
SENTRY

FST-1 ASSEMBLER
I

MANUAL\

l=AIRCHILC

SYSTEMS TECHNOLOGY
A DIVISION OF FAIRCHILD. CAMERA AND INSTRUMENT CORPORATK>N

Systems Technology

FST-1
Assembler

Manual

Copyright Fairch i Id Camera and Instrument Corporation 19 70

Fairchild Systems Tech.
1725 Technology Drive
San Jose, California 95110

STOCK NO. 67094951

ISSUED: September 1970

FAIRCHILD

SYSTEMS TECHNOLOGY

TABLE OF CONTENTS

Page
SECTION I OPERATING I~TRUCTIONS

1.1 Introduction ... 1-1
1.2 Hardware Configuration .. 1-1
1.3 Loading the Program .. 1-1
1.4 Messages .. 1-2

SECTION II SYNTAX

2.1 Introduction , 2-1
2.2 Character Set .. 2-1
2.3 Record Format .. , 2-1

Comment Records , 2-1
Statement Records ... 2-1

2.4 Label Field .. 2-2
2.5 Operation Field ... 2-2
2.6 Operand Field .. , 2-2

Expression List .. 2-2
Sy.mbols 2-3
Decimal/Octal Integers .. 2-3
Strings · 2-3
Current Location Reference .. 2-4
Operators .. 2-4

2. 7 Comments Field .. 2-4

SECTION III INSTRUCTIONS

3. l Introduction ... 3-1
3. 2 Indexable Instructions ... 3-1
3.3 Indexable Instructions ... 3-2
3.4 SST, RST ... 3-2
3.5 BAT, BOI Augments ... 3-2
3.6 SPU Augments ... 3-3

SECTION IV DIRECTIVES

4.1 Introduction ... 4-1
4.2 BSS .. 4-1
4,3 DATA i•.............. 4-1
4.4 ORG ... 4-2
4.5 EQU ... 4-2

SECTION IV DIRECTIVES (Continued) Page

4.6 PZE .. 4-3
4. 7 PROC .. 4-3
4.8 CALL , 4-4
4.9 LIST/NOLIST .. 4-4
4.10 OBJ/NOOBJ .. 4-4
4.11 SYM ... 4-4
4.12 PAGE .. 4-5
4.13 ABS .. 4-5
4.14 END ... 4-5
4.15 TPASS · ... 4-5
4.16 INSEQ .. 4-5
4.17 NOSEQ ... 4-5

SECTION V DIRECTIVES

5.1 Introduction ... 5-1
5.2 Symbolic Output ... 5~1
5.3 Symbol Table Output .. 5-2
5.4 Object Output .. 5-2

APPENDIX A INSTRUCTION MNEMONICS

A. l (Opcodes Sorted by Ascending Alpha Opcode) A-1
A.2 (Opcodes Sorted by Ascending Octal Opcode) A-4

LIST OF TABLES

2-1 Character Coding ... 2-2

ii

List of Effective Pages------------

FORM 700620

FST - 1 ASSEMBLER

The total number of pages of this publication is 31,
consisting of the following:

Page No.

Title
Warranty
i through v
1-1 through 1-2
2-1 through 2-5
3-1 through 3-3
4-1 through 4-5
5-1 through 5-3
Al through A6

Issue

Original
Original
Original
Original
Original
Original
Ori~nal
Original
Ori~nal

PREFACE

This document describes the FST-1 Assembler. It does not
describe each possible instruction in detail. (If the Appendix
is not satisfactory to the user in this regard, he should consult
the FST-1 Systems Manual.)

The FST-1 Assembler operates either in a 1 - Pass or 2 - Pass
mode and will generate either absolute or relocatable object
programs (depending upon which is specified).

iii

SECTION I

OPERATING INSTRUCTIONS

1.1 INTRODUCTION

This section is concerned primarily with the mechanical motions required in using the
assembler; that is, in getting a program assembled. Subsequent sections will give the infor­
mation necessary to write programs that are acceptable to the assembler.

1.2 HARDWARE CONFIGURATION

The minimum hardware required by the assembler is:

I) 4K Core Memory
2) Console typewriter with paper tape reader/punch
3) Disc File

The other 1/0 devices supported by the MONITOR assembler are the card reader, line
printer, and the magnetic tape unit. The card code required is that of the 029 keypunch
(EBCDIC).

Additional memory, if available, enables larger programs to be assembled. For two-pass
assemblies the only limitation on the size of the program is in the number of labels present.
For 4K this about 250 and increases by 1365 for each additional 4K. For single-pass
assemblies the size of the program depends upon the number of labels, the number of ex­
ternal references/declarations, and the fragmentation of the program. Assuming one label
per five statements a 4K core memory will handle about 1200 assembled instructions and/or
data in the one-pass mode, with each additional 4K adding another 2275. Also, note that
there are further restrictions to using the one-pass mode, viz: symbolic referencing may be
forward only and operand-address arithmetic is not permitted.

1.3 LOADING THE PROGRAM

The program source may be loaded from the console typewriter keyboard, paper tape,
cards, magnetic tape or a disc file.

Examples of Commands appropriate to the assembler are found in the DOPSY Manual,
section 3.3.

If while assembling, the card reader should run out of cards the last card at the output
station will not be read until the card reader returns to the ready state. Therefore, the last
card of any input deck should be blank.

1-1

1.4 MESSAGES

The following table shows the messages that can be produced during an assembly and the
action that is required before proceeding.

Message Text

'SYMBOL TABLE OVERFLOW'

'ERROR - - SYSTEM-5

'MAGT APE I/O CONFLICT'

1-2

Action

The assembly is terminated.

The assembler cannot be found, return to
the monitor is automatically made.

A return to the monitor is automatically
made.

SECTION II

SYNTAX

2.1 INTRODUCTION

This section gives the information necessary to produce programs in the format required by
the assembler.

2.2 CHARACTER SET

Letters
Digits
Special
Characters

A, B, C, z, and $
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
!"#%&'()*+,-./:
< = > '? @ [\] t SP ACE

Table 2-1 on the following page shows the internal code for the character set. These are the
printing ASCII characters and are produced directly by the teletype. The 029 keypunch
character set differs from the teletype character set in a few instances. These are indicated
in this table under the '029' heading.

2.3 RECORD FORMAT

The assembler obtains its input from either cards, paper tape, magnetic tape or disc files.
Records obtained from the card reader are fixed length and occupy the first 72 characters of
the record. Paper tape records are variable in length and are terminated by a carriage return; all
other control characters are ignored. Disc files are normally variable length string files.

Assembler records are of two types: comment records and statement records.

2.3.1 Comment Records

Comment records are characterized by having an '*' as the first character of the record.
These records have no effect on the assembly process. They do occur in the assembly
listing, however, and serve to document or explain program segments.

2.3.2 Statement Records

A statement record is the basic unit of an assembly language program. The assembler re­
quires that the first character of a record should be either alphabetic or a blank.

2-1

Table 2-t. Character Coding

Code Char. 029 Code Char. 029

00 SPACE 40 @

01 . I 41 A
02 II 42 B
03 # 43 c
04 $ 44 D
05 % 45 E
06 & 46 F
07 47 G

10 50 H
11 51 I
12 * 52 J
13 + 53 K
14 54 L
15 55 M
16 56 N
17 I 57 0

20 0 60 p

21 1 61 Q

22 2 62 R
23 3 63 s
24 4 64 T
25 5 65 u
26 6 66 v
27 7 67 w

30 8 70 x
31 9 71 y

32 0-8-2 72 z
33 73 [<
34 < 12-0 74 \,
35 = 75] >
36 > 11-0 76 t ~

37 ? 77 +-

2-2

If the character is alpha, then it is assumed to be the first character of a label; if it is blank,
then no label exists. Apart from this limitation, the input format is free field through
column 72 of the card and consists of 1 - 4 fields separated by one or more blanks: label
(optional), op-code (mandatory), operand (optional) and comments (optional).

2.4 LABEL FIELD

The label field is optional. It provides the user with a means of referencing a statement
from different areas of his program.

The label has the same syntax as a symbol (2.6.2) and like a symbol may be any length,
but only the first six characters are retained. The label must begin with the first character
of the record and terminate with a SPACE.

2. 5 OPERATION FIELD

The operation field specifies either a machine instruction or a directive. This field must be
present and begins with the first non-blank character after the label terminator. The syntax
of the operation field is the same as for symbols. The first special character terminates the
field and if it is an '*' the instruction will be generated with indirect addressing, otherwise
this character must be a space. APPENDIX A contains a list of all the symbols that may
occur in the operation field. The user may extend this list by means of the EQU directive
(4.5).

2.6 OPERAND FIELD

The operand field consists of one or more expressions. These expressions are used to repre­
sent storage locations, index registers and other constant values for instructions, and to
provide information required by the assembler to process directives correctly.

Operand expressions may be uni-term or multi-term; however, in the single-pass mode,
multi-term expressions cannot contain forward references (symbols that are not defined
prior to their use).

The operand field begins with the first non-blank character after the operation field termin­
ator. If the last (or only) expression of the operand field is blank it is assumed to be zero.

2.6.1 Expression List

The series of expressions making up the operand must be separated by a comma and
terminated by a space. The elements that make up expressions are symbols, numbers (octal,
decimal, string), the current location symbol and operators.

A single-term expression such as AS, SSB, or * has the value of the term itself while multi­
term expressions, such as TABLE+ 3, are reduced by the assembler to a single value by
arithmetically combining the terms.

2-3

An expression is absolute or relocatable depending on the terms that comprise it. (See
2.6.2). The relocatability of an expression can be determined by replacing each relocatable
term with a 'l' and each absolute term with a 'O' and then evaluating the expression. If
during the evaluation the value goes negative or exceeds one an error condition exists. A 'O'
result indicates an absolute expression and 'l' a relocatable one.

2.6.2 Symbols

A symbol is either a single letter or a letter followed by one or more letters and/or digits.
Symbols may be any length, but only the first six characters are retained by the assembler.
They must, therefore, be unique through the first six characters. Good practice dictates that
symbols should be limited to six characters because of the risk of unintentional duplication.
With the exception of CALL operands, every symbol occurring in an operand expression
must occur as a label somewhere else in the program. The symbol then becomes defined
and the value assigned to it is the operand expression for the EQU directive or the current
location counter for instructions and other directives.

The values assigned to symbols are either absolute or relocatable. An absolute value is one
that is unaffected by the relocation of the program that contains it. A symbol can be
assigned an absolute value only by using the EQU directive to equate it to an absolute
numeric quantity or another absolute symbol.

Symbols referenced before they are defined are called forward references and cannot be
used in multi-term expressions in the single-pass mode.

Examples:
TEST IO
Al5
AVERYLONGSYMBOL
$15C

2.6.3 Decimal/Octal Integers

A decimal number is a sequence of 8 or fewer digits. Only the low-order 24 bits of decimal
numbers are retained. An octal number is a sequence of 8 or fewer digits terminated by a
'B'. If more than 8 digits are present, only the low-order eight digits are retained.

Examples:

2.6.4 Strings

1579
lOB = 8
7777B = 4095
7B = 7

A string is a sequence of four (or fewer) characters enclosed in single quotes. Any of the
characters in table 2. 2 except the single quote may be part of a string.

2-4

Strings are used in expressions as 24-bit binary numbers. If more than four characters are
present, only the first four are retained and if there are less than four characters they are
left justified in the word.

'"'"'"'A' =41B
'B' =42000000B
'#!$@'

2.6.S Current Location Reference

The value of an '*' in an operand expression is that of the current location counter. That is,
the value is the location of the current instruction or data item.

Examples:
BRU *+3
DATA *+l, 3, *+l, 'EOF', 'ON C', 'R'

2.6.6 Operators

Strings, numbers, identifiers and '*' can be combined by the operators, + (plus), - (minus),
t (up arrow). 'Plus' and 'Minus' can be either unary or binary while 'up arrow' is always
unary. 'Plus' and 'Minus' have the usual arithmetic meaning of add and subtract. 'ta' has
the value 'a' if 'a' is even, 'a + l' if it is odd: its primary use is for aligning the location
counter on an even boundary. This is very important when working with two-word oper­
ands, using the 'double' codes.

Examples:

2. 7 Comments Field

L+3
TABLELAST-TABLEFIRST + 3
-6

t*

The comments field is not processed by the assembler. It does occur in the assembly listing,
however, and can contain any of the characters shown in Table 2-1.

Example:
LDA TABLE+l,XP GET TABLE ENTRY

Note that the operand field cannot be omitted if the comment field is present because the
assembler would assume the· comment field is the operand field.

2-5

SECTION III

INSTRUCTIONS

3.1 INTRODUCTION

The operand of every instruction must have a particular format. Appendix A contains a list
of all of the legal mnemonics, with a reference to the section describing the type of oper­
and required by the mnemonics. If no reference is given no operand is required.

Operands are expression lists where the expressions reference memory locations or hardware
features such as the comparison indicator, index registers, or state flip-flops. Some general
comments concerning these expressions are:

• Expressions referencing hardware elements must be absolute (not relocatable). The
magnitude of these expressions must not exceed 7 for index registers or 15 for
states and indicators.

• An address expression is automatically truncated to 14 bits for regular
instructions and to 10 for augmented ones. In the latter case the address expres­
sion cannot be relocatable.

In subsequent subsections the following notation is used.

• (address) is an expression for the instruction operand address,
• (state) is an expression referencing a state flip-flop,
• (indicator) is an expression referencing the comparison indicator,
• (index) is an expression referencing an index register,
• Items enclosed in square brackets '[' , ')' denote optional items,
• ' ... ' is read as 'zero' or more of the following elements'.

3.2 INDEXABLE INSTRUCTIONS

If the instruction (opcode) can be indexed its operand must be in the following form.

(address) [,(index)]

Examples:
LDA
STA
BRU
BAH
LDA*

TABLE-1, 5
TEMPI
L2
* + 1
O,UTXI

3-1

3.3 NON INDEXABLE INSTRUCTIONS

If the instruction cannot be indexed, its operand must be in one of the following forms:

(index) [,(address)]
(state), (address)
(indicator), (address)

Examples:
LAX X3
LXA XS
STX XR l, TEMP
BOS 10,Ll TEST SS 1
BOI 3,LEQ
LDX 6, -2

The values of the states (switches) that can be tested by BOS are 0-15. These have the value
shown below:

0-7 Defined by programmer (See SST, RST)
8 Interrupt Enable
9 Overflow
10-15 Console switches 1-6 respectively

3.4 SST, RST

RST and SST can be used to turn the eight programmable switches interrupt enable and the
overflow flag on or off. Their operands have the following form:

(state) ... , (state)

Example:
SST PASSI
RST 0,4,6, EXIT

3.5 BAT, BOI AUGMENTS

These instructions require operands of the following form:

(address)

Example:
BNE LI
BP L2
BGE * + 2

3-2

3.6 SPU AUGMENTS

These instructions require an operand expression that is the device number of the peripheral
to be affected. This expression must be absolute and less than 2008 in magnitude. A com­
plete list of the instruction mnef!1onics 1 may be found in the Systems Reference Manual.

Examples:
ARD 40B
STST 60B

3-3

SECTION IV

DIRECTIVES

4.1 INTRODUCTION

A directive is a command to the assembler that allows the user to describe or select
assembly options or to specify such elements as groups of data, charac;ter strings, or storage
areas.

The format of directive records is the same as that given for instruction records.

4.2 BSS

[LABEL] BSS (expression)

This statement saves a block of storage N words in size; N is the value of the operand
expression. This expression must be absolute and cannot contain any forward references.

The label, if present, references the first word of the block.

Examples:

TABLE

4.3 DATA

[LABEL]

BSS
BSS

lOOB
50

DATA (expression)[.. .,(expression)]

Each expression in the operand of the DATA statement generates on 24-bit binary value.
The label, if present, references the first operand expression. The DA TA statement provides
a means of entering constants and data into the program.

Examples:
010 DATA lOB
MSG3 DATA 5, * *+1, 'ERRO', RON', 'TES', 'TER.','l' ,
GA DATA 'A'
DM3 DATA -3

4-1

4.4 ORG

[LABEL] ORG (expression)

ORG sets the value of the current location counter to the value of the operand expression
which must be completely defined; i.e., it can contain no forward references.

The label, if present, is assigned the value of the location counter before the count~r is
assigned its new value.

The special expression t* is used to force an even boundary for the operands of 'double' in­
structions. ('*' is taken as the value of the current location counter. See 2.6.5 and 2.6.6).

An 'ORG O' is assumed if none is given. A relocatable assembly is assumed to be assembled
relative to 'O' and all ORG statements are relative to 'O' for relocatable assemblies.

Examples:

4.5 EQU

LABEL

AORG ORG
ORG

lOOB
AORG

EQU (expression) (,(expression)]

EQU is used to assign values to symbols. It does not generate object program code.

The label is assigned the value of the first operand expression; the expression cannot con­
tain any forward references. If a second expression is present its value is entered into the
symbol table to further define the symbol as an opcode mnemonic. The second expression
must be absolute and cannot contain forward references.

EQU directives assigning absolute values to symbols must occur before the symbol is refer­
enced. The EQU directive will produce an 'R' error if this restriction is violated.

The second expression defines the opcode and operand formats according to the following
table:

Bits

0-2

4-2

Meaning

Operand Type
0 User - operand expressions are ORed

with opcode value

(address)
2 (address) [,(index)]
3 (index)
4 (index), (address)
5 (indicator/state), (address)

4.6 PZE

Bits

3

4-5

Examples:
A
STO
DO

[LABEL] PZE 0

6

0

Meaning

(state) [.... , (state)]

Not Augmented
Augmented

Opcode Type
1 No Operand Required
2 Operand Required

EQU
EQU
EQU'

3
14000000B,42B
ZERO

The label is assigned the value of the location counter. The PZE "instruction" forces a word
of zeros; it is generally used as the entry point of an internal subroutine, whereas PROC
(See 4.7), is used as the entry point for subroutines which are called externally.

4.7 PROC

LABEL PROC [(expression) 1

The label is assigned the value of the location counter. In addition, a record is placed in the
object program that allows the relocating loader (ROL) to link CALL directives to the
generated PZE; the CALL statements may be in the current assembly or other ones.

If the operand expression is non-zero, the loaders assume that the PROC statement is an
entry point to an interrupt service routine. The expression value is the location of the inter­
rupt entry address and the loader will establish a linkage at the location to the PROC state­
ment. This expression must be absolute and cannot exceed 64 in magnitude. The PROC state­
ment can also be linked to CALL directives when the operand is non zero.

This directive is also used to specify the entry point to the main program. This is done by
using the label 'MAINPR'.

Note that the label of a PROC directive is treated like any other label and must be unique
or a duplicate label message is issued.

Examples:
SIN
INTI
MAINPR

PROC
PROC
PROC

1
0

4-3

4.8 CALL

[LABEL] CALL (symbol)

The label, if present, is assigned the value of the current location counter. A record is
placed in the object program that will allow the relocating loader to link the generated BSM
to the PROC directive whose label symbol matches the operand symbol of the CALL state­
ment. CALL can be used to link to PROC statements in the same assembly or an independ­
ent assembly.

Example:

CALLT2

4.9 LIST/NOLIST

CALL
CALL

SIN
TEST2

These two directives may be used to control which portions of the program will produce an
assembly listing.

Statements containing errors or warnings are listed independently of LIST.

Example:

4.10 OBJ /NOOBJ

LIST
NO LIST

OBJ expression

These two directives may be used to control which portions of the program will be placed
in the object program.

OBJ allows an operand expression that is used to specify the maximum number of instruc­
tions that will be placed in a single object record. This number must be in the range of I -
16 and if unspecified is assumed to be eight (8).

Example:

4.11 SYM

OBJ
NOOBJ

Means: produce object program for following statements.
Means: do not produce object program.

This directive causes the symbol table to be listed after the assemply listjng.

4-4

All symbols that are either EXTERNAL, NOT USED, or UNDEFINED are listed independ­
ently of SYM,. 1

Example: SYM

4.12 PAGE

The assembly and symbol table listings produced by the assembler are formatted on 8 Y:z" x
11" pages. The PAGE directive will force a top-of-form; i.e., the PAGE record will be the
first line listed on the next· page.

In the case of the teleprinter, however, the PAGE directive will not cause another TOF if
the next line to be printed is the 'top-of-form' line.

Example: PAGE

4.13 ABS

This directive indicates that the object program produced is not to be relocated when it is
loaded. That is, assembly addresses and execution addresses are the same.

This statement must occur before any object code is produced or the assembly will be pro­
duced subject to relocation at load time.

Example: ABS

4.14 END

This statement is a signal to the assembler that the end of the source program has been
reached. All source programs must have this statement in order to terminate the assembly.

Example: END

4.15 TPASS

This directive informs the assembler that it is to assemble the program in two passes rather
than one.

Example: TPASS

4.16 INSEQ

This directive informs the assembler to test the source records for an assending sequence of
numbers in columns 73 - 80.

4.17 NOSEQ

This statement nullifies the INSEQ directive.

'4-5

SECTION V

ASSEMBLER OUTPUT

5.1 INTRODUCTION

The assembler produces the following types of hard copy output.

1)
2)
3)

Assembly listing
Symbol table listing
Object program listing

In this section the formats of these outputs will be described and explained.

5.2 SYMBOLIC OUTPUT

The symbolic output from the assembler has two formats:

1)

2)

Comment records, PAGE, LIST, NOLIST, NOOBJ, SYM,
ABS, and TP ASS statements (Source Statement)
Other Records
EEEELLLLL VVVVVVVV
(Source Statement)

EEEE - error code
LLLLL - value of current location counter
VVVVVVVV - value stored at that location ·or value of

operand expression of some directives; BSS
and EQU for example.

The error code can be up to four characters. A description and explanation of these
characters is shown in the following table.

Character

D

L

0

Description

. Duplicate label

Label error -label is not an identifier or not terminated by a space.

Opcode error - opcode is not an identifier; opcode is not in symbol
table.

5-1

Character

u

s

R

N

x

t

Description

Undefined operand identifier - symbolic in~ex register, statl;) or switch is
not defined yet; forward reference b used in multMerrn expressions.

Syntax error - operand contains illegal operator; magnitude of expres­
sion is too large.

Relocation error - two relocatable expressions are b~ing added; a relo­
catable expression is being subtracted from an absolute one, a
relocatable expression is being used to reference a hardware element.

A number with more than 8 characters

Monitor control record

Out of sequence record.

5.3 SYMBOL TABLE OUTPUT

A single symbol table entry produces the following symbol table output:

SYMBOL C VVVVVVVV

C is one of the characters SPACE, U, N, or E where U stands for undefined, N for not used
and E means the symbol is the label of a PROC directive or the operand of a CA.LL.

The output will contain three entries per line.

S.4 OBJECT OUTPUT

The object program produced by the assembler consists of a serie~ of records. T'1ere are five
types of records produced. A typical object program has the fullowiqg format:

Type 0
Record

Record Types l, 2, or 3
Type 7
·Record

Each record has a two word record header. The first word of each record header has the
following format:

Bits Description

23-21 Record Type
20-15 Size of Record Body
13-0 Address

A complete description of the fields in the record header and of the record body is given in
the following table:

6-2

Record Type Word Bits Description

START 0 l 13-0 Relocation base (normally 0).
2 0 Relocatable/absolute (1 /0).

LOAD 1 13-0 First location loaded by record.
2 23-0 Relocation indicators. Bit 0 for first

instruction, l for second, etc.

3, 4, 5 ... 26 Instructions/data to be loaded.

PROC 2 1 13-0 Address of procedure entry point.
2 23-0 First 4 characters of name.
3 23-12 Last 2 characters of name.

CALL 3 1 13-0 Address of CALL instruction.
2 23-0 First 4 characters of name of called procedure.
3 23-12 Last 2 characters of name of called procedure.

END 7 13-0 Maximum value location counter attained.
23 Checksum flag
22-0 Checksum

5-3

APPENDIX A

INSTRUCTION MNEMONICS

A.1 (OPCODES SORTED BY ASCENDING ALPHA OPCODE)

REFERENCE TO

OPCODE MNEMONIC CODE DESCRIPTION CYCLES OPE RAND TYPE

(SECTION)

ABS ABSOLUTE PROGRAM LOCATOR 4.13
20000000 ADD ADD 2 3.2
26000000 AND LOGICAL AND 2 3.2
36000000 AOM ADD ONE TO MEMORY 4 3.2
06403400 ARD ALTERNATE READ 1 3.6
06613400 ARDS ALTERNATE READ STATUS 1 3.6
06422400 ASPAC ALTERNATE SPACE 1 3.6
11000000 ATX ADD TO INDEX 2 3.3
07000000 AUG AUGMENT 3.2
06423400 AWAIT ALTERNATE WRITE 1 3.6
00000000 BAH BRANCH AND HALT 1 3.2
02000000 BAT BRANCH ON A-REGISTER TEST 1 3.3
03040000 BBC BRANCH BIT COMPARE 1 3.5
03200000 BE BRANCH IF EQUAL 1 3.5
03400000 BG BRANCH IF GREATER 1 3.5
03600000 BGE BRANCH IF GREATER OR EQUAL 1 3.5
03100000 BL BRANCH IF LESS 1 3.5
03300000 BLE BRANCH IF LESS OR EQUAL 1 3.5
02100000 BN BRANCH IF NEGATIVE 3.5
03500000 BNE BRANCH NOT EQUAL 1 3.5
02500000 BNEZ BRANCH IF NOT EQUAL TO ZERO 3.5
02300000 BNZ BRANCH IF NEGATIVE OR ZERO 3.5
02040000 BO BRANCH IF ODD 3.5
03000000 BOI BRANCH ON INDICATOR 3.3
04000000 BOS BRANCH ON STATE 3.3
04440000 BOV BRANCH ON OVERFLOW 3.5
02400000 BP BRANCH IF POSITIVE 3.5
02600000 BPZ BRANCH IF POSITIVE OR ZERO 1 3.5
01000000 BRU BRANCH UNCONDITIONAL 3.2
12000000 BSM BRANCH STORE RETURN AT M 2 3.2

BSS BLOCK STORAGE SIZE 4.2
13000000 BSZ BRANCH STORE RETURN AT ZERO 2 3.2

A-1

OPCODE MNEMONIC CODE DESCRIPTION CYCLES (SECTION)

02200000 BZ BRANCH IF Z.ERO 1 3.5
12000000 CALL SUBROUTINE CALL 4.8
23000000 CAM COMPARE A WITH MEMORY 2 3.2
30000000 DADD DOUBLE ADD 3 3.2

DATA DATA DEFINITION 4.3
35000000 DIV DIVIDE 26 3.2
31000000 OLD DOUBLE LOAD 3 3.2
07034000 DSA DOUBLE SHIFT AROUND 3.2
07036000 DSL DOUBLE SHIFT LEFT 3.2
07016000 DSN DOUBLE SHI FT NORMALIZED 3.2
07030000 DSR DOUBLE SHI FT RIGHT 3.2
33000000 DST DOUBLE STORE 3 3.2
32000000 DSUB DOUBLE SUBTRACT 3 3.2
07014000 OTC DOUBLE TWO'S COMPLEMENT 2 3.2

END PROGRAM TERMINATOR 4.14
21000000 EOR EXCLUSIVE OR 2 3.2

EQU EQUIVALENCE 4.5
06010000 ETST ERROR TEST 1 3.6
07010000 EXC EXCHANGE A AND E 1 3.4
06051500 t-SKIPB SKIP FILE BACKWARD 1 3.6
06041500 FSKIPF SKIP FILE FORWARD 1 3.6
07012400 IDA INTERRUPT DISABLE 3.4
07004400 IEN INTERRUPT ENABLE 1 3.4

INSEQ CHECK SEQUENCE NUMBERS 1 4.16
13000000 LAX LOAD A FROM INDEX 3.3

24000000 LOA LOAD A-REGISTER 2 3.2
25000000 LOE LOAD E-REGISTER 2 3.2
07032000 LOS LOGICAL DOUBLE SHIFT 3.2
05000000 LOX LOAD INDEX 1 3.3

LIST PRODUCE ASSEMBLY LISTING 4.9

07022000 LS LOGICAL SHI FT A 3.2
07000000 LXA LOAD INDEX FROM A 3.2
34000000 MUL MULTIPLY 25 3.2

NOLIST NO ASSEMBLY LISTING 4.9

NO OBJ NO OBJECT PROGRAM 4.10

10000000 NOP NO OPE RATION 3.2
NOSEQ STOP SEQUENCE CHECK 4.17
OBJECT PRODUCE OBJECT PROGRAM 4.10

27000000 OR OR (INCLUSIVE) 2 3~2
ORG ORIGINATION CONTROL 4.4
PAGE PAGINATION CONTROL 4.12

A-2

OPCODE MNEMONIC CODE DESCRIPTION CYCLES (SECTION)

06001000 PCOMP PRIORITY COMPLETE 3.6
06011000 POFF PRIORITY OFF 3.6
06013000 PON PRIORITY ON 3.6
00000000 PROC SUBROUTINE ENTRY POINT 4.7
00000000 PZE POSITIVE ZERO (ENTRY PT) 3.2
06401400 RD READ 1 3.6
06611400 RDS READ STATUS 1 3.6
06501500 ROT READ (MAGNETIC) TAPE 1 3.6
06601400 ROTT READ TELETYPE 1 3.6
06611700 REWC READ EXCESS WORD COUNT 1 3.6
06000500 REWIND REWIND TAPE 1 3.6
06011500 RSKIPB SKIP RECORD BACKWARD 1 3.6
06001500 RSKIPF SKIP RECORD FORWARD 1 3.6
07006000 RSR READ SWITCH REGISTER 1 3.4
07012000 RST RESET STATE 1 3.4
17000000 RUM REPLACE UNDER MASK 2 3.2
07024000 SA SHI FT A AROUND LEFT 3.2
06461500 SKWR SKIP AND WRITE 1 3.6
07026000 SL SHIFT A LEFT 3.2
37000000 SOM SUBTRACT ONE FROM MEMORY 4 3.2
06420400 SPAC SPACE 1 3.6
06000000 SPU SELECT PERIPHERAL UNIT 1 3.6
07020000 SR SHI FT A RIGHT 3.2
07004000 SST SET STATE 1 3.4
14000000 STA STORE A-REGISTER 2 3.2
15000000 STE STORE E-REGISTER 2 3.2
06000000 STST STATUS TEST 1 3.6
16000000 STX STORE INDEX 2 3.3
22000000 SUB SUBTRACT 2 3.2

SYM PRODUCE SYMBOL TABLE 4.11

07002000 TCA TWO'S COMPLEMENT A 1 3.2
06000400 TOF TOP-OF-FORM 1 3.6

TPASS TWO PASS ASSEMBLY 4.15

06421400 WRIT WRITE 1 3.6
06061500 WRITM WRITE TAPE MARK 1 3.6

A-3

A.2 (OPCODES SORTED BY ASCENDING OCTAL OPCODE)

OPCODE CODE CODE DESCRIPTION CYCL~S

ABS ABSOLUTE PROGRAM LOCATOR
BSS BLOCK STORAGE SIZE
DATA DATA DEFINITION
END PROGRAM TERMINATOR
EQU EQUIVALENCE
INSEQ START SEQUENCE CHECK
LIST PRODUCE ASSEMBLY LISTING
NO SEO STOP SEQUENCE CHECK
NOLIST NO ASSEMBLY LISTING
NOOBJ NO OBJECT PROGRAM
OBJECT PRODUCE OBJECT PROGRAM
ORG ORIGINATION CONTROL
PAGE PAGINATION CONTROL
SYM PRODUCE SYMBOL TABLE
TPASS TWO PASS ASSEMBLY

00000000 BAH BRANCH AND HALT 1
00000000 PROC SUBROUTINE ENTRY POINT
00000000 PZE POSITIVE ZERO (ENTRY PT)
01000000 BAU BRANCH UNCONDITIONAL
02000000 BAT BRANCH ON A-REGISTER TEST 1
02040000 BO BRANCH IF ODD 1
02100000 BN BRANCH IF NEGATIVE 1
02200000 BZ BRANCH IF ZERO 1
02300000 BNZ BRANCH IF NEGATIVE OR ZERO 1
02400000 BP BRANCH IF POSITIVE 1
02500000 BNEZ BRANCH IF NOT EQUAL TO ZERO 1
02600000 BPZ BRANCH IF POSITIVE OR ZERO 1
03000000 SOI BRANCH ON INDICATOR 1
03040000 BBC BRANCH BIT COMPARE 1
03100000 BL BRANCH IF LESS 1
03200000 BE BRANCH IF EQUAL 1
03300000 BLE BRANCH IF LESS OR EQUAL 1
03400000 BG BRANCH IF GREATER
03500000 BNE BRANCH NOT EQUAL
03600000 BGE BRANCH IF GREATER OR EQUAL 1
04000000 BOS BRANCH ON STATE 1
04440000 BOV BRANCH ON OVERFLOW 1
05000000 LOX LOAD INDEX 1
06000000 SPU SELECT PERIPHERAL UNIT 1
06000000 STST STATUS TEST
06000400 TOF TOP-OF-FORM 1
06000500 REWIND REWIND TAPE 1
06001000 PCOMP PRIORITY COMPLETE 1
06001500 RSKIPF SKIP RECORD FORWARD 1

A-4

