179
MNE|
Mo, 51T

GENERATING MACHINE COCE
FOR HIGH-LEVEL PROGRAMMING LANGUAGES

THESIS

Presented to the Graduate Cduncii of the
North Texas State University in Partial

Fullfi llment of the Requirements
For the Degree of
MASTER OF SCIENCE

By

Chia-Huei Chao, B, S.. M. A.

Denton, Texas

December, 1976

Chao, Chia-Huei, Generating Machine Code for High Level

Programming Languages. Master of Science (Computer Science),

December, 1976, 97 pp., 9 illustrations, 15 appendixes,
bibliography, 17 titles.

The purpose of this research was to investigate the gen-
eration of machine code from high-level programming language.
The following steps were undertaken:

1) Choose a high-level programming language as the source

language and a computer as the target computer.

2} Examine all stages during the compiling of a high-
level programming language and all data sets involved in
the compilation.

3) Discover the mechanism for generating machine code and
the mechanism to generate more efficient machine code from
the language.

3) Construct an algorithm for generating machine code for

the target computer.

The results suggest that compiler is best implemented in a
high-level programming language, and that SCANNER and PARSER should

be independent of target representations, if possible.

TABLE OF CONTENTS

LIST BF ILLUSTRATIONS - - . - - - - - - - L - L - - - v
i...IST DF APPENDIXES - - 0w * = & = L I - @ - » LI] *» = Vi

Chapter
1 -» INTROBUCTIC?& - - - - - - - - - - L J . L] a . - - » 3

t.1. The Problem Definition

1.2. Procedure ‘

1.3. Source lLanguage and Target Computer
l.4, Orgnization

2‘ ANALYSIS - - L d - * - - -» - - - - L - - - - - - - - 5

2.1« Introduction
2.2. Lexical Analysis
2.2.1. Scanning
C2.2.7. Lexical Grammars
2.2.3. Finite-state Machine

2,3. Error Recovery in Lexical Analysis
2.4, Syntax Analysis

2.5. Error Recovery in Syntax Amalysis
2.6. Semantic Analysis

3‘ STURAGE ALI_.OCTIUN - - - o - - - - - - - @ - L 4 - - '] 5

3.1. Introduction

3.2. Static Allocation

3.3. Dynamic Allecatien

3.4, Storage Allocation for Arrays

3.5, Storage Allocation for Temporary Variables
3.5.1. Backward Scan Algorithm
3.5.72. Forward Scan Algorithm

l‘i‘ﬁ' C{JDE GEI“!ERA‘[I{}EQ -+ L - L3 ‘Q - * ® © -~ & - ® - < - 23

L,7. Introduction
4,2. A Model for Code Generation
4.2.1. The Transducer
4,2.2. The Code Generator
L.3. Code Generation for Arithmetic Expressions
4h.3.1. An Algorithm for Code Generation from
A Tree Structure
4.3.2. Anonymous Uperands

—
S
-

"5. DPTIMIZATIUNS - - - - - - - - - .. - - - L] - - - - 32

5.].
5.20
5.3.
5.4,
Sebe

5.6.

Introduction
Folding and Propagation
Rearrangement

Strength Reduction
Frequency Reduction
Register Alleoccation

6. A DESCRIPTION OF TPL 4 & o o o & o « o o « o « o b1

6.1,
6.2.
6.3.

6.4,

6.5.

7. DATA

7.1,
TeZe
?.30
7’4.
7.5.
7‘6‘
7.7“
7.8.

Introduction

Basic Language Elenments
Statements

6.3.1. Declaration Statements
6.3.2. Simple Statements
Operations

6.4.1. Arithmetic Operations
6.4.2. Relational Operations
Control Structure and Flow of Control
6.5.1. Program Control Structure
6.5.2. FUNCTICON Control Structure
6.5.3. SELECT Control Structure
Ao IF Control Statement

5. WUNLESS Control Statement
6. REPEAT Control Statement
7. Termination Statement

BASES -» - - - - L) - - L] L - -+ - - L - - L] - 57

Introduction
SOURCEX

TOKENS

Symbol List

THREECD

RFAIRCD

ABSBIN

ERRORSS and ERRORSP

‘8- SU;'H%ARY ﬁND CUN{:LUSIDN @ % © * W & & # v wu ¢« o o 65

81
8.2
8.3.
8.k,

APPENDIX

*

Testing

Chotce of Implementation Lanquage
Evaluation

Future Research

2
- L] - Rl - * - - * - &~ - - - - - L] " - L - L] 7 .)

BIBLIDGRAP;'*Y *« o ¢ % * & @ « ® B e o & W u. - " - ® @ . 96

Figure

T.1.

2.1
L
5.1.
5.2,

7"1.

7.2
703.
8.1.

LIST OF TLLUSTRATIONS

System Flow of Generating Machine Code .
Finite State Machine for Lexical Analysis
The Meaning of An Expfession « o o o« 4 =
Temporary Storage Requirements . + « . .
Eliminating a Common Sub=-expression . .
Token ERLries o« o « ¢ o« o « o o o o o =
A symbol Node o o« « ¢ o o o o = s o o = »
THREECD ENLries o o o o o o o o o s o + »

Debug Output Options « o ¢ « o « « ¢ s «

Page

.
[ae]

. 28

. 36
. 58

LIST OF APPENDIXES

Appendi x ' ' ' Page

1. List of Reserved Words In TPL « . . 73
2. THREE~ADDRESS COAES 4 « o o o « o s o« « « « 74
3. BNF Specification of TPL v « « o o o o s o o 77
E, lLoader Control €Codes « « o « o = o s.2 « « « 80
5. TPL Compiler Diagnostic Messages (1) . « . . 81
6. TPL Compller Diagnostic liessages (2) 82
7. Trace Level 1 of SCANNER ¢ o o o« o « =« « « « 83
8. Trace Level 2 of SCANNER « « o o « o & « o » 84
9, Trace Level 1 of PARSER . +« & + « v« o « + . 85
106. Trace Level 2 of PARSER . ¢« & ¢ v &« o « « . 86
1. Trace Level O of CODEGEN « o o &+ o o « o« « » 87
12, Trace Level 1 of CCDEGEN 4 v 4 ¢ ¢ o o « » o 88
13. Trace Level 2 of CODEGEN « « o o v o « o o + 89
14, Sample Test Program 1 + ¢ o ¢« o » o « « o « 90

i5. Sample Test Program 2 .« ¢ ¢ e ¢ o « o « « « 93

vi

CHAPTER 1
INTRCOUCTION
1ale The Problem Definition

The purpose of this research Is to investigate the
generation of machine éode from high-level programming
languagess in -particular, having pr0p65ﬁd a model of such
proéesgfng, to answer the guestionss?

Given a high-level programmiﬁg Janguage, how can the
target computer code be generatea?_
How can a more effijcient maéhiﬁe code for the target

computer be generated?
1.2 Procedure

In order to accomplish the purpdse of the research, the

folleowing steps vere undertakens

i} Choose a high-level programwmine language to be
the source language 'and a computer as the target
computer . |

2) Examine all stages during the compiling of a
highwieveﬁ‘ proaramming tanguage and aii data sets
frwolved in the compiiation,

3} Discover the mpechanism for generatino machine

code and the wmechanism to generate more efflcient
code from the language,
4) Construct an algorithm for generating

code for the target computer,

Source Language and Target Computer

machi ne

machi ne

ihe TPL (THIS PROGRAMMING LANGUAGE) prooramming

language was chosen as the scurce language. Although
relative simple language, it is complex ehough to
many of the gquality and Implementation difficulties

ad‘van{:&(i hi gh....]eVe] language.‘:,. PRI

The FAIRCHILD F24 mini-computer was chosen
target computer for the model, since it
memory-ori ented, high~speed, generaimpufpose

computer with flexible addressing abilities.

Figure 1.1 is the syétem flow for generating

code from the TPL programming language.

it is a
display

of more

as the
i[5 a

digital

machine

e e W S am o e P
o ek men A b b e Y et I

A DR o A Y,

T Bl kR Addk

- * (PTIONAL *
//,: PARSER wﬁ%ﬂ“—wmm"- * EBUG #
= = QUTPUT *

Ag///// ;:::::::::x; //// LR EITh AL LTRSS
! THREECD! S
\ CODEGEN /

e et A . e ey e

i

e o

A o e - Y i

O . ————— -

= F2451M =
;::::::::::;\\\\\\ T Ty

* FAIRCHILD *
* F24 trace #%
= | ISTING *

R g ko

FIGURE 1.1. System Flow for Generatﬁng Machine Code

1.4, Organization

This research is organized into eight chapters; the
first chapter provides a general description of the
research. The second chapter describes the analysis stages

~during a language compilation. The third chapter describes
the storage allocation algorithms used by high-level
programming language, The fourth chapter discusses the
function and algorithm for code gensration. The fifth
chapter exami nes several techniguies for generating
optimized target machine code from high-level programning
languages. The sixth chapter contains an déscription of This
Programming Language, which 1Is the scurce language of the
model. The seventh chapter discusses the data bases which
are involved In the generation of machine code from a
high-level programming 1language. The last chapter contains

the summary and conclusion.

20]0

2.2.

CHAPTER 11
ANALYSIS
Introduction

The purpose of the analysis during a compilation of a
programming language is to translate the input source
language into a intermediate form (usually a structure
tree){3); from this intermediate form the code generator

creates the target machine code for the language.

In this chapter different phases of analysis for

compiling a language are depicted.
lLexical analysis

The action of parsing the source program into proper
syntactic classes 1Is known as lexical analysis. The aim of
the lexical analysis of thé compiler is to take the input
source langﬁage, which is presented in some form, anq
translate this into a string of tokens. We usually call this
translatér the H"scanner¥, The tokén stream which comes cut
of the scanner 1is the input to the parser, vhich is the
processor In the syntax analysis phase during a language

compi lation.

. | | 6

2.2.1. Scanning

. scanning Is the maljor processing during the lexical
analysis phase. Scanning involves finding the substrings oF
characters that constitute units called textual elements.,
These e}ements are the vords, punctuation, single- and
muiti-character operators, comments, sequence of spaces, ahd
numbers of the source. |

For example, consider the following line from a PL/}

program represented as a character stream.
IF XX < 10 THEN YY = YY + | 3

After scanning the program may be regarded as being in

follewing form <

3“,/
IF XX < 10 THEN YY = YV + l H

i - - -—— - e — — -~
- e

e e+ aw - e - LI i -

ID.elD...OP..N.. ID ‘.ID OP..IE..GP N..GP

Where “IDY means “identifier’, ‘N’ means ‘integer”’, .~
means “space”, and ‘OP” means ‘operator’. The “space’, the
“identifier’, the “integer”, and the “operator” are textual

elements.
2.2.2+ Lexical Grammars

One can wusually specify the textué] elements of a

programming language, its lexical Jlevel, with a regular

grammar ‘or a reguiar expressiocn, or most conveniently with a
mixture of the two in the form of a transduction orammar.

for example, consider the following grammar:

<TEXT>=<IDENTIFER><SPACE> | <INTEGER><SPACE>
<IDENTIFIER>22=<LETTER> ;<LETTER><LETTER-DIGIT>
<LETTER~DIGIT>::=<LETTER><DIGIT>
<INTEGER>33=<DIGIT> < INTEGER><DIGIT>
<LETTER> 23 =A Bl covenncacet
<DIGIT>==:O}1{2:..;.06;.¢o}9

<SPACE>3s= 7 7 |° “<SPACE>

This grammar describes a very simple lexicon containing
fdentiflers, Iintegers, and spaces. Identifiers and intecers

must be separated from each other by at least one space.

2:2.3. Finite-state Machine

To display more clearly the structure of scanner for
the lexical grammar In section 2.2.2., I present its
Finite-state machine(l} diagram on Figure 2.1. In fact, the
scanner procedure is a simulation of a finlte~state machine
which breaks the source program into tokens(l). In Filoure
2eta Tvo states noted by 7?27 need look-ahead sets(2) to
determl ne read-reduce(?]} decisions. The finite~state maéhine

simulation is done in the usual manner with two tablesg(4):

B s e

___________ A
;]
i
;...,_.,.) CEGPBELED am e o o m st rm e wam e o im0 s 2 1 o 1 o b
!
i
t
i
{
i
f i
; ! <LETTER> |
] 4 i
¢ A4 i
: ___________ — <P _
1=~-><LETTER> 9| LETTER }-wmmmcmmmme e > reduce to
i ~~~~~~~~~~ IDENTIFIER
i
i
]
i
]
|
: o o s e
% v <DIGIT> ”i‘
i
1 i i
. SN S » <?>
Yo <DIGIT> ~3) DIGIT emecwmeccmmwme—ne> reduce to
—————————— DIGIT

Figure 2.1. Finite-State Machine for Lexical Analysis

2.3,

one table which defines the next state function, and another
table which defines the action associated with each state

transition.

The scanner can be implemented directly as an
executable program. However, it is noteworthy that scanners
frequently haven states with direct loops, such as states
blank, letters, and digitse. Such states should be
implemented as fast as péssib}e since they typlically do the

bulk of the scanning.

Error Reco#ery in Lexical Analysis

While scanning a textual element, the scanner is always
either in a context in which it has had some left context
that must be matched by the some right context (e.q., the
right parenthesis must matched tHe left pareﬁthesis) or it
is in a context that may }egaliy end at any point. In the
latter case, characters in error show up as the beginning of
the next textual element and can usually be skipped or
replaced with a blank to permit continvation of the
processing. In the former case a scan to the end of the
current line s wusually done in order to try to find the
desired right context. If found, the intervening text can be

considered part of the current textual element: othervise,

io

the rest of the line is usually best skipped and the scanner

is best restored to its Initial state,

After detecting and reporting an error, a module may
either attempt to repair iﬁ (so it is not seen by subquent
modules) or pass it along. Each approach has [ts problemss
if & module s to be truly an error-s§nk,‘it must ensure
that none of the effects of the error it has repaired can

“propagate. Conversely, if it does not filter out ail errors,
then aill subquént modules must be prepared to deal
reasonably with them (without generating too many further
messages). ' |

In many compilers, a single efror can trigger a whole
éVa}anche oF' messages on the unsuspecting errcrs this is

very nearly as unacceptable as guitting the scan after the

first error(s).
2.4, Syntax Analysis

The main aim of the syntax analysis phase during a.
language compi lation is to take the token string produced by
the scanner in lexical analysis rphase, and to use some
parsing algorithm to verify that the token string consists
of a legal string. In addition, it is required to coliect
information about ‘the languagé, and produce as output a

structure tree which could be code which is ready to be

11

executed or Interpreted, but is more likely to be a
structural representation of the token string vhich will be

uséd to generate code.
Error Recovery in Syntax Analysis

Syntactic analysis also notes syntactlc errors and

“assures some sort of recovery so that the compiler can

continue to look for other compilation errors,

A syntactic error 1is discovered when'the‘parser can
take no further wvalid parsing actions, given the current
sfate of the parser {the stack) and the current input
symbol. Recovery thus requires changing the stack, the
input, or both. The change may take the form of deletions or

Insertions (a suéstitution is a deletion and a insertion).

Gries(2) peoints out that changes to the stack are
particularly dangerous, since semantic routines will have
been invoked for the parsing actions leading to the current
stack, and the parser can not safely undo or modify the

effects of these actions.

Leinius{(5) was cornsider augmenting the syntactic
description of a language by a number of error productions,
describﬁng' common errors, as so that recovery can be

subsumed under normal parsing. For this strategy to be

2.6’.

12

effective, several problemns nust be deal with: the

compiler-writer must ensure that he has really included

endugh error productions te cover the common errorsj since

so many di fferent errcrs are possible, the error productions
may substantially enlarge the grammar (and hence the
parser); it Is difficult teo include error productions’

wi thout making the grammayr ambi guous.

Semantlic Analysis

The purposé of semantic analysis 1is to derive an
evaluatlon procedure from the structure tree of an

expression and the attributes of its components.

An evaluatyé; procedure is a sequence of primitive
operations on primitive operands, and Is completely’
specified by the definition of the source Ianguage._The
semantic analyzer must deduce the attributes of the various
components of a structure tree, ensure that they are
compatible, and then select the proper evaluation precedure
from those available. The Input to the semantic analyzer
consiskts of the structure tree which specifies the
algorithm, and the dictionary .which provides attribute

information.

Two: tranSformations, attribute propagation and

13

flattening, are performed In semantic analysis(6)?

1) Attribute propagatjon3

Attribute propagation is the process of deriving
the attributes of a structure tree from those of its
components.
2) Flattenings

Flattening is the process of transforming a
structure tree Into . a sequence by making explict the
order In which the operators are executed {in order to

produce optimized code from the code generator).

.

14

CHAPTER BIBL ICGRAPHY

Donovan, John J., System Programming, New York,
Mcgraw-Hill, 1972

Gries, David, Compiler Construction for Digital
Computers, New York, John Wiley, 1971

Hopgood, F. R. A., Compiling Techniques, London
Macdonald, 1972

Isaacson, Portia, A Compiler For This Programmina
Language, Department of Computer Science,
North Texas State University, Denton, Texas 1972

lLeinius, R., Error Detection and Recovery for Syntax
Directed Compl lér Systems, PH.U Dissertation,

University of Wisconsin, 13970

Newly, M., "Abstract Machine Modeling tec Produce
Portable Software," Softwere, Practice and
Experience, 1972, pp. 107-136

3”?'

3ﬂ2‘-

CHAPTER 111
STORAGE ALLOCATION
Introduction

Highmieveir progyammi ng languages with di fferent
features reguire different_types of storage management, In
which & hierarchy can be distinguished; at the bottom end is
the static aliocation scheme for a language like FORTRAN(5},
In which it is possible to know the address that each oblect
will occupy at the run time. At the next level comes the
stack teﬁhniques for lancuages like ALGOL60(1), where space
is allocated on a stack at biock entry and released at block
exit. Languages like PL/1{(4) permit both types of storage

management.
Static Allocation

In a static allocation scheme it must be possible to
decide at compile time the address that each bbject will
occupy at run time. This reouires that the number and size
of the possible objects be known at compile time. This is
the reason why programming. languages that use static
alleocation have constant bounds for arrays and procedures

can not be recursive.

15

3.3.

3.4,

16

The process whicﬁ the conmpi ler goes through in doing
storage allocation for a static language is Verf simples
during the first pass of the text the compi ler creates a
symbol table in which are kept the name, type, size and
address of each object ennoﬁnteréd, Buring the later code
generation phase, the address of each objJect is thus -

avai lable for insertion into the object code.

Dynamic Allocation

Modern high-level programming languages allow recursive
procedure calls, and this precludes any attempt at a static
storage allocation scheme, since a variable thch is
declared and usggxwith a recursive procedure may correspond
to mo;é' than éne value at a given moment during the
execution of the program.

The wusual storage model for a dynamic allocation is a

stack, on which entry to a block or a procedure causes a new

allocation, the space being-freed at exit from the block or
procedure. The use of a stack to model nested structures Is

a standard device(2).
Storage Allocation For Arrays

In a programmi ng language in which the stze of an array

s known at compile time, its space can be allocated

17

statically 3

"

For example =

A(5,10)
A is a array of size of 5x10 and 50 consecutive storage

locations will be reserveds
Al1,1),801,2)..A05,1),A(1,2)..48(5,2)..A(5,10)

When making a reference, element A(I,J) is to be found

in location

(J-1)*5+[-1 from the start of the array.

In general, given an array A with bounds Bl 3

L
-

/
Element A(I1,I12.. In) is to be found at location

(«.((In=1) #* B(n=1)=1) * B(n-2)+..% I2-1) = Bl + I1-]

In a programming language in which the limits of
boundries of a array 1is not known at compiie time, storage’

allocation for a array must dynamic.

3.5. Storage Allocation for Temporary Variables

A major problem of storage allocation arises when
considering how to allocate storage for temporary variables

‘required for partial results during a compilation. These

18

variables are not défined by the language but by the
compiler. How many are required and how storage Is allocated

is-completely dependent upon the compiler(3).

The code generator algorithms did not concern
themselves with how storage for the temporary variables
shéu]d be allocated. They can be thought of és taking a new
variable name from an.in?inite get of unused names each time.
a temporary variable 1Is reguired by the algorithm. The
storage al]ocatioﬁ algorithm has to allocate storage for

these variables in such a way that the minimum number of

storage locations is'requ?red.

Variables having completely disJjoint ranges at
execution time cah.bg allocated the same location. The usage
range of & variable is defined as the sequence of code
interval between the initial definition of the vaule of a
variable and its last wuse. . There are two algorithms for

finding the usage range of a variable(3):
3.5.1.'Backward Scan Algorithm

Consider a set of variables ¢ VI,VZ2,V3..ueeae VN . For
each varlable Vi, an statement is defined =
ST Vi

which. . initially sets a value to the variable and

19

indicates the start of the range for Vi.

A statement 3

_ U vi

is defined which indicates a subsequent use of this
variable. The 1last Instruction of this type using Vi
indicates the end-of'the range for Vi.

A sequence of code produced By code generator then
consists of a set of instructions i ndependent of the
variable ;Vi, together with the orders of the two statements
defined above which use the variables Vi , for i=1 to n. The
problem is to allocate storége to the Vi so that the minimum
number of 10cation is required. The assumption is that‘a
variable 1is no longer‘required after the last appearance of
it in the seqﬁgnqe. In thié sensé it assumed that the
sequen#e is completed. UOnce a wvariable is no longer
required,. its storage location ‘may be fﬁ—af1ocated to
another wvariable not vyet defined. It is assumed that this
sequence of Instructions does not 6Qntain any entry points

other than at the top and that control passes straicht

through the sequence, leaving at the bottom (no branches).

Consider the arithmetic expression 3
(A+B=C) /(F*G~(D+E) / (H+K))
The code generated for the expression. might be as

follows for the IBM 3602

20

L H
ADD K
ST Vi
L D
ADD E
DIiv Vi
ST V2
L F
MPY G
sus vz
ST V3
L B
MPY €
ADD A
DIV V3

The names Vf,VZ and V3 would be taken from the set of
" unused names. As Tar as storage allocationh is concern the
squence of code can be written (ST = Store, U = lUse):
ST vi
U Vi
ST vz
U vz
ST v3
U v3
As the last of each variable appears before the next is

defined, it is obviously that oné storage is sufficient.

-

The general algorithm will be 2

Scan the seqguence of Instructions from the end
backward. For each instruction of the type U Vi (i=1 to
3), If no storage location has been allocated to Vi, take

the top free storage location from the stack and assign
it to Vi and rep}ade Vi in the instruction by the address’

v

21

Vs
of the storage location. fFor each.instruction ST vi, if
no storage location has been allocated to Vi, then elther
there is an error or this order is redundant, as this
implies that there are no subsequant wuses of the
variable. If storage has been allocated to Vi, then
replace Vi In the 1iInstruction by the address of the
storage location and, as this is the first time use of

the wvariable VI, the location may now be returned to the

free store stack, as it is no longer required.
3.5.2. Forward Scan Algorithm

in the forward scan, the ST instruction defines the
start of the range. A count of the number of uses of each
variable has been kept and is used te find the last use of a
variable so that the end of the usage range also can be

found.

722

CHAPTER BIGLIOGRAPRY

1. Dijkstra, E., "ALGOL60 Translation,”
ALGOL Bulletin 1G, 1960

2. Gries, David, Compller Construction for Digital
Computers, New York, John Wiley,19/71

3. Hopgood, F. R. A., Compiling Technigues, London,
Macdonald, 1969

L, International Business Machines, PL/1 Language
Specifications, IBM Form C28-65/1, 1972

5. International Business Machines, FORTRAN
Programmer s Guide, I18M Form C28-6835, 1974

4.1

CHAPTER 1V
CODE GENERATION
Introduction

A source Ianguage definition specifies the evaluation
procedure for the constructs of the language in terms of a
set of primitive operators and operands provided for thils
purpose. Code Qeneration is the process of an evaluation
procedure in terms of the primitive of a particular target

computer{5).

The basic approach is to simuiafe the evaluation
nrocedure in the environment provided by the target computer
(with its register organization and addressing Structure). A
symbolic description of the .run time contents of the
environment Is maintained by the code generator. when the
evaluation procedure indicates that the contents should be
altered, then code to perform the alteration is emitted and
the description is updated. The data for the code generator
are structure trees. The evaluation procedure specifies the
sequence In which the nodes of a structure tree are to be
considered when performihg‘the:eva1uatfcn; and this sequence
is largely independent of the partfcular target computer.

The structure tree Iis traversed by the semantic analyzer,’

"

23

2k

which considers the entire subtree before deciding upon the
best seqguence of operations to perform. Thus the code
generator input is & seqguence of tokens specified by the

nodes of the structure tree,
B Model for Code Generator

The code generator does not have arbitrary access to
the structﬁre tree, and must therefore operate on the basis
of limited information(5). The wodel which I have chosen
consists of two partss

1. A push store transducer, which maintains the
contextual information that can be derived from the
sequence of input tokens.

2. A target computer machine code generator, which
malntains the run-time contents of the environment and
produces sequence of target computer instructions to

implement the abstract primitives.

Hopgood(2) terms these components the translator and

the coder respectly.

The transducer passes a sequence of tree structures to
the code -generator,'each‘consisting*of an'opérétor and its
associated operands. Each command is interpreted by the code

generator In the light of the oblect environment which

exists at that point In the execution of the program. it
generatés appropriate code and the updates the environment

to‘reflect effect of that code.
4,2,1. The Transducer

A pushdown store transducer has four components(5) 3 an -
input, an output, a finite-state control and a pushdown
store., The -input models the stream of tokens which encodes
the structure tree, and the output models the abstract
instructions which will be delivered to the code‘generatar,
The flnite-state control and the pushdown store encode the
limited contextual information derived from the sequence of

Input tokens.

ot

Informationg pertaining to the ancestors of the current
nodes, and the statusiof the current node itself, is encoded .
by the finite state control. The pushdown store'contains
information derived from subtrees which have been completely
traversed. After all subtrees vhose roots are descendants of
a particular node have been traveréed, their entries are
deleted from the pushdown store and replace by a single
entry for the entire tree rooted at that node. Information
from the'puéhdown store Is used to identify ihe operands.qf

an operator.

26

4,2.2. Code Generator

In order to interpret the primitives of the scurce
language in terms of the target machine, the code generator
maintains descriptions of the values being manipulated and
of the target machine environment. A particular value may be'
represented In many different ways in the target computer,
and the purpose of the value image is to $pecify.the_currenﬁ
representation of each value. Similarly, the registers of
the target compﬁter may contain many di fferent values during
execution, and the purpose of the machine environment s to

specify the current contents of each register.

A value comes under the control of the code generator

Qhen the transdugg} requests simulatioﬁ of an operand foken,
'giving the éurrént transducer state as an argument. At that
point the code generatcr creates an entry for the operand
and links it to the machine environment. Values pass out of
the control of code generator when they are used as
operands. This is signalled when the transducer reguests
simulation an operator token glving the current state and
one or more value as arguments, At that point the code
generator deletes the operand entfies from the value image,
breaking any linkage to the_machine envifonment. If a result

is specified, a description of the resuit value s created

27

and linked to the appropriate entry In the target machine
envi ronment.,

In fact, the code generator producing a relocatable

target machine code packet for each structure tree(3).
4,3, Code Generation For Arithmetic Expressions

To produce efficient machine codes for a arithemetic
assignment statement {is one of the major problems in the
compi lation of a programmin§ language(2). The efficiency of
tvwo compile?s in the execution of a program will depend

almost entirely on the code produced by the code generator.
4.3.1. An Algorithm For Code Generation From A Tree StrUsture

A structure tree is a graph that consists of a
collection of nodes and branches, which each branch

connecting two nodes(2).

waite(8) defines a arithemetic expression as a
structure tree written in linear form (fioure 4.1.), with
cach node representing an elementary computation. A teaf of
the tree represents a computation which can be carried out
independently of all other nodes in the tree, while an
interior node represents a computation which reguires as
oﬁerands fhe resuits of the computations represented by its

decendants.

A-3* (I + J)/ 2

A). A Typlcal Expression

B). The Equivalant Tree for (A)

Figure 4.1. The Meaning of an Expression

28

29

One possible evaluation algorithm for this structue
trée is the following?
1. Select any leaf and perform the computation which
it represents.
2. If the selected ieaf is the root, then exit. The
result of the computation is the value of the tree.
3., Otherwise, transmit the result to the parent of
the leaf and delete the leaf from the tree. |

4, Repeat from 1.

This procedure is strictly sequential, but nothing is

mentioned about the order In which the leaves are selected.

“h.3.2. Anonymous Operands

Waite(5) points out that the reascon for 'using an
expression is to aveid naming each of the intérmediate
results created in the course of a computation. When a leaf
of an arithemetic expression 1Is evaluated, the result is
ancnymous. The code generateor 1is free to do vhat it well
with these anonymous results because it has explicit control
over the times at which they are created and the times at
which they are freed, it does not need to worry about

whether the programmer may‘éccess them unpredictabliy.

30

The following are three broad categories to process
anonymous operands?
) 1. Qse no register

A1l Instructions take their operands from momory
and return their results to memory.
2. Use a single register

Operators take their'operénd from the register
and return their result to the register.
.3. Use mutiple registerss

Binary operators take one operand either from a
register or from memory and all operators return
thelr result to a register. Some registers may be
paired to _proVide an analog of the extension of a

. /;4 .
singie-reﬁister machine, but all have essentially the

some capabilities.

CHAPTER BIBLIOCGRAPHY

DénOVan, John J., System Programming, New York,
Mecgraw--Hill, 1972

Hopgood, Fo R. A., Compiling Technigues, London,
Macdonald, 1967

Isaacson, Portia, A Compiler for This Programming

Language, Department of Computer Science, 1572
North %exas State University, Denton, Texas

Mckeeman, W., A Compller Generator, New Jersey,
Prentice-Hall, 1970

Waite, W. M., Compiler Construction, New York,
Springer-Verlag, 1974

31

5.1,

CHAPTER v
OPTIMIZATION
Introduckion

Gptimization is the term which is used to denote the.
attempt by a transliator to improve upon the description Qf
the algorithm which was giyen by the programming]anguage
user. Uptimization 1Is most appropriate wheri the source
language does not provide access to éil of the facilities of

the target computer(6).

Any general approach to code optimization is severely
limited by undecidabi]ity results{l) and by the lack of
definitive optimg&ity criteria. The compf]er's optimizer
therefore provides improvehent (relative to some cost
function), rather than true optimiiation(é). In order to
avoid wundecidable equivalence duestions, the Tmprovement is
carried out by applying a séries of equivalence-preserving
transformations to the original algorithm(i). Each

transformation is based upon information gathered from some

region of the source program.

In this chapter different techniques for optimization

are depicted in detail.,

32

S.zﬁ

5.3.

Folding and Propagation

When the value of the operands on an expression are
known to the compiler, that expression can be folded
(replaced by a single value). When a variable is set to a
value at compiler time, that value can be propacated
(substjtued for the variable) by the coﬁpi]er, i f the
algorithm used by the compiler results in the same vaiue

that would result for evaluation at object time.

Rearrangement

The purpose of rearrangement isrto reduce the amount of
temporary storage required during the eva}uation aof an
expression, This has the effect of speeding up the
evaluation, becausé ‘it may be possible to compute a value

using only registers for temporary storage.

Some number of anonymous operands must exist

simultaneously during the evaluation of a given expression.

‘This number depends upon the order in which the components

of the expression are evaluated.

The temporary storage . requirements for a given
expression are fixed. In order to lower the requirement, we
must transform the tree structure of thls expression into

another which yields the same value but has a different tree

5'1}'

structure.

. For example, with the expression of Figure 5.1, we can
transform the tree structure of the expression A*B+fC+D)
from Figure 5.1(a) to obtain the tree sturcture of Flgure
5.1(b), which requires only a single temporary anonymous
operand rather than two. This Is valid only if the data type
of (A*B) is the same as (C+D); otherwise, transformation
operation will have to be Inserted to convert data types, as

from single~precision to multiple precision, or from a fixed

decimal number to a floating binary number.

Redundant Elimination

Code is re¢dundant [f the value which it computes Is
already available at the point where the code occurs. The
method that is used to eliminate redundancy of a expression

is that of finding common sub-expressions of a expression

. and eliminating the excessive use of temporary storages,

Common sub-expressions etimination is an optimization
which creates a directed acyclic tree(3) rafher thén a
structure tree to describe the program.

For example, given the expression of Figure £.2, ve can
transform the treé structure of Figqre 5.2(b) and create a

directed acyclic tree of Figure 5.,2(c) which retains only

A* B+ (C+ D)

S\
VANAN

(a). The Directed Tree Structure for the Expression

VAN
/\
A//// \\b

{(b)s The Tree Strucrure Transformated from (a).

Figure 5.1. Temporary Storage Requirements

36

I - J* (X + YY)+ (X +Y)*K
(a). An Expression With Common Sub-expression
I :::::::+
* *

| J/// \\g+ +// \\\K
f// \\Y X//‘\\\Y

(b); The Tree Structure for (a).

VN
A VaN
N

{c). The Directed Acyclic Structure for (a).

FIGURE 5.2. Eliminating a Common Sub-expression

5.5,

37

one copy of each sub-expression..

Strength Reduction

Sirength reduction is the general process of replacing
an expensive (use relative mere CPU cycles) operation by a
cheaper (use relative less CPU cycles) oﬁe and dose not
alter the value of the expression. When a value Is raised to
a constant poker it may be possible to replace the exponent

by a series of multiplications?

For example, the polynomial

Xekly + X#%3 + X¥%2 + X + 1

may be replaced by the expression

X (XE(XE(XFT I+T)4+1)+1

Another example is that the control variable of a locop
is multiplied by an expression whose value remains constant.
over the loops; than that multiplication may be replaced by

an addition.
For example, the following code

DO I = 3%X+Y T0 7 3

END 3

38

may be replaced by
TEMP = 3%X+Y 3
DO I = TEMP TO Z 3

END 3
5.6. Frequency Reduction

Frequency reduction attempts to move operations from
one part of the program which are entered frequently te the
part which are entered rarely. The most important use of
this transformation Is to remove invariant calculations from
loops, on the assumption that the code inside a lcocop is

executed more frequently than that surrounding the loop.

For example 3
D6 I =1 TO 100 ;
/*wASSUME THAT A, B, ¢, D ARE NOT EVALUATED =/

- s e e S W SN

X = A+{(B*(C+D))

L 1]

¢ &% 0B b bP

END 3

may be replaced by
X = A+(B*{C+D))

DO I =1 TO 100

e

50-7‘

LR R R

.- PN e

END 3
Reglster Allocation

Register a}}ocation can be performed on the basis of -
giobal flow analysis which provides the code generator with
Information on the future use of values currently residing
in registerss this type of allocatiqn falls in the province

of optimization{2).

The so-called “peephole optimization’(5), which avoids
locally redundant fetches and stores of register contents,

is an instance of Intelligent code generation.
_,/- .

j

1. Aho, A. V., "A Formal Approach to Gode Optimization,®

2.

CHAPTER 318LIGOGRAPHY

SIGPLAN Notices, July 1970, pp. 86-100

Beatiy, J. C., ® Register Assignment Algorithm for
Generation of Highly Optimized Object Code,®
1M Je. Res, Develop. 1974, pp. 20-39

Cocke, Jo., "Globol Common Sub-Expression Elimination,®

SIGPLAN Notices, July 1970, pp. 20-24

'Hopgood, Fo R. A., GCompiling Technigues, lLondon,

fMacdonald, 1971

Mckeeman, W. M., " Peephole Optimization,”
CACM 8, 1965, pp. hi3-hhk

Waite, We M., Compiler Construction, New York,
Springer-Verlag, 1974

L)

601.

CHAPTER VI

A DESCRIPTION OF TPL

Introduction

TPL is a goto-less structured programming(2) Ianguage
with an unusually complete set of control structure of the

nen~procedure variety.

CASE and LEAVE statement are among the more unusual
statements types found -in TPL. SELECT, CASE, LEAVE,
IF-THEN-ELSE, UNLESé-THEN»ELSE, and REPEAT-WHILE staements
are designed for structured programming in TPL. Functions

are avalable with zero or one argument and a single result.

The syntax is PL/1 (1) -like except there are reserved
vords (APPENDIX 1). A usual set of arithmetic and compaiison
operations on integer numbers and one-character strings are

I ncluded. Arrays are avallable., Input and output are

~unformatted. Storage allocation is static,

The compiler of TPL is written in PL/1 to run on the
IBM 360/370 computer. The compiler produces relocatable

object code which can contain external‘references.

41

6.2,

42

Basic Language Elements

Identifier
An .Indentifier is a string of characters. The first
character must be aiphabetjc. The remaining characters can
be aiphabetic, numéric, or the underscore character. An
jdentifier may not contain embedded b]anks; An identifier
cén be any lengths however, the first six characters must be
unique in Jdentifiers used as external function names.

Identifiers are used as variable names, as control structure

names, and as reserved wvords.

Constants
TPL has .two typeé of constants. & numeric éonstant
consists of up to-?fye decimal digits Optionéi1y preceded by
é sign. A character constant consists of one character-

preceded by a single quote,

Spaces
Spaces may not be embedded. in identifiers or constants,
but may be embedded anywhere and/or any number of spaces in_

the source program.

Comment
A comment 1Is any character string started and ended

with a bar character (“|7). A comment may extend over any

43

number of Input records and may appear anywhere a space may

appeal.
‘Examplies?
1. | THIS IS A COMMENT |
2, SET A TQO { THIS IS A COMMENT | B3
Vectors

A vector is a array which defined by naming the vector
and its length In a vector declaration statement. An element

of a vector is chosen by following the vector name with an

expression enclosed in parenthesis,

“Examples?
1., ¥ECTOR v{(10), X(50) 3
2! SET V{(A+5}) TO V(FUNCX(X-1)}+B) ;

6.3. Statements

Statements are free form. Each statement is terminated
by a semicolon. UOne statement can be spread over as many
input records {cards) as necessary and one input record can
contain several statements. |

"Exampless
1« SET A TO 03 SET B T0O 03 SET € T0 03

2. SET A TO A+B:

L

3. SET ATO A+ B
* C
D/ E

There are five types of statements in TPL. They are 3

1. Declaration statements

2. Simple statements .

3. Statements that start a control structure

L, Statements that end a control structure

5. Statements that cause termination of a control
Structure '

Type 3, %, 5, are described jater in this chapter.
6.3.1. Declaration Statement

There are two types of declaration statements?
lq‘EXTéRNAL declaration statement

2. VECTOR declaration statement

A11 EXTERNAL declaration statements must preceed all
other statements in the program. An EXTERNAL declaration
statement specifles a list of function names which are

external to the program being compiied.

Exampless

EXTERNAL EX1, EX23

A1t VECTOR declaration statements must proceed all

other statements in the program except EXTERNAL deciération
‘45tatements. A. VECTOR statement specifies a list of arrays
and their‘}engths,
Examples:?

VECTOR A(10), V(20);
6.3.2. Simple Statement

There are three types of simple statementss
1o SET
2. INPUT
3. QUTPUT
The SET statement 1s the usual assignment statement.
Examﬁlest

1. SET A T0 53
2. SET V(X*Y+Z) TO FUNC(J)+7;

The INPUT stafement causes input of the items In the
list. An input 1list item can be a subcripted array or'a

simple variable.

Examples?

INPUT A, B(I), J, C(J);

The OUTPUT statement causes output of the vaules of the
items in the 1list. An output 1list item can be any
expression. |

Examples?

L6

ouUTPUT A+B*C, 17, D, Y=, FUNC(X)s
There is no control over forwat for either INPUT or

QUTPUT statements.
6.%. Uperations

Arithmetic Operations
A set of usual arithmetic operations are available in
TPL. They are addition (+), subtraction (-), multiplication
(*), and division (/) from left to right, except the
following precedence of operations.
Priority 1
- prefix minus
+ prefix plus
Priority 2
/ c¢ivide
* pultiply
Priority 3

- infix minus
+ tnfix plus

Relational Operations

_ Relational operations are provided for use In IF and
UNLESS statements. They are equal (=), not equal (7=}, less
than (<), 1less than or egqual (<=), greater than (>}, and
greater thén or egual (>=).

Exampless

1. IF A = B THEN

L7

2. UNLESS X = ¥ THEN +.oa0
39 IF CHARACTER = ‘X THEN s an

6.5, Control Structures and Flow Uf Control

The physical beginning of each control structure,
except the source program structure, is identified by a

reserved word specified to the control structure,

Exampless

1. FUNCTION
2. IF

3. UNLESS
L, SELECT
5. REPEAT

The physical end of each control structure is
identified by a reserved word specific to the particular

control structure,—

Exampies?

1. END (END OF PROGRAM)
2. END_FUNCTION

3. ENDTIF

4. END_SELECT

5, END REPEAT

Any control structure except a program can be named by
placing a label on the statement starting the control

structure.

Exampies

A SELECT seacee

48

X2 IF A=B THEN sevuee

Control structures c¢an be nested to ahy level. {n thg
compiler llsting there is a level count which starts at one
with the first statement in the source program, The count fs
Irncremented each time é control structure is started and
decremented when the corresponding end is encountered. Any
control structure may appear at any level except the program
and the function. The program is at level zero. All function
definition must be at level ohe., Normal exit from any
control structure Is made by executing the statement
physically ending the control structure. Premature exit can
be made from a control structure by executing a LEAVE

‘statement.,
6.5.1. Program Control Structure

There is no statement which specifically ident{fies the
begl nni ng of the program control structure. The END
statement. identifies the physical end of the source program.
£ object program can be terminated by exeéuting a STOP
statement anywhere 1In the program or by executing the END
statement.

Examples
SET X 1O 53

L L BB R)

IF X=Y THEN STOP3

END_IF;

END;
6.5.2. FUNCTION Control Structure

A FUNCTION control structure must be at level one and-
prior to any reference to the function. IThe FUNCTION
statement lidentifies the start of a function. The FUNCTICN
statement should have a label which becomes the function
name.

All variabfes defined in the program can be referenced
from within the function and all varjables definéd in the
function can be referenced in the main pfogram (storage.

allocation is static).
Examplez

FUNC: FUNCTION;
SET 1 70 1+1;
IF A=B THEN LEAVE FUNCs

* S0 88

END_FUNCTIONs
A function is invoked by us?ng the name [n an
expression. The function will return a va1ﬁe which will be

used in the place of function name in the evaluation of the

expression. The value returned by the function will be the

value assigned to the function name within the function,
within the function the function name is treated as a simple
varijiable in all contexts.
FACTOR * FUNCTICMN(N):
SET FACTOR TO 1
REPEAT SET 1 70 FROM 1 TO N3
SET FACTGR TO FACTOR *=.1 3
END_REPEAT 3
END_FUNCTIONS

&

SET i TO FACTOR(Q+R*S);

END3

The END _FUNCTICON statement physically ends a functicn.
If the END_FUNCTION Is executed, control transfers to the .
point at which the function is invoked. A functién can also

be exited by a LEAVE statement.
6.5.3. SELECT Control Structure

The SELECT statement causes a choice to made amonhg
several possible cases. Each case consists a unique sequence

of simple statement and/or control structure.

The choice is made in the following way 3
1. The expression on the SELECT statement Is

evaiuated.

2. Each CASE statement expression is evaluated in

51

turn untii aill cases aré exhausted or until the select
expression equals a case expression in value. The matched
«case is chosen as the one to be executed. If no case Is
matched,wnone is executed.

3. After the chosen case Is executed, I1f any,
execution continues at the statement following the.

END_SELECT.

The domain {range of statements) for a given CASE is
from the statement follows the CASE statement to the
statement which precedes the next CASE statement or the

ENQ‘SELECT statement.

el

Example @

1. SELECT I3
C" CASE 13
CASE 2 3

L

END_SELECT;

2. SELECT A+B 3
CASE X+Y 3
CASE 5 3
CASE X+Y+FUNCI) 3

> b o

END_SELECT 3

3. SELECT CHARACTER 3
CASE “A ;

LI R A

CASE 3 3

52

CASE "% 3

"o ansecn

END_SELECT 3

“

6.5.4%. IF Control Structure

The IF control structure is started by the IF statement

by the END_IF statement.
txampless

2. IF A+5 = B/C THEN cvecevas

Any number of simple statement and/or control

structures may follow the reserved word THEN.

The IF con??o] structure is terminated by the reserved
word END_IF or the reserved word ELSE. If the ELSE is used,
it may be followed by a sequence of simple statement and/or

control structure terminated by the reserved word END_IF,

Examples?

IF_A=B_THEN
SET X TO Z
END_IF ;
ELSE

SET Y T0 Z

. o & w e

END_IF 3

53

6.5.5. UNLESS Control Structure

Contrary to the IF statement, in the UNLESS statement
the sequence of simple statement and/or control structures
follewing the reserved word THEN is executed if the
conditional expression is false. If the conditional
expression Is true, the statements following the ELSE are
executed,

Exambles=

1. UNLESS X=Y THEN SET X TO A+B

-.

ELSE SET X To &+D

e

END_UNLESS 3

The UNLESS control structure Is terminated by the

reserved word END_UNLESS statement.
6.,5.6. REPEAT Control Structure

The REPEAT control structure is used for forming a loop
around a sequence of simp]e‘ statements and/or control
structures. The REPEAT control structure Is terminated by
the END _REPEAT statements. When the END_REPEAT statement is
encountered during execution, control returns to the

beginnihg of the REPEAT control structure.

The WHILE and SET are two optional phrases for the

REPEAT statement;. The WHILE phrase supplies a cpnditiona?

éxpression. The conditicnal expression 1is evaluated each
time the top of the REPEAT is encountered. The secuence of
sinple statement and/or control structures of the REPEAT is
executed only if the conditicnal expression eva1uated-to
true. If the conditional expression evaluate to false, the
REPEAT control structure is terminated and the next
statement to be. executed will be the one following the
END REPEAT statement.
* Examplie 3
REPEAT WHILE X<100 5

* * e e

END_REPEAT 3

The SET phrase specifies a yariable referred to as the
repeat-variable., Each time the top of the REPEAT statement
in encountered, the REPEAT variable is assigned the next

value specified by the SET phrase.
Examples

1. REPEAT SET 1 TO 1, 5, -8, "X 3

END_REPEAT 3

2. REPEAT SET J TO X+Y, X=*Y ,
FROM X+5 TO Y#3 BY A/3 ,
FROM 10 TQ -100 BY -3 3

- ® e

END_REPEAT ;

3, REPEAT WHILE A>B SET X TO FROM 1 70 500
BY 53
END_REPEAT:
The 1ist of values follows the reserved word TO is the
SET phrase. A list item can be expression or a FROM phrase.
The FROM, T0, and‘ BY,‘ values can be expressions which.

evaluate to either positive or negative values, if the BY

value is not specified, the default value is one.
6.,5.7. Termination Statements

The STOP and the LEAVE are the termination statements
other than the END statements. The STOP statement causes the
program to be halted and no furthef statements wiil be
executed., The gEAVE statement names a control structure.
When the LEAVE statement 1is executed, the named control
structure will be terminated. A LEAVE statement at ievel N
cah cause termination of any controi structure fro% level 1

through N-~1.
- Examples

P: REPEAT WHILE <1000 ;
IF X=50 THEN LEAVE P 3
IF X = 60 THEN STOP;

END_REPEAT 3

CHAPTER BIBLICCRAPHY

1. International Business Machines, PL/1 Lanauage
Snecifications, IBM Form C28-6571, 1972

2. Yourdon, 1., "A Brief Look at Structured Progrmming And
Top-Down Design®, Modern Data, June 1974, pp. 30-34

56

7

!'

7.2,

CHAPTER VII
DATA BASES
Introduction

The data bases which are related to the generation of
machine code are depicted 1in detall in this chapter. The
manner in which the variocus data bases are used is shown by

Figure 1.1 in Chapter I, which should now be refered to,
SRURLCEX

SOURCEX is an external file built by the SCAMNMNER and
input by the PARSER. It contains a copy of the card input

wvhich Is the source prooram of TPL.
TORKENS

TOKENS 1s an external fille bullt by the SCANNER and
input by the PARSER. The entries in the file TCGKENS are
numbers which identify a certain token-type followved by =
variable which may be a pointer to a symbol list entry or a
nuimber or a null wvalue for those tokens not reouiring

operands. Figure 7.1 shows the three types of entries.

— e o Sk i A o TR TR SR S e e el T AL AN WA N MR TR e oNP Db S O e

. TOKEN ' POINTER |
! TOKEN ! NUMBER :
: TOKEN '

Figure 7.le m=w—- TOKEN ENTRIES

7.4%. Symbol List

The symbol list Is a one-way linked list. The nodes of
the 1list are dynamically allocated as they are needed. Each
node contains six fields. Nodes are variable in size since
the NAME field 1s variable in size. Figure 7.2. Shows the.

layout of a node.

W . W A e e Yee SAE B "

] i
t e
5 LOC OR P ;
g o e ML A e e S SR m———— 1
' LNTH § NAME '
e ' i
: \
; (VARY ING) g
1]]

A A W A e AR W . S5 S

FIGURE 7.2. —— A SYMBOL NODE

The field ca]ied_NEXT is always a pointer to the next

entry in the one~way chain, except that the last entry in

59

the symbol list has a wvalue of HULL, a special PL/1(1)

value.

-

The field called TYPE is an integer value which
indicates the type of node., TYPE has values for each phase

of the compilation. The types of nodes built by the SCANNER

ares

1. Label
2. Indentifier
3. Constant

The types of nodes recogni zed by the PARSER are:d

i. Label

2. Vector

3. Simple variable
4, Constant

5. Function

6. Active function
7. Dummy(hrgument

The types of nodes recognized by the code generator
ares

1. Label

2« Define label

3. Vector

4., Simple variable
5. Constant

6. Function

7. Defined function

The fleld called DIM or EF is filled by the PARSER. For
a vector DIM contains the length - of the vector. For a
function EF contains a flag indicating whether or not the

function is external. The field called LOC or P is used by

60

the PARSER and CODEGEN. PARSER uses P when compiling a
function. If the node is an active function, P is a pointer
which points to the simple variable where the function valuve
is stored,' If the node s a dummy argument, P is a polnter
polnts to the simple variabie where the dummy argument Is
stored., During the storage allocation stage CODEGEN sets LOC -
for vectors, simple variables, or constant, During the
machine code géneration CODEGEN sets LOC for labels or
functions.

The field called LNTH is entered when the code is
allocated. It contains a number which is the length of the
NAME field In characters.

The field called NAME Is entered when the word is
allocated. It c?ﬁgains an identifier which names a label, a
vector, a simple variable, or a function; or it contains the
charaﬁter string which defins a constant.

Nodes are allocated by every phase of the compiler. The
SCANNER builds nodes for every identifier, Jlabel, or
constant found in the source. The PARSER builds nodes for

temporary storage and system-generated iabels.

The PARSER also bultlds nodes for function values and
dummy argument wvalues. Code generator builds a node for a
system generated label which is defined at the beginning of

the executable code.

7.5,

61

THREECD

THREECD is an external file built by the PARSER and
input to the code generator.(CUDEGEN). The entries in the
file THREECD are numbers which identify the type of code
optionally followed by one to three pointers or a number.
A1l entries in the file have fields for-three pointers. If a
field is not used for a particular code, it is set to NULL
(a special PL/1 value). Figure 7.3 shows the five types of

entries in THREECD.

A e A v T —

: CODE |

' COPE : NUMBER |

_______ .11_.......___...............__....“....

! CODE ' POINTER |

: CODE | PDINTER | POINTER |

! CODE ! POINTER ! POINTER | POINTER |

o A v B S o i ot W o " Yo T Tk i WA SR A S S T i v R et S S

Figure 7.3. --- THREECD ENTRIES
Appendix 2 deflines the various three address and lists

their respective operands, If anv.

7.6,

77

7.7.

62

RFAIRCD

REAIRCD is an external file built by the code generator
and Input to the LDADER, which transforms the %el@catable
object code medule into an egecutable module.

RFAIRCD contains the relocatable object code along with
the loader control information necessary Lo Iéad the program
by the LOADER. Each entry in RFAIRCD consists of a loader
control character and optionally an operand. The operand can

be a number or a name.

Appendix & defines the various loader control codes and

lists their respective operands, if any.
ABSBIN

EBSBIN is an external file outputufrom the relocatable
lcader and input to the Fair;hild F2L computer, which is the
target computer. ABSBIN contains the absolute Fairchild F2k
machine codes which are executed by the Falrchild F?h

computer hardware or by the simulator.

ERFORSS and ERRORSP

ERRORSS and ERRORSP are external files built by the
SCANNER and the PARSER respectively. DBoth files contain

error messages generated during the compilation of a TPL

63

program. Both files are merged into the output listing. kach
entry in the files consists of a line number on which the
error occurred and up to 100 characters of text describing

the error.

CHAPTER BIBLIOGRAPHY

te Gries, David, Compiler Construction for Digital

Computers, New York, John-liley,1971

2. International Business Machines, PL/1 Lencuage
Speci fications, IBM Form €28-0571, 1974

64

CHAPTER VIII

SUMMARY AND CONCLUSION

8,1; Testing

SCANKER, PARSER, and CODEGEN will gererate a debug
listing wvhen requested. The debug output optlons are
ﬁontroflad from the source input stream. The options can be
turned on or off and changed at any point by one source card
with 7227 on column 1 and 2. There are several levels of
debug output that can be selected. Figure 8.1 shows the
output for each level. Samples of debug output are shown in

Appendix 7-13.
This compiler was tested in several stages:

Stage 1+ SCANNER output was hand-checked using the
debug output.

Stage 23 PARSER output was hand-checked ﬁsing_the
debug output. The PARSER and SCANKER were integrated
for this stage. |

Stage 37 CODEGEN output was hand-checked using the
debug . ocutput. CODEGEN was integrated with PARSER and
SCANNER for this stage.

Stage 4: LISTER output was bhand-checked using

65

Figure 8.1 Debug Dutput Options

N v W A R o T N e P W T ST VR VR G RS R W W M WA W R TR A R W DY e e St W S M UMY e o ye TED TR W TR AR PND wEm Uk A M S N AR A e A A A

RAR re e i RS TR LY e G AR AT S Sy B M ST T AR MAT Gk SR U Mk b e ek whn e Gy T R O W T TR G T M MR MR e e Wl Wk W AR e A AR R AR MR A b b e

SCANNER

Source, Errors
and tokens.,

Source, errors, tokens, and
detail trace of finite-state
machine.

L e v e v Y i e Wb W NI M A S b o e b i e S S e S G e L T VLW G YRR GYR AT A L AR N NMA RS A AR d B Sl T vk e e T

PARSER

Scurce, errors, and
three-~address codes,

Source, errors, three-address
codes, tokens, and subroutine
trace.

¥
ek A NS e S AWR M R M M U S A W e e A A e e Ay G G VER e AL WA S S YRS WA P W W W A R R en W A P W e S v e P Se AW .

CODEGEN Source and Falrchild FZ4
assemb!y ianguage listing.

Source, F24 assembly language
iisting, and obJect code.

'Source, F24 assembly language

listing, obJect code, and
three-address codes.

. A e v S E e vre e el MRS AL M EAL S A A A e B G G A SN SR AN M A P g S BEE AUR AL Yk Wb WAL L R A AR A R VAN S AR . . S

s T L T L T)

66

8020

67

debug output, LISTER was integrated with PARSER,
SCANNER, and CODEGEN for this stage.

Stage & LOADER output was hand-chgcked using
debug output. LOADER was intégrated with PARSER;
SCANMER, LISTER and CODEGEN for this stage.

Stage &+ the TPL compiler.ﬁas integrated with the
LOADER and the Fairchild F2h simulator for this stage.
TPL. programs were compiled ahd executed. The output

from the Fairchild Fzk simulator was hand-checked.

Test programs for stage 1 though 4 were designed to
test the compiler rather than go inte execution., The
programs Wwere designed to test each major feature of the
compiler on a statement by statement basis..Programs for
stage 5 and 6 were designed to produce output that could be
intepreted as correct or incorrect depending on whether or

not the interpretation had been correct,

Sampies of testing programs are shown‘ in Appendl X
14"'1 5.

Choice of Implementation Lanhguage

It is believed that the compiler presented in this

" thesis 1Is best implemented in a high-level programming

language. This languége needs not support dynamic arrays or

&0

data~-directed input-output; in fact, any feature requiring a

complex run-time environment is a liability.

The language should make 1t easy Lo produce modular
software systems, that 1{s, a system containing a lafge
percentage of components. In support of this notion, the
language should posses & reasonable, efficient subroutine
call facilitv. Full call-by-name(2) is certainly not needed;
a simple call-by-reference(2) would be satisfactory. Also a
programmer should be able to get at out-of-module variables,

say in a shared data base, without having to go to any great

trouble,

A larguage (QSpecIaily an imb]ementation language) can
not afford to hide very many attributes of the
target-mechine hardware and monitor, as it Is difficult and
dangerous to predict which features will never be useful.
This implies that perhaps ﬁhe best implementation lancuage
is the 5ne customer—tai lored for the target machine
envirenment that It musth routine]yrdea1 with. So wé have two

alternatives:

1) Define a reascnably machi ne~independent
language and hope for the best with regard to monitor
interfacing and complete instruction-set utilization,

or

69

2} Define a lancuage sultable for a fairly larcge
family of machine (like UNIVAC 1100s or the IBit 360/376
line), aliow the language to become rather
machiné~dependent, then count on defining a new che

when it is Lime to cross TFamily lines.

Of the two, the first is more atiractive from a
mobility standpoint. The second is more attractive to these

wishing to exercise very close control over hardware and

moni tor.
Evaluation

Probably most compi lers have been written. with
"conversation routines” embedded in and/or called by the
N '
lexical analyzer{i1). A call to such routines usually occures

immediately after each token is discovered. such routines

usually convert digit strings to some Yinternal® integer

representation, for example, or Iif a decimal point (s

.. encountered, to some representation of real numbers: or they

may interpret special characters inside string constants;

etc.,

All too often the Yinternal® representation chosen is
that of the machine on which the language is initially being

implemented, with little or no thought that the compiler

8.4,

70

might later be moved Lo ancther machine or be modified to
generate code for a different machine. Such decisions are

usually made because of Yefficiency¥,
4

It is desirable to keem the entire front-end (scanner
and parser) of the compl ter Indpendent of target
representations, if possible. If constants afe transiated to
target representations by the lexical analyzer, tables of
several different tvpes usualiy must be maintained and some
processors that .da not need to know those representations,
nonetheless must be programmed In term of, or around them.,
for example, if cons%aﬂts are converted and an ervor messags
should relate bto one, It must berconverted back to source

representations for printing.

In summary, the author suggests that the scanner and
the parser should be independent of target representations,

if possible.

Future Research

In the author”s opinion, future research activities lie

in the following areasi

1} In the optimization for the machine code

(CHAPTER - V), the asuthor described various methods for

71

generating optimized machine code. Further extensions
of the sresent research might include fnvestigation of
other mechanism on which optimized machinre code can be,
generated,

2) In the design of the TPL compiler, the author
chose the static storage management for storage
‘allocation. Run-time storage allocation may be added in
the future.

3} In the descripffon of error recovery In syntax
analysis (CHAPTER i1), the author has presented
decriptions of error recovery, further research miaht
include deveiopment of repair technigues to transform
programs contalning syntactic errors into programs that

are both valid and similar.

CHAPTER BIBLICGRAPRHY

1. Fariy, J. C., fan Efficient Context-free

2

Farsing Algerithm,” Comm. ACH 132, 1970, pp. 94-102

. Waite, ¥W. M., Compiler Construction, New York,
Springer~Vertag, 1974

72

LIST OF R

BY
CASE

ELSE

END
END_FUNCT ION
END_TF
END_REPEAT
END_SELECT
END_UNLESS
EXTERNAL
FOR

FROM
FUNCTION

APPENDIX 1

ESERVED WORDS IN TPL

Ir
INPUT
LEAVE
ouTPUT
REPEAT
SELECT
SET
STOP
THEN
TG
UNLESS

VECTCR

WHILE

73

G o o W Vs N S T Y e B n S St S e S s S T 54 o s D M 0 i Lt e U i Y S T M A Ml e e T . 4

nmmm--—_.‘-_nmm—--——m-\llmw-‘.M“Mq—wﬁmmv—yu-_lﬂwnmno-woﬁ;h-’v-w—u-n-«-«mw“--—m-—-—m-ﬁlwmlm_“

e e e e b e o -.,-._-n..-.---m—_.._ma-n———..-mu-—._..n-—ow‘.-—w_—auu--_.uwwnmm...—u-.-.--.a——u.-..m_.e-o

ADD P1,P2,P3.
add P! to P2 and store the result in P3.

CALILD P1,P2.
the function, P1, is
result is store in P2

CALL1 P1,P2,P3.
the function, P1, is invoked with argument,
P2, and the returned result. is stored in P3.
COMPARE_EQ P1,P2,P3.
if Pl Is equal to P2, P3 is set to true:
otherwise, P3 is set to false.
COMPARE_GT P1,P2,P3.
if P1 is greater than to P2, P3 is set to
true; otherwise, P32 is set to false.
COMPARE_GTEQ P1,P2,P3. _
if P1 is greater than or equal to P2, P2 is
set to true; otherwise, P3 is set to false.

COMPARE_LT Pi1,P2,P3. :
if Pl is less than P2, P23 is set to trues
otherwise, P3 is set to false,

e e W e Men W R SR G W W A an G N RAR Man TR SR W M e S e e A S LPR RE LLL B A b e S e S T TR M A K3 M AL A iy

COMPARE_LTEG P1,P2,P3.
if P1 Is less than or equal te P2, P3 is-
set to trues otherwise, P3 is set to false.

T T . o T — T . W 7o S T T W0 S W LA LW ARA S R VLR Ak B o rm A e s e S A A SRD Ao . e

COMPARE_NEQ P1,P2,P3.
if P1 is not equal to P2, P3 is set toc true
otherwise, P3 is set to false.

A e A A R o L s QD D AL L S S D S GUD SRS S Gl el LA A AR Y W W ik ey b b THA e S e T B TR e - A W (o i o e e s e

POTIMES P1,P2,P3.
mu]tap]y P1 by P2 and store the result in P3.

. BA Y T T A . R AR G . G S SA% G M QP A AP G S A B Sl T . . AT, W P AL e o ot By e e omn

DODIVIDE P1,P2,P3.
divide P1 by P2 and store the result in P3.

e ek e g A A A A AL A A U P N W S S S S T B A T B ol W i e e e T e T YER M e G e e Were W T TR W G . AUa Bk e Y A e ik ek

APPENDIX 7 THREE-ALDRESS CODES (CONTIRULD)

I YT e ST Wnk ran Enr s man e e M M R SR A 6T AT LS WA R S LR S WAL e G e L8 S R i e T et S e e S U e WA B A R Bk e s o TR YR e oA s

T TER e e ek M B e W WG e il Rk d e T B T W) Y A R S A R S i W WA AR T T e s . RN e o YEE s P S S0 A o A o

END_TAC No operand
indicates the end of three—address codes.

ENTERO P1.
enter a function by ros@rving a location Pl
for the return address

ENTER1 Pi,Pz2.
enter a function by reserving a location Pl
for the return address and the argument
value at P2, the dummy argument.

EXIT Pl,
exit a function by returning the function
va]ue, Pl.

GO Pi.
branch to Pit.

GOIF_FALSE P1,P2.
if Pl is false, branch te P2; otherwise,.
execute next code,

GOIF_TRUE P1,P2. _ ‘
if Pl is true, branch to P2; otherwise,
execuée next code,

AU e AT G A TEE Y Y AT ST M SRS AR TMG WY FLG S B He G L S TS mn YA M e e G A W S S M A WA b e Ve el S W W e - e R A M Rk i SV e e vl

IN Pl.
input P1l.
INDEX P1,P2,P3.

calculate the address of P1 subscripted
by P2. Store the resulting address in P3.
L.OCDEF P1. |
label P1 is defined at this locaticn,
IN P1. |
input P11,

ATt A W U A T A S ALy A RS Y W T W W S S G S W gn . et S S S (W S U AU AV e W i Sk e i i e . A o, G

APPENDIX 2 THREE~ADDRESS CODES (CONTINUED)
CODE OPERAND AND CODE DEFINITION
MOV P1,P2.

T PN QAR AR Wl N AR W T M Sk L Lo ek S 7 e S R MM A LM fa ek S T R R Y L et L s i e T T 4 i AR . S T U 7% S, S . £ e e e A i . e

move P1 to the locaticn defined by the
address . in P2,

MOVI P1.P2. _
move the value at the location difined by the
address In Pl to P2,

TSR O ST NS AN T N0 OIS L LR Nt i e e e o e v s 7l 4 e Y iy W T s G i ke e ALt W W AR e W ol S mte Sk B e v e

NEGATE P1,P2.
negate P! and store the result in P2,
ouT Pil.
cutput Pl.
RETJMP Pl.
return indirect throuah P1
STOPCD no operand
stop

TN ML e S e T A N S A S $nk Ay ek B et h Y M . WU U A A U i Al o W P ST e o e Y e R e v o ———y

SUBSTRACT P1, Pz, P3
substract P2 from P! and store the result in

P3. |
XDEF Pt.

the entry point to function P1 is defined at
Pl.)

L N gt AT WM B AR . e ST WAL G e e BSOS VN S M R S M S A e T VTR T R WP A MRS W G e T TR M e e W v VS W A fet o e i

76

APPENDIX 3

BNE SPECIFICATION OF THIS PROGRAMMING LANGUAGE

W R drm i o e A ST MR T e W AN S LXMWY M WL W WU st TR G R WP TR LA B A0 AL R i Y n 8 ST W G i U e M RS dhe ke e e ek e o e e

<PROGRAM> 23z <PROGRAM_TAIL>
i <PROGRAM_HLCAD> <PROGRAM_TAIL>
<PROGRAIM_HEAD> 23= <EXTERNAL_DECLARATION LTST>
) <VECTUR_DECLARATION LIST>
<PRDGRAM_TAIL> 13z <SAME LEVEL SEQUENCE> END;
<EXTERNAL_DECLARATION_ LIST> 335 <EXTERMAL_DECLARATION STATEMERN
i <EXTERNAL_DECLARATION LIST>
<EXTERMAL_DECTARATION STATEMENT>

. <VECTCR_DECLARATION_ L IST» 3= <VECTOR _DECLARATION _STATEMENT>

i <VECTOR_DECLARATION LIST>
T<VYECTOR_DECTARATION STATEMENT>
<EXTERMAL_DECLARATION STATEMENT> 3T= EXTERNAL <EXTERNAL_LIST>
<EXTERNAL_LIST> 2:= <FUNCTION_NAME>
{ <EXTERNAL_LIST> , <FUNCTION NAME>
<VECTOR_DECLARATION> $i= VECTOR <VECTOR LIST> 3
<VECTOR_LIST> 3= <VECTOR_SPECIFICATION>
¢ <VECTOR_LIST> , <VECTODR_SPECIFICATION>
<VECTOR_SPECIFICATION> 33= <VECTOR> (<LENGTH>)
<VECTORS ::i= <IDENTIFIER>
<LENGTH> 3= <CONSTANT>
<SAME_LEVEL_SEQUENCE> 3= <TERMINATION STATFMENT>
: <SEQUENTION_EBLOCK>
i <SEQUENTIAL_BLOCK> <TERMINATION STATEMENT>
<TERMINATIJN STATEMENT> :3= <STOP_STATEMENT>
| <LEAVE_STATEMENT>
<SEQUENTIAL BLGCK>/=== <CCNTROLLED_BLOCK>
<SEQUENTIAL_BLOCK> <CONTROLLED BLGCK>
<COMTRDLLEQ_BLOCK> 21z <SIMPLE _STATEMENT>
- | <FUNCTION_BLOCK>
<SELECT BLOCK>
<REPEAT_BLOCK>

\

i

i

|

| <IF_BLOCK>

i <UNLESS_BLOCK>
_ | NULL
<STMPLE_STATEMENT> 23= <SET_STATEMENT>

i <INPUT/CUTPUT_STATEMENT> .
<FUNCTION_BLOCK> 3= <FUNCTION_HEADER> <SAME_LEVEL_SEQUENCE>

END__FUNCTION;
<SELECT_BLOCK> 13 <SELECT_ HEADER> <CASE_LIST> END_SELECT:
<REPEAT_BLOCK>3:=<REPEAT HEADER><SAHE LEVEL StQUENCE)ENJ REPEA
<IF_BLOCK> 33z <IF_HEADER> <SAME_LEVEL SEQUENCE> <IF_TAIL>
<UNLESS_BLOCK> 2:= <UNLESS_HEADER> <SAME_LEVEL_SEQUENCE>
<UNLESS_TAIL>

APPENDIX 3

BNF SPECIFICATION UF THIS PROGRAMMING LANGUAGE
(CONTINUED)

S N R TR il T A S G U L Sk oL e o T T TS o W B AL W e G4 e o AR O AN B L S ok T (o Aol L e o e 9 s e A B S ok A e e P e

<SET_STATEMENT> s:i= SET <TARGET> TO <EXPRESSION>
<TARGET> 23z <VARIABLE>
SEXPRESSION> *i= <TERM>

i <EAPRESSICN> <ADD/SUBTRACT OPERATOR> <TERM>
<TERM> 23z <SIGNED_OPERAND>
| <TERM> <MULTIPLY/DIVEDE OPERATOR> <SIGNED OPERAND>

<SIGNED_OPERAND> 33= <ADD/SUBTRACT_OPERATOR> <SIGNED OPERAND>

i <OPERAND>
<OPERAND> 3= <CONSTANT>

! <VARJABLE>

i <FUNCTION_REFERENCE>

i (<EXPRESSION>)
<VARIABLE> 23= <SIMPLE_VARIABLE>

i <SUBSCRIPTED_VARIABLE>
<SIMPLE_VARIABLE> 22= <IDENTIFIER>
<SUBSCRIPTED VARIABLE> ::= <IDENTIFIER> (<EXPRESSION>)
<INPUT/QUTPUT_STATEMENT> 2= <INPUT_STATEMENT>

| <QUTPUT_STATEMENT>
<INPUT_STATEMENT> #3= INPUT <INPUT_LIST> 3
<QUTPUT_STATEMENT $:= QUTPUT <QUTPUT_LIST> 3
<INPUT_LIST> f:= <TARGET>

i <INPUT_LIST> , <TARGET>
<QUTPUT_LIST> 2:= <EXPRESS ION> ;

| /<OUTPUT_LIST> , <EXPRESSION>
<FUNCTION_HEADER> 2:= <FUNCTION HEADER> 3

| <FUMCTION_HEAD> EXTERNAL;
<FUNCTION_HEAD> :3=<FUNCTION_NAME> * FUNCTION(<DUMMY_ . ARGUMENT)

_ | <FUNCTION_NAME> * FUNCTION ;

<FUNCTION_MNAME> $2= <IDENTIFIER>
<DUMMY_ARGUMENT> 23= <IDENTIFIER>
<FUNCTTON_REFERENCE> ::= <FUNCTICN_ NAME>

! <FUNCTION NAME> (<EXPRESSION>)
<SELECT_HEADER> 3= SELECT <EXPRESSION> 3

| <SELECT_NAME> SELECT <EXPRESSION> 3
<SELECT_MAME> 2:= <IDENTIFIER>

79

APPENDYX 3

BNF SPECIFICATION OF THIS PROGRAMMING LANGUAGE
(CONTINUED)

I N e U S TR G W TR W TR MEM TKE TAE WA APT UMW RSRM N G FEDTUL LS U O AR O3 WA B A Al S e ol wmn W T e W TSR WM R Ll i Aam i v W e vom AP T W e M T i e S0

<CASE_LIST> 33= <CASE>
: | <CASE_LIST> <CASE>
|oMULL
<CASE> 2:= CASE <EXPRESSION> ; <SAME_LEVEL SEQUENCE>
<REPEAT_HEADER> $i= REPEAT <REPEAT_SPECIFICATION> 3
i REPEAT_NAME? REPEAT <REPCAT_SPECIFICATION>
<REPEAT_NAME> 33= <IDENTIFIER>
<REPEAT_SPECIFICATION> ::= <SET PHRASE>
i <SHILE _PHRASE>
. i <WHILE PHRASE> <SET_PHRASE>
<WHILE_PHRASE> 23= WHILE <CONDITION>
<SET_PHRASE> ::=
<SET_LIST>. 33

it e V

<VALUE_LIST>
| <SET_LIST> , <VALUE_LIST>

<VALUE_LIST> #3:= <EXPRESSION>

i <RANGE_SPECIF ICATION>
<RANGE_SPECIFICATION> 3= FROM <START> TO <FINISH>

i FROM <START> TO <FINISH> BY <INCREMENT>
<START> 3:= <EXPRESSION>
<FINISH> 2i= <EXPRESSION>
<INCREMENT> $:= <EXPRESSION>
<SET_VARIABLE> 3= <TARGET>
<IF_HEADER> :i= IF <CONDITION> THEN

i <IF_NAME> % IF <CONDITION> THEN
= <IDENTIFIER> -
= END_IF3
| ELSE <SAME_LEVEL SEQUENCE> END_IF;

<UNLESS_HEADER> 2i= UNLESS <CONDITIGN> THEN

| <UNLESS _NAME> * UNLESS <CONDITION> THEN
<UNLESS_NAME> 33= <IDENTIF IER>
<UNLESS_TAIL> 3= END_UNLESS;

| ELSE <SAME_LEVEL_SEQUENCE> END_ UNLESS;
<CONDITION> :3= <EXPRESSION> <RELATTONAL_OPERATOR> <EXPRESSION
<LEAVE_STATEMENT> 33= LEAVE <BLOCK NAME> 3
<BLOCK_MAME> 33= <FUNCTION_NAME>
SELECT_NAME>
<REPEAT_NAME>
<]F_NAME>
_ i <UNLESS_NAME>
<STOP_STATEMENT> 23= STOP;

<IF_NAME> :
<IF_TAIL> 3

e e et et e

APPENDIX &4
LOADER CONTROL CODES

e G WA AR W TGR e TR TR ke BAS SN g e W G W UG N SR WPR Wk AR T M GTR M D W e Sk e R MPR Ave e e W GHW e TR TR WRe MM T W S e AT e A RS T e O A SR e T L e e

o i A o S D i SR Mok bW TR e W U W M WOR AR TR TS e ML B NN TR SN AT SEM A G WA L M e B DA SR SRR AT AW AR ARE AR T AN ARE NWL SR A AUL SR AP R e A e AN T

Number | Load the number at current load address.
i Increment the load address.
! Relocate the number by adding to the bias.
| Load the relocated number.
| Increment the load address.
i Define a label at this location by filling
! In a chain of references starting at number
i plus bias.
i Load the number at the current load address,
| This instruction is a reference to an
i external function.
i Do not increment the load address.
i There is at this locatlon a reference to an
| external function. If the function has been
i loaded previously, enter its address in the
{ address of the Instruction at this loaction;
i otherwise, link this reference to the
' referencp chain. Increment the load address.
The entry point to an external function is
defined at this lecation. Fill in all
previous references and enter its name-in
the external symbel directory.
" Reserve number stolage locations at this
location. Add number to the load address.

- o — A O A W . ot T i W e S s . ek i e e e e e e M A i R i A g L AL AN 4 e A A MY e W W G i A A e

Nene i Set bias to load address.
i This is the end of this program.

A T e e B AR T S T e W A e LA S Mt g S et we e e G e RS D A RAS A T S MRS AL RUA R Nk . NEE WE MM P SRR SR M SRe WS A S Sen e W S A o S

A T e G AV e S VS G W A S S Ve SN SRS Mar e SRR O MR S L M T R WG R S R T R W e S e e R L M VM S WS A T S AEE

o et . e o At A SO O N AR M e B S N el oy Lk S Al i i O o e i o 30 e e e B sl ok . M o B e B e S T S T Y e S S e

80

APPENDIX 5 |
TPL COMPILER DIAGKOSTIC MESSAGES (1)

LINE LEVEL N

Q001 1 1

o002 1 | ERROR MASSAGES IN TPL |

0003 i 1t

OG04 1 REPEAT SET I FROM 1 TOQ 103
ko EMISSING TO SUPPLIED

Q005 2 If A > 0 THEN SEY A TO 103
0006 3 IF A > 20 THEN SET A TO 20 ;
Qa0C7 3

) UNLESS A -~ 30 THEN SET A TO 40
ko okl ND tef FOLLOWING 2wt :

00Gs %4 END_REPEAT:

FEERRERAEEMISSING END_UNLESS SUPPLIED.

Fddor il I SSING END_IF SUPPLIED

3009 i END_IF3

ko kkkk EXTRA OR UNRECOGNEIZABLE STATEMENT 1S IGNORED
0010 1 LEAVE NO_SUCH_BLOCK;
#ddkwdkdkk Rl EAVE OF INACTIVE BLOCK INVALID

Gotl 1 IF A =><{ B THEN STOP; END_IF;

EREFERRFERMISSING END IS SUPPLIED

END_IF

.
L}

81

APPENDIX 6 | a2
TPL COMPILER DIAGNOSTIC MESSAGES (2)

LINE LEVEL

0001 1 1 .

0002 1] ERROR MESSAGES IN TPL)
3003 1 i '

0004 1 VECTOR 2{0);
wEkkkEkkEs INVALID VECTOR SIZE SET TO 1

600S 1 SET Al2 TO 12A

Fhdok kR SEMICOLON NOT FOUND WHERE EXPECTED
0006 | SET B TO S*8+{C~D))3
Tt dokkkk R SEMICOLON NOT FOUND WHERE EXPECTED
B007 1 WHAT IS THIS 7

wwkEekdERR [{LLEGAL CHARACTER
REEEFERAXFEXTRA OR UNRECOGNIZABLE STATEMENT IS IGNORED

J008 1 IF A = B THEN SET ¢ 10O 103
0o09 1 REPEAT SET I FROM 1 TO 10;
Fokdokdokdokl ok MISSING TO SUPPLIED

G010 2 SEFT 4 1O J + L3

0011 2 END 3

HAFFEXEFXEEMISSING END_REPEAT SUPPLIED

BEPENDIY 7

TRACE LEVEL 1 OF SCANNER

S

QUTN TOKEN DEBUG ERY
QUTN TCOKEN DEBUG 0
BUTN TOKEN LINE_NUMBER 2
2 SET A T0 1 ;
OUT TOKEN SET
QUTP TOKEN IDENTIFLER A
UT TOKEN TO
GUTP TOKEN CONSTANT 1
QUT TOKEN SEMITOLON
GUTN TOKEN" LINE_NUMBER 3
3 SET B 71O A % 3 + 23
GUT TOKEN SET
QUTP TOKEN IDENTIFIER B
QUT TOKEN TO
QUTP TOKEN IDENTIFIER A
OUT TOKEN MULTIPLY
DUTP TOKEN CONSTANT 3
QUT TOKEN PLUS
QUTP TOKEN CONSTANT 2
QUT TOKEN SEMICULON
QUTN TOKEN LINE_MUMBER 4
% IF 8 > A THEN SET € TD A
OuT TOKEN IF .
DUTP TOKEN IDENTIFIER B
OUT TOKEN GT :
OUTP TOXEN IDENTIFIER A
OUT TOKEN THEN
QUT TOKEN SET
DUTP TOKEN IDENTIFIER c
DUT TOKEN TO
CQUTP TOKEN IDENTIFIER A
QUT TOKEN SEMICOLON
QUT TOKEN END_IF
OUT TOKEN SEMICOLON
QUTN TOKEN LINE_NUMBER 5
5 REPEAT SEY € TO FROM 1 TO 8
OUT TOKEN REPEAT
OUT TOKEN SET
QUTP TOKEN IDENTIFIER C
OUY TOKEN TO
GUT TOKEN FROM
JUTP TOKEN CONSTANT i
OUYT TOKEN TG
QUTP TOKEN IDENTIFIER B
OUT TOKEN SEMICOLON
DBUTN TOKEN LINE_NUMBER 6
5 IF C = 2 * A THEN SET B TO C
OUT TOKEN IF ‘ :
DUTP TOKEN IDENTIFIER C
QUT TOKEN EQUAL
QUTP TOKEN CONSTANT 2
OUT TOKEN MULTIPLY
QUTP TOKEN IDENTIFIER A
OUT TOKEN THEN
OUT TOKEN ~SET :
-QUTP TOKEN IDENTIFIER B
- OUT TOKEN TO
OUTP TUKEN IODENTIFIER C
. OUT TOKEN SEMICOLGN

END_IF3

83

- APEENDIX 8
EL 2 OF SCANNER

TRACE LEY

CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR

CHAR
CHAR
CHAR
A
CHAR
CHAR
CHAR
CHAR

CHAR
- CHAR
CHAR
1
CHAR
CHAR
CHAR

CHAR

CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR

CHAR
CHAR
CHAR
B
CHAR
CHAR
CHAR
CHAR

CHAR

CHAR

CHAR
A

OUTN TOKEN DEBUG
QUTN TOKEN DEBUG
QUTN TOKEN LINF_NUMBER
2 SET A TO 1 3
LN = 2 STATE = 1
LN = 2 STATE = 1
LN = 2 STATE = 1
LN = 2 STATE = 1
LN = 2 STATE = 1
LN = 2 STATE = 2
LN = 2 STATE =- 2
LN = 2 STATE = 2
OQUT TOKEN SET
LN = 2 STATE = 1
LN = 2 STATE = 1
LN = 2 STATE = 2
OUTP TOKEN IDENTIFIER
LN = 2 STATE = 1
LN = 2 STATE = 1
LN = 2 STATE = 2
LN = 2 STATE = 2
OUT TOKEN TO
LN = 2 STATE = 1
LN = 2 STATE = 1
LN = 2 STATE = 3
QUTP TOKEN CONSTANT
LN = 2 STATE = 1
LN = 2 STATE = 1
LA = 2 STATE = 7
OUT TOKEN SEMICOLON
LN = 2 STATE = 1
OUTN TOKEN L INE_NUMBER ;
3 SET B TO A * 3' #+ 23
LN = 3 STATE = 1
LN = 3 STATE = 1
LN = 3 STATE = 1}
LN = 3 STATE = 1
LN = 3 STATE = 1
LN = 3 STATE = 2
LN = 3 STATE = 2
LN = 3 STATE = 2
OUT TOKEN SET
LN = 1 STATE = 1
LN = 3 STATE = 1
LN = 3 STATE = 2
QUTP TOKEN IDENTIFIER
LN = 3 STATE = 1
LN = 3 STATE = 1
LN = 3 STATE = 2
LN = 3 STATE = 2
OUT TOKEN T0
LN = 3 STATE = 1
LN = 3 STATE = 1
LN = 3 STATE = 2
QUTP TOKEN IDENTIFIER
LN = 3 STATE = 1

O | S T 4

i Hon oo

o oi ok

0 oH o

HonoH

oo Woa o ok u

H W H

[O 1

o u

CHAR =

= T "

¢
0
2

CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE

CHAR_TYPE
CHAR_TYPE
LHAR_TYPE

CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE

CHAR_TYPE
CHAR_TYPE
CHAR_YYPE

CHAR_TYPE
CHAR_TYPE
CHAR_TYPE

CHAR_TYPE
3

CHAR_TYPEL
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE
CHAR_TYPE

CHAR_TYPE
CHAR_TYPE
CHAR_TYPE

CHAR_TYPE
CHAR_TYPE
CHAP_TYPE
CHAR_TYPE

CHAR_TYPE
CHAR_TYPE
CHAR_TYPE

CHAR_TYPE

(LI T LI T | I

oo H

[I I

H OB B

H

(L I O I T

oW

oo

H

[S IRV] FE I T e] U o W W e a0 A ST AR

Wi

W1 e un N o =R e A AN e s e 4RGN Y [%)]

ot

TOKEN

TOKEN

TOKEN
TOKEN
TOKEN
TOKEN
TOKEN
TOKEN

TOKEN
TOKEN
TOKEN

TOKEN
TOKEN
TOKEN
TOKEN

TOKEN
TOKEN
TOREN

TOKEN
TOKEN
TOKEN

. TOKEN

TOKEN
TOKEN
TOKEN
TOKEN
TOKEN
TOKEN
TOKEN
TOKEN
TOKEN
TOKEN
TOKEN

TOKEN

TOKEN

TOKEN
TOKEN

TUKEN
TOKEN
TOKEN

TOKEN

oo

LR I I

0o

(T

oo oHou Y

oot

0 oh

#

O T O R

S

L 13

L1 e e we s we

84

0002

0003

QO04

0005

00606

goor

0608

0009

)
STORAGE
STORAGE
STYDRAGE

GDERUG
GLLNO

1
MOV
GLLAD

1
DOT IMES
ADD
MOV
GLLNO

1
COMPARE_GT
GOIF_FALSE
MOV
LOCDEF
LOCDEF
GLLNO

1
LOCDEF
MOV
LOCDEE.
COMPARE_LT
GO1f_TRUE
COMPARE_GT
60
LUCDEF
COMPARE_LT
LOCDEF
GOTF_TRUE
CALLD
ADD
GO
LOCDEF
GO
LOCDEE
ENTERO
GLLNDO

2
DOTIMES
COMPARE_EQ
GOIF_FALSE
MGV
LOCDEF
LOCDEF
GLLNO

2
LOCOEF
RETSMP
LOCDEF
GLLNO

1
STOPCD
GLLNG

1
STOPLD

EOF

145
T$4
L#12

- APPER

DX 9

TRACE LEVEL 1 OF PARSER

SET A TD 1
1

SET B TO A * 3
A
T$1
T2

IF B > A THEN
B
T$1
A
L#2
LEL

REPEAT SET € TO FROM

L#5
1
L&T
1
T$2
C
L#9
. L#8
¢
L#9
T$3
- L#4
N P
L#7
L#b
L#3
L#4
L#10

IF C = 2 % A THEN SET B 0O C

2
C
765
C
L#12
1#11
END_REPEAT ;
L#10
L#4
L#3

SToP;

END3

3
+ 25

4
SET C TO A

5

&

7

owNn

1 7T0 8

3

2

B
END_IF;

A

L#2
c

L#6

3 END_IF;

A
T$4

B

T3l
782

7351

T$2

T§3

T$3

T$4
T$5

UPTOK

GDEBUG
UPTOK

GLLNG
0002 1
UPTOK

PROGRAM_TAIL

SAME_LEVEL_SEQUENCE

CONTRULLED _BLOCK
UPTOK *
SET_STATEMENT
TARGET
UPTOK
UPTOK
EXPRESSION
TERM
S5IGNED_QOPERAND
UPTOK

KOV
FIND _SEMICOLON
UPTOK
CONTROLLED_BLOCK

GLLNG
GL03 H
UPTOK
UPToK

SET_STATEMENT
TARGET
UPTOK
UPTOK
EXPRESSION
TERM
SIGNED_QOPERAND
UPTOK
UPTOK
SIGNED_OPERAND
UPTOK .
DOTIMES
UPTOK
TERM
SIGNED_DPERAND
UPTOK
ADD
MOV
FIND_SEMICOLON
UPTOK
CONTROLLED_BLOCK
GLLNO
0004 1
UPTOK
UPTOK
IF_BLOCK
CONDITION
EXPRESSION
TERM
SIGNED_OPERAND

- UPTOK

UPTOK
EXPRESSION

CAPPENDIX 10

TRACE_LEVEL-EgOF PﬂRSER

DEBUG. -
9
DEBUG
2

SET A T 1 ;

LINE_NUMBER

SET

IDENTEFIER
10

CONSTANT
1

SEMICOLON

3

SET B TO A * 3 + 2;

LINE _NUMBER
SEY

IDENTIFIER
10

IDENTIFIER
MULTIPLY
CONSTANT

A
PLUS

CONST ANT
Tel
T$2
SEMICOLON

4

IF B > A THEN SET C TC A

LINE_NUMBER
IF

IDENTIFIER
6T

T$l

Ts2

APPENDTC 11
TRACE LevEl ¢ OF CODEGEN

0002 1 SEYT A TO 1 ;
R LDA 1
R STA A
6003 1 SET B TO A * 3 + 23
R LDA A
R MUL 3
R STA THl
R ADD 2
R STA B
0004 <1 IFE B > A THEN SET C TO A 3 END_IF;
LDA B .
SUB A
BNZ L42
LDA A
STA c
L#2
L#1
2005 1 REPEAT SET € TO FROM 1 TG B 3
L#5
LDA 1
STA C
LT
LDA 0
SUB 1
BP L#8
LDA ¢
SUB B
STA T$3
BRY L#9
L#8
LDA 8 o
sue C i
STA T43 _ ‘
L#9
1.OA T$3
EP L#6
BRU L#S
LbaA ¢
ADD 1
STA C
BRU - L¥7
L#6
BRU L#3
L#4
006 2 IF C = Z * A THEN SET B TO C 3 END_IF;
LDA 2
MUL A
STA T$4
SUB c
BNEZ PC+3
LDA 200
BRU PCt2
LS 24
BNZ L#12
LDA c
STA B
L#12

DRAFPRIEPICPFPRAEIFPOCUFUDAIAINNICAHAIPOR AT OIDNAADRBOLITOAREBILR

D OL#ILL ,
007 2 END_REPEAT 3

UASTOANIN N OSSR AORN I A AN AR IR NN ICAQOOITA DD NORROBED

0002 1
R LDA 1
R STA A
0003 1
LDA A
+00000002 Vv
MUL 3
STA T$1
ADD 2
STA B
004 1
LDA B
suB A
34000013 R
BNZ L#2
LDA A
STA ¢
L#2
L#1
005 1
02300000 R
L#S
LOA 1
sTa ¢
L#T
LDA 0
sug 1
BP L#8
24000011 R
LA €
SUB B
STA T$3
BRU L#9
L#8
LDA B
240000615 R
suB €
STA T43
L¥9
LDA T$3
By L#&
ARU L#4
22600015 R
LDA ¢
ADD i
STA C
BRU L#7
L6
BRU L#3
24900015 R
L#4
0006 2
R LDA 4
R MUL A
tOSTA Th4
Ko 5UB L
D 0oalaoss R
R OBNEZ PL+3
A LDA 2040

APPENDIX 12
TRACE LEVEL 1 OF CODEGEN.

SET A TO 1 3

SEY 8 TO A * 3 ¢

23
00000001 O 00D0U000L R 240C0C11 R 14000C1u
IF B > A THEN SET C 7O A 3 END_IF;
14000007 R 20000014 R 14000012 R 24000012
REPEAT Se¥ £ TO FROM 1 70 B 3
24000010 R 14000015 D 00000027 D 0GOGO0OCO
14000015 D 00000000 R 24000005 R 22000011
22000012 R 14000004 R 01000002 D G0000036
14000004 D 00000042 R 24000004 R 02400000
20000011 R 14000015 R 0LGCQO034 0 00000047
IF C = 2 % A YHEN SET B TO C 35 END_IF;
24000014 34000010 R 14000003 R

22000015

R

g8

24000010

22000010

0000GHRGH

02400000

24000012

01000000

01000000

02500065

x x

GLLNO g
0002 1 SET A 1O} ;
MOV 1 A
R LDA 1
R STaA A
GLLNO 3
0003 1 SET B8 TO A * 3 + 23
DOTIMES A 3
R LDA A
& +00000002 V00000001 D 00000001 R 24000011 R 14000010 R
R MUL 3
R STA T$1
ADD T$1 2
R ADD 2
MOV T$2 B
R STA B
GLLND 4
0004 1 IF 8 > A THEN SET ¢ 10 A 3 END_IF3;
COMPARE_GT B A
R LDA B
R SUB A : :
R 34000013 R 14000007 R 20000014 B 14000012 R 24000012 R
GOIF_FALSE T$1 L#2
R BNZ L#2
MOV A c
R LDA A .
R STaA C
LOCDEF L#2
D L#2
' LOCDEF L#l
D L#L
GLLNC , 5
0005 1 REPEAT SET C TO FROM 1 TO B 3
LOCDEF 1.#5
R 02300000 R 24000010 R 14000015 D 0QO0GO0027 O 00000000 D
D L#5 '
MDY 1 C
R . LDA 1
R 5TaA C
LOCDEF L#T
D L#7
COMPARE_LTY 1 0
LOA 0
suB 1
GOIF_TRUE T§2 L#8
R &P L#8
R 24000011 R 14000015 B 0000C000C R 2400000% R 22000011 R
- COMPARE_GT C 8
R LDA C
R SuB B _
‘ GO L#9
R STA T$3 '
R BRU L#9
LOCDEF L&8
D L#8 .
COMPARE_LT C 8
R LDA .8 o
R 2400001% R 22000012 R 14000004 ® 0lC00000 D 00000036 R
R SUB ' ‘ : o

ARPENDIXN 13
TRACE LEVEL 2 GF CODEGEN

89

T$1

24000010

182

T%1

22000010

000C0000

T$2

024006000
T$3

T$3

24000012

LINE

3001
2002
0003

04

20058
a008
oooT
008
(3009
3010
gall
5012
0013

LEVEL

bt e NG TG PG B N e P b e s e

APPERDIH 14 {Page T
B0

a4
SOURCE LIST IHJ u _£E? PRG R

T

3
s

i NUMBER 1

B o et s e

| SAMPLE TESTING PROGRAM NO.

o e e |

1

|

e

SﬁT ATO L 3

SEY B 10O 2 3

IF B > A& THEN SET F 10 4
END_IF 3

.
¥

REPEAT SET € 7O FROM 1 TO 2 3

IF L 1 THEN SET O TO &
I C 2 THEN SET £ TO 7
END_REPEAT 3

STOP 3

EMD G

i

.

i
>
&

END_IF
END_IF

?

)
k]

S0

A
¥
A
D
R
0
]
R

R
R
R
O

A
b

00300001
0860001

+0000G004

G0000001
223006007
QAGH30040
Q2400000
24000012
010006000

01000000

01000065
GO000030
07022024
Goagagoono

ARAP OIS NRDRIVADC D

01006000
Q0000001
GoQGcoo0t1
24006010
02300000
26000010
24000015
22000015
24000015
GQooQ0si
07022024
24000015
02300000
01040057

el Rl I -Vl i il Tl

v
A

OOUGGLaE
14000007
24000014
140060015
22000012
14000003
200006010
24G0G01L5
Q2360000
22060012
2540030021
000004358

V,) i

A

BRBERTROR K D> <

APPERDIY 14 (Pege 2 of 3)
RELOCATABLE FATRCHILD F24
GENERATED FROM TEST PROGEAN NUMBER 1
QCOH00D L
HUO0IH 00T

MACHINE CODE

#30000001
+UD00008

24000012
14600013
Q0003000
14004003
Q0000643
14000015
220000610
24000017
02500075

- 14000020

GOGO0200

V
A
Y
R
)
R
R
£
R
R
R
A
D
A

00000601

+0G000002

00000001
14006011
aooQau30
24000005
01000C00
240006003
01000035
02500064
140460016
24000200
00000076
QGo00200

A
VY
A
R
D
R

Mo RO CO T

91

+Q0000000

00000001

+00000007

24000011
BOCLO00L0
220006010
Q0000637
02400000
Q0000050
24000200
goacooses
01000076
G000GaGR0

F24S1M VERSION OF JANUARY 2%,

QUTOBER 14y

NGO TRACE PARAMETERS READ.

TRACE-LEVEL

APPENDTY A Phage 3 of 2)

ABSCLUTE TA

TRCHILD MACHINE CODE

GENERATED EROM TEST PRQGR%M:NUMBER 1

1976

g s 5 S D, S D

1574 -

17235209300

[a——

CURRENT EXECUTION TIME =
EXECUTION TIME LIMIT

X TS
FREI Q0%

¥REQQD00001
EERQQQ00001
®EE Q0000000
FHED230G00233
wEE24GO0215
ExED2400256
¥Ex22000210
xxH24000215%
FEEL14000220
w3k 30500000
®EEDJ0O00000
*xJ0000000
2HEQOGOOOQC0
wEEQOOOO000
#EHXQQOG0000
x5 00000000
FEEHI000000
*»xE Q0000000
®xEG000G0000
®EEJQOJG000
&2 (00600000
¥2E00000000
R Q0000000
#EEQQO0C0000
F#¥20LEH

e

ENTERING LOADER.

01000222
GOaaa000
0nBGo0007
24300214
22000212
01080257
02500264
22000212
01040257
0006400400
000000300
C004d0000
000300006
0C000000
0g60000Q0
000000G0
go000000
00003006
004000000
000Qa0024G)
Q5000000
00000000
000000060
QO00oCa0u

& ERROR LEVEL IS
& Dump_C
DUMP_COUNY = i

e

= 3000

Qo00GR00
Qeoaseaz
240002140
14000213
14000203
24000215
24000200
02500275
00000200
00030000
0QQ0000G0o
Q0000060
00oQe0Gc00
40002C00
dGoooono
go0o00000
00600000
0Gao0000
CO00000G
00006000
¢00Ga0L0u
00600060
00000000
000G0C00

INITIAL SAVE OF MEMORY.

* END OF DuMp_C

DEFAULT VALUES

00000000
GO000GO0
14000207
24000210
01000247
20000210
01000265

24000200

060000200
00000000
000000006
00000000
00000000
GOC00000
DO000000
00000000
306060000
00000000
00000000
00000000
00000000
00000000
00000000

000064000 .

USED.

00000000
0000604004
24000212
14000215
24000212
14000215
07022024
01000276
Q0300000
000004000
30000600
000G0000
000000060
000000060
GoGGo000
00080000
00000000
40000000
200000048
00000000
GGOG0000
0604500040
300000040
£oQoco0na

LEAVING LDADER WITH PC=0000001C000001

Qaoo0ato
0GoG0000
140060211
24000205
22000215
01000235
02300270
G7022024
Q0002000
§0000GH0
¢0000000
03060060
00000000
CO0QGUL0
20006000
0Gaoooin
00003000
00GOG060
CoLo00G0
00000000
00000G6L0
00000000
00000000
00000000

S OA Y S

000060000
00000000
24000211
22000210
14000203
01000302
24000217
02300301
00000000
00000000
60000000
00000000
00000000
00000000
00000000
000000600
00000000
00030000
00000000
00000000
00000000
0C0U0G00
006060060

00000000

ERROR_LEVEL=

92

GooGgeoosd
00040005
22000207
02400244
24000203
24000215
140G02% 6
24500221
0000600
00L00600
GGocRo00
eletelelolvioly)
00000000
GO0CO0GG
Go0CeaLo
20000000
Co0GoeaG0o
000000460
0G0C00GE
2600060040
Goo00000
00000000
Qo006 00o
00000000

APPENDIX 15 (Page 1 of 3)
SOURCE LISTING OF TEST PROGRAM NUMBER 2

LINE LEVEL

0001 1 | e e 2 |
0002 1 | SAMPLE TESTING PROGRAM PRUGRAM 8C. 2 |
0003 1 St
0004 1 SET 8 TO O 3

0005 1 REPEAT SET A TO =1,041 3

0006 2 fF A < B THEN SET XX TO L 3 END_IF 3
0007 2 IF A <=8 THEN SET XX ¥O 2 3 END_IF 3
0008 2- IE A = B THEN SET XX TG 3 § END_IF 3
0009 2 IF A ~=B THEN SET XX TO & ; END_IF 3
3010 2 [F A »=B THEN SET XX TO 5 ; END_IF 3
0011 2 [F A > B THEN SET XX YO 6 3 END_IF 3
0012 2 END_REPEAT 3

0013 1 END;

SR AORX AR RO RFRIBAOD D

00000001

+00000000
+HQ0V0004

00G00C00
01006000
24000010
24000005
¢o000a00
023060000
22006005
24000013
022060070
3000000
02300000
22000005
Gooa0000

el v s R w iy — R e w B v J = B« ik w B = i i o

GENERATED FROM TEST PROGRAM NUMBER 2
SO2000001

Gl0GGaeo
gOo000a1

+00000005

2490G0L0
ao0o0000g0
14000007
22000007
24000005
240360012
02500060
140000141
24000200
24900007
24000015
02300000
01040036

DRDOHI/T>OSRNRAEBN P <

i g?ﬂ’!»
APPENDIX 15 ¢

O80GGE0Y,.

+0300008G1
+DLOCG00GA6

22000010
24000006
Groo2031
02323000
22000007
140G00D1L1
24000200
QUI000B6L
02300000
22000005
140000611
240060014
QOuGOBaEs

PROODAIODO RN RLTO NN T]

Page 2 of 3)
RELOCATABLE FAIRCHILD F24 MACHINE CODE

LO000001L
0000001
22000010
140006007
Q000000
24000010
22400050
QGoo0G5G
$51l00a0061
DOGLCR00
24000014

- 32400100

geooaLon
140000611
00000200

v
A

MWDo R

0ocouco!l

+00a03002

24000006
14000003
210G0R26
01060000
14000011
02102Q50
go0000060
07022024
24000007
140006011
02100100
GO0000006
00000103

CRPORDDTOCTRLE <

94

000600 0L

+00000003

14000005
14000007
00000000
00000034
0000040
240046200
24000007
02300006
220G0005
QoeaeoTo
240060200
240060007
0000C000

e

APPENDLX 15 (Page 3 of 3)
ABSOLUTE FAIRCHILD F2d MACHINE CODE
GENERATFD FROM TEST PRUGRAM NUMBER 2

F2451M VERSION OF JANUARY 29y 1534 = = = = = = = = = o =

GUTOBER 14, 1976 L7333:46,910

PR ol Bk e At A S BT

NO TRACE PARAMETERS READ. DEFAULT VALUES USED.
TRACE-LEVEL = 2
CURRENT EXECUTION TIME = 0
EXECUTION TIME LIMIT = 3000

Fdk ENTERING
xR 2O0H

o RxFOG00Q001
SEEFEQQO00001
#EE] 4000205
®EAH] Q00207
wEx (2300243
®#EEQIIC0253
BREDT022024
TR LI002TH
Q2300303
BEED 040236
¥EEGHOQOCDU
w52 00000600
#xE0000000
FERGOO00000
*E2 00000000
FEEJDOOGLOD
#R=X00000000
& JO0ORGO00
#ELOU000000
#&EQOOO0000
¥¥¥000000600
#%%Q00200000
&4 G0O000000
#E2J000000Q
¥eM201 44

LUADER.

g1lo00217
20000000
24000210
01000236
240002190
24000212
32300264
24030302414
24000215
GCO00204
Go000000
30000000
QOoROCo0O0
GOoRoGAsH
200000600
08000600
0600G00e
0000000
Qagoas00
20000000
0C0000060
0000000
Go000300
co00004a0

00000000
00000002
22000210
24000210
14000211
14000211
24000213
14000211
14000211
00000000
00005000
00000000
00000000
20000000
00200000
00000000
00000000
000000400
00000000
000000060
00000000
00000000
06000000
00060000

COn0000a 00B00000
D00OC003 C0RGG004
22000210 14000203
14000207 01Q0UG236
24000205 220004207
24000207 22000205
14000211 240060207
24000207 22600205
24000207 22000205
QOoU00000 0BO0T00U
GOnGa0G0o G000GG00
0GO0G0G0 00CGOGR00
00 Qo0a00 00000000
000Q0000 GCBO000H
0GO00000 QGUL00000
GooCO000 0R00LO0A
0GG0GOsH 00000000
Q0600000 GO000000
Q00QO02CG Q0000000
Q04G0000 00CH0OG0
000000040 00000000
0QOGL000 Q0000000
0GQa000B0 00003000
00000000 00000C00

&% LEAVING LOADER WITH PC=00000010000001

10

* ERRQOR. LEVEL IS

¥ DUMP_C

¥ DUMP_COUNT = i

EINITIAL SAVE OF MEMORY.
® ENDO OF DUMP_L

002000600
Go00004a5
14000207

01000311

02406250
C2500260
22000205
02400300
023003210
0o0Go000
Gauosao0
00300600
QGoo0000

GOO0GO00

QGeLoooo0
gGeoGao0a
Go00000u
GO000000
00000000
00G600GH
2a000n60
Qo000eaQo
00000000
0ooaaoeao

GOGGOOB0
G00Q0006
G1000236
24000205
02100250
240002060
02200270
021002006
2400GG214
DO0GG0005
Go0GGao0o
GooLaooao
Q0080000
HIHG T
o0Go0o00
GO0GGoGa
GoOGaRGy
Goooooo0
GOGOoO00
Q000G000
0000GGG0
Q00060000
00000000
Gog00000

ERROR_LEVEL=

Q000000
24000206
24000206
22000207
24600200
0106002461
24000260
24000200
14006021 1
00000000
Go0CoGo0
GOoOn00G0
QOUGOGo00
Go0G00Go
0000000
GOa0oeed
GoO0OLaGH.
20006000
0aR0aGOo
00000000
LooGGoo0
aooaDo0o
0000G000
0odGooo0

BIBLIGGRAPHY

BOCKS

Donovan, John J., System Programming, New York,
wcaraw-Hill, 1972

Gries, Davis, Compiler Construction for Digital
Computers, New York, John-Wiltey, 1971

Hopgood, F. R. A., Compiling Techni oules, London,
Macdonald, 1971 ' '

International Business Machines, PL/1 Language
Speci ficaticons, IBM Form £28-6571, 1974

International Businessd Machines, FORTRAN Prograwming
Guide, IBM Form C28-6835,1973

Mckeeman, W. M., A Compiler Generator, New Jersey,
Pretice-Hall, 1970

Wajte, W. M., Compiler Constructicn, New York,
Springer~Veriag, 1974

ARTICLES

Aho, A. V., "A Formal Approach to Code Optimization,®
SIGPLAN Notices, July 1%74, pp. 56-100

Beatty, J. C., "Register Assignment Algorithm
For Generation of Highly Optimized ObJect Code,”
I8M J. Res, Develop., 1974, pp. 20-39

Cocke, J., "Global Common Sub~Expression Elimination,®
SIGPLAM Notice, July 1970, pp. 20-2&

DI Jkstra, E. We, "ALGOLGO Translation,®
ALGOL Bulletin 10, 1960

5, Early, J., #An Efficient Context-tree Jarsing
Algorithm,™ Comm. ACHM 13, 1970, pp.2h-102

6. NEWLY, M., WAbstract Machine Modeling to Produce
Portable Software," Softwars, Practice
And Experience 2, 1972, pp. 107-1306

7. Yourdon, Edward, *A Brief Look at Structure
Programming and Top-Down Programming Design,®
Modern Data, 1974, pp. 30-34

UNPUBLISHED MATERIALS

1. Isaacson, Portia, A Compiler for This Srogramming
Language, Department of Computer science,
North iexas State University, Denton, Texas 1977

2. Isaacson, Portia, Miser ‘s Manval for This Proarammino
Language, Depariment of Computer 3Scierce,
North Texas State University, Denton, Texas 1972

3. Leinius, R. P., Error Detection and Recovery for Syntax

Directed Compiler System, PH.U Dissertation,
University of Wisconsin, 1970

