
Systems Technology

COMPUTER

TRAINING

PRIMER

JULY 1970

© 1970 by Fairchild Systems Technology, 1725 Technology Drive/ San Jose, California 95110
F=AIRCHILCJ

SYSTEMS TECHNOLOGY

TABLE OF CONTENTS

Page

INTRODUCTION .. 1
Course Description . 1
Objective . 1

NUMBER SYSTEMS .. 2
Introduction ... 2
Decimal Numbers , . 3
Octal Numbers 4
Octal and Decimal Number Conversions 6
Binary Numbers .. 8
Binary and Octal/Decimal Number Conversions 9
Coded Binary Numbers ... 11
Binary Number Arithmetic : 11
Bit Addition .. 13
Bit Subtraction .. 14
Bit Multiplication ... 14
Bit Division 15
Complements ... 16
Number System Summary ... 19

COMPUTER WORDS .. 19
Magnitude . 20
Instructions 20

WORD REGISTERS ... 21
Typical Register Configurations 22
Functional Registers . 2 2

COMPUTER PROGRAMS AND INSTRUCTIONS 25
Hypothetical Computer . 26
Electric-Bill-Calculation Program 28
Additional Programming Definitions 35
Types of Computer Programs 37
Operating Systems .. 39
Programming Summary 4 2

BOOLEAN LOGIC .. 43
Introduction .. 43
Boolean Logic Versus Binary Arithmetic .. 43
0 R Function . 44
AND Function ; 45
Complements ... 46
AND/OR Identities ... 47
Boolean Identities Summary ... ; 4 7

TABLE OF CONTENTS (Continued)

Page

LOGIC HARDWARE .. 47
Logic Systems . r4 7
OR Gate ~ .. 49
AND Gate ... 49
NOT Circuit ... · · . 50
Inhibit Gate · . 51
Exclusive OR Gate .. 51
Positive Versus Negative Logic 53
NAND Gate ... ; 53
NOR Gate · · ·· 55
Logic Gate Uses and Interrelations , .. 56
Packaging of Logic Circuits .. 57
Adder .. 57
FLIP-FLOP .. 60
FLIP-FLOPS in Registers ~ 62
Flip-Flop Memory Elements .. 62
NOR Logic RS Flip-Flop .. 63
NAND Logic Flip-Flop ... 64
The Type-T Flip-Flop " 64
The Type-D Flip-Flop .. 65
The JK Flip-Flop . 66
The Clocked JK Flip-Flop ... 67
Master-Slave JK Flip-Flop .. 67
Binary Register .. 68
Shift Register ... 69
Single-Shot ... 70
Schmitt Trigger .. 70
Dot-AND and Dot-OR Gates 71
Amplifier . 71
Time Delay . 71

DIGITAL COMPUTER SYSTEM 72
FST-1 Computer System .. 74
Outstanding Operational Features ... , 76
Computer System Summary .. 77

ii

LIST OF ILLUSTRATIONS

Figure Page

1 Build-Up of Multi-Digit Decimal Number 3
2 Build-Up of Multi-Digit Octal Number 4
3 Comparison of Build-Up of Octal Number and its Decimal Equivalent 5
4 Octal Addition Table .. 5
5 Octal Multiplication Table ... 5
6 Powers-of-Eight, Octal Versus Decimal Notation 6
7 Decimal-to-Octal Number Conversion 7 .
8 Octal-to-Decimal Number Conversion by Division Using Octal Arithmetic 7
9 Octal-to-Decimal Number Conversion by Addition/Multiplication 8

10 Build-Up of Binary Number .. 9
11 Decimal-to-Binary Number Conversion 9
12 Binary-to-Decimal Number Conversion by Division Using Binary Arithmetic 10
13 Binary-to-Decimal Number Conversion by Multiplication/ Addition

Using Decimal Arithmetic .. 10
14 Binary /Binary-Coded-Octal Numbers and Relationships to Octal

and Decimal Numbers ... 12
15 Binary-Coded-Decimal Number and Conversion to Decimal Number Equivalent 12
16 Binary Addition Table 13
17 Binary Addition and Decimal Equivalent 13
18 Binary Subtraction and Decimal Equivalent 14
19 Binary Subtraction Table ... 14
20 Single-Bit Multiplication Table 14
21 Binary Multiplication, Long and Short Method, with Decimal Equivalent 15
22 Single-Bit Binary Division Table 15
23 Binary Division with Decimal Equivalent ·. 15
24 Example of Obtaining TRUE Complement by Subtracting Next Higher

Power of Two . 16
25 Example of Obtaining TRUE Complement by Reversing Bits and

Adding One to Result . 1 7
26 Examples Comparing Ordinary Binary Addition and Subtraction to

Twos-Complement Methods 17
27 Short-Cut Method of Conversion to Twos Complement 19
28 Format of Computer Word of 24 Magnitude Bits 20
29 Typical Instruction Word Format 21
30 Organization of Registers of a Typical Digital Computer 22
31 Simplified Functional Block Diagram of Hypothetical Computer System 26
32 Memory Map for Electric Billing Program 28
33 Program Flowchart for Electric Billing Problem 30
34 Read KWH Routine Flowchart 31
35 Arithmetic Routine Detailed Flowchart 33
36 Memory Assignments for Electric Billing Program 34
37 Output Routine Detailed Flowchart 36
38 Switch Analogy ... 43
39 Switch Analogy of OR Function 44
40 Compound OR Function ... 44
41 Switch Analogy of AND Function 45
42 Switch Analogy of Commutative/Associative Laws for AND Function 45
43 Identities of Simple AND, OR, and Compound Switch Arrangements 46
44 OR- and AND-Function Identities 4 7

iii

LIST OF ILLUSTRATIONS (Continued)

Figure Page

45 Summary of Boolean Identities 48
46 Positive- Versus Negative-Logic Voltage Levels 48
47 OR Gate Symbol and Truth Table 49
48 AND Gate Symbol and Truth Table - 49
49 Logic Negation Symbol and Truth Table 50
50 Input Versus Output of NOT Circuit 50
51 Inhibitor Gate Symbol and Truth Table 51
52 Exclusive OR Gate Symbol and Truth Table 51
53 Two Logic Blocks for the EXCLUSIVE OR (OE) Gate · 52
54 Two Additional Logic Diagrams for the EXCLUSIVE OR (OE) Gate ... , 53
55 NAND Gate Symbol and Truth Table 54
5 6 Example of DTL Circuit ·. . 54
57 NOR Gate Symbol and Truth Table 55
58 Example of DTL Positive NAND Gate 55
59 Half-Adder-Subtractor Logic Symbol and Truth Table 58
60 Half-Adder-Subtractor Logic Diagram 59
61 Parallel Binary Adder Consisting of Half-Adders 59
62 Truth Table for Three-Input Adder 60
63 FLIP-FLOP Configuration and Symbols 61
64 Four-Bit Register Used for Serial-to-Parallel Conversion 63
65 Typical NOR-Logic Flip-Flop 63
66 Flip-Flop Set With Logic Zero 64
67 Typical NAND-Logic Flip-Flop 64
68 Type-D Flip-Flop Symbology 65
69 Type-D Flip-Flop .. 65
70 Complementing Flip-Flop .. 66
71 Simple JK Flip-Flop ... 66
72 Clocked JK Flip-Flop ... 67
73 Example of Master-Slave JK Flip-Flop 68
74 Example of Binary Registers 69
7 5 Example of Shift Registers .. 69
76 Example of Single-Shot .. 70
77 Example of Schmitt Trigger 70
78 Example of Dot-AND and -OR Gates 71
79 Amplifier Symbol .. 71
80 Time Delay Symbol .. 71
81 Computing Sub-Functions .. 73
82 Modular Layout of Computing Units 73
83 FST-1 Computer System ... 75

iv

FAIRCHILD COMPUTER TRAINING PRESCHOOL PRIMER

INTRODUCTION

This computer primer affords a prospective trainer the. opportunity to prepare himself in
digital computer basics before attending the Fairchild Computer Training Courses. The
approximate studying time is ten hours.

Course Description

Only those subjects. prerequisite for a person entering the training program are presented,
and their extent of coverage has been purposely limited in scope to minimize study time.
The order of presentation starts with explanations of number systems and a little discussion
of their application in digital computers. Examples of arithmetic using both octal and
binary numbers and conversion from one number system to another are included.

Next, a brief description of a hypothetical general purpose digital computer and its use for
solving a problem are presented. The development of a small computer program, including
flowcharts and use of the program are included. Also, various types and levels of computer
programming are concisely· described.

A rather concise introduction to Boolean algebra precedes the explanation of the basic logic
elements comprising digital computer circuits. These two topics, Boolean logic and circuit
elements that implement the logic, are interrelated to one another and to the previously
described binary arithmetic.

The primer is concluded with a brief description of the FST-1 Computer System. The com­
puter's outstanding operational features and the functional organization of its major units
are described.

Objective

The only objective to this primer was stated in the opening paragraph of this introduction:
to present the prospective digital computer trainee with basic information prerequisite to his
entering the Fairchild digital-computer training course. The most important concepts are
stated, and from time-to-time throughout the text these are- reiterrated for the reader's
advantage·. The main ideas and information that should "stick with" the trainee after the
presentation of ·a particular topic are itemized so the trainee may test himself to make sure
that he has placed the proper emphasis on learning the subject.

1

2

A quiz shall be given to trainees at the beginning of the Fairchild computer course. This is
to test each person to make sure that he has sufficient background, as covered in this self­
study course, to proceed with the more specific and much· more involved training to be
offered in the main computer course itself.

* * * * * * * *

NUMBER SYSTEMS

Introduction

A digit is a symbol that represents a quantity-such as 1 or 2-or nothing-such as 0. It has
only one unit. A number may be one digit, such as all the numbers 0 through 9, or it may
be a group of digits, such as I 0, 11, 422, and so on. Digital computers operate with digits.
These computer digits are the most basic concept upon which intelligence, information,
quantities, and various codes that represent instructions are formulated. Thus, digital com­
puters "talk" and "do things" because of and with digitally represented instructions and
quantities. Digits and numbers comprise the most basic elements of digital-computer
language.

There are numerous number systems having their own digits, and these digits represent vari­
ous numbers. Our generally used number system has ten digits (0, l, 2, 3, 4, 5, 6, 7, 8, 9)

. and is called the decimal system. Its radix is 10, which means it has ten digits. Three other
number systems widely used in the digital-computer business are the octal system, radix 8;
the binary system, radix 2; and the hexadecimal system, radix 16. The same digits, bor­
rowed from our Arabic number symbols, are used in part or in total, as needed, to repre­
sent the basic quantities for these various number systems. Therefore, since there are
occassions when various number systems are used and represented with the same digits in
digital-computer notation, it is necessary in these cases to designate the number system
represented by a number. This is done by placing a subscript to the number that designates
the radix (or as it is more frequently called the "base") of the number. Thus, 22 8 is read,
"twenty-two to the base eight." In this case, the number system in use is the octal number
system. Any other radix may likewise be designated.

The binary number system is the simplest. For this reason, it is the most practical system
for digital computers, which are very simple-minded machines. The computer circuits are
based on the binary number system. Likewise, Boolean logic is based on a binary-logic con­
cept devised by George Boole, a nineteenth century logician. Thus, Boolean logic may also
be called binary logic and provides the rules upon which binary arithmetic is performed.
Thus, it is essential that the binary number system, binary arithmetic, and a little Boolean
(binary) logic· be understood to appreciate computer operation and the functioning of com­
puter circuits.

The decimal number system is readily understood and used in our everyday lives. Thus, it. is
used most widely, and the other number systems are related to it, first, and then, to one
another in the ensuing explanations.

Although the hexadecimal number system is used in the computer business, it is not used in
the central processor of the FST-1. This leaves the octal and binary number systems that
must be mastered.

The octal number system, base eight, is useful because it is easier to relate the binary to the
octal number system than to the decimal number system. The reason for this is that 8 is a
power of 2 whereas I 0 is not. Consequently, the octal number system is widely and fre­

quently used in digital-computer notation.

Decimal Numbers

Because the decimal number system has been used for so long and for most people is the
only system that they use, we usually work without needing to know its organization. Also,
since we learn its rules very early in life and use them over and over again, we work with
decimal numbers and do not even have to think about the rules: the whole decimal number
system has become second nature to us.

The least-significant digit in a decimal number represents units, the next left-hand digit
represents sets of I 0 units each, the next left-hand digit represents sets of I 0 sets of 10
units (or I 00 units), and so forth. Thus, the digits in a decimal number represent sets of
units with the number of units per set contingent on the location of the digit. So each
location corresponds to a particular power of the radix 10. An example of the buildup of a
multi-digit decimal number is shown in Figure 1.

Units Per Set 100,000 10,000 1,000 100 10 1

Power of Ten 5 4 3 2 1 0

Digit 4 0 1 3 5 4

4

5 0

3 0 0

1 0 0 0

0 0 0 0 0

4 0 0 0 0 0
- ·- -·- ··-- -- . ~- -···-.. ,...,

4 0 1 3 5 4

Figure 1. Build-Up of Multi-Digit Decimal Number

3

4

Octal Numbers

The octal number system is based on eight digits, 0 through 7. The 8 and 9 do not exist in
the octal system. Also, the location of digits by columns in the octal number system repre­
sent corresponding powers of eight. An example of the build-up of a multi-digit octal
number is shown in Figure 2.

Units Per Set 100,000 10,000 1,000 100 10 1

Powers of Eight 5 4 3 2 1 0

Digit 4 0 1 3 5 4

4
I

5 0

3 0 0

1 0 0 0

0 0 0 0 0

4 0 0 0 0 0

4 0 1 3 5 4

Figure 2. Build-Up of Multi-Digit Octal Number

Note that the build-up of the decimal and octal numbers shown are identical. It worked out
this way because there were no eight or nine digits in the decimal number, and, of course,
these two digits do not exist in the octal number system. However, to show the relationship
between the octal and decimal number systems, in Figure 3 the same number, 401354, used
in both preceding examples is used as an octal number. and its decimal equivalent, 131820,
is compared with it. Also, both the octal notation and its decimal-equivalent are shown.
Thus, by multiplying the octal-number digit (from the digit row) times the number in either
the octal-notation or decimal-equivalent row, the octal number or its decimal equivalent
may be built.

Not only does Figure 3 illustrate the build-up of an octal number, it also shows a direct
method of converting an octal number to its decimal equivalent. There is another method
for doing this, but because it requires doing octal arithmetic, it is more difficult and cum­
bersome to perform-unless one is· adept at octal arithmetic. Figures 4 and 5 are octal
addition and multiplication tables. By eliminating the two digits 8 and 9, the quantities
represented by these decimal numbers, 8 1 0 and 9 1 0 , are now represented by octal numbers
l 08 and 11 8 . All octal numbers 12 8 through 198 represent quantities likewise two less than
the corresponding decimal number. The next higher-quantity digit has a value four less than
its decimal equivalent: 208 versus 16 1 0 • The additional decrease in the value represented
by octal numbers as compared to that value represented by decimal numbers continues
through digit 7. Since there are no 8's and 9's in octal numbers, the number following 77 8

is 1 008 . The decimal value of 1008 is 64 1 0 •

Un its Per Set Octal Notation 100,000 10,000 1,000 100 10
Decimal Equivalent 32,758 4,096 512 74 8

Powers of Ten or Eight 5 4 2 0
Digit Octal Number 0 4

~~~~-~~-+---+-~~~1------.f--~~~-~~~-+ 

Decimal Equivalent 3 0 

4 
4 

50 
40 

131072 
401,354 

Decimal Numbers--___,,,-131,820 

Figure 3. Comparison of Build-Up of Octal Number and its Decimal Equivalent 

01 02 03 04 05 06 07 
1 02 03 04 05 06 07 10 
2 03 04 05 06 07 10 11 
3 04 05 06 07 10 11 12 
4 05 06 07 10 11 12 13 
5 06 07 10 11 12 13 14 
6 07 10 11 12 13 14 15 
7 10 11 12 13 14 15 16 

Figure 4. Octal Addition Table 

02 03 04 05 06 07 
2 04 06 10 12 14 16 

3 06 11 14 17 22 25 
4 10 14 20 24 30 34 
5 12 17 24 31 36 43 
6 14 22 30 36 44 52 
7 16 25 34 43 52 61 

Figure 5. Octal Multiplication Table 

5 



6 

Thus, the larger the octal number, the greater is its difference in value from the corres­
ponding decimal number. Figure 6 relates a few of the ·powers-of-eight written in octal 
notation to corresponding powers-of-eight written in decimal notation. 

Octal Notation 108 - 8 1 0 Decimal Notation 

1008 - 641 0 

1 ,0008 - 512 1 0 

10,0008 - 4,0961 0 

100,0008 - 32,76810 

1,000,0008 - 262, 1441 0 

10,000,0008 - 2,097 I 1521 Q 

100,000,0008 - 16,777,21610 

Figure 6. Powers-of-Eight, Octal Versus Decimal Notation 

Octal and Decimal Number Conversions 

Because decimal arithmetic is used, the indirect method, using division by base number, to 
convert a number represented by one base notation to its equivalent-value number in 
another base notation is first explained for converting from a decimal number to an octal 
number. Later, an example is given for the converse, octal-to-decimal conversion. 

The following rules are stated for converting from a decimal to an octal number. Neverthe­
less, the same principles and technique apply for conversions from any number system to 
another. 

1. Take the octal radix, represented in decimal notation. This is the 
number 8 1 0 , and it is the divisor. 

2. Divide the decimal number by 8 repetitively until the dividend is 
exhausted. See Figure 7. Use decimal arithmetic rules. 

3. Form the octal number from the remainders as shown in Figure 7. 

An octal-to-decimal conversion is illustrated in Figure 8. You will note, that the divisor is 
the radix 10 1 0 but it is represented in octal no ta ti on as 128 . Also, all of the arithmetic is 
carried out by octal rules of addition and multiplication as shown in Figures 4 and 5. 

Another method for converting from octal to decimal numbers uses decimal-number arith­
metic and generally is easier to use unless one is quite adept in octal-number arithmetic. To 
use this method, referring to Figure 9, multiply the most significant digit of a number by 8, 
add the next most significant digit, multiply the resulting sum by 8, add the next most 
significant digit, continuing until the least-significant digit is processed. 



4 

Sixth 
Division 

0 
8)4 

Q_ 
4 

Octal Equivalent 
(The Answer) 

Fifth 
Division 

4 
8)32 

32 
0 

Fourth 
Division 

32 
8)257 

24 
17 
1§_ 
1 

Third Second 
Division Division 

257 2059 
8)2059 8)16477 

16 16-
45 47 
40 40 
59 77 

56 72 
3 5 

Figure 7. Decimal-to-Octal Number Conversion 

Sixth 
Division 

0 
12)1 

Q 
1 

Decimal Equivalent 
(The Answer) 

Fifth 
Division 

1 
12)15 

12 
3 

Fourth 
Division 

15 
12)203 

1L 
63 
62 
-1 

Third 
Division 

Second 
Division 

203 2446 
12)2446 12)31576 

lL.. 24 
46 55 
36 Octal 50 
1<>~ Eight 57 

§......._ 50 
'Decimal -:fo 

Eight 74 
2 

First 
Division 

16477 
8)13182010 

8 
51 
48 
38 
32 

62 
56 
60 
56 
4 

First 
Division 

31576 
12)4013548 

36 
21 
12.. 
73 
§~--
115 
106 
74 

74 
0 

Figure 8. Octal-to-Decimal Number Conversion by Division Using Octal Arithmetic 

7 



8 

x8 

8 
+ 5 

13 

x 8 

104 

+ 5 

5 

__J 

109 1 0-------Decimal number 

5 8 -.. -- Octal number 

Figure 9. Octal-to-Decimal Number Conversion by Addition/Multiplication 

It is suggested that not too much time be spent practicing on the octal-to-decimal conver­
sion since it is seldom used in operational and maintenance work. 

Primarily, an understanding of the principles involved and the ability to convert from 
decimal to octal numbers are all that should be mastered at this time. Digital computer 
operational codes, addresses, and the like are noted in the octal number system and there is 
no need to change these to the decimal number system. However, the digital computer 
works in the binary number system, and, therefore, the binary number system and its rela­
tionship to both the octal and decimal number systems are prerequisite to learning digital 

. computer OJ'>eration and logical functioning. 

Binary Numbers 

The binary number system is based on the radix 2 1 0 • You will note that the number 2 is a 
decimal number: Thus, the reason for showing the subscript 10. There is no digit 2 in the 
binary system; Because the decimal system is most widely used and understood, it is 
customary to use its digits as a reference in designating radices. Likewise, even though there 
is no B in the octal system, octal numbers are customarily designated with 8 as subscripts: 
108 , 21 8 , 1008 , 5578 , and so forth. When working with mixed number systems, it is a 

good idea to designate the bases to avoid ambiguity. 

There are only two binary digits: 0 and 1. Both of these digits may be used in various 
combinations to represent any desired quantity. By virtue of the location of a digit it repre:­
sents a particular value based on the power of two. However, whereas with a many-digit 
number system many sets pf the radix's power may be designated, only one set may be 
designated in the binary system. This is accomplished with the digit 1. The digit 0 indicates 
nothing. Either of these binary digits is called a bit, coined from the term Blnary digiT. 
Thus, each bit position must be either a 0 or a 1. The location of a bit in the binary 
number determines its value-based on a particular power of two. Figure 10 shows the 
build-up of a 6-bit number. 



decimal units per set 
powers of two 
binary number 

32 
2s 
1 

16 8 4 2 1 
24 23 22 21 20 
1 1 0 1 1 

8 
--~~~~~~~~---16 

--~~~~~~~~~~~~32 

Figure 10. Build-Up of Binary Number 

59 ~decimal 
equivalent 

Binary and Octal/Decimal Number Conversions 

It is also possible to convert the decimal number 59 to a binary number using the division 
method. This is demonstrated in Figure 11. 

Sixth Fifth Fourth Third Second First 
Division Division Division Division Division Division 

0 1 3 7 14 29 
2ff 2)3 

_Q_ _l 
2}f 2)14 2)29 2)59 

_§_ H. 28 58 
1 1 1 0 1 1 

Figure 11. Decimal-to-Binary Number Conversion 

9 



10 

·Conversely, the binary number may be converted to a decimal number using the division 
method. However, binary arithmetic rules must be used. These are very simply stated: 

I. l+O= I 
2. 1 + 1 = 10 
3. 1 xO=O 
4. 1 x I = I 
5. I - 0 = I 
6. I - 1 = 0 
7. 1 -;- 0 = 0 
8. 1 -;- I = 1 

In addition, carries and borrows are allowed. 

With the preceding binary arithmetic rules applying, Figure 12 shows the conversion of the 
binary number 111011 to the decimal number 59. 

101 First 0 Second 
· 1010~ Division 

000 
1010)111011 Division 

1010 
10'k-Binary 10011 
J, FivP. 1010 Binary 

Second 5....,_Decimal First 1001 ~Nine 
Remainder/ Equivalent Remainder I 

5 94!-------------- 9~Decimal 
Equivalent 

Figure 12. Binary-to-Decimal Number Conversion by Division Using Binary Arithmetic 

Figure 13 shows how to convert the binary number 11110 to the decimal number 30 using 
decimal arithmetic rules. 

1 1 1 1 02 ------binary number 
multiply 

~j add 
3 

multiply 2 
-6-

add 1 
7 

multiply 2 
14 

add _1_ 
15 

multiply _2_ 
30 

add _o_ 
3010 ---------decimal number 

Figure 13. Binary-to-Decimal Number Conversion by Multiplication/Addition 
Using Decimal Arithmetic 



Both decimal and octal numbers are frequently converted to binary number and vice versa 
in the digital computer business. Thus, it is essential that the techniques for binary-to­
decimal, decimal-to-binary, binary-to-octal, and octal-to-binary conversions be mastered to 
the degree that they are performed quickly and accl;lrately. 

Coded Binary Numbers 

A frequently used technique used for relating octal and binary quantities·to one another is 
to code a binary number as octal digits or vice versa. This is easily accomplished because 
the powers of eight may be expressed as powers of two. Thus, by dividing binary numbers 
into groups of threes, each group may be coded to represent all octal digits from 0 through 
7. Conversely, any octal digit may be represented by a group of three bits. A few examples 
of binary-coded-octal numbers and their octal equivalents are shown in Figure 14. There are 
no unused quantities in binary-coded-octal numbers, and conversions in either direction are 
readily performed mentally. In addition, if all the binary digits (bits) are converted to an 
octal number, the octal number thus obtained is the same number obtained by converting 
groups of three bits to octal digits and combining these digits to form an octal number. 
However, because of our familiarity with the decimal number system, in Figure 14 the 
binary number equivalent to 777 8 is converted to its decimal equivalent 511 1 0 , and, then, 
511 1 0 is converted to 777 8 using the division method. Also, the build-up of the octal 
number 777 8 is shown side-by-side with the build-up of the decimal equivalent 511 10 . 

Figure 14 illustrates nearly all that must be understood about the relationships among 
binary, octal, and decimal numbers. The only other concept not yet explained is the repre­
sentation of a decimal number in the binary-coded-decimal (BCD) notation. This is covered 
next. 

A decimal number is not so easily related to a binary number as is an octal number. This is 
because it requires four binary digits (bits) to represent quantities corresponding to those 
represented by the decimal digits 8 and 9. But four bits can represent 16 different quanti­
ties, 0 through 15. Thus, the representations 10 through 15 in a 4-bit group are wasted. 
Also, the binary-coded-decimal (BCD) number is not the same as the decimal number 
converted from the binary number. For these two reasons, binary-coded-octal numbers are 
preferred from standpoints of ease-of-use and conversion to binary numbers. Nevertheless, 
because most business is carried out in the decimal number system and because most of us 
are, therefore, more oriented to the decimal number system, decimal numbers are some­
times represented in 4-bit groups, each of which is readily converted to a decimal number 
and vice versa. Figure 15 shows the number 698 10 coded in BCD format. Conversion in 
either direction is readily apparent. 

Binary Number Arithmetic 

Binary numbers are used to represent quantities in the simpliest way. By having only two 
digits in the number system, addition, subtraction, multiplication, and division are easily 
carried out by the manipulation of combinations of zeros and ones. However, it requires 
more digits in the binary number system to represent any quantity greater than one, and 
the greater the magnitude of the binary number, the more bits, and the more difficult it is 
to recognize the larger numbers. For this reason, we continually talk and think in decimal 

11 



12 

Octal 
Number 

1 
2 
3 
4 
5 
6 
7 

108 
118 
128 
138 
178 
208 
278 
77 8 

777 8 

282726 
222120 

0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
1 1 1 
1 1 1 

2s 24·23 
222120 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 1 1 
0 0 0 
1 1 1 

22 21 2° Powers of two for Binary Number in Decimal Notation 
22 21 20 Powers of two for Binary-Coded-Octal Number 

Decimal-to-Octal Conversion 

1 1 1 Build-up of Build-up of 

1 1 1

1 

j ] 1 deT1 number octa:rber 

16----- 20 
32----- 40 
64-----100 

,___ _________ 128 200 

------------- 256 400 
5111 0 7778 

Figure 14. Binary/Binary~Coded-Octal Numb~rs and Relationships to Octal and Decimal Numbers 

Power of Two 23222120 23222120 23222120 
Binary-Coded-Decimal Number 0 1 1 0 0 0 1 0 0 0 0 

i i i 
0 1 0 
1 0 0 
1 0 0 
0 8 8 
6 9 8 

698 Decimal Equivalent of BCD 

Figure 15. Binary-Coded-Decimal Number and Conversion to Decimal Number Equivalent 

or octal numbers but the machines work in binary numbers. For these reasons, the 
following explanations of binary arithmetic are referenced to the decimal equivalents. 
Decimal numbers are used because of our familiarity with them. However, as time permits, 
it is a good practice to get use to octal numbers and arithmetic, thus simplifying conver­
sions of the machine's and the people's working numbers. 

Binary numbers arc usually classified as so many bits long. The number of bits determines 
the maximum magnitude that a number may represent. Computers are designed to handle 
numbers of certain bit sizes. This imposes a limitation on the size of the number. 



Nevertheless, some rather large numbers are handled by computers. Typical bit lengths are 
12, 16, 24, 32, and 64. The FST-1 uses 24 operational bits, so the maximum magnitude of 
a 24-bit number is 16, 777 ,215 1 0 • However, to simplify explanations the binary arithmetic 
discussions that follow are based on smaller numbers; the principles, of course, are 
applicable for any size number. 

A simple but very important concept that we must get use to in thinking about binary 
numbers is that there is no symbol for digit or number 2. All quantities must be expressed 
in O's and 1 's. The addition of 1 plus 1 gives the number 102 , which is equivalent to 21 0 • 

The addition of 102 + 102 equals 1002 : That is, 210 + 210 equals 410 • Figure 16 is the 
binary addition table. 

Augend Digit 0 1 0 1 
Addend Digit 0 0 1 1 
Sum Digit 0 1 1 0 
Carry 0 0 0 1 

Figure 16. Binary Addition Table 

Bit Addition 

An example of adding two binary numbers appears in Figure 1 7. Binary addition is per­
formed just like decimal addition. Start at the right and add the first pair of bits. Continue 
leftward, adding pairs of bits, considering whethe.r a carry has occurred in the previous bit 
addition. 

Decimal 

13 

21 

34 

Binary 

001101 

010101 

100010 

Augend 

Addend 

Sum 

Figure 17. Binary Addition and Decimal Equivalent 

Digital computers add binary numbers in a manner similar to the preceding example. 

In adding two bits, four cases are possible. 

0+0=0 

0 + 1 = 1 
1 + 0 = 1 
1+1=10 

13 



14 

Bit Subtraction 

To subtract two bits 

1 - 1 = 0 
0 - 0 = 0 
1 - 0 = 1 

0 - 1 = 1 with a 1 borrowed for the next left-hand bit 

Figure 18 is an example of binary subtraction. 

Decimal 

34 

21 

13 

Binary 

100010 

010101 

001101 

Minuend 

Subtrahend 

Difference 

Figure 18. Binary Subtraction and Decimal Equivalent 

Figure 19 is the binary subtraction table. 

Minuend 0 1 0 1 

Subtrahend Digit 0 0 1 1 

Difference Digit a 1 1 a 
Borrow a a 1 a 

Figure 19. Binary Subtraction Table 

Bit Multiplication 

In any number system, zero times zero yields zero. Since the only remaining pair is one 
times one, bit multiplication is simply summarized in Figure 20. 

Multiplicand 
D !_g_it 

0 1 

Multiplier 0 a 0 

Digit 1 0 1 

Figure 20. Single-Bit Multiplication Table 

Figure 21 illustrates the multiplication of two binary numbers. As in decimal multiplication, 
a bit of the multiplier multiplies the entire multiplicand. The result is placed below the 
multiplier so the right-most bit of the result is aligned under the multiplier bit just used. 
The multiplication example in the center of the figure is self-explanatory. However, it may 



be shortened if we consider that for each 0 in the multiplier, the partial product corres­
ponding to that 0 bit is equal to zero. Thus, by showing only the partial product 
corresponding to each 1 in the multiplier, the multiplication example on the right-hand side 
of the figure apply. 

13 1101 1101 Multiplicand 
9 1001 1001 Multiplier 

117 1101 1101 
Partial Products 

0000 1101 
0000 1110101 Full Product 

1101 
1110101 

Figure 21. Binary Multiplication, Long and Short Method, with Decimal Equivalent 

Bit Division 

Binary division may be considered the reverse of binary multiplication. The process of 
binary division is identical to that of decimal division. Figure 22 is the binary digit division 
table and has the same format as the binary multiplication table. 

Dividend 
Digit 

0 1 
I 

---····-----·· 

Divisor 0 0 0 

Digit I 1 
h. ·-· 

0 1 
~.:. 

Figure 22. Single-Bit Binary Division Table 

Two division examples are given in Figure 23. These are in short-division form. The same 
quantities of the preceding multiplication· examples are used, the products as the minuends 
and the multiplicands as the divisors. 

13 
9)117 

_9.. 
27 
27 

9 
13)Tff 

117 

divisor 1101 quotient 
1001)1110101 dividend 

1001 
1011 
1001 

1001 
1001. 

no remainder 

1001 
1101) 1110101 

1101 
1101 
1101 
--no remainder 

Figure 23. Binary Division with Decimal Equivalent 

15 



16 

Thus far, we have discussed binary numbers in terms of magnitude only. To distinguish 
positive from negative numbers, it is customary to use one bit to designate the sign of a 
binary number and to place this bit at the beginning of the number. For positive numbers 
this bit is zero, and for negative numbers it is one. This, of course, decreases the magnitude 
of the maximum number by a factor of two, because each left-hand bit position represents 
the next power of two. Disregarding the sign, with N bits a number 2N - 1 bits long may be 
represented. Using the left-hand bit as a sign this decreases the number size to 2N -2 bits. 

In the interest of simplicity we can disregard the sign of binary numbers for now and 
assume that we are dealing .with positive, whole numbers. However, computers must take 
into consideration both the sign and whether or not a number is whole or a fraction. 

Complements 

The true complement of a number is that number which if added to the original number 
produces a sum equal to the power of the radix in the location of the original number's 
most-significant digit plus one. For instance, the complement of 6 in the decimal system is 
4. Adding the complement 4 to the original number gives a sum of 10. The original 
number's most-significant digit is in the units or I 0° position. Thus, the power is 0 and 0 + 
l equals I. The number I 0 is the base I 0 raised to the first power, I 0 1 • 

Thus, in the decimal system a complement is obtained by subtracting a number from a 
number equal to a power of I 0. The power of I 0 used is such to produce a number with 
one more digit than the original number. For example: 

1. For numbers 1 through 9-subtract from 10 
2. For numbers 10 through 99-subtract from 100 
3. For numbers I 00 through 999-subtract from 1000 
4. And so forth 

This method applies to numbers having any radix. However, this gives the TRUE comple­
ment. There are other special complements that are used, usually to simplify circuits or to 
enhance computer operation. 

Complementing numbers in the binary system may be effected likewise. For example, the 
complement of the binary number 1 is 1, and it is determined by subtracting 1 from the 
next power of the base 2, 10. Other examples are given in Figure 24. 

Next higher 
power of radix 2 

Original number 
Complement 

100 

1Q_ 
10 

100 

11 
01 

100000 

11011 
00101 

Figure 24. Example of Obtaining TRUE Complement by Subtracting Next Higher 
Power of Two 



Another very simple method of complementing a binary number is to change all ones to 
zeros, change all zeros to ones, and add one to the binary number thus formed. Figure 25 
illustrates this technique. 

Original number 10 
Ones Complement 01 
Add 1 _1 
True (twos) complement 10 

11 
00 

_1 
01 

11011 
00100 

00101 

Figure 25. Example of Obtaining TRUE Complement by Reversing Bits and 
Adding One to Result 

The complements of binary numbers have many uses in digital computer technology-as do 
other variations of representing binary numbers. The use of complements in arithmetic, 
however, is our immediate concern. To economize on arithmetic circuits in digital com­
puters, the arithmetic unit usually is capable of either adding or subtracting but not both. 
Thus, the complement of a number is used as one of the quantities either to effect the 
desired operation, either addition or subtraction depending on the form of the arithmetic 
unit. 

If a computer's arithmetic unit is an adder, then, the complement is used as the subtrahend 
in subtraction. If the arithmetic unit is a subtracter, then, the complement is used as the 
addend in addition. Figure 26 shows both uses of using a true complement of a binary 
number. 

001101 001101 

borrowed 
one assumed 

'::=.\ 

minuend 113 13 augend 
21 addend 
34 sum 

91 Ol.Q,1-twos complemented~ 10101:! 
100010 < equal ) 100010 

subtrahend 79 
difference 34 

Ordinary Binary addition 
and Decimal Equivalent 

Binary Addition Using Twos 
Complement and Decimal 
Equivalent 

34 minuend 100010 100010 augend 34 
21 subtrahend 010101-twos complemented---7 101011 addend 79 
13 difference 001101 equal 001101 sum (1)13 

Ordinary Binary Subtraction 
and Decimal Equivalent 

this digit / 
disregarded 

Binary Subtraction Using Twos 
Complement and Decimal Equivalent 

Figure 26. Examples Comparing Ordinary Binary Addition and Subtraction to Twos-Complement Methods 

17 



18 

Some liberties are taken in complementary arithmetic so borrows are assumed and carries 
are disregarded for the most-significant digits, as illustrated in the preceding examples. 

Another precaution that must be taken before complementing a number is to add zeros to 
the left-hand side of the number, as needed, until the number has the same number of 
digits as the other number to be involved. The complement is obtained by subtracting from 
the number equal to the radix raised to the power equal to one more than the number of 
digits in the extended number. For example: 

Direct Addition 

Augend 
Addend 

34 
08 
42 

Complementary Addition 

wrong complement from 10 1 ( 10) 13· .. 4,--

------ wrong answer 

/Borrow Assumed 
1 34 

92 correct complement, from I 02 (I 00) 
42 --.:-----...correct answer 

The preceding examples use decimal numbers but the same principle applies to any number 
system. In complementing binary numbers the same precaution is necessary. The simpliest 
way to make sure it is taken care of is to be sure to always have the same number of bits 
designated in the two numbers involved. For example: 

Extension Bits 
100010 
001000 
101010 

001000 
110111 

n 1000 

Borrow 
/Assumed 

(34) 
( 8) 
(42) 

1 100010 (34) 
111000 
101010 (42) 

Augend 
Addend 
Sum 

Binary 8 
ones complement of binary 8 
add one 
twos (true) complement of binary 8 
(Note: does not equal decimal 2) 

Note in the preceding example that the addend extension is necessary to get the correct 
answer by subtracting the complement from the original augend. It made no difference in 
doing the straight-forward binary addition, however, but to prevent inadvertently making 
mistakes in arithmetic, it is suggested that binary numbers be appropriately extended to the 
full bit size. 



A short-cut method for complementing a binary number is illustrated in Figure 27. Starting 
with right-hand bit (least-significant), copy the original number until the first bit to the 
left-hand side of the least-significant 1. Then, including the first bit more significant than 
the first 1 change all 1 's to O's and vice versa. 

~ change all bits more significant then least-significant 1 
,..,,,.. ___ _. .------ least-significant one 

1 1 0 0 1 1 0 0 1 1-0 0 0-.original number 
0 0 1 1 0 0 1 1 0 1 0 0 o-~2's complement 

------- change all bits more-significant than least-significant 1 
,,,_ ___ _.. . .._ ___ -.... ~ least-significant one 

1 0 1 0 0 0 1 1 1 1 1 1 1 ~original number 
0 1 0 1 1 ·1 0 0 0 0 0 0 1-a2's complement 

Figure 27. Short-Cut Method of Conversion to Twos Complement 

Number System Summary 

The foregoing coverage of number systems affords enough background for one to get 
started in digital-computer arithmetic and to begin to understand the languages that digital 
computers use. In summary, for operational and maintenance purposes, a person should 
have mastered the following: 

1. Understand the building of numbers in the three mainly used number 
systems: decimal-base l 0; octal-base 8; binary-base 2. 

2. Convert numbers from any of these three number systems to the other 
two number systems. First, master the easiest technique and use it. For 
example, if working in octal arithmetic is difficult, as it is for most 
people, use the technique for converting from octal to decimal numbers 
that can be performed using decimal arithmetic. 

3. Perform simple binary arithmetic, such as addition, subtraction, multi­
plication, and division. 

4. Convert binary numbers to either the ones or twos complement. 

5. Using the twos complement method, add or subtract to perform binary 
subtraction and addition, respectively. 

COMPUTER WORDS 

Information transferred to and from or formed within a digital computer is referred to as 
"data." In computerese, the word "data" designates a combination of binary ones and 
zeros. These ones and zeros are called bits and are formatted as "words." The position of 

19 



20 

bits are us,ually referred to by a "bit number." In terms of magnitude only, Figure 28 
illustrates a 24-bit word. The bit positions are designated by numbers starting with 0 as the 
least-significant bit and 23 as the most-significant bit. 

0 Bit Location 
j,----J---+~j,---+--+~j,--+--+---i~+---+--+~r---+--+--+~t----t--+~t---t--+--+--t 

(powers of two) 
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Figure 28. Format of Computer Word of 24 Magnitude Bits 

Magnitude 

A 1 in any bit position gives the decimal number value shown. The sum of all the values of 
bits that are l's is the total magnitude represented by the computer word. However, for the 
FST-1 computer, bit 23 is set aside to indicate the sign of the number, a 0 for a positive 
number and a 1 for a negative number. 

The advantage of numbering bits starting with zero and using it to designate the least­
significant bit makes it easy to determine the value of a I-bit in each bit position. The bit 
number is also the power of 2 that the radix, 2, is raised. Thus, bit position 0 as a 1 
designates a value equal to 2° (or 1) bit 1-21

, bit 2-22
, and so forth. 

Instructions 

Some computer words represent instructions. Instructions tell the computer what to do. 
Computer instructions are also in the form of numbers comprising bits in various combina­
tions having various meanings. The computer programs comprise certain instructions that 
may be arranged in certain orders, transferred from one operational unit to another, and 
stored on various media. Again, bits, Binary digiTS, comprise instructions and the computer 
"speaks" and "talks" and "works" only using numbers comprised of bits. 

Formatting instruction words makes it possible for an instruction to comprise various parts 
that have different information. These parts of an instruction word vary for different types 
of instructions. However, for the time being let us concern ourselves with one type of 
instruction word. Becoming familiar with this one type of word can become a jumping-off 
point for tackling other instruction words later. 

Figure 29 represents an instruction word, similar to what may be found in most digital 
computers. 



Operational Code Index Reg. 

c x 0 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 29. Typical Instruction Word Format 

Bits 0 through 13 are called the "operand address." They tell the computer where in 
memory to fetch or to store an operand. An operand may be any of the quantities entering 
into or resulting from a computer operation; it may be an argument, a result, a parameter, 
or even an address of the next instruction. 

Let us skip over bits 14 through 1 7 for now. 

Bits 18 through 23 are called the "operational code" or more frequently the "op code." 
The computer has a repertoire of operational codes that it is able to perform. The op-code 
bits indicate one of these operations. Thus, the machine-level program commands comprise 
op codes. By decoding op codes obtained from a storage unit called memory, the computer 
is able to follow instructions from the computer program stored in memory. 

Getting back to bits 14 through 17, these have special uses that afford the programmer with 
a more-versatile programming capability. The bit designated "I" is called the "indirect­
address" or just "indirect" bit. It tells the computer to obtain its operand from the location 
in another instruction word located at the operand address in the current instruction. For 
the present, consider the significance of this bit as a special programming tool. 

Bits 15 through 17 are called "index" bits. They designate special computer registers that 
have 14 bit positions corresponding to the operand-address bit positions. Again, this is for 
programming, and its use is for operand-address modification. When an instruction has 
indexing, the operand address stored in the designated index register is added to the 
operand. address of the current instruction. The resulting sum represents another operand 
address that is then used instead of the one in the instruction. This is also a special pro­
gramming tool, and its programming significance can be appreciated only after acquiring 
additional programming background. 

There are other types of computer instructions that will be covered later. 

Data, either as magnitude or instructions, are held or manipulated in units called registers 
and these are our next topic. 

WORD REGISTERS 

The various data handled by digital computers correspond to "word registers." A register 
here is a place where a record is kept. However, the word "register" in computerese implies 

21 



22 

a temporary record, whereas permanent or semi-permanent records are usually called 
memory or storage media. Thus, we shall use the word "register" to mean a hardware unit 
that temporarily stores information (data) in the form of bits-or a unit that handles these 
bits during their manipulation. 

It is not important at this time to know what the hardware is that comprises registers. 
Primarily, it is only necessary to understand the purpose of registers and their functional 
formats. 

Typical Register Configurations 

Two typical registers correspond to those shown in Figures 28 and 29, representing magni­
tude and instructions. In actual practice, a machine register comprises just so many bit 
positions. Whether the bits represent magnitude or instructions depends on how they are 
used by the machine. Therefore, until we get around to discussing hardware, our only con­
cern with registers pertains to function, significance of the bits (format), and size. 

Functional Registers 

Certain basic functions are performed by the digital computer registers. These basic func­
tions are explained in the following descriptions. Various computer manufacturers give these 
registers different names. Of course, special registers may be added when it is desired to 
afford the user of some additional capability or operational versatility. 

Figure 30 is a simplified functional block diagram showing the organization of the basic 
registers comprising a typical digital computer. 

PROGRAM 
REGISTER 

INSTRUCTION 
REGISTER 

MEMORY ADDRESS 
REGISTER 

MEMORY 

~ 
<( 
Q 

>-ffi 11----~ 
a: l-o en 
~a 
ww 
~ a: 

a: 

-------.5~ a.. en 
5a 
O w 
........ a: 
I- <( 

,...-------- ::::> I­
Q. <( 
~Q 

ACCUMULATOR 

ARITHMETIC 
UNIT 

a: 
w 
~ 

1-­
::::> (.!) 
a..W 
I- a: 
::::>en 
oen -..w 
I- a: 
::::>o 
a..o 
~ <( 

Figure 30. Organization of Registers of a Typical Digital Computer 



MEMORY 

The memory serves to store the program that is to be executed, store the input data 
unit it is needed for processing, store intermediate results during the computation, 

I 

and store final results until they are ready for output. The memory is a principal 
element of the computer, and the cost and speed of the computer are largely 
governed by the cost and speed of the memory. The memory stores its contents in 
the form of words. A computer memory may be capable of storing fron one 
thousand words to several hundred thousand words or more. 

MEMORY ADDRESS REGISTER 

A word is stored away in the memory, or retrieved from the memory, by desig­
nating the location of a particular memory word-position in the memory, and giving 
the command to "store" or "fetch." The memory address register designates this 
address. There will be as many unique addresses (locations) in the memory as the 
number of words that the memory is capable of storing. The store or fetch com­
mand is given by the Control Unit, an all-prevading logical complex that determines 
what operation is performed at what time. It can be visualized as the "big brother" 
which causes the computer to perform their operations. 

MEMORY DATA REGISTER 

When storing a data word into memory, the data word is placed into the memory 
data register, the address at which it is to be stored is placed into the memory 
address register, and the store command causes the data word to be stored at the 
desired address. When fetching a data word, the address of the word is placed into 
the memory address register, and the fetch command causes the word to be trans­
ferred from the specified address to the memory data register. 

PROGRAM REGISTER 

The program consists of a sequence of instructions that the computer is to perform. 
The program is stored in the memory in the proper sequence; that is, the first 
instruction is stored in location 001, the second is stored in 002, and so forth. The 
program register keeps track of the location from which the next instruction is to be 
fetched, by counting the instructions as they are performed. For example, if the 
fifth instruction, which was located in memory position 005, is being performed, the 
protram register has counted to 006, the address of the next instruction. When the 
time comes to fetch the next instruction from memory to determine the operation 
it specifies, the program register will transfer the contents of 006 into the memory 
address register. 

INSTRUCTION REGISTER 

It is extremely important to recognize that the memory contains both instructions 
to be performed (the program) and the data on which the instructions are to be 

23 



24 

performed, and that these two kinds of stored words are treated in two entirely 
separate ways. The address of an instruction is specified by the program register; 
when fetched into memory data register, the instruction is transferred to the instruc­
tion register, where it is examined by the control unit to determine: 

What operation (add, multiply, or some other)? 
Where is the addend (or multiplicand, or other) located? 
Where is the augend (or multiplier, or other) located? 
Where should the result be placed? 

If, as is usually the case, one of the operands is to be obtained from the memory, 
the appropriate address, contained in the instruction, is furnished to the memory 
address register by the instruction register. 

ACCUMULATOR 

As the instruction register is taxed with the handling of all instruction words as they 
are retrieved from memory, the accumulator serves an equally important function 
for the data words. In general, the accumulator contains one of the operands for 
any arithmetic operation, the other operand being in memory, and the result of an 
arithmetic operation is usually placed into the accumulator. Data words can be 
fetched from memory to the accumulator, or stored from the accumulator into the 
memory. 

ARITHMETIC UNIT 

Performs the specified arithmetic operation between a word contained in the 
accumulator and a word fetched from memory into the memory data register. (This 
describes a single-address computer; more-complex computers can carry out arith­
metic operations between two words in memory.) 

INPUT/OUTPUT DATA REGISTER 

Data coming from an external device is placed into this register by the device, and 
subsequently transferred into the accumulator for use inside the computer. Data 
going to an external device is transferred from the accumulator to the input/output 
data register, from which it is removed by the device. The input/output data register 
serves the purpose of temporary storage and speed-matching. Direct communication 
between the accumulator and the external device is inconvenient because the two 
are seldom ready at the same instant, and time would be wasted by one waiting for 
the other. In general, the computer will be much faster than the external device. 
The input/output data register serves somewhat like an RFD mailbox, with which 
we can send or receive a letter without standing and waiting for the postman to 
come by. 



INPUT/OUTPUT ADDRESS REGISTER 

Several external devices are usually connected to the computer, and the input/ 
output address register designates the one device that is to send or receive data to or 
from the input/output data register at any time. 

COMPUTER PROGRAMS AND INSTRUCTIONS 

Before discussing the computer programs and the instructions that comprise them, three 
additional definitions of terms are in order. 

• INSTRUCTION REPERTOIRE 

A computer is capable of performing only those operations that have been built into 
it. These operations are defined by the instruction repertoire, which is a list of the 
instructions that can be used to make up a program for the computer. 

• INSTRUCTION 

We may define an instruction as one step in a program, but now let us amplify the 
makeup and function of an instruction. It consists of three basic parts: 

Operation Code ("Op Code"): The portion of an instruction that specifies 
the operation to be performed (add, transfer to input/output data register, 
store into memory, and others). 

Modifier: An appendage to the code that further amplifies it, modifies the 
operation. For example, if the result of an "add" operation is normally 
placed into the accumulator, the modifier may be used to alter the operation 
so the result is placed into memory. 

Address: The memory location that contains the word that will enter in the 
operation specified by the Op Code. 

It is important to realize that instructions (and, for that matter, most data as well) 
for a computer are absolutely content-position-sensitive: for example, if we have a 
seven-character instruction, the first three will always comprise the Op Code, the 
fourth will always be the modifier, and the last three will always be the address. 
Any other order will make no sense to the computer. 

• PERIPHERAL EQUIPMENT 

That which is referred to above as an "external devices." Also referred to as 1/0 
Devices. 

25 



26 

Hypothetical Computer 

To illustrate the workings of a computer and its program, we shall postulate an instruction 
repertoire. This instruction repertoire, by the definition of the instructions, will define the 
operation of the control unit and the arithmetic unit. Since the control unit causes the next 
instruction in the program to be executed immediately upon completion of the current 
instruction, the operation of the program register and instruction register are implicit in the 
computer, thus for programming purposes we can ignore them. We shall, therefore, work 
with the modified computer organization of Figure 31, which shows only the parts of the 
computer that are of interest to the programmer. Note that there are several other changes 
from Figure 30 to Figure 31. 

-----1/0-D 

MAR ACC 

MEMORY A.LI. 1/0 ·A 

CARD 
READER 
1/01 

PRINTER 
1/02 

Figure 31. Simplified Functional Block Diagram of Hypothetical Computer System 

For brevity, the accumulator, arithmetic unit, memory address register, memory data regis­
ter, input/output data register, and input/output address register have been designated, in 
the text that follows, by the abbreviations ACC, A.U., MAR, MDR, I/0-D, and I/0-A, 
respectively. 

The two units of peripheral equipment necessary to perform an electric-company billing 
problem, described later have been added to Figure 30 and designated "I/01" and "I/02." 
A unit designated I/OR (1/0 Ready) has been added. I/OR is the means by which the I/O 
device can inform the computer that it is ready, or it has placed a word into I/0-D, or it 
has taken a word from 1/0-D or some other message, the meaning of which is well known 
to the computer at the time it occurs. I/OR is merely a latch, or signal, like the nod of 
one's head: the interpretation of it is up to the computer. 

For our simple instruction repertoire, let us ignore the modifier character, and work with 
simple six-character instructions. All instructions will have the format in which the first 
three characters are the Op Code, and the last three characters are the associated address, if 
needed. The memory contains one thousand locations, with addresses designated 000 
through 999. First, the arithmetic instructions are: 



ADDXXX: add the contents of memory location XXX to the contents of ACC, 
and place the result in ACC. Symbolically: ACC + XXX ~ACC. 

SUBXXX: subtract the contents of memory location XXX from the contents of 
ACC, and place the result in ACC. Symbolically: ACC - XXX ~ ACC. 

MLTXXX: multiply the contents of XXX by the contents of ACC, and place the 
result in ACC: (ACC) (XXX) ~ ACC. 

Next, the instructions used for data transfer and manipulation are: 

LODXXX: fetch the contents of XXX to ACC: XXX ~ ACC. 

STOXXX: store the contents of ACC in XXX: ACC ~ XXX. 

TCA: transfer the contents of ACC to I/0-A: ACC ~ I/0-A. 

TCD: transfer the contents of ACC to I/0-D: ACC ~ I/0-D. 

TDC: transfer the contents of I/0-D to ACC when I/0-D is set. 

(Note that LODXXX and STOXXX involve the use of MAR and MDR, but they are 
not mentioned in the instruction because they are implicit operators in the function 
of storing and fetching into or from memory.) · 

The last three instructions are used in the program to make decisions. The simple statement 
that a program proceeds through a fixed sequence of instructions is not strictly true, in that 
the program is able to make the decision to transfer to another part of itself rather than 
execute the next sequential instruction, on the basis of results obtained while performing 
computation. The instructions used to perform this kind of operation are called transfer or 
jump or branch instructions; their use will be made more clear in the example below. In our 
instruction repertoire, the branch instructions are: 

BIOXXX: take the next instruction from location XXX if I/OR is set. If I/OR is 
not set, take the next sequential instruction. 

BCNXXX: take the next instruction from location XXX if ACC is zero or negative. 
If ACC is positive, take the next sequential instruction. 

BBBXXX: ,take the next instruction from XXX. 

Since the instructions, as well as the data, are stored in the memory, these instructions 
address memory in the same sense as the data instructions. Returning for a moment to 
Figure 31, we can see that if the conditions specified by a branch instruction are satisfied, 
the address of the next instruction is inserted into MAR from the instruction register 
(where the whole branch instruction is stored while being executed), instead of from the 
program register. XXX is also inserted into the program register when a transfer is executed, 

27 



28 

because the sequential selection of instructions will proceed from XXX, not the location of 
the transfer instruction. 

We have therefore specified a computer with eleven instructions and 1000 words of memory 
to perform the task at hand: this is the hardware with which the programmer must work. 
The programmer must allocate the memory locations to particular tasks, and write a pro­
gram using these instructions. To complete the creation of a computer and program system 
to perform the desired function, we shall use the electric-company billing operation to 
illustrate the process. 

Electric-Bill-Calculation Program 

One programmer task is to allocate the available memory locations to the various functions 
for which the memory must be used. In this problem, these are: 

Storage of constants needed 
Storage of the program 
Storage of the input data 
Storage of intermediate results (a "scratchpad" area) 
Storage of output data 

Figure 3 2 shows a reasonable memory allocation for this problem; such a diagram is called a 
memory map. 

CONSTANTS: 
SCRATCHPAD: 

INPUT: 

OUTPUT: 

PROGRAM: 

21 WORDS 
80 WORDS 

200WORDS 

200 WORDS 

499 WORDS 

NUMBER OF 
LOCATION 

+-000 
+- 020 
+-100 

+- 300 

+- 500 

+- 999 

Figure 32. Memory Map for Electric Billing Program 



The creating of a program consists fundamentally of three steps: 

1. Specification of the operations that will be performed and the sequence 
in which they will be performed. This specification takes the form of a 
program flowchart that defines the general logic of the program. 

2. Specification of the individual elements (routines) of the program. This 
is the same process as above, but in more detail and for each area of 
the program. This specification takes the form of a detailed flowchart 
for each routine. 

3. Writing the instructions. If the flowcharts are properly done, the 
instruction sequence for each routine may be created easily and directly 
from the detailed flowchart, and the individual routines may be joined 
to form the program using the program flowchart. 

For our electric company billing problem, the program flowchart is shown in Figure 33. 
The program basically performs three routines: 

1. Read the portion of a card that contains the number of kilowatt-hours 
used by the customer during the past two months. For the sake of 
simplicity, we will assume that the remaining information on the card 
(customer name and address, customer identifying number) is trans­
ferred directly from the card reader to the printer that is printing the 
invoice. Therefore, the computer is required only to take the kilowatt­
hours (KWH) used, compute the amount due, and provide it to the 
printer. 

2. Compute the amount due using the following schedule of rates: 

2.00 dollars for the first 25 KWH. 
4.01 cents/KWH for the next 125 KWH. 
2.50 cents/KWH for the remainder. 

3. Print the amount due, and go on to the next card. 

29 



30 

NO 

YES 

Figure 33 Program Flowchart for Electric Billing Problem 

The detailed flowchart for the first routine, "read KWH," is shown in Figure 34. It com­
prises the following steps: 

1. Fetch the command "read-a-card" from memory and load into ACC. 

2. Wait for the 1/0-D to indicate that the card reader has placed the A 
word into the 1/0-D register. 

3. Transfer the contents of the 1/0-D to the ACC. 

4. Transfer the contents of the ACC ot the first input-area location in 
memory. 

Once the detailed flowcharts exists, the creation of a sequence of instructions to perform 
the routine is straightforward. 



AC~l/0-A 

WAIT FOR I/OD 

1/0-D~ACC 

Figure 34. Read KWH Routine Flowchart 

The computer contains 1000 words of memory. Each word consists of four characters. This 
allows us to store one instruction per word in the memory. The Op Code is stored in the 
first character of memory (suitably coded so, for example, a first-character "A" is inter­
preted as "add," and "S" as "subtract," and so forth). The address (which will be three 
digits) is the following three characters. ACC, MDR, and I/0-D will also have a one-word 
capacity, Thus, full memory words may be operated upon and manipulated. 

The list of instructions to implement the detailed flowchart comprises both the instructions 
and their assigned locations in memory. The program and the data are stored in the 
memory. In the instruction sequence below, the memory address where each instruction is 
stored is shown in the left-hand column, the instruction sequence is listed in the center 
column, and the right-hand column shows the contents of ACC after the instruction on that 
line has been executed. This makes following the program sequence easier. 

Address 

500 
501 
502 

Op Code and Address 

LOD 
TCA 
TDC 

000 
NNNN 
NNN 

ACC Content 

"read-a-card" 

word from card reader 

We have chosen to store the command that will be interpreted by the card reader as "read­
a-card" in the first location of the constant area (000). Therefore, the first two instructions 
retrieve that constant to ACC and transfer it to I/0-A. (The "NNN" in the address portion 
of an instruction indicates that no address is associated with that instruction-because it 
does not deal with memory-and filler or dummy characters occupy those character posi­
tions in memory.) The third instruction accepts the word from I/0-D when the card reader 
has placed it there and set I/OR; we end the input (the number of KWH used) in ACC. 

31 



32 

Address Op Code and Address ACC Content 

503 BCN 500 KWH 
504 SUB 002 KWH-25 
505 BCN 513 KWH-25 
506 STO 020 KWH-25 
507 SUB 003 KWH-25-125 
508 BCN 515 KWH-25-125 
509 MLT 005 (KWH-25-125) (0.025) 
510 ADD 001 (KWH-150) (0.025) + 2.00 
511 ADD 006 (KWH-150) (0.025) + 8.00 
512 BBB S18 (KWH-I SO) (0.02S) + 8.00 
S13 LOD 001 2.00 
S14 BBB Sl8 2.00 
SIS LOD 020 KWH-2S 
S16 MLT 004 (KWH-2S) (0.040) 
S17 ADD 001 (KWH-25) (0.040) + 2.00 

We have, therefore, created the program for the first part of the program flowchart, which 
is represented by the detailed flowchart of Figure 3S. Figure 3S shows the detailed flow­
chart for the arithmetic portion of the program; the listing of instructions is below. Note 
in Figure 36 that we have assigned the necessary constants to be stored in specific locations 
of the constant area. 

From the electric rate schedule, note that the filling operation falls into one of four cate­
gories: 

1. No KWH is used; therefore no bill. The test in step S03 will, if ACC is 
less than or equal to 0, transfer the program back to location SOO, 
which will cause the next card to be read, thus giving no billing output 
for this card. 

2. Less than 2S KWH used: the minimum bill of 2.00 is created. Step 503 
shows ACC less than or equal to 0. Therefore the program will go to 
step S04, subtract 2S from the input KWH, and test in step 50S to see 
if ACC is less than or equal to 0. If there were 2S KWH or less, ACC is 
less than or equal to zero, and BCN S 13 transfers the program to loca­
tion S 13 where the required 2.00 is loaded into ACC. Step 514 then 
transfers the program to location S 18, where the "output routine" 
starts. 

3. Between 26 and 150 KWH used: the bill is 2.00 plus 0.40 times the 
KWH over 25. Step SOS shows the ACC is still positive after 2S has 
been subtracted from KWH; step S06 stores the number into the 
scratchpad, location 020, for further use if needed. Step S07 subtracts 
l 2S from KWH-2S, and S08 discovers that this resulted in a negative 
number (or zero). Therefore, the original number of KWH is J~Q or 



FETCH $2.00 
ACC 

STORE IN 
OUTPUT AREA 

BRING KWH 
TOACC 

YES 

YES 

FETCH KWHS 
TOACC 

MULTIPLY B'r 
0.040 

ADD 
$2.00 

STORE IN 
OUTPUT AREA 

YES 

NO 

STORE ACC 
IN KWHS 

SUBTRACT 
125 

NO 

Figure 35. Arithmetic Routine Detailed Flowchart 

MULTIPLY ACC 
BY 0.025 

ADD 
$2.00 

ADD 
$6.00 

STORE IN 
OUTPUT AREA 

33 



34 

CONSTANTS 000 "READ-A-CARO" 
001 2.00 
002 25 
003 125 
004 .040 
005 .025 
006 6.00 
OQ7 "PRINT" 

I 
I 

SCRATCHPAD o2o KWHS 
i 

INPUT 1QO 

OUTPUT 3QO 

PROGRAM 500) 501 PROGRAM STEPS: 
SEE TEXT 

5~3 

999 

Figure 36. Memory Assignments for Electric Billing Program 

less. The program is, therefore, transferred to step 515. Where the 
number of KWH in excess of 25 is retrieved from the scratchpad, 
multiplied by 0.040 in step 516, and 2.00 added to the result in step 
517. The correct result is now ready for output in step 518. 

4. Over 150 KWH used: the bill is 2.00 for the first 25 KWH, plus 6.00 
for the next 125 KWH, plus 0.025 for each KWH over 150. The tests in 
step 503, 505, and 508 all find ACC is less than or equal to 0, and at 
the end of step 508, ACC contains the number of KWH over 150. This 
is multiplied by 0.025 in step 509, 2.00 is added in step 510, 6.00 is 
added in step 511, and the program is transferred to the output routine 
by step 512. 

The output routine is shown in detailed flow diagram form in Figure 3 7, and the program is 
listed below. 



Address Op Code and Address ACC Content 

518 TCD NNN Bill 
519 LOD 007 "print" command 
520 TCA NNN 
522 JIO 500 
523 JJJ 522 

At the end of the arithmetic routine, in all cases, the amount of the bill is in ACC. This is 
transferred into 1/0-D, from which the printer will obtain it for printing, in step 518. The 
"print" command is obtained from the constant storage in step 518, and is transferred to 
1/0-A in step 519. The printer recognizes this command, procures the output data from 
1/0-D, and sets I/OR to signify it has accomplished this mission. Until this is accomplished, 
the program will shuttle ("loop") between steps 522 and 523. Step 522 transfers the pro­
gram back to start (read-a-new-card) after I/OR has been set, but until I/OR is set, step 522 
leads to step 523, which transfers the program back to step 522. 

Additional Programming Definitions 

Once the basic operations are understood as above described, the following definitions relate 
" the example given to the real-life operations of the normal computer process. 

Bulk Input-Output-although an input and an output area were assigned in the 
memory in the above example and referred to in the flowchart, no use was made of 
them. In a normaL operation, a large amount of input data (instead of the one word 
used above) would be brought into the computer, initially (one word-at-a-time), and 
stored in the input area. Ony word-at-a-time would then be taken from the input 
area, processed, and the results stored in the output area. At the end of the process, 
then, a group of input words would have been processed, creating a group of output 
words, and this entire group would then be transferred (a word-at-a-time) to the 
output device. 

Arithmetic Operations-we have simplified the A.U. in the above example, to a 
"black box" that magically takes in two numbers and performs a specified operation 
on them. The design of an A. U. is an all-pervading consideration, involving the 
machine code, provision of instructions for decimal-point and sign manipulation, and 
other factors. 

Program Modification-Since the program is stored in the memory in the same way 
as the data which is being operated upon, the program can be made dynamic; that 
is, instructions can be altered in the course of executing the program. An example 
would be the loading of a number of input data words into the input area starting 
at location 101. The first word would be put away by an STD 101 instruction; the 
constant 1 would then be added to 101, and the resulting 102 would replace the 
101 in the STO instruction. This incrementing would continue until all the data 
were stored. 

35 



36 

ACC ~l/U-D 

FETCH "PRINT" 
COMMAND 
INTO ACC 

ACC ~1/0-A 

WAIT FDR 1/0 R 

Figure 37. Output Routine Detailed Flowchart 



Algorithm-A procedure for solving a particular problem: for example, the detailed 
flowchart for the arithmetic routine, above. An algorithm provides a basis upon 
which a routine may be written. 

Types of Comptuer Programs 

A computer program written directly in the language of the repertoire of instructions for a 
particular computer is called a machine~level program. It lists each instruction in the order­
of-execution. 

A machine-level program that uses op-code symbols and octal-number addresses, and the 
like must be machine-coded. The result is a listing of binary numbers, each number corres­
ponding to a program instruction that the machine uses. As stated before, digital computers 
only work with binary numbers. Thus, with the actual machine-code listing of binary 
numbers in the proper sequence, we have a program that can be loaded into the computer 
memory. The processing circuits of the computer may then be used by the program to 
perform the appropriate operations. 

At one time, the generation of machine-code listings was a laborious job done by· people. 
However, this work may be done by the computer itself, and, to do this, a computer pro­
gram is needed. There are various programs that do this translation, but the written program 
to be translated must be written according to an appropriate programming language. These 
programming languages are classified at different levels according to how much of the work 
they do. Thus, the translating program that works with a people-type language is a higher­
level program than one that works with a machine-type language. Two types of programs 
are assembly and compiling programs. A compiler's language resembles the language of 
people more than does the assembler's language. Thus, a compiler is the higher-level type of 
program. 

There are various types of assemblers and compilers, contingent on the job to be performed. 
These two types of programs are defined below. 

ASSEMBLY PROGRAM 

An assembler is a program that translates human-understandable notation to 
machine-understandable codes and keeps track of memory assignments. For example, 
the assembler would perform two operations in the above simple example. 

1. Translate the Op Codes (ADD, SUB, and others) to a code that is recognized 
by the control unit. 

2. Allow the use of symbolic addresses while programming. For example, we 
might designate the address of the beginning of the output routine by the 
term "out," and write instructions S 12 and S 14 as TTT "out," without 
bothering to determine, at that time, the exact location where "out" will be 
located when the address of the output routine is finally located. An equiva­
lent between address S 18 and "out" would be then specified, and the 

37 



38 

assembler programs would go back through the users program and insert 
address 518 for each occurrence of "out." 

COMPILER PROGRAM 

A compiler is a program that allows t~e programmer to write the program in a 
completely human-oriented language that is not associated with any particular com­
puter. The compiler translates the program written in compiler language to a 
sequence of instructions that causes that particular computer to perform the pro­
gram. The compiler handles memory allocation and generates machine instructions 
and machine codes. Many machine instructions may be generated to execute one 
compiler instruction. For example, the compiler command "multiply" may result in 
a long string of "add" and "shift" instructions in the machine. Three examples of 
compiler languages are: 

ALGOL-algorithmic-oriented language 
COBOL-common business-oriented language 
FORTRAN-formula-translating system. 

UTILITY PROGRAMS 

Most software systems include a variety of programs that perform miscellaneous day­
to-day functions. Some of these programs off er only minor conveniences, while 
some are essential to daily operations. This assortment of routines is sometimes 
referred to, collectively, as utility or service routines. 

The most common utility routines are generated sort/merge programs. A sort is a 
program that rearranges records stored on tape or other auxiliary storage into some 
desired order based on key fields in the record. A merge takes several previously 
ordered files and combines them into a single-ordered file. Usually, sort/merge pro­
grams are supplied to the user in very general form along with routines that assist in 
adapting the basic routines to satisfy particular requirements of the user. For this 
reason they are called "generated" programs. 

Another form of utility routine is the linkage editor that combines several segments 
of coding into one routine. The use of such a system allows the repeated use of 
sub-routines in many different applications. 

Debugging and program test routines are forms of utility programs that aid the pro­
grammer in finding programming errors and ensuring that programs operate under 
worst-case conditions. These routines are written in such a way that the programmer 
can "patch" his program as he discovers errors. This allows him to make several tests 
before he is forced to reassemble the program. In several such systems the program­
mer is allowed to make patches using the same mnemonics and symbolic names he 
used in the original coding. The most frequently used utility programs are the type 
that facilitate routine data handling. These include inquiries to auxiliary storage 



devices, tape copying and editing, and media conversions such as card-to-tape, tape­
to-card, and tape-to-print. 

DIAGNOSTIC PROGRAMS 

A diagnostic program's sole function is to "exercise" all parts of the computer, and 
such a program is so organized that a malfunction will create clues to its own loca­
tion and the clues will be printed out by the diagnostic program. 

INPUT /OUTPUT ROUTINES 

Since almost every program uses the input/output facilities of the computer, many 
software systems have evolved with standardized subroutines that perform these 
tasks. This leads to standardized handling of data and error conditions and 
guarantees compatibility when more than one programmer works on a system. It 
also saves a considerable amount of programming time since each coder does not 
have to solve the problem individually. Standardized input/output routines vary 
from very simple read and write programs to elaborate systems of file control with 
object time device assignment. Some basic input/output routines may handle only 
magnetic tapes whereas more elaborate routines may process tapes, unit records, 
mass storage, disc files, display devices, and communications channels. Generally, 
such elaborate systems operate under control of an operating system as later dis­
cussed. The simpler input/output routines operate as part of the assembly processor 
and are usually confined to magnetic tape and unit record devices. By means of 
instructions such as OPEN, CLOSE, GET, and PUT the programmer is able to 
accomplish all his input/output operations on logical records. All translation from 
logical to physical terms and all error detection and correction is done by the 
standardized subroutines. 

Operating Systems 

To the user of a data-processing system, a significant measure of performance is the internal 
operating speed of a machine. This feature tells the user how fast a particular job can be 
processed once a run has started. This does not take into account, however, such variables 
as setup time and delays while awaiting operator instructions. As machine speeds have 
increased, such "overhead" operations have taken on an increasingly important segment of 
time. To counteract the degradation of system performance by manual intervention, 
operating systems have come into wider use. The general purpose of these systems is to 
automate, as much as possible, manual procedures and, at the same time, to provide a 
standard and helpful machine environment for the programmer,- installation manager, and 
machine operator. This environment is intended to relieve programmers and managers of 
many details not essential to their functions. 

Most operating systems have three major tasks: language translation, job control, and data 
control. Operating systems can accept properly identified programs in several languages and 
call on the proper translator to reduce the statements to some form of machine language. 
Generally, a translator working under control of an operating system will produce mahcine 

39 



40 

code in standard format regardless of the source language. This module will be in reloca­
table form. That is, actual machine addresses will not be specified and it can be combined 
with other modules of code as specified by the programmer. This technique of putting 
together several pieces to make a program is highly efficient as it maximizes the use that 
can be made of various routines previously coded. Once programs are reduced to this 
standard format, the source language is immaterial. Thus, for example, a bond-yield program 
written in FORTRAN can be combined with a check-writing program written in COBOL to 
achieve a combination of the best features of each language. In some operating systems, 
libraries of user routines are maintained and complete facilities for updating are available. In 
other systems, program modules must be loaded into the system in the appropriate 
sequence in order to be properly linked. While this affects the efficiency of the linking 
process, it does not change the nature of the advantages to be gained. 

In the early data-processing systems, it was the practice for the operator to load one pro­
gram into the machine, set up any special equipment that was needed, have the computer 
execute the program, remove the results, and then get ready for the next run. It soon 
became apparent that while the operator was mounting tapes or getting a program deck 
from a card file, the computer was idle. Such idle time was frequently a large portion of 
available time. In order to minimize this loss of efficiency, monitor programs are now avail­
able which automatically load programs into the computer from auxiliary storage devices 
such as tapes or discs. In this way, a minimum of time is lost in job-to-job transition and, 
because of the decrease in human intervention, operator errors are minimized. With monitor 
systems, a large amount of operator responsibility is relieved, and any mistakes the program­
mer may make can be corrected and recorded in the form of cards so that subsequent use 
of the program will be successful. 

The increase in flexibility afforded the programmer by an effective operating system is also 
a factor in operational efficiency. With a job-to-job transition automatically provided, the 
programmer can decide the next processing step based on object time conditions and cause 
the appropriate program to be called. Previously, this would have necessitated elaborate 
operating instructions and constant operator action. In a similar way, a program that is too 
lengthy to fit in the computer's memory can be constructed as a series of overlays that can 
be transferred in and out of the machine as needed. 

An operating system provides a uniform language and procedure for communicating with 
the computer operator. Since all programs operate under its control, they use its facilities to 
inform the operator of program status. This means that whenever a program in the installa­
tion requires that a tape be mounted, for instance, the operator will get the same message. 
Without an operating system, each programmer might make up his own message, frequently 
causing operator confusion and delay. 

This standard operating environment also helps the programmer. He does not have to decide 
when each new program overlay is needed. Also, operating standards are maintained with a 
minimum of programmer indoctrination and supervision. 

Some of the more-advanced operating systems include multi-program features that provide 
significant time saving advantages. With this capability, two or more tasks can be processed 



concurrently. Control may be assigned exclusively to one task or another depending upon 
priorities. The method of deciding when to shift control varies from one system to another 
and is often different from job to job within one system. For instance, one task may retain 
control until it requests an input/output operation. At that point, the other task will take 
over, while the first would be stalled. This method can be made more elaborate by adding 
the additional condition that regardless of other conditions, no task may retain control for 
more than some set period of time. When the period is over, control automatically passes to 
the next task. In order to maximize the usefulness of such a scheme, the programmer must 
be relieved of the responsibility of ensuring that tasks proceeding together do not interfere 
with each other. This responsibility must be assigned to the operating system. 

Multi-programming increases the throughput capability of the computer by utilizing, more 
fully, the resources available. When one task cannot use the central processor because it is 
waiting for a card-read operation, for instance, the other task takes over. If one program 
does not use the printer, for example, it can be run with another program that does use the 
printer. This implies that idle ti~ is minimized. The operating system assumes the responsi­
bility of determining tasks sequences so that effective use can be made of all components of 
the system. In some small, research-oriented systems, an operating system is used not for 
the sake of efficiency, but to improve the method of communication between user and 
machine. Such systems allow a researcher to communicate with the computer in a simplified 
manner. The operating system then translates these shorthand instructions into program 
calls and parameter lists and causes the appropriate action to be taken. When the results are 
observed, the user decides on his next course of action and again instructs the operating 
system. This interaction continues until all paths have been tried. Thus, an effective 
operating system, coupled with a library of generalized subprograms, is almost essential to 
an interactive data-processing environment. 

Some operating systems provide complete facilities for handling various types of data sets. 
Others provide only partial facilities and in still other schemes, data control facilities are 
built into language translators rather than into the operating system. A potential user should 
determine which of these schemes to use in his proposed installation and whether this is the 
best method for his purposes. The goal of complete data management facilities in an 
operating system is to eliminate the need for programmer attention to the characteristics of 
the data storage and data organization, and to allow him to concentrate on the logical pro­
perties of the data. In order to accomplish this, the designer of the software devices several 
standard forms of data organization and access methods. The programmer selects the 
method which is best suited to his application and uses pseudo-instructions which perform 
logical operations upon the data set. Some of the functions this type of software offers are: 

1. Control of the physical movement of data between central storage and 
auxiliary storage or external data sets. 

2. Detection and correction of errors associated with data transfer. 

3. Data buffering, blocking and deblocking, overlapping data operations 
with computing, and data set label processing. 

41 



42 

4. Dynamic scheduling of input/output devices. 

5. Logical handling of data sets without reference to physical character­
istics of the storage devices; thus, data sets stored on discs, cards, tape, 
or other media can be handled similarly and independently of device 
type. 

Operating systems have become increasingly complex and increasingly versatile in order to 
help users take full advantage of the advanced facilities of their hardware. A good operating 
system can be a very effective means of multiplying programmer productivity, standardizing 
machine operations, increasing system throughput, and reducing the chances of undetected 
errors. 

Programming Summary 

The foregoing programming explanations afford some idea of a modern approach to com­
puter programming. However, the details of program makeup and languages can be very 
complex-involving considerable background, training, and practice to produce an 
accomplished programmer. Nevertheless, most computer users need only know the types of 
programs available, their functions, and how to use them. For the time being, the following 
knowledge should have been obtained from these preceding computer-program descriptions: 

1. What constitutes the actual instruction-word in binary format. 

2. How program instructions are located in memory to constitute a pro­
gram. 

3. How the computer processor gets the next instruction. 

4. What form the program is in (machine-code listing) for actual computer 
use. 

5. That mnemonics and short-hand symbolic languages are used by pro­
grammers to actually write most programs. 

6. A program's algorithm is shown on flowchart. 

7. What the various types of programs are: 

Assemblers 
Compilers 
Utility Programs 
Diagnostic Programs 
Input/Output Routines 

8. What an operating system does. 



BOOLEAN LOGIC 

Introduction 

Boolean algebra was introduced by a nineteenth-centry mathematician, George Boole. 
Boolean algebra is based on a single-valued function that may be in one of two discrete 
possible status: true or false, high or low, positive or negative, +3 volts or 0 volts, 0 volts 
or -10 volts, and so forth. In all cases the state must be one or the other and never partly 
one and partly the other. Thus, a switch may be either open or closed, not half-open and 
half-closed. The latter might exist but Boolean algebra and the logic upon which it is based 
ignores any but the two possible states, open and closed. 

Boolean logic may be annotated by Boolean algebra, logic diagrams, and various other tech­
niques. A logic designer usually uses the two techniques mentioned, and with practice, a 
person may develop considerable expertise employing them. However, unless a person first 
understands the bases of Boolean logic and their relations with the system of notation for 
Boolean algebra and then practices and actually uses this notation, he will undoubtedly not 
be able to do much good with it. Therefore, other techniques are used, hereinafter, to 
present the basic concepts of Boolean logic: these should be well understood to be able to 
work with logic-level circuits. Also, some simple rules of Boolean algebra are given but for 
the immediate necessary task of following logic diagrams, they need not be mastered. Never­
theless~ the computer technician should know these rules, and if he has the opportunity to 
regularly use them, then, he shall benefit considerably if he masters the techniques of 
Boolean algebra and its annotation. 

The physical devices that are used to implement logic may be electronic (transistors, diodes, 
vacuum tubes), mechanical (switches), or pneumatic, hydraulic, or light-sensitive devices. To 
appreciate the logic implementation, however, a person may be completely ignorant of the 
working of these devices. True, for designing and detail troubleshooting and subsequent 
repair of these devices, their functional characteristics and uses must be more thoroughly 
understood. Thus, in the ensuing explanations the logic is first described in terms of simple 
switching arrays; next, the Boolean algebra equations and laws are presented; and finally 
physical devices are covered. 

Boolean Logic Versus Binary Arithmetic 

Figure 38 illustrates the two possible states of a switch; an open switch represents a 0 and a 
closed switch a 1. 

0 STATE 1 STATE 

Figure 38. Switch Analogy 

43 



44 

By various arrangements of switches binary arithmetic can be implemented. 

Although the conventional arithmetic symbols, plus(+), minus(-), times (x), and divide by 
(-.;-) still apply in binary arithmetic, the plus (+) and times (x) have different significance in 
binary (Boolean) logic. The "+" designates an OR function and the '"x" an AND function. 
It is essential that these symbols be called OR (+) and AND (x) whenever they are used to 
signify logic. 

OR Function 

Figure 39 illustrates the OR function. 

A y 
c 

A+B=C 
O+O=O 
0 + 1=1 
1+0=1 
1 + 1 = 1 

Figure 39. Switch Analogy of OR Function 

The two switches represent two functions, A and B. Either function may have only one of 
two states, a 0 if open or a 1 if closed. Thus, the function C is effected by either A or B or 
both. The various combinations of this parallel arrangement of switches is shown in the 
Boolean-algebra equation in the illustration. The table of combinations is commonly called a 
"truth table." 

Figure 40 shows three other, slightly more complicated, OR functions. 

(A+ B) + C A+ (B + C) A+B+C 

Figure 40. Compound OR Function 



The OR gate may thus be extended to comprise any number of functions. Also, in Boolean 

algebra, the preceding switching configurations illustrates two laws: the commutative and 
associative laws. 

A+ B = B + A - commutative law for Boolean OR function 

(A+ B) + C =A+ (B + C) =A+ B + C - associative law for Boolean AND functions 

AND Function 

Two or more switches in series are analogous to the Boolean AND function. This is illustrated 
in Figure 41. 

AxB=C 
0 x 0 = 0 
0 x 1=0 
1 x 0 = 0 
1 x 1 = 1 

Figure 41. Switch Analogy of AND Function 

The truth table for a two-input AND gate is logically the opposite of the OR function truth 
table. 

Figure 42 illustrates the switch arrangement for the commutative and associative laws for the 
AND function. 

A\ c~ B~ s\ 

c\ 
B~ B~ c~ A\ 
c~ A\ A~ c\ 

I I I I I 
A{B x C) = AxBxC=- CxBxA= BxCxA= BxAxC 

Ax Bx C = CBA = BCA = BAC commutative law 
{Ax B)C = {Ax C)B = (B x C)A = (B x A)C associative law 

Figure 42. Switch Analogy of Commutative/Associative Laws for AND Function 

45 



46 

As with the OR function, the AND function may be extended and combined with the OR 
function. This is simply illustrated in Figure 43 to represent several Boolean identities. 

1+A=1 

A 

lxA=A 

A(B + C) = 

nA 
l J 

I 
O+A=A 

0 

~A 
? 

OxA=O 

nA 
~B t 
l J 

I 
(A x B) + (A x C) 

Figure 43. Identities of Simple AND, OR, and Compound Switch Arrangements 

Complements 

As previously discussed under _Binary Arithmetic, a complement of a number in a binary 
system is the opposite state: 0 complemented gives a 1 and vice versa. Another way of stating 
this is: 

0 = 1 or 1 = 0, "read not zero equals l" or 
"not 1 equals zero" 

Thus for any function or group of functions, a bar used as above illustrated signifies negation, 
which is the same as the complement in binary arithmetic or Boolean logic. 



Two laws that apply to Boolean logic are called De Morgan's laws. In Boolean algebra, these 
are as follows: 

AxBxC ...... N=A+B+C ...... +N 

A + B + c:·-~.-.-.-. +N = A x B x c ...... x N 

The NOT function (complementing) is a principle Boolean logic operation that is performed 
by the logic inverter. 

AND /OR Identities 

The OR- and AND-function identities are summarized in Figure 44. For simplicity the times 
sign (x) has been omitted from AND function equations. 

OR 

A + B + C = (A+ B) + C = A + (B + C) 
A+B=B+A 
A+A=A 
A+ 1 = 1 
A+O=A 

AND 

ABC = (AB)C = A(BC) 
AB= BA 
AA= A 
A1 =A 
AO= 0 
A(B + C) = AB +AC 

Figure 44. OR- and AND-Function Identities 

Boolean Identities Summary 

A summary of Boolean identities are given in Figure 45. 

LOGIC HARDWARE 

The hardware circuits that implement the precedingly described AND, OR, and NOT func­
tions vary considerably. Fortunately, all these variations need not be known, and even those 
that we should know about do not require an understanding of a detailed-circuit nature. 
Nevertheless, a functional level understanding of logic units and a few logic-support units is 
prerequisite to developing maintenance expertise. Therefore, the various logic and logic­
support units, specific types of hardware, and their interrelations ensue. 

Logic Systems 

In a DC or level-logic system a bit may be only one of two volt4ge levels. If the more-posi­
tive voltage is the I-level and the other is the 0-level, the system is said to employ DC 
positive logic. On the other hand, a DC negative-logic system designates the more-negative 
voltage state of the bit as the I-level and the more-positive as the 0-level. It should be 
emphasized that the absolute values of the two voltages are of no significance in these 
definitions. In particular, the 0 state need not represent a zero voltage level (although in 
some systems it might). Figure 46 illustrates positive-logic and negative-logic voltage levels, 
respectively. 

47 



48 

Fundamental laws 

OR 

A+O=A 
A+1=1 
A+A=A 
A+A= 1 

Associative laws 

(A+ B) + C =A+ (B + C) 

Commutative laws 

A+B=B+A 

Distributive law 

AND 

AO=O 
A1 =A 
AA=A 
AA=O 

A( B + C) = AB + AC 

De Morgan's laws 

- -

(AB)C = A(BC) 

AB= BA 

NOT 

A+A = 1 
AA=O 
A=A 

AB ... = A + B + ... A + B + ... = AB ... 

Auxiliary identities 

-
A + AB = A A + AB = A + B 

(A + B) (A + C) = A + BC 

Figure 45. Summary of Boolean Identities 

V(l) = 10V 
0 Illustrating the definitions of (a) 

V(0)=12V positive and (b) negative logic. The 
numerical value of the voltage V(l) 
of the 1 state and of the voltage 
V(O) of the 0 state is arbitrary. A 

t' 
transistion from one state to the 

t' 
V(l)=OV other occurs at t = t'. ov 

t t 

V(O) ::;-4V 
0 

(a) (b) 

Figure 46. Positive- Versus Negative-Logic Voltage Levels 



OR Gate 

Figure 4 7 shows a 2-input OR gate and its truth table. Additional inputs may be available 
on OR gates, but in order to obtain a 0 output, all inputs must be O's. In all other cases, 
the outputs are l's. 

AND Gate 

Input 
A B 

~ 0 0 
0 1 
1 0 

0 R Gate 1 1 

Output 
y 
0 
1 
1 
1 

Truth Table 

Figure 47. OR Gate Symbol and Truth Table 

Figure 48 shows a 2-input AND gate. Here also there may be additional inputs. Converse to 
the OR gate truth table, the inputs must be all l's to have a 1 at the output. All other 
combinations of input give 0 outputs. 

Input Output 

~ 
A B y 

0 0 0 
0 1 0 
1 0 0 

AND Gate 1 1 1 

Figure 48. AND Gate Symbol and Truth Table 

49 



50 

NOT Circuit 

The NOT circuit has a single input and a single output and performs the operation of 
LOGIC NEGATION in accordance with the following definition: The output of a NOT 
circuit takes on the 1 state if, and only if, the input does not take on the 1 state. The 
symbol to indicate a LOGIC NEGATION is a small circle drawn at the point where a signal 
line joines a logic symbol. Negation at the input of a logic block is indicated in Figure 49 
(a) and at the output in Figure 49 (b). The truth table and the Boolean expression for 
negation are given in Figure 49 (c) and the symbol for an inverter in Figure 49 (d). The 
equation is to be read "Y equals NOT A" or "Y is the complement of A." (Sometimes a 
prime (I) is used instead of the bar (-) to indicate the NOT operation. 

V( 1) 

V(O) 

(a) t~ (b) t~ 

(a) The input A and (b) the output Y of a NOT circuit. 

A 

Figure 49. Logic Negation Symbol and Truth Table 

A circuit that accomplishes a logic negation is called a NOT circuit, or, since it inverts the 
sense of the output with respect to the input, it is also known as an inverter. The ·Output of 
an inverter is relatively more positive if and only if the input is relatively less positive. In a 
truly binary system only two levels V (0) and V (I) are recognized, and the output, as well 
as the input, of an inverter must operate between these two voltages. When the input is a V 
(0), the output must be at V (1 ), and vice versa. Ideally, then, a NOT circuit inverts a signal 
while preserving its shape and the binary levels between which the signal operates, as 
indicated in Figure 50. 

Y=A 

(a) 

A 

(b) 

Y=A 

Input 

A 

0 
1 

(c) 

Output 
y 

1 
0 

Logic negation at the input (a) and output 
(b) of a logic block and the Boolean 
equation for negation; (c) the truth table; 
(d) an inverter symbol. 

Figure 50. Input Versus Output of NOT Circuit 

(d) 



Inhibit Gate 

A NOT circuit preceding one terminal (N) of an AND gate acts as an INHIBITOR. This 
modified AND circuit implements the logical statement: If A = 1, B = 1, .... , M = 1, then 
Y = 1 provided that N = 0. However, if N = 1, then the coincidence of A, B, .... , M is 
inhibited, and Y = 0. Such a configuration is also called an anticoincidence circuit. The 
logical block symbol is drawn in Figure 51 together with its Boolean equation. The equa­
tion is to be read "Y equals A and B and .... and M and not N." The truth table for a 
three-input AND gate with one inhibitor terminal (C) is given in Figure 51. 

(a) The logic block and Boolean expression 
for an AND with an inhibitor terminal N. 
(b) The truth table for Y = ABC. The 
column on the left numbers the eight 
possible input combinations. 

Y =AB ... MN 

(a) 

y 

1 
2 
3 
4 
5 
6 
7 
8 

Figure 51. Inhibitor Gate Symbol and Truth Table 

Exclusive OR Gate 

A 
0 
0 
1 
1 
0 
0 
1 
1 

Input Output 
B c y 

0 0 0 
1 0 0 
0 0 0 
1 0 1 
0 1 0 
1 1 0 
0 1 0 
1 1 0 

(b) 

An exclusive OR gate (OE) obeys the definition: The output of a two-input EXCLUSIVE 
OR assumes the 1 state if one and only one input assumes the 1 state. The symbol for an 
exclusive OR gate is shown in Figure 52 (a) and its truth table in Figure 52 (b). 

Y=AE&B 

(a) 

y 

Input 
A B 

0 0 
0 1 
1 0 
1 1 

Output 
y 

0 
1 (a) The symbol for an EXCLUSIVE 0 R 
1 symbol and its Boolean expression; (b) 
O the truth table. 

(b) 

Figure 52. Exclusive OR Gate Symbol and Truth Table 

51 



52 

The above definition is equivalent to the statement: "If A = 1 or B = 1 but not simulta­
neously, then Y = l." In Boolean notation 

Y = (A + B) (AB) 

This function is implemented in logic diagram form in Figure 53 (a). 

A 

B 

Y = (A+ B)(AB) 

(a) 

A--~~__,-----.,,,, 

B ---t11---+--Li~-­
y 

Y=AB+ BA 

(b) 

Figure 53. Two Logic Blocks for the EXCLUSIVE OR (OE) Gate 

y 

A second logical statement equivalent to the definition of the OE is the following: "If A = 
1 and B = 0, or if B = 1 and A = 0, then Y = 1." The Boolean expression is 

y =AB+ BA 

The block diagram that satisfies this logic is indicated in Figure 53 (b). 

An EXCLUSIVE OR is employed within the arithmetic section of a computer. Another 
application is as an inequality comparator, matching circuit, or detector because, as can be 
seen from the truth table, Y = 1 only if A i= B. This property is used to check for the 
inequality of two bits. If bit A is not identical with bit B, then an output is obtained. 
Equivalently, "If A and B are both 1 or if A and B are both 0, then no output is obtained, 
and Y = O." This latter statement may be put into Boolean form as 

Y=AB+AB 

This equation leads to a third implementation for the OE block, which is indicated by the 
logic diagram of Figure 54 (a). An equality detector gives an output Z = 1 if A and B are 
both 1 or if A and B are both 0; thus 

Z=Y=AB+AB 

If the output Z is desired, the negation in Figure 54 (a) may be omitted or an additional 
inverter may be cascaded with the output of the OE. 



A---....__,.-"'""""'-ii 

B----­--~ 

(a) y =(AB+ AB) 

y 

A---a..---~ 

B----1--+----4 

(b) Y = (A+ B(A +BJ 

Figure 54. Two Additional Logic Diagrams for the EXECLUSIVE OR (OE) Gate. 

A fourth possibility for the OE is 

Y = (A + B) (A + B) 

which may be verified from the definition or from the truth table. This logic is depicted in 
Figure 54 (b). 

It has been demonstrated that there often are several ways to implement a logical circuit. In 
practice, one of these may be realized more advantageously than the others. Boolean algebra 
is sometimes employed for manipulating a logic equation to transform it into a form that is 
better from the point of view of implementation in hardware. 

Positive Versus Negative Logic 

If the output and all inputs of a logic gate are complemented, a 1 becomes a 0 and vice 
versa and positive logic is changed to negative logic. Thus, the same gate is either a negative 
AND or a positive OR contingent on how the binary levels are defined. It is logically 
irrelevant how the gate circuit is implemented. This concept may be proven by applying De 
Morgan's law, if one so desires. 

NAND Gate 

A negated AND is called a NOT-AND or a NAND gate. The logic symbol, Boolean expres­
sion, and truth table for the NAND are given in Figure 55. The NAND may be 
implemented by placing a transistor NOT circuit after a diode AND gate. Circuits involving 
diodes and transistors are called diode-transistor logic (DTL) gates. Figure 56 is an example 
of a DTL circuit. 

y 

53 



54: 

Input Output 

A B y 

~=Q-v 
0 0 

0 1 

0 1 

(a) 

R 

Y=AB 0 

(a) (b) 

(a) The logic symbol and Boolean expression for a 
two-input l\IAN D gate; (b) the truth table. 

Figure 55. NANO Gate Symbol and Truth Table 

VA ~ V(O) 

'-----' '"""'-----------/ I I 
OR NOT 

(a) A positive 0 R in cascade with a NOT to form a 
NOR gate. (b) A more practical form of positive 
NOR (or negative NANO) gate. 

Figure 56. Example of DTL Circuit 

y 



NOR Gate 

A negation following an OR is called a NOT-OR or a NOR gate. The logic symbol, Boolean 
expression, and truth table for the NOR are given in Figure 57. Figure 58 is an example or 
a DTL positive NANO gate. 

Input 
A B 
0 0 
0 1 
1 0 

Y=A+B 1 1 

(a) (b) 

Figure 57. NOR Gate Symbol and Truth Table 

A 

c 
f B 

V(O) =-3V 

--

Figure 58. Example of DTL Positive NANO Gate 

Output 
y 

1 
0 
0 
0 

55 



56 

Logic Gate Uses and Interrelations 

With the aid of De Morgan's laws it can be shown that, regardless of the hardware involved, 
a positive NAND is also a negative NOR, whereas a negative NAND may equally well be 
considered a positive NOR. 

It is clear that a single input NAND is a NOT. Also, a NAND followed by a NOT is an 
AND. Thus, it is pointed out that all logic can be performed by using only the two connec­
tives AND and ·NOT. Therefore, we now conclude that by repeated use of the NAND 
circuit alone, any logical function can be carried out. A similar argument leads equally well 
to the result that all logic can be performed by using only the NOR circuit. 

We have seen that a particular gating circuit may perform one or another function, 
depending on whether positive or negative logic is used. Thus a positive AND gate is a nega­
tive OR gate, and vice versa. Suppose, however, our interest is in preserving the type of 
logic performed by the gate (that is, an AND gate is to remain an AND gate) but we wish 
to reverse the logic from positive to negative or the other way around. Then the following 
generalization provides a method for achieving this modification. 

THEOREM I: A circuit using positive (negative) logic can be converted into a 
configuration performing the same logic function but with negative (positive) logic, 
provided that all supply voltages are reversed in polarity, the input voltage levels are 
reversed in polarity, all diodes are reversed, and all transistors are changed from PNP 
to NPN and vice versa. 
Proof: If all voltages in a circuit are reversed, then the current in any branch is also 
reversed. If all diodes and transistors are reversed (PNP ~ NPN), then a diode or 
transistor that was reverse-biased (conducting) in the original circuit remains reverse­
biased (conducting) in the converted network. Hence, the two circuits perform the 
same logic. However, if the original level V ( 1) was more positive than V (0), then 
-V (1) is now more negative than -V (2) and positive logic has been changed to 
negative logic. 

As an application of this theorem, suppose it were desired to build a positive NAND with 
the binary levels V (0) = -l 2V and V (1) = OV. Thus, the circuit of a negative NAND can 
be converted into the configuration of a positive NAND by use of the theorem above 
stated. 

The following theorem is useful in converting a logic circuit with one set of binary voltages 
to an equivalent circuit with another set of logical levels (in which, p'erhaps, neither is OV). 

THEOREM II: If the same voltage is added to all supply voltages, to any leads that 
are grounded, and to both binary levels, then the logic function performed by the 
circuit remains unchanged. 



Proof: The voltage difference between any two nodes is invariant under the above 
procedure, which is equivalent simply to shifting the zero reference of voltage. 
Hence, the same currents flow in the modified circuit under the identical logical 
conditions as in the original circuit. Clearly, the logic performed is unchanged. 

Packaging of Logic Circuits 

A digital computer uses a large number of switching circuits, but, as we have already 
emphasized, the variety of different types of gates is quite small. Hence, the fundamental 
circuits, which are used over and over again, are mounted on a number of plug-in units 
called logic cards. The advantage with respect to manufacturing, replacement, trouble­
shooting and convenience, is apparent. Several manufacturers market such logic cards con­
sisting of a glass epoxy printed-circuit board with the individual components mounted to 
the board through funnel eyelets. Also, a number of vendors have a line of micrologic gates 
manufactured by integrated-circuit techniques. These replace the conventional lumped­
component circuits. Building a digital system consists principally in interconnecting these 
packages to perform the desired logic. A card or integrated-circiut (IC) package might 
consist of ten 2-input NAND gates, or eight NOT circuits (inverting amplifiers), or three 
5-input OR gates, and so forth. 

Often the logical design calls for an AND followed by an OR or vice versa. Such a config­
uration is known as two-level logic. One of the most useful logic packages for a large-scale 
computer is the AND-OR-INVERT (AOI) or AND-NOR configuration. The number of 
inputs, called the fan-in of each AND, is not critical and neither is the number of AND 
clusters that feed the OR gate. The number of outputs from a logic circuit is called the 
fan-out. 

Adder 

A digital computer must obviously contain circuits that perform arithmetic operations: addi­
tion, subtraction, multiplication, and division. The basic operations are addition and sub­
traction, since multiplication is essentially repeated addition, and division is essentially 
repeated subtraction. It is entirely possible to build a computer in which an adder­
subtractor is the only arithmetic unit present. Multiplication, for example, may then be 
performed by programming; that is, the computer may be given instructions telling it how 
to use the adder repeatedly to find the product of two numbers. 

Suppose we wish to sum two numbers in decimal arithmetic and obtain, say, the hundreds 
digit. We must add together not only the hundreds digit of each number but also a carry 
from the tens (if one exists). Similarly in binary arithmetic we must add not only the digit 
of like significance of the two numbers to be summed but also the carry bit (should one be 
present) of the next lower-significant digit. This operation may be carried out in two steps: 
first, add the two bits corresponding to the 2K digit, and then add the resultant to the 
carry from the 2K-l bit. A two-input adder is called a half-adder because to complete an 
addition requires two such half-adders. 

57 



58 

We shall first show how a half-adder-subtractor is constructed from the basic logic gates and 
then indicate how the full or complete adder-subtractor is assembled. A half-adder­
subtractor has two inputs-A and B-representing the bits to be added, and three outputs-D 
(for the digit of the same significance as A and B represent), C (for the carry bit), and P 
(for the borrow bit). In a half-adder D and C are used, while in a half-subtractor D and P 
are used.· 

The symbol for a half-adder-subtractor is given in Figure 59 (a) and the truth table in 
Figure 59 (b). Note that the D column gives the sum of A and B as long as the sum can be 
represented by a single digit. When, however, the sum is larger than can be represented by a 
single digit, then D gives the digit in the result which is of the same significance as the 
individual digits being added. Thus, in the first three rows of the truth table D gives the 
sum of A and B directly. Since the decimal equation "l plus 1 equals 2" is written in 
binary form as "01 plus 01 equals 10," then in the last row D = 0. Because a 1 must now 
be carried to the place of next higher significance, C = 1. Finally, where subtraction of B 
from A is contemplated, the P (borrow) column gives the digit which must be borrowed 
from the place of next higher significance when B is larger than A, as in the second row of 
Figure 59 (b ). 

A B 

Input Output 
A B D c p 

HA 0 0 0 0 0 (a) The symbol for a half-adder-subtractor; (b) the 

0 1 1 0 1 truth table for the digit (D), carry (c), and borrow 

1 0 1 0 0 (P). 

1 1 0 1 0 

0 c p 

(a) (b) 

Figure 59. Half-Adder-Subtractor Logic Symbol and Truth Table 

From Figure 59 (b) we see that D obeys the EXCLUSIVE-OR (OE) function, C follows the 
logic of an AND gate, and P obeys the logic "B and not A." Figure 60 shows a configura­
tion which satisfies this half-adder-subtractor logic based upon the OE circuit. Any of the 
other implementations given for the OE may be used in the half-adder-subtractor. A half­
adder thus may be constructed by using only NOR circuits. 

A parallel binary adder is indicated in Figure 61. Each digit except the least-significant one 
(2°) requires a complete adder consisting of two half-adders in cascade. The sum digit for 
the 2° bit is S0 = D0 of a half-adder because there is no carry to be added to A0 plus B0 . 

The sum Sk (k =I= 0) of Ak plus Bk is made in two steps. First, the digit Dk is obtained 
from one half-adder, and then Dk is summed with the carry Ck-1, which may have resulted 



C2 OR 

I 
I 
I 
I 
I • 
I 

A----..,._ ........... 

B ------1...._.-.... .... ---

B 

I B 

EXCLUSIVE 0 R ----., 
I 
I 
I ,.,___.....,a 
I 
I 
I 

.,.._-9i------~P 

L __ __ J 

Figure 60. Half-Adder-Subtractor Logic Diagram 

k=2 k = 1 I k = 0 

A2 B:;i Ai B1 Ao Bo 
I 
I 

HA HA I HA 

J. 
Co Do C21 D2 C11 D1 Co 

C1 OR 

HA HA 

C22 C12 
S2 S1 So 

Full adder (22) ·I· Full adder (2 1
) ·I· Half adder (2°)~ 

I I 

Figure 61. Parallel Binary Adder Consisting of Half-Adders 

59 



60 

from the next lower place. As an example, consider K = 2. There, the carry bit Ci may be 
the result of the direct sum of Ai plus Bi if each of these is 1. This first carry is called 
Ci 1. A second possibility is that Ai = 1 and Bi = 0 (or vice versa) so Di = 1, but that 
there is a carry C0 from the next lower-significant bit. The sum of Di = 1 and C0 = 1 gives 
rise to the carry bit designated Ci 2 • It should be clear that Ci i and Ci 2 cannot both be 1, 
although they will both be 0 if A1 = 0 and Bi = 0. Since either Ci i or C12 must be 

·transmitted to the next stage, an OR gate is equally effective for subtraction, provided that 
the borrow bit P is used in place of the carry C. 

It is possible to construct a complete adder without the use of half-adders. The circuit has 
three inputs: A, B, and the carry C. A truth table for such an adder is given in Figure 62. 
The output carry C! in a serial system is delayed one synchronizing interval T and then 
becomes the input carry C. From the truth table we can verify that the Boolean expressions 
for the sum S and the carry C! are given by 

s = ABC + ABC + ABC + ABC 

C! ::;: ABC > ABC + ABC + ABC 

By algebraic manipulation these expresions may be transformed into a number of different 
forms. In particular it turns out that 

S = (A + B + C) + ABC 

C! = AB + BC + CA 

These expressions may also be verified from the truth table. 

Input Output 

A 8 c s er 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

Figure 62. Truth Table for Three-Input Adder 

FLIP-FLOP 

In addition to the AND, OR, and NOT logic gates a fourth important basic circuit, called 
the FLIP-FLOP, is required in many digital systems. A FLIP-FLOP consists of two NOT 
circuit interconnected in the manner shown in Figure 63 (a). Each NOT could be, for 
example, a transistor INVERTER. For the present we are interested only in certain external 



01 

Ai y 

s y 

y y 
T FF FF 

R y R T s 

A2 y 

02 

(a) (b) {c) 

(a) A FLIP-FLOP assembled from two NOT circuits; 
(b or c) the logic symbol. An input to T effectively 
applies excitation to Sand R simultaneously. 

Figure 63. FLIP-Flop Configuration and Symbols 

characteristics that are relevant in digital systems. The most important property of the 
FLIP-FLOP is that, on account of the interconnection, the circuit may persist indefinitely 
in a state in which one device (say Q 1) is on while the other (Q2) is off. A second stable 
state of the FLIP-FLOP is one in which the roles of the two devices are interchanged so Q 1 
is off and Q2 is on. Since the FLIP-FLOP has two stable states, it may be used to store one 
bit of information. For these reasons the FLIP-FLOP is also called a BINARY. 

An output, designated as Y in Figure 63 (a), may be taken from a collector. This output 
may take on two voltage levels, corresponding to either Y = 1 or Y = 0. If we designate the 
output at the other collector as Y, then the FLIP-FLOP has two stable states, one in which · 
Y = 1 and Y = 0. The existence of these stable states is consistent with the interconnection 
shown in Figure 63 (a). For example, if the output Y of one NOT circuit is 1 then so also 
is the input A2 to the second NOT circuit. The second inverter then has the state 0 at its 
output Y and at the input A1 to the first gate. This result is consistent with our original 
assumption that the first NOT gate had a 1 at its output. It is readily verified that the 
situation in which both outputs are in the same state is not consistent with the 
interconnection. 

A FLIP-FLOP is represented in block form as in Figure 63 (b ), where three input terminals 
are indicated-S (set), R(reset), and T (trigger). An excitation of the set input causes the 
FLIP-FLOP to establish itself in the state Y = 1. If the binary is already in that state, the 

61 



62 

excitation has no effect. A signal at the reset input causes the FLIP-FLOP to establish itself 
in the state Y = 0. If the binary is already in that state, the excitation has no effect. The 
waveform of the input signal (a pulse, a step), by other circuits through which the 
excitation is applied to the binary. 

A triggering signal applied to the T input causes the FLIP-FLOP to change its state regard­
less of the existing state of the binary. Thus each successive excitation applied to T causes a 
transfer, and T is referred to as the toggle or complementing input. This type of excitation 
is called symmetrical triggering and is used in binary counters and in other applications. 
Unsymmetrical triggering through the S or R input is most useful in logic applications, as 
we demonstrate below. 

FLIP-FLOPS in Registers 

Suppose that it is required to carry out the addition of two numbers that are stored in the 
main computer memory. Now, ordinarily, it will not be possible to extract both numbers 
from the memory simultaneously. Since in the adders previously described both numbers 
are applied simultaneously, it will generally be required that at least one of the numbers be 
stored, temporarily, in a one-word memory device. Similarly, it may not be feasible to 
return the arithmetic unit output immediately to the main memory. In this case, a one­
word memory or storage device, which is called a register, is needed. 

A set of N flip-flop circuits may clearly be used to store an N-digit binary number, since we 
have but to set the states of the binaries at 0 or 1, depending on the value of the digit that 
the FLIP-FLOP is to represent. The binary number may appear in serial form as a train of 
pulses and one method for inserting the number into the register is as shown in Figure 64. 
The input pulse train is applied to a delay line, which is tapped at time-delay intervals TD 
equal to the basic pulse separation time (a one-bit delay T). Hence, at the moment the last 
pulse (2 3 ) of the train appears at the input of the delay line, the earlier pulses will appear 
at the delay-line taps. If, at this moment, the register line is pulsed, then, the AND circuits 
will transmit to each binary the pulse (or lack of pulse) at the corresponding delay-time 
taps. The output of each AND circuit is coupled to the set input of a FLIP-FLOP so the 
AND circuit pulse (if one is present) will leave the corresponding binary in state 1. Thus, 
the 23 bit is registered in FF3, the 22 bit in FF2, and so forth. The register may be cleared 
by a pulse on the reset line. This pulse will cause each binary to remain in, or return to 
state 0. The circuit of Figure 64 is a serial-to-parallel converter, because each bit of informa­
tion in a pulse train is now available in a separate FLIP-FLOP. A temporal code (a time 
arrangement of bits) has been changed to a spatial code (information stored in a static 
memory). 

Flip-Flop Memory Elements 

One of the reasons systems design seems complicated is the fact that so many operations 
are functions of time, and logical equations involving time are very complicated. Thankfully, 
most time equations can be avoided if the designer expresses the problem in terms of a 
flowchart, thus reducing the design to a series of relatively simple operations-and relatively 



Register or 
write-in pulse 

TD 
22 

TD 

s y 
FF2 

R y 

21 
TD ----~[) 20 

s y 
FF1 

R y 

Figure 64. Four-Bit Register Used for Serial-to-Parallel Conversion 

s y 
FFO 

R y 

Reset 
or clear 
pulse 

simple equations. The device is then guided from step-to-step by flip-flop circuits, which 
keep track of the present function and which will activate the next function at the proper 
time. 

When used as a memory element, a FF in the set state is said to store a "1." In the clear 
state it stores a "O." If the stored bit is Q, then the "l" output is "Q," and the "O" output 
is "Q." 

NOR Logic RS Flip-Flop 

A typical NOR gate flip-flop is shown in Figure 65. In this case a 1 will set (S) or reset (R) 
the flip-flop if applied to the "S" or "R" input, respectively. 

Figure 65. Typical NOR-Logic Flip-Flop 

63 



64 

NANO Logic Flip-Flop 

Many FF's require a logical zero to energize the inputs. The recommended symbol for this 
condition is shown in Figure 66. 

Figure 66. Flip-Flop Set With Logic Zero 

A typical example is the NAND FF shown in Figure 67. 

R----t_ __ n-...... --~u 

Figure 67. Typical NANO-Logic Flip-Flop 

In the above circuit, the normal (or rest) levels for R and S are "I." If the system "O" is 
ground, then grounding either input will activate the FF. (R • S = 0) is constrained. 

The Type-T Flip-Flop 

This is the triggered or complementing flip-flop. A pulse applied to the T terminal will 
change the state. 



Some type-T FF's contain a differentiator so that an applied step will internally generate a 
pulse of the proper width. Others, especially integrated circuits, do not (why?), so a pulse 
must be applied. 

The Type-D Flip-Flop 

The type-D FF is a delay or shift FF. It has a clock input (also called a trigger or pulse 
input) plus two steering or gating lines. Three symbols for it are shown in Figure 68. 

--.... X 

--"""T FF OR ----CP FF OR FF 

--.... x 0 0 o---

Figure 68. Type-D Flip-Flop Symbology 

The shift flip-flop will assume the state of X when and only when the clock pulse is 
applied. A type-D can be made from four NAND gates as shown in Figure 69. 

s 

GP----• 

R 

Figure 69. Type-D Flip-Flop 

A complementing FF can be made from a type-D flip-flop as shown in Figure 70. 

For proper operation, T < 6 < P (why?). 6 is either inherent or intentional circuit delay. 

65 



66 

I I 
J---P~ 
I I 

The JK Flip-Flop 

J 

"""" 

....__ x 
CP FF 

-r-- x 

J 

" 

Figure 70. Complementing Flip-Flop 

""-I 

Q 

_.. 
~ Q 

' .I 

In this variation, the J terminal acts as a set terminal, and the K as a reset. Unlike the RS, 
however, if J and K are both energized, the FF will change state, or complement. A NAND 
version is shown in Figure 71. 

A far more versatile FF can be produced by adding a clock line to the JK FF. 

If J = 1, circuit will set 
If K = 1, circuit will reset 
If J · K = 1, circuit will change state-provided T < t:;. < P, as before 
If (J + K) = 0, circuit will rest in either state. 

Figure 71. Simple JK Flip-Flop 



The Clocked JK Flip-Flop 

The clocked JK has all of the abilities of the above types of FF's. It is a good general 
purpose FF. A NAND version is shown in Figure 72. 

Very versatile flip-flops are available with multiple J and K terminals. 

s 

CP------

R 

Let Q =old state, Q' = new state and let X indicate that either state is possible; then 

ff s J K CP Q~ 

1 1 0 0 0 X=Q 
0 1 0 0 0 0 
1 0 0 0 0 1 
1 1 0 0 1 X=Q 
1 1 1 0 1 1 
1 1 0 1 1 0 
1 1 1 1 1 Q 

Figure 72. Clocked JK Flip-Flop 

Master-Slave JK Flip-Flop 

Figure 73 is an example of two JK flip-flops connected in a "master-slave" relationship. The 
combined operation of the master and the slave is coordinated by the clock pulse. During 
the high-to-low transition of the clock pulse, the transfer from the master to the slave is 
inhibited, thus maintaining a steady state of the slave. Simultaneously, the data input lines 
A and B to the master are enabled so new data may be entered to the master. 

During the low-to-high transition of the clock pulse, the transfer of data from the master to 
the slave is enabled via line C and D simultaneously. The inputs to the master are inhibited. 

67 



68 

DIRECT DIRECT 
SET SET 

A J 
c J Q 

CLOCK FF FF 

B K 
D 

K Q 

DIRECT DIRECT 
CLEAR CLEAR 
(RESET) (RESET) 

... 

Figure 73. Example of Master-Slave JK Flip-Flop 

There are two terminals, direct clear (C) and direct set (S), that may be used to directly 
clear (reset) or set the JK flip-flop. Thus, when several JK flip-flops are interconnected to 
form a register, a counter, or other logic device, the various flip-flops may be set up to a 
predetermined configuration of states. 

Binary Register 

The binary register symbol represents a group of flip-flops used in parallel to constitute a 
single register (as to store four bits of a character). It is necessary to indicate the number of 
"bits" of individual flip-flops in the register. Examples in Figure 74 show four "S" inputs 
grouped on one multiple input line and four each "l" and "O'~ grouped output lines. In 
some applications· individual input and output lines are shown as in right-hand part of the 
figure. 



4 4 

s c s s s s 
RG (4) (OR) RG (4) C 

0 I 0 I 0 I 0 I 0 

4 4 

Figure 74. Example of Binary Registers 

Shift Register 

4/ -, 

The shift register symbol represents a binary register with provision for displacing or shifting 
the content of the register one stage at a time to the right or left by means of the "shift" 
input. Examples are shown in Figure 75. 

RIGHT LEFT RIGHT LEFT 
SHIFT SHIFT SHIFT 

PARALLEL INPUT 
SHI Fl 

INPUT 
PARALLEL INPUT INPUT INPUT INPUT 

n n 

s R s R s R s R 
SERIAL SR (6) SERIAL (OR) SERIAL SR (N) SERIAL 
INPUT OUTPUT INPUT OUTPUT 

o 0 0 o a 0 

n n 

PARALLEL OUTPUT PARALLEL OUTPUT 

Figure 75. Example of Shift Registers 

69 



70 

The words "right shift input" are placed at a left-hand corner of the symbol to indicate a 
shift from left to right. If the shift is from right to left, the words "left shift input" are 
placed at a right-hand corner of the symbol. 

The choice of one of the register symbols depends on the diagram arrangement of the 
associated symbology. 

Single-Shot 

The symbols in Figure 7 6 are used to represent single-shot (SS) functions. Output-signal 
shape, amplitude, duration, and polarity are determined by the circuit characteristics of the 
"SS," (not by the input signal) and may be shown inside or outside the symbol. The 
unactuated state of the "SS" is either zero or one. When actuated, it changes to the 
opposite state and remains in the opposite state for the duration of the active time of the 
device. 

SS 

OR 

ONE OUTPUT TWO OUTPUT 

Figure 76. Example of Single-Shot 

Schmitt Trigger 

The symbols shown in Figure 77 represent the Schmitt Trigger (ST) function. The device is 
actuated when the input signal crosses a certain "threshold" voltage. Output signal 
amplitude and poarity are determined by the circuit characteristics of the "ST," (not by the 
input signal). Stylized waveforms may be shown (inside or outside the symbol), indicating 
amplitude, polarity, threshold voltage and duration. The unactuated state of "ST" is either 
zero or one. When actuated, it changes to the opposite state and remains in the opposite 
state as long as the input exceeds the threshold value. 

ST ST 

OR 

~ 
o------
~ 

ONE OUTPUT TWO OUTPUT 
Figure 77. Example of Schmitt Trigger 



Dot-AND and Dot-OR Gates 

Where functions have the capability of being combined according to the AND (or OR) func­
tion, simply by having the outputs connected, that capability may be shown by enveloping 
the branched connection with a smaller sized AND or OR symbol as shown in Figure 78. 

A 

B 

c 
D 

Amplifier 

DOT "AND" 

FUNCTION.,..__ __ 
x 

FUNCTION.....,.. __ 
y 

F 

A 

B 

c 
D 

DOT "OR" 

FUNCTION 
u 

'FUNCTION 
v 

Figure 78. Example of Dot-AND and -OR Gates 

This symbol represents a linear or nonlinear current or voltage amplifier. This amplifier may 
have one or more stages and may or may not produce gain or inversion. Level changers and 
inverters, pulse amplifiers, emitter followers, cathode followers, relay pullers, lamp drivers, 
and shift register drivers are examples of devices for which the symbol shown in Figure 79 
is applicable. 

H L 

Time Delay 
Figure 79. Amplifier Symbol 

The duration of the delay is included with the symbol. If the delay device is tapped, the 
delay time with respect to the input shall be included adjacent to the tap output. Twin 
vertical lines indicates the input side. Figure 80 shows examples of time-delay symbols. 

1.5MS 

-(8-oR~ 5MS 

3MS 

Figure 80. Time Delay Symbol 

F 

71 



72 

DIGIT AL COMPUTER SYSTEM 

The term "digital computer system" indicates or implies that digital computers comprise 
organized assemblages of equipment, data, instructions (programs, routines, and the like), 
and various media upon and by which these things are stored, distributed, and interrelated. 
Digital computers are indeed composed of various and different kinds of items that together 
perform various and different but interrelated functions. Thus, in a broad sense, the term 
"digital computer" means a system that computes with digits. 

A narrower meaning of the term "digital computer" is the "central processor." The central 
processor does the computing under direction of the stored instructions (programming) on 
and with data, both of which are obtained from "memory." The actual computing equip­
ment (the central processor), of course, can do nothing without instructions, and since a 
memory is needed to store the program, at least the central processing and memory are 
needed with which to compute. In the larger and the earlier computers, the memory was 
considered part of the central processor. Now, the memory is frequently considered a 
separate module or a group of modules so the size of the memory may be varied to fit the 
user's requirements. 

Other functions-input, output, and control-are also within the domain of the central 
processor. Again, in the interest of modularity and customization, some of the hardware 
performing these functions are located partly with the central processor, partly with the 
memory, and partly with the peripheral units. Nevertheless, even though these central­
processing subfunctions are somewhat spread out and combined with functions of the 
memory and the peripheral units, these subfunctions still exist. 

The various subfunctions necessary for computing, notwithstanding their physical locations, 
are shown in Figure 81. Each of these subfunctions comprise a subsystem. Putting them all 
together, they perform the central-processing function-computing. 

Another representation of a computer but with the central-processing subfunctions dispersed 
is shown in Figure 82. Memory has been completely separated from the central processor, 
whereas part of the input/output subfunctlons and associated control also have been 
separated. Thus, with this sort of design, the computer system may be made more modular 
and may be customized, adding or leaving off peripheral input/output and memory modules 
to fit particular needs. This type of systemization has been designed into the FST-1. The 
various interface units and the memory are thought of as separate-to-central-processor sub­
functions. The central processor thereby is reduced in physical and functional size and 
comprises primarily arithmetic functions. The main computing (central-processing) control 
are also within the domain of this reduced concept of the central processor. 

Since the computer program that directs (instructs) the central processor is in memory and 
because the central processor cannot function without computer program direction, the 
term "computer" must now be thought of as a system, of which various portions, 
physically and functionally dispersed, nevertheless, interact to compute. Hence, we now see 
the term "computing system" or the like frequently used rather than "computer." 



INPUT - MEMORY --- --
~ ~ ~ ~ 

I ~ I 

-- CONTROL -- -- ARITHMETIC 

Figure 81. Computing Subfunctions 

I - - - - - - - COMPU~G UNIT;-i 

I 
I 
I 
I 
I 
I 
I 

MEMORY 

MEMORY 
INTERFACE 

INPUT/OUTPUT) 

CENTRAL 
PROCESSOR 
(ARITHMETIC & 

1· 

I 
I 

PERIPHERAL I UNIT 
INTERFACES I (INPUT /0 UTPUT} 

I 
I 

L __________ _J 
I CONTROL) 

OUTPUT 

Figure 82. Modular Layout of Computer Units 

~ 

~ 

PERIPHERAL 
UNITS 

73 



74 

FST-1 Computer System 

The configuration of computer modules comprising the FST-1 Computer System affords a 
versatile, variable-size computer capability. The central processor, main memory, and 
peripheral units are separate modules that may be interconnected in sundry configurations. 
Thus, the desired complement-of-equipment may be custom-built. Figure 83 depicts the 
functional interconnections of the major units. 

The core-memory and input/output control units constitute functional and physical entities 
separate from the arithmetic-control and data-processing control units. 

Each memory module has a capacity of 4096 words, and one to four memory modules may 
be used with one CPU. Also, memory units are shared by the CPU and peripheral units, 
with memory access for each peripheral unit regulated by a memory-interface control as 
part of each memory module. However, a common memory-interface-control module for all 
memory-peripheral units is located in the CPU main frame. Other than for memory inter­
face, the common-memory-interface control does not affect central processing. 

Communications between memory and each peripheral unit and the CPU are time-shared on 
a priority basis. Once priority is established, the unit obtaining access independently 
exchanges data with memory under control of that unit's input/output control and the 
common memory-interface control. 

Communications and the transfer-of-data between the CPU and peripheral units are effected 
by the input/output controls of the peripheral units and the CPU's accumulator interface on 
a priority basis. Once a peripheral unit gains access to the CPU, communications and data 
transfers between the peripheral unit and the CPU are carried out independent of the main 
program. 

The complement-of-equipment may vary considerably. A simple computer syst€m may 
comprise a CPU, a 4096-word core memory, an input/output peripheral unit (such as a 
Teletypewriter), and associated power supplies. Building blocks of memory, peripheral units, 
and interface modules are easily added to a system to increase its capability and diversity. A 
more-complex system may comprise additional units such as a card reader, a card punch, a 
magnetic tape, a line printer, and a magnetic-disc auxiliary-storage memory. These variations 
are easily envisioned with reference to Figure 83. 

Facilities for one or two memory-access subsystems for each CPU are available. The 
memory-access subsystems operate relatively independently of one another, transferring data 
and control signals over their respective buses. In Figure 83 memory buses "A" and "B" are 
shown with each bus connecting all four memory modules to the CPU and the peripheral 
units. Both buses may be in use simultaneously as long as the memory modules are com­
municatirig with different units. This dual memory-access capability adds to the versatility 
of an FST-1 computer system that has two or more memory modules. 



MEMORY MEMORY MEMORY MEMORY 
BANK "A" BANK "A" BANK "B" BANK "B" 

(FIRST) (SECONO) (FIRST) CECONO) 
4096 4096 4096 4096 

WORDS WORDS WORDS WORDS 

[\ J!l it j 
~ CQNTROL ~us CONTROL BUS 

~---- r ------- --~ 
MEMORY BUS "A" - FETCH (24. LINES) 

[\ I MEMORY BUS "B" - FETCH (24 LINES) I 
'"~ ~ ;ssss :s:s: ~ ~ I - !iJi -------
MEH!H!Y BUS ~~ -HQ_RElZHINEfil ~ I 

MEMORY BUS_''B" - STOR~ (24 LINES) 

[\ 
I 
I 

~ ~I 
r I 
I CENTRAL I 

ACCUMULATOR I PROCESSOR I MEMORY 
INTERFACE I UNIT INTERFACE 

(CPU) I --- ------------ I 
l 

;1 
_l 

I 
I 

~ • MEMORY BUS "A" 
~,~,,~,,~ ~"""~'''~'-''&.'-.'\.'\.'\.ll ~ "S" ~ ~ ~ 

,, .:::..: .s:s .':::.: .':::.: 

COMMON t-..: ,MEMORY BUS "B" N 
~ 

-~ l TO ADDITIONAL UNITS 
PERIPHERAL ·--------- - ------------ II!!...._ 
INTERFACE t-..: ~I l :i:r 

~ THAT MAY BE ADDED 
SYNCHRONIZATION BUS t" 1--------· - - ____ _,__ 

-------------- --------! N ~ 
t-..: I ~ 

TELETYPE- I ~ WRITER 

CARD 
COMMON CARD 

COMMON 
MAGNETIC 

COMMON 
LINE 

COMMON MAGNETIC COMMON 
PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL TAPE PERIPHERAL 

READER INTERFACE PUNCH INTERFACE DISC INTERFACE PRINTER INTERFACE READER INTERFACE 

SYNCHRONIZATION BUS :I ! 
~---------------~-----------~-----------·----------~-----------~~~ ACCUMULATOR BUS (24 LINES) Ill I I Jl 

.. ~:!! 

:} TO ADDITIONAL UNITS 
THAT MAY BE ADDED 

FIGURE 83. FST-1 Computer System, Typical Equipment Configuration 

/ 



Outstanding Operational Features 

• 24-bit data word 

• Magnetic ferrite-core memory 

• 4096-word memory modules 

• Options to comprise a maximum of four memory modules, a total of 16,384 words 
per CPU 

• Dual memory-access subsystems via two memory buses 

• 1. 7 5 microseconds memory-cycle time 

• Random direct memory access, stored or retrieved at 5 71,000 words per second per 
memory bus 

• Separate interface control between memory modules and CPU or peripheral units 

• Interrupt subsystem for communications and datum transfer between CPU and 
peripheral units via accumulator bus 

• 16 external interrupt channels and a maximum of 63 interrupt locations in each 
memory 

• Eight index registers for address modification 

• Indirect addressing for most instructions 

• 75 (938 ) operational codes of following types of instructions 

• 8 ( 108 ) fetch and store 

• 9 ( 11 8 ) arithmetic 

• 6 logical 

• 8 register and state 

• 19 (238 ) branch (transfer-of-control) 

• 9 (11 8 ) shift 

• 16 (208 ) input/ output 

77 



• Twos-complement, single- and double-precision arithmetic-add, subtract, and 
hardware-controlled multiply and divide 

• Control-panel features 

• Program switches for manual program control 

• Control-flip-flop status indicators 

• Console switches for manually controlling a program execution 

• Program-counter-register status indicators 

• Switch-register switches for manual input of computer word to command 
register or accumulator 

• Index- and accumulator-register displays 

• Computer-control switches 

Computer System Summary 

The foregoing explanations of the modular construction of computer systems and partic­
ularly that of the FST-1 comptuer system are rather general and brief. To go into more 
detail such that would provide a thorough understanding of the FST-1 operation would be 
an encroachment on the training course itself. 

Our goal in providing this preschool indoctrination is to provide an FST-1 prospective 
trainee with comprehensive background that will prepare him for the FST-1 training course. 
This training course covers the organization of the FST-1 compuer system, its operation, 
functional circuits, and use of engineering-level logic schematics. 

The important points that should stand out in regard to comptuer systems in general are 
itemized below. 

78 

1. The five main functions: input/output/control/arithmetic/memory. 

2. The dispersion of some of these five main functions outside of the CPU 
itself: separated memory modules and input/output interfaces. 

3. The general relationship between memory and the CPU and peripheral 
units. 

4. The dependence of the CPU and their hardware units on computer pro­
gramming for direction (instructions) and vice versa: A stored-program 
Jigital computer cannot compute without a program and the program 
cannot be carried out without the hardware that understands its instruc­
tions and can operate accordingly. 


	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	77
	78



