 1.58
REC TASK: 1=4 R= 2.88
REC TASK: 1=5 R= 2.50
REC TASK: 1=6 R= 3.88
REC TASK: 1=7 R= 3.58
REC TASK: 1=8 R= 4.80
REC TASK: 1=9 R= 4.58
REC TASK: 1=18 R= 5.00
>

c

The coordination of tasks and passing of data through a global memory area r-'
can easily be expanded to other variables and structures or converted to ~)
other languages.

2. HINT FORTRAN PDOS Primitive Utilization. Below is an

12

example of the use of several integer function primitives
under FORTRAN. In the example, XDEV sets up a delay of
about 2 seconds on local event 128. XSUI suspends and waits
for event (97) from port 1 and the timeout of event 128.
XGCC receives characters from the port and resets the
timeout. If no characters are input. the delayed event 128
aborts the character input. Note that XDEV, ISUI, and XGCC
must be defined as INTEGER or they will not return the
desired value.

PDOS Tecbnical Notes Vol. 1 No.3

(

(

c

Applications and Hints (cont.)

PROGRAM TEST XDEV-XSUI-XGCC

INTEGER ERROR,KEY,XGCC,XDEV,XSUI,J

10 CONTINUE
ERROR = XDEV(200,128)

C TYPE 'XDEV=',ERROR
ERROR = XSUI(97*256+128)

C TYPE 'XSUI=',ERROR
IF (ERROR .EQ. 97) THEN

KEY = XGCC(0)
C TYPE 'KEY=',KEY

J=J+1
CALL XPCC(CHAR(KEY))
IF (KEY .EQ. 13) GOTO 20

ELSE IF (ERROR .EQ. -128) THEN
GOTO 110

ENDIF
GOTO 10

20 CONTINUE ;take act;on for [CR]
STOP 1

110 CONTINUE ;take act;on for t;meout
STOP 2
END

3. HINT Burning C Programs in ROM. Variables initialized
during the compilation generate code which locate the value
in the ROM code. A variable may be modifiable or pre­
initialized. but not both. If you desire both. declare two
variables. one initialized and one not initialized. Then
copy the initialized value to the uninitialized variable on
startup routines.

4. HINT -- PDOS Port Limitations. PDOS versions 2.6F and 3.0
support up to 15 user console ports (SYRAM type ahead
buffers). The number cannot be increased since user tasks
cannot have unlimited input ports or events for input
control. Polled input could extend the number of ports as
desired but cannot be triggered by events under PDOS.

PDOS Technical Notes Vol. 1 No.3 13

Applications and Hints (cont.)

5. HINT -- Foree RTC Utilization and Change. Force users can
adjust the TPS (tics per second) on the RTC. by entering the
FxBIOS:SR routine and changing the following code:

From
To

MOVE.B #$0F,RAM(A2)
MOVE.B #$F0,RAM(A2)

;INTRPT EACH 1/100TH SEC
;INTRPT EACH 1/1000TH SEC

The system must then be regenerated using the following
command string:

>FxDOS:GEN ITPS=1000/RTCF=1

This will set the RTC clock to 1000 tics per second and
initialize it as the system clock.

6. HINT Foree PIT Alternate Uses. To use the parallel

7 .

output of the PIT on your Force machine for other purposes
besides the Centronics interface. you need to change the
setup code in FxBIOSU:SR and eliminate the Centronics type
of UART.

HINT -- Zero RAM Disk Implementation. If you don't want a
RAM disk. setting the RZ-O switch when assembling xxBIOS:SR
causes the initialization code for the RAM disk to equal
zero. This switch can used during system generation to
define a zero size RAM disk on startup. This switch can be
defined in MBIOS:SR or passed to the assembler on the
command line.

>MASM S6BIOS:SR/RZ=0/IRD=0,OBJFILE,LISTFILE

8. HINT Fine Tune Your PDOS Clock. Would you like to fine

14

tune your PDOS clock to be as accurate as your $5.00 watch?
Read on.

CPU crystals do not run exactly at the posted speed. Many
PDOS system TIC timers. from which the clock is derived.
come from the processor's crystal. As such. the PDOS clock
is notoriously wrong. It is not because we don't know how
to count. but because the numbers printed on crystals are
close together.

The following process takes a day or two.
adjust time-and-date clocks that run SLOW.
fast. you need to increase the TIMEC. timer
constant. in your xxBIOS:SR file.

and can only
If yours runs
counter load

PDOS Teohnioal Notes Vol. 1 No. 3

o

(

{/

Applications and Hints (cont.)

Once you have your timer running SLOW. you need to determine
how many TICs per second (TPS) there are in your system.
This number can be found in the Installation and Systems
Management Guide for your system or in the xxBIOS:SR file.
Force CPU-1 is used in this example. All the following code
is found in the F1BIOS:SR file. and corresponding code for
your system should be in the appropriate xxBIOS:SR file.

IFUDF TPS :TPS EQU 100 ; TICS/SECOND

Now. suppose you set the PDOS clock to match your watch
exactly at NOON. and the next day at NOON the PDOS clock is
exactly 30 seconds slow. reading 11:59:30. then you have all
the information needed to set CLKADJ. The PDOS clock lost
30 secs in exactly 24 hrs - 1.440 mins - 86.400 secs. So
you need to add 1 TIC every 86400/3000. or 28.8. seconds.
Now every second the B$LED BIOS routine is called from PDOS.
in addition to blinking an LED. this routine does the clock
adjustment. It does this by adding the CLKADJ value to a
32-bit counter every second. until it rolls over to zero. at
which time it adds 1 to the TIC fine counter. The blink LED
routine has the following code:

* BLINK LED & ADJUST CLOCK
*
B$LED MOVE.L B_CLK(A0}.D0 ;ADJUST CLOCK?

BEQ.S a0002 ;N
ADD.L D0.BCLK.(AS} ;Y. ADJUST COUNT. CARRY?

BCC.S a0002 ;N
ADDQ.W #1, FCNT. (AS) ;Y. UP COUNTER

*
a0002 RTS ;RETURN

This code will add a TIC whenever the 32-bit sum rolls over
at O. or put another way. when a number added to itself
reaches 2 A 32. To find the CLKADJ number that will add 1 TIC
every 28.8 seconds. use the following equation (thanks to
Ward Horner):

CLKADJ = 2A 32 * TPS * (secs lost) / (total measured secs)

In the example. CLKADJ 2 A 32*100*30/86400. which equals
149130808.9 decimal. or $08E38E38 hex. You can now go into
the debugger and alter the B_CLK value in the currently
running BIOS table to try it immediately.

PDOS Technical Notes Vol. 1 No. 3 15

Applications and Hints (cont.)

2>PB Enter debugger

16

0(5)
0000A000: 0000
0000A002: 0AA0
AA0: FFFF
00000AA2: FD6E
00000AA4: 5637
00000AA6: 0064
00000AA8: 0000 08E3[LF]
00000AAA: 0000 8E38[CR]
Q
2>

SYram poInts to BIOS table
Table Is at $00000AA0

B_CLK Is offset 8

Enter upper word & [LF]
Enter lower word & [CR]
You're done

SYSGEN a new PDOS with the
setting CLKADJ. To generate a
value to predefine CLKADJ. type:

F1DOS:GEN file. temporarily
new PDOS system. using our

>F1DOS:GEN CLKADJ=149130809

Then. iterate on this value by setting the PDOS clock. now
coarsely adjusted. to match your watch. and then seeing the
12 or 24 hour delta error. Then, adjust the value of
149130809 up or down by the newly calculated value. until
the required accuracy is reached. Finally. to set this
value once and for all, for this one CPU card at least.
alter the F1BIOS:SR file line that sets the default CLKADJ
value by replacing:

IFUDF CLKADJ :CLKADJ EQU 0 ;CLOCK ADJUST

with

CLKADJ EQU 149130809

Make sure that you write your new PDOS out to your boot
disk. Now your PDOS clock will have improved accuracy.

.PDOS Technical Notes Vol. 1 No.3
c

(-_~J

c

Tips&
TechnicalNotes

Vol. 1 No. 4
July 1. 1986

INTRODUCTION

Current Product Status

1. New PDOS Revision for 68020 Microprocessors
2. New Pascal Revision for both 68000 and 9900 PDOS
3. Floating Point Routines for Assembly Code

Warninis and Cautions

1. Caution - 102 Boot Responses
2. Caution - C Array Declarations
3. Caution - 68000 BASIC R3.0b - Negative Line Numbers
4. Warning - FORTRAN 77 R2.2 (M81:RL)
5. Warning - FORTRAN 77 R2.2 (68020)
6. Warning - FORTRAN 77 R2.2 (68000)
7 . Warning - BASIC 3.0b - Calls to Assembly Programs

Fixes. Patches. and Workarounds

1. Workaround - BTST Instruction
2. Workaround - FORTRAN Byte and Word Constant Passing

Applications and Hints

VME/IO Function Key Implementation
Save Year in 58167 Battery Clocks
Pack/Unpack Boolean Data in Pascal
C Program Interrupt Trapping

1.
2.
3.
4.
5.

Application -
Application -
Application -
Application -
Application - Protect BASIC Programs From Being Listed

PDOS Teohnioal Notes Vol. 1 No.4 1

Eyrinq 1 1450 West 820 North 1 Provo, Utah 84601 I. (801) 375-2434 1 l!BI 882-000 IIFaxl (801) 374-8339

CURRENT PRODUCT STATUS

1. A new release of PDOS (3.1) has been made for 68020 micro­
processors. The release supports additional primitives and
monitor commands as well as fully supporting the 68881
floating point chip.

2. PDOS Pascal has been upgraded to revision 3.0 for both 9900
and 68000 PDOS systems. Both the software and documentation
have been significantly upgraded. If you wish to receive
the Pascal revision upgrade, you must call or send a card to
Eyring Research Institute, Inc., PDOS Customer Service, 1450
West 820 North, Provo, UT 84601, (801) 375-2434, Telex
882000. The Pascal upgrade is free of charge to warranteed
Pascal customers but you must request it.

3. A special product disk has been made available which
includes routines for single precision and double precision
floating point calculations. Documentation assists the user
in making the various floating point calls. This replaces
the unsupported Fline commands from earlier versions of
PDOS. Implementation includes 32 and 64 bit floating point
routines. The floating point routines include the follow­
ing:

* FLOATING ADD/SUB
* FLOATING COMPARE
* FLOATING DIVIDE
* INTEGER TO FLOAT
* FLOATING MULTIPY
* LOCAL SUPPORT -- NORMALIZE NUMBER
* LOCAL SUPPORT -- FIX EXPONENTS FOR MUL/DIV /ETC
* ROUND/TRUNCATE
* TRANS FUNCTIONS ARCTAN
* TRANS FUNCTIONS ERROR CONTROL
* TRANS FUNCTIONS EXP
* TRANS FUNCTIONS LOG (LN)
* TRANS FUNCTIONS BREAK NUMBER INTO INTEGER AND FRACTION
* TRANS FUNCTIONS FIX THE FPAC AND STACK FOR TRANS CAL
* TRANS FUNCTIONS EVAL POLYNOMIAL (LOCAL FUNCTION)
* TRANS FUNCTIONS SIN/COS
* TRANS FUNCTIONS SQUARE ROOT
* LOCAL SUPPORT SHIFT RIGHT 1 HEX DIGIT
* LOCAL SUPPORT -- SCALE FLOATING POINT

PDOS Technical Notes Vol. 1 No.4 .' ,~

(
WARNINGS AND CAUTIONS

1. CAUTION 9900 users when responding to the boot device
selection options, you must use the upper case 'Y' or the
device will not be installed.

2. CAUTION - C array declarations specify an array size. The
subscripts are 0 to size-I. For example.

int a[5]

will give the following array elements:

a[0], a[1], a[2], a[3]. a[4]

C allows you to index
a[10]). You should
modified if you write
the declaration.

outside the subscripts (i.e. a[5] or
note that other variables will be

to variables outside the' limits of

3. CAUTION - Documentation Change - 68000 BASIC 3.0b will not
accept negative line numbers as documented on page 1-43 of
the BASIC Reference Manual. The largest number accepted is
32767. Any higher number will be ignored.

4 . WARNING - A bug has been noted in the ABSOFT FORTRAN (R2.2)
M81:FL runtime library. A patch has been made by ABSOFT and
will be made available when it is received. In the mean­
time, the user should use the F77:RL library. It will
perform satisfactorily with little loss in efficiency.

5. WARNING The FORTRAN 77 R2.2 implementation of the
ATAN2(a1,a2) and ANINT(a1) give faulty results when run on
the 68020 microprocessor with the 88881 floating point
processor and the F77:RL floating point library. The
division which should occur in the ATAN2 function does not
occur and the result is the arctan of the first value. The
ANINT function seems to pass the value of a nearby variable.
These bugs have been reported to ABSOFT for their correc­
tion.

6. WARNING - The COS(O.O) function in FORTRAN 77 R2.2 on 68000
microprocessors gives a number slightly greater than 1.0
and. as a result. gives an error when you attempt to
execute the ACOS function on the result of the COSCO.O)
function. This is also true of the SIN function when the
argument is PI. This problem seems to result from the
rounding option used in these functions.

PDOS Teohnioal Notes Vol. 1 No.4 3

Warnings and Cautions (cont.)

7. WARNING - When chaining to an assembly program from BASIC
3.0b on the 68000 using the RUN command. register AS does
not pOint to SYRAM as is expected. Placing the XGML
primitive at the beginning of the assembly program will
initialize the registers to their proper values.

FIXES, PATCHES, AND WORKAROUNDS

1. WORKAROUND - 68000 MASM Rev. 3.0b rejects the immediate
desgination addressing mode for the BTST instruction. The
following macro will permit the instruction to be assembled
properly:

*
*

BTST.B 0,#$06 ;TEST BIT IN REGISTER

BTSTX MACRO

*
*
*
*

OC.W $013C+($&1-$00)«9,&Z
ENOM

The instruction is included in the code using the
following call:

BTSTX 01,$06

Proper assembly of the code will be implemented in a future
release of MASM.

2. WORKAROUND - Some users of FORTRAN 77 R2.2 and earlier
desire to pass constants as INTEGER*2 or INTEGER*l format.
This can be accomplished by multiplying the constant by
2S6 A 2 for WORDS and 2S6 A 3 for BYTES. This conversion is
necessary because constants are defined as 32 bits and are
always passed in INTEGER*4 format. Code that may work on
other systems does not work on the 68000 microprocessors
because of the hardware addressing mode.

4

Since variables have TYPE. they can be defined as INTEGER*l.,
etc .• and can be passed as such.

PDOS Teohnioal Notes Vol. 1 No.4

o

(

c

APPLICATIONS AND HINTS

1. APPLICATION - A number of PDOS VME/I0 users would like to
use the function keys in the PDOS editor MEDIT. The VME/IO
keyboard is not a standard ASCII keyboard, and as a result,
the keys must be interpreted by the BIOSU routines. A set
of tables permit the keys to be decoded and send the ASCII
code to the computer. You can customize your keyboard to
fit your needs. Just replace the hex code for the key to
the desired value in the VOBIOSU:SR file and then regenerate
the system using VODOS:GEN. To test the change use the
VOLDGO ,VODOS command. Once the keyboard is configured the
way you want it, make the change permanent with MMKBT.

2 .

CAUTION: Be sure not to change the relative location of the
hex values in the table since this could affect
more than the keys you are trying to change.

APPLICATION - On systems which contain the 58167 Real Time
Clock and do not use this clock for the system clock, there
is a patch which will permit the year to be saved in the RTC
RAM.

In MTIME:SR at the label CLCKTB, make the following change:

change: DC.W SYRS. ,0,18,$18,99
to: DC.W SYRS.,19,18,$18,99

This change saves the PDOS year in the RAM Hundreths and
Tenths of Seconds area of the RTC when the MTIME B code is
executed. Once stored, the year can be read into the PDOS
system by the 'MTIME P' command.

On FORCE CPU-l systems, a change in the FIBIOS is required
to prevent this RAM area from being overwritten during
initialization.

change:
to:

MOVEP.L D0,RAM(A2)
MOVEP.W D0,RAM+4(A2)

;SET RAM COMPARE ALWAYS

Generate a new system and test it using the 'xxLDGO ,xxDOS'
command. If it is what you want, make the boot permanent
using MMKBT.

To update the year from the PDOS clock on unattended
systems, a task should periodically update the battery clock
by running the 'MTIME B' utility.

PDOS Teohnioal Notes Vol. 1 No.4 5

Applications and Hints (cont.)

3. APPLICATION - The following Pascal program shows two proce­
dures. "PACKIT" and "UNPACKIT." which can be used to pack
any boolean array into any other array type and to unpack
the array back into a boolean array. These procedures can
be modified so that various bit widths can be handled.

You should also notice how PACK IT and UNPACKIT parameters
are declared as pointers to an array. This allows the ADR
function to be used by the calling procedure in passing
arrays of any size.

TYPE
{$A=1}

BYTE = -127 .. 127;
WORD = -32767 .. 32767;
TBOOLARY = ARRAY [1 .. 10] OF BOOLEAN;
TPACK ARY = ARRAY [1 .. 2 {DUMMY}] OF BYTE;
TPTR_PACK_ARY =ATPACK_ARY;

{A Byte}

{Some Boolean array}
{Some dummy array}
{Pointer to dummy array}

VAR
BOOLARY.
BOOLARY2 : TBOOLARY;
I : INTEGER;
PACKWORD : INTEGER;

PROCEDURE PACKIT(DEST.SRC : TPTR PACK ARY; ELEMENTS:WORD);

6

{Pack ELEMENTS number of the SRC Boolean array into the DEST bit array.}
VAR

SRC INDEX : WORD;
BYTE INDEX : WORD;
DEST-INDEX : WORD;
BYTE-PTR : ABYTE;

BEGIN-
DEST INDEX:=1;
SRC INDEX:=1;
REPEAT

BYTE PTR:=ADR(DESTA[DEST INDEX]); {SET UP POINTER FOR FASTER CODE}
BYTE-PTRA:=0; -
BYTE-INDEX:=1;
REPEAT

BYTE PTRA:=BYTE PTRA* 2;
BYTE-PTRA:=BYTE-PTRA + (SRCA[SRC INDEX] AND 1);
SRC INDEX:=SRC INDEX+1; -
BYTE INDEX:=BYTE INDEX+1;

UNTIL (BYTE INDEX>S);
DEST INDEX:;DEST INDEX+1;

UNTIL-SRC INDEX>EIEMENTS;
END; -

PDOS Teohnioal Notes Vol. 1 No.4

o

(

Applications and Hints (cont.)

PROCEDURE UNPACKIT(DEST,SRC : TPTR PACK ARY; ELEMENTS:WORD);
{UNPack ELEMENTS number of the SRC bit-array into the DEST Boolean array.}
VAR

SRC INDEX : WORD;
DEST INDEX : WORD;
B IT MASK : WORD;

BEGIN
DEST INDEX:=1;
SRC INDEX:=1;
REPEAT

BIT MASK:=16#80;
REPEAT

DESTA[DEST INDEX]:=(SRCA[SRC INDEX] AND BIT MASK) DIV BIT_MASK;
BIT MASK :=BIT MASK DIV 2; - -
DEST INDEX:=DEST INDEX+1;

UNTIL-(BIT MASK=0T OR (DEST INDEX>ELEMENTS);
SRC INDEX:=SRC INDEX+1; -

UNTIL DEST INDEX>ELEMENTS;
END; -

{Main program to test the pack/unpack}
BEGIN

BOOLARY[1]:=TRUE;
BOOLARY[2]:=FALSE;
BOOLARY[3]:=TRUE;
BOOLARY[4]:=TRUE;
BOOLARY[5]:=FALSE;
BOOLARY[6]:=FALSE;
BOOLARY[7]:=FALSE;
BOOLARY[8]:=TRUE;
BOOLARY[9]:=TRUE;
BOOLARY[10]:=TRUE;
PACKWORD:=-1;
PACKIT(ADR(PACKWORD),ADR(BOOLARY),10);
WRITELN;
WRITELN('PACKWORD=',PACKWORD:-1);
UNPACKIT(ADR(BOOLARY2),ADR(PACKWORD),10);
WRITELN('COMP UNPACK TO NEW');

FOR 1:=1 TO 10 DO
BEGIN
WRITELN(BOOLARY[I]:10,BOOLARY2[I]~10);

END;
END.

PDOS Teohnioal Notes Vol. 1 No.4 7

Applications and Hints (cont.)

4. APPLICATION Some of you have asked how to write a C

8

program that traps interrupts and reacts to them in some
fashion. Unfortunately. it is not possible to do the
job completely in C. When an interrupt arrives. you MUST
save all registers. or the thing that you interrupted is
probably going to be corrupted. When an interrupt occurs.
the 68000 processor saves the current status register.
switches to supervisor mode (and the supervisor stack). and
saves the old status register and the old program counter on
the stack. It then jumps indirectly through the interrupt
vector. The routine called must exit via an RTE instruction
to restore the old program counter and status register.

These operations must be accomplished in assembly. since
there is no straight-forward way to do them in C. The
following code illustrates a stub that handles an interrupt
by saving the current environment and calls a C subroutine
to perform the majority of the function:

* PINT:SR -- ASSEMBLY INTERFACE

XDEF .PINT
XREF .INTSUB

.PINT MOVE.W #$2700,SR
MOVEM.L D0-A6,-(A7)

;DISABLE INTS
;SAVE REGS

JSR . INTSUB ;CALL C SUBROUTINE
*
PINT04 MOVEM.L (A7)+,D0-A6

RTE
;RESTORE REGS
; RETURN & HOPE

END

WARNING: In PDOS. the supervisor stack is not very big. If
you intend to perform a large amount of work from
the interrupt routine. you may need to save the
old supervisor stack pointer and set up a new one
that points to a larger stack area before calling
the C subroutine. Naturally. you would then
restore the old supervisor stack pointer when the
C subroutine returns to the assembly code.

To set up this stub so that it will be called on the
appropriate interrupt. force load the interrupt vector to
point to the stub. The interrupt vector here is at address
$10C. which is the interrupt for the third port on a FORCE
SIO card. You must determine the interrupt vector for your
own interrupt.

PDOS Teohnioal Notes Vol. 1 No.4

o

o

(

(

(

Applications and Hints (cont.)

When the interrupt occurs. the assembly routine PINT saves
the registers on the stack. disables interrupts. and comes
here. In this sample program. we will read the data from
the interrupting port and output it to our own port. Only a
limited number of PDOS functions are allowable during an
interrupt. For instance. you may set or clear an event. set
some global flag. or put data in a block of memory common
to the interrupt code and some task. You may not do
anything that requires knowledge by PDOS of a particular TCB
because you do not know which TCB to use when you are in an
interrupt. Thus. you may not use XPCC. XSTM. or XSWP.

1* C SUBROUTINE CALLED FROM INTERRUPT *1
intsub()
{

register char *input.*output;
register char ch;
input = 0xb00100;
output = 0xf40000;

#define rcvstat 1
#define rcvdata 3
#define xmtstat 9
#define xmtdata 11

if (input[rcvstat] & 0x80){
ch = input[rcvdata];

1* BASE ADDRESS FOR PORT 5. SIO-1 */
1* BASE ADDRESS FOR PORT 1. MPCC */

1* check for data available*/
1* read char from port */

while (output[xmtstat] &0x80 -- 0) 1* hang until ready *1

}
}

.
output[xmtdata] = ch;
flag = -flag;

1* write data to port */
1* toggle flag for main *1

Once the interrupt vector is initialized. the C program can
continue with non-critical functioning. or simply go into a loop
executing an endless series of "XSWP" instructions. In this
example. we will put asterisks to the screen until we read a
character from the keyboard. At that point. we will restore the
interrupt vector to its previous value and exit.

We will demonstrate that the main-line code can communicate with
the interrupt routine by testing the variable 'flag' and printing
either dots or asterisks. The interrupt routine will then toggle
this flag each time it is called.

PDOS Teohnioal Notes Vol. 1 No.4

Applications and Hints (cont.)

extern pint;
int flag;

1* assembly language interrupt service routine *1
1* flag that communicates between main arid intsub */

rna i n ()
{

1* INITIALIZATION CODE *1

#define INTVEC *(long *) 0x10c

long intsave;
flag = 0;
intsave = INTVEC;
INTVEC = &pint;

1* initialize flag to false *1
1* preserve old interrupt vector *1
1* set interrupt vector to point to PINT */

1* OUTPUT ASTERISKS OR PERIODS WHILE WAITING FOR A KEYBOARD CHAR *1

while (xgcc() == -1) xpcc(flag ? '*' : '. ');

1* TERMINATION *1

}

5 •

10

INTVEC = intsave; 1* restore vector *1
printf("\n that's all, folks!");

APPLICATION - To make your BASIC software so it cannot be
listed, you should (1) use the NOESC command, (2) utilize an
error trap to prevent the program from being interrupted,
(3) purge all the code from memory on exit, and (4) save the
file with the SAVEB command.

The following example illustrates a method of protecting
your code:

PDOS Teonnioal Notes Val. 1 No.4

(

(-

Applications and Hints (cont.)

2>SAVE
THIS PROGRAM IS PROTECTED AGAINST UNAUTHORIZED VIEWING
ENTER YOUR NAME: DAVID
HELLO DAVID
ENTER YOUR PASSWORD: PASSWORD

STOP at 1 ine 75
LIST
10 NOESC
20 DIM NAME[3]
30 ERROR 200
40 PRINT '**THIS PROGRAM IS PROTECTED AGAINST UNAUTHORIZED VIEWING**'
50 INPUT' ENTER YOUR NAME: '; $NAME [0]
60 PRINT 'HELLO ';$NAME[0]
65 INPUT 'ENTER YOUR PASSWORD: ';$NAME[0]
70 IF $NAME[0]='PASSWORD': ESCAPE: STOP !THE CODE CAN BE VIEWED
80 IF $NAME[0]<>'PASSWORD': GOTO 200
100 I=KEY[0] ! THIS REPRESENTS ANOTHER WAY TO PROVIDE AN ESCAPE
110 IF 1=1: GOTO 210 !AA PERMITS VIEWING ALSO
120 GOTO 100
200 PURGE 10 TO 120
210 BYE

RUN
THIS PROGRAM IS PROTECTED AGAINST UNAUTHORIZED VIEWING
ENTER YOUR NAME: DAVID
HELLO DAVID
ENTER YOUR PASSWORD: TEST

2>EX
*READY
LIST
200 PURGE 10 TO 120
210 BYE

BYE
2>

PDOS Teohnioal Notes Vol. 1 No.4 11

(Tips&
Technica I Notes

Vol. 1 No.5
September 1, 1986

INTRODUCTION

Product Status

1. Updates and Current Revisions

Warninis and Cautions

1.
2.
3.
4.
5.
6.
7.

WARNING - Force WFC~1 Disk Init. Kills BINTB Vectors
CAUTION - Transferring Files Using MBACK or BACKUP
CAUTION - QLINK S-record Limits
CAUTION - Locating PDOS in Memory
NOTE - Assigning PASCAL String Length in STRNG(O)
NOTE - MLIB (3.1 PDOS 68020) Default File Size
DOCUMENTATION NOTE - Number of PDOS Tasks

Fixes. Patches_ and Workarounds

1. FIX - MFRMT Problem When Using Multiple Winchesters
2. WORKAROUND - atan2() in C
3. WORKAROUND - Multiple Variable Assignments Fail in C
4. WORKAROUND - Structures in C
5. WORKAROUND - SGN Function in 68020 BASIC 3.1

Applications and Hints

1. HINT - Changing ASCII Output on 9900 Systems
2. HINT - Debug Tracing Window Usage
3. HINT - Customizing JEDY on 9900 Systems
4. HINT - QLINK Runmodu1e Data Separation
5. HINT - Using PDOS 3.0 Floating Point Routines from Assembly
6. HINT - Method for Extended I/O Drivers: EXT:SR
7. HINT - Changing ASCII Output on Force CPU-l Systems
8. HINT - Direct Memory Access From C
9. HINT - Performance Increases on PDOS

PDOS Teohnioal Notes Vol. 1 No.5 1

e Eyring / 1450 West 820 North / Provo, Utah 84601 /. (801) 375-2434 / 1!B1882-000 / (Fax((801) 374-8339

PRODUCT STATUS

Following is a list of current revision levels of PDOS and
supported languages. Those products preceded with an asterisk
have just been updated. You may request an updated version of
the products by contacting PDOS customer service and giving them
your product serial number.

2

* 68000 Pascal Rev. 3.0a
* 9900 Pascal Rev. 3.0a

68000/10 PDOS Rev. 3.0b
68000/10 BASIC Rev. 3.0b
68020 PDOS Rev. 3.1
68020 BASIC Rev. 3.1
68000 C Rev. 1.2c

* Absoft FORTRAN-77 2.2b

PDOS Teohnioal Notes Vol. 1 No.5
c

(/

Ci

WARNINGS AND CAUTIONS

1. WARNING Force WFC-l disk initialization kills BINTB

*

vectors. If you are using PDOS on any Force CPU with
a WFC-l disk controller, you will run into trouble if you
try to add any interrupt vectors to the BINTB table. XDITW,
the disk initialize routine for the WFC-l, reads Winchester
drive header information into a temporary buffer. The 256-
byte buffer starts at location $2FC, according to the
FxBIOSW:SR code excerpted below:

MOVE.B 06,00
MOVEQ.L #$111111,01
MOVEQ.L #$2111,02
LEA.L P$SASF-S104,A2
BSR WFCXX

BNE.S Gllll7111
LEA.L DEFALTW(PC),A1
LEA.L P$SASF-S11114,A2

Gl050 BSR. Loon

;SECTOR III
;READ COMMAND
;GET FAKE BUFFER ADDRESS
;00 A READ SECTOR 0
;READ ERROR, DO NOT INSTALL bRIVE
;GET DEFAULT WfC PARAMS
;GET HEADER DATA AREA

;MOVE DATA DOWN

Since P$SASF is at $0400, then A2 is set to $0400 - $0104-
$02FC. Though this would seem to work fine, if you try to
add an interrupt routine to the BIOS and an entry in the
BINTB for user vector '200, the interrupt routine address
will be loaded by the kernel to vector location $0320, but
XDITW will read disk data over it, from address $2FC to
$3FB. As such, user vectors #191 through 1254 will be
destroyed.

The simplest solution is to use a 256 byte buffer somewhere
else, for example, at location $0700. Do this by changing
the following two instructions:

from ...

to

LEA.L
LEA.L

PSSASF-S104,A2
P$SASF-$104,A2

LEA.L $070111,A2
LEA.L $071110,A2

;GET FAKE BUFFER ADDRESS
;GET HEADER DATA AREA

;GET FAKE BUFFER ADDRESS
;GET HEADER DATA AREA

This change solves the problem. All future PDOS releases on
the Force WFC-l systems will incoporate the change.

PDOS Technical Notes Vol. 1 No.5 3

Warnings and Cautions (cont.)

2. CAUTION - The MBACK utility on 68000 systems and BACKUP on
9900 systems causes the destination disk to become like the
source disk. Don't make the mistake of trying to use this
utility to transfer files from your floppy disks to a larger
size PDOS disk. The results will be disastrous. Use
MTRANS. TF. or CF on 68000 systems and TRANS and CF on 9900
systems. The backup utilities (MBACK and BACKUP) can be
used to speed the transfer of files to floppy size disks on
the Winchester and otherwise backing up entire disks onto
blank disks. Move individual files or groups of files with
the other utilities or monitor commands.

3. CAUTION - QLINK SRecord limits. If you are burning EPROMs
using SRecords that are output from QLINK. BEWARE.! The
SRECORD command of QLINK has three parameters. [sadr].
[eadr]. [adr]. for start address. end address. and SRecord
base address. The start and end addresses are interpreted
as absolute addresses. not buffer offsets or section
values. Be careful when you enter the end address para­
meter. [eadr]. The last byte that QLINK outputs is from
address [eadr] minus 1. Thus. to output 16k bytes (16384)
into SRecords from QLINK. you need to enter:

4

SRECORD $0000,$4000,0
SRECORD $0000,$3FFF,0

correct
Incorrect

The incorrect example only outputs 16383 bytes. leaving a
byte of $FF in your EPROMs for you to find later on. when
it doesn't work. So if you are breaking up a large file
into SRecords to burn separately. use the following example
as a guide:

SRECORD $0000,$4000,0
SRECORD $4000,$8000,0
SRECORD $8000,$C000,0

SRECORD $0000,$3FFF,0
SRECORD $4000,$7FFF,0
SRECORD $8000,$BFFF,0

correct

Incorrect

The [eadr] parameter should actually be [eadr+1] and the
SRECORD format SRECORD [sadr].[eadr+1]{.[adr]}.

PDOS Teohnioal Notes Vol. 1 No. 5

o

{
Warnings and Cautions (cont.)

4. CAUTION - Although PDOS may reside at any location in
memory. you may not relocate PDOS without adjusting the
location of SYRAM. The xxLDGO utility will relocate SYRAM
for you but MMKBT does not. It is necessary to adjust the
SYRAM location (S$SRAM in xxDOS:GEN) and regenerate the
system to properly relocate PDOS in memory.

5. NOTE - It is possible to set the length of a PASCAL string
by assigning the value to the zero element as in:

6 .

STRNG[0] := CHR(5); {five character string}

Be cautious when doing this. as some string operations
manipulate the length as a 16-bit word. If any garbage is
left in the high byte. it could cause problems: A good
practice is to clear the upper byte of the length as
follows:

STRNG[-1] := CHR(0);

NOTE - Some 68020 users have experienced a problem with
large library files when using the MLIB utility. Unless you
include the [Usect] parameter. the size of MLIB:TMP is set
at 100 sectors. If that size is too small to hold yo~r
library. the library setup will fail on PDOS error 56. See
page 7-29 of the 68020 3.1 PDOS Reference Manual for details
in using this utility.

7. DOCUMENTATION NOTE - The PDOS Reference Manual page 2-4
indicates that "Up to 32 independent tasks can reside in
memory and share CPU cycles." But. by changing the 'NT'
parameter in the MSYRAM module, PDOS can be configured to
handle up to 128 tasks. This change will be made to future
printings of the PDOS documentation.

PDOS Teohnioal Notes Vol. 1 No. 5 5

FIXES, PATCHES AND WORKAROUNDS

1. FIX - An error in MFRMT:SR causes problems when you attempt
to install multiple Winchester disks on a system. By making
the following changes to MFRMT:SR, you can correct this
problem:

Under label ~ZZ, change the followIng code:

to:

MOVE.L A1,(A3)
BSR.L RDHED

BEQ.S a0BB

MOVE.L A1,(A3)
@RL REG A1!A2!A3

MOVEM.L @RL,-(A7)
BSR.L RDHED
MOVEM.L (A7)+,@RL

BEQ.S @0BB

;SET DRIVE DATA DEFINITION
;READ HEADER
;OK

;SET DRIVE DATA DEFINITION

;SAVE SOME CRUCIAL REGISTERS
;READ HEADER
;RESTORE THEM
;OK

Reassemble the source code and then follow the disk setup
and format procedures in the installation guide.

2. WORKAROUND The atan2() function in C does not work

6

properly. To provide a fix which will permit the function
to work, edit the file 'math.h' using the following command:

>MEDIT (math.h)[CR]

Change the line containing the atan2 declaration as follows:

!*double atan2();*!
#define atan2(x.y) atan«x)!(y»

Save the modified file 'math.h'. The atan2() function can
then provide the correct result; i.e. atan2(1.1) gives
0.785398 radians. To convert this number to degrees,
multiply the result by 180/pi where pi can be computed by pi
- 4*atn(1).

PDOS Teohnioal Notes Vol. 1 No.5

r.~ ..
\~;

c

(

Fixes, Patches, and Workarounds (cont.)

3. WORKAROUND The following example which deals with bit

4.

fields will not work properly with the current version
(1.2c) of the C compiler. The bit field 'z.a' will not be
assigned the value 1. To resolve this problem. do not use
multiple variable expressions within the same assignment
statement. This problem will be corrected in the next
release of the C compiler.

struct ab {
unsigned a 1;
unsigned b 1;

};

struct ab Z;

z.a = z.b = 1;
}

WORKAROUND A PDOS user has experienced a difficulty in
using structures in C Rev. 1.2c. The assembly code which
was generated would not permit the program to run unless a
change was made before compiling.

The following
problem.

example and workaround illustrates the

typedef struct { unsigned int a[9]; } b;
struct { b c[8192]; } *d;

rna i n ()
{
int x;
int i.j;

d = (unsigned int *}0x10;
i = 8191;
d = 5;

x = d->c[i].a[j];

}

The above code compIles to the followIng:

Continued . . .

PDOS Teobnioal Notes Vol. 1 No.5 7

Fixes. Patches. and Workarounds (cont.)

XOEF .MAIN
SECTION 0

.MAIN EQU *
LINK A6, #-10

*LINE 9
MOVE.L #$10,.0

*LINE 10
MOVE #8191,-4(A6)

*LINE 11

*LINE 13
MOVE. L #5,.0

MOVE -4(A6),00
MULS #18,00
MOVE -6 (A6) ,01
ASL #1,01 <-------------These two lines
EXT.L 01 <-------------should be swapped
AOO.L 01,00
AOO.L .0,00
MOVE.L 00,A0
MOVE (A0),-2(A6)

L1 EQU *
UNLK A6
RTS
SECTION 1
SECTION 2
EVEN
SECTION 1
EVEN
ENO

A workaround for this problem is to typecast the integer
variable j to a long value.

x = d->c[i].a[(long)j];

The code will then be generated in the proper sequence.

5. WORKAROUND - The SGN function in 68020 BASIC 3.1 does not
work properly on floating point numbers. To use this
function at present. substitute SGN(INT(X» for SGN(X).

This function will be fixed in a future release.

8 PDOS Teohnioal Notes Vol. 1 No.5

(

APPLICATIONS AND HINTS

1. HINT - Changing ASCII output on 9900 systems can be accom­
plished by changing the 9902 control register constant in
PDOS and rebauding the port. On most systems, this value is
stored at 086H and contains the value 6200H. There is a
bias to OA6H on PDOS 102 sytems. This sets the output of
the 9902 to 7 bits even parity and 2 stop bits. The
following table should allow you to select a configuration
for your ASCII output string.

CONSTANT CHARACTER
LENGTH

PARITY
STATUS

STOP
BITS

4200H/5200H 7 NONE 2
4300H/5300H 8 NONE 2
6200H 7 EVEN 2
6300H 8 EVEN 2
7200H 7 OD)) 2
7300H 8 ODD 2
8200H 7 NONE 1
8300H 8 NONE 1
A200H 7 EVEN 1
A300H 8 EVEN 1
B200H 7 ODD 1
B300H 8 ODD 1

This value can be changed using the 9900 BASIC statement:

MEMW(86H)=<constant in hex>

The MIAC utility can be used to view the 9902 control
register constant and change it if desired.

If you wish to retain the new 1/0 conditions then save the
change using the BFIX utility.

2. HINT - The trace window in the PDOS debugger defaults to the
task dimensions when the task is created. If you should
desire to execute code in another task in the trace mode,
you need to expand the window to include the addresses to be
traced. Since code outside of the trace window is not
listed on the screen, a smaller trace window will permit you
to check a selected block of code without having to step
through code which is incidental to the problem being
debugged. This can save considerable time in checking code
which has many subroutine calls.

PDOS Teohnioal Notes Vol. 1 No. 5 9

Applications and Hints (cont.)

3. HINT - 9900 users who wish to customize the JEDY screen
editor can do so by purchasing the source code. This
code is part of the special product OWORD, a text runoff
program. which is available for $250.

4. HINT - Following is a simplified discussion of using QLINK
to separate your RAM and ROM when making run modules. The
SECTIONs from the compilers and assembler give the key to
separation:

PDOS kernel
PDOS BIOS
User code
User RAM
SYRAM RAM

- Section 15
- Section 14
- Section 0
- Section 1
- (offsets from AS)

The goal in this example is to put the PDOS kernel, the PDOS
BIOS, and user code into ROM and then assign and group
SYRAM, the user RAM, and the tasking RAM areas. It is
assumed that you have run the first part of RUNGEN, which
built the task 0, task I, and task 2 object files. Also,
MDUMMY:SR and MPDTST:SR files should have been assembled.

c

This discussion only involves the QLINK part of RUNGEN. (j

10

Assume that:

SYRAM size - $1000
Section 1 size - $2340 (get info from compilers, etc.)
EPROM base addr - $AOOOO

The ROM and RAM map then look like this:

ROM at $AOOOO RAM at $0000

Task #2 TCB #2
Task #1 TCB #1
Task 10 $3800: TCB #0
R$TASK table $2800: SYRAM
Kernel Task 12 Sect 1

$AOOOO BIOS Task II Sect 1
$0400: Task 10 Sect 1
$0000: Vectors

PDOS Teonnioal Notes Vol. 1 No.5

"L-!

c

(

(

Applications and Hints (cont.)

The QLINK commands needed are:

BASE $AOOOO
SECTION 14,$AOOOO
GROUP 14,15,0
SECTION 1,$400
IGNORE 1
DEFINE B$SRAM,$03FC
DEFINE S$SRAM,$2800
INPUT xxBIOS:OBJ

SRECORD $AOOOO,Q$HE,O
OUTPUT #FILE:MX
END
QUIT

The BASE command sets
EPROM. The SECTION 14
address and the GROUP
sections. Next, set
and ignore it, so that
into the (ROM) buffer.

the QLINK butter to the address of
sets the BIOS code to link at the ROM

command combines the desired code
the base of the Section 1 RAM area,
QLINK doesn't try to load this (RAM)

Next, define where to store the SYRAM pointer
(B$SRAM-$03FC), and define S$SRAM to be above the Section 1
stuff on an even $800 boundary. You are now ready to input
all of the :OBJ files the RUNGEN utility tells you to
(xxBIOS:OBJ must be the first). Now that all references are
assigned the right location, you are ready to write the
SRECORDs to burn, using the last address (+1) of section 14,
Q$HE as the end address parameter.

Now all you have to do is send the FILE:MX file over to the
ROM programmer, burn the ROMS, install them, and watch them
work.

PDOS Teohnioal Notes Vol. 1 No.6 11

Applications and Hints (cont.)

5. HINT - Using the PDOS 3.0 floating point routines from
assembly or what do I do with all this 2.6 F-Line code I
wrote?

Appendix F of the PDOS 3.0 manual describes the PDOS
floating point module (MPDOSN:OBJ). which is part of the
run module product but not a part of the standard PDOS
package. The routines. however. are included in the code
booted in for PDOS if you have PDOS BASIC (MPDOSBAS:OBJ).
Under PDOS 2.6. you could access these routines using F-Line
instructions (instruction words with the first nibble­
$Fxxx which are commonly called Line-F instructions outside
of the PDOS world). Thus. a user program only needed to
enter the correct F-Line codes. and PDOS. with BASIC
resident. would execute the requested floating .point
operation.

To improve the speed performance of BASIC. PDOS version 3.0
eliminated the F-1ine access to the routines. in favor of a
direct BSR.L to a known location. This helped BASIC. but
left assembly user programs without an address to stand on.
One solution is to buy the run module package to get the
MPDOSN:OBJ file to link with your application. Another

c

solution was offered as a new product in Technical Notes. ~')
Vol. 1. No.4. called "Floating Point Routines for Assembly ~~

12

Code". This product is essentially the PDOS Pascal Library
for use with assembly. It includes transcendental func-
tions. single and double precision. which were not included
in the floating point module. but are nice. It still lacks
decimal input and output conversion routines. and therefore
has limited usefulness.

A third solution discussed here is that. if
BASIC. you already have the Appendix F
routines in memory. You will learn how to
them.

you have PDOS
floating point
find and use

The floating point code from the source file that created
the MPDOSN:OBJ file is included at the very end of the
MPDOSBAS:OBJ file. or right below SYRAM. First. find
where the floating point routines are located within PDOS
(get their base address in an address register). and then
call them as offsets from the base address using the JSR
instruction.

The following initialization code finds the routine base
address and stores it in A4. Insert it into your assembly
program that calls the floating point package:

PDOS Teohnioal Notes Vol. 1 No.5

(-

(

(

Applications and Hints (cont.)

*
MOVEA.L A5,A4
LEA.L -$4000(A4),A0

*
@LOOP SUBA.W #2,A4

CMPA.L A0,A4
BHI.S @LOP2

MOVE. L #1999,00
XERR

*

;ENTER FROM PO as OR IN IT CODE
;POINT TO sYRAM
;GET STOP LOOKING ADDRESS

;START LOOKING BACKWARDS
;DONE?
;N, KEEP LOOKING
;Y, REPORT ERROR 1999
;AND EXIT

@LOP2 CMPI.L #$262E0412, (A4) ;N, FLOAT FOUND?
BNE.S @LOOP ;N, KEEP LOOKING

CMPI.L #$2D50040E,-$2A6(A4) ;MAYBE, BEGINNING CORRECT?

*

You now

BNE.S @LOOP ;N, KEEP LOOKING
LEA.L -$2A6(A4),A4 ;y, POINT AT BEGINNING

;REST OF INITIALIZE CODE

have the base address of the routines in A4.
define the offsets of the various routine entry pOints:

N$FABS EQU $0028 ;ABSOLUTE VALUE
N$FADD EQU $0056 ;ADD
N$FCLR EQU $0018 ;CLEAR
N$FDIV EQU $0210 ;DIVIDE
N$FELD EQU $0022 ;LOAD ERROR ADDRESS
N$FFLT EQU $00CE ; FLOAT
N$FINV EQU $029C ;INVERT
N$FLDD EQU $0000 ;LOAD FPAC
N$FMUL EQU $015A ;MUL TIPLY
N$FNEG EQU $0030 ;NEGATE
N$FNRM EQU $0108 ; NORMAL! ZE
N$FPST EQU $003E ;READ STATUS
N$FsCL EQU $02BA ;sCALE
N$FSRD EQU $000C ;sTORE FPAC
N$FSUB EQU $0046 ; SUBTRACT

Next,

You are now ready to make an assembly language call to the
resident floating point package. The input and output
formats are the same as defined in Appendix F (3.0) and
Chapter 6 (2.6) of the PDOS Reference Manual, but instead of
calling the routines with 'BSR.L N$Fxxx' (PDOS 3.0) or
'Fxxx.' (PDOS 2.6), call them with 'JSR.L N$Fxxx(A4), . For
example, to add the constant at LABEL to the FPAC, you would
write:

LEA.L LABEL(PC),A0
JSR.L N$FADD(A4)

PDOS Teohnioal Notes Vol. 1 No.5

;GET ADDEND ADDRESS
;00 OPERATION

13

Applications and Hints (cont.)

6 .

14

Looking back at the PDOS 2.6 Chapter 6. Floating Point
Package. you will find that the F-line exception instruction
for ADD was FADD.. or $F004. Since the PDOS 3.0 assembler
no longer predefines the F-Line mnemonics for the routine
names. you could convert old PDOS 2.6 programs to use this
method under PDOS 3.0 by defining some macros. named after
the PDOS 2.6 F-Line calls. For example. for FADD. just
define:

FADD. MACRO
JSR.L N$FADD(A4)
ENDM

Then the old reserved word. FADD .• would assemble into the
desired jump instruction. and not the old F-Line word. Of
course. you must be sure that A4 is not destroyed i~ your
program.

HINT - Method for extended 1/0 drivers: EXT:SR. PDOS 1/0
drivers must reside in the channel buffer. which is only 256
bytes long. The forward and backward file links take 4
bytes and the dedicated BRA.S table takes 6*2 more bytes.
leaving only 240 bytes (-256-4-12) to work with. Many users
have requested a method of expanding 1/0 drivers beyond this
limit. by having code resident with PDOS.

The following working example shows a multiple expanded
driver file called EXT:SR. The idea is that you add as many
large drivers. as you want to the xxBIOS:SR file for your
system. using the structure described below. Then to access
them. you create some new disk resident drivers from the
EXT:SR file. differentiating them by DNUM-0.1.2 •...

For example. to create files to access extended drivers #0
and #1 you would do the following:

0>SA DRV0,SY
0>MASM EXT:SR/DNUM=0,'DRV0
0>MSYFL DRV0,DRV0
0>SA DRV0,DR
0>SA DRV1,SY
0>MASM EXT:SR/DNUM=1,'DRV1
0>MSYFL DRV1,DRV1
0>SA DRV1,DR
0>

PDOS Teohnioal Notes Vol. 1 No.5

o

o

f

(

Applications and Hints (cont.)

Now there are two drivers. DRVO and DRV1. to access each
extended driver #0 and #1. This EXT:SR driver is a fixed
length. which is important if you are going to store
variables within the driver channel.

The only interesting call to EXT is OPEN. when it looks for
the R$TASK table and a special EXT driver ID word ($5AA5).
If you don't have any expanded driver code in the BIOS you
booted. then EXT returns all calls with an error #99. but
will not crash your system. If EXT finds the ID word. then
it stores the address of the specified BRA.L instruction IN
THE DRIVER at $10(A2). All the other entries to EXT just
load up DO.L with the driver # (0.2.4 •...) and an entry
offset (O-open 4-close. a-read •...) before branching (with
an RTS) into the BIOS extended code entry point (stored in
$10(A2».

This keeps things all position independent. re10catable and
re-entrant. Let's look at the EXT code before diving into
the BIOS:

*
TTL
EXT:SR

EXT:SR - 68K PODS 68K PODS EXT ORIVER
06/27/86

*
* 66 888 K K PPPP 0000 000
* 6 8 8 K K P P 0 0 0 o S
* 6 8 8 K K P P 0 0 0 o S
* 6666 888 KK PPPP 0 0 0 0
* 6 6 8 8 K K P 0 o 0 0
* 6 6 8 8 K K P D D 0 0 S
* 666 888 K K P DOOO 000
*
* EEEEE X X TTTTT DOOO RRRR I I I V
* E X X T 0 0 R R I V V E
* E X X T 0 D R R I V V E
* EEEE X T 0 o RRRR I V V EE
* E X X T 0 o R R I V V E
* E X X T 0 o R R I V E
* EEEEE X X T 0000 R R I I I V EE
*
*=***
* Eyring Research Inst. Copyright 1983,1986.
* ALL RIGHTS RESERVEO.
*=
*= Module Name: EXT
*= Author: Richard Adams
*= Revision History:
*=
*= 06/27/86 3.0 Initial version of extended driver

PDOS Teohnioal Notes Vol. 1 No.6 15

Applications and Hints (cont.)

*=
EXT IDNT 3.0 68K PDOS EXT DRIVER
*=
*=***
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This driver is a general extended 1/0 driver, that
can be adapted for expanded driver code over the
2S2 byt e 1 imi t.

DS.L = Character count (-1 = Line)
D7.W = Channel status
(A2) = Driver base + 4
(A3) = Memory buffer
(A4) = F i1 e s lot
(AS) = SYSRAM
(A6) = Task TCB
(A7) = Return address

IFUDF DNUM :DNUM EQU 0 ;DEFAULT TO DRIVER #0
PRINT ** Extended driver # ',DNUM
IFGT DNUM-5
PRINT ** ERROR, Driver numbers only 0-S'
ENDC
PAGE
SECTION 0 (\

'-L.J

16

DEXT
DROP
DRCL
DRRD
DRWR
DRPS

CODE
*
OPEN

*

DC.W
BRA.S
BRA.S
BRA.S
BRA.S
BRA.S
DC.L
EQU

$ASSA
OPEN
CLOS
READ
WRIT
POSI
o
$10

ORI.W #$8000,12(A4)
MOVEA. L (AS) ,A1
ADDA. L (A1) .A1
CMPI.W #$SAA5.-(A1)

BNE.S ERROR
SUBQ.W #4,A1
MOVE.L A1.CODE(A2)

MOVEQ.L #0,D0

;DRIVER ID
; 2 OPEN
; 4 CLOSE
; 6 READ
; 8 WRITE
;10 POSITION
;Location of expanded code in BIOS
;CODE is channel offset of this saver

; F ILE ALTERED
;GET ADDR OF B$BIOS
;GET ADDRESS OF R$TASK TABLE
;IS ID THERE?
;N, DRIVER ERROR
;Y, POINT TO XTENDED CODE 'BRA.L'
;SAVE ENTRY

;0=open

PDOS Technical Notes Vol. 1 No.5

(

(

Applications and Hints (cant.)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
CALL

*
CLOS

*
READ

*
WRIT

*
POSI

*
EXTER
*

CAll EXTENDED CODE WITH ENTRY OFFSET:
D0.l = <minor offset> I <major offset>

Where <major offset> = 0 driver #0
= 2 driver #1
= 4 driver #2, etc.

Where <minor offset> = 0 open

MOVE.l CODE(A2),-(A7)
BEQ.S EXTER

SWAP D0
MOVE.W #DNUM*2,D0
RTS

MOVEQ.l #4,00
BRA.S CALL

MOVEQ.l #8,00
BRA.S CAll

MOVEQ.l #12,00
BRA.S CALL

MOVEQ.l #16,00
BRA.S CAll

= 4 close
= 8 read
=12 write
=16 position

;GET ADDRESS
;NO CODE, RETURN .NE.

;GET DRlvtR NUMBER OFFSET
;GO TO CODE IN BIOS

;4=close

;8=read

; 12=write

;16=position

;POP CODE ADDRESS

ERROR

ADDQ.W #4,A7

MOVEQ.L #99,D0
RTS

;if no extended driver code, err 99

END DEXT

Note that from SYRAM (A5), you get the address of
table and then calculate the address of R$TASK table.
your $5AA5 EXT ID word right before R$TASK and the
XCODE' right before that.

B$BIOS
Place

'BRA.L

To look at the xxBIOS:SR changes that let you add code
there, let's get the example. The EXT example uses the TTA
driver, adding it to the MVMEl17 V7BIOS:SR file. Just
before the R$TASK table in the xxBIOS:SR file, you insert a
BRA.L XCODE and an $5AA5 data word, as follows:

PDOS Teohnioal Notes Vol. 1 No.5 17

Applications and Hints (cont.)

18

B$STRT BRA.L
DC.L
DC.W

B.SRAM DC.L
*

BRA.L
DC.W

*

BSTRT
POlO
SYID
S$SRAM

XCODE
$5AA5

;BOOT EPROM START
;PDOS BOOT IDENTIFICATION
;SYSTEM 10
;SYRAM ADDRESS

;GO TO DRIVER CODE
;EXTENDED DRIVER 10 WORD

*
*

*

TASK STARTUP TABLE (NON-RUN MODULE)

IFEQ RF
XDEF R$TASK

R$TASK DC.B 1,U.1TYP,BR,X0000 ;PORT #1

Now following the BIOS interrupt routines. but preceding the
INCLUDE MBIOS:SR command. insert the driver code. This
could be done using an INCLUDE command. or even condi­
tionally on an assembly flag. Define NDRV equal to the
number of extended drivers in the xxBIOS (NDRV-l in the
example). You then have your major switchboard routine.
XCODE. which checks the driver I. returning error 99 if it
is too big. If DO.W is in range. then XCODE jumps to the
particular driver code called by DRVD.DRV1. etc .• with a
JMP:

PDOS Technical Notes Vol. 1 No.5

c

c

(

Applications and Hints (cont.)

**
*
*
*
NDRV
*

EXTENDED DRIVER MAJOR ENTRY
IN: D 0 . L = MIN 0 R (0 , 4 , 8 , 1 2 , 1 6) I MA J 0 R (0 , 2 , 4, . . .)

EQU 1

XCODE CMPI.W #NDRV*2,D0
BLO.S Gl010

MOVEQ.L #99,D0

;NUMBER OF DRIVERS RESIDENT

;IS MAJOR BRA.L IN TABLE?
; y, GO TO IT
;N, THEN ILLEGAL

RTS
*
Gl010 JMP MAJOR(PC,D0.W) ;GO TO DRIVER ENTRY
*

Main multiple driver switchboard table has each major *
*
*
*

device entry is 4 bytes long, for a 'BRA.L DRVx.' instruction.
The range is checked using NDRV, the number of drivers in BIOS.

MAJOR BRA.L
* BRA.L
* BRA.L
*
*

DRV0
DRV1
DRV2

;DRIVER #0 (TTA)
;DRIVER #1
;DRIVER #2

In the example. only the standard TTA driver code has been
added as DRVO. Since the driver entry points are now O. 4.
8. 12. 16. you can have long jumps to the driver entry
points. not limited to the 128 byte range. Another bonus
is that for entries that are to return an error. such as
read and position. you can handle the error RIGHT IN THE
BRANCH TABLEI This is done by loading the error with a
MOVEQ.L and RTS.

Variables within the driver (offset from A2) are very easy
to define in the BIOS. Since you know the size of EXT:SR to
be $4C. then by taking links into account you just use an
OFFSET $50 directive. followed by DS.L. DS.W. and DS.B
commands to yield the proper (A2) driver offsets. Remember
to exit the OFFSET mode with a SECTION 14 command. for the
linker:

PDOS Teohnioa1 Notes Vol. 1 No.6 19

Applications and Hints (cont.)

20

* Extended Driver #0: TTA
*
* Driver variables go here, starting at (A2) offset = $50
* Use OFFSET and then return to section 14.
*

OFFSET $50 ;end of EXT driver code in buffer
PADR DS.l 1 ;DC.l BASE ADR
FADR DS.l 1 ;DC.l UART FLAGS ADDRESS

OUTE DS.W 1 ;DC.W OUTPUT EVENT #
CCNT DS.B 1 ;DC.B COLUMN COUNT
TYPE DS.B 1 ;DC.B PORT TYPE
PUTC DS.l 1 ;DC.l PUT CHAR ADDRESS FOR JSR

SECTION 14 ;back to BIOS section

The next requirement is to reference in any external offsets
or addresses:

*
*
*
BURT

Next define and XREF any needed offsets for SYRAM, etc.

EQU
XREF

$001E ;BI0S UART TBl
U2P$,UTYP. ,UART. ,FaBT.

Now, go to the specific driver code, which swaps DO to get '~
the open, close, read, write, or position offset and
branches into the fixed entry table to perform the driver
function:

PDOS Technical Notes Vol. 1 No.5

(

(

Applications and Hints (cant.)

*
*
*
*
*
*
*
*
ORV0

*
*
*
*
*
*
*
ORV0TB
*

*

*

*

*

Here is the minor entry switchboard. with JMP offset in
upper word of 00.L. Minor entry offsets are 0.4,8,$C,$10
for open, close, read, write and position. This allows
errors in BRA.L table, with sequences like:

MOVEQ.L #ERR,00
RTS

SWAP 00 ;MINOR OFFSET IN 00.W LOWER
JMP ORV0TB(PC.00.W) ;GO TO SPECIFIC MINOR ENTRY ...

DRV0TB BRA.L
BRA.L
BRA.L
BRA.L
BRA.L

BRA.L OPEN

BRA.L CLOS

MOVEQ.L #80,00
RTS

BRA.L WRIT

MOVEQ.L #70,00
RTS

OPEN
CLOS
READ
WRIT
POSIT

;0=OPEN

;4=CLOSE

;8=REAO: ERROR 80, DRIVER ERROR

; 12=WRITE

;16=POSITION: ERROR 70, POSITION ~RR

OPEN ORI.W #$8000,12(A4) ;FILE ALTERED
CLR.B CCNT(A2) ;CLEAR COUNTER
CLR.W 01 ;D1=PORT #
MOVE.B U2P$(A6),01 ;01=PORT #
MOVEQ.L #80,03
ADD.B 01,03
MOVE.W D3,OUTE(A2) ;03=OUTPUT EVENT #
MOVE.B UTYP.(AS,D1.W),D3 ;03=UART TYPE
MOVE.B 03,TYPE(A2) ;SAVE FOR FUTURE
AOD.W 03,03 ;POINT TO OSR
MOVEA. L (AS) ,A0
ADDA.W BURT(A0,D3.W),A0
ADOQ.W #2.A0 ;A0=PUTC ENTRY
MOVE.L A0,PUTC(A2) ;SAVE PUTe AOR
LSL.W #2.01 ;SAVE BASE ADR
LEA.L UART.(AS),A0
MOVE.L 0(A0,D1.W),PADR(A2)
LSR.W #2,01 ;SAVE FLAGS
PEA F8BT.(AS.01.W) ;PUSH POINTER TO FLAGS
MOVE.L (A7)+,FADR(A2) ;SAVE PTR
BRA.S CLOS2

PDOS Teohnioal Notes. Vol. 1 No.5 21

Applications and Hints (cont.)

22

*
CLOS

*

MOVEQ. L#$llJC,00
MOVEQ.L #1,05
BRA.S WRIT12

CLOS2 CLR.W 00
RTS

*

;GET FF
;00 1 CHAR
; OUT IT

;RETURN .EQ.

* WRITE CHARACTERS
*
WRIT ORI.W #$8000,12(A4) ;N, ALTERED
*
WRIT02 MOVEQ.L #0,00 ;GET CHARACTER

MOVE. B (A3)+,00 ;OONE?
BNE.S WRIT04 ;N

TST.L 05 ; Y, WRITE LINE?
BMI. S CLOS2 ;Y, DONE

*
WRIT04 CMPI. B #$llJ8,00 ;BACKSPACE?

BNE.S WRIT06 ;N
SUBQ.B #1,CCNT(A2) ;Y

*
WRIT06 CMPI. B #$llJ9,00 ;OK, TAB?

BNE.S WRIT08 ;N
MOVEQ.L #' , ,00 ;Y
MOVE.B CCNT(A2),01 ;GET COUNTER
LSL. B #5,01 ;$CCC0 0000
CMPI.B #7«5,01 ;TAB BOUNDARY?

BEQ.S WRIT08 ;Y
SUBQ.W #1, A3 ;N, DO AGAIN
TST.L 05 ;WRITE LINE?

BMI. S WRIT08 ;Y
AOOQ.L #1,05 ;N, BACKUP

*
WR IT08 CMPI.B #$llJA,00 ; LF?

BEQ. S WR IT16 ;Y, IGNORE
CMPI. B #$00,00 ;N, CR?

BNE.S WRIT10 ;N
CLR.B CCNT(A2) ;Y, CLEAR CCNT
MOVE.W #$0A00,00 ;CHANGE TO CRLF

*
WRIT10 CMPI.B #' , ,00 ;CONTROL?

B LT. S WR IT 1 2 :Y
AODQ.B #1,CCNT(A2) ;N, UP COUNT

PDOS Teohnioal Notes Vol. 1 No.5

c

(

(

Applications and Hints (cont.)

*
WRIT12 TST.B TYPE(A2)

*

BEQ.S CLOS2
MOVE.L OUTE(A2),D1
MOVEA.L FADR(A2),A0
MOVE.B (A0),D1
BTST.L #0,D1

BE Q . S WR IT 14
TST.B D1

BM I . S WR IT 1 2

WRIT14 MOVEA.L PADR(A2),A0
MOVEA.L PUTC(A2),A1

*

JSR (A1)
BNE.S WRIT12

LSR.W #8,D0
BNE.S WRIT12

WRIT16 SUBQ.L #1,D5
BNE. S WR IT02

RTS

;DEFINED TYPE?
;N, SKIP IT
;GET OUT EFVENT TO UPPER WORD OF D1
;GET PTR TO FLGS
;TEST FLAG EACH TIME
;ASAQ CHECK?
;N
;Y, AS STOP SET?
; Y, WAIT HERE

;UART BASE ADR
;POINT TO PUTC
;CALL PUT CHAR
; Y
;N, 2 CHARS?
;Y

;DONE?
;N
;Y, RETURN .EQ.

You would add other drivers here. calling them DRV1. DRV2.
and so on. If you need more RAM storage than $100-$50 (176
bytes). then you would have to handle it separately. Also.
you are limited to PDOS booting only up to 255 sectors. or
less than 66k bytes for the BIOS. driver code and PDOS.
This means that huge drivers must be accommodated differ­
ently. Now all that remains is to finish up by including
MBIOS:SR.

*
NOL
PAGE
INCLUDE MBIOS:SR
END

PDOS Technical Notes Vol. 1 No. 5 23

Applications and Hints (cont.)

7. HINT - To change the default
bits on a Force CPU-1 you
following method:

word length. parity. and stop
may patch your system using the

>PB
800,1000,7410W

0F06
0F06 7410 7450
a

>BP $2002,9600

search for first occurrence of 741~
address of occurrence
open this address and replace with 745~
exit the debugger

baud port with 7 bit. odd parIty. 1 stop bIt

OptIons for port communication without the patch are as follows:

>BP 2,9600
>BP $2002,9600
>BP $802,9600
>BP $2802,9600

7 bIts. even parity.
7 bits. even parIty.
8 bIts. no parity.
8 bits. even parIty.

2 stop bits
1 stop bit
2 stop /)(ts
1 stop bit

Options for port communication with the patch Installed:

>BP 2,9600
>BP $2002,9600
>BP $802,9600
>BP $2802,9600

7 bits. odd parity.
7 bits. odd parity.
8 bits. no parity.
8 bIts. odd parity.

2 stop bits
1 stop bit
1 stop bits
1 stop bit

The patch may be saved with the MMKBT utility.

8. HINT - It is often desirable to do direct memory accessing
from C. usually to memory-mapped I/O registers at a parti­
cular address.

24

You should already know
dependent and should be
portability is desired.

that this type of code is machine
isolated to a few small modules if

Should you desire to read/write 16 bits at a time to memory
address OxFFI00200. you could define a pointer as follows:

int *p;
int i,j;

p = 0xFF100200;

i = *p;
*p = j;

1* read 16 bits from the address *1
1* write 16 bits to the address *1

PDOS Technical Notes Vol. 1 No. 5

(
Applications and Hints (cont.)

9 .

If you will be making many references, you may want to
declare thepoint~r to be a register variable to give
quicker access and require less code.

For only one or two references to the address, you can
simply declare the code in-line as follows:

i = *(int *) 0xFF100200;
*(int *) 0xFF100200 = j;

1* read *1
1* write *1

If you need to read/write a single byte, or 32 bits, you
would declare the pOinter above as follows:

char *p;
long *p;

or the in-line code:

c = *(char *) 0xFF100200;
c = *(long *) 0xFF100200;

1* one byte *1
1* 32 bits *1

HINT Increasing performance on PDOS. As fast as PDOS
generally is, there are some areas where it falls down. In
particular, it seems as if compiling a program takes a
long time. It turns out that an un-tuned file handling
system is responsible for much of this apparent lack of
speed. There are a few simple tricks you should know that
will greatly increase PDOS performance without changing
either your application or PDOS. Some of the tips are
limited to 68000 PDOS but most of them can be used on either
9900 or 68000 PDOS systems.

PERFORMANCE TIP #1: PREDEFINE OUTPUT FILES TO THE LARGEST SIZE
ANTICIPATED.

PDOS allows you to auto-create an output file by putting a
pound sign ('U') in front of the file name. While this is
generally convenient, it does cut back on your speed. An
auto-created file is only defined with a size of one block,
initially. When the file grows beyond that size, it must be
extended. Each time the file is extended, PDOS goes back to
the disk allocation bitmap at the beginning of the disk,
marks off another sector, then goes back to the current
sector to link in the new one. On a floppy disk you can
hear the head "see-saw" back and forth as it extends a file
sector by sector. You usually can't hear it on a hard disk
but it happens nevertheless.

PDOS Teohnioal Notes Vol. 1 No.5 25

Applications and Hints (cont.)

Also, when a file is extended in this fashion, the sectors
are picked up ona first-come-first-served basis. The file
will probably not be contiguous. Programmatic access is the
same for non-contiguous files as it is for contiguous files,
but there may be a large difference in performance -­
especially in direct access files. This is because in order
to read the Nth block, it is first necessary to read the
preceding N-l blocks as well. PDOS links blocks in a file
together with a pair of links in each block. If the file is
contiguous, PDOS knows where every block is on the disk by
reading the disk directory. If the file is non-contiguous,
however, PDOS must follow the chain of linked blocks to find
the data.

So, for your own files and for the temporary files used by
the compilers: PREDEFINE the output files. The C co~piler
uses the temporary files CTEMPx:SRl, CTEMPx:SR2, CTEMPx:O,
and CTEMPx:L. The Pascal compiler uses PTEMPx:PIN,
PTEMPx:PSR, and PTEMPx:POB. The 'x' is replaced by your
task number -- 0, I, 2, etc. The F77 compiler creates a
series of files with the names filename:Fl, filename:F2,
etc., where 'filename'is the name of the file you are
compiling. Unfortunately, you cannot predefine these files
since the compiler defines the files as it goes and deletes
them when it finishes. If you predefine the temporaries,
the F77 compiler will not run. For the C and Pascal
compilers and the assembler and linker, however, you
can see a substantial speed increase by predefining the
output files. Experience should show you how big these
files should be. You should delete the old ones and create
new ones of the maximum required size.

PERFORMANCE TIP #2: ORDER DIRECTORY TO PUT FREQUENTLY USED FILES
FIRST.

26

The file directory on a PDOS disk is a simple list at the
beginning of the disk. There are eight directory entries
per sector. To look up a file on the disk, PDOS starts at
the beginning of the directory and searches sequentially
through the sectors until it finds the file or runs out of
directory entries. Commonly used files, therefore, should
be placed at the beginning of the directory. The system
utility MORDIR allows you to arrange the disk directory in
two different ways. First, it allows you to sort the
directory alphabetically. Renaming a file does not change
its order in the directory. To put the file 'XYZ:DAT' first
in the disk directory, rename it to 'A', run MORDIR, and
then rename 'A' to 'XYZ:DAT'. MORDIR also allows the disk
level to be a sort key. You must put a '/L' after the disk

PDOS Technical Notes Vol. 1 No.5

c

c

(

(

(

Applications and Hints (cont.)

number if you want this effect. To take advantage of this
feature. you could put your most frequently used files in
level O. run MORDIR with the 'L' switch. and then (if
necessary) rename them to the level you need them to be in.
On a disk with a large number of files this can make a big
difference in how fast you find a file.

PERFORMANCE TIP #3: KEEP DISK DIRECTORIES SMALL.

Along with the proper ordering of a disk directory. you
should try to keep a disk directory fairly small. Gener­
ally. 100-200 files is about the most you should try to put
on a single disk. Besides the overhead of looking through
the long disk directory. you also have the problems of
trying to keep track of what is what. Anyone will have
trouble remembering the purpose of every fi~e when the
number of files gets up in the thousands. Backup unused
files onto floppies and store them in a safe place. If you
really must have thousands of files around. you have our
sympathies and this suggestion -- back up the whole disk
onto a set of floppies. Then. re-partition the large disk
into a bunch of small ones using xxFRMT. Restore the
floppies to the small (floppy-sized) disks. Typically. you
can organize the files into functional groups i.e. by
program. project. purpose. or something. With the 'SY'
statement you can tell PDOS to search only those disks that
are needed and to ignore the rest.

PERFORMANCE TIP #4: SET 'SY' PATH PROPERLY.

The 'SY' statement specifies which disks should be searched
for filenames without an explicit disk reference. Up to
four disks can be specified. with the numbers separated by
commas or spaces. PDOS searches the disks in the order they
are specified. from left to right. Thus. you should specify
the SY command in the order that the files will most likely
be found -- the most frequently referenced files should be
on the first disk and the least frequently used ones should
be on the last one. Likewise. fast devices ought to be
searched before slow ones. Put the RAMdisk first. the
floppy last. and a couple of hard disk partitions in the
middle.

PDOS Teohnioal Notes Vol. 1 No.5 27

Applications and Hints (cont.)

PERFORMANCE TIP IS: USE THE RAMDISK.

PDOS had RAMdisk long before it was popular on other
operating systems. It allows you to free memory from
tasking purposes and define it to be a high speed disk. You
then initialize it and use it like any other disk. There
are two obvious differences between the RAMdisk and other
storage devices. The first difference is that the RAMdisk
is volatile. Anything you place in RAMdisk should be copied
to a regular disk as soon as possible. before the power
fails and you lose it. The second difference is that since
you don't have any moving parts in a RAMdisk. it runs MUCH
faster.

Typical PDOS systems usually come with 2s6K of memory and
s12K up to 1 or 2 megabytes is becoming increasingly
common. The low cost of RAM makes it very easy to add a lot
of memory to a system. Yet the system u~ilities on PDOS
still only take up a few Kbytes and PDOS needs less than
sOK. Most user programs will not take more than a few
hundred Kbytes. The remaining memory can usually be given
up to a RAMdisk.

When you compile a program in C. a lot of time is spent
bringing in the different passes of the compiler from disk
and referencing the different library files. If you can put
the compiler phases and/or the libraries on a RAMdisk. you
will easily see a doubling in your speed. Similarly. if you
put a frequently accessed file on the RAMdisk. you will
obviously see a speedup in your program. The PDOS program­
mers at Eyring try to use the RAMdisk as much as possible.
especially for the intermediate files created by the various
compilers.

* * * * * * * * * * **

28

By implementing these performance tips. you should be able
to increase the speed of PDOS on your system. If you have
discovered other performance techniques that would be of
general interest to PDOS programmers. please send them to
Eyring or call the Hotline so that they can be included in
the next issue of PDOS Tips and Technical Notes.

PDOS Teohnioal Notes Vol. 1 No.5
c

(

if

Tips&
TechnicalNotes

Vol. 2 No.1
January 1, :987

INTRODUCTION

Product Status

1. PDOS 3.2a release
2. C 5.0e release
3. FORTRAN 77 2.2d release
4. 9900 Pascal 3. Ob release

Warninis and Cautions

1. BUG - Pointer overwrite in MEDIT
2. BUG - Rounding errors in 5.0 C floating point
3. BUG - MASM20 Bcc.X in 68020 mode
4. BUG - Pascal accessing byte data generates wrong code
5. BUG - Pascal 68k SQRT gives negative values near zero
6. WARNING - Use of task control block locations
7. WARNING - Pascal XSTM declaration doesn't work as documented
8. CAUTION - Assembly programs under FORTRAN
9. CAUTION - MDCOMP fails when comparing DRIVERS
10. CAUTION - Hardware effect on QLINK
11. CAUTION - BASIC file manager call - FILE 0
12. CAUTION - Use of LO command I XLDF primitive
13. CAUTION - Dynamic memory decay
14. CAUTION - Conflicting use of the monitor work buffer
15. NOTICE - 1.2 C vs 5.0 C floating point option

Fixes. Patches and Workarounds

1. PATCH - XDEV under 3.0 for run modules
2. FIX - XBFL primitive in C 1.2 lacks parameter
3. FIX - 9900 PASCAL run module
4. FIX - XCBC and XCBP in C primitive library

Applications and Hints

1. HINT - Nesting of procedure files
2. HINT - MASM/MASM20 variable definitions
3. APPLICATION - Interrupt service routines in PDOS
4. APPLICATION - Timing of benchmark routines
5. APPLICATION - Data files larger than PDOS disks
6. APPLICATION - 9900 Pascal run modules

PDOS Technical Notes Vol. 2 No.1 1

Eyring 11450 West 820 No~th 1 Provo, Utah 84601/.(801) 375·2434 1§)882·000 IIFaxl(801) 374-8339

PRODUCT STATUS

1. PDOS 3.2a is now available. It includes a number of new
features including virtual ports, additional primitives and
utilities, as well as updates to existing utilities.

VIRTUAL PORTS PDOS virtual ports (also referred to as
"windows") allow selective switching of physical I/O
ports to logical task ports. This means that a single
terminal can dynamically switch between I/O ports which are
assigned to different tasks or updated by a single task with
multiple screen output. A screen image is maintained for
all windowed ports so that when you switch from one port to
another, your terminal is refreshed with the new screen.

With PDOS virtual ports, the system acts as if there were
more terminals than are actually on the system. Multiple
tasks are accessible from one terminal. A high priority
virtual port task maintains the screen buffers and handles
screen refreshing and buffer printing. A special key
sequence is used to switch from one virtual port to another.
When a port selection is made, PDOS maps your keyboard to
that port and the virtual port task clears and updates
your display to reflect the current screen.

To obtain a copy of PDOS 3.2 (68000 and 68020), call Susan
Pitzak at Eyring or contact your distributor.

2. C version 5.Oe is currently available. When PDOS-related
products are revised. the lower case letters signify a patch
or other minor fix and it is generally unnecessary to update
your software. If the other numbers change, however, you
might find it useful to obtain a copy of the new revision.
(It will include new documentation and other substantial
changes.) All users under a current maintenance/support
agreement for C can obtain their copy of the latest release
by requesting it. Others may obtain copies by updating
their maintenance or ordering part number ER3550. Current
cost of a new PDOS C license is $750.

3. FORTRAN 77 from ABSOFT is currently version 2.2d. Patch
notices have been distributed to users with active license
agreements. The 2.2d version will be distributed to all new
customers.

4. 9900 Pascal 3.0b has been released. The new version
includes coding to permit run module applications which was
lacking in earlier versions.

PDOS Technical Notes Vol. 2 No. 1

o

c

(~

WARNINGS AND CAUTIONS

1. ,BUG - In MEDIT 2.0 and earlier, if you overwrite the pointer
in replace mode, the pOinter cannot be found. As a result,
cursor position and text pointers do not agree and text is
written where it should not be written. This problem has
been fixed in the version of MEDIT for the PDOS 3.2 release.

2. BUG - There are several rounding errors noted in the 'E'
(IEEE) and the 'H' (68881) floating point librarys of 5.0 C.
The 'E' library rounds incorrectly on output while the 'H'
library truncates the result. Only the 'F' library rounds
properly. The following example illustrates the 'E' library
problem:

double a = 123.004;
printf("/n~ %3.31f",a);
printf("/n% %3.41f",a);
p r i n tf (" 1 n% %3. 5lf" , a) ;
printf("/n~ %3.61f",a};

1* prints 120.053 *1
1* prints 120.0090 *1
1* prints 120.00450 *1
1* prints 120.004050 *1

A patch for these difficulties will be provided in the near
future.

3. . BUG - In MASM20 (rev. 3.1), the Bcc. X in the 68020 mode does
not assemble properly. This problem has been corrected in
PDOS 3.2. For users of 3.1 PDOS, a patch or new distri­
bution of the assembler may be obtained.

4. BUG - PDOS PASCAL 3.0 occasionally generates bad code when
referencing functions that return a single byte as their
result. As an example, consider the following program
segment:

TYPE
TTYPE = 1 .. 100;

FUNCTION DUMMY:TTYPE;
BEGIN

DUMMY .- 1;
END;

BEGIN
IF DUMMY < DUMMY THEN WRITE(1) ELSE WRITE(2);

END.

Here, the function DUMMY is called twice, and the result
from the first call compared to the result from the second.
If DUMMY returned more than a byte (if TTYPE were the size
of a 16-bit or 32-bit integer) then everything would work as
expected. As it is, however, the compiler generates code
that puts the stack pOinter off by two, causing unpredic­
table results in the rest of the program.

PDOS Teohnioal Notes Vol. 2 No.1 3

(Warnings and Cautions continued)

*

5 .

IF DUMMY < DUMMY THEN WRITE(1) ELSE WRITE(2);

SUBQ.W #2.SP ;ALLOCATE SPACE FOR FIRST RESULT
PEA.L (SP)
BSR .201 ;CALL FUNCTION

SUBQ.W #2.SP ;ALLOCATE SPACE FOR SECOND RESULT
PEA.L (SP)
BSR .201 ;CALL FUNCTION

MOVE.B 2(SP).D0 ;GET SECOND RESULT (LEFT ON STACK)
CMP.B (SP)+.D0 ;COMPARE TO FIRST RESULT (POPPED)

BGE .202 ;SECOND RESULT STILL ON STACK!

Presently, be warned that if you must have a function that
returns a byte as the result, you should assign the result
to a temporary variable, or use some other work-around to
avoid calling two such functions as operands to a binary
operator. The bug will be corrected in the next revision of
Pascal.

BUG - The SQRT routine in Pascal 3.0a for the 68000 gives
negative numbers below 0.0625 in both single and double
precision modes. The problem is currently being investi­
gated.

6. WARNING - Although the locations of the task control block
are made available to the user, you must be cautious in
using these locations. Many PDOS primitives use these
locations to perform their functions and any location may
change at any time as a result of these PDOS calls.
Although the same task control block format has for the most
part remained unchanged in PDOS revisions, this may not
continue to be the case. As future improvements and changes
are made to PDOS it may be necessary to modify the format
significantly.

7. WARNING - The XSTM primitive does not work as documented in
the Pascal 3.0 manual. Use the following declaration
instead:

PROCEDURE XSTM(task:INTEGER; message:string);

4 PDOS Teohnioal Notes Vol. 2 No. 1
c

(

(

(

(Warnings and Cautions continued)

8. CAUTION - The PDOS assembler generates a PDOS tagged object
code which is accepted without difficulty by the FORTRAN
linker F77L until you attempt to run the program. The
result is usually an immediate program failure. It is
necessary to convert assembly language subroutines to the SY
format using the MSYFL or QLINK utilities before linking
with the F77L linker.

9. CAUTION - MDCOMP will not compare drivers unless the driver
attributes are removed or changed before the compare. Be
sure to restore the attributes before attempting to use the
driver.

10. CAUTION - A few C and Pascal users have reported 'illegal
object tag' errors during the QLINK phase of creating a
program. When we look at the library which holds· the bad
module, we cannot find anything wrong. It appears as if
this problem is related to an idiosyncracy of a particular
disk controller. One failure occured with the RWIN disk
controller used on some VME-10 and 117 systems. The error
goes away if we disable interrupts on the disk controller.
If you have experienced this problem, you may try moving the
appropriate files to RAM disk and linking there. Check your
installation guide on procedures to disable the disk
interrupt flag. We will continue to investigate this
problem.

11. CAUTION - BASIC file manager call FILE a may not work
properly on systems on which the BIOS routines suspend on
events for timeouts. If a task which is locked attempts to
suspend on an event. it cannot do it. The effect is that
the task is immediately restarted and no timeout occurs. In
this case, the FILE 0 call is made where the disk handler
suspends on events, no time delay occurs, and a disk error
is logged. BASIC programs should use the FILE 1 command to
access files if difficulties are encountered.

To prevent undesired access to shared files during disk
reads and writes, use events to control access to the file
routines. Locking and unlocking the open files will also
assure that no other task can gain access to the file until
it is released.

This problem has been fixed for the 3.2 PDOS release.

PDOS Technical Notes Vol. 2 No. 1 5

(Warnings and Cautions continued)

12. CAUTION - The LO . command which uses the XLDF primitive to
load files into memory utilizes long word transfers to speed
the process. As a result, the number of bytes loaded could
be as many as three bytes greater than the number of bytes
called for. Where programs are loaded, this presents no
problem, but if data is being supplied to a program from an
SY file, the space allocated for the data may not be
sufficient and code may be overwritten. You must allocate
sufficient memory to handle the possibility of the extra
words transfer.

13. CAUTION - It has been noted that some dynamic memeory chips
may hold their contents for several seconds. While this may
help to avoid memory loss during a power glitch, it may also
work against you. In one case, RAM disk memory survived a
power-down/power-up cycle long enough to hold the ASS! tag
that PDOS checks to determine whether or not to initialize
the RAM disk. The rest of the memory was garbage. As a
result, the disk was not useable after the boot. If you
must power down your system, it is recommended that you
leave the power off for sufficient time to let the power
supply go to zero before initializing power again.

14. CAUTION - Several PDOS primitives make use of a work area in c.·.\ ...
the task control block called the monitor work buffer.

6

These routines include numeric conversion routines (XCDB and
XCBH); filename parsing by XFFN or any directory access; and
the time and date conversion routines (XPAD, XRDT, XRTM,
XUDT. XUTM. and XUAD).

These routines use the monitor work buffer (MWB$(A6) or
_tcbptr->_mwb) for scratch string space. To use the results
of one call. you must use it before performing a second
call. The second call will ovewrite the results of the
first.

It is unlikely that a programmer would try to print the date
and time with the following assembly code:

XRDT
XRTM
XPLC
XPLC

;get date string
;get time string
;print date77?
;print time

In C. the equivalent code is not as clear and might appear
as follows:

printf("\nDate=%s; Time=%s",xrdt(),xrtm());

PDOS Teohnioal Notes Vol. 2 No. 1

(Warnings and Cautions continued)

15.

In this case, both the date and time conversions are
performed, but the time result overwrites the date. When
both strings are displayed, they are the same. The solution
is to display the results of each function separately, or
copy out the date into a buffer to preserve it while the
time is being formatted. The following code in C is an
example:

char dbuff[10].*strcpy(),*xrdt(),*xrtm();
printf("\nDate=%s; Time=%s",strcpy(dbuff,xrdt()),xrtm());

This example makes use of the fact that strcpy both copies
the string and returns a pointer to the copy. The area
'dbuff' provides a temporary storage for the strings.

NOTICE - With the 1.2 C compiler, if you compiled to object
code without specifying a floating point option, any
floating point you had was by default generated in the
FFP(option F) mode.

With the 5.0 C compiler, the default floating point format
is IEEE (option E). If you are in the habit of taking the
default, be aware that the default has changed.

PDOS Technical Notes Vol. 2 No.1 7

FIXES, PATCHES AND WORKAROUNDS

1. PATCH - XDEV under 3.0 for run modules. To apply the patch
reported in Vol. 1 No.3 of PDOS Tips and Technical Notes to
run modules, do the following:

x>MEOIT MPOOSK1:0BJ[CR] enter editor wfth MPDOSK1:08J
[CTRL-F]654E75[CR] find character string
[CTRL-A][CTRL-P][CTRL-F]5BC7[CR] find next-place pointer-find string
[CTRL-\]V007C507004207[CTRL-W][CTRL-W][CR]

del block-add strIng-write to file
V[ESC][CTRL-V] verify and exit editor
x>

Since this patch is made to an object file, it will become
part of any run module developed after the patch.

2. FIX - The build file directory list primitive in 1.2 C fails
as a result of not passing all necessary variables. To
correct this difficulty, enter the XLIB:SRC file and change
the code under the XBFL primitive as follows:

3.

change: .XBFL MOVEM.L 4(A7),A1/A2
to: .XBFL MOVEM. L .4(A7) ,A1-A3

;GET STRING POINTERS
;GET STRING POINTERS

It will be necessary to separate the library modules,
recompile, and link them into a new library file using
MLIBGEN, or use the new MLIB utility distributed with PDOS
3.1 and later to change the single library routine following
compilation.

This problem has been corrected in 'c' 5.0 which is now
available.

FIX - 9900 Pascal Rev 3.0a files PMAIN:OBJ
not correct for run module generation.
this problem and is available to those
Pascal in run modules.

and EOPG:OBJ are
Rev 3.0b corrects
who need to use

4. FIX - The primitives XCBC and XCBP require a modification to
assure proper operation. The following changes should be
made in the XLIB:SRC library sources and the library file
reconstructed. In both routines, make the following changes
thus assuring that the DO register returns a 0 when no break
character is encountered rather than the old DO value.

change:

8

MOVE.L 01.00
010099 RTS

END

to:
@0099 MOVE.L 01.00

RTS
END

PDOS Technical Notes Vol. 2 No. 1

(

(

APPLICATIONS AND HINTS

1. HINT - Nesting of procedure files is accomplished by placing
the file ID in the variable ACI$ in the task control block.
There is currently space for two file IDs allowing a third
program to execute while nesting two procedure files. A
third procedure file will not execute.

To expand the nesting, you could write a program which pops
the last ID and saves it. When the nested procedure is
complete, a second program should push the ID back to ACI$
(assigned console inputs). Using this technique, you can
nest procedure files as deep as you wish.

2. HINT - When using the PDOS assembler MASM or MASM20, it is
important to "well-define" all variables before they are
used in a program. If this is not done, an error will
result in the first pass of the assembler. If the defini­
tion is later processed, there may be no error reported in
the second pass. You may not assume that the variable has
been properly assigned or used. If you were to test the
error value LEN$, it would contain a non-zero value, indi­
cating an error occurred. It does not matter whether the
error occurred in the first or second pass.

3 . APPLICATION - Interrupt service routines for new cards in a
PDPS system are usually added to the xxBIOS:SR file, with a
new entry in the BINTB table. Note the examples in
xxBIOS:SR on your system. The BINTB table indicates all
interrupt vectors already assigned for your system.

Some general rules are:

A. Be sure that the interrupt acknowledge daisy-chain is
complete across the backplane on VMEbus systems.

B. For response-critical applications, select an interrupt
level higher than the system clock interrupt.

C. Save all registers used in the routine upon entry and
restore them before exiting.

D. Do not assume any registers are preset or passed from a
task.

E. Since the system stack is not infinite, consider the
possibility of interrupting during another task or
during the SWAP routine. Adjust your code accordingly.

F. Avoid wait loops in interrupt service routines (ISR).

PDOS Teohnioal Notes Vol. 2 No.1 9

(Applications and Hints continued)

*
ISR

G. Avoid using PDOS primitives in the ISR.

H. Preferably set an event and return with either an RTE
instruction or an XRTE primitive.

The best way to handle device interrupts from a task is to
set the device to interrupt and then suspend the task on
both a timeout local event and the event (EVNT) associated
with the ISR. Be sure EVNT is reset before suspending or
you will come right back before the interrupt. The ISR
should set EVNT directly in SYRAM with code similar to the
following:

XREF EVTB.

MOVE.L AS.-(A7)
MOVE.L B$SRAM.AS
BSET #NEVNT.EVNT/8+EVTB. (AS)
MOVEA.L (A7)+.AS
XRTE

;SAVE REGISTER
;GET SVRAM POINTER
;SET EVENT IN SVRAM TABLE
;RESTORE REGISTER
;RETURN AND SWAP TO TASK

The I_I on EVNT simply converts PDOS event numbers (where 0
is most significant) to 68000 bit numbers (where 7 is most
significant).

Dividing EVNT by 8 yields,the byte index of event EVNT in
the event bit table of SYRAM. The XRTE primitive executes
an RTE instruction after setting a flag for the PDOS swap
routine to execute a swap as soon as possible.

If faster interrupt response is needed or if some immediate
calculation of data is required. then you need to insert
more code at the ISR itself. Remember not to block inter­
rupts for too long. unless absolutely necessary.

(For systems using the Force WFC-l card. see the warning in
PDOS Tips and Technical Notes Vol. 1. No.5.)

4. APPLICATION - UTILITY FOR TIMING BENCHMARK PROGRAMS

10

There is often a need to accurately time various programs
for benchmark comparisons. The following example will help
you in performing these timings:

Using MEDIT. enter and save the programs listed following as
files on your disk in START:SR and TEND:SR.

Assemble them to create assembly language programs.

PDOS Technical Notes Vol. 2 No. 1

o

o

(

(Applications and Hints continued)

>MASM START:SR,#START
>MASM TEND:SR,#TEND

Timings of programs can be made by using the following
command line at the PDOS prompt:

>START.PROGRAM.TEND ;run START,PROGRAM, and TEND

To determine time for execution of START and TEND, execute
the following command:

>START.TEND

*START:SR

* START OF TEST

OPT PDOS
START XPMC MES03 ; 'START'

XGML
MOVEA.L MAIL. (AS),A2 ;GET MAIL ARRAY ADDRESS
MOVE.L TICS.(AS),12(A2) ;SAVE TrCS IN MAIL ARRAY
XEXT

MES03 DC.B S0A,S0D, 'START ' ,0

END START

*TEND: SR

* END OF TEST

*
TEND

*

OPT PDOS

XGML
MOVEA.L 4(AS),A2
MOVE.L 12(A2) ,D7

SUB.L
NEG.L
MOVE.L
SWAP
MULU.W
MULU.W
SWAP
ADD.L
XRTM
MOVE.W
MOVE.L
BSR.S

TICS.(AS),D7
07
07,06
06
#100.07
#100,06
06
06,07

10(A1),00
07,01
FOIV

;GET MAIL ARRAY ADDRESS
; GET START TICS

; GET TIME

;SAVE UPPER

;MULU LOWER GUY
;MULU UPPER
;UPPER*6SS36

;GET TIC PER SECOND AT 10(A1).W

;OIVIDE 01 BY DO

PDOS Technical Notes Vol. 2 No. 1 11

(Applications and Hints continued)

*

LSL.W #1.02
CMP.W 10(A1).D2

BLO.S TEND2
ADDQ.L #1.01

TEND2 MOVEQ.L #100.00
BSR.S FDIV
XPCL

*

XCBM MES04
XPLC
MOVEQ.L #'.'.00
XPCC
MOVE.L 02.01
ADDLW #100.01
XCBD
ADDQ.W #1.A1
XPLC
XPMC MES05
XEXT

;GET REMAINDER * 2
; ROUND IT UP?
;N
;Y. ROUND UP TO NEXT TIC

;GET HUNDREDS

; 'TIME='
;OUTPUT WHOLE #

;GET REMAINDER

; OUTPUT FRACTI ON

* DIVIDE D0.W INTO D1.L (D2.W=REMAINDER)
*
FDIV MOVEQ.L #0.02 ;CLEAR REMAINDER

MOVEQ.L #32-1.03 ;GET COUNT
*
@IFD2 ADD.L 01.01 ;SHIFT LEFT 02.01

ADDX.W 02.02
CMP.W 00,02 ;02 <= D0?

BLO.S iilIFD4 ;Y
SUB.W 00.02 ;N, 02 = 02 - 00
ADDQ.L #1,01 ; ENTER BIT

*
iHFD4 DBRA D3,iHF02 ;DONE?

RTS ;RETURN
*
MES04 DC.B 'END. TIME=',0
MES05 DC.B ' SECONDS',0

END TEND

5. APPLICATION - There have been a number of requests for the
means of accessing files larger than the PDOS size limit
under the PDOS file manager. A simple technique which keeps
track of the maximum size of each file and selects a
different logical PDOS disk can be used. By defining files
to hold a number of record sets per disk. the program can
direct the output or find the data based on an index into
the file on the appropriate disk.

12 PDOS Technical Notes Vol. 2 No.1

o

C·

(

(

(

(Applications and Hints continued)

6 .

The following example written in PDOS BASIC creates three
files on thre~ separate logical PDOS disks and initializes
the files with data. The program then accesses this data
randomly by calculating the record to be accessed and
the disk on which it is located. An approach similar to
this can be used in all languages.

1 REM PROGRAM TO CREATE MULTI-DISK DATA FILE AND ACCESS
2 REM DATA FROM THAT FILE RANDOMLY
5 M=0
10 DIM FILE[5],F[5]
20 $FILE[0]='#DTEMP/'
30 FOR J=55 TO 57
40 $F[0]=$FILE[0]~J
45 OPEN $F[0],ID

!INITIALIZE FILENAME
!DO DISKS 7-9
!CONCATENATE DISK # TO FILENAME
!OPEN FILE ON DISK

50 FOR 1=(J-55)*100 TO (J-54)*100-1 !0-99,100-199.200-299
!WRITE #, #A2, #A3 TO FILE 60 FILE 1,10;2,1,1*1,1*1*1

70 NEXT I
80 CLOSE 10
90 NEXT J
100 I=INT[RND*300]
110 IF 1<100: J=55: GOTO 130
115 IF I>199: J=57: GOTO 130
120 J=56
130 $F[0]=$FILE[0]~J
140 ROPEN $F[0],ID
145 K=I-(J-55)*100
150 FILE 1,ID;4,3*8,K.0
160 FILE 3,J,K.L
170 IF I<>J: PRINT 'ENTRY ';1;'
180 PRINT I.J,K,L
185 CLOSE 10
190 REM WAIT 112
195 M=M+1
196 IF M=100: UNIT 1:BYE
200 GOTO 100

!CLOSE EACH FILE
!REPEAT FOR EACH DISK
!GENERATE RANDOM NUMBER
!CHECK DISK NUMBER IS ON

!SET UP FILENAME AND DISK
!OPEN FILE ON APPROPRIATE DISK
!CALCULATE POSITION IN FILE
!POSITION TO DATA
!READ DATA AND PRINT IT

READ AS ';J,K,L

APPLICATION - With release 3.0b of the 9900 Pascal compiler,
run module generation has been simplified. The following is
a short example of run module generation on a 101 9900 PDOS
system. You will need the following in order to produce run
modules on your computer:

Software Products:
9900 Run modules Rev 2.4d (Part number: 3411)
9900 Pascal Compiler Rev 3.0b (Part number: 3430)

PDOS Teobnioal Notes Vol. 2 No. 1 13

(Applications and Hints continued)

14

UPiraded PDOS Utilities:
LINK Rev 2.4d (supplied on Pascal Rev 3.0b diskette -

part number 3430)

You should also become familiar
PDOS Reference Manual. If you
you may wish to try some of the
in chapter 12 first.

with chapter 12 of the 9900
have never done run modules.

assembly examples that are

After you have become familiar with the PDOS run module
examples in chapter 12. you are then ready to build a Pascal
run module. First you will need to write your Pascal
programs. You will need to add an XBCP call at the start
of any Pascal task that will be using character I/O so that
the port. baud rate and CRU base are properly selected. The
following is a short program that you may wish to use to
build your first run module.

PROGRAM PASMOD;

VAR
I : INTEGER;

PROCEDURE XBCP(PORT.BAUD,PTVPE,BASE:INTEGER);EXTERNAL;

BEGIN
XBCP(1,0,0,16#80); {MUST BAUD PORT}
REPEAT

WRITELN;
WRITE('ENTER A NUMBER: ');READLN(I);
WRITELN('NUMBER * 100 =',1*100);

UNTIL FALSE;
END.

Save the file in PASMOD:PAS.
debug the program .

. PASCAL PASMOD

Then you must compile and

.PASCAL1 PASMOO:PAS/5,#PTEMP0:PIN/5
9900 POOS Pascal R3.0a 2S-Jul-86
Copyright 1984-1986 ERI

SRC=PASMOD:PAS/5
INT=#PTEMP0:PIN/S
LST=
ERR=

PDOS Technical Notes Vol. 2 No. 1

o

c

(

(Applications and Hints continued)

<0>
LINES:15
ERRORS:0
GLOBALS=2 BYTES

.PASCAL2 PTEMP0:PIN/S,#PTEMP0:PSRIS
9900 PDOS Pascal Code Generation R3.0a 2S-Jul-86
Copyright 1984-1986 ERI

INPUT=PTEMP0:PIN/S
OUTPUT=#PTEMP0:PSRIS

.PASM PTEMP0:PSRIS,#PASMOD:POB/S
PASM R2.6b
SRCE=PTEMP0:PSRIS
OBJ=#PASMOD:POB/S
LIST=
ERR=
XREF=

END OF PASS 1
o DIAGNOSTICS
END OF PASS 2
o DIAGNOSTICS
. PLINK
LINKER R2. 4a
*0,#PASMOD/S.
*12.2
WAS >0000
*1,PMAIN:OBJ
START TAG = >0000
*1,PASMOD:POB/S
*13,PLIB1:LIB
*13,PLIBS:LIB
*13,PLIBX:LIB

1,TXBCP:OBJ
*13,PLIBF:LIB
*13,PLIBIO:LIB

1,TPRDINT:OBJ
1,TPGETCH:OBJ
1,TPIOOK:OBJ
1,TPRDLNF:OBJ
1,TPWRINT:OBJ
1,TPPUTCH:OBJ
1,TPWRLNF:OBJ
1,TPWRSTF:OBJ

PDOS Technical Notes Vol. 2 No.1 15

(Applications and Hints continued)

16

*13,PLIB:LIB
1,TPEND:OBJ
1,TPERROR:OBJ
1,TPPARL:OBJ
1,TPDISP:OBJ
1,TPNEW:OBJ

*1,EOPG:OBJ
*2
UNDEFINED DEF ENTRIES: NONE
*3
MULTIPLY DEFINED DEF ENTRIES: NONE
*&
START TAG = >0000
*7

After you have linked the Pascal modules together. try the
program under PDOS .

. PASMOD
ENTER A NUMBER: 1
NUMBER * 100 = 100

ENTER A NUMBER: 2
NUMeER * 100 =

ENTER A NUMBER: [ESC]

200

You are now ready to try this program as a run module. File
R$MODC:SR must be edited with the configuration parameters
that you need for this run module. This includes defining
the number of tasks. the port definitions. the clear screen
and position cursor commands along with other parameters
that are described on page 12-6 of the 9900 PDOS Reference
Manual. It is recommended that you edit a copy of file
R$MODC:SR and save the changes in another name. For this
example. call the changed file RUNMODC:SR. You need to
assemble this file .

. PASM RUNMODC:SR,#RUNMODC
PASM R2.&b
SRCE=RUNMODC:SR
OBJ=#RUNMODC
LIST=
ERR=
XREF=

PDOS Technical Notes Vol. 2 No.1

I' \
I C'·'·'~·

f

(Applications and Hints continued)

END OF PASS 1
o DIAGNOSTICS
END OF PASS 2
o DIAGNOSTICS

You are now ready to link the run modules. This example
will show how the new link command "16 Load a Pascal
program" is used. You should note that this command is
very similar to the "11 command -- Load a Basic program" .

. LINK
LINKER R2.4b
*9,>4000
WAS >0000
*12,0
WAS >0000
*0,#RUNMOD
*1.R1$MODA

o START TAG = >0000
*1,RUNMODC
START TAG = >09FC
*16,PASMOD,16,1
START TAG = >0AA6
*2

LINK MUST BE 2.4b
Set the DSEG (RAM) base address

Ignore DSEG code

Select output file
Load PDOS run modules

Load configuration module

Load the Pascal program with 16kb RAM
on Port 1

UNDEFINED DEF ENTRIES: You wIll see undefined entries

BASIC
FAD
FSCL
TYPV1

>0000 CVBD
>0000 FDD

>0000 FSD
>0000 TYPV2

>0000 CVBI
>0000 FLDD

>0000 FSRD
>0000

>0000 EFLG
>0000 FMD

>0000 GOSBE

>0000
>0000

>0000

EVFX
FOPS
SY$IN

*3
MULTIPLY DEFINED
*4,#RUNMOD:MAP
*6

Check for multIply-defined defs
DEF ENTRIES: NONE

START TAG = >0000
*7

Output a map
Output a start tag

Exit back to PDOS

>0000
>0000
>0000

You should note that undefined entries are common. However,
you should not see undefines of the format R$PMxx R$PTxx
R$DBxx or R$DExx (where xx is a two digit number). These
undefines indicate that the module R$MODC:SR has more tasks
defined than you loaded. This will cause your run module
not to work.

PDOB Teohnioal Notes Vol. 2 No. 1 17

(Applications and Hints continued)

18

You can next test your run module by using the LOGO program .

. LOGO
LOGO R2.4
*1,RUNMOD
LOADING
IDT='R$MA2.4c'
IDT='R$MC2.4c'
IDT='3.0bMAIN'
IDT='P3.0a
IDT='2.7TXBCP'
IDT='1.0RDINT'
IDT=' 2. 7GETCH'
IDT='2.7IOOK '
IDT='2.7RDLNF'
IDT='1.0WRINT'
IDT='2.7PUTCH'
IDT='1.0WRLNF'
IDT='2.0WRSTF'
IDT='2.7PEND '
IDT='3.0PERR '
IDT='2.7PARL '
IDT='2.7DISP ,
IDT='2.7NEW
IDT='3.0bEOPG'
ENTRY ADDRESS=>0000
*0 Execute It I
GO !!!

ENTER A NUMBER: 1 It workedll
NUMBER * 100 = 100

ENTER A NUMBER: 2
NUMBER * 100 = 200

ENTER A NUMBER: [ESC] Exit
PDOS ERR=81 Error because no monitor

on run module system

You are next ready to burn the run module into EPROM. This
is done the same as the example on page 12-25 in the PDOS
Reference manual.

In conclusion. run module generation is simpler with rev.
3.0b of the 9900 Pascal compiler. It is recommended that
you first try a few simple programs before you attempt to
EPROM your entire application.

PDOS Technical Notes Vol. 2 No. 1

---(-

=(

Dear POOS User,

FORCE COMPUTERS GmbH
DaimlerstraBe 9

D-80120ttobrunn/Munchen
Telefon 089/60091-0
Telefax (089) 6097793

Telex 524190 forc-d

Hypo-Bank Munchen
BLZ 700 200 01

Konto-Nr. fUr DM: 3180238300
Konto-Nr. fur US$: 9010179839

Registergericht Munchen . HRB 67465
Geschdftsfuhrer Sven A Behrendt

Apri I 6, 1987/-pz

We are pleased to enclose the most recent issue of Eyring's

"PDOS Tips and Technical Notes"

At the same time we would like you to keep in mind that the bugs and

I imitations described in older notes have become inval id with new

revisions of POOS and compilers.

Yours sincerely,

FORCE COMPUTERS GMBH

Market i ng Department

_e & clpS .
TechnicalNotes

INTRODUCTION

Current Product Status

Vol. 2 No.2
March 2. 1987

1. Run Module Development. 2
2. Current Product Versions 2

PIG News • e. • • 2

Warninas and Cautions

1.
2.
3.
4.
5.
6.
7.

DOCUMENTATION - XSMP and XGMP in 3.1 PDOS 4
DOCUMENTATION - C Arguments in XWFP Primitive 4
CAUTION - MASM Error Message 324 . .'. 4
NOTE - Register Indirect With Index MOVEx.x Change 4
NOTE - MTRANS Difference 5
CAUTION - Registers A5 and A6 Corruption in PASCAL . . 5
CAUTION - Cursor Positioning Into Another Task 5

Fixes Patches and WorkaroundS

1. PATCH - QLINK BUG Giving Error 63 Message 6
2. FIX - TESTXLIB:C XFUM Example 7
3. NOTE - $DATE Use in 3.2 PDOS Versus 3.0 PDOS 7
4. PATCH - Square Root Problem in PDOS PASCAL 7

Applications and Hints

1. APPLICATION - RAM/EPROM Disk Handler 8
2. HINT - MINST Utility Page Size 10
3. HINT - Retaining GLOBAL Variable Values in BASIC 11
4. APPLICATION - Changing TPS on 58167 RTC12
5. APPLICATION - Global Variable Access in FORTRAN .13

Corrected Documentation

1. Pages 4-(57-58) and 4-(109-110) of 3.1 PDOS Reference Manual
2. Pages 3-(109-112) of 5.0 PDOS C Reference Manual

PDOS ~eobDjoal Notes Vol. a No. a 1

e Eyrinq / '450 West 820 North I Provo, Utah 84601 / = (801) 375-2434 / I!]] 882-000 / IFax! (80n 374-8339

o

(

(

(

1 .

PRODUCT STATUS

Run Module Development. PDOS run module generation is the
selective linking of user programs and the PDOS system
modules to form a stand alone EPROMable application. A new
RUNGEN utility available from Eyring simplifies this
process. A descriptor file which describes the application
is completed by using a template file as an example. The
RUNGEN utility uses this descriptor file to produce a PDOS
procedure file which generates the runable /EPROMable code.
Run module applications can be programmed in Assembly.
BASIC. C. PASCAL. or FORTRAN. This new run module
development system should be used only with 3.2 PDOS and the
latest versions of the various programming languages.

2. Current Product Versions. PDOS for the 68000 is currently
at revision level 3.2a and supports the following language
versions:

FORTRAN 2.2d C 5.0e
Pascal 3.0a BASIC 3.2a

PIG NEWS

The PDOS Interest Group (PIG) dial-in line at Eyring has been
mostly available for the last few months. If you c~ll (801)
375-2593 before 8:00 AM or after 5:00 PM (Mountain Time) you are
connected to our PDOS modem. (You may also call (801) 375-2434
during our business hours. but you must have a voice connection
on your phone and ask the operator for extension 264). We have
had a very few calls. but we have also had trouble keeping the
system up and going. Perhaps the reason that there wasn't much
traffic is that the hardware was down. If you try to get in and
can't. please give us a call.

The dial-in line answers at 2400/1200/300 baud. eight bits. no
parity. A limited number of commands are allowed (SY. LS. SF.
KERMIT. MF) for hacker control. The system presently has the
current PIG disks 0 and 1 on-line (including the source to
KERMIT) and a number of contributions that will make up PIG disk
2. We won't release PIG disk 2 until we have a full disk. (it's
only a little over half full) but if you are interested. it
currently has the following:

PDOS Teohnioal Notes Vol. 2 No.2

c

(

(

(PIG News cont.)

*
*
*
* *
*
*
* *
*
* *

*

A list of the attendees at the last user's group conference.
A directory,listing program that sorts by day of creation or
update, extension, or name.
A program that divides an EPROM image into upper/lower bytes
for burning into a pair of ROMs.
A program to control a Curtis EPROM burner.
A program to show shared memory access under FORTRAN. (See
Hints number 3).
A set of login/logout utilities.
A "Programmers Environment" shell that simplifies the
edit/compile/debug cycle.
A graphics game for the VME-10.
An exception handler that lets you specify an event to be
automatically set every time a specific interrupt occurs.
Another banner generator program with a gothic font.
A program to split large files into smaller ones.
An example of multiple programs periodically re-schedu1ing
on the same timer event.
A set of macros to aid in conversion of programs from 9900
assembly to 68000.

As usual with items in the public domain, this is all provided
without any kind of support or maintenance, but if you want to
perform your own improvements and resubmit them to PIG, we'd be
happi to accept. Or, send in your own (non-proprietary) works of
genius I You can send them over the dial-in line or on a disk to
Brian Cooper at Eyring.

A new program is available on the 9900 PIG disk -- a programming
tool to facilitate modular programming development in BASIC.
Credit goes to Art Vreeland of Walker-Williams for development
and to Millar Brainard for enhancements to the program BASCOMP.
This is a pre-processor that accepts 'pseudo-basic' source with
extensive comments and no line numbers, and strips the comments
and adds line numbers. Labels for GOTO and GOSUB statements are
supplied through a special macro-substitution facility. Code can
be developed in multiple modules and then combined just before
run time without worry about conflicting use of line numbers. It
looks like a nice package for those doing development in BASIC.

Another interesting program from the 9900 group is BIRDS:SRC -- a
geosynchronous satellite locator, courtesy of Mike Galvin of the
Potomac Spaghetti Group. It used to be that only spies and
astronomers watched satellites, but now, with satellite TV there
is a larger interest. Anyone interested in ~onverting either of
these to 68000 BASIC and checking them out should contact Brian
Cooper at Eyring.

PDOS Teohnioal Notes Vol. 2 No.2 3

'(~' \ ,1;/

c

(

(

(

1 .

WARNINGS AND CAUTIONS

DOCUMENTATION - XSMP and XGMP were implemented differently
than noted in the 3.1 documentation.

D0.B in the XSMP primitive is not a task number. but is a·
message slot number(0-15) into which the addres~ of the
message is placed. The task getting the message pOinter
uses the same message slot number to access the message.
When the message is sent. the event number corresponding to
the slot number+64 will be set. If no message is available
when accessed with XGMP or if a message is already in the
slot when XSMP is executed. the error message 83 will be in
D0 and the status will be returned NE. Otherwise the status
is returned EQ. The message is pOinted to by (AI). Users
should be aware of the potential conflict with the use of
events 64 thru 79 in their application programs. Replace
the pages of your manual with the attached corrected sheets.
(The 3.2 documentation is correct).

2. DOCUMENTATION - The last two arguments in xwfp primitive a$
described on pages 3-110 and 3-111 of the PDOS C Reference
Manual version 5.0 were swapped. The parameter· list should
read as follows:

3.

4.

4

int xwfp(eofsec.create.update.attr.filename):

Replace the pages of your manual with those provided at the
end of this document.

CAUTION - Some users have developed programs which have
generated assembler error 324 (parameter out of range).
This error results from .10ng programs which generate return
branches to locations beyond the range of the BRA.L
addressing. To circumvent this error. write your code in
smaller modules. or include GOTO statements which jump to
locations for RETURN statements which will be within the
addressing range.

NOTE There is a change in the way the new assembler
distributed with 5.0 C and 3.2 PDOS handles register
indirect with index instructions. In previous versions of
the assembler. the displacement value could be left off if
zero displacement was desired. The zero displacement value
must now be included.

MOVEA.ll(A2.D1.W).A2
A

PDOS Technical Notes Vol. 2 No. 2

c

(Warnings and Cautions cont.)

5. NOTE - The version of MTRANS distributed with 3.2 PDOS will
not work properly under 3.0 PDOS. This is because the
method used to set file parameters is different. The new
version makes use of the new 3.2 PDOS primitive XWFP (write
file parameters) for status duplication.

6. CAUTION - Registers AS and A6 are corrupted when accessing
the transcendental functions under PDOS Pascal. This should
only have an effect on your programming if you are using
static variables. We do not recommend using static
variables under PDOS Pascal as there can be problems with
this mode of variable access. Registers AS and A6 will be
saved in the next release of PDOS Pascal.

7 • CAUTION - When a background task is writing information to
the screen of another task, it is important that the writing
task read the cursor position of the receiving task before
writing to the screen. The task should restore the original
cursor position to prevent disruption of the screen.
Additionally, the task should lock itself or raise its
priority to assure that the other task won't be sent. It is
necessary for the background task to specify the port number
when using the XRCP (read cursor position) primitive. If a
zero is used, then the task will use the port number in the
PRT field of the TCB. For a background task with no input
port, this value will be zero, and the return values are
unpredictable. A method for doing this in C is illustrated
in the following task which writes the time to a fixed
position on another task's screen:

#include <TCB:H>
char *xrtm{);

-1* define TCB structure *1
1* function returns string *1

ma i n ()
{

}

int port = tcbptr-> u1p;
asm("xcls"); -
wh i1 e (1){

}

in trow. col ;
xsui(113);
xlkt;
xrcp(port.&row.&col);
xpsc(1.70);
xplc(xrtm{» ;
xpsc(row.col);
xu It;

1* get output port number *1
1* clear screen *1
1* loop forever *1
1* local variables *1
1* wait on one second counter *1
1* lock task *1
1* read receiving tasks parameters *1
1* move to screen position *1
1* print time *1
1* reposition to original location *1
1* unlock task *1

PDOS Teohnioal Notes Vol. 2 No.2 5

if'"
\,~,:

(

{

1.

FIXES, PATCHES AND WORKAROUNDS

PATCH - QLINK versions distributed
C version 5.0 had a problem which
tag errors. This problem can
following patch:

with PDOS version 3.1 and
would give illegal object

be corrected with the

Use the patch which matches your QLINK distribution. Make a backup copy of
your current QLINK.

6

3.1 QLINK (23-May-86):

>LO QLINK
>P8
N1
+938
+9C8
+9F5
+1ECF
+1E03
+1E09
+1EEO
+1EFA
+1F1IJ6
+1FIIJA
+1FIIJE
Q

AE AD
AE AD
AE AD
6E 60
2E 20
2E 20
EE ED
3D 38
3D 38
3D 38
20 28

>SV QLINK
>SA QLINK .,SY

C 5.0 QLINK (17-0ct-86):

>LO QLINK
>P8
N1
+AIIJF
+AAO
+815
+2627
+2628
+2631
+2645
+2652
+265E
+2662
+2666
Q

AE AD
AE AD
AE AD
6E 60
2E 20
2E 20
EE ED
3D 38
3D 38
3D 38
20 2'8

>SV QLINK
>SA QLINK. SY

;Load QLINK Into memory
;Enter debugger
;Byte mode
;Enter address and change code

;Exlt debugger
;Save patched QLINK
;Make It an SY file

-;Load QLINK. Into memory
;Enter debugger
;Byte mode
;Enter address and change code

;Exlt debugger
;Save patched QLINK.
;Make It an SY file

PDOS Teohnioal Notes Vol. 2 No.2

. .. C'.·~·

(

(

(

(Fixes. Patches. and Workarounds cont.)

2.

3.

FIX - The XGUM example in TESTXLIB:C assigns the variable
free size to be 2 blocks smaller than actually found. As a
result. when recovering this memory using XFUM. all the,
memory is not recovered. To correct this problem. free size
should be increased by two. In TESTXLIa:C under the
subroutine int doxgum() change the following:

{

}

char *dummy;
in t i;
long j;

freesize = + 2;
freeptr = j;
return 0;

1* add 2 to freesize *1

NOTE - The date format under PDOS 3.2 has changed from the
mm/dd/yy format to the dd-mon-yr format. To read this new
format. a new PDOS primitive was created. As a result. the
reserved word $DATE which returns the assembly date is
handled differently in the new MASM assembler. C users have
received a copy of the latest assembler which uses the new
format. If files are assembled using the new assembler. the
reserved word $DATE will return a hex number under 3.0 PDOS.
Until you update to the 3.2 PDOS, use the older version of
the'-assembler when the reserved word $DATE is used.

4. PATCH - On occasion, the square root function in PDOS Pascal
would return incorrect 'values. This was due to the use of
an LSR.B rather than the ASR.B. This error can be patched
at the object level in the file PLIBF:LIB using MEDIT.
Change both occurrences of "E20B" to "E203" and save the
file. This problem will be corrected in the next release of
PDOS Pascal.

PDOS Technical Notes Vol. 2 No.2 7

o

o

o

(1 .

(

B

APPLICATIONS AND HINTS

Alternate EPROM/RAM Disk Driver

The following code illustrates
disk driver which will access
RAM. This driver can be used
driver provided with PDOS.
transfers the data to and from

a method for implementing a.
a disk on an EPROM or in user
in addition to thi RAM disk

MOVE is a routine which
disk and the PDOS buffers.

A file "DISKIMG" is created by saving the image of a RAM
disk to a disk file.

>FM -10 ;free up 10 pages of memory for a 40 sector dIsk
addr=00DF000

>RD -8,40,$DF000

Transfer the runable programs and any necessary lIbrarIes Into the RAM
dIsk area. Save the dIsk Image to a dIsk fIle.

>SV #DISKIMG,$DF000,$E1800

ThIs dIsk Image may be converted to S-Records and loaded Into a separate
EPROM at a known address. If the user sets the fIle attrIbute to SY or
converts the fIle to OB format wIth MSYOB, It may be loaded as part of the
QLINK Input.

>MSYOB
68K PDOS OB File Maker Utility 05-Dec-86
Source File = DISKIMG
Destination File = #DISKIMG:OBJ

The variable defInitIons to establIsh the sIze and locatIon of the EPROM
dIsk must be Included as part of the QLINK portIon of xxDOS:GEN whIch
should be modIfIed as follows:

IN xxBIOSW:OBJ
DEFINE
W$EPDADR,Q$H0
DEFINE W$EPDN,<disk #>
DEFINE W$EPDSZ,<# sectors>
IN DISKIMG:OBJ
IN MSYRAM:OBJ

An alternate method Is to define W$EPADR at an address which Is known when
the memory Is made avaIlable using the >FM command. The address of an
EPROM disk Image could also be used. Access to the disk Is made available
by using the >SY command.

PDOS Teohnioal Notes Vol. 2 No.2

o

o

(-

(Applications and Hints cant.)

>FM 40
Address=A8000
>LO DISKIMG,$A8000
>SY <disk #>

Modify the xxBIOSW:SR fIle to Include code simIlar to· the followIng
example. The code wIth mInor modIfIcatIons can read and wrIte to a dIsk
Image loaded Into user RAM. The disk Is accessed lIke a normal dIsk
except that It Is not wrlteab/e If It Is on EPROM. The code modIfIcatIons
are at the BIOSW entry POInts W$XWSE and W$XRSE.

VARIABLE DEFINITIONS TO BE DECLARED DURING QLINK

XREF W$EPDN ;EPROM/RAM DISK NUMBER
XREF W$EPDSZ ;EPROM/RAM DISK SIZE
XREF W$EPDADR ;START ADDRESS OF EPROM/RAM DISK

W$ENDADR EQU W$EPDADR+W$EPDSZ*256 ;END ADDRESS OF EPROM/RAM DISK

READ/WRITE HANDLER - EPROM DISK READ ONLY

* WRITE SECTOR
*
*W$XWSE MOVE.W #$0A30,D2 ;ORIGINAL CODE F1BIOSW:SR
* BRA.S- COMMON
*
W$XWSE MOVEQ.L #1,02 ;SET EPROM DISK TO WRITE MODE

CMPI.W #EPDN,D0 :IS IT EPROM/RAM DISK?
BEQ.S EPDRV ,YES - GO PROCESS

MOVE.W #$0A30,D2 ;NO - GET SASllwFC WRITE COMMANDS
BRA.S COMMON ;PROCESS NORMALLY

EPDRV MULU #256,01 ;CALCULATE BYTE OFFSET
MOVEA.L #EPDADR,A1 ;GET EPROM DISK ADDRESS
ADDA.L D1,A1 ;GET DISK FINAL ADDRESS
CMPA.L #ENDADR,A1 ;IS IT TOO LARGE?

BGE:S RDERR ;YES - SET ERROR AND RETURN
CMPI. L #0,02 ;READ FROM EPROM DISK?

BEQ.S a001 ;YES
*
**USE THIS CODE FOR EPROM DISK WRITE PROTECT
*

*

MOVE.L #103,00
RTS

;NO - SET WRITE PROTECT ERROR
;RETURN WITH ERROR

PDOS Technical Notes Vol. a No. a 9

c

(

(Applications and Hints cont.)

**USE THE FOLLOWING FOR RAM DISK WRITE ENABLED
*
* EXG A1,A2 ;NO - SWAP DIRECTION FOR WRITE
*
@001 BSR.L MOVE ;GO MOVE SECTOR DATA

MOVE.L #0,D0 ;SET STATUS RETURN .EQ.
RTS ;RETURN

*
RDERR MOVE.L #101,D0 ;SET READ OVERFLOW ERROR

RTS

* READ SECTOR
*
*W$XRSE MOVE.W #$0820,D2
*
W$XRSE CLR.L D2

CMPI.W #EPDN,D0
BEQ.S EPDRV

MOVE.W #$0820,D2
*

;OLD F1BIOSW:SR CODE

;SET TO READ MODE
;IS IT EPROM/RAM DISK?
;YES - GO PROCESS
;NO - GET SASIIWFC READ COMMANDS

* COMMON READ/WRITE FROM F1BIOSW:SR
*
COMMON CLR.W

TST.W
BEQ

-(A7)
P$SASF
ERR100

DATA MOVER ROUTINE

;PUSH .NE.
;EITHER CONTROLLER IN?
;N

* MOVE 256 BYTES OF DATA TO/FROM BUFFER
*
*
*
*
MOVE
*

IN: A1 = SOURCE
A2 = DESTINATION

MOVEQoL #256/4-1,D3

MOVE2 MOVE.L (A1)+,(A2)+
DBF D3,MOVE2

RTS

;GET COUNT

;MOVE IT

2. HINT - MINST reports the number of pages installed when new
memory is installed. The pages represent the number of 2K
byte blocks of memory added. The PDOS memory bit map uses
one bit for each 2K bytes of memory. You must multiply the
number of pages added by 2 if you are trying to determine
whether you have installed all of the available memory.

10 PDOS Technical Notes Vol. 2 No.2

(

(Applications and Hints cont.)

3. HINT - To allow sharing of GLOBAL variables across chained
programs or between BASIC tasks. a special flag byte is
available in PDOS BASIC. The clear/remark flag. in SYS[33].
is a dual function flag: 1) strip REMarks from programs;
and 2) clear variables as they are dimensioned. SYS[33] is
set to zero when BASIC is entered or with the· NEW command.
and it is left unaltered by the CLEAR and RUN commands. The
first function is performed at LOAD time. If SYS[33] is
greater than zero (1 to 127). then as a file is LOADed. all
remark strings are dropped from both REM statements and
trailing remarks (I). This can be useful in creating
smaller run module binary (BX) images from well commented
ASCII (EX) programs. for example:

NEW
*READY
SYS[33]=1
LOAD "WITH: REM"
*READY
SAVEB "WITHOUT: REM"

Clear old programs, reset SYS[33]

Set for REM strIp
Load 'EX' fIle, strIppIng REMs

Save as 'BX' fIle wIth REMs strIpped

The REMark stripping is only done when a file is LOADed or
lines are entered from the terminal during editing. and
therefore it cannot be used for stripping REMarks from
binary "BX" files. If SYS[33] <- 0 (from -128 to 0) at LOAD
time. then remarks are preserved normally.

The second function of the clear/remark flag SYS[33] is
performed as the program is running. at variable allocation
time. When a variable. either simple or dimensioned. is
first encountered in a program or GLOBAL statement. it is
normally cleared to all zeroes. This complicates sharing
GLOBAL variables between BASIC tasks. If SYS[33] >- 0 (from
o to 127). then variables are zeroed as they are allocated.
However if SYS[33] < 0 (-127 to -1) then the variables are
NOT zeroed at allocation or GLOBAL time. As a result. these
values may be passed from program to program. or from task
to task. It is necessary however. that the sharing programs
use the same order of GLOBAL or DIM variable definition to
assure that their storage allocation is the same.

PDOS Teohnioal Notes Vol. 2 No. 2 11

I~\
I",)

(Applications and Hints cant.)

PRGM1: 100
110
120
130
140
150
160

PRGM2: 1.20

RESULTS:
>PRGM1

20
20
o

>

130
140
150
160
170
180

DIM CM(70)
MAIL(0)-ADR CM(0)
GLOBAL MAIL(0),A,B(10),C(10,4),VEL
A=20: B(3)=30: C(5,1)=40: VEL=50
PRINT A,B(3),C(5,1),VEL
CLEAR! Show noth;ng up th;s sleeve
RUN "PRGM2"
SYS[33]=-1 ! Preserve values the f;rst
GLOBAL MAIL(0),A,B(10),C(10,4),VEL
PRINT A,B(3),C(5,1),VEL
SYS[33]=0 .! Destroy values th;s t;me
GLOBAL MAIL(0),A,B(10),C(10,4),VEL
PRINT A,B(3),C(5,1),VEL
BYE

30
30
o

40
40
o

50
50
o

t ;me

4. APPLICATION - In Vol. 1 No. 3 of "PDOS Tips and Technical
Notes." a method was described to change the TPS (tics per
second) to 1000. It was assumed that the clock would
interrupt on the 10.000 of seconds which was not the case.
As a result. this patch did not work. The following
application. which was implemented in the FORCE CPU-1 BIOS.
illustrates a method for selecting TPS of 100. 125. 200.
250. or 500. Unfortunately. 1000 TPS is not possible on the
RTC.

IFUDF RTCF :RTCF EQU 0 ;(0) PI/T == TIMER
* (1) RTC === TIMER
*
RTCC EQU 1000/TPS ;GET A CONSTANT (=ms INCREMENTER)

IFNE RTCF&(1000<>TPS*RTCC)!(RTCC<2)!(RTCC>10)
FAIL Bad TPS value for RTC clock. Use 100,125,200,250, or 500
ENDC ;RTCF

*
OPT ARS,CRE

12 PDOS Technical Notes Vol. 2 No.2

n
U

(

(

(Applications and Hints cont.)

BINT6 TST.B
TST.B
BEQ.S
RTE

RTC+ISR
PIRV+PI T
i010

;RESET RTC INT IN EITHER CASE

*
;010

*
i020

*

5 .

MOVE.L D0,-(A7)
MOVEQ.L #0,00
MOVE.B RAM+RTC,D0
ADDI.W #RTCC«4,D0
CMPI.W #10«4,00

BLO.S i020
SUBI.W #10«4,00

MOVE.B D0,RAM+RTC
MOVE.L (A7)+,D0
BRA.L K1$CLKI

;WAS RTC INT FOR TIMER? ($FF=PI/T,$00=RTC)
;RTC, SET TPS
;NOT RTC, JUST RETURN

;SAVE REG
;CLEAR 00
;GET COUNTER BYTE
;UP .001 COUNTER COMPARE
;OVERFLOW ?
;N
;COMPARE NEXT AT MODULO 10

;RESTORE VALUE
;RESTORE 00
;RTC: DROP TO KERNEL CLOCK ROUTINE

The TPS parameter must be initialized to the new value and
the system regenerated using the FxDOS:GEN procedure file.

APPLICATION - A PDOS user, Ron Stear of PPG, recently
provided an application example which permits the using of
global variables in Absoft FORTRAN. His application
provide·s a means for setting up the global area and passing
this information to other tasks in the MAIL array. The
tasks accessing this area need only know the offset of the
variable blocks. Ron illustrates in an example program the
means for writing to a~d reading these variables from other
tasks. The program BASE is created as a task which obtains
a block of free memory. The task determines its starting
location, passes this to the mail array and kills itself.
The example is written to allow recovery of the memory, i.e.
it is returned to the free memory pool. In some
applications you may want to kill the task using a negative
task number to prevent deallocation of the memory.

This program is available on PIG disk number 2 (currently
available through the call-in modem -- see PIG News).

In Ron's example program, he executes the XCTB primitive to
create the BASE task. This would be done in only one task
to set up the global memory area. The program appears
following:

PDOS Technical Notes Vol. 2 No.2 13

'C'''',''' l'" ','

c

(Applications and Hints cant.)

PROGRAM BASE
INTEGER TASKNO,XRTS,ERROR,START,END,XKTB,XBUG

C SYSTEM CHARACTER ARRAYS
CHARACTER*40 STRINGS(10)

C SYSTEM INTEGER ARRAYS
INTEGER INUMBERS(10)

C SYSTEM REAL ARRAYS
REAL*8 RNUMBERS(10)

C
INTEGER MAILPTR
INTEGER ENDTCB,UPPERMEM,LASTLOAD,SYRAM,TCB

C
C IF YOU WILL RUN F77,A ON THIS 'BASE' PROGRAM, IT WILL PRODUCE THE
C ASSEMBLY LISTING OF THE FORTRAN CODE.
C THIS LISTING MAY BE EXAMINED TO FIND THE 'OFFSET' TO EACH OF THE
C ABOVE DEFINED DATABASE AREAS WHICH MUST THEN BE IDENTIFIED IN EACH
C OF THE THREE SUBROUTINES.
C ,
C THIS IS NOT REALLY NECESSARY SINCE THE ALLOCATED MEMORY WAS OBTAINED
C WHEN THE 'BASE' TASK WAS CREATED AND IT WILL NOT ACTUALLY OCCUpy
C ALL OF THE CREATED MEMORY SIZE.
C
C THE OFFSETS USED IN EACH SUBOUTINE MAY BE CALCULATED BY MULTIPLYING
C THE NUMBER OF ELEMENTS BY THE NUMBER OF 'STORAGE UNITS' OR WORDS
C FOR EACH DEFINED TYPE.
C
C THEREFORE, FOR·THIS DEMONSTRATION PROGRAM:
C
C
C
C
C
C
C

THE OFFSET TO THE STRINGS IS
THE OFFSET TO THE INTEGERS IS

NUMBER OF STRINGS*40
THE OFFSET TO THE REALS· IS

NUMBER OF INTEGERS*4

START

STRINGS+STRING SIZE

INTEGERS+INTEGER SIZE

(0)

(400) 190H

(800) 320H

C THESE VARIABLES NEED ONLY BE SET AS PARAMETERS IN THE SUBROUTINES
C WHICH CALCULATE THE LOAD ADDRESS (LOADADDR).
C

14

STRINGS(1)(1:1)-'1'
INUMBERS(1)-2222 •
RNUMBERS(1)=3333
CALL XGML(ENDTCB,UPPERMEM,LASTLOAD,SYRAM,TCB)
MAILPTR=LONG(SYRAM+4) !ADDRESS OF MAIL
LONG(MAILPTR)-ENDTCB !PUT ADDRESS IN MAIL
ERROR-XKTB(XRTS(-1»
STOP
END

PDOS Technical Notes Vol. 2 No.2

C"·\
'J

(

c

(Applications and Hints cont.)

C PROGRAM DEMO
CCC
C PROGRAM: DEMO
COATE: 11/3/86
C FUNCTION: DEMONSTRATE 'COMMON' ACCESS
C PROGRAMMER: RONALD B. STEAR
C PPG INDUSTRIES, INC
C PO BOX 1000
C LAKE CHARLES, LOUISIANA 70602
CCC
C

C

C

C

C

C

INTEGER BASE !ADDRESS OF DATABASE
INTEGER MAILPTR !POINTER TO MAIL
INTEGER ENDTCB,UPPERMEM,LASTLOAD,SYRAM,TCB

INTEGER XCTB
INTEGER XSUI
CHARACTER*80 XGLM

INTEGER INUMBER
REAL*8 RNUMBER
CHARACTER*40 STRING

!CREATE TASK BLOCK FUNCTION
!SUSPEND INTERRUPT FUNCTION
!GET LINE IN MONITOR FUNCTION

!INTEGER NUMBER TO PLAY WITH
!REAL NUMBER TO PLAY WITH
!STRING TO PLAY WITH

INTEGER ERROR,COUNT,TASKNO,ELEMENT

INTEGER GET,PUT !COMMANDS TO SAVE & RETRIEVE
PARAMETER(GET=0, PUT=1)

C FIRST CREATE THE 'BASE' TASK TO RESERVE MEMORY FOR THE DATABASE
C

ERROR=XCTB(TASKNO,100,64,0, 'BASE' ,0,0)
C
C THEN WAIT A MOMENT FOR IT TO KILL ITSELF
C

C

COUNT=1
WHIlE(COUNT.LT.10)

ERROR=XSUI(112)
COUNT=COUNT+1

REPEAT

C FIND OUT WHERE THE DATABASE IS
C

C

CAll XGMl(ENDTCB,UPPERMEM,LASTlOAD,SYRAM,TCB)
MAILPTR=lONG(SYRAM+4)
BASE=lONG(MAIlPTR)

PDOS Technical Notes Vol. 2 No.2 15

(

(Applications and Hints cont.)

16

C SINCE THE MEMORY IS SIMPLY ALLOCATED, IT MUST FIRST BE INITIALIZED
C SO THAT THE UPDATE SUBROUTINE WON'T PRINT GARBAGE ALL OVER THE SCREEN
C THIS IS NOT NECESSARY IF YOU ARE GOING TO INITIALIZE THE DATA BEFORE
C USING IT OR IF YOU LOAD THESE ARRAYS FROM A DISK FILE
C

C

ELEMENT=1
WHILE(ELEMENT.LE.10)

COUNT=1
WHILE(COUNT.LE.39)

STRING(COUNT:COUNT)=' ,
COUNT=COUNT +1 .

REPEAT
STRING(40:40)=CHAR(0)
CALL TEXT(BASE,PUT,ELEMENT,STRING)
CALL IBASE(BASE,PUT,ELEMENT,0)
CALL RBASE(BASE,PUT,ELEMENT,0)
ELEMENT=ELEMENT+1

REPEAT

C CLEAR OFF THE SCREEN AND BEGIN THE DEMONSTRATION
C
10 CALL XCLS

TYPE *,' "BASE" PROGRAM HAS ALLOCATED MEMORY STARTING AT '
WR ITE (9,11) BASE,' H'

11 FORMAT (Za,A)
CALL XPSC(3,5)

C

TYPE *, '1. INTEGER NUMBERS'
CALL XPSC(4,5)
TYPE *, '2. REAL NUMBERS'
CAtL XPSC(5,5)

_ TYPE *. '3. 40 CHARACTER STRINGS'
CALL XPSC(6,5) -
TYPE *, '4. QUIT'

15 CALL XPSC(7.5)
TYPE *.

C

TYPE *,
CALL XPSC(7,5)
CALL INUM('SELECT OPTION NUMBER (1-4) >',COUNT.ERROR)
IF«COUNT.LT.1).OR.(COUNT.GT.4» THEN

TYPE *. CHAR (7)
GOTO 10

END IF

PDOS Teohnioal Notes Vol. 2 No.2

(}

(

(

('

(Applications and Hints cont.)

SELECT CASE COUNT
CASE(1)

20 CALL XPSC(7.5)
TYPE *.
CALL XPSC(7.5) .
CALL INUM('ENTER ELEMENT NUMBER (1-10»'.ELEMENT.ERROR)
IF«ELEMENT.LT.1).OR.(ELEMENT.GT.10» THEN

TYPE *. CHAR (7)
GOTO 20

END IF
CALL XPSC(7.5)
TYPE *. '
CALL XPSC(7.5)
CALL INUM('ENTER INTEGER NUMBER >'.INUMBER.ERROR)
CALL IBASE(BASE.PUT.ELEMENT.INUMBER)

CASE(2)
30 CALL XPSC(7.5)

TYPE *. '
CALL XPSC(7.5)
CALL INUM('ENTER ELEMENT NUMBER (1-10»' .ELEMENT.ERROR)
IF«ELEMENT.LT.1).OR.(ELEMENT.GT.10» THEN

TYPE *.CHAR(7)
GOTO 30

END IF
CALL XPSC(7.5)
TYPE *. '
CALL XPSC(7.5)
CALL RNUM('ENTER REAL NUMBER >' .RNUMBER.ERROR)
CALL RBASE(BASE.PUT.ELEMENT.RNUMBER)

CASE(3)
40 CALL XPSC(7.5)

TYPE *.
CALL XPSC(7.5)
CALL INUM('ENTER ELEMENT NUMBER (1-10»'.ELEMENT.ERROR)
IF«ELEMENT.LT.1).OR.(ELEMENT.GT.10» THEN
. TYPE *.CHAR(7)

GOTO 40
END IF
CALL XPSC(7.5)
TYPE *. '
CALL XPSC(7.5)
TYPE *. 'ENTER STRING >'
STRING=XGLM(ERROR)
CALL TEXT(BASE.PUT.ELEMENT.STRING)

PDOS Technical Notes Vol. 2 No.2 17

o

(Applications and Hints cont.)

CASE(4)
CALL XCLS
STOP

CASE DEFAULT
TYPE *, CHAR (7)
GOTO 10

END SELECT
CALL UPDATE(BASE) !UPDATE THE DEMO SCREEN
GOTO 15
END

C SUBROUTINE
CCC
C SUBROUTINE: UPDATE
C DATE: 11/3/86
C FUNCTION: UPDATE THE SCREEN TO SHOW ALL 10 ELEMENTS OF EACH
C ACTIVE DATABASE SECTION
C PROGRAMMER: RONALD B. STEAR
C PPG INDUSTRIES, INC.
CCC
C

C

C

18

SUBROUTINE UPDATE(BASE)

INTEGER BASE,COUNT,INUMBER
REAL*8 RNUMBER
CHARACTER*40 STRING
INTEGER GET,PUT,C
PARAMETER (GET=0, PUT=1)

CALL CLEAR !CLEAR DATA AREA OF SCREEN BEFORE UPDATE
CALL XPSC(9,1)
TYPE *. 'INTEGERS REALS STRINGS'
COUNT=1
WHILE(COUNT.LE.10)

CALL XPSC(COUNT+9,1)
CALL IBASE(BASE,GET,COUNT,INUMBER)
TYPE *,INUMBER,' ,
CALL XPSC(COUNT+9,16)
CALL RBASE(BASE,GET,COUNT.RNUMBER)
TYPE *,RNUMBER
CALL XPSC(COUNT+9,33)
CALL TEXT(BASE,GET,COUNT.STRING)
C=1
WHILE«STRING(C:C).NE.CHAR(0».AND.(C.LE.40»

TYPE *,STRING(C:C)
C=C+1

REPEAT
COUNT=COUNT+1

REPEAT
RETURN
END

PDOS Teohnioal Notes Vol. 2 No.2

(

(

(Applications and Hints cant.)

C SUBROUTINE IBASE
CCC
C SUBROUTINE: IBASE
C DATE: 11/3/86
C FUNCTION: ACCESS TO INTEGER 'DATABASE'
C PROGRAMMER: RONALD B. STEAR
C PPG INDUSTRIES, INC.
C PO BOX 1000
C LAKE CHARLES, LOUISIANA 70602
CCC
C

C

C

SUBROUTINE IBASE(BASE,GP,ELEMENT,INUMBER)

INTEGER BASE,GP,ELEMENT,INUMBER
INTEGER LOADADDR,OFFSET
INTEGER GET,PUT
PARAMETER(GET=0, PUT=1)

C THE PARAMETER BELOW IS THE CALCULATED OFFSET INTO MEMORY FROM THE
C BEGINNING OF THE 'BASE' TASK'S PROGRAM AREA TO THE INTEGER AREA AND
C MUST BE ESTABLISHED FOR EACH DATABASE CONFIGURATION
C

C.

INTEGER XINUM
PARAMETER(XINUM=400)

C CALCULATE THE OFFSET INTO THE INTEGER MEMORY SEGMENT
C

OFFSET=(ELEMENT-1)*2
LOADADDR=BASE+OFFSET+XINUM
IF(GP.EQ.GET) THEN

INUMBER=WORD (LOADADDR).
ELSE .

WORD(LOADADDR)=INUMBER
END IF
RETURN
END

C SUBROUTINE RBASE
CCC
C SUBROUTINE: RBASE .
C DATE: 11/3/86
C FUNCTION: ACCESS TO 'REAL' DATABASE
C PROGRAMMER: RONALD B. STEAR
C PPG INDUSTRIES, INC.
C PO BOX 1000
C LAKE CHARLES, LOUISIANA 70602
CCC

PDOS Teohnioal Notes Vol. 2 No.2 19

(

c

(Applications and Hints cont.)

CC

C
SUBROUTINE RBASE(BASE,GP,ELEMENT,RNUMBER)

INTEGER BASE,GP,ELEMENT,OFFSET,LOADADDR
REAL*8 RNUMBER,XRNUM
INTEGER GET,PUT
PARAMETER(GET=0, PUT=1)

C
C THE PARAMETER BELOW IS THE CALCULATED OFFSET INTO MEMORY FROM THE
C BEGINNING OF THE 'BASE' TASK'S PROGRAM AREA TO THE 'REAL' AREA AND
C MUST BE ESTABLISHED FOR.EACH DATABASE CONFIGURATION
C

C

INTEGER REALOFFSET
PARAMETER(REALOFFSET=800)

C REAL NUMBER TRANSFER INTEGER ARRAY
C

INTEGER R(2)
C
C THE EQUIVALENCE ALLOWS STORAGE OF THE REAL NUMBERS WITH THE INTEGER
C FUNCTION 'LONG'
C

EQUIVALENCE(R(1),XRNUM)
C
C CALCULATE THE OFFSET INTO THE REAL NUMBER MEMORY SEGMENT
C

OFFSET=(ELEMENT-1)*8
LOADADDR=BASE+OFFSET+REALOFFSET
IF(GP.EQ.GET) THEN

R(1)=LONG(LOADADDR)
R(2)=LONG(LOADADDR+4)
RNUMBER=XRNUM

ELSE
XRNUM=RNUMBER
LONG(LOADADDR)=R(1)
LONG(LOADADDR+4)=R(2)

END IF
RETURN
END

C SUBROUTINE TEXT
CCC
C SUBROUTINE: TEXT
C VERSION: STRIDE 440
C DATE: 11/3/86
C FUNCTION: CHARACTER DATA TRANSFER FROM DATABASE
C PROGRAMMER: RONALD B. STEAR
C PPG INDUSTRIES, INC.
C PO BOX 1000
C LAKE CHARLES, LOUISIANA 70602
CCC

20 PDOS Technical Notes Vol. 2 No.2

o

(

(

(Applications and Hints cont.)

C

C

C

SUBROUTINE TEXT(BASE,GP,ELEMENT,STR~NG)

INTEGER BASE,GP,ELEMENT
CHARACTER*40 STRING,XSTRING
INTEGER GET,PUT
PARAMETER(GET=0, PUT=1)

C THE PARAMETER BELOW IS THE CALCULATED OFFSET INTO MEMORY FROM THE
C BEGINNING OF THE 'BASE' TASK'S PROGRAM AREA TO THE STRING AREA AND
C MUST BE ESTABLISHED FOR EACH DATABASE CONFIGURATION
C

C

INTEGER XSTRN
PARAMETER(XSTRN=0)

INTEGER LOADADDR,OFFSET
C INTEGERS FOR 40 CHARACTER TRANSFERS

INTEGER D1,D2,03,04,05,06,07,OS,09,010
C EQUIVALENCES FOR 40 CHARACTER TRANSFERS

EQUIVALENCE(XSTRING(1:4),D1)
EQUIVALENCE(XSTRING(5:S).02)
EQUIVALENCE(XSTRING(9:12).D3)
EQUIVALENCE(XSTRING(13:16).D4)
EQUIVALENCE(XSTRING(17:20).05)
EQUIVALENCE(XSTRING(21:24).D6)
EQUIVALENCE(XSTRING(25:2S).07)
EQUIVALENCE(XSTRING(29:32).OS)
EQUIVALENCE(XSTRING(33:36).09)
EQUIVALENCE(XSTRING(37:30).010)

C
C CALCULATE THE OFFSET FOR THE STRING
C

C

OFFSET=(ELEMENT-1)*40
LOAOAOOR=BASE+OFFSET+XSTRN

IF(GP.EQ.GET) THEN
01=LONG(LOADADDR)
D2=LONG(LOADADDR+4)
D3=LONG(LOADADDR+S)
D4=LONG(LOADADDR+12)
D5=LONG(LOADADDR+16)
D6=LONG(LOADADDR+20)
D7=LONG(LOADADDR+24)
DS=LONG(LOADADDR+2S)
D9=LONG(LOADADDR+32)
D10=LONG(LOADADDR+36)
STRING(1:40}=XSTRING(1:40)
RETURN

PDOS Technical Notes Vol. 2 No.2

•

21

C" . ,. ,"!

('

(Applications and Hints cant.)

ELSE
XSTRING(1:40)=STRING(1:40}
LONG(LOADADDR}=D1
LONG(LOADADDR+4)=D2
LONG(LOADADDR+S}=D3
LONG(LOADADDR+12)=D4
LONG(LOADADDR+16}=D5
LONG(LOADADDR+20}=D6
LONG(LOADADDR+24}=D7
LONG(LOADADDR+2S)=DS
LONG(LOADADDR+32)=D9
LONG(LOADADDR+36)=D10
RETURN

END IF
END

CC
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE: INUM
STRIDE
11/20/S5

VERSION:
DATE:
AUTHOR:

FUNCTION:
CALL:

RETURNS:

RONALD B. STEAR
PPG INDUSTRIES, INC.
PO BOX 1000
LAKE CHARLES, LOUISIANA 70602

INPUT AN INTEGER VALUE FROM A PROMPT LINE

CALL INUM(PROMPT,VAR,ERROR)
WHERE:
PROMPT IS A CHARACTER MESSAGE
VAR IS AN INTEGER VARIABLE

INTEGER VARIABLE IN 'VAR'
C
CC
C

22

SUBROUTINE INUM(PROMPT,VAR,ERROR}
IMPLICIT INTEGER (A-Z)
CHARACTER PROMPT *(*)
CHARACTER NULL,CR,LF,A,XULL
PARAMETER (NULL=0,CR=13,LF=10,XULL=12S)
CHARACTER *132 LINE
TYPE *.PROMPT
ERROR=XGLB(LINE)
IF(ERROR.EQ.0) RETURN
CALL XCDB(LINE,VAR)
RETURN
END

PDOS Technical Notes Vol. 2 No.2

tf't, 10'

~
'VI

(

(

(Applications and Hints cont.)

CC
C
C SUBROUTINE:
C VERSION:
C DATE:
C AUTHOR:
C
C
C
C FUNCTION:

RNUM
STRIDE
12/3/85
RONALD B. STEAR
PPG INDUSTRIES, INC.
PO BOX 1000
LAKE CHARLES, LOUISIANA 70602
ACCEPT REAL NUMBER FROM KEYBOARD

C
CC
C
C
C

C

20

C

SUBROUTINE RNUM(PROMPT,VAR,ERROR)
IMPLICIT INTEGER(A-Z)
REAL*8 VAR,FRACT,DCOUNT,DEC
CHARACTER PROMPT *(*)
CHARACTER CR,LF,CHAR,MINUS,POINT,BELL,ZERO,NINE,TERM
PARAMETER(CR=13, LF=10, MINUS='-', POINT='.' ,BELL=7)
PARAMETER(ZERO='0', NINE='9', TERM=' I ')
CHARACTER WHOLE(10)
CHARACTER DECIMAL(10)
CHARACTER LINE(20)

DO 20 J=1,10
WHOLE(J)=0
DECIMAL(J)=0
LINE(J)=TERM
LINE(J*2)=TERM
CONTINUE
TYPE *,PROMPT
ERROR=XGLB(LINE)
IF(ERROR.EQ.0) RETURN
PFLAG=0
CCOUNT=1
WCOUNT=0
DCOUNT=0
SIGN=1

10 CHAR=LINE(CCOUNT)
IF(LINE(CCOUNT+1).EQ.TERM) GO TO 1000
IF(CCOUNT.NE.1) GO TO 2000
IF(CHAR.NE.MINUS) GO TO 2000
SIGN=(-1)

4000 CCOUNT=CCOUNT+1
GO TO 10

PDOS Teohnioal Notes Vol. 2 No.2 23

f1

(

(

(Applications and Hints cont.)

24

2000

C

IF(PFLAG.EQ.0) GO TO 3000
IF((CHAR.LT.ZERO).OR.(CHAR.GT.NINE» THEN

TYPE *,BELL
VAR=-.9999
RETURN

END IF
DCOUNT=DCOUNT+1
DECIMAL(DCOUNT)=CHAR
GO TO 4000

3000 IF(CHAR.NE.POINT) GO TO 5000
PFLAG=1
GO TO 4000

C
5000 IF((CHAR.LT.ZERO).OR.(CHAR.GT.NINE» THEN

C
1000

TYPE *, BELL
VAR=0
RETURN

END IF .
WCOUNT=WCOUNT+1
WHOLE(WCOUNT)=CHAR
GO TO 4000

W=0
IF(WCOUNT.NE.0) CALL XCDB(WHOLE,W)
0=0
CALL XCDB(DECIMAL,D)
DEC=FLOAT(D)
FRACT=DEC*(10**(-DCOUNT»
VAR=(FLOAT(W)+FRACT)*SIGN
RETURN
END

C**************************************
SUBROUTINE CLEAR .

C**************************************
C**CLEAR SCREEN FOR TV-9Z5

CHARACTER CLR
PARAMETER (CLR=27+256*89)

C
TYPE *,CLR

C**GENERAL PURPOSE CLEAR SCREEN

!<ESC>Y

PDOS Teohnioal Notes Vol. 2 No.2

iF "

"~cj

("

(Applications and Hints cant.)

C INTEGER CNT

C CNT = 10
C WHILE (CNT .LE. 20)
C CALL XPSC(CNT.1)
C TYPE *.'
C TYPE *.'
C CNT=CNT+1
C REPEAT

RETURN
END

(" PDOS Teohn.ioal Notes Vol. 2 No. 2 25

(~
v

('

PDOS Technical Notes Vol. 2 No.2

t'l ..);.

c

(

68020 PDOS 3.1 DOCUMENTATION CHAPTER 4 PDOS ASSEMBLY PRIMITIVES

4.3.42 XGMP

Mnemonic:
V.lu.:

Module:
Form.t:

GET MESSAGE POINTER

X~P

$Ao04
MPDoSKl
X~P

<st.tus return>

Regist.rs: In Do.L. M.ss.g. slot numb.r (0 .. 15)
Out Do.L. Sourc. t.sk # (-1 • no m.ss.g.)

SR. EQ M.ss.g. (Ev.nt[64+M.ss.g. slot #]-0)
NE ...• No mess.g.

Do.L • Error number 83 if no m.ss.g.
(Al) - Mess.g.

The GET MESSAGE POINTER primitive looks for. t.sk m.ss.ge
point.r. If no mess.g. is r •• dy, th.n d.t. r.gist.r DO
returns with. minus one (-1) .nd st.tus is s.t to 'Not
Equ.l' .

If • mess.ge is waiting, then d.t. regist.r DO r.turns with
the source t.sk numb.r, address regist.r A1 returns with the
mess.g. pointer, ev.nt (64 + mess.g. slot #) is s.t to z.ro
indic.ting mess.g. r.ceiv.d, .nd st.tus is r.turned equ.l.

4[_ See .lso:

(

4.3.44 XGTM - GET" TASK MESSAGE
4.3.48 XKTM - KILL TASK MESSAGE
4.3.96 XSMP - SEND MESSAGE POINTER
4.3.99 XSTM - SEND TASK MESSAGE

Possible Errors:

83 • Mess.g. slot empty

PAGE 4-57

,#'.'rc'rc
\t.J/

68020 PDOS 3.1 DOCUMENTATION CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-58

4.3.43 XGNP

Mnemonic:
Value:

Module:
Format:

GET NEXT PARAMETER

XGNP
SA05A
MPDOSM
XGNP

<status return>

Registers: Out SR ~ LO .••• No parameter
[(Al)-O]

EQ Null Paremeter
[(A1)-0]

HI Parameter
[(A1)-PARAMETER]

The GET NEXT PARAMETER primitive parses the monitor buffer
for the next command parameter. The routine does this by
maintaining a current pointer into the command line buffer
(ClB$) and a parameter delimiter (CMOS).

The XGNP primitive clears all leading spaces of a
parameter. A parameter is a character string delimited by a
space, comma, period, or null. If a parameter begins with a
left parenthesis, then all parsing stops until a matching
right parenthesis or null is found. Hence, spaces, commas,
and periods are passed in a parameter when enclosed in
parentheses. Parentheses may be nested to any depth.

A 'La' status is returned if the last parameter delimiter
is a null or period. XGNP does not parse past a period. In
this case, address register A1 is returned pointing to a
null string.

An 'EQ' status is returned if the last parameter delimiter
is a comma and no parameter follows. Address register A1 is
returned pointing to a null string.

A 'HI' status is returned if a yalid parameter is found.
Address register A1 then points to the parameter.

Possible Errors: None

SPAC MOVE.B SDKS(A6) ,DO ;GET SYSTEM DISK #

XGNP ;GET PARAMETER, OK?
BlS.S SPAC02 ;N, USE DEFAULT

XCDB ;Y, CONVERT, OK?
BlE.S ERR67 ;N, ERROR

MOVE.l 01,00 ;Y
*
SPAC02 XSZF ;GET DISK SIZE

BNE.S ERROR ; PROBLEM

x>MASM SOURCE,BIN LIST ERR.SP
x>CT (ASM SOURCE,BIN),15,,3
x>DO «DO DO) ,DO)

x>lS.lS

x>MASM SOURCE",ERR

C"""·' , I ,

(

(/

88020 PODS 3.1 DOCUMENTATION CHAPTER 4 PDOS ASSEMBLY PRIMITIVES PAGE 4-109

4.3.94 XSEV SET EVENT FLAG

Mnemonic:
Value:

Module:
Format:

XSEV
$A046
MPDOSK1
XSEV

<status return>

Registers: In

Out
01.B - EYent (+-Set, --Reset)

SR - NE .••• Set
EQ •••• Reset

Note: Eyent 128 is local to each task.

If 01.B is positive, then the eyent is set.
If 01.8 is negatiYe, then the eyent is reset.

The SET EVENT FLAG primitiYe sets or resets an eyent flag
bit. The eyent number is specified in data register D1.B
and is modulo 128. If the content of register 01.B is
positive, then the eyent bit is set to 1. Otherwise, the
bit is reset to O. Event 128 can only be set. (It is
cleared by the task scheduler.)

The status of the eyent bit prior to changing the eyent is
returned in the status register. If the eyent was 0, then
the 'EQ' status is returned. A context switch DOES NOT
occur with this call making it useful for interrupt routines
outside the POOS system.

EYents are summarized as follows:

See also:

1-83 - Software eyents
84-80 - Software resetting eyents
81-95 - Output port eyents

96-111 - Input port events
112 - 1/5 second eyent
113 - 1 second eyent
114 - 10 second eyent
115 - 20 second eyent
116 .. TTA active
117 - LPT actiye

4.3.20 XOEV - OELAY SETIRESET EVENT
4.3.95 XSEV - SET EVENT FLAG
4.3.101 XSUI - SUSPEND UNTIL INTERRUPT
4.3.106 XTEF - TEST EVENT FLAG

Possible Errors: None

MOVEQ.L #30,01 :SET EVENT 3D
XSEV ; SET EVENT

MOVEQ.L #-35,01 ;RESET EVENT 35
XSEV ;SET EVENT

4 types of eyent flags:

1-63 .. Software

118 -
119 -

64-80 .. Software resetting
81-127 .. System

128 • Local to task

120 • Level 2 lock
121 - Leyel 3 lock
122 • Batch eyent
123 • Spooler eyent
124 ..
125 •
126 .. Error message disable
127 • System utility
128 • Local

(

(~

{

68020 POOS 3.1 DOCUMENTATION CHAPTER 4 POOS ASSEMBLY PRIMITIVES

4.3.95 XSMP

Mnemonic:
V.lue:

Modul.:
Form.t:

SEND MESSAGE POINTER

X~P

$A002
MPOOSK1
X~P

<.t.tu. r.turn>

R.gi.t.r.: In OO.B. Me.s.g. slot numb.r (0 •• 15)

(A1) • Mess.g.
Out SR. EQ Mess.g. s.nt (EY.nt[64+.10t #]~1)

NE No mess.g. s.nt

The SEND MESSAGE POINTER primitiY' •• nds·. 32-bit me ••• g.
to the m.s •• g. .lot .p.cifi.d by d.t. r.gi.t.r OO.B.
Addre.s r.gi.ter A1 cont.ins the mes •• g •.

If there i •• till • me ••• g. p.nding, th.n the primitive
immedi.tely r.turns with .t.tu ••• t 'Not Equ.l' and OO.L
equ.l to 83. Oth.rwi •• , the m •••• g. i. t.ken by POOS .Yent
(64 + me ••• g. slot numb.r) i. ..t to on. indic.ting •
mes •• g. i. r •• dy, .nd .t.tus i. r.turn.d 'Equ.l'.

The primitive XSMP i. only y.lid for me ••• g. slots 0
through 15. (Thi. i. bec.u •• of current .Y.nt limit.tion •.)

S.e .1.0:

4.3.42 XGMP - GET MESSAGE POINTER
4.3.44 XGTM - GET TASK MESSAGE
4.3.48 XKTM - KILL TASK MESSAGE
4.3.99 XSTM - SEND TASK MESSAGE

Po •• ibl. Error.:

83 • M •••• g. buff.r p.nding

PAGE 4-110

(

Format:
int xwfa(filename.attributes);
char *filename,*attributes;

Description:

XWFA

XWFA sets the file attributes on a file. The ASCII string of
file attributes is assigned to the file. Any errors are
returned; 0 is returned if there are no errors.

int err;

AC - Procedure file
BN - Binary file
OB - Object file
SY - Memory Image of machine code
BX - BASIC token file
EX - BASIC ASCII file
TX - Text file
DR - System I/O driver

* - Delete protect
** - Delete/write protect

err = xwfa("MYFILE","BN**"); 1* make file binary and protected *1

Notes:
XCFA, XRFA, and XWFA do not use the same format.

See Also:
XCFA - Close file w/attribute
XRFA - Read file attributes

PDOS C Re£erence Manual 3-109

.f"~. 0,1

\

c

XWFP
Write File Parameters

Format:
int xwfp(eofsec,create,update,attr,fi1ename);
long eofsec; /* sector / byte */
long create,update,attr; /* time / date */
char *fi1ename;

Description:
XWFP is an operating system internal call used by the TF monitor
command to assign a copy of a file the same creation/update time
and date as the original of the file. It could also be used to
modify the end of file mark on a file.

The first three parameters are all pairs of data. 'eofsec' is a
long word with the end of file sector in the upper word and the
end of file byte in the lower word. 'create' is a long word with
the creation time in the upper word and the creation date in the
lower word. 'update' is in the same format as 'create'. 'file­
name' is a pointer to a string containing the file name. 'attr'
is a long word, but only the second half is used. This word has
the attributes in the upper byte and "the de1ete-/write-protect
flags in the lower byte. The "contiguous" flag and the "file
altered bit" are not overwritten by this call. 'xwfp' returns
zero or a PDOS error number.

union{
long 1:
struct {

int"time;
int date;

}:
} create,update;
union{

long 1;
struct{

};
} eof;

int sector;
int byte;

contInued . ..

3-ll0 PDOS C Re£erence Manual

(}

f""",
U

\

(-'

(XWFP cont.)

char 1;ne[80]:
long attr:
getstr("enter fna name",line): 1* get new values *1
eof.sector = getnum("end of file sector"):
eof.byta = getnum("end of fne byte"):
create. time = getnum("creation time"):
create.date = getnum("creation date"):
update. time = getnum("update time"):
update.date = getnum("update date"):
attr = getnum("attribute U):

return(xwfp(eof. l,create. l,update. l,attr, line»: 1* write it *1
}

Notes:
This function has limited utility.

See Also:
XRFA - Read file attributes

PDOS C Referenoe Manual 3-111

o

(}

(

Format:
int xwlf(filid,buffer);
int filid;
char *buffer;

Description:

XWLF
Write Line to File

XWLF writes a string to a file. It writes out until a null
character is found. If necessary, a contiguous file is extended
and converted to a non-contiguous file. Any errors are
returned. and a return value of 0 means no errors.

err = xw1f(filid,"hello, world!!n"):

See Also:
XRBF - Read bytes from file
XRLF Read line from file

XWBF - Write bytes to file

3-112 PDOS C Reference Manual

(

(

(

March 7, 1988

PDOS REAL TIME OPERATING SYSTEM

VOLUME 1 MANUAL UPDATE

Please append the following chapter (PDOS TIPS and TECHNICAL
NOTES) in your User's Manual:

Chapter 8: USER NOTE 1.

C Thank you.

FORCE COMPUTERS GmbH

c
c

(. \

/

c

PDOS TIPS
and

TECHNICAL NOTES

Volume 3 No.1
March 1, 1988

Copyright © 1988 by Eyring Research Institute, Inc.
1450 West 820 North, Provo, Utah 84601 USA
All rights reserved.

The infonnation in this document has been carefully checked and is believed to be reliable. However,
Eyring assumes noresp<>nsibility for inaccuracies. Furthennore, Eyring reserves the right to make changes
to any products to improve reliability, function, or design and does not assume any liability arising out of
the application or use of this document.

PDOS Tips and Technical Notes, Volume 3 Number 1

Printed in the United States of America
Product number 2553-1 (for POOS 3.3)
March I, 1988

PDOS is a registered trademark of Eyring Research Institute, Inc.

o
o

G

o
o

Table of Contents

Product Status 1

Update - PDOS 3.3 .. 1

Update - C Compiler .. 1

Warnings and Cautions 2

Note - Proper year for battery and PDOS clocks ... 2

Note - TM and a modem ... 2

Note -~DIT with 8-bit characters .. 2

Note - XVEC returns pointer to jump table ... 2

Caution - BASIC - powers of negative numbers ... 2

Caution - Assembly ENDM directive ... 2

Caution - XDEF following OFFSET .. 3

Caution - Numeric overflow .. 3

Fixes, Patches, and Workarounds 4

(
Fix - BASIC RENUMBER error ... 4

Fix - FTELL:C error .. 4

Fix - Parity flag in FBIOSU:SR and F32BIOSU:SR ... 5

Fix - BASIC UPTI~ utility error ... 6

Workaround - FORCE ISIO! card misses re-enable flag .. 6

Workaround - EQUates in asm instructions in C .. 6

(/ Workaround - Chaining programs in FORTRAN .. 7

Workaround - Data offsets exceed displacement in Pascal 8

Applications and Hints 9

Hint - Linking with F77L in Absoft FORTRAN .. 9

Hint - Save time while counting bits ... 9

Application - Multiple program load in Task 0 .. 11

C-';
' ..•. /

(-~:
PDOS TIPS AND TECHNICAL NOTES Vol. 3 No. 1-3/88 i

ii VoI23 No.1-3/SS POOS TIPSANO TECHNICAL NOTES

()

C

(~:

(~

(~'

Product Status

Update

Update

POOS TIPS AND TECHNICAL NOTES

PDOS3.3

The POOS 3.3 update has been released. It includes significant improvements in
the software as well as new documentation. You should have received notifica­
tion about the update. Requests for updates are currently being filled.

C Compiler

PDOS C has been updated to version 5.4 to run with PDOS 3.3. Some changes
include new defmitions of math.h, changes in the libraries and include files, and
bug fixes.

Vol. 3 No. 1-3/88

c
Warnings and Cautions

Note

Note

Note

Note

Caution

Caution

2

Proper year for battery and PDOS clocks

If you have not already updated your system for 1988; change your SY$STRT
me to include this year in the MTIME utility parameter.

IMTlME P,88

TM and a modem

It doesn ~t make sense to have two programs reading from the same port at the
same time. PDOS attempts to prevent this by not allowing you to create two
tasks with the same input port. It is possible, however, to have one task running
on a remote port and enter transparent mode from the monitor (the TM com­
mand) to talk to that port. When this happens, the task running on the port gets
some of the characters while the monitor in transparent mode gets the rest. The
result is confusion. Kill the task running on a remote port before you go into
transparent mode on that port.

MEDIT with 8-bit characters

MEDIT cannot handle 8-bit characters at present. Users who have tried to use
MEDIT on 8-bit data have failed, partly because MEDIT uses the eighth bit in­
ternally for pointer information. If this is a problem for you, call customer sup­
port.

XVEC returns pOinter to jump table

In ROM-based interrupt vector systems, XVEC with AO=O returns a pointer to
the jump table in RAM rather than the address of the ihterrupt handler. This is
proper behavior since it would require writing to ROM with possible errors if it
were otherwise. XVEC with AO containing the desired address or old address
properly returns the pointer to the interrupt handler. To read the vector pointer,
rewrite the interrupt handler address to the vector. G
BASIC - powers of negative numbers

In BASIC, powers of negative numbers do not generate the proper result. In the
latest release of PDOS, improper error messages may also result.

Assembly ENDM directive

The ENDM directive is case sensitive and must be included as capital letters. If
the statement is not present or not found, PDOS error 56 is generated as an in­
dication that a problem has occurred. This will be corrected in a future version
of the assembler.

Vol. 3 No. 1-3/88 PDOS TIPS.AND TECHNICAL NOTES

c
c

Caution
(

Caution

(

(

(":
. /

PDOS TIPS AND TECHNICAL NOTES

XDEF following OFFSET

The POOS linker does not properly find an XDEF statement when it follows an
OFFSET statement. The linker is unable to resolve the XDEP under this condi­
tion. It is necessary to declare XDEFs before any OFFSET statements are used.
This will be ftxed in a future version of QLINK.

Numeric overflow

In cases where you write code which includes values which cause numeric over­
flow to occur, the assembler truncates the value and generates code for a value
within the range of the instruction. A warning of overflow is generated, but
these warnings are often ignored. You should verify that warnings will have no
effect on your program's performance.

Vol. 3 No. 1-3/88 3

Fixes, Patches, and Workarounds

Fix

Fix

4

BASIC RENUMBER error

An error was noted in the BASIC RENUMBER utility which caused certain
strings within quotations to receive renumbering in error. This is a fix to the
RENUMBER which was distributed as part of 3.2 PDOS BASIC. The following
changes correct this difficulty:

Change:

1942 X=FIND: FIND=SRH['"',$LINE[O;X]]: IF FIND<>O: FIND=FIND+X
1943 IF FIND<>O: X=FIND: FIND=SRH[' '" ,$LINE[O;X]]: IF FIND: GOTO 1950
1944 FIND=1
1945 X=FIND: FIND=SRH['''",$LINE[O;X]]: IF FIND<>O: X=FIND+X
1946 IF FIND<>O: FIND=SRH["''',$LINE[O;X]]: IF FIND: GOTO 1950
1947 FIND=1

I To:

1942 X=FIND: FIND=SRH["" ,$LINE[O;X]]: IF FIND<>O: X=FIND+X
1943 IF FIND<>O: FIND=SRH["",$LINE[O;X]]: IF FIND: FIND=X+FIND: GOTO 1950
1944 FIND=1
1945 X=FIND: FIND=SRH["''',$LINE[O;X]]: IF FIND<>O: X=FIND+X
1946 IF FIND<>O: FIND=SRH["''',$LINE[O;X]]: IF FIND: FIND=X+FIND: GOTO 1950
1947 FIND=1

>

>

FTELL:C error

An error has been noted in the documentation for the FfELL fix reported in the
last volume of PDOS Tips and Technical Notes.

The following is incorrect:

asm("beq.s @10");
asm("move.w #264(a5),d2");
asm("beq.s @20");

1* empty buffer *1
1* get _iostat for read or write *1
1* branch on read flag *1

I The following is correct:

asm("beq.s @10");
asm ("move. w 264 (as) , d2") ;
asm("beq.s @20");

1* empty buffer *1
1* get iostat for read or write *1
1* bran~h on read flag *1

Vol. 3 No. 1-3/88 PDOS TIPS AND TECHNICAL NOTES

o
o

c

(

(

(

(/

Fix

*
@004

Parity flag in FBIOSU:SR and F32BIOSU:SR

There is a coding error which prevents FORCE SIO-l cards from being initial­
ized to even parity. When this is attempted, the system hangs. It may be cor­
rected by using the following procedure.

In file F32BIOSU:SR change the following code in the type 1 baud port proce­
dure

From:

MOVE.B #$OC, CCR (AD)
CLR.W D2

;OUT CLOCK SELECT (DIV BY 2)
;ASSUME NO PARITY

BTST #BEVP,Dl
BEQ.S @004

TAS.B ECR (AO)

MOVE.B
CLR.B

#O,ECR(AD)
TIER (AD)

I To:

;PARITY ENB?
;N
;Y, ENB PARITY GEN/CHECK

;ENABLE/DISABLE PARITY

MOVE.B #$OC,CCR(AO) ;OUT CLOCK SELECT (DIV BY 2)
* CLR. W D2 ; ASSUME NO PARITY

BTST #BEVP,Dl ;PARITY ENB?
BEQ . S @ 004 ; N

* TAS.B ECR(AO) ;Y, ENB PARITY GEN/CHECK
MOVE.B #$80, ECR (AD)

*
@004

* MOVE.B #O,ECR(AO) t

CLR.B TIER (AD)
;ENABLE/DISABLE PARITY

In file FBIOSU:SR also change the following code in the type 2 baud port proce­
dure

From:

MOVE.B #$OC,SCCR(AO) ;OUT CLOCK SELECT (DIV BY 2)
CLR.W D2 ;ASSUME NO PARITY
BTST #BEVP,Dl ;PARITY ENB?

BEQ.S @OD4 ;N
TAS. B SECR (AD) ; Y, ENB PARITY GEN /CHECK

*
@OD4 MOVE.B #D,SECR(AD)

CLR.B STIER (AO)
;ENABLE/DISABLE PARITY

To:

*

*

*
@004

*

MOVE.B #$OC, SCCR (AD)
CLR.W D2
BTST #BEVP,Dl

BEQ.S @OD4
TAS . B SECR (AD)
MOVE.B #$80,SECR(AD)

MOVE.B #0, SECR (AD)
CLR.B STIER(AD)

;OUT CLOCK SELECT (DIV BY 2)
;ASSUME NO PARITY
;PARITY ENB?
;N
;Y, ENB PARITY GEN/CHECK

;ENABLE/DISABLE PARITY

PDOS TIPS AND TECHNICAL NOTES Vol. 3 No. 1-3/88 5

Fix

Workaround

@012 MOVE.W
BTST
BNE.S

MOVE.W
@999 DBRA

MOVE.W

*@O14 MOVE.W

@014 MOVE.W
AND.W

Workaround

6

BASIC UPTIME utility error

For users of PDOS BASIC, the UPTIME utility contains an error.

Change:

1530 ON M: ME=31,28,31,30,31,30,29,31,30,31,30,31

To:

1530 ON M: ME=31,28,31,30,31,30,31,31,30,31,30,31

FORCE 15101 card misses re-enable flag

A customer has reported a potential problem with the ISIOl card from FORCE.
When downloading data out a port on the card at high rates, the reenable flag is
missed causing the system to hang. It has been indicated that this is a fIrmware
problem which is overcome with delay loops in the BIOS software. A
workaround has been suggested which adds a delay loop in the ISIO interrupt
service routine under label ISIOHC.

P$ISINT,Dl
DO,Dl ;TEST HIGH WATER FLAG OF CHANNEL
@014 ;HIGH WATER IF SET

#1200,DO ;set delay count
DO, @999 ; allow ISIO to read int flag as 0

#GETCHI, (AO) ;SET NEW COMMAND

Dl,P$ISINT ; (performs no valid function)

D2,DO ;GET CHAR TO DO
#$OFF,DO ;MASK IT

EQUates in asm instructions in C

To properly utilize equate statements when using the "asm" pseudo-function in
a C program, create a file to hold the equate statements and then call this file as
part of your asm code sequence.

Save equates in me EQUATE

EQU 230

In main program include above me

main ()
{

asm("include EQUATE");
asm("move.l #HI,dl");

The equate will be properly inserted and resolved when assembled.

Vol. 3 No. 1-3/88 PDOS TIPS AN D TECHNICAL NOTES

c
(... C"···

(

(

(/

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

EQUates In ASM Instructions in C (cont'd)

0/00000000: test IONT 5,0
00012200 OPT ALT,NOWARN,XREF,TC

00000000 EXTN .main
0/00000000:
0/00000000: .main

0/00000000:4E56FFFC

*-main:
* EnD =8

link.w A6,#-4
*line 4

include EQUATE

000000E6 HI EQU 230

0/00000004:223COOOOOOE6
O/OOOOOOOA:
O/OOOOOOOA: 4E5E
0/0000000C:4E75

*line 5

L1
move.l #HI,d1

unlk A6
rts

Workaround Chaining programs in FORTRAN

Chaining programs in FOR'IRAN cause problems since the user stack pointer is
not updated when using the PDOS XCHF primitive. The reason is that the primi­
tive was designed to pass parameters on the stack to the chained program. To
reset the stack pointer the following assembly program may be used to chain
programs in FORTRAN and possibly any other language where the stack
pointer is not properly located:

XDEF .CHAIN

*
. CHAIN XGML ;GET MEMORY LIMITS

;GET ADDRESS OF FILENAME
;RESET STACK POINTER

;CHAIN TO FILE

MOVEA.L 4 (A7) ,A1
MOVEA.L EUM$ (A6) ,A7
XCHF
XERR
END

;ERROR RETURN TO PDOS

Assemble this program with MASM as follows and convert it to a binary file.

xx>MASM CHAIN:SR,#CHAIN:OBJ
xx>MSYFL CHAIN:OBJ,#CHAIN:SUB
xx>SA CHAIN:SUB,BN

You may include the CHAIN:OBJ into a library if desired or link CHAIN:SUB
into your program.

The program call will be as follows:

CHARACTER NULL, FILENAME
PARAMETER (NULL=O)
FILENAME='FILENAME:EXT'//NULL !PDOS requires null termination

CALL CHAIN (FILENAME)

PDOS TIPS AND TECHNICAL NOTES

Another method which may be used to chain to other program and provide a
proper stack reset is to use the XEXZ primitive with the new filename as the
parameter or command line pointed to by (AI). The code for this primitive is as
follows:

Vol. 3 No. 1-3/88 7

Chaining Programs In FORTRAN (cent'd)

* XEXZ - EXIT TO MONITOR WITH COMMAND
* INTEGER FUNCTION XEXZ(COMMAND)
* CHARACTER *20 COMMAND
* TYPICAL USAGE MIGHT BE XEXZ('PROGRAM:SR'IICHAR(O»

XDEF
.XEXZ MOVEA.L

XEXZ
RTS
END

4 (A7) ,Al ;GET THE PASSED PARAMETER
;EXIT TO MONITOR WI COMMAND

Workaround Data offsets exceed displacement in Pascal

8

In Pascal 3.0 and earlier, if you attempt to access data variables whose address is
more than 32k remote, the compiler generates offsets which exceed the word dis­
placement for the register used to point to the variable. The result is an improper
access, usually writing the variable over a portion of the program.

Code generated may appear as such:

PEA.L 40000 (M)

This should be changed as follows if the displacement is too great:

PEA.L (A4) ;push address
ADDI.L #40000, (A7) ;add offset to variable

Vol. 3 No. 1-3/88 POOS TIPSANO TECHNICAL NOTES

o
o

o
c

(

(

Applications and Hints

Hint

Hint

PDOS TIPS AN D TECHNICAL NOTES

Linking with F77L in Absoft FORTRAN

When linking subprograms with the main program using F77L, there is often
not enough space on the line to link all subprograms. Creating a library to in­
clude the subprograms can often be time consuming. The following description
explains how you might accomplish the link of many subprograms:

F77L may be used serially as many times as you wish on the same main
program until all the unresolved references are satisfied. Procedures listed on the
command line take precedence over procedures with the same name in library
fIles.

Assume a program A:FOR which calls subroutines B:SUB, C:SUB, D:SUB,
E:SUB, and F:SUB. This may be linked as follows:

>F77 A ;Compile main program
>F77L X = A,B,C,D ;link in 3 subprog and assign to X
>F77L A:PRG = X,E,F ;link in 2 more and assign to A:PRG
>F77L A:PRG,F77:RL/L;link in runtime library if desired

The assignment of the program to the temp fIle X is not required, but saves the
original compiled program to prevent the need to recompile it for a later link
operation.

If this approach is to be used a number of times until the program is fully
debugged, then you can create a PDOS procedure file to execute the compile
and link. Any steps not required may be commented out or you may use the AC
monitor command to step through to select the start of your procedure file.

Save time while counting bits

An article recently appeared in EDN magazine that offered a tip on summing the
bits in a word. The writer pointed out that it is possible to use the computer's
hardware to add up the bits in parallel, rather than adding the bits one at a time.
We usually do something like the following:

LOOP2
LSR.W n,D3
BCC.S @O3
ADDQ.L n,Dl

@O3 DBRA D5,LOOP2

In the above example, D5 serves as the loop counter, Dl is the bit counter, and
D3 is the source of the bits to count. This algorithm with appropriate initializa­
tion and loops, ran 1677216 iterations in 277.6 seconds. This time may be im­
proved by eliminating the branch and using the ADDX instruction to add the
extend bit into D3. You need a dummy data register available which has been in­
itialized to zero. The algorithm is shown below:

Vol. 3 No. 1-3/88 9

Save Time While Counting Bits (cont'd)

10

LOOP2
LSR.W #1,D3
ADDX D2,Dl
DBRA D5, LOOP2

Data register D2 contains zero and is used as a dummy since there is no instruc­
tion to add just the extend bit into D 1. This version runs the above number of
iterations in 214.8 seconds.

The article pointed out that the ADD instruction will add all the bits together.
The article presented the algorithm in pseudo-code which has been converted to
68000 assembly as shown below:

* STEP 1
MOVE DO,Dl
MOVE DO,D2
LSR #1, D2

AND #$5555,Dl
AND #$5555,D2
ADD D2,Dl

* STEP 2
MOVE Dl,D2
LSR #2,D2
AND #$3333,Dl
AND #$3333,D2
ADD D2,Dl

* STEP 3
MOVE Dl,D2

LSR #8,D2
ADD.B D2,Dl

* STEP 4
MOVE Dl,D2
LSR.B #4,D2
AND.B #$OF,Dl
ADD.B D2,Dl

This algorithm uses more code but executes fewer instructions and therefore
runs much faster. The 16777216 iterations took only 62.9 seconds.

You might note that doubling the number of bits to check from 16 to 32 would
double the time requirements of the first two algorithms, while it would add
only one more step in the above example taking perhaps 20% more time.

Vol. 3 No. 1-3/88 PDOS TIPS AND TECHNICAL NOTES

{c ""t
I. "'/

'-iL,..,.'

c

(
Application

(~

(~

c

PDOS TIPS AND TECHNICAL NOTES

Multiple program load in Task 0

You may sometimes want to load the code for a program into the parent task's
memory and then create small tasks which execute the code. When creating a
task using the XCTB primitive, if DO is zero, then registers AO and Al specify
the tasks memory limits and A2 specifies the tasks starting PC. This can be used
to point tasks into code loaded in the parent task.

To provide a convenient way to resolve the entry points into programs linked
into a single module, we wrote a macro program which receives parameter input
to define various parameters and then create tasks which will access the previou­
ly loaded program.

*
*
*
*
*
*
*
*
*
*
*
*
LOAD

*
ERR&#
KTU

X&#

PARAMETER FILE TO BE USED WITH MULTIPLE FORTRAN
PROGRAMS TO BE LOADED AS ONE PROGRAM

MACRO TO LOAD PARAMETERS FOR TASK

&2=TASK PORT NUMBER
&3=TASK SIZE
&4=TASK TIMEIPRIORITY

LOAD NAME,PORT,SIZE,PRIORITY

MACRO
XREF &1
MOVEQ.L #&3,DO
MOVEQ.L #&4, Dl
MOVEQ.L #&2,D2
LEA.L KT&# (PC) ,A2
XCTB

BNE.S ERR&#
MOVE.L #100, DO

MOVE.L #128,Dl
XDEV
XSUI
MOVEQ.L #&3,DO
MOVEQ.L #&4,Dl
MOVEQ.L #&2,D2

XGUM
BNE.S ERR&#

LEA.L &1(PC),A2
MOVE.L #O,DO
XCTB

BNE.S ERR&#
BRA.S X&#

XERR
DC.B 'LT.KT',O
EVEN
NOP
ENDM

Vol. 3 No. 1-3/88

;GET TASK SIZE
;GET TASK PRIORITY
;GET PORT NUMBER
;COMMAND LINE POINTER
;CREATE TEMP TASK TO FREE MEM

;GET TASK SIZE
;GET TASK PRIORITY
;GET PORT NUMBER

;GET MEMORY FOR TASK

;GET ENTRY ADDRESS OF PROGRAM
;USE MEMORY BOUNDS
;CREATE TASK AND GO THERE

;BRANCH AROUND VARIABLES

11

Multiple Program Load in Task 0 (cont'd)

12

A LOAD:SR file is created to pass the parameters to the macro.

OPT PDOS
INCLUDE LOAD:MAC

START LOAD PROG1,2,30,64
LOAD PROG2,4,30,64
LOAD PROG3,3,30,64
LOAD PROG4,5,30,64
XEXT
END

LOAD:SR is assembled to the file LOAD:OBJ and is linked with the programs
as follows:

QLINK
Z
BASE,$5DOO
SECTION O,$5DOO
IN LOAD:OBJ
EVEN
DEFINE PROG1,Q$HO
IN PROG1:OBJ
DEFINE PROG2,Q$HO
IN PROG2:0BJ
DEFINE PROG3,Q$HO
IN PROG3:0BJ
DEFINE PROG4,Q$HO
IN PROG4
SY
OUT !tLOAD
MAP ALL #LOAD:MAP
END
Q

;EPROM or Program load address

;Loader module

;Define link address
;Load program 1
;Define link address
;Load program 2
;Define program link
;Load program 3
;Define program link
;Load program 4
;Define as SY file
;Output to LOAD program
;Output map of linkage

;Quit

When the program LOAD is executed, it loads all of the linked code, creates
tasks for the programs to run and sets up pointers into the loaded code to ex­
ecute the programs.

This application could allow several tasks to access common code by using the
same entry point for each task.

Vol. 3 No. 1-3/88 PDOS TIPSAND TECHNICAL NOTES

(~""',,'
~

C,' ,",'. . ,

