
FST-1, -2 SUBROUTINE

LIBRARY MANUAL

F=AIRCHIL.CJ

SYSTEMS TECHNOLOGY
A DIVISION Of FAIRCHILD. CAMERA MID INSTRUMENT CORPORATION

SENIRY

FST-1, -2 SUBROUTINE

LIBRARY MANUAL

Manual Part Number: 57000026
Date Released: June 1977

F=AIRCHIL.C

SYSTEMS TECHNOLOGY
A OIVISION OF FAIRCHILD CAMERA ANO INSTRUMENT C<mPORAT!OH

PREFACE

This manual describes callable system subroutine that are available to the user.
These routines are automatically loaded when called by the user's program. A fa­
miliarity with disk files and disk operating system (DOPSY) procedures is assumed.
For additional or reference information ref er to the following publications:

Publications

Sentry VII User Manual
FST-2 Computer Manual
Sentry VII Communication Link User's Manual
FST-1 Assembler Reference Manual
Register Formats Reference Manual

iii

Manual Part Number

57000013
57000002
57000003
67094951
67095504

TABLE OF CONTENTS

Section Title Page

PREFACE • iv

1 IOCS PROCEDURES 1-1

1.1 INTRODUCTION 1-4
1.2 TTPIO. 1-4
1.3 TTRIO. l-4
1.4 CRIO 1-5
1.5 LPIO 1-7
1.6 DISC IO 1-9
1.7 MTIO • 1-10
1.8 COMMUNICATION LINK I/O (CLIO). • 1-10
1.9 MESSAGE SEQUENCING. • 1-17

2 MESSAGE SEQUENCING. 2-1

2.1 INTRODUCTION 2-1
2.2 CRASC 2-1
2.3 ASCBIN • 2-1
2.4 BINDEC • 2-2

3 FILE PROCESSING PROCEDURES 3-1

3.1 INTRODUCTION 3-1
3.2 OPEN. 3-4
3.3 CLOSE 3-5
3.4 READ. 3-5
3.5 WRITE 3-6
3.6 GETW. 3-6
3.7 PUTW. 3-7
3.8 GET. 3-7
3.9 PUT. 3-8
3.10 SCAN. 3-8
3.11 GFREC 3-9
3.12 PF REC • 3-10
3.13 FIND • 3-11
3.14 OUTREC • 3-11

v

Section Title

3.15 INREC • • • • • • • • • •
3.16 SRCH (ENTRFN, WRITDS) • •
3.17 DFILEN • • • • • • • ••

APPENDIX

A CHARACTER SET

B BUFFER FORMAT

C DRIVER ERROR MESSAGES • •

D HOST STATUS MESSAGES • • •

E HOST - FST-2 COM LINK I/O EXAMPLES

INDEX • • . • • •

LIST OF TABLES

TABLES

Page

•• 3-13
• • • 3-13

• 3-14

A-1

• • • B-1

. C-1

D-1

• E-1

• • I-1

1-1 SUBROUTINE CALLING SEQUENCE OPERATION CODES • • 1-2

1-2 FST-1 INTERNAL CODES •

3-1 PMF HEADER FORMAT ••

1-6

3-2

3-2 OUTFILES, INFILES, NAME/NUMBER CORRESPONDENCE . • • 3-15

A-1 TASCH CODE • • •• A-1

LIST OF FIGURES

FIGURES

1-1 OPCODE FORMAT • 1-15

1-2 STATUS WORD FORMAT •• 1-16

3-1 PERIPHERAL AND MAIN MEMORY HEADERS •• 3-3

B-1 FOUR, SIX-BIT CHARACTERS PER WORD FORMAT • • B-1

B-2 TWO, TWELVE-BIT CHARACTERS PER WORD FORMAT • B-2

vi

1.1 INTRODUCTION

SECTION 1

IOCS PROCEDURES

All of the 1/0 routines are very similar with regard to calling sequence and usage.
The similarities will be discussed in this section; subsequent sections d~al with the
particulars for each 1/0 routine.

An 1/0 procedure acknowledges two types of calls. The first of these is used to
initiate an operation on a device. Its general form is:

CALL
DATA
DATA
(DATA

ioname
integer
deb address/integer
name)

The name of the 1/0 procedure occurs in the operand of the CALL statement. The
DATA statement immediately following the CALL specifies the operation to be
performed. These values and the operations assigned to them are described in
Table 1.1.

If the operation is one involving a data transfer, the second location after the
CALL will contain the address of the data control block, DCB, where the following
information is stored. The first word of the DCB is the number of words to be
transferred, the second is the core memory address of the first location to be
read/written; the third word of the DCB is required only for disc transfers and is
the disc address (in segments) of where the data is to be read or written.

Example

DATA
BSS

48, *+2, 80
48

This DCB can be used for a 48 word transfer between core memory and track one,
sector zero on the disc. The DCB and its corresponding buff er area should not be
altered until the I/0 operation has been successfully completed; this is true of all
1/0 operations.

For some operations not involving a data transfer, the entry at CALL+2 will con­
tain a count. The SPACE operation of LPIO, for example, uses this count to deter­
mine how far to space.

1-1

TABLE 1-1 SUBROUTINE CALLING SEQUENCE OPERATION CODES

Subroutines

Type Octal
of Code Code TTRIO ITPIO CRIO DISC IO LPIO t.1TIO

Test 0 BUSY BUSY BUSY BUSY BUSY BUSY

Read 1 READ READ READ READ BINARY
TTK BINARY BINARY

Read 2 READ READ
TTR ALPHA

Write 3 KILL PRINT BINARY WRITE PRINT WITH- WRITE BINARY
cr- lf* BINARY OUT LINE

FEED

Write 4 PRINT BCD PRINT WITH WRITE TAPE MARK
cr-lf LINE FEED

Motion 5 RECORD SKIP FORWARD

Motion 6 SPACE N RECORD SKIP BACK
LINES

Motion 7 TOP OF FORM REWIND

Motion 10 FILE SKIP FORWARD

Motion 11 FILE SKIP BACK

12

Write 13 PRINT BINARY
no cr-lf

Write 14 PRINT BCD
no cr-lf

* cr-lf is carriage return - line feed

The entry at CALL+3 is not used by all I/O procedures, but when used it must
contain the address of a user error routine. This error routine will be entered when
either a recoverable error persists after ten attempts to correct it or an error in
the DCB has been detected. This error routine is treated as an extension of the I/0
interrupt routine and must return by executing a BRU* to its entry point. The A
register will have the following format when the error routine is entered:

Bit Description
19 On if DCB error.
20 On if data overflow.
21 On if parity or validity error.
22 On if end-of-file (EOF).
6-0 Device address.

More than one of the bits 22-19 may be on at a time.

Some general comments on these error conditions:

DCB errors either result from the memory address exceeding the core avail­
able or from an excessive word count.

Data overflow results when a device needs a memory cycle to empty /fill a
buff er and, because of other memory demands, cannot get one.

Parity/validity error indicates a data transmission error, illegal card codes,
etc.

When control returns to the I/O interrupt routine, the operation will be accepted as
correct if the A register is non-zero; otherwise, it will be tried again.

As they are currently implemented, the I/O routines, except those for the teletype,
use locations 75B-77B as a pre-operative error routine. An illegal operation value
or device not ready will cause a halt at 76B to be executed. This can be readily
identified by the fact that the program· counter is lOOB and the A register contains
the device number in bits 6-0.

The I/0 procedures operate with the interrupt system and automatically overlap
I/O with program execution. In order for the user to take advantage of this, a
special type of call is provided Its general format is:

CALL
DATA

ioname
0

BUSY RETURN
NOT BUSY RETURN

This "operation" tests to see if the 1/0 routine has completed processing the pre­
vious non-test operation. If the 1/0 routine is busy, control will return to CALL+2;
if it is idle, (data transfer complete), control will return to CALL+3.

1-3

No prov1s1on is made in the 1/0 procedure for handling re-entrancy. The user
should, therefore, be very careful about calling 1/0 routines from interrupt pro­
cessors. When an I/O routine is called, it will save and restore any index registers
that it requires, but will not save or restore the A and E registers. The interrupt
routines, obviously, are not quite so reckless.

If an 1/0 routine is CALLed by a user program, care must be taken to insure that in
case of any software error, control is returned to the Automatic Restart Routine
(ARR, location 125B) so that all interrupt entrance locations will be relinked with
the proper system routine.

In the following paragraphs the details of each 1/0 routine are presented. Since the
"test" operation is the same for all such routines, further discussion is not required
an is, therefore, omitted.

1.2 TTPIO

Purpose:. To output a record to the teletype.

Calling Sequence:

CALL
DATA
DATA

TT PIO
operation
deb

NORMAL RETURN

operation - 3 BINARY print, with CR/LF.
BCD print, with CR/LF.
BINARY print, without CR/LF.
BCD print, without CR/LF.

Description:

4
138
148

TT PIO will output to the teletype the contents of the buff er described by the DCB.
The buffer is assumed to contain four TASCH characters per word; see Appendices
A and B. TT PIO will output a carriage return and line feed after the last character
is printed only if bit 3 of the operation is not set. Because of the 72-character
limit to a teletype line, the word count must be less than 19 or the last characters
will be truncated. In the BINARY mode, every character in the buffer will be
printed. In the BCD mode, trailing blanks will not be printed.

Because the teleprinter is also shared with TTRIO, TTPIO sets a flag in the
COMREC so that no keyboard input can be initiated while an output operation is
being performed.

1.3 TTRIO

Purpose: To input a record from the teletype keyboard or paper tape reader.

1-4

Calling Sequence:

CALL
DATA
DATA

TTRIO CALL
operation DATA
deb

NORMAL RETURN

OR
TTRIO
operation

BUSY test operation - 1
2

READ keyboard operation - 0
READ paper tape 3 KILL pending input

Description:

TTRIO will input into the specified buffer until the buff er is full or until a carriage
return is encountered; in the latter case, the buff er will be padded with spaces.
The TASCH characters are placed in the buffer four per word, see Appendices A
and B. When TTRIO is ready for keyboard input, it will output the character
obtained from the high-order six bits of the operation entry. If unspecified, it will
be a space. This character can be used to uniquely identify the source of the input
request, i.e., the monitor's *, etc.

All characters read from the keyboard will be echoed, i.e., sent to the teleprinter;
like paper tape input, however, only the printing characters, the T ASCII set, are
placed in the buffer. Two of the control characters are used by TTRIO to provide
limited editing. The characters produced by CTRL B and CTRL L are used to
indicate BACKSPACE and LINE DELETE, respectively.

CTRL B will cause the buffer character pointer to be backed up one character
position. This is indicated by echoing a ' 'if the input is from the keyboard.

Example:
I I RENS AME 'TESTl 2' AS 'TEST3"
I I REN AME 'TEST2' AS 'TEST3'

CTRL L will cause the buff er character pointer to be set to zero. This is indicated
by echoing carriage return, line feed, and the input request character, if the input
is from the keyboard. The same net result, emptying the input buffer, could be
obtained by an appropriate number of backspace characters.

Example:

1.4 CRIO

*
*DP3Jl

STA TABLE+3 CTRL L
STA TABLE+3

Purpose: To input a record from the card reader.

1-5

TABLE 1-2 FST-1 INTERNAL CODES

029 029
TASCll ASCll Code TASCll ASCll Code

Char. Code Graphic Char. Code Graphic

Space 00 240 @ 40 300
! 01 041 A 41 101
II 02 042 B 42 102
03 243 c 43 303
$ 04 044 D 44 104
% 05 245 E 45 305
& 06 246 F 46 306
I 07 047 G 47 107

(10 050 H 50 110
) 11 251 I 51 311
* 12 252 J 52 312
+ 13 053 K 53 113

' 14 254 L 54 314
- 15 055 M 55 115

16 056 N 56 116
I 17 257 0 57 317

0 20 060 p 60 120
1 21 261 Q 61 321
2 22 262 R 62 322
3 23 063 s 63 123
4 24 264 T 64 324
5 25 065 u 65 125
6 26 066 v 66 126
7 27 267 w 67 327

8 30 270 x 70 330
9 31 071 y 71 131
: 32 072 0-8-2 z 72 132 . 33 273 [73 333 < ' < 34 074 12-0 \ 74 134 ---,

= 35 275 J 75 335 >
> 36 276 11-0 t 76 336 I
? 37 077 + 77 137 -

Carriage Return 215 Delete 377
Line Feed 012
Bell 207

1-6

Calling Sequence:

CALL
DATA
DATA
DATA

CRIO
operation
deb
error

operation - 1
2

Description:

NORMAL RETURN

BINARY READ
BCD READ

CRIO will read a card into the specified buffer. The two types of read, BINARY
and BCD, produce twelve and six bits per card column, respectively; the format of
the resulting buff er contents is discussed in Appendix B. The maximum word count
one can use without producing a DCB error is 20 for BCD mode and 40 for BINARY.

The six bit code produced by the BCD read is not the TASCH code expected by the
system, but it can be converted to TASCH by the procedure CRASC. Table 1-2
shows the six-bit encoding for the card code produced by the 029 keypunch. This
table shows that there are six card codes whose graphic characters do not
correspond to any in the TASCH set; the handling of these is discussed in CRASC.

CRIO requires manual intervention on card jams and validity errors and will retry
the read when the required intervention has occurred. The validity check occurs
when an illegal card code is read; this can happen only in the BCD mode. The BCD
character set can be used to produce all 64 possible combinations in the bed mode.

The user error routine is entered either as a result of DCB errors, data overflow, or
an EOF condition. The EOF condition occurs when the card reader goes not ready
and the output stacker is full or the input stacker is empty. In either case, the
reading of the last card cannot be successful until the card ready goes READY
again. The normal mode of operation is to ignore this condition and let the pro­
gram detect a '/ /' record for an end-of-dile. This record should be followed by a
dummy one if it is the last record in the input stacker.

1.5 LPIO

Purpose: To output a record to the line printer.

Calling Sequence:

a) CALL
DATA
DATA

LPIO
operation
deb/space count

NORMAL RETURN

1-7

b)

Description:

operation ..,. 3
4
6

CALL
DATA

LPIO
operation

operation - 7

PRINT (no line-feed)
PRINT (with line-feed)
SPACE N LINES

NORMAL RETURN

TOP OF FORM

LPIO will transmit the contents of the specified buffer to the line printer or posi­
tion of the printer paper in a particular way. The buffer is assumed to contain four
six-bit TASCH characters per word, see Appendix B.

1-8

The line printer operates in two modes, format mode and normal mode. In the
format mode, all print and space commands do not consider the space between
bottom of form (BOF) and top of form (TOF) as part of the page. That is, the page
perforation is skipped automatically. In the normal mode, the region between BOF
and TOF can be used for printed output (i.e., where an end of page discontinuity is
not desired).

The print commands require a DCB address at CALL+2. The DCB word count
should not exceed 33, reflecting the maximum (132 character) line printer print
span. If this should occur, characters in excess of 132 will not be printed. In the
case of the 80 column printer, if the DCB word count exceeds 20, then 60
characters will be printed in columns 1-60 of the first of a two line pair and the
remainder right justified on the second line. For space commands, CALL+2 con­
tains the number of lines to space; only the low-order seven bits are used.

1.6 DISCIO

Purpose: To transmit data between the disc and core memory.

Calling Sequence:

CALL
DATA
DATA
DATA

DISC IO
operation
deb
error

operation - 1
2
3

Description:

NORMAL RETURN

BINARY READ
PARITY CHECK
BINARY WRITE

DISCIO will transmit blocks of data between disc and core memory. The maximum
size of a block is 16,384 words. Every write operation performed by DISCIO is
automatically followed by a parity check to assure that parity was generated
properly.

The third word of the DCB required by DISCO is the disc addre.ss of the disc area to
be read or written. For this purpose, the disc is treated as a magnetic tape with
16,000 - 48 word records (sectors). The disc address is a binary value in the range
of '0' to '15999' of the first such record (sector) involved in the transfer.

1-9

1.7 MTIO

Purpose: To transmit data between core memory and magnetic tape.

Calling Sequence:

CALL
DATA
DATA
DATA

MTIO
operation
deb or count
error return

NORMAL RETURN

operation 0 BUSY TEST
READ 1

2
3
4
5
6
7
8
9

INVALID OP CODE
WRITE
WRITE TAPE MARK
RECORD SKIP FORWARD
RECORD SKIP BACKWARD
REWIND
FILE SKIP FORWARD
FILE BACKWARD

MTIO transmits blocks of data between magnetic tape and core memory, perform
error analysis, and executes miscellaneous commands to cause tape movements and
writing or tape marks. The minimum block size is six (6) words and the maximum is
16,384 words.

If the operation specified is either a record skip or file skip, XALL+2 should specify
the number of records or files to be skipped.

The DCB used by MTIO is a standard 2-word DCB containing word count and core
buffer address in that order.

1.8 COMMUNICATION LINK I/O (CLIO)

This section describes the procedures available to users by means of the call
directive to communicate with the host using the Communications Link Driver,
CLIO.

GENERAL DESCRIPTION

GENERAL FORM

CALL
DATA
DATA
BRU

Calling Sequence:

1-10

CLIO
operation code
deb address
error /Busy /EO F

CLIO is the host Data Link I/O procedure name and when used in the operand of a
CALL statement will cause the Data Link Driver to be loaded and linked at
COREIMAGE CREATE time.

CALL + 1 - Contains the operation code which defines the desired operation.

CALL + 2 - Contains the Data Control Block (DCB) address. The DCB is a three
word block that provides the following information;

DCB + D - Message length (max)
DCB + 1 - Message first word address (FW A)
DCB + 2 - CLIO status on return

Data may either be binary or TRASCII. The data message is expressed in FST-2
words. Recall that there can be four TRASCII characters, left justified, per FST-2
word. The maximum word count/character count is 28 words or 112 characters
respectively for TRASCII or 37 words Binary.

CALL + 3 - is the error exit on all operations and the busy exit on the busy test.
This location should contain a branch to a user written error routine for proper
recovery. The A-register contains a value indicating the error type.

On all returns from CLIO, the contents of the index registers preserved. The E­
register as well as DCB + 2 contains the status of CLIO. The A-Register contains
an error number on error return and zero on a good return (except message type 5,
the status response).

CALLING PROCEDURES

Command D, Driver Status and Message Control

Message Type D, Driver Status

CALL
DATA
DATA
BRU

CLIO
B4 + B3
deb
busy/error
return - not busy

Busy is defined as the last initiated write, operation has not completed. This is due
to the time it takes to perform the operation and also includes the time it takes for
the host to acknowledge the operation. Busy may also be due to failure, either an
inoperative interface or a line disconnect (hang-up) condition. If the latter case
exists and the driver is called with a message type other then 3 No, a find-out error
will occur after approximately 15 seconds.

NOTE

Ref er to Figure 1-1 for a diagram of the Opcode for mat.

1-11

Opcode: =
B3 =
B21 =

=

0,
1,
0,
1,

Busy test, if Busy, Rtn =CALL+ 3 ELSE CALL + 4
Status in E-REG & DCB+ 2, RTN = CALL+ 4
Current input character count
Current output character count

Message Type 1, File Request

CALL
DATA
DATA
BRU

CLIO
lOOOOB + B21 +SSA
deb
error

This call causes the host to make available (open) the file defined by the header
found in memory pointed to by the DCB. When a file request is made of the host,
the next operation must be a file transmit read, message type 2. The Header must
be TRASCII.

Opcode: B21 = 1, Write, a request of the host
= 0, Read

SSA = 0 -2, The Sub-system Source Address

Message Type 2, File Transmit

CALL
DATA
DATA
BRU

CLIO
20000B + B21 + B4 + B3 +SSA
deb
error

This call causes either the host (write) or the FST-2 (read to create or append to a
named space for the subsequent upload or download of data records. On an upload
the file identification is specified by the header found in memory defined by the
DCB. On a download, the header is an image of the preceding file request message
type 1. The header must be TRASCII.

Opcode B21 = 1, Write, used preceding the upload of a data file
= 0, Read, used preceding the download of a data file

B3 = 1, Append to an existing file
= f), Create a new file

B4 = 1, The following file is Binary
= f), The following file is TRASCII

SSA = f) -2, The Sub-System Source address

Message Type 3, DATA

1-12

CALL
DATA
DATA
BRU

CLIO
30000B + B21 + B20 + SSA
deb
error/End of File

This call causes a data message to be read or written. The required sequence of
file request, status response, and file transmit operations must have first been
performed.

Opcode: B21 = 1, Write
= f), Read

B20 = 1, Binary message
= f), TRASCII message

SSA = t}-2, The Sub-System service address

Message Type 4, File End

CALL
DATA
DATA
BRU

CLIO
40000B + B21 + B3 +SSA
deb
error

This call is executed after the last data message is sent or received and signals the
completion of the current upload or download. The open file is then either closed
and made available for other processing or it is purged and deleted depending on bit
3.

Opcode: B21 = 1, Write
= f), Read

B3 = 1, Purge and delete the file
= fJ, Close and keep the file

SSA = t}-2, The Sub-System Service address

Message Type 5, Status Message

CALL
DATA
DATA
BRU

CLIO
50000B + B21
deb
error

This call transfers a system status message. A status message can occur after any
read or write to signal an error, but normally occurs after the file transmit and file
end messages signalling successful operation. On a read, Status is supplied in the
A-register (binary) and the first 2 characters of the header (TRASCII)/ See
Appendix B for the list of Status responses.

NOTE

Ref er to Figure 1-2 for a diagram of the Status word format.

Opcode: B21 = 1, Write, Status value in B3-8 of the opcode
= fJ, Read, A-Register contains the status value

1-13

Message Type 6, Control Messages

CALL
DATA
DATA
BRU

CLIO
60000B + B21 + B4 + B3
deb
error

This call causes control and messages to be communicated between systems. If B5,
B4 and B3 are zero, a NOP message results.

There is no difference between types l, 2, or 3 at the driver level but may take on
meaning at the next level of software.

Type 1 - I am about to hang-up.
Type 2 - Normal DOPSY /TOPSY operator messages.
Type 3 - Operator messages that are remote system commands.

Command 1 - Initiate Call-Up

CALL CLIO
DATA 1
DATA deb
BRU error

This call initiates the call-up procedure and must be executed prior to performing
any other call to CLIO (except status requests).

Opcode: = 1

Command 2 - Initiate Hang-up

CALL
DATA
DATA
BRU

CLIO
2
deb
error

This call initiates hang-up such that line disconnection is performed in an orderly
Opcode:= 2

1-14

OPCODE FORMAT

23 21 18 15 12 g, 6 3 0

j.-MsG-..1.-.ssA-. , ... 11--- PARM1-""""•-j.-CM0-..1
TYPE

TRASCll/81NARY

READ/WRITE

819

0/1 820

0/1 821

822

823

BD-2 CMD, The Command Field
=0, Status and Message Control
=l, Initiate Call-Up
=2, Initiate Hang-Up

B3-8 PARMl, A message type specific parameter field

B9-11 SSA, The Source System Sub-Address
=0, All non-test station related operations
=1, Station 1
=2, Station 2

B12-15 MSG Type, One of six message types described under command 0 ·
along with CLIO status request.

B19-23 PARM2, A global parameter field.

Figure 1-1, Opcode Format

1-15

STATUS

23 21 18 15 12 9 6 3

1.--MsG--.,..._ssA--.j-+--CHARACTER CNT
TYPE

NEW MESSAGE AVAILABLE= 1 BIB

CONNECTED/DISCONNECTED 1/0 B19

.....__---TRASCl!/BINARY 0/1 B20

.___ ____ READ/WRITE 0/1 B21

....,._ _____ OPERATOR MSG AVAILABLE= 1 B22

......_ ______ .BUSY= 1 823

1-16

NOTES:

1) When new message available is indicated,
the new message type is found in B12-15,
else the message type of the current call.

2) The character count is input or output
count dependent on B21

3) If an error has occurred the E-register will
differ from DCB+2 in that instead of
character count, the contents of B0-3 will
contain a receive error indication if
applicable.

B.0 = 1 = Parity error
Bl = 1 = Framing error
B2 = 1 = Overrun error
B3 = 1 = LRC error

Figure 1-2 Status Word Format

0

.. ,

1.9 MESSAGE SEQUENCING

In order to perform a file transfer, upload or download, a prescribed sequence of
message type calls must be performed.

*
**

Download

Read/Write

Write
Read
Write
Read
Read
Write

Upload

Read/Write

Write
Read
Write
Write
Write
Read

Close - Purge

Read/Write

Write
Read
Write
Read

Message Type

1
2*
5
3
4
5

Message Type

2
5
3**
3
4
5

Message fype

2
5
4
5

Function

File request
File transmit - open
Status - OK, continue
Data message - first
File end - close
Status - successful transfer

Function

File transmit - open
Status - OK, continue
Data message - first
Data message - last
file end - close
Status - successful transfer

Function

file transmit - open
Status - OK, continue
File end - close with purge
Status - successful operation

If the host cannot honor the file request, this will be a message type 5, status
with the appropriate status value.
If the nost cannot honor this write, a message type 5, Status, will result.

1-17

SECTION 2

CONVERSION PROCEDURES

2.1 INTRODUCTION

This section describes the conversion procedures that are available for translating
from one character set to another or one number base to another.

2.2 CRASC

Purpose: To convert to TASCH the six-bit character code produced by the card
reader.

Calling Sequence:

CALL
DATA

Description:

CRASC
deb

NORMAL RETURN

The buffer is assumed to be of the format produced by a BCD read in CRIO. Each
six-bit character is replaced by its TASCH counterpart. Registers affected: A, E.

2.3 ASCBIN

Purpose: To convert six-bit TASCH characters to 12 bit column-binary
characters.

Calling Sequence:

CALL
DATA

Description:

ASCBIN
deb

NORMAL RETURN

ASCBIN is used primarily for producing BCD card output. The number of words
converted is determined from the word count entry in the DCB. Since each -bit
character is replaced by twelve-bits, the buff er area must be at least twice as
large as indicated by the DCB. At the completion of the operation, the user's DCB
word count will be doubled to reflect the increased size.

REGISTERS AFFECTED: A, E

2-1

3.4 BINDEC

Purpose: To convert a binary number to decimal.

Calling Sequence:

LDA
CALL

Description:

binary
BIND EC

NORMAL RETURN

BINDEC will return six four-bit characters in the A register. These characters
provide the decimal equivalent of the binary value. Note that if the binary value
exceeds 999,999 the conversion will be incorrect.

Registers Affected: A, E

2-2

SECTION 3

FILE PROCESSING ROUTINES

3.1 INTRODUCTION

The files residing on the disc are called Peripheral Memory Files (PMF). This
section deals with the procedures that are available for processing these files.
Some of these procedures are necessarily involved with housekeeping, but most are
involved with input/output on the files. In the latter group are procedures for doing
word I/O sequentially. These are discussed in detail in subsequent sections.

All of the procedures discussed in this section are associated with a PMF header.
This PMF header contains enough information to permit an arbitrarily large disc
file to be processed in pieces as small as 48 words, one sector. The PMF header is
nine words in length; its format is described in Table 3-1.

In the discussion that follows, all pointers/addresses use '0' origin referencing; the
first word/character has an address of '0', the second '1', etc.

The entries FS and FL (see Figure 3-1) are used to define that portion of the disc
addressable by the file 1/0 procedures. For output files, this will be the entire
space allocated to the file. For input files, it is only that portion of the file that
has been written. FS is a word address relative to the beginning of the disc and FL
is the number of words that can be referenced.

At any point in time, a certain portion of the file will be present in main memory.
This section of the file is called the WINDOW and is defined by WS and WL. WS is a
word address relative to FS and WL is the number of words currently in main
memory. WL generally is equal to 48*PL; the only time this is not true is when
48*PL would force the WINDOW to include part of the next file.

The area of main memory that the file is segmented into is defined by PS and PL
(see Figure 3-1). PS is the main memory address of the buffer area and PL is the
number of sectors available for this buffer. PS and PL must be assigned values by
the user; PMFH entries in words 2-5 are initialized and maintained by the file
procedures.

Table 3-1 illustrates the PMF header entries. The last two words of the PMF
header contain the name of the file that is being referenced and some flags
required for housekeeping. Working storage is 'treated' as a disc file and has the
special name ' ' (four blanks inside of quotes). The use of the flags in bits 3, 2,

3-1

and 1 or word 9 is described in more detail in the routines OPEN and CLOSE. The
flag in bit 0 is set whenever the contents of the WINDOW are altered; this will
always cause the current WINDOW to be written back to the die before reading in a
hew one.

Word Bit

1 23-0
2 23-0
.... 23-0 ,)

4 23-0
5 23-0
6 23-0
7 23-0
8 23-0
9 23-12
9 4
9 3

9 2-1

9 0

TABLE 3-1 PMF HEADER FORMAT

Descr1pt1on

CP - Current Pointer - word/char relative to FS
WS - Window Start - words relative to FS
WL - Window Length - words
FS - File Start - Disc Address in words
FL - File Length - words
PS - Page Start - Memory address in words
PL - Page Length - Sectors
First 4 characters of file name

Last 2 characters of file name
~actor DOF File Olen
1/0 Flag

1 = Input
0 = Output

File Type

0 = STRING
1 = DATA
2 = OBJECT
3 = CORE IMAGE

Modify flag. Set if window contents are altered.

The remaining entry, CP, is a word/character address relative to FS of the next
word/character to be affected by the sequential 1/0 procedures. Due to the dual
interpretation of the CP, it is not advisable to do both word and character 1/0 on a
file at the same time.

The procedures concerned with character 1/0, viz: SCAN, GET and PUT, can be
used for character processing on string buffers that are completely contained in
main memory and not associated with a disc file. In order to do this, it is necessary
for the user to initalize the entries of a dummy PMF so that the WINDOW
completely encompasses the entire buffer (file). In particular, WS=), FL and WL
are set to the length of the buff er and FS and PS reference the first location in the
buffer. CP should be set to the first character position to be affected; the
remaining entries should be set to zero.

3-2

l • ::J599 0
FS ws

1.
1.-wL~

FL

A. PERIPHERAL MEMORY

o _____ ;:=:L
PS

8. MAIN MEMORY j.- PL-+-

Figure 3-1 Peripheral and Main Memory Header

3-3

To see how this works, assume that there is a 20 word buff er into which a card has
been read. To retrieve characters from this buff er one at a time in sequence from
column one to eighty, procedure GET could be used. The following assembly
language statements would define the PMF header and buffer.

PMFHEADR
BUFFER

DATA
BSS

0,0,20 ,Buff er ,20,Buff er, 0, 0, 0
20

Whenever a new card is read, the CP would need to be reset to zero. Setting the
entries in this fashion forces the character processing routines to produce an EOF
return whenever they address beyond the WINDOW, i.e., BUFFER. This prevents
them from doing any disc operations. If WL FL, a disc operation will be caused if
the associated WINDOW is ever altered.

In the descriptions that follow, the word "pmfheader" is assumed to be the label on
the CP, i.e., index register 7 contains the address of the PMF header.

3.2 OPEN

Purpose: To initialize a PMF header for processing a disc file.

Calling Sequence:

LDX
LDA
CALL

7 ,pmfheader
open flag
OPEN

ERROR RETURN
NORMAL

openflag O OUTPUT
INPUT 1

Description:

The only function performed by OPEN is filling in the values of CP, FS, FL, WS, WL
and the flags so that the associated file may be referenced properly. FL will be set
to reference the entire space allocated to the file if 'openflag' is an '0', otherwise,
it is set to address only that portion of the file previously written. CP and WS are
set to '0', WL to a '-1', and the flags, except for the 1/0 bit, are set to '0'. The I/O
bit takes on the value of 'openflag' so that CLOSE can determine what action must
be taken when the user is through processing the file.

The entries PS and PL must be initialized by the user. See the introduction,
paragraph 3-1 for a description of these entries.

The normal return is taken if the file was opened successfully. The value returned
in the A register is the value of the CF the last time the file was closed as an
output file, i.e., the next available slot in the file. This value can be used to
append new information to an old file by opening the file as an output file and
storing the A register into the CP entry. Subsequent sequential output operations
will continue from the end of the old file.

3-4

The error return is taken if the file cannot be located in the file directory.

REGISTERS AFFECTED: Index Register 6, A, E

3.3 CLOSE

Purpose: To terminate processing of a disc file.

Calling Sequence:

LDX
CALL

Description:

7 ,pmfheader
CLOSE

ERROR RETURN
NORMAL RETURN

CLOSE should be called when a file is opened for output and may be called when
the file is opened for input. In either case, the first function performed by CLOSE
is to write the WINDOW back to disc if it has been altered, since the altering of the
WINDOW contents is independent of how the file was opened.

If the file has been opened as an output file, the directory entry for the file will be
updated to reflect its new size and type. The type is determined from the file type
field in the PMF header flags and the size of the file is determined from the CP,
which is interpreted as a character count if the file type is STRING and a word
count if the type is anything else. The file type is assumed to be STRING when a
file is opened and is changed to type DAT A by the PUTW procedure, so that output
files of type STRING or DATA take care of themselves if the sequential I/O
procedures are used.

The error return is taken if the directory entry for an output file cannot be located.

REGISTERS AND STATE SWITCHES AFFECTED: A, E

3.4 READ

Index Register 6 if output file is
closed.
State Switch 9

Purpose: To obtain the contents of a specified PMF location.

Calling Sequence:

LOX
LDA
CALL

7 ,pmfheader
pmfaddress
READ

EOF RETURN
NORMAL RETURN

3-5

Description:

If O pmfaddress FL,READ will return in the A register the contents of the PMF
location specified by 'pmf address'. If the address is not in the allowable range, the
EOF return is taken.

READ and WRITE are the basic procedures used directly or indirectly by all other
file processing procedures. READ and WRITE call a common subprocedure
ADRXLATE that uses DISCO to read in new pages. Altered pages are written back
to disc by means of the subprocedure SWAPOUT. Both of these subprocedures halt
in the disc error routine when DISCIO cannot perform the required operation
successfully. Pressing start allows the operation to be retried another ten times.

REGISTERS AFFECTED: A
E on normal return

3.5 WRITE

Purpose: To store a value into a specified PMF location.

Calling Sequence:

LDX
LDA
LDE
CALL

Description:

7 ,pmfheader
pmfaddress
value
WRITE

EOF RETURN
NORMAL RETURN

The O pmfaddress FL, WRITE will store the contents of the E register into the
PMF location specified by 'pmf address'. If the address is not in the allow age range
the EOF return is taken.

See READ (paragraph 4.4) for comments on disc usage.

REGISTERS AFFECTED: A,E

3.6 GETW

Purpose: To obtain the contents of the current word from a PMF.

Calling Sequence:

3-6

LDX
CALL

7 ,pmfheader
GETW

EOF RETURN
NORMAL RETURN

Description:

If 0 CP FL,GETW will use CP as the PMF address and perform the same function
as READ. In addition it will increment CP by one so the next call for GETW will
obtain the next word. If CP is out of the allowage range, the EOF return is taken.

REGISTERS AFFECTED: A
E on normal return

3.7 PUTW

Purpose: To replace the contents of the current word in a PMF.

Calling Sequence:

LDX
LDA
CALL

Description:

7 ,pmfheader
value
PUTW

EOF RETURN
NORMAL RETURN

If 0 CP FL,PUTW will use CP as the PMF address and perform the same function
as WRITE. In addition, CP Is advanced by one so that the next call for PUTW will
store into the next word. If CP is out of the allowable range, the EOF return is
taken.

REGISTERS AFFECTED: A,E

3.8 GET

Purpose: To obtain the current character from a PMF.

Calling Sequence:

LDX
CALL

Description:

7 ,pmfheader
GET

LETTER RETURN
DIGIT RETURN
OTHER

GET interprets CP as a character address. If 0 CP/4 FL,GET will return in the
low order portion of the A register the character-addressed by CP. CP will also be
advanced by one to make the following character the current one.

T he letter return is taken if the character is one of the characters $, A, B, C, ... ,
Z. The digit return is taken for any of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Control returns to CALL+3 for anything else with an EOF indicated by the value
177B.

3-7

REGISTERS AFFECTED: A, E

3.9 PUT

Purpose: To replace the contents of the current character in a PMF.

Calling Sequence:

LDX
LDA
CALL

Description:

7 ,pmfheader
character
PUT

EOF RETURN
NORMAL RETURN

PUT interprets CP as a character address. If 0 CP/4 FL,PUT will store the
character in the A register into the character position addressed by CP. CP is then
advanced by one to make the next character the current one. If CP is out of the
allowable range, the EOF return is taken.

Registers Affected: A,E

3.10 SCAN

Purpose: To obtain the next syntactical entity from a PMF.

Calling Sequence:

LDX
CALL

Description:

7 ,pmfheader
SCAN

IDENTIFIER RETURN
NUMBER RETURN
STRING RETURN
CHARACTER RETURN

SCAN uses GET to obtain characters from the PMF to form identifiers, strings and
numbers.

An identifier is a sequence of letters (including$) or digits, the first of which must
be a letter. Only the first six characters of such sequences are retained and they
are returned left justified in the A and E registers to CALL+l.

Examples:

3-8

NAMEl
$TEST
A
B2

A number is a sequence of digits; if the terminating character is a 'B' the base is
assumed to be octal, otherwise, decimal is assumed. The low order 24 bits are
returned to the E register to CALL+2. The terminating character (e.g., blank or
comma) will be returned in the A register.

Examples:
10
77B Equivalent to 63
16000

A string is a sequence of characters enclosed in single quotes. Like identifiers,
only the first six characters are retained. These are returned left justified in the A
and E resiters to CALL+3.

Examples:
'A-B #'
'A'

A'

The address of the location containing the terminating character for these entities
is returned in index register 7.

Single character operators/terminators are returned in the low order portion of the
A register. In thise case index register 7 still points to the PMF header.

REGISTERS AFFECTED: A, E and index register 7 for returns 1, 2, 3;
A and E for return 4.

3.11 GPREC

Purpose: To obtain the current record from a PMF.

Calling Sequence:

LDA
CALL
DATA

fileid

fileid
GFREC
deb

BITS 23-21

13-0

EOF RETURN
NORMAL RETURN

FILE TYPE

0
1
2
3

STRING
DATA
OBJECT
COREIMAGE

PMF header address

3-9

Description:

GFREC (using GETW) will move the current record from the PMF to the buff er
defined by the DCB whose address is a CALL=l. The EOF return is taken whenever
an WOF IS returned by GETW: the contents of the record obtained are not
predictable in this case.

For STRING files this move will terminate only when a 77B character is read or
GET indicates an EOF. In the former case, the buffer will be padded out with
blanks and the normal return is taken. If the buffer is smaller than the record, the
trailing part of the record is lost.

The amount of information transmitted form COREIMAGE or DATA files is deter­
mined by the DCB word count. It is the responsibility of the calling program to set
this correctly.

The amount of information transmitted from an OBJECT file is a function of the
first word of the record. The buffer would be as large as the largest possible
record (10 words).

REGISTER AFFECTED: A, E, Index Register 7

3.12 PFREC

Purpose: To move a record into a PMF.

Calling Sequence:

LDA
CALL
DATA

fileid
PFREC
deb

EOF RETURN
NORMAL RETURN

See 3.11 for a description of fileid.

Description:

The DCB whose address is at CALL+l describes the buffer that contains the record
to be moved. Except for OBJECT files, the entire buff er area is moved using
PUTW or PUT. For OBJECT files the number of words moved is determined from
the first word of the record, or the length of the buffer area, whichever is smaller.
If the file. is type STRING, the 77B character is also placed in the file after the
record.

The EOF return is taken whenever such a return is given by PUTW or PUT.

REGISTERS AFFECTED: A, E, Index Register 7

3-10

3.13 FIND

Purpose: To locate a file on the disc.

Calling Sequence:

LDA 1SYMB1

LDE 10L1

BSM FIND

Description:

NOT FOUND RETURN
NORMAL RETURN

FIND searches the file directory for the specified disc file. The search begins at
the beginning of the directory and continues until a match is found or the end-of­
directory is reached. If a match is found, the main memory address of the found
entry is placed in index register 7, the binary disc address of the corresponding file
is placed in the A register and control returns to CALL+2. If no match is found,
control returns to CALL+l and the index and A register reference the last
directory entry and working storage, respectively.

The index register address is that of the first word of the entry. The other five
words are at the next five higher memory addresses.

If bit '0' of the E register is '1', the system job number is assumed. Otherwise, the
current job number is used.

NOTE

The label FIND must be 1EQU1ed to 356B.

REGISTERS AND STATE SWITCHES AFFECTED: A, E, Index Registers 6 and 7
State Switch 7.

3.14 OUTREC

Purpose: To place a record in an output file.

Calling Sequence:

a) LDA
CALL
DATA
DATA

FILEIDENT
OUTREC
1
DCB

EOF FILE RETRUN
NORMAL RETURN

3-11

b) LDA
CALL
DATA

FILEIDENT
OUTREC
0

BUSY RETURN
NOT BUSY RETURN

FILEIDENT (for non-disc files):

BITS 22-21 FILE TYPE
13-0 FILE NUMBER

FILE NUMBER 0 POD
1 TTP
2 CP (when available)
3 LP
4 MTW
5 DOF
6 CLO

IN REC 0 PID
1 TTK
2 CR
3 TTR
4 MTR
5 DIF
6 CLI

FILEIDENT (for disc files):

BITS 22-21
13-0

FILE TYPE 0
1
2
3

FILE TYPE (as above)
PMFH

STRING
DATA
OBJECT
COREIMAGE

Description:

OUTREC utilizes the IOCS procedures MTIO, CPIO, LPIO, and TTPIO along with
PFREC to place the record in the file. OUTREC work much like the IOCS
procedures in that it automatically overlaps record output with program execution.
This can be synchronized by doing a 'test.' The buff er should not be altered
however, and is complete when control returns to the calling sequence. A 'test'
may be performed on an output to a disc file and the NOT BUSY return will always
be taken.

The buffer for object and string records should be large enough to accommodate
the largest record. The number of words actually sent to the file is obtained from
the record itself for object records and for string records is obtained from the DCB
and decremented to suppress trailing blanks.

3-12

If the record is sent to the card punch (when available), it is first edited to provide
BCD output. The buffer must be large enough to accommodate the edited record;
it must be twice as large as the DCB word count specifies.

3.15 INREC

Purpose: To obtain a record from an input file.

Calling Sequence:

LDA
CALL
NOP

FILEIDENT
INREC
DCB

EOF /MONITOR REC RETURN
NORMAL RETURN

FILEIDENT: SEE OUTREC FOR FILEIDENT SPECIFICATION

Description:

This procedure will obtain the next record from the specified file (device) and place
it in the buff er described by the DCB. The input record is always available in this
buffer when control returns to the calling sequence, i.e., INREC waits until the
record has been obtained before returning. IN REC obtains the record by calling the
IOCS procedures MTIO, CRIO, TTRIO and GFREC, DIF. This means that the
limited editing available in TTRIO is available for records obtained from the
teletype.

NOTE

Records beginning with '$$' in columns
1 and 2 coming from DIF are treated
as'//'

When using GFREC to obtain records from a PMF, the PMF header describes the
buffer actually used for disc transfers while the DCB describes the buffer which
will finally contain the record.

For files containing variable length records, i.e., string and object files, the buffer
must be large enough to accommodate the largest record. The EOF return is taken
if the buff er is too small for a particular record. In retrieving records from string
files, INREC pads the record with blanks if it is smaller than the buffer. This is not
done with object the first word of the record enables its exact size to be
determined.

3.16 SRCH (ENTREN, WRITDS)

Purpose: To locate files on the disc.

3-13

Calling Sequence:

LDA
LDE
CALL

Description:

'SYMB'
'OL'
SRCH

NOT FOUND RETURN
FOUND RETURN

SRCH performs the same function as FIND. The main differences are SRCH uses
DISCIO and is relocatable, while FIND uses its own simple I/0 and is not
relocatable. Another difference is that SRCH has two subprocedures which can be
used to maintain the file directory. These are WRITDS and ENTRFN. WRITDS will
write the sector of the directory that is currently in main memory back to the
directory. ENTRFN must be used after a SRCH failure to enter the name of the
'new' file into the directory. In the new entry, the 'last entry' bit is set and all
other words are set to zero. It is the responsibility of the calling program to fill
these entries in correctly. Index register 7 points to the new entry. A call for
ENTRFN should be followed by one for WRITDS when entries have been completed.

The calls for these subprocedures are:

CALL
CALL

WRITDS
ENTRFN

The latter enters the routine from the previous CALL SRCH and uses parameters
set up by SRCH.

3.17 DFILEN

Purpose: To determine the file number of the file whose name is in the A
register.

Calling Sequence:

LDA
CALL

Description:

file name
DFILEN

INPUT FILE
OUTPUT FILE
NOT A FILE

The Table 3-2, below shows the name/number correspondence of the various files.

3-14

TABLE 3-2 OUTFILES, INFILES, NAME/NUMBER CORRESPONDENCE

File (Device) Name File Number

POD 0
TTP 1 TT Printer
CP 2 Card Punch

(if available)
LP 3 Line Printer

Out Files
MTW 4 Magnetic

Tape Output
DOF 5 Disc Output

File
CLO 6 Data Link

Output
FDOF 7
SDOF 8

PIO 0
TTK 1 TT Keyboard
CR 2 Card Reader
TTR 3 TT Paper

Tape Reader
In Files MTR 4 Magnetic

Tape Input
DIF 5 Disc Input

File
cu 6 Data Link

Input
FDIF 7
SDIF 8

The file name must be left justified in the A register. The error return is taken if
the file cannot be found in the table.

If PID or POD is input, the number of the appropriate file will be obtained from
MICTRL.

If the file is found, the appropriate normal return is taken and the file number is
placed in the A register; otherwise, the error return (CALL+3) is taken.

REGISTERS AFFECTED: Index Registers 7 and 6, A

3-15

APPENDIX A

CHARACTER SET

The internal character set used by the FST-1 and FST-2 software packages is six­
bit trimmed ASCII, TASCII. TASCII characters are obtained from their seven-bit
counterparts, parity level excluded, by subtracting 40B. The resulting character
set is shown in TABLE A-1.

TABLE A-1 TASCCI CODE

BIT POSITIONS 5* & 4

00 00 10 11

0000 SPACE 0 @ p

0001 ! 1 A Q
0010 II 2 B R

0011 # 3 c s
0100 $ 4 u T
0101 % 5 E u

BIT 0110 & 6 I- v
POSITIONS 0111 I 7 G w
3 - 0 1000 (8 H x

1001) 9 I y

1010 * : J z
1011 + ' K [

1100 ' < L "-
1101 - = M]

1110 > N t

1111 I ? 0 +

*Bit 5 is the high-order bit position

Not all 1/0 devices supported on the FST-1 and FST-2 accept/produce this code.
There are, however, conversion procedures for making the proper transformations
from one character set to another. A description of these procedures can be found
in paragraph 2.0.

A-1

APPENDIX B

BUFFER FORMAT

The character buffers used by the FST-1 software packages are of two kinds. The
more common of the two has four six-bit characters per word. The first word of
the buff er contains the first four characters of the corresponding 1/0 record; the
first character is in the high order position of the word. The second buffer word
contains the next four and so on. This is illustrated in Figure B-1, which assumes
the buff er starts at location 500.

CHARACTER
ADDRESS:

LOCATION:

SAMPLE DATA

I s I A I M I p I L I E I I D I A I T I A I ::

SS

f$
o 1 2 3/ 4 5 6 7 I 8 9 1 o 11 I

500 501 502

Figure B-1 Four, Six-Bit Characters Per Word Format

The second part of the illustration shows the relative position of each character in
the buffer. The high-order bit of each character position in a word is occupied by
the high order bit of the character residing there. This can be seen by location
which gives the octal value of each buff er location after the card code has been
converted to trimmed ASCII.

B-1

The other format is used by the card I/0 devices and has two twelve bit characters
per word. These twelve bit characters are a result of a column binary operation.
That is, there is a one-to-one correspondence between the punches in a card column
and the one in the corresponding twelve bit character. The high and low order bits
correspond to rows twelve and nine, respectively.

This kind of a buffer is used by the card reader in the BINARY mode. Diagram in
Figure B-2 illustrates the format of this buffer.

SAMPLE DATA

s A I M p I L E D A T I A I E?R I ;;J I I I I I

12004100 20 40 20 04 20 20 40 20 00 00 40 40 41 00 11 00 41 00 41 02

LOCATION:
500 501 502 503 504 505

Figure B-2 Two, Twelve-Bit Characters Per Word Format

B-2

ERROR#

1

2

3

4

5

6

7

10

11

12

APPENDIX C

DRIVER ERROR MESSAGE

DESCRIPTION

DATA LINK interrupt and no RS-232 status indicator is set. An
interrupt has been executed, but

BG - DATA set change or
BL - Receiver done or
BBC - Transmit done are not true.

Data Set Change (DSC) interrupt has occurred and either no RS-
232 bit or more than one RS-232 bit has changed since the last
data set change.

Lost Data Set Ready (DSR) and not a formal hang-up. The host
has probably timed out and hung-up due to an uncompleted
sequence while there was a request in the driver.

Lost Clear-To-Send (CTS) and transmission was incomplete.

Lost Receiver Line Signal Detect (RLSD) during a receive pro­
cedure.

The Host has hung-up.

The last message was cancelled. This is due to an illegal sequence
of line protocal characters.

Transmit error, 10 successive, attempts at writing a message have
frailed. Disconnection occurs.

A message read or write call has been made and the line is not
connected. A call-up is requested to establish line connection.

DCB error, a calling parameter is in error

a) Command in the opcode is not ,0, 1 or 2
b) Message type in the opcode is greater than 6
c) PARMI is in error in a Driver Status call
d) A call for an operator message has been made and none

exists
e) PARMI is in error on a message type 6 write.

C-1

13

14

15

C-2

DRIVER ERROR MESSAGE (Continued)

DCB error, error in the Buffer or message length supplied.

a) Read an operator message and the buffer provided is insuf­
ficient (the partial message is past)

b) The message supplied the driver is larger than allowed
c) Read a message and the buffer provided is insufficient.

Time out error, the following situtations occur for greater than 15
seconds

a) The driver is hung in a busy state
b) The host retains line ownership and a write attempts exists
c) A call for a read is made and does not complete.

lVIcssage sequence error (no.rrnal error at times)

a) A read of a message type 'n' made but message type 'm' is
found.

e.g., Write
Read

or Read

Message type 1
Message type 2 but a message type 5 ex­

ists with host status.

Message type 3 but a message type 4 ex­
ists indicating end of file.

ERROR#

0

1

2

3

4

5

6

7

8

9

10

11

12

APPENDIX D

HOST STATUS MESSAGES

D ESC RI PT ION

The requested operation was performed without error

NIA

N/A

NIA

-UPLOAD ERRORS-

A file open was attempted and there is a file already open. A file
transmit message was sent and the subchannel is already in use.

Host RTE error
Directory search/add error in response to a file transmit message
(e.g., Disc full).

Duplicate file, an attempt to create a file which already exists.

Host RTE error
An open error in response to a file transmit - oppend operation.

FST-2 System error
Attempt to add, with a data message, to a closed file.

Host RTE error
A disc write error while oppending file data to an open file.

FST-2 System error
Attempt to close an already closed file.

Host RTE error
Error encountered while attempting to close a file.

Host RTE error
Error encountered while attempting to purge a file.

D-1

13

14

15

16

17

18

19

50

51

52

D-2

HOST STATUS MESSAGES (Continued)

Host RTE error
Unable to find the directory entry on a close-purge operation.

Host RTE error
A Directory write error during a close-purge operation.

NIA

NIA

NIA

NIA

FST-2 System error
Attempting to close-purge a file and the file ID's are not the
same.

-DOWN LOAD ERRORS-

NIA

A down load request was made and a download is already in
progress.

Any file error encountered during a download procedure e.g., the
requested file was not found, RTE file error.

00000 00000007

*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

APPENDIX E

HOST-FST-2 COMM LINK 1/0 EXAMPLES

PAGE

OBJ 7

HOST - FST2 COMM LINK I/O EXAMPLES

CLIO CALLING SEQUENCE:

ENT: N/A
EXT: A-REG = ERROR # ON ERROR, ELSE 0

E-REG = CLIO STATUS
X-REG 1S ARE PRESERVED

CALL: CALL
DATA
DATA
BRU

DCB: DATA
DATA
DATA

CLIO
OPCODE
DCB
ERROR/BUSY/EOF - ROUTINE
RTN - NORMAL

LENGTH (WORDS)
BUFFER/MESSAGE FIRST WORD ADDR
0 (STATUS)

00000 00000000 HOSTIO PROG 0
00001 01000002 BPU BEGIN

E-1

*
*
*
*
*

00000002 BEG IN
00000002 DONE
00000002 ABORT
00000002 LIST
00000002 ELI sn
00000002 FLIST2

*
*

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

PROGRAM EQUATES FOR ERROR FREE LISTING

EQU *
EQU *
EQU *
EQU *
DQU *
EQU *

PROGRAM STARTING POINT
PROGRAM ENDING POINT
PROGRAM ERROR EXIT
OPERATOR MESSAGE LIST ROUTINE
CONVERT & LIST DRIVER ERROR #
CONVERT & LIST HOST ERROR # & MSG

* CONSTANTS & TEMP STORAGE
*
* 00002 00000000 DO

00003 00000004 D4
00004 00000005 D5
00005 00000016 Dl3
00006 00000017 D17

*
00007 20000000 822
00010 01000000 818

*
00011 01000000 WMT5

* 00012 00000000 TIMER
00013 00023420 T15S

E-2

DATA 0
DATA 4
DATA 5
DATA 13
DATA 178

DATA 200000008
DATA OlOOOOQOB

DATA 100500008 MSG TYPE 5, WRITE, OPCODE

DATA 0
DATA 10000

PREVENT 'HUNG' CONDITION
INITIAL TIMER VALUE

*
*

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

* DATA LINK I/0 DCB'S
*
*

00000014 OPIDCB
00014 00000024 OPILEN
00015 00000041
00016 00000000

*
00000017 OPODCB

00017 00000023 OPOLEN
00020 00000065
00021 00000000

*
00000022 HIDCB

00022 00000013
00023 00000110
00024 00000000

*
00000025 HODCB

00025 00000012
00026 00000123
00027 00000000

*
00000030 DLIDCB

00030 00030052 DLILFN
00031 00000135
00032 00000000

*
00000033 DLODCB

00033 00000052 DLOLEN
00034 00000211
00035 00000000

*
00000033 DLODCB

00033 00000052 DLOLEN
00034 00000211
00035 00000000

*
00000036 BSYDCB

00036 00000001
00037 00000025
00040 00000000

*
*

EQU *
DATA 20
DATA OPIBFF
DATA 0

EQU *
DATA 19
DATA OPOBFF
DATA 0

EQU *
DATA 11
DATA HIBFF
DATA 0

EQU *
DATA 10
DATA HOBFF
DATA 0

EQU *
DATA 42
DATA DLIBFF
DATA 0

EQU *
DATA 42
DATA DLOBFF
DATA 0

EQU *
DATA 42
DATA DLOBFF
DATA 0

EQU *
DATA 1
DATA HODCB
DATA 0

QPR MESSAGE INPUT DCB

QPR MESSAGE OUTPUT DCB

40 CHAR HEADER INPUT DCB
(+ 1 FOR ONTRL INFO)

40 CHAR HEADER OUTPUT DCB

DATA (MSG TYPE3) INPUT DCB

DATA (MSG TYPE 3) OUTPUT DCB

DATA (MSG TYPE 3) OUTPUT DCB

BUSY TEST DCB

* DATA LINK I/O BUFFERS
*
*

00041 00000024 OPIBFF
00065 00000023 OPOBFF
00113 00000013 HIBFF
00123 00000012 HOBFF
00135 00000054 DLIBFF
00211 00000054 DLOBFF

BSS 20
BSS 19
BSS 11
BSS 10
BSS 44
BSS 44

QPR MSG IN FROM HOST BFFR
QPR MSG OUT TO HOST BFFR
HEADER INPUT BFFR
HEADER OUTPUT BFFR
DATA INPUT BFFR
DATA OUTPUT BFFR

E-3

*
*
*
*
* 00000265 UPLOAD

00265 12000545
00265 01000343

* 00267 12000511
00274 01000343
00271 025000345

* 00272 12000572
00273 01000347

* 00274 12000424
00275 01000343

*
*
*
*
* 00276 12000572

00277 01000347
* 00300 12000601

00301 01000347
*

00302 12000511
00303 01000343
00304 02500345

* 00305 01000002

E-4

BOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

UPLOAD EXAMPLE, BINARY FILE

EQU *
BSM WRMT2B WRITE FILE TRANSMIT - OPEN
BRU UPERRl ERROR - DRIVER

BSM RDMT5 READ HOST'S STATUS RESPONSE
BRU UPPER! ERROR - DRIVER
BNEZ UPPER2 ERROR - HOST

BSM WRMT3B WRITE FIRST DATA MESSAGE
BRU UPPER3 ERROR DRIVER/HOST

BSM DLWAIT WAIT NOT BUSY, SAMPLING FOR QPR MSG
BRU UPERRl ERROR - DRIVER

* *
* * UPDATE THE DCB & CONTINUE .. OR
* *

BSM WRMT3B WRITE THE LAST DATA MESSAGE
BRU UPERR3 ERROR - DRIVER/HOST

BSM WRMT4 WRITE FILE END - CLOSE
BRU UPERR3

BSM BDMT5 WAS TRANSFER SUCCESSFUL?
BRU UPERRl
BNEZ UPERR2 NO

BRU DONE YES, COMPLETE

*
*
*
*
*

00000306 DNLOAD
00306 12000527
00307 01000357

*
00310 12000455
00311 01000361

*
00312 24000002
00313 12000617
00314 01000357

*
00000315 DNLOl

00315 12000473
00316 01000361

*
00317 12000424

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

DOWN LOAD EXAMPLE, BINARY FILE

EQU *
BSM WRMTl WRITE FILE REQUEST
BRU DNERRl ERROR - DRIVER

BSM RDMT2 READ FILE TRANSMIT
BRU DNERR2 ERROR - DRIVER/HOST

LOA DO WRITE - STATUS = OK
BSM WRMT5
BRU DNERRl

EQU *
BSM RDMT3B READ N1 TH DATA MESSAGE
BRU ONERR2 ERROR - DRIVER OR NORMAL

BSM DLWAIT SAMPLE FOR OPERATOR MSG 1 S
00320 01000367 BRU ONERRl

*
* * *
* * * UPDATE DCB & CONTINUE
* * *
*

00321 01000315 BRU DNLDl
*
*

00000322 DNLD2 EQU *
00322 12000502 BSM RDMT4 READ FILE END - CLOSE
00323 01000361 BRU DNERR2

*
00324 24000002 LOA DO
00325 12000617 BSM WRMT5 WRITE STATUS = OK
00326 01000361 BPU DNERR2

*
00327 01000002 BRU DONE COMPLETE

EOF

E-5

*
*
*
*
*

00000330 CLOSEF
00330 12000536
00331 01240343

*
00332 12000511
00333 01000343
00334 02500345

*
00335 12000610
00336 01000343

*
00337 12000511
00340 01000343
00341 02500345

*
00342 01000002

E-6

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

CLOSE - PURGE EXAMPLE

EQU *
BSM WRMT2 WRITE FILE TRANSMIT - OPEN
BRU UPERRl

BSM RDMT5 WAS OPERATION SUCCESSFUL?
BRU UPERRl
BNEZ UPERR2 NO

DC:M
1..1..Jl'I WRMT4P WRITE FILE END WITH PURGE
BRU UPERRl

BSM RDMT5 WAS OPERATION SUCCESSFUL?
BRU UPERRl
BNEZ UPERR2 NO

BRU DONE YES, COMPLETE

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

*
*

PAGE

* ERROR ROUTINES
*
* * UPLOAD DRIVER ERRORS
*
*

00000343 UPERRl
00343 10000002

EQU *
BSM ENLIST! LIST DRIVER ERROR #
BRU ABORT 00344 01000002

* * HOST RESPONSES
*

* 00000345 UPERR2
00345 12000002
00346 01000002

EQU
BSM
BRU

ENLIST2 LIST HOST ERROR # AND MESSAGE
ABORT

* * POSSIBLE NORMAL SEQUENCE
*

00000347 UPERR3
00347 23000005
00350 03500343
00351 07010000
00352 07022014
00353 26000006
00354 23000004
00355 03200345
00356 01000343

*
*

EQU
CAM
BNE
EXC
LS
AND
CAM
BE
BRU

*
Dl3 SEQUENCE ERROR ?
UPERRl NO, DRIVER ERROR

12 YES, GET STATUS IN E-REG
017
D5 MESSAGE TYPE 5 ?
UPERR2 YES, LIST IT
UPERRl

* DOWN LOAD DRIVER ERRORS
*
*

00000357 DNERRl
00357 12000002
00360 01000002

*
*
*

00000361 DNERR2
00361 23000005
00362 03500357
00363 07010000
00364 07022214
00365 26000006
02366 23000003
00367 03200322
00370 23000004
00371 03200373
00372 01000357

*
*
*

00000373 DNERR3
00373 12000511
00374 01000357

00375 12000002
00376 01000002

*

EQU *
BSM ELISTl LIST DRIVER ERROR #
BRU ABORT

POSSIBLE NORMAL SEQUENCE

EQU *
CAM Dl3 SEQUENCE ERROR ?
BNE DNERRl NO, DRIVER ERROR
EXC
LS 12 YES, GET STATUS FROM E-REG
AND 017
CAM D4 FILE END MESSAGE ?
BE DNLD2 YES, NORMAL, GO READ IT
CAM D5 NO, HOST STATUS ?
BE DNERR3 YES, LIST IT
BRU DNERPl

EQU *
BSM RDMT5 READ HOST RESPONSE
BRU DNERRl

BSM ELIST2 LIST HOST ERROR # AND MESSAGE
BRU ABORT

E-7

*
*

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

* CLIO PROCEDURE CALLS
*
*
*
*
*
*
*
*

ENT:
EXT:
CALL:

N/A
N/A
BSM DL(X)

RTN - ERROR, A-REG - #
RTN - OK

* DLCALL - DATA LINK GALLUP PROCEDURE
*
*

00377 00000000 DLCALL
00400 12000000
00401 00000001
00402 00000036
00403 01040377
00404 36000377
00405 01640377

*

PZE 0
CALL CLIO
DATA 1
DATA BSYDCB
BRU* DLCALL
AOM DLCALL
BRU* DLCALL

* DLHANG - DATA LINK HANG-UP PROCEDURE
*

00406 00000000 DLHANG
00407 12000000
00410 00000002
00411 00000036
00412 01040406
00413 36000406
00414 01040406

*

PZE 0
CALL CLIO
DATA 2
DATA BSYDCB
BRU* DLHANG
AOM DLHANG
BRU* DLHANG

* DLSTAT - GET DATALINK DRIVER STATUS
*

00415 00000000 DLSTAT
00416 12000000
00417 00000010
00420 00000035
00421 01040415
00422 36000415
00423 01040015

E-8

PZE 0
CALL CLIO
DATA lOB
DATA BSYDCB
BRU* DLSTAT
AOM DLSTAT
BRU* DLSTAT

*
*
*
*
*
*
*
*
*
*
*
*

00424 00000000 DLWAIT
00425 24000013
00426 14000012

*
00000427 DLWATl

00427 24000012
00430 37000012
00431 02200441

*
00432 12000415
00433 01000441

*
00434 07010000
00435 23000007
00436 03040442
00437 02100427
00440 36000424

*
00000441 DLWAT2

00441 01000424
*

00000442 DLWAT3
00442 12000520
00443 01000441
00444 12000002
00445 01000427

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

DLWAIT - WAIT FOR DATA LINKNOT BUSY
TEST FOR & LIST ANY QPR MSG 1 S

ENT: N/A
EXT: N/A
CALL: BSM DLWAIT

RTN - ERROR, A- REG = #
TRN - NORMAL

PZE 0
LOA Tl5S SET 15 SECOND TIME-OUT
STA TIMER

EQU *
LOA TIMER ARE WE HUNG ?
SOM TIMER
BZ DLWAT2 YES, ERROR 00, ABORT

BSM DLSTAT STATUS TEST
BRU DLWAT2 ERROR - DRIVER

EXC
CAM B22 BUSY OR READY, OPR MSG AVAILABLE
BBC DLWAT3 YES
BN DLWATl NO, JUST BUSY ?
AOM DLWAIT ROY - CONTINUE

EQU *
BRU* DLWAIT

EQU *
BSM RDMT6 READ THE OPERATOR MESSAGE
BRU DLWAT2
BSM LIST & LIST IT
BRU DLWATl CONTINUE

E-9

?

*
*

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

* DATA LINK MESSAGE READ & WRITE ROUTINES
*
*
*
*

*
*
*
*
*

00446 00000000 RDMTl
00447 12000000
00450 00010000
00451 00000022
00452 01040446
00453 36000446
00454 01040446

*
*
*

00455 00000000 RDMT2
00456 12000000
00457 00020000
00460 00000022
00461 01040455
00462 36000455
00463 01040455

*
*
*

00464 00000000 RDMT3A
00465 12000000
00466 00030000
00467 00000030
00470 01040464
00471 36000464
00472 01040464

*
*
*

00473 00000003 RDMT3B
00474 12000000
00475 04030000
00476 00000030
00477 01040473
00500 36000473
00501 01040473

*
*
*

00502 00000000 RDMT4
00503 12000000
00504 00040000
00505 00000022
00506 01040502
00507 36000502
00510 01040502

E-10

ENT:
EXT:

N/A (EXCEPT WRMT5)
N/A

CALL: BSM RD/WR-MT(X)

READ MSG TYPE 1

PZE 0
CALL CLIO
DATA 000100008
DATA HIDCB
BRU* RDMTl
AOM RDMTl
BRU* RDMTl

READ MSG TYPE 2

PZE 0
CALL CLIO
DATA 000200008
DATA HIDCB
BRU* RDMT2
AOM RDMT2
BRU* RDMT2

READ MSG TYPE 3,

PZE 0
CALL CLIO
DATA 000300008
DATA DLIDCB
BRU* RDMT3A
ADM RDMT3A
BRU* RDMT3A

READ MSG TYPE 3,

PZE 0
CALL CLIO
DATA 040300008
DATA DLIDCB
BRU* RDMT3B
AOM RDMT3B
BRU* RDMT3B

READ MSG TYPE 4

PZE 0
CALL CLIO
DATA 000400008
DATA HIDCB
BRU* RDMT4
AOM RDMT4
BRU* RDMT4

RTN - ERROR
RTN - OK

- FILE REQUEST

- FILE TRANSMIT

ASCII - DATA

BINARY - DATA

- FILE END

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE
*
* READ MSG TYPE 5 - HOST STATUS
*

00511 00000000 ROM15 PZE 0
00512 12000000 CALL CLIO
00513 00050000 DATA 000500008
00514 00000022 DATA HIDC8
00515 01040511 8RU* RDMT5
00516 36000511 AOM RDMT5
00517 01040511 8RU* RDMT5

*
* READ MSG TYPE 6 - OPERATOR MESSAGE
*

00520 00000000 RDMT6 PZE 0
00521 12000000 CALL CLIO
00522 00060000 DATA 00060008
00523 00000014 DATA OPIDC8
00524 01040520 8RU* RDMT6
00525 36000520 AOM RDMT6
00526 01040520 BRU* RDMT6

*
* WRITE - MSG TYPE 1 - FILE RQUEST
*

00527 00000000 WRMTl PZE o
00530 12000000 CALL CLIO
00531 10010000 DATA 10010008
00532 00000025 DATA HO DCB
00533 01040527 BRU* WRMTl
00534 36000527 AOM WRMTl
00535 01040527 8RU* WRMTl

*
* WRITE MSG TYPE 2 - FILE TRANSMIT
*

00536 00000000 WRMT2 PZE 0
00537 12000000 CALL CLIO
00540 10020000 DATA 10020008
00541 00000025 DATA HO DCB
00542 01040536 BRU* WRMT2
00543 36000536 AOM WRMT2
00544 01040535 8RU* WRMT2

*
* WRITE - MSG TYPE 2 - FILE TRANSMIT, BINARY
*

00545 00000000 WRMT28 PZE o
00546 12000000 CALL CLIO
00547 10020020 DATA 100200208
00550 00000025 DATA HODC8
00551 01040545 BRU* WRMT28
00552 36000545 AOM WRMT28
00553 01040545 BRU* WRMT28

*
* WRITE - MSG TYPE 2 - FILE TRANSMIT + APPEND
*

00554 00000000 WRMT2P PZE o
00555 12000000 CALL CLIO
00556 10020010 DATA 100200108
00557 00000025 DATA HODC8
00560 01040554 BRU* WRMT2P
00561 36000554 AOM WRMT2P
00562 01040554 BRU* WRMT2P

E-11

*
*
*

00563 00000000 WRMT3A
00564 12000000
00565 10030000
00566 00000033
00567 01040563
00570 36000563
00571 01040563

*
*
*

00572 00000000 WRMT38
00573 12000000
00574 14000000
00575 00000033
00576 01040572
00577 36000572
00600 01040572

*
*
*

00601 00000000 WRMT4
00602 12000000
00603 10040000
00604 00000025
00605 01040601
00606 36000601
00607 01040601

*
*
*

00610 00000000 WRMT4P
00611 12000000
00612 10040010
00613 00000025
00614 01040610
00615 36000610
00616 01040610

E-12

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

WRITE MSG TYPE 3, ASCII - DATA

PZE 0
CALL CLIO
DATA 100300008
DATA DLODC8
8RU* WRMT34
AOM WRMT34
8RU* WRMT3A

WRITE MSG TYPE 3, BINARY - DATA

PZE (')
v

CALL CLIO
DATA 140300008
DATA DLODC8
8RU* WRMT38
AOM WRMT38
8RU* WRMT38

WRITE MSG TYPE 4 - FILE END

PZE 0
CALL CLIO
DATA 100400008
DATA HODC8
8RU* WRMT4
AOM WRMT4
8RU* WRMT4

WRITE MSG TYPE 4 - FILE END W/PURGE

PZE 0
Ci\LL CLIO
DATA 100400108
DATA HODC8
8RU* WRMT4P
AOM WRMT4P
8RU* WRMT4P

*
*
*

00617 00000000 WRMT5
00520 07026003
00621 27000011
00622 14000624
00623 12000000
00624 10050000
00625 00000025
00625 01040617
00627 36000617
00630 01040617

*
*
*

00631 00000000 WRMT6
00632 12000000
00633 10060020
00634 00000017
00635 01040631
00636 36000631
00637 01040631

*
*
*

00637 00000000

HOST-FST-2 COMM LINK 1/0 EXAMPLES
(Continued)

PAGE

WRITE MSG TYPE 5 - STATUS MSG

PZE 0
SL 3 MERGE IN STATUS ERROR #
OR WMT5
STA *+2
CALL CLIO
DATA 100500008
DATA HODCB
BRU* WRMT5
AOM WRMT5
BRU* WRMT5

WRITE MSG TYPE 6 - OPERATOR MESSAGE

PZE 0
CALL CLIO
DATA 100600208
DATA OPODCB
BRU* WRMT6
AOM WRMT6
BRU* WRMT6

END

E-13

ASCBIN Conversion Routine, 2-1

BINDEC Conversion Routine, 2-1

Character Buffer, FST-1, -2, B-1
Formats (Figures), B-1, B-2

Character Set, Internal, A-1
CLIO Communications Link Driver, 1-9

Calling Sequence, 1-9
General Form, 1-9
Message type 0, Driver Status, 1-10
Message type 1, File Request, 1-10
Message type 2, File Transfer, 1-11
Message type 3, Data, 1-11
Message type 4, File End, 2-11
Message type 5, Status 1-12
Message type 6, Control, 1-12
Opcode Format (Figure), 1-13
Status Message format (Figure), 1-14

CLOSE File Processing Routine, 1-14
CRASC Conversion Routine, 2-1
CRIO I/O Routine, 1-5

DFILEN File Processing Routine, 3-14
DISCIO 1/0 Routine, 1-8

Error Messages
Driver, C-1
Host Status, D-1

Examples, FST-2 COMM LINK I/O, E-1

FIND File Processing Routine, 3-11

GET File Processing Routine, 3-7
GETW File Processing Routine, 3-6
GFREC File Processing Routine, 3-9

INDEX

Header, PMF, 3-1
Description, 3-1
Format (Table), 3-2
Peripheral and Main Memory (Figure),
3-3

INREC File Processing Routine, 3-13

LPIO I/0 Routine, 2-7

Message Sequencing, 2-15
Close function, 2-15
Download function, 2-15
Upload function, 2-15

MTIO I/0 Routine, 2-8

Name/Number Correspondence (Table), 3-15

OPEN File Processing Routine, 3-4
OUTREC File Processing Routine, 3-11

PFREC File Processing Routine, 3-10
PMF Peripheral Memory Files, 3-1
PUT File Processing Routine, 3-8
PUTW File Processing Routine, 3-7

READ File Processing Routine, 3-5

SCAN File Processing Routine, 3-8
SRCH File Processing Routine, 3-14

Subprocedures:
ENTRFN, 3-14
WRITDS, 3-14

TTPIO I/0 Routine, 2-4
TTRIO I/0 Routine, 2-4

WRITE File Processing Routine, 3-6

Index-1

