
FLOATING POINT
SYSTEMS, INC.

Programmers
Reference

Manual
Part One

bY FPS Technical Publications Staff

Programmers
Reference

Manual
Part One

1st Edition, January 1978

Publication No. FPS-7319

NOTICE
The material in this manual is for
information purposes only and is
subject to cnange without notice.
Floating Point Systems, Inc. assumes
no responsibility for any errors
which may appear in this publ1cati6n.

Copyright (S) 1978 by F1oating Point Systems, Inc.
Beaverton, Oregon 97005

All rights reserved. No part of this publication may
be reproduced in any form or by any means without
written permission from the publisher.

Printed in U.S.A.

CHAPTER l

1.1
1. 2
1.3
1.4
1.5
1.6
1.6.l
1.6.2
1.6.3
1.6.4

CHAPTER 2

2.1
2. 2
2.3
2.4
2.5
2.6
2.1
2.8

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5

3.S.l

3.5.2
3.5.3

CONTENTS

INTRODUCTION

PURPOSE
SCOPE
GENERAL DESCRIPTION
SYSTEM OVERVIEW
EXAMPLE AP-120B APPLICATION
SOFT'N'ARE

APEX (A.P. Executive)
APMATR
Program Development Package
APTEST

FUNCTIONAL OVERVIEW

CONTROL UNIT
S-PAD UNIT
FLOATING ADDER UNIT
FLOATING MULTIPLIER UNIT
DATA PAD UNIT
DATA MEMORY UNIT
TABLE MEMORY UNIT
INTERNAL FLOATING POINT FORMAT

FLOATING POINT ARITHMETIC THEORY

INTRODUCTION
GENERAL NUMBERING SYSTEMS

Base
Radix Point
Types of Binary Notation Systems

NUMBER FORMATS
Fixed-Point Numbers
Floating-Point Numbers
Normalization

AP-120B FtOAT!NG-POL."'IT FORMAT (Fl'N)
AP-120B FLOATING-POINT ARITHMETIC OP~TIONS

(OVERVIEW)
Floating-Point Addition, Subtraction and

Multiplication
Rounding
Overflow and Underflow

iii

Page

1-1

1-1
1-2
1-3
1-4
1-7
1-8
1-8
1-8
1-8
1-9

2-1

2-2
1-3
2-5
2-7
2-9
2-11
2-13
2-14

3-2
3-3
3-3
3-3
3-4
3-11
3-11
3-13
3-14
3-16

3-20

3-21
3-25
3;..29

CHAPTER 4 DETAILED DESCRIPTIONS OF THE FUNCTIONAL UNITS

4.1 S-PAD 4-1
4.1.1 General Description 4-1
4.1.2 S-PAD Operations 4-4
4.1.3 S-PAD Source and Destination Registers 4-5
4.1.4 S-PAD Function 4-6
4.1.5 S-PAD Modifiers "fl", "Sh 11 , "&" 4-7
4.1. 6 S-PAD Associated Test and Branch Operations 4-8
4.1. 7 Bit Reverse 4-10
4.1. 8 General Programming Rules 4-15
4.1.9 S-PAD Carry Bit Conditions 4-16
4.1. 10 Programming Example 4•17
4.2 SPECIAL OPERATIONS GROUP (SPEC) 4-19
4.2.1 Branch Operations 4-20
4.2.2 Data Transfer Operations 4-27
4.2.3 Program Source Address Modification 4-32
4.2.4 Branch Group Summary 4-36
4.2.5 AP-120B Internal Status Register (APSTATUS) 4-39
4.2.6 PERR and PENB, Theory of Operation 4-43
4.3 FLOATING ADDER (FADDR) 4-45
4.J.l General Description, Theory of Operation 4-46
4.J.2 FADDR Single and Double Operand Operations 4-49
4.3.3 Floating Point Logical Operations 4-50
4.3.4 FADDR Operands (via Al, A2 Registers) 4-52
4.J. 5 FADDR Result (FA) 4-53
4.3.6 FADDR Test, Branch and Error Condition 4-54
4.3.7 Floating Point Adder Programming Considerations4-55
4.4 FLOATING MULTIPLIER (FMULR) 4-58
4,4.1 General Description, Theory of Operation 4-59
4.4.2 The FMULR Operation -- FMUL 4-62
4.4.3 FMULR Operands .(via Ml, M2 Registers) 4•63
4.4.4 The FMULR Result (FM) 4-~4

4.4.5 FMULR Test, Branch and Error Conditions 4-65
4.4.6 FMUL Programming Considerations 4-66
4.5 I/O GROUP 4-71
4.5.l AP-120B I/O Operations 4-72
4.5.2 Virtual Front Panel (PANEL) 4-77
4.5.3 Progranu.ned I/O 4-87
4.5.4 Prograilll!ling Example 4-104
4.6 DATA PAD SUMMARY 4-110
4.6.l General Description, Theory of Operation 4-111
4.6.2 Data Pad Operations 4-112
4.6.3 Data Pad Addressing 4-116
4.6.4 Programming Examples 4-118
4.7 MEMORY GROUP 4-120
4.7.1 Main Data Memory (MD) 4-121
4.7.2 Table Memory (TM.A} 4 131

iv

CHAPTER 5

5. 1
5 .1. L
5.1.2
5. 1.3
5. 1.4
5.1.5
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
s.2.6
5.2.1
5.2.8
5.2.9
5.2.10
5. 2. 11
5.3
5.3.1
5.3.2

5.3.3

HOW TO PROGRAM THE AP-120B

MEET TRE AP •••• AGAIN
Introduction

LOOPS

Basic Overview
Referencing Memory
S-PAD Mnemonics
Other Pseudo-Ops

A Poor Loop
Determining Length of a Loop
Writing a Real Memory-Limited Loop
Writing Intros
Dot Product Program
Notation
Dropping Out One Early
Interaction Between Columns
Changing DPA
Non-Memory-Limited Loops
A One-Cycle Loop

CAVEAT PROGRAMMER (LET THE PROG'R.AJ.'1MER BEWARE)
Calling Another Sub-Routine
Illegal Instruction Sequences (Not Caught

5-1

5-1
5-1
5-2
5-5
5-6
5-7
5-8
5-8
5-10
5-11
5-13
5-15
5-18
5-20
5-23
5-24
5-15
5-26
S-29
5-19

by APAL) 5-31
Other 'things to Watch Out For (Caught by APAL) 5-31

v

NumJ:?er

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
3-1
4-1
4-2
4-3
4-4
4-5
4-6

Number

1-1
3-1
3-2
4-1
4-2
4-3

FIGURES

Title

AP-120B Arithmetic Paths
Control Unit
S-Pad Unit
Floating Adder Unit
Floating Mult:l.plier
Data Pad
Data Memory Unit
Table Memory
AP-120B Floating Point Number Format
S-PAD Block Diagram
PS Formats
Program Source Memory File
Data Pad
Main Data Block
Table Memory

TABLES

Title

Related. Publications
The AP-l20B Rounding Decision Table
The AP-120B Truncation Decision Table
S-PAD Timing Examples
Loading and Executing AP-120B Bootstrap
Table Memory CEXP Truth Table

vi

Page

1-5
2-2
2-4
2-6
2-8
2-10
2-12
2-13
3-18
4-3
4-28
4-29
4-111
4-121
4-132

Page

l-10
3-26
3-28
4-9
4-106
4-138

APPENDIX

A Glossary A-1

B List of Terms and Usage B-1

c List of Functions C-1

D Instruction Field Layout and Summary D-1

E Instruction Descriptions E-1

vii

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This manual provides the information necessary for the programmer to
write programs for the AP-120B Array Processor to be assembled by the
AP Assembler (APAL). It is designed for use both as an introduction
to programming the AP-120B and as a reference manual.

1 1

I. 2 SCOPE

This manual contains material on how to program the AP-120B including
detailed descriptions of the AP' s functional units and its instruction
set.

Chapter 1 includes a· general description of the AP-120B and an example
of its application. Chapter 2 introduces the AP-120B 1 s functional
units.

A review of floating point arithmetic theory and the format used by the
AP ... 120B are in Chapter 3.

Chapter 4 includes detailed descriptions of the functional units,
including programming examples and considerations. How to take
advantage of the AP-120B's pipeline processing is discussed in Chapter
5, "How to Program the AP-120B. 11

The Appendix includes both a brief summary of the instruction set,
Appendix D, and a discussion of each instruction, Appendix E. A
diagram of the instruction field layout in Appendix D shows at a glance
the relationship of the functional units to the instruction word.

For information about the Software Packages supplied with the AP-120B,
the AP Math Library or th~ Program Development Package ref er to Table
1-1, Related Publications, in Section 1.6.

l 2

1.3 GENERAL DESCRIPTION

The AP-120B is a high-speed (167-ns cycle time) peripheral
floating-point arithmetic Array Processor, which is intended to work in
parallel with a host computer.

Its internal organization is particularly well suited to performing the
large numbers of reiterative multiplications and additions required in
digital signal processing, matrix arithmetic, statistical analysis, and
numerical simulation.

The highly parallel structure of the AP-120B allows the "overhead11 of
array indexing, loop counting, and data fetching from memory to be
performed simultaneously with arithmetic operations on the data. This
allows much faster execution than on a typical general-purpose
computer, where each of the above operations must occur sequentially.

The AP ... 120B achieves its high speed through the use of fast commercial
integrated circuit elements and an architecture that permits each
logical unit of the machine to operate independently and at maximum
speed.

Specifically:

1. Programs, constants, and data each reside in
separate, independent memories, to eliminate
memory accessing conflicts.

2. Independent floating-point multiply and adder
units allow both arithmetic operations to be
initiated every 167 ns.

3.. Two large (32 locations each) blocks of
floating-point accumulators are available for
temporary storage of intermediate results
from the multiplier, adder, or from memory.

4. Address indexing and counting functions are
performed by an independent integer arithmetic
unit that includes 16 integer accumulators.

In a typical application, such as a Fast Fourier Transform, the above
features allow nearly the entire computation to be overlapped with data
memory access time.

Effective processing precision is enhanced by 38-bits of internal data
width, an internal floating-point format with optimum numerical
properties, and a convergent rounding algorithm.

1 3

l.4 SYSTEM OVERVttW

A general block diagram of A.P-120B arithmetic paths appears in Figure
1.1.

Connection is made to the host in a manner that permits data transfers
to occur unde~ control of either the Host Computer or the A.P-120B. For
most host computers, this will mean that the AP-120B is interfaced to
both the. programnied !/O and DMA channels.

1 4

CONTROL [
MEMORY

CONTROL

MEMORY

110

38-bit BUS STRUCTURES ARITHMETlC

PROGRAM
,-- MEMORY

(to 4K X 64 bits)

S·PAO
(16 X 16 bits)

PS

SPFN

,._..__.J l.._____,

UJ MEMORY ADDRESS D
REGISTERS

(MA, TMA, CPA)
X16bits)

TABLE
MEMORY

RAM or ROM
(to 64K X 38 bits)

DATA PAO X
(32 X 38 bits)

DATA PAD Y
(32 X 38 bits)

MAIN DATA
MEMORY

(to 1 Meg X 38 bits)

MDI I 1 MO

TM

DPX

DPY

MO
L

H HOST t--1
1-H INTERFACE IN!; S 1--------

SWITCHREG
FUNCTION REG

LlGHTS REG

IOP
16/32

PIOP

t--1
IN_!S

DATA PAO SUS (38 Bits)

FLOATJNG-POINT
ADDER

____.,.JA1

FA }-

FLOATING-POINT
MULTIPLIER

~ I jFM}-_____

Figure 1-1 AP-120B Arithmetic Paths

1 5

The system elements are interconnected with multiple parallel paths so
that transfers can occur in parallel. All internal floating--point data
paths are 38-bits in width (10-bit biased binary exponent and 28-bit
2's complement mantissa).

Data Memory (MD) is organized in SK-word modules of 38-bit. words each,
expandable up to 64K words in the main chassis. The effective !llemory
cycle time (interleaved) is 333 ns.

Table Memory (TM) is used for s.torage of constants (FFT constants), and
is tied to a separate data path so as not to interfere with Data
Memory. It is bipolar, 167 ns read-only memory, and is organized in
512-.Jor~, 38-bit increments.

Data Pad X (DPX) and Data Pad Y (DPY) are two blocks of 32 floating
accumulators each. Each is a two-part register block, wherein one
register may be read and another written from each block in one
instruction cycle.

The Floating Adder (FA) consists of two input. registers (Al and A2) and
a two-stage pipe-line which performs the operations, and convergently
rounds the normalized result.

The Floating Multiplier (FM) consists of input registers (Ml and M2)
and a three-stage pipe-line which performs the multiply operation.
Products are normalized and convergently rounded 38-bit numbers.

The S-PAD consists of 16 integer registers and an integer arithmetic
unit which is used to form operand addresses and to perform integer
arithmetic.

1 6

1.5 EXAMPLE AP-120B APPLICATION

A simple FFT processing sequence would go as follows:

Initial conditions are that the FFT program is resident in Program
Source Memory internal to the AP-120B, the array to be transformed is
resident in host memory, and the host CPU has initiated the AP-120B
processor with an I/O instruction.

1. The AP-120B requests host DMA cycles to
transfer the array from host memory to
internal data memory. Data is converted from
host floating-point format to internal AP-120B
floating-point format "on the fly. 11

2. The FFT algorithm is performed, with data
remaining in internal AP-120B format. This
yields the benefit of 38-bit precision and
convergent rounding during the critical phases
of processing.

3. The frequency domain array is transferred back
to host memory by requesting host DMA cycles.
Data is converted from internal format to host
format "on the fly. 11

4. The AP-120B proceeds to another process or
stops executing, depending on previously
established conditions. An interrupt to the
host can be issued.

The AP-120B is most efficiently used when a sequence of operations is
performed on one or more sets of data which reside in internal data
memory. This reduces data-transfer overhead, and retains maximum
numerical precision. For example, a reasonable sequence would be to
transfer a trace and a filter, FFT both, array multiply, inverse FFT,
and transfer the result back. to host memory.

The AP-120B Data Memory has DMA capability. That is to say that MD
cycles can be stolen from the AP-120B microprocessor by the interface.
This capability allows Host Computer DMA to AP-120B DMA data transfers
to occur, thereby minimizing both host CPU and AP-120B overhead.

The AP-120B has been designed with enough flexibility built-in so that
its power can be harnessed in a variety of ways. Subsequent sections
describe its use in detail.

1 7

1.6 SOFTWARE

Four packages of software are supplied with the AP-120B which assist
the user toward the solution of his particular processing task.

1.6.1 APEX (A.P. Executive)

APEX is a mechanism for communicating with the AP-120B via a series of
FORTRAN or machine language subroutine 11 calls. 11 The executive driver
routine interprets the particular user call and directs the AP-120B to
perform the specified action. For example, in Fortran, to load an
array A containing N real data points into the AP-120B, and perform a
real Fast Fourier Transform upon that data:

IA=O
CALL APPUT (A,IA,N,2)
CALL RFFT (IA,N,l)

Both the Standard Applications Subroutines described below and user
developed AP-120B programs may be called from the host computer using
APEX.

1.6.2 APMATI:I (A.P. Math Library)

These are subroutines written in AP-120B assembly language which are
callable from host computer Fortran or machine language programs using
APEX. They are listed in the AP-120B Math Library.

1.6.3 Program Development Package

Four Fortran IV programs which are compiled on the host computer during
installation aid user program development.

l 8

These are:

l. APAL

2. APLINK

3. APDBUG

•j 4. APSIM

A.P. Assembly Language. A
cross-assembler which provides
a two pass assembly of symbolic
coding into an object module.
APAL generates detailed error
diagnostics.

A.P. Linker. Links and
relocates separate APAL object
modules together into a single
execution module.

A.P. Debugger. An interactive
debugging program. The user
may selectively set
breakpoints, examine and
change memory and register
contents, and run program
segments.

A.P. Simulator. Called by
APDBUG, APSIM provides a
programmed simulation of the
various hardware elements of
the AP-120B. All timing
characteristics of the AP-120B
are emulated, and the floating
point arithmetic is simulated
(including rounding) to _the
least significant bit. APSIM
is a convenient tool in
bringing up new AP-120B
programs off line without
interfering with production runs.

1.6.4 APTEST (A.P. Test Programs)

APTEST is a collection of interactive diagnostic test and verify
programs which aid in isolation of hardware faults. These are:

1. APTEST A.P. Tester. Exercises the
Panel, DMA interface, and
various internal registers and
memories. Tests Main Data
Memory with simple patterns and
then with random numbers.

1 9

2. APPATR

3. APARTH

4. FIFFT

Board level diagnostic
indicators are provided.

A.P. Path Tester. Tests the
various internal data paths and
gives board level diagnostics.

A.P. Arithmetic Test. Tests
the floating point adder,
multiplier, and S-Pad
arithmetic unit with
pseudo-random number and
operation sequences.

Forward/Inverse FFT Test.
Verifies the correct operation
of the AP-120B as a complete
unit by doing forward/inverse
FFT transforms on both spikes
and random number sequences.

Table 1-1 lists Floating Point Systems publications related to AP-120B
software.

Table 1-1 Related Publications

Manual Number

Processor Handbook
Software Development Package Manuals

(includes APAL Array Processor Assembly
Language Manual, APLINK-Array Processor
Linking Loader Manual)

AP-120B DEBUG-Array Processor DeBugger Manual
AP-120B Diagnostic Software Manual

(includes APTEST, APPATH, APARTH, FIFFT)
AP-120B Math Library Paarts I & II
!OP 16/38 Users Manual
Programmable I/O Processor (PIOP)

(scheduled ~inter quarter 1978)

l 10

7259
7292

7364
7284

7288-02, 03
73 lOR
7350

CHAPTER 2

FUNCTIONAL OVERVIEW

The hardware of the AP-120B is composed. of three types of functional
elements.

1. Logical and control elements

a. Control unit

b. S-Pad unit

2. Floating-Point arittimetic elements

a. Floating-point adder

b. Floating-point ~ultiplier

3. Memory elements

a. Data Pad unit

b. Main data memory unit

c. Table memory unit

Each of these funtional units is INDEPENDENT and thus can independently
perform the programmed operations for which it was designed in parallel
with the other functional units.

2 l

2.1 CONTROL UNIT

The Control Unit, as illustrated by Figure 2-1, consists of:

a. PTogram Source Memory (PS)
b. Program Source Address (PSA) Register
c. Control Buffer (CB) with decoding logic
d. Subroutine Return Stack (SRS)

with subroutine return stack pointer (SRA)

The operation of the AP-120B is controlled by the execution of 64-bit
instruction words which reside in Program Source (PS) Memory. The
program word for the next: instruction to be performed. is selected by
the address in the ProgTam Source Address (PSA) register. At the
initiation of the next machine cycle, this program word is transferred
to the Control Buffer (CB) where it is decoded and executed. The PSA
is incremented by one unless a branch in the current instruction causes
the PSA to move to another location in Program Source (PS) memory.
Access to Program Source memory and instruction decoding are overlapped
so that the AP-120B can operate at a 6 MHz rate (167 ns).

Branching is accomplished in two manners. A short-range branch is
provided by adding the S-bit branch displacement field to the current
PSA. This gives a branch range of from -20(octal) to +17(octal). A
long-range jump to any location in PS is accomplished by loading the
desired target address into PSA.

Subroutine jumps are made by a "JSR" instruction which saves the
current PSA in the Subroutine Return Stack (SRS) and sets PSA to the
subroutine address. Return is via a "RETURN," which loads the PSA with
the last entered return address on the SR.S.

SRA (Subroutine Return Address) is the Subroutine Return Stack pointer,
which is automatically incremented or decremented as subroutines are
called and returns are ~ade from the subroutine.

Program (PSA)~ Source [Program Source Address
Memory J

,..,

(PS)
""" Subroutine

Return
SRA Stack .. L_.J

Control
Bu.ff er(CB)

Figure 2-1 Control Unit

2 2

2.2 S-PAD UNIT

This unit, illustrated by Figure 2-2, performs the integer address
indexing, loop counting and control functions necessary to direct
completion of a given algorithm. In form, it is similar to familiar
mini-computers such as the PDP-11 or Nova.

The S-Pad contains sixteen 16-bit directly-addressable registers. The
contents of these registers pass through a special integer ALU
associated with this unit.

The output of the ALU may be directed back to the specified S-Pad
destination register, and also to any of the following address memory
registers: Memory Address (MA), Table Memory Address (TI1A), or Data
Pad Address (DPA).

The S-PAD integer ALU functions include:
FUNCTION EFFECT

a. Move S~D S-Source
b. Logical Complement S7D register
c. Clear 0-1D D-Destination
d. Increment S+l-?D register
e. Decrement S-HD
f. Add D+S-1D
g. Subtract D-S-1D
h. Logical AND D AND S7D
i. Logical OR D OR S-tD
j. Logical Equivalence D EQV S-70

2 3

The output of the S-l?AD ALU (called S-PAD FUNCTION or SPFN), may be
used unmodified, shifted left once, shifted right once, or shifted
rigb.t twice.

A hardware bit-reverse function included in the S•Pad accomplishes the
bit swapping necessary to access data in scrambled order after an FFT.

The S-PAD ALU also sets three condition bits in the AP-120B Status
Register depending upon the output of the ALU/shifter:

N: ·set if result <O; cleared otherwise

Z: set if result =O; cleared otherwise

C: set if a carry occurred; cleared otherwise

These bits may be tested by the next AP instruction, and a branch made
depending upon whether the specified condition was true.

S-Pad
Registers

16

Bit Rev.

..;. a
ALU/Shifter

(SPFN)

Data Pad Address (DPA) Register

Memory Address (MA) Register

Table Memory Address (TMA) Register

Data Pad.Bus (DB)

Figure 2-2 S-Pad Unit

2 4

2.3 FLOATING POINT ADDER UNIT

The Floating Point Adder, shown in Figure 2-3, does addition (or
subtraction) operations on the contents of the Adder input registers
(Al and A2). The operation is performed in two stages, each of which
takes one machine cycle.

In the first stage, the exponents of the two numbers are compared and
the fractions are aligned by shifting the fraction of the smaller
number right. The fractions are then added (or subtracted). In the
second stage the re.sulting fraction is normalized and convergently
rounded.

Since the two stages are independent of each other, a new pair of
numbers may be entered into Al and A2 every AP cycle (167 ns). The
result is available for use two cycles later (333 ns).

In effect, the Floating Adder (FA) is a pipeline, where new inputs may
be entered into the pipeline stream every cycle. Initiation of an add
operation loads the two numbers to be added into the Al and A2 input
registers. The previous Adder input is pushed down the pipeline to the
Adder Buffer register. One cycle later the completed result (called
FA) from the Buffer is available for storage or use by another unit.
Thus a new add may be started every 167 ns, and the result is ready 333
ns later.

Al may be loaded
Multiplier (FM),
Pad (DP), from
Memory (MD) •

;~ ..

from Data Pad (DP), from the output of the Floating
or from Table Memory (TM). A2 may be loaded from Data

the output of the Floating Adder (FA), or from Data

The output of the Floating Adder (FA) may be directed to the Multiplie~
(M2), to the Adder (A2), to Data Pad (DP), or to Memory Input (MI).

The operations performed by the Floating Adder are:

a. Al+01A2
b. Al-A2
c. A2-Al
d. Al EQV A2
e. Al AND A2
f. Al OR A2
g. Convert A2 from signed magnitude to 2's

complement format
h. Convert A2 from 2's complement to signed

magnitude format
i. Scale A2
J• Absolute value of A2
k. Fix A2

2 5

Al

Four condieion bits in the A2 Status Register are set or cleared by the
Floating Adder depending upon the current result:

FZ set to one if result is zero, else cleared
to zero.

FN - set to one if result is negative, else cleared
to zero •.

FO - set to one if exponent overflow occurred. The
result was forced to the signed ma.xilll1J.m value.

FU - set to one if exponent underflow occurred.
The result was forced to zero.

The overflow and underflow bits remain set until cleared by the
program.

These bits may be tested by the instruction after the Floating Adder
result is completed; i.e., three cycles after the Floating Adder
operation was initiated.

ZERO DPX DPY TM DPX DPY MD ZERO

A2

Align
fractions Stage 1
and add

Bu:f fer

Normalize
and Stage 2
round

(FA)

M2 A2 MI DPX DPY

Figure z.,..3 Floating-Point Adder Unit

2 6

A2

2.4 FLOATING POINT MULTIPLIER UNIT

The Floating Multiplier, Figure 2-4, forms the product of the two
multiplier input registers (Ml and Ml). · The product is formed in three
stages, each of which takes one machine cycle.

In the first stage, the 56-bit product of the two 28-bit fractions are
partially completed. The second stage completes the product of the
fractions. In the third and final stage the exponents are added, and
the mantissa product is normalized and convergently rounded.

The Floating Multiplier, like the Floating Adder, is organized as a
pipeline. Initiation of a multiply loads the two numbers to be
multiplied into the Ml and Ml input registers. The two previous
multiplier inputs are pushed down the pipeline to Buffer 2 and Buffer 3
respectively. One cycle later, the result from Buffer 3 is available
for storage or use by another unit.

Thus a new product may be started every 167 ns, and the result is ready
500 ns later.

Ml may be loaded from Data Pad (DP), the output of the Floating
Multiplier (FM) or from Table Memory (TM). M2 is loaded from Data Pad
(DP), the Adder (FA), or from Main Data Memory (MD).

Two error bits in the AP Status Register are affected by the Floating
Multiplier: ·:i-

FO - set
was

FU set
was

if exponent overflow occurred. The result
forced to the signed maximum value.
is exponent underflow occurred. The result
forced to zero.

2 7

DX DPY

Ml

FM FA DPX:

M2

Start product
of fractions

Buff er 2

Complete
product of
fractions

Buff er 3
Add exponents
Normalize
and
Round

(FM)

Al MI DPX

DPY

Stage 1

Stage 2

Stage 3

D:PY

Figure 2-4 Floating Multiplier

2 - 8

MD

2.5 DATA PAD UNIT

Data Pad, illustrated by Figure 2-5, consists of two fast accumulator
blocks, each with 32 floating-point locations, called Data Pad X (DPX)
and Data Pad Y (DPY). In a single machine cycle the contents of one
location from each Data Pad may be read out and used. In addition,
data may also be stored into one location in each Data Pad in the same
cycle. That is, for example, in a single instruction (167 ns) a
multiply may be initiated specifying one argument from DPX and another
from DPY; an Adder result (FA) may be stored into a DPX location, and
a data element in Main Data stored into a DPY location. On the very
next instruction similar multiple Data Pad accessing could be
accomplished again.

The two memories are addressed via a combination of the Data Pad
Address (DPA) register and four index field values contained in a given
instruction word. DPA may be thought of as a base address register or
stack pointer. It may be loaded from the S-Pad (SPFN) or its contents
may be incremented or decremented by one.

For a given read or write operation, say reading from Data Pad X, an
index value contained in the instruction is added to the current
contents of DPA to give the effective address for that particular
operation. The four index fields (one each for read DPX, read DPY,
write DPX, and write DPY) are each 3 bits wide, and have a range from
-4 to +3 relative to DPA.

Data from either Data Pad may be used by the Multiplier (Ml, M2), Adder
(Al, A2), or Memory Input (MI). Data may be stored into Data Pad from
the Adder (FA.), Multiplier (FM), S-Pad Function output. (SPFN), the
Command Buffer Value (VALUE), or from Data Pad (DP).

2 9

!NBS VALUE DPX DPY MD SPFN TM

(Data Pad Bus = DPBS)

FA FM
FA FM

Write Index CWrite Index
DPX DPA DPY

Read Index Read Index

(DPX) (DPY)

+ + • ~ + • ii • • • M2 Al A2 DPBS Ml M2 Al A2 DPBS

Figure 2-5 Data Pad

2 - 10

2.6 DATA MEMORY UNIT

The Data Memory unit, illustrated in Figure 2-6, is the primary data
store for the AP-120B. It is available in 38-bit wide 8K modules which
have an interleaved cycle time of 333 or 167 ns.

The memory unit contains a Memory Data (MD) buffer and a Memory Input
(MI) buffer. Data read from memory is placed by the controller into
MD, while data is written into memory from the MI. The Memory Address
(MA) register points to the desired memory location.

In referencing memory for read or write operations, the selected
operation is initiated by making a change to the Memory Address (MA)
register. The MA register may be loaded from the S-Pad (SPFN) or its
contents incremented or decremented by one.

A write operation is specified by loading MI with the data to be
written during the same instruction in which MA is changed. This data
is then written into memory from MI during the next two AP cycles.
Data may be loaded into MI from the Floating Adder (FA), Floating
Multiplier (FM), Data Pad (DP), Memory (MD), Table Memory (TI1), the
Input Bus (INBS), S-Pad Function (SPFN), or the Command Buffer Value
(VALUE). A memory operation may be initiated every other cycle. The
intervening cycle may be used for any other AP-120B function except
another memory initiate.

When a memory READ is initiated, the requested memory data is placed by
the memory controller into the Memory Data (MD) register 3 cycles after
the request was made. Two instructions after the read request, another
memory operation may be initiated. Again, the intervening cycle may be
used for any non-memory functions. Data in MD may be used by the
Floating Adder (.A2), Floating Multiplier (M2), or Data Pad (DP).

To optimize the operation of the AP-120B it is necessary for the
programmer to "look ahead" and initiate memory reads prior to the
actual time,that arguments from data memory are to be used in a
calculation.

The system provides a "memory lock-out" which serves to insure that
erroneous reads and writes of memory do not occur. If a memory
initiate occurs while memory is "busy," further program execution is
halted until the previous memory cycle is completed.

2 11

FA
+

INBS
+·

Main

VALUE. DPX DPY MD
+ + + +

(Data Pad Bus)

Data MA
Memory

MD

DPBS A2 M2

Figure 2-6 Data Memory Unit

2 - 12

SPFN
+

TM
+

2.7 TABLE MEMORY UNIT

The repeated use of standard constants (such as complex roots of unity
and transcendental values) in signal processing routines dictate their
ready availability to the programmer. A separate Table Memory (TM),
shown in Figure 2-7, eliminates memory accessing conflicts by allowing
data values and table values (constants) to be placed in separate
memory banks.

Values read from Table Memory are placed by the controller into the
Table Memory (TM) buffer register. The Table Memory Address (TMA)
register serves as a pointer to the desired location. The standard TM
is ROM. RAM is available as an option.

A Table Memory read is initiated by changing the contents of T~,

either by loading a value from the S-PAD (SPFN), or by incrementing or
decrementing the contents of TMA.

A new table value may be requested every machine cycle. This value is
available for use two cycles later. The value may be used by the
Floating Adder (Al), Floating Multiplier (Hl), or Data Pad (DP).

In FFT mode (i.e., when a FFT is being computed), the address in TMA is
interpreted by the hardware to be an angle which points to the
appropriate root of unity for a particular ~tep in the algorithm. This
allows the full table of roots of unity to be compressed into a single
quadrant of cosines.

Table
Memory
(ROM)

TM

-----'1'MA

Al Ml DPBS

Figure 2-7 Table Memory

2 13

2.8 INTERNAL FLOATING POINT FOR...'1.AT

Floating-point data internal to the AP-l20B is represented as, follows:

E.xp::lnent

2
Eq,

Where:
Mantissa
Exponent

ll 12
E9 M<j>

Mantissa

28-bit two's complement fraction
10-bit binary exponent, biased by 512

39
~27

The value of a floating-point number in this format is defined as:

Mantissa * 2 (Exponent -512)

The dynamic range of this format is from 0.5 * 2(-512) to (l-2 [-28]) *
2(511); or, from 3. 7 * 10(-155) to 6. 7 * 10(153).

The 28-bit fraction, combined with the convergent rounding algorithm
used in the Floating Adder and Multiplier, gives a maximum relative
error of 7.5 * 10(-9) per arithmetic operation. This is a precision of
8.1 decimal digits. As a comparison, unrounded IBM 360 format gives
only 6.0 decimal digits of arithmetic accuracy.

The convergent rounding hardware rounds up when the magnitude of the
remainder is GREATER than 1/2 of the least significant bit of the
mantissa. This serves to minimize truncation errors in long series of
arithmetic calculations.

Format conversion between Host format and AP-120B format occurs in the
Interface and in the Floating Adder unit. The dynamic range of the
internal format is large enough to accomodate IBM 360 format and other
Host formats. The extended precision of the AP-120B internal format
insures that accuracy is maintained during critical stages of data
analysis.

2 14

CHAPTER 3

·FLOATING POINT ARITHMETIC THEORY

The subject matter within this summary requires a certain amount of
preparatory discussion regarding types of numbering systems and
notation as well as explanations of AP-120B FLOATING POINT number
format and FLOATING-POINT ARITHMETIC OPERATIONS.

Those familiar with computer numbering systems may wish to bypass the
preliminary sections of this summary and begin with the section dealing
with the AP-120B FPN (FLOATING-POINT NUMBER) format. If the user
understands the AP Floating-Point format in Section 3.4 and the
fundamentals of floating-point addition and multiplication he can skip
to Chapter 4.

Accordingly, this summary is presented in sections
specific - in the following manner:

1) INTRODUCTION

2) GENERAL NUMBERING SYSTEMS

* BASE

. * RADIX

* TYPES OF NOTATION METHODS

3) NUMBER FORMATS

* FIXED-POINT

* FLOATING-POINT

* NORMALIZATION

4) AP-120B FLOATING-POINT NUMBER FORMAT

general to

5) .A.P-120B FLOATING•POINT ARITHMETIC OPERATIONS (overview)

* FLOATING-POINT ADDITION, SUBTRACTION AND MULTIPLICATION

* ROUNDING/TRUNCATION

* OVERFLOW AND UNDERFLOW

3 l

3.1 INTRODUCTION

The AP-120B FLOATING-POINT ARITHMETIC section consists of two units:
the FLOATING-POINT A.ODER (FADDR) and the FLOATING-POINT MULTIPLIER
(FMULR). Both FADDR and FMUL.R operate on numbers represented in the
AP-120B FLOATING-POINT NUMBER format (FPN).

The purpose of this summary is to acquaint the reader with a. general
overview on the most common types of digital computer numbering
systems, and then to focus in on the format and characteristics of the
particular numbering system used by the AP-120B FLOATING-POINT
ARITHMETIC hardware.

3 2

3.2 GENERAL NUMBERING SYSTEMS

3.2.l Base

The BASE of a numbering system denotes how many different elements are
used to represent progressive digits. For example, the decimal
numbering system in general use today uses ten different elements to
convey value (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The decimal system,,- then,
is defined as a BASE(lO) numbering system.

Digital computers, however, are not designed to efficiently handle a
BASE(lO) numbering system. Since the basic hardware element of most
computers is a flip-flop or latch capable of only two significant
states (1 and 0), the most convenient numbering system for digital
computers is the two-element BINARY number system (BASE(2)), or
numbering systems that are based on some power of two, such as OCTAL,
(BASE(8)), or HEXI-DECIMAL (BASE(l6)).

3.2.2 Radix Point

A RADIX POINT is that reflexive point where all numbers to the left
represent integer quantities greater than or equal to 0 and where all
numbers to the right represent fractional quantities less than 1.

In BASE (10) systems, the RADIX POINT is specifically termed the DECIMAL
POINT. In BASE (2) systems, it is termed the BINARY POINT. Since the
AP-120B uses a BASE (2) number system, the term BINARY POINT will be
used in this summary.

Bit
Weight

integers ~)J

BINARY
POINT

21
I -1 -2 -3 -4 -s -6 -7 -e 2 2 2 2 2 2 2 2

I I I l I

fractions < l

3 3

3.2.3 Types of Binary Notation Systems

Once the base of a numbering system has been established, the question
remains what type of notation system will be used to represent a
BINARY NUMBER in such a manner as to convey not only magnitude, but
also sign.

There are four popular systems of notation used to accomplish this
purpose.

l) SIGNED-MAGNITUDE notation

2) ONES-COMPLEMENT notation

3) TWOS-COMPLEMENT notation

4) EXCESS or BIAS notation

* Signed-Magnitude

SIGNED-MAGNITUDE notation uses a Sign-Bit to indicate the sign of the
quantity being represented. The integer value is in the same format
for both negative and positive values - only the Sign-Bit changes to
indicate the sign of the quantity represented. Usually the Sign-Bit is
positioned to the left of the number and typically a "O" in the
Sign-Bit position indicates a positive number, and a "l" indicates a
negative number.

Example:

SIGNED-MAGNITUDE NOTATION

Sign-
Bit

' '"t'
~ l ~ l ,., indicates +1012 or +58

1 l :a l J indicates -1012 or -58

3 4

* Ones-Complement

ONES-COMPLEMENT notation also uses a Sign-Bit on the left of the number
to denote sign. A positive number represented in SIGN-MAGNITUDE or
ONES-COMPLEMENT is exactly the same in appearance. Negative numbers,
however, are represented differently in that the Sign-Bit not only
changes, but the quantity is complemented, as well.

Example:

ONES-COMPL&.~ENT NOTATION
Sign-
Bit

' Y"
;a 1 ;a 1 ;... indicates +1012 or +58

1 ;a 1 ~ ~ indicates -101
2

or -5 8

The major drawback of both SIGN-~.AGNITUDE and ONES~COMFLEMENT notation
systems is thac there are two possible forms in which to represent the
value ZERO (0).

3 5

* Twos-Complement

Positive values represented in TWOS-COMPLEMENT format appear the same
as in the SIGN MAGNITUDE and ONES-COMPLEMENT formats. The SIGN-BIT is
also to the left. However, for negative values, the number is
complemented as in ONES-COMPLEMENT, and then a BINARY ONE is added.

Example:

~ 1

1)3

23 22

l ~

d~ dl.

TWOS-COMPLEMENT NOTATION

~

1
+

2i

l

d2

1

)3

l

21)

l

d3

---~-... indicates +1012 o:r +5 8

ONES-COMPLEMENT
plus "onen

--->- indicates -1012 o:r -58

Integers represented in TWOS-COMPLEMENT notation may be expressed by
the f.oUowing equati.on:

N-1 N-1
'N= [c -d,a * 2 > + c r

i=l

3 6

N-{i+l)
d. .. 2

l,

)]

where: TV = TRUE VALUE
d(O) = digit in 0th

position
(SIGN BIT)

d(i) = digit in ith
position

N = number of bits
in the data word

Given below is a range of values for a 4-bit data word expressed in
TWOS-COMPLEMENT notation.

.Digit
Weight

Bit
Position

Sign

l-2 .3 I 2 2 I 2 1 I 2 °
0 l 2 3

0 l l 1
0 1 l 0
0 l 0 l

True
Value

(octal)

+7
+6
+S

0 l 0 0 Positive Numbers +4
0 0 l
0 0 1

Range of 0 0 0

l
0
l

+3
+2
+l

all possible 0 0 0 0 Zero · 0
numbers 1 l 1 l• -1

l , l l 0 -2
l l 0 l -3
1 l 0 , 0 Negative numbers -4
l 0 l l -s
1 0 1 0 -6
1 0 0 1 -7
l 0 0 0 -10

N = number of bits in the data word

TWOS-COMPLEMENT notation has several advantages over SIGNED-MAGNITUDE
and ONES-COMPLEMENT notation, in that:

*The ·problem of two possible forms of zero disappears;
only one form of zero is possible, and

* TWOS-COMPLEMENT numbers may be added and subtracted
without concern for the sign of each number if sign­
extended by one bit. The result obtained from either
operation will be correctly represented in TWOS­
COMPLEMENT form.

Note also that the maxi.mum-negative number possible in TWOS-COMPLEMENT
is 0 1" greater (in magnitude) than the maximum-positive number.

3 7

*Excess (Bias) Notation

Another nota.tion system capable of differentiating negative from
positive quantities is the EXCESS or BIAS system. This method simply
establishes a mid-point in the range of all possible numbers that can
be represented in a given length data word. The mid-point is giyen a
null or zero value and all numbers exceeding the null point are
increasingly positive, and all numbers below. the null point are
increasingly negative.

BIAS NOTATION
Bias-
Bit

...
l l yJ l ,.., . indicates +1012 or +58

~ ~ l. l ,.._ indicates -1012 or -s8

Integers represented in BIAS notation may be. expressed by the following
equation:

N-l
T'l .. [(t

i+)J

N-(i+l) N-l
d. * 2) - (2)]

l.

3 8

where: TV = TRUE VALUE
d(i) = Digit in ith

position
N = Number of bits

in the
data word

,ft·.,,

Given below is the range of values for a 4-bit data word expressed in
BIAS no_tation:

BIAS-
BIT

Diqit ~-.... 23 22 21 2~ Weiqht I

• ~ l 2 3
Bit
Position

0

Bias
True

Bit
Value

~
(Octal)

l l l 1 +7
":>

l. l l ¢ +6

l 1 ~ l +5

1 1 ~ ~ Positive Numbers +4

1 ¢ l l +3

l ~ l ~ +2

Range l ¢ 9' l +l
of alJ..
possible 1 f6 ¢ 11 ~d Point (zero) 0
nmnbe.rs

9' 1 1 l -1

[6 1 l ~ -2

f6 l [6 l -3

f6 l f6 9' Negative Numbers -4

f6 [6 1 l -s

f6 [6 J. 9' -6
~ ..

f6 f6 [6 l -7

f6 [6 [6 11 -10

3 - 9

Three things become: apparent:

1) The BIAS-BIT occupies bit pou.tion O. When BIAS • 11 1",
it indicates that a positive quantity resides in the
remaining bits of the data word. When the BIAS = "O",
it indicates that a negative quantity resides in the
remaining bits •.

2) The APPARENT VALUE exceeds the TlUJE. VALUE. by the weight
of the. BIAS BI'!. In other words:

TROE VALUE = APPA.ttNT VALUE -2 N-l
Where: N = the number of bits in the: Data Word

3) The m.ax.imuui.-negative. number possible is 11 1" greater in
magnitude. than the maximum-positive number possible.

The AP-120B uses a mixed system of TWOS-<:OMPL.E..\fENT notation and BIAS
notation for the AP-120B F!.OA?I?lG POINT NUMBER FORMAT.

3 10

3.3 NUMBER FORMATS

3.3.1 Fixed-Point Numbers

FIXED-POINT formatted numbers are numbers which have a stationary or
fixed BINARY-POINT. FIXED-POINT formatted numbers are termed according
to the location at which the BINARY-POINT is fixed. In other words, if
a given number has a BINARY-POINT fixed to the extreme right of the
data word, the number is said to be in the fixed-point INTEGER format,
since all non-zero values that the format can represent are integers
with magnitude ~ 1. Conversely, if the BINARY-POINT is fixed to the
extreme left of the data-word, the number is said to be in the
fixed-point FRACTION format since all values that can be represented
are fractions 1o1ith magnitude ~ 1. If the BINARY-POINT is fixed at some
point between the two extremes, the number is said to be in fixed-point
MIXED-NUMBER format.

Examples, assume a 4-bit data-word

FIXED-POilq INTEGER

Magnitude of integers > 0

BIN.All
POINT • -l 2

FIXED-POINT FRACTION

-2
2

-3 2

Fractions < 1

3 11

-4 2

BINARY
POINT

I ,,

FIXED-POINT MIXED-NUMBER

BINARY

integers
> 0

POINT • -1
2

fractions
< l

-2 2

Since FIXED-POINT INTEGER formats and FIXED-POINT FRACTION formats are
elements of the AP-120B FLOATING-POINT format, both are discussed in

more detail, below:

FIXED-POINT INTEGERS

Unsigned FIXED-POINT INTEGERS may be expressed in the
equation:

N-l
{!
i=~

N-{i+l)
d. * 2)

J_

following

However, in order to represent a signed FIXED-POINT INTEGER, a notation
system must be used. Given below is the equation for a FIXED-POINT
INTEGER expressed in BIAS notation.

TV=

BIASED FIXED-POINT INTEGER

N-l
[o: d.

l.
i:=)a'

N-(i+l) N-l
* 2) - (2)]

The utility of expressing a BIASED FIXED-POINT INTEGER wil 1 become
apparent as AP-120B FLOATING-POINT NUMBERS are discussed, later in this
summary.

FIXED-POINT FRACTIONS

Unsigned FIXED-POINT FRACTIONS may be expressed by the following
equation:

-(i+l} N-l
TV = O:

i=~
d. * 2 }

J_

3 12

However, in order to represent a signed FIXED-POINT FRACTION, we must
express the fraction using a notation system. Given below, is the
equation for a FIXED-POINT FRACTION expressed in TWOS-COMPLEMENT
notation:

TWOS-COMPLEMENT FIXED-POINT FRACTION
N-l. -i

TV- [(-dlll *' ~) + (! d. * 2)]
,, i=l. l.

Again, the utility of expressing a TWOS-COMPLEMENT FIXED-POINT FRACTION
will be seen when the AP-120B FLOATING-POINT format is introduced later
in this summary.

3.3.2 Floating-Point Numbers

FLOATING-POINT NUMBERS are a product of two FIXED-POINT NUMBERS - the
BASE raised to a SIGNED-EXPONENT (expressed is a FIXED-POINT INTEGER)
times a SIGNED-FRACTION (MANTISSA) expressed as a FIXED-POINT FRACTION.
A general expression for FLOATING-POINT NUMBERS is given below:

---FLOATING-POINT NUMBER = BASE exponent * MANTISSA
Where BASE = BASE of a given number system

EXPONENT =
MANTISSA =

(in many digital computers,
BASE = 2)
Signed FIXED-POINT INTEGER
Signed FIXED-POINT FRACTION

A FLOATING•POINT NUMBER is so-called because the BINARY-POINT is not
fixed but is allowed to float, thereby increasing the .range of. numbers
that may be represented in a fixed-length data word. Due to its
logarithmic nature, a FLOATING-POINT NUMBER is able to represent
numbers ranging from very small positive or negative fractions to very
large· positive or negative integers. A typical format for a
FLOATING-POINT NUMBER is given on the following page.

3 13

EXPONENT
SIGN

1

TYPICAL FLOATING POINT NUMBER FORMAT

EXPONENT
BINARY­

POIN'r

~· .

MANTISSA
SIGN

MANTISSA
BINARY­
POINT.

••
~-----=---*-----+ __ ______,J MANTISSA

FLOATING-POINT NUMBERS possess unique manipulative characteristics in
that a given number can be represented by various combinations of
EXPONENT and MANTISSA values. The value of any given FLOATING-POINT
NUMBER is preserved while changing the individual values of its
component parts - as long as the EXPONENT is:

* Correspondingly incremented by the same number that the
MANTISSA is right-shifted or,

* Correspondingly decremented by the same number that the
MANTISSA is left-shi~ted

within the constraints imposed by a fixed-length data word.

Example:
The value (+.5) may be

But, (+.5) can just as

or

represented in FLOATING-POINT
((2 0) * (+.5)]
wel1 be represented as:
[(2) * (+.25)]

((2"2) * (+.125)]

format as:

The difference is that only the first representation is NOR..'1AI..IZED.

3.3.3 Normalization

NORMALIZATION of a TWOS-COMPLEMENT MANTISSA FPN is the process whereby
the bits of the MANTISSA are left-shifted or right-shifted and the
EXPONENT correspondingly decremented or incremented until the
second""'!llost significant bit of the MANTISSA is not equal to the

3 14

MANTISSA-SIGN (the most significant bit of the MANTISSA). A
FLOATING-POINT NUMBER is said to be NORMALIZED only when the SIGN of
the MANTISSA and the second-most significant bit of the MANTISSA are
unequal. The ·major exception to this rule is a mantissa of zero which
cannot be normalized. The above normalization rule guarantees that
positive non-zero mantissas lie in the range O.S to 0.9999 (0.10000000
to 0.1111111111 in binary) and negative mantissas in the range -1.0 to
-0.4999 (l.00000000 to 1.011111111111). Typically the unnormalized
mantissa -0.5 (1.10000000) ·is allowed since it can be handled by the
hardware.

Example:

EXPONENT

Digit ?osition

NOEMALIZED

UNNORMALIZED

Mantissa
Sign

Second-Most
Significant

Bit

••
l

~

)1

l.

MANTISSA

"I

The major importance is that NORMALIZATION preserves the maximum number
of significant bits in the MANTISSA while protecting against problems
arising from OVERFLOW out of the. bits of significance (the
NORMALIZATION process CAN involve a right shift).

3 15

3.~ AP-120B F'LOAT!NG•POIN'! FORMAT (FPN)

The AP-120B uses a 38-bit data word to express . FLOATING-POINT NUMBERS
internally (See Figure 3-1). The most significant 10 bits of the word
are dedicated to expressing the EXPONENT. in biased notation and the
remaining 28 bits are dedicated to expressing the MANTISSA in
!WOS-COMPLEM.ENT notation.

BIAS
SIT..
1 -v·

bits ~2 ~1.

MANTISSA
S:tGN

I ...
ll ~~ . ~i

MANTISSA
?OR'l'!ON

27

THE' AP-120B FLOATING-POINT NUMBER (FPN) may be expressed in the same
manner used earlier to express FLOATINGrPOINT NUl'.BERS generally, viz.:

* MANTISSA

In the A..P-12013 FLOA'!ING-POINT format, however, the EXPONENT SIGN is
indicated by use of a BIAS-BIT rather than a SIGN-BIT. Specifically,
the EXPONENT of the A.P-12.0B FPN is expressed as a BIASED FIXED-POINT
IN'!!GER and the MANTISSA is expressed as a TWOS-COMPLEMENT FIXED-POINT
FR.ACTION. The general equation may be re-expressed as follows:

FPN = 2 [BIASED FI:\ED-POINT INTEGER]
FR.ACTION]

* [TWOS-COMPLEMENT FIXED-POINT

Using the equations developed earlier in this summary for BUSED FIXED­
POINT INTEGERS and TWOS-COMPLEMENTED F!XED-POINT FRACTIONS, r.Je now
have:

FPN •

Where: N(e) • number of digit.s in Che EX:t>ONENT
N(m) • number of digits in the MANTISSA

-i
d. * 2)]

J.

Since, in the AP-12.0B, N(e) • 10 and N(M) • 28, the FPN may finally be
the AP-l20B, the A2 ex-pressed as follows (the exponent sum has been
cot·rected for the fact chat the digits stal:t at number 2)

3 16

Expressed in this manner, it can be seen that the effect of the BIAS
scheme (with respect to the EXPONENT) is to shift the TRUE VALUE of the
EXPONENT by a factor of (-512), the weighted value of the BIAS-BIT
(2 9). Accordingly, the TRUE VALUE of the AP-120B FPN EXPONENT can be
expressed in the following manner:

TRUE
VALUE

(EXPONENT)
=

APPARENT
VALUE

(EXPONENT)

Note that the range of the FPN EXPONENT is:
[+511 to -512].

The range of the MANTISSA (.M) is:
. [+l> .M~ -1]

The dynamic range for the AP-120B FPN is:

{(0.5 * 2 - 512) to (l.0-2-27) * 2 511.)] or,
from 3. 7 * lo-155 to 6. 7 * 10 153

3 17

- 512

W«ic;lU:.8'Cl
VaJ,,..-

UC -
i'(laicion

Figure 3-1 A2-l20B FLOATING POINT mn·1BE:R FOR...'1.AI

l!iaa. Siqn
lie 8.1.C

I i
T' 21 : 7 25 2$ 1 .. 2 1 1 1 11 1°~1-i i 2 i 1 i'" ii :" £1 :"' i' l-l0:-! 1 1"' 2 :-lli1 ".i" 5iU£17 1.;. 1,i11 itQ1-t 1 112 213 :-i"i1~i2';i
Gl u Olo u 06 Q7 QI Q'J u 11 oj.ai Q2 Ql g .. 0$ Olli 07 Ga n 10 11 \l tl llo u u 17 II 1' %0 11 u ll : .. 1$ n 1

(SIAS

arr
I v

...

I
1'ad..\.z
P<iiAc
ot

!WfnSQ.

~'31~1 1¢91 ~~ t Zl:i I :z1

~~~a ~g~ ~~~ ~ 9J0~ ~~~ 9J0~ ~1'~ ~~~ ~~~ ~~~ ~~~ ~~~ ~.:.O{See ~te) 

· l igg ~~~ z01 ~ ig~ ~~~:a~~ z~a i~~ ~~g ~~0 9J~a :aa~ <211•c.sl 

-1 .. 0 i. :IIS:l~ ~0·g ~1''1 l. ~1'~ ~g~ :n0 :aaG Y'~Z :a~~ n~ :nz :n~ c 2 °) • c -1. o > 

.s l :aaia ~~91 ~~~· )1 lZ~ :Z~liI 91~'1 )!fg0 1n~ ;191~ ;J~HJ ~:")J :n~ <2°) • ( • .S) 

-.s i zga ~~0 ~~0 i iz~ ¢zg z~~ ~~~ ~0a ~00 ~g~ ;J~Z ~~~ c:z0 )•c-.s1 

6. 7 .. lOl.SJ l ill. lll lll '$ lll ill ill ill lll Ul lll lll lll A;!".AX 

i 111 ui i11 i ~g~ ~zz ~z~ jJg~ ~gg ggg ig~ ~a~ ~~g ;wi~..;,;( 

I ~ 1n~ ~~g JJ111J ).J I i11;s JJ~)l ,aYJ11 ;s~g ;J~'3 ~13»1 }l~~ 11~13 1:J31J ;.;~ 

3 18 



Although (0.0) and (-.5) examples are not in NORMALIZED form, both 
FADDR and FMULR can handle these two specific cases correctly. 

NOTE 

Although the APPARENT VALUE of ZERO EXPONENT = 0, 
the TRUE VALUE of ZERO EXPONENT = -512. (Which 
multiplied with a MANTISSA of .0, still equals 
0.0). 

3 19 



3.5 AP-l20B FLOATING-POINT ARITHMETIC OPERATIONS (OVERVIEW) 

The AP-120B is capable of sim~ltaneous FLOATING-POINT ADDER (FADDR) and 
FLOATING-POINT MULTIPLIER (FMULR) operation. This section will present 
a general overview of the arithmetic operations of both units and 
discuss operations common to both such as requirements for 
NOR..'1ALIZATION and CONVERGENT-ROUNDING/TRUNCATION. 

First, a brief review of the manipulative characteristics of FPN's is 
in order. As stated in the preceding section, the same-value FPN may 
be expressed in various combinations of EXPONENT and MANTISSA values. 
The key requirement for maintaining the value of any given FPN is that 
the EXPONENT must be correspondingly incremented or decremented by the 
same number that the. MANTISSA is right-shifted. or left-shifted, 
respectively. Example: 

The nutllber (+.5) may be represented, in NOR..'1ALIZED form, by the 
following combination of EXPONENT and MANTISSA values -

BASE -----.yVEX:PONF:NT TROE VALUE (APPARENT VALUE = 512) 

(20) * (+.5) 1'f-- M."WTISSA TROE VALUE 
0.1000 

However, the same number may be expressed, in UNNOR..\f.ALIZED form, by the 
following combinations of EXPONENT and MANTISSA - - -

(21) * (. 25) 
0.01000 

or 
(22) * (+.125) 

0.001000 

Note that as the EXPONENT value, in each case, was incremented by 1, 
the corresponding MANTISSA value was decremented by means of halving 

right-shifting the MANTISSA bits 1 position. Had the example 
decremented the sample EXPONENTS by some number "N", then the 
corresponding MANTISSA's, in each case, would have been incremented by 
means of left-shifting the MANTISSA bits "N" positions. 

3 20 



3.5.1 Floating-Point Addition, Subtraction and Multiplication 

* Addition 

In order to ADD two FPN's, the MANTISSA's of both operands must be 
expressed in terms of the same EXPONENT. This requirement is met, in 
the AP-120B, by means of a comparison operation which compares the 
EXPONENTS of the two operands - retaining the larger EXPONENT as the 
EXPONENT of the result and right-shifting the MANTISSA of the smaller 
operand the number of positions that reflect the difference between the 
two EXPONENTS. For example, assume the following ADD operation: 

4 + 8 = 12 

In FLOATING POINT format, the operands may be expressed as follows: 
[(23 ) * (.5)] + [(24 ) * (.5)] = ( ] 

0.10000. 0.10000 

First, the EXPONENTS are compared. The larger EXPONENT becomes the 
EXPONENT of the result while the MANTISSA of the smaller operand is 
right-shifted the number of positions that reflect the difference in 
the two EXPONENTS: 

[ ( 2 . 4 ) * ( . 25 ) ] + [ ( 2 4 . ) * (. 5 ) ] - [ ( 2 4 ) * ( ) ] 
0.010000 0.100 

Then, the MANTISSA's are algebraically added: 
[ ( 2 ,4 ' ) * (. 25)] + [ ( 2 4 ) * (. 5)] = [ ( 2 4 ) * (. 7 5)] 

0.110000 

Note that the MANTISSA of the result is already NORMALIZED. Had it 
been UNNORMALIZED, then the FADDR logic would have left-shifted the 
MANTISSA and correspondingly decremented or incremented the EXPONENT 
until the second-most significant bit of the MANTISSA was unequal to 
the most- significant bit (MANTISSA sign). 

* Subtraction 

SUBTRACTION of two FPN's is achieved by negating the 
adding the negated subtrahend to the minuend. Negation 
two's complementing the subtrahend. See example below: 

MINUEND 
SUBTRAHEND 
NEGATE SUBTRAHEND 

RESULT 

0100 
0011 
1101 

0001 

3 21 

+4 
+3 
-3. 

+l 

subtrahend and 
is achieved by 

1100 -4 
1101 -3 
0011 +3 

1111 -1 



Mantissa Overflow 

In MANTISSA OVERFLOW situations (when a digit of numerical significance 
has carried to the left of the radix point), the proper result is 
achieved by shifting the MANTISSA to the right one digit and 
incrementing the EXPONENT. 

OVERE'LOW 
SIGN 

EXPONENT I jljl I 9Jl yJ2 27 

TRUE SIGN~.)1' l !J ~ ~9Jf0 .0f0f0 .0f09J fOfOfO 9'9Jf0 .09J9J 

OVERFLCWt 
DIGIT 

CORRECTED 

I .09J I JJl I !J2 27 
I 

OVE.BFLOW 11 l fO .09J9J iroro XJyJyJ ~yJyJ .09J9J ,09J9J . 
DIGIT 
SHIFT.ED 
RIGHT 

ANO 

EXPONENT + 1 

* Multiplication 

MULTIPLYING two FPN's with different EXPONENTS requires that (1) the 
EXPONENTS be algebraically added, and (2) the MANTISSA's be multiplied. 
Except for two specific cases, the operands involved in FLOATING-POINT 
MULTIPLICATION l!lUst be NORMALIZED in order to obtain a correct result. 
As with the addition example above, detailed discussion of result 
NORMALIZATION and ROUNDING operations is reserved for later sections of 
this summary. 

OlAssume the following multiplication operation: 

( 12) * ( . 25) = 3 

In AI'-120B FLOATING=POINT format, the operands would be expressed as: 
((2 4 ) * (.75) * [(2 ... 1 ) * (.5) ,.. [ ] 

3 22 



First, the EXPONENTS are algebraically added. Tile sum of the EXPONENTS 
becomes the EXPONENT of the preliminary result. 

[(2 4) * (.75)] * [(2 -1·) * (.S] = [(2 3.) *· ( )] 

Then, the MANTISSA's are multiplied. The product of the MANTISSA's 
becomes the MANTISSA of the preliminary result. 

[(2 4 ) * (.75)] * [(2 - 1 ) * (.5)] ::a [(2 3 ) * (.375)] 
0.11000 0.1000 .01100000 

Preliminary 
Result 

Note, however, that the PRELIMINARY-RESULT is not NORMALIZED. 
Accordingly, the FMULR logic will left-shift the MANTISSA bits and 
correspondingly decrement the EXPONENT until the second-most 
significant bit of the MANTISSA is not equal to the MANTISSA-SIGN. To 
illustrate this operation, let us portray the PRELIMINARY RESULT, of 
the example, in its bit configuration: 

1p~1 
,. 

BIAS 
MANTISSA 

r:-1=~BIT 
SECOND-MOST 

[ c23) * (.375) ] = 

BIT 

iExroN= 
r ..... \ 
1000000011 ~.011oooooooo~ooooooooooooood 

The FMULR logic will left-shift the MANTISSA bits and correspondingly 
decrement the EXPONENT until the second-most significant bit of the 
MANTISSA is not equal to the MANTISSA-SIGN. (In this example, the 
MANTISSA is left-shifted one position and the EXPONENT is decremented 
by one). 

SECOND-MOST 
SIGNIFICANT BIT 

BIAS 
BIT 

MANTISSA 

i~= 
r ~ . \ 

Sir 
MANTJ:SSA 

lOOOOOOOlO 0.110000000000000000000000000 

3 23 



Unlike the Floating Add Logic, the FMULR logic can only shift the 
MANTISSA one position left or right since it can be shown for 
normalized twos- complement mantissas that the worst case normalization 
required is only one position. 

The AP-120B FMULR is capable of operating on the following UNNORMALIZED 
operands: 

( l) ZEF.0 == 

and, 

EXPONENT 

~oooo~oood 

M..~TISSA 

0000000000000000000000000000 

(2) Any number with a MANTISSA of (-.5), such as: 

EXPONENT 

( ... ' \ 
any numoer 1100000000000000000000000000 

Note that ZERO has an exponent with a TRUE-VALUE of -512. 

3 24 



3.5.2 Rounding 

During a FLOATING-POINT MULTIPLY (FMUL) or most of the FADD group 
operations (See FADDR Summary, Chapter 4 ), the preliminary-result 
obtained is NORMALIZED and then CONVERGENTLY-ROUNDED. NORMALIZATION 
operations have been discussed earlier in this summary. The purpose of 
this section is to present the particular ROUNDING method employed by 
the AP-120B - - - CONVERGENT-ROUNDING. 

CONVERGENT-ROUNDING is so-called because the frequency distribution 
curve for the rounding-decision matrix is slightly skewed toward zero 
(See Table 3-1). 

Both FADDR and FMULR units employ a 3-bit extension of the 
PRELIMINARY-RESULT MANTISSA in order to store bits of significance 
generated off the least significant bit of the MANTISSA during a given 
operation. These bits called GUARD-BITS reside to the 
immediate right of MANTISSA bit 27 and have bit weights of 2-28 
2 -29 , and 2-30 , respectively. 

Prior t.o NORMALIZATION bits 31 to 58 of the FADDR Result (bits 31 to 50 
of the FMULR Result) are inclusively OR'ed into bit 30 of the residue. 
This has the effect of guaranteeing that the rounding occurs only when 
the magnitude of the residue is strictly greater than 2 -28 (= one 
half of the LSB) • 

.. 

3 25 



Table 3-J: 
The AP-l20B ROUNDING-DECISION TABLE 

GUARD 
MANTISSA BITS: contain RESIDUE 

Bit 1J -l -26 -21 -28 -29 -30 MORE Weight ---... -2 .2 2 2 2 2 2 
I . I J s I I I POSITIVE 

Digit ~ 13 l 26 27 28 29 30 ... 
Position I 

Add -27 
2 to MANTISSA 

if: MANTISSA SIGN==S:l l 1 1 

} 
and throw away guard 

(MANTISSA is l l 13 bits increasing it to 
positive), and the next~larger mag-
the residue is: l 13 l nitude positive number. 

l 13 13 Throw away guard bits 

13 1 l decreasing to the 

13 l 13 
next-smaller magnitude 
positive number. 

1' 13 l 

I 1' 1' 1' ... 
T0'"1A.RDS 

ZERO .... 
I 

i~· MANTISSA SIGN=l l 1 l -27 
~.ANTISSA 

..... 
Add 2 to 

(MANTISSA is 
l 1 1' effectively decreasi.~g 

neqative), and to the next-smaller 
the residue is: 1 1' 1 magnitude positive 

1 1' 13 nu.mber. 

1' 1 l Add zex:o effectively 

13 l 1' rounding to the next-
larger magnitude 

1' 1' l negative number. 

~ 13 13 

T 
MORE N(;GATIVE 

3 26 



The value contained in the GUARD BITS is called the RESIDUE. The 
magnitude of the RESIDUE and the sign of the PRELIMINARY-RESULT 
MANTISSA jointly determine the direction in which the PRELIMINARY­
RESULT will be rounded (either toward the next-larger-magnitude number 
or toward zero). 

If the rounding operation causes mantissa overflow, the AP-120B 
hardware takes care of it by shifting the mantis.Sa to the right one 
digit and incrementing the exponent. 

Note that the TRUE VALUE of the RESIDUE may be expressed as: 

TV RESIDUE .., __ 

Where: d(O) = Digit in O(th) position 
(MANTISA-SIGN) 

D(i) =GUARD-BIT in i(th) 
position 

The ROUNDING-DECISION is based on the following relation: 

30 
+ o: 

i=28 

Where d(27) = Least significant bit 
of the preliminary­
result MANTISSA 

Note that if the relation is true and 11 = magnitude, the PRELIMINARY 
RESULT MANTISSA will be rounded to the next-larger magnitude number. 

The floating adder has two operations which truncate--FSCLT and FIXT. 
When a preliminary result is positive, the FA truncates by ignoring the 
residue--throwing it away. If the Preliminary result is negative and 
there is any residue, 2(-27) is added to the mantissa; this makes the 
result closer to the next smaller magnitude number. Truncation always 
goes towards zero (See Table 3-2). 

3 27 



Table 3-2 
The AP-120B TRUNCATION-DECISION TABLE 

GUARD 
MANTISSA BITS: contain Residue 

Bit 
... -29J -l. -26 -27 -28 -29 -30 Weight .2 2 2 2 2 2 

I I 5 5 I 
Digit .. 9J l 26 27 28 29 30 
Position 

if: MANTISSA SIGN=~ l. l l 
(MANTISSA is 

l l 9J positive}, and 
Threw away guard bits the residue is: l 9J 1 
decreasing to the next-

1 9J 9J smaller magnitude positive 

XJ l 1 number. 

XJ 1 9J 

9J 9J l 

9J 9J 9J • 
TCWAROS 

ZERO .... 
if: MANTISSA SIGN=l l l l 

(MANTISSA is 
l 1 9J negative), and 

the residue is: l 9J l 
Add 2-27 

l fJ 9J 
to MAi.'iTISSA 

effectively decreasing 
9J l l to the next-smaller 

9J l 9J 
magnitude negative number. 

9J 9J 1 

9J 9J 9J 

3 28 



3.5.3 Overflow And Underflow 

The current result of a FADDR or FMULR operation (FA, FM) is tested as 
to OVERFLOW (See Note 1) and UNDERFLOW (See Note 2) conditions. If an 
OVERFLOW condition occurs, the AP-120B hardware will force the maximum 
signed Floating- Point number possible (APMAX or APNMAX) onto FA or FM 
and the OVF bit of the APSTATUS register will be set to "l". 
Similarly, if an UNDERFLOW condition occurs, the AP-120B hardware will 
force a Floating Point 0.0 (ZERO) onto FA or FM and set the UNF bit of 
APSTATUS REGISTER to "l". 

AP MAX 

AP NMAX 

ZERO 

EXPONENT MANTISSA 

r~~~~...-.~~~,SI~rr---------------~ ..... ..._~----~--~~----.,, I r19 09 ¢¢ I ~l 27 

1 111 111 111 ~ 111 111 111 111 111 111 111 111 111 

l. 111 111 111 1 ~~¢ ~¢~ ~¢¢ ~¢~ ~0¢ ~¢~ ~~~ ¢~~ ~~¢ 

~ ~~¢ ~~¢ ~~~ ~. ~~¢ ~~0 ~¢~ ~¢~ ¢~~ ~¢~ ~0~ ~~~ ~~~ 

NOTES 

1. Overflow. The EXPONENT of the current FADDR 
or FMULR Result exceeds an APPARENT VALUE 
of 1023. (TRUE VALUE = 511). If the sign 
of the MANTISSA of the offending result is 
positive, the AP-120B hardware forces the 
maximum-positive FLOATING-POINT NUMBER 
(APMAX) into FA or FM, depending on which 
operation caused the error condition. If 
the MANTISSA of the offending result is 
negative, the maximum-negative FLOATING­
POINT NUMBER (APNMAX) is forced onto FA 
or FM. 

2. Underflow. When a current FADDR or FMULR 
operation produces an EXPONENT Result 
less than an APPARENT VALUE of 0 (TRUE 
VALUE = -512). The AP-120B hardware will 
force a.FLOATING-POINT 0.0 (ZERO) into 
FA or FM, depending on which operation 
caused the error condition. 

Note 
of O. 

that FLOATING-POINT ZERO has an EXPO NENT with an apparent value 
(TRUE VALUE • -512) and a MANTISSA with a TRUE VALUE of O. 

3 29 





CHAPTER.4 

DETAIL.ED DESCRIPTION OF THE FUNCTIONAL UNITS 

4.1 S-PAD SUMMARY 

4.1.1 General Description 

The SCRATCH PAD (S-PAD) illustrated in Figure 4-1 is generally 
analogous to the arithmetic/logical and control units of most 
mini-computers. Operations with the S-PAD group of the AP-120 
instructio·n set are primarily used to perform integer addressing and 
loop counting operations. 

S-PAD is a 16-bit wide arithmetic/logical unit which contains sixteen 
16-bit directly addressable registers (SP(0-15)). Operands for S-PAD 
operations are termed S-PAD SOURCE REGISTER (SP(SPS)) and S-PAD 
DESTINATION REGISTER (SP(SPD)). Uie particular S-PAD registers 
selected as operands for a given operation are determined by the values 
in the SPS and SPD fields of the current instruction word. 

The result of a given S-PAD operation, termed the S-PAD FUNCTION 
(SPFN), becomes available for use during the current instruction cycle 
and may be applied to the following elements: 

* MAIN DATA ME.'10RY ADDRESS REGISTER (MA) 
* TABLE MEMORY ADDRESS REGISTER (TM.A) 
* DATA PAD ADDRESS REGISTER (DPA) 
* FLOATING ADDER (FADDR) Al Input Register 
* DEVICE ADDRESS REGISTER (DA), and/ or 
* on.to the DATA PAD BUS (DB) 

Three condition bits of the APSTA!US Register are set or cleared 
depending on the state of the particular SPFN result. These bits (C, 
N, Z) may be tested (one cycle after the appropriate SPFN becomes 
enabled) by appropriate operations within the BRANCH group and/or SPEC 
group (STEST field), of the AP-120B instruction Set. These bits remain 
latched if no S-PAD arithmetic operation is specified. 

4 l 



The 5 .. pA.D int:eg•r il.IJ functions include: 

Function Zffeci: 

a •.. Move, S.P. D S-Sourc~ register 
b. Logical comp letD.ent: s~ n D-Descinacion register 
c:·. Clear o~ 
d •. tn.crement S+l..,.. D 
e. Decrelllenc S-l~ D 
f. A.dci D+S_,. 0 
g. Subt::aet: 0-S.,.D 
h.. Logical A.NP D Ai.'ID S.,._ D 
i. L.ogic:al oa D oa s,.. o 
j. Logical Equivalence D E:QV s~ o 

2 



l \k'_ Jl 
4:l 
Mt1% 

,IL \!L 
~ !'!. ,,. 

SIIAO 

_C W/R. 
~....sn:.."lS 

w 

I 
--,, 

!1 __s_ 

I 
l I Q? BIT 'E'IER5' 

1 ' ~ 
15 2.: l 

J !!l!:t 

1 "1 

s:li'M 

_:,, 
~ 3 

I -" AI.tr / 

..::. j ,,. 

\/ 

r 

,.... .. J ... 15. 

Figure 4-1 S-PAD Block Diagram 

4 3 



4.1.2 S-Pad Operations 

The S-PAD may perform either single-operand or double-operand 
arithmetic/logical operations. The operation's available within the SOP 
field are double-operand while the operations available within the SOPl 
field are single-operand. 

4.1. l. l Single-Operand Operat·ions 

S-PAO single-operand operations use the currently specified SP(SPD) as 
the sole operand. (See SOPl) 

SINGLE-OPERAND INSTRUCTIONS AND ALLOWABLE S-PAD MODIFIERS 

L ,R 
RR BIT S-PAD REGISTER(S) 

OPERATION SHIFT REVERSE NO-LQAD un USED 

INC YES NO YES SP(SPD) 
DEC YES NO YES SP(SPD) 
COM YES NO YES SP(SPD) 
CLR YES NO YES SP(SPD) 

4.1.2.l Double-Operand Operations 

S-PAD double-operand op~rations use both currently specified SP(SPS) 
AND SP(SPD) as operands for a given operation. (See SOP) 

DOUBLE-OPERAND INSTRUCTIONS AND ALLOWABLE S-PAD MODIFIERS 

BIT (&) S-PAD REGISTER(S) 
OPERAT.!ON SHIFT REVERSE NO LOAD (i/:) USED 

MOV YES YES YES SP(SPS),SP(SPD) 
ADD YES YES YES SP ( SPS), SP ( SPD) 
SUB YES YES YES SP(SPS) ,SP(SPD) 
AND YES YES YES SP(SPS) ,SP(SPD) 
OR Y'E:S YES YES SP(SPS),SP(SPD) 
EQV YES YES YES SP(SPS),SP(SPD) 

The result of either single-operand · or double-operand operations -
SPFN-is normally stored back into the SP(SPD) unless an S-PAD NO-LOAD 
is specified. 

4 - 4 



4.1.3 S-Pad Source and Destination Registers (SP(SPS)) (SP(SPD)) 

As stated before, up to two of the 16 S-PAD Registers may be accessed 
per instruction. The particular SP(SPS) and/or SP(SPD) to be used in a 
given operation is specified by the respective SPS and SPD fields in 
the instruction word. 

SP registers may be labeled by name, using the following assembler 
pseudo-operation: 

N $EQU 0 Meaning: Assign S-PAD Register "O" the name "N°* 

All SP names must be declared in this manner before including them in 
an instruction. Additionally, it is permissible to specify more than 
one name for a given SP and it may be useful to do so when using the 
same SP to perform separate tasks in a program. 

* NOTE 

Don't confuse the designated number of the 
SP with its contents. For example: 
N $EQU 5 specifies that S-P 5 will 
be labeled as "N". But, the con ten ts 
of "N" would not necessarily be equal to 
the value of five. 

4 5 



4.1.4 S-Pad Function (SPFN) 

The result of a given S-PAD operation is termed the S-PAD FUNCTION 
(SPFN). nie SPFN is , normally loaded "back" into the currently 
design.a.tad SP(SPD) • SPFN is available during the current instruction 
cycle as an input to any of the three MEMORY ADDRESS REGISTERS: MEMORY 
ADDRESS REGISTER (MA), TABLE ME.'iORY ADDRESS REGISTER (TI1A), DATA PAD 
ADDRESS (DPA), and also may be enabled onto the DATA PAD BUS (DB), 
which may input to the !/O Device Address register (DA). 

Example: ADD 5,6; DB=SPFN 
(Result of ADD 5, 6 is placed upon DB)> 

4 6 



4.1.5 S-Pad Modifie-rs "ffo", "Sh", "&" 

Three optional modifie-rs may be used to alter the effect of an S-P.AD 
operation: 

FIELD 

"!" 

"SH" 

COND 

OPERATOR 

II&" 

"L", "R", or 11RR" 

":fF" 

ADDLffe &5 , and 6 

S-PAD MODIFI!RS 

EFFECT 

BIT REVERSE SP(SPS) before using as 
an S-PAD operand for double-operand 
operations. (See 4.1.7, BIT REVERSE) 

SHIFT .result of S-PAD operation. 
The shifted result becomes available 
as SPFN. 

OPERATOR 

L 
R 
RR 

MEANING 

Left shift once 
Right shift once 
Right shift twice 

EXAMPLE 

ADDL 
ADDR 
ADD RR 

S-P.AD NO-LOAD inhibit the normal 
"back11 storing of SPFN into the 
currently specified. SP(SPD). S-PAD 
NO-LOAD disables the remaining 
operations in the BRANCH GROUP for 
the current instruction cycle. 
(See BRANCH) 

Add a bit-reversed SP(SPS) to 
SP(SPD), shift the result left once, 
then inhibit "back loading" SP(SPD). 

NOTE 

Loading of Condition Bits (C, N, Z) is not 
inhibited by the 11#=11 • 

4 7 



4.. L 6 S-Pad Associated Test and Branch Operations 

Three Condition Bits (C, N, Z) are set or cleared in APSTATUS, 
depending on the condition of the current SPFN. These bits becoma 
valid and may be tested (and branches made accordingly), as of the next 
instruction cycle. 

z (bit 5) 
N (bit 6) 
c (bit 7) 

S-PAD-R.ELA'!ZD B!TS IN APSTATUS REGISTER 

Set to "l" one cycle after the current SPFN=O. 
Set to "l" one cycle after the current SPFN<D. 
S-PAD Carry Bit: 

*!f an S-PAD shift was specified in forming 
SPFN, then C reflects the last bit shifted 
off the SP as a result of ANY S-PAD shift 
operation. (1, R, or RR). 

*If an S-PAD shift was not specified, then C 
reflects the state of the S-PAD Carry Bit as 
set by the last S-PAD operation. 

Note that S-PAD-Rela ted A.PST.A'!US Bi ts set by the current SPFN become 
valid and ma.y be tested by a conditional branch as of the NEXT 
instruction. S-PAD, NOP and SPEC group operations DO NOT af feet the 
state of condition bits in APST.A.'!US. 

INSTRUCTION­
WORD GROUP 

BRANCH 

SPEC 

For details 
Section 4.2. 

S-PAD RELATED BRANCH OPERATIONS 

SU'B­
GROUP 

COND 

STES't 

INSTRUCTION 
MNEMONIC 

BEQ 
BNE 
BGE 
BGT 

BL'! 
BNC 
BZC 

BRANCH 
COND!'IION 

SPFN=O 
SPFN•O 
SPFN20 
SPFN>O 

SPFN<O 
S-PAD CA.R.R.Y:ol 
S-PAD CAR.RY=O 

R.E!.ATED BIT ( S ) 
IN AP STATUS 

z 
z 
N 

Z,N 

N 
c 
c 

on BRANCH TARGET ADDRESS formulation, see SPEC summary, 
Some S-PAD timing examples are listed in Table 4-1. 

4 8 



INSTRUCTION 

1. -
2. DEC 2 
3. DEC 2 
4. DEC 2 
5. NOP 
6. NOP 

1. -
2. SUB 2,3 
3. NOP 
4. NOP 

1. -
2. SUB4J: 2, 3 
3. NOP 
4. NOP 

1. -
2. LDSPI 2; 

DB=-1 
3. NOP 
4. NOP 

Table 4-1 S-PAD TIMING EXAMPLES 

SP(2) 

3 
3 
2 
1 
0 
0 

5 
5 
5 
5 

5 
5 
5 
5 

3 

3 
-1 
-1 

SP(3) 

7 
T 
2 
2 

7 
7 
7 
7 

DB 

(12-27) 

-1 

SPFN 

2 
1 
0 
-1 
-1 

2 
-3 
-3 

2 
2 
2 

3 
-1 
-1 

AP STATUS 
BITS 

N z c 

- - -- - -
0 0 1 
0 0 1 
0 1 1 
0 1 1 

0 0 1 
0 0 1 

0 0 1 
0 0 l 

- - -
- - -
0 0 l 
0 0 1 

- means don't know or don't care 
F = Branch Condition False 
T = Branch Condition True 

4 - 9 

BRAl.'iCH 
CONDITIONS 
BLT BEQ BNC 

F F T 
F F T 
F T T 
F T T 

F F T 
F F T 

F F T 
F F T 

F F T 
F F T 



4.1.7 Bit Reverse 

4.1. 7.1 General Description 

BIT-REVERSE .is the process in which the contents of an address­
subscript for an array base-address are reflexively transformed. In 
other ;.;ords, the contents of the bits of an address-subscript undergo a 
bit-for-bit exchange about the center or reflex point of the word. 
Example: 

Assume a 3 bit word: 
.-------Canter Point (Reflex Point) 

0 l 2 

A. ..... The contents of bit 
I the contents of bit 

01, l.S unchanged. 

The word ;.;ould be transformed as follows: 

CONT!NTS 
BEFORE 

B !'!-RE VER$ ING 

000 
001 
010 
011 
100 
101 
110 
111 

CONTENTS 
AFTER 

BIT-REVERSING 

000 
ioo 
010 
110 
001 
101 
011 
111 

02 are exchanged with 
o. The center bit, bit 

If the address-subscript is an even numbered word, the contents would 
be transformed in the following manner: 

-------Reflex l?oint 

0 l 2 3 
I I I I I 

tLlt 

4 10 



4.1.7.2 Bit-Reverse General Application 

In the course of FAST FOURIER TRANSFORM operations it 
desirable to access a data array in bit-reversed order. 
point data array A: 

is sometimes 
For an eight-

NORMAL 
ORDER 

BIT-REVERSED SUBSCRIPT IN SUBSCRIPT IN 

A(O) 
A(l) 
A(2) 
A(3) 
A(4) 
A(5) 
A(6) 
A(7) 

ORDER 

A(O) 
A(4) 
A(2) 
A(6) 
A(l) 
A(5) 
A(3) 
A(7) 

NORMAL ORDER 

0 
1 
2 
3 
4 
5 
6 
7 

BIT-REVERSED ORDER 

0 
4 
2 
6 
1 
5 
3 
7 

The array is accessed in normal order by successively incrementing the 
subscript. Similarly, the array is accessed in bit-reversed order by 
incrementing the subscript. The bit-reversed value of the subscript, 
however, is then used each time to access the array in bit-reversed 
order. 

4.1.7.3 AP-120B Bit-Reverse Application 

When the S-PAD BIT-REVERSE (&) is specified for an S-PAD operation, the 
following process occurs: 

1) A 15-bit wide BIT-REVERSE (&) is performed on bits 
0-14 of the SP(SPS). Bit 15 is set. to O. 

2) The bit-reversed result is right shifted using the 
APSTATUS BIT-REVERSE FIELD (APSTATUS (Bits 13-15)) 
as the shift count. Bit 15 is agai? set to 0. 

3) The bit-reversed, shifted word is then used as the 
source-operand for the particular S-PAD operation 
specified. Note that the S-PAD operation is performed 
AFTER the bit-reverse operation. 

TO ELABORATE: 
* First-

The contents of SP(SPS) are bit-reversed in the following 
manner: The contents of bit "O" are "swapped" with the 
contents of bit "14", the contents of bit "01" are "swapped" 
with the contents of bit"l3", and so on. Bit "07" remains 
unchanged. Since the complex numbers of a data-array consist 
of a real part and an imaginary part, each address of an 

4 11 



array actually consists of two successive memory locations, 
the first containing the imaginary part. Therefore, the 
index of the real part. of the number is always "even"; 
bit 1115" of thee index (SP(SPS)) is always cleared to "O". 

Example: 

~FLEX BIT 
REMAINS UNCHANGED 

CLEARED 
TO "0" 

i, I .., 
I o.1 l I 2 I 3 I 4 I s I 6 I 7 I a I 9 I lO I lJ.. I 12 I 13 I 14 I 15 I 

* Second-
The result from the 15-bit wide BIT-REVERSE operation 
is shifted right so as to fit into the actual width of 
the word being processed. The shift. involves Bits 0-14, 
with zeros filled in on the hft· and into Bit· 15. 

The number of shifts that will be done during the 
alignment shift depends upon the value contained in 
the Bit-Reverse field (:Sits 13•15). The progratmne.r 
must place the corr1act value into the SIT-REVERSE 
field before using a BIT-REVERSE operation. 

The value that must be pre-programmed into the 
APSTATUS REG!STER BIT-REVERSE FitLD depends on the 
size of the complex data array, and is listed below 
accordingly. The Shift Count = 15-u, where n = the 
power of two. · 

4 12 



Number of 

Array Size 
Bits in the 
Subscript word 

Shift Count to be placed in Bit 
Reverse Field of APSTATUS REGISTER 

32, 768 
16,384 
8,192 
4,096 
2,048 
1,024 

512 
256 

15 
14 
13 
12 
11 
10 

9 
8 

0 
1 
2 
3 
4 
5 
6 
7 

Example: To bit-reverse an 8-bit address word 

1) Desired bit-reverse: 

7 14 Normal 

8 

2) As accomplished by the bit-reverse operator (&) with 
the Bit-Reversed Shift count set to 7: 

4 13 

15 

0 

.i 
15 

0 

i 
15 



* Third-
The bit-reversed, shifted SP( SPS) is now ready to be used as 
the source operand in an S-PAD operation. Most commonly, 
:SIT.-REVERSE is used in the following manner: 

ADD# &subs, base;SETMA This operation bit-reverses an 
array subscript and adds it to 
the base-address of an array. 
This sum is used to initiate 
a me111ory fetch. The NO-LOAD(fF) 
is stipulated so as to prevent 
the base-address (contained in 
SP(SPD)) from being over,.;ritten 
by the SPFN produced from the 
ADD operation. 

BIT-REVERSE (&) clears bit 15 of a subscript-,.;ord, and hence is 
intended to be used to access complex arrays. A subscript: to be 
bit-reversed must always be even, and point to the real part of a 
complex pair. The bit-reverse shift count must agree with the word 
width of the subscript, which iq turn must agree with the size of the 
complex array being accessed. That is, an eight-bit subscript, which 
will address an array oft 2(8)=256 complex pairs, needs a shift count of 
15-8=7. 

Since the shift count is licited to a maximum of seven. places, 256 
points is the smallest complex arTay that can be directly accessed 
using the BIT-REVERS; operator. 

There is a technique, however, that permits use of the BIT- REVERSE 
opera.tor for a:r-rays smaller than 25 6 comp lex points. This technique is 
based on the fact that a right shift after bit:.-reversal is equivalent 
to a left shift befo-re bit-?'eversal. Thus, if the index for a sn;tall 
ar?'ay is. placed in the left byte of the 16-bits of an S-PAD Register (a 
left shift by seven places) and if the increment for that index is 
correspondingly lef-t: shifted so that necessary index alteration 
operations will take place consistently, then the BIT-a.EVER.SE shifter 
can be used wir:h a shift: count of 8-n where n=the power of two. 

0 l 2 3 4 s 6 7 

------- index------9 

a 

BIT-al:!VERSE operator for :;mall arrays 

(N < 2SG n < 8) 

4 14 

8 
a 

9 10 ll 12 13 14 15 
a o 0 0 a 0 a 

15 
0 

Bit-Reversed Result 



4.1.8 General Programming Rules (S-Pad Group) 

* Only one S-PAD operation may be specified per inst-ruction cycle. 

* If a single-operand instruction is specified, then SP(SPD) is 
the only operand used. The BIT-REVERSE field is disabled. 

* If a double-operand instruction is specified, then both SP(SPS) 
and SP(SPD) are used. SP(SPS) may be ''bit-reversed" before use. 

* SUBtract wilt subtract the first argument (SP(SPS)) specified 
from the last argument specified (SP(SPD)). Example: 

SUB 6,5 will subtract t~e contents of SP 6 
from the contents of SP S. 

* The preliminary result of an S-PAD operation may be shifted 
before becoming SPFN. The contents of SPFN are stored back 
into the currently designated SP(SPD) unless an 
S-PAD NO-LOAD (ffe) is specified. SPFN reflects the final 
result of the current S-P.AD operation including any S-PAD 
modification operations stipulated. 

* The c·ondition of SPFN sets or clears the C, N, and Z bits 
of the APSTAIUS Register - effective as of the NEXT 
instruction cycle, according-ly: 

* Branches which test the condition of SPFN 
may be made one instruction following th.e 
appropriate S-PAD operation. 

* L.'!PORTANT NOTE: Although the contents of SP(SPD) will not be 
changed during a "NOP" instruction following an S-PAD 
operation, SPFN will change - reflecting the new contents 
of SP(SPD). 

Although the S-Pad related bits in APSTAIUS will not be 
altered by an S-PAD NOP, the programmer should exercise 
care when executing an RSPFN op-code, (See RDREG, I/O)J 
sittce the contents of SPFN may be altered from their state 
during, the last S-P.AD operation. 

4 15 



4.1.9 S-Pad C~rry Bit Conditions 

During any of the operations listed below (except OR.) the S-PAD CARRY 
BIT will be set to "l" if the corresponding equation for the current: 
operation specified is true. 

Note that when using S-PAD test: and branch ope.rations, Bit C of the 
APSTA!US R.EGISTl!:.R. will reflect the state of the S-PAD CAR.RY BIT. for the 
last preceding S-PAD operation unless a shift:: modifier was specified 
for that operation. !£ an S-PAD shift was specified, "C" r..till reflect 
the si:ate of the last. bit shifted off the end. 

S-PAD CARRY-BIT RELA!IONS 

If true; then s-PAD CARRY BIT is set to 11 1" 

Operation equations 

SUB (SP(SPD)) + (SP(SPS)) +- l .22(16) 
INC [ (SP ( SPD) ) + 1 ] 22 (16) 
DEC (SP(SPD)) + 177777 _22(16) 
COM (SP(SPD)) + 177777 >2(16) 
CLR (SP(SPD) + .(SP(SPD )) 22(16) 
ADD (SP(SPD)) + (SP(SPS)) 22(16) 
OR S-U.D CAB.B.Y B!T is set to "O" 
EQV (SP(SPD)) + (SP(SPS)) >2(16) 
AND ((SP(SPD)) AND {SP(SPS))] + (SP(SPD)) > 2(16) 

MOV ((SP(SPD)) AND (SP(S?S))] + [(SP(SPD)) OR (SP(SPS))J>2(l() 

4 - 16 



-4.1.10 Programming Example 

Load Data .Pad X with an array "A," with N elements starting at Main 
Data Memory location 372lx. "CTR" is in S-Pad register which will be 
used as a counter. 

1. 
2. 

3. 

4. LOOP: 

5. 

CLR.I CTR; SETDPA 
LDMA; DB•3721 

LDSP!. CTR; DB•N 

INCMA; DEC CTR. 

DPX<..'1D; 
INCDPA; BNE LOOP 

"Set DPA to 0 
"Fetch the first 
"element 
"Initialize "CTR" 
"to N 
"Fetch next: element, 
"Ax+l 
Store Ax into DPXx, 
"advance DPA and test 
"counter. 

Below is a chart of the above loop, for N=3 elements. 

Inst. Memory Data Pad 
.u. MA MI DPA 0 1 2 11' 

1. 0 --. 
2. 3721 0 

3. a 
4. 3722 a 
5. Ao 0 AO 
4. 3723 1 Ao 
5. Al 1 Ao Al 
4. 2 Ao Al 
5. Az l AO Al A2 

S-Pad 
11 CTR 11 Test 

3 

3 
2 true 
2 

l true 

l 

a fa1se 

A generalization on the above example is to fetch array "A" from every 
Kth memory location. 

4 - 17 



The increment is stored in S""Pad register "STEP," and the array pointer 
is stored in "Pnt:" 

1. 

2. 
3. 

4. 

LDSP! STAP; DB=K 

CLR# CTR; SE! DPA 
LDMA; DB=BASE 

LDSP! C'IR; DB=N 

S. LOOP: ADD STEP, PT'R; SETMA 
BEQ DONE 

6. DPX<..'1D; INCDPA 
DEC C'IR; BR LOOP 

4 

"Initialize 
•rns'IEP" to K 
"Set DPA to 0 
"Fetch the. first 
"element, Ax 
"Initialize "C'IR" 
"to N 
"Advance memory 
"pointer. Fetch 
"next element, 
"Ax+x. Test 
"counter and ju'!Ilp 
"out if done. 
"Store Ax into 
"DPXx, advance 
"DPA Decrement 
""CTR" and jump 
"back to LOOP. 

18 



4.2 SPECIAL OPERATIONS GROUP SUMMARY (SPEC) 

The op-codes available within the SPEC group fall within the following 
functional groups: Branch and Test Instructions, Jumps, Data Transfer 
Instructions and Program Control instructions related to PROGRAM SOURCE 
ADDRESS REGISTER (PSA) and SUBROUTINE RETURN ADDRESS STACK (SRS) 
modification. 

Discussion of the components involved in the SPECIAL OPERATIONS GROUP 
(SPEC) is presented in the following manner: 

1) Test, Branch and Jump logic related to op-codes within this group, 

including: 

* Appropriate Control bits of the APSTATUS REGISTER 

* AP-120B GENERAL FLAGS 

* Types of branches and Branch Timing Implications 

2) Data Transfer Operations, including: 

* The PROGRAM SOURCE MEMORY (PS) -- theory of operation, 
addressing, and types of formats available. 

* The VIRTUAL FRONT PANEL (PANEL) and PANEL registers 
related to SPEC GROUP transfer operations. 

3) PROGRAM ADDRESS and SUBROUTINE ADDRESS modification (JUMPS) 

* Program Jumps 

*Jumps to Subroutines (JSRS) 

4 19 



4. 2. l Branch Oper·aeions 

Branches available within theSPECI.A.L OPERATIONS GROUP (SPEC) may be 
1.lsed in tandem with other branch instructions available within the 
CONDITIONAL BRA.NCR GROUP (see BRANCH). Both groups of branches Ilse the 
DISP field (instruction W"ord Bits 27-31) t:o calculate the BR.A.NCH TAR.GET 
ADORES S. If branch op-codes a.re used from both groups in the same 
instruceion word, the branch operations are OR' ed. Exa.illple: 

BFL!. LOOP; :SEQ LOOP Meaning: (If either FA is < 0, or 
SPFN is • 0, then the program will 
branch to the locaeion indicated 
as LOOP). 

4.2.l.l Test Condit.ions 

One of t:he following functions is tested to determine the status of a 
given branch opera.tion decision. 

*Selected bits of the A.P-l20B INTERNAL STATUS REG!SttR (A.PST.~.'!US) 
*AP-l20B GENERAL FLAGS 
*DATA-PAD BUS state 

* SPEC-Related Bits in A.PSTATUS Register 

Bit Name 

FN (bit 4) 

N (bit 6) 

c (bit 7) 

IFFT 
(bit 11) 

Condition 

Set to "l" when Floating Adder Result (FA) 
is negative; reset to "O" when FA is zero 
or positive. 

Set to "l" when S•PAD FUNC'tION (SPFN) is 
negati Ve; t'eS et to non when SPFN is zero 
or positive. 

Set to ''l 0 when an S-PAD operation prodl.lces 
a car-ry either by arithmetic generation or 
as a result of an S-PAD SS!FT operation; 
reset to "O" when no S-PAD carry is produced. 

Set to "l 11 when AP-l20B is proceS$ ing in the 
tFFT ll10de. (Set or cleared ·via programmed 
instructions). 

4 20 

Related SPEC 
Op-<:ode(s) 

BFtT 

BL.! 

BNC,BZC 

BIFN,B!FZ 



* AP-120B General Flags 

There are four flags (0,1,2,3) available for general use within the 
AP-120B. These flags may be set to "l 11 or cleared to 11 011 by software 
instructions (See FLAG, I/O ). A list of the general FLAGS and their 
respective branch operations is given below: 

AP-120B GENERAL FLAGS 

AP FLAG Branch Contingency Related SPEC Op-code 

FLO Set to II l" BFLO 
FLl Set to II l" BFLl 
FL2 Set to If 1" BFL2 
FL3 Set to II l" BFL3 

Note that a minimum of one cycle must intervene between a flag 
modification instruction (e.g., SFLO) and the related test instruction. 

* Data-Pad Bus (DB) Test 

Additionally, the data enabled onto the DATA-PAD BUS (DB) may be tested 
as to state and branches made accordingly: 

STATE (DPBS) 

Negative 
Zero or Positive 

and 
Unnonnaliz ed 

WARNING 

Related SPEC Branch Op-Code 

BDBN 
BDBZ 

These branches will not work correctly following an 
instruction from the PS field (e.g., RPSF). They 
will branch as if DB=O. 

4 21 



4. 2. l. 2 Branch Target Address Formulation 

A BRA.NCR TARGET ADDRESS is f or.aied by summing the current PSA with the 
biased DISP field ili the following manner~ 

(PSA) +- (DISP - 20(octal)) PSA Meaning: The current contents 
of the PROGRAM SOURC4 ADDRESS 
R.EGIS"IER (PSA) are added to 
the contents of the biased 
5-bit DISplacement. field 
(instruction word bits 27-
32). 

The :SR.A.NCH TARGET ADDRESS thus for:tted will be the next program location 
co be executed if the cur't'ent branch condition is satisfied. 

Biased Displacement Field 

The DISP field contains a S-bit BIASED integer. BIAS is the leftmost 
bit of the field. When Bias • l, DISP contains a positive value in th.e 
remaining four bits of the field. When :SIAS = O, DISP contains a 
negative value in the remaining bits, in unsigned twos-co111pl.e!l1ent form. 
The TR.U'E-V'ALUl of DISP is always 20(octal) less t:han it:s 
APP.AB:ENT-'IAI.UE. 

The range of BRANCH TARGET Addresses using DISP is from -20(octal) to 
+17 (octal) locations relative to the cur't'ent PROGRAM SOURCE ADDRESS 
(PSA). 

4.2.1.3 Branch Timing 

All of the conditions tested t#i thin this gt:oup of branch instructions 
relate co the state of the appropriate device (e.g., DB, SPFN, FA, 
etc.) as of the previous instruction cycle. 

For exa.Ulple, a BTLT op-code tests the condition of the FLOATING A.DD£R. 
OUTPUT (FA) enabled onto the FA Bus during the preceding instruction. 
Similarly, a BLT op•code tests the state of the s-PAD FUNCTION (SPFN) 
enabled during the preceding instruction cycle. 

All the Status Bits related to branch operati~ns are latched into 
APSTATUS register one cycle after the condition that generated 
becomes enabled,. A Status Bit will re'!!lain set or cleared from 
time until one cycle after the next operatio11 produces a condition 
will change the Status Bit. 

4 22 

the 
t:hem 
that: 
that 



If the condition to be tested was set via an LDAPS instruction, then a 
one cycle delay must be observed before testing it. Note that the 
LDAPS wins out over the dynamic FA, FM or S-PAD condition in 
determining the state of APSTATUS. 

The following examples provide explicit illustrations of the timing 
relationships for the different types of branch conditions. 

Example: FLOATING ADDER RESULT (FA) TESTED 

tl FADD TM,MD 
t2 FADD DPX(-l),DPY(2) 
t3 NOP 
t4 BFLT LOOP 
t5 NOP 
t6 NOP 
t7 FADD 
t8 NOP 
t9 BFLT LOOPl 

Result 
Available 

FA(tl) 
FA(tl) 
FA( tl) 
FA(tl) 
FA(tl) 
FA(t2) 
FA(t2) 

Appropriate 
Status Bit 

FN(tl) 
FN(tl) 
FN(tl) 
FN(tl) 
FN(tl) 
FN(t2) 

Note that the result of the 
first FADD (FADD(tl)) be­
comes available as FA at 
t3. The earliest that one 
could test it then is at 
t4. Note also that FN in 
APSTATUS will continue to 
reflect the state of this 
particular FADD result 
until two cycles after the 
next FADD operation. The 
result (FA(t2)) of FADD(t2) 
becomes available at t8 and 
the earliest one could test 
it is at t9, as shown. 

The timing of the preceding' example is applicable to all FA and FM re­
lated branches (AP STATUS bi ts FN, FZ, OVF and UNF) • 

4 23 



Exam'{) le: S-PAD FUNCTlON (SPFN) TESTED 

tl ADD3 ,4-
t2 NOP 
c.3 wan:n 
t:4 NOP 
t:5 BLT LOOPl 
t6 BGZ LOOP 
t7 ADD 4,5 

Resule Appropriate 
A.vailab le Stacus Bit. 

SPFN(tl) 
*SPFN(d) 
*SPFN(tl) 
*SPFN( tl) 
*SPFN(tl) 
*SPFN( tl) 

t8 BL'I LOOP 3 
SPFN( c7) 

*SPFN( t7) 

N(tl) 
N(tl) 
N(tl) 
N(tl) 
N( tl) 
N(t:l) 
N(t:7) 

Note that the result of the 
first S-PAD OPERATION (ADD 
3,4) becomes available dur­
ing tl. The earliest one 
could test this result:, 
then, is at t2. But to ill­
ustrate the point that the 
BRANCH CONDITION BITS 

NOTE 

latch, the example, does 
not specify the appropriate 
test-branch op-code until 
t5. Note also that more 
than one branch may be made 
on the same SPFN, even at a 
different time, as long as 
the SPFN state for the 
operation inquiry is still 
latched in APSTAIUS (i.e., 
BGE ( t6). The appropriate 
APSTA'!US bit condition pro­
duced from the ADO OPERA­
tion at tl is not altered 
until one cycle aftar the 
next S-P.AD OPERATION (e.g., 
t8). Note also that war..c.xp 
is. effec:t:ively an S-PAD NO­
OP with respect to the con­
dition bits of the APST..~'!lJS 
REGISTI:R. The BL! at t:8 
tests the result of the ADD 
4, 5 instruction at t7. 

*'The value in SPFN will reflect the updated 
contents of SP(SPD) during times t2 to t6 
and t8 to t9. 

4 24 



Example: DATA PAD BUS (DB) TESTED 
Result 

Available on DB 

tl DB=MD 
t2 BDBN LOOP! 
t3 NOP 
t4 DB=DPX(2) 
t5 BDBN LOOP!; DB=DPX(2) 
t6 BDBZ LOOP2 

DB(tl) 
ZERO 
ZERO 
DB(t4) 
DB(t4) 
ZERO 

Example: APSTATUS TEST following LDAPS 

tl ADD!, 2; LDAPS; DB=value 
t2 BLT LOOP! 

t2 BEQ LOOP2 

t3 FADD 
t4 FADD 
t5 LDAPS; DB=value 
t6 BFLT LOOP3 

t7 BGE LOOP4 

NOTE 

Note that DB is not 
latched as in the above 
example and is available 
for testing for only one 
cycle fol lowing the appro-· 
priate enabling operation. 
In order to perform two 
sequential branch opera­
tions on the same DB, one 
must "hold" it by a dupli­
cate operation (e.g., the 
branch at t5 will test the 
DB (t4). But it is neces­
sary to re-enable DB at t5 
in order to perform the 
branch at t6). 

(See Note) 
"Test result of 
ADD 1, 2 at tl 
"Test result of 
LDAPS at tl 

"Test result of 
FADD at t4 
"Test result of LDAPS 
at t5 

The cycle following the LDAPS is dominated 
by the most recent dynamic conditions, e.g., 
ADD 1,2 at tl determines BRANCH status during 
t2 and FA result during t5 controls branch 
during t6. The cycle after that, the LDAPS 
dominates---thus the branches at t3 and t7· ' 
test the result of the preceding LDAPS 
instruction. 

4 25 



Example: AP-120B FLAG !!STED 

tl. CF!.O 
t:2 NOP 
t3 sno 
t:4 BF!.O LOOPl 
t:5 BF!.0 LOOP l; CF!.0 

4 26 

Note t:hat a set/clear flag 
operation is effective, 
with respect to t:esting, 
one. cycle after being 
performed. Accordingly, 
t:he BF!.0 at t4 will find 
the flag clear and will. 
not result in a program 
branch. !he SF!.0 at t3 will 
be effective as of t4 and 
the BF!.O at t:5 wilJ. pro­
duce a program branch. 



4.2.2 Data Transfer Operations 

The op-codes within the PSEVEN, PSODD, and PS fields of SPEC group deal 
with program-word transfer operations between PROGRAM SOURCE MEMORY 
(PS) and the LITES or SWITCH registers, (LITES, SWR) in the AP VIRTUAL 
FRONT PANEL (PANEL). The transfers are via the PANEL-BUS (PNLBS) and 
the DB. The PROGRAM SOURCE WORD may be transferred in QUARTER-WORD, 
HALF-WORD, or FLOATING-POINT LITERAL format. All PS read and load 
operations are two-cycle instructions. They behave like one-cycle 
instructions in that they execute on the first cycle, but they require 
a second cycle to fetch the next instruction. Therefore, they behave 
like two cycles, as far as MD timing is concerned. 

The available PS formats are presented in Figure 4-2. 

4 27 



-&:-

N 
00 

Ill l'l'DGAAH SOUllO: 1rs1 ... llll'S 

t~ ·~-·~~ '"' ·1 
r r t l'HOG11AK-sou11CEu:n·-uAU' 1rsU11 l'RDGllAtt-SOUllCElllGUT-llALf crslll•, 

f>) 

·~·6 ll 12 4· 18 l>l 
---· -----
11-2:£10 1'110GRAf1· SOUl<CUQUART£11-0llE l'llOGRAl1-SOUllCQQUAll'fEll-'JWO l'ru>GIWi-SOUllC6QUAllT£ll-TllREE 

IPS 11 {PS 1 1 (PS~ 
l'ROGllAtt-SOURC~UAllTC 

I 11·s L-

~-7 1· ___1• -~ . 7ZZT~ZZZZZ~ . l'llOGIWi-SOUllC£fWATlllG-rourr LlTEML 

47110 

(l'SfPLI 

I)), 

, 
£~1'0Ul'.ll'f UiGH-HANTISSA LOW-111\tIT ! SSA 

11J\HTISSA 

Figure 4-2 PS Formats 

ru:Lt.'VEHT 
FUllCTIOllS 

{ PS 

{ l'SUI 

r:;IUI 

{ .. ~ fSQI 

PS{/2 

PSQl 

{ l'SHL 



4.2.2.l Program Source Memory (PS) 

The Program Source Memory file (PS) s~own in Figure 4-3 contains the 64 
bit instruction words by which programs in the AP-120B are executed. 
The location of the Program Source Word to be executed is pointed to by 
the PROGRAM SOURCE ADDRESS REGISTER (PSA) and the instruction contained 
in that location is decoded, and the appropriate control-functions are 
generated, by the CONTROL BUFFER (CB). 

From: 

..__Host Data ---.i 

DP8S APSTATUS-PNLBS---~ 

S-PAO DA 
™ SllR 
OPA PS 
AA 

Virtual 
Front 
Panel 

From: PNLBS ----------.. 
DPSS 

To: PS 
cs 1-------.. S-PAO 
™ 

r----Host Oata_. 

Additional 
Control Signals 

Program Source 
Memory File 

(PS) 

I Subroutine 
Return 

:+----------fl~ A~~~~~s 

To: PNLBS 
OPSS 

I APSTArus! 

OPSS 
Test 

Instruction 
CDntrGI Signals 

Address 
Modification 

Figure 4-3 Program Source Memory tile 

4 29 

(SRS) 

From: PSA + CS 
PSA 

™ CB 

SAA 



Addressing of the PROGRAM SOURCE MEMORY is accomplished by reference to 
the 12 bit PROGRAM' SOURC'E ADDRESS REGISTER (PSA). PSA may be 
sequentially incremented, altered by either branch or jump instruction, 
or ntodified by tha several SUB-ROUTINE ADDRESS RETURN STACK (SRS-) 
-related instructions. 

4.2.2.2 Program Source Transfer Operation Addressing 

When transferring data to or from PROGRAM SOURCE ~MORY (PS), 
addressing of the PS word is accomplished by eithe~ of the following 
methods: 

l. AaSOLU'!E - The address of the PROGRAM SOURCE WORD to 
be read/written is A.SSOLU'IE from either: 
* The 12 bit address contained in the VALUE. field of 

the current instruction word, 
* the least significant 12 bits of the TABLE MEMORY 

ADDRESS ('!MA.), or 
* the 12-bit address cur-rently enabled onto the PANEL 

BUS (PNUS). 

2. RELATIVE - The address of the PROGRAM SOURCE WORD 
to be transferred is RELA.IIVE to the cur-rent PSA. 
The address is formed by adding the current 
contents of the PROGa.AM SOURCE ADDRESS REGISTER. 
(PSA) with the 12-bit address contained in the 
VA.I.tra field of the current instruction word. 

4.2.2.3 SPEC-related Virtual Front Panel (PA.MEL) registers 

The LITES REGISTER (LITES) and SiU'!CR REGISTER (SWR) of the VIRTUAL 
FR.ONT PANEL (PANEL) are i:a.volved in many SPEC group transfer op-codes. 
Both are l6•bit wide registers. 

the L!'!ES register is used as a. destination register of the PNL.BS in 
t:he appropriate SPEC group transfer operations. The host can rud 
LI'!ES but cannot load it. The A.P-120B can load LITES, but cannot read 
it. The SWITCH REGISTER is used as a source tegister for t:he PNLBS. 
!he host can load and :ead SWR.. !he A2-120B can only read SWR. 

Data t:ransfers between PS and the appropriate PAMEL registers are via 
the PANEL BUS (PNLBS) and require two machine cycles t:o execute (See 
Note). (For a complete description of th"e VIRTUAL FRONT P.!\.NEL, see !/O 
SUMMARY). 

4 30 



NOTE 

When executing these instructions, the programmer 
must not attempt to execute any other operation 
which uses the PNL]S for addressing or transferring 
or a PNLBS conflict will occur. 

4 31 



4. 2.3 Prograt1t Source Address Modi.fication 

!he op-codes contained in the SETPSA fields are used 
p;-ogram locaticn by i:oeans of forcing a specified value 
SOURCE ADDRESS R.EGISttR (PSA). The op-codes within 
fall into two catego4ies: 

* Program Jumps 
* Jumps to subroutines 

4.2.3.1 PTogram Jumt>S 

t:o m.odify tha 
into the PROGRAM 
the SE'!PSA field< 

ABSOLIJTE or RELATIVE PR.OGRAM JUMPS available in the SETPSA field 
replace the contents of t:he PROGRAM SOURCE ADDRESS REGISTER (PSA) with 
a specified value. !he Jump may be ABSOLUTE, whereby t:he contents of 
PSA are rep laced by the cur?'e.nt. contents of a specified register, or 
the address cur-rently enabled upon a specified Data Bus; or the Jump 
may be REl.ATIVE - whereby t:he data from. a specified source is 
algebraically added to. th~ cun:ent contents of PSA. 

4.2.3.2 JulllPS t:o Subroutines 

the AP-120B uses an address stack, termed t:he SUB-ROUTINE RETU'R..'i 
ADDRESS STACK (SR.S), 'Which is normally used to save t:he cunent 
contents of PSA plus "l" in the executiOn of a SUB-ROUTINE JUMP 
OPERATION (JSP). !he address t:hus saved may be retrieved via a RETURN 
operation. (see RE'!URN, BRANCH) at the completion of a given sub-routine 
operation thus enabling the program eo return t:o the next 
program-source location following t:he JSR. 

4.2.3.3 SRS Operation 

!he SRS is a LAST-IN - FUST--OUT (LIFO) memory stack with a capacity 
for sixteen 12-bit addresses. Addressing control for the SR.S is 
performed by an up/down counter termed the SUB-ROUTINE RETURN AJJDRESS 
REG!.S'ttR (SRA). !he address last stored into SRS during a sub-routine 
jump will be the address enabled into PSA upon a return operation. 
Note, however, that the address stored in this "last-in" position of 
SRS can be changed via use of selected operations in the StTEX!t field. 

!he SUB-ROUT!NE RETURN STACK (SRS) can store up to a t11aximum of 16 
address words at oue time, allowing the programmer to specify a maximum 
of 16 nested sub ... routines. Atte111pting to exceed the 111axit:i.Um number of 
nested sub•4ou1:ines liill set t:he SUB-ROUTINE. RETURN AJJDR!SS OVERFLOW 
(SR.AO) in the APSTATUS register, as will a RETURN operation t:hat h.a..s 
not been preceded by a SUB-ROUTINE JUMP OPEUTION. 

4 32 

I 
. ] 

I 

I 

i 



An example of SUB-ROUTINE JUMP and RETURN operations is given below: 

MAIN PROGRAM SUB-ROUTINE 1 SUB-ROUTINE 2 

N(O) zz N( 15) SUBl :ZZ 
N(l) zz N(l6) zz 
N(2) zz N(l 7) JSR SUB2 
N(3) JSR SUBl N(l8) zz 

N(30) SUB2:ZZ 
N(31) ZZ 
N(32) ZZ 
N(33) ZZ 

N(4) HALT N(l9) RETURN N ( 34) RETURN 

ZZ= non-related operation 

Note that the MAIN PROGRAM will jump to SUB-ROUTINE 1 (N(l5)) upon 
executing the JSR instruction at N(3). During this Jump, the SR& is 
incremented and N(4) (current PSA + 1) will be stored into the 
"last-in" position of the SUB-ROUTINE RETURN STACK (SRS). 

The program will now execute in SUB-ROUTINE 1 until location N(l7), at 
which time a jump will occur to SUB-ROUTINE 2 at location N(30). The 
SRA is again incremented, and the address N(l8) (the now current FSA + 
1) becomes the "last-in" address stored into SRS. 

This program will now execute in SUB-ROUTINE 2 until location N(34), 
where a RETURN will be executed. At this time, the "last-in1' address 
N(l8) will be written into PSA and the program will jump back to that 
location. SRA is decremented so that now N(4) again becomes the 
"last-in" address contained in SRS. 

The Program Proceeds: At N (19) a RETURN will again be executed., and 
the SRS will write the address N(4) into PSA. The program will halt at 
that location. SRA is decremented and the "last-in" address becomes 
the address written into SRS one time before address N(4) was intially 
written into SRS. 

WARNING 

The JSR instruction has a number of hardware 
timing problems not detected by APAL or APSIM. 

4 33 



NOTE 

A JSR must not be followed immediately by a 
RETURN. 

Example: 
ILLEGAL 

N(l4) 
N ( l.5) 

JSR SUB·2 
RETURN 

Also, any two-cycle instruction immediately 
before a JSR is illegal •. 

Exa1Jl'9 le: 
IIJ.EGAL 

RPSF N ( 1.3) 
N(l4) JSR SUB2 

If the breakpoint of the front panel is used 
to stop the machii:u~ so that ~SA is pointing to 
an instruction before a JSR, it is not possible 
to continue. 

Example: 
II.UGAL 

are.ale.point at N(4) follo-wed by 
N(5) ZZ 
N(6) JSR SUJU 

A halt followed by a JSR is also illegal. 

Example: 
II.LEGAL 

N(l3) 
N(l4) 

.HALT 

JSR SUB2. 

4 34 



4.2.3.4 Conditional Branch Op-Code Group 

Purpose: UNCONDITIONAL and CONDITIONAL BRANCHES to program locations 
within a range of +17(octal) to -20(octal) locations rela­
tive to the current PROGR.Ar(SOURCE ADDRESS (PSA), the SUB­
ROUTINE RETURN OPERATION, and the S-PAD NO LOAD function. 

23 24 25 26 27 28 29 30 31 

COND DISP 

COND CONDITIONAL BRANCH: Four-bit field whose value determines 
the specific operation to be performed within the BRANCH 
group. 

DISP DISPLACEMENT: Five-bit field whose value with the BIAS 
subtracted is added to the current PSA to form the BRANCH 
TARGET ADDRESS for the specified branch operations. (BIAS = 
20(octal)) 

4 - 35 



4.2.4 Branch Group Summary 

The CONDITIONAL BRANCH op-code group consists of, t.wo fields: COND 
(instruction word bits 23•26) and DISP (instruction word bits 27 ... 31). 
The valt1e contained in the COND field selects the one operation of the 
BRANCH GROUP to be performed during the current instruction cycle. 

The operations. available within the COND field. are: 

l) S-PAD NO-LOAD (#), 
2) UNCOND l'!IONAL BB.Al.'fCli 
3) CONDITIONAL BR&'lCHES and, 
4) SUB-ROUTINE RETURN 

When an UNCONDinONAL BRANCH, is specified, or the branch condition of 
a CONDITIONAL BRANCH is satisfied, the program will branch to the 
PROGRAM SOURCE location obtained by adding the current contents of 
PROGRAM SOURCE, ADDRESS REGISTER (PSA) with the value (BIAS removed) 
contained in the DISP field. The BRANCH. TARGET ADDRESS thus , obtained. 
is limit:ed to a range from -20(octal) to +l7(octal) location,s relative 
to the current PSA. 

For a detailed discussion of the addressing, timing and programming 
examples for Bt"anch type operations, refer to SPEC SUMMARY, Part l -
Test, Branch and Jump Operations. All sections of Part 1 apply equally 
to Branch operations within this group EXCEPt Part la Test 
Conditions. Discussion of test conditions appropriate to BRAJ.'iCH GtOUP 
op-coded is presented below. 

4. 2. 4.1 Test Conditions 

The fol.lowing conditions are tested by op-codes within the BRANCH GROUP 
to determine whether or not the branch condition for the appropriate 
operaeion is sacisf ied. 

l. Selected Bits of the A2 INTERNAL STA!US REGIST?R (APSTA'!US) 

2. Selected !n'Put/Out'Put Flags 

4 36 



* BRANCH Related Bits in APSTATUS REGISTER 

Bit Name Condition · 

OVF (bit 0) Set to "l" when the FA or FM available 
during the preceding cycle has OVER­
FLOWED. Once set to a 1, OVF remains 
latched until cleared by the program 
or host computer. 

UNE (bit l) Set to "l" when the FA or FM available 
during the preceding cycle has UNDER­
FLOWED. Once set to a "l", UNF remains 
latched until cleared by the program or 
host computer. 

DIVZ (bit 2) Set to "l" when a divide by zero has 
been detected by the divide software. 
Remains latched until set or cleared 
by the program or host computer. 

FZ (bit 3) Set to "1" when the FA available 
during the preceding cycle was zero. 
Cleared to 11 011 otherwise •. 

FN (bit 4) Set to 11 1" when the FA available 
during the preceding cycle was 
negative. Cleared to "O" otherwise. 

Z (bit S) Set to "l" when SPFN during the most 
recent preceding S-PAD operation 
equaled O. Cleared to 0 otherwise. 

N· (bit 6) Set to "1" when SPFN during the most 
recent preceding S-PAD operation was 
negative. Cleared to 11011 otherwise. 

NOTE 

Related BRANCH 
Op-code(s) 

BFPE 
(See note) 

BFPE 
(See Note) 

BFPE 
(See Note) 

BFEQ, BFNE, 
BFGT 

(See Note) 

BFGE, BFGT 
(See Note) 

BEQ, BNE, 
BGT 

(See Note) 

BGE, BGT 
(See Note) 

Indicates that the named op-code tests two or 
more conditions in order to determine status of 
branch conditions. 

4 37 



* I/0 FLAGS Test by BR.ANCa GROUP Op-codes 

!he I/O DA'tA. RE.A.DY FLAG 
(INttQ)may be tested by 
branches. made accordingly. 

( IODR.DY) and 
appropriate 

the INTERRUPT' REQUEST Fl.AG 
op-codes within this group and 

AP I/O Flag 

IO.DR.DY 

INTRQ 

BRANCH - Related I/O Flags 

Branch Contingency 

Se.t to "l" 
Set to "O" 
Set to "l" 

Related BRANCH Op•code 

BION 
BIOZ 
BINTRQ 

4.2.~.2 BRANCH TARGET ADDRESSING 

!he BRANCH TARGET ADDRESS is calculated by adding the current contents 
of the PROGRAM SOURCE ADORESS REGISTER (PSA) with the value (BIAS 
removed) contained in the DISPla.cement field of the instruction word. 
The biasing scheme- used for calculating BRANCH TARG!T. ADDRESSES is 
explained fully in SPEC SUMMARY - Types of Branch Operations. 

In as semi'> ly format, the BRA.NCR TAB.GET ADDRESS is spec i.f ied in the 
following manner: 

BIFZ T.AB.G 

Where TARG may be a na.111e or number specifyip.g a target address. The 
BRANCli TARGET ADDRESS tD.USt be with.in a range. from +l7(octal) t:o 
-20(octal) locations relative to the current PROGRAM SOURCE ADDRESS 
(PSA). ·A relative address within the proper range may be specified 
directly by using the assembler syaibol ".", which always has the value 
of t:he current location, i.e., BR .-3. (means branch three locations 
backwards from t:he current location). 

NOT! 

!he following rules apply to ALL conditional 
branches: 

l. Conditional branches test:: their particular 
condition as it existed during the p't'evious 
instruction. 

2. The branch deter111ines what: instruction will 
be eucuted NEXT .• It has no effect upon 
execution of the current: instruction. 

See a tnore co111plete explanation in t:he SPEC 
sectio.n. 

4 38 



0 

4.2.S AP-120B Internal Status Register (APSTATUS) Summary 

APSTATUS is a 16-bit read/write register containing status bits which 
may be used to monitor conditions pertinent to Floating-Point 
Arithmetic results, the S-Pad RESULT (SPFN), S-Pad CARRY, FFT and IFFT 
addressing functions, SUB-ROUTINE-RETURN-STACK OVERFLOW conditions, and 
optionally, MEMORY-PARITY. 

Changes in APSTATUS bits are generated by either AP-120B hardware 
functions or programmed instruction, (whether via AP-120B or Host-CPU). 
APSTATUS is readable to the AP-120B via use of the RAPS instruction 
(see I/O, RDREG field). It is writable from the AP-120B via use of the 
LDAPS instruction (see I/O, LDREG field) except for PERR, which is 
"set-only 11 ; PERR and PENB=O if parity opt ion is not present. Changes 
in STATUS-BITS become effective, with respect to subsequent testing 
operations, one AP cycle after the condition occurred that caused the 
change. 

APSTATUS is cleared via a Panel Reset (To clear the I/O interface the 
programmer must also use the interface reset). PERR and PENB are also 
cleared by an interface reset. 

Given below is the APSTATUS format and descriptions of the individual 
STATUS-BITS. 

APSTATUS FORMAT 

1 2 3 4 5 6 7 8 9 10 11 12 13 T 14 T 15 

OVF UNF OIVZ FZ FN z N c PERR PENB SRAO IFFT FFT Bit Reverse 

BIT MNEMONIC 

0 OVF 

l UNF 

2 DIVZ 

MEANING 

OVERFLOW: Set one cycle after the current FADDR 
or FMULR RESULT (FA or FM) has OVERFLOWED. Set 
by AP-120B hardware. Remains set until cleared by 
programmed instruction (LDAPS) or panel RESET, 
(See Note 1). 

UNDERFLOW: Set when current FADDR or FMULR 
RESULT (FA or FM) has UNDERFLOWED. Set by 
AP-120B hardware. Remains set until cleared by 
programmed instruction (LDAPS) or panel RESET, 
(See Note 2). 

A DIVIDE-BY-ZERO has occurred. Set and cleared 
by programmed instruction (LDAPS)(See Note 3) or 
panel RESET. 

4 39 



3 FZ 

4 FN 

s z 

6 N 

7 c 

8 PERR. 

9 PENB 

10 SRAO 

FA-ZERO: Set to "l" one cycle after the cur-rent 
FADDR-RESOLI (FA) equals 0.0. Cleared to "O" 
'#hen FA does not equal O. 0 (Via A1?-l20B hardware 
or programmed instruct ion or pane 1 RESET. ) 

FA-NEGATIVE: Set to "l" one cycle after the 
current FADDR-RESULI (FA) <O. O. Cleared to "0 11 

'#hen FA> O. O. (Via AP-120B hardware or pro-~ 
grammed instruction or panel RESEt.) 

SPFN-ZERO: Set to "l" one cycle after the 
current S-Pad function (SPFN) equals O. Cleared 
to "O" when Sl?FN does not equal 0. (Via A.P-120B 
hardware or programmed instruction or panel 
RESET.) 

SPFN-NEGATIVE: Set to 11 1" one cycle after the 
current S-PAD function (SPFN) < 0. (Via AE-120B 
hardware or programmed instruction.) 

S-PAD CARRY: If an S-PAD shift .was specified, "C" 
reflects the last bit shifted off SPFN as a 
result of the shift operation. If a shift was not 
specified "C" reflects the state of S-PA.D CAR.RY 
BIT or panel RESET. 

PARITY-ERROR: (Optional). Set T,Jhen a Main Data 
Memory (MD) PARITY-iRROR has occurred. Ihree 
parity-bits are used, one each for the EXPONENT, 

HIGH-MANTISSA, a.nd LOW-MANTISSA portions of the 
memory word (See Note 4). If nPENB" is set, the 
AP-120B '#ill halt on this error. Cleared only via 
panel or interface reset. Set only by LDAPS. 

PARITY-HALI-ENABLE: (Optional). Enables halt: on 
MEMORY PARITY ER...l\OR. !f set, the AP-120B will 
halt: when a MEMORY-PARITY-ERROR is detected. 
Set or cleared by LDAPS.Cleared by panel or 
interface reset. 

SUB-ROUTINE-RETURN-STACK OVERFLOW. Set to n1u via 
AP-12 .. 0B hardware if more than 16 levels nested 
sub-routine-calls have occurred, or if a "RETURN" 
is executed without a corresponding "JSR". 
(Cleared via programmed instruction or panel 
RESET.) --

4 40 
.. "'. 



11 

12 

13-15 

IFFT INVERSE-FFT FLAG. (Set via programmed instruc­
tion.) When set in conjunction with the FFT FLAG 
(bit 12), this bit causes ROOTS-OF-UNITY table 
references to be interpreted as positive angles 
when set and negative angles when cleared. 
(Cleared via programmed instruction or panel 
RESET.) 

FFT FFT FLAG. Set and cleared via programmed instruc­
tion or panel RESET. When set, causes Table 
Memory Addresses to be interpreted as angles 
referencing the ROOTS-OF-UNITY table contained 
in Table Memory. 

BIT-REVERSE BIT-REVERSE SHIFT-VALUE. Three-bit field whose 
value controls the number of shifts accompanying 
an address BIT- REVERSING operation. See (S-PAD, 
BIT-REVERSE.) Shift value to be placed in this 
field is determined by the following equation: 

BIT-REVERSE = 15 - (log 2 N) 
Where: N = length of complex-data-array 

to which BIT-REVERSE opera­
tion (&) is being applied. 

NOTES 

1. OVERFLOW occurs when EXPONENT of result is 
increased above APPARENT-VALUE of 1023 (TRUE­
VALUE of 511). APMAX or APNMAX is forced as 
the result, depending on the sign of the 
MANTISSA. 

2. UNDERFLOW occurs when EXPONENT of result 
is decreased below APPARENT-VALUE of 0 
(TRUE-VALUE of -512.) ZERO (0.0) is forced 
as the result. 

3. Result is set to the value of the dividend 
when a DIVIDE-BY-ZERO has occurred. (Via 
programmed instruction.) Used by AP-120B 
Math Library Divide Routines. 

4. EXPONENT, HIGH-MANTISSA and LOW-MANTISSA 
PARITY-BITS occupy data-word bit positions 
00, 01, and 40, respectively. 

4 41 



Selected STATUS-BITS "'7ithin APSTAIUS may be tested and branched upon 
(if the appropriate condition is satisfied) by the following AP-120B 
instructions: 

INSTRUCTION 
WORD GR.CUP 

BRANCH 

SPEC 

SUB­
GROUP 

COND 

STE ST 

INSTRUCTION 
MNEMONIC 

BFPE 

BFEQ 
BFNE 
BFGE 
BFGT 
BEQ 
BNE 
Bet 
BGT 

BFLI 
BLT 
BNC 
BZC 
BIFN 
BIFZ 

4 - 42 

BRANCH RELATED BIT(S) 
CONDITION in Al'STA'IUS 

Floa.eing UNF, OVF or 
Point Error DIVZ = l 
FA==O.O 
FA;:wO.O 
FA~O.O 
FA)O.O 
SPFN-0 
SPFN;wQ 
SPFN~O 

SPFN>O 

FA<O.O 
SPFN<O 
S-PA.D-CAR.iY=l 
S-PA.D-CA.RRY=O 
IFFT Bit:=l 
IFFT Bit=O 

FZ=l 
FZ=O 
FN=O 
FN ,FZ=O 
Z=l· 
Z=O 
N""O 
Z,N=O 

FN=l 
N=l 
C=l 
C=O 
IFF't=l 
!FIT"*O 



4.2.6 PERR and PENB, Theory of Operation 

PERR, the Parity Error bit, will be set to a "one" by the Parity Option 
Logic any time a parity-error is detected on a read cycle from Main 
Data memory. The Parity-Option Logic checks parity on all read cycles 
whether from the AP processor, the Host Interface or other DMA device 
such as the !OP and the PIOP. · When PERR is set to a "one" as a result 
of a detected parity error, the data word, parity bits, memory address 
and cycle acknowledge priority level of the failure are recorded in the 
logging registers. As a check of the Parity Error Registers, PERR can 
be set from the AP. If PERR is set via an LDAPS the logging registers 
will record the above information for the memory read cycle just 
completed. 

When PENB and PERR are both set, the AP will halt immediately. In 
fact, if an attetn;tt is made to start or continue the AP when both of 
these bits are set, the AP will not go into the running state. Also, 
because of the overlap fetch/execute, the next instruction will have 
been set up. This may cause probletnS when restarting if this is not 
taken into account. 

The immediate halt characteristic may cause lost interrupt problems 
with certain Rost Interface/driver combinations. Thus, the recommended 
start-up procedure in the presence of DMA transfers overlapped with AP 
running is to clear PENB via a panel deposit to APSTATUS before 
starting the AP. Then to have the initializer code in the AP, set PENB 
when it clears OVF UNF and DIVZ before branching to the user-called 
routine. The "Set-only11 characteristic of PERR protects the Parity 
Option from losing parity errors. 

Note that contrary to common industry practice, the Parity Option 
generates even-parity. The highly inter-leaved nature of optimized, A2 
math-library routines requires many of them to read extra locations 
past the end of the arrays on which they are operating. Thus even­
pari ty was. selected so that a read from non-existent metno:ry (all zeros 
on data and parity bits) would not cause spurious parity errors. 

The following parity-error registers can be read via IN instructions at 
their respective Device Addresses. They reflect the first data-word, 
address and memory priority level that caused a parity error. 

4 43 



DA 

33 

34 

35 

36 

37 

OPMBS 

IO 

REGISTER 

MDL."fAN 

MDHMAN 

MD EXP 

OPMBS lS lG 

to 27 28 

F-mf.l~ MD~l 

I 

MDCA 

21 

DESCRIPTION 

LowMantissa portion of 
failing location 

High Mantissa port:ion of 
failng location 

Exponent and parity bit·s 
of failing location 
(Form.at below) 

l7 lS 27' 

29 30 39 

MDf.14 EXP 

L-. M04!1J LMAN PARITY BI:T 

22 

!11.Di;fJ. HMAN PA.RJ:TY BI:T 

Mtl!Q~ EXP PARITY BIT 

(Note ~ pa.ri ty} 

4 - 44 

.... ----

DESC!Ul'TION 

Parity Error Address 
Address of Failing Location 
(least significant 16 bits) 

Main Data Cycle 
Acknowledge p-riority level 
and Address Extension. 
(Format below) 

24 25 26 27 



4.3 FLOATING ADDER SUMMARY (FADDR) 

Discussion of the AP-120B FLOATING-POINT ADDER (FADDR) is presented in 
the following manner: 

1. General description and theory of operation 

2. FADDR single and double operand operations 

3. FADDR Operands -- Al and A2 

4. FADDR Result -- FA 

5. FADDR-associated test, branch, and error conditions 

6. FADDR programming considerations 

4 45 



4.3.l General Description, theor1 of Operation 

The A.P-120B FLOAI!NG-POINT ADDER (FADDR) 
logical, and format-conversion unit 
NUMBERS as its operands. 

*The Operands (Al, A2) 

is a two-stage ari t:hme tic, 
that uses 38-bit FLOATING-POINT 

The operands (contained in r::he Al and A2 registers) are selected by the 
octal-value contained in the respective Al and A2 fields of the. cur-rent 
instruction word. 

The available inputs to the two F ADDR REGISTERS are listed in the Al 
and A2 summaries. (See Section 4.3.4). 

* The Operations 

The particular operation selected by the octal value in the FADD, or 
FADDl fields is then perfor.ned. (See Section 4.3.2). 

* The Result (FA) 

The result of a specified FADDR operation is en.abled onto the FLOATING 
ADDER OUTPUT BUS (FA) one cycle after the next FADDR operation is 
inir::iated. The result is eir::her NOR."iALIZED and CONV1!:RGENTLY-ROUNDED, 
or unnor.nalized and rounded, or unnormalized and TRUNCATED, depending 
on t:he operation specified. (See FLOAIING PO!~T SUMMA.RY, for more 
details on NOR..'1.Al.IZAIION and ROYND!NG/TRUNCATION operations.) 

Because of t;te unique configuration of the AP-120B FADDR, after the 
initial "pipeline" set-up requirements have been satisfied, the FADDR 
is capable of producing significant FLOATING-POINT ARITHMETIC results 
every instruction cycle (167 ns). Note t:hat the A.P-120B allows 
simultaneous FLOATING-POINT ADDER (F.ADDR) and FLOATING-Pont! MULTIPLIER 
(FMUL.R) operations. 

4 46 



* Theory of Operation 

The AP-120B FLOATING-POINT ADDER (FADDR) is essentially a two-stage 
pipeline which operates in the following manner: 

Stage One 
In the first 
compared. The 
result. The 
arithmetically 
magnitude of 

stage, the EXPONENTS of the Al and A2 OPERANDS are 
larger of the two EXPONENTS becomes the EXPONENT of the 
MANTISSA of the smaller operand is correspondingly 
right-shifted a number of places that reflects the 
the difference between the two source-operand EXPONENTS. 

The "aligned" mantissas then undergo the specified FADDR operation and 
the result is presented to the second-stage buffer latch. 

When a subsequent FADDR operation is initiated, the preliminary result 
is "pushedn down. into Stage Two. 

Stage Two 
In Stage Two, the preliminary result will be NORMALIZED or not and 
either CONVERGENTLY-ROUNDED or TRUNCATED, depending on the operation 
specified. (See Section 4. 3. 2). 

This result becomes available onto the FA BUS one instruction cycle 
later. Appropriate bits of the APSTAIUS REGISTER will be set according 
to the condition of this FADDR result and may be tested for 
significance one cycle after this result is enabled onto FA (two cycles 
after the second FADDR operation). 

If the difference in exponents exceeds 31 (the number of significant 
bits in the A2 FLOATING-POINT MANTISSA and FADDR GUARD BITS), a SHIFT­
INHIBIT will occur, causing the operand with the SMALLER EXPONENT to be 
interpreted as positive 0.0. The result of the specified operation 
will reflect this interpretation. 

NOTE 

The APSTATUS bits will remain latched until one 
cycle after the result of a subsequent FADDR 
operation becomes available as FA. 

4 47 



As stated befot'e, the result of an initial FADDR operation becotnes 
available as FA only after a subsequent FADDR operation has been 
specified. In other w-ords ,' the result of a given FADOR operation !llUSt 

be- pushed down che "pipeline" and out onto the FA Bus by a. successive 
FA.DOR operation - the re•ult of which, in turn, must be pushed out by 
yet: another successive FA.DOR operation. Example.: 

OPEaATION (COMMENTS) RESULT AVAlI.ABU: AS FA 

tl FA.DD DPX,DPY --------
t2 FA.DD TM,MD 
t.3 NOP (FA a. DPX + DPY) 
t4 NOP (FA a DPX + DPY) 
t5 FA.DD (PUSHES PIPELINE) (FA a DPX + DPY) 
t6 NOP (FA ,... TM + MD) 

4 48 



4.3.2 FADDR Single and Double Operand Operations 

The FLOATING ADDER Performs Floating Point: 
* Arithmetic 
* Logical 
* Format Conversion, and 
* Scaling Operations (floating to variable-width fixed­

point conversion) 

Instructions in the FADD field are double-operand operations which use 
the Al and A2. fields to specify source-operands. Instructions in the 
FADDl field use only a single-operand. When a F.~Dl field op-code is 
specified (i.e. FADD = 0), the input selected as the source operand is 
deteniined by the octal-value in the A2 field. 

O~ly one op-code from the following groups may be initiated during a 
given instruction cycle. 

OCTAL SOURCE OPERAND 
ARITHMETIC OPCODE FIELD USED VALUE FIELD(S) USED OPERATION 

FADD FADD 3 <Al, A2> (Al) + (A2) 
FSUB FADD 2 <Al, A2> (Al) - (A2) 
FSUBR FADD l <Al, A2) (A2) (Al) 

4 49 



4.3.3 Floating Poine Logical Operations 

These instructions (FAND, F~R, FEQV) perform logical operations on 
floating-point numbers. Exponent alignment. occurs as for a. normal 
floadng-point: add. The two mantissas are then combined using the 
specified logical. operations. The. result is then normalized and 
rounded. 

LOGICAL OPCODE OCTAL - SOURCE/OPERAND 
COMPARISON FIELD USED VALUE FIElD (S) USED OPERA'!ION 

F'EQV FADD 4 <Al, A2> (Al) EQV (A2) 
FAND FADD s <Al, Al> (Al) AND (Al) 
FOR FADD 6 <Al, A2> (Al) OR (Al) 

FORMAT CONVERSION 
FIX FADDl l A2 Convert (Al) to 

a 28-b.it integer . 
(rounded) 

FIXT F.ADDl 2 A2 Convert (A2) to 
a 28-bit. INTEGER; 
TRUNCA'!E the RESULT 
(See Note l) 

FSM2C FADDl 4 Al Convert (A.2): 
from SIGNED-MAGNI-
!UDE to TWOS-
COMPU:MENT 

F2CSM FADDl 5 Al Convert (A.2) : 
from TWOS-COMELE-
MEN'! to SIGN!D-
MAGNITUDE 

FASS FADDl 7 A.2 Convert (Al): 
to its ABSOLUTE 
VALUE 

SCALING 
FSCAU FADDL 6 A2 Scale (Al) using 

SPFN as reference. 
R.eisult rounded. 
(See Note 2) 

FSC!.? FADDl 3 A2 Scale (A2) using 
SPFN as reference; 
USUL'I'. tt.UNCA'IED 
(See Notes l and 2) 

4 - so 



<Al, A2) indicates that source operands need 
"dummy 11 operation is used to push the result 
operation down the pipeline. 

NOTES 

not be specified if a FADD 
of the preceding FADDR 

1. TRUNCATION - In an FSCLT or FIXT operation, 
the result will be TRUNCATED rather than 
CONVERGENTLY ROUNDED. (See FLOATING-POINT 
SUMMARY - ROUNDING/TRUNCATION.) 

2. The current SPFN when the FSCALE operation 
is initiated. For correct results SPFN must 
equal maximum-comparison (Al ~xp0nent + l). 

Note that the BIAS BIT of a given EXPONENT is automatically removed 
when the EXPONENT is transferred to S-PAD via an LDSPE instruction. 
(See SOPl). Accordingly, the value contained in a given S-PAD register 
following an LDSPE instruction will be the TRUE-VALUE of the EXPONENT. 
However, the BIAS BIT for a given EXPONENT is not removed if the 
transfer is via an LDSPI or LDSPNL instruction. 

When the contents ~f a given S-PAD register are transferred to FADDR 
Al exponent , A2 exponen7:; or to DB (via DB = SPFN), the BIAS is automatically 
added, thus producing an APPARENT-VALUE 512 greater than the 
TRUE-VALUE. 

4 51 



4.3.4. FADDR Operands (via Al, AJ. Re·gisters) 

!he FA.DOR. uses Al and A2 registers as t:he input-buffers for- t:he source 
operand(s) specified for a given operation. The programmer may select 
one of six available sources t:o be used as t:he. A.l REGISTI:R operand and 
one of eight sources fa:: t:he: A2 REGISTER operand. 

!he list. below shows the sources available for each res'Pective FADDR 
register. 

Al REGIS!ER. 
souacx 

Al F U:l.D VALUE 
(IN OCTAL) 

A.2 REGISTER 
SOUR.CE 

A2. FU:I.D VALUE 

NC* 
FM 
DPX(idx) 
DPY(idx) 
'IM 
ZERO**' 

0 
l 
2 
3 
4 
5 

NOTES 

NC* 
FA. 
DPX(idx) 
DPY(idx) 
MD 
ZERO** 
MDPX(idx)***' 
EDPX( idx)***' 

(IN OCTAL) 

0 
l 
2 
3 
4 
5 
6 
7 

* NC; NO CHANGE ~ The input-buffers remain unchanged. !his 
mnemonic is implied if no FADDR operands are specified. 

Z!RO: Floating Point· 0. 0 · 
MDPX: Indicates split:-.,o. r.d source. See A2.. for a detailed 
EDPX: explanation of these sources. 

Although t:he appropriate instruction-..iord fields and octal-values are 
listed above, the assembler format coding nee·d only speci.fy the desired 
operation and t:he operand source(s). Examples: 

ASSEMBLER FORMAT 

FA.DD 
FA.DD NC,NC 
FSUB FM,FA 
FSUBR. FM,FA 
MOV S , 5 ; FSCAL.E !M 

COMMENTS 

"'Ol,laimy 11 F ADD 
"Dumm.y" FA.DD 
Subtract (FA) from (FM) 
Subtract (FM) frO'll!. (FA) 
Shift ('!M) R.igbt ari thmecical ly a 
number of positions r:hat is one 
less than t:he difference 
between SP(S) and t:he !IU1E .. 
VALUE of t:he- EXl'ONENT of 
(!M) 

4 52 



4.3.5 The FADDR Result (FA) 

The NORMALIZED and either CONVERGENTLY-ROUNDED or TRUNCATED RESULT* 
becomes available onto the FLOATING ADDER OUTPUT BUS (FA) one 
instruction cycle after the next FADDR operation is initiated. This FA 
will remain latched until replaced following the next FADDR operations. 

The FLOATING ADDER OUTPUT (FA) may be directed to: 

* The FLOATING-ADDER A2 REGISTER 
* The FLOATING-MULTIPLIER M2 REGISTER 
*DATA PAD X or DATA PAD Y, or 
* to MAIN DATA MEMORY INPUT REGISTER (MI) 

FA sets the appropriate bits of the APSTATUS REGISTER and these bits 
may be tested for significance on the instruction cycle after FA 
becomes valid. 

*In case of FA OVERFLOW or UNDERFLOW, a signed-maximum or ZERO 
number is forced as the result. (See FLOATING-POINT SUMMARY­
OVERFLOW /UNDERFLOW.) 

4 53 



4.3.6 FADDR Test:, Branch, and ErTor Condition 

The FADDR result: (FA) sets or cleaTs appropriate bits of the APSTA'I1JS 
R.EGIS!ER. These bits !lla.Y be tested and branches made on their 
condition one instruction cycle after the appropriate FADDR result is 
enabled onto FA. 

APSTAIUS 
BIT NAME 

OVF 
(bit 0) 

UNF 
(bit: 01) 

FZ 
(bit 03) 

FN 
(bit 04) 

FADDR RELATED BITS IN APST.AIUS 

CONDITION 

Set to "l" when the curTent 
FA or FM has OVERFLOWED (See 
note 2). OVF remains latched until 
cleared by the microprogram or 
HOST-CPU. 

Set to "l" when the current 
FA or FM has UNDERFLOWED (See 
note 2). UNF remains latched until 
cleared by the microprogram 
or HOST-CPU. 

Set to "l" when the curre.nt 
FA is equal to "O. O"; cleared 
to "O" when current FA is not 
equal to "O. O". 

Set t::o "l" when the current 
FA is negative; cleared to 
"O" i;.;hen current FA is non­
negative. 

NOTES 

l. Indicates that the named op-code tests 
two or more conditions in order to 
determine status of branch condition. 

2. See FLOATING POINT SUMMA.RY-OVERFLOW. 

4 54 

REI.AIED BRANCH 
OPCODE(S) 

BFPE 
(See note l) 

BFPE 
(See note l) 

BFGE 
BFGT 
BFNE 

BFLI 



4.3.7 Floating Point Adder Progratmning Considerations 

4.3.7.1 Simple Examples 

Any data source listed under Al may be combined with any data source 
listed under A2. For example, to add a number from Data Pad X to 
another from Data Pad Y: 

FADD DPX, DPY "DPX + DPY 

or to subtract a number read out of Data Memory from a constant in 
Table Memory: 

FSUB TM,MD "TM - MD 

A reverse subtract changes the order of the subtraction, i.e., 

FSUBR TM,MD "MD - TM 

subtracts a constant from Table Memory from a number in Data Memory. 

To negate a number from D.PX: 

FSUB ZERO, DPX "O.O - DPX = -DPX 

To take the absolute value of a number from Data Memory: 

FABS MD "ABS (MD) 

To fix (convert from floating-point to integer) a number from DPY: 

FIX DPY "FIX (DPY) 

4.3.7.2 Pipelining Considerations 

The Floating Adder is a two-stage pipeline. A "FADD" instruction loads 
the designated operands into t~e Al and A2 registers. The previous 
contents of Al and A2 are pushed down the pipeline to the Buffer 
register. One AP cycle later the new contents of Buffer have been 
normalized and rounded, and' are then available for use or storage 
elsewhere. 

The following instruction sequence illustrates how the Adder pipeline 
works, where A,B ••• G,H are floating-point numbers to be added: 

4 SS 



Adder 
Pipeline: 

Buf- Adder 
Time. Cycle Instruction Al, A2 fer Result: (FA) 

0 l. FADD A,B A,B 
l67ns 2. FADD C,D C,D A,B 
333ns 3. FADD E,F E,F C,D A+B 
SOOns 4. FADD G,H G,H. E,F C+D 
667ns s. FADD G,H E+F 
833ns 6. - G,H G+H 

The 1'FADD" without: argument:s in cycle S is used only to push the last 
comput:ation into the Buffer Register, and hence to the end of the 
pipeline. thus, it is a dummy add in the: sense that: we don't care what 
its arguments are, since we will never use the results. !n the above 
example we completed our floating-point adds in one microsecond. 
During cycles 2-4, whila we kept the pipeline full, adds were being 
done 'every l67ns, the maximum rate. 

!he completed results, as they come out of the Adder pipeline, are 
referred to by the lllll&tll.Onic "FA." FA is dynamic, in the sense that it: 
must be used or stored elsewb.ere before being changed by the next 
f loatittg-adder instruction. The program:a:ter has, however, complete 
control over the pipeline. Arguments advance ONLY when pushed through 
the pipeline by floating-adder instructions. 

4.3. 7 .3 Pipelining Exauiple 

A complete computational. sequence is to do the vector: sum Ax•Ax+Bx, 
i•O,l,2,3. Ax is stored in Data Pad X locations 0-3 and Bx is stot'ed 
in Data. Pad Y location 0-3. 

1. FADD DPX(~), DPY(!t)) "Do Ao+Bo 

2. FADD DPX( 1), DPY(l) "Do A1+B1 

3. FADD DPX( 2), DPY( 2); DPX(tj))<FA "Do Az+B2, Ao+Bo is now 
done, save it in Ao 

4. FADD DPX( 3), DPY( 3); DPX(l)<FA "Do A3+B3, A1+B1 is now 
done, save it in A1 

5. FA.DD DPX(2)<FA "Push Adder; save A2+B2in 

6. DPX(3)<FA "Save A3+B3 in A3 

4 56 

Az 



Below lS a chart of this computation, showing the state of the Adder 
pipeline and Data Pad after each instruction lS executed. 

Adder PiEeline Adder Data Pad X: 
Cycle I Al A2 Buff er Result 0 1 2 3 ' 1. Ao, Bo Ao A1 A2 A3 

2. A 1, B1 Ao, Bo Ao Ai A,, A3 ... 

3. Az, B2 A 1, B1 Ao+Bo Ao+Bo A1 Az A3 

4. A3, B3 A 2' Bz Ai+B1 Ao+Bo A1+B1 Az A3 

5. A3, B3 Az+Bz Aa+Ba A1+B1 Az+Bz A3 

6. --- A 3' B3 A3+B3 Aa+Ba A1+B1 Az+Bz A3+B3 

4.3.7.4 FADDR Branches Programming Considerations 

The FADDR branches test "FA" one instruction cycle after it is ready 
for use. That is, an Adder result may be tested one cycle after it has 
come out of the Adder pipeline. An example: 

1. FSUB DPX,DPY 
2. FADD 
3. DPX>FA 
4. BFEQ LOOP 

"Do a computation 
"Push ·the result out 
"Save the result 
-"Test the result here (branch 
"to location "LOOP" if result 
"was zero 

Compound tests may be made also. Test MD to see if it is between a 
lower limit contained in DPX (1) and an upper limit in DPX (2), i.e., 
see if DPX(l)<MD<DPX(2): 

1. FSUBR DPX(2), MD 
2. FSUB DPX(l), MD 
3. FADD 

4. BFGT BIG 
5. BFGT SMALL 
6. 

"Do MD-DPX ( 2) 
"Do DPY(l)-MD 
"Push first test result 
"out 
"Was too big 
"Was too small 
"OK 

The branches are made relative to the current Program Source Address 
(PSA), with a 5-bit displacement value. This means that the 
conditional branch target address must be within -ZO(octal) to 
+17(octal) locations of the current .. ~ristruction. 

4 57 



4.4 FLOATING MUL!Il'LIER (FMULR) 

Discussion of the A.l'.,120B FLOATING POnt'! MULIIPLI!R 
presented. in the following manner: 

l. General description and theory of operation 

2. FMULR operation - FMUL 

3. FMULR operands - Ml and M2 

4. FMULR result - FM 

(FMULR) 

5. FMULR associated !!ST, BRANCH, and ERR.OR conditions 

6. FMUL Programming Considerations 

4 - 58 

is 



4.4.l General Description, Theory of Operation 

The AP-120B FLOATING 
multiplication unit 
operands. 

POINT MULTIPLIER (FMULR) is 
using 38-bit FLOATING POINT 

4.4.l.l The Operands (Ml, M2) 

a three-stage 
NUMBERS as its 

The operands (contained in Ml and M2 registers) are selected by the 
value contained in the respective Ml and M2 fields of the current 
instruction word. 

The available inputs to the two FMULR registers are described in detail 
in Section 4.4.3 and in Ml, M2 of the instruction summary. 

FMULR operands must not be unnormalized by more than one bit position 
or an unnormalized, and thus possibly inaccurate, product will result. 
With unnormalized operands the result will be incorrect in that it will 
be unnormalized by the sum of the number of unnormalized bit positions 
of the two input arguments. 

Since the FMULR internally retains only 28 bits of MANTISSA Result (the 
full 56-bit product is generated in order to produce a clean 28-bit 
result), use of unnormalized operands can yield results with the loss 
of many, if not all, of the bits of significance expected for the 
result. 

4.4.1.2 The Result (FM) 

The NORMALIZED, CONVERGENTLY-ROUNDED result is enabled onto the 
FLOATING MULTIPLIER BUS (FM) one cycle after the second subsequent 
FMULR operation is initiated, (See Section 4.4.4) 

After the initial "pipeline" set-up requirements have been satisfied, 
the FMULR can produce significant FLOATING POINT MULTIPLICATION results 
every instruction cycle (167 ns). Note that the AP-120B allows 
simultaneous FLOATING POINT MULTIPLIER (FMULR) and FLOATING POINT ADDER 
(FADDR) operations. 

4.4.1.3 Theory of Operation 

The process of multiplying two FLOATING POINT NUMBERS (FPN 1 s) requires 
that the true EXPONENTS of both operands be added and the MANTISSAS of 
both operands be multiplied. The sum of the EXPONENTS becomes the 

4 59 



EXPONENT of the result. 

The Al'-12.0B FLOATING POINT MULTIPLIER (FMUU) is a '!'HUE-STAGE pipeline 
which opei"'ar:es in the following utanneX": 

* Stage One 

In the first stage, the FMUL instruction loads the Ml and M2 operands. 
A partial mlr:ip lication is then performed on the two MANTISSAS and the 
EXPONP:N'l' true-values are added. 

When a second FMUI. is executed, the partial product and EXPONENT su~ 
are "pushed" dowu into STAGE TWO by being latched in the second-stage 
buffer. 

* Stage Two 

In the second stage, the MANTISSA 
completed. 

tUultip lication operation is 

When a third FMUL is executed, the preliminary result:: is "pushed" down 
into the ST.AGE THREE buffer. 

* Stag& Three 

In the third stage, the result: is NORMALIZED and CONVERGEN'l'LY-ROUND.ED. 

This result becomes available as FM on the next instruction cycle after 
the third FMUL. Tlle UNDER.FLOW or OVERtI.OW bit of the APSTATUS REGISTER 
will be sec accot'ding to the condition of this result and may be tested 
for significance one cycle after this result becomes available as FM 
(two cycles after the tnird FMUL). These two sta.tu.s bits, once set, 
remain· set until they ar.e cleared via LDAPS (see I/O group) or oy a 
RESET operation :from t:he Host to the panel reset. The interface reset, 
however, does not affect the APSTA'!US · regis tar. 

4 60 

I 



Stated again, the result of an initial FMUL becomes available as FM 
only after two subsequent FMULS have been initiated. 

Example: 

tl 
t2 
t3 
t4 
t5 
t6 
t7 
tlO 

OPERATION (COMMENTS) 

FMUL DPX,DPY 
FMUL TM,MD 
FMUL DPY(3),DPX(2) 
zz 
zz 
FMUL (pushes pipeline) 
zz 
zz 

RESULT AVAILABLE AS FM 

(FM = DPX * DPY) 
(FM = DPX * DPY) 
(FM = DPY * DPY) 
(FM = TM * MD) 
(FM = TM * MD) 

ZZ = Any non-FMUL instruction. 

NOTE 

The result of the FMUL operation initiated 
at t3 is at tlO still "hanging" in the pipe­
line, where it will remain until one cycle 
after another FMUL is initiated. 

4 61 



4.4.2, The FMULR Operation ~· FMUL 

When t:he FM field of. the instruction word: .. l and VALUE 
useu, a FLOATING MULTIPLY (FMUL) is initiated using t:he 
selected by t:he oc:.tal. value of t:he Ml and M2 fields of 
word. (Ml * MZ) 

4 .. 62 

field is not 
source operands 
the instruction 



4.4.3 FMULR Operands (via Ml, M2 registers) 

The FMULR uses Ml and M2 registers as the input buffers for the 
operands selected for the current FMUL operation. The programmer may 
select one of four available sources to be used as the Ml REGISTER 
operand and one of four available sources for the M2 REGISTER operand. 
Source operands must not be UNNORMALIZED by more than one bit position 
or an incorrect (unnormalized) result will be obtained. 

The list below shows the sources available for each respective FMULR 
register. (See Ml, M2 for detailed descriptions.) 

Ml REGISTER Ml FIELD VALUE M2 REGISTER M2 FIELD VALUE 
SOURCE (IN OCTAL) SOURCE (IN OCTAL) 

FM 0 FA 0 
DPX(idx) 1 DPX(idx) 1 
DPY(idx) 2 DPY(idx) 2 
TM 3 MD 3 

For coding in ASSEMBLER FOID-f...AT, the programmer need only specify FMUL 
with the desired operand sources. Examples: 

ASSEMBLER 
F0&'1AT 

FMUL 
FMUL FM, FA 
FMUL DPY (-3), DPX 

COMMENTS 

"dummy" FMUL actually an FMUL FM, FA 
Multiply: Current (FM) * current (FA) 
Multiply: (DPY(DPA-3)) * (DPX(DPA)) 

4 63 



4.4.4. The FMUI:.a Result (FM) 

The FLOATING Mut'!IPLIElt OUTPUT (FM) may be directed. t:o: 

l. FMULR Ml REGIS'n:R 
2. FADDR Al R.EGIS'I!R.. 
3. MAIN DA'.I'.A MEMORY INPUT REGIS'ttR (MI) 
4. DA!A PA.DY (DPY), or 
S. OA'!A PA.D X (OPX) 

FM can set: t:he UNDERFLOW OR OV!U!.OW bits of the APSTA'tUS REGIS'n:R.. 
These bits may be tested. for significance. one AP cycle later (after FM 
is valid). 

NOTE 

In the case of. FM OVERFLOW or UNDEU'LOW, 
a signed maximum: or zero is forced as the 
result. (See FLOA'!ING POINT SUMMARY, 
OVERFLOW/UNDERFLOW.) 

4 ... 64 



4.4.5 FMUL Test, Branch, and Error Conditions 

The FMUL results (FM) can set UNDERFLOW or OVERFLOW bits of the 
APSTATUS REGISTER. These bits may be tested and branches made on their 
condition one instruction cycle after the appropriate FADDR result is 
enabled onto FA. 

AP STATUS 
BIT NAME 

OVF 
(bit 0) 

UNF 
(bit 1) 

CONDITION 

Set to "l" when the current FM has 
overflowed, (See Note 2), OVF remains 
latched until cleared by the micro­
program or host computer. 

Set to "l" when the current FM result 
has underflowed; (See Note 2), UNF 
remains latched until cleared by the 
microprogram or host computer. 

NOTES 

1. Indicates that the named op-code tests 
two or more conditions in order to de­
termine status of branch condition. 

2. See FLOATING POINT SUMMARY, OVERFLOW/ 
UNDERFLOW. 

4 65 

RELATED BRANCH 
OPCODE(S) 

BFPE 
(See Note 1) 

BFPE 
(See Note 1) 



4.4.6 FMUL Programming Considerations 

4.4.6. l Simple Examples 

Any of th& dat:a sou-cces listed under Ml inay be mlJ.ltiplied by any of the 
data sources in M2. For exat:tlple, to multiply a number read from Data 
Memoey by a constant from Table Me1X10ry: 

FMUL !M,MD "TM *' MD 

or, to mtJ.ltiply a number in Data Pad X by another number in Data Pad Y: 

FMUL DPX,DPY "DPX * DPY 

4.4.6.2. Pipelining Considerations 

The Floating Multiplier is a three-stage pipeline., An "FMUL 11 

instruction loads the specified operands into the Ml and M2 registers. 
The tvo previous partially completed products are pushed down the 
pipeline to Buffer 2 and Buffer 3 respectively. One A2 cycle later the 
new' contents of Buff er 3 have been normalized and rounded, and are then 
available for use or storage elsewhere. 

The following instruction sequence illustrates ho~ 
pipeline. works, where A,B ••• G ,H are floating-point 
multiplied together• 

Multiplier 
Pipeline 

Ml, BUF- BUF- Multiplier 
Time Cycle Instruction M2. FER 2 FER. 3 Result (FM) 

a l. FMUL A,.B. A,.8 
167ns 2. FMUL C,D C,D A,.B 
333ns 3. FMUL E,F E,F C,D A,.B 
SOOns 4. FMUL G,a G,li E,F C,D A*B 
667ns s. FMtn. - G,H E,F C*D 
833ns 6. FMUL - G,H E*F 
l.Ous 7. - G,H G*H 

the Multiplier 
numbers to be 

The "FMUL'' in cycles S and 6 are dutm:llY multiplies used to push the last 
ewo computations to the end of the pipeline. !n the above example we 
completed four floating-point multiplies in l.Ous. During cycles 3-4, 
while the pipeline was full, products were being done every 167ns, the 
maxialllm rate. 

The completed products as they come out of the Multiplier pipeline are 
referred to by the mne111onic "FM." FM is dynaaic, in that it must be 
used or stored before being changed by the nexe "FMUL" instruction. 

4 66 



4.4.6.3 Pipelining Example 

A computational example is to square the elements in a vector: 

A1 = A1*A1, i=0,1,2,3. A1 is stored in Data Pad X. 

1. FMUL DPX( r)) ,DPX( 9) "Do A2 
a 

2. FMUL DPX( 1) ,DPX( 1) "Do A2 
1 

3. FMUL DPX ( 2 ) ,DPX ( 2) "Do A2 
2 

4. FMUL DPX( 3) ,DPX( 3) ; DPX(9)<FM ''Do A2 save A2 
' 3 0 

5. FMUL; DPX( 1 )<FM ''Save A2 
1 

6. FMUL; DPX( 2 )<FM "Save A2 
2 

7. DPX( 3)<FM "Save A2 
3 

.:_~~:·. 

Below is a chart of this computation, showing the state of the 
Multiplier pipeline and Data Pad X after each instruction is executed. 

Multi lier Pi eline 
Multiplier Data Pad X 

Cycle Ml,M2 Buff er 2 Buffer 3 Result (FM) 0 1 2 3 
1. Ao,Ao Ao Ai Az A3 

2. A1 , A1 Ao, Ao Ao A1 Az A3 

3. Az,A2 A i,A 1 Ao ,Ao Ao A1 Az A3 

4. A3,A3 Az,A2 A1 , Ai A2 A2 Ar Az A3 
0 0 

5. A3 ,A3 Az ,Az A2 A2 A2 Az A3 
l 0 l 

6. A3 ,A3 A2 A2 A2 A2 A3 2 0 l 2 
7. A3,A3 A2 Az A2 A2 A2 

3 0 1 2 3 

4 67 



4.4.6.4 Multiply-Add Example 

The full floating-point computational power of the A.P-120B is utilized. 
when 'Ne consider a pl:ocess involving both ~ultiplies and adds. Form.· 
the· dot product of two eight-e_lement vec.tors Ax Bx = Ax.Bx, i = -4-, -3, 

1, 2, 3 r.Jhere Ax is in Data Pad X and. Bx is in Data. Pad Y: 

4 68 



Fill the 
Multiplier 
Pipeline 

Fill the 
Adder 
Pipeline 

Both 
Pipelines 
full 

Empty the 
Multiplier 
Pipeline 

Empty 
the Adder 
Pipeline 

{!. FMUL OPX ( -4) ' OPY (-4) 
2. FMUL OPX (-3), OPY (-3) 
3. FMUL DPX ( -2) ' DPY (-2) 

4. FMUL OPX (-1), DPY (-1) 
FAOO FM, ZERO 

5. FMUL DPX (0), OPY (O); 
FADO FM, ZERO 

6. FMUL DPX ( 1) ' DPY ( 1) 
FAOO FM, FA 

7. FMUL DPX (2), OPY (2); 
FAOO FM, FA 

8. FMUL DPX ( 3) , DPY ( 3) ; 
FAOD FM, FA 

FMUL; FADD FM, FA 

10. FMUL; FAOD FM, FA 

11. FAOO FM, FA 

12. FAOO; OPX (3)<FA 

13. FAOO OPX (3), FA 

14. FAOD 
15. OPX (3)<FA 

4 - 69 

11 00 A-4B-4 
11 00 A_38_3 
11 00 A-zB-2 
11 00 A-1 B-1 · A_48_4 is 
11 now done, save it in 
11 adder. 
11 00 Ao Bo. A_38_3 is now 
11 done, save it in the 
11 adder. 
11 00 A1 B1. A_2B-2 is now 
11 coming out of the mul -
11 tiplier, and A_48_4 
11 from the adder, add 
11 them together. 
11 00 A2Bz. A_1B-1 is now 
11 coming out of the mul -
11 tiplier, and A_38_3 
11 from the adder, add 
11 them together. 
11 00 A3B3. Ao Bo is now 
11 coming out of the mul -
11 ti plier, and (A_48_4 + 
11 A-2B-2) from the adder, 
11 add them together. 
11 A1B1 is coming out of the 
11 multiplier, and (A_3B_3 
11 +A-1 B-1) from the 
11 adder, add them to-
11 gether. 
11 A2B2 is coming out of the 
11 multiplier, and (A_4B_4 
11 +A-2B-2+A0Bo) from the 
11 adder, add them to-
11 gether. 
11 A3B3 is coming out of 
11 the multiplier, and 
11 (A_38_3+A-1B-1+A1B1) 
it from the adder, add 
it them together. 

11 (A_4B_4 +A_2 s_2+AoBo+AzB2) 
11 is coming out of the 
11 adder, save it in DPX (3). 
11 (A-3 s_3+A_1 s_1 +Ao Bo+Az Bz) 
11 is coming out of the 
" adder, add it to 
11 (.~4B_4+A_z s_2+Ao Bo+ 
11 AzBz) which was saved 
11 in OPX ( 3) . 
11 Push result out of Adder 
11 The result: (A_4 8_4 + 
11 A_3B-3+A_2B-~A_1B-1+ 
11 Ao 8a+A181 +A2 +A3 83) • 
u saved in DPX 3). 



!n accumulating the sum-of-products, t:he even t:erm sum was kept in one 
half of the adder pipeline and t:he odd t:erm sum in the other half. 
During cycles S-7 when both pipelines were full, floating-point 
a:ultiply-adds were being computed every 167ns. This is 12 million 
floating-point computations per second. A longer sum of prodl.1.cts 
calculation, involving more t:erms, would maint:ain this maximum 
computation rate for nearly all of the computation loop. Here, in a 
short calculation, most of the time was spent filling and emptying 
pipelines. Even so, the seven adds and eight multiplies took 15 cycles 
(2.Sus) to complete, or an overall rate of 3.3.3ns per floating-point 
multiply-add. 

As a further aid in understanding the multiply-add interaction in the 
above sum-of-products computation, the chart belo'W summarizes the 
computation: 

Multi nlier: 
Cycle lM1,M2 FM 
l. A-.i+,B-i+ 

2. A-3,B-3 

3. A-2, B-2 

4. A-1,B-1 A-i,*B-4 

5. Ao ,BlJ .L3*B-3 

6, Ai,B1 A..2*B-2 

7. A2,B2 A-1 *A-1 

8. A3,B3 Ao*Ao 

9. Ai *A1 

10. A2*A2 

11. A3*A3 

12. 

13. 

14. 

15. 

E3 is Il terms of tb.e 
OS is n terms of tb.e 

Adder~ 
IAl,A2 

A_4B_4,yJ.~ 

A_3B_3,yJ.f/J 

A_2B_2 ,A_'+B_4 

A-1B-1 ,A._3B-3 

AoBo, ES2 

A1B1, OS2 

A2B2, ES 3 

A3B3, OS3 

osi+. ES 4 

...._ .... 

even term Sum: 
odd term Sum: 

4 70 

FA 

A_4B_4 

A..3B_3 

ES2 

OS 2 

ES3 

OS 3 

ES 4 

Ost+ 

OS4+ES4 

D a.ta Pad: 
3 

...... _....... 

ESt+ 

ESt+ 

Est+ 

OS1.++ES4 

AiBi,i = -4,-2,0,2 
A1E1,i = -3,-1,1,3 



4. 5 I/O GROUP 

The Op-Codes available within the I/O group of the AP-120B instruction 
word provide the operations necessary for (1) DATA TRANSFERS between 
the AP-120B and the HOST COMPUTER INTERFACE (HOST-CPU I/F) or other 
ADDR.ESSA.8LE I/O DEVICES through the programmed I/O Section and (2) 
AP-120B INTERNAL REGISTER transfers to the PANEL BUS. 

This summary is presented in sections related to the functional areas 
of the AP-120B I/O STRUCTURE: (1) the VIRTUAL FRONT PANEL (PANEL), AND 
(2) PROGRAMMED 1/0 OPERATIONS. 

An outline of this summary is presented below: 

I. AP-120B I/O OPERATIONS 
* General Overview 

* Panel Operations 
* Programmed I/O Operations 

* DEVICE ADDRESSING 

II. AP-l20B VIRTUAL FRONT PANEL (PANEL) 
* General Description 
* Panel Operations 

* General .Rules 

III. PROGRAMMED I/O 
a. HOST INTERFACE 

* Control Register 
* Formatter 
* Direct Memory Access operations and related 

transfer and control registers 
* Programmed Interrupts 

b. ADDRESSABLE I/O DEVICES 
* TMRAM * OTHER I/O DEVICES 

rv. PROGRAMMING EXAMPLE 

4 71 



4.5.l A.P-120B I/O OPERATIONS 

4.5.1.l General Overview 

The A.P-120B I/O structure consists of two major areas of operation: 

(1) VIRTUAL FRONT PANEL (PANEL) - through which the HOST-CPU 
may examine /or alter AP-l20B INTERNAL REGISTERS and 
Data Memories. 

(2) PROGRAMMED !/O - through which data transfers are accomplished 
between the A.P-l20B and addressable I/O DEVICES. The I/O 
DEVICES that aiay be addressed via programmed I/O operations 
are grouped in the following manner: 

A. HOST INTER.FACE 
* CONTROL REGISTER (CTL) 
* FORMATTER (FMT) 
* DIRECT MEMORY ACCESS REGISTZRS : 

WORD COUNT REGISTER (WC) 
HOST MEMORY ADDRESS REGISTER (RMA, Hli}i'.A) 
A.P-l20B MEMORY ADDRESS REGISTER (APMA.) 

B. OniER ADDRESSABLE I/O DEVICES 
* WRITA.8LE TA.8LE MEMORY (!MR.AM) 
* MEMORY BANK SELECT 
* OTHER I/O DEVICES 

4.5.1.2 Panel Operations 

The PANEL is similar in function 
co1l1puter and consists of three 
SWITCHES (SWR), AND FUNCTION (.FN). 

to the 
16-bit 

console of a stand-alone 
registers: LIGHTS (LITES), 

The PANEL is primarily under the control of the HOST-CPU. Through 
PANEL operations, the HOST-CPU may examine and modify internal A.P-120B 
registers as well as dictate control functions related to A.P-l20B 
program execution. The Al'- l20B may deposit into the LIGHTS REGISTER 
(LITES), and read the SWR. 

Typically, the PANEL is used for bootstrap operations (loading and 
starting programs) and for debugging user software by using hardware 
breakpoints and/or by examining and modifying AP-120B registers and 
memory. PANEL OPERATIONS are controlled by the condition of control 
bits in the FUNCTION REGISTER (FN). (See Section 4.5.2 for more 
details on PANEL operations). 

4 72 



4.5.1.3 Programmed I/O Operations 

The operations available through PROGRAMMED 
detail in Section 4.5.3 of this summary. 
is to present a general overview of the 
involved in executing basic PROGRAMMED 
AP-120B and ADDRESSABLE I/O DEVICES. 

* Theory of Operations 

I/O will be discussed in 
The purpose of this section 
components and operations 
I/O transfers between the 

In contrast to the customary use of a DEVICE CODE FIELD within a given 
I/O instruction word, the AP-120B uses a separate eight-bit register, 
termed the DEVICE ADDRESS REGISTER (DA), whose current contents 
designate the particular I/O DEVICE involved in the current AP-120B I/O 
operation. Because DA is a separate register, the programmer must 
properly condition the contents of DA at least one instruction before 
initiating an I/O operation to the desired I/O DEVICE. 

Generally, the designated I/O DEVICE communicates its state of 
availability to the AP-120B (whether or not it is ready to receive or 
send data) by the current state of its I/O DATA READY FLAG (IODRDY). 
When IODRDY of the designated I/O DEVICE is equal to 1, then the I/O 
DEVICE is READY for the current ~/O transfer operation. 

Certain Op-Codes within the AP-120B instruction set are capable of 
testing the state of a device's IODRDY FLAG before executing a. given 
I/O Op-Code. When these Op-Codes are used, the AP-120B will execute a 
SPIN operation (See note) until IODRDY(DA) is equal to 1, at which time 
the specified I/O transfer will be executed. 

The particular DATA PATHS employed in an I/O operation depend on which 
DATA-TRANSFER MODE is being used. Generally, with the exception of the 
DIRECT-MEMORY ACCESS MODE (DMA), data to be OUTPUT from the AP-120B 
must be placed onto the DATA PAD BUS (DB) where it is automatically 
placed onto the INBS by the AP-120B I/O structure and OUTPUT to the 
addressed I/O DEVICE. Data input to the AP-120B must be concurrently 
transferred onto DB (via use of a DATA PAD GROUP OP-CODE) from the I/O 
BUS (INBUS) where it is placed by the sending I/O DEVICE. 

NOTE 

A "SPIN" will suspend all on-going program 
operations within the AP-1208 until the 
IODRDY(DA) FLAG = 1. Note, however, that 
an infinite SPIN loop will occur if the 
IODRDY(DA) never equals 1. Do not use I/O 
SPINS during overlapped main data accesses 
(See Section 4.7). 

4 73 



* In/Out Operations 

Basically, there are four types of PROGRAM CONTROI. INPUT OR OUTPUT 
instructions. The PROGRAMMER may: (1) unconditionally transfer DATA 
(via IN, OUT); (2) SPIN until the I/O DEV!CE is READY (IODRDY(DA)=l), 
and then transfer DATA (via SPININ, SPNOUT).; (3) transfer DATA then 
change the contents of DA (INDA, OUTDA); or (4) SPIN until 
IODRDY(DA)=-1, then transfer DATA, and then change the contents of DA 
(SPINDA, SPOTDA). (See IN/OUT field for more details.) 

Examples of typical non-DMA PROGRAMMED I/O operations are given below: 

Assume the S-PAD REGISTER S equals the desired I/O DEV!CE ADDRESS. 

!O INPUT DATA INTO A.P-120B: 

ASSEMBLER FOR.i.'!AI 

MOV 5,5; LDDA;DB=SPFN 
IN; DPX(-3)<INBS 

or, TO INPUT BY TESTING IODRDY (DA) 
MOV 5,5; LDDA;DB=SPFN 
SPININ; DPX(-3)<INBS 

TO OUTPUT DATA A.P-l20B: 
MOV 5,5;LDDA;DB=SPFN 
OUT;DB:a'!M 

TO OUTPUT BY TESTING IODRDY(DA) 
MOV S,S;LDDA;DB=SPFN 
SPNOU't';DB=TM 

or, LDDA; DB=OEV 
OUTDA; MOV S, 5 

(MEANING) 

(Set up DEVICE ADDRESS) 
(INPUT data onto INBUS and 
transfer it to DPX(-3) via. 
DB.) 

(Set-up DEVICE ADDRESS) 
(SPIN until IODRDY flag is 
set, then INPUT onto 
INBS and transfer it to 
DPX(-3) via DB.) 

(Set up DEVICE ADDRESS) 
(Put: DATA WORD onto DB, 
then OUTPUT. THE I/O LOGIC 
will place the data word 
onto INBS where it will be 
OUTPUT to the I/O DEVICE.) 

(Set-up DEVICE ADORE.SS) 
(SPIN until !/O DEVICE is 
ready to accept the DATA 
WORD. When ready, the I/O 
logic will place the DATA 
WORD onto INBS where it will 
be OUTPUT to the !/O DEVICE.) 

(Set device address) 
(Output to firs~ device 
and set DA to SPFN.) 

In order to execute an INPUT or OUTPUT operation, th.e object- I/0 DEVICE 

4 74 



must be selected by placing its DEVICE ADDRESS into the AP-120B I/O 
DEVICE ADDRESS REGISTER (DA). DA is an eight-bit register affording a 
range of 256 different I/O DEVICE ADDRESSES. The lower DEVICE 
~DDRESSES are dedicated in the following manner: 

I/O DEVICE DEVICE ADDRESS 

HOST INTERFACE 
DMA REGISTERS : 

WORD COUNT REGISTER (WC) 0 
HOST MEMORY ADDRESS REGISTER (HMA) 1 
CONTROL REGISTER (CTL)(See Note 1) 2 
AP-l20B MEMORY ADDRESS REGISTER (APMA) 3 

FORMATTER (FMT) 4 
WRITABLE TABLE MEMORY (TMRAM)(See Note 2) 5 
MEMORY ADDRESS EXTENSION (MAE) 30 
APMA EXTENSION (APMAE) 31 
MASK (including MODE and I/O) 32 

ADDITIONAL DEVICE 
First IOP16 
Second IOP16 
Parity Option 
First PIOP 

ADDRESSES are: 
10-14 
20-24 
33-37 
100, 101t110-117 

NOTES 

1. CTL register provides control functions for 
other HOST-INTERFACE functions besides DMA. 

2. HHMA uses device address 5 in some systems. 
However, if both TMRAM and· HEMA are needed, 
then HHMA is moved to another address which 
depends upon the system's configuration. 

* DA Modification Instructions 

The current contents of the DEVICE ADDRESS REGISTER (DA) determine 
which I/O DEVICE ~ill be involved for a current AP-120B I/O operation. 
DA may be altered, via programmed instruction, by use of one of the 
following OP-CODES. (Effective as of the next instruction cycle). 

4 75 



OP-CODE 

LDDA 

OUTDA. 

SPOTDA 

INDA 

SPINDA 

SNSA.DA 

SPNADA 

SNSBDA 

SPNBDA 

I/O SUB ... 
FULD 

LDR!G 

INOU! 

INOU't 

INOUT 

IN OUT 

SENSE 

SENSE 

SENSE 

SENSE 

OCTAL VALUE' OPERA'IION 

7 (DPBS)~ DA 

2 Perfo1:'11l output to 
current I/O DEVICE(DA) then· 
(SPFN)~ DA 

3 Spin until IODRDY(DA)•l, 
then .OUTPUT DATA, then 
(SPFN)~ DA 

6 Perform INPUT. frOtll 
I/O DEV!CE (DA), t:hen (SPFN);. DA 

7 Spin until IODRDY(DA)•l, then 
INPUT DATA, then (SPFN)~ DA 

2 Enable CONDIT!ON "A" to 
IODRDY(DA), then (SPFN)~·DA 

3 Test loop for CONDITION "A": 
"A" is continually enabled into 
IODRDY(DA) while the Al?-l20B 
SPINS. When (IODRDY(DA)) ::a l, 
then ( SPFN).,. DA 

6 Enable COND I'!ION "B" 
to !ODR.OY(DA), then (SPFN)• DA 

7 Test lo op for COND !T!ON "13" : 
"13" is continually enabled into 
IODRDY while the Al?-120B SPINS. 
When (IODRDY(DA)) • l, then 
(SPFN)~· DA 

Additionally, ce;-tain OP-CODES within the SENSE field permit either of 
two condition lines (A,B) to be enabled into the IODRDY FLAG. (See 
SENSE field) Conditions "A" and "13" are de11ice dependent and have no a 
prior descriptions. 

4 - 76 



4.5.2 Virtual Front Panel (PA.i.~L) 

4.5.2.l General Description 

The AP-120B I/O STRUCTURE contains a VIRTUAL FRONT PANEL (PANEL) 
consisting of three 16-bit registers - (1) SWITCHES (SWR), (2) LIGHTS 
(LITES), AND (3) FUNCTION (FN). The registers are under control of the 
HOST-CPU via HOST-INTERFACE. The HOST may examine and/or set these 
registers at any time, irrespective of the state of the AP-120B. The 
AP-l20B, however, may only DEPOSIT into the LITES register and only 
READ the SWR (See HOSTPNL field of Special Operations group in 
instruction descriptions). A brief description of the PANEL registers 
are given below: -

REGISTER 

SWITCHES (SWR) (16 Bi.ts) 

LIGHTS (LITES) (16 Bits) 

FUNCTION (FN) (16 Bits) 

4.5.2.2 Panel Operations 

DESCRIPTION 

Used to enter DATA and ADDRESSES 
into the AP-120B. Can be read or 
written by HOST-CPU or read by AP-
120B programmed instruction. 

Used to display the contents of 
internal AP-120B registers. Can be 
read by HOST-CPU and written by AP-
120B programmed instruction. 

Provides VIRTUAL FRONT PANEL 
control operations. Can be read 
or written by HOST-CPU only. 

The control bits of the PANEL FUNCTION REGISTER (FN) determine the 
current operation(s) of the VIRTUAL FRONT PANEL. The available PANEL 
operations may be classed into two groups (1) AP-120B PROGRAM 
CONTROL, and (2) AP-120B INTERNAL REGISTER EXAMINATION and 
MODIFICATION. 

A detailed explanation of available PANEL operations and related 
control bits of the FUNCTION REGISTER (FN) is given below. Unless 
otherwise noted, the active state of the appropriate FN control bit is 
a "l". 

4 77 



11 
sroP 

PANEL FUNCTION REGISttR FORMAT 

l 2 3 4 5 6 7 8 9 lO ll . 12 1.3 14 lS 
START CONT STEP RES"!T tXAM OEP SRS.AK INC: WORD REGIS'l:Elt SELECT 

When the AP-120B is running only the STOP and a!SET panel functions are 
valid. The other panel functions can only be exercised after the 
AP-120B has been halted. BUAK and REGIS'!ER SELECT can be altered and 
have an effect. 

OPERATION 

STOF/HAL!ED 

STA.it'! 

CONT 

S!EP 

PANEL OPERATIONS AND RELAIED FN CONTROL BITS 
AP-l20B PROGRAM CONTROL 

R!I..ATED FN 
R!GlSTER BI'!(s) 

BIT 110" 

BIT· "l" 

BIT "2" 

BIT "3 II 

EFF!C'! 

STOP AP-120B program execution upon 
coml)letion of the curTent instruc­
t.ion. &N bit "O" reflects the 
current state of the AP-120B when 
examined. by the tiOST. ( 11 1" equals 
Al'-12.0B HALTED, "O" = A?-1208 RUN­
NING). Setting this bit will stop 
the AP. Note that if AP-12.0B is 
cur-rently executing a "SPIN° con­
dition, the halt will be effective 
only after the "SPIW' has been 
completed. 

STAR.T AP-12.0B program execution at 
the program location specified by 
the contents of the SWITCHES (S'WR) 
register. The prefer-red first 
instruction should be a NOP to 
to avoid timing sequence. 

CONTINUE AP-1208 program execution 
at the prograa:1. location pointed to 
by the current contents of the PRO­
GRAM SOURCE ADDRESS REGISTER (PSA). 

Single S?tP. The AP-l20B instruc­
tion· a.t the program location point:­
ed to by the curTent contents of 
PSA will ba ext.euted. The PSA 
will then be advanced to point to 
the next program location. 

4 78 



RESET 

BREAK 

REGISTER 
SELECT 

PSA 

MA 
TI1A 

BIT 11 411 

BIT "7" 

CORRESPONDING 
OCTAL VALUE 
IN REG SEL 
FIELD 

0 

2 
3 

RESET and HALT the AP-120B immed­
iately. Clear S-PAD Register "O" 
(SP(O)) and set current SPFN to 
SP(SPFN); clear APSTATUS Register, 
reset and clear MAIN DATA MEMORY 
TIMING. Inoperative if AP-120B 
caught in an I/O SPIN. 

BREAKPOINT - valid only if PSA, 
MA, or TMA is specified in the 
REGISTER SELECT field (FN bits 
12-15). This causes AP-120B pro­
gram execution to halt when con­
tents of selected register equal 
the value set into SWR register. 
The exact timing of a given BREAK 
operation is dependent on the 
ADDRESS REGISTER selected. 

EFFECT 

Halt AP-120B program execution on 
next instruction following the 
one whose address is contained 
in SWR. PSA will point to the 
instruction following it. 

Halt AP-120B program execution 
after executing the next instruc­
tion following the one that refer­
enced the memory location whose 
address is contained in SWR. PSA 
will point to the second in­
struction following the one 
which caused the breakpoint. 

4 79 



OPERA'.t!ON 

DEP 

!NC 

WORD 

A2-l20:S R!G!STER EXAi.'l!NAl'.ION AND MODIFICATION 

REI.A.TEI> FN 
REGIST!R BI'! ( s ) 

BI'! "5" 

B!T "6" 

BITS 8-9 

INC OCT.AI. 
VALUE. 

0 

1 

2 

3 

BITS 10-11 

E:FF!CT 

EXAMINE the register or memory 
selected by the octal value con­
tained in the REGISTER SELECT field 
(FN bits 12-15) •. Display to LITES 
that PORTION of the selected 
register or memory as determine by 
the WORD field (FN bits 10-11). 

DEPOSIT the contents of the 
SWITCHES (SWR.) into the register 
register or memory selected by the 
value contained in the REGIST:EB. 
SELECT field (FN bits 12-15). The 
deposit. will occur to that portion 
of the objec.t register or memory 
selected by the value con-
tained in the WORD FUI.D (FN 
bits 10-11). 

Increment either MA, !MA, or DPA­
depending. on current value• 
fol.lowing completion of the other 
concurrently specified PANEL 
operations. This operation al­
lows sequential memory locations 
to be examined. or deposited .• Note 
that MA pre-increments on the 
concurrent DEPOSIT into MD. 

ADDRESS REGISTER TO BE 
!NCR.E.'iENTED 

NONE 

MA (MAIN DA?A MEMOR.Y A.PDR.ESS 
REGIS!iR 

DP.A (DATA PAD ADDRESS REGISTER) 

1'MA (!ABLE MEMORY ADDR.ESS 
REGISTER 

Selects which portion of a 
register or me11SOry is deposited or 
examin.ed. The WORD field is used 
in conjunction with REGISTER. SELtC'r 
(FN .BITS 12-15). Portions are 
selected in the following manne;r. 

4 .. 80 



WORD OCTAL 
VALUE IS: REGISTER SELECTED BY CURRENT VALUE IN FN BIT 12-15 IS: 

16 BITS 
OR LESS 38 BITS 64 BITS (PROGRAM SOURCE) 

0 ALL ** PS(QUARTER ZERO) 
(PS(QO)); 
(PS(bits 0-15)) 

l ** EXPONENT bits 02-11 PS(QUARTER. ONE) 
right justified, (PS(Ql)); 
zero filled. (PS (bits 16-31)) 

2 ** HIGH MANTISSA - PS(QUARTER TWO) 
MANTISSA bits 00-11; (PS(Q2)); (PS 
right justified, (bits 32-4 7)) 
zero filled. 

3 ** LOW MANTISSA - PS(QUARTER THREE) 
MANTISSA bits 12-27. (PS(Q3)); (PS (bits 

48-63)) 

**Not applicable 

REGISTER 
SELECT BITS 12-15 

REGISTER SELECT 
OCTAL VALUE 

0 

l 

2 

3 

Selects which register, memory, or data path 
will be examined or deposited for the cur­
rent PANEL OPERATION. Used in conjunction 
with WORD field, (FN bits 10-11) by OCTAL 
VALUE, in the following manner: 

REGISTER (Field bit 
SELECTED length) 

PSA (12) 

SPD (4) 

MA (16) 

TMA (16) 

DPA (6) 

4 - 81 

COMMENTS 

PROGRAM SOURCE ADDRESS 
REGISTER 

S-PAD DESTINATION 
ADDRESS REGISTER 

MAIN DATA ME..~ORY 
ADDRESS REGISTER 

TABLE MEMORY ADDRESS 
REGISTER 

DATA PAD ADDRESS 
REGISTER (DPA is 6 bits 
wide even though DPA 
has 32 registers.) 



s 

5 

6 

7 

10 

11 

11 

1.3 

14 

15 

16 

17 

SPFN(l6) 
(See Note 1) 

SP(SPD)(l6) 
(See Note 2) 

APSTAIUS ( 16) 

DA (8) 

PS(TMA) (64) 

!NBS (DA) (38) 

0 

DPX(DPA-4) (38) 

DPY(DPA-4) (38) 

MD(MA) (16) 

0 

TM(TMA) 

4 82 

S-PAD FUNCTION 
currently enabled. May 
be EXAMINED ONLY. 

S-PAD DESTINATION 
REGISTER currently 
specified by SPD. 
May be DEPOSITED 
ONLY. 

AP-120B INTERNAL STATUS 
REGISTER 

DEVICE ADDRESS REGISTER 

PROGRAM SOURCE WORD 
specified by the AD­
DRESS currently 
contained in TM.A. 

Read input data from 
I/O device specified by 
DA register. May be 
examined only. 

Not applicable 

DATA PAD X location 
specified by the cur­
rent contents of DPA 
minus 4. 

DATA PAD Y location 
specified by the current 

·contents of DPA minus 4. 

MAIN DATA Mr.iORY lo­
cation specified by the 
current contents of MA. 

Not applicable 

TABLE MEMORY location 
specified by current 
contents of TMA. May 
be EXAMINED ONLY.Note 
one cycle delay in 
examination after 
change of TM.A. 



NOTES 

1. Valid only during EXAMINATION operation (FN 
bit s "' 1). 

2. Valid only during DEPOSIT operation (FN bit 
6 = 1). 

General Rules - Panel Operations 

* STARTING the AP-120B (via START or CONT) 

The PANEL START function can be used to start the AP-120B program· with 
the following restriction: 

The FIRST INSTRUCTION executed by the AP-120B 
MUST NOT alter PSA in any manner other than 
sequential instruction. The user should not 
instruction or any instruction within the 
instruction word. Accordingly, the preferred 
NOP. 

following a START command 
to advance it to the next 
use a BRANCH or JUMP 

SPEC or I/O groups of the 
first instruction is a 

The PANEL CONT function is recommended to start the AP-120B, in the 
following manner: 

1. Set SWR to the starting address and execute a DEP into PSA. 

2. Set SWR to a desired breakpoint (See note) and execute a CONT. 

NOTE 

This places the necessary breakpoint coda 
into the user's program should he need to 
debug the program. 

* STOPPING the AP-120B (via STOP or BREAK) 

On all stopping operations except RESET, the AP120B will 
set to the ADDRESS of the next instruction. Since SPFN 
will be set according to the instruction that the PSA 
pointing to. Otherwise, the instruction pointed to 
executed and will execute correctly when the user STEPS 
(except for MD timing) •. 

4 83 

stop with PSA 
is current, it 
is currently 
by PSA is not 
or CONTINUES 



* MAIN DATA TIMING CYCU 

The MD memory timing is designed so as to preserve the 
curTent state of the timing sequence when a. STOP or BaEAK. 
is. executed. MD timing will be. in its proper· sequence 
when the user STEPS or CONTINUES. 

Note that the uset" must not. examine or alter either 
MD or !M, nor should he permit a 0?1.A tTans fer while the 
A.P-l.20B is stopped, if MD timing is suspended. TM will 
also be upset by any panel. operation other than continue 
if one cycle after SET'n!A, !NCTMA., DEC'!MA or LDnt'..A. 

To determine condition of MD memocy timing: If PSA is 
pointing to either the first or second instruction loca~ 
tion following a SET.MA, INCMA, DECMA, or LDMA, the memory 
cycle is suspended in m.id-operation and the restrictions 
stipulated in.the note above apply. 

* RESETTING the. A.P-llOB (via RESET) 

The user may not correctly STEP or CONT following execution of a PA.t.'iEL 
RESET. Ml) memory timillg is cleared and A.PSTATUS is res et. Also SP ( 0) 
is cleared and SPFN is set to SP(SPD) with SPDaO. Thus the S-PAD 
registers can be examined by setting SPD (DEP t:o SPD) and examining 
SPFN. 

* STI:l'PING the A.P-l20B (via STEP) 

The user inay alter' or examine 
restrictions concerning MD MEMORY 
discusHd. 

* EXAMINING or DEPOSITING 

any register 
TL.'il:NG and !M 

or !llemory except for 
timing as already 

The user lllay examine and/or deposit into any available field within the 
restrictions concerning MD MEMORY and TM TIMING and the conditions 
listed below: 

* The cun-ent contents of 'IMA are used as a pointer to 
indicate which l?ROGRAM SOUR.CE location is to be e:cq.niin­
ed ot" deposited .. 

4 84 



* TO EXAMINE SP(SPD) - since SP(SPD) may not be examined 
directly, the user may execute a PANEL RESET to force 
an SP(SPD) to SPFN and then examine SPFN (This clears 
SP(O)). Alternatively, this may be accomplished with 
the following micro-code sequence: 

MOV {faO, 0 
RSPFN; LDSPNL 0 
HALT 
NOP 

This will set SPFN=SP(SPD) without clearing SP (0). 

Note that a PANEL RESET will also clear MD TIMING and APSTATUS. 

*TO EXAMINE OR DEPOSIT INTO MD - a MEMORY READ CYCLE is ini­
tiated by the user executing a DEP into MA. A MEMORY WRITE 
CYCLE is initiated by the user executing a DEP into MD. 
Therefore to deposit into a given MD location, and then 
examine that MD location, the following sequence must be 
performed. 

PANEL REGISTER CONDITIONS 
OPERATION 

(1) Set MA to 
location X 

(2) Examine MD 

(3) Deposit into 
MD(X) (This 
writes into 
MD at pre-
viously set 
MA) 

(4) SET MA to 
location X 

LITES 

Will reflect 
contents 
of MD(X) 

MD(X) 

SWR 

Set to 
address X 

Set to value 
desired to be 
deposited into 
WORD (bits 10-

Set to address 
x 

4 85 

FN 

DEP (BIT 6) = 1 
REG SEL (bits 12-
15) = 2 (MA) 

Exam FN=l002(8) 
(bit 5) = l 
REG SEL = 15 
WORD = 1, 2 or 3 

DEP (bit 6) =l 
REG SEL (bits 
12-15) = 15 (MD) 

10-11) = 1, 2 or 
3 

DEP (bit 6) = 1 
REG SEL (bits 12-
15) = 2(MA) 
WORD (bits 10-
11) = 0 



(5) ExatllineMD Will reflect 
new contents 
of MDCI) 

Exa111 (bit S) "" l 
REG SEL "" 15 
WORD • l , 2, or 3 

* TO EXAMINE 'n1 - because the TA.al..& MEMORY hardware 
requires two PANEL operations to retrieve a requested 
TM location, the following· sequence tll'IJSt be performed. 

PANEL. REGISTER COND!l'IONS 

OPERATION 

(1) 

(2) 

(3) 

LITES 
Set. !MA (To --
initiate exa-
mine TM(X) 

Set 111A. 
( "Dummy P A.NEL 
operation to 
retrieve con-
tents of !MCI)) 

Examine TM (TM(X)) 

SWR. 
Address X 

Address X 

NOT! 

FN 
DEP (bit 6) = l 
REG SEL (bits 
12-15) = 3 (TM.A) 

Same as above 

Exam (bit 5) = l 
REG SEL •· 3 
WORD • 1,2 or 3 

WlUTilLE TA.SU MEMORY (TMRAM) may be deposited 
through PANEL operations. The user must resort 
to progl'.am I/O Op-Codes. in order to WRITE into 
!'MR.AM. 

* USING 1'RE INCREMENT FUNCTION (via INC) 

This function is valid only when either Exam, Dep, RESET or ST • .\R.T is 
selec.ted in the FN. The timing of incrementation is dependent on the 
operation specified. 

Assume INC·• l, 2, or 3 

REGISTER 
SEUCTED IN 
INC FIELD 

DPA 
TMA 

PANEL 
OPERATION 

EXAM or 
DEP 

EFFECT 

DEP MD increments after the speci£ied 
operation. 

DEP MD Increments before exectJting current 
DEP operation. 

4 86 



4.5.3 PROGRAMMED I/O 

ADDRESSABLE I/O DEVICES capable of I/O transfer operations via use of 
the AP-120B PROGRAMMED I/O may be classed in the following manner: 

A. HOST INTERFACE and related REGISTERS 

B. Other ADDRESSABLE I/O DEVICES 

4.5.3.1 HOST-INTERFACE and related REGISTERS 

* General Description 

The HOST-INTERFACE acts as a buff er between AP-120B 
HOST-INTERFACE is capable of both programmed-control 
and DIRECT MEMORY ACCESS (DMA) operations. It 
following AP-120B ADDRESSABLE REGISTERS: 

and HOST-CPU. The 
I/O (See Note 1) 
consists of the 

AP-120B DEVICE 
DEVICE ADDRESS 

WORD COUNT REGISTER (WC) (16 bits) 0 
HOST MEMORY ADDRESS REGISTER (HMA) (16 bits) 1 
CONTROL REGISTER (CTL) (16 bits) 2 
AP-120B MEMORY ADDRESS REGISTER (APMA) (16 bits) 3 
FORMATTER (FMT) (38 bits) 4 
High Host Memory address (HHMA)(2-4 bits)(See Note 2) 5 

NOTES 

1. PROGRAMMED CONTROL I/0 - I/0 data transfer 
operations are accomplished through sequential 
program instruction execution. Although the 
DMA control registers may be accessed through 
PROGRAMMED CONTROL I/O, the actual DMA transfer 
operation when enabled is autonomous. 

2. HHMA is applicable only for those HOST CPU's 
having more than 16 bits of DMA address. 

4 87 



X' 
WC:;:jJ 

* Control Register (CTL) 

CTL is a 16-bit I/O ADDRESSABLE REGISTER (DA = 2). CTL contains the 
condition bits that control most HOST-I~TERFACE-related I/O operations. 
CTL can be read anytime by the executing AP-120B program without regard 
to HOST-CPU activity. CTL can be written by either the HOST-CPU or 
AP-120B. However, if both attempt to write CTL at the same time, the 
HOST-CPU will be given priority. 

The operations directed by CTL fall into the following groups: 

1 2 
INTR IAP 

AP WC 

l)Mode and direction of transfer (DMA or PROGRAMMED -
CONTROL I/O) 

2) Type of DATA FORMAT and I/O PATH SELECTION (via 
FORMATTER) 

3) Transfer STATUS and ERROR BITS, and 

4) PROGRAMMED-INTERRUPT enable bits 

CONTROL REGISTER FOR...\fAT 

3 4 5 6 7 8 9 10 11 12 13114 
IH IH IH F!!:RR DI.ATE cc AP WRT DEC DEC FMT 

HALT WC ENB OMA HOST APMA HMA 

A description of CTL bit operations is given below. Further· details of 
particular CTL bit functions will be discussed in sections related to 
the I/O DEVICES which are controlled or monitored by the CTL register. 
All bits are READ/WRITE except as noted. 

Bit 0 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

Bit 5 

WC=O Indicates that the Word Count Register is zero. Note 
that WC is decremented only during DMA transfers to/ 
from Host Memory. Bit 0 is a Read only bit. It should 
not be used to monitor DMA activity. 

INTRAP Set the INTRQ (Interrupt Request) flag in the AP-120B. 

IAPWC Set INTRQ (Interrupt Request) flag in the AP-120B 
when the DMA transfer is done. 

IHALT Enable a Host Interrupt when the AP-120B halts. 

IllWC Enable a Host Interrupt when the DMA transfer is done. 

IHENB Interrupt Host Enable. Interrupt Host if AP-120B 
attempts to set this bit, or if AP-120B executes an 
"INTEN .. instruction (See I/0 field). This bit can 
actually be written only by the Host. 

4 88 

15 
HOMA 

START 



Bit 6 FERR 

Bit 7 DLATE 

Bit 8 cc 

Bit 9 APDMA 

Format Error. Indicates that EXPONENT UNDERFLOW or 
OVERFLOW occurred in conversion from AP-120B Format to 
Host Floating-Point Format. (Read only) Can be set 
only during transfers with CTLlO=l and FMT=2 or 3. 
Due to the Pipeline nature of the FORMATTER, the next 
two words past the end (before the beginning if CTLll= 
1) of the DATA ARRAY will be loaded into the FORMATTER 
at the end of the transfer. In order to avoid spurious 
setting of FERR, the programmer must insure that 
these two words are either zero or are FPN's within 
the allowable dynamic range of formats 2 or 3. 

Data Late. Indicates that the AP-120B did not empty/ 
load the FORMAT BUFFER before the Host attempted to 
reload/read it. On some Hosts this bit also indicates 
an attempt to access non-existent Host memory. In the 
latter case, the DMA transfer is tenninated (PDP-11 
only). Bit 7 is a read-only bit that is cleared by 
an interface reset or by setting HDMA START (CTL 
15). It is not cleared by a panel Reset. 

Consecutive Cycle. Block DMA transfers to/from Host 
memory will occur without interruption. On typical 
Hosts, the Host CPU will be locked out but other 
higher priority DMA devices will still have access 
to Host memory. Some Host interfaces are equipped 
with a hardware selectable consecutive cycle 
counter that limits the number of cycles stolen 
in a burst. 

Allows the interface to perform DMA transfers to/ 
from AP-120B memory. Depending on the direction of 
transfer, a MAIN DATA MEMORY cycle is initiated every 
time the Host finishes reading or loading the format 
register, whether via DMA or program control. On the 
AP-120B side, the format register is loaded from the 
MAIN DATA BUS instead of the DATA PAD BUS. 

Bit 10 WRTHOST Write to Host. This bit controls the 
direction of transfer. If set, data is read from the 
Ap-120B, passed through the FORMAT REGISTER, and 
written to the Host. If clear, the direction of 
transfer is reversed. 

Bit 11 DECAPMA Decrement APMA. If set, APMA is decremented during 
DMA transfers to/from Ap-120B MAIN DATA MEMORY. If 

clear, APMA is incremented. 

Bit 12 DECHMA Decrement HMA. If set, DMA is decremented during 
DMA transfers to/from Host memory. If clear, HMA 

is incremented. 

4 89 



Bits 13 
& 14 FMT Format Register Control. (See FORMATTER, next 

section). 

Bit 15 HDMA 
start/ 
busy 

* Formatter (FM'!) 

Host DMA Start. Initiate DMA transfers to/from Host 
memo"t"Y• When read, the state of this bit reflects the 
status of the Host OMA activity ( 11 111 if active, "O" 
if inactive). Transfers continue until WC=O. Writing a 
"O" in this bit with DMA active has no effect on the 
transfer as long as the state of CT!. (bits 8-14) is 
not changed. The programmer should not, under any 
circumstances, write a 11 111 in this bit with the DMA 
active. This is the bit that should be read in 
order to monitor DMA activity. 

The FORMATTER consists of the following: 

* The necessary decoding logic to interpret the 
types of ongoing 1/0 transfer (via CTL bits 9, 
10, 12, 13 and 14) 

*A 38 bit: double-buffered register, and 

* An I/0 DATA READY FLAG for AP-1208 operations 

FMT has an. I/O DEVICE ADDRESS of 4 

the FORMATTER is a HOST-INTERFACE transfer buffer which under the 
direction of selec.ted bits of the CONTROL REGISTER (CTL), performs the 
following functions in order l:'o coordinate the !/O trans fer operations 
specified (whether via PROGRAMMED I/O or DMA): 

1) FORMAT CONVERSION 

2) INPUT BUS SELECTION 

3) TRANSFER-DIRECTION CONTROL and ORDER of 
DATA-WORD ASSEMBLY 

4) I/O TRANSFER TIMING COORDINATION via its 
IODRDY flag 

4 90 



(1) FORMAT CONVERSION 

The following FORMAT CONVERSION operations may be performed for a given 
I/O TRANSFER between the AP-120B and the HOST-CPU. Note that the 
function selected is entirely dependent on the conditions of bits 13 
and 14 of the HOST-INTERFACE CONTROL REGISTER (CTL). The programmer 
must insure that the CTL bits are configured in a manner consistent 
with the particular I/0 transfer being executed. 

VALUE in CTL 
Bits 13-14 

FORMAT CONVERSION 
OPERATION 

0 

1 

3 

32-bit integer. No format conversion. Used to 
transfer integers of half-words. 

16-bit integer. 16-bit integers from the Host are 
converted to unnormalized 38-bit AP-120B FPN's. 
Low 16-bits of AP-120B FPN are sent to Host. 

Conversion of "SIGN-MAGNITUDE MANTISSA 
with BINARY EXPONENT" format to/from 
AP-120B Floating Point format. Includes 
logic to handle "Phantom Bit" and TWO's 
COMPLEMENT formats (See Notes 1 and 2). 

Conversion of IBM 32-bit format to/from 
AP-120B format. IBM format can be specified 
to be either SIGN-MAGNITUDE or TWO's 
COMPLEMENT (See Notes 1 and 2). 

NOTES 

1. For format types 2 and 3, the FOR..'1ATTER has 
the necessary logic to detect OV~RFLOW and 
UNDERFLOW on conversion from AP-120B format 
and to force a signed maximum quantity on 
OVERFLOW or Floating-Point Zero on UNDERFLOW. 

2. Operation may vary depending on Host-CPU 
used. Generally, one of either format 2 or 
3, will be adapted to the single precision 
Floating-Point format of the Host in 
question. 

4 91 



(2) INPUT BUS SELECTION 

One of the following formatter input busses 
depending on the I/O operation being performed (as 
bits 9 and 10). 

is selected by FMT 
determined by CT!. 

CTI. CT!. 
BIT 9 BIT 10 INPUT BUS SELECTED BY FMT 

0 OR 1 0 HOST DATA BUS 

0 1 AP-120B I/0 BUS (INBUS) 

1 1 AP-120B MAIN DATA OUTPUT 

(3) DIRECTION or TRANSFER and ORDER of DATA-WORD ASSEMBLY 

Bit 10 of CTL (WRTROST) determines which 
transfer. (When WRTROST = 1, the transfer 
WRTHOST = 0, then the transfer is to AP-120B). 

direction the FMT will 
is to HOST=CPU; when 

The FMT may assemble bi-directional 16-bit words from the HOST-CPU 
before transferring them to the AP-120B, (depending on the format 
selected via en. bits 13 and 14). The order in which the half-words 
are assembled is dependent on the condition of CTL bit .12 (DECHMA). If 
DECHMA = l, the HOST-CPU DMA I/F is assumed to be going backwards 
through host memory and the FMT will expect to receive a LOW WORD 
followed by a HIGR WORD and will assemble the two words accordingly. 
If DECHMA = O, then the order of assembly is reversed (See Note). 

NOTE 

FLOATING POINT NUMBER ARRAYS are always 
expected to be stored in FORWARD ORDER; 
that is, with the LOW WORD portion of 
the DATA-WORD stored in the next higher 
numbered host memory location than the 
HIGH WORD port ion. 

(4) I/O TIMING COORDINATION via IODRDY 

ll'MT will generate an I/O READY response (via IODRDY = 1) to an 
appropriate A.P-120B IN/OUT or SENSE INS'!RUCTlON (with DA = 4). If 
IODRDY = 1, then the FMT is ready to either: 

(1) Receive the DATA-WORD from the A.P-120B (when CTL bit 10 
(WRTliOSt = 1), or 

(2) Send FOR..'1ATTED DATA to the AP-120B (when CTL bit 10 
(WRTHOST) = 0). 

4 - 92 

I 

I' 
' 



Note that to insure correct execution of a given I/O 
operation, all functions of FMT must be properly selected. 
appropriate CTL bits must be correctly conditioned). 

* Direct Memory Access (DMA) 

transfer 
(i.e., all 

The AP-120B is capable of both STANDARD-DMA and PARTIAL-OMA operations 
between the AP-120B and HOST-CPU. STANDARD DMA is defined as 
autonomous (outside of programmed I/O) block transfers between 
AP-120B MAIN DATA MEMORY (MD) and HOST-CPU MEMORY, via HOST- INTERFACE 
FOR..~TTER (FMT). Partial DMA is a mixed mode of DMA and PROGRAMMED 
I/O, available in the following combinations: 

1) HOST-CPU MEMORY via DMA to FMT, via PROGRAMMED - I/O to 
AP-120B 

2) HOST-CPU via PROGRAMMED I/O to FMT, via DMA to AP-120B 
MAIN DATA MEMORY (MD). 

3) AP-120B MD via DMA to FMT, via PROGRAMMED 1/0 to HOST-CPU. 

4) AP-120B PROGRAMMED I/O to FMT, via DMA to HOST-CPU MEMORY. 

The particular mode executed depends on the configuration of bits 8-15 
of the CTL register. (See, CONTROL register, this summary). 

4 93 



I STANDARD OMA 

MEMORY 

HOST-

CPU 

I PROGRAMMED I/O 

MEMORY 

HOST­

CPU 

~ 
~ 

(BI-DIRECTIONAL) 

via 
B.LOCK-TRANSFER 

OMA ... ,. HOST-INTERFACE 

FORMATTER (FMT) 

(BI-DIRE:CTIONAL) 

via 
BLOCK-TRANSFER 

DMA ... .. 
...... , 

* 

MAIN DATA (MD) 

D AP-1208 
p 

B 
s 

HOST-INT'.ERFACE MAIN DATA (MD) 

D 
p 

B 

~· .___F_O_RMA_'I'T:E:_R_(_F_MT_)_. ~ 

s 

*At end of AP-l20B-TO-HOST Transfer, AP must transfer 
two more words than Host. 

4 94 

AP-120 



I PARTIAL DMA 

( l) 

(2) 

(3) 

( 4) 

MEMORY 

HOST­

CPU 

MEMORY 

HOST­

CPU 

I MEMORY 

HOST­

CPU 

HOST­

CPU 

FOUR TYPES: 

via 
BLOCK-TRANSFER 

DillA 

~-----..11 ... •. HOST-INTERFACE 
FORMATTER (FMT) 

PROGRAMMED I/O 
via HOST I/O 
BUS 

HOST-INTERFACE 
______ _...,.. FORMATTER (FMT) 

PROGRAMMED I/O 
via INBUS 

via 
BLOCK-TRANSFER 

OMA 

via 
BLOCK-TRANSFER PROGRAMMED.I/O 

via HOST I/0 
BUS 

HOST-INTERFACE ... ___ D_MA __ _ 

~ 
(See Note l) 

via 
BLOCK-TRANSFER 

FORMATTER (FMT) 

MAIN DATA (MD) 

D AP-120B 
p 

B 
s 

MAIN DATA (MD) 

D AP-120B 
p 

B 
s 

MAIN DATA (MD) 

D AP-120B 
p 

B 
s 

HOST-INTERFACE PROGRMAMED I/O MAIN DATA (MD) 

via INBUS FORMATTER (FMT) .,..,...._ ____ _ 

(See Note 2) 

4 - 95 

D I AP-120B 
p 

B 
s 



NOTES 

1. First two arguments read by host (32 bits 
total in Format 1, 64 bits total in Fot"mats 
0, 2, 3) must be discarded. 

2. AP-120B must transfer two more words than 
word count at end of transfer. 

DMA - Related Registers 

The following AP-120B ADDRESSABLE Registers provide the necessary 
information and control bits for DMA execution. If the prOgramlller 
wishes to control or initiate host DMA transfers from within the 
AP-120B, he must properly condition the applicable bits of these 
registers. 

OMA-RELATED 
REGISTER 

CONTROL (CTL) 
(See CONTROL REGISTER, 
this summary, for more 
details) 

WORD COUNT (WC) 

HOST MEMORY ADDRESS 
(HMA) 

AP-120B MEMORY ADDRESS 
(A.PMA) 

DEVICE 
ADDRESS 

2 

0 

l 

3 

OMA-RELATED BITS 

Bit 8 (CC) 
Bit 9 (APDMA) 
Bit 10 (WRTHOST) 
Bit 11 (DECA.PMA) 
Bit 12 (DECHMA) 
Bit 13 & 14 (FMT) 
Bit 15 (HDMA START/BUSY) 

All: Contains the value repre­
senting the length of block 
measured in Rost CPU words to 
be transferred in current DMA 
operation. (1 to 65,535 Host 
words). 

All: Contains the HOST MEMORY 
ADDRESS at which OMA transfer 
will begin (applicable only in 
STANDARD OMA or PARTIAL OMA 
types 11 1" and 11411 ) 

All: Contains AP-120B MEMORY 
ADDRESS at which OMA transfer 
will begin (applicable in 
STAi.'IDARJ) OMA and PARTIAL DMA 
types 11 211 and 11 3"). 

I/O depend 
examples for 

PROGR.Ai.\fM ING 

The specific operations required for ROST-CPU PROGRAMMED 
entirely on the type of HOST-CPU being used. Programming 
AP-120B PARTIAL ... DMA ( l and 4 above) are presented in the 
EXAMPLE section.of this summary. (e.g., ~OOTSTRAP example). 

4 - 96 



DMA Operations 

Generally, DMA operations are executed in the following manner: 

(1) Bits 8-15 of CTL determine the particular mode, format, 
and direction of DMA operation to be performed. 

(2) The value placed in WC determines the length of block 
to be transferred (number of words). 

(3) Addresses placed in either HMA or APMA (or both, depending 
on mode of DMA selected) indicate respective MEMORY 
ADDRESSES at which the transfer is started. 

Once the DMA is initialized (CTL bit 15 = "l"), the AP-120B wil 1 raise 
it~ DMA REQUEST to the HOST-CPU. Once the DMA REQUEST is granted, the 
AP-120B will transfer/receive in the following manner; 

a. DMA will transfer one word (See Note), then -

b. If CC=O (Bit 08), the AP-120B will drop its request for 
one HOST-CPU MEMORY cycle, allowing lower priority 
devices the opportunity t.o request and receive HOST-
CPU channel priority. 

c. One cycle later, the AP-120B will again raise its request to 
HOST-CPU (locking out all other lower priority devices) and 
will again transfEr one word. 

d. The process will continue until the DMA. tranfer is completed 
(WC • 0) or until a programmed RESET prematurely terminates 
the operation. Additionally, FERR (CTL bit 06) will be set 
if EXPONENT OVERFLOW or UNDERFLOW occurred during the transfer 
operation. 

NOTE 

If DMA is the consecutive cycle mode (CTl 
bit 8 - "l") then DMA. will transfer the 
number of words indicated by the value 
selected on the DMA. "HEX" hardware switch, 
if applicable, before dropping its request 
for one cycle. 

4 97 



* Programmed Interrupts 

The A.P-120B is capable of generating the following interrupts: 

a. AP-120B INTERNAL INTERRUPTS 
( l ) UNCONDITIONAL 
(2) OMA INACTIVE 

b. INTERRUPTS TO HOST-CPU 
(1) AP-l20B HALTED 
(2) DMA INACTIVE 
(3) CONTROL BIT "5" (CTLOS) 

* AP-120B INT!RNAL INTERRUPTS 

AP-120B INTERNAL INTERRUPTS, when active, set the INTERRUPT REQUEST 
FLAG (INTRQ) to 11 1". INTRQ may then be tested and branches made by use 
of the BINTRQ Op-Code. (See BRANCH). 

Both INTERNAL INTERRUPTS initially require an appropriate enabling bit 
set to. "l" in the CONTROL REGISTER (See Note). 

*The UNCONDITIONAL interrupt requires en. bit "l" (INTR.A.P) 
be set. If INTRAP is set, the AP hardware will unconditionally 
set the INTRQ flag. 

*The OMA INACTIVE interrupt requires CTL bit "2" (IAPWC) to be 
set as an enable. With IAPWC set to "1 11 when HDMA START=Q 
(indicating that DMA is inactive), the INTRQ flag will be set. 

INTRQ will be true as long as the conditions for either interrupt stay 
valid. 

INTERRUPT 

UN CONDITION 

DMA DONE 

en OTHER 
ENABLING B!T CONDITIONS EFFECT 

Bit 11 111 = "l" none Set INTRQ to "l" 
(INTR.AP) 

Bit "2" = "1" HOST OMA Set INTRQ to 11 1" 
(IAPWC) INACTIVE 

NOTE 

Additionally, AP-120B INTERNAL INTERRUPTS 
require PRIORITY GRANTED via the INTPIN enable 
line. (Applicable only if ·there are other 
AP-l20B I/O devices in the hat'dware config­
uration). The host interface has the Lowest 
intert'tlpt priority. 

4 98 



Example: 

To set UNCONDITIONAL INTERRUPT: (effectively using CTLOl as a program 
flag) 

ASSEMBLER 
FORMAT (MEANINq) 

LDDA; DB=Z (Set up DA for CTL) 

OUT; DB=40000 (Write CTL bit "l"(See Note) 
INTRQ is set to 11 111 ) 

0 

0 

0 

0 

BINTRQ SVCRT (Branch to SVCRT (service routine) 
if INTRQ = 1) 

To sec DMA INACTIVE INTERRUPT: 

LDDA; DB=2 (Set up DA for CTL) 

OUT; DB=20000 (Write CTL bit "2"(See Note) -
when DMA DONE, then IN!RQ is 
set to "l"). 

0 

0 

0 

0 

BINTRQ SVCRT (Branch to SVCRT (service routine) 
if INTRQ = 1) branch occurs only 
if DMA inactive. 

NOTE 

The PROGRAMMER may destroy existing status bits 
in CTL when writing new bits. To avoid this, he 
should first examine the bits of C!L and, if 
needed, rewrite existing bits except for CTL15 
back into CTL along with the desired enable 
bit. This procedure is not advisable if the 
Host CPU may be writing CTL at the same time. 

4 99 



* Interrupts To Host-CPU 

THE AP-120B is capable of generating three interrupts to HOST-CPU. 
Like the AP-120B INTERNAL INTERRUPTS, HOST-CPU interrupts require prior 
conditioning of the appropriate enable bits in the CONTROL REGISTER 
(CTI.) in addition to the particular condition being true. 

INTERRUPT 

AP-l20B 
RA.LIED 

OMA 
INACTtVE 

en.cs 
(See Note 2) 

HOST-CPU INTERRUPTS 

CTL 
ENABLING B1T 

Bit "3" = 1 
(IHAI.T) 

Bit "4" • 1 
(IHWC) 

Bit "5" ..- l 
(IRENB) 

OTHER 
CONDITIONS 

AP-120B 
HAI.TED 

DMA INACTIVE 

AP attempted 
to set bit 5 
or executed IRFNB 

NOTES 

EFFECT (See Note 1) 

Cause HOST-CPU 
INTERRUPT 

Cause HOST-CPU 
!NTE:RRUPT 

Cause HOST-CPU 
INTERRUPT 

l. The. specific operation of interrupt generation 
depends on the particulaJ: HOST-CPU and HOST-· 
INTERFACE employed. 

2. CTL05 interrupt will generate a HOST-CPU 
INTERRUPT in the following manner: 

a. tiOST-CPU must have previously set 
CTLOS to "l". 

b. The A2-120B attelll'Pt:s to set CTI.OS 
by use of an INTEN Op-Code (See 
CONTROL) or by w~iting a 2000(8) 
into CTL. 

c. A HOST-CPU interrupt will be 
generated. 

In order to facilitate repeated use of the CTI.OS INTERRUPT, the method 
used to clear the CTI.05 interrupt condition is for the host t:o load t:ha 
FN registiu:. !n 111ost HOST~PU I/F's, any Wi.ITt to FN automatically 
clears a CTLOS interrupt condition.. The. A.P-l20B can also clear the 
interrupt condition by trying to WRITE a "O" into CTL05. The state of 
C'ILOS will not be changed by the AP-120B action. 

4 - 100 



Example: 

HOST-CPU PROGRAM 

Stipulated Condition 
(Sets CTL05) 

0 

0 

0 

0 

CTLOS INTERRUPT APPLICATION 

AP-120B PROGRAM: 

or, 

0 

O· 

0 

0 

0 

0 

INTEN 
0 

0 

0 

LDDA, DB=2 
OUT; DB=2000 

(MEANING) 

(INTEN attempts to set 
CTLOS; generates HOST­
CPU INTERRUPT) 

"set up DA 
"attempt to set CTLOS 

Host-CPU Interrupt Service Routine 

Handles interrupt; then clears CTLOS interrupt condition by an I/O 
output to FN, thus enabling another CTLOS interrupt. The suggested 
DATA-WORD to be written into FN is zero or one that restores FN 
bits 7 to 15. 

Host Interrupt Handler Programming Considerations 

In most host interfaces the following protocol will insure that all 
three AP to host interrupts (HALT, DMA DONE and CTL05) can be serviced 
without danger of a "lost" interrupt: 

a) Poll the two visible interrupting conditions in a fixed 
order; e.g., AP halted and Halt interrupt enabled first 
followed by DMA inactive and DMA interrupt enabled. If 
the condition and the interrupt enable are both true then 
perform the required service. 

b) If no service was required by the two visible conditions 
then the interrupt was due to th.a AP-120B having set CTL 
bit with IHENB set and this interrupt should be given its 
required service. This service should include a reset of 
the bit 5 condition by writing the FN register. 

c) Clear all three interrupt enables in the CTL. register. 

4 - 101 



d) Re-enable only those interrupts that were enabled at entry 
to the routine and were NOT serviced in step a) above. Be 
careful here not to set the HDMA START bit in the CTL 
register. Writing a zero into HDMA START will not affect a 
DMA transfer that is in progress as long as the other DMA 
control bits (CTL08 to CTL14) are not altered. IHENB can be 
re-enabled if step b) cleared the condition via a write FN 
register. 

The net result of steps c) and d) is to clear the interrupt request 
logic thus allowing another interrupt to occur when another condition 
comes true. This. technique wil 1 work even if the condition came true 
while in the service routine .. 

The routines that initiate DMA and AP-120B processor action will have 
to enable the appropriate interrupts AFTER starting the DMA or the 
AP-120B processor. This is now possible since the interrupt enables in 
the CTL register can now be safely modified while the DMA is running as 
long as a zero is written into HDMA START. Again, IHENB can be left on 
if the interrupt service routine uses a write to the FN registers to 
clear the CTLOS condition. If the service routine does not clear the 
CTL05 condition then IHENB can be set any time following the first 
write FN register command. The start routine must be careful to 
inhibit all AP-120B interrupts (set PDP-11 processor priority at or 
above level 4) when modifying the CTL register. 

4.5.3.2 Addressable I/O Devices 

The AP-120B I/O STRUCTURE may perforin transfer operations with up to 
256 I/0 DEVICES addressable through use of the eight bit DEVICE ADDRESS 
REGISTER (DA). The first 24 addresses are dedicated to HOST- INTERFACE 
DEVICES (DA 0-4., 6) to WRITABLE TABLE MEMORY-TMRAM (DA 5); ME~ORY BANK 
SELECT (30,31), first IOP16, 10 to 14, ancisecondlOP 16, 20 to 24. 

4 - 102 



* TMRAM 

With respect to writing operations, TMRAM is essentially an I/O DEVICE 
whose address is 5. To WRITE into T:MRAM, one must set DA to 5 at least 
one cycle before outputting data to TMRAM. For example, in order to 
WRITE the current FA into TMRAM location 100(8), the following program 
would be specified: 

Assume S-PAD REGISTER 6 equals "lOO(octal)" 

ASSEMBLER FORMAT 
0 

0 

DPX(O)<FA 
LDDA; DB=S 
MOV 6,6; SETTMA; DB=DPX(O); OUT 

0 

0 

0 

(Meaning) 

Save FA in DPX(O) 
(Select TMRAM as I/O DEVICE(DA)) 
(Set TI1A to 11 lOO(octal), WRITE 
DPX(O) into TMRM lOO(octal)) 

Because of the TM WRITE operation, two cycles later the out-put of 
TMREG is undefined. Three cycles later (assuming no change in TMA) the 
contents written into TMR.AM will be available as the TM OUTPUT (TM). 

* Other Addressable I/O Devices 

A variety of I/O DEVICES may be added to the AP-120B, depending on user 
app lie at ion and HOST-CPU to AP-120B CONFIGURATION. 

4 - 103 



4 •. 5. 4 Programming Example 

The example given in this section shows how the A.2-120B BOOTSTRAP 
program. is loaded and used along with the HOST-DMA to store a given 
program into AP-120B PROGRAM SOURCE MEMORY. The example nicely 
ill'ustrates the various functions of the AP-120B I/O structure. 

AP-120B BOOTSTRAP 

Essentially, the AP-120B BOOTSTRAP is loaded and executed in the 
following manner (See Table 4-2): 

(1) The three-word BOOTSTRAP program is loaded into the AP-120B 
by the HOST-CPU using AP-120B PANEL operations. 

(2) The BOOTSTRAP is started by HOST-CPU --again using the PANEL. 

(3) With the' AP-120B BOOTSTRAP running, a HOST-OMA is initiated. 
The HOST-DMA transfers 16-bit program quarter-words to the 
FORMATTER (FMT). FMT assembles them into 32-bit half-words 
and signals the AP-120B when it is ready. The AP-120B 
BOOTSTRAP then stores the half-word into the appropriate 
portion of the PROGRAM SOURCE MEMORY. 

(4) The process continues. When the HOST-DMA is finished, the 
HOST-CPU is interrupted. (If interrupts are not used 
thee l:iOST-CPU may test the CTL REGISTER-bit 15 to determine 
when the DMA is done.) 

(5) The AP-120B is then reset (HOST ABORT function). The AP-
120-B may then be started again by the HOST-CPU at the 
starting address of the newly loaded program. 

000000 

000001 

BOOT-LOADS INSTRUCTION HALF-WORDS FROM THE HOST DMA 
INTO PROGRAM MEMORY 

000003 
107000 
002000 
000004 

011363 

145000 
001000 

000000 

BOOT: 

LOOP: 

$LOC 0 

LODA; DB=4 

SPININ; 

DB=INBS; 
LPSLT 

4 - 104 

"SET TO HOST DMA 
FORMATTER 

"SPIN (WAIT) UNTIL A 
WORD IS READY 

"PUT THE WORD ONTO DB 
"STORE IT INTO THE 

LEFT HALF OF PS(TMA) 



000002. 011367 SPININ; "WAIT FOR THE DMA 
145117 DB•!NBS; "GET IT. IN 
001000 LPSRT; "STORE IT INTO THE 

RIGHT HALF OF PS(TMA) 
000000 INCTMA; "INCREMENT nm 

POINTER (l'MA) 
BR Loop· "BRANCH BACK. FOR MORE 

" 
II 

It 

II 

"C'ALLER-cALL AN AP-120B, SUBROUnNE. FROM' THE HOST 
COMPUTER 

000003 000003 CALLER: DPX<ZERO; "GET ZERO INTO OPX 
174000 REFR "MEMORY REFRESH SYNCH 
040004 
000000 

000004 000001 FMUL DPX,DPX; "CLEAR. THE MULTIPLIER 
122000 FADD: DPX,DPX "AND THE ADDER 
000400 
012400 

000005 000001 FMUL DPX,DPX; "PUSH THE PIPELINES, 
122000 FADD DPX, DPX 
000400 
012400 

000006 011027 FMUL DPX,DPX; "AND AGAIN FOR FMUL 
106000 LDAPS; "CLEAR THE STA'IUS 

REGISTER 
000400 DB•ZERO 
012400 JSRT. "GO DO THE SUBROUTINE 

000001 000003 HAL?: "RALX ON REttrRN FROM 
THE SUBROutINE 

170000 
000000 
000000 

000010 000000 NOP 
000000 
000000 
000000 

$END 

4 - 105 



~ 

...... 
0 

°' 

loPt:RATION I 
J,o"d l,P-l20B fjOOTSTRAP 
yia f ANEL {See Note) 

(6,00TSTRAP is loaded 
into PS locations O, 
L apd 2 > 

Table 4-2 LOADING AtJP EXECUTJNG AP-1208 BOOTSTRAP 

I ttOST-CflJ I 
(J) O~ SWR 

JQQl(qct:~l) ~ FN 

(2) (Bootstrap word bits 0-15) ~ swR 
!OlO(octal) ~ FN 

(3) (pootstraP word bits !6-31) ' SWR 
l030(octal) ,. fN 

(4) (Bootstrap word bit§ 32-47) ~ SWR 
1050(octal) ~ FN 

(5) (Bootstrap word bits 32-47) ~ SWR 
l370(octal) ~ FN 

fRepeat stepfi 2-5 for 1 
~emaipirrg bootstrap word~ 

I COMMENTS I 
Peppsit: 0 into TMA (TMA is 
the pointer for depositing 
ioto rs> 
(Peposit first quartile of 
bootstrap word into QUARTER 
ZERO of fS(TMA)) 

(Peposit second qu~rtile of 
bootstrap word into QUARTER 
ONE of PS(TMA)) 

(Deposit third quartile of 
bootstrap word into QUARTER 
TWO of PS(TMA)) 

(Deposit fourth quartile of 
bootstrap word iqto QUARTER 
THREE of (PS)TMA. TMA is then 
incremented by '' 111 to poini: 
to the next PS location, 



.J;;-

t­
o 
'" 

F>n-RiiloNJ 
lndic4te to AP-120B 
where to start loading 
selected program. (Assume 
200 is PS address where 
program is to be loaded) 

Start AP-120B BOOT:STRAP 
PROGRAM 

Start PARTIAL-DMA from 
HOST MEMORY to HOST­
lN'fERFACE FORMATTER (FMT) 
(assume program to be 
transferred to AP-l20B 
is now stored in HOST 
MEMORY location 1000 and 
that the program to be 
loaded is 200(octal) 
AP program words 
(lOOO(octal) 16-bit 
h.ost words).) 

[HOS'f.,-CPU I 
200(0C'fAL) 7 SWR 
1003(octal) ' FN 

0 SWR 

EXECUl'lNG THE BOOTSTRAP 

IAP-120BI 

lOOO(octal)~ FN - Dep PSA 
20000(oct4l) ~ FN - Continue 

BOOTSJ.'RAP is 
started-AP is 
waiting for 
fh-51= program 
half-words 

lOOO(octal) ~ HMA 
lOOO(octal) ~ WC 
4201(octal) ~ CTL 

to be trans­
ferred. 

AP is waiting 

[fol1Mfilfrs] 

ttOS'f-CPU deposits 200 into 
TMA (via panel) 

Starts program at PS location 
0 (BOOTSTRAP) via Panel Continue 

Set ttOST-DMA address to 1000 

Set WORD COUNT to 1000 (assume 
16-bit HOST-word) 

(Initialize HOST-DMA to FMT 
in consecutive cycle mode. 
When done, send interrupt to 
HOST-CPU when HOST-DMA is 
done.) 



.&>-

...... 
0 
CX> 

I OPERATIONHJ 

HOST-CPU i,s transferring 
J6-bit ~ords to FMT, via 
OMA. ftiT is assembling 
them into 32-bit words 
and wnen re4dy, signah 
A.r-l208 BOOTSTRAP pro­
gram, BOOTSTRAP theq 
loads formatted word 
into PS at location TMA 
in the following 
inanner: 

• first 32-bit word 
goes into PS -
left half, 

* Second 32-bit word 
goes into PS -
right pa lf. 

EXECll'fiNG THE UOO'fSTRAJ> (COtfHHUEP) 

t uos'i:..Ct>u I 
HOST-CfU i~ trans­
ferring 16-bit wor4s 
ft;orq JtOST-t-fEMORY to 
FMT. LOOP: 

fAH20ij 
AJ> BOOTSTltAP 
LDPA; DB .. 4 

SPlfilli ~ 
J>Jl=INBSi LPSLT 
SPlNltf i DB=INBS i 
LPSRT; lNCTMA; 
BR i.oor 

t COM~-ENTS I 
Set PEVlCE 4DDRESS to 
(fWf) 

Spin until first half word 
is ready, then store it into 
fS(J..H)TMA, 

Spin until second half word 
i§ ready, then store it into 
PS(~tt)TMA; t:Jlen irlCremeqt TMA 
and branch pac~ to LOOP. 

• 



.p. 

.... 
0 
\0 

Wheq JlOST-DMA is compl~teil, DMA J~.l\P'flVE ll'ff~RRUP'f will J>~ se11t: t:o HOST-CfU, HOST-CfU will respond to t:ne int:en:upt: 
Pf @tPppipg the AP-120B ROOTSTRAr as fPllows: 

R~S~T AP-l20B ~eset Af-l~OB using 1/0 reset: 

Set TM4 t:o ilesired Af-
120~ starting address 

s~~rt: newly loaded 
program running in 
Af-l20B 

20QCoct:a1) ~ SWR 
1003Cocta0 ? FN 
J(octal.)? SWR. 
1000 (oct:d) ~ t'N 
200QO(octf!l)? Fti 

NPTE 

The specific Pf-CODES usd by the nosr-cPU 
depepqs Pn the t:ype of HOST-CPU used, 

coin!lland 
Deposit starting location 
2QO into TMA 
Continue at AP-120B 
fROGRAM SOURCE location 3 
4 using caller t:o clear 
pipelines and APSTATUS 



4.6 DATA PAD SUMMARY 

Discussion of the DATA PAD GROUP (DP) will be presented in the 
following manner: 

1 .. General Description and Theory of Opera.tion 
2 .. DP Group Operations 
3. DP Addressing 
4 .. Programming Examples 

4 - 110 



4.6.1 General Description, Theory of Operation 

DATA PAD (DP) is a block consisting of two high-speed accumulator· 
files, termed DATA PAD X (DPX) and Data PAD Y (DPY), respectively (See 
Figure 4-4). 

Each file contains thirty-two, 38-bit accumulators.. Both files share a 
common address pointer, termed the DATA PAD ADDRESS REGISTER (DPA). 
DPA, along with one of four BIASED index field XR=X Read Index, YR=Y 
Read, XW=X Write, YW=Y Write, is used to determine the EFFECTIVE 
ADORE.SS (EFA) for any given DP READ or WRITE operation (See Section 
4.6.4 for more details on DP addressing). 

Data to be stored into DATA PAD may come from the currently available 
FLOATING ADDER result (FA), the currently available FLOATING MULTIPLIER 
result (FM), or one of eight possible sources enabled onto the DATA PAD 
BUS .. 

Data READ from DATA PAD may go to the FLOATING MULTIPLIER OPERAND 
REGISTERS (Ml, M2), the FLOATING ADDER OPERAND REGISTERS (Al, A2), the 
MAIN DATA MEMORY INPUT REGISTER (MI), or onto the DATA PAD. BUS (DB) •. 

The DATA PAD REGISTERS behave like true accumulators in that t'he 
contents of one register can be read out and written into in the same 
instruction without conflict.. The WRITE takes- place at the very end of 
the instruction cycle so that the old contents can be read out for use· 
during. the cycle and. the- updated c.ontents will be available during the· 
immediately succeeding instruction cycle •. 

~:.:.;· 

INBS VALUE DPX DPY MD SPFN 

(Data Pad Bus = DPBS) 

FA. FM 
FA FM 

Write Index .... ---Write Index 
DPX DPA: DPY 

Read~ Index ,..... ___ Read Index 

(DPX) (DPY) 

+: + ;: ... .. Ji !!2' Al A2 DPBS Ml 
+ AI + A2. • DPBS. 

Figura 4-4· Data Pad 

4 - 111 

TM 



4 .. 6.2 Dat.a Pad Operations 

Operations w.ithin the Data PAD GROUP may be: classed in the following 
groups: 

* DPX or DPY explicit WR!TE operations. 
* DPX or: DEY i~ licit READ operations 
* DPBS: source enabling operations 

4.6.2.l DPX or DPY Explicit WRITE Operations 

One each DPX: and· DPY location· may be written during a given ins·truction 
cye:le, us·ing either the DPX or DPY fields. and either XW· or m fields of 
the instruction word .. 

MNEMONIC 
DPX ( idx) <DR 

DEX:( idx:}<F& 

DPX( idx) <FM 

DPY( idx:)<D.B: 

DPY( idx) <FA 

DEY ( idx) <FM 

INSTRUCTION; WORD OCTAL. 
FIELD(S) USED VALUE. OPERATION· 

DPX l Stores current DB 
m 0-7 into specified DATA 

PAD X location. 

DEX' z Store'S:. current: FA. into 
xvi; 0-7 specified DATA PAD X 

location. 

DPX 3 Stores; current FM into 
xw 0-7 specified DATA PAD x 

location. 

DPY: l Stox:es; cw:rent. oa, 
y-w;. o.-7 into' specified DA'IA 

PADY location .. 

DPY 2 Stores current FA into 
YW· 0~1 specifie·d DATA PAD. Y 

location. 

DPY 3 Stot'eS: current FM into 
YW 0-7 specified DATA PAD y 

location. 

NOTE 

If VALUE field is used in the same disabled .. 
The OPY location. will be referenced by the 
xw, field~. ins t.ead .. 

4 - 112 

I, 

I 

Ii 
\
'.'.l 
l 

I 



4. 6.2. 2 DPX,DPY Implicit Read Operations 

One each DPX and DPY location may be read during a given instruction 
cycle. Whenever a DATA PAD X or Y location is referenced as part of. an 
operation in this or another group in the current instruction word, the 
XR and YR fields of th~s group' are referenced. Example: 

FADD DPY(l) ,DPX(2) 

The appropriate index fields in the DP group will be· set when 
specifying the above operation... The YR field will l:re set to 
"S(octa.l)", and the XR field set: to "6(octal)", since the· fields are 
BIASED by four. The index is relative to the current contents of the 
DATA PAD ADDRESS REGISTER (DPA). 

A complete summary of the DATA PAD addres.sing scheme· is given in the 
following section. 

4. 6. 2 .3 DPBS Enabling Ope rat ions 

One· of eight sources may be enabled. onto DPBS during a given 
instruction cycle,, using: the DPBS field. of the curren.t instruction 
word. Specifying a DPBS source has an immediate effect, that is, the 
DPBS.. source enabled during. a given. instruct.ion. w.ill be the data 
currently used in all DPBS-related operations; during, the same 
instruction cycle .. 

Note that only one· source. may be· enabled onto 
instruction and that source will remain 
instruction. 

DPBS during. any given 
as DPBS only during this 

INSTRUCTION WORD 
MNEMONIC: FIELD ( S) USED 

D"Bi • ZERO DPBS 

DB = INBS DPBS 

OCTAL 
VALUE 

0 

1 

4 - 113 

OPERATION· 

Floating Point ZERO 
( 0 .O) is enab le.d as 
DPBS for the current 
instruction... This is 
the- default selection 
for DPBS. 

The data currently 
enabled onto INBS is 
enabled as DPBS for 
the current. instruction. 



DB =value 
(See Note·) 

DPBS 
VALUE 

OS • DPX( idx) DPBS 
XR: 

DB • DPY( idx) DPBS 
YR 

DB• MD DPBS 

DB;• SPFN DPB$ 

DB0 •TM DPBS 

2 

3 
0-7 

4 
o-r 

5 

6 

7 

4 - 114 

The contents of the 
value field. are enabled 
as DPBS for the current 
ins,truction .. (Partial 
word transfer, see 
instruction summary 
(D.& = VALUE) for a 
detailed explanat.ion .. 

The contents of the 
currently· specified 
DATA PAD X. location is, 
enabled as; DPBS for the 
current instruction. 

The contents of the 
currently specified 
DATA PAD Y location 
is enabled as. DPBS 
for the current in­
s truct:ion. 

The current contents 
of the MAIN DATA OUTPUT 
REGISTER (MDREG) are 
enabled as DPBS for the 
cur.rent instruction. 

The current: SPFN is 
enabled as OPBS for 
the current instruction. 
(Partial-word transfer, 
see illus Cration summary 
(DB = SPFN) for a de­
tailed explan·ation:). 

The current contents of 
the TABLE: MEMORY' OUTPUT 
REGISTER ( TMREG) are· 
Enabled as OPBS for the 
current instruction. 



NOTE. 

Value is an integer from decimal -32768 to 32767 
or 0 to 177777 in octal or a label (constant). 

In addition to the eight sources available in the DPBS field, three 
other sources (PS Left Half, PS Floating and PNLBS) can be enabled onto 
DPBS via operations. in the SPEC group. These operations (e.g. RPSL, 
RPSF, SWDB) take precedence- over the DPBS field. 

:"".; 

4 - 115 



4.6.3 Data Pad Addressing 

The effective address of a location in DATA PAD to be read or written 
is determined by the following combination of elements: 

*'The current: contents. of the DATA PAD ADDRESS 
REGISTER (DPA), plus 

* The value contained in the appropriate INDEX field 
(XW, XR, YW, YR) of the ctLrrent instruc.t:ion word, 
minus 

* The BIAS (4(octal)) 

The INDEX field value is contained within the current instruction word. 

The DPA contents may be changed by use of the following instructions 
effective one cycle after the appropriate instruction is executed. 

INSTRUCTION 

INCDPA 
DECDPA 
SETDPA 
LDDPA 

MEANING 

Add "l" to DPA 
Subtract "l" from DPA 
Set: current: SPFN into DPA 
Set current DPBS into DPA 

DPA, is circular in that: incrementing DPA currently containing the 
maximum address (37octa1) will produce a DPA of O(octal) as of the next 
instruction cycle. Accordingly, decrementing a DPA of O(oceal) will 
produce a DPA of 37 (octal) as. of the next instruction cycle.. This 
circular effect applies equally to indexing. Example: 

if DPA == 37(octaU; then: 
DPX(2) would indicate DPX location l(oct:al). 

if DPA == O(octal); then 
DPX(-2) would indicate DPX location 36(octal). 

Note that instructions from LDREG field (LDOPA, LDTMA, MA) cause 
SETDPA, SETTMA, and SETMA to load from DPBS instead of SPFN. 

Examples 
DB<DPX( l) 

Meaning 
Place the contents of the DPX 
location pointed to by the 
current contents of the DPA 
plus one onto DPBS. 

4 - 116 I 

I, 



When specified in the above fashion, the ASSEMl3LER will 
11 5 (octal) 11 into the XR field and a. 11 3 (octal) 11 into the DPBS 
the instruction word. The 11 511 in the XR field indicates that 
READ operation is 11 5" BIAS locations relative to current DPA. 
"4(octal" for the DATA PAD INDEX FIELDS. 

place a 
field of 
the DPX 

BIAS is 

Accordingly,. eight locations are available for any given DPX or DPY 
READ/WRITE operation, from +3 to -4 locations relative to the current 
DPA .. 

APPARENT VALUE TRUE VALUE 
(VALUE CONTAINED IN INDEX FIELD) RELATIVE TO DPA MEANING 

7 +3 DPX or Y(DPA) +3 
6 2 DPX or Y(DPA) +2 
5 1 DPX or Y(DPA) +l 
4 0 DPX or Y(DPA) 
3 -1 DPX or Y(DPA) -1 
2 -2 DPX or Y(DPA) -2 
1 -3 DPX or Y(DPA) -3 
0 -4 DPX or Y(DPA) -4 

Of course, the programmer need only indicate the desired DATA PAD 
location in the following manner: 

DPX (+3) DPY (+3) 

DPX (+2) DP,Y (+2) 
DPX (+l) DEY ( +l) 
DPX (0) DPY (0) 
DPX (-1) DPY (-1) 
DPX (-2) DPY (-2) 
DPX (-3) DPY (-3) 

DPX (-4) DPY (-4) 

4 - 117 



4. 6.4 Programming Examples 

Since four separate: displacement fields (XW, XR, YW, YR) are provided 
within the instruction word, four separate locations in DATA PAD may be 
used ia a given ins true tion.. Example: 

Assume: DPA = 24(octal): 
FADD DPX(3),MD; FMUL TM,DPY(-2); DPX(-3)<FA; DPY(l)<FM 

The above operation would: 
-r·· Use the contents of DPX location 27 in the FADDR operation, 
* Use the contents of DPY location 22 in the FMULR operation, 
* Write the currently available FA into DPX location 21, and 
* Write the currently available FM into DPY location 23 .. 

Note that only one' DPX location may be written, only one 
may be. written, only one DPX location may be read, and 
location may be read du:i:ing the same instruction cycle. 

Using the DPBS to Write Into DATA PAD 

DPY location 
only one. DPY 

Again:, one may write int.o DATA PAD from FA, FM or from one of eight 
possible sources available on the DATA PAD Bus (DB.). 

4 - 118 



Note, that 
instruction .. 

LEGAL 

only ONE 
Example: 

source 

1 .. DPX<DB; DPY<DB; DB 2 MD 

2. DPX<FA; DPY<DB; DB =- TM 

ILLEGAL 

may be enabled ont.o DB for any given 

Meaning: Write MD into both. DPX 
and DPY via DB. 

Meaning: Write current FA to DPX, 
write current TM to DPY 
via. DPBS .. 

3. DPX<DB; DB =MD; DPY<DB; DB = TM Again, only ONE source may 
be enabled onto DB per 
instruction. 

* DB Shorthand: Notation 

The assembler will automatically enable a source onto DB e.ven though 
the programmer has not explicitly written the instruction.. In other 
words, the above examples may be written as follows: 

Programmer Writes: 
L DPX<MD; DPY<.."iD 
2.. DPX<FA; DPY<TM 
3.. DPX<MD; DPY<TM 

Assembler Inserts: 
DB = MD 
DB= TM 

Error: Assembler wilL flag as such •. 

A$ strow.n: by the above examples., when using: the shorthand notation, the. 
programmer must bear in mind that he may only use one source as DPBS in 
a. givem instruct:'iore cycle .. 

4 - 119 



4.7 MEMORY GROUP 

The operations available within the MEMORY GROUP may be classed into 
the following functional groups: 

*MAIN DATA MEMORY (MD) accessing ope.rations 
MAIN DATA MEMORY ADDRESS REGISTER (MA) modification 

* DATA PAD ADDRESS REGISTER (DPA) modification 
* TABLE MEMORY (TM) accessing operations 

TABIL MEMORY ADDRESS (TMA) modification 

Accordingly, this summary will be presented in the following manner: 

1. MAIN DATA MEMORY (MI and MA fields) 
* General description 
* Addressing and memory cycle initialization 
* MD read and write operations 

2 •. DATA PAD ADDRESS modification (DPA field) 

.3. TABLE MEMORY (TMA field) 
* General description 
* Addressing 
* Read and write'. operations 

4 - 120 
1. 

I 

I 



4.7.1 Main Data Memory (MD) 

4.7.1.1 General Description 

MAIN DATA (MD) is the main storage file, within the AP-120B for 41-bit 
data words. MD is a monolithic storage file available in SK, 16K, 32K 
and 64K modules - 64K per page - up to a million words. MAIN DATA has 
two speed ranges: 333 or 167 ns if the interleaving capability is 
utilized and 500 or 333 ns if non-interleaving locations are accessed .. 

The MAIN DATA BLOCK (Figure 4-5) consists of the following component 
parts: 

MEMORY INPUT REGISTER (MI) 
MAIN DATA STORAGE FIELD (MD) 
MAIN DATA-MEMORY OUTPUT REGISTER (MDREG) 
MAIN DATA MEMORY ADDRESS REGISTER (MA) 

FA FM DPBS: From one of these 

l l l 
MEMORY 
INPUT (MI) 

REGISTER 

OMA ~----~------------- + 

MAIN 
DATA (MD) 
STORAGE 
FILE 

OMA + 
MEMORY 
OUTPUT (MDREG) 
REGISTER 

v 
A2 DPBS M2 

Figure 4-5 MAIN DATA BLOCK 

4 - 121 

ZERO 
- INBS 

VALUE 
DPX 
DPY 
MD 
TM 
SPFN 



MAIN DATA may be wtit ten frotn: the FADDR output (FA), the FMULR output 
(FM), or from on!!' of several sources enabled onto the DATA PAD BUS 
(DB). The MAIN DATA output, termed MD, is available as an input:: 
directly to the FADDR A2. operand register (A2), the FMUtR M2 operand 
register (M2J, or may be: enabled onto the· DB. 

Additionally, MD may be accessed via DIRECT MEMORY ACCESS (DMA) fronr 
the Host and other I/O inte.rfaces •. 

'the format of a typica·l MD dat.$. word is presented be:low~ 

Optional. Exponent 
Parity Bias 
Bi ta Bit 

tt ,! 
~~, ~i ~z 

Mantissa 
Sign 

• ll l.2 13 

H!GH 
MANTISSA 

23 24 

LOW 
MANTISSA 

MANTISSA 

Optional. 
Parity 
Bit 

I .,. 
39 40 

4 .. 7-..1 .. 2 Addressing: and Memory Cyc:le Init:ia,li.z:at:ion 

The 16-bit MEMORY ADDRESS REGISTER (MA) is the pointer indicating which 
MD location is read or written. during, a. given operation.. Additionally, 
an. MD memory cycle: is initiated each time tha· contents. of MA are 
altered by use: of an INCMA, DECMA,. SETMA or LDMA instt:;tiction. 

M& MOD:IFICAT!ON· 
OP-CODES, 

INCMA 

DECMA 

SETMA 

LDMA 

EFFECT 

Increment MA by "l"; initiate an MD 
memory c.ycle. 

Decrement MA by "l"; initiate an MD 
memory cycle. 

Set MA from current SPFN (See Note); 
initiate an MD memory cycle. 

Set MA from current DB; initiate 
an MD memory cycle .. 

4 - 122 



If an MI Op-Code is concurrently specified with an appropriate MA 
modification Op-Code, then an MD MEMORY WRITE CYCLE is initiated, using 
the new contents of MA to indicate the MD location to be written. If 
an. MA, modification instruction is specified without a concurrent MI 
Op-Code, then an. MD MEMORY READ CYCLE is initiated using the new 
contents. of MA to indicate: the: MD. loca.tion to be read.. Use of an MI 
Op-Code WITHOUT a concurrent MA modification op-code result.s in a NOP. 

NOTE. 

If an Op-Code from the LDREG field (I/O) is used 
concurrently, then SETMA will set MA from current 
DB, not SPFN. 

EXAMPLES: 

INITIATING AN MD WRITE CYCLE 

MOV 5,5; SETMA; MA<FA 

LDMA;. DB=DPX(O); MI<FM. 

INCMA; MI <DB 

UU'!IAXING AN' MD READ CYCI.K 

(MEANING) 

(Set MA to current SPFN, write 
current FA into MD location 
pointed to by the new contents 
of MA) •. 

(Set MA to current DPX(O), write 
current" FM into MD location ,.. 
pointed. to by th~ new· contenta 
of MA). 

(Increment MA by "l", write 
current DB into MD location 
pointed to by new contents of 
MA)• 

MOV 5,5; SETMA (Set MA to current SPFN, read MD 
location pointed to by new 
contents of MA). 

DECMA (Decrement MA by "1 11 , read MD 
location pointed to by the new 
contents of. MA). 

4 - 123 



Noce-, again,. that. an, MA modification Op-Code: e·xecut:ed WITH: a concurrent' 
Mr Op-Code: generates. an MD WRITE CYCLE.- An MA modification Op-Code 
WlTHOUT an Ml Op-Code generates an MD. READ CYCLE~ 

4. .. 7 .. 1.3 Interleave 

STANDARD speed MD MEMORY references the same bank of memo.ry every three· 
All cycles (500 ns.).. In order to facilitate faster intervals between 
sw:cessi.ve- memory- reference inst:ructiomr, the· A2' 120B' MAIN DATA MEMORY 
is divided into banks: containing 4K: or 16K words e·ach.. These banks.. are\ 
interleaved in pairs with odd number memory locations contained in one 
bank of the pair and e11en memory locations in the other bank of the 
pair.. Memory reference instructions are allowable every other 
ins;truction cycle (133 ns) as long as; INTERLEAVE. (the sequential 
reference t.o different MD MEMORY BANKS) is not violated.- Any attempt 
to reference the· same bank of memory (NON-INTERLEAVING) before the 
minixnum· time' constraint will cause the AP-120B hardware to generat:a a: 
"SPIN" operation - effecti11ely suspending all ongoing AP'-120B program 
execut::ion one cycle: at a time. until the memory is; no. longer busy and 
can. execute the. memory reference instruction which prompted the "SPIN*' 
condition.. This feature allows, AP-120B programs to be written withour 
concern: for memory interleailing. But for maximum execution speed Che 
interleav:ing feature shou.ld be- used. Thus~, for optixnum coding of 
memory accesses, the programmer should be: aware of the order in which: 
ha access.es; memory banks .. 

P:or FAST MD MEMORY, memory re.-ference may be made to· 
(INTERLEAVED) every AP cycle (167 ns) and to 
(NON-INTER.LEAVED) every other AE cycle (333 ns: ... ) 

different' 
the same 

banks;, 
bank 

Intet:leave examples: locations. 3 and 4 are interleaved by the odd-even 
interleavec.. Locations;, decimal 8190 and 8192 ara interlea11ed: bec:aus,e< 
th:ey re:ference different bank pairs: (4-K bank siz~)... For the 16-K bank 
size,, the bank-pair size is 32K.. Thus, for example, locations decimal 
32.766. and 3276&, are: in .. different bank pairs. .. 

NOTE 

For the 321< and 64K memory modules, the 
bank size is increased to 16K. 

4 - 124 

I 

11 



EXAMPLE: 

MEMORY 
ADDRESS MEMORY STANDARD MEMORY FAST MEMORY 
SEQUENCE. BANK REFERENCE REFERENCE 

(OCTAL.) SEQUENCE TIMING TIMING 

101 1 
102 0 Every two Every 
103 1 AP cycles AP cycle 
104 0 (Interleaved) ( Inti!<rle·aved) 

100 0 
102 0 Every three- Every two 
104 0 AP cycles AP cycles; 
106 0 (Non-interleaved) (Non-interleaved) 

234- 0 
10374 2 Every two Every 

233 1 AP cycles AP cycle 
10376 2 (Interleaved) (Interleaved) 

4.T.1.4 MD Read and Write Operations 

Three AP clock cycles after an MD memory read cycle- has been initiated, 
the data from the selected memory location becomes available as MD to 
the: DB, A2 operand register, and M2 operand register. 

STANDARD MEMORY FAST MEMORY 
LOCAT!ON· LOCATION. 

AP AVAILABLE. AP· AVAILABLE 
CODE AS MD' CODE' AS MD 

1 .. INCMA --- l .. INCMA· ---
2. NOP 2. INCMA --
3. INCMA 

_____ .... 
3. INCMA 

4. NOP MDlOl 4 •. NOP MDlOl 
5 •. INCMA MDlOl 5. NOP MD102 
6. NOP MD102 6. NOP MD103 
7. NOP MD102 7. NOP MD103 
8 .. NOP MD103 8. NOP MD103 

4 - 125 



Once an MD MEMORY WRlTE CYCLE is initiatedt the data. specified by the 
concurrent MI Op-Code is loaded into the MEMORY INPUT REGISTER (MI) and 
written' into MD at the location pointed. to by the MA register. 

Data may be written. INTERLEAVED every other AP cycle and. 
NON-INTERLEAVED every tltree AP cycles for standard memory and 
INTERLEAVED every cycl.e and NON-INTERLEAVED every other cycle for fast: 
MD. 

Not:& th:at the example- for standard memory with. NOP 1 s between thee 
INCMA 1 s. will execute correctly on Fas-t Memory; however, the· reverse is' 
not true. Both examples:: will execute, correctly with the INCMA' s 
replaced by SETMA 1 s even if the memory accesses are NON-INTERLEAVED. 
NON-INTERLEAVED accesses merely result in a slowdown of instruction 
execution; they do not change the timing relationships between 
instructions. Writ:ing MD leaves the contents of MDREG unchanged. This 
allows; a memory Read cycle to be initiated and the da.t:a to be· used 
later irrespective of intervening MD write cycles .. 

4. 7 .1 • .5 AE-120B DMA and Refresh Time Penalties 

1. REFRESH 

FAST MD 

a) Refre~h costs three clocks • SOOns if AP running. interleaved 
cyeles (worst case). 

b) Refresh cost.s only two clocks if non-interleaved cycles in AP 
program. 

STANDARD MD 

MD Crucle Initia_tes ,....,_.,.....,.. __ ,._._._. __ .R.e.f.r~esh C~v.c.l_e._· ------------~...., 
- - 1 1_.·vr u·. L 

4- - 126 



c) Refresh costs four clocks = 667ns if AP running interleaved 
cycles (worst case). 

d) Refresh costs only three clocks if AP program running 
non-interleaved cycles. 

2. DMA interference (assuming AP running interleaved cycles) .. 

Time to be added to AP execution 
per DMA memory cycle: 

a) Host interface DMA interference: 
DMA address in separate bank-pair 
from AP accesses 
Same bank-pair 

b) Second DMA channel (IOP,PIOP): 
Separate bank-pair 
Same bank-pair 

Fast MD 

l clock 
2 clocks 

2 clocks. 
2 1/2 clocks 

Std MD 

2 clocks 
3 clocks 

3 clocks 
3 1/2 clocks 

Subtract one clock if AP running non-interleaved cycles 
in one bank.. One clock =: 167ns 

4.7.1.6 Programming Examples 

* Read Example 

Load a vector Ax,i = 0,2 stored in Memory Locations 101, 102, 103 into 
DPX locations 10, 11, 12. W-e will assume that MA was set to 100 and 
DPA was set to 10 before we started. 

L INC MA 
2. 

"Fetch A a from Memory 

3. INC MA 11 Fetch A from Memory 
4. OPX<MD; INC OP A 11 Store Ad into DPX location 10 

II and bump DPA pointer to 11. 
5. INCMA; 11 Fetch A from Memory 
6. DPX<MO; INCOPA "Store Af into DPX location 11 

II and bump DPA pointer to 12. 
7. 
8. DPX<MD "Store A2 into DPX location 12. 

4 - 127 



Below is a chart of the above transfer, showing the state of each 
component after each instruction. 

MemOrJ:'. Data Pad 
Cycle I MA MO f DPA DPX10 DPX11 DPX12 l 
1. 101 10 
2. 101 10 
3.. 102 10 
4. 102 Ao 10 A 
5. 103 Ao 11 AO 
6. 103 Al 11 AO Al 
7. 103 Al 12 AO Al 
8. 103 Az 12 AO Al Az 0 

* Write Example 

Square the elements of a vector Ax, i =- 0, 1, 2> in DPX locations 10, 
11, 12 and store the results into Data Memory locations 101, 102, 103. 
We ....iill assume that MA was. set: to 100 and DPA was set: to 10 before we 
started .• 

L 

2. 

3. 

4:. 

FMUL DPX, DPX; INCDPA 

FMUL 

FMUL DPX, DPX; INCOPA 

FMUL; MI<FM; INCMA 

4 - 128 

"Square A0, bump DPA pointer 
II to u. 
11 Push down the multiplier 
11 pipeline. 
"Square Al.' bump DPA pointer 
II to 12. 
11Write A6 into memory location 
II 101. 



Below is a chart of this computation: 

MultiElier Memori'. 
Cycle DPA I Ml ,M2 FM I MA MI 
L 10 Aa,Aa 
2. 11 

3. 11 Al,Al 

4!. 12 AZ 
0 101 A2 a 

5. 12 A2,A2 101 A2 
0 

6. 12. A2 
1 102 A2 

1 
7. 12 102 A2. 

1 
8. 12 2 103 A2. Az 

---·~:!":: 
2. 

*' Memory Interleave 

Data Memory is- divided into 16 banks of 4K words each using MAOO-MA02 
and MA15 as a memory bank select. (These are the three highest-order 
bits and the least-significant bit of MA .. ) Memory reference& to 
different banks may be made every 2 AP cycles, while re·ferences to the 
same: bank may be made every 3 AP cycles. For some possible memory 
addressing sequences we have: 

4 - 129 



Memory 
Memory Address Memory Bank Reference 

Sequence (Octal) Sequence Timing 

101, 102. 103. 104' ... l, 0, 1, 0, ... every 2 
AP cycles 

166, 165, 164, 163' ... 0, 1, 0, 1, ... every 2 
AP cycles 

100,, 102,. 104, 106, ... 0, o, o, 0, ... every 3 
AP cycles 

233, 10374, 234. 10376' ... 1, 2, 0, 2, •.. every 2 
AP cycles 

Thus references to successive sequential memory locations may be made 
every other AP cycle, but references to successive-odd or 
successive-even _locations must be three cycles apart. 

4 - 130 



~.7.2 TABLE MEMORY (TMA) 

4 .. 7.2.1 Gene.ral Description 

The TABLE MEMORY FILE (TM) is a separate 38-bit wide storage file used 
to store standard constants and other slowly changing coefficients. 
Addressing for TM locations is achieved by use of the TABLE MEMORY 
ADDRESS REGISTER (TMA). 

TM is available in two types -- READ ONLY MEMORY (TMROM) and RANDOM 
ACCESS MEMORY (TMRAM). TMRAM is capable of both being WRITTEN and 
READ, while TMROM is capable only of being READ. In both types of 
memory, the contents of the TM location pointed to by the current 
contents of TMA become available as TM two cycles after an instruction 
that alters TMA, with one exception; that is--for a. TMR.AM WRITE 
opera.tion, the contents of TMREG are undefined two cycles later, and 
the new contents of the TM lo-cation written can become available as TM 
three. cycles later if TMA is not changed .. 

TABLE. MEMORY (Figure 4-6). consists, of the following component parts: 

1 .. TABLE MEMORY STORAGE FILE (TM) 

2 .. TABLE MEMORY ADDRESS REGISTER (TMA) 

3. TABLE MEMORY OUTPUT REGISTER (TMREG) 

4 .. TABLE MEMORY INPUT REGISTER (TMIREG) 

4 - 131 



DPBS=INBS TMIREG 

TM 

TO:- Al 
ML 
DPBS 

Figure 4--6 Tab le Memo.ry 

4 - 132 

(Device address "5") 

I 

I 



Values stored in Table Memory are read by setting the Tab le Memory 
Address (TMA) register to the address of the desired Table Memory 
location. This is done by the instructions: 

"Increment TM.A by l 
"Decrement TMA by l 

INCTMA 
DECTMA 
SETTMA "Set TMA to the current; S-Pad 

#function (SPFN) 

Each of the above initiates a fetch frolll'. the Table Memory Location 
pointed at by the new contents of TMA. Two AP cycles later the 
contents of the desired location are available for use. A new location 
may be fetched every Ap cycle. One instruction must be placed between 
a TMA address modification instruction and the use of TM contents. 

Therefore, 
INCTMA 
INCTMA 
FMUL TM, MD 

FMUL TM, DPX(O) 

"points to TK address X 
"points to TM address Y 
"Multiplies contents of TM address 
11 ·x with MD 
Multiplies contents of TM address 
" Y with DPX(O) 

In TMRAM, data may be written into TM from the DATA PAD BUS (DB), via 
an 1/0 instruction. Data may be read from TMRAi.'1 or TMROM directly to 
the FLOATING ADDER Al OPERAND REGISTER (Al), to the FLOATING MULTIPLIER 
Ml OPERAND REGISTER (Ml), or onto the DATA PAD BUS (DB). 

With respect to writing operations, TMRAM is an I/O DEVICE whose 
address is S. To write into TMRAM, one must set DA to 5 at least one 
cycle before outputting data to TMRAM. For example, in order to write 
the current FA into TMRAM location lOO(octal), the following program 
would be specified: 

Assume S-PAD REGISTER 6 equals "lOO(octal)" 

ASSEMBLER FORMAT 
0 

0 

0 

LDDA;DB = 5 
MOV 6,6; SETTMA; DB<FA; OUT 

0 

0 

0 

4 - 133 

(Meaning) 

(Select TMRAM as IODEVICE (DA)) 
(Set TI-f.A to "lOO(octal)", write 
current FA into TMRAM lOO(Octal) 



BecatJ.se the TABLE. MEMORY INPUT REGISTER can a.ccept data in 16 7 ns, it 
does not have an tORDY flag associated with it:.. Therefore, the SPNOUT 
instruction should not be used to load TMR.AM. Data placed on DB during 
the: OUT instruction is wt:"i tten into !MRAM at. the address contained in 
!MA following. the OUT instruction. Thus, if an OUT inst.ruction also 
modifies; TMA, the data is. w..ritten at the: TMA. address, specified by that. 
OUT ins:truction .. 

Example: 
Loc:a,tion: 
Counter 

0 

1 

2 

3 

INSTRUCTION 

LDDA; DB""S 

OUT; DB.=DPX(O); 
INCTMA 

NOP' 

NOP 

E'·ADD 'tM, DPX( 1) 

COMMENTS: 

II SET DA=S 

11 Send DPX(O) to TMRAM 
n at:: TMA+l 

11 Other us er code· 
" Previous, TM ou.tput:; OK 
" here 

" TM output invalid 
" durin~ this: instruction. 

" Us& of TMRAM 
11• Output. OK her& 
" User gees. va:lue: 
11 Written by the OUT 
" If TMA noc changed 
" At. instruct.ion 2 

It is possible t:o write !MR.AM on every inst:ruction·. TMRAM behaves in 
all other respects: exacdy as: does. TABLE. MEMORY ROM: (IMROM).. Different: 
!MR:AM locations can be read on every instruction· (167' ns cycle) and the 
output data is available for use: during the: se1:'on<L follo.wing, 
instruction (167 ns acc:es.s) 9' It i$ only aft.er TMRAM ~ that the 
!MR.AM output is invalid during tht!' second following instruction. 

4.7.2.2 Addressing 

Addressing of appropriate TM locations is achieved by reference to the 
current contents of the 16-bit TABLE MEMORY ADDRESS (TMA). When used 
strictly as an address pointer, TMA is c~pable of addressing 64K of 
TABLE MEMORY. 

4 - 134 

,, 

I ~ 



However, TMA is alternatively used as both an address pointer and as a 
quadrant/sine/cosine indicator for constants used in FFT or IFFT 
operations. This alternate addressing is enabled by the FFT Bit in 
APSTATUS (Bit 12) and is modified by the IFFT Bit (Bit 11). In this 
case, certain bits in TMA also perform control functions for 
referencing: and properly preparing the: raw constant stored in TM .. 
Given below is a sample FFT-related format: of TMA for a 2048 word 
cosine table (SK max FFT size). 

NOT INDICATES TM ~ = 
USED QUADRANT ADDRESS WORD I 
~~--~~~~~~~~~----~~~~~~~~~~ ~ l = 

I I 
bit 9191 91:L 912 913 

I I 
1 14 15 

indicates 
cosine· 
indicates 
sine 

This division of the TMA register into three sections allows the 
programmer to address a table of real cosine values lying between 
angles 0 and 90 degrees as if it were a full. circle of complex 
exponential values with the real part: in even numbered locations and 
the imaginary part in odd numbered locations •. 

TMA quadrant, sine, cosine theory of operation: 

The complex exponential function and tha sine and cosine functions are: 
related via the following equation; 

7'> .... e±jx = cosine (X) ±: j sine (X) 

EXF (±X) - COS (X) ± j SIN (X). 

Thus, the real part of the comp-lex exponential of plus or minus a 
positive real number X is. the cosine of X and the imaginary part is 
plus or minus: tha sine· of X. A forward FFT requires complex 
exponentials of negative arguments CE.XP (-X), while, an inverse FFT 
(IFFT) requires complex exponentials of positive arguments, CEXP(X). 
Thus., the TMA logic is set up so that the normal mode of operation (FFT 
= "l", IFFT= "O'' in. A.PSTA'IUS) is to produce complex exponentials of 
minus X •. With FFT .. "l" and IFFT= "l", the TMA logic produces complex 
exponentials of plus :ic. With FFT • "O" and IFFT • "O" or "l", the 
logic treats TMA as an unmodified 16-bit address. 

Complete understanding of the TMA complex exponential addressing 
requires knowledge of the following trigonometric identities with 0 
degrees ~X < 90 degrees. 

4 - 135 



0th quadrant. cos (X) = COS (X) 
SIN ( X) = cos ( 90° - x )· 

15t quadrant COS (X+90°) : -SIN (X) 
= -COS ( 90° - X) 

SIN ( X+90°) : COS (X) 
nd 2 · quadrant COS (X+180°) = -cos (X) 

SIN (X+l80°) = -SIN (X) 
= -COS (90° - X) 

3.rd quadrant COS (X+270°) = SIN (X) 

= COS (90° - X) 
SIN (X+270°) = -COS, ( X) 

Thus, these eight equations reduce the desired sine and cosine values 
in any quadrant to cosine values in the 0th quadrant (0 degrees ~ X < 
90 degrees) plus the one value COS (90 degrees) = 0 for X "." 0 in COS 
( 90 degrees - X). 

This last value is achieved by inhibiting the output of TM when COS (90 
degrees) is desired. Since the equations do require negative values of 
the cosine and the table contains only positive: values, the logic in 
TMR.EG contains a two's complement generator that is capable of negating 
the mantissa of the output of TM, thus producing a negative 
floating-point result when -COS (X} or -<::OS (90 degrees - X) is required. 

For use with the FFT or IFFT, the table size required is always a power 
of two since the FFT algorithm works with the power of two number of 
dat.a points.. The FFT requires a foll circle of complex. exponentials 
that has the same number of complex values in it as the largest number 
of data points desired (number of real points for real FFT' s, number of 
complex. points for complex FFT's). Since the above equations reduce 
the full circle of complex exponentials to one quadrant of cosines, we 
see that the cosine table must contain one-fourth the number of points 
for the largest desired FFT. 

Thus, for the typical case of an 8192-point maximum size FFT, there 
will be 2048 values of the cosine function in table memory. The values 
are computed for the angles <n·9o0 1 • :04a where n • o co 2041 Thus each 
increment in TM address, represents an angle increment of 90° + 204a • 

4 .... 136 I' 



Since an angle of 90 degrees corresponds to a table memory address of 
2048, the problem of generating the addresses for the angles 90 degrees 
- X required by the above equations reduces to a question of simply 
two's complementing the TM address (Bits 04 to 14) portion of the T}!A 
register output and masking the result back to 11 bits. 

(90° - x) = 2048-90° 
2048 

n·9o0 

- 2048' = 90° 
(2048 - n) · 20'48 

In 11-bit binary arithmetic, (2048 - n) is an equivalent definition of 
the two's complement of n. 

Thus, the hardware. logic for the complex exponential generation also 
provides the ability to steer bits 04 to 14 of the TMA register, onto 
bits OS to 15 of the TMA address bus, while placing zeros on bits 00 to 
04, and to conditionally two's complement bits 04 to 14 of TMA, when 
the angle ( 90 degrees - X) is required. 

Note that the op-code RTMA reads the value on the TI1A address bus, 
while the op-codes in the. SPEC OPER field that use TMA (JSRT, JMPT, 
LPSLT, etc.) use the unaltered 16-bit contents of the TMA register. 
An FN register breakpoint on TMA also uses the value on the TMA address 
bus. 

Table 4-3 shows the Table Memory CEXP truth table .. 

4 - 137 



Table 4-3 Table Memory CEXP Truth Table 

!M TM 
QUADRANT SIN/COS FFT IFFT ADDRESS' OUTPUT 

0 Full 16 bits + 
o o o l 0/1 +n + 
o o l l 0/1 -n -/+-
o. l o 1. 0/ 1. -n. -
o. l l l 0/1 +n. -/+-
1 o o l O/l +n ·-
l o l l 0/1 -n +/-
l l o l 0/1 -n + 
1 l l l O/l +n +/-

n = bits 04- to 14 of TMA register for a 2048 point: cosine table .. 

Maximum points- in FFT =-· 8192 .. 

quadrant = Bi.ts 02 and 03 of IMA register for a 2048 point cosine tab le 

SIN/COS = Bit 15 af !MA regis-ter 

FFT = Bir: 12 of APSTATUS: 

IFFT • Bit 11 of APSTA'IUS 

Hardware strap options. allow. n to be widened and the quadrant. bits 
moved. to the left,_ thus allowing: alternative cosine table sizes of 4K 
(16K. FFT) and; 8K. 021<. FFT).. Cosine .. table sizes of 16K and 321<. are 
possible... However·,, the quadrant: determination logic will not work. 
prop.erly and thus. special FFT micro-code would be required. 

4 - 138 i 

11 ,, 
It 



4.7.2.3 Read and Write Operations 

In READ OPERATIONS the contents of the TM location pointed to by the 
current address contained in TMA will be·come available as TM two 
instruction cycles later. 

In order to change TMA, one may specify an INCTMA, DECTMA, SETTMA 
op-code from the TMA field of the MEMORY portion of the instruction 
word, or specify a LDTMA op-code from the LDREG field of the I/O 
portion of the instruction word. The .contents of TMA as altered by 
these op-codes are available one cycle later for op-codes thit use it 
as an address (JSRT) or data (RDTMA). The available TMA modification 
op-codes are given below: 

INSTRUCTION 
WORD FIELD 

TMA 

TMA 

TMA 

LDREG 

OCTAL 
VALUE 

1 

2 

3 

3 

OP-CODE 

INCTMA 

DECTMA 

SETTMA 

LDTMA 

OPERATION 

Increment current TMA 
address by "l" 

Decrement current TMA 
address by "l" 

Replace TMA address 
with current SPFN (See 
Note) 

Replace TMA address 
with current DB 

NOTE 

If an Op-Code from LDREG field (I/O) is used con~ 
currently, then SETTMA will replace the TMA address 
with the current DB. not SPFN .. 

4 - 139 



, 4 .. 7 •. 2.4 Programming Examples 

* E'xample l 

Do the vector sum Ax • B+K, i = 0, l ,, 2,, whe·re Ax is itr. DPX. locations; 
10-12, Bx is in DPY 10-13, and Kx is a series of constants stored in 
Table- Memory location 235-237. Ax will be stored back into DPX. We 
will assume. that DPA was set to 10 and TMA w,as set· to 234 before we 
s.tart. 

L INCTMA 
2.. INCTMA 
3. INCTMA; FAOO TM, CPY; INCDPA 
4. FAOO TM, DPY; INCDPA 
5. FADO TM, OPX (0); OPX (-2)<FA 
6. FADD: OPX (-l)<FA 
7. DPX (O)<FA 

The following charts the above computation: 

Table Memory Adder 
Cycle TMA TM Al,A2 FA 
L 235 
2 .. 236 
3. 237 Ka Ka,Ba 
4.. 237 Kl Kl,al 
5: •. 237 Kz KZ'8z K0+Ba-
6. 237 Kz Kl+Bl 
7. 237 Kz Kz+Bz 

* Example· 2 - A Complex Multiply 

"Fetch K 
"Fet.ch K0 

"Do K +1s , bump OPA to 11 
"Do Ko + s0 , bump DPA to 12 
"Do K~ + s1, store A in DPX 10 
"Stare A 2tn DPX 
"Stare· Al in OPX ll 2 12. 

Data Pad X 
DPA 10 11 12. 
10 
10 ---
10 
11 .. -- _ ... _ ...... -
12 A 
12 AO Al 
12 AO Al a 

An example using both memories is a complex multiply from the FFT (Fast 
Fourier Transform) algorithm. The lllllltiply is bet'Ween a complex signal 
point held in Data Memory and a .complex exponential value (a root of 
unity, xxx) fetched from Table Memory. The comput.ation is: 

Whe-re C is- the> data point and T.i is the: complex ex:ponent.i.al '1R" and "I!' 
denote real and imaginary parts respectively.. C is in Main Data 
Memo.ry, a11d W is in Tab le Memory. 

4 ... 140 

I 

I 

i 

I 

1, 
i 
I 



Fetch the 

4 arguments 

Do the 
multiplies 

Do the 2 

adds. 

1. INCMA 

2. INCTMA 

3. INCMA;. INCTMA 

4. FMUL TM, MD 

5. FMUL TM, MD; DECTMA 

6. FMUL TM, MO 
7. FMUL TM, MD; OPX (O)<FM 
8. FMUL; DPX (l)<FM 
9. FMUL; FSUBR FM, DPX (a) 

10. FAOD FM, DPX ( 1) 

11. OPX (O)<FA; FADD 
12. DPX (l)<FA 

11 Fetch CR f ram Oa ta Memory 

"Fetch WR from Table Memory 
11 Fetch c1 fetch w1 
"Do CR * WR 
"Do CR * w1 fetch WI 
"Do C * W I I 
"Do c1 * WR, Save CRWR, In OPX 
"Save CRWI in OPX 
"Do XR + CRWR-CIWI 
"Do x1 =· CRWI + CIWR 
XR is ready, save in DPX 
x1 is ready, save in DPX 

The total elapsed. time is 12 cycles or 2us. In practice, however,. we 
can overlap all but cycles 4-7 with the preceding and following 
computations. The complex multiply then takes us only 667ns, when 
mixed in with other computations. 

Below: is a summary chart of the complex multiply: 

Memories Multiolier Adder Data Pad 
fTM IM1,M2 

I 

!Al ,A2 10 Cycle MD FM FA 1 
1. 
2. 
1. 
4. .. WR CR WR,.CR 
5. WI CR WI,CR 
5 .. wr CI Wl"CI 
T. WR CI WR,,Cl WR*CR WRCR 
8. w *C WRCR WICR 
9:. wI*cR WICI,WRCR wl*CI WRCR WICR 
10. WRCI,WICR XR WRCR WICR 
11. R I 

XI XR WICR 
12. XR XI 

4 - 141 



I.,\ 



CHAPTER 5 

HOW TO PROGRAM THE AP-120B 

5 .1 MEET THE: AP' •••••• AGAIN· 

5~1.1 Introduction 

The purpose of this chapter is to illustrate the way to use the AP most 
efficiently, i.e., to write good loops. It assumes that the reader has 
already read the Software Development Package Manual (APAL, Sections 2 
and 3) and has at least a passing acquaintance with the AP instruction 
set. 

This chapter presents a short review of the basic elements of the Array 
Processor from the programmer's point of view, covers methods and 
techniques of writing loops. and suggests some common pitfalls to avoid. 

It reviews some of the basic AP instructions; it is not meant to be 
al.l-inclusive but to briefly cover the most-often-used things. 

This chapter assumes the use of the AP's 333 ns interleaved memory. 

5 l 



5.1.2 Basic Overview 

5.1.2.l Arithmetic 

Both the Floating Adder and Floating Multiplier need explicit: 
instructions (e.g., FADD and FMUL, respectively) to push their 
respective answers out of the pipelines. Given these "pushers", the 
Floating Adder result. (FA) will be available two cycles after the· 
original instruction, and the Floating Multiplier result (FM) will be. 
available three cycles after the original instruction: 

o. FADD DPX, DPY "add o ... FMUL DPX, DPY "multiply 
1. FADD "push l*' FMUL "push 
2. DPX(l)<FA "store answer 2 .•. FMUL "push 

3 .. DPY(l)<FM "store· answer 

The empty FADD and FMUL "pus he rs" can also be read Adder or Multiplier 
operations., thus producing new answers each cycle. 

lf the "pushers" do not directly follow the original instructions, FA 
will come out one cycle after the first FADD pusher, and FM will come 
out. one cycle after the second FMUL pusher.. Both FA and FM will remain 
available for succeeding cycles until a new FA or FM is pushed out. 

The arguments for Adder and Multiplier instructions consist of one from: 
column A. and one· from column a, (in that order): 

COLUMN A (Al or Ml) COLUMN B (A2 or M2) 

FM FA 
TM MD 
DPX DPX 
DPY DPY 

The Adder has additional arguments of ZERO and NC (no change), which 
can be used in either or both columns~ 

5 .1. 2. 2 Main Data Memory 

Reading from memory requires one of the following instructions: SETMA, 
INCMA, DECMA, or LDMA. ln practice, it is usually done by the SETMA 
instruction. The result, MD, comes out three cycles later and is also 
available for succeeding cycles until a new MD comes out. No "pushers" 
are needed. Writing into memory requires. one of the above instructions 
plus MI<source, "1here source is FA, FM O't" DB. This goes on the same 
line as SETMA, and gets done in that cycle. Memory can be referenced 
every two cycles, for either a read. or r..trite. 

5 2 

I 

I 



5.1.2.3 Table Memory 

Table memory is usually referenced by the SETTMA or LDTMA instruction •. 
Two cycles later, TM is available and remains so until two cycles after 
the next instruction affecting TMA. Such instructions can occur J.n 

every cycle,. producing a new .. TM every cycle •. 

5.,1 .. 2 .. 4 Data Pad 

DPX and DPY each contain 32 registers, eight of which are accessible 
fr0tn any given DPA. That is, one can reference DPX from DPX(DPA-4) to 
DPX(DPA+3), and similarily for DPY. 

The, Data Pad Bus is usually used to store data from memory or from one 
Data Pad register into anoth.er, or to utilize a value, e.g .. , J.n 

conjunction with a load operation: 

DPX(l)<DB; DB=DPY(-2) 

DPX<DB; DB=MD 

LDDPA; DB=3 

This can be shortened to 
DPX(l)<DPY(-2).) 

(Or DPX<MD) 

(This sets. DPA=3) 

Storing into Data. Pad from FA or FM does not use the Da,ta Pad Bus. 
This is important,, as it leaves DB free for other uses. 

5.1.2.5 S-Pad 

S-Pad registers are usually used as- address pointers or counters, and 
thuSr to pass parameters; to a program.. An S-Pad operation must: 
accompany a. SE'!MA (or SETDPA,. SETTMA,. etc.) instruction.. An S-Pad 
operation must also precede a conditional branch (BGT, BNE, etc.) by 
one cycle. That is·, conditional branches are based on the S-Pad 
Function (SPFN) of the S-Pad operation in the- previous cycle. 

The fastest way to get an integer into S-Pad is to use the LDSPI 
instruction: 

LDSPI COUNT; DB=S 

This puts 5 into an S-Pad register called COUNT. The value is assumed 
to be octal unless a decimal point is added. DB=l5. (note point) is 
equivalent to DB•l7 (octal), or to DB=OFX (hex).. He.xadecimal numbers 
must start with a. numeric digit and end with 11X" .. 

5 3 

.df· 



Although the Floating Adder opera.ti on FSUB Al, AZ will do Al-AZ, the 
s-Pad operation SUB subtracts in the opposite direction, i.e., SUB 
PIECE, TOTAL will do: 

(contents of S-Pad TOTAL) minus (contents of S-Pad PIECE). 

5 4 
Ii 
! 



5.1.3 Referencing Memory 

In order to read something out of memory, or write into it, the 
location in memory where this will occur must be provided. The SETMA 
instruction gets this necessary information from the S-Pad Function 
(SPFN) of the same cycle.. Therefore, one needs to cons.truct an S-Pad 
operation which will result. in a pointer to the appropriate memory 
location. Generally, this takes the form of adding increments to 
pointers. For example, if there was a 4-element vector in memory 
locations 100, 102, 104, 106, one would need an S-Pad register (say, 
APTR) contaim.ng the base address ( 100), and another S-Pad register 
(AINC) containing, the increment between elements (2). Then, if one 
wanted to read the element in location 102, the appropriate instruction 
would be ADD AINC, APTR; SETMA. Now APTR would contain 102. If one 
wrote another ADD AINC, APTR; SETMA the contents of memory location 
104 would be read. 

Consider the following instruction: MOV APTR, APTR. This doesn't seem 
to accomplish much, but in the light of the above discussion, it can be 
seen that its SPFN could be useful for a SETMA. This is how one would 
get the first element of a vector. 

All of the above is correspondingly true for writing into memory. 

5 5 



5.1.4 S-Pad Mnemonics 

S-Pad names such as APTR, AINC, N are really only temporary names for 
the 16 S-Pad registers. A statement such as DEC N will not mean 
anything to the assembler unless the program has equated the mnemonic 
"N" with a specific S-Pad register, such as S-Pad O~ This is done: by 
the following assembler pseudo-op: N $EQU O. All S-Pad names used i.n 
a program must be declared in this manner before using them in an 
instruction. Thus, programs generally begin with lists like: 

APTR $EQU 0 
AINC $EQU 1 
BPTR $EQU Z 
BINC $EQU 3 
N $EQU 4 

These: S-Pad numbers should not be confused with the contents of the 
S-Pads. ADD BINC, BPTR would not add 3 to Z (using the above list), 
but would add the contents of S-Pad 3 to the contents of S-Pad Z. 

There can be more than one name for an S-Pad register. If you had two 
different vectors, A and B, and wished to use the mnemonics AINC and 
BINC for their increments, you could use the same S-Pad register if the 
increment for both is the same in all cases, by declaring: 

AINC $EQU 1 
BINC $EQU 1 

5 6 



5.1.S Other Pseudo-Ops 

Besides the $E'QU pseudo-op, the typical program includes $TITLE and 
$ENTRY pseudo-ops at the very beginning, and an $END at the very end. 
A basic program with one loop would have the following form: 

name: (code) 
ti 

II 

II 

II 

loop: (code.) 
II 

" 
II 

S-Pad mnemonic 

$TITLE. name 
$ENTRY name 

$EQU 0 
1 
2 

("intro" to loop and any initializations 
and pointer adjustments) 

$END 

See the' software manual for explanations of these pseudo-ops. 

5 7 



5.2 LOOPS 

5.Z.l A Poor Loop 

The: loop is where- the: potential of the AP comes into full bloom., For 
example', one way (lengthy but work.ab le) to write a dot product program 
is as;. follows-: 

Given: Vectors A and :a in Main Data- Memory, w-ith elements of 
_each vector in- equally spaced locations in mem-ory (e.g., 
even-numbered locations). 

Produce: N 
c= A(m) .. B.(m) 

111=1 

Parameters- passed in S-Pad: 

S-l?ad Name: Contains: 

APTR 
BPTR 
XINC 

N 
CPTR 

base address of vector A 
base address of vector B 
int:rement (number of locations from one 

element to the next) (same for bo t:h vectors) 
number of elements; in· each vector 
address of answer 

DOTPROD: SUB XINC, APTR (See Note below) 
SUB XINC, BPTR (See Note below) 

LOOP: 

DONE: 

FADD ZERO,, ZERO "initialize FA=O 
FADD 
ADD XINC, APTR; SETMA 
NO? 
NOl" 
DPX<MD 
ADD XINC < BPTR; SETMA 
NOP 
NOP 
FMUL DPX, MD 
FMUL 
FMUL 
FADD FM, FA 
FADD 
DEC N 
BGT LOOP 

MOV CPtR, CPTR; SETMA; 

"get mth element: of vector A 
11· front memory 

''MD=A(m), store into DPX 
"get mt:h element of veet:or B 

''MD=B(m), do A(m).B(m) 

"add product to sum of products 

."decrement counter 
"branch back if not 
"(i~e. if N>O) 

MI<FA 

done yet 

"otherwise,, store answer 

s 8 



NOTE 

This is so that the first time through the loop, 
ADD XINC, APTR and ADD XINC< BPTR will not move 
the pointer to the second element, passing up 
tha first altogether. 

To begin with, this program can certainly be shortened by combining 
instructions and overlapping memo.ry fetches. Thus: 

DOTPROD: FADD ZERO, ZERO; SUB XINC, APTR 
FADD; SUB XINC, BPTR 

LOOP: ADD XINC, APTR; SETMA "get A(m) 
NOP 
ADD XINC, BPTR; SETMA 
DPX<i.'1D 
NOP 
FMUL DPX, MD 
FMUL 
FMUL 
FADD FM, FA; DEC N 

FADD; BGT LOOP 

"get B(m) 
"store· A(m) in DPX 

"do A(m) .B (m) 

"add product to sum of products 
" and. decrement counter 
"test if done. If not, branch 
" to LOOP 

DONE: MOV CPTR, CPTR; SETMA; MI<FA 

Note the extra FMUL's 
the answers through the 
they are intended to 
beginning AP programmer 
code. 

"if so,. sto.re answer 

and FADD's, described as "pushers". These push 
pipelines, so that FM and FA will contain what 
contain. This is pointed out because the 

is likely to forget to put "pushers" in his 

No~ the· loop of the evolving dot product: program is ten cycles long .. 
This,. means that each new pair of elements costs ten more cycles. 
Although better than the initial example, which had a 14-cycle· loop.,. 
this• can actually be cut down to a. mere four cycles! 

5 9 



5.2.2. Determining Length of Loop 

One might suppose that the length of a. program loop depends on what one 
is trying to do.. This is true, but not. in the way one would think.. 
The AP· prog-rammer decides. ahead of time how many cycles his loop should 
contain, and then fits everything into that framework. How does he 
pick the· magic. number? Most commonly, loops are memory-limited. 
Recall that one can reference memory (to read or to store) every two 
cycles. If one has two memory references to do (e.g., "get A" and "get 
B11 ), then the loop will be at least four cycles long (two per memory 
reference).. And, unless one has more than four different FMUL' s., four 
different FADD' s, or four different: S-Pad operations to do, the: loop 
should be, at MOST, four cycles. A lot can: be- done in four cycles when 
one can do a Floating Multiplier operation, a Floating Adder operation, 
an S-Pad operation, a branch, a memory reference, a Data Pad Bus 
transfer, etc.,. in EACH cycle .. 

5 10 

i 
I 

I 



5.2.3 Writing A Real Memory-Limited Loop 

Before continuing with the transformation of the dot product program, 
another example will be utilized. 

Given: Vectors A and B in. Main. Data memory, length•N elements. 

Produce: Vector C (in memory), where C(m)=A(m)2+B(m) for m=l to N 

Parameters:. 
S-Pad Name- Contains 

APTR 
BPTR 
CPTR 
XINC 
N 

base address of A 
base address of B 
base address of C 
increment (same for all vectors in this example) 
number of elements 

Note that there should be three memory references in the loop: "get 
A", "get B", and "store C". (Unlike the dot product which accumulated 
a running sum· in the Adder, this program needs to store an answer after 
each set of computations. For the dot product, storing was not a. 
repeated process, and hence not included in its loop.) Three memory 
references, one every other cycle, means the loop would be six cycles 
long.. It ;,10uld start like this: 

1) --(nothing here, but count. a cycle) 
2) ADD XINC:,. APTR; SETMA:. get A 
3) 
l+) 
5) 
6) 

ADD XINC,. BPTR; SETMA 
DPX<MD 
FMUL DPX, MD 

"get B 
"store A in DPX 
"do A*A 

(The reason for starting on the second line. will be explained later.) 

Now. it has run out of cycles, but there is still more to do, so it 
st.arts back up at the first cycle, which is where the end will branch 
to,, when it gets. around to testing if it's done. 

5 11 



LOOP: 1) ---

2) ADD XINC, APTR; 
SETMA 

3) ---

FMUL 

FMUL 

FADD FM, MD 

11B is available 
here, but 

"not needed yet 

"add B to A(2) 

4.) ADD XINC, BPTR; FADD 
SETMA 

5) DPX<MD 

6) FMUL DPX, MD 

DEC N "answer is avail­
able here 

"but can't re­
ference memory 

"yet to store it 

ADD XINC", CPTR; SETMA; MI<FA; 
BGT LOOP us tore answer and 

"test if done 

This is the entire loop. In its proper form, taking out lines and 
adding semicolons, it looks like this1o 

LOOP: FMUL 
ADD XINC, APTR; SETMA; FMUL 
FADD FM, MD 
ADD XINC, BPTR; SETMA; FADD 
DPX<MD; DEC N 
FMUL DPX, MD; ADD XINC, CPTR; SETMA; MI<FA; BGT LOOP 

5 12 



5.2.4 Writing Intros 

Notice, however, that if the program goes right into this loop, after 
initial overhead such as SUB XINC, APTR 

SUB XINC, BPTR 
SUB XINC, CPTR 

it picks up the first element of A and B as it's supposed to, but it 
also stores something into C before it's ready to, and decrements the 
counter too early. IT GOES THROUGH BOTH COLUMNS AT THE SAME TIME~ 
What is desired, however, is that computations in the second column 
continue, from th& first column. The only way it can do this is to 
continue from what the first column did in the PREVIOUS time through 
the loop. And the FIRST time, there was no previous time. Hence the 
need for additional microcode before getting into the loop. 

Exactly what needs to go before the loop? In order for the second 
column of the loop to be doing what it's supposed to when tha program 
gets to it, the first column must precede it. Essentially, one 
rewrites the first column as an "intro" to the loop. Thus: 

PROGRAM: MOV APTR, APTR; SETMA 

SUB XINC, CPTR 

MOV BPTR ,, BPTR; SETMA 

DPX<MD 

FMUL D PX, MD 

LOOP: FMUL 

ADD XINC, APTR; SETMA; FMUL. 

FADD FM, MD 

ADD XINC, BPTR; SETMA; FADD 

DPX<MD; DEC N 

"get first element 
"of A 

"to offset ADD in 
loop 

"get first element 
"of B 

"store A(l) in DPX 

"do A(l)2 

"get A(m+l) 

"do A(m)2+B(m) 

"get B(m+l) 

"store A(m+l) 

FMUL DPX, MD; ADD XINC, CPTR; SETMA; MI<FA; BGT LOOP 

DONE: RETURN 

5 13 

"do A(m+l)2, store 
"C (m), test if done 



To clear up a loose end regarding the structure of illemory-limited 
loops, one might notice that: since the branch must be in the last 
cycle, the DEC N instruction must be in the second.-to-last cycle.. DEC 
is an S-Pad operation and cannot be in the same cycle as another S-Pad 
operation, such as ADD XINC, XP!R.. A memory-limited loop has SETMA' s 
(requiring S-Pad ope.rations) on every other line. Since the DEC N 
operation will go on an odd:-numbered line of the loop, the SETMA' s must 
go on even-numbered lines. This is why the first thing to do,.ADD XINC, 
AP'!R; SETMA (See sec ti on 5. 2. 3) , was put on line' 2. 

5 14 



5.2.5 Dot Product Program 

It is now possible to write the four cycle dot product. Using the 
technique outlined above, the loop should be constructed as follows: 

1) 

2) ADD XINC, APTR; SETMA "get A 

3) 

4) ADD XINC, BPTR; SETMA "get B 

then 

l) DPX<MD "store A 

2) ADD XINC, APTR; SETMA 

3) FMUL DPX, MD "do A.B 

4) ADD XINC, BPTR; SETMA FMUL 

then 

l) DPX<MD 

2) ADD XINC ,. APTR ;. SETMA 

3) --- FMUL DPX, MD 

4) ADD XINC, BPTR; SETMA FMUL 

FMUL 

FADD FM,FA 11 add A.B to sum 
"of products 

FADD; DEC N"decrement 
counter 

BGT LOOP "test if done 

The intro to this three column loop will consist of the first column 
alone, then the first and second column together. Other overhead, such 
as initializing FA to 0, can be mixed in with the intro. 

To generalize, an N-column loop would require an intro consisting of 
column 1 followed by columns 1 and 2 together, followed by columns 1, 2 
and 3 together •••• followed by columns 1, 2, ••• ,N-1 together. 

5 15 



$TITL£ DOTPROD 
$ENTRY DOTPROD 

APTR $EQU O 
BPTR $EQU 1 
CPTR $EQU 2 
XINC$EQU 3 
N $EQU 4,. 

DOTPROD:: MOV AP!R,. APTR; SETMA; .. FADD ZERO, ZERO •tget A(l) and: 
11 initialize FA==O 

LOOP: 

DONE.: 

$END 

MOV BPTR, BPTR; SETMA; FADD 11get B (l) 

DPX<MD 11 store A(l) 

ADD XINC, APTR; SETMA· "get A(2) 

FMUL DPX, MD "do A(l )*B ( l) 

ADD X!NC, BPTR; SETMA; FMUL "get B(2) 

DPX<MD; FMUL "store· A(m+ l) 

ADD XINC, APTR; SETMA; FADD FM, FA "get A(m+l), add: 
"A(m)B(m) t.o sum 

FMUL DPX, MD; FADD; DEC. N "do. A(m+l)B (m+l) 
"decrement counter 

ADD XINC > BPTR; SETMA; FMUL; BGT LOOP "get: B (m+ 2) , test: if 
''"done 

MOV CPTR, CPTR; SETMA; MI<FA; RETURN nif so:, store· answer 

5 16 



Now each new pair of elements will cost four more cycles, because every 
four cycles a new pair is being fetched; every four cycles another 
product is added to the sum. The longer overhead is no disadvantage a,s 
it is only done once, and even if the program was called with N 
containing 1, making the streamlined loop unnecessary, it takes no 
longer than the unstreamlined program. 

Note that there are two SETMA's in a row at the beginning and again at 
the end of the program. This will not· cause any problems except to 
make memory spin, which is ~he memory's way of putting in the NOP' s the 
programmer leaves out. The timing is still the same, and this way 
there are two less locations of Program Source used up. 

It might be mentioned that if one were getting Vectors A and B out of 
Data Pad instead of memory, the dot product could be written with a· 
one-cycle loop! This will be demonstrated later. 

5 17 



S.2 .. 6 Notation 

A few w:ords about notation are in:. order. The- "-" used when writing 
loops in column form simply denotes a blank spot, indicating a cycle 
goes- by while awaiting the results of &• memory fetch or while looking_ 
for a more propitious spot to use the results of the· Adder or 
Multiplier, etc. Normally, sontething_ else- w:ill eventually go on the 
same line,,_ in a different column .. 

E'xamp-le: This takes. vector A, multiplies- it by a constant in DPX,. and: 
stores,-, it in vector B. 

1) FMUL DPX, MD 

2) ADD XINC,_ APTR; SETMA FMUL 

3) FMUL; DEC N 

4) ADD- XINC,. :BPTR; SETMA:; MI<1'"M;. BGT LOOP 

Since the length of the loop was., already decided by the number of 
SETMA' s, these blank spots cause· no harm to the speed.. It is the· 
number of cycles in the- loop, not the number of columns, which 
determines speed., Extra columns simply mean longer intros, which the 
program· only goes through once anyway unless it's- part of a nested 
lo.op .. 

In:: loops< with severa-l A_dder or· Multiplier operations,. it: often happens, 
that one such instruction will be a "pusher" for another in another 
column. 

l) 
2) 
3) 
4) 
5) 
6} 

(code) 
" FMUL DPX, DPY 
II· FMUL 
II FMUL 
" DPX(l )<FM 
If-

FMUL DPY, MD 
FMUL 
FMUL 
DPY<FM 
It 

(code) 
II 

'"' 

In column 2, lines 2 and 3 are illegal, as those lines already contain 
FMUL 1 s (which will do the pushing for column 2 as; well as: column l ) .. 
However, it may be advantageous to the programmer to note to himself 
somehow that FMUL's do belong there, in case things in the first column 
get moved around for some reason., This is the purpose of such notation 
as ( fmul) or ( fadd). 

Thus: 

l) (code) FMUL DPY, MD (code) 
2) It FMUL DPX, DPY (fmul) II-

3) II FMUL (fmulJ It-

4) II FMUL DPY<FM II 

5) " DPX(l)<FM ·~ 
6) "' 11-

5 18 



Now, if pieces of the first column were moved down a couple of lines 
for some reason, 

1) (code) FMUL DPY, MD (code) DPX(l)<FM 
2) " (fmul) II 

3) II (fmul) " 
4) "FMUL DPX, DPY DPY<FM II 

5) "FMUL II 

6) "FMUL " 

the programmer would be reminded to put real FMUL's back on those 
lines. 

When writing loops with a small number of cycles, these reminders can 
also help one keep track of the columns, as in: 

DPY<MD FMUL 
ADD XINC, APTR; SETMA FMUL, DPY, MD (fmul) 

FADD FM, FA; DEC N 
FADD; BGT LOOP 

This gets a vector !rom memory, squares each element and adds the 
squares together (sort of a dot product between vector A and itself). 
The seemingly empty columns, which disappear when the loop is written 
in proper form (see below), are necessary in order to write the intro 
properly. If one left out the second column, for example, his intro 
would start with: 

MOV APTR, APTR; SETMA 
DPY<MD 
ADD XINC, APTR; SETMA; FMUL DPY, MD 

Clearly, the first MD will not be the first element fetched. By the 
time it gets down to FADD FM, FA in the loop, something which doesn't 
belong will be added in. 

This is what the intro and loop should look like: 

MOV APTR, APTR; SETMA 
FADD ZERO, ZERO "initialize FA=O 
ADD XINC, APTR; SETMA; FADD 
DPY<MD 
ADD XINC, APTR; SETMA; FMUL DPY, MD 
DPY<MD; FMUL 
ADD XINC, APTR; SETMA; FMUL DPY, MD 

LOOP: DPY<MD; FMUL; FADD FM, FA; DEC N 
ADD XINC;. APTR;. SETMA; FMUL DPY, MD; FADD; BGT LOOP 

(answer)<FA 

5 19 



5.2.7 Dropping Out One Early 

1) (code) (code) 
2) ADD XINC, APTR; SETMA " II 

3) {code) " II 

4) ADD XINC, BPTR; SETMA II II 

5) (code) " II 

6) " ADD XINC, CPTR; SETMA II 

7) II (code) " DEC N 
8) n· " . ADD XINC,. DPTR; SETMA 

MI<DPX; BGT LOOP 

Here, there are two memory reads in the first column, one read in the 
second column, and a store in the last column. When writing the intro, 
the pointers should be taken care of as follows: 

MOV APTR, APTR; SETMA 
SUB XINC, DPTR; (code) 
MOV BPTR, BPTR; SETMA 
(code) 

ADD XINC, APTR; SETMA; 
(code) 
ADD XINC, BPTR; SETMA; 
(code) 

II 

II 

II 

(code) 

II 

II 

MOV CPTR, CPTR; SETMA 
(code) 

II 

If the memory reference in the· second column of the loop was a store 
instead of a read, the problem would become more complicated. By the 
time the counter went down to zero and the last result was stored at 
DPTR, an ex.tra. C would have been stored, possibly over a. valuable piece 
of data, such as the beginning of vector D., Or if instead of ADD XINC, 
CPTR; SETMA; MI<DPY in the second column, we had DPY<FA (where FA is 
cumulative, as in the dot product) and later stored DPY into CPTR after 
getting out of the loop, an. extra FA would have been computed and DPY 
would contain an incorrect answer. In this case, it would be wise to 
drop out of the loop one time early. One would put an extra DEC N 
somewhere in the intro, so that the loop would be done N-1 times. Then 
after the loop, write just the last column (not including DEC and the 
branch, of course), which is all that remains to be done from the loop 
anyway. 

5 20 



Example: This does a dot product of vectors A and B, and also outputs 
the square of each updated sum into vector D. 

FMUL DPX, MD 
ADD XINC, APTR; SETMA (fmul) FMULDPY, DPY 

FMUL (fmul ) 
ADD XINC, BPTR; SETMA FADD FM, FA FMUL 
DPX<MD FADD DEC N 

DPY<FA ADD XINC, DPTR; SETMA; MI<FM; 
BGT LOOP 

When it is going through the loop for the last time and storing the 
very last thing in D (column 3), it is also simultaneously doing extra 
executions of columns 1 and 2. Normally, that doesn't matter, but in 
this case, something extra is being added to the cumulative sum of the 
dot product (column 2), which was completed the previous time through 
the loop. By dropping out of the loop before its last time around, 
this error is avoided: 

MOV APTR, APTR; SETMA 
DEC N 
MOV BPTR, BPTR; SETMA 
DPX<MD 
SUB XINC, DPTR 

ADD XINC, APTR;. SETMA; 

ADD XINC, BPTR; SETMA 
DPX<MD 

LOOP: 
ADD XINC, APTR; SETMA 

ADD XINC, BPTR; SETMA 
DPX<MD 

OUT: 

"to cause dropping out early 

"to nullify the first ADD XINC,. DPTR 

FMUL DPX, MD 
FMUL 
FMUL 
FADD FM, FA 
FADD 
DPY<FA 

FMUL DPX, MD 
FMUL DPY, DPY 

FMUL 
FADD FM, FA FMUL 
FADD; DEC N 
DPY<FA; ADD XINC, DPTR; SETMA; MI<FM; 

BGT LOOP 

FMUL DPY, DPY 
MOV CPTR, CPTR ;. SETMA; MI <DPY; FMUL 

FMUL 
ADD XINC, DPTR; SETMA; MI<FM; 

RETURN 

Notice that the· (fmul) in column 2 became a real FMUL in the intro. 
OUT starts Just the last column. The next line stores the completed 
dot product .. 

5 21 



One might wish to come out one early even if one doesn't strictly need 
to, if the loop is long and there are only a couple of lines in the 
last column: 

1) (code) (code) 
2) II· SETMA II 

3) 
,,_. II " SETMA; MI<DPX 

4) II 

5) " 
6) II SETMA 
7) II 

8) II SETMA 
9) II 

10) II SETMA 
11) fl DEC N 
12) II SETMA BGT LOOP 

In this case, coming out of the loop one time early and adding on the 
last four lines afterward would save going through eight cycle.s for 
nothing .. 

5 22 



5.2.8 Interaction Between Columns 

In order to fit things into complicated loops without creating op-code 
conflicts, the AP programmer takes advantage of results (e.g. MD, FA) 
which are the same for one or more cycles after first available. 
Sometimes he will purposely delay the pushing of an answer through a 
pipeline by leaving out "pushers". But he must be careful of the way 
the columns interact with each other within the loop. 

1) FMUL DPX, DPY 
2) FMUL DPY (3), DPX(2) 
3) FMUL 
4) FMUL 
5) FMUL DPY(l )<FM 
6) DPX( l )<FM 

The FMUL's in column 2 will act as "pushers" for the FMUL DPX, DPY ln 

column 1, whose answer will come out on line 4 instead of line 6 as 
desired and will disappear forever when replaced by a new FM on line 5. 
Notice the FMUL on line 4 in column l acts as a pusher for column 2, 
which was planned for. 

Another example: 

l) (code) 
2) 
3) 
4) 

ADD XINC, APTR; SEIM..~ 

(code) 
II 

DPX<MD 
(code) 
FADD FM, DPX 
(code) 

(code) 
DPX<FA 
(code) 

II 

The DPX of column 2, line 3 will not be the same as what was stored 
into it in column 2, line l. It will be FA from column 3, line 2. 

5 23 



5.2.9 Changing DPA 

Because one can access things in Data Pad much faster than things in 
memory, it makes sense to store things from memory into Data Pad if 
they will be used again. For example, if one is going: to use an N­
element vector for several different computations, one could store it 
in DPX(O), DPX(l), •••• ,DPX(N-1). Because the Data Pad indices can only 
be accessed from -4 to +3 with a static DPA, it becomes useful to leave 
the index alone and change DPA. 

Storing vector A in DPX is basically the repeated operation of DPX<MD; 
INCDPA. If DPA is initially set to zero, then the first element will 
be stored into DPX(O). INCDPA will increase DPA for the NEXT 
instruction. 

Thus: DPX<MD; INCDPA 
DPX<MD 

"refers to DPX(O) 
"refers to DPX(l) 

The ways to set DPA to zero: 
CLR# (S-Pad name); SETDPA 

or 
DB=ZERO; LDDPA 

"uses up S-Pad field 

"uses up Adder field 

This loop will read a vector from memory into Data Pad X: 

ADD XINC, APTR; SETMA 
DPX<MD ;. INCDPA; DEC N 
BG'! LOOP 

With intro: 

MOV APTR, APTR; SETMA 
CLRI APTR; SETDPA 
ADD XINC, APTR; SETMA 

LOOP: DPX<M.D; INCDPA;. DEC N 
ADD XINC, APTR;. SETMA; BGT LOOP 

5 24 



5. 2 •. 10 Non-Memory-Limited Loops 

A non-memory-limited loop is a loop in which two times the number of 
memory references is less than the number of same-op-code-field 
operations required. For example,. if there are five Floating Adder 
operations to be done (FADD, FSUB, FSUBR, etc.) but only two memory 
references (a fetch and a store), the five Adder operations cannot fit 
into four cycles. 

Incidentally,.. "pushers" don't count in figuring out how many cycles are 
needed.. In a five-cycle loop with five. different Adder operations, the 
Adder instructions become each other's pushers. 

Recall that in memory-limited loops, the first instruction in column 1 
usually starts on line 2, to avoid S-Pad conflicts on the next-to-last 
line. (See last paragraph of Section 5.2.4). This is not necessary in 
non-memory-limited loops. 

The following loop will test whether each element of a vector in DPY is 
within the range between a maximum limit and minimum limit. If so, the 
element is added to a cumulative sum. The maximum limit is 
conveniently located in MD, and the· minimum limit in FM, by the grace 
of whatever program uses this loop.. Neither FM nor MD change during 
this loop's execution. 

FSUB DPY, MD 
FSUB FM, DPY 
(fadd) INCDPA 

BFGT BIGGER 
BFGT SMALL 
FADD DPY(-1), DPX 

(fadd) 
DPX(FA; DEC N 
BGT LOOP 

Note that the BFGT instruction tests FA of the previous cycle •. 

5 25 



5.2.ll A One-Cycle Loop 

For the one-cycle dot: product:, it is assumed thae the vectors are 
already in Data Fad, starting at DPX(O) and DPY(O) (where DPA=O). 
Obviously, vectors longer than 32 elements cannot be handled this, way 
(or can only be handled in sepients. of 32 or less). 

This is what the loop really looks like: 

FMUL DPX, DPY; INCDPA (fmul) (fmul) FADD FM, FA; DEC N (fadd) BGt 
LOOP 

The FMUL and FADD instructions become their own "pushers". 

$TITLE DOTPROD 
$ENTRY DOTPROD 

N $EQU 0 
CPTR. $EQU 1 

"number of elements in each vector 
"where, to store answer 

DPTPROD: CI.RI, N; SETDP A "DPA=O 
FMUL DPX, DPY; 

INCDPA; 
DEC N 

FMUL DPX, DPY; 
INCDl?A 

FMUL DPX, DPY; 
INCDPA;, 
FADD ZERO, ZERO 

FMUL OPX, DPY; 
INCDPA;. 
FADD FM, ZERO; 

DEC N 

"do A(l)*B(l) 
"DPA to l 
"set drop out early 
"do A(2)*B(2) 
"t>PA to 2 
"do A(3)*B(3) 
"DP.A to 3 
"init. FA=O 
"do A(4)*B(4) 

LOOP: FMUL. DPX( DPY; 

"DPA to 4 
"A(l)B(l) in Adder 
"decrement counter 
"do A(m)*B (m) 

INCDPA; 
FADO FM·, FA; 
DEC N;. 
BGT' LOOP' 

"DPA to DPA+l 
"add A(m-3)B(m-3) to. sum 
"decrement count.er 
"test: if done 

OUT: DPX<FA; FADD "store cumulative FA 

$END 

FADD OPX, FA "add it to other cumulative FA 
FADD 
MOV CPTR, CPTR; SETMA; MI<FA; "store answer 

RETURN 

s 26 



This particular sort of loop has a problem with the Floating Adder, in 
that a cumulative FA needs at least two cycles to accumulate each new 
addition. Hence, the one-cycle loop is actually operating with two 
mutually exclusive cumulative FA's, interwoven with each other: 

FADD FM, FA 
FADD FM, FA 
FADD FM, FA 
FADD FM, FA 
FADD FM, FA 

At the end of all this~ they (the two strings of sums) need to be added 
to each other. (see OUT, the label after LOOP). 

This also illustrates the practice of dropping out of the loop one time 
early. If it didn't drop out. early, the last (unneeded) FADD FM, FA of 
the loop would push out one of the two cumulative FA's. By the next 
cycle it would be gone forever. By dropping out early, DPX<FA can be 
done before it's too late. 

This line of reasoning can eventually lead one to the idea that the 
last column of the loop (see beginning of Section 4.2.16) is 
unnecessary, since there is no way for the Adder result to come out in 
time for the next FADD FM, FA. The FADD FM, FA of each of the two 
strings of cumulative FA's will push out the other string. So the loop 
need only be of the form: 

FMUL DPX, DPY; INCDPA ( fmul) (fmul) DEC N FADD FM, FA; BGT LOOP 

This is one column less than before, which means that there will be one 
column 1 s worth (in this case, one line) less to put in the intro. It 
will also not be necessary to come out of the loop one time early, as 
there is no extra FADD FM, FA to push away something needed. It is 
still necessary to add the two cumulative FA' s together at the end. 

5 27 



$TITLE DOTPROD 
$ENTRY DOTPROD 

N $EQU 0 
CPTR $EQU l 

DOTPROD: CLRffe- N; SETDPA 
FMUL. DPX, DPY; 

INCDPA; 
FADD. ZERO, ZERO 

FMUL DPX, DPY; 
INCDPA; 
FADD ZERO, ZERO 

FMUL DPX, OPY; 
INCDPA; 
DEC N 

LOOP: FMUL DPX,. DPY; 
INCDPA; 
DEC N; 
FADD FM, FA; 
BG! LOOP 

OUT: DPX<FA; FADD 
FADD DPX, FA 
FADD 

"DPA=O 
"A (l ) * B ( l ) 
" DPA to l 

initialize cum .. FA=O 
"A(2:) *B.(Z) 
" DPA to 2 
•t initialize. other cum .. FA•O 
"A(3) * B(3) 
" DPA to 3 

11A(m) * B(m) 
" DPA to DPA+l 
II 

If· 

II 

decrement counter 
add A(m-3)B(m-3) to cum .. FA 
test if done 

wstore first cumulative FA 
"·add. it to other cumulative FA 

MOV CPTR, CPTR; SETMA; MI.<FA;"store answer 
RETURN 

$END 

5 - 28 



5. 3 CAVEAT PROGRAMMER (LET THE PROGRAMMER BEWARE) 

5.3.l Calling Another Sub-Routine 

The JSR instruction allows one program to utilize another program, for 
example the divide sub-routine (DIV). In order to do this, one must 
declare DIV external ($EXT DIV) so that the assembler and linker will 
know what to do with the otherwise undefined symbol. One must also 
save everything he will need when program execution gets back to his 
main program. Depending upon what was used in the called sub-routine, 
some things may remain untouched. Commonly one should not count on 
being able to leave things in the Adder or Multiplier. Parts of Data 
Pad may also be changed, or DPA may change. S-Pad will probably not 
remain inviolate. (Remember, it's the S-Pad register number, not name, 
which is important.) These things need to be checked before doing a 
JSR. 

5 29 



5.3.2 Illegal Instruction Sequences (not caught by APAL) 

The· following sequences of instructions have 
improperly. They are not flagged as e~rors 
programmer must be vecy careful to avoid them. 

been found to work 
by APAL and thus the 

SEQUENCE 

l) Two consecutive RE!URN 
inst.ructions. 

2) A two-cycle in$truction 
(PS, PSODD, or PS EVEN 
field) followed by a 
JSR instruction .. 

3) An instruction from the 
PS field followed by a 
BDBN or BDBZ instruction .. 

4.) HALT followed by JSR. 

5) Panel breakpoint before 
a JSR. 

6) Set flag 
Branch flag 

7) LDAPS 
BR APS!ATUS 

CODE 
EXA.i.\fPLE 

JSR 
RETURN 

RPSF 
JSR 

LPSL 
BDBN 

HALT 
JSR 

SFLO 
BFLO 

LDAPS 
BEQ 

5 30 

PROBLEM 

Stack pointer out of step. 

Stack pointer out of step. 

The branch occurs based on 
DB=O. 

Causes stack pointer over­
flow if repeated (stack 
point:er out of step). 

Stack pointer out of step. 

Wait one instruction after 
setting before branch. 

Wait. one instruction after 
setting before branch. 



5.3.3 Other Things To Watch Out For (caught by APAL) 

The rest of this section consists of various short examples, cautions, 
and reminders .. 

DPX<MD; DPY<DPX(l) 
Illegal. Data Bus is assigned twice. (The above is really 
DPX<DB; DB=MD; DPY(DB; DB=DPX(l).) 

DPX<MD; DPY<MD is legal.. (DB=MD; DPX<DB; DPY<DB) 

DPX<FA; DPY<FM 
Legal. FA and FM don't use t~e Data Bus. 

DPX<FA; DPY<FM; DPX(l)<MD 
Illegal. Data Pad X is being written into twice (different 
indices). Within each cycle, there should be no more than 
one of each of the following: 

write into DPX 
write into DPY 
read from DPX 
read from DPY 

The exception is when reading out of Data Pad more than once 
but using the same index: 

FADD DPX, FA; FMUL DPX,. FA; DPY(l)<DPX is legal. 
FADD DPY, DPY; FMUL DPY, DPY is legal. 
FADD DPX, FA; FMUL DPX(l), FA is not legal. 

FADD DPX, DPY; DPY<MD 
The old value of DPY, before MD replaces it, is used in the sum. 

DB=4; LDSPI XINC; LDDPA; DPX(2)<FM 
Both DPA and the contents of XINC will become 4, but the 
previous DPA is used in referencing DPX(2). 

SUB~ XINC, APTR; BGT OUT 
Illegal. The I uses the condition field (branch). 

5 31 





APPENDICES 





A 
Al 
A2 
ALU 
APAL 
APARTH 
APBUG 
APEX 
APL INK 
APMA 
APMATH 
APMAX 
APNMAX 
APPAT'H 
AP SIM 
AP STATUS 
APTEST' 
B 
CB 
CTL 
DA 
DB 
DMA 
DP 
DPA 
DPBS 

DPX 
DPY 
DST 
EFA 
FA 

FADDR 
FM 

FFT 
FMT 
FMULR 

APPENDIX A 

GLOSSARY 

I.O Device Condition "A" Flag 
Floating Adder Input Register #1 
Floating Adder Input Register #2 
Arithmetic - Logic Unit 
A.P. Assembly Language (S/W package) 
A.P. Arithmetic Test (S/W package) 
A. P. Debugger (S /W package) 
A.P.IExecutive (S/W package) 
A.P. Linker (S/W package) 
AP-120B Memory Address Register 
A.P •. Math Library (S/W package) 
Maximum-Positive Floating-Point Number 
Maximum-Negative Floating-Point Number 
A.P. Path Tester (S/W package) 
A.P. Simulator (S/W package) 
A.P. Status Register 
A.P .. Tester (S/W package) 
I/O Device Condition "B" Flag 
Control Buffer (command) 
Control Register 
I/O Device Address 
Data Pad Bus 
Direct Memory Access 
Data Pad Group 
Data Pad Address Register 
Data Pad Bus Field~ 
Data Pad Bus 
Data Pad X Registers 
Data Pad Y Registers 
Destination Register 
Effective Address 
Floating Adder Output Register, 
Floating Adder Result 
Floating Adder 
Floating Multiplier Output Register, 
Floating Multiplier Output 
Fast Fourier Transform 
Formatter 
Floating Multiplier 

A-1 



FN 
FPN 
HEMA 
HM.A. 
IFFT 
INBS 
INTRQ 
IODRDY 
JSRS 
LIFO 
Ll'IES: 
LSB 
Ml 
M2 
MA 
MAE 
MD 
MI 
MSB 
PANEL 
PNLBS 
PS 
PSA 
SP 
SP (SPD) 
SP(SPS) 
S-PAD 
SPD 
SPFN 
SRA 
SRAO 
SRC 
SRS 
SVCR'r 
SWR 
TM. 
TM.A 
TMR.AM 
VALUE 
we 

Function Register 
Floating Point Number 
Righ Host: Memory Address 
Host Memory Address Register 
Inverse Fast Fourier Transform 
!/O Input Bus 
Interrupt Request Flag 
I/O Data Ready Flag 
Jumps To Subroutines 
Last:-!n--First-Out 
Lights Register 
Least Significant Bit 
Floating Multiplier Input Register ti1 
Floating Multiplier Input Register #2 
Memory Address Register 
Memory Address Extension 
Data Memory 
Memory Input 
Most Significant Bit 
AP Virtual Front Panel. 
Panel Bus 
Program Source Memory 
Program Source Address Register 
Scratch Pad Register 
S-Pad Destination 
s-Pad Source 
Scratch Pad (See also SP) 
Scratch Pad Destination Address Register 
S-Pad Function 
Subroutine Return Address 
Subroutine Return Address Overflow: 
Source. Register 
Subroutine Return Stack 
Service Routine 
Panel Switch Register 
Table Memory 
Table Memory Address Register 
\Jritable Table· Memory (Random Access) 
Comm.and Buff er Value 
Word Count Register 

A-2 



APPENDIX B 

LIST OF TERMS AND USAGE 

The following terms and abbreviations are used throughout Part III to 

facilitate instruction descriptions. 

TERM/ABBREVIATION 

<> 

& 

sh 

sps 

MEANING 

Optional Instruction 
Mnemonic 

BIT-REVERSE 
Operator 

S-PAD Shift 
Operator 

S-PAD NO-LOAD 
Operator 

S-PAD Source 
Register 

B-1 

USAGE 

Elements or operands 
contained within are 
optional. 

e.g. 

ADD < sh > < #: > < & > 5 , 6 

If no < > , then listed 
operands are mandatory. 

When specified, this 
symbol immediately pre-
ceeds the SP operand. 

SPS e.g. 

ADD &sub, base 

(See S-PAD SU~..ARY, SPFN 
MODIFIERS) 

Indicates one of 4 S-PAD 
shift options: 

e.g. 
SUB< sh> 5, 6 

(See S-PAD SUMMARY, SPFN 
MODIFIERS) 

Indicates that normal 
(SPFN)'"""' SPSPD operation in 
inhibited. 

e.g. 
MOV# 5 ,5 

Indicates currently desig­
nated S-PAD DESTINATION 
REGISTER. 

e.g. 
ADD sps, spd 

(See S-PAD SUMMARY, S-PAD 
OPERANDS) 



tarq 

adr 

idx 

val 

a2 

BRANCH TARGET 
AO DRESS 

ADDRESS 

DATA-PAD 
Index 

value 

Al source operand 

A2 source operand 

B-2 

An address contained in 
the DISP field of the 
instruction word within 
a range of -208 to +178 
locations relative to 
the current program lo­
cation; by name, number, 
or expression. 

e.g. 
BR targ 

(See SPEC SUMMARY, Test, 
Branch, and Jump Op­
erations}. 

Address contained in 
Value field of instruc­
tion word. May be used 
for both absolute and 
relative addressing op­
erations. 
(See SPEC SUMMARY, Test, 
Branch, and Jump Op­
erations). 

e.g. 
JMP adr 

DATA-PAD location spec­
ifier; by name, number, 
or expression, within -4 
to +3 locations relative 
to current DP.A. 

e.g. 
DPY(idx} <FA 

Numeric value contained 
in the VALUE field of the 
current instruction word. 

Indicates currently se­
lected Al REGISTER sow:::ce 
operand. 

Indicates currently se­
lected A2 REGISTER source 
operand. 

e.g. 
FADD al, a2 



ml Ml source-operand 

m2 M2 source-operand 

B-3 

Indicates currently 
selected Ml register 
source-operand. 

Indicates currently 
selected M2 register 
source-operand 

e.g. 
FMUL ml,m2 





FUNC'l'ION OPERATOR 

+ 

EQV 

OR 

( ) 

superscripts 

APPENDIX C 

LIST OF FUNCTIONS 

FUNCTION 

PLUS 

MINUS 

EQUIVALENCE 
(NOT Exclusive' OR) 

AND 

OR 

Contents of a 
Register or Data 
currently enabled 
onto a bus. 

indicates portion 
of larger elements. 

C-1 

MEANING 

Additive; A plus B 

Subtractive; A plus B 

If A=B, then C=l; 
if A=B, then C=O. 

Indicates that both ele­
ments must be present to 
satisfy the test condi­
tion. 

Indicates that any one or 
both element(s) present 
satisfies the test. con­
dition. 

Used to describe Register 
Transfers in the fol­
lowing manner: 

(A2) DPX ( idx) 
Meaning: The contents of 
A2 register replace the 
contents of DPX(idx). 

Example: 
Ql 

PS 
Meaning: Quarter-one (bits 
16-31) of the PROGR.AM­
SOURCE word. 
Note: To avoid double­
superscripting, the fol­
lowing convention is 
observed:· 

Ql 
pg· bi ts 23-2 7 

Meaning: Bits 23 through 
2 7' of the QUARTER-ONE po r­
t ion of tha PROGRAM-SOUR.CE 
word. 



arg 
subscripts 

logical complement 
"as addressed by" 

C-2 

e.g., SP(SPS) 
Example: 

PS 
TMA 

Meaning: PROGRAi.'1-SOURCE 
word at the location 
pointed to by the current 
contents of TABLE MEMORY 
ADDRESS REGISTER (T~). 

Note: For addressing 
subscripts, the ( ) 
operator is implied. 

I. 

I 

I: 



APPENDIX D 

INSTRUCTION FIELD LAYOUT AND SUMMARY 

AP-120B INSTRUCTIONS 

Unconditional Fields 

Each of the following fields may be used in any given instruction word. 

Octal Octal 
Code Field Name Code 

B SOP SOPl. SH SPS SPD FADD FADDl. Al. A2 

fl> NOP SOPl NOP NOP CS-Pad CS-Pad FADDl. NOP NC NC fl> 
1 8' SPEC WRTEXP L Source Dest. FSUBR FIX FM FA 1 
2 ADO WRTHMN RR Reg.) Reg.) FSUB FIXT DPX DPX 2 
3 SUB WRTLMN R FADD FSCLT DPY DPY 3 
4 MOV NOP C0-17) (0-17) FEQV FSM2C TM MD 4 
5 AND NOP FAND F2CSM ZERO ZERO 5 
6 OR NOP FOR FSCALE ZERO MDPX 6 
7 EQV NOP· IO FABS ZERO EDPX 7 

1\11 CLR 1\11 
11 INC 11 
12 DEC 12 
13 COM 13 
14 LDSPNL 14 
15 LDSPE 15 
16 LDSPI 16 
17 LDSPT 17 

Octal. Octal 
Code Field Name Code 

COND DISP DPX DPY DPBS XR 'YR xw YW FM 

f1J NOP (Branch NOP NOP ZERO (DPX (DPY (DPX (DPY NOP f1J 
1 ... Displa- DB DB INBS Read Read Write Write F'MUL 1 f'f' 

2 BR cement) FA FA VALUE* Index) Index) Index) Index) 2 
3 BINTRQ (0-37) FM FM DPX 3 
4 BION DPY (0-7) (0-7) (0-7) (0-7) 4 
5 BIOZ MD 5 
6 BFPE SPFN 6 
7 RETURN TM 7 

1\11 BFEQ lf!J 
11 BFNE 11 
12 BFGE 12 
13 BFGT 13 
14 SEQ 14 
15 $-l'E 15 
16 BGE 16 
17 SGT 17 

Oc.tal Octal 
Code Field Name Code 

Ml M2 MI MA DPA TMA 

111 FM FA NOP NOP NOP NOP ff) 
1 DPX DPX FA INCMA INCDPA INCTMA l 
2 DPY DPY FM DECMA DECDPA DECTMA 2 
3 TM MD DB SETMA SETDPA SETTMA 3 

*' This instruction uses a 16-bit immediate VALUE as a constant or address (in bits 
48-63 of this instruction). The YW, FM, Ml, M2, MI, TMA a.n.d. DPA fields a.re then 
disaoled for this instruction word. 

D-1 



SPEC Fields 

On& of the. SPEC Fields ma.y b& used per instruction word. The S,-PA.D Fi&lds CB, SOP, 
SOP:L, sa, SPS, a.nd SPD) a.re; then: d.i$a.bled for- this instruction::. 

Oci:-a.L Octal 
Code Field. Name Code 

SPEC. STE ST HOSTPNL. SETPSA PSKVEN PS.ODD. PS SETEXlT 

f/J ST!ST BFLT: PNLLIT JMPA• RPSOA., RPSlA*' RPSLA• NOP f/J 
l HOSTPNL BLT DBELIT' JSRA*" RPS2A• RPS3A• RPSFA• SETEXA• l 
2 SPMDA BNC OBHLIT JMP• RPS~• RPSJ.• RPSL• NOP 2 
3 NOP BZC OBLLIT JSR• RPS2* RPS3*' RPSF*' SETEX• 3 
4 NOP BDSN NOP JMPT RPS~T RPSlT RPSLT NOP 4 
5 NOP BOBZ NOP JSRT RPS2T RPS3T RPS FT SETEXT 5 
6 NOP BU'N NOP JMPP NOP NOP RPS LP NOP 6 
7 NOP BIFZ NOP JSRP NOP NOP RPSFP SETEXP 7 

lf/J SETPSA NOP SWDB NOP WPSf/JA*' WPSlA* LPSLA*' NOP lf/J 
lJ. PS EVEN NOP SWDBE NOP WPS2A,. WPS3A• LPSRA• NOP ll. 
12 PSODD NOP SWDBH NOP WPS~• WPSJ.• LPSL* NOP 12 
13 PS NOP SWDBL NOP WPS2* WPS3* LPSR• NOP 13' 
14 SETEXIT BFL~ NOP NOP WPS~T WPSlT LPSLT NOP 14 
15 NOP BFLl NOP NOP WPS2T WPS3T LPSRT NOP 15 
16 NOP BFL2 NOP NOP NOP NOP LPSLP ·NOP 16 
17 NOP BFL3 NOP NOP NOP NOP LPSRP NOP 17 

ILO Fields 

One- of the I /0 fields ma.y be- used per instruction word. The. Floating Adder Fields 
(FA.DD, FA.001, Al, a.ad A2) a.re• then disa.bled for this insttuction ~ord. 

Octal Octal 
Code Field Names Code 

I.O LOREG RO REG IN OUT SENSE FLAG CONTROL 

~· I.DREG NOP RPSA OUT SNSA SFL~ HALT p 
!. RD REG LDSPD RSPD SPNOUT SPINA. SFL! IORST l 
2 SPMDAV LOMA RMA OUTDA SN SADA. SFL2 INTEJ.'i 2. 
3 REXlT I.DTMA RTMA SPOTDA. SPNADA SFL3 INTA 3 
4 INOUT I.DOPA RDPA IN SNSB CFLfl) REFR 4 
5 SEN SK LDSP RSPFN SPININ' SPINB. CFtl. WRTEX 5 
a FLAG LDAPS RAPS !NDA SNSBDA CFL2 WRnLAN 6 
7 CONTROL I.DOA RDA SP INOA SPNDBA CFL3 NOP 7' 

*' This instruction uses a 16-bit. integer VALUE (in bits 48-63 of tne- insi:ruction word). 
The Y'N, FM., 111, !42., MI, MA, T'.JA, a.nd DPA Fields a.re then dis a.bled for this instruction. 
word.. 

I 

I' 
! . 

1{ 
if 
1! 

-~ 



0 
I 

w 

AP-120B In~truction Field Layout 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

elsoP ]su SP~ I SpD FADD Al I A2 COND l DISP 
~ 

' 
S-Pad Group Adder Group Branch Group 

SOP! T FADDl I 
SPEC OPER I/O 

32 33 34 35 36 37 38(39 40 41 42 43 44 45 16 47 48 49 50151 52 53 54 55156 57 58 59 60 61 62 63 

DPX DPY I DPBS XR YR xw ¥W FM I Ml M2 MI MA DP~ ITMA 

Data Pad Group Multiply GrouplMemory Group 

VALUE 



Field 

B 

SOP 

*SH 

SPS 

SPD 

*1~ote: 

Octal 
Gode 

l 

l 

2 

3 

4 

5 

'/J 

1 

2 

0-17g 

O-l7g 

S-PAD GROUP 

___ g_1 __ _ 

Mnemonic Effect 

ADD 

SUB 

MOV 

AND 

'OR 

EQV 

L 

RR 

R 

0-lig 

0-178 

No-Op 

Use SP3ps (bit-reversed) 

See· SOPl field-

See Special Operations Group 

(SPspo)+(SP3p5)-+-SPFN 

(SP3po)-(SPsp5)+SPFN 

(SPsps)+SPFN 

(SP3po)AND(SP3p3)+SPFN 

(SPspo)OR(SPsps)+SPFN 

( SPspoJ'XOR( SP3p3)+SPFN 

iio-Op 

SPFN*2+SPFN (left shift) 

SPFN+4+SPFN (double ri~ht shift) 

SPFN+2+SPFN ( rigllt shift:) 

S-Pad Source Operand Address 

S-Pad Desti.nation Address, SPFN..._,SPSPD 
unless inhibited by No Load (COND==l) 

~hese are loiical shifts.: 

Right shift 0 •I 0-15 ·Cci 
Left Shift 0-1 0-15 ... 0 

o-4 

I~ 

I 

I 

1. 

I 



Octal 
Field Code Mnemonic Effect 

SOPl ~ No-Op 

1 WRTEXP Restricts DPX, DPY & MI fields to 
Exponent Only 

2 WRTHMN Restricts DPX, DPY & MI fields to 
High Mantissa Only (Bits 00-11) 

3 WRTL.MN Restricts DPX, DPY & MI fields to 
Low Mantissa O:q.ly (Bits 12-27) 

4 

5 

6 

7 

10 CLR ~SPFN 

11 INC (SPspo)+l-..SPFN 

12 DEC (SPspo)-1-..SPFN 

13 COM (SPspo)-..SPFN 

14 LDSPNL SPspo + SPFN, PNLBS ·+ SPSPD 

15 LDSPE SPSPD ..... SPFN, DPBSE - 512 + SPspo 

16 LDSPI SPspo ~,' SPFN, DPBSl.iL_,. SP 
SPD 

17 LDSPT SPSPD + 

MH=Mantissa High=Mantissa bits 00-11 
ML=Mantissa Low=Mantissa bits 12-27 

SPFN. DPBS 1\1T, SP 

MT=Mantissa bits for table iookups=Mantissa bits 02-08 
E=Exponent 

D-5 

SPD 

Write 

Write 

Write 



0Ct'al 
Field Code 

SPEC (/> 

l 

2 

3 

4. 

5 

6· 

7 

10 

ii 

12 

13 

14 

15 

16 

17 

SPECIAL OPERATIONS GROUP 

3 
1 

6 9 10 13 
PEC STEST 

hU~!.l:-'1 

SETPSA 
PSEVEN 
PS DD 
PS 
SETEXIT 

Mnemonic Effect 

SPMDA 

See STEST Field ( B-6) 

See HOSTPNL Field ( B- 7 ) 

Spin until MD available 

See SETPSA Field , inhibit TEST 
except No Load (B-8) 

See PSEVEN Field ( B-9) 

See PSODD Field (B-10) 

See PS Field ( B-11) 

See SETEXIT Field. (E-12) 

o-6 



Octal 
Field Code Mnemonic Effect 

STE ST f/J BFLT Branch if FA<Yi.f/J 

1 BLT Branch if SPFN<~ 

2 BNC Branch if s;..Pad carry bit=l 

3 BZC Branch if S-Pad carry bit='/J 

4 BDBN Branch if DPBS<!p.~ 

5 BDBZ Branch if DPBS positive and unnormalized 

6 BIFN Branch if Inverse FFT f lag=l 

7 BIFZ Branch if Inverse FFT f lag=O 

10 

11 

12 

13 

14 BFL!f' Branch if Flag f/J=l 

15 BFLl Branch if Flag 1=1 

16 BFL2 Branch if Flag 2=1 

17 BFL3 Branch if Flag 3=1 

If the. above specified condition is true OR the condition specified 
in the COND field is true, a branch occurs to (PSA)+DISP-20 

D-7 



Octal 
Field Code 

HOSTPNL f/J 

1 

2 

3 

4 

5. 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

Mnemonic 

PNLLIT 

DBELIT 

DBHLIT 

DBLLIT 

SWDB 

SWDBE 

SWDBH 

SWDBL 

MH=Mantissa High=Mantissa bits 00-11 
ML=Mantissa Low =Mantissa bits 12-27 
E=Exponent 

Effect. 

PNLBS +LITES 

DPBSE+PNLBS+LITES 

DPBSMH+PNLBS+LITES 

DPBsML+PNLBS+LITES 

(SWR) +PNLBS+DPBS 

(SWR) +PNLBS+DPBSE and WRTEXP*' 

( SWR) +PNLBS+DPBSMH and WRTHMN * 

(SWR) +PNLBS+DPBSML and WRTLMN * 

*Restrict DPS, DPY and MI ·to: 

WRTEXP: Write Exponent only 
WRTHMN Write High Mantissa 

only (b±ta 00-11) 
WRTLMN : Write Low Mantissa 

only (bits 12-27) 

D-8 



Octal 
Field Code Mnemonic Effect 

SETPSA ~ JMPA VALUE+PSA 

l JSRA (SRA)+l+SRA,(PSA)+l+SRSsRA' VALUE+PSA 

2 JMP VALUE+(PSA)+PSA 

3 JSR (SRA)+l+SRA,(PSA)+l+SRSsRA, VALUE 
+(PSA)+PSA 

4 JMPT (TMA)+PSA 

5 JSRT (SRA)+l+SRA,(PSA)+l+SRSsRA' (TMA)+PSA 

6 JMPP (SWR)~PSA 

7 JSRP (SRA)+l+SRA,(PSA)+l+SRSSRA• 
( SWR)+PNI.BS-+PSA 

VALUE=Bi ts 48-63 of this instruction ( CB48--CB63) 

D-9 



Field 

PSEVEN 

Octal 
Code 

1 

2 

3 

4 

5 

7 

10 

11 

12 

13 

14 

15 

16 

17 

Mnemonic 

RPS~A 

RPS2A 

RPS~ 

RPS2 

RPS~T 

RPS2T 

WPS2A 

WPSf/J 

WPS2 

WPSf/JT 

WPS2T 

Effect 

(PS Q~ ) +PNLBS+ LITES 
VALUE 

(PSQ2 ) +PNLBS-+ LITES 
VALUE 

(PS~ ) ~NLBS4 LITES 
VALUE.+PSA 

(PSQ2 ) ~NLBS+ LITES 
VALUE+PSA 

(PS~ )-+PNLB~ LITES 
TMA 

(PSQ2 )+PNLB~ LITES 
TMA 

( SV/R) 

(SWR) 

(SWR) 

(SWR) 

(SWR) 

(SWR) 

-+PNLBS+PS Q.0 
VALUE 

+PNLBS+PS QZ 
VALUE 

-+PNLBS+ PS Q!O 
VALUE+PSA 

-+PNLBS+PS QZ 
VALUE+PSA 

-+PNLBS+PS~ 
TMA 

+PNLBS+PS QZ 
TM.A 

This field requires 2 cycles to execute 

VALUE= Bits 48-63 of this instruction (CB48-CB63) 
Q~ = Quarter zero of Program Source Word (PS¥Jrp-PS15) 
Q2 = Quarter two of Program Source Word (PS31-PS47) 

D-10 



Octal 
Field Code Mnemonic Effect 

PSODD '/J RPSlA (PS Ql ut -+PNLBS-+ LITES 
VAL 

1 RPS3A (PS Q3 ut-+PNLBS-+ LITES 
VAL 

2 RPSl (PSQl )_..PNLBS+ LITES 
VALUE+PSA 

3 RPS3 (PSQ3 . )-+PNLBS-+ LITES 
VALUE+PSA 

4 RPSlT (PSQl )-+PNLBS+ LITES 
TMA 

5 RPS3T (PS QJ )-+PNLBS-+ 
T?<'A 

LITES 

6 

7 

10 WPSlA (SWR) +PNLBS+PS Ql 
VALUE 

11 WPS3A (SWR) _..PNLBS+PS Q3 
VALUE 

12 WPSl (SWR) _..PNLBS+PS Ql 
VALUE+PSA 

13 WPS3 (SWR) -+PNLBS-+PS Q3 
VALUE+PSA 

14 WPSlT (SWR) -+PNLBS~PS Ql 
TMA 

15 WPS3T (SWR) -+PNLBS:.+PS Q3 
TMA 

16 

17 

This field requires 2 cycles to execute. 

VALUE=Bits 48-63 of this instruction (CB48-CB63) 
Ql=Quarter one of Program Source Word (PS16-PS31) 
Q3=Quarter three of Program Source Word (PS48-PS63) 

0-11 



Fie-ld 

PS 

Octal 
Code 

l 

2' 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

IS 

16 

17 

Mnemonic 

RPSLA 

RPSFA 

RPSL 

RPSF 

RPSLT 

RPSFT 

RPSLP 

RPSFP 

LPSLA 

LP SRA 

LPSL 

LPSR 

LPSLT 

LPSRT 

LPSLP 

LPSRP 

Effect 

I.Jr 
(PS VALUE ) -+DPBS 

FP 
(PS VALUE ) -+DPBS 

I.Jr 
(PS VALtlE+PSA )-i-DPBS 

FP 
(PS VALUE+PSA ) +DPBS 

(PS~ )+DPBS 

(PS~ ) -+DPBS 

LH 
(PS PNLBi-+DPBS 

(PS FP )+DPBS 
PNLBS' 

LH 
DPBS-i-PS VALUE 

RH 
DPBS-+-PS VALUE 

LH 
DPBS-i-PS VALUE+PSA 

. RH 
DPBS-i-PS VALUE+SA 

DPBS-+-PS~ 

DPBS:.+.PS ~. 

DPBS-+PS LH 
PNI.BS 
RH 

DPBS .... PS PNLBS 

This field· requires 2 cycles to execute. 

VALUE= Bi ts 48-63 of this in·struction ( CB48-CB63) 
LH=Left ha.lf: of Program Source Word (Bits 00-31) 
RH=Right half of Program Source Word (Bits. 32-63) 
FP=Program Source bits 26-63, used for floating-point literals 

D-12 



Octal 
Field Code Mnemonic Effect 

SETEXIT ~ 

1 SETEX'A VALUE-+SRSSRA 

2 

3 SE TEX VALUE+(PSA)-+SRSsRA 

4 

5 SE TEXT TMA-+SRSSRA 

6 

7 SETEXP PSA+l -+SRSSRA 

Sets the current subroutine return address as indicated above. 
SRA does not change. 
VALUE=Bits 48-63 of this instruction. 

D-13 



Field 

FADD 

Al 

FLOATING ADDER GROUP 

14 16 17 19 20 22 
FADD Al A2 

Octal 
Code 

l 

2 

3 

4 

5 

6 

7 

l 

2 

3 

4 

5 

6 

7 

FADDl 

Mnemonic 

FSUBR 

FSUB 

FADD 

FEQV 

FAND 

FOR 

NC 

FM 

DPX(lDX) 

DPY( lDX) 

TM 

ZERO 

Effect 

See FADDl field 

Subtract: (A2) - (Al) 

Subtract: (Al) - (A2) 

Add: (Al) + (A2) 

Logical Equivalence: (Al) XOR ( A2) 

Logical and: (Al) AUD ( A2) 

Logical or! (Al) OR ( A2) 

See I/O Group 

(Al)+Al 

FM+ Al 

(DPXDPA+lDX )+Al Where XR=1DX+4 

(DPYDPA+lDX )+Al Where YR=1DX+4 

(TM)+Al 

g.f}• Al 

Note: Al 1 floating adder op-codes: 

1. Align exponents 

2. Perform the specified arithmetic, logical, or shift 
operation 

3. Normalize 

4. Convergently round 

D-14 



Octal 
Field Code Mnemonic 

A2 (/J NC 

1 FA 

2 DPX ( lDX) 

3 DPY ( lDX) 

4 MD 

5 ZERO 

6 MDPX ( lDX) 

7 EDPX ( lDX) 

FADDl 

1 

2 FIXT 

3 FSCLT 

4 FSM2C 

5 F2CSM 

6 FSCALE 

7 FABS 

Effect 

( A2)-+- A2 

FA-+A2 

( DPXDPA+ lDX )-+A2, Where XR=1DX+4 

( DPYDPA+ lDX ) -+-A2 Where YR=1DX+4 
J 

( MD)-+A2 

YJ.C)-+A2 

SPFN+512-...A2E, 
M 

) A. ..,~.1 (DPX DPA +lDX .,~ ........ 

( DPx;PA+ lDX ) -+A2 E ,SPFN-+A2 M( ~9--?l) , 
(/J · ~2M ( VJ2 -2 7) 

no-Op 

Convert (A2) to an integer 

Convert (A2) to an intee-er (result 
truncated) 

Shift (A2) right and increment A2E 
until A2E =(SPFN+511) (result trun­
cated). 

Convert ( A.3), from signed .Magnitude 
to 2' s complement. 

Convert ( A2) f ram 2' s complement 
to signed magnitude. 

,.. 
Shift ~2)right and increment A2~ 
until A2E=SPFN+511. 

Take the absolute value of (A2). 

D-15 



Field 

I/O 

LDREG 

114 
r 1 1 

Octal 
Code 

1 

2 

3 

4 

5 

6 

7 

1 

2 

3 

4. 

5 

6 

7 

I/O GROUP 

161.17 19 20 22 
iI Il_O 

Mnemonic 

SPMDAV 

REXIT 

LDSPD 

LDMA 

LDT MA 

LDDPA 

I;t)SP 

LDAPS 

LDDA 

LDREG 
RIBEG 
IN OUT 
SENSE 
FLAG 
CONTROL 

Effect 

See LDREG field 

See RDREG field 

Spin. until MD available 

SRS (SRA) ~ PNLBS (See Note) 

See INOUT field 

See SENSE field 

See FLAG field 

See CONTROL field 

No-Op 

DPBS-+-SPD 

DPBS+MA 

DPB&+-TMA 

DPBS-+-DPA 

SPSPD-+-SP'FN,DPBS-+-SPSPD 

DPBS-+-APSTATUS 

DPBS-+-DA 

Note: This is generally used with a LDSPNL to load SRS into s-Pad 

register. It doesn't affect SRA. 

D-16 



Octal 
Field Code Mnemonic Effect 

RD REG '/J RPSA (PSA)+PNLBS 

1 RSPD ( SPD )+PNLBS 

2 RMA (MA)+PNLBS 

3 RTMA (TMA)-+-PNLBS 

4 RDPA ( DPA )-+-PNLBS 

5 RSPFN SPFN-+-PNLBS 

6 RAPS (APSTATUS)-+-PNLBS 

7 RDA (DA)•PNLBS 

IN OUT '/J OUT DPBS-+-IODEVICEDA 

1 SPNOUT SPIN if IODRDYoA=~ 
DPBS+IODEVICE DA 

2: OUT DA DPBS-+IODEVICEDA' SPFN-+-DA 

3 SPOTDA SPIN if IODRDY0A='/J, SPFN+DA 
DPBS+IODEVICE DA 

4 IN (IODEVICEDA)+INBS 

5 SPININ SPIN if IODRDYoA='/J 
(IODEVICEDA)+INBS 

6 INDA (IODEVICEDA)+INBS, SPFN+DA 

7 SP INDA SPIN if IODRDYoA=9), 
(IODEVICEDA)+INBS 

SPFN+DA 

D-l7 



Octal 
Field Code Mnemonic Effect 

SENSE ~ SNSA ADA...,.IODRDY Flag 

1 SPINA AoA•IODRDY, SPIN if IODRDY=~ 

2 SN SADA ADA_,.IQDRDY, SPFN+DA 

3 SPNADA AoA+IODRDY, SPIN if IODRDY=~, SPFN...,.DA 

4 SNSB BDA+IODRDY Flag 

5 SPINB BoA-+-IODRDY, SPIN if IODRDY=~ 

6 SN SB DA BnA_,.roDRDY, SPFN-i-D-A 

7 SPNBDA BoA-+IODRDY, SPIN if IODRDY=~, SPFN+DA 

A and B are I/O device dependent conditions, either l or 0 

FLAG ~ SFL~ l-+-FLAG9) 

1 SFLI l+FLAG1 

2 SFL2 l+FLAG2 

3 SFL3 l-+-FLAG3 

4 CFL~ \3+FLAG13 

5 CFLI ~+FLAG1 

6 CFL2. ~-+FLAG2 

7 CFL3 )?)+FLAG3 

D-18 



Field. 

CONTROL 

Octal 
Code 

0 

1 

2 

3 

4 

5 

6 

7 

Mnemonic 

HALT 

IORST 

IN TEN 

INTA 

REFR 

WR TEX 

WRTMAN 

Not Used 

Note.: This also clears flags. 

D-19 

Effect 

Halt 

I/O reset (See note) 

Interrupt enable - generates 
CTLOS Interrupt to Host 

Interrupt acknowledge .. Device 
Address of interrupting device 
put into DPBS. 

Memory refresh sync 

Restricts DPX, DPY & MI to 
Write exponent only 

Restricts DPX, DPY & MI to 
Write Mantissa Only (Bits 0-27) 



Field 

COND 

NOTE: 

Note: 

DISP 

BRANCH. GROUP 

123. COND 26127 

Octal 
Code 

2 

3 

4 

5 

6 

7 

DISP 

Mnemonic 

# 

BR 

BINTRQ 

BION 

BIOZ 

BFPE 

RETURN 

II RETURNS ft may not be made 

10 BFEQ 

11 BFNE 

12 BFGE 

13 BFGT' 

14 BEQ: 

15 BNE 

16 BGE 

17' BGT 

FA and SPFN are tested as 
instruction. 

</J to 37 

3l I 
Effect 

No-Op 

!nhibi t load of. SPFN:+.SPspo 

Bran.ch always 

Branch. if INTRQ ( Interrupt Request) 
f lag~l 

Branch if IODRDY0A flag=l 

Branch if IODRDY0A flag=O 

Branch: on floating-point arith­
metic error (overflow, underflow, 
or divide by zero) 

( sas·saA)+PSA; ( SRA)-l+SRA (Sub­
routine return jump. 

in. two succ.essi ve: instructions. 

to 

. 

Branch if FA-'/J.~ 

Branch if F A'f '/J • '/J 

Branch if FA?_.'/J. '/J 

Branch if FA>~. '/J' 

Branch: if SPFN='/J· 

Branch if SPFN'f~ 

Branch if SPFN;:_~ 

Branch if SPFN>'/J 

their state for the previous 

If branch condition is true,(PSA) 
+DISP-20+PSA 

Thus the -effective Branch Range is -20 to +17 relative to the 
current instruction. 

0-20 



DATA PAD GROUP 

32 33 34 35 36 38 39 
DPX DPY· DPBS XR 
Octal 

Field Code Mnemonic 

DPX (/J 

1 DPX( lDX) <DB 

2 DPX(.lDX) <FA 

3 DPX( lDX) <FM 

DPY (/J 

l DPY( lDX) <DB 

2: DPY( lDX) <FA 

3 DPY(lDX.)<FM 
. . i 

*All bits 
·:~ 

written unless- WRTEXP, WRTHMAN 
and HOSTPNL field. 

~ 
·"i::>· 

'-

DPBS </i DB= ZERO 

1 DB=INBS 

2 DB=VALUE 

3 DB=DPX(lDX) 

4 DB=DPY(lDX) 

5; DB=MD 

6 DB=SPFN 

7 DB=TM 

47 48 50 
YW 

Effect 

No-Op 

DPBS+*DPXDPA+lDX Where 
.) XW=1DX+4 

FA+*DPXDPA+lDX 
) Where XW=1DX+4 

FM+*DPXDPX+lDX 
J 

Where XW=1DX+4 

No-Op 

DPBS+*DPYDPA+lDX Where YW=1DX+4 

· FA+*DPYoPA+lDX Where YW=1DX+4 

FM+*DPYDPA+lDX Where YW=1DX+4 

or WRTLMAN set. See SO Pl 

</l.(/J+DPBS 

INBS+DPBS 

VALUE+DPBSE, VALUE+DPBsML, 
sign extended into DPBS 

MH 

(DP~PA + lDX) -1-DPBS, Where XR=1DX+4 

(DPYDPA + lDX)+DPB8_, Where YR=1DX+4 

(MD) DPBS 

SPFN + 512+DPBsE, SPFN+DPBsML, 
sign extended into DPBSMH 

(TM)+DPBS 

DPBS forced to (/J if HOSTPNL field=lO to 13 
ML=Mantissa Low (Mantissa Bits 12:...27) 
MH=Mantissa High (Mantissa Bits 00-11) 
E=Exponent 
VALUE is a 16:...bit 2's complement number, contained in bits 48-63 of 
the instruction word. 

0-21 



Octal 
Field Code Mnemonic Effect 

XR VJ to 7 DPX Read EFA is (DPA)+XR-4 

YR (/J to 7 DPY Read EFA is (DPA)+YR-4 

XJ{ f/J to 7 DPX Write EFA is (DPA)+XW-4 

YW '/I to 7 DPY Write EFA is (DPA)+YW-4, 
YW=XW if VALUE is used in 
another field 

0-22 



Field 

FM 

Ml 

M2 

FLOATING MULTIPLIER GROUP 

I ~i4 l5~1 s3 I s~2 55 

Octal. 
Code 

1 

l 

2 

3 

</J 

I 

2 

3 

Mnemonic 

FMUL 

FM 

DPX (lDX) 

DPY (lDX) 

TM 

FA 

DPX ( lDX) 

DPY (lDX) 

MD 

Effect 

No-Op 

Multiply: (Ml)*(M2) 

FM+ Ml 

( DPXDPA+ lDX )-+Mll W'here XR=1DX+4 

(DPYDPA+ lDX )-+Ml; Where YR=1DX+4 

(TM)-+Ml 

FA-+M2 

(DPXDPA-r lDX )-+M2 
.J Where XR=1DX+4 

(DPYDPA+ lDX )-+M2; Where YR=1DX+4 

(MD)+M2 

Note: These fields· are not in effect if VALUE is used in 
another field. 

Arguments that are unnormalized by more than. one· position will 
produce incorrect results. 

D-23 



MI 

Octal 
Code 

MEMORY GROUP 

Mnemon.ic Effect 

MI<FM 

MI<DB 

FA~M.I.,. write MI into Data Memory** 

FM•MI, write MI into Data Memory•* 

DPBS~I, write MI. into Data Memory** 

**All bits written unless WRTEXP,. WRTHMAN or WRTLMAN is set. 
See SOPl and HOSTPNL fields. 

MA '/J No-Op 

l INCMA (MA)+l•MA, i.ntitate a Data Memory 
cycle 

DE CME (MA)-t•MA, initia.te a. Data Memory 

*DPBS is 

DPA 

3 
used. in 

SEntA 
place of SPFN 

IN CD PA 

DECDPA, 

it 

cycle 

*SPFN+MA, initiate a 
LDREG field. 

No-Op 

(DPA:)+l+DPA 

(DPA)-l+DPA 

is. used. 

3 SE'l'DPA *SPFN•DPA 

Data Memory 

*DPBS is used in place of SPFN if LDREG fielg is used. . . 
Note:. T.hese fields a.re not in effect if a value is used by 

another field. Changes made in MA, T~, or DPA do not 
a:f:fect the values of these registers used by other 
fields during the current instruction. 

0•24 

cycle 



Field 

TMA 

Octal 
Code 

1 

2 

3' 

Mnemonic 

INCTMA 

DECTMA 

SETTMA 

Effect 

No-Op 

(TMA)+l-+-TMA, initiate a read from 
Table Memory 

(TMA)+l-+-TMA, initiate a read from 
Table Memory 

*SPFN-+-TMA, initiate a read from 
Table Memory 

*DPBS is used in; place of SPFN if LDREG field is used. 

Note: These fields are not in effect if a VALUE is used by 
another field. Changes made in MA, TMA, or DPA do not 
affect the values of these registers used by other fields 
during the current instruction. 

0 

to 
NOP Assembler recognizes this mnemonic 

63 
and will insert an all zeros instruction 

which is a NOP. 

o-25 



& •" ... ,. •-. ·-·- ·-. ·- •- ...... D-4 
Al ............ -.D-14 
A2 .............. D-15 
ADD•- •.• •-• • • •• , ••.• D-4-
AND •. •- • ••. •- ........ D-4 
B .•..••. -• -• •• , •• ·- ...... ·--D •4 
BDBN ••••••••••• D-7 
BDBZ ••••••••••• D-7 
BEQ •••••••••••• n-zo 
BFEQ ••••••••••• n-zo 
BFGE •••• , ••••••• n-zo 
BFGT ••••••• , •••• D-20 
BFLO ••••••••••• D-T 
BFLl ••••••••••• D-7 
BFL2 ••••••••••• D-7 
BFL3 ••••••••••• D-7 
BFLT ••••••••••• D-7 
BFNE ••••••••••• D-20 
BFPE ••••••••••• D-20 
B'GE· .... ·- •.••.• ., •.• • D-20 
BGT •••••••••••• D-20 
B IF?r • ••. ..- •:- •• •- ••• D•-7 
B!FZ ••••••• , •••• D-7 
BINTRQ ••••••••• D-20 
B I0N ••••••••••• D-20 
BIOZ ••••••••••• D-20 
BLT., ••••••••••• o-7 
BNc·--• •.••.•.• ·--. ·-- •• •. D-7 
BNE. •.•• .- ••• .--.-. •.• • D-20 
BR ••••••••••••• D-20 
BZC •••••••••••• D-7 
CFLO ••••••••••• D-18 
CFLl •••• , ••• , •••• D-18 
CFL2 ••••••••••• n ... 18 
CFLJ ........ ~ •• D-18 
CLR·--- •• •.••. --- •••.• • -D-5 
COM .............. D-5 
GOND ••••••••••• D-20 
CONTROL •••••••• D-19 
DB ••••••••••••• D-21 
DBELIT ••••••••• D-8 
DSHLIT ••••••.•• o-8 
DBLLIT .......... D-8 
DEC ..•.••.•• , • •• -•.•.•• D-5 
DECDPA ••••••••• D-24 

INDEX 

D-26 

DECMA ......... , •.• ,D-24 
DECTMA. .......... D-25 
DISP ••••••••••• D-20 
DPA •••••••••••• D-24 
DPBS ............ D-21 
DPX •••••••••••• D-14, D-15, 

D-21 •. D-23 
DPY •••••••••••• D-14, D-15, 

D-21, D-23 
EDPX ••••••••••• D-15 
EQV. ·- ••.••• •·-· ••• D-4 
F2CSM •••.••••••• D-15 
FA ••••••••••••• D-15, D-24 
FABS ............ D-15 
FADD ••••••••••• D-14 
FADDl •••••••••• D-15 
FAND ••••••••••• D-14 
FEQV ••••••••••• D-14 
FIX •••••••••••• D-15 
FIXT ••••••••••• D-15 
FLAG ••••••••••• D-18 

FM .............. D-14, D-23, 
D-24 

FMUL •• , ........... D-2J 
FOR •••••••••••• D-14 
FSCALE ••••••••• D-15 
FSCLT •••••••••• D-15 
FSM2C •••••••••• D-15 
FSUB ••••••••••• D-14 
FSUBR •••••••••• D-14 
HALT •• , .......... D-19 
HOSTPNL •••••••• D-8 

INBS ............ D-21 
INC ......... •• •• D-5 
IN CDP A ••••••••• D-24 
INCMA •••••••••• D•24 
INCTMA •••••••• , • D-25 
INDA ... , ••••••••• D-17 
INOUT •••••••••• D-17 
INTA ••••••••••• D-19 
INTEN •••••••••• D-19 
IO •• , ••.••••.•••.• • D-16 
IORST •••••••••• D-19 
JM.P • •• ·- •• ~ •••••. • D-9 



J11PA • •••••••••• D--9 
JMPP ••••••••••• D-9 
JMPT •••• •- ••• •- • • D-9 
Jsa ••.••..•••.. o-9 
JSR.A..· ••• ·- •••• • D-9 
JSRP • ........... D-9 
JSRT~ •••••••••• D-9 
L •••••••••••••• D-4 
LDAPS •••••••••• D-16 
LDDA ••••••••••• D-16 
LDDPA •••••••••• D-16 
LDMA ••••••••••• D-16 
LDREG •••••••••• D-16 
LDSP ••••••••••• D-16 
LDSPD •••••••••• D-16 
LDSPE •••••••••• D-5 
LDSPI •••••••••• D-5 
LDSPNL ••••••••• D-5 
LDSPT •••••••••• D-5 
LDTMA. •••••••••• D-16 
LPSL ••••••••••• D-12 
LPSLA •••••••••• D-12 
LPSLP •••••••••• D-12 
LPSLT.~ •••••••• D-12 
LPSR ••••••••••• D~l2 
LPSRA ••.•••••.••• D-12 
LPSRP •••••••••• D-12 
LPSRT ••••••••• :n-12 
Ml •••••.••••••• D-23 
M2 • •.•••••.•••••• D-23 
MA.-· • • ••••••• •-. D-24 

D-23 
MDPX ............. D-15 
M·I., •••••.••.••.•• • D-24 
MOV •-•"•·. •- ........... • D-4-
NC ••••••••••••• D-14, D-15 
NOP ••.•••••.••.••• D-25 
OR.-, .• ·-. ·-· •••••• • -D-4 
OUT •••••.••••••• D-17 
OUTDA •••••••••• D-17 
PNLLIT ••••. • •••• D-8 
PS ••••••...••••• D-12 
PSEVEN ••••••••• D-10 
PSODD •••••••••• D-11 
R •••••••••••••• D-4 
RAPS ••••••••••• D-17 
RDA ••.•.•.•••••••• D-17 

D-27 

RDPA ••••••••••• D-17 
RDREG •••••••••• D-17 
REFR ••••••••••• D-19 
RETURN ••••••••• D-20 
REXIT •••••••••• D-16 
RMA • ., ••••• , ••••• D-17 
RPS 0 •••••••••.•• D-10 
RPS OA •. .,. ••••••• D-10 
RPS OT •••••••••• D-10 
RPSl ••••••••••• D-11 
RPS lA •••••••••• D-11 
RPSlT •••••••••• D-11 
RPS2 ••••••••••• D-10 
RPS2A •.••••••••• D-10 
RPS2T •••••••••• D-10 
RPS3 ••••••••••• D-11 
RPS3A •••••••••• D-ll 
RPS3T •••••••••• D-ll 
RPSA ••.••••••••• D-17 
RPSF ••••••••••• D-12 
RPSFA •••••••••• D-12 
RPSFP •••••••••• D-12 
RPSFT •••••••••• D-12 
RPSL ••••••••••• D-12 
RPSLA •••••••••• D-12 
RPSLP •••••••••• D-12 
RPSLT •••••••••• D-12 
RR ••••••••••••• D-4 
RSPD ••••••••••• D-17 
RSPFN •••••••••• D-17 
RniA. ••.•••••••• • D-17 
SENSE •••••••••• D-18 
SETDPA ••••••••• D-24 
SETEX •••••••••• D-13 
SETEXA ••••••••• D-13 
SETEXIT •••••••• D-13 
SETEXP ••••••••• D-13 
SETEXI ••••••••• D-13 
SETMA ........... D-24 
SETS PA ••••••••• D-9 
SETniA. ••••••••• D-25 
SFLO ••••••••••• D-18 
SFLl ••••••••••• D--18 
SFL2 ••••••••••• D-18 
SFL3 ••••••••••• D-18 
SH •••••••••.•••• D-4 
SNSA ••••••••••• D-18 
SNSADA ••••••••• D-18 



SNSB •••••• · •••• :n-18 
SNSBDA •••• ., ...... D-18 
SOP .................... D-4 
SOPl ............... n-s 
s·PD .. ..................... D-4 
SPEC ................ D-6 
SP'FN .... " •.•••••• o·-2.1 
SPINA ............... D-17 
SPINB· .............. D-18 
SPINDA ••••••••• D-17 
SPININ ••••••••• D-17 
SPMOA ........ ••• .D-6 
SPMDAV ••••••.••• D-16 
SPNADA ••••••••• D-18· 
SPNBDA .......... D-18 
SPNOUT ••••••••• D-17 
SPOTDA ••••••••• D-17 
SPS •.••.•••••.•..• • 0 ... 4. 
STEST •••••••••• D-7 
S'U'B •••••.••••.••• D-4-
S'WDB • ............ • D-.8 
SWDBE. "' .......... D-8 
SWDBH ........... D-8 
·SWDB.L ........... D-8 
TM ................... D-14,. D-21,. 

D-23 
T'MA. •••••••.•.••• • D-25 
VALUE •••••••••• D-21 
WPSO ............... D-10 
WPSOA ............ D-10 
WPSO't ........... D-10 
WPSl ............... D-11 
WPS.LA ............ D-l l 
WPSlT ...... ••·•·• .D-11 
WPS·2· ............ D-10 
WPS2A .............. D-10 
WPS2T •••••••••• O-l0 
WPSJ ................ D-11 
WPS3A ............... D-11 
WPS3T .............. D-11 
WR.TEX ••••••••••. D-19 
WRTEXP .......... n-s 
WRTHMN ........... D-5. 
WRTLMN •••.•••••• D-5. 
WR'!MAN ••.••••••• D-19 
n ........ •·•·• .... . D-·22 . 
. XtJ • ., ••.••. • •• • ... •. D-2.2 

YR ................... D.-22. 
YW..-., ................ • D-22 
ZERO .................. D-14,. D-15 ,. 

D-21 
IF ....... •·• ..... •· • •. D-20 

I 

I 

D-28 
1-j 
I • ~ 



FLOATING POINT 
SYSTEMS, INC. 

CALL TOLL FREE 800-54 7-1445 
PO. Box 23489, Portland, OR 97223 
(503) 641 -3151 , TLX: 360470 FLOATPOINT PTL 




