UTILITIES MANUAL

e
FAIRCHILD
e ————

SYSTEMS TECHNOLOGY

A DIVISION OF FAIRCHILD. CAMERA AND INSTRUMENT CORPORATION

SENTRY UTILITIES MANUAL

SOFTWARE REVISION 11.0

Manual Part Number: 67095661
Released: June, 1977

Revision |
© Fairchild Camera and Instrument Corporation 1977 I
| 725 Technology Drive, San Jose, California 95110 FAIRCHILD
]

SYSTEMS TECHNOLOGY
A DIVISION OF FAIRCHILD c:_\uilu AND INSTRUMENT CORPORATION

PREFACE

The SENTRY operating system provides utility programs to assist in organizing
and maintaining data, and to aid in the development of FACTOR test prograins.
This publication discusses the functions provided by each utility program and gives
instructions on how to perform these functions.

This manual is intended for use as a quick reference handbook, and as such does
not provide an indepth discussion of all utilities described. Since most of the
utilities are fully documented in either the Sentry II Operation Manual, part
number 67095638, or as Application Notes, these documents may be referred to as
desired. When applicable, the description of each utility in this manual includes a
reference to additional documentation.

Each utility program described in this publication falls into one of five general
classes of programs:

General purpose system utility programs

Analysis, characterization and datalogging utility programs
Debugging aid utility programs

FACTOR enhancement utility programs

Pattern generation utility programs

(3B NN

The program class into which a specific utility program falls is determined by the
function that the utility program performs. (The manual is divided into five
sections corresponding to the five program classes).

Within each class, programs are further categorized by the type of distribution
which they receive. There are two distribution types:

Special utility programs designed for a specific function available at
extra cost.

(The distribution type for each program is listed in this manual in the
table of contents.)

Q System utilities included in standard revision level releases.
2

Of major importance to the user is how each utility program is called - that is,
whether it is an "operator" or a "programmer" utility. The operator utilities are
implemented by either a DOPSY or TOPSY command, as required, from the VKT
keyboard. Programmer utilities are known as "assembly language linkage"
routines which are called and executed from a user written FACTOR language
program using the FACTOR "EXEC" statement.

The following table lists all the utilities by name, section, and page where

explained in this manual, as well as how they are called - whether by a DOPSY or
TOPSY command or by a FACTOR EXEC statement.

iii

Utility Name Callable From Section Page

FCOMP DOPSY 1.1 1-1
LISTC DOPSY 1.2 1-3
CRDTAP DOPSY 1.3 1-4
TAPLP DOPSY 1.4 1-5
FINDJOB DOPSY 1.5 1-6
DELJOB DOPSY | 1.6 1-7
COPJOB DOPSY 1.7 1-9
CHANGE DOPSY 1.8 1-12
EDIT DOPSY 1.9 1-15
PATCH DOPSY 1.10 1-28
DBUP DOPSY 1.11 1-30
TDX DOPSY 1.12 1-34
BMT DOPSY 1.13 1-41
INIT DOPSY 1.14 o 1-43
INSERT DOPSY 1.15 1-45
NOTE DOPSY 1.16 1-46
LABEL DOPSY 1.17 1-48
XMIT DOPSYor TOPSY 1.18 1-49
XGRAPH FACTOR 2.1 9-1
TTIME FACTOR 2.2 2-8
SPLOT TOPSY or FACTOR 2.3 2-11
PGLOG FACTOR 2.4 2-18

PPLOG TOPSY 2.5 2-29

DATAIO TOPSY or FACTOR 2.6 2-42

iv

Utility Name Callable From Section Page

ACCESS TOPSY 2T 2-58
DEBUG DOPSY or TOPSY 3.1 3-1
PSCAN TOPSY or FACTOR 3.2 3-7
LMIO TOPSY 3.3 3-12
CYCLE TOPSY 3.4 3-18
LMMOD FACTOR 4.1 4-1
LMTSF FACTOR 4.2 4-3
LPLF FACTOR 4.3 4-5
LMLOAD FACTOR 4.4 4-6
LMSAVE FACTOR 4.5 4-10
LOGREG FACTOR 4.6 4-18
FMTAP FACTOR 4.7 4-19
GLOBS FACTOR 4.8 4-20
CSETF FACTOR 5.1 5-1
ROMPAT FACTOR 5.2 5-4
RAMPAT FACTOR 5.3 5-8
ROMPONG FACTOR 5.4 5-19

Any program that is optional or applies only to certain Sentry Systems will be so
identified. All other utility programs are standard and apply to all Sentry
Systems.

As new programs are developed they will be added to the respective sections of
this manual.

NOTE: This manual is consistent with Software Revision 10.3E. For Revision 10.4
and higher, the records // for DOPSY and /. for TOPSY, are optional.

PREFACE

TABLE OF CONTENTS

SECTION 1 GENERAL PURPOSE SYSTEM UTILITY PROGRAMS

Section
1.1
1.2

1.3

1.4
L5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

Name
FCOMP
LISTC

CRDTAP

TAPLP
FINDJOB

DELJOB

COPJOB

CHANGE

EDIT

PATCH

DBUP

TDX

BMT

INIT

Type*
1

Descriptions
Compare two disc files
List card images on line printer

Write card images on magnetic
tape

List tape records on line printer
Display job numbers on VKT

Delete files by groups from dise
storage

Copy groups of files from dise to
magnetic tape

Multiple occurrence character
string editor

General purpose disc file string
and character editor

Modify words in disec files

Disc to magnetic tape backup
and bootload program

Tape to disc and dise to tape
fast transfer

Blocked file transfer between
tape and dise

Reconfigure test station assign-
ments

* Refer to Preface for a description of "Type".

vi

Page

111

Page
1-1

1-2

1-4

1-6

1-7

1-9

1-12

1-15

1-28

1-30

1-34

1-41

1-43

Section

1.15

1.16

1.1

1.18

TABLE OF CONTENTS

Name Type Description

INSERT 1 Edits FACTOR source files and
permanently inserts INSERT files
in new composite file.

NOTE 1 Prints a message to an output device
and allows operator control of disc
command file execution

LABEL 1 Prints a message to an output device
in large block letters.

XMIT 2 Dumps contents of VKT screen to line
printer.

SECTION 2 ANALYSIS, CHARACTERIZATION AND DATALOGGING

Section

2.1

2.2

2.3

2.4

2.5

2.6

2.7

UTILITY PROGRAMS

Name Type Description
XGRAPH 1 X-Y and shmoo plotting on
a specified output device
TTIME 1 High-speed time measurement
algorithm
SPLOT 1 X-Y sensitivity plot routine
PGLOG 2 Plots RAM test pattern failmaps

on specified output device. For
use with Hardware Pattern Gener-
ator (HPQG).

PPLOG 2 Plots RAM test pattern failmaps
on specified output device. For
use with Pattern Processor
Module (PPM).

DATAIO 2 General purpose disc and magnetic
tape I/0 utility.

ACCESS 2 Determines number of disc access

operations performed during the
execution of a FACTOR program.

vii

Page

1-45

1-46

1-4¢

1-48

Page

2-1

2-11

2-27

2-29

2-42

2-58

TABLE OF CONTENTS

SECTION 3 DEBUGGING AID UTILITY PROGRAMS

Section
3.1

3.2

3.3

3.4

SECTION 4
Section

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Name
DEBUG

PSCAN

LMIO

CYCLE

Type
1

1

2

Description Page
General purpose debugging aid. 3-1

Analysis aid which displays status
of programmed pins and power supplies
at time of execution. 3-7

Dumps Local Memory contents in

various formats to specified output

device. Loads Local Memory from a

disc file. 3-12

Initiates a Loecal Memory continuous
loop. 3-18

FACTOR ENHANCEMENT UTILITY PROGRAMS

Name

LMMOD

LMTSF

LPLF

LMLOAD

LMSAVE

LOGREG

FMTAP

GLOBS

Type
1

Deseription Page

Allows modification of local memory
contents from FACTOR program. 4-1

Generates string files of functional
data from local memory. 4-3

Allows program control of line printer
within a FACTOR program. 4-5

Transfer functional test data between
local memory and disc files in FAC-
TOR program. 4-6

Microprocessor test generation aid. 4-10

Long register reading and writing
routine. 4-18

Allows magnetic tape unit control
within a FACTOR program. 4-19

Extends number of global variables
from 20 to 120. 4-20

viii

TABLE OF CONTENTS

SECTION 5 PATTERN GENERATION UTILITY PROGRAMS

Section Name Type Description

5.1 CSETF 2 Algorithmetic pattern generator
of SET F string files.

5.2 ROMPAT 2 ROM test pattern generator.

5.3 RAMPAT 2 RAM test pattern generator.

5.4 ROMPONG 2 ROM access time testing aid.

ix

Page

5-1

5-8

5-19

Figure
1-1

2-1

2-5
2-6

2-7A

2-7B

2-8

2-10

2-11

2-12

2-13
2-14
2-15
3-1
3-2

3-3

LIST OF ILLUSTRATIONS

Sample LABEL Output Message

TTIME Binary Search Algorithm Flow Chart

Shmoo Graph Produced By a SPLOT Two-Variable Device Test
Shmoo Graph Produced By a SPLOT Three-Variable Device Test

Customized Shmoo Graph Produced by a SPLOT Multi-Variable
Device Test

Format of a SPLOT-Generated Shmoo Graph
Sample PPLOG display of a Failing Checkerboard Pattern

Sample PPLOG display of the First Position of a Failing
Spiral Pattern (Walking Diagonal)

Sample PPLOG display of the Fourth Iteration of a Failing
Spiral Pattern (Walking Diagonal)

Sample PPLOG Display of a Spiral Pattern in Which the ALL
Parameter was Specified

Sample PPLOG Display Illustrating 'Holes' in the Failmap
Resulting from Incorrect Values of XMAX or YMAX

Sample PPLOG Display of a Diagonal Pattern In Which The
Fail Parameter was Specified

Sample PPLOG TRACE Output Listing

A Sample PPLOG Display of Scrambled and Unserambled
Failmaps

Disec Record Format for Variable-Length Records
Disc Record Format for Fixed-Length Record Files.
Example of an ACCESS Printout

Sample PSCAN Display

Sample LMIO STRING Output

Sample LMIO DEBUG Output

Page
1-50
2-10
2-11

2-16

2-18
2-24

2-34

2-35

2-36

2-37

2-38

2-39

2-40

2-41
2-51
2-52
2-59
3-11
3-16

3-17

Table
1-1

1-7
2-1

2-2

LIST OF TABLES

Text Editor File Handling Directives

Text Editor Record Oriented Directives

Text Editor Backup Directives

Text Editor Non-Record-Oriented Directives
Text Editor Special Editor Control Directives
Text Editor Character Edit Mode Directives
TDX Command Elements

System Test Unit Numeric Identifiers
Contents of a RESULT Array

Recommended Load Addresses for ACCESS

xi

Page
1-15
1-16
1-18
1-19
1-22
1-24
1-35
2-14
2-20

2-60

SECTION 1

GENERAL PURPOSE SYSTEMS UTILITY PROGRAMS

1.1 FCOMP
1.1.1 Introduction

The File Compare routine, FCOMP, provides the user with the capability of
comparing two disc files.

1.1.2 Program Usage
The command for invoking FCOMP is
// FCOMP 'filel' 'file2'

If 'file2' is omitted, 'filel' will be compared with working storage. Both files must
meet the following conditions:

(1) They must appear in the file directory under the same job number.
(2) They must be of the same type.
(3) They must be the same length.

If a set of records fail the comparison, they are output to POD (the record from
'filel' is first), followed by a record containing:

(1) The word from 'file1' that failed (in TASCII)

(2) The word 'file2' that failed (in TASCII)

(3) The word number within the record of the failing word (1-20, Base 10)
(4) The record number within the file of the failing record (1-N, Base 10).

If console switch one is off, the program halts before continuing to check
the file.

1-1

1.1.3 Error Messages

ERROR MESSAGE

ERROR--

ERROR--

ERROR--

ERROR--

ERROR--

ERROR--

ERROR--

ERROR--

IN FILE SPECIFICATION

IN FILE TYPE

EOF ON X. where X =1or 2

MISSING PARAMETER

INVALID FILE NAME

SYSTEM-2

System 4

SYSTEM 20

DESCRIPTION

One or the other of the input files
are not in the directory under the
current job number.

One file does not mateh the other as
to file type.

If the two files are not the same
length, this message will occur after
the beginnings of the two files have
been compared.

Both file names were omitted.

One or the other of the file names
start with a blank or an illegal name
($DIRCT or $ARR) was specified.

FCOMP was not able to output a
"no-compare" record.

Working storage could not be
opened.

Phase 2 of FCOMP (FCOMP1) could
not be loaded.

1.2

1‘2.1

1.2.2

LISTC
Introduction

The List Cards routine, LISTC, provides the user with the capability of
listing cards, including monitor commands (//) on the line printer.

Program Usage
The command for invoking 'LISTC' is
// LISTC
The card deck to be listed should be placed in the card reader. The card
reader must be ready and the line printer on line. Cards are read until a

card is sensed which contains dollar signs ($) in columns 1, 2, and 3 followed
by two blank cards.

1.2.3 Error Messages

ERROR MESSAGE DESCRIPTION

ILLEGAL PUNCH, RELOAD An illegal character is sensed in a
2 CARDS card. After the message is output

to the VKT, the CPU is halted. The
illegal punch is in the card already
read, one before the last. To
continue, correct the bad card and
reload the last tow cards and push
the CPU START.

To ignore bad cards set console
switeh 1 on. If an illegal character
is sensed it is changed to a '%' sign
on the list and the listing continues
to the end.

1-3

1.3 CRDTAP

1.3.1 Introduction

The Card-to-Tape routine (CRDTAP) provides the capability of writing data
from cards on magnetic tape, one card (20 words) per block. The resulting
tape will be in a format acceptable to the FST-1 Assembler and DOPSY as
standard input.

1.3.2 Program Usage

1-4

The card deck should be placed in the card reader followed by a card
containing dollar signs in columns 1, 2, 3 and two blank cards. The card
reader should be placed in the ready condition and the tape drive should be
placed on line.

The program is invoked via the command:
// CRDTAP

Multiple files may be created on a single tape by first positioning the tape to
the point at which writing is to begin.

At the end of the operation, CRDTAP writes a tape mark on the tape and
leaves it positioned at that point so that further files may be written if
desired.

14 TAPLP

1.4.1

1.4.2

Introduction

The Tape-to-Line printer routine (TAPLP) reads one record at a time from
the magnetic tape unit and prints the records on the line printer.

Program Usage
The program is invoked via the command:
// TAPLP

The tape drive should be placed on line and the line printer should be in a .
ready condition. :

The records on the tape are assumed to be formatted and coded such that
they can be transmitted directly to the line printer without conversion. A
tape produced either by CRDTAP, the FST-1 Assembler or DOPSY will be in
the format acceptable to TAPLP. Any file on a multi-file tape may be
listed by first positioning the tape to the proper file.

1-5

1.5 FINDJOB

1.5.1 Introduction

FINDJOB is an assembly language utility program which enables the user to
search the directory for a specified file to find out which job it is stored
under or if it is on the dise. When no file is specified it will return the
current job number.

1.5.2 Program Usage

The program is invoked via the following command:
// FINDJOB 'file'
where:

'file' is the name of a disc file. If 'file' is missing, locate to the right and
display the current job.

The program will respond:

FILEIN JOB YYYY file on dise is in job YYYY

FILE NOT IN DIRECTORY file was not found in the directory
CURRENT JOB IS 'XXXX' the current job is XXXX

FINDJOB will search the entire directory so that if a file name is used in
more than one job the user will be informed of each job name.

1.5.3 Error Messages

ERROR MESSAGE DESCRIPTION

FORMAT ERROR The file name was missing. The file

name must be enclosed in single
quotes.

1.6 DELJOB

1.6.1

1.6.2

Introduction

The delete job program, DELJOB, provides the capability of deleting all files
under a specific job, except the system job («<<<), at one time without
having to use the system DELETE command directive for each file. It also
provides the capability of deleting specific file types from all jobs or a
specific job, always excepting the system job.

Program Usage
The program is invoked via the command:
// DELJOB
The delete job routine responds with:

JOB (NAME, "ALL", "END") =

The user answers with the job name to be deleted. Do not enclose the job
name in quotes. Entering "ALL" causes all jobs except the system job to be
deleted. Entering "END" causes exit from DELJOB.

The delete job routine then asks:

FOR FILES TO BE DELETED ENTER ONE OF THE FOLLOWING:

ALL FILES ENTER 1
ALL STRING FILES ENTER 2
ALL DATA FILES ENTER 3
ALL OBJECT FILES ENTER 4
ALL COREIMAGE FILES ENTER 5

When the specified files have been deleted, the system responds:

JOB NAME DELETED

XXXX

FILE TYPE DELETED

YYYY
and the JOB (NAME, "ALL", "END") question is repeated.
This procedure continues until the user responds with END at which time the
following comment is displayed on the VKT:
END DELJOB

and a return is made to the DOPSY monitor.

1.6.3 Error Messages

ERROR MESSAGE

DELJOB ERROR DSRD

DELJOB ERROR DSWT

DESCRIPTION

An unrecoverable disc read error has
occurred. A return is made to the
DOPSY monitor.

An unrecoverable disc write error
has occurred. A return is made to
the DOPSY monitor.

1.7 COPJOB

1.7.1

1.7.2

Introduction

The copy job routine, COPJOB, provides the capability of writing string,
data, and object files under a specific JOB to mag tape along with their
associated // JOB, if requested, and // CREATE command directives. (Files
are separated on the mag tape by EOF marks to allow the positioning of the
tape using the utility tape handler MTAP.) The magnetic tape unit may then
be assigned as the primary input device (// SET MTR) and the data created
by COPJOB is used to create the files under a new system.

As the files are copied to mag tape, a log is maintained on the line printer
detailing the name, type, and job. Any core image files which are

encountered are not copied, but an indication is given on the log. The last
record written on the mag tape is // SET TTK.

Program Usage
The program is invoked via the command:
// COPJOB
COPJOB responds with:

INCLUDE // JOB RECORDS ON OUTPUT TAPE? (Y
OR N)

If the user chooses to ignore the // JOB records on his mag tape, he responds
with N, otherwise he responds with Y and the files' respective // JOB
records will be included on the mag tape.
COPJOB then requests the JOB name of the files to be copied:

(1) JOB (NAME,"ALL","END")=

If the user answers with a JOB name, COPJOB responds with a second
question

(2) FOR FILES TO BE COPIED, ENTER ONE OF THE FOLLOWING:

SPECIFIC FILE ENTER NAME OF FILE

ALL FILES THIS JOB ENTER 1
ALL STRING FILE THIS JOB ENTER 2
ALL DATA FILES THIS JOB ENTER 3

ALL OBJECT FILES THIS JOB ENTER 4
ALL FILES "FROM-TO" ENTER 5

The user must respond with either a file name or one of the digits 1-5. In all
cases, after the requested files have been copied to mag tape question
number one (1) will be repeated again. This procedure continues until the
user responds with END to question number one (1) at which time a // SET
TTK record will be written on the mag tape; the mag tape will be rewound
and a return is made to the DOPSY monitor.

If the response to question number two (2) is five (5), two more questions are
displayed

NAME OF FILE FROM-
and
NAME OF FILE TO-

The user responds with the first and last file names within a group of files to
be copied.

If the user responds to question number one with ALL, all of the files not
under the system job number except core image files will be dumped to mag
tape. ,

WARNING TO USER. The magnetic tape is not initially positiohed. It is the
user's responsibility to insure that the magnetic tape unit is on-line and
positioned at the point where files are to be written.

If the user responds with a T, a return is made to the DOPSY monitor.

If the user responds with a C, files will continue to be copied starting at the
beginning of the last interrupted file. (CAUTION - Do not forget to mount
new tape, or your previous tape will be overwritten.)

1.7.3 - Error Messages

ERROR MESSAGES

NOT IN DIRECTORY

TYPE T TO TERMINATE, OR
MOUNT NEW TAPE. TYPE C TO
CONTINUE.

1-10

DESCRIPTION

The job or file name entered is not
in the dise directory. The question
is repeated.

The end of tape mark has been
reached while writing the mag tape.
The tape is skipped back to the last
EOF mark, // SET TTK record is
written on the mag tape, the tape is
rewound.

ERROR MESSAGE

DESCRIPTION

If the user responds with a T, a
return is made to the DOPSY
monitor.

If the user responds with a C, files
will continue to be copied starting
at the beginning of the last
interrupted file. (CAUTION - Do
not forget to mount net tape, or
your previous tape will be
overwritten).

1-11

1.8 CHANGE

1.8.1

1.8.2

1-12

Introduction

CHANGE is a DOPSY utility program which allows the user to edit any disk
file and replace every occurrence of a given character string with a second
given character string. The results of the edit are left in working storage
from which the user may create a new file.

Program Usage
CHANGE is invoked by the following command:
// CHANGE
CHANGE will respond:

ENTER FILE NAME:
ENTER OLD STRING:
ENTER NEW STRING:

Note: Do not enclose file name in single quotes.
On completion CHANGE will respond:

XXX CHANGE(S) MADE
ANOTHER PASS (Y/N)?

Entering Y will cause CHANGE to re-execute with another request for the
old string, then the new string. Entering N will terminate execution and
produce the following message:

CREATE NEW FILE FROM WORKING STORAGE

If the line printer is the POD the above responses and those typed in by the
user will be displayed on both the LP and TTP. Otherwise, they will appear
only on the TTP.

If the request for the file name is answered with an immediate carriage
return, the contents of working storage will be edited. The 'old' and new'’
character strings may optionally be enclosed in double quotes (") in order to
include leading and/or trailing blanks. Imbedded blanks are also permitted.

An immediate carriage return entered as the new 'string' will replace the old
'string' with a single space. This will permit deletion of an entire record.
Up to 72 characters may be entered as the new and old character string.

A double slash (//) may be entered as a response at any time and will cause
CHANGE to abort and return control to DOPSY. The contents of working
storage will remain intact and the new file may be created as usual.

1.8.2.1 ENTERING CHANGE COMMANDS FROM A DEVICE OTHER THAN THE
TTK. CHANGE reads all user responses from the PID which may be set to
the card reader, a DIF file or mag tape. To change a statement from WRITE
(TTP) VALUE; to WRITE (LP) VALUE; from the card reader the following
cards would be used:

// CHANGE

FNAME

(TTP)

(LP)

N

// CREATE 'FNAME' OVLY
// SET TTK

FNAME is the name of the original disc file to be changed. The user would
place the card deck in the card reader then enter // SET CR at the TTK.
The line printer could also be set to cause all dialogue between CHANGE
and the user to be logged to the line printer.

1.8.2.2 CHANGING STRINGS WITH LEADING AND/OR TRAILING BLANKS. The
'old' and 'new' character strings may optionally be enclosed in double quotes
(") to permit leading and/or trailing blanks to be included as shown in the
following example.

given: FORCE VOLTAGEXX.XX
change: "AGE" to "TAGE "
result: FORCE VOLTAGE XX.XX

where XX.XX is any voltage value

1.8.2.3 USING PERCENT CHARACTER (%) AS A 'NO CHANGAE DESIRED'
INDICATOR. The % character may be used to suppress the changing of
characters which are bracketed by characters which are to be changed and
should read as: "don't change the character in this position".

Examples: given: A?C
A*C
A!C
change: "A 9% C"to "X % Z"
result: X?Z
X *7Z
X!'Z

NOTE: 9% used in both old and new strings.

given: * Ak
* B *
% C *
change: H*% E 31 to HEE 3 34
result: HkK
kK%
Kk %k

NOTE: % used in old string only.

1-13

1.8.2.4 USING THE BACK ARROW («) TO EDIT END OF RECORD (EOR)
CODES. The back arrow (<) is equivalent to a TASCII 77B which is the code
used to indicate the end of a record for string files. The back arrow may
therefore be used with CHANGE to remove or add spaces between lines, to
move the contents of several lines to one line or the contents of one line to
more than one line. To make these changes the user must be aware that an

EOR immediately precedes the first character in a line (i.e., card column
1).

Examples:
to insert a new record into a file

given: CPMU PIN 3;
change: "CPMU PIN 3;" to

"REM VOH TESTS; <« CPMU PIN 3;"
results: REM VOH TESTS;

CPMU PIN 3;

to place the contents of two lines onto a single line

given: CPMU PIN 3;

MEASURE PIN;
change: " MEASURE PIN;" to "MEASURE PIN;"
result: CPMU PIN 3; MEASURE PIN;

1.8.3 Error Messages

ERROR MESSAGES DESCRIPTION

FILE NOT FOUND The disec file requested could not be found under
the current job.

STRING NOT FOUND The entire file was scanned and no changes
were made because the old string could not be
found.

INSUFFICIENT SPACE IN There is not enough room on dise to complete

WORKING STORAGE the job.

LINE PRINTER OFFLINE The listing cannot be made to the line printer.

DISC WRITE DISABLED A write to the disc cannot be done until the dise
write is enabled.

CARD READER EOF OR The input to CHANGE has been terminated.

MONITOR RECORD DE-

TECTED

1-14

1.9 EDIT

1.9.1

1.9.2

1.9.2

Introduction

The editor program allows editing of any string files in dise memory or the
combining of two or more string files. Only string files may be edited. The
editor program copies the requested string file into working storage, under
control of operator entered editor directives. After editing is complete, the
new file is in working storage, and may be added to the dise memory
permanent file. The old file is still on dise and has not been changed.

Program Usage

The editor is envoked by one of the following commands:
// EDIT

This command calls the system editor program to edit a source file on dise
which may be a FACTOR language source file consisting of tester
statements, an assembly language source code file, or a DIF file containing
DOPSY commands or system information.

During the edit process the old file is opened or made available to the editor
as the input file and the new file, or output file is built under direction of
the user entered directives and is placed in working storage on the disc. The
old file is retained unaltered. When the editor is requested, working storage
is initialized so that any previous file in working storage is lost.

// EDIT 'filename'

This statement calls the system editor and opens the file to be updated, i.e.,
the input file, The editor's prompting character is ' < ', signaling it is ready
for directives.

.1 DESCRIPTION OF EDITOR DIRECTIVES

TABLE 1-1 TEXT EDITOR FILE HANDLING DIRECTIVES

Editor Directives Description

O 'filename' Open the named file as the input file for editing
purposes. This statement may be used to open a
second file and edit its contents into the
original.

I 'filename' Open the named file as the temporary input file
and insert the entire file into the output file.
When the operation is complete the prompting
character is returned. The original file is still
open and editing will continue at the same
position as before. To edit the inserted records
either a second pass or a back save operation
must be requested.

1-15

TABLE 1-2 TEXT EDITOR RECORD ORIENTED DIRECTIVES

Editor Directives

Description

C

C (n) (1abel)

C label + n

CEOF

D

D (n) (1abel)

D label + n

Copy the next record of the input file to the
output (working file to the output (working
storage) so that it is retained in the new file.
The record copied is displayed.

Copy all records up to and including the nth
record or the labelled record to working stor-
age. The label in the record to be copied must
start in column 1. The last record copied is
displayed.

Copy to the label plus n records. N records past
the next occurrence of the label are copied to
working storage. A minus sign is ignored. The
last record copied is displayed.

Copies all records until the end of the input
file. Therefore, it is not possible to copy to a
label called 'EOF"'.

Delete the next record of the input file, i.e., do
not copy the record to working storage.

Delete all records up to and including the nth
record or the record containing the label in
column 1.

Delete to and including the label plus n records.
A minus sign is ignored. The last record deleted
is displayed.

I for Insert places the editor in the insert mode.
The editor responds with the equal sign (=) as
the prompting character. The following records
are entered in the output file until the insert
mode is terminated by typing // in column 1 and
2 with no other data on the record. (It is
possible to enter monitor records in the insert
mode, so that a DIF file may be created or
edited).

Verify causes the following record of the input
file to be displayed without copying it to the
output file. Successive verify requests auto-
matically copy the last record verified and
display the next record.

1-16

TABLE 1-2 TEXT EDITOR RECORD ORIENTED DIRECTIVES

Editor Directives

Description

V (n) (1abel)

V label + n

A

An

A label

A label +n

Mn

Copy n-1 records or up to but not including the
record containing the label. Display the nth
record or the record containing the label in
column 1 as the next record of input. When the
verify command does not have a label request,
successive verifies V (n) cause an automatic
copy to take place.

Copy to label + n - 1. Display the next record
as the next record of input.

The alter directive causes a delete of one
record, n records, or to and including the label,
or the label + n records. The last record
deleted is displayed. The insert mode is then
entered and all records entered are output to
the new file until the insert mode is terminated
by typing // in ecolumn 1 and 2 with no other
data in the record.

M for Multiply places the editor in the insert-
and-multiply mode. The editor responds with
the equal sign as the prompting character. The
following records are entered in the output file
until the mode is terminated by typing // in
column 1 and 2 with no other data on the:
record. When the mode is terminated the
sequence of records entered is multiplied in the
output file n times.

Note that if n=1 this mode is identical to the
insert mode. However, if no records have been
entered when the terminating '//' is sensed, the
next record of the input file is multiplied in the
output file n times.

1-17

TABLE 1-3 TEXT EDITOR BACKUP DIRECTIVES

Editor Directives

Description

B
Bn

BO
BOn

BN
BNn

Back up the input file and the output file
1 or n records. The last record remaining
in the output file is displayed. When no
records have been inserted or deleted in
the section of the output file being backed
up over, use this directive. For example,
if it is desired to copy to a label minus
three records, verify to the label and
backup three records (B3). When the
output file has been changed in the sec-
tion to be backed up over either back up
each file independently, erasing the
changes, or back up the output file and
save the changes. (See below.)

Back up the input file (Backup Old) 1 or n
records. The last record remaining in the
input file is displayed. If it is desired to
duplicate a sequence of records of the
input file, copy past the records, back up
over them in the input file only (BOn) and
copy them again (or alter the records in
any way desired). If more records have
been deleted from the output file than
desired, back up the input file only. For
example, to delete to but not including a
label, delete to label (D label) and restore
it again in the input file (BO). The next
copy will copy the record to the output
file.

Back up the output file (Backup New) 1 or
n records. The last record remaining in
the output file is displayed. If one or
more records have been inserted or copied
to the output file which are not wanted, a
back up of the output file will delete the
records.

If backing up over a section where the
number of records has been altered, back
up the files separately with BOn and BNn
so that the position of each file is
displayed. The position of each can then
be compared to avoid duplicate or missing
records. -

1-18

TABLE 1-3 TEXT EDITOR BACKUP DIRECTIVES

Editor Directives

Description

X, Xn

BS
BSn

Same as BN, BNn

Back up the output file 1 or n records,
saving the changes made (Backup Save).
The last record remaining in the output
file is displayed. The saved records may
be edited in any way, for example they
may be edited by the character editor, or
records may be inserted or deleted. It is
possible to back up saving the output,
make changes or look at the position and
back up and save again. However, there is
a limit of 1000 words, or 50 full length
records that may be saved. If it is desired
to look back further a second pass must be
requested, and the file repositioned with a
copy request. While editing saved output
the B and BO directives should not be used
as duplicate and missing records will
result.

TABLE 1-4 TEXT EDITOR NON-RECORD-ORIENTED DIRECTIVES

The following directives will scan for a 'string' of data anywhere on a line. Data
may be altered by request without retyping the whole record.

Editor Directives

Desecription

V 'string’

V 'string' n

Copy up to the record containing the
'string'. Display the record with the string
as the next record of input. This com-
mand never copies a record automatiecally,
so a verify to the same string will not
advance past the current record. How-
ever, if this is followed by a V or Vn, the
current record will be copied automatic-
ally since it has already been displayed.

When a number is entered, the scan will
search for the first occurrence of 'string'
in the next n-1 lines. If it is not found,
the nth record is displayed as the next
record to be input, thus limiting the
length of the scan.

1-19

TABLE 1-4 TEXT EDITOR NON-RECORD-ORIENTED DIRECTIVES

Editor Directives

Deseription

A 'stringl’' 'string2'

A 'stringl’' 'string2' n

Copy to the record containing the first
string and alter its contents to the second
string. The changed line is output and is
displayed. The next line of input is also
displayed. If this directive is followed by
a V or Vn directive, the second displayed
line is automatically copied.

When a number is entered, scan the next n
records making the requested change on
the records where 'stringl' is found. All
lines changed are displayed. The n + 1
record is also displayed as the next record
of input. The number n therefore limits
the scan to n records even if 'stringl’ is
not found, or extends the scan to n
records making the requested change as
often as 'stringl' is found. If this direc-
tive is followed by V or Vn, an automatic
copy of the last displayed record occurs.

The '%' character may be used in these directives to suppress the comparison of a
character in a certain position so that it may be changed regardless of what it is.

Example Input: SET F 00000 11011 00011;

SET F 00000 10111 00111;

Directive: A '1%%11' '11111' 2

Output: SETF 00000 11111 00011;

SET F 00000 11111 00111;

The '2' causes the change to take place in the next 2 records. The third record

will be displayed but not altered.

To suppress the comparison and the change of characters in a certain position,

enter the '%' character in both strings.

Example Input: SET F 00000 11011 00011;

SET F 00000 10111 00011;

Directive: A '19%%11' '1%%00' 2

Output: SETF 00000 11000 00011;

SET F 00000 10100 00011;

1-20

The back arrow '«' is used to edit end of record (EOR) codes. The '<' precedes the
first character in a line except at the beginning of the file. The '«' may be used to
insert a new record or blank records, or to place the contents of two lines onto a
single line.

Examples:

To insert a new record into a file
Input: CPMU PIN 3;
Directive: A 'CPMU PIN 3;' 'CPMU PIN 3;«REM VOH TESTS;'
Output: CPMU PIN 3;
REM VOH TESTS;
To place the contents of two lines onto a single line.
Input: CPMU PIN3;
MEASURE PIN:
Directive: A '< MEASURE PIN;'' MEASURE PINj'
Output: CPMU PIN 3; MEASURE PIN;

To place the contents of one line onto two lines.
Input: CPMU PIN 3; MEASURE PIN;
Directive: A 'MEASURE PIN;' '« MEASURE PINj'
Output: CPMU PIN 3;
MEASURE PIN;

To delete a line.

Input: CPMU PIN 3;

REM VOH TESTS;
Directive: A'< REM VOH TESTS:'"
Output: CPMU PIN 3;

Note that the back arrow must precede the line. If the back arrow is missing a
blank line will result.

1-21

TABLE 1-5 TEXT EDITOR SPECIAL EDITOR CONTROL DIRECTIVES

Directives

Description

Tn, n2 n3...n20

Ex

S [CR/TTK]

/!

Z 'string’'

/IR

Enter up to 20 tab stops for use in the character
edit mode. Tabs must be entered in ascending
order. The default tab stops are 5, 10, 15, 20...

Enter the character edit mode and display the
next line which is the current line available for
character editing.

Enter the character edit mode and display the
next line up to the first occurrence of x.. The
current line is available for character editing.

Change the input device used for reading edit
commands to the card reader (SCR) or the
keyboard (STTK).

List the input file to the VKT as it is processed.
Turn off the L request. (Unlist).

Exit the editor immediately, returning to DOP-
SY. The output file is in working storage. To
save the file it must be CREATEA.

Replace the '//'as the exit request from the
editor, multiply mode, and insert mode with
'string’, i.e., any two character terminator.

The repeat request copies the input file to
working storage to the end of the file. A
dummy file called '/$##$/' is created and the
editor is reentered for a second pass. All
capabilities and rules of the first pass apply to
second and subsequent passes. There is no limit
to the number of passes, however, there must
be room on the dise for three copies of the file,
the original file which remains unchanged, the
last pass, and the current pass which is in
working storage. (If the disc does overflow the
message 'ERROR--SYSTEM-4' will result and
the last pass remains on the disk as '/$##$/'.)
When a repeat is requested the tab stops return
to the default of 5, 10, 15, 20..., and the
terminator becomes // again if it has been
changed by a Z directive. The list request
remains active, however. When the Editor is

1-22

Directives

Descriptions

// 'filename'

Cs1

exited the dummy file '/$##$/' is deleted
automatically, leaving two copies of the file on
disc: the original and the result of the last
pass. The user should not name any file '/$##$/'
as this file will be automatically deleted by the
editor on exit or if a second pass is requested.

This request copies to the end of the input file
and exits the editor. The 'filename' is deleted
from the disc and the file in working storage is
created with this name. This command takes
the place of the sequence of commands:

CEOF

//

// DELETE 'filename'
// CREATE 'filename'
// SET TTK TTP

Set on console switeh 1 to suppress the display
of the last record copied, or deleted as the file
is processed. The L request overrides CS1.

1-23

TABLE 1-6 TEXT EDITOR CHARACTER EDIT MODE DIRECTIVES

When the input device is the keyboard the character edit mode may be used to
change part of a line without reentering the whole line. Also records may be
inserted in this mode or repeated with or without modifications. In this mode an
uparrow, ' ', is always displayed when a record is output except when more than
one record is scanned by CTRL-V.

There is no prompting character in the character edit mode (except for CTRL-V)
because it would enter the character stream and displace the line. Note also that
the control characters used as directives are not displayed as this also would
displace the line. Therefore, after a line has been scanned and altered it appears
on the screen as it will be in the output file.

Directives Description

E Enter the character edit mode and display the
current line which is available for character
editing.

Ex Enter the character edit mode and display the

current line up to the first occurrence of x.
The current line is available for character
editing.

CTRL-R x Scan the current line and display to the next
occurence of x. If x is a CTRL-T, display the
line to the next tab stop.

CTRL-S Scan and display the current line to the next
occurrence of x, as defined by the last E or
CTRL-R command. (Following a CTRL-P or
CTRL-C directive, x is destroyed so that
CTRL-S will display the entire current line.)

CTRL-N Advance one character across the current line
and display. Gives capability of walking across
the line to the end of record. To insert blanks
after the last character the space bar or CTRL-
T should be used.

CTRL-P Advance across the current line or the remain-
der of the current line and display. The line is
still available for character editing.

Character other Enter the character stream at the cursor
than Opcodes location, extending the current line up to 80
characters.

1-24

Directives Description

« Truncate record here, i.e., insert an end of
record. The record up to this point is still
available for character editing.

CTRL-B Back-up and delete one character from the

CTRL-L, RUBOUT

CTRL-T

(CR)

CTRL-C

CTRL-E

CTRL-X

current line. For example, to delete x from the
line, secan up to x with CTRL-Rx, CTRL-S, or
CTRL-N, back-up using CTRL-B until all char-
acters not wanted are erased. New characters
may be inserted, or the rest of the line may be
kept with CTRL-P.

Restart line scan at the beginning, erasing the
current changes.

Insert spaces into the current line to the next
tab stop. If tab stops are not entered by the
user, the default is 5, 10, 15, 20...

Copy the current line to working storage. The
record is still available for character editing. If
entered at column 1 the entire record is output,
otherwise the record is truncated and output to
the cursor location only.

Copy the current line to working storage. The
next input record is displayed and is available
for character editing as the new current line.
This directive may be entered anywhere on the
line. If entered at the beginning of the line, the
entire record is output, otherwise the line up to
the cursor only is output. Successive CTRLC
directives allow walking down the file. Note
that to insert a blank line, hit the space bar and
then carriage return or CTRL-C. The blank line
then replaces the current line.

Copy the current line to working storage and
exit the character edit mode. If entered at
column 1 the entire current record is output,
otherwise the line up to the cursor only is
output.

Exit the character edit mode. The current line
is lost.

1-25

Directives

Description

CTRL-V
n

CTRL-V
'stringl' 'string2' n

N

When CTRL-V is entered, the '=' prompting
character is returned. Enter n and carriage
return. The current line is automatically output
to working storage. N-1 records are copied.
The nth record is displayed and is available for
character editing. Note that if n=1, the CTRL-
V directive is identical to CTRL-C. To exit the
mode without advancing enter '//' in eolumn 1
and 2.

When the '=' prompting character is returned
enter 'string' or n, and carriage return. The
current line is automatically output to working
storage. The input file is scanned for 'string'
and the record containing 'string' is available
for character editing. If a number is entered
the scan will stop at the nth record if 'string' is
not reached first. The nth record is then
displayed and is available for character editing.
(If a mistake is made while entering the line
after CTRL-V is typed, CTRL-B will delete
characters and CTRL-L or RUBOUT will delete
the line and prompt again with the '=". If it is
desired not to enter a CTRL-V request, typing
// immediately following the '=' will terminate
the mode and return control to the character
edit mode.)

1-26

1.9.3 Error and Warning Messages
ERROR MESSAGES

ERROR-- SYSTEM-2

ERROR-- SYSTEM-4
ERROR--IN FILE TYPE

ERROR-- INVALID FILE NAME

ERROR-- MISSING PARAMETER

ERROR-- WS EMPTY

WARNING MESSAGES

EOF INPUT

INPUT FILE START

OUTPUT FILE START

BACKUP LIMIT REACHED

DESCRIPTION

The input or output file was lost
during a backup operation.

Working storage overflow.
Only source files may be edited.

$DIRCT and $ARR may not be
edited.

The file name was not specified in
the open command.

A second pass was requested with no
data in the output file.

DESCRIPTION

The end of the file was reached
while processing the file.

The beginning of the input file was
reached during a backup operation
(B, BO).

The beginning of the output file was
reached during a backup operation
(B, X, or BS).

During the backup-save operation
(BS), the save buffer is exhausted.
It is not possible to back up more.
Request a second pass with '// R'
and copy the file down to the des-
ired position.

1-27

1.10

PATCH

1.10.1 Introduction

PATCH is used to examine or modify files on the dise. The user first makes
a file available to PATCH opening it, and then may "read" or "write" words
of the file by supplying addresses and, for write, the new contents. PATCH
may also be used to add or subtract values.

1.10.2 Program Usage

The PATCH program is invoked via the command:
// PATCH ('filename")

This DOPSY command calls PATCH and enables the use of PATCH
commands. If 'filename' is entered, the file specified is opened and may be
examined or modified. A file must be opened before entering all commands
except for calculation. If the file cannot be found under the current job, the
error response '??' is output.

Input is from the system PID. All output is listed to the system POD.
Numbers entered are assumed to be decimal unless octal is indicated by the
user. All numbers output are octal. Spaces are allowed following the
directive but are not required.

Patch Directives Description
0 'filename' Open the named file so it may be exam-

ined or modified. A file must be opened
before entering all commands except for
calculation. If the file cannot be found
under the current job, the error response
'?2?" is output.

Cn,(#n,...4n) Caleulate the value of n; *n,...tn . The

result is displayed in octal. This feature
may be used to do decimal to octal
conversion since a single decimal number
entered will be displayed in octal. The
series of numbers input is truncated by
carriage return or by (=) and carriage
return.

D Return control to the DOPSY monitor.

The following PATCH directives specify or infer an address or location in the file
being patched.

1-28

For string files, object files, and data files, the addresses given to PATCH must
start relative to the first word of the file. For core image files, PATCH will
accept only those addresses corresponding to the absolute core location of the file
to be patched. Addresses are assumed to be decimal unless otherwise specified.

Patch Directives

Rn (*comment)
R n,-n (*comment)

*
R ny, (*ecomment)

R (*comment)
carriage return

B (*comment)
W n:n (*ecomment)
. E 3
W n:ng,n,...,n (*ecomment)
E

(ecurrent address:)
mny (, nz...,nx) (*ecomment)

Description

Read the contents of the address specified
or the contents of addresses nl1 through n2
and display to the POD. If either number
is outside the file the error response '??' is
output.

Once an address is supplied to PATCH,
the following address may be displayed by
typing R or carriage return. The current
location is bumped and the contents of
next address location is displayed. No
error checking is done on the address so if
the address exceeds the file, the contents
is specified as zero.

Once an address is supplied to PATCH,
the previous address may be displayed.
The current location is decremented and
the contents of the previous address loca-
tion is displayed. No error checking is
done on the address so if the address is
below the file the contents is specified as
zero. ’

Write the value specified into the address
location. If more than one value is
entered, separated by commas, consecu-
tive addresses are altered beginning with
the address specified.

Alter the contents of the current address.
When 'E' is specified, PATCH responds
with the address of the current location
followed by a colon and carriage return.
The value entered becomes the contents
of the current location. If more than one
value is entered, separated by commas,
consecutive addresses are altered begin-
ning with the current location. The
current location becomes the address cor-
responding to the last value entered.

1-29

1.11

DBUP

1.11.1 Introduction

The purpose of DBUP is to allow the user to create a magnetic tape copy of
the system dise. This tape can then be read back to restore the system.

1.11.2 Program Usage

The program performs two functions: (1) creating a magnetic tape copy of
the disc and (2) loading the created tape back to the disc.

1.11.2.1 DISC BACK-UP ONTO TAPE. The tape must be mounted on tape unit 0

at the BOT position, and the unit turned on. DBUP is called by entering the
command:

// DBUP (VERIFY)(ONLY)('"Message up to 48 characters')

The contents of the dise is backed-up to the tape. The VERIFY option
causes an automatic verification at the completion of the back-up
procedure. The 48 character message may contain any valid character
except , @, or a single quote. This message is output before writing to a
tape and immediately after the load procedure is initiated. The ONLY
option provides only the verification of the tape against the disec. No data
transfer to tape or to dise oceurs in this procedure.

1.11.2.2 BOOTLOAD FROM TAPE TO DISC. The tape must be mounted on tape

unit 0 and the normal load operation is performed.

1.11.3 Program Desecription

1.11.3.1 DESCRIPTION OF THE DBUP PROCEDURE:

1-30

DBUP initially checks for the tape unit being ready, that the tape is at BOT,
and that the write-ring is present. Appropriate error messages are displayed
and the program aborted if these conditions are not met.

After the initial check , the first 2K words of memory (which includes the
DBUP program) are written to the tape to serve as the bootload record for
later reloading the disc.

After the boot record, the contents of the disc are transferred in 20 sector
blocks (960 words) to the tape. The block is read from disc into memory
where a checksum is derived. The block and checksum are then placed on
the tape. ‘The checksum of each block is also accumulated and is the total
checksum displayed on the TTP at the end of the back-up procedure.

Should a tape-write error occur, four inches of tape will be skipped before
an attempt is made to rewrite the record. DBUP will try writing tape up to
ten times before aborting the operation.

At the end of the back-up procedure, the tape is rewound during which time
the keyboard is locked out.

If the VERIFY Option is selected, DBUP skips past the boot record and
performs a Verification operation similar to loading. There is no writing to
the dise during Verification so that the contents of the disc are not altered.
The memory size of the CPU is displayed.

The message "VERIFYING TAPE BACK-UP" is displayed on the TTP. If any
error message is displayed during verification, the back-up procedure should
be repeated.

At the end of Verification, the checksum is displayed again and the tape will
be rewound.

1.11.3.2 DESCRIPTION OF THE BOOTLOAD PROCEDURE:

After the boot record is loaded, DBUP displays the user message if any, and
the memory size of the CPU on which the system tape is being loaded. The
maximum address of memory is stored in the loc 117B. DBUP then reads a
record from the tape, checksums to the 20 sector block and compares it to
the checksum obtained from the tape. If they are equal, the block is then
written to the dise. It is then re-read from the disc and checksummed again
to insure a proper transfer of data to the disc has occurred.

After the contents of the tape have been transferred to dise, the total
checksum is displayed on the TTP.

1.11.4 Error Procedures

The following error messages are displayed during the dise back-up onto tape

procedure.

ERROR MESSAGES ACTION NEEDED, IF ANY

TAPE UNIT NOT READY Ready the tape unit and reenter the
PROGRAM ABORTED command.

TAPE IS NOT POSITIONED AT BOT Position the tape at BOT and re-
PROGRAM ABORTED enter the command.

WRITE-RING MISSING Place a write-ring on the tape and
PROGRAM ABORTED re-enter the command.

UNABLE TO WRITE TO TAPE Check the tape and tape unit.

PROGRAM ABORTED

DISC ERROR Check the dise.
PROGRAM ABORTED

1-31

1-32

The following error checks are performed during the Bootload procedure.

DBUP will attempt to re-read any record that is indicated as in error by the
tape unit, e.g., parity errors. If, after ten attempts, the record is still in
error, an appropriate error message is displayed and the procedure is
normally aborted. However, if console switeh 1 is on, DBUP will continue
loading after displaying the error message and the disc sector address to
which the record is transferred.

If a checksum error occurs during a tape read, i.e., the calculated checksum
does not match with the checksum on the tape, the record is re-read up to
five times in an attempt to obtain the same checksum. If the checksum still
does not match, the record is written to the disc and the appropriate error
message is displayed.

On the checksum errors from dise, the error message is displayed. But no
attempt is made to re-read the data.

When the checksum error message is displayed, the dise sector address to
which the error data is transferred is also displayed. Normally at this point,
the procedure is aborted. However, if the console switch 1 is on, the DBUP
will econtinue loading.

The following error messages are displayed during the disc load procedure.

ERROR MESSAGES ACTION NEEDED

TAPE UNIT IS NOT READY Ready tape unit and reload the tape.
PROGRAM ABORTED

CHECKSUM ERROR OCCURRED Reload the tape.

DURING TAPE READ
SECTOR # = nnnnnn ERROR
IN xxxxx

CHECKSUM ERROR OCCURRED Reload the tape.
DURING DISC READ
SECTOR # = nnnnnn IN xxxxx

DISC WRITE DISABLED Enable disec write switch and reload
PROGRAM ABORTED the tape.
DISC ERROR Check the disc.

SECTOR # = nnnnnn IN xxxxx
PROGRAM ABORTED

ERROR MESSAGES

'ERROR IN xxxxx'is one
of the following:

ERROR IN ARR AREA

ERROR IN DIRECTORY AREA

ERROR IN FILE xxxxxx
JOB xxxx

ACTION NEEDED

Error occurred in the sector where
the Automatic Restart Routine is
located; unrecoverable.

Error occurred in the sector where
the file directory is located; unre-
coverable.

Error occurred in the sector where

the file xxxxxx of the job xxxx is
located.

1-33

1.12

TDX

1.12.1 Introduction

TDX (Tape Disc Transfer) is a file management tool for transferring groups
of files between Disc and Tape. It is a DOPSY Utility which functions by
generating an appropriate set of DOPSY commands (CREATE, FDUMP, JOB,
NOTE, SET, VERIFY, UTILITY 'BMT', etc.) on disc in a Dise Input File (DIF).
When all the commands have been generated, the Primary Input Device (PID)
is set to this DIF. This causes the group of files to be transferred using
these standard DOPSY commands.

Because of the use of DOPSY commands, tapes made with TDX may be read
independent of TDX if necessary, error messages are familiar to users, and
any system routine improvements are incorporated automatically.

TDX contains many features which were previously unavailable in any single
DOPSY command. These features are as follows:
A single file or groups of files may be written to or read from tape
with a single command.

An individual file may be loaded from a TDX tape containing many
files (i.e.: all files need not be loaded to get one or two files).

The validity of a file is automatically checked when loaded from tape.

Files are written to tape in a compact "blocked" format which yields a
20-fold savings in time and amount of tape used.

A TDX tape contains at least one file directory so that the tape contents
may be readily ascertained or documented.

A given TDX directory may be used to determine whether or not a
specific file on disc matches the same file on tape.

1.12.2 TDX Usage

TDX usage is first described in terms of a formal command description with
a brief definition of command options. Secondly, TDX usage is described by
various examples.

1.12.2.1 FORMAL TDX COMMAND DESCRIPTION. In the TDX command

1-34

described below, the following conventions will be observed:

X/Y/Z One of the listed options is required.

(X/Y/Z) One or more of the listed options may be used but none is
required.
/] Indicates that more than one of the listed options may be
chosen. -

An underlined item in a set indicates the default value if no other
items are chosen.

Constant names are shown in upper-case. They must always be
entered exactly as shown.

Variable names or quantities are shown in lower case. Their value
changes with usage and must be supplied by the user.

The TDX command is:

// TDX [MAKE /LOAD/LIST/INIT/VALL/REV]
(DIRECT 1/n/L)(LP/TTP) (Notes) ((job#))

['filnam'/SOURCE/OBJECT/DATA/ALL/0]
(CTRL/NOVER/NOJOB/OVLY/CLEAR/HOLD/FDUMP/f)

The command elements are defined as follows:

TABLE 1-7 TDX Command Elements

Element Definition

MAKE Write all specified files to tape. If a (JOB#) has
been specified, a job record will precede the
files on tape unless NOJOB is also specified.

LOAD Load the files from tape back to dise under the
job corresponding to the job record which
precedes the files on tape. If NOJOB is
specified the files will be loaded to the current
job.

LIST List the directory specified in the DIRECT
option on the specified output device. Follow
with either LP or TTP.

INIT Initialize a tape which is not currently a TDX
tape. Before files can be dumped to a tape via
TDX, the tape must be initialized.

VALL Create a DIF file "WRALL' which contains
VERIFY records of all files under the specified
job. No files are transferred.

REV Display on the TTP the revision number and
date of the version of TDX currently installed.

DIRECT 1/n/L All additional commands reference the nth
directory on the tape. n = 1 is the default
value. This parameter, when used, must pre-
cede the (job #) and file identifying parameters.
L denotes the LAST directory.

1-35

Element

Definition

LP/TTP

Notes

(job#)

filnam'

SOURCE DATA
OBJECT

ALL

CTRL

NOVER

NOJOB

OVLY

The output device destination for the LIST
DIRECT function. The line printer (LP) is the
default case.

Permits the insertion of comments or notes into
the directory to improve readability. Notes
must be enclosed by double quotes and may
contain single quotes (i.e., "// SET DIF .FIL'").

The job number which subsequent options refer-
ence. Must be enclosed in parentheses. Files
dumped from a given job will be loaded back to
disc under the same job unless NOJOB has been
specified during the MAKE or LOAD operation.
Must precede the file identifying parameters.

The name of the file(s) to be accessed.

Causes all source, object, or data files to be
accessed. More than one may be specified.

When preceded by a (job#) specification, all
files under that job are accessed. When a (job#)
is not specified on a LOAD, all files under the
current directory are accessed. ALL is the
default specification when none is entered.

Allows TDX command options to be continued
on the next line. May be placed anywhere in
the first record of the command following
MAKE/LOAD. The end of the control records is
indicated by '//' from the keyboard or $$ from
within a DIF file.

Defeats the automatic verification of files
during a LOAD operation only.

Defeats the writing to tape of JOB records
during a MAKE operation. During a LOAD
permits files to be loaded into the current JOB,
suppressing any JOB records written to the
tape.

Permits the file being LOADed to overlay any
pre-existing file with the same name.

Element

Definition

CLEAR

HOLD

FDUMP

/1

$$

2?

Causes files to be deleted which have names
matching those of files being loaded. Use on
Rev. 10 Sentry software only.

TDX execution is terminated following the
creation of the DIF file ''TDX' and before any
file transfers takes place so that the file . TDX'
may be examined.

Supresses the use of BMT on a MAKE only.
FDUMP is used instead. Useful for making 'self
loading' tapes to be loaded on systems whieh do
not have TDX or BMT.

Terminates the entry of keyboard commands or
control records which were accepted due to the
CTRL specification.

Equivalent to // but required for TDX com-
mands being executed from within a DIF file.

Causes an abort to DOPSY due to an error in a
control record.

The TDX command structure is essentially free format with the following

exceptions:

The task specification (MAKE, LOAD, ete) must be the first item in

the command string.

The DIRECT specification when used must immediately follow the task

specification.

EXAMPLE: // TDX MAKE DIRECT....

Each (job#) must immediately precede the file specifications which

relate to it.

EXAMPLE: (job#) 'files' (job#) 'files' (job#) 'files'

All other options may appear in any position in the TDX command.

1.12.2.2 TDX EXAMPLES - MAKE/LOAD. Under MAKE a directory of the
specified files will first be written to the tape followed by the files
themselves in BMT format. Under LOAD the directory is scanned to
determine the file locations on tape then the requested files are loaded to

disc.

1-37

(a) Write files 'TEST1" through 'TEST3' to tape then load them back to
dise.

// TDX MAKE 'TEST1' 'TEST2' 'TEST3'
// TDX LOAD ALL

(b) Write the entire contents of job 'S6D' to tape then load back only the
DATA files.

// TDX MAKE (S6D) ALL
// TDX LOAD DATA

NOTE: (1) The parenthesis are required around the job number exactly
as shown.

(2) SOURCE or OBJECT may be substituted for DATA to load
source or object files respectively.

(c) Write all source and object files from job 'DIAG' to tape then load back
only the object files into the current job 'ABCD'.

// TDX MAKE (DIAG) SOURCE OBJECT

// JOB 'ABCD'
// TDX LOAD OBJECT NOJOB

(d) Write files from two jobs to tape without the files being preceded by
job records on the tape.

// TDX MAKE (JOBA) SOURCE (JOBB) DATA NOJOB

1.12.2.3 TDX EXAMPLES - MULTIPLE DIRECTORIES. All TDX tapes have at

1-38

least one directory. The directory is used by TDX to locate files on the tape
and contains the largest group of files which may be transferred by a single
TDX ecommand. Since the directory may be listed on the line printer it also
serves as documentation of a tape's contents. The total number of
directories allowed is limited only by the amount of tape available. All the
examples in 1.12.2.2 above address the first directory since DIRECT 1 is the
default condition. The following examples will address directories 2 and
greater.

(a) Write all the source files under job 'S6D' to a TDX tape under the
second directory.

// TDX MAKE DIRECT 2 (S6D) SOURCE
(b) Append a new directory following the last directory of a TDX tape.
// TDX MAKE DIRECT L (S6D) OBJECT

(¢) Load to dise the entire contents of the last directory of a TDX tape.
// TDX LOAD DIRECT L
1.12.2.4 TDX EXAMPLES - LIST DIRECTORY TO OUTPUT DEVICE
(a) List the first directory to the line printer.
// TDX LIST LP
NOTE: LP may be omitted since it is the default case.
(b) List the third directory to the video display unit.
// TDX LIST DIRECT 3 TTP
1.12.2.5 TDX EXAMPLES - TAPE INITIALIZATION
(a) Each new TDX tape must first be initialized as a TDX tape with:
// TDX INIT
1.12.2.6 TDX EXAMPLES - CREATING A DIF VERIFY FILE WITH VALL. The
VALL funection does not transfer files but rather creates a DIF filed named
"WRALL' which contains VERIFY records for verifying file validity of all
files under the specified job. This file is the same as the directory that
would have been created on tape on a MAKE. This function is useful to
periodically test the validity of a set of files or the entire dise contents.
(a) Create a VERIFY file of the entire disc contents.
// TDX VALL
(b) Createa VERIFY file of job DIAG only.
// TDX VALL (DIAG)
The '."WRALL' file may be executed by:
// SET DIF '."VRALL'
Verify output statements may be directed to the line printer by:

// SET LP

1.12.2.7 TDX EXAMPLES - CHECK THE CONTENTS OF A GIVEN TDX
DIRECTORY AGAINST THE CORRESPONDING FILES ON DISC.

(a) Determine which files in a given set have been changed since they
were last written out under a given TDX directory.

// TDX CHECK DIRECT n

where n is the desired directory number.
1-39

1.12.3 General Comments and Restrictions

(a)

(b)

(e)

(d)

Comments in the directory listing should not start with // S, // J, or //
V, nor should they contain "«<<<".

TDX makes use of modified versions of JOB and NOTE which are
standard only on SENTRY software REV 10. These programs must be
supplied when installing TDX on earlier software releases. The new
version of JOB will recognize 77777777B as an equivalent to '+«
since the ' «'is an illegal character within a DIF file. The new version
of NOTE will accept notes written in double quotes as well as single
quotes so that notes may contain file name specifications ('filnam?').

In using multiple directories, it must be understood that re-making an
early directory will result in the loss of all subsequent directories and
their files.

When referencing files within the system job the specification (<)
may be used. However, when executing a TDX command from within a
DIF file, since '«' is an illegal character, the specification (7777) may
be used as equivalent to (««<).

// TDX MAKE (7777) '=TDX' '=BMT"

will make a TDX tape containing the specified files preceded by the
job record: // JOB '«

1.12.4 Additional Documentation

1-40

Application Note AD 1069

1.13 BMT
1.13.1 Introduction

BMT (Block Magnetic Tape) is a DOPSY Utility for moving files between
dise and tape. It is approximately 20 times more efficient, both in time and
in amount of tape used, than FDUMP and CREATE. This is because it moves
files in large blocks, rather than 1 card image at a time, and does not fill out
card images to make them all 20 words.

1.13.2 Program Usage
The two commands for BMT are:

// BMT WRITE 'filename'
// BMT READ 'filename' (OVLY) (STRING/OBJ/DATA(integer))

Users of software releases previous to Rev 10 must use:
// UTILITY 'BMT'....

Description:
1. The WRITE form writes a file from dise to tape.

(a) Parameters must appear in the order given.
(b) String, object, and data files may be written.
(¢) Coreimage files may not be written.

2. The READ form reads a file from tape and writes it on disc.

(a) Parameters must appear in the order given.

(b) The options after // BMT READ are identical to the parameters
expected by // CREATE when creating a file from working
storage.

3. When executing a READ command, BMT issues the message:
FILE ON TAPE WAS filename (filetype)

This allows the user to recover a file from tape under a dummy name
and then rename it under its correct name.

4. When executing a READ command, BMT moves a file from tape into
working storage and invokes CREATE to create it (see Note 2(b)
above). If the CREATE commands are incorrect (e.g., if the user does
not specify the correct filetype), CREATE will issue an error message.
The user may still be able to create the file from working storage by
issuing the correct // CREATE command.

1-41

1.13.3 Error Messages

1-42

ERROR MESSAGE

FILE ON TAPE NOT IN
BLOCKED FORM

DESCRIPTION

The file being read is not correctly for-
matted for use with BMT. Check that the
proper tape is being used and that the
tape is properly positioned.

1.14 INIT
1.14.1 Introduction

The purpose of INIT is to optimize TOPSY core space usage by allowing the
user to define the test station/test head configuration.

1.14.2 Program Usage
The program is invoked via the command:
// INIT

This command is used to check or change the stations which may be used in
TOPSY. When a customer receives his system TOPSY has already been
initialized for the physical test stations at the customer's installation so it
may never be necessary to use this command.

On entry to the initializer utility, the stations which may currently be used
are listed. This is called system configuration. It then asks if a change is
desired. If 'N' for 'no' is entered, the initializer is terminated and control
returns to DOPSY. This allows the user to check the configuration without
making any change to TOPSY.

If the configuration is to be changed, the '=' prompting character is displayed
and the user enters the identifiers for those test stations which he wants to
use. The series of entries is terminated when a carriage return is entered on
a line without a station identifier.

The initializer then displays the new configuration on the VKT and again
asks if any change is desired to allow the user to correct any mistakes.
When no further changes are to be made, the initializer asks if TOPSY is to
be updated with this configuration. If the user replies "NO", the initializer
is terminated and control returns to DOPSY. TOPSY is still configured as it
was before. If the reply is affirmative, TOPSY is initialized with the new
configuration and control is passed to the TOPSY monitor.

Example:

A system currently configured for stations 1A and 1B is to be changed to 1A,
1B, and 3C.

Example:

STAT 1A 1B
CHANGE? (Y/N) Y
STAT -
=1A

=1B

=3C

= (Carriage return)

1-43

1-44

STATIONS CURRENTLY CONFIGURED:
STAT 1A 1B 3C

CHANGE? (Y/N) N

UPDATE TOPSY ON DISC? (Y/N) Y
TOPSY UPDATED -
GOING TO TOPSY

In the above example, the underlines indicate the user's entries. The rest of
the messages are output by the program.

An identifier for a test station is indicated as "nx" where n is a numeric
from 1 to 4 indicating the test station number and x is a letter from A to D
indicating the test head selection. Since there is a maximum of four for
either the test station number or the test head selection, the identifier may
be 1A through 4D.

1.15 INSERT

1.15.1 Introduction

INSERT reads a FACTOR string file and replaces each insert statement with
the corresponding string file. On completion the new string file remains in

working storage.

1.15.2 Program Usage

The program is invoked via the command:

// INSERT

INSERT responds: ENTER FACTOR FILE NAME:

The user responds with the file name.

The following message is printed on completion:

ANOTHER PASS ? (Y/ N)

Typing Y will re-execute the program permitting the insertion of nested
insert statements. One pass is required for each level of nesting.

Typing N terminates the program with the following message:

XX FILE(S) INSERTED. XXXX CARDS GENERATED. CREATE NEW FILE

FROM WS.

The original FACTOR program must be free of any syntax errors with the
exception that the final END statement is not required. During execution
the names of the files being inserted are printed on the TTP.

1.15.3 Error Messages
ERROR MESSAGE

ERROR-— xxxxx NOT FOUND

ERROR---INSUFFICIENT SPACE
IN WS

DESCRIPTION

The FACTOR file requested or the
insert file was not found in the
directory. Return to the DOPSY
monitor takes place.

There is not enough space in working
storage on the disc for the new file.
Return to the DOPSY monitor takes
place.

1-45

1.16

NOTE

1.16.1 Introduction

NOTE allows messages to be printed on an output device and allows operator
control of the execution of DIF files.

1.16.2 Program Usage

The program is invoked via the command:

// NOTE 'string' (output) (HALT) (ANSW)
// NOTE "string" (output) (HALT) (ANSW)

The NOTE command outputs the string text to the specified device. If both
the input and output unit are the VKT, the message is not output. If the
string is delimited by double quotes, single quotes may be used inside the
string as part of the text and if single quotes delimit the message, double
quotes may be part of the text.

Specifying HALT causes the CPU to stop. This feature allows time for the
operator to do a task requested by a note, such as place a new magnetic tape
on the tape drive. Press the CPU START button to continue.

- ANSW allows the operator to direct the execution of an input command file.

1-46

This makes use of the accept-command feature of command entry. When
ANSW is specified, the system sends the '>' prompting character to the VKT
and waits for a one character input. The character becomes the accept
command character and only records with // or /. in column one and two and
the accept-command character or a blank in column three will be accepted.
Commands with a non-blank character in column three not equal to the
accept-command character and all records not beginning with// following a
command which is skipped will be ignored. (This allows control records
following a CREATE or TDX command to be skipped if the command record
is skipped.) .

The HALT and ANSW options are available from DOPSY only.
Example 1:
Entering the command
// NOTE 'THIS IS A "SPECIAL" COMMAND' LP
will cause the line
THIS IS A "SPECIAL" COMMAND

to be output to the line printer.

Example 2

The coreimage file of $TOPSY may be created with MTIO for standard usage or
with DEBUG for a debugging tool. It is possible to create two disc input files and
set control to the one which creates the desired system configuration, however
one file may be created which allows the operator to select the desired
configuration. Its format could be as follows:

Record

1 // NOTE 'M = CREATE $TOPSY WITH MTIO' TTP

2 // NOTE 'D = CREATE $TOPSY WITH DEBUG' ANSW TTP

3 //M CREATE '$TOPSY' OVLY COREIM 'MPRO' 214¢B CTRL
4 LOAD BLOBAL FFLTS

5 NOLOAD NDEBUG Control records

6 LOAD MTIO

7 $$

8 //D CREATE '$TOPSY' OVLY COREIM 'MPRO' 214¢B CTRL
9 LOAD GLOBAL FFLTS

10 LOAD NDEBUG } Control records

11 NOLOAD MTIO

12 $$

13 //SET TTK TTP
When this DIF file is set, record 1 and 2 causes the message:

M = CREATE $TOPSY with MTIO
D = CREATE $TOPSY with DEBUG

to be displayed to the VKT.

Record 2 contains ANSW so following the second line, the system prompts with
the ' ' character and waits for input.

If the operator responds with 'M', record 3 is accepted and also the control records
4,5,6, and 7. The command is executed and $TOPSY is created with MTIO and
without NDEBUG as the control records specify. Record 8 contains a D in the
special character position so its is ignored and all records following it are ignored
until the next // record. Record 13 contains a // record with a blank in column 3
so this command is accepted and executed and control is returned to the keyboard
as requested.

If following record 2 the operator responds with 'D', records 3,4,5,6, and 7 are
bypassed. Record 8 is accepted so the control records are also accepted and
$TOPSY is created with NDEBUG (the $TOPSY version of DEBUG). Record 13 is
accepted because of the blank character in column 3 and control is returned to the
keyboard as requested.

The accept-command character is still the one entered from the DIF file and only
records with the accept-command character or a blank in column 3 or without //
will be accepted.

1-47

1.17 XMIT
1.17.1 Introduction

XMIT is a Utility Program designed to dump the contents of the VKT screen
to the line printer. The information printed includes all the characters on
the VKT screen regardless of how they got there. This includes prompting
characters, TOPSY or DOPSY messages and information entered by the user.
XMIT may be executed from either TOPSY or DOPSY and each output is
preceded by a Top of Form.

1.17.2 Program Usage
XMIT is executed by either of the two following commands:
From DOPSY:
// XMIT
From TOPSY:
/« XMIT
There are two adjustments which must be made to the Video Keyboard
Terminal prior to executing XMIT. These adjustments are the usual defaults
case, however, and may be left in effect indefinitely without adversely
affecting other VKT usage.

These adjustments are:

(1) Inside the terminal panel control box on the front of the VKT, the
switeh CR/EOT must be placed into the CR position.

(2) The VKT display made must be set to the foreground mode. This is
accomplished by typing a combination of (CONTROL + SHIFT +
PERIOD) followed by the ecombination (CONTROL + SHIFT + O). This
is the mode which results in brighter images on the screen and should
be the normal operating mode.

1-48@

1.18 LABEL
1.18.1 Introduction
LABEL is a DOPSY utility program which permits user generated messages
to be printed on the line printer or video display unit in a large block
character type format. Applications include the prefixing of a program
source listing with the program name or other pertinent data, or prefixing
datalogged test results with pertinent identifying information. Messages
may be up to 9 characters wide and may be continued on subsequent lines.
1.18.2 Program Usage
The command:
// LABEL 'message' (LP/TTP)
will direct the 'message' to the specified output device.

// LABEL 'msgl' 'msg2' 'msg3' (LP/TTP)

will cause the three messages to be printed on three individual lines of
output.

See the example in Figure 1-1.

1-49@

AAA
AAAAA
AA Aa
AA AA
AAAAAAA
AAAAAAA
AA AA
AA AA
AA AA

1-50

TTTTTTTY kW L]
TTTTTITT KM HH
T TIT Y WM HH

TTY
T1Y
TYY
TTY
TTY
TITYT

HEMHR AR
FHHHRHY
Wi WH
2], M
2] 2] [ala]
2L,] HH
LL
LL
LL
LL
LL
LL
LL
LLLLLLL
LLLLLLL

SS8SS
§558588
Ss S8
SS§SS

SSSSS

$§SS
S8 §S
888SS88S

§888S

AAA
AAAAA
AA AA
AA AA
AAAAAAL
AAAAAAA
AA AA
AA AA
AA AA

SSS8SS
SSS8sSss
SS $S
$§SS

SSSSS

S§S88
S8 S8
SSSSESS
SS8S8S

AAA
AAAAA
AA AA
AA AA
AAAAAAA
AAAAAAAL
AA AA
AA AA
AA AA

RRRRBR
BBBEBR
RR B8
CLLLT-L]
RRBRA
RB BR
RR BB
RBRBBR

BRBBBBA

M
MM

M
MM

MMM MMM
MMMMMMM
MM M MM

MM
MM
MM
MM

MM
MM
MM
MM

FEEEFEE
EEEEEE

EE
EE E
EEEE
EE E
EE

E

E

EEEEEE
FEEEEEE

PPPPPP
PPPPPP
PP PP
PPPPPP
PPPPP
PP
PP
PP

PPPP

LL
LL
LL
LL
LL
LL
LL
LLLLLLL
LLLLLLL

SSSSS

§85SSSS

CR] 88

SSSS

§SS8SS§

S$8SS

SS §S

$85S8S8S

§$8SSS

LL EEEEEEE
LL EEEFEER
LL EE E
LL EE E
LL EEEE
LL EE E
LL EE E

LLLLLLL EEEEEE
LLLLLLL EEFEFEE

Figure 1-1 Sample LABEL Output Message.

SECTION 2
ANALYSIS, CHARACTERIZATION, AND DATALOGGING UTILITY PROGRAMS

2.1 XGRAPH
2.1.1 Introduction

XGRAPH is an Assembly Language Utility program which allows test results
and other data to be plotted graphically on either the line printer or the
video display unit. XGRAPH is executed by an EXEC statement call from
within the user's FACTOR test program. Each individual call to XGRAPH
performs a specific function such as output a single line of the graph on the
output device, clear and/or open the disc file required for the Composite
Shmoo plot, or composite one set of test results upon the previous set.
Among the functions currently supported by XGRAPH are:

Shmoo Plots
Composite Shmoo Plots
X-Y Plots
Bar Graphs
2.1.2 Program Usage
XGRAPH usage is described in four sections as follows: Shmoo Plots,

Composite Shmoo Plots, X-Y plots and Bar Graphs, and miscellaneous
functions.

2.1.2.1 SHMOO PLOT. The calling sequence for the basic shmoo plot is:
EXEC XGRAPH (OP, X, TPAS, IND);

Where OP

10, for conventional Shmoo plots with X's in Shmoo field.

= 11, for plot where Shmoo field contains alpha-numeric
characters corresponding to TASCII codes which user
placed in TPAS array. See note 4 below.

X = The numerical value to be printed to the left of the Shmoo
line on the vertical (ordinate) axis. A constant, variable, or
expression.

TPAS

1]

The name of the array containing the pass (1)/fail(p)
pattern for the current Shmoo line to be plotted. Typically
51 words in length but may be declared within range of 1 to
67 (see note 2 below).

2-1

IND

= 0, for standard plot with every fifth location on the
horizontal axis delineated by a column of periods, (."). The
default case if IND is omitted is the same as 0.

= 3, To suppress the printing of any X value (even f) on the
vertical axis and the "*' which follows it.

= 4, To suppress the printing of the columns of periods which
delineate every fifth location on the horizontal axis.

= 5, Produces the combined result of both 3 and 4 above.

SHMOO PLOT PROGRAMMING NOTES

)

(2)

(3)

(4)

The basic algorithm for producing a Shmoo plot is to place one FOR
loop within another FOR loop where the inner FOR loop count equals
the declared size of the array minus one. The EXEC XGRAPH
statement is placed within the outer FOR loop which has a loop count
equal to the number of horizontal Shmoo lines desired; Each EXEC
XGRAPH prints one line the length of whieh is equal to the declared
size of TPAS (1-67). Non zero TPAS words print as 'X' and zero words
print as blanks.

TPAS must be declared one word larger than the apparent maximum
required by the FOR loop count to allow for possible round off error if
floating point numbers are used as the FOR loop limits. 51 is the
typical value if plots are to be directed to the TTP as well as the LP.
TPAS length may be increased up to 67 if only the LP is to be used
since the TTP truncates at column 73 and the LP allows all 80
columns. Any number in the range 1 to 67 is legal.

Data to enhance the appearance of the plot such as X or Y axis scaling
information must be printed by standard FACTOR statements.

A variation of the Shmoo plot function (OP=11) allows the user to print
any character in the Shmoo line simply by placing the correct TASCII
code into the desired position in TPAS. The character specified will
print instead of the standard 'X'.

2.1.2.2 COMPOSITE SHMOO PLOT. The calling sequence for the Composite
Shmoo plot is as follows:

EXEC XGRAPH (12, X, TPAS, IND, TPASCT, XROWS);

2-2

Where X = The numerical value to be printed to the left of the Shmoo
line of the vertical (ordinate) axis. A constant, variable, or
expression.

TPAS = The name of the array containing the pass (1)/fail(0)

pattern to be composited upon the previously collected
data. Must be declared as 51 words in length.

IND

TPASCT

XROWS

= 1, overlay the current pass/fail pattern in TPAS upon the
area of previously collected data specified by TPASCT.
See note 5 below.

= 2, output a line of composited Shmoo data according to the
area of data specified by TPASCT. See note 5 below.

= 10, open the disc file specified by TPASCT and load its
entire contents into the internal core buffer. See note 4
below.

= 20, clear the contents of the internal core buffer and the
dise file specified by TPASCT. See note 3 below.

When opening or clearing the disc file, TPASCT is a 2 digit
number between 00 and 99 to be used as the last 2
characters of the file name. See note 2 below.

When compositing and printing composited results TPASCT
is a number in the range of 50 to 2500 in increments of 50.

A number in the range 1 through 50 which determines the
number of rows or lines of Shmoo data which are
composited and printed along the X (vertical) axis. May be
omitted in which case 40 is the default value.

COMPOSITE SHMOO PLOT PROGRAMMING NOTES

(1)

(2)

(3)

(4)

The basie algorithm for producing a Composite Shmoo Plot is to place
one FOR loop within another FOR loop where the inner FOR loop
count equals 50; one less than the required size of the TPAS array
which is 51. The EXEC XGRAPH statement is placed within the outer
FOR loop which has a loop count equal to the number of horizontal
Composite Shmoo lines desired; XROWS.

Before compositing may procede, a disc file must be assigned as
follows:

// ASSIGN '%SHMxx' 1250 WORDS DATA

Where xx is a two digit number between 00 and 99. TPASCT takes on
the value of this number during the file open and clear operation.

Files just assigned and old files with obsolete data which are to be
reused must first be cleared by the IND=20 function.

On the first pass through the program the file must be opened and
loaded to core with the IND=1- funection, unless the file has just been
cleared. An exception to this rule exists when another test station is
in use and running a different test program. In this case the file must
be opened on every pass through the program.

(5) The disc file into which composited data is accumulated may be
visualized as a rectangular matrix 50 units wide x 'XROWS' units high
in the image of the plot to be produced. The parameter TPASCT,
which is initially set to 50 and then is incremented by 50 for each
subsequent XGRAPH call, first references plot 'cells' 1 through 50,
then 51 through 100, 101 through 150 and so on; TPASCT 'points to' the
last 'ecell' of the 50 word file block currently being composited or

plotted.

(6) Composite Shmoo plot rules are summarized as follows:

(a)
(b)
(e)

(d)

(e)

(f)

The file '%SHMxx' must be assigned 1250 words.

The array TPAS must be declared as 51 words in length.

TPASCT must start at 50 and be ineremented by 50 with each
subsequent XGRAPH call.

The disc file must be opened at least once before compositing
and before printing the plot.

New files just assigned must first be cleared before compositing
begins.

The loop count of the FOR loop containing the EXEC XGRAPH
statement must equal XROWS or 40 if XROWS is omitted.

2.1.2.3 X-Y PLOTS and BAR GRAPHS. The calling sequence for X-Y plots and
Bar Graphs is as follows:

2-4

EXEC XGRAPH (OP,X,Y);

Where OP

1, FOR X=Y plots where an "X" is printed on the plot at
location X,Y.

2, FOR Block Graphs where a row of "X's" of length Y is
printed at location X.

The X axis coordinate which will be printed on the left
hand margin of the plot. A constant, variable, or
expression. See note 1 below.

The Y axis coordinate which must be normalized to a value
between YMIN and YMAX. A constant, variable, or
expression. See note 2 below.

X-Y PLOTS AND BAR GRAPH-PROGRAMMING NOTES

(1) The procedure for producing an X-Y plot or Bar Graph is to place the
EXEC XGRAPH statement within a single FOR loop which ranges from
XMIN to XMAX in increments of X where X = (XMAX-XMIN)/ no. of
increments of horizontal rows in the plot; typically 40.

(2) The value Y must be normalized to 50 points between YMIN and
YMAX as follows:

(a) Given a value Y to be plotted between YMIN and YMAX.
(b) AY = YMAX-YMIN
(e) Y normalized = Y/AY

This is the value to be used as the parameter Y in the calling sequence
above.

2.1.2.4 MISCELLANEOUS XGRAPH FUNCTIONS

Line Printer Top of Form

The following statement will force a top of form to the LP if it has been set
as the principal output device.

EXEC XGRAPH (0);

Using XGRAPH's Internal Buffer for Auxiliary Data Storage by the FACTOR
Program.

The following statement will transfer a given word of data between the
FACTOR program and the internal 1250 word buffer within XGRAPH.

EXEC XGRAPH (3, LOC, VAL, IND);

Where LOC =Buffer address between 0 and 1250 to be
accessed.

VAL = Data fetched from or to be stored to
buffer location LOC.

IND = 0, places VAL in buffer location LOC.

= 1, Returns data from buffer location LOC
to VAL.

2.1.3 Miscellaneous XGRAPH Usage Notes

Directing Output to the Line Printer

All plots may be directed from the TTP to the LP by:

// SET LP , or
/. DATALOG LP STATXX

Output may be directed back to the TTP by:
// SET TTP , OT

/. DATALOG OFF STATXX , or
/. DATALOG TTP STATXX

2.1.4 XGRAPH Error Messages

When a user error occurs XGRAPH will produce the appropriate error
message as defined below. The error message will be followed by a
conventional TOPSY terminal error 100 messages according to the following
example:

FILE %SHMXX NOT ON DISK

INST # TERMINAL ERROR
25 100
ERROR MESSAGE DESCRIPTION
PARAMETER ERROR Insufficient parameters supplied in the

XGRAPH calling statement.

FILE %SHMXX NOT ON DISC File not assigned on dise, or if assigned
name is incorrect.

FILE %SHMXX NOT OPENED File was not opened prior to compositing
or plotting results to output device.

COMPOSITE LIMIT OF 4096 Due to buffer size constraints a limit of
EXCEEDED 4096 composite passes has been imposed.
ARRAY SIZE EXCEEDED A value for LOC has been used which

exceeds 1250, the internal buffer size.

%SHMXX FILE TOO SMALL File not assigned 1250 words as required.

XROWS PARAMETER ERROR Value specified for XROWS not within
range of 1 to 50.

TPASCT PARAMETER ERROR TPASCT has value out of range 50 to 2500
' or was not incremented by 50.

2.1.5 Additional Documentation

Application Noted AD1037 and AD1087

2-7

2.2 TTIME

2.2.1 Introduction

TTIME is a utility program which may be called from FACTOR, which
performs a binary search with a timing generator to make a time
measurement.

2.2.2 Program Usage

The calling sequence for TTIME is:

EXEC TTIME (TSTART, TSTOP, START, STOP, TG, RESULT);

TSTART = The starting time delay of the selected timing generator.

Must be greater than TSTOP and less than 10 microseconds.

TSTOP

The minimum time delay of a selected timing generator
during the binary search. Must be less than TSTART and
greater than or equal to 10 nanoseconds.

NOTE:

The rules for usage of TSTART require that the specified
function tests must pass at a time delay TSTART and a
function fail must occur somewhere in the region between
TSTOP and TSTART. Regardless of the polarity of signal
being sampled, these conditions can be met by the
appropriate use of positive or negative logic and/or control
of the mask enable in the local memory.

START

The local memory staring address of the function tests
exercised during the binary search .

STOP The local memory stop address of the funetion tests during

the binary search.

TG = The timing generator to be manipulated by the binary
search algorithm. Must be an integer number 1 through 8.

RESULT

A floating point number return to TOPSY from the time
algorithm indicating the final time delay of the timing
generator being used.

2.2.2.1 PROGRAM DESCRIPTION. After entering the assembly language

2-8

program, the instruction number and status register values are saved in
locations INDSAVE and STATSAVE for restoration when returning to
TOPSY. Five variables must be transferred from TOPSY to the assembly
language program. The first two variables are the starting and stopping
times. These two variables will be divided by FLSB and converted to integer
by FFIX. FLSB will make the least significant bit of the times equal to .08
nanoseconds. The other three variables, local memory start and stop and
timing generator number are converted to integers. The timing generator is
shifted left 21 bits and right by 9 bits to be in the proper location for the
long register instructions.

The timing start value is compared with 125,000 which is an equivalent to 10
microseconds, and if it is greater than this number, error return is used. If
TSTART passes this test, it is compared with TSTOP and if TSTART<STSTOP,
a second error return is used. TSTOP is then compared with 125 which is 10
nanoseconds, and if it is less than this, a third error return is used. The local
memory stop location is written into the L register and the local memory
start location is stored with a SET START op. code at the beginning of a
DMA buffer. The binary search procedure is shown in the flow chart below
(figure 2-1).

If no errors occurred, the exit procedure reads the timing generator being
used, converts the result to floating point and transfers it to TOPSY. The
routine that programs the timing generator delay (SDELAY) is similar to
that used by the TOPSY interpreter. In this case however, it is assumed that
the width of the specified timing generator is to remain constant. The delay
T is divided by 125 which forms 2 words. The quotient in the E register will
have a least significant bit of 10 nanoseconds and is written onto the digital
delay of the timing generator. The remainder of the division in the A
register has a least significant bit of 80 pico-seconds and 1 is added to this
to account for round-off errors. It is then multiplied by 2 and is written into
the delay and verbier registers. A time delay of 525 microsecond is allowed
for the verniers to settle.

2.2.2.2 CONSOLE SWITCH OPTIONS. Index register 5 is pointing to the
beginning of the DMA buffer, and this value is written into the MAR
register. The DMA buffer contains a SET START and an ENABLE TEST
instruction. Setting Bit 9 of the MODE register starts DMA. After waiting
for the DMA test to be completed, the test subroutine exits. If console
switeh 1 is up, the test subroutine will put the local memory in the
continuous loop state. In addition, if console switeh 2 is up, the CPU will
halt with the A register displaying the coarse or digital timing and the E
register displaying the vernier timing.

2.2.3 Error Messages

There are 3 error conditions that may occur when using TTIME. The value
of RESULT will indicate errors as follows:

RESULT = 1 if TSTART > 10 microseconds, TSTOP < 10 nanoseconds,
or TSTART < TSTOP.

RESULT = 2 if a functional fail occurs on the first try of the binary
search (function fail at TSTART).

RESULT = 3 if no function fail occurs throughout the region from

TSTOP to TSTART.

2-9

2.2.4 Additional Documentation

Application Note AD 1078

ENTER

T = TSTART

DELTA = (TSTART-TSTOP)/2

LOOP >
TGDELAY =T

EXIT «— IDELTAI < DELMIN?

yes l no
TEST
FAIL?
no yes

T =T-DELTA T=T+DELTA

T>TSTART? —— ERROR?2
ERROR | <— KSTART? o yes

yes Lno DELTA = DELTA/2

LOOP

Figure 2-1 Flow Chart of TTIME Binary Search Algorithim

2-10

2.3 SPLOT
2.3.1 Introduection

The program SPLOT (sentivity plot) is a diagnostic and device testing tool
for use in SENTRY test systems. SPLOT is used in conjunction with an
executing device test program to aid in the analysis of the results of device
go/no/go functional or de parametric tests. When called, SPLOT:

1. performs a SPLOT-controlled device test during which two or more of
the current device test conditions are selected and varied according to
user-specified parameters,

2. initiates periodic DUT pass/fail tests throughout the device test and
maintains a record of the results,

3. generates an X, Y shmoo-type graph which displays the pass/fail
performance of the device under test when the device is subjected to a
user-specified range of test conditions.

The shmoo graph generated as the result of a SPLOT-controlled device test
is displayed for analysis by the user either on the system video keyboard
terminal (VKT) or, when specified, on a line printer. An example of the type
of shmoo graph produced by SPLOT is shown in Figure 2-2. As shown in
Figure 2-2, the X, Y shmoo graph produced by SPLOT is plotted as a 21 by
51 element matrix in which the Y-axis component is divided into 50 equal

steps. The value for each display step is calculated by SPLOT from required
input information.

A detailed description of the shmoo graph format used in SPLOT display
operations is given in paragraph 2.3.10.

SHMOO PLOT AT STATEMENT NUMBER 0066 SPLOT REVISION 3.2
81 YSTART=+5. 000 V YSTOP=-0. 000 V YDELTA=+250. OMV
PD7 XSTART=+200. ONS X8TOP=-0. 000 S XDELTA=+4. OO0ONS
S1 LML LML
+5. 000 V
+4. 750 V 0010 XXXXXXXXXXKXXXXXXXX . 0010
+4. 500 V 0010 XXXXXXXXXXXXXXXXXXXX . 0010
+4. 250 V 0010 XXXXXXXXXXXXXXXXXXXX . 0010
+4. 000 V 0010 XXXXXXXXXXXXXXXXXXXXX . 0010
+3. 7950 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+3. 500 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+3. 250 V 0010 XXXXXXXXXXXXXXXXXXXXXX. o010
+3. 000 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+2. 750 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+22. 300 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+2. 250 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+2. 000 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+1. 750 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+1. 500 V 0010 > XXXXXAXXXXXXXXXXXXXXXX. 0010
+1. 250 V 0010 XXXXXXXXXXXXXXXXXXXXXXX. 0010
.000 V 0010 XXXXXXXXXXXXXXXXXXXXXXX. 0010
+750. OMV 0010 XXXXXXXXXXXXXXXXXXXXXXXX 0010
+9500. OMV 0010 XXXXXXXXXXXXXXXXXXXXXXXX . 0010
+250. OMV 0010 XXXXXXXXXXXXXXXXXXXXXXXXX . 0010
~-0. 000 V 0015 CXXXXXXXXXXXXXXXXXXXXXXXXXXXX © 0014
O MM I B] BB H R R DA R R TR R R RRL R B AR AR R RED
S +120. ONS +160. ONS +200. ONS

-0.000 S +40. OONS +80. OON7

Figure 2-2 Shmoo Graph
Produced by a SPLOT Two-Variable Device

2-11@

To employ SPLOT, the user must call the program and specify:

1. the test conditions to be plotted on the X-axis and the Y-axis of the
shmoo graph to be produced by SPLOT,

2. the range over which each selected test condition is to be varied
during the SPLOT-controlled test,

3. any permitted graph formatting or handling of the test results.

During a SPLOT-controlled device test, both the specified X-axis and the Y-
axis test conditions are set to their range values. The X-axis test condition
is then stepped through its 50-step range with an ENABLE TEST or
MEASURE PIN statement executed at each step. (MEASURE PIN statement
is used only when the DCT register is used to supply one of the SPLOT-
controlled test conditions.) The pass/fail result of each test is stored in a
line buffer until the X-axis test condition has been stepped through its 50
steps. The contents of the line buffer are then displayed (or printed) as the
first (top) line of the test shmoo graph plot. The Y-axis test condition is
then set to its next condition and the above process is repeated until the Y-
axis test condition has been stepped through its 20-step test range. On
completion of its test and display operations, SPLOT restores the selected
test conditions to their original states and returns control to TOPSY.

2.3.2 Loading And Executing SPLOT

The program SPLOT may be called and initiated either automatically by the
addition of a FACTOR EXECUTE statement to the user program or
manually by a call entered at the system VKT during a TOPSY ANALYSIS
mode of operation.

The characteristics of the FACTOR statement required to add the SPLOT
function to a FACTOR program are described in subsection 2.3.3.

The VKT/user interactive procedure required to initiate the SPLOT function
is described in subsection 2.3.8.

2.3.3 FACTOR Call Statement

A FACTOR EXECUTE statement may be included in any device test
program to load SPLOT and to initiate the execution of any of the following:

1. a two-variable test in which only one Y-axis and one X-axis test
condition (i.e., tester test unit) is selected for the SPLOT-controlled
device test (refer to paragraph 2.3.4),

2. a multi-variable test in which one or more Y-axis test unit(s) and one
or more X-axis test unit(s) are selected for use in a SPLOT-controlled
device test (refer to paragraph 2.3.5),

3. a "return test results" operation in which the test results obtained
during a SPLOT-controlled device test are returned to the calling
program (refer to paragraph 2.3.7),

2-12 @

4. a shmoo graph "customization" operation in which user-specified
names and values are displayed (or printed) on the shmoo graph
produced by a SPLOT-controlled device test (refer to paragraph 2.3.6).

The general form the FACTOR statement required to load and initiate
SPLOT is:

EXEC SPLOT (Yunit,Ystart,Ystop,Xunit,Xstart,Xstop);
NOTE
Each SPLOT call statement must contain a

value for each of the parameters shown in the
above format statement.

Parameter Function

Yunit Identify the test unit the outputs of which are to be
plotted as the Y-axis components of the test shmoo
graph.

Ystart and Define the start and stop values of the range through

Ystop which the output of the selected Yunit is to be
stepped during the SPLOT-controlled device test.

Xunit Identify the test unit the outputs of which are to be
plotted as the X-axis components of the test shmoo
graph.

Xstart and Define the start and stop values of the range through

Xstop which the output of the selected Xunit is to be

stepped during the SPLOT-controlled device test.

The values which may be assigned to the SPLOT call statement parameters
are described in paragraphs 2.3.3.1 and 2.3.3.2.

2.3.3.1 TEST UNIT PARAMETERS - The Yunit and Xunit call statement
parameters may be constants, variables, array elements or array names.
With one exception, the Yunit and Xunit must either specify or represent
one of the 32 possible identifiers for the system test units (refer to Table 2-
1). The exception is when a parameter is used to specify a special name or
value which is to appear on the test shmoo graph; this use is described in
paragraph 2.3.6.

2-13 @

TABLE 2-1 SYSTEM TEST UNIT NUMERIC IDENTIFIERS

Identifier Unit Identifier Unit
1 EO 17 PD1
2 E1l 18 PD2
3 EAQ 19 PD3
4 EA1 20 PD4
5 EBO 21 PD5
6 EB1 22 PD6
7 ECO 23 PD7
8 EC1 24 PD8
9 SO 25 Pwl
10 S1 26 PwW2
11 DPS1 27 PW3
12 DPS2 28 Pw4
13 DPS3 29 PW5
14 PMU 30 PW6
15 DCT 31 PW7
16 TR 32 PW8

NOTE

Only the test units which are initialized for
use in the device test program in which a
SPLOT ecall is to be included may be specified
as an X or Y test unit in that call.

2.3.3.2 TEST RANGE PARAMETERS - The Ystart, Ystop and Xstart and Xstop
call statement parameters may be constants, variables, array elements or
array names. With one exception, each start/stop parameter pair must
define the actual range through which the output of the corresponding test
unit is to be varied during the SPLOT-controlled device test. The exception
is when a start/stop parameter pair is used to define a range of values which
are to appear on the test shmoo graph but do not necessarily represent the
output range of a selected test unit. The foregoing use of a start/stop
parameter pair is deseribed in detail in paragraph 2.3.6.

The test range defined by a start/stop parameter must be either equal to or
be within the range established for the corresponding test unit by the
program in which the SPLOT call statement is located. If any voltage,
current or timing value specified in a SPLOT call statement exceeds the
program specified range or if an RVS or DPS voltage was specified which
was greater than +6VDC or was less than -30VDC, terminal error 103 is
issued.

2-14 @

With regard to the shmoo graph, Ystart defines the value assigned to the top
end of the Y-axis, Ystop defines the value assigned to the bottom of the Y-
axis. In a similar manner, Xstart defines the value assigned to the start
(rightmost end) of the X-axis and Xstop defines the value assigned to the end
of the X-axis. SPLOT uses the start and stop values assigned to each axis to
calibrate the steps indicated along each axis.

SPLOT will recognize the use of a SET VOFFSET statement in the user
program from which it is called and will produce corresponding X and/or Y
plot parameters which are relative to the given offset value.

2.3.4 Two-Variable Test Operation

In a two-variable test operation, only one X-axis test unit and one Y-axis
test unit is selected to produce the variable X-Y test conditions for the
SPLOT-controlled device test. The Xunit and Yunit SPLOT call statement
parameters for operations of this type may be constants, variables or array
elements - not array names. ‘

An example of the type shmoo graph produced by a two-variable SPLOT test
operation is shown in Figure 2-2. The FACTOR SPLOT call statement
added to a device test program to produce the shmoo graph shown in Figure
2-2 is:

EXEC SPLOT (10, 5, 0, 23, 200E-9, 0);
2.3.5 Multiple-Variable Test Operation

The program SPLOT permits the user to specify up to ten Xunit and/or Yunit
test units and their associated range definition parameters for a SPLOT-
controlled device test. The specified test units which will determine the
name and values to be printed along the X and Y axis of the resulting shmoo
graph are referred to as "primary" test units. Specified test units the
outputs of which are to track (i.e., maintain a constant relationship to) a
primary test output are referred to as "secondary" test units. One primary
test unit and up to nine secondary test units may be assigned to the SPLOT
call statement Xunit and/or Yunit parameters.

Since the SPLOT call statement is limited to six test unit and range
parameters (i.e., Yunit,Ystart,Ystop,Xunit,Xstart,Xstop), it is necessary to
assign the names of previously declared arrays to the statement parameters
which are to represent more than one test unit identifiers and set of test
range start and stop parameters. The actual values of the desired identifiers
and range parameters are then assigned to elements of the declared arrays.
When loaded and initiated, SPLOT obtains all assigned test unit identifiers
and their respective range values from the previously established arrays.

The following rules must be observed in preparing a FACTOR program for a
multiple-variable, SPLOT-controlled device test:

1. The call statement Xunit or Yunit parameter which is to be assigned
more than one test identifier must be the name of a previously
declared array.

2-15 @

The number of elements in an Xunit or Yunit array must be equal to or
greater than the number of test units to be assigned to that parameter.

3. Either or both the Xunit and Yunit parameters of the same SPLOT call
statement may be arrays. If both parameters are arrays they need not
have the same number of elements.

4. The first element of a test unit array must be assigned the identifier
of the primary test unit.

5. The range definition parameters associated with a test unit array must
also be arrays which have the same number of elements as the test
unit array. For example, the statement DCL Xunit 3 ; must be
followed by the statements DCL Xstart 3 ; and DCL Xstop 3 ;
EXAMPLE
The following statement sequence illustrates the FACTOR program
statements required to specify two test units for the Y-axis test
functions of a SPLOT-controlled device test:

DCL YUNIT [2], YSTART [2], YSTOP [2]; REM Y ARRAYS;

YUNIT [1] = 10; REM MAKE S1 PRIMARY UNIT:

YUNIT [2] = 25; REM MAKE PW1 SECONDARY UNIT:

YSTART El] = 5; YSTOP [1] = 0; REM VARY S1 FROM 5 TO 0;

YSTART [2] = 125E-9; YSTOP [2] = 75E-9; REM PW1 RANGE;

EXEC SPLOT (YUNIT,YSTART,YSTOP,23,200E-9,0);

The shmoo graph produced by the addition of the sbove program

sequence to a FACTOR test program is hown in Figure 2-3.
SHMOO PLOT AT STATEMENT NUMBER 0104 SPLOT REVISION 3.2
51 YSTART=+5. 000 V YSTOP=-0. 000 V YDELTA=+250. OMY
PW1 YSTART=+125.ONS YSTOP=+75._ OONS YDELTA=+2. S00NS
PD7 XSTART=+200. ONS XSTOP=-0. 000 S XDELTA=+4. OOONS
S1 LML : T
+5.000 V : : 4 : : .
+4.750 V 0010 XXXXXXXXXXXXXXXXXXXXXXXXX. 0010
+4. 500 V 0010 XXXXXXXXXKXXXXXXXXXXXXXXX 0010
+4. 250 V 0010 XXXXXXXXXXXXXXXXXXXXXXXXX - 0010
+4. 000 V 0010 XXXXXXXXXXXXXXXXXXXXXXXXX . 0010
+3. 750 V 0010 XXXXXXXXXXXXXXXXXXXXXXXXX 0010
+3. 500 V 0010 XXXXXXXXXXXXXXXXXXXXXXXX 0010
+3.250 V 0010 XXXXXXXXXXXXXXXXXXXXXXXX 0010
+3. 000 V 0010 XXXXXXXXXXXXXXXXXXXXXXX 0010
+2.750 V. 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+2. 500 V 0010 XXXXXXXXXXXXXXXXXXXXXX. 0010
+2. 250 V 0010 XXXXXXXXXXXXXXXXXXXXX - 0010
+2. 000 V 0010 XXXXXXXXXXXXXXXXXXXXX 0010
+1.750 V 0010 _ . XXXXXXXXXXXXXXXXXXXX 0010
+1. 500 V 0010 > . XXXXXXXXXXXXXXXXXXXX 0010
+1.250 V 0010 XXXXXXXXXXXXXXXXXXXX 0010
+1. 000 V 0010 XXXXXXXXXXXXXXXXXXXX 0010
+750. OMV 0010 XXXXXXXXXXXXXXXXXXX 0010
+500. OMV 0010 ©OXXXXXXXXXXXXXXXXXXX 0010
+250. OMV 0010 COXXXXXXXXXXXXXXXXXXX : . 0010
-0. 000 V 0015 CXXXXXXXXXXXXXXXXXXXXXX . : 0015

2-16 @

O 3463 3 263 3040 1 3F 403303 30 DM H T H R DR R R R UL B R R B R HHED
-0.000 S +40. OONS +80. Oggg +120. ONS +160. ONS +200. ONS

Figure 2-3 Shmoo Graph
Produced By A SPLOT Three-Variable Device Test

2.3.6 Specifying Names For SPLOT Shmoo Graph X And Y Functions

SPLOT permits the user to customize the shmoo graph produced by a
SPLOT-controlled device test by specifying literals and selected values for
either or both the call statement X and Y test unit and range parameters.
The names (literals) specified will be displayed along the corresponding axis
of the test shmoo graph. The programming technique required to use this
feature of SPLOT, is similar to that required to specify multiple test units
and test ranges.

The following rules must be observed in preparing for a SPLOT device test in
whieh user-specified names and range values are to be displayed in the
resulting shmoo graph:

1. The SPLOT call statement parameters which are to be assigned a
specified literal or value must be declared arrays.

2. The first element of a Xunit or Yunit array must be assigned the
desired name (literal). The name specified must consist of from one to
four characters with the first character an alphabetic character (A to
Z).

3. The values assigned to the first element of an Xunit or Yunit test
range start and stop arrays will determine the values which are to be
printed along the corresponding axis of the test shmoo graph. Any
range of values may be defined, however, it should be meaningful for
the test function being represented by the axis of the shmoo graph
along which the step values of the range are to appear.

4. When the name feature is used, the engineering units displayed along
the X or Y axis of the generated shmoo graph are a function of the
first character of the name (literal) given for that axis. The type of
engineering unit descriptors used are determined:

The First Character Produces the Deseriptor
A% \'
I I
T S
(other than above) (none displayed)
EXAMPLE

The following command sequence illustrates the program statement
sequence required when both the X and Y axis of the resulting test
shmoo graph are to be named.

2-17 @

DCL YUN '3 /'VOH',10,25/; REM YUINT NAME AND IDENTIFIERS;
DCL Y2[3], Y1[3]; REM YUNIT RANGE ARRAYS;

DCL XUN [3]/'TPD’ 23,21/; REM XUNIT NAME AND IDENTIFIERS;
DCL X2[3], X2[3]; REM XUNIT RANGE ARRAYS;

Y2[2] = 5; Y1[2] = ¢; REM S1 RANGE;

Y2[3] = 125E-9 Y1[3] = 75E-9; REM PW1 RANGE;

Y2[1] = Y2 2 -10; Y1[1] = Y1 2 -10; REM 10V OFFSET FOR VOH;
X2[2] = 200E-9; X1[2] = 0; REM PD7 RANGE;

X2[3] = 5; X1[3] = 0; REM E1 RANGE;

X2[1] = X2[2]/2; X1[1] = 0; REM HALF SCALE PD7 RANGE FOR TPD;
EXEC SPLOT (YUN,Y2,Y1,XUN,X2,X1); REM SPLOT CALL;

Figure 2-4 illustrates a shmoo graph produced by a FACTOR test
program which contained the above statement sequence.

SHMOO PLOT AT STATEMENT NUMBER 0152 SPLOT REVISION 3.2

VOH YSTART=-5. 000 V YSTOP=-10. 00 V YDELTA=+250. OMV

S1 YSTART=+5. 000 V YSTOP=-0. 00Q V YDELTA=+250. OMV

PW1 YSTART=+125. ONS YSTOP=+75. QONS YDELTA=+2. 500NS

TPD_ XSTART=+100. ONS XSTOP=-0. 000 S XDELTA=+2. OOONS

PD7 XSTART=+200. ONS X8TOP=-0. 000 S XDELTA=+4. OOONS

E1 XSTART=+5. 000 V XS§TOP=-0. 000 V XDELTA=+100. OMV

VOH LML LML
-5.000 V
-5.250 V . .

-5.5%00 V . .

-5.750 V . .

-6. 000 V . .

-6. 250 V . .

-6. 300 V . . ‘
~-6.750 V 0010 . XXX 0010
-7.000 V 0010 XXXXX 0010
-7.290 V 0010 XXXXXXX. 0010
-7. 3900 V 0010 CXXXXXXXX . 0010
-7.750 V 0010 . . XXXXXXXXXXX 0010
-8. 000 V 0010 . XXXXXXXXXXXX 0010
-8. 250 V 0010 . XXXXXXXXXXXXXXX 0010
-8. 500 V 0010 > . XXXXXXXXXXXXXXXX 0010
-8. 750 V 0010 XXXXXXXXXXXXXXXXXX 0010
-2.:000 V 0010 XXXXXXXXXXXXXXXXXX 0010
-9.290 V 0010 XXXXXXXXXXXXXXXXXX 0010
-9. 500 V Q010 . . . XXXXXXXXXXXXXXXXX. 0010
-9.750 V 0010 XXXXXXXXXXXXXXXXXXX 0010
-10.00 V XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX 0015

Q363636 36 36 3¢ 3¢ 6 3¢ 1 33636 34636 360636 2 36 30 3T ***3********%4#***** *%*5

~0.000 S +20. 00NS +40. OONS +60. OONS +80. OONS +100. ONS

Figure 2-4 Customized Shmoo Graph
Produced By A SPLOT Multi-Variable Device Test

2-18@

2.3.7 Passing Test Results To Factor Test Program

When called from a FACTOR test program, SPLOT can pass the information
obtained during the SPLOT-controlled device test back to the calling
program. This feature is specified to SPLOT by the addition of the
parameter "result" to the FACTOR call statement. The format for this call
is:

EXEC SPLOT (Yunit,Ystart,Ystop,Xunit,Xstart,Xstop,result);

where the parameter "result" is the name of a 96-element array located in
the calling test program before the call to SPLOT.

To use the SPLOT "data return" feature, the calling test program must
contain:

1. A declaration statement which establishes a 96-element array the
name of which is to be used as the "result" operand of the SPLOT call
statement.

2. A statement immediately before each SPLOT call which assigns a plot
ID number to the first element of the array RESULT,

3. A WRITE statement located after each SPLOT call to cause the
information in the array RESULT to be written onto the disc.

The statement sequence needed to set up and use the SPLOT "data return"
feature is:

DCL RESULT [96];

RESULT[1] = 123; REM PLOT IS NUMBER;

EXEC SPLOT (YUNIT,YSTART,YSTOP,XUNIT,XSTART,
XSTOP,RESULT);

WRITE (FDOF) RESULT;

RESULT [1] = 321;
EXEC SPLOT (10,4,0,23,100E-9,0,RESULT);
WRITE (FDOF) RESULT;

The information contained by each element of a FACTOR test program
"data return" array (i.e., RESULT) is deseribed in Table 2-2.

2-19@

TABLE 2-2 CONTENTS OF A RESULT ARRAY

ELEMENT MEANING
1 PLOT number ID, defined in FACTOR program
2 Statement number at which SPLOT was called
3 Y unit name in TASCII
4 X unit name in TASCII
5 Y engineering units in TASCII
6 X engineering units in TASCII
7 YSTART in floating point format
8 XSTART in floating point format
9 YSTOP in floating point format
10 XSTOP in floating point format
11 Y current value in floating point format
12 X current value in floating point format
13 First 16 Dbits of pass/fail information
corresponding to first 16 points of the top Y
line of the plot. This number is in floating point
format.
14 Second 16 bits (points) of first Y line
15 Third 16 bits (points) of first Y line
16 Last 3 bits (points) making a total of 51 points
per line.
17-20
93.—96 21st and last Y line

2.3.8 Calling SPLOT From the

VKT

The program SPLOT may be loaded into CPU memory and initiated via
commands entered at the VKT. For this type of operation the user must:

1. Establish PAUSE condition to halt the execution of the current device
test at the desired program statement.

2. Load and start SPLOT using a TOPSY ANALYSIS command.
3. Enter via the VKT all desired test parameters in response to SPLOT

requests.

2-200

Once the input requests of SPLOT are satisfied, the SPLOT-controlled
device test is performed and the resulting shmoo graph is displayed.

The procedure required to load and execute SPLOT is described in detail in
the following steps:

NOTE

It is assumed that a program PAUSE condition
has been established and that the system is in
a TOPSY ANALYSIS command mode.

1. The formats of the commands which may be used to load and initiate
SPLOT and to specify the device on which the resulting shmoo graph is
to be displayed are:

Command Output Device Specified

/. SPLOT STATxx Output device is a function of a DATALOG
LP/TTP or LP/TTP command

/. SPLOT TTP STATxx VKT
/. SPLOT LP STATxx Line printer

2. Once loaded, SPLOT displays, at the VKT, a list of all possible test
units and their corresponding numeric identifiers (32).

3. The user must select and enter the identifiers of the test unit which is
to control the "Y" test functions.

The entry must:

a. be a numeric with the range 1 to 32, inclusive,

b. represent a test unit specified for use by the interrupted
test program,

c. specify one and only one test unit identifier.

If the entry does not comply with the above items, an error is
indicated at the VKT and the user is requested to enter a new test unit
identifier. This error/request cycle is continued until an acceptable
entry is made.

4. On completion of item 3, SPLOT displays, at the VKT, the value of the
current test output of the selected Y test unit in the format:
CURRENT test unit name current value
(e.g., CURRENT S1 +4.900 V)

5. The user is then requested to define the desired test and output range
for the SPLOT-controlled test by entering:

a. the start value of the range (Ystart),
b. the stop value of the range (Ystop),

2-21@

The values entered must define a test range which is equal to or within
the range selected for the Y test unit in the interrupted device test
program. The value given Ystart may be greater than or less than the
value of Ystop.

An unacceptable entry causes an error to be indicated and the request
for range values to be repeated. This error/repeat cycle is continued
until acceptable entries are made.

6. When acceptable Ystart and Ystop entries are made, SPLOT displays,
at the VKT:

a. the name of the selected Y test unit (Yunit),

b. the specified test range start value (Ystart),

c. the specified test range stop value (Ystop),

d. The size of the Y-axis test steps to be generated and displayed
on the resulting shmoo graph (YDELTA).

7. On completion of item 6, SPLOT requests the user to enter the
identifier for the test unit which is to control the "X" test functions.
The entry must:

a. specify only one test unit,

b. not be the same as that entered for the Y test unit,

c. be a number within the range 1 to 32, inclusive,

d. represent a test unit which is specified for use by the interrupted
test program.

An unacceptable entry causes an error indication and a request for a
new entry to be displayed at the VKT. This error/repeat cycle is
continued until an acceptable entry is made.

8. On completion of item 7, SPLOT displays, at the VKT, the value of the
current output of the selected X test unit. The format of the display
is:

CURRENT test unit name value
(e.g., CURRENT PW1 +50.00ns).

9. On completion of the foregoing display, the user is requested to define
the test unit output range required for the SPLOT-controlled device
test by entering:

a. the start value of the range (Xstart),
b. the stop value of the range (Xstop).

The values entered for Xstart and Xstop must follow the same
requirement described in step 5 for the Ystart and Ystop parameters.

10. When acceptable test range start and stop values have been entered,
SPLOT executes a device test and displays a shmoo graph of the
device's pass/fail test results on the selected (see step 1) output
device.

The above procedure may be repeated as many times as desired during a

program pause to obtain shmoo graphs for any desired combinations of test
units and test output ranges.

2-22@

2.3.8.1 OPERATOR CONTROL INPUTS - The VKT and test station entries which
affect the SPLOT load and test operations are:

1. A station RESET entry terminates SPLOT operation and returns
control to TOPSY,

2. A CR VKT entry during SPLOT interactive operations terminates
SPLOT operation and returns control to TOPSY,

3. A VKT keyboard START entry terminates SPLOT operations and
continues the execution of the interrupted device test program.

2.3.9 Using the Pattern Processor For SPLOT Tests

SPLOT permits the user to select the Pattern Processor (PPM) as the
functional pattern source for a device test instead of local memory. This
feature of SPLOT may be used in either a manual mode (SPLOT called from
VKT) or an automatic mode (SPLOT called by the execution of a FACTOR
EXEC statement). '

When SPLOT is to be loaded and initiated in an automatic mode, the
FACTOR call statement must be preceded by:
ENABLE PPM;
to enter the pattern processor.
When SPLOT is to be loaded and initiated via the VKT, the system must be

in a TOPSY ANALYSIS command mode, the current device test program
must be in a pause condition and the command:

/. WRITE SAMD 101
must precede the SPLOT ecall (i.e., /. SPLOT STATxx).

2.3.10 Description of SPLOT-Generated Shmoo Graph
The display of a SPLOT-generated shmoo graph is formatted in the following

manner (refer to Figure 2-5):

1. The first (top) horizontal line specifies the number of the user device
test program statement which was current when the SPLOT controlled
device test was performed and the revision number of the called
SPLOT overlay.

2. The next two or more lines specify:

a. the primary and, when included, the secondary test units the
outputs of which were varied to produce the display X-Y plot,

b. the start and stop values which define the test output range for
each of the specified test units,

c. the value of the change to be made in each test output range for
each step as the test is advanced through the 20-step Y-axis test
range and the 50 step X-axis test range.

2-23 @

The main body of the display which consists, from left to right, of a
data column, an address column, a 20 x 50 element plot region, and a
second address column.

a. DATA COLUMN - This column is headed by the designation of
the primary Y test unit and contains 20 Yunit test output values
which are to be used as the Y-axis components of the plot. The
start and stop values which define the test range of the primary
Yunit are displayed as the first (top) and last (bottom) values in
the column. The names and range values of any secondary Yunits
are not displayed in the main body of the shmoo graph.

SHMOO PLOT AT STATEMENT NUMBER 0170 SPLOT REVISION 3.2

S1 YSTART=+5. 000 V YSTOP=-0. 000 V YDELTA=+250. OMV

PW1 YSTART=+125. ONS YSTOP=+75. OONS YDELTA=+2. SO0NS

PD7 XSTART=+200. ONS XSTOP=-0. 000 §° XDELTA=+4. OOONS

E1 XSTART=+5. 000 V XSTOP=-0. 000 V XDELTA=+100. OMV

LML LML

+3. 000 V

+4. 730 V . . .

+4. 500 V

+4. 250 V 0010 . . . X . 0010
+4. 000 V 0010 . . . XXX . 0010
+3. 750 V 0010 . . XXXXX . 0010
+3. 500 V 0010 . CXXXXXXX 0010
+3. 290 V 0010 . XXXXXXXXX 0010
+3. 000 V 0010 CXXXXXXXXXXX 0010
+2. 790 V 0010 XXXXXXXXXXXXX 0010
+2. 500 V 0010 . CXXXXXXXXXXXXXXX 0010
+2. 250 V 0010 o XXXXXXXXXXXXXXXXX. 0010
+2. 000 V 0010 CXXXXXXAXXXXXXXXXX XXX, 0010
+1.750 V 0010 . XXAXXXXXXXXXXXXXXXX . 0010
+1. 500 V 0010 > . XXXXXXXXXXXXXXXXXXX 0010
+1.250 V 0010 XXXXXXXXXXXXXXXXXXX 0010
+1. 000 V 0010 XXXXXXXXXXXXXXXXXX 0010
+750. OMV 0010 XXXXXXXXXXXXXXXXXX 0010
+500. OMV 0010 . . . XXXXXXXXXXXXXXXXXXX 0010
+250. OMV 0010 . . XXAXXXXXXXXXXX XXX XX . 0010
-0, 00 XXXXXXXXX . L XXXXXXXXXXXXXXXXXXXXXX . . . 0014

Q36 3365 364636 348 1 36309034630 34006 D 3636 T 838 30 30 T30 30203 B H G I3 R H D

(:f) -0.000 S8 +40. OONS +B0.0gg§ +120. ONS +160. ONS +200. ONS

PEARO®® ® ®O.

2-24 @

Identification of test program statement and SPLOT revision.

Test unit names, test range parameter values and display step values
calculated by SPLOT.

Y-axis column heads, Primary test unit name (or a literal if given) and
LML column heads.

Y-axis step values calculated by SPLOT.

LML left margin local memory addresses.
Plot Region (21 x 51 points)

X-axis scale and step values (one per 10 steps)
X-axis Primary Test Unit (or literal if given)
LML right margin local memory addresses.

Figure 2-5 Format of a SPLOT-Generated Shmoo Graph

The symbol is displayed immediately to the right of the value
of the data column at which Yunit was set when SPLOT was
called.

LML (Local Memory Location) COLUMNS - The purpose of
these two columns 1s to specify the point(s), that is the local
memory location, at which the plotted test points either entered
or left a pass zone. For example, a plot may have, from left to
right, a fail region, a pass region, an another fail region. In such
a case, the leftmost LML column would contain the address (at
each Y-axis step) of the last test fail point to occur before the
pass zone was entered; the rightmost column would contain the
address (for each Y-axis step) of the first test fail point to occur
after leaving the pass zone.

If the plot region begins at the left margin with a pass zone, no
LML column is displayed to the left of the plot region.

If the plot region began at the left margin with a fail zone and
enters a pass zone which continues through the last X-axis step,
no LML column is displayed to the right of the plot region.

NOTE

LML data is not displayed for plots of device
tests in which the DC strobe (unit 15) is used
for PMU measurements.

LML data displayed for plots of device tests in
which the Pattern Processor (PPM) is used as
the functional pattern source is invalid.

PLOT REGION - This region of the graph consists of a 21 x 51
element matrix which defines the DUT pass and fail points for
specific combinations of the X and Y test variables.

An X displayed in the plot region specifies a DUP pass condition
for the values of the X and Y variable tester outputs applied to
the DUT at that point in the device test. The lack of a displayed
X specifies a DUT fail condition.

Vertical lines of dots originating from the X-axis are displayed
throughout the plot region at 5-step (X-axis) intervals. These
vertical lines are provided to aid in reading the displayed
pass/fail information.

A line consisting of asterisks and the numbers 0 through 5 is
displayed along the bottom of the plot reqion to provide a scale
for the X-axis. The plot position of each of the 50 values
through which the X-variable is stepped during the device test is
indicated by either an asterisk or, at 10-step intervals, a number.
This line also contains an up-arrow symbol () which is displayed
immediately under the value at which the primary Xunit was set
when SPLOT was called.

2-25@

2-26@

The value of the Xunit test output at each of the numbered steps
is displayed immediately under the step number. The designation
of the primary Xunit selected for the plotted device test is
displayed on the last line of the display; it is postioned at the
approximate midpoint of the plot region.

2.4 PGLOG
2.4.1 Introduction

PGLOG is a specialized datalogger which prints a 'fail-matrix' map of the
RAM test pattern being executed by the Hardware Pattern Generator (HPG)
on the POD.

2.4.2 Program Usage
The FACTOR calling sequence is:
EXEC PGLOG;

This statement can be used in place of the ENABLE TEST statement for
executing a pattern generator test. A typical program sequence would be to
load the pattern, initialize the pattern generator start address and call
PGLOG as shown below.

PGEN LOAD §
WR DIAG;

RD DIAG;

BRANCH RESET f;
PGEN START;
ENABLE PGEN §, ON;
EXEC PGLOG;

If a function failure occurs, PGLOG will set the system fail flag in FAILMM
so at end of test the fail lamp will be on. Also, ON FCT, BRANCH will
execute if a fail occurred.

To enable datalogging, the TOPSY command
/. DATALOG FCT STATxx N

may be used. (DCT, TRIP and MEASURE can also be included in the
command.) If N =, then only the first fail will be datalogged. If N=f, then
for Solid, Checkerboard or Diagonal type N patterns, the RAM Fail Matrix
indicating all failures will appear. For first fail information, PGLOG can
presently handle 5 pattern types: Solid, Checkerboard, Diagonal, Ping-Pong
and Walking patterns.

2.4.2.1 FIRST FAIL RESULTS. For the Solid pattern, the row and column address
and expected data are displayed. For the Checkerboard or Diagonal pattern,
the pattern name and failing row and column address are displayed. For a
Ping-Pong fail, the failing address, and expected data plus the previously
read address and background is displayed. For a Walking One or Zero fail,
the failing address plus the location of the one (zero) and background are
displayed. For an indeterminate pattern, the failing address (plus or minus
two rows) and expected output are displayed.

2-27

Since the row size cannot be determined by PGLOG, it is assumed that
NROWS* NCOLS = SIZE and NROWS = NCOLS or NROWS = NCOLS/2 where
SIZE =2},i=2, 3, 4, ..., 12.

For a 4096 address RAM that is organized 32 rows by 128 columns, the
failing address information can be converted by subtracting 32 from the row
address and doubling the column address.

2.4.2.2 RAM FAIL MATRIX. The RAM Fail Matrix allows datalogging of multiple

2.4.2.

2.4.3

2-28

failures of simple type N patterns for analysis of possible decoder faults.
Since the hardware pattern generator does not have an equivalent of the
local memory ignore fail function, the following procedure is used:

N is the number of RAM addresses defined in the SET PGEN1 statement and
N-1 is loaded into the size register (0 < N-1<4095). When the pattern
generator starts, counters A and B are automatically initialized with the
complement of the size register. For example, with A 1K RAM, the size
register has 1777B and A = B_ = 6000B. Since only 10 address pins
correspond to 1024 addresges, the upper two bits of A_and B_. have no
meaning; hence, the effective starting address is . If the size register is
loaded with N-B-1,then A =B _=B. Thus, the starting address count can be
increased by decreasing the size. When a failure occurs, the original size
can be reduced by the failing count plus one. This causes the restart initial
count to be one past the previous fail. In this manner, all of the failures of
the pattern may be found.

3 PATTERN LIMITATIONS. Because of the pipeline in the pattern
generator logice, three cycles will have been executed past a fail. This is
accounted for in the PGLOG datalogger. However, this limits the
datalogger to certain types of previously defined and predictable patterns.
For complex patterns, with several loops, it would be impossible to work
backwards three cycles to determine the failing instruetion.

Additional Documentation

PGLOG Application Note AD 1048

2.5 PPLOG

2.5.1

2.5.2

Introduction

PPLOG is a specialized data logger which produces, on the specified output
device, a 'failmatrix' map of the RAM test pattern being executed by the
Pattern Processor Module (PPM). Execution is accomplished within the
TOPSY environment and requires no modification of the FACTOR test
program. PPLOG will datalog both passing and failing devices. Patterns
currently supported are basic type N and type N walking patterns, without
refresh. Also supported is a program 'trace' option to aid in the development
and debugging of PPM programs, and to datalog test results in a tabular
format.

Program Usage

The complete command for executing PPLOG is given below. Although
there are many parameters, they are all optional for most patterns. Their
application is discussed in detail below.

PPLOG is executed as a TOPSY or Manual Analysis command by pausing at
the FACTOR program REXEC statement which corresponds to the pattern
to be plotted.

/. PAUSE ON FAIL or,
/. PAUSE ON XXXX (statement no.)
press START, then

/. PPLOG [ROW n/COL n/STEP n/WALK n/ALL/FAIL n/TOPO/c]
[TTP/LP/MTW]

Where:

ROW n Defines maximum rows and columns. n 64 for

COLn columns, n 256 for rows. Optional, as PPLOG will
compute rows and columns but with an increase of
30% to 50% in processing time.

STEP n For walking type N patterns only. n defines a PPM
test step (count) encompassed within the 'read'
portion of the iteration to be plotted. n must be
calculated properly or results will be unpredictable.
The chart below illustrates the range of the PPM test
step for two sequences of a walking diagonal run on a
1024 bit RAM.

Test Funetion PPM Test Step-Range
DGEN statement for 1

all zeroes pattern
Write zeroes sequence 2-1025

2-29

2-30

WALK n

ALL

Test Function PPM Test Step-Range

DGEN statement for 1026
diagonal pattern

Write diagonal sequence 1027-2050
Read diagonal sequence 2051-3074
Write diagonal sequence 1 3075-4098
Read diagonal sequence 1 4099-5122

If a fail map of walking test sequence 1 is desired, a
PPM step in the range 4099 to 5122 must be chosen
for n. Note that n must be within the 'read' portion
of the walking sequence. For programs utilizing the
classie structure illustrated above in which the device
is initially cleared to zeroes, and the entire RAM
written once and read once during each iteration of
the walking pattern, the following expression may be
used to calculate the PPM step count n corresponding
to the first cell read during walking iteration W. W=0
corresponds to the very first walking test sequence,
W=1 corresponds to the second and so on. SIZE is the
size of the RAM under test.

n =2 * SIZE (W+1)+3

For example, to calculate n for the walking diagonal
sequence 1, as illustrated above, in which the PPM
step range was 4099 to 5122, we use W=1:

n=(2 *1024 (1+1))+3 = 4099

See Figures 2-7TA and 2-7B for sample plots of a
walking diagonal.

For walking type N patterns only. Similar to STEP,
above, except that PPLOG computes the step count
according to the above equation. n is the walk
position desired. n = 1,2,ete. Will produce valid
results only when used on programs with the classic
program structure described under STEP above. See
Figures 2-TA and 2-7B for a sample plot of a walking
pattern.

Causes the pass/fail status of each of the four output
pins to be included in the failmap. This is
accomplished by overprinting a hexadecimal
character 1 thru F over the failing '' or "'
designation. Applies only when LP is specified as the
output device. The hexadecimal character is to be
interpreted as a four bit mask field in which the bits
set indicate which output pins failed, as follows:

FAIL n

TOPO

bit bit

3 p
X X X X
) . L. pin 12 (D0g)
... . . .pin 14 (D01)
. . . .pin 28 (D02)

e e <+« « « < .pin30(D03)

The ALL feature uses working storage on disk as a
repository for fail data. Therefore, an increase in
processing time should be expected, especially with
large RAMS with a high percentage of failing cells.
See figure 2-8 for an example of the ALL option.

Suppresses the printing of the background pattern in
the failmap and allow the status of only the failing
device cells through step n to be logged. This reduces
processing time by about 60%. If n is omitted, all
fails in the program will be logged.

For use when the topological scrambler has been
enabled within the PPM program. Results in the
failmap displaying an unscrambled pattern (i.e. a
diagonal looks like a diagonal). The row and col
addresses appearing on the failmap are scrambled,
however, to maintain an accurate representation of
the generated pattern. Without the TOPO parameter,
the pattern will appear scrambled as directed by the
PPM TOPO statements. See Figure 2-12 for
examples of serambled and unserambled fail maps.

Represents an integer, typically 2,3,4, ete., which is
the cyele count of the number of read/write cyeles
per cell for the test iteration being plotted. Required
if the cycle count is greater than 1, as 1 is the
default value. In this example:
W-R-R/W-R-R/W-R-R.........

there are 3 cyeles per cell.

2-31

2.5.3

TTP Determines the destination of the printed output.

LP The TTP is the default case if no other specifications

MTW are made. With MTW output, a tape mark follows
each individual failmap. These parameters will
override the TOPSY and DOPSY POD commands
which may also be used to determine the output
device as follows:

// SET LP
/. DATALOG FCT LP STATXX

The above parameters may appear in any order in the PPLOG command.
Parameters which include numbers must be entered as shown with the
number immediately following the word: i.e., STEP 4. It is acceptable,
however, to abbreviate parameters down to their first two letters, to reduce
the number of key strokes: 'ROW 32' may be entered 'RO32'. I/O device
parameters must appear as shown.

Trace Option

A PPM trace option is provided as an aid in the development and debugging
of PPM programs, and as a means of datalogging test results in a tabular
format. The trace output contains all available, varying PPM data
pertaining to the program currently running. The trace start and stop step
counts may optionally be specified in the command. Additionally, the user
may specify whether all cyecles or only failing cycles are to be included in
the output. Unless specified otherwise, the printout will begin with the first
read instruction and run continuously to the end of the program, or until
RESET is pressed. Only read cycles will be included. The sample output in
figure 2-11 describes the data format and content more fully. The 'fail
matrix' map is not printed.

The trace is enabled by:

/. PPLOG TRACE [start/stop/XRn/FAIL][TTP/LP]

where:
~ start Denotes the beginning and ending step count to be included

stop in the trace output. Both or stop may be omitted in which
case start defaults to f and stop defaults to the end of the
program.

XR n Defines the number (1-3) of the PPM index register to be
included in the trace output. Defaults to 1 if omitted.

FAIL Causes only failing tests to be included in trace output. All
read cycles within 'start/stop window' will be traced if
omitted.

2-32

2.5.4 Error Messages

The following error messages are displayed on the TTP when appropriate.
Some error conditions are terminal and result in an immediate error message
before processing is terminated. Other error conditions produce an error
message immediately following the printing of the failmap. In these cases,
the failmap may or may not accurately depict the pattern executed.

NON TERMINAL ERROR DESCRIPTION
MESSAGES
XMASK/YMASK ERROR Incorrect mask values specified in PPM or

FACTOR program (PPLOG reads back
incorrect X/Y address from hardware).
Also may result from a read of RAM
rather than a write.

FLOATING OUTPUT, Open socket or load board not installed;
STEP, OR XMAX/YMAX output pin improperly terminated.
ERROR Incorrect value of STEP specified causing

'overlapping patterns'. Or, incorrect value
of XMAX/YMAX specified in PPM or

FACTOR program.

ADDR NOT FOUND The TOPO parameter was specified but

IN TOPO RAM the topological scrambler was not
properly programmed. Some device
addresses not specified.

TERMINAL ERROR DESCRIPTION

MESSAGES

CRAM EMPTY PPLOG executed at statement other than

REXEC statement. The PPM control
RAM contains no program.

STEP TOO LARGE User specified a value of STEP, or PPLOG
calculated a value of STEP based on a
user specified value of WALK, which
exceeds the scope of the PPM program.
The PPM step count generated during
program execution never reached the user
specified value.

C TOO LARGE OR User specified an incorrect value of ‘c'

XMAX/YMAX ERROR (eycles per cell per pass over RAM). Or,
incorrect value of XMAX/YMAX specified
in PPM or FACTOR program.

INSUFFICIENT There is insufficient space in working

SPACE IN W/S storage on disc for use of the ALL option.
ALL uses this area to save fail data for
each failing device location.

2-33

©2.5.5 Additional Documentation

Application Note AD 1089

2.5.6 PPLOG Output Examples

The following pages contain examples of typical PPLOG fail maps and a

sample program trace listing.

The fail map header contains information intended to enable location of
the specific PPM instruction at which the first fail occurred. However,
due to a hardware pipeline condition, the CRAM INST # may be offset
by a certain amount. The direction and magnitude of offset may vary
depending upon whether the failing instruction was executed as a result
of a BRU, a subroutine call, or straight line code. See figure 2-11 for

additional information on resolving the PPM offset.

-8TATIC TFST PLAN 0934315

FIRST FATIL aT: FACY CRAM STEP

coL

p o}
o
x

O TN LHE LU=

2-34

INSTH INSTw
76410 win 2651

KAM FAIL MATRIX , = RAD ZERD, « = BAD ONE

12

111111111122222222223333333333444444444455555555556668
@123456789112345678941234567891123456789212345678901234567890123

. m L, e e (AIAIAIAIVLIAIRY
ﬂl”’nlwlﬂiﬁ!ﬁlwln'c.t'o'o""-'-
T e T e e " """, 171721011 A I AR
M\ﬂ'ﬁiwlviniﬁ1ﬂl.'.‘.'."'.'.'.'
- m m,m e e = (A AINIAIAIOLD
PIAIAIDIATUIALH] ymy o ymammymymym
R e, e - e e (A1 RIALIPIRIOLD
V“”l“‘“l"‘V’l”’,‘o-o-v-i-n-'-o-t'
R R R e me eI NIAIALAI A AP O
ﬂ"'@‘“‘V‘71“1¢1.'o't'u' Te"e"0 "
P e " =, m = = {PIAAIALPLALIALA
PINAIIntielnlit) (= e, o = - = -
- m L m m e . m w AR AL AYP
R LD 2D R0 OB N0 R75 S N NE L I I T
-, m e e e e e (PP {AI2LAYIP1 AP
(28 RCR .0 AR N0 Wil W70 W7 NPT IO SR R S R TR
- e, e, . - - ..1w101m1ﬂ101w1119
AR WD 20 U7 WA BB 70 R I L RS P I]
. m e, e e e (A IMIALIO AR
AMUIM 2 M P IRIA] (= e o e = = o -
L P R P I R L R LR N R U N
[20 W2 R B IR I 7 1 B O P
LI I A R P I TR L B R B R BN AN R AN
(D NGB Wl AR WAR NE R 7D QUL JRE JL L JE P)
. T e =, =, = A2 A A O
[ZB N2 H]ﬂ‘41”‘ﬂ1w1.'.'-'-'.'.'.':'
LI IR I I I I R I B 2R BB B B W7D N R I B W]
[70 N IR B U L N B A R A R R P S
A R el e R R 120 a0 Rl BB N2D ' B RR Yc]
v141n1w1n\m;»191.-,-,-.-,.,-!...
e mem g m =, 1110121 A A

l”l‘lV“v‘L‘!l“l"wig"n'."n'-'n-"o'

£l

Figure 2-6 Sample PPLOG Display of a Failing Checkerboard
Pattern. The Header Includes Complete First

Fail Information.

STATIC TEST PLAN 03415

FIRST FAIL AT FACT CkAM STEP

cot

p o]
(=]
x

— . e
AN =D OBNIPOHLUN—-S

IMST& INSTH
w633 a1d 2051

SN

coL
(y)

KAM FAIL MATRIX , s RAD ZER0O, = = RAD ONF

14

111111111122222222223333333333444444444455555555556666
W123456789112345678901234567E91n1234%56789n123456789012345678904123

= ANARAPARAANRPAPANPAANRARANACALNAY. O
AAAAREAYPAPARARANVA L RRAAARANPA YA
A MNP AQRVAARNAAANPVAYANAPAPAL R
WARIAVCUAAVAUANARARANARANAD AR A
NANNe , APARNRAVRANARVANAARNALAY Ay
AARATAMAANANPGANP A AV AP PAAV Py UV A
VANV ARe ANEANNNONAY AVARANARAY DA
VAIARAP AL AN AAP Y ANALARARAANAR AL Ay 1A
VANAYN A AN e (AN PNARAAARPRAARARANE AAR
VAXRRIZAAZ L AP ARVAAA L AVANDVAVAG AR
AAARIRAP VNP e AANARAAICARANRNARA LA
MAAAAANAAAY NRPVNANDYERAANALSALANAL A
ANAAP PV AR AN = CADAPAANAY AV RPN A, O
VWARARR AR NN PALAANAY DAAVAL VAR ANR
VARVIR N ARARNR P e AP ANALANRAAL Ay (A
VAARAA AN AP ARA LA ARAAL ARV AY 220
VANVRALRARNAY QAN AL ARAEANNARY Ay Ay (A
FAARAL VA AR A (e AR AAR AN, Ay P
VRAAPAAY P AR nMAAUA LN A AR ANy BV D
AALAANY DAV ALARARAR [« DANNP ANV A
AAAVANVRAL AAAAADVAY VLAY 2 AR AN AL D
ARPARAV AP AV AR ADAAANN Jmh AV A Ay AP
CANVARAAA WA NAANA PARL 2 AP AL AR
VAAAA LAAL AV AARAANANA el Ay Ay A
VARRAR A YA ANV N ANN G AL AUA) A Ay AN
VRAAAY SR A AAUV AAAY WPV ey Ay AL
VAARPAIRAAAIAN Y, AN AVAAAR A A pnid p AL Ay AR
AT AN CANVRAR] AAL AL A A
PAPALPAAAN Ay P AAA LAY A Ay AP A P ap
AAAR NP NAR AR NAANARYy AR 2R A -ty
AAAAAY AXA A A WAL AR ARy Ay Yy A
VARAAAT ABAY DAy AAAAAL RN AAP 20 -

Figure 2-TA Sample PPLOG Display of The First Position
of a Pailing Spiral Pattern (Walking Diagonal).

2-35

STATIC TEST PLAN 93415 SN 14
FACY CRAM STEP

INSTH INSTH
0633 ”13 1P249

RAM FAIL MATRIX , s RAD ZERD, = = BAD ONE

coL 111111111122222222223333333333444444444455555555556666
#12345678941234567891123456789n12345678901234567890123456789m123

X
o
k3

NAQPARAPAPNAARNAARALANANPANPAL AR
MANRRARARAANANPAARNRANAVANAANR =i
VANRARRNAANANARAAAAANAPACAGNHAL A
VRACAIRAPURAPUNACANAVAVALAVACAY A -
e, ARANPAIRVNARNAARAY AARDPPAAQAY ALR
PIRARPIRIAAR NP ARZAR N AR AR ARAALA
Ao JWANRPANRACARRANAVNALAAAARA AV A
NAALANARARAPANARARNANRANVARAL Ay A
VANA e (Q2AVMANRAAVACAMRAAPUANGLRAY A
CAAAUTAPUARAAAAAARANPRANRAANANA
VANAN P o AR RAANAARRD D RAPNAVAPAAND
11 AARE ANNLAANCRAPANARARARARARAAY A A
12 AWV nARNNe P AR R ARAY R ARARAPR AR AN AL
13 AR EALNDARURANALANRRNYANY R A2 G
14 ANNANPC AN D= ARVAAVEARAP D AR AAC PP
15 AP ANANARRYIVUERVIAPREARIEAIAYPVA
1K ARV ANRA P e v ARANRAANPANANARA NP
17 WANRAZPARPPO ALV IV ARAY ANAY ANAEPAANN
18 2An2viPdA0unrn i Ce ARV AVARARR AL ALR
19 AP RNARPAPAANL AR P AAPD P ANANAL AR
22 LANPARAR NP rAPP IV RAREAPAARAL AL M
21 CAPAANA DAV VAR =P Ay AARAR A A
22 AAMANARARAINACANAN] Ay A Qp I ARIA R
23 VARV AAAY W AP NA J e AV B PnAV A2
24 VAR APWAANR a2 AR AL P AAAZAL DA
25 ANAAAR AR A AR PRV ALY eyt AN P Ay
26 vAUAAANANR LDV ANAARLC PRI AR AL A AR
27 VAR ACULANRA AN ARAAN Yy A0 A [@ ADNRN P AP
2R AN VR ARAY AN AR AN A ALD | AR Ay W (A
29 VAV AANLAV AP ANV AY A =t Yy P AR
30 PANNARARAGAAANFONRANP AL ANAND L A Ay A
31 AAARAC AANAARVANANANP ARV P UD Jmy AP

-
FS OBNIPOOLWN—-

Figure 2-7B Sample PPLOG Display of the Fourth Iteration of
a Failing Spiral Pattern (Walking Diagonal). This
Map IMlustrates the use of the Commands: /. PPLOG
STEP 10243 or /. PPLOG WALK 4.

2-36

STATIC TEST PLAN 93415

FIRSY FAIL AT: FACT CRAM STEP

cot

p]
o
k3

O BDNIIOPLOEWNeS

INSTH INSTH
we33 "3 2051

RAM FAIL MATRIX , ® BAD ZERO, =

1

SN

coL
()

s BAD ONE

15

1111122222222223333333333444444444455555555556666

1111
©12345678901234567891123456789/1123456789712345678901234567890123

SQRANVARNANZNPMARRARNPNAVRRALANA
NIARAPARIAAARPRANPVACARARRAAAANRNR
NABEINNANNBLARVINNARPARAAANRP VYA
AAPIAPAANAVNANPRRAAUPRRNANCLANANALN
PAAAOGQVANCPRANCAARPARVALANANAVALN
WARABLIAAURARAVVPANNNARNPARNAARAR
VARRALEGVRANVRVANANPVARAARARY N A
VANRRRLLAANRAMARIRARARRAGACR AN
NANARAVIEGANAVNARALR AL AL PARANALW
WALANKARNLANARPAPARY AL RAAVACAKP R
AARAP2AAORVAANNBAV AL ANPAAPR AN, A
WAVRAURARAARIAPURAARARLPNANRPAARAGLN
NAVAAPNAUPVURRENARAARAR L ARAPRAAN AN
AARRADVAQPUNARTUANRPALCROAAGLAV PP
AAVPARLANPAPAROONANNNRLNAVANANAYQ
VANGABRAARN AV 2L MDA DRPAE PPARNAL A
NANPARNRARACPNAAL AV AARAAY QNAL A (A
ANAANPLAARACPANAQARNAARAAANAY AN
AAARAPVUARARUANRAR I AL ANAGRANAL AV
VARRARARANIDDAAR AN BARNANAZARANA
NAARVNRARARVENPARAAP A IOV ANRARF AP
AAVPRRAAALANP PR AANAVAQB N VAL AR
AALPAPAANPURAVRAY A AR AN AL PR (1
CAVPAAADAPNDAPLANAP AN ARRARAAY Ay @
AAAPVEARAC AP GRVARANACP e R Py 00 AR
VAARAACAAPANANRAGAP AL AL, AR AL O
CANDAP AAANARY G IANAV RAAAN P L Pyt p
wﬂmPWVwMMPWVAMAFAZAMhVM“VWQSJMVV
VAN AAARAP Y DA ANACA N A A P2
PWARPAR ML AR ARD AAN ARG AP AR L QAR
VOARAQ P AARL FAPRY DAL Ay Ay (VAAAN LAY A
CARP AL ALV R ARV AARALNAAAC AL K6

Figure 2-8 Sample PPLOG Display of a Spiral Pattern in Which

the ALL Parameter was Specified, Resulting in the
Printing of a Hexadecimal 6 over the Failing Characters.
This Indicates That Pins 28 and 14 Failed.

2-37

STATIC TEST PLAN 93415 SN 35
FACT CRAM STEP
INSTH INSTH
0633 414 1923
RAM FAIL MATRIX , 3 BAD ZERD, « = BAD ONE

coL 111111111122222222223333333333444444444455555555556666
P123456789712345678901234567896123456789¢123456789@1234567890123

0
C
x

14NN IPZRARQANA

112CAALAJARANANA

NALANALANRANLZ ANANPRANARAVANAARKA
VARLACNARANAARAAVDNRARNAARAAY AR
CANBLAVRRARNARNPNAGAYARAPAGALAY-A
WAL PANUARAPNCAVRARARPANP LA, WA
CRAAVNULAAPVUNYRANNAY ANARPRANALARD
VRARARAP ALV RAPLENAARVAUANDY AR AV
BAWRAAPA L AARNPANANAPANANANARAL PN
VAP ARV PULADARZ2QAP ANV AP IR
1A PARAAALAARLAARAARNDRANACANPUALEAO
11 200RNAAA AR LARVRAARAV AL ANA NV AP
12 PARAVPARNARLRLPARAD AT AL ANRRALRIAR
13 PAUPRUARNNEANINRNA L AN ANNARAAL AR
14 VWANPNDL CARVANALANPAAARARNNANL PR
15 ORI RARLAACOIVR2URVYAGERRANA AN
16 WAUNAAVANA A NAR AR L ARAARARAAARN ALY A
17 CRURRAFrAARVARAAAABAVNRAPRACAV AL R
18 V2AVMABARRANNANGANALANAAC ANY AR iGP
19 VWAEAVRLANNPNANRAANAN L RARALR PO ANPR
200 PAIRAPAAPRUCARARRAC ALNZ2ANACRLIANRN
21 NAARRAVARPU L ANPARAAAN AL AR QU A
22 VAUQAAUCVEVARDRVAARGE LML ANO v, e
23 UAAPAVYRPANARLPYAAGP A AR L Ay A
24 VRARAL LAQCAARR2NAANP AN {0 A Av
28 CAUALCARCPRARRAGRADE AN AR
26 PAVAA(L ZFVVRAANARIAAIRDANAAR N2 A A
27 VAUAPARARRANARAR APV ANA G, Ay Ly AL
28 ANADRVANCPANAPQAV2ANCAARY PSRN Ry 2
29 VvAAAAGUAVE VAR BNV 2O AL QR AY i
KY UAAR AN N AAAV AV I AVRRALA A PORP AL AR
31 APRAPAC AAAP AP I AAYP A AL AARZ ALY A

ODPNTIADUN -

Figure 2-9 Sample PPLOG Display Illustrating ‘Holes' in the
Failmap Resulting From Incorrect Values of XMAX or
YMAX, or Other Programming Deficiencies. In This
Case the Pattern Representation May Also Be Inaccurate.

2-38

STATy(

FIRST FalL av:

TEST PLAN Q98415 SN

FacT CRam STtP ROW cuL
INST® TySTH (x) v
707 4k 1629 @ 0

RAM FallL MATRIX . 8 8aN 7Z:Q0, « 3 RAD NNF

col

(]

IV11111111222202207228333333333444444444455555555556666

DI23aRNn760 012345073901 23a5078G:12345678001234567892123458567890123

x
C.
x

T X NI2PUD HY—~T

Figure 2-10 Sample PPLOG Display of a Diagonal Pattern in Which the
FAIL Parameter was Specified, Resulting in a 'Fails Only'
Map. Maps of Large RAMs may be Produced More Quickly
by the use of this Parameter.

2-39

STAT1A

CRA

STEP

X,Y

DATA

XR Xn
XR Yn

IF1/2

NOTE:

2-40

TEST PLAN 93415 SN 58

CRA STEP X Y DATA XR X1 XR Yy IF1/2
1 A 2051)) 1 3 2 2051
2) 2252 31 31 { 3 Q 1
3 A 2453 @) 4 "] 1
4) 9 24%4 3a 31 " 4 A 1
5 AL 2aby 2 i 1 5 [!
b 9 2U5K 29 3 1 5 2 1
7 K 2087 3 A “ 6 2 1
[[°] P2ah8 23 31 ” 6 "] 1
9 8 2459 4 2 1 7 [1
12 9 ABA 27 31 i 7 @
11] 2061 5 P " 8 /] 1
12 Q 2762 26 31 A 8 @ 1
13 3 2063 6 A 1 9 2 1
14] 2unbd 25 31 1 9 A 1
15 R 2165 7 " [14) 1
16 9 2466 24 31 ¢ 1@) 1

The control RAM address. This value is obtained from register #126
(alternate bank) and is not pipeline compensated. See note below.

Total PPM cycle count since beginning of test. This value is obtained
from register #1707 in the main bank and #1707 in the alternate bank,
and is pipeline compensated.

Actual coordinates of cell accessed. Obtained from register #060 and
#062 in the alternate bank which are pipeline compensated.

Actual data generated by PPM according to specified data equation.
Obtained from registers #060 and #062 in the alternate bank which are
pipeline compensated.

Contents of requested index register (1-3). Obtained from registers
#102, #104, and #106 in the alternate bank which are not pipeline
compensated. See Note below.

Contents of requested index register (1-3). Obtained from registers
#102, #104, and #106 in the alternate bank. Begins with total step count
at initial fail and continues with the number of intervening steps between
each read or fail if FAIL was specified. This data is pipeline
compensated.

As indicated above, the CRA and XR trace data is not pipeline
compensated and is, therefore, out of sync with the other data. To
correct for this. a convenient point should be selected in the X/Y column
which corresponds to a particular transition in the XR column, and a line
drawn through both points as illustrated above The same principle may
be applied to alligning CRA with the rest of the data.

Figure 2-11 Sample PPLOG TRACE Output Listing

STATIC TEST PLAN POJ410 SN 4
FIRST FAIL AT: FACY CRAM STEP ROW coL
INSTS® INSTH (x) (y)
n244 204 257 6 14

RAM FAIL MATRIX

s BAD ZERO,

- 5 BAD ONE

coL 111111111122222222223333333333444444444455555555556668
0123456789012345678901234567890123456789012345678901234567890123
ROW
7 20000000~0u0R0QR TOPO statements TOPO 6,14
i AANRYAYAB=ARRAVND from PPM program: TOPOD 7,45
g 007AYRAARP=ARARR TOPO 4,12
NANNOAAANRA=AAAN . TOPO 5,13
4 200020020000 gﬁgg’g?;gdbfaggsg’ﬁp T0PO 2,10
5 0AVPRAUAARRRB=AR Command Y T0PO 3,11
6 PRYARAANARAAARWD) T0P0 @,8
7 0A0PIRRAAANRARAw /. PPLOG To0PO 1,9
B «dW0VRIANAARAPRN : ! TOPO 9,1
9 PedPARIANRAARPAD TAPO 8,0
{0 P=PREANRAANRARAR TOPO 11,3
11 VA0=2RRARARLARRARN TOPO 14,2
12 0PRR=PPARARPRARR TOPO 13,5
13 GONAR=2RANARPRND TOPO 12,4
14 VAAANN=ANARRANAN TOPO 15,7
15 VARRAPA=RVARRAVA TOPOD 14,6
STATIC TEST PLAN PO3440 SN 4
FIRST FAIL aTs FACT CRAVM STEP ROW coL
INSTe INST# (x) (v)
no44 Ty 257 6 14

coL

o
o
3

WAM FAIL MATRIX

11111V AANPARNN1111222222222233333333334444484444455555555556666
452301 1891M32547K678901234567891n12345678B92123456789n12345678%0123

“ANANPLANAVRAP2R
Ber QAP 2ANACAPPNA
NA=PRAARARPARRRPAR
AR AAAARA Ay PARAA
WA ARRPRARANRAAARARA
VAR = ARR D DP P AR
CANPAPeRARARNAVA
VANNAPR 2@ AR APAAND
WAARIP AP =P AEANA
WAVNAVPR ANV e 2 RAKVA
VARARAVAND e R DY
VRRRAAAAAV enP 1P
WAAAARANCRRAVP e AR
UAAANPNAAC VAR e
AAARAAARARVNAAR = A
VARARARAA PV AR N -

= RAD 7ERO,

- 3 BAD NNE

Unscrambled fail map
produced by TOPO
parameter:

/. PPLOG TOPO

Mote Row and Col addresses
are scrambled according to
TOPO statements above.

Figure 2-12 A Sample PPLOG Display of Serambled and Unserambled Failmaps

2-41

2.6 DATAIO

2.601

2.6.1

Introduction

DATAIO permits file-oriented I/0 functions to be performed from FACTOR
language programs. Data input/output is permitted to both dise and
magnetic tape units using either variable or fixed-length records. Dise I/O
may be carried out with files located in working storage, files opened by the
user via the VKT, or files opened by the FACTOR program using DATAIO
implemented statements.

FACTOR DATAIO Call Statement
The FACTOR statement required to load and initiate DATAIO has the
format:
EXEC DATAIO (opcode, IO flag, buffer, device);

Each DATAIO call statement parameter list must contain values for all four
parameters.

Parameter Deseription

opcode - A constant, variable, or array element the value of
which specifies the operation to be performed. The
following opcode values are permitted:

Value Description

0 open file (tape rewind)

1 Read one record from device into buffer.
2 Write one record from buffer to device.

3 Close file (write tape end-of-file mark).

4 Skip N records (+N means go forward, -N

means go backward).

5 Position to record N.
6 Skip N filemarks then position after file
mark (tape only).
7 Position after filemark N (tapeonly).
I0flag DATAIO operation status/error return location An

integer value is placed into this location by DATAIO
to specify the status of the last operation requested
by the calling program.

2-42@

The following IO flag values are permitted:

Value "Condition Specified

0 or positive Operation successfully completed.

value

-1 a. Read operation - end of file
reached.

b. Write operation - end of file
space or end of tape detected.
c. File can't be accessed.

-2 Error - needs operator attention or
maintenance.
-3 ' Error incalling statement.
-4 Data overflow.
buffer A constant variable, or array element which may
specify:

1. The name of an array which contains data to be
read or written.

2. Record length when opening fixed record length
file.

3. The value of N for the operations specified by
opcodes 0, and 4 through 7.

device A constant, variable, array element or array name
which specifies the device to be used for the DATAIO
operation. The value or array name which may be
assigned to "device" is:

Value Unit Specified

-1 Tape unit 0, the standard magnetic tape
unit.

-2 Tape unit 1, the optional magnetic tape
unit.

0 File in working storage (Use DOF PMF
header).

1 Dise file (DIF PMF opened and closed via
TOPSY commands).

2 Disc file (DOF PMF opened and closed via
TOPSY commands).

PMF Name of an array which contains 70

elements or more.
NOTE
The use of the PMF array and of DOF and DIF

headers are described in detail in paragraph
2.6.3.

2-43 @

2.6.2 DATAIO Magnetic Tape Operations‘

Records written to or read from Magnetic Tape are always considered
variable-length records. When a record is written, it's size is determined by
the buffer size used. The minimum record size is six words. For example,
the statement sequence:

DCL ARAY [15];
READ (CR) ARAY;
EXEC DATAIO (2, IOFLAG,ARAY,-1);

would read a 15-word block from the Card Reader and would write a 15-
word record to Tape Unit 0 (Standard Unit) starting at the current tape
position. In a similar manner, the statement sequence:

DCL ARAY1[20];
EXEC DATAIO (1,IOFLAG,ARAY1,-2);

would attempt to read a 20-word record from Tape Unit 1 starting from the
current tape position.

A group of records on a tape which are separated from another group by a
tape mark is referred to as a "file". Operation code 3 of DATAIO controls
the writing of a Tape Mark. Tape Marks are also referred to as "File
Marks"; these terms are used interchangeably in the following descriptions.

The m‘agnetic tape operations which may be initiated and controlled using
DATAIO are described, individually, in paragraphs 2.6.2.1 through 2.6.2.8.
Each description contains:

1. the general form of the FACTOR statement required,

2. a brief description of the operation initiated,

3. a list of the specific error and other conditions which may occur during
the specified operation and the 10flag values which may be returned to
the calling program.

NOTE

The parameter "device" in the FACTOR
DATAIO call statement presented in
paragraphs 2.6.2.1 through 2.6.2.8 must be
scalar variable or constant which has either
the value -1 (standard tape unit) or -2 (optional
tape unit).

2.6.2.1 REWIND
General Form:
EXEC DATAIO (0,I0flag, buffer, device);

Parameter "buffer is not used; it may be assigned either a scalar value or an
array name.

Operation Performed:

The magnetic tape unit specified by "device" is issued a Rewind command.
DATAIO does not wait for completion of rewind before returning control to
the calling program; this, rewind and program operations are overlapped.

2-44 @

10flag Returns:

VALUE CONDITION
-2 Selected unit is unavailable.

2.6.2.2 WRITE
General Form

EXEC DATAIO (2, I0flag,buffer,device);

Parameter "buffer" must be the name of a previously declared array.

Operation Performed:

The contents of the array specified by "buffer" are written, as a record, onto
the magnetic tape unit identified by "device".

10flag Returns:

VALUE CONDITION
0 Successful operation
-1 End-of-Tape (EOT) encountered
-2 Tape unit unavailable or no write ring installed

on tape reel.

-3 Error in calling sequence (e.g., buffer is not an
array or is less than 6 words in length).

2.6.2.3 READ
General Form:
EXEC DATAIO (1,I0flag,buffer,device);

Parameter "buffer" must be the name of a previously declared array.

Operation Performed:

A record is read from the specified magnetic tape unit into the array
identified by "buffer". Differences between the record and array lengths
result in specifie I0flag returns and DATAIO actions.

I0flag Returns:

VALUE CONDITION/ACTION
0 a. Record<Array, underflow is not an error

condition. All of record is read into the
specified array and unused array elements are
set to zero.

b. Record = Array, normal condition.

4 Record > Array, overflow error condition, the
array is filled but the remaining record input
words are lost.

-1 The Tape Mark was read, the contents of the
array specified by "buffer" ramain unchanged.

2-45@

VALUE CONDITION/ACTION
-2 Specified magnetic tape unit was not available.

-3 Error detected in calling statement.

2.6.2.4 WRITE TAPE MARK
General Form:
EXEC DATAIO (3,I0flag,buffer,device);

Parameter "buffer" is not used; it may be assigned either a scalar value or
an array name.

Operation Performed:

A tape mark is written onto the tape contained by the specified magnetic
tape unit. The Tape Mark is written into the current tape position.

I0flag Returns:

VALUE CONDITION
-2 Specified magnetic tape unit is unavailable.

2.6.2.5 SKIP N RECORDS
General Form:
EXEC DATAIO (4,I0flag,N,device);

Parameter normally specified as "buffer" is used to specify the number "N"
of skips which are to be performed. The parameter "N" must be a scalar
variable or constant; it is positive for forward skip operations and negative
for backward skip operations.

Operation Performed:

The tape contained by the specified magnetic tape unit is moved from its
current position either forwards or backwards over "N" records.

NOTE

The skip ecommand should only be used while
reading a previously written tape.

Tape marks are treated as records during skip
operation, therefore, it is possible to skip into
a different file inadvertantly. The use of a
position command avoids this problem for
backwards skip operations but requires more
time.

I0flag Returns:

VALUE CONDITION
-1 An End-of-Tape (EOT) mark was encountered during a

forward skip operation.

2-46 @

NOTE

A Beginning-of-Tape (BOT) mark encountered during
a backward skip operation halts the operation but
does not cause an error indication to be returned to
the calling program.

-2 Specified magnetic tape unit is unavailable.

-3 An error was detected in the calling statement.

2.6.2.6 POSISION TAPE TO RECORD N
General Form:
EXEC DATAIO (5,I0flag,N,device);

The parameter normally specified as "buffer is used to specify the number
"N" of records from the tape BOT that the desired position is located. The
parameter "N" must be a scalar variable or constant.

Operation Performed:

The tape contained by the specified magnetic tape unit is rewound to its
BOT then it's moved forward through "N" tape marks.

A value of zero assigned to the "N" parameter causes the tape to be
positioned to its BOT and to the beginning of record 0 in file 0.

10flag Returns:

VALUE CONDITION
-1 EOT encountered during forward skip.
-2 Tape unit unavailable.
-3 Either a non-scalar or a negative value was assigned
to "N".

2.6.2.7 SKIP N FILE MARKS
General Form:
EXEC DATAIO (6,I0flag,N,device);

The parameter normally as "buffer" is used to specify the number "N" of file
mark which are to be skipped over during the specified operation. The
parameter "N" must be a scalar variable or constant; it is made positive for
forward operations and negative for backward skip operations.

Operation Performed:

The tape mounted on the specified magnetic tape unit is moved forward or
backwards (depending on sign of N) over "N" file marks or until BOT or EOT
are encountered.

During backward skip operations the tape is stopped after skipping the "Nth"
file mark and is then moved forward back over the file mark until it is in
position just before the first record in the Nth file.

2-47@

I0flag Returns:

VALUE CONDITION
-1 EOT encountered during forward skip.
-2 Tape unit unavailable.
-3 A non-scalar value was assigned to "N".

2.6.2.8 POSITION AFTER FILE MARK N
General Form:
EXEC DATAIO (7,I0flag,N,device);

The parameter normally specified as "buffer" is used to specify the number
"N" of files from the tape BOT that the desired position is located. The
parameter "N" must be a scalar variable or constant.

Operation Performed:

The tape contained by the specified magnetic tape unit is rewound to its
BOT and then it is moved forward over "N" file marks.

A value of zero assigned to the "N" parameter causes the tape to be
positioned to its BOT and to the beginning of file 0 the first file on the tape.

I0flag Returns:

VALUE CONDITION
-1 EOT encountered during forward skips.
-2 Tape unit unavailable.
-3 fitﬁxga a non-scalar or a negative value was assigned
0 .

2.6.3 DATAIO Dise File Operations

The following paragraphs describe the disc storage and access requirements
that effect DATAIO operations, dise file formats, and the individual disc 1/0
operations which may be implemented by DATAIO.

2.6.3.1 DISC STORAGE AND ACCESS REQUIREMENTS - The storage area on the
disc is referred to as "Peripheral Memory"; files stored in this area are
referred to as Peripheral Memory Files (PMF).

Disec PMF access operations require the establishment of file management
areas, referred to as "PMF headers", and buffers in CPU memory. The
system maintains separate DIF PMF and DOF PMF headers and their
associated buffers in CPU memory for use in disc file access operations.
Normally, the systems DIF PMF and DOF PMF headers and buffers are used
in all dise file I/O operations, DATAIO, however, provides users with the
ability to establish their own PMF header and buffer area in CPU memory
for any desired input or output operation.

2-48@

2.6.3.2 USE OF DIF AND DOF PMF HEADERS - Disc file operations in which the
DIF and/or DOF PMF headers are to be used require that the file(s) involved
be opened using the TOPSY command:

/. OPEN DIF 'filename'
or
/. OPEN DOF 'filename'

Since the system maintains separate PMF headers, both DIF and DOF files
may be open at the same time.

Once opened by TOPSY commands, DIF and DOF files may be accessed by
DATAIO. In such cases, the DATAIO call statement "device" parameter is
used to specify which PMF header is to be used:

1. "device" = 1 specifies a DIF PMF header,
2. "device" = 2 specifies a DOF PMF header.

The DOF PMF header is also used by DATAIO for I/O operations with files
located in the disc working storage area. Insuch cases the DATAIO call
statement "device" parameter is assigned the value 0.

2.6.3.3 ESTABLISHING AND USING A USER-DEFINED PMF HEADER - To define
a PMF header, the user must establish an array with a minimum of 70
elements prior to the call for the desired DATAIO operation. The array,
referred to as "PMF" for this description, must have the following structure:

Element(s) Content/Use
PMF[1] and [2] Filename
PMF[3] Job number (0 for current job)
PMF[4] through[22] Reserved for DATAIO use
(bookkeeping)
PMF[23] through [70] Disc buffer (DATAIO use only)

The size of the array (i.e., the buffer area) may be increased in increments
of 48 words each. The time required for an overall data transfer is
decreased as the size of the array is enlarged since fewer disc access
operations are required if more data is transferred during the same transfer
period.

The use of a defined PMF header is specified to DATAIO by using the array
name of the PMF header as the DATAIO call statement's "device"
parameter. For example, to establish a PMF header array named PMF1 for
DATAIO operations with the file named PREDAT, the user must include the
following FACTOR statements in his/her program:

DCL PMF1 [70]/'PRED,'AT",0/; REM DEFINE ARRAY;
EXEC DATAIO (0,FLAG,N,PMF1); REM CALL DATAIO;

DATAIO uses the defined PMF array as both a bookkeeping area and a dise
buffer. The bookkeeping are provided by the PMF array enables DATAIO to
perform functions which may not be carried out during magnetic tape
operations and DATAIO operations in which DIF PMF or DOF PMF headers
were specified. These functions are:

2-49@

Files may be opened by DATAIO.

Fixed-record files may be written, read, and positioned with far lower
disk and software overhead than variable record files. The record
length of a fixed-record file which is to be used for write and/or read
operations is set by specifying a scalar value N for the third calling
parameter (i.e., "buffer") when opening a file. Files that are to be
read-only have their type and record size by DATAIO.

File names are not restricted. DOF files opened by TOPSY must have
names starting with a period (.). This does not apply to files opened by
DATAIO.

Files in other Jobs may be accessed. For example, if the current job is
'"TEST' and it is required that a file named PREDAT in Job 'DATA' be
used, the PMF array would be declared as

DCL PMF1[70]/'"PRED','AT",'DATA'/;

Failure to specify a Job causes default to the current Job. It is not
possible to access files in System Job.

Filenames may be input from the keyboard or other peripherals. The
following FACTOR coding will read the filename and Job from either
the VKT or PID;

DCL PMF1[70]; REM SETUP PMF HEADER ARRAY;

DCL NAME[2], JOB; REM SETUP JOB NAME ARRAY;

READ &NAME;

READ &JOB;

PMF1[1] = MA,E[1] ;PMF1[2] = NAME[2]; REM NAME TO PMF;
PMF1[3] = JOB; REM JOB NUMBER TO PMF;

CAUTION

All words with the PMF Array except the first
three are for the use of DATAIO only.
Violation of this rule causes unpredictable
results which may include the destruction of
the disk contents.

2.6.3.4 DATAIO DISC RECORD AND FILE FORMATS - Files written to disc may
be of either variable or fixed record length. The disc format for variable-
length records is shown in Figure 2-13 of this subsection.

As shown in Figure 2-13, the first word of a variable-length record file is
always set to zero to indicate that the file consists of variable-length
records. The first word in each subsequent record will specify the size of
the record. The size of a variable-length record is specified when the file is
opened and the records are written. Variable-length files are not written in
a random fashion, they must be written in a serial fashion.

2-500

—— WORD 1: ALWAYS ZERO
N = SIZE OF RECORD 1

— N WORDS OF RECORD 1

—N

o = SIZE OF RECORD 2

N2 WORDS OF RECORD 2

« «

).) ———

[«

Figure 2-13 Disc Record Format for Variable-Length Records

NOTE

Attempting to write a variable-length file in a
random fashion may result in the destruction
of all following record length indicators, thus,
making the file unreadable. Write operations
may be started at a specific record position as
long as all subsequent writes are performed
sequentially.

2-51@

The dise format for fixed-length records is shown in Figure 2-14.

RECORD SIZE N RECORDS, N WORDS EACH

1y (s (s —

))) J2

« « «

Pigure 2-14 Disc Format for Fixed-Length Records

The first word in a fixed-length record file is set to the desired record
length by DATAIO. The DATAIO call statement "buffer" parameter is set to
the record length desired when a fixed-length record file is opened for its
first write operation. Once a file has been written into, subsequent read and
write operations may be done in a random fashion by using the positioning
DATAIO command.

The mechanism for handling fixed-length files requires a bookkeeping area
which must remain available to DATAIO after the file is opened. For files
opened using the PMF array option, the PMF array is used for this puspose.
Similar space does not exist for siles using the DIF and DOF PMF headers,
thus, such files must be written as variable-length files. Fixed-length files
may be read using the DIF PMF header but may not be written using the
DOF PMF header.

For either type file, the effective length of the file depends on the operation
being performed. For a read operation, the length of the file is the highest
numbered location previously written. For a write operation, the length of
the file is the total assigned file length. When positioning within a file, the
file length depends on the previous read or write operation.

2-520

2.6.4

2.6.4.

DATAIO Disc File FACTOR Statements

The individual operations which may be initiated and controlled using
DATAIO are described in paragraphs 2.6.4.1 through 2.6.4.6. Each
description contains:

1. the general form of the FACTOR statement required,
2. abrief description of the operation initiated,

3. a list of error and other conditions which may occur during the
specified operation together with the IOflag value for each.

NOTE

The parameter "device" in the FACTOR
DATAIO call statements presented in
paragraphs 2.6.4.1 through 2.6.4.6 must be
either a scalar variable or constant, or the
name of a user-defined PMF header array. If
"device" is a scalar variable or constant, it
must have the value-1 (standard tape unit) or -
2 (optional tape unit).

1 OPEN FILE
General Form:
EXEC DATAIO (0,I0flag,N,device);

The parameter normally specified as "buffer" is used to specify the iength
"N" of the record(s) (i.e., number of words) to be contained by the opened
file.

Operation Performed:

For "device" = 0 or 1 (DIF or DOF PMF headers), DATAIO checks to ensure
that the file had been opened by a previous TOPSY command.

For "device" = 2 (working storage file), DATAIO opens working storage using
the DOF PMF header for the required management functions.

For "device" = PMF array name, DATAIO opens the file specified in the
array temporarily switching jobs, if necessary.

In all of the preceding operations, the opened file is set to start operations
at the first record of the file.

If a record length value (i.e., "N") is given during a PMF array operation, it
is saved by DATAIO as a tentative fixed record length. If a value is not
given, variable-length records are assumed.

I0flag Returns:

VALUE CONDITION
0 Operations completed sucessfully
-1 File either not found or can't be opened
-3 PMF array too small.

2-53 @

2.6.4.2 READ
General Form:
EXEC DATAIO (1,I0flag,buffer,device);

Operation Performed:

For read operations with a file specified by a DIF PMF header (i.e., "device"
= 1), DATAIO first checks to ensure that the file has been opened; it then
reads the file type and record length specifiers from the first word of the
file. DATAIO then reads the next consecutive file record into the device
buffer identified by the "buffer" parameter.

For read operations in which a PMF header array name was specified by the
"device" parameter, DATAIO opens the file named in the array, reads the
file type and record length specifiers from the first word in the file, and
then reads the next consecutive file record into the device buffer identified
by the "buffer" parameter. The file type and record length values read from
the file will override any values assumed when the file was opened and will
be used in any subsequent write or position operations.

The effective (actually used) length of a file depends on the type of PMF
header being used. A DIF PMF header file is opened as an input file; its
effective length is the length specified when the file was lat closed at the
end of a write operation. A DOF PMF file (including a working storage file)
has the entire assigned file space as its effective length. Files using a PMF
header array are dynamically allocated. An EOF error condition is returned,
via parameter "IOflag", for both PMF header and DIF PMF header files
during read operations.

I0flag Returns:

VALUE CONDITION
0 a. Record < Buffer, underflow condition which is not

considered an error. The input characters are read
into the buffer and any unused locations are set to
zero.

b. Record = Buffer, normal condition.

-4 Record > Buffer, overflow error condition. When the
buffer is full, excessive input characters are ignored.

-1 End of File reached.

-3 Error inDATAIO call statement.

2.6.4.3 WRITE
General Form:
EXEC DATAIO (2,I0flag,buffer,device);

2-54 @

Operations Performed:

DATAIO checks the file (specified in the header identified by "device") to
ensure that it is open. If the file is open and this is the first write to the
file, the file type and record length specifications stored in the header being
used by the previously executed OPEN statement or TOPSY command are
written into the first word of the file. After writing the first file word, if
needed, DATAIO transfers the contents of the device buffer areas identified
by the parameter "buffer" into the next available disc record.

If a user-defined PMF header array name is passed to DATAIO as the
"device" parameter, DATAIO will use the length and type specifications
assigned when the file was opened.

If a DOF PMF header indicator (i.e., 0 or 2) is apssed to DATAIO as the
"device" parameter, DATAIO always assumes that the file to be written into
is a variable-length record file.

Underflow or overflow conditions may occur when writing into a fixed-
length record file.

10flag Returns:

VALUE CONDITION
-4 Buffer > Record, overflow error condition. When
record is filled, excess input buffer characters are
ignored.
0 a. Buffer = Record, normal condition.

b. Buffer < Record, underflow condition which is not
taken as an error. The input buffer characters are
written into the record; unused character locations
are set to zero.
2.6.4.4 CLOSE FILE
General Form:
EXEC DATAIO (3,I0flag,buffer,device);

Operations Performed:

During close operations, the effective (i.e., used area) size of the file
specified by the "device" parameter is written back into the dise directory
entry for that file. In closing a working storage file, the file type directory
entry is set to "DATA" to permit any subsequent DOPSY CREATE operation
to be correctly performed.

The value of the effective file size written into the dise directory is
determined by the last performed read or write operation since it consists of
the number of the last record read or written.

2-55@

A file may be inadvertantly truncated if it is closed after being partially
read since the new effective size of the file which is returned to the disc
directory is the number of the last record read. To avoid truncating a file
after a read operation the user may:

1. position the file to its last record before closing it, or
2. not close the file.

A working storage file which is to be referenced by a subsequent DOPSY
CREATE command must be closed. A file must also be closed if any data
had been written into the file beyond the file's previous last record.

I0flag Returns:

VALUE CONDITION
-2 File not found, system error.
-3 File was not open.

2.6.4.5 SKIP N RECORDS
General Form:
EXEC DATAIO (4,I0flag,N,device);

The parameter normally specified as "buffer" is used to specify the number
"N" of records which are to be skipped over from the current record. The
parameter "N" must be a scalar variable or constant; it must be a negative
value for backward skip operations or a positive value for forward skip
operations.

Operations Performed:

NOTE

This function may be used only for those files
which use a PMF header array, since the
current record number is known only for files
of this type.

In skip operations the pointer used to identify the next file record which may
be written into or read may be skipped either backwards or forwards over a
specified number of records. The number of records to be skipped and the
direction the pointer is moved in are determined by the value and sign of the
parameter "N".

I0flag Returns:

VALUE CONDITION
-1 The EOF was detected, the pointer is positioned past

the last file record.

-3 Too large a negative value was assigned to "N". The
pointer is positioned before record zero of the
specified file.

2-56 @

2.6.4.6 POSITION TO RECORD N
General Form:
EXEC DATAIO (5,I0flag,N,device);

The parameter normally specified as "buffer" is used to specify the number
"N" of the record to which the file pointer is to be positioned. The
parameter "N" must be a positive scalar variable or constant which is
greater than or equal to zero.

Operations Performed:

The record pointer of the file identified by the PMF header used (i.e., value
or name assigned to "device"), is moved to the start of record 0 and then is
moved forward until a record number equal to parameter "N" is detected.
The pointer is left positioned before the first word of record "N".

Care must be taken not attempt to position to a negative record number or
to a record located past the extent of the file.

The extent (amount of area reserved) of a file depends on the type of PMF
header used by the file and on the last previous operation performed on the
file.

For files which use the DOF PMF header (DOF and working storage files),
the entire file is the file extent.

For files which use the DIF PMF header,the used space (i.e., area written
into or read from) is the file extent.

For files which use the PMF header array, the file extent is the entire file if
the last previous operation was a write. If the previous operation was a
read, the file extent is the effective size (record 0 to last record read).

If a positioning operation is performed immediately after opening a file
using a PMF header array, the used file space is the file extent.

10flag Returns:

VALUE CONDITION
-1 An EOF error is indicated. The value of "N" was too
large and the file pointer is positioned beyond the file
extent.
-3 An incorrect parameter error is indicated. A

negative value was assigned to "N" and the file
pointer is positioned before record zero.

2-57 @

2.7 ACCESS
2.7.1 Introduction

The program ACCESS is a FACTOR program analysis tool; it is used to:
1. monitor the execution of a FACTOR program,

2. detect each disc access operation performed during the execution of
the monitored program,

3. generate a display which identifies each disc access operation and
indicates the amount of data transferred during each access.

The information provided by an ACCESS display enables the user to analyze
the monitored program's disc I/0 requirements for any possible means of
minimizing disc I/O time.

ACCESS is loaded and initiated by the entry of a TOPSY command at the
system's video keyboard terminal (VKT). The display generated by ACCESS
is always presented at the VKT and, at the option of the user, is printed by
the line printer.

2.7.2 Loading and Initiating ACCESS

ACCESS is called from TOPSY by the command:
/. ACCESS(ON/OFF) (LP);

Parameter Function
ON Enable ACCESS display to VKT.
OFF Disable ACCESS display to VKT.
LP Enable ACCESS display to line printer.

ACCESS is a self-starting core image overlay; once loaded it starts
executing immediately.

2.7.3 ACCESS Display Format
Anexample of an ACCESS generated display is shown in Figure 2-15. Each

line of an ACCESS display presents information for one of the disc access
operations performed in the monitored program. The items listed in each

line are:

Item Meaning

IND Specifies the octal address of the FACTOR program statement
that caused the disc access to be performed.

ADDR Specifies the octal address of the computer instruction which
called DISCIO.

SIZE Number of words (in octal) which are read from the dise during

the access operation.

2-58@

2.7.4 Computing Access Time

2.7.5

The amount of time required by each disc access reported by ACCESS can
be computed using the formula:

T=(N x 9.11 X 10'6) + (17.5x 10

where:

1. T = time expressed in seconds

2. N = number of words read (i.e., value of SIZE converted to decimal)
3. 9.11 x 1079 = transfer time per word

4. 17.5 x 107 = disc lateney time

Installing ACCESS

The program ACCESS may be installed in any system which has any version
of TOPSY from revision 9.6 through revision 10.4.

In order to not affect the amount of CPU memory available to the
monitored FACTOR program, the ACCESS program, when called, overlays
part of (92 words) the resident operating system. The location at which
ACCESS is loaded into memory is determined by the user during the
installation procedure. Care must be taken in the selection of the ACCESS
load point to ensure that the part of the operation system overlayed by
ACCESS is not required for the execution of the program to be monitored.

ThDs= nEerrl
Inbs= npQrK2
IND= Arriar4a
Tinibe PLr135
INfe @geu164
ThD=s @en2id
ITnDs= ArBeAan
IThive BRK279
Ints rag317
INp=z DRE346
InNDe ARAL3I74
Thvs AKrE42I
JHpR ARR4H2

ADOR=
AQDFRS=
ACDR®
ADKeE
ALDR®
ADDk=
ADDR=
ADDR=
ADDR=
ADDR=
ADDR=
ADUnr=
ADDWE

N2176G
aegl7ee
nz2176¢
ne176¢
21760
hel7e¢
L1726
21760
w21760
ARL7ER
vw2176n
nwe1760

SI720 €e6m1254%

817t =
SI7es=
§17t=
§I1¢E=
81if+=
SIZE=
§17F=
$17E=
H11kE=
S12k=
§12E=
317k=

oyl
AP BEY
wape s
rRrueer
Capben
PRV GHL
vighaal
hpu kbl
Rz &60
VAP HEY
ARCRAE oY o
Feerbabd

Figure 2-15 Example of an ACCESS Printout

2-59@

2.7.5.1 CREATING ACCESS FROM AN OBJECT FILE - The required procedure
is:

1. Load the object file '=ACCESS' into the system JOB' <<« '

2. Determine what area of the operating system is to be overlayed by
ACCESS. Table 2-3 presents a list of recommended start addresses for
loading the core image form of ACCESS.

TABLE 2-3 RECOMMENDED LOAD ADDRESSES FOR ACCESS

TOPSY Revision
Funetion | Global 9.6 10.2 10.3 10.4
MTIO 552B 17066B 6646B 6604B 6512B
TAPIO 551B 6263B 4751B 4707B 4615B

NOTE

Global represents the address of the transfer
vector to either MTIO or TAPIO. PATCH may
be used to interrogate this location in
'$TOPSY' to either verify the address or to use
any other version of TOPSY.
3. Create a core image of ACCESS which has the user-selected load
address using the command:

// CREATE ""ACCESS' CORIMAGE '=ACCESS' nnnB
where nnnB is the selected load address.

2.7.6 Program Analysis Considerations

A dise read operation is initiated from TOPSY each time that a "page" of a
referenced disc data file is to be loaded into memory.

A new "page" load is required whenever the stacks or an ALLINK program
causes part of the monitored program to be overlayed. This type of
operation takes place after the execution of a DCL, EXEC, or REXEC
statement. The analysis of a program using an ACCESS generated display
enables the user to analyze the effect that an ALLINK program or an array
has on the run time required by a FACTOR program.

A disc read operation is also initiated when TOPSY;
1. reaches the end of the current "page",

2. executes a GOTO or CALL statement which references part of the
program which is not in CPU memory.

2-60 @

The reorganization of the FACTOR program to ensure that often referenced
loops and subroutines are maintained in CPU memory would minimize disc
access time requirements.

The address of the computer instruction (display item ADDR) which calls
DISCIO for access is of value when evaluating the effect that an ALLINK
program which performs DISC ACCESS in addition to the TOPSY DISC
ACCESS (e.g., the program LMLOAD) has on the run time requirements of a
FACTOR program. The address of an ALLINK program is normally greater
than 30000B.

2-610@

SECTION 3
DEBUGGING AID UTILITY PROGRAMS

3.1 DEBUG
3.1.1 Introduction

DEBUG is a debugging aid that can be used in a variety of ways to aid a user
in testing and debugging. DEBUG allows the user to display or change
memory locations or registers, and to halt execution of an assembly
language program at specific locations so that memory or registers may be
examined or changed. DEBUG can be called directly when running under the
DOPSY or TOPSY monitors or it can be loaded with a user's object program
as part of the coreimage environment.

3.1.2 Program Usage

DEBUG is invoked by the user in one of the following ways:

(1) It can be loaded with a user's object program to form part of the
coreimage version of the user's program. The user creates the
coreimage file with this command: ,, ure /— A '/’0"/.’”/ 4 o

B bis 7o 7‘} o —— o
// CREATE 'coreimage filename' COREIMAGE ‘object f 1lenarﬁé' " e [l
DEBUG A et i ’;/t' -) ‘e He & ws o
T F FLmoe ro OB E T swen bear

Ko chwnged il

in order to form a coreimage file for later execution, or DEBUG can
be included in the coreimage file at executlon time by inputting

/yp[;,a,é/ Eay Erin 5w

// EXECUTE 'object fllename' DEBUG —~ 7¢ 7~ fer 4y

o e T g e B o ”\flff""" e "4“/’(-”?"/—“ *C?vf —

P

°
i o
P

(),:

P

;!3\1

7
W
o ¢
‘e .
Z’!/-

\vrw

v
SR B F
The rule of not loading system word 200B must be followed. After

loading, control is passed to DEBUG, which echoes with the debug
prompting character, which is the number sign (#).

N

(2) It can be called directly when running under the DOPSY monitor. //
DEBUG

(3) It can also be called directly when running under TOPSY if DEBUG was

ineluded in $TOPSY creation.
/. DEBUG

3-1

(4) When DEBUG has been used to request an address halt and the
specified address is executed, DEBUG is entered.

(5) When DEBUG is in memory and has been entered at least once a
branch to address 100B causes entry into DEBUG.

Prompting character for DEBUG is '#', signaling it is ready for

directives.

3.1.2.1 DESCRIPTION OF DEBUG DIRECTIVE - After entry into DEBUG the
DEBUG directives may be entered in order to examine or change memory
locations, the A, E, and index registers, or the hardware registers.

The input and output device is always the VKT. A directive is accepted and
executed as soon as complete. A carriage return is an illegal entry except in
the 'Enter' mode. Any number entered becomes the current address or
current location, even if the line is terminated by CTRL-L or RUBOUT. All
numbers must be octal, however the B is assumed.

DEBUG DIRECTIVES
L
nL

n, mL
,mL

line-feed

3-2

DESCRIPTION

List the contents of the memory address
indicated. If no number is entered, the
contents of the current address is listed.
If one number is entered, that address is
listed and becomes the current address. If
two numbers are entered, the addresses
between n and m inclusive are listed. The
current address is then m. If ''mL' is
entered, the contents of addresses from
the current address to m are listed and m
becomes the new current address.

The current address is incremented and
the contents of the new current address is
displayed. This allows stepping down a
series of memory locations without
reentering addresses.

The current address is decremented and
the contents of the new current address is
displayed. This allows stepping backward
through a series of memory locations
without reentering addresses.

DEBUG DIRECTIVES

E
nE

OR

nMA
nME
n,m MX
nA

n,mA
,MA

DESCRIPTION

Directs DEBUG to begin the 'Enter' mode
and receive data to change the memory
address indicated. If no number is entered
the current address is changed. If a
number is entered, the contents of that
address will be altered and n will be the
new current address. The address to be
changed is listed and the new data is
input. If the data is terminated by
carriage return, the 'Enter' mode is ended
and new directives may be entered. If the
data is terminated by a line-feed, DEBUG
stays in the 'Enter' mode, the current
address is incremented, and the data
entered becomes the contents of the new
current address. If CTRL-L is entered,
the contents of the address is not changed
and DEBUG exits the 'Enter' mode.

Display the contents of the A and E
registers. The A register is on the right
and the E register is on the left.

Display the contents of the right index
registers.

Modify A. The number entered becomes
the new contents of the A register.

Modify E. The number entered becomes
the new contents of the E register.

Modify index register n. The number m
entered becomes the new contents of
index register n.

Address halt request. Assembly language
program execution stops after executing
the instruction at the address indicated
and control is given to DEBUG. If n is not
specified, the address halt occurs at the
current address. If n is specified, the
address halt occurs at n and n becomes
the new current address. If m is entered,
the address halt occurs after the indicated
memory address is executed m times,
otherwise the address halt occurs at the
first execution of n or the current
address.

DEBUG DIRECTIVES

nG

DESCRIPTION

After the entry into DEBUG from an
address halt, any of the DEBUG directives
may be entered to examine or change the
contents of the registers or memory. For

- example, it may be discovered by

displaying the A and E registers that a
program is not working because the A
register is expected to be zero and is not.
The A register can then be changed to the
correct contents and program execution
continued to verify that that is the
solution to the bug.

The instruction at the location where the
address halt is registered must not be a
branch instruction because the
instruction is executed first and therefore
would transfer control back out of
DEBUG. These restricted instructions
are: BRU, BOI, BG, BGE, BE, BLE, BL,
BNE, BBC, BOS, BSM, BAT, BP, BPZ,
BNZ, BN, BNEZ, BO. Only one address
halt location may be set at a time.

Continue. This directive should be
entered only when the entry into DEBUG
was caused by an address halt request.
This request program execution to
continue at the address following the
location of the last address halt request.
To cause reentry into DEBUG another
address halt may be set first.

Go to the address indicated and execute
the assembly language code, i.e., a BRU
to the address occurs to transfer control
to the address. If n is missing control
transfers to the current address,
otherwise control transfers to n and n is
the current address if DEBUG is
reentered.

DEBUG DIRECTIVES

DESCRIPTION

This directive is generally used when
DEBUG is entered because an object file
is executed with DEBUG or a corrimage
file which has been created with DEBUG
is executed. When the execute command
is entered the user program and DEBUG
are loaded into memory but control passes
to DEBUG rather than to the program's
PROC statement. DEBUG may then be
used to examine the program in memory
or to set an address halt. (If an address
halt is not set DEBUG can not be
reentered except by a branch to address
100B.) When the user is ready to enter the
program the address one past the PROC
entry point would be branched to via the
G directive.

The directive could also be used when in
DEBUG due to an address halt. To
continue the program execution at a
location other than the location following
the address halt, use the G directive
rather than C.

Return control to the DOPSY Monitor
directly from DEBUG. This directive
causes a branch to location 125B. If this
directive is used while in TOPSY, the
normal TOPSY exit procedure is not
followed so that on reentry into TOPSY
the system environment is the same as at
the last entry into TOPSY rather than
that of the last exit.

Return control to the TOPSY monitor
from DEBUG if currently in TOPSY. If in
DOPSY control goes to the DOPSY
monitor, i.e., control is passed to the
address in the entry point of DEBUG.
This directive should only be used when
entry to DEBUG has occurred due to
operator command.

DEBUG DIRECTIVES

nR

n,m W

n,mS

3-6

DESCRIPTION

The contents of the tester register n is
read and displayed. If 1 < n < 77, n
specifies a short register. If n is > 200 a
long register is read. (Octal is always
assumed.) The execute bit (bit 22 of the
register) must be in the address of long
registers. If console switeh 1 is down the
read is continuous until carriage return or
CTRL-L is entered. If console switch 1 is
up, only one read takes place and control
returns to DEBUG.

Write the tester register n with the data
m. If 1<n < 77, n specifies a short
register. If n > 200 a long register is
written into. (Octal is always assumed.)
The execute bit (bit 22 of the register)
must be on in the address of long
registers. If console switeh 1 is down the
write is continuous until carriage return
or CTRL-L is entered. If console switeh 1
is up, only one write takes place and
control returns to DEBUG.

A special SPU is written to tester register
n. If m is entered the data is also written
at the time of the special SPU.
If 1<n<77, the register is assumed to be a
short Tegister, otherwise it is a long
register. The execute bit must be set on
in the long register's address. If switeh 1
is down the special is continuous until
carriage return or CTRL-L is entered. If
console switch 1 is up, only one read takes
place and control returns to DEBUG.

Allows a user to type a message. All
printing characters can be typed. CTRL-
L terminates the command.

3.2 PSCAN
3.2.1 Introduction

PSCAN (Pin SCAN) is a program diagnostic and analysis aid which simplifies
the development and documentation of FACTOR programs. PSCAN "scans"
all programmed tester pins to establish the complete pin by pin programmed
status of the test system. The results are displayed in a tabular format on
either the line printer or teletype printer (see Figure 3-1.) PSCAN may be
executed either from the keyboard as a TOPSY/MANUAL ANALYSIS
command or from an EXEC statement placed in the FACTOR source
program.

Following PSCAN execution, tester status etc. and all applicable registers
are saved and restored; thus the programmed status of the test system is
unaffected by the use of PSCAN.

3.2,2 Program Usage
PSCAN is executed by either of the following two methods:
As a TOPSY or MANUAL ANALYSIS command at a program pause:
/. PSCAN n LP/TTP
Or, as a FACTOR EXEC statement:
EXEC PSCAN (n);
where n is the highest tester pin number programmed. (n < 120)

PSCAN first decodes all tester registers which define the tester elements
(i.e., PMU, DPS1, E0, ete.) which are programmed to pins 1 through n, where
n is defined by the user.

The registers for the individual elements are then decoded to determine
their current programmed status. For pins which are tied to function test
drivers (i.e., E0, E1, etc.) a MEASURE VALUE is performed and the result is
printed, in parentheses, directly under the programmed value for the given
pin. If a DPS is programmed to a pin (S600 only) a MEASURE VALUE is
performed for the voltage reading and a MEASURE NODE for the current.
These results are printed, in parentheses, immediately under the
programmed status for the DPS (see Figure 3-1). After the nth pin has been
processed and printed, the programmed and measured status of all power
supplies which are not tied to tester pins are printed at the bottom of the
table.

Either of the following commands will direct PSCAN output to the line
printer:

// SET LP
/. DATALOG LP STATX
/. PSCAN n LP

The TTP will receive the output by default if LP is not specified. Once
printing begins on the TTP, 26 lines will be printed then the display will halt
for inspection. Pressing the LF key will display one additional line at a
time. Pressing CR will cause another 26 lines to be printed.

Pressing STATION RESET will abort printing and reset the system in the
normal fashion.

3.2.2.1 PMU/DPS/RVS STATUS REPORT - A printout listing the complete
programmed and measured status of ALL used power supplies without the
"pin by pin" part of the table may be produced with the following command.

/. PSCAN 1 LP/TTP

3.2.2.2 DESCRIPTION OF PSCAN DISPLAY - Most of the information at the top
of the PSCAN display is self-explanatory with the possible exception of
LOCAL MEM ADR which refers to the last local memory address executed
(see Figure 3-1).

The following describes the contents of the PSCAN table column headings
(see Figure 3-1).

PIN Refers to tester pin numbers 1 through n, where
n is defined by the user (n <120)

TIED Tester elements which are "tied" to the

TO corresponding pin. PSCAN will present the

actual status of the system exactly as
programmed whether meaningful or not.

M-D Represents the status of the M and D registers
REG respectively for the corresponding pin.

PROGRAMMED VALUE The programmed status of the corresponding

(MEASURED VALUE) DPS, RVS, TGEN or PMU is expressed. For
RVS's the E0 value is printed on the left and the
El1 value on the right. The voltage on the
corresponding pin is then measured with the
PMU. This value 1is printed under the
programmed value for the RVS which is
currently tied to that pin based on the F data
for that pin in the last SET F executed. For
DPS's, the voltage measurement from the node
are printed under the programmed voltage and
current measurements respectively.

UN-COMMITTED The programmed and measured status of the

SUPPLIES PMU or any RVS or DPS which has not been
programmed to a pin will be printed. All
measurements are made at nodes.

EXAMPLE: The sample printout in Figure 3-1 shows that
pin 3 is tied to a utility relay and that the M
register is set to zero and the D register to one
thus pin 3 is also an input pin and is tied to the
EBO, EB1 functional drivers which are
programmed to 700mV and 1.7V respectively.
The voltage on pin 3 was measured and found to
be 716mV. EBO is currently driving the pin so
the measured value is printed, in parentheses,
under the 700mV programmed value. TGEN2 is
also driving the pin and its corresponding delay
and width is printed.

The variation between the programmed and measured voltage values will
typically be between 0 and + 40mV and varies with the range and magnitude
of the values. The exact variation to be expected is equal to the sum of the
RVS accuracy and the PMU voltage sense accuracy and may be determined
from the following table:

RANGE RVS ACCURACY
2 +.1% + 10mV
3 +.1% + 40mV
MEASURING RANGE PMU ACCURACY
0 to + 1.023V + . 2% + 3m
0 to + 10.23V +.1% + 10mV
0 to - 40.92V i 1% i 40mV
0 to -102.30V + .19% +100mV

3.2.3 Cautions to User

Although PSCAN usage does not perturb the programmed status of the
system in any way, there are certain precautions that should be observed if
one is interested in preserving the original PASS/FAIL status thst existed
prior to PSCAN usage. Since the PMU is used by PSCAN for measuring the
voltage present on all input pins and therefore must be diseconnected from its
previous programmed connection, PSCAN usage should be avoided in test
sequences where the PMU connection must be maintained. The PMU is
always returned to its original programmed status on exit from the program.
PSCAN usage should also be avoided during dynamie functional test
sequences for which critical timing must be maintained. If PSCAN is used in
a program which is using RAMPAT (RAM software PATtern generator), the
RAMPAT address tables will be destroyed thus negating all RAMPAT ecalls
of the form: EXEC RAMPAT (@, . . .) through EXEC RAMPAT (8,...) and a
functional fail will result. Again these restrictions may be ignored if the
PASS/FAIL status of the system is of no interest following PSCAN usage.

3-9

3-10

PSCAN assumes that pins connected to input drivers are in the NRZ mode
and are not referenced in a SET INVERT statement. RZ mode may cause
the measured pin voltage to disagree with the programmed value, and
inverted data will cause the measured value to appear on the wrong side of
the printout (i.e., the measured E0 value will print under the programmed E1
value).

STATION NO. 2D
PROGRAM NAME TESTé6

STATEMENT NO

DC DELAY

PERIOD

PMU CLAMPED

000073

+1. O15E-02 S

+6. OOOE-04 S

LOCAL MEM ADR 0000
MA, DA ENABLED

DCT

+-1. O50E+01 V

DCT
FCT
POS

FAIL
FAIL
LOGIC

+2. OOOE-O1 V

o

RELAY
IN, EO/1

TGEN1
RELAY
IN, ERO/1

TGENZ
CLK
IN, EAO/1

CLK
IN, ECO/1

ouT, 201
TSENS
ouT, SANO/1
TGEN7
TGENSZ

IN, EO/1

TGENS
IN, EO/ 1

TGEN1
TSENZ
TIZOM
DFS1
DFsZ

UN-COMMITTED
SUPFLIES

0

(6]

(9]

(9]
(9]

FORCE

DELAY

DELAY

DELAY .

DELAY
DELAY

DELAY

DELAY
DELAY
FORCE

FORCE

FORCE

+5.

+1

+7.
(+7.

+2

+5.
(+4.

+4.
(+4.

+2

-0,
+7.
+3.
+5
(+5

+5
(+5
+1
+2

+4
(+4

+1
(+1

+3

(+1.

PROGRAMMED VALUE

(MEASURED VALUE)

. DO0OE-03

000E-O1

. OO0OE-05

000E-0O1
140E-01
O00OE-0S

0O0OE-0O1
YOOE-O1

00O0OE-O1
130E-01
0O0O0E-00

S O00E-05

ODOE-00
O0O0E-0%
QOO0OE-0OS
00O0E-0O1
0OZ0E-01
OOOE-05
OOOE-01
040E-01
OOOE-0OS
OOOE-05

OO0OE-00
OO0OE-00
O0O0OE-01
OZZE-01

000OE-0Z
023E-01

I SENSE

Vv

S 'WIDTH

v

V)

S WIDTH

\

V)

v

V)

Vv

S WIDTH

Vv

< WIDTH

= WIDOTH

\

V)

= WIDTH

v

V)

= WIODTH

= WIDTH
V) TRIF GT
v

I TRIF LT
I

I TRIF GT
I

Figure 3-1 PSCAN Display

-1
-1
+1.

+1.

+1

+4

+7

-0,
+7.

+7

-1

+1
+1
+5

+7

. 308E+01

S00E-00
490E-00
SO1E-05
700E-00

S00E-05

. S00E-00

400E-00

OOOE-00
SO0OE-05
000E-00
SO0E-0S
S00E-05
S00E-00

S00E-05
SO0E-00

SO1E-0S
S00E-0S

OOOE-01
0ZZE-0O1
O00OE-00
7LOE-00

. O00E-00
. 280E-00

<

<mucCcnc

<

o n

I
| O]
Y
V)

3-11

3.3 LMIO
3.3.1 Introduction

LMIO is an Application Utility Program designed to speed test program
development and debugging by allowing functional test data to be
transferred between Local Memory and a variety of output devices.
Execution is accomplished in an interactive mode via the video keyboard and
allows the user to repetitively access any section of Local Memory.

LMIO will dump Loecal Memory contents in one of three different formats to
any output device including a disc file. The three formats provided are
string, data, and debug (a concise form of string format for program
debugging). LMIO also allows the contents of a specified dise file which
contains functional test data in 'data' format, to be loaded to Local Memory
at any specified address. A function also exists which clears Local memory
to zero.

3.3.2 Program Usage

LMIO is executed from the TOPSY environment and typically within Manual
Analysis at a program pause in the FACTOR test program. The pause being
established by either command as follows:

/. PAUSE ON FAIL
/. PAUSE ON XXXX (statement no.)

However, it is not required that a test program be loaded or a test station be
on line to execute LMIO. An example of this mode of operation would be
the alternate loading of Local Memory from disc and then saving in different
disc files in order to create larger files which are composites of other files.

Since LMIO performs the two separate functions of dumping and loading
Local Memory, each function will be described as a separate command.

3.3.2.1 DUMPING LOCAL MEMORY CONTENTS. To dump Local Memory
contents in a specified format to a specified output device, the command is:

/. LMIO [DATA/STRING/DEBUG] [DISC/LP/’I}‘_E/MTW]
LMIO will respond:

ENTER:
START STOP RANKS FILE (// TO QUIT)

3-12

The user next enters the first and last Local Memory address to be dumped,
the number of ranks desired (1 through 8), and if DISC was the specified
output device, the I.D. of the desired disec file (see 'filnam', in section 3.3.2.2
for file naming conventions). Values are accepted as octal when followed by

a 'B'.

The format and output device parameters are defined as follows:

DATA

STRING

DEBUG

DISC

LP
TTP
MTW

Function test data in tester executable format as
output by the compiler. DISC is the default and the
only allowed output device for this format.

Original source format in which test data appeared
prior to compilation. Will include all SPM
instructions, if any, and any Local Memory labels
referenced by the '-LGOTO' statement. This format
is compatible with the compiler for recompilation.
See example in Figure 3-2.

Similar to STRING format but condensed such that
each line of output contains all programmed data
relating to the current Local Memory location
(except that pin data is printed on subsequent lines
when more than two ranks are specified). Provides a
more convenient means of checking Local Memory
contents during program debugging. This is the
default format. See example in Figure 3-3.

Causes output to be directed to the disec file specified
in interactive mode.

Causes output to be directed to the corresponding
devices. ,

MTW must not be used if TOPSY has been
reconfigured with DEBUG as MTIO will not have been
loaded.

The commands DATA, STRING, DEBUG, and DISC may be abbreviated using
just the first two letters, if desired.

3.3.2.1.1 Assigning Dise Files. Prior to dumping Local Memory contents to disec, a
file must be pre-assigned within DOPSY. The size of the files will be
different for the DATA format than for the STRING and DEBUG formats.

DATA

Example:

1 file word must be assigned for each rank of data to be
dumped.

Dump 4096 Local Memory locations by 4 ranks. 4096 x 4 =
16,384

// ASSIGN 'LMIgg1' 16348 WORDS DATA

NOTE: For DATA format, files must be assigned type DATA.

3-13

STRING OR DEBUG The file size required is difficult to predict precisely

since it varies with the type of instructions in Local
Memory. However, the following formula will
provide an approximate value:

SIZE = ((20 + pins) /4) *L/M LOCATIONS

Example: Assume 4 ranks (60 pins) by 1024 Local Memory

locations.
SIZE =A((20+60)/4) *1024 = 20,480 words
// ASSIGN 'LMSFp1' 20480 WORDS

When in doubt about the required file size, simply ASSIGN a very large file;
then after LMIO execution, reduce the size to the minimum required with:

// ASSIGN 'filnam'

3.3.2.2 LOADING LOCAL MEMORY FROM DISC. The following command may
be used to load a specific disc file in DATA format to Local Memory, or to
clear the contents of Local Memory to zero.

/. LMIO [[LOAD PAGE/'filnam'] /ADDR] /CLEAR]

Where:

LOAD

PAGE

'filnam'

ADDR

CLEAR

3-14

Causes local Memory to be loaded with the contents of the
file defined by PAGE or 'filnam'. Data is loaded starting at
the address specified by ADDR. If ADDR is omitted,
loading occurs at the current value in the MCS register.
MCS may be set from Manual Analysis or by the 'AT'
statement within the FACTOR program.

Is a number in the range 000 to 999 which, when appended
to a prefix like 'LMI', yields the file name 'LMIXXX'. 'LMI'
is the required prefix for DATA type files and 'LMSF' is for
STRING or DEBUG files. This method of denoting the file
name is an alternative to 'filnam’'.

Is a 6 character or less alpha-numeric file name in which
the first character must be alphabetic. Working storage on
disc may be specified by specifying WS.

Is the Local Memory address at which the data file on dise
is to be loaded. May be entered as a decimal or octal
number if followed by a 'B'. If omitted, the current
contents of the MCS register is used.

Clears Local Memory contents to zero.
Clears 8 ranks by 4096 locations.

3.3.3 Error Messages

The following error messages are displayed on the TTP when appropriate.

ERROR MESSAGE

FILE NOT ASSIGNED

FILE TOO SMALL

SYMBOL TABLE OVERFLOW

FILE EMPTY

DESCRIPTION

The specified file was not found on
disc. Possible error in file naming
procedure.

The assigned size of the file is too
small for the amount of data being
dumped.

The limit of 500 SPM Local Memory
labels has been exceeded.

User attempted to load Local
Memory data from an empty disc
file.

3-15

Figure 3-2 A sample of LMIO STRING output produced by the command:

Note that all user labels are replaced by labels SPXXX where XXX is a three digit

number 000 to 999.

3-16

ENABLE DA, MA)

sPeRdye
LSET IX $iloveoeos oec0Rioi0e®
LSET 8TROBE

1110000000 GR00010100
LSET RZ 1110000000 2000010100
LSET XOR 1110000000 Q0QR0Q10100
LSET 1 1110000000 GB000Q10100

LCGEN 76! 4,6,8,9)
LCGEN TG2 5,7,10)
LCGEN TG612 1,2,3)

LSET DA {1joo0000QR 200010100

LSET 0B 1110000000 0000010100

LSET MA 1110000000 0000010100

LSET MB 1110000000 2000010100

ENABLE 0B, MB)

SET F 1110000000 00200010100
=LCALL 8PBOY)

LSET IX (110000000 Q000010100
*LCALL 8PR02) .

SET F 1110000000 0020010100
«LGOTO SPRV3}

SET FC NORMAL 35

1110000000 QQ000Q10100

SET FC MATCH 250
11i100B0000e Q000RR10100
8ET FC CONTIN

LSUBR 8P@@1 MATCHW

1110280000 0000010100
455)

SET F 1110000000 OO0eOlRi00
LCGEN TGS $1,22,30,44,35)

SET F 1110000000 Q000010100
SET F 1110000000 CQ0G0010100

«=LEND}

LSUBR SP2@22 CONTIN 1)

SET F i0l2101010 epeeciviee
SET F 1012101010 oo00Rl0i0E

=LEND?

/. LMIO STRING LP

ococeoseses;
ooceseseed;
oeeceeened;

ooeoepR000;
oooeee0ee;
oooc000000;
oeceonoeee;
ooopoeaeeR
oeo0e00000

ooo0000000;/
ooeQ000008;
oceoo0eeeR;
eeo2r00000;
coeooee0RR;
oecoo0e00l

oemM® LSET IX DA MA 1110000000 GOVOC10100 QGVRVAMQVAR
@083 LSET STROBE DA MA 1112000000 02P0V10102 AOCROVARVQ
0002 LSET k2 DA MA 1110000000 VWIALRRIVIVD POAPAVORRY
0083 LSET XOR DA MA 1110000070 VPVUVILIPAG PVRVOAVBMAR
eeP4 LSET I DA MA 1110000000 9WNCCA12100 20RVRALRVAY
005 LCGEN TG1 4,6,8,9
LCGEN Y62 S,7,1%0
LCGEN 7612 1,2,3

2010 LSET DA DA MA 1110000000 V20BL1V1VE VVALBVBLAR
0011 LSET 08 DA MA {110P000R0 vOR2Q1VIVE AVRVARBVAY
9012 LSET MaA DA MA 11100000R0 VPYPR1VIRE0 PVOVRVBVAY
2213 LSET MB DA MA 1110700000 2000010107 VOPLPLDRRY
o0l4 SET F oLCALL Q022 Db MB 1110200000 0AVAY1A1vd AVRUVRVONAC
0015 LSET IX e CALL @030 Db MB 1110000000 VPOFCGIVICA APPVORAVRE
Q016 SET F «LGOTO 000¢ DB MB 11100000P0 0AVRY1VIVA PVOANLAVAL
2817 SET FC NORMAL 35 DB MB 11100008000 Q0RQV1vIVA BRRVRACADOY
2020 S8ET FC MATCH 25¢ DB MB 11100000N0 VRVAV1V1VE VECVAVOVA0Q
Q021 SEY FL CONTIN DB MB 11100¢M2Re BARRLIVIVP PLELOVADDO
ee22 SET F LSUBR MATCLMH 455 DB MB 1110000000 @00RPlL1d0 PLRYALNLLY
2023 LCGEN TGS 11,22,32,44,5)

2026 SET F DB MB 1110000000 2002010100 AYAVARBLRY
@eR7 SeT F «LEND Db MB (110000000 P020C1P1PQ PYAVORGYDG
2030 SEY F LSUBR CONTIN 1 DB MB 10210101010 VORRR1V1VA PYOPAVRLAL
2031 SET F =LEND Ot M8 1010101010 020PR1010P PVRARAVBVAY

Figure 3-3 A sample of LMIO DEBUG output produced by the command:
/. LMIO DEBUG LP

Note the three LCGENs corresponding the location ###5. LMIO will always print
the results of any CGENs which appeared in the FACTOR program previous to the
Local Memory load along with the first LCGEN encountered. Since each individual
LCGEN in Local Memory causes the address printed to jump by 3, it may be
observed above that two of the LCGENs actually represent previous CGENs, since
the address only jumps from 5 to 8. The user must examine his program to
determine which is the genuine LCGEN. Subsequent LCGENSs print exactly as
programmed (note address pP23).

3-17

3.4 CYCLE
3.4.1 Introduction

The program CYCLE is a debug aid which, during the execution of a device
test program, enables the user to establish a continuous loop between two
specified addresses in local memory. CYCLE is loaded and initiated in an
interactive user/VKT mode during a pre-established PAUSE condition in the
program in which the loop is to be established. The user is required to
supply the loop start and end addresses in the call entered for CYCLE. The
user may also, as an option, specify the generation of a synch pulse at a
tester pin during the operation of the CYCLE established loop.

3.4.2 Operating Procedure

The procedure required to use CYCLE is:
1. Establish a TOPSY mode of operation (i.e., /. ANALYSIS STATn).

2. Enter a PAUSE command to halt the execution of the test program at
the point at which the CYCLE loop is to be established. Use either the
command:

a. /. PAUSE statement number [ON/OFF] to pause at the
specified statement, or

b. /. PAUSE FAIL [ON/OFF] to pause at a fail point.
3. Load and run the test program in which the loop is to be established.

When the test program enters the desired PAUSE condition, load and
initiate CYCLE using a command of the form:

./ CYCLE [J,K] (SADDR,SPIN);

Parameter ' Function
Jd Defines the loop start address.
K Defines the loop end address.
SADDR Defines an address in local memory at which a synch pulse

is to be generated. @ Whenever SADDR is used, the
parameter SPIN must be used.

SPIN Specifies the tester pin on which the synch pulse generated
at location SADDR is to appear. The pin SPIN is set to a
logic 1 value for each synch pulse.

5. Terminate the CYCLE loop and restore any affected registers to their
original (pre-loop) state(s) by entering the command:

/.CYCLE OFF

3-18 @

NOTE

The command /. WRITE MCS 101* may also be
used to terminate a CYCLE loop, however,
registers which are affected by the loop
operation are not restored to their original
(pre-loop) state(s).

3.4.2.1 OPERATING CONSIDERATIONS - The following items should be
considered when using CYCLE:

1. A second or subsequent loop may be established in a program without
affecting the operation of a previously established loop.
2. All fails are suppressed during looping.

3. The following registers are affected by a CYCLE loop operation and
must be restored to their original state(s) by terminating CYCLE
operations with the command /. CYCLE OFF

4. a. Major loop end #1706 (L)
b. Test start #1700 (SA)
ec. Minor loop start #1704 (J)
d. Minor loop end #1705 (K)

4. On either a SENTRY 610 or SENTRY II test system without SPO
enabled, looping occurs between minor loop limits (J) and (K).

5. On a SENTRY II test system with SPO enabled, looping occurs between
test start (SA) and Test end (L).

3-19@

SECTION 4
FACTOR ENHANCEMENT UTILITY PROGRAMS

4.1 LMMOD

4.1.1 Introduction

LMMOD is an assembly language program designed to assist the FACTOR
programmer in modifying locations in local memory using the assembly
language linkage statement EXEC. The LMMOD program only modifies
local memory; if a string file of the functional pattern is required, the user
may create his string file using the assembly language program LMTSF.

4.1.2 Program Usage

The following functions are implemented:

A.

Clear local memory
EXEC LMMOD (f)
Complement the designated pins in all locations.

EXEC LMMOD (1, Pl, ees Pn);

P = pin number
If P = P or is missing, complement all pins.

Examples: EXEC LMMOD (1, 3, 7, 14);
EXEC LMMOD (1);

Swap the condition of the first designated pin for the condition of the
second designated pin in all locations. Do not change condition of
second pin.

EXEC LMMOD (2, Pl’ Pz);

P. takes on the value of P2.P

1 remains unchanged.

2

Insert ENABLE DA/DB, MA/MB statements.

EXEC LMMOD (FU/I;ICT, LINE, REPT, AB,, NO,, AB,, NO

1’ 299 97
AB_, NO); j 2
FUNCT = (3/- insert ENABLE DA/DB
k4 T insert ENABLE MA/MB
N
LINE = P -4096 - local memory loc. to tsart first ENABLE
REPT = 1-4096- number of times to repeat the following AB-
NO pattern.
AB = 0-A
1-B
NO = 1-4096 - number of times to set preceding A/B

There can be a total of 30 AB - NO combinations.

Shift designated pins in channel by displacement factor.

EXEC LMMOD (5, DISP, FROM, TO, P, Py,...,P,);
= 5

DISP = Number of channels to shift designated pins. If DISP is
negative, get from lesser local memory, address, If
DISP is positive, get value from greater local memory
address. =

FROM = First local memory address to change

TO = Last local memory address to change

1;‘ = Pin numbers (channels) whose values are to be shifted.

Clear designated pin in all local memory locations.
EXEC LMMOD (6, Pl,Pz,...,Pn);

P = Pin number (channel) to clear.

4.1.3 Error Message

4-2

ERROR MESSAGE DESCRIPTION
LMMOD ERROR A syntax error is encountered in the
STATEMENT NNNNN EXEC LMMOD statement. The

program is terminated and a return
is made to the DOPSY monitor.

4.2 LMTSF

4.2.1 Introduction

The purpose of LMTSF is to create, from local memory, a TASCII file of SET
F and SPM instructions on dise. ENABLE MA/B, DA/B instructions are also

produced as required.

LMTSF is written in assembly language and is called by the FACTOR prog-
rammer using the assembly language linkage statement EXEC.

4.2.2 Program Usage

FACTOR Calling Sequence:

EXEC LMTSF (FILE, TPINS, LMWORDS, START, TAG);

where

FILE

TPINS

LMWORDS

START

TAG

Examples:

a one or two digit number nn to be appended to the
character string "LMSF" to create a unique DOPSY
file name 'LMSFnn' for storing the generated data.
Where nn=00-99.

total number of bits in binary pin pattern (1-120)

total numbef of local memory words to use, i.e., total
number of SET F statements to generate.

first local memory address to dump. If missing, local
memory address zero is assumed.

a one digit number to be used to create a unique local
memory label on the last SET F statement. The label
generated is LMSFn@. n=1 - 9. If no tag is defined,
no local memory label will be created.

1. EXEC LMTSF (13, 42, 512);

The generated data will be stored in string file 'LMSF13'.

There are 42 bits in the pin pattern.

The first 512 words of local memory will be used to create the file.

4-3

4.2.2.

4.2.3

4-4

2. EXEC LMTSF (3, 15, 200, 768, 7);

200 SET F statements, 15 pins wide, starting with local memory location 768
will be written to dise file LMSF03. The last statement will be tagged with
local memory label LMSF7@.

1 ASSIGNING DISC FILES. Prior to executing the program which calls
LMTSF the user must reserve space in working storage to store the
generated data using the DOPSY ASSIGN command. To calculate the
approximate number of words to be saved, the following formula can be
used:

WORDS = ((20+PINS)/4) * L/M LOCATIONS

For the first example above the following ASSIGN command would first be
executed:

// ASSIGN 'LMSF13' 8290 WORDS

Error Messages

ERROR MESSAGE DESCRIPTION

PARAMETER ERROR Incorrect parameter(s) in FACTOR
EXEC statement

FILE NOT ASSIGNED User forget to assign the LMSFXX
file prior to LMTSF execution.

FILE TOO SMALL The LMSFXX file was assigned too
few words for the amount of data in
Local Memory.

CAN'T CLOSE FILE A dise or other hardware error
occurred during attempt to close
LMSFXX file.

SYMBOL TABLE OVERFLOW The maximum of 100 Local Memory

labels referenced by SPM LGOTO
and LCALL statements was
exceeded. (For Sentry II only).

4.3 LPLF
4.3.1 Introduction

LPLF is an assembly language program which permits the user to position
the printer paper within a FACTOR language program.

4.3.2 Program Usage

LPLF is invoked by placing the following FACTOR assembly language
linkage statement in the source program:

EXEC LPLF (NUMSP, NUMT);
where
NUMSP = number of lines to space

If NUMSP is missing or equal to zero (f), the paper is positioned at top
of form.

when NUMSP = §
NUMT = number of top of forms to issue.
EXAMPLES:

1. Issue top of form (page eject)
EXEC LPLF;

or
EXEC LPLF (9);

2. Issue 5 page ejects
EXEC LPLF (9,5);

3. Space 6 lines
EXEC LPLF (6);

4-5

44 LMLOAD

4.4.1

4.4.2

4.4.2.

4-6

Introduction

LMLOAD is an Assembly Language Utility program which allows functional
test data to be transferred between local memory and files on dise at run
time. Large bodies of SET F data may be executed from within a given test
program without actually being present in the program source file, thus
reducing compile time significantly.

Program Usage
There are 4 facets to LMLOAD usage:

Assigning space to the required dise file(s) into which local memory
contents will be stored.

The basic LMLOAD calling sequence which saves local memory
contents on disc or loads the disc file contents to local memory.

Defining within LMLOAD the first 3 characters of the names of the
disc files previously assigned (available on Rev 10 software only).

An optional LMLOAD procedure which will save the disc addresses of
previously referenced files in a special fashion which may result in
decreased execution time in certain instances as described below.

1 ASSIGNING DISC FILES. Each execution of LMLOAD will transfer the
contents of local memory to one of up to 140 individual disc files. Each file
may, therefore, be thought of as a local memory image on dise. The files
used must be individually assigned with the DOPSY ASSIGN command under
any job desired. The amount of disc space in words assigned to a given file
must be equal to or greater than the "size" of local memory being saved on
dise. For example, if 1024 local memory locations of 2 ranks each are to be
saved the "size" required would be:

1024 x 2 = 2048 words
All files must be assigned a name of the form:
LMIxxx (Local Memory Image)

Where xxx is a right justified 3 digit number between 000 and 139.

Example:

Save on disc 3 separate local memory loads of 1024 words by 2 ranks each. 3
disc files are required.

// ASSIGN 'LMIppp' 2p48 WORDS DATA
// ASSIGN 'LMIpg1' 2p48 WORDS DATA
// ASSIGN 'LMIpp2' 2p48 WORDS DATA
NOTE:

(1) LMLOAD "optimizes" the data being saved on dise by saving only
changed ranks. Therefore, the actual file space required may be less
than that calculated above. The file may, therefore, be compacted to
the minimum required size.

(2) An optional procedure is available with Rev 10 SENTRY software
which allows a user defined file name prefix to replace the prefix 'LMI'
(see section 4.4.2.3.2 below).

4.4.2.2 BASIC LMLOAD CALLING SEQUENCE. Functional test data will be
transferred between Local Memory and disc with a FACTOR statement of
the form:

EXEC LMLOAD (PAGE, N, STOP);

Where PAGE = a 3 digit file name suffix between 000 and 139 for use in
name 'LMIxxx' as described in 4.4.2.1 above.
N = 1, save Local Memory contents in the disc file defined by
PAGE.
= 2, load the contents of the disc file defined by PAGE into
Local Memory.
STOP = Highest Local Memory location to be saved on disc.

Applicable for N=1 only. A number in the range 0 to 4095.
The default value is 1023 if STOP is not specified.

The STOP parameter is not applicable when loading Local Memory from
dise; N=2. All the data previously written to the disc file will be loaded
back to Local Memory.

4.4.2.3 OPTIONAL LMLOAD PROCEDURES. The following optional LMLOAD
procedures are available:

4-7

4.4.2.3.1 Saving File Disc Addresses On Dise. The disc address of each previously

referenced file is automatically saved by LMLOAD in order to minimize the
time spent searching the disc directory should a given file be referenced
more than once. These addresses are, however, saved only if LMLOAD
remains in core throughout the entire testing session. If another Assembly
Language Utility is called, or if another test station comes on line, LMLOAD
will be removed from core and the disc directory search will have to be
repeated on the next call to LMLOAD. .

Therefore, an optional LMLOAD procedure is available which will save these
file disc address on disc within the coreimage LMLOAD file so that they will
be available on the next call to LMLOAD following its removal from core.
All addresses saved during a previous testing session are always cleared
forcing a fresh directory search following initial TOPSY entry from DOPSY.
The calling sequence is as follows:

EXEC LMLOAD (0,3);
This statement should be either the last call to LMLOAD in the program or

it should follow the last call to LMLOAD prior to an EXEC statement which
calls another Assembly Language Utility.

4.4.2.3.2 Allowing User Defined Names to Replace "LMI" in the "LMIXXX"

File Names

NOTE: This feature is available only on SENTRY software REV 10 and
above.

As described in section 4.4.2.1 above, all dise files to be referenced by
LMLOAD must be ASSIGN'ed on disc and given names of the form:

LMIxxx where xxx is a 3 digit number between 000 and 139.

The characters "LMI" are actually a default value and may be replaced by
any 3 user defined alpha-numeric characters.

The calling sequence is as follows:

DCL NAME /'FSTY/;
EXEC LMLOAD (NAME,4);

Where NAME is any FACTOR variable name defined in the above DCL
statement

FST represents any 3 user defined alpha-numeric characters
These statements must precede all other calls to LMLOAD in the program.

"LMI" files and files with "user defined" names may not both be used by the
same FACTOR program.

WARNING

Problems may result if this function is used in
conjunction with that described in Section
4.4.2.3.1 and a second station comes on line
with a different test program. The program on
the second station must either reference files
with different numbers {000-139) or must use
the same three character "user defined" file
name prefix as the program on the first
station.

4.4.3 Error Messages
When a user error occurs LMLOAD will produce the appropriate error
messages as defined below. The error message will by followed by a
conventional TOPSY terminal error 100 message including the statement
number of the EXEC LMLOAD.

ERROR MESSAGE DESCRIPTION

FILE NOT FOUND The dise file LMIxxx was not
ASSIGNED on dise as desecribed in
Section 4.4.2.1.

FILE EMPTY An attempt was made to load an
empty file to Local Memory. Data
was not previously saved in the file.

FILE TOO SMALL File size too small compared to
actual amount of Local Memory
data being saved.

PAGE OUT OF RANGE PAGE exceeds legal range as
defined in section 4.4.2.2.

N OUT OF RANGE N exceeds legal range as defined in
section 4.4.2.2.

STOP OUT OF RANGE STOP exceeds legal range as defined
in section 4.4.2.2.

STOP EXCEEDS LM SIZE STOP exceeds the actual size of
Local Memory.

DISK I/0 ERROR A hardware disc error occurred in
reading or writing disec.

INVALID NAME The file name prefix specified in a

DCL statement to replace "LMI"
was either all blank or contained
more than 3 characters.

4-9

4.5 LMSAVE

4.5.1 Introduction

LMSAVE is an Assembly Language Utility programvdesigned to be used in
conjunction with microprocessor test generation programs. LMSAVE
currently supports 6 separate functions as outlined below:

Transfers functional test data between Local Memory and files on disc.
Data is transferred at run time thus obviating need for large quantities
of SET F's in the FACTOR source file. This function is identical to
that of utility program LMLOAD (see 4.5.2.1).

Transfers single data items between FACTOR program and "virtual
RAM memory" file on disc. Data is "read" or "written" in true random
access fashion (see 4.5.2.3.1).

Allows input of user generated microprocessor diagnostie program
from cards or mag tape into the "virtual RAM memory" (see 4.5.2.3.2).

Converts floating point numbers to Octal or Hexdecimal and returns
them to the calling FACTOR program in TASCII format for printing on
an output device (see 4.5.2.4.1).

Converts microprocessor op-codes to their corresponding mnemonies
and returns them to the calling FACTOR program in TASCII format
for printing on an output device (see 4.5.2.4.2).

Accepts data from an input device in either Octal or Hexidecimal and
returns it to the calling FACTOR program (see 4.5.2.4.3).

4.5.2 Program Usage

4-10

There are 3 facets to LMSAVE usage:

The basic LMSAVE calling sequence for the particular function
desired.

Assigning space to the required disc file(s) into which local memory
contents will be stored.

Defining within LMSAVE the first 3 characters of the names of the
disc files previously assigned (available on Rev 10 software only).

Each of these items will be discussed in detail below where applicable.

4.5.2.1 TRANSFERRING FUNCTIONAL TEST DATA BETWEEN LOCAL
MEMORY AND DISC. Functional test data will be transferred between
Local Memory and disc with a FACTOR statement of the form:

EXEC LMSAVE (PAGE, N, STOP);

Where PAGE = a 3 digit file name suffix between @p1 and 139 for use in
name 'LMIxxx' as described in 4.5.3 below:
N = 1, save Local Memory contents in the disc file defined by
PAGE.
= 2, load the contents of the dise file defined by PAGE into
Local Memory.
STOP = Highest Local Memory location to be saved on disc.

Applicable for N=1 only. A number in the range # to 4095.
The default value is 1823 if STOP is not specified.

The STOP parameter is not applicable when loading Local Memory from
dise; N=2. All the data previously written to the disc file will be loaded
back to Local Memory.

4.5.2.2 ALLOWING USER DEFINED NAMES TO REPLACE "LMI" IN THE
"LMIXXX" FILE NAMES.

NOTE: This feature is available only on SENTRY software REV 10 and
above.

As described in Section 4.5.3 below all dise files to be referenced by
LMSAVE must be ASSIGN'ed on disc and given names of the form:

LMIxxx where xxx is a 3 digit number between #f§ and 139.

The characters "LMI" are actually a default value and may be replaced by
any 3 user defined alpha-numeric characters.

The calling sequence is as follows:
DCL NAME /'FST'/;
EXEC LMSAVE (NAME,4);

Where NAME is any FACTOR variable name defined in the above DCL
statement

FST represents any 3 user defined alpha-numeric characters

These statements must preceed all other calls to LMSAVE in which disec files
are being used.

4-11

"LMI" files and files with "user defined" names may not both be used by the
same FACTOR program.

WARNING

Problems may result if this function is used in
conjunction with that described in Section
4.4.2.3.1 and a second station comes on line
with a different test program. The program on
the second station must either reference files
with different numbers (000-139) or must use
the same three character "user defined" file
name prefix as the program on the first
station.

4.5.2.3 TRANSFERRING DATA TO OR FROM THE "VIRTUAL RAM MEMORY"

FILE LMI@#p. The following two functions are designed to initialize or
update a file on disc referred to as the "Virtual RAM memory" file. This
file, which must be named LMIf@g, will contain the user generated diagnostic
program which is intended to exercise a known good microprocessor and
elicit response which will be saved in files LMI#f1 thru LMInnn for future
testing of subsequent devices. See Technical Bulletin 4 for more details.

Before executing LMSAVE in this mode, the file LMI@#§ must be assigned
66528 words on disc with the following DOPSY command:

// ASSIGN "LMIppP" 66528 WORDS DATA

If the file re-naming feature described in 4.5.2.2 above is to be used in the
FACTOR program, the file name prefix LMI may be changed accordingly.

4.5.2.3.1 Transferring Single Data Items Between the FACTOR Program and File

where N2

4-12

LMIppp. Data items may be randomly fetched from and returned to the
"Virtual RAM Memory" file LMI@#p with a FACTOR statement of the form:

EXEC LMSAVE (, N2, N3, N4, N5, N6);

= 1 to place data into LMIgp9

2 to feteh data from LMIgpg

N3 = Random word address within LMI@#P of data being accessed;
P < N3 <65535

N4 = Data, in floating point format, to be put to or fetched from
LMIgPP. Accesses bits f thru 15 of word addressed by N3.
Must be a positive integer <32767.

N5 @ for normal use of N3 as defined above.

1 for LMIPPP use as a repository for peripheral data. N3 is
redefined: P <N3 < 999 where N3 = peripheral ID. This
function utilizes LMIf#P addresses beyond 65535.

N6 = Data, in floating point format, to be put to or fetched from
LMIppPA. Accesses bits 16 thru 23 of word addressed by N3.
Must be a positive integer < 255.

Parameter N6 is optional and may be omitted if desired.

4.5.2.3.2 Loading File LMIpPP With User Generated Data From an Input Device.
The "Virtual RAM Memory" file, LMI@#), may be initially loaded with the
user generated diagnostic program with the following FACTOR statement:

EXEC LMSAVE (9, N2, N3);

where N2

3 for data input from cards

7 for data input from mag tape
N3 p for data in Octal

1 for data in Hexadecimal

The user generated program data will be in the form of Assembled object
code for the particular microprocessor under test. This data as it appears on
the input media, cards or mag tape, must conform to the following format:

1.

The first item in a record, beginning in column 1, is the address in
memory that the following data will be stored.

A blank space separates address and data items in the record.

Up to three data items may be in a single record, each item separated
by one space.

The data items will be stored at adjacent addresses starting with the
address specified by the first item (column 1).

Two consecutive blank spaces indicate the end of data items.
Comments may appear in remaining columns.

If the first column on a record is left blank, the address for data on
that record will be where the previous item left off.

Data items may be in Octal or Hexadecimal. The call to LMSAVE
from the generation program will define which form is being used.

The User Program data is terminated by a // record. This stops the
loading of user data onto the disc file LMIp@p.

4.5.2.4 MISCELLANEOUS LMSAVE DATA CONVERSION AND DATA INPUT
FUNCTIONS. The following functions involve interaction between LMSAVE
and the FACTOR program for purposes of data conversion and data input
into the FACTOR program.

AN 4-13

4.5.2.4.1 Convert Numbers From Floating Point to Octal or Hexadecimal Format.
A number in floating point format will be obtained from the FACTOR
program, converted as directed, and returned to the FACTOR program with
the following statement:

EXEC LMSAVE (, 4, N3, N4, N5, N6);

where N3 =

N4 =
N5 =
N6 =

4.5.2.4.2 Converting
Mnemoniecs

g for conversion to Octal
1 for conversion to Hexadecimal

The floating point number to be converted.

Upper 2 characters of result in TSACII
Lower 4 characters of result in TSACII

Microprocessor Op-Codes Into Their

EXEC LMSAVE (@, 5, N3, N4, N5);

where N3

N4

1]

N5

Op-code in floating point format
Upper for characters of mnemonic

Lower four characters of mnemonie

Corresponding

A user generated file, which must be named MNEMON, contains the
mnemonices for the microprocessor under test listed in numerical order
according to the op-codes corresponding to each mnemonic. The string file
should be named '*"MNEMON.' The object file, 'MNEMON?', should be created

as follows:

// ASM "*MNEMON' OBJ
// CREATE 'MNEMON' OBJ

This file must reside under the same job as LMSAVE prior to the creation of
the coreimage file 'LMSAVE'.

EXAMPLE:

MNEMON

4-14

PROC g

TEXT 'NOP' 2
TEXT 'LXT' 1
TEXT 'RLC' 2
TEXT 'STA' n
END

4.5.2.4.3 Transfer Data From Input Device to FACTOR Program. Data will be
accepted in Octal or Hexidecimal and passed to the FACTOR program in
floating point format with the following statement:

EXEC LMSAVE (g, 6, N3, N4, N5, N6);

where N3 = f for data input in Octal
1 for data input in Hexadecimal
N4 = First data item in floating point format received from
input device.
N5 = Second data item in floating point format received from
input device.
N6 = 0 for data input from keyboard

1 for data input from card reader
2 for data input from mag tape

A second data item in the input record (N5) is optional and need not be
supplied when using this LMSAVE function. If one is entered, it must be in
the same record as the first and separated by at least one space.

4.5.2.4.4 Perform a Line Printer Top of Form
EXEC LMSAVE (0);
4.5.3 Assigning Disc Files

The execution of LMSAVE as described in section 4.5.2.1 to transfer data
between disc and Local Memory requires that disc files be preassigned.
Each execution of LMSAVE in this mode will transfer the contents of local
memory to one of up to 139 individual disc files. Each file may, therefore,
be thought of as a local memory image on disec. The files used must be
individually assigned with the DOPSY ASSIGN command under any job
desired. The amount of disc space in words assigned to a given file must be
equal to or greater than the "size" of local memory being saved on dise. For
example, if 1924 Local Memory locations of two ranks each are to be saved
the "size" required would be:

1024 x 2 = 2048 words
All files must be assigned a name of the form:
LMIxxx (Local Memory Image)

where xxx is a right justified 3 digit number between @#¢1 and 139.

4-15

Example:

Save on disc 3 separate local memory loads of 1024 words by 2 ranks each.

Three disc files are required.

// ASSIGN 'LMIpg1' 2p48 WORDS DATA

// ASSIGN 'LMIpp2' 2048 WORDS DATA
// ASSIGN 'LMIpp3' 2048 WORDS DATA

NOTE:

(1) LMSAVE "optimizes" the data being saved on dise by saving only
changed ranks. Therefore, the actual file space required may be less
than that calculated above. The file, may, therefore, be compacted to
the minimum required size by the command: // ASSIGN 'LMIxxx'

(2) An optional procedure is available with Rev 10 SENTRY software
which allows a user defined file name prefix to replace the prefix 'LMI'

(see section 4.5.2.2 above).

4.5.4 Error Messages

When a user error occurs LMSAVE will produce the appropriate error
message as defined below. The error messgage will be followed by a
conventional TOPSY terminal error 100 message including the statement

number of the EXEC LMSAVE.

ERROR MESSAGE

FILE NOT FOUND

FILE EMPTY

FILE TOO SMALL

PAGE OUT OF RANGE

N OUT OF RANGE

STOP OUT OF RANGE

STOP EXCEEDS LM SIZE

4-16

DESCRIPTION

The dise file LMIxxx was not
ASSIGNED on dise as described in
section 4.5.3.

An attempt was made to load an
empty file to Local Memory. Data
was not previously saved in the file.

File too small compared to amount
of Local Memory data being saved
or LMIf@P assigned less than 66528
words.

PAGE exceeds legal range as
defined in section 4.5.2.1.

N exceeds legal range as defined in
section 4.5.2.1.

STOP exceeds legal range as defined
in section 4.5.2.1.

STOP exceeds the actual size of
Local Memory.

ERROR MESSAGE DESCRIPTION

DISK I/O0 ERROR A hardware disc error occurred in
reading or writing dise.

INVALID NAME The file name prefix specified in a
DCL statement to replace "LMI"
was either all blank or contained
more than 3 characters.

4-17

4.6 LOGREG

4.6.1 Introduction
LOGREG is an Assembly Language utility program which, when called from
a FACTOR program, permits reading and writing of all tester long registers.
The register contents may optionally be logged, in binary, on the POD.

LOGREG will allow reading and writing of registers with four digit register
numbers in the 1701 thru 1707 range in addition to registers 1734 and 1735.

4.6.2 Program Usage

LOGREG is invoked by placing the following FACTOR statement in the
source program:

EXEC LOGREG (NUM, VAL, OP);

where NUM = Long register read or write code as found in Appendix B of
the appropriate FACTOR manual.

VAL = Value to be written to desired register or contents of
register just read. The most significant bit (left most digit)
corresponds to pin 1. Must not exceed 5 octal digits.

OP = §, Read or write a register with no logging to POD.

1, Read or write a register and log VAL to the POD in
binary.

2, Supress reading or writing and log VAL to the POD.

Reading or writing to a register is determined by the first digit of the
register read/write code. For example, to write to rank 1 of the M register:
EXEC LOGRAG (240B, VAL, 0);
To read rank 1 of the M register:
EXEC LOGREG (440B, VAL, 1);
VAL may be logged to the line printer by:

// SET LP or
/. DATALOG LP STATXX

Otherwise, logging will take place on the TTP.
4.6.3 Additional Documentation
Application Note AD 1042.

4-18

4.7 FMTAP
4.7.1 Introduction

FMTAP is a FACTOR -callable utility mag tape routine which permits

multiple mag tape files to be read or written during a single program
execution.

4.7.2 Program Usage

The following functions are performed by placing the associated FACTOR
statement in the source program.

EXEC FMTAP (0); rewind tape

EXEC FMTAP (1, N); skip forward N end of file marks
EXEC FMTAP (2, N); skip backward N end of file marks
EXEC FMTAP (3); write an end of file mark

EXEC FMTAP (4, ARR); read one record into array ARR.
EXEC FMTAP (5, ARR); write one record from array ARR.

The number of words read/written is determined by the number of elements
assigned by the DCL statement. Only one array name may be defined, but
the array size may exceed 512 words.

4-19

4.8 GLOBS

4.8.1 Introduction

The program GLOBS adds 100 GLOBS system global variables to the existing
20 global variables provided by the system software. The use of GLOBS then
provides the user with a total of 120 system global variables.

GLOBS is loaded and its functions controlled by the insertion of FACTOR
call statements into the program in which it is to be used.

4.8.2 FACTOR Call Statement

The FACTOR statement required to load and initiate DATAIO has the
format:

4-20@

EXEC GLOBS (num,opcode,val);

PARAMETER

num

opcode

val

DESCRIPTION

A constant, variable, or array element the value of
which specifies the number of the global variable
(i.e., 1 to 120) which is to be used for the operation
by the parameter "opcode".

A constant, variable, or array element the value of
which specifies the operation to be performed. The
following "opcode" values are permitted:

OPERATION
VALUE SPECIFIED
0 Reset the specified global variable to
zero.
1 Increment the global (i.e., value of "num")
by 1.
2 Decrement the global (i.e., value of
"num") by 1.
3 Copy the contents of the memory

locations specified by "val" into the global
variable specified by "num".

4 Copy the contents of the global variable
specified by "num" into the memory
location specified by "val".

A constant, variable, array element or scalar value.
The global variable or location specified by "val" is to
be used for the operations specified by "opcodes" 3
and 4.

4.8.3 Program Operation

GLOBS is an FST-2 assembly language overlay which, when loaded, occupies
the upper 180 word locations of CPU memory.

A GLOBS program must be configured for the specific test system on which
it is to be used. The required configuration procedure is described in detail
in the program's assembly language source listing.

Since GLOBS is an overlay, a small amount of system overhead time is
required for its use. For example the incrementation of a standard systems
global variable (i.e., 1 to 120) requires approximately 1.6 milliseconds (e.g.,
GLOB4 = GLOB4+1;); the incrementation of a GLOBS global variable (i.e., 21
2(0 12)0), however, requires approximately 2 milliseconds (e.g., EXEC GLOBS
50,1);).

4.8.4 Resetting GLOBS Global Variables

The TOPSY keyboard commands:

/. CLEAR STATxx and
/. LOAD "name" STATxx

which are used to reset the standard systems global variables to zero do
NOT effect GLOBS global variables.

To reset a GLOBS global variable, it is necessary to include a statement in
the FACTOR program which explicitly resets the specified GLOBS global
variable. For example to reset GLOBS global variable 100 to zero the
FACTOR statement:

EXEC GLOBS (100, 0);
must be included in the program using GLOBS.
All or any selected sequence of GLOBS global variables may be reset by

including a reset loop routine in the program. For example the FACTOR
statement:

FORI=1 THRU 120 DO EXEC GLOBS (I, 0);
would reset all of the global variables to zero.

4.8.5 Examples, Use of GLOBS
a. Reset all GLOBS global variables to zero when a specific condition

occurs:

IF SWITCH EQ 0 THEN FOR I =1 THRU 120 DO EXEC GLOBS
(1, 0);

The value of SWITCH must be other than 0 for all subsequent test
executions.

4-21@

c.

4-22@

Place a given floating point number into GLOB 47:

AA =4.624;

EXEC GLOBS (47, 3, AA);

or

EXEC GLOBS (47, 3, 4.624);

Measure the voltage on pin 6 and place the result in GLOB 47:

CPMU PIN 6;
MEASURE VALUE;
EXEC GLOBS (47, 3, VALUE);

Display the contents of GLOB 47 on the TTP:

EXEC GLOBS (47, 4, VAL);
WRITE (TTP) VAL;

SECTION 5
PATTERN GENERATION UTILITY PROGRAMS

5.1 CSETF

5.1.1

5.1.2

Introduction
CSETF is an assembly language program designed to assist the FACTOR

programmer in generating Sentry compatible string files of SET F data when
the input pin patterns are of a repetitive nature.

Program Usage
The user creates his test program in two steps.

During step 1, the CSETF program will generate SET F commands and store
them in a pre-ASSIGNed string file.

During step 2, the user's FACTOR program is recompiled and the string file
generated in step 1 is INSERTed into the user's program ready for execution.

5.1.2.1 CALLING SEQUENCES. In step 1 CSETF is called using the FACTOR

assembly language linkage statement EXEC. The form is
A. Initialize program and designate output file.
EXEC CSETF (§, N);

N = a one or two digit number to be appended to the character string
"SETF" to create a unique DOPSY file name 'SETFN' for storing the
generated data.

B. Define Pins
EXEC CSETF (PIN, LINE, REPT, BITl,NOI,...,BITn,NOn);

PIN = pin number <1<PIN 60

LINE = line number on which the subsequent pattern will begin.

REPT = the number of times the subsequent BIT-NO combinations
will be repeated.

BIT=for 1.

NO = number of times the previous bit will be repeated.

5-1

C. Terminate input and create output file.
EXEC CSETF (61);

Upon encountering the termination card, the SETF file is created and
the following comment is displayed on the TTP

END CSETF

5.1.2.2 ASSIGNING DISC FILES. Prior to executing the FACTOR program which
calls CSETF the user must reserve space in working storage to store his
generated data using the DOPSY ASSIGN command. The number of words to
reserve is approximately equal to (the number of SET F statements
generated) times ((the highest pin number divided by four) plus two).

// ASSIGN 'SETFn' x Words

If the user is storing his data in a previously used file, the following
questions will be displayed on the TTP:

DATA EXISTS IN SETF FILE. UPDATE? (Y/N)

If the response is Y, the old data will be destroyed and the new data will be
stored in the selected file. Any other response will cause a return to the
DOPSY monitor maintaining the original data in the selected file.

5.1.3 Error Message

If any errors are encountered while executing CSETF, the following message
is displayed on the TTP:

CSETF ERROR XXXX

The program is terminated and a return is made to the DOPSY monitor.

ERROR CODE DESCRIPTION

OPSV Unable to open SETFNN file (probably not
assigned).

WRSV EOF encountered on SETFNN file (not
enough space assigned to file).

CLSV Unable to close SETFNN file (probably
will never occur, system problem).

EXEC Syntax error in EXEC CSETF statement.

The following comment will also be
displayed to designate which card is in
error:

STATEMENT NNNNN

5-2

The three following error messages are also generated. They probably will
never occur, but if they do, you are either out of disc storage or there is a

system problem.
RDWK

WRWK Unable to READ, WRITE, or OPEN working storage.
OPWK

5-3

5.2 ROMPAT

5.2.1

5.2.2

5.2.2.

5-4

Introduction

ROMPAT is an assembly language program designed to assist the FACTOR
programmer in developing test programs for read only memories. Given a
ROM with known inputs the program will generate the output pattern which
can then be used to test subsequent ROMs. A device with up to sixty pins
having any combinations of input, output, and constant pins can be tested.

Program Usage
The user creates his test program in two steps.

During step 1, the user's FACTOR program will EXECute ROMPAT to
generate SET F statements and store them as a string file on disc storage.

During step 2, the EXEC ROMPAT statement is removed from the user's
FACTOR program; the program is recompiled and the string file generated
in step 1 is INSERTed into the user's program ready for execution.

During step 1, the user may preload local memory with his own address
sequence or he may let the ROMPAT program generate all possible address
combinations. In either case, after all the commands are loaded into the
tester's local memory, the tester is enabled. The SET F commands are
executed, and when a fail occurs, the C Register results are ORed in with
the original data to create a new SET F command. The new command is
stored back into local memory, and the tester is again enabled restarting at
local memory start address zero. If any location fails five consecutive times,
the test is terminated and a return is made to the DOPSY monitor. Upon
reaching the local memory Test End address without a failure the contents
of local memory are then converted to TRASCII format and stored as a
string file in working storage.

1 ADDRESS GENERATION. In step 1, before calling ROMPAT the user
must first set up the conditions defining voltages, timing, mask register, etc.
ROMPAT is then called using the FACTOR assembly language linkage
statement EXEC. The form is

EXEC ROMPAT (F, FILE, TPINS, IPINS, IP1,...,IPN, CPINs, CP1,...CPn);

where

F

Funection

1 generate SET TI' statements subsequently starting at lowest
order address going to highest address.

2 generate SET F statements in a complementary pattern
starting with lowest address then highest address, etec.

Example: SETF 1p80.......
SETF p111.......
SETF p100.......
SETF 1#11.......

4 generate SET F statements in a random order.

Any combination of patterns may be generated and stored in the same
string file by summing the F parameters for the functions desired; i.e.,
to generate both sequential and random patterns in the same file F
would be set equal to 5 (1 and 4). To generate all patterns in one file,
F would be set to 7 (1 and 2 and 4).

FILE = a one or two digit number nn to be appended to the character
string "SETF" to create a unique DOPSY file name- 'SETFnn' for
storing the data generated in step 1. (See ASSIGN below).

TPINS = total number of pins
IPINS = total number of address pins.
IP1 - IPn = address pin numbers.
CPINS = total number of pins remaining a constant one.
CP1 -CPn = constant pin numbers.

Example: EXEC ROMPAT (1, 11, 8, 4, 1, 3, 6, 7, 1, 5);

The data will be generated sequentially and stored in string file 'SETF11'.
The device has a total of eight pins. The device has four address pins. The
address pins are one, three, six and seven. The device has one pin which will
remain a constant one. The constant pin is five.

5.2.2.2 NO ADDRESS GENERATION. The user may preload local memory with
his own address sequence and execute ROMPAT to generate the output
pattern. The FACTOR statement is
EXEC ROMPAT (F, FILE, TPINS, LMWORDS);

F = No address generated.
FILE = same as above.

TPINS = same as above.

LMWORDS = total number of local memory words to use, i.e., total number of

SET F statements to generate in string file (1-1024).
Example: EXEC ROMPAT (@, 21, 15, 512);
The data will be generated using previously stored addresses in local memory

and stored in string file 'SETF21'. The device has a total of 15 pins. A total
of 512 SET F statements will be created.

5.2.2.3 LOCAL MEMORY START ADDRESS. Unless otherwise specified, the

functional patterns will be stored in local memory starting at address zero
(). However, if the user wishes to start loading his patterns at an address
other than zero he can specify the local memory start address with the
following FACTOR statement:

EXEC ROMPAT (19, LMADD);
LMADD = The local memory address to begin storing the functional

patterns. In all cases, the string file generated on dise will begin with the
contents of local memory zero.

5.2.2.4 ASSIGNING DISC FILES. Prior to executing the FACTOR program which

calls ROMPAT, the user must reserve space in working storage to store his
generated data using the DOPSY ASSIGN command. To calculate the
approximate number of words to be saved, the following formula can be
used:

WORDS = (2** IPINS) * (2 + (TPINS/3)) * NUMBER OF FUNCTIONS

For the first EXEC example in 5.2.2.1 above, the following ASSIGN
command would first be executed.

//ASSIGN 'SETF11' 88 WORDS

5.2.2.5 INSERTING GENERATED DATA. After completing step 1, the user can

5.2’3

5-6

now recompile his FACTOR program replacing the EXEC statement with an
INSERT statement.

Example:
INSERT SETF11;
Error Messages

During step 1 if any errors are encountered, the following message is printed
on the output device:

ROMPAT ERROR N

5.2.4

5.2.5

The user program is terminated and a return is made to the DOPSY monitor.

ERROR NUMBER N

1

6

DESCRIPTION

Error in parameters list in EXEC ROMPAT state-
ment.

Unable to open file to store data. ASSIGN statement
probably not executed.

EOF encourtered while writing data to working
storage. Not enough storage has been saved with
ASSIGN statement.

Unable to CLOSE output file.

Unable to successfully verify generated SET F
statements.

Error encountered in generating random addresses.

Errors 1, 2, and 3 are user caused errors and corrective action should be
taken by the user and the program rerun.

Errors 4 and 6 indicate errors not within the user's power to correct. There
is a problem with the system.

Error 5 can be overcome by using a different device of the same type. This
error indicates a defective device.

Summary of events of ROMPAT usage:

OV W O DN

Test.

ASSIGN output file.

Compile FACTOR program with EXEC ROMPAT statement.
Execute program under TOPSY creating output file.

Recompile FACTOR program with INSERT output file statement.

Additional Documentation

SENTRY 600 ROMPAT
Application Note AD 1023

SENTRY 500 ROMPAT
Application Note AD 1052

SENTRY 200 ROMPAT
Application Note AD 1033

5.3 RAMPAT

5.3.1 Introduction

RAMPAT is an assembly language program designed to assist the FACTOR
programmer in developing test programs for random access memories. It
augments the standard FACTOR instruction set to allow generation of
complex function test patterns with only a few user language instructions.
This software pattern generator uses standard Sentry 500/600 hardware for
test execution. Also RAMPAT supplies special failure analysis datalogging
and a plotting routine for failure analysis. @ The following program
description applies to RAMPAT versions Rev 4L and Rev 4S. The "L" and
"S" denote long and short versigzns of the same revision level. The short
version does not include the N“ type patterns, resulting in a savings in
computer memory space.

5.3.2 Program Usage

RAMPAT is called using the FACTOR statement EXEC. The general form
is:

EXEC RAMPAT (N1, parameter 1, parameter 2, parameter n);

5.3.2.1 TESTER PIN DEFINITION. To define tester pins the following values for

N1 are used:

Z
—

Define Device Size

Define Row Address Pins
Define Column Address Pins
Define Data Input Pins*

Define Inverse Data Input*
Define Data Output Pins
Define Inverse Output Pins
Define Write Clock Pin

Define Pins of Constant 1 Data
Define Chip Select Pins

10 Topologically Seramble Rows
11 Topologically Seramble Columns
12 Define Oscilloscope Syne Pin

ORI WO

* For devices where the same pin is used for input and output, specify only
the output pin (N1 = 5 or 6) and the input data will automatically be
generated.

5.3.2.1.1 For N1 = §, define RAM size by

EXEC RAMPAT (§, COLUMNS, ROWS, BITS)

where

COLUMNS = number of column address 1 < COL <64
ROWS = number of row addresses 2< ROWS £ 64
BITS = number of bits per word 1 <BITS <9

The product of rows and columns must not exceed 2048. RAMPAT must
execute this instruction before those listed below.

5.3.2.1.2 For N 1 = 1, define row address pins by
EXEC RAMPAT (1, Rp, R1, R2,...)

where Rf = tester pin number of least significant
row bit
R1= tlegrtfr pin number of row bit I,
I<6 (2 = ROWS)

5.3.2.1.3 For N1 = 2, define column address pins by
EXEC RAMPAT (2, Cp, C1, C2,...)
where Cfl = tester pin number of least significant
column bit
C1 = tester piny pumber of column bit I, I<6
(2ri uin= COLUMNS)

5.3.2.1.4 For N1 = 3, define data input pins by
EXEC RAMPAT (3, DI, DI1,...)
where DI = tester pin number of first bit of
memory word
DI1 = tester pin number of bit I of memory
word, I<BITS

5.3.2.1.5 For N1 = 4, define complement data input pins by
EXEC RAMPAT (4, IDIp, IDI1, . . .)
where IDI0 = tester pin number of first complement
data in bit of memory word.
IDI1 = tester pin number of bit I or complement
data in word, I< BITS

5.3.2.1.6 For N1 = 5, define data output pins by
EXEC RAMPAT (5, DOg, DO1, .. .)
where DO = tester pin number of first output
bit of memory word
DO1= tester pin number of bit I of memory
word, 1< BITS

5.3.2.1.7 For N1 = 6, define complement data output pins by
EXEC RAMPAT (6, IDOg, IDO1, ...)
where IDOf = tester pin number of first complement
data out bit of memory word.
IDO1 = tester pin number of bit I of complement
data out word, I <BITS

5.3.2.1.8 For N1 = 7, define read/write pin by

EXEC RAMPAT (7, WRITE)
where WRITE = tester pin number of read/write clock

5-9@

5.3.2.1.9

5.3.2.1.10

5.3.2.1.11

5.3.2.1.12

5.3.2.1.13

5.3.2.2

5-10

For N1 = 8, define chip selects or clock pins that
require constant ones in local memory by
EXEC RAMPAT (8, P1, P2,...)
where P1 = tester pin number requiring a constant one in Local
Memory
PI = tester pin I requiring a constant one in Local Memory,
I<6.

For N1 =9, define chip select pin and number of
addresses for refresh during ping-pong or
walking tests for devices requiring write with
the chip disabled for refresh

EXEC RAMPAT (9, CENABLE, NADDR)

Where CENABLE = tester pin number of primary chip
enable pin.
NADDR = Number of consecutive address required
for refresh (typically the number of
rows)

For N1 = 10, define row seramble by

EXEC RAMPAT (10, Rp, R1,...RI)

Where the sequence of numbers R0, R1, ... Rl is the true
geometric order of rows on the chip relative to address
definition. (IKROWS) :

For N1 = 11, define column scramble by

EXEC RAMPAT (11, Cp, C1,...CI)

Where the sequence of numbers C0, C1, ... Clis the true
geometric order of rows on the chip relative to address
definition.

For N1 = 12, define oscilloscope syne pin by

EXEC RAMPAT (12, SYNC)

Where SYNC is the desired tester pin for synchronizing
the scope to the test pattern.

PIN DEFINITION EXAMPLE. An example of defining the 1103 - 1024

bit RAM is as follows:

EXEC RAMPAT (0, 32, 32, 1); REM 32 ROWS, 32 COLS, 1 BIT;

EXEC RAMPAT (1, 7, 5, 3,1, 24); REM PRIMARY ROW PINS;

EXEC RAMPAT (2, 14, 12, 16, 21, 10); REM PRIMARY COLUMN
PINS;

EXEC RAMPAT (3, 20); REM DATA INPUT;

EXEC RAMPAT (6, 23); REM INVERSE DATA OUT;

EXEC RAMPAT (7, 28); REM WRITE CLOCK PIN;

EXEC RAMPAT (8, 9, 26, 29); REM PRECHARGE, CENABLE
AND READ;

5.3.2.3

Execution of the above statements completely defines the functional
pins of the device. The number of row or column pins defined should be
consistent with the number of row or column addresses. Note that in
the above example, EXEC RAMPAT (4, ...) or EXEC RAMPAT (5, ...)
were not executed because no inverse data input or true data output pin
was used.

Reassignment of pin definition may be made by adding 20 to the first
parameter in EXEC. For example, to reverse the order of row
addressing

EXEC RAMPAT (21, 24, 1, 3, 5, 7);
or to inhibit the CENABLE pin,
EXEC RAMPAT (28, 9, 8, 29);

SET UP RULES. RAMPAT requires the following rules in the set-up
portion of the test program.

1. Set DB to all 1's for input pins, including I/O pins, power, clocks
addresses, ete.

2. Set DA equal to DB except a 0 for I/0 pins.

Set S to 1 for pins using alternate references. This may be to

invert the address sequence to reverse the address sequence.

Since clocks are RZ, the alternate reference may be necessary to

produce the correct polarity on them.

Force EB1 equal to Ef.

Force EBf equal to El.

Set the write pin to RZ mode.

Set the MA register to all zeroes.

SET F 0; This indicates to the compiler that the local
memory was loaded. Actually, RAMPAT will
load the local memory.

o0 3 O O >
. c e e

For example, an 1103 type device would be defined as follows:

SET DB 101010101101010101111001111111;

SET DA 101010101101010101111001011101;

SETS[9]1 [26] 1 [28] 1; REM PRECHARGE, CENABLE, WRITE;
SET RZ [9] 1 [26] 1 [28] 1;

FORCE Ef VINLO; FORCE E1VINHI;

FORCE EB1 VINLO; FORCE EBf VINHI;

SET MA (30: §);

SETF &

Other timing, power and reference set up.

Here, pin 28, the write pin, is tied to pin 29 on the load board. During a
write, pin 28 is a 1 in DA. During a read, Set DA 28 01 lets pin 29
supply a constant bias on that pin. DB was set for both pins 28 and 29,
so no relays change state when changing from write to read.

5-11

9.3.2.4

5.3.2.4.1

5-12

PATTERN SELECTION. The next step is to define a pattern to be
exercised. RAMPAT has a library of ten patterns. The current patterns
are (1) checkerboard, (2) column bars, (3) row bars, (4) diagonal,
(5) solid, (6) parity, (7) walking one (zero), (8) ping-pong, (9) shift and
(10) surround disturb.

There are two basic types of patterns; Type N, where the total n\émber
of tests is directly proportional to the RAM size N, and Type N“, the
walking patterns.

Type N Pattern Selection. The general form of Type N pattern
selection is:

For N1 from 100 through 199,
EXEC RAMPAT (N1, N2, N3, N4, N5)
WHERE N1 PATTERN
100 ALL ZEROES
101 CHECKERBOARDS
102 COLUMN BARS
103 ROW BARS
104 DIAGONAL
105 PARITY
106 SHIFT
N2 = COLUMN START, THE FIRST COLUMN
ADDRESSED WITH THE BEGINNING OF EACH NEW

ROW

N-3 ADDRESS SEQUENCE

9 MARCH (0, 1, 2, 3,. . .)

1 COMPLEMENT (0, #/, 1, 1/, 2, 2/)

N4, N5 = DATA FOR SHIFT PATTERN

where N4 and N5 represent the data in the first row, to
be shifted right by one for each consecutive row. The
maximum number of bits per row is 32. Data is right
justified and each data word (N4, N5) represents 16 bits
of data. For example, if the data pattern for the first
row is, starting with eolumn 31,

00111110000011110000111000110010
then N4 = 0, 011, 111, 000, 001, 111 = 037017B
and N5 =0, 000, 111, 000, 110, 010 = 007062B
For these patterns, the EXEC statement only loads local memory with

data. Actual execution of write and read, ete., is done with normal
FACTOR statements.

5.3.2.4.2

N2 (COLSTR) defines the first column addressed as each new row is
entered. This is for many dynamic devices that are refreshed by rows
so that the worst case cell (column) in a row may be tested first during
refresh testing. Also, COLSTR defines the starting ecolumn of row 0 for

the diagonal pattern. COLSTR should be less than COLUMNS (starting
from zero).

The above statements could be put in a subroutine and called for various
patterns or column starts. For example, to do the first six patterns

FOR PATT =100 THROUGH 105 CALL XTEST;
or for a walking diagonal

PATT = 104;

FOR COLSTR = § THROUGH 31 CALL XTEST;
or for critical refresh column address tests

PATT = 101;

FOR COLSTR = f THROUGH 31 CALL XTEST;

Other pattern variations can easily be done. For example, to reverse
the addressing sequence, switch to the alternate address line by

SETS[]1[31...;0r
SET INV; with 1 ns. option

Or, the least significant address bit may be held constant so that only
odd or even rows are addressed during a refresh disturb test.

FORCE EB1 VINHI; FORCE EBf VINHI;

SET S [7] 1; REM ALT REF ON LSB ADDRESS;
SET MINOR 106; REM LOOP FOR 54 MSEC;
ENABLE TEST; REM DISTURB ODD ROWS;
SET S [7] 0;

SET MINOR 1;

ENABLE TEST; REM READ ALL ROWS;

Example of Type N Pattern Execution. The sequence of events is given
in the example below. Here pin 29 provides bias on the write line during
a read.

SET MAJOR 1, SIZE - 1;

SET MINOR 1, 0, SIZE - 1;

EXEC RAMPAT (PATT, COLSTR, SEQUENCE);
ENABLE TEST; REM WRITE PATTERN;

SET DA [28] # 1; REM DISABLE WRITE CLOCK;
SET MA [23] 1; REM ENABLE STROBE;
ENABLE TEST; REM READ OUT PATTERN;

5-12

9.3.2.5

5 3.2.5.1

5-14

To execute the complement of the above test, reverse the S1, S0 sense
levels, reverse data in by selecting the alternate reference supplies
(EB1/EBf) with the S register and define the negative logic mode.

SET S1 VOL; SET Sp VOH;

SET LOGIC NEG;

SET S [20] 1; REM INVERT DATA IN;

SET DA [28] 18; REM ENABLE WRITE;

SET MA [23] #; REM DISABLE STROBE;

ENABLE TEST; REM WRITE COMPLEMENT PATTERN;
SET DA [28] f1;

SET MA [23] 1;

ENABLE TEST; REM READ COMPLEMENT PATTERN;

TEST EXECUTION WITHIN RAMPAT. RAMPAT also has a set of
special instructions where testing is actually executed by RAMPAT,
That is, in the previously described patterns for N1 from 100 to 199,
RAMPAT only generated the data and deposited the results in the Local
Memory. Actual test execution was initiated by the user's FACTOR
program instructions. However, some tests require repetitive execu-
tion, so those cases are handled automatically by RAMPAT.

These functions are

N1 FUNCTION

200 Ping-Pong Walking One (Zero)
202 RAM Fail Matrix Datalog

203 Walking One (Zero)

204 Surround Disturb

Ping-Pong Test For N1 = 200, Execute Ping-Pong Walking Pattern By
EXEC RAMPAT (200, LOG, N3);
where LOG =1 Enables Ping-Pong Datalogger
LOG = p Disables Ping-Pong Datalogger
N3 p for no special refresh or 1/0
=1 for special refresh mode where the chip is disabled and
DUT written to refresh. Must define CENABLE with
EXEC RAMPAT (9, ...)

The ping-pong test executes a one walking through a field of zeroes
with all possible address transitions. Initially, all cells are written to 0.
Then a one is written into the first. The flow chart shows the sequence
of fvents of a ping-pong test. The number of tests is approxiinately
2N“. Counting both true and complementary cases, there are 4N~ tests.
Execution is as follows:

LOG = f;
EXEC RAMPAT (200, LOG, 0);

ALTER may be used to modify LOG to a 1 to enable the ping-pong
datalogger. The reason for a special datalog here is due to the nature of
ping-pong testing. Here, all possible address transitions are being tested.
So, a failure of one cell may be a function of the previous cell tested, i.e.,
the transition of bits in the address decoders may have caused the fail. For
example,

PING PONG TEST FAILED TO READ A 1 IN LOCATION COL 19 ROW
1 FOLLOWING A READ ¢ IN LOCATION COL 2 ROW 5
BACKGROUND WAS A §

5.3.2.5.2 RAM Fail Matrix Datalog Of Type N Patterns. The second case of test
execution generated by RAMPAT is a special datalog feature for displaying
up to 1024 bits of data by row and column coordinates. This is called the
RAM Fail Matrix Datalog. For multiple bit RAMs, enable only one output
pin at a time for use with this display.

FOR N1 - 22, EXECUTE DYNAMIC MEMORY FAIL MAP BY EXEC
RAMPAT (202);

For output on the line printer, set LP in DOPSY or datalog LP in
TOPSY. For multibit word RAMs, enable only one output pin with SET
MA for the fail map on that pin.

The Fail Matrix is currently limited to RAMS with rows and columns less
than or equal to 32.

5.3.2.5.3 Walking One (Zero) Test

FOR N1 = 2¢3, EXECUTE THE WALKING ONE (ZERO) PATTERN BY
EXEC RAMPAT (203,LOG,N3);

Where
N3 = 0 for no special refresh or I/0

1 for special refresh mode where the chip is disabled and

the DUT written to refresh. Must define CENABLE with -

EXEC RAMPAT (9, ...)

2 for 1/0 devices where the input drivers must be disabled

during the read cycle.

1 enables fail matrix datalogger

0 disables datalog for this test

LOG

1}

The walking test writes a 0 in all cells. Then a one is written in a cell and
all cells from 0 to SIZE - 1 are read. Then the cell with the one is restored
to zero and a one written into the next cell, ete. Counting both the true
(walking one) and complement (walking zero), a total of about 2N(N + 2)
tests is executed. If LOG is 1, the fail matrix datalogger is automatically
called if a fail is detected. This is the same datalogger as number 202 and
will show the location of the one in the field of zeroes and the failing cell.

5.3.2.5.4 Surround Disturb Pattern. For N1 = 204 execute the surround disturb
test by

EXEC RAMPAT (204, LOG);

5-15

Since this instruction is in the 200 category, this means that the local
memory pattern generation and execution are done within RAMPAT (no
FACTOR Enable Test required).

The pattern loaded in local memory will be as follows:

P Write a p in Row M, Column N -1
1 Write a # in Row M, Column N

2 Write a # in Row M, Column N + 1
3 Writea 1 in Row M -1, Column N
4 Read a fin Row M, Column N + 1

5 Writea 1 in Row M + 1, Column N
6 Read a §in Row M, Column N -1

7 Read a @ in Row M, Column N

The user must define minor and major loop constants before executing the
surround disturb pattern by

SET MINOR C, 3, 6;
SET MAJOR 1, 7;
EXEC RAMPAT (204, LOG);

RAMPAT will start with M = 0, N = 0. In this case, M -1 or N -1 will wrap
around to be the maximum row or column address. The pattern will be
stored in local memory and executed. The minor loop count, C, should equal
the number of times the surround disturb of cell M, N will be exectued. For
example, if the cycle time is 900 nanoseconds, and the desired disturb time
is 1.8 milliseconds, then C should be 500.

During execution of the first pattern, the software computes the local
memory data for the next value of M or N. When the first pattern is
complete and if no failure occurred, the next pattern is loaded and executed
in DMA (Direct Memory Access) mode. All values of M and N are done.
When M or N equals the maximum row or column address M + 1 or N + 1 will
be zero (wrap around). A failure in any cell will terminate the test. If LOG
is one in the EXEC statement, the RAM Fail Matrix Datalogger will be
called (the same as EXEC RAMPAT (202).

The complement surround disturb may be executed by inverting data in and
out as previously discussed.

5.3.2.6 SHMOO PLOTTING. Two other routines are contained within RAMPAT

for special datalogging features.
EXEC RAMPAT (40, ARRAY);

where ARRAY is a FACTOR array of 61 elements. RAMPAT prints a line of
61 characters with a space or blank where the ARRAY element is f and an X

- otherwise.

5-16

5.3.2.6.1 Line Printer Top of Form. Another RAMPAT statement does a top of
form on the line printer for plotting preparation

EXEC RAMPAT (41);

5.3.2.6.2 Shmoo Plot Example. A complete plot of device performance for all
values of two parameters may be executed as follows:

FAIL 1:
PASS1:

EXEC RAMPAT (41); REM TOP OF FORM;
WRITE 'header informaiton';

FOR PAR1 = P1IMAX THRU P1MIN BY DELP1
DO BEGIN

define values that are a function of PAR1

I=0
FOR PAR2 = P2MIN THRU P2MAX BY DELP2
DO BEGIN

define values that are a function of PAR2

[=1+1; REM TPAS ARRAY ELEMENT;

ON FCT, FAIL1; REM BRANCH TO FAIL1 IF FAILURE;
CALL XTEST; REM TEST SUBROUTINE;

TPAS I = 1; REM SET ELEMENT TO 1 IF PASS;

GOTO PASS1;

TPAS 1 =90

END;

EXEC RAMPAT (40, TPAS); REM PRINT DATA;

END;

WRITE 'bottom header information';

5.3.2.7 MULTIPLE BIT WORDS. For testing RAMs with multiple bit words, the
word bit relations are defined by selecting combinations of data in and
inverse data in. For example,

EXEC RAMPAT (3, BIf, BI1, BI2, BI3)
EXEC RAMPAT (5, BOp, BO1, Bp2, BO3)

will make all four bits of the word equal. To define alternate 1, 0, 1, 0 for

the word,

EXEC RAMPAT (3, BIg, §, BI2, f);
EXEC RAMPAT (4, §, BI1, §, BI3);
EXEC RAMPAT (5, BOg, O, BO2, f);
EXEC RAMPAT (6, f, BO1, §, BO3);

This makes BIp = BI2 = BI1 = BI3

5-17

Other combinations can be defined by this method.

5.3.3 RAMPAT Terminal Errors

The following terminal errors will be produced by RAMPAT in the event of a
user error in the calling procedure.

TERMINAL ERROR

101

102

103

104

5.3.4 Additional Documentation

DESCRIPTION

Illegal value used for N1 in EXEC
statement

Illegal value used for N2 and/ or N3 in
EXEC statement (ROWS x COLUMNS
exceeds size of Local Memory).

Too many parameters used in EXEC
statement (too many pins specified for
data in, out, ete.).

RAM size improperly defined by N1 =f
procedure. RAMPAT may have been
removed from computer memory by
execution of another Assembly Language
Overlay.

SENTRY 500/600 RAMPAT Application Note AD 1013
SENTRY 200 RAMPAT Application Note AD 1002

5-18

5.4 ROMPONG

54.1

5.4.2

5.4.2.

5.4.2.

Introduction

ROMPONG is an assembly language program designed to assist the FACTOR
programmer in testing access times of read only memories. The program
performs a ping-pong type test on a functional pattern testing the access
time from every device address to every other address. Also, ROMPONG
supplies optional failure analysis datalogging.

Program Usage
1 CALLING SEQUENCE. The FACTOR calling sequence is:

EXEC ROMPONG (SIZE, LOG);

where
SIZE = the number of functional patterns loaded into local
memory (less than or equal to one half the local
memory size)
LOG = 0 -do not log device failure data

1 - log failure data on system primary output device

2 OPERATING PROCEDURE. The user first loads his functional test
pattern into local memory starting at location zero. The test pattern cannot
exceed one half the system's local memory size. ROMPONG is then invoked
using the assembly language linkage statement EXEC ROMPONG described
above.

The first task performed by ROMPONG is to expand the truth table of the
ROM into the even numbered locations of local memory.

The pattern for address f remains at location f.
The pattern for address 1 is stored at location 2.
The pattern for address 2 is stored at location 4.

The pattern for address N is stored at location 2N.

Upon completion of the relocation of local memory, the accessing test is
begun. The contents of local memory location § are stored into all odd
locations from 1 to 2N + 1 and the test is "ENABLED". The contents of
location 2 are then written into all odd locations and again the test is
"ENABLED". This procedure is repeated until the acecess time from every
device address to every other address is tested or until a failure ocecurs.

5-19

In either case, upon termination, local memory is restored to its original

state and a return is made to the user's FACTOR program.

5.4.2.3 FAILURE ANALYSIS.
following data is output

If the user selects to log his failure results, the

IHGs prpas2 AlDRS 1766 317E® WhrHa%
INSTRUCTION tanaA67 LaC, mEwm, Nl ITERATLON 317
INSTRULTION PAKLAGT Lnc,. “En, purle 1TERATION KLY
FAILED SET F RANKS 1m2 G1V10 BB11¢ 1AFEE #1110 VUrye vv/es
RANKS 3mA4 PAGDHE WERVE BEEEh GRERR PERPY CREeY
COMPARTISDON REG, KANKS (=2 1062 bl AERVE LHPRL POREHD FVitha
RANKS 3=4 ARKRR DREVA RRbLP AROTR PROJT Gabk
PREVIOUS SET F FRANXS (=2 negnl lvdne 21011 11110 el ¢hive
RANKS 3m=d AEPCP CHBAA LLRAC CERUR FRRER GHARR
INSTRUCTION Guthab? : LOC, MEM, w764 ITERATION 317
FAILED SET F RANKS =2 pARAR A1 100111 11110 ey (2200
RANKS Jw=4q NURACR Mol QAAGER RRAGAL VAPWRL LB
COMPARISON REG, RANKS (=2 2100 292 PREVE NAGRE vapry §RANR
RANKS 3=4 PARER BaBEB BERDE ACPRR FRARAE FBREDHR
PREVIDUS SET F KANKS 1=2 nieer ¢rall 110061 1114w Gupoe palee
RANKS 3wd FUOAP QUREE GRPER BORRA PRENU ket
INSTRUCTION = the FACTOR statement number of EXEC ROMPONG
statement which failed.
LOC. MEM. = the local memory location of the failed test pattern.
ITERATION = the number of times the odd locations have been

changed. This is an octal number and also indicates
the local memory location of the original functional
pattern as loaded into local memory by the user.

5.4.3 Error Messages
ERROR MESSAGE

ROMPONG ERR EXEC

5-20

DESCRIPTION

An error is encountered in the EXEC
ROMPONG statement. The user program
is terminated and a return is made to the
DOPSY monitor.

ACCESS, 2.7, 2-58
BMT, 1.13, 1-41

CHANGE, 1.8, 1-12
COPJOB, 1.7, 1-9
CRDTAP, 1.3, 1-4
CSETF, 5.1, 5-1
CYCLE, 3.4, 3-18

DATAIO, 2.7, 2-42
DBUP, 1.11, 1-30
DEBUG, 3.1, 3-1
DELJOB, 1.6, 1-7

EDIT, 1.9, 1-15
FCOMP, 1.1, 1-1
FINDJOB, 1.5, 1-6
FMTAP, 4.7, 4-19
GLOBS, 4.8, 4-20

INIT, 1.14, 1-43
INSERT, 1.15, 1-45

LABEL, 1.17, 1-49
LISTC, 1.2, 1-3

INDEX

LMIO, 3.3, 3-12
LMLOAD, 4.4, 4-6
LMMOD, 4.1, 4-1
LMSAVE, 4.5, 4-10
LMTSF, 4.2, 4-3
LOGREG, 4.6, 4-18
LPLF, 4.3, 4-5

NOTE, 1.16, 1-46

PATCH, 1.10, 1-28
PGLOG, 2.4, 2-27
PPLOG, 2.5, 2-29
PSCAN, 3.2, 3-7

RAMPAT, 5.3, 5-8
ROMPAT, 5.2, 5-4
ROMPONG, 5.4, 5-19
SPLOT, 2.3, 2-11
TAPLP, 1.4, 1-5
TDX, 1.12, 1-34
TTIME, 2.2, 2-8

XGRAPH, 2.1, 2-1
XMIT, 1.18, 1-48

Index 1@

MANUAL REGISTRATION FORM
AND COMMENT SHEET

FILL OUT AND MAIL TO RECEIVE UPDATES AND SUPPLEMENTS AUTOMATICALLY
AS THEY ARE PRINTED.

FROM: NAME
TITLE

BUSINESS
ADDRESS

BUSINESS
PHONE

MANUAL PART NO. 6709566 |

REVISION NO. |

DATE OF PUBLICATION_June 1977

COMMENTS: (Please describe errors, suggested additions or deletions, and reference part
number, page number, paragraph number, or drawing number.

ERRORS, OR CHANGE SUGGESTED, ON PAGE(S)

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

Fold Along Dotted Line

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

Postage Will Be Paid By

FAIRCHILD SYSTEMS TECHNOLOGY
1725 TECHNOLOGY DRIVE
SAN JOSE, CA 95110

ATTN: SYSTEMS TECHNICAL PUBLICATION DEPT.

Fold Along Dotted Line

FIRST CLASS
PERMIT NO. 5699
San Jose,

California

	000
	001
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	I-01
	replyA
	replyB

