
ASSEMBLY LANGUAGE

PROGRAMMING

UNDER TOPSY

F=AIRCl-llLO

SYSTEMS TECHNOLOGY
A DIVISION OF FAIRCHILD CAMERA ANO INSTRUMENT CORPORATION

SENTRY

ASSEMBLY LANGUAGE

PROGRAMMING UNDER TOPSY

© Fairchild Camera and Instrument Corporation 1977
1725 Technology Drive, San Jose, California 951 I 0

Part Number:
Date Released:

57500015
May 1977

F=AIRCHILO

SYSTEMS TECHNOLOGY
A DIVISION OF FAIRCHllD CAMERA ANO INSlRUMENT CORPORATION

TABLE OF CONTENTS

Page

PREFACE iv

1.0 INTRODUCTION 1-1

2.0 ALLINK FILES 2-1
2.1 Calling ALLINK Files . • 2-1
2.2 ALLINK File Programming Rules and Techniques . . • • 2-4
2.2.1 Entry and Exit Conditions • . 2-4
2.2.2 Accessing System Constants . . • • • . . 2-5
2.2.3 Accessing Parameters from the FACTOR Test Program . 2-6
2.2.4 Accessing System Subroutines . . • • • . • 2-7
2.2.5 Using the FST-2 ALLINK Storage Buffer • • . • • • 2-9
2.2.6 Creating the Coreimage of the ALLINK File • • . . . • • 2-13
2.2.7 Miscellaneous •2-14
2.3 Optimizing Memory Management to Reduce Test Execution Time • 2-15

3.0
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

USER OVERLAYS
Calling User Overlays . . • • . .
Programming Rules and Techniques

Entry Conditions
Exit Conditions . • . . • • •
System Constants and Subroutines. . • • .
Using the FST-2 AL LINK Storage Buff er • •

CPMAIN Subroutines and Re-entry Points
COMPROC.
CPREAD
CPWAIT.
CPECHO
CPRINT ..
CPERR .
OVLYERR.

. 3-1

. 3-2

. 3-3
3-3
3-5

. . • 3-6
. 3-6

3-7
. 3-7

. 3-12
.. 3-14

..• 3-14
. 3-15
• • • . . 3-16

•. 3-16

APPENDIX A STANDARD ASSEMBLY LANGUAGE PROGRAMS
AVAILABLE A-1

APPENDIX B

Figure 2-1.
Figure 2-2.

EXECUTION TERMINAL ERROR NUMBERS

LIST OF ILLUSTRATIONS

FST-2 Memory Allocation in TOPSY • . .
FST-1 Memory Allocation in TOPSY. . •

. • B-1

. . 2-11
• 2-16

iii

PREFACE

Assembly language programs may be implemented by the user for execution under
the testor oriented operating system (TOPSY). TOPSY files provide such
capabilities as data processing, plot generation, and local memory utility functions
not easily and/or efficiently handled by a FACTOR test program.

This manual describes procedures, rules, and most efficient implementation for
assembly language programs for revision 10.4 and 11.0 of the standard system
software. It presupposes an understanding of asembly language programming and
the FST Assembly Language.

For more detailed information and cross reference ref er to the following manuals.

DF.SCRIPTION PUBLICATION NUMBER

FACTOR Programming Language Reference Manual
Sentry VII User Reference Manual
Pattern Processor (PPM) User and Programming

Reference Manual
FST-2 Computer Manual
FST-1/2 Subroutine Library Reference Manual

iv

67095738
67095733

67095583
67095701
67095091

INDEX

Accessing Parameters from the FACTOR
Test Program, 2-6
Accessing System Constants, 2-5
Accessing System Subroutines, 2-7

Address of Memory Location, 2-7
Floating Point Routines, 2-8
Other System Routines, 2-8

ALLINK files on a Revision 10.4 System
Tape, A-1
ALLINK files on a Revision 11 System Tape,
A-1
ALLINK file programming rules and techni­
ques, 2-4

Calling ALLINK files, 2-2
Calling User Overlays, 3-2
COMPROC, 3-7
CPECHO, 3-14
CPERR, 3-16
COMPROC, 3-7
CPECHO, 3-14
CPERR, 3-16
CPMAIN Subroutines and Re-Entry Points,
3-7
CPRINT, 3-15
CPWAIT, 3-14
CREAD, 3-12
Creating the Coreimage of the ALLINK file,
2-13

Entry Conditions, 3-3
Entry & Exit Condition, 2-4
Execution Terminal Error Numbers, B-1
Exit Conditions, 3-5

FST-1 Memory Allocation in TOPSY, 2-16
FST-2 Memory Allocation in TOPSY, 2-11

Miscellaneous, 2-14

Optimizing Memory Management to Reduce
Test Execution Time, 2-15
OVLYERR, 3-16

Programming Rules and Techniques, 3-3

Standard Assembly Language Programs Avail­
able, A-1
System Constants and Subroutines, 3-6

User Overlays, 3-1
User Overlays on a Revision 10.4 System
Tape, A-1
User Overlays on a Revision 11 System Tape,
A-1
Using the FST-2 ALLINK Storage Buffer, 2-9,
3-6

Index 1

SECTION 1

INTRODUCTION

Two types of user-written assembly language programs or files may be executed
under TOPSY.

The first type of assembly language program is one which is called by a FACTOR
test program. These are called Assembly Language Linkage files or ALLINK files.
A PPM microprogram is a type of ALLINK file and is described under ALLINK
files.

The second type of assembly language program is one which is called by an operator
command while no test station is active. These files are called user overlays.
These are not to be confused with the system overlays such as DATALOG,
CPMAIN, and ANALYSIS which are called into memory as the system demands
without the user's need to be aware of them. System overlays are required to be on
the disc for TOPSY to execute. User overlays provide optional features.

1-1

SECTION 2

ALLINK FILES

ALLINK and PPM microprograms are discussed in this section. The following
topics are covered:

a. Calling ALLINK Files

b. ALLINK File Programming Rules & Techniques

1. Entry and Exit Conditions
2. Accessing System Constants
3. Accessing Parameters from the FACTOR Test Program
4. Accessing System Subroutines
5. Using the FST-2 ALLINK Storage Buffer
6. Creating the Coreimage of the ALLINK File
7. Miscellaneous

c. Optimizing Memory Management to Reduce Test Execution Time

2-1

2.1 CALLING ALLINK FILES

An ALLINK file is called via the FACTOR statement, EXEC. A PPM micropro­
gram is called via the FACTOR statement, REX EC. The differences between two
statements is that the EXEC statement may have 63 parameters and the REXEC
statement may have only 13, and at execution time the REXEC statement causes
terminal error 77 if the Pattern Processor Module (PPM) is not part of the system.

EXEC

General Forms:

EXEC file name;

EXEC filename (parameter 1, parameter 2, ... parameter n);

'filename' must be an identifier which follows the rules for FACTOR identifiers and
is also the name of a coreimage file on disc. The value for n may not exceed 63,
i.e. up to 63 parameters may be passed from the FACTOR test program to the
ALLINK program.

When EXEC is executed a check is made to see if the ALLINK file is already in
memory because of a previous execution. Up to six ALLINK files may be resident
simultaneously if they do not overlap. If the file is resident, it is executed imme­
diately. If not, a check is made to see if the file's address on disc is known. If it is,
no disc search is necessary. Otherwise, a disc search takes place to find the file on
disc under the current job. If not found in the current job, the system job is
searched. If not found there, terminal error 60 is issued. Once the file is located
on disc it's size and load points are checked. If the ALLINK file will load on top of
the operating system, system variable and global storage area, or the working
stack, terminal error 61 is issued. If six ALLINK files are already resident or if
this ALLINK file will overlap any currently resident ALLINK file, all memory of
the previously loaded ALLINK file is forgotten and the new ALLINK file becomes
the only resident file. Also, if an FST-1 is use the test prcgrnm and the ALLINK
file must share the same area in memory, so whenever an ALLINK file must be
loaded from disc, the pointers to the test program buffer must be re-established
and a disc load will occur for the test program when the next FACTOR statement
is executed. These error checks and disc accesses require time which slows down
testing. Techniques to reduce execution time of ALLINK files is described under
the Memory Management section.

Once the ALLINK file is found to be in memory or has been loaded into memory,
control is passed to the entry point of the program indicated by the PROC state­
ment.

The parameters passed to an ALLINK file may be global variable, user variable,
arrays, array elements, functions, formal parameters, or arithmetic expressions.
However, arrays must not be passed to PPM microprograms.

REX EC

General Forms:

REXEC filename;

REXEC filename (parameter 1, parameter 2, ... parameter n),

2-2

The value of n may not exceed 13, i.e. up to 13 parameters may be passed from the
FACTOR test program to the ALLINK FILE. For a description of the parameters
passed to a microprogram, see the PPM User's Manual and Programming Reference.

When a PPM microprogram is assembled (RASM command) DMA code which may be
executed by the control RAM is generated for each module. An object file of an
FST assembly language file is then placed in working storage followed by the DMA
code generated by RASM. This object file is actually an ALLINK file which
provides the link between the FACTOR test program and the microprogram. The
coreimage file which the user creates at the end of the assembly microprogram
contains this ALLINK file as well as all the modules. At the REXEC statement,
the file is treated as described under EXEC. When the file is loaded each module is
also in memory. When control passes to the ALLINK file, it processes the
parameters passed to it, determines if the module to be executed is already in the
control RAM, and if not loads the control RAM from memory. It then starts the
control RAM execution and waits for completion at which time the FACTOR test
program continues execution.

2-3

2.2 ALLINK FILE PROGRAMMING RULES & TECHNIQUES

2.2.1 Entry & Exit Condition

The entry point of an ALLINK file is at the PROC statement. Rev. 10.4 and later
software revisions do not require the PROC to be at the first locations of the
program, however, a PROC or data cell or statement which generates assembly
language code must precede a BSS statement because storage space fine by a BSS
at the start of a file is not actually part of a coreimage file. The load point follows
any initial storage defined by BSS. This feature provides faster load time for files
under DOPSY when other files will not be loaded below a resident file. Under
TOPSY, since it is not know that this area belongs to the ALLINK file the test
program or another ALLINK file could overlap the storage area.

The name of the file executed is the name of the coreimage file on disc and not the
name on the PROC statement. A normal sequence would be:

ENTRY PROC 0
BRU START

data cells and storage
I

START EQU *
I

program body
I

BRU* ENTRY

The normal return is at CALL + 1.

An error exit is provided to allow the ALLINK file to cause a terminal error and
stop the test execution. The ALLINK files may display an error message before
exist for more clarification of the terminal error. The terminal error number out
put is the contents of the A register plus 100, if the A register is not negative on
exist. If it is, the terminal error is 100. This error exit is coded as follows:

LDAERRORNUMB
AOM ENTRY
BRU* ENTRY

On entry to the ALLINK file the following conditions are set:

2-4

X3 Contains the number of parameters passed to the ALLINK file.

X4

A

Points to the addresses of the parameters passed to the ALLINK
file.

Contains 0. This is to differentiate from an entry to a user
overlay where the A register equals 2.

Any index registers or state switches may be used by the ALLINK file. The opera­
ting system saves and restores what is requires. From one entry to another no
switch or register is saved for the ALLINK file by the system. This must be done
by the ALLINK file. In general, however, an ALLINK file does not known when it
will be overlayed in memory' so it usually is written so that no data is expected to
be there from a previous execution. Also, since the file is not necessarily reloaded
at each execution anything expected to be zero but set by a previous execution
must be cleared.

If necessary, an ALLINK file can determine if it has been reloaded by defining a
flag word as zero and setting it to a one at exit. On entry, if the flag is one the
file has not been reloaded; if zero it has been reloaded. If the ALLINK file requires
extensive clears or set up procedures which might be avoided by such a flag, then
execution time would be reduced.

2.2.2 Accessing System Constants

Space is reserved in GLOBAL for the commonly used constants. These constants
may be used by the ALLINK file to reduce the size of the ALLINK file. In other
words, there is no need to duplicate the definitions. These constants and their
absolute locations are:

00740
00741
00742
00743
00744
00745
00746
00747
00750
00751
00752
00753
00754
00755
00756
00757
00760
00761
00762
00763
00764
00765
00766
00767
00770
00771
00772
00773
00774
00775
00776

00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000010
00000017
00000020
00000060
00000077
00000100
00000200
00000377
00000400
00001000
00001777
00002000
00004000
00010000
00020000
00037777
00040000
00070000
00100000
00200000
00400000
00600000
01000000

DO
Dl
D2
D3
D4
D5
D6
D7
010
017
020
D48
077
0100
0200
0377
0400
OlT
01777
02T
04T
OlOT
020T
037777
040T
070T
OlOOT
0200T
0400T
0600T
OlM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0
1
2
3
4
5
6
7
lOB
17B
20B
48
77B
lOOB
200B
377B
400B
lOOOB
1777B
2000B
4000B
lOOOOB
20000B
37777B
40000B
70000B
lOOOOOB
200000B
400000B
600000B
lOOOOOOB

2-5

00777
01000
01001
01002
01003
01004
01005

02000000
04000000
10000000
20000000
40000000
60000000
77777777

02M
04M
OlOM
020M
040M
060M
OMl

DATA
DATA
DATA
DATA
DATA
DATA
DATA

20000008
40000008
100000008
200000008
400000008
600000008
777777778

To use the system contants the following technique should be used. The example
shows how to load the A register with 7.

D7 EQU 7478

LDA D7

2.2.3 Accessing Parameters from the FACTOR Test Program

The address of each parameter passed to an ALLINK file is stored on the working
stack in memory. Index register 4 points in front of the first parameter location.
Index register 3 contains the number of parameters passed.

Whether the parameters are variable, arrays, or expressions, the working stack
contains just one word for each. If the parameter is a variable, the word stack
contains the address of the variable. If the parameter is an expression, the value of
the expression at EXEC time is what is referenced. The expression is actually
analyzed before the EXEC transfer control to the ALLINK file and the result is
stored at a location and then that location's address is placed on the work stack.

If the parameter is an array, the work stack contains the address of the location of
the array and bit 23 is set to indicate the parameter is an array. Therefore, the
test program may pass either an array or 11 variable for a given parameter. Word 0
of the array is the array size, word 1 is element 1, etc.

The following code will access parameters:

Parameters 1 and 2 are always known to be variables:

LDA* l,X4 GET VALUE OF PARAMETER 1
STA* 2,X4 STORE VALUE IN PARAMETER 2

Parameter 3 is always to be an array:

LDA* 3,X4 GET ARRAY ADDRESS
LXA X5 X5 WILL POINT TO ARRAY
LDA O,X5 GET ARRAY SIZE
LDA 9,X5 GET VALUE OF ELEMENT 9 OF ARRAY
STA 11,X5 STORE VALUE IN ELEMENT 11 OF ARRAY

Note that the above examples will not work correctly if the calling FACTOR
program passes an array when a variable is expected or vice versa.

2-6

Parameter 2 may be an array or a variable:

LDA
BN
LDA*
BRU

ARRAY LDA*
LXA
LDA

2,X4
ARRAY
2,X4
*+4
2,X4
X5
1,X5

GET ADDRESS
BIT 23 IS SET, SO IT'S AN ARRAY
GET VALUE OF PARAMETER 1

GET VALUE OF ELEMENT 1 OF ARRAY

2.2.4 Accessing System Subroutines

Input and output routines, the floating point routines, and other utilities may be
used by ALLINK files. However, the input/output routines (or any routine with an
interrupt address) must not be called directly. Other routines may be called
directly, however, if they are already resident as part of TOPSY the ALLINK file
can be kept smaller by calling routines indirectly.

The address in memory of each resident routine is stored in low memory locations
in GLOBAL. To access these routines indirectly, the user programs BSM* to the
address of the memory location of the routine.

The calling sequence which may be used is shown below. The address of TTRIO is
always stored at 520B.

TTRIO EQU 520B
DCB DATA n, test-address, text

BSM*
DATA
DATA

TT RIO
1
DCB

The remainder of the calling sequence is identical to that of a direct call.

The I/0 driver, floating point, and other miscellaneous system routines and their
memory address locations are shown below:

SYSTEM ROUTINE

I/0 DRIVERS

CLIO
CRIO
DISC IO
LPIO
MTIO
TAPIO
TT PIO
TT RIO

ADDRESS OF MEMORY LOCATION

1232B (rev. 11 and later)
553B
554B
543B
552B
541B
512B
520B

2-7

FLOATING POINT ROUTINES

FADD
FDIV
FFIX
FFIXS
FFLTS

540B
521B
542B
514B
515B

OTHER SYSTEM ROUTINES

ADRXLATE
ALPCLR
BIND EC
CILOAD
CLOSE
ENTRFN
FIND
GET
GFREC
IN REC
OPEN
PF REC
PUT
PUTW
READ
SRCH
WRITDS
WRITE

12368
12448
513B
510B
537B
1235B
511B
517B
12058
551B
547B
1204B
516B
1210B
545B
1233B
1234B
544B

Most of these routines are described in the Subroutine Manual and will not be
discussed here. The floating point routines are described in a FACTOR Manual
Appendix. Calls tc CLIO are discussed in the revision 11 Com Link fvianual.
Routines not documented elsewhere are described below.

TAPIO is an interface between the user and MTIO. It is only for use in TOPSY.
The call is identical to MTIO except that for read and write operations the A and E
register must contain the name of the block to be written or read. For write
operations a block header record is output before the block to be written. The
header record contains this block name and length. For read operations the block
header record is read. If it does not contain the same name as in the A and E
registers on entry to TAPIO, the following block is skipped and the next block
header is read. This process continues until the desired block is found or the end of
tape.

If the proper block is not found an error occurs. Thus TAPIO gives block
identification and block search features not provided in MTIO.

TAPIO also does more error checking on the tape unit and the DCB. If an error is
found there is no return to the calling program and a terminal error is output
describing the error found.

2-8

ALPCLR is a TOPSY routine provided to allow the ALLINK files to request that
the currently resident ALLINK files not be retained so that the space they use is
returned to the test program. This will cause a reload of the test program in the
full area available. If execution is on an FST-2 CPU, there is usually no advantage
in clearing out the ALLINK files unless later in the execution the stack will extend
into the ALLINK file and cause terminal error 54. However, this will only
eliminate terminal error 54 if the ALLINK file is not called again or if the stack is
smaller when the ALLINK file is called again. A subsequent execution of this
ALLINK file will force a disc access to reload the file. However, a disc search is
not required if no other ALLINK file has been executed on the same station.

The call to ALPCLR is as follows:

AL PC LR EQU 1244B
BSM* ALPCLR

The A register is destroyed by this call. Return is always at CALL+l.

CILOAD IS USED TO LOAD COREIMAGE files. The calling sequence, if the file is
also to be found on disc, is to load the A and E register with the name of the file.
CALL+l is the error return, the file could not be found on disc. CALL+2 is the
normal return.

CILOAD EQU
LDA
BSM*
BRU

510B
FILE
CILOAD
ERROR

If the location of the file on disc is known, the disc search can be avoided. The A
register must be zero, the E register contains the disc address, and index 7 points
to an image of the disc directory entry for the files.

CILOAD EQU 510B
LDA DO
LDE DISC-ADDRESS
LDX X7 ,DIRECTORY-ENTRY
BSM* CILOAD
BRU ERROR

Index 7 points to the image of the disc directory image after a call to FIND or
SRCH.

2.2.5 Using the FST-2 ALLINK Storage Buffer

When operating with the FST-2 CPU a buff er is reserved in memory for use by
ALLINK files. Assembly language code should not be put in this area. However, it
is useful for storage of large amounts of data.

An area of 4K words is always reserved for the ALLINK storage buffer. If a test
program fits in memory in less space than reserved for it, the ALLINK storage
buffer is expanded to use all the available left-over area. See Figure 2-1.

2-9

If the ALLINK storage buffer is not to be used or if less space is required to be
reserved, the buff er size may be reduced by a patch to $TOPSY. It may also be
expanded if desired. The size must be patched from DOPSY to take effect. Cell
1230B of $TOPSY (called TPALLOC in GLOBAL) contains the constant 4000 or
7640B. If this cell is altered so that less than 48 words remain for the test
program, terminal error 54 will result.

2-10

USER
OVERLAY

AREA

SYSTEM
OVERLAY

AREA

$TOPSY

STORAGE BUFFER AVAILABLE FOR USE BY
ALLINK PROGRAMS

'
TEST PROGRAM

~----------------------~

ALLINK PROGRAMS

+
1------- -RUN -=-l7ME-STACK---------

STATION VARIABLES

MANUAL DATALOGGER COMMAND
ANALYSIS PROCESSOR

INTERPRETER
ARITHMETIC PROCESSOR

SUBROUTINES

MONITOR

GLOBAL STORAGE & TRANSFER VECTOR

AUTOMATIC RESTART ROUTINE
COREIMAGE LOADER

INTERUPT ADDRESSES

Figure 2-1. FST-2 Memory Allocation in TOPSY

32-196K (MlMAX)

(ALLBST)

16K

2140B

510B

77B

0

2-11

The buffer start address is in ALLBST in GLOBAL, cell 1227B. This cell contains
the start of the buff er for that test program execution and will not change as long
as only that test program is run. The end of the buffer is the end of the memory
and is called MlMAX and is stored at 117B. These should not be altered by the
ALLINK file.

To store data or retrieve data that is in the high memory buff er the interrupts must
be disabled and the FST-2 CPU placed in the FST-2 mode. When in this mode index
registers may be loaded with 18 bit values, thereby allowing the access of data,
through an index register, at any memory location. When a desired word has been
retrieved or stored, the FST-2 mode must be reset and the interrupts re-enabled.
This is the same technique used by the operating system to execute a test program
in the upper memory (memory above 16K) while itself operating in lower memory
almost entirely in FST-1 mode. While in the FST-1 mode, the memory above 16K
may not be accessed and index registers may be loaded with 14 bit may not be
accessed and index registers may be loaded with 14 bit values only. If a register
contains an 18 bit value can be stored in a data cell in FST-2 mode, the full 18 bit
value can be stored in a data cell in FST-1 mode but cannot be retrieved except in
FST-2 mode.

The following shows a method of storing data in the ALLINK storage buffer:

ALLBST EQU 1227B
Ml MAX EQU 117B
POINTER BSS 1
X7 EQU 7
X6 EQU 6

STORE

2-12

LDA DATA

BRU

PZE
IDA
DATA
LDX*
LDX*
ATX
BG
STA
STX
AOM
DATA
IEN
BRU*

DONE

0

BUFFER IS FULL
WORD IS STORED

070006128 SET FST-2 MODE
X7,POINTER
X6,M1MAX
X7 ,1 AT END OF BUFFER?
*+4 YES
O,X7 NO, STORE DATA
X7 ,POINTER SA VE X7
STORE INCREMENT RETURN ADDRESS
070006UB SET BACK TO FST-1 MODE

STORE

The data to be stored is in the A register when the subroutine is called. The inter­
rupts are disabled and then the CPU is set into the FST-2 mode so the memory
above 16K may be accessed. This instruction may be coded with the data cell
as shown or an opcode may be defined so a mnemonic may be used. Index regis­
ters are loaded with the buffer start and end points and a check is made to see
that the buffer is not exhausted. If it is, exit is at CALL + 1. Otherwise the data
is stored in memory, the index register saved, and the return address set to CALL
+ 1. Otherwise the data is stored in memory, the index register saved, and the
return address set to CALL + 2. The CPU is set back to FST-1 mode and the inter­
rupts enabled. This subroutine could be used to retrieve data from the buffer
by changing the 'STA' statement to a 'LDA' statement. It is up to the user to
determine that the ALLINK files called by a test program do not conflict in their
use of the storage buffer.

2.2.6 Creating the Coreimage of the ALLINK File

After an object file has been generated for an ALLINK file, it is necessary to
create a coreimage type file. Care should be taken in selecting the origin point for
the ALLINK file since up to six ALLINK files may be resident in memory at the
same time if none overlap. It is good practice not to set the origin point in the
ALLINK file. Either have no 'ORG' statement or ORG at zero. The origin point
can then be established when the coreimage file is created. It is possible to origin
an assembly language program higher than the ORG point in the program but not
lower, i.e. the CREATE COREIMAGE command will not accept a negative number.

To determine that the ALLINK files called by a test program do not overlap, the
coreimage map generated when the coreimage file is created must be examined.
The number specified in the CREATE command indicates the load point of the
program, the first cell to be used by the program. The number printed on a line by
itself directly after the CREATE command and any control cards used is the next
available word in memory after the coreimage file. In other words, it is the end
point + 1 of the file and is the location at which another ALLINK file may be·
origined if ALLINK files are to be packed closely together. If it is the only or
highest loading ALLINK file, this number indicates how much space is between the
top of the ALLINK file and the end of memory available for ALLINK files, 37776B.
Since this is wasted space which in the FST-1 CPU is needed by the test program or
in the FST-2 CPU may be needed by the stack, it is best to origin the file so that
there is as little wasted space as possible.

Below is a typical example of a coreimage create command and the coreimage map
created:

II CREATE
37775
IBUS
IBIO
IBUS

111BUS' OVLY COREIM '=BUS' 35200B

N 35200
37461

IS ENTRY PNT

37775 is the address of the next available cell above 'IBUS'.

2-13

No definite low point may be specified for ALLINK file since the size of the
operating system varies with each revision, and with rev. 11 varies with the config­
uration selected (MTIO, DEBUG, CLIO, none). Also the number of stations
initialized changes the space available as 73 words are reserved for each initialized
station.

2.2. 7 Miscellaneous

If an ALLINK file does 1/0 to the VKT, the user may wish to ensure that the
prompting character will be output again at the end of the test sequence. To do
this the cell CPBZSW, at location 1142B should be cleared.

CPBZSW EQU 1142B

LDA DO
STA CPBZSW

If FACTOR 1/0 or datalogging to the VKT is done by the test program the oper­
ating system clears this flag.

A system constant called RPLEN in GLOBAL at location 1243B is set to 4096. Any
ALLINK file larger than this constant is automatically not retained in memory
after its execution and the area used is returned to the test program. The next
time the ALLINK file is executed, it will have to be reloaded from disc, although a
disc search will not take place if no other ALLINK file has been executed on the
same station. If the user wishes some other constant to be the maximum size of
retained ALLINK files, cell 1243B may be patched in DOPSY or altered from
TOPSY with DEBUG. Note that any change to the global storage area during the
first entry to TOPSY following an INIT will cause the change to become a
permanent change to $TOPSY on disc.

2-14

2.3 OPTIMIZING MEMORY MANAGEMENT TO REDUCE TEST EXECUTION TIME

Test execution time can be reduced by careful memory management which reduces
the number of disc accesses required. Disc accesses occur when a test program
does not fit in memory and must be paged and when an ALLINK file must be found
on disc or loaded into memory.

In the FST-1 CPU, the memory above the operating system, and station variables is
shared by the test program the ALLINK files, and the working stack. See Figure
2-2. The working stack is the area where the system stores the user variables
arrays, parameters passed to ALLINK files, and subroutine return points. It is built
above the operating system and system globals as the test program is executed and
it's size depends on the test program. Each variable used or declared, each array
element declared, and each nested subroutine call or block increases the stack's
size, reducing the area available for the test program and ALLINK file.

When a test program is larger than the memory available all of the test program
cannot reside in memory at once. It is then necessary to bring the test program
into memory in segments. Once piece of the test program is brought into memory
and executed and then another segment is brought in on top of the previous piece.
This technique is called paging. When an ALLINK file is executed, it too reduces
the area available for the test program. As the area for the test program is
reduced the number of disc accesses required to page the test program increases.

With the FST-2 CPU, the test program is stored in the upper memory, memory
above 16K, and the stack and ALLINK file do not cause disc accesses on the test
program. If the test program fits in memory, no disc accesses for the test program
occur after it is first loaded into memory. If it does not fit the test program is
paged in the maximum area available between 16K and, generally, 4K from the end
of memory.

For either FST-1 or FST-2 CPUs, when an ALLINK file is executed the first time it
must be found on the disc. This requires a search of the disc directory which itself
may take several disc accesses, in addition to the access for the load from disc to
memory. Once an ALLINK file is loaded into memory, however, it will be retained
and no disc access will be caused by it's execution until the ALLINK file is removed
from memory. The following occurrences remove an ALLINK file from memory.
(This does not mean that memory is actually cleared or that the ALLINK file is
written back to disc. It simply means the area where the file was is now used by
some other program).

1) Executing a test plan with a different name.

2) Executing a user overlay even if it is not loaded on top of a resident
ALLINK file or test program.

3) Going to DOPSY.

4) Executing more than six ALLINK files by one test program. The seventh
file becomes the only resident file.

5) Executing an ALLINK file that overlays some portion of a resident
ALLINK file. The lastest file becomes the only resident file.

6) Executing an ALLINK file which is larger than the system constant,
RPLEN. See III G.

2-15

USER
OVERLAY

AREA

SYSTEM
OVERLAY

AREA

$TOPSY

2-16

L

ALLINK PROGRAMS

TEST PROGRAM
t-- -- - - - ____ _f_ ________ . __ _,

t
STtK

~--------- ----------~
STATION ARIABLES

MANUAL DATALOGGER COMMAND
ANALYSIS PROCESSOR

INTERPRETER
ARITHMETIC PROCESSOR

SUBROUTINES

MONITOR

GLOBAL STORAGE & TRANSFER VECTOR

AUTOMATIC RESTART ROUTINE
COREIMAGE LOADER

INTERUPPT ADDRESSES

Figure 2-2. FST-1 Memory Allocation in TOPSY

16K

21408

5108

778

0

7) Executing an ALLINK file which calls ALPCLR to force its own removal
from memory.

,

Items 1 and 3 cause a disc access for the test program for both the FST-1 and FST-
2 CPU. The other items cause a disc access on the test program is the FST-1 CPU
is in use so that the test program will use all the available memory.

Item 6 and 7 describe times when the user can chose to have the ALLINK files
removed to gain more memory for the test program on the FST-1 CPU.

Once files have been "removed" from memory they will have to be reloaded from
the disc at the next EXEC statement. Only the address on disc of the last file
executed is saved so once a file is removed a disc search is required for all but the
last file.

Given this background information these points highlight the way to decrease the
number of disc accesses and increase test rate on the FST-1 CPU.

1) Origin the ALLINK files as high in memory as possible to keep the maxi­
mum space for the test program.

2) Execute the same test program on all stations because the resident
ALLINK files will not have to be loaded.

3) Minimize the number of executions of user overlays and returns to DOPSY
since the next test program execution requires the test program to be
reloaded and ALLINK files to be found on disc and reloaded.

4) Minimize the number of ALLINK files executed by a test program since
the first execution of each requires a disc search. Where possible combine
the ALLINK files needed.

5) Reduce the disc search time when a search is required by storing the
ALLINK file in the current job and as near the beginning of the disc as
possible. To do this, see Application Note 34, Minimize Access Time for
Assembly Language Overlays.

6) If more than one ALLINK file is to be executed repeatedly by a test
program, origin the files so that they do not overlap.

7) Determine the most efficient origin point for each ALLINK file called if
more than one is to be resident ALLINK file and not overlapping any other
file, the boundaries of the test program buff er are not changed so no disc
access occurs. Therefore, it may be most efficient to origin the first
ALLINK file executed at the lowest point. However, if the other ALLINK
files are executed much later in the program the space may have been
removed from the test program long enough to cause disc accesses that
would not have been necessary.

8) Determine that the disc access time required for the test plan to page in a
small area is not longer than the time required if the ALLINK files are
removed from memory and must be loaded (and searched for if more than
one is executing} each time they are loaded. If test time may be
enhanced by returning the area to the test program the ALLINK file may
call ALPCLR (See II D), or RPLEN (at 1243B) may be reduced (See III G).

2-17

Similar points to reduce execution time may be followed if an FST-2 CPU is used,
except that the key factor is not maintaining the test program area but reducing
ALLINK search and load times. These points are important for execution speed on
FST-2.

1) Execute the same test program on all stations because the resident
ALLINK files and the test program (if it fits in memory) will not have to
be reloaded.

2) Minimize the number of executions of user overlays and returns to DOPSY
since the next test program execution requires the test program to be
reloaded and ALLINK files to be found on disc and reloaded.

3) Minimize the number of ALLINK files executed by a test program since
the first execution of each requires a disc search. Where possible combine
the ALLINK files needed.

4) Reduce the disc search time when a search is required by storing the
ALLINK file in the current job and as near the beginning of the disc as
possible. To do this, see Application Note 34, Minimize Access Time for
Assembly Language Overlays.

5) If more than one ALLINK file is to be executed repeatedly by a test
program, origin the files so that they do not overlap.

2-18

SECTION 3

USER OVERLAYS

User overlays are discussed in this section. The following topiscs are covered.

• Calling User Overlays

• Programming Rules and Techniques

1) Entry Conditions
2) Exit Conditions
3) System Constants and Subroutines
4) Using the FST-2 ALLINK Storage Buff er

• CPMAIN Subroutines and Re-entry Points

1) COMPROC
2) CPREAD
3) CPWAIT
4) CPECHO
5) CPRINT
6) CPERR
7) OVLYERR

3-1

3.1 CALIJNG USER OVERLAYS

A User Overlay may be called while in TOPSY or in analysis mode in TOPSY
whenever no station is active.

When the command entered is not one of the system commands, the system job on
the disc directory is searched for a coreimage file with the command name
preceded by a colon (:). If found, the file is loaded into memory and executed. If
not found the error message 'COMMAND?' is output.

The system assumes that the User Overlay is origined at a location which will not
overlap the operating system or the stack if the overlay is executed during a
station pause. The overlay should be origined as high in the first 16K of memory as
possible, in the test program and ALLINK file area. As of revision 10.2, the user
overlay does not need to force the test program to be reloaded. Revision 10.4 and
revision 11 handle all memory management required. If an FST-1 CPU is in use,
the test program, if any is executing, and any ALLINK files which were resident
are reloaded into memory at the next test execution. If an FST-2 is in use, only the
ALLINK files are reloaded from disc. The reload occurs whether or not the files
were actually lost by the execution of the user overlay.

Cell 1160B in GLOBAL may be used to determine what revision software a user
overlay is operating under if the overlay is to execute with several different
revisions. The revisions are denoted as follows:

positive value Rev. 9.6
0 Rev. 10, 10.1, 10.2

-3 Rev. 10.3
-4 Rev. 10.4

-110 Rev. 11

When creating a coreimage file which will be used as a user overlay the first
character of the file name must be a colon.

CREATE ':FILE' COREIMAGE '=FILE' 32000B

The user overlay ':FILE', is executed by the following TOPSY command.

FILE (optional parameters)

The following names are names of system commands and may not be used as names
of user overlays (i.e. not the first word of a command). However, these names may
be used as modifiers.

3-2

ALTER
ANALYSIS
CLEAR
CLOSE
CONTINUE
DATALOG
DEBUG
DISPLAY
DOPSY
ETC
GLOBAL

LOAD
LOOP
MAGT
MANUAL
MEASURE
MODIFY
NOTE
OPEN
OVERRIDE
PAUSE
READ

RESET
RESTART
SET
SN
START
STOP
SWITCH
SYNC
TITLE
TOPSY
VAR
WRITE

3.2 PROGRAMMING RULF.S AND TECHNIQUF.S

3.2.1 Entry Conditions

The entry to the user overlay is at the PROC statement. The PROC does not have
to be at the first location of the program and BSS statements may be at the start
of the program. As long as the user verifies that the overlay does not overlap the
stack (if executing at a station pause) or the operating system, and the file will not
be executed as an ALLINK file, putting all BSS statements before any other
statement (except ORG) will reduce the load time of the file.

Parameters are passed to the user overlay in registers and in a buffer area at the
start of the command processor, CPMAIN. (This is the TOPSY system overlay
which handles system input and command decoding.) Information is also passed
back to CPMAIN through this buffer area if a CPMAIN subroutine such as
COMPROC is called.

Information available to the user overlay is as follows:

Register

A

E

Xl

X2

X7

Station Variable Table

Contents

The flag indicating the source of the call.

=2 call is a user overlay request.

=O call is by EXEC, a test program request.

Contents of the flag COMCOM plus any output
device specified is in E. This cell indicates the
parameters input on the command.

Contents of E register:

bit 23-17 set on
15 a string was entered
13 'ON' specified
12 'OFF' specified
11 A number specified
10 A 2nd number specified

6 CLO specified
4 MTW specified
3 LP specified 1 TTP specified

Pointer to the station variables for the station
indicated in the input command. The station
variables are listed below.

Pointer to the CPMAIN buff er containing
command information and subroutine loca­
tions.

Pointer to the PMF for the system command.
The current pointer is at zero.

Information in the system's station variable table pointed to by index register 1 on
entry is as follows:

3-3

word (octal)
0-lOB
llB
16B
17B
20B
21B
24B-43B
46B
52B
54B
55B-63B
64B
65B
66B

67B-112B

contents
test program PMF
DLCNTRL
DCDLY
DLFREQ
DLSKIP
LGMSK (datalog request)
Datalog title
MACTRL (analysis request)
SN
TPFIT (FST-2 test plan fits flag)
ALLINK directory image
VALUE (0)
SWITCH (1)
(DUMMY GLOBAL accessed through
FACTOR as TIMEX2)
GLOBl - GLOB20 (3-23)

The system variables are in locations 0-54B in rev. 10.4 and rev. 11, however these
sometimes are expanded with new revisions. To aid access of the GLOBALS
regardless of the revision, a system constant is set with the size of the system
variables plus the ALLINK directory image area. With index register 1 pointing to
the station variables as on entry GLOBl could be accessed as follows:

LDA 67B, Xl

However, the method to access the globals which will not be changed if a later
revision changes the number of system variables is this:

VARSIZ EQU
LAX
ADD
LXA
LDA

1215B
Xl START OF TABLE
VARSIZ INCREMENT OVER VARIABLES
Xl
3, Xl GET VALUE OF GLOBl

CPMAIN Buff er

The buff er area of CPMAIN, pointed to by index register 2, contains data cells with
information from the input command, addresses of subroutines in CPMAIN which
may be called by the user overlay, and return points to CPMAIN for error message
output.

Theses are the data calls for transfer of information between the user overlay and
the CPMAIN subroutine COMPROC. The use of this subroutine and the detailed
description of the data cells' contents are descrived under CPMAIN Subroutines.

Word (decimal) Contents

5 COM COM

6 CO MIO

3-4

Description

Contains the bit image of the command as it is
built by COMPROC. It does not contain the
output devices which are in the E register on
entry.
Contains the input and out units specified in
the input command.

9

10
11
15

20

24
25

NUMPA2

TABBOT
TABTOP
STAT

NU MP AC

STRNGl
STRNG2

Contains the first number if two numbers are
entered.
Start of the user's command table.
End of the user's command table.
Station ID. This is set to -1 if no station is
entered.
Contains the first number if one number
entered, the second number if two entered.
First word of string.
Second word of string.

These calls may be accessed through index register 2 as follows:

CO MIO EQU
LDA

6
COMIO, X2 GET I/0 DEVICE SPECIFIED

These are the CPMAIN subroutines which may be called by the user overlay. Their
usuage is described under CPMAIN Subroutines and Re-entry Points.

Word (decimal) Contents Description

1

12
18
26

27

COMPROC

CPREAD
CPRINT
CPWAIT

CPECHO

Decodes the user command into a 24 bit repre-
sentation.
Inputs a record into the command buffer.
Outputs a record.
Waits for completion of a read TTK. Called
after a call to CPREAD.
Echoes an input command if not from TTK.
Called after a call to CPREAD. (Revision 11
only.)

These subroutines are called indirectly as follows:

CPWAIT EQU 26
BSM* CPWAIT, X2

The following are addresses of entry points to CPMAIN for output of error
messages. They are described under CPMAIN Subroutines and Re-entry Points.

Word (decimal) Contents Description

2

21

CPERR Outputs one of the standard system error
messages.

OVL Y ERR Outputs an error message defined by the user.

These error message routines are accessed as follows:

OVLYERR EQU
BRU*

3.2.2 Exit Conditions

21
OVLYERR,X2

On exit the user overlay must restore the index registers to their state at entry.

The normal exit from the user overlay is at CALL + 1.

An error exit is provided at CALL + 2. If this exit is taken the standard TOPSY
error message "DUPL./MISSING PARM." is output.

3-5

The user overlay may also be exitted by a branch to the CPMAIN routines CPERR
and OVL YERR which output error messages. Also, if COMPROC is called to
decode an input command there may be no return if COMPROC finds an error.
These conditions are described in CPMAIN subroutines.

3.2.3 System Constants and Subroutines

The system constants and system subroutines available to ALLINK files are also
available to user overlays and are accessed in the same way.

3.2.4 Using the FST-2 ALLINK Storage Buffer

The FST-2 ALLINK storage buffer may also be used by user overlays. The user
must determine that there is no conflict between the use of this buffer by ALLINK
files and user overlays.

3-6

3.3 CPMAIN SUBROUTIN~ AND RE-ENTRY POINTS

3.3.1 COMPROC

Purpose

To scan an input command in BUF4 and create a word code representing the
command and modifiers. The station number, two numbers, a string, and l/0
devices specified in the command are saved in the CPMAIN Buff er which can be
accessed via index register 2. By giving information to COMPROC through a table,
COMPROC can require one of several modifiers, prohibit all but one of a group of
modifiers, and set a bit for each modifier selected even when none are required.

Calling Sequence

This routine is called by a user overlay when it is desired to obtain more infor­
mation from the input command or when the user overlay reads a record and then
wishes to scan it.

COMPROC
TABBOT
TABTOP
* NOTE

Return

EQU 1
EQU 10
EQU 11

INDEX 2 POINTS TO CPMAIN
LDA address of beginning of table
STA TABBOT,X2
LDA address of end of table
STA TABEND, X2
BSM* COMPROC, X2

COMPROC returns control at CALL + 1 unless the input command is incomplete or
has conflicting modifiers as defined by the user's table. When such an error is
found in the command an error message is output and control is not returned to the
caller.

Output Data

COM COM EQU
CO MIO EQU

NUMPA2 EQU
STAT EQU
NU MP AC EQU

STRNGl EQU

STRNG2 EQU

Input Command

5
6

9
15
20

24

25

Contains the bit image of the command.
bit 23-12 input device
bit 11-0 output device
First number if two numbers entered.
Station ID. This is negative if no station is entered.
First number if one entered, second number if two
entered.
First word of string (command other than TITLE,
NOTE).
Second word of string (commands other than TITLE,
NOTE).

A command is made up of identifiers, strings, and numbers which are defined as
follows:

3-7

identifiers: A name preceded by an alpha character and containing only alpha­
numeric characters. The first identifier must be the keyword of
command, otherwise an error message will result. The following
identifiers are modifiers or options which may be defined in the user's
table as required, optional, or allowed only when another modifier is
not allowed. All identifiers are truncated to four characters. The
remaining characters are ignored.

string: A string is a series of any characters except blanks enclosed in single
quotes. Strings are truncated to six characters and stored in STRNGl
and STRNG2.

number: Any decimal, octal, or scientific notation type number may be
entered. A decimal point, or plus or minus sign indicate to
COMPROC that a number is input. If these special characters are
not followed by a number an error message results.

Input Command Tables

The command table consists of any number of two word entries. The first word is
the first four characters of the identifier and the second word is the bit code and
flags to COMPROC which define the identifier and the second word is the bit code
and flags to COMPROC which define the identifier. The second word (definition
word) is defined as follows:

23 22 18

__..
KEY WORD

CODE

....__KEY WORD
FLAG

KEY IDENTIFIER

15 12 9 6 3

USER OPTIONS

.__ __ 10 2nd number entered
....._ ___ 11 1st number entered

______ 12 'OFF' entered
.__ ______ 13 'ON' entered

________ 14 User option
__________ 15 String Entered

___________ 16 Duplicate Flag
.__ ____________ 17 Command Complete Flag

The command table must contain at least one identifier defined as a keyword, the
first identifier to be entered in the command statment. A keyword is defined by
setting bit 23 in the definition word. COMPROC scans the input command and
finds the first identifier. It is then comparred against the input command table. If
an entry in the table is found, with bit 23 set in word 2, which matches the
command's first identifier then word 2 is stored into COMCOM, the cell which will
contain the composite command image.

If no match is found or a blank line is entered the error message 'COMMAND?' is
output and no return to the calling program takes place.

For user overlays the keyword code may be 21B to 37B or for the keyword the
entire keyword identifier is 61B to 77B.

3-8

Once the keyword has been found, additional identifiers in the command are
modifiers or options. One identifier will be treated as a modifier for a command if
it passes a series of checks. Once it passes, the contents of word 2 of the command
table are ORed into the flag word COMCOM where the command image is being
formed. Bits set in the user filed of word 2, bits 0-9 and 14 indicate to the calling
program which modifiers have been entered. If the identifier does not pass the
checks it is treated as a noise word and ignored. In this case the table scan
continues until a match is found or the table is exhausted. The the input command
is scanned for the next entity.

These are the checks made on an identifier after the keyword has been found:

1) The first four characters of the identifier must match the first word of the
table entry in the command table. Once an identifier match is found the
remaining checks are made using the corresponding definition word table
entry.

2) The modifiers may not be defined as keywords, i.e. bit 23 set will cause the
table entry to be skipped and the table search to continue in case there is
another table entry which might match the identifier. This allows keywords to
be used as modifiers even though only one word of command may be the
keyword. (For example, DATALOG MEASURE).

3) If the keyword code (bit 18-22 of the definition word) is zero the corresponding
modifier is allowed on any command and the definition word is ORed into
COMCOM. For example in the system tables 'ON' and 'OFF' are allowed in any
command so bits 18-22 are zero. The definition word of 'ON' has bit 13 set and
the definition word of 'OFF' has bit 12 set so that if these modifiers appear in
any system command or command processed by a user overlay the correspond­
ing bit will be set in COMCOM.

4) If the keyword code of the identifier is not zero then it must be the same as
bits 18-22 of the keyword identifier already stored in COMCOM. This allows
defining more than one keyword in a table with unique modifiers for two
keywords where different bits are to be set depending on the keyword. (For
example, FCT appears in the system's tables twice, with the DATALOG
keyword code and the DISPLAY keyword code because for DISPLAY bit D is to
be set in COMCOM and for DATALOG bit 3 is to be set. Also the identifier
'SAVE' appears in the table with the 'LOAD' keyword code so that a bit will be
set if 'SAVE' is entered in a LOAD command but if it is entered in any other
command it will be ignored).

5) Next the duplicate flag bit (bit 16) is checked. If it is set in both the modifiers
definition word and in the COMCOM being formed, then two incompatible
modifiers have been entered and the command decoding halts and the error
message 'DUPL./MISSING PARM.' is output. No return is made to the calling
program. (For example, in the OPEN command both DIF and DOF may not be
specified in a command so bit 16 is set in the definition word for each. Once
'DIF' has been entered bit 16 is set in COMCOM so if 'DOF' also appears the
error occurs).

3-9

If an identifier does not match any entry in the user's command table, the system
command table is checked for identifiers which may be in any command, 'ON',
'OFF', 'STAT.' 'ON' causes bit 13 to be set. 'OFF' causes bit 12 to be set. No
duplicate check is made so the calling program must verify that both have not
appeared in the command. If a station identifier has been entered, the station ID
translated to a value between 0 and 15 is stored in STAT 9 cell 15 of CPMAIN).
STAT equals -1 if no station identifier is entered. The calling program must verify
that a station number has been entered if one is required and that it is an assigned
station.

At the first entry to a user overlay, this has already been done and index register 1
points to the station variables. If the user overlay is calling COMPROC to scan
another command where the station number might be different, this code will
verify that the station has been assigned and leave index register 1 pointing to the
station variables.

STHVAR
STAT
CPERR
X2
Xl
D9

ERR9

ERRlO

EQU
EQU
EQU
EQU
EQU
DATA
DATA

LDA
BN
LXA
LDA
BZ
LXA

LDA
BRU*
LDA
BRU*

146B
15
2
2
1
9
10

STAT,X2
ERRlO
Xl
STHVAR,Xl
ERR9
Xl

D9
CPERR,X2
DlO
CPERR,X2

STATION VARIABLE TABLE ADDRESSES
STATION ID

GET STATION ID
NOT ENTERED

ADDRESS OF STATION VARIABLES
STATION NOT INITIALIZED
Xl POINTS TO VARIABLES

OUTPUT MESSAGE
"STATION UNASSIGNED"
OUTPUT MESSAGE
"STATION MISSING"

If an identifier has still not been matched 1/0 tables are checked. If the identifier
does name a device in the table a check is made. No more than one input device
and one output device are allowed. If more than one of either is entered, the error
message iDUPL./MISSING PARM.' is output and no return is made to the calling
program. Also, if 'CLO' is specified and the com link driver is not part of $TOPSY
the error message '$TOPSY NOT CREATED WITH CLIO' is output and no return
takes place. If an I/0 device does match, the device code is ORed into COMIO
(word 6 of CPMAIN). The codes are:

3-10

TTK
CR
MTR
DIF

lOOOB
20008
40008
50008

TTP
LP
MTW
CLO

lB
3B
4B
6B

The input field is bits 12-23. The output field is bits 0-11.

If a number is sensed in the input command the number is decoded into a floating
point number unless appended by an asterisk in which case bits 0-18 contain the
binary value and bits 19-23 contain the number of bits entered. The first number
entered is stored in NUMPAC and bit 11 is set in COMCOM. When the second
number is sensed, NUMPAC is stored into NUMPA2 and the second number is in
NUMPAC and bit 10 of COMCOM is set. SAVE + 9 (in GLOBAL location 1017B)
contains the octal value of the last octal number entered, i.e. it is not floated. If
an illegal number is entered such as 9B or 1.37B it is ignored.

If a string is entered bit 15 is set in COMCOM. If the string does not have an end
quote or contains blanks 'BAD NAME' is output and no return to the calling program
takes place.

At the end of the command record COMCOM is checked again. If bit 17 is not set
some required modifier has not been entered so the error message 'DUPL./MISSING
PARM/' is output and control is not returned to the calling program. If only a
keyword is required in a command, the keyword's definition word must have bit 17
set. However, if one modifier of several is required, but 1 7 is zero in the keyword's
definition word and set in each modifier's word. (For example, in the OPEN
command 'DIF' or 'DOF' must be entered but no both. As above, bit 16, the
duplicate bit, is set in each to prohibit both being entered and bit 17 is zero in the
'OPEN' definition word and on for 'DIF' and 'DOF' so that if either is entered bit 17
(as well as another bit in the user field to determine which was entered) is set so
that either one causes the command to be complete).

This is an example of how the operating system uses COMPROC to decode the
OPEN command. The full table entries for the OPEN command and its modifers
are:

DATA
DATA
DATA

'OPEN',
'DIF',
'DOF',

61000000B
21600001B
21600002B

When the command is decoded and passed to TCMD2, the suboverlay knows that it
is the OPEN command because this is the only command code of '21B' which would
be passed to it. It knows the command is complete because bit 17 must be set and
only 'DIF' or 'DOF' can complete it; and that both 'DIF' and 'DOF' could not have
been entered. TCMD2 will determine which was entered by checking bits 0-1.
Then if 'DIF' was entered bit 15 is checked to make sure a string was entered. No
string entered causes an error message and otherwise the file name is in words 24
and 25 of CPMAIN.

The fallowing table shows how the bit fields in the definition word of a modifier are
used to describe the use of a modifier. In this case neither bit 16 or 17 is set in the
keyword code.

3-11

duplicate
bit (16)

1)

2) x

3)

4) x

complete
bit (17)

x
x

user description
options

X The modifier is allowed but is not required.

x

x
x

It's use does not restrict the use of another
modifier.

No other modifier may be entered which also
has the duplicate bit set. This modifier is
disallowed if the duplicate bit has been set in
the keyword definition word.

The modifier will complete the command.

This modifier will complete the command and
no other modifier with the duplicate bit set
may be entered.

3.3.2 CREAD

Purpose

To read a record from the PID or a device indicated by the A register into BUF4 or
BUF4 plus some displacement. BUF4 is at location 657B in GLOBAL and is the
record scanned by COMPROC.

Calling Sequence

CPREAD EQU 12
*NOTE - X2 POINTS TO CPMAIN

LDA DEVICE (OR ZERO)
LDE PROMPTING CHARACTER + 1
BSM* CPREAD,X2
DATA D

return

Return

Return is always at CALL + 2.

Input Data

A register

E register

3-12

The A register contains the device code for the device to be
read. If zero, the PID is read. (The PID device code is in bits 5-
7 of MlCTRL). The device codes are as follows:

0 = PID
1 = TTK
2 = CR
4 = MTR
5 = DIF

Any undefined device code causes a read TTK.

The E register contains the prompting character and the opcode
(1) for a read TTK if the input device is the VKT. The prompting
character is in the upper 6 bits of the word. For example, to
issue a prompting character of ' > ' to the VKT this code should be
used.

CALL+ 1

Output

PROMPT DATA '>' + 1
LDE PROMPT

CALL + 1 must contain the displacement length from BUF4 for
the input data to be read into. Most input records to be read for
user overlays are read into BUF4 because this is the buffer which
COMPROC scans to decode input commands. To do this, CALL+
1 contains zero.

If the input unit is the VKT keyboard the command input is echoed (by TTRIO) as it
is entered character by character on the VKT screen. If the input command is not
from the VKT keyboard it will not be displayed on the screen. To display it with
revision 11 and later, call CPECHO. (See CPECHO). On revision 10.4 determine
that the input device is not the VKT and echo the command as follows:

TTPIO EQU 521B
BUF4 EQU 657B
DCB DATA 20,BUF4

BSM* TTPIO PRINT BUF4
DATA 4
DATA DCB
BSM* TT PIO WAIT
DATA 0
BRU *-2

Description

If the input device is other than the VKT, CPREAD calls INREC to read the input
record. INREC always performs a wait before return so that the input record is in
BUF4 (plus the displacement) on return.

If the input device is the VKT, TTRIO is called directly. No wait for completion
occurs. (See CPW AIT).

On revision 11 or later software an appropriate sequence to call CPREAD, echo a
command if the input device is not the VKT, and wait for the device if it is the
VKT is as follows:

DO
CPREAD
CPWAIT
CPREAD
PROMPT
X2

DATA
EQU
EQU
EQU
DATA
EQU

LDA
LDE

0
12
26
27
'>I + 1
2

DO
PROMPT

INPUT FROM PID

3-13

3.3.3 CPW AIT

Purpose

BSM*
BSM*

CPWAIT,X2 WAIT IF TTK IS INPUT DEVICE
CPECHO,X2 ECHO IF TTK NOT INPUT DEVICE

RECORD IS INPUT READY TO PROCESS

To wait on the VKT input after a call to CPREAD. This must only be called after a
call to CPREAD. No action occurs if the input device last used by CPREAD was
not the VKT.

Calling Sequence

CPWAIT EQU
BSM*

Return

26
CPWAIT,X2

Return is always at CALL + 1.

Input/Output Data

None

Description

CPWAIT checks the device last read by CPREAD. If it is not the VKT, no action
occurs. If the last device read by CPREAD is the VKT a wait occurs until the
device is not busy.

3.3.4 CPECHO

CPECHO is only available on revision 11 and later software.

Purpose

To display on the VKT the input command read by CPREAD. This must only be
called after a call to CPREAD. No action occurs if the input device last used by
CPREAD was the VKT.

Calling Sequence

CPECHO EQU
BSM*

Return

27
CPECHO,X2
return

Return is always at CALL + 1.

Output

The input record last read by CPREAD is displayed to the VKT unless the VKT was
the input device.

Description

CPREAD checks the device last read by CPREAD. If it is the VKT, no action
occurs. If the last device read by CPREAD Is not the VKT the input record is
displayed to the VKT and a wait until the VKT is not busy takes place. The input
record may have been read into BUF 4 or BUF 4 plus any displacement.

3-14

3.3.5 CPRINT

Note that references to the com link refer to revision 11 or later of the software.

Purpose

To output a record to the TTP and also to the com link or to the line printer if CLO
or LP is specified in a command processed by COMPROC, or to the line printer if it
is the POD.

Calling Sequence

CPRINT
DC BAD DR
DCB

EQU
DATA
DATA

18
DCB
n, test-address, text

Return

LOA
BSM*

DCBADDR
CPRINT, X2
return

Return is always at CALL + 1 unless a com link error occurs.
is printed on the VKT and no return occurs.

In this case the error

Input Data:

TTPOUT-

COMIO -

MlCTRL-

Output

Cell 29 of CPMAIN - revision 11 only. If this cell is non-zero the
output to the TTP is suppressed. Also if output is done to the com
link it will be black print on a white background. Normally the cell is
zero and output is always to the TTP.

Cell 6 of CPMAIN - The low order 12 bit contains the output device
specified in the last command processed by COMPROC. This cell
may also be set by the calling program to force a specific output
device regardless of the command input or the system POD.

COMIO = 6 output to CLO, not to LP
= 3 output to LP, not CLO
'f:. 0 no more output other than TTP
= 0 check MlCTRL for POD

Cell 101 of memory - The system POD is checked if COMIO output
unit is zero. If the POD is the line-printer, the record is output to
the lineprinter.

The output record is displayed to the device or devices indicated by the input
parameters. Output to the com link is white print on a black background.

Description

The general purpose is to output a record to the TTP and also to the line printer or
Integrator is either is specified in the input command, or to the line printer if LP is
the POD. Output to the TTP is suppressed by setting TTPOUT not equal to zero.

3-15

Output to the com link occurs if COMIO equals 6.

Output to the line printer occurs .if COMIO equals 3 or COMIO equals 1 and the
system POD Is LP.

3.3.6 CPERR

Purpose

To output one of the standard system error messages.

Calling Sequence

CPERR

Return

EQU
LDA
BRU*

2
ERROR-NUMBER
CPERR,X2
no return

There is no return from CPERR. This is not a subroutine but an entry point into
CPMAIN.

Input Data

The A register must contain a valid error number. No error check of the number
takes place. The numbers and the corresponding error messages are:

1 COMMAND?
2 BAD NAME
3 DUPL./MISSING PARM.
4 ERROR -- COM LINK
5 FILE ID WRONG
6 INVALID NUMB
7 $TOPSY NOT CREATED WITH COM LINK
8 STATION UNASSIGNED

10 STATION MISSING

Output

The error message corresponding to the error-number list above is displayed on the
VKT. If the original input message was from the host, the error message is also
displayed at the host in bold type (black type on a white background).

After the error message is output the system PID is set to the TTK. Control then
passes to the CPMAIN routine to read the next system command.

3.3. 7 OVL YERR

Purpose

To output an error message defined by the calling program.

Calling Sequence

OVLYERR
DC BAD DR
DCB

3-16

EQU
DATA
DATA

21
DCB
n, test-address, text

LDA DCBADDR
BRU* OVLYERR,X2

Return

There is no return from OVL YERR. This is not a subroutine but an entry point into
CPMAIN.

Input Data

The A register must contain the address of a DCB suitable for a call to TTRIO (or
CLIO if CLIO might ever by used).

Output

The error message of the DCB Is displayed on the VKT. If the original input
message was from the host, the error message is also displayed at the host in bold
type (black type on a white background).

After the error message is output the system PID is set to the TTK. Control then
passes to the CPMAIN routine to read the next system command.

3-17

APPENDIX A

STANDARD ASSEMBLY LANGUAGE PROGRAMS AVAILABLE

ALLINK Files on a Revision 11 System Tape

IBUS
LMLOAD
LMMOD
LMTSF
LPLF

PSCAN
SP LOT
TTIME
XGRAPH

User Overlays on a Revision 11 System Tape

:IBUS
:LMMOD
:LMIO

:PPLOG
:PSCAN
:SPLOT

ALLINK Files on a Revision 10.4 System Tape

LMMOD
LMTSF
LPLF
PSCAN

SP LOT
TTIME
XGRAPH

User Overlays on a Revision 10.4 System Tape

:DSPLM
:LMIO
:PP LOG

:PSCAN
:SPLOT

A-1

APPENDIX B

EXECUTION TERMINAL ERROR NUMBERS

Certain set up and programming errors cannot be detected at compilation time;
these errors are discoverable only while testing. The Terminal Error lamp goes
'ON' for errors described in the following table. The error number is logged. Both
the Parameter FAIL and Parameter PASS lights are 'ON', but the EOT light is
'OFF'. The error number is displayed (in binary format) in the EIR register, bits 0-
1 O; least significant bit to the left (bit 0).

Terminal
Error Number

1
2
3

4

5

6

21

Description

A program has not been loaded for this station.
Station is disabled (power off)
Value programmed is negative or exceeds the hardware
limit:

SET DELAY, DC > 5. 734 sec
SET MAJOR loop count >4096
SET MINOR loop count > 4096

DMA statement execution process did not start.
(Hardware error).
Magnitude programmed exceeds hardware limit:

FORCE [EO/El/EAO/---/ECl] >10 bits +-1024 or 1023
SET [SO/Sl/SAO/SAl] > 10 bits
FORCE [VF1/VF2/VF3] > 10 bits
FORCE [IF1/IF2/IF3] . > 10 bits
ENABLE [TRIPI1/TRIPI2/TRIPI3] >10 bits
ENABLE [TRIPV1/TRIPV2/TRIPV3] >10 bits
SET DCT >10 bits
SET TG [DELAY/WIDTH] >10 bits

Value programmed is negative, zero or is outside of limit:

SET PERIOD >40 milliseconds
SET PERIOD > 12 bits -+ -4096 or 409 5
SET PERIOD >200 nanosec for 5 MHZ
SET PERIOD >100 nanosec for 10 MHZ
SET TG(X) [DELAY /WIDTH] < 10 nanosec

Value outside of limits set by ENABLE IHl/ILO

B-1

Terminal
Error Number

22
23
24

26

31

33

35
36
'"' JI

40

42

50

51

52

53

54

55

56
57

B-2

(a)

(b)
(a)

(b)

(a)

(b)
(a)

(b)

(a)
(b)

Description

Value outside of limits set by VHI/VLO
Pin number is greater than 120; CPMU PIN
Value programmed for RVS exceeds hardware limit:

[SET SO/Sl/SAO/SAl] +6, -30V for 5 MHZ
[SET SO/Sl/SAO/SAl] +6, -16V for 10 MHZ
FORCE [EO/El/---ECl]-+ as above

Illegal OPCODE in FACTOR interpretive tester statement.

FACTOR magtape read error (File skip forward executed to
move tape to the next tape file).
FACTOR magtape write error (File skip backward executed to
move tape to the start of the last file. When start is pressed
the program continues execution from this tape location).
FACTOR magtape EOT on write.
FACTOR magtape EOT on read.
FACTOR magtape memory protect on tape read.
FACTOR magtape data count less than 7 or greater than
assigned buff er size. Also a memory overflow may have
occurred.
FACTOR magtape irrecoverable error.

No DCL statement appears before this reference to the array
element.
Array has zero or negative number of elements.
The number of actual parameters does not agree with the
number of formal parameters.
TOPSY internal address error during store of a value, array
element or formal value.
Array subscript exceeds 8388607, is negative or greater than
the array size.
Attempt to change array element 0 (i.e,, the array size)
The number of entries on the top of the working stack is less
than required for current statement execution. (System error.)
A block header memory address of zero has been encountered
during update of Current Active Block pointer table. (System
error.)
Array size declared exceeds 8388607 or available memory.
Memory buff er available for tie test program is less than 1
disc sector (48 words).
The statement to be executed is not within the FACTOR
object file. (System error).
Illegal FACTOR data code. (System error).
The number of array elements being initialized exceeds the
declared array size.

Terminal
Error Number

58 (a)

59
60

61

62

67
68

69

70

71
72

74

75

76

77

(b)
(c)
(d)
(e)

Description

FACTOR I/O started without previous I/0 being completed.
Text is to be output without I/0 being initialized.
Column formatting outside of I/0 Process.
Literal variable outside of I/0 process.
Column formatting is allowed on output only.
For statement loop control start value is less than end value.
Assembly Language Linkage program or PPM microprogram is
not on the disc.
Assembly Language Linkage program or PPM microprogram
load entry point overlaps the top of the working stack.
Arithmetic or logical operation overflow (ADD, SUBTRACT,
MULTIPLY, DIVIDE, EXPONENTIATION, AND, OR, EOR,
NOT, NEGATE).

DOF (disc output file) is not open.
Attempt to read beyond EOF (end of file) if DIF (disc input
file) or DIF not open.
Attempt to write beyond EOF (end of file) of DOF (disc output
file)
Attempt to execute a program without a SET PAGE statement
on a SU and SVII or a SU and SVII Program on a S200/ 400 or a
system without a tester.
Local memory size requested exceeds local memory available.
Programmed timing generator delay/width error (checked on
SET PERIOD):

Delay+ Width .?.Period SII/SVII
Delay or Width.?.Period SII/SVII + 1 nsec. option
Delay or Width range .?.Period range
Width range .?.Delay range

Local memory address is negative or exceeds size requested by
SET PAGE.
Attempt to execute a 10 MHZ FACTOR statement on a 5 MHZ
system.
Attempt to execute a program with SET PAGE, SPO on a
Sentry II without the Sequence Processor Module.
Attempt to execute a PPO program on a Sentry II without the
Pattern Processor Module, i.e., one of the following was
encountered:

SET APERIOD
SET ATG4 [DELAY/WIDTH]
SET PPM
REX EC

t Tape status issued in octal. On terminal errors 35 or 36 a tape rewind is executed.

B-3

Terminal
Error Number

79
81

82

83

84

100-999

B-4

Description

Attempt to execute a 2v /2mv program on standard hardware.
The microprogram called by REXEC contains an assembly
error.
The module number passed to the microprogram by the REXEC
statement is negative.
The module number passed to the microprogram by the REXEC
statement is greater than the number of modules in the micro­
program.
Error in DMA loading the control RAM or in DMA Loading the
PPM registers when a PPM microprogram is executed.
Terminal errors generated by ALLINK programs.

