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The purpose of this research was to investigate the gen-

eration of machine code from high-level programming language.

The following steps were undertaken:

1) Choose a high-level programming language as the source

language and a computer as the target computer.

2) Examine all stages during the compiling of a high-

level programming language and all data sets involved in

the compilation.

3) Discover the mechanism for generating machine code and

the mechanism to generate more efficient machine code from

the language.

3) Construct an algorithm for generating machine code for

the target computer.

The results suggest that compiler is best implemented in a

high-level programming language, and that SCANNER and PARSER should

be independent of target representations, if possible.
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CHAPTER I

INTRODUCTrION

1.1. The Problem Definition

The purpose of this research is to investigate the

generation of machine code from hIgh-level programming

languages; in -particular, having proposed a model of such

processing, to answer the questions

Given a high-level programming language, how can the

target computer code be generated?

fow can a more efficient machine code for the target

computer be generated?

1.2. Procedure

In order to accomplish the purpose of the research, the

fol oW v ng steps were undertaken;

1) Cocs e hi g h- evel program ng Ianguage to be

the source language and a computer as the target

copjrte.

2) Examine all sta es during the compi11mng of a

high-level pro:rmmikmn language and all data sets

Iinvol vedi n the comrpi nation.

3) Discover the nchanitIsm for generating machine

I
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code and the mechanism to venerate more efficient machine

code from the language,

4) Construct an algorithm for generate ng machine

code for the target computer.

1.3. Source Language and Target Computer

The

language

relative

many of

advanced

TPL (THIS PROGRAMMING LANGUAGE) programming

was chosen as the source language. Although it is a

simple language, it is complex enough to display

the quality and imply ementation difficulties of more

high-level language.

The FAIRCHILD F24 mini-computer was chosen

target computer for the model, since it

memory-or rented, hi gh-speed , gener al-pur pose

computer wi th f lexi ble addressi ng abili t i es.

as the

i s a

dig i t al

Figure 1.1 is the system flow for generatinI machine

code from the TPL programming language.
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TPL
SOURCE

SCANNER

SOURCEXI

TOKENS

SYMBOL

* OPTIONAL *

PARSER - DEBUG *
OUTPUT *

TNREECD

CODEGEN

RFAIRCDI

LOADER

ABSBINt

F24SIM

FAIRCHILD *
* F24 trace *
* LISTING *
****** ** ** ***

F IGURE 1.1. Sys tem Fl ow for Gener at i g bachi ne Code
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1.4. Organization

This research is organized into eight chapters; the

first chapter provides a general description of the

research. The second chapter describes the analysis stages

during a language compilation. The third chapter describes

the storage allocation algor it hms used by high-level

programming language. The fourth chapter discusses the

function and algorithm for code generation. The fifth

chapter examines several techniquies for generating

optimized target machine code from high-level programming

languages. The sixth chapter contains an description of This

Programming Language, which is the source language of the

model. The seventh chapter discusses the data bases which

are involved in the generation of machine code from a

hi gh-level programming language. The last chapter contai ns

the summary and conclusion.



CHAPTER II

ANALYSIS

2.1. Introduction

The purpose of the analysis during a compilation of a

programming language is to translate the input source

language into a intermediate form (usually a structure

tree)(3); from this intermediate form the code generator

creates the target machine code for the language.

In this chapter different phases of analysis for

compiling a language are depicted.

2.2. Lexical analysis

The action of parsing the source program into proper

syntactic classes is known as lexical analysis. The aim of

the lexical analysis of the compiler is to take the input

source language, which is presented in some form, and

translate this into a string of tokens. We usually call this

translator the "scanner". The token stream which comes cut

of the scanner is the input to the parser, which is the

processor in the syntax analysis phase during a language

compilation.

5
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2.2.1. Scanning

Scanning is the major processing during the lexical

analysis phase. Scanning involves finding the substrings of

characters that constitute units called textual elements.

These elements are the words, punctuation, single- and

mul ti-character operators, comments, sequence of spaces, and

numbers of the source.

For example, consider the following line from a PL /l

program represented as a character stream.

IF XX < 10 THEN YY = YY + 'I

After scanning the program may be regarded as being in

following form

IF XX < 10 THEN YY = YY + I ;

ID.. ID. .. OP..N.. ID .. ID.OP.. ID..OP.N..OP

Where 'ID' means 'identifier', 'N' means 'integer', .'

means 'space', and 'OP' means 'operator'. The 'space', the

'identifier', the 'integer', and the 'operator' are textual

elements.

2.2.2. Lexical Grammars

One can usually specify the textual elements of a

programming language, its lexical level, with a regular
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grammar or a regular expression, or most conveniently with a

mixture of the two in the form of a transduction grammar.

For example, consider the following granmar*

<TEXT>=<IDENTIFER><SPACE> <INITEGE R><SPACE>

<IDENTIFIER>:=<LETTER> <LETTER><LETTER-DIGIT>

<LETTER-DIGIT>::=<LETTER> <DIGIT>

<INTEGER>::=<DIGT>'<INTEGER><D IG IT>

<LETTER>::=AU3 *..... Q*Z

<SPACE>::= ' ' :' <SPACE>

This grammar describes a very simple lexicon containing

identifiers, integers, and spaces. Identifiers and intepers

must be separated from each other by at least one space.

2.2.3. Finite-state Machine

To display more clearly the structure of scanner for

the lexical grarmar in section 2.2.2., I present its

fin it-st4te machinil) d mar on Figure 2.1. In fact, the

scanner procedure is asimuIat01n of a fi ni te-state iachine

whi ch br eaks t he source program into tokens (1). In F ipgure

2.1. Two states noted by '?' need look-ahead sets(2) to

determine mread-reduce(2) decisions. The finite-stiate machine

siu I at ion is done in the usual manner wI th two tables (4):
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START A<------- - --- - - - ------ - -f--

-- <SPACE> - - - - - - - - - - -

<LETTER>

I-------- --> <?>
---><LETTER> +| LETTER > reduce to

- -IDENTIFIER

< DI AIT '<DIGIT>:

-------------- > <?>
><I ->| DIGIT -------------- > reduce to

----------I"DIGIT -

Figure 2.1. Finite-State Machine for Lexical Analysis



one table which defines the next state function, and another

table which defines the action associated with each state

transi t ion.

The scanner can be implemented directly as an

executable program. However, it is noteworthy that scanners

frequently have states with direct loops, such as states

blank, letters, and digits. Such states should be

implemented as fast as possible since they typically do the

bulk of the scanning.

2.3. Error Recovery in Lexical Analysis

While scanning a textual element, the scanner is always

either in a context in which it has had some left context

that must be matched by the some right context (e.g., the

right parenthesis must matched the left parenthesis) or it

is in a context that may legally end at any point. In the

latter case, characters in error show up as the beginning of

the next textual element and can usually be skipped or

replaced with a blank to permit continuation of the

processing. In the former case a scan to the end of the

current line is usually done in order to try to find the

desired right context. If found, the intervening text can be

considered part of the current textual element; otherwise,
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the rest of the line is usually best skipped and the scanner

is best restored to its initial state.

After detecting and reporting an error, a module may

ei ther attempt to repair it (so i t is not seen by subquent

modules) or pass it along. Each approach has its problems;

if a module is to be truly an error sink, it must ensure

that none of the effects of the error it has repaired can

propagate. Conversely, if it does not filter out all errors,

then all subquent modules must be prepared to deal

reasonably w ith them (without generating too many further

messages).

In many compilers, a single error can trigger a whole

avalanche of messages on the unsuspecting error; this is

very nearly as unaceptable as quitting the scan after the

first error(5).

2.4. Syntax Analysis

The main aim of the syntax analysis phase during a

language compilation is to take the token string produced by

the scanner in lexical analysis phase, and to use some

parsing algorithm to verify that the token string consists

of a legal string. In addition, it is required to collect

information about the language, and produce as output a

structure tree which could be code which is ready to be
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executed or interpreted, but is more likely to be a

structural representation of the token string which will be

used to generate code.

2.5. Error Recovery in Syntax Analysis

Syntactic analysis also notes syntactic errors and

assures some sort of recovery so that the compiler can

continue to look for other compilation errors.

A syntactic error is discovered when the parser can

take no further valid parsing act tions, given the current

state of the parser (the stack) and the current input

symbol. Recovery thus requires changing the stack, the

input, or both. The change may take the form of deletions or

insertions (a substi tution is a deletion and a insertion).

Gries(2) points out that changes to the stack are

particularly dangerous, since semantic routines will have

been invoked for the parsing actions leading to the current

stack, and the parser can not safely undo or modify the

effects of these actions.

Leinius(5) was consider augmenting the syntactic

description of a language by a number of error productions,

describing common errors, as so that recovery can be

subsumed under normal parsing. For this strategy to be
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effective, several probes; must be deal wi th: the

compiiler-writer must ensure that he has really included

enough error productions to cover the common errors; since

so many different errors are possible, the error productions

may substantially enlarge the grammar (and hence the

parser); it is difficult to include error productions

without making the grammar ambiguous.

2.6. Semantic Analysis

The purpose of semantic analysis is to derive an

evaluation procedure front the structure tree of an

expression and the attributes of its components.

An evaluat!' on procedure is a sequence of primitive

operations on primitive operands, and is completely

specified by the definition of the source language. The

semantic analyzer must deduce the attributes of the various

components of a structure tree, ensure that they are

compatible, and then select the proper evaluation procedure

from those available. The input to the semantic analyzer

consists of the structure tree which specifies the

algorithm, and the dictionary which provides attribute

i nformati on.

Two transformations, attribute propagation and
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flattening, are performed in seMantic analysis(6)

1) Attribute propagation:

Attribute propagation is the process of deriving

the attributes of a structure tree from those of its

components,

2) Flattening:

Flattening is the process of transforming a

structure tree into a sequence by making explict the

order in which the operators are executed (in order to

produce optimized code from the code generator).
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CHAPTER III

STORAGE ALLOCATION

3.1. Introduction

Hi gh-level programming languages with different

features require different types of storage management, in

which a hierarchy can be distinguished; at the bottom end is

the static allocation scheme for a language Ii ke FORTRAN(5),

in which it is possible to know the address that each object

will occupy at the run time. At the next level comes the

stack techniques for languages like ALGOL60(1), where space

is allocated on a stack at block entry and released at block

exit. Languages like PL/1(4) permit both types of storage

management.

3.2. Static Allocation

In a static allocation scheme It must be possible to

decide at compi le time the address that each object will1

occupy at run time. This requires that the number and size

of the possible objects be known at compile time. This is

the reason why programmi ng .languages that use static

allocation have constant bounds for arrays and procedures

can not be recursive.

15
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The process which the compiler goes through in doing

storage allocation for a static language is very simple;

during the first pass of the text the compiler creates a

symbol table in which are kept the name, type, size and

address of each object encountered. During the later code

generation phase, the address of each object is thus

available for insertion into the object code.

3.3. Dynamic Allocation

Modern high-level programming languages allow recursive

procedure calls, and this precludes any attempt at a static

storage allocation scheme, since a variable which is

declared and used--with a recursive procedure may correspond

to more than bne value at a given moment during the

execution of the program.

The usual storage model for a dynamic allocation is a

stack, on which entry to a block or a procedure causes a new

allocation, the space being freed at exit from the block or

procedure. The use of a stack to model nested structures is

a standard device(2).

3.4. Storage Allocation For Arrays

In a programming language in which the size of an array

is known at compile time, its space can be allocated
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statically ;

For example :

A(5,10)

A is a array of size of 5x10 and 50 consecutive storage

locations will be reserved:

A(l,1),A(l,2)..A(5,l),A(l,2)..A(5,2)..A(5,l0)

When making a reference, element A(I,J) is to be found

in location

(J-1)*5+I-1 from the start of the array.

In general, given an array A with bounds Bi

Element A(1142.. In) is to be found at location

(..(( In-1) * B(n-l)-l) * B(n-2)+..+ 12-1) * 81 + 11-1

In a programming language in which the limits of

boundries of a array is not known at compile time, storage

allocation for a array must dynamic.

33.5. Storage Allocation for Temporary Variables

A major problem of storage allocation arises when

considering how to allocate storage for temporary variables

required for partial results during a compilation. These
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variables are not defined by the language but by the

compiler. How many are required and how storage is allocated

is'completely dependent upon the compiler(3).

The code generator algorithms did not concern

themselves with how storage for the temporary variables

should be allocated. They can be thought of as taking a new

variable name from an infinite set of unused names each time

a temporary variable is required by the algorithm. The

storage allocation algorithm has to allocate storage for

these variables in such a way that the minimum number of

storage locations is required.

Variables having completely disjoint ranges at

execution time can be allocated the same location. The usage

range of a variable is defined as the sequence of code

interval between the initial definition of the vaule of a

variable and its last use. There are two algorithms for

finding the usage range of a variable(3)

3.5.1. Backward Scan Algorithm

Consider a set of variables : V1,V2,V3....... Vn . For

each variable Vi, an statement is defined

ST VI

which initially sets a value to the variable and
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indicates the start of the range for Vi.

A statement

U Vi

is defined which indicates a subsequent use of this

variable. The last instruction of this type using Vi

indicates the end of' the range for Vi.

A sequence of code produced by code generator then

consists of a set of instructions independent of the

variable Vi, together with the orders of the two statements

defined above which use the variables Vi , for 1=1 to n. The

problem is to allocate storage to the Vi so that the minimum

number of location is required. The assumption 'is that a

variable is no longer required after the last appearance of

it in the sequence. In this sense it assumed that the

sequence is completed. Once a variable is no longer

required,. its storage location may be re-allocated to

another variable not yet defined. It is assumed that this

sequence of instructions does not contain any entry points

other than at the top and that control passes straight

through the sequence, leaving at the bottom (no branches).

Consider the arithmetic expression

(A+B*C)/(F*G-(D+E)/(H+K))

The code generated for the expression might be as

follows for the IBM 360:



20

L H
ADD K
ST VI
L D
ADD E
DIV VI
ST V2
L F
IVPY G
SUB V2
ST V3
L B
MPY C
ADD A
DIV V3

The names VIV2 and V3 would be taken from the set of

unused names. As far as storage allocation is concern the

squence of code can Ue written ( ST Store, U Use):

ST VI
U VI
ST V2
U V2
ST V3
U V3

As the last of each variable appears before the next is

defined, it is obviously that one storage is sufficient.

The general algorithm wl11 be :

Scan the sequence of- instructions from the end

backward. For each instruction of the type U Vi (i=1 to

3), if no storage location has been allocated to Vi, take

the top free storage location from the stack and assign

it to Vi and replace Vi in the instruction by the address
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of the storage location. For each instruction ST VI, if

no storage location has been allocated to Vi , then either

there is an error or this order is redundant, as this

implies that there are no subsequant uses of the

variable. If storage has been allocated to Vi, then

replace Vi in the instruction by the address of the

storage location and, as this is the'first time use of

the variable Vi, the location may now be returned to the

free store stack, as it is no longer required.

3.5.2. Forward Scan Algorithm

In the forward scan, the ST instruction defines the

start of the range. A count of the number of uses of each

variable has been kept and is used to find the last use of a

variable so that the end of the usage range also can be

found.
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CHAPTER IV

CODE GENERATION

4.1 Introduction

A source language definition specifies the evaluation

procedure for the constructs of the language in terms of a

set of primitive operators and operands provided for this

purpose. Code generation is the process of an evaluation

procedure in terms of the primitive of a particular target

computer (5).

The basic approach is to simulate the evaluation

procedure in the environment provided by the target computer

(with its register organization and addressing structure). A

symbolic description of the run time contents. of the

environment is maintained by the code generator. -dien the

evaluation procedure indicates that the contents should be

altered, then code to perform the alteration is emitted and

the description is updated. The data for the code generator

are structure trees. The evaluation procedure specifies the

sequence in which the nodes of a structure tree are to be

considered when perform ng t he evaluati on, and this sequence

is largely independent of the particular target computer.

The structure tree is traversed by the semantic analyzer,

23
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which considers the entire subtree before deciding upon'the

best sequence of operations to perform. Thus the code

generator input is a sequence of tokens specified by the

nodes of the structure tree,

4.2. A Model for Code Generator

The code generator does not have arbitrary access to

the structure tree, and must therefore operate on the basis

of limited information(5). The model which I have chosen

consists of two parts:

1. A push store transducer, which maintains the

contextual information that can be derived from the

sequence of input tokens.

2. A target computer machine code generator, which

maintains the run-time contents of the environment and

produces sequence of target computer instructions to

implement the abstract primitives.

Hopgood(2) terms these components the translator, and

the coder respectly.

The transducer passes a sequence of tree structures to

the code generator, each consisting of an operator and its

associated operands. Each command is interpreted by the code

generator in the light of the object environment which
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exists at that point in the execution of the program. It

generates appropriate code and the updates the environment

to'reflect effect of that code.

4.2.1. The Transducer

A pushdown store transducer has four components(5) : an-

input,, an output,, a finite-state control and a pushdown

store. The input models the stream of tokens which encodes

the structure tree, and the output models the abstract

instructions which will be delivered to the code generator.

The finite-state control and the pushdown store encode the

limited contextual information derived from the sequence of

input tokens.

Information pertaining to the ancestors of the current

nodes, and the status of the current node itself, is encoded

by the finite state control. The pushdown store contains

information derived from subtrees which have been completely

traversed. After all subtrees whose roots are descendants of

a particular node have been traversed, their entries are

deleted from the pushdown store and replace by a single

entry for the entire tree rooted at that node. Information

from the pushdown store is used to identify the operands of

an operator.
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4.2,2. Code Generator

In order to interpret the primitives of the source

language in terms of the target machine, the code generator

maintains descriptions of the values being manipulated and

of the target machine environment. A particular value may be

represented in many different ways in the target computer,

and the purpose of the value image is to specify the current

representation of each value. Similarly, the registers of

the target computer may contain many different values during

execution, and the purpose of the machine environment is to

specify the current contents of each register.

A value comes under the control of the code generator

when the transdu er requests simulation of an operand token,

giving the current transducer state as an argument. At that

point the code generator creates an entry for the operand

and links it to the machine environment. Values pass out of

the control of code generator when they are used as

operands. This is signalled when the transducer requests

simulation an operator token giving the current state and

one or more value as arguments. At that point the code

generator deletes the operand entries from the value image,

breaking any linkage to the machine environment. If a result

is specified, a description of the result value is created



27

and linked to the appropriate entry in the target machine

environment.

In fact, the code generator producing a relocatable

target machine code packet for each structure tree(3).

4,3. Code Generation For Arithmetic Expressions

To produce efficient machine codes for a arithemetic

assignment statement is one of the major problems in the

compilation of a programming language(2). The efficiency of

two compilers in the execution of a program will depend

almost entirely on the code produced by the code generator.

4.3.1. An Algorithm For Code Generation From A Tree Strusture

A structure tree is a graph that consists of a

collection of nodes and branches, which each branch

connecting two nodes(2).

Waite(5) defines a arithemetic expression as a

structure tree written in linear form (figure 4.1.), with

each node representing an elementary computation. A leaf of

the tree represents a computation which can be carried out

independently of all other nodes in the tree, while an

interior node represents a computation which requires as

operands the results of the computations represented by its

decendants.
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A - 3 * (I + J) / 2

A). A Typical E

A

3

Impression

/

2*

+

1 J

B). The Equivalant Tree for (A)

Figure 4.1. The Meaning of an Expression
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One possible evaluation algorithm for this structue

tree is the following:

1. Select any leaf and perform the computation which

it represents.

2. If the selected leaf is the root, then exit. The

result of the computation is the value of the tree.

3. Otherwise, transmit the result to the parent of

the leaf and delete the leaf from the tree.

4. Repeat from 1.

This procedure is strictly sequential, but nothing is

mentioned about the order in which the leaves are selected.

4.3.2. Anonymous Operands

Waite(5) points out that the reason for using an

expression is to avoid naming each of the intermediate

results created in the course of a computation. When a leaf

of an arithemetic expression is evaluated, the result is

anonymous. The code generator is free to do what it well

with these anonymous results because it has explicit control

over the times at which they are created and the times at

which they are freed, it does not need to worry about

whether the programmer may access them unpredictably.
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The following are three broad categories to process

anonymous operands:

1. Use no register

All instructions take their operands from memory

and return their results to memory.

2. Use a single register

Operators take their' operand from the register

and return their result to the register4

3. Use mutiple registers:

Binary operators take one operand either from a

register or from memory and all operators return

their result to a register. Some registers may be

paired to provide an analog of the extension of a

single-re ister machine, but all have essentially the

some capabilities.
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CHAPTER V

OPT INIZAT ION

5.1. Introduction

Optimization is the term which is used to denote the

attempt by a translator to improve upon the description of

the al gorithm which was given by the programming language

user. Optimization is most appropriate when the source

language does not provide access to all of the facilities of

the target computer(6).

Any general approach to code optimization is severely

limited by undecidability results(l) and by the lack of

definitive optfpnality criteria. The compiler's optimizer

therefore provides improvement (relative to some cost

function), rather than true optimization(6). In order to

avoid undecidable equivalence questions, the improvement is

carried out by applying a series of equivalence-preserving

transformations to the original algori thm(I). Each

transformation is based upon information gathered from some

region of the source program.

In this chapter different techniques for optimization

are depicted in detail.

32
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5.2. Folding and Propagation

. When the value of the operands on an expression are

known to the compiler, that expression can be folded

(replaced by a single value). When a variable is set to a

value at compiler time, that value can be propagated

(substitued for the variable) by the compiler, if the

algorithm used by the compiler results in the same value

that would result for evaluation at object time.

5.3. Rearrangement

The purpose of rearrangement is to reduce the amount of

temporary storage required during the evaluation of an

expression. This has the effect of speeding up the

evaluation, because it may be possible to compute a value

using only registers for temporary storage.

Some number of anonymous operands must exist

simultaneously during the evaluation of a given expression.

This number depends upon the order in which the components

of the expression are evaluated.

The temporary storage requirements for a given

expression are fixed. In order to lower the requirement, we

must transform the tree structure of this expression into

another which yields the same value but has a different tree
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structure.

For example, with the expression of Figure 5.1, we can

transform the tree structure of the expression A*B+(C+D)

from Figure 5.1(a) to obtain the tree sturcture of Figure

5.1(b), which requires only a single temporary anonymous

operand rather than two. This is valid only if the data type

of (A*B) is the same as (C+D); otherwise, transformation

operation will have to be inserted to convert data types, as

from single-precision to multiple precision, or from a fixed

decimal number to a floating binary number.

5.4. Redundant Elimination

Code is redundant if the value which it computes is

already available at the point where the code occurs. The

method that is used to eliminate redundancy of a expression

is that of finding common sub-expressions of a expression

and eliminating the excessive use of temporary storages.

Common sub-expressions elimination is an optimization

which creates a directed acyclic tree(3) rather than a

structure tree to describe the program.

For example, given the expression of Figure 5.2, we can

transform the tree structure of Figure 5.2(b) and create a

directed acyclic tree of Figure 5.2(c) which retains only
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A * B + (C + D)

-I-

A B C D

(a). The Directed Tree Structure for the Expression

+

A B

1 ?

(b). The Tree Strucrure Transformated from (a).

Figure 5.1. Temporary Storage Requirements

00,
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I J * (X + Y) + (X + Y) * K

(a). An Expression With Common Sub-expression

I +

J+ + K

X Y X y

(b). The Tree Structure for (a).

I +

X 

+K

(c). The Directed Acyclic Structure for (a).

FIGURE 5-.2.. Eliminating a Common Sub-expression
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one copy of each sub-expression.

5.5, Strength Reduction

SLrength reduction is the general process of replacing

an expensive (use relative more CPU cycles) operation by a

cheaper (use relative less CPU cycles) one and dose not

alter the value of the expression. When a value is raised to

a constant power it may be possible to replace the exponent

by a series of multiplications:

For example, the. polynomial

X**4 + X**3 + X**2 + X + 1

may be replaced by the expression

X*(X*(X*(X+1)+I)+i)+1

Another example is that the control variable of a loop

is multiplied by an expression whose value remains constant

over the loop; than that multiplication may be replaced by

an addition.

For example, the following code

DO I = 3*X+Y TO Z ;

END';
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may be replaced by

TEMP = 3*X+Y ;

DO I = TEMP TO Z ;

END ;

5.6. Frequency Reduction

Frequency reduction attempts to move operations from

one part of the program which are entered frequently to the

part which are entered rarely. The most important use of

this transformation is to remove invariant calculations from

loops, on the assumption that the code insi-de a loop is

executed more frequently than that surrounding the loop.

For example

DO I = I TO 100 ;

/* ASSUME THAT A, B, C, D ARE NOT EVALUATED *1

X = A+(B*(C+D)) ;

END;

may be replaced by

X = A+(B*(C+D)) ;

DO I = I TO 100 ;
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END;

5.7. Register Allocation

Register allocation can be performed on the basis of

global flow analysis which provides the code generator wi th

information on the future use of values currently residing

in registers; this type of allocation falls in the province

of optimization(2).

The so-called 'peephole optimization'(5), which avoids

locally redundant fetches and stores of register contents,

is an instance of intelligent code generation.
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CHAPTER VI

A DESCRIPTION OF TPL

6.1. Introduction

TPL is a goto-less structured programming(2) language

with an unusually complete set of control structure of the

non-procedure variety.

CASE and LEAVE statement are among the more unusual

statements types found in TPL. SELECT, CASE, LEAVE,

IF-TPHEN-ELSE, UNLESS-THEN-ELSE, and REPEAT-WH ILE statements

are designed for structured programming in TPL. Functions

are avaiable with zero or one argument and a single result.

The syntax is PL/1 (1) -like except there are reserved

words (APPENDIX 1). A usual set of arithmetic and comparison

operations on integer numbers and one-character stri ngs are

included. Arrays are available. Input and output are

unformatted. Storage allocation is static.

The compiler of TPL is written in PL/1 to run on the

IBM 360/370 computer. The compiler produces relocatable

object code which can contain external references.

41
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6.2. Basic Language Elements

Identi fier

An indentifier is a string of characters. The first

character must be alphabetic. The remaining characters can

be alphabetic, numeric, or the underscore character. An

identifier may not contain embedded blanks. An identifier

can be any length; however, the first six characters must be

unique in identifiers used as external function names.

Identifiers are used as variable names, as control structure

names, and as reserved words.

Constants

TPL has two types of constants. A numeric constant

consists of up to five decimal digits optionally preceded by

a sign. A character constant consists of one character

preceded by a single quote.

Spaces

Spaces may not be embedded- in identifiers or constants,

but may be embedded anywhere and/or any number of spaces in

the source program.

Corment

A comment is any character string started and ended

with a bar character ('I'). A comment may extend over any
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number of input records and may appear anywhere a space may

appear.

Examples:

1. THIS IS A COMMENT

2. SET A TO : THIS IS A COMMENT : B;

Vectors

A vector is a array which defined by naming the vector

and its length in a vector declaration statement. An element

of a vector is chosen by following the vector name with an

expression enclosed in parenthesis.

Examples:

1.7 -VECTOR V(10), X(50) ;

2. SET V(A+5) TO V(FUNCX(X-1)+B) ;

6.3. Statements

Statements are free form. Each statement is terminated

by a semicolon. One statement can be spread over as many

input records (cards) as necessary and one input record can

contain several statements.

Examples

1. SETATOG; SETBTOO0; SETC TOO;

2. SET A TO A+B;
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3. SET A TO A + B

DC

D / E

There are five types of statements in TPL. They are :

1. Declaration statements
2. Simple statements
3. Statements that start a control structure
4. Statements that end a control structure
5. Statements that cause termination of a control

Structure

Type 3, 4, 5, are described later in this chapter.

6.3.1. Declaration Statement

There are two types of declaration statements:

1. EXTtRNAL declaration statement

2. VECTOR declaration statement

All EXTERNAL declaration statements must preceed all

other statements in the program. An EXTERNAL declaration

statement specifies a list of function names which are

external to the program being compiled.

Examples:

EXTERNAL EX1, EX2;

All VECTOR declaration statements must proceed all
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other statements in the program except EXTERNAL declaration

statements. A. VECTOR statement specifies a list of arrays

and their lengths.

Examples*

VECTOR A(10), V(20);

6.3.2. Simple Statement

There are three types of simple staternentsI

1. SET
2. INPUT
3. OUTPUT

The SET statement is the usual assignment

Examples:

1. SET A TO 5;

2. SET V(X*Y+Z) TO FUNC(J)+7

statement.

The INPUT statement causes input of the items i n the

list. An input list item can be a subcripted array or a

simple variable.

Examples

INPUT A, B(I), J, C(J);

The OUTPUT statement causes output of the vaules of the

items in the list. An output list item can be any

expression.

Examples:

;
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OUTPUT A+B*C, 17, 0, '=, FUNC(X);

There is no control over format for either INPUT or

OUTPUT statements.

6.4. Operations

Arithmeti c Operations

A set of usual arithmetic operations are available in

TPL. They are addition (+), subtraction (-), multiplication

(*), and division (I) from left to right, except the

following precedence of operations.

Priority 1
- prefix minus
+ prefix plus

Priority 2
/ divide
* multiply

Priority 3
- infix minus
+ infix plus

Relational Operations

Relational operations are provided for use in IF and

UNLESS statements. They are equal (), not equal (=), less

than (<), less than or equal (<), greater than (>), and

greater than or equal (>).

Examples

1. IF A = B THEN
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2. UNLE SS X Y THEN ....
3. IF CHARACTER 'X THEN

6.5. Control Structures and Flow Of Control

The physical beginning of each control structure,

except the source program structure, is identified by a

reserved word specified to the control structure.

Examples:

I. FUNCTION
2. IF
3. UNLESS
4. SELECT
5. REPEAT

The physical end of each control structure is

identified by a reserved word specific to the particular

control structure7 >

Examples

1. END (END OF PROGRAM)
2. ENDFUNCTION
3. ENDIF
4. END SELECT
5. ENDREPEAT

Any control structure except a program can be named by

placing a label on the statement starting the control

structure.

Example

A: SELECT ......



X: IF A=B THEN.......

Control structures can be nested to any level. On the

compiler listing there is a level count which starts at one

with the first statement in the source program. The count is

incremented each time a control structure is started and

decremented when the corresponding end is encountered. Any

control structure may appear at any level except the program

and the function. The program is at level zero. All function

definition must be at level one. Normal exit from any

control structure is made by executing the statement

physically ending the control structure. Premature exit can

be made from a control structure by executing a LEAVE

statement.

6.5.1. Program Control Structure

There is no statement which specifically identifies the

beginning of the program control structure. The END

statement identifies the physical end of the source program.

A object program can be terminated by executing a STOP

statement anywhere in the program or by executing the END

statement.

Example:

SET X TO 5;

IF X=Y THEN STOP;
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END_IF;

END;

6.5.2. FUNCTION Control Structure

A FUNCTION control structure must be at level one and,

prior to any reference to the function. The FUNCTION

statement identifies the start of a function. The FUNCTION

statement should have a label which becomes the function

name.

All variables defined in the program can be referenced

from within the function and all variables defined in the

function can be referenced in the main program (storage

allocation is static).

Example:

FUNC: FUNCTION;

SET I TO 1+1;

IF A=B THEN LEAVE FUNC;

END_FUNCTION;

A function is invoked by using the name in an

expression. The function will return a value which will be

used in the place of function name in the evaluation of the

expression. The value returned by the function will be the
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value assigned to the function name within the function,

within the function the function name is treated as a simple

variable in all contexts.

FACTOR : FUNCTION(N);
SET FACTOR TO I ;
REPEAT SET I TO FROM 1 TO N;

SET FACTOR TO FACTOR *.I ;
ENDREPEAT ;

ENDFUNCTION;

SET X TO FACTOR.(C+R*S);

END;

The END FUNCTION statement physically ends a function..

If the ENDFUNCTION is executed, control transfers to the

point at which the function is invoked. A function can also

be exited by a LEAVE'statement.

6.5.3. SELECT Control Structure

The SELECT statement causes a choice to made among

several possible cases. Each case consists a unique sequence

of simple statement and/or control structure.

The choice is made in the following way

1. The expression on the SELECT statement is

evaluated.

2. Each CASE statement expression is evaluated in
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turn until all cases are exhausted or until the select

expression equals a case expression in value. The matched

case is chosen as the one to be executed. If no case i s

matched, none i s executed.

3. After the chosen case is executed, if any,

execution continues at the statement following the

ENDSELECT.

The domain (range of statements) for a given CASE is

from the statement follows the CASE statement to the

statement which precedes the next CASE statement or the

END SELECT statement.

Example

1. S IB.ECT I;
CASE 1;

CASE 2 ;

ENDSELECT;

2. SELECT A+B ;
CASE X+Y ;

CASE S ;

CASE X+Y+FUN(I) ;

ENDSELECT ;

3. SELECT CHARACTER ;
CASE 'A ;

CASE '3 ;
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CASE ' ;

ENDSELECT ;

6.5.4. IF Control Structure

The IF control structure is started by the IF statement

by the ENDIF statement.

Examples:

1. IF A=B THEN

2. IF A+5 = B/C THEN

Any number of simple statement and/or- control

structures may follow the reserved word THEN.

The IF control structure is terminated by the reserved

word ENDIF or the reserved word ELSE. If the ELSE is used,

it may be followed by a sequence of simple statement and/or

control structure terminated by the reserved word ENDIF.

Examples:

IF A=B THEN
SET X TO Z ;

END IF ;
ELSE
SET Y TO Z
*N cc....

ENDL_IF



6.5.5. UNLESS Control Structure

Contrary to the IF statement, in the UNLESS statement

the sequence of simple statement and/or control structures

following the reserved word THEN is executed if the

conditional expression is false. If the conditional

expression is true, the statements following the ELSE are

executed.

Examples:

1. UNLESS X=Y THEN SET X TO A+8 ;

ELSE SET X TO C+D ;

ENDUNLESS ;

The UNLESS control structure is terminated by the

reserved word ENDUNLESS statement.

6.5.6. REPEAT Control Structure

The REPEAT control structure is used for forming a loop

around a sequence of simple statements and/or control

structures. The REPEAT control structure is terminated by

the ENDREPEAT statements. When the ENDREPEAT statement i s

encountered during execution, control returns to the

beginning of the REPEAT control structure.

The WHILE and SET are two optional phrases for the

REPEAT statement.. The WHILE phrase supplies a conditional
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expression. The conditional expression is evaluated each

time the top of the REPEAT is encountered. The sequence of

sinrple statement and/or control structures of the REPEAT is

executed only if the conditional expression evaluated -to

true. If the conditional expression evaluate to false, the

REPEAT control structure is terminated and the next

statement to be executed will be the one following the

ENDREPEAT statement.

Example :

REPEAT WHILE X<100 ;

ENDREPEAT ;

The SET phrase specifies a variable referred to as the

repeat-variable. Each time the top of the REPEAT statement

in encountered, the REPEAT variable is assigned thenext

value specified by the SET phrase.

Example:

1. REPEAT SET I TO 1, 5, -8, 'X

ENDREPEAT ;

2. REPEAT SET J TO X+Y, X*Y ,
FROM X+5 TO Y*3 BY A3 ,
FROM 10 TO -100 BY -3 ;

ENDREPEAT ;



3. REPEAT WHILE A>B SET X TO FROM I TO 500
BY 5;

ENDREPEAT;

The list of values follows the reserved word TO is the

SET phrase. A list item can be expression or a FROM phrase.

The FROM, TO, and BY, values can be expressions which

evaluate to either positive or negative values, if the BY

value is not specified, the default value is one.

6.5.7. Termination Statements

The STOP and the LEAVE are the termination statements

other than the END statements. The STOP statement causes the

program to be halted and no further statements will be

executed. The LEAVE statement names a control structure.

When the LEAVE statement is executed, the named control

structure will be terminated. A LEAVE statement at level N

can cause termination of any control structure from level I

through N-1.

Example:

P: REPEAT WHILE X<1000 ;

IF X=50 THEN LEAVE P ;
IF X = 60 THEN STOP;

END_REPEAT ;



CHAPTER BIBLIOGRAPHY

1. lntrlrnational Business machines, PL/1 Lnpuace
Specifications, IBM Form 28-6571, 1972

2. Yourdon, I., "A Brief Look at Stru'ctured Proorrni ng And
Top-Down Design", iodzri DL, Junc 1974, p. 3O-34



CHAPTER VII

DATA BASES

7.1. Introduction

The data bases which are related to the generation of

machine code are depicted in detail in this chapter. The

manner in which the various data bases are used is shown by

Figure 1.1 in Chapter 1, which should now be refered to.

7T2. SOURCE

SOURCEX is an external IfiI built by the SCANNER and

input by the PARSER. It contains a copy of the card input

whi ch i s the source program of TPL.

7.3. TOKENS

TOKENS is an e x ternal f ilIe bui 1t by the SCANNER and

inpUt by the PARSER. The entries in the fi Ie TOKENS are

number svh I ch identIfy a cer t ai n token--t y pe f ollIowed by a

variable which may be pointer to a symbol lIi st entry or a

number or a null value for those tokens not reci rin,

oper anids. Figure 7. I s hows t he t hr e types of entri e.
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TOKEN POINTER

TOKEN - NUMBER

TOKEN

Figure 7.1. --- TOKEN ENTRIES

74,% Symbol List

- The symbol list is a one-way linked list. The nodes of

the list are dynamically allocated as they are needed. Each

node contains six fields. Nodes are variable in size since

the NAME field is variable in size. Figure 7.2. Shows the

layout of a node.

NEXT

TYPE : DIM OR EF
LOC OR P

I------------------------I

LNTH |NAME

(VARYING)

FIGURE 7.2. - A SYMBOL NODE

The field called NEXT is always a pointer to the next

entry in the one-way chain, except that the last entry in
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the symbol list has a value of NULL, a special PL/1(l)

value.

The field called TYPE is an integer value which

indicates the type of node. TYPE has values for each phase

of the compilation. The types of nodes bui It by the SCANNER

are

1, Label
'2. Indentifier
3. Constant

The types of nodes recognized by the PARSER are:

1. Label
2. Vector
3. Simple variable
4. Constant.
5. Function
6. Active function
7. Dummy 'argument

The types of nodes recognized by the code generator
are

1. Label
2. Define label
3. Vector
4. Simple variable
5. Constant
6. Function
7. Defined function

The field called DIM or EF is filled by the PARSER. For

a vector DIM contains the length of the vector. For a

function EF contains a flag indicating whether or not the

function is external. The field called LOC or P is used by
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the PARSER and CODEGEN. PARSER uses P when compilin a

function. If the node is an active function, P is a pointer

which points to the simple variable where the function value

is stored. If the node is a dummy argument, P is a pointer

points to the simple variable where the dummy argument is

stored. During the storage allocation stage CODEGEN sets LOC

for vectors, simple variables, or constant. During the

machine code generation CODEGEN sets LOC for labels or

functions.

The field called LNTH is entered when the code is

allocated. It contains a number which is the length of the

NAME field in characters.

The field called NAME is entered when the word is

allocated. It cntains an identifier which names a label, a

vector, a simple variable, or a function; or it contains the

character string which defins a constant.

Nodes are allocated by every phase of the compiler. The

SCANNER builds nodes for every identifier, label, or

constant found in the source. The PARSER builds nodes for

temporary storage and system-generated labels.

The PARSER also builds nodes for function values and

dummy argument values. Code generator builds a node for a

system generated label which is defined at the beginning of

the executable code.
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7.5. THREECD

THREECD is an external file build t by the PARSER and

input to the code generator (CODEGEN). The entries in the

file THREECD are numbers which identify the type of code

optionally followed by one to three pointers or a number.

All entries in the file have fields for three pointers. If a

field is not used for a particular code, it is set to NULL

(a special PL/1 value). Figure 7.3 shows the five types of

entries in THREECD.

CODE

CODE NUMBER

CODE POINTER
------------------------

CODE POINTER POINTER
--------------------- --------------------

CODE POINTER 1 POINTER | POINTER

Figure 7.3. --- THREECD ENTRIES

Appendix 2 defines the various three address and lists

their respect ve operands, if any.
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7.6. RFAIRCD

RFIRCD is an external file built by the code generator

and input to the LOADER, which transforms the relocatable

object code module into an executable module.

RFAIRCD contains the relocatable object code along with

the loader control information necessary to load the program

by the LOADER. Each entry in RFAIRCD consists of a loader

control character and optionally an operand. The operand can

be a number or a name.

Appendix 4 defines the various loader control codes and

lists their respective operands, if any.

7.7. ABSBIN

ABSBIN is an external file output from the relocatable

loader and input to the Fairchild F24 computer, which is the

target computer. ABSBIN contains the absolute Fairchild F24

machine codes which are executed by the Fai rchildd F24

computer hardware or by the simulator.

7.7. ERFORSS and ERRORSP

ERRORSS and ERRORSP are external files built by the

SCANNER and the PARSER respectively. Both files contain

error messages generated during the compilation of a TPL
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program. Both f ilIes are merged i nto the output l i st ing. Each

entry in the files consists of a line number on which the

error occurred and up to 100 characters of text describing

the error.

(I



CHAPTER BIBLIGGR APIHY

1. Cri es, David cj, Compi er Construction Qfor [1Atal
Corpt e rs, New York, Joh-Wiley,1971

2. International u siness ahcIi nes, P,/I Lenouaoe
speclF f i cat I 1onsI B Form C?2&-(71 , 2197T



CHAPTER VIII

SUMMARY AND CONCLUSION

8.1. Testing

SCANNER, PARSER, and CODEGEN wifl generate a debug

listing when requested. The debug output options are

controlled from the source input stream. The options can be

turned on or off and changed at any point by one source card

with '?r on column 1 and 2. There are several levels of

debug output that can be selected. Figure 8.1 shows the

output for each level. Samples of debug output are shown in

Appendix 7-13.

This compiler was tested in several stages:

Stage 1: SCANNER output was hand-checked using the

debug output.

Stage 2: PARSER output was hand-checked using the

debug output. The PARSER and SCANNER were i ntegrated

for this stage.

Stage 3 CODEGEN output was hand-checked using the

debug. output. CODEGEN was integrated with PARSER and

SCANNER for this stage.

Stage 4: LISTER output was hand-checked using

65
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Fi gure 8.1 Debug Output Options

PHASE LEVEL OUTPUT

SCANNER 0 None.

i : Source, Errors
and tokens.

2 Source, errors, tokens, and
detail trace of finite-state
machine.

PARSER 0 None

1 Source, errors, and

three-address codes.

2 Source, errors, three-address
codes, tokens, and subroutine
trace.

CODEGEN 0 Source and Fairchild F24
assembly language listing.

1 Source, F24 assembly language
listing, and object code.

2 Source, F24 assembly language
listing, object code, and
three-address codes.

----------------------------------------------------------



67

debug output. LISTER was integrated with PARSER,

SCANNER, and CODEGEN for this stage.

Stage 5* LOADER output was hand-checked using

debug output. LOADER was integrated with PARSER,

SCANNER, LISTER and CODEGEN for this stage.

Stage 6* the TPL compiler was integrated with the

LOADER and the Fairchild F24 simulator for this stage.

TPL programs were compiled and executed. The output

from the Fairchild F24 simulator was hand-checked.

Test programs for stage 1 though 4 were designed to

test the compiler rather than go into execution. The

programs were designed to test each major feature of the

compiler on a statement by statement basis. Programs for

stage 5 and 6 were designed to produce output that could be

intepreted as correct or incorrect depending on whether or

not the interpretation had been correct.

Samples of testing programs are shown in Appendix

14-15.

8.2. Choice of Implementation Language

It is believed that the compiler presented in this

thesis is best implemented in a high-level programming

language. This language needs not support dynamic arrays or
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data-directed Input-output; in fact, any feature reqUiiring a

complex run-ti me environment is a IIab'ity.

The Ianutge should make it easy to produce modul ar

software systems, that is, a system containing a large

percentage of components. In support of this notion, the

language should posses a reasonable, efficient subroutine

call facility. Full call-by-name(2) is certainly not needed;

a simple call-by-reference(2) would be satisfactory. Also a

programmer should be able to get at out-of-module variables,

say in a shared data base, without having to go to any great

trouble.

A language (especially an implementation linuage) can

not afford to hide very many attributes of the

target-machi ne hardware and moni tor, as it i s di ffi cult and

dangerous to predict which features will never be useful.

This implies that perhaps the best implementation language

is the one customer-tailored for the target machine

environment that it must routinely deal with. So we have two

alternatives:

1) Define a reasonably machine-i independent

language and hope for the best with regard to monitor

interfacing and complete instruction-set utilization,

or
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2) Define a language suitable for a fairly large

family of machine (like UNIVAC H 00s or the I1' 360/370

line), hl oi the Ianquage to become rAher

mac-hi ne-dependent, t hen ccunt on def i ni ng a new One

when it is time to crOSS f1ailY liI tes.

Of the two, the first is more attractive from a

mobi lity standpoint. The second is more attractive to those

wishing to exercise very close control over hardware and

monitor.

8.3. Evaluation

Probably most compilers have been written with

"conversation routines" embedded in and/or called by the

lexical analyzer(l). A call to such routines Usually occures

immediately after each token is discovered. Such routines

usually convert digit strings to some "Internal 2 integer

representation, for example, or if a decimal point is

encountered, to some representation of real numbers; or they

may interpret special characters inside string constants;

etc.

All too often the "internal" representation chosen is

that of the machine on which the language is initially being

implemented, with little or no thought that the compiler
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might I ater be moved o another machine or be modi fled to

generate code for a different machine. Such decisions are

usually made because of "efficiency".

It is desirable to keep the entire front-end (scanner

and parser) of the compiler independent of target

representations, if possible. If constants are translated to

target representations by the lexical analyzer, tables of

several di fferent types usually must be maintained and some

processors that do not need to know those representations,

nonetheless must be programmed in term of, or around them.

For example, if constants are converted and an error mess.ne

should relate to one, it must be converted back to source

representations for printing,

In summary, the author suggests that the scanner and

the parser should be independent of target representations,

if possible.

8.4. Future Research

In the author's opinion, future research activities lie

in the following areas:

1) In the optimization for the machine code

(CHAPTER V), the author described various methods for
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generrati jg opt nI Zed machine code. Further extens i4ons

of the present research might include investI nation of

other mechanism on which optimized machine code can be

gene r ated .

2) In the design of the TPL compi ler, the author

chose the static storage management for storage

al locati on. Run--time s torage allocation may be added in

the future.

3) In the description of error recovery in syntax

analysis (CHAPTER II), the author has presented

decriptions of error recovery, further research might

i include development of repair t echni ques to transform

programs containing syntactic errors into programs that

are both valid and similar.
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APPENDIX I

LIST OF RESERVED WORDS IN TPL

BY IF

CASE INHP UT

ELSE LEAVE

END OUTPUT

ENDFUNCTION REPEAT

ENDIF SELECT

END_REPEAT SET

ENDSELECT STOP

ENDUNLESS THEN

EXTERIN'AL TO

FOR UNLESS

FROM VECTOR

FUNCTION WHILE
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APPENDIX 2 TREE-ADPRES7 DOPES

CODE OPERAND AN CODE DEFINITION

ADD P1,P2,P3.
add P1 to P2 and store the result in P3.

CALLO P1,P2.
the function, P1, is invoked and the returned
result is store in P2.

CALL P1,P2,P3.
the function, P1, is invoked with argument,
P2, and the returned result is stored in P3.

COMPARE_EQ PIP2,P3.
if P1 is equal to P2, P3 is set to true;
otherwise, P3 is set to false.

------------------------------------ -------

COMPAREGT PIP2,P3.
if P1 is greater than to P2, P3 is set to
true; otherwi se, P3 is set to false.

COMPAREGTEQ PIP2,P3.
if P1 is greater than or equal to P2, P3 is
set to true; otherwise, P3 is set to false.

COMPARELT P1,P2,P3.
if P1 is less than P2, P3 is set to true;
otherwise, P3 is set to false.

COMPARE_LTEQ PI,P2,P3.
If P1 is less than or equal to P2, P3 is'
set to true; otherwise, P3 is set to false.

U------------------------ -----

COMPARENEQ PI,P2,P3.
If P1 is not equal to P2, P3 is set to true;
otherwise, P3 is set' to false.

DOTIMES PIP2,P3.
multiply P1 by P2 and.store the result in P3.

DODIVIDE P1,P2,P3.
divide P1 by P2 and store the result in P3.
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APPENDIX 2 THREE-DDtES CODES (CONTINUED)

CODE OPERAND AND CODE DEFINITION

ENDTAC No operand
indicates the end of three-address codes.

ENTERO P.
enter a function by reserving a location P1
for the return address.

ENTER PI,P2.
enter a function by reserving a location P1
for the return address and the arQument
value at P2, the dummy argument.

EXIT P1.
exit a function by returning the function
value, PP.

-------------------------------------------------------- '

GO P1.
branch to Pl.

I----------- ----------------- ------ ~--------- ---------

GOIFFALSE P1,P2.
if P1 is false, branch to P2; otherwise,
execute next code.

--------------------------------------

GOIFTRUE P1,P2.
if P1 I's true, branch to P2; otherwise,
execute next code.

IN P1.
input P1.

INDEX P1,P2,P3.
calculate the address of P1 subscripted
by P2. Store the resulting address in P3.

LOCDEF P1.
label P1 is defined at this location.

IN P1.
input P1.
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APPENDIX 2 THREE-ADDRESS CODES (CONTINUED)

CODE OPERAND AND CODE DEFINITION

No P ,
MOV PI,P2.

move P1 to P2.

MOVI PIP2.
move P1 to the location defined by the
address in P2.

MOVI P1,P2.
move the value at the location difined by the
address in P1 to P2.

NEGATE P1,P2.
negate P1 and store the result in P2.

OUT P1.
output P1.

RETJMP P1.
return indirect through P1

STOPCD no operand
stop

SUBSTRACT P1, P2, P3
substractP2 from PI and store the result in
P3.

"M "NIW ff w w-&#0&owbSO*f w~ 10 o O a O W 0 o w w wd^,w*M-m4o"

XDEF Pi
the entry point to function P1 is defined at
Pi.

I Im f.A o o 1" MQ MO",ws""oWWV w* N ma ~ "MGm0. 0 6 M*oa-0 M o ~ Wmmo m w "'o"of -oo*-
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APPEND IX 3

BNF SPECIFIC T ION CF T HIS PROGRAMMING L AIGUAGE

<PROGRAM> = <PROGRAM TAIL>
<PROGRAM HEAD> <PROGRAMTAIL>

<PROGRAMHEAD> <EXTERNALDECLARATIONLIST>
<VECTORDECLARATIONLIST>

<PROGRAM TAIL> <SAME LEVEL SEQUENCE> END;
<EXTERNAL-DECLARATION LIST> : <EXTERNAL DECLARATIONSTATEMEN

<EXlERNALDECLARATION FIST>
EXTERNALL DECLARATION STATEMENT>

<VECTORDECLARATION LIST> ::= <VECTOR _ECLARATIONSTATEMEINT>
<VECTORDECLARATION LIST>

<VECTORDECLARATIONSTATEMENT>
<EXTERNALDECLARATIONSTATEMENT> ::= EXTERNAL <EXTERNAL LIST>
<EXTERNAL LIST> ::= <FUNCTION NAME>

<EXTERNALTIST> , <FUNCT ION NAME>
<VECTOR DECLARATION> Ole VECTOR <VECTORLIST> ;
<VECTORLIST> = <VECTOR SPECIFICATION>

<VECTORLIST> , <VECTORSPECIFICATION>
<VECTORSPECIFICATION> ::= <VECTOR> ( <LENGTH> )
<VECTOR> = <IDENTIFIER>
<LENGTH> = <CONSTANT>
<SAMELEVELSEQUENCE> ::= <TERMINATION_STATEMENT>

<SEQUENTION_BLOCK>
<SEQUENTIAL BLOCK> <TERMINATIONSTATEMENT>

<TERMINATIONSTATEMENT> : = <STOP STATEMENT>
<-LEAVESTATEMENT>

<SEQUENTIALBLOCK>/::= <CONTROLLED BLOCK>
<SEQUENTIALBLO~CK> <CONTROLLED BLOCK>

<CONTROLLEDBLOCK> ::= <SIMPLE STATEMENT>
<FUNCTION BLOCK>
<SELECT BLOCK>
<REPEAT~BLOCK>
<IF BLOCK>
<UNLESS BLOCK>
NULL

<SIMPLESTATEMENT> := <SET STATEMENT>
<INPUT / OUTPUT STA TEMENT>

<FUNCTIONBLOCK> = <FUNCTION_HEADER> <SAMELEVELSEQUENCE>
ENDFUNCTION;

<SELECTBLOCK> <SELECTHEADER> <CASE LIST> END SELECT;
<REPEATBLOCK>::=<REPEAT HEADER><SAME LEVEL SEQUENCE>END REPEA
<IFBLOCK> ::= <IFHEADER> <SAMELEVELSEQUENCE> <IFTAIL~>
<UNLESSBLOCK> = <UNLESS HEADER> <SAME LEVELSEQUENCE>

<UNLESSTAIL>
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APPEND IX 3

BNF SPECIFICAT ION OF THIS PROGRAMMiNG LANGUAGE
(CONTINUED)

<SETSTATEMENT> = SET <TARGET> TO <EXPRESSION> ;
<TARGET> = <VARIABLE>
<EXPRESSION> = <TERM>

<EMPRESSIGN> <ADD/SUBTRACT OPERATOR> <TERM>
<TERN> ::= <SIGNED OPERAND>

<TERM> <NULTIPLY/DIVIDEOPERATOR> <SIGNED OPERAND>
<SIGNEDOPERAND> ::= <ADD/SUBTRACT~OPERATOR> <SI GNED~OPERAND>

OPERANDD>
OPERANDD> = <CONSTANT>

<VARIABLE>
<FUNCTION REFERENCE>
( EXPRESSIONN> )

<VARIABLE> = <SIMPLE VARIABLE>
<SUBSCRIPTEDVARIABLE>

<SIMPLEVARIABLE> 0:= <IDENTIFIER>
<SUBSCRIPTEDVARIABLE> = <IDENTIFIER> ( <EXPRESSION> )
<INPUT/OUTPUTSTATEMENT> = <INPUT STATEMENT>

<OUTPUT STATEMENT>
<INPUT_STATEMENT> = INPUT <INPUT LIST>
<OUTPUTSTATEMENT = OUTPUT <O'JTPUT LIST>
<INPUT_LIST> = <TARGET>

<INPUT LIST> , <TARGET>
<OUTPUT_LIST> := <EXPRESSION>

iOUTPUTLIST> , <EXPRESSION>
<FUNCTIONHEADER> <FUNCTIONHEADER> ;

<FUNCTIONHEAD> EXTERNAL;
<FUNCTIONHEAD> <FUNCTIONNAME> : FUNCTION(<DUMfIYARGUMENT>

<FUNCT IONNAME> : FUNCTION ;
<FUNC TION_NA ME> <IDENTIFIER>
<DUMMYARGUMENT> <IDENTIFIER>
<FUNCTIONREFERENCE> ::= <FUNCTIONNAME>

<FUNCTIONNAME> ( <EXPRESSION> )
<SELECTHEADER> SELECT <EXPRESSION> ;

<SELECTNAME> SELECT <EXPRESSION> ;
<SELECTNAME> : <IDENTIFIER>
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APPENDIX 3

BNF SPEC IFICATION OF THIS PROGRANmMING LANGUAGE
(CONTINUED)

<CASE LIST> -- <CASE>
<CASELIST> <CASE>
NULL

<CASE> = CASE <EXPRESSION> ; <SAM'E LEVEL SEQUENCE>
<REPEATHEADER> :r REPEAT <REPEATSPECIFiCATION> ;

REPEAT_NAUIE: REPEAT <REPEAT SPECIFICATION>
<REPEATNAME> : <IDENTIFIER>
<REPEAT_SPECIFICATION> ::= <SETPHRASE>

<SHILEPHRASE>
<WHILE PHRASE> <SETPHRASE>

<WHILEPHRASE> :: WHILE <CONDITION>
<SET PHRASE> :6= SET <SETVARIABLE> TO <SETLIST>
<SETLIST> ::= <VALUELIST>

<SETLIST> , <VALUELIST>
<VALUE LIST> ::= <EXPRESSION>

<RANGESPECIFICATION>
<RANGESPECIFICATION> :==FROM <START> TO <FINISH>

FROVI <START> TO <FINISH> BY <INCREMENT>
<START> = <EXPRESSION>
<FINISH> = <EXPRESSION>
<INCREMENT> = <EXPRESSION>
<SET VARIABLE> :*= <TARGET>
<IFHEADER> ::= IF <CONDITION> THEN

<IF NAME> : IF <CONDITION> THEN
<IFNAME> := IDENTIFIERR>
<IF TAIL> oo= END IF;

T ELSE <SAME_LEVELSEQUENCE> END_IF;
<UNLESSHEADER> = UNLESS <COND ITION> THEN

<UNLESSNAME> : UNCLE SS <CONDITION> THEN
<UNLESSNAME> : <IDENT IF IER>
<UNLESSTAIL> .::=. END UNLESS;

ELSE <SAME LEVEL SEQUENCE> END 'UNLESS;
<CONDITION> = <EXPRESSION> <RELATIONALOPERATOR> <EXPRESSION
<LEAVESTATEMENT> ::= LEAVE <BLOCKNAME>;
<BLOCKNAME> = <FUNCTIONNAME>

SELECT TAME>
<REPEATNAME>
< IF NA ME>
<UNLESSNAME>

<STOPSTATEMENT> = STOP;
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APPENDIX 4

LOADER CONTROL CODES

CODE OPERAND: CODE DEFINITION

A Number Load the number al. current load address.
Increment the load address.

R Number Relocate the number by adding to the bias.
Load the relocated number.
Increment the load address.

D Number Define a label at this location by filling
in a chain of references starting at number
plus bias.

X Number Load the number at the current load address
This instruction is a reference to an
external function.
Do not increment the load address.

blank Name There is at this location a reference to an
external function. If the function has been
loaded previously, enter its address in the
address of the instruction at this loaction;,
otherwise, link this reference to the
reference chain. Increment the load address.,

Z Name The entry point to an external function is
defined at this location. Fill in all
previous references and enter its name-in
the external symbol directory.

I.1

V 7'Reserve number storage locations at this
location. Add number to the load address.

E None Set bias to load address.
This is the end of this program.

None This is the end of this load procedure.
I------------------- ------------------------



APPENDIX 8
TPL COP TILER DIAGNOSTIC MESSAGES (1) 8

LINE LEVEL

0001 1 II
0002 1 1 ERROR MASSAGES IN TPL
0003 1 ii
0004 1 REPEAT SET I FROM 1 TO 10;
********:*MISSING TO SUPPLIED
0005 2 IF A > 0 THEN SET A TO 10;
0006 3 IF A > 20 THEN SET A TO 20 ; ENDIF;
0007 3 UNLESS A , 30 THEN SET A TO 40 ;
**********NO = FOLLO WING '"
0008 4 ENDREPEAT;
*4*******MISSING ENDUNLESS SUPPLIED.
*********MISSING ENDIF SUPPLIED
0009 1 ENDIF;
**********EXTRA OR UNRECOGNIZABLE STATEMENT IS IGNORED
0010 1 LEAVE NOSUCHBLOCK;
**********LEAVE OF INACTIVE BLOCK INVALID
0011 1 IF A ,>< 8 THEN STOP; ENDIF;
********'**MISSING END IS SUPPLIED

j.'



APENDIX 6
TPL COMPILER DIAGNSTIC MESSAGES (2) 82

LINE LEVEL

0001 1 Ii
0002 1 1 ERROR MESSAGES IN TPL I
0003 1 II
0004 1 VECTOR Z(0);
**********INVALID VECTOR SIZE SET ro i
0005 1 SET A12 TO 12A;
semicolon*SEMICOLON NOT FOUND WHERE EXPECTED
0006 1 SET B TO 5*3+(C-D));
semicolon*SEMICOLON NOT FOUND WHERE EXPECTED
0007 1 WHAT IS THIS ?
*******4**ILLEGAL CHARACTER
**4******4EXTRA OR UNRECOGNIZABLE STATEMENT IS IGNORED
0008 1 IF A = B THEN SET C TO 10;
0009 1 REPEAT SET I FROM 1 TO 10;
**********MISSING TO SUPPLIED
0010 2 SET J TO J + 1;
0011 2 END;
**********MISSING ENDREPEAT SUPPLIED



APPENDIX 7
TRACE LEVEL I iF SCANNER

OUTN TOKEN DEBUG
UTN TOKEN DEBUG

OUTN TOKEN LINENUMBER
2 SET A TO1

OUT TOKEN SET
OUTP TOKEN IDENTIFIER
OUT TOKEN TO
UUTP TOKEN CONSTANT
OUT TOKEN S EMI COL ON
OUTN TOKEN' LINENUMBER

3 SET B TO A*3
OUT TOKEN SET
QUTP TOKEN IDENTIFIER
OUT TOKEN TO
OUTP TOKEN IDENTIFIER
OUT TOKEN MULTIPLY
OUTP TOKEN CONSTANT
OUT TOKEN PLUS
OUTP TOKEN CONSTANT
OUT TOKEN SEMICOLON
OUTN TOKEN LINENUMBER

4 IFB) > A THEN
OUT TOKEN
QUTP TOKEN
OUT TOKEN
OUTP TOKEN
OUT TOKEN
OUT TOKEN
OUTP TOKEN
DUT TOKEN
QUTP TOKEN
OUT TOKEN
OUT TOKEN
OUT TOKEN
OUTN TOKEN

IF
IDENTIFIER

GT
IDENTIFIER

THEN
SET
IDENTIFIER

TO
IDENTIFIER

SEMICOLON
ENDIF
SEMICOLON
LINENUMBER

0
0
2

A

I

3
+ 2;

B

A

3

2

4
SET C TO A ;#

B

A

C

A

5 REPEAT SET C TO FROM 1 TO B3;
OUT TOKEN REPEAT
OUT TOKEN SET
QUTP TOKEN IDENTIFIER C
OUT TOKEN TO
OUT TOKEN FROM
QUTP TOKEN CONSTANT 1
OUT TOKEN TO
QUTP TOKEN IDENTIFIER B
OUT TOKEN SEMICOLON
OUTN TOKEN LINE.NUMBER 6

6 IF C = 2 * A THEN SET B TO C ; ENDLIF;
OUT TOKEN
QUTP TOKEN
OUT TOKEN
QUTP TOKEN
OUT TOKEN
OUTP TOKEN
OUT TOKEN
OUT TOKEN.
OUTP TOKEN
OUT TOKEN
QUTP TOKEN
OUT TOKEN

IF
IDENTIFIER

EQUAL
CONSTANT
MULTIPLY
IDENTIFIER

THEN
SET
IDENTIFIER

TO
IDENTIFIER

SEMICOLON

C

2

A

B

C
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ENDIF;



APPENDIX B
TRACE LE"VE 2 OF SCANNER

TOKEN DEBUG
TOKEN DEBUG
TOKEN LINEJNUMBER

SET A TO II;
LN = 2
LN = 2
LN = 2
LN = 2
LN = 2
LN= 2
LN = 2
LN = 2
OUT TOKEN
LN = 2
LN = 2
tN = 2
3UTP TOKEN
LN = 2
LN = 2
LN = 2
LN = 2
OUT TOKEN
LN = 2
LN = 2
LN = 2
OUTP TOKEN
LN = 2
LN = 2
LN = 2
OUT TOKEN
LN = 2
OUTN TOKEN

3
LN = 3
LN = 3
LN = 3
LN = 3
LN = 3.
LN = 3
LN = 3
LN = 3
OUT TOKEN
LN = 3
LN = 3
LN = 3
OUTP TOKEN
LN = 3
LN = 3
LN = 3
LN = 3
OUT TOKEN
LN = 3
LN = 3
LN = 3
OUTP TOKEN
LN = 3

STATE
STATE
ST ATE
STATE U
STATE
STATE
STATE
STATE

SET

1I
I.
1I
I
2
2
2
2

STATE = I
STATE = I
STATE = 2
IDENTIFIER
STATE = I
STATE = I
STATE = 2
STATE = 2

TO
STATE = I
STATE = I
STATE = 3
CONSTANT
STATE = I
STATE = I
STATE = 7

S EM COL ON
STATE = I
LINENUMBER

;ET 8 TO A *
STATE = I
STATE = I
STATE = I
STATE = 1
STATE = 1
STATE = 2
STATE = 2
STATE =o2

SET
STATE = I
STATE = I
STATE = 2
IDENTIFIER
STATE = I
STATE = I.
STATE = 2
STATE = 2

TO
STATE = 1
STATE = 1
STATE = 2
IDENTIFIER
STATE =

CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR

CHAR
CHAR
CHAR

A
CHAR
CHAR
CHAR
CHAR

CHAR
CHAR
CHAR

I
CHAR
CHAR
CHAR

CHAR

3 + 2;
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR

CHAR
CHAR
CHAR

B
CHAR
CHAR
CHAR
CHAR

0
0
2

CHARTYPE
CHARTYPE
CHARTYPE
CHAR3TYPE
CHARTYPE
CHARTYPE
CHAR TYPE
CHARTYPE

I ARTYPE
CHAR_TYPE
CHARTYPE
CHARTYPE

CHARTYPE
CHARTYPE
CHARTYPE
CHAR_TYPE

CHARTYPE
CHARTYPE
CHARTYPE

CHARTYPE
CHARTYPE
CHARTYPE

CHARTYPE =
3

S
E

B

T
a

CHAR =
CHAR = A
CHAR =

A
CHAR =

CHARTYPE =
CHARTYPE =
CHARJTYPE =
CHARTYPE =
CHARTYPE =
CHARTYPE =
CHARTYPE =
CHARTYPE =

CHARTYPE =
CHARTYPE =
CHAR.TYPE =

CHARTYPE =
CHARTYPE =
CHARTYPE =
CHARTYPE =

CHARTYPE
CHARTYPE =
CHARTYPE =

CHARTYPE =

S
E
T

A

T
0

p

TOKEN =
TOKEN =
TOKEN =
TOKEN =
TOKEN =
TOKEN =
TOKEN
TOKEN =

TOKEN =
TOKEN =
TOKEN =

TOKEN =
TOKEN =
TOKEN =
TOKEN =

TOKEN =
TOKEN =
TOKEN =

TOKEN =
TOKEN
TOKEN =

5
5
5
5
1
I
I
5

5
1
5

5

5
2
5

5
4
5

5

5
5
5
5
I
I
I
5

5
I
5

5
I
I
5

5
I
-j

5

TOKEN =

TOKEN =
T(KEN =;
TOKEN =
TOKEN =
TOKEN =
TOKEN = S
TOKEN = SE
TOKEN = SET

TOKEN = SET
TOKEN = SET
TOKEN = B

TOKEN = B
TOKEN = B
TOKEN = T
TOKEN = TO

TOKEN = TO
TOKEN = TO
TOKEN = A

TOKEN = A

OUTN
OUTN
OUTN

2
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s
SE
SET

SET
SET
A

A
A
T
TO

TO
TO
1

I
I
;



TRACE LEVEL I OF PARSER

0002

0003

0004

0005

0006

0007

0008

0009

9
STORAGE

EOF
T$5
T$4
L#12

SET A TO i

0
2

GDEBUG
GLLNO

I-
NOV
GLLNO
GI 0

DOTIMES
ADD
MOV
G'LLNO'

COMPAREGT
GOIFFALSE
MoV
LOCDEF
LOCDEF
GLLNO

IF
LOCDEF
MDV
LOCDEF.
COMPARELT
GOIF_TRUE
COMPARE GT
GO
LUCDEF
COMPARELT
LOCDEF
GOIF_TRUE
CALL
ADD
GO
LOCDEF
GO
LOCDEF
ENTERO
GLLNO

2
DOTIMES
COMPARE-EQ
GOIF_FALSE
MOV
LOCDEF
LOCDEF
GLLNO

2 E
LOCDEF
RETJMP
LOCDEF
GLLNO

I S
STOPCD
GLLNO

1 E
STOPCD

A

3
2
B

3
SET B TO A 4 3 + 2;

A
T$1
T$2

4
IF B > A THEN SET C TO A ;

a
T $1
A
L#2
L#1

5
REPEAT SET C TO FROM I TO B ;

L#5

1
T$2
C
L#9

C
L#9
T $3
L#4
C
L#7
L#6
L#3
L94
L#10

0
L#8

B

L#6

I

6
F C = 2 * A THEN SET TO C ; ENDIF;

2 A
C T$4
T$5 L#12
C B
L#12
L#11

7
NDREPEAT ;

L#10
L#4
11#3

TOP;

ND;

8

9

2
3
0
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T$1
T$2-

ENDjF;
A
L/#2
C

C

STORAGE
STORAGE

T$3

T$3

C

T$4
T$5



AyrENLIX 10
TRACE LEVEL LP0F PARSER

UPTOK

UPTOK
GDEBUG

GLLNO
0002 1.
UP TOK
PROGRAMTAIL
SAMELEVELSEQUENCI
CONTR&LLED_BLOCK
UPTOK %
SETSTATEMENT
TARGET
UPTOK
UPTOK
EXPRESSION
TERM
SIGNEDOPERAND
UPTOK

moV
FINDSEMICOLON
UPTOK
CONTROL LED-_BLOCK

GLLNO
0003 1
UPTOK
UPTOK
SET_STATEMENT
TARGET
UP TOK
UPTOK
EXPRESSION
TERM
SIGNEDOPERAND
UPTOK
UPTOK
SIGNEDOPERAND
UPTOK.

DOTIMES
UPTOK
TERM
SIGNEDOPERAND
UPTOK

ADD
MOV

FINDSEMICOLON
UP T1K
CONTROLLEDBLOCK

GLLNO
0004 1
UPTOK
UPTOK
IFJBLOCK
CONDO IT ION
EXPRESS ION
TERM
SIGNEDOPERAND
U PTO K
UPTOK
EXPRESSION

0

2
SET A TO 1;

LiNENUMBER

SET

IDENTIFIER
TO

CONSTANT
I

SEMICOLON

3
SET B TO A * 3 + 2;

LINENUMBER
SET

IDENT IFIER
TO

DENT IFIER
MULTIPLY

CONSTANT
A

PLUS

CONST ANT
T$1
T$2

SEMICOLON

4
IF B > A THEN SET C TO A

LINENUMBER
IF

IDENT IFIER
GT

86

A

3 T$1

2
B

T$2

ENDJ1F;



APrEoIX II
TRACE LEVEL OF COEEN

SET A TO 1 ;

SET ATO A- 3 + 2;

0002
R IDA
R STA
0003

R LDA

R MUL

R STA

R ADD

R STA

0004

R L PA

A SUB

R BNZ

R LDA

R STA

D L#2

0 L# 1
3005
D L95

R LOA
R STA
D L#7
tR LDA

R SUB
R a p

R L#A
R SUB
R STA
R BRU
o L#f8
R LDA
R SUB
R SIA
0 L#9
11 LDA
R 8P
R BRU
R IDA
R ADD
R SIA
R BRU
D L#6
R BRU

L 1#4
0006
R LDA
R MUL
R STA
R SUB
R BNEZ
A LDA
R BRU
A L S
R BNZ

A
1.

A
3
T$]
2
B

B
A
L#2
A
C

1

cC

0
1
L#8
C
B
T$3
L#9

B
C
T$3

T$3
L#6
L#4
C
I
C
L#,7

L#3

REPEAT SET C TO FROM 1 TO 8

1,

IF C = 2 * A THEN SET B TO C ; END_IF;

ENDfREPEAT ;

87

IF B > A THEN SET C TO A f*

2
2
A
T$4
C
PC+3
200
PC+2

24
L#12
C
B

ENDJ.F;

R LDA
R STA
D L#12
,) L#11
000D



APPENDIX 12
TRACE LEVEL I OF CODEGEN

0002 1
R LDA 1
R STA A
0003
R LDA A
A +00000002 V
R MUL 3
R STA T$]
R ADD 2
R STA B
0004 1.
R LDA B
R SUB A
R 34000013 R
R BNZ L42
R LDA A
R STA C
D L#2
D L#lt
0005 1
R 02300000 R
D L#ft5

.R LDA I
R STA C
D L#7

R LDA 0
R SUB 1
R BP L#8
R 24000011 R
R LDA C
R SUB B
R STA T$3
R BRU L#9
D L#8
R LDA B
R 24000015 R
R SUB C
R STA T$3
D L#9
R 1DA T$3
R r UP L#6
R BRU L#4
R 22000015 R
R LDA C
R ADD I
R STA C
R BRU .17
D L#f6
R BRU L 03
R 24000015 R
D L#4
0006 2
R LDA 2
R MUL A
R STA T$4
R SUB C
D 00000050 R
R RNEZ PC+3
A LDA 200

SET A TO I

SET 8 TO A * 3 + 2

00000001 D 00Q0O1 R 24000011 R 14000010 R 24000010

IF B > A THEN SET C TO A ; END.IF;

14000007 R 20000014 R 14000012 R 24000012 R 22000010

REPEAT SET C TO FROM 1 To B
24000010 R 14000015 D 00000027 D 00000000 0 00000000

14000015 0 00000000 R 24000005 R 22000011 R 02400000

22000012 R 14000004 k 01000000 D00000036 R 24000012

14000004 0 00000042 R 24000004 R 02400000 P I01000000

20000011 R 14000015 R 01000034 D

IF C 2 THEN SET TOC ;

00000047 R 01000000

ENDIF 2;

24000014 R 3400010 R 14000003 R 22000015 R 02500065

88



AC NLDX 123
TRACE E 1EL 2(IF CODEGENB

GLLNO

MDV
1
A

GLLNO
I.

DOTIMES

SET A TO 1 ;
A

3
SET 6 TO A t 3 + 2;

A 3 T$1
LDA A
+00000002 V 00000001 0 00000J1 R 24000011 R 14000010 R 24000010
MUL 3
STA T$M

ADD
2

MDV
B

GLLNO
I

COMPA RE.GT

T$1

T$2

2

B

T$2

4
IF B > A THEN SET C TO A ;

B
ENDJF;
A T $1

R LDA 1
R SUB A
R 34000013 R 14000007 R 20000014 R 14000012 R 24000012 R 22000010

GOliFFALSE T $1 L #2
R BNZ L#2

MoV A C
A
C

LOCDEF

LOCDEF

GLLNO
0005 1 REPEAT

LOCDEF
R 02300000 R 24000010 R
D L#5

MoV
1
C

LOCDEF

L#2

5
SET C TO FROM I TO B ;

L1#5
14000015 D 00000021 0 00000000 D 00000000

1 C

L#7

COMPARE.LT
0

I 0) T$2

SUB I
GOIFTRUE T$2 L#8

BP L#8
24000011 fR 14000015 0 00000000 R 24000005 R 22000011 R 02400000

COMPAREGT C B T$3
LDA C
SUB B

GO L#9.
STA T$3
BRU L#9

LOCDEF L#8
L#8

COMPARE-T ..TC B T$3
LOA B
24000015 R 22000012 R 14000004 8 01000000 D 00000036 K 24000012
SUB C

0002

R
R

LDA
STA

0003

89

R
A

R

R ADD

R - STA

0004

R LDA
R STA

D L#2

o L#

R.LDA
R STA

0 L#7

LDARa
R

ft
Ra

R
Ra

Ra
K

0

R
R
R



APPENDIX 4 (Pacw I of 3) 90
SOURCE LISTING OF TE'T POQRAM NUMBER 1

LINE LEVEL

D602 1 1 SAMPLE TESTING PhJGRAM NO' R 01
0003 1
0004 1 SET A T0 1 ;
0005 1 SET B T 02;
0006 1 IF B > A THEN SET F TO4 ;
0007 2 ENDIF ;
008 I REPEAT SET C TO FROM 1TO 2 ;

0009 2 IF C = 1 THEN SE T D T0 6 ; ENDIF ;
0010 2 IF C = 2 THEN SET E TO 7 ; ENDiF ;
0011 2 ENDREPEAT ;
0012 1 STOP ;
0013 1 END;



APPEND '14 (Paqe2 of 3)
RELOCATABLE FA-C 4ID F 4 MACHINE CODE

GENERATED RON VEST PRG {AM NUMBER I
A
V
A
D

0

R

A
0

00000001
00000001
+00000004
00000001
22000007
00000000
02400000
24000012
01000000
01000000-
01000065
00000000
07022024
00000000

R
V
V

R

R
a
R
R

D
A
R
R
R

01000000
00000001
00000001
24000010
02300000
24000010
24000015
22000015
24000015
00000051
07W22024
24000015
02300000
01040057

V
A
V
R
R.R
R
R
R
R
R
R

P.
P.

000 0>0 ~

0000000 1
14000007
24000014
14000015
22000012
14000003
20000010
24000015
02300000
22000012
21+000021
00000056

V 2.&Q0001 V
V i>0000l A
A +000)06 V
R 24000012 R
.140 00013 FU

D 00000000 R
R 14000003 R
D 00000043 R
R 14000015 R
R 22000010 R
R 24000017 R
R 02500075 A
R 14000020 D
A 00000200 A

00000001
+00000002

00000001
14000011
00000030
24000005
01000000
24000003
01000035
02500064
14000016
24000200
00000076
00000200

A
V
A
R
0
R
0
R
D
A
0
R
0
E

+00000000
00000001

+00000007
24000011
00000000
22000010
00000037
02400000
00000050
24000200
00000065
01000076
00000000
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APPENDI1 4 (ae 3 of 3)
ABSOLUTE E A R"ILO MACHINE C0DE

GENERATED FROA TEST PROGRAM NUMBER I

F24SIM VERSION OF JANUARY 29 19 4
OCTOBER 14, 1976 17:35. 9300

NO TRACE PARAMETERS READ. DEFAULT VALUES USED.

TRACE-LEVEL =

CURRENT EXECUTION T IME
EXECUTION TIME L IMIT =

*44 ENTERING LOADER.

** *00000001
***00000001
***00000000
** 402300233
***24000215
***02400256
***22000210
**4124000215
***14000220
***00000000
***00000000
***000.0000
**4*00000000
t**0000000
*00000000
~c*00000000
***400000000
4***00000000
***00000000
*00000000
*4*00000000
***00000000
***0000000
***00000000

***200##0

01000222
0 )0000000
00000007
24000214
22000212
01000251
02500264
22000212
01040257
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000'
00000000
00000000
000003000
00000000
00000000
00000 00
00000000

0
3000

00000000
00000002
24000210
14000213
14000203
24000215
24000200
02500275
00000200
00000000
0000000
00000000
00000000
00000000
0000000
00000000
00000000
00000000
0000000s
00000000
00000000
00000000
00000000
00000000

00000000
00000000
14000207
24000210
01000247
20000210
01000265
24000200
00000200
0000006 O
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000004
24000212
14000215
24000212
14000215
07022024
01000276
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0000000
00000000
00000000
00000000
00000000.
00000000
00000000

00000000
00000000
14000211
24000205
22000215
01000235
02300270
07022024
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
24000211
22000210
14000203
01000302
2400021 4
O2300301
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0000000
00000000
00000000

00000000
0000006
22000207
02400244
24000203
24000215
14000216
24000221
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0000000C

4** LEAVING LOADER WITH PC=OOUOOI-0000001

* ERROR LEVEL IS

*
*
4

0

DUMP_C
DUMP.COUNT
INITIAL SAVE OF MEMORY.

* END OF DUMP.C
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ERROR.LEVEL= 0



APPENDIX 15 (Page I of 3) 93
SOURCE LISTING OF -EST PROGRAM NUMBER 2

L INE LEVEL

0001 1
0002 1 1 SAMPLE TESNG PROGRAM PROGRAM NO. 2 1
0003 1
0004 1 SET B TO 0

0005 1 REPEAT SET A TO -l1Oil ;

0006 2 IF A < S T HEN SET XX TO 1. ; ENIIE ;

0007 2 iF A (=5 THEN SET XX TO 2 ; ENDIF ;

0008 2 I AB THEN SET XX TO 3;END ;

0009 2 1F A ,=B THEN SET XX TO 4 ; ENDJF

0010 2 IF A >=B THEN SET XX TO 5 ; ENDIF ;

0011 2 IF A > B THEN SET XX TO 6 ; EN.IF

0012 2 ENDREPEAT ;
0013 1 END;



APPENDX IP Cage12 of 3)
RELOCATABLE FALRCHILD F24 MACHINE CODE
GENERATED FRO TEST PROGRAM NUMBER 2

A

A
A
1)
R
R
R

R

R

R

R

R
RDa

00000001 R
+00000000 'v
+000U004 A

00000000 R
0100000 D
24000010 R
24000005 R
00000000 R
02300000 R
22000005 R
24000013 R
02200070 A
00000000 R
02300000 R
22000005 R
00000000 R

C11000000
00000001

+00000005
24000010
00000000
14000007
22000007
24000005
24000012
02500060
14000011
24000200
24000007
24300015
02300000
01040036

V
A
A
R
R
R
R
R
R
A
D
R
R
R
R
0

0000000 V
+00000001 V
+0s0OCJ0006

22000010 R
24000006 R
01000031 D
02300000 R
200000N7 R
14000011 0
2400(200 R
00000061 D
023000 0 R
22000005 R
14000011 0
240000.16 R
00000035 A

0 0%

00000001

22000010
14000007
C 0000000
24000010
02400050
00000050
01000061
000(J000
24000014
02400100
00000[00
14000011
00000200

V
A
N.
R
R
R.
R.
R.
0
A
R
R
R
Da
1)
Ei

00000001
+00000002
24000006
14000003
01000026
01000000
14000011
02100050
00000000
07022024
24000007
14000011
02100100
00000000
00000105

V
A
R
R
0
U)
0
A
R
R
R
0
A
R
0

(f
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00000001
+00000003
14000005
14000007
00000000
00000034
00000040
24000200
24000007
02300000
22000005
00000070
24000200
24000007
00000000



APPENDIX (age 3 of 3)
ABSOLUTE FAIRCHIL% F24 tACHNE CODE

GENERATED FROM ESTV PROGRAM NUMBER 2
F24SIM VERSION OF JANARY24 -. WWS-

OCTOBER 14, 197'6 17:33:46.970

NO TRACE PARAMETERS READ. DEFAULT VALUES USED.

TRACE-LEVEL.
CURRENT EXECUTION TIME
EXECUTION TIME LIMIT

If, ENTERING LOADER.

2
0

3000

**r200#

***00000001
* ** 00000001
***14000205
***14000207
***02300243
***02300253
***0 7022024
***02300273
**'02300303
***G 1040236
***00000000

**100000000
4**00000000
***00000000
***00000000
***00000000
***00000000
***00000000
***00000000
***00000000
***00000000
***00000000
*4*00000000
***201 ##U

01000217
00000000
24000210
01000236
24000210
24000212
02300264
24000214
24000215
00000200
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000002
22000210
24000210
14000211
14000211
24000213
14000211
14000211
00000G0PO
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000003
220002 10
14000207
24000205
24000207
14000211
24000207
24000207
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000004
14000203
01000236
22000207
22000205
24000207
22000205
22000205
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000005
.14000207
01000311
02400250
02500260
22000205
02400300
02300310
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000006
01000236
24000205
02100250
24 0 0.0200
02200270
02100300
24000216
00000000
0000000
00000000
0200j0
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0000000
00000000

0000000
24000206
24000206
22000207
24000200
01000261
24000200
24000200
14000211
00000000
00000000
000o0000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

*** LEAVING LOADER WITH PC=00000010000001

* ERROR LEVEL IS

*
*
*

0

DUMPC
DUMP.COUNT
[NITIAL SAVE OF MEMORY.

* END OF DUMPC
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ERRORLLEVEL= 0
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