
FST-1

SUBROUTINE LIBRARY MANUAL

TABLE OF CONTENTS

SECTION I INTRODUCTION

SECTION II IOCS PROCEDURES

2. 1 Introduction .
2.2 TTPIO
2.3 TTRIO
2.4 CRIO
2.5 LPIO
2.6 DISC IO
2.7 MTIO

SECTION III CONVERSION PROCEDURES

3. 1

3.2
3.3

3.4

Introduction
CRASC
ASCBIN .
BINDEC .

SECTION IV FILE PROCESSING PROCEDURES

4 .1

4.2

4.3

4.4
4.5
4.6
4.7

4.8
4.9

Introduction .
OPEN ..
CLOSE
READ .
WRITE
GETW .
PUTW
GET
PUT.

4.10 SCAN .

. .

. ~ .

(i)

. . . .
. . .

PAGE

. . l

. . 4
• . 5

• • 6

• • 6

• 8

• 9

TO

. • 10

• • TO

• TO

.11

11

. .11

. • .14

. • 15

.16

.17

. . . . 17

.17

. .18

.18
• • 19

SECTION IV FILE PROCESSING PROCEDURES (Continued)

4. ll GFREC .
4. 12 PFREC .
4.13 FIND .
4.14 OUTREC
4.15 INREC
4.16 SRCH (ENTRFN, WRITDS)
4.17 DFILEN•..

APPENDIX A CHARACTER SET . .

APPENDIX B BUFFER FORMAT .

. .

(ii)

PAGE

... 20
. . 21

.21
. .22

•• 23

. .24

.24

. .26

. .28

FIGURES

Page

Figure 4 .1 Peripheral Memory

Mai n Memory • • • • • • • • • . • • • • • • . • • . • l 3

(;ii)

TABLES

Table 2.1 Subroutine Calling Sequence Operation Codes 2

Table 2.4 FST-1 Internal Codes . 7

Table 4.1 PMF Header Format . . . 12

(iv)

SUBROUTINE LIBRARY MANUAL

1.0 INTRODUCTION

This manual describes those systems procedures that are available to users
by means of the CALL directive. These routines are automatically loaded with
the user's program if he references them. Some aspects of these procedures
are not discussed in great detail. In general, great caution should be
exercised in getting too intimate with the system since the risk in destroy­
ing the system usually outweighs the advantages of trickery. In discussing
disc files, familiarity with the DOPSY manual is assumed.

2.0 IOCS PROCEDURES

2.1 INTRODUCTION

All of the I/O routines are very similar with regard to calling sequence and
usage. The similarities will be discussed in this section; subsequent sections
deal with the particulars for each I/0 routine.

An I/O procedure acknowledges two types of calls. The first of these is used
to initiate an operation on a device. Its general form is:

CALL
DATA
DATA
(DATA

ioname
integer
<deb address/integer>
name)

The name of the 1/0 procedure occurs in the operand of the CALL statement.
The DATA statement irrmediately following the CALL specifies the operation to
be performed. These values and the operations assigned to them are described
in Table 2.1.

If the operation is one involving a data transfer, the second location after
the CALL will contain the address of the data control block, DCB, where the
fol lowing information is stored. The first word of the DCB ts the .number of
words to be transferred, the second is the core memory address of the first
location to be read/written; the third word of the DCB is required only for
disc transfers and is the disc address (in segments) of where the data is to
be read or written.

Example:
DATA 48, *+2, 80
BSS 48

1

TYPE OCTAL
OF CODE CODE TTRIO

Test 0 BUSY

Read 1 READ
.. TTK

Read 2 READ
TTR

Write 3

Write 4

-Motion 5

Motion 6

Motion 7

Motion 10

Motion 11

12

Write 13

Write 14

DOPSY SUBRO"E L lBRARY
TABLE 2.1

SUBROUTINE CALLING SEQUENCE OPERATION CODES

SUBROUTINES

TTPIO CRIO DISC IO LPIO

BUSY BUSY BUSY BUSY

READ READ
BINARY BINARY

READ
ALPHA

PRINT BINARY WRITE PRINT WITHOUT
cr-lf* BINARY LINE FEED

PRINT BCD PRINT WITH
cr-lf LINE FEED

SPACE N LINES

TOP OF FORM

PRINT BINARY
no cr-lf

PRINT BCD
no cr-lf

* cr-lf is carriage return - line feed

N

MTIO

BUSY

READ BINARY

WRITE BINARY

WRITE TAPE MARK

RECORD SKIP FORWARD

RECORD SKIP BACK

REWIND

FILE SKIP FORWARD

FILE SKIP BACK

This DCB can be used for a 48 word transfer between core memory and track one,
sector zero on the disc. The DCB and its corresponding buffer area should not
be altered until the I/O operation has been successfully completed; this is
true of all I/O operations.

For some operations not involving a data transfer, the entry at CALL+2 will
contain a count. The SPACE operation of LPIO, for example, uses this count
to determine how far to space.

The entry at CALL+3 is not used by all I/0 procedures, but when used it must
contain the address of a user error routine. This error routine will be
entered when either a recoverable error persists after ten attempts to correct
it or an error in the DCB has been detected. This error routine is treated
as an extension of the I/0 interrupt routine and must return by executing a
BRU* to its entry point. The A register will have the following format when
the error routine is entered:

Bit Description
19 On if DCB error.
20 On if data overflow.
21 On if parity or va 1i di"ty error.
22 On if end-of-file {EOF).
6-0 Device address.

More than one of the bits 22-19 may be on at a time.

Some general comments on these error conditions:

• DCB errors either result from the memory address exic;e~ding the core avail­
able or from an excessive word count.

• Data overflow results when a device needs a memory cycle to empty/fill a
buffer and, because of other memory demands, cannot get one.

• Parity/validity error indicates a data transmission error, illegal card
codes, etc.

When control returns to the 1/0 interrupt routine, the operation will be
accepted as correct if the A register is non-zero; otherwise, it will be
tried again.

As they are currently implemented, the 1/0 routines, except; those for the
teletype, use locations 75B-77B as a pre-operative error routine. An
illegal operation value or dev4ce not ready will cause a halt at 768 to be
executed. This can be readily identified by the fact that the program counter
is lOOB and the A register contains the device number in bits 6~0.

The I/0 procedures operate with the interrupt system and automatically over­
lap I/0 with program execution. In order for the user to take advantage of
this, a special type of call is provided. Its general format is;

3

CALL ioname
DATA 0

BUSY RETURN
NOT BUSY RETURN

This 11 operation 11 tests to see if the I/0 routine has completed processing
the previous non-test operation. If the I/0 routine is busy, control will
return to CALL+2; if it is idle, (data transfer complete), control will re­
turn to CALL+3.

No provision is made in the I/0 procedure for handling reentrancy. The user
should, therefore, be very careful about calling 1/0 routines from interrupt
processors. When an I/0 routine is called, it will save and restore any
index registers that it requires, but will not save or restore the A and E
registers. The interrupt routines, obviously, are not qu~te so reckless.

If an 1/0 routine is CALLed by a user program, care must be taken to insure
that in case of any software error, control is returned to the Automatic
Restart Routine (ARR, location l25B} so that all interrupt entrance locations
will be relinked with the proper system routine.

In the following sections the details of each I/0 routine are presented.
Since the "test" operation is the same for all such routines, further dis­
cussion is not required ~nd ~~,--~~er~f~ri, cimitt~d. · ·

2 .2 TTPIO

Purpose: To output a record to the teletype.

Calling Sequence:

CALL TTPIO
DATA operation
DATA deb

operation - 3
4

Description:

138
148

NORMAL RETURN

BINARY print, with CR/LF.
BCD print, with CR/LF.
BINARY print, without CR/LF.
BCD print, without CR/LF.

TTPIO will output to the teletype the contents of the buffer described by
the DCB. The buffer is assumed to contain four TASCII characters per word;
see Appendices A and B. TTPIO will output a carriage return and line feed
after the last character is printed only if bit 3 of the operation is not set.
Because of the 72-character limit to a teletype line, the word count must be
less than 19 or the last characters will be truncated. In the BINARY mode,
every character in the buffer will be printed. In the BCD mode, trailing
blanks will not be printed.

4

Because the teleprinter is also shared with TTRIO, TTPIO sets a flag in the
COMREC so that no keyboard input can be initiated while an output operation
is being performed.

2.3 TTRIO

Purpose: To input a record from the teletype keyboard or paper tape reader.

Calling Sequence:

CALL TTRIO
DATA operation
DATA deb

operation - 1
2

NORMAL RETURN

READ keyboard
READ paper tape

Description:

TTRIO will input into the specified buffer until the buffer is full or until
a carriage return is encountered; in the latter case, the buffer will be
padded with spaces. The TASCII characters are p 1 aced in the buffer four per
word; see Appendices A and B. When TTRIO is ready for keyboard input, it
will output the character obtained from the high-order six bits of the opera­
tion entry. If unspecified, it will be a space. This character can be used
to uniquely identify the source of the input request, i.e., the monitor's *,
etc.

All characters read from the keyboard will be echoed, i.e., sent to the tele­
printer; like paper tape input, however, only the printing characters, the
TASCH set, are placed in the buffer. Two of the control characters are used
by TTRIO to provide 1 imi ted editing. The characters produced by CTRL B and
CTRL L are used to indicate BACKSPACE and LINE DELETE, respectively.

CTRL B will cause the buffer character pointer to be backed up one character
position. This is indicated by echoing a 1+1 if the input is from the key­
board.

Example:
II RENS+AME 1TEST1+2 1 AS 1TEST3 1

II RENAME 'TEST2' AS 'TEST3'

CTRL L will cause the buffer character pointer to be set to zero. This is
indicated by echoing carriage return, line feed, and the input request char­
acter, if the input is from the keyboard. The same net result, emptying the
input buffer, could be obtained by an appropriate number of backspace char­
acters.

Example:
* STA TABLE+3 <CTRL L>
*DP3Jl STA TABLE+3

5

2 .4 CRIO

Purpose: To input a record from the card reader.

Calling Sequence:

CALL CRIO
DATA operation
DATA deb
DATA error

operation - 1
2

Description:

NORMAL RETURN

BINARY READ
BCD READ

CRIO will read a card into the specified buffer. The two types of read,
BINARY and BCD, produce twelve and six bits per card column, respectively;
the format of the resulting buffer contents is discussed in Appendix B.
The maximum word count one can use without producing a DCB error is 20 for
BCD mode and 40 for BINARY.

The six bit code produced by the BCD read is not the TASCII code expected
by the system, but can be converted to TASCII by the procedure CRASC.
Table 2.4 shows the six-bit encoding for the card code produced by the 029
keypunch. This table shows that there are six card codes whose graphic
characters do not correspond to any in the TASCII set; the handling of these
is discussed in CRASC.

CRIO requires manual intervention on card jams and validity errors and will
retry the read when the required intervention has occurred. The va 1 i di ty
check occur~ when an illegal card code is read; this can happen only in the
BCD mode. The BCD character set can be used to produce all 64 possible com­
binations in the BCD mode.

The user error routine is entered either as a result of DCB errors, data
overflow, or an EOF condition. The EOF condition occurs when the card reader
goes not ready and the output stacker is full or the input stacker is empty.
In either case, the reading of the last card cannot be successful until the
card ready goes READY again. The normal mode of operation is to ignore this
con di ti on and let the program detect a 'I/• record for an end-of-file. This
record should be 'foll owed by a dummY one if \it ~ s the 1 ast record in the
input stacker.

2 .5 LPIO

Purpose: To output a record to the line printer.

6

TASCII ASCII
Char. ·code .

Space 00 240
I 01 041 .
II 02 042
03 243
$ 04 Q44
% 05 245
& 06 246
I 07 047

~ 10 050
11 251

* 12 252
+ 13 053

14 254
15 055

. 16 056
I 17 257

o 20 060
1 21 261
2 22 262
3 23 063
4 24 264
5 25 065
6 26 066
7 27 267

8 30 270
9 31 071

32 072 . 33 273 ,
< 34 074
= 35 275
> 36 276
? 37 077

'Carriage Return 215
Line Feed 012
Bell 207

7

TABLE' 2.4

fST-1 INTERNAL CODES

029
Code·Gra~hic · Cftar.

@

A
B
c
D
E
F
G

H
I
J
K
L
M
N
0

p
Q
R
s
T
u
v
w

x
y

o ... s ... 2 z
[

12-0 \
]

11-0 t
+

Delete

..IAS.Cll.. ASCII 029
·code Code·GraEhic

40 300
41 101
42 102
43 303
44 104
45 305
46 306
47 107

50 110
51 311
52 312
53 113
54 314
55 115
56 116
57 317

60 120
61 321
62 322

. 63 123
64 324
65 125
66 126
67 327

70 330
71 131
72 132
73 333 .<
74 134 --i
75 335 >
76 336 I
77 137

377

Calling Sequence:

a) CALL
DATA
DATA

LPIO
operation
deb/space count

operation - 3
4
5

b) CALL
DATA

LPIO
operation

·operation - 7

Description:

NORMAL RETURN

PRINT
PRINT FORMAT MODE
SPACE N LINES

NORMAL RETURN

TOP OF FORM

LPIO will transmit the contents of the specified buffer to the 1 ine printer
or position the printer paper in a particular way. The buffer is assumed to
contain four six-bit TASCII characters per word, see Appendix B.

The 11ne printer operates in two modes, fonnat mode and nonna 1 mode. In the
format mode, all print and space conmands do not constder the space between
bottom of fonn (BOF) and top of fonn (TOF) as part of the page. That is,
the page perforation 1s skipped automatf~lly. In the normal mode, the
region between BOF and TOF can be used for printed output (i.e., where an
end of page discontinuit,y is not desired).

The print co111Dands reqjire a DCB address at CALL+2. The PCB word count should
not exceed 33, reflecting the maximum (132 character) line printer pr1nt span.
If this should occur,· characters in excess of 132 will not be printed. In
the case of the 80 column printer, if the DCB word count exceeds 20, then 60
characters will be printed in columns 1-60 of the first of a two line pair and
the remainder right justified on the second line. For space commands, CALL+2
contains the num er of lines to space; only the low-order seven bits are used.

2.6 DISCIO

Purpose: . To transmit data between the disc and core memory.

Calling Sequence:

CALL DI SCIO
·DATA operation
DATA deb
DATA error

NORMAL RETURN

8

Calling Sequence:

a) CALL
DATA
DATA

LPIO
operation
deb/space count

operation - 3
4
5

b) CALL
DATA

LPIO
operation

operation - 7

Description:

NORMAL RETURN

PRINT
PRINT FORMAT MODE
SPACE N LINES

NORMAL RETURN

TOP OF FORM

LPIO will transmit the contents of the specified buffer to the line printer
or position the printer paper in a particular way. The buffer is assumed to
contain four six-bit TASCII characters per word, see Appendix B.

The line printer operates in two modes, format mode and normal mode. In the
format mode, all print and space commands do not consider the space between
bottom of form (BOF) and top of form (TOF) as part of the page. That is,
the page perforation is skipped automatically. In the normal mode, the
region between BOF and TOF can be used for printed output (i.e., where an
end of page discontinuity is not desired).

The print commands reqjire a DCB address at CALL+2. The PCB word count should
not exceed 33, reflecting the maximum (132 character) line printer print span~
If this should occur, characters in excess of 132 will not be printed. In
the case of the 80 column printer, if the DCB word count exceeds 20, then 60
characters will be printed in columns 1-60 of the first of a two line pair and
the remainder right justified on the second line. For space commands, CALL+2
contains the number of lines to space; only the low-order seven bits are used.

2 .6 DI SCIO

Purpose: To transmit data between the disc and core memory.

Calling Sequence:

CALL DISC IO
DATA operation
DATA deb
DATA error

NORMAL RETURN

8

operation - 1
2
3

BINARY READ
PARITY CHECK
BINARY WRITE

Description:

DISCIO will transmit blocks of data between disc and core memory. The maxi­
mum size of a block is 16,384 words. Every write operation performed by
DISCIO is automatically followed by a pa.rity check to assure that parity was
generated properly.

The third word of the DCB required by DISCIO is the disc address of the disc
area to be read or written. For this purpose, the disc is treated as a
magnetic tape with 16,000 - 48 word records (sectors). The disc address is
a binary value in the range of 'O' to '15999' of the first such record (sector)
involved in the transfer.

2 .7 MTIO

Purpose: To transmit data between core memory and magnetic tape.

Calling Sequence:

CALL MTIO
DATA operation
DATA deb or count
DATA error return

operation - 0
1
2
3
4
5
6
7
8
9

NORMAL' RETURN

BUSY TEST
READ
INVALID OP CODE
WRITE
WRITE TAPE MARK
RECORD SKIP FORWARD
RECORD SKIP BACKWARD
REWIND
FILE SKIP FORWARD
FILE SKIP BACKWARD

MTIO transmits blocks of data between magnetic tape and core memory, performs
error analysis, and executes miscellaneous conmands to cause tape movements
and writing of tape marks. The minimum block size is six (6) words and the
maximum is 16, 384 words.

If the operation specified is either a record skip or file skip, CALL+2 should
specify the number of records or files to be skipped.

The DCB used by MTIO is a standard 2-word DCB containing word count and core
buffer address in that order.

9

3.0 CONVERSION PROCEDURES

3.1 INTRODUCTION

This section describes the conversion procedures that are available for trans­
lating from one character set to another or one number base to another.

3.2 CRASC

Purpose: To convert to TASCII the six-bit character code produced by the card
reader.

Calling Sequence:

CALL CRASC
DATA deb

NORMAL RETURN

Description:

The buffer is assumed to be of the format produced by a BCD read in CRIO.
Each six-bit character is replaced by its TASCII counterpart. Registers
affected: A, E.

3.3 ASCBIN

Purpose:. To convert six-bit TASCII characters to 12 bit column-binary char­
acters.

Calling Sequence:

CALL AS CB IN
DATA deb

NORMAL RETURN

Description:

ASCBIN is used primarily for producirig BCD card output. The number of words
converted is determined from the word count entry in the DCB. Si nc.e each
six-bit character is replaced by twelve-bits, the buffer area must be at least
twice as larg·e as indicated by the DCB. At the completion of the operation,
the user's DCB word count will be doubled to reflect the increased size.

REGISTERS AFFECTED: A, E

. 10

3.4 BINDEC

Purpose: To convert a binary number to decimal.
'

Calling Sequence:

LDA binary
CALL BINDEC

NORMAL RETURN

Description:

BINDEC will return six four-bit characters in the A register. These char­
acters provide the decimal equivalent of the binary value. Note that if
the binary value exceeds 999,999 the conversion will be incorrect.

Registers Affected: A,E

4.0 FILE PROCESSING ROUTINES

4.1 INTRODUCTION

The files residing on the disc are called Peripheral Memory Files (PMF).
This section deals with the procedures that are available for processing
these files. Some of these:procedures are necessarily involved with house­
keeping, but most are involved with input/output on the files. In the latter
group are procedures for doing word I/0 either sequentially or randomly and
record or character I/0 sequentially. These are discussed in detail in sub­
sequent sections.

All of the procedures discussed in this section are associated with a PMF
header. This PMF header contains enough infonnation to permit an arbitrarily
large disc file to be processed in pieces as small as 48 words, one sector.
The PMF header is nine words in length; its format is described in Table 4.1.

ln the discussion that follows, all pointers/addresses use 'O' origin refer­
encing; the first word/character has an address of 'O', the second 11 1

, etc.

The entries FS and FL are used to define that portion of the disc addressable
by the file I/0 procedures. For output files, this will be the entire space
a 11 oca ted to the fi 1 e. For input fi 1 es, it is only that portion of the file
that has been written. FS is a word address relative to the beginning.of the
disc and FL is the number of words that can be referenced. ·

At any point in time, a certain portion of the file will be present in main
memory. This section of the file is called the WINDOW and is defined by WS
~nd WL. WS is a word address relative to FS and WL is the number of words
currently in main memory. WL generally is equal to 48*PL; the only time this
is not true is when 48*PL would force the WINDOW to include part of the next
fi 1 e.

11

WORD' BITS

1 23-0
2 23-0
3 23-0
4 23-0
5 23-0
6 23-0
7 23-0
8 23-0
9 23-12
9 3

9 2-1

9 0

. . DESCRIPTION

CP - Current Pointer
WS - Window Start
WL - Window Length
FS - File Start
FL - File Length
PS - Page Start
PL - Page Length
First 4 characters of file name
Last 2 characters of file name
1/0 Flag

1 = Input
O = Output

File Type
0 = STRING
1 = DATA
2 = OBJECT
3 = CORE :IMAGE

Modify flag.
are altered.

PMF HEADER FORMAT
TABLE 4.1

Set if wondow contents

12

Peripheral Memory

0 767, 599
FS WS
L ,._WJJ
,. .. -------FL -------1•

Main Memory

0 16, 383

Figure 4 .. 1
13

FAIRCHILD INSTRUMENTATION

The area of main memory that the file is segmented into is defined by PS and
PL. PS is the main memory address of the buffer area and PL is the number of
sectors avaiJable for this buffer. PS and PL must be assigned values by the
user; PMFH entries in words 2-5 are initialized and maintained by the file
procedures.

Table 4.1 illustrates the PMF header entries. The last two words of the PMF
header contain the name of the file that is being referenced and some flags
required for housekeeping. Working storage is 'treated' as a disc file and
has the special name 1

' (four blanks inside the quotes). The use of the
flags in bits 3, 2, and 1 or word 9 is described in more detail in the routines
OPEN and CLOSE. The flag in bit 0 is set whenever the contents of the WINDOW
are a 1 tered; this wi 11 always cause the current WINDOW to be written back to
the disc before reading in a new one.

The remaining entry, CP, is a word/character address relative to FS of the
next word/character to be affected by the sequential 1/0 procedures. Due to
the dual interpretation of the CP, it is not advisable to do both word and
character 1/0 on a file at the same time.

The procedures concerned with character 1/0, viz: SCAN, GET and PUT, can be
used for character processing on string buffers that are completely contained
in main memory and not associated with a disc file. In order to do this, it
is necessary for the user to i ni ta 1 i ze the entries of a dummy PMF so that the
WINDOW completely encompasses the entire buffer (file). In particular, WS=O,
FL and WL are set to the 1 ength of the buffer and FS and PS reference the first
location in the buffer. CP should be set to the first character position to
be affected; the remaining entries should be set to zero.

To see how this works, assume that there is a 20 word buffer into.which a card
has been read. To retrieve characte.rs from this buffer one at a time in
sequence from column one to eighty, procedure GET could be used. The following
assembly language statements would define the PMF header and buffer.

PMFHEADR
BUFFER

DATA
BSS

0,0,20,BUFFER,20,BUFFER,0,0,0
20

Whenever a :new card is read, the CP would need to be reset to zero. Setting
the entries in this fashion forces the character processing routines to pro­
duce an EOF return whenever they address beyond the WINDOW, i.e., _BUFFER. This
prevents them from doing any disc operations. If WL< FL, a disc opera ti on wi 11
be caused if the associated WINDOW is ever altered.

In the descriptions that follow, the word 11 pmfheader 11 is assumed to be the
label on the CP; i.e., index register 7 contains the address of the PMF
header.

4.2 OPEN

Purpose: To initialize a PMF header for processing a disc file.

14

Calling Sequence:

LOX 7,pmfheader
LOA openflag
CALL OPEN

openflag 0
1

Description:

ERROR .RETURN
NORMAL RETURN

OUTPUT
INPUT

The only function performed by OPEN is filling in the values of CP, FS, FL,
WS, WL and the flags so that the associated file may be referenced properly.
FL will be set to reference the entire space allocated to the file if
'openflag• is an '0', otherwise, it is set to address only that portion of
the file previously written. CP and WS are set to '0', WL to a '-1', and
the flags, except for the I/0 bit, are set to '0 1

• The I/0 bit takes on
the value of 'openflag' so that CLOSE can determine what action must be taken
when the user is through processing the file.

The entries PS and PL must be initialized by the user. See the introduction,
Section 4.1, for a description of these entries.

The normal return is taken if the file was opened successfully. The value
returned in the A register is the value of the CP the last time the file was
closed as an output file, i.e., the next:available slot in the file. This
value cah be used to append new information to an old file by opening the
file as an output file and storing the A register into the CP entry. Sub­
sequent sequential output operations will continue from the end of the old
file.

The error return is taken if the file cannot be located in the file directory.

REGISTERS AFFECTED: Index Register 6, A, E

4.3 CLOSE

Purpose: To terminate processing of a disc file.

C~lling Sequence:

15

LOX
CALL

7,pmfheader
CLOSE

ERROR RETURN
NORMAL RETURN

Description:

CLOSE should be ca 11 ed when a file is opened for output and may be ca 11 ed
when the file is" opened for input. In either case, the first function per­
formed by CLOSE is to write the WINDOW back to disc if it has been altered,
since the altering of the WINDOW contents is independent of how the file was
opened.

If the file has been opened as an output file, the directory entry for the
file will be updated to reflect its new size and type. The type is determined
from the file type field in the PMF header flags and the size of the file is
determined from the CP, which is interpreted as a character count if the file
type is STRING and a word count if the type is anything else. The file type
is assumed to be STRING when a file is opened and is changed to type DATA by
the PUTW procedure, so that output files of type STRING or DATA take care of
themselves if the sequential I/0 procedures are us~d.

The error return is taken if the directory entry for an output file cannot
be located.

REGISTERS AND STATE SWITCHES AFFECTED: A, E . .
Index Register 6 if o~tput file is closed .

. State Switch 9 ·

4.4 READ

Purpose: To obtain the contents of a specified PMF location.

Calling Sequence:

LOX 7,pmfheader
LOA pmfaddress
CALL READ

Description:

EOF RETURN
NORMAL RETURN

If 0 ~ pmfaddress < FL,READ will return in the A register the contents of the
PMF location specified by 'pmfaddress'. If the address is not in the allow­
able range, the EOF return is taken.

READ and WRITE are the basic procedures used directly or indirectly by all
other file processing procedures. READ and WRITE call a conman subprocedure
ADRXLATE that uses DISCIO to read in new pages. "Altered pages are
written back to disc by means of the subprocedure SWAPOUT. Both of these sub­
procedures halt in .. the·disc error routine when DISCIO cannot perform the
required operation successfully. Pressing start allows the operation to be
retried another ten times.

; I

REGISTERS AFFECTED: A
E on normal return

16

4 .5 WRITE

Purpose: To store a value i·nto a specified PMF location.

Calling Sequence:

LOX
LOA
LOE
CALL

Description:

7,pmfheader
pmfaddress
value
WRITE

EOF RETURN
NORMAL RETURN

If O ~ pmfaddress < FL,WRITE will store the contents of the £,register into
the PMF location specified by 'pmfaddress'. If the address is not in the
allowable range the EOF return is taken.

See READ (section 4.4) for comments on disc usage.

REGISTERS AFFECTED: A, :E

4.6 GETW

Purpose: To obtain the contents of the current word from a PMF.

Calling Sequence:

LOX 7,pmfheader
CALL GETW

Description:

EOF RETURN
NORMAL RETURN

If O ~ CP<FL,GETW wi 11 use CP as the PMF address and perform the .same
function as READ. In addition it will increment CP by one so the next call
for GETW will obtain the next word. If CP is out of the allowable range, the
EOF return is taken. ·

REGISTERS AFFECTED: A
E on normal return

4.7 PUT,W

Purpose: To replace the contents of the current word in a PMF.

17

Calling Sequence:

LDX 7,pmfheader
LOA value
CALL PUTW

Description: .

EOF RETURN
NORMAL RETURN

If O ~ CP < FL,PUTW will use CP as the PMF address and perform the same function
as WRITE. In addition., CP is advanced by one so that the next call for PUTW
wi 11 store into the next word. If CP is out of the allowable range, the EOF
return is taken.

REGISTERS AFFECTED: A, E

4.8 GET

Purpose: To obtain the current c~aracter from a PMF.

Calling Sequence:

LOX 7,pmfheader
CALL GET

Description:

LETTER RETURN
DIGIT RETURN
OTHER

GET interprets CP as a character address. If 0 <CP/4 < FL,GET will return
in the low order portion of the A register the character addressed by CP.
CP will also be advanced by one to make the following character the current
one.

The letter return is taken if the character is one of the characters $, A,
B, C, ... ,:Z. The digit return is taken for any of the characters 0, 1, 2,
3, 4, 5, 6, 7, S, 9. Control returns to CALL+3 for anything else with an EOF
indicated by the value 1778.

REGISTERS AFFECTED: A, E

4.9 PUT

Purpose: To replace the contents of the current character in a PMF.

18

Calling Sequence:

LOX 7,pmfheader
LDA character
CALL PUT

Description:

EOF RETURN
NORMAL RETURN

PUT interprets CP as a character address. If O < CP/4. < FL,PUT will store
the character in the A register into the character position addressed by CP.
CP is then advanced by one to make the next character the current one. If
CP is out of the allowable range, the EOF return is taken.

Registers Affected: A,E

4.10 SCAN

Purpose: To obtain the next syntactical entity from a PMF.

Calling Sequence:

LOX 7,pmfheader
CALL SCAN.

Description:

IDENTIFIER RETURN
NUMBER RETURN
STRING RETURN
CHARACTER RETURN

SCAN uses GET to obtain characters from the PMF to form identifiers, strings
and numbers.

An ide~tifier is a sequence of letters (including $) or digits, the first of
which must be a letter. Only the first six characters of such sequences are
retained and they are returned left justified in the A and E registers to CALL+l.

Examples:
NAMEl
$lEST
A
B2

A number is a sequence of digits; if the terminating character is a 1B' the
base is assumed to be octal, otherwise, decimal. Tpe low order 24 bits are
returned to the E register to CALL+2. The terminating character, e.g., blank
or conma, will be returned in the A register.

19

Examples:
10

v 77B Equivalent to 63
16000

A string is a sequence of characters enclosed in single quotes. Like iden­
tifiers, only the first six characters are retained. These are returned left
justified in the A and E registers to CALL+3.

Examples:
'A ... B #'
'A'
I' A'

The address o~ the location containing the terminating character for these
entities is returned in index register 7.

Single character operators/terminators are returned in the low order portion
of the A register. In this case index register 7 still points to the PMF
header.

REGISTERS AFFECTED: A, E and index register 7 for returns 1, 2, 3;
A and E for return 4.

4.11 GFREC

Purpose: To _obtain the current record from a PMF.

Calling Sequence:

LOA fil ei d
CALL GFREC
DATA deb

EOF RETURN
NORMAL RETURN

fileid BITS 23-21 FILE TYPE

0 STRING
l DATA
2 OBJECT
3 CORE IMAGE

13-0 PMF header address

Description:

GFREC (using GETW) will move the current record from the PMF to the buffer
defined by the DCB whose address is at CALL+l. The EOF return is taken
whenever an EOF is returned by GETW; the contents of the record obtained
are not predictable in this case.

20

For STRING files this move will terminate only when a 778 character is read
or GET indicates an EOF. In the former case, the buffer will be padded out
with blanks and the normal return is taken. If the buffer is smaller than
the record, the trailing part of the record is lost.

The amount of information transmitted from COREIMAGE or DATA files is deter­
mined by the DCB word count. It is the responsibility of the calling program
to set this correctly. r

The amount of information transmitted from an OBJECT file is a function of
the first word of the record. The buffer whould be as large as the largest
possible record (10 words).

REGISTERS AFFECTED: A, E, Index Register 7

4.12 PFREC

Purpose: To move a record into a PMF.

Calling Sequence:

LOA: fi l e:i d
CALL PF REC
DATA deb

EOF RETURN
NORMAL RETURN

See 4.11 for a description of fileid.

Description:

The DCB whose address is at CALL+l describes the buffer that contains the
record to be moved. Except for OBJECT files, the entire buffer area is
moved using PUTW or PUT. For OBJECT files the number of words moved is de­
termined from the first word of the record, or the length of the buffer area,
whichever is smaller. If the file is type STRING,· the 77B character is also
placed in the file after the record.

The EOF return is taken whenever such a return is given by PUTW or PUT.

REGISTERS AFFECTED: A, E, Index Register 7

4.13 FIND

Purpose: To locate a file on the disc.

Calling Sequence:

LOA 'SYMB I

LOE 'OL I

BSM FIND

21

NOT FOUND RETURN
NORMAL RETURN

Description:
'~

FIND searches th1t1e file directory for the specified disc file. The search
begins at the begi nni_ng of the di rectory and continues unti 1 a match is
found or the end-of-directory is reached. If a match is found, the main mem­
ory address of the found entry is placed in index register 7, the binary disc .
address of the corresponding file is placed in the A register and control
returns to CALL +2. If no ·match is found, contro 1 returns to CALL+ 1 and the
index and A register reference the last directory entry and working storage,
respectively.

The index register address is that of the first word of the entry. The other
five words are at the next five higher memory addresses.

If bit •o• of the E register is 11 •,the system job number is assumed. Other­
wise, the current job number is used.

NOTE: The label FIND must be 'EQU'ed to 356B.

REGISTERS AND SiATE SWITCHES AFFECTED: A, E, Index Registers 6 and 7
State Switch 7

4 .14 OUTREC

Purpose: To place a record in an output file.

Calling Sequenc~:

a) LDA
CALL
DATA
DATA

b) LDA
CALL
DATA

FI LEI DENT
OUT REC
1 !
DCB

FILE I DENT
OUTREC
0

EOF FI LE RETURN
NORMAL RETURN

BUSY RETURN
NOT BUSY RETURN

FILEIDENT {for non-disc files):

BITS 22-21 FILE TYPE
13-0 FILE NUMBER

FILE NUMBER 0 POD
1 TTP
2 CP (when available)
3 LP
4 MT

22

FILEIDENT (for disc files):

BITS

FILE TYPE

Description:

22-21
13-0

0
1
2
3

FILE TYPE (as above)
PMFH

STRING
DATA
OBJECT
CORE IMAGE

OUTREC utilizes the IOCS procedures MTIO, CPIO, LPIO and TTPIO along with
PFREC to place the record in the file. OUTREC works much like the IOCS
procedures in that it automatically overlaps record output with program
execution. This can be synchronized by doing a 'test'. The buffer should
not be altered however, and is complete when control returns to the calling
sequence. A 'test' may be performed on an output to a disc file and the
NOT BUSY return will always be taken.

The buffer for object and string records should be large enough to accommodate
the largest record. The number of words actually sent to the file is gotten
from the record itself for object records and for string records is gotten
from the DCB and decremented to suppress trailing blanks.

If the record is sent to the card punch (when available), it is first edited
to provide BCD output. The buffer must be large enough to accorrmodate the
edited recard; it must be twice as large as the DCB word count specifies.

4. 15 INREC

Purpose: To obtain a record from an input file.

Calling Sequence:

LOA FILEIDENT
CALL INREC
NOP DCB

FILEIDENT:

Description:

EOF/MONITOR REC RETURN
NORMAL RETURN

SEE OUTREC FOR FILEIDENT SPECIFICATION

This procedure will obtain the next record from the specified file (device)·
and place it in the buffer described by the DCB. The input record is always
available in this buffer when control returns to the calling sequence, i.e.,
INREC waits until the record has been obtained before returning. INREC obtains
the record by calling the IOCS procedures MTIO, CRIO, TTRIO and GFREC. This
means that the limited editing available in TTRIO is available for records
obtained from the teletype.·

23

when using GFREC to obtain records from a PMF, the PMF header describes the
buffer actually used for disc transfers while the DCB describes the buffer
which wi 11 :finally contain the record.

For files containing variable length records, i.e., string and object files,
the buffer must be large enough to accommodate the largest record. The EOF
return is taken if the buffer is too small for a particular record. In
retrieving records from string files, INREC pads the record with blanks if
it is smaller than the buffer. This is not done with object
the first word of the record enab 1 es its exact size to be detenm ned.

4.16 SRCH (ENTRFN, WRITDS)

Purpose: To locate files on the disc.

Calling Sequence:

LOA 'SYMB'
LOE 'OL I

CALL SRCH

Description:

NOT FOUND RETURN
FOUND RETURN

SRCH performs the same function as FIND. The main differences are SRCH
uses DISCIO ·and is relocatable, while FIND,uses its own simple I/0 and is
not relocatable. Another difference is that SRCH has two subprocedures
which can be used to maintain the file directory •. These are WRITDS and
ENTRFN. WRITDS will write the sector of the directory that is currently
in main memory back to the directory. ENTRFN must be used after a SRCH
failure to enter the name of the 'new' file into the directory. In the
new entry, the 'last entry' bit is set and all other words are set to zero.
It is the responsibility of the calling program to fill these entries in
correctly. Index register 7 points to the new entry. A call for ENTRFN
'should be followed by one for WRITDS when the entries have been completed.

The calls for these subprocedures are:

CALL WRITDS
CALL ENTRFN

The latter enters the routine from the previous CALL SRCH and uses parameters
set up by SRCH.

4.17 DFILEN

Purpose: To.· determine the file number of the file whose name i~ in the A
register.

24

Calling Sequence:

LOA file name
CALL DFILEN

Description:

INPUT FILE
OUTPUT FILE
NOT A FILE

The table below shows the name/number correspondence of the various files.

Fi le (Device) Name
OUT FILES: POD

TTP
CP
LP

IN FILES: PIO
TTK
CR
TTR
MTR

File Number
0
1
2
3

0
1
2
3
4

TT Printer
Card Punch (if available)
Line Printer
Magnetic Tape Output

TT Keyboard
Card Reader
TT Paper Tape Reader
Magnetic Tape Input

The file names must be left justified in the A register. The error return is
taken if the file cannot be fo~nd in the table.

If PIO or POD is input, the number of the appropriate file will be obtained
from MlCTRL.

If the file is found, the appropriate normal return is taken and the file
number is placed in the A register; otherwise, the error return (CALL+3) is
taken.

REGISTERS AFFECTED: Index Registers 7 and 6, A

25

APPENDIX A

,, CHARACTER SET

The internal character set used by the FST-1 software packages is six-bit
trinmed ASCII, TASCII. TASCII characters are obtained from their seven-bit
counterparts, parity level excluded, by subtracting 408. The resulting
character set is shown in TABLE A.

BIT
POSITIONS
3 - 0

*
BIT POSITIONS 5 - 4

00 fil JO

0000 SPACE 0 @

0001 ! 1 A

0010 II ·2 B

0011· # 3 c
0100 $ 4 D

0101 % 5 E

0110 & 6 F

0111 I 7 G

1000 (I 8 H

1001) 9 I

1010 * . J .
1011 + . K '
1100 ' < L

1101 - = M

1110 . > N.

1111 I ? 0

,.

* Bit 5 is the high-order bit position

TABLE A - TASCII CODE

11

p

Q
R

s
T
u
v
w
x
y

z
[

\
]

t

+

:

26

Not all I/~ devices supported on the FST-1 accept/produce this code.
There are, however, conversion procedures for making the proper trans­
fonnations from one character set to another. A description of these
procedures can be found in Section 3.0.

27

APPENDIX B
BUFFER FORMAT

The character buffers used by the FST -1 software pack.ages are of two ki ~ds.
The more comnon of the two has four six-bit characters per word. The f~rst
word of the buffer contains the first four characters of the corresponding
I/O record; the first character is in the high order positio~ o! t~e word.
The second buffer word contains the next four and so on. Th1s 1s ~llustrated
in the following diagram, which assumes the buffer starts at location 500.

CHARACTER
ADDRESS:

LOCATION:

SAMPLE DATA

500 501 502

The second part of the illustration shows the relative position of each
character in the buffer. The high-order bit of each character position in a
word is occupied by the high order bit of the character residing there. This
can be seen by part three (3) which gives the octal value of each buffer
location after the card code has been converted to tri11111ed ASCII.

The other format is used by the card I/0 devices and has two twelve bit
characters per word. These twelve bit characters are a result of a colurom
binary operation. That is, there is a one-to-one correspondence between the
punches in a card column and the·one bit tn the corresppnding twelve bit.
character. The high and low order bits correspond to rows twelve and nine,
re~pectively.

This kind of a .. bliffer is used by the card reader in the BINARY mode. The
followi_ng diagram illustrates the format of this buffer.

28

SAMPLE DATA

LOCATION:
500 501 502 503 504 505

29

