
FACTOR
the

S-200 PROGRAMMING

FAIRCHILD SYSTEMS TECHNOLOGY
3500 Deer Creek Road
Palo Alto. California 9-4304

LANGUAGE

Pa~ Numbe~67095499
· Issued: Apri(·197 4

Dil'.BLllW I lllmM
FA.IRCHIL.O
itf &.mtB I U .. ll.
SYSTEl'v)S TECH!'o.<CLOGY

SECTION I

1.0

SECTION II

2.0
2.1
2.2
2.3
2.3.l
2.3.2
2.3.3
2.3.4
2.3.5
2.4
2.4.1
2.4.2
2 .4. 3
2.4.4
2.4.5

F=AIRCHILO

SYSTEMS TECHNOLOGY

Table of Contents \

GENERAL INFORMATION

INTRODUCTION 1-1

ELEr.IENTS OF FACTOR

INTRODUCTION
CHARACTER SET
FACTOR STATEMENTS
PROGRAM PREPARATION

Record Format
Cards
Disc
Paper Tape
Teletype/Video Keyboard Terminal

SYNTAX
Constant Parameters
Variable Parameters
Required Parameters
Optional Parameters
Syntax Characters

2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-7

SECTION III FACTOR OPERATING PROCEDURES

3.0
3.1
3.1.1
3.1.2
3.2
3.3

SECTION IV

4.0
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

INTRODUCTION
PROGRAM INITIATION

Input
Output

INTERPRETER INTERFACING
ERROR MESSAGES

EXPRESSIONS

INTRODUCTION
NUMBERS

Integers
Decimal Fractionals
Exponentials

VARIABLES
System Variables
User Variable Identifiers
Scalar Values
Boolean Values
Array Values

3-1
3-1
3-1
3-1
3-2
3-3

4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-3
4-5
4-5
4-5

i

F=Al~CHILC

SYSTEMS TECHNOLOGY

Table of Contents (Continued)

4.3
4.4
4.5
4.5.1
4.5.2
4.6
4.6.1
4.6.2
4.7

SECTION v

5.0
5.1
5.2
5.2.1
5.2.2

SECTION VI

6.0
6.1
6.1.1
6.1.2
6.2

SECTION VII

7.0
7.1
7.2
7.3
7.3.1
7.4
7.5

FUNCTIONS
ARITHMETIC EXPRESSION EVALUATION
LOGICAL EXPRESSIONS

Logical Operators
Logical Expression Evaluation

BOOLEAN EXPP~SSIONS
Relational Operators
Evaluation of Boolean Expressions

MIXED EXPRESSIONS

BLOCK-COMMAND AND PROGRAM CONCEPTS

INTRODUCTION
LABEL
BLOCK CONCEPT

Establishing the Block
Nesting Blocks

VARIABLE DECLARATION AND VALUE ASSIGNMENT

INTRODUCTION
DCL

Scalar Declaration
Array Declaration

ASSIGNMENT STATEMENT

CONTROL STATEMENTS

INTRODUCTION
PAUSE
GOTO
IF

The Conditional ELSE
BEGIN
FOR

SECTION VIII SliBPROGRAMS

8.0
8.1
8.1.1
8.2
8.3
8.3.1
8.4

ii

INTRODUCTION
SUBPROGRAMS

SUER
CALL
FUN CT

Function Call
EXEC

4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-9
4-10

5-1
5-1
5-1
5-1
5-2

6-1
6-1
6-1
6-2
6-3

7-1
7-1
7-1
7-2
7-3
7-3
7-4

8-1
8-1
8-1
8-3
8-3
8-4
8-6

MT I II 2
FAJ~CHILD
P IE I
SYSTEMS TECHNOLOGY

Table of Contents (Continued)

8.4.1

8.4.2
8.4.3
8 .4 .4

SECTION I~~ .;.

9.0
9.1
9.2
9.3
9.3.1
9.3.2
9.3.3

SECTION x

10.0
10.1
10.2

SECTION XI

11.0
·11.0.1
11. 0. 2
11.1
11.1.1
11.1. 2
11.1. 3
11.1. 4
11.1. 5
11. 2
11.2.1
11.2.2
11. 2. 3
11.2.4
11. 2. 5
11.2.6
11.2.7
11. 3
11. 3. 1
11. 3. 2

Writing the A.L. Program (See also the FST-1
Assembler Manual (Part #67094951) and

Page

Appendix L of this manual) 8-7
Referencing Parameters 8-8
Changing the FACTOR Program 8-8
Inpµt/Output 8-9

INPUT/OUTPUT STATE?,IENTS

INTRODUCTION
READ
WRITE
FACTOR DISC I/O

ON DIFEOF, Label
RESET FDIF
Programming Conventions for Use With

FACTOR Disc I/O

NOTATIONAL STATEMENTS

INTRODUCTION
NOISE
REM

TEST STATEMENT FORr:L4..TS

INTRODUCTION
Voltage and Current Ranges
Time Delay Dependent Instructions

SETUP STATEMENTS
Set Delay
Set Clamp
On Program Branch Control
Enable Limits
Socket Identification

PROGRAM?<IABLE POWER SUPPLY STATEMENTS
Force DPS Voltage Supplies
Force DPS Current
Enable Current Trip
Enable Voltage Trip
Disable Trips
Disconnect DPS Unit
DPS Prograwming - User Rules

SET LOGIC
Force Voltage Conditioner References
Set Reference Supplies for Functional

Test Comparators

9-1
9-1
9-3
9-7
9-7
9-7

9-7

10-1
10-1
10-1

11-1
11-1
11-1
11-2
11-2
11-3
11-4
11-5
11-6
11-6
11-6
11-7
11-8
11-9
11-10
11-10
11-11
11-12
11-13

11-14

iii

FAIRCHILD
mr; •1• •rs •
SYSTEMS TECHNOLOGY

Table of Contents (Continued)

11. 3. 3
11.4
11. 4 .1
11.4.2
11.4.3
11.4.4
11.<i.5
11.4.6
11.4.7
11.4.8
11.4. 9
11.4.10
11.5
11.5.1
11. 5. 2
11.5.3
11.5.4
11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11. 6. 8
11. 6. 9
11.6.10

11.6.11
11.7
11.7.1
11. 7. 2
11.7.3
11.7.4
11. 7. 5
11.7.6
11.8
11.9
11.9.1
11.9.2
11.9.3
11.9.4

iv

Set Voltage Offset
FUNCTIONAL TEST STATEMENTS

Long Registers
Set D
Set F
Set M
Set S
Set R
Force Strobe
Enable Latches
Enable Comparators
Enable Strobe

AUXILIARY CLOCK STATEMENTS
Set Clock
Enable Clock
Force Clock
Programming Cautions

PRECISION MEASURING UNIT STATEMENTS
Set PMU Ranges
Force Voltage/Current
Force P.MU
Connect PMU
Measure Pin
Measure Value/Node
Disconnect PMU
Set DC Parameter Limit
Enable DC Parameter Limits
Enable Relay - Connect PMU to Functional

Circuitry '
Measure Variable

MISCELLANEOUS CONTROL STATEMENTS
Force Reset
Force Delay
Force Wait
Clear Fail
Enable Access
Insert

EXTERl\fAL INTERFACE REGISTER READ/WRITE
FACTOR TEST MACROS

Introduction
Macro Factor Statem~nts
Macro Definition and Description
Available Macro DC Measurements

11-15
11-16
11-16
11-19
11-20
11-20
11-21
11-21
11-22
11-22
11-23
11-23
11-24
11-24
11-25
11-26
11-27
11-28
11-28
11-29
11-30
11-30
11-31
11-32
11-33
11-33
11-34

11-35
11-36
11-36
11-37
11-37
11-38
11-38
11-39
11-39
11-40
11-40
11-40
11-41
11-41
11-43

FAIRCHIL.Cl

SYSTEMS TECHNOLOGY

List of Appendices \

APPENDIX A - CHARACTER CODING (TRASCII)

Page

A-1

APPENDIX B - READE-JG & WRITING OF LONG & SHOHT REGISTERS B-1

B.1
B.1.1
B.1.2
B.2
B.2.1
B.2.1.1
B.2.1.2
B.2.1.3
B.2.1.4
B.2.1.5

B.2.1.6
B.2.1.7
B.2.1.8

B.2.1.9

B.2.1.10

B.2.1.11

B.2.1.12

B.3
B.3.1
B.3.1.1
B.3.1.2
B.3.1.3
B.3.1.4
B.3.1.5
B.3.1.6
B.3.2
B.3.3
B.3.3.1
B.3.3.2
B.3.3.3

B.3.3.4

INTRODUCTION
Long Registers
Short Registers

ADDRESSING SHORT REGISTERS
Short Register Descriptions
Mode Register (MR) Address 01
Status Register (SR) Address 02
Instruction Register (IR) Address 03
Memory Address Register (MAR) Address 04
Test Station Control Register (TSC)

Address 05
Clock Burst Count Register (CBC) Address 10
Time Delay Register (TD) Address 11
Instruction Number Displ.ay Register (IND)

Address 14
Instruction Number Compare Register (INC)

Address 15
Digital Programmable Power Supply Registers

DPSl, DPS2, and DPS3 Addresses 21,22,24
DPS Trip Registers - DPTl, DPT2 and DPT3

Addresses 23, 25, 26
Reference Voltage Supply Registers SO, Sl,

EO, El, EAO, EAl, EBO, EBl, ECO, ECl, SAO,
SAl Addresses 32-37, 42-47

LONG REGISTER DESCRIPTION
The D, M, S, R, F and C Registers
D Register (Address 02)
M Register (Address 04)
S Register (Address 10)
R Register (Address 14)
F Register (Address 06)
C Register (Address 12 (Read Only))
Format of Functional Test Word
Special Test Station Registers
Pin Address Register (Address 160)
Socket ID (Address 161)
Statement Number Display Register

(Address l62)
Clock and Strobe Register (Address 163)

B-1
B-1
B-1
B-1
B-3
B-3
B-4
B-4
B-5

B-5
B-6
B-6

B-6

B-6

B-6

B-7

B-8
B-8
B-8
B-8
B-9
B-9
B-9
B-9
B-9
B-10
B-12
B-12
B-13

B-13
B-13

v

F=AIRCHIL-0

SYSTEMS TECHNOLOGY

List of Appendices (Continued)

B.3.3.5

B.3.3.6
B.3.3.7
B.3.3.8
B.3.3.9
B.3.3.10
B.3.3.11
B.3.3.12
B.4

Precision Power Source Register/Precision
Measurement Unit Forcing Register
(Address 164)

Precision Sense Level Register (Address 16)
External Interface Register (Address 166)
Slave Test Station Control (Address 167)
DC Trip Limit Registe.r (Address 171)
Status and Mode Register A (Address 1730)
Status and Mode Register B (Address 1734)
Long Register Address Extend (Address 1737)

FORMATTING OF FACTOR WRITE AND READ STATEMENTS

APPENDIX C - VOLTAGE AND CURRENT RANGE DEFINITIONS

APPENDIX D - DMA MODE STATEMENTS

APPENDIX Ev-_ TIME DELAY RELATED STATEMENTS

APPENDIX F - EXECUTION TERMINAL ERROR NUMBERS

APPENDIX G - CALIBRATION RESISTOR TABLE

APPENDIX H - INTERNAL NODE MEASUREMENT

APPENDIX I - INSTRUCTION LIST

APPENDIX J - READ/WRITE MAGNETIC TAPE STATEMENTS

J.1
J.2
J.2.1
J.2.2
J.2.3
J.2.4
J.3
J.3.1
J.3.2
J.3.3
J.3.4
J.4
J.4.1
J.4.2
J.4.3
J.4.4
J.5
J.5.1
J.5.1.1

vi

DEFINITION
READ ERRORS

Array Element Count Error
Data Transfer Error
End of Tape Error
Memory Protect

WRITE ERRORS
Data Transfer Error
End of Tape Error
Array Element Count Error
Unrecoverable Errors

STAJ.~DARD MAG TAPE OPERATION IN TOPSY

UNUSUAL MAG TAPE OPERATION IN TOPSY
Catastrophic Errors
Write Operation

B-14
B-14
B-15
B-16
B-16
B-16
B-17
B-17
B-17

C-1

D-1

E-1

F-1

G-1

H-1

I-1

J-1

J-1
J-2
J-2
J-2
J-3
J-3
J-3
J-3
J-3
J-3
J-3
J-4
J-4
J-4
J-4
J-4
J-4
J-4
J-4

F=Al~CHIL.C

SYSTEMS TECHNOLOGY

List of Appendices (Continued)

J.5.1.2
J.5.1.3

Read Operation
Warning

APPENDIX K - FACTOR SYNTAX TABLE

APPENDIX L - FLOATING-POINT PACKAGE

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9
Table B-10
Table B-11
Table B-12
Table B-13
Table B-14
Table B-15
Table B-16
Table B-17
Table B-18

Table D-1

Table E-1
Table E-2

Table F-1

Table G-1

Table H-1

Table J-1

List of Tables
SPU Command Format
Mode Register
Status Register
Instruction Register
Test Station Control Register
Digital Programmable Power Supply Registers
DPS Trip Registers
Reference Voltage Supply Registers
Test Word Function Format
Pin Address Register
PPSR/PMUF Register
Precision Sense Level Register
External Interface Register
DC Trip Limit Register
Status and Mode Register A
Status And Mode Register B
Short Register Reading And Writing Codes
Long Register Reading And Writing Codes

Statements Executed In DMA .Mode

Time Delay Dependent Statements
Time Delay Generating Statements

Terminal Errors

Calibration Resistor Table

Internal Nodes

Array Data Segment

J-5
J-5

K-1

L-1

B-2
B-3
B-4
B-4
B-5
B-7
B-7
B-8
B-11
B-13
B-14
B-15
B-15
B-16
B-17
B-17
B-18
B-19

D-1

E-1
E-2

F..-1

G-1

H-1

J-2

vii

1.0 lNTRODUCTlON I
I

FAIRCHILD

SYSTEMS TECHNOLOGY

Section I \

General Information

This manual discusses the S-200 Progrrunming Language FACTOR
(commonly referred to in this text as S-200 FACTOR or simply
FACTOR), which is used with the Sentr~ 200 Test System. FACTOR
is a procedural programming language that consists of control
statements for the Sentry Test System. The term FACTOR is an
acronym derived from 'Fairchild Algorithmic Compiler-Tester
ORiented'.

FACTOR provides two basic types of statements: (1) arithmetic
and logical control statements, such as those that normally
comprise procedural languages; (2) test control statements, which
set up and execute functional/parameter tests on electronic
elements or devices.

The sections in this manual discuss such subjects as the codes
and symbols used by FACTOR for the Sentry 200 Test System and the
test statements that are part of FACTOR; its operating
procedures, expressions, and control statements.

1-1

2.0 INTRODUCTION \

FAIFlCHILC>

SYSTEMS TECHNOLOGY

Section II \

Elements Of Factor \

This section defines the basic statements used in the S-200
FACTOR Progrrunming language, and the syntax information used to
prepare programs for input to the FACTOR compiler.

2.1 CHARACTER SET

Letters A through z and $ #
Digits 0 through 9
Special () * + -I = @ [] space t o_

' . . ""
Other I !I % I < > ? + .

All of the above characters may be printed on a teletype (TTP) or
may be displayed on a video keyboard/display terminal (VKT). All
characters may be entered from either a TTY or VKT keyboard, or
card reader, however, the two TTY keys for ['\J are unlabeled;
they are shift K and M, respectively. The "special" characters
have meanings in FACTOR, the nother 11 characters may be used in a
FACTOR program~ only in a REMARK statement. The meaning of a
special character depends on the context in some cases. For
example, the colon is used to define the immediately preceeding
identifier as a statement label; it also may be used in the
binary pin pattern definition in a functional test statement.
The correct meaning is chosen by the compiler from adjacent
information in the statement. The meaning of all special
characters is discussed in the text of this manual. Appendix A
tabulates the internal code for the character set. Appendix A
also shows where the 029 card punch character set differs from
the TTY character set. In the case of the 029 some substitutions
are required.

2.2 FACTOR ST A TEMENTS

A FACTOR statement is the basic functional entity in a FACTOR
program. Except for the IF statement, a statement is terminated
by a semicolon.

2-1

FAH=~CHILO

SYSTEMS TECHNOLOGY

called the binary test program or test plan. The compiler input
is called the source version of the test plan.

A program is executed in the order written unless a specific
statement alters the flow of control.

I

2.3.1 Record Format \

A record is an arbitrary amount of data read from or written into
an input/output device. A record typically contains from 1 to 80
characters, depending on the input/output device type. For a TTY
or VKT, a record is the amount of data from one carriage return
character until the next carriage return character. For a line
printer, a record is one line. Character position within the
record is frequently called a column; independently of the medium
on which the record is written - even if it is not punched cards.
Only the first 72 columns of a record are used for FACTOR input.
The next 8 columns are reserved for sequence numbers.

FACTOR provides free field input. That is, there is no implied
correspondence between the end of the record and the end of the
statement. Also, wherever one space is legal, as many spaces as
desired can be used. Hence, a statement may start in the middle
of a record and continue for as many records as desired.
Conversely, more than one statement can be placed in one record.
Statement labels need not start in a fixed field such as column
1, and so on. The restrictions are: (1) individual terms, such
as variable names, reserved words, and noise words cannot be
divided between two records, and the record may be terminated at
any point where a space is a legal character; (2) only the first
72 columns of the record may be used for statements.

2.3.2 Cards \

When the user prepares his card deck of source statements there
are several options: Up to 72 columns of the card may be used
for one or more statements, providing a semicolon delimits each
statement. Also, a FACTOR statement may be started on one card
and be carried over to the next, provided that individual words
of tes~er instructions are not divided between two cards.

Cards can be sequenced either alphabetically or numerically, or
both. The sequence characters are placed in columns 73 through
80. This is why only columns 1 through 72 may be used for
statements, since otherwise a portion of the statement would be
interpreted as a sequence symbol.

\

2-3

Eilll I I II I
F=AIRCHJL..C

SYSTEMS TECHNOLOGY

The normal form of sequence numbers is a fixed alpha identifier
in (say) columns 73-75, followed by numeric digits in the
remaining columns through column 80. These (five) digits will
ascend in sequence through the program by a convenient
increment, one, ten, etc. Sequence symbols are checked for
progression. Gaps (e.g. sequencing by tens) in the sequence may
be left, so ~1at program corrections and additions may be made
without changing every sequence number in the deck. If a single
deck contains more than one alpha identifier, these identifiers
must be chosen so that the TR.ASCII ascending collating sequence
is maintained, otherwise a sequence error will be produced.

When an error is d~tected, the compiler will always type the full
current record and a message "SEQUENCE ERROR".

Examples:

Legal Sequences

.Nl.JMERIC 1 3 3 10
COZIBINED lLB 2LB 3LB
ALPHA A c D E

2.3.3 Disc\

20 99999999

E E F

Illegal Sequences

0 1 3 2 5 4
lA OA 3A lA
A B P E C

Disc files may be used as a source program input to FACTOR. They
must be type "string" and are loaded onto the disc as discussed
in the User 1 s manual.

2.3.4 Paper Tape \

Source programs may be prepared on punched paper tape. The
format rules are the same as previously described for cards.
Sequence nmnbers are not normally used when preparing the tape
via a teletype, since paper tape is restricted to 72 readable
characters per line. The end of the input line is signaled by
"carriage return"-"line feed 11 •

Two editing characters may be punched en the paper tape for
correcting punch errors. A character back space is obtained by
typing the teletype "control 11 and "B" keys simultaneously. The
number of times this key combination is typed corresponds to the
number of previously entered characters which are to be ignored.
A line delete is obtained by typing "control" ancl 11 L"
simultaneously. This character deletes the current line only.
It is necessary to type 11 carriage return" and "line feed" after
the last E:NTI statement in the program.

2-4

s1•1 t-•
FAl~CHILD

SYSTEMS TECHNOLOGY

The file is terminated by a// followed by "carriage return" and
"line feed".

At least 20 characters of blank tape should be provided for
leader/trailer.

2.3.5 Teletype/Video Keyboard Terminal

Source programs may be entered directly via the keyboard using
the format and rules described in Section 2.3.4, describing paper
tape input. In this mode of operation the statements in each
input record are compiled as they are entered. The two editing
characters discussed above for paper tape apply here also, viz:
"control"-"B" and "control"-"L".

2.4 SYNTAX I
Many FACTOR statements have numerous possible forms. Syntax
notation provides a convenient method of identifying all options
precisely and succintly. Special syntatical characters are used
to identify alternative forms of the statement. These characters
are not entered as part of the statement; they simply define the
statement's structure. Throughout this manual, the term "General
Form", will be used as notification that the next term is
presented in syntax notation. (Refer to Appendix K, FACTOR
Syntax Table.) ·

2.4.1 Constant Parameters j

Any word shown in upper case in the general form is a constant
parameter and is always entered exactly as shown. The general
form of a statement required to disconnect the precision
measuring unit is as shown below.

Example:

XPMU PIN; Disconnect the Precision Ueasuring UniT.

This statement has no options.

2.4.2 Variable Parameters

.Any word
parameter;

shown in lower case in the general form is a variable
the word used indicates \Vhat kind of information is

2-5

Jtt' I I
l=AIRCHILO

SYSTEMS TECHNOLOGY

required. The limits on the value of the variable depend on the
statement in which it is used.

Example:

CPMU PIN expression; Connect the PMU to the pin.

The word expre~sion indicates a nunher or variable must be
entered and not the ten characters that comprise the word
expression. CPMU PIH 3; is a legal statement.

2.4.3 Required Parameters

Brackets are used to enclose a set of parameters where one, and
only one, of the parameters in the set must be used. The
parameters in the set are separated by the slash character. An
underlined parameter identifies the default case if the entire
statement is omitted.

Examples:

1. ON [FCT/DCT/TRIP], label;

2.

Either FCT, DCT or TRIP must be specified.

ENABLE/DISABLE RELAY;

Either ENABLE or DISABLE must be used
statement. If the entire statement is
however, the DISABLE RELAY state is assumed.

2.4.4 Optional Parameters I
I

in this
omitted,

Parentheses are used to enclose a set of optional parameters
where, at most, one of the parameters in the set may be used. A
slash is used to separate parameters in the.set. An underlined
parameter identifies the default case if on: v that parameter is
omitted.

Examples:

1. MEASURE VALUE (,LOG);

2-G

The ", LOG 11 is optional in this st~ttement. Note that
if LOG is used, the comma must be used and vice versa.

F=Al~CHILO

SYSTEMS TECHNOLOGY

2. . . . (, RHG2 / 1 RNG3) ;

If the range is programmed, either ,RNG2 or ,RNG3 is
used. If the range parameter is omitted, RNG3 will be
assumed.

2.4.5 Syntax Characters \

The brackets and parentheses characters can be used to define
binary pin patterns for functional test statements (paragraph
11.4.1). In those patterns where the brackets and parentheses
are shown, they are required and are not part of syntax notation.
Parentheses are a required part of the input/output statements
(Section IX); they are not part of the syntax definition.
Brackets are required around the SIZE in array declaration
statements.

2-7

1rw 11 R
FAIRCHILD

SYSTEMS TECHNOLOGY

_Section Ill!
Factor Operating Procedures\

I

'
3.0 !NTRODUCTlON \

\

A program written in FACTOR must be compiled before it can be
executed in the Sentry 200 Test System. The compiler converts
the FACTOR English-like statements into a program file of object
codes. The object code is then used by the TOPSY system, which
interprets and executes the program.

I
3.1 PROGRAM INITIATION I
To initiate the FACTOR compiler, using the DOPSY monitor, the
user must type:

/ / COMPILE [TTK/TTR/CR/] 'file name' [TTP/LP] [LIST/OBJ/LISTOBJ]

This command format is general and includes all possible options.

3.1.1 Input \

The first group of enclosed options in the above cornmancl
indicates that the compiler inpu~ may be specified from the
keyboard (TTK), from paper tape via the teletype paper tape
reader (TTR), from cards via the card reader (CR), or from a file
on the disc ('file name') which was previously created as
outlined in the User's Manual.

Not more than one of these options may be specified. The user
may, however, elect not to specify any option, in which case the
compiler will expect its input from the current principal input
device (PID) assigned to DOPSY.

I
3.1.2 Output I
The second and third groups of options, in the general format
corfh'Tland, are used to specify the output desired.

The listing may be specified for either the teletype or the line
printer. Again, no more than one option may be entered with the
com.'Uand. If no entry is made, the output, if any, \dll go to the

3-1

F=Al~CHIL.C

SYSTEMS TECHNOLOGY

principal output device which is currently assigned to DOPSY. If
LIST is selected, then source statements only are listed; if
LISTOBJ is selected, then both source statements and their
resulting object code will be listed. If either OBJ or LISTOBJ
is selected, then the compiler place$ its translated program in
working storage on the disc. Note the distinction between
'LISTOBJ' and 'LIST OBJ'.

A ty9ical initiation cor:mrn.nd migln be:

// COMPILE CR LP LISTOBJ

followed by a carriage return, if entered at the teletype. This
command would read its source program from the card reader and
produce both an object program in working storage and also a
listing of the source statements and the interleaved object code
on the line printer.

If a specified input and/or output device is not available, an
error halt will be taken to lOOB with the I/O device address in
the accumulator.

When a program error is detected, one of two procedures is taken:
(1) if the error is recoverable, i.e., if the compiler can
continue, FACTOR wil.l continue to compile and notify the user of
further errors, (2) if the .error is not recoverable, the DOPSY
monitor will be called and an asterisk will-be typed to notify
the user that DOPSY is in control again.

Note that when parentheses or brackets are missing the up-arrow
error position indicator may be placed within the error message
text. Two parentheses or brackets are used in the text of the
error message, since a single symbol might be obliterated by the
up-arrow, making the message illegible.

3.2 INTERPRETER INTERFACING \

FACTOR produces an object program \rhich must be saved by the user
if it is to be executed. Once a compilation has been completed
return is made to the DOPSY system I'.loni to1~ with the compiled
program in working storage. The user then has the option of
correcting any errors in the source program and redoing the
compilation, or if the program compiled error free, he may save
the object program by creating a type "DATA'' file on the disc:

/ / CREATE DATA 'file name'

(Refer to the S200 User's Manual for a description of the CREATE
command). The user program may now be executed under the' control
of the TOPSY interpreter. TOPSY is called by typing // TOPSY,

3-2

:Bil na U I UL 1••
FAS~CHiL.C
D WP•& H 1•1-
SYSTEMs TECHNOLOGY

followed by a carriage return. The operation of th~ program from
this point, using the/. LOAD command, etc., is described in the
Sentry 200 User's Manual.

l
3.3 ERROR MESSAGES J

Most of the error messages issued by FACTOR are self-explanatory.
They are listed below with some comment for clarification. The
e::::-ror messages 2.r2 accompanied ty an up-arro'.v ' 1 + 11 , v:here
appropriate, to.indicate the position in the statement text where
the error was detected. The total number of errors is output to
the POD at the end of compilation.

TEXT

"VARIABLE NAME"
ALREADY DEFINED

DOUBLE DEFINED
;;VARIABLE NAME

SEQUENCE ERROR

SS FULL

NW FULL

WORK FULL

EXIT FULL

DISC OVERFLOW

EXCESS BLOCK

SYSTEM 2 ERROR

DESCRIPTION

Notifies the user of a duplicate label
definition within the same block, or a
mistake in logic has been detected, i.e.,
using a variable as a scalar when it has
been defined as an array.

Same as above.

An error has been found in the sequence
numbers punched in columns 73-80 of the
source card deck.

The compiler's capacity for the storage
of symbols has been exceeded. (Reduce
the nLUnber of symbols used.)

There are too many noise words.

The program has a compound tail too large
to be processed as one statement.

Same as WORK FULL .

There is not enough space on the disc for
further object program to be built up in
working storage.

The al lmvable maximum number of nested
blocks has been exceeded. Blocks may be
nested to a depth of 8 (including Block
0).

"Never-happen'' error-return (e.g. PUTW
E-0-F).

F=Ai~CHIL.C

SYSTEMS TECHNOLOGY

ERROR :MESSAGES (Continued)

TEXT

PROGRAM TOO BIG

~:HSSING))

EXPRESSION SYNTAX

MISSING]] ·

MISSING NAME

MISSING NUMBER

STATEl\1ENT SYNTA..X

USE ERROR
DEFINED USAGE
[SCALAR/FOR/PAR/
ARRAY/FUNCT/SUBR/
LABEL/SS]

!WMB'ER SYNTAX

INVALID TERMINATOR

I/O SPECIAL ERROR

DESCRIPTION

The program exceeds FACTOR capabilities.

A left or ~ight paren has been left out.

An expression has been written incorrectly.

A left or right bracket has been left out.

An identifier should have been specified
in this syntactical position.

A number should have been specified.

A statement has been incorrectly written.

Incorrect usage of the applicable var­
iable.

A number has been specified incorrectly.

An expected terminator or delimiter is
incorrectly specified or missing.

The I/O control word has indicated an
error.

END OF FILE INPUT The input file has been exhausted without
finding an END statement.

EXCESS VARIABLES The allowable maximum number of variables
per block has been exceeded or too many
parameters in an EXEC statement. (Maximum
number of variables/block is 127, except
Block 0 which is 104. The maximum number
of parameters in an EXEC statement is
63).

NU~IBER EXCEEDS Number exceeds hardware cap abilities.
LBHT

ILLEGAL INSTRUCTION· Instruction is not applicable to 8200.

3-4

F=A!RCHIL.C
•,o.IX. .

SYSTEMS TECHNOLOGY

ERROR MESSAGES (Continued)

TEXT DESCRIPTION

LABEL NOT IN BLOCK 0 ON FAIL BRANCH label is not in Block 0.

FILE N:iHE ERROR Incorrect file name was used with an
INSERT statement.

3-5

4.0 INTRODUCTION

iiii I A d -
l=AJF;2CHIL.O

SYSTEMS TECHNOLOGY

Section IV \

Expressions'\

An expression is a grouping of one or more numbers, variables,
and functions combined with arithmetic or Boolean operators and
parentheses so as to represent a quantity or an operation. Note
that a single number or variable is considered an expression by
this definition.

4.1 NUMBERS \

FACTOR accepts numbers in any of the three forms discussed below,.
viz: integers, decimal fractionals or exponentials. In all
cases, numbers are converted to a floating point internal
representation for manipulation in the computer (Refer to
Appendix L). The range of allowable decimal numbers is:

-20 18
2.7105 * 10 ~!NJ~ 9.2228 *10

where !NI means the "magnitude of

4.i.1 Integers \

An integer is defined as a whole number, including zero. It will
be interpreted as octal if it is immediately followed by a B. It
will be interpreted as decimal if it is not followed hy a B. It
may be either signed (preceded by a + or -) or unsigned. I£
unsigned, it will be interpreted as positive.

The limits for decimal and octal integers aTe:

Form

decimal integer
octal integer

Limits

-8388607 < n < 8388607
-40000000B-< n-< 37777777B

(in two's complement form)

4-1

The following integers

1) are acceptable:

0
4000000
+2361
-5
6B

I

4.1.2 Decimal Fractionals \

FAIRCHILD

SYSTEMS TECHNOLOGY

2) are unacceptable:

4,000:000 (Commas not allowed)
10000000000000000000 (Too large)
125 B (Imbedded sDace between number

and octal specifier)

A decimal fractional is any decimal number with a fractional
part preceded by a period. These numbers cannot have a B (octal)
notation. An attempt to use octal notation in combination with a
decimal fractional results in an error message. Decimal
fractionals may be signed or unsigned.

The following fractional numbers

1) are acceptable:

4.0
0.0

.671
+.734650
-42.0
0.734650

4.1.3 Exponentials \

2) are unacceptable:

4. (A number cannot end with a
period)

1.234B (A fractional number cannot be
specified octal)

Exponentials are either decimal integers or decimal fractionals,
followed immediately by an E and a decimal integer. They also
may be signed or unsigned.

The following exponential numbers

1) are acceptable:

0.1E2
+1.23E-5

7E-3
-1.0E+5
-5E+2

4-2

2) are unacceptable:

0.1E2+

lE

.234 E5
2.BE2

(The sign must come between E
and its integer)

(The exponent must have an E
number)

(Imuedded spaces are illegal)
(Octal numbers may not be ex­
ponentially specified)

It$! I
FAIRCHILD

SYSTEMS TECHNOLOGY

4.2 VARIABLES \

In FACTOR, a variable denotes any quantity which is referred to
by a name rather than by an explicit value. A variable may take
on many values, one at a time, rather than being restricted to
only one value. The values which are assigned to a variable may
be any of the forms as discussed above. Also, variables may be
either scalar or Boolean. A variable identifier may reference
·eith~r a single variable or a set 0f variables considered as an
array.

Two general classes of variables may be referenced by the Sentry
200 Test System FACTOR program; system variables and user
variables. The values of the system variables are retained from·
one execution of the program to the next. The values of all user
variables are lost at the end of the test sequence and are reset
to zero at the start of the next sequence. The system global
variables are saved for each station or test position. System
global variables are automatically declared.

4.2.1 System Variables \

The names and special uses of system global variables are:

Name Use

SWITCH May he set by a system command for
program control.

VALUE Contains the last value obtained by
executing the statement
MEASURE VALUE/NODE/VARIABLE

GLOBl through GLOB20 General purpose.

4.2.2 User Variable Identifiers \

Variable identifiers are names given to variables by the
programmer. There are no restrictions imposed, except that the
identifier must begin with a letter or the dollar sign and
contain only letters, dollar signs, and digits. Identifiers can
be of any length; note, however, that FACTOR retains only the
first 8 characters. Consequently, the user must ensure that the
first 8 characters are unique, or else an error message will be
produced. Furthermore, system variable names or reserved words
must not be used as identifiers. The following is a list of
reserved words in the general FACTOR program language:

4-3

AND
ASSIGN
AT
BEGIN
BLOCK
BRANCH
BY
CALL
CGEN
CONF
C011N
CLEAR
CPMU
DCL
DISABLE
DO
ELSE
ENABLE
END
EOR
EQ
EXEC
FOR
FORCE
FUN CT
GE
GOTO
GT
IF

l=.Al~CHILC

SYSTEMS TECHNOLOGY

INSERT
LEQ
LT
MEASTJRE
NEG
NEQ
NOISE
NOT
ON
OR
PAUSE
PGEN
RD
READ
REM
RESET
SELECT
SET
SOCKET
SUBR
THEN
THRU
WR
WRITE
XCON
XCONF
XPMU

It is good practice, since the usage of identifiers is totally
determined by the programmer, to use names (identifiers) that
represent the meaning or use of a variable. TEMP, for instance,
could be the name given to a working variable. COUNTER might be
the name given a variable that is used as a general purpose
counter, and so on. (This does not imply, however, that FACTOR
attaches any significance to these names. They are purely
artifical devices that aid the user's memory and make a program
more intelligible.) Variables are assigned an initial value of
zero. Arrays must be declared before the array is referenced.
Ref er to Section VI for variable and array name declaration
information.

The following are acceptable variable identifiers:

4-4

A
CHI SQUARE
ALARGEIDENTIFIER
A1B2C3D4
PHOENIX

tt b LL&
FAl~CHll...O

SYSTEMS TECHNOLOGY

The following are not acceptable variable identifiers:

123
.A.B c

KND

(Identifiers may not start with a digit)
(Special characters, including blanks, are
not allowed)

(Reserved words are illegal)

This is a general definition of identifiers, which holds for the
ether several types of identifiers used in FACTOR.

4.2.3 Scalar Values \

The FACTOR variable in its simplest form is scalar. Scalars are
defined as being nonarrayed, nonBoolean quantities. (Note that,
as defined below, an array element may be a scalar value and/or a
Boolean value). In addition, scalars may take on any legal
numbered values. To use the scalar value which is currently
assigned to a variable, the user writes the variable 1 s identifier
in his statements or expressions.

4.2.4 Boolean Values \

Boolean values are quantities which when evaluated have a value
of either one (true) or zero (false). Expressions involving
Boolean operators (paragraph 4.6) can only take on a true or
false value, i.e., a one, or a zero; thus expressions are not
evaluated for any other absolute value. Whenever the user
references the variable identifier the current Boolean value will
be returned.

4.2.5 Array Values j

An array is an ordered series of values which are grouped
together positionally with respect to some variable identifier
(usually the first array element identifier). The elements of
the array are restricted to either signed or unsigned numbers
(i.e. alpha values are illegal). FACTOR arrays are restricted to
one dimension.

To obtain an array value, the user must follow the array
identifier with an expression which is enclosed in brackets. The
value of the expression is the subscript which tells FACTOR which
element o.f the array is wanted. If the subscript: is zero, i.e.,
A [0] for instance, FACTOR returns the array size. Any other
value of the subscript will refer to the appropriate element in
the array of values. For example, A[2] would reference the
second element in the array A.

4-5

=p BX
F=AIRCHILO

SYSTEMS TECHNOLOGY

NOTE

The value of 'B' is limited to positive or zero,
since the general result for a negative quantity
raised to a power is a complex number. 'C' may
be positive, negative or zero.

4.5 LOGICAL EXPRESSIONS

4.5.1 Logical Operators j

The logical operators defined for the Sentry 200 Test System
operate on full word integers. The logical operators are:

Symbol

AND
OR
EOR
NOT

Operation

logical and
inclusive or
exclusive or
one's complement

With two expressions or constants
matched with the corresponding bit of
table holds:

P and Q, for each bit of P
Q, the following truth

p Q p AND Q p OR Q p EOR Q NOT p

1 1 1 1 0 0
1 0 0 1 1 0
0 1 0 1 1 1
0 0 0 0 0 1

The precedence order of the logical operators is:

NOT
AND
OR, EOR

Example:

Calculate a percentage and form an integer before printing -

PC = lOO*X/Y;
PC = PC &·~D 177B;
WRITE 'PERCENT GOOD=', PC;

4-7

lib 9 I I
F=AIRCH!L-0

SYSTEMS TECHNOLOGY

Prior to performing the logical operation the expression is
evaluated and then fixed as an integer. The integer form is
limited to 24 bits, therefore conversion underflow or overflow
from floating point to fixed format must be considered by the
programmer.

4.5.2 Logical Expression Evaluation

Logical expressions are evaluated in order of operator precedence
and from left to right when two or more operators of the same
precedence exist.

Logical expressions are useful for specifying more then one
option in a single variable. Using octal notation, suppose that
the "hundreds 11 digit of the system variable SWITCH is used to
select ABORT on first fail if the digit is non-zero, the tens
digit is used to select a device grade, and the units digit is
another quantity of interest. The logical AND operator can then
separate this information as follows:

SWITCH AND 700B extracts the "hundreds" octal digit.
SWITCH AND 70B extracts the "tens" digit.
SWITCH AND 7B extracts the "units 11 digit.

Using statements from Section VII and XI, this could be applied
as follows:

IF SWITCH AND 700B NEQ 0 THEN BEGIN

ON FCT, ABORT;
ON DCT, ABORT;
ON TRIP, ABORT;

END;

where ABORT is a label at the end of the program.

4.6 BOOLEAN EXPRESSIONS

4.6.1 Relational Operators\

Relational operators deal with the comparison of two logical
expressions, arithmetic expressions, variables, or constants in
any combination. The result of the comparison is either true or
false. The relational operators are:

4-8

Symbol

EQ
GE
GT
LT

LEQ
NEQ

ILU5Z& I I I
F=Alt'=lCHILC

SYSTEMS TECHNOLOGY

Operation

equal
greater than or equal
greater than
less than
less than or equal
not equal

For example, consider the follov;ing comparison:

A LT B

If the values of the two variables are 16 and 25, respectively,
the comparison is effectively:

16 LT 25,

which is a true statement.

Consider now:

B LT A, i.e. (25 LT 16)

This is of course a false condition. Similar examples could be
given for EQ, LEQ, GT, NEQ and GE.

All relational operators have the same precedence level.

l
4.6.2 Evaluation of Boolean Expressions [

I

A Boolean expression uses logical and relational operators and
defines whether a true or a false condition exists.

The order of operations for Boolean expressions depends upon the
precedence values of the operators. The precedence order is:

a) relational operators (LT, LEQ, EQ, GE, GT, NEQ),
b) NOT,
c) AND,
d) OR and EOR

The following are examples of Boolean expressions:

1. A (where A is either true or false)
2. A OR B EOR C
3. A GE B OR A LT C

4-9

FAIRCHILC

SYSTEMS TECHNOLOGY

In example 2, the expression is evaluated from left to right. A
is ORed with B and then the result is EORed with C. In example
3, the expression A GE B is evaluated for a true or false
condition: the expression A LT C is evaluated: the results of
these two operations are ORed together.

'

4.7 MlXED EXPRESSIONS !

FACTOR allows free mixing of arithmetic and Boolean expressions,
without adhering to pure Boolean values. It is the
responsibility of the programmer to ensure that values in mixed
expressions are valid integers when they are involved in a
Boolean expression. Further, arithmetic operators take
precedence over Boolean operators in mixed expressions.

4-10

m 11 m a
F=Al~CHILO

SYSTEMS TECHNOLOGY

Section V \

Block-Command And Program Concepts
I

5.0 lNTROOUCTiO!\l \
I

Blocks are groups of program statements between the delineators,
BLOCK (or BEGIN) and END. Local variable storage and local
labels do not exist outside of the block which contains them; in
other words, local variables or labels cannot be referenced
(accessed) outside of their parent block. A block, then, is an
independent compilation, since a program can consist of several
completely independent blocks.

5.1 LABEL I
A label is an identifier similar to a variable identifier except
that it is always followed by a colon and it refers to a
statement. The complete definition and all restrictions which
apply to labels can be found in paragraph 4.2.2, which describes
variable identifiers. The following is an example of a label
identifying an assignment statement.

TOTAL: A = 1 + 2 + 3 + C/D;

5.2 BLOCK CONCEPT \

A block must have a beginning and a closing statement. In
addition, a block can be either independent or dependent. The
following information will describe the block and its function.

5.2.1 Establishing the Block \
I

A block is established in two ways:

1) It may be opened directly by writing the command BLOCK and
closed by the command END; Compare this with the cormnand
BEGIN (Paragraph 7.4) which is very similar in concept.

2) A block will also open following the FUNCT and SUBR
commands. These commands are discussed in Section VIII.

5-1

F=AIF=lCHaLO

SYSTEMS TECHNOLOGY

The initial BLOCK declaration need not be specified bacause
FACTOR will assume a BLOCK O. For clarity, the user may spell
out the initial block in his listing. It must have an END
statement, however.

5.2.2 Nesting Blocks \

Blocks do not need to be completely independent. One of the
easiest methods of introducing block dependence is by "nesting"
one block within another. This results in the execution of the
inner block being dependent on the execution of the outer block.
Nesting can occur up to eight levels on the Sentry 200
implementation. Nesting is illustrated in the following example:

BLOCK
BLOCK
END;
BLOCK

END;
END

BLOCK
END;

The inner block of a nested set is considered part of the
enclosing blocks. Another form of dependence is that of global
variables. A global quantity is one that is accessible to a
block, but is not necessarily con~ained in (1.e., is not local
to) that block. Variables and labels can be either local or
global. This is illustrated in the following example:

BLOCK
L: DCL A, B/10/;

BLOCK

END

DCL A,C;
END;

Each block in the above example contains the local variable A.
The A in the inner block cannot be accessed from the outer block
and vice versa. The variable B in the outer block is accessible
from either block, but the variable C can be accessed only from
the inner block. In this example, then, B is a global variable,
but C and the two variables A are all local.

Note, that if there had been a label L in the inner block 1 any
reference to it within the inner block would have used that L
rather than the one in the outer block. Any nested set 0£ blocks
establishes a block context; i.e., a relationship of local and
global varia.bles. From the example, it can be seen that a

5-2

reference
occurrence
is present.
etc.

F=AIRCHiL.C

SYSTEMS TECHNOLOGY

to a variable or label is associated with the
of that identifier or label in the same block, if it
If it is not, then the next outer block is examined,

It should be noted that it is possible to make variables global
from within a nested block in FACTOR by simply never declaring
the variable as local.· When the nested block is closed, the
variable, and any residual value is relocated to the next outer
block, where it may now be considered as global to any further
nesting. When this outer block is closed, if it was nested,. the
variable will again be relocated to the next outer block and so
forth until block 0 is closed.

The fact that the declaration of a variable within a block makes
it local -has important implications for the FACTOR user. After
leaving a block, i.e., closing it with an END command, the values
of all variables declared within the block, and thus made local,
are lost. Upon re-opening the block, the values of these
variables are initialized to 0.

5-3

:SS I JC HIRll
F=AIRCHILD

SYSTEMS TECHNOLOGY

Section VI I
Variable Declaration And Value Assignment

6.0 INTRODUCT10N \

As described in paragraph 4.2, variables may be used in
expressions without giving them initial values or by declaring
them. If they are not declared, they will be assumed to be
scalar. If they are not given an initial value, they will be
automatically given an initial value of zero. Variables may be
declared and assigned values at any point in the program.

A variable may also be used as an array reference, but then it
must be declared. Thus, a. declaration (DCL) statement must
always be executed before any references are made to the declared
arrays. If this rule is violated, TOPSY will indicate the
programming error with a terminal error at run time (see Appendix
F).

If the DCL statement is executed more than once in a currently
open block, all but the first execution will be ignored; however,
a value assignment will always occur at every execution. This
point must be emphasized. It means that the evaluation of an
array size will occur once only: at the first DCL for that array.
However, values will be assigned for every DCL specified.

6.1 DCL\

The DCL command is used to reserve storage for variables, assign
initial values, and to make a variable local to the block in
which it is declared.

Two types of variables may be declared: scalars and arrays.

I
6.1.1 Scalar Declaration \

The general formats of the scalar declaration are as follows:

DCL V1;
DCL Vl, V2, VN;
DCL Vl/VALT.JE 1/, V2/VALUE 2/, ... VN/VALUE N/;
DCL Vl, V2/VALUE 2/,V3 ... VN;

6-1

SYSTEMS TECHNOLOGY

Vl ... VN stand for variables number 1 through N. VALUE 1 ... VALUE
N stand for single signed or unsigned numbers which declare the
value of a variable. When declared without a value, the variable
is set equal to 0. Multiple declaration and assignment can be
made with one statement. As shown in the last two examples, each
variable of a multiple declaration can be optionally assigned an
initial value.

6.1.2 \ Array Declaration \

The general formats of the array declaration are as follows:

DCL Vl[AlSIZE];
DCL Vl[AlSIZE] , ... VN[ANSIZE);
DCL Vl [AlSIZEJ / AEl, .. AEM/, .•• , VN [ANSIZE] / AEl, •. AEM/;
DCL Vl [AlSIZE), V2 [A2SIZE] /AEl ... AEM/, ••• , VN[ANSIZEJ;

The formats are similar to those for scalar declaration; however,
the array identifier, Vl, requires an argument to specify the
number of elements, i.e., the size of the array. This quantity_
is enclosed in square brackets. The size is specified by an
expression which allows it to be variable or fixed. The
evaluation of array size and allocation of storage is performed
by TOPSY at run time. The array size of necessity is
automatically truncated to the nearest integer.

The elements of an array may be optionally assigned initial
values when declared. The assignment is specified by the terms
AEl through AEM as shown above; 11 is the size of the array. The
initial values of the elements are restricted to signed or
unsigned numbers. (Alpha is illegal.) If the size and number of
initial value assignments do not agree, the missing (trailing)
elements are set to zero. If too many elements are specified, a
run time error will occur.

NOTE

The distinction must be drawn between the value in
square brackets used in a DCL statement, where it
represents the array size, and the value in square
brackets used in a non-DCL stateme~t, where it
specifies the array element desired.

Examples:

6-2

DCL ARR[lO]; REM ARRAY SIZE= 10 ELEMENTS;
FOR J = 1 THEU 10 DO
ARR[,J] = 2*J; REM COMPUTE ARRAY ELEMENT VALUES;
FIFTH = ARR (5]; REM ASSIGN VARIABLE FIFTH

THE VALUE OF THE FIFTH ARRAY ELEHENT;

·Ci3 •n I
FAl:RCHILC

SYSTEMS TECHNOLOGY

6.2 ASSIGNMENT STATEMENT\

The assignment (or replacement) statement is the most fundamental
of all FACTOR statements. It takes the general form:

variable = expression;

This in the replacement of the value of the
variable on the left by the value of the expression on the right.
(In general, it is not an equation, since the variable on the
left may form part of the expression on the right).

command results

Thus the statement:

A = A+B;

means: take the value of the variable A, add the value of the
variable B to this value and replace the value of the variable A
with the result.

6-3

7.0 INTRODUCTION

F=Al~CHtL..C

SYSTEMS TECHNOLOGY

Section VII\

Control Statements

Control statements are used to direct the flow of the program by
a transfer of control to different part of the program. Such a
transfer may be imperative (e.g., GOTO) or conditional (e.g.,
IF).

The control statements to be discussed in this section are PAUSE;
GOTO; IF; BEGIN; and FOR.

7.1 PAUSE\

The PAUSE statement is
statements until START
statement is:

used to stop the execution of furthe~
is depressed. The format for this

PAUSE expression;

Prior to halting, the value of the expression i~ evaluated and
printed on the Primary Output Device.

This statement can be used to provide a programmed halt when
debugging new FACTOR programs.

NOTE.

Refer to the S200 User's Manual for instructions
for using the monitor mode PAUSE co~.mand.

7.2 GOTO I
I

A program is essentially a series of statements which, in
general, are executed sequentially, and thereby accomplish a
particular task. The computer thus operates one step at a time.
However, it is essential to be able to enter or leave the
sequence of instructions at any desired point.

This is the function of the GOTO statement. When executed, a
GOTO statement always changes the program flow from the statement

7-1

@ •. di
;:::A.!RCH!LD

a::t ····-·-SYSTEMS TECHNOLOGY

immediately following it to the one specified in the GOTO
statement.

The simplest form of the GOTO statement is:

GOTO label;

where label as defined in paragraph 5.1 specifies the statement
to be exscuted next.

The label ~ust be in the same block or a lower block.
words, it is not permissable to jump into a subroutine
main block or from another subroutine.

I
7.3 IF i

In other
from the

The GOTO statement provides one method for altering the sequence
of statement executions. It is also essential to be able to
change the sequence of execution based on what happens as the
program executes, i.e., a conditional change of execution. This
is the principal use of the IF statement.

The simplest form of the IF statement is;

IF relation THEN Statement-1;
Staternent-2;

Upon execution of the IF statement, if the relation
statement-1 is executed followed by statement-2
statement-1 carries control away from statement-2).
relation is false, statement-2 is executed instead.

For instance:

IF A EQ 3 THEN GOTO LABEL;

is true,
(unless
If the

will, if it is true that A is equal to 3, cause the sequence of
execution to change to the point in the program having a
statement labeled LABEL. If A is not equal to 3 the next
sequential statement, after the IF statement, will be executed.

The true-false nature of the above relation gives a clue to the
second general form of the IF relational clause. It is:

IF Boolean-expression THEN statement;

where Boolean-expression is any legal expression as defined in
paragraph 4.6.

7-2

FAl~CH!LD
CL FE • nm•
SYSTEMS TECHNOLOGY

Suppose, for example, that we wish to continue doing something
until the value of A and B, two variables we are manipulating,
both become less than some terminal value, 0. We could make this
decision and monitor the values of A and B with one IF statement
as follows:

IF A LT 0 AND B LT 0 THEN GOTO DONE;

The process we 1,vish to continue doing i:ri:-,1edia tely follows the IF
statement.

In all cases of IF statement usage, the following THEN can
introduce any type of FACTOR statement.

I

7.3.1 The Conditional ELSE!

The simple IF statement is one which causes a statement to
execute if a relation or Boolean expression is true and skips
statement execution if the relation or expression is false. A
complete conditional statement does more. It specifies a second
statement to be carried out if, and only if, the relation or
expression is false.

The general forms are:

IF relation TtlEN Sl ELSE S2;
IF Boolean expression THEN Sl ELSE S2;

where Sl and S2 are any two statements. When the result of the
IF operation is true, Sl will execute and S2 will be ignored.
When the result is false, Sl will be skipped over and S2
executed. S2 may be any statement, including another IF
statement. This nesting of conditionals can go to any depth.

Example:

IF relation THEN Sl ELSE IF relation THEN 82 ELSE 83;

7.4 BEGIN \

FACTOR allows the grouping of a series of statements within the
bracket commands BEGIN and END;. The command, END;, must
immediately follow the last command executed. Note that the
semicolon is an integral part of the END; bracket. The purpose
of this corrunand is to al low a compound statement to fol low the
T"tlEN of the IF command.

7-3

t=AlRCHiLO

SYSTEMS TECHNOLOGY

For example:

IF relation THEN
BEGIN

statement;
statement;
statement;

E~D;

'~he above example is an example of a compound statement, and is
an acceptable method of writing the IF statement. The statements
between BEGIN and END; are legal and, as far as the IF statement
is concerned, are considered to be one statement. In other
words, if the relation is false the statement after the BEGIN­
END; block is executed next. Any FACTOR statement may be part of
the compound statement, including another IF statement.

7.5 FOR\

One of the techniques most widely used in progr~mming is that of
the program loop. This is the repetition of some program
statement or statements over and over with different parameters.
The FOR statement is the looping mechanisE1 \·vithin FACTOR.

The general format of the FOR statement is:

- FOR variable = expression T"tlRU expression DO statement;

where variable, expression and statement may be in any legal form
defined in this manual.

Several statements may be included in the DO loop portion of the
FOR statement by specifying a compound statement with BEGIN and
END;

A.n example of a typical loop is one designed to solve the
following problem. Suppose it is desired to set the elements of
an array to zero. This can be achieved with the IF statement
sequence of statements, in the following

I = 1
NEXT : A [I] = 0 ;

I = I+l
IF I LE A [O] TrlEN GOTO NEXT;

but it is better accomplished with the statement:

FOR I = 1 THRc 1H 0] DO A [I] ==O;

7-4

G I• 1B11•1
FAIRCHIL.O
iiail F ±•nm
SYSTEMS TECHNOLOGY

The simple FOR statement provides an index value which has three
important features:

1)
2)

and 3)

an initial value,
an (assumed) incre~ent of +1,
a limit

In the above example, I takes on the values 1, 2, 3, ... , A[O],
where A(O] is the las~ va~ue corr8~ponding to the size of the
arrRr.

The implementation of the FOR causes the address of the index,
the increment and the limit to be evaluated each time the loop is
executed. Therefore, caution must be exercised within the loop
when changing values that might affect this evaluation.

The loop wil 1 be execu tecl .the number of times specified by the
initial value, limit, and increment. (This may be zero.) Also,
there is no restriction on transfers of control into or out of
the loop. When the loop has finished its specified nun:iber of
executions, control will pass to the next sequentially executable
statement, unless this sequence is interrupted by a statement in
the DO loop.

In the above discussion an automatic increment of +l from the
initial value to the final value was assumed. There is a second
form of the FOR statement which uses BY; t:'J.is allows the user to
specify some value which will be used as the increment.

It should be pointed out that because the values may be all
positive, all negative, or mixed positive and negative, the user
should consider the range of possible values he expects. It
makes sense to go from a negative number to a more negative
number in negative increments or from a positive number to a
negative number by negative increments. Going from positive to
more positive or negative to positive, the increment must be
positive. Going from -2 to +6 in increments of -2, as from +8 to
+2 in increments of +2 is not logical and will be flagged as
errors.

Caution must be exercised when using fractional values for the
index, since it is possible to introduce a step error. Fer
example, a statement such as:

FOR I = 0 THRU 1000 BY 0.1 DO I = I + 1;

may opera-r.:e the DO statement more than 10,000 times because of a
rounding err6r in the floating point conversion of 0.1.

7-5

8.0 lNTRODUCT!ON

D! I
F=Al~CHIL.O

SYSTEMS TECHNOLOGY

Section VIII \

Subprograms \

This section discusses the function and operation of subprogram$,
the calling of subroutines, and how to make a function out of a
subprogram.

8.1 SUBPROGRAN1S I
Programs frequently have groups of statements which can be used
several times with different parameters. Of course, the required
statements could be duplicated wherever they are needed in the
program, but to do so is error prone, and wastes user time and
machine storage. Therefore, it is desirable to be able to write·
statements so that they may be executed from any point in the
program with a different set of parameters each time they are
executed. The subroutine statement makes this possible.

8.1.1 SUSA I
The general formats of the subroutine declaration are as follows:

Format One:

SUER

END;

Format Two:

SUBR

END;

Identifier;
statement 1;
statement 2;

statement n;

Identifier (VIl, VI2, .•. , VI2'~)
statement 1;

statement n;

8-1

FAIRCHILD

SYSTEMS TECHNOLOGY

The identifier after the SUER command is used to reference the
subroutine from the main program. The statements within the
subroutine will not be executed until the subroutine is called
from the main program by the SL13R identifier. Any nt~mber of
statements are allmved within the subroutine.

The END; statement is necessary because the SUBR cormnand
effectively opens a new block. When it is completed, it must be
closed. 11~_,D EL,ID; indicates the ls.st sta ternen t in the subri)utine.

Format Two indicates another important feature of the SUER
statement. The terms VIl through VIN represent variable
identifiers 1 through N. They are enclosed in parentheses and
indicate to FACTOR that whenever a ref ere nee is made to this
subroutine, the reference will specify actual values which are to
be substituted at specific places within the subroutine body.
These identifiers are called formal* parameters. There is a one
for one correspondence between the position of the formal
parameters and the position of the parameters or values used in
the call. For reference and further explanation, see the next
section on the CALL statement. The manner in which values
transferred to the subroutine are used in the subroutine's
statements is illustrated in the following example:

SUER TOTAL (VIl, VI2, VI3);
VIl = VI2 + VI3;

END;

When the above subroutine is referenced:

CALL TOTAL (Al, A2, A3);

the values passed to it, obtained from the actual parameters Al,
A2 and A3, will positionally replace VIl, VI2, VI3 and they will
be used in the arithmetic expression and assignment. The value
of the variable represented by VI2 will be added to that
represented by VI3 and the total will be assigned to the variable
represented by the formal parameter VIl.

As an example of a subroutine with no formal parameters
specified, we will use a similar statement as follows:

SUER TOTAL2;
A == B+C;

END;

When TOTAL2 is called, the current values of the variables B and
C are added and the total is assigned to the variable A. In this
case A, B and C are not formal parameters. They are working

8-2

FAl~CHIL.O

SYSTEMS TECHNOLOGY

variables with current values in the outer blocks to the SUBR
statement block.

Because the subroutine forms a new block, it must be remembered
that any variables which are declared in the subroutine will be
local.

NOTE

The word 1 dummy 1 is often used in this context inter­
changeably with the word 'formal 1 •

8.2 CALL\
I

A subroutine is executed by using a CALL statement, which can be
placed at any point in the program where the programmer can
legally place a statement. The general formats are as follows:

CALL SI;
CALL SI (expression 1, expression 2, ... ,expression N);.

SI is the identifier of the subroutine block to be activated.
The values, changed by the subroutine statements and by any other
task executed, will be accomplished as if the subroutine's body
of statements has been placed at the point of the CALL statement.
Then, the next sequential statement, following the CALL, will be
executed.

The expressions are evaluated at the time of the execution of the
call and, therefore, will remove many constraints which are
ordinarily placed on ~he CALL values. As the subroutine
statements are executed, the value of expression 1 will be used
wherever formal parameter 1 was used. The same will hold true
for other formal parameters and expressions. The only
restriction is that when a formal parameter receives a result,
the corresponding actual parameter should not be an expression
but a single variable identifier.

8.3 FUNCT \
\

The subroutine call, when encountered in tne program execution,
brings the subroutine statements into ac~ion to accomplish
whatever processing is specified (ordinarily assigning new values
to outer block variables). Control then usually passes to the
next seque~tial statement.

When only one variable is assigned a new value, as a result of
executing a subprogram, the call can be simplified by making the

8-3

FAl~CHlt...C
ID II Sii a
SYSTEMS TECHNOLOGY

subprogram a function. When FUNCT is used, simply writing the
identifier of the function will cause its statements to execute.
However, the identifier now represents a value that may be used
wherever a variable is legal. Thus, it is as though the function
call represents a variable of the same name.

The general form of the function statement is:

FUN CT i cl en t if i er (VI 1 , . • . , VIN) ;
statement l;

statement n;

END;

The format, except for the FUNCT coromand portion, is exactly like
the SUBR statement. It also defines a new block and it will be
called by the identifier, following the FUNCT. The difference is
in the way the function is activated and also that it always
returns a value for the function identifier. If no assignment of
a value to the function identifier is made within the statements
following FUNCT and before END; is encountered, a value of zero
will be returned. Assignments of values to a function, which are
external to the function declaration statement are illegal, i.e.,
the function name must not be used on the left hand side of an
assignment statement.

The function identifier is not local to its function block and
therefore must not be declared within the function statements.

As with a subroutine call, the FUNCT statement, with its compound
tail of statements, is not executed until the function identifier
is used in an expression.

8.3.1 Function Call

As stated, using the function identifier as a variable identifier
in an expression will cause the function statement block to
activate and to return a value for the idenTifier. Note the
following example:

When it
function,

8-4

FUNCT TOTAL3 (VI1,VI2,VI3);
TOTAL3 = VIl~VI2-VI3;

END;

it desired to reference a value by executing the above
its identifier is used as follows:

m am• I
FAl~CHILC
~-r. , .
SYSTEMS TECHNOLOGY

NEWTOTAL = TOTAL3(A,2,B+C)+(A-B);

The function TOTAL3 will be evaluated using the current value of
A for formal parameter VIl, 2 for formal parameter VI2 and the
current value of B+C for parameter VI3. This overall value will
then be added to the value calculated for the sub-expression, A­
B, using current values for A and B. Finally, the end value
2.rrived at will be assigned to -rhe variable, NEWTOTAL.

The same symbol must not be used for formal and call parameters.

It is worth considering a further example to illustrate the range
of versatility of a function. Assume there are two sums to
evaluate:

Sum 1:

10
A = Z B2

B=l

Sum 2:

E+H
C = Z -E+F[G]/D

D=l

Because expressions are allowed in the function call, one general·
function statement could be set up to handle both sums as shown
below:

FUNCT TOTAL (WI z, y' x, R);
W = O;
FOR Z = Y THRU X DO W = W + R;
END;

To evaluate Sum 1, the call is written as:

TOTAL (A,B,1,10,B*B)

Sum 2 could also be evaluated by the same function with the call;

TOTAL (C,D,1,E+H,E+F[G}/D)

NRIIIIJ I a
FAIRCHILD

SYSTEMS TECHNOLOGY

The effective result of the two function calls is shown below:

Sum 1:

Sum

A = O;
FOR B = 1 THRU 10 DO A = A+ B*B;
END;

2:
c = O;
FOR D = i TIIRU E+H DO C = C+E+F[G]/D;
END;

The parameters of a function call can also include other function
calls. In fact, a function may even call itself recursively.
For instance, a factorial could be calculated as follows:

FUNCT FACTORIA (N)
IF N = 1 THEN FACTORIA = 1

ELSE FACTORIA = N * FACTORIA (N-1);

END;

This is an example of recursion, the use of a function within the
same function. The user should remember that the number of
recursive calls is determined (and limited) at run time by the
size of core. Also, because new blocks are opened whenever a
call activates a function, this recursion of the function causes
nesting. Since nesting can go only 8 blocks deep, this example
could easily exceed this depth in most cases.

8.4 EXEC\

An assembly language program is executed by using an EXEC
statement. The general formats are as follows:

EXEC PROGRM;

EXEC PROGRM (parameter 1, parameter 2 .. parameter N);

PROGRM is a FACTOR identifier which is a.lso the name of a
COREIMAGE file on disc. Each parameter is evaluated at the time
of the EXEC, and may be a global variable, variable, array name,
array-element, function, formal parameter or arithmetic
expression. A maximum of 63 parameters is allowed.

After the assembly language program has been written, it is
assembled and an object file is created from which a COREIMAGE
file is created at a particular origin. This must be done either
under the system job or under the same job used to run the FACTOR

8-6

FAIRCHIL..C

SYSTEMS TECHNOLOGY

program. The or1g1n 1 (which
program) must be greater than
location of the top of core
the length of the program.

must also be the entry point of the
27770B. The difference between the
and the origin, is considered to be

The A.L. program is brought into core at its origin location.
All index regis~er values are saved, and then the index registers
are set to the values described b~low. Control is passed to the
A.L. program. The A.L. program may return normally l?~f-i:er

executing, or it may take the ABORT exit causing a terminal error
message to be printed. After a normal return the index registers
are restored and the state switches reset. What occurs next is a
function of the length of the A.L. program, which is discussed in
the next paragraph.

It is highly desirable to keep a short A.L. program in core after
execution so that it may be repeatedly executed without having to
access the disc each time. However, since a long A.L. program
occupies the same core space as the FACTOR program, it is
desirable to remove it from core to minimize the number of disc
accesses required for executing the FACTOR program.

Therefore, there exists a system constant, .(currently set at
lOOOOB) which can be easily modified to fit the needs of each
installation. If an A.L. program is longer than the system
constant a disc access will be made after execution, allowing the
core area (to the top of core) to be used to store ~he FACTOR
program. If an A.L. program is shorter than the system constant
it will remain in core until a different A.L. program is
EXECuted 1 and its space will not become available for FACTOR
program storage.

8.4.1 Writing t~e A.l. Program _(See also the FST-1 Assembler Manual I
(Part #67094951) and Appendix L of this manual) I

I

The entry point must be the first location in the program.

ENTRY PROC 0

Normal return is

BRU* ENTRY

An error exit is provided and should be coded as follows:

AOM ENTRY

LDA mess. no.

BRU* ENTRY

8-7

mr 1 •••
F=AIRCHJLD
zr UJFl•R d I
SYSTEMS TECHNOLOGY

where 0 < mess. no < 900.
message (mess. no. + 100) to be
program will be aborted.

This will cause a terminal error
printed, and the FACTOR test

8.4.2 Referencing Parameters

In order to reference the A.L. program parameters, the working
stack contains pointers To the val~es, wi~h Index Register 4 (X4)
pointing in front of the first parameter loca~ion and Index
Register 3 containing the parameter count. Thus, for a routine
with five parameters the working stack is as follows:

X4

pp
5

pp
4

pp
3

pp
2

pp
1

LDA* 1, 4 will get the value of the 1st parameter

STA* 1, 4 will store a new value into the 1st
parameter

If the second parameter is an array of size 10

LDA* 2, 4

LXA 5

LDA.10, 5 will get the value of the 10th element of
the array.

8.4.3 Changing the FACTOR Program i
On entry to the A.L.
location of the next

8-8

program,
word of

Index
the

Register 5 contains the core
FACTOR program, and Index

Ek I m
F=A!RCHILC

SYSTEMS TECHNOLOGY

Register 2 contains the location of the PMF heo..Ller £.-:•.1. u1~ PAc:·.::uu
program.

The EXEC
statement
In order
must be a

PROGM statement could be preceded by an ENABLE ACCESS
allowing a maximum number of statements to be changed.

for any statement modification to be effective PROGM
"short" A.L. program.

Since this technique is pot~ntially aang2rous, great care should
be taken when utilizing it.

Index Register 6 contains the address of a table of eigh~ (8)
words. These eight words are the starting addresses of the block
headers for the eight (or fewer) active block levels.

Index Register 7 contains the entry point address of the A.L.
program.

8.4.4 ln?ut/Output \

I/O may be accomplished in the A.L. program using the system I/O
drivers. However, the system I/O drivers may not be called
directly, but must be referenced through their GLOBAL addresses.

In order to: Code must be written:

CALL TTRIO BSM* 520B
CALL TTPIO BSH* 512B
CALL DISCIO BSM* 554B
CALL LPIO BSM* 543B
CALL CRIO BSM* 553B
CALL MTIO BSM* 552B
CALL TAPIO (FACTOR tape BSM* 541B

program)

8-9

G&lF M E
S::AIRCHIL.O

SYSTEMS TECHNOLOGY

Section IX [

Input/Output Statements

9.0 INTRODUCTION \
i

In Section III the input of source statements to the compiler and
the output of compiled data statements from the compiler were
discussed in detail. Section IX deals with READ and WRITE
statements that control data-flow in and out of the computer
during execution.

The statements READ and WRITE described in this section use the
following syntax notation.

1) Outer parentheses ' (' , 1)' are used to enclose .i terns that are
optional; at least one item must be selected; items are
separated by slashes; '/'.

2) A 0 indicates that none of the elements of the set need be
chosen. When none are selected, the system assigns the
current DOPSY Primary input or output device.

3) A file name identi-fier is shown in lower case letters and is
enclosed by double quotation marks.

9.1 READ \

The general formats of the input statement are:

READ((CR) I (PID) I (FDIF) /(EIR) I (TTK) I (TTR) I OITR)
11 name' 1 /0)Vl, V2, ..• Vn;

READ (BCR) Vl, V2, ... Vn;

READ((CR)/ (TTK) / (TTR) / (PID) / (FDIF) IO) Yi, &Vj .. &Vn;

The items enclosed by parentheses are peripheral devices defined
as follows:

Primary Input Device
Card Reader (Binary mode)
Carel Reader
Teletype/Video Terminal

Keyboard

(PID)
(BCR)
(CR)

(TTK)

9-1

Teletype Reader
Magnetic Tape

asau a 1
l=AIRCH~LO
r Ell !M
SYSTEMS TECHNOLOGY

(TTR)
(MTR)

External Interface Reg
Disc Input File

(EIR) -See Paragraph 11.8
(FDIF)

When magnetic tape, MTR, is specified the statement must include
a file name \Vhich is enclosed bJ.7 double Qllota t ion I:1D .. rl-{S ~ rfhe
file r..ame syntax is clef Jned in '~he same manner as I dent if iers
/ 1 /i.2.2). '-see pardgrapr1 ~-

Magnetic tape file 11 namesn are used to uniquely identify data
se€,rments on the tape. These names are assigned with the WRITE
statement (Appendix J).

The terms V1 through Vn may be any legal variable identifier,
including arrays. As the input numerical data is read from the
peripheral, it is assigned to the specified variable(s).

The input data or literal variables (variables preceded by '& 1)

must be of the form:

C1C2C3C4 for a simple variable

cl C2C3C4n .. c for an array of size n

where the

C belongs to the FACTOR character set.

All of the characters must fit on one card (or one record
different media). The characters are converted to TRASCII
stored into the variable without further conversion. C
appear in the first column of the card. This capability has
been implemented for magnetic tape.

of a
and

must
not

When values of an array are to be read, they must be separated by
at least one space (for TTK, TTR, CR, FDIF, PID). More than one
card may be used to enter these values. All numbers following
the last array element number on a card are ignored. Note that
the first value for each new variable idsntifier must start on a
new card.

When BCR is specified as the input device, the variables must be
arrays of size 80 or larger. Each column of the card is
interpreted to be a binary number between 0 and 7777. The value
is converted into floating point format and assigned to the
corresponding element of the array. Only 80 values will be read
into the array regardless of its size. The remaining elements of
the array (if larger than 80) may be used for any other reason
desired.

9-2

F=Al~CHIJ...C

SYSTEMS TECHNOLOGY

When the input peripheral is the magnetic tape unit, the tape is
searched forward until the file "name" is located. The numerical
data from this file is read and assigned to the variables
Vl, ... etc. as specified by the READ statement. For magnetic
tape, the variables must be arrays which have no less than 7
elements. The maximum array size is limited by the amount of
core memory available when the array is declared. It is
recommended that arrays be no larger than 512 elements.
Appe~dix J gives a detailed description of the magnetic tape
opera -cion and responses to the R.EAD (MTR) and WRITE (MTW)
statements.

· When the input is a disc input file, the information is
sequentially read from the disc and stored in variables Vl,
through Vn. (No formatting will occur.) The Disc Input file
(FDIF) must have been opened and each READ continues processing
the file where the previous READ left off. The assumption is
made that the file is composed of records written by a FACTOR
WRITE (FDOF) statement, and therefore consists of floating point
numbers and alphanumeric text.

If an attempt is made to read beyond the information written in
the file, a flag will be set, and control ·will be transferred to
the statement label, which appears in the ON DIFEOF statement.
If no ON DIFEOF statement has been encountered, a terminal error
message #68 will be issued. If the DIF is not open, terminal
error message #67 will be issued.

9.2 \'VRITE \

The formats for output statements are:

WRITE ((EIR)/(POD)/(FDOF)/(TTP)/(LP)) Vi, 'Si' ,&Vj, TSj''
col Vl, col 'Sl 1 , ••• Vn;

WRITE (MTW) "name" Vl, V2, V3, V4;

Where: Vi ... Vj ... Vn ... Vl ... V4 are legal variable identifiers
including arrays which may occur in any sequence. Si, Sj •.. are
strings of alphanumeric characters,

col is a numeric column number between 1 and 80, enclosed by
slashes, e.g., /10/

The items enclosed by parentheses are peripheral devices defined
as follows:

Primary Output Device
Teletype Printer/Punch,VKT

(POD)
(TTP)

9-3

Line Print er .. .
Magnetic Tape .. .
External Interface
Card Punch
Disc Output File

D JllMl&d llM
FAl~CHJLD

:::Bl 1 Fl I B ··­svsTEMs TECHNOLOGY

(LP)
(HTW)

Register ... (EIR) -See paragraph 11.8
(CP)
(FDOF)

When magnetic tape (MTW) is specified the statement must include
a file segment name which is enclosed by double quotation marks.
When wri~ing to magnetic tape, the variables Vi must be arr~ys
which have no less than seven (7) elemem:s and are recommended to
be no larger than five hundred and twelve (512) elements as
described in paragraph 9.1. Appendix J gives a detailed
description of the magnetic tape operation and responses to the
WRITE (MTW) statement.

When the teletype or line printer is specified as the output
device there may be one or more strings of alphanumeric
characters and one or more variables in a single WRITE statement.
All strings must be enclosed by single quotes and must not
contain semicolons (;). Multiple variables are separated by
commas as are intermixed combinations of strings and variables.

When the output is to a disc output file, the information stored
in the variables and the string will be output to the disc. (No
formatting will occur.) As each word is output, it is added to
that file which has been previously specified to be the Disc
Output File (DOF). If an attempt is made to writa beyond the end
of the file, a terminal error message #69 ·will be issued and the
test program will be aborted. If the DOF is not open, terminal
error message #67 will be issued.

Numeric variables are output in one of three forms. If the
numeric value of the variable is a positive integer whose
magnitude is less than ten thousand (10000), it will be printed
in the form 9999.

If the value is negative and of magnitude less than one thousand
(1000), it will be printed in the form S999.

S is the sign (-) and the 1 9 1 terms are deci~al digits. Leading
zeroes in a positive number print as spaces.

Integers and non-integers whose magnitudes exceed nine-hundred
and ninety-nine (999), or (9999), print in the following format:

S9.999EP99

where S again is the sign of the value and the '9.999' represents
the decimal digits of the mantissa, the '99' represents the
decimal digits of the exponent of the value and P is the sign (+

9-4

F=Al~CHILC

SYSTEMS TECHNOLOGY

or ~) of the expone~~- ~he character 'E' prints as shown. For
example, 8.979 x 10 prints as '8~979E-06'.

Numeric values as described above occupy a field of twelve (12)
characters and are left justified within this field.

Literal variables (variables preceded by '&') are output as a
string of characters. Four characters are output for a simple
variable, 4n characters for an array of size n. The string of
characters is followed by four blanks.

Strings of characters are printed as they appear in the enclosed
quotes. The characters may be any of those in the character set
(paragraph 2.1) excluding single quotation marks and
semicolons(;). Leading spaces are printed according to the
number of spaces following the single quote of a string. The
total number of printed characters will be an integral multiple
of four (4). (The restriction is automatically imposed at run­
time with the addition of no more than three (3) spaces following
the character preceding the trailing quote of a string.)

NOTE

Where a 'data ~tring' or a literal variable array is
written under column format control, the entire string
or array must fit on one line.

The maximum number of variables printed per line is five (5) with
the first character field left justified, unless column
formatting is specified.

When a variable is an array, its current values are printed five
(5) per line beginning with array element one (1) left justified
on the line.

More than five (5) variables can be specified per WRITE statement
with the result that five values per line will be printed on all
lines including the last, unless there are fewer than five values
to fill the last line.

A single string of seventy-two (72) characters may be printed on
a single line when the teletype/VKT is the output device. When
the line printer is the output device, a string of eighty (80)
characters* may be printed on one line. Single strings which
extend beyond column seventy-two (72) of a punched card can be
continued beginning with column one (1) of the next card, etc.
When the single string exceeds the character counts described

9-5

!PIWI m
F.AIRCHILC

SYSTEMS TECHNOLOGY

above, the excess characters are printed on the following line.
The teletype/VKT will ignore characters between column seventy­
three (73) and eighty (80).

When variables and strings are intermixed in a single statement,
without column formatting specified, the following output rule
holds:

If the count of characters printed on the current
line exceeds fifty-six (56), then the first char­
acter of the next entity (either a variable or
string) will be printed left justified beginning
on the next line. Othenvise, it will be printed
beginning on the current line and character posi­
tion. Overflow to the next line will occur when­
ever the character count of a string exceeds the
number of available characters on the line.

Example:

(FACTOR Code):

.WRITE 'DATALOG';
WRITE I 1 ;

WRITE I TEST#= I 'N' I

WRITE 'NODE= I' PINN'

(Output Data):

DATALOG

TEST#= + 6
NODE::; - 0

VALUE=! I VALUE;
EXPECTED VALUE=' ,EV;

VALUE=+l.200E-06
EXPECTED VALUE= + 2

In this example, the variables are N, VALUE, PINN, and EV. At
the time the WRITE statements are executed, these variables had
the following numeric values; 6, 1.2 x 10-6 , 0, 2, respectively.

Whenever column formatting is specified, t:he fourth character of
the output will be right justified in the specified column. This
capability is primarily oriented toward outputting integer
values, which will always be right justified in the specified
column. By specifying columns, the programmer can exceed 56
characters per line and 5 variables per line, and can concatenate
values.

*Standard line printer - other line printers are available.

9-6

FAIRCHJL..C

SYSTEMS TECHNOLOGY

9.3 FACTOR DISC 1/0 I
9.3.1 ON DIFEOF, Label

When a READ (FDIF) statement encounters the end of the written
file, control is transferred to the statement Label.

9.3.2 RESET FDIF I
This initializes the DIF pointer to the beginning of the DIF

. file.

9.3.3 Programming Conventions for Use With FACTOR Disc 1/0 [
I

The following conventions are suggested to simplify use of disc
I/O. It should be kept in mind that several differen~ programs
on different stations can be writing to the disc file and that
the records from each station will be intermixed.

1) All WRITE FDOF statements in all programs should write the
same number of words to the disc (ie. the record size should(
be constant).

2) Each WRITE FDOF statement should output at least 3 words of
identifying information at the beginning of the record.

Words 1 and 2 - Device name
Word 3 - Station number

Other identifying information could be included, such as the
current date.

3) The READ/WRITE &Var capability can be used to read in
identifying alpha information such as the device name, the
·station number, or the date. This information may then be
output to the disc in a WRITE statement, or may be used in a
data reduction program to compare the desired device name,
station number, date, etc., against the corresponding
characteristic read from the disc file.

9-7

FAl~CHILD

SYSTEMS TECHNOLOGY

EXAMPLES OF PROGRAMS THAT READ AND WRITE TO DISC

REM PROGRAM THAT WRITES TO DISC;

FACTl: DCL DEVNAM . [2}, ARRAY [10];

READ (CR) &DEVNAM, &STAT;

.MEASURE VALUE;

Xl = VALUE;

MEASURE VALT.JE;

X2 = VALUE;

WRITE (FDOF) &DEVNAM, &STAT, X~, X2, ARRAY;

END;

REM DATA REDUCTION PROGRAM;
FACT2: DCLDEV[2] DEVNAM[2], ARRAY [10], SUM;

RESET FDIF;
ON DIFEOF, AVER;
I = 0
READ(CR) &DEV;
WRITE (LP) 'DEVICE IS' &DEV;

LOOP: READ(FDIF) &DEVNAM, &STAT, Xl, X2, ARRAY;

RE~I ONLY PROCESS DATA FOR CURRENT DEVICE;

IF DEV [1] NEQ DEVNAt.I[l] THEN GOTO LOOP;

IF DEV [2] NEQ DEVNMI [2] THEN GOTO LOOP;

WRITE (LP) 1 1 ,Xl, X2;
SUM=SUM +ARRAY[l];

GO TO LOOP;

9-8

f=AIRCHIL.O

SYSTEMS TECHNOLOGY

EXAMPLES OF PROGRAMS THAT READ AND WRITE TO DISC (Continued)

AVER: SUM=SUM/I;
WRITE (LP) I AVERAGE IS I' SUM;

END;

9-9

F=AIRCHILD

SYSTEMS TECHNOLOGY

I

. Section X !
Notational Statements

10.0 lNTRODUCT!ON ~

Notational statements are used
clarity of programs. Notational
section are NOISE and REM.

to enhance the readability and
statements discussed in this

10.1 NOISE I
The NOISE statement is used to define words that will make the
FACTOR statements read like English sentences. Its general forms
are:

NOISE WORDl;
NOISE WORDl, WORD2, ... WORDn

The command NOISE is followed by at least one space and the noise
word, or words which are separated by commas. After defining the
noise words they are ignored by the FACTOR compiler. This
provides a means for adding clarity to FACTOR statements. An
example is shown below:

NOISE VOLTS, AMPS;

FORCE VFl 5.0 VOLTS;

Noise words are restricted to the format of identifiers, however,
the reserved words listed in paragraph 4.2.2, as well as user­
declared identifiers, are not allowed as noise words.

10.2 REM

The REM (remark) statement provides a means for addir.g commentary
to a program listing. It is not executable and it can occur
anywhere in the context of a program pro-.-ided its format rules
are followed. The general format is:

REM text;

where text is anything but a semicolon, END or ELSE.

10-1

F=Al~CHILC

SYSTEMS TECHNOLOGY

For example:

REM THIS SECTION PERFORMS VOL MEASUREMENTS;

As noted above, anything except a semicolon, END or ELSE is legal
in the REM statement. All other elements of the character set
~ill be positionally listed as located in the REM statement at
compile +- ime.

10-2

FAIRCHILD

SYSTEMS TECHNOLOGY

Section XI \

Test Statement Formats\

11.0 INTRODUCTION

Within this section, statements available for testing digital
devices are described. Each statement description consists of a
general form that gives the following information: time delay,
definition, and, in most cases, an example.

The five major statement types discussed in this section are:
Setup Statements, Programmable Power Supply Statements,
Functional Test Statements, Precision Measuring Unit Statements
and Miscellaneous Control Statements. The general forms of the
statements use the syntax notation defined in paragraph 2.4.

I
11.0.1 Voltage and Current Ranges i

I

Programmable voltage and current modules of the Sentry 200 Test
System have from two to four ranges of operation.· There are four
possible ranges specified as follows:

RNGO
RNGl
&.\fG2
RNG3

NOTE

Current ranges depend on the hardware module:
full scale in range 2 for power supplies, but
range 3 for the PMU (Refer to Appendix C).

102.3 milliamps is
is full scale in

The full scale value of voltage or current corresponding to each
range depends on the statement and hardwaYe module involved.
Appendix C summarizes range numbers and their correlation to full
scale value, resolution, statement and module.

11.0.2 Time Delay Dependent Instructions

Execution of a time delay dependent instruction is automatically
delayed so as to allow the preceding test time dependent
conditions to stabilize. For example, a DC measurement is

11-1

ma-•• s m1m
F=AIRCHILO

SYSTEMS TECHNOLOGY

executed until all previously programmed power and voltage
supplies have stabilized. The value of the time delay is
determined by the type of tester instructions previously
executed. Time delay dependent instructions wait for the status
Tester Busy to be null.

are executed
may initiate

Instructions that are not time delay dependent
without waiting for stabilization, even though they
a Tester Busy status. This allows a series
responses to essentially stabilize during the same

of progYarn:11eLi.
time period,

are time delay rather than in a sequence. Statements that
dependent are listed in Appendix E.

11.1 SETUP STATEMENTS \

This section describes statements that are typically used to
initialize the tester prior to performing actual tests.

11.1.1 Set Delay \

General Form:

SET DELAY expression (,DC);

Time Delay Generated:

0

Description:

A. Without DC Modifier

The value of the expression is loaded into the tester time delay
register TD. This presets the delay time for subsequent
executions of functional tests of the form SET F. That is, the
expression plus 0.7 microseconds will be the value of the time
delay between input stimulus execution and output comparator
strobing (a SET F instruction). The 0.7 usec offset is equal to
the typical driver response time to 62% of its final value from
initial value. The delay used should allow for device under test
response time plus 0.4 usec comparator response time. The Set
Delay statement has a resolution of 0.35 microseconds and a
maximum value of 5.734 milliseconds.

Example: Set the functional test delay for 350 microseconds.

SET DELAY 350E-6;

11-2

FAIRCHILD

SYSTEMS TECHNOLOGY

B. With DC Modifier

The value of the required time delay is scaled by FACTOR and
loaded in the tester time delay register. The resolution is 0.35
milliseconds with a maximum value of 5.734 seconds. When a FORCE
PMU, FORCE (VOLTAGE/CURRENT) or FORCE DELAY instruction is
executed then the 1 tester busy' status will remain 1'onn for the
amount of time defined by the Set Delay, DC statemen~. Even if
this instruction is not used a time delay generated by a iixed
delay generator of 1.75 msec, if a range is changed, or 0.54 msec
if no range is changed, will occur.

Example: Set the D.C. delay for 5 milliseconds

SET DELAY 0.005, DC;

11.1.2 Set Clamp\

General Form:

SET CLAMP [POS/NEG/SYH/OFF] number;

Time Delay Generated:

0.56 millisecond

Description:

The purpose of the SET CLAMP statement is to define a limited
range within which PMU voltages may occur when the P:1IU is forcing
a current into a load.

The PMU voltage CLAMP may be used
protect a device from a programming
current and sensing voltage.

when forcing voltage (to
error) or when forcing

POS means no voltages less than -0.7 volts will be allowed and
NEG means that no voltages greater than 0.7 volts will be
allowed. SYM allows both positive and negative voltages to
occur. At the other limit, number defines the absolute value of
the maximum PMU voltage which will be allowed.

There are 16 values at which the PMU may be clamped (positive or
negative). They are:

1.5, 4.5, 7.5, 10.5, 13.5, 16.5, 19.5, 22.5, 25.5,
28.5, 31.5, 34.5, 37.5, 40.5, 4:J.5, 46.5, volts.

11-3

at• au
l=AIRCHILD
Ul -IH• am
SYSTEMS TECHNOLOGY

Any value will be accepted and the next higher (if not equal)
clamp value will be selected. For example, if SET CLAMP POS 8.2;
is given, the allowed voltages will be between -0.7 volts and
10.5 volts.

The actual clamp values produced by the harchvare 1.vill be + 1 volt
+ 10% of the value specified. When sensing \·ol tage, extra delay
should be provided fo:;_· clamp stabilization for each FORCE CURRF.:'~T
statement execu~ed.

11.1.3 On Program Branch Control

General Form:

ON [DCT/FCT/TRIP], label;

Time Delay Generated:

0

Description:

These statements establish program branch control on DC test
failures (DCT), functional test failures (FCT) and power supply
trip failures (TRIP). The label specifies the branch location.
The label must be in the outermost block of the test program in
all cases, i.e., the label must be in the main program, not in a
subroutine. The branch instrucTion is canceled after the branch
is exeeuted.

The three branch conditions are programmed independently. Once a
branch is taken, the ON statement is cancelled; a second failure
of the same type will not alter program control unless the branch
is reprogramrned. In the event of multiple fails on the same
test, a power supply trip branch has priority over a DC or
functional fail branch.

When a trip, functional or DC failure occurs at statement n and,
if the corresponding ON statement has not been processed or if
the branch has been used and no-r reprogram.med, program control
will resume a~ statement n+l.

Example:

11-4

Set branch points
functional, DC and
detected.

ON DCT , DFAILl;

to alter program
power supply trip

control when
failures are

CT Id I B
F=AIRCHIL.D
m e1 &•an•
SYSTEMS TECHNOLOGY

ON FCT , FFAIL;
ON TRIP, CFAIL;

DFAILl: ON DCT, DFAIL2

11.1.4 Enable Limits

Gener al Form:

DISABLE/ENABLE [ILO/IHI/VLO/VHI] [GT/LT] number;

Time Delay Generated: 0

Description:

These instructions enable limit comparisons to be made on all
programmed current/voltage operands prior to an instruction
execution. If the operand fails to be within the LIMIT bounds, a
system terminal error is issued. (See Appendix F.) Instructions
with operands in the LIMIT bounds are executed.

The "pass" regions are established by the LIMIT pairs ILO, IHI
for currents and by the LIMIT pairs VLO, VlII for vol tag es. The
absence of ENABLE LIMIT instructions in a program allows all
magnitudes less than the range limits to pass. The function of
the limit comparison is to protect the device under test where
source forcing parameters are calculated or may be unknown. Once
the program is operational and safe parameters are known, these
instructions may be removed for execution time efficiency.

NOTE

Specification of limits with these statements
will increase test execution time.

Examples: Enable limits to npass 11 voltages which are between the
values of +5.0 and 0 volts.

ENABLE VH I GT 5;
ENABLE VLO LT 0;

Enable limits to pass currents which are between the
values of +lOOmA and -5mA.

ENABLE IHI GT 100-3,F~G3;
ENABLE ILO LT -5E-3, Rl'TG2;

DISABLE [ILO/IHI(VLO/VHI] nullifies the ENABLE limit comparisons
invoked above.

11-5

w
F=Al~CHILO

SYSTEMS TECHNOLOGY

11.1.5 Socket Identification

General Form:

SOCKET ID number;

Time Delay Generated:

0

Description:

This statement compares the value of the number with the
identifier code of the performance board in the test socket. If
the values are not equal, a system terminal error is issued and
the program aborts. If the values compare, the program execution
continues. The maximum Socket ID is 4095 (7777B).

Example:

Test the socket ID for a value of 4095.

SOCKET ID 4095;

11.2 PROGRAMMABLE POWER SUPPLY STATEMENTS
-

This section describes the statements that provide programmable
control of the Sentry 200 Test System power supplies. The power
supplies can force either voltage or current, monitor the
resulting current or voltage, and cause a trip if programmed.

11.2.1 Force DPS Voltage Supplies I
j

General Form:

FORCE (VF1/VF2/VF3) expression (,R~G2/,RNG3);

11-6

Time Delay Generated:

FAIRCHILD
9 f fl F•'t.EEJ
SYSTEMS TECHNOLOGY

5.37 milliseconds or the programmed DC delay,
whichever is greater.

Description:

This instruction forces the progr~n~able vol~age forcing supplies
to the value specified. If the range is not specified, then the
highest range is set. This instruction automatically connects
the addressed unit to the test station load board.

If a current trip has not been program.med, an "impossible" trip
of less than -1 ampere will be set, but not enabled. The trip
register will be set to range 3.

The VF units will automatically disconnect under the following
conditions:

(1) when the magnitude of the supply current is greater
than 150 milliamps and the trip register is in range
2.

(2) when the magnitude of the supply current is greater
than 1.50 amps and the trip register is in range 3.

Example:

Force units VFl, VF2, VF3, to +8, -5 and -30 volts
respectively.

FORCE VFl 8, RNG2;
FORCE VF2 -5, RNG2;
FORCE VF3 -30;

11.2.2 Force DPS Current

General Form:

FORCE [IF1/IF2/IF3] expression(, RNG2/,RNG3);

Time Delay Generated:

5.37 milliseconds or the programmed DC delay,
whichever is greater.

11-7

FAJ~CHIL.CJ

SYSTEMS TECHNOLOGY

Description:

This instruction directs the programmable power supplies to force
the specified currents. If the range is not specified, range 3
is used. The direction of positive current is out of the supply.

If a voltage trip has not been programmed, an "impossible" trip
of less than -40 vol ts will be set, but not enabled.

Examples:

FORCE !Fl lOOE-3, RNG3;
FORCE IFS -5E-3, RNG2;
FORCE IF2 30E-2;

11.2.3 Enable Current Trip \

General Form:

ENABLE [TRIPI1/TRIPI2/TRIPI3] [LT/GT] expression
('RNG2 I' Rl'{G3) ;

Time Delay Generated:

5.37 milliseconds or the programmed DC delay,
whichever is greater.

Description:

These instructions enable the current-trip detector of the
corresponding voltage forcing unit (VFl, VF2, VF3). If the
source/load current of the forcing unit (VF) exceeds the enabled
trip value during a test sequence, indicating a DC failure, then
program control is transferred to the instruction as sp~cified by
the ON TRIP instruction, if that instruction was given. If an ON
TRIP has not been executed prior to the trip, the program
proceeds normally. At a pause or end-of-test, the PARAMETER FAIL
indicator will be 'ON' if a trip occurred. If the DATALOG ON
TRIP is set, the value specified by this instruction will be
written on the output device.

The trips are ignored while the Tester Busy status is 'ON', i.e.,
until the time delay generated has expired. This feature allows
surge currents without setting the trip when the VF supplies are
driving capacitive loads. For additional time without increasing
the value programmed in the SET DELAY, DC statement, the ENABLE
TRIP may be prograrrnned se\•eral statements after the FORCE.

11-8

Qll b I 0
FAl~CHILC
am 1 2111 ££ a
SYSTEMS TECHNOLOGY

The VF units will automatically disconnect under the following
conditions:

(1) when the magnitude of the current is greater than 150
milliamps and the trip register is in range 2.

(2) when the magnitude of the current is greater than 1.50
amps and the trip register is in range 3.

The automatic disconnect is a safety feature that protects both
the device under test and the DPS units. The trips will be
processed, provided they have been enabled, even though the
automatic disconnect occurs.

Example:

Enable the voltage forcing unit VFl so that it will
trip on load currents exceeding 100 milliamps and VF2
to trip on currents more negative than -50 milliamps.

ENABLE TRIPil
ENABLE TRIPI2

GT lOOE-3, R.~G3;
LT -0.05, RNG2;

NOTE:

If any trip is enabled, then all trips are enabled by
implication. The trip specified will be enabled for the

·particular value; the others will be enabled for less than -1
ampere if the DPS is in voltage force mode or for less than -40
volts if the DPS is forcing current.

I

11.2.4 Enable Voltage Trip\

General Form:

ENABLE [TRIPV1/TRIPV2/TRIPV3] [LT/GT] expression
(' R.~G2 I 'RNG3) ;

Time Delay Generated:

5.37 milliseconds or the programmed DC delay,
whichever is greater.

Description:

These statements enable the voltage
corresponding power supply in the current

trip detector
forcing mode.

of the
Voltage

11-9

F=AIRCHILO

SYSTEMS TECHNOLOGY

trips are processed in the same fashion as current trips (Refer
to paragraph 11.2.3). This statement automatically connects the
addressed unit to the test station load board.

Example:

Enable trip interrupts occur if the voltage on DPSl is
more negative than -10 volts or if the voltage on DPS3
is more positive than 30 volts.

ENABLE TRIPV1
ENABLE TRIPV3

11.2.5 Disable Trips\

General Form:

DISABLE TRIPS;

Time Delay Generated:

0 delay

Description:

LT -10.0, RNG2;
GT +30;

This statement causes all voltage and current trip~ to be
disabled.

11.2.6 Disconnect DPS Unit

General Form:

XCON [VF1/VF2/VF3] ;

Time Delay Generated:

5.37 milliseconds or the programmed DC delay,
whichever is greater.

Description:

This statement disconnects the specified voltage forcing unit
from the test head. If current forcing, the magnitude of the
specified unit is automatically set to 0 in the low range prior
to disconnecting. When forcing a vol~age, the user should force
a value which will minimize current flow before disconnecting.
After execution of this statement, the DPS will automatically be

11-10

AA d&U
F=Al~CHILO

SYSTEMS TECHNOLOGY

set to voltage force mode and an impossible current trip
condition. The trip function for the specified unit is disabled.
The DPS units will automatically disconnect from the test head at
end-of-test without this instruction. Also, the trip function
for the specified unit is disabled.

Example:

Disconnect all VF units

XCON
XCON
XCON

VFl;
VF2;
VF3;

11.2.7 DPS Programming - User Rules j

Mode Change

Changing from voltage force to current force implies a
disconnect. The user should minimize current flow with a FORCE
VFx before a FORCE IFx or ENABLE TRIPx is programmed.

Programmed Delays

A hardware delay is initiated when necessary for relay changes.
Additional delay may be desirable in some cases. For example,
when forcing voltage into a capacitive load and a trip is
programmed, additional delay may be used to prevent a trip while
the capacitance is being charged. The trip can then be used for
the steady state load.

The first time the DPS is programmed to a certain pin the time
delay generated is 5.37 milliseconds or the programmed DC delay,
whichever is greater. Subsequent DPS programming to the same pin
results in a delay of 0.56 milliseconds or the programmed DC
delay, whichever is greater.

Programmed Wai ts

When no mode change is required, delays will be initiated by the
sys·tem but will not be timed out before the next DPS statement is
processed. The delay will be executed before a measurement,
however. This approach permits optimum throughput. If it is
desired to ramp a DPS while waiting for a trip, this does require
the user to program a FORCE WAIT in the ramping loop.

11-11

A A
FAIRCHILD
~:·· ·.

SYSTEMS TECHNOLOGY

Initialization

It is not necessary to program a dummy trip to get maximum
current capability while forcing voltages or to prevent one DPS
from tripping on less than zero current if another DPS trip is
en ab led.

Trips

Enabling a trip for any DPS will enable trips for all DPS' s. I:t
trips are not programmed for remaining power supplies, an
ttimpossible" value of less than -1 ampere or -40 volts will be
used. Note that this enables the supply to deliver maximmn
power. Disconnecting any or all supplies does not disable the
general trip interrupt in all cases. The disconnected supply can
not trip until it is reprogrammed. (Actually, not until its DPS
register and any DPT register are reprogrammed.) The general trip
interrupt enable can be turned off only with a DIS.ABLE TRIP
statement.

Also, note that programming an ENABLE TRIPV will also cause the
supply to be connected.

11.3 SET LOGIC \

General Form:

SET LOGIC [POS/NEG]

Time Delay Generated:

0 delay

Description:

These statements initialize the functional test comparator logic
pass conditions for either positive or negative voltage logic for
the device under test (DUT). If this instruction is not used,
the positive logic condition is assumed.

For positive logic the pass conditions are defined as follows:

(a) F(i) = 1 (expected output function for pin (i) = 1)
Pass = DUT OUTPUT SIGNAL>Sl, otherwise fail.

(b) F(i) = 0 (expected output function for pin (i) = O)
Pass = DUT OUTPUT SIGNAL<SO, otherwise fail.

11-12

rm nm 1111 t 1
l=AJRCHILD

SYSTEMS TECHNOLOGY

For negative logic the pass conditions are defined as follows:

(a) F(i) = 1 (expected output function for pin (i) = 1)
Pass = DUT OUTPUT SIGNAL<Sl, otherwise fail.

(b) F(i) == 0 (expected output function for pin (i) = O)
Pass DUT OUTPUT SIGNAL>SO, otherwise fail.

Note that all voltages, po~itive or negative, are treated
algebraically, thus -10 is less than -1.

Example:

SET LOGIC NEG;

•
11.3.1 Force Voltage Conditioner References\

General Form:

FORCE [EO/El/EAO/EA1/EBO/EB1/ECO/EC1] expression
(, RNG2/, R..N"G3);

Time Delay Generated:

0.56 millisecond or 0.3 millisecond per volt,
the difference between the previous voltage
programmed voltage. - 0.56 millisecond for
swings less than 5 volts.

based on
and the
voltage

Description:

These instructions force the voltage conditioner reference
supplies to the programmed values. If the range is not
specified, the lowest range, consistant with the programmed
value, is automatically selected.

EO, El, EAO, and E.Al are voltage conditioner references. The
truth table below shows the relationship of F, S and these
supplies. The supplies EBO, EBl, ECO and ECl are optional.

Example:

Force the standard reference pair to 3.5 and .5 volts
respectively for the fll" and non levels.

FORCE El 3.5, RNG2;
FORCE EO .5, RNG2;

11-13

F=AIRCH!LO

SYSTEMS TECHNOLOGY

The following combinations of F and S bits per pin determine
which reference voltage is applied to the pin.

F

0
1
0
1

s

0
0
1
1

EO
El
EAO
E.Lil

11.3.2 Set Reference Supplies for Functional Test Comparators

General Form:

SET [Sl/SO] expression (, RNG2/, R.!.'l"G3);

TiBe Delay Generated:

0.56 millisecond or 0.3 millisecond per volt, based on
the difference between the previous voltage and the
programmed voltage. 0.56 milliseconds for voltage
swings less than 5 volts.

Description:

Sl and SO are reference supplies for the functional test
comparators. Sl is the reference level for the expected logic
"1" levels and SO is the reference level for the logic 11 on
levels. The programmed value is loaded into the functional test
comparator reference voltage supply register.

For testing positive logic, Sl SO.
as defined by the instruction SET
following table shows pass/fail
comparators.

POS LOGIC: NEG

F=l pass
Sl so

F=l fail

F=O fail
so Sl

F==O pass

For testing negative logic,
LOGIC NEG, Sl SO. The

decisions made by the

LOGIC:

F=O pass

F=O fail

F=l £: • ,

l. ai .l

F=l pass

Example: Set SO comparator reference voltage to -5 volts:

SET SO -5, RNG2;

11-14

11.3.3 Set Voltage Offset /

General Form:

F=AIRCHILC

SYSTEMS TECHNOLOGY

SET VOFFSET number;

Time Delay Generated:

0

Description:

This statement allows the specification of a voltage offset value
which will be automatically added to values programmed by all
voltage forcing statements.

The VOFFSET level can be used as a reference level for all other
forcing voltages and hence reduce the programming task and
improve listing readability.

Example:

If a supply absolute voltage range is +6 to -30 volts and a
device requires greater than +6 volts with voltage swings within
the 36 volt range, the offset value and supplies can be
programmed as:

SET VOFFSET -18;
vss = 20;
FORCE VF1 O;
FORCE VF2 VSS;

Here the actual voltages programmed are: VFl = -18 volts and VF2
= +2 volts.

The voltage forcing statements affected by the voltage offset
value are:

FORCE [VF1/VF2/VF3] expression (,lli~G2/RNG3);
FORCE [EO/El/EAO/EAl/:ID O/EBl/ECO/ECl] expression
(, RNG2/&.~G3);
FORCE PMU expression;
FORCE VOLTAGE expression (, RNG1/Tu.1"G2/ RNG3);
SET [Sl/SO] expression (,P..NG2/P..NG3);
ENABLE [TRIPV] expression (,RNG2/RNG3);
SET DCT [LT/GT] expression; ~~
ENABLE [VLO/VHl] [LT/GT] expression;
ENABLE [DCTO/DCTl] [LT/GT] expression;

11-15

l=AIRCHILC

SYSTEMS TECHNOLOGY

The resultant voltage value is autoranged for best resolution or
a default range of 3 is used unless a range specifier is included
in the forcing statement.

11.4 FUNCTIONAL TEST STATEMENTS

This section describes progra1r .. ming the long regi::,ters and
functional testing.

11.4.1 Long Registers \

The long registers
functional testing.

are used to set up hardware conditions for
They include the following:

1) I/O pin definition, Set D (11.4.2)

2) Mask pattern definition, Set M (11.4.4)

3) Input reference power supply selection, Set S (11.4.5)

4) Utility Relay control for each pin Set R (11.4.6)

5) Define the functional test pattern for logical input
states and.expected output states, Set F (11.4.3)

The general form of the statements for programming functional
test conditions is:

SET register or function name (*) binary pin pattern;

SET F (*)binary pin pattern(, binary pin pattern ..);

Description:

This statement controls the functions that can be used to control
the programmed functional test for each pin. The functions are
each described as follows:

D

11-16

This sets the DEFINITION pattern for the input
and output pins. A binary 1 defines the pin as
an input and the corresponding driver amplifier
will be connected. A binary 0 defines an output
pin. In either case, the level detectors are
connected to the pin. Time Delay Generated:
0.56 millisecond.

'

s

R

F

F.AIRCHILO

SYSTEMS TECHNOLOGY

This control condition sets the MASK pattern
that defines the pins on which test results will
be measured. A binary 0 means a don't care for
that pin. A binary 1 means a care and the
comparators will be enabled for that pin. Time
Delay Generated: 0.

This control condition sets the SELECT pattern
that specifies the alternate or sta~dard forcing
logic level pair for each pin defined as an
input. A binary 0 selects the standard
reference pair El or EO. A binary 1 selects the
alternate reference pair EAl or EAO. Time Delay
Generated: 0.28 millisecond.

This control condition sets the UTILITY RELAY
pattern that specifies which relays are closed
and which relays are open. A binary 1 closes
the corresponding utility relay. Time Delay
Generated: 1.75 milliseconds.

This control condition sets the binary FUNCTION
pattern for the logical input states and the
expected output states. For an input pin, a
binary 1 specifies that the input level will be
that specified by a 1 reference (El or EA1).
For an output, a binary 1 means the output
voltage is compared to Sl reference. Time Delay
Generated: determined by Set Delay statement.

The binary pin pattern is defined by a binary value which has a
one to one correspondence between pin and pattern bit location.
Only pins that change from the previous state need be specified
by the SET statement. Even if all pins are specified and the
asterisk is omitted, only codes for the ranks (Refer to Appendix
B) in which pin data has changed are generated for maximum test
rate. In the first statement of a type executed by the program,

·all pin states not specified will be assumed to be zero.

The binary pin pattern can be programmed by either specifying
each bit of the pattern or by use of the following operators: n
= pin origin and (:) =pattern replicator. These two operators
are defined as follows:

[nJ

(m:bp)

= pin origin operator
where: n is an integer

= binary pattern replicator operator
where: mis an integer
and bp is the binary pattern

11-17

11!11111 I M
FAl~CHILD
m ? • I
SYSTEMS TECHNOLOGY

All non-addressed pins will take on the previously specified
values. The absence of a previous specification is interpreted
as a binary O. Furthermore, non-addressed ranks will not be
affected, i.e., no code will be generated and hence, at runtime,
the nonaddressed ranks will not be modified.

A sequence of binary patterns, sGparated by commas represent a
series of functional tests. To illustrate the use of these
statements, two exan:ples 8.re shown below. The first s-~~ample us2s
the origin and replicator operator~. The second example yields
the same binary pin patterns, but does not make use of the
operators.

Example (1)

SET F (3: 0) (13:1) (2:0),
(3:101) 010 (6:1),
[8] (2:1) (9: O);

Example (2):

SET F 000 111 111 111 111 100,
101 101 101 010 111 111,
101 101 111 000 000 000;

Explanation:

(3:0) means three 0 values specified, (13:1) means thirteen 1
values (2:0) means two 0 values, (3:101) means 3 sets of 101
values, 010 means set the next three pins to this pattern, etc.,
etc. The [8] means: preserve the previous pattern and start at
pin 8 with the following specifications. (Note pins are numbered
from 1.)

It should be noted that blanks are ignored within the binary pin
pattern.

The asterisk form of the instruction forces data codes to be
generated for all ranks in which pins are specified. It should
be used whenever the flow of control is altered.

Example:

1
2
3 X:

n

11-18

Instruction

SET s (30: 1) ;
SET s (29:1)
SET S*(30:1);

SET S (30 : 0) ;
GOTO X;

Compiled Ranks

1 and 2
o·

'
2
1 and 2

1 and 2

IQ p 1•
F.A!~CHILC
tt:tii SF •
SYSTEMS TECHNOLOGY

Statement 1 is included in order to get the S register in a known
state. Since pins 1 to 15 are already l's, only rank 2 is
generated for statement 2. Without the asterisk in statement 3,
only rank 2 would be regenerated for the same reason; however,
since the first 15 pins are O's at statement n, execution of
statement 3 as the result of a branch from statement n+l would be
an error. Using the asterisk form of the SET S statement
corrects the problem in this example.

The asterisk form should also be used after a subroutine call.

Example:

Instruction

SET F

SET F

CALL X;

SET F*

(60:1);

(59:1)0

(60:1);

Compiled Data

06077777
06177777
06277777
26377777

26337777

06077777
06177777
06277777
06377777

In this example, note that the second SET F generated only one
word. Normally, words are generated only for ranks with data
that changes. Hov.-ever, the fourth statement follows a subroutine
call and, at run time, subroutine X may alter the F register. To
insure that all 60 pins were returned to "one", the programmer
used the asterisk. This asterisk forced the compiler to generate
data for all ranks explicitly mentioned in the statement.

11.4.2 Set D I
General Form:

SET D binary pattern;

Time Delay Generated:

0.56 millisecond

11-19

F=AIRCHILO

SYSTEMS TECHNOLOGY

Description:

This instruction loads the D I/O pin definition register. A
binary 1 in the pattern field specifies the corresponding test
pin to be used as an input, thus connecting the pin to a voltage
driver via a reed relay. A binary 0 in the pattern field
specifies the corresponding test pin to be an output, thus
disconnecting this pin from the voltage driver. In both cases,
the test pin remains connected to the corresponding pin voltage
level detector.

11.4.3 Set F \

General Form:

SET F binary pattern (,binary pattern, ...);

Time Delay Generated:

Specified by SET DELAY statement.

Description:

This instruction loads the F register. A binary 1 in the binary
pin pattern specifies a logic 1 level and a binary O specifies a
logic O level. The bits in the binary pin pattern corresponding
to inputs, as specified by (D), are the forcing function. The
bits in the binary pin pattern corresponding to outputs, as
specified by (D), are the expected outputs. The input forcing
analog voltage levels and the expected output comparison
thresholds are determined by the contents of the programmable
reference supplies SO, Sl, EO, El, EAO, EAl, and by the S
register.

11.4.4 Set M

General Form:

SET M binary pattern;

Time Delay Generated:

0

Description:

This instruction loads the M register. A binary 1 in the binary
pin pattern enables the associated pin level detector. A binary

11-20

FAIRCHtLC

SYSTEMS TECHNOLOGY

O in the binary pin pattern disables the associated pin level
detector. These two states are referred to respectively as the
"care" and "don't care" conditions for pins on which functional
test results will be measured. The functional test results are
strobed from the level detector outputs to the comparison
register C, for "care' 1 pins. The strobe is inhibited for "don't
care' 1 pins.

11.4.5 Set S t
'

General Form:

SET S binary pin pattern;

Time Delay Generated:

0 .. 28 millisecond

Description:

This instruction loads the S register. A binary 0 in the binary
pin pattern selects the standard logic level pair El/EO as input
forcing voltages and the standard comparator reference pair 80/Sl
for the corresponding test pin. A binary 1 selects the optional
alternate logic level pair EAl/EAO, and the optional comparator
reference SAO/SAl. When switching from one comparator reference
pair to the other, the user must program a one millisecond delay
to allow switching of the relay multiplexer for the references.

11.4.6 Set R

General Form:

SET R binary pin pattern;

Time Delay Generated:

1.75 milliseconds

Description:

This instruction provides the control for opening or closing the
utility relays. There is one utility relay associated with each
tes~er pin. A binary 1 in the binary pin pattern will close the
utility relay and a binary 0 will open the relay.

11-21

l=AiRCH!L...C

SYSTEMS TECHNOLOGY

11.4.7 Force Strobe

General Form:

FORCE STROBE;

Time Delay Generated:

0

Description:

This instruction forces a single functional test strobe, thus
transferring the functional comparator output states to the C
register. The strobe is generated, even though the COMPARATORS
may be disabled (11.4.9). The detection of a failure is
processed in the same manner as is normally done during
functional testing.

Example:

FORCE STROBE;

11.4.8 Enable Latches

General Form:

[ENABLE/DISABLE] LATCHES;

Time Delay Generated:

0

Description:

The DISABLE instruction initializes the functional test control
so that the C register is cleared prior to strobing the
functional test comparators for each functional test.

If no latch statement is made, the disable latch mode is assumed.

The ENABLE instruction initializes the funcr,ional test control so
that the C register is not cleared prior to strobing the
functional test comparators. In this mode all functional
failures are retained in the C register throughout a sequence of
tests.

11-22

W:! I F 1111 LU
FAIRCHILC

SYSTEMS TECHNOLOGY

Examples:

Enable the comparison register to retain a history of
all functional failures throughout a sequence of
functional tests.

ENABLE LATCHES;

Disable the comparison
register contains only
failures.

register latches so that
~he current functional

the C
test

DISABLE LATCHES;

11.4.9 Enable Comparators \

General Form:

(ENABLE/DISABLE] COMPARATORS;

Time Delay Generated:

0

The ENABLE
logic so that
register for
is assumed if

instruction initializes the
the comparator outputs will

each functional test. The
no statement is given.

functional test control
be strobed to the C
Enable comparator state

Also the DISABLE instruction initializes the functional test
control logic so that the comparator output will not be strobed
to the C register for each functional test.

The disable comparator instruction should be issued when a series
of functional patterns are to be executed but the device under
test response is not defined.

Example:

Enable the comparators.

ENABLE COUPARATORS;

11.4.10 Enable Strobe

General Form:

ENABLE STROBE binary pattern;

11-23

F=AI Fl CH I L.D

SYSTEMS TECHNOLOGY

Time Delay Generated:

0

Description:

This instruction enables the functional test comparator strobe to
be controlled by the contents of :? (1-4) and -::he "binary Pci.ttern"
(or equivalently the 4 bit "valu.e"). The "binary pattern" for
this instruction must be a 4-bit binary number and it is defined
as follows:

where the subscripts refer to the tester pin number and b is
either a 0 or a 1.

After executing the ENABLE STROBE instruction, all subsequent
functional test results will be strobed to the C register
according to the following logical condition (' . 1 Ai\D, '+' OR):

STROBE = b1 . F(l) + b2 . F(2) + b3 . F(3) + b4 . F(4)

Example:

Enable the strobe to be controlled by F(l).

ENABLE STROBE 1000;

Note: This statement automatically DISABLES the normal com­
parator strobe, i.e. , DI SABLE C) HPARATORS

I

11.5 AUXILlARY CLOCK STATEMENTS \

This section describes the statements which control the auxiliary
clock functions of the Sentry 200. The clock functions allow a
string of up to 255 clock pulses to be generated for each
functional test. In addition, these clocks can be selectively
enabled or disabled for each functional tes~.

11.5.1 Set Clock

General Form:

SET CLOCK expression;

11-24

Time Delay Generated:

0

Description:

emI ER
i=AIRCHILO
za I IE
SYSTEMS TECHNOLOGY

The value of the expression is loaded into the clock burst count
register of the tester. The count specifies the number of clock
signals which the t8ste~ will outp~t for each functional test.
The time de lay bet\veen clocks is eq ua-1 to the current cont en ts of
the time delay register. The maximum clock count is 255.

Example:

SET CLOCK 2;

The resultant timing is explained in the following diagram:

td

Execute Clock
1

td

Clock
2

td

Strobe
Comparators

td = contents of time delay register +0.7 usec.

11.5.2 Enable Clock

General Form:

ENABLE CLOCK binary pattern;

Time Delay Generated:

0

Description:

This instruction enables clock signals to be connected to tester
pins 1, 2, 3, 4, according to the "binary pattern" (or
equivalently the 4 bit "value''). The binary pattern for this
instruction must be a 4 bit binary number and it is defined as
fallows.

where the subscripts refer to the tester pin number and b is
either a 0 or a 1.

11-25

'%!! ·-FAl~CHILC
~uu- I I I
SYSTEMS TECHNOLOGY

Four clock sync lines for the first four pins are brought to the
load board. These are used to drive an external clock generator.
The clock generator may be as simple as an IC gate mounted on the
load board or may be a complex 4-phase clock. The clock may be
connected to the device-under-test (DUT) via a utility relay pin
on the load board or with a separate relay to the DUT directly.
If a separate relay is used, it may be driven by the clock relay
(CRLY) signals at the load board. WheneYer the PMU is addressed
to one of the clock pins, the clock relay will automatically
open.

Enabled clock signal pins are disconnected from their
corresponding functional test circuits. In addition to
connecting the clock lines, this instruct ion enables the sync
signals. Sync signals are programmed by the logical 11 and 11

condition of the enabled clock pins. The contents of F(l-4) is
as follows:

SYNC1 = bi F(1)

SYNC2 = b2 F(2)

SYNC3 = b3 F(3)

SYNC4 = b4 F(4)

The number of sync pulses and their periods are specified by:

Example:

SET CLOCK number; (clock burst counter)

Period = 0.7 microseconds + td, where td is the time
delay specified by the SET DELAY instruction.

Enable clock signals to pins 1 and 4.

ENABLE CLOCK 1001;

11.5.3 Force Clock

General Form:

FORCE CLOCK;

Time Delay Generated:

- as specified by the SET DELAY instruction.

11-26

Description:

l=AIF:lCH!LO
al •1 I'll
SYSTEMS TECHNOLOGY

This instruction forces a single clock pulse to occur at each of
the 4 SYNC lines. The width of the SYNC pulse is equal to the
value specified by the SET DELAY instruction.

Example:

FORCE Cl/)CK;

11.5.4 Programming Cautions

Executable code for DMA modes are directly generated by the
single-pass compiler and several points should be kept in mind
while programming a FACTOR test plan.

The compiler sees the event in the order of statements, not in
the order of execution. Therefore, whenever a branch, a
subroutine call, or a conditional statement is involved in a
program, care must be taken in order to maintain the proper long
register data (S, M, R, etc.) and the proper F data.

The compiler automatically generates F data for all ranks in
which the pins are specified at the first SET F even if the SET
F* form is not programmed.

The compiler keeps the previous state of all long register ranks*
and compares them with the program.med pattern. Long register
data are generated only for ranks which have been changed.

The decision to change long register data is strictly done in the
statement order the compiler sees. Here again a branch, a
subroutine call or a conditional statement affects the status of
data and care must be taken.

Example:

IF A NEQ B, THEN SET M --­
ELSE SET 11 ----

The compiler sees the SET M in the THEN clause first and
processes the rank change. And it sees the,SET M in the ELSE
clause and processes the change against the previous state.
Therefore, the decision whether the ~;I data in the ELSE clause has
changed or not is dependent on the M data in the THEN clause.

When the SET register* form is programn1ed, the compiler generates
data for all ranks in which the pins are specified, even if the
ranks are not changed.

11-27

SET F* (60:0);
SET F* [16] 1;

FAl~CH!L.O

SYSTEMS TECHNOLOGY

generates rank 1, 2, 3, 4
generates rank 2 only.

*A long register rank data memory is maintained in the compiler
for registers programmed by the following statements:

SET FI Dn,11 s IR

11.6 PREClSlON MEASURING UNIT STATEMENTS

This section describes the statements that control the operation
of the Sentry 200 Test System precision measuring unit. This
unit is used for measuring device under test DC parameters and
for system self-check. DC test macro statements are provided to
reduce programming and increase test throughput (Refer to
paragraph 11.9).

11.6.1 Set PMU Ranges

General Form:

SET PMU [SENSE/FORCEV/FORCEI] (,Rl"IJGO/ ,RNG1/ ,RNG2/
, Rl\fG3 / , AUTO) ;

Time Delay Generated:

Set PMU SENSE - 0.56 millisecond with a mode change or
voltage range change or 4 milliseconds (+ 1
millisecond) with a current range change. -

Set PMU FORCE - The value programmed in the SET DELAY,
DC statement or the appropriate value shown for SET
PMU SENSE, whichever is greater.·

Description:

This instruction initializes the precision ~easuring unit (P~ill).

The force and sense functions are complimentary with respect to
voltage and current; i.e., when the unit is se~ to force voltage
(or current) it is auTomatically initialized to sense current (or
voltage). When forcing or sensing voltage, the legal ranges are
1, 2 and 3. When forcing or sensing current, the legal ranges
are 0, 1, 2 or 3.

11-28

FAIRCHILD

SYSTEMS TECHNOLOGY

When forcing the PMU and AUTO is specified, the hardware range
will be selected to give best resolution. When measuring and
AUTO is requested, the initial measurement is made in the highest
range (current/voltage range 3) and then the range is decreased
if necessary to provide the best measurement resolution.

Example:

SET PMU SENSE, RNG2;
SET PMU FORCE I, Ri'TG3;

In this example the statements initialize the PMU to
force current in range 3 and sense voltage in range 2.

11.6.2 Force Voltage/Current \

General Form:

FORCE CURRENT expression (, RNGO/, RJ.'{Gl/, RNG2/, RNG3);

FORCE VOLTAGE expression (,HNG1/,RNG2/,RNG3);

Time Delay Generated:

Same as SET PHU FORCE .

Description:

This instruction is used to force a programmed voltage or current
via the precision measurement unit. Upon execution of this
statement, the output of the precision measurement unit will
begin to slew to the desired value. If range is not specified;
the highest range will automatically be set. If the expression
contains only a constant, this statement will be executed in D~A
mode.

Example:

Force the output of the precision measurement unit to
-1 microamp.

FORCE CURRENT -lE-6 , RNGl;

11-29

F=AiRCHILC

SYSTEMS TECHNOLOGY

11.6.3 Force PMU \

General Form:

FORCE PMU expression;

Time Delay Generated:

Same as SET PMU FO:i-tCE

Description:

The expression in this statement is scaled according to the mode,
V or I, and range as preset by the SET PMU SENSE/FORCE ...
statement (see paragraph 11.6.1). If AUTO ranging has been
preset or if the expression contains a variable, then the range
which gives best resolution will be automatically determined (at
run time) prior to loading the PPS register. This instruction is
especially useful when the P~m is to be forced to several values
in the saME range, but it has a slightly longer execution time
than FORCE VOLTAGE/CURRENT.

Example:

Force the output of the PMU to -1 microamps:
SET· PMU FORCE I, AUTO;
A=5E-6; B=5;
FORCE PMU -A/B;

11.6.4 Connect PMU !
I

General Form:

CPMU PIN expression;

Time Delay Generated;

0.56 millisecond

Description:

This statement connects the precision measurement unit to the pin
nrnnber specified by the expression (or equivalent value). When
the expression is a constant, the PMU will be connected in DMA
mode.

11-30

F.A.i~CHILO
.~-

SYSTEMS TECHNOLOGY

Internal nodes are specified by numbers in the range 128 through
145. The node numbers and descriptions are summarized in
Appendix H.

NOTE

The PMD must be programmed to force 0 current in
range 2 before the PMU is connected to an internal
node.

11-6.5 Measure Pin

General Form:

MEASURE PIN;

Time Delay Generated:

.56 millisecond

Description:

MEASURE PIN allows fast go/no-go DC parameter tests. It is
·similar to the MEASURE VALUE statement (paragraph 11.6.6) except
that go/no go comparisons are made against the SET DCT limit. No
floating point conversion is made, nor is the result stored in
VALTJE.

Since the comparison is made by the hardware, SET DCT must be
executed after the PMU sense and force conditions are specified,
so that the DCT limit can be scaled properly.

No autoranging will occur when this instruction is used.

If any datalogging conditions are specified and met (Datalog DCT
or MEASURE), the resultant measurement \Vill be determined by
successive approximation.

Example:

SET PMU SENSE, P..J.'IGl;
CPMU PIN 5;
FORCE VOLTAGE 4. 5, Rl.'IG2;
SET DCT GT 6.0E-6;
MEASURE PIN;

11-31

F=AIRCHIL.C

SYSTEMS TECHNOLOGY

11.6.6 Measure Value/Node

General Form:

~IBASURE [VALUE/NODE number] (,LOG);

Description:

This statement initiates a measurement within the precision
measurement unit (PMU).

When the VALUE option is specified, the measurement is made
according to the existing state of the PMU. The measured value
is converted and scaled to floating-point, using a successive
approximation algorithm, and stored in the system global
variable, VALUE. If d.c. trips are enabled (see paragraph
11.6.9), VALUE is tested to determine if it falls within the pass
window (defined by the previous ENABLE DCT0/1 statements,
regardless of the current DCT register contents). If it passes,
the "D.C. Pass' indicator i~ set. If it fails, the "D.C. Fail"
indicator is set. Conditions required for datalogging the
resulting value are described in the note at the end of this
section.

If AUTO ranging has been specified (see paragraph 11.6.1), the
system will automatically select the measuring range which gives
best resolution. Autoranging begins with the highest range and
ranges downward until best resolution is obtained or until the
lowest range is reached.

Use of the NODE option provides a means for measuring a parameter
at a system internal monitor node. The node numt;ers and their
descriptions are lis~ed in Appendix H. Ranging and measuring
conditions are automatically controlled.

For internal nodes, the measured value, logging, and pass/fail
conditions are the same as previously described. At the
conclusion of an internal node measurement cycle, the p:,,m is
automatically disconnected and initialized to force 0 current in
Range 1.

Values measured at internal ~odes 202B to 205B for the E
reference supplies are divided by 8. That is, when a reference
supply (El, EO, etc) is programmed to V volts, the measured value
will be V/8 volt::; aince the buffer amplifier at each pin has a
gain of eight.

11-32

Example:

F=Al~CHIL-0

SYSTEMS TECHNOL.OGY

Measure and log the current. from VFl:
MEASUP..E NODE 217B, LOG;

NOTE

Datalogging options 8.vailable via the TOPSY
monitor are:

1) DATALOG ~ffiASUP..E: All ~IBASURE VALUE statements are logged.
2) DATALOG LOG: All .MEASURE VALUE, LOG statements are logged.
3) DATALOG DCT: All measurements which fail to meet the limits

specified by the ENABLE DCT statements are logged.
4) Any combination of the above.

11.6.7 Disconnect PMU

General Form:

XPMU PIN;

Time Delay Generated:

0.56 millisecond

Description:

This statement disconnects the PHU from its present pin
connection and resets it to Pin O.

11.6.8 Set DC Parameter Limit

General Form:

SET DCT [LT/GT] expression (,RNGO/ ,fu'{Gl/ ,R.'iG2/ ,RNG3)

Time Delay Generated:

56 microseconds

Description:

The SET DCT forms a pass or fail threshold.

When a MEASURE PIN does not pass the level specified by the DCT
function, a DC fail is indicated and program control is
transferred to the instruction specified by the "ON DCTi:

11-33

F=Al~CHILO
mu 1 swnm n11
SYSTEMS TECHNOLOGY

instruction. If an "ON DCT" has not been previously executed,
then the next instruction following the ~IEASURE is executed. A
failure will cause the PARAMETER FAIL indicator to go 'ON' at the
next pause or at end-of-test. The range specified in this
instruction will override that specified in the SET PMU SENSE
statement.

Example:

Enable DC trip limits which will pass all measured
values between -2 milliamps and +2 microamp~.

SET DCT GT 2E-6, RNGl;
MEASURE PIN;
SET DCT LT -2E-3, RNGl;
MEASURE PIN;

This statement sequence will be executed at DUA speed ..

11.6.9 Enable DC Parameter limits

General Forms:

[ENABLE/DISABLE] [DCTO/DCT1] [LT/GT] expression;

Time Delay Generated:

0

Description:

Execution of ENABLE DCTO/DCTl forms a pass or fail threshold for
level DCTO and/or DCTl. Either one or both DCT thresholds may be
specified.

Using both DCT functions specifies a !!pass window 11 for subsequent
DC measurements (see MEASURE VALl:"E, Paragraph 11.6.6). The pass
region may be specified by the operators LT/GT and by the value
of the expression in the ENABLE statement.

When a measurement caused by the statement ~.IEASURE VALUE does not
fall within the 11 pass windowrr specified by the DCT function, a DC
fail is indicated and program control is transferred to the
statement specified by the "ON DCTrr statement (paragraph 11.1.3).
If an "ON DCT" has not been executed, then the statement
following the MEASURE will be executed. At a pause or end-of­
test, if a failure has occurred, the parameter fail light will be
lighted.

11-34

FAJ~CHIL-C

SYSTEMS TECHNOLOGY

The DISABLE statement disables the comparison limits and inhibits
the DC FAIL regardless of the measured value.

NOTE

This statement provides a measurement limit comparison
for the statement MEASURE VALUE only.

Example: Enable DC trip limits which will pass all measured
values in the range from -2 milliamperes to +2 micro­
amperes.

ENABLE DCTl GT -2E-6;
ENABLE DCTO LT -2E-3;

11.6.10 Enable Relay - Connect PMU to Functional Circuitry I
General Form:

[ENABLE/DISABLE] RELAY;

Time Delay Generated:

0.56 millisecond

Description:

The DISABLE instruction initializes the pin address control logic
such that the voltage conditioner for pin (n) will be
automatically disconnected when the precision measurement unit is
connected to pin (n). If no relay statement is made, the disable
mode is assumed.

The ENABLE instruction initializes the pin address control logic
such that the voltage conditioner for pin (n) will remain
connected, even though the precision measurement unit is
connected to pin (n). After connecting the precision unit to pin
(n), the voltage conditioner can be disconnected by executing the
instruction: Disable Relay; i.e., allmving a mak.e-before-breal\'.
sequence to maintain bias on a pin.

Example: Connect the precision measurement unit to pin (10)
with the voltage conditioner connected and then
disconnect the voltage conditioner.

ENABLE RELAY;
CPMU PIN 10;
DISABLE RELAY;

11-35

SYSTEMS TECHNOLOGY

11.6.11 Measure Variable \

General Form:

~.IEASURE VARIABLE variable (,LOG);

Time Delay Generated:

0

Description:

The value of the variable, in floating point format, is stored in
the system global variable: VALUE. Variable may be a variable
identifier or an array element.

If DC trips are enabled (see Section 11.6.9), VALUE is tested to
determine if it falls within the pass window. If it passes, the
l!DC PASS" indicator is set. If it fails, the "DC FAILn indicator
is set. The value of the variable will be logged according t~
the .Monitor logging command conditions. Tester pin nun1ber 0 will
be logged for the statement.

Datalogging options specified by the TOPSY Monitor are:

1. Datalog MEASURE: All 'MEASURE VARIABLE' statements are
logged.

2. Datalog LOG:
logged, i.e.

. 1 :1>.IEASURE VARIABLE, LOG' statements are.
only those having the 'LOG' modifier.

3. Datalog DCT: All 'MEASURE VARIABLE' statements that fail
to pass the limits specified by 'ENABLE DCT' statements are
logged.

Example:

Measure and log the value of variable XVAL,

~IBASURE VARI ABLE XVAL, LOG;

11.7 MISCELLANEOUS CONTROL STATEMENTS

This section describes statements that control the timing as well
as initialization of the Sentry 200 Test System.

11-36

F=AIRCHILD

SYSTEMS TECHNOLOGY

11.7.1 Force Reset

General Form:

FORCE RESET;

Time Delay Generated:

Programmed DC delay or 5.37 milliseconds, whichever
is greater.

Description:

This instruction forces the test system into the reset state,
thus clearing all programmable test conditions.

Example:

Clear the test system.

FORCE RESET;

11.7.2 Force Delay

General Form:

FORCE DELAY;

Time Delay Generated:
I

As specified by SET DELAY, DC statement.

Description:

This instruction forces a time delay to occur, prior to executing
the next delay dependent instruction.

Example:

Provide a delay after program,'11ing the VFl unit to
provide settling time for the change of programmed
voltage prior to executing a MEASURE VALUE.

FORCE VF1 10. 0;
FORCE DELAY;
illEASURE VALUE;

11-37

F=Al~CHIL...O

SYSTEMS TECHNOLOGY

11.7.3 Force VVait

General Form:

FORCE WAIT;

Time Delay Generated:

The time required for the tester to become not-busy.

Description:

This instruction forces the tester to wait until the tester
status is not-busy before processing the next instruction.

Note:

Example:

The tester goes busy after executing
instructions with a non-zero time delay.

those

Provide a delay until the tester is not busy after
forcing a power supply voltage.

FORCE VFl, 5.0 RNG2;
FORCE WAIT;

11.7.4 Clear Fail

General Form:

CLEAR FAIL [FCT/DCT/TRIP]

Time Delay Generated:

0 delay

Description:

This instruction clears the system softwa~e fail flags. When a
fail is normal e.g., for device pre-concli tioning, this
instruction may be used to inhibit this fail from being displayed
at end of test. More than one option may be specified, separated
by commas.

11-38

F=AIRCHIL.O

SYSTEMS TECHNOLOGY

11.7.5 Enable Access I
General Form:

ENABLE ACCESS;

Time Delay Generated:

30 - 75 millisec (one disc access)

Description:

This instruction forces a disc access to reload the core memory
buffer. Normally TOPSY dynamically allocates the amount of data
in the core memory buffer. With a 16K core memory, the maximum
buffer size is about 4000 words. A disc access and reload of
this buff er takes place at the end of the core buff er and takes
about 70 milliseconds. When testing dynamic MOS devices with.
large programs, it may be desirable to control when the core
buffer is refreshed so some initializing data for the device
under test can follow the disc access period. This may be done
with the Enable Access instruction.

11.7.6 Insert j

General Form:

INSERT string file name;

Description:

This statement causes the FACTOR statements of the referenced
string file name to be compiled, with the resultant object code
inserted into working storage, along with the current FACTOR
program compilation.

NOTE

The string file name must be a file under the current
job name. In addition, the string file must not con­
tain an END statement as a block end. The inclusion
of one will cause the compilation to terminate incor­
rectly at that point.

11-39

-
i=AIRCHH ... D
mn•rmw n
SYSTEMS TECHNOLOGY

11.8 EXTERNAL INTERFACE REGISTER READ/WRITE

General Form:

WRITE (EIR) expression;
READ (EIR) variable;

Time Delay Generated:

0 delay

Description:

This fifteen bit register is used to display test results and
control external device handlers. Bits 0-9 are available to the
programmer to use in any form, such as to define various pass
categories. Bits 10-14 are defined by system software. All bits
are read/write. If the user wishes to use some bits to read the
status of external equipment, then a simple hardware modification
can be made to the register by disconnecting the bit storage
device from the register. Consult your field service
representative if this is desired.

Example:

Set bit 7 of the EIR without modifying other bits -

READ (EIR) X;
WRITE (EIR) XOR lOOB;

11.9 FACTOR TEST MACROS

11.9.1 Introduction j

Up to this point, the set of FACTOR language statements have been
constructed to provide a one for one correspondence between
statement and tester function. There are standard measurements
that are common to most devices that alv.;ays require a combination
of several FACTOR statements. It then becomes advantageous to
provide a macro statement that combines these functions in order
to perform a measu1·ement. The use of macros to perform
measurements also induces other beneficial side effects.

The most significant advantage is that its use reduces the burden
of device test progra.mming and in turn reduces debug time. This
reduction is achieved by using assured good device programming
techniques. These techniques include insuring that P'.'W range or

11-40

FAIRCHILC

SYSTEMS TECHNOLOGY

mode (current or voltage) changes are not made while the P~1ID is
connected to the device to prevent incorrect readings or possible
harmful transients. These techniques also guarantee that tester
relays are switched cold thereby prolonging the life and
reliability of the test system.

Another advantage is the provision for pre charging the PHU. For
some devices whose pins feedback ta internal gQtes, it may be
necessary to precharge the PMU to a voltage that will not disturb
the functional state of the device when the PMU connection is
made. eg. The 9328 TTL dual 8 bit shift register with
unbuffered outputs required precharging the PMU to some voltage
in the logic area (Vee).

Because macro's are combinations of single functions, overhead
time is reduced which results in shorter test time and higher
device thruput along with a reduction in the total test program
size.

11.9.2 Macro Factor Statements \

General Form:

SET TEST number;

MEASURE PIN number (, LOG) ;

11.9.3 Macro Definition and Description !
I
I

The statement, SET TEST number, together with an immediately
proceeding setup procedure provides a macro definition for
performing a particular type of DC measurement. The DC
measurement sequence is then initiated with the statement
'MEASURE PIN number'. Depending on the test type, the setup
procedure may contain the PMU connected to a precharge pin, open,
or short circuit. The PHU is forced to the desired current or
voltage value in the desired sense range.

11-41

FAIRCHILO

SYSTEMS TECHNOLOGY

An example setup for VOH test is as follows:

ENABLE RELAY;
CPM.U PIN 16;
FORCE CURRENT -360E-6,
SET PMU SENSE , RNG2 ;
SET TEST l;
ENABLE DCTl GT 3.5:
E:'IABLE DCTO LT 2. 7;
MEASURE PIN 12;

RE~! PIN 16 = Vee for precharge
RNG2;

The execution of the SET TEST 1 statement causes the connected
test pin, pin 16, and the forcing mode and value, current -360E-
6, R.'1\lG2, to be saved. In addition, when current is being forced,
the PMU is reset to force zero current on the same range whenever
relay switching occurs. The statement MEASURE PIN 12 will cause
the following measurement sequence to be performed.

CPMU PIN 12
DISABLE RELAY*
FORCE CURRENT -360~6, RNG2

MEASURE VALUE

FORCE CURRENT 0, RNG2
ENABLE RELAY*
.CPMU PIN 16

NOTE

The PMU is switched from
the prechange pin to the
pin under test.

The measurement is made.

The PMU is reconnected to
the rest pin while the PMU
is forcing 0 current.

The FACTOR statement MEASURE PIN is different
from MEASURE PIN number. :MEASURE PIN is re­
tained for performing a GO/NO-GO comparison
on the currently connected tester pin. The
MEASURE VALUE performed by the macro does
not update the variable VALun.

* The Enable Relay-Connect-disable relay sequence is used to
allow the local pin voltage driver to clamp the current forcing
PMU when initially connected to the pin. That is, a make-before­
break sequence between the PMU relay and D relay occurs. To make
use of this feature, the pins must be previously defined as input
by the SET D instruction.

11-42

F=AIRCH!LC

SYSTEMS TECHNOLOGY

11.9.4 Available Macro DC Measurements

1.

SET TEST 1
SET TEST 2
SET TEST 3
SET TEST 4
SET TEST 5
SET TEST 6
SET 'fEST 7

SET TEST 9

SET TEST 10

SET TEST 1; VOH

Set-up Procedure:

ENABLE RELAY

= VOH
= VOL
= IIH
= ICEX
= IIL
= VF3
= ISC

= IOL

= VBD

(IR)

(IFX)

Voltage output high
Voltage output low
Input leakage
Output leakage
Input low current
Input diode clamp
Short ckt. current with
Outputs high
Output current with Outputs
low
Voltage breakdown

CPMU PIN r RE}.1 connect to rest pin - precharge .
FORCE CURRENT i , R~Gx
SET PMU SENSE, RJ.'{Gy
ENABLE DCTO LT lower limit
ENABLE DCTl GT upper limit
SET TEST 1 REr.I select test macro

l.VIEASURE PIN t REM executes the test measurement
macro on pint.

Macro Measurement Sequence:

CPMU PIN t
DISABLE RELAY
FORCE CURRENT i, RNGx
MEASURE VALUE
FORCE CURRENT 0, RNGx
ENABLE RELAY
CP.MU PIN r

REM perform measurement

RE~l reconnect the rest pin

2. SET TEST 2; VOL

Set-up Procedure:

ENABLE RELAY
XPMU PIN
FORCE CURRENT i, RNGx
SET PMU SENSE, RNGy

11-43

FAIRCHIL.C

SYSTEMS TECHNOLOGY

ENABLE DCTl GT limit
ENABLE DCTO LT limit
SET TEST 2

MEASURE PIN t

3. SET TEST 3; IIH (IR)

Set-up Procedure:

DISABLE RELAY
XPMU PIN
FORCE VOLTAGE v, Rl~Gx
SET PMU SENSE, RNGy
ENABLE DCTO LT limit
ENABLE DCTl GT limit
SET TEST 3

MEASURE PIN t

RE~I the same measurement sequence
as SET TEST 1 is performed.

REM execute test measurement macro. ·

Macro Measurement Sequence:

CPMU PIN t
FORCE DELAY
MEASURE VALUE

4. SET TEST 4; ICEX

RE.M perform measurement.

The setup procedure and measurement sequence is identical to
SET TEST 3; IIH (IR)

5. SET TEST 5; IIL (IFX)

Set-up Procedure

DISABLE RELAY
XPMU PIN
FORCE VOLTAGE v, RNGx
SET Prill SENSE, Rl'rGy
ENABLE DCTO LT limit
ENABLE DCTl GT limit
SET Sl voh 1 Tu.~Gx

SET TEST 5

MEASURE PIN t

11-44

REM Set Ref Sl slightly > device
VOH on same range as PMU FORCE

REM execute test measurement
macro.

F=AIF=!CHILO

SYSTEMS TECHNOLOGY

Macro Measurement Sequence:

v, RNGx

voh, RN"Gx

CP.MU PIN t
FORCE VOLTAGE
MEASURE VALUE
FORCE VOLTAGE
XPMU PIN REM if XPMU PIN was given in

the set-up procedure, other­
wise the last pin number.

6. SET TEXT 6; VF3

Set-up Procedure

ENABLE RELAY
XP11U PIN
FORCE CURRENT i, RNGx
SET PMU SENSE, Rl.\fGy
ENABLE DCTO LT limit
ENABLE DCTl GT limit
SET TEST 6

MEASURE PIN t RE~I execute test macro.

Macro Measurement Sequence:

CP:Will PIN t
DISABLE RELAY
FORCE CURRENT i
MEASURE VALUE
FORCE CURRENT 0
ENABLE RELAY

7. SET TEST 7; ISC

Set-up Procedure:

DISABLE RELAY
XPMU PIN
FORCE VOLTAGE v, RNGx
SET PMU SENSE, RNGy
ENABLE DCTO LT limit
ENABLE DCTl GT limit
SET S 1 voh, Rl.\fGx
SET TEST 7

MEASURE PIN t

R:.~Gx

RNGx

REM Set Ref. Sl slightly > device
VOH on same range as Pr.JU force

RE~r execute test macro.

11-45

F=Al~CHILC

SYSTEMS TECHNOLOGY

Macro Measurement Sequence:

CP}.IU PIN t
FORCE VOLTAGE v, RNGx
~1EASLJRE VALUE
FORCE VOLTAGE voh, RNGx
XP~.IU PIN REM if XPi,IU PIN \Vas given in

the setup procedure, otherwise
the last connected pin number.

8. SET TEST 8; Not Available

9. SET TEST 9; IOL

Se~-up Procedure

DISABLE RELAY
XPMU PIN"
FORCE VOLTAGE v , RNGx
SET PMU SENSE, RNGy
ENABLE DCTO LT limit
ENABLE DCTl GT limit
SET SO vol, RNGx
SET TEST 9

REM Set Ref SO slightly < device
VOL on same range as PMU force.

MEASURE PIN t

Macro :.reasurement Sequence:

CP:·.IU PIN t
FORCE VOLTAGE v, RNGx
~.IEASDRE VALUE
FORCE VOLTAGE vo 1 , RNGx
XVilU PIN

10. SET TEST 10; VBD

REM execute test macro.

The setup procedure and measurement se~~ence is identical to
SET TEST 6, VF3.

11--'16

FACTOH SETUP
STA'l'L:llJ::N'I' TEST PIWCEDUHE

ENABLE RELAY

SET TFST 1 VOil CPMU PIN r

:IL!\:itll\E PIN t FOHCE ClJilHENT

1---
SET PMU SENSE, -
SET TEST 1

SET DC'l' Limit

-

--
XPillU PIN

SlcT TE~>'l' 2 VOL E.~JABLE RELAY

HEASUHE 1' IN t FOHCE Cl!RRENT

I----
SET P~llJ tmNSE,

SET TEST q

"'
SET DCT Li.mi t

t--
__ ,. __ '

1---------------

--1

f---

XPMU PIN

SFT TEST 3 IIf! < rn) DISABLE RELAY

ME1\SUllE PW t FORCE VOL'l'AGE

SET Pn!U SENSE,

SET TEST 3

SET DCT Limit

UEASUHEHENT
SEQUENCE

CPMV PIN t

i, HNGx DIS,\BLE RELAY

H>JGy 1''0HCE ClJllHENT i'

MEASURE PIN

FOHCE cunmmT 0,

ENABLE RELAY

CP~!U PIN r

CP11U PIN t

i.' nNGx DISAllLl: RELAY

RNGy FOHCE CUHHENT i'

~IEASUHE PIN

FOHCE ClJHRENT 0,

m{Al3LE HELAY

CPJ\!U PIN r

CPMU PIN t

v, lUIGx FOHCE DELAY

RNGy l:!EASURE PIN

HNGx

HNGx

HNGx

HNGx

-

;"i'l'NfE OF P~IU J\FTER
~IEASURE PIN t

FOHCI~/G PIN

-
-·~-

0 C\JflEEt\T Set up

-

-

-·--

0 CUHHJ.:NT Set up
··-··

-

·-

-

v VOLTAGE PIN t
~··--

pin

p1n

Ul . 11 -< •

~)
~ -
ui D
-t m
n
I z

0
I

5 r
~ a

F ACTOH SE'!'Ul'
STATE~IENT TEST PROCEDUHE

SFT 1--·· '1'1-~ST ·1 ICEX XP!llU PIN

Jll·:ASUllE PIN t DISABLE HELAY
--·

FORCE VOLTAGE v, RNGx

SET PMU SENSE, RNGy

SET TEST 4

SET DCT Limit

SlcT TJ:ST :, l IL(IFX) XP111U PIN

m:ASUllE l' IN t DISABLE HELAY

FOHCE VOLTAGE V_i_ HNGx

SE'l' PUlJ SENSE, HNGv
SET Sl \'Oh , HNGx

t-----
SET TEST 5

SE'I1 DCT Limit
1--

f--· ---·------------·-··---·-·-- -·- ·----

t-------------·-·---··
XPHU PIN

·------·--
Sl:T TF;;'L' (j VF3 I\Ni\BLE RELAY r---------------------
jlJ.:.<\mlHI: I' IN t FOHCE CUHHENT i ' RNGx

}---- - -
W·:'i' l'MU t:>ENSJ·;, HNGy

SET TEST ()

SET !JCT Limi.t

-

m:ASUin:
SEQUENCE

earn PIN t

FORCE DELAY

MEASUHE PIN

CPMU PIN t

FOHCE VOLTAGE v HNGx

MEASURE PIN

FOHCE VOLTAGE voh,HNGx
XPMU PIN

CP111U PIN t

DIS1\BLE lll':LJ\ Y

FOHCE CUHHEN'l' i' HNGx

MEASUHE PIN

FOHCE CUllH.ENT o, HNGx

ENABLE HELJ\Y

:;TATJ; OF P~!U A FTE!l
1.11·:/\su1n: PlN L

FOHC'J 1-fG PIN

-

v VOL.Ti\ GE PIN t

-

-·

St)L up pin

VOil '/OLTAGL

-

.

-

0 CU Im ENT PIN t

-

Ul
-<
~ m
~
Ul

-I m
0
I
z
0 r
0
Gl
<

TI
)> -D
0
I
r a

FACTOH SETUP
STATEMENT TEST PROCEDt:RE

t--·

SJ:T TEST 7 me XP~.!U PIN

\l 1':!\,'1\ 11\L l' 1 i'i I Dl!->i\111.E HFLAY -------
FOHCE VOL'l'AGE v, RNGx

SE'l' PMlJ Sl':NSli. HNGy

!------------------------ SET S L.Y . .\2!.L._lQl G x .

SJ-:'1' 'l'EST 7 -
SET DCT Lirnit

--
t--·

~>J<T TLS'l' D IOL XJl~.lU PIN
t---

~IL1\SlJHI·, PIN L DISABLE HEL/\Y

FOHCE VOLTAGE v, HNGx

SET PMlJ SENSE, HNGy
--1

SET so vol, rtNGx
SET TEST 9

SET DC'l' Lirni t
1----- -- .

-

:\Pti!LT PIN

Sl<T TEST 10 VBD ENABLE Rl:LAY

l.lb\SUIU: PJN ' FOHCE ClJHIWNT .i.' nNGx l

SET PUU SENSE, RNGy

SET TEST 10

SE'!' OCT Limit

MEASUREMENT
SEQUENCE

CPl-llJ PlN t

FOHCJ< VOL'l'i\(iJ.: \'
'

HNtix

m:ASUHE PIN

FO!lCE VOLTAGE uvh, HNGx

Xl'Mll PIN

CP!llU PIN t

FOHCE VOLTACiE v, HNGx

11EASIJRE PIN

FOHCE VOLTAGE vol,RNGx

XP~IU PIN -

CPMU PIN t

lJlSABU: JU~Li\Y

FOHCE CURHENT i' RNGx

MEASUIU.: PIN

FORCE CUHRENT o, RNGx

ENABLE HELAY

S';',\'l'E OF Pf.Ill AF'l'Ul
~!EASUHE PIN l

FOHCI!l(i PIN

----·-

vul1 \l(ll .'1'1\(il: S(•L ll jl l' 1 N

--

vol \'UL'l';\CiE Set ll[J PIN
--·-

-

-

0 CUHitENT PIN t -

Ul
-<
Ul
-;
m
~
(J)

-;

~
I z
0
5
(;)
-<

TI
}l -
D
0
I
r a

F=Al~CHILC

SYSTEMS TECHNOl..OGY

Appendix A I
I

Character Coding (TRASCll) \
I

029 029
Special Special

Code Char. Character Code Char. Character

00 SPACE BLANK 40 @ 4-8
01 I 11-2-8 41 A 12-1 .
02 " 7-8 42 B 12-2
03 J.J. 3-8 43 c 12-3 Tr

04 $ 11-3-8 44 D 12-4
05 Of 0-4-8 45 E 12-5 /0

06 & 12 46 F .12-6
07 I 5-8 47 G 12-7

10 (12-5-8 . 50 H 12-8
11) 11-5-8 51 I 12-9
12 * 11-4-8 52 J 11-1
13 + 12-6-8 53 K 11-2
14 I 0-3~8 54 L 11-3
15 - ·- 11 55 M 11-·4
16 . 12-3-8 56 N 11-5
17 I 01 57 0 11-6

20 0 0 60 p 11-7
21 1 1 61 Q 11-8
22 2 2 62 R 11-9
23 3 3 63 s 0-2
24 4 4 64 T 0-3
25 5 5 65 u 0-4
26 6 6 66 v 0-5
27 7 7 67 w 0-6

30 8 8 70 x 0-7
31 9 9 71 v 0-8 .J.

32 . 0-8-2 72 z 0-9
33

' 11-6-8 73 [12-4-8 <
34 < 12-0 74 " 11-7-8 I

35 = 6-8 75] 0-6-8 >
36 > 11-0 76 t 12-7-8 I
37 ? 0-7-8 77 + 0-5-8 -

A-1

FAIJ=;lCHaLo
Z'!IR JI I I
SYSTEMS TECHNOLOGY

Appendix 8

Reading And Writing Of Long And Short Registers l

8.1 INTRODUCTiON j

The Sentry 200 Test System READ and WRITE capabilities reference
the system's long and short registers. (The long and short
registers consist of one bus each). The following is a
description of the operation of the long and short registers.

8.1.1 Long Registers j

The long registers are interfaced to the memory interface unit,
called the Instruction Register, which sends information to and
from the test station. It has a bus, which is used primarily for
transmitting functional test data and PMU control data to the
tes~ station. The S, F, D, M, C and R registers are the only
registers programmable with functional test data. There are
other registers that are essentially like the short registers,
but since the hardware resides in the test station, they are
interfaced to the long register data bus and use rank address
bits for identification.

B.1.2 Short Registers!
I

The short register is interfaced to the computer accumulator.
The register is used for controlling the digital to analog
converter subsystems and for communicating the tester status,
mode and interrupt information. Therefore, the El, EO, EA.1, EAO,
etc., registers, that contain data for reference supplies are
interfaced to the short register data bus.

8.2 ADDRESSING SHORT REGISTERS i
I

Each register can be addressed by the three computer Select
Peripheral Unit (SPU) comnands: READ, WRITE and SPECIAL. They
are each discussed as follows:

B-1

READ

WRITE

= I 1
F=AIACHIL.O

SYSTEMS TECHNOLOGY

To examine the contents of a register, the register is first
addressed with an SPU READ command. The contents of the
register are then read into the CPU accumulator.

To write a bit pattern into ~ register, the register is
first addressed with an SPU WRITE command. The command is
followed by the bit assignment for that register.

SPECIAL

An SPU SPECIAL command is defined as an instruction that
executes some function, but no read or write data transfer
is involved, e.g., Increment IND Counter or Disconnect DPS.

Each register command consists of an 8 digit octal code. The
code, in effect, identifies a specific register in a specific
unit and informs this register that it is about to either receive
or transmit data. The data will be either read out of the
register, written into the register or the register will perform
a special function. The command format is shown in Table B-1.

Consider an example of an SPU command so that its mode and
function within the system can be understood. The following
table shows the 1fODE register SPU READ command and its octal and
binary equivalents:

TABLE B-1. SPU COMMAND FORMAT

Bit Location: 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Octal Val UC' 0 6 6 0 0 5 2 0

Biuary Value: 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

G=Read
OP CODE ..f=Wri. te TESTER U:.;r T

'
(SPC) 2=Special REC· ISTEH ADDRESS

l O=:..;o-op I I

Starting from the left, the high-order six binary bits (23-18)
represent the octal code 06. This octal code is the SPU op code
for the READ, WRITE, or SPEC I AL command functions. The op code

B-2

l=A.2 RC::H I LD

SYSTEMS TECHNOLOGY

informs the system that it is about to address a register in a
unit with either READ, WRITE or SPECIAL information.

The 3....,bi t value in bi ts 17-15 defines the command as READ, WRITE,
or SPECIAL transfer. Octal 6 = READ: 4 =WRITE; 2 =SPECIAL and
O = No op.

The six bits shown under tester register (13-8) specify one of 64
unique registers. The remaining bits (7-0) are used to form the
unLt ::i..ddre:,;s. The tester is unit: 120B.

8.2.1 Short Register Descriptions

The register number is the octal equivalent of bits 13-8 of the
SPU command. The following paragraphs summarize the short
registers, their addresses and special functions.

8.2.1.1 Mode Register {MR) Address 01 I
The mode register controls modal functions affecting the total
test system as shown in Table B-2.

TABLE B-2. MODE REGISTER

BIT FUN GT ION -~ Read Write

0 Reset Tester Short Reg. x
1 Reset Tester Long Reg. x
2 Monitor Mode x
3 Auto ~lode x
4 Negative Logic Mode x x
5 Latch c Mode x x
6 Strobe Inhibit Mode x x
7 Force Strobe x
8 Force Sync Pulse x
9 DMA Mode x

10 DMCRS Last function test regist2::.~ used x x
11 Function Test Suspended x x
12 Trip Fail x x
13 Functional Fail x x
14 Pass (Cleared by 2 or 13) x x
15 Spare x x

"NOTE: ' SPECIAL command clears the rnode register. H.

J

B-3

l=AIRCHILD
m411 RIIRIB I
SYSTEMS TECHNOLOGY

8.2.1.2 Status Register (SR) Address 02 \

The status register contains interrupt information as shown in
Table B-3.

BIT

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

TABLE B-3. STATuS REGISTER

PDNCTIO~

Instruction Number Compare
Interrupt Enable

Instruction Number Compare Interrupt
Delay Complete Int. Enable
Delay Complete Int.
Trap Interrupt Enable
Trap Interrupt
Fail Interrupt Enable (See B.3.3.18)
Fail Interrupt (See B.3.3.18)
Trip Interrupt Enable
DPS #1 Trip (8 must be on)
DPS #2 Trip (8 must be on)
DPS #3 Trip (8 must be on)
Stop Interrupt Enable
Stop Interrupt
Interrupt in Process
Spare
Time Fail Interrupt Enable
Time Fail Interrupt

*Set by short register reset.

Read

x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x

x
x
x
x
x
x
x
x
x
x
x
x

*
x
x
x

NOTE: A SPECIAL command clears the status register. (BO-B13)
l I i

8.2.1.3 Instruction Register (IR) Address 03)

The instruction register is a buffer between B memory and the
long registers via the accumulator. It contains the information
listed in Table B-4.

TABLE B-4. INSTRUCTION REGISTER

BIT(S) FUNCTION Read Write

0 Data x x
. . . .
. . . .
. . . .

B-4

m.•11111 a •••
!=Al s=l! CH I LD
l'j£'illlyl B I I L llMllllJI
SYSTEMS TECHNOLOGY

TABLE B-4. INSTRUCTION REGISTER (Continued)

BIT(S) FUNCTION

14 Data
15-18 Rank Address

Read Write

x x
x

I x 19-21 Regist~r Address

l
'}•l •1'" Long R~'Jg. Re c;.,d/\1!1,,i t: e Ccntroi l x J .;....:.._:-~0

l
00 = WRITE & HOLD BITS 0-14
01 = WRITE & EXEC BITS 0-lt:_l
10 = READ BITS 0-14

WRITE & E1CEC in m1A mode advances "Che Instruction Number
Counter (IND) and waits for 1 tester not busy;

8.2.1.4 Memory Address Register (MAR) Address 04

The memory address register contains the memory address for the
tester DMA mode. The fourteen bits are all read and write. When
the tester is in the DhlA mode, phase loop control automatically
increments MAR.

8.2.1.5 Test Station Control Register (TSC} Addrnss 05

The test station control register controls four channel
multiplexing as listed in Table B-5.

TABLE B-5. TEST STATION CO?~TROL REGISTER

BITS FUNCTION Read Write

0-1 Station Address (Write places stat: ion x x
on-line)

2-5 Start nequests from Stations 1 to 4 x
6-9 Manual Mode from Stations 1 to 4 x ..I..

10-13 Reset Request from Stations 1 to 4 x

Reset and Start are writable only by addressing the associ-
2.t:ed station.

B-5

li!ii'i DI I I
FAIRCHILD -· . . ,.._, ..
SYSTEMS TECHNOL.OGY

8.2.1.6 Clock Burst Count Register (CBC) Address 10 I
The ~lock burst count register consists of eight bits, all
read/write, which contain the count of the number of clock syncs
generated per function test.

8.2.1.7 Time Delay Register (TD) Address 11 \

The time delay register consists of fourteen bits, all
read/write, representing the value of a functional or DC time
delay to be generated by certain tester instructions. For
function tests, the least significant bit represents 0.35
microsecond and full scale is 5.734 milliseconds. The phase loop
counter triggers the time delay counter when a SET F instruction
is executed. For DC tests, the least significant bit represents
0.35 millisecond and the full scale value is 5.734 seconds. An
SPU SPECIAL command triggers the DC time delay.

B.2.1.8 Instruction Number Display Register (IND) Address 14

The instruction number display register is a sixteen bit
register, all sixteen bits read/write, representing the test
instruction being executed. An SPU SPECIAL command increments
the contents of the register by one. Also incremented in DMA
mode when bi ts 23 and 22 = 01, WRITE and EXECUTE, are set as
shown.

B.2.1.9 Instruction Number Compare Register (INC) Address 15 j

The instruction number compare register consists of sixteen bits,
all read/write, representing the test instruction number at which
a pause or external sync pulse occurs. A compare interrupt is
generated if the INC Interrupt is enabled, else a sync pulse
occurs.

B.2.1.10 Digital Programmable Power Supply Registers DPS1, DPS2, and DPS3 I
Addresses 21, 22, 24 I .

Registers DPSl, DPS2 and DPS3 contain the
magnitude of the DPS voltage being forced o~
point (Refer to Table B-6).

B-6

range, polarity and
the voltage trip

FAS RCl-t I L..C

SYSTEMS TECHNOL.OGY

TABLE B-6. DIGITAL PROGRAMMABLE POWER SUPPLY REGISTERS

BITS FUNCTION Read Write

0-9 Voltage Uagnitude (Forced or Trip Value) x x
LSB = 0.01 volt in low range

= 0.04 volt in high range

10 Polarity 0 = n,....'"' ~ x x
1 = Neg

11 Range 0 = low x x
1 = high

NOTE: An SPU SPECIAL command disconnects the

J
corresponding supply. A DPS write connects the
unit to the load board. l L

B.2.1.11 DPS Trip Registers - DPT1, DPT2 and DPT3 Addresses 23, 25, 26 j

Registers DPTl, DPT2 and DPT3 contain the current trip point or
the current being forced and the trip greater than or less than
control plus the DPS forcing mode control (Refer to Table B-7).

TABLE B-7. DPS TRIP REGISTERS

BIT(S) FUNCTION Read Write

0-9 Current Magnitude (Forced or Trip Value) x x
LSB = O.lmA in low range

= 1. mA in high r_ange

10 Polarity 0 = Pos
1 = Neg

11 Range 0 = low x x
1 = high

13 GT or LT:l = GT x x
0 = LT

14 Voltage/current 0 = voltage force x x
1 :::: current force

B-7

FAIRCHJL.O
Viii Hi 11111 •
SYSTEMS TECHNOLOGY

B.2.1.12 Reference Voltage Supply Registers SO, S1, EO, E1, EAO, EA 1, EBO, E81, i
ECO, EC1: SAO, SA1 Addresses 32-37, 42-47 \

The reference voltage supply registers contain the range,
polarity and magnitude of the reference voltage supply (Refer to
Table B-8).

TABLE B-8. REFERENCE VOLTAGE SUPPLY REGISTERS

BIT(S) FUNCTION Read Write

0-9 Voltage Hagnitude x x
LSB = 0.01 volt in low range
LSB = 0.04 volt in high range

10 Polarity 0 = Pos x x
1 = Neg

11 Range 0 = low x x
1 = high

8.3 LONG REGISTER DESCRIPTION \

The registers associated with the long register are divided into
·two groups. The first group consists of the D, M, S, R, F and C
registers. The second group consists of Pin Address, Statement
Number Display, Precision Power Source, Precision Sense Level,
External Interface, Slave TSC, DC Trip, Status and Mode A and B
registers, and Long Register Extend register.

8.3.1 The D, M, S, R, F and C Registers l
The six registers of the first group are discussed below.

8.3.1.1 O Register; (Address 02) \,

The D register is termed the input/ciutput register. If the D
register is programmed as a binary 1, the associated pin is
defined D,s an input pin. If the D register is progralT' .. med as a
binary 0, the associated pin is defined as an output pin. When a
pin is defined as an input pin in the D register, a relay is
energized to connect the output of the driver to the pin.

B-8

= I
FAIRCHILD
D!llB•r R E&
SYSTEMS TECHNOLOGY

8.3.1.2 M Register : (Address 04) /

The H register is the care/don't care or "mask" register. If the
programmer is interested (care) in knowing the output level of a
pin, the M register is programmed as a binary 1. If the
programmer is not interested (don 1 t care) in the output level of
a pin, the M register is programmed as a don'-i: care, or a binary
0. An input pin, or an output pin with an undefined state, would
normalJy be programmed aa don't care to prevent false failure
indications on that pin. The don'-i: care condition inhibits any
fail indication from the output of the detector.

8.3.1.3 S Register ! (Address 10) /

The select reference register selects which set of reference
supplies are to be used by the functional test driver for each
tester pin. A binary 0 selects the primary reference pairs,
while a binary 1 selects the alternate reference pairs.

8.3.1.4 R Register. (Address 14) /

The utility relay register controls the utility relays, one relay
per tester pin. A binary 1 indicates a closed relay and a binary
0 indicates an open relay. The utility relays can be used for
such functions as connecting a load resistor for an output pin to
a programmable power supply.

8.3.1.5 F Register · (Address 06) I
I

The F register contains the logic patterns 1 or 0 to be applied
to those pins which are defined as input pins by the D register.
If the F register is programmed as a high level (1), the F
register will cause the high output of the d~iver to be applied
to the associated pin. If the F register is programmed with a
low level (0), the low output of the driver will be applied to
the pin. The F register also contains the expected logical
output of those pins which are defined as o~~pu-i: pins.

8.3.1.6 C Register. (Address 12 (Read Only))\

The C register stores the go/no-go results of a comparison
between the actual output of a device and the expected output. A
binary 1 represents a comparison failure and a binary 0
represents a pass condition.

B-9

l=AIRCHIL.C

SYSTEMS TECHNOLOGY

8.3.2 Format of Functional Test Word I
The primary difference between the long and short registers is
that the short registers consist of fixed bit test words. The
long registers are variable length words. The format of a 24-bit
function test word is discussed below and it is illustrated in
the accompanying Figure B-9. The format for all function test
registers is the same, except that the address for each register
is differer..t.

B-10

F=Al~CHIL.O

SYSTEMS TECHNOLOGY

TABLE B-9. TEST WORD FUNCTION FORMAT

24 Bit Functional Test Word

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Control Register
Address

Rank Address

Rank
Address

Pin Data Field

3 Bits = 1 to 8 Ranks
f.1aximum Register Length = 8 x 15 = 120 Bi ts

Register Address

Bits: 21 20 19 1~ 11eaning

0 0 1 0 D DEFINE I/O PINS
0 1 0 0 M MASK
0 1 1 0 F FUNCTIONAL PATTERN
1 0 0 0 S SELECT ALTERNATE REFEP~NCE
1 0 1 0 c cm.IPARE (FAIL PATTER.t'l")
1 1 0 0 R UTILITY RELAY
1 1 1 x TEST STATION REGISTERS

Control

Bits: 23 22 Meaning

0 0 WRITE AJ.~D HOLD
0 1 WRITE AND EXECUTE
1 0 READ
1 1 TRAP

Register Load Times

1.75 (1 + N) microseconds
where: N =Number of Ranks Changing

Starting from the right, the 0 bit represents pin 1, the 1 bit
represents pin 2, etc., up to bit: 14 which represents pin 15.

Rank Address:

B-11

FAl~CHIL..D

SYSTEMS TECHNOLOGY

Bits 15 through 17 represent the rank to which the first 15 bits
have been assigned. The ranks are determined by the normal 4-2-1
binary code minus one. 000 inserted in bits 15 through 17
represent rank 1; 111 represent rank 8. In this manner, 8 ranks
of 15 pins can be programmed, thus providing a capacity of 120
pins.

RegisTer Address:

Bi ts 18, 19, 20 and 21 cte·cernnne thP regis i::er to 'i'.'hich the ran~
of 15 bits is to be sent.

Control:

Bits 22 and 23 control the read/write function. Assume the
device under test is a 15-pin device; all 15 pins will be
programmed on one line and will be assigned to rank 1. The
correct address code is inserted and bits 22 and 23 are
programmed as 01 (write and execute), i.e., there are no more
pins to program. If the device is a 45-pin device, the first 15
pins are programmed as described above, except for bits 22 and 23
which are programmed as 00 (write and hold), i.e., there are more
pins to program. The second group of 15 pins is assigned to rank
2 and, again 1 bi ts 22 and 23 are programmed as . 00, i.e. , there
are more pins to program. The third group of 15 pins is assigned
to rank 3 and bits 22 and 23 are programmed as 01 (write and
execute), i.e., there are no more pins to program-execute the
command. Tlle F and S registers are NIASTER/SLAVE so that all bi -rs
execute together.

B.3.3 Special Test Station Registers \

The registers of the second group are discussed below.

8.3.3.1 Pin Address Register (Address 160) \
I

The pin address register addresses the precision measuring unit
to one of the pins of the device under test or to an internal
node (Refer to Table B-10). The reset state of this register is
0.

B-12

FAIF-iCHILD
"Yl<~ . . .

SYSTEMS TECHNOLOGY

TABLE B-10. PIN ADDRESS REGISTER

BIT(S) FUNCTION Read Write

0-3 Pin Number 1-15 0000 = disconnect x *
0001 = pin 1

4-6 Rank Number 1-8 000 1111 = pin 15 x *
I 001 0001 = pin 1c I I 0
I

7 Internal Node Address x *
8 Connect Voltage Conditioner x **

(Enable Relay FACTOR Instruction)

14 Write Protect Bit x

*Write Protected if bit 14 is a 1.
**Write Protected if bit 14 is a o.

B.3.3.2 Socket ID (Address 161) I
'

The socket ID reads a hard wired address on the load board so
that a FACTOR program can compare the load board ID with the
program ID.

The register is 12 bits, read only.

8.3.3.3 Statement Number Display Register I (Address 162)\
. ~ I j

The statement number display' register contains the statement
nwnber to be displayed on the test stat ion control panel. This
register is interfaced to the IND register with software in
TOPSY. Whenever the test sequence pauses, the software updates
SND. The register is 15 bits, both read and write.

8.3.3.4 Clock and Strobe Register (Address 163) /

The clock and strobe register is actually two registers under one
address. The first part, clock address, is bits 0-3. The clock
address bits are ANDed with the first four bits of the F register
to generate clock sync signals, (see Enable Clock Description,
11.5.2). The second part, Enable Strobe, is bits 4-7, (see the
Enable Strobe Description, 11.4.7). All eight bits are
re8,d/wri te.

B-13

F=AIRCHILC

SYSTEMS TECHNOLOGY

8.3.3.5 Precision Power Source Register/Precision Measurement Unit\
Forcing Register (Address 164))

This register contains the magnitude, ~clarity and range
information of the PMU forcing value. It also contains the
voltage or current force mode bit (Refer to Table B-11).

TABLE B-11. PPSR/PMUF REGISTER

BIT(S) FuNCTION Read Write

0-9 Hagnitude x x

LSB Range Full Scale

lmV 1 1. 023V
lOmV 2 10.23V
40mV 3 40.92V
lnA 0 1.023uA
lOOnA 1 102.3uA
lOuA 2 10.23mA
lOOuA 3 102.3mA

10 Polarity 0 = POS x x
1 = NEG

11-12 Forcing Range 00 = Range 0 (Current x x
Force only)

01 = Range 1
10 = Range 2 I 11 = Range 3

13 VF/IF 1 = Voltage Force x x
0 == Current Force

...I..

8.3.3.6 Precision Sense Level Register (Address 16) '.

This register contains the PMU voltage clamp levels and the
measuring range (Refer to Table B-12).

B-14

&! I -FAIFlCHILO

SYSTEMS TECHNOLOGY

TABLE B-12. PRECISION SENSE LEVEL REGISTER

BIT(S) Fu'NCTION Read Write

0-3 Voltage Clamp Magnitude x *
4 Clamp Control (1 = on, 0 = off) x *
5 Clamp Range x *

Range Clamp 1.:-01 tage Range of Values

0 (1. 5+3n)V O<n<15 1. 5 to 46.5 - -
6 Allow Negative Voltages (SET CLAMP NEG) x * 7 Allow Positive Voltages (SET CLAMP POS) x * 8-9 Not used.

10 Write Protect Bit
11-12 Sense Range x **

13 V~.1/ IM (complement of PPS bit 13) x

*Write Protect if bit 10 is a 1.
**Write Protect if bit 10 is a 0.

8.3.3.7 External Interface Register (Address 166) J

This fifteen bit register is used to display test results and
control external handlers (Refer to Table B-13). Bits 0-9 are
available to the programmer to use in any form, such as to define
various pass categories. Bits 10-14 are defined by system
software. All bits are read/write. If the user wishes to use
some bits to read the status of external equipment, then a simple
hardware modification can be made to the register by
disconnecting the bit storage device from the register. Consult
your field service representative if this is desired.

TABLE B-13. EXTERNAL INTERFACE REGISTER

BIT(S) FUNCTION Read Write

0-9 Defined by User
Displayed on Station Control Panel x x

10 D.C. Fail Lamp* x x
11 D.C. Pass Lamp* x x
12 Functional Fail Lamp x x
13 Functional Pass Lamp x x
14 End-of-Test x x

*If both DC fail and DC pass are set,
the Terminal Error lamp will go 'ON I.

B-15

FAIHCHtL.C
Cl<i!US Iii I•
SYSTEMS TECHNOLOGY

8.3.3.8 Slave Test Station Control (Address 167) \
I

This register is a copy of the TSC short register and is used at
each station equipped with relay mux. It is used to put the head
on line; and contains Reset hlanual and Start data from each of
the sub station test heads.

8.3.3.9 DC Trip Limit Register (Address 171)

The DC trip limit register holds a go/no-go limit for PMU tests
made in DMA mode (MEASURE PIN). It is also used to hold trial
limits in the software A to D conversion routine. (Reference
Table B-14).

TABLE B-14. DC TRIP LHIIT REGISTER

BIT(S) FUNCTION Read

0-9
10
11-12
13

14
14

Magnitude (See PPS register) x
Polarity (O = POS, 1 = NEG) x
Sense Range (Set by PSL register) x
LT/GT Bit (O = LT, 1 = GT) x

D.C. Fail x
D.C. Strobe

*Write Protect if DC strobe is 1.

NOTE:

A DC strobe is generated either by writing bit 14
or reading the register. A comparator fail on a
strobe sets on a latch on bit 14; a comparator
pass during a strobe resets the latch.

B.3.3.10 Status and Mode Register A (Address 1730)

Write

*
*

*

x

The Status and Mode A Register contains control and status
information to supplement the functional/DC fail interrupt in the
status register (Reference Table B-15).

B-16

BIT

4
5
6
7

I

FAIRCHIL.O
ii!311llF m
SYSTEMS TECHNOLOGY

TABLE B-15. STATUS AND MODE REGISTER A

FUNCTION

Functional Fail
Parametric Fail
Functional Fail Enable
Parametric Fail Enable

8.3.3.11 Status and Mode Register B (Address 1734) \

Read Write

x
x
x x
x x

The Status and Mode B Register allows control of Interrupt Enable
for a DC pass. This register may not be read or written from a
FACTOR program. (Reference Table B-16.)

TABLE B-16. STATUS AND MODE REGISTER B

BIT FUNCTION Read Write

7 D/L Measure Interrupt Enable x x

B.3.3.12 Long Register Address Extend (Address 1737) I
The Long Register Address Extend register is used to control long
register address bank switching. This register is used only with
the Time Option.

8.4 FORMATTING OF FACTOR WRITE AND READ ST A TEMENTS

The format for programming the short or long registers is:

WRITE (XXXXB) expression;

where: XXXX is any r2gister n~~ber, and
B is the octal indicator.

Reading information from a short or long register l. c- •
"".

READ (XXX1.i3) Z;

Tables B-17 and B-18 provide the necessary
reading from or writing to a specific register
function on the short and long registers.

information for
for a specific

B-17

t

B-18

SYSTEMS TECHNOLOGY

TABLE B-17. SHORT REGISTER READING AND WRITING CODES

Reg· 1
No. I Register

0 I ~'Io-op
1 MODE
2 STATUS
3 Instruction
4 Memory Address
5 TSC

10 Clock Burst Count
11 Time Delay
14 Instruction Number Display

15 Instruction Number Compare

21 DPSl
22 DPS2
23 DPT3
24 DPS3
25 DPT2
26 DP Tl

32 El
33 EO
34 Sl
35 so
36 EAl
37 EAO

42 EB1
43 EBO
44 ECl
45 ECO
46 SAl
47 SAO

A=2= SPECIAL
A=4= WRITE
A=6= READ

x x x x SPECIAL Function

A 0 0 2 Clear Status Reg
A 0 0 4 Clear Status Reg

-A 0 0 6
A 0 1 0
A 0 1 2

A 0 2 0
A 0 2 2 Start D.C. Delay
A 0 3 0

A 0 3 2

A 0 4 2 Disconnect DPSl
A 0 4 4 Disconnect DPS2
A 0 4 6
A 0 5 0 Disconnect DPS3
A 0 5 2
A 0 5- 4

A 0 6 4
A 0 6 6
A 0 7 0
A 0 7 2
A 0 " 4 I

A 0 7 6

A 1 0 4
A 1 0 6
A 1 1 0
A 1

..,
2 _.L

A 1 ' 4 -
A 1 ~ '"' v !

I

It 2 Mlflll•
FAIRCHILD
&:i&i I I II _II
SYSTEMS TECH1'JOLOGY

TABLE B-18. LONG REGISTER READING AND WRITING CODES

Register (Pins) Register No. Write Read
x x x x x x

D 1-15 020 220 420
D 16-30 021 221 421

ID 31-45 022 222 I 422
~D 46-60 () 22 223 L12 3

D 61-75 0211 224 tJ: 2!1
D 76-90 025 225 425
D 91-105 026 226 426
D 106-120 027 227 427

M 1-15 040 240 440
M 16-30 041 241 441
~1! 31-45 042 242 442
M 46-60 043 243 443
M 61-75 044 244 444
~I 76-90 045 245 445
~I 91-105 046 246 446
~I 106-120 047 247 447

F 1-15 060 260 460
F 16-30 061 261 461
F 31-45 062 262 462
F 46-60 - - 063 263 463
F 61-75 064 264 46'-1
F 76-90 065 265 465
F 91-105 066 266 466
F 106-120 067 267 467

s 1-15 100 300 500
s 16-31 101 301 501
s 31-45 102 302 502
s 46-60 103 303 503
s 61-75 104 304 504
s 76-90 105 305 505
s 91-105 106 306 506
s 106-120 107 307 507

c 1-15 120 520*
c 16-30 121 521*
c 31-45 122 522*
c 46-60 l<J '),>..) 523*
c 61-75 124

I
524*

c 76-90 125 525*
c 91-105 126 526*

IC 106-120 127 527*

I
I

B-19

F=AIRCHIL..O

SYSTEMS TECHNOLOGY

C REGISTER:Read Only

R 1-15 140 340 540
R 16-30 141 341 541
R 31-45 142 342 542
R 46-60 143 343 543
R 61-75 144 344 544
R 7'3-90 1.:.15 345 5<±5
R 91-105 146 346 546
R 106-120 147 347 547

Pin Address 160 360 560
Socket ID 161 - 561
Statement Number Display 162 362 562
Clock and Strobe 163 363 563
Precision Power Source 164 364 564
Precision Sense Level 165 365 565
External Interface 166 366 566
Register
Slave Test Station 167 367 567
Control

DC Trip 171 371 571
Status & Mode A 173 373 573
Status & Mode B 1734 These registers cannot be
Long Register Address 1737 read or written from FACTOR
Extend

l l

B-20

()
I

f-4

Appendix C

Voltage And Current Range Definitions
-~-~------·--------------------------------·----------

.\lOl"l'LJ' ST\' J'E'.iF'.\T

l').lli l,.01'<',' Vo I l- : \ ~~· l'
l'\lli Sl'I !'~Ill l •\)}'(•()\"

l"ll' l,."'"'" C'u1 'l'1'il L

I •;l!f S• · l l''l\1 Fu i·, · 1 • T
l'~ll' S<'l l'\111 S l • !l ~·j t ...

J".ll' '.':),, l l'\ll~ s '<)llSl'

j) I'~;

lll'S
l ll '~1
lil'S

h ll'C' \'!'
"'')I'\'(.' l F
1<11;11>1 •· 'l'
1:11:1.L I 1 • T1

l'l jl

. i p\'

I\\ s :; " l (~)() / .' ; l)
I:\,'; l'»1'n· I"

PllOGll1UnI1\BLE

Hi\NC.E ()

0 l D _:I. 02'.lul\/1111\
l) l.u tl. 0£'.l l\/ 111.'\

Vu! l :lgL'
C1.11Tet1 l 0 to _:l.023uA/lnA

-~-~~--'-~~~--~~--

VALUE/ HESOLUTJON

Hl\NCIE l Hl\NGF 2

0 I o l.O~l:J\/l mV 0 It) +l0,2:l\l/10111V
0 t l) l. 02:w / lom-; 0 l<l +1o.2:i v / 1 01<1V
0 to +102:Jmi\/. lui\ () to f'.10. 2'.lmi\/ I Ou,\
0 Lo ·+10:!.:l111l\/ l uA () '" ~] 0. :i:i1111\/ 10111\
() l n +1. 02:iv / 1111v 0 lo +to. 2:;v / J l)mV
0 to '+1023rni\. l 11A 0 Lo :£10. 2:lmA/ .LOui\ --

0 to + 10 . '.!. '.l V / 1 Om\'
0 to +102, :lmi\/. 1 mA
0 t.o f:102. :l111A/, ltw\
0 I o ~10. 2'.lV / 1011!\I

0 t (l _:!:Hl.:~:lV/IOmV 0 I '' +'.Ill. llV·IOn!V
0 Lo _:10. 'J:lV / lOmV 0 t () _!:lo. ov /IOmV

--

IL\!'l(it·: :l

O tl, •·lll.!J'.~\'jl0111V
(J to -+W.D~~\)'10111\'
() lu ·+lO'.!.:l1:11\f. lrnA
I) il' -+102.::11111/.1111'\
ll In :i:.JO. D2\'(I0111V
0 t._, ~lU'J.'.110;\/ .11n!\

0 t.o +I0.92V/10mV
Ci lu Tl. O'J'.lA/ lml\
()I.CJ +i.02:li\/l111!\
U Lo ~·10. 92\' / IOmV

--

Ul
-<
Ill
-l m
~
Ul

-l m
n
I
z
0
r
0
Gl
-<

11
)> -ll
0
I
r a

n
FAIRCHILC

SYSTEMS TECHNOLOGY

Appendix D I
I

OMA Mode Statements

S-200 E'ACTO:l sta-cements that cause a value to be loaded in a
tester long register are. normally executed in direct memory
access (DMA) mode. Briefly, in this mode, the system software
determines the start address of a sequence of these statements,
loads the MAR register, and initiates DMA mode. The hardware
then executes the test program directly until an instruction that
can not be processed in this mode is encountered. Such an
instruction may require several operations to be performed; these
instructions are executed interpretatively by the system
software. Execution in D.MA mode is more efficient, particularly
if the programmer structures his program so that long DMA
sequences are not broken by interpretative statements or
statement labels.

The following table indicates which FACTOR instructions are
executed in DMA mode and which long registers may be affected.

l

TABLE D-1. STATEMENTS EXECUTED IN DMA MODE

INSTRUCTION LONG REGISTER NUMBER

SET D
SET M
SET F
SET S
SET R

020 through 027
040 through 047
060 through 067
100 through 107
140 through 147

CPMU PIN * 160
XPMU PIN 160
ENABLE/DISABLE RELAY 160

SET PMU FORCEV/FORCEI* 164
FORCE VOLTAGE/CURRENT* 164

Functional test
instructions
load from 1 to 8
ranks per state­
ment depending
on the specified
pins.

D-1

:1f 11 II I•
FAl~CHILO

™ r ••• • SYSTEMS TECHNOLOGY

TABLE D-1. STATm.IENTS EXECUTED IN DMA MODE (Continued)

INSTRUCTION LONG HEGISTER NUMBER

SET Pr.1U SENSE 165
SET CLA~.IP number 165

! ~1IEASURE PIN 171, 173

SET DCT 171, 165

*Only when the expression is a simple constant. (If
expression must be evaluated at execution time,
statement is executed interpretively.

l

D-2

the
the

FAIRCHIL.C

SYSTEMS TECHNOLOGY

Appendix E I
I

Time Delay Related st.atements I
I

FACTOR statements that start a software delay, i.e., cause the
time delay register countdown to be initiated, must also be time
delay dependent. This is necessary in order to avoid disturbing
a previous countdown in progress, if any, which could have a
longer net value .than the countdown to be started. The following
table lists all statements that are time delay dependent; the
execution of these statements must be delayed until any previous
hardware or software delay has expired. Instructions which
generate time delays (a fixed number if hardware initiated or a
variable if software initiated) are also listed. Note that x
implies a DPS number 1 through 3 and y implies a reference
voltage supply (RVS) level of 0 or 1.

TABLE E-1. TIME DELAY DEPENDENT STATEMENTS

FORCE WAIT
SET DELAY
ENABLE TRIPVx (if changing to current force mode)
ENABLE TRIPix (if changing to voltage force mode)
FORCE VFx (after a FORCE IFx)
FORCE IFx (after a FORCE VFx or FORCE RESET)
FORCE VOLTAGE
FORCE CURRENT
FORCE PMU
SET PMU FORCEI/FORCEV/SENSE
SET F
SET D
SET M
SET R
SET S
CPMU PIN expression;
XPMU PIN
MEASURE PIN
MEASURE VALUE/NODE/PIN number

The first statement of any DHA tnode seq-:..1ence. *

*Refer to Appendix D.

E-1

F=AI F:; CH I LC

SYSTEMS TECHNOLOGY

TABLE E-2. TIME DELAY GENERATING STATEMENTS

FORCE DELAY Programmed DC Time Delay
SET s 0.28 millisecond

SET D, SET CLAMP
CP?1fU PIN·, XPMU PIN, 0.56 millisecond
ENABLE RELAY, DISABLE RELAY

SET R 1.75 millisecond

SET PMU FORCEV, FORCEI, ·Programmed DC Time Delay or
FORCE VOLTAGE-, 0.56 millisecond with no cur-
FORCE CURRENT rent range change or 4 milli-
FORCE PMU second (+1 millisecond) with

current range change, which-
ever is greater.

SET PMU SENSE 0.56 millisecond with no cur-
rent range change or 4 milli-
second with current range
change.

FORCE VFx, FORCE IFx, Programmed DC Time Delay or
ENABLE TRIPx., 5.37 milliseconds, whichever
ENABLE TRIPVx, is greater.
XCON VFx, FORCE RESET

SET Sy' SET SAY, FORCE Ey, Approximate 1 y 300 microseconds
FORCE EAy, FORCE EBy, per volt of change or 0.56
FORCE ECy millisecond, whichever is

greater.

SET DCT, MEASURE PIN 56 microseconds

SET F Programmed functional delay.

E-2

F=.AIRCHIL..C

SYSTEMS TECHNOLOGY

Ap_pendix F \

Execution Terminal Error Numbers

Certai.n set up and prog:::-amming errors cannot be detected at
compilation time; these errors are discoverable only while
tesTing. The Terminal Error lamp will go 'ON' for errors
described in the following table. The error number will be
logged. Both the Parameter FAIL and Parameter PASS lights are
'ON', but the EQT light is 'OFF'. The error number is displayed
(in binary format) in the EIR register, bits 5-10; least
significant bit to the left (Bit 5).

ERROR NUMBER

1
2

-3

4
5

6

21
22
23
24
26
31*
33*
35*
36*
37*
40*

42*
50
51

52
53

TABLE F-1. TERMINAL ERRORS

MEANING

program not loaded
station disabled (power off)
magnitude or polarity error in pin
number, or time delay
DMA did not start, - hardware fault
magnitude error in voltage, current
or time (exceeds hardware limitations)
magnitude error in a programmed time
value
current value not within set limits
voltage value not within set limits
improper pin address
voltage value exceeds limit
undefined opcode
read (file skip forward executed)
write (file skip backward executed)
EQT tape on write (tragic error)
EOT tape on read
memory protect on tape read
data count error less than 7 or greater
than assigned array
irrecoverable error
improper vector declaration
number of formal and actual parameters
do not agree
subscript violation
empty stack

F-1

FAl~CHll..C

SYSTEMS TECHNOLOGY

TABLE F-1. TERMINAL ERRORS (Continued)

ERROR NUMBER

54
55
56
57
58
59
60

61
62

67

68

69

70

71
-

72

71±

75
80

MEANING

program too big
EOF on test program
illegal op code
improper vector initializaticn
I/O error
improper 'FOR' loop constants
assembly language program not found
on disc
assembly language program too long
arithmetic overflow (illegal arithmetic
computations)
DIF (disc input file) or DOF (disc
output file) not open.
trying to read beyond EOF (end of file)
of DIF (disc input file).
trying to write beyond EOF (end of file)
of DOF (disc output file).
SENTRY 600 program on S200/400 test
station or S200/400 program on SGOO
test station
local memory size requested S600
hardware
programmed timing generator width or delay

programmed test period
programmed local memory address out of
bounds as specified by 'SET PAGE' state­
ment
10 MHz program on a 5 Wiz sta-c ion
array too small for binary card punch
or binary card read

On terminal error 31, the tape is moved ~o the next tape file.
On terminal error 33, the tape is moved b.s.c.k to the start of the
last file. When start is pressed, the program will continue
execu~ion from these tape locations.

*Tape status issued is in octal. On terminal errors 35 or 36 a
tape rewind is executed. The program is ::tborted on terminal
error 35.

F-2

mu 1

SYSTEMS TECHNOLOGY

Appendix G

TABLE G-1. CALIBRATION RESISTOR TABLE

r TVFY LOAD CALII3R..ATION VOT .. TAGE CtiHRE2H
1 BOARD PIN RESISTANCE RANGE RANGE

1 10 1 (lV)* 3 (lOOmA) *
3 100 1 2 (lOmA)*

11 10 K 1 1 (100 a)*
17 1 M 1 0 (1 a)*

3 100 2 (lOV)* 3
7 1 K 2 2

13 100 K 2 1
19 10 H 2 0

5 400 3 (40V)* 3
9 4 3 2

15 400 K 3 1
21 40 M 3 0

* Full scale.

G-1

FAl~CHILO

SYSTEMS TECHNOLOGY

Appendix H

Internal Node Measurement

I~ternal nodes are listed in the table below. The
programmed to force zero current in range 2 before
connected to any internal node, including the load
(143-145). The voltage sensing range and the limit

-rhe P~E; is
current nodes
is programmed

according to the expected value.

TABLE H-1. INTERNAL NODES

NODE NUMBER MEASURED PARAMETER

DECIMAL OCTAL NAME DESCRIPTION

128 200 Sl COMPARATOR Sl REF. VOLTAGE
129 201 so COMPARATOR SO REF. VOLTAGE
130 202 El FORCING LEVEL El REF. VOLTAGE
131 203 EO FORCING LEVEL EO REF. VOLTAGE
132 204 EAl FORCING LEVEL EAl REF. VOLTAGE
133 205 EAO FORCING LEVEL EAO REF. VOLTAGE
134 206 EBl FORCING LEVEL EBl REF. VOLTAGE
135 207 EBO FORCING LEVEL EBO REF. VOLTAGE
136 210 ECl FORCING LEVEL ECl F.EF. VOLTAGE
137 211 ECO FORCING LEVEL ECO REF. VOLTAGE
140 214 VFl VOLTAGE FORCING UNIT 1 OUTPUT VOL.
141 215 VF2 VOLTAGE FORCING UNIT 2 OUTPUT VOL.
142 216 VF3 VOLTAGE FORCING UNIT 3 OUTPUT VOL.
143 217 TRIPl VF1 LOAD CURRENT
144 220 TRIP2 VF2 LOAD CURRENT
145 221 TRIP3 VF3 LOAD CURREl\T

Load currents are proportional to the voltage drop across an
internaJly connected resistor chosen such that the full scale
measurement value is 1.023 volts. If the power supply is in
range 3, 1 millivolt of voltage drop corresponds to 1 milliamp of
load current. If the power supply is in range 2, 1 millivolt of
voltage drop corresponds to 0.1 milliamp of load current.

H-1

FAl~CHILO

SYSTEMS TECHNOLOGY

Assume that a load current measurement with a limit of 100
milliamps is to be programmed. With the DPS in range 3, the
limit is converted to a value of 100 ma. Then, the measurement
may be made with the PMU sensing in range 1 and the correct
magnitude of the current would be logged. If the DPS were in
range 2, 100 milliam~s uf load current is converted to a limit
value of 1000 millivolts. Hence, the programmed limit must be
multiplied by 10 and the resultant logged value divided by 10 to
convert the voltage measured back to load current.

H-2

F=AIRCHll-CJ

SYSTEMS TECHNOLOGY

\

Appendix I \

Instruction List

'l'tie following instruction forms are al lowed in progra.mming the
S-200.

BASIC STATEMENT FORMS

BLOCK

Creates groups of program statements.

SUBR identifier;
SUBR identifier (parameters);
FUNCT identifier (parameters);

Delineates a group of statements which can be repeated with a
call statement.

END;

Closes BLOCK or subroutine or BEGIN.

CALL identifier;
CALL identifier (parameters);

Subroutine is executed and at completion control is returned to
the calling routine.

INSERT filename;

Allows inclusion and compilation of the named source file at
point specified.

NOISE XXX;

Words listed as noise may be used in any statement but will be
ignored by the compiler. (Must not include reserved words.)

RE~I ------;

Allows user to give documentation which will be ignored by the
compiler.

I_;l

'!!" ill I
F=Al~CHJL.O

SYSTEMS TECHNOLOGY

DCL Vl, V2, VN;
DCL Vl/VALUEl/, V2/VALUE2/;
DCL Vl [A1SIZE]/AVALUE1,AVALUE2, ... /;

Declares variables which may be assigned values.

C;QTO 1 abe1;

Causes uncondicional branch.

LABEL:

An address is assigned to 1 ab el to al low branching to 1 abel.

IF relation THEN statement;
IF relation THEN BEGIN - - - END;
IF relation THEN statementl ELSE statement2;

Statements are executed if the 'if' condition is met.

FOR variable = expression THRU expression
BY increment DO statement;

Allows looping under control of a variable.

PAUSE expression;

Program pauses -- value of expression printed on POD

FORMS OF ARITH:tvIETIC STATEMENTS

variable = integer/integer-expression
variable = expression;

Variable is assigned a value.

ARITH:VIETIC EXPRESSIONS:

With parenthetical expressions:
Read from left to right only:

Arithmetic replacement statements may use the following
operators:

+ ADDITION
- SUBTRACTION
* HULTIPLICATION
/ DIVISION
t EXPONENTIATION

I-2

FAIRCHILO
m n• 1
SYSTEMS TECHNOLOGY

Boolean replacement statements may use the following operators:

LT LESS THAN
EQ EQUAL TO
LEQ LESS THAN OR EQUAL
GT GREATER THAN
NEQ NOT EQUAL
GE GREATER THAL~ OR EQUAL
OR HTCLliSI\7E OR
EOR EXCLUSIVE OR
AND LOGICAL AND
NOT NEGATION

INPUT/OUTPUT STATEMENT FORMS

READ ((CR)/ (TTK) / (MTR) "name"/ (FDIF) / (PID)) Vl, V2, ..
VN,&V1,&V2, •. &VN;

Read numerical and literal data from specified device and assign
to variables.

WRITE ((TTP)/(MTW) "name!!/(FDOF)/(LP)/(POD)) Vl,V2, .• VN,Sl,S2,
. . SN, &Vl, &V2, &VN;

Write variables (Vl through 'VN), strings of alphanumeric data (Sl
through SN) and literal variables (&Vl through &VN) to specified
device.

WRITE ((TIP)/ (MTW) "name 0 / (FDOF) / (LP)/ (POD)) /COLV1/Vl, /COLV2/V2,
. . /COLVN /VN' /COLSl/Sl) /COLS 2/S2' . . /COLSN/SN' /COL&Vl/&Vl' I
COL&V2 I &V2' • . I COL&VN I &VN;

Write variables (Vl through ·vN), strings of alphanumeric data (Sl
through SN) and literal variables (&Vl through &VN) to specified
device (column formatted).

NOTE

When reading data, lit e1:al variables ::·:ay be specified
freely mixed with numeric variables~ When writing,
alphanumeric strings may also be incli..' .. ::ed (enclosed
in quotes), and any variables and strings may be col~
umn-formatted.

ON DIFEOF, label;

Causes program branch to label when disc EOF (end of file) is
read.

I-3

FAIRCHILD
~·, - "

SYSTEMS TECHNOLOGY

RESET DIF;

Re-opens disc input file (DIF), i.e. resets pointer to beginning
of file.

WRITE (XXX:x:B) expression:

Write to long or short register.

READ (XXX..XB) variable;

Read long or short register.

TESTER STATEMENTS

SET FORMS

SET DELAY expression(, DC);

Time delay register is loaded with value.

SOCKET ID number;

Number is compared to code on load board and terminal error is
caused if they are not equal.

SET DCT [LT/GT} expression (,RNG0/1/2/3);

Sets a hardware pass-fail limit for one DCT threshold at a time,
for 'MEASURE PIN 1 •

SET CLAMP [POS/NEG/SYM/OFF] number;

Sets limit on voltage allowed when current is forced.

SET LOGIC [POS/NEG]

Initializes functional test comparator logic for either positive
or negative logic.

SET (Sl/SO] express ion (, RNG2 / RNG3);

Reference supplies are set to value specified.

SET PMU (SENSE/FORCEV/FORCEI] (, RNGO/lli'JG1/HNG2/RNG3/AUTO);

Initializes PMU.

SET CLOCK expression;

I-4

FAIRCHIL.C

SYSTEMS TECHNOLOGY

Value is loaded into the clock burst counter register. (8 bits:
maximum value= 255).

SET [D/M/S/R/F] (*) binary-pin-pattern

Definition, mask, select, relay, or function registers are set to
pattern.

SET M binary-pattern ;

Sets pin mask register.

SET D binary-pattern ;

Sets I/O pin definition register.

SET VOFFSET number

Specifies an offset voltage to be added to all tester statements
which control a voltage level.

ENABLE FORMS

ENABLE [ILO/IHI/VLO/VHIJ [GT/LT] number;
- -

Enables limit comparisons to be made on all programmed
current/voltage operands prior to an instruction execution.

ENABLE [TRIPV1/TRIPV2/TRIPV3] [LT/GT] expression (,RNG2/RNG3);

Enables the voltage-trip detector of the corresponding current
forcing unit.

ENABLE [TRIPI1/TRIPI2/TRIPI3] [LT/GT] expression (,Rl.'TG2/Ri.'TG3);

Enables current-trip detector of the corresponding voltage
forcing unit.

[ENABLE/DISABLE] LATCHES;

Determines if C register is to be cleared prior to strobing
function~l test comparators.

ENABLE ACCESS

Forces a disc access to reload the core memory buffer.

[E~ABLE/DISABLEJ RELAY;

I-5

!DBi u a
F.AIRCHJLO
Q!. E 1111 I
SYSTEMS TECHNOLOGY

Determines if voltage conditioner will remain connected to a pin
when the PMU is connected.

DISABLE TRIPS;

Clears trip limits set up with Enables.

ENABLE [DC'l'O /DCT1] [LT/ GT] expression;

Forms a software pass-fail threshold, or if both DCTO and DCTl
are specified, a pass-fail vlindow, for 1 1\IEASURE VALUE'.

DISABLE [DCTO/DCTl] ;

Disables comparison limits.

[ENABLE/DISABLE] COMPARATORS;

Determines if comparator outputs will be strobed to C register.

ENABLE STROBE;

Enables comparator strobe to be controlled by contents of F(l-4)
and binary patTern.

ENABLE CLOCK [binary-pattern] ;

Enables clock signals to be connected to tester pins 1-4. Clock
burst occurs when F register contains a corresponding '1' bit.

FORCE FOR~lS

FORCE [VF1/VF2/VF3] expression (, Ri.'JG2/Pw.~G3);

Forces DPS voltage supply to value specified.

FORCE [IF1/IF2/IF3] expression (,RNG2/RNG3);

DPS unit is to force current specified.

FORCE (EO/E1/EAO/EA1/EBO/EB1/ECO/EC1] expression (,RNG2/RNG3);

Forces voltage conditioner reference supplies to programmed
value.

FORCE PMU expression

Forces output of PMU to value specified.

I-G

FAIRCHSLO

SYSTEMS TECHNOLOGY

FORCE VOLTAGE expression (,RNG1/RNG2/RNG3)

Forces PMU to voltage speciifed.

FORCE CURRENT expression (,RNGO/RNG1/RNG2/RNG3);

Forces P.MU to current specified.

fORCE RESET;

Clears all programmable test conditions and causes a hardware
reset.

FORCE DELAY;

Forces the time delay to occur and to wait until tester not
busy.

FORCE WAIT;

Forces tester to wait until 'tester not busy'.

FORCE STROBE;

Forces a single strobe, transferring comparator output states to
C register.

FORCE CLOCK;

Forces a single clock pulse at each of the 4 sync lines.

MI SCELLA1'i"EOUS FORMS

ON (DCT/FCT/TRIP], label;

Causes program branch to label on failure.

XCON [VF1/VF2/VF3]

Specified voltage forcing unit is disconnec~ed from the test
head.

CPMU PIN expression

PMU is connected to pin specified.

XP\IU PIN;

Dtsconnects PMV.

I-7

SYSTEMS TECHNOLOGY

MEASURE PIN ;

Pass-fail comparison is made with programmed limit. No floating
point conversion.

MEASURE [VALUE/NODE number] (,LOG);

~easurement is made and a sof~ware analog-to-digital conversion
takes place, with result stored in global variable 1 VALUE 1 •

CLEAR FAIL [DCT/FCT/TRIP];

Previous fail indicator is cleared.

KEY

[X/Y/Z]
(X/Y/Z)
integer

number
expression

I-8

one of options is required.
one of options may be used but none is required.
user must select appropriate expression or number.
any floating point number but may not be a variable.
any floating point number or variable or arithmetic
combination of numbers and variables.

9 E F
J=AIRCHILO

SYSTEMS TECHNOLOGY

Appendix J j

Read/Write Magnetic Tape Statements

J.1 OEF11'!1T!ON

The FACTOR READ (MTR) and WRITE (MTW) statements are defined as
follows:

READ (MTR) ''name" Vl, V2, V3, V4;

WRITE (MTW) "name" Vl, V2, V3, V4;

The terms Vl through V4 represent array identifiers which have
been declared prior to executing the READ/WRITE statements.
There may be one to four arrays per statement. The term "name",
enclosed by double quotations specifies the file name of the data
to be written on magnetic tape.

Execution of the WRITE (MTW) statement causes the Array Data
Segment(s) to be written on magnetic tape at the tape's current
position. Figure J.1 gives the format specification of an Array
Data Segment.

An EOF (End of File) tape mark is written under the following
conditions:

a) When End of Test occurs and the tester is in automatic
mode, and at least one WRITE (MTW) statement has been
executed.

b) At the completion of each WRITE (MTW) statement when
the tester is in manual mode.

c) When the tester pauses as the result of a TOPSY
nPAUSE" command or a FACTOR "PAUSE" and at least one
WRITE (MTW) statement has been executed.

Only one magnetic tape unit may be used with the SENTRY-200 even
though the system may have more than one test station. Any of
the four stations which execute programs containing B..EAD (MTR)
and/or WRITE (MTW) statements will have access to the magnetic
tape unit. To avoid having read/write conflicts which could
destroy valid data, only one station of a multiple station system
should execute programs which utilize magnetic tape.

J-1

Physical Record
Number

1

2

2

J.2 READ ERRORS \

P A
F.AIRCHl!-0

SYSTEMS TECHNOLOGY

TABLE J-1. ARRAY DA'fA SEGMENT

Word
Number

1
2
3
4
5
6

1
2

N

Contents

f 8 character TRASCII code word
I for thG file ''name!!.
Data record length = N (integer)
0
0
0

, Words 1 to N are the contents of
one variable length FACTOR array.
(FST-1 floating point)

The maximum number of words per
each record is limited to 512,

'(but must not be fewer than 7).

J.2.1 Array Element Count Error \

If the word count of the tape data exceeds the number of elements
in the specified array(s) or if the declared array has less than
seven (7) elements, the system issues terminal error 40~ If the
array size is less than 7 elements, the tape is not advanced.
When the tape data word count exceed::> the array size, the tape
will have advanced to the end of the excessive tape segment prior
to accepting the next station 11START11 •

J.2.2 Data Trans·fer Error

If a data transfer error is detected, terminal error 31 is issued
and the tape is positioned forward to the beginning of the next
file. The TOPSY prograi.'TI statement counter is reset such that
when station IJSTART" is depressed, the loaded program will begin
execution at statement one (1).

J-2

l=A!~CHILO

SYSTEMS TECHNOLOGY

J.2.3 End of Tape Error \

If the End Of Tape (EQT) mark is encountered before the specified
segment is found, the tape is rewoundto the Beginning Of Tape
(BOT) mark and terminal error 36 is issued. The TOPSY program
statement counter is reset such that when station "START" is
depressed, the loaded program will begin execution at statement
one (1).

J.2.4 Mamory Protect \
I

If the memory protect switch located on the tape controller is
enabled, the system issues terminal error 37 and the TOPSY
program counter is reset such that when station nsTART" is
depressed, the loaded program will begin execution at statement
one (1).

J.3 WRITE ERRORS

J.3.1 Data Transfer Error

If a data transfer error is detected, terminal error 33 is issued
and the tape is positioned backwards to the start of the current
file. The TOPSY program counter is reset so that when station
11 START" is depressed, the loaded program will begin execution at
statement one (1).

J.3.2 End of Tape Error

If the End Of Tape (EOT) mark is encountered prior to completion
of a WRITE operation, the tape is rewound and the system issues
terminal error 35. The station is unloaded so that it cannot be
restarted by pushing station 11 START". This avoids accidental
writing over good data at the beginning of the tape.

i
J.3.3 Array Element Count Error ;

'

If an array of size less than seven (7) appears in the WRITE
statement, terminal error 40 is issued, (se~ below J.3.4).

'
J.3.4 Unrecoverable Errors 1

1

Any errors other than those described above are considered to be
unrecoverable and the system issues terminal error 40. The TOPSY
program statement counter is reset.

J-3

F=.Al~CHILC

SYSTEMS TECHNOLOGY

J.4 STANDARD MAG TAPE OPERATION IN TOPSY I
J.4.11

Before executing a program employing mag tape read or write
statements, the operator must set the tape at the BOT marker of
the tape file the program is to read or write.

J.4.2 I
The instructions relating to the periodic maintenance of the mag
tape should be attended to if error free operation is desired.

J.4.3 I
Before executing the TOPSY program, the REMOTE switch on the mag
tape unit must be enabled.

J.4.4 \

After steps J.4.1 through J.4.3 it is only necessary to execute
the TOPSY program from the tester station. All mag tape controls
are performed by TOPSY.

J.5 UNUSUAL MAG TAPE OPERATION IN TOPSY

J.5.1 Catastrophic Errors \

If a 'catastrophic' error occurs during mag
the user desired to make some attempts to
following course of action is recommended
procedure.

J.5.1.1 Write Operation ;

tape operation and
recover then the

as a desperation

Go back to DOPSY manually and execute two tape mark writes, viz:

II MTAP TMARK (twice),

fol lowed by:

I I 1'ITAP SKIP BACK 1 RECS

.J-4

J.5.1.2 Read Operation

FA!RCHiLC
D1 IF -IRJ
SYSTEMS TECHNOLOGY

Go back to DOPSY manually. Rewind the tape via the tape
transport REWIND switch and restart TOPSY.

J.5.1.3 Warning \
I

The user should be a~are that thes~ r2covery actio~s bypass the
normal TOPSY-DOPSY return ancl, consequently, do not update the
present state of TOPSY. When TOPSY is reentered, it is
initialized to the state prior to the last return to DOPSY.

J-5

FAl~CHSLO

SYSTEMS TECH,'JOLOGY

Appendix K

Factor Syntax Table

Ti1is appendix p1·ovides a Factor Syntax Table. To use the table,
locate the Syntactical Entity that is to be defined, and read the
applicable references in the Definition column. To define each
reference listed in this column, simply locate the applicable
reference in the Reference column, and read the definition in the
Definition column.

1Ietasymbols used within the table are defined below:

METASY~lBOL

e

<>

{}

NillANING

The vertical line means 'or'.

Theta means the previous entity
for that applicable definition
referenced.

Entities enclosed within angle
brackets are optional.

Three periods mean continuous,
but self-evident entities.

Braces mean specify one and only
one of the enclosed entities.

NOTE

Brackets, parentheses, periods, corn.mas, colons,
single quotes, the slash, and semi colons are
required and are not syntax. Arithmetic sym­
bols in the table follow conventional Factor
meanings.

K-1

Syntactical Entity

Octal digit
Decimal digit
Letter

Identifier
Variable
Stri~g

Octal integer
Decimal integer
Decimal fraction
Decimal number
Unsigned number

Actual parameter list
Subroutine reference
Function reference

Primary term
Complement term
Power term
Multiplying term
Adding term
Relation term
Intersection term
Expression

NOISE statement

RE~I statement

Assignment statement
GOTO statement
CALL statement
PAUSE statement
IF statement
FOR statement

Output statement
Input statement
DCL statement
Tester statement

DCL Initializ~tion part
DCL element

Output device

K-2

F=AIFiCHILC>

SYSTEMS TECHNOLOGY

Definition

0 1 21314151617
0 8 9
A1B cj ... IXIY!Zj$

.'l ,1 8d [tH,
1 1 [191

' .
'(Character set-quoTe)'

oBjoe
ctlcte
.5
51615 6
7 7 E 5.j7 E{+!-} 514

19je 1 19
1 (9) I 1
1 (9)

2!8[11j(19)
12 NOT 121-12
13 e+13
14 8{*1/} 14" .
15 e {+1-} 15
16 e{LT LEIEQINEQIGE!GT}
17 e AND 17
18 e {OR I EOR} 1s

NOISE l j 6, 1

16

REM followed by anything but
END1 ELSE OR I; I

2 = 19
GOTO 40
CALL 10
PAUSE 19
IF 19 THEN 39<ELSE 39>
FOR 2 = 19 THRU 19 <BY 19>
DO 39
WRITE (35) 36j WRITE 36
READ (37) 381 READ 38
DCL 3416, 34
Res word <arg><exp><modify>;

sj {+I-} s[e,e
2 2/33/

{ TTP I LP I ~ITW 3 I POD! EI RI DOF} I 8

Reference

0
d
Jl,

1
2
3

4
5
6
7
8

9
10
11

12
13
14
15
16

18
19

21

22

23
24
25
26
27
28

29
30
31
32

33
34

35

l=AIRCHIL...CJ

SYSTEMS TECHNOLOGY

FACTOR SYNTAX TABLE (Continued)

Syntactical Entity

Output list
Input device

Input list

Basic statement
Label
Statement ·
Program
Compound state

BLOCK

Argument
Function block
Subroutine block

Terminator

Definition Reference

31218/5/,9,8
{TTKITTR CRIMTR 3IPIDjDIF!EIRI 37
BCR} ! s
?le ?. 38 - I ' ,...

221231 ..• l32l43j44l46j47
1:
39140: 39
<43 j 44> 41 49
BEGIN 41 49

BLOCK 41 49

39
40
41
42
43

44

11e, 1 45
FUNCT 1 (45) 41 49 46
SUBR 1;41 49!SUBR 1 (45) 41 49 47

END; 49

K-3

FAIRCHIL.C

SYSTEMS TECHNOLOGY

Appendix L l
Floating-Point Package\

'

Calling sequences and timings for the individual subrou~ines of
the floating-point package, and the internal format and range of
floating-point values are discussed below.

Calling Sequences:

Type 1 Subroutines:

FCAM, FMUL, FDIV, FSUB, FADD, FAND, FOR, FEOR

All of these subroutines require two floating-point
parameters. Value 1 must be in the A-register, value 2 is·
obtained indirectly, (the floating-point result is returned
in the A-register):

CALL FPSUBR
NOP ADDRV2

call each subr by name with value 1 in A-reg
address of value 2 in address field

Type 2 Subroutines:

(FNOT, FNEG, SQRTF, FLOG, FEXP):

All of these subroutines require one floating-point value in
the A-register. (The floating-point result is returned in
the A-register):

CALL FPSUBR call each subr by name with value in A-reg

Type 3 Subroutine (One-Word Fixed-T:o-Floating):

On entry the A-register has a signed iDteger value. On exit
the A-register has the required floati~g-point value:

CALL FFLT

Type 4 Subroutitie (One-Word Floating-to-Fixed):

On entry the A-register has a floating-point value. On exit
the A-register has the one-word (signed) integer value:

CALL FFIX

L-1

rt 2 I JUI
F=AIRCH!L.C

SYSTEMS TECHNOLOGY

Type 5 Subroutine (Two-Word Fixed-To-Floating):

On entry the A-register has a (signed) integer value and the
E-register has the power of 10 multiplier(+ or power).
On exit the A-register has the required floating-point
value:

CALL FFLTS

Type 6 Subroutine (Two-Word Flo a ting-To-Fixed) :

On entry the A-register has the floating-point value to be
fixed. On exit the A-register contains a signed integer and
the E-register contains the pmver of 10 multiplier:

CALL FFIXS

Timings:

FNEG: 3 cycles (constant)

FCAM: 24 cycles (constant)

FDIV: 103 cycles (maximum) .. if either or both argLJIDents negative
101 cycles for both arguments positive

96 cycles for overflow: both arguments negative
95 cycles for overflow: either argument negative
94 cycles for overflow: both arguments positive
89 cycles for underflow (0 result): both arguments

negative
88 cycles for underflow (O result): either argument

negative
87 cycles for underflow (O result): both arguments

positive
31 cycles for 0 divisor (dividend negative): overflow

bit set
30 cycles for 0 divisor (dividend positive): overflow

bit set
3 cycles for 0 dividend

FMUL: 101 cycles (maximum) .. if either or both arguments negative
99 cycles for both arguments positive

L-2

94 cycles for overflow: both argumen~s negative
93 cycles for overflow: either argument negative
92 cycles for overflow: both arguments. positive
87 cycles for underflow (O result): both arguments

negative
86 cycles for underflow (O result): either argument

negative

F'FLT:

FFIX:

FAIRCHl1-C

SYSTEMS TECHNOLOGY

85 cycles for underflow (0 result): both arguments
positive

26 cycles for 0 multiplier (0 result): multiplicand
negative

25 cycles for 0 multiplier (0 result): multiplicand
positive

3 cycles for 0 multiplicand

36 cycles (maximum): values -1 through -7
35 cycles: -10 thru -377 octal, (-8 thru -255 decimal)
34 cycles: -400 thru -17777 octal
34 cycles (maximum for positive values): 1 thru 7 octal
33 cycles: -20000 thru -37777777 octal
33 cycles: 10 through 377 octal
32 cycles: 400 through 17777 octal
31 cycles: 20000 through 37777777 octal

3 cycles: value O

41 cycles (maximum): 53100000 (-1000000) to 52200001
(-17777700)

40 cycles: 54400004 (-20000) to 53200001 (-777774)
39 cycles: 55600200 (-400) to 54400005 (-17777)
39 cycles: 24700000 (1000000) to 25577777 (17777700)
38 cycles: 57500000 (-1) to 55600201 (-377)
38 cycles: 23377774 (20000) to 24577777 (777774)
37 cycles: 22177600 (400) to 23377773 (17777)
36 cycles: 20300000 (1) to 22177577 (377)
24 cycles: negative overflow: threshold: 52100000
23 cycles: positive overflow:, threshold: 25700000
17 cycles: negative underflow: threshold: 57600001
16 cycles: positive underfiow: thr~shold: 20177777

3 cycles: value 0

SQRTF: 160 cycles (maximum) .. exponent even
156 cycles if exponent odd

Note 1:

Note 2:

Note 3:

10 cycles for negative argument: overflow bit set
3 cycles for 0 argument

By 'signed' is meant that a negative value is the
internal machine representation for negative values
(two's complement of the corresponding positive
value).

Any error results
exit. CAUTION:
responsibility to
subroutine call.

in the overflow bit being set on
IT is the programmer's own
clear this bit before a subsequent

Internal floating-point format:

L-3

FAlr::lOHIL..D

SYSTEMS TECHNOLOGY

Bit 23: Sign (of. value, ie, sign of 1 MANTISSA 1)

O: value is positive,
1: value is negative (TCA of positive value)

Bits 22--16: Biased characteristic (7 bits)
(100) 8 =BIAS, ie, represents 0 characteristic
(177)8 represents (63)10 characteristic
(000)8 represents (-64)10 characteristic

Bits 15--0: Fractional mantissa, ie, octal point is to the
left 0£ bit 15. Thus bit 15 = 1/2,

bi~ 14 = 1/4, etc.
Examples: Representation of (23.5)10:

(23.5)10 = (27.4)8 = (10111.1)2
= (0.101111)2 *2t5

Note 4:

L-4

Thus to create the floating-point number:­
nurnber is positive, therefore sign = O
characteristic = (105)8 = (1000101)2
ie, bias + 5 --(100 + 5 from 2t5 above)
mantissa = (1011110000000000)2
ie, the (0.101111)2 from above left-justified in
16 bits.
Putting the sign, characteristic and mantissa
together: 0 1000101 1011110000000000
ie: (010001011011110000000000)2
ie: (2 1 3 3 6 O O o)8
Thus (21336000)8 is the required value.

Representation of (-23.5)10:
Take the tw'O's complement of the floating-point
value for (23.5)10, ie, 2's complement of
(21336000)8
ie, (56442000)8. This is the required value.

Range of Floating-Point Values:

The smallest positive floating-point value which FPP
can handle is represented by (00100000)8. The value
of this is (.1)2 *2t(-64) = (.5)10 *2t(-64) = 2t(-65)
= 2.711E-20 (approximately).

The largest positive floating-point i:.;al ue which FPP
can handle is represerited by (37777777)8. The value
of this is (.777774)8 *2t(63) = 2t(62) + 2t(61) + 2t
(60) + 2t(59) + 2t(47) = 2 t(63) 2t (47) =
9.445E18 (approximately).

The negative range exactly parallels the positive range.

	000
	001
	002
	003
	004
	005
	006
	007
	01-01
	02-01
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02
	G-01
	H-01
	H-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	J-01
	J-02
	J-03
	J-04
	J-05
	K-01
	K-02
	K-03
	L-01
	L-02
	L-03
	L-04

